
Chapter 4

Adaptive Design for Reference Velocity

Recovery: Parameterization Approach

4.1 Introduction

The designs in Sections 3.3 and 3.5 restrict the reference velocity v(t) to be constant
or periodically time-varying. In this section, we present adaptive designs that are
applicable to any time-varying, uniformly bounded and C1 reference velocity v(t)
that can be parameterized as

v(t) =
r

∑
j=1

φ j(t)θ j = (Φ(t)T ⊗ Ip)θ (4.1)

where φ j(t) ∈ R, j = 1, · · · ,r are basis functions available to each agent, θ j ∈ R
p

are column vectors available only to the leader,

Φ(t) = [φ 1(t), · · · ,φ r(t)]T (4.2)

and
θ = [(θ 1)T , · · · ,(θ r)T ]T . (4.3)

We let agent i, i = 2, · · · ,N, estimate the unknown θ j by θ̂ j
i , and construct v̂i(t) from

v̂i(t) =
r

∑
j=1

φ j(t)θ̂ j
i = (Φ(t)T ⊗ Ip)θ̂i i = 2, · · · ,N, (4.4)

where
θ̂i = [(θ̂ 1

i )T , · · · ,(θ̂ r
i )T ]T . (4.5)

In the following sections, we first develop a basic adaptive design with which
agent i updates its estimate θ̂i, i = 2, · · · ,N. Like the design in Section 3.3, this ba-
sic adaptive design recovers objective A2 as well as guaranteeing objective A1 in
some special cases, such as, the agreement problem. To ensure objective A1 when
the basic adaptive design fails, we then modify the basic adaptive design in a similar
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fashion to Section 3.5 and obtain the augmented adaptive design. We next apply the
adaptive design result to an extremum seeking example. In this example, a group
leader autonomously determines the Newton direction towards the extremum by
sampling a field distribution and parameterizes the group reference velocity accord-
ing to the Newton direction. The other agents then estimate this reference velocity
using the basic adaptive design and reconstruct the desired formation during ex-
tremum seeking. Before proceeding to these results, we first compare the parame-
terization approach and the internal model approach.

In the parameterization approach, the availability of the basis functions to each
agent is similar to Assumption 1 in the internal model approach, where the Ā matrix
is available to each agent. The use of the basis functions φ j(t) removes the re-
striction in the internal model approach that v(t) be constant or periodic. The basis
functions may then be used to shape the transient of the reference velocity profile.
However, since φ j(t)’s are time-dependent, the agents need to have synchronized
clocks to implement this parameterization approach. The next example compares
the number of the internal states used for estimating periodic reference velocity in
these two approaches.

Example 4.1. We consider a scalar reference velocity v(t), parameterized by

v(t) =
r1

∑
i=1

(ai sin(wit)+bi cos(wit)). (4.6)

Note that v(t) in (4.6) is already parameterized by the basis functions sin(wit) and
cos(wit), i = 1, · · · ,r1. Therefore, the total number of unknown parameters that pa-
rameterizes this v(t) is 2r1, which means that for the parameterization approach,
each agent (except the leader) needs to update 2r1 internal states to estimate these
unknown parameters.

In the internal model approach, we choose Ā in (3.15) as

Ā = diag
{(

0 −w1
w1 0

)
, · · · ,

(
0 −wr1

wr1 0

)}
(4.7)

which implies that the dimension of ϖi in (3.29) is 2r1. This means that each agent
(except the leader) also maintains 2r1 internal states to estimate the reference ve-
locity. Thus, in estimating generic periodic reference velocities, both the parameter-
ization approach and the internal model approach use the same number of internal
states.

In some special cases, however, the parameterization approach may require less
internal states. For example, if in (4.6) bi = 0, i = 1, · · · ,r1, then the parameterization
approach only requires r1 internal states which estimate all ai’s while the internal
model approach still requires Ā to be the same as (4.7) and the dimension of ϖi to
be 2r1. �
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4.2 The Basic Design

We choose the update law for the parameter θ̂i in (4.4) as

˙̂θ i = Λi(Φ(t)⊗ Ip)ui (4.8)

in which Λi = ΛT
i > 0 and ui is as in (2.23). As proven in Theorem 4.1 below, the

basic adaptive design (3.23), (3.24), and (4.8) guarantees convergence to the desired
target sets (objective A2). Whether objective A1 is achieved or not depends on the
convergence of θ̂i to θ , which will be studied in Section 4.3. When θ̂i converges to
θ , v(t) is recovered with the adaptive design and, thus, object A1 is also achieved.

Theorem 4.1. Consider the coordination laws in (3.23), (3.24), (4.4) and (4.8)
where v(t) is uniformly bounded and piecewise continuous, parameterized as (4.1)
in which φ j(t), j = 1, · · · ,r are uniformly bounded, and Hi, i = 1, · · · ,N, and ψk,
k = 1, · · · , � are designed as in (2.11)-(2.15) and (2.27)-(2.31), respectively. Then,
the set

E ∗ =
{
(z,ξ , θ̂)| ξ = 0, (D⊗ Ip)ψ(z) = 0 and z ∈ R(DT ⊗ Ip), θ̂ = θ ∗} (4.9)

is stable,where θ̂ =[θ̂T
2 , · · · , θ̂T

N ]T and θ ∗= 1N−1⊗θ . All trajectories (z(t),ξ (t), θ̂(t))
starting in G ×R

pr(N−1) are bounded and converge to the set E ×R
pr(N−1), where

E and G are as in (2.33) and (2.37). Moreover, when Property 2.1 holds, all trajec-
tories (z(t),ξ (t), θ̂(t)) starting in G ×R

pr(N−1) converge to the set A ×R
pr(N−1),

where A is as in (2.36). �
To obtain the closed-loop structure of the basic adaptive design, we denote by θ̃i

the error variable
θ̃i = θ̂i −θ i = 2, · · · ,N, (4.10)

and note from (4.8) that
˙̃θ i = Λi(Φ(t)⊗ Ip)ui. (4.11)

Using (4.1) and (4.4), we get

ṽi = v̂i − v(t) = (Φ(t)T ⊗ Ip)θ̃i, i = 2, · · · ,N. (4.12)

We set θ̃1 ≡ 0 and ṽ1 ≡ 0, and define

θ̃ = [θ̃T
1 , θ̃T

2 , · · · , θ̃T
N ]T (4.13)

and
ṽ = (IN ⊗ΦT (t)⊗ Ip)θ̃ = [ṽT

1 , · · · , ṽT
N ]T . (4.14)

The closed-loop structure of the basic adaptive design is then shown in Fig. 4.1.
We now give a passivity interpretation of the basic adaptive design. Because the

single integrator is passive and because the feedback path from u to ṽ exhibits the
same structure as Structure 1, we obtain the passivity from u to ṽ. We then conclude
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Fig. 4.1 The closed-loop structure of the basic adaptive design. The appearance of Φ(t) and its
transpose before and after the integrator implies the passivity from u to ṽ. The closed-loop stability
follows from the interconnection of the passive feedforward path and the passive feedback paths.

1N ⊗ v(t)
+

ẋ
DT ⊗ Ip

ż

∫
. . . ∫
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Φ(t)ΦT (t) . . .

∫
∫

θ̃ṽ

from the passivity result ii) in Theorem 2.1 and Structure 2 that the feedback path
is passive from u to y + ṽ. As proven in Theorem 2.1, the feedforward path is also
passive. Therefore, the closed-loop stability follows from Structure 3. The detailed
proof is given below.

Proof. To prove the stability of the closed-loop system described by the adaptive
design (2.11), (3.55) and (4.11), we exploit the passivity properties of the intercon-
nected systems and consider Vf (z) and Vb(ξ ) in (2.35) and

Va(θ̃) =
1
2

N

∑
i=2

θ̃T
i Λ−1

i θ̃i, (4.15)

which are the storage functions for the three paths in Fig. 4.1. In particular, the time
derivatives of Vf (z) and Vb(ξ ) are the same as (3.56) and (2.40).

Using (4.11), we obtain

V̇a =
N

∑
i=2

θ̃T
i Λ−1

i
˙̃θ i

=
N

∑
i=2

θ̃T
i Λ−1

i Λi(Φ(t)⊗ Ip)ui

=
N

∑
i=2

θ̃T
i (Φ(t)⊗ Ip)ui

= uT ṽ. (4.16)
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From (2.40), (3.56) and (4.16), the Lyapunov function

V (z,ξ , θ̃) = Vf (z)+Vb(ξ )+Va(θ̃) (4.17)

yields the negative semidefinite derivative

V̇ ≤−
N

∑
i∈I

Wi(ξi)− ∑
i/∈I

uT
i yi ≤ 0 (4.18)

which implies that all the trajectories (z(t),ξ (t), θ̃(t)) are bounded. We further con-
clude from Theorem B.5 in Appendix B.3 that ξi → 0, ∀i ∈ I and that ui → 0,
∀i /∈ I . We next show that ui → 0, ∀i ∈ I . To this end we note that

ξ̈i =
∂ fi

∂ui
u̇i +

∂ fi

∂ξ
ξ̇i (4.19)

is continuous and uniformly bounded because u̇ and ξ̇ are continuous functions of
the bounded signals (z(t),ξ (t), θ̃(t),Φ(t)) and because fi(·, ·) is C1. Since ξi → 0
and ξ̈i is continuous and bounded, it follows from Theorem B.4 in Appendix B.3
that ξ̇i → 0, which, from (2.11) and (2.12), guarantees ui → 0.

Finally, we note that u → 0 implies from (2.26) that ψ(z) converges to the null
space N (D⊗Ip). This, in turn, implies that the trajectories (z(t),ξ (t), θ̂(t)) starting
in G ×R

pr(N−1) converge to the set E ×R
pr(N−1), where E and G are as in (2.33)

and (2.37). Moreover, when Property 2.1 holds, all trajectories converge to the set
A ×R

pr(N−1), where A is as in (2.36). �

4.3 Parameter Convergence

Parameter convergence is essential for recovering objective A1 in Section 2.2 be-
cause θ̂i → θ implies |v̂i(t)− v(t)| → 0. In this section, we restrict our attention
to the group agreement problem as a special case of the adaptive design and show
that the parameter convergence is achieved. We note, however, that the convergence
to the desired target set (objective A2) is guaranteed by Theorem 4.1 even without
parameter convergence.

We assume that Pk(zk)’s are positive definite and radially unbounded functions
on Gk = R

p such that (2.46) is satisfied and thus, Property 2.1 holds. We further
assume that the passive feedback block Hi is in the control affine form

ξ̇i = fi(ξi)+gi(ξi)ui (4.20)
yi = hi(ξi) (4.21)

where
hi(0) = 0, fi(0) = 0 (4.22)
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and that the regressor Φ(t) in (4.4) is persistently exciting (PE), which means that
for all to ≥ 0, ∫ to+δ

to
Φ(t)Φ(t)T dt ≥ αI (4.23)

with some constants δ > 0 and α > 0 that do not depend on to. This PE condition
ensures the information richness of the time-varying signal Φ(t) throughout time,
and guarantees parameter convergence:

Theorem 4.2. In Theorem 4.1, suppose that the desired sets are Ak = {0}, and
that the passive feedback block is of the form (4.20)-(4.22). If Φ(t) satisfies the PE
condition (4.23), then the origin of (z,ξ , θ̃) is globally uniformly asymptotically
stable. In particular, θ̂i → θ , i = 2, · · · ,N as t → ∞. �
Proof. To prove parameter convergence in this case, we use the Nested Matrosov
Theorem reviewed in Appendix B.5. The first auxiliary function V1 is the same as
the Lyapunov function V in (4.17), which yields the negative semidefinite derivative
in (4.18) and thus guarantees uniform global stability, that is,

V̇1 = V̇ ≤
N

∑
i=1

−Wi(ξi) := Y1 ≤ 0. (4.24)

The second auxiliary function is

V2 = zT (D⊗ Ip)+Γ y (4.25)

where (D⊗ Ip)+ denotes the pseudoinverse of D⊗ Ip and

Γ = diag{(Lg1h1(0))−1, · · · ,(LgN hN(0))−1}. (4.26)

In particular Lgihi(0) := ∂hi(ξi)
∂ξi

∣∣
ξi=0gi(0) is nonsingular and thus invertible because

of the passivity of the ξi-subsystems in (4.20) and because of Proposition B.1 in
Appendix B.4. The derivative of V2 yields

V̇2 = zT (D⊗ Ip)+Γ ẏ+ żT (D⊗ Ip)+Γ y := Y2 (4.27)

where we claim that
Y1 = 0 ⇒ Y2 ≤ 0. (4.28)

To see this, note that Y1 = 0 implies ξ = 0 and it follows from (4.22) that y = 0,
which means that the second term in V̇2 vanishes. Because ẏi = Lgihi(0)ui when
ξ = 0, Y2 becomes

Y2 = zT (D⊗ Ip)+u. (4.29)

Substituting (2.26) and zT = xT (D⊗ Ip) from (2.6), we obtain

Y2 = −xT (D⊗ Ip)(D⊗ Ip)+(D⊗ Ip)ψ(z)
= −xT (D⊗ Ip)ψ(z)
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= −zTψ(z) ≤ 0. (4.30)

Next we introduce the auxiliary function

V3 = −((DT ⊗ Ip)ṽ)T z (4.31)

where ṽ is defined in (4.14). Its derivative is

V̇3 = −((DT ⊗ Ip)ṽ)T ż− ((DT ⊗ Ip) ˙̃v)T z := Y3 (4.32)

and we claim

Y1 = 0, Y2 = 0 ⇒ Y3 = −{
(DT ⊗ Ip)ṽ

}T {(DT ⊗ Ip)ṽ
}≤ 0. (4.33)

To show (4.33), we first note that Y2 = 0 implies that zTψ(z) = 0 and thus z = 0
due to (2.46), which means that the second term in (4.32) vanishes. It follows from
Y1 = 0 that ξ = 0 and hence y is zero from (4.22). Therefore, ż in (3.55) becomes
(DT ⊗ Ip)ṽ, which proves (4.33).

Finally, we define the auxiliary function

V4 = −θ̃T S(t)θ̃ (4.34)

S(t) :=
∫ ∞

t
e(t−τ)F(τ)F(τ)T dτ F(t) := IN ⊗Φ(t)⊗ Ip (4.35)

where

S(t) ≥
∫ t+δ

t
e(t−τ)F(τ)F(τ)T dτ ≥ αe−δ I (4.36)

because of the PE property of Φ(t). Note that

Ṡ(t) = et
∫ ∞

t
e−τF(τ)F(τ)T dτ + et d

dt

{∫ ∞

t
e−τF(τ)F(τ)T dτ

}
= S(t)−F(t)F(t)T . (4.37)

From (4.37), we obtain

V̇4 ≤−θ̃T S(t)θ̃ + ṽT ṽ−2θ̃T S(t) ˙̃θ := Y4 (4.38)

and claim
Y2 = 0, Y3 = 0 ⇒ Y4 = −αe−δ |θ̃ |2 ≤ 0 (4.39)

because the second and third terms in (4.38) vanish when Y2 = 0 and Y3 = 0. Indeed,
Y3 = 0 leads to (DT ⊗ Ip)ṽ(t) = 0, which indicates that ṽ(t) lies in N (DT ⊗ Ip).
Recall that N (DT ⊗ Ip) = 1N ⊗ c, c ∈ R

p and ṽ1 ≡ 0p. Therefore, it follows that
ṽ(t) = 0, which means that the second term in Y4 (4.38) is zero. Likewise, from
(2.46), Y2 = 0 results in z = 0, which means z belongs to the desired set A and thus
ψ(z) and u are zero. It follows that ˙̃θ = 0 from (4.11), which shows that the third
term in Y4 vanishes.
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Because Yi = 0, i = 1,2,3,4, imply (ξ ,z, θ̃) = 0 and we conclude from the Nested
Matrosov Theorem in Appendix B.5 that the origin is globally uniformly asymptot-
ically stable. Note that θ̃ → 0 implies θ̂i → θ , i = 2, · · · ,N. �

4.4 The Augmented Design

Like the design in Section 3.3, the basic adaptive design in Section 4.2 ensures track-
ing of reference velocity (objective A1) only in special cases, such as the agreement
problem studied in the previous section. To guarantee objective A1 when the ba-
sic adaptive design fails, we employ the augmented design (3.68) in the update
law (4.8). The augmented design recovers the stability result of Theorem 2.1 and
achieves tracking of the reference velocity as well.

Theorem 4.3. Consider the coordination laws in (3.23), (3.24) and (4.8), where v(t)
is parameterized as (4.1) in which φ j(t), φ̇ j(t), j = 1, · · · ,r are continuous and uni-
formly bounded. With ui defined in (3.68), and Hi, i = 1, · · · ,N, and ψk, k = 1, · · · , �
designed as in (2.11)-(2.15) and (2.27)-(2.31), all trajectories (z(t),ξ (t), θ̂(t))
starting in G ×R

pr(N−1) are bounded and converge to the set

E ∗
p =

{
(z,ξ , θ̂)|ξ = 0,(D⊗ Ip)ψ(z) = 0,z ∈ R(DT ⊗ Ip), v̂i(t) = v(t)

}
, (4.40)

where v̂i(t) is defined in (4.4) and G is as in (2.37). �
The closed-loop structure of the augmented adaptive design is given in Fig. 4.2.

Recall from Property 1.4 that ẋT (Lv⊗ Ip)ẋ = 1
2 ẋT (Lv

sym⊗ Ip)ẋ, which is nonnegative
since Gv is strongly connected and balanced. Thus, the static block Lv

sym in Fig. 4.2 is
passive and the feedforward path from ẋ to −u is also passive. As the passivity of the
feedback path is already established in Theorem 4.1, we conclude the closed-loop
stability of the system in Fig. 4.2.

Proof. Note that (3.68) can be rewritten in the compact form (3.69). To prove the
stability of the closed-loop system described by the adaptive design (2.11), (3.55),
(3.69) and (4.11), we take the same Lyapunov function as in (4.17) and from (2.40),
(3.70), (4.16) and (3.69), compute its time derivative as

V̇ = − ∑
i∈I

Wi(ξi)− ∑
i/∈I

uT
i yi − (y+ ṽ)T (Lv ⊗ Ip)(y+ ṽ) ≤ 0 (4.41)

which implies stability and boundedness of (z(t),ξ (t), θ̃(t)). Using Theorem B.5,
we further conclude that ξi → 0, ∀i ∈ I , ui → 0, ∀i /∈ I and (y+ ṽ)T (Lv ⊗ Ip)(y+
ṽ) → 0. For dynamic block Hi, it follows from ξi → 0 and (2.11) that yi → 0. For
static block Hi, ui → 0 implies yi = hi(ui) → 0. Thus, y → 0. Recall from (1.20)
that (y+ ṽ)T (Lv ⊗ Ip)(y+ ṽ) is zero only when (y+ ṽ)T (Lv

sym)(y+ ṽ) is zero. Since
the graph Gv is strongly connected, the graph corresponding to Lv

sym is connected.
Therefore, (y + ṽ)T (Lv ⊗ Ip)(y + ṽ) = 0 implies y + ṽ = 1N ⊗ c, where c ∈ R

p. We
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Fig. 4.2 The closed-loop structure of the augmented adaptive design. The property of Lv in (1.20)
renders the passivity of the top loop. The closed-loop stability follows from the interconnection of
two passive feedforward paths and two passive feedback paths.
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Lv ⊗ Ip

conclude from ṽ1 ≡ 0 and y1 → 0 that |y+ ṽ|→ 0. Since y → 0, it follows that ṽ → 0,
which implies from (4.14) that tracking of v(t) is achieved.

We next show u → 0. To this end we note that

ξ̈i =
∂ fi

∂ui
u̇i +

∂ fi

∂ξi
ξ̇i (4.42)

is continuous and uniformly bounded because u̇ and ξ̇ are continuous functions of
the bounded signals (z(t),ξ (t), θ̃(t),Φ(t),Φ̇(t)) and because fi(·, ·) is C1. Since
ξi → 0 and ξ̈i is continuous and bounded, it follows from Theorem B.4 that ξ̇i → 0,
which, from (2.11) and (2.12), guarantees ui → 0. Since |y + ṽ| → 0, we conclude
from (3.69) that (D⊗ Ip)ψ(z) → 0. �

The main difference of Theorem 4.3 from Theorem 4.2 is that it achieves ref-
erence velocity tracking directly while Theorem 4.2 establishes tracking by first
achieving parameter convergence. Parameter convergence is sufficient but not nec-
essary for velocity tracking (compare (4.1) and (4.4)). We next show that velocity
tracking implies parameter convergence θ̂i → θ when the regressor Φ(t) satisfies
the PE condition in (4.23). We need the following lemma.

Lemma 4.1. Let
Ẋ = f (X , t), (4.43)
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where X ∈R
n and f (X, t) :Rn×R≥0 →R

n. If all trajectories X(t) satisfy f (X(t), t)→
0 and Ω(t)T X(t)→ 0, where Ω(t) ∈ R

n is bounded and satisfies the PE property in
(4.23), then X(t) → 0. �
Proof. We rewrite (4.43) as

Ẋ = −Ω(t)Ω(t)T X +ζ (t) (4.44)

where ζ (t) := Ω(t)Ω(t)T X + f (X , t), and note that ζ (t) → 0 since Ω(t)T X and
f (X , t) both converge to zero and since Ω(t) is bounded. Solving for X from the
linear time-varying model (4.44), we obtain

X(t) = Ξ(t, t0)X(t0)+
∫ t

t0
Ξ(t,τ)ζ (τ)dτ (4.45)

where Ξ(t, t0) is the state transition matrix. Because Ω(t) is PE and because ζ (t)→
0 as t → ∞, it follows from standard results in adaptive control (e.g., [62, 136]) that
X(t) → 0. �

We now combine Theorem 4.3 and Lemma 4.1 to prove parameter convergence:

Corollary 4.1. Suppose all conditions of Theorem 4.3 hold. If, in addition, Φ(t)
satisfies (4.23), then θ̂i → θ . �
Proof. We establish θ̂i → θ by using the PE property (4.23) and Lemma 4.1 to prove
that |ṽ| → 0 implies θ̃i → 0, that is θ̂i → θ .

We note from Theorem 4.3 that

ṽ = (IN ⊗ΦT (t)⊗ Ip)θ̃ → 0 (4.46)

and that
˙̃θ i = Λi(Φ(t)⊗ Ip)ui → 0 (4.47)

since ui → 0. Because the signal ΦT (t) is PE, it follows from Lemma 4.1 that θ̃i → 0,
which proves the parameter convergence θ̂i → θ . �
Example 4.2. To illustrate the parameter convergence, we simulate the example in
Section 3.5.1. We take

v(t) = ([sin(t) cos(t)]⊗ I2)
[
θ 1

θ 2

]
(4.48)

where θ 1 = [−
√

3
3 0]T and θ 2 = [0

√
3

3 ]T . This v(t) is the same as in Section 3.4.2.
The estimate v̂i(t) in (3.64) is obtained from (4.4) with Φ(t) = [sin(t) cos(t)]T and
θ̂i = [(θ̂ 1

i )T (θ̂ 2
i )T ]T updated by (4.8).

The initial conditions of xi(0), i = 1,2,3, ξ1(0), and ξ̂i(0), i = 2,3 are the same
as in Section 3.4.2. The initial estimates are set to θ̂2(0) = [

√
3

6 − 1
2 − 1

2 −
√

3
6 ]T

and θ̂3(0) = [
√

3
6

1
2

1
2 −

√
3

6 ]T such that the group exhibits the same motion as in Fig.
3.4(b) if (2.23) is used in (4.8).
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Fig. 4.3 The augmented adaptive design recovers the convergence properties of the nonadaptive
design. [13]. Reprinted with Permission. Copyright Elsevier 2009.

When the augmented feedback (3.68) is employed in (4.8), Fig. 4.3 shows the
snapshots of the formation. The group now exhibits a translational motion with x1
circling around the origin, which means that the nonadaptive results are fully recov-
ered. In addition, because Φ(t) is PE, parameter convergence is achieved as shown
in Fig. 4.4. In this simulation, the graphs G and Gv are chosen the same as in Section
3.5.1. �

4.5 Application to Gradient Climbing in Formation

In this section, we apply the adaptive design result to a gradient climbing problem,
where the group leader performs extremum seeking for the field minima or maxima,
while the other agents maintain a desired formation with respect to the leader. Keep-
ing a group formation during the gradient climbing may be desirable for reliable
inter-vehicle communication/sensing, drag reduction, safety in adversarial environ-
ments, etc.

To achieve gradient climbing in a field distribution, the leader takes a discrete-
time, optimization based extremum seeking approach. This extremum-seeking ap-
proach, illustrated in Fig. 4.5, generates finite-difference approximations for the gra-
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dient and the Hessian of the field, by “dithering” sensor positions. The advantage
of this local approximation is that only the leader needs sensing capabilities, and
communication of sensed variables and geographic proximity of sensors are not
necessary for generating approximate gradients.
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Motion

Motion

Fig. 4.5 Gradient climbing by extremum seeking. Arrows represent the Newton motion, while
triangular paths are the dither motion with the samples taken at positions marked by dots. The
dither motion has three segments: Along horizontal axis from left to right, along the diagonal from
right to left and along vertical axis from top to bottom. The directions of these three segments are
denoted by [1,0], [−1,1], [0,−1].

After the dither motion, the leader calculates a Newton direction towards the field
extremum. Thus, the group reference velocity v(t) is determined autonomously by
the leader, in the form of segments vk(t), t ∈ [tk, tk+1], that are updated in every
iteration k according to the next Newton direction. Since v(t) is not available to
the other agents, they need to estimate this v(t) information to achieve a successful
gradient climbing in the desired formation.

We let the leader parameterize its reference velocity as in (4.1) and apply the
basic adaptive design in this chapter to ensure a desired group formation. During
the dither motion of the leader, the other agents may turn off the velocity adaptation
design so that they do not respond to the dither motion of the leader. Even if the
adaptation is not turned off, we show with simulation results that if the Newton
motion lasts sufficiently long, the followers respond only to the Newton motion
while filtering out the dither component.

4.5.1 Reference Velocity Assignment by the Leader

In this section, we present the extremum seeking scheme performed by the leader.
The analysis of the motion of the group will be pursued in Section 4.5.2. The goal
in extremum-seeking based gradient climbing is to search for and move towards the
maximum of a field distribution with an unknown functional form. The leader has
access only to the scalar field measurements, and constructs the approximate gradi-
ent and Hessian information of the field by finite-difference methods to compute a
Newton direction. It then assigns an appropriate velocity along the computed New-
ton direction. It is important to note that this scheme locates the maxima without
position measurements.
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We first review basic optimization tools that are instrumental in the extremum
seeking design. We assume that the field has a spatial distribution characterized by
a twice continuously differentiable function F(x) : R

2 → R that has a unique maxi-
mum at x = x∗. Note that we restrict our attention to fields only in R

2, however, the
results can be extended to R

3 as well by employing appropriate finite-difference ap-
proximations. Also note that if the function F(x) has multiple maxima, then the re-
sults can be modified to prove regional convergence to the local maximum. Because
only field measurements are available to the leader, we approximate the gradient
and Hessian of F(x) by one-sided finite-difference gradient, Gk,

∇F(xk) ≈ Gk[i] :=
F(xk +hkei)−F(xk)

hk
(4.49)

and Hessian, Hk,

∇2F(xk) ≈ Hk[i, j] :=
1
h2

k

[
F(xk)+F(xk +hkei +hke j)

− F(xk +hkei)−F(xk +hke j)
]

(4.50)

where hk denotes the finite-difference “dither” size, and ei is the ith unit vector.
For an easier implementation, steepest descent may be preferable over Newton’s
Method; however, it is slower and does not provide a concrete convergence proof
with nonvanishing step-size. We denote by B(x̄,a) the ball of radius a centered at x̄,
i.e., B(x̄,a) := {x| |x− x̄| ≤ a}. The lemma below states that for sufficiently small
dither size hk, and for small initial error |x0 − x∗|, finite-difference based Newton’s
Method locally converges to an O(h)-neighborhood of x∗. The proof follows from
standard arguments in unconstrained optimization theory, and is given in Appendix
A.3.

Lemma 4.2. Let F(x) : R
2 → R be twice continuously differentiable in an open

convex set D ∈ R
2. Assume there exists a unique x∗ ∈ R

2, r > 0 and β > 0 such that
B(x∗,r) ∈ D , ∇F(x∗) = 0, ∇2F(x∗)−1 exists with ||∇2F(x∗)−1|| ≤ β , and ∇F(x)
and ∇2F(x) are Lipschitz continuous. Then there exist ε > 0 and h̄ > 0, such that
for all initial conditions x0 ∈ B(x∗,ε), and dither size hk < h̄ the sequence {xk}k=∞

k=0
generated by

xk+1 = xk +H−1
k Gk, k = 0,1, · · · (4.51)

where Gk and Hk are as in (4.49)-(4.50) converges to an O(h̄) neighborhood of x∗
q-linearly. �

We next introduce the Newton’s Method-based gradient climbing scheme that
the leader implements to locate the maximum of a field. We consider the agent
model in (2.16) and the control design (2.17). We assume that the leader, say agent
1, does not receive external feedback ui from other members of the group, hence
u1 ≡ 0. Recall that (2.16) and (2.17) can be transformed to (2.19) and (2.20). We
then assume ξ1(0) = 0, which implies from (2.19) and (2.20) that
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ẋ1 = v(t). (4.52)

Note that if ξ1(0) �= 0, we can apply the velocity input v̄(t) = −ξ1 + v(t) to the
leader, and recover (4.52).

We use Newton’s Method to determine the next position for the leader, and set
the reference velocity v(t) to steer the leader to that position. As illustrated in Fig.
4.5, in the kth extremum-seeking iteration, the leader first moves in [1, 0], [−1, 1],
and [0, −1] directions rapidly to take samples of the field F(x) and computes the
approximate gradient Gk and the Hessian Hk as in (4.49)-(4.50), and then moves in
the approximate Newton direction lk = H−1

k Gk, and arrives at xk+1 = xk + lk.
To prepare for an adaptive reference velocity estimation by the followers, we

parameterize v(t) in a form similar to (4.1). For each motion segment we let the
reference velocity have a fixed sinusoidal amplitude profile, with endpoints at zero,
and change its direction between successive segments. We denote by v[i, j] and vN the
dither velocity in the [i, j] direction, where [i, j] ∈ {[1,0], [−1,1], [0,−1]}, and the
Newton velocity in lk direction, respectively. Let td be the duration of each dither
motion segment, and T be that of the Newton motion. Therefore one iteration of
the extremum seeking scheme takes Δ := 3td + T seconds. During each extremum
seeking iteration, the leader switches its velocity as

ẋ1 = v(t) :=

⎧⎪⎪⎨⎪⎪⎩
v[1,0](t), if tk ≤ t < tk + td ,
v[−1,1](t), if tk + td ≤ t < tk +2td ,
v[0,−1](t), if tk +2td ≤ t < tk +3td ,
vN(t), if tk +3td ≤ t < tk+1,

(4.53)

where
tk := kΔ , k = 0,1,2, · · · , (4.54)

and v[1,0], v[−1,1], v[0,−1] and vN are defined as:

v[1,0](t) :=
2hk

td

[
1
0

](
1− cos(

2π
td

(t − tk))
)

(4.55)

v[−1,1](t) :=
2hk

td

[−1
1

](
1− cos(

2π
td

(t − tk − td))
)

(4.56)

v[0,−1](t) :=
2hk

td

[
0

−1

](
1− cos(

2π
td

(t − tk −2td))
)

(4.57)

vN(t) :=
lk
T

(
1− cos(

2π
T

(t − tk −3td))
)
. (4.58)

The reference velocity v(t) in (4.53) and its derivative v̇(t) are continuous, and
(v(t), v̇(t))|t∈{tk+ntd , tk+1} = (0,0), n = 0,1,2,3. Note that other continuous velocity
profiles that vanish at t ∈ {tk + ntd , tk+1}, n = 0,1,2,3, along with their deriva-
tives, are also applicable. The velocities in (4.55)-(4.58), when switched according
to (4.53), achieve one iteration of extremum-seeing motion by driving the leader
first to the appropriate “dither” positions and then to the next “Newton” position
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xk+1. Theorem 4.4 below proves that the extremum seeking scheme converges to
an O(h̄) neighborhood of the maximum x∗, when hk ≤ h̄ is as in Lemma 4.2, and
|x(0)− x∗| is sufficiently small.

Theorem 4.4. Let the field distribution F(x) be twice continuously differentiable
with a unique maximum at position x = x∗ ∈R

2. Suppose the assumptions in Lemma
4.2 hold and h̄ be as defined therein. Then the Newton-based extremum seeking
scheme applied to the vehicle model in (4.53) with velocity profiles (4.55)-(4.58)
drives the vehicle to the O(h̄) neighborhood of x∗, provided that hk ≤ h̄ and |x(0)−
x∗| is sufficiently small. �
Proof. We show that the reference velocity profiles given in (4.53) first drive the
leader in the appropriate dither directions, and then along the Newton direction.
Consider v[1,0] which drives the leader in horizontal position, i.e., along the vector
[1,0]. At time tk, let the position of the leader be x1(tk) = [x1

1(tk),x
2
1(tk)]

T ∈R
2. Then

at time tk + td/2 its position is:

x1(tk +
td
2

) = x1(tk)+
∫ tk+td/2

tk
v[1,0](t)dt

= x1(tk)+
2hk

td

[
1
0

]∫ tk+td/2

tk
(1− cos(

2π
td

(t − tk)))dt

= x1(tk)+
2hk

td

[
1
0

][
t − td

2π
sin(

2π
td

(t − tk))
]∣∣∣tk+td/2

tk

= x1(tk)+hk

[
1
0

]
=
[

x1(tk)+hk
x2(tk)

]
. (4.59)

Likewise,

x1(tk + td) = x1(tk + td/2)+
∫ tk+td

tk+td/2
v[1,0](t)dt

= x1(tk + td/2)+hk

[
1
0

]
=
[

x1(tk)+2hk
x2(tk)

]
. (4.60)

Similar calculations show that v[−1,1] and v[0,−1] achieve the desired dither motions
as well. Note that after the third dither motion v[0,−1] the leader will be back at
position x1(tk + 3td) = x1(tk). Then, applying the “Newton” velocity vN after this
point for T seconds drives the leader to

x1(tk +Δ) = x1(tk)+ lk
1
T

∫ tk+3td+T

tk+3td
(1− cos(

2π
T

(t − tk −3td)))dt

= x1(tk)+ lk = x1(tk+1). (4.61)

Therefore, by switching the velocities as in (4.53) the leader visits all dither posi-
tions and moves to the next Newton position. The convergence result follows from
Lemma 4.2. �
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4.5.2 Gradient Climbing in Formation

We have shown that using the switching strategy in (4.53) with the reference velocity
v(t) parameterized as in (4.55)-(4.58), the leader locates the extrema of the field.
We next investigate how to design the motion of the other agents to achieve gradient
climbing in a desired formation.

As discussed in Section 2.6, we may pursue the position-based or distance-based
formation control formulation. In either formulation, we note that the other agents
do not have the knowledge of the reference velocity v(t) which changes after each
iteration of extremum seeking. Therefore, the adaptive designs in Chapter 3 and
this chapter can be applied to estimate the v(t) information. Since (4.55)-(4.58) are
already parameterized as a product of a vector and a time-varying basis function, we
will take the parameterization approach in this chapter. Then the dynamics of agent
i, i = 2, · · · ,N are given by the basic adaptive design (3.24), (2.11), (4.4), and (4.8),
where we assume that ui has already been designed according to the position-based
or distance-based formation control formulation. Following (4.53), we obtain the
basis function Φ(t) ∈ R and the constant parameter θ ∈ R

2 in (4.1) as

Φ(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1− cos( 2π

td
(t − tk))

)
, if tk ≤ t < tk + td ,(

1− cos( 2π
td

(t − tk − td))
)
, if tk + td ≤ t < tk +2td ,(

1− cos( 2π
td

(t − tk −2td))
)
, if tk +2td ≤ t < tk +3td ,(

1− cos( 2π
T (t − tk −3td))

)
, if tk +3td ≤ t < tk+1,

(4.62)

and

θ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2hk
td

[
1
0

]
, if tk ≤ t < tk + td ,

2hk
td

[−1
1

]
, if tk + td ≤ t < tk +2td ,

2hk
td

[
0

−1

]
, if tk +2td ≤ t < tk +3td ,

lk
T , if tk +3td ≤ t < tk+1.

(4.63)

In each motion segment, agent i employs the basic adaptive design in Section 4.2 to
estimate θ by θ̂i and reconstruct the desired formation.

If td and T are sufficiently large, the result in Theorem 4.1 implies that the desired
formation is ensured during each motion segment. This means that the agents will
follow both the dither and the Newton motions of the leader. However, if only the
leader has the sensing ability, it may be desired that the other agents respond only
to the Newton motion. This can be achieved by simply turning off the adaptation
during the dither motion periods. Even if adaptation is not turned off, the other
agents detect only the Newton motion if T is sufficiently larger than td . To see this,
we note from (4.53) that the average velocity of v(t) within one extremum seeking
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Fig. 4.6 The desired formation of four agents in the gradient climbing. The number indicates the
desired length of each link.
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iteration is given by

vav :=
1
Δ

∫ tk+Δ

tk
v(t)dt =

1
Δ

lk. (4.64)

Then if T is sufficiently large, Δ ≈ T and thus vav ≈ 1
T lk, which is indeed the av-

erage of vN(t) in (4.58) in one Newton motion period. This implies that for suffi-
ciently large T , the dither motion is averaged out. Thus, we can choose a sufficiently
large T to ensure that the other agents follow only the Newton motion within each
extremum-seeking iteration. In fact, for large T , one can further reveal a time-scale
separation behavior in the group motion and show that the convergence to the de-
sired formation is achieved in the fast time scale, while the Newton motion is per-
formed in the slow time-scale. We refer interested readers to [18] for further details.

4.5.3 Simulation Results

We simulate the gradient climbing of four agents modeled by (2.16) with mi =
1. We consider the distance-based formation control in Section 2.7.1. The desired
formation is a rhombus formation shown in Fig. 4.6. Note from Example 2.5 that
to ensure an unambiguous desired formation of four agents, we need to specify
the desired relative distances between every two agents. According to Fig. 4.6, we
define z1 = x1 − x2 and set its desired distance as d1 =

√
3. For the other zk’s, k =

2, · · · ,6, their desired distances are dk = 1. Given dk’s, the nonlinearity ψk(zk) can be
designed according to (2.83)-(2.87). For the simulations we take σ1(s) = ln(s/

√
3)

and σk(s) = ln(s), k = 2, · · · ,6.
We let the field distribution be

F(x,y) = e−0.1e0.1x(1.1x−5)2−0.2e0.1y(0.8y−4)2
,
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Fig. 4.7 Gradient climbing by Newton-based extremum seeking with T = 18.5 sec, td = 0.5 sec,
and hk = 0.05. Solid line represents the leader’s trajectory, while dashed line, dash-dot line, and
dots are the followers’. After an initial transient agents follow the leader’s Newton motion in a
rhombus formation, and average out the fast dither perturbations.

which has a global maximum at x = [4.55,5]T . We fix Δ = 20 sec and hk = 0.05,
and pick td = 0.5 sec and T = 18.5 sec for the first simulation. We run the system
(4.52) and (3.24), where the leader determines its velocity by extremum seeking as
in (4.53) and (4.55)-(4.58) and the other agents estimate v(t) by (4.4) with Φ(t) in
(4.62). Fig. 4.7 shows that after an initial transient, agents follow the leader’s New-
ton motion in a rhombus formation, and average out the fast dither perturbations,
while the leader locates the maxima of the field. In the second simulation, we per-
form the dither motion at a slower speed with td = 4 sec, T = 8 sec. In this case,
the agents in Fig. 4.8 fail to average out the dither motion, and follow a jittering
trajectory.

4.6 Summary

In Chapters 3 and 4, we studied a group coordination problem where the reference
velocity is available to only one agent while the others estimate this information
with adaptive designs. We presented two approaches to the adaptive designs. The
first approach assumes a constant or a periodic reference velocity while the sec-
ond approach parameterizes the reference velocity as linear combinations of known
time-varying basis functions with unknown coefficients. For each approach, we first
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Fig. 4.8 Gradient climbing by Newton-based extremum seeking with T = 8 sec, td = 4 sec, and
hk = 0.05. Solid line represents the leader’s trajectory, while dashed line, dash-dot line, and dots
are the followers’. The agents fail to average out the dither motion, and follow a jittering trajectory.

proposed a basic adaptive design that guarantees objective A2. We showed that
tracking of the reference velocity is recovered for some special cases including the
agreement problem. We presented an example which shows that the estimates of
the reference velocity may fail to converge to a time-varying reference velocity. For
each approach, we then proposed an augmented adaptive redesign that employs rela-
tive velocity feedback in addition to relative position feedback and achieves tracking
of the reference velocity.

We next applied the basic adaptive design in this chapter to an extremum seeking
example, where the leader autonomously determines the Newton direction based
on samples of a field distribution and parameterizes the group reference velocity
according to the Newton direction. The other agents then estimate the reference
velocity using the parameterization approach. In the simulation, we showed that if
the Newton motion lasts sufficiently long within each extremum seeking period, the
desired formation is reconstructed during gradient climbing.

4.7 Notes

• The extremum seeking results in this chapter are based on [18].
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• The extremum seeking approach in this chapter relies on nonlinear optimization
techniques to estimate the gradient in discrete time. An alternative approach in ex-
tremum seeking is to probe the system with sinusoidal inputs, and to make an online
estimation of the gradient of the output relative to these inputs [151, 7].
• To enhance robustness to noise and input disturbance, existing modifications of
adaptive design, such as σ -leakage modification [62], can be applied to the adaptive
designs in Chapter 3 and this chapter.
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