
Chapter 2

Passivity As a Design Tool for Cooperative

Control

2.1 Introduction

In this chapter, we formulate a coordination problem that is applicable to formation
stabilization and group agreement as special cases, and present a class of feedback
laws that solve this problem with local information. A key observation is that bidi-
rectional communication gives rise to Structure 4 in Section 1.5, which guarantees
that the resulting feedback loop will inherit the passivity properties of its compo-
nents. By exploiting this structure, we develop a design method which results in a
broad class of feedback laws that achieve passivity and, thus, stability of the inter-
connected system. The passivity approach also leads to a systematic construction of
a Lyapunov function in the form of a sum of storage functions for the subsystems.
As detailed in this chapter, several existing feedback rules for formation stability
and group agreement become special cases in the passivity framework.

The coordination task studied in this chapter is to steer the differences between
the output variables of group members to a prescribed compact set. This compact
set may be a sphere when the outputs are positions of vehicles that must maintain
a given distance in a formation, or the origin if the outputs are variables that must
reach an agreement across the group. We thus formulate this task as a set stability
problem and use passivity as a tool for constructing a stabilizing feedback law and
a Lyapunov function with respect to this set. We prove global asymptotic stability
with additional assumptions that guarantee appropriate detectability properties for
trajectories away from the set.

2.2 Problem Statement

Consider a group of N agents, where each agent i = 1, · · · ,N, is represented by a
vector xi ∈ R

p that consists of variables to be coordinated with the rest of the group.
The topology of information exchange between these agents is modeled as a graph
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G. Since the information flow between neighbors is assumed to be bidirectional, G is
an undirected graph. We also assume that G is connected and that G has � undirected
links. To simplify the analysis, we assign an orientation to G by considering one of
the nodes to be the positive end of the link. As discussed in Section 1.4, the choice of
orientation does not change the results because of the symmetric information flow.

The objective is to develop coordination laws that are implementable with local
information (agent i can use the information of agent j if agent j is a neighbor) and
that guarantee the following two group behaviors:
A1) Each agent achieves in the limit a common velocity vector v(t) ∈ R

p prescribed
for the group; that is

lim
t→∞

|ẋi − v(t)| = 0, i = 1, · · · ,N; (2.1)

A2) If agents i and j are connected by link k, then the difference variable zk

zk :=
N

∑
l=1

dlkxl =
{

xi − x j if k ∈ L +
i

x j − xi if k ∈ L −
i

(2.2)

converges to a prescribed compact set Ak ⊂ R
p, k = 1, · · · , �, where dik is defined in

(1.21).
The reference velocity v(t) can be considered as a “mission plan” of the group.

By specifying different v(t), we achieve different group motions, such as rotational
and translational motions. Examples of target sets Ak include the origin if xi’s are
variables that must reach an agreement within the group, or a sphere in R

p if xi’s are
positions of vehicles that must maintain a prescribed distance. Objectives A1-A2
may be employed to design and stabilize a formation of vehicles, or to synchronize
variables in a distributed network of satellites, etc.

We introduce the concatenated vectors

x := [xT
1 , · · · ,xT

N ]T ∈ R
pN z := [zT

1 , · · · ,zT
� ]T ∈ R

p�. (2.3)

We partition D in terms of columns vectors, i.e.,

D = [ D1 · · · D� ] (2.4)

and note from (2.2) that
zk = (DT

k ⊗ Ip)x. (2.5)

Concatenating zk’s together, we have

z = (DT ⊗ Ip)x (2.6)

which means that z is restricted to be in the range space R(DT ⊗ Ip). Thus, for the
objective A2 to be feasible, the target sets Ak must satisfy

{A1 ×·· ·×A�}∩R(DT ⊗ Ip) �= /0. (2.7)
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Fig. 2.1 Step 1 transforms agent dynamics from (2.9) to (2.10) by designing an internal feedback
τi. This internal feedback achieves for agent i passivity from an external feedback signal ui to the
velocity error yi. The resulting passive block is denoted by Hi.

ui
Hi

∫ xiyi

v(t)

+ ẋiτi xi
H o

i

2.3 The Passivity-based Design Procedure

Step 1. Design an internal feedback loop for each agent i = 1, · · · ,N that renders its
dynamics passive from an external feedback signal ui (to be designed in Step 2) to
the velocity error

yi := ẋi − v(t). (2.8)

Assume that the input-output dynamics of agent i are given by

xi = H o
i {τi}, (2.9)

where H o
i {τi} denotes the output of a dynamic system H o

i with the control input
τi. The system H o

i may be linear (e.g., single/double integrators) or nonlinear (e.g.,
Euler-Lagrange equation). In Step 1, we seek a feedback controller τi for each agent
such that the agent dynamics H o

i in (2.9) may be expressed as

ẋi = Hi{ui}+ v(t), (2.10)

where Hi is as in Fig. 2.1. For example, for the first order agent dynamics ẋi = τi,
Step 1 is trivially accomplished by choosing τi = Hi{ui}+ v(t).

If Hi is dynamic, we assume that it is of the form

Hi :
{

ξ̇i = fi(ξi,ui)
yi = hi(ξi,ui)

(2.11)

where yi is the velocity error and ξi ∈ R
ni is the state variable of subsystem Hi. We

assume that fi(·, ·) and hi(·, ·) are C2 functions such that

fi(0,ui) = 0 ⇒ ui = 0 (2.12)

and
hi(0,0) = 0. (2.13)

The main restriction on (2.11) is that it be strictly passive with C1, positive defi-
nite, radially unbounded storage functions Si(ξi) satisfying (1.27) for some positive
definite functions Wi(·).
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If Hi is a static block, we restrict it to be of the form

yi = hi(ui) (2.14)

where hi : R
p → R

p is a locally Lipschitz function satisfying (1.25) for any u �= 0.
In the situation where one of the agents, say agent 1, is the “leader” of the group in
the sense that ẋ1 uses no feedback term from the other agents, we let

h1(u1) ≡ 0 ∀u1 ∈ R
p. (2.15)

We next show how to apply Step 1 to agents modeled as double integrators. In
Chapters 5 and 6, we will demonstrate that broader classes of physical systems,
including rigid body rotation and Euler-Lagrange systems in (1.34), may be trans-
formed to the form in Step 1.

Example 2.1 (Step 1 for agents modeled as double integrators).
We consider double integrator agent dynamics

miẍi = τi, i = 1, · · · ,N (2.16)

where mi is the mass of agent i, xi ∈ R
p denotes the position of agent i and τi ∈ R

p

is the force input of agent i. For planar agents, p = 2 and for spatial agents, p = 3.
According to Step 1, we design an internal feedback

τi = −ki(ẋi − v(t))+miv̇(t)+ui, ki > 0 (2.17)

which makes use of information available only to agent i itself. This feedback law,
together with the change of variables

ξi = ẋi − v(t), (2.18)

brings (2.16) to the form
ẋi = yi + v(t) (2.19)

Hi :
{

miξ̇i = −kiξi +ui
yi = ξi.

(2.20)

Note that Hi is first order because we effectively consider ξi as the state variable
instead of xi. The transfer matrix of (2.20) from ui to yi is

Hi(s) =
1

mis+ ki
Ip, ki > 0, (2.21)

which is strictly positive real as shown in Example 1.4. Thus, Hi is strictly passive
due to Lemma 1.2. Indeed, a valid storage function for (2.20) is given by

Si(ξi) =
1
2

miξ T
i ξi. (2.22)
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It is easy to examine that the assumptions in (2.12) and (2.13) are satisfied in (2.20).
Thus, Step 1 is completed with the control law in (2.17). Note that other higher order
control laws can be designed to render Hi strictly passive. �
Step 2. Design an external feedback signal ui of the form

ui = −
�

∑
k=1

dikψk(zk) (2.23)

where zk’s are the relative variables as in (2.2), and the multivariable nonlinearities
ψk : R

p → R
p are to be designed such that the target sets Ak are invariant and

asymptotically stable.
The external feedback law (2.23) is decentralized and implementable with avail-

able information since dik �= 0 only when link k is connected to node i.
Before specifying the properties of ψk, we note from Fig. 2.1 and (2.23) that the

interconnection of Hi’s and ψk’s is as in Fig. 2.2, where

u = [uT
1 , · · · ,uT

N ]T ∈ R
pN ψ = [ψT

1 , · · · ,ψT
� ]T ∈ R

p� y = [yT
1 , · · · ,yT

N ]T ∈ R
pN .

(2.24)
Note from (2.23) that

ui = −[ di1Ip · · · di�Ip ]ψ, (2.25)

which means
u = −(D⊗ Ip)ψ(z). (2.26)

Fig. 2.2 exhibits a “symmetric” interconnection structure similar to Structure 4
in Section 1.5. The symmetric interconnection follows from the symmetry inherent
in the undirected graphs. This structure allows us to proceed with a passivity-based
design of ψk, k = 1, · · · , �.

We design the nonlinearities ψk(zk) to be of the form

ψk(zk) = ∇Pk(zk) (2.27)

where Pk(zk) is a nonnegative C2 function

Pk : Gk → R≥0 (2.28)

defined on an open set Gk ⊆ R
p, where zk is allowed to evolve. As an illustration, if

xi’s are positions of point masses that must maintain a prescribed distance, then the
choice Gk = {zk | zk ∈ R

p \0} disallows the possibility of collisions between linked
agents.

To steer zk’s into the target sets Ak ⊂ Gk, we let Pk(zk) and its gradient ∇Pk(zk)
vanish on Ak, and let Pk(zk) grow unbounded as zk goes to the boundary of Gk:

Pk(zk) → ∞ as zk → ∂Gk (2.29)
Pk(zk) = 0 ⇔ zk ∈ Ak (2.30)

∇Pk(zk) = 0 ⇔ zk ∈ Ak. (2.31)
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Fig. 2.2 The closed-loop structure of (2.8), (2.11) and (2.26): Hi’s are designed to be strictly
passive while pre- and post-multiplying DT and D preserves the passivity from ż to ψ . The closed-
loop stability follows from the interconnection of two passive systems.

1N ⊗ v(t)
+

ẋ
DT ⊗ Ip

ż

∫
. . . ∫

z
ψ1

. . .

ψ�

ψ
D⊗ Ip

−u

−. . .

HN

H1y

When Gk = R
p, (2.29) means that Pk(zk) is radially unbounded. As shown in [137,

Remark 2], a continuous function Pk(zk) satisfying (2.29) and (2.30) exists for any
given open set Gk and compact subset Ak ⊂ Gk. We further assume that the sets Ak
and Gk are chosen such that C2 smoothness of Pk(·) and (2.31) are also achievable.

For example, if two agents need to reach a common value, we let Ak = {0} and
Gk = R

p. Then the choice of Pk(zk) = 1
2 |zk|2 satisfies (2.28)-(2.31). If two agents

must maintain a relative distance of 1, we may choose Ak = {zk | |zk| = 1} and
Gk = {zk | zk ∈ R

p \0}. In this case, a valid choice of Pk is given by Pk(zk) = |zk|−
ln |zk|−1.

The construction of ψk as in (2.27) is designed to render the system from żk to
ψk (and hence from ż to ψ due to the block diagonal structure in Fig. 2.2) passive.
Indeed, consider Pk as a storage function and note that

Ṗk = ψk(zk)T żk, (2.32)

which shows the passivity property.

2.4 Stability Results

From Fig. 2.2, the set of equilibria is given by

E =
{
(z,ξ )| ξ = 0, (D⊗ Ip)ψ(z) = 0 and z ∈ R(DT ⊗ Ip)

}
(2.33)

which means that the following property must hold true to ensure that no equilibria
arises outside the sets Ak:

Property 2.1. For any (z,0) ∈ E , i.e., ξ = 0, (D⊗ Ip)ψ(z) = 0 and z ∈ R(DT ⊗ Ip),
z satisfies z ∈ A1 ×·· ·×A�. �

In view of (2.26), Property 2.1 means that
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u = 0 ⇐⇒ z = (DT ⊗ Ip)x ∈ A1 × . . .×A�. (2.34)

When the graph has no cycles, that is, when the columns of D are linearly inde-
pendent, then (D⊗ Ip)ψ(z) = 0 implies ψ(z) = 0 and zk ∈ Ak follows from (2.31).
Thus, Property 2.1 holds for acyclic graphs. When the columns of D are linearly
dependent, whether Property 2.1 holds depends on the sets Ak and ψk. As we will
illustrate, it holds in agreement problems where Ak is the origin but fails in the
formation control problem with distance only criterion where Ak is a sphere.

The feedback interconnection shown in Fig. 2.2 is of the same form as Structure
4 in Section 1.5. The storage functions for the feedforward and feedback subsystems
of Fig. 2.2 are, respectively,

Vf (z) :=
�

∑
i=1

Pk(zk) and Vb(ξ ) := ∑
i∈I

Si(ξi) (2.35)

where I denotes the subset of indices i = 1, · · · ,N that correspond to dynamic
blocks Hi. In particular, the passivity of the feedforward subsystems follows from
Structure 1 in Section 1.5. Using the passivity of the feedforward and feedback
subsystems and Structure 4 in Section 1.5 and imposing Property 2.1, we prove
asymptotic stability of the set of points where ξ = 0 and zk ∈ Ak by taking as a
Lyapunov function the sum of the two storage functions in (2.35). This construction
results in a Lur’e-type Lyapunov function because its key ingredient Pk(zk) is the
integral of the feedback nonlinearity ψk(zk) = ∇Pk(zk). We summarize the main
stability result in the following theorem.

Theorem 2.1. Consider the closed-loop system (2.8), (2.11) and (2.23), where v(t)
is uniformly bounded and piecewise continuous and Hi, i = 1, · · · ,N, and ψk, k =
1, · · · , � are designed as in (2.11)-(2.15) and (2.27)-(2.31) for given open sets Gk ⊆
R

p and compact subsets Ak ⊂ Gk, where Ak are as in (2.7). Then:
i) The feedforward path in Fig. 2.2 is passive from ẋ to −u, and from y to u;
ii) The feedback path is passive from input u to y;
iii) When Property 2.1 holds, the set

A =
{
(z,ξ ) | ξ = 0,z ∈ A1 ×·· ·×A� ∩R(DT ⊗ Ip)

}
(2.36)

is uniformly asymptotically stable with region of attraction

G =
{
(z,ξ ) | ξ ∈ R

n1 ×·· ·×R
nN ,z ∈ G1 ×·· ·×G� ∩R(DT ⊗ Ip)

}
. (2.37)

Moreover, all trajectories (z(t),ξ (t)) starting in G converge to the set of equilibria
E in (2.33). �

When Property 2.1 fails, Theorem 2.1 proves that all trajectories converge to the
set of equilibria E in (2.33). In this case, it is possible to conclude “generic conver-
gence” to A from almost all initial conditions if one can show that the equilibria
outside of A are unstable. We will illustrate such an example in Section 2.7.
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Convergence to A means that the difference variables zk tend to the target sets
Ak. It also implies that ξ = 0, u = 0 and thus, y in (2.8) is zero, which means that
both objectives A1 and A2 are indeed achieved.

Proof (Proof of Theorem 2.1).
i) To prove passivity from ẋ to −u we use Vf (z) in (2.35) as a storage function,

and obtain from (2.27), (2.6), (2.26) and (D⊗ Ip)T = DT ⊗ Ip :

V̇f = ψT ż = ψT (DT ⊗ Ip)ẋ =
{
(D⊗ Ip)ψ

}T ẋ = −uT ẋ. (2.38)

To show passivity from y to −u we substitute ẋ = 1N ⊗v(t)+y in (2.38) and use the
fact (DT ⊗ Ip)(1N ⊗ v(t)) = 0 from the third item in Property 1.5, thus obtaining

V̇f = ψT (DT ⊗ Ip){1N ⊗ v(t)+ y} = ψT (DT ⊗ Ip)y

=
{
(D⊗ Ip)ψ

}T y = −uT y. (2.39)

ii) To establish passivity of the feedback path, we let I denote the subset of indices
i = 1, · · · ,N for which Hi is a dynamic block as in (2.11), and employ the storage
function Vb(ξ ) in (2.35), which yields:

V̇b = ∑
i∈I

Ṡi ≤ ∑
i∈I

(−Wi(ξi)+uT
i yi). (2.40)

Adding to the right-hand side of (2.40)

∑
i/∈I

uT
i yi ≥ 0 (2.41)

which is nonnegative because the static blocks satisfy (1.25) or (2.15), we get

V̇b ≤ ∑
i∈I

(−Wi(ξi)+uT
i yi)+ ∑

i/∈I

uT
i yi ≤− ∑

i∈I

Wi(ξi)+uT y (2.42)

and, thus, conclude passivity with input u and output y.
iii) To prove asymptotic stability of the set A we use the Lyapunov function

V (z,ξ ) = Vf (z)+Vb(ξ ) (2.43)

which is zero on the set A due to property (2.30), and grows unbounded as (z,ξ ) ap-
proaches ∂G ∞ due to property (2.29). From (2.39), (2.40) and (2.41), this Lyapunov
function yields the negative semidefinite derivative

V̇ ≤− ∑
i∈I

Wi(ξi)− ∑
i/∈I

uT
i yi, (2.44)

which implies that the trajectories (z(t),ξ (t)) are bounded on t ∈ [0,T ], for any T
within the maximal interval of definition [0, t f ) for the differential equations (2.8),
(2.11). Because this bound does not depend on T , and because v(t) is bounded, from
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(2.8) we can find a bound on x(t) that grows linearly in T . This proves that there is
no finite escape time because, if t f were finite, by letting T → t f we would conclude
that x(t f ) exists, which is a contradiction.

Having proven the existence of solutions for all t ≥ 0, we conclude from (2.44)
stability of the set A . However, because the right-hand side of (2.44) vanishes on
a superset of A , to prove attractivity of A we appeal to the Invariance Principle1

reviewed in Appendix B.2. To investigate the largest invariant set where V̇ (z,ξ ) =
0 we note from (2.12) that if ξi = 0 holds identically then ui = 0. Likewise the
static blocks satisfy (1.25) or (2.15), which means that the right-hand side of (2.44)
vanishes when ui = 0, i = 1, · · · ,N. Indeed, if the first member i = 1 satisfies (1.25),
then u1 = 0 follows directly. If it satisfies (2.15) instead of (1.25), u1 = 0 still holds
because the sum of the rows of D being zero implies, from (2.6), that

u1 = −
N

∑
i=2

ui = 0. (2.45)

We thus conclude that u = 0, which means from (2.26) that ψ(z) lies in the null
space N (D ⊗ Ip). Using the Invariance Principle, which states that all bounded
solutions approach their positive limit set, which is invariant, we conclude that the
trajectories converge to the set E in (2.33). When Property 2.1 holds, E coincides
with A , which proves asymptotic stability of A with region of attraction G , while
uniformity of asymptotic stability follows from the time-invariance of the (z,ξ )-
dynamics. �

The Lyapunov function V (z,ξ ) in the proof above yields a negative semidefi-
nite derivative. By using the observability condition in (2.12), we prove the stability
results in Theorem 2.1. This Lyapunov function allows us to develop different adap-
tive schemes to enhance robustness of group motion. For example, in Chapters 3
and 4, we develop adaptive schemes that enable agents to estimate leader’s mis-
sion plan v(t). These adaptive schemes relax the assumption in Theorem 2.1 that all
the agents must have the v(t) information. In Chapter 6, where agreement of multi-
ple Euler-Lagrange systems is studied, we attempt to design adaptive control laws
from V (z,ξ ) to compensate for uncertainties in Euler-Lagrange systems. However,
we illustrate with an example that the resulting adaptive design is not sufficient to
ensure group objectives. This is because V̇ is only negative semidefinite. We will de-
tail in Chapter 6 how we overcome this insufficiency by exploiting the structure of
Euler-Lagrange equations and the design flexibility offered by the passivity-based
framework.

1 The Invariance Principle is indeed applicable because the dynamics of (z,ξ ) are autonomous:
Although v(t) appears in the block diagram in Fig. 2.2, it is canceled in the ż equation because
(DT ⊗ Ip)(1N ⊗ v(t)) = 0.
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2.5 Application to the Agreement Problem

In several cooperative tasks, it is of interest to steer group variables, such as position,
heading, phase of oscillators, to a common value. To apply Theorem 2.1 to this
problem, we let xi ∈ R

p denote a vector of variables of interest, and select the target
sets to be Ak = {0}. With this choice of Ak, the target set constraint (2.7) is trivially
satisfied. We may choose Pk(zk) as a positive definite, radially unbounded function
on Gk = R

p with the property

zT
k ∇Pk(zk) = zT

k ψk(zk) > 0 ∀zk �= 0 (2.46)

so that (2.27)-(2.31) and Property 2.1 hold. In particular, Property 2.1 holds because
z ∈R(DT ⊗ Ip) and ψ(z)∈N (D⊗ Ip) imply that z and ψ(z) are orthogonal to each
other, which, in view of (2.46), is possible only if z = 0.

Corollary 2.1. Consider agents i = 1, · · · ,N, interconnected as described by the
graph representation (1.21), and let zk, k = 1, · · · , � denote the differences between
the variables xi of neighboring members as in (2.2). Let Pk(zk) be positive definite,
radially unbounded functions satisfying (2.46) and let ψk(zk) = ∇Pk(zk). Then the
agreement protocol

ẋi = Hi

{
−

�

∑
i=1

dikψk(zk)

}
+ v(t), i = 1, · · · ,N (2.47)

where Hi{ui} denotes the output at time t of a static or dynamic block satisfying
(2.11)-(2.15), guarantees |ẋi − v(t)| → 0 and

xi − x j → 0 as t → ∞ (2.48)

for every pair of nodes (i, j) which are connected by a path. �
When p = 1, that is when xi’s and zk’s are scalars, condition (2.46) means that

ψk(zk) = ∇Pk(zk) is a sector nonlinearity which lies in the first and third quadrants.
Corollary 2.1 thus encompasses the result of [102], which proposed agreement pro-
tocols of the form

ẋi = − ∑
j∈Ni

φi j(xi − x j) (2.49)

where φi j(·) = φ ji(·) plays the role of our ψk(·). However, both [102] and a related
result in [122] assume that the nonlinearities φi j(·) satisfy an incremental sector
assumption which is more restrictive than the sector condition (2.46) of Corollary
2.1. An independent study in [147] takes a similar approach to synchronization as
[122]; however, it further restricts the coupling terms φi j(·) to be linear. The feed-
back law (2.47) in Corollary 2.1 generalizes (2.49) by applying to its right-hand
side the additional operation Hi{·}, which may either represent a passive filter or
another sector nonlinearity hi(·) as specified in Section 2.3. Because Hi in (2.47)
can be dynamic, Corollary 2.1 is applicable, unlike other agreement results surveyed
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in [110], to plants with higher-order dynamics than an integrator. See, for example,
the second order system in Section 2.6.1.

2.6 Position-based Formation Control As a Shifted Agreement

Problem

One of the major topics in cooperative control is the formation maintenance and
stability, where the goal is to drive relative positions (i.e., zk’s) or relative distances
(i.e., |zk|’s) between agents to prescribed values. Depending on the goal, we may
pursue one of the following:

• distance-based formation control, where the desired target set Ak in objective A2
is given by

Ak = {zk | |zk| = dk}, dk ∈ R>0, k = 1, · · · , �; (2.50)

• position-based formation control, where the desired target set Ak in objective A2
is given by

Ak = {zk | zk = zd
k}, zd

k ∈ R
p, k = 1, · · · , �. (2.51)

The goal of the distance-based formation control is to achieve a desired shape of
the group formation while the position-based formation control concerns not only
the desired shape but also the desired orientation of the group formation. We first
consider the position-based formation control and demonstrate that it can be trans-
formed to an agreement problem.

The set points zd
k in (2.51) dictate the relative configuration of the group. When

the graph contains cycles, the sum of the relative position vectors z j over each cycle
must be zero; that is, z = [zT

1 , · · · ,zT
� ]T must lie in the range space of DT ⊗ Ip so that

(2.7) holds. We thus assume that zd = [(zd
1)

T , · · · ,(zd
� )

T ]T is designed to lie in the
range space of DT ⊗ Ip, which means that

zd = (DT ⊗ Ip)xc (2.52)

for some xc ∈ R
pN . The condition (2.52) implies that (2.7) is satisfied.

Introducing

x(t) := x(t)− xc −
∫ t

0
1N ⊗ v(τ)dτ, (2.53)

where xc is as in (2.52), and

z = (DT ⊗ Ip)x = z− zd , (2.54)

we notice that objectives A1-A2 for the position-based formation control translate
to the asymptotic stability of the origin for

X = [ẋT zT ]T . (2.55)
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According to Corollary 2.1, the global asymptotic stability of X = 0 is guaranteed
by the protocol

ẋi = Hi

{
−

�

∑
i=1

dikψk(zk)

}
, i = 1, · · · ,N (2.56)

where ψk(·) satisfies (2.46). Using (2.23), (2.53) and (2.54), we rewrite (2.56) in the
original coordinate (ẋ,z) as

ẋi = yi + v(t) (2.57)
yi = Hi {ui} (2.58)

where

ui = −
�

∑
i=1

dikψk(zk − zd
k ). (2.59)

Corollary 2.2. Consider a group of agents i = 1, · · · ,N. The protocol (2.57)-(2.58),
where ψk = ∇Pk(zk) satisfies (2.46), guarantees that

|ẋi − v(t)| → 0, ∀i, (2.60)

and
zk → zd

k , ∀k. (2.61)

�
Example 2.2 (Collision avoidance).

The closed-loop system (2.57)-(2.58) ensures only the convergence to the desired
formation. Other objectives, such as collision avoidance, can be achieved by incor-
porating additional feedback terms. For example, to avoid collision, we employ the
artificial potential field approach in robotics and augment ui in (2.58) as

ui = −
�

∑
k=1

dikψk(zk − zd
k )−

N

∑
j=1

∇xiQi j(|xi − x j|) (2.62)

where the C1 artificial potential function Qi j(·) : R≥0 → R≥0 satisfies

Qi j(s) → ∞ as s → 0 (2.63)
Qi j(s) = 0 as s > R (2.64)

for some positive R. Using the Lyapunov function

V =
N

∑
i=1

Si(ξi)+
�

∑
k=1

Pk(zk − zd
k )+

N

∑
i=1

∑
j>i

Qi j(|xi − x j|) (2.65)

we obtain
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V̇ ≤ −
N

∑
i=1

Wi(ξ )−
N

∑
i=1

(
yT

i

N

∑
j=1, j �=i

∇xiQi j(|xi − x j|)
)

+
N

∑
i=1

∑
j>i

(
(∇xiQi j(|xi − x j|))T ẋi +

(
∇x j Qi j(|xi − x j|)

)T ẋ j

)
. (2.66)

Since ∇xiQi j(|xi − x j|) = −∇x j Qi j(|xi − x j|), we rewrite V̇ using (2.57) as

V̇ ≤ −
N

∑
i=1

Wi(ξ )−
N

∑
i=1

N

∑
j=1, j �=i

yT
i (∇xiQi j(|xi − x j|))

+
N

∑
i=1

∑
j>i

(
(∇xiQi j(|xi − x j|))T yi +

(
∇x j Qi j(|xi − x j|)

)T y j

)
= −

N

∑
i=1

Wi(ξ )−
N

∑
i=1

N

∑
j<i

yT
i (∇xiQi j(|xi − x j|))+

N

∑
i=1

∑
j>i

(∇x j Qi j(|xi − x j|))T y j

= −
N

∑
i=1

Wi(ξ ) ≤ 0. (2.67)

Thus, V in (2.65) is nonincreasing, that is, V (t)≤V (0). Since V →∞ as |xi −x j| →
0, ∀i �= j, the boundedness of V (t) implies collision avoidance.

Applying the Invariance Principle, we conclude from (2.67) that ξ → 0, which
implies from (2.12) that u → 0. Note that due to the additional term in (2.62) that
handles collision avoidance, ui → 0 does not mean zk → zd

k , that is, convergence to
the desired formation is not guaranteed. Indeed, there may exist an asymptotically
stable equilibrium where ui = 0 and the desired formation is not achieved. This
equilibrium corresponds to a local minimum of the potential function V in (2.65).
To eliminate such a local minima, one may apply navigation function techniques in
[113] to the construction of Pk and Qi j such that from almost all initial conditions,
the agents converge to the desired formation. We refer interested readers to [133,
132] for further details on applying navigation function to formation control. �

2.6.1 Design Example

We consider a group of agents modeled as (2.16) in Example 2.1. The feedback law
(2.17) achieves Step 1. We next apply Step 2 and design ui. According to Corollary
2.2, we take

ui = −
�

∑
i=1

dikψk(zk − zd
k ), (2.68)

where ψk(·) satisfies (2.46). The closed-loop system of (2.19), (2.20) and (2.59) is
given by
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mi(ẍi − v̇(t))+ ki(ẋi − v(t))+
�

∑
i=1

dikψk(zk − zd
k ) = 0 (2.69)

which can be rewritten as

(M⊗ Ip)ẍ+(K ⊗ Ip)ẋ+(D⊗ Ip)ψ(z) = 0 (2.70)

where M = diag{m1, · · · ,mN} and K = diag{k1, · · · ,kN}.
We now show that for quadratic potential function Pk, (2.70) recovers a second

order linear consensus protocol. To this end, we choose a quadratic potential func-
tion

Pk =
δk

2
|zk − zd

k |2 δk ∈ R>0 (2.71)

which leads to
ψk(zk) = δk(zk − zd

k ). (2.72)

The constants δk’s are the feedback gains which regulate the relative emphasis of
|zk − zd

k | for different k’s. Defining

Δ = diag{δ1, · · · ,δ�} (2.73)

and substituting (2.54) in (2.70), we obtain

(M⊗ Ip)ẍ+(K ⊗ Ip)ẋ+(LΔ ⊗ Ip)x = 0 (2.74)

where LΔ = DΔDT is the weighted graph Laplacian (recall that without the subscript
“Δ”, L denotes the unweighted Laplacian L = DDT ). The closed-loop system (2.74)
is a second order linear consensus protocol well studied in the literature (see e.g.,
[109]). The design in (2.70) gives a passivity interpretation of the second order
consensus protocol (2.74) and extends it to nonlinear coupling ψk.

Example 2.3 (Agreement of Second-order Agents with Directed Graphs).
When the graph is undirected, the stability of (2.74) holds for arbitrary mi > 0

and ki > 0, ∀i. For directed graphs, however, (2.74) may become unstable even for
uniform mi and ki. To illustrate this, let us take p = 1 (scalar variables), mi = 1,
ki = 1, and δk = 1, ∀i, ∀k, in (2.74), which leads to

ẍ+ ẋ+Lx = 0 (2.75)

where L is defined in (1.11).
To investigate the stability of (2.75), we use the Schur decomposition reviewed

in Appendix B.1 and decompose L as

L = QBQ−1 (2.76)

where Q is a unitary complex matrix and B is an upper triangular matrix with all the
eigenvalues of L on the diagonal of B. Note that if L is symmetric, i.e., the graph G
is undirected, Q can chosen as the orthonormal eigenvectors of L and accordingly B
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Fig. 2.3 Nyquist plot of − 1
s(s+1) . Four ⊗’s denote the inverse of four nonzero eigenvalues of the

graph Laplacian matrix when the information topology is a directed cycle of 5 agents.

is a diagonal matrix. We will use this decomposition technique again in Chapter 9
to study robustness properties of (2.74) with undirected graphs.

Using a coordinate transformation

d = Q−1x, (2.77)

we obtain from (2.75)

d̈ + ḋ +Bd = 0, i = 1, · · · ,N. (2.78)

Because B is upper triangular and because the eigenvalues of L are the diagonal
elements of B, the stability of (2.78) is equivalent to the stability of

d̈ + ḋ +λid = 0, i = 1, · · · ,N, (2.79)

where λi is the ith eigenvalue of L. If λi = 0 for some i, (2.79) is stable. It then
follows that (2.79) (and thus (2.75)) is stable if and only if the Nyquist plot of
− 1

s(s+1) does not encircle λ−1
i for any nonzero λi.

The Nyquist plot of − 1
s(s+1) is shown by the solid-dash line in Fig. 2.3. For undi-

rected graphs, λi is nonnegative and the Nyquist plot never encircles nonnegative
real axis. Therefore, the stability of (2.75) is guaranteed independently of the graph
and the number of the agents. However, for directed graphs, λi may become com-
plex and thus the graph and the number of agents may affect stability. For example,
consider a directed cyclic graph of N agents, where agent i is the only neighbor of
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Fig. 2.4 We assign an orientation to an undirected graph of three agents, where every two agents
are neighbors. The link number is put beside each link.

agent 1

agent 2 agent 3

1

2

3

agent i+1, i = 1, · · · ,N−1, and agent N is the only neighbor of agent 1. For N < 5,
(2.75) is stable. However, for N = 5, there exists two λi such that λi

−1 is encircled
by the Nyquist plot of − 1

s(s+1) , as shown in Fig. 2.3. Thus, (2.75) becomes unstable,
which implies that for directed graphs, closed-loop stability is sensitive to the graph
structure and to the number of agents. �

2.6.2 A Simulation Example

In this section, we simulate the position-based formation control system (2.74) and
demonstrate that different orientations of the formation can be achieved by modify-
ing Ak’s.

We consider a group of three planar agents (i.e., p = 2), where any two agents
are neighbors. As shown in Fig. 2.4, we define

z1 = x2 − x1, z2 = x3 − x2, z3 = x1 − x3 (2.80)

and design desired target sets for zk’s to be

A1 =
{

z1
∣∣z1 = zd

1 = [−
√

3
2

1
2 ]T

}
,

A2 =
{

z2
∣∣z2 = zd

2 = [0 −1]T
}

,

A3 =
{

z3
∣∣z3 = zd

3 = [
√

3
2

1
2 ]T

}
.

(2.81)

We choose M = diag{5,2,1} and K = 5I3 in (2.74). The reference velocity v(t)
is zero. The weight Δ in (2.73) is set to I3. The initial positions of the agents are
x1(0) = [5 0]T , x2(0) = [2 2]T , and x3(0) = [0 0]T . Simulation result in Fig. 2.5
shows that the desired formation is achieved.

We now modify the desired target sets in (2.81) to

A1 =
{

z1
∣∣z1 = zd

1 = [− 1
2 −

√
3

2 ]T
}

,

A2 =
{

z2
∣∣z2 = zd

2 = [1 0]T
}

,

A3 =
{

z3
∣∣z3 = zd

3 = [− 1
2

√
3

2 ]T
}

.

(2.82)
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Fig. 2.5 Using (2.70) and (2.72), three agents converge to the desired formation specified in (2.81).
Agents 1, 2 and 3 are denoted �, �, and ◦, respectively.

As shown in Fig. 2.6, (2.82) corresponds to the desired formation in Fig. 2.5 rotated
counterclockwise by 90 degrees.
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trajectory of agent  x3
initial formation

final formation

Fig. 2.6 Using (2.70) and (2.72), three agents converge to the desired formation specified in (2.82).
Agents 1, 2 and 3 are denoted �, �, and ◦, respectively.

We see that the position-based formation control stabilizes both the shape and the
orientation of the group formation. If the shape of the group formation is the only
concern, the distance-based formation control studied in the next section is more
appropriate.
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2.7 Distance-based Formation Control

In this section, we study the distance-based formation control problem defined in
(2.50). In contrast to the position-based formation control, this problem concerns
only the shape of the group formation. It will become clear that a key complication
is that Property 2.1, which holds true in the position-based formation control, is no
longer satisfied in the distance-based formation control with cyclic graphs. Thus,
additional undesired equilibria may arise due to the cycles in the graph, making
global stabilization of the desired formation impossible. In the special case of three
agents, we show that the undesired equilibria are unstable. We then conclude generic
convergence to the desired formation from almost all initial conditions.

We also explore existence and uniqueness of the formation shape in this section.
The existence of a formation shape is related to the requirement in (2.7), which is
further sharpened to sufficient conditions on the desired target sets. These conditions
are generalizations of the triangle inequality. We explore the uniqueness issue using
a four-agent example. If the shape of the desired formation is a rectangle, specifying
desired relative distances of the four sides is not sufficient since the agents may
reach a parallelogram instead. In this case, desired relative distances of the diagonal
links must also be specified to ensure that the rectangle shape is the unique desired
formation.

2.7.1 Passivity-based Design

We assume that Step 1 of the passivity-based design has been achieved. We now
proceed to Step 2 and design the nonlinearities ψk’s. The control objective is to
stabilize a formation where the relative distances |zk|, k = 1, · · · , �, are equal to dk >
0. We choose Gk to be R

p \{0} and let the potential functions Pk be a function of zk
satisfying (2.27)-(2.31). An example of Pk(zk) is given by

Pk(zk) =
∫ |zk|

dk

σk(s)ds (2.83)

where σk : R>0 → R is a C1, strictly increasing function such that

σk(dk) = 0, (2.84)

and such that, as |zk| → 0 and as |zk| → ∞, Pk(zk) → ∞ in (2.83). An illustration of
Pk(zk) is shown in Fig. 2.7, where

σk(s) =
1
dk

− 1
s
, (2.85)

Pk(zk) =
|zk|
dk

− ln
|zk|
dk

−1 (2.86)
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Fig. 2.7 The shape of Pk(zk): The minima of Pk(zk) = |zk| − ln |zk| − 1 occur on the unit circle
|zk| = dk = 1. The peak at the origin guarantees the collision avoidance between the linked agents.

and dk is set to 1. Note that the condition Pk(zk) → ∞ as |zk| → 0 is imposed only
to ensure collision avoidance between linked agents. Since Pk(zk) satisfies (2.27)-
(2.31), the feedback law ui in (2.23) with the interaction forces

ψk(zk) = ∇Pk(zk) = σk(|zk|) 1
|zk| zk zk �= 0 (2.87)

guarantees global asymptotic stability of the desired formation from Theorem 2.1
when the graph G is acyclic.

For cyclic graphs, we need to examine whether or not Property 2.1 is satisfied.
We consider an example of three agents, where each agent is a neighbor of the other
two agents, thereby forming a cycle in the graph G. Let the desired formation be
an equilateral triangle shown in 2.8(a) with dk = 1, k = 1,2,3. Note that ψk(zk)
in (2.87) plays the role of a “spring force” which creates an attraction force when
|zk|> 1 and a repulsion force when |zk|< 1. When ui = 0, additional equilibria arise
when the point masses are aligned as in Fig. 2.8(b), and the attraction force between
the two distant masses counterbalances the repulsion force due to the intermediate
mass.

To characterize such equilibria, we let the middle agent in Fig. 2.8(b) be agent 2
and define

z1 = x1 − x2 z2 = x2 − x3 and z3 = x1 − x3, (2.88)

which implies from (2.6) that
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Fig. 2.8 The desired and the undesired formation of three agents with a cyclic graph: The desired
formation is the equilateral triangle as (a) and the undesired formation (b) is a line.

(a) (b)

z1
z2

z3

z1
z2

z3

D =

⎛⎝ 1 0 1
−1 1 0
0 −1 −1

⎞⎠ . (2.89)

The set of equilibria, given in (2.33), indicates that

ψ(z) = [ψ1(z1)T ,ψ2(z2)T ,ψ3(z3)T ]T ∈ N (D⊗ Ip). (2.90)

A simple computation of the null space of D yields

ψ1(z1) = ψ2(z2) (2.91)
ψ1(z1) = −ψ3(z3). (2.92)

Since the undesired formation in Fig. 2.8(b) is collinear, zk
|zk| ’s are the same. We

then use (2.87) to reduce (2.91) and (2.92) to

σ1(|z1|) = −σ3(|z3|) (2.93)
σ1(|z1|) = σ2(|z2|), (2.94)

which have a unique solution (|z1| = s∗1, |z2| = s∗2, |z3| = |z1 + z2| = s∗1 + s∗2) since
σk(·), k = 1,2,3 are increasing and onto. Thus, the set of points where |z1| = s∗1,
|z2| = s∗2 and |z3| = s∗1 + s∗2 constitute new equilibria as in Figure 2.8(b) and such
desired cannot be eliminated with the choice of the function σk(·). Property 2.1
then fails in this formation control design and global stabilization of the desired
formation is not possible for cyclic graphs.

For agents modeled as double integrators with uniform mass and damping, the
following example proves that the undesired equilibria in Fig. 2.8(b) are unstable.
In fact, this instability result can be extended to any graph that contains only one
cycle. We refer interested readers to [9] for details.

Example 2.4 (Instability of the undesired formation of three agents).
Consider the undesired formation in Fig. 2.8(b). We first find out s∗1 and s∗2 from

(2.93) and (2.94). We take σk(·), k = 1,2,3, as in (2.85) with dk = 1. It follows from
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(2.93) and (2.94) that

1− 1
s∗1

= −(1− 1
s∗1 + s∗2

) (2.95)

and
s∗1 = s∗2, (2.96)

which yield s∗1 = s∗2 = 3
4 . This means that on the undesired formation, |z1|= |z2|= 3

4
and |z3| = 3

2 .
We assume that the agents have uniform mass mi = 1 in (2.16) and uniform

damping ki = k > 0 in (2.17). Without loss of generality, we also let v(t) = 0. It then
follows from (2.16), (2.17), (2.26) and (2.89) that the closed-loop system for these
three agents is given by

ẍ1 + kẋ1 +ψ(z1)+ψ(z3) = 0 (2.97)
ẍ2 + kẋ2 −ψ(z1)+ψ(z2) = 0 (2.98)
ẍ3 + kẋ3 −ψ(z2)−ψ(z3) = 0 (2.99)

where ψ(zk) is obtained from (2.87) and (2.85) as

ψ(zk) =
|zk|−1
|zk|2 zk. (2.100)

To show the instability of the undesired formation, we linearize the closed-loop
system around the undesired formation ẋi = 0, i = 1,2,3 and zk = zu

k , k = 1,2,3,
where zu

k denotes an undesired equilibrium of zk. Letting δ zk = zk − zu
k , k = 1,2,3,

we obtain the linearized dynamics:

⎛⎜⎜⎜⎜⎜⎜⎝

ẍ1
ẍ2
ẍ3
˙δ z1
˙δ z2
˙δ z3

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−kIp 0p 0p − ∂ψ
∂ z

∣∣
zu
1

0p − ∂ψ
∂ z

∣∣
zu
3

0p −kIp 0p
∂ψ
∂ z

∣∣
zu
1

− ∂ψ
∂ z

∣∣
zu
2

0p

0p 0p −kIp 0p
∂ψ
∂ z

∣∣
zu
2

∂ψ
∂ z

∣∣
zu
3

Ip −Ip 0p 0p 0p 0p
0p Ip −Ip 0p 0p 0p
Ip 0p −Ip 0p 0p 0p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

A

⎛⎜⎜⎜⎜⎜⎜⎝
ẋ1
ẋ2
ẋ3
δ z1
δ z2
δ z3

⎞⎟⎟⎟⎟⎟⎟⎠ (2.101)

=
(

A11 A12

A21 A22

)
⎛⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
δ z1
δ z2
δ z3

⎞⎟⎟⎟⎟⎟⎟⎠ (2.102)

where
∂ψ
∂ z

∣∣
zu =

|zu|−1
|zu|2 Ip +

[
− 1
|zu|3 +

2
|zu|4

]
zu(zu)T . (2.103)
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To show that the undesired formation is unstable, we only need to demonstrate
that A has an eigenvalue with positive real part. Towards this end, we solve(

A11 A12
A21 A22

)(
μ1
μ2

)
= λ

(
μ1
μ2

)
(2.104)

for λ , and obtain

− kμ1 +A12μ2 = λμ1 (2.105)
A21μ1 = λμ2. (2.106)

Multiplying (2.105) with λ and substituting (2.106) leads to

λ 2μ1 + kλμ1 −A12A21μ1 = 0. (2.107)

By choosing μ1 as the eigenvectors of A12A21, we obtain the eigenvalues of A as
the solutions to the following equations

λ 2 + kλ − λ̄i = 0, k > 0, i = 1, · · · ,3p (2.108)

where λ̄i is the ith eigenvalue of A12A21.
We next compute

A12A21 =

⎛⎜⎜⎝
− ∂ψ

∂ z

∣∣
zu
1
− ∂ψ

∂ z

∣∣
zu
3

∂ψ
∂ z

∣∣
zu
1

∂ψ
∂ z

∣∣
zu
3

∂ψ
∂ z

∣∣
zu
1

− ∂ψ
∂ z

∣∣
zu
1
− ∂ψ

∂ z

∣∣
zu
2

∂ψ
∂ z

∣∣
zu
2

∂ψ
∂ z

∣∣
zu
3

∂ψ
∂ z

∣∣
zu
2

− ∂ψ
∂ z

∣∣
zu
3
− ∂ψ

∂ z

∣∣
zu
2

⎞⎟⎟⎠ . (2.109)

Note from (2.103) that ∂ψ
∂ z

∣∣
zu
k
, k = 1,2,3, are symmetric. Thus, A12A21 is also sym-

metric. Then if the matrix A12A21 has a positive eigenvalue, there exists a positive
root of (2.108) and therefore A is unstable.

To show that A12A21 has a positive eigenvalue, we recall that on the undesired
formation, zu

k’s are collinear, which means that there exists a z̃ ∈R
p such that z̃ ⊥ zu

k ,
∀k. This implies from (2.103) that

∂ψ
∂ z

∣∣
zu z̃ =

|zu|−1
|zu|2 z̃. (2.110)

Choosing ζ = [a b c]T ⊗ z̃, where the scalars a,b,c will be specified later, and using
(2.110), we obtain

A12A21ζ =

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

−|zu
1|−1
|zu

1|2
− |zu

3|−1
|zu

3|2
|zu

1|−1
|zu

1|2
|zu

3|−1
|zu

3|2|zu
1|−1
|zu

1|2
−|zu

1|−1
|zu

1|2
− |zu

2|−1
|zu

2|2
|zu

2|−1
|zu

2|2|zu
3|−1
|zu

3|2
|zu

2|−1
|zu

2|2
−|zu

2|−1
|zu

2|2
− |zu

3|−1
|zu

3|2

⎞⎟⎟⎟⎠
⎛⎝a

b
c

⎞⎠
⎤⎥⎥⎥⎦⊗ z̃.

(2.111)
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Fig. 2.9 The unstable eigenvector of the undesired formation corresponds to motion in the direc-
tion indicated by the bold arrows.

We now substitute |zu
1| = |zu

2| = 3
4 and |zu

3| = 3
2 into (2.111) and get

A12A21ζ =

⎡⎢⎢⎢⎢⎢⎣
⎛⎝ 2

9 − 4
9

2
9

− 4
9

8
9 − 4

9
2
9 − 4

9
2
9

⎞⎠
︸ ︷︷ ︸

B

⎛⎝ a
b
c

⎞⎠
⎤⎥⎥⎥⎥⎥⎦⊗ z̃. (2.112)

The matrix B has a positive eigenvalue λ̄ = 4
3 associated with an eigenvector

[−1 2 −1]T . By choosing [a b c]T = [−1 2 −1]T , we rewrite (2.112) as

A12A21ζ = λ̄ ζ , (2.113)

which shows that A12A21 has a positive eigenvalue λ̄ . Therefore, the undesired for-
mation in 2.8(b) is unstable.

The unstable eigenvector [−1 2 −1]T ⊗ z̃ corresponds to motion in the direction
shown by the bold arrows in Fig. 2.9. We interpret the unstable growth in this di-
rection by returning to the mass-spring analogy. Since |zu

1| = |zu
2| < 1 and |zu

3| > 1,
springs 1 and 2 are squeezed while spring 3 is stretched. The motion in Fig. 2.9
increases |z1| and |z2| towards their natural length of one. �

Because the undesired formation in Fig. 2.8(b) is unstable, we conclude generic
convergence to the desired formation in Fig. 2.8(a) from all initial conditions except
for those that lie on the stable manifolds of the unstable equilibria. The numerical
example in Fig. 2.10 shows the convergence to the desired formation with the design
(2.16) and (2.17) for three agents. In this example, the reference velocity v(t) is
chosen as [0.1 0.1]T .



42 2 Passivity As a Design Tool for Cooperative Control

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t(sec)

di
st

an
ce

 (m
)

|z1|

|z2|

|z3|
|z1|

|z3|

|z2|

0 2 4 6 8 10

0

2

4

6

8

10

position−x (m)

po
si

tio
n−

y 
(m

)

snapshots of the group formation

trajectory of leader x1

trajectory of agent  x2

trajectory of agent  x3initial formation

final formation

Fig. 2.10 Snapshots of the formation for the passivity-based design (2.16) and (2.17): The three
relative positions, z1, z2 and z3 denote x1 − x2, x3 − x1 and x2 − x3. The agents x1, x2 and x3 are
represented by �, � and ◦, respectively.

2.7.2 Existence and Uniqueness of a Formation Shape

A key consideration in the distance-based formation control problem is whether a
given set of desired relative distances dk’s, even admits an equilibrium in the closed
loop, and, if so, whether the equilibrium is unique.
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Fig. 2.11 The ring graph of N agents. The directions of the N links are assigned such that the
positive end of each link is the negative end of the next link in the sequence.

agent 1

agent 2 agent N

agent 3 agent N −1

Given dk’s, a desired formation equilibrium exists if the constraint (2.7) is satis-
fied. If the graph is acyclic, (2.7) holds for any dk > 0, k = 1, · · · , �. So we only need
to consider the cyclic graph case.

As an example, consider a group of N agents that form a ring graph, i.e., each
agent has exactly two neighbors. A ring graph has only one cycle and the numbers
of links and nodes are the same, i.e., N = �. As shown in Fig. 2.11, we assign the
orientation of the ring graph such that the positive end of each link is the negative
end of the next link in the sequence. We define zi = xi+1 − xi, ∀i = 1, · · · ,N −1 and
zN = x1 − xN , and obtain

z j = −
N

∑
k=1,k �= j

zk, ∀ j. (2.114)

This equality must be satisfied at the desired formation. Therefore, we obtain

|z j| = |
N

∑
k=1,k �= j

zk| ≤
N

∑
k=1,k �= j

|zk|, ∀ j (2.115)

⇒ d j ≤
N

∑
k=1,k �= j

dk, ∀ j. (2.116)

When N = 3 and the desired formation is a triangle, (2.116) reduces to the triangle
inequality, that is, the sum of the lengths of any two sides of the triangle must be
greater than the length of the other side. Thus, the choice of dk is constrained by
(2.116). If the graph contains multiple cycles, multiple constraints similar to (2.116)
must be satisfied for dk’s so that a desired formation exists.

Once we establish that a desired formation exists for a given set of dk’s, the shape
of the desired formation may not be unique if we do not specify enough number of
desired relative distances. We illustrate this using a four-agent example below. More
formal analysis on the uniqueness of a formation shape using “rigidity” can be found
in [101, 46, 72, 43].

Example 2.5 (Stabilizing a rectangle formation of four agents).
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Fig. 2.12 The square formation can collapse to a parallelogram or eventually to a line.

(a) (b)
Fig. 2.13 Two possible desired formations when one diagonal link is specified.

Suppose that we want to stabilize four agents to a rectangle formation (solid
lines in Fig. 2.12). Initially, we only specify the desired relative distances of the
four sides. As illustrated in Fig. 2.12, the agents may converge to a rectangle or to
a parallelogram or even to a line since all those shapes are in the target set (2.50).
In fact, there exist infinitely many formations (up to rigid translation and rotation)
in (2.50). Thus, specifying the lengths of four sides is not enough to guarantee the
desired rectangle formation (up to rigid translation and rotation).

We then add a diagonal link and specify its length. Then there exist only two
possible formations (up to rigid translation and rotation) in Fig. 2.13. Thus, if the
agents converge to the target set (2.50), they will converge to either of the two shapes
in Fig. 2.13.

If we also specify the length of the other diagonal link as shown in Fig. 2.14, we
eliminate the existence of the formation in Fig. 2.13(b). In this case, if the agents
converge to the desired equilibria, they converge to the desired rectangle formation.

�

2.8 Distance-based or Position-based?

We have seen two types of formation control, both of which can be designed with
the passivity-based framework. We now present a comparison between these two
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Fig. 2.14 If we specify the desired lengths of all the links, the desired formation is unique.

Fig. 2.15 (a) Desired formation in terms of zd
k , k = 1,2,3. (b) Initial formation of the three agents.

Even if the initial formation (b) is an equilateral triangle, agents 2 and 3 will still swap their
positions to match the desired formation in (a).

(a) (b)E E

zd
2

zd
1 zd

3

x1

x2 x3
z2(0)

z3(0) z1(0)

x1

x3 x2

formulations and illustrate the situations under which one formulation is preferable
to the other.
• Equilibria.

For the distance-based formation control, the desired equilibria in (2.50) are
spheres while for the position-based formation control, the desired equilibrium in
(2.51) is a single point. The difference in these equilibria sets reflects different con-
trol objectives. When the agents need to maintain specific bearings and distances
with respect to their neighbors, the position-based formation control is more suit-
able. In the case where cooperative tasks only require the shape of the formation
rather than a specific orientation of the formation, the distance-based formation
control is preferable. This is because the position-based formation control may put
stringent constraints on relative positions and sacrifice the flexibility of the group
motion, as we illustrate below.

Example 2.6. Consider a group of three agents xi ∈ R
2, i = 1,2,3. Suppose that the

desired formation is an equilateral triangle with side length 1. One way to achieve
this desired formation is to apply the position-based formation control by specifying
desired relative positions between agents. We let z1 = x2 − x1, z2 = x3 − x2 and
z3 = x3 − x1, and choose zd

1 = [− 1
2 −

√
3

2 ], zd
2 = [1 0]T and zd

3 = [ 1
2 −

√
3

2 ]T in the
frame of E, as in Figure 2.15(a).

Let the initial formation of the three agents shown in Figure 2.15(b) be z1(0) = zd
3,

z2(0) = −zd
2 and z3(0) = zd

1, which means that it is already an equilateral triangle
with side length 1. However, this equilateral formation does not match the desired
targets (2.51). Since (2.51) is globally attractive by the position-based formation
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Fig. 2.16 Four planar agents in a global frame E: Ri represents a local frame for agent i. The
desired formation is shown as an equilateral square.

E

R1 R2

R3R4

control design, the agents will start moving away from the initial formation in Fig-
ure 2.15(b) towards the desired formation in Figure 2.15(a), which results in unnec-
essary time and control energy consumption. �
• Control Design and Stability.

The difference in equilibria leads to different control designs: The design in
Section 2.7.1 employs nonlinear potential functions to achieve the distance-based
formation control while position-based formation control can be realized by linear
feedback laws, such as the design in (2.74).

Moreover, because of the difference in equilibria sets, the distance-based for-
mation control stabilizes the desired formation only locally when the graph con-
tains cycles while the position-based formation control is able to globally stabilize
the desired formation. This is because Property 2.1 is satisfied for the position-
based formation control but not for the distance-based formation control. Because
the position-based formation control is globally stabilizable, it has been applied
to different cooperative control problems, including formation control of unicycles
[83, 41].
• Desired Formation Specification.

The difference in the equilibria sets (2.50) and (2.51) also results in different
specifications of the desired formation. For example, consider four planar agents in
Fig. 2.16. The coordinate E is a global frame while Ri, i = 1, · · · ,4, is agent i’s local
frame, possibly different from E. The desired formation is an equilateral square
shown in Fig. 2.16. To specify a desired formation using (2.50), one only needs to
determine the desired relative distances, which is invariant in different frames. This
implies that the desired distances can be specified in either E or Ri’s. However, for
position-based formation control, the desired relative position zd must be prescribed
in one common frame, such as E in Fig. 2.16.

One subtlety in specifying a desired formation is how to guarantee a unique de-
sired formation. For position-based formation control, specifying desired relative
positions of N−1 links is sufficient if these N−1 links can form a connected graph.
This is because once the desired relative positions of these N −1 links are fixed, the
desired relative positions between any two agents are also fixed. As an illustration,
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consider Fig. 2.16 and suppose that we specify the relative positions for the links
between agents 1 and 2, between agents 2 and 3, and between agents 3 and 4. These
three links form a connected graph and thus all the other relative positions, such
as relative positions between agents 4 and 1, between agents 2 and 4, are uniquely
determined. However, for distance-based formation control, specifying the desired
lengths of N −1 links may not enough to ensure a unique formation, as we already
illustrated in Example 2.5.
• Implementation of Control Laws.

In practice, the relative position zk’s are obtained in each agent’s local frame. If
precise global frame information is available, the agents may transform the local
measurements of zk to the global coordinates for implementation. However, in some
applications, such as space interferometry sensing, the global frame information
may be imprecise or unavailable. In this case, we show that distance-based forma-
tion control can be easily implemented without knowledge of any global frame in-
formation while position-based formation control requires the knowledge of a com-
mon frame in which the desired relative positions zd are specified.

For illustration, we assume double integrator dynamics for the agents and rewrite
the control laws for distance-based and position-based formation control as

position-based: ẍi = τi = −kiẋi −
�

∑
i=1

dik(zk − zd
k ) (2.117)

distance-based: ẍi = τi = −kiẋi −
�

∑
i=1

dik log(
|zk|
dk

)
1
|zk| zk (2.118)

where we take v(t) = 0p. Suppose that (2.117)-(2.118) are written in a global frame
E. Then zd

k ’s must be specified in E. When E is not available, each agent imple-
ments iτi, the τi vector represented in agent i’s frame2. Let Ri be the agent i’s frame
represented in E. Then iτi’s are given by

position-based: iτi = −kiRT
i ẋi −

�

∑
i=1

dik(RT
i zk −RT

i zd
k ) (2.119)

distance-based: iτi = −kiRT
i ẋi −

�

∑
i=1

dik log(
|zk|
dk

)
1
|zk|R

T
i zk. (2.120)

It then becomes evident that both (2.119) and (2.120) require agent i’s velocity rep-
resented in Ri (i.e., the term RT

i ẋi) and the relative position zk represented in Ri
(i.e., the term RT

i zk). In addition, the position-based formation control also needs
RT

i zd
k , which cannot be computed if the global frame E is not known. Thus, we con-

clude that distance-based formation control is more suitable for applications with
no global frame information.

2 For vector representations in different frames, we refer readers to Appendix B.12.1.
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2.9 Summary

In this chapter, we employed passivity as a design tool for a class of group co-
ordination problems where the topology of information exchange between agents
is bidirectional. We exploited the symmetry inherent in the undirected graph and
represented it as a passivity-preserving structure (pre-multiplication of DT ⊗ Ip and
post-multiplication by its transpose as in Fig. 2.2). We used this structure to develop
a passivity-based design framework that yields a broad class of decentralized and
scalable cooperative control laws for complex and heterogeneous agent dynamics.
In addition to stabilizing feedback rules, the passivity-based design framework con-
structs a Lur’e-type Lyapunov function. As we will illustrate in Chapters 3, 4 and
6, this Lyapunov function serves as a starting point for several adaptive designs that
enhance robustness of group motion.

We next applied the passivity-based design framework to agreement problems.
We developed a class of decentralized protocols that achieve agreement of agents.
We also studied the position-based and the distance-based formation control. For
the position-based formation control, we showed that it can be transformed to an
agreement problem, which means that the desired formation is guaranteed. In the
distance-based formation control, we showed that the desired formation is only lo-
cally asymptotically stable for cyclic graphs because Property 2.1 fails. We then
proved the instability of the undesired formations for a three-agent example and
concluded generic convergence to the desired formation. We also discussed how to
specify a unique and feasible formation shape. Finally, a comparison between the
position-based and the distance-based formation control was presented.

2.10 Notes and Related Literature

• The use of Schur decomposition in Example 2.3 follows [47, Theorem 3].
• The passivity-based framework in this chapter was developed in [5].
• Related Literature on agreement and formation control: A rapidly-growing lit-
erature has been witnessed in the field of agreement. See e.g., [102, 109] for a
summary. Applications of formation control can be found in the survey papers
[117, 118, 26, 93]. Reference [98] first applied potential function method to the
formation control with undirected information topology. A flocking algorithm was
studied in [131] under time-varying communication graphs. In [47], the formation of
multiple vehicles with linear identical dynamics was investigated. Based on a decen-
tralized simultaneous estimation and control framework, the authors in [150] studied
formation control using geometric moments. In [44], the position-based formation
control was formulated as an optimization problem and a distributed receding hori-
zon controller was proposed. Reference [123] considered optimal formation control
of linear agent dynamics by using relative position and communicating estimates.
In [124], a parallel estimator was developed for controlling formation of linear dy-
namical agents with directed graphs. Reference [152] employed Jacobi shape theory
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to decouple translational formation dynamics from shape and orientation dynamics.
The proposed cooperative control laws locally stabilize the desired formation shape.
Formation control with directed graphs has also been investigated in [22, 23, 55, 4].
• For directed graphs, significant results have been obtained using a number of dif-
ferent approaches, such as the use of Laplacian properties for directed graphs in
[103, 47, 109, 79], input-to-state stability [135], passive decomposition of group
dynamics [76], eigenvalue structure of circulant matrices [87], set-valued Lyapunov
theory in [90], and contraction analysis [31, 32]. In particular, recent research in
[29, 28] also employed passivity as a tool for agreement of nonlinear systems. The
results [29, 28] are applicable to strongly connected directed graphs for relative de-
gree one agents. The passivity-based framework in this book allows agent dynamics
to be relative degree higher than one for undirected graphs.
• Step 1 in the passivity-based framework may not be applicable to certain classes
of dynamical systems, such as nonholonomic agents. Significant research has been
conducted when the agents are modeled as unicycles. In [77], the authors consid-
ered a group of unit speed unicycles and proposed designs to achieve different group
formations. A leader-following approach was introduced in [48] to ensure a de-
sired group formation, where each unicycle maintains desired relative bearings and
distances with respect to its neighbors. The control algorithms were based input-
output linearization. Reference [88] studied cooperative formation control of mul-
tiple unicycles by assigning each agent a desired trajectory to track. The tracking
errors decrease as feedback gains increase. In [83], formation control of unicycles
was studied in the position-based formulation and necessary and sufficient graphical
conditions were obtained. Reference [87] employed eigenvalue structure of circu-
lant matrices in cyclic pursuit formation. Agreement of positions and orientations of
unicycles was considered in [37] and discontinuous time-invariant control laws were
analyzed using nonsmooth analysis. For dynamical nonholonomic agents, backstep-
ping is a useful tool to transform coordination laws from kinematic level to dynamic
level [42, 39]. In [50], formation control with general agent dynamics was formu-
lated as a nonlinear output regulation problem.
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