
9Progressive CensoringMethodology

Narayanaswamy Balakrishnan and Erhard Cramer

Contents
9.1 Introduction and Fundamental Models . . . . . . . . . . . . . 153
9.1.1 Basic Ideas of Progressive Censoring . . . . . . . . . . . . . . . . 153
9.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.1.3 Organization of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.2 Progressive Type II Censoring . . . . . . . . . . . . . . . . . . . . . 156
9.2.1 Probabilistic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.2.4 Connection of Progressive Type II Censoring to

Coherent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.2.5 Connection of Progressive Type II Censoring to Ordered

Pooled Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.3 Progressive Type I Censoring . . . . . . . . . . . . . . . . . . . . . 165
9.3.1 Distributional Results for Cohen’s Progressive

Censoring with Fixed Censoring Times . . . . . . . . . . . . . . . 165
9.3.2 Distributional Results for Progressive

Type I Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.4 Sampling Models Based on Progressively Censored
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.4.1 Progressive (Type I) Interval Censoring . . . . . . . . . . . . . . . 167
9.4.2 Progressive Hybrid Censoring . . . . . . . . . . . . . . . . . . . . . . 168
9.4.3 Adaptive Progressive Censoring . . . . . . . . . . . . . . . . . . . . . 169
9.4.4 Reliability and Stress-Strength Reliability . . . . . . . . . . . . . 169
9.4.5 Competing Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.4.6 Applications to System Data . . . . . . . . . . . . . . . . . . . . . . . . 170
9.4.7 Applications in Quality Control . . . . . . . . . . . . . . . . . . . . . 171
9.4.8 Accelerated Life Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.4.9 Stage Life Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.4.10 Joint Progressive Censoring Schemes . . . . . . . . . . . . . . . . 173

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

N. Balakrishnan (�)
Department of Mathematics and Statistics, McMaster University,
Hamilton, ON, Canada
e-mail: bala@mcmaster.ca

E. Cramer
Institute of Statistics, RWTH Aachen University, Aachen, Germany
e-mail: Erhard.Cramer@rwth-aachen.de

Abstract

Progressive censoring has received great attention in the
last decades especially in life testing and reliability. This
review highlights fundamental applications, related mod-
els, and probabilistic and inferential results for progres-
sively censored data. Based on the fundamental models
of progressive type I and type II censoring, we present
related models like adaptive and hybrid censoring as well
as, e.g., stress-strength and competing risk models for pro-
gressively censored data. Focusing on exponentially and
Weibull distributed lifetimes, an extensive bibliography
emphasizing recent developments is provided.
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9.1 Introduction and Fundamental
Models

Monograph-length accounts on progressive censoring
methodology have been provided by Balakrishnan and
Cramer [1] and Balakrishnan and Aggarwala [2], while
detailed reviews are due to [3] and [4]. In particular, [1]
provides an up-to-date account to progressive censoring
including many references and detailed explanations.
Therefore, we provide essentially the basic models
and results in the following, accompanied by recent
developments and references which are not covered in the
mentioned monograph.
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9.1.1 Basic Ideas of Progressive Censoring

According to [5], a progressively censored life testing exper-
iment is conducted as follows. n items are put simultaneously
on a test. At times τ1 < · · · < τm, some items are
randomly chosen among the surviving ones and removed
from the experiment (see Fig. 9.1). In particular, at time τj,
Rj items are withdrawn from the experiment. Originally,
[5] had introduced two versions of progressive censoring,
called type I and type II progressive censoring. In progressive
type I censoring, the censoring times τ1 < · · · < τm are
assumed to be fixed in advance (e.g., as prefixed inspection or
maintenance times). For a better distinction, fixed censoring
times are subsequently denoted by T1 < · · · < Tm. Moreover,
the censoring plan R = (R1, . . . , Rm) is prespecified at the
start of the life test. But, as failures occur randomly, it may
happen that at some censoring time Tj, less than Rj items have
survived. In that case, all the remaining items are withdrawn,
and the life test is terminated at Tj. Notice that, due to this
construction, observations beyond the largest censoring time
Tm are possible. At this point, it is worth mentioning that the
understanding of progressive type I censoring has changed
over time. As has been noted in [6], the understanding of the
term progressive type I censoring has been used differently
after the publication of monograph [2] [see also 7]. Since
then, right censoring has been considered as a feature of
progressive type I censoring, that is, Tm is considered as a

termination time of the experiment (see Fig. 9.2). Therefore,
in progressive type I censoring, we distinguish the initially
planned censoring plan R0 = (R0

1, . . . , R
0
m−1) from the

effectively applied one denoted by R = (R1, . . . , Rm−1).
Notice that we drop the mth censoring number Rm in the
plan since it is always random due to the right censoring. In
order to distinguish these scenarios, [6] called the original
scenario Cohen’s progressive censoring scheme with fixed
censoring times.

The second version of progressive censoring proposed by
Cohen [5] is called progressive type II censoring which may
be considered as the most popular version of progressive
censoring. Here, the censoring times are induced by the
lifetimes of the surviving units in the sense that the next
withdrawal is carried out the first failure after the removal
of items. Suppose the items are numbered by 1, . . . , n with
lifetimes X1, . . .Xn and denote by the set Rj the numbers of
the items available before the jth removal. Then, the next
removal time is defined by Xj:m:n = mini∈Rj

Xi (see Fig. 9.3),
j = 1, . . . , m. Clearly, R1 = {1, . . . , n} and X1:m:n = X1:n is
given by the minimum of the lifetimes. Furthermore, |Rj| =
n − j + 1 − ∑j−1

i=1 Ri = γj, j = 1, . . . , m. The censoring
times are iteratively constructed and random so that they are
not known in advance (in contrast to the type I censoring
scheme). However, the censoring plan and the sample size
are fixed here. In fact, given n and m, the set of admissible
progressive type II censoring plans is given by

t1 t2 tm�1 tm

R1

Withdrawal

R2

Withdrawal

Rm�1

Withdrawal

Rm

Withdrawal

Time

Fig. 9.1 Progressive censoring scheme with censoring times τ1 < · · · < τm and censoring plan R = (R1, . . . , Rm)

R1 R2 Rm�1 Rm

T1 T2 Tm�1 Tm

0

Withdrawal

0

Withdrawal

0

Withdrawal Censoring

Time

Fig. 9.2 Progressive type I censoring with censoring times T1 < · · · < Tm−1, time censoring at Tm, and initial censoring plan R0 =
(R01, . . . , R

0
m−1)
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X1:m:n X2:m:n Xm�1:m:n Xm:m:n

R1

Withdrawal

R2

Withdrawal

Rm�1

Withdrawal

Rm

Censoring

Time

Fig. 9.3 Progressive type II censoring with censoring times X1:m:n < · · · < Xm:m:n and censoring plan R = (R1, . . . , Rm)

T1 T2 Tm�1 Tm

R1
0

Withdrawal

R2
0

Withdrawal

Rm�1
0

Withdrawal

Rm
0

Withdrawal

D2���1D1���1 D3���··· Dm�1���··· Dm���0 Dm�1���2

Time

Fig. 9.4 Progressive interval censoring with censoring times T1 < · · · < Tm, initial censoring plan R0 = (R01, . . . , R
0
m), and random counters

D1, . . . , Dm+1

C m
m,n =

{
(r1, . . . , rm) ∈ N

m
0 :

m∑

i=1

ri = n− m
}
. (9.1)

Based on the above fundamental models, further versions
of progressive censoring have been proposed. Progressive
type I interval censoring uses only partial information from
a progressively type I censored life test. In particular, it is
assumed that only the number Dj of items failing in an inter-
val (Tj−1, Tj] is known (see Fig. 9.4 for Cohen’s progressive
censoring with fixed censoring times). The corresponding
situation under type I right censoring is depicted in Fig. 9.5.

The above censoring schemes have been extended in
various directions. For instance, a wide class of models
called progressive hybrid censoring has been generated by
combining type I and type II censoring procedures. In type
I progressive hybrid censoring, a type I censoring mech-
anism has been applied to progressively type II censored
data X1:m:n, . . . , Xm:m:n by Childs et al. [8] [see also 9, 10],
extending a model of [11] by introducing a threshold T .
The resulting time censored data Xh,Ij:m:n = min{Xj:m:n, T},
j = 1, . . . , m, will be discussed further in Sect. 9.4.2. Consid-
ering the so-called extended progressively type II censored
sample by dropping the right censoring (see (9.15)), that is,

X1:m+Rm:n, . . . , Xm+Rm:m+Rm:n, a type II progressively hybrid
censored sample can be defined by the condition XK:m+Rm:n ≤
T < XK+1:m+Rm:n, m ≤ K ≤ m + Rm. Further versions
have been summarized in [12]. An extensive survey on (pro-
gressive) hybrid censoring schemes is provided in the recent
monograph by [380].

Motivated by the Ng-Kundu-Chan model introduced in
[13], adaptive progressive censoring schemes have been
proposed by Cramer and Iliopoulos [14] and Cramer and
Iliopoulos [15]. In these models, censoring plans and
censoring times may be chosen adaptively according to
the observed data. Such models are presented briefly in
Sect. 9.4.3.

In most cases, progressive censoring is studied under the
assumption that the underlying lifetimes X1, . . . , Xn are in-
dependent and identically distributed (iid) random variables.
If not noted explicitly, all results presented in the following
are based on this assumption. However, relaxations of this
assumption have been made. For instance, [16] discussed the
case of heterogeneous distributions, that is, Xi ∼ Fi, 1 ≤ i ≤
n, are independent random variables but may have a different
cumulative distribution function (see also [17,18]). Rezapour
et al. [19,20] assumed dependent underlying lifetimes. For a
review, we refer to [1, Chapter 10].
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Notation Explanation

cdf Cumulative distribution function

pdf (Probability) density function

iid Independent and identically distributed

BLUE Best linear unbiased estimator

MLE Maximum likelihood estimator

UMVUE Uniformly minimum variance unbiased estimator

PHR model Proportional hazard rates model

R Set of real numbers

N,N0 Set of positive and nonnegative integers, respectively

F← Quantile function of a cdf F

IA(t) Indicator function for a set A; IA(t) = 1 for t ∈ A, IA(t) = 0, otherwise
d= Identical in distribution

xm xm = (x1, . . . , xm)

xn ∧ yn xn ∧ yn = (min(x1, y1), . . . ,min(xn, yn))

xn ∨ yn xn ∨ yn = (max(x1, y1), . . . ,max(xn, yn))

[x]+ max(x, 0)

d•m d•m = ∑m
i=1 di for d1, . . . , dm ∈ R

R Censoring plan R = (R1, . . . , Rm) with censoring numbers R1, . . . , Rm
C m
m,n Set of admissible (progressive type II) censoring plans defined in (9.1)

(γ1, . . . , γm) γi = ∑m
j=i(Rj + 1), 1 ≤ i ≤ m, for a censoring plan R = (R1, . . . , Rm)

X1:m:n, . . . , Xm:m:n, XR
1:m:n, . . . , XR

m:m:n Progressively type II censored order statistics based on a sample X1, . . . , Xn and censoring plan R

XR XR = (XR
1:m:n, . . . , XR

m:m:n)
U1:m:n, . . . , Um:m:n Uniform progressively type II censored order statistics

XI1:K:n, . . . , XIK:K:n Progressively type I censored order statistics or progressively censored order statistics with fixed
censoring times based on a sample X1, . . . , Xn

XI,R XI,R = (XI1:K:n, . . . , XIK:K:n)
X1:n, . . . , Xn:n Order statistics based on a sample X1, . . . , Xn
Exp(μ,ϑ) Two-parameter exponential distribution with pdf f (t) = 1

ϑ
e−(t−μ)/ϑ , t > μ

Exp(ϑ) = Exp(0,ϑ) Exponential distribution with mean ϑ and pdf f (t) = 1
ϑ
e−t/ϑ , t > 0

Fexp cdf of standard exponential distribution Exp(1); Fexp(t) = 1 − e−t, t ≥ 0

Wei(ϑ ,β) Weibull distribution with parameters ϑ ,β > 0 and pdf f (t) = β
ϑ
tβ−1e−tβ/ϑ , t > 0

U(0, 1) Uniform distribution on the interval (0, 1)

χ2(r) χ2-distribution with r degrees of freedom

X ∼ F X is distributed according to a cdf F

X1, . . . , Xn
iid∼ F X1, . . . , Xn are independent and identically distributed according to a cdf F

9.1.2 Notation

Throughout, we use the following notation and abbreviations.

9.1.3 Organization of the Paper

In the following sections, we discuss the most popular ver-
sions of progressive censoring in detail, that is, progressive
type II censoring (Sect. 9.2) and progressive type I censoring
(Sect. 9.3). Further, progressive censoring with fixed censor-
ing times is also addressed in Sect. 9.3. In Sect. 9.4, related
data like progressive interval censoring, progressive hybrid
censoring, and adaptive progressive censoring as well as
applications in reliability and lifetime analysis are discussed.
Due to their importance, we focus on exponentially and

Weibull distributed lifetimes. Except when otherwise stated,
the underlying lifetimes X1, . . . , Xn are supposed to be inde-
pendent and identically distributed according to a cdf F, that

is, X1, . . . , Xn
iid∼ F.

9.2 Progressive Type II Censoring

9.2.1 Probabilistic Results

Fundamental tools in studying properties of progressively
type II censored order statistics are the joint pdf of
X1:m:n, . . . , Xm:m:n and the quantile representation. The
joint pdf of progressively type II censored order statistics
X1:m:n, . . . , Xm:m:n based on an (absolutely continuous) cdf F
with pdf f is given by
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T1 T2 Tm�1 Tm

R1
0 R2

0 Rm�1 Rm
0

D2���1D1���1 D3���··· Dm�1���··· Dm���0

Withdrawal Withdrawal Withdrawal Censoring

Time

Fig. 9.5 Progressive type I interval censoring with censoring times T1 < · · · < Tm−1, time censoring at Tm, initial censoring plan R0 =
(R01, . . . , R

0
m−1), and random counters D1, . . . , Dm

f X
R

(xm) =
{∏m

j=1

[
γjf (xj)(1 − F(xj))Rj

]
, x1 ≤ · · · ≤ xm

0, otherwise
(9.2)

where γj = ∑m
i=j(Ri + 1) denotes the number of items

remaining in the experiment before the jth failure, 1 ≤ j ≤ m.
Notice that n = γ1 > · · · > γm ≥ 1. It is immediate from
(9.2) that progressively type II censored order statistics are
connected to the distributional model of generalized order
statistics (see [21–23]) which covers progressively type II
censored order statistics as a particular case (for details, see
[1], Section 2.2).

Exponential Distributions
From (9.2), the pdf for an exponential population Exp(μ,ϑ)

can be directly obtained, that is, the pdf of exponential
progressively type II censored order statistics XR =
(X1:m:n, . . . , Xm:m:n) is given by

f X
R

(xm) = 1

ϑm

( m∏

j=1

γj

)
exp

(
− 1

ϑ

m∑

j=1

(Rj + 1)(xj − μ)
)
,

μ ≤ x1 ≤ · · · ≤ xm.

This expression is important in deriving, e.g., properties of
exponential progressively type II censored order statistics as
well as in developing statistical inference. As pointed out
by Thomas and Wilson [24] (see also [25]), the normalized
spacings SR

j = γj(Xj:m:n − Xj−1:m:n), 1 ≤ j ≤ m, with
X0:m:n = μ defined as left endpoint of support are iid random
variables, that is (see [1], Theorem 2.3.2),

SR
1 , . . . , S

R
m

iid∼ Exp(ϑ). (9.3)

On the other hand, exponential progressively type II censored
order statistics can be written in terms of their spacings
yielding the identity

Xr:m:n = μ +
r∑

i=1

1

γi
SR
i = Xr−1:m:n + 1

γr
SR
r , 1 ≤ r ≤ m,

(9.4)
where X0:m:n = μ. This representation allows us to derive
many properties of exponential progressively type II cen-
sored order statistics. For instance, using (9.3) and (9.4), the
one-dimensional marginal pdfs and cdfs are given by (see
also [26])

f Xr:m:n(t) =
( r∏

j=1

γj

) r∑

j=1

aj,re−γjt,

FXr:m:n(t) = 1 −
( r∏

i=1

γi

) r∑

j=1

1

γj
aj,re−γjt , t > 0,

where aj,r = ∏r
i=1
i	=j

1
γi−γj

, 1 ≤ j ≤ r ≤ n. Representations

of bivariate and arbitrary marginals can be found in [1,
Section 2.4], (see also [27, 28]). Moreover, it follows from
(9.4) that X1:m:n, . . . , Xm:m:n form a Markov chain, that is, for
2 ≤ r ≤ m,

Xr:m:n | (Xr−1:m:n = xr−1, . . . , X1:m:n = x1)

d= Xr:m:n | (Xr−1:m:n = xr−1)

d= 1

γr
SR
r + xr−1 ∼ Exp(xr,ϑ/γr).

Furthermore, X1:m:n
d= Exp(μ,ϑ/γ1). These representations

allow direct calculation of moments. For instance, one gets

EXr:m:n = μ + ϑ

r∑

j=1

1

γj
, VarXr:m:n = ϑ2

r∑

j=1

1

γ 2
j

,

Cov(Xr:m:n, Xs:m:n) = VarXr:m:n = ϑ2
r∑

j=1

1

γ 2
j

, 1 ≤ r ≤ s ≤ m.

(9.5)
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Further results on moments, e.g., higher order moments,
existence of moments, bounds, and recurrence relations, can
be found in [1] and the references cited therein.

Other Distributions
Probabilistic results for other distributions can be obtained
from the pdf in (9.2) or, alternatively, from the results ob-
tained for the exponential distribution and the following
result due to [29,30] (for a proof, see [1]). It shows that most
of the distributional results can be obtained for a uniform
distribution and then transformed to an arbitrary cdf F.

Theorem 9.2.1 Suppose X1:m:n, . . . , Xm:m:n and U1:m:n, . . . ,
Um:m:n are progressively type II censored order statistics
based on a cdf F and a uniform distribution, respectively.
Then,

(Xj:m:n)1≤j≤m
d= (

F←(Uj:m:n)
)
1≤j≤m .

Theorem 9.2.1, together with the representation of the
joint pdf for uniform distributions, yields an expression for
progressively type II censored order statistics based on an
arbitrary cdf F, that is,

FXr:m:n(t) = 1 −
( r∏

i=1

γi

) r∑

j=1

1

γj
aj,r(1 − F(t))γj , t ∈ R.

If F is absolutely continuous with pdf f , then the pdf is given
by

f Xr:m:n(t) =
( r∏

j=1

γj

)
f (t)

r∑

j=1

aj,r(1 − F(t))γj−1, t ∈ R.

Similar representations can be obtained for multiple progres-
sively type II censored samples (see [1], p.41, [28,31]). Log-
concavity and unimodality properties of the distributions are
studied in [32–36].

From (9.4), it follows that Fexp(Xr:m:n) = 1 −
∏r

j=1

(
e−SR

j /ϑ
)1/γj

with SR
1 , . . . , S

R
m as in (9.3). Thus,

Uj = e−SR
j /ϑ , 1 ≤ j ≤ m, are independent uniformly

distributed random variables. This yields the identity

Ur:m:n
d= 1 −

r∏

j=1

U
1/γj
j , 1 ≤ r ≤ m,

of Ur:m:n as a product of independent random variables.
Combining this expression with the quantile representation
fromTheorem 9.2.1, we arrive at the following representation
[see also 37].

Theorem 9.2.2 Let X1:m:n, . . . , Xm:m:n be progressively type
II censored order statistics from an arbitrary cdf F and

U1, . . .Um
iid∼ U(0, 1). Then,

X1:m:n, . . . , Xm:m:n
d= F←

(

1 −
r∏

j=1

U
1/γj
j

)

, 1 ≤ r ≤ m.

As has been noticed in [38], this representation provides
an alternative method to simulate progressively type II cen-
sored order statistics from a cdf F (for a survey on simulation
methods, see [1, Chapter 8]). Alternatively, one can also write

Xr:m:n
d= F←

(

Fexp

( r∑

j=1

1

γj
Zj
))

, 1 ≤ r ≤ m,

with Z1, . . . , Zm
iid∼ Exp(1). This result illustrates that

X1:m:n, . . . , Xm:m:n form a Markov chain with transition
probabilities

P(Xr:m:n ≤ t | Xr−1:m:n = s) = 1−
(
1 − F(t)

1 − F(s)

)γr

, s≤ t with F(s) < 1.

Further results on the dependence structure of progressively
type II censored order statistics are available. For instance,
[28] has shown that progressively type II censored order
statistics exhibit the MTP2-property which implies that pro-
gressively type II censored order statistics are always posi-
tively correlated. The block independence property has been
established by Iliopoulos and Balakrishnan [39]. In order to
formulate the result, we introduce the number of progres-
sively type II censored order statistics that do not exceed
a threshold T , i.e., D = ∑m

j=1 I(−∞,T](Xj:m:n). Then, the
probability mass function of D is given by the probabilities

P(D = 0) = (1 − F(T))n,

P(D = d) =
( d∏

i=1

γi

) d+1∑

j=1

aj,d+1(1 − F(T))γj , d = 1, . . . , m− 1,

P(D = m) = FXm:m:n (T).

Given d ∈ {1, . . . , m − 1}, a cdf F, and a censoring
plan R = (R1, . . . , Rm), the block independence property
is as follows: Conditionally on D = d, the random vectors
(X1:m:n, . . . , Xd:m:n) and (Xd+1:m:n, . . . , Xm:m:n) are indepen-
dent with

(X1:m:n, . . . , Xd:m:n)
d=
(
VKd
1:d:κd , . . . , V

Kd
d:d:κd

)
,

(Xd+1:m:n, . . . , Xm:m:n)
d= (

W1:m−d:γd , . . . , Wm−d:m−d:γd
)

(9.6)

where Kd = (K1, . . . , Kd) is a random censoring plan on

the Cartesian product
d×
j=1

{0, . . . , Rj} with probability mass

function
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pKd (kd) = 1

P(D = d)
Fη1(d)(T)(1 − F(T))n−η1(d)

d∏

i=1

γi

ηi(d)

(
Ri
ki

)

,

κd = ∑d
j=1(1 + Kj), and ηi(d) = ∑d

j=i(kj + 1), 1 ≤ i ≤ d.
Further:

1. V1, . . . , Vn are iid random variables with right truncated
cdf FT given by FT(t) = F(t)

F(T)
, t ≤ T .

2. W1, . . . , Wγd are iid random variables with left truncated
cdf GT given by GT(t) = 1 − 1−F(t)

1−F(T)
, t ≥ T .

The sample size κd of the progressively type II cen-
sored order statistics VKd

1:d:κd , . . . , V
Kd
d:d:κd is a random vari-

able. The above representation means that the distribution of
(X1:m:n, . . . , Xd:m:n), givenD = d, is a mixture of distributions
of progressively type II censored order statistics with mixing
distribution pKd. It is well known that right truncation of
progressively type II censored order statistics does not result
in progressively type II censored order statistics from the
corresponding right truncated distribution [see, e.g., 2]. This
is due to the fact that those observations (progressively)
censored before T could have values larger than T .

Connection to Order Statistics and Other Models
of Ordered Data
Order statistics [see, e.g., 40,41] can be interpreted as special
progressively type II censored order statistics by choosing the
censoring plan O = (0, . . . , 0). Then, we have m = n and
XO
j:n:n = Xj:n, 1 ≤ j ≤ n. Furthermore, the censoring plan

O∗ = (0, . . . , 0, Rm)with n = m+Rm yieldsXO
j:m:n = Xj:m+Rm ,

1 ≤ j ≤ m, leading to a type II right censored sample. Thus,
all the results developed for progressively type II censored
order statistics can be specialized to order statistics. Detailed
accounts to order statistics are provided by Arnold et al. [40]
and David and Nagaraja [41].

As mentioned above, progressively type II censored order
statistics can be seen as particular generalized order statistics
and sequential order statistics, respectively (see [21,23,37]).
In this regard, results obtained in these models hold also for
progressively type II censored order statistics by specifying
model parameters and distributions suitably. For pertinent
details, we refer to the references given above.

Moments
Many results on moments have been obtained for
progressively type II censored order statistics (see, e.g.,
[1], Chapter 7). This discussion includes explicit results for
selected distributions, e.g., exponential distributions (see
(9.5)), Weibull, Pareto, Lomax, reflected power, and extreme
value distributions. Further topics are existence of moments
(see [42, 43]), bounds (see, e.g., [32, 44, 45]), recurrence
relations (see, e.g., [27, 46]), and approximations (see, e.g.,
[47]). Furthermore, the accurate computation of moments

has been discussed in [48] (see also [49]). It should be
noted that an enormous number of papers have discussed
moments as well as related recurrence relations for particular
distributions.

Stochastic Orders and Stochastic Comparisons
Results on various stochastic orders of progressively type
II censored order statistics have been mostly established
in terms of generalized and sequential order statistics (see
[1], Section 3.2). Therefore, the results can be applied to
progressively type II censored order statistics by choosing
particular parameter values. For information, we present def-
initions of the most important stochastic orders discussed for
progressively type II censored order statistics. For a general
discussion, we refer to [50,51], and [52]. A review of results
on multivariate stochastic orderings for generalized order
statistics is provided in [53] (see also [1]).

Let X ∼ F, Y ∼ G be random variables and let f and
g denote the respective pdfs. For simplicity, it is assumed
that the supports are subsets of the set of positive values. In
the following, we present some selected results on stochastic
orderings under progressive type II censoring and provide
references for further reading.

Stochastic Order/Multivariate Stochastic Order

(i) X is said to be stochastically smaller than Y , that is, X ≤st

Y or F ≤st G, iff F(x) ≤ G(x) for all x ≥ 0.
(ii) Let X = (X1, . . . , Xn)′, Y = (Y1, . . . , Yn)′ be random

vectors. Then, X is said to be stochastically smaller than
Y, that is, X ≤st Y or FX ≤st FY , iff Eφ(X) ≤ Eφ(Y) for
all nondecreasing functions φ : Rn −→ R provided the
expectations exist.

Notice that, for n = 1, the definition of the multivariate
stochastic order is equivalent to the (common) definition in
the univariate case.

Belzunce et al. [54] has established the preservation of the
stochastic order when the baseline distributions are stochas-
tically ordered.

Theorem 9.2.3 Let XR and YR be vectors of progressively
type II censored order statistics from continuous cdfs F and
G with censoring plan R, respectively. Then, for F ≤st G,
XR ≤st YR.

A comparison in terms of the univariate stochastic order
has been established by Khaledi [55] using the following
partial ordering of γ -vectors (see [56, 57]). Let R and S
be censoring plans with corresponding γ -values γi(R) =
∑m1

k=i(Rk + 1) and γi(S ) = ∑m2
k=i(Sk + 1). For 1 ≤ j ≤ i,

(γ1(S ), . . . , γj(S )) ≤p (γi−j+1(R), . . . , γi(R)) (9.7)
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iff

∏

k=1

γi−k+1(R) ≤

∏

k=1

γk(S ) for 
 = 1, . . . , j.

Theorem 9.2.4 Let F, G be continuous cdfs with F ≤st G
and X ∼ F, Y ∼ G. Moreover, let R ∈ C m1

m1,n1 ,S ∈ C m2
m2,n2

with m1, m2 ∈ N be censoring plans. Then:

(i) XR
i:m1:m1

≤st YR
i:m1:m1

, 1 ≤ i ≤ m1.
(ii) If 1 ≤ j ≤ i and condition (9.7) holds, then XS

j:m2:m2
≤st

YR
i:m1:m1

.

Applications to stochastic ordering of spacings of progres-
sively type II censored order statistics can be found in [58].

Failure Rate/Hazard Rate Order, Reversed Hazard Rate
Order

(i) X is said to be smaller than Y in the hazard rate order,
that is, X ≤hr Y or F ≤hr G, iff F(x)G(y) ≤ F(y)G(x)
for all 0 ≤ y ≤ x.

(ii) X is said to be smaller than Y in the reversed hazard rate
order, that is, X ≤rh Y or F ≤rh G, iff F(x)G(y) ≤
F(y)G(x) for all 0 ≤ y ≤ x.

For the hazard rate order, the ratio F(x)
G(x)

is nonincreasing in
x ≥ 0 where a

0 is defined to be ∞. If F and G are absolutely
continuous cdfs with pdfs f and g, respectively, then hazard
rate ordering is equivalent to increasing hazard rates, that is,

λF(x) = f (x)

1 − F(x)
≤ g(x)

1 − G(x)
= λG(x) for all x ≥ 0.

For the reversed hazard rate order, the ratio F(x)
G(x) is nonincreas-

ing in x ≥ 0, where a
0 is defined to be ∞.

Results for (multivariate) hazard rate orders of progres-
sively type II censored order statistics have been obtained by
Belzunce et al. [54], Khaledi [55], and Hu and Zhuang [59].
For instance, replacing the stochastic order by the hazard rate
order in Theorem 9.2.4, an analogous result is true (see [1,
Theorem 3.2.3]).

Likelihood Ratio Order/Multivariate Likelihood Ratio
Order

(i) X is said to be smaller than Y in the likelihood ratio order,
that is, X ≤lr Y or F ≤lr G, iff f (x)g(y) ≤ f (y)g(x) for all
0 ≤ y ≤ x.

(ii) Let X = (X1, . . . , Xn)′, Y = (Y1, . . . , Yn)′ be random
vectors with pdfs f X and f Y . Then, X is said to be smaller
than Y in the multivariate likelihood ratio order, that is,
X ≤lr Y or FX ≤lr FY , iff

f X(xn)f Y(yn) ≤ f X(xn ∧ yn)f
Y(xn ∨ yn)

for all x = (x1, . . . , xn)′, y = (y1, . . . , yn)′ ∈ R
n.

The (multivariate) likelihood ratio order has been dis-
cussed, e.g., by Korwar [60], Hu and Zhuang [59], Cramer
et al. [61], Belzunce et al. [54], Zhuang and Hu [62], Balakr-
ishnan et al. [63], Sharafi et al. [64], and Arriaza et al. [65].
The following result is due to [60] (see [59] for generalized
order statistics).

Theorem 9.2.5 Let R ∈ C m1
m1,n1 ,S ∈ C m2

m2,n2 with m1, m2 ∈
N be censoring plans and XS

j:m2:m2
, XR

i:m1:m1
be progressively

type II censored order statistics from the same absolutely
continuous cdf F. If 1 ≤ j ≤ i and γk(R) ≤ γk(S ),
k = 1, . . . , j, then XS

j:m2:m2
≤lr XR

i:m1:m1
.

Comparisons of vectors of progressively type II censored
order statistics (generalized order statistics) with different
cdfs and different censoring plans have been considered in
[54]. In particular, they found the following property.

Theorem 9.2.6 Let XR
i:m:n, Y

R
i:m:n, 1 ≤ i ≤ m ≤ n, be

progressively type II censored order statistics from absolutely
continuous cdfs F and G, respectively, with F ≤lr G and
censoring plan R. Then, XR

i:m:n ≤lr YR
i:m:n, 1 ≤ i ≤ m.

Ordering of p-spacings is discussed in [54, 66–68].

Dispersive Order X is said to be smaller than Y in the
dispersive order, i.e., X ≤disp Y or F ≤disp G, iff F←(x) −
F←(y) ≤ G←(x) − G←(y) for all 0 < y < x < 1.

Results for the (multivariate) dispersive order are estab-
lished in [55,69–71]. For instance, [55] has shown a result as
in Theorem 9.2.4 for the dispersive order provided that the
cdf F has the DFR-property. Belzunce et al. [54] have shown
that XR ≤disp YR and that XR

i:m:n ≤disp YR
i:m:n, 1 ≤ i ≤ m,

when F ≤disp G.
Further orderings likemean residual life, total time on test,

and excess wealth orders have also been discussed (see [72–
75]). Results for the increasing convex order of generalized
order statistics have been established in [76]. Orderings of
residual life are discussed in [77, 78]. Stochastic orderings
of INID progressively type II censored order statistics have
been studied in [79].

Ageing Notions
Ageing properties have also been studied for progressively
type II censored order statistics. For general references on
ageing notions and their properties, we refer to, e.g., [80–82].
Results have been obtained for various ageing notions, e.g.,
increasing/decreasing failure rate (IFR/DFR), increasing/
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decreasing failure rate on average (IFRA/DFRA), and new
better/worse than used (NBU/NWU). Fundamental results
on progressively type II censored order statistics for the most
common ageing notions are mentioned subsequently.

IFR/DFR A cdf F is said to be IFR (DFR) iff the ratio
F(t+x)−F(t)

1−F(t) is increasing (decreasing) in x ≥ 0 for all t with
F(t) < 1.

If F exhibits a pdf then the IFR-/DFR-property means
that the hazard rate function λF = f /(1 − F) is increasing
(decreasing).

IFRA/DFRA A cdf F is said to be IFRA (DFRA) iff, for the
hazard function R = − logF, the ratio R(x)/x is increasing
(decreasing) in x > 0.

NBU/NWU A cdf F is said to be NBU (NWU) iff F(t+x) ≤
(≥)F(t)F(x) for all x, t ≥ 0.

The IFR- and IFRA-property of progressively type II
censored order statistics have been investigated in [33]. It
has been shown that all progressively type II censored order
statistics are IFR/IFRA provided that the baseline cdf F
is IFR/IFRA. The respective result for the NBU-property
as well as further results can be found in [83] in terms
of sequential order statistics (see also [84]). Preservation
properties are presented in [23], e.g., it has been proved that
the DFR-property is preserved by spacings (see also [21]).
The reversed hazard rate has been studied in [85]. Belzunce
et al. [86] considered multivariate ageing properties in terms
of nonhomogeneous birth processes and applied their results
to generalized order statistics. A restriction to progressive
censoring shows that progressively type II censored order
statistics XR are M-IFR if F is an IFR-cdf. Moreover, XR

is multivariate Polya frequency of order 2 (MPF2) if the pdf
of F is log-concave. Further notions of multivariate IFR/DFR
and its applications to generalized order statistics have been
discussed in [87]. The connection of ageing properties and
residual life has been considered in [88] in terms of general-
ized order statistics.

Further Topics
The following probabilistic topics have also been discussed
in progressive type II censoring, but, for brevity, we only
mention them here briefly. Many publications deal with
various kinds of characterizations of probability distributions
[see, e.g., 1, Chapter 3.1]. Limit theorems have also been
established imposing different assumptions on the censoring
plans and distributions. For instance, [89] considered normal
approximations using an approach inspired by Hoadley [90].
Cramer [91] discussed extreme value analysis which in-
cludes extreme, central, and intermediate progressively type

II censored order statistics [see also 92,93]. Counting process
approaches in combination with limiting distributions have
been extensively discussed in [94] [see also 95,96]. Hofmann
et al. [97] has discussed a block censoring approach.

Information measures have also found some interest [see,
e.g., 1, Chapter 9]. Results on the Fisher information have
been established in, e.g., [98–102]. A detailed approach
in terms of the more general model of generalized order
statistics is discussed in [103, 104]. Asymptotic results are
provided in [105]. Entropy-type measures are investigated in
[106–110]. Kullback-Leibler-related measures are addressed
in [106, 107, 111–115]. Pitman closeness for progressively
type II censored data has been considered in, e.g., [116–119].

Concomitants for progressively type II censored order
statistics have been addressed [120–122] (see also [1]).

As already mentioned above, progressive type II censor-
ing has also been discussed under nonstandard conditions.
Specifically, the underlying random variables X1, . . . , Xn are
supposed to be distributed according to some (multivariate)
distribution function FX1,...,Xn . A general mixture representa-
tion of the distribution in terms of distributions of order statis-
tics has been established by Fischer et al. [17]. Assuming
independence but possibly different marginals, [16] found
representations of the joint density functions. Inference in
such a model has been discussed in [123]. Given a copula
of the lifetimes X1, . . . , Xn, [19, 20] addressed dependent
random variables. Progressive censoring of random vectors
has been discussed in [124] [see also 125,126].

9.2.2 Inference

Inference for progressively type II censored data has been
widely discussed in the literature. Most of the material is
devoted to parametric inference. In the following, we present
a selection of results for exponential andWeibull distribution.
In addition, references to other distributions are provided. A
standard reference for all these results is [1]. If nothing else
is mentioned, we discuss inference on a single progressively
type II censored sample X1:m:n, . . . , Xm:m:n.

Point Estimation
The most popular parametric estimation concepts applied to
progressively type II censored data are linear, likelihood, and
Bayesian estimation. Assuming a location-scale family of
distributions

F =
{
Fμ,ϑ = F

( · − μ

ϑ

) ∣
∣
∣μ ∈ R,ϑ > 0

}
,

with a known cdf F, a progressively type II censored sample
XR from Fμ,ϑ can be written as a linear model:

XR = μ · 1 + ϑYR = μ · 1 + ϑEYR +WR = Bθ +WR,



162 N. Balakrishnan and E. Cramer

where EWR = 0, Cov(WR) = ϑ2� denotes the variance-
covariance matrix of WR, � = Cov(YR), B = [1, b] is
the known design matrix, and θ = (μ,ϑ)′ is the (unknown)
parameter vector. Notice that the distribution of YR is param-
eter free, and it depends only on the standard member F.

Thus, as pointed out in [1, Chapter 11], least squares
estimation can be applied in order to obtain the best linear
unbiased estimator (BLUE) of θ (see, e.g., [127]) as

θ̂ = (B′�−1B)−1B′�−1XR.

Obviously, the estimator can be applied when the first and
second moments of XR can be computed (at least numer-
ically). This has been done for many distributions. For in-
stance, given exponential distributions, explicit expressions
result since the respective moments have a closed form
expression (see, e.g., [128–130]). Form ≥ 2, the BLUEs μ̂LU

and ϑ̂LU are given by

μ̂LU = X1:m:n − ϑ̂LU

n
,

ϑ̂LU = 1

m− 1

m∑

j=2

(Rj + 1)(Xj:m:n − X1:m:n).

Further results for particular distributions are summarized
in [1, Chapter 11]. In case of Weibull distributions, the
model can be transformed to a linear model from extreme
value distributions by a log-transformation of the data. Thus,
estimators of the Weibull parameters can be obtained by
using the BLUEs of the transformed parameters when the
data results from an extreme value distribution. Results in
this direction can be found in [24, 131, 132]. The mixture
representation in terms of order statistics can also be utilized
to compute the moments (see [17, 133,134]).

Similar to least squares estimation, one can consider the
best linear equivariant estimators (BLEEs). This problem has
been discussed, e.g., by Balakrishnan et al. [135], Burkschat
[136] (see also [137] for the best linear (risk) invariant
estimators).

The most popular approach to the estimation problem is
likelihood inference since the joint pdf given in (9.2) leads to
tractable expressions inmany situations (see [1, Chapter 12]).
For generalized Pareto distributions, explicit expressions re-
sult. For exponentially distributed lifetimes with mean ϑ , the
MLE is given by

ϑ̂MLE = 1

m

m∑

j=1

(Rj + 1)Xj:m:n = 1

m

m∑

j=1

SR
j , (9.8)

which is also the BLUE in this model. The representation
in terms of the spacings SR

1 , . . . , S
R
m is important in the

analysis of the MLE since it enables easy derivation of

the exact distribution of the MLE. For two-parameter expo-
nential distribution, explicit expressions for the MLEs are
also available. For Weibull distribution Wei(ϑ ,β), the MLE
(ϑ̂ , β̂) of (ϑ ,β) uniquely exists (see [138]). They are given

by ϑ̂ = 1
m

∑m
j=1(Rj + 1)Xβ̂

j:m:n where, for the observed data
Xj:m:n = xj, 1 ≤ j ≤ m, the estimate β̂ is the unique solution
of the equation:

m

β
+

m∑

j=1

log xj −
∑m

j=1(Rj + 1) log(xj)x
β

j
∑m

j=1(Rj + 1)xβ

j

= 0.

The above equation has to be solved numerically, e.g., by
the Newton-Raphson procedure. Ng et al. [98] proposed an
EM-algorithm approach to compute theMLE (see also [139])
which, suitably adapted, has successfully been applied for
other distributions, too. Results on likelihood inference for
other distributions can be found in [1, Chapter 12]. Recent
references for other distributions are, e.g., [140] (Rayleigh),
[141] (modified Weibull), [142, 143] (Lindley), and [144]
(Gompertz).

For some distributions, related concepts like modified and
approximate maximum likelihood estimation have been dis-
cussed. The latter concept due to [145] has been successfully
applied in many cases, e.g., for extreme value distribution
[146] and Weibull distributions [147] (see also [1, Chap-
ter 12.9.2]).

Bayesian inference has also been discussed considerably
for progressively type II censored data under various loss
functions (see [1, Chapter 15]). Under squared error loss
function, the Bayes estimate of the scale parameter α = 1/ϑ
of an exponential lifetime is given by the posterior mean

α̂B = a+ m

b+ ∑m
j=1(Rj + 1)Xβ

j:m:n

given a gamma prior

πa,b(α) = ba

�(a)
αa−1e−bα , α > 0,

with hyperparameters a, b > 0. Using a similar inverse
gamma prior, [148] obtained the corresponding Bayes esti-
mator of ϑ as

ϑ̂B = 1

a+ m− 1

( m∑

j=1

γj(Xj:m:n − Xj−1:m:n) + b
)
,

where X0:m:n = 0. Two-parameter Weibull distribution with
appropriate priors has been discussed in [149] and [150]. For
further results, we refer to [1, Chapter 15].

Using a counting process approach, [94] and [151] have
addressed nonparametric inference with progressively type
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II censored lifetime data for the population cdf F and the
survival function. For instance, they presented a Nelson-
Aalen-type estimator and a smoothed hazard rate estimator
as well as asymptotic results for these estimators. A survey
is provided in [1, Chapter 20].

Statistical Intervals
Various kinds of statistical intervals have been discussed for
progressively type II censored data. In particular, confidence
intervals have been studied under different assumptions. In
some situations, exact confidence intervals with level 1 − α

can be constructed using properties of the estimators. For
exponential distribution, it follows from the independence
of the spacings (9.3) that the distribution of the MLE ϑ̂MLE

in (9.8) can be obtained as 2mϑ̂MLE/ϑ ∼ χ2(2m). Hence,[
2mϑ̂MLE

χ2
1−α/2(2m)

, 2mϑ̂MLE
χ2

α/2(2m)

]
is a two-sided (1 − α)-confidence in-

terval for ϑ . Similarly, one may obtain confidence intervals
and confidence regions for the two-parameter exponential
distribution (see [1, Chapter 17], [152]). For Wei(ϑ ,β)-
distribution, [153] has obtained confidence intervals for the
scale and shape parameters of aWei(ϑ ,β)-distribution using
a transformation to exponential data and the independence of
the spacings. An exact (1 − α)-confidence interval for β is
given by

K =
[
ψ∗(XR , Fα/2(2(m−1), 2)),ψ∗(XR , F1−α/2(2(m−1), 2))

]
,

whereψ∗(XR,ω) is the unique solution for β of the equation

m∑

j=2

(Rj + 1)
( Xj:m:n
X1:m:n

)β = γ2 + n(m− 1)ω.

Wang et al. [154] established a confidence interval forβ using
the pivotal quantity

τ(XR,β) = 2
m−1∑

j=1

log

( ∑m
i=1(Ri + 1)Xβ

i:m:n
∑j−1

i=1(Ri + 1)Xβ

i:m:n + γjX
β

j:m:n

)

.

They showed that an exact (1− α)-confidence interval for β

is given by

K =
[
τ−1(XR ,χ2

α/2(2(m− 1))), τ−1(XR ,χ2
1−α/2(2(m− 1)))

]
,

where τ−1(XR,ω) is the unique solution for β of the equation
τ(XR,β) = ω with ω > 0. A simultaneous confidence re-
gion has been obtained by Wu [153]. The same ideas may be
applied to Pareto distributions (see [155–158]). In [158,159],
and [160], optimal confidence regions are discussed (for a
location-scale family, see [161]). Nonparametric confidence
intervals for quantiles have been discussed in [133] (for

multiple samples, see [162,163]). Exact confidence intervals
based on conditional inference have been proposed for pro-
gressively type II censored data by Viveros and Balakrishnan
[25] (see also [2, Chapter 9]). In particular, exponential,
extreme value, log-gamma distributions, Pareto, and Laplace
have been discussed. Asymptotic confidence intervals have
been applied in various situations by assuming asymptotic
normality of some pivotal quantities. The asymptotic vari-
ance is estimated by the observed likelihood. Generalized
confidence intervals for distribution parameters using Weer-
ahandi’s approach (see [164]) can be found in [154].

Furthermore, prediction intervals and tolerance intervals
have been discussed. References for the latter concept are
[134, 162, 165, 166]. The highest posterior density credible
intervals have been established in [148,149], and [167].

Prediction
Prediction problems have been discussed for both point and
interval prediction, respectively (see [1, Chapter 16 & 17.4]).
In particular, they have been considered for:

(I) Progressively censored failure times at censoring steps
1, . . . , m; in particular, the progressively censored or-
dered failure times Wj,1:Rj , . . . , Wj,Rj:Rj , 1 ≤ j ≤ m, are
predicted.

(II) For future observations in the same sample (this is a
particular case of (I) in the sense that the lifetimes of the
items removed in the final progressive censoring step
are predicted).

(III) Observations of an independent future sample from the
same population.

Problem (I) has been considered by Basak et al. [168] (the
special case Wm,1:Rm , . . . , Wm,Rm:Rm is addressed by Balakr-
ishnan and Rao [169]). Given exponential lifetimes with
unknownmean ϑ , they found that the best unbiased predictor
of the rth ordered progressively censored lifetime Wj,r:Rj in
step j is given by

Ŵj,r:Rj(X
R) = Xj:m:n + ϑ̂MLE

r∑

k=1

1

Rj − k + 1
,

where ϑ̂MLE is the MLE of ϑ . Further results have been ob-
tained for extreme value distribution [168], normal distribu-
tion [170], and Pareto distribution [171]. Prediction intervals
based on various prediction concepts (e.g., best linear unbi-
ased prediction, maximum likelihood prediction, and median
unbiased prediction) have been obtained for exponential and
extreme value distributions in [168]. Normal and Pareto
distributions are considered in [170] and [171], respectively.
Generalized exponential and Rayleigh distributions are dis-
cussed in [172] and [173], respectively.
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The best linear unbiased/equivariant prediction of future
observations Xr+1:m:n, . . . , Xm:m:n, based on the first r pro-
gressively type II censored order statistics X1:m:n, . . . , Xr:m:n,
has been discussed in [136]. The same problem has been
investigated in a Bayesian framework, too, and the corre-
sponding results can be found in [148] and [152]. Predic-
tion intervals for a general class of distributions, including
exponential, Weibull, and Pareto distributions, can be seen
in [174]. Results for Weibull distribution have also been
presented in [175].

Problem (III) has mainly been discussed in a Bayesian
framework. Relevant references are [141, 143, 175–183].
Results on nonparametric prediction of future observations
can be found in [134,162,184].

Testing
Statistical tests under progressive censoring have mainly
been discussed in the context of precedence-type testing,
homogeneity, and goodness-of-fit tests. A good source for
precedence-type tests is [185] (see also [1, Chapter 21]).
Particular results can be found in [186] and [187]. Homo-
geneity tests based on several progressively type II censored
samples have been addressed in [188]. For related results
in terms of sequential order statistics, we refer to [23]. A
review on goodness-of-fit-tests for exponential distributions,
including a power study, has recently been presented in
[114] (see also [1, Chapter 19]). Goodness-of-fit tests for
location-scale families are discussed in, e.g., [189]. Tests
have been constructed by means of spacings and deviations
from the uniform distribution as well as from the empirical
distribution function (e.g., Kolmogorov-Smirnov-type statis-
tics; see [190,191]). Furthermore, information measures like
(cumulative) Kullback-Leibler information and entropy have
been used (see [106,111,113]).

9.2.3 Experimental Design

Initiated by Balakrishnan and Aggarwala [2, Chapter 10],
problems of experimental design have been discussed ex-
tensively for progressively type II censored lifetime experi-
ments. A review on various results and optimality criteria has
been provided by Balakrishnan and Cramer [1, Chapter 26].
Assuming that progressive type II censoring is carried out
by design, the experimenter has to choose an appropriate
censoring plan prior to the start of the experiment. Thus,
assuming the sample size n and the number m of observed
items as fixed, the censoring planR = (R1, . . . , Rm) has to be
chosen in an optimal way. Burkschat [58] has formulated the
problem as a mathematical optimization problem in a very
general way (see also [192, 193]), that is, given a criterion
ψ : C m

m,n −→ R, a censoring plan S is said to be ψ-
optimal if

ψ(S ) = min
R∈Cm

m,n

ψ(R),

where C m
m,n is given in (9.1). Various optimality criteria have

been used, e.g., probabilistic criteria [58], variance criteria
[2,139,192–194], information measures like Fisher informa-
tion [100,104,105,139] and entropy [107,195,196], optimal
estimation of quantiles [139,149,197,198], Pitman closeness
[117], and optimal block censoring [97]. A detailed review is
provided in [1, Chapter 26].

It turns out that the optimal designs depend heavily on
both the optimality criterion to be used and the distributional
assumption made. Due to the large number of admissible
censoring plans, i.e.,

(n−1
m−1

)
(see [1, p. 531]), [199] proposed

a variable neighborhood search algorithm to identify optimal
plans in a reasonable time. It should be mentioned that the so-
called one-step censoring plans turn out to be optimal inmany
cases. This means that progressive censoring is carried out
only at one failure time, whereas at the other failure times no
censoring occurs. Such plans are discussed in [100,102], and
[200]. Recently, restrictions on censoring plans have been
addressed in [49].

9.2.4 Connection of Progressive Type II
Censoring to Coherent Systems

Cramer and Navarro [201] established a connection of failure
data from coherent systems to progressively type II censored
order statistics. They showed that the joint distribution of the
component failures (Y(1), . . . , Y(m)) (given the number M =
m of component failures leading to the system failure) in a
coherent system can be seen as a mixture of progressively
type II censored order statistics:

PY(1),...,Y(m)|M=m =
∑

r∈Sm

P(R = r|M = m)PX
r
1:m:n,...,Xrm:m:n ,

(9.9)

where Sm denotes the set of all admissible censoring plans
r = (r1, . . . , rm) of lengthm. The probabilitiesP(R = r|M =
m) depend only on the structure of the coherent system and
therefore can be calculated directly [see also 202]. Utilizing
this connection, inference for coherent system data can be
carried out using inferential methods for progressively type II
censored data. For exponentially distributed lifetimes as well
as PHR models, we refer to [201], while Weibull distribution
is discussed in [203].

Cramer and Navarro [202] applied this connection to de-
fine a progressive censoring signature (PC-signature) which
can be used to compare the lifetimes of different coherent
systems with respect to stochastic orderings.
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9.2.5 Connection of Progressive Type II
Censoring to Ordered Pooled Samples

In (9.9), a mixture of some random variables in terms of
progressively type II censored order statistics has been estab-
lished. A similar mixture representation has been found in the
context of pooling two independent type II censored samples.
Let X1:n, . . . , Xr:n and Y1:m, . . . , Ys:m be independent right
censored samples from a uniform distribution with sample
sizes n and m, respectively. Without loss of any generality,
let r ≥ s and denote the ordered pooled sample by W(1) ≤
· · · ≤ W(r+s). Then, [162] showed that the joint distribution
of the ordered pooled sampleW(1), . . . ,W(r+s) is a mixture of
uniform progressively type II censored order statistics, that is,

PW(1),...,W(r+s) =
r−1∑

j=0

πjP
(T

Rj
1:r+s:n+m,...,T

Rj
r+s:r+s:n+m)

+
s−1∑

j=0

π∗
j P

(T
R∗
j

1:r+s:n+m,...,T
R∗
j

r+s:r+s:n+m),

with appropriately chosen discrete probability distributions
π0, . . . ,πr−1 and π∗

0 , . . . ,π
∗
s−1 and two-step censoring plans

Rj, 0 ≤ j ≤ r− 1 and R∗
j , 0 ≤ j ≤ s− 1, respectively [162],

[1, Section 17.1.6]. An extension to multiple pooled samples
is presented in [204].

9.3 Progressive Type I Censoring

As mentioned in Sect. 9.1, progressive type I censoring as
introduced in [5] does not have a prefixed termination time,
that is, the last censoring time Tm (see Fig. 9.1) has not
been considered as termination time. As pointed out in [6],
inference for this model has been considered up to the early
1990s (see, e.g., [5,205–209], and the monographs by Nelson
[210] andCohen andWhitten [211]). In the following, we call
this censoring scheme Cohen’s progressive censoring with
fixed censoring times. The understanding of Tm as a time
censoring point seems to have changed after the publication
of the monograph [2] [see also 7]. Since then, almost all pub-
lications dealing with progressive type I censoring interpret
Tm as the termination time of the experiment.

9.3.1 Distributional Results for Cohen’s
Progressive Censoring with Fixed
Censoring Times

We start with a short review of progressive censoring with
fixed censoring times as presented in [6]. In principle, the

procedure is quite similar to progressive type II censoring, but
the censoring times are fixed in advance. Due to this property,
we have to distinguish the initially planned censoring plan
R0 = (R0

1, . . . , R
0
m) and the effectively applied censoring

plan R = (R1, . . . , Rm) (see [1, 2]) where

R0 = (
R0
1, . . . , R

0
m

) ∈ C m
l,n

=
{(
r1, . . . , rm

) ∈ N
m
0

∣
∣ r•m ≤ n− l

}
, l ∈ {0, . . . , n},

with m, n ∈ N and 0 ≤ Rj ≤ R0
j , 1 ≤ j ≤ m, and C m

l,n denotes
the set of admissible censoring plans. As mentioned in the
introduction, the censoring times of a progressively type I
censored life test are prefixed, and the number of observa-
tions is random. Thus, we get a sample XI1:K:n ≤ · · · ≤ XIK:K:n
with random censoring plan R and random sample size K.
Notice that the important difference between progressive
censoring with fixed censoring times and progressive type I
censoring is the fact that we can ensure aminimum number of
observations, that is,K ≥ n−R0•m ≥ n−(n−l) = l.Moreover,
it is possible to observe values exceeding the threshold Tm.
Progressive type I censoring can be interpreted as a type I
hybrid version of progressive censoring with fixed censoring
times (see Sect. 9.4.2). Denoting the number of observations
in the intervals

(−∞, T1], (T1, T2], . . . , (Tm−1, Tm], (Tm,∞)

by the random variables D1, D2, . . . , Dm, Dm+1 and by
d1, . . . , dm+1 their realizations, the effectively applied
censoring numbers are given by

Rj = Rj(dj) = min
{
R0
j , [n− d•j − R•j−1]+

}
, 1 ≤ j ≤ m,

where n − d•i − R•i−1 equals the number of units still
remaining in the experiment before the ith withdrawal at
time Ti. Notice that Dm+1 is a (deterministic) function of
D1, . . . , Dm, i.e., Dm+1 = n− D•m − R•m. Then, the set

D(m+1) = {
am+1 ∈ N

m+1
0

∣
∣ ai ≤ [n− a•i−1 − R•i−1(ai−1)]+,

i = 1, . . . , m,

am+1 = [n− a•m − R•m(am)]+
}

denotes the support of (D1, . . . , Dm+1) for a progressively
censored life test with fixed censoring times.

Similarly to Theorem 9.2.1, we get the following quantile
representation.

Theorem 9.3.1 Suppose XI1:K:n ≤ · · · ≤ XIK:K:n and U
I
1:K:n ≤

· · · ≤ UI
K:K:n are progressively censored order statistics with

fixed censoring times based on a continuous cdf F and a stan-
dard uniform distribution, respectively. The censoring times
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are given by T1, . . . , Tm and F(T1), . . . , F(Tm), respectively.
Then,

(
XI1:K:n, . . . , X

I
K:K:n

)
d=
(
F←(

UI
1:K:n

)
, . . . , F←(

UI
K:K:n

))
.

Assuming X1, . . . , Xn
iid∼ F with an absolutely continuous

cdf F and a pdf f , Tm+1 = ∞, and Rm+1 = 0, the joint
pdf f X

I ,Dm+1 of XI,R = (XI1:K:n, . . . , X
I
K:K:n) and Dm+1 =

(D1, . . . , Dm+1) is given by

f X
I,R,Dm+1(xk, dm+1)

=
{m+1∏

j=1

(
n− d•j−1 − R•j−1

dj

)

dj! [1−F(Tj)]
Rj

}{ k∏

i=1

f (xi)

}

(9.10)

for dm+1 ∈ D(m+1) with k = d•m+1 and x1 ≤ · · · ≤ xk.
Clearly, (9.10) can be rewritten as

f X
I,R,Dm+1(xk, dm+1) = C(dm+1)

m+1∏

j=1

[1 − F(Tj)]
Rj

k∏

i=1

f (xi)

which illustrates the structural similarities to the pdf
under progressive type II censoring given in (9.2). Notice
that the value of D(m+1) is defined uniquely by XI,R =
(XI1:K:n, . . . , X

I
K:K:n).

The joint probability mass function pDm+1 ofDm+1 is given
by

pDm+1(dm+1) =
m+1∏

j=1

(
n− d•j−1 − R•j−1

dj

)

[F(Tj) − F(Tj−1)]
dj

× [1 − F(Tj)]
Rj , dm+1 ∈ D(m+1).

Further, the conditional density function ofXI,R, givenDm+1,
is given by

f X
I,R|Dm+1(xk | dm+1) =

m+1∏

j=1,dj>0

f (j)1...dj:dj(xdj) I(Tj−1,Tj](xdj)

(9.11)

for dm+1 ∈ D(m+1) withm = d•m+1 and x1 ≤ · · · ≤ xk. f
(j)
1...dj:dj

denotes the density function of order statistics X(j)
1:dj , . . . , X

(j)
dj:dj

from the (doubly) truncated cdf F in the interval (Tj−1, Tj].
As for progressive type II censoring, the conditional block

independence of progressively censored order statistics with
fixed censoring times holds which for progressive type I
censoring and progressive type II censoring has first been es-
tablished by Iliopoulos and Balakrishnan [39]. It follows di-
rectly from the joint pdf. Conditionally on (D1, . . . , Dm+1) =
(d1, . . . , dm+1), the progressively censored order statistics
with fixed censoring times are block independent, that is, the
random vectors

(
XId•j−1+1:d•m∗+1:n, . . . , X

I
d•j:d•m∗+1:n

)
, j ∈ {1 ≤ i ≤ m+ 1 | di > 0},

are independent with

(
XId•j−1+1:d•m∗+1:n, . . . , X

I
d•j:d•m∗+1:n

)

d=
(
X(j)
1:dj , . . . , X

(j)
dj:dj

)
, j ∈ {1 ≤ i ≤ m+ 1 | di > 0},

where X(j)
1:dj , . . . , X

(j)
dj:dj are order statistics from the (doubly)

truncated cdf F in the interval (Tj−1, Tj], j ∈ {1 ≤ i ≤ k |
di > 0}.

9.3.2 Distributional Results for Progressive
Type I Censoring

Since progressive type I censoring results from Cohen’s
progressive censoring model with fixed censoring times by
interpreting the final censoring time Tm as a threshold or
termination point, the respective sample results fromXI1:K:n ≤
· · · ≤ XIK:K:n is given by XI,R,Tm = (XI1:K:n, . . . , X

I
D•m:K:n).

Notice that this sample may result in an empty sample when
all items are either progressively censored at T1, . . . , Tm−1 or
right censored at Tm. Thus, no failures have been observed
due to the time censoring at Tm. As a consequence, inferen-
tial results are often obtained and discussed subject to the
assumption that at least one failure has been observed, that
is, D•m ≥ 1 which happens with probability

P(D•m ≥ 1) = 1 −
m∏

i=1

(
1 − F(Ti)

)R0
i .

Then, the distributional results presented before can be ap-
plied to progressive type I censoring. For instance, the quan-
tile representation in Theorem 9.3.1 holds, too. The pdf of
XI,R,Tm and Dm can be seen as a marginal pdf of (9.10) with
an appropriate restriction on the domain. This leads to the pdf



9 Progressive Censoring Methodology 167

9

f X
I,R,Tm ,Dm(xk, dm)

=
{

m∏

i=1

(
n− d•i−1 − R•i−1

di

)

di![1 − F(Ti)]Ri
}

{ k∏

j=1

f (xj)
}

(9.12)

for dm ∈ D(m) with k = d•m ≥ 1 and x1 ≤ · · · ≤ xk ≤
Tm (see [1, p. 121]). Notice that Rm is defined differently in
comparison with (9.10).

Apart from the above presented results, almost no prob-
abilistic results seem to be available for (Cohen’s) progres-
sively type I censored order statistics. Obviously, this is
caused by the problems due to the random sample size K
and the random censoring plan R. Nevertheless, numerous
inferential results have been obtained.

9.3.3 Inference

Most of the results established in progressive type I censoring
are connected to likelihood inference. Since the likelihood
functions are given by the joint pdfs (9.10) and (9.12), re-
spectively, the MLEs can be obtained by direct optimization.
In the following, we present only the progressive type I
censoring model (with time censoring). Similar results can
be obtained for Cohen’s progressive censoring with fixed
censoring times model (see, e.g., [6]). A summary with more
details is provided in [1, Chapter 12]. Notice that, due to
the similarity of the likelihood function to the progressive
type II censoring case, the computation of MLEs proceeds
quite similarly to this case. In particular, explicit expressions
result in the same cases, and the likelihood equations are
similar (replace the censoring time Ti in progressive type I
censoring by the observed failure time Xi:m:n in progressive
type II censoring; cf. (9.8) and (9.13)). For exponentially
distributed lifetimes with mean ϑ , one gets the MLE as

ϑ̂ I
MLE = 1

K

⎡

⎣
K∑

i=1

XIi:K:n +
m∑

j=1

RjTj

⎤

⎦ . (9.13)

Although the structure is similar to the MLE under pro-
gressive type II censoring, the distribution of the estimator
is quite complicated. Using a moment generating function
approach, [212] established the conditional pdf of ϑ̂ I

MLE, given
D•m ≥ 1, as a generalized mixture of (shifted) gamma
distributions (for a direct approach under progressive cen-
soring with fixed censoring times, see [6]). Establishing the
stochastic monotonicity of the (conditional) survival function
by the three monotonicity lemmas (see also [212–214]), con-
structed exact (conditional) confidence intervals for ϑ using
the method of pivoting the cdf (see [215–217]). A multi-

sample model has been studied in [218] who presented
an alternate representation of the pdf in terms of B-spline
functions. Two-parameter exponential distribution Exp(μ,ϑ)

has been considered, e.g., in [211, 219], and [220]. Cohen
[219] proposed also modified MLEs. Weibull distribution
has been discussed in [205, 219, 221, 222], and [2]. Explicit
expressions for the MLEs are not available, and the estimates
have to be computed by numerical procedures. Balakrishnan
and Kateri [138] have established the existence and unique-
ness of the MLEs. Three-parameter Weibull distributions are
considered in [206, 208], and [223]. Further distributions
considered are, e.g., extreme value distribution [219], nor-
mal distribution [5], Burr-XII distribution [209], and logistic
distribution [224].

9.4 SamplingModels Based on
Progressively Censored Data

Progressively type I and type II censored data have been con-
sidered as a basis for inferential purposes in various models.
In the following, we sketch some of these applications and
provide some recent references.

9.4.1 Progressive (Type I) Interval Censoring

In progressive type I censoring, the number of observations
observed between censoring times is random. It is assumed
that only these numbers are observed (see Fig. 9.5), whereas
the exact values of the failure times are not observed. This
kind of data has been introduced in [7] (see also [1, Chap-
ter 12]) assuming an absolutely continuous cdf Fθ . This
yields the likelihood function (cf. (9.11))

L(θ) ∝
m∏

j=1

(
Fθ (Tj) − Fθ (Tj−1)

)djF
Rj
θ (Tj),

where θ = (θ1, . . . , θp)′ ∈ � ⊆ R
p denotes the parameter

vector and d1, . . . , dm are realizations of the number of ob-
served failures D1, . . . , Dm. T0 = −∞ < T1 < · · · < Tm are
the censoring times, and R = (R1, . . . , Rm) is the effectively
applied censoring plan.

Inferential results have been established for various distri-
butions. Asymptotic results for MLEs with general distribu-
tion have been established in [225]. Exponential distribution
has been discussed in [7] and [226]. For (inverse) Weibull
distribution, we refer to [226,227], and [228]. Further distri-
butions considered are generalized exponential distributions
[228–230], generalized Rayleigh distribution [231], gamma
distribution [232], and Burr-XII [233]. Further examples are
given in [1, Chapter 18].
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Under progressive type I censoring, the optimal choice
of both inspection times and censoring proportions has been
addressed by many authors [1, Chapter 18.2 & 18.3]. Other
relevant references in this direction are [225,233–241].

9.4.2 Progressive Hybrid Censoring

In progressive hybrid censoring, progressive type II censored
data is subject to, e.g., additional time censoring at some
threshold T . There are many variations available in the
literature so far. For reviews, see [242], [1, Chapter 5 & 14],
[12, 243, 244] and the recent monograph [380]. For
illustration, we sketch the idea of the two basic hybrid
censoring models under progressive censoring. Let D =∑m

i=1 I(−∞,T](Xi:m:n) denote the total number of observed
failures. As in [10], we perceive the data with possibly less
than m observed failure times as a sample of size m by
adding the censoring time in the required number. For a
progressively type II censored sample X1:m:n, . . . , Xm:m:n with
censoring planR, type I progressively hybrid censored order
statistics Xh,I1:m:n, . . . , X

h,I
m:m:n are defined via

Xh,Ij:m:n = min(Xj:m:n, T), 1 ≤ j ≤ m. (9.14)

Notice that the names type I/type II progressive hybrid cen-
soring are differently used in the literature which may result
in some confusion. From (9.14), it is evident that the sample
may include both observed failure times and censoring times.
Conditionally on D = d, d ∈ {0, . . . , m}, we have

Xh,I1:m:n, . . . , X
h,I
m:m:n|(D = d)

d= X1:m:n, . . . , Xd:m:n, T, . . . , T︸ ︷︷ ︸
m−d times

.

For d = 0, the experiment has been terminated before
observing the first failure, and, thus, the sample is given
by the constant data (T, . . . , T) ∈ R

m. Some probabilistic
results have been obtained (see [1, Chapter 5], [10]). For
instance, as under progressive type II censoring, a quantile
representation similar to that given in Theorem 9.2.1 holds.
The (conditional) joint pdf is given by Childs et al. [see also
8, 9]:

f
Xh,Ij:m:n,1≤j≤m|D=d

(td, T
∗(m−d)

= Cd
P(D = d)

(1 − F(T))γd+1 f
Rd
1,...,d:d:n−γd+1

(td), t1 ≤ · · · ≤ td ≤ T,

where fRd
1,...,d:d:n−γd+1

denotes the pdf of the progressively type
II censored sample with a censoring plan Rd. In case of the
exponential distribution, [10] established the (conditional)
joint density function of the spacings Wh,I

j:m:n = γj(X
h,I
j:m:n −

Xh,Ij−1:m:n), 1 ≤ j ≤ d, as

f W
h,I
j:m:n,1≤j≤d|D=d

(wd) = γd+1e−γd+1(T−μ)/ϑ

ϑ fd+1:m:n(T)

×
⎡

⎣
d∏

j=1

1

ϑ
exp

{

−
(
1 − γd+1

γj

)wj
ϑ

}
⎤

⎦ ,

wd ∈Wd(T),

with support

Wd(T) =
{
wd | wj ≥ 0, 1 ≤ j ≤ d,

d∑

j=1

wj
γj

≤ T − μ
}
.

As a difference to the case of progressive type II censoring,
the spacings are no longer independent although the pdf
exhibits a product structure. These results can be utilized to
obtain the exact distribution of the MLE for exponential life-
times. A moment generating function approach is advocated
in, e.g., [8]. The MLE of ϑ exists provided D > 0 and is
given by

ϑ̂ = 1

D

⎡

⎣
D∑

j=1

γj(X
h,I
j:m:n − Xh,Ij−1:m:n) + γDd+1T

⎤

⎦ .

Its distribution can be written in terms of B-spline functions
(see [10]) or in terms of shifted gamma functions (see [8]).
The connection of the particular representations has been
studied in [243]. The result can be applied to construct exact
(conditional) confidence intervals by pivoting the cdf since
the corresponding survival function is stochastically mono-
tone (see [213,214,245]). For the multi-sample case, we refer
to [246]. Results for two-parameter exponential distribution
are given in [10] and [247]. Inference forWeibull distribution
has been discussed in [248]. Results for other distributions
can be found in, e.g., [249–255]. Optimal censoring plans are
discussed in [256,257].

Childs et al. [8] and Kundu and Joarder [9] proposed an
alternative hybrid censoring procedure called type II progres-
sive hybrid censoring. Given a (fixed) threshold time T , the
life test terminates at T∗

2 = max{Xm:m:n, T}. This approach
guarantees that the life test yields at least the observation
of m failure times. Given the progressively type II censored
sample X1:m:n, . . . , Xm:m:n with an initially planned censoring
plan R = (R1, . . . , Rm), the right censoring at time Xm:m:n
is not carried out. The monitoring of the failure times after
Xm:m:n is continued until time T is reached or the maximum
in the extended progressively type II censored sample

X1:m+Rm:n, . . . , Xm:m+Rm:n, Xm+1:m+Rm:n, . . . , Xm+Rm:m+Rm:n
(9.15)
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is observed. Notice that this sample can be viewed as pro-
gressively type II censored data with extended censoring
plan R∗ = (R1, . . . , Rm−1, 0, . . . , 0) of length m + Rm.
Furthermore, γj = ∑m

i=j(Ri + 1), j = 1, . . . , m − 1, γj =
m + Rm − j + 1, j = m, . . . , m + Rm. As in the case of
type I progressive hybrid censoring, the random counterD =
∑m+Rm

i=1 I(−∞,T](Xi:m+Rm:n) represents the sample size having
support {0, . . . , m+ Rm}. Again, the exact distribution of the
MLE given by

ϑ̂ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

m

m∑

j=1

(Rj + 1)Xj:m:n, D < m

1

D

( m∑

j=1

(Rj + 1)Xj:m:n +
D∑

j=m+1

Xj:m+Rm:n + γD+1T

)

, D ≥ m

can be obtained. Furthermore, exact confidence intervals can
be established (see [8, 258]) since the cdf is stochastically
monotone (see [214]). For the multi-sample case, we refer
to [259]. Inferential results for this kind of data have been
obtained in, e.g., [8,9,258,260]. Mokhtari et al. [261], Alma
and Arabi Belaghi [262], and Noori Asl et al. [263].

There are many extensions on this basic progressive hy-
brid censoring. Generalized progressive hybrid censoring is
discussed in, e.g., [243, 264–270]. Further extensions can be
found in [12] and [271]. The Fisher information in hybrid
censoring schemes is discussed in [272] and [273]. Further-
more, interval censored data have been studied in [274].

9.4.3 Adaptive Progressive Censoring

A common feature of the abovementioned progressive cen-
soring schemes is that the design of the experiment (i.e.,
initially planned censoring plan, censoring times) is prefixed,
that is, these quantities are known in advance. Since such a
designmay not be possible or be useful in practical situations,
[13] came up with the idea that the censoring plan may be
adapted during the experiment. Given some prefixed censor-
ing plan S = (S1, . . . , Sm) and a threshold T , the plan is
adapted after step j∗ = max{j : Xj:m:n < T} such that no
further censoring is carried out until the mth failure time has
been observed. Hence, the censoring plan is changed at the
progressive censoring step j∗ + 1, i.e., at the first observed
failure time exceeding the threshold T . The effectively ap-
plied censoring plan in the Ng-Kundu-Chan model is given
byS ∗ = (S1, . . . , Sj∗ , 0, . . . , 0, n−m−∑j∗

i=1 Si). This model
has been extensively investigated, andmany results have been
obtained (see [248,260,275,276]).

A general approach to adaptive progressive censoring has
been proposed by Cramer and Iliopoulos [15] allowing for a
flexible choice of the censoring plan and the censoring times.
This approach covers both adaptive progressive type I and
adaptive progressive type II censoring. Adaptive progressive

type II censoring has been discussed in detail in [14] who
particularly showed that the model covers the Ng-Kundu-
Chan model as well as the model of progressive type II
censoring with random removals (see also [1, Chapter 6]).
The latter model has been proposed by Yuen and Tse [277]
assuming that the censoring numbers are chosen according to
some probability distribution on the set of possible censoring
numbers. Further references discussing this model are, e.g.,
[278–280]. For interval censored data, we refer to [281] and
[282]. Flexible progressive censoring introduced in [283]
can also be seen as a special adaptive progressive censoring
model (see also [284,285]).

9.4.4 Reliability and Stress-Strength
Reliability

Applications in reliability based on progressively type II
censored data have been addressed by many authors. The
analysis is mostly based on a single progressively type II cen-
sored sample X1:m:n, . . . , Xm:m:n, but the situation of multiple
samples has also been taken into account. In the following,
we summarize some scenarios where this kind of data has
been considered.

Given a lifetime X with cdf F, the reliability function R =
F = 1−F can be estimated parametrically and nonparametri-
cally. Nonparametric estimators under progressive censoring
are mentioned in Sect. 9.2.2. Parametric estimators of Rθ can
be constructed as plug-in estimators by replacing θ by an
appropriate estimator θ̂ , e.g., the MLE (see, e.g.,[142, 286–
291]). Furthermore, Bayesian approaches have also been
extensively discussed. However, for exponential distributions
and t ∈ R, the UMVUE of Rϑ(t) = Pϑ(X > t) is given by
(see (9.8))

R̂(t) =
(

1 − t

mϑ̂MLE

)m−1

I[t,∞)(mϑ̂MLE)

(see [292]). The result can be slightly extended to an ex-
ponential family with cdf Fϑ defined by Fϑ(t) = 1 −
exp(−g(t)/ϑ) and a suitable function g (see, e.g., [23,293]).

Inference for the stress-strength reliability R = P(X <

Y) has also been addressed under progressive censoring for
various distributions (for a general account, see [294]). For
exponential distribution, the problem has been considered
in terms of Weinman exponential distributions in [295] and
[296]. For two independent progressively type II censored
samples XR

1:m:n, . . . , X
R
m:m:n and YS

1:r:s, . . . , Y
S
r:r:s, based on ex-

ponential distributions Exp(ϑ1) and Exp(ϑ2), theMLEs of the
parameters are given by ϑ̂j,MLE, j = 1, 2, as in (9.8). Then, the

MLE of R = ϑ2
ϑ1+ϑ2

is given by RMLE = ϑ̂2

ϑ̂1+ϑ̂2
. Furthermore,

the UMVUE is given by
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R̂UMVUE =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r−1∑

j=0
(−1)j

(r−1
j )

(m+j−1
j )

(
mϑ̂1,MLE
rϑ̂2,MLE

)j
, mϑ̂1,MLE ≤ rϑ̂2,MLE

1 −
m−1∑

j=0
(−1)j

(m−1
j )

(r+j−1
j )

(
rϑ̂2,MLE
mϑ̂1,MLE

)j
, mϑ̂1,MLE > rϑ̂2,MLE

Saraçoğlu et al. [see also 297, who addressed Bayesian
inference, too]. Confidence intervals are discussed in [295,
296], and [297]. Two-parameter exponential distributions
with common location parameter are investigated in [295,
296] [see also 1, Chapter 24]. Other distributions considered
in the literature are generalized (inverted) exponential distri-
bution [289, 298], Weibull distribution [299, 300], general-
ized Pareto distributions [301], the PHR model [302, 303],
Birnbaum-Saunders distribution [304], generalized logistic
distribution [305], and finite mixtures [306].

Stress-strength models under joint progressive censoring
have been considered in [307]. Progressively type I interval
censored data has been discussed by Bai et al. [306].

9.4.5 Competing Risks

In competing risk modeling, it is assumed that a unit may fail
due to several causes of failure. For two competing risks, the
lifetime of the ith unit is given by

Xi = min {X1i, X2i} , i = 1, . . . , n,

where Xji denotes the latent failure time of the ith unit under
the jth cause of failure, j = 1, 2. In most models considering
competing risks under a progressive censoring scheme, the
latent failure times are assumed to be independent with
Xji ∼ Fj, j = 1, 2, i = 1, . . . , m. Additionally, the
sample X1, . . . , Xn is progressively type II censored, and it is
assumed that the cause of each failure is known. Therefore,
the available data are given by

(X1:m:n, C1) , (X2:m:n, C2) , . . . , (Xm:m:n, Cm) ,

where Ci = 1 if the ith failure is due to first cause
and Ci = 2 otherwise. The observed data is denoted
by (x1, c1), (x2, c2), . . . , (xm, cm). Further, we define the
indicators

I{j}(Ci) =
{
1, Ci = j

0, otherwise
.

Thus, the random variables m1 = ∑m
i=1 I{1}(Ci) and m2 =

∑m
i=1 I{2}(Ci) describe the number of failures due to the

first and the second cause of failure, respectively. Given the
assumptions, m1 and m2 are binomials with sample size m
and probability of success R = P(X11 ≤ X21) and 1 − R,
respectively. For a given censoring plan R = (R1, . . . , Rm),
the joint pdf is given by Kundu et al. [see 308]

fX
R ,C(xm, cm)

=
( m∏

j=1

γj

) m∏

i=1

[ [
f1(xi)F2(xi)

]I{1}(ci) [
f2(xi)F1(xi)

]I{2}(ci) [F1(xi)F2(xi)
]Ri

]
.

[308] discussed competing risks for Exp(ϑj)-distributions,
j = 1, 2, under progressive type II censoring. The MLEs of
the parameters are given by

ϑ̂j = 1

mj

m∑

i=1

(Ri + 1)Xi:m:n, j = 1, 2,

provided that mj > 0. In this framework, inferential top-
ics like point and interval estimation as well as prediction
problems have been discussed. To keep things short, we
provide references for further reading. Competing risks under
progressive type II censoring have been considered for, e.g.,
Weibull distribution [309–311], Lomax distribution [312],
half-logistic distribution [313], and Kumaraswamy distribu-
tion [314].

Progressive type I interval censoring in the presence of
competing risks has been investigated by Wu et al. [234],
Azizi et al. [315], and Ahmadi et al. [316]. Competing risks
under hybrid censoring are investigated in, e.g., [317–325].

9.4.6 Applications to SystemData

In the standardmodels of progressive censoring, it is assumed
that the underlying random variables are iid random variables
distributed according to a cdf F. Progressive censoring has

also been studied in terms of iid system data Y, . . . , Yn
iid∼ G,

where G = h ◦ F with some known function h and a cdf
F. F is supposed to model the component lifetime, whereas
h describes the technical structure of the system. In a series
system with s components, we have G = Fs with h(t) = ts.
For a parallel system with s components, the function h is
given by h(t) = 1 − (1 − t)s.

As pointed out in [1, Chapter 25], the case of progressively
type II censored series system data is included in the standard
model by adapting the censoring plan appropriately. Given
a censoring plan R = (R1, . . . , Rm) and series systems
with s components, the corresponding progressively type II
censored system data can be interpreted as standard progres-
sively type II censored data with censoring plan

S = sR + (s−1)(1∗m), i.e., Sj = sRj + s−1, j = 1, . . . , m.

This kind of data has also been entitled first-failure censored
data (see, e.g., [326, 327]), and many results have been
published for this model. However, as mentioned before,
the respective results are covered in the standard model by
adapting the censoring plan.



9 Progressive Censoring Methodology 171

9

The situation is more involved for parallel or, more gen-
eral, for coherent systems. Parallel systems are studied in
[166,328,329], and [330]. k out-of-n system data is addressed
in [331], and coherent systems are addressed in [332].

9.4.7 Applications in Quality Control

Applications of progressively censored data in quality control
have been discussed in terms of reliability sampling plans
(acceptance sampling plans) and the lifetime performance
index, respectively.

Reliability sampling plans based on progressively type
II censored exponential lifetimes have been considered by
Balasooriya and Saw [333], Balakrishnan andAggarwala [2],
and [334] [see also 1, Chapter 22]. For a progressively cen-
sored sample XR from an Exp(μ,ϑ)-distribution, the MLEs
of the parameters are used to estimate the parameters and,
thus, to construct the decision rule. Since the distributions
of the MLEs do not depend on the censoring plan R, the
resulting sampling plans coincide with those for type II right
censoring. Pérez-González and Fernández [335] established
approximate acceptance sampling plans in the two-parameter
exponential case. Balasooriya et al. [147] addressed reliabil-
ity sampling plans for a Weibull distribution employing the
Lieberman-Resnikoff procedure for a lower limit using the
approximate MLEs of the parameters. Ng et al. [139] tackled
the same problem using the MLEs. Fernández et al. [336]
considered progressively censored group sampling plans for
Weibull distributions. For a log-normal distribution, [337]
applied the Lieberman-Resnikoff approach using approxi-
mate BLUEs for the location and scale parameters. Further
reference in this direction is [338].

Inference for the lifetime performance index (or capa-
bility index) has been discussed for various distributions in
[339] including exponential and gamma distributions (see
also [340–343]). Weibull distribution has been considered in
[344, 345], and Rayleigh distribution in [341]. Lomax and
Pareto distributions are discussed by Mahmoud et al. [346]
and Ahmadi and Doostparast [347], respectively. Progres-
sively type I interval censored data has been considered in
[348–350].

9.4.8 Accelerated Life Testing

In accelerated life testing, progressive censoring has been
mostly discussed in terms of step-stress testing. Recent re-
views on the topic are provided by Kundu and Ganguly
[351] and Balakrishnan and Cramer [1, Chapter 23] (see also
[352]). Assuming a cumulative exposure model for the life-
time distribution, the basic model in simple step-stress model
with a single stress change point is applied to progressively

type II censored data, that is, at a prefixed time τ , the stress
level is to be increased to a level s1 > s0 (see Fig. 9.6). Then,
the data

X1:r:n < · · · < XD:r:n ≤ τ < XD+1:r:n < · · · < Xr:r:n

results where D denotes the number of failures observed
before τ . Obviously, the sample X1:r:n, . . . , XD:r:n is a type
I progressive hybrid censored sample so that the inferential
results can be taken from this area. Assuming exponential
lifetimes with means ϑ1 and ϑ2 (before and after τ ) as well
as a cumulative exposure model, the MLEs of the parameters
are given by

ϑ̂1 = 1

D

(
D∑

k=1

(Rk + 1)Xk:r:n + τγD+1

)

,

ϑ̂2 = 1

r − D

r∑

k=D+1

(Rk + 1)(Xk:r:n − τ),

provided that 1 ≤ D ≤ r − 1. As mentioned above,
distributional results for ϑ̂1 are directly obtained from type
I progressive hybrid censoring leading to, e.g., exact (condi-
tional) confidence intervals (see [353,354]). Using the result
in (9.6), we get 2(r − D)ϑ̂2/ϑ2|D = d ∼ χ2(2r − 2d),
d < r. In particular, E(ϑ̂2|D = d) = ϑ2 and Var(ϑ̂2|D =
d) = ϑ2

2/(r− d). Weibull lifetimes are investigated in [355].
Extensions to multiple stress changing times are discussed in
[356,357]. Themodel has also been discussed for progressive
type I interval censored data (see [358–360]).

Wang and Yu [361] discussed a simple step-stress model
where the stress changing time τ is replaced by a failure time
Xr1:r:n. It is shown in [1, p. 492] that this model is connected
to sequential order statistics which can be utilized to estab-
lish easily properties of the resulting MLEs. Following the
ideas of [362], a multiple step-stress model with additional
progressive censoring has been proposed in [1, p. 503]. The
resulting model corresponds to that proposed in [361] and is
further discussed in [363].

Another kind of accelerated life testing model in the
presence of progressive censoring, called progressive stress
model, has been proposed by Abdel-Hamid and AL-Hussaini
[364].

9.4.9 Stage Life Testing

A common argument used to justify progressive censoring
is that the intentionally removed objects are utilized for other
tests (cf., e.g., [2, p. 3], [365, p. 336]). In order to include such
an information in the statistical analysis, [366] connected the
notion of progressive censoring with ideas from accelerated
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Fig. 9.6 Step-stress testing with single stress change time τ

life testing and proposed a stage life testing model with a
single stage change time. In fact, they adapted the idea of
step-stress testing and assumed that the removed objects are
tested on a different level, whereas the remaining items are
still tested under standard conditions. The basic situationwith
a single censoring time τ and two stages s0, s1 is depicted in
Fig. 9.7.

Inspired by simple step-stress testing (see Fig. 9.6), the
stage life testing model is introduced as follows. Assume
that n identical objects are placed on a life test. The initial
conditions are called stage s0. At the prefixed stage-change
time τ , 0 ≤ R�

1 ≤ n of the surviving items are randomly
withdrawn (if possible) and further tested on stage s1. Notice
that this may be regarded as a different life test with used
components. The testing of the remaining items is continued
on stage s0. The life test terminates when all n objects have
failed.

Let D1 and D2 denote the random number of failures
occurring on stage s0 before and after τ1, respectively. Fur-
thermore, M = D1 + D2 and

• Y1,D1 = (
Y1:M:n, . . . , YD1:M:n

)
denote the (ordered) obser-

vations on stage s0 before τ .
• Y2,D2 = (

YD1+1:M:n, . . . , YD1+D2:M:n
)
denote the (ordered)

observations on stage s0 after τ .
• ZR�

1
= (

Z1:R�
1
, . . . , ZR�

1:R�
1

)
denote the (ordered) observa-

tions on stage s1 after τ with YD1:M:n ≤ τ < Z1:R�
1
.

The order statistics on stage s0 and the order statistics on stage
s1 are represented by the random vectors Y = (

Y1,D1 ,Y2,D2

)

and Z, respectively. Figure 9.7 illustrates this representation
of the stage life testing order statistics.

Assuming a cumulative exposure model with cdfs F0 and
F1 and utilizing progressive censoring with fixed censoring
times (see [6]), inferential results have been obtained for

exponential, Weibull, and other lifetime distributions. The
results are based on the joint pdf f Y,Z,D1

1...n of (Y,Z) andD1 given
by

f Y,Z,D1
1...n (y1,d1 , y2,d2 , z, d1)

=
(
n

d1

)

d1! d2! r�1!
d1+d2∏

h=1

f0(yh:m:n)
r�1∏

j=1

f1(zj:r�1 + v1 − τ),

for y1,d1=(y1:m:n, . . . , yd1:m:n), y2,d2=(yd1+1:m:n, . . . , yd1+d2:m:n),
and z = (z1:r�1 , . . . , zr�1:r�1), where d2 = n − d1 − r�1, and r

�
1 =

�(d1) denotes the number of objects selected for testing on
stage s1. fi denotes the pdf of Fi, i ∈ {0, 1}.

In fact, the function � may be chosen according to the
needs of the experimenter. Inspired by procedures to generate
the censoring number in progressive censoring (see [7]),
[366] proposed two options to define R�

1, that is,

R�
1 = �(D1) with

�(x) =
⎧
⎨

⎩

�π1 · (n− x)�, Type-P

min
{
n− x, R0

1

}
, Type-M

, x ∈ {0, . . . , n},

where the proportion π1 ∈ [0, 1] and the number R0
1 ∈ N

are prespecified, respectively. Under the type P scheme, at
τ , a (fixed) proportion π1 of the surviving objects is selected
for testing on stage s1. In case of the type M scheme, given
a prefixed number R0

1, it is intended to select at τ as many
items as possible (at most R0

1) for testing on stage s1.
Assuming exponential lifetimes with means ϑ0 and ϑ1, the

corresponding MLEs are obtained as

ϑ̂0 = 1

D1 + D2

(
D1+D2∑

i=1

Yi:M:n + R�
1τ

)

,
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Fig. 9.7 Stage life testing with single stage change time τ

ϑ̂1 = 1

R�
1

⎛

⎝
R�
1∑

j=1

Zj:R�
1
− R�

1τ

⎞

⎠ (provided that R�
1 > 0).

As for other progressive censoring models, exact inferential
results, e.g., exact confidence intervals, can be established.
An extension to multiple stage change times τ1 < · · · < τm
has been introduced in [367]. Stage changes at failure times
are discussed in [368]. For a survey on these models as well
as more details, we refer to [369].

9.4.10 Joint Progressive Censoring Schemes

In joint progressive type II censoring, the sample is based on

two baseline samples X1, . . . , Xn1
iid∼ F1 (product/type A) and

Y1, . . . , Yn2
iid∼ F2 (product/type B) of independent random

variables. The progressive censoring is applied to the pooled
sample X1, . . . , Xn1 , Y1, . . . , Yn2 given a prefixed censoring
R ∈ C m

m,n1+n2 . Moreover, it is assumed that the type of the
failed unit as well as the types of withdrawn units are known.
Therefore, the sample is given by (C,WR,S ), where

C = (C1, . . . , Cm) ∈ {0, 1}m,
WR = (W1:m:n1+n2 , . . . , Wm:m:n1+n2),S = (S1, . . . , Sm).

The indicators Cj have the value 1 if the failed unit is of
type A, and otherwise Cj = 0. Wj:m:n denotes the jth failure
time in the progressively censored experiment. Finally, S
denotes a random censoring plan. Sj is the number of removed
units of type A in the jth withdrawal. Thus, Rj − Sj denotes
the numbers of withdrawn units of type B at the jth censoring
step. This model has been discussed in [370–376]. Joint

progressive type I censoring has been proposed in [377]. A
hybrid version is discussed in [378]. Another version of joint
progressive censoring leading to more tractable results has
been investigated in [376] and [379].
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