
25Software Reliability Modeling and Prediction

Hoang Pham and Xiaolin Teng

Contents
25.1 A Generalized NHPP Software Reliability Model . . . 483

25.2 Generalized Random Field Environment (RFE)
Model . 483

25.3 RFE Software Reliability Models 484
25.3.1 γ -RFE Model . 484
25.3.2 β-RFE Model . 485

25.4 Parameter Estimation . 486
25.4.1 Maximum Likelihood Estimation (MLE) 486
25.4.2 Mean-Value Function Fits . 487
25.4.3 Software Reliability . 488
25.4.4 Confidence Interval . 488
25.4.5 Concluding and Remarks . 491

25.5 A RFE Model with Vtub-Shaped Fault-Detection
Rate . 492

25.5.1 Model Criteria . 492
25.5.2 Model Analysis . 492

References . 493

Abstract

After a brief overview of existing models in software
reliability in Sects. 25.1 and 25.2 discusses a generalized
nonhomogeneous Poisson process model that can be used
to derive most existing models in the software reliability
literature. Section 25.3 describes a generalized random
field environment (RFE) model incorporating both the
testing phase and operating phase in the software devel-
opment cycle for estimating the reliability of software
systems in the field. In contrast to some existing models
that assume the same software failure rate for the software

H. Pham (�)
Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA
e-mail: hopham@soe.rutgers.edu

X. Teng
Dotdash Meredith, New York, NY, USA
e-mail: xiaolin93@yahoo.com

testing and field operation environments, this generalized
model considers the random environmental effects on
software reliability. Based on the generalized RFE model,
Sect. 25.4 describes two specific RFE reliability models,
the γ -RFE and β-RFE models, for predicting software
reliability in field environments. Section 25.5 illustrates
themodels using telecommunication software failure data.
Some further considerations based on the generalized
software reliability model are also discussed.

Keywords

Reliability prediction · Software testing · Software
reliability · Software development process · Software
failure · Model criteria

Many software reliability models have been proposed to help
software developers and managers understand and analyze
the software development process, estimate the development
cost, and assess the level of software reliability. Among these
software reliability models, models based on the nonhomo-
geneous Poisson process (NHPP) have been successfully
applied to model the software failure processes that possess
certain trends such as reliability growth or deterioration.
NHPP models seem to be useful to predict software failures
and software reliability in terms of time and to determine
when to stop testing and release the software [1].

Currently most existing NHPP software reliability models
have been carried out through the fault intensity rate function
and the mean-value functions (MVF)m(t) within a controlled
operating environment [2–55]. Obviously, different models
use different assumptions and therefore provide different
mathematical forms for the mean-value function m(t). Table
25.1 shows a summary of several existing models appearing
in the software reliability engineering literature [14]. Gen-
erally, these models are applied to software testing data and
then to make predictions of software failures and reliability

© Springer-Verlag London Ltd., part of Springer Nature 2023
H. Pham (ed.), Springer Handbook of Engineering Statistics, Springer Handbooks,
https://doi.org/10.1007/978-1-4471-7503-2_25

481

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-7503-2_25&domain=pdf
mailto:hopham@soe.rutgers.edu
mailto:xiaolin93@yahoo.com
https://doi.org/10.1007/978-1-4471-7503-2_25

482 H. Pham and X. Teng

Table 25.1 Summary of NHPP software reliability models [44, 50]

Model name MVF [m(t)]

Goel–Okumoto (G–O) m(t) = a(1 − e−bt)
Delayed S-shaped m(t) = a[1 − (1 + bt)e−bt]

Inflection S-shaped SRGM m(t) = a
(
1−e−bt

)

1+βe−bt

HD/G–O model m(t) = log
[
(ea − c) /

(
eae

−bt − c
)]

Yamada exponential m(t) = a
(
1 − e−rα(1−e(−βt)

))

Yamada Rayleigh m(t) = a

⎛

⎝1 − e
−rα

(
1−e(−βt2/2)

)⎞

⎠

Yamada imperfect debugging model (1) m(t) = ab
α+b

(
eαt − e−bt)

Yamada imperfect debugging model (2) m(t) = a
(
1 − e−bt) (1 − α

b

)+ αat

PNZ model m(t) = a
1+β

e−bt [(1 − e−bt) (1 − α
b

)+ αat
]

Pham–Zhang model m(t) = 1
1+βe−bt

[
(c+ a)

(
1 − e−bt)− a

b−α

(
e−αt − e−bt)

]

Dependent-parameter model (Model 1) [26] m(t) = α(1 + γ t)(γ t + e−γ t − 1)

Dependent-parameter model with m(t0) �= 0 (Model 1a) [26]
m(t) = m0

(
γ t+1
γ t0+1

)
e−γ (t−t0)

+ α (γ t + 1)
[
γ t − 1 + (1 − γ t0) e−γ (t−t0)]

Vtub-shaped fault-detection rate model [28] m(t) = N

(
1 −

(
β

β+atb−1

)α)

Pham Inflexion model [29] m(t) = N

⎛

⎝1 − 1
(

β+ebt
1+β

) a
b

⎞

⎠

Logistic fault-detection model [44] m(t) = a

1+d
(

1+β

β+ebt

)

Pham-Zhang model [8] m(t) = 1
1+βe−bt

(
(c+ a)

(
1 − e−bt)− a

b−α

(
e−αt − e−bt)

)

in the field. The underlying assumption for this application
is that the field environments are the same as, or close to, a
testing environment; this is valid for some software systems
that are only used in one environment throughout their entire
lifetime. However, this assumption is not valid for many
applications where a software program may be used in many
different locations once it is released.

The operating environments for the software in the field
are quite different. The randomness of the field environment
will affect software failure and software reliability in an
unpredictable way. Yang and Xie [15] mentioned that the op-
erational reliability and testing reliability are often different
from each other, but they assumed that the operational failure
rate is still close to the testing failure rate, and hence that the
difference between them is that the operational failure rate
decreases with time, while the testing failure rate remains
constant. Zhang et al. [16] proposed an NHPP software relia-
bility calibration model by introducing a calibration factor.
This calibration factor, K, obtained from software failures
in both the testing and field operation phases will be a
multiplier to the software failure intensity. This calibrated
software reliability model can be used to assess and adjust
the predictions of software reliability in the operation phase.

Instead of relating the operating environment to the failure
intensity λ, in this chapter we assume that the effect of

the operating environment is to multiply the unit failure-
detection rate b(t) achieved in the testing environment using
the concept of the proportional hazard approach suggested
by Cox [56]. If the operating environment is more liable to
software failure, then the unit fault-detection rate increases
by some factor η greater than 1. Similarly, if the operating
environment is less liable to software failure, then the unit
fault-detection rate decreases by some positive factor η less
than 1.

This chapter describes a model based on the NHPP model
framework for predicting software failures and evaluating the
software reliability in random field environments. A general-
ized random field environment (RFE) model incorporating
both the testing phase and operating phase in the software
development cycle with Vtub-shaped fault-detection rate is
discussed. An explicit solution of the mean value function
for this model is derived. Numerical results of some selected
NHPP models are also discussed based on existing crite-
ria such as mean squared error (MSE), predictive power,
predictive-ratio risk, and normalized criteria distance from
a set of software failure data.

Based on this model, developers and engineers can further
develop specific software reliability models customized to
various applications.

25 Software Reliability Modeling and Prediction 483

25

Notations

R(t) Software reliability function

η Random environmental factor

G(η) Cumulative distribution function of η

γ Shape parameter of gamma distributions

θ Scale parameter of gamma distributions

α,β Parameters of beta distributions

N(t) Counting process which counts the number of
software failures discovered by time t

m(t) Expected number of software failures detected by
time t, m(t) = E[N(t)]

a(t) Expected number of initial software faults plus
introduced faults by time t

m1(t) Expected number of software failures in testing by
time t

m2(t) Expected number of software failures in the field by
time t

a1(t) Expected number of initial software faults plus
introduced faults discovered in the testing by time t

a Number of initial software faults at the beginning of
testing phase, is a software parameter that is directly
related to the software itself

T Time to stop testing and release the software for field
operations

aF Number of initial software faults in the field (at
time T)

b(t) Failure detection rate per fault at time t, is a process
parameter that is directly related to testing and
failure process

p Probability that a fault will be successfully removed
from the software

q Error introduction rate at time t in the testing phase

MLE Maximum likelihood estimation

RFE-model Software reliability model subject to a random field
environment

γ -RFE Software reliability model with a gamma distributed
field environment

β-RFE Software reliability model with a beta distributed
field environment

NHPP Nonhomogeneous Poisson process

SRGM Software reliability growth model

HD Hossain–Ram

PNZ Pham–Nordman–Zhang

G–O Goel–Okumoto

MLE Maximum likelihood estimation

RFE Random field environment

25.1 A Generalized NHPP Software
Reliability Model

A generalized NHPP model studied by Zhang et al. [7] can
be formulated as follows:

m′(t) = ηb(t) [a(t) − pm(t)] , (25.1)

a′(t) = q · m′(t), (25.2)

where m(t) is the number of software failures expected to be
detected by time t. If the marginal conditions are given as
m(0) = 0 and a(0) = a, then for a specific environmental
factor η, the solutions to (25.1) and (25.2) are, given in [7],
as follows

mη(t) = a
∫ t

0
ηb(u)e−∫ u0 η(p−q)b(τ)dτdu, (25.3)

aη(t) = a

[
1 +

∫ t

0
ηqb(u)e−∫ u0 η(p−q)·b(τ)dτdu

]
. (25.4)

This is the generalized form of the NHPP software relia-
bility model. When p = 1, η = 1, and q = 0, then for any
given function a(t) and b(t), all the functions listed in Table
25.1 can easily be obtained.

25.2 Generalized Random Field
Environment (RFE) Model

The testing environment is often a controlled environment
with much less variation compared to the field environ-
ments, which may be quite different for the field application
software. Once a software program is released, it may be
used in many different locations and various applications
in industries. The operating environments for the software
are quite different. Therefore, the randomness of the field
environment will affect the cumulative software failure data
in an unpredictable way.

Figure 25.1 shows the last two phases of the software
life cycle: in-house testing and field operation [18]. If T is
the time to stop testing and release the software for field
operations, then the time period 0 ≤ t ≤ T refers to the time
period of software testing, while the time period T ≤ t refers
to the postrelease period – field operation.

The environmental factor η is used to capture the uncer-
tainty about the environment and its effects on the software
failure rate. In general, software testing is carried out in a
controlled environment with very small variations, which
can be used as a reference environment where η is constant
and equals to 1. For the field operating environment, the

0 tT

In-house-testing θ =1 Field operation

θ =random variable

Fig. 25.1 Testing versus field environment where T is the time to stop
testing and release the software

484 H. Pham and X. Teng

environmental factor η is assumed to be a non-negative ran-
dom variable (RV) with probability density function (PDF)
f (η), that is,

η =
{
1 t ≤ T
RV with PDF f (η) t ≥ T

. (25.5)

If the value of η is less than 1, this indicates that the condi-
tions are less favorable to fault detection than that of testing
environment. Likewise, if the value of η is greater than 1,
it indicates that the conditions are more favorable to fault
detection than that of the testing environment.

From (25.3) and (25.5), the mean-value function and the
function a1(t) during testing can be obtained as

m1(t) = a
∫ t

0
b(u)e−∫ u0 (p−q)b(τ)dτdu t ≤ T,

a1(t) = a

[
1 +

∫ t

0
qb(u) × e−∫ u0 (p−q)·b(τ)dτdu

]
t ≤ T.

(25.6)

For the field operation where t ≥ T, the mean-value function
can be represented as

m2(t) =m1(T) +
∫ ∞

0
mη(t)f (η) dη = m1(T)

+
∫ ∞

0

[
aF

∫ t

T
ηb(u) × e−∫ uTη(p−q)b(τ)dτ du

]
f (η)dη t ≥ T

=m1(T) +
∫ t

T
aFb(u)

[∫ ∞

0
η × e−η

∫ u
T (p−q)b(τ)dτ f (η)dη

]
du,

(25.7)

where aF is the number of faults in the software at time
T. Using the Laplace transform formula, the mean-value
function can be rewritten as

m2(t) = m1(T)+
∫ t

T
aFb(u)×

(

− dF∗(s)
ds

∣∣
∣
∣
s= ∫ u

0 (p−q)b(τ)dτ

)

du,

t ≥ T

=m1(T)+ aF
(p− q)

×
∫ t

T

{
−dF∗

[
(p− q)

∫ u

T
b (τ) dτ

]}
,

where F*(s) is the Laplace transform of the PDF f (x) and

∫ ∞

0
xe−x·sf (x)dx = −dF∗(s)

ds

or, equivalently,

m2(t) = m1(T) − aF
(p−q) × F∗ [(p− q)

∫ u
T b (τ) dτ

]∣∣t
T
, t ≤ T

= m1(T) + aF
(p−q) × {

F∗(0) − F∗ [(p− q)
∫ t
T b (τ) dτ

]}
.

Notice that F∗(0) = ∫∞
0 e−0xf (x)dx = 1, so

m2(t) =m1(T) + aF
(p− q)

×
{
1 − F∗

[
(p− q)

∫ t

T
b (τ) dτ

]}
t ≥ T.

The expected number of faults in the software at time T is
given by

aF = a1(T) − pm1(T)

= a

[
1 −

∫ t

0
(p− q) b(u)e−∫ u0 (p−q)·b(τ)dτdu

]

= ae−∫ t0 (p−q)b(τ)dτ .

The generalized RFE model can be obtained as

m(t) =
⎧
⎨

⎩

a
(p−q)

(
1 − e−(p−q)∫ u0 b(τ)dτ

)
t ≤ T

a
(p−q)

{
1 − e−(p−q)∫ T0 b(τ)dτ × F∗ [(p− q)

∫ t
T b(τ)dτ

]
t ≥ T.

(25.8)

The model in (25.8) is a generalized software reliability
model subject to random field environments. The next sec-
tion presents specific RFE models for the gamma and beta
distributions of the random field environmental factor η.

25.3 RFE Software Reliability Models

Obviously, the environmental factor η must be non-negative.
Any suitable non-negative distribution may be used to de-
scribe the uncertainty about η. In this section, we present
two RFE models. The first model is a γ -RFE model, based
on the gamma distribution, which can be used to evaluate
and predict software reliability in field environments where
the software failure-detection rate can be either greater or
less than the failure detection rate in the testing environment.
The second model is a β-RFE model, based on the beta
distribution, which can be used to predict software reliability
in field environments where the software failure detection
rate can only be less than the failure detection rate in the
testing environment.

25.3.1 γ-RFEModel

In this model, we use the gamma distribution to describe
the random environmental factor η. This model is called the
γ -RFE model.

Assume that η follows a gamma distribution with a prob-
ability density function as follows:

25 Software Reliability Modeling and Prediction 485

25

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0 1 2 3 4 5

Fig. 25.2 A gamma density function

fγ (η) = θγ ηγ−1e−θ ·η

	 (γ)
, γ , θ > 0; η ≥ 0. (25.9)

The gamma distribution has sufficient flexibility and has
desirable qualities with respect to computations [18]. Figure
25.2 shows an example of the gamma density probability
function. The gamma function seems to be reasonable to de-
scribe a software failure process in those field environments
where the software failure-detection rate can be either greater
(i.e., η > 1) or less than (i.e., η < 1) the failure-detection rate
in the testing environment.

The Laplace transform of the probability density function
in (25.9) is

F∗(s) =
(

θ

θ + s

)γ

. (25.10)

Assume that the error-detection rate function b(t) is
given by

b(t) = b

1 + ce−b·t . (25.11)

where b is the asymptotic unit software-failure detection
rate and c is the parameter defining the shape of the learn-
ing curve, then from (25.8) the mean-value function of the
γ -RFE model can be obtained as follows

mγ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

a
(p−q)

[
1 −

(
1+c
ebt+c

)(p−q)]
t ≤ T,

a
(p−q)

[

1 −
(

1+c
ebT+c

)(p−q) ×
(

θ

θ+(p−q) ln
(
c+ebt

c+ebT

)

)γ]

t ≥ T.

(25.12)

25.3.2 β-RFEModel

This section presents a model using the beta distribution
that describes the random environmental factor η, called the
β-RFE model.

4

3

2

1

0
0 0.2 0.4 0.6 0.8 1

Fig. 25.3 A PDF curve of the beta distribution

The beta PDF is

fβ(η) = 	(α + β)

	(α) 	(β)
ηα−1(1 − η)β−1,

α > 0,β > 0; 0 ≤ η ≤ 1. (25.13)

Figure 25.3 shows an example of the beta density function. It
seems that the β-RFE model is a reasonable function to de-
scribe a software failure process in those field environments
where the software failure-detection rate can only be less
than the failure-detection rate in the testing environment. This
is not uncommon in the software industry because, during
software testing, the engineers generally test the software
intensely and conduct an accelerated test on the software in
order to detect most of the software faults as early as possible.

The Laplace transform of the PDF in (25.13) is

F∗
β(s) = e−s · HG ([β] , [α + β] , s

)
, (25.14)

where HG([β], [α + β], s) is a generalized hypergeometric
function such that

HG
(
[a1, a2, . . . , am] , [b1, b2, . . . , bn] , s

)

=
∞∑

k=0

⎛

⎝
sk

m∏

i=1

	(ai+k)
	(ai)

n∏

i=1

	(bi+k)
	(bi)

k!

⎞

⎠ .

Therefore,

F∗
β(s) = e−s

∞∑

k=0

(
	(α + β)	(β + k) sk

	(β) 	(α + β + k) k!
)

=
∞∑

k=0

(
	(α + β)	(β + k)

	(β) 	(α + β + k)

ske−s

k!
)

=
∞∑

k=0

(
	(α + β)	(β + k)

	(β) 	(α + β + k)
Poisson (k, s)

)
.

where the Poisson PDF is given by

Poisson (k, s) = ske−s

k! .

486 H. Pham and X. Teng

Using the same error-detection rate function in (25.11) and
replacing F*(s) by Fβ

*(s), the mean-value function of the
β-RFE model is

mβ(t)=
⎧
⎨

⎩

a
(p−q)

[
1 −

(
1+c
ebt+c

)(p−q)]
t ≤ T,

a
(p−q)

[
1 −

(
1+c
ebT+c

)(p−q)×
∞∑
k=0

(
	(α+β)	(β+k)Poisson(k,s)

	(β)	(α+β+k)
)]

t ≥ T.

(25.15)

where

s = (p− q)

[
ln
(
c+ ebt

c+ ebT

)]
.

The next section will discuss the parameter estimation
and illustrate the applications of these two RFE software
reliability models using software failure data.

25.4 Parameter Estimation

25.4.1 Maximum Likelihood Estimation (MLE)

We use the MLE method to estimate the parameters in these
twoRFEmodels. Let yi be the cumulative number of software
faults detected up to time ti, i = 1, 2, . . . , n. Based on the
NHPP, the likelihood function is given by

L =
n∏

i=1

[m (ti) − m (ti−1)]
yi−yi−1

(yi − yi−1)! e−[m(ti)−m(ti−1)]. (25.16)

The logarithmic form of the above likelihood function is

ln L =
n∑

i=1

{yi − yi−1} ln [m (ti) − m (ti−1)]

− [m (ti) − m (ti−1)] − ln [(yi − yi−1)!] .
(25.17)

In this analysis, the error-removal efficiency p is given.
Each model has five unknown parameters. For example, in
the γ -RFE model, we need to estimate the following five
unknown parameters: a, b, q, γ , and θ . For the β-RFEmodel,
we need to estimate: a, b, q, α, and β. By taking derivatives
of (25.17) with respect to each parameter and setting the
results equal to zero, we can obtain five equations for each
RFE model. After solving all those equations, we obtain the
maximum likelihood estimates (MLEs) of all parameters for
each RFE model.

Table 25.2 shows a set of failure data from a telecommuni-
cation software application during software testing [16]. The
column “Time” shows the normalized cumulative time spent
in software testing for this telecommunication application,

Table 25.2 Normalized cumulative failures and times during software
testing

Time Failures Time Failures Time Failures

0.0001 0.0249 0.0038 0.3483 0.0121 0.6766

0.0002 0.0299 0.0044 0.3532 0.0128 0.7015

0.0002 0.0647 0.0048 0.3682 0.0135 0.7363

0.0003 0.0647 0.0053 0.3881 0.0142 0.7761

0.0005 0.1095 0.0058 0.4478 0.0147 0.7761

0.0006 0.1194 0.0064 0.4876 0.0155 0.8159

0.0008 0.1443 0.0070 0.5224 0.0164 0.8259

0.0012 0.1692 0.0077 0.5473 0.0172 0.8408

0.0016 0.1990 0.0086 0.5821 0.0176 0.8458

0.0023 0.2289 0.0095 0.6119 0.0180 0.8756

0.0028 0.2637 0.0105 0.6368 0.0184 0.8955

0.0033 0.3134 0.0114 0.6468 0.0184 0.9005

Table 25.3 Normalized cumulative failures and their times in opera-
tion

Time Failures Time Failures Time Failures

0.0431 0.9055 0.3157 0.9751 0.7519 0.9900

0.0616 0.9104 0.3407 0.9751 0.7585 0.9900

0.0801 0.9204 0.3469 0.9751 0.7718 0.9900

0.0863 0.9254 0.3967 0.9751 0.7983 0.9900

0.1357 0.9303 0.4030 0.9801 0.8251 0.9900

0.1419 0.9353 0.4291 0.9851 0.8453 0.9900

0.1666 0.9453 0.4357 0.9851 0.8520 0.9900

0.2098 0.9453 0.4749 0.9851 0.9058 0.9900

0.2223 0.9502 0.5011 0.9851 0.9126 0.9900

0.2534 0.9502 0.5338 0.9851 0.9193 0.9900

0.2597 0.9502 0.5731 0.9851 0.9395 0.9950

0.2659 0.9502 0.6258 0.9900 0.9462 0.9950

0.2721 0.9552 0.6656 0.9900 0.9529 1.0000

0.2971 0.9602 0.6789 0.9900 0.9865 1.0000

0.3033 0.9701 0.7253 0.9900 1.0000 1.0000

and the column “Failures” shows the normalized cumulative
number of failures occurring in the testing period up to the
given time.

The time to stop testing is T = 0.0184. After the time
T, the software is released for field operations. Table 25.3
shows the field data for this software release. Similarly, the
column “Time” shows the normalized cumulative time spent
in the field for this software application, and the time in
Table 25.3 is continued from the time to stop testing T.
The column “Failures” shows the normalized cumulative
number of failures found after releasing the software for field
operations up to the given time. The cumulative number of
failures is the total number of software failures since the
beginning of software testing.

To obtain a better understanding of the software devel-
opment process, we show the actual results of the MLE
solutions instead of the normalized results. In this study, let
us assume that testing engineers have a number of years of

25 Software Reliability Modeling and Prediction 487

25

Table 25.4 MLE solutions for the γ -RFE model

â b̂ q̂ ĉ γ̂ θ̂

236.58 0.001443 0 0 0.2137 10.713

Table 25.5 MLE solutions for the β-RFE model

â b̂ q̂ ĉ α̂ β̂

236.07 0.001449 0 0 0.1862 8.6922

experience of this particular product and software develop-
ment skills and therefore conducted perfect debugging during
the test. In other word, p = 1. The maximum likelihood
estimates of all the parameters in the γ -RFE model are
obtained as shown in Table 25.4.

Similarly, set p = 1, the MLE of all the parameters in the
β-RFE model are obtained as shown in Table 25.5.

For both RFE models, the MLE results can be used to
obtain more insightful information about the software devel-
opment process. In this example, at the time to stop testing
the software T = 0.0184, the estimated number of remaining
faults in the system is aF = a − (p − q)m(T) = 55.

25.4.2 Mean-Value Function Fits

After we obtain the MLEs for all the parameters, we can plot
the mean-value function curve fits for both the γ -RFE and
β-RFE models based on the MLE parameters against the
actual software application failures.

Table 25.6 shows the mean-value function curve fits for
both the models where the columns mγ (t) and mβ(t) show
the mean-value function for the γ -RFEmodel and the β-RFE
model, respectively.

The γ -RFE and β-RFE models yield very close fits and
predictions on software failures. Figure 25.4 shows themean-
value function curve fits for both the γ -RFE model and
β-RFE model. Both models appear to be a good fit for the
given data set. Since we are particularly interested in the
fits and the predictions for software failure data during field
operation, we also plot the detailed mean-value curve fits for
both the γ -RFE model and the β-RFE model in Fig. 25.5.

For the overall fitting of the mean-value function against
the actual software failures, the MSE is 23.63 for the
γ -RFE model fit and is 23.69 for the β-RFE model. We
can also obtain the fits and predictions for software failures
by applying some existing NHPP software reliability models
to the same set of failure data. Since all these existing models
assume a constant failure-detection rate throughout both the
software testing and operation periods, we only apply the
software testing data to the software models and then predict
the software failures in the field environments.

Table 25.6 The mean-value functions for both RFEs models

Time Failures mγ (t) mβ (t) Time Failures mγ (t) mβ (t)

0.0000 0.0000 0.0000 0.0000 0.1357 0.9303 0.9340 0.9341

0.0001 0.0249 0.0085 0.0085 0.1419 0.9353 0.9352 0.9354

0.0002 0.0299 0.0152 0.0152 0.1666 0.9453 0.9398 0.9399

0.0002 0.0647 0.0219 0.0219 0.2098 0.9453 0.9469 0.9467

0.0003 0.0647 0.0302 0.0302 0.2223 0.9502 0.9487 0.9485

0.0005 0.1095 0.0466 0.0467 0.2534 0.9502 0.9530 0.9525

0.0006 0.1194 0.0547 0.0548 0.2597 0.9502 0.9538 0.9533

0.0008 0.1443 0.0708 0.0709 0.2659 0.9502 0.9545 0.9540

0.0012 0.1692 0.1023 0.1025 0.2721 0.9552 0.9553 0.9547

0.0016 0.1990 0.1404 0.1406 0.2971 0.9602 0.9582 0.9575

0.0023 0.2289 0.1915 0.1917 0.3033 0.9701 0.9589 0.9582

0.0028 0.2637 0.2332 0.2335 0.3157 0.9751 0.9603 0.9594

0.0033 0.3134 0.2667 0.2670 0.3407 0.9751 0.9628 0.9618

0.0038 0.3483 0.3053 0.3056 0.3469 0.9751 0.9635 0.9624

0.0044 0.3532 0.3422 0.3426 0.3967 0.9751 0.9681 0.9667

0.0048 0.3682 0.3718 0.3721 0.4030 0.9801 0.9686 0.9672

0.0053 0.3881 0.4003 0.4007 0.4291 0.9851 0.9708 0.9692

0.0058 0.4478 0.4332 0.4336 0.4357 0.9851 0.9713 0.9697

0.0064 0.4876 0.4648 0.4651 0.4749 0.9851 0.9743 0.9725

0.0070 0.5224 0.4998 0.5002 0.5011 0.9851 0.9761 0.9742

0.0077 0.5473 0.5332 0.5335 0.5338 0.9851 0.9783 0.9762

0.0086 0.5821 0.5772 0.5775 0.5731 0.9851 0.9808 0.9785

0.0095 0.6119 0.6205 0.6208 0.6258 0.9900 0.9839 0.9813

0.0105 0.6368 0.6600 0.6602 0.6656 0.9900 0.9860 0.9833

0.0114 0.6468 0.6953 0.6955 0.6789 0.9900 0.9867 0.9839

0.0121 0.6766 0.7210 0.7211 0.7253 0.9900 0.9890 0.9860

0.0128 0.7015 0.7479 0.7479 0.7519 0.9900 0.9902 0.9871

0.0135 0.7363 0.7684 0.7684 0.7585 0.9900 0.9905 0.9874

0.0142 0.7761 0.7924 0.7924 0.7718 0.9900 0.9911 0.9879

0.0147 0.7761 0.8050 0.8049 0.7983 0.9900 0.9923 0.9890

0.0155 0.8159 0.8294 0.8292 0.8251 0.9900 0.9934 0.9900

0.0164 0.8259 0.8522 0.8520 0.8453 0.9900 0.9943 0.9908

0.0172 0.8408 0.8713 0.8710 0.8520 0.9900 0.9945 0.9910

0.0176 0.8458 0.8804 0.8801 0.9058 0.9900 0.9966 0.9929

0.0180 0.8756 0.8897 0.8893 0.9126 0.9900 0.9969 0.9932

0.0184 0.8955 0.8987 0.8983 0.9193 0.9900 0.9971 0.9934

0.0184 0.9005 0.8995 0.8991 0.9395 0.9950 0.9979 0.9941

0.0431 0.9055 0.9092 0.9092 0.9462 0.9950 0.9981 0.9943

0.0616 0.9104 0.9153 0.9155 0.9529 1.0000 0.9983 0.9945

0.0801 0.9204 0.9208 0.9210 0.9865 1.0000 0.9995 0.9956

0.0863 0.9254 0.9224 0.9227 1.0000 1.0000 1.0000 0.9960

Figure 25.6 shows the comparisons of the mean-value
function curve fits between the two RFE models and some
existing NHPP software reliability models. It appears that
the two models that include consideration of the field en-
vironment on the software failure-detection rate perform
better in terms of the predictions for software failures in the
field.

488 H. Pham and X. Teng

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Time

Failures

Failures

-REFb

h-REF

Fig. 25.4 Mean-value function curve fits for both RFE models

1

0.98

0.96

0.94

0.92

0.9
0 0.2 0.4 0.6 0.8 1

Failures

-REF
-REF

b
h

Time

Fig. 25.5 Mean-value function fitting comparisons

1.2

1

0.8
0.4 0.80 0.2 0.6 1

Failures

Time

Weibull Goel-Okumoto

Failures

Delayed S-shape

REF models

Fig. 25.6 Model comparisons

25.4.3 Software Reliability

Once the MLEs of all the parameters in (25.12) and (25.14)
are obtained, the software reliability within (t, t + x) can be
determined as

1

0.8

0.6

0.4

0.2

0
0 0.0002 0.0004 0.0006 0.0008 0.001

Reliability

Weibull

Goel

R(x �T)

Delayed S-shape

xt0

-REF
-REF

b
h

Fig. 25.7 Reliability prediction comparisons

R(x|t) = e−[m(t+x)−m(t)]. (25.18)

Let T = 0.0184, and change x from 0 to 0.004, then we
can compare the reliability predictions between the two RFE
models and some other NHPP models that assume a constant
failure-detection rate for both software testing and operation.
The reliability prediction curves are shown in Fig. 25.7.
From Fig. 25.7, we can see that the NHPP models without
consideration of the environmental factor yield much lower
predictions for software reliability in the field than the two
proposed RFE software reliability models.

25.4.4 Confidence Interval

γ -RFEModel
To see how good the reliability predictions given by the two
RFE models are, in this section we describe how to construct
confidence intervals for the prediction of software reliability
in the random field environments. FromTables 25.4 and 25.5,
the MLEs of c and q are equal to zero and, if p is set to 1, then
the model in (25.12) becomes

m(t) =
⎧
⎨

⎩

a
(
1 − e−b·t) t ≤ T,

a
[
1 − e−b·t

(
θ

θ+b(t−T)

)γ]
t ≥ T.

(25.19)

This model leads to the same MLE results for the parameters
a, b, γ , and θ and also yields exactly the same mean-value
function fits and predictions as the model in (25.12). To
obtain the confidence interval for the reliability predictions
for the γ -RFE model, we derive the variance–covariance
matrix for all the maximum likelihood estimates as
follows.

25 Software Reliability Modeling and Prediction 489

25

If we use xi, i= 1, 2, 3, and 4, to denote all the parameters
in the model, or

x1 → a x2 → b x3 → θ x4 → γ.

The Fisher information matrix H can be obtained as

H =

⎛

⎜⎜
⎝

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

⎞

⎟⎟
⎠ ,

where

hij = E

(
− ∂2L

∂xi∂xj

)
i, j = 1, . . . , 6.

where L is the log-likelihood function in (25.18).
If we denote z(tk) = m(tk) − m(tk–1) and �yk

= yk − yk–1, k = 1, 2, . . . , n, then we have

∂2L

∂xi∂xj
=

n∑

k=1

[
− �yk
z(tk)

2

∂z (tk)

∂xi
· ∂z (tk)

∂xj

+
(

�yk − z (tk)

z (tk)
· ∂2z (tk)

∂xi∂xj

)]
.

Then we can obtain each element in the Fisher information
matrix H. For example,

h11 = E
(
− ∂2L

∂x21

)

=
n∑

k=1

{
∞∑

�yk=0

[
�yk
z(tk)

2

(
∂z(tk)
∂a

)2]× [z(tk)]�yk e−z(tk)
(�yk)!

}

=
n∑

k=1

{
∞∑

�yk=0

[
�yk
z(tk)

2

(
z(tk)
a

)2]× [z(tk)]�yk e−z(tk)
(�yk)!

}

=
n∑

k=1

(
1
a2

∞∑

�yk=0
�yk

[z(tk)]�yk e−z(tk)
(�yk)!

)

=
n∑

k=1

[
1
a2 · z (tk)

]

= 1
a2m (tn) .

The variance matrix, V, can also be obtained

V = (H)−1 =

⎛

⎜
⎜
⎝

v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

⎞

⎟
⎟
⎠ .

The variances of all the estimate parameters are given by

Var
(
â
) = Var(x1) = v11,

Var
(
b̂
)
= Var(x2) = v22,

Var
(
γ̂
) = Var(x3) = v33,

Var
(
θ̂
)

= Var(x4) = v44.

The actual numerical results for the γ -RFE model variance
matrix are

Vγ =
⎛

⎜
⎝

703.8472 −0.005387 −88.6906 −2.6861
− 0.005387 7.3655 × 10−8 1.11 × 10−3 3.097 × 10−5

− 88.6906 1.11 × 10−3 92.4287 1.1843
− 2.6861 3.097 × 10−5 1.1843 0.0238

⎞

⎟
⎠ .

β-RFEModel
The model in (25.14) can also be simplified given that the
estimates of both q and c are equal to zero and p is set to 1.
The mean-value function becomes

mβ(t) =
{

a
(
1 − e−bt) t ≤ T,

a

[
1 − e−bT ×

∞∑
k=0

(
	(α+β)	(β+k)Poisson[k,b(t−T)]

	(β)	(α+β+k)
)]

t ≥ T.

This model leads to the same MLE results for the parameters
a, b, α, and β and also yields exactly the same mean-
value function fits and predictions. To obtain the confidence
interval for the reliability predictions for the β-RFE model,
we need to obtain the variance–covariance matrix for all the
maximum likelihood estimates.

If we use xi, i= 1, 2, 3, and 4, to denote all the parameters
in the model, or

x1 → a x2 → b x3 → α x4 → β,

and go through similar steps as for the γ -RFE model, the
actual numerical results for the β-RFEmodel variancematrix
can be obtained as

Vβ =
⎛

⎜
⎝

691.2 −0.00536 −2.728 −66.2172
− 0.00536 7.4485 × 10−8 2.671 × 10−5 0.00085
− 2.7652 2.671 × 10−5 0.01820 0.8295
− 66.2172 0.00085 0.8295 60.5985

⎞

⎟
⎠

Confidence Interval of the Reliability Predictions
If we define a partial derivative vector for the reliability
R(x | t) in (25.18) as

vR (x|t) =
(

∂R(x|t)
∂x1

,
∂R(x|t)

∂x2
,
∂Rb(x|t)

∂x3
,
∂R(x|t)

∂x4

)

then the variance of R(x | t) in (25.18) can be obtained as

Var [R(x|t)] = vR(x|t)V[vR(x|t)]T.

490 H. Pham and X. Teng

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

Time

R(x �t)

R(x �t)

Upper bound

Lower bound

Fig. 25.8 γ -RFE model reliability growth curve and its 95% confi-
dence interval

0 0.2 0.4 0.6 0.8 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Time

R(x �t)

R(x �t)

Upper bound

Lower bound

Fig. 25.9 β-RFE model reliability growth prediction and its 95%
confidence interval

Assume that the reliability estimation follows a normal dis-
tribution, then the 95% confidence interval for the reliability
prediction R(x | t) is

[
R (x|t) − 1.96 ×

√
Var [R (x|t)], R (x|t)

+ 1.96 ×
√
Var [R (x|t)]

]
.

Figures 25.8 and 25.9 show the 95% confidence interval
of the reliability predicted by the γ -RFE and β-RFE models,
respectively.

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

Time

R(x � t)

R (t �x)-
LowR(t)-
UR (t)-
R (x �t)-
LR(t)-
UR (t)-

�
�

�
�
�
�

Fig. 25.10 Reliability growth prediction curves and their 95% confi-
dence intervals for the γ -RFE model and the β-RFE model

1.2

1

0.8

0.6

0.4

0.2

0.0
0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 25.11 Mean-value function curve fit and its 95% confidence
intervals for the γ -RFE model

We plot the reliability predictions and their 95% confi-
dence interval for both the γ -RFE model and the β-RFE
model in Fig. 25.10. For this given application data set, the
reliability predictions for the γ -RFE model and the β-RFE
model are very close to each other, as are their confidence
intervals. Therefore, it would not matter too much which one
of the two RFE models was used to evaluate the software
reliability for this application. However, will these two RFE
models always yield similar reliability predictions for all
software applications? or which model should one choose
for applications if they are not always that close to each
other? We will try to answer these two questions in the next
section. Figure 25.11 shows the 95% confidence interval for
the mean-value function fits and predictions from the γ -RFE
model.

25 Software Reliability Modeling and Prediction 491

25

Table 25.7 MLEs and fitness comparisons

Parameter γ -RFE β-RFE

â 236.5793016l 236.0745369

b̂ 0.001443362 0.001448854

θ̂ 10.7160153

γ̂ 0.213762945

α̂ 0.186224489

β̂ 8.692191792

Mean 0.019948 0.020975

Variance 0.0018615 0.002079

MSE 23.63 23.69

Likelihood − 136.1039497 − 129.7811199

25.4.5 Concluding and Remarks

Table 25.7 shows all the maximum likelihood estimates of
all the parameters and other fitness measures. The maximum
likelihood estimates (MLEs) on common parameters, such as
a – the initial number of faults in the software and b – the unit
software failure-detection rate during testing, are consistent
for both models. Both models provide very close predictions
for software reliability and also give similar results for the
mean and variance of the random environment factor η.

The underlying rationale for this phenomenon is the sim-
ilarity between the gamma and beta distributions when the
random variable η is close to zero. In this application, the
field environments are much less liable to software failure
than the testing environment. The random field environmen-
tal factor, η, is mostly much less than 1 with mean (η)≈ 0.02.

Figure 25.12 shows the PDF curves of the environmental
factor η based on the MLEs of all the parameters for both
the γ -RFE model and the β-RFE model. We observe that
the PDF curves for the beta and gamma distributions are also
very close to each other. The two RFEs models give similar
results because this software application is much less likely
to fail in the field environment, with mean (η) = 0.02. If the
mean (η) is not so close to 0, then we would expect to have
different prediction results from the γ -RFE model and the
β-RFE model.

We suggest the following criteria as ways to select be-
tween the two models discussed in this chapter for predicting
the software reliability in the random field environments:

1. Software less liable to failure in the field than in testing,
that is, η ≤ 1

In the γ -RFE model, the random field environmental
factor, η following a gamma distribution, ranges from
0 to +∞. For the β-RFE model, the random field
environmental factor, η following a beta distribution,
ranging from 0 to 1. Therefore, the β-RFE model will
be more appropriate for describing field environments in
which the software application is likely to fail than in the
controlled testing environment.

30

25

20

15

10

5

0
0.08 0.09 0.10 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Gamma
Beta

Fig. 25.12 PDF curves comparison for the environmental factor η

For this given application, we notice that when
the field environmental factor η is much less than 1
[mean(η) = 0.02], the γ -RFE model yields similar results
to the β-RFE model. However, we also observe that the
γ -RFE model does not always yield similar results to
the β-RFE model when η is not close to 0. In this case,
if we keep using the γ -RFE model instead of the β-
RFE model, we would expect to see a large variance in
the maximum likelihood estimates for all the unknown
parameters, and hence a wider confidence interval for the
reliability prediction.

2. Smaller variance of the RFE factor η

A smaller variance of the random environmental factor
η will generally lead to a smaller confidence interval for
the software reliability prediction. It therefore represents
a better prediction in the random field environments.

3. Smaller variances for the common parameters a and b
The software parameter a and the process parameter

b are directly related to the accuracy of reliability
prediction. They can also be used to investigate the
software development process. Smaller variances of a and
b would lead, in general, to smaller confidence intervals
for the mean-value function predictions and reliability
predictions.

4. Smaller MSE of the mean-value function fits
A smaller MSE for the mean-value function fits means

a better fit of the model to the real system failures. This
smaller MSE will usually lead to a better prediction of
software failures in random field environments.

The above criteria can be used with care to determine
which RFE model should be chosen in practice. They may
sometime provide contradictory results. In the case of con-
tradictions, practitioners can often consider selecting the
model with the smaller confidence interval for the reliability
prediction.

492 H. Pham and X. Teng

25.5 A RFEModel with Vtub-Shaped
Fault-Detection Rate

In this section, we present a specific RFE model with
Vtub-shaped fault-detection rate. Numerical results of some
selected NHPP models based on MSE, predictive power,
predictive-ratio risk, and normalized criteria distance from a
set of software failure data are discussed.

Here we assume that a detected fault will be 100% suc-
cessfully removed from the software during the software
testing period and the software fault-detection rate per unit
time, h(t), with a Vtub-shaped function [22], is as follows:

h(t) = b ln(a)tb−1at
b

for a > 1, b > 0 (25.20)

We also assume that the random variable η as defined in
(25.1) has a gamma distribution with parameters α and β,
that is, η ∼ gamma(α, β) where the PDF of η is given by

g(x) = βαxα−1e−βx

	(α)
for α,β > 0; x ≥ 0 (25.21)

From Eq. (25.1), we can obtain the expected number of
software failures detected by time t subject to the uncertainty
of the environments as follows:

m(t) = N

(
1 −

(
β

β + atb − 1

)α)
(25.22)

where N is the expected number of faults that exists in the
software before testing.

25.5.1 Model Criteria

We briefly discuss some common criteria such as MSE,
predictive-ratio risk (PRR), and predictive power (PP) that
will be used to compare the performance of some selected
models from Table 25.1 to illustrate the modeling analysis.

The MSE measures the difference between the estimated
values and the actual observation and is defined as:

MSE =

n∑

i=1

(
m̂ (ti) − yi

)2

n− k
(25.23)

where yi = total number of actual failures at time ti;
m̂ (ti) = the estimated cumulative number of failures at time
ti for i = 1, 2, . . . , n; and n and k = number of observations
and number of model parameters, respectively.

The predictive-ratio risk (PRR) measures the distance
of model estimates from the actual data against the model
estimate and is defined as [22]:

PRR =
n∑

i=1

(
m̂ (ti) − yi
m̂ (ti)

)2

(25.24)

The predictive power (PP) measures the distance of model
estimates from the actual data against the actual data [22]:

PP =
n∑

i=1

(
m̂ (ti) − yi

yi

)2

(25.25)

For all these three criteria – MSE, PRR, and PP – the smaller
the value, the better the model fits.

Pham [28] discussed a normalized criteria distance,
or NCD criteria, to determine the best model from a set
of performance criteria. The NCD criteria is defined as
follows:

Di =
d∑

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

√√
√√
√
√√

⎡

⎢⎢
⎣

2∑

i=1

⎛

⎜⎜
⎝

Cijk
s∑

i=1
Cijk

⎞

⎟⎟
⎠

2⎤

⎥⎥
⎦

⎞

⎟
⎟
⎟
⎠
wj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(25.26)

where s and d are the total number of models and criteria,
respectively.

wj = the weight of the jth criteria for j = 1, 2, ... ,d

k =
{
1 represent criteria j value
2 represent criteria j ranking

}

Cij1 = the ranking based on specified criterion ofmodel iwith
respect to (w.r.t.) criteria j

Cij2 = criteria value of model i w.r.t. criteria j where i = 1,
2, ..., s and j = 1, 2, ... ,d

Obviously the smaller the NCD value, Di, it represents the
better rank.

25.5.2 Model Analysis

A set of system test data which is referred to as Phase 2 data
set [22] is used to illustrate the model performance in this
subsection. In this data set, the number of faults detected in
each week of testing is found and the cumulative number of
faults since the start of testing is recorded for each week. This
data set provides the cumulative number of faults by each
week up to 21 weeks.

Table 25.8 summarizes the result as well as the ranking of
nine selected models from Table 25.1 based on MSE, PRR,
PP, and NCD criteria. It is worth to note that one can use
the NCD criterion to help in selecting the best model from
among model candidates. Table 25.8 shows the NCDs and
its corresponding ranking for w1 = 2, w2 = 1.5, and w3 = 1
with respect to MSE, PRR, and PP, respectively.

25 Software Reliability Modeling and Prediction 493

25

Table 25.8 [28, page 1488]: Parameter estimation and model comparison when w1 = 2, w2 = 1.5, w3 = 1

Model/criteria MSE (Rank) PRR (Rank) PP (Rank) NCD value (Dk) Model rank

1. G-O Model 6.61 (7) 0.69 (1) 1.10 (7) 0.1366837 6

2. Delayed S-shaped 3.27 (5) 44.27 (8) 1.43 (8) 0.1511403 7

3. Inflection S-shaped 1.87 (2) 5.94 (5) 0.90 (4) 0.0801189 2

4. Yamada imperfect debugging model 4.98 (6) 4.30 (4) 0.81 (3) 0.1022629 5

5. PNZ model 1.99 (3) 6.83 (7) 0.96 (6) 0.0855598 4

6. Pham-Zhang model 2.12 (4) 6.79 (6) 0.95 (5) 0.0855490 3

7. Dependent-parameter model (model 1) 43.69 (9) 601.34 (9) 4.53 (9) 1.3395573 9

8. Dependent-parameter model with m(t0) �= 0, t0 �= 0 (model 2) 24.79 (8) 1.14 (2) 0.73 (1) 0.3893950 8

9. Vtub-shaped fault-detection rate model 1.80 (1) 2.06 (3) 0.77 (2) 0.0692175 1

Based on the results as shown in Table 25.8, the Vtub-
shaped fault-detection rate model seems to provide the best
fit based on the normalized criteria distance method.

References

1. Pham, H., Zhang, X.: A software cost model with warranty and risk
costs. IEEE Trans. Comput. 48, 71–75 (1999)

2. Pham, H., Normann, L., Zhang, X.: A general imperfect debugging
NHPP model with S-shaped fault detection rate. IEEE Trans.
Reliab. 48, 169–175 (1999)

3. Goel, A.L., Okumoto, K.: Time-dependent error-detection rate
model for software and other performance measures. IEEE Trans.
Reliab. 28, 206–211 (1979)

4. Ohba, M.: Software reliability analysis models. IBM J. Res. Dev.
28, 428–443 (1984)

5. Pham, H.: Software Reliability. Springer, London (2000)
6. Yamada, S., Ohba, M., Osaki, S.: S-shaped reliability growth

modeling for software error detection. IEEETrans. Reliab. 33, 475–
484 (1984)

7. Zhang, X., Teng, X., Pham, H.: Considering fault removal effi-
ciency in software reliability assessment. IEEE Trans. Syst. Man
Cybern. A. 33, 114–120 (2003)

8. Pham, H., Zhang, X.: NHPP software reliability and cost models
with testing coverage. Eur. J. Oper. Res. 145, 443–454 (2003)

9. Zhang, X., Pham, H.: Predicting operational software availability
and its applications to telecommunication systems. Int. J. Syst. Sci.
33(11), 923–930 (2002)

10. Pham, H., Wang, H.: A quasi renewal process for software reliabil-
ity and testing costs. IEEE Trans. Syst. Man Cybern. A. 31, 623–
631 (2001)

11. Zhang, X., Shin, M.-Y., Pham, H.: Exploratory analysis of environ-
mental factors for enhancing the software reliability assessment. J.
Syst. Softw. 57, 73–78 (2001)

12. Pham, L., Pham, H.: A Bayesian predictive software reliability
model with pseudo-failures. IEEE Trans. Syst. Man Cybern. A.
31(3), 233–238 (2001)

13. Zhang, X., Pham, H.: Comparisons of nonhomogeneous Poisson
process software reliability models and its applications. Int. J. Syst.
Sci. 31(9), 1115–1123 (2000)

14. Pham, H.: Software reliability and cost models: perspectives, com-
parison and practice. Eur. J. Oper. Res. 149, 475–489 (2003)

15. Yang, B., Xie, M.: A study of operational, testing reliability in
software reliability analysis. Reliab. Eng. Syst. Safety. 70, 323–329
(2000)

16. Zhang, X., Jeske, D., Pham, H.: Calibrating software reliability
models when the test environment does not match the user envi-
ronment. Appl. Stoch. Model. Bus. Ind. 18, 87–99 (2002)

17. Li, Q., Pham, H.: A generalized software reliability growth model
with consideration of the uncertainty of operating environments.
IEEE Access. 7 (2019)

18. Teng, X., Pham, H.: A software cost model for quantifying the
gain with considerations of random field environment. IEEE Trans.
Comput. 53, 3 (2004)

19. Kapur, P.K., Pham, H., Aggarwal, A.G., Kaur, G.: Two dimensional
multi-release software reliability modeling and optimal release
planning. IEEE Trans. Reliab. 61(3), 758–768 (2012)

20. Kapur, P.K., Pham, H., Anand, S., Yadav, K.: A unified approach
for developing software reliability growth models in the presence
of imperfect debugging and error generation. IEEE Trans. Reliab.
60(1), 331–340 (2011)

21. Li, Q., Pham, H.: NHPP software reliability model considering the
uncertainty of operating environments with imperfect debugging
and testing coverage. Appl. Math. Model. 51(11), 68–85 (2017)

22. Pham, H.: System Software Reliability. Springer (2006)
23. Pham, H.: Software reliability assessment: imperfect debugging

and multiple failure types in software development. EG&G-
RAAM-10737; Idaho National Engineering Laboratory (1993)

24. Pham, H.: A software cost model with imperfect debugging, ran-
dom life cycle and penalty cost. Int. J. Syst. Sci. 27(5), 455–463
(1996)

25. Pham, H., Zhang, X.: An NHPP software reliability model and its
comparison. Int. J. Reliab. Qual. Saf. Eng. 4(3), 269–282 (1997)

26. Pham, H.: An imperfect-debugging fault-detection dependent-
parameter software. Int. J. Autom. Comput. 4(4), 325–328 (2007)

27. Pham, H.: A software reliability model with vtub-shaped fault-
detection rate subject to operating environments. In: Proc. 19th
ISSAT Int’l Conf. on Reliability and Quality in Design, Hawaii
(2013)

28. Pham, H. (2014), “A new software reliability model with Vtub-
shaped fault-detection rate and the uncertainty of operating envi-
ronments,” Optimization, v 63, p. 1481–1490

29. Pham, H., Pham, D. H., Pham, H. (2014), “A new mathematical
logistic model and its applications,” Int. J. Inform.Manag. Sci., v,
25, no. 2, p. 79–99

30. Pham, H.: Loglog fault-detection rate and testing coverage software
reliability models subject to random environments. Vietnam J.
Comput. Sci. 1(1) (2014)

31. Pham, L., Pham, H.: Software reliability models with time-
dependent hazard function based on Bayesian approach. IEEE
Trans. Syst. Man Cybern. A. 30(1), 25–35 (2000)

32. Pham, H.: A generalized fault-detection software reliability model
subject to random operating environments. Vietnam J. Comput. Sci.
3(3), 145–150 (2016)

33. Sgarbossa, F., Pham, H.: A cost analysis of systems subject to
random field environments and reliability. IEEE Trans. Syst. Man
Cybern. C. 40(4), 429–437 (2010)

34. Zhang, X., Pham, H.: Software field failure rate prediction before
software deployment. J. Syst. Softw. 79, 291–300 (2006)

494 H. Pham and X. Teng

35. Zhu, M., Pham, H.: A two-phase software reliability modeling
involving with software fault dependency and imperfect fault re-
moval. Comput. Lang. Syst. Struct. 53(2018), 27–42 (2018)

36. Lee, D.H., Chang, I.-H., Pham, H.: Software reliability model with
dependent failures and SPRT. Mathematics. 8, 2020 (2020)

37. Zhu, M., Pham, H.: A generalized multiple environmental factors
software reliability model with stochastic fault detection process.
Ann. Oper. Res. (2020) (in print)

38. Zhu, M., Pham, H.: A novel system reliability modeling of hard-
ware, software, and interactions of hardware and software. Mathe-
matics. 7(11), 2019 (2019)

39. Song, K.Y., Chang, I.-H., Pham, H.: A testing coverage model
based on NHPP software reliability considering the software oper-
ating environment and the sensitivity analysis. Mathematics. 7(5)
(2019). https://doi.org/10.3390/math7050450

40. Sharma, M., Pham, H., Singh, V.B.: Modeling and analysis of
leftover issues and release time planning in multi-release open
source software using entropy based measure. Int. J. Comput. Syst.
Sci. Eng. 34(1) (2019)

41. Pham, T., Pham, H.: A generalized software reliability model
with stochastic fault-detection rate. Ann. Oper. Res. 277(1), 83–93
(2019)

42. Zhu, M., Pham, H.: A software reliability model incorporat-
ing martingale process with gamma-distributed environmental
factors. Ann. Oper. Res. (2019). https://doi.org/10.1007/s10479-
018-2951-7

43. Chatterjee, S., Shukla, A., Pham, H.: Modeling and analysis of
software fault detectability and removability with time variant fault
exposure ratio, fault removal efficiency, and change point. J. Risk
Reliab. 233(2), 246–256 (2019)

44. Pham, H.: A logistic fault-dependent detection software reliability
model. J. Univ. Comput. Sci. 24(12), 1717–1730 (2018)

45. Song, K.Y., Chang, I.-H., Pham, H.: Optimal release time and
sensitivity analysis using a new NHPP software reliability model
with probability of fault removal subject to operating environments.
Appl. Sci. 8(5), 714–722 (2018)

46. Sharma, M., Singh, V.B., Pham, H.: Entropy based software relia-
bility analysis of multi-version open source software. IEEE Trans.
Softw. Eng. 44(12), 1207–1223 (2018)

47. Zhu, M., Pham, H.: A multi-release software reliability modeling
for open source software incorporating dependent fault detec-
tion process. Ann. Oper. Res. 269 (2017). https://doi.org/10.1007/
s10479-017-2556-6

48. Song, K.Y., Chang, I.-H., Pham, H.: An NHPP software reliability
model with S-shaped growth curve subject to random operating
environments and optimal release time. Appl. Sci. 7(12), 2017
(2017)

49. Song, K.Y., Chang, I.-H., Pham, H.: A software reliability model
with a Weibull fault detection rate function subject to operating
environments. Appl. Sci. 7(10), 983 (2017)

50. Li, Q., Pham, H.: A testing-coverage software reliability model
considering fault removal efficiency and error generation. PLoS
One. (2017). https://doi.org/10.1371/journal.pone.0181524

51. Zhu, M., Pham, H.: Environmental factors analysis and compari-
son affecting software reliability in development of multi-release
software. J. Syst. Softw. 132, 72–84 (2017)

52. Lee, S.W., Chang, I.-H., Pham, H., Song, K.Y.: A three-parameter
fault-detection software reliability model with the uncertainty of
operating environment. J. Syst. Sci. Syst. Eng. 26(1), 121–132
(2017)

53. Zhu, M., Pham, H.: A software reliability model with time-
dependent fault detection and fault-removal. Vietnam J. Comput.
Sci. 3(2), 71–79 (2016)

54. Zhu, M., Zhang, X., Pham, H.: A comparison analysis of environ-
mental factors affecting software reliability. J. Syst. Softw. 109,
150–160 (2015)

55. Chang, I.-H., Pham, H., Lee, S.W., Song, K.Y.: A testing-coverage
software reliability model with the uncertainty of operating envi-
ronments. Int. J. Syst. Sci. 1(4), 220–227 (2014)

56. Cox, D.R.: Regression models and life tables (with discussion).
J. R. Stat. Soc. Ser. B. 34, 133–144 (1972)

Hoang Pham is a Distinguished Professor and former Chairman of the
Department of Industrial and Systems Engineering at Rutgers Univer-
sity, New Jersey, USA. He is the author or coauthor of 7 books and has
published over 200 journal articles, 100 conference papers, and edited
20 books. His numerous awards include the 2009 IEEE Reliability
Society Engineer of the Year Award. He is a Fellow of the IEEE and
IISE.

Xiaolin Teng received his Ph.D. in industrial engineering from Rutgers
University in 2001. He also holds master degrees in statistics, computer
science, and automation. Currently Dr. Teng works at Meredith Cor-
poration as an associate director. His current research interests include
business analytics, machine learning, and data mining.

https://doi.org/10.3390/math7050450
https://doi.org/10.1007/s10479-018-2951-7
https://doi.org/10.1007/s10479-017-2556-6
https://doi.org/10.1371/journal.pone.0181524

	25 Software Reliability Modeling and Prediction
	25.1 A Generalized NHPP Software Reliability Model
	25.2 Generalized Random Field Environment (RFE) Model
	25.3 RFE Software Reliability Models
	25.3.1 γ-RFE Model
	25.3.2 β-RFE Model

	25.4 Parameter Estimation
	25.4.1 Maximum Likelihood Estimation (MLE)
	25.4.2 Mean-Value Function Fits
	25.4.3 Software Reliability
	25.4.4 Confidence Interval
	γ-RFE Model
	β-RFE Model
	Confidence Interval of the Reliability Predictions

	25.4.5 Concluding and Remarks

	25.5 A RFE Model with Vtub-Shaped Fault-Detection Rate
	25.5.1 Model Criteria
	25.5.2 Model Analysis

	References

