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Abstract

The first section of this chapter introduces statistical pro-
cess control (SPC) and robust design (RD), two impor-
tant statistical methodologies for quality and productivity
improvement. Section 11.1 describes in-depth SPC theory
and tools for monitoring independent and autocorrelated
data with a single quality characteristic. The relation-
ship between SPC methods and automatic process control
methods is discussed and differences in their philosophies,
techniques, efficiencies, and design are contrasted. SPC
methods for monitoring multivariate quality characteris-
tics are also briefly reviewed.

Section 11.2 considers univariate RD, with empha-
sis on experimental design, performance measures and
modeling of the latter. Combined and product arrays are
featured and performance measures examined, include
signal-to-noise ratios SNR, PerMIAs, process response,
process variance, and desirability functions. Of central
importance is the decomposition of the expected value
of squared-error loss into variance and off-target com-
ponents which sometimes allows the dimensionality of
the optimization problem to be reduced. Besides, this
section deals with multivariate RD and demonstrates that
the objective function for the multiple characteristic case
is typically formed by additive or multiplicative combina-
tion of the univariate objective functions, and lists RD case
studies originating from applications in manufacturing,
reliability, and tolerance design.

Section 11.3 discusses the mainstream methods used
in the prognostics and health management (PHM) frame-
work, including updated research from the literatures of
both statistical science and engineering. Additionally, this
section provides an overview of the systems health mon-
itoring and management (SHMM) framework, discusses
its basic structure, and lists several applications of SHMM
to complex systems and to critical components within the
context of a big data environment.
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In the current international marketplace, continuous quality
improvement is pivotal for maintaining a competitive ad-
vantage. Although quality improvement activities are most
efficient and cost-effective when implemented as part of the
design and development stages (off-line), on-line activities
such as statistical process control (SPC) are vital for main-
taining quality during manufacturing.

Statistical process control (SPC) is an effective tool for
achieving process stability and improving process capability
through variation reduction. Primarily, SPC is used to clas-
sify sources of process variation as either common cause
or assignable cause. Common cause variations are inherent
to a process and can be described implicitly or explicitly
by stochastic models. Assignable cause variations are unex-
pected and difficult to predict beforehand. The basic idea
of SPC is to quickly detect and correct assignable cause
variation before quality deteriorates and defective units are
produced. The primary SPC tool was developed in the 1920s
by Walter Shewhart of Bell Telephone Laboratories and
has been tremendously successful in manufacturing applica-
tions [1–3].

Robust design (RD) is a systematic methodology that
uses statistical experimental design to improve the design
of products and processes. By making product and process
performance insensitive (robust) to hard-to-control distur-
bances (noise), robust design simultaneously improves prod-
uct quality, the manufacturing process, and reliability. The
RDmethod was originally developed by the Japanese quality
consultant,Genichi Taguchi [4]. Taguchi’s 1980 introduction
of robust parameter design to several major American indus-
tries resulted in significant quality improvements in product
and process design [5]. Since then, a great deal of research on
RD has improved related statistical techniques and clarified
underlying principles.

In addition, many RD case studies have demonstrated
phenomenal cost savings. In the electronics industry, Kackar
and Shoemaker [6] reported a 60% process variance reduc-
tion; Phadke [5] reported a fourfold reduction in process
variance and a twofold reduction in processing time – both
from running simple RD experiments. In other industries,
the American Supplier Institute (1983–1990) reported a large
number of successful case studies in robust design.

Although most data is multivariate in nature, research in
both areas has largely focused on normally distributed uni-
variate characteristics (responses).Montgomery andWoodall
[2] present a comprehensive panel discussion on SPC (see
alsoWoodall andMontgomery [7]) and multivariate methods
are reviewed by Lowry and Montgomery [8] and Mason [9].

Seminal research papers on RD include Kackar [10], Leon
et al. [11], Box [12], Nair [13], and Tsui [14]. RD problems
with multiple characteristics are investigated by Logothetis
and Haigh [15], Pignatiello [16], Elsayed and Chen [17],
and Tsui [18]. This research has yielded techniques allowing
engineers to effectively implement SPC and RD in a host of
applications.

This chapter briefly revisits the major developments in
both SPC and RD that have occurred over the last 30 years
and suggests future research directions while highlighting
multivariate approaches. Section 11.1 covers SPC of uni-
variate and multivariate random variables for both Shewhart
(including x and s charts) and non-Shewhart approaches
(CUSUM and EWMA), while assessing the effects of au-
tocorrelation and automatic process control. Section 11.2
considers univariate RD, emphasizing performancemeasures
and modeling for loss functions, dual responses, and desir-
ability functions; deals with multivariate and dynamic RD;
and recaps RD case studies from the statistics literature in
manufacturing, process control, and tolerance design. Fi-
nally, Sect. 11.3 provides an overview of PHM and SHMM
framework.

11.1 Statistical Process Control for Single
Characteristics

The basic idea in statistical process control is a binary view
of the state of a process; in other words, it is either running
satisfactorily or not. Shewhart [19] asserted that the process
state is related the type of variation manifesting itself in the
process. There are two types of variation, called common
cause and assignable or special cause variation. Common
cause variation refers to the assumption that “future behavior
can be predicted within probability limits determined by the
common cause system” [20]. Special cause variation refers
to “something special, not part of the system of common
causes” [21]. A process that is subject only to common cause
variation is “statistically” in control, since the variation is
inherent to the process and therefore eliminated only with
great difficulty. The objective of statistical process control is
to identify and remove special cause variation as quickly as
possible.

SPC charts essentially mimic a sequential hypothesis test
to distinguish assignable cause variation from common cause
variation. For example, a basic mathematical model behind
SPC methods for detecting change in the mean is

Xt = ηt + Yt,

where Xt is the measurement of the process variable at
time t, and ηt is the process mean at that time. Here Yt
represents variation from the common cause system. In some
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applications, Yt can be treated as an independently and identi-
cally distributed (iid) process. With few exceptions, the mean
of the process is constant except for abrupt changes, so

ηt = η + μt,

where η is the mean target and μt is zero for t < t0 and
has nonzero values for t ≥ t0. For analytical simplicity step
changes are often assumed; in other words μt remains at a
new constant level μ for t ≥ t0.

11.1.1 SPC for I.I.d. Processes

The statistical goal of SPC control charts is to detect the
change point t0 as quickly as possible and trigger corrective
action to bring the process back to the quality target. Among
many others, the Shewhart chart, the EWMA chart, and the
CUSUM chart are three important and widely used control
charts.

Shewhart Chart
The Shewhart control chart monitors the process observa-
tions directly,

Wt = Xt − η.

Assuming that the standard deviation of Wt is σW , the
stopping rule of the Shewhart chart is defined as |Wt | > LσW ,
where L is prespecified to maintain particular probability
properties.

EWMA Chart
Roberts [22] introduces a control charting algorithm based
on the exponentially weighted moving average of the obser-
vations,

Wt =
∞∑

i=0

wi (Xt−i − η) ,

where wi = λ(1 − λ)i, (0 < λ ≤ 1). It can be rewritten as

Wt = (1 − λ)Wt−1 + λ(Xt − η) , (11.1)

where W0 = 0 or the process mean. The stopping rule of the
EWMA chart is |Wt | > LσW where σW = √

λ/(2 − λ)σX .
The Shewhart chart is a special case of the EWMA chart with
λ = 1. When the underlying process is i.i.d, the EWMA chart
with small λ values is sensitive to the detection of small and
medium shifts in mean [23].

CUSUM Chart
Page [24] introduces the CUSUM chart as a sequential prob-
ability test. It can be simply obtained by letting λ approach
zero in (11.1). The CUSUM algorithm assigns equal weights
to past observations, and its tabular form consists of two
quantities,

W+
t = max

[
0, W+

t−1 + (Xt − η) − kσX
]
,

W−
t = min

[
0, W−

t−1 + (Xt − η) − kσX
]
,

where W+
0 = W−

0 = 0. It can be shown that the CUSUM
chart with k = μ/2 is optimal for detecting a mean change in
μ when the observations are i.i.d.

Because of the randomness of the observations, these con-
trol charts may trigger false alarms – out-of-control signals
issued when the process is still in control. The expected num-
ber of units measured between two successive false alarms
is called the in-control average run length (ARL)0. When a
special cause presents itself, the expected period before a
signal is triggered is called the out-of-control average run
length (ARL1). The ideal control chart has a long ARL0 and
a short ARL1. The Shewhart chart typically uses the constant
L= 3, so that the in-control ARL is 370 when the underlying
process is i.i.d. with normal distribution.

These SPC charts are very effective for monitoring the
process meanwhen the process data is i.i.d. It has been shown
that the Shewhart chart is sensitive for detecting large shifts
while the EWMA and CUSUM charts are sensitive to small
shifts [23]. However, a fundamental assumption behind these
SPC charts is that the common cause variation is free of serial
correlation. Due to the prevalence of advanced sensing and
measurement technology in manufacturing processes, the
assumption of independence is often invalid. For example,
measuring critical in-process dimensions is now possible on
every unit in the production of discrete parts. In continuous
process production systems, the presence of inertial elements
such as tanks, reactors, and recycle streams often result in
significant serial correlation in the measured variables. Serial
correlation creates many challenges and opportunities for
SPC methodologies.

11.1.2 SPC for Autocorrelated Processes

Traditional SPC charts have been shown to function poorly
while monitoring and controlling serially correlated pro-
cesses [25, 26]. To accommodate autocorrelation, the follow-
ing time series methods have been proposed.

Modifications of Traditional Methods
One common SPC strategy is to plot the autocorrelated data
on traditional charts whose limits have been modified to
account for the correlation. Johnson and Bagshaw [27] and
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Bagshaw and Johnson [28] consider the effects of autocor-
relation on CUSUM charts using the weak convergence of
cumulative sums to a Wiener process. Another alternative
is the exponentially weighted moving average chart for sta-
tionary processes (EWMAST) studied by Zhang [29]. Jiang
et al. [30] extend this to a general class of control charts
based on autoregressive moving average (ARMA) charts.
The monitoring statistic of an ARMA chart is defined to be
the result of a generalizedARMA(1, 1) process applied to the
underlying process {Xt},

Wt = θ0Xt − θXt−1 + φWt−1

= θ0 (Xt − βXt−1) + φWt−1,
(11.2)

where β = θ /θ0 and θ0 is chosen so that the sum of the
coefficients is unity when Wt is expressed in terms of the
Xt’s, so θ0 = 1 + θ − φ. The authors show that these
charts exhibit good performance when the chart parameters
are chosen appropriately.

Forecast-BasedMonitoringMethods
Forecast-based charts started with the special-cause charts
(SCC) proposed by Alwan and Roberts [31]. The general idea
is to first apply a one-step-ahead predictor to the observation
{Xt} and then monitor the corresponding prediction error,

Wt = et, (11.3)

where et = Xt − X̂t is the forecast error of predictor X̂t. The
SCC method is the first example that uses minimum mean
squared error (MMSE) predictors and monitors the MMSE
residuals. When the model is accurate, the MMSE prediction
errors are approximately uncorrelated. This removal of cor-
relation means that control limits for the SCC can be easily
calculated from traditional Shewhart charts, EWMA charts,
and CUSUM charts. Another advantage of the SCC method
is that its performance can be analytically approximated.

The SCC method has attracted considerable attention and
has been extended by many authors. Among them, Harris
and Ross [25] and Superville and Adams [32] investigate
process monitoring based on the MMSE prediction errors
for simple autoregressive [AR(1)] models; Wardell et al.
[33, 34] discuss the performance of SCC for ARMA(1, 1)
models; and Vander Wiel [35] studies the performance of
SCC for integrated moving average [IMA(0, 1, 1)] models.
SCC methods perform poorly when detecting small shifts
since a constant mean shift always results in a dynamic shift
pattern in the error term.

In general this approach can be applied to any predictor.
Montgomery and Mastrangelo [36] recommend the use of
EWMA predictors in the SCC method (hereafter called
the M–M chart). Jiang et al. [37] propose the use of

proportional-integral-derivative (PID) predictors

X̂t = X̂t−1 + (kP + kI + kD)et−1

− (kP + 2kD) et−2 + kDet−3,

(11.4)

where kP, kI, and kD are parameters of the PID controller
defined in Sect. 11.1.3. The family of PID-based charts
includes the SCC, EWMA, and M–M charts as special cases.
Jiang et al. [37] show that the predictors of the EWMA chart
and M–M chart may sometimes be inefficient and the SCC
over-sensitive to model deviation. They also show that the
performance of the PID-based chart is affected by the choice
of chart parameters. For any given underlying process, one
can therefore tune the parameters of the PID-based chart to
optimize its performance.

GLRT-BasedMultivariate Methods
Since forecast-based residual methods monitor a single
statistic et, they often suffer from the problem of a narrow
“window of opportunity” when the underlying process is
positively correlated [35]. If the shift occurrence time is
known, the problem can be alleviated by including more
historical observations/residuals in the test. This idea was
first proposed by Vander Wiel [35] using a generalized
likelihood ratio test (GLRT) procedure. Assuming residual
signatures {δi} when a shift occurs, the GLRT procedure
based on residuals is

Wt = max
0≤k≤p−1

∣∣∣∣∣

k∑

i=0

δiet−k+i

∣∣∣∣∣ /

√√√√
k∑

i=0

δ2i , (11.5)

where p is the prespecified size of the test window. Apley and
Shi [38] show that this procedure is very efficient in detecting
mean shifts when p is sufficiently large. Similar to the SCC
methods, this is model-based and the accuracy of signature
strongly depends on the window length p. If p is too small and
a shift is not detected within the test window, the signature in
(11.5) might no longer be valid and the test statistic no longer
efficient.

Note that a step mean shift at time t − k + 1 results in a
signature

dk =
⎛

⎝0, · · · , 0,
k︷ ︸︸ ︷

1, · · · , 1
⎞

⎠
′

(1 ≤ k ≤ p)

and

dk = (1, 1, · · · , 1)′ (k > p)

on Ut = (Xt − p + 1,Xt − p + 2, · · · ,Xt)′. To test these signa-
tures, the GLRT procedure based on observation vector Wt
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is defined as

Wt = max
0≤k≤p−1

∣∣d′
k	

−1
U Ut

∣∣ /
√
d′
k	

−1
U dk, (11.6)

where 	U is the covariance matrix of Ut. Jiang [39] points
out that this GLRT procedure is essentially model-free and
always matches the true signature of Ut regardless of the
timing of the change point. If a non-step shift in the mean
occurs, multivariate charts such as Hotelling’s T2 charts can
be developed accordingly [40].

Monitoring BatchMeans
One of the difficulties with monitoring autocorrelated data is
accounting for the underlying autocorrelation. In simulation
studies, it is well known that batch means reduce autocor-
relation within data. Motivated by this idea, Runger and
Willemain [41, 42] use a weighted batch mean (WBM) and
a unified batch mean (UBM) to monitor autocorrelated data.
The WBMmethod weighs the mean of observations, defines
batch size so that autocorrelation among batches is reduced
to zero and requires knowledge of the underlying process
model [43]. The UBM method determines batch size so that
autocorrelation remains below a certain level and is “model-
free”. Runger and Willemain show that the UBM method is
simple and often more cost-effective in practice.

Batch-means methods not only develop statistics based on
batch-means, but also provide variance estimation of these
statistics for some commonly used SPC charts. Alexopoulos
et al. [44] discuss promising methods for dealing with cor-
related observations including nonoverlapping batch means
(NBM), overlapping batch means (OBM) and standardized
time series (STS).

11.1.3 SPC Versus APC

Automatic process control (APC) complements SPC as a
variation reduction tool for manufacturing industries. While
SPC techniques are used to reduce unexpected process vari-
ation by detecting and removing the cause of variation,
APC techniques are used to reduce systematic variation by
employing feedforward and feedback control schemes. The
relationships between SPC and APC are important to both
control engineers and quality engineers.

Feedback Control Versus Prediction
The feedback control scheme is a popular APC strategy that
uses the deviation of output from target (set-point) to signal
a disturbance of the process. This deviation or error is then
used to compensate for the disturbance. Consider a pure-gain
dynamic feedback-controlled process, as shown in Fig. 11.1.
The process output can be expressed as

Process

Disturbance
Process
outputs

Updated
recipes Recipe

generator

Targets

+

Fig. 11.1 Automatic process control

et = Xt − Zt−1. (11.7)

Suppose X̂t is an estimator (a predictor) of Xt that can be
obtained at time t − 1. A realizable form of control can be
obtained by setting

Zt−1 = −X̂t (11.8)

so that the output error at time t + 1 becomes

et = Xt − X̂t, (11.9)

which is equal to the “prediction error”. Control and predic-
tion can therefore have a one-to-one corresponding relation-
ship via (11.8) and (11.9).

As shown in Box and Jenkins [45], when the process can
be described by an ARIMA model, the MMSE control and
the MMSE predictor have exactly the same form. Serving as
an alternative to the MMSE predictor, the EWMA predictor
corresponds to the integral (I) control [46] and is one of the
most frequently used prediction methods due to its simplicity
and efficiency. In general, the EWMA predictor is robust
against nonstationarity due to the fact that the I control can
continuously adjust the process whenever there is an offset.

An extension of the I control is the widely used PID
control scheme,

Zt = −kPet − kI
1

1 − B
et − kD (1 − B)et, (11.10)

where kP, kI, and kD are constants that, respectively, deter-
mine the amount of proportional, integral, and derivative
control action. The corresponding PID predictor (11.4) can
be obtained from (11.8) and (11.10). When λ3 = 0, in other
words when kD = 0 (and thus λ1 = kP + kI and λ2 = − kP), we
have a PI predictor corresponding to the proportional-integral
control scheme commonly used in industry.
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Process Prediction Versus Forecast-Based
MonitoringMethods
As discussed in Sect. 11.1.2, one class of SPC methods for
autocorrelated processes starts from the idea of “whitening”
the process and then monitoring the “whitened” process with
time series prediction models. The SCC method monitors
MMSE prediction errors and the M–M chart monitors the
EWMA prediction error. Although the EWMA predictor is
optimal for an IMA(0, 1, 1) process, the prediction error is no
longer i.i.d. for predicting other processes. Most importantly,
the EWMA prediction error that originated from the I control
can compensate for mean shifts in steady state which makes
the M–M chart very problematic for detecting small shifts in
mean.

Since PID control is very efficient and robust, PID-based
charts motivated by PID predictors outperform SCC and M–
Mcharts. APC-based knowledge of the process canmoreover
clarify the performance of PID-based charts. In summary,
the P term ensures that process output is close to the set
point and thus sensitive in SPC monitoring, whereas the I
term always yields control action regardless of error size
which leads to a zero level of steady-state error. This implies
that the I term is dominant in SPC monitoring. The purpose
of derivative action in PID control is to improve closed-
loop stability by making the D term in SPC monitoring
less sensitive. Although there is no connection between the
EWMA predictor and the EWMA chart, it is important to
note that the I control leads to the EWMA predictor and the
EWMA prediction-based chart is the M–M chart. As shown
in Jiang et al. [37], the EWMA chart is the same as the
P-based chart.

11.1.4 SPC for Automatically Controlled
Processes

Although APC and SPC techniques share the objective of
reducing process variation, their advocates have quarreled
for decades . It has recently been recognized that the two
techniques can be integrated to produce more efficient tools
for process variation reduction [47–52]. This APC/SPC in-
tegration employs an APC rule to regulate the system and
superimposes SPC charts on the APC-controlled system to
detect process departures from the system model. Using
Deming’s terminology, the APC scheme is responsible for
reducing common cause variation, while the SPC charts are
responsible for reducing assignable cause variation. From
the statistical point of view, the former part resembles a
parameter estimation problem for forecasting and adjusting
the process and the latter part emulates a hypothesis test of
process location. Figure 11.2 pictures a conceptual integra-
tion of SPC charts into the framework of a feedback control
scheme. To avoid confusion, Box and Luceno [46] refer to

Process

Disturbance
Process
outputs

Updated
recipes

Recipe
generator

Targets

+

Process
model estimate

+

+
–

Errors

Model
outputs

Fig. 11.2 APC/SPC integration

APC activities as process adjustment and to SPC activities
as process monitoring. Since this chapter emphasizes SPC
methods for quality improvement, we discuss only the mon-
itoring component of APC/SPC integration.

As discussed in Sect. 11.1.3, control charts developed
for monitoring autocorrelated observations shed light on the
monitoring of integrated APC/SPC systems. Fundamentally,
the output of an automatically controlled process is recom-
mended for SPC monitoring. This is equivalent to forecast-
based control charts of the corresponding predictor. For ex-
ample, if the process is controlled by an MMSE controller,
monitoring the output is exactly the same as the SCCmethod.
Similar to forecast-based methods, assignable causes have
an effect that is always contaminated by the APC control
action which results in a limited “window of opportunity”
for detection [35]. As an alternative, some authors suggest
that monitoring the APC control action may improve the
probability of detection [20]. Jiang and Tsui [53] compare the
performance ofmonitoring the output vs. the control action of
an APC process and show that for some autocorrelated pro-
cesses monitoring the control action may be more efficient
than monitoring the output of the APC system.

In general, the performance achieved by SPC monitoring
an APC process depends on the data stream (the output or
the control action) being measured, the APC control scheme
employed, and the underlying autocorrelation of the process.
If information from process output and control action can be
combined, a universal monitor with higher SPC efficiency
[51] can be developed. Kourti et al. [54] propose a method
of monitoring process outputs conditional on the inputs or
other changing process parameters. Li et al. [55] propose
multivariate control charts such as Hotelling’s T2 chart and
the Bonferroni approach to monitor output and control action
simultaneously. Defining the vector of outputs and control
actions as Vt = (et,· · · , et−p+1,Xt,· · · ,Xt−p+1)′, a dynamic T2
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chart with window size p monitors statistic

Wt = V ′
t	

−1
V Vt,

where	V is the covariance matrix of Vt [56].Wt follows a χ2

distribution during each period given known process param-
eters. However, strong serial correlation exists so that the χ2

quantiles cannot be used for control limits. By recognizing
the mean shift patterns of Vt, Jiang [57] develops a GLRT
procedure based on Vt. This GLRT procedure is basically
univariate and more efficient than the T2 chart.

11.1.5 Design of SPCMethods: Efficiency
Versus Robustness

Among many others, the minimization of mean squared er-
ror/prediction error is one of the important criteria for predic-
tion/control scheme design. Although the special cause chart
is motivated by MMSE prediction/control, many previously
mentioned SPC charts such as the PID chart have fundamen-
tally different criteria from those of the corresponding APC
controllers. When selecting SPC charts, the desired goal is
maximization of the probability of shift detection.

For autocorrelated processes, Jiang [37] propose an ad
hoc design procedure using PID charts. They demonstrate
how two capability indices defined by signal-to-noise ratios
(SNR) play a critical role in the evaluation of SPC charts.
They denote σW as the standard deviation of charting statistic
Wt andμT (/μS) as the shift levels ofWt at the first step (/long
enough) after the shift takes place. The transient state ratio is
defined asCT = μT/σW , which measures the capability of the
control chart to detect a shift in its first few steps. The steady
state ratio is defined as CS = μS/σW , which measures the
ability of the control chart to detect a shift in its steady state.
These two signal-to-noise ratios determine the efficiency of
the SPC chart and can be manipulated by selecting control
chart parameters.

For a particular mean shift level, if the transient state
ratio/capability can be tuned to a high value (say 4–5) by
choosing appropriate chart parameters, the corresponding
chart will detect the shift very quickly. Otherwise the shift
will likely be missed during the transient state and will need
to be detected in later runs. Since a high steady state ratio/-
capability heralds efficient shift detection at steady state, a
high steady state ratio/capability is also desired. However,
the steady state ratio/capability should not be tuned so high
that it results in an extremely small transient ratio/capability,
indicative of low probability of detection during the transient
state. To endow the chart with efficient detection at both
states, a tradeoff is needed when choosing the charting pa-
rameters. An approximate CS value of 3 is generally appro-
priate for balancing the values of CT and CS.

One of the considerations when choosing an SPC method
is its robustness to autocorrelated and automatically con-
trolled processes. Robustness of a control chart refers to
how insensitive its statistical properties are to model mis-
specification. Reliable estimates of process variation are of
vital importance for the proper functioning of all SPC meth-
ods [58]. For process Xt with positive first-lag autocorrela-
tion, the standard deviation derived from moving range is
often underestimated because

E
(
σ̂MR

) = E
(
MR/d2

) = σX
√
1 − ρ1,

where ρ1 is the first-lag correlation coefficient of Xt [59].
A more serious problem with higher sensitivity control

charts such as the PID chart is that they may be less robust
than lower sensitivity control charts such as the SCC. Berube
et al. [60] and Luceno [61] conclude that PID controllers are
generally more robust than MMSE controllers against model
specification error. However Jiang [37] shows that PID charts
tend to have a shorter “in-control” ARL when the process
model is mis-specified since model errors can be viewed as a
kind of “shift” from the “true” process model. This seems to
be a discouraging result for higher sensitivity control charts.
In practice, a trade-off is necessary between sensitivity and
robustness when selecting control charts for autocorrelated
processes. Apley and Lee [62] recommend using a conserva-
tive control limit for EWMA charts when monitoring MMSE
residuals. By using the worst-case estimation of residual
variance, the EWMA chart can be robustly designed for the
in-control state with a slight efficiency loss in the out-of-
control state. This design strategy can be easily generalized
to other SPC methods for autocorrelated or automatically
controlled processes.

11.1.6 SPC for Multivariate Characteristics

Through modern sensing technology that allows frequent
measurement of key quality characteristics during manu-
facturing, many in-process measurements are strongly cor-
related to each other. This is especially true for measure-
ments related to safety, fault detection and diagnosis, quality
control, and process control. In an automatically controlled
process, for example, process outputs are often strongly
related to process control actions. Joint monitoring of these
correlated characteristics ensures appropriate control of the
overall process. Multivariate SPC techniques have recently
been applied to novel fields such as environmental monitor-
ing and detection of computer intrusion.

The purpose of multivariate on-line techniques is to inves-
tigate whether measured characteristics are simultaneously
in statistical control. A specific multivariate quality control
problem is to consider whether an observed vector of mea-



206 W. Jiang et al.

surements x = (x1, . . . , xk) exhibits a shift from a set of
“standard” parameters μ0 = (

μ0
1, . . . ,μ

0
k

)′
. The individual

measurements will frequently be correlated, meaning that
their covariance matrix 	 will not be diagonal.

Versions of the univariate Shewhart, EWMA and CUSUM
charts have been developed for the case of multivariate nor-
mality.

Multivariate T2 Chart
To monitor a multivariate vector,Hotelling [63] suggested an
aggregated statistic equivalent to the Shewhart control chart
in the univariate case,

T2 = (
x− μ0

)′
	̂−1
x

(
x− μ0

)
, (11.11)

where 	̂x is an estimate of the population covariance
matrix 	. If the population covariance matrix is known,
Hotelling’s T2 statistic follows a χ2 distribution with
k degrees of freedom when the process is in-control.
A signal is triggered when χ2 > χ2

k,α . One of the
important features of the T2 charts is that its out-of-control
performance depends solely on the noncentrality parameter

δ =
√(

μ − μ0
)′
	̂−1
x

(
μ − μ0

)
, where μ is the actual

mean vector. This means that its detectional performance
is invariant along the contours of the multivariate normal
distribution.

Multivariate EWMA Chart
Hotelling’s T2 chart essentially utilizes only current process
information. To incorporate recent historical information,
Lowry [64] develop a similar multivariate EWMA chart

W2
t = w′

t	
−1
w wt,

where wt = (xt − μ0) + (I − )wt − 1 and  = diag(λ1,
λ2,· · · , λk). For simplicity, λi = λ (1 ≤ i ≤ k) is generally
adopted and 	w = λ/(2 − λ)	x.

Multivariate CUSUM Chart
There are many CUSUM procedures for multivariate data.
Crosier [65] proposes two multivariate CUSUM procedures,
cumulative sum of T (COT) and MCUSUM. The MCUSUM
chart is based on the statistics

st =
{
0 if Ct ≤ k1
(st−1 + xt) (1 − k1/Ct) if Ct ≤ k1,

(11.12)

where s0 = 0, Ct =
√

(st−1 + xt)′	−1
x (st−1 + xt), and k1 > 0.

The MCUSUM chart signals when Wt = s′t	−1
x st > h1.

Pignatiello and Runger [66] propose another multivariate
CUSUM chart (MC1) based on the vector of cumulative
sums,

Wt = max
(
0,
√
D′
t	

−1
x Dt − k2lt

)
(11.13)

where k2 > 0, Dt = ∑t
i=t−lt+1xi, and

lt =
{
lt−1 + 1 if Wt−1 > 0
1 otherwise.

Once an out-of-control signal is triggered from a multi-
variate control chart, it is important to track the cause of the
signal so that the process can be improved. Fault diagnosis
can be implemented by T2 decompositions following the sig-
nal and large components are suspected to be faulty. Orthogo-
nal decompositions such as principal component analysis are
popular tools.Hayter and Tsui [67] propose other alternatives
which integrate processmonitoring and fault diagnosis. Jiang
and Tsui [68] provide a thorough review of these methods.

Variable-Selection-BasedMultivariate Chart
In high dimensional applications, it is very rare to see all
interested variables or quality characteristics change or shift
at the same time. Rather, a typical yet common phenomenon
observed in practice is that a subset of variables, which is
dominated by a common latent physical mechanism or com-
ponent, deviate from their normal condition due to abnormal
changes of the common mechanism or component [69–71].
By penalizing likelihood functions to locate potential out-of-
control variables, Wang and Jiang [72] and Zou and Qiu [73]
independently propose to monitor a variable-dimension T2

statistic, which has better efficiency than traditional full-size
T2 statistic. Zou et al. [74] and Jiang et al. [75] further utilized
the LASSO algorithm for fault diagnosis.

Multivariate Chart Using Real-Time Contrast
Instead of monitoring departures from a nominal mean vector
in Phase II, multivariate RTC control chartsmonitor distances
between real time data and Phase I reference data using
classification methods. Mis-classification probabilities serve
as a reasonable candidate for monitoring differences between
the two populations [76]. Classification methods such as lin-
ear discrimination analysis (LDA), support vector machines
(SVM), etc. can be deployed and kernel-based methods can
also be adapted to account for nonlinear boundary between
Phases I and II data [77, 78]. Since these classification
methods look for a projection direction such that certain
“distance” metric are optimized, projection pursuit can be
generalized by measuring empirical divergence between the
two probability distributions for real-time monitoring [79].
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11
11.1.7 SPC for Profile Monitoring

In many applications, the quality of a process or product is
best characterized and summarized by a functional relation-
ship between a response variable and one or more explana-
tory variables. Profile monitoring is used to understand and
to check the stability of this relationship over time. At each
sampling stage one observes a collection of data points that
can be represented by a curve (or profile). In some calibration
applications, the profile can be represented adequately by a
simple linear regression model, while in other applications
more complicated models are needed.

Profile monitoring is very useful in an increasing number
of practical applications. Much of the work in the past few
years has focused on the use of more effective charting
methods, the study ofmore general shapes of profiles, and the
study of the effects of violations of assumptions. There are
many promising research topics yet to be pursued given the
broad range of profile shapes and possible models. Woodall
et al. (2004) [80] highlighted the following important issues
when monitoring profiles:

1. The usefulness of carefully distinguishing between Phase
I and Phase II applications.

2. The decision regarding whether or not to include some
between profile variation in common cause variation.

3. The use of methods capable of detecting any type of shift
in the shape of the profile.

4. The use of the simplest adequate profile model.

Paynabar et al. [81] developed a new modeling, mon-
itoring, and diagnosis framework for phase-I analysis of
multichannel profiles. Woodall et al. [82] conducted a com-
prehensive review on the use of control charts to monitor
process and product quality profiles.

11.2 Design of Experiment and Robust
Parameter Design

11.2.1 Robust Design for Single Responses

Taguchi [4] introduced parameter design, a method for de-
signing processes that are robust (insensitive) to uncontrol-
lable variation, to a number of American corporations. The
objective of this methodology is to find the settings of design
variables that minimize the expected value of squared-error
loss defined as

L(Y, t) = (Y − t)2, (11.14)

where Y represents the actual process response and t the
targeted value. A loss occurs if the response Y deviates from

its target t. This loss function originally became popular
in estimation problems considering unbiased estimators of
unknown parameters. The expected value of (Y − t)2 can be
easily expressed as

E(L) = A0E(Y − t)2

= A0
[
Var(Y) + (E(Y) − t)2

]
,

(11.15)

where Var(Y) and E(Y) are the mean and variance of the
process response and A0 is a proportional constant represent-
ing the economic costs of the squared error loss. If E(Y) is
on target then the squared-error loss function reduces to the
process variance. Its similarity to the criterion of least squares
in estimation problems makes the squared-error loss function
easy for statisticians and engineers to grasp. Furthermore the
calculations for most decision analyses based on squared-
error loss are straightforward and easily seen as a trade-off
between variance and the square of the off-target factor.

Robust design (RD) assumes that the appropriate perfor-
mance measure can be modeled as a transfer function of the
fixed control variables and the random noise variables of the
process as follows:

Y = f (x,N, θ) + ε, (11.16)

where x = (x1, . . . , xp)T is the vector of control factors,
N = (N1, . . . ,Nq)T is the vector of noise factors, θ is the
vector of unknown response model parameters, and f is
the transfer function for Y. The control factors are assumed
to be fixed and represent the fixed design variables. The
noise factors N are assumed to be random and represent
the uncontrolled sources of variability in production. The
pure error ε represents the remaining variability that is not
captured by the noise factors and is assumed to be normally
distributed with zero mean and finite variance.

Taguchi divides the design variables into two subsets,
x = (xa, xd), where xa and xd are called respectively the
adjustment and nonadjustment design factors. An adjustment
factor influences process location while remaining effec-
tively independent of process variation. A nonadjustment
factor influences process variation.

Experimental Designs for Parameter Design

Taguchi’s Product Arrays and Combined Arrays
Taguchi’s experimental design takes an orthogonal array for
the controllable design parameters (an inner array of control
factors) and crosses it with another orthogonal array for the
factors beyond reasonable control (an outer array of noise
factors). At each test combination of control factor levels,
the entire noise array is run and a performance measure is
calculated. Hereafter we refer to this design as the product
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array. These designs have been criticized by Box [12] and
others for being unnecessarily large.
Welch [83] combined columns representing the control

and noise variables within the same orthogonal array. These
combined arrays typically have a shorter number of test
runs and do not replicate the design. The lack of replication
prevents unbiased estimation of random error but we will
later discuss research addressing this limitation.

Which to Use: Product Array or Combined Array
There is a wide variety of expert opinion regarding choice of
experimental design in Nair [13]. The following references
complement Nair’s comprehensive discussion. Ghosh and
Derderian [84] derive robustness measures for both product
and combined arrays, allowing the experimenter to objec-
tively decide which array provides a more robust option.
Miller et al. [85] consider the use of a product array on gear
pinion data. Lucas [86] concludes that the use of classical,
statistically designed experiments can achieve the same or
better results than Taguchi’s product arrays. Rosenbaum [87]
reinforces the efficiency claims of the combined array by giv-
ing a number of combined array designswhich are smaller for
a given orthogonal array strength or stronger for a given size.
Finally, Wu and Hamada [88] provide an intuitive approach
to choosing between product and combined array based on
an effect-ordering principle.

They list the most important class of effects as those
containing control–noise interactions, control main effects
and noise main effects. The second highest class contains the
control–control interactions and the control–control–noise
interactions while the third and least important class contains
the noise–noise interactions. That array producing the highest
number of clear effect estimates in the most important class
is considered the best design.

Noting that the combined array is often touted as being
more cost-effective due to an implied smaller number of runs,
Wu and Hamada place the cost comparison on a more objec-
tive basis by factoring in both cost per control setting and cost
per noise replicate. They conclude that the experimenter must
prioritize the effects to be estimated and the realistic costs
involved before deciding which type of array is optimal.

Choosing the Right Orthogonal Array for RD
Whether the experimenter chooses a combined or product
array, selecting the best orthogonal array is an important
consideration. The traditional practice in classical design of
experiments is to pick a Resolution IV or higher design so
that individual factors are aliased with three factor inter-
actions, of which there are relatively few known physical
examples.

However, the estimation of main effects is not necessarily
the best way to judge the value of a test design for RD. The
control–noise interactions are generally regarded as having
equal importance as the control effects for fine tuning the

final control factor settings for minimal product variation.
Hence evaluation of an experimental design for RD purposes
must take into account the design’s ability to estimate the
control–noise interactions deemed most likely to affect prod-
uct performance.
Kackar and Tsui [89] feature a graphical technique for

showing the confounding pattern of effects within a two-
level fractional factorial. Kackar et al. [90] define orthogonal
arrays and describe how Taguchi’s fixed element arrays are
related to well known fractional factorial designs. Other
pieces related to this decision are Hou and Wu [91], Berube
and Nair [60], and Bingham and Sitter [92].

D-Optimal Designs
In this section several authors show how D-optimal designs
can be exploited in RD experiments. A D-optimal design
minimizes the area of the confidence ellipsoids for param-
eters being estimated from an assumed model. Their key
strength is their invariance to linear transformation of model
terms and their characteristic weakness is a dependence on
the accuracy of the assumed model. By using a proper prior
distribution to attack the singular design problem and make
the design less model-dependent, Dumouchel and Jones [93]
provide a Bayesian D-optimal design needing little modifi-
cation of existing D-optimal search algorithms.
Atkinson and Cook [94] extend the existing theory of D-

optimal design to linear models with nonconstant variance.
With a Bayesian approach they create a compromise design
that approximates preposterior loss. Vining and Schaub [95]
use D-optimality to evaluate separate linear models for pro-
cess mean and variance. Their comparison of the designs
indicates that replicated fractional factorials of assumed con-
stant variance best estimate variance while semi-Bayesian
designs better estimate process response.
Chang [96] proposes an algorithm for generating near D-

optimal designs for multiple response surface models. This
algorithm differs from existing approaches in that it does
not require prior knowledge or data-based estimates of the
covariance matrix to generate its designs.Mays [97] extends
the quadratic model methodology of RSM to the case of
heterogeneous variance by using the optimality criteria D
(maximal determinant) and I (minimal integrated prediction
variance) to allocate test runs to locations within a central
composite design.

Other Designs
The remaining references discuss types of designs used in
RD which are not easily classified under the more common
categories previously discussed.
Pledger [98] divides noise variables into observable and

unobservable and argues that one’s ability to observe se-
lected noise variables in production should translate into
better choices of optimal control settings. Rosenbaum [99]
uses blocking to separate the control and noise variables in
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combined arrays, which were shown in Rosenbaum [87] to
be stronger for a given size than the corresponding product
array designs. Li and Nachtsheim [100] present experimental
designs which don’t depend on the experimenter’s prior de-
termination of which interactions are most likely significant.

PerformanceMeasures in RD
In Sect. 11.2.1, we compared some of the experimental
designs used in parameter design. Of equal importance is
choosing which performance measure will best achieve the
desired optimization goal.

Taguchi’s Signal-to-Noise Ratios
Taguchi introduced a family of performance measures called
signal-to-noise ratios whose specific form depends on the
desired response outcome. The case where the response has
a fixed nonzero target is called the nominal-the-best case
(NTB). Likewise, the cases where the response has a smaller-
the-better target or a larger-the-better target are, respectively,
called the STB and LTB cases.

To accomplish the objective of minimal expected squared-
error loss for the NTB case, Taguchi proposed the following
two-step optimization procedure: (i) Calculate and model
the SNRs and find the nonadjustment factor settings which
maximize the SNR. (ii) Shift mean response to the target by
changing the adjustment factor(s).

For the STB and LTB cases, Taguchi recommends directly
searching for the values of the design vector x which max-
imize the respective SNR. Alternatives for these cases are
provided by Tsui and Li [101] and Berube and Wu [102].

Performance Measure Independent of Adjustment
(PerMIAs)
Taguchi did not demonstrate howminimizing the SNRwould
achieve the stated goal ofminimal average squared-error loss.
Leon et al. [11] defined a function called the performance
measure independent of adjustment (PerMIA)which justified
the use of a two-step optimization procedure. They also
showed that Taguchi’s SNR for the NTB case is a PerMIA
when both an adjustment factor exists and the process re-
sponse transfer function is of a specific multiplicative form.
When Taguchi’s SNR complies with the properties of a
PerMIA, his two-step procedure minimizes the squared-error
loss.
Leon et al. [11] also emphasized two major advantages of

the two-step procedure:

• It reduces the dimension of the original optimization prob-
lem.

• It does not require reoptimization for future changes of the
target value.

Box [12] agrees with Leon et al. [11] that the SNR is
only appropriately used in concert with models where pro-
cess sigma is proportional to process mean. Maghsoodloo
[103] derives and tabulates exact mathematical relationships
between Taguchi’s STB and LTB measures and his quality
loss function.
Leon and Wu [104] extend the PerMIA of Leon et al.

[11] to a maximal PerMIA which can solve constrained
minimization problems in a two-step procedure similar to
that of Taguchi. For nonquadratic loss functions, they intro-
duce general dispersion, location, and off-target measures,
while developing a two-step process. They apply these new
techniques in a number of examples featuring additive and
multiplicative models with nonquadratic loss functions. Tsui
and Li [101] establish a multistep procedure for the STB and
LTB problem based on the response model approach under
certain conditions.

Process Response and Variance as Performance
Measures
The dual response approach is a way of finding the optimal
design settings for a univariate response without the need
to use a loss function. Its name comes from its treatment
of mean and variance as responses of interest which are
individually modeled. It optimizes a primary response while
holding the secondary response at some acceptable value.
Nair andPregibon [105] suggest using outlier-robust mea-

sures of location and dispersion such as median (location)
and interquartile range (dispersion). Vining and Myers [106]
applied the dual response approach to Taguchi’s three SNRs
while restricting the search area to a spherical region of
limited radius. Copeland and Nelson [107] solve the dual
response optimization problem with the technique of direct
function minimization. They use the Nelder-Mead simplex
procedure and apply it to the LTB, STB, and NTB cases.
Other noteworthy papers on the dual response method in-
clude Del Castillo and Montgomery [108] and Lin and Tu
[109].

Desirability as a Performance Measure
The direct conceptual opposite of a loss function, a utility
function maps a specific set of design variable settings to an
expected utility value (value or worth of a process response).
Once the utility function is established, nonlinear direct
search methods are used to find the vector of design variable
settings that maximizes utility.
Harrington [110] introduced a univariate utility function

called the desirability function, which gives a quality value
between zero (unacceptable quality) and one (further im-
provement would be of no value) of a quality characteristic
of a product or process. He defined the two-sided desirability
function as follows:
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di = e−|Y ′
i |c , (11.17)

where e is the natural logarithm constant, c is a positive num-
ber subjectively chosen for curve scaling, and Yi

′
is a linear

transformation of the univariate response Yi whose properties
link the desirability values to product specifications. It is of
special interest to note that for c = 2, a mid-specification
target and response values within the specification limits, this
desirability function is simply the natural logarithm constant
raised to the squared-error loss function.

Other Performance Measures
Ng and Tsui [111] derive a measure called q-yield which
accounts for variation from target among passed units as
well as nonconforming units. It does this by penalizing yield
commensurate with the amount of variation measured within
the passed units. Joseph andWu [102] develop modeling and
analysis strategies for a general loss function where the qual-
ity characteristic follows a location-scale model. Their three-
step procedure includes an adjustment step which moves the
mean to the side of the target with lower cost. Additional
performancemeasures are introduced in Joseph andWu [112]
and Joseph andWu [113].

Modeling the PerformanceMeasure
The third important decision the experimenter must grap-
ple with is how to model the chosen performance mea-
sure. Linear models are by far the most common way to
approximate loss functions, SNR’s, and product responses.
This section covers response surface models, the generalized
linear model, and Bayesian modeling.

Response Surface Models
Response surface models (RSM) are typically second-order
linear models with interactions between the first-order model
terms. While many phenomena cannot be accurately repre-
sented by a quadratic model, the second-order approximation
of the response in specific regions of optimal performance
may be very insightful to the product designer.
Myers et al. [114] make the case for implementing

Taguchi’s philosophy within a well established, sequential
body of empirical experimentation, RSM. The combined
array is compared to the product array and the modeling of
SNR compared to separate models for mean and variance.
In addition, RSM lends itself to the use of mixed models for
random noise variables and fixed control variables. Myers
et al. [115] incorporate noise variables and show how mean
and variance response surfaces can be combined to create
prediction limits on future response.

Analysis of Unreplicated Experiments
The most commonly cited advantage of modeling process
responses rather than SNR is the use of more efficient

combined arrays. However, the gain in efficiency usually
assumes there is no replication for estimating random error.
Here we review references for analyzing the data from
unreplicated fractional factorial designs.
Box andMeyer [116] present an analysis technique which

complements normal probability plots for identifying signif-
icant effects from an unreplicated design. Their Bayesian ap-
proach assesses the size of contrasts by computing a posterior
probability that each contrast is active. They start with a prior
probability of activity and assume normality of the significant
effects and deliver a nonzero posterior probability for each
effect.
Lenth [117] introduces a computationally simple and intu-

itively pleasing technique for measuring the size of contrasts
in unreplicated fractional factorials. The Lenth method uses
standard T statistics and contrast plots to indicate the size and
significance of the contrast. Because of its elegant simplicity,
the method of Lenth is commonly cited in RD case studies.
Pan [118] shows how failure to identify even small and

moderate location effects can subsequently impair the correct
identification of dispersion effects when analyzing data from
unreplicated fractional factorials. Wu and Hamada [88] pro-
pose a simple simulation method for estimating the critical
values employed by Lenth in his method for testing signifi-
cance of effects in unreplicated fractional factorial designs.
McGrath and Lin [119] show that a model that does

not include all active location effects raises the probability
of falsely identifying significant dispersion factors. They
show analytically that without replication it is impossible to
deconfound a dispersion effect from two location effects.

Generalized Linear Model
The linear modeling discussed in this chapter assumes nor-
mality and constant variance.When the data does not demon-
strate these properties, the most common approach is to
model a compliant, transformed response. In many cases,
this is hard or impossible. The general linear model (GLM)
was developed by Nelder andWedderburn [120] as a way of
modeling data whose probability distribution is any member
of the single parameter exponential family.

The GLM is fitted by obtaining the maximum likelihood
estimates for the coefficients to the terms in the linear predic-
tor, which may contain continuous, categorical, interaction,
and polynomial terms. Nelder and Lee [121] argue that
the GLM can extend the class of useful models for RD
experiments to data-sets, wherein a simple transformation
cannot necessarily satisfy the important criteria of normality,
separation, and parsimony. Several examples illustrate how
the link functions are chosen.
Engel and Huele [122] integrate the GLM within the

RSM approach to RD. Nonconstant variance is assumed and
models for process mean and variance are obtained from
a heteroscedastic linear model of the conditional process
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response. The authors claim that nonlinear models and tol-
erances can also be studied with this approach. Hamada
and Nelder [123] apply the techniques described in Nelder
and Lee [121] to three quality improvement examples to
emphasize the utility of the GLM in RD problems over its
wider class of distributions.

Bayesian Modeling
Bayesian methods of analysis are steadily finding wider
employment in the statistical world as useful alternatives
to frequentist methods. In this section we mention several
references on Bayesian modeling of the data.

Using a Bayesian GLM, Chipman and Hamada [124]
overcome the GLM’s potentially infinite likelihood estimates
from categorical data taken from fractional factorial designs.
Chipman [125] uses the model selection methodology of Box
and Meyer [126] in conjunction with priors for variable se-
lection with related predictors. For optimal choice of control
factor settings, he finds posterior distributions to assess the
effect of model and parameter uncertainty.

11.2.2 Robust Design for Multiple Responses

Earlier we discussed loss and utility functions and showed
how the relation between off-target and variance components
underlies the loss function optimization strategies for single
responses. Multi-response optimization typically combines
the loss or utility functions of individual responses into a
multivariate function to evaluate the sets of responses created
by a particular set of design variable settings. This section is
divided into two subsections which, respectively, deal with
the additive andmultiplicative combination of loss and utility
functions, respectively.

Additive Combination of Univariate Loss, Utility
and SNR
The majority of multiple response approaches additively
combine the univariate loss or SNR performance measures
discussed. In this section, we review how these performance
measures are additively combined and their relative advan-
tages and disadvantages as multivariate objective functions.

Multivariate Quadratic Loss
For univariate responses, expected squared-error loss is a
convenient way to evaluate the loss caused by deviation from
target because of its decomposition into squared off-target
and variance terms. A natural extension of this loss function
to multiple correlated responses is the multivariate quadratic
loss (MQL) function of the deviation vector (Y − τ ) where
Y = (Y1, . . . ,Yr)T and τ = (t1, . . . , tr)T, i.e.,

MQL(Y, τ) = (Y − τ)TA (Y − τ) , (11.18)

where A is a positive definite constant matrix. The values
of the constants in A are related to the costs of nonoptimal
design, such as the costs related to repairing and/or scrapping
noncompliant product. In general, the diagonal elements
of A represent the weights of the r characteristics and the
off-diagonal elements represent the costs related to pairs of
responses being simultaneously off-target.

It can be shown that, if Y follows a multivariate normal
distribution with mean vector E(Y) and covariance matrix
	Y, the average (expected) loss can be written as:

E(MQL) = E(Y − τ)TA(Y − τ)

= Tr (A	Y)

+
[
E(Y) − τ

)
TA[E](Y) − τ

]
.

(11.19)

The simplest approach to solving the RD problem is to ap-
ply algorithms to directly minimize the average loss function
in (11.19). Since the mean vector and covariance matrix are
usually unknown, they can be estimated by the sample mean
vector and sample covariance matrix or a fitted model based
on a sample of observations of the multivariate responses.
The off-target vector product [E (Y) − τ ]T A[E (Y) − τ ]
and Tr(A 	Y) are multivariate analogs to the squared off-
target component and variance of the univariate squared-error
loss function. This decomposition shows how moving all
response means to target simplifies the expected multivariate
loss to the Tr(A 	Y) term. The trace-covariance term shows
how the values of A and the covariance matrix 	Y directly
affect the expected multivariate loss.

Optimization of Multivariate Loss Functions
For the expected multivariate quadratic loss of (11.19), Pig-
natiello [16] introduced a two-step procedure for finding the
design variable settings that minimize this composite cost
of poor quality. Tsui [18] extended Pignatiello’s two-step
procedure to situations where responses may be NTB, STB
or LTB.

To this point we have examined squared-error loss func-
tions whose expected value is decomposed into off-target and
variance components. Ribeiro and Elsayed [127] introduced
a multivariate loss function which additionally considers
fluctuation in the supposedly fixed design variable settings.
Ribeiro et al. [128] add a term for manufacturing cost to the
gradient loss function of Ribeiro and Elsayed.

Additive Formation of Multivariate Utility Functions
Kumar et al. [129] suggest creating a multiresponse utility
function as the additive combination of utility functions from
the individual responses where the goal is to find the set
of design variable settings that maximizes overall utility.
Additional papers related to this technique include Artiles-
Leon [130] and Ames et al. [131].
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Quality Loss Functions for Nonnegative Variables
Joseph [132] argues that, in general, processes should not be
optimized with respect to a single STB or LTB characteristic,
rather than a combination of them. He introduces a new class
of loss functions for nonnegative variables which accommo-
dates the cases of unknown target and asymmetric loss and
which can be additively combined for themultiresponse case.

Multivariate Utility Functions fromMultiplicative
Combination
In this section, a multivariate desirability function is con-
structed from the geometric average of the individual desir-
ability functions of each response.

The geometric average (GA) of r components (d1, . . . , dr)
is the rth root of their products:

GA (d1, . . . , dr) =
(

r∏

i=1

di

) 1
r

. (11.20)

The GA is then a multiplicative combination of the indi-
viduals. When combining individual utility functions whose
values are scaled between zero and one, the GA yields a value
less than or equal to the lowest individual utility value. When
rating the composite quality of a product, this prevents any
single response from reaching an unacceptable value, since
a very low value on any crucial characteristic (such as safety
features or cost) will render the entire product worthless to
the end user.

Modifications of the Desirability Function
In order to allow placement of the ideal target value any-
where within the specifications, Derringer and Suich [133]
introduced a modified version of the desirability functions
of Harrington [110] which encompassed both one-sided and
two-sided response specifications. Additional extensions of
the multivariate desirability function were made by Kim and
Lin [134].

Alternative PerformanceMeasures for Multiple
Responses
Duffy et al. [135] propose using a reasonably precise estimate
of multivariate yield, obtained via Beta distribution discrete
point estimation, as an efficient alternative to Monte Carlo
simulation. This approach is limited to independently dis-
tributed design variables. Fogliatto and Albin [136] propose
using predictor variance as a multiresponse optimization
criterion. They measure predictive variance as the coefficient
of variance (CV) of prediction since it represents a normal-
ized measure of prediction variance. Plante [137] considers
the use of maximal process capability as the criterion for
choosing control variable settings in multiple response RD
situations. He uses the concepts of process capability and

desirability to develop process capability measures for mul-
tiple response systems.

11.2.3 Dynamic Robust Design

Taguchi’s Dynamic Robust Design
Up to this point, we’ve discussed only static RD, where the
targeted response is a given, fixed level and is only affected
by control and noise variables. In dynamic robust design
(DRD) a third type of variable exists, the signal variable
M whose magnitude directly affects the mean value of the
response. The experimental design recommended by Taguchi
for DRD is the product array consisting of an inner control
array crossed with an outer array consisting of the sensitivity
factors and a compound noise factor.

A common choice of dynamic loss function is the
quadratic loss function popularized by Taguchi,

L [Y, t(M)] = A0[Y − t(M)]2, (11.21)

where A0 is a constant. This loss function provides a good
approximation to many realistic loss functions. It follows that
the average loss becomes

R (x) = A0EMEN,ε[Y − t(M)]2

= A0EM
{
VarN,ε(Y) + [EN,ε(Y) − t(M)]2

}
.

(11.22)

Taguchi identifies dispersion and sensitivity effects by
modeling SNR respectively as a function of control factors
and sensitivity factors. His two-step procedure for DRD finds
control factor settings to minimize SNR and sets other, non-
SNR related control variables to adjust the process to the
targeted sensitivity level.

References on Dynamic Robust Design
Ghosh and Derderian [138] introduce the concept of ro-
bustness of the experimental plan itself to the noise factors
present when conducting DRD. For combined arrays they
consider blocked and split-plot designs and for product arrays
they consider univariate and multivariate models. In product
arrays they do this by choosing settings which minimize
the noise factor effects on process variability and for the
combined array they attempt to minimize the interaction
effects between control and noise factors.
Wasserman [139] clarifies the use of the SNR for the

dynamic case by explaining it in terms of linear modeling
of process response. He expresses the dynamic response as a
linear model consisting of a signal factor, the true sensitivity
(β) at specific control variable settings, and an error term.
Miller and Wu [140] prefer the term signal-response system
to dynamic robust design for its intuitive appeal and its iden-
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tification of two distinct types of signal-response systems.
They call them measurement systems and multiple target
systems, where this distinction determines the performance
measure used to find the optimal control variable settings.
Lunani et al. [141] present two new graphical procedures

for identifying suitable measures of location and dispersion
in RD situations with dynamic experimental designs. Mc-
Caskey and Tsui [142] show that Taguchi’s two-step proce-
dure for dynamic systems is only appropriate for multiplica-
tive models and develop a procedure for dynamic systems
under an additive model. For a dynamic system this equates
to minimizing the sum of process variance and bias squared
over the range of signal values.
Tsui [143] compares the effect estimates obtained using

the response model approach and Taguchi’s approach for
dynamic robust design problems. Recent publications on
DRD include Joseph and Wu [144], Joseph and Wu [145],
and Joseph [146].

11.2.4 Applications of Robust Design

Manufacturing Case Studies
Mesenbrink [147] applied the techniques of RD to opti-
mize three performance measurements of a high volume
wave soldering process. They achieved significant quality
improvement using a mixed-level fractional factorial design
to collect ordered categorical data regarding the soldering
quality of component leads in printed circuit boards. Lin and
Wen [148] apply RD to improve the uniformity of a zinc
coating process.
Chhajed and Lowe [149] apply the techniques of RD to the

problem of structured tool management. For the cases of tool
selection and tool design, they use Taguchi’s quadratic loss
function to find the most cost effective way to accomplish the
processing of a fixed number of punched holes in sheet metal
products.

Reliability Applications
Reliability is the study of how to make products and pro-
cesses function for longer periods of time with minimal
interruption. It is a natural area for RD application and the
Japanese auto industry has made huge strides in this area
compared to its American counterpart. In this section several
authors comment on the application of RD to reliability.
Hamada [150] demonstrates the relevance of RD to relia-

bility improvement. He recommends the response model ap-
proach for the additional information it provides on control–
noise interactions and suggests alternative performance cri-
teria for maximizing reliability. Kuhn et al. [151] extend the
methods ofMyers et al. [114] for linear models and normally
distributed data to achieve a robust process when time to an
event is the response.

Tolerance Design
This chapter has focused on RD, which is synonymous with
Taguchi’s methods of parameter design. Taguchi has also
made significant contributions in the area of tolerance design.
This section reviews articles which examine developments in
the techniques of tolerance design.
D’errico and Zaino [152] propose a modification of

Taguchi’s approach to tolerance design based on a product
Gaussian quadrature which provides better estimates of high-
order moments and outperforms the basic Taguchi method
in most cases. Bisgaard [153] proposes using factorial
experimentation as a more scientific alternative to trial and
error to design tolerance limits when mating components of
assembled products.
Zhang and Wang [154] formulate the robust tolerance

problem as amixed nonlinear optimizationmodel and solve it
using a simulated annealing algorithm. The optimal solution
allocates assembly and machining tolerances so as to max-
imize the product’s insensitivity to environmental factors.
Li and Wu [55] combined parameter design with tolerance
design.
Maghsoodloo and Li [155] consider linear and quadratic

loss functions for determining an optimal process mean
which minimizes the expected value of the quality loss
function for asymmetric tolerances of quality characteristics.
Moskowitz et al. [156] develop parametric and nonparametric
methods for finding economically optimal tolerance
allocations for a multivariable set of performance measures
based on a common set of design parameters.

11.3 Reliability and Prognostics
and Health Management

11.3.1 Prognostics and Health Management

Prognostics and health management (PHM) is a framework
that offers comprehensive solutions for monitoring and man-
aging health status of individual machine and engineering
systems. In recent years, PHM has emerged to be a popular
approach for improving reliability, maintainability, safety,
and affordability. Concepts and components in PHM have
been applied in many domain areas such as mechanical
engineering, electrical engineering, statistical science, etc.

Due to high impact and extreme costs associated with
system failures, it is important to develop methods that can
predict and prevent such catastrophes before they occur.
Many application methods have been developed in domains
such as electronics-rich systems, aerospace industries, or
even the public health environment [157, 158], which can be
grouped under the framework of prognostics and health man-
agement (PHM). Prognostics is the process of predicting the
future reliability of a product by assessing the its degradation
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from its expected normal operating conditions; health man-
agement is the process of real time monitoring the extent
of deviation or degradation from normal operating condition
[159, 160]. Traditional reliability prediction methods (e.g.,
US Department of Defense Mil-Hdbk-217 and Telcordia SR-
332 (formerly [161])), make strong assumptions that constant
hazard rate of each component can be modified to account
for various operating and environmental conditions. In PHM
approach, we monitor the system’s health status in real time
and dynamically update the reliability and hazard function
based on in situ measurements and update the current models
based on historical data. Due to the success of the PHM
approach, new PHM techniques and methods are needed and
to apply and implement PHM to other and underdeveloped
domains.

Due to the increasing complexity of modern systems, one
most prominent problem is called the No Fault Found (NFF)
problem (similarly, “trouble not identified,” “intermittent
malfunctions,” etc.,) [162–164], particularly in electronics-
rich systems. It refers to the situation that no failure or fault
can be detected or duplicated during laboratory tests even
when the failure has been reported in the field [165]. NFF
issues not only make diagnosis extremely difficult but also
result in skyrocketingnificant maintenance costs. As reported
by Williams et al. [165], NFF failures account for more than
85%or 90%of all filed failures and overall maintenance costs
in avionics respectively, which cost the US Department of
Defense roughly 2 ∼ 10 billion US dollars annually [166].
Similarly, NFF contributes to significant operational costs in
many other domain areas. In addition, NFF contributes to
potential safety hazards in other industries For example, both
Toyota and National Highway Traffic Safety Administration
(NHTSA) spent quite a time and efforts to investigate the
root causes of sudden acceleration failures in certain car
models, which is linked to 89 deaths in 71 crashes since
2000 [167]. Unfortunately, no conclusive finding has been
reached despite efforts to replicate the failures in a variety
of laboratory conditions. From these examples, it was found
that intermittent faults are often related to environmental
conditions and operation histories of the particular individ-
ual system, and thus difficult to duplicated repeated under
newly unknown random disturbances. Traditional laboratory
testing and assessment data only provide information on
the characteristics of the population and are insufficient to
lead accurate prediction for each individual performance. To
reduce maintenance cost and avoid safety hazards caused by
NFF, the approach of PHM shifts from traditional population
data modeling from individual data modeling.

In response to these challenges, the fast development of
information and sensing technology has enabled the collec-
tion of many in situ measurements during operations that
provides the capability of real time data management and
processing for each individual. These advancements provide

a great opportunity to develop sophisticated models with
increasing accuracy of prognostics for individual items. For
instance, many different types of data during the whole life
cycle of the products can be easily retrieved, especially in
crit- ical applications. These data could include production
process information, quality records, operation logs, and
sensor measurements. Moreover, unlike manually entered
data, which are slow, costly, and error-prone, many current
records are accurate and timely due to advancements in auto-
mated technology. The use of Radio Frequency Identification
(RFID) technology, for example, is commonly used in supply
chain distribution networks, healthcare, and even military
applications, because it provides reliable and timely tracking
of products/components. Advanced sensor technologies also
enable abundant measurements at both macro and micro
scales, such as those used to measure vibration, frequency
response, magnetic fields, and the current/voltage, to name a
few.

In general, typical workflows in a PHM system can be
conceptually divided into three major tasks: fault diagnostics,
prognostics, and condition-based maintenance. The first task
is on diagnose and root causes identification for system
failures. The root causes provide useful information for prog-
nostic and feedback for system design improvement. The
prognostic task takes the processed data, system models,
or failure mode analysis as inputs and employs the devel-
oped prognosis algorithms to update the degradation models
for failure time prediction. The last task makes use of the
prognosis results with consideration of the cost and benefits
to determine the optimal maintenance actions to achieve
minimal operating costs and risks. All of these three tasks
are necessarily executed dynamically and in real time.

11.3.2 Systems Health Monitoring
andManagement

Systems health monitoring and management (SHMM) refers
to the framework of continuous surveillance, analysis, and
interpretation of relevant data for system maintenance, man-
agement, and strategic planning, where “system” is generally
defined as “an organized set of detailed methods, procedures,
and routines created to carry out a specific activity or solve
a specific problem,” ranging from mechanical systems to
public health [168–170]. SHMM differs from PHM by its
distinct emphasis and its definitions of monitoring, prognos-
tics, and management, and can be considered an extended
version of PHM.More specifically, system health monitoring
includes detection, forecasting, diagnostics, and prognos-
tics, while system health management includes decision,
financial, and risk management. A fundamental problem in
SHMM is on how to make use of correlated active and
passive data in various tasks of prediction and forecasting,
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monitoring and surveillance, fault detection and diagnostics,
engineering management, supply chain management, and
many more. In application to complex human and engi-
neering systems, challenging research problems may arise
in various domains driven by big data analytics, such as
syndromic surveillance [171, 172], electronics-rich system
management [173], simulation and optimization of emer-
gency departments inmedical systems [174], andmass transit
planning [175].

SHMM covers many broad topics, ranging from experi-
mental design and data collection, data mining and analytics,
optimization, decision-making, etc. As more and more sys-
tems become data-rich, the theoretical foundation of SHMM
is a natural complement to the “data to knowledge to action”
paradigm, and therefore to benefit from future developments
in data science. Data science shows all the signs of growing
into a discipline in its own right, with a strong theoretical
foundation at its heart, such foundations being paramount
in the development of any new scientific field. Specifically,
theoretical research on the foundation of SHMM will build
upon theoretical foundational research in data science, which
is intrinsically inter-disciplinary. In particular, establishing
the theoretical basis of SHMM is likely to involve interdis-
ciplinary collaborations between computer scientists, math-
ematicians, and statisticians, as these three disciplines are at
the heart of the theoretical foundation of SHMM’s closest
relative, data science.

For SHMM to make impact to real-life applications, close
collaboration is required among SHMM researchers from
different disciplines and domain experts. We believe that
much of the theoretical foundation of SHMM lies at the
intersection of computer science, statistics, and mathematics.
Each of those disciplines, however, has been built around
particular ideas and in response to particular problems that
may have existed for a long time. Thus, the research devel-
opment of SHMM requires rethinking not only how those
three foundational areas interact with each other, but also
how each interacts with specific implementations and appli-
cations. In particular, the design requirements of business,
internet, and social media applications lead to questions that
tend to be very different from those in scientific and medical
applications in the past. Both the similarities and differences
between these areas are striking. Designing the theoreti-
cal foundations of SHMM requires paying attention to the
problems of researchers implementing SHMM in specific
fields as well as to the environments and platforms where
computations are to be done. A general framework of SHMM
is summarized in Fig. 11.3.

In SHMM, one frequently encounters mixed-type and
multi-modality data. For example, a typical dataset may
be aggregated from many data sources, including imaging,
numerical, graph, text data, etc. Although each specific data
type has been researched intensively in isolation, developing

a unified framework will be a more desirable approach to
study mixed data systematically. This field has both theoret-
ical and applied implications, and would benefit from a col-
laboration between statistics, theoretical computer science,
mathematics, and practitioners of SHMM. Further research
promises to lead to breakthroughs and important progress in
science and engineering. A comprehensive review of SHMM
can be found in the work by Tsui et al. [176].
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