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Abstract

Ordinary logistic regression (OLR)models the probability
of a binary outcome. A logistic regression tree (LRT) is a
machine learning method that partitions the data and fits
an OLR model in each partition. This chapter motivates
LRT by highlighting the challenges of OLR with respect
to model selection, interpretation, and visualization on a
completely observed dataset. Being nonparametric, a LRT
model typically has higher prediction accuracy than OLR
for large datasets. Further, by sharing model complexity
between the tree structure and the OLR node models, the
latter can be made simple for easier interpretation and
visualization.

OLR is more challenging if there are missing values
in the predictor variables, because imputation must be
carried out first. The second part of the chapter reviews the
GUIDE method of constructing LRT models. A strength
of GUIDE is its ability to deal with large numbers of
variables and without the need to impute missing values.
This is demonstrated on a vehicle crash-test dataset for
which imputation is difficult due to missing values and
other problems.
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30.1 Introduction

Ordinary logistic regression (OLR) is a technique for model-
ing the probability of a binary outcome in terms of one or
more predictor variables. Consider, for example, a dataset
on tree damage during a severe thunderstorm over 477,000
acres of the Boundary Waters Canoe Area Wilderness in
northeastern Minnesota in July 4, 1999 (R package alr4
[1]). Observations from 3666 trees were collected, including
for each tree, whether it was blown down (Y = 1) or not
(Y = 0), its trunk diameter D in centimeters, its species S,
and the local intensity L of the storm, as measured by the
fraction of damaged trees in its vicinity.

Let p = P(Y = 1) denote the probability that a tree is
blown down. OLR approximates the logit function logit(p) =
log(p/(1 − p)) as a function of the predictor variables linear
in any unknown parameters. A simple linear OLR model has
the form logit(p) = log(p/(1−p)) = β0+β1X, whereX is the
only predictor variable. Solving for p yields the p-function

p = exp(β0 + β1X)

1 + exp(β0 + β1X)
= 1

1 + exp(−β0 − β1X)
.

In general, if there are k predictor variables, X1, . . . , Xk, a
multiple linear OLR model has the form logit(p) = β0 +∑k

j=1 βjXj. The parameters β0,β1, . . . ,βk are typically esti-
mated by maximizing the likelihood function. Let n denote
the sample size, and let (xi1, . . . , xik, yi) denote the values
of (X1, . . . , Xk, Y) for the ith observation (i = 1, . . . , n).
Treating each yi as the outcome of an independent Bernoulli
random variable with success probability pi, the likelihood
function is
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n∏

i=1

pyii (1 − pi)
1−yi = exp{∑i yi(β0 + ∑

j βjxij)}
∏

i{1 + exp(β0 + ∑
j βjxij)}

.

The maximum likelihood estimates are the values of
(β0,β1, . . . ,βk) that maximize this function.

30.2 Fitting OLRModels

Fitting a simple linear OLR model to the tree damage data
using L yields

logit(p) = −1.999 + 4.407L (30.1)

with estimated p-function shown in Fig. 30.1. The equa-
tion implies that the stronger the local storm intensity, the
higher the chance that a tree is blown down. The boxplots
in Fig. 30.2 show that the distributions of D are skewed. To
reduce the skewness, Cook and Weisberg [2] transformed D
to log(D) and obtained the model

logit(p) = −4.792 + 1.749 log(D) (30.2)

which suggests that larger trees are less likely to survive the
thunderstorm than narrower ones. If both log(D) and L are
used, the model becomes

logit(p) = −6.677 + 1.763 log(D) + 4.42L. (30.3)

The relative stability of the coefficients of L and log(D) in
Eqs. (30.1)–(30.3) is due to the weak correlation of 0.168
between the two variables. If the interaction L log(D) is
included, the model changes to

logit(p) = −4.341+0.891 log(D)−1.482L+2.235L log(D)

(30.4)

and the coefficients of log(D) and L are changed more
dramatically.

So far, species S has been excluded from the models. As
in linear regression, a categorical variable having m distinct
values may be represented by (m − 1) indicator variables,
U1, . . . , Um−1, each taking value 0 or 1. The variables for
species are shown in Table 30.1, which uses the “set-to-zero
constraint” that sets all the indicator variables to 0 for the
first species (aspen). A model that assumes the same slope
coefficients for all species but that gives each a different
intercept term is

logit(p) = −5.997 + 1.581 log(D) + 4.629L

− 2.243U1 + 0.0002U2 + 0.167U3 − 2.077U4

+ 1.040U5 − 1.724U6 − 1.796U7

− 0.003U8. (30.5)
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Fig. 30.1 Estimated probability of blowdown computed from a simple
linear logistic regression model using L as predictor
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Fig. 30.2 Boxplots of trunk diameter D. The dotted line marks the
median value of D

Table 30.1 Indicator variable coding for species variable S

Species U1 U2 U3 U4 U5 U6 U7 U8

A (aspen) 0 0 0 0 0 0 0 0

BA (black ash) 1 0 0 0 0 0 0 0

BF (balsam fir) 0 1 0 0 0 0 0 0

BS (black spruce) 0 0 1 0 0 0 0 0

C (cedar) 0 0 0 1 0 0 0 0

JP (jack pine) 0 0 0 0 1 0 0 0

PB (paper birch) 0 0 0 0 0 1 0 0

RM (red maple) 0 0 0 0 0 0 1 0

RP (red pine) 0 0 0 0 0 0 0 1

How well do models (30.1)–(30.5) fit the data? One popu-
lar way to assess fit is by means of significance tests based on
the residual deviance and its degrees of freedom (df)—see,
e.g., [3, p. 96] for the definitions. The residual deviance is
analogous to the residual sum of squares in linear regression.
For model (30.5), the residual deviance is 3259 with 3655
df. We can evaluate the fit of this model by comparing its
residual deviance against that of a larger one, such as the 27-
parameter model



30 Logistic Regression Tree Analysis 595

30

logit(p) = β0 + β1 log(D) + β2L+
8∑

j=1

γjUj

+
8∑

j=1

β1jUj log(D) +
8∑

j=1

β2jUjL (30.6)

that allows the coefficients of log(D) and L to vary with
species. It has a residual deviance of 3163 with 3639 df. If
model (30.5) fits the data well, the difference between its
residual deviance and that of model (30.6) is approximately
distributed as a chi-squared random variable with df equal
to the difference in df of the two models. The difference in
deviance is 3259−3163 = 96, which is improbably large for
a chi-squared random variable with 3655 − 3639 = 16 df.

Rejection of model (30.5) does not necessarily imply that
model (30.6) is satisfactory. To find out, it may be compared
with a larger one, such as the 28-parameter model

logit(p) = β0 + β1 log(D) + β2L+ β3L log(D) +
8∑

j=1

γjUj

+
8∑

j=1

β1jUj log(D) +
8∑

j=1

β2jUjL (30.7)

that includes an interaction between L and log(D). This
has a residual deviance of 3121 with 3638 df. Therefore
model (30.6) is rejected because its residual deviance differs
from that of (30.7) by 42 but their dfs differ only by 1.
With this procedure, each of models (30.1) through (30.6)
is rejected when compared against the next larger model in
the sequence.

Another way to select a model employs a function such as
AIC, which is residual deviance plus two times the number of
estimated parameters. AIC tries to balance deviance against
model complexity (see, e.g., [4, p. 234]), but it tends to over-
fit the data. That is, AIC often chooses a large model. In
this dataset, if we apply AIC to the set of all models up to
third order, it chooses the largest, namely, the three-factor
interaction model

logit(p) = β0 + β1 log(D) + β2L+
8∑

j=1

γjUj

+ β3L log(D) +
8∑

j=1

β1jUj log(D)

+
8∑

j=1

β2jUjL+
8∑

j=1

δjUjL log(D) (30.8)

which has 36 parameters.
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Fig. 30.3 Estimated probability of blowdown for seven species,
excluding balsam fir (BF) and black spruce (BS), according to
model (30.9)

Models (30.7) and (30.8) are hard to graph. Plotting the
estimated p-function as in Fig. 30.1 is impossible if a model
has more than one predictor variable. This problem is exac-
erbated by the tendency of model complexity increasing with
increase in sample size and number of predictors. Interpreta-
tion of the estimated coefficients is futile then, as they often
change from one model to another, due to multicollinearity
among the terms. For example, the coefficient for L is 4.424,
−1.482, and 4.629 in models (30.3), (30.4), and (30.5),
respectively.

To deal with this problem, [2] used a “partial one-
dimensional model” (POD) that employs a linear function
of log(D) and L as predictor variable. They found that if
the observations for balsam fir (BF) and black spruce (BS)
are excluded, the model logit(p) = β0 + Z + ∑

j γjUj, with
Z = 0.78 log(D) + 4.1L, fits the remaining data quite well.
Now the estimated p-function can be plotted as shown in
Fig. 30.3, but the graph is not as simple to interpret as that in
Fig. 30.1 because Z is a linear combination of two variables.
To include species BF and BS, [2] settled on the larger
model

logit(p) = β0 + Z +
9∑

j=1

γjUj + (θ1IBF + θ2IBS) log(D)

+ (φ1IBF + φ2IBS)L (30.9)

which contains separate coefficients (θj,φj) for BF and BS.
Here I(·) denotes the indicator function, i.e., IA = 1 if species
is A, and IA = 0 otherwise. The model cannot be displayed
graphically for species BF and BS because it is a function of
three predictor variables.
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30.3 Logistic Regression Trees

A logistic regression tree (LRT) model is a machine learning
solution that simultaneously retains the graphical advantage
of simple models and the prediction accuracy of more com-
plex ones. It recursively partitions the dataset and fits a simple
or multiple linear OLR model in each partition. As a result,
the partitions can be displayed as a decision tree [5] such
as Fig. 30.4, which shows a simple linear LRT model fitted
to the tree damage data by the GUIDE algorithm [6, 7]. A
terminal node represents a partition, and an OLR model with
a single linear predictor is fitted in each one. Beside each
intermediate node is a condition stating that an observation
goes to the left subnode if and only if the condition is
satisfied. Below each terminal node are the sample size (in
italics), the proportion of blown down trees, and the name of
the best linear predictor variable. The split at the root node
(labeled “1”) sends observations to node 2 if and only if S is
A, BS, JP, or RP. (Node labels employ the convention that
a node with label k has left and right child nodes labeled 2k
and 2k + 1, respectively.) Node 5, consisting of the JP and
RP species, has the highest proportion of blown down trees
at 0.82. Node 9, which consists of species A and BS trees
with diameters greater than 9.75 cm, has the second highest
proportion of 0.67. Variable L is the best linear predictor
in all terminal nodes except nodes 13 and 15, where D is
the best linear predictor. The main advantage in using one
linear predictor in each node is that the fitted p-functions
can be displayed graphically, as shown in Fig. 30.5. It is not
necessary to transform D to log(D) in the LRT.

The LRT model in Fig. 30.4 may be considered a different
kind of POD model from that proposed in [2]. Whereas the

S = A, BS, JP, RP 1

S = A, BS 2
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Fig. 30.4 GUIDE simple linear LRT model for P(blowdown). At each
split, an observation goes to the left branch if and only if the condition
is satisfied. Sample size (in italics), proportion of blowdowns, and name
of regressor variable are printed beneath each terminal node. Green and
yellow terminal nodes haveL andD, respectively, as best linear predictor

word “partial” in POD refers to model (30.9) being one-
dimensional if restricted to certain parts of the data (species
in this example), it refers to partitions of the predictor space
in a LRT. In addition, whereas “one-dimensional” refers to Z
being a linear combination of log(D) and L in (30.9), the OLR
predictor in each node of a LRT is trivially one-dimensional
because it is an original variable.

GUIDE is a classification and regression tree algorithm
with origins in the FACT [8], SUPPORT [9], QUEST [10],
CRUISE [11,12], and LOTUS [13] methods; see [14]. All of
them split a dataset recursively, choosing a single X variable
to split each node. If X is an ordinal variable, the split
typically has the form s = {X ≤ c}, where c is a constant.
If X is a categorical variable, the split has the form s =
{X ∈ ω}, where ω is a subset of the values taken by X. For
linear regression trees, algorithms such as AID [15], CART
[16], and M5 [17] choose s to minimize the total sum of
squared residuals of the regression models fitted to the two
data subsets formed by s. Though seemingly innocuous, this
approach is flawed as it is biased toward choosing X variables
that allowmore splits. To see this, suppose thatX is an ordinal
variable havingm distinct values. Then there are (m−1)ways
to split the data along the X axis, with each split s = {X ≤ c}
being such that c is the midpoint between two consecutively
ordered distinct values of X. This creates a selection bias
toward X variables with large values of m. In the current
example, variable L has 709 unique values butD has only 87.
Hence L has eight times as many opportunities as D to split
the data. The bias is worse if there are high-level categorical
variables, because a categorical variable havingm categorical
values permits (2m−1−1) splits of the form s = {X ∈ ω}. For
example, variable S permits (29−1 − 1) = 255 splits, which
is almost three times as many splits as D allows. The earliest
warning on the potential for the bias to produce misleading
conclusions seems to be [18].

GUIDE avoids the bias by using a two-step approach to
split selection. First, it uses significance tests to select the X
variable. Then it searches for c or ω for X. For linear regres-
sion trees, this is achieved by fitting a linear model to the data
in the node and using a contingency table chi-squared test
of the association between grouped values of each predictor
variable and the signs of the residuals. If X is ordinal, the
groups are intervals between certain order statistics. If X is
categorical, the groups are the categorical levels. Then the X
variable having the smallest chi-squared p-value is selected.
Repeating this procedure recursively produces a large binary
tree that is pruned to minimize a cross-validation estimate of
prediction mean squared error [16].

Let p̂(x) denote the estimated value of p(x) = P(Y =
1 |X = x). The preceding split variable selection method
needs modification for logistic regression, because the resid-
ual y − p̂(x) is positive if y = 1 and negative if y = 0,
irrespective of the value of p̂(x). Consequently, the residual
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Fig. 30.5 Estimated p-functions in terminal nodes of the tree in Fig. 30.4

signs provide no information on the adequacy of p̂(x). A first
attempt at a solution was proposed in [19], where the residu-
als y− p̂(x) are replaced with “pseudo-residuals” p̄(x)− p̂(x),
with p̄(x) being a weighted average of the y values in a
neighborhood of x. Its weaknesses are sensitivity to choice
of weights and neighborhoods and difficulty in specifying the
neighborhoods if the dimension of the predictor space is large
or if there are missing values. LOTUS uses a trend-adjusted
chi-squared test [20, 21] that effectively replaces p̄(x) with a
linear estimate.

For logistic regression, GUIDE uses the average from an
ensemble of least-squares GUIDE regression trees (called a
“GUIDE forest”) to form the pseudo-residuals for variable
selection. The main steps are as follows:

1. Fit a least-squares GUIDE forest [22] to the data to obtain
a preliminary estimate p̃(x) of p(x) for each observed x.
(Random forest [23] cannot substitute for GUIDE forest
if the data contain missing values.)

2. Beginningwith the root node, carry out the following steps
on the data in each node, stopping only if the number of
observations is below a pre-specified threshold or if all
the values of the predictor variables or the Y values are
constant:
(a) For each X variable to be used in fitting an OLRmodel

in the node, temporarily impute its missing values
with its node sample mean.

(b) Fit a simple or multiple linear OLR model to the im-
puted data in the node. If a simple linear OLRmodel is
desired, fit one to each linear predictor variable in turn,
and choose the one with smallest residual deviance.

Let p̂(x) denote the estimated value of p(x) from the
fitted model.

(c) Revert the imputed values in step (2a) to their original
missing state.

(d) For each ordinal X variable, let q1 ≤ q2 ≤ q3
denote its sample quartiles at the node, and define the
categorical variable V = ∑3

j=1 I(X > qj). If X is
a categorical variable, define V = X. Add an extra
“missing” category to V if X has missing values.

(e) Form a contingency table for each X variable using
the signs of p̃(x)− p̂(x) as rows and the values of V as
columns. Find the chi-squared statistic χ2

ν for the test
of independence between rows and columns.

(f) Let Gν(x) denote the distribution function of a chi-
squared variable with ν df, and let ε = 2 × 10−6.
Convert each χ2

ν to its equivalent one-df χ2
1 value as

follows:
i. If ε < Gν(χ

2
ν ) < 1−ε, define χ2

1 = G−1
1 (Gν(χ

2
ν )).

ii. Otherwise, to avoid dealing with very small or
large p-values, use the following dual application
of the Wilson-Hilferty approximation [24]. Define

W1 =
{√

2χ2
ν − √

2ν − 1 + 1

}2

/2

W2 = max

(

0,

[
7

9
+ √

ν

{(
χ2

ν

ν

)1/3

−1 + 2

9ν

}]3
)

.
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Approximate the one-df chi-squared value with

χ2
1 =

⎧
⎪⎪⎨

⎪⎪⎩

W2 if χ2
ν < ν + 10

√
2ν

(W1 +W2)/2 if χ2
ν ≥ ν + 10

√
2ν and

W2 < χ2
ν

W1 otherwise.

An earlier one-step approximation is used in [7].
Tables 30.2 and 30.3 show the contingency tables and
corresponding chi-squared statistics for Species,
Intensity, and Diameter at the root node of the
tree in Fig. 30.4.

(g) Let X∗ be the variable with the largest value of χ2
1 , and

let NA denote the missing value code:
i. If X∗ is ordinal, let s be a split of the form {X∗ =
NA}, {X∗ ≤ c} ∪ {X∗ = NA}, or {X∗ ≤ c} ∩ {X∗ 	=
NA}.

ii. If X∗ is categorical, let s be a split of the form
{X∗ ∈ ω}, where ω is a proper subset of the values
(including NA) of X∗.

(h) For each split s, apply steps (2a) and (2b) to the data in
the left and right subnodes induced by s, and let dL(s)
and dR(s) be their respective residual deviances.

(i) Select the split s that minimizes dL(s) + dR(s).
3. After splitting stops, prune the tree with the CART cost-

complexity method [16] to obtain a nested sequence of
subtrees.

4. Use the CART cross-validation method to estimate the
prediction deviance of each subtree.

5. Select the smallest subtree whose estimated prediction
deviance is within a half standard error of the minimum.

Figure 30.6 shows the LOTUS tree for the current data.
MOB [25] is another algorithm that can construct a LRT, but
for simple linear LRT models, it requires the linear predictor
to be pre-specified and to be the same in all terminal nodes.
Figure 30.7 shows the MOB tree with L as the common

Table 30.2 Chi-squared test for Species with Wilson-Hilferty χ2
1

value

A BA BF BS C JP PB RM RP

p̃ > p̂ 413 0 239 673 0 501 0 2 47

p̃ ≤ p̂ 23 75 420 297 355 1 497 121 2

χ2
8 = 2125, χ2

1 = 1942

Table 30.3 Chi-squared tests for Intensity and Diameter with
quartile intervals Q1, Q2, Q3, Q4 and Wilson-Hilferty χ2

1 values

Intensity Diameter

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

p̃ > p̂ 327 418 527 603 14 543 637 681

p̃ ≤ p̂ 595 493 390 313 933 424 281 153

χ2
3 = 195, χ2

1 = 171 χ2
3 = 1378, χ2

1 = 1314

S = BA,BF,C,PB,RM

C,PB,RM
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Fig. 30.6 LOTUS simple linear LRT model for P(blowdown). At each
split, an observation goes to the left branch if and only if the condition
is satisfied. Sample size (in italics), proportion of blowdowns, and name
of regressor variable (if any) are printed below nodes. Green and yellow
terminal nodes have L and D, respectively, as best linear predictor
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Fig. 30.7 MOB simple linear LRT model with L pre-specified as the
common linear predictor in all nodes. At each split, an observation goes
to the left branch if and only if the condition is satisfied. Sample sizes
(in italics) are printed below nodes

linear predictor. Figure 30.8 compares the values of p̂(x) from
a GUIDE forest of 500 trees, model (30.9) and the simple
linear GUIDE, LOTUS, and MOB LRT models. Although
there are clear differences in the values of p̂(x) between
GUIDE, LOTUS, and MOB, they seem to compare similarly
against (30.9) and GUIDE forest. Figure 30.9 shows the
corresponding results where LOTUS fits the multiple linear
LRT model logit(p) = β0 + β1D + β2L and GUIDE and
MOB fit logit(p) = β0 + β1D + β2L + ∑8

j=1 γjUj in
each terminal node. (LOTUS does not convert categorical
variables to indicator variables to serve as regressors.) The
correlations among the p̂(x) values are much higher.

30.4 Missing Values and Cyclic Variables

The US National Highway Traffic Safety Administration has
been evaluating vehicle safety by performing crash tests with
dummy occupants since 1972 (ftp://www.nhtsa.dot.gov/ges).

ftp://www.nhtsa.dot.gov/ges
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We use data from 3310 crash tests where the test dummy is
in the driver’s seat to show how GUIDE deals with missing
values and cyclic variables. Each test gives the severity of
head injury (HIC) sustained by the dummy and the values of
about 100 variables describing the vehicle, test environment,
and the test dummy. The response variable is Y = 1 if
HIC >1000 (threshold for severe head injury) and Y = 0
otherwise. About half of the predictor variables are ordinal,
six are cyclic, and the rest are categorical.

Three features in the data make model building particu-
larly challenging. The first is missing data. Missing values
in categorical variables are not problematic, as they can
be assigned a “missing” category. Missing values in other
variables, however, need to be imputed before application of
OLR. This can be extraordinarily difficult if there are many
missing values and the missingness patterns are complex
[22, 26]. All ordinal and cyclic variables here have missing
values. Table 30.4 gives the names and numbers of missing
values of some of them (see [27] for the others). For example,
IMPANG, the angle between the axis of a vehicle and the

axis of another vehicle or barrier, is undefined for a rollover
crash test, where there is no barrier and only one vehicle is
involved. In such cases, the value of IMPANG is recorded
as missing and imputing it with a number is inappropriate.
The situation is worse for variable CARANG, which has
991 missing values. Given that the crash tests are carefully
monitored and have been performed for years, it is unlikely
for so many observations to be missing by chance.

For split selection, GUIDE sends all missing values in
the selected ordinal or cyclic variable either to the left or to
the right subnode, depending on which split gives a smaller
sum of residual deviances in the two subnodes. Hence no
imputation is carried out in this step. To fit an OLR model
to a node, GUIDE imputes missing values in the selected
predictor variable with its node mean.

A second challenging feature is the presence of cyclic
variables that are angles with periods of 360 degrees. These
variables are traditionally transformed to sines and cosines,
but splits on one of them at a time are not as meaningful
as splits on the angles themselves. The problem is more
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Fig. 30.9 Comparison of fitted values p̂ of Cook-Weisberg model (30.9) and GUIDE forest versus multiple linear LRT models

Table 30.4 Definitions and
numbers of missing values of
some predictor variables in the
crash-test data

Variable Description Missing

BARRIG Rigid or deformable barrier 1

BARSHP Barrier shape (21 types) 0

BX2 Rear surface of vehicle to front of engine 288

BX5 Rear surface of vehicle to upper leading edge of left door 288

CARANG Angle between surface of rollover test cart and ground 991

COLMEC Steering column collapse mechanism (9 types) 248

ENGDSP Engine displacement 24

IMPANG Angle between axis of vehicle 2 and axis of vehicle 1 or barrier
(0 degree is perpendicular to barrier)

4

CLSSPD Closing speed: relative velocity of approach of two centers of gravity
before contact

2

VEHSPD Resultant speed of vehicle before impact 1

VEHTWT Vehicle test weight 4

VEHWID Vehicle width 90

WHLBAS Vehicle or impactor’s wheelbase 30

YEAR Vehicle model year 4

difficult if the variable has missing values. Should we impute
the angles and then compute the sines and cosines of the
imputed values, or should we impute the sines and cosines

directly? GUIDE avoids imputation entirely by restricting
cyclic variables to split the nodes. If a cyclic variable is
selected, the split takes the form of a sector “X ∈ [θ1, θ2],”



30 Logistic Regression Tree Analysis 601

30

where θ1 and θ2 are angles, and missing values are sent to
the left or right subnode in the same fashion as noncyclic
variables.

The third challenging feature is that, apparently by de-
sign, high-speed crash tests are more often carried out on
deformable barriers and low-speed tests more often on rigid

Deformable Rigid Unknown
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80

100
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d 
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/h
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Fig. 30.10 Boxplots of closing speed by barrier rigidity for the crash-
test data, with box width proportional to square root of sample size

barriers. This is evident from the boxplots of CLSSPD by
BARRIG in Fig. 30.10, where half of the tests with de-
formable barriers are above closing speeds of 60 km/h, but
less than one quarter of those with rigid barriers are above
60 km/h. Presumably, crashes into rigid barriers are not per-
formed at high speeds because the outcomes are predictable,
but this confounds the effects of CLSSPD and BARRIG in an
OLR model.

We say that X is an “s” variable if it can be used to split
the nodes and an “f” variable if it can be used to fit OLR
models in the nodes. To limit the amount of imputation in
this example, we restrict ordinal variables with more than 20
percent missing values to serve as s variables only. Cyclic
and categorical variables are also restricted to splitting nodes.

Figure 30.11 shows the LRT where a simple linear OLR
model is fitted in each node. The root node is split on
COLMEC, which is steering wheel collapse mechanism. Ob-
servations with COLMEC equal to BWU (behind wheel unit),
EMB (embedded ball), EXA (extruded absorber), NON (none),
or OTH (other) go to node 2. Otherwise, if COLMEC is CON
(convoluted tube), CYL (cylindrical mesh tube), NAP (not
applicable), UNK (unknown), or missing, observations go to
node 3. At node 2, observations go to node 4 if BX2≤ 3496.5
ormissing (the asterisk beside the inequality sign in the figure
indicates that missing values go to the left node). At node 3,

COLMEC
in S 1 1

BX2
∗3496.5 2

BX5
82.50* 4

VEHTWT
1368.5 8

16

89
0.12

–WHLBAS

VEHWID
1847 17

34
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0.44

–ENGDSP

35

70
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–Year

9
76

0.39
+BX5

5
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BARSHP
in S 2 3

IMPANG
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�
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Fig. 30.11 GUIDE piecewise simple linear LRT for crash-test data.
At each split, an observation goes to the left branch if and only if the
condition is satisfied. The symbol “≤∗” stands for “≤ or missing.” Set
S1 = {BWU, EMB, EXA, NON, OTH}. Set S2 = {LCB, POL, US2, US3}.

Sample size (in italics), proportion of cases with Y = 1, and sign and
name of regressor variable printed below nodes. Terminal nodes with
proportions of Y = 1 above and below value of 0.08 at root node are
colored yellow and green, respectively
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Fig. 30.12 Fitted logistic regression curves in terminal nodes of Fig. 30.11; horizontal dotted lines indicate proportion of severe injury in the node

observations go to node 6 if BARSHP is LCB (load cell
barrier), POL (pole), US2, or US3 (different barrier types).
Node 6 is split on impact angle IMPANG, where 0 degree
indicates impact is head-on. If an observation has IMPANG
between 284 and 286 degrees inclusive (i.e., Driver side), it
goes to node 12. The 2-degree range may seem narrow, but
there are 67 observations in the node, suggesting that the tests
were by design. Below each terminal node are the sample
size (in italics), proportion of Y = 1, and the selected OLR
predictor variable, with the sign of its estimated coefficient.

The tree shows that nodes 5, 9, and 34 have the highest
proportions of severe head injury, at 34, 39, and 44%, respec-
tively. Vehicles in these nodes have certain steering wheel
collapse mechanisms, and they tend to be longer (BX2 >

3496.5 or BX5 > 82.5) or are heavy (VEHTWT > 1368.5)
and narrow (VEHWID ≤ 1846). Figure 30.12 shows the
fitted logistic regression curves in the terminal nodes. The
proportion of tests with severe head injury is indicated by a
dotted line in each plot.

30.5 Conclusion

Logistic regression is a technique for estimating the probabil-
ity of an event in terms of the values of one or more predictor
variables. If there are missing values among the predictor
variables, they need to be imputed first. Otherwise, the ob-
servations or variables containing the missing values would
need to be deleted. Neither solution is attractive. In practice,
finding a logistic regression model with good prediction
accuracy is seldom automatic; it usually requires trial-and-
error selection of variables, choice of transformations, and
estimation of the accuracy of numerous models. Even when a
model with good estimated accuracy is found, interpretation
of the regression coefficients is not straightforward if there
are two or more predictor variables.

A logistic regression tree is a piecewise logistic regression
model, with the pieces obtained by recursively partitioning
the space of predictor variables. Consequently, if there
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is no over-fitting, it may be expected to possess higher
prediction accuracy than a one-piece logistic regression
model. Recursive partitioning has two advantages over a
search of all partitions: it is computationally efficient and
it allows the partitions to be displayed as a decision tree.
At a minimum, a logistic regression tree can serve as an
informal goodness of fit test of whether a one-piece logistic
model is adequate for the whole sample. A nontrivial pruned
tree would indicate that a one-piece logistic model has lower
prediction accuracy, possibly due to unaccounted interactions
or nonlinearities among the variables. Ideally, an effective
tree-growing and pruning algorithm would automatically
account for the overlooked effects, making it unnecessary
to specify interaction and higher-order terms. It would also
allow the models in the terminal nodes to be as simple as
desired (such as fitting a single linear predictor in each
node).

Tree pruning is very important for prediction accuracy.
Many methods adopt the AIC-type approach of selecting the
tree that minimizes the sum of the residual deviance and a
multiple, K, of the number of terminal nodes. There being no
value of K that works for all datasets [16], the advantage of
this approach is mainly computational speed. Our experience
indicates that it is inferior to a pruning approach that uses
cross-validation to estimate prediction accuracy.

Despite a binary decision tree being intuitive to interpret, a
poor split selectionmethod can yieldmisleading conclusions.
A common cause is selection bias. The greedy approach used
by CART and many other algorithms is known to prefer
variables that permit more splits of the data. Consequently,
it is hard to know if a variable is chosen due to its predictive
power or because it has more ways to partition the data.
LOTUS and GUIDE avoid the bias by selecting variables
with chi-squared tests. At the time of completion of this
article, GUIDE is the only tree algorithm that can deal with
cyclic variables and with two or more missing value codes
[22]. The GUIDE software andmanual may be obtained from
www.stat.wisc.edu/~loh/guide.html.
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