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Abstract

A brief introduction to the concept of chain sampling for
quality inspection is first presented. The chain sampling
plan of type ChSP-1 selectively chains the past inspection
results. A discussion on the design and application of
ChSP-1 plans is presented in the second section of this
chapter. Various extensions of chain sampling plans such
as ChSP-4 plan are discussed in the third part. Repre-
sentation of the ChSP-1 plan as a two-stage cumulative
results criterion plan and its design are discussed in the
fourth part. The fifth section relates to the modification
of ChSP-1 plan which results in sampling economy. The
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sixth section of this chapter is on the relationship between
chain/dependent sampling and deferred sentencing type
of plans. A review of sampling inspection plans that
are based on the ideas of chain or dependent sampling
or deferred sentencing is also made in this section. A
large number of recent publications based on the idea
of chaining past and future lot results are also reviewed.
The economics of chain sampling when compared to
the two-plan quick switching system is discussed in the
seventh section. The eighth section extends the attribute
chain sampling rule to variables inspection. In the ninth
section, chain sampling is compared with the well-known
CUSUM approach for attribute data. The tenth section
gives several other interesting extensions such as chain
sampling for mixed inspection and process control. The
final section gives the concluding remarks.

Keywords
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12.1 Introduction

Acceptance sampling is the methodology that deals with
procedures by which decision to accept or not accept lots of
items is based on the results of the inspection of samples. Spe-
cial purpose acceptance sampling inspection plans (shortly
special purpose plans) are tailored for special applications as
against general or universal use. Prof. Harold F. Dodge, who
is regarded as the father of acceptance sampling, introduced
the idea of chain sampling in [1]. Chain sampling inspection
can be viewed as a protocol or plan based on a cumulative
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results criterion (CRC), where related batch information is
chained or cumulated. The phrase chain sampling is also used
in sample surveys to imply snowball sampling for collection
of data. It should be noted that this phrase was originally
coined in the acceptance sampling literature and should be
distinguished from its usage in other areas.

Chain sampling is extended to two or more stages of
cumulation of inspection results with appropriate acceptance
criteria for each stage. The theory of chain sampling is also
closely related to the various other methods of sampling
inspection such as dependent-deferred sentencing, tightened-
normal-tightened sampling, quick switching inspection, etc.
In this chapter, we provide an introduction to chain sampling
and discuss briefly various generalizations of chain sampling
plans. We also review a few sampling plans which are related
to or based on the methodology of chain sampling. The
selection or design of various chain sampling plans is also
briefly presented.

12.2 ChSP-1 Chain Sampling Plan

A single sampling attributes inspection plan calls for accep-
tance of a lot under consideration if the number of noncon-
forming units found in a random sample of size n is less
than or equal to the acceptance number Ac. Whenever the
operating characteristic (OC) curve of a single sampling plan
is required to pass through a prescribed point, the sample size
n will be an increasing function of the acceptance number
Ac. This fact can be verified from the table of np or unity
values given in [2] for various values of the probability
of acceptance Pa(p) of the lot under consideration whose
fraction nonconforming units is p. The same result is true
when the OC curve has to pass through two predetermined
points, usually one at the top and the other at the bottom of the
OC curve (see [3]). Thus, for situations where small sample
sizes are preferred, only single sampling plans with Ac = 0
are desirable (see [4]). However, as observed by Dodge [1]
and several authors, the Ac = 0 plan has a “pathological” OC
curve in that the curve starts to drop rapidly even for a very
small increase in the proportion or fraction nonconforming.
In other words, the OC curve of the Ac = 0 plan has no
point of inflection. Whenever a sampling plan for costly or
destructive testing is required, it is common to force the OC
curve to pass through a point, say (LQL, β), where LQL is
the limiting quality level for ensuring consumer protection
and β is the associated consumer’s risk. All other sampling
plans such as double andmultiple sampling plans will require
more sample size for a one-point protection such as (LQL,
β). Unfortunately, the Ac = 0 plan has the following two
disadvantages:

1. The OC curve of the Ac = 0 plan has no point of inflection
and hence it starts to drop rapidly even for a smallest
increase in the fraction nonconforming p.

2. The producer dislikes an Ac = 0 plan because a single
occasional nonconformity will call for the rejection of the
lot.

The chain sampling plan ChSP-1 of [1] is an answer to
the question whether anything can be done to improve the
“pathological” shape of the OC curve of a zero acceptance
number plan. A production process, when in a state of sta-
tistical control, maintains nearly a constant but unknown
fraction nonconforming p. If a series of lots formed from
such a stable process is submitted for inspection, known
as a Type B situation, then the samples drawn from the
submitted lots are simply random samples drawn directly
from the production process. Hence, it is logical to allow a
single occasional nonconforming unit in the current sample
whenever the evidence of good past quality, as demonstrated
by the i preceding samples containing no nonconforming
units, is available. Alternatively, we can chain or cumulate
the results of past lot inspections to take a decision on the
current lot without increasing the sample size.

The operating procedure of the chain sampling plan of
type ChSP-1 is formally stated below:

1. From each of the lots submitted, draw a random sample of
size n and observe the number of nonconforming units d.

2. Accept the lot if d is zero. Reject the lot if d > 1. If
d = 1, the lot is accepted provided all the samples of
size n each drawn from the preceding i lots are free from
nonconforming units; otherwise, reject the lot.

Thus the ChSP-1 plan has two parameters, namely, the
sample size n and i, the number of preceding sample results
chained for making a decision on the current lot. It is also
required that the consumer has confidence in the producer,
and the producer will not deliberately pass a poor-quality lot
taking advantage of the small samples used and the utilization
of preceding samples for taking a decision on the current lot.

The ChSP-1 plan always accepts the lot if d = 0 and
conditionally accepts if d = 1. The probability of preceding i
samples of size n to be free from nonconforming units is Pi0,n.
Hence, the OC function is Pa(p) = P0,n + P1,nPi0,n where
Pd,n is the probability of getting d nonconforming units in
a sample of size n. Figure 12.1 shows the improvement in
the shape of the OC curve of the zero acceptance number
single sampling plan by the use of chain sampling. Clark [5]
provided a discussion on the OC curves of chain sampling
plans, a modification, and some applications. Liebesman
and Hawley [6] argued in favor of chain sampling because
the attribute international sampling standards suffer from
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Fig. 12.1 Comparison of OC curves of Ac = 0 and ChSP-1 plans

the small or fractional acceptance numbers. Liebesman and
Hawley [6] also provided necessary tables and examples for
the chain sampling procedures. Most textbooks on statistical
quality control also contain a section of chain sampling and
provide some applications.

Soundararajan [7, 8] constructed tables for the selection
of chain sampling plans for given acceptable quality level
(AQL, denoted as p1), producer’s risk α, LQL (denoted as
p2), and β. ChSP-1 plans found from this source are approx-
imate, and a more accurate procedure that also minimizes
the sum of actual producer’s and consumer’s risks is given
in [9]. Table 12.1, adapted from [9], is based on the binomial
distribution for OC curve of the ChSP-1 plan. This table can
also be used to select ChSP-1 plans for given LQL and β

which may be used in place of zero acceptance number plans.
Ohta [10] investigated the performance of ChSP-1 plans

using the Graphical Evaluation and Review Technique
(GERT) and derived measures such as OC, average sample
number (ASN) for the ChSP-1 plan. Raju and Jothikumar
[11] provided a ChSP-1 plan design procedure based on
Kullback-Leibler information and necessary tables for the
selection of the plan. Govindaraju [12] discussed the design
ChSP-1 plan for minimum average total inspection (ATI).
There are a number of other sources where the ChSP-1
plan design is discussed. This chapter provides additional
references on designing chain sampling plans, inter alia,
discussing various extensions and generalizations.

12.3 Extended Chain Sampling Plans

Frishman [13] extended the ChSP-1 plan and developed
ChSP-4 and ChSP-4A plans which incorporate a rejection
number greater than 1. Both ChSP-4 and ChSP-4A plans are

Table 12.1 ChSP-1 plans indexed by AQL and LQL (α = 0.05,
β = 0.10) for fraction nonconforming inspection

AQL in %

LQL in % 0.1 0.15 0.25 0.4 0.65 1

1.5 154:02

2.0 114:04 124:01

2.5 91:04 92:02

3.0 76:03 76:03 82:01

3.5 65:03 65:03 70:01

4.0 57:02 57:02 57:02

4.5 51:02 51:02 51:02 Key n : i

5.0 45:03 45:03 45:03 49:01

5.5 41:03 41:03 41:03 45:01

6.0 38:03 38:02 38:02 38:02

6.5 35:03 35:02 35:02 35:02

7.0 32:03 32:03 32:03 32:03

7.5 30:03 30:03 30:02 30:02

8.0 28:03 28:03 28:02 28:02 30:01

8.5 26:03 26:03 26:03 26:03 29:01

9.0 25:03 25:03 25:02 25:02 27:01

9.5 24:03 24:03 24:02 24:02 24:02

10 22:03 22:03 22:03 22:03 23:02

11 20:03 20:03 20:02 20:02 20:02

12 19:03 19:03 19:02 19:02 19:02 20:01

13 17:03 17:03 17:03 17:02 17:02 18:01

14 16:03 16:03 16:03 16:02 16:02 16:02

15 15:03 15:03 15:03 15:02 15:02 15:02

Table 12.2 ChSP-4A plan

Stage Sample size Acceptance number Rejection number

1 n a r

2 (k − 1)n b b+ 1

operated like a traditional double sampling attributes plan but
use (k−1) past lot results instead of actually taking a second
sample from the current lot. Table 12.2 is a compact tabular
representation of Frishman’s ChSP-4A plan.

ChSP-4 plan restricts r to b+ 1whichmeans that the same
rejection number is used for both stages. Conditional double
sampling plans of [14] and the partial and full link sampling
plans of [15] are actually particular cases of the ChSP-4A
plan when k = 2 and k = 3, respectively. However the fact
that the OC curves of these plans are the same as the ChSP-
4A plan is not reported in both papers (see [16]).

Extensive tables for the selection of ChSP-4 and ChSP-
4A plans under various selection criteria were constructed
by Raju [17, 18], Raju and Murthy [19, 20], and Raju and
Jothikumar [21]. Raju and Jothikumar [21] provided a com-
plete summary of various selection procedures for ChSP-4
and ChSP-4A plans and also discussed two further types of
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optimal plans: the first one involving minimum risks and the
second one based on Kullback-Leibler information. Unfortu-
nately, the tables given in [17–21] for the ChSP-4 or ChSP-
4A design require the user to specify the acceptance and
rejection numbers. This serious design limitation is not an
issue with the procedures and computer programs developed
by Vaerst [22] who discussed the design of ChSP-4A plans
involvingminimum sample sizes for givenAQL, α, LQL, and
β without assuming any specific acceptance numbers. Raju
[17, 18], Raju and Murthy [19, 20], and Raju and Jothiku-
mar [21] considered a variety of design criteria, while [22]
discussed only the (AQL, LQL) criterion. The ChSP-4 and
ChSP-4A plans were obtained from [17–21]. The procedure
given in [21] can be used in any Type B situation of a series of
lots from a stable production process, not necessarily when
the product involved costly or destructive testing. This is
because the acceptance numbers covered are well over zero.
The major disadvantage of [13] extended ChSP-4 and ChSP-
4A plans is that the neighboring lot information is not always
utilized. Vidya [23] considered the variance of the outgoing
quality limit (VOQL) criterion for designing ChSP-4 plans.
Even though ChSP-4 and ChSP-4A plans require smaller
sample size than the traditional double sampling plans, these
plansmay not be economical to other comparable conditional
sampling plans.

Bagchi [24] presented an extension of the ChSP-1 plan,
which calls for additional sampling only when one noncon-
forming unit is found. The operating procedure of Bagchi’s
extended chain sampling plan is given below:

1. At the outset, inspect n1 units selected randomly from
each lot. Accept the lot if all the n1 units are conforming;
otherwise, reject the lot.

2. If i successive lots are accepted, then inspect only n2 <

n1 items from each of the submitted lots. Accept the lot
as long as no nonconforming units are found. If two or
more nonconforming units are found, reject the lot. In the
event of one nonconforming unit is found in n2 inspected
units, then inspect a further sample (n1−n2) units from the
same lot. Accept the lot under consideration if no further
nonconforming units are found in the additional (n1 − n2)
inspected units; otherwise, reject the lot.

Representing Bagchi’s plan as a Markov chain, [25] de-
rived the steady-state OC function and few other performance
measures.

Gao [26] considered the effect of inspection errors on a
chain sampling plan with two acceptance numbers and also
provided design procedures. Application of chain sampling
for a reliability acceptance test for exponential life times is
also given in [26].

12.4 Two-Stage Chain Sampling

Dodge and Stephens [27] viewed the chain sampling ap-
proach as a cumulative result criterion (CRC) applied in two
stages and extended it to include larger acceptance numbers.
Their approach calls for the first stage of cumulation of a
maximum of k1 consecutive lot results, during which accep-
tance is allowed if the maximum allowable nonconforming
units is c1 or less. After passing the first stage of cumulation
(i.e., when consecutive lots are accepted), the second stage
cumulation of k2 (> k1) lot results begins. In the second
stage of cumulation, an acceptance number of c2 (> c1)
is applied. Stephens and Dodge [28] presented a further
generalization of the family of “two-stage” chain sampling
inspection plans by using different sample sizes in the two
stages. The complete operating procedure of a generalized
two-stage chain sampling plan is stated below:

1. At the outset, draw a random sample of n1 units from the
first lot. In general, a sample of size nj (j = 1, 2) will be
taken while operating in jth stage of cumulation.

2. Record d the number of nonconforming units in each sam-
ple, as well asD the cumulative number of nonconforming
units from the first and up to, and including, the current
sample. As long as Di ≤ c1 (1 ≤ i ≤ k1), accept the ith
lot.

3. If k1 consecutive lots are accepted, continue to cumulate
the number of nonconforming units D in the k1 samples
plus additional samples up to but nomore than k2 samples.
During this second stage of cumulation, accept the lots as
long as Di ≤ c2 (k1 < i ≤ k2).

4. After passing the second stage of k2 lot acceptances,
start cumulation as a moving total over k2 consecutive
samples (by adding the current lot result and dropping the
preceding k2th lot result). Continue to accept lots as long
as Di ≤ c2 (i > k2).

5. In any stage of sampling, reject the lot ifDi > ci and return
to Step 1 (a fresh restart of the cumulation procedure).

Figure 12.2 shows how the cumulative result criterion
is used in a two-stage chain sampling plan for k1 = 3
and k2 = 5.

An important subset of the generalized two-stage chain
sampling plan is when n1 = n2, and this subset is designated
as ChSP-(c1, c2), which has five parameters n, k1, k2, c1, and
c2. The original chain sampling planChSP-1 of [1] is a further
subset of the ChSP-(0,1) plan with k1 = k2 − 1, that is,
the OC curve of the generalized two-stage chain sampling
plan is equivalent to the OC curve of the ChSP-1 plan when
k1 = k2−1. Dodge and Stephens [27] derived the OC function
of ChSP-(0,1) plan as
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Pa(p) =
P0,n(1 − P0,n) + Pk10,nP1,n

(
1 − Pk2−k10,n

)

1 − P0,n + Pk10,nP1,n

(
1 − Pk2−k10,n

) , k2 > k1.

Both the ChSP-1 and ChSP-(0,1) plans overcome the
disadvantages of the zero acceptance number plan mentioned
earlier. The operating procedure of the ChSP-(0,1) plan can
be succinctly stated as follows:

1. A random sample of size n is taken from each succes-
sive lot, and the number of nonconforming units in each
sample is recorded, as well as the cumulative number of
nonconforming units found so far.

2. Accept the lot associated with each new sample as long as
no nonconforming units are found.

3. Once k1 lots have been accepted, accept subsequent lots
as long as the cumulative number of nonconforming units
is no greater than one.

4. Once k2 > k1 lots have been accepted, cumulate the
number of nonconforming units over the most k2 lots, and
continue to accept as long as this cumulative number of
nonconforming units is one or none.

5. If, at any stage, the cumulative number of nonconforming
units becomes greater than one, reject the current lot and
return to Step 1.

Procedures and tables for the design of ChSP-(0,1) plan
are available in [29, 30]. Govindaraju and Subramani [31]
showed that the choice of k1 = k2 − 1 is always forced on
the parameters of the ChSP-(0,1) plan when a plan is selected
for given AQL, α LQL, and β, that is, a ChSP-1 plan will be
sufficient, and one need not opt for a two-stage cumulation
of nonconforming units.

In various technical reports of the Statistics Center, Rut-
gers University (see [32] for a list), Stephens and Dodge for-
mulated the two-stage chain sampling plan as aMarkov chain
and evaluated its performance. The performance measures
considered by them include the steady-state OC function,
ASN, average run length (ARL), etc. For comparison of chain
sampling plans with the traditional or noncumulative plans,
two types of ARLs are used. The first type of ARL, i.e.,
ARL1, is the average number of samples to the first rejection
after a sudden shift in the process level, say from p0 to ps.
The usual ARL, i.e., ARL2, is the average number of samples
to the first rejection given the stable process level p0. The
difference (ARL1 − ARL2) measures the extra lag due to
chain sampling. However, this extra lag may be compensated
by the gains in sampling efficiency as explained in [33].

Stephens and Dodge [34] summarized the Markov chain
approach to evaluate the performance of some selected two-
stage chain sampling plans, while more detailed derivations
were published in their technical reports. Based on the ex-
pressions for the OC function derived by Stephens andDodge
in their various technical reports listed in [32]. Raju and
Murthy [35] and Jothikumar and Raju [36] discussed various
design procedures for the ChSP-(0,2) and ChSP-(1,2) plans.
Raju [37] extended the two-stage chain sampling to three
stages and evaluated the OC performances of few selected
chain sampling plans fixing the acceptance numbers for the
three stages. The three-stage cumulation procedure becomes
very complex and will play only a limited role for costly or
destructive inspections. The three-stage plan will however be
useful for general Type B lot by lot inspections.

12.5 Modified ChSP-1 Plan

In [1], chaining of past lot results does not always occur. It
occurs only when a nonconforming unit is observed in the
current sample. This means that the available historical evi-
dence of quality is not utilized fully. Govindaraju and Lai [38]
developed a modified chain sampling plan (MChSP-1) that
always utilizes the recently available lot quality history. The
operating procedure of the MChSP-1 plan is given below.

1. From each of the submitted lots, draw a random sample of
size n. Reject the lot if one or more nonconforming units
are found in the sample.

2. Accept the lot if no nonconforming units are found in the
sample provided the preceding i samples also contained
no nonconforming units except in one sample which may
contain at most one nonconforming unit. Otherwise, reject
the lot.
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Fig. 12.3 Operation of the MChSP-1 plan

A flow chart showing the operation of the MChSP-1 plan
is in Fig. 12.3. MChSP-1 plan allows a single nonconforming
unit in any one of the preceding i samples, but the lot
under consideration is rejected if the current sample has a
nonconforming unit. Thus, the plan gives a “psychological”
protection to the consumer in that it allows acceptance only
when all the current sample units are conforming. Allowing
one nonconforming unit in any one of the preceding i samples
is essential to offer protection to the producer, i.e., to achieve
an OC curve with a point of inflection. In MChSP-1 plan,
rejection of lots would occur until the sequence of submis-
sions advances to a stage where two or more nonconforming
units were no longer included in the sequence of i samples.
In other words, if two or more nonconforming units are
found in a single sample, it will result in i subsequent lot
rejections. In acceptance sampling, one has to look at the
OC curve to have an idea of the protection to the producer as
well as to the consumer, and what happens in an individual
sample or for a few lots is not very important. If two or
more nonconforming units are found in a single sample, it
does not mean that the subsequent lots need not be inspected
since they will be automatically rejected under the proposed
plan. It should be noted that results of subsequent lots will
be utilized continuously and the producer has to show an
improvement in quality with one or none nonconforming
unit in the subsequent samples in order to permit future
acceptances. This will act as a strong motivating factor for
quality improvement.

The OC function Pa(p) of theMChSP-1 plan is derived by
Govindaraju and Lai [38] as Pa(p) = P0,n

(
Pi0,n + iPi−1

0,n P1,n
)
.

Figure 12.4 compares the OC curves of ChSP-1 andMChSP-
1 plans. From Fig. 12.4, we observe that the MChSP-1 plan
decreases the probability of acceptance at poor-quality levels
but maintains the probability of acceptance at good-quality
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levels when compared to the OC curve of the zero acceptance
number single sampling plan. The ChSP-1 plan, on the other
hand, increases the probability of acceptance at good-quality
levels but maintains the probability of acceptance at poor-
quality levels. In order to compare the two sampling plans,
we need to match them. That is, we need to design sampling
plans whose OC curves approximately pass through two pre-
scribed points such as (AQL, 1−α) and (LQL, β). Figure 12.5
gives such a comparison and establishes that MChSP-1 plan
is efficient in requiring a very small sample size compared
to the ChSP-1 plan. A two-stage chain sampling plan would
generally require a sample size equal to or more than the
sample size of a zero acceptance single sampling plan. The
MChSP-1 plan will however require a sample size smaller
than the zero acceptance number plan.
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12.6 Chain Sampling and Deferred
Sentencing

Like chain sampling plans, there are other plans that use the
results of neighboring lots for taking a conditional decision of
acceptance or rejection. Plans that make use of past lot results
are either called chain or dependent sampling plans. Similarly
plans that make use of future lot results are known as deferred
sentencing plans. These plans have a strategy of accepting
the lots conditionally based on the neighboring lot quality
history and hence referred to as conditional sampling plans.
We will briefly review several such conditional sampling
plans available in the literature.

Contrary to chain sampling plans that make use of past
lot results, deferred sentencing plans use future lot results.
The idea of deferred sentencing was first published in a paper
by Anscombe et al. [39]. The first simplest type deferred
sentencing scheme of [39] requires the produced units be
split into small size lots, and one item is selected from each
lot for inspection. The lot sentencing rule is that whenever Y
nonconforming units are found out of X or fewer consecutive
lots tested, all such cluster of consecutive lots starting from
the lot that resulted the first nonconforming unit to the lot
that resulted the Yth nonconforming unit are rejected. Lots
not rejected by this rule are accepted. This rule is further
explained in the following sentences. A run of good lots
of length X will be accepted at once. If a nonconforming
unit occurs, then the lot sentencing or disposition will be
deferred until either further (X − 1) lots have been tested or
(Y − 1) further nonconforming items are found, whichever
occurs the sooner. At the outset, if the (X − 1) succeeding
lots result in fewer than (Y − 1) nonconforming units, the lot
that resulted the first nonconforming unit and any succeeding
lots clear of nonconforming units will be accepted. As soon
as Y nonconforming units occur in no more than X lots,
all lots not so far sentenced will be rejected. Thus the lot
disposition will sometimes be made at once and sometimes
with a delay not exceeding (X − 1) lots. Some of the lots
to be rejected according to the sentencing rule may already
have been rejected through the operation of the rule on a
previous cluster of Y nonconforming units partly overlap-
ping the one being considered. The actual number of new
lots rejected under the deferred sentencing rule can be any
number from 1 to X. Anscombe et al. [39] also considered
modifications of the above deferred sentencing rule, includ-
ing inspection of a sample of size more than one from each
lot. Anscombe et al. [39] originally presented their scheme
as an alternative to [40] continuous sampling plan of type
CSP-1 which is primarily intended for the partial screening
inspection of produced units directly (when lot formation is
difficult).

The deferred sentencing idea was formally tailored into an
acceptance sampling plan by Hill et al. [41]. The operating
procedure of [41] scheme is described below:

1. From each lot, select a sample of size n. The lots are
accepted as long as no nonconforming units are found
in the samples. If one or more nonconforming units are
found, the disposition of the current lot will be deferred
until (X − 1) succeeding lots are inspected.

2. If the cumulative number of nonconforming units for X
consecutive lots is Y or more, then a second sample of
size n is taken from each of the lots (beginning with the
first lot and ending with the last batch that showed a
nonconforming unit in the sequence of X nonconforming
units). If there are less than Y nonconforming units in the
X, accept all lots from the first up to but not including
the next batch that showed a nonconforming unit. The
decision on this batch will be deferred until (X − 1)
succeeding lots are inspected.

Hill et al. [41] also evaluated the OC function of some
selected schemes and found them very economical when
compared to the traditional sampling plans, including the
sequential attribute sampling plan.

Wortham and Mogg [42] developed a dependent stage
sampling plan which is operated under steady state as fol-
lows:

1. For each lot, draw a sample of size n and observe the
number of nonconforming units d.

2. If d ≤ r, accept the lot; if d > r + b, reject the lot. If
r + 1 ≤ d ≤ r + b, accept the lot if the (r + b+ 1 − d)th

previous lot was accepted; otherwise, reject the current lot.

Govindaraju [43] has observed that the OC function of
DSSP(r, b) is the same as the OC function of the repetitive
group sampling (RGS) plan of [44]. This means that the
existing design procedures for the RGS plan can also be used
for the design ofDSSP(r, b) plan. The deferred state sampling
plan of [45] has a similar operating procedure except in Step
2 in which when the current lot is accepted if the forthcoming
(r + b + 1 − d)th lot is accepted. The steady-state OC
function of the dependent (deferred) stage sampling plan is
given by

Pa(p) = Pa,r(p)

1 − Pa,r+b(p) + Pa,r(p)

where Pa,r(p) is the OC function of the single sampling
plan with acceptance number r and sample size n. Similarly
Pa,r+b(p) is the OC function of the single sampling plan with
acceptance number r+ b and sample size n. A procedure for
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the determination of plan for given AQL, α, LQL, and β was
also developed by Vaerst [22].

Wortham and Baker [46] extended the dependent (de-
ferred) state sampling into a multiple dependent (deferred)
state (MDS) plan MDS(r, b, m). The operating procedure of
the MDS(r, b, m) plan is given below:

1. For each lot, draw a sample of size n and observe the
number of nonconforming units d.

2. If d ≤ r, accept the lot; if d > r+ b, reject the lot. If
r+ 1 ≤ d ≤ r+ b, accept the lot if the consecutive m pre-
ceding lots were all accepted (consecutive m succeeding
lots must be accepted for the deferred MDS(r, b, m) plan).

The steady-state OC function of the MDS(r, b, m) plan is
given by the recursive equation

Pa(p) = Pa,r(p) + [Pa,r+b(p) − Pa,r(p)] (Pa(p))m

Vaerst [47], Soundararajan and Vijayaraghavan [48], Ku-
ralmani and Govindaraju [49], and Govindaraju and Subra-
mani [50] provided detailed tables and procedures for the de-
sign of MDS(r, b, m) plans for various requirements. Afshari
andGildeh [51] provided a procedure to design theMDS plan
in a fuzzy environment such when testing is imperfect.

Vaerst [22, 47] modified the MDS(r, b, m) plan to make it
on par with the ChSP-1 plan. The operating procedure of the
modified MDS(r, b, m) plan, called MDS-1(r, b, m), is given
below:

1. For each lot, draw a sample of size n and observe the
number of nonconforming units d.

2. If d ≤ r accept the lot; if d > r+ b, reject the lot. If
r+ 1 ≤ d ≤ r+ b, accept the lot if r or less nonconform-
ing units are found in each of the consecutivem preceding
(succeeding) lots.

When r = 0, b = 1, and m = i, MDS-1(r, b, m) plan
becomes the ChSP-1 plan. The OC function of the plan is
given by recursive equation

Pa(p) = Pa,r(p) + [Pa,r+b(p) − Pa,r(p)]
(
Pa,r(p)

)m

Vaerst [47, 52], and [53] provided detailed tables and
procedures for the design of plans for various requirements.
The major but an obvious shortcoming of the chain sampling
plans is that since they use sample information from past lots
for disposing the current lot, there is a tendency to reject the
current lot of given good quality when the process quality
is improving or accept the current lot of given bad quality
when the process quality is deteriorating. Similar criticisms
(in reverse) can be leveled against the deferred sentencing

plans. As mentioned earlier, [33] recognizing this disad-
vantage of chain sampling defined the ARL performance
measures ARL1 and ARL2. Recall that ARL2 is the average
number of lots that will be accepted as a function of the
true fraction nonconforming. ARL1 is the average number
of lots accepted after an upward shift in the true fraction
nonconforming occurred from the existing level. Stephens
and Dodge [54] evaluated the performance of the two-stage
chain sampling plans comparing the ARLs with matching
single and double sampling plans having approximately the
same OC curve. It was noted that the slightly poorer ARL
property due to chaining of lot results is well compensated
by the gain in sampling economy. For deferred sentencing
schemes, [41] investigated trends as well as sudden changes
in quality. It was found that the deferred sentencing schemes
will discriminate better between fairly constant quality at one
level and fairly constant quality at another level than will a
lot-by-lot plan scheme with the same sample size. However,
when quality varies considerably from lot to lot, the deferred
sentencing scheme found to operate less satisfactorily, and
in certain circumstances the discrimination between good
and bad batches may even be less than for the traditional
unconditional plans with the same sample size. Further the
deferred sentencing scheme may pose problems of flow,
supply storage space, and uneven workload (which is not a
problem with chain sampling).

Cox [55] provided a more theoretical treatment and con-
sidered one-step forward and two-step backward schemes.
The lot sentencing rules and inspection are modeled as a
stochastic process and applied Bayes’s theorem for the sen-
tencing rule. He did recognize the complexity of modeling
a multistage procedure. When the submitted lot fraction
nonconforming vary, say when a trend exists, both chain
and deferred sentencing rules have disadvantages. But this
disadvantage can be overcome by combining chain and de-
ferred sentencing rules into a single scheme. This idea was
first suggested by Baker [56] in his dependent deferred state
(DDS) plan. Osanaiye [57] provided a complete methodol-
ogy of combining chain and deferred sentencing rules and
developed the chain-deferred (ChDP) plan. The ChDP plan
has two stages for lot disposition and its operating procedure
is given below:

1. From lot numbered k, inspect n units and count the number
of nonconforming units dk. If dk ≤ c1, accept lot num-
bered k. If dk > c2, reject lot numbered k. If c1 < dk ≤ c2,
then combine the number of nonconforming units from
the immediate succeeding and preceding samples, namely,
dk−1 and dk+1.

2. If dk ≤ c, accept the kth lot provided dk+dk−1 ≤ c3 (chain
approach). If dk > c, accept the lot provided dk + dk+1 ≤
c3 (deferred sentencing).
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One possible choice of c is the average of c1 and c3 + 1.
Osanaiye [57] also provided a comparison of ChDP with
the traditional unconditional double sampling plans as the
OC curves of the two types of plans are the same (but
the ChDP plan utilizes the neighboring lot results). Shankar
and Srivastava [58] and Shankar and Joseph [59] provided
a GERT analysis of ChDP plans taking the approach of
[10]. Shankar and Srivastava [60] discussed the selection
ChDP plans using tables. Osanaiye [61] provided a multiple
sampling plan extension of the ChDP plan (called MChDP
plan). MChDP plan uses several neighboring lot results to
achieve sampling economy.

Osanaiye [62] provided a practically useful discussion on
the choice of conditional sampling plans considering autore-
gressive processes, inert processes (constant process quality
shift), and linear trends in quality. Based on a simulation
study, it was recommended that the chain-deferred schemes
are the cheapest if either the cost of 100% inspection or
sampling inspection is high. He recommended the use of
the traditional single or double sampling plans only if the
opportunity cost of rejected items is very high. Osanaiye
and Alebiosu [63] considered the effect of inspection errors
on dependent and deferred double sampling plans vis-à-vis
ChDP plans. They observed that the chain-deferred plan in
general has a greater tendency to reject nonconforming items
than any other plans irrespective of the magnitude of any
inspection error.

Many of the conditional sampling plans, which follow
either the approach of chaining or deferring or both, have
the same OC curve of a double (or a multiple) sampling
plan. Exploiting this equivalence, [64] provided a general
selection procedure for conditional sampling plans for given
AQL and LQL. The plans considered include the conditional
double sampling plan of ChSP-4A plans of [13], conditional
double sampling plan of [14], link sampling plan of [15],
and ChDP plan of [57]. A perusal of the operating ratio
LQL/AQL of [64] tables reveal that these conditional sam-
pling plans apply in all Type B situations because a wide
range of discrimination between good and bad qualities is
achievable. However, the sample sizes, even though smaller
than the traditional unconditional plans, will not be as small
as the zero acceptance number single sampling plans. This
limits the application of the conditional sampling plans to
this special purpose situation, where ChSP-1 or MChSP-1
plan suits the most.

Govindaraju [65] developed a conditional single sampling
(CSS) plan, which has desirable properties for general ap-
plications as well as for costly or destructive testing. The
operating procedure of the CSS plan is as follows:

1. From lot numbered k, select a sample of size n and observe
the number of nonconforming units dk.

2. Cumulate the number of nonconforming units observed
for the current lot and the related lots. The related lots will
be either past lots, future lots, or a combination depending
on whether one is using dependent sampling or deferred
sentencing. The lot under consideration is accepted if the
total number of nonconforming units in the current lot and
the m related lots is less than or equal to the acceptance
number, Ac. If dk is the number of nonconforming units
recorded for the kth lot, the rule for disposition for the kth
lot is as follows:
a. For dependent or chain sampling, accept the lot if

(dk−m + · · · + dk−1 + dk) ≤ Ac; otherwise, reject the
lot.

b. For deferred sampling, accept the lot if (dk + dk+1+
· · · + dk+m) ≤ Ac; otherwise, reject the lot.

c. For dependent-deferred sampling, where m is desired
to be even, accept the lot if

(
dk− m

2
+ · · · + dk + · · · +

≤ dk+ m
2

) ≤ Ac; otherwise, reject the lot.

Thus, the CSS plan has three parameters, the sample size
n, acceptance number Ac, and number of related lot results
used,m. As in the case of any dependent sampling procedure,
dependent single sampling takes full effect only from the
(m + 1)st lot. In order to maintain equivalent OC protection
for the first m lots, additional sample mn units can be taken
from each lot and the lot can be accepted if the total number of
nonconforming units is less than or equal to Ac or additional
samples of size (m + 1 − i)n can be taken for the ith lot
(i = 1, 2, . . . , m) and the same decision rule be applied. In
either case, the results of the additional samples should not
be used for lot disposition from lot (m+ 1). Govindaraju [65]
has shown that the CSS plans require much smaller sample
sizes than all other conditional sampling plans. In case of
trends in quality, the CSS plan can also be operated as a
chain-deferred plan, and this will ensure that the changes in
lot qualities are somewhat averaged out.

12.7 Comparison of Chain Sampling with
Switching Systems

Dodge [66] first proposed the quick switching sampling
(QSS) system which basically consists of two intensities of
inspection, i.e., normal (N) and tightened (T) plans. Rom-
boski [67] investigated the QSS system and introduced sev-
eral modifications of the original QSS system. Under the
QSS system, if a lot is rejected under the normal inspec-
tion, a switch tightened inspection will be made; otherwise,
normal inspection shall continue. If a lot is accepted under
the tightened inspection, then the normal inspection will be
restored; otherwise, tightened inspection will be continued.
For a review of quick switching systems, see [68] or [69].
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Taylor [68] introduced a new switch number to the orig-
inal QSS-1 system of [67] and compared it with the chain
sampling plans. When the sample sizes of normal and tight-
ened plans are equal, the quick switching systems and the
two-stage chain sampling plans were found to give nearly
identical performance. Taylor’s comparison is only valid for a
general situation where acceptance numbers of greater than
zero are used. For costly or destructive testing, acceptance
numbers are kept at zero for achieving minimum sample
sizes. In such situations, both ChSP-1 and ChSP-(0,1) plans
will fare poorly against other comparable schemes when the
incoming quality is at AQL. This fact is explained in the
following paragraph using an example.

For costly or destructive testing, a quick switching system
employing zero acceptance number was studied in [70] and
[71]. Under this scheme, the normal inspection plan has a
sample size of nN units, while the tightened inspection plan
has a higher sample size nT (> nN). The acceptance number
is kept at zero for both normal and tightened inspections.
The switching rule is that a rejection under the normal plan
(nN, 0) will invoke the tightened plan (nT, 0). An acceptance
under the (nT, 0) plan will revert back to normal inspection.
This QSS system, designated as of type QSS-1(nN, nT; 0),
can be used in place of the ChSP-1 and ChSP-(0,1) plans. Let
AQL= 1%, α = 5%, LQL= 15%, and β = 10%. The ChSP-
1 plan for the prescribed AQL and LQL conditions is found
as n = 15 and i = 2 (from Table 12.1 of this chapter). The
matching QSS-1 system for the prescribed AQL and LQL
conditions can be found as QSS-1(nN = 5, nT = 19) from
the tables given in [70] or [72]. At good-quality levels, the
normal inspection plan will require sampling only 5 units.
Only at poor-quality levels, 19 units will be sampled under
the QSS system. Hence, it is obvious that Dodge’s chain
sampling approach is not truly economical at good-quality
levels but fares well at poor-quality levels. However, if the
modified chain sampling plan MChSP-1 plan of [38] is used,
then the sample size needed will be only 3 units (and i, the
number of related lot results to be used is fixed at 7 or 8). The
other alternative is to use the chained quick switching system
proposed in [73]. For a detailed discussion of this approach,
consult [74].

A more general two-plan system having zero acceptance
numbers for the tightened and normal plans was studied by
Calvin [75], Soundararajan and Vijayaraghavan [76], and
Subramani and Govindaraju [77]. Calvin’s TNT scheme
uses zero acceptance numbers for normal and tightened
inspection and employs the switching rules of [78], which
is also roughly employed in [79]. The operating procedure
of the TNT scheme, designated as TNT(nN, nT; 0), is given
below:

1. Start with the tightened inspection plan (nT, 0). Switch
to normal inspection (Step 2) when t lots in a row are

accepted; otherwise, continue with the tightened inspec-
tion plan.

2. Apply the normal inspection plan (nN, 0). Switch to the
tightened plan if a lot rejection is followed by another lot
rejection within the next s lots.

Using the tables of [80], the zero acceptance number
TNT(nN, nT; 0) plan for given AQL = 1%, α = 5%, LQL
= 15%, and β = 10% is found as TNT(nN = 5, nT =
16;Ac = 0). We again find that the MChSP-1 plan calls
for a smaller sample size when compared to Calvin’s zero
acceptance number TNT plan.

Skip-lot sampling plans of [81] and [82] are based on
skipping of sampling inspection of lots on the evidence of
good-quality history. For a detailed discussion of skip-lot
sampling, [32] may be consulted. In skip-lot sampling plan
of type SkSP-2 of [82], once m successive lots are accepted
under the reference plan, the chosen reference sampling plan
is applied only for a fraction of the time. Govindaraju [83]
studied the employment of the zero acceptance number plan
as a reference plan (among several other reference sampling
plans) in the skip-lot context. For given AQL = 1%, α =
5%, LQL = 15%, and β = 10%, the SkSP-2 plan with a
zero acceptance number reference plan is found as n = 15,
m = 6, and f ≈ 1/5. Hence, the matching ChSP-1 plan n =
15 and i = 2 is not economical at good-quality levels when
compared to the SkSP-2 plan n = 15, m = 6, and f ≈ 1/5.
This is because the SkSP-2 plan requires the zero acceptance
number reference plan with a sample of size 15 to be applied
only to one in every five lots submitted for inspection once
six consecutive lots are accepted under the reference single
sampling plan (n = 10, Ac = 0). However, the modified
MChSP-1 plan is more economical at poor-quality levels
when compared to the SkSP-2 plan. Both plans require about
the same sampling effort at good-quality levels.

12.8 Chain Sampling for Variable
Inspection

The main assumption made for the various types of chain
sampling plans and other attribute schemes such as deferred-
dependent plans and quick switching systems is that the
fraction nonconforming p in a series of lots roughly remains
a constant. No other distributional assumptions are made
for attribute sampling inspection plans. If the assumption of
constant p for a series of lots is violated, there can be a delay
in detection of a change in p. This delay is measured using the
difference (ARL1 − ARL2) (see Sect. 12.4). However, if the
rule of chaining lot inspection results is modified as a chain-
deferred rule, the overall producer’s and consumer’s risk will
remain the same even if there is a linear trend in p in a series of
lots (see the discussion in Sect. 12.5). If the distribution of the
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Table 12.3 Limits for deciding unsatisfactory variable plans

nσ kσ l nσ kσ l nσ kσ l nσ kσ l
1 0 16 2.3642 31 3.3970 46 4.1830

2 0.4458 17 2.4465 32 3.4549 47 4.2302

3 0.7280 18 2.5262 33 3.5119 48 4.2769

4 0.9457 19 2.6034 34 3.5680 49 4.3231

5 1.1278 20 2.6785 35 3.6232 50 4.3688

6 1.2869 21 2.7515 36 3.6776 51 4.4140

7 1.4297 22 2.8227 37 3.7312 52 4.4588

8 1.5603 23 2.8921 38 3.7841 53 4.5032

9 1.6812 24 2.9599 39 3.8362 54 4.5471

10 1.7943 25 3.0262 40 3.8876 55 4.5905

11 1.9009 26 3.0910 41 3.9384 56 4.6336

12 2.0020 27 3.1546 42 3.9885 57 4.6763

13 2.0983 28 3.2169 43 4.0380 58 4.7186

14 2.1904 29 3.2780 44 4.0869 59 4.7605

15 2.2789 30 3.3380 45 4.1352 60 4.8021

quality characteristic of interest is known, variable inspection
becomes feasible. Govindaraju and Balamurali [84] extended
the idea of chain sampling to variable inspection assuming
normality. This approach is particularly useful when test-
ing is costly or destructive provided the quality variable is
measurable on a continuous scale and known to be normally
distributed. It is well known that the variable plans do call for
a very low sample sizes when compared to the attribute plans.
However, not all variable plans possess a satisfactory OC
curve as shown by Govindaraju and Kuralmani [85]. Often,
a variable plan is unsatisfactory if the acceptability constant
is too large particularly when the sample size is small. Only
in such cases, it is necessary to follow the chain sampling
approach to improve upon the OC curve of the variable plan.
Table 12.3 is useful for deciding whether a given variables
sampling plan has a satisfactory OC curve or not. If the
acceptability constant kσ of a known sigma variables plan
exceeds kσ l, then the plan is deemed to have an unsatisfactory
OC curve like an Ac = 0 attribute plan.

The operating procedure of the chain sampling plan for
variables inspection is as follows:

1. Draw a random sample of size nσ , say
(
x1, x2, . . . , xnσ

)
,

and then compute ν = (U − X̄)/σ where X̄ =
nσ∑
i=1

xi/nσ .

2. Accept the lot if ν ≥ kσ and reject if ν < k′
σ . If k

′
σ ≤

ν < kσ , accept the lot provided the preceding i lots were
accepted on the condition that ν ≥ kσ .

Thus the variable chain sampling plan has four parame-
ters, namely, the sample size nσ ; the acceptability constants
kσ and k′

σ (< kσ ); and i, the number of preceding lots
used for conditionally accepting the lot. The OC function of
this plan is given by Pa(p) = PV + (P′

V − PV)PiV where

PV = Pr(ν ≥ kσ ) is the probability of accepting the lot
under the variables plan (nσ , kσ ) and P′

V = Pr(ν ≥ k′
σ ) is

the probability of accepting the lot under the variables plan
(nσ , k′

σ ). Even though the above operating procedure of the
variables chain sampling plan is of a general nature, it would
be appropriate to fix k′

σ = kσ l. For example, suppose that
a variable plan with nσ = 5 and kσ = 2.46 is currently
under use. From Table 12.3, the limit for the undesirable
acceptability constant kσ l for nσ = 5 is obtained as 1.1278.
Since the regular acceptability constant kσ = 2.26 is greater
than k′

σ = 1.1278, the variable plan can be declared to
possess an unsatisfactory OC curve. Hence, it is desirable
to chain the results of neighboring lots to improve upon the
shape of the OC curve of the variable plan (nσ = 5, kσ =
2.26), that is, the variable plan currently under use will be
operated as a chain sampling plan fixing i as four. A more
detailed procedure on designing chain sampling for variable
inspection, including the case when sigma is unknown, is
available in [84]. The chain sampling for variables will be
particularly useful when inspection costs are prohibitively
high, and the quality characteristic is measurable on a con-
tinuous scale.

Luca [86] extended the modified chain sampling plan
MChSP-1 of [38] for variable inspection. The main advan-
tage of the MChSP-1 is the reduction of sample size com-
pared to the ChSP-1 plan. While the variable chain sampling
approach reduces the amount inspection substantially, the
variable inspection based on the modified chain sampling
plan rule can achieve some marginal gains.

The idea of using chain sampling rules for variables
inspection proved popular in the recent years, and a large
number of plans using conditional lot disposition rules ap-
peared in the literature. Balamurali and Jun [87] extended the
variable chain sampling idea to MDS sampling plans based
on the normal distribution. Balamurali et al. [88] employed
the Weibull distribution so that the plans can be used for
lifetime assurance (see [89] and [90]). Aslam et al. [91]
extended the MDS rule to a lifetime characteristic following
the Burr XII distribution.

Arizono et al. [92] first coined the idea of employing the
process capability index for the design of a variables inspec-
tion plan. Wu et al. [93] extended the work of [87] to MDS
sampling plan using the capability index Cpk for normally
distributed processes with two-sided specification limits (see
[94] who also developed a variables MDS sampling plan for
lot sentencing based on the process capability index) (also
see [95]). Wu et al. [96] employed the quick switching rules
and presented variable quick switching sampling (VQSS)
system based on the Cpk index. There are numerous papers
employing rules based on chaining lot results which employ
various process capability indices, and the reader is suggested
to refer to the review given in [96]. Kurniati et al. [97]
employed the TNT plan rules with a unilateral specification
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limit based on one-sided capability indices. Yan et al. [98]
extended the MDS rules to assure protection of coefficient of
variation of a normally distributed quality characteristic.

12.9 Chain Sampling and CUSUM

In this section, we will discuss some of the interesting rela-
tionships between the cumulative sum (CUSUM) approach
of [99, 100] and chain sampling approach of [1]. As ex-
plained in [101], the CUSUM approach for Gaussian pro-
cesses is largely popular in the area of statistical process
control (SPC), but [99] proposed it to be used with at-
tribute (binomial) inspection problems arising in acceptance
sampling as well. Page [99] compares the CUSUM-based
inspection scheme with the deferred sentencing schemes of
[39] and the continuous sampling plan CSP-1 of [40] for
evaluating their relative performance. In fact Dodge’s CSP-
1 plan forms the theoretical basis for the ChSP-1 chain
sampling plan. A more formal acceptance sampling scheme
based on the one-sided CUSUM for lot-by-lot inspection was
proposed in [102]. Beattie’s plan calls for drawing a random
sample of size n from each lot and observing the number
of nonconforming units d. For each lot, a CUSUM value is
calculated for a given slack parameter k. If the computed
CUSUM is within the decision interval (0, h), then the lot
is accepted. If the CUSUM is within the return interval
(h, h′), then the lot is rejected. If the CUSUM falls below
zero, it is reset to zero. Similarly, if the CUSUM exceeds
h+ h′, it is reset to h+ h′. In other words, for the jth lot,
the plotted CUSUM can be succinctly defined as Sj =
min

(
h+ h′, max(dj − k + Sj−1)

)
with S0 = 0. Beattie’s

plan is easily implemented using the typical number of non-
conforming units CUSUMchart for lot-by-lot inspection (see
Fig. 12.6).

Lot number j 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

Cusum sj

Return interval

h

h
+
h'

Decision interval

Fig. 12.6 Beattie’s CUSUM acceptance sampling plan

Prairie and Zimmer [103] provided detailed tables and
nomographs for the selection of Beattie’s CUSUM accep-
tance sampling plan. An application is also reported in [104].

Beattie [105] introduced a “two-stage” semicontinuous
planwhere the CUSUMapproach is followed and the product
is accepted as long as the CUSUM Sj is within the deci-
sion interval (0, h). For product falling in the return interval
(h, h′), an acceptance sampling plan such as the single or
double sampling plan is used for lot disposition. Beattie
[105] compared the “two-stage” semicontinuous plan with
the ChSP-4A plan of [13] and the deferred sentencing scheme
of [41]. It is also remarked in [105] that chain sampling plans
(ChSP-4A type) call for steady rate of sampling and simple
to administer. The two-stage semicontinuous sampling plan
achieved some gain in the average sample number at good-
quality levels but is more difficult to administer. The two-
stage semicontinuous plan also requires more sample size
than ChSP-4A plans when the true quality is poorer than
acceptable levels.

We will now explore an interesting equivalence between
the ChSP-1 plan and a CUSUM scheme intended for high-
yield or low-fraction nonconforming production processes
for which the traditional p or np control charts are not useful.
Lucas [106] gave a signal rule for lack of statistical control if
there are two or more counts within an interval of t samples.
In case of low-process fraction nonconforming, this means
that if two or more nonconforming units are observed in any
t consecutive samples or less, a signal for an upward shift in
the process fraction level is obtained. It should be noted that if
two or more nonconforming units are found even in the same
sample, a signal for lack of statistical control will be obtained.
Govindaraju and Lai [107] discussed the design given in
[106] and provided a method of obtaining the parameters n
(the subgroup or sample size) and t (the maximum number of
consecutive samples considered for a signal). Lucas [106] has
shown that his signal rule is equivalent to a CUSUM scheme
having a reference value k = 1/t and decision interval (0, h =
1) for detecting an increase in the process count level. It was
also shown that a fast initial response (FIR) feature can be
added to the CUSUM scheme (see [108]) with an additional
subrule of signaling lack of statistical control if the first count
occurs before the tth sample. This FIR CUSUM scheme has a
head start of S0 = 1−kwith k = 1/t and h = 1. Consider the
ChSP-1 plan of [1] which rejects a lot if two or more counts
(of nonconformity or nonconforming units) occur but allows
acceptance of the lot if no counts occur or a single count
is preceded by t (the symbol i was used before) lots having
samples with no counts. If the decision of rejecting a lot is
translated as the decision of declaring the process to be not in
statistical control, then it is seen that Lucas’s scheme and the
ChSP-1 plan are the same. This equivalence will be further
clearer if one considers the operation of two-stage chain
sampling plan ChSP-(0,1) of [27] given in Sect. 12.4. When
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k2 = k1 + 1, the ChSP-(0,1) plan is equivalent to the ChSP-1
plan with t = k1. Hence, it can also be noted that the subrule
of not allowing any count for the first t samples suggested
for the FIR CUSUM scheme of [106] is an inherent feature
of the two-stage chain sampling scheme. This means that the
ChSP-1 plan is equivalent to the FIR CUSUM scheme with
the head start (1 − k) with k = 1/t and h = 1.

12.10 Other Interesting Extensions

If homogeneous lot formation is difficult, and random sam-
pling from the lot is harder, the binomial assumption may not
be valid. Gao and Tang [109] considered the chain sampling
rule when testing for conformance status which exhibits cor-
relation between successive units. A two-state Markov chain
model for the correlation within each sample was assumed
as against a two-state Markov chain model for the fraction
nonconforming p. In acceptance sampling, random samples
are taken; hence, the correlation within the sample is not
an issue. The proposal given in [109] may only apply when
random samples are difficult to obtain.

Mixed sampling plans are two-phase sampling plans in
which both variable quality characteristics and attribute qual-
ity measures are used in deciding the acceptance or rejection
of the lot. Baker and Thomas [110] reported the application
of chain sampling for acceptance testing for armor packages.
Their procedure uses chain sampling for testing structural
integrity (attributes inspection), and a variable sampling plan
is used for testing penetration depth quality characteristic.
Baker and Thomas [110] also suggested the simultaneous
use of control charts along with their proposed acceptance
sampling procedures. Suresh and Devaarul [111] proposed a
more formal mixed acceptance sampling plan where a chain
sampling plan is used for the attribute phase. Suresh and De-
vaarul [111] also obtained the OC function for their mixed
plan and discussed various selection procedures. For control-
ling multidimensional characteristics, [112] developed mul-
tidimensional mixed sampling plans (MDMSP). This plan
handles several quality characteristics during the variable
phase of the plan, while the attribute sampling phase can
be based on chain sampling or other attribute plans. Aslam
et al. [113] presented mixed multiple dependent state sam-
pling plans based on the popular process capability index.
Balamurali [114] and Usha and Balamurali [115] extended
the mixed chain sampling approach using the process capa-
bility index Cpk. In a similar vein, another form of mixed
modified chain sampling plan is given in [116]. Balamurali
et al. [117] generalized the mixed sampling incorporating
the multiple dependent state sentencing rule. Balamurali and
Usha [118] also extended the mixed sampling incorporating
the quick switching system rules. These approaches would

further reduce the sampling effort but no investigation was
done on the delay in detection of a shift.

In some situations, it is desirable to adopt three attribute
classes where items are classified into three categories,
namely, good, marginal, and bad (see [119]). Shankar et al.
[120] developed three class chain sampling plans and derived
various performance measures through GERT approach and
also discussed their design.

Suresh and Deepa [121] provided a discussion on formu-
lating a chain sampling plan given a gamma or beta prior
distribution for product quality. Tables are for the selection
of the plans and examples are also provided by Suresh and
Deepa [121]. Latha and Jeyabharathi [122] considered the
beta-binomial process for the operation of the ChSP-1 plan.
The main limitation of this approach is that the assumption
of nearly constant process fraction nonconforming needed
for chain sampling is not fulfilled. As a result, the (ARL1 −
ARL2) delay will be higher. A number of other lot chaining
rules were also proposed such as the rule given in [123] where
the number of preceding lot results employed depends on
the number of nonconforming results found in the current
sample.

Tang and Cheong [124] extended the idea of the chain
inspection procedure to enhance its sensitivity in detecting
a process shift while monitoring high-quality processes with
low fraction nonconforming. The MDS plan rules are also
used in control charting (see [125] and [126]).

12.11 Concluding Remarks

Chain sampling attribute inspection plans for a series of lots
can be implemented without any distributional assumption.
The main requirement is that the fraction nonconforming p in
the series of lots submitted for inspection is fairly constant.
If there is any linear trend in p, the chain sampling inspection
can be modified as a chain-deferred inspection procedure
so that the producer’s and consumer’s risks are maintained
the same for the series of lots inspected. If the chain sam-
pling rule is applied for variable inspection, distributional
assumptions such as a normality must be met. For costly
and destructive testing, the sample size must be kept small.
Small sample sizes such as five can be effective when lot
results are chained under variable inspection. If the normality
assumption is suspect, it is desirable to employ the regular
attribute chain sampling in order to assure the set risks.

This chapter largely reviewed the methodology of chain
sampling inspection of quality in a series of lots. Various
extensions of the original chain sampling plan ChSP-1 of
[1] and modifications are briefly reviewed. Chain sampling
approach is primarily useful for costly or destructive testing,
where small sample sizes are preferred. Chain sampling
achieves greater sampling economywhen it is combined with
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the approach of deferred sentencing so that the combined
plan can be used for any general situations. This chapter does
not cover designing of chain sampling plans in any great
detail. Onemay consult textbooks such as [74] or [32,127] for
detailed tables. A large number of papers primarily dealing
with the design of chain sampling plans are available only
in journals, and some of them are listed as references. It is
often remarked that designing sampling plans is more of an
art than a science. There are statistical, engineering, and other
administrative aspects that are to be taken into account for
successful implementation of any sampling inspection plan,
including the chain sampling plans. For example, the sample
size may be fixed due to administrative and other reasons.
Given this limitation, what sampling plan should be used
requires careful consideration. Several candidate sampling
plans, including chain sampling plans, must be sought first,
and then the selection of a particular type of plan must be
made based on the performance measures such as the OC
curve, etc. Sampling plans that make use of related lot results
must also be investigated for their performance against trend
in the submitted lot quality as well as sudden jumps. The
effectiveness of a chosen plan or a sampling scheme must
be monitored over time for a series of batches. The severity
of inspection is reduced with the chaining-related lot results,
but consumer protection should receive more attention by
way of minimizing the delay in detection of a poor-quality
lot submission.
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