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Abstract

In the current era of computers, statistical monitoring
of sequential observations is an important research area.
In problems such as monitoring the quality of industrial
products, health variables, climatological variables, etc.,
we are often interested in detecting a change in the process
distribution in general, not just in mean or variance. We
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first briefly discuss a few commonly used SPC charts
along with relevant references and then present a new
chart for univariate continuous processes. Unlike most
SPC charts in the literature, it neither assumes any “in-
control” probability distribution nor requires any “in-
control” Phase I data, and it aims to detect arbitrary
distributional change. This chart uses a computationally
efficient method to find the possible change-point. More-
over, the proposed chart uses a p-value-based data pruning
approach to further increase the efficiency, and it com-
bines the strengths of two different tests of hypotheses,
which has a potentially broad application. Numerical sim-
ulations and two real-data analyses show that the chart can
be used in various monitoring problems when the nature
of distributional change is unknown.

Keywords

Ansari-Bradley test · Cramer-von Mises test ·
Distributional change · Nonparametric SPC · Pruning ·
P-value

19.1 Introduction

Statistical process control (SPC) charts are widely used for
monitoring the stability of certain sequential processes in
various disciplines including manufacturing and healthcare
systems. Typically, the SPC charts assume that there are two
causes of variability in the process measurements: one is
“common cause” which is due to unavoidable randomness
and another is “special cause” when an undesirable variabil-
ity intervenes, for example, mechanical defects, improper
handling of machines, human errors, onset of certain medical
conditions, etc. When the variability is only due to common
causes, the process is said to be “in-control”. “In-control”
process measurements can be considered as realizations of
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a random model, for example, independent and identically
distributed (i.i.d.) observations from a cumulative distribu-
tion function (c.d.f.) F1. When a special cause interferes,
the process measurements no longer appear as i.i.d. real-
izations of F1, and then the system is said to be “out-of-
control”. Practitioners typically divide SPC into two phases.
Initially, a set of process measurements are analyzed in Phase
I. If any “unusual” patterns in the process measurements
are found, they make necessary adjustments and fine-tuning
of the system. After removing all such special causes, we
have a clean set of process measurements data under stable
operating conditions, and they are representative of the actual
process performance. The major goal of Phase II SPC control
charts is to detect any change in process distribution after an
unknown time-point.

A change in the process distribution may not always be
in location and scale only; it can be general, for example,
changes in degrees of freedom of chi-squared distribution.
Furthermore, changes can either be isolated, i.e., the system
goes “out-of-control” for a short time and then returns to
“in-control”, or persistent, i.e., once the system goes “out-
of-control,” it remains “out-of-control” or even goes further
away from control until the special causes are removed.
Among existing SPC charts in the literature, Shewhart-type
[1] charts are used to detect isolated changes and cumulative
sum (CUSUM) type charts (e.g., [2]) are used to detect
persistent changes. However, most SPC charts consider shifts
in location and/or scale, because they are most common
and often capture other departures. In real-world problems,
shifts in skewness and kurtosis can happen without much
change in location and scale. For example, the shape of the
process distribution gradually changing over time without
much change in mean or variance. If we fail to detect those
changes and let the process run, it can eventually become
worse and a shift in location and scale can creep in.Moreover,
the special causes that initiated the change can cause more
damage to the system, and it may become a challenge to fix.
If we can detect such a change in skewness, we can avoid
subsequent troubles. Therefore, it is imperative to develop an
SPC chart that can detect changes in the process distribution
in general. The proposed chart precisely focuses on this.

Various types of SPC control charts have been proposed
in the literature including Shewhart-type charts [1], cumu-
lative sum (CUSUM)-type charts (e.g., [2]), exponentially
weighted moving average (EWMA chart) [3] (e.g., [4, 5]),
etc.Many control charts assume that “in-control” process dis-
tribution F1is either known or has a known parametric form
(e.g., normal). In real-life problems, this is usually not the
case. It has been demonstrated in the literature that the SPC
charts using prespecified distribution in their designs may not
be reliable in such cases (e.g., [6,7]). To address this, a num-
ber of non-parametric or distribution-free SPC charts have
been proposed. For example [8–18], and so on. [19] provides

an overview of nonparametric SPC charts. Discussions for
multivariate cases are provided by Qiu and Hawkins [20,21]
and Qiu [22]. Some SPC charts (e.g., [23–25]) monitor pro-
cess mean and variance jointly. Moustakides [26] proposes
a method to detect distributional changes when both “in-
control” and “out-of-control” distributions are known. Ross
and Adams [27] propose two nonparametric control charts
to detect arbitrary distributional change under the change
point detection (CPD) framework when both “in-control”
and “out-of-control” distributions are unknown. Mukherjee
[28] also proposes a Phase II nonparametric SPC chart for
detecting arbitrary distributional change, but it requires a
substantial amount of “in-control” Phase I data. A thorough
literature review on SPC charts can be found in [29] as well as
in [30].

Most existing SPC charts mentioned above focus to detect
changes in process location and scale but do not consider
an arbitrary distributional change. Moreover, some methods
require multiple observations at each time-point; some others
require “in-control” Phase I observations. All of these may
not be reasonable in many real-life problems. The proposed
chart focuses on univariate continuous processes and pro-
poses a p-value-based nonparametric SPC chart to detect
an arbitrary distributional change when we can assume that
the observations we collect are independent, but “in-control”
c.d.f. F1 is unknown, and “in-control” Phase I data are un-
available. p-value-based SPC charts are new trends as some
researchers have already started developing those for better
interpretation, e.g., [31, 32], etc.

Additionally, the proposed chart uses the strengths of
Cramer-von Mises test and Ansari-Bradley test and demon-
strates a better performance in detecting an arbitrary distri-
butional change early. It is demonstrated in the literature [27]
that the power of two-sample Cramer-vonMises test to detect
a small change in standard deviation or scale is rather weak.
The proposed chart overcomes that by integrating this test
with Ansari-Bradley test, a nonparametric test for detecting
scale change. The integration process is quite general in
nature, and hence similar integration techniques can be used
to design better control charts in many scenarios.

The major steps of the proposed SPC chart are the follow-
ing: First, we estimate the possible change-point that gives
the minimum p-value of the relevant two-sample Cramer-
von Mises test statistic. We use a computationally efficient
method to do this. Using that change-point, we calculate the
p-value of Ansari-Bradley test and pick the smallest of the
two p-values as the effective p-value and use it as the charting
statistic. Since it is demonstrated in the literature (e.g., [27])
that Cramer-von Mises test does not have strong power to
detect scale changes, if there is indeed a scale change in the
process distribution, Ansari-Bradley test gives a smaller p-
value than Cramer-von Mises test . Therefore, to detect such
changes, it is better to use the smaller of the p-values. If
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the process distribution changes without affecting the scale
parameter, Cramer-von Mises test gives a smaller p-value
than Ansari-Bradley test. It is also better to use the smaller of
the two p-values to detect such a change as well. If the p-value
is large enough, and our effective sequence of observations
is too long, we prune observations from distant past and
we collect the next observation. The amount of pruning is a
nondecreasing function of the effective p-value as the higher
the p-value, the more likely it is that no distributional change
has occurred, and it is therefore better to ignore information
from distant past to speed up computation. If the p-value is
small enough, the chart signals a distributional change.

The remainder of the chapter is organized as follows.
At the end of this paragraph, a nomenclature subsection is
provided so that this chapter can be read smoothly. Next, brief
descriptions of traditionally used SPC charts are provided
in Sect. 19.2. The proposed control chart is described in
Sect. 19.3. Numerical studies to evaluate its performance in
comparison with several existing control charts are presented
in Sect. 19.4. A climatological data analysis and a blood
sugar monitoring data analysis by the proposed chart and
its competitors are presented in Sect. 19.5. A few remarks in
Sect. 19.6 conclude this chapter.

19.2 Traditionally Used SPC Charts

Statistical process control of a production process is roughly
divided into two phases: Phase I and Phase II. In Phase
I, i.e., in the initial stage, we usually do not have enough
information about the performance of the production process,
and our major goal in this stage is to adjust the production
process so that it can run in a stable manner. First, we usually
let the process produce a given amount of products, and then
the quality characteristics of these products are analyzed. If
the statistical analysis of these data shows indication that the
process is not running stably, we try to figure out the root
causes for that and make adjustments of the process so that
it can run stably. After the adjustments, another set of data
is collected and analyzed, and the production process should
be adjusted again, if necessary. The analysis and adjustment
process is iterated several times until we are confident that
the performance of the production process is stable. Once
all “special causes” have been removed and the production
process is “in-control,” we collect an “in-control” dataset
from the products manufactured under the stable operating
conditions, and the “in-control” data are used for estimating
the “in-control” distribution of the quality characteristic(s)
of interest. Based on the actual “in-control” distribution if
known, or estimated “in-control” distribution otherwise, a
Phase II SPC control chart is designed. It is typically used for
online monitoring of the production process. When the chart
detects a significant change in the distribution of the quality

characteristic(s) from “in-control” distribution, it gives a
signal and the production process is stopped immediately
for identification of the root cause for such a change and its
removal. This online monitoring stage is often called Phase
II SPC.

In both Phase I and Phase II of SPC, many statistical
tools such as histograms, stem-and-leaf plots, regression, and
design of experiments are very helpful. Among all these,
control charts are especially useful since they are constructed
specifically to detect “out-of-control” performance of the
production process. A charting statistic should be chosen
such that it contains as much of the information in the ob-
served data about the distribution of the quality characteris-
tic(s) as possible and be sensitive to any distributional change
as well. In the literature, different types of control charts
have been developed including the Shewhart charts, the cu-
mulative sum (CUSUM) charts, the exponentially weighted
moving average (EWMA) charts, charts based on change-
point detection (CPD), and so on. Brief descriptions of some
of these control charts are provided below.

19.2.1 Shewhart Chart

The first control chart was proposed by Shewhart [1] in 1931.
The chart assumes that the quality variable X follows normal
distribution N(μ0, σ 2), and at each time-point we obtain m
independent quality observations. Denote (Xn1, Xn2, . . . , Xnm)

to be the n-th batch of observations, where the batch size
is m ≥ 2. Traditional z-test is used to check if the process
observations are “in-control” at the n-th time-point. The
process is considered “out-of-control” when

Xn > μ0 + z1−α/2
σ√
m

or Xn < μ0 − z1−α/2
σ√
m
,

where Xn is the sample mean of (Xn1, Xn2, . . . , Xnm) and
z1−α/2 is (1 − α/2)-th quantile of the standard normal dis-
tribution. This version can be used when both μ0 and σ are
known. However, it is usually not the case in reality. In that
case, they have to be estimated from a dataset known to be
“in-control.” Suppose,

(
X∗
i1, X

∗
i2, . . . , X

∗
im

)
, i = 1, 2, . . . , M be

an “in-control” dataset. Let X
∗
i and R∗

i be the sample mean
and sample range of the i-th batch of “in-control” dataset and

X
∗
and R

∗
be the sample means of {X∗

i , i = 1, 2, . . . , M}
and {R∗

i , i = 1, 2, . . . , M}, respectively. It can be easily

verified that X
∗
is an unbiased estimator of μ0 and R

∗
/d1(m)

is an unbiased estimator of σ , where d1(m) = E(R∗
i /σ)

is a constant depending on m. When m = 2, d1(m) =
1.128, when m = 5, d1(m) = 2.326. d1(m) values for
many other commonly used m are provided in Table 3.1 of
[30]. Therefore, the Shewhart chart signals a shift in process
mean if
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Xn > X
∗ + z1−α/2

R
∗

d1(m)
√
m

or

Xn < X
∗ − z1−α/2

R
∗

d1(m)
√
m

. (19.1)

Traditionally, the manufacturing industry uses α =
0.0027, and hence (1 − α/2)-th quantile of N(0, 1), i.e.,
z1−α/2 is 3. Therefore, the chart signals mean shift at time-
point n if Xn falls outside the interval of width six sigma
centered at μ0 and where sigma is the standard deviation
of Xn. Thus, the terminology “six sigma” originated in the
domain of quality control.

The performance of a control chart is traditionally mea-
sured by average run length (ARL). Since the charts use
control limits for making decision on process performance,
an “in-control” process sometimes give false signals of dis-
tributional shift. This phenomenon is analogous to having
type I error in hypothesis testing. The number of samples or
batches collected from the initial time-point of consideration
to the occurrence of first false “out-of-control” signal when
the process remains “in-control” is called “in-control” run
length. The mean of such a run length is called “in-control”
average run length denoted as ARL0. On the other hand, the
number of samples or batches collected from the time-point
when the shift actually occurs to the time-point of signal of
shift is called “out-of-control” run length. Its mean is called
“out-of-control’ average run length denoted as ARL1. The
ideal situation is that, for a control chart, ARL0 value is large
and ARL1 value is small. However, similar to type I and type
II error probabilities in hypothesis testing, it is difficult to
achieve. Usually, when ARL0 is large, ARL1 is also relatively
large and vice versa. In SPC literature, we usually fix the
ARL0 value at a given level and compare the performances of
the control charts by comparing how small their ARL1 values
are. In the X Shewhart chart as described above, the distri-
bution of “in-control” run length is clearly geometric with
parameter α. α = 0.0027 makes ARL0 = 1/α = 370.37.
ARL1 can also be computed easily as a function of the shifted
mean.

In the literature, there are many versions of Shewhart
chart. One of them uses sample standard deviation to estimate
σ rather than sample range. In this case, the chart gives a
signal for mean shift when

Xn > X
∗ + z1−α/2

S
∗

d3(m)
√
m

or Xn < X
∗ − z1−α/2

S
∗

d3(m)
√
m
, (19.2)

where S
∗
is the sample mean of the batch-wise sample

standard deviations {S∗
i , i = 1, 2, . . . , M}, i.e.,

S∗
i =

√√√
√ 1

m− 1

m∑

j=1

(Xij − X
∗
i ) for 1, 2, . . . , M,

and d3(m) = E(S∗
i /σ) is a constant depending on the value of

m. Under the same setup, Shewhart charts were constructed

to monitor process variability. Defining d2(m) =
√
Var

(
R∗
i

σ

)
,

and using d1(m) = E(R∗
i /σ), we can estimate σR∗

i
by d2(m)

d1(m)
R

∗
.

Therefore, this version of Shewhart chart gives a signal for a
change in variability if

Rn > R
∗ + z1−α/2

d2(m)

d1(m)
R

∗
or Rn < R

∗ − z1−α/2
d2(m)

d1(m)
R

∗
.

(19.3)

Similarly, another version of Shewhart chart was constructed
using sample standard deviation instead of sample range.

Using the result σS∗
i

= σ

√
1 − d23(m) proved by Kenney

and Keeping [34], σS∗
i
can be estimated by S

∗

d3(m)

√
1 − d23(m).

Therefore, the chart gives a signal of a change in variability
if Sn, the sample standard deviation of (Xn1, Xn2, . . . , Xnm),
satisfies the following condition:

Sn > S
∗ + z1−α/2

√
1 − d23(m)

d3(m)
S

∗

or Sn < S
∗ − z1−α/2

√
1 − d23(m)

d3(m)
S

∗
. (19.4)

Using the result that (m−1)[S∗
i ]2

(σ 2)
∼ χ2

m−1, another chart was
constructed using sample variance instead of sample standard
deviation. This chart gives a signal for a change in process
variance when

S2n > S∗2χ2
1−α/2,m−1

m− 1
or S2n < S∗2χ2

α/2,m−1

m− 1
, (19.5)

where S∗2 is the sample average of {S∗
i
2, i = 1, 2, . . . , M}.

Next, we discuss X Shewhart chart for monitoring individ-
ual observations rather than batched observations in Phase
I SPC. The idea is to artificially create grouped data by
grouping consecutive observations. First, we fix the size of
each group m̃ > 1. Then, the first m̃ observations form the
first group, the next m̃ observations form the second group,
and so on. Next, we can apply X Shewhart chart (19.1) on the
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grouped data. However, one problem here is that consecutive
groups are m̃ time-points apart. Hence, it is difficult to know
the process behavior at each time-point. To overcome this
limitation, most people adopt the idea of moving windows.
We artificially create grouped data as follows: Group 1 (X1,
X2, . . ., Xm̃), Group 2 (X2, X3, . . ., Xm̃+1), and so on until
Group (n− m̃+ 1) (Xn−m̃+1, Xn−m̃+2, . . ., Xn). Denote MR1,
MR2, . . ., MRn−m̃+1 to be the sample ranges of the (n− m̃+
1) groups of data and MR to be their sample mean. From
the definition of d1(m̃), we can estimate σ by MR/d1(m̃).
Therefore, the X Shewhart chart for monitoring individual
observations gives a signal of mean shift when

Xn > X + z1−α/2
MR

d1(m̃)
or Xn < X − z1−α/2

MR

d1(m̃)
.

(19.6)

Similarly, R Shewhart chart for monitoring individual obser-
vations gives a signal of a variability shift when

MRi > MR + z1−α/2
d2(m̃)

d1(m̃)
MR

or MRi < MR − z1−α/2
d2(m̃)

d1(m̃)
MR. (19.7)

Here, we should check at all time-points that belong to the
i-th group, i.e., from the i-th to the (i+ m̃−1)-th time-points.
Other Shewhart charts formonitoring individual observations
were constructed similarly.

In many applications, quality characteristics are categori-
cal. Now, we describe some Shewhart charts for monitoring
such characteristics. After certain products are randomly cho-
sen for monitoring purposes, they are classified in conform-
ing and nonconforming products based on requirements on
the quality characteristics. Now, we monitor the proportion
of nonconforming products over time. We assume that when
a production process is “in-control,” the true proportion of
nonconforming products is π0, and we obtain a random
sample of m products at each time-point. Let Y be the
number of nonconforming products obtained at a given time-
point. Therefore, Y ∼ Binomial(m,π0) when the process
is “in-control.” Let p = Y/m be the sample proportion of
nonconforming products at the time-point. When m is large,
the probability distribution of p can be well approximated by
N (π0,π0(1 − π0)/m) by the central limit theorem when the
process is “in-control.” Hence, the process can be called “out-
of-control” if

p > π0 + z1−α/2

√
π0(1 − π0)

m

or p < π0 − z1−α/2

√
π0(1 − π0)

m
.

In practice, π0 is often unknown and should be estimated
from collected Phase I data, just like in the original version
of X Shewhart chart use estimated μ0 and σ . As before,
we assume that we have M batches of Phase I data. Let p∗

i

be the sample proportion of nonconforming products in the
i-th batch of Phase I data for i = 1, 2, . . . , M and p∗ be
their sample mean. Therefore, we can estimate π0 by p∗, and
hence the p Shewhart chart gives a signal for a change in
the proportion of nonconforming products at n-th time-point
when

pn >p∗ + z1−α/2

√
p∗(1 − p∗)

m

or pn < p∗ − z1−α/2

√
p∗(1 − p∗)

m
. (19.8)

There are other versions of Shewhart chart in the literature
for monitoring count processes having distributions such as
Poisson. Detailed descriptions of such charts are provided in
Chapter 3 of [30].

Shewhart charts are good at detecting relatively large
isolated shifts, but not so efficient in detecting relatively small
but persistent shifts. This is because Shewhart charts evaluate
the process performance based on the observed data collected
at each individual time-point and ignore observations col-
lected previously. Therefore, Shewhart charts are popular in
Phase I SPC where large and isolated shifts are common but
less commonly used in Phase II SPC.

As we mentioned before, the X, R, and S Shewhart charts
are appropriate to use only in cases when the process dis-
tribution is normal and the observations are independent of
each other. When the process distribution is not normal, the
probability of type I error, i.e., the probability of false “out-
of-control” signal when the process is actually “in-control,”
can substantially differ from the prefixed value of α. If the
type I probability of a Shewhart chart is larger than α, then
the chart will give false “out-of-control” signal more often
than expected. Consequently, much time and resource will
be wasted to find the cause of such signals and adjusting the
related production process. On the other hand, if the type I
probability of a Shewhart chart is smaller than α, then real
shifts will be missed more often than expected and hence
many nonconforming products could be manufactured. How-
ever, when the distribution of Xij is non-normal but the batch
size m is large, the issue described above will not be serious,
because the distribution of Xn can be well approximated by
normal distribution due to the central limit theorem. In cases
when the distribution of Xij is non-normal and the batch size
m is small, mainly two approaches are usually taken. One
approach is to transform the non-normal data to normal and
then use the conventional Shewhart charts to the transformed
data [35,36], and the other approach is to use Shewhart charts
that are constructed to monitor non-normal data.
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If the performances of the Shewhart charts are evaluated
by “in-control” average run lengthARL0 and “out-of-control”
average run length ARL1, then the performance measures will
be not accurate if the observations are correlated [37–39]. In
these cases, correlations have to be handled properly.

19.2.2 CUSUM Chart

Shewhart chart makes a decision whether a process is “in-
control” or not at a time-point using only the observations
obtained at that time-point and ignoring all previous observa-
tions. Therefore, it is not very effective in Phase II monitoring
in most cases, because previous observations contain helpful
information about process performance at present. Page [2]
suggested the first cumulative sum (CUSUM) chart to over-
come this limitation. Let us first describe the basic CUSUM
chart for detecting mean shift of a process following normal
distribution. Again, the chart assumes that the process obser-
vations X1, X2, X3, . . . follow N(μ0, σ 2) and are independent.
The CUSUM charting statistics are given by

C+
n = max

(
0, C+

n−1 ((Xn − μ0)/σ ) − k
)
, (19.9)

C−
n = min

(
0, C−

n−1 ((Xn − μ0)/σ ) + k
)

(19.10)

where C+
0 = C−

0 = 0, and k > 0 is an allowance constant.
The CUSUM chart gives a signal of mean shift if

C+
n > ρc or C−

n < −ρc (19.11)

where ρc > 0 is a control limit. The allowance constant
k is prespecified, and the value of ρc is chosen so that the
average run length when the process is “in-control,” denoted
as ARL0, equals a given number, say, 200, 370, 500, etc. Table
4.1 of [30] provides the values of ρc for various values of
allowance constant k and ARL0. We can easily see that the
charting statistics C+

n and C−
n make use of all available data

before the n-th time-point, and they restart from 0 when the
cumulative charting statistics suggest no significant evidence
for mean shift in the sense that C+

n−1 ((Xn − μ0)/σ ) < k
and C−

n−1 ((Xn − μ0)/σ ) > −k. Because of this restarting
mechanism, the CUSUM chart enjoys a good theoretical
property that it has smallest “out-of-control” ARL, denoted
as ARL1, among all control charts having the same value of
ARL0. Moustakides [26] proved that the CUSUM chart with
an allowance constant k has the shortest ARL1 value among
all charts with a fixed ARL0 value for detecting a persistent
shift of size δ = 2k.

To be able to use the above CUSUM chart, the process
observations should be independent before and after a poten-
tial shift, both “in-control” and “out-of-control” distributions
have to be normal, and the parameters μ0 and σ of the “in-
control” distribution have to be known. However, in practice
these assumptions may not be reasonable.

If the observations are autocorrelated, then the actual
value of ARL0 will be different from the specified value for
which the control limit ρc is determined in case of i.i.d. (in-
dependent and identically distributed) normal observations as
provided by Table 4.1 of [30]. For example, if the production
process is autoregressive of order 1, and the autocorrelation is
negative, then the actual value of ARL0 will be larger than the
specified value for which ρc is determined. Consequently, the
chart will not be sensitive enough to mean shifts and a lot of
nonconforming products can be manufactured. On the other
hand, if the production process is autoregressive of order 1,
with positive autocorrelation, then the actual value of ARL0
will be smaller than the specified value for which ρc is deter-
mined. That means the chart will give too many false signals
of mean shift than expected and the production process has
to be stopped too many times unnecessarily, and hence many
resources will be wasted. One commonly used approach
to accommodate possible autocorrelation among observed
data is to group neighboring observations into batches and
then apply conventional CUSUM charts for independent data
to the batch means. One major reason behind this idea is
that possible autocorrelation in the original data will be
mostly eliminated in the new batch means [40]. Because
of autocorrelation, the standard deviation of standardized
group means may not be 1, and it can differ very much
from 1. Therefore, the actual ARL0 may be far away from
the specified ARL0 value. To overcome this limitation of
the grouping approach, the group means need to be scaled
properly which is difficult to do unless we know the nature
of correlation in the original data. For related descriptions,
see [40, 41], and [42]. Another disadvantage of the grouping
approach is that the control chart cannot detect a mean shift
promptly as it has to wait until all observations within a
group are obtained. An alternative approach to the grouping
idea is to describe the correlation by a statistical model
such as autoregressive moving average (ARMA) model. In
many practical applications, appropriate special cases of the
ARMA model, such as first-order autoregressive model, can
be used; otherwise, an appropriate model can be selected
by a model selection procedure. After a time-series model
is chosen and fitted by a certain routine procedure in time-
series analysis, we can calculate the residuals. If the chosen
time-series model describes the observed “in-control” data
adequately, and the production process is “in-control” until
the given time-point, the residuals should approximately be
independent with a zero-mean common normal distribution
whose variance can be estimated by an appropriate estimator.
Then, we can apply the conventional CUSUM chart to the
calculated residuals. However, we should be careful that an
“out-of-control” signal may not always be due to a shift in
mean; it can be due to a change in correlation structure in
the observations as well. Related discussions onmodel-based
control charts for monitoring autocorrelated processes can be
found in [43–45], and so on.
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In cases when the observations are i.i.d. normal but the
“in-control” mean μ0 and variance σ 2 are unknown, a com-
mon approach is to estimate those from a large “in-control”
dataset. However, even a small randomness of these esti-
mated values affects the performance of the CUSUM charts
in a significant way. Hawkins [46] explored this research
question in detail. Since in many applications we cannot have
an extremely large “in-control” dataset, Hawkins [46] pro-
posed the self-starting CUSUM charts in which “in-control”
parameters are estimated from the observations collected in
Phase II SPC. Assume that no “out-of-control” signal is given
until the (n−1)-th time-point. A new observation is collected
at the n-th time-point andwewant tomake a decisionwhether
a signal of mean shift should be given at this time-point.
Since no signal for mean shift is given at (n − 1)-th time-
point, we can consider all observations collected at that time-
point and before, i.e., Xn−1, Xn−2, . . ., X1, as “in-control”
observations. Therefore, μ0 and σ 2 can be estimated by their
sample mean Xn−1 and sample variance S2n−1, respectively,
as long as n ≥ 3. Therefore, for constructing a CUSUM
chart, it is natural to replace (Xn − μ0)/σ in (19.9) and
(19.10) by Tn = (Xn − Xn−1)/Sn−1. When X1, X2, . . ., Xn
are i.i.d. N(μ0, σ 2) which is the case when the process is “in-
control” up to the n-th time-point, we can easily check that(√

(n− 1)/n
)
Tn ∼ tn−2. As proved in [47], T1, T2, . . ., Tn are

independent of each other when the process is “in-control” up
to the n-th time-point. Therefore, in that case,

Zn = �−1

[

ϒn−2

(√
n− 1

n
Tn

)]

follow i.i.d. N(0, 1) distribution, where � and ϒn−2 are
cumulative distribution functions (c.d.f.) of N(0, 1) and tn−2,
respectively. Since �−1 and ϒn−2 are increasing functions, a
mean shift in the original observationsXi, 1 ≤ i ≤ n indicates
a mean shift in the transformed observations Zi, 1 ≤ i ≤ n
and vice versa. Therefore, detection of mean shift in Phase
II monitoring can be accomplished by using transformed
observations Zn, n ≥ 1 in place of (Xn − μ0)/σ in (19.9) and
(19.10). It has been demonstrated in the literature that if a
persistent mean shift occurs within the first few observations
in Phase II monitoring, the self-starting CUSUM chart as
described above has a weak power to detect it. Therefore, in
practice, at least a dozen or more “in-control” observations
should be collected in Phase II before using the self-starting
CUSUM chart. Self-starting control charts are now popular
in the literature ([48, 49], and so on).

The traditional CUSUM chart (19.9–19.10) has an al-
lowance parameter k, which should be set as δ/2 where δ

is the size of potential mean shift. In practice, δ is often
unknown at the time when we design the CUSUM chart
and hence choice of k is not straightforward. Sparks [50]
proposed two approaches to solve this issue. Sparks’ first
approach is to use several CUSUM charts with different k

values simultaneously so that these charts target to detect
mean shifts of different sizes. Such a joint control scheme
gives an “out-of-control” signal of mean shift if at least one
of the CUSUM charts detects a mean shift. Of course, the
ARL0 values of these CUSUM charts have to be the same
prefixed number. If we have prior information about the
potential mean shift, we should incorporate the information
while determining the k values. Sparks’ second approach is
to estimate the size of mean shift δ recursively at each time-
point and updating the value of k accordingly. The control
limit should also be updated at each time-point so that we
can maintain the prespecified ARL0 value. These are called
adaptive CUSUM charts.

When the “in-control” distribution of the production pro-
cess is not normal, then the traditional CUSUM charts should
not be used. If we know that the “in-control” distribution is in
exponential family such as gamma and Weibull distribution,
then we can similarly construct CUSUM charts by using
sequential probability ratio test. However, if the “in-control”
distribution is completely unknown, we can use nonparamet-
ric control charts [11–18] that do not assume any “in-control”
distribution.

The versions of CUSUM chart mentioned above were
designed for detecting a step shift in process mean. How-
ever, in many applications, the process mean and/or vari-
ance changes gradually with or without a known parametric
pattern, after the process becomes “out-of-control.” Such
changes are called drifts. Gan [51], Davis and Woodall [52],
and many other researchers proposed CUSUM charts for
detecting linear drifts.

Recently, CUSUM charts with variable sampling rate
become popular ([53, 54] and many others). In this type of
CUSUM chart, the sampling rate varies over time based on
all observed data. There are many different types of sampling
rate such as variable sampling intervals, variable sample
sizes, etc. One major advantage of variable sampling rate
CUSUM charts compared to fixed sampling rate CUSUM
charts is faster detection of small to moderate shift in process
mean. Recently, Li and Qiu [32] suggested implementing a
CUSUM chart using statistical p-values and proposed the
concept of dynamic sampling.

In the literature, researchers have constructed CUSUM
charts for monitoring the variance of the process distribution
as well.

19.2.3 EWMA Chart

In spite of having good theoretical properties, CUSUMcharts
were difficult to use in the 1950s when there was there was
no computers. A simpler chart, called exponentially weighted
moving average (EWMA) chart, was proposed by Roberts
[55] in 1959. Under the same assumptions and notations of
CUSUM chart, the EWMA charting statistic is defined as
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En = λXn + (1 − λ)En−1 (19.12)

where E0 = μ0 and 0 < λ ≤ 1 is a weighting parameter. We
can easily check that

En = λ

n∑

i=1

(1 − λ)n−iXi + (1 − λ)nμ0, (19.13)

and when the process is “in-control,”

En ∼ N

(
μ0,

λ

2 − λ
[1 − (1 − λ)2n]σ 2

)
.

That means En is a weighted average of μ0 and all ob-
servations up to time-point n, and the weight received by
Xi decays exponentially fast when i moves away from n.
Therefore, it becomes easy to study the properties of En when
the process is “in-control.” From the probability distribution
of En, EWMA chart gives a signal for mean shift when

|En − μ0| > ρeσ

√
λ

2 − λ
[1 − (1 − λ)2n], (19.14)

where ρe > 0 is a control limit. λ > 0 is chosen beforehand,
and the value of ρe is determined such that a specified value
of ARL0 is achieved.

To be able to use the EWMA chart in practice, we need
to choose λ values properly and then the value of ρe so
that the prespecified ARL0 value is achieved. Just like the
CUSUM charts, we need to specify a target shift size first
and then we can search for a λ value and the corresponding
ρe value such that the prespecified ARL0 value is achieved
and the ARL1 value for detecting the mean shift of target
size is minimized. As a general guideline, small λ values are
good for detecting relatively small mean shifts, and large λ

values are good for detecting relatively large means shifts.
Crowder [56] provides a discussion on this issue. While we
assume that the “in-control” process distribution is normal,
some researchers have demonstrated that the EWMA chart is
quite robust to normality assumption [3].

In case of autocorrelated observations, similar approaches
as we described in the CUSUM chart can be implemented in
case of EWMA charts as well. However, some researchers
suggest applying the EWMA charts directly to the original
data and then adjusting the control limits to reflect the impact
of autocorrelations [57].

For using Shewhart, CUSUM, or EWMA chart as de-
scribed before,μ0 and σ has to be known or estimated before
the monitoring starts. As we have discussed before, this is not
convenient in many applications, and hence we should use
self-starting control charts. Just like the self-starting CUSUM
control charts, we first transform the original data to Zi,
i ≥ 1 and then apply the traditional EWMA chart to the

transformed data. In the literature, there are several methods
such as [58] where λ is chosen adaptively depending on the
size of potentialmean shift. These are called adaptive EWMA
charts.

In the literature, EWMA charts have been developed
when the process distribution follows other parametric forms.
Some researchers [59, 60] constructed EWMA charts for
monitoring processes followingWeibull distributions. Borror
et al. [61], Gan [62], and some others discussed process
monitoring when the process distribution is Poisson. Perry
and Pignatiello [63], Sparks et al. [64], and many others dis-
cussed EWMAprocess monitoring with binomial or negative
binomial distributions.

All versions EWMA charts that we discussed so far are
designed for detecting step shift in the process mean. In
some practical situations, when the process becomes “out-
of-control,” its mean departs gradually from the “in-control”
level. It is important that we can detect such gradual depar-
tures, called drifts, as early as possible. In the literature, some
researchers have modified EWMA charts to detect drifts
efficiently ([65] and others).

Just like CUSUM charts, researchers have constructed
EWMA charts to monitor the variance of the production
processes as well.

19.2.4 Control Charts by Change-Point
Detection (CPD)

In change-point detection (CPD), the distribution of the first
part of a sequence of random variables is assumed to be the
same, the distribution of the remaining part of the random
variables of that sequence is also assumed to be the same,
but the distributions of the two parts are assumed to be
different. The specific position in the sequence at which the
distribution of the random variables changes from one to the
next is called a change-point. Our major goal is to estimate
the position of the change-point. Gombay [66], Hinkley [67],
and many others in the literature provide detailed descrip-
tion of this topic. In change-point detection problems, the
sample size is usually fixed. In Phase I SPC, the sample
size is usually fixed, and then the change-point methods can
be applied directly. In Phase II SPC, observations are ob-
tained sequentially over time. Therefore, change-point meth-
ods must be applied appropriately in such cases. Recently,
change-point methods have been modified and applied to
the SPC problems ([4, 5], and others) as well. Change-
point-based control charts are good at detecting small and
persistent shifts and can estimate the position of change-point
efficiently.

Let us describe the change-point based control chart pro-
posed by Hawkins et al. [4]. It assumes that the observations
X1, X2, . . ., Xn follow this change-point model
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Xi = μ0 + εi for 1 ≤ i ≤ r

Xi = μ1 + εi for (r + 1) ≤ i ≤ n

where r is the change-point and εi, 1 ≤ i ≤ n is a sequence
of i.i.d. random variables having the common distribution
N(0, σ 2). For testing the existence of the change-point, the
likelihood ration test statistic is

Tmax,n = max
1≤j≤n−1

√
j(n− j)

n

∣
∣
∣Xj − X

′
j

∣
∣
∣ /̃Sj (19.15)

where Xj and X
′
j are sample means of first j and the remaining

(n− j) observations, and S̃2j = ∑j
i=1(Xi−Xj)2+∑n−j

i=j+1(Xi−
X

′
j)
2. The change-point-based chart gives an “out-of-control”

signal of mean shift when

Tmax,n > ρn (19.16)

where ρn > 0 is a control limit. If we have an “out-
of-control” signal, then the position of change-point r is
estimated by the maximizer in (19.15). Hawkins et al. [4]
provided formulas to calculate the values of ρn for commonly
used prespecified values of ARL0.

Just like other control charts, change-point-based charts
were also constructed to accommodate other situations such
as if the “in-control” process distribution is not normal, but
other known parametric distribution. Change-point-based
charts were also developed to monitor process variance as
well.

Although the change-point-based control charts have their
advantages over Shewhart, CUSUM, and EWMA charts,
their computation is still relatively complex. This is because
the estimator of the position of change-point has to be re-
calculated each time a new observation is obtained which
involve a search in a sequence of n time-points. A systematic
comparison between the performances of self-starting and
adaptive traditional (CUSUM and EWMA) control charts
and the change-point-based control charts is currently lack-
ing in the literature.

In practice, many variables do not follow normal distribu-
tion. For example, many economic indices, rainfall distribu-
tion, lifetime distribution of many products, etc. are usually
skewed to the right. In most instances it is difficult to find
an appropriate parametric distribution for their modeling.
Researchers use nonparametric methods to describe their
distributions. When the normality assumption is not reason-
able, several researchers have pointed out that the traditional
control charts would be unreliable for process monitoring
([6,7,16], andmany others). In such cases, nonparametric sta-
tistical methods based on the ranking or ordering information
of the observations can be considered for making inferences
about the underlying process distribution. Another approach
is based on data categorization. Clearly, both approaches

have the limitation of losing useful information during rank-
ing and categorization. However, the methods based on data
categorization seem to be more efficient in process mon-
itoring as use some information about observation magni-
tudes. Nonparametric versions of conventional charts such as
Shewhart, CUSUM, EWMA, and change-point-based have
been developed in the literature. Most nonparametric control
charts in the literature are for Phase II SPC. However, there
is only a limited discussion on Phase I SPC when the process
distribution does not follow any common parametric form
[68,69].

Many researchers have developed control charts in the
literature to jointly monitor process mean and variance as
well. We skip such details in this chapter. We also omit
descriptions of multivariate control charts as well. Interested
readers should go through [30].

19.3 The Proposed SPC Chart

In this section, we describe our proposed Phase II chart for
detecting persistent distributional change in univariate con-
tinuous processes. We assume that “in-control” probability
distribution of the process is unknown, “in-control” Phase
I data are unavailable, and the observations we collect are
independent of each other. Let Y1, Y2, . . . , Yt, . . . be a se-
quence of independent observations during Phase II process
monitoring. We start performing statistical monitoring right
after time-point S0 ≥ 4, because we need to need have at
least a few observations so that statistical tests have enough
power. This is a common practice as discussed in [4,27], etc.
At each time t ≥ S0, we consider the following change-
point framework. Assuming τ , 2 ≤ τ ≤ t − 2 to be a
possible point of distributional change, we consider two sam-
ples {Y1, Y2, . . . , Yτ } and {Yτ+1, Yτ+2, . . . , Yt}, and perform
Cramer-von Mises test to check if they are coming from the
same unknown continuous cumulative distribution function
(cdf). For statistically testing whether two samples are from
the same continuous distribution, two tests are commonly
used: Kolmogorov-Smirnov test and Cramer-von Mises test.
Kolmogorov-Smirnov test does not work well if there are
ties in the samples. Also, Cramer-von Mises test usually
have more power than Kolmogorov-Smirnov test in many
situations. Therefore, we use Cramer-von Mises test ahead
of Kolmogorov-Smirnov test. The two-sample Cramer-von
Mises test statistic is given by

Cτ (t) = τ(t − τ)

t2

(
τ∑

i=1

(F∗(Yi) − G∗(Yi))2

+
t∑

j=τ+1

(F∗(Yj) − G∗(Yj))2
⎞

⎠ ,

(19.17)
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where F∗ and G∗ are the empirical distributions associated
with the samples {Y1, Y2, . . . , Yτ } and {Yτ+1, Yτ+2, . . . , Yt}.
Large values of Cτ means {Y1, Y2, . . . , Yτ } and {Yτ+1, Yτ+2,
. . . , Yt} are possibly coming from different cdfs. Suppose
P(CvM)

τ (t) is the p-value of the two-sample Cramer-von Mises
test. The details of computing P(CvM)

τ (t) are provided in
Sect. 19.3.5 along with other computational technicalities of
the proposed chart. A natural approach in this framework is
to (i) calculate the p-values of two-sample Cramer-vonMises
test for all possible values of τ , i.e., τ = 2, 3, . . . , t − 2, (ii)
determine τ ∗(t) = arg minτ∈{2,3,...,(t−2)} P(CvM)

τ (t), and (iii)
use P(CvM)

τ ∗ (t) as the charting statistic.
However, there are two major drawbacks of this approach.

The first drawback is that the determination of τ ∗(t) can
be computationally expensive because we have to compute
P(CvM)

τ (t) for all possible values of τ , i.e., 2, 3, . . . , (t − 2).
Moreover, we need to execute similar procedures for all
values of t ≥ S0 until we get a signal. We run into this issue
in the change-point framework wherever we need to compute
the relevant statistic for each value of the possible change-
point. To reduce computation, we consider the following two
techniques and both can be applied to the proposed SPC
chart. The first technique is to estimate τ ∗(t) efficiently by
the method proposed in Sect. 19.2.1 which can be applied to
other change-point problems of similar nature. The second
technique is the pruning of data from distant past based on p-
values as proposed byMukherjee [28]. The second drawback
is the weakness of the power of Cramer-von Mises test to
detect a change in standard deviation or scale. The proposed
chart addresses this issue by integrating Cramer-von Mises
test with Ansari-Bradley test which is a nonparametric test to
detect scale difference. We describe these approaches below.

19.3.1 A Computationally Efficient Approach
to Estimate τ∗(t)

We note that the values of P(CvM)
τ (t) and P(CvM)

τ ′ (t) should not
be too different as long as τ and τ ′ are close. In other words,
for each t, the values of P(CvM)

τ (t) for different τ are strongly
autocorrelated. Therefore, we can make the procedure faster
by first calculatingP(CvM)

τ (t) for τ -values that aremultiples of
	√t
 instead of all possible values of τ . For a demonstration
purpose, consider the case when t = 100. Calculate P(CvM)

τ (t)
for τ = 10, 20, . . . , 90 instead of τ = 2, 3, 4, . . . , 98. Then,
select the value of τ for which P(CvM)

τ (t) is minimum, and
calculateP(CvM)

τ (t) for τ -values in the two adjoining intervals.
In other words, if τ = 30 gives the smallest P(CvM)

τ (t)-value
among τ = 10, 20, 30, . . . , 90, compute P(CvM)

τ (t) for τ =
21, 22, . . . , 29, 30, 31, . . . 39 and select the τ -value for which
P(CvM)

τ (t) is the smallest. The detailed procedure to estimate
τ ∗(t) is described below.

For each t, instead of calculating P(CvM)
τ (t) for possible

values of τ , i.e., 2, 3, . . . , (t − 2), calculate the statistic for
τ = i.	√t
, where possible values of i are 1, 2, . . . , I(t),
where I(t) is the largest integer for which I(t).	√t
 ≤
(t − 2). Here, 	√t
 is the largest integer smaller than or
equal to t. Since we start monitoring when the time-point
t ≥ S0 ≥ 4, we always have at least one positive integer
i for which we can compute P(CvM)

τ (t). For example, when
t = S0 = 4, we have to compute P(CvM)

τ (t) for only
one value of τ , i.e., when τ = 2. Next, we find τ̃ =
arg mini∈{1,2,...,I(t)} P(CvM)

i.	√t
 . Since the τ ∗(t) should be close to

τ̃ , we calculate P(CvM)
τ (t) for all integer values of τ within[

max {(τ̃ −	√t
+ 1), 2},min {(τ̃ + 	√t
− 1), (t−2)}] and
pick the integer within that interval for which P(CvM)

τ (t) is
minimum. This is our estimated τ ∗(t) and we call it τ̂ ∗(t).
The method is summarized as follows:

(i) Calculate P(CvM)
τ (t) for τ = i.	√t
, where possible

values of i are 1, 2, . . . , I(t), where I(t) is the largest
integer for which I(t).	√t
 ≤ (t − 2).

(ii) Find τ̃ = arg mini∈{1,2,...,I(t)} P(CvM)

i.	√t
 .
(iii) Calculate P(CvM)

τ (t) for all integer values of τ within the
interval:

[
max {(τ̃ − 	√t
 + 1), 2},min {(τ̃ + 	√t
 − 1), (t − 2)}] .

(iv) Estimate τ ∗(t) by the integer within the interval in (iii)
for which P(CvM)

τ (t) is minimum.

19.3.2 Integration of Ansari-Bradley Test with
Cramer-vonMises Test

It is well documented in the literature (e.g., [27]) that Cramer-
von Mises test does not have high power to detect changes
in scale parameters. However, it has high power to detect
changes in location parameters. Because of this weakness,
we integrate Cramer-von Mises test with Ansari-Bradley test
[70] in the proposed control chart. Ansari-Bradley test is a
nonparametric test based on rank sum to detect differences
in scale parameters. The integration procedure is as follows.
For each t, once τ ∗(t) is estimated by the procedure in
Sect. 19.2.1:

(i) Record the p-value of two-sample Cramer-von
Mises test for checking if {Y1, Y2, . . . , Yτ̂ ∗ } and
{Yτ̂ ∗+1, Yτ̂ ∗+2, . . . , Yt} are realizations from the same
continuous cdf. Obviously, it is P(CvM)

τ̂ ∗(t) (t).
(ii) Perform Ansari-Bradley two-sample test for checking

if the scale parameters of {Y1, Y2, . . . , Yτ̂ ∗ } and
{Yτ̂ ∗+1, Yτ̂ ∗+2, . . . , Yt} are same. Call the p-value
P(AB)

τ̂ ∗(t) (t).
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(iii) Calculate p(E)(t) = min{P(CvM)

τ̂ ∗(t) (t), P(AB)

τ̂ ∗(t) (t)}, and use
this as charting statistic.

When we integrate two different tests in a change-point-
based chart, it is natural to perform change-point analysis
for both tests, because the estimated change-points can be
different for different tests. However, to avoid extra compu-
tation, we do not consider this approach. Numerical studies
show that the proposed chart based on the procedures as
described performs well in detecting changes in scale param-
eters. When there is a small change in scale parameters and
the p-value of Cramer-von Mises test is not small enough to
give a signal, it is still small and hence the change-points
based on both tests should be close. The proposed chart
just detects such change by integrating a more powerful test
appropriately.

19.3.3 Data Pruning Based on P-Values

In case the proposed chart does not detect any distributional
change for a long time, the sequence of “in-control” ob-
servations will be long, and hence calculation of τ̂ ∗(t) as
described in Sect. 19.2.1 can be time-consuming as well. If
the influx of observations is rapid, then this chart in its present
form cannot be used to monitor such processes. To solve this
problem, consider datapruning from distant past. If p(E)(t),
calculated by the procedure described in Sect. 19.2.2 is large,
it is very unlikely that a distributional change has taken place.
Therefore, we prune a few observations from distant past
and focus on more recent observations. In this way, we make
sure that the sequence of “in-control” observations does not
become too long. We provide the description of the method
below.

When t̃ ≥ T0, where t̃ is the current length of the
sequence of observations, and T0 is a threshold parameter of
the SPC chart, we consider the possibility of data pruning.
If p(E)(t) ≥ P0, we prune the oldest C(t̃, p(E)(t), P0) =⌊
t̃. min

(
0.2,

(
p(E)(t)−P0

1−P0

))⌋
number of observations. Here,

wemake sure not to prune toomuch in one step, by specifying
that we cannot prune more than 20% of the current length of
the sequence at one step. Here, we set the maximum amount
of pruning at one step to be 20% based on the performance of
the chart in our simulation experiments in terms of how fast it
can compute and how early it can give a signal when a process
goes “out-of-control.” While one can introduce a parameter
for the maximum percentage we can prune at one step and
select its value based on a reasonable criterion, we set it
equal to 20% for simplicity. Once we prune, we can estimate
τ ∗(t) faster in the next step, i.e., after the arrival of next
observation. The summary of data pruning is as follows:

(i) When p(E)(t) < P0, give a signal for distributional
change and stop process monitoring; otherwise, go to
Step (ii).

(ii) If t̃ ≥ T0, prune the oldest C(t̃, p(E)(t), P0) =⌊
t̃. min

(
0.2,

(
p(E)(t)−P0

1−P0

))⌋
number of observations,

and collect the next observation. Otherwise, go to Step
(iii).

(iii) Do not prune and collect the next observation.

19.3.4 The Algorithm of the Proposed Control
Chart

The summary of the procedures to run the proposed control
chart is as follows:

1. When t̃ < S0, collect the next observation. Otherwise, go
to Step 2.

2. Calculate τ̂ ∗(t), an estimate of τ ∗(t) by the method de-
scribed in Sect. 19.2.1. Go to Step 3.

3. Calculate P(CvM)

τ̂ ∗(t) (t), P(AB)

τ̂ ∗(t) (t), and p
(E)(t) by the method

described in Sect. 19.2.2. If p(E)(t) < P0, give a signal
for distributional change and stop process monitoring;
otherwise, go to Step 4.

4. Perform the data pruning procedure as described in
Sect. 19.2.3. Go to Step 1.

19.3.5 Implementation

Calculation of p-values for two-sample Cramer-von Mises
tests is computationally expensive and time-consuming
especially when the sample sizes are large [71]. However,
[72] provide the asymptotic distribution of two-sample
Cramer-von Mises criterion. We also note that the
convergence rate is rapid. Therefore, in our implementation,
we use asymptotic p-values rather than the exact ones.
Using the software R (https://www.r-project.org/) and the
R-package CvM2SL2Test developed by Xiao [73], we
extend the table provided by Anderson and Darling [72]
to calculate p-values of two-sample Cramer-von Mises
tests when they are smaller than 0.01. We use the same R-
package CvM2SL2Test to calculate the two-sample Cramer-
von Mises test statistics given as in (1) and then calculate
their asymptotic p-values. For calculating (1), the R-package
uses a C++ program developed by Xiao et al. [74]. We use
R-function ansari.test() to perform Ansari-Bradley tests. It
should be noted that approximate p-values are calculated
even for small samples in presence of ties. The proposed
method is designed to monitor univariate continuous

https://www.r-project.org/
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processes and hence cannot handle even a moderate number
of ties in the observation sequence. However, this chart
can still perform well in presence of a small number of
ties.

19.4 Numerical Studies

We perform several numerical studies to evaluate the per-
formance of the proposed method in comparison with a
number of state-of-the-art change-point-based control charts.
Our main goal is to find a chart that shows overall better
performance to detect arbitrary distributional changes. We
also study how the performances are affected by the number
of “in-control” observations before the distributional change.
Like most research articles in the literature, we also evaluate
the performances of the control charts by the average number
of observations, called “run length” after the first observation
from the changed distribution is obtained. We call it ARL1.
The smaller the value of ARL1, the better the performance.
Of course, we set the control limits of all control charts such
that the average number of “in-control” observations required
to give a false signal when no distributional change takes
place is a prefixed large number. We call it ARL0. In all our
numerical simulations, we set ARL0 = 500 unless mentioned
otherwise.

We compare the proposed method with four other change-
point-based methods. The first method is proposed by
Hawkins and Deng [13]. It is based on Mann-Whitney test
and it aims to detect location shift. We call this method MW.
The next competing control chart, proposed by Ross et al.
[33], is based on Mood test [75]. This chart aims to detect
scale change in the process distribution. We call it Mood.
The third competing chart, also proposed by Ross et al. [33],
is based on Lepage test [76]. It aims to detect changes in both
location and scale of the process distribution, and we call it
Lepage. Our fourth competing chart, proposed by Ross and
Adams [27], aims to detect arbitrary distributional change
using Cramer-von Mises test. We call this chart CvM.

Initially, we consider three “in-control” process
distributions: standard normal, N(0, 1); standardized t-
distribution with 2.5 degrees of freedom, ST(2.5); and
standardized log-normal distribution with parameters 1.0
and 0.5, SLN(1.0, 0.5). Note that the mean and standard
deviation of log-normal distribution with parameters 1.0
and 0.5 are 3.08 and 1.64, respectively. However, we
approximate those by 3 and 1.6 while standardizing. We
first consider shifts in location only, scale only, and both
location and scale simultaneously. Finally, we consider
arbitrary changes of various distributions. To compare
the performances of various methods, we consider two
cases: when the distribution change occurs early, right after

time-point τ = 50, and when the change occurs late, right
after time-point τ = 300. It should be noted that if a false
signal occurs before the actual distributional change, we
disregard that sequence in our simulation, as it is a reasonable
practice.

We use the R-package cpm to run the competing charts.
For the proposed method, we need to select S0 and T0. For
all methods, we select the startup time to be 20, and for the
proposed method, we select S0 = 20 and T0 = ARL0 = 500.
For comparing the performances of the methods when the
distributional change is arbitrary, we run four versions of
the proposed chart called P250, P500, P1000, and P∞ when
T0 = 250, 500, 1000, and ∞, respectively. From Table 19.6,
we see that T0 = 500 is a reasonable choice considering
the fact that larger values of T0 requires more time for
computation. It should be noted that the proposed chart that
is designed to detect an arbitrary distributional change may
not outperform the charts designed to detect a specific type of
distributional changes when the actual distributional change
is of that particular type. For example, MW should perform
better than the proposed chart when the distributional change
involves location change only. However, our goal is to find a
chart that performs well to detect all types of distributional
changes so that it can be used in various applications where
the natures of changes are unknown.

19.4.1 Location Changes

First, we focus on changes in location only. We consider
four different amounts of shift, δL = 0.25, 0.5, 1.0, and
2.0. For each of three distributions N(0, 1), ST(2.5), and
SLN(1.0, 0.5), we generate 50, 000 sequences of observa-
tions where the post-change observations right after time-
point τ are calculated by adding δL. From Table 19.1, we
observe that

• MW and CvM are slightly better than the proposed
method when δL is small or moderate. When δL is large,
all methods except Mood perform well. The reason is
that MW is designed to detect location changes only;
therefore, it has better power when detecting location
changes compared to the methods designed to detect
arbitrary distributional changes. Mood is designed to
detect scale changes; therefore, it cannot perform well in
this case.

• Detections of location changes are faster when the “in-
control” distribution is ST(2.5) or SLN(1.0, 0.5) com-
pared to the N(0, 1) case.

• Changes occurring right after time-point τ = 300 are
easier to detect compared to the changes occurring right
after τ = 50.
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Table 19.1 Mean delay in
detection of various location
shifts δL occurring right after
time τ . “In-control” distributions
considered are N(0, 1), ST(2.5),
and SLN(1.0, 0.5). The results
are based on 50,000 random
simulations when ARL0 = 500

τ = 50 τ = 300

δL = δL =
N(δL, 1) 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

MW 377.1 134.3 13.8 4.9 150.8 35.1 10.2 3.9

Mood 502.6 506.3 310.5 32.9 479.3 399.0 71.2 4.3

Lepage 434.4 225.6 20.0 3.7 228.6 49.5 11.5 3.1

CvM 387.7 153.9 14.8 4.3 168.3 37.8 10.7 3.9

Proposed 400.0 169.6 16.0 4.8 190.5 41.5 12.3 5.3

ST(2.5) + δL

MW 199.8 21.4 6.0 3.5 46.8 13.3 5.2 3.1

Mood 492.1 346.5 72.1 11.5 446.0 180.0 7.9 2.5

Lepage 299.2 38.3 6.4 2.4 74.9 16.9 4.5 2.1

CvM 195.5 20.6 5.7 3.2 46.3 13.1 4.9 3.0

Proposed 212.1 22.3 6.2 3.6 50.3 14.6 6.4 4.2

SLN(1.0, 0.5) + δL

MW 368.4 96.0 10.9 4.3 113.8 26.4 8.4 3.8

Mood 527.3 272.4 71.5 45.9 406.2 171.3 139.3 5.6

Lepage 411.3 93.9 15.9 4.4 143.3 37.6 11.9 3.3

CvM 378.1 103.3 10.7 4.0 122.3 27.0 8.3 3.6

Proposed 356.9 93.0 11.2 4.4 120.8 28.2 9.6 5.0

Table 19.2 Mean delay in
detection of various scale
changes δS occurring right after
time τ . “In-control” distributions
considered are N(0, 1), ST(2.5),
and SLN(1.0, 0.5). The results
are based on 50,000 random
simulations when ARL0 = 500

τ = 50 τ = 300

δS = δS =
N(0, δ2S) 1.50 2.00 0.50 0.25 1.50 2.00 0.50 0.25

MW 320.2 226.4 753.0 843.5 154.0 73.7 1470.1 1929.3

Mood 94.6 17.1 37.2 11.2 26.9 10.6 21.3 10.1

Lepage 144.6 25.8 63.3 15.4 34.1 13.2 31.0 14.8

CvM 320.5 196.6 563.9 69.4 131.6 47.2 102.8 30.4

Proposed 195.2 37.8 84.6 13.2 59.1 24.4 31.9 13.8

ST(2.5).δS
MW 359.4 273.6 704.5 816.5 205.1 107.8 1272.2 1798.7

Mood 205.0 49.4 79.8 14.0 49.2 17.3 31.0 12.3

Lepage 246.8 85.3 141.3 19.7 64.0 21.3 45.6 17.9

CvM 348.9 252.5 613.3 140.6 182.4 68.6 161.4 38.7

Proposed 275.4 80.1 144.9 17.2 89.4 33.0 42.5 16.1

SLN(1.0, 0.5).δS
MW 274.5 167.1 671.4 660.7 102.7 47.1 721.6 485.9

Mood 66.2 13.8 28.8 12.0 20.4 8.8 20.1 11.3

Lepage 95.9 17.3 42.6 15.3 25.0 10.7 27.3 15.3

CvM 268.0 123.5 421.5 47.3 83.9 33.8 65.4 24.2

Proposed 142.1 27.3 55.7 12.6 45.1 20.3 26.7 13.5

19.4.2 Scale Changes

Now, we focus on changes in scale only. We consider
four scale changes, namely, δS = 1.50, 0.50, 2.00, and 0.25.
For each of three distributions, N(0, 1), ST(2.5), and
SLN(1.0, 0.5), we generate 50, 000 sequences of observa-
tions where the post-change observations are calculated by
multiplying δS. From Table 19.2, we observe that

• Mood and Lepage are slightly better than the proposed
method in some cases. The reason is thatMood is designed

to detect scale changes only and Lepage is designed to
detect both location and scale change. Therefore, they
have better powers when detecting scale changes com-
pared to the methods designed to detect arbitrary dis-
tributional changes. MW is designed to detect location
changes; therefore, it cannot performwell in this case. The
proposed method performs much better than CvM. The
reason is the incorporation of Ansari-Bradley test with
Cramer-von Mises test.

• MW performs fairly well when δS > 1.00 but performs
very poorly when δS < 1.00. One explanation of this is
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when δS > 1.00, extremely large or small numbers are
more likely, and MW interprets those as location changes.
This phenomenon is commented in [27] and in [24].

• Detections of scale changes are faster when the “in-
control” distribution is ST(2.5) and SLN(1.0, 0.5)
compared to the N(0, 1) case.

• In this case also, changes occurring right after time-point
τ = 300 are easier to detect compared to the changes
occurring right after τ = 50. MW, however, cannot detect
a decrease in scale at all.

19.4.3 Location-Scale Changes

Now, we focus on changes in location and scale simul-
taneously. We consider 8 changes in location and scale
simultaneously, namely, (δL, δS) = (0.50, 1.50), (0.50, 0.50),
(0.50, 2.00), (0.50, 0.25), (1.00, 1.50), (1.00, 0.50), (1.00,
2.00), and (1.00, 0.25). For each of the three distribu-
tions N(0, 1), ST(2.5), and SLN(1.0, 0.5), we generate
50, 000 sequences of observations where the post-change
observations are calculated by multiplying δS and then
adding δL. From Tables 19.3, 19.4, and 19.5, we observe
that

• Lepage performs the best, as it should because it is de-
signed to detect changes in location and scale simulta-
neously. Mood works well in some cases. The proposed
method works well, better than CvM in many cases.

• In these case also, detections of changes in location and
scale simultaneously are faster when the “in-control”
distribution is ST(2.5) and SLN(1.0, 0.5) compared to
N(0, 1) case.

• Changes occurring right after time-point τ = 300 are
easier to detect compared to the changes occurring right
after τ = 50. MW, however, cannot detect a decrease in
scale at all.

19.4.4 General Distributional Changes

Finally, we consider general changes of various “in-control”
distributions. The corresponding changes in the pair of
mean and standard deviations are large in some cases (e.g.,
Weibull(1) to Weibull(3) and vice versa, Gamma(2,2) to
Gamma(3,2) and vice versa) and small or zero in some other
cases (e.g., N(0, 1) to ST(2.5) and vice versa, N(0, 1) to
SLN(1.0, 0.5) and vice versa). From Table 19.6, we observe
that

Table 19.3 Mean delay in
detection of various amounts of
changes in location and scale
simultaneously, i.e., (δL, δS),
occurring right after time τ .
“In-control” distribution
considered here is N(0, 1). The
results are based on 50,000
random simulations when
ARL0 = 500

N(δL, δ2S) (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 50 and (δL, δS) =
MW 137.1 125.4 127.2 129.0 20.2 9.4 28.3 8.3

Mood 116.6 45.6 18.2 20.4 168.0 62.1 23.3 44.5

Lepage 90.4 31.2 20.7 16.8 19.7 14.0 12.5 12.0

CvM 131.0 66.9 94.6 19.9 20.9 8.7 24.0 6.6

Proposed 116.4 33.1 33.5 14.0 21.7 9.2 19.0 7.1

τ = 300 and (δL, δS) =
N(δL, δ2S) (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

MW 38.7 26.9 37.1 23.7 13.6 7.5 16.4 6.6

Mood 22.5 52.0 9.9 26.9 14.0 148.4 8.3 136.8

Lepage 21.1 27.7 11.3 18.9 10.2 10.7 8.3 9.9

CvM 37.9 20.7 30.4 13.1 13.9 7.0 15.6 5.6

Proposed 33.9 20.8 20.8 13.8 15.1 8.5 14.6 7.0

Table 19.4 Mean delay in
detection of various amounts of
changes in location and scale
simultaneously, i.e., (δL, δS),
occurring right after time τ .
“In-control” distribution
considered here is ST(2.5). The
results are based on 50,000
random simulations when
ARL0 = 500

ST(2.5).δS + δL (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 50 and (δL, δS) =
MW 33.9 13.4 47.4 10.8 7.7 4.7 10.0 4.3

Mood 241.9 66.4 70.1 41.8 110.2 52.5 87.0 46.3

Lepage 57.1 18.5 34.1 14.2 7.4 5.1 7.9 4.7

CvM 31.4 11.0 36.7 7.9 7.4 4.3 9.3 3.8

Proposed 33.3 11.6 30.6 8.3 7.9 4.7 9.3 4.2

τ = 300 and (δL, δS) =
MW 17.3 9.4 20.5 7.9 6.4 4.1 7.9 3.8

Mood 25.0 166.7 12.5 120.7 7.6 6.9 6.8 6.0

Lepage 14.7 14.6 11.6 12.7 5.1 3.7 5.4 3.4

CvM 16.8 8.5 18.7 6.5 6.2 3.8 7.5 3.4

Proposed 17.8 9.9 17.3 7.9 7.7 5.3 8.7 4.8
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Table 19.5 Mean delay in
detection of various amounts of
changes in location and scale
simultaneously, i.e., (δL, δS),
occurring right after time τ .
“In-control” distribution
considered here is SLN(1.0, 0.5).
The results are based on 50,000
random simulations when
ARL0 = 500

(SLN(1, .5)).δS + δL (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 50 and (δL, δS) =
MW 201.5 40.7 216.0 33.9 19.8 7.9 44.2 7.4

Mood 273.6 32.2 28.5 24.9 384.2 47.4 140.2 42.5

Lepage 217.9 19.1 45.0 15.2 33.3 11.7 48.1 10.7

CvM 206.1 17.9 185.3 11.1 21.6 6.6 42.2 5.6

Proposed 224.4 14.8 67.7 10.5 23.8 7.0 44.7 6.1

τ = 300 and (δL, δS) =
MW 53.3 15.1 65.2 13.0 12.9 6.4 20.2 5.9

Mood 69.0 55.8 13.3 48.3 154.7 137.8 18.9 133.5

Lepage 44.7 19.8 16.1 17.5 15.7 9.3 14.6 8.6

CvM 54.4 11.6 47.8 8.6 13.6 5.5 20.1 4.9

Proposed 55.7 12.6 28.4 9.8 15.3 7.0 20.6 6.3

Table 19.6 Mean delay in
detection of various general
changes in distribution. The
results are based on 50,000
random simulations when
ARL0 = 500

MW Mood Lepage CvM P250 P500 P1000 P∞
τ = 50

N(0, 1) → ST(2.5) 685.7 109.4 192.2 617.5 173.1 178.1 173.4 173.1

ST(2.5) → N(0, 1) 299.6 101.5 149.7 272.3 125.8 109.9 100.8 96.1

N(0, 1) → SLN(1, 0.5) 555.5 539.1 544.9 516.2 455.8 478.0 487.8 499.1

SLN(1, 0.5) → N(0, 1) 430.7 376.9 366.8 416.7 423.0 418.8 412.5 412.5

Gamma(2,2) → Gamma(3,2) 46.8 466.0 86.3 55.0 63.0 60.2 60.5 62.2

Gamma(3,2) → Gamma(2,2) 39.9 464.5 76.8 46.4 56.6 52.9 51.4 52.2

Weibull(1) → Weibull(3) 657.5 18.3 23.2 177.7 25.5 24.9 24.0 23.6

Weibull(3) → Weibull(1) 117.8 8.0 9.7 52.7 15.7 15.2 14.5 14.2

Uniform(0,1) → Beta(5,5) 794.2 19.5 28.5 385.3 34.5 34.4 32.5 32.4

Beta(5,5) → Uniform(0,1) 178.5 9.7 12.5 119.6 20.1 19.4 18.5 17.9

τ = 300

N(0, 1) → ST(2.5) 1168.9 37.4 55.9 190.5 51.3 47.2 46.2 45.7

ST(2.5) → N(0, 1) 129.9 23.0 28.7 79.4 40.6 37.4 36.3 35.9

N(0, 1) → SLN(1, 0.5) 643.8 462.1 458.5 449.7 356.8 346.7 373.0 419.4

SLN(1, 0.5) → N(0, 1) 316.1 168.9 178.0 265.0 322.5 277.9 269.6 288.0

Gamma(2,2) → Gamma(3,2) 19.7 316.8 27.4 21.0 23.8 22.9 22.4 22.2

Gamma(3,2) → Gamma(2,2) 18.7 155.3 21.7 20.2 22.9 22.2 21.8 21.5

Weibull(1) → Weibull(3) 512.2 15.7 20.7 37.9 19.7 20.3 19.8 19.6

Weibull(3) → Weibull(1) 31.1 5.9 7.1 21.8 13.4 14.2 14.0 13.8

Uniform(0,1) → Beta(5,5) 1670.0 15.2 22.1 60.1 21.3 22.1 21.7 21.4

Beta(5,5) → Uniform(0,1) 48.9 7.0 8.7 30.2 16.5 17.3 16.8 16.6

• No one method is uniformly best. P500 works well in all
cases. Note that P500 is the proposed method when T0 =
500 as defined in the fourth paragraph of Sect. 19.3.

• In cases where another method is the best, P500 is not far
behind.

• The performance of P500 is not far from the best
choice of T0 for the proposed method. The larger the
value of T0, the more the computing time. Therefore,
P500 is a good balance between computing time and
performance. Hence, we suggest using T0 = ARL0 in most
applications.

• In cases where location change is large, MW works well,
and when scale change is large, Mood works well, as
expected.

• Distributional change fromN(0, 1) to SLN(1.0, 0.5)which
does not alter the mean and standard deviation is detected
by the proposed method earlier than other charts.

• When we are not sure about the nature of possible distri-
butional change, the proposed method is a good choice.

• Changes occurring right after time-point τ = 300 are
easier to detect compared to the changes occurring right
after τ = 50. MW cannot detect an arbitrary distributional
change well if the median does not change by much.
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Table 19.7 Mean delay in
detection of various location
shifts δL occurring right after
time τ . “In-control” distributions
considered are N(0, 1), ST(2.5),
and SLN(1.0, 0.5). The results
are based on 10,000 random
simulations when ARL0 = 200

τ = 30 τ = 150

δL = δL =
N(δL, 1) 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

MW 165.4 85.4 13.3 3.8 102.5 29.2 8.5 3.2

Mood 195.3 198.3 156.4 36.9 185.2 161.5 54.4 2.6

Lepage 150.6 100.4 18.9 3.1 112.7 39.0 9.2 2.3

CvM 166.4 95.1 15.2 3.7 106.6 32.5 8.9 3.1

Proposed 166.5 103.0 16.8 4.3 116.0 37.6 10.2 4.0

ST(2.5) + δL

MW 110.0 24.3 5.2 3.0 40.0 11.1 4.2 2.7

Mood 191.0 154.4 52.6 17.4 178.8 105.4 8.8 2.0

Lepage 118.5 35.7 6.1 1.9 57.5 14.2 3.8 1.5

CvM 110.5 22.8 5.0 2.6 40.2 10.9 4.0 2.3

Proposed 119.1 26.1 5.6 3.2 46.6 12.2 4.9 3.1

SLN(1.0, 0.5) + δL

MW 167.9 78.9 11.0 3.7 94.0 22.9 7.0 3.1

Mood 205.1 150.6 52.7 34.8 202.9 106.1 76.1 6.0

Lepage 153.0 69.9 13.6 4.1 101.8 30.1 9.8 2.7

CvM 165.8 82.5 10.6 3.4 95.0 23.5 7.0 2.9

Proposed 158.7 72.8 11.2 4.0 89.5 24.8 7.9 3.7

Table 19.8 Mean delay in
detection of various scale
changes δS occurring right after
time τ . “In-control” distributions
considered are N(0, 1), ST(2.5),
and SLN(1.0, 0.5). The results
are based on 10,000 random
simulations when ARL0 = 200

τ = 30 τ = 150

δS = δS =
N(0, δ2S) 1.50 2.00 0.50 0.25 1.50 2.00 0.50 0.25

MW 129.2 93.5 299.8 340.8 73.4 39.8 561.6 739.2

Mood 60.7 16.8 39.8 9.6 20.1 8.0 17.5 8.1

Lepage 61.8 20.4 61.8 13.1 22.7 9.2 25.8 11.9

CvM 128.0 87.7 253.5 97.2 68.2 31.5 106.2 26.9

Proposed 94.3 31.6 70.2 13.7 45.7 18.9 26.9 10.9

ST(2.5).δS
MW 145.2 111.4 284.3 332.1 92.2 54.1 481.6 685.7

Mood 103.4 41.3 68.7 12.4 37.6 13.8 25.3 9.9

Lepage 90.7 46.1 97.4 17.3 41.9 16.0 38.4 14.3

CvM 144.2 105.1 256.2 151.4 88.0 44.1 173.5 34.5

Proposed 119.5 55.5 95.9 18.3 68.0 26.0 35.3 13.2

SLN(1.0, 0.5).δS
MW 113.8 75.2 281.6 296.5 55.7 29.0 381.0 357.7

Mood 47.6 13.9 31.9 10.1 15.6 6.6 16.4 9.1

Lepage 46.3 13.9 43.8 12.8 16.9 7.4 22.2 12.2

CvM 110.3 65.5 217.7 69.3 51.9 22.7 64.0 21.0

Proposed 76.1 22.8 53.8 12.3 34.8 15.5 22.5 10.6

Numerical simulations when ARL0 = 200 are provided
in Tables 19.7, 19.8, 19.9, 19.10, 19.11, and 19.12. Similar
conclusions as provided above can be drawn from these
tables as well.

From these simulation studies, we see that the proposed
method works well in most applications. When we are
trying to detect a specific type of distributional change,
its performance is slightly worse than the chart that is
designed to detect that particular type of changes. However,
in most cases, the differences are not much. Therefore,

when the nature of distributional change is unknown, the
proposed chart can be used with anticipation of a good
performance.

19.5 Analysis of Various Real-World Data

Now, we focus on applications of the proposed chart on real-
world problems.We consider two datasets: a climate data and
a blood glucose monitoring data.
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Table 19.9 Mean delay in
detection of various changes
in location and scale simul-
taneously, i.e., (δL, δS) occurring
right after time τ . “In-control”
distribution considered here is
N(0, 1). The results are based on
10,000 random simulations when
ARL0 = 200

N(δL, δ2S) (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 30 and (δL, δS) =
MW 76.2 99.7 68.0 103.7 19.4 9.5 24.4 8.7

Mood 71.2 41.9 18.4 15.9 93.2 42.9 24.4 29.9

Lepage 45.7 29.2 17.2 13.3 17.8 12.0 11.0 9.8

CvM 75.8 71.1 59.2 26.4 20.2 8.4 22.2 6.2

Proposed 70.3 33.0 28.2 11.9 22.3 9.0 17.9 6.6

τ = 150 and (δL, δS) =
MW 29.3 24.7 25.0 22.2 10.9 6.2 12.6 5.5

Mood 17.5 37.6 7.5 20.0 11.4 82.8 6.5 76.1

Lepage 15.2 21.8 8.1 14.7 7.8 8.8 6.0 8.3

CvM 28.8 18.3 21.7 11.4 11.1 5.8 11.8 4.7

Proposed 27.0 17.6 16.3 11.3 12.2 6.9 11.4 5.5

Table 19.10 Mean delay in
detection of various changes in
location and scale simul-
taneously, i.e., (δL, δS) occurring
right after time τ . “In-control”
distribution considered here is
ST(2.5). The results are based on
10,000 random simulations when
ARL0 = 200

ST(2.5).δS + δL (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 30 and (δL, δS) =
MW 32.4 15.1 38.8 12.7 6.9 4.1 8.9 3.8

Mood 111.1 47.4 51.9 28.6 74.8 36.9 59.3 32.0

Lepage 42.1 15.4 28.2 11.3 7.1 4.9 7.9 4.4

CvM 30.4 11.8 32.8 7.5 6.5 3.7 8.2 3.3

Proposed 34.5 11.5 29.5 7.7 7.2 4.3 8.4 3.8

τ = 150 and (δL, δS) =
MW 14.0 7.9 15.8 6.7 5.4 3.4 6.4 3.1

Mood 24.2 91.7 10.6 68.9 6.9 10.6 5.8 10.1

Lepage 12.0 12.1 9.2 10.5 4.3 3.1 4.3 2.8

CvM 13.4 7.1 14.4 5.4 5.1 3.1 6.2 2.8

Proposed 14.4 8.2 13.7 6.3 6.0 3.9 6.8 3.5

Table 19.11 Mean delay in
detection of various changes in
location and scale simul-
taneously, i.e., (δL, δS) occurring
right after time τ . “In-control”
distribution considered here is
SLN(1.0, 0.5). The results are
based on 10,000 random
simulations when ARL0 = 200

SLN(1, 0.5).δS + δL (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 30 and (δL, δS) =
MW 101.6 49.1 96.5 43.4 20.7 8.0 38.1 7.3

Mood 119.9 24.2 26.0 18.1 176.4 31.9 76.3 27.8

Lepage 85.2 15.5 28.5 11.8 30.1 9.7 34.1 8.9

CvM 105.9 24.1 84.9 11.4 23.1 6.2 37.7 5.1

Proposed 110.3 13.6 47.4 9.0 27.6 6.5 40.9 5.6

τ = 150 and (δL, δS) =
MW 40.6 13.2 38.6 11.3 10.6 5.3 16.2 4.9

Mood 47.9 37.0 10.2 32.1 91.3 76.2 15.6 74.7

Lepage 31.8 15.6 11.0 13.6 12.8 7.8 11.2 7.2

CvM 42.5 9.9 32.5 7.3 11.3 4.6 16.2 4.0

Proposed 47.6 10.5 21.9 8.1 13.0 5.5 16.5 4.8

19.5.1 Climate Data onMinneapolis, USA

Monitoring for the changes of patterns of various clima-
tological measurements such as maximum and minimum
temperatures on a daily, monthly, and yearly basis, amounts
of rainfall, snow, measurements of snow depth, number
of rainy or snowy days is an emerging research area. In
the literature, various statistical methods are demonstrated
with the capacity of analyzing such data. Modern statistical
process control (SPC) charts also deserve a chance tomonitor
such climatological variables. In this context, we consider

mean daily maximum temperature in Fahrenheit in the
month of January in Minneapolis, USA. We collect the
data from http://www.dnr.state.mn.us/climate/twin_cities/
listings.html. The data are from 1873 to 2017 with no
missing value and are presented in Fig. 19.1. At first, before
applying the control charts, we check if our assumption of
independence of the observations is reasonable. Durbin-
Watson test (R function: dwtest, R package: lmtest) for
two-sided alternative gives a high p-value 0.8359 showing
lack of autocorrelation. Therefore, we can assume that
the observations are independent. Now, we apply the

http://www.dnr.state.mn.us/climate/twin_cities/listings.html
http://www.dnr.state.mn.us/climate/twin_cities/listings.html
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Table 19.12 Mean delay in
detection of various general
changes in distribution. The
results are based on 10,000
random simulations when
ARL0 = 200

MW Mood Lepage CvM P100 P200 P400 P∞
τ = 30

N(0, 1) → ST(2.5) 276.8 79.9 107.6 256.3 104.8 105.6 109.4 113.2

ST(2.5) → N(0, 1) 121.0 67.0 70.2 114.0 78.5 69.1 63.5 62.1

N(0, 1) → SLN(1, 0.5) 218.2 210.8 176.9 206.8 173.4 183.4 186.7 192.0

SLN(1, 0.5) → N(0, 1) 174.1 155.1 121.3 166.3 161.7 160.5 159.0 157.2

Gamma(2,2) → Gamma(3,2) 45.2 191.7 59.2 50.2 58.4 56.7 58.6 55.9

Gamma(3,2) → Gamma(2,2) 38.4 184.8 51.3 42.4 54.6 50.3 49.0 48.8

Weibull(1) → Weibull(3) 286.1 16.9 21.6 153.6 27.3 26.4 25.9 26.0

Weibull(3) → Weibull(1) 56.8 7.7 7.6 41.2 14.0 12.7 12.4 12.0

Uniform(0,1) → Beta(5,5) 322.6 19.7 29.3 219.5 38.8 37.7 39.4 41.4

Beta(5,5) → Uniform(0,1) 77.9 9.2 9.7 62.8 17.9 16.4 15.4 15.0

τ = 150

N(0, 1) → ST(2.5) 444.9 30.4 45.0 194.6 60.6 40.7 40.7 39.7

ST(2.5) → N(0, 1) 61.9 19.0 22.0 51.6 44.6 29.0 28.4 28.2

N(0, 1) → SLN(1, 0.5) 252.4 202.7 168.9 209.6 156.4 157.2 174.9 196.9

SLN(1, 0.5) → N(0, 1) 137.9 85.4 69.6 123.6 141.3 127.8 129.7 131.0

Gamma(2,2) → Gamma(3,2) 16.4 151.0 22.2 17.7 23.7 20.0 19.3 18.8

Gamma(3,2) → Gamma(2,2) 15.5 86.6 17.0 16.6 22.1 19.1 18.3 17.9

Weibull(1) → Weibull(3) 340.9 12.7 16.7 34.2 17.6 16.6 16.0 16.1

Weibull(3) → Weibull(1) 20.8 4.5 5.0 15.4 11.5 11.0 10.7 10.4

Uniform(0,1) → Beta(5,5) 640.5 12.4 18.0 56.2 21.6 18.5 18.2 18.0

Beta(5,5) → Uniform(0,1) 29.3 5.4 6.2 20.4 13.9 13.2 12.8 12.6
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Fig. 19.1 Mean daily maximum temperature in the month of January in Minneapolis, USA. Setting ARL0 = 500, the proposed chart detects a
distributional change in the year 1956 estimating the change-point to be just after 1947. Other charts do not detect any distributional change

proposed method along with other competing methods
when we set ARL0 = 500. For the proposed method, we set
T0 = ARL0 = 500 as per our suggestion mentioned before.
The proposed method detects a distributional change at 1956
while the estimated change-point is 1947. All other methods,
i.e., MW, Mood, Lepage, and CvM, do not detect any
distributional change.We also run all SPC charts when we set
ARL0 = 200. In this case also, the proposed method detects
a distributional change at 1956 while the estimated change-
point is 1947. Mood also detects distributional change but at

a later time at 1960 while the estimated change point is 1947.
MW, Lepage, and CvM still do not detect any distributional
change. Now, we study the “in-control” distribution and the
estimated “out-of-control” distribution. Table 19.13 shows
the first four sample moments of “in-control” observations
from 1873 to 1947 and “out-of-control” observations
from 1948 to 1956. From Table 19.13, we see that the
second moment changed a lot, but not the other three
moments. We carry out the calculations using R-package
moments.
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19.5.2 Blood GlucoseMonitoring Data

Monitoring blood glucose level on a daily basis is essen-
tial for advanced diabetic patients. It gives information on
whether the particular lifestyle change and the treatment pro-
cedure including the medicine with its administered dosage
are working well for the patient. Monitoring such mea-
surements is complicated because we are not just focusing
on the mean and the standard deviation only; we need to
monitor the stability of its probability distribution as well.
We collect a data from UCI Machine Learning Repository
[77]. This directory contains a dataset prepared for the use
of participants for the 1994 AAAI Spring Symposium on
Artificial Intelligence in Medicine. For our analysis, we pick
the data from the first patient. We choose to monitor pre-
breakfast blood glucose level on a daily basis. We prefer
this over blood glucose measurements at other times because
they depend too much on many variables like the type of
food, amount of food, etc. The data from the first patient
contains daily pre-breakfast observations from 21 April 1991
to 3 September 1991 with the number on 18 August 1991
missing. The data are presented in Fig. 19.2 ignoring the only
one missing value. As always, before applying the control
chart, we check if our assumption of independence of the
observations is reasonable. Durbin-Watson test for two-sided

Table 19.13 First four sample moments of the observations from 1873
to 1947 and 1948 to 1956

Mean St. deviation Skewness Kurtosis

1873–1947,
“in-control”

21.7067 7.0842 −0.1898 2.3666

1948–1956,
“out-of-control”

20.6778 2.0795 −0.1350 2.6056

alternative gives a high p-value 0.7727 showing lack of
autocorrelation. Therefore, our assumption of independence
is reasonable. Now,we apply the proposedmethod alongwith
other competing methods when we set ARL0 = 500. For the
proposed method, we set T0 = ARL0 = 500 like before.
The proposed method detects a distributional change on 11
June 1991 while the estimated change-point is on 5 June
1991. Other competing charts do not detect any distributional
change. Running the charts for ARL0 = 200 gives similar
results except that the proposed chart detects distributional
change one day earlier on 10 June 1991 while the estimated
change-point being the same as before. Table 19.14 shows
first four moments before and after the distributional change.
The standard deviation decreases a lot showing a more stable
fasting blood glucose numbers, and also the skewness ap-
pears to have decreased considerably. It is to be noted that
the phrases “in-control” and “out-of-control” we use are in
the sense of standard terminologies in SPC literature, not in
the sense of blood glucose control.

19.6 Concluding Remarks

This chapter first describes a few commonly used tradi-
tional statistical process control (SPC) charts such as She-
whart, CUSUM, EWMA, and change-point-based (CPD)
control charts and discusses a number of situations where
these charts should be appropriate modified for practical use.
Next, this chapter proposes a change-point based nonpara-
metric statistical process control chart for detecting arbi-
trary distributional changes when the process distribution is
univariate continuous. There are two specifically important
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Fig. 19.2 Daily pre-breakfast blood glucose measurements of a selected patient. Setting ARL0 = 500, the proposed chart detects a distributional
change at the 52nd day estimating the change-point to be the 46th day. Other charts do not detect any distributional change
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Table 19.14 First four sample moments of the observations from 21
April 1991 to 5–6 June 1991 to 11 June 1991

Mean St. deviation Skewness Kurtosis

21st April to 5th
June, “in-control”

166.9 80.8 0.3824 1.7221

6th June to 11th
June,
“out-of-control”

160.8 17.2 −0.0981 1.4267

contributions of the proposed chart. The first one is the
combination of the strengths of two statistical tests: Cramer-
vonMises test and Ansari-Bradley test. The second one is the
introduction of a numerically efficient technique to estimate
the possible change-point without sacrificing the accuracy by
much. Both these contributions are quite general in nature
and have broad applications well beyond the numerical ex-
amples and real-world data analyses shown in this chapter
including monitoring fast data streams. Another important
aspect of this control chart is that runtime distribution is not
geometric even when the process is “in-control.” The reason
is that the probability of getting a signal is a function of
current runtime. However, it appears that such charts can still
be used in many applications. However, further research is
required to fully understand the pros and cons of such charts.
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