
Chapter 1

Introduction

1.1 What Is Cooperative Control?

Multiple robots or sensors have a number of advantages over a single agent, in-
cluding robustness to failures of individual agents, reconfigurability, and the ability
to perform challenging tasks such as environmental monitoring, target localization,
that cannot be achieved by a single agent. A cooperative control system consists of a
group of autonomous agents with sensing or communication capabilities, for exam-
ple, robots with camera sensors and vehicles with communication devices. The goal
of the group is to achieve prescribed agent and group behaviors using only local
information available to each agent from sensing or communication devices. Such
local information may include relative configuration and motion obtained from sens-
ing or communication between agents, agent’s sensor measurements, and so on. The
relative sensing and communication dictates the architecture of information flow be-
tween agents. Thus, a cooperative system has four basic elements: group objective,
agents, information topology, and control algorithms governing the motion of the
agents.

Examples of group objectives in cooperative control include flocking, schooling,
cohesion, guarding, escorting [112, 98, 131, 76, 51, 107], agreement [110, 75, 102,
63, 10, 103, 5], vehicle formation maintenance [124, 47, 36, 5], gradient climbing
in an environmental field [8, 98, 27, 18], cooperative load transport [14, 145, 106,
129, 128], distributed estimation and optimal sensing [97, 99, 86, 153, 33], source
seeking [151] and coverage control [34, 78]. Some of the cooperative control objec-
tives involve only relative variables (e.g., relative positions) between agents while
others depend on absolute variables (e.g., inertial positions) of agents. We illustrate
below some examples of cooperative control.

Formation Control. A major focus in cooperative control is formation stability,
where the group objective is to stabilize the relative distances/positions between
the agents to prescribed desired values. Formation maintenance finds natural ap-
plications in coverage control, drag force reduction, and space interferometry. We
take space interferometry as a motivating example. As shown in Fig. 1.1, space in-

1
Communications and Control Engineering 89, DOI 10.1007/978-1-4614-0014-1_1,

© Springer Science+Business Media, LLC 2011

H. Bai et al., Cooperative Control Design: A Systematic, Passivity-Based Approach,



2 1 Introduction

Fig. 1.1 Space interferometry using multiple spacecraft. Spacecraft must maintain precise relative
formation and the same attitude towards the incoming light to generate an interferometry pattern.
The information flow between spacecraft is setup by optical sensors, which measure relative posi-
tions between spacecraft.
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terferometry uses multiple spacecraft pointing towards an object of interest. Each
spacecraft collects light from the object. If the relative positions between spacecraft
are maintained precisely, an interferometry pattern is generated and measurement
of the magnitude and phase of this pattern can be obtained by coherently mixing the
light from individual spacecraft [73, 118, 123]. Multiple such measurements allow
reconstruction of the image of the object, which has a much finer resolution than
any single spaceborne telescope achieves. In space, position information of individ-
ual spacecraft in the earth frame is imprecise or unavailable, whereas relative po-
sition between spacecraft can be measured precisely by optical sensors [74]. Thus,
maintaining spacecraft formation in space may make use of only relative position
information while maneuvering the formation to point towards objects of interest.

Agreement. In the agreement problem, the group objective is the convergence of
distributed variables of interest (agents’ positions or headings, phase of oscillations,
etc.) to a common value. Given different contexts, the agreement problem is also
called consensus, or synchronization. As shown in Fig. 1.1, space interferometry
requires spacecraft to align their attitudes with each other, which is an agreement
problem. Agreement problem also has potential applications in schooling and flock-
ing in distributed robotics and biological systems [100, 112, 127, 24], distributed
estimation and sensor fusion [99, 104], fire surveillance [25] and distributed com-
puting [148, 140, 16], among others.

Optimal Sensing. The group objective for optimal sensing is to optimally place
the agents’ positions so that certain meaningful utility functions are maximized.
Examples of utility functions include probability of detecting a target [34, 78] and
information obtained from a sensor network [86, 33]. In this case, the utility func-
tions usually depend on the absolute positions of the agents.

Most cooperative control problems concern coordinated motion of agents in dif-
ferent scenarios. Therefore, agent dynamics become important in achieving differ-
ent group objectives. Small mobile sensors or robots can be controlled by directly
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manipulating their velocities. Such agents are commonly modeled by a first order
kinematic model. Depending on the group objective, the agent model can be a sim-
ple integrator or a set of integrators subject to nonholonomic constraints, such as
a unicycle model. If the group objective is to control the position of the sensor to
improve sensing capability, it may suffice to model the sensors as massless points
with single integrator kinematics. When the velocities of agents are not directly ma-
nipulatable or the masses of the agents are significant, double integrator agent dy-
namics are more appropriate. In numerous applications, the attitudes of the agents
play an important role, which means that agent models in Euler-Lagrangian form or
in Hamiltonian form may be required.

To achieve the group objective, each agent may need information from other
agents. If agent i has access to agent j’s information, the information of agent j
flows to agent i and agent j is a neighbor of agent i. The abstract structure of the
information flows in the group is then represented as a graph, where each agent is
a node and the information flows between them are represented as links 1. In many
applications, the information flow between agents is achieved by direct sensing or
communication. For example, to control the relative distances between the agents,
the agents obtain their relative distance information by sensing or by communicat-
ing their inertial positions. In some applications, the information flow is realized
through a physical medium. For example, consider a group of agents transporting
a payload. By interacting with the payload, the agents can obtain the relative infor-
mation between them without explicit communication. We will illustrate such an
example in Chapter 8.

One of the main challenges in cooperative control design is to achieve prescribed
group objectives by distributed feedback laws. The distributed laws make use of
information available only to individual agents. Such information includes the in-
formation flow from neighbors, and sensor measurements from agent itself. Take
the agreement problem as an example. When modeled as a first order integrator, the
agent can aggregate the differences between its own state and its neighbors’ and take
that aggregated value as a feedback control. In this case, the control algorithm is dis-
tributed since it only employs information from neighboring agents. If the control
algorithm and the agent model are both linear, stability can be analyzed by examin-
ing the eigenvalues of the closed-loop system matrix with the help of algebraic graph
theory. This approach leads to simple stability criteria for the agreement problem,
e.g., [63, 111, 102, 103, 47, 76, 87].

However, for some applications of cooperative control, only nonlinear algorithms
can achieve the objective. Consider the following formation control problem: The
group objective is to stabilize relative distances (the Euclidean norms of relative
positions) between agents to desired values. In this case, the desired equilibria are
spheres, which are compact sets containing more than one point. When each agent
is modeled as a linear system, such as a double integrator, there is no linear feed-
back law globally stabilizing the desired equilibria. This is because a linear agent
model with linear feedback results in a linear system, whose equilibria can simply

1 A brief introduction to graph theory will be presented later in this chapter.
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be a point or a subspace. Thus, only nonlinear feedback laws may solve this forma-
tion control problem. Indeed, most of the formation control algorithms have been
proposed in the form of nonlinear artificial attraction and repulsion forces between
neighboring agents. The design and analysis of such rules make use of graph theory
and potential function methods.

1.2 What Is in This Book?

For different cooperative control problems, there are different control design meth-
ods. In this book, we introduce a unifying passivity-based framework for cooperative
control problems. Under this passivity-based framework, we develop robust, adap-
tive, and scalable design techniques that address a broad class of cooperative con-
trol problems, including the formation control and the agreement problem discussed
above.

This framework makes explicit the passivity properties used implicitly in the Lya-
punov analysis of several earlier results, including [131, 98, 102], and simplifies the
design and analysis of a complex network of agents by exploiting the network struc-
ture and inherent passivity properties of agent dynamics. With this simplification,
the passivity approach further overcomes the simplifying assumptions of existing
designs and offers numerous advantages, including:

1. Admissibility of complex and heterogenous agent dynamics: Unlike some of
the existing cooperative control literature where the agent is modeled as a point
robot, the passivity approach allows high order and nonlinear dynamics, including
Lagrangian and Hamiltonian systems. As illustrated in Chapter 5, attitude coordina-
tion among multiple rigid bodies can be studied under this passivity framework. In
this case, the agent dynamics are in the Hamiltonian form. Chapter 6 discusses the
agreement of multiple Lagrangian systems. The passivity approach is further appli-
cable to heterogenous systems in which the agent dynamics and parameters, such as
masses, dampings, vary across the group.

2. Design flexibility, robustness and adaptivity: The passivity approach abstracts
the common core of several multi-agent coordination problems, such as forma-
tion stabilization, group agreement, and attitude coordination. Because passivity
involves only input-output variables, it has inherent robustness to unknown model
parameters. Since passivity is closely related to Lyapunov stability, this passivity
approach lends itself to systematic adaptive designs that enhance robustness of co-
operative systems. Such design flexibility and adaptivity will be demonstrated in
this book by the adaptive designs in Chapters 3, 4 and 6.

3. Modularity and scalability: The passivity framework yields decentralized con-
trollers which allow the agents to make decisions based on relative information
with respect to their neighbors, such as relative distance. A key advantage of the
passivity-based design is its modularity, which means that the control laws do not
rely on the knowledge of number of other agents, the communication structure of
the network, or any other global network parameters.
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Fig. 1.2 If the sensing/communication ranges for both robots are chosen to be the same and one
agent is within the sensing/communication range of the other agent, the information flow between
them is symmetric. S > 0 denotes the sensing or communication radius.

Our major assumptions for this passivity-based approach are:
Bidirectional Information Topology: Control algorithms with bidirectional infor-

mation topology tend to have inherent stability properties as we explicate with the
help of passivity arguments in this book. Although directional information topology
can render stability for first order agents [103, 109], it may lead to instability for
high order agents, as we illustrate in Example 2.3 in Chapter 2.

Bidirectional information topology also appears naturally in a number of cooper-
ative control applications. For example, as shown in Fig. 1.2, the information topol-
ogy of agents with the same sensing range can be modeled as bidirectional. In the
load transport problem studied in Chapter 8, the agents exert force on the payload
and receive reaction forces from the payload. The exerted force and the reaction
force contain implicitly the relative motion information between the agents and the
payload. Thus, the information flows are bidirectional.

Static Information Topology: Our design assumes that the information topology
remains unchanged. This is not a restrictive assumption since in most practical sit-
uations, the information topology remains static for a certain period of time. If that
period of time is long enough, by standard dwell time arguments [91, 56], the closed-
loop system remains stable. Note that for first order linear consensus protocols, such
as those studied in [103, 63], robustness to arbitrary switching topology has been
justified. However, for higher order systems, it is well known that switching may
lead to instability [80, 81]. We will show that for first order protocols, the passivity-
based framework can handle a broad class of switching topology whereas for higher
order cooperative systems, topology switching improperly may result in instability.
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1.3 Notation and Definition

• We denote by R and by C the set of real numbers and complex numbers, respec-
tively. The notation R≥0 denotes the set of all real nonnegative numbers. The real
part and the imaginary part of a complex number x ∈C are given by Re[x] and Im[x],
respectively.
• All the vectors in this book are column vectors. The set of p by 1 real vectors
is denoted by R

p while the set of p by q real matrices is denoted by R
p×q. The

transpose of a matrix A ∈ R
p×q is given by AT ∈ R

q×p.
•N (A) and R(A) are the null space (kernel) and the range space of a matrix A,
respectively. Ip and 0p denote the p× p identity and zero matrices, respectively. The
p×q zero matrix is denoted by 0p×q. Likewise, 1N and 0N denote the N ×1 vector
with each entry of 1 and 0, respectively. Without confusion, we will also use 0 to
denote a vector of zeros with a compatible dimension.
• The Kronecker product of matrices A ∈ R

m×n and B ∈ R
p×q is defined as

A⊗B :=

⎡⎢⎣ a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤⎥⎦ ∈ R
mp×nq, (1.1)

and satisfies the properties

(A⊗B)T = AT ⊗BT (1.2)

(A⊗ Ip)(C⊗ Ip) = (AC)⊗ Ip (1.3)

where A and C are assumed to be compatible for multiplication.
• The maximum and minimum eigenvalues of a symmetric matrix A are denoted by
λmax(A) and λmin(A), respectively.
• For a vector x ∈ R

p, |x| denotes its 2-norm, that is |x| =
√

xT x.
• The norm of a matrix A is defined as its induced norm ||A|| =√

λmax(AT A).
• We use the notation diag{K1,K2, · · · ,Kn} to denote the block diagonal matrix⎛⎜⎜⎜⎝

K1 0p×q · · · 0p×q
0p×q K2 · · · 0p×q

...
...

. . .
...

0p×q 0p×q · · · Kn

⎞⎟⎟⎟⎠ (1.4)

where Ki ∈ R
p×q, i = 1, · · · ,n.

• The notation K = KT > 0 means that K is a symmetric positive definite matrix
while k > 0 implies k is a positive scalar.
• Given a vector v ∈ R

3, the cross product v× is a linear operator, and can be repre-
sented in a coordinate frame as left-multiplication by the skew-symmetric matrix:
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v̂ =

⎡⎣ 0 −v3 v2
v3 0 −v1
−v2 v1 0

⎤⎦ (1.5)

where (v1, v2, v3) are the components of v in the given coordinate frame. The in-
verse operation of cross product is given by ∨, that is

(v̂)∨ = v. (1.6)

• For the coordinate frame representation of a vector, the leading superscript indi-
cates the reference frame while the subscript i denotes the agent i. The superscript
d means the desired value. As an illustration, jvd

i means the desired velocity of the
ith agent in the jth frame.
• A function is said to be Ck if its partial derivatives exist and are continuous up to
order k.
• Given a C2 function P : R

p → R we denote by ∇P its gradient vector, and by ∇2P
its Hessian matrix.
• A function α : [0,a)→ R≥0 is of class K if it is continuous, strictly increasing and
satisfies α(0) = 0. It is said to belong to class K∞ if a = ∞ and α(r) → ∞ as r → ∞.
A function β : R≥0 ×R≥0 → R≥0 is of class KL if, for each fixed s, the function
β (r,s) belongs to class K with respect to r and, for each fixed r, the function β (r,s)
is decreasing with respect to s and β (r,s) → 0 as s → ∞. An example of class KL
functions is shown in Fig. 1.3.
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Fig. 1.3 The function β (r,s) = re−0.5s is of class KL because for fixed r, re−0.5s is decreasing and
converges to zero as s converges to ∞ and for fixed s, re−0.5s is monotonically increasing with
respect to r.

• The system ẋ = f (x,u) is said to be Input-to-State Stable (ISS) [125, 126] if there
exist functions β ∈ KL, ρ ∈ K such that for any initial state x(t0) and any bounded
input u(t), the solution x(t) exists for all t ≥ 0 and satisfies
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|x(t)| ≤ β (|x(t0)|, t − t0)+ρ( sup
t0≤τ≤t

|u(τ)|). (1.7)

• For a closed set A , |χ|A denotes the distance from the point χ to A , defined as

|χ|A = inf
η∈A

|χ−η |. (1.8)

• Given the dynamics of the state χ(t), a closed invariant set A is uniformly asymp-
totically stable with region of attraction G if for each ε > 0 there exists δ > 0 such
that

|χ(t0)|A ≤ δ ⇒ |χ(t)|A ≤ ε ∀t ≥ t0 (1.9)

and, if for each ε > 0 and r > 0, there exists T > 0 such that for every initial condi-
tion χ(t0) ∈ G the resulting trajectory satisfies

|χ(t0)|A ≤ r ⇒ |χ(t)|A ≤ ε ∀t ≥ T. (1.10)

Several results on set stability and, in particular, converse Lyapunov theorems are
presented in [82] and [137].
• We use the notation χ → ∂G ∞ to indicate a sequence of points χ in G converging
to a point on the boundary of G , or if G is unbounded, having the property |χ| →∞.

1.4 Basic Graph Theory

In this book, we will make use of basic result from algebraic graph theory to facil-
itate our analysis. The results presented in this section are standard in the literature
and will be well known to readers familiar with graph theory.

A graph is an abstract representation of a group of nodes where some of them
are connected by links. More formally, a graph G is an ordered pair G = (V ,E)
consisting of a set V of nodes and a set E ⊂ V ×V of links. Thus, a link is an
ordered pair of two distinct nodes.

A directed link (i, j) is an incoming link to node j and an outgoing link from node
i. We then draw an arrow from node i to node j. We call node i (respectively, j) the
negative (respectively, positive) end of link (i, j). If both links (i, j) and ( j, i) belong
to E, we combine these two links as one undirected link and use a bidirectional
arrow to denote this link.

Depending on the directions of the links, a graph may be categorized as directed
or undirected. If a graph G consists of only undirected links, it is undirected. Other-
wise, the graph is directed.

We say node i is a neighbor of node j if the link (i, j) exists in the graph G. This
means that for each directional link, the negative end is the neighbor of the positive
end. Note that for undirected graphs, if node i is a neighbor of node j, then node j
is also a neighbor of node i. We denote by N j the set of neighbors of node j.
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Fig. 1.4 Different types of graphs of five nodes. (a): an undirected connected graph. (b): a balanced
and strongly connected graph. (c): a strongly connected graph. (d): a weakly connected graph. A
directed link is denoted by a line with a directional arrow while an undirected link is denoted by a
bidirectional arrow. The node number is beside each node.
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For i ∈ V , if the number of incoming links to i is the same as the number of
outgoing links from i, the graph is balanced. Clearly, an undirected graph is a special
balanced graph.

A directed path is a sequence of p nodes 1, · · · , p, such that (i, i + 1) ∈ E,
∀i = 1, · · · , p− 1. A cycle is a directed path such that the starting and the ending
nodes of the path are the same. A graph is called strongly connected if there exists
a directed path from any one node to another. Note that for an undirected graph,
strong connectedness is simply termed connectedness. A graph is called weakly
connected if replacing all the directed links in E with undirected ones gives a con-
nected undirected graph. In Fig. 1.4 are several examples of five nodes illustrating
connectedness of different graphs.

Definition 1.1 (Graph Laplacian matrix L).

Consider a directed graph G with N nodes. The Laplacian matrix of a graph G,
denoted by L ∈ R

N×N , is given by

�i j :=

⎧⎨⎩ |Ni| if i = j
−1 if j ∈ Ni
0 otherwise,

(1.11)

where |Ni| is the cardinality of the set Ni. �

The definition in (1.11) results in the following property of L:
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Property 1.1. The graph Laplacian matrix L has an eigenvalue of zero associated
with an eigenvector 1N , i.e., L1N = 0N . �

Example 1.1. Following (1.11), we compute the graph Laplacian matrices for the
graphs in Fig. 1.4 as

La =

⎛⎜⎜⎜⎜⎝
2 −1 0 −1 0
−1 2 −1 0 0
0 −1 2 −1 0
−1 0 −1 3 −1
0 0 0 −1 1

⎞⎟⎟⎟⎟⎠ , Lb =

⎛⎜⎜⎜⎜⎝
1 0 0 −1 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 2 −1
0 0 0 −1 1

⎞⎟⎟⎟⎟⎠ (1.12)

Lc =

⎛⎜⎜⎜⎜⎝
1 0 −1 0 0
−1 1 0 0 0
0 −1 2 −1 0
−1 0 0 2 −1
0 0 0 −1 1

⎞⎟⎟⎟⎟⎠ , and Ld =

⎛⎜⎜⎜⎜⎝
2 −1 0 −1 0
−1 2 −1 0 0
0 −1 2 −1 0
−1 0 −1 2 0
0 0 0 −1 1

⎞⎟⎟⎟⎟⎠ . (1.13)

It is easy to see all these four Laplacian matrices satisfy Property 1.1. �

In particular, the Laplacian matrix for undirected graphs satisfies Properties 1.2

and 1.3 below.

Property 1.2. The Laplacian matrix L of an undirected graph is symmetric and pos-
itive semidefinite. �

Property 1.3. [17, Item 4e and Corollary 6.5]

An undirected graph is connected if and only if the second smallest eigenvalue
of its Laplacian matrix is strictly positive. �


We verify the positive semidefiniteness of L in Property 1.2 by showing

yT Ly ≥ 0 ∀y ∈ R
N . (1.14)

To see this, we let yi be the ith element of y and note from (1.11) that

yT Ly =
N

∑
i=1

yi ∑
j∈Ni

(yi − y j) =
N

∑
i=1

∑
j∈Ni

(y2
i − yiy j) (1.15)

=
N

∑
i=1

∑
j∈Ni

(y2
i −2yiy j + y2

j)+
N

∑
i=1

∑
j∈Ni

(yiy j − y2
j) (1.16)

=
N

∑
i=1

∑
j∈Ni

(yi − y j)2 +
N

∑
i=1

∑
j∈Ni

(yiy j − y2
j). (1.17)

Because the graph is undirected, we have

N

∑
i=1

∑
j∈Ni

y2
j =

N

∑
i=1

∑
j∈Ni

y2
i (1.18)
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which implies that the last term in (1.17) is indeed −yT Ly. Therefore, it follows
from (1.17) that

yT Ly =
1
2

N

∑
i=1

∑
j∈Ni

(yi − y j)2 ≥ 0. (1.19)

For a general directed graph, the graph Laplacian matrix L is not symmetric and
yT Ly can be sign-indefinite. However, if the directed graph is balanced and strongly
connected, yT Ly ≥ 0 holds for any y due to the following property:

Property 1.4. [103] The graph Laplacian matrix L of a balanced and strongly con-
nected graph G satisfies

L+LT =
1
2

Lsym (1.20)

where Lsym represents the graph Laplacian matrix of the undirected graph obtained
by replacing the directed edges in G with undirected ones. �


For an undirected graph G, we may assign an orientation to G by considering one
of the two nodes of a link to be the positive end. We denote by L +

i (L −
i ) the set of

links for which node i is the positive (negative) end.

Definition 1.2 (Graph Incidence matrix D).

Denoting by � the total number of links, we define the N × � incidence matrix D
of an undirected graph G as

dik :=

⎧⎨⎩+1 if k ∈ L +
i

−1 if k ∈ L −
i

0 otherwise.
(1.21)

�

Property 1.5. We obtain from (1.21) an incidence matrix D corresponding to a par-
ticular orientation assignment to the undirected graph G. Independently of how we
assign the orientation to G, the resulting incidence matrix D has the following prop-
erties:

1. The rank of D is at most N−1 and the rank of D is N−1 if and only if the graph
G is connected;

2. The columns of D are linearly independent when no cycles exist in the graph;
3. If the graph G is connected, the only null space of DT is spanned by 1N ;
4. The graph Laplacian matrix L of G satisfies

L = DDT . (1.22)
�


Example 1.2. We verify the last item in Property 1.5 by considering the graph G in
Fig. 1.5. We obtain from (1.11) that
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Fig. 1.5 An undirected graph of four agents whose Laplacian matrix is in (1.23). The agent number
is illustrated at each node.
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Fig. 1.6 Two different orientation assignments to the graph in Fig. 1.5 yields two different graph
incidence matrices D in (1.24). However, both incidence matrices give the same Laplacian matrix
(1.23) using (1.22). The arrow points to the positive end of each link. The link number is denoted
in italic at each link.

L =

⎛⎜⎜⎝
1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

⎞⎟⎟⎠ . (1.23)

To show that the choice of D does not affect L, we assign different orientations to G
as in Fig. 1.6 and obtain the two incidence matrices D as

Da =

⎛⎜⎜⎝
−1 0 0 0
1 −1 −1 0
0 0 1 −1
0 1 0 1

⎞⎟⎟⎠ and Db =

⎛⎜⎜⎝
1 0 0 0
−1 −1 1 0
0 1 0 1
0 0 −1 −1

⎞⎟⎟⎠ . (1.24)

A simple computation shows that L = DaDT
a = DbDT

b . Thus, the choice of orien-
tation assignment to the graph does not affect the graph Laplacian matrix. �
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1.5 Passivity and Passivity-preserving Structures

In this section, we briefly review the definition of passivity and its relation to stabil-
ity. We also present four passivity-preserving structures that will be utilized in the
rest of the book. Some of the results in this section are based on [69, 116].

Definition 1.3 (Passivity of Static Nonlinearity).

A static nonlinearity y = h(u), where h : R
p → R

p, is passive if, for all u ∈ R
p,

uT y = uT h(u) ≥ 0; (1.25)

and strictly passive if (1.25) holds with strict inequality ∀u �= 0. �

Definition 1.4 (Passivity and Strict Passivity of Dynamical Systems).

The dynamical system

H :
{

ξ̇ = f (ξ ,u)
y = h(ξ ,u), ξ ∈ R

n, u,y ∈ R
p,

(1.26)

is said to be passive if there exists a C1 storage function S(ξ ) ≥ 0 such that

Ṡ = ∇S(ξ )T f (ξ ,u) ≤−W (ξ )+uT y (1.27)

for some positive semidefinite function W (ξ ). We say that (1.26) is strictly passive
if W (ξ ) is positive definite. �

Definition 1.5 (Strict Input and Output Passivity).

For the dynamic system (1.26), if S in (1.27) satisfies

Ṡ ≤−uTψ(u)+uT y (1.28)

for some function ψ(u) such that uTψ(u) > 0, then (1.26) is input strictly passive.
Likewise, if

Ṡ ≤−yTψ(y)+uT y (1.29)

holds for some function ψ(y) where yTψ(y) > 0, (1.26) is output strictly passive.
�


Example 1.3 (Passivity of Euler-Lagrange Systems).
A standard model of mechanical systems with n degrees of freedom is given by

the Euler-Lagrange equation:

d
dt

(
∂L
∂ ẋ

(x, ẋ)
)
− ∂L

∂x
(x, ẋ) = τ (1.30)

where x = [x1, · · · ,xn]T are the generalized coordinates of the system and τ =
[τ1, · · · ,τn]T is the generalized torque acting on the system. The Lagrangian function
L(x, ẋ) satisfies
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L(x, ẋ) = K(x, ẋ)−P(x) (1.31)

where P(x) is the potential energy of the system and is bounded from below, i.e.,

P(x) ≥ P̄ := min
x

P(x), (1.32)

and K(x, ẋ) is the kinetic energy of the system which is assumed to be of the form

K(x, ẋ) =
1
2

ẋT M(x)ẋ, (1.33)

in which M(x) = M(x)T is the positive definite generalized inertia matrix.
A further computation from (1.30) and (1.33) leads to

M(x)ẍ+C(x, ẋ)ẋ+g(x) = τ (1.34)

where g(x) = ∂P(x)
∂x . A well known property of (1.34) is that Ṁ(x)−2C(x, ẋ) is skew-

symmetric [6, 71], i.e.,

Ṁ(x)−2C(x, ẋ) = −(Ṁ(x)−2C(x, ẋ))T . (1.35)

The Euler-Lagrange system (1.34) is passive from the generalized torque input τ
to the generalized velocity ẋ. Such a result is established by using (1.35) and taking
the total energy of the system V = K(x, ẋ)+ P(x)− P̄ as the storage function. The
derivative of V is given by

V̇ = ẋT M(x)ẍ+
1
2

ẋT Ṁ(x)ẋ+g(x) (1.36)

= ẋT τ +
1
2

ẋT (Ṁ(x)−2C(x, ẋ))ẋ (1.37)

= ẋT τ. (1.38)

If τ is chosen as
τ = −Rẋ+ τe, R = RT > 0, (1.39)

we immediately verify the strict output passivity from τe to ẋ. �

Passivity of a linear time invariant dynamic system is closely related to positive

realness of the transfer function of that system.

Definition 1.6. [Positive Realness]
A scalar transfer function g(s) is called positive real if

• poles of g(s) have nonpositive real parts;
• for all ω ∈ R for which jω is not a pole of g(s), Re[g( jω)] ≥ 0;
• any pure imaginary pole jω of g(s) is a simple pole and the associated residues

are nonnegative. �
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The second condition in Definition 1.6 means that the Nyquist plot of g( jω) lies
in the closed right-half complex plane, which implies that the phase shift of g(s)
cannot exceed ±90◦.

Definition 1.7. [Strict Positive Realness [61, 142]]
A transfer function g(s) is called strictly positive real if g(s− ε) is positive real

for some ε > 0. �

The strict positive realness of g(s) can also be characterized in the following

lemma:

Lemma 1.1. A scalar transfer function g(s) is strictly positive real if and only if

• poles of g(s) have negative real parts;
• for all ω ∈ R, Re[g( jω)] > 0;
• either g(∞) > 0 or g(∞) = 0 and limω→∞ω2Re[g( jω)] > 0. �

Example 1.4. The first-order integrator g(s) = 1

s is positive real since it has a simple
pole at ω = 0, associated with residue 1, and

Re
[

1
jω

]
= 0, ∀ω �= 0. (1.40)

The second-order integrator g(s) = 1
s2 is not positive real since the phase shift of

g(s) is −180◦.
The transfer function g(s) = 1

as+c for a,c > 0 is strictly positive real since g(s−ε)
is positive real for ε = c/a > 0. �


When a transfer function g(s) is realized by a minimal state space representation

H :
{

ξ̇ = Aξ +Bu
y = Cξ +Du,

(1.41)

the positive realness of g(s) means that (1.41) is passive.

Lemma 1.2. Let H in (1.41) be a minimal state space representation of g(s). Then,

• H is passive if g(s) is positive real;
• H is strictly passive if g(s) is strictly positive real. �


The passivity property of a dynamical system remains unchanged when the input
and output variables are transformed in a “symmetric” fashion as in Fig. 1.7.

Structure 1 (Symmetric Input-Output Transformation) Let the system H in Fig.
1.7 be passive and let E be a matrix with a compatible dimension. Then the system
in Fig. 1.7 is passive from ū to ȳ. �

Proof. Note that uT y = (ET ū)T y = ūT ȳ. Thus, the passivity from u to y translates to
the passivity from ū to ȳ. �
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Fig. 1.7 Pre- and post- multiplication of a matrix and its transpose preserves the passivity of H.

HET E
y ȳuū

Fig. 1.8 Parallel interconnection of two passive systems.

H2

H1

u y

y1

y2

The definition of passivity closely relates to the stability of (1.26) when u = 0. In
fact, when the storage function S is positive definite, (1.27) implies that for u = 0,

Ṡ ≤−W (ξ ) ≤ 0. (1.42)

Assume that f (0,0) = 0. Using standard Lyapunov arguments, we conclude that the
unforced system ξ̇ = f (ξ ,0) has a stable equilibrium ξ = 0. If, in addition, W (ξ )
is positive definite, ξ = 0 is asymptotically stable. If S is also proper, i.e., S(ξ )→∞
as |ξ | → ∞, the asymptotic stability of ξ = 0 is global.

The stability properties are preserved if two or more passive systems are intercon-
nected properly. Among all possible passivity-preserving structures, the following
three structures are employed in our cooperative control design.

Structure 2 (Parallel Interconnection) Consider the parallel interconnection of
two passive systems H1 and H2 in Fig. 1.8. Then the interconnected system is pas-
sive from u to y. �

Structure 3 (Negative Feedback Interconnection) Consider the negative feedback
interconnection of two passive systems H1 and H2 in Fig. 1.9. Then the intercon-
nected system is passive from u to y. �


Replacing H1 in Structure 3 with Structure 1, we obtain Structure 4 below:

Structure 4 (Symmetric Interconnection) Consider the interconnection structure
of two passive systems H1 and H2 in Fig. 1.10. Then the interconnected system is
passive from u to y. �


We will demonstrate in the next chapter that Structure 4 arises naturally in co-
operative control with bidirectional information flow. In particular, the matrices E
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Fig. 1.9 Negative feedback interconnection of two passive systems.

H2

H1
u yy1u1

u2y2

−

Fig. 1.10 Symmetric Interconnection of two passive systems H1 and H2 is still passive.

H2

H1
u yy1u1

u2y2

− ET E

and ET are dictated by the undirected information topology between the agents. The
H1 and H2 blocks in Structure 4, being block diagonal, represent the dynamics of
individual agents and their relative configuration, respectively. We will then apply
passivation designs to H1 and H2 such that the closed-loop stability is guaranteed by
Structure 4.
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