
Chapter 9

Caveats for Robustness

9.1 Introduction

In this chapter we consider the position-based formation control design in (2.74)
and investigate its robustness with respect to switching topology, link gain variation
and unmodeled dynamics. For convenience, we rewrite (2.74) here

(M⊗ Ip)ẍ+(K ⊗ Ip)ẋ+(LΔ ⊗ Ip)x = 0 (9.1)

where M = diag{m1, · · · ,mN}, K = diag{k1, · · · ,kN} and LΔ = DΔDT is the weighted
Laplacian. Recall that (9.1) ensures global asymptotic stability of the origin of ẋ and
z = (DT ⊗ Ip)x.

We first analyze (9.1) with switching topologies. Such switching may occur due
to the vehicles joining or leaving a formation, transmitter/receiver failures, limited
communication/sensor range, or physical obstacles temporarily blocking sensing
between vehicles. For single integrator dynamics, switching topology has been stud-
ied in [63, 103] and stability under arbitrary switching has been ascertained for
classes of coordination algorithms. In contrast, for second order dynamics, we illus-
trate with an example that a destabilizing switching sequence that triggers instability
exists. We then show that stability is maintained when switching is sufficiently fast
or slow so that is does not interfere with the natural frequencies of the group dy-
namics.

We next investigate stability properties when the link weights are perturbed by
small sinusoidal oscillations. To illustrate this instability in its most basic form,
we make a simplifying assumption that the perturbation is sinusoidal and trans-
form the group dynamics into a form that reveals a parametric resonance mecha-
nism [52, 96, 53]. This transformation employs the spectral properties of the graph
Laplacian and decouples the relative motion from the motion of the center of the
agents. When mass inertia and damping terms are identical for all agents, we obtain
decoupled Mathieu equations [96], which make parametric resonance explicit. For
broader classes of mass and damping matrices, we obtain coupled Mathieu equa-
tions and discuss which frequencies lead to parametric resonance. Next, we show
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166 9 Caveats for Robustness

that sinusoidal perturbations do not destabilize the system if they are slow or fast
enough. The sinusoidal perturbations studied in this situation are not necessarily the
most commonly occurring ones in practice. However, they allow us to study worst-
case scenarios to deepen the understanding of fundamental stability and robustness
properties in cooperative systems.

We finally study the effect of input unmodeled dynamics, such as fast actuator
dynamics. Following standard singular perturbation arguments, we prove that the
stability of the nominal design that ignores the effects of unmodeled dynamics is
preserved when the stable unmodeled dynamics are sufficiently fast. As we illustrate
with an example, how fast the unmodeled dynamics must be is dictated by the graph
structure and the mass inertia matrix.

9.2 Instability due to Switching Topology

9.2.1 Example

Consider four agents with an undirected graph that switches between a ring graph
and a complete graph1. Let M = I, K = kI and Δ = δ I for some constants k > 0 and
δ > 0. Then, the closed-loop dynamics (9.1) become

ẍ+ kẋ+δ (Li ⊗ Ip)x = 0 i = 1,2 (9.2)

where Li = DiDT
i is the Laplacian matrix for the ring graph when i = 1, and for the

complete graph when i = 2.
Because L1 and L2 admit the same set of orthonormal eigenvectors q j, j = 1, · · · ,4

for their eigenvalues {0,2,2,4} and {0,4,4,4}, respectively, the change of variables
d j = (qT

j ⊗ Ip)x, j = 1, · · · ,4 decouples the dynamics (9.2) into

d̈ j + kḋ j +δλ jid j = 0, (9.3)

where λ ji is the jth eigenvalue of the Laplacian Li, i = 1,2. It then follows from
standard results in switching systems [81, 1, 80] that, if the damping k is small, and if
δλ j1 < 1 and δλ j2 > 1, then (9.3) is destabilized by a switching sequence that selects
i = 1 when dT

j ḋ j > 0 and i = 2 otherwise. Instability with this sequence follows from
the Lyapunov-like function V = ‖d j‖2 +‖ḋ j‖2 which increases along the trajectories
of (9.3). Because the eigenvalues λ2i and λ3i switch between the values 2 and 4 in
our example, if δ ∈ (1/4,1/2), then δλ j1 < 1 and δλ j2 > 1 indeed hold for j = 2,3.
This means that, when the damping is small, a destabilizing switching sequence
exists.

We demonstrate this instability with a simulation in Fig. 9.1. We choose p = 1
and four agents. Although the system (9.1) guarantees agreement of xi’s for any

1 A complete graph is a graph where every two nodes are connected.
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fixed connected graph, when the communication topology switches between a com-
plete graph and a ring graph according to the sequence described above, Fig. 9.1
shows that the relative distances between the agents diverge.
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Fig. 9.1 A switching sequence described in Section 9.2.1 between the ring and complete graphs
destabilizes the relative positions between the agents in the system (9.1).

9.2.2 Comparison with First-order Agent Models

The instability example presented in the previous section occurs only when the agent
dynamics are second or higher order. In this section, we show that for agents mod-
eled as first order integrators, switching between connected graphs will not lead to
instability. In fact, the agreement of xi’s can be achieved even if the graph loses
connectivity pointwise in time. Note that for first order agents, the Hi’s in Fig. 2.2
are simply static passive blocks. We then restrict our attention to the following class
of first order agreement protocols

ẋi = −
M

∑
k=1

dik(t)ψk(zk) zk :=
N

∑
j=1

d jk(t)x j, (9.4)

rewritten in vector form (2.3), (2.24) as
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ẋ = −(D(t)⊗ Ip)ψ(z) (9.5)
z = (D(t)T ⊗ Ip)x (9.6)

where the multivariable nonlinearity ψ(·) has the property (2.46). The matrix D(t) is
piecewise continuous because its entries exhibit step changes when a change occurs
in the communication topology. We define the time varying graph Laplacian as

L(t) = D(t)D(t)T . (9.7)

If the graph remains connected for all t ≥ 0, that is, if

λ2{L(t)} ≥ σc > 0 ∀t ≥ 0 (9.8)

for some constant σc > 0 that does not depend on time, then it is not difficult to show
that xi’s in (9.5)-(9.6) reach an agreement despite the time-varying L(t). We now
prove agreement under a less restrictive persistency of excitation condition which
stipulates that graph connectivity be established over a period of time, rather than
pointwise in time:

Proposition 9.1. Consider the system (9.5)-(9.6) where x ∈ R
pN comprises of the

components xi ∈ R
p, i = 1, · · · ,N concatenated as in (2.3), ψ(·) satisfies (2.46), and

D(t) is piecewise continuous incidence matrix. Let S be an (N −1)×N matrix with
orthonormal rows that are each orthogonal to 1N; that is,

S1N = 0 SST = IN−1. (9.9)

If there exist constants δ > 0 and α > 0 such that, for all t0 ≥ 0,∫ t0+δ

t0
SL(t)ST dt ≥ αI, (9.10)

where L(t) is defined in (9.7), then the protocol (9.5)-(9.6) achieves the agreement
of xi’s. ��

The proof of this proposition can be found in Appendix A.8. The “persistency of
excitation” condition (9.10) means that SL(t)ST is nonsingular when integrated over
a period of time, and not necessarily pointwise in time. Since, by construction of S
in (9.9), SL(t)ST inherits all eigenvalues of L(t) except the one at zero, its smallest
eigenvalue is

λ1{SL(t)ST} = λ2{L(t)}, (9.11)

which means that nonsingularity of the matrix SL(t)ST is equivalent to connectivity
of the graph. Because Proposition 9.1 does not require nonsingularity of SL(t)ST

pointwise in time, it allows the graph to lose pointwise connectivity as long as it is
established in the integral sense of (9.10). The pointwise connectivity situation (9.8)
is a special case of Proposition 9.1 because, then, (9.10) readily holds with α = σcδ .
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9.2.3 When is Stability Maintained?

Having demonstrated stability robustness of first order agreement protocol with re-
spect to switching topology, we now come back to the second order protocol (9.1)
and consider under what conditions the stability of (9.1) is maintained.

Since (9.1) guarantees the origin of (ẋ,z) to be exponentially stable for a fixed
connected graph, using the concept of dwell-time [81, 91, 56], we can ensure ẋ → 0
and z → 0 if all graphs in the switching sequence are connected and if the interval
between consecutive switchings is no shorter than some minimum dwell time τ > 0,
where estimates for τ can be obtained following [56]. We next employ the concept of
an “average graph” to show that fast and periodic switching also preserves stability.

Consider a periodic switching sequence σ(t) in which the topology switches
n− 1 times, n ≥ 1, during one period T . We label n graph Laplacians in T as Li

Δ ,
i = 1, · · · ,n and denote their dwell times by τi, i = 1, · · · ,n, ∑n

i=1 τi = T . We thus
study the switched system:

(M⊗ Ip)ẍ+(K ⊗ Ip)ẋ+(Lσ(t)
Δ ⊗ Ip)x = 0 (9.12)

where
Lσ(t)
Δ ∈ {L1

Δ ,L2
Δ , · · · ,Ln

Δ}. (9.13)

To determine the stability of (9.12)-(9.13), we investigate the eigenvalues of the
state transition matrix evaluated over a period T :

Ξ(T,0) = eANτN · · ·eA2τ2eA1τ1 , (9.14)

where

Ai =
(

0N IN
−M−1Li

Δ −M−1K

)
⊗ Ip (9.15)

is the system matrix of (9.12) in the coordinates of (x, ẋ), i = 1, · · · ,N. When τi’s
are small, we rewrite (9.14) as

Ξ(T,0) =
n

∏
i=1

[I + τiAi +O(τ2
i )]

= I +
N

∑
i=1

τiAi +O(T 2)

= I +TAav +O(T 2) (9.16)

where

Aav =
(

0N IN
−M−1Lav

Δ −M−1K

)
⊗ Ip (9.17)

and

Lav
Δ =

1
T

n

∑
i=1

τiLi
Δ (9.18)
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is the average of the n graph Laplacians during the period T .
Because the linear combination (9.18) preserves the structure of a Laplacian,

Lav
Δ defines an average graph obtained by superimposing the individual graphs i =

1, · · · ,n. In this average graph, the links are weighted by τi/T , which represents the
relative dwell time of each graph constituting the average. This means that, if the
time-varying graph is jointly connected as in [63], then the averaged graph described
by Lav

Δ is connected. We point out that the connectedness of Lav
Δ also satisfies the

persistency of excitation condition in (9.10) with δ = T since for all t0 ≥ 0∫ t0+T

t0
SLσ(t)

Δ ST dt = SLav
Δ ST , (9.19)

which is positive definite if and only if the average graph is connected.
We finally show that, when T is sufficient small, connectedness of the average

graph implies stability of (9.12)-(9.13). To see this, note from (9.16) that the eigen-
values of Ξ(T,0) are given by

κi = 1+Tλi +O(T 2), i = 1, · · · ,2N, (9.20)

where λi’s are the eigenvalues of Aav. It follows that if the graph induced by the
averaged Laplacian Lav

Δ is connected, then all λi’s have negative real parts, except
the one, say λ1, at zero. This zero eigenvalue results from the null space of Aav,
spanned by a = [1T

N 0T
N ]T , which is also the null space of Ai, i = 1, · · · ,n. We thus

conclude that Ξ(T,0)a = a, which implies κ1 = 1. Then, for sufficiently small T , κi
in (9.20), i = 2, · · · ,2N, remain inside the unit circle and κ1 = 1 corresponds to the
motion of the center, thereby guaranteeing the asymptotic stability of the subspace
spanned by a = [1T

N 0T
N ]T . Note that convergence to this subspace guarantees ẋ→ 0

and z → 0.

Lemma 9.1. Consider the closed loop dynamics (9.12)-(9.13) with a switching sig-
nal σ(t) of period T . If the averaged graph induced by (9.18) is connected, then
there exists a T ∗, such that for T < T ∗, the the subspace spanned by a = [1T

N 0T
N ]T

is asymptotically stable. ��

9.3 Parametric Resonance

9.3.1 Example

To illustrate parametric resonance in its most basic form, we study an example of
the cooperative system (9.1) with M = I, K = kI and Δ = δ I. To further simplify the
notation we consider the single degree-of-freedom case p = 1. The same analysis
extends to p > 1 with the use of Kronecker algebra. The graph is now time-invariant
but the link gain δ is perturbed by a cosine term ε cosωt, thus leading to the closed-
loop model
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ẍ+ kẋ+(δ + ε cosωt)Lx = 0. (9.21)

Note from Property 1.2 that L can be diagonalized by an orthonormal matrix Q:

QT LQ = Ld := diag{λN , · · · ,λ1} (9.22)

where λN ≥ λN−1 ≥ ·· · ≥ λ1 = 0. If follows from Property 1.3 that if the graph is

connected, then only λ1 is zero and the corresponding column in Q is
1√
N

1N due to

Property 1.1. Thus, we let

Q = [ST 1√
N

1N ] (9.23)

where S satisfies (9.9), and decompose x as

x = ST d +
1N√

N
c, (9.24)

where d ∈ R
N−1 and c ∈ R.

The dynamics of c correspond to the evolution of the center of x and is obtained
by premultiplying (9.21) by 1√

N
1T

N :

c̈+ kċ = 0. (9.25)

The solution c(t) approaches ċ(0)/k+c(0), which means that the time-varying link
gains do not affect the motion of the center.

Next we derive the dynamic equations for d. Since SST = IN−1, we obtain from
(9.24) that

d = Sx (9.26)

which, from (9.21), results in

d̈ + kḋ +(δ + ε cosωt)SLx = 0. (9.27)

We further note from (9.24) that

SLx = SLST d (9.28)

and from (9.22)-(9.23) that
SLST = L̄d (9.29)

where L̄d = diag{λN , · · · ,λ2}. Substituting (9.28)-(9.29) into (9.27), we obtain

d̈ j + kḋ j +(δ + ε cosωt)λn+1− jd j = 0, j = 1, · · · ,N −1, (9.30)

which is a Mathieu equation [52, 149, 96] with the natural frequency
√

δλN+1− j. It
then follows from standard results for the Mathieu equation that instability occurs
when the frequency of the perturbation is around ω = 2

√
δλi/r, r = 1,2,3, · · ·, for

each i = 2, · · · ,N. When damping k is zero, parametric resonance occurs at these
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frequencies for arbitrarily small ε . For nonzero damping k, parametric resonance
occurs for sufficiently large values of ε .

9.3.2 Coupled Mathieu Equations

In the previous example, the assumptions that M = I and K = kI played a crucial
role in obtaining the decoupled Mathieu equations (9.30). We now remove this as-
sumption and study the case where M, K and Δ in (9.1) are diagonal matrices with
not necessarily identical entries. We then reveal parametric resonance with an anal-
ysis of coupled Mathieu equations as in [96, Section 5.4], [149, 53, 52]. When each
link gain δi is perturbed by εδ̄i cosωt, (9.1) becomes

Mẍ+Kẋ+D(Δ + ε cosωtΔ̄)DT x = 0 (9.31)

where Δ̄ = diag{δ̄1, · · · , δ̄�}. Premultiplying by the inverse of M, we obtain

ẍ+M−1Kẋ+M−1LΔx+ ε cosωtM−1LΔ̄x = 0. (9.32)

where LΔ̄ = DΔ̄DT . The coordinate transformation y = T −1x, where T is com-
posed of the eigenvectors of M−1LΔ , then leads to

ÿ+T −1M−1KT ẏ+Λy+ ε cosωtT −1M−1LΔ̄T y = 0, (9.33)

in which
Λ = diag{λ̂N , · · · , λ̂1} (9.34)

and λ̂i’s are the eigenvalues of M−1LΔ . Because a similarity transformation brings
M−1LΔ to the symmetric form M− 1

2 LΔM− 1
2 , we conclude that λ̂i’s are real and non-

negative. Because N (DT ) is spanned by 1N , one of the eigenvalues of M−1DΔDT ,
say λ̂1, is zero and the corresponding column in T is 1N . Similarly to (9.23)-(9.24),
we rewrite T as

T = [S 1N ] (9.35)

and note that
x = T y = Sd +1Nc (9.36)

where d ∈ R
n−1, and c ∈ R is the center of x. It then follows from (9.33) and the

decomposition (9.36) that

ÿ+T −1M−1KT ẏ+Λy+ ε cosωtT −1M−1LΔ̄Sd = 0, (9.37)

since 1Nc lies in N (DT ).
When the damping term K is small, the off-diagonal entries of T −1M−1KT can

be neglected [30], that is,

T −1M−1KT ≈ diag{k̄1, · · · , k̄N} := K̄ (9.38)
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where k̄i is the ith diagonal entry of T −1M−1KT . The dynamics in (9.37) can then
be written as(

d̈
c̈

)
= −K̄

(
ḋ
ċ

)
−Λ

(
d
c

)
− ε cosωt

(
S∗M−1LΔ̄S 0
ζM−1LΔ̄S 0

)(
d
c

)
(9.39)

where T −1 =
(

S∗
ζ

)
.

We note from (9.39) that the dynamics of d are decoupled from that of c and
that stability of the relative motion of the agents is determined by the d-dynamics.
Results for coupled Mathieu equations in [149, 96, 52] applied to (9.39) indicate
that parametric resonance occurs around the frequencies

ω =

√
λ̂ j ±

√
λ̂k

r
j �= k, j,k = 2, · · · ,N. (9.40)

and

ω =
2
√

λ̂ j

r
, j = 2, · · · ,N, r = 1,2,3 · · · (9.41)

For K̄ �= 0, parametric resonance occurs at these frequencies if ε is sufficiently large.
The parametric resonance resulting from (9.40) is known as Combination Reso-
nance because the excitation frequency ω is a linear combination of two natural

frequencies
√

λ̂ j and
√

λ̂k [149]. When (9.41) is satisfied, the corresponding mode,
dN− j+1, is excited and the resulting parametric resonance is called Subharmonic
Resonance. Such resonances are well studied in structural mechanics literature and
are not further discussed here.

9.3.3 Fast Varying Perturbation

In the examples above instability occurs when the frequency of the perturbation
interferes with the natural frequencies of the cooperative system. We now show that
if the perturbation is fast enough (i.e., large ω), the origin of (ẋ,z) is asymptotically
stable. In the next subsection, we investigate slow perturbations.

Defining τ f = ωt and denoting

d(·)
dτ f

= (·)′, (9.42)

we rewrite the perturbed model in (9.32) as

ω2x′′ +ωM−1Kx′ +M−1(LΔ + ε cosτ f LΔ̄ )x = 0. (9.43)

Using the new variables z f = z(τ)/ω , and v f = x′, we obtain from (9.43) that
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v′f
z′f

)
=

1
ω

(−M−1K −M−1D(Δ + ε cosτ f Δ̄)
DT 0�

)
︸ ︷︷ ︸

A f (τ f )

(
v f
z f

)
. (9.44)

When ω is sufficiently large, the averaging method [69] is applicable to (9.44)
and the average of A f (τ f ) is given by

A f
av =

1
2π

∫ 2π

0
A f (t)dt (9.45)

=
(−M−1K −M−1DΔ

DT 0�

)
, (9.46)

which is the system matrix of (9.1) written in the coordinate of (ẋ,z). Therefore, A f
av

is asymptotically stable. The following lemma is thus a consequence of Theorem
B.9 in Appendix B.9:

Lemma 9.2. Consider the closed-loop system (9.31). There exists a ω f > 0 such
that for ω > ω f , the origin of (ẋ,z) is asymptotically stable. ��

9.3.4 Slowly Varying Perturbation

To analyze the system (9.32) with slowly varying perturbation (small ω), we look
at its system matrix As(t) in the (ẋ,z)-coordinates:

As(t) =
(−M−1K −M−1D(Δ + ε cosωtΔ̄)

DT 0�

)
. (9.47)

Note that (ẋ,z) is restricted to the following subspace

Sx = {(ẋ,z)|ẋ ∈ R
N p,z ∈ R(DT ⊗ Ip)}. (9.48)

For any fixed t, if Δ + ε cosωtΔ̄ > 0�, that is

0 ≤ ε < min
i=1,···,�

δi

δ̄i
, (9.49)

it follows that the origin of (ẋ,z) is asymptotically stable on Sx, which implies that
As(t) restricted to Sx is Hurwitz.

We next evaluate the derivative of As(t) as

Ȧs(t) =
(

0N εω sinωtM−1DΔ̄
0�×N 0�

)
(9.50)

and compute its norm:
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‖Ȧs‖ = εω |sin(ωt)|
√

λmax

(
0N 0N×�

0�×N ΔDT M−2DΔ

)
(9.51)

= εω |sin(ωt)|
√

λmax(ΔDT M−2DΔ) (9.52)

≤ εω
√

λmax(ΔDT M−2DΔ). (9.53)

Since ‖Ȧ‖ is bounded, we conclude from Theorem B.10 in Appendix B.10 that
for sufficiently small ω or ε , the origin of (ẋ,z) of the perturbed system (9.32) is
asymptotically stable.

Lemma 9.3. Consider the closed-loop system (9.31). There exists a μ̄ > 0 such that
for εω < μ̄ , the origin of (ẋ,z) is asymptotically stable. ��

9.4 Unmodeled Dynamics

We consider the following closed-loop system with unmodeled dynamics, i =
1, · · · ,N,

miẍi = Ciξi (9.54)
εξ̇i = Aiξi +Biτi (9.55)

where (9.55) represents the unmodeled dynamics, ε > 0, Ai is Hurwitz, and τi is
defined as

τi = −kiẋi −
�

∑
j=1

di jδ jz j. (9.56)

When ε is small, the unmodeled dynamics are fast. We further assume that the dc
gain of the unmodeled dynamics is CiA−1

i Bi = −I so that the reduced model ob-
tained by setting ε = 0 in (9.54)-(9.55) is identical to (9.1). It then follows from
standard singular perturbation arguments (see [69, Example 11.14] reviewed in Ap-
pendix B.11) that there exists ε∗ such that for ε < ε∗, the origin of (ẋ,z) is asymp-
totically stable.

To illustrate the dependence of ε∗ on the graph and the mass inertia, we simplify
the model in (9.54)-(9.55) by assuming M−1K = kIp, Δ = δ I�, A = −Ip, B = Ip and
C = Ip:

miẍi = ξi (9.57)
εξ̇i = −ξi + τi. (9.58)

Denoting ξ̄ = (M−1 ⊗ Ip)ξ , we rewrite (9.57)-(9.58) in the compact form:
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⎛⎝ ẋ

ẍ
˙̄ξ

⎞⎠=

⎛⎜⎜⎜⎜⎜⎝
⎛⎝ 0N IN 0N

0N 0N IN

− δ
ε (M−1L) − k

ε IN − 1
ε IN

⎞⎠
︸ ︷︷ ︸

A

⊗Ip

⎞⎟⎟⎟⎟⎟⎠
⎛⎝ x

ẋ

ξ̄

⎞⎠ . (9.59)

Then, it is not difficult to show that the 3N eigenvalues of A are the roots of the
following N characteristic polynomials:

s3 +
1
ε

s2 +
k
ε

s+
δ
ε
λ̄i = 0, i = 1, · · · ,N, (9.60)

where λ̄i’s are the eigenvalues of M−1L. A Routh-Hurwitz argument further shows
that the exact stability region in the parameter space is given by

ε < ε∗ =
k

δ λ̄max
, (9.61)

where λ̄max is the maximal eigenvalue of M−1L. For sufficiently small ε , (9.61) is
satisfied and guarantees stability despite the unmodeled dynamics. Denoting mmin =
mini mi, we note that a conservative upper bound of λ̄max is N

mmin
, which implies from

(9.61) that if ε < kmmin
δN , the origin of (ẋ,z) is stable.

Note that, since λ̄max is the maximal eigenvalue of M−1L, ε∗ depends not only
on the graph structure, but also on the mass distribution of the agents. To illustrate
this dependence, we consider four agents with k = 2, δ = 1 and p = 1. We compare
ε∗’s under two graphs as in Fig. 9.2. When M = diag{5,3,2,1}, we compute from
(9.61) ε∗ = 1.4797 for the star graph and ε∗ = 0.8154 for the string graph, which
means that the star graph is more robust for this M. However, when M = I4, ε∗ =
0.5,0.5858, respectively, for the star graph and the string graph, which implies that
the star graph is now less robust.

Fig. 9.2 The two graphs used in Section 9.4 to illustrate the dependence of ε∗ on the graph struc-
ture and mass distribution.

agent 2 agent 4

agent 1

agent 3 agent 2 agent 1

agent 3 agent 4
Star Graph String Graph
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9.5 Summary

In this chapter, we investigated robustness of (2.74) with respect to switching topol-
ogy, link gain variation and unmodeled dynamics. We illustrated with an example
that switching topology can lead to instability and showed that the closed-loop sta-
bility is maintained when switching is sufficiently fast and periodic. As a compar-
ison, we also demonstrated that first order agreement protocols have the stability
robustness with respect to switching topology. We next revealed a parametric res-
onance mechanism by transforming the cooperative system with time-varying link
gains into Mathieu equations. As in the case of switching graphs, stability is main-
tained when the sinusoidal perturbation is slow or fast enough that it does not in-
terfere with the natural frequencies of the group dynamics. We finally showed that
for fast stable input unmodeled dynamics, the stability of the nominal design is pre-
served.

Robustness of cooperative control protocols is an area that requires further inves-
tigation. Besides the three instability mechanisms presented in this chapter, other
instability mechanisms should be revealed and robust redesigns need to be devel-
oped.
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