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Abstract

This chapter introduces to readers the new concept and
methodology of confidence distribution and the modern-
day distributional inference in statistics. This discussion
should be of interest to people who would like to go into
the depth of the statistical inference methodology and to
utilize distribution estimators in practice. We also include
in the discussion the topic of generalized fiducial infer-
ence, a special type of modern distributional inference,
and relate it to the concept of confidence distribution. Sev-
eral real data examples are also provided for practitioners.
We hope that the selected content covers the greater part
of the developments on this subject.
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29.1 Introduction

A confidence distribution (CD) refers to a sample-dependent
distribution function that can represent confidence intervals
(regions) of all levels for a parameter of interest [74, 90].
Instead of the usual point estimator or confidence interval,
CD is a distribution estimator of a parameter of interest with
a pure frequentist interpretation. The development of the CD
can be traced back to, for example, [16,28,47,66]. However,
its associated inference schemes and applications have not
received much attention until the recent surge of interest in
the research of CD and its applications [25, 46, 52, 53, 72–
74, 77, 78, 82, 90, 91, 94]. All of these developments of CDs,
along with a modern definition and interpretation, provide a
powerful inferential tool for statistical inference.

One of the main contributions of CD is its applications
on fusion learning [12, 15, 40, 51–53, 72, 75, 77, 81, 91, 92].
Combining CDs from independent studies naturally pre-
serves more information from the individual studies than
a traditional approach of combining only point estimators.
A unified framework of combining CDs for fusion learning
generally includes three steps: (1) using a CD to summarize
relevant information or obtain an inference result from each
study, (2) combining information from different sources or
studies by combining these CDs, and (3) making inference
via the combined CD. This approach has sound theoretical
support and has been applied to many practical situations
with much success.

On a different note, the fiducial distribution may be
considered as one special type of CD, which provides a
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systematic way to obtain a CD. The origin of fiducial
inference can be traced back to R.A. Fisher [28] who
introduced the concept of a fiducial distribution for
one parameter and proposed the use of this fiducial
distribution to avoid the problems related to the choice
of a prior distribution. Since the mid-2000s, there has
been a renewed interest in modifications of fiducial
inference [2, 7, 8, 22, 24, 30, 31, 33–37, 41, 56, 57, 59–
63,68, 73, 74, 79, 85, 87, 90, 93, 96].

We briefly overview these modern approaches which ex-
tend Fisher’s original fiducial argument. We then focus on
a recent development termed generalized fiducial inference
and its applications [14,17,37,41,42,44,49,50,65,86,88,89]
that greatly expand the applicability of fiducial ideas. We
demonstrate this recipe on several examples of varying com-
plexity. The statistical procedures derived by the generalized
fiducial inference often have very good performance from
both theoretical and numerical points of view.

29.2 Confidence Distribution

29.2.1 The Concept of CD

This section will mainly focus on the concept of CD. The
CD can be viewed as a distribution estimator, which can
be utilized for constructing statistical procedures such as
point estimates, confidence intervals, hypothesis tests, etc.
The basic notion of CDs is related to the fiducial distribution
of [28]; however, it is a pure frequentist concept. Some
have suggested to view CD as the frequentist analog of
Bayesian posterior distribution [e.g., 73, 74]. More broadly,
if the credible intervals or regions obtained from a Bayesian
posterior match with frequentist intervals or regions (either
exactly or asymptotically), then the Bayesian posterior can
be viewed as CD, and thus Bayesian approach is also a way
to obtain CD [90].

Suppose X1, , X2, . . . , Xn are independent and identically
distributed and X is the sample space corresponding to the
dataset (X1, X2, . . . , Xn). Let θ be a scalar parameter of in-
terest and � be the parameter space. The following formal
definitions of CD and asymptotic CD are proposed in [72,77].

Definition 29.2.1 (CD and Asymptotic CD) A function
Hn(·) = Hn(x, ·) on X × � → [0, 1] is called a CD for a
parameter, if (1) for each given x ∈ X,Hn(·) is a (continuous)
cumulative distribution function on � and (2) at the true
parameter value θ = θ0, Hn(θ0) ≡ Hn(x, θ0), as a function
of the sample x, follows the uniform distribution U(0, 1). In
addition, the function Hn(·) is called an asymptotic CD if
condition (2) is replaced by (2’) at the true parameter θ = θ0,

Hn(θ0)
d→ U(0, 1) as n → ∞.

From a nontechnical point of view, a CD is a function
of both the parameter and the sample which satisfies two
conditions. The first condition basically states that for any
fixed sample, a CD is a distribution function on the parameter
space. The second condition essentially requires that the cor-
responding inference derived by a CD has desired frequentist
properties. Section 29.2.2 will further discuss how to use the
second condition to extract information from a CD to make
inference.

Birnbaum [9] introduced the concept of confidence curve
as “an omnibus technique for estimation and testing statistical
hypotheses,” which was independent of the development
of CD. From a CD Hn(θ), the confidence curve can be
written as

CVn(θ) = 2min{Hn(θ), 1 − Hn(θ)}.

Indeed, confidence curve is an alternative expression of
CD and it is a very useful graphical tool for visualizing
CDs. On a plot of CVn(θ) versus θ , a line across the y-
axis of the significance level α, for any 0 < α < 1,
intersects with the confidence curve at two points, and these
two points correspond to an 1 − α level, equal-tailed, two-
sided confidence interval for θ . In addition, the maximum
of a confidence curve is the median of the CD which is the
recommended point estimator.

We present below five illustrating examples of CDs. More
examples refer to [74, 77, 90].

Example 29.2.1 Suppose the data Xi ∼ N(μ, 1), i =
1, . . . , n, with unknown μ. Let x̄n denote the sample mean.
ThenN(x̄n, 1/n) is a CD forμ, and it can be represented in the
following three forms: (i) confidence distribution (cumulate
distribution form), Hn(μ) = �(

√
n(μ− x̄n)); (ii) confidence

density (density form), hn(μ) = 1√
2π/n

exp{− n
2 (μ − x̄n)2};

and (iii) confidence curve, CVn(μ) = 2min{�(
√
n(μ −

x̄n)), 1 − �(
√
n(μ − x̄n))}. See Fig. 29.1 for an illustration.

The data are generated from N(0.3, 1) with sample size 100.

Example 29.2.2 ([77]) Suppose the data Xi ∼ N(μ, σ 2), i =
1, . . . , n, with both unknownμ and σ . A CD forμ isHn(μ) =
Ftn−1(

√
n(μ−x̄n)
sn

), where sn is the sample standard deviation
and Ftn−1(·) is the cumulative distribution function of stu-
dent t distribution with parameter n − 1. A CD for σ 2 is

Hn(σ
2) = 1−Fχ2

n−1
(

(n−1)s2n
σ 2 ), where Fχ2

n−1
(·) is the cumulative

distribution function of the χ2
n−1-distribution.

Example 29.2.3 ([77]) Let ̂θ be a consistent estimator of θ .
For bootstrap, the distribution of ̂θ∗ − θ is estimated by the
bootstrap distribution ̂θ∗ − ̂θ , where ̂θ∗ is the estimator of
θ computed on a bootstrap sample [26]. An asymptotic CD
for θ is given by Hn(θ) = 1 − Pr(̂θ∗ − ̂θ ≤ ̂θ − θ) =
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Fig. 29.1 Confidence distribution presented in Example 29.2.1 in the forms of density function, cumulative distribution function, and confidence
curve

Pr(̂θ∗ ≥ 2̂θ − θ). In addition, when the limiting distribution
of normalized ̂θ is symmetric, the raw bootstrap distribution
Hn(θ) = 1 − Pr(̂θ − ̂θ∗ ≤ ̂θ − θ) = Pr(̂θ∗ ≤ θ) is also an
asymptotic CD.

Example 29.2.4 Suppose we are interested in the location
parameter θ of a continuous distribution. When the distribu-
tion F is symmetric, i.e., F(θ − y) = 1 − F(θ + y), θ is the
median. The Wilcoxon rank test for H0 : θ = t, H1 : θ �= t is
based on the summation of signed ranks of Yi− t, i.e., the test
statisticW = ∑n

i=1 ZiRi, where Ri is the rank of |Yi−t| and Zi
is an indicator variable with 1 if Yi− t > 0 and−1 otherwise.
Denote by p(t) the p-value associated with the Wilcoxon
rank test for H0 : θ = t, H1 : θ �= t. When t varies in
(−∞,∞), the p-value p(t) is referred to as a p-value function.
We can prove that the p-value function p(t) is an asymptotic
CD [90]. Figure 29.2 provides illustrations of the asymptotic
CD density p′(t), the asymptotic CD function p(t), and the
asymptotic CV 2min{p(t), 1−p(t)} for two sample sizes. The
data are generated fromN(0, 1)with sample sizes n = 10 and
100, respectively.

Example 29.2.5 ([78]) Suppose that there is an independent
and identically distributed sample of size n from a semi-
parametric model involving multiple parameters. Let ln(θ)

be the log profile likelihood function and Jn(θ) = −l̈n(θ)

be the observed Fisher information for a scalar parameter of
interest θ . Under certain mild assumptions, Theorem 4.1 of
[78] proves that, for any given θ ,

Gn(θ) = Hn(θ) + op(1), whereGn(θ) =
∫ θ

−∞ exp{ln(x)}dx
∫ ∞
−∞ exp{ln(x)}dx ,

Hn(θ) = �

(

θ − ̂θ
√

Jn(̂θ)/n

)

, ̂θ = arg max
θ

ln(θ).

Because at the true parameter value θ = θ0,Hn(θ0) converges
to U(0, 1) as n → ∞, it follows that Gn(θ0) converges
to U(0, 1). Thus, Gn(θ) is an asymptotic CD. From this
observation, we see that CD-based inference may subsume
a likelihood inference in some occasions.

If the sample X is from a discrete distribution, we can
typically invoke a large sample theory to obtain an asymptotic
CD to ensure the asymptotic frequentist coverage property,
when the sample size is large. However, when the sample size
is limited, we sometimes may want to exam the difference
between the “distribution estimator” and the U(0, 1) distri-
bution to get a sense of under and over coverage. To expand
the concept of CD to cover the cases of discrete distributions
with finite sample sizes, we introduce below the notions of
lower and upper CDs. The lower and upper CDs provide us
inference statements that are associated with under and over
coverages at every significant level.

Definition 29.2.2 (Upper and Lower CDs) A function
H+
n (·) = H+

n (x, ·) on X × � → [0, 1] is said to be an
upper CD for a parameter, if (i) for each given x ∈ X,
Hn(·) is a monotonic increasing function on � with values
ranging within (0, 1) and (ii) at the true parameter value
θ = θ0, H+

n (θ0) ≡ H+
n (x, θ0), as a function of the sample x,

is stochastically less than or equal to a uniformly distributed
random variable U ∼ U(0, 1), i.e.,

Pr
(

H+
n

(

X, θ0
) ≤ t

) ≥ t. (29.1)

Correspondingly, a lower CD H−
n (·) = Hn(x, ·) for

parameter θ can be defined but with (29.1) replaced by
Pr

(

H−
n (X, θ0) ≤ t

) ≤ t for all t ∈ (0, 1).

More generally, we also refer to H+
n (·) and H−

n (·) as the
upper and lower CD, respectively, even when the monotonic
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Fig. 29.2 Confidence distributions presented in Example 29.2.4 in the forms of density function, cumulative distribution function, and confidence
curve. The top row is for sample size n = 10 and the bottom row is n = 100

condition (i) is removed. Note that, due to the stochastic
dominance inequalities in the definition, we have, for any
α ∈ (0, 1),

Pr
(

θ0 ∈ {

θ : H+
n

(

X, θ
) ≤ α

}) ≥ α and
Pr

(

θ0 ∈ {

θ : H−
n (X, θ) ≤ α

}) ≤ α.

Thus, a level-(1 − α) confident interval (or set) {θ :
H+
n (X, θ) ≤ 1 − α} or {θ : H−

n (X, θ) ≥ α} has guaranteed
the coverage rate of (1 − α)100%, regardless of whether
we have the monotonic condition in (i). After we remove
the monotonic condition in (i), H+

n (·) and H−
n (·) may not

be a distribution function, and the “nest-ness property” of
confidence intervals/sets may also be lost. Here, the “nest-
ness property” refers to “a level-(1− α) confidence set C1−α

is not necessarily inside its corresponding level-(1 − α′)
confidence set C1−α′ , when 1 − α < 1 − α′.”

To conclude this section, we present an example of lower
and upper CDs.

Example 29.2.6 ([40]) Suppose sample X is from Binomial
(n, p0) with observation x. Let Hn(p, x) = Pr(X > x) =
∑

x<k≤n
(n
k

)

pk(1 − p)n−k. We can show that P(Hn(p0, X) ≤
t) ≥ t and P(Hn(p0, X − 1) ≤ t) ≤ t. Thus, H+(p, x) =

Hn(p, x) and H−
n (p, x) = Hn(p, x − 1) are lower and upper

CDs for the success rate p0. The half-corrected CD [25,37,72]
is

H−
n (p, x) + H+

n (p, x)

2
=

∑

x<k≤ni

(

n

k

)

pk(1 − p)n−k

+ 1

2

(

n

x

)

px(1 − p)n−x.

29.2.2 CD-Based Inference

Analogous to the Bayesian posterior, a CD contains a wealth
of information for constructing any type of frequentist infer-
ence. We illustrate three aspects of making inference based
on a given CD. Figure 29.3 from [90] provides a graphical
illustration of the point estimation, confidence interval, and
hypothesis testing. More specifically:

Point Estimation The natural choices of point estimators
of the parameter θ given a CD Hn(·) include (i) the median
˜θn = Hn(1/2), (ii) the mean θ̄n = ∫

θ∈�
θdHn(θ), and (iii) the

mode ̂θn = arg maxθ∈� hn(θ), where hn(θ) = dHn(θ)/dθ



29 Confidence Distribution and Distribution Estimation for Modern Statistical Inference 579

29
Point estimators

95%

95% CI
c

^ –
Mn

CD
 density function

(confidence density) p-value for hypothesis K0: � ��b

��

Fig. 29.3 A graphical illustration of CD-based inference [90]

is the confidence density function. Under some moderate
conditions, these three point estimators are consistent
[77, 90, 91].

To further understand these three types of estimators, the
median ˜θn is an unbiased estimator with Prθ0(

˜θn ≤ θ0) =
Prθ0(1/2 ≤ Hn(θ0)) = 1/2. The mean θ̄n can be viewed as
a frequentist analog of Bayesian estimator under the squared
loss function. Themodêθnmatches with themaximum likeli-
hood estimator if the confidence density is from a normalized
likelihood function [90].

Confidence Interval As discussed in Sect. 29.2.1, in a
confidence curve, a line across the y-axis of the significance
level α intersects with the confidence curve at two points, and
these two points correspond to an 1 − α level, equal-tailed,
two-sided confidence interval for θ , i.e., (H−1

n (α/2), H−1
n (1−

α/2)). Furthermore, (−∞, H−1
n (1−α)] and [H−1

n (α),∞) are
one-sided 1−α level confidence intervals for the parameter θ .

Hypothesis Testing From a CD, one can obtain p-values for
various hypothesis testing problems. The natural thinking is
to measure the support that Hn(·) lends to a null hypothesis
[29]. Xie and Singh [90] summarized making inference for
hypothesis testing from a CD in the following theorem.

Theorem 29.2.1 (i) For the one-sided test K0 : θ ∈ C
versus K1 : θ ∈ Cc, where c denotes the complementary
set and C is an interval of the type of Cl = (−∞, b] or
Cu = [b,∞), we have supθ∈C Prθ (p(C) ≤ α) = α, and
p(C) = Hn(C) is the corresponding p-value of the test. (ii)

For the singleton test K0 : θ = b versus K1 : θ �= b,
we have Prθ=b(2min{p(Cl), p(Cu)} ≤ α) = α, and
2min{p(Cl), p(Cu)} = 2min{Hn(b), 1 − Hn(b)} is the p-
value of the corresponding test.

Example 29.2.7 ([90]) Consider Example 29.2.2 again. A
CD for θ is Hn = Ftn−1(

√
n(μ−x̄n)
sn

). For a one-sided test
K0 : μ ≤ b versus K1 : μ > b, its support on the null set
C = (−∞, b] is

p(C) = p((−∞, b]) = Hn(b) = Ftn−1(
√
n(b− x̄n)/sn).

This is the same p-value using the one-sided t-test. For a two-
sided test K0 : θ = b versus K1 : θ �= b, the null set C =
{b}. We would like to measure the supports of two alternative
sets p(Cc

l ) and p(C
c
u). The rejection region is defined as {x :

2max{p(Ccl ), p(Cc
u)} ≥ 1 − α}, i.e.,

{x : 2min{p(Cl), p(Cu)} ≤ α} = {x : 2min{Hn(b),

1 − Hn(b)} ≤ α}. (29.2)

Under K0 with θ = b, 2min{p(Cl), p(Cu)}= 2min{Hn(b),
1 − Hn(b)} ∼ U(0, 1) by the definition of a CD. Thus,

Prθ=b(2min{p(Cl), p(Cu)} ≤ α) = Prθ=b(2min{Hn(b),

1 − Hn(b)} ≤ α) = α

and the reject region (29.2) corresponds to a level α test.
Again, the p-value 2min{p(Cl), p(Cu)} is the standard p-
value from a two-sided t-test.
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29.2.3 Combination of CDs for Fusion Learning

One of the important applications of CD development is
on fusion learning, which synthesizes information from
disparate sources with deep implications for meta-analysis
[12, 15, 40, 51–53, 72, 75, 77, 81, 91, 92]. Fusion learning
aims to combine inference results obtained from different
data sources to achieve a more efficient overall inference
result. CD-based fusion learning applies even when inference
results are derived from different tests or different paradigms,
i.e., Bayesian, fiducial, and frequentist (BFF).

The combination of CD can be considered as a unified
framework for fusion learning. Suppose there are k inde-
pendent studies that are dedicated to estimate a common
parameter of interest θ . We assume that we have a CD Hi(·)
for θ for the sample xi of the i-th study. Singh et al. [77]
proposed a general recipe for combining these k independent
CDs:

Hc(θ) ≡ Gc{gc(H1(θ), . . . , Hk(θ))}, (29.3)

where gc is a given continuous function on [0, 1] which
is nondecreasing in each coordinate, the function Gc is
determined by the monotonic function gc with Gc(t) =
Pr(gc(U1, . . . , Uk) ≤ t), and U1, . . . , Uk are independent
uniform random variables. The function Hc(·) contains
information from all k samples and is referred to as a
combined CD for the parameter θ . Furthermore, the CD
obtained by Eq. (29.3) does not require any information
regarding how the input CDs are obtained.

A special class of the general combining framework (29.3)
plays a prominent role in unifying many modern meta-
analysis approaches. The choice of the function gc for this
special class is

gc(u1, . . . , uk) = w1F
−1(u1) + · · · + wkF

−1(uk), (29.4)

where F(·) is a given cumulative distribution function and
wi ≥ 0 with at least one wi �= 0 are generic weights for the
combination rule. Generally, there are two types of weights:
fixed weights to improve the efficiency of combination and
adaptive weights based on data.

As shown in [91], it is remarkable that by choosing
different gc functions, all the classic approaches of combining
p-values including Fisher, Normal (Stouffer), Min (Tippett),
Max, and Sum methods [55] and all the five model-based
meta-analysis estimators described in [67] including the
maximum likelihood method and Bayesian approach under
fixed-effects model, method of moment estimators, restricted
maximum likelihood method, and Bayesian estimator with a
normal prior under random-effects model, can all be obtained
through a CD combination framework. Furthermore, it was
shown in [94] thatMantel-Haenszel and Petomethods as well

as Tian et al.’s method of combining confidence intervals [81]
for meta-analysis of 2 × 2 tables can also all be obtained
through a CD combination framework. An R-package
“gmeta” developed by [95] implements the CD combining
framework for fusion learning including classical p-value
combination methods from [55], meta-analysis estimators
with both fixed-effects and random-effects models, andmany
other approaches.

Fusion learning under the framework of combining CD
provides an extensive and powerful tool for synthesizing
information from diverse data sources. This approach has
sound theoretical support and has been applied to many prac-
tical situations including robust fusion learning [91], exact
fusion learning for discrete data [52, 81], fusion learning for
heterogeneous studies [53], nonparametric fusion learning
[15, 51], split-conquer-combine approach [12], individual-
ized fusion learning (i-fusion) [75], etc. We refer to [13] for
more detailed discussions.

29.2.4 Multivariate CDs

A simultaneous CD for vector parameters can sometimes be
difficult to define [72], especially on how to define a multi-
variate CD in the exact sense in some non-Gaussian settings
to ensure that their marginal distributions are CDs for the
corresponding single parameter. We consider the Behrens-
Fisher problem of testing for the equality of means from
two multivariate normal distributions when the covariance
matrices are unknown and possibly not equal. A joint CD of
the two population means (μ1,μ2) has a joint density of the
form

f1

(

μ1 − x̄1
s1/

√
n1

)

f2

(

μ2 − x̄2
s2/

√
n2

)

/
(

s1s2
√
n1n2

)

,

where fi is the density function for the student t-distribution
with ni − 1 degrees of freedom, i = 1, 2. The marginal
distribution of μ1 − μ2 is only an asymptotic CD but not a
CD in the exact sense.

The good news in the multidimensional case is that under
asymptotic settings or wherever bootstrap theory applies, one
can still work with multivariate CDs [90]. When no analytic
confidence curve for the parameter vector θ of interest is
available, the product method of [4] can be used if confidence
curves are available for each component of the vector [72].
Additionally, if we only consider center-outward confidence
regions instead of all Borel sets in the p×1 parameter space,
the central-CDs considered in [78] and the confidence net
considered in [71] offer coherent notions of multivariate CDs
in the exact sense [90].

There are many approaches to obtain CDs. One way is
normalizing a likelihood function curve with respect to its
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parameters so that the area underneath the curve is one.
The normalized likelihood function is typically a density
function. For instance, under some mild conditions, Fraser
and McDunnough [32] show that this normalized likelihood
function is the normal density function of an asymptotic CD.
Other ways like bootstrap distributions and p-value functions
also often provide valid CDs. Finally, CDs and fiducial dis-
tributions have been always linked since their inception. The
class of fiducial inference provides another systematic way
to obtain CDs and we will further discuss fiducial inference
in the next section.

29.3 Fiducial Inference

CD can be somehow viewed as “the Neymanian interpreta-
tion of Fisher’s fiducial distributions” [74]. From the defi-
nition of CD and fiducial distribution, we may consider the
fiducial distribution as one special type of CD, though the CD
looks at the problem of obtaining an inferentially meaningful
distribution on the parameter space from a pure frequentist
point of view [90]. Nevertheless, fiducial inference provides
a systematic way to obtain a CD, and its development pro-
vides a rich class of literature for CD inference. We briefly
review fiducial inference and its recent developments in this
section.

29.3.1 Fiducial Inference

R.A. Fisher introduced the idea of fiducial probability and
fiducial inference [28] as a potential replacement of the
Bayesian posterior distribution. Although he discussed fidu-
cial inference in several subsequent papers, there appears
to be no rigorous definition of a fiducial distribution for a
vector parameter. The basic idea of the fiducial argument
is switching the role of data and parameters to introduce
the distribution on the parameter space. This obtained distri-
bution then summarizes our knowledge about the unknown
parameter. Since the mid-2000s, there has been a renewed
interest in modern modifications of fiducial inference. The
common approaches for these modifications rely on a defini-
tion of inferentially meaningful probability statements about
subsets of the parameter space without introducing any prior
information.

These modern approaches include generalized fiducial in-
ference [37, 41], Dempster-Shafer theory [22, 24], and infer-
ential models [56, 61]. Objective Bayesian inference, which
aims at finding nonsubjective model-based priors, can also
be seen as addressing the same question. Examples of recent
breakthroughs related to reference prior and model selection
are [2, 7, 8]. Another related approach is based on higher-
order likelihood expansions and implied data-dependent

priors [30, 31, 33–36]. There are many more references that
interested readers can find in [41].

29.3.2 Generalized Fiducial Distribution

Generalized fiducial inference, motivated by [83, 84], has
been at the forefront of the modern fiducial revival. Gener-
alized fiducial inference defines a data-dependent measure
on the parameter space by using an inverse of a deterministic
data generating equation without the use of Bayes theorem.

Motivated by Fisher’s fiducial argument, generalized fidu-
cial inference begins with expressing the relationship be-
tween the data Y and the parameters θ as

Y = G(U, θ), (29.5)

where G(·, ·) is a deterministic function termed as the data
generating equation and U is the random component of this
data generating equation whose distribution is independent
of parameters and completely known.

The data Y are created by generating a random variable U
and plugging it into the data generating equation (29.5). For
example, a single observation from N(μ, 1) distribution can
be written as Y = μ + U, where θ = μ and U is N(0, 1)
random variable.

Fisher’s original fiducial argument only addresses the
simple case where the data generating equation (29.5) can
be inverted and the inverse Qy(u) = θ exists for any ob-
served y and for any arbitrary u. One can define the fiducial
distribution for θ as the distribution of Qy(U	) where U	 is
an independent copy of U. Equivalently, a sample from the
fiducial distribution of θ can be obtained by first generating
U	
i , and then let θ	

i = Qy(U	
i ), i = 1, . . . , n. Point estimation

and confidence intervals for θ can be obtained based on this
sample. In the N(μ, 1) example, Qy(u) = y − u and the
fiducial distribution is therefore the distribution of y−U	 ∼
N(y, 1).

In the case of no θ satisfying Eq. (29.5), Hannig [37]
proposed to use the distribution ofU conditional on the event
{u : y = G(u, θ), for some θ}. Hannig et al. [41] generalized
this approach and proposed an attractive definition of gener-
alized fiducial distribution (GFD) through a weak limit.

Definition 29.3.1 A probability measure on the parameter
space � is called a GFD if it can be obtained as a weak limit

lim
ε→0

[

arg min
θ	

‖y−G(U	, θ	)‖
∣

∣

∣ min
θ	

‖y−G(U	, θ	)‖ ≤ ε

]

.

(29.6)

Hannig et al. [41] pointed out a close relationship between
GFD and approximate Bayesian computations (ABC) [3].
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In an idealized ABC, one first generates an observation θ∗
from the prior, then generates a new sample using a data
generating equation y	 = G(U	, θ	), and compares the
generated data with the observed data y. If the observed
and generated datasets are close, i.e., ‖y − y	‖ ≤ ε, the
generated θ	 is accepted; otherwise it is rejected and the
procedure is repeated. On the other hand, as for GFD, one
first generates U	, finds a best fitting θ	 = arg minθ	 ‖y −
G(U	, θ	)‖, computes y	 = G(U	, θ	), again accepts θ	 if
‖y − y	‖ ≤ ε, and rejects otherwise. In either approach an
artificial dataset y	 = G(U	, θ	) is generated and compared
to the observed data. The main difference is that the Bayes
posterior simulates the parameter θ	 from the prior, while
GFD uses the best-fitting parameter.

Fiducial distributions often have good frequentist prop-
erties, and corresponding fiducial confidence intervals often
give asymptotically correct coverage [37, 41]. In addition,
fiducial distribution is a data-dependent measure on the pa-
rameter space and thereby a CD. Xie and Singh [90] de-
scribed the relation between the concepts of CD and fiducial
distributions using an analogy in point estimation: A CD
is analogous to a consistent estimator and a fiducial dis-
tribution is analogous to a maximum likelihood estimator.
In the context of point estimation, a consistent estimator
does not have to be a maximum likelihood estimator. But
under some regularity conditions, the maximum likelihood
estimator typically provides a standard procedure to obtain a
consistent estimator. In the context of distribution estimator,
a CD does not have to be a fiducial distribution. However,
under suitable conditions, a fiducial distribution often has
good frequentist properties and thus a CD.

29.3.3 A User-Friendly Formula for GFD

While Definition (29.6) for GFD is conceptually and mathe-
matically appealing, it is not clear how to compute the limit in
most of practical situations. The following theorem proposed
by [41] provides a computational tool.

Theorem 29.3.1 Under certain assumptions, the limiting
distribution in (29.6) has a density

r(θ |y) = f (y, θ)J(y, θ)
∫

�
f (y, θ ′)J(y, θ ′) dθ ′ , (29.7)

where f (y, θ) is the likelihood and the function

J(y, θ) = D

(

d

dθ
G(u, θ)

∣

∣

∣

∣

u=G−1(y,θ)

)

. (29.8)

If (i) n = p, then D(A) = | detA|. Otherwise the
function D(A) depends on the norm used; (ii) the l∞

norm gives D(A) = ∑

i=(i1,...,ip)
|det(A)i|;1 (iii) under an

additional assumption stated in [41], the l2 norm gives
D(A) = (detA�A)1/2.

Hannig et al. [41] recommended using (ii) for practition-
ers. A nice property of GFD is that GFD is invariant under
smooth re-parameterizations. This property follows directly
from (29.6), since for an appropriate selection of minimizers
and any one-to-one function θ = φ(η),

φ

(

arg min
η	

‖y−G(U	,φ(η	))‖
)

= arg min
θ	

‖y−G(U	, θ	)‖.

Note that GFD could change with transformations of the
data generating equation. Assume that the observed dataset
has been transformed by a one-to-one smooth transformation
Z = T(Y). By the chain rule, the GFD based on this new
data generating equation and observed data z = T(y) is the
density (29.7) with the Jacobian function

JT(z, θ) = D

(

d

dy
T(y) · d

dθ
G(u, θ)

∣

∣

∣

∣

u=G−1(y,θ)

)

, (29.9)

where for simplicity we write y instead of T−1(z).

29.3.4 Examples of GFD

In this section we will consider two examples, linear regres-
sion and uniform distribution. In the first case, the GFD is
the same as Bayes posterior with respect to the independence
Jeffreys prior, while in the second case, the GFD is not a
Bayes posterior with respect to any prior (that is not data
dependent).

Linear Regression [41] We consider a generalized fiducial
approach to regression problem.We express linear regression
via the data generating equation,

Y = G(U, θ) = Xβ + σU,

where Y is the dependent variables, X is the design matrix,
θ = (β, σ) are the unknown parameters, and U is a random
vector with known density f (u) independent of θ and X. Note
that d

dθG(U, θ) = (X,U) and U = (y− Xβ)/σ ; the Jacobian
in (29.9) using the l∞ norm simplifies to

1In (ii) the sum spans over
(n
p

)

of p-tuples of indexes i = (1 ≤ i1 <

· · · < ip ≤ n). For any n× p matrix A, the sub-matrix (A)i is the p× p
matrix containing the rows i = (i1, . . . , ip) of A.
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J∞(y, θ) = σ−1

∑

i=(i1,...,ip)
1≤i1<···<ip≤n

|det (X, Y)i| ,

and the density of GFD is

r(β, σ |y) ∝ σ−n−1f ((Y − Xβ)/σ).

The fiducial solution is the same as the Bayesian solution
using Jeffreys prior [5]. Furthermore, by a simple calculation,
the Jacobian with l2 norm differs from J∞(y, θ) only by a
constant; the GFD remains unchanged.

GFD in Irregular Models [41] We consider an irregular
model U

(

a(θ) − b(θ), a(θ) + b(θ)
)

. The reference prior for

this model has been shown complex in Theorem 8 from [7].
Considering GFD approach, we first express the observed
data by the following data generating equation:

Yi = a(θ) + b(θ)Ui, Ui
i.i.d.∼ U(−1, 1).

By simple algebra,

d

dθ
G(u, θ) = a′(θ) + b′(θ)U with U = b−1(θ)(Y − a(θ)).

If a′(θ) > |b′(θ)|, (29.8) simplifies to

J1(y, θ) = n[a′(θ) − a(θ){log b(θ)}′ + ȳn{log b(θ)}′],

and the GFD is

r1(θ |y) ∝ a′(θ) − a(θ){log b(θ)}′ + ȳn{log b(θ)}′
b(θ)n

I{a(θ)−b(θ)<y(1) & a(θ)+b(θ)>y(n)}.

Consider an alternative fiducial solution, which constructs
the GFD based on the minimal sufficient and ancillary statis-
tics Z = {h1(Y(1)), h2(Y(n)), (Y−Y(1))/(Y(n) −Y(1))}�, where

Y(1), Y(n) are order statistics, h−1
1 (θ) = EY(1) = a(θ) −

b(θ)(n− 1)/(n+ 1) and h−1
2 (θ) = EY(n) = a(θ) + b(θ)(n−

1)/(n+ 1). By a simple calculation,

J2(y, θ) = (w1 + w2)

[

a′(θ) − a(θ){log b(θ)}′ + w1y(1) + w2y(n)
w1 + w2

{log b(θ)}′
]

,

r2(θ |y) ∝ I{a(θ)−b(θ)<y(1) & a(θ)+b(θ)>y(n)}
[(w1 + w2)[a′(θ) − a(θ){log b(θ)}′] + (w1y(1) + w2y(n)){log b(θ)}′]−1 b(θ)n

,

where w1 = h′
1(y(1)) and w2 = h′

2(y(n)).
Hannig et al. [41] performed extensive simulation studies

for a particular caseU(θ , θ2) comparingGFD to the Bayesian
posteriors with the reference priorπ(θ) = (2θ−1)

θ(θ−1)e
ψ( 2θ

2θ−1 ) [7]2

and flat prior π(θ) = 1. The simple GFD, the alternative
GFD, and the reference prior Bayes posterior maintain nomi-
nal coverage for all parameter settings. However, the flat prior
Bayes posterior does not have a satisfactory coverage, with
the worst departures from nominal coverage for small sample
size and large parameter θ .

Nonparametric Fiducial Inference with Right-Censored
Data [17] Let failure times Xi (i = 1, . . . , n) follow the true
distribution functionF0 and censoring timesCi (i = 1, . . . , n)
have the distribution function R0. We treat the situation when
failure and censoring times are independent and unknown.

2ψ(x) is the digamma function defined by ψ(z) = d
dz log(�(z)) for z >

0, where � is gamma function.

Suppose we observe right-censored data {yi, δi} (i = 1, . . . n),
where yi = xi∧ci is the minimum of xi and ci, δi = I{xi ≤ ci}
denotes censoring indicator.

Consider the following data generating equation:

Yi = F−1(Ui) ∧ R−1(Vi), �i = I{F−1(Ui) ≤ R−1(Vi)}
(i = 1, . . . n),

where Ui, Vi are independent and identically distributed
U(0, 1).

For a failure event δi = 1, we have full information about
failure time xi, i.e., xi = yi, and partial information about
censoring time ci, i.e., ci ≥ yi. Thus,

F−1(ui) = yi ⇐⇒ F(yi) ≥ ui, F(yi − ε) < ui for any ε > 0.

For a censored event δi = 0, we only know partial
information about xi, i.e., xi > yi, and full information on
ci, i.e., ci = yi. Similarly,
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F−1(ui) > yi ⇐⇒ F(yi) < ui,

R−1(vi) = yi ⇐⇒ R(yi) ≥ vi, R(yi − ε) < vi for any ε > 0.

The complete inverse map of the data generating equation
is

QF,R(y, δ, u, v) =
⋂

i

QF,R
δi

(yi, ui, vi) = QF(y, δ, u)×QR(y, δ, v),

(29.10)
where

QF(y, δ, u) =
{

F :
{

F(yi) ≥ ui, F(yi − ε) < ui for any ε > 0 for all i such that δi = 1

F(yj) < uj for all j such that δj = 0

}

, (29.11)

and QR(y, δ, v) is analogous.
Let (U∗, V∗) be an independent copy of (U, V). Because

the inverse (29.10) separates into a Cartesian product, and of
the fact thatU∗ and V∗ are independent, the marginal fiducial
distribution for the failure distribution function F is

QF(y, δ, U∗) | {QF(y, δ, U∗) �= ∅}.

Figure 29.4 from [17] demonstrates the survival func-
tion representation of QF(y, δ, u), as defined in Eq. (29.11),
for one dataset with n = 8 observations of X following
Weibull(20, 10) censored by Z following Exp(20). Each of
the panels corresponds to a different value of u, where each
u is a realization of U∗. Any survival function lying between
the upper red and the lower black fiducial survival functions
corresponds to an element of the closure of QF(y, δ, u). The
technical details of sampling refer to Algorithm 1 in [17]. The
corresponding fiducial-based confidence intervals proposed
in [17] maintain coverage in situations where asymptotic
methods often have substantial coverage problems. Further-
more, as also shown in [17], the average length of their log-
interpolation fiducial confidence intervals is often shorter
than the length of confidence intervals for competing meth-
ods that maintain coverage. As pointed by [80], it would also
be interesting to consider other choices of fiducial samples
such as monotonic spline interpolation.

GFDs for Discrete Distributions [41] Let Y be a random
variable with distribution function F(y|θ). Assume there is
Y so that Pθ (Y ∈ Y) = 1 for all θ , and for each fixed y ∈ Y,
the distribution function is either a nonincreasing function of
θ , spanning the whole interval (0, 1), or a constant equal to 1;
the left limit F(y−|θ) is also either a nonincreasing function
of θ spanning the whole interval (0, 1) or a constant equal
to 0.

Define F−(a|θ) = inf{y : F(y|θ) ≥ a}. It is well known
[11] that if U ∼ U(0,1), Y = F−(U|θ) has the correct
distribution and we use this association as a data generating
equation. It follows that both Q+

y (u) = sup{θ : F(y|θ) = u}
and Q−

y (u) = inf{θ : F(y−|θ) = u} exist and satisfy
F(y|Q+

y (u)) = u and F(y−|Q−
y (u)) = u. Consequently,

P(Q+
y (u) ≤ t) = 1 − F(y|t) and

P(Q−
y (u) ≤ t) = 1 − F(y−|t).

Note that for all u ∈ (0, 1), the function F−(u|θ) is nonin-
creasing in θ and the closure of the inverse image Q̄y(u) =
{Q−

y (u), Q+
y (u)}. The half-corrected GFD has distribution

function

R(θ |y) = 1 − F(y|θ) + F(y−|θ)

2
.

If either of the distribution functions is constant, we interpret
it as a pointmass at the appropriate boundary of the parameter
space. Analogous argument shows that if the distribution
function and its left limit were nondecreasing in θ , the half-
corrected GFD would have distribution function

R(θ |y) = F(y|θ) + F(y−|θ)

2
.

Hannig et al. [41] provide a list of the half-corrected GFDs
for three well-known discrete distributions. Let Beta(0, n +
1) and Beta(x + 1, 0) denote the degenerate distributions
on 0 and 1, respectively. Let �(0, 1) denote the degenerate
distribution on 0:

• X ∼ Binomial(m, p) with m known. GFD is the mixture
of Beta(x+ 1, m− x) and Beta(x, m− x+ 1) distributions
[37].

• X ∼ Poisson(λ). GFD is the mixture of �(x + 1, 1) and
�(x, 1) distributions [22].

• X ∼ Negative Binomial(r, p) with r known. GFD is the
mixture of Beta(r, x−r+1) and Beta(r, x−r) distributions
[38].

Model Selection via GFD [41] Hannig and Lee [39] intro-
duced model selection into the generalized fiducial inference
paradigm in the context of wavelet regression. Two impor-
tant ingredients are needed for fiducial model selection: (1)
include the choice of model as one of the parameters; (2)
include penalization in the data generating equation.

Consider a finite collection of modelsM. The data gener-
ating equation is
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Fig. 29.4 Two realizations of fiducial curves for a sample of size 8
from Weibull(20, 10) censored by Exp(20) [17]. Here fiducial curves
refer to Monte Carlo samples SLi , S

U
i , and S

I
i (i = 1, 2) from the GFD.

The red and black curves are corresponding realizations of the upper

and lower fiducial survival functions. The green curve is the log-linear
interpolation type of survival functions. The circle points denote failure
observations. The triangle points denote censored observations. The
dashed blue curve is the true survival function of Weibull(20, 10)

Y = G(M, θM,U), M ∈M, θM ∈ �M, (29.12)

where Y is the observation, M is the model considered, θM
includes the parameters associated with modelM, and U is a
random vector of with fully known distribution independent
of any parameters. Hannig and Lee [39] proposed a novel
way of adding a penalty into the fiducial model selection. In
particular, for each model M, they proposed to augment the
data generating equation (29.12) by

0 = Pk, k = 1, . . . ,min(|M|, n), (29.13)

where Pk are independent and identically distributed continu-
ous random variables independent of U with fP(0) = q and q
is a constant determined by the penalty. Hannig and Lee [39]
recommended using q = n−1/2 as the default penalty. Note
that the number of additional equations is the same as the
number of unknown parameters in the model. As we never
actually observe the outcomes of the extra data generating
equations, we will select their values as pi = 0.

For the augmented data generating equation, we have the
following theorem from [41]. The quantity r(M|y) can be
used for inference in the usual way. For example, fiducial
factor, the ratio r(M1|y)/r(M2|y), can be used in the same
way as a Bayes factor, as discussed in [6] in the context of
Bayesian model selection.

Theorem 29.3.2 ([41]) Suppose |M| ≤ n and certain as-
sumptions hold; the marginal generalized fiducial probabil-
ity of model M is

r(M|y) = q|M| ∫
�M

fM(y, θM)JM(y, θM) dθM
∑

M′∈M q|M′| ∫
�M′ fM′(y, θM′)JM′(y, θM′) dθM′

,

(29.14)

where fM(y, θM) is the likelihood and JM(y, θM) is the Jaco-
bian function computed using (29.9) for each fixed model M.

For more details on the use of fiducial model selection, see
[39] and [43].

29.4 Applications and Numerical Examples

29.4.1 CD-Based Inference

Two-Parameter Exponential Distribution Inference
procedures based on the two-parameter exponential model,
Exp(μ, σ), are extensively used in several areas of statistical
practice, including survival and reliability analysis. The
probability distribution function and cumulative distribution
function of a random variable X ∼ Exp(μ, σ) are given,
respectively, by

f (x) = 1

σ
exp

{

− x− μ

σ

}

,

F(x) =

⎧

⎪

⎨

⎪

⎩

1 − exp
{

− x−μ

σ

}

if x > μ,

0 if x ≤ μ,



586 Y. Cui and M. Xie

and survival function (also known as reliability function) is
S(x) = 1−F(x). The inference problem of interest is to obtain
confidence intervals (sets) of μ, σ and S(t) at a given t > 0.

Let X(1), . . . , X(k) be the k (k > 1) smallest observations
among X1, . . . , Xn. Then the maximum likelihood estimator
of μ and σ are

μ̂ = X(1), and σ̂ = 1

k

{

k
∑

i=1

X(i) + (n− k)X(k) − nX(1)

}

.

It turns out that μ̂ and σ̂ are independent and they follow the
distributions

U = 2n(μ̂ − μ)/σ ∼ χ2(2), V = 2kσ̂ /σ ∼ χ2(2k − 2),
(29.15)

respectively. Here χ2(m) is the chi-square distribution with
degree of freedom m. We provide below a simple CD-based
method to answer the inference problem of interest.

From Eq. (29.15), we have

n(μ̂ − μ)

kσ̂
= U/2

V/(2k − 2)
∼ F(2, 2k − 2),

where F(a, b) is the F-distribution with degrees of freedom
a and b. By the pivot-based CD construction method [78,
p134], a CD for μ is H1(μ) = 1 − FF(2,2k−2)(

n(μ̂−μ)

kσ̂ ),
where FF(2,2k−2) is the cumulative distribution function of
F(2, 2k − 2)-distribution. Similarly, a CD for σ is H2(σ ) =
1−Fχ2(2k−2)(

2k(̂σ )

σ
), where Fχ2(2k−2) is the cumulative distri-

bution function of χ2(2k − 2)-distribution. Inferential state-
ments regarding μ and σ , including confidence intervals
and testing results, can be obtained from these two CDs.
Coverage rates and test errors obtained from these two CDs
are exact.

We can also consider the inference for (μ, σ) jointly. Here,
we introduce a simulation-based approach. Let U∗ ∼ χ2(2)
andV∗ ∼ χ2(2k−2) be two independently simulated random
numbers. Define

ξ ∗ = μ̂ − kσ̂

n

U∗

V∗ and ζ ∗ = 2kσ̂

V∗ .

Then, ξ ∗|(μ̂, σ̂ ) ∼ H1(μ) and ζ ∗|(μ̂, σ̂ ) ∼ H2(σ ), and
they are called CD random variables [90]. Furthermore,
the underlying joint distribution of (ξ ∗, ζ ∗), given (μ̂, σ̂ ),
is a joint CD function H3(μ, σ) of (μ, σ). If we simulate
a large number of, say M, copies of (U∗, V∗), then we
can get M copies of (ξ ∗, ζ ∗). In order to make inference
statements about (μ, σ), we can treat these M copies of
(ξ ∗

1 , ζ
∗
1 ), . . . , (ξ ∗

M, ζ
∗
M) as if they were M copies of bootstrap

estimators in bootstrap inference or as if they wereM copies
of random samples from the posterior distribution of (μ, σ)

in a Bayesian inference.

Additionally, we can also use the M copies of CD ran-
dom variables (ξ ∗

1 , ζ
∗
1 ), . . . , (ξ ∗

M, ζ
∗
M) to obtain a pointwise

confidence band for S(t), t > 0. For each given t > 0, we
compute κ∗

j (t) = exp{−(t− ξ ∗
j )/ζ ∗

j }, for j = 1, . . . , M. Then
[κ∗

[αM](t),+∞) and [κ∗
[ α
2M](t), κ

∗
[ (1−α)

2 M](t)] are the one-sided

and two-sided level-α confidence intervals of S(t), respec-
tively, where κ∗

[qM](t) is the q-th quantile of κ∗
1 (t), . . . , κ

∗
M(t).

Now by varying t, [κ∗
[αM](t),+∞) forms a level-α lower

confidence band, and [κ∗
[ α
2M](t), κ

∗
[ (1−α)

2 M](t)] forms a level-α

confidence band for the survival function S(t).

We can show that this set of exact confidence bands
derived from the CD method matches with those obtained
in [69] using Tsui and Weerahandi’s generalized inference
approach [83], but the CD approach is very simple and more
direct. Roy and Mathew [69] illustrated the 95% lower limit
˜S(t) for time ranging from 150 to 2000 in Figure 1 of [69]
using a real data example with 19 observations taken from
[45]. The data deal with mileages for military personnel
carriers that failed in service. Figure 29.5 is a similar plot for
the confidence band, using our CD approach withM = 1000.

Data [45]:
162, 200, 271, 320, 393, 508, 539, 629, 706, 777, 884, 1008,
1101, 1182, 1463, 1603, 1984, 2355, 2880

Bivariate Normal Correlation Suppose we have the fol-
lowing bivariate normal distribution:

N
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μ1

μ2

)

,

(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2
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,
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Fig. 29.5 Point estimate (solid line) and 95% confidence band (dashed
line) of CD-based inference
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and let ρ denote the correlation coefficient. One could use the
asymptotic pivot, Fisher’s Z [27, 78],

1

2
log

1 + r

1 − r
− 1

2
log

1 + ρ

1 − ρ
,

where r is the sample correlation. The limiting distribution of
the above pivot is N(0, 1

n−3 ). Therefore, the asymptotic CD is

Hn(ρ) = 1 − �

(√
n− 3

[

1

2
log

1 + r

1 − r
− 1

2
log

1 + ρ

1 − ρ

])

, − 1 ≤ θ ≤ 1.

Figure 29.6 presents the CD of correlation coefficient ρ for
a simulated dataset with n = 50,μ1 = μ2 = 1, σ1 = σ2 =
1, ρ = 0.5.
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Fig. 29.6 CD of the correlation coefficient ρ
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Fig. 29.7 (a) Kaplan-Meier estimators for two treatment groups [17]. (b) Difference of two sample fiducial distributions

In addition to the above two examples, there also are
recent developments of CDs on causal inference; see more
applications in [54].

29.4.2 Nonparametric GFD-Based Inference

[17] proposed a fiducial approach to testing reliability func-
tion with an infinite dimensional parameter. Their approach
does not assume a parametric distribution and is robust to
model mis-specification. In [17], they considered a clinical
trial of chemotherapy against chemotherapy combined with
radiotherapy in the treatment of locally unresectable gastric
cancer conducted by the Gastrointestinal Tumor StudyGroup
[70]. In this trial, 45 patients were randomized to each of
the 2 groups and followed for several years. The censoring
percentage is 13.3% for the combined therapy group, and
4.4% for the chemotherapy group.We are interested in testing
whether the two treatment groups have the same survival
functions.

The Kaplan-Meier curves for these two datasets are pre-
sented in Fig. 29.7a. We notice that the two hazards appear to
be crossing, which could pose a problem for some log-rank



588 Y. Cui and M. Xie

tests. In this instance, the fiducial approach gives a small p-
value 0.002. The p-values of other types of log-rank tests are
reported in [17]. To explain why their proposed fiducial ap-
proach works good, they plot the sample of the difference of
two fiducial distributions in Fig. 29.7b. If these two datasets
are from the same distribution, 0 should be well within the
sample curves. However, from Fig. 29.7b, we could see that
the majority of curves are very far away from 0 on the
interval [0.5, 1]. This gives strong evidence that the group

with combined therapy has significantly worse early survival
outcomes.

In [17], they choose to use the sup-norm in the defi-
nition of the curvewise confidence intervals and tests. It
could be possible to make the procedure more powerful
by using a different (possibly weighted) norm [64]. Simi-
larly, it might also be possible to use the choice of norm
motivated by inferential models [18, 58, 61]. Besides the
above example, there also are recent developments of non-

Table 29.1 Inference on correlation coefficient: combining independent bivariate normal studies

Methods 95% CI CDs

Fisher’s Z method (0.348,0.845)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D

Bootstrap BCa (0.317,0.818)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D

Profile likelihood (0.346,0.827)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D

Bayes (uniform prior) (0.188,0.790)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D

Combination (0.505,0.760)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D
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parametric fiducial inference on interval-censored data and
Efron’s empirical Bayes deconvolution; see [19,20] for more
applications.

Data [70]: (* indicates a censored event)
Combination group: 0.05 0.12 0.12 0.13 0.16 0.20 0.20 0.26
0.28 0.30 0.33 0.39 0.46 0.47 0.50 0.51 0.53 0.53 0.54 0.57
0.64 0.64 0.70 0.84 0.86 1.10 1.22 1.27 1.33 1.45 1.48 1.55
1.58 1.59 2.18 2.34 3.74 4.32 5.64 6.61* 6.81* 7.66* 7.68*
8.04* 8.19*
Chemotherapy group: 0.00 0.17 0.29 0.35 0.50 0.59 0.68 0.72
0.82 0.82 0.94 0.97 0.98 0.98 1.04 1.05 1.05 1.06 1.08 1.12
1.26 1.34 1.37 1.43 1.44 1.47 1.54 1.56 1.85 1.85 2.05 2.13
2.15 2.18 2.62 2.65 2.74 3.41 3.48 3.89 4.25 4.64 6.47 7.55*
8.08*

29.4.3 Combining Information fromMultiple
CDs

We use simple cluster of differentiation 4 (cd-4) count data
considered in [23] to demonstrate combining information
from CDs. Twenty HIV-positive subjects received an
experimental antiviral drug. The cd-4 counts in hundreds
were recorded for each subject at baseline and after 1 year of
treatment.

We obtained the summary statistics and simulated four
independent datasets from the following bivariate normal
distribution:

N

((

μ1

μ2

)

,

(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

))

,

where μ1 = 3.288, μ2 = 4.093, σ 2
1 = 0.657, σ 2

2 = 1.346,
and ρ = 0.723.

Suppose each study makes its own inference conclu-
sion individually. Each dataset was analyzed by Fisher’s Z
method [27, 76], the bias-corrected and accelerated (BCa)
bootstrap [10, 21, 23], the profile likelihood approach [48],
and Bayesian with uniform prior [1], respectively. One nat-
ural question we would like to ask is if we can combine
the inferences from four independent studies, given that ρ

is the same in all studies. The answer is yes. As introduced in
Section 29.2.3, combination of CDs is a powerful inferential
tool. We fused studies by combining p-values (Stouffer)
[55, 95].

The results of the analysis are summarized in Table 29.1.
As we can see from the table, four methods in different
studies provide more or less similar results, and the com-
bined interval is much shorter than any of the four indi-
vidual intervals. In order to study the performance of the
combination of CDs in this situation, we present a sim-
ulation study with 200 replications. Table 29.2 shows the

Table 29.2 Combination of four independent bivariate normal studies
via CDs

Methods Coverage Mean length (sd) of 95% CIs

Fisher’s Z method 0.948 0.484 (0.140)

Bootstrap BCa 0.936 0.464 (0.156)

Profile likelihood 0.918 0.436 (0.131)

Bayes (uniform prior) 0.964 0.522 (0.128)

Combination 0.954 0.226 (0.041)

coverage and average length of 95% CIs. We see that not
only the combined approach maintains the desired coverage
but also the length of CIs is roughly half of the lengths
of CIs from individual studies. This result is as expected,
since theoretically each study provides a n−1/2-CIs and the
sample size of combined data is 4n so we expect to obtain
(4n)−1/2-CI.

Data [23]:
Baseline: 2.12, 4.35, 3.39, 2.51, 4.04, 5.10, 3.77, 3.35, 4.10,
3.35, 4.15, 3.56, 3.39, 1.88, 2.56, 2.96, 2.49, 3.03, 2.66, 3.00
One year: 2.47, 4.61, 5.26, 3.02, 6.36, 5.93, 3.93, 4.09,
4.88, 3.81, 4.74, 3.29, 5.55, 2.82, 4.23, 3.23, 2.56, 4.31,
4.37, 2.40
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