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Preface

In recent years modern techniques of statistics have been applied to a wide variety of fields
and applications especially in big data in health informatics, machine learning, and signal
processing. Statistical techniques are finding increased use in the fields of engineering, data
science, artificial intelligence (AI), and Industry 4.0 technologies and will continue even more
so in the coming decades.

In response to such technological trends along with much feedback that we have received
from users of the first edition of the Springer Handbook of Engineering Statistics (published
in 2006), we have made substantial changes in this new edition by

• Adding 35 completely new contributions revolving around current trends related to modern
statistical computing and its applications ranging from data science to electronic packaging,
from high-dimensional data to AI, and from fusion data to optimal decision-making

• Updating more than 20 selected chapters from the first edition thoroughly to reflect the
current state of the art where all the topics from the previous edition have integrated into all
the chapters in this new edition

The Springer Handbook of Engineering Statistics, altogether 56 chapters, provides a com-
prehensive state-of-the-art reference volume that covers both fundamental and theoretical
work in the areas of engineering statistics including: adaptive progressive censoring, AI,
accelerated life testing, adversarial learning, artificial neural network, Bayesian inferences
and prediction, Bootstrap and boosting methods, censored survival data, competing risk
models, change-point detection, correlated failures, counting processes, copula methods,
data mining, deep learning, dynamic robust design, difference of convex functions (DC),
detecting outliers in high-dimensional data, dimension reduction and nonparametric methods,
distributional inference, electronic packaging, fatigue life prediction, functional dependence
measure, fusion learning, genetic algorithms, exponentially weightedmoving average, gradient
method, high-dimension time series, importance measures, indecisive weighted voting system,
logistic regression, machine learning, multi-agent support systems, majorization-minimization,
Monte Carlo simulation, influential observations, Markov decision process, model selection,
multivariate distributions, multiple stresses designs, multivariate time series, multi-criteria
decisions, nonparametric empirical Bayesian, inspection-maintenance, order statistics, product
reliability, repairable system reliability, renewal processes, process control and improvement,
proportional hazards regression and sampling, random forests for censoring data, recursive
partitioning algorithm, software reliability, semi-parametric for survival data, step-stress life
testing, statistical process control, six sigma design andmethodology, stationary causal process,
stochastic dependences, statistical design and diagnostics, stochastic expectation maximiza-
tion algorithm, stress-strength models, unsupervised learning, variable importance in high-
dimensional, voltage, and vibration acceleration models, among others.

vii



viii Preface

The contents of the handbook are organized in six parts:

PART I. Fundamental Statistics and Its Applications
PART II. Process Monitoring and Improvement
PART III. Reliability Models and Survival Analysis
PART IV. Advanced Statistical Methods and Modeling
PART V. Statistical Computing and Data Mining
PART VI. Applications in Engineering Statistics

The chapters are written by more than 110 leading experts in statistics, biostatistics, engineer-
ing statistics, reliability engineering, computer science, applied statistics, machine learning,
management, and related areas.

Practitioners will certainly find this Springer Handbook useful when looking for solutions
to practical problems. Researchers, statisticians, scientists, engineers, teachers, and students
can use it for quick access to the background, recent research and trends, and most important
references regarding certain topics, if not all, in engineering statistics.
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Springer for their commitment to publish this new edition.

I am indebted to my wife and children for permanent support and patience.

Piscataway, New Jersey Hoang Pham
July 2022



Contents

Part I Fundamental Statistics and Its Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Basic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Hoang Pham

2 Generalized Statistical Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Gauss M. Cordeiro and Artur Lemonte

3 Statistics for Reliability Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Paul Kvam and Jye-Chyi Lu

4 Functional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Yuhang Xu

5 Symmetric Geometric Skew Normal Regression Model . . . . . . . . . . . . . . . . . . . 87
Debasis Kundu and Deepak Prajapati

6 Statistical Analysis of Modern Reliability Data . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Yueyao Wang, I-Chen Lee, Lu Lu, and Yili Hong

7 Mathematical Reliability Aspects of Multivariate Probability
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Lidia Z. Filus and Jerzy K. Filus

8 Introduction to Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Hoang Pham

9 Progressive Censoring Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Narayanaswamy Balakrishnan and Erhard Cramer

10 Warranty Policies: Analysis and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Hoang Pham and Jun Bai

Part II Process Monitoring and Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11 Statistical Methods for Quality and Productivity Improvement . . . . . . . . . . . . 199
Wei Jiang, Terrence E. Murphy, Kwok-Leung Tsui, and Yang Zhao

12 Chain Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Govindaraju Kondaswamy

13 Six Sigma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Fugee Tsung and Kai Wang

14 Statistical Models for Monitoring the High-Quality Processes . . . . . . . . . . . . . 261
Min Xie, Thong Ngee Goh, and Tahir Mahmood

15 Statistical Management and Modeling for Demand Spare Parts . . . . . . . . . . . 275
Emilio Ferrari, Arrigo Pareschi, Alberto Regattieri, and Alessandro Persona

ix



x Contents

16 D-Efficient Mixed-Level Foldover Designs for Screening Experiments . . . . . . 305
Nam-Ky Nguyen, Ron S. Kenett, Tung-Dinh Pham, and Mai Phuong Vuong

17 Censored Data Prediction Based on Model Selection Approaches . . . . . . . . . . 315
Tzong-Ru Tsai, Jyun-You Chiang, Shuai Wang, and Yan Qin

18 Monitoring Coefficient of Variation Using CUSUM Control Charts . . . . . . . . 333
Phuong Hanh Tran, Huu Du Nguyen, Cédric Heuchenne, and Kim Phuc Tran

19 Change-Point-Based Statistical Process Controls . . . . . . . . . . . . . . . . . . . . . . . . . 361
Partha Sarathi Mukherjee

Part III Reliability Models and Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

20 Reliability Characteristics and Optimization of Warm Standby Systems . . . . 385
Suprasad V. Amari and Hoang Pham

21 Importance and Sensitivity Analysis on Complex Repairable Systems and
Imprecise System Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Geng Feng

22 Hardware and Software Reliability, Verification, and Testing . . . . . . . . . . . . . . 415
Ashis Kumar Chakraborty, E. V. Gijo, Anisha Das, and Moutushi Chatterjee

23 OSS Reliability Analysis and Project Effort Estimation Based on
Computational Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Shigeru Yamada, Yoshinobu Tamura, and Kodai Sugisaki

24 Vulnerability Discovery Analysis in Software Reliability and Related
Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
P. K. Kapur and Saurabh Panwar

25 Software Reliability Modeling and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Hoang Pham and Xiaolin Teng

26 Statistical Maintenance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Hoang Pham and Wenjian Li

27 Continuous-Time Predictive Maintenance Modeling with Dynamic Decision
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Antoine Grall and Elham Mosayebi Omshi

28 Stochastic Redundant Replacement Maintenance Models . . . . . . . . . . . . . . . . . 543
Toshio Nakagawa, Satoshi Mizutani, and Xufeng Zhao

Part IV Advanced Statistical Methods and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 573

29 Confidence Distribution and Distribution Estimation for Modern Statistical
Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
Yifan Cui and Min-ge Xie

30 Logistic Regression Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Wei-Yin Loh

31 Detecting Outliers and Influential and Sensitive Observations in Linear
Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Daniel Peña

32 Statistical Methodologies for Analyzing Genomic Data . . . . . . . . . . . . . . . . . . . 621
Fenghai Duan and Heping Zhang



Contents xi

33 Genetic Algorithms and Their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
Mitsuo Gen and Lin Lin

34 Deterministic and Stochastic DCA for DC Programming . . . . . . . . . . . . . . . . . 675
Hoai An Le Thi, Tao Pham Dinh, Hoang Phuc Hau Luu, and Hoai Minh Le

35 Inference for Coherent Systems with Weibull Components Under a Simple
Step-Stress Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
Narayanaswamy Balakrishnan, Debanjan Mitra, and Xiaojun Zhu

36 Bivariate Distributions with Singular Components . . . . . . . . . . . . . . . . . . . . . . . 733
Debasis Kundu

37 Bayesian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
Ashis Kumar Chakraborty, Soumen Dey, Poulami Chakraborty,
and Aleena Chanda

Part V Statistical Computing and Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

38 Data Mining Methods and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
Kwok-Leung Tsui, Victoria Chen, Wei Jiang, Fangfang Yang, and Chen Kan

39 Statistical Methods for Tensor Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
Qing Mai and Xin Zhang

40 Random Forests for Survival Analysis and High-Dimensional Data . . . . . . . . 831
Sarah E. Formentini, Yifan Cui, and Ruoqing Zhu

41 Probability Inequalities for High-Dimensional Time Series Under
a Triangular Array Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
Fang Han and Wei Biao Wu

42 Statistical Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
Maryam Arabzadeh Jamali and Hoang Pham

43 Covariance Estimation via the Modified Cholesky Decomposition . . . . . . . . . 887
Xiaoning Kang, Zhiyang Zhang, and Xinwei Deng

44 Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
Qingyi Gao and Xiao Wang

45 Bayesian Survival Analysis in the Presence of Monotone Likelihoods . . . . . . 921
Jing Wu, Mário de Castro, and Ming-Hui Chen

46 Multivariate Modeling with Copulas and Engineering Applications . . . . . . . . 931
Jun Yan

Part VI Applications in Engineering Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947

47 Environmental Risks Analysis Using Satellite Data . . . . . . . . . . . . . . . . . . . . . . 949
Yuriy V. Kostyuchenko

48 Probabilistic Models for Reliability Analysis Using Safe-Life and Damage
Tolerance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
Xuefei Guan and Jingjing He

49 Application of Cognitive Architecture in Multi-Agent Financial Decision
Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981
Marcin Hernes and Ngoc Thanh Nguyen

50 Reliability of Electronic Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003
Wen-Fang Wu and Yi-An Lu



xii Contents

51 Accelerated Life Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
Qingchuan He, Wen-Hua Chen, and Jun Pan

52 Accelerated Life Testing Data Analyses for One-Shot Devices . . . . . . . . . . . . . 1039
Narayanaswamy Balakrishnan and Man Ho Ling

53 Tangent Space Approximation in Geometric Statistics . . . . . . . . . . . . . . . . . . . . 1059
Ted Chang

54 Statistical Modeling of Discrete Choices for Human Behaviors . . . . . . . . . . . . 1075
Xi Zhu and Shuai Huang

55 Weighted Voting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089
Hainan Zhang

56 Image Registration, Rigid Bodies, and Unknown Coordinate Systems . . . . . . 1109
Ted Chang

Correction to: Monitoring Coefficient of Variation Using CUSUM
Control Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1
Phuong Hanh Tran, Huu Du Nguyen, Cédric Heuchenne, and Kim Phuc Tran

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129



About the Editor

Hoang Pham is a distinguished professor and former chairman
(2007–2013) of the Department of Industrial and Systems Engi-
neering at Rutgers University. Before joining Rutgers in 1993, he
was a senior engineering specialist with the Idaho National Engi-
neering Laboratory, Idaho Falls, Idaho, and Boeing Company in
Seattle, Washington. His research areas include reliability modeling
and prediction, software reliability, and statistical inference. He is
editor-in-chief of the International Journal of Reliability, Quality
and Safety Engineering and editor of Springer Series in Reliability
Engineering and has been conference chair and program chair of
over 40 international conferences and workshops. Dr. Pham is the
author or coauthor of 7 books and has published over 200 journal
articles, 100 conference papers, and edited 20 books including
Springer Handbook of Engineering Statistics and Handbook of Re-
liability Engineering. He has delivered over 40 invited keynote and
plenary speeches at many international conferences and institutions.
His numerous awards include the 2009 IEEE Reliability Society
Engineer of the Year Award. He is a fellow of the IEEE, AAIA, and
IISE.

xiii



International Advisory Board

Narayanaswamy Balakrishnan
Department of Mathematics and Statistics
McMaster University
Hamilton, ON, Canada

Dr. Narayanaswamy Balakrishnan is a distinguished university
professor in the Department of Mathematics and Statistics at
McMaster University, Hamilton, Ontario, Canada. He received
his B.Sc. and M.Sc. in Statistics from the University of Madras,
India, in 1976 and 1978, respectively, and then his Ph.D. from
the Indian Institute of Technology, Kanpur, India, in 1981. He has
very wide research interests spanning univariate and multivariate
distribution theory, reliability analysis, ordered data analysis,
biostatistics and survival analysis, statistical inference, applied
probability, nonparametric statistics, and statistical methods and
applications to different fields in science and engineering, and
has published many journal articles in all these areas. He has
coauthored numerous books including the well-known four volumes
on distribution theory published by John Wiley & Sons and has
also coedited the Second Edition of 16-Volume Encyclopedia of
Statistical Sciences published by John Wiley & Sons. He is the
editor-in-chief of Communications in Statistics and Mathematical
Methods of Statistics and is an associate editor of numerous journals
such as Journal of Multivariate Analysis, Statistical Methods in
Medical Research, International Statistical Review, Probability in
the Engineering and Informational Sciences, and Applied Stochastic
Models in Business and Industry.

He has received many honors and accolades including fellow of
the Royal Society of Canada, fellow of the American Statistical As-
sociation, and fellow of the Institute of Mathematical Statistics and
an honorary doctorate degree from the National and Kapodistrian
University of Athens, Greece.

xv



xvi International Advisory Board

Toshio Nakagawa
Department of Business Administration
Aichi Institute of Technology
Toyota, Japan

Dr. Toshio Nakagawa received B.S.E. and M.S. degrees from
Nagoya Institute of Technology in 1965 and 1967, respectively, and
Doctor of Engineering degree from Kyoto University in 1977. He
worked as a research associate at Syracuse University for 2 years
from 1972 to 1973. He is now a honorary professor at Aichi In-
stitute of Technology in Toyota City. He has published 7 books
with Springer, 20 book chapters, and about 200 journal papers. His
research interests are optimization problems in operations research
and management science and analysis for stochastic and computer
systems in reliability and maintenance theory.

Min-ge Xie
Rutgers University
Piscataway, NJ, USA

Dr. Min-ge Xie is a distinguished professor and director of the
Office of Statistical Consulting, Department of Statistics, Rutgers
University, the State University of New Jersey. His main research
interest is in the foundation of statistical inference, fusion learning,
and data science. His other expertise includes estimating equations,
robust statistics, hierarchical models, asymptotic theories, and ap-
plications in biostatistics and industry. Dr. Xie received his B.S.
degree in mathematics from the University of Science and Technol-
ogy (USTC) with the highest honor and Ph.D. degree in statistics
from the University of Illinois at Urbana-Champaign (UIUC). He
is a fellow of the American Statistical Association, a fellow of
the Institute of Mathematical Statistics, and an elected member of
the International Statistical Institute. He has served on numerous
scientific review panels and editorial boards. He is a co-founder of
the BFF research community. His research has been supported in
part by grants from NSF, NIH, DHS, NSA, and FAA.



International Editorial Board

Mingxiao Jiang
Medtronic, PLC.
Minneapolis, MN, USA

Dr. Mingxiao Jiang received his B.S. in Engineering Mechanics
from Zhejiang University, M.S. in Reliability Engineering from the
University of Arizona, and Ph.D. in Mechanics of Materials from
Georgia Institute of Technology. He is currently a technical fellow
and a distinguished engineer at Medtronic. He is a CRE and a senior
member of ASQ and IEEE. He has 3 US patents and 50 publications
in refereed journals and conference proceedings. He has been active
in reliability societies as a vice chair for the organization RAMS®

(2009–2013) and committee member for several international reli-
ability conferences. He has been serving on the Editorial Review
Boards for Reliability Review and Quality Engineering.

Yi-Kuei Lin
National Yang Ming Chiao Tung University
Hsinchu, Taiwan

Dr. Yi-Kuei Lin is currently a chair professor of the Industrial
Engineering and Management Department, National Yang Ming
Chiao Tung University, Taiwan. He was the president of the
Operations Research Society of Taiwan in 2018 and 2019.
He received a bachelor degree from the Applied Mathematics
Department at National Chiao Tung University, Taiwan. He obtained
his master degree and Ph.D. degree from the Department of
Industrial Engineering and Engineering Management at National
Tsing Hua University, Taiwan, Republic of China. He had the honor
of receiving the Outstanding Research Awards from the Ministry
of Science and Technology of Taiwan in 2008, 2010, and 2013,
respectively. He served as dean, College of Management at Vanung
University from 2003 to 2007, and chairman, Department of In-
dustrial Management at National Taiwan University of Science and
Technology from 2012 to 2014. He is now serving as associate editor
of IEEE Transactions on Reliability,Annals of Operations Research,
and Quality Technology & Quantitative Management. His research
interest includes performance evaluation, network reliability,
operations research, and telecommunication management. He has
published more than 200 papers in refereed international journals

xvii



xviii International Editorial Board

Hon Keung Tony Ng
Southern Methodist University
Dallas, TX, USA

Dr. Hon Keung Tony Ng received his Ph.D. in Mathematics from
McMaster University, Hamilton, ON, Canada, in 2002. He is cur-
rently a professor with the Department of Statistical Science, South-
ern Methodist University, Dallas, TX, USA. His research inter-
ests include reliability, censoring methodology, ordered data anal-
ysis, nonparametric methods, and statistical inference. Dr. Ng is
an associate editor of Communications in Statistics, Computational
Statistics, IEEE Transactions on Reliability, Journal of Statistical
Computation and Simulation, Naval Research Logistics, Sequential
Analysis, and Statistics & Probability Letters. He is the coeditor of
the books Ordered Data Analysis, Modeling and Health Research
Methods, Statistical Modeling for Degradation Data, Statistical
Quality Technologies: Theory and Practice, and Advances in Statis-
tics: Theory and Applications published by Springer. He is a fellow
of the American Statistical Association and an elected member of
the International Statistical Institute.

Peihua Qiu
University of Florida
Gainesville, FL, USA

Dr. Peihua Qiu received his Ph.D. in Statistics from the Department
of Statistics at the University of Wisconsin at Madison in 1996. He
worked as a senior research consulting statistician of the Biostatistics
Center at the Ohio State University during 1996–1998. He then
worked as an assistant professor (1998–2002), an associate professor
(2002–2007), and a full professor (2007–2013) at the School of
Statistics at the University of Minnesota. He is an elected fellow
of the American Statistical Association, an elected fellow of the
Institute of Mathematical Statistics, and an elected member of the
International Statistical Institute. He served as associate editor for
some top statistical journals, including Journal of the American
Statistical Association, Biometrics, and Technometrics. He was the
editor (2014–2016) of Technometrics. Since 2013, he has been a
professor and the founding chair of the Department of Biostatistics
at the University of Florida. Qiu has made substantial contributions
in the areas of jump regression analysis, image processing, statistical
process control, survival analysis, disease screening, and disease
surveillance. So far, he has published over 140 research papers in
refereed journals, many of which appeared in top journals, such as
Technometrics, Journal of the American Statistical Association, and
IEEE Transactions on Pattern Analysis and Machine Intelligence.
His research monograph titled Image Processing and Jump Regres-
sion Analysis (2005, Wiley) won the inaugural Ziegel prize in 2007.
His second book titled Introduction to Statistical Process Control
was published in 2014 by Chapman & Hall/CRC.



International Editorial Board xix

Mengmeng Zhu
North Carolina State University
Raleigh, NC, USA

Dr. Mengmeng Zhu is an assistant professor in the Department
of Textile Engineering, Chemistry and Science, and an associate
faculty member of the Operations Research Graduate Program,
North Carolina State University, Raleigh, North Carolina, USA. She
received the Ph.D. degree in Industrial and Systems Engineering and
the M.S. degrees in Statistics and Industrial and Systems Engineer-
ing from Rutgers University, New Brunswick, New Jersey, USA,
in 2018, 2016, and 2015, respectively. Her research interests lie
at system reliability and resilience engineering, applied operations
research, prognostics and health management, and computational
data analytics. Dr. Zhu is the recipient of the Best Paper Award of the
24th ISSAT International Conference on Reliability and Quality in
Design, 2018, and the Best Student Paper Award of the 23rd ISSAT
International Conference on Reliability and Quality in Design, 2017.



Contributors

Suprasad V. Amari BAE Systems, Merrimack, NH, USA

Maryam Arabzadeh Jamali Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA

Jun Bai Barclays Bank US, Wilmington, DE, USA

Narayanaswamy Balakrishnan Department of Mathematics and Statistics, McMaster Uni-
versity, Hamilton, ON, Canada

Mário de Castro Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos, Brazil

Ashis Kumar Chakraborty Indian Statistical Institute,Kolkata, West Bengal, India

Poulami Chakraborty Indian Statistical Institute,Kolkata, West Bengal, India

Aleena Chanda Indian Statistical Institute,Kolkata, West Bengal, India

Ted Chang Department of Statistics, University of Virginia, Charlottesville, VA, USA

Moutushi Chatterjee Lady Brabourne College, Kolkata, West Bengal, India

Ming-Hui Chen Department of Statistics, University of Connecticut, Storrs, CT, USA

Victoria Chen Department of Industrial, Manufacturing, & Systems Engineering, University
of Texas at Arlington, Arlington, TX, USA

Wen-Hua Chen School of Mechanical Engineering, Zhejiang Sci-Tech University,
Hangzhou, China

Jyun-You Chiang School of Statistics, Southwestern University of Finance and Economics,
Chengdu, China

Gauss M. Cordeiro UFPE,Recife, Brazil

Erhard Cramer Institute of Statistics, RWTH Aachen University, Aachen, Germany

Yifan Cui Zhejiang University, Hangzhou, Zhejiang, China

Anisha Das Indian Statistical Institute, Kolkata, West Bengal, India

Xinwei Deng Department of Statistics, Virginia Tech, Blacksburg, VA, USA

Soumen Dey Indian Statistical Institute,Kolkata, West Bengal, India

Tao Pham Dinh National Institute of Applied Sciences – Rouen, Rouen, France

Fenghai Duan Department of Biostatistics, Brown University School of Public Health,
Providence, RI, USA

Geng Feng School of Engineering, University of Central Lancashire, Preston, UK

Emilio Ferrari Department of Industrial Engineering, University of Bologna, Bologna, Italy

xxi



xxii Contributors

Jerzy K. Filus Department of Mathematics and Computer Science, Oakton Community
College, Des Plaines, IL, USA

Lidia Z. Filus Department of Mathematics, Northeastern Illinois University, Chicago, IL,
USA

Sarah E. Formentini University of Illinois at Urbana-Champaign, Champaign, IL, USA

Qingyi Gao Purdue University, West Lafayette, IN, USA

Mitsuo Gen Fuzzy Logic Systems Institute (FLSI), Department of Research, Fukuoka, Japan

Tokyo University of Science (TUS), Research Institute of Science & Technology, Tokyo, Japan

E. V. Gijo Indian Statistical Institute, Bangalore, Karnataka, India

Thong Ngee Goh Department of Industrial Systems Engineering and Management, National
University of Singapore, Singapore, Republic of Singapore

Antoine Grall LIST3N, Université de Technologie de Troyes, Champagne, de Troyes, France

Xuefei Guan Graduate School of China Academy of Engineering Physics, Beijing, China

Fang Han University of Washington, Seattle, WA, USA

Jingjing He School of Reliability and Systems Engineering, Beihang University, Beijing,
China

Qingchuan He School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou,
China

Marcin Hernes Faculty of Management, Wroclaw University of Economics and Business,
Wroclaw, Poland

Cédric Heuchenne HEC-Liège, Management School of the University of Liège, Liège,
Belgium

Yili Hong Department of Statistics, Virginia Tech, Blacksburg, VA, USA

Shuai Huang University of Washington, Seattle, WA, USA

Wei Jiang Antai College of Economics and Management, Shanghai Jiao Tong University,
Shanghai, China

Chen Kan Department of Industrial, Manufacturing, & Systems Engineering, University of
Texas at Arlington, Arlington, TX, USA

Xiaoning Kang International Business College and Institute of Supply Chain Analytics,
Dongbei University of Finance and Economics, Dalian, China

P. K. Kapur Amity Center for Interdisciplinary Research, Amity University, Noida, Uttar
Pradesh, India

Ron S. Kenett KPA Ltd., Samuel Neaman Institute, Technion, Israel

Govindaraju Kondaswamy School of Mathematical and Computational Sciences, Massey
University, Palmerston North, New Zealand

Yuriy V. Kostyuchenko Systemic Risk and Resilience Research Group, Advancing Systems
Analysis Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg,
Austria

Debasis Kundu Department of Mathematics and Statistics, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh, India



Contributors xxiii

Paul Kvam Department of Mathematics and Computer Science, University of Richmond,
Richmond, VA, USA

I-Chen Lee Department of Statistics, National Cheng Kung University, Tainan, Taiwan

Artur Lemonte UFRN,Natal, Brazil

Hoai Minh Le University of Lorraine, Metz, France

Institut Universitaire de France (IUF), Paria, France

Wenjian Li Marketing Science, Javelin Direct, Inc., Irving, TX, USA

Lin Lin Dalian University of Technology, Economy and Technology Development Area,
Dalian, China

Man Ho Ling The Education University of Hong Kong, Hong Kong, China

Wei-Yin Loh Department of Statistics, University of Wisconsin, Madison, WI, USA

Lu Lu Department of Mathematics and Statistics, University of South Florida, Tampa, FL,
USA

Jye-Chyi Lu The School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology, Atlanta, GA, USA

Yi-An Lu Department of Mechanical Engineering, National Taiwan University, Taipei,
Taiwan

Hoang Phuc Hau Luu University of Lorraine, Metz, France

Institut Universitaire de France (IUF), Paria, France

TahirMahmood Industrial and Systems Engineering Department, College of Computing and
Mathematics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Qing Mai Department of Statistics, Florida State University, Tallahassee, FL, USA

Debanjan Mitra Indian Institute of Management Udaipur, Udaipur, Rajasthan, India

Satoshi Mizutani Department of Business Administration, Aichi Institute of Technology,
Aichi, Japan

Elham Mosayebi Omshi LIST3N, Université de Technologie de Troyes, Champagne, de
Troyes, France

Partha Sarathi Mukherjee Interdisciplinary Statistical Research Unit (ISRU), Indian Statis-
tical Institute (ISI), Kolkata, West Bengal, India

Terrence E.Murphy Biostatistics and Bioinformatics Department of Public Health Sciences,
Pennsylvania State University College of Medicine, Hershey, PA, USA

Toshio Nakagawa Department of Business Administration, Aichi Institute of Technology,
Aichi, Japan

Huu Du Nguyen International Research Institute for Artificial Intelligence and Data Science,
Dong A University, Danang, Vietnam

Nam-Ky Nguyen Vietnam Institute for Advanced Study in Mathematics, Hanoi, Vietnam

Ngoc Thanh Nguyen Faculty of Information and Communication Technology, University of
Science and Technology, Wroclaw, Poland

Jun Pan School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, China



xxiv Contributors

Saurabh Panwar Department of Operational Research, University of Delhi, Delhi, India

Arrigo Pareschi Department of Industrial Engineering, University of Bologna, Bologna, Italy

Daniel Peña Department of Statistics, Universidad Carlos III de Madrid, Madrid, Spain

Alessandro Persona Department of Management and Engineering, University of Padova,
Vicenza, Italy

Hoang Pham Department of Industrial and Systems Engineering, Rutgers University, Piscat-
away, NJ, USA

Tung-Dinh Pham VNU University of Science, Hanoi, Vietnam

Deepak Prajapati Decision Sciences Area, Indian Institute of Management, Lucknow, India

Yan Qin School of Foreign Languages for Business, Southwestern University of Finance and
Economics, Chengdu, China

Alberto Regattieri Department of Industrial Engineering, University of Bologna, Bologna,
Italy

Kodai Sugisaki Tokyo City University, Tokyo, Japan

Yoshinobu Tamura Yamaguchi University, Yamaguchi, Japan

Xiaolin Teng Dotdash Meredith, New York, NY, USA

Hoai An Le Thi University of Lorraine, Metz, France

Institut Universitaire de France (IUF), Paria, France

Kim Phuc Tran University of Lille, ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux
Textiles, Lille, France

Phuong Hanh Tran HEC-Liège, Management School of the University of Liège, Liège,
Belgium

Univ. Lille, ENSAIT, ULR 2461 - GEMTEX - Genie et Materiaux Textiles, Lille, France

Tzong-Ru Tsai Department of Statistics, Tamkang University, New Taipei City, Taiwan

Kwok-Leung Tsui Grado Department of Industrial and Systems Engineering, Virginia Poly-
technic Institute and State University, Blacksburg, VA, USA

Fugee Tsung Department of Industrial Engineering and Decision Analytics, Hong Kong
University of Science and Technology, Hong Kong, China

Mai Phuong Vuong Hanoi University of Science & Technology, Hanoi, Vietnam

Kai Wang School of Management, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Shuai Wang School of Statistics, Southwestern University of Finance and Economics,
Chengdu, China

Xiao Wang Purdue University, West Lafayette, IN, USA

Yueyao Wang Department of Statistics, Virginia Tech, Blacksburg, VA, USA

Jing Wu Department of Computer Science and Statistics, University of Rhode Island,
Kingston, RI, USA

Wei Biao Wu University of Chicago, Chicago, IL, USA



Contributors xxv

Wen-Fang Wu Department of Mechanical Engineering, National Taiwan University, Taipei,
Taiwan

Min-ge Xie Rutgers University, New Brunswick, NJ, USA

Min Xie Department of Systems Engineering and Engineering Management, City University
of Hong Kong, Hong Kong, China

Yuhang Xu Bowling Green State University, Bowling Green, OH, USA

Shigeru Yamada Tottori University, Tottori, Japan

Jun Yan Department of Statistics, University of Connecticut, Storrs, CT, USA

Fangfang Yang School of Intelligent Systems Engineering Sun Yat-sen University, Guang-
dong, China

Hainan Zhang Department of Industrial & System Engineering, Rutgers University – New
Brunswick, Piscataway, NJ, USA

Heping Zhang Department of Biostatistics, Yale University School of Public Health, New
Haven, CT, USA

Xin Zhang Department of Statistics, Florida State University, Tallahassee, FL, USA

Zhiyang Zhang Department of Statistics, Virginia Tech, Blacksburg, VA, USA

Xufeng Zhao College of Economics and Management, Nanjing University of Aeronautics
and Astronautics, Nanjing, China

Yang Zhao School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China

Xiaojun Zhu Xi’an Jiaotong-Liverpool University, Suzhou, China

Xi Zhu University of Washington, Seattle, WA, USA

Ruoqing Zhu University of Illinois at Urbana-Champaign, Champaign, IL, USA



Part I

Fundamental Statistics and Its Applications



1Basic Statistics

Hoang Pham

Contents
1.1 Basic Probability Measures . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Probability Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Basic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Reliability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Coherent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 System Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Failure Rate Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Common Probability Distribution Functions . . . . . . . . 11
1.3.1 Discrete Random Variable Distributions . . . . . . . . . . . . . . 11
1.3.2 Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Statistical Inference and Estimation . . . . . . . . . . . . . . . . 22
1.4.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.2 Maximum Likelihood Estimation

with Censored Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.3 Statistical Change-Point Estimation Methods . . . . . . . . . . 28
1.4.4 Goodness-of-Fit Techniques . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.5 Least Squares Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.6 Interval Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.7 Nonparametric Tolerance Limits . . . . . . . . . . . . . . . . . . . . 35
1.4.8 Sequential Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.9 Bayesian Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendix A: Distribution Tables (Tables 1.7, 1.8, 1.9, 1.10,
and 1.11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Abstract

This chapter presents some fundamental elements of engi-
neering probability and statistics with which some readers
are probably already familiar, but others may not be.
Statistics is the study of how best one can describe and
analyze the data and then draw conclusions or inferences

H. Pham (�)
Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA
e-mail: hopham@soe.rutgers.edu

based on the data available. The first section of this chapter
begins with some basic definitions, including probability
axioms, basic statistics, and reliability measures.

The second section describes the most common distri-
bution functions such as the binomial, Poisson, geomet-
ric, exponential, normal, log normal, Student’s t, gamma,
Pareto, beta, Rayleigh, Cauchy, Weibull, Pham, and Vtub-
shaped failure rate distributions, their applications, and
their use in engineering and applied statistics.

The third section describes statistical inference, in-
cluding parameter estimation and confidence intervals.
Statistical inference is the process by which informa-
tion from sample data is used to draw conclusions about
the population from which the sample was selected that
hopefully represents the whole population. This discus-
sion also introduces the maximum likelihood estimation
(MLE) method, the method of moments, MLE with cen-
sored data, the statistical change-point estimation method,
nonparametic tolerance limits, sequential sampling, and
Bayesian methods.

Finally, the last section provides a short list of books
and articles for readers who are interested in advanced
engineering and applied statistics.

Keywords

Failure rate · Parameter estimation · Distribution
function · Interarrival time · Reliability function · Mean
time to failure

1.1 Basic Probability Measures

We start off this chapter by defining several useful terms:

1. Outcome: A result or observation from an experiment,
which cannot be predicted with certainty.

2. Event: Subset of a set of all possible outcomes.

© Springer-Verlag London Ltd., part of Springer Nature 2023
H. Pham (ed.), Springer Handbook of Engineering Statistics, Springer Handbooks,
https://doi.org/10.1007/978-1-4471-7503-2_1
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3. Probability: The relative frequency at which an event
occurs in a large number of identical experiments.

4. Random variable: A function which assigns real numbers
to the outcomes of an experiment.

5. Statistics: A function (itself a random variable) of one or
more random variables that does not depend upon any
unknown parameters.

1.1.1 Probability Axioms

Now let C be a subset of the sample space (C ⊂ �). A
probability set function, denoted by P(C), has the following
properties:

1. P(�) = 1, P(C) ≥ 0
2. P(C1 ∪ C2 ∪ . . . ) = P(C1) + P(C2) + . . .

where the subsets Ci have no elements in common (i.e., they
are mutually exclusive).

Let C1 and C2 be two subsets of the sample space �. The
conditional probability of getting an outcome inC2 given that
an outcome from C1 is given by

P (C2|C1) = P (C2 ∩ C1)

P (C1)
.

Let C1, C2, . . . , Cn be n mutually disjoint subsets of the
sample space �. Let C be a subset of the union of the Cis,
that is

C ⊂ n∪
i=1
Ci.

Then

P(C) =
n∑

i=1

P (C|Ci)P (Ci) (1.1)

and

P (Ci|C) = P (C|Ci)P (Ci)
n∑
i=1

P (C|Ci)P (Ci)
.

Equation (1.1) is known as the law of total probability or
Bayes’ rule.

Example 1.1 Suppose the total inventory of a company is a
collection of lots from four different suppliers, A, B, C, and
D, as indicated below:

Supplier Percent of inventory

A 60

B 20

C 5

D 15

Furthermore, suppose that past records indicate that lots
from suppliers A, B, C, and D are 5, 3, 2, and 8% defective,
respectively. Using the Bayes’ rule, the probability that a
defective item selected as random is from supplier B can be
calculated as follows:

P (B|defective) = (0.2)(0.03)

(0.6)(0.05) + (0.2)(0.03) + (0.05)(0.02) + (0.15)(0.08)

= 0.122

1.1.2 Basic Statistics

The cumulative distribution function (cdf) F is a unique
function which gives the probability that a random variable
X takes on values less than or equal to some value x. In other
word, F(x) = P(X ≤ x).

The probability density function (pdf) f is the probability
that X takes on the value x; that is, f (x) = P(X = x).

The pdf satisfies the following two relations for discrete
and continuous random variables, respectively:

∑

all x

f (x) = 1

and
∫ ∞

−∞
f (x)dx = 1.

In the continuous case, the pdf is the derivative of the cdf:

f (x) = ∂F(x)

∂x
.

The expected value of a random variable X is given by

E(X) =
∑

all x

xf (x)

in the discrete case, and by

E(X) =
∫ ∞

−∞
xf (x)dx

in the continuous case. Similarly, the variance of a random
variable X, denoted by σ 2, is a measure of how the values of
X are spread about the mean value. It is defined as
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1
σ 2 = E(X − μ)2.

It is calculated for discrete and continuous random variables,
respectively, by

σ 2 =
∑

all x

(x− μ)2f (x)

and

σ 2 =
∫ ∞

−∞
(x− μ)2f (x)dx.

The standard deviation of X, denoted by σ , is the square root
of the variance.

The skewness coefficient of a random variable X is a
measure of the symmetry of the distribution of X about its
mean value μ, and is defined as

Sc = E(X − μ)3

σ 3
.

The skewness is zero for a symmetric distribution, negative
for a left-tailed distribution, and positive for a right-tailed
distribution.

Similarly, the kurtosis coefficient of a random variable X
is a measure of how much of the mass of the distribution is
contained in the tails, and is defined as

Kc = E(X − μ)4

σ 4
.

Obviously, kurtosis is always positive; however, larger values
represent distributions with heavier tails. The measure of
kurtosis serves to differentiate between a flat distribution
curve and a sharply peaked curve.

Given a random sample of size n from a distribution, the
sample mean and sample variance are defined as, respec-
tively,

X = 1

n

n∑

i=1

Xi and S2 = 1

n− 1

n∑

i=1

(
Xi − X

)2
. (1.2)

If the data are arranged in order of magnitude, the median is
the central point of the series, i.e., there are equal numbers of
observations greater than and less than the medians. In case
if n (the total number of observations) is even, it is usual to
take the mean of the two central values as the median.

Suppose that n values of a variable X are ordered in
increasing order of magnitute, i.e., we have x1, x2,..., xn such
that x(1) ≤ x(2) ≤ . . . ≤ x(n) then the median of a set of values

is equal to x( n+1
2 ) if n is odd and 1

2

(
x( n

2 )
+ x( n

2 )+1

)
if n is

even.

Themedian of a random variableX is the valuem such that
the cdf F(m) = 1

2 . The median always exists if the random
variable is continuous, whereas it may not always exist if the
random variable is discrete.

Example 1.2 The probability density function of a random
variable X is

f (x) =
{
2x 0 ≤ x ≤ 1
0 otherwise.

The cdf of X is given by

F(x) =

⎧
⎪⎨

⎪⎩

0 x < 0

x2 0 ≤ x ≤ 1

1 x > 1.

Set F(m) = 1/2, then the median of X is
√
2
2 .

The mode is the value of the variate which occurs most
frequently for which the frequency is a maximum. In other
words, the mode of a set of values of a variable is the most
frequently occurring value in the set. The use of the mode is
most often associated with discrete distributions where it is
simple to count which value of the variate occurs most often.

Example 1.3 The density function of X is given by

f (x) =
{

2
3x 0 ≤ x ≤ 1
1
3 1 < x ≤ 3.

The cdf of X is

F(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x < 0
x2

3 0 ≤ x ≤ 1
x
3 1 < x ≤ 3

1 x > 3.

Since F
(
3
2

) = 1
2 , so the median of X is equal to 3

2 . Similary,
the mode is equal to 1 since f (x) is a maximum when x = 1.

Whichmeasure to choose? Themode should be usedwhen
calculating measure of center for the qualitative variable.
When the variable is quantitative with symmetric distribu-
tion, then the mean is proper measure of center. In a case of
quantitative variable with skewed distribution, the median is
good choice for the measure of center. This is related to the
fact that the mean can be highly influenced by an obsevation
that falls far from the rest of the data, called an outlier.

Moment Inequalities
The following moment inequalities are commonly used in
applied engineering statistics.
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Theorem 1.1 (Jensen’s Inequality) For any random vari-
able X and a convex function g(x),

g (E(X)) ≤ E [g(X)] . (1.3)

Example 1.4 Since the function g(x) = x2 is a convex
function, using Jensen’s inequality we obtain

g [E(X)] ≤ E (g(X))

or

[E(X)]2 ≤ E
(
X2

)

In other words, since var(X) = E(X2) − [E(X)]2 ≥ 0 this
implies that E(X2) ≥ [E(X)]2.

Theorem 1.2 (Cauchy-Schwarz Inequality) For any two
random variables X and Y,

E |XY| ≤
√
E

(
X2

)
E

(
Y2

)
. (1.4)

Theorem 1.3 (Holder’s Inequality) For any two random
variables X and Y and two positive real values a and b such
that a + b = 1,

E |XY| ≤
√(

E
(
|X|1/a

))a(
E

(
|Y|1/b

))b
.

The conditional distribution of a random variable Y given that
another random variable X takes on a value x is given by:

f (y|X = x) = f (x, y)

f1(x)
,

where

f1(x) =
∫ ∞

−∞
f (x, y) dy.

Let X and Y be two independent lifetimes with pdf f1(x) and
f2(y), respectively. Let Z = X + Y be the total lifetime having
the pdf g(z) and cdf G(z). Using a convolution approach, the
pdf of z can be obtained as

g(z) =
∫ z

0
f1(x)f2 (z− x) dx =

∫ z

0
f1 (z− y) f2(y)dy

= f1(z) ∗ f2(z)

where * denotes the convolutions of the distributions. Simi-
larly, the distribution function of Z, G(z), is given by

G(z) = P [Z ≤ z] =
∫ z

0
f1(x)dx

∫ z−x

0
f2(y)dy.

Note that the two random variables X and Y are said to be
independent if knowledge of one of the variables has no effect
on the distribution of probability for the other.

1.1.3 Order Statistics

Let X1, X2, . . . ,Xn be a random sample of size n, each with
cdf F(x) and pdf f (x). Let X(i) be the ith order statistic of
the sample where such characteristic values of a sample of
observations have been sorted from smallest to largest. The
rth order statistic is the rth smallest value in the sample, say
X(r). That is,

X(1) ≤ X(2) ≤ · · · ≤ X(r−1) ≤ X(r) ≤ · · · ≤ X(n)

are called the order statistics. Imagine we are building an
elevator, for example, and our random variables are the
weight on the elevator of various times during the day. We
would want to know how much weight it can bear. In this
case, we will care about the distribution of the maximum.

Let F(r)(x) denote the cdf of the rth order statistic X(r).
Note that the order statistics X(1), X(2), . . . , X(n) are neither
independent nor identically distributed. Let X(r) be the rth
order statistic. Then the cdf of X(r) is given by

F(r)(x) = P
(
X(r) ≤ x

)

= P (at least r of X1, X2, . . . , Xn are ≤ x)

=
n∑

i=r
P (exactly i of X1, X2, . . . , Xn are ≤ x)

=
n∑

i=r

(
n
i

)
Fi(x)[1 − F(x)]n−i

= Fr(x)
n−r∑

j=0

(
r + j− 1
r − 1

)
[1 − F(x)]j

= r

(
n
r

) ∫ F(x)

0
tr−1(1 − t)n−rdt

The probability density function (pdf) of the rth order statistic
X(r) is given by

fX(r) (x) = n!
(r − 1)! (n− r)! f (x)F

r−1(x)[1 − F(x)]n−r

The pdf of the largest, i.e., nst order statistic X(n), value is
given by
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1
FX(n) (x) = nf (x)[F(x)]n−1

Similarly, the pdf of the smallest, i.e., first-order statistic X(1),
value of n independent randam variables, is given by

FX(1) (x) = nf (x)[1 − F(x)]n−1

Assume there are n random variables X1, X2,..., Xn which
may or may not be mutually independent. The joint cdf, if it
exists, is given by

P (X1 ≤ x1, X2 ≤ x2, . . .Xn ≤ xn) =
∫ xn

−∞

∫ xn−1

−∞
..

∫ x1

−∞

f (t1, t2, . . . , tn) dt1 dt2..dtn
(1.5)

If the n random variables are mutually statistically indepen-
dent, then the joint pdf can be rewritten as:

f (x1, x2, . . . , xn) =
n∏

i=1

f (xi) .

1.2 Reliability Measures

1.2.1 Coherent Systems

In reliability theory, both the system and its components are
commonly allowed to take only two possible states or binary
states: either working or failed. In a multistate system, both
the system and its components are allowed to experience
more than two possible states, e.g., fully working, partially or
degraded working, or failed. A multistate system reliability
model provides more flexibility for modeling of system’s
conditions. The reliability can be defined for a more general
coherent structure. A coherent system with binary states
can be simply described as follows. Consider that a system
consists of n components and define

xi =
{
1 if component i is functioning

0 if compoment i is failed
for i = 1, 2, . . . , n

and

φ (x) =
{
1 if the system is functioning

0 if the system is failed

where x = (x1, x2,. .., xn). Binary indicators xi and φ(x)
indicate the state of component i and the state of the system,
respectively. The function φ(x) is referred to as the structure
function of the system. Define

(0i, x) = (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn)
(1, x) = (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn) .

The structure function of the system indicates that the state
of the system is completely determined by the states of all
components. A component is relevant if its state does affect
the state of the system.

Definition 1.1 A binary system with n components is said
to be coherent if:

• The structure function φ is nondecreasing in each argu-
ment xi, i = 1, 2,. .., n

• Each component is relevant, i.e., there exists at least one
vector x such that φ(1i, x) = 1 and φ(0i, x) = 0

• φ(0) = 0 and φ(1) = 1

For coherent systems, when x < y then φ(x) ≤ φ(y).

Example 1.4 For a series system consisting of n components
to function, all its components must function. Then structure
function of the series system is given by

φ (x) =
n∏

i=1

xi = min (x1, x2, . . . , xn)

For the parallel system consisting of n components to work
there is at least one component to work. Then structure
function of the parallel system is given by

φ (x) = 1 −
n∏

i=1

(1 − xi) = max (x1, x2, . . . , xn)

Similarly, the k out of n system is functioning if and only
if there is at least k component to function. Then structure
function of the k out of n system is given by

φ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if
n∑
i=1

xi ≥ k

0 if
n∑
i=1

xi < k

We now discuss the minimal path and minimal cut sets. Let
A1, A2,...,As denote the minimal path sets of a given system.

Definition 1.2 A state vector x is called a path vector (or
link vector) if φ(x) = 1.

A path set is a set of components whose functioning
ensures the functioning of the system.

Definition 1.3 A minimal path vector is a path vector for
which the failure of any functioning components results in
system failure.
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Definition 1.4 A minimal path set is a minimal set of com-
ponents whose functioning ensures the functioning of the
system.

In other words, a minimal path vector is a path vector x
such that φ(y) = 0 for any y < x and its corresponding path
set is minimal path set. Let

αj (x) =
{
1 iff all the components of Aj are functioning
0 otherwise

then

αj (x) =
∏

i∈Aj
Xi

A system will function if and only if all the components of at
least one minimal path sets are functioning. That is,

φ (x) = max
j

αj (x)

= 1 −
s∏

j=1

(
1 − αj (x)

)

1 −
s∏

j=1

⎛

⎝1 −
∏

i∈Aj
Xi

⎞

⎠ .

(1.6)

Similarly, let C1, C2,...,Ck denote the minimal cut sets of a
given system.

Definition 1.5 A state vector x is called a cut vector if
φ(x) = 0. A cut set is a set of components whose failure
ensures the failure of the system.

Definition 1.6 Aminimal cut vector is a cut vector for which
the repair of any failed component results in a functioning
system.

Definition 1.7 A minimal cut set is a minimal set of compo-
nents whose failure ensures the failure of the system.

In other words, a minimal cut vector is a cut vector x such
that φ(y) = 1 for any y > x and its corresponding cut set is
minimal cut set.

Note that for a minimal path set to work, each component
in the set must work. For a minimal cut set to fail, all
components in the set must fail.

Let

βj (x) =
⎧
⎨

⎩
1

if at least one component in
the jth minimal cut set is functioning

0 otherwise for j = 1, 2, . . . , k

then

βj (x) = max
i∈Cj

Xi

A system is not functioning (or system unreliability) if and
only if all the components of at least one minimal cut set
are not functioning. In other words, a system is functioning
if and only if at least one component in each minimal cut
sets is functioning. Thus, the structure function based on the
minimal cut sets is given by

φ (x) =
k∏

j=1

βj (x)

=
k∏

j=1

max
i∈Cj

Xi

=
k∏

j=1

⎛

⎝
∐

i∈Cj
Xi

⎞

⎠

=
k∏

j=1

⎛

⎝1 −
k∏

j=Cj
(1 − Xi)

⎞

⎠ .

Let pi is the component i reliability. That is,

pi = P (Xi = 1) = E [Xi] .

The system reliability function can be defined as

r(p) = P (φ (x) = 1) = E [φ (x)] .

Theorem 1.4 If φ is a coherent system of independent com-
ponents with minimal path set A1, A2, . . . , As and minimal
cut sets C1, C2, . . . , Ck then

k∏

j=1

⎛

⎝1 −
∏

i∈Cj
(1 − pi)

⎞

⎠ ≤ r (p) ≤ 1 −
s∏

j=1

⎛

⎝1 −
∏

i∈Aj
pi

⎞

⎠ .

(1.7)

Example 1.5 A k-out-of-n system works if and only if at
least k of the n components work. In a k-out-of-n system,

there are

(
n
k

)
minimal path sets and

(
n

n− k + 1

)
minimal

cut sets. Each minimal path set contains exactly k differ-
ent components and each minimal cut set contains exactly
n − k + 1 components. Thus, all minimal path sets and min-
imal cut sets are known. One can easily obtain the reliability
of a k-out-of-n system either in terms of the minimal path sets
or minimal cut sets.

Definitions of reliability given in the literature vary ac-
cording to the practitioner or researcher. The generally ac-
cepted definition is as follows:
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Definition 1.8 Reliability is the probability that the system
will perform its intended function under specified design
limits.

More specifically, reliability is the probability that a prod-
uct or system will operate properly for a specified period
of time (design life) under the design operating conditions
(such as temperature, voltage, etc.) without failure. In other
words, reliability can be used as a measure of the system’s
success at providing its function properly. Reliability is one
of the quality characteristics that consumers require from
manufacturers.

Mathematically, reliability R(t) is the probability that a
systemwill be successful in the interval from time 0 to time t:

R(t) = P (T > t) , t ≥ 0, (1.8)

where T is a random variable denoting the time to failure or
failure time.
Unreliability, or the cdf F(t), a measure of failure, is

defined as the probability that the system will fail by time t.

F(t) = P (T ≤ t) , t ≥ 0.

In other words, F(t) is the failure distribution function. If
the time-to-failure random variable T has a density function
f (t), then

R(t) =
∫ ∞

t
f (s)ds

or, equivalently,

f (t) = − d

dt
[R(t)].

The density function can be mathematically described in
terms of T:

lim
�t→0

P (t < T ≤ t + �t).

This can be interpreted as the probability that the failure time
T will occur between the operating time t and the next interval
of operation t + �t.

Consider a new and successfully tested system that oper-
ates well when put into service at time t = 0. The system
becomes less likely to remain successful as the time interval
increases. The probability of success for an infinite time in-
terval is, of course, zero. Thus, the system starts to function at
a probability of one and eventually decreases to a probability
of zero. Clearly, reliability is a function of mission time. For
example, one can say that the reliability of the system is 0.995
for a mission time of 24 h.

Example 1.6 A computer system has an exponential failure
time density function

f (t) = 1

9000
e− t

9000 , t ≥ 0.

The probability that the system will fail after the warranty
(six months or 4380 h) and before the end of the first year
(one year or 8760 h) is given by

P (4380 < T ≤ 8760) =
∫ 8760

4380

1

9000
e− t

9000 dt

= 0.237.

This indicates that the probability of failure during the inter-
val from 6 months to 1 year is 23.7%.

Consider the Weibull distribution, where the failure time
density function is given by

f (t) = βtβ−1

θβ
e−( t

θ )
β

, t ≥ 0, θ > 0,β > 0.

Then the reliability function is

R(t) = e−( t
θ )

β

, t ≥ 0.

Thus, given a particular failure time density function or
failure time distribution function, the reliability function can
be obtained directly. Section 1.2 provides further insight for
specific distributions.

Definition 1.9 Conditional reliability is the probability of
surviving a mission of length h under specified design limits
given that the system has been survived up to time t.

In other words, conditional reliability R(h|t) is the proba-
bility that a system will be successful in the interval (t, t + h)
given that it already survived more than t. Mathematically,

R (h|t) = P (T > t + h|T > t) = R (t + h)

R(t)
t ≥ 0, h > 0

It is obvious that the probability of prolongation by additional
mission length h decreases with increasing h. Indeed, the
longer prolongation of life time required, the smaller is the
probability of such an event.

1.2.2 SystemMean Time to Failure

Suppose that the reliability function for a system is given by
R(t). The expected failure time during which a component is
expected to perform successfully, or the system mean time to
failure (MTTF), is given by
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MTTF =
∫ ∞

0
tf (t)dt

or, equivalently, that

MTTF =
∫ ∞

0
R(t)dt. (1.9)

Thus, MTTF is the definite integral evaluation of the relia-
bility function. In general, if λ(t) is defined as the failure rate
function, then, by definition, MTTF is not equal to 1/λ(t).

The MTTF should be used when the failure time dis-
tribution function is specified because the reliability level
implied by the MTTF depends on the underlying failure
time distribution. Although the MTTF measure is one of the
most widely used reliability calculations, it is also one of the
most misused calculations. It has been misinterpreted as a
“guaranteed minimum lifetime.” Consider the results given
in Table 1.1 for a 12-component life duration test.

A componentMTTF of 3660 hwas estimated using a basic
averaging technique. However, one of the components failed
after 920 h. Therefore, it is important to note that the system
MTTF denotes the average time to failure. It is neither the
failure time that could be expected 50% of the time nor is it
the guaranteed minimum time of system failure, but mostly
depends on the failure distribution.

A careful examination of Eq. (1.4) will show that two fail-
ure distributions can have the same MTTF and yet produce
different reliability levels.

Example 1.7 Assume that the failure rate for a hydraulic
component is given by

h(t) = t

t + 1
t > 0

Table 1.1 Results from a 12-component life duration test

Component Time to failure (h)

1 4510

2 3690

3 3550

4 5280

5 2595

6 3690

7 920

8 3890

9 4320

10 4770

11 3955

12 2750

where t is in years. Note that the reliability function R(t) can
be written as follows:

R(t) = e− ∫ t
0 h(x)dx.

Then we obtain

R(t) = e− ∫ t
0

x
x+1 dx = (t + 1) e−t

From Eq. (1.9), the MTTF of the component is given by

MTTF =
∫ ∞

0
R(t)dt =

∫ ∞

0
(t + 1) e−tdt = 2

1.2.3 Failure Rate Function

The probability of a system failure in a given time interval
[t1, t2] can be expressed in terms of the reliability function as

∫ t2

t1

f (t)dt =
∫ ∞

t1

f (t)dt −
∫ ∞

t2

f (t)dt

= R (t1) − R (t2)

or in terms of the failure distribution function (or the unreli-
ability function) as

∫ t2

t1

f (t)dt =
∫ t2

−∞
f (t)dt −

∫ t1

−∞
f (t)dt

= F (t2) − F (t1) .

The rate at which failures occur in a certain time interval [t1,
t2] is called the failure rate. It is defined as the probability
that a failure per unit time occurs in the interval, given that
a failure has not occurred prior to t1, the beginning of the
interval. Thus, the failure rate is

R (t1) − R (t2)

(t2 − t1)R (t1)
.

Note that the failure rate is a function of time. If we
redefine the interval as [t, t + �t], the above expression
becomes

R(t) − R (t + �t)

�tR(t)
.

The rate in the above definition is expressed in failures
per unit time, but in reality the time units might instead
correspond to miles, hours, trials, etc. The hazard function
is defined as the limit of the failure rate as the interval



1 Basic Statistics 11

1
approaches zero. Thus, the hazard function h(t) is the instan-
taneous failure rate, and is defined by

h(t) = lim
�t→0

R(t) − R (t + �t)

�tR(t)

= 1

R(t)

[
− d

dt
R(t)

]

= f (t)

R(t)
.

(1.10)

The quantity h(t)dt represents the probability that a device
of age t will fail in the small interval of time t to (t + dt).
The importance of the hazard function is that it indicates the
change in the failure rate over the life of a population of com-
ponents by plotting their hazard functions on a single axis.
For example, two designs may provide the same reliability at
a specific point in time, but the failure rates up to this point
in time can differ.

The death rate, in statistical theory, is analogous to the
failure rate, as the nature of mortality is analogous to the
hazard function. Therefore, the hazard function, hazard rate,
or failure rate function is the ratio of the pdf to the reliability
function.

Example 1.8 Consider the lifetime of a communication
device, having a pdf

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 t ≤ t0
4(t−t0)
(t1−t0)2 t0 ≤ t ≤ t0+t1

2
4(t1−t)
(t1−t0)2

t0+t1
2 ≤ t ≤ t1

0 t1 ≤ t

Then the cdf is

F(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 t ≤ t0
2(t−t0)2
(t1−t0)2 t0 ≤ t ≤ t0+t1

2

1 − 2(t1−t)2
(t1−t0)2

t0+t1
2 ≤ t ≤ t1

1 t1 ≤ t

Mean Residual Life Function
Another important measure of reliability is the mean residual
life μ(t), which is the expected remaining life beyond the
present age t. Mathematically, the mean residual life can be
defined as

μ(t) = E [T − t|T ≥ t] =
∫ ∞
t R(s)ds

R(t)
. (1.11)

In other words, the mean residual life (MRL) is the expected
remaining life, T − t, given that the item has survived to
time t. When t = 0, the MRL function becomes the MTTF.

1.3 Common Probability Distribution
Functions

In some situations, particularly when evaluating reliability of
a product in the field, exact information on the failure times
is not possible to obtain, but the information on the number
of failures during the time interval [a,b) perhaps is available.
The difference between the actual time til failure, T, and
the number of failures, N, is that T is a continuous random
variable while N is a discrete random variable. Random
variables can be discrete or continuous.

This section presents some of the common discrete and
continuous distribution functions and several hazard models
that are applied in engineering statistics [1].

1.3.1 Discrete RandomVariable Distributions

Binomial Distribution
The binomial distribution is one of the most widely used dis-
crete random variable distributions in reliability and quality
inspection. It has applications in reliability engineering, for
example, when one is dealing with a situation in which an
event is either a success or a failure.

The binomial distribution can be used to model a random
variable X which represents the number of successes (or
failures) in n independent trials (these are referred to as
Bernoulli trials), with the probability of success (or fail-
ure) being p in each trial. The pdf of the distribution is
given by

P (X = x) =
(
n
x

)
px(1 − p)n−x, x = 0, 1, 2, . . . , n,

(
n
x

)
= n!
x! (n− x)! ,

where n = number of trials, x = number of successes, and
p = single trial probability of success.

The mean of the binomial distribution is np and the
variance is np(1 − p). The coefficient of skewness is given
by

Sc = 1 − 2p√
np (1 − p)

and the coefficient of kurtosis is

Kc = 3 − 6

n
+ 1

np (1 − p)
.

The reliability function R(k) (i.e., at least k out of n items are
good) is given by
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R(k) =
n∑

x=k

(
n
x

)
px(1 − p)n−x.

Example 1.9 Suppose that, during the production of light-
bulbs, 90% are found to be good. In a random sample of
20 lightbulbs, the probability of obtaining at least 18 good
lightbulbs is given by

R(18) =
20∑

x=18

(
18
x

)
(0.9)x(0.1)20−x

= 0.667.

Poisson Distribution
Although the Poisson distribution can be used in a manner
similar to the binomial distribution, it is used to deal with
events in which the sample size is unknown. A Poisson
random variable is a discrete random variable distribution
with a probability density function given by

P (X = x) = λxe−λ

x! for x = 0, 1, 2, . . . (1.12)

where λ = constant failure rate and x= the number of events.
In other words, P(X = x) is the probability that exactly x
failures occur.

A Poisson distribution is used to model a Poisson process.
A Poisson random variable has a mean and a variance both
equal to λ where λ is called the parameter of the distribution.
The skewness coefficient is

Sc = 1√
λ

and the kurtosis coefficient is

Kc = 3 + 1

λ
.

The Poisson distribution reliability up to time t, R(k) (the
probability of k or fewer failures), can be defined as follows:

R(k) =
k∑

x=0

(λt)xe−λt

x! .

This distribution can be used to determine the number of
spares required for a system during a given mission.

Example 1.10 A nuclear plant is located in an area suscep-
tible to both high winds and earthquakes. From historical
data, the mean frequency of large earthquakes capable of
damaging important plant structures is one every 50 years.
The corresponding frequency of damaging high winds is

once in 25 years. During a strong earthquake, the probability
of structure damage is 0.1. During high winds, the damage
probability is 0.05. Assume that earthquakes and high winds
can be described by independent Poisson random variables
and that the damage caused by these events are independent.
Let us answer the following questions:

1. What is the probability of having strong winds but not
large earthquakes during a ten-year period?

2. What is the probability of having strong winds and large
earthquakes in the ten-year period?

3. What is the probability of building damage during the ten-
year period?

Considering the first question, let the random variables X
and Y represent the number of earthquakes and the number
of occurrences of high winds, respectively. We assume that
the two random variables are statistically independent. The
means of X and Y are, respectively, given by

λX = 1

50 y
(10 y) = 0.2

and

λY = 1

25 y
(10 y) = 0.4.

The conditional damage probabilities are given as follows:

P (damage/earthquake) = 0.1

and

P (damage/wind) = 0.05.

Let event

A = {strong winds and no earthquakes}
B = {strong winds and large earthquakes}
C = {building damage}

Assuming that the winds and earthquakes are independent
of each other, the probability of having strong winds but not
earthquakes during the ten-year period can be written as:

P(A) = P (winds)P (no earthquakes)

= [1 − P (no winds)]P (no earthquakes)

Therefore, we obtain

P(A) = (
1 − e−0.4) (e−0.2) = 0.27
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For the second question, the probability of having strong
winds and earthquakes during the ten-year period can be
obtained from

P(B) = P (winds)P (earthquakes)

= [1 − P (no winds)] [1 − P (no earthquakes)]

= (
1 − e−0.4) (1 − e−0.2) = 0.06.

Finally, for the third question, we assume that multiple oc-
currences of earthquakes and high winds do not occur during
the ten-year period. Therefore, the probability of building
damage can be written as

P(C) = P (damage/earthquakes)P (earthquakes)

+ P (damage/wind)P (wind)

− P (damage/earthquakes and wind)

P (earthquake and wind)

= P (damage/earthquakes)P (earthquakes)

+ P (damage/wind)P (wind)

− P (damage/earthquakes)P (damage/wind)

P (earthquake and wind)

= (
1 − e−0.2

)
(0.1) + (

1 − e−0.4
)
(0.05)

− (0.05)(0.1)(0.06)

= 0.0343.

Geometric Distribution
Consider a sequence of independent trials where each trial
has the same probability of success, p. Let N be a random
variable representing the number of trials until the first suc-
cess. This distribution is called the geometric distribution. It
has a pdf given by

P(N = n) = p(1 − p)n−1, n = 1, 2, . . . .

The corresponding cdf is

F(n) = 1 − (1 − p)n, n = 1, 2, . . . .

The expected value and the variance are, respectively,

E(N) = 1

p

and

V(N) = 1 − p

p2
.

It should be noted that the geometric distribution is the only
discrete distribution having thememoryless property. In other
words, mathematically, it is

P (N ≥ (n+ s) |N > s) = P (N ≥ n) n = 1, 2, . . .

This memoryless property can be shown as follows.We know
that

P (N > n) = P (N ≥ n+ 1) = (1 − p)n

Thus,

P (N ≥ (n+ s) |N > s) = P (N ≥ n+ s)

P (N > s)

= (1 − p)n+s−1

(1 − p)s

= (1 − p)n−1

= P (N ≥ n) .

The Pascal Distribution
The random variable X for the Pascal distribution represents
the number of trials until the rth success where p is the
probability of success of each trial. The Pascal distribution
of X is given by

P(X = n) =
(
n− 1
r − 1

)
pr(1 − p)n−r n = r, r + 1, r + 2, . . .

(1.13)

The Pascal distribution is the probability distribution of a
certain number of successes and failures in a series of in-
dependent and identically distributed Bernoulli trials. For n
Bernoulli trials with success probability p, the Pascal dis-
tribution gives the probability of r successes and (n − r)
failures, with a success on the last trial. The mean and the
variance of the Pascal distribution are

E(X) = r

p

and

V(X) = r (1 − p)

p2

respectively. When r = 1 the Pascal distribution becomes
geometric distribution.

Hypergeometric Distribution
The hypergeometric distribution is a discrete distribution that
arises in sampling, for example. It has a pdf given by
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f (x) =

(
k
x

)(
N − k
n− x

)

(
N
n

) x = 0, 1, 2, . . . , n. (1.14)

Typically,N will be the number of units in a finite population;
n will be the number of samples drawn without replacement
from N; k will be the number of failures in the population;
and x will be the number of failures in the sample.

The expected value and variance of the hypergeometric
random variable X are, respectively

E(X) = nk

N

and

V(X) = k (N − k) n (N − n)

N2 (N − 1)
.

1.3.2 Continuous Distributions

Exponential Distribution
The exponential distribution plays an essential role in relia-
bility engineering because it has a constant failure rate. It has
been used to model the lifetimes of electronic and electrical
components and systems. This distribution is applicable to
the case where a used component that has not failed is as
good as a new component – a rather restrictive assumption. It
should therefore be used carefully, since there are numerous
situations where this assumption (known as the “memoryless
property” of the distribution) is not valid.

If the time to failure is described by an exponential failure
time density function, then

f (t) = 1

θ
e− t

θ , t ≥ 0, θ > 0 (1.15)

and this will lead to the reliability function

R(t) =
∫ ∞

t

1

θ
e− s

θ ds = e− t
θ , t ≥ 0,

where θ = 1/λ > 0 is an MTTF’s parameter and λ ≥ 0 is a
constant failure rate. Figure 1.1 shows the exponential pdf for
various values of λ.

The hazard function or failure rate for the exponential
density function is constant, i.e.,

h(t) = f (t)

R(t)
=

1
θ
e− 1

θ

e− 1
θ

= 1

θ
= λ.

0 5 10 15
t

Exponential distribution

Lambda = 0.5
Lambda = 0.4
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0.5

Fig. 1.1 Exponential density function for various values of λ

The failure rate for this distribution is λ, a constant, which
is the main reason for this widely used distribution. Because
of its constant failure rate, the exponential is an excellent
model for the long flat “intrinsic failure” portion of the
bathtub curve. Since most parts and systems spend most
of their lifetimes in this portion of the bathtub curve, this
justifies frequent use of the exponential distribution (when
early failures or wearout is not a concern). The exponential
model works well for interarrival times. When these events
trigger failures, the exponential lifetime model can be used.

We will now discuss some properties of the exponential
distribution that can be used to understand its characteristics
and when and where it can be applied.

Property 1.1 (Memoryless property). The exponential dis-
tribution is the only continuous distribution that satisfies

P {T ≥ t} = P {T ≥ t + s|T ≥ s} for t > 0, s > 0.

This result indicates that the conditional reliability function
for the lifetime of a component that has survived to time s
is identical to that of a new component. This term is the so-
called “used as good as new” assumption.

Property 1.2 If T1, T2, ..., Tn are independently and identi-
cally distributed exponential random variables (r.v.’s) with a
constant failure rate λ, then

2λ
n∑

i=1

Ti ∼ χ2(2n), (1.16)

where χ2(2n) is a chi-squared distribution with 2n degrees of
freedom. This result is useful for establishing a confidence
interval for λ.
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1
Lower-Bound Truncated Exponential
Distribution
The lower-bound truncated exponential distribution is an
exponential distribution starting at t0. The model can be
used when no unit fails before the time t0. The pdf of a
lower-bound truncated exponential function can be defined
as follows:

f (t) =
{
0 t < t0
1
θ
e− t−t0

θ t ≥ t0

The parameters θ and t0 are the scale parameter and location
parameter. Note that the failure rate of this lower-bound trun-
cated exponential distribution is a constant for all t ≥ t0. This
can be easily obtained as follows. The reliability function is
given by

R(t) =
∫ ∞

t

1

θ
e− x−t0

θ dx = e− t−t0
θ

Thus, the failure rate of truncated exponential distribution is

h(t) = f (t)

R(t)
= 1

θ
.

Upper-Bound Truncated Exponential
Distribution
For many applications, it is desired to consider to truncate a
distribution on an upper tail. Let us assume that the exponen-
tial density be truncated at time T. The pdf of an upper-bound
truncated exponential distribution function is defined as

f (t) =
{
0 t > T
λe−λt

1−e−λT 0 < t ≤ T

The reliability function is

R(t) =
∫ T

t
f (x)dx =

∫ T

t

λe−λx

1 − e−λT
dx = e−λt − e−λT

1 − e−λT
.

Obviously as for the upper-bound truncated exponential dis-
tribution, the failure rate is not a constant for all t > T. To see
this, the failure rate of this upper-bound truncated exponential
distribution is

h(t) = f (t)

R(t)
= λ

1 − e−λ(T−t) .

and is a function of t.

Uniform Distribution
Let X be a random variable with a uniform distribution over
the interval (a, b) where a < b. The pdf is given by

f (x) =
{

1
b−a a ≤ x ≤ b

0 otherwise
.

The expected value and variance are, respectively,

E(X) = a+ b

2

and

V(X) = (b− a)2

12
.

Normal Distribution
The normal distribution plays an important role in classical
statistics due to the central limit theorem. In production engi-
neering, the normal distribution primarily applies tomeasure-
ments of product susceptibility and external stress. This two-
parameter distribution is used to describemechanical systems
in which a failure results from some wearout effect. The
normal distribution takes the well-known bell shape. This
distribution is symmetrical about the mean and the spread is
measured by the variance. The larger the value, the flatter the
distribution. The pdf is given by

f (t) = 1

σ
√
2π

e− 1
2 (

t−μ

σ )
2

, −∞ < t < ∞,

where μ is the mean value and σ is the standard deviation.
The cumulative distribution function (cdf) is

F(t) =
∫ t

−∞
1

σ
√
2π

e− 1
2 (

s−μ

σ )
2

ds.

The reliability function is

R(t) =
∫ ∞

t

1

σ
√
2π

e− 1
2 (

s−μ

σ )
2

ds.

There is no closed-form solution for the above equation.
However, tables for the standard normal density function are
readily available (see Table 1.8 in Appendix A) and can be
used to find probabilities for any normal distribution. If

Z = T − μ

σ

is substituted into the normal pdf, we obtain

f (z) = 1√
2π

e− z2

2 , −∞ < Z < ∞.

This is a so-called standard normal pdf, with a mean value of
0 and a standard deviation of 1. The standardized cdf is given
by
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(t) =
∫ t

−∞
1√
2π

e− 1
2 s

2
ds, (1.17)

where  is a standard normal distribution function. Thus,
for a normal random variable T, with mean μ and standard
deviation σ ,

P (T ≤ t) = P

(
Z ≤ t − μ

σ

)
= 

(
t − μ

σ

)
,

where  yields the relationship required if standard normal
tables are to be used.

It should be noted that the coefficent of kurtosis in the
normal distribution is 3. The hazard function for a normal
distribution is a monotonically increasing function of t. This
is easily shown by proving that h′(t) ≥ 0 for all t. Since

h(t) = f (t)

R(t)

then

h′(t) = R(t)f ′(t) + f 2(t)

R2(t)
≥ 0.

One can attempt this proof by using the basic definition of a
normal density function f.

Example 1.11 A component has a normal distribution of
failure times with μ = 2000 h and σ = 100 h. The reliability
of the component at 1900 h is required.

Note that the reliability function is related to the standard
normal deviate z by

R(t) = P

(
Z >

t − μ

σ

)
,

where the distribution function for Z is given by (1.17). For
this particular application,

R(1900) = P

(
Z >

1900 − 2000

100

)

= P (z > −1) .

From the standard normal table in Table 1.8 in Appendix A,
we obtain

R (1, 900) = 1 − (−1) = 0.8413.

The value of the hazard function is found from the relation-
ship

h(t) = f (t)

R(t)
= 

( t−μ

σ

)

σR(t)
,

where  is the pdf of the standard normal density. Here

h(1900) = (−1.0)

σR(t)
= 0.1587

100(0.8413)

= 0.0019 failures/cycle.

The normal distribution is flexible enough to make it a very
useful empirical model. It can be theoretical derived under
assumptions matching many failure mechanisms. Some of
these are: corrosion, migration, crack growth, and failures
resulting from chemical reactions or processes in general.
That does not mean that the normal distribution is always
the correct model for these mechanisms, but it does perhaps
explain why it has been empirically successful in so many of
these cases.

Log Normal Distribution
The log normal lifetime distribution is a very flexible model
that can empirically fit many types of failure data. This distri-
bution, when applied in mechanical reliability engineering, is
able to model failure probabilities of repairable systems, the
compressive strength of concrete cubes, the tensile strength
of fibers, and the uncertainty in failure rate information. The
log normal density function is given by

f (t) = 1

σ t
√
2π

e
− 1

2

(
ln t−μ

σ

)2

, t ≥ 0, (1.18)

where μ and σ are parameters such that −∞ < μ < ∞, and
σ > 0. Note that μ and σ are not the mean and standard
deviations of the distribution.

Its relationship to the normal (just take natural logarithms
of all of the data and time points and you have “normal”
data) makes it easy to workwithmany good software analysis
programs used to treat normal data.

Mathematically, if a random variable X is defined as
X = ln T, then X is normally distributed with a mean of μ

and a variance of σ 2. That is,

E(X) = E (ln T) = μ

and

V(X) = V (ln T) = σ 2.

Since T = eX , the mean of the log normal distribution can
be found via the normal distribution. Consider that

E(T) = E
(
eX

) =
∫ ∞

−∞
1

σ
√
2π

e
[
x− 1

2 (
x−μ

σ )
2
]

dx.

By rearranging the exponent, this integral becomes
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1E(T) = eμ+ σ2

2

∫ ∞

−∞
1

σ
√
2π

e− 1
2σ2

[x−(μ+σ 2)]2dx.

Thus, the mean of the log normal distribution is

E(T) = eμ+ σ2

2 .

Proceeding in a similar manner,

E
(
T2

) = E
(
e2X

) = e2(μ+σ 2)

so the variance for the log normal is

V(T) = e2μ+σ 2
(
eσ 2 − 1

)
.

The coefficient of skewness of this distribution is

Sc = e3σ
2 − 3eσ 2 + 2
(
eσ 2 − 1

) 3
2

.

It is interesting that the skewness coefficient does not depend
on μ and grows rapidly as the variance σ 2 increases.

The cumulative distribution function for the log normal is

F(t) =
∫ t

0

1

σ s
√
2π

e
− 1

2

(
ln s−μ

σ

)2

ds

and this can be related to the standard normal deviate Z by

F(t) = P (T ≤ t) = P (ln T ≤ ln t)

= P

(
Z ≤ ln t − μ

σ

)
.

Therefore, the reliability function is given by

R(t) = P

(
Z >

ln t − μ

σ

)

and the hazard function would be

h(t) = f (t)

R(t)
=


(

ln t−μ

σ

)

σ tR(t)

where  is the cdf of standard normal density.
The log normal lifetime model, like the normal, is flexible

enough to make it a very useful empirical model. It can
be theoretically derived under assumptions matching many
failure mechanisms, including corrosion, migration, crack
growth, and failures resulting from chemical reactions or
processes in general. As with the normal distribution, this

does not mean that the log normal is always the correct
model for these mechanisms, but it suggests why it has been
empirically successful in so many of these cases.

Student’s T Distribution
Student’s t probability density function of a random variable
T is given by:

f (t) = �
(
r+1
2

)

√
π�

(
r
2

) (
1 + t2

r

) r+1
2

for −∞ < t < ∞.

In other words, if a random variable T is defined as

T = W√
V
r

,

where W is a standard normal random variable and V has
a chi-square distribution with r degrees of freedom, and
W and V are statistically independent, then T is Student’s
t-distributed, and parameter r is referred to as the degrees of
freedom (see Table 1.9 in Appendix A).

The F Distribution
Let us define the random variable F is as follows:

F = U/r1
V/r2

,

where U has a chi-square distribution with r1 degrees of
freedom, V is also chi-square-distributed, with r2 degrees of
freedom, and U and V are statistically independent, then the
probability density function of F is given by

f (t) =
�

( r1+r2
2

) ( r1
r2

) r1
2
(t)

r1
2 −1

�
( r1
2

)
�

( r2
2

) (
1 + r1t

r2

) r1+r2
2

for t > 0.

The F distribution is a two-parameter – r1 and r2 – distri-
bution where the parameters are the degrees of freedom of
the underlying chi-square random variables (see Table 1.10
in Appendix A).

It is worth noting that if T is a random variable with a
t distribution and r degrees of freedom, then the random
variable T2 has an F distribution with parameters r1 = 1 and
r2 = r. Similarly, if F is F-distributed with r1 and r2 degrees
of freedom, then the random variable Y, defined as

Y = r1F

r2 + r1F

has a beta distribution with parameters r1/2 and r2/2.
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Weibull Distribution
The exponential distribution is often limited in applicability
owing to its memoryless property. The Weibull distribution
[2] is a generalization of the exponential distribution and is
commonly used to represent fatigue life, ball-bearing life,
and vacuum tube life. The Weibull distribution is extremely
flexible and appropriate for modeling component lifetimes
with fluctuating hazard rate functions and is used to rep-
resent various types of engineering applications. The three-
parameter Weibull probability density function is

f (t) = β(t − γ )β−1

θβ
e−( t−γ

θ )
β

, t ≥ γ ≥ 0, (1.19)

where θ and β are known as the scale and shape parameters,
respectively, and γ is known as the location parameter. These
parameters are always positive. By using different parame-
ters, this distribution can follow the exponential distribution,
the normal distribution, etc. It is clear that, for t ≥ γ , the
reliability function R(t) is

R(t) = e−( t−γ

θ )
β

for t > γ > 0, β > 0, θ > 0 (1.20)

hence,

h(t) = β(t − γ )β−1

θβ
, t > γ > 0, β > 0, θ > 0. (1.21)

It can be shown that the hazard function decreases for
β < 1, increases for β > 1, and is constant when β = 1.

Note that the Rayleigh and exponential distributions are
special cases of the Weibull distribution at β = 2, γ = 0, and
β = 1, γ = 0, respectively. For example, when β = 1 and
γ = 0, the reliability of the Weibull distribution function in
(1.20) reduces to

R(t) = e− 1
θ

and the hazard function given in (1.21) reduces to 1/θ , a con-
stant. Thus, the exponential is a special case of the Weibull
distribution. Similarly, when γ = 0 and β = 2, the Weibull
probability density function becomes the Rayleigh density
function. That is,

f (t) = 2

θ
te− t2

θ for θ > 0, t ≥ 0.

Other Forms of Weibull Distributions
The Weibull distribution is widely used in engineering ap-
plications. It was originally proposed in order to represent
breaking strength distributions of materials. The Weibull
model is very flexible and has also been applied in many ap-
plications as a purely empirical model, with theoretical justi-

fication. Other forms of Weibull probability density function
include, for example,

f (x) = λγ xγ−1e−λtγ . (1.22)

When γ = 2, the density function becomes a Rayleigh
distribution.

It is easy to show that the mean, variance, and reliability
of the above Weibull distribution are, respectively:

Mean = λ
1
γ �

(
1 + 1

γ

)
;

Variance = λ
2
γ

{
�

(
1 + 2

γ

)
−

[
�

(
1 + 1

γ

)]2
}

;

Reliability = e−λtγ .

Example 1.12 The time to failure of a part has a Weibull
distribution with 1/λ = 250 (measured in 105 cycles) and
γ = 2. The part reliability at 106 cycles is given by:

R
(
106

) = e−(10)2/250 = 0.6703.

The resulting reliability function is shown in Fig. 1.2.

GammaDistribution
The gamma distribution can be used as a failure probability
function for components whose distribution is skewed. The
failure density function for a gamma distribution is

f (t) = tα−1

βα� (α)
e− t

β , t ≥ 0, α,β > 0, (1.23)

where α is the shape parameter and β is the scale parameter.
In this expression, �(α) is the gamma function, which is
defined as
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Fig. 1.2 Weibull reliability function versus time
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1� (α) =
∫ ∞

0
tα−1e−tdt for α > 0.

Hence,

R(t) =
∫ ∞

t

1

βα� (α)
sa−1e − s

β
ds.

If α is an integer, it can be shown by successive integration
by parts that

R(t) = e − t

β

α−1∑

i=0

(
t
β

)i

i! (1.24)

and

h(t) = f (t)

R(t)
=

1
βα�(α)

tα−1e− t
β

e− t
β

α−1∑
i=0

(
t
β

)i

i!

. (1.25)

The gamma density function has shapes that are very similar
to the Weibull distribution. At α = 1, the gamma distribu-
tion becomes the exponential distribution with a constant
failure rate 1/β. The gamma distribution can also be used
to model the time to the nth failure of a system if the
underlying failure distribution is exponential. Thus, if Xi
is exponentially distributed with parameter θ = 1/β, then
T = X1 + X2 + · · · + Xn is gamma-distributed with param-
eters β and n.

Example 1.13 The time to failure of a component has a
gamma distribution with α = 3 and β = 5. Obtain the
reliability of the component and the hazard rate at 10 time
units.

Using Eq. (1.24), we compute

R(10) = e− 10
5

2∑

i=0

(
10
5

)i

i! = 0.6767.

The hazard rate is given by

h(10) = f (10)

R(10)
= 0.054

0.6767
= 0.798 failures/unit time.

The other form of the gamma probability density function
can be written as follows:

f (x) = βαtα−1

� (α)
e−tβ , t > 0.

This pdf is characterized by two parameters: the shape
parameter α and the scale parameter β. When 0 < α < 1, the

failure rate monotonically decreases; when α > 1, the failure
rate monotonically increases; when α = 1 the failure rate is
constant.

The mean, variance, and reliability of the gamma random
variable are:

Mean (MTTF) = α

β
;

Variance = α

β2
;

Reliability =
∫ ∞

t

βαxα−1

� (α)
e−xβdx.

Example 1.14 A mechanical system time to failure is
gamma-distributed with α = 3 and 1/β = 120. The system
reliability at 280 h is given by

R(280) = e
−280
120

2∑

k=0

(
280
120

)

k! = 0.85119

and the resulting reliability plot is shown in Fig. 1.3.
The gamma model is a flexible lifetime model that may

offer a good fit to some sets of failure data. Although it is
not widely used as a lifetime distribution model for common
failure mechanisms, the gamma lifetime model is commonly
used in Bayesian reliability applications.

Beta Distribution
The two-parameter beta density function f (t) is given by

f (t) = � (α + β)

� (α) � (β)
tα−1(1 − t)β−1,

0 < t < 1,α > 0,β > 0,

(1.26)
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Fig. 1.3 Gamma reliability function versus time
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where α and β are the distribution parameters. This two-
parameter beta distribution is commonly used in many reli-
ability engineering applications and also plays an important
role in the theory of statistics. Note that the beta-distributed
random variable takes on values in the interval (0, 1), so the
beta distribution is a natural model when the random variable
represents a probability. Likewise, when α = β = 1, the beta
distribution reduces to a uniform distribution.

The mean and variance of the beta random variable are,
respectively,

E(T) = α

α + β

and

V(T) = αβ

(α + β + 1) (α + β)2
.

Pareto Distribution
The Pareto distribution was originally developed to model
income in a population. Phenomena such as city population
size, stock price fluctuations, and personal incomes have dis-
tributions with very long right tails. The probability density
function of the Pareto distribution is given by

f (t) = αkα

tα+1
, k ≤ t ≤ ∞. (1.27)

The mean, variance, and reliability of the Pareto distribution
are:

Mean = k/(α − 1) for > 1;
Variance = αk2/

[
(α − 1)2 (α − 2)

]
for α > 2;

Reliability =
(
k

t

)α

.

The Pareto and log normal distributions are commonly
used to model population size and economical incomes. The
Pareto is used to fit the tail of the distribution, and the log
normal is used to fit the rest of the distribution.

Rayleigh Distribution
The Rayleigh model is a flexible lifetime model that can ap-
ply to many degradation process failure modes. The Rayleigh
probability density function is

f (t) = t

σ 2
exp

(−t2
2σ 2

)
. (1.28)

The mean, variance, and reliability of the Rayleigh function
are:

Mean = σ
(π

2

) 1
2 ;

Variance =
(
2 − π

2

)
σ 2;

Reliability = e
−σ t2

2 .

Example 1.15 Rolling resistance is a measure of the energy
lost by a tire under load when it resists the force opposing its
direction of travel. In a typical car traveling at 60 miles per
hour, about 20% of the engine power is used to overcome the
rolling resistance of the tires. A tire manufacturer introduces
a newmaterial that, when added to the tire rubber compound,
significantly improves the tire rolling resistance but increases
the wear rate of the tire tread. Analysis of a laboratory test of
150 tires shows that the failure rate of the new tire increases
linearly with time (h). This is expressed as

h(t) = 0.5 × 10−8t.

The reliability of the tire after one year (8760 h) of use is

R (1 y) = e− 0.5
2 ×10−8×(8760)2 = 0.8254.

Figure 1.4 shows the resulting reliability function.

PhamDistribution
A two-parameter distribution with a Vtub-shaped hazard
rate curve was developed by Pham [3], known as loglog
distribution or Pham distribution [3, 15]. Note that the loglog
distribution with a Vtub-shaped hazard rate and the Weibull
distribution with bathtub-shaped failure rates are not the
same. For the bathtub-shaped failure rate, after an initial
“infant mortality period,” the useful life of the system begins.
During its useful life, the system fails at a constant rate. This
period is then followed by a wearout period during which
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Fig. 1.4 Rayleigh reliability function versus time
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Fig. 1.5 Pham probability density function for various values of α with
a = 2

the system failure rate slowly increases with the onset of
wearout. For the Vtub-shaped hazard rate, after the infant
mortality period, the system experiences a relatively low but
increasing failure rate. The failure rate increases due to aging.

The Pham probability density function is defined as [3]:

f (t) = αtα−1at
α

e1−αt
α

ln(a) for t > 0, a > 1, α > 0.
(1.29)

The corresponding Pham cdf and reliability function are
given by

F(t) =
∫ t

0
f (x)dx = 1 − e1−a

tα

and

R(t) = e1−a
tα

, (1.30)

respectively. The corresponding failure rate of the Pham
distribution is given by

h(t) = α ln atα−1at
α

. (1.31)

Figures 1.5 and 1.6 describe the density functions and failure
rate functions for various values of a and α.

Two-Parameter Hazard Rate Function
This is a two-parameter function that can have increasing and
decreasing hazard rates. The hazard rate h(t), the reliability
function R(t), and the pdf are, respectively, given as follows:

h(t) = nλtn−1

λtn + 1
for n ≥ 1, λ > 0, t ≥ 0,

R(t) = e− ln(λtN+1)

(1.32)
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Fig. 1.6 Pham probability density function for various values of awith
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and

f (t) = nλtn−1

λtn + 1
e− ln(λtn+1), n ≥ 1, λ > 0, t ≥ 0,

where n = shape parameter and λ = scale parameter.

Three-Parameter Hazard Rate Function
This is a three-parameter distribution that can have increas-
ing and decreasing hazard rates. The hazard rate h(t) is
given as

h(t) = λ (b+ 1) [ln (λt + α)]b

(λt + α)
,

b ≥ 0, λ > 0, α ≥ 0, t ≥ 0.

(1.33)

The reliability function R(t) for α = 1 is

R(t) = e−[ln(λt+α)]b+1

.

The probability density function f (t) is

f (t) = e−[ln(λt+α)]b+1 λ (b+ 1) [ln (λt + α)]b

(λt + α)
,

where b= shape parameter, λ = scale parameter, and α = lo-
cation parameter.

Extreme-Value Distribution
The extreme-value distribution can be used to model external
events such as floods, tornadoes, hurricanes, and high winds
in risk applications. The cdf of this distribution is given by

F(t) = e−ey for −∞ < t < ∞. (1.34)
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Cauchy Distribution
The Cauchy distribution can be applied when analyzing
communication systems where two signals are received and
one is interested in modeling the ratio of the two signals. The
Cauchy probability density function is given by

f (t) = 1

π
(
1 + t2

) for −∞ < t < ∞. (1.35)

It is worth noting that the ratio of two standard normal
random variables is a random variable with a Cauchy dis-
tribution.

Vtub-Shaped Failure Rate
Pham [14] recently presents a distribution function that char-
acterizes a Vtub-shaped failure rate function. Note that, for
the bathtub-shaped failure rate, during its useful life period
the failure rate is constant. For the Vtub-shaped failure rate,
after the infant mortality period the system will begin to
experience a rather low increasing failure rate but never be
at a constant rate due to aging. The Vtub-shaped failure rate
function h(t) is defined as

h(t) = at ln(bt) + a

b
for t > 0, a > 0, b > 0 (1.36)

Figure 1.7 shows the Vtub-shaped failure rate h(t) for
a = 0.75 and various values of b (i.e., 0.35, 0.45, and 0.55).
The corresponding probability density function f (t) and
reliability function R(t) are as follows:

f (t) =
(
at ln(bt) + a

b

)
e
−
{
at[ t2 ln(bt)− t

4+ 1
b ]

}

for t > 0, a > 0, b > 0

(1.37)
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Fig. 1.7 A Vtub-shaped failure rate for a= 0.75 and various values of
b (i.e. 0.35, 0.45, and 0.55)

and

R(t) = e−at[ t2 ln(bt)− t
4+ 1

b ] for t > 0, a > 0, b > 0
(1.38)

respectively.

Triangular Distribution
A triangular distribution (sometime called a triangle distri-
bution) is a continuous probability distribution shaped like a
triangle. It is defined by

a: the minimum value
c: the peak value (the height of the triangle)
b: the maximum value, where a ≤ c ≤ b.

The triangular probability density function is given by

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 t < a
2(t−a)

(b−a)(c−a) a ≤ t ≤ c
2(b−t)

(b−a)(b−c) c ≤ t ≤ b

0 t > b

(1.39)

The three parameters a, b, and c change the shape of the
triangle. The mean and the variance for this distribution,
respectively, are:

mean = 1

3
(a+ b+ c)

and

variance = 1

18

(
a2 + b2 + c2 − ab− ac− bc

)
.

1.4 Statistical Inference and Estimation

Inference about the values of parameters involved in statisti-
cal distributions is known as estimation. The engineer might
be interested in estimating the mean life of an electronic
device based on the failure times of a random sample placed
on lifef test. An interesting question that commonly is asked
from many practitioners is how close this estimator would
be to the true value of the parameter being estimated from a
known distribution.

The problem of “point estimation” is that of estimating
the parameters of a population, such as λ or θ from an
exponential, μ and σ 2 from a normal, etc. It is assumed that
the type of population distribution involved is known, but
the distribution parameters are unknown and they must be
estimated using collected failure data. This section is devoted
to the theory of estimation and discusses several common
estimation techniques, such as maximum likelihood, method
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1
ofmoments, least squared estimation, and Bayesianmethods.
We also discuss confidence interval and tolerance limit esti-
mation. For example, assume that n independent samples are
drawn from the exponential density function f (x; λ) = λe–λx

for x > 0 and λ > 0. Then the joint probability density function
(pdf) or sample density (for short) is given by

f (x1, λ) · f (x1, λ) · · · f (x1, λ) = λne
−λ

n∑
i−1

xi
. (1.40)

The problem here is to find a “good” point estimate of
λ, which is denoted by λ̂. In other words, we want to find a
function h(X1, X2, . . . , Xn) such that, if x1, x2, . . . , xn are the
observed experimental values of X1, X2, . . . , Xn, the value
h(x1, x2, . . . , xn) will be a good point estimate of λ. By
“good,” wemean that it possesses the following properties:

• unbiasedness
• consistency
• efficiency (minimum variance)
• sufficiency

In other words, if λ̂ is a good point estimate of λ, then one
can select a function h(X1, X2, . . . , Xn) where h(X1, X2, . . . ,
Xn) is an unbiased estimator of λ and the variance of h(X1,
X2, . . . , Xn) is a minimum.We will now present the following
definitions.

Unbiasedness
For a given positive integer n, the statistic Y = h(X1, X2, . . . ,
Xn) is called an unbiased estimator of the parameter θ if the
expectation of Y is equal to a parameter θ ; that is,

E(Y) = θ.

Consistency
The statistic Y is called a consistent estimator of the pa-
rameter θ if Y converges stochastically to a parameter θ as
n approaches infinity. If ε is an arbitrarily small positive
number when Y is consistent, then

lim
n→∞P (|Y − θ | ≤ ε) = 1.

Minimum Variance
The statistic Y is called the minimum variance unbiased
estimator of the parameter θ if Y is unbiased and the variance
of Y is less than or equal to the variance of every other
unbiased estimator of θ . An estimator that has the property
of minimum variance in large samples is said to be efficient.

Sufficiency
The statistic Y is said to be sufficient for θ if the conditional
distribution of X, given that Y = y, is independent of θ .

This is useful when determining a lower bound on the vari-
ance of all unbiased estimators. We now establish a lower-
bound inequality known as the Cramér–Rao inequality.

Cramér–Rao Inequality
Let X1, X2, . . . , Xn denote a random sample from a distribu-
tion with pdf f (x; θ ) for θ1 < θ < θ2, where θ1 and θ2 are
known. Let Y = h(X1, X2, . . . , Xn) be an unbiased estimator
of θ . The lower-bound inequality on the variance of Y, Var(Y),
is given by

Var(Y) ≥ 1

nE

[(
∂ ln f (x;θ)

∂θ

)2
] = 1

−nE
(

∂2 ln f (x;θ)

∂θ2

) . (1.41)

Theorem 1.5 An estimator θ̂ is said to be asymptotically
efficient if

√
nθ̂ has a variance that approaches the Cramér–

Rao lower bound for large n; that is,

lim
n→∞Var

(√
nθ̂

)
= 1

−nE
(

∂2 ln f (x;θ)

∂θ2

) . (1.42)

1.4.1 Parameter Estimation

Wenow discuss some basicmethods of parameter estimation,
including the method of maximum likelihood estimation
(MLE) and the method of moments. The assumption that the
sample is representative of the population will be made both
in the example and in later discussions.

Maximum Likelihood EstimationMethod
In general, one deals with a sample density

f (x1, x2, . . . , xn) = f (x1; θ) f (x2; θ) . . . f (xn; θ) ,

where x1, x2, . . . , xn are random, independent observations of
a population with density function f (x).

For the general case, we would like to find an estimate or
estimates, θ̂1, θ̂2, . . . , θ̂m (if such exist), where

f (x1, x2, . . . , xn; θ1, θ2, . . . , θm) >

f
(
x1, x2, . . . , xn; θ ′

1, θ
′
2, . . . , θ

′
m

)
.

The notation θ ′
1, θ

′
2, . . . , θ

′
n refers to any other estimates dif-

ferent to θ̂1, θ̂2, . . . , θ̂m.
Consider a random sample X1, X2, . . . , Xn from a dis-

tribution with a pdf f (x;θ ). This distribution has a vector
θ = (θ1, θ2, . . . , θm)′ of unknown parameters associated with
it, where m is the number of unknown parameters. Assuming
that the random variables are independent, then the likelihood
function, L(X; θ ), is the product of the probability density
function evaluated at each sample point
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L (X, θ) =
n∏

i=1

f (Xi; θ) , (1.43)

where X = (X1, X2, . . . , Xn). The maximum likelihood es-
timator θ̂ is found by maximizing L(X; θ ) with respect to
θ . In practice, it is often easier to maximize ln [L(X; θ )] in
order to find the vector of MLEs, which is valid because
the logarithmic function is monotonic. The log likelihood
function is given by

ln L (X, θ) =
n∏

i=1

ln f (Xi; θ) (1.44)

and is asymptotically normally distributed since it consists
of the sum of n independent variables and the central limit
theorem is implied. Since L(X;θ ) is a joint probability density
function for X1, X2, . . . , Xn, its integral must be 1; that is,

∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
L (X; θ) dX = 1.

Assuming that the likelihood is continuous, the partial deriva-
tive of the left-hand sidewith respect to one of the parameters,
θ i, yields

∂
∂θi

∫ ∞
0

∫ ∞
0 · · · ∫ ∞

0 L (X; θ) dX

= ∫ ∞
0

∫ ∞
0 · · · ∫ ∞

0
∂

∂θi
L (X; θ) dX

= ∫ ∞
0

∫ ∞
0 · · · ∫ ∞

0
∂ log L (X;θ)

∂θi
L (X; θ) dX

= E
(

∂ log L(X;θ)

∂θi

)

= E [Ui (θ)] for i = 1, 2, . . . , m,

where U(θ ) = [U1(θ ), U2(θ ), . . . Un(θ )]′ is often called the
score vector, and the vector U(θ ) has components

Ui (θ) = ∂ [log L (X; θ)]
∂θi

for i = 1, 2, . . . , m (1.45)

which, when equated to zero and solved, yields the MLE
vector θ .

Suppose that we can obtain a nontrivial function of X1,
X2, . . . , Xn, say h(X1, X2, . . . , Xn), such that, when θ is
replaced by h(X1, X2, . . . , Xn), the likelihood function L will
achieve a maximum. In other words,

L [X, h(X)] ≥ L (X, θ)

for every θ . The statistic h(X1, X2, . . . , Xn) is called a maxi-
mum likelihood estimator of θ and will be denoted as

θ̂ = h (x1, x2, . . . , xn) . (1.46)

The observed value of θ̂ is called theMLEof θ . In general, the
mechanics for obtaining theMLE can be obtained as follows:

Step 1. Find the joint density function L(X, θ )

Step 2. Take the natural log of the density ln L

Step 3. Find the partial derivatives of ln L with
respect to each parameter

Step 4. Set these partial derivatives to “zero”

Step 5. Solve for parameter(s)

Example 1.16 Let X1, X2, . . . , Xn, denote a random sample
from the normal distribution N(μ, σ 2). Then the likelihood
function is given by

L
(
X,μ, σ 2

) =
(

1

2π

) n
2 1

σ n
e
− 1

2σ2

n∑
i=1

(xi−μ)2

and

ln L = −n

2
log (2π) − n

2
log σ 2 − 1

2σ 2

n∑

i=1

(xi − μ)2.

Thus, we have

∂ ln L
∂μ

= 1

σ 2

n∑

i=1

(xi − μ) = 0,

∂ ln L
∂σ 2

= − n

2σ 2
− 1

2σ 4

n∑

i=1

(xi − μ)2 = 0.

Solving the two equations simultaneously, we obtain

μ̂ =

n∑
i=1

xi

n
,

σ̂ 2 = 1

n

n∑

i=1

(xi − x)2.

Note that the MLEs, if they exist, are both sufficient and
efficient estimates. They also have an additional property
called invariance – in other words, for an MLE of θ , μ(θ ) is
theMLE ofμ(θ ). However, they are not necessarily unbiased
(i.e., E(θ̂) = θ ). In fact, the point is that

E
(
σ̂ 2) =

(
n− 1

n

)
σ 2 �= σ 2.

Therefore, for small n, σ 2 is usually adjusted to account for
this bias, and the best estimate of σ 2 is

σ̂ 2 =
(

1

n− 1

) n∑

i=1

(xi − x)2.
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1
Sometimes it is difficult to directly obtain maximum likeli-
hood estimators by taking the partial derivatives of the log
of likelihood function as mentioned in Step 3 but need to
consider another appropriate step, which now leads to a given
example below.

Example 1.17 Let X1, X2, ..., Xn represent a random sample
from the distribution with pdf

f (x; θ) = e−(x−θ) for θ ≤ x ≤ ∞ and − ∞ < θ < ∞

The likelihood function is given by

L (θ;X) =
n∏

i=1

f (xi; θ) for θ ≤ xi ≤ ∞ all i

=
n∏

i=1

e−(xi−θ) = e
−

n∑
i=1

xi+nθ

For fixed values of x1, x2,..., xn, we wish to find the value of θ
which maximizes L(θ ; X). Here we cannot use the techniques
of calculus to maximize L(θ ; X). Note that L(θ ; X) is largest
when θ is as large as possible. However, the largest value of
θ is equal to the smallest value of Xi in the sample. Thus,

θ̂ = min {Xi} 1 ≤ i ≤ n.

Sometimes it is difficult, if not impossible, to obtain max-
imum likelihood estimators in a closed form, and therefore
numerical methods must be used to maximize the likelihood
function as we now discuss the following example.

Example 1.18 Suppose that X1, X2, . . . , Xn is a random
sample from the Weibull distribution with pdf

f (x,α, λ) = αλxα−1e−λxα .

The likelihood function is

L (X,α, λ) = αnλn
n∏

i=1

xα−1
i e

−λ
n∑
i=1

xαi
.

Then

ln L = n log α + n log λ + (α − 1)
n∑

i=1

log xi − λ

n∑

i=1

xα
i ,

∂ ln L
∂α

= n

λ
+

n∑

i=1

log xi − λ

n∑

i=1

xα
i log xi = 0,

∂ ln L
∂λ

= n

λ
−

n∑

i=1

xα
i = 0.

As noted, solutions of the above two equations for α and λ

are extremely difficult to obtain and require the application
of either graphical or numerical methods. It is sometimes
desirable to use a quick method of estimation, which leads
to a discussion of the method of moments.

Method of Moments
Here one simply sets the sample moments equal to the corre-
sponding population moments. For example, for the gamma
distribution, the mean and the variance of the distribution are,
respectively, α

β
and α

β2 . Therefore, one has the following two
equations in two unknowns:

X = α

β
,

S2 = α

β2
.

Solving these two equations simultaneously, we obtain

α = X
2

S2
,

β = X

S2
.

1.4.2 Maximum Likelihood Estimation
with Censored Data

Censored data arises when we monitor for a random variable
of interest – unit failure, for example – but the monitoring is
stopped before measurements are complete (i.e., before the
unit fails). In other words, censored observation contains only
partial information about the random variable of interest. In
this section, we consider two types of censoring. The first
type of censoring is called Type I censoring, where the event
is only observed if it occurs prior to some prespecified time.
The second type of censoring is Type II censoring, in which
the study continues until the failure of the first r units (or
components), where r is some predetermined integer (r < n).

Examples of Type II censoring are often used when testing
equipment life. Here our items are tested at the same time,
and the test is terminated when r of the n items have failed.
These approaches may save time and resources because
it may take a very long time for all of the items to fail.
Both Type I and Type II censoring arise in many reliability
applications.

For example, let us say that we have a batch of transistors
or tubes. We begin to test them all at t = 0, and record their
times to failure. Some transistors may take a long time to
burn out, and we will not want to wait that long to end the
experiment. We might stop the experiment at a prespecified
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time tc, in which case we have Type I censoring. On the
other hand, we might not know what fixed value to use for
the censoring time beforehand, so we decide to wait until a
prespecified number of units have failed, r, in which case we
have Type II censoring.

Censoring times may vary from individual to individual
or from application to application. We now discuss a general
case known as multiple censored data.

Parameter Estimate with Multiple Censored Data
The likelihood function for multiple censored data is given
by

L = f
(
t1,f,...,tr,f, t1,s,...,tm,s

)

= C
r∏

i=1

f
(
ti,f

) m∏

j=1

[
1 − F

(
tj,s

)]
,

(1.47)

where C is a constant, f (.) is the density function, and F(.) is
the distribution function. There are r failures at times t1,f, . . . ,
tr,f and m units with censoring times t1,s, . . . , tm,s.

Note that we obtain Type I censoring by simply setting
ti,f = ti,n and tj,s = t0 in the likelihood function in (1.47).
The likelihood function for Type II censoring is similar to
Type I censoring except tj,s = tr in (1.47). In other words, the
likelihood function for the first r observations from a sample
of size n drawn from the model in both Type I and Type II
censoring is given by

L = f
(
t1,n,...,tr,n

) = C
r∏

i=1

f
(
ti,n

)
[1 − F (t∗)]n−r, (1.48)

where t* = t0, the time of cessation of the test for Type I
censoring, and t* = tr, the time of the rth failure for Type II
censoring.

Example 1.19 Consider a two-parameter probability den-
sity distribution with multiple censored data and a distribu-
tion function with bathtub-shaped failure rate, as given by
[4]:

f (t) = λβtβ−1 exp
[
tβ + λ

(
1 − et

β
)]
, t, λ, β > 0

(1.49)

and

F(t) = 1 − exp
[
λ
(
1 − et

β
)]
, t, λ, β > 0, (1.50)

respectively.

Substituting the functions f (t) and F(t) into (1.49) and
(1.50) into (1.48), we obtain the logarithm of the likelihood
function:

ln L = lnC + r ln λ + r ln β +
r∑
i=1

(β − 1) ln ti

+ (m+ r) λ +
r∑
i=1

tβi −
[

r∑
i=1

λet
β

i +
m∑
j=1

λet
β

j

]
.

The function ln L can be maximized by setting the partial
derivative of ln L with respect to λ and β equal to zero, and
solving the resulting equations simultaneously for λ and β.
Therefore, we obtain

∂ ln L
∂λ

= r

λ
+ (m+ r) −

r∑
i=1

et
β

i −
m∑
j=1

et
β

j ≡ 0,

∂ ln L
∂β

= r

β
+

r∑
i=1

ln ti +
r∑
i=1

tβi ln ti

− λ

(
r∑
i=1

et
β

i tβi ln ti +
m∑
j=1

et
β

j tβj ln tj

)
≡ 0.

This implies that

λ̂ = r(
r∑
i=1

et
β̂

i +
m∑
j=1

et
β̂

j

)
− m− r

(1.51)

and that β̂ is the solution of

r
β̂

+
r∑
i=1

ln ti +
r∑
i=1

tβ̂i ln ti

= r(
r∑
i=1

et
β̂
i +

m∑
j=1

e
t
β̂
j

)
−m−r

(
r∑
i=1

et
β̂

i tβ̂i ln ti +
m∑
j=1

et
β̂

j tβ̂j ln tj

)
.

(1.52)

We now discuss two special cases.

Case 1: Type I or Type II Censored Data
From Eq. (1.48), the likelihood function for the first r obser-
vations from a sample of size n drawn from the model in both
Type I and Type II censoring is

L = f
(
t1,n,...,tr,n

) = C
r∏

i=1

f
(
ti,n

)
[1 − F (t∗)]n−r,
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1
where t* = t0, the test cessation time for Type I censoring,
and t* = tr, the time of the rth failure for Type II censoring.
Equations (1.51) and (1.52) become

λ̂ = r
r∑
i=1

et
β̂

i + (n− r) et
β̂∗ − n

,

r
β̂

+
r∑
i=1

ln ti +
r∑
i=1

tβ̂i ln ti

= r
r∑
i=1

et
β̂

i + (n− r) et
β̂∗ − n

×
(

r∑
i=1

et
β̂

i tβ̂i ln ti +
m∑
j=1

et
β̂

j tβ̂j ln tj

)

Case 2: Complete Censored Data
Simply replace r with n in (1.51) and (1.52) and ignore the tj
portions. The maximum likelihood equations for the λ and β

are given by

λ̂ = n
n∑
i=1

et
β̂

i − n
,

n

β̂
+

n∑

i=1

ln ti +
n∑

i=1

tβ̂i ln ti

= n
n∑
i=1

et
β̂

i − n
×

n∑

i=1

et
β̂

i tβ̂i ln ti.

Confidence Intervals of Estimates
The asymptotic variance–covariance matrix for the parame-
ters (λ and β) is obtained by inverting the Fisher information
matrix

Iij = E

(
− ∂2L

∂θi∂θj

)
, i, j = 1, 2, (1.53)

where θ1, θ2 = λ or β [5]. This leads to

⎛

⎝ Var
(
λ̂
)

Cov
(
λ̂, β̂

)

Cov
(
λ̂, β̂

)
Var

(
β̂
)

⎞

⎠

=

⎛

⎜⎜⎜⎝

E

(
− ∂2 lnL

∂2λ

∣∣∣
λ̂,β̂

)
E

(
− ∂2 lnL

∂λ∂β

∣∣∣
λ̂,β̂

)

E

(
− ∂2 lnL

∂β∂λ

∣∣∣
λ̂,β̂

)
E

(
− ∂2 lnL

∂2β

∣∣∣
λ̂,β̂

)

⎞

⎟⎟⎟⎠ .

(1.54)

We can obtain approximate (1 − α)100% confidence inter-
vals for the parameters λ and β based on the asymptotic
normality of the MLEs [5] as:

λ̂ ± Zα/2

√
Var

(
λ̂
)

and β̂ ± Zα/2

√
Var

(
β̂
)
, (1.55)

where Zα/2 is the upper percentile of the standard normal
distribution.

Application 1
Consider the lifetime of a part from a helicopter’s main rotor
blade. Data on lifetime of the part taken a system database
collected from October 1995 to September 1999 [3] are
shown in Table 1.2. In this application, we consider several
distribution functions for this data, including Weibull, log
normal, normal, and loglog distribution functions.

The Pham pdf with parameters a and α is

f (t) = α (ln a) tα−1at
α

e1−a
tα

for t > 0, α > 0, a > 1

and its corresponding log likelihood function (1.44) is

log L (a,α) = n log α + n ln (ln a)

+ (α − 1)

(
n∑

i=1

ln ti

)

+ ln a ·
n∑

i=1

tαi + n−
n∑

i=1

at
α
i .

We then determine the confidence intervals for parameter
estimates a and α. From the above log likelihood function,
we can obtain the Fisher information matrix H as H =(
h11 h12
h21 h22

)
, where

h11 = E

(
−∂2 log L

∂a2

)
,

h12 = h21 = E

(
−∂2 log L

∂a∂α

)
,

h22 = E

(
−∂2 log L

∂α2

)
,

The variance matrix V can be obtained as follows:

V = (H)−1

(
v11 v12
v21 v22

)
. (1.56)
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Table 1.2 Main rotor blade data

Part code Time to failure (h)

xxx-015-001-107 1634.3

xxx-015-001-107 1100.5

xxx-015-001-107 1100.5

xxx-015-001-107 819.9

xxx-015-001-105 1398.3

xxx-015-001-107 1181

xxx-015-001-107 128.7

xxx-015-001-107 1193.6

xxx-015-001-107 254.1

xxx-015-001-107 3078.5

xxx-015-001-107 3078.5

xxx-015-001-107 3078.5

xxx-015-001-107 26.5

xxx-015-001-107 26.5

xxx-015-001-107 3265.9

xxx-015-001-107 254.1

xxx-015-001-107 2888.3

xxx-015-001-107 2080.2

xxx-015-001-107 2094.3

xxx-015-001-107 2166.2

xxx-015-001-107 2956.2

xxx-015-001-107 795.5

xxx-015-001-107 795.5

xxx-015-001-107 204.5

xxx-015-001-107 204.5

xxx-015-001-107 1723.2

xxx-015-001-107 403.2

xxx-015-001-107 2898.5

xxx-015-001-107 2869.1

xxx-015-001-107 26.5

xxx-015-001-107 26.5

xxx-015-001-107 3180.6

xxx-015-001-107 644.1

xxx-015-001-107 1898.5

xxx-015-001-107 3318.2

xxx-015-001-107 1940.1

xxx-015-001-107 3318.2

xxx-015-001-107 2317.3

xxx-015-001-107 1081.3

xxx-015-001-107 1953.5

xxx-015-001-107 2418.5

xxx-015-001-107 1485.1

xxx-015-001-107 2663.7

xxx-015-001-107 1778.3

xxx-015-001-107 1778.3

xxx-015-001-107 2943.6

xxx-015-001-107 2260

xxx-015-001-107 2299.2

xxx-015-001-107 1655

xxx-015-001-107 1683.1

xxx-015-001-107 1683.1

xxx-015-001-107 2751.4

The variances of a and α are

Var(a) = v11 Var (α) = v22.

One can approximately obtain the (1 − β)100% confidence
intervals for a and α based on the normal distribution as[
â− z β

2

√
v11, â+ z β

2

√
v11

]
and

[
α̂ − z β

2

√
v22, α̂ + z β

2

√
v22

]
,

respectively, where vij is given in (1.56) and zβ is(
1 − β

2

)
100% of the standard normal distribution. Having

obtained â and α̂, the MLE of the reliability function can be
computed as:

R̂(t) = e1−â
tα̂

. (1.57)

Let us define a partial derivative vector for reliability R(t) as:

v [R(t)] =
(

∂R(t)

∂a

∂R(t)

∂α

)

Then the variance of R(t) can be obtained as:

Var [R(t)] = v [R(t)]V
(
v [R(t)]

)T
,

where V is given in (1.56).
One can approximately obtain the (1 − β)100% confi-

dence interval for R(t) as

[
R̂(t) − zβ

√
Var [R(t)], R̂(t) + zβ

√
Var [R(t)]

]
.

The MLE parameter estimations for the loglog distribution
and its corresponding parameters, based on the dataset shown
in Table 1.2, are:

α̂ = 1.1075, Var
(
α̂
) = 0.0162,

95%CI for α̂ : [0.8577, 1.3573] ;
â = 1.0002, Var

(
â
) = 2.782e−08,

95%CI for a : [0.9998, 1.0005] .

Similarly, the C.I. for R(t) can be obtained directly using
(1.53).

1.4.3 Statistical Change-Point Estimation
Methods

The change-point problem has been widely studied in re-
liability applications in areas such as biological sciences,
survival analysis, and environmental statistics.

Assume that there is a sequence of random variables X1,
X2, . . . , Xn, that represent the inter-failure times, and that
an index change-point τ exists, such that X1, X2, . . . , Xτ
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have a common distribution F with a density function f (t)
and Xτ+1, Xτ+2, . . . , Xn have a distribution G with a den-
sity function g(t), where F �= G. Consider the following
assumptions:

1. There is a finite but unknown number of units N to be
tested.

2. At the beginning, all of the units have the same lifetime
distributionF. After τ failures are observed, the remaining
(N − τ ) items have the distribution G. The change-point
τ is assumed unknown.

3. The sequence {X1,X2, . . . ,Xτ } is statistically independent
of the sequence {Xτ + 1,Xτ + 2, . . . ,Xn}.

4. The lifetime test is performed according to the Type II
censoring approach, in which the number of failures n is
predetermined.

Note that the total number of units to put up for testing N
can be determined in advance in hardware reliability testing.
However, in software reliability testing, the parameter N can
be defined as the initial number of faults in the software, and
it can be considered to be an unknown parameter. Let T1,
T2, . . . , Tn be the arrival times for sequential failures. Then

T1 = X1,

T2 = X1 + X2,

...

Tn = X1 + X2 + · · ·Xn.

(1.58)

The failure times T1, T2, . . . , Tτ are the first τ order statistics
of a sample of size N from the distribution F. The failure
times Tτ+1, Tτ+2, . . . , Tn are the first (n − τ ) order statistics
of a sample of size (N − τ ) from the distribution G.

Example 1.20 The Weibull change-point model of the life-
time distributions F and G with parameters (λ1, β1) and (λ2,
β2), respectively, can be expressed as:

F(t) = 1 − exp
(−λ1t

β1
)
, (1.59)

G(t) = 1 − exp
(−λ2t

β2
)
. (1.60)

Assume that the distributions belong to parametric families
{F(t| θ1), θ1 ∈ �1} and {G(t| θ2), θ2 ∈ �2}. Assume that T1,
T2, . . . , Tτ are the first τ order statistics of a sample of size
N from the distribution {F(t| θ1), θ1 ∈ �1} and that Tτ+1,
Tτ+2, . . . , Tn are the first (n− τ ) order statistics of a sample of
size (N − τ ) from the distribution {G(t| θ2), θ2 ∈ �2}, where
N is unknown. The log likelihood function can be expressed
as follows [6]:

L (τ , N, θ1, θ2|T1, T2, . . . , Tn)
=

n∑
i=1

(N − i+ 1) +
τ∑
i=1

f (Ti|θ1)

+
n∑

i=τ+1
g (Ti|θ2) + (N − τ) log [1 − F (Tτ |θ1)]

+ (N − n) log [1 − G (Tn|θ2)] .

(1.61)

If the parameter N is known in which where hardware relia-
bility is commonly considered, for example, then the likeli-
hood function is given by

L (τ , N, θ1, θ2|T1, T2, . . . , Tn)

+
τ∑

i=1

f (Ti|θ1) +
n∑

i=τ+1

g (Ti|θ2)

+ (N − τ) log [1 − F (Tτ |θ1)] + (N − n)

log [1 − G (Tn|θ2)] .

The maximum likelihood estimator (MLE) of the change-
point value τ̂ and (N̂, θ̂1, θ̂2) can be obtained by taking
partial derivatives of the log likelihood function in (1.61)
with respect to the unknown parameters that maximize the
function. It should be noted that there is no closed form for
τ̂ , but it can be obtained by calculating the log likelihood for
each possible value of τ , 1 ≤ τ ≤ (n − 1), and selecting the
value that maximizes the log likelihood function.

Application 2: A Software Model with a Change
Point
In this application, we examine the case where the sample
size N is unknown. Consider a software reliability model
developed by Jelinski andMoranda in 1972, often called the
Jelinski–Moranda model. The assumptions of the model are
as follows:

1. There are N initial faults in the program.
2. A detected fault is removed instantaneously and no new

fault is introduced.
3. Each failure caused by a fault occurs independently and

randomly in time according to an exponential distribution.
4. The functions F and G are exponential distributions with

failure rate parameters λ1 and λ2, respectively.

Based on these assumptions, the inter-failure times X1,
X2, . . . , Xn are independently exponentially distributed.
Specifically, Xi = Ti − Ti−1, i= 1, 2, . . . τ , are exponentially
distributed with parameter λ1(N − i + 1), where λ1 is
the initial fault detection rate of the first τ failures, and
Xj = Tj − Tj−1, j = τ + 1, τ + 2, . . . n are exponentially
distributed with parameter λ2(N − τ − j + 1), where λ2 is
the fault detection rate of the first n − τ failures. If λ1 = λ2,
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it means that each fault removal is the same and that the
change-point model becomes the Jelinski–Moranda software
reliability model [7].

TheMLEs of the parameters (τ ,N, λ1, λ2) can be obtained
by solving the following equations simultaneously:

λ̂1 = τ
∑τ

i=1

(
N̂ − i+ 1

)
xi
, (1.62)

λ̂2 = (n− τ)
∑n

i=τ+1

(
N̂ − i+ 1

)
xi
, (1.63)

n∑

i=1

1(
N̂ − i+ 1

) = λ̂1

τ∑

i=1

xi + λ̂2

n∑

i=τ+1

xi. (1.64)

To illustrate the model, we use the dataset shown in
Table 1.3 to obtain the unknown parameters (τ , N, λ1, λ2)
using (1.62)–(1.64). The data in Table 1.3 [8] shows the
successive inter-failure times for a real-time command and
control system. The table reads from left to right in rows,
and the recorded times are execution times, in seconds. There
are 136 failures in total. Figure 1.8 plots the log-likelihood
function versus the number of failures. The MLEs of the
parameters (τ , N, λ1, λ2) with one change point are given by

τ̂ = 16, N̂ = 145, λ̂1 = 1.1 × 10−4,

λ̂2 = 0.31 × 10−4.

If we do not consider a change point in the model, the
MLEs of the parameters N and λ, can be given as

N̂ = 142, λ̂ = 0.35 × 10−4.

From Fig. 1.8, it is clear that it is worth considering change
points in reliability functions.

Table 1.3 Successive inter-failure times (in s) for a real-time com-
mand system

3 30 113 81 115 9 2 91 112 15

138 50 77 24 108 88 670 120 26 114

325 55 242 68 422 180 10 1146 600 15

36 4 0 8 227 65 176 58 457 300

97 263 452 255 197 193 6 79 816 1351

148 21 233 134 357 193 236 31 369 748

0 232 330 365 1222 543 10 16 529 379

44 129 810 290 300 529 281 160 828 1011

445 296 1755 1064 1783 860 983 707 33 868

724 2323 2930 1461 843 12 261 1800 865 1435

30 143 108 0 3110 1247 943 700 875 245

729 1897 447 386 446 122 990 948 1082 22

75 482 5509 100 10 1071 371 790 6150 3321

1045 648 5485 1160 1864 4116

–964

–966

–968

–970

–972

–974
0 20 40 60 80 100 120

Log likelihood function

Change-point

Fig. 1.8 The log likelihood function versus the number of failures

1.4.4 Goodness-of-Fit Techniques

The problem discussed here is one of comparing an observed
sample distribution with a theoretical distribution. Practi-
tioners often wonder how to test some hypothesis about the
distribution of a population. If the test is concerned with
the agreement between the distribution of a set of observed
sample values and a theoretical distribution, we call it a test
of “goodness of fit.”

The basic question in validating distribution models is
whether the shape of the fitted model corresponds to that
of the data. To do that, we may just simply make a direct
comparison of the observed data with what we expect to see
from the fitted distribution model. Two common techniques
that will be discussed are the χ2 goodness-of-fit test and the
Kolmogorov–Smirnov “d” test.

Chi-Squared Test
The chi-square test often requires large samples and is ap-
plied by comparing the observed frequency distribution of
the sample to the expected value under the assumption of
the distribution. More specifically, consider a large sample
of size N. Let a0 < a1 < ... < ak be the upper points of
k subintervals of the frequency distribution. The following
statistic

χ2 =
k∑

i=1

(
xi − μi

σ i

)2

(1.65)

has a chi-squared (χ2) distribution with k degrees of freedom.
The procedure used for the chi-squared test is as follows:

1. Divide the sample data into mutually exclusive cells (nor-
mally 8–12) such that the range of the random variable is
covered.

2. Determine the frequency, fi, of sample observations in
each cell.
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3. Determine the theoretical frequency, Fi, for each cell (the

area under density function between cell boundaries Xn –
total sample size). Note that the theoretical frequency for
each cell should be greater than 1. This step normally
requires estimates for the population parameters, which
can be obtained from the sample data.

4. Form the statistic

A =
k∑

i=1

(fi − Fi)
2

Fi
. (1.66)

5. From the χ2 tables, choose a value of χ2 with the desired
significance level and degrees of freedom (= k − 1 − r,
where r is the number of population parameters esti-
mated).

6. Reject the hypothesis that the sample distribution is the
same as the theoretical distribution if

A > χ2
1−α,k−1−r,

where α is called the significance level.

Example 1.21 Given the data in Table 1.4, can the data be
represented by the exponential distribution with a signifi-
cance level of α?

From the above calculation, λ̂ = 0.00263, Ri = e−λti and
Qi = 1 − Ri. Given that the significance level α is 0.1, from
(1.66) we obtain

A =
11∑

i=1

(fi − Fi)
2

Fi
= 6.165.

From Table 1.11 in Appendix A, the value of χ2 with nine
degrees of freedom and α = 0.1 is 14.68; that is,

χ2
9,0.1 = 14.68.

Since S = 6.165 < 14.68, we would not reject the hypothesis
of an exponential with λ = 0.00263.

Table 1.4 Sample observations for each cell boundary

Cell boundaries fi Qi = (1 − Ri) 60 Fi = Qi − Qi−1

0–100 10 13.86 13.86

100–200 9 24.52 10.66

200–300 8 32.71 8.19

300–400 8 39.01 6.30

400–500 7 43.86 4.85

500–600 6 47.59 3.73

600–700 4 50.45 2.86

700–800 4 52.66 2.21

800–900 2 54.35 1.69

900–1000 1 55.66 1.31

>1000 1 58.83 2.17

If in the statistic

A =
k∑

i=1

(
fi − Fi√

Fi

)2

,

(
fi − Fi√

Fi

)

is approximately normal for large samples, then A also has a
χ2 distribution. This is the basis for the goodness-of-fit test.

Kolmogorov–Smirnov (KS) Test
Both the χ2 and “KS” tests are nonparametric tests. However,
the χ2 test largely assumes sample normality of the observed
frequency about its mean, while “KS” assumes only a con-
tinuous distribution. Let X1 ≤ X2 ≤ X3 ≤ . . . ≤ Xn denote
the ordered sample values. Define the observed distribution
function, Fn(x), as:

Fn(X) =
⎧
⎨

⎩

0 for x ≤ x1
i
n for xi < x ≤ xi+1

1 for x > xn

.

Assume the testing hypothesis

H0 : F(x) = F0(x),

where F0(x) is a given continuous distribution and F(x) is an
unknown distribution. Let

dn = sup
−∞<x<∞

| Fn(x) − F0(x) |. (1.67)

Since F0(x) is a continuous increasing function, we can
evaluate | Fn(x) − F0(x) | for each n. If dn ≤ dn,α , then we
will not reject the hypothesis H0; otherwise, we will reject it
when dn > dn,α . The value of dn,α can be found in Table 1.7
in Appendix A, where n is the sample size and a is the level
of significance.

Example 1.22 Determine whether the following failure data
(in days) of a system:

10.50, 1.75, 6.10, 1.30, 15.00, 8.20, 0.50, 20.50, 11.05, 4.60

be represented as a sample from an exponential population
distribution with constant rate λ = 0.20 failures per day at
the (α =) 5% level of the significance using KS test.

Under the hypothesis that failure times are exponential
distribution, so the theoretical pdf and cdf are given by:

f (x) = 0.2e−0.2x for x > 0

and

F(x) = 1 − e−0.2x
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Table 1.5 The observed and theoretical cdf values

Failure time x Fn(x) F0(x) |Fn(x) − F0(x)|
0.50 0.10 0.0952 0.0048

1.30 0.20 0.2289 0.0289

1.75 0.30 0.2953 0.0047

4.60 0.40 0.6015 0.2015

6.10 0.50 0.7048 0.2048

8.20 0.60 0.8061 0.2061

10.50 0.70 0.8776 0.1776

11.05 0.80 0.8903 0.0903

15.00 0.90 0.9503 0.0503

20.50 1.00 0.9835 0.0165

respectively. From Table 1.5, the maximum difference Dn is
0.2061.

From Table 1.7 in Appendix A, here n = 10 and α = 5%,
then we obtain the critical value dn,α = 0.409. Since
Dn ≤ dn,α , therefore the null hypothesis, that failure times
are exponentially distributed with constant rate λ = 0.20,
cannot be rejected at the 5% level of significance.

1.4.5 Least Squares Estimation

One common approach to curve fitting, which is unrelated to
normal regression theory and MLE estimates of coefficients
but uses identical formulae, is called the method of least
squares. This method is based on minimizing the sum of
the squared distances from the best fit line to the actual
data points. It just so happens that finding the MLEs for the
coefficients of the regression line also involves this sum of
squared distances.

Normal Linear Regression
Regression considers the distribution of one variable as a
function of another when the other variable is fixed at each
of several levels. In the normal bivariate case, consider the
distribution of X as a function of given values of Z where
X = α + βZ. Consider a sample of n observations (xi, zi). We
can obtain the likelihood and its natural log for the normal
distribution as follows:

f (x1, x2, . . . xn)

= 1

2π
n
2

(
1

σ 2

) n
2

e
− 1

2σ2

n∑
i=1

(xi−α−βzi)
2

ln L = −n

2
log 2π − n

2
log σ 2

− 1

2σ 2

n∑

i=1

(xi − α − βzi)
2.

Taking the partial derivatives of ln L with respect to α and β,
we have

∂ ln L
∂α

=
n∑
i=1

(xi − α − βzi)
2 = 0,

∂ ln L
∂β

=
n∑
i=1

zi (xi − α − βzi) = 0.

The solutions to the simultaneous equations are

α̂ = X − βZ,

β̂ =

n∑
i=1

(
Xi − X

) (
Zi − Z

)

n∑
i=1

(
Zi − Z

)2 .
(1.68)

Least Squared Straight Line Fit
Assume that there is a linear relationship between X and
E(Y | x); that is, that E(Y | x) = a + bx. Given a set of data,
we want to estimate the coefficients a and b that minimize
the sum of the squares. Suppose that the desired polynomial,
p(x), is written as

m∑

i=0

aix
i,

where a0, a1, . . . , am are to be determined. The method of
least squares chooses as “solutions” those coefficients that
minimize the sum of the squares of the vertical (y) distances
from the data points to the presumed polynomial. This means
that the “best” polynomial is the one whose coefficients
minimize the function L, where

L =
n∑

i=1

[yi − p(xi)]
2
.

Here, wewill only treat the linear case, whereX= α + βZ.
The procedure for higher-order polynomials is identical,
although the computations become much more tedious. As-
sume a straight line of the form X = α + βZ. For each
observation (xi, zi): Xi = α + βZi, let

Q =
n∑

i=1

(xi − α − βzi)
2.

We wish to find estimates for α and β that minimize Q.
Taking partial differentials, we obtain

∂Q

∂α
= −2

n∑
i=1

(xi − α − βzi) = 0,

∂Q

∂β
= −2

n∑
i=1

zi (xi − α − βzi) = 0.

Note that the above are the same as the MLE equations for
normal linear regression. Therefore, we obtain the following
results:
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α̂ = x− βz,

β̂ =

n∑
i=1

(xi − x) (zi − z)

n∑
i=1

(zi − z)2
.

(1.69)

The above gives an example of least squares applied to a
linear case. The same pattern applies for higher-order curves
with 3, 4, and so on solutions.

1.4.6 Interval Estimation

A point estimate is sometimes inadequate at providing an
estimate for an unknown parameter, since it rarely coincides
with the true value of the parameter. An alternative way is to
obtain a confidence interval estimation of the form [θL, θU]
where θL is the lower bound and θU is the upper bound.

Point estimates can become more useful if some measure
of their error is given; in other words, if some kind of
tolerance for their high and low values is given. Thus, if an
interval estimator is [θL, θU] with a given probability (1− α),
then θL and θU are called the 100 (l− α)% confidence limits
for the given parameter θ , and the interval between them is a
100 (l− α)% confidence interval, while (1 − α) is called the
confidence coefficient.

Confidence Intervals for Normal Parameters
The one-dimensional normal distribution has two parame-
ters: meanμ and variance σ 2. The simultaneous employment
of both parameters in a confidence statement concerning
percentages of the population will be discussed in the next
section on tolerance limits. Hence, individual confidence
statements about μ and σ 2 will be discussed here.

Confidence Limits for a Meanμwith a Known σ 2

It is easy to show that the statistic

Z = X − μ

σ/
√
n

is a standard normal distribution, where

X = 1

n

n∑

i=1

Xi.

Hence, a 100 (l − α)% confidence interval for the mean μ is
given by

P

[
X − Z α

2

σ√
n

< μ < X + Z α
2

σ√
n

]
= 1 − α. (1.70)

In other words,

μL = X − Z α
2

σ√
n

and μU = X + Z α
2

σ√
n
.

Example 1.23 Draw a sample of size 4 from a normal
distribution with a known variance = 9, say x1 = 2, x2 = 3,
x3 = 5, and x4 = 2. Determine the location of the true mean
(μ). The sample mean can be calculated as

x =

n∑
i=1

xi

n
= 2 + 3 + 5 + 2

4
= 3.

Assuming that α = 0.05 and, from the standard normal
distribution (Table 1.8 in Appendix A), Z0.025 = 1.96, then
we obtain

P
[
3 − 1.96 3√

4
< μ < 3 + 1.96 3√

4

]
= 0.95,

P [0.06 < μ < 5.94] = 0.95.

This example shows that there is a 95% probability that the
true mean is somewhere between 0.06 and 5.94. Now, μ is
a fixed parameter and does not vary, so how do we interpret
the probability? If samples of size 4 were to be repeatedly
drawn, a different set of limits would be constructed each
time. If this is the case, the interval becomes the random
variable and the interpretation is that, for 95% of the time, the
interval constructed in this way will contain the true (fixed)
parameter.

Confidence Limits for a Meanμwith an Unknown σ 2

Let

S =
√√√√ 1

n− 1

n∑

i=1

(
Xi − X

)2
. (1.71)

It can be shown that the statistic

T = X − μ
S√
n

has a t distribution with (n − 1) degrees of freedom (see
Table 1.9 in Appendix A). Thus, for a given sample mean
and sample standard deviation, we obtain

P
[|T| < t α

2 ,n−1
] = 1 − α.

Hence, a 100 (1 − α)% confidence interval for the mean μ is
given by
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p

[
X − t α

2 ,n−1
S√
n

< μ < X + t α
2 ,n−1

S√
n

]

= 1 − α.

(1.72)

Example 1.24 The variability of a new product was investi-
gated. An experiment was run using a sample of size n= 25;
the sample mean was found to be X = 50 and the sample
variance S2 = 16. From Table 1.9 in Appendix A, t α

2 ,n−1 =
t0.025,24 = 2.064. The 95% confidence limit for μ is given by

P
[
50 − 2.064

√
16
25 < μ

< 50 + 2.064
√

16
25

]
= 0.95,

P [48.349 < μ < 51.651] x = 0.95.

Note that, for one-sided limits, one should choose tα , or t1−α .

Confidence Limits on σ 2

Note that nσ̂ 2/σ 2 has a χ2 distribution with (n − 1) degrees
of freedom. Correcting for the bias in σ̂ 2, it is clear that
(n− 1) σ̂ 2/σ 2 has this same distribution. Hence,

P

[
χ2

α
2 ,n−1 <

(n− 1) S2

σ 2
< χ2

1− α
2 ,n−1

]
= 1 − α

or

P

[∑
(xi − x)2

χ2
1− α

2 ,n−1

< σ 2 <

∑
(xi − x)2

χ2
α
2 ,n−1

]
= 1 − α. (1.73)

Again, for one-sided limits, one should choose χ2(α) or
χ2(1 − α).

Confidence Intervals for Exponential Parameters
The pdf and cdf for the exponential distribution are

f (x) = λe−λx, x > 0, λ > 0

and

F(x) = 1 − e−λx,

respectively. It was shown that the distribution of a function
of the estimate

λ̂ = r
n∑
i=1

xi + (n− r) xr

(1.74)

derived from a test of n identical components with common
exponential failure density (failure rate λ), whose testing was
stopped after the rth failure, was chi-squared (χ2), i.e.,

2r
λ

λ̂
= 2λT
(
χ2 distribution with 2r degrees of freedom

)
,

where T is the total time accrued by all units. Knowing the
distribution of 2λT allows us to obtain the confidence limits
on the parameter as:

P
[
χ2
1− σ

2 ,2r
< 2λT < χ2

α
2 ,2r

]
= 1 − α

or, equivalently, that

P

[
χ2
1− α

2 ,2r

2T
< λ <

χ2
α
2 ,2r

2T

]
= 1 − α.

This means that in (1 − α)% of the samples of a given size
n, the random interval

(
χ2
1− α

2 ,2r

2T
,
χ2

α
2 ,2r

2T

)

will contain a population of constant failure rate. For θ = 1/λ
or the MTBF, the above confidence limits change to

P

[
2T

χ2
α
2 ,2r

< θ <
2T

χ2
1− α

2 ,2r

]
= 1 − α.

If testing is stopped at a fixed time rather than a fixed number
of failures, the number of degrees of freedom in the lower
limit increases by two. Table 1.6 shows the confidence limits
for θ , the mean of the exponential density.

Confidence Intervals for Binomial Parameters
Consider a sequence of n Bernoulli trials with k successes
and (n − k) failures. We now determine one-sided upper and
lower and two-sided limits on the parameter p, the probability
of success. For the lower limit, the binomial sum is set up
such that the probability of k or more successes with a true p
as low as pL is only α/2. This means that the probability of
k or more successes with a true p higher than pL is

(
1 − α

2

)
,

such that

Table 1.6 Confidence limits for θ

Confidence limits Fixed number of failures Fixed time

One-sided lower limit 2T
χ2

α,2r

2T
χ2

α,2r+2

One-sided upper limit 2T
χ2
1−α,2r

2T
χ2
1−α,2r

Two-sided limits 2T
χ2

α/2,2r
, 2T

χ2
1−α/2,2r

2T
χ2

α/2,2r+2
, 2T

χ2
1−α/2,2r
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1
n∑

i=k

(
n
i

)
piL(1 − pL)

n−i = α

2
.

Similarly, the binomial sum for the upper limit is

n∑

i=k

(
n
i

)
piU(1 − pU)n−i = α

2

or, equivalently,

k−1∑

i=0

(
n
i

)
piU(1 − pU)n−i = α

2
.

Solving for pL and pU in the above equations,

P [pL < p < pU] = 1 − α.

For one-sided limits, merely change α/2 to α.

Example 1.25 Given n = 100 with 25 successes, and 75
failures, an 80% two-sided confidence limit on p can be
obtained as follows:

100∑
i=25

(
100
i

)
piL(1 − pL)

100−i = 0.10,

24∑
i=0

(
100
i

)
piU(1 − pU)100−i = 0.10.

Solving the above two equations simultaneously, we obtain

pL ≈ 0.194 and pU ≈ 0.313,

P [0.194 < p < 0.313] = 0.80.

Continuing with Example 1.25 above, we now find an 80%
one-sided confidence limit on p.

We start by setting the top equation to 0.20 and
solving for pL. It is then easy to obtain pL = 0.211 and
P[p > 0.211] = 0.80.

Let us now define p = k/n, the number of successes
divided by the number of trials. For large values of n and if
np > 5 and n(1 − p) > 5, and from the central limit theorem
[9], the statistic

Z = (p− p)√
p(1−p)

n

approximates to the standard normal distribution. Hence

P
[−z α

2
< Z < z α

2

] = 1 − α.

Then

P

[
p− z α

2

√
p(1−p)

n < p

< p+ z α
2

√
p(1−p)

n

]
= 1 − α.

Example 1.26 Find the two-sided confidence limit for
n = 900, k = 180, and α = 0.05. Then we obtain
p = 180/900 = 0.2 and

P

[
0.2 − 1.96

√
0.2(0.8)
900 < p

< 0.2 + 1.96
√

0.2(0.8)
900

]
= 0.95,

P [0.174 < p < 0.226] = 0.95.

Confidence Intervals for Poisson Parameters
Limits for the Poisson parameters are completely analogous
to those for the binomial distribution except that the sample
space is denumerable instead of finite. The lower and upper
limits can be solved simultaneously in the following equa-
tions:

∞∑
i=k

λiLe
−λL

i! = α
2 ,

∞∑
i=k

λiUe
−λU

i! = 1 − α
2 ,

or, equivalently,

∞∑
i=k

λiLe
−λL

i! = α
2 ,

k−1∑
i=0

λiUe
−λU

i! = α
2 .

The one-sided limits are constructed in the same way as for
binomial limits.

1.4.7 Nonparametric Tolerance Limits

Nonparametric tolerance limits are based on the smallest
and largest observation in the sample, designated XS and
XL, respectively. Due to their nonparametric nature, these
limits are quite insensitive, and obtaining precisions similar
to the parametric methods necessitates much larger samples.
An interesting question here is to determine the sample size
required to include at least 100 (l − α)% of the population
between XS and XL with a given probability y.

For two-sided tolerance limits, if (1 − α) is the minimum
proportion of the population contained between the largest
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observation XL and the smallest observation XS with a confi-
dence (1 − γ ), then it can be shown that

n(1 − α)n−1 − (n− 1) (1 − α)n = γ.

Therefore, the number of observations required is given by

n =
(

(2 − α)

4α
χ2
1−γ ,4 + 1

2

)
+ 1, (1.75)

where a value of χ2
1−γ ,4 is given in Table 1.11 in Appendix A.

Example 1.27 Determine the tolerance limits that include at
least 90% of the population with probability 0.95. Here,

α = 0.1, γ = 0.95 and χ2
0.05,4 = 9.488.

Therefore, a sample of size

n =
[
(2 − 0.1)

4(0.1)
(9.488) + 1

2

]
+ 1 = 46

is required. For a one-sided tolerance limit, the number of
observations required is given by

n =
(

log (1 − γ )

log (1 − α)

)
+ 1.

Example 1.28 As in Example 1.27, we wish to find a lower
tolerance limit; that is, the number of observations required
such that the probability is 0.95 that at least 90% of the
population will exceed XS. This is given by

n =
(

log (1 − 0.95)

log (1 − 0.1)

)
+ 1 = 30.

One can easily generate a table containing the sample size
required to include a given percentage of the population
between XS and XL with a given confidence, or the sample
size required to include a given percentage of the population
above or below XS or XL, respectively.

1.4.8 Sequential Sampling

A sequential sampling scheme is one in which items are
drawn one at a time and the results at any stage determine
whether sampling or testing should stop. Thus, any sampling
procedure for which the number of observations is a random
variable can be regarded as sequential sampling. Sequential
tests derive their name from the fact that the sample size is
not determined in advance, but allowed to “float” with a de-
cision (accept, reject, or continue test) after each trial or data
point.

In general, let us consider the hypothesis

H0 : f (x) = f0(x) versus H1 : f (x) = f1(x).

For an observational test, say X1, if X1 ≤ A, then we will
accept the testing hypothesis [H0: f (x) = f0(x)]; if X1 ≥ A
we will reject H0 and accept HI : f (x) = f1(x). Otherwise, we
will continue to perform at least one more test. The interval
X1 ≤ A is called the acceptance region. The interval X1 ≥ A
is called the rejection or critical region.

A “good” test is one that makes the α and β errors as small
as possible where

P {Type I error} = P {Reject H0|H0 is True} = α

P {Type II error} = P {Accept H0|H0 is False} = β

However, there is not much freedom to do this without
increasing the sample size. A common procedure is to fix the
β error and then choose a critical region to minimize the error
or to maximize the “power” (power= 1− β) of the test, or to
choose the critical region so as to equalize the α and β errors
to reasonable levels.

One criterion (similar to the MLE) used to construct tests
is called the “probability ratio,” which is the ratio of the sam-
ple densities under H1/H0. Consider the ratio of probabilities

λm =

n∏
i=1

f1 (xi)

n∏
i=1

f0 (xi)
> k. (1.76)

Here, x1, x2, . . . , xn are n independent random observations
and k is chosen to give the desired a error.

Recall from the MLE discussion in Sect. 1.4.1 that f1(x1),
f1(x2), . . . , f1(xn) are maximized under H1 when the parame-
ter(s), e.g., θ = θ1 and similarly f0(x1), f0(x2), . . . , f0(xn) are
maximized when θ = θ0. Thus, the ratio will become large if
the sample favors H1 and will become small if the sample
favors H0. Therefore, the test will be called a sequential
probability ratio test if we

1. Stop sampling and reject H0 as soon as λm ≥ A
2. Stop sampling and accept H0 as soon as λm ≤ B
3. Continue sampling as long as B < λm < A, where A > B

The selection of A and B using the above test, as suggested
byWald (see [9]), can be determined as follows:

B = β

1 − α
and A = 1 − β

α

The bases for α and β are therefore:

P [λm > A|H0] = α

P [λm < A|H1] = β
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1
1.4.9 BayesianMethods

The Bayesian approach to statistical inference is based on a
theorem first presented by Thomas Bayes. To demonstrate
the approach, let X have a pdf f (x), which is dependent
on θ . In the traditional statistical inference approach, θ is
an unknown parameter, and hence is a constant. We now
describe our prior supposition for the value of θ by a pdf
of h(θ ). This amounts to quantitatively assessing subjective
judgment and should not be confused with the so-called
objective probability assessment derived from the long-term
frequency approach. Thus, θ will now essentially be treated
as a random variable θ with a pdf of h(θ ).

Consider a random sample X1, X2, . . . , Xn from f (x) and
define a statistic Y as a function of this random sample. Then
there exists a conditional pdf g(y | θ ) of Y for a given θ . The
joint pdf for y and θ is

f (θ , y) = h(θ) g (y|θ) .

If θ is continuous, then

f1(y) =
∫

θ

h (θ) g (y|θ)dθ

is the marginal pdf for the statistic y. Given the information
y, the conditional pdf for θ is

k (θ |y) = h (θ) g (y|θ)

f1(y)
for f1(y) > 0

= h (θ) g (y|θ)∫

θ

h (θ) g (y|θ) dθ

If θ is discrete, then

f1(y) =
∑

k

P (θk)P (y|θk)

and

P (θi|yi) = P (θk)P (yi|θi)∑
k
P (θk)P

(
yj|θk

)

where P(θ j) is the prior probability of event θ i and P(θ j | yj) is
the posterior probability of event yj given θ i. This is simply
a form of Bayes’ theorem. Here, h(θ ) is the prior pdf that
expresses our belief about the value of θ before the data
(Y = y) became available. Then k(θ | y) is the posterior pdf,
given the data (Y = y).

Note that the difference in the shape of the prior pdf h(θ )
compared to the posterior pdf k(θ | y) due to the information

is a result of the product of g(y | θ ) and h(θ ), because fl(y)
is simply a normalization constant for a fixed y. The idea of
reliability is to take “prior” data and combine it with current
data to gain a better estimate or confidence interval or test
than would be possible with either on their own. As more
current data is acquired, the prior data is “washed out” [1].

1.5 Further Reading

The reader interested in a deeper understanding of advanced
probability theory and stochastic processes should note the
following citations, which refer to highly recommended
books: [9–13].

Appendix A: Distribution Tables (Tables 1.7,
1.8, 1.9, 1.10, and 1.11)

Table 1.7 Critical values dn,α for the Kolmogorov–Smirnov test

n/α 0.2 0.1 0.05 0.02 0.01

1 0.900 0.950 0.975 0.990 0.995

2 0.684 0.776 0.842 0.900 0.929

3 0.565 0.636 0.708 0.785 0.829

4 0.493 0.565 0.624 0.689 0.734

5 0.447 0.509 0.563 0.627 0.669

6 0.410 0.468 0.519 0.577 0.617

7 0.381 0.436 0.483 0.538 0.576

8 0.358 0.410 0.454 0.507 0.542

9 0.339 0.387 0.430 0.480 0.513

10 0.323 0.369 0.409 0.457 0.489

11 0.308 0.352 0.391 0.437 0.468

12 0.296 0.338 0.375 0.419 0.449

13 0.285 0.325 0.361 0.404 0.432

14 0.275 0.314 0.349 0.390 0.418

15 0.266 0.304 0.338 0.377 0.404

16 0.258 0.295 0.327 0.366 0.392

17 0.250 0.286 0.318 0.355 0.381

18 0.244 0.279 0.309 0.346 0.371

19 0.237 0.271 0.301 0.337 0.361

20 0.232 0.265 0.294 0.329 0.352

21 0.226 0.259 0.287 0.321 0.344

22 0.221 0.253 0.281 0.314 0.337

23 0.216 0.247 0.275 0.307 0.330

24 0.212 0.242 0.264 0.301 0.323

25 0.208 0.238 0.264 0.295 0.317

26 0.204 0.233 0.259 0.290 0.311

27 0.200 0.229 0.254 0.284 0.305

28 0.197 0.225 0.250 0.279 0.300

29 0.193 0.221 0.246 0.275 0.295

30 0.190 0.218 0.242 0.270 0.281
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Table 1.8 Cumulative areas under the standard normal distribution

Z 0 1 2 3 4 5 6 7 8 9

−3.0 0.0013 0.0010 0.0007 0.0005 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000

−2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

−2.2 0.0139 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110

−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0238 0.0233

−1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0300 0.0294

−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0570 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0722 0.0708 0.0694 0.0681

−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

−0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148

−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9430 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9648 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9700 0.9706

(continued)
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1
Table 1.8 (continued)

Z 0 1 2 3 4 5 6 7 8 9

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9874 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.000

Table 1.9 Percentage points for the t-distribution (tα,r)

r/α 0.100 0.050 0.025 0.01 0.005 0.0025 0.001

1 3.078 6.314 12.706 31.821 63.657 127.32 318.310

2 1.886 2.920 4.303 6.965 9.925 14.089 23.326

3 1.638 2.353 3.182 4.541 5.841 7.453 10.213

4 1.533 2.132 2.776 3.747 4.604 5.598 7.173

5 1.476 2.015 2.571 3.365 4.032 4.773 5.893

6 1.440 1.943 2.447 3.143 3.707 4.317 5.208

7 1.415 1.895 2.365 2.998 3.499 4.029 4.785

8 1.397 1.860 2.306 2.896 3.355 3.833 4.501

9 1.383 1.833 2.262 2.821 3.250 3.690 4.297

10 1.372 1.812 2.228 2.764 3.169 3.581 4.144

11 1.363 1.796 2.201 2.718 3.106 3.497 4.025

12 1.356 1.782 2.179 2.681 3.055 3.428 3.930

13 1.350 1.771 2.160 2.650 3.012 3.372 3.852

14 1.345 1.761 2.145 2.624 2.977 3.326 3.787

15 1.341 1.753 2.131 2.602 2.947 3.286 3.733

16 1.337 1.746 2.120 2.583 2.921 3.252 3.686

17 1.333 1.740 2.110 2.567 2.898 3.222 3.646

18 1.330 1.734 2.101 2.552 2.878 3.197 3.610

19 1.328 1.729 2.093 2.539 2.861 3.174 3.579

20 1.325 1.725 2.086 2.528 2.845 3.153 3.552

21 1.323 1.721 2.080 2.518 2.831 3.135 3.527

22 1.321 1.717 2.074 2.508 2.819 3.119 3.505

23 1.319 1.714 2.069 2.500 2.807 3.104 3.485

24 1.318 1.711 2.064 2.492 2.797 3.091 3.467

25 1.316 1.708 2.060 2.485 2.787 3.078 3.450

26 1.315 1.706 2.056 2.479 2.779 3.067 3.435

27 1.314 1.703 2.052 2.473 2.771 3.057 3.421

28 1.313 1.701 2.048 2.467 2.763 3.047 3.408

29 1.311 1.699 2.045 2.462 2.756 3.038 3.396

30 1.310 1.697 2.042 2.457 2.750 3.030 3.385

40 1.303 1.684 2.021 2.423 2.704 2.971 3.307

60 1.296 1.671 2.000 2.390 2.660 2.915 3.232

120 1.289 1.658 1.980 2.358 2.617 2.860 3.160

∞ 1.282 1.645 1.960 2.326 2.576 2.807 3.090
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Table 1.10 Percentage points for the F-distribution F0.05, ν2/ν1

ν2/ν1 1 2 3 4 5 6 7 8 9 10

1 161.40 199.50 215.70 224.60 230.20 234.00 236.80 238.90 240.50 241.90

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 7.71 6.94 6.59 6.39 9.26 9.16 6.09 6.04 6.00 5.96

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.95 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83
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Table 1.11 Percentage points for the χ2 distribution

v/χ2
α χ2

0.99 χ2
0.975 χ2

0.95 χ2
0.90 χ2

0.10 χ2
0.05 χ2

0.025 χ2
0.01

1 0 0.00 0.00 0.02 2.71 3.84 5.02 6.64

2 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21

3 0.12 0.22 0.35 0.58 6.25 7.82 9.35 11.35

4 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28

5 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09

6 0.87 1.24 1.64 2.20 10.65 12.59 14.45 16.81

7 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48

8 1.65 2.18 2.73 3.49 13.36 15.51 17.54 20.09

9 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67

10 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21

11 3.05 3.82 4.58 5.58 17.28 19.68 21.92 24.73

12 3.57 4.40 5.23 6.30 18.55 21.92 23.34 26.22

13 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69

14 4.66 5.63 6.57 7.79 21.06 23.69 26.12 29.14

15 5.23 6.26 7.26 8.57 22.31 25.00 27.49 30.58

16 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00

17 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41

18 7.02 8.23 9.39 10.87 25.99 28.87 31.53 34.81

19 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19

20 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57

21 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93

22 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29

23 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64

24 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98

25 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31

26 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64

27 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96

28 13.57 15.31 16.93 18.94 37.92 41.34 44.46 48.28

29 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59

30 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89

35 18.48 20.56 22.46 24.81 46.03 49.80 53.21 57.36

40 22.14 24.42 26.51 29.07 51.78 55.76 59.35 63.71

50 29.69 32.35 34.76 37.71 63.14 67.50 71.42 76.17

60 37.47 40.47 43.19 46.48 74.37 79.08 83.30 88.39

70 45.43 48.75 51.74 55.35 85.50 90.53 95.03 100.44

80 53.53 57.15 60.39 64.30 96.55 101.88 106.63 112.34

90 61.74 65.64 69.12 73.31 107.54 113.15 118.14 124.13

100 70.05 74.22 77.93 82.38 118.47 124.34 129.57 135.81

110 78.45 82.86 86.79 91.50 129.36 135.48 140.92 147.42

120 86.91 91.57 95.70 100.65 140.20 146.57 152.22 158.96
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Abstract

There has been an increased interest in developing gener-
alized families of distributions by introducing additional
shape parameters to a baseline cumulative distribution.
This mechanism has proved to be useful to make the gen-
erated distributions more flexible especially for studying
tail properties than existing distributions and for improv-
ing their goodness-of-fit statistics to the data under study.
Let G(x) be the cumulative distribution function (CDF)
of a baseline distribution and g(x) = dG(x)/dx be the
associated probability density function (PDF). We present
generalized families with one and two additional shape pa-
rameters by transforming the CDF G(x) according to four

G. M. Cordeiro (�)
UFPE, Recife, Brazil
e-mail: gauss@de.ufpe.br

A. Lemonte
UFRN, Natal, Brazil

important generators. These families are important for
modeling data in several engineering areas. Many special
distributions in these families are discussed by Tahir and
Nadarajah (An Acad Bras Cienc 87(2):539–568, 2015).

Keywords

Distribution theory · Extended distributions · Failure rate
function · Repaired systems · Reliability studies ·
Survival analysis

2.1 Beta-G Family

Eugene et al. [6] defined the CDF of the beta-G family with
two additional shape parameters a > 0 and b > 0 by

Fbeta-G(x) = IG(x)(a, b)

= 1

B(a, b)

∫ G(x)

0
wa−1(1 − w)b−1dw, x ∈ R, (2.1)

where B(a, b) = �(a + b)/[�(a)�(b)] is the beta func-
tion, �(α) = ∫ ∞

0 wα−1e−wdw is the gamma function, and
Iy(a, b) = B(a, b)−1

∫ y
0 w

a−1(1 − w)b−1dw is the incomplete
beta function ratio. The PDF corresponding to (2.1) has a very
simple form

fbeta-G(x) = g(x)

B(a, b)
G(x)a−1{1−G(x)}b−1, x ∈ R. (2.2)

The beta-G family has been receiving increased attention
over the last years. More than 50 distributions were published
in this family, the majority of them cited by Tahir and
Nadarajah [22, Table 3].

The PDF fbeta-G(x) will be most tractable when the func-
tionsG(x) and g(x) have simple analytic expressions. Except
for some special choices for G(x) in (2.1), the PDF (2.2)
will be difficult to deal with in generality. If g(x) is a sym-
metric distribution around zero, then fbeta-G(x) will also be a

© Springer-Verlag London Ltd., part of Springer Nature 2023
H. Pham (ed.), Springer Handbook of Engineering Statistics, Springer Handbooks,
https://doi.org/10.1007/978-1-4471-7503-2_2
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symmetric distribution when a = b. We can generate obser-
vations from the beta-G family using beta random variables
and the quantile function (QF) of the baseline G distribution,
say,QG(u) = G−1(u). In fact, if V has a beta distribution with
parameters a > 0 and b > 0, then X = QG(V) follows the
PDF (2.2).

The CDF of the beta-Weibull (beta-W) distribution (with
four positive parameters) is defined by taking the Weibull
CDFGλ,c(x) = 1−exp{−(λx)c} with shape parameter c > 0
and scale parameter λ > 0 in Eq. (2.1). The PDF and the
hazard rate function (HRF) of the beta-W distribution are
(using Ix(a, b) = I1−x(b, a))

fbeta-W(x) = cλc

B(a, b)
xc−1exp {−b(λx)c}

× [1 − exp {−(λx)c}]a−1 , x > 0,

and

τbeta-W(x)

= cλcxc−1exp {−b(λx)c} [1 − exp {−(λx)c}]a−1

B(a, b)Iexp{−(λx)c}(b, a)
, x > 0,

respectively.
Birnbaum and Saunders [3] introduced a probability dis-

tribution which is commonly used in reliability studies. The
CDF of the beta-Birnbaum-Saunders (beta-BS) distribution
is given by F(x) = I�(v)(a, b), for x > 0, where v =
v(x; α,β) = α−1ρ(x/β), ρ(z) = z1/2 − z−1/2, �(·) is
the standard normal CDF, and α > 0 and β > 0. The
corresponding PDF is

fbeta-BS(x)

= κ(α,β) x−3/2(x+ β) exp
{−τ(x/β)/(2α2)

}
B(a, b)�(v)1−a[1 − �(v)]1−b , x > 0,

where κ(α,β) = exp(α−2)/(2α
√
2πβ) and τ(z) = z+ z−1.

For a = b = 1, the beta-BS becomes equal to the BS
distribution.

Finally, another example is the beta-log-logistic (beta-LL)
distribution (see, e.g., Lemonte [9]), whose PDFwith positive
parameters a, b, α, and β is given by

f (x) = (β/α)

B(a, b)

(x/α)aβ−1

[1 + (x/α)β ]a+b
, x > 0. (2.3)

Evidently, the beta-LL density function does not involve
any complicated function and can be easily computed from
Eq. (2.3). The beta-LL distribution can be applied in sur-
vival analysis, hydrology, and economics, among others, as
the LLog distribution and can be used to model reliability

problems. The beta-LL distribution allows for greater flexi-
bility of its tails and can be widely applied in many areas.

The study of the PDF (2.3) is important since it also
includes some special sub-models. The log-logistic (LLog)
distribution arises as the basic exemplar when a = b = 1.
The exponentiated LLog (ELLog) distribution corresponds
to b = 1. Other special sub-model arises for a = 1
as the new Lehmann type II LLog (LeLLog) distribution.
For a and b positive integers, the beta-LL density function
becomes the density function of the ath order statistic from
the LLog distribution in a sample of size a+b−1. However,
Eq. (2.3) can also alternatively be extended, when a and b are
real non-integers, to define fractional LLog order statistics
distributions.

2.2 Kumaraswamy-G Family

Cordeiro and de Castro [5] introduced the Kumaraswamy-G
(“Kw-G” for short) family with CDF and PDF

FKw-G(x) = 1 − {1 − G(x)a}b , x ∈ R, (2.4)

and

fKw-G(x)= a b g(x)G(x)a−1 {1−G(x)a}b−1, x ∈ R, (2.5)

respectively. The Kw-G family has the same parameters of
the baseline G distribution plus two extra shape parameters
a > 0 and b > 0. Each new Kw-G distribution can be
constructed from a specified G distribution. For a = b = 1,
the G distribution is a special model of the Kw-G family with
a continuous crossover toward cases with different shapes
(e.g., a particular combination of skewness and kurtosis).
One major benefit of the Kw-G PDF (2.5) is its ability of
fitting skewed data that cannot be properly fitted by existing
distributions. Further, this family allows for greater flexibility
of its tails and can be widely applied in many areas of engi-
neering. Tahir and Nadarajah [22, Table 5] described almost
25 published distributions belonging to the Kw-G family.

The simulation from the Kw-G distribution is very easy.
The QF corresponding to (2.4) is directly obtained from the
QF associated with G(x) by

QKw-G(u) = F−1
Kw-G(u)

= QG

{[
1 − (1 − u)1/b

]1/a}
, u ∈ (0, 1). (2.6)

Then, we can generate Kw-G variates by

X = QG

{[
1 − (1 − U)1/b

]1/a}
,
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where U is a uniform variate on the unit interval (0, 1).
We provide two examples of the Kw-G distributions. First,

the Kw-Weibull PDF (for x > 0) follows from the Weibull
CDF (with parameters λ > 0 and c > 0) introduced in
Sect. 2.1. It has the form

fKw-W(x)

= a b cβcxc−1 exp{−(λx)c}[1 − exp{−(λx)c}]a−1

{1 − [1 − exp{−(λx)c}]a}1−b , x > 0.

For c = 1, we obtain as a special model the Kw-
exponential distribution. The exponentiated Weibull (EW),
which is well suited for modeling bathtub failure rate lifetime
data, is also a special case when b = 1.

Second, the Gumbel distribution is frequently used to
model the distribution of the maximum (or the minimum)
of a number of samples of various distributions. The Kw-
Gumbel density function is defined from the Gumbel CDF
G(x) = 1 − exp

{− exp
(− x−μ

σ

)}
(for x ∈ R) with location

parameter μ > 0 and scale parameter σ > 0, whose mean
and variance are equal to μ − γ σ and π2σ 2/6, respectively,
and γ is Euler’s constant (γ ≈ 0.57722). It is given by

fKw-Gu(x) = a b exp {z− exp(z)} [1 − exp {− exp(−z)}]a−1

σ
{
1 − [1 − exp {− exp(−z)}]a}1−b ,

where z = (y− μ)/σ .

2.3 Gamma-G Family

Zografos and Balakrishnan [23] and Ristić and Balakrishnan
[20] defined the gamma-G (�-G) family with an extra shape
parameter a > 0 by the CDF (for x ∈ R)

F�-G(x) = γ
(
a,− log [1 − G(x)]

)
�(a)

= 1

�(a)

∫ − log[1−G(x)]

0
ta−1e−tdt,

where γ (a, z) = ∫ z
0 t

a−1 e−tdt is the incomplete gamma
function. The PDF of the �-G family has the form

f�-G(x) = 1

�(a)
{− log[1 − G(x)]}a−1 g(x), x ∈ R. (2.7)

Each new �-G distribution can be determined from a given
baseline distribution. For a = 1, the G distribution is a basic
exemplar of the �-G family.

Zografos and Balakrishnan [23] and Ristić and Balakrish-
nan [20] presented a physical motivation for the �-G family:
if XL(1), . . . , XL(n) are lower record values from a sequence of
independent random variables with common PDF g(·), then
the PDF of the nth lower record value has the form (2.7). If
Z is a gamma random variable with unit scale parameter and
shape parameter a > 0, then X = QG(1 − eZ) has density
(2.7). So, the �-G distribution is easily generated from the
gamma distribution and the QF of G.

Let Gλ,c(x) be the Weibull CDF (with scale parameter
λ > 0 and shape parameter c > 0) given in Sect. 2.1.
The �-Weibull (�-W) density function (for x > 0) can be
expressed as

f�-W(x) = c λca

�(a)
xac−1 exp{−(λx)c}. (2.8)

Equation (2.8) extends some distributions previously dis-
cussed in the literature. In fact, it is identical to the gener-
alized gamma distribution [21]. The Weibull distribution is a
basic exemplar when a = 1, whereas the gamma distribution
follows when c = 1. The half-normal distribution is obtained
for a = 3 and c = 2. In addition, the log-normal distribution
is a limiting special case when a tends to infinity.

The �-normal distribution is defined from (2.7) by tak-
ing G(x) and g(x) to be the CDF and PDF of the normal
N(μ, σ 2) distribution. Its density function (for x ∈ R) has
the form

f�-N(x) = 1

�(a)

{
− log

[
1 − �

(x− μ

σ

)]}a−1
φ
(x− μ

σ

)
,

(2.9)

where μ ∈ R is a location parameter, σ > 0 is a scale
parameter, and φ(·) is the standard normal density. For μ =
0 and σ = 1, we obtain the standard �-normal distri-
bution. Further, it coincides with the normal distribution
when a = 1.

Consider the Gumbel distribution with location parameter
μ ∈ R and scale parameter σ > 0 as defined in Sect. 2.2. The
Gumbel PDF is

g(x) = 1

σ
exp

{(
x− μ

σ

)
− exp

(
x− μ

σ

)}
, x ∈ R,

where μ ∈ R and σ > 0. The �-Gumbel (�-Gu) PDF can be
expressed as

f�-Gu(x) = 1

σ�(a)
exp

{
(a− 1)

(x− μ

σ

)
+

(
x− μ

σ

)

− exp
(
x− μ

σ

)}
.

Clearly, the Gumbel distribution corresponds to a = 1.
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2.4 Marshall and Olkin-G Family

Marshall and Olkin [11] pioneered a general method to
expand a distribution by adding an extra shape parameter. The
CDF of their family (for θ > 0) is

FMO-G(x) = G(x)

θ + (1 − θ)G(x)

= G(x)

1 − (1 − θ)[1 − G(x)] , x ∈ R. (2.10)

The density function corresponding to (2.10) is

fMO-G(x) = θg(x)

[θ + (1 − θ)G(x)]2 , x ∈ R. (2.11)

For θ = 1, fMO-G(x) is equal to g(x), and, for different
values of θ , fMO-G(x) can be more flexible than g(x). The
extra parameter θ is called “tilt parameter,” since the HRF
of the MO-G family is shifted below (θ > 1) or above
(0 < θ < 1) of the baseline HRF. Equation (2.11) provides a
useful mechanism to generate new distributions from existing
ones. The advantage of this approach for constructing new
distributions lies in its flexibility to model both monotonic
and non-monotonic HRFs even when the baseline HRF may
be monotonic. Tahir and Nadarajah [22, Table 2] presented
30 distributions belonging to the MO-G family. Further,
this family is easily generated from the baseline QF by
QMO-G(u) = QG (θu/[θu+ 1 − u]) for u ∈ (0, 1).

Marshall and Olkin considered the exponential and
Weibull distributions for the baseline G and derived some
structural properties of the generated distributions. The
special case that G is an exponential distribution refers
to a two-parameter competitive model to the Weibull and
gamma distributions. A simple interpretation of (2.10)
can be given as follows. Let T1, . . . , TN be a sequence
of independent and identically distributed (i.i.d.) random
variables with survival function (SF) G(x) = 1 − G(x),
and let N be a positive integer random variable independent
of the Ti’s defined by the probability generating function
(PGF) of a geometric distribution with parameter θ , say,
τ(z; θ) = θz [1 − (1 − θ)z]−1. Then, the inverse of τ(z; θ)

becomes τ−1(z; θ) = τ(z; θ−1). We can verify that Eq. (2.10)
comes from 1 − FMO-G(x) = τ(G(x); θ) for 0 < θ < 1 and
1 − FMO-G(x) = τ(G(x); θ−1) for θ > 1. For both cases,
1 − FMO-G(x) represents the SF of min{T1, . . . , TN}, where
N has PGF τ(z; ·) with probability parameters θ or θ−1.

Nadarajah and Haghighi [14] introduced a two-parameter
generalization of the exponential distribution as an alternative
to the gamma andWeibull distributions with CDF (NH stands
for the authors) GNH(x) = 1 − exp[1 − (1 + λ x)α], x ≥ 0,
where λ > 0 is the scale parameter and α > 0 is the
shape parameter. The associated density is gNH(x) = α λ (1+

λ x)α−1 exp[1 − (1 + λ x)α], x ≥ 0. The function gNH(x) is
always monotonically decreasing with gNH(0) = α λ. These
authors pointed out that gNH(x) has the attractive feature of
always having the zero mode. They also showed that larger
values of α will lead to faster decay of the upper tails. The
SF and HRF are SNH(x) = exp[1− (1+λ x)α] and τNH(x) =
α λ (1 + λ x)α−1, respectively. Like the Weibull distribution,
the SF and HRF of the NH distribution have closed-form
expressions. Additionally, the HRF can be monotonically
increasing for α > 1 and monotonically decreasing for α <

1. For α = 1, the HRF is constant. So, the major weakness
of the NH distribution is its inability to accommodate non-
monotone HRFs (i.e., bathtub and unimodal shapes).

The MO-NH distribution was defined by Lemonte et al.
[10] by combining theMOgenerator and the NH distribution.
Its CDF is

FMO-NH(x) = 1 − exp[1 − (1 + λ x)α]
1 − (1 − θ) exp[1 − (1 + λ x)α] , x ≥ 0,

(2.12)

where the parameters α > 0 and β > 0 control the shapes
of the distribution and the parameter λ > 0 is the scale
parameter. Clearly, the MO-NH distribution is equal to the
NH distribution when θ = 1. For α = 1, we obtain
the MO-exponential (MO-E) distribution. The exponential
distribution follows as a special model when α = θ = 1.

The MO-NH PDF follows by differentiating (2.12) as

fMO-NH(x) = α θ λ
(1 + λ t)α−1 exp[1 − (1 + λ x)α]

{1 − (1 − θ) exp[1 − (1 + λ x)α]}2 , x ≥ 0.

(2.13)

Equation (2.13) can take various forms depending on the
values of the shape parameters α and θ . In particular, it can be
a decreasing function, or it can be a skewed unimodal density.
Additionally, the MO-NH density function can present some
other interesting forms. In fact, this distribution is very ver-
satile since the additional parameter θ has substantial effects
on its skewness and kurtosis.

The MO-NH HRF can be constant, decreasing, increas-
ing, unimodal, and bathtub-shaped. Further, it can also be
decreasing-increasing-decreasing. The MO-NH distribution
is a good alternative to many existing lifetime distributions
in modeling real data due to the great flexibility of its HRF.

2.5 Linear Representations

Linear representations for the PDFs of the four families
defined previously can be derived using the concept of expo-
nentiated distributions. For an arbitrary baseline CDF G(x),
the exponentiated-G (exp-G) distribution with parameter a >

0 has CDF and PDF in the forms
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�a(x) = G(x)a and πa(x) = a g(x)G(x)a−1,

respectively. The properties of exponentiated distributions
have been studied by many authors in recent years; see [12]
for exponentiated Weibull, [8] for exponentiated Pareto, [7]
for exponentiated exponential, and [13] for exponentiated
gamma distribution. Tahir and Nadarajah [22] cited almost
30s exponentiated distributions in their Table 2.1.

Linear representations for the four PDFs in terms of exp-
G densities are important to determine their mathematical
properties from those of the exp-G distributions. They can
follow from the papers described below. For the beta-G
density (2.2), [16] demonstrated that

fbeta-G(x) =
∞∑
i=0

wbeta-G
i πa+i(x),

where

wbeta-G
i = wbeta-G

i (a, b) = (−1)i

(a+ i)B(a, b)

(
b− 1

i

)
.

Nadarajah et al. [17] determined a linear combination for
the Kw-G density (2.5), namely,

fKw-G(x) =
∞∑
i=0

wKw-G
i π(i+1)a(x), (2.14)

where

wKw-G
i = wKw-G

i (b) = (−1)i b

(i+ 1)

(
b− 1

i

)
.

The linear combination for the �-G density (2.7) was
derived by Castellares and Lemonte [4] as

f�-G(x) =
∞∑
i=0

w�-G
i πa+i(x),

where

w�-G
i = w�-G

i (a) = ϕi(a)

(a+ i)
,

ϕ0(a) = 1

�(a)
, ϕi(a) = (a− 1)

�(a)
ψi−1(i+ a− 2), i ≥ 1,

and ψi−1(·) are the Stirling polynomials defined by

ψn−1(x)

= (−1)n−1

(n+ 1)!
[
Hn−1
n − x+ 2

n+ 2
Hn−2
n + (x+ 2)(x+ 3)

(n+ 2)(n+ 3)
Hn−3
n

− · · · + (−1)n−1 (x+ 2)(x+ 3) · · · (x+ n)

(n+ 2)(n+ 3) · · · (2n) H0
n

]
,

where Hm
n are positive integers given recursively by Hm

n+1 =
(2n+ 1 −m)Hm

n + (n−m+ 1)Hm−1
n , with H0

0 = 1, H0
n+1 =

1 × 3 × 5 × · · · × (2n+ 1), Hn
n+1 = 1.

Following Barreto-Souza et al. [2], the MO-G density
(2.11) admits the linear combination

fMO-G(x) =
∞∑
i=0

wMO-G
i πi+1(x),

where the coefficients are (for i = 0, 1, . . .)

wMO-G
i = wMO-G

i (θ)

=

⎧⎪⎨
⎪⎩

(−1)i θ

(i+ 1)

∞∑
j=i

(
j

i

)
(j+ 1)θ̄ j, θ ∈ (0, 1),

θ−1(1 − θ−1)i, θ > 1,

and θ̄ = 1 − θ .

2.6 Mathematical Properties

In this section, we present only somemathematical properties
for the Kw-G family from Eq. (2.14). The properties for the
beta-G, �-G, and MO-G families can be obtained from their
linear representations in a similar manner. Henceforth, let
X ∼ Kw-G(a, b) and Yi ∼exp-G((i+ 1)a) for i ≥ 0.

2.6.1 Moments

Nadarajah et al. [17] derived explicit expressions for the mo-
ments of X as linear functions of probability weighted mo-
ments (PWMs) of the baseline G. A first representation for
the nth moment of X follows from (2.14) as

μ′
n = E(Xn) =

∞∑
i=0

wKw-G
i E(Yni ). (2.15)

Equation (2.15) holds for b > 0 real non-integer. If b is a
positive integer, the index i in this expansion stops at b − 1.
Explicit expressions for moments of several exponentiated
distributions are reported by Nadarajah and Kotz [15] which
can be used to calculate μ′

n.
A second representation for μ′

n can be determined from
(2.14) as

μ′
n = a

∞∑
i=0

(i+ 1)wKw-G
i τn((i+ 1)a− 1), (2.16)

where the integral τn(a) = ∫ ∞
−∞ yn G(y)a g(y)dy can be

expressed in terms of the baseline QF as
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τn(a) =
∫ 1

0
QG(u)n uadu. (2.17)

The central moments (μn) and cumulants (κn) of X can be
calculated recursively as

μn =
n∑

k=0

(−1)k
(
n

k

)
μ′k
1 μ′

n−k and

κn = μ′
n −

n−1∑
k=1

(
n− 1

k − 1

)
κk μ′

n−k,

respectively, where κ1 = μ′
1. The skewness γ1 = κ3/κ

3/2
2 and

kurtosis γ2 = κ4/κ
2
2 are obtained from the second, third, and

fourth cumulants.
The ordinary moments of several Kw-G distributions can

be determined directly from (2.16) and (2.17). For example,
the moments of the Kw-exponential (with parameter λ > 0)
and Kw-Pareto, where G(x) = 1 − (1 + x)−ν and ν > 0, are
given by

μ′
n = a n! λn

∞∑
i,j=0

(−1)n+j (i+ 1)
(
(i+1)a−1

j

)
wKw-G
i

(j+ 1)n+1
,

and

μ′
n = a

∞∑
i,j=0

(−1)n+j (i+ 1)wKw-G
i

(
n

j

)
B((i+ 1)a, 1 − jν−1),

respectively. For the Kw-standard logistic, where G(x) =
{1 + exp(−x)}−1, we obtain

μ′
n = a

∞∑
i=0

(i+ 1)wKw-G
i

(
∂

∂t

)n
B(t + (i+ 1) a, 1 − t)

∣∣∣∣
t=0

.

The shape of many distributions can be usefully described
by what we call the incomplete moments. These types of mo-
ments, and more importantly the first moment, play the main
role for measuring inequality such as the mean deviations,
income quantiles, and Lorenz and Bonferroni curves. The nth
incomplete moment of X, say,mn(y) = E(Xn|X < w), can be
expressed as

mn(y) = a
∞∑
i=0

(i+ 1)wKw-G
i

∫ G(w)

0
QG(u)nu(i+1)a−1du.

(2.18)

Equation (2.18) can be computed (at least numerically) for
most baseline G distributions.

2.6.2 Other Measures

The mean deviations of X about the mean (δ1(X)) and about
the median (δ2(X)) are given by

δ1(X) = E(|X − μ′
1|) = 2μ′

1FKw-G(μ′
1) − 2m1(μ

′
1),

and

δ2(X) = E(|X −M|) = μ′
1 − 2m1(M),

respectively. Here, μ′
1 = E(X), M = QG{[1 − 2−1/b]1/a} is

the median, FKw-G(μ′
1) comes from (2.4), andm1(z) (the first

incomplete moment) follows from (2.18) as

m1(z) = a
∞∑
i=0

(i+ 1)wKw-G
i Ti(z),

where

Ti(z) =
∫ G(z)

0
QG(u) u(i+1)a−1du.

The mean deviations of any Kw-G distribution can be
computed using the last equation and the baseline QF. Taking
the generalized binomial expansion, the mean deviations of
the Kw-exponential (with parameter λ), Kw-standard logis-
tic, and Kw-Pareto (with parameter ν > 0) are given by

Ti(z) = λ−1 �((i+1)a+1)
∞∑
j=0

(−1)j{1 − exp(−jλz)}
�((i+ 1)a+ 1 − j)(j+ 1)! ,

Ti(z) = 1

�(k)

∞∑
j=0

(−1)j�((i+ 1)a+ j){1 − exp(−jz)}
(j+ 1)! ,

and

Ti(z) =
∞∑
j=0

j∑
r=0

(−1)j
(
(i+1)a

j

)(j
r

)
(1 − rν)

z1−rν ,

respectively.
An alternative representation for m1(z) follows from

(2.14) as

m1(z) =
∞∑
i=0

wKw-G
i Ji(z), (2.19)

where

Ji(z) =
∫ z

−∞
xπ(i+1)a(x)dx. (2.20)

Equation (2.20) is the basic quantity to compute the mean
deviations of the exp-G distributions. Hence, the Kw-Gmean
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deviations depend only on the mean deviations of the exp-
G distribution. A simple application is provided by the Kw-
Weibull distribution. The PDF (for x > 0) of the EW
distribution with power parameter (i+ 1)a is

π(i+1)a(x) = a (i+ 1) c λc xc−1 exp{−(λx)c}
× [1 − exp{−(λx)c}](i+1)a−1,

and then

Ji(z) = (i+ 1)a c λc
∞∑
r=0

(−1)r
(

(i+ 1)a− 1

r

)

×
∫ z

0
xc exp{−(r + 1)(λx)c}dx.

We canwrite Ji(z) in terms of the incomplete gamma function

Ji(z) = (i+ 1)a λ−1
∞∑
r=0

(−1)r
(
(i+1)a−1

r

)
(r + 1)1+c−1 γ (1 + c−1, (r + 1)(λz)c).

Equations (2.19) and (2.20) can be used to find Bonferroni
and Lorenz curves defined, for a given probability p, by
B(p) = m1(q)/(pμ′

1) and L(p) = m1(q)/μ′
1, respectively,

where μ′
1 = E(X) and q = QG{[1 − (1 − p)1/b]1/a}.

2.6.3 Generating Function

We now provide three representations for the moment gen-
erating function (MGF) M(t) = E(etX) of X. The first one
comes from (2.14) as

M(t) = a
∞∑
i=0

(i+ 1)wKw-G
i E

[
etX U[(i+1)a+1]] ,

where U is a uniform random variable on the unit interval.
Note that X and U are not independent.

A second representation for M(t) can be written from
(2.14) as

M(t) =
∞∑
i=0

wKw-G
i Mi(t),

where Mi(t) is the MGF of Yi. Hence, for several Kw-G dis-
tributions,M(t) can be determined from the exp-G generating
function.

A third representation forM(t) can be derived from (2.14)
as

M(t) = a
∞∑
i=0

(i+ 1)wKw-G
i ρ(t, a(i+ 1) − 1), (2.21)

where the function ρ(t, a) = ∫ ∞
−∞ etxG(x)a g(x)dx can be

calculated from the baseline QF as

ρ(t, a) =
∫ 1

0
exp{tQG(u)} ua du. (2.22)

We can obtain the MGFs of several Kw-G distributions
from (2.21) and (2.22). For example, the MGFs of the Kw-
exponential (with parameter λ), Kw-standard logistic, and
Kw-Pareto (with parameter ν > 0) are

M(t) = a
∞∑
i=0

(i+ 1)wKw-G
i B((i+ 1)a, 1 − λt),

M(t) = a
∞∑
i=0

(i+ 1)wKw-G
i B(t + (i+ 1)a, 1 − t),

and

M(t) = a e−t
∞∑
i,r=0

(i+ 1)wKw-G
i B((i+ 1)a, 1 − rν−1)

r! tr,

respectively.

2.7 T-X Family

Alzaatreh et al. [1] proposed the T-X family of distributions
as follows. Let r(t) be the PDF and R(t) be the CDF of a
random variable (rv) T ∈ [a, b] for −∞ < a < b < ∞,
and let W[G(x)] be a function of the CDF G(x) of some rv
X defined on a standard probability space such thatW[G(x)]
satisfies the following conditions:

(i) W[G(x)] ∈ [a, b].
(ii) W[G(x)] is differentiable and monotonically nondecreas-

ing.
(iii) lim

x→−∞W[G(x)] = a and lim
x→∞W[G(x)] = b.

The T-X family is defined by

F(x) =
∫ W[G(x)]

a
r(t) dt = R (W[G(x)]), (2.23)

where W[G(x)] satisfies the conditions (i)–(iii). The PDF
related to (2.23) turns out to be

f (x) = r
(
W[G(x)]

) dW[G(x)]

dx
. (2.24)



50 G. M. Cordeiro and A. Lemonte

Equation (2.23) can be used to define several families
such as the beta-G, Kw-G, and �-G introduced before.
The beta-G and Kw-G families are obtained from (2.23)
by choosing the identity function for W[G(x)] and the
beta and Kumaraswamy PDFs (with support in (0, 1))
for r(t), respectively. The �-G family is just defined by
G[W(x)] = − log[1 − G(x)] and taking the gamma PDF
with unity scale parameter and shape parameter a > 0
for r(t).

We can generate thousands of distributions from
Eq. (2.24) by choosing the density r(t) and the function
W[G(x)] appropriately. Some of the basic motivations for
selecting the density (2.24) in practice are as follows: (i)
construct heavy-tailed distributions that are not longer-tailed
for modeling real data; (ii) make the kurtosis more flexible
compared to the baseline model; (iii) produce a skewness
for symmetrical distributions; (iv) generate distributions
with symmetric, left-skewed, right-skewed, and reversed
J-shaped; (v) provide consistently better fits than other
generated models under the same baseline distribution; and
(vi) define special models with all types of the HRF.

Let G(x), g(x), G(x) = 1 − G(x), and QG(p) = G−1(p)
be the CDF, PDF, SF, and QF of any rv X. We can define the
odds (O), log-odds (LO), and log-odds ratio (LOR) functions
by O(x) = [

G(x)/G(x)
]
, LO(x) = log

[
G(x)/G(x)

]
, and

LOR(x) = g(x)/[G(x)G(x)], respectively. The use of the
odds ratio is becoming very popular and has applications in
the fields of reliability and survival analysis, large sample
theory, and discriminant analysis, among others. The LOR
is also a useful measure for modeling data that exhibits non-
monotone failure rate. The distributions being non-monotone
in terms of failure rate are monotone in terms of LOR.

Some generalized classes have been proposed using the
O-function in the statistical literature. For each baseline G,
the CDF of the odd log-logistic-G (OLL-G) class follows
from (2.23) by integrating the log-logistic PDF

F(x)=
∫ G(x)

1−G(x)

0

α tα − 1

(1+ tα)2
dt= G(x)α

G(x)α + [1−G(x)]α
, (2.25)

where α > 0 is an extra shape parameter to the G
distribution. The PDF corresponding to (2.25) is given by

f (x) = α g(x)G(x)α−1 [1 − G(x)]α−1

{
G(x)α + [1 − G(x)]α

}2 , (2.26)

where g(x) is the baseline PDF. This PDF allows greater
flexibility of its tails and can be useful in applications in
several areas. It will be most tractable when G(x) and g(x)
have closed-forms.

We now present a wide distribution in the OLL-G family.
The three-parameter generalized gamma distribution (GG)
pioneered by Stacy [21] includes as special models the expo-
nential, Weibull, gamma, and Rayleigh distributions, among
others. The GG distribution has been used in several research
areas such as engineering, hydrology, and survival analysis.
It is suitable for modeling data with different forms of HRF:
increasing, decreasing, in the form of bathtub, and unimodal.
The CDF and PDF of the GG(ρ, τ , p) distribution is

G(x; ρ, τ , p) = γ1

(
p,

(
x

ρ

)τ)
= γ (p, (x/ρ)τ )

�(p)
, x > 0,

g(x; ρ, τ , p) = τ

ρ �(p)

(
x

ρ

)τ p−1

exp
[
−

(
x

ρ

)τ]
,

where ρ > 0, τ > 0, p > 0, and γ1(p, x) = γ (p, x)/�(p) is
the incomplete gamma function ratio.

The OLLGG density (for x > 0) with four positive param-
eters is defined by substituting G(x; ρ, τ , p) and g(x; ρ, τ , p)
into Eq. (2.26)

f (x)

= α τ (x/ρ)τ p−1 exp[−(x/ρ)τ ]{γ1(p, (x/ρ)τ )[1 − γ1(p, (x/ρ)τ )]}α−1

ρ �(p) {γ1(p, (x/ρ)τ )α + [1 − γ1(p, (x/ρ)τ )]α}2 ,

where ρ is a scale parameter and τ , p, and α are shape
parameters.

Some sub-models can be immediately defined from this
equation: OLL-gamma (τ = 1), OLL-Weibull (p = 1), OLL-
exponential (τ = p = 1), OLL-Rayleigh (τ = 2 and p = 1),
OLL-Maxwell (τ = 2 and p = 3/2), and OLL-folded normal
(τ = √

2 and p = 1/2).
One major benefit of the OLLGG density is its ability of

fitting skewed data that cannot be properly fitted by existing
distributions. It also allows for greater flexibility of its tails
and can be widely applied in many areas of engineering and
biology.

Finally, we provide an example of (2.23). Let T be a
logistic rv with CDF R(t) = (1 + e−α t)−1 and PDF r(t) =
α e−α t(1 + e−α t)−2 with support in R, where α > 0.
By setting W[G(x)] = log {− log[G(x)]}, a monotonically
nonincreasing function in G(x), the CDF of the logistic-G
family is defined from (2.23) as

F(x) = 1 − [
1 + {− log[G(x)]}−α

]−1
, x ∈ R.

The corresponding PDF takes the form

f (x) = α g(x)
{− log[G(x)]}−α−1

G(x) [1 + {− log[G(x)]}−α]2
, x ∈ R.
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2.8 Fitting Distributions

All distributions in the families mentioned previously can
be fitted to real data sets using the AdequacyModel package
for the R statistical computing environment (https://www.
r-project.org/). An important advantage of this package is that
it is not necessary to define the log-likelihood function and
that it computes the maximum likelihood (ML) estimates,
their standard errors, and the formal statistics presented in the
next section. We only need to provide the PDF and CDF of
the distribution to be fitted to a data set. This AdequacyModel
package uses the PSO (particle swarm optimization) method
obtained by traditional global search approaches such as
the quasi-Newton BFGS, Nelder-Mead, and simulated an-
nealing methods to maximize the log-likelihood function.
This method does not require initial values. More details are
available at https://rdrr.io/cran/AdequacyModel/.

2.9 Real Data Illustrations

In this section, we shall illustrate the use of some generalized
distributions in practice, specifically the beta-BS and �-W
distributions. First, we consider an uncensored data set from
Nichols and Padgett [18] on breaking stress of carbon fibers
(in Gba). Table 2.1 lists the ML estimates of the parameters
(standard errors between parentheses), and the values of AIC
(Akaike Information Criterion), BIC (Bayesian Information
Criterion), and CAIC (Consistent Akaike Information Cri-
terion) are given in Table 2.2. From the values of these
statistics, we conclude that the beta-BS model provides a
better fit to these data than the BS model. The LR statistic
to test the hypothesisH0: BS against H1 : beta-BS is 17.6679
(p-value < 0.01). Thus, using any usual significance level,
we reject the null hypothesis in favor of the beta-BS distribu-
tion, i.e., the beta-BS distribution is significantly better than
the BS distribution. We can also perform formal goodness-
of-fit tests in order to verify which distribution fits better
to these data. We apply the Cramér–von Mises (CM) and
Anderson–Darling (AD) tests. In general, the smaller the
values of CM and AD, the better the fit to the data. For
the first data set, we have CM = 0.4601 and AD = 2.5896
for the BS distribution and CM = 0.2108 and AD = 1.2010
for the beta-BS distribution. Thus, according to these statis-
tics, the second distribution fits these data better than the first
distribution.

As a second application, we analyze a real data set on
the strengths of 1.5 cm glass fibers, measured at the National
Physical Laboratory, England. Unfortunately, the units of
measurement are not given in the paper. Table 2.3 lists the
ML estimates of the parameters (standard errors between
parentheses), and the values of AIC, BIC, and CAIC are
given in Table 2.4. Again, from the values of these statistics,

Table 2.1 ML estimates (standard errors in parentheses); first data set

Estimates

Distribution α β a b

Beta-BS 1.0445 57.6001 0.1930 1876.7324

(0.0036) (0.3313) (0.0259) (605.05)

BS 0.4371 2.5154

(0.0381) (0.1321)

Table 2.2 AIC, BIC, and CAIC; first data set

Statistic

Distribution AIC BIC CAIC

Beta-BS 190.71 199.47 191.36

BS 204.38 208.75 204.57

Table 2.3 ML estimates (standard errors in parentheses); second data
set

Estimates

Distribution α β a b

Beta-BS 1.0505 30.4783 0.3638 7857.5658

(0.0101) (0.5085) (0.0709) (3602.2)

BS 0.2699 1.3909

(0.0267) (0.0521)

Table 2.4 AIC, BIC, and CAIC; second data set

Statistic

Distribution AIC BIC CAIC

Beta-BS 37.552 45.280 38.422

BS 48.378 52.242 48.628

we conclude that the beta-BS model provides a better fit to
these data than the BS model. The LR statistic to test the
hypothesis H0: BS against H1 : beta-BS is 14.8258 (p-value
< 0.01). Thus, the beta-BS distribution is significantly better
than the BS distribution. Additionally, we have CM= 0.6395
and AD = 3.3894 for the BS distribution and CM = 0.3651
and AD = 1.9728 for the beta-BS distribution. Again, the
wider distribution fits the data set better than the baseline
distribution.

Finally, we consider the data set consisting of the number
of successive failures for the air-conditioning system of each
member in a fleet of 13 Boeing 720 jet airplanes; see [19].
TheML estimates of the parameters (standard errors between
parentheses) of the Weibull and �-W distributions and the
values of the AIC, BIC, and CAIC statistics are reported
in Tables 2.5 and 2.6, respectively. The values in Table 2.6
indicate that the �-W model is better than the usual Weibull
model in terms of fitting to these data. The LR statistic to
test the hypothesis H0: Weibull against H1 : �-W is 7.42 (p-
value < 0.01). Thus, we reject the null hypothesis in favor
of the �-W distribution using any usual significance level.
Therefore, the �-Weibull distribution is significantly better
than the Weibull distribution based on the LR test. Further,
we have CM = 0.0348 and AD = 0.2628 for the Weibull

https://www.r-project.org/
https://rdrr.io/cran/AdequacyModel/


52 G. M. Cordeiro and A. Lemonte

Table 2.5 ML estimates (standard errors in parentheses); third
data set

Estimates

Distribution λ c a

�-W 1.0915 0.3735 5.1353

(1.7942) (0.1739) (4.5227)

Weibull 0.0170 0.9109

(0.0044) (0.0503)

Table 2.6 AIC, BIC, and CAIC; third data set

Statistic

Distribution AIC BIC CAIC

�-W 2072.1 2081.8 2072.2

Weibull 2077.5 2084.0 2077.6

distribution and CM = 0.1594 and AD = 0.9968 for the
�-W distribution. These results also indicate that the �-W
distribution provides a more adequate fit to these data than
the Weibull distribution.
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Abstract

This chapter provides a short summary of fundamental
ideas in reliability theory and inference. The first part
of the chapter accounts for lifetime distributions that are
used in engineering reliability analysis, including gen-
eral properties of reliability distributions that pertain to
lifetime for manufactured products. Certain distributions
are formulated on the basis of simple physical properties,
and other are more or less empirical. The first part of the
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chapter ends with a description of graphical and analytical
methods to find appropriate lifetime distributions for a set
of failure data.

The second part of the chapter describes statistical
methods for analyzing reliability data, including maxi-
mum likelihood estimation (both parametric and nonpara-
metric) and likelihood ratio testing. Degradation data are
more prevalent in experiments in which failure is rare
and test time is limited. Special regression techniques for
degradation data can be used to draw inference on the
underlying lifetime distribution, even if failures are rarely
observed.

The last part of the chapter discusses reliability for sys-
tems. Along with the components that comprise the sys-
tem, reliability analysis must take account of the system
configuration and (stochastic) component dependencies.
System reliability is illustrated with an analysis of logis-
tics systems (e.g., moving goods in a system of product
sources and retail outlets). Robust reliability design can be
used to construct a supply chain that runs with maximum
efficiency or minimum cost.

Keywords

Weibull distribution · System reliability · Empirical
likelihood · Residual life · Lifetime data

3.1 Introduction and Literature Review

In everyday use, words like reliability and quality havemean-
ings that vary depending on the context. In engineering,
reliability is defined as the ability of an item to perform
its function, usually measured in terms of probability as a
function of time. Quality denotes how the item conforms to
its specifications, so reliability is a measure of the item’s
quality over time.
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Since the time of Birnbaum and Sanders [1], when sys-
tem reliability emerged as its own discipline, research has
centered on the operation of simple systems with identical
parts working independently of each other. Today’s systems
do not fit this mold; system representation must include
multifaceted components with several component states that
can vacillate between perfect operation and terminal failure.
Not only do components interact within systems, but many
systems are dynamic in that the system configuration can
be expected to change during its operation, perhaps due to
component failures or external stresses. Computer software,
for example, changes its failure structure during the course
of design, testing, and implementation.

Statistical methods for reliability analysis grew from this
concept of system examination, and system reliability is often
gauged through component lifetime testing. This chapter
reviews the current framework for statistical reliability and
considers some modern needs from experimenters in engi-
neering and the physical sciences.

Statistical analysis of reliability data in engineering appli-
cations cannot be summarized comprehensively in a single
book chapter such as this. The following books (listed fully in
the reference section) serve as an excellent basis for a serious
treatment of the subject:

1. Statistical Theory of Reliability and Life Testing by Bar-
low and Proschan [2]

2. Practical Methods for Reliability Data Analysis by
Ansell and Phillips [3]

3. Reliability: Probabilistic Models and Statistical Meth-
ods by Leemis [4]

4. Applied Reliability by Tobias and Trindade [5]
5. Engineering Reliability by Barlow [6]
6. Reliability for Technology, Engineering, and Manage-
ment by Kales [7]

7. Statistical Methods for Reliability Data by Meeker and
Escobar [8]

8. Reliability Modeling, Prediction, and Optimization by
Blischke andMurthy [9]

9. Statistical Methods for the Reliability of Repairable Sys-
tems by Rigdon and Basu [10] and

10. Bayesian Reliability by Hamada et al. [11]

Some of the books in this list focus on reliability theory,
and others focus exclusively on reliability engineering. From
the more inclusive books, [8] provides a complete, high-
level guide to reliability inference tools for an engineer,
and most examples have an engineering basis (usually in
manufacturing). For reliability problems closely associated
with materials testing, Bogdanoff and Kozin [12] connect
the physics of degradation to reliability models. Sobczyk
and Spencer [13] also relate fatigue to reliability through
probability modeling. For reliability prediction in software

performance, Lyu [14] provides a comprehensive guide of
engineering procedures for software reliability testing, while
a more theoretical alternative by Singpurwalla and Wilson
[15] emphasizes probability modeling for software reliabil-
ity, including hierarchical Bayesian methods. Closely related
to reliability modeling in engineering systems, Bedford and
Cooke [16] covers methods of probabilistic risk assessment,
which is an integral part of reliability modeling for large and
complex systems.

Other texts emphasize reliability assessment in a partic-
ular engineering field of interest. For statistical reliability
in geotechnical engineering, Baecher and Christian [17]
is recommended as it details statistical problems with soil
variability, autocorrelation (i.e., Kriging), and load/resistance
factors. Ohring [18] provides a comprehensive guide to reli-
ability assessment for electrical engineering and electronics
manufacturing, including reliability pertaining to degrada-
tion of contacts (e.g., crack growth in solder), optical fiber
reliability, semiconductor degradation, and mass-transport-
induced failure. For civil engineering, Melchers’ [19] re-
liability text has a focus on reliability of structural sys-
tems and loads, time-dependent reliability, and resistance
modeling.

3.2 Lifetime Distributions in Reliability

While engineering studies have contributed a great deal of
the current methods for reliability life testing, an equally
great amount exists in the biological sciences, especially
relating to epidemiology and biostatistics. Life testing is a
crucial component to both fields, but the bio-related sciences
tend to focus on mean lifetimes and numerous risk factors.
Engineering methods, on the other hand, are more likely
to focus on upper (or lower) percentiles of the lifetime
distribution as well as the stochastic dependencies between
working components. Another crucial difference between the
two application areas is that engineering models are more
likely to be based on principles of physics that lead to well-
known distributions such as Weibull, log-normal, extreme
value, and so on.

The failure time distribution is the most widely used prob-
ability tool for modeling product reliability in science and
industry. If f (x) represents the probability density function
for the product’s failure time, then its reliability is R(x) =∫ ∞
x f (u)du, and R(t) = 1 − F(t) where F is the cumulative

distribution function (CDF) corresponding to f. A quantile
is the CDF’s inverse; the pth quantile of F is the lifetime
value tp such that F(tp) = p. To understand the quality of
a manufactured product through these lifetime probability
functions, it is often useful to consider the notion of aging.
For example, the (conditional) reliability of a product that has
been working t units of time is
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R (x|t) = R (t + x)

R(t)
, if R(t) > 0. (3.1)

The rate of change of R(x|t) is an important metric for
judging a product’s quality, and the conditional failure rate
function h(t) is defined as

h(t) = lim
x→∞ x−1R(t) − R (t + x)

R(t)
= f (t)

R(t)
. (3.2)

The cumulative failure rate (sometimes called the hazard
function) is H(t) = ∫ t

0h(u)du, and has many practical uses
in reliability theory because of its monotonicity and the fact
that H(t) = −log R(t).

The failure rate clearly communicates how the product
ages during different spans of its lifetime. Many manufac-
tured products have an increasing failure rate, but the rate
of increase is rarely stable throughout the product’s lifetime.
If r(t) remains constant, it is easy to show the lifetime
distribution is exponential f (x) = θ exp(−θx), x > 0 and the
product exhibits no aging characteristics. Many electronic
components and other manufactured items have brief initial
period when failure rate is relatively high and decrease to-
ward a steady state, where it stays until aging causes the rate
to increase. This is called a bath-tub failure rate. The period in
which early failures occur (called infant mortality) is called
the burn-in period, and is often used by manufacturers to age
products and filter out defectives (early failures) before being
making it available to the consumer.

3.2.1 Alternative Properties to Describe
Reliability

The failure rate function, reliability function, cumulative
hazard function, and probability density describe different
aspects of a lifetime distribution. The expected lifetime, or
mean time to failure (MTTF), is an important measure for
repairable systems. Several alternatives for characterizing
properties of the lifetime distribution include:

• Mean residual life = L(t) = EX(X − t|X ≥ t) which is
the expected residual life of a component that has already
lasted t units of time. If L(t) is less than the expected
lifetime μ, the product is exhibiting aging by the time t.

• Reversed hazard rate = ν(t) = f (x)/F(x) that provides
a different aspect of reliability: the conditional failure
frequency at the time just before t given that the product
failed in (0, t] (see Chap. 1 of [20], for example).

• Percentile residual life=Qα =F−1[1− (1− α)×R(t)]− t
which is the α quantile of the residual life (the conditional
lifetime distribution given that the product has lasted t
units of time). The median residual life, where α = 1/2
compares closely to L(t).

• Mill’s ratio = R(x)/f (x) = 1/h(x), used in economics,
which is not an ordinary way to characterize reliability,
but it is worth noting because of its close connection to
failure rate.

3.2.2 Conventional Reliability Lifetime
Distributions

So far, only one distribution (exponential) has been men-
tioned. Rather than presenting a formal review of commonly
used reliability distributions, a summary of commonly
applied lifetime distributions is presented in Table 3.1,
including the exponential, gamma, Weibull, log-normal,
logistic, Pareto, and extreme value. In the table, �(t) =∫ ∞
0 x

t−1 e−x dx is the ordinary gamma function, and IG(t, x)
represents the corresponding incomplete gamma function.

For manufacturing centers and research laboratories that
conduct lifetime tests on products, lifetime data is an es-
sential element of reliability analysis. However, a great deal
of reliability analysis is based on field data, or reliability
information sampled from day-to-day usage of the prod-
uct. In many of these instances, lifetime data is a luxury
not afforded to the reliability inference. Instead, historical
event data and inspection counts are logged for the data
analysis. Consequently, several discrete distributions (e.g.,
Poisson, binomial, and geometric) are important in reliability
applications. Chapter � 4 has a more detailed discussion of
these and other statistical distributions applied in engineering
problems.

3.2.3 From Physics to Failure Distributions

Many of the distributions in Table 3.1 are derived based on
physical principles. For example, Weibull [21] derived the
distribution that takes his name to represent the breaking
strength of materials based on the idea that some components
are comparable to a chain that is no stronger than its weakest
link. From this premise, the distribution can be derived from
properties of minimums, in contrast to the extreme value
distribution, which can be derived through the properties
of maximums (see [22], for example). In a short time after
its introduction, the Weibull distribution was successfully
applied to numerous modeling problems in engineering and
has become the hallmark distribution in applied reliability.
A primary reason for its suitability to lifetime analysis is
its flexible failure rate; unlike other distributions listed in
Table 3.1, the Weibull failure rate is simple to model, easy
to demonstrate, and it can be either increasing or decreasing.
A mixture of twoWeibull distributions can be used to portray
a bath-tub failure rate (as long as only one of the shape
parameters is less than one).Mudholkar et al. [23] introduce

https://doi.org/10.1007/978-1-4471-7503-2_4
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Table 3.1 Common lifetime distributions used in reliability data analysis

Distribution f (t), t > 0 h(t) μ σ 2 Parameter space

Exponential θe−θ t θ 1/θ 1/θ2 θ > 0

Weibull λκtκ−1 e−λtκ λκtκ − 1 λ−1/κ �
(
1 + 1

κ

) λ−2/κ
[
�

(
1 + 2

κ

)

−�2
(
1 + 1

κ

)] κ > 0, λ > 0

Gamma λr�–1(r)tr – 1e–λt λr tr−1e−λt

�(r)[1−IG(r,λt)] r/λ r/λ2 r > 0, λ > 0

Log-normal 1
σ
√
2π

e−(log t−μ)2

2σ 2 f (t)/R(t) eμ+σ 2/2 e2μ+2σ 2 − e2μ+σ 2 −∞ < μ < ∞, σ > 0

Logistic e−(t−λ)/β

β(1+e−(t−λ)/β)
2 [β(1 + e−(t − λ)/β )]−1 λ (βπ)2/3 −∞ < λ < ∞, β > 0

Pareto mθm

tm+1
m
t

mθ
m−1

mθ2

(m−1)2(m−2)
t > θ , m > 0

Extreme value exp[−(t−a)/b]
b exp[− exp(−(t−a)/b)]

exp[−(t−a)/b]
b exp[− exp(−(t−a)/b)]−1 a − bΓ ′(1) (bπ)2/6 −∞ < a < ∞, b > 0

a new shape parameter to a generalized Weibull distribution
that allows bath-tub-shaped failure rates as well as a broader
class of monotone failure rates.

For materials exposed to constant stress cycles with a
given stress range, lifetime is measured in number of cycles
until failure (N). The Whöler curve (or S–N curve) relates
stress level (S) to N as NSb = k, where b and k are material
parameters (see [13] for examples). By taking logarithms
of the S–N equation, we can express cycles to failure as
a linear function: Y = log N = log k − b log S. If N
is log-normally distributed, then Y is normally distributed
and regular regression models can be applied for predicting
cycles to failure (at a given stress level). In many settings,
the log-normal distribution is applied as the failure time
distribution when the corresponding degradation process is
based on rates that combine multiplicatively. Despite having
a concave-shaped (or upside-down bath-tub shape) failure
rate, the log-normal is especially useful in modeling fatigue
crack growth in metals and composites.
Birnbaum and Saunders [1] modeled the damage to a test

item after n cycles as Bn = ζ1 + . . . + ζn, where ζi represents
the damage amassed in the ith cycle. If failure is determined
by Bn exceeding a fixed damage threshold value B*, and if
the ζi are identically and independently distributed,

P (N ≤ n) = P
(
Bn > B∗) ≈ 

(
B∗ − nμ

σ
√
n

)

, (3.3)

where Φ is the standard normal CDF. This happens because
Bn will be approximately normal if n is large enough. The
reliability function for the test unit is

R(t) ≈ 

(
B∗ − nμ

σ
√
n

)

(3.4)

which is called the Birnbaum–Saunders distribution. It fol-
lows that

W = μ
√
N

σ
− B∗

σ
√
N

(3.5)

has a normal distribution, which leads to accessible imple-
mentation in lifetime modeling (see [24] or [12] for more
properties).

3.2.4 Lifetime Distributions
fromDegradationModeling

These examples show how the product’s lifetime distribution
can be implied by knowledge of how it degrades in time. In
general, degradation measurements have great potential to
improve lifetime data analysis, but they also introduce new
problems to the statistical inference. Lifetime models have
been researched and refined for many manufactured products
that are put on test. On the other hand, degradation models
tend to be empirical (e.g., nonparametric) or based on simple
physical properties of the test item and its environment (e.g.,
the Paris crack law, Arrhenius rule, and power law) which
often lead to obscure lifetime models. Meeker and Escobar
[8] provide a comprehensive guide to degradation modeling,
and show that many valid degradation models will not yield
lifetime distributions with closed-form solutions. Functions
for estimating parameters in reliability models are available
in R packages, for example, the “WeibullR” package [25].

In a setting where the lifetime distribution is known,
but the degradation distribution is unknown, degradation
information does not necessarily complement the available
lifetime data. For example, the lifetime data may be dis-
tributed asWeibull, but conventional degradationmodels will
contradict the Weibull assumption (actually, the rarely used
reciprocal Weibull distribution for degradation with a fixed
failure threshold leads to Weibull lifetimes).

In selecting a degradation model based on longitudinal
measurements of degradation, monotonic models are
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typically chosen under the assumption that degradation is
a one-way process. In some cases, such as the measured
luminosity of light displays (vacuum fluorescent displays and
plasma display devices), the degradation is not necessarily
monotonic because, during the first phase of product life,
impurities inside the light display’s vacuum are slowly
burned off and luminosity increases. After achieving a peak
level, usually before 100 h of use, the light slowly degrades
in a generally monotonic fashion. See Bae andKvam [26, 27]
for details on the modeling of non-monotonic degradation
data. Degradation data analysis is summarized in Sect. 3.3.3.

3.2.5 Censoring

For most products tested in regular use conditions (as op-
posed to especially harsh conditions), the allotted test time
is usually too short to allow the experimenter to witness
failure times for the entire set that is on test. When the item
is necessarily taken off test after a certain amount of test
time, its lifetime is right censored. This is also called type
I censoring. Type II censoring corresponds to tests that are
stopped after a certain number of failures (say k out of n,
1 ≤ k ≤ n) occur.

Inspection data are lifetimes only observed at fixed times
of inspection. If the inspection reveals a failed test item, it
must be left censored at that fixed time. Items that are still
working at the time of the last inspection are necessarily right
censored. This is sometimes called interval censoring.

Censoring is a common hindrance in engineering appli-
cations. Lifetime data that are eclipsed by censoring cause
serious problems in the data analysis, but it must be kept in
mind that each observation, censored or not, contributes in-
formation and increases precision in the statistical inference,
overall.

3.2.6 Probability Plotting

Probability plotting is a practical tool for checking the ade-
quacy of a fitted lifetime distribution to a given set of data.
The rationale is to transform the observed data according
to a given distribution, so a linear relationship exists if the
distribution was specified correctly. In the past, probabil-
ity plotting paper was employed to construct the transfor-
mation, but researchers can find plotting options on many
computer packages that feature data analysis (e.g., SAS, S-
Plus, Matlab, Minitab, and SPSS) making the special plot-
ting paper nearly obsolete. Despite the applicability of this
technique, few engineering texts feature in-depth discussion
on probability plotting and statistics texts tend to focus on
theory more than implementation. Rigdon and Basu [10] pro-
vide a thorough discussion of basic probability plotting, and
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Fig. 3.1 Weibull probability plot for alloy T7987 fatigue life [8]

Atkinson [28] provides a substantial discussion of the subject
in the context of regression diagnostics. Advanced plotting
techniques even allow for censored observations (see Waller
and Turnbull [29], for example).

To illustrate how the plot works, we first linearize the CDF
of the distribution in question. For example, if we consider
the two-parameter Weibull distribution, the quantile function
is

tp =
(− log p

λ

)1/κ

, (3.6)

which implies that the plot of log t has a linear relation-
ship with the log–log function of p = F(t). Hence, Weibull
probability plots are graphed on log–log probability pa-
per. Figure 3.1 shows a Weibull plot (using Minitab) for
the fatigue life of 67 alloy specimens that failed before
n= 300,000 cycles. This dataset is fromMeeker and Escobar
[8] and the plot also includes 95% confidence bands that
identify the uncertainty associated with the plot. In this case,
the curvature (especially noticeable on the left side) suggests
that the Weibull distribution does not provide an adequate fit.

3.3 Analysis of Reliability Data

Once the lifetime distribution of a test item is determined,
the data can be used to estimate important properties of the
distribution, including mean, standard deviation, failure rate,
reliability (at a fixed time t), and upper or lower quantiles that
pertain to early or late failure times.

There are two fundamental methods for approaching the
analysis of lifetime data: Bayesian methods and, for the
lack of an optimal term, non-Bayesian methods. Although
Bayesian methods are accepted widely across many fields
of engineering and physical science, non-Bayesian statistics,
mostly frequentist and likelihood methods, are still an in-
dustry standard. This chapter will not detail how methods
of statistical inference are derived in various frameworks of
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statistical ideology. Accelerated life testing, an important tool
for designing reliability experiments, is discussed in detail in
Chap. � 22 and is only mentioned in this chapter. Instead, a
summary of important procedures is outlined for statistical
estimation, confidence intervals, and hypothesis tests.

3.3.1 Maximum Likelihood

Parametric likelihood methods examine a family of prob-
ability distributions and choose the parameter combination
that best fits the data. A likelihood function is generally
defined by the observed probabilitymodel; if the lifetime data
X1, . . . ,Xn are independently and identically (IID) distributed
with density function fX(x;θ ), the likelihood function is

L (θ) =
n∏

i=1

fX (xi; θ) (3.7)

and the maximum likelihood estimator (MLE) is the value
of θ that maximizes L(θ ). Single-parameter distributions
such as the exponential generate easily solved MLEs, but
distributions with two or more parameters are not often
straightforward. Samples that are not IID lead to complicated
likelihood functions and numerical methods are usually em-
ployed to solve for MLEs. If an observation x represents a
right censoring time, for example, then P(censor) = R(x) and
this information contributes the term R(x) to the likelihood
instead of f (x). Leemis [4] provides a thorough introduction
to the likelihood theory for reliability inference.

For most parametric distributions of interest, the MLE(
θ̂
)
has helpful limit properties. As the sample size n→ ∞,

√
n

(
θ̂ − θ

)
→ N

[
0, i(θ)−1

]
, where

i (θ) = E

[(
∂

∂θ
log f

)2
]

= −E

(
∂2

∂θ2
log f

)

(3.8)

is the estimator’s Fisher information. For other parameters of
interest, say ψ(θ ), we can construct approximate confidence
intervals based on an estimated variance using the Fisher
information:

σ̂ 2
[
ψ

(
θ̂
)]

≈ 1

ψ
(
θ̂
)2
i
(
θ̂
) . (3.9)

This allows the analyst to make direct inference for the
component reliability [ψ(θ ; t) = Rθ (t), for example].

Example MLE for failure rate with exponential data
(X1, . . . , Xn): The likelihood is based on f (x) = θ exp. (−θx)
where θ > 0 and is easier to maximize in its natural log form

log L (θ) = log

(
n∏

i=1

θe−θxi

)

= n log θ − θ

n∑

i=1

xi.

The maximum occurs at θ̂ = 1/x, and the Fisher infor-
mation i(θ ) = n/θ2, so an approximate (1 − α) confidence
interval is

1

x
± z α

2
i
(
θ̂
)−1/2 = 1

x
± z α

2

θ̂√
n

= 1

x
± z α

2

(
x
√
n
)−1

. (3.10)

In this case, the approximation above is surpassed by
an exact interval that can be constructed from the statistic
2θ (X1 + . . . + Xn) which has a chi-squared distribution with
2n degrees of freedom. The confidence statement

P
[
χ2
2n (1 − α/2) ≤ (X1 + · · · + Xn) ≤ χ2

2n (α/2)
] = 1 − α,

where χ2
2n (α) represents the α quantile of the chi-squared

distribution with 2n degrees of freedom, leads to a 1 − α

confidence interval for θ of

(
χ2
2n (1 − α/2)

2nx
,
χ2
2n (α/2)

2nx

)

. (3.11)

3.3.2 Likelihood Ratio

Uncertainty bounds, especially for multidimensional param-
eters, are more directly computed using the likelihood ratio
(LR) method. Here we consider θ to have p components.
Confidence regions are constructed by actual contours (in p-
dimensions) of the likelihood function. Define the LR as

�
(
θ , θ̂

)
= L (θ)

L
(
θ̂
) , (3.12)

where θ̂ is the MLE of L. If θ is the true value of the
parameter, then

−2 log � ∼ χ2
p ,

where χ2
p is the chi-squared distribution with p degrees of

freedom. A (1 − α) confidence region for θ is

{
θ : −2 log �

(
θ , θ̂

)
≤ χ2

p (α)
}
, (3.13)

where χ2
p (α) represents the 1 − α quantile of the χ2

p distri-
bution.

Example Confidence region for Weibull parameters: In this
case, the MLEs for θ = (λ, r) must be computed using
numerical methods. Many statistical software packages

https://doi.org/10.1007/978-1-4471-7503-2_22


3 Statistics for Reliability Modeling 59

3

1 2 3 4 5 6 7 8

0.5

1.0

1.5

2.0

2.5

Fig. 3.2 1 − α = 0.50, 0.90, and 0.95 confidence regions for Weibull
parameters (λ, r) based on simulated data of size n = 100

compute such estimators along with confidence bounds.

With
(
λ̂, r̂

)
, L

(
λ̂, r̂

)
standardizes the likelihood ratio so

that 0 ≤ �
(
θ , θ̂

)
≤ 1 and Λ peaks at (λ, r) =

(
λ̂, r̂

)
.

Figure 3.2 shows 50%, 90%, and 95% confidence regions
for the Weibull parameters based on a simulated sample of
n = 100.

Empirical likelihood provides a powerful method for pro-
viding confidence bounds on parameters of inference without
necessarily making strong assumptions about the lifetime
distribution of the product (i.e., it is nonparametric). This
chapter cannot afford the space needed to provide the reader
with an adequate description of its method and theory; Owen
[30] provides a comprehensive study of empirical likelihood
including its application to lifetime data. Rather, we will
summarize the fundamentals of nonparametric reliability es-
timation below.

3.3.3 Kaplan–Meier Estimator

For many modern reliability problems, it is not possible to
find a lifetime distribution that adequately fits the avail-
able failure data. As a counterpart to parametric maximum
likelihood theory, the nonparametric likelihood, as defined
by Kiefer and Wolfowitz [31], circumvents the need for
continuous densities:

L(F) =
n∏

i=1

(
F (xi) − F

(
x−
i

))
,

where F is the cumulative distribution of the sample X1, . . . ,
Xn. Kaplan and Meier [32] developed a nonparametric maxi-
mum likelihood estimator for F that allows for censored data
in the likelihood. The prevalence of right censoring (when a
reliability test is stopped at a time t so the component’s failure
time is known only to be greater than t) in reliability studies,
along with the increasing computing capabilities provided
to reliability analysts, has made nonparametric data analysis
more mainstream in reliability studies.

Suppose we have a sample of possibly right-censored life-
times. The sample is denoted {(Xi, δi), i= 1, . . . , n}, where Xi
is the time measurement, and δi indicates whether the time is
the observed lifetime (δi = 1) or a right censor time δi = 0.
The likelihood

L(F) =
n∏

i=1

(1 − F (xi))
1−δi dF(xi)

δi

can be shown to be maximized by assigning probability mass
only to the observed failure times in the sample according to
the rule

F̂(t) = 1 −
∏

xj≤t

(

1 − dj
mj

)

where dj are the number of failures at time xj and mj are
the number of test items that had survived up to the time
x−
j (i.e., just before the time xj). A pointwise (approximate)
confidence interval can be constructed based on the Kaplan–
Meier variance estimate

σ̂ 2 (ti) =
(
1 − F̂ (ti)

)2 ∑

ti≤tj

dj
mj

(
mj − dj

) .

Nair [33] showed that large-sample approximations work
well in a variety of settings, but for medium samples, the
following serves as an effective (1 − α)-level confidence
interval for the survival function 1 − F(t):

(
1 − F̂(t)

)
±

√

− ln
(

α
2

)

2n

(
1 − F̂(t)

)2 (
1 + σ̂ 2(t)

)
.

We illustrate in Fig. 3.3 the nonparametric estimator with
strength measurements (in coded units) for 48 pieces of
weathered cord along with 95% pointwise confidence in-
tervals for the cord strength. The data, found in Crowder,
et al. [34], include seven measurements that were damaged
and yielded strength measurements that are considered right
censored.
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Fig. 3.3 Estimated Kaplan–Meier survival function (1-F) for cord
strength data, along with 95% pointwise confidence interval

3.3.4 Degradation Data

As an alternative to traditional life testing, degradation tests
can be effective in assessing product reliability when mea-
surements of degradation leading to failure are observable
and quantifiable. Meeker and Escobar [8] provide the most
comprehensive discussion on modeling and analyzing degra-
dation data for manufactured items that have either a soft
failure threshold (i.e., an arbitrary fixed point at which the
device is considered to have failed) or items that degrade
before reaching a failed state. In the electronics industry,
product lifetimes are far too long to test in a laboratory; some
products in the lab will tend to become obsolete long before
they actually fail. In such cases, accelerated degradation
testing (ADT) is used to hasten product failure. In the manu-
facture of electronic components, this is often accomplished
by increasing voltage or temperature. See Chap. � 22 for a
review of recent results in ALT.

If the degradation path is modeled as

yi(t) = ηi(t) + εi(t), (3.14)

where ηi is the path of the ith tested unit (i= 1, . . . , n) and εi
represents an error term that has a distribution H(ε; Σ) with
parameter Σ unknown. Failure would be declared once yi(t)
passes a certain degradation threshold, say y*. The lifetime
distribution can be computed as (assuming degradation is an
increasing function)

F(t) = P [y(t) > y∗] = P [εi(t) > y∗ − ηi(t)] . (3.15)

If η is a deterministic function, the lifetime distribution
is driven completely by the error term. This is not altogether
realistic. In most cases, item-to-item variability exists and the

function η contains random coefficients; that is, η(t) = η(t,
λ, θ ), where λ is a vector of unknown parameters (common
to all units) and θ is a vector of random coefficients which
have a distribution G (with further unknown parameters β)
so that realizations of θ change from unit to unit. With
an accumulated set of unknown parameters (λ, β, Σ), this
makes for a difficult computation of the lifetime distribution.
Numerical methods and simulations are typically employed
to generate point estimates and confidence statements.

Least squares or maximum likelihood can be used to
estimate the unknown parameters in the degradation model.
To estimate F(t0), one can simulate M degradation curves
(choosing M to be large) from the estimated regression by
generating M random coefficients θ1, . . . , θM from the es-

timated distribution G
(
θ; β̂

)
. Next compute the estimated

degradation curve for yi based on the model with θ i and

λ̂ : yi(t) = ηi

(
t; λ̂, θi

)
. Then F̂ (t0) is the proportion of the

M generated curves that have reached the failure threshold y*

by time t0.
Meeker and Escobar use bootstrap confidence intervals

for measuring the uncertainty in the lifetime distribution
estimate. Their method follows the general algorithm for
nonparametric bootstrap confidence intervals described in
Efron and Tibshirani [35]. There are numerous bootstrap
sampling methods for various uncertainty problems posed
by complex models. This algorithm uses a nonparametric
bootstrap sampling procedure which resamples n of the sam-
ple degradation curves with replacement (i.e., some curves
may not be represented in the sample while others may
be represented multiple times). This resampled set will be
termed the bootstrap sample in the following procedure for
constructing confidence intervals.

1. Compute estimates of the parameters β, λ, Σ .
2. Use simulation (as above) to construct F̂ (t0).
3. Generate N ≥ 1000 bootstrap samples, and for each one,

compute estimates F̂(1) (t0) , . . . , F̂(N) (t0). This is done as
before except now the M simulated degradation paths are

constructed with an error term generated from H
(
η; �̂

)

to reflect variability in any single degradation path.
4. With the collection of bootstrap estimates from step

3, compute a 1 − α confidence interval for F(t0) as[
F̂l (t0) , F̂u (t0)

]
, where the indexes 1 ≤ l ≤ u ≤ N are

calculated as l/N = Φ[2Φ−1/2(p0) + Φ−1/2 × (α/2)] and
u/N = Φ[2Φ−1/2(p0) + Φ−1/2 × (1 − α/2)], and p0 is the
proportion of bootstrap estimates of F(t0) less than F̂ (t0).

Procedures based on realistic degradation models can
obviously grow to be computationally cumbersome, but for
important applications the increase in statistical efficiency
can be dramatic. In the past, these computations have
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impeded degradation analysis from being a feature of
reliability problem-solving. Such analyses are easier to
implement now, and the reliability analyst need not be
coerced into using an overly simplistic model – for instance,
a linear model that does not allow for random coefficients.

3.4 System Reliability

A system is an arrangement of components that work together
for a common goal. So far, the discussion has fixated on
the lifetime analysis of a single component, so this repre-
sents an extension of single-component reliability study. At
the simplest level, a system contains n components of an
identical type that are assumed to function independently.
The mapping of component outcomes to system outcomes
is through the system’s structure function. The reliability
function describes the system reliability as a function of
component reliability.

A series system is such that the failure of any of the
n components in the working group causes the system to
fail. If the probability that a single component fails in its
mission is p, the probability the system fails is 1 − P(system
succeeds)= 1−P(all n components succeed)= 1− (1− p)n.
More generally, in terms of component reliabilities (p1, . . . ,
pn), the system reliability function Ψ is

Ψ (p1, . . . , pn) =
n∏

i=1

(1 − pi). (3.16)

A parallel system is just the opposite; it fails only after
every one of its n working components fail. The system
failure probability is then

Ψ (p1, . . . , pn) = 1 −
n∏

i=1

pi. (3.17)

The parallel system and series system are special cases of
a k-out-of-n system, which is a system that works as long as
at least k out of its n components work. Assuming pi = p,
i = 1, . . . , n, the reliability of a k-out-of-n systems is

Ψ (p) =
n∑

i=k

(
n
i

)

(1 − p)ipn−i. (3.18)

Of course, most component arrangements are much more
complex that a series or parallel system. With just three
components, there are five uniqueways of arranging the com-
ponents in a coherent way (that is, so that each component
success contributes positively to the system reliability). Fig-
ure 3.4 shows the system structure of those five arrangements
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Fig. 3.4 Five unique systems of three components: (1) is series, (3) is
2-out-of-3, and (5) is parallel
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Fig. 3.5 System reliabilities of five system configurations in Fig. 3.4
from the parallel system (1) to the series system (5)

in terms of a logic diagram including a series system (1), a 2-
out-of-3 system (3), and a parallel system (5). Note that the 2-
out-of-3 system cannot be diagrammed with only three com-
ponents, so each component is represented twice in the logic
diagram. Figure 3.5 displays the corresponding reliabilities,
as a function of the component reliability 0 ≤ p ≤ 1 of those
five systems. Fundamental properties of coherent systems are
discussed in [2, 4].
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3.4.1 Estimating System and Component
Reliability

In many complex systems, the reliability of the system can
be computed through the reliability of the components along
with the system’s structure function. If the exact reliability is
too difficult to compute explicitly, reliability boundsmight be
achievable based on minimum cut sets (MCS) and minimum
path sets (MPS). An MPS is the collection of the smallest
component sets that are required to work in order to keep the
system working. An MCS is the collection of the smallest
component sets that are required to fail in order for the system
to fail. Table 3.2 shows the minimum cuts sets and path sets
for the three-component systems from Fig. 3.4.

In most industrial systems, components have different
roles and varying reliabilities, and often the component reli-
ability depends on the working status of other components.
System reliability can be simplified through fault-tree analy-
ses (see Chap. 7 of [16], for example), but uncertainty bounds
for system reliability are typically determined through
simulation.

In laboratory tests, component reliabilities are determined
and the system reliability is computed as a function of the
statistical inference of component lifetimes. In field studies,
the tables are turned. Component manufacturers seeking
reliability data outside laboratory tests look to component
lifetime data within a working system. For a k-out-of-n
system, for example, the system lifetime represents an order
statistic of the underlying distribution function. That is, if
the ordered lifetimes form a set of independent and iden-
tically distributed components (X1:n ≤ X2:n ≤ . . . ≤ Xn:n),
then Xn−k+1:n represents the k-out-of-n system lifetime. The
density function for Xr:n is

fr:n(t) = r
(
n
r

)
F(t)r−1[1 − F(t)]n−r f (t), t > 0. (3.19)

Kvam and Samaniego [36] derived the nonparametric
maximum likelihood estimator for F(t) based on a sample
of k-out-of-n system data, and showed that the MLE F̂(t) is
consistent. If the i-th system (i = 1, . . . , m) observed is a ki-
out-of-ni system, the likelihood can be represented as

L(F) =
m∏

i=1

fki:ni (ti) (3.20)

Table 3.2 Minimum cut sets and path sets for the systems in Fig. 3.3

System Minimum path sets Minimum cut sets

1 {A,B,C} {A}, {B}, {C}
2 {A,B}, {C} {A,C}, {B,C}
3 {A,B}, {A,C}, {B,C} {A,B}, {A,C}, {B,C}
4 {A,B}, {A,C} {A}, {B,C}
5 {A}, {B}, {C} {A,B,C}

and numerical methods are employed to find F̂. Huang [37]
investigated the asymptotic properties of this MLE, andChen
[38] provides an ad hoc estimator that examines the effects of
censoring.

Compared to individual component tests, observed system
lifetimes can be either advantageous or disadvantageous.
With an equal number of k-out-of-n systems at each
1 ≤ k ≤ n, Takahasi and Wakimoto [39] showed that the
estimate of MTTF is superior to that of an equal number
of individual component tests. With an unbalanced set of
system lifetimes, no such guarantee can be made. If only
series systems are observed, Kvam and Samaniego [40]
show how the uncertainty in F̂(t) is relatively small in the
lower quantiles of F (where system failures are observed)
but explodes in the upper quantiles.

3.4.2 Stochastic Dependence Between
System Components

Almost all basic reliability theory is based on systems with
independently operating components. For realistic modeling
of complex systems, this assumption is often impractical;
system components typically operate at a level related to the
quality and operational state of the other system components.

External events that cause the simultaneous failure of
component groups is a serious consideration in reliability
analysis of power systems. This can be a crucial point in sys-
tems that rely on built-in component redundancy to achieve
high target system reliability. Shock models, such as those
introduced by Marshall and Olkin [41], can be employed to
demonstrate how multiple component failures can occur. An
extra failure process is added to the otherwise independent
component failure processes, representing the simultaneous
failure of one or more components, thus making the com-
ponent lifetimes positively dependent. This is the basis for
most dependent failure models in probabilistic risk assess-
ment, including common cause failure models used in the
nuclear industry (alpha-factor model, beta-factor model, and
binomial failure rate model). See Chapt. 8 of Bedford and
Cooke [16] for discussion about how these models are used
in risk assessment.

In dynamic systems, where system configurations and
component reliability can change after an external event or
a failure of one or more of the system components, the
shock model approach cannot be applied effectively. In some
applications, a load-share model applies. Early applications
of the load-share systemmodels were investigated byDaniels
[42] for studying the reliability of composite materials in the
textile industry. Yarns and cables fail after the last fiber (or
wire) in the bundle breaks, thus a bundle of fibers can be
considered a parallel system subject to a constant tensile load.
An individual fiber fails in time with an individual rate that
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depends on how the unbroken fibers within the bundle share
the load of this stress. Depending on the physical properties
of the fiber composite, this load sharing has different mean-
ings in the failure model. Yarn bundles or untwisted cables
tend to spread the stress load uniformly after individual
failures which defines an equal load-share rule, implying the
existence of a constant system load that is distributed equally
among the working components.

As expected, a load-sharing structure within a system
can increase reliability (if the load distribution saves the
system from failing automatically) but reliability inference
is hampered even by the simplest model. Kvam and Pena
[43] show how the efficiency of the load-share system, as a
function of component dependence, varies between that of a
series system (equivalent to sharing an infinite load) and a
parallel system (equivalent to sharing zero load).

3.4.3 Logistics Systems

Numerous studies have examined fundamental problems in
network reliability [44], system performance degradation,
and workload rerouting for telecommunication, power, and
transportation networks [45, 46]. In comparison, the litera-
ture on modeling logistics system reliability or performance
degradation is scarce. Logistics systems that transport goods,
energy (e.g., electricity and gas), water, sewage, money, or
information from origins to destinations are critical to every
nation’s economic prosperity. Unlike the hub in the typical
Internet or telecommunication network, where the messages
are not mixed together, logistics distribution centers (DCs)
tend to mix products from various sources for risk-pooling
purposes [47]. Past studies [48] of road network reliability
mainly addressed connectivity and travel time reliability.
These developments have limited use in providing a first-
cut analysis for system-level planning that involves robust
logistics network design to meet reliability requirements or
supply chain cost and delivery time evaluation for contract
decisions [49].

Consider a logistics network consisting of many suppliers
providing goods to several DCs, which support store oper-
ations to meet customer demands. The reliability of such
a network can be evaluated in terms of the probability of
delivering goods to stores in a prespecified time limit t0.
Traveling time in transport routes contains uncertainty, as
does the processing time for products shipped through DCs.
Random traveling time is a function of routing distances,
road and traffic conditions, and possible delays from seaport
or security checkpoint inspections. Traveling distance de-
pends on the configuration of logistics networks. Some retail
chains use single-layer DCs, but others use multiple-layer

DCs similar to airline hubs (e.g., regional DCs and global
DCs) in aggregating various types of goods. Vehicle routing
procedures typically involve trucks that carry similar prod-
ucts to several stores in an assigned region. Different prod-
ucts are consolidated in shipment for risk-pooling purposes
and to more easily control delivery time and store-docking
operations.

When one DC cannot meet the demands from its re-
gional stores (due to demand increase or the DC’s limited
capability), other DCs provide backup support to maintain
the overall network’s service reliability. Focusing on the
operations between DCs and stores, Ni et al. [49] defined
the following network reliability as a weighted sum of the
individual reliabilities from each DC’s operations:

r∗system,k =
⎡

⎣
M∑

i=1,i�=k
diP

(
T∗
m,i < t0

)

+
M∑

i=1,i�=k
pidkP

(
T∗
m,k,i < t0

)
⎤

⎦ /

M∑

i=1

di,

(3.21)

where di is the demand aggregated at the ith DC, T∗
m,i is the

motion time defined as the sum of traveling time from DCi

to its assigned stores (including material processing time at
DCi), pi is the proportion of products rerouted from DCk

through DCi due to the limited capability in DCk, and T∗
m,j

is the modified motion time including the rerouted traveling
time.

For modeling the aggregated demand di and calculating
routing distance, Ni et al. [49] proposed a multiscale approx-
imation model to quantify demand patterns at spatially lo-
cated clustered stores. Then, they evaluated product rerouting
strategies for maintaining system service reliability, defined
in (3.19). Based on the store locations of a major retail chain,
several examples show the importance of designing a robust
logistics network to limit service reliability degradationwhen
a contingency (e.g., multiple DC failure) occurs in the net-
work. Future work includes:

1. Modeling the low-probability but high-impact contin-
gency in the DCs [49] and routes for calculating their
relative importance to network reliability.

2. Examining the trade-off between the cost of adding more
DCs and the improvement of service reliability.

3. Resolving the domino effect when the added workload to
DCs after a local DC failure causes further DC failures
due to faulty predetermined rules of rerouting to maintain
system reliability (e.g., the 2003 electricity blackout in the
northeastern region of the USA).
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3.4.4 Robust Reliability Design in the Supply
Chain

Past studies of robust parameter design [50] focused on
product quality issues and assumed that all the controllable
variables are under single ownership. Recent outsourcing
trends in automobile and electronic manufacturing processes
motivate the presentation in this section. In an automo-
bile manufacturing enterprise system, various parts suppliers
have control of variables determining quality and reliability.
Most of the automobile supply chain systems assemble these
parts into a subsystem and then move these systems to other
locations owned by different partners for the final system-
level assembly and testing. Every segment of the assembly
operation controls a subset of variables leading to different
levels of system reliability. Because the warranty policy is
addressed to all of the part manufacturing and assembly
processes in making the final product, it is important to
extend the robust parameter design concept to the supply-
chain-oriented manufacturing processes.

Supply chain partners have their own operation objectives
(e.g., maximize the profit of manufacturing parts to supply
several automobile companies). Some of the objectives are
aligned to manufacturing a specific type of product, but there
are many potential situations with conflicting objectives.
When there is no single ownership of all controllable vari-
ables in the manufacturing processes, negotiation is needed
to resolve potential conflicts. Game theory [51] is commonly
used in supply chain contract decisions. Following the frame-
work of Chen and Lewis [52], we can decompose the set of
controllable variables into a few subsets owned by distinct
partners and formulate the objectives of these partners. The
supply chain manager can define the product quality and
reliability measures and build models to link them to the
controllable and uncontrollable variables that are seen in
robust parameter design.

Different negotiation situations (e.g., the final product
assembly company has more bargaining power than other
partners) will lead to distinct levels selected for the control-
lable variables (see Charoensiriwath and Lu [53], for exam-
ple, in negotiations). As a result, the reliability of the final
product can vary. Designing a supply chain system that leads
to the most reliable products (with minimum cost) presents
an acute challenge, and warranty policies can be designed
correspondingly. Because parts and subsystems are made by
various partners, warranty responsibilities for certain parts
are distributed among partners under the negotiated supply
chain contracts.
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Abstract

This chapter introduces functional data analysis (FDA)
and selective topics in FDA, including functional principal
component analysis (FPCA) and functional linear regres-
sion (FLR), with real data applications using a software
package, which is publicly available. The methods in this
chapter are based on local polynomial regression, a basic
and important smoothing technique in nonparametric and
semiparametric statistics. The approaches included in this
chapter are not limited to the analysis of dense functional
data but can also be used for the analysis of sparse func-
tional/longitudinal data.

Y. Xu (�)
Bowling Green State University, Bowling Green, OH, USA

In Sect. 4.1, we introduce FDA with some interesting
examples of functional data and briefly describe FPCA
and FLR. Section 4.2 details FPCA, one of the most
important topics and tools in FDA. Topics such as the
estimation of mean and covariance functions using non-
parametric smoothing, choosing the number of principal
components (PC) using subjective and objective meth-
ods, and prediction of trajectories are included and il-
lustrated using a publicly available bike-sharing data set.
Section 4.3 presents FLR based on FPCA described in
Sect. 4.2. FLR is a generalization of traditional linear
regression to the case of functional data. It is a powerful
tool to model the relationship between functional/scalar
response and functional predictors. This section is also
illustrated using the same bike-sharing data set. We fo-
cus on the case when both response and predictor are
functions in this section, but we mentioned other types
of FLR topics in Sect. 4.4. Section 4.4 presents a short
overview of other selected topics and software packages
in FDA. These topics are either about functional data
with more complex features than the simple and basic
ones included in the previous two sections or about other
statistical estimation and inference not covered before.
The statistical software packages used in this chapter
are written in Matlab and may be appropriate for the
analysis of some basic types of functional data but not
for others. Section 4.4 described other software pack-
ages written in different languages, such as R, and those
packages have the flexibility to analyze various prob-
lems in functional data and different types of functional
data.

Keywords

Confidence band · Functional data · Linear regression ·
Local polynomial · Longitudinal data · Prediction ·
Principal components
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4.1 Introduction

FDA deals with the analysis of data which are in the form
of functions. The functions could be curves, images, or
other types of forms, depending on the set on which the
functions are recorded. A common type of functional data
are curves recorded during a time interval. For example, a
well-known example of functional data described in a classic
book on FDA [1] is the Canadian weather station data. The
data set is about the daily temperature and precipitation data
recorded in 35 Canadian weather stations. The daily average
temperature data are shown in Fig. 4.1. We notice that, on
average, the data look like a parabola; also there are obvious
variations among those weather stations, and some patterns
of correlation may exist between two time points. In FDA,
some of those findings can be described using a univariate
mean function and a bivariate correlation function.

FDA has received increasing attention and interests during
the past two decades. This is probably due to the development
of technology, which enables the collection of functional
data in many fields, including medical science, public health,
engineering, biological science, environmental science, etc.

For example, in plant breeding and precision agriculture,
high-throughput phenotyping technologies have been suc-
cessfully employed, which enables collecting phenotyping
data over time automatically. The characteristics of crops
over time are examples of functional data. For example, [2]
studied the growth and its dynamics of maize using high-
throughput phenotyping data. The sizes of maize plants in the
study were observed during a 21-day period of time, and their
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growth curves are shown in Fig. 4.2. In the study of root grav-
itropism, modern technology also facilitates the collection
of gravitropism data automatically using advanced digital
cameras. For example, [3] studied the root gravitropism over
time using FDA. In particular, the gravitropism data has a
multilevel structure, namely, multilevel or hierarchical func-
tional data, which will be discussed in Sect. 4.4.1 (Fig. 4.3).

Functional data are intrinsically infinite-dimensional.
They are usually represented by random processes over a
fixed time interval. In real-world applications, the processes
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are not observed completely but discretely over regular or
irregular time points. In classical FDA, e.g., the methods
introduced in [1], there are usually abundant observations
for each curve, so each curve contains enough information
for the trajectory of a subject. For example, in the study of
the activities of a brain, data collected using the electro-
physiological monitoring method usually have thousands
of observations per curve. However, in longitudinal studies,
often there are only a few observations per curve, namely,
sparse functional data. Yao et al. [4] proposed the idea of
pooling information from all curves for the analysis of such
type of data. The methods we described in this chapter are
mainly based on the idea of [4], but the application of the
methods is not limited to sparse functional data.

FPCA, as an important dimension reduction tool, has
been used widely in FDA. It captures the majority of the
variation in functional data, facilitates the interpretation of
the data, and provides outputs which can be used for further
statistical analysis. In FPCA, the observed curves are treated
as realizations from a random process. The random process
is usually decomposed into three parts: an overall fixed
mean function, a zero-mean random process, and a zero-
mean random variable representing measurement errors. The
mean function and the covariance function of the zero-mean
process are usually assumed to be smooth. Therefore, non-
parametric smoothing methods, such as local polynomial re-
gression and spline-based approaches, become fundamental
tools for FPCA. For example, [1] mainly uses spline-based
approaches and [4] employs local polynomial regression for
smoothing. The main attraction of FPCA is it enables the
representation of the zero-mean random process as a finite
linear combination of random variables, called functional
principal component (PC) scores, and fixed functions, called
eigenfunctions.

Probably the most important models in statistics are linear
regression models. In a linear regression model, it is assumed
that there is a linear relationship between a response and
predictors. The counterpart in FDA is called FLR models. In
a FLR model, the regression parameter in a classical linear
regression model becomes a regression function. The regres-
sion function is a one-dimensional function if the response
is scalar or a two-dimensional function if the response is
also a function. The results of FPCA for the predictor if the
response is scalar, or for both the predictor and response
if the response is also a function, can be used to obtain
the regression function. Similar to classical linear regression
models, FLR models can also be used to make a prediction
of the unknown response given a new predictor trajectory.

The rest of this chapter is structured as follows. Section 4.2
details themethods used for FPCA based on local polynomial
regression with a real data application. FPCA-based FLR
is described in Sect. 4.3 with an example when both the
response and the predictor are functions. Section 4.4 includes

selective topics in FDA which have applications in engineer-
ing and other fields. All the analyses in Sects. 4.2 and 4.3
are implemented using the same public available statistical
software package, and the details of the implementation are
also provided. Some other statistical software packages for
FDA are described in Sect. 4.4.

4.2 Functional Principal Component
Analysis

4.2.1 Model for FPCA

In FDA, it is often assumed that data are independent real-
izations of a smooth stochastic process, X(t), over a compact
interval. Without loss of generality, we assume the interval
to be [0, 1]. In this chapter, we refer t as a time variable, but
it could be other index variables, such as locations in image
analysis. The random processX(t) is often assumed to belong
to a Hilbert space, L2([0, 1]), with finite second moment; that
is, E{∫1

0 X
2(t)dt} < ∞. The mean function of X(t) is defined

as μ(t) = E{X(t)}, and the covariance function is denoted by
C(s, t) = Cov(X(s), X(t)).

In real-world applications, we never observe the whole
process over the time interval. Instead, data are collected
discretely. There are roughly two typical types of designs
depending on how the data are collected. Assume that there
are n subjects. For each subject i = 1, . . . , n, the observations
are made at time Tij, j = 1, . . . , Ni of the process Xi(t), where
Xi(t) are independent realizations of X(t). If the number of
observations per subject, Ni, is not bounded and the observa-
tions are made on a regular grid, then it is called dense design;
if Ni is bounded and observations are made randomly during
the time interval, it is called sparse design.

The data set we will use for the illustration of FPCA
is a bike-sharing data set. This data set contains hourly
count of rental bikes during 2011 and 2012 in the Capital
Bikeshare system with weather and seasonal information.
After removing an obvious outlier curve, we chose days in
2011 which are neither a weekend nor a holiday. There are
249 days in total. In this section, we are interested in the
count of rental bikes observed hourly as shown in Fig. 4.4.
As we expected, there are two peaks of those curves: one is
in the morning when people go to work, and the other is in
the afternoon when people go home after work. We should
mention that the design of this data might neither be a dense
nor sparse design because for some days there are less than
24 observations. The method we described in the section is
based on [4] which is originally proposed to deal with sparse
functional data. However, it can still be applied to such types
of functional data or dense functional data.

To represent the variation in functional data, FPCA
has become one of the most popular methods because



70 Y. Xu

Hour

0

100

200

300

400

500

600

700
C

ou
nt

 o
f 

re
nt

al
 b

ik
es

0 5 10 15 20

Fig. 4.4 The count of rental bikes measured hourly for 249 days in
2011. Each curve represents observations during a day

it can explain most of the variance in the data with a
small number of components. According to Karhunen-
Loève theorem, each random curve can be expressed as
Xi(t) = μ(t)+∑∞

k=1 ξikφk(t), where ξik, called PC scores, are
uncorrelated zero-mean random variables with variance λk
such that

∑∞
k=1 λk < ∞. Most of the time, the measurements

are contaminated with noise. For example, miscounting
could happen in the Capital Bikeshare system. To incorporate
possible measurement errors, assume that Yij, realizations of
the process Y(t) = X(t) + ε, are the observations we have
and can be written as Yij = μ(Tij)+Xi(Tij)+εij, where εij are
zero-mean measurement errors with constant variance σ 2.
The errors εij are assumed to be independent of PC scores.
The whole model can be expressed as

Yij = μ(Tij) +
∞∑

k=1

ξikφk(Tij) + εij. (4.1)

4.2.2 Estimation of Mean Function,
Eigenvalues, and Eigenfunctions

We first estimate the mean function μ(t). In FDA, it is often
assumed that the functions in (4.1) are smooth. Therefore,
smoothing methods can be applied to estimate unknown
functions or surfaces. Yao et al. [4] used local polynomial
[5] smoothing method, and [6, 7] employed spline-based
approaches. Here, we introduce the local polynomial-
based approach described by Yao et al. [4]. At time point
t, the value of the mean function can be estimated by
minimizing

n∑

i=1

Ni∑

j=1

{Yij − a0 − a1(Tij − t)}2K{(Tij − t)/hμ}

with respect to (a0, a1), where K(·) is a symmetric density
function, called a kernel function, and hμ is a smoothing pa-
rameter, called a bandwidth, which controls the smoothness
of the resulting function. Explicit solutions can be obtained
and are denoted by (̂a0, â1). The estimator of the mean
function is μ̂(t) = â0. Rice, and Silverman [6] proposed a
cross-validation method to choose the bandwidth, hμ.

We now apply the local linear smoother to the bike-sharing
data to obtain the mean function estimate. The package we
use to implement the data analysis in this chapter is called
PACE package. PACE is written inMatlab and provides func-
tions to implement various methods in FDA. Here is the link
to PACE: http://www.stat.ucdavis.edu/PACE/. The function
to perform FPCA is also called FPCA in PACE. We applied
this function to the data and obtained the estimated mean
function in Fig. 4.5. The estimated curve clearly shows the
pattern during a regular working day: the number of sharing
bikes increases during an early morning until a smaller peak
around 8 AM; then it decreases until noon and increases
again; it reaches the second and bigger peak around 6 PM
and then decreases again.

Define the residuals as eij = Yij − μ̂(Tij). Similarly, the
covariance function can also be estimated using local linear
regression. At time point (s, t), the estimated covariance
function can be obtained by minimizing

n∑

i=1

∑

j�=k
{eijeik − b0 − b1(Tij − s) − b2(Tik − t)}2

× K{(Tij − s)/hC}K{(Tik − t)/hC},
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Fig. 4.5 The scatter plot of the count of the bike-sharing data and the
estimated mean function using local linear smoothing
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where hC is a bandwidth. Denote the solutions as (̂b0, b̂1, b̂2);
then the estimate of the covariance function is Ĉ(s, t) = b̂0.
We applied the FPCA function of the PACE package to
the real data and obtained the estimated covariance function
in Fig. 4.6. The main diagonal of the estimated covariance
surface has two peaks located around 8 AM and 6 PM, which
is consistent with the scatter plot in Fig. 4.5. We also see that
the covariance between the two time points of the two peaks
is large. One explanation for this phenomenon is that many
people using rental bikes to go to work in the morning end
up using them to go back home as well.

Let V(t) = Var{Y(t)} = C(t, t) + σ 2. Similarly, we
estimate V(t) using local linear regression and denote the
solution as V̂(t). The error variance σ 2 is estimated by σ̂ 2 =
∫1
0{V̂(t) − Ĉ(t, t)}dt. For the bike-sharing data, the estimated

standard deviation is σ̂ = 53.51, which indicates a significant
amount of measurement errors.

The Karhunen-Loève theorem leads to C(s, t) =∑∞
k=1 λkφk(s)φk(t). Therefore, the estimated eigenvalues,

λ̂k, and eigenfunctions, φ̂k(t), are estimated by the following
eigenequations:

∫ 1

0
Ĉ(s, t)φ̂k(s)ds = λ̂kφ̂k(t), (4.2)

where the eigenfunctions are orthonormal which means
∫1
0 φ̂k(t)φ̂l(t)dt = I(k = l). In practice, the eigenfunctions

are often estimated by discretizing the estimated smooth
covariance surface [4, 6].

Notice that the Karhunen-Loève theorem leads to an in-
finite sum. In real data applications, it is often truncated
to a relatively large number first, e.g., 25. A criterion can
then be used to select first few dominant components. A

No. of principal components

0

10

20

30

40

50

60

70

80

90

100

FV
E

 (
%

)

Fraction of variance explained by No. of PC for function x

 k = 2, FVE = 93.999%
 (final choice)

0 5 10 15 20 25

Fig. 4.7 The scree plot for FPCA of the bike-sharing data using 90%
as a threshold

simple criterion is the fraction of variance explained (FVE)
method. This method needs us to specify a threshold fraction
first, such as 90%. If the first K components can explain
at least 90% of the total variation, then FVE will choose
the first K components. For the application to the bike-
sharing data, if we set 90% as the threshold, the FVE method
chooses the first two components as shown in the scree plot,
Fig. 4.7. FVE method is simple, but a drawback of it is it is
a subjective method. Data-driven approaches, such as AIC
and BIC proposed in [8], are better approaches to choose
the dominant components in FPCA. The first two estimated
eigenfunctions are shown in Figs. 4.8 and 4.9. The other way
to visualize the effects is to plot components as perturbation
of themean. Ramsay and Silverman [1] suggests to use μ̂(t)±
0.2cφ̂k(t), where c = √||μ̂(t) − μ̄||2 and μ̄ = ∫1

0 μ̂(t)dt.
The perturbation plot for the first component is shown in
Fig. 4.10. It shows that the effect of the first PC of variation
is approximately adding or subtracting larger values when
the value of the estimated mean function is larger. On the
other hand, the effect of the second PC of variation, as shown
in Fig. 4.11, shows an opposite pattern. It adds or subtracts
smaller values when the value of the estimated mean function
is larger.

4.2.3 Estimation of PC Scores

The next step is to estimate the PC scores ξik = ∫1
0{Xi(t) −

μ(t)}φk(t)dt. For dense functional data, numerical integration
approximation is suitable. However, for sparse functional
data when there are only a few observations per subject,
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Fig. 4.8 The first eigenfunction obtained from the FPCA of the bike-
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Fig. 4.9 The second eigenfunction obtained from the FPCA of the
bike-sharing data

numerical integration approximation is very inaccurate. One
major contribution of [4] is they proposed an algorithm called
the Principal Analysis by Conditional Estimation (PACE) to
solve the difficulty for sparse functional data. The advantage
of PACE is it pool time points from the entire sample to
predict the PC scores. Define X̃i = (Xi(Ti1), . . . , Xi(TiNi))

′,
Ỹi = (Yi1, . . . , YiNi)

′, μi = (μ(Ti1), . . . ,μ(TiNi))
′, and φik =

(φk(Ti1), . . . ,φk(TiNi))
′. Then, model (4.1) becomes a linear

mixed model when the infinite sum is truncated to a finite
number,K (e.g., for the bike-sharing data,K = 2). Assuming
that the PC scores and measurement errors are joint normal,
best linear unbiased prediction (BLUP) can be used to predict
the functional PC scores. Specifically,
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Fig. 4.10 The mean curve and the effects of adding (+) and subtracting
(*) a multiple of the first eigenfunction
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Fig. 4.11 The mean curve and the effects of adding (+) and subtracting
(*) a multiple of the second eigenfunction

ξ̂ik = λ̂kφ̂
′
ik�̂

−1
Yi

(Ỹi − μ̂i), (4.3)

where the (l1, l2)th element of �̂Yi is Ĉ(Til1 , Til2) + σ̂ 2I(l1 =
l2). According to the properties of BLUP, regardless of
whether the Gaussian assumption holds or not, ξ̂ik is the best
linear prediction of ξik.

4.2.4 Prediction of Trajectories and
Confidence Bands

Now, the model (4.1) has been fitted and truncated to a
suitable number of PC. The fitted model can then be used
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Fig. 4.12 The predicted number of rental bikes for the 18th day of the
bike-sharing data. The observed values are marked as circles

to predict the trajectory Xi(t) for the ith subject. Naturally,
Xi(t) is estimated by

X̂i(t) = μ̂(t) +
K∑

k=1

ξ̂ikφ̂k(t). (4.4)

The prediction formula is more attractive in the sparse de-
sign in FDA because even if we observe only one or two
observations for a certain subject, we can still recover the
whole curve for this subject using the above formula be-
cause PACE can pool the information from curves of all
subjects to make the prediction. For the bike-sharing data,
most days there are 23 or 24 observations per curve. For
illustration, we found one day there are only eight obser-
vations, from the 16th hour to the 23rd hour, as shown in
Fig. 4.12. Using the prediction formula (4.4), we are able
to recover the whole curve. From the predicted curve, we
notice that this is actually a particular day because the first
peak in the morning is taller than the second peak in the
afternoon.

Further, confidence bands can also be obtained for each
individual trajectory. Let �̂K = 	̂ − Ĥ�̂−1

Yi
Ĥ′, where 	̂ =

diag{̂λ1, . . . , λ̂K}, and Ĥ = (̂λ1φ̂i1, . . . , λ̂K φ̂iK)′. The 100(1−
α)% point-wise asymptotic confidence band for Xi(t) is

X̂i(t) ± z1− α
2

√
φ̃′
K�̂K φ̃K, (4.5)

where z1− α
2
is the (1 − α

2 ) quantile of the standard normal
distribution and φ̃K = (φ̂1(t), . . . , φ̂K(t))′. Using the formula
(4.5), we constructed the 95% point-wise confidence band
for the predicted curve in Fig. 4.12 using the PACE package.
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Fig. 4.13 The predicted number of rental bikes for the 18th day of the
bike-sharing data and its 95%point-wise confidence band. The observed
values are marked as circles

Table 4.1 First ten rows of the bike-sharing data

Hour Humidity Wind speed Count Day

0 0.44 0.3582 5 1

1 0.44 0.4179 2 1

4 0.47 0.3881 1 1

5 0.47 0.2836 3 1

6 0.50 0.3881 30 1

7 0.50 0.1940 64 1

8 0.50 0.2836 154 1

9 0.43 0.3881 88 1

10 0.43 0.2537 44 1

11 0.40 0.3284 51 1

The confidence band is shown in Fig. 4.13. It also supports
the finding that the first peak is higher.

4.2.5 Implementation Details

In this section, we first describe the data we used for the
analysis in both Sects. 4.2 and 4.3. The first ten observations
of the whole data set are shown in Table 4.1. The first column
represents the hour of measurements, ranging from 0 to 23.
Humidity and wind speed are shown in the second and third
columns. Both variables are normalized with a maximum
at 1. The fourth column shows the number of total rental
bikes including both casual and registered. The last column is
simply a label of the day in the year 2011. More details about
this data set can be found at “https://archive.ics.uci.edu/ml/
datasets/bike+sharing+dataset.”

Below are Matlab codes used to implement the FPCA,
predict, and obtain relevant figures in this section.

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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% add the toolbox to the working path
addpath(genpath(’C:/Program Files/MATLAB/toolbox/release2.17/’))

% Load the data set and create 4 cells to be used
data = csvread(’data.csv’); % a 5911 by 5 matrix
ncohort = 249; % 249 days in total
t = cell(1,ncohort);
humid = cell(1,ncohort);
wind = cell(1,ncohort);
y = cell(1,ncohort);
for i=1:ncohort

day_i = data(data(:,5)==i,1:4);
t{i} = day_i(:,1)’; % hour: 0 to 23
y{i} = day_i(:,4)’; % count of bicycles used

end

% Plot the raw data of y v.s. t
figure;
for i=1:ncohort

plot(t{i},y{i},’k’);
hold on;

end
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Count of rental bikes’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% Conduct FPCA and obtain results %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
regular = 1; %Case iii) regular data with missing values (regular = 1)
p = setOptions(’yname’,’x’, ’regular’, regular, ’selection_k’, ’FVE’,

’FVE_threshold’,0.9 ,’screePlot’,1,’numBins’,0, ’verbose’,’on’);
[result_fpca] = FPCA(y,t,p);
out1 = getVal(result_fpca,’out1’); %vector of time points for mu, phi and

%ypred
mu = getVal(result_fpca,’mu’); %estimated mean function
out21 = getVal(result_fpca,’out21’); %vector of time points for xcov
xcov = getVal(result_fpca,’xcov’); %estimated smooth covariance evaluated

%at out21
xcorr = getVal(result_fpca,’xcorr’); %fitted correlation surface
phi = getVal(result_fpca,’phi’); %estimated eigenfunctions
FVE = getVal(result_fpca,’FVE’); %fraction of variance explained
sigma = getVal(result_fpca,’sigma’); %estimate of measurement error variance
xi_var = getVal(result_fpca,’xi_var’); %a cell of K*K matrices, omega matrix in

%equation (7) of the JASA paper
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% Plot the estimated mean function
figure;
plot(cell2mat(t),cell2mat(y),’k.’,’MarkerSize’,10);
hold on;
plot(out1,mu,’r’,’LineWidth’,2);
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Count of rental bikes’);

% Plot the estimated covariance surface
figure;
mesh(out21,out21,xcov);
xlabel(’Hour’);
ylabel(’Hour’);
zlabel(’Covariance’);
xlim([0 23]);
ylim([0 23]);

% Plot the estimated correlation surface
figure;
mesh(out21,out21,xcorr);
xlabel(’Hour’);
ylabel(’Hour’);
zlabel(’Correlation’);
xlim([0 23]);
ylim([0 23]);

% Plot the estimated eigen-functions
figure;
plot(out1,phi(:,1),’k’);
hold on;
plot(out1,zeros(1,length(out1)),’k--’);
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Value of PC curve’);
title(’PC 1 (77.5%)’);

figure;
plot(out1,phi(:,2),’k’);
hold on;
plot(out1,zeros(1,length(out1)),’k--’);
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Value of PC curve’);
title(’PC 2 (16.5%)’);
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% Plot the effects plot
mu_bar = mean(mu);
C = sqrt(mean((mu-mu_bar).ˆ2));
figure;
plot(out1,mu,’k’,’LineWidth’,2);
hold on;
plot(out1,mu+C*phi(:,1)’,’r+’,’MarkerSize’,5);
hold on;
plot(out1,mu-C*phi(:,1)’,’b*’,’MarkerSize’,5);
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Count of rental bikes’);

figure;
plot(out1,mu,’k’,’LineWidth’,2);
hold on;
plot(out1,mu+C*phi(:,2)’,’r+’,’MarkerSize’,5);
hold on;
plot(out1,mu-C*phi(:,2)’,’b*’,’MarkerSize’,5);
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Count of rental bikes’);

% Prediction for the 18-th cell of t
i = 18;
ypred=FPCAeval(result_fpca,[],out1); %obtain predicted curves for all existing

subjects
figure;
plot(out1,ypred{i},’r’,’LineWidth’,2);
hold on;
plot(t{i},y{i},’bo’);
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Count of rental bikes’);

% Point-wise C.I. for X_i(t)
sd = sqrt(diag(phi*xi_var{i}*phi’));
figure;
plot(out1,ypred{i},’r’,’LineWidth’,2);
hold on;
plot(t{i},y{i},’bo’);
hold on;
plot(out1,ypred{i}+1.96*sd’,’b--’,’LineWidth’,2);
hold on;
plot(out1,ypred{i}-1.96*sd’,’b--’,’LineWidth’,2);
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Count of rental bikes’);
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4.3 Functional Linear Regression

4.3.1 Model for FLR

A common case in FLR is both a response variable and
predictors are functions over compact sets. For example,
in the bike-sharing data set, one predictor, which might be
useful to predict the number of rental bikes, is humidity
measurement over time. In this section, we mainly focus on
the situation when there is a continuous covariate measured
over a compact set. The methodology is proposed in [9] for
sparse functional data regression, but it may also be applied
to other designs of functional data.

Without loss of generality, we also assume the compact set
to be [0,1]. Assume that the observed values of the predictor
areWil, i = 1, . . . , n, l = 1, . . . , Mi. Similar to (4.1), we write
the model for the predictor as

Wil = Vi(Sil) + εil

= μV(Sil) +
∞∑

k=1

ζikψk(Sil) + εil, (4.6)

where μV(s) = E{Vi(s)} is the mean function, Sil are
measurement times for Vi, ζik are zero-mean functional PC
scores with variance ρk, ψk(s) are eigenfunctions, and εil are
zero-mean measurement errors with variance σ 2

V . The same
FPCA procedure described in Sect. 4.2 can be applied to the
predictor trajectory to obtain estimates in model (4.6).

We now apply FPCA to the predictor in the bike-sharing
data. To make predictions later, we only use the first 247
days for model fitting, and the remaining last 2 days are used
for functional prediction. The humidity variable considered
here is normalized by dividing it by the maximum, 100. The
trajectories of the normalized humidity and the estimated
mean function are shown in Fig. 4.14. Notice that the maxi-
mum humidity may appear any time during a day because of
rain. The smooth estimate, ν̂(s), shows a sinusoidal pattern,
reaching a maximum around 5 AM when the temperature
is about the lowest during a day and reaching a minimum
around 3 PM when the temperature is close to the highest
during a day. We set 90% as the threshold, and the FVE
method chooses the first three PC. The estimated first three
eigenfunctions are shown in Fig. 4.15. The first eigenfunction
is close to a constant and reflects an overall level of shift. The
second eigenfunction represents a contrast between early and
late times during a day, and the third eigenfunction shows a
contrast between the middle times and the times of the two
tails. In this application, both humidity and the count of rental
bikes are measured hourly. However, this is not required in
FLR. A covariate function could be measured over a different
compact set.
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Fig. 4.14 Observed curves of normalized humidity in the bike-sharing
data and the estimated mean function using local linear smoothing
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Fig. 4.15 Smooth estimates of the first (solid), second (dashed), and
third (dash-dot) eigenfunctions for the normalized humidity in the bike-
sharing data

A FLR model when both the predictor and response are
random functions can be expressed by

E[X(t)|V] = α(t) +
∫ 1

0
β(s, t)V(s)ds, (4.7)

where β(s, t) is a smooth and square integrable bivariate
regression function. The above model (4.7) is a natural gen-
eralization of the simple linear regression model, E[X|V] =
α + βV . It is well known that for a simple linear regression
model, β = Cov(V, X)/Var(V). For FLR, under certain



78 Y. Xu

regularity conditions, this representation still holds. The re-
gression function is given by

β(s, t) =
∞∑

k=1

∞∑

m=1

Cov(ζmψm(s), ξkφk(t))

||Var(ζmψm(s))||2

=
∞∑

k=1

∞∑

m=1

E[ζmξk]
E[ζ 2

m] ψm(s)φk(t). (4.8)

4.3.2 Estimation of Regression Function
and R2

To estimate β(s, t) in (4.8), we need to obtain the estimators
of the covariance among the PC scores, σkm = E[ζmξk]. By
the Karhunen-Loève theorem of the predictor and response
processes, it follows that the cross-covariance surface be-
tween the two processes is

Cov(V(s), X(t)) =
∞∑

k=1

∞∑

m=1

E[ζkξm]ψk(s)φm(t).

Similarly, the cross-covariance surface can be estimated
using local polynomial smoothing by smoothing the
“raw” cross-covariances, {Wil − μ̂V(Sil)}{Yij − μ̂(Tij)}. Let
Ĉov(V(s), X(t)) be the estimated cross-covariance surface;
then, σkm = E[ζmξk] is obtained by

∫ 1

0

∫ 1

0
ψ̂m(s)Ĉov(V(s), X(t))φ̂k(t)dsdt.

Assume that the estimated numbers of PC for the predictor
and response process are M and K separately. The estimator
for β(s, t) becomes

β̂(s, t) =
K∑

k=1

M∑

m=1

σ̂km

ρ̂m
ψ̂m(s)φ̂k(t). (4.9)

We now apply the procedure to the bike-sharing data. The
function which performs the above procedure is FPCReg.
Previous FPCA for the predictor and the response has shown
that M = 3 and K = 2 (the same as we expected when
only the last 2 days are dropped). Using (4.9), we obtained
the estimated regression function in Fig. 4.16. The contour
plot clearly shows that during the first 5 hours of a day, the
humidity does not contribute to the prediction of the number
of rental bikes. The regression function seems to have two
big peaks, two small peaks, and two valleys. Interestingly,
they all located around the time when the time of humidity is
around 9 AM and 6 PM.

In regression models, the coefficient of determination is
often used to measure how well the observed responses are

predicted by the model. It reflects the proportion of the
variance in the dependent variable that is predictable from the
predictors. In [9], a functional counterpart of the coefficient
of determination is also proposed. A global coefficient of
determination, denoted by R2, is defined as

R2 =
∫ 1

0

Var(E[X(t)|V])
Var(X(t))

dt

=
∫ 1

0

∑∞
m=1

∑∞
k,l=1 σkmσlmφk(t)φl(t)/ρm
∑∞

k=1 λkφ
2
k (t)

dt.

A natural estimator of R2 is

R̂2 =
∫ 1

0

∑M
m=1

∑K
k,l=1 σ̂kmσ̂lmφ̂k(t)φ̂l(t)/ρ̂m
∑K

k=1 λ̂kφ̂
2
k (t)

dt. (4.10)

Applying the formula (4.10) to the real data, we got R̂2 =
0.14, which indicates that humidity does not contribute very
much to the prediction of the number of rental bikes. Onemay
be wondering whether the contribution is significant or not.
The Rtest function in PACE allows a bootstrapped sampling-
based method to test whether the R-square is zero or not.
We set the number of bootstrapped samples to be 500 and
obtained a P-value smaller than 0.002, which states that the
correlation is significant.

4.3.3 Prediction and Confidence Bands

One of the most important roles of a regression model is it
allows us to predict the response for a new subject given a
predictor of the subject. In functional regression, this can also
be performed similarly. By the properties of conditional ex-
pectation, Eq. (4.7) has the following equivalent expression:

E[X(t)|V] = μ(t) +
∫ 1

0
β(s, t){V(s) − μV(s)}ds. (4.11)

Given a predictor process V∗, (4.8), (4.11), and the orthogo-
nality of eigenfunctions leads to

E[X∗(t)|V∗] = μ(t) +
∞∑

k=1

∞∑

m=1

σkm

ρm
ζ ∗
mφk(t), (4.12)

where ζ ∗
m = ∫1

0{V∗(s) − μV(s)}ψ(s)ds. Except ζ ∗
m, all

quantities in (4.12) have been obtained in the model fitting.
The PC scores of V∗, ζ ∗

m, may be estimated easily for dense
functional data by the plug-in of V∗, μ̂V(s), and ψ̂(s). For
sparse functional data design, ζ ∗

m can be estimated through
BLUP (see [9]) for details). After the number of PC has been
determined, the predicted trajectory, X∗, is
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Fig. 4.16 Estimated regression function when the predictor is normalized humidity and the response is number of rental bikes for the bike-sharing
data. (a) is the 3-D plot of the estimated regression function; (b) is the corresponding contour plot
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Fig. 4.17 Two days of observed values (circles) of bike-sharing data
that are not used for the prediction. The predicted curves (solid) and
corresponding 95% point-wise confidence bands (dashed), for the last 2

days in the data. (a) prediction for the 248th day; (a) prediction for the
249th day

X̂∗(t) = μ̂(t) +
K∑

k=1

M∑

m=1

σ̂km

ρ̂m
ζ̂ ∗
mφ̂k(t). (4.13)

The asymptotic point-wise confidence bands for X∗(t) are
also provided in [9].

We applied the procedures to the bike-sharing data to
make predictions of the number of rental bike trajectories
of the last 2 days using the data of the previous days. The
estimated trajectories and their corresponding 95% confi-
dence bands are shown in Fig. 4.17. The prediction is not bad

considering that humidity is not a very important variable to
predict the number of rental bikes and only contributes 14%
to the explanation of the variance.

4.3.4 Implementation Details

The description of the data is in Sect. 4.2.5. Below areMatlab
codes used to implement the functional regression, predict,
and obtain relevant figures in this section.
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% add the toolbox to the working path
addpath(genpath(’C:/Program Files/MATLAB/toolbox/release2.17/’))

% Load the data set and create 4 cells to be used
data = csvread(’data.csv’); % a 5911 by 5 matrix
ncohort = 249; % 249 days in total
t = cell(1,ncohort);
humid = cell(1,ncohort);
wind = cell(1,ncohort);
y = cell(1,ncohort);
for i=1:ncohort

day_i = data(data(:,5)==i,1:4);
t{i} = day_i(:,1)’; % hour: 0 to 23
humid{i} = day_i(:,2)’;
wind{i} = day_i(:,3)’;
y{i} = day_i(:,4)’; % count of bicycles used

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% Conduct Functional linear regression %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% set parmeter options for FPCA, default ngrid is 50, ngrid=200 for more
% smooth curve
param_X = setOptions(’selection_k’,’FVE’,’FVE_threshold’,0.9,’verbose’,’on’);
param_Y = setOptions(’selection_k’,’FVE’,’FVE_threshold’,0.9,’verbose’,’on’);
FIT = 0; %Fitting a functional linear regression (default) through

%decomposition into
%simple linear regressions between the FPC scores of Y and X

K_x = []; %Number of PC of functional predictor X used in functional
%regression

K_y = []; %Number of PC of functional predictor Y used in functional
%regression

npred = 2; %the last 2 subjects and their values for t_x, t_y are used for
%prediction

alpha = 0.05; %the level of the confidence bands. alpha = 0.05 if is left
%empty.

% fit functional linear regression using humid
% Remark: if using wind, Q=0.04 and r2=0.09, too samll for prediction
[res, xx, yy] = FPCreg(humid,t,y,t,param_X,param_Y,FIT,K_x,K_y,npred,alpha);
%Functional regression

% Plot the humidity data wind v.s. t with estimated mean function
out1 = getVal(xx,’out1’); %vector of time points for mu, phi and ypred
mu = getVal(xx,’mu’); %estimated mean function
figure;
for i=1:ncohort

plot(t{i},humid{i},’k’);
hold on;

end
hold on;
plot(out1,mu,’r’,’LineWidth’,2);
xlim([0 23]);
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xlabel(’Hour’);
ylabel(’Normalized humidity’);

% Plot the estimated eigen-functions of the FPCA of the predictor
phi = getVal(xx,’phi’); %estimated eigenfunctions
figure;
plot(out1,phi(:,1),’r-’,out1,phi(:,2),’b--’,out1,phi(:,3),’k-.’,’LineWidth’,1.5);
hold on;
plot(out1,zeros(1,length(out1)),’k--’);
legend(’PC 1 (74.5%)’,’PC 2 (15.2%)’,’PC 3 (5.0%)’, ’Location’,’SouthWest’)
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Value of PC curve’);

% plot the estimated beta function: 3-D plot
figure;
BETAest = getVal(res,’BETA’);
mesh(getVal(BETAest,’grid_x’),getVal(BETAest,’grid_y’),getVal(BETAest,’beta’));
xlim([0 23]);
xlabel(’Hour (predictor)’);
ylim([0 23]);
ylabel(’Hour (response)’);

% plot the estimated beta function: contour plot
BETAest = getVal(res,’BETA’);
figure;
[X,Y] = meshgrid(getVal(BETAest,’grid_x’),getVal(BETAest,’grid_y’));
contour(X,Y,getVal(BETAest,’beta’),20);
xlim([0 23]);
xlabel(’Hour (predictor)’);
ylim([0 23]);
ylabel(’Hour (response)’);

% plot true and predicted response curves (predict the last 2 observations)
new_true_y = y((ncohort-npred+1):ncohort); % true response curves for prediction

%part
new_ty = t((ncohort-npred+1):ncohort); % time points corresponding to the

% newy and newEy
newy = getVal(res,’newy’); % estimated response curves
newcb = getVal(res,’newcb’);
for i = 1:2

figure;
plot(new_ty{i},new_true_y{i},’bo’,new_ty{i},newy{i},’r-’,new_ty{i},

newcb{1,i},’k--’,new_ty{i},newcb{2,i},’k--’,’LineWidth’,1.5);
title([’Day ’ num2str(ncohort-npred+i)]);
xlim([0 23]);
xlabel(’Hour’);
ylabel(’Count of rental bikes’);
legend(’True’,’Predicted’,’Confidence bands’, ’Location’,’SouthEast’)

end
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% test whether the quasi R-square, Eq. (20) in Yao et.al. 2005, is zero or not
%based on bootstraped sampling

nsim = 500;
[rej pv] = Rtest(res, xx, yy, nsim, alpha);
%P-value < 0.002. Reject the null hypothesis of no regression relation.

% obtain functional R-square and Quasi R-square
r2 = getVal(res,’r2’); % functional R-square, is 0.2604
Q = getVal(res,’Q’); % Quasi R-square, is 0.1383

4.4 Other Selected Topics in FDA and
Software Packages

In this section, we briefly review some other topics in FDA
and software packages developed for FDA. The topics and
packages introduced here are not intended to be comprehen-
sive but selective. A review of recent developments in FDA
is [10].

4.4.1 Other Selected Topics in FDA

Although [4] provides some asymptotic results, such as con-
sistency of mean and covariance functions, eigenvalues and
eigenfunctions, and asymptotic confidence bands, the asymp-
totic properties are not optimal. Hall et al. [11] further studied
the asymptotic properties for the estimators proposed by Yao
et al. [4]. Their work shows that the estimation of eigen-
values is a semiparametric problem, with root-n consistent
estimators, even if only a few observations are made of
each function and if each observation is contaminated with
noise. However, the estimation of eigenfunctions becomes a
nonparametric problem when observations are sparse. Hall
and Vial [12] proposed techniques for assessing the finiteness
of dimensionality in FDA. Li and Hsing [13] developed
strong uniform convergence rates of the nonparametric es-
timation of the mean and covariance functions for function-
al/longitudinal data. Li and Hsing [14] considered regression
models with a functional predictor and a scalar response.
They assumed that the response depends on the predictor only
through a finite number of projections and investigated the
dimensionality of the linear subspace spanned by the pro-
jections. Recently, [15] provided a comprehensive analysis
of the asymptotic properties of nonparametric estimation of
mean and covariance functions for various types of sampling
plans.

Sometimes it is of interest to recover the underlying
derivative from a sample or random functions with a sparse
sampling design and measurement errors. Liu and Müller
[16] considered the following model for the derivative pro-
cess X(ν)

i (t):

X(ν)
i (t) = μ(ν)(t) +

∞∑

k=1

ξikφ
(ν)
k (t), (4.14)

where μ(ν)(t) and φ
(ν)
k (t) denote the νth derivative of mean

and eigenfunctions. It is assumed that the observations are
made over irregular time points and are contaminated with
errors. Liu and Müller [16] then proposed an approach based
on estimating derivatives of eigenfunctions and expansions of
random functions to obtain a representation for the derivative
process. Dai et al. [17] studied similar problems but based
on a different approach. They used a direct Karhunen-Loève
expansion of the unobserved derivatives and numerically
showed that the method recovers the underlying derivatives
more accurately.

The FLR we described in Sect. 4.3 is called function-on-
function regression, where, for each subject, both response
and predictors are trajectories over compact sets. When the
response is not functional but scalar, the corresponding re-
gression model is called scalar-on-function regression. For
example, for the bike-sharing data, the response could be the
total number of rental bikes each day. A FLR model with
scalar response can be expressed as

E[X|V] = α +
∫ 1

0
β(t)V(t)dt, (4.15)

where X is a scalar response, V(t) is a functional covariate,
and β(t) is the coefficient function. The interpretation of
such a linear regression model will be easier than the one
in function-on-function regression. For a given time point t,
the larger the absolute value of β(t), the larger is the impact
of V on X. For regular and dense functional data, Chapter
15 of [1] describes classical methods for scalar-on-function
regression. The methods are basically estimating β(t) by the
use of basis functions, such as splines and wavelets. The
main methodology of [9] can also be applied to scalar-on-
function regression when covariates are sparse functional
or longitudinal data. Furthermore, the PACE package also
provides functions for such implementation. A review of
the developments of functional regression can be found in
[18]. The author highlighted the modeling structures that
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have been developed in the past 10 years and the various
regularization approaches employed in three types of regres-
sion models: function-on-function, scalar-on-function, and
function-on-scalar, where the response is functional but the
predictor is scalar.

In statistics, analysis of variance (ANOVA) is used to
analyze the differences among group means in data. In FDA,
when the predictor is categorical, such as group factors or
treatments, and the response is a trajectory over a com-
pact set, the corresponding model is termed as a functional
ANOVA model. For example, one group factor in the bike-
sharing data could be the day of a week. For regular and
dense functional data, see Chapter 13 of [1] for the classical
methods. Xu et al. [2] considered a recent application of
functional ANOVA in plant sciences. Let i = 1, . . . , n be the
index of maize plant. Define genotype indicatorGi asGi = 1
if the ith maize is of genotype B73 andGi = 0 if the ith maize
is of genotype MM. Define the environment indicator Wi as
Wi = 1 if the ith maize is sufficiently watered and Wi = 0 if
the ith maize is insufficiently watered. Xu et al. [2] assumed
the following functional analysis of variance model for the
plant growth:

yi(t) = μ(t) + Gig(t) +Wiw(t) + εi(t), (4.16)

where μ(t) is the growth function of insufficiently watered
MM maize, g(t) is the main effect function of genotype
B73, w(t) is the main effect function of sufficient water-
ing, and εi(t) is a zero-mean random process representing
errors. Zhang [19] includes various major topics in functional
ANOVA and some up-to-date hypothesis testing methods for
FDA.

The functional data we introduced in the previous sections
are actually uni-level functional data, where it is assumed that
the processes are independently and identically distributed.
In practice, data may have a multilevel structure. For exam-
ple, [20] studied the impact of national culture on corporate
environmental management, where the data have a two-
level hierarchical structure because corporations are nested in
countries. Di et al. [21] described a sleep heart health study,
where there are two visits for each patient with functional
measurements, so the data have two levels with visits nested
in patients. Xu et al. [3] presented a study of the bending
rates of maize roots based on FPCA of functional phenotypes
collected from seeds. The data are shown in Fig. 4.3. The data
have a three-level nested hierarchical structure, with seeds
nested in groups nested in genotypes. Let Yi(t) be the bending
rate of the ith seed at time t ∈ [0, 1.5], i = 1, 2, . . . , n. Denote
si as the lunar day on which the ith seed was measured,
where si ∈ [1, 30]. For each seed, a covariate vector Xi is
observed depending on the camera setup. Xu et al. [3] mod-
eled the data by the following hierarchical functional data
model:

Yi(t) = μ(si, t) + X′
iα + Z1,g(i)(t) + Z2,f (i)(t) + Z3,i(t) + εi(t),

(4.17)

where μ(si, t) is the mean function of the bending rate un-
der a baseline camera setup; α represents fixed effects of
cameras; Z1,g(i)(t), Z2,f (i)(t), and Z3,i(t) are random processes
representing the functional random effects of genotype g(i),
file/group f (i), and seed i, respectively; and εi(t) is a white
noise measurement error with variance σ 2.

It is well known in robust statistics that principal compo-
nent analysis (PCA) has the issue of non-robustness. Sim-
ilarly, the issue also occurs in FDA using PCA. In FPCA,
the estimation of the covariance function and the functional
PC are sensible to outliers. Therefore, a robust version of
FPCA is needed. Sawant et al. [22] proposed an algorithm for
outlier detection and robust FPCA for FDA. The method is
motivated by the combination of both projection pursuit and
robust covariance estimation using the minimum covariance
determinant (MCD) method. She et al. [23] introduced a
method called robust orthogonal complement PC analysis.
The method they proposed is called orthogonal complement
principal component analysis (ROC-PCA). Their framework
combines the popular sparsity-enforcing and low-rank regu-
larization techniques together to deal with row-wise outliers
and element-wise outliers. This approach can identify out-
liers and perform robust principal subspace recovery simul-
taneously.

The confidence band presented in this chapter is called
a point-wise confidence band, which means that for each
t, the truth is covered by the confidence interval at t with
the probability 1 − α. Specifically, if the mean function to
estimate isμ(t), a point-wise confidence band μ̂(t)±δ̂(t)with
coverage probability 1 − α satisfies the following condition
separately for each time point t:

P{μ̂(t) − δ̂(t) < μ(t) < μ̂(t) + δ̂(t)} = 1 − α.

Simultaneous confidence band, on the other hand, covers the
truth for all t with the probability 1 − α. For the estimation
of the mean function, that is,

P{μ̂(t) − δ̂(t) < μ(t) < μ̂(t) + δ̂(t) for all t} = 1 − α.

Usually, a simultaneous confidence band will be wider than
a point-wise confidence band when the coverage probability
is the same. In both [4] and [9], the asymptotic confidence
bands given are point-wise confidence bands. A simultaneous
confidence band for the mean function in the scenario of
dense functional data is proposed in [24]. The estimator
is a polynomial spline estimator, and the authors showed
that the confidence band has an oracle efficiency property.
Cao et al. [25] further developed simultaneous confidence en-
velopes for the covariance function in dense functional data.
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In statistics, classification is usually adopted when we
want to identify to which group a new observation should
be assigned given a training data set. In FDA, the counterpart
is called functional classification, in which we want to assign
the membership for a new functional object with a classifier.
Müller [26] used a functional binary regression model for
functional classification. James and Hastie [27] proposed a
method to classify functions based on a functional linear
discriminant analysis approach. Their technique extends the
classical linear discriminant analysis method to the case
where the predictor variable is functions.

Multivariate statistics is an important branch of statistics.
In FDA, when many characteristics of a subject are mea-
sured over time, the data collected is, namely, multivariate
functional data. Multivariate FPCA based on a normalization
approach was proposed in [28]. Wong et al. [29] investigated
the prediction of a scalar response by both parametric effects
of a multivariate predictor and nonparametric effects of a
multivariate functional predictor. To be specific, [29] model
the relationship between scale response yi, i = 1, . . . , n and a
predictor vector zi and amultivariate functional predictor xi as

yi = m(zi, xi) + εi,

where m(·, ·) is the regression function and εi are zero-
mean errors independent with the predictors. The regression
function is assumed to have an additive form, and the effects
of predictors are assumed to be linear. Wong et al. [29]
proposed an estimation procedure for such models and
applied it to a crop yield prediction application.

4.4.2 Selected Software Packages

fdapace is a counterpart of the PACE package, but it is
written in R, free software which can be downloaded from
https://www.r-project.org/. Although they are not exactly the
same, the key functions are similar. Both FPCA and FPCReg
functions we used for the analysis in this chapter can be
used similarly in the fdapace package. Most of the methods
used in this package are proposed for sparse and irregularly
spaced functional data, but they may also be used for the
analysis of dense or regularly spaced functional data. The
core algorithm in this package allows users to implement the
estimation of mean and covariance functions, eigenfunctions
and PC scores, and prediction of continuous trajectories with
point-wise confidence bands. The main smoothing method
used in this package is the local polynomial smoothing.
fda is a packagewritten in R. The functions in this package

are aimed to perform the statistical analysis in FDA described
in [1]. The classic book in FDA, [1], includes a variety of
topics in FDA, such as FPCA, functional canonical corre-
lation and discriminant analysis, functional linear models

with scalar or functional responses, and principal differential
analysis. However, the book and its package mainly focus on
themodeling and analysis of dense functional data rather than
sparse functional data. fda mainly used splines and Fourier
basis for smoothing and approximation.
refund, short for regression with functional data, is also

a package written in R. It provides functions to perform
different functional regressions, including function-on-scalar
regression, scalar-on-function regression, and function-on-
function regression. In particular, some functions in refund
can be used to analyze image data. refundmainly uses splines
and Fourier bases for smoothing and approximation, but it
also provides wavelet-based functional regression methods
with scalar responses and functional predictors. Multilevel
FPCA is also available in refund.
fda.usc, short for functional data analysis and utilities for

statistical computing, is a R package. Except for traditional
FPCA and functional regression, it also provides functions
for supervised and non-supervised classification for func-
tional data. It also provides an exploratory and descrip-
tive analysis of functional data such as depth measurements
and atypical curve detection. This package uses both spline
smoothing and local polynomial smoothing.
FRegSigCom, short for functional regression using signal

compression approach, is a package written in R. This pack-
age is mainly about various function-on-function regression
methods, including linear function-on-function model with
functional response and both scalar and functional predictors
for a small or large number of functional, stepwise selec-
tion for function-on-function models with interactions, and
some nonlinear function-on-function models. Particularly,
their method can handle a large number of functional predic-
tors and spiky functional data (see [30] for details). Splines
and Fourier bases are mainly used for smoothing.
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Abstract

Recently, Kundu (2014, Sankhya, Ser. B, 167–189, 2014)
proposed a geometric skew normal (GSN) distribution as
an alternative to Azzalini’s skew normal (ASN) distribu-
tion. The GSN distribution can be a skewed distribution;
it can be heavy tailed as well as multimodal also, un-
like ASN distribution. It can be easily extended to the
multivariate case also. The multivariate geometric skew
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normal (MGSN) distribution also has several desirable
properties. In this paper, we have proposed a symmetric
geometric skew normal (SGSN) distribution as an alter-
native to a symmetric distribution like normal distribution,
log Birnbaum-Saunders (BS) distribution, Student’s t dis-
tribution, etc. It is a very flexible class of distributions, of
which normal distribution is a special case. The proposed
model has three unknown parameters, and it is observed
that the maximum likelihood (ML) estimators of the un-
known parameters cannot be obtained in explicit forms. In
this paper, we have proposed a very efficient expectation
maximization (EM) algorithm, and it is observed that the
proposed EM algorithm works very well. We have further
considered a location shift SGSN regression model. It
is a more flexible than the standard Gaussian regression
model. The ML estimators of the unknown parameters
are obtained based on EMalgorithm. Extensive simulation
experiments and the analyses of two data sets have been
presented to show the effectiveness of the proposed model
and the estimation techniques.

Keywords

Absolute continuous distribution · Singular distribution ·
Fisher information matrix · EM algorithm · Joint
probability distribution function · Joint probability
density function

5.1 Introduction

Azzalini [3] introduced a skew normal distribution which has
received considerable attention in the last three decades. It
has three parameters, and it is a skewed distribution of which
normal distribution is a special case. From now on we call it
as the Azzalini’s skew normal (ASN) distribution. A three-
parameter ASN distribution has the following probability
density function (PDF):
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f (x) = 2φ

(
x− μ

σ

)
�

(
λ(x− μ)

σ

)
.

Here φ(·) is the PDF of a standard normal distribution, the
�(·) is the corresponding cumulative distribution function
(CDF), −∞ < μ < ∞ is the location parameter, σ > 0 is
the scale parameter, and−∞ < λ < ∞ is the skewness or tilt
parameter. Note that when λ = 0, it becomes a normal PDF
withmeanμ and standard deviation σ . It has some interesting
physical interpretation also as a hidden truncationmodel; see,
for example, Arnold et al. [2] and Arnold and Beaver [1]. It
is a very flexible class of distribution functions, and due to
which it has been used to analyze various skewed data sets.
Although it has several desirable properties, it has been ob-
served that the maximum likelihood (ML) estimators of the
unknown parameters may not always exist; see, for example,
Gupta and Gupta [10]. It can be shown that for any sample
size if the data come from an ASN distribution, there is a
positive probability that the MLEs do not exist. The problem
becomes more severe for higher dimension. Moreover, the
PDF of an ASN distribution is always unimodal and thin
tailed. Due to these limitations, ASN distribution cannot be
used for analyzing for a large class of skewed data sets.

To overcome the problem of the ASN distribution,
Gupta and Gupta [10] proposed the power normal distri-
bution which has the following CDF:

F(x) =
[
�

(
x− μ

σ

)]α

.

Here also, −∞ < μ < ∞ is the location parameter, σ > 0
is the scale parameter, and α > 0 is the skewness parameter.
When α = 1, it becomes a normal distribution function with
mean μ and standard deviation σ . Therefore, in this case also
the normal distribution can be obtained as a special case. It
has been shown by Gupta and Gupta [10] that for α > 1 it is
positively skewed and, for α < 1, it is negatively skewed.
They have obtained several other interesting properties of
the power normal distribution in the same paper. Kundu and
Gupta [18] provided an efficient estimation procedure and
also defined bivariate power normal distribution. Although
the power normal distribution as proposed by Gupta and
Gupta [10] has several desirable properties, and the ML
estimators also always exist, it is always unimodal and thin
tailed similar to the ASN distribution. Therefore, if the data
indicate that the observations are coming from a heavy tailed
or multimodal distribution, it can be used to analyze that
data set.

Recently, Kundu [14] introduced a three-parameter geo-
metric skew normal (GSN) distribution as an alternative to
the popular Azzalini’s [3] skew normal (ASN) distribution
or the power normal distribution of Gupta and Gupta [10].
The GSN distribution can be defined as follows. Suppose
X1, X2, . . . , are independent and identically distributed (i.i.d.)

normal random variables with mean μ and variance σ 2,
and N is a geometric random variable with parameter p.
Here, a geometric random variable with parameter p will be
denoted by GE(p), and it has the following probability mass
function:

P(N = n) = p(1 − p)n−1; n = 1, 2, . . . . (5.1)

It is assumed that N and Xi’s are independently distributed.
The random variable

X
d=

N∑
i=1

Xi,

is said to have a GSN distribution with the parameters μ, σ ,
and p. From now on it will be denoted by GSN(μ, σ , p).

The GSN distribution also has three parameters similar
to the ASN or power normal distribution. But the main
advantage of the GSN distribution over the ASN or the
power normal distribution is that the GSN distribution is
more flexible than them in the sense its PDF can have more
variety of shapes compared to the ASN distribution. The
PDF of the GSN distribution can be symmetric, skewed,
unimodal, bimodal, and multimodal shaped also. Moreover,
the GSN distribution can be heavy tailed also depending on
the parameter values. In case of an ASN distribution, it is
observed that the ML estimators may not always exist. In
fact it can be shown that the ML estimates will not exist
if the all the data points are of the same sign. But in case
of the GSN distribution, the ML estimates of the unknown
parameters exist, if the sample size is greater than three.
If μ = 0, it becomes a symmetric distribution, and it is
called a symmetric GSN (SGSN) distribution. From now on
a GSN(μ, σ , p) with μ = 0 will be denoted by SGSN(σ , p).

As GSN has been introduced, along the same line, mul-
tivariate geometric skew normal (MGSN) distribution has
been introduced by Kundu [17] as an alternative to Azza-
lini’s multivariate skew normal distribution. In this case, the
marginals are GSN distributions, and the joint PDF can be
unimodal, bimodal, and multimodal also. Multivariate nor-
mal distribution can be obtained as a special case. It has also
several interesting properties, and the moments and product
moments can be obtained quite conveniently from the joint
characteristic function, which can be expressed in explicit
form. It has several characterization properties similar to the
multivariate normal distribution. A brief review of theMGSN
distribution will be provided in Sect. 5.3.

In recent times, the Birnbaum-Saunders (BS) distribution
has received a considerable amount of attention in the sta-
tistical and some related literature. The BS distribution was
originally derived by Birnbaum and Saunders [7] by showing
that the fatigue failure is caused by the development and
growth of cracks from the cyclic loading. The BS distribution
can be defined as follows. Suppose T is a nonnegative random
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5

variable and T is said to have a BS distribution with shape
parameter α and scale parameter β; it will be denoted by
BS(α,β), if the cumulative distribution function (CDF) of T
is given by

FBS(t; α,β) = �

{
1

α

(√
t

β
−

√
β

t

)}
, t > 0, (5.2)

and zero, otherwise. Here �(·) is the CDF of a standard
normal distribution. If T follows (∼), BS(α,β), then Y =
ln T is said to have a log-BS (LBS) distribution. The CDF of
Y can be written as

FLBS(y; α,β) = �

{
2

α
sinh

(
y− ln β

2

)}
, −∞ < y < ∞,

(5.3)

and it will be denoted by LBS(α,β). The LBS distribution
was originally proposed by Rieck [25]; see also Rieck and
Nedelman [26] and Kundu [15, 16] in this respect. It has
been observed by Rieck [25] that the LBS distribution is
symmetric, it is strongly unimodal for α < 2 and for α ≥ 2,
and it is bimodal. It may bementioned that SGSN distribution
is more flexible than the LBS distribution in the sense.
SGSN distribution can be heavy tailed also, whereas LBS
distribution can never be a heavy tailed. For a comprehensive
review on BS distribution, one is referred to the review article
by Balakrishnan and Kundu [6]. Although LBS distribution
can be bimodal and the ML estimators of the unknown
parameters always exist, it cannot be multimodal or heavy
tailed.

In this paper, we have introduced a location-shift SGSN
(LS-SGSN) distribution. It is observed that due to the
presence of three parameters, it is more flexible than a
two-parameter normal distribution. Moreover, the normal
distribution can be obtained as a special case of the LS-
SGSN distribution. We have provided several properties of
the LS-SGSN distribution and obtained the characteristic
function and different moments. It is interesting to observe
that although the PDF of a SGSN distribution can be obtained
as an infinite series, the characteristic function can be
obtained in explicit form. The LS-SGSN distribution has
three parameters. The ML estimators cannot be obtained
in explicit forms; they have to be obtained by solving a
three-dimensional optimization problem. Some standard
numerical methods like Newton-Raphson or Gauss-Newton
may be used to compute the ML estimates. But it involves
providing efficient initial guesses; otherwise, the algorithm
may not converge, and even if it converges it may converge
to a local minimum rather than a global minimum. To
avoid that, we have treated this problem as a missing value
problem, and we have used the EM algorithm to compute
the ML estimators. It is observed that at each “E”-step, the
corresponding “M”-step can be performed explicitly. Hence,

no optimization problem needs to be solved numerically
at the “M”-step, and they are unique. Moreover, at the last
step of the EM algorithm, one can easily obtain the observed
Fisher information matrix based on the method of Louis [22].
Hence, the confidence intervals of the unknown parameters
also can be obtained quite conveniently. We have performed
extensive simulation experiments, and the analysis of one
data set has been presented for illustrative purposes.

We have further considered the multiple linear regression
model in the presence of additive SGSN errors. Note that the
analysis of multiple linear regression model in the presence
of additive ASN distribution has been well studied in the
statistical literature both from the classical and Bayesian
viewpoints; see, for example, Sahu et al. [27], Lachos et
al. [20], and the references cited therein. Similarly, log-linear
BS regression model also has been well studied in the liter-
ature; see, for example, Zhang et al. [30] and Balakrishnan
and Kundu [6]. It is expected that the proposed multiple
regressionmodel will bemore flexible than theASN and LBS
multiple regression models.

In this paper, we provide the likelihood inference of
the unknown parameters of the proposed SGSN regression
model. It is observed that the ML estimators of the unknown
parameters cannot be obtained in closed forms. In this case,
also we have used a very efficient EM algorithm to avoid
solving nonlinear optimization problem. The implementation
of the proposed EM algorithm is quite simple in practice.
Moreover, using the method of Louis [22] at the last step of
the EM algorithm, the observed Fisher information matrix
also can be obtained in a standard manner. Hence, the
confidence intervals of the unknown parameters based on the
observed Fisher information matrix also can be constructed.
Simulation experimental results and analysis of a data set
have been presented.

The rest of the paper is organized as follows. In Sects. 5.2
and 5.3, we provide a brief review of theGSNdistribution and
MGSN distribution, respectively. The SGSN and LS-SGSN
distributions have been introduced, and the EM algorithm
has been discussed in Sect. 5.4. In Sect. 5.5, we have for-
mulated the LS-SGSN regression model and discussed the
corresponding EM algorithm. Simulation results have been
presented in Sect. 5.6, and the analysis of two data sets has
been presented in Sect. 5.7. Finally, we conclude the paper in
Sect. 5.8.

5.2 Geometric Skew Normal Distribution

In the previous section, we have provided the definition of a
GSN distribution. In this section, we provide a brief review
and some properties of a GSN distribution. All the details
can be obtained in Kundu [14]. If X ∼ GSN(μ, σ , p), then
the CDF and PDF of X become
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FGSN(x; μ, σ , p) = p
∞∑
k=1

�

(
x− kμ

σ
√
k

)
(1 − p)k−1, (5.4)

and

fGSN(x; μ, σ , p) =
∞∑
k=1

p

σ
√
k
φ

(
x− kμ

σ
√
k

)
(1 − p)k−1, (5.5)

respectively, for x ∈ R. Here φ(·) denotes the PDF of a
standard normal distribution function.

The PDF of the GSN distribution (5.5) can take a variety
of shapes. It can be symmetric, positively skewed, negatively
skewed, unimodal, bimodal, multimodal, and heavy tailed
also. For different shapes of the PDF of a GSN distribution,
see Fig. 5.1 and also Kundu [14]. It is clear that it can
be positively skewed, negatively skewed, unimodal, multi-
modal, and heavy tailed also depending on the parameter
values.

If X ∼ GSN(μ, σ , p), then the characteristic function of X
is

φX(t) = E(eitX) = pe
(
iμt− σ2 t2

2

)

1 − (1 − p)e
(
iμt− σ2 t2

2

) , t ∈ R.

The mean and variance of X are

E(X) = μ

p
and V(X) = μ2(1 − p) + σ 2p

p2
.

Any higher order moment can be obtained as infinite series
as follows:

E(Xm) = p
∞∑
n=1

(1 − p)n−1cm(nμ, nσ 2).

Here, cm(nμ, nσ 2) = E(Ym), where Y ∼ N(nμ, nσ 2). It
may be mentioned that cm can be obtained using confluent
hypergeometric function; see, for example, Johnson, Kotz,
and Balakrishnan [13]. The skewness of a GSN(μ, σ , p) can
be written as

γ1 = (1 − p)(μ3(2p2 − p+ 1) + 2μ2p2 + μσ 2(3 − p)p)

(σ 2p+ μ2(1 − p))3/2
.

Hence, unlike normal distribution, the skewness depends on
all the three parameters.

If μ = 0, it becomes symmetric, and the CDF and PDF of
a SGSN distribution become

FSGSN(x; σ , p) = p
∞∑
k=1

�

(
x

σ
√
k

)
(1 − p)k−1, (5.6)

and

fSGSN(x; σ , p) =
∞∑
k=1

p

σ
√
k
φ

(
x

σ
√
k

)
(1 − p)k−1, (5.7)

respectively, for x ∈ R. The PDF of SGSN are provided in
Fig. 5.2 for different σ and p values.

It is clear fromFig. 5.2 that the tail probabilities of a SGSN
distribution increase as p decreases. It behaves like a heavy
tailed distribution as p tends to zero. As p tends to one, it
behaves like a normal distribution.

If X ∼ SGSN(σ , p), then the characteristic function of X
can be obtained as

φX(t) = E(eitX) = pe
(
− σ2 t2

2

)

1 − (1 − p)e
(
− σ2 t2

2

) , t ∈ R.

Using the characteristic function or otherwise, the mean and
variance of X can be expressed as follows:

E(X) = 0 and V(X) = σ 2

p
.

For higher moments, it can be easily observed from the
characteristic function that if X ∼ SGSN(1, p), then

E(Xm) = pdm

∞∑
n=1

(1 − p)n−1nm/2,

where dm = E(Zm), Z ∼ N(0, 1), and

dm =
{

0 if m is odd
2m/2	( m+1

2 )√
π

if m is even.

In Fig. 5.3, we have plotted the characteristic functions
of SGSN for different parameter values. Just to show how
different it can be from a normal distribution, we have plotted
the characteristic function of the corresponding normal dis-
tribution with mean zero and variance σ 2/p. It is clear that
the characteristic functions can be quite different particularly
for small values of p. But as p approaches one, they become
close to each other.

It can be easily seen that the variance diverges as p ap-
proaches zero. TheGSNdistribution is known to be infinitely
divisible and geometrically stable. For different other prop-
erties and estimation methods, interested readers are referred
to the original article of Kundu [14].

The following derivations are needed for further develop-
ment. These results will be used to develop EM algorithm
for SGSN distribution. Suppose X ∼ SGSN(σ , p) and N is
the associated GE(p) random variable, then for 0 < p < 1,
and −∞ < x < ∞, n = 1, 2, . . .,
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P(X ≤ x, N = n) = P(X ≤ x|N = n)P(N = n)

= p(1 − p)n−1�

(
x

σ
√
n

)
, (5.8)

for p = 1,

P(X ≤ x, N = n) =
{

�
(
x
σ

)
if n = 1

0 if n > 1.
(5.9)

Hence, the joint PDF, fX,N(x, n), of (X, N) for 0 < p < 1,
−∞ < x < ∞, n = 1, 2, . . ., becomes

fX,N(x, n) = p(1 − p)n−1 1

σ
√
2πn

e−
x2

2nσ2 ,

and for p = 1,

fX,N(x, n) =
{

1
σ
√
2π
e−

x2

2σ2 if n = 1

0 if n > 1.
(5.10)

Therefore,

P(N = n|X = x) = (1 − p)n−1e−
x2

2nσ2 /
√
n

∑∞
j=1(1 − p)j−1e

− x2

2jσ2 /
√
j
. (5.11)

It can be easily shown that (5.11) is a unimodal function in
n. Hence, there exists a unique n0 such that P(N = n0|X =
x) > P(N = n|X = x), for any n �= n0. In fact, n0 can be
obtained as the minimum value of n ≥ 1, such that

P(N = n+ 1|X = x)

P(N = n|X = x)
=

√
n(1 − p)√
n+ 1

e
x2

2σ2n(n+1) < 1. (5.12)

Moreover, from (5.11) one can easily obtain

E(N|X = x) =
∑∞

n=1

√
n(1 − p)n−1e−

x2

2nσ2

∑∞
j=1(1 − p)j−1e

− x2

2jσ2 /
√
j
, (5.13)

and

E(1/N|X = x) =
∑∞

n=1 n
−3/2(1 − p)n−1e−

x2

2nσ2

∑∞
j=1(1 − p)j−1e

− x2

2jσ2 /
√
j

. (5.14)

5.3 Multivariate Geometric Skew Normal
Distribution

Azzalini and Dalla Valle [5] introduced a multivariate dis-
tribution with ASN marginals. We call it as multivariate
ASN (MASN) distribution, and it can be defined as follows:

A random vector Z = (Z1, . . . , Zd)	 is a d-variate MASN
distribution, if it has the following PDF:

g(z) = 2φd(z,�)�(α	z), z ∈ R
d,

where φd(z,�) denotes the PDF of a d-variate multivariate
normal distribution with standardized marginals and corre-
lation matrix �. Here the parameter vector α is known as the
shape vector, and depending on the shape vector, the PDF of
aMASN distribution can take a variety of shapes. The PDF is
always unimodal, and when α = 0, then Z has the multivari-
ate normal distribution with mean vector 0 and correlation
matrix �. Although MASN is a very flexible distribution,
but if the marginals are heavy tailed or multimodal, it cannot
be used; see, for example, the excellent recent monograph
by Azzalini and Capitanio [4]. Moreover, if the data come
from a MASN distribution, it can be shown that the MLEs
do not exist with a positive probability. Due to these reasons,
several kernels instead of normal kernel have been used, but
they have their own problems.

Kundu [17] proposed MGSN distribution along the same
line as the GSN distribution. The MGSN distribution has
been defined as follows. Let us use the following notations.
A d-variate normal random variable with mean vector μ and
the dispersion matrix � will be denoted by Nd(μ,�). The
corresponding PDF and CDF will be denoted φd(x; μ,�)

and �d(x; μ,�), respectively. Now a d-variate MGSN dis-
tribution can be defined as the following. Suppose Xi for
i = 1, 2, 3, . . . are i.i.d. Nd(μ,�) and N ∼ GE(p) and they
are independently distributed. Then

X =
N∑
i=1

Xi

is said to have MGSN distribution with parameters μ, �, and
p and will be denoted by MGSNd(μ,�, p).

MGSN is a very flexible multivariate distribution, and its
joint PDF can take a variety of shapes. It can be unimodal,
bimodal, and multimodal also. Since the marginals are GSN
distributions, therefore the marginals can be positively and
negatively skewed, and it can be heavy tailed also. If X ∼
MGSNd(μ,�, p), then the PDF and CDF of X can be written
as

fX(x,μ,�, p) =
∞∑
k=1

p(1 − p)k−1

(2π)d/2|�|1/2kd/2 e
− 1

2k (x−kμ)	�−1(x−kμ)

and

FX(x,μ,�, p) =
∞∑
k=1

p(1 − p)k−1�d(x; kμ, k�),
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5

respectively. When μ = 0, the PDF and CDF of X can be
written as

fX(x, 0,�, p) =
∞∑
k=1

p(1 − p)k−1

(2π)d/2|�|1/2kd/2 e
− 1

2k x
	�−1x

and

FX(x,μ,�, p) =
∞∑
k=1

p(1 − p)k−1�d(x; 0, k�),

respectively.
Similar to the GSN distribution, when p = 1, MGSN

distribution becomes multivariate normal distribution. The
PDF of a MGSN distribution can take a variety of shapes.
Contour plots of the PDF of a MGSN distribution for dif-
ferent parameter values when d = 2 are provided in Fig. 5.4.
It is clear that it can be positively and negative skewed,
unimodal, bimodal, multimodal, heavy tailed depending on
the parameter values. When μ = 0, then it becomes a
symmetric distribution.

If X ∼ MGSNd(μ,�, p), then the characteristic function
of X is

φX(t) = peiμ
	t+ 1

2 t
	�t

1 − (1 − p)eiμ
	t+ 1

2 t
	�t

, t ∈ R
d.

Since the characteristic function is in a compact form, many
properties can be derived quite conveniently. Different mo-
ments, product moments, and multivariate skewness can be
obtained using the characteristic function; see Kundu [17] for
details.

MGSNdistribution has several properties likemultivariate
normal distribution. For example, if X is a d-variate MGSN
distribution, then if we partition X as

X =
(
X1

X2

)
,

where X1 and X2 are of the orders d1 and n−d1, respectively,
then X1 is d1-variate MGSN distribution and X2 is a n − d1
variateMGSNdistribution. Similarly, ifX is d-variateMGSN
distribution and D is a s × d matrix, with rank s ≤ d,
then Z = DX is a s-variate MGSN distribution. It has been
shown that X is d-variate MGSN distribution if and only
if Y = c	X is a GSN distribution, for all c ∈ R

d �= 0.
Several other interesting properties including canonical cor-
relation, majorization, and characterization have been pro-
vided in Kundu [17]. Estimation of the unknown parameters
is an important problem. A d-variate MGSN distribution has
1 + d + d(d + 1)/2 unknown parameters. The usual ML
computation involves solving a 1 + d + d(d + 1)/2 variate

optimization problem. Therefore, even for d = 3, it involves
solving a ten-dimensional optimization problem, and clearly
it is a nontrivial problem. A very efficient EM algorithm
has been proposed by Kundu [17], which does not require
solving any optimization problem, i.e., at each “E”-step, the
corresponding “M”-step can be performed explicitly. Due to
this reason, MGSN can be used quite efficiently in practice
even for large d.

5.4 Location Shift SGSN Distribution

5.4.1 Model Description

Now we will introduce location shift SGSN distribution,
which can be used quite effectively for analyzing symmetric
data as an alternative to any symmetric distribution such
as normal, log-BS, Student’s t distributions, etc. A random
variable Y is called a location shift SGSN (LS-SGSN) distri-
bution if

Y = θ + X, (5.15)

where θ ∈ R and X ∼ SGSN(σ , p). If the random vari-
able Y has the form (5.15), then it will be denoted by LS-
SGSN(θ , σ , p). If Y ∼ LS-SGSN(θ , σ , p), then the CDF and
PDF of Y become

FY(y; θ , σ , p) = p
∞∑
k=1

�

(
y− θ

σ
√
k

)
(1 − p)k−1, (5.16)

and

fY(y; θ , σ , p) =
∞∑
k=1

p

σ
√
k
φ

(
y− θ

σ
√
k

)
(1 − p)k−1, (5.17)

respectively. Clearly, LS-SGSN distribution will be a more
flexible than a normal distribution due to the presence of
an extra parameter. Moreover, normal distribution can be
obtained as a special case of the LS-SGSN distribution. We
need the following derivations for further development, when
0 < p < 1, y ∈ R, and n = 1, 2, . . .:

P(Y ≤ y, N = n) = P(X ≤ y− θ , N = n)

= p(1 − p)n−1�

(
x− θ

σ
√
n

)
.

and

fY,N(y, n) = p(1 − p)n−1 1

σ
√
2πn

e−
(x−θ)2

2σ2n .

If Y ∼ LS-SGSN(θ , σ , p), then the characteristic function of
Y can be obtained as
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Fig. 5.4 PDF plots of MGSN2(μ,�, p) distribution for different (μ1,μ1, σ11, σ22, σ12, p) values: (a) (1.0,1.0,1.0,0.5,0.75) (b) (–1.0,1.0,
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φY(t) = E(eitY) = eitθ
pe

(
− σ2 t2

2

)

1 − (1 − p)e
(
− σ2 t2

2

) , t ∈ R.

The mean and variance of Y are

E(Y) = θ and V(Y) = σ 2

p
,

respectively.

5.4.2 Maximum Likelihood Estimators

The proposed LS-SGSN distribution has three parameters.
Now we will discuss about the estimation of the unknown
parameters of the LS-SGSN distribution and the associated
confidence intervals.

Suppose we have a random sample of size n, say,

D1 = {x1, . . . , xn}

from LS-SGSN(θ , σ , p). The log-likelihood function based
on the observationD1 can be written as

l(θ , σ , p) = n ln p− n ln σ

+
n∑
i=1

ln

{ ∞∑
k=1

1√
k
φ

(
xi − θ

σ
√
k

)
(1 − p)k−1

}
.

(5.18)

Therefore, the ML estimators of the unknown parameters
can be obtained by maximizing (5.18) with respect to the
unknown parameters. The normal equations can be obtained
as

l̇θ = ∂l(θ , σ , p)

∂θ
= 0, l̇σ = ∂l(θ , σ , p)

∂σ
= 0,

l̇p = ∂l(θ , σ , p)

∂p
= 0. (5.19)

Hence, the ML estimates can be obtained by solving all
the three normal equations in (5.19) simultaneously. Clearly,
the ML estimates cannot be obtained in explicit forms, and
one needs to use some iterative methods to solve (5.19).
One may use the Newton-Raphson-type algorithm to solve
these nonlinear equations, but it has its own problem of local
convergence and the choice of initial values. To avoid that,
we have proposed to use EM-type algorithm to compute
the ML estimates. It is observed that at each E-step the
corresponding M-step can be obtained explicitly. Hence, it
can be implemented very easily.

The basic idea of the proposed EM-type algorithm is to
treat this problem as a missing value problem as follows:

Suppose with each xi we also observe the corresponding
value of N, say, mi. Therefore, the complete observation
becomes

D1c = {(x1, m1), . . . , (xn, mn)}. (5.20)

Based on the complete data, the log-likelihood function be-
comes

l(θ , σ , p) = n ln p+
(

n∑
i=1

mi − n

)
ln(1 − p)

− n ln σ − 1

2σ 2

n∑
i=1

(xi − θ)2

mi
. (5.21)

Hence, theML estimates of θ , σ , and p based on the complete
observationD1c can be obtained by maximizing (5.21). If we
denote them as θ̂c, σ̂c and p̂c, respectively, then

θ̂c = 1∑n
i=1

1
mi

n∑
i=1

xi
mi
,

σ̂ 2
c = 1

n

n∑
i=1

(xi − θ̂c)
2

mi
,

p̂c = n∑n
i=1mi

. (5.22)

Hence, in this case, the EM algorithm takes the following
form. Suppose at the kth stage of the EM algorithm the
estimates of θ , σ , and p are θ(k), σ (k), and p(k), respectively.
Then at the “E”-step of the EM algorithm, the “pseudo” log-
likelihood function can be written as

ls(θ , σ , p|θ(k), σ (k), p(k)) = n ln p+
(

n∑
i=1

a(k)
i − n

)
ln(1 − p)

−n ln σ − 1

2σ 2

n∑
i=1

b(k)
i (xi − θ)2.

(5.23)

Here,

a(k)
i = E(N|Y = xi, θ

(k), σ (k), p(k))

=
∑∞

n=1

√
n(1 − p(k))n−1e

− (xi−θ(k))2

2n(σ (k))2

∑∞
j=1(1 − p(k))j−1e

− (xi−θ(k))2

2j(σ (k))2 /
√
j

(5.24)

and

b(k)
i = E(1/N|Y = xi, θ

(k), σ (k), p(k))

=
∑∞

n=1 n
−3/2(1 − p(k))n−1e

− (xi−θ(k))2

2n(σ (k))2

∑∞
j=1(1 − p(k))j−1e

− (xi−θ(k))2

2j(σ (k))2 /
√
j

. (5.25)
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Therefore, at the “M”th step, the maximization of the
“pseudo” log-likelihood functions provides

θ(k+1) =
∑n

i=1 b
(k)
i xi∑n

j=1 b
(k)
j

, σ (k+1) = 1

n

n∑
i=1

b(k)
i (xi − θ(k+1))2,

p(k+1) = n∑n
i=1 a

(k)
i

. (5.26)

Note that to start the EM algorithm, we need some initial
estimates of θ , σ , and p. We suggest the following. Use
the sample mean and the sample standard deviation as the
initial estimates of θ and σ , respectively. We can start the EM
algorithm for different initial values of p from (0, 1). The EM
algorithm can be explicitly written as follows:
EM Algorithm

Step 1: Choose some initial estimates of θ , σ , and p, say,
θ(1), σ (1), and p(1) as described above. Put k = 1.
Step 2: Compute a(k)

i and b(k)
i as in (5.24) and (5.25),

respectively.
Step 3: Compute θ(k+1), σ (k+1), and p(k+1) as in (5.26).
Step 4: Check the convergence. If the convergence crite-
rion is satisfied, then stop; otherwise, put k = k + 1, and
go to Step 2.

The observed Fisher information matrix also can be easily
obtained as the last step of the corresponding algorithm. The
observed Fisher information matrix can be written as I =
B − SS	. Here, B is a 3 × 3 Hessian matrix of the “pseudo”
log-likelihood function (5.23), and S is the corresponding
gradient vector. If we denote B = ((bij)) and S = (si), then
at the kth stage of the EM algorithm,

b11 = 1

(σ (k))2

n∑
i=1

b(k)
i , b12 = b21 = 2

(σ (k))3

n∑
i=1

b(k)
i (xi − θ(k)),

b22 = − n

(σ (k))2
+ 3

(σ (k))4

n∑
i=1

b(k)
i (xi − θ(k))2

b33 = n

(p(k))2
+

∑n
i=1 a

(k)
i − n

(1 − p(k))2
, b13 = b31 = b23 = b32 = 0.

s1 = 1

(σ (k))2

n∑
i=1

b(k)
i (xi − θ(k)), s2 = − n

σ (k)
+ 1

(σ (k))3

×
n∑
i=1

b(k)
i (xi − θ(k))2, s3 = n

p(k)
−

∑n
i=1 a

(k)
i

1 − p(k)
.

Therefore, if I−1 = ((f ij)), then 100(1 − α)% confidence
intervals of θ , σ , and p can be obtained as

(θ̂ − zα/2f
11, θ̂ + zα/2f

11), (̂σ − zα/2f
22, σ̂ + zα/2f

22),

(̂p− zα/2f
33, p̂+ zα/2f

33),

respectively. Here zα denotes the αth percentile point of a
standard normal distribution.

5.4.3 Testing of Hypothesis

In this section, we discuss some testing of hypotheses prob-
lems which have some practical importance.

Problem 1 We want to test

H0 : θ = θ0 vs. H1 : θ �= θ0. (5.27)

The problem is of interest as it tests whether the distribution
has a specific mean or not. We propose to use the likeli-
hood ratio test (LRT) for this purpose. To compute the LRT
statistic, we need to compute the ML estimates of σ and
p, when θ = θ0. In this case also we can use the same
EM algorithm with the obvious modification that at each
stage θ(k) is replaced by θ0. Therefore, if θ̂ , σ̂ , and p̂ denote
the ML estimates of θ , σ , and p, respectively, without any
restriction, and σ̃ and p̃ denote the ML estimators of σ and
p, respectively, under H0, then

2(l(θ̂ , σ̂ , p̂) − l(θ0, σ̃ , p̃)) −→ χ2
1 .

Problem 2 We want to test

H0 : p = 1 vs. H1 : p < 1. (5.28)

The problem is of interest as it tests whether the distribution
is normal or not. In this case under H0, the ML estimates of
θ and σ can be obtained as

θ̃ =
∑n

i=1 xi
n

and σ̃ =
√∑n

i=1(xi − θ̃ )2

n
.

In this case p is in the boundary underH0; hence, the standard
results do not hold. But using Theorem 3 of Self and Liang
[28], it follows that

2(l(θ̂ , σ̂ , p̂) − l(θ̃ , σ̃ , 1) −→ 1

2
+ 1

2
χ2
1 .

5.5 SGSN RegressionModel

In this section, we introduce the following regression model:

Y = X	β + ε, (5.29)
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where Y is a n× 1 observed vector, X = (X1, X2, . . . , Xk)	 is
a k-dimensional covariate vector, β = (β1,β2, . . . ,βk)	 is a
k-vector of regression coefficients, a	 denotes the transpose
of an arbitrary vector a, and ε ∼ SGSN(σ , p). Note that it
is a standard multiple linear regression model when ε has
a normal distribution with mean zero and finite variance.
Since the normal distribution is a special case of the proposed
SGSN distribution, therefore, the model (5.29) will be more
flexible than the standard multiple linear regression model.

The main aim of this section is to discuss the estimation
of the unknown parameters of the model (5.29). Let

D = {(y1, x1), (y2, x2), . . . , (yn, xn)},

be n independent observations from the model (5.29);
the problem is to estimate the unknown parameters
β1, . . . ,βk, σ , p. We use the following notation xi =
(x1i, . . . , xki)	, i = 1, . . . , n.

Let us try to compute the ML estimates of the unknown
parameters. The log-likelihood function of the observed data
D based on the model (5.29) can be obtained as

l(θ) = n ln p− n ln(1 − p) − n ln σ

+
n∑
i=1

ln

⎛
⎝ ∞∑

j=1

(1 − p)j√
j

φ

(
yi − x	

i β

σ
√
j

)⎞
⎠ , (5.30)

where θ = (β, σ , p)	. Therefore, the ML estimates of the
unknown parameters can be obtained by maximizing the
log-likelihood function (5.30) with respect to the unknown
parameters. Taking derivatives with respect to the unknown
parameters, the normal equations become

l̇β1 = ∂

∂β1
l(θ) = 0, . . . , l̇βk = ∂

∂βk
l(θ) = 0,

l̇σ = ∂

∂σ
l(θ) = 0, l̇p = ∂

∂p
l(θ) = 0. (5.31)

Clearly, they cannot be solved explicitly. One needs to solve
k + 2 nonlinear equations simultaneously to compute the
ML estimates of the unknown parameters. To avoid that
problem, we propose to use this problem as a missing value
problem and provide an efficient EM algorithm to compute
the ML estimates of the unknown parameters. The main idea
is as follows. Suppose along with (yi, xi) we also observe
mi, where mi denotes the value of N in this case, for i =
1, 2, . . . , n. Therefore, the complete data will be of the form

Dc = {(y1, x1, m1), . . . , (yn, xn, mn)}. (5.32)

First, we will show that if mi’s are known, then the ML
estimates of β, σ , and p can be obtained in explicit forms.

Based on the complete data (5.32), the log-likelihood func-
tion without the additive constant becomes

lc(β, σ , p) = n ln p+
(

n∑
i=1

mi − n

)
ln(1 − p) − n ln σ

− 1

2σ 2

n∑
i=1

1

mi

(
yi − x	

i β
)2

. (5.33)

It can be easily seen that lc(β, σ , p) as given in (5.33) is a
unimodal function. If β̂c, σ̂c, and p̂maximize lc(β, σ , p), then
they can be obtained as

β̂c =
[

n∑
i=1

1

mi
xix	

i

]−1

, σ̂ 2
c = 1

n

n∑
i=1

1

mi

(
yi − x	

i β̂c

)2
,

p̂ = n∑n
i=1 mi

. (5.34)

Therefore, it is clear that if mi’s are known, then the ML
estimates of β, σ , and p can be obtained quite conveniently,
and one does not need to solve any nonlinear equation. This
is the main motivation of the proposed EM algorithm. Now
we are ready to provide the EM algorithm for this problem.
We will show how to move from the rth step to the (r+ 1)th
step of the EM algorithm.

We will use the following notations. Let us denote β(r),
σ (r), and p(r) as the estimates of β, σ , and p, respectively,
for i = 1, 2, . . . , n, at the rth iteration of the EM algorithm.
Then at the “E”-step of the EM algorithm, the pseudo log-
likelihood function becomes

ls(β, σ , p|β(r), σ (r), p(r)) = n ln p+
(

n∑
i=1

c(r)i − n

)
ln(1 − p)

− n ln σ − 1

2σ 2

n∑
i=1

d(r)
i

(
yi − x	

i β
)2
,

(5.35)

where

c(r)i = E(N|yi, xi,β(r), σ (r), p(r))

=
∑∞

n=1

√
n(1 − p(r))n−1e

− (yi−x	i β(r))2

2n(σ (r))2

∑∞
j=1(1 − p(r))j−1e

− (yi−x	i β(r))2

2j(σ (r))2 /
√
j

(5.36)

and

d(r)
i = E(1/N|yi, xi,β(r), σ (r), p(r))

=
∑∞

n=1 n
−3/2(1 − p(k))n−1e

− (yi−x	i β(r))2

2n(σ (k))2

∑∞
j=1(1 − p(k))j−1e

− (yi−x	i β(r))2

2j(σ (k))2 /
√
j

. (5.37)
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Therefore, at the “M”th step, the maximization of the
“pseudo” log-likelihood function provides

β(r+1) =
[

n∑
i=1

d(r)
i xix	

i

]−1

, σ (r+1)

=
√√√√1

n

n∑
i=1

d(r)
i

(
yi − x	

i β(r+1))2, p̂ = n∑n
i=1 c

(r)
i

;

(5.38)

moreover, these are unique solutions.
Now to start the EM algorithm, we suggest the following

initial guesses. Use ordinary least squares estimates of β as
the initial estimate of β and the corresponding square root of
the residual sums of squares as the initial estimate of σ . As
before, we can start the EM algorithm with different initial
values of p ∈ (0, 1). The EM algorithm can be written as
follows.
EM Algorithm

Step 1: Choose some initial estimates of β, σ , and p, say,
β(1), σ (1), and p(1) as described above. Put r = 1.
Step 2: Compute c(r)i and c(r)i as in (5.36) and (5.37),
respectively.
Step 3: Compute β(r+1), σ (r+1), and p(r+1) as in (5.38).
Step 4: Check the convergence. If the convergence crite-
rion is satisfied, then stop; otherwise, put r = r + 1, and
go to Step 2.

In this case also the observed Fisher information matrix
also can be obtained as before, in the last step of the EM
algorithm. The observed Fisher information matrix can be
written as Ĩ = B̃− S̃̃S	. Here, B̃ is a (k+3)×(k+3)Hessian
matrix of the “pseudo” log-likelihood function (5.35), and S̃
is the corresponding gradient vector. If we denote B̃ = ((̃bij))
and S̃ = (̃si), then at the rth stage of the EM algorithm, for
j, l = 1, . . . , k and for j �= l,

b̃jj = 1

(σ (r))2

n∑
i=1

d(r)
i x2ji, b̃jl = b̃lj = 1

(σ (r))3

n∑
i=1

d(r)
i xjixli,

b̃(k+1)(k+1) = − n

(σ (r))2
+ 3

(σ (r))4

n∑
i=1

d(k)
i (yi − x	

i β(r))2,

b̃j(k+1) = b̃(k+1)j = 2

(σ (r))3

n∑
i=1

d(k)
i (yi − x	

i β(r))xji,

b̃(k+2)(k+2) = n

(p(r))2
+

∑n
i=1 c

(r)
i − n

(1 − p(r))2
,

bj(k+2) = 0; j = 1, . . . , k + 1.

sj = 1

(σ (r))2

n∑
i=1

d(r)
i (yi − x	

i β(r))xji; j = 1, . . . k,

s(k+1) = − n

σ (r)
+ 1

(σ (r))3

n∑
i=1

d(r)
i (yi − x	

i β(r))2,

s(k+2) = n

p(r)
−

∑n
i=1 c

(r)
i − n

1 − p(r)
.

Therefore, if Ĩ−1 = ((̃f ij)), then 100(1 − α)% confidence
intervals of βj, σ , and p can be obtained as

(β̂j − zα/2̃f
jj, β̂j + zα/2̃f

jj); j = 1, . . . , k,(
σ̂ − zα/2̃f

(k+1)(k+1), σ̂ + zα/2̃f
(k+1)(k+1)

)
,(̂

p− zα/2̃f
(k+2)(k+2), p̂+ zα/2̃f

(k+2)(k+2)
)
,

respectively. Here zα denotes the αth percentile point of a
standard normal distribution.

5.6 Simulation Results

In this section, we present some simulation results both for
the LS-SGSN and SGSN regression models. The main idea is
to see how the proposed EMalgorithms behave in these cases.
All the computations are performed using R software, and it
can be obtained from the corresponding author on request.

5.6.1 LS-SGSNModel

In this section, we have generated samples from a LS-SGSN
distribution for different sample sizes n and different p val-
ues. We have kept the values of θ and σ to be the same,
namely, θ = 0 and σ = 1. We have taken n = 25, 50, 75,
and 100 and p = 0.2, 0.4, 0.6, and 0.8. We have used the EM
algorithm as it has been described in Sect. 5.3. In all the cases,
we have used the true value as the initial guesses. We stop
the iteration when the absolute difference of the consecutive
estimates is less that 10−6, for all the unknown parameters.
We have reported the average ML estimates of θ , σ , p, and
the associated mean squared errors (MSEs) based on 1000
replications. The results are reported in Table 5.1.

Some of the points are quite clear from the above experi-
mental results. It is observed that ML estimates of θ , σ , and p
provide unbiased estimates of the corresponding parameters.
As sample size increases, in all the cases considered, the
MSEs decrease. It indicates consistency property of the ML
estimates. The EM algorithm converges in all the cases.
Hence, the EM algorithm works well in this case.
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Table 5.1 ML estimates of θ , σ , and p and the associated MSEs
(reported below within brackets) for different sample sizes and for
different p values

n p = 0.2 p = 0.4 p = 0.6 p = 0.8

25 θ 0.0003 0.0062 0.0007 −0.0026

(0.1230) (0.0738) (0.0621) (0.0483)

σ 0.9251 0.9177 0.9293 0.9314

(0.0471) (0.0419) (0.0369) (0.0374)

p 0.1883 0.3703 0.5699 0.7546

(0.0224) (0.0116) (0.0103) (0.0081)

50 θ 0.0094 −0.0004 −0.0030 0.0067

(0.0651) (0.0398) (0.0320) (0.0243)

σ 0.9515 0.9427 0.9519 0.9569

(0.0396) (0.0326) (0.0294) (0.0211)

p 0.1890 0.3792 0.5768 0.7748

(0.0121) (0.0099) (0.0089) (0.0075)

75 θ 0.0104 0.0036 0.0060 0.0028

(0.0432) (0.0271) (0.0189) (0.0149)

σ 0.9606 0.9747 0.9720 0.9683

(0.0273) (0.0250) (0.0231) (0.0200)

p 0.1891 0.3835 0.5775 0.7787

(0.0099) (0.0079) (0.0056) (0.0047)

100 θ −0.0004 −0.0018 −0.0023 0.0016

(0.0318) (0.0196) (0.0144) (0.0115)

σ 0.9805 0.9767 0.9889 0.9839

(0.0165) (0.0234) (0.0193) (0.0165)

p 0.1948 0.3927 0.5860 0.7880

(0.0071) (0.0056) (0.0032) (0.0027)

5.6.2 SGSN RegressionModel

In this section, we have performed some simulation experi-
ments for SGSN regression model. Here, we have taken k =
2, β1 = 1, β2 = 2, and σ = 1. We have varied n = 25, 50, 75,
and 100 and p = 0.2, 0.4, 0.6, and 0.8. We have generated the
entries of the X matrix from i.i.d. normal random variables,
with mean zero and variance one. For a fixed, n, the generated
X matrix remains fixed. The error random variables are
generated from a SGSN(σ , p) distribution. For each n, σ , and
p, we generate Y . We compute the ML estimates of β1, β2, σ ,
and p, based on the EM algorithm as described in Sect. 5.4.
In all the cases, we report the average ML estimates and the
associated MSEs based on 1000 replications. The results are
reported in Table 5.2.

Some of the points are quite clear from both the tables.
It is observed that even for the SGSN regression model, the
proposed EM algorithmworks quite well in all the cases con-
sidered. TheML estimates provide consistent estimates of the
corresponding unknown parameters, and the EM algorithm
also converges in each case.

Table 5.2 ML estimates of β1, β2, and σ and the associated MSEs
(reported below within brackets) for different sample sizes and for
different p values

n p = 0.2 p = 0.4 p = 0.6 p = 0.8

25 β1 1.0063 1.0044 0.9998 0.9979

(0.1348) (0.0824) (0.0612) (0.0487)

β2 2.0006 1.9964 2.0010 2.0062

(0.0952) (0.0568) (0.0485) (0.0400)

σ 0.9274 0.9286 0.9356 0.9398

(0.0264) (0.0243) (0.0238) (0.0229)

p 0.1966 0.3878 0.5729 0.7714

(0.0014) (0.0061) (0.0173) (0.0207)

50 β1 1.0043 1.0008 0.9987 1.0013

(0.0502) (0.0316) (0.0227) (0.0197)

β2 2.0011 1.9995 2.0001 2.0058

(0.0703) (0.0427) (0.0331) (0.0269)

σ 0.9508 0.9323 0.9389 0.9428

(0.0173) (0.0211) (0.0212) (0.0199)

p 0.1987 0.3889 0.5787 0.7899

(0.0008) (0.0048) (0.0143) (0.0178)

75 β1 0.9917 1.0001 0.9997 1.0001

(0.0422) (0.0217) (0.0208) (0.0146)

β2 2.0005 2.0005 2.0003 2.0041

(0.0367) (0.0226) (0.0193) (0.0149)

σ 0.9615 0.9576 0.9545 0.9758

(0.0165) (0.0142) (0.0128) (0.0111)

p 0.1998 0.3976 0.5889 0.7987

(0.0004) (0.0028) (0.0013) (0.0011)

100 β1 0.9993 1.0021 1.0016 0.9997

(0.0242) (0.0163) (0.0127) (0.0095)

β2 1.9992 1.9987 1.9970 2.0002

(0.0261) (0.0147) (0.0126) (0.0100)

σ 0.9893 0.9892 0.9888 0.9917

(0.0056) (0.0058) (0.0059) (0.0056)

p 0.2001 0.3999 0.5998 0.7999

(0.0001) (0.0016) (0.0008) (0.0005)

5.7 Real Data Analysis

5.7.1 LS-SGSNModel

In this section, we present the analysis of one data set based
on LS-SGSN model mainly for illustrative purposes. The
data set has been obtained from Lawless [21] (page 228). It
arose from test on the endurance of deep groove ball bearings.
It represents the number of million revolutions before failure
for each of the 23 ball bearings in the life test, and they are
as follows:

17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12 93.12
98.64 105.12 105.84 127.92 128.04 173.40.
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The mean and standard deviation of the data points are
72.2 and 36.7, respectively. We have used the EM algorithm
with the initial estimates of θ , σ , and p as 72.2, 36.7, and
0.5, respectively. We stop the iteration when the differences
between the consecutive estimates are less than 10−4 for all
the three parameters. The ML estimates and the associated
log-likelihood (ll) value are as follows:

θ̂ = 68.443, σ̂ = 26.088 p̂ = 0.554, ll = −127.4590.

The corresponding 95% confidence intervals of θ , σ , and p
are obtained as

(56.513, 80.373), (18.857, 33.320), (0.409, 0.699),

respectively. To check the effect of the initial guess to the
final estimates, we have used different other initial guesses,
mainly the p values ranging from 0.1 to 0.9, but in all the cases
it converges to the same estimate. It confirms that the initial
estimates do not affect the convergence of the EM algorithm.

5.7.2 SGSN RegressionModel

In this section, we have analyzed one rocket propellant data
set from Montgomery et al. [23] (Chapter 2). The data
represent the shear strength (Y) and the age of the propellant
(X). Here the shear strength is in psi, and the age is in weeks.
The observations are given below in the format (Y, X):

(2158.70, 15.50) (1678.15, 23.75) (2316.00, 8.00)
(2061.30, 17.00) (2207.50, 5.50) (1708.30, 19.00) (1784.70,
24.00) (2575.00, 2.50) (2357.90, 7.50) (2256.70, 11.00)
(2165.20, 13.00) (2399.55, 3.75) (1779.80, 25.00) (2336.75,
9.75) (1765.30, 22.00) (2053.50, 18.00) (2414.40, 6.00)
(2200.50, 12.50) (2654.20, 2.00) (1753.70, 21.50).

We have used the following model to analyze the data:

Y = β1 + β2X + ε.

Here ε is assumed to follow a GSSN distribution with mean
zero and finite variance. Assuming that ε follows normal
distribution, we obtain the least squares estimates of β1, β2,
and σ as 2627.82, −37.15, and 91.17, respectively. We have
used these estimates as the initial estimates, and we have used
the initial estimate of p as 0.5. Using the EM algorithm, we
obtain the ML estimates of the unknown parameters, and the
corresponding log-likelihood values are as follows:

β̂1 = 2649.58, β̂2 = −37.58, σ̂ = 53.42,

p̂ = 0.34, ll = −88.97.

The associated 95% confidence intervals are as follows:

(2584.95, 2714.18), (−41.83,−33.34),

(36.87, 69.98), (0.22, 0.46).

5.8 Conclusions

In this paper, we have considered LS-SGSN distribution. It
is symmetric, and it has three parameters. Hence, it is more
flexible than the normal distribution. The normal distribution
can be obtained as a special case of the LS-SGSN distribu-
tion. We have proposed a very efficient EM algorithm, and it
is observed that the EM algorithm works quite well. We have
further considered SGSN regression model, which is more
flexible than the standard Gaussian regression model. In this
case also we have proposed a very efficient EM algorithm,
and the performance of the proposed EM algorithm is quite
satisfactory.
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Abstract

Reliability analysis has been using time-to-event data,
degradation data, and recurrent event data, while the asso-
ciated covariates tend to be simple and constant over time.
Over the past years, we have witnessed rapid development
of sensor and wireless technology, which enables us to
track the product usage and use environment. Nowadays,
we are able to collect richer information on covariates
which provides opportunities for better reliability predic-
tions. In this chapter, we first review recent development
on statistical methods for reliability analysis. We then
focus on introducing several specific methods that were
developed for different types of reliability data by utilizing
the covariate information. Illustrations of those methods
are also provided using examples from industry. We also
provide a brief review on recent developments of test
planning and then focus on illustrating the sequential
Bayesian designs with examples of fatigue testing for
polymer composites. The chapter is concluded with some
discussions and remarks.

Keywords

Degradation data · Dynamic covariates · Lifetime data ·
Recurrent event data · Reliability prediction · Sequential
test planning

© Springer-Verlag London Ltd., part of Springer Nature 2023
H. Pham (ed.), Springer Handbook of Engineering Statistics, Springer Handbooks,
https://doi.org/10.1007/978-1-4471-7503-2_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-7503-2_6&domain=pdf
https://orcid.org/0000-0003-2017-9506
https://orcid.org/0000-0002-6961-8111
https://orcid.org/0000-0001-7754-9374
https://orcid.org/0000-0003-1720-9540
mailto:yueyao94@vt.edu
mailto:yilihong@vt.edu
mailto:iclee@mail.ncku.edu.tw
mailto:lulu1@usf.edu
https://doi.org/10.1007/978-1-4471-7503-2_6


106 Y. Wang et al.

6.1 Introduction

6.1.1 Background

Traditional reliability data analysis mainly uses time-to-event
data, degradation data, and recurrent event data to make
reliability predictions [1]. The covariate information involved
in the reliability analysis is usually time-invariant, and the
number of covariates is typically small. For time-to-event
data, parametric models such as the Weibull and lognor-
mal distributions are popular, and accelerated failure-time
models are often used to incorporate covariate information
on accelerating factors. For degradation data, the general
path models and stochastic models are the common choices,
and the covariate information is often incorporated through
regression type of models. The recurrent event data are often
modeled by the event intensity models or mean cumulative
functions with regression type of models that are often used
to incorporate covariates.

With technological advances, new information on co-
variates becomes available. Products and systems can be
equipped with sensors and smart chips to keep track of
various information on the field usage of product units,
number of transfers, and environmental conditions such as
temperature and humidity. Such covariate information often
changes over time, so we refer to them as dynamic covariate
information. Because the dynamic covariates often come in
large volume and variety, it presents big data opportunities
and challenges in the area of reliability analysis (e.g., [2]
and [3]). Dynamic covariate data can be used for modeling
and prediction of reliability because units under heavy usage
often fail sooner than those lightly used. In recent years,
more statistical methods for dynamic covariates have been
developed to make use of this new type of covariate data.

Another important area of reliability analysis is about
test planning, which focuses on how to efficiently collect
various types of data to make better predictions of reliability.
For accelerated life tests (ALTs), it is especially challenging
to timely collect sufficient failure data because the data
collection is a time-consuming process and often requires
using expensive equipment for testing units under elevated
stress conditions. In some laboratories, there is typically one
or two machines available for testing certain material. In this
case, it is impractical to test multiple samples simultaneously
and therefore limits the total obtainable sample size. Another
challenge with traditional test planning is that it typically
relies on a single set of best guess of parameter values, which
may lead to suboptimal designs when the specified parameter
values are not accurate. Due to these challenges, sequential
designs become popular where earlier test results can be
utilized to determine the test conditions for later runs. In
addition, Bayesian methods can be used to leverage prior
information from the expert’s knowledge or related historical

data to inform the test planning. The objective of this chapter
is to review current development and then introduce the
statistical methods for dynamic covariates and sequential
Bayesian designs (SBDs) for ALT.

6.1.2 Related Literature

In lifetime data analysis, product usage information has
been used to improve reliability models. Lawless et al. [4]
consider warranty prediction problem using product usage
information on return units. Constant usage information is
used in [5] and [6]. Averaged product use-rate information
is used in [7]. Nelson [8] and Voiculescu et al. [9] use a
cumulative exposure model in ALT and reliability analysis.
Hong and Meeker [10] use a cumulative exposure model to
incorporate dynamic covariates and apply it to the Product
D2 application.

In degradation data analysis, stochastic process models
are widely used. The Wiener process [11–13], gamma pro-
cess [14], and inverse Gaussian process [15, 16] are among
popular models in this class. The general path models are
also widely used, which include [17–21]. For accelerated
destructive degradation tests, typical work includes [22–24].
Hong et al. [25] and Xu et al. [26] develop degradation mod-
els using the general path model framework to incorporate
dynamic covariate information.

For recurrent event data, the common models are nonho-
mogeneous Poisson process (NHPP) and the renewal process
(RP) (e.g., [27,28]). Kijima [29] introduce virtual age models
which can model imperfect repairs. Pham and Wang [30]
develop a quasi-renewal process, and Doyen and Gaudoin
[31] propose models for imperfect repairs. The trend-renewal
process (TRP) proposed in [32] is applied in [33–35] and
other places. Xu et al. [36] develop amultilevel trend-renewal
process (MTRP) model for recurrent event with dynamic
covariates.

For test planning, the optimum designs in traditional test
planning framework are developed using non-Bayesian ap-
proaches (e.g., [37,38]), and the true parameters are assumed
to be known. Bayesian test planning for life data is developed
in [39–41]. King et al. [42] develop optimum test plans for
fatigue tests for polymer composites. Lee et al. [43] develop
SBD test planning for polymer composites, and Lu et al. [44]
extend it to test planning with dual objectives.

6.1.3 Overview

For the rest of this chapter, Sect. 6.2 gives an example of
traditional reliability analysis. Section 6.3 describes an ap-
plication on time-to-event data with dynamic covariates.
Section 6.4 illustrates modeling of degradation with dy-
namic covariates. Section 6.5 describes the MTRP model
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for describing recurrent event data with dynamic covariates.
Section 6.6 introduces SBD strategies for ALTs. Section 6.7
considers sequential test planning with dual objectives. Sec-
tion 6.8 contains some concluding remarks.

6.2 Traditional Reliability Analysis

In this section, we give one example on how traditional
reliability analysis is typically carried out. The time-to-event
data, degradation data, and recurrent event data are typically
used for reliability models, and then one can use such models
to make reliability predictions [1]. In traditional reliability
datasets, the covariate information involved in the reliability
analysis is usually simple (i.e., the covariate is time-invariant
or the number of covariates is small). Here we use one
example from time-to-event analysis as an illustration. Some
other examples on degradation analysis can be found in [45].
This section is mainly based on [46].

6.2.1 Background and Data

Hong, Meeker, and McCalley [46] present the modeling
of the lifetime data for power transformers. High-voltage
power transmission transformers are important components
in the electrical transmission, which has more than 150,000
units in service in the USA. The energy industry is very
much interested in the prediction of the remaining life of
transformers. Such prediction is typically based on historical
lifetime data collected from the transformers in the field.

The paper [46] describes the modeling and analysis of
lifetime data of power transformers collected by an energy
company. Themain goal is to make prediction for the remain-
ing life of transformers that are still in service. Figure 6.1
shows the event plot for a subset of the power transformer
lifetime data, on which the numbers on the left show the
counts of transformers for each line. The truncation age is
also marked on the line. The lifetime data involve censoring
and truncation. Transformers that are still in service at the
data freeze date (DFD) are considered to be right censored.
There is information on transformers that were installed
before January 1, 1980, and then subsequently failed after
January 1, 1980. There is no information on transformers
installed and also failed before 1980. Hence, units that were
installed before 1980 are considered to be samples generated
from left truncated distribution(s).

6.2.2 Time-to-Event Models and Parameter
Estimation

The first step in lifetime data analysis is to specify a life-
time distribution that is suitable for describing the data. The
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Fig. 6.1 Event plot for a subset of the power transformer lifetime data.
The numbers in the left show the counts for each line

log-location-scale family of distributions is widely used in
the literature. The Weibull and lognormal are widely used
members in this family of distributions. Here we briefly
introduce the formulae for the Weibull and lognormal dis-
tributions.

Let T be the random variable for the lifetime of a power
transformer, and we use the log-location-scale distribution to
model T . The cumulative distribution function (cdf) of T is

F(t; μ, σ) = �

[
log(t) − μ

σ

]
.

Hereμ is the location parameter and σ is the scale parameter.
The probability density function (pdf) of T is

f (t; μ, σ) = 1

σ t
φ

[
log(t) − μ

σ

]
.

The cdf and pdf of the lognormal distribution are obtained
by replacing � and φ with the standard normal cdf �nor

and pdf φnor, respectively. Similarly, the cdf and pdf of the
Weibull distribution can be obtained by replacing � and φ

with �sev(z) = 1−exp[− exp(z)] and pdf φsev(z) = exp[z−
exp(z)].

To write down the likelihood function, we need to define
some notation of the data first. Given a set of n units, the
lifetime or time in service of unit i is denoted by ti. The
censoring time is denoted by ci, and δi is the censoring
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indicator (i.e., δi = 1 if unit i failed and δi = 0 if the unit was
censored). The left truncation time is denoted by τ Li . Note that
τ Li is the time that the life distribution of unit i was truncated
on the left. The truncation indicator is νi (i.e., νi = 0 if unit i
is left truncated and νi = 1 if the unit is not truncated). With
this notation, the likelihood function for the lifetime data of
the transformers is

L(θ) =
n∏
i=1

[1 − F(ci; θ)](1−δi)νi ×
[
1 − F(ci; θ)

1 − F(τ Li ; θ)

](1−δi)(1−νi)

× f (ti; θ)δiνi ×
[

f (ti; θ)

1 − F(τ Li ; θ)

]δi(1−νi)

,

where θ is the vector that contains all the unknown param-
eters (i.e., the location parameters μi and scale parameters
σi).

To incorporate simple covariate information, the paramet-
ric regression analysis for lifetime data is used. In a typical
setting, the location parameter μ is related to the covariate
x through μ(x) = x′β, where β is the regression coefficient
vector. Themaximum likelihood (ML) estimate θ̂ can then be
obtained by maximizing the likelihood function. Numerical
algorithms are usually needed.

6.2.3 Reliability Prediction

Based on the model built for the lifetime data, the prediction
of the remaining life of surviving units can be obtained. The
conditional distribution is important for this task. Conditional
on surviving until ti, the cdf is

F(t|ti; θ) = Pr(T ≤ t|T > ti) = F(t; θ) − F(ti; θ)

1 − F(ti; θ)
, t ≥ ti.

For an individual prediction, the prediction interval (PI)[
S˜i, S̃i

]
can be used. A simple PI can be obtained by taking

the lower and upper α/2 quantiles of the estimated condi-
tional distribution. The simple PI then needs to be calibrated
to provide better coverage probability. The details of cali-
bration using the random weighted bootstrap are available
in [46].

For the prediction at the population level, the cumulative
number of failures at a future time point is used. For a
surviving unit i, the conditional probability of failure between
age ti and a future age twi can be calculated as ρi = F(twi |ti, θ),
and it can be estimated by ρ̂i = F(twi |ti, θ̂). The cumulative
number of future failures is N = ∑n∗

i=1 Ii,. Here Ii ∼
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Fig. 6.2 Plot of individual PIs for the remaining life for a subset of
units
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Fig. 6.3 Prediction results for the cumulative number of failures at a
future time

Bernoulli(ρi), i = 1, · · · , n∗ and n∗ is the number of units at
risk. Based on the distribution of N, the point prediction and
PIs can be obtained using the algorithms proposed in [46].

As illustrations, Fig. 6.2 shows the plot of individual PIs
for the remaining life for a subset of units. Figure 6.3 visual-
izes the predicted cumulative number of failures over the next
10 years after DFD. One can see that the PIs are wide due to
the limited covariate information in the traditional reliability
data.
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6

6.3 Time-to-Event Data Analysis

In this section, we briefly introduce the application of using
dynamic covariates for time-to-event prediction as described
in Hong and Meeker [10].

6.3.1 Background and Data

A general method was developed by Hong and Meeker [10]
tomodel failure-time datawith dynamic covariates. Thework
was motivated by the Product D2 application, which is a ma-
chine used in office/residence. Product D2 is similar to high-
end copy machine where the number of pages used could
be recorded dynamically. For this product, the use-rate data
R(t) (cycles/week) were collected weekly as a time series for
those units connected to the network. This information could
be downloaded automatically in addition to the failure-time
data. In the Product D2 dataset, data were observed within a
70-week period, and 69 out of 1800 units failed during the
study period. Figures 6.4 and 6.5 illustrate the event plot of
the failure-time data and the use-rate trajectories over time
for a subset of the data.

6.3.2 Model for Time-to-Event Data and
Parameter Estimation

Three sets of observable random variables, the failure
time, censoring indicator, and dynamic covariate, over
time are considered, which are denoted by {T,
,X(T) }.
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Fig. 6.4 The event plot for a subset of the Product D2 failure-time data.
Figure reproduced with permission from Taylor and Francis
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Fig. 6.5 The plot of the use-rate trajectories for the subset in Fig. 6.4.
Figure reproduced with permission from Taylor and Francis

The observed data are described by { ti, δi, xi(ti) }. Here n
denotes the number of units in the dataset, ti is the failure
time or time in service, and δi is the observed censoring
indicator (i.e., it equals to 1 if unit i fails and 0 otherwise).
The xi(ti) = {xi(s) : 0 ≤ s ≤ ti} is the observed dynamic
covariate information of unit i from the time 0 to ti, where
xi(s) is the observed covariate value at time s for unit i.
Particularly for Product D2, we use X(t) = log[R(t)/R0(t)]
as the form of the covariate in the model, where R0(t) is the
baseline use rate that is chosen to be a typical constant use
rate.

The cumulative exposure model in [47] is used to model
the failure-time data with dynamic covariate. The cumulative
exposure u(t) is defined as

u(t) = u[t; β, x(t)] =
∫ t

0
exp[βx(s)]ds,

where β represents the influence of the covariate on the
exposure. When the cumulative exposure of a unit reaches a
random threshold U at time T , the unit fails. This establishes
a relationship between U and T as in

U = u(T) =
∫ T

0
exp[βx(s)]ds. (6.1)

Under the above model and the covariate history x(∞), the
cdf of the failure time T is

F(t; β, θ0) = Pr(T ≤ t) = Pr{U ≤ u[t; β, x(t)]}
= F0 {u[t; β, x(t)]; θ0}
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and pdf is f (t; β, θ0) = exp[βx(t)]f0 {u[t; β, x(t)]; θ0} . Here
θ0 is the parameter in the baseline cdf of the cumulative expo-
sure threshold U, and f0(u; θ0) is the pdf of U. In the Product
D2 application, the baseline cumulative exposure distribution
F0(u; θ0) was modeled by the Weibull distribution, of which
the cdf and pdf are

F0(u; θ0) = �sev

[
log(u) − μ0

σ0

]
and

f0(u; θ0) = 1

σ0u
φsev

[
log(u) − μ0

σ0

]
.

In the above expression, θ0 = (μ0, σ0)
′, where μ0 and σ0

are the location and scale parameters. Also, �sev(z) = 1 −
exp[− exp(z)], and φsev(z) = exp[z − exp(z)]. Lognormal
and other log-location-scale distributions can also be used if
they are considered appropriate for certain applications.

6.3.3 Model for Covariates

To model the covariate process, we use the linear mixed-
effect model. In particular, X(t) is modeled as

Xi(tij) = η + Zi(tij)wi + εij. (6.2)

In model (6.2), η is the constant mean, and the term Zi(tij)wi
is used to model variation at individual level. Here Zi(tij) =
[1, log(tij)], and wi is the vector of random effects of the
initial covariate at time 0 and the changing rate for unit i.
It is assumed that wi = (w0i, w1i)

′ ∼ N(0,�w) with the
covariance matrix

�w =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
,

and εij ∼ N(0, σ 2) is the error term.
The parameter estimation is done separately using the

ML method in two parts since parameters in the failure-time
model θT = (θ ′

0,β)′ and covariate process model θX =
(η,�w, σ 2) are separable. The joint likelihood for θT and θX
is

L(θT , θX) = L(θT) × L(θX). (6.3)

The first component of (6.3) is the likelihood function of the
failure-time data, which is

L(θT) =
n∏
i=1

{exp[βxi(ti)]f0 (u[ti; β, xi(ti)]; θ0)}δi

× {1 − F0 (u[ti; β, xi(ti)]; θ0)}1−δi . (6.4)

The second component of (6.3) is the likelihood of covariate
data, which is

L(θX) =
n∏
i=1

∫
wi

⎧⎨
⎩
∏
tij≤ti

f1
[
xi(tij) − η − Zi(tij)wi; σ 2

]⎫⎬
⎭ f2(wi; �w)dwi.

(6.5)

In the above equation, f1( · ) is the pdf of a univariate normal,
and f2( · ) is the pdf of a bivariate normal distribution.

6.3.4 Reliability Prediction

In order to predict future field failures, the distribution of
the remaining life (DRL) is considered in the prediction
procedure. The DRL describes the distribution of Ti for unit i
given Ti > ti and Xi(ti) = xi(ti). Particularly, the probability
of unit i failing within the next s time units given it has
survived by time ti is

ρi(s; θ) = Pr[ti < Ti ≤ ti + s|Ti > ti,Xi(ti)], s > 0,
(6.6)

where θ denotes all the parameters. Then ρi(s; θ) can be
further expressed as

ρi(s; θ)

= EXi(ti,ti+s)|Xi(ti)=xi(ti) {Pr[ti < Ti ≤ ti + s|Ti > ti,

Xi(ti),Xi(ti, ti + s)]} (6.7)

=
EXi(ti,ti+s)|Xi(ti)=xi(ti) {F0 (u[ti + s; β,Xi(ti + s)]; θ0)}

− F0 (u[ti; β, xi(ti)]; θ0)

1 − F0 (u[ti; β, xi(ti)]; θ0)

where Xi(t1, t2) = {Xi(s) : t1 < s ≤ t2}. Since model (6.2) is
assumed for Xi(ti, ti + s) and Xi(ti) = xi(ti), the multivariate
normal distribution theory can be used to obtain the condi-
tional distribution.

The Monte Carlo simulation is used to evaluate ρi(s; θ̂)

since an analytical expression for ρi(s; θ) is unavailable. The
following procedure is used to compute ρi(s; θ̂):

1. Substitute θX with the ML estimates θ̂X in the distribution
of Xi(ti, ti + s)|Xi(ti) = xi(ti), and draw X∗

i (ti, ti + s) from
the distribution.

2. Let X∗
i (ti + s) = {xi(ti),X∗

i (ti, ti + s)} be the simulated
covariate process in the time interval (ti, ti + s).

3. Compute the DRL givenX∗
i (ti, ti+s) and theML estimates

θ̂T of θT = (θ ′
0,β) by

ρ∗
i (s; θ̂) = F0

(
u[ti + s; β̂,X∗

i (ti + s)]; θ̂0
)− F0

(
u[ti; β̂, xi(ti)]; θ̂0

)
1 − F0

(
u[ti; β̂, xi(ti)]; θ̂0

) .

4. Repeat steps 1–3 M times and obtain ρ∗m
i (s; θ̂), m =

1, · · · , M.
5. The estimate is computed by ρi(s; θ̂) = M−1∑M

m=1 ρ∗m
i

(s; θ̂).



6 Statistical Analysis of Modern Reliability Data 111

60 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

Weeks after DFD

E
st

im
at

ed
 d

is
tr

ib
ut

io
n 

of
 r

em
ai

ni
ng

 li
fe

 (
D

R
L

)

DRL for high use rate
95% pointwise CI
DRL for low use rate
95% pointwise CI

Fig. 6.6 The estimated DRLs and the 95% pointwise CIs for two
representative at-risk units. Figure reproduced with permission from
Taylor and Francis

The CONFIDENCE INTERVALS (CIs) for ρi(s; θ̂) can
be obtained through the following procedure:

1. Draw θ̂
∗′
T and θ̂

∗′
X fromN(̂θT ,�θ̂T

) andN(̂θX,�θ̂X
), respec-

tively.
2. Let θ̂

∗ = (̂θ
∗′
T , θ̂

∗′
X )′ and obtain ρ∗∗

i (s; θ̂
∗
) following the

above algorithm.
3. Repeat steps 1–2 B times to obtain ρ∗∗b

i (s) =
ρ∗∗b
i (s; θ̂

∗b
), b = 1, · · · , B.

4. The 100(1 − α)% CI is computed by
[
ρ

∗∗[αB/2]
i (s),

ρ
∗∗[(1−α/2)B]
i (s)

]
. Here ρ

∗∗[b]
i (s) is the [b]th ordered value

of ρ∗∗b
i (s), and [ · ] is the function for rounding to the

nearest integer.

Figure 6.6 shows the estimated DRL for two represen-
tative units. One unit has a higher use rate which increases
quickly over time (ŵ0 = 0.4061, ŵ1 = 0.4184), and the
other has a lower use rate which increases slowly over time
(ŵ0 = 0.1704, ŵ1 = 0.0168). The trends in the plot are
consistent with our expectation that the unit with a higher
use rate tends to have higher failure risk.

To assess the prediction variability, one may also want
to calculate the prediction interval (PI) of an individual
remaining life, denoted by

[
S˜i, S̃i

]
. A 100(1 − α)% PI of

the remaining lifetime can be obtained by using the method
introduced by Lawless and Fredette [48] as in

ρi(S˜i; θ̂) = vα/2 and ρi(̃Si; θ̂) = v1−α/2. (6.8)
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Fig. 6.7 The point predictions and the pointwise 90% PIs for the
cumulative number of failures after the DFD out of the 1731 units at
risk. Figure reproduced with permission from Taylor and Francis

Here vα is the α quantile of the ρi(Si; θ̂) distribution, and Si
represents the remaining life for unit i. The vα can be obtained
through a Monte Carlo simulation.

In real applications, obtaining the predicted cumulative
number of failures is also important because this could
help with the decisions for warranty cost control or the
long-term production plan. Suppose N(s) = ∑

i∈RS Ii(s)
is the total failure counts at time s after DFD. The RS
is the risk set at DFD in this expression, and Ii(s) is the
binary indicator for the occurrence of a failure at time s with
Ii(s) ∼ Bernoulli[ρi(s; θ)]. Let FN(nk; θ), nk = 0, 1, . . . , n∗
denote the cdf of N(s), where n∗ is the count of units in the
risk set. Then FN(nk; θ) can be computed in its explicit
form using a discrete Fourier transformation [49]. The
PI for N(s) can be calculated similarly as the individual
predictions.

For the Product D2 application, 1731 units were remained
at risk after 69 failed out of 1800 installed units by the end of
the study. The point predictions and the 90% pointwise PIs
of the total number of failures for 100 weeks after the DFD
are shown in Fig. 6.7.

6.4 Degradation Data Analysis

In this section, we briefly introduce how to leverage the dy-
namic covariates for modeling degradation data as described
in Hong et al. [25].
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6.4.1 Background and Data

Hong et al. [25] develop a general path model utilizing
shape-restricted splines with random effects to model the
degradation process with dynamic covariates. This paper
considers an application of modeling the photodegradation
process of organic coating materials due to exposure to the
time-varying ultraviolet (UV) radiation and the outdoor en-
vironmental conditions. In this work, to study the service life
of a coating material, scientists at NIST placed 36 specimens
in outdoor setting with varied UV spectrum and intensity,
temperature, and relative humidity (RH) recorded over an
approximate 5-year period. The specimens started at different
time points to allow different degradation paths to be ob-
served. For each specimen, degradation measurements were
taken periodically using Fourier transform infrared (FTIR)
spectroscopy. Since a particular compound or structure is tied
with a peak at a certain wavelength on the FTIR spectrum,
the change in the height of the peak was used to measure the
decrease in the concentration of the compound. One of the
compounds of interest for the NIST data was C-O stretching
of aryl ether, whichwasmeasured at thewavelength 1250 cm.
Figure 6.8 shows the degradation paths of nine representative
specimens with varied starting times in the study. We can
observe very different trajectories with the degradation rate
varying over time and among different specimens as well.
Figures 6.9, 6.10, and 6.11 show the dynamic covariate
information on the daily UV dosage, RH, and temperature as
well as the fitted smooth lines for showing the mean process
of one specimen over the study period. The vertical lines are
used to label time windows separated by every 6 months. We
can observe both a seasonal pattern and a random oscillation

0 50 100 150 200
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Days since first measurement

D
am

ag
e

Fig. 6.8 Plot of nine representative degradation paths. Figure repro-
duced with permission from Taylor and Francis
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Fig. 6.9 Dynamic covariate information on the daily UV dosage for a
single sample. The black dots connected by green lines show the daily
values. The vertical lines show the time windows by every 6 months
from January 2002. The red smooth curves are the estimated mean
process. Figure reproduced with permission from Taylor and Francis
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Fig. 6.10 Dynamic covariate information on the daily temperature for
a single sample. The black dots connected by green lines show the daily
values. The vertical lines show the time windows by every 6 months
from January 2002. The red smooth curves are the estimated mean
process. Figure reproduced with permission from Taylor and Francis

of the daily records for each individual covariate. There are
stronger seasonal patterns for the UV dosage and temperature
than the RH. There also appears to be a larger variation of the
daily observations in the summer than in the winter, which
indicates a varied degree of variability of the covariates over
different time periods.
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Fig. 6.11 Dynamic covariate information on the daily RH for a single
sample. The black dots connected by green lines show the daily values.
The vertical lines show the time windows by every 6 months from
January 2002. The red smooth curves are the estimated mean process.
Figure reproduced with permission from Taylor and Francis

6.4.2 Model for Degradation Paths and
Parameter Estimation

The general additive model for degradation data with dy-
namic covariates is given in the form

yi(tij) = D[tij; xi(tij)] + G(tij;wi) + εi(tij), (6.9)

where yi(tij) for i = 1, · · · , n, j = 1, · · · , ni is the degradation
measurement at time tij for unit i, εi(tij) ∼ N(0, σ 2

ε ) denotes
the measurement error, and xi(tij) = [xi1(tij), . . . , xip(tij)]′ is
the vector containing the dynamic covariate information at
the time tij. The actual degradation level at tij is modeled by
D[tij; xi(tij)]+G(tij;wi) as the sum of a fixed component and
a random component. The fixed component is the population
common degradation path, modeled in a cumulative damage
form given by

D[tij; xi(tij)] = β0 +
p∑
l=1

∫ tij

0
fl[xil(u); βl]du. (6.10)

This model incorporates the dynamic covariates through the
covariate-effect functions fl(·) for l = 1, · · · , p. Here, β0

is the initial degradation, fl[xil(u); βl] is the lth covariate-
effect of xil(u) on the degradation process at time u, and∫ tij
0 fl[xil(u); βl]du is the cumulative effect of xil up to time
tij. The random component includes the random effect terms

for modeling the unit-to-unit variation, which is specified in
G(tij;wi) = w0i + w1itij. Here, wi = (w0i, w1i)

′ is the vector
of random effects for the initial degradation and the growth
rate over time, and it is assumed to follow a bivariate normal
distribution N(0,�w) with the covariance matrix

�w =
[

σ 2
0 ρσ0σ1

ρσ0σ1 σ 2
1

]
.

Also we use σw = (σ0, σ1, ρ)′ to denote all the distinct
parameters included in �w.

The ML method is used for estimating the parameters.
Since the degradation measurements and the dynamic covari-
ates are observed at discrete time points, the discrete version
of the degradation path model is used for computing the
likelihood by replacing D[tij; xi(tij)] in (6.10) by

D[tij; xi(tij)] = β0 +
p∑
l=1

∑
uik≤tij

fl[xil(uik); βl](uik − ui,k−1),

(6.11)

where uik is the kth time point when the degradation and
covariates are measured for unit i and ui0 = 0. Let θD =
{β, σw, σε} denote all the model parameters. Then the likeli-
hood is

L(θD) =
n∏
i=1

∫
wi

⎡
⎣ ∏
tij≤tini

1

σε

φ

{
C[yi(tij); xi(tij),wi]

σε

}

gwi(wi; σw)

]
dwi (6.12)

whereC[yi(tij); xi(tij),wi] = yi(tij)−D[tij; xi(tij)]−G(tij;wi),
φ(·) and gwi(·) are the pdfs of a standard normal distribution
and a bivariate N(0,�w) distribution, respectively.

Considering there was not sufficient knowledge on what
might be a sensible form for the covariate-effect functions,
the paper chose to estimate the fl(·) using a linear combina-
tion of spline bases. To leverage the physical understanding
of the relationships between the degradation process and
the covariates, the shape-restricted splines [50] were used to
ensure monotonic decreasing bases (I-splines) for the UV
dosage and temperature and concave bases (C-splines) for
the RH. Let Blq[xil(uik)] for q = 1, · · · , al denote the spline
bases for the covariate xl; then, the covariate-effect function
is modeled as

fl[xil(uik); βl] =
al∑
q=1

Blq[xil(uik)]βlq,
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where βlq’s are the spline coefficients. Define Ulq(tij) =∑
uik≤tij Blq[xil(uik)](uik−ui,k−1). Then the model in (6.9) with

D[tij; xi(tij)] given in (6.11) can be written as a linear mixed-
effect model in the form of yi = Xiβ + Ziwi + εi, where

Xi =
⎡
⎢⎣
1 U11(ti1) · · · U1a1(ti1) · · · Up1(ti1) · · · Upap(ti1)
...

...
. . .

...
. . .

...
. . .

...

1 U11(tini) · · · U1a1(tini) · · · Up1(tini) · · · Upap(tini)

⎤
⎥⎦ ,

Zi =
⎡
⎢⎣
1 ti1
...

...

1 tini

⎤
⎥⎦ ,

and the coefficient vector β = (β ′
u,β

′
c)

′, where βu and
βc denote the unconstrained and constrained parameters,
respectively.

The following algorithm was proposed in [25] to obtain
the ML estimate θ̂D that maximizes (6.12):

1. Initialize σw and σε by fitting a linear mixed-effect model
with no constraints.

2. Compute Vi = Zi�wZ′
i + σ 2

ε Ii.
3. The mixed primal-dual bases algorithm in [51] is used to

estimate β. That is to minimize
∑n

i=1(yi −Xiβ)′V−1
i (yi −

Xiβ) subject to βc ≥ 0.
4. Fit a linear mixed-effect model ri = Ziwi + εi with ri =

yi − Xiβ̂ to get the updated estimates of σw and σε.
5. Repeat steps 2 to 4 until the estimated parameters con-

verge.

With the shape-restricted splines, the ML estimates of
some parameters might locate on the boundary of the pa-
rameter space. In this case, the bootstrap method is useful
for assessing the variability and making inferences about the
parameters. An adjusted bootstrap procedure by Carpenter
et al. [52] was applied to resample the residuals and the es-
timated random effects for constructing bootstrap resamples
of the original data to avoid underestimating variability and
producing too narrow CIs. Then the bias-corrected bootstrap
CIs were constructed based on obtaining the ML estimates of
model parameters using the abovementioned algorithm for a
large number of bootstrap samples.

6.4.3 Model for Covariates

To predict the degradation process and reliability, it is nec-
essary to model the dynamic covariate process through a
parametric model. Hong et al. [25] propose the following
model:

Xj(t) = Trj(t) + Sj(t) + ξj(t),

where Trj(t) models the long-term trend of the covariate
process for the jth covariate, Sj(t) captures the seasonal

pattern, and ξj(t) depicts the random error which is modeled
by a stationary process. For the NIST outdoor weathering
data, there was no significant long-term trend observed, and
hence Trj(t) = μj for j = 1, 2, 3. However, the seasonal
pattern was quite prominent, and there were seasonal effects
observed for both the mean and variance of the process. So
two sine functions were included in both the seasonal and
error terms (except for RH which shows no seasonal effect
assumed for the variation of the process from Figs. 6.8, 6.9,
6.10, and 6.11) in the following form:

⎡
⎢⎢⎣
S1(t)

S2(t)

S3(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

κ1 sin
[
2π
365 (t − η1)

]
κ2 sin

[
2π
365 (t − η2)

]
κ3 sin

[
2π
365 (t − η3)

]

⎤
⎥⎥⎦ ,

⎡
⎢⎣

ξ1(t)

ξ2(t)

ξ3(t)

⎤
⎥⎦ =

⎡
⎢⎢⎣

(
1 + ν1

{
1 + sin

[
2π
365 (t − ς1)

]})
ε1(t)(

1 + ν2
{
1 + sin

[
2π
365 (t − ς2)

]})
ε2(t)

ε3(t)

⎤
⎥⎥⎦ .

(6.13)

To capture the autocorrelation within and among the covari-
ate processes, a lag-2 VAR model [i.e., Var(2)] was used,
where the error term was modeled by

⎡
⎢⎣

ε1(t)

ε2(t)

ε3(t)

⎤
⎥⎦ = Q1

⎡
⎢⎣

ε1(t − 1)

ε2(t − 1)

ε3(t − 1)

⎤
⎥⎦+ Q2

⎡
⎢⎣

ε1(t − 2)

ε2(t − 2)

ε3(t − 2)

⎤
⎥⎦+

⎡
⎢⎣
e1(t)

e2(t)

e3(t)

⎤
⎥⎦ .

(6.14)

In the above equation,Q1 andQ2 are regression coefficient
matrices, and [e1(t), e2(t), e3(t)]′ ∼ N(0,�e) are multivariate
normal random errors that do not change over time.

The parameters in models (6.13) and (6.14) are estimated
in two steps. First, the ML estimates of the seasonal effects
in the process mean and variance structures are obtained
by ignoring the autocorrelation in the error terms. Then the
VAR model is fitted to the residuals calculated from the
first step using the multivariate least squares approach [53].
The bootstrap method is used for obtaining the CIs of the
parameters in the dynamic covariate process.

6.4.4 Reliability Prediction

To predict the failure time and reliability, let Df denote the
threshold for a soft failure. For any X(∞) = x(∞) and
w, the degradation path is fixed and the failure time can be
determined by

tD = min{t : D[t; x(∞)] + G(t;w) = Df }. (6.15)
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However, for a random unit, the covariate process X(∞)

and w are random. Hence, the cdf of the failure time, T =
T[Df ,X(∞),w], can be defined as

F(t; θ) = EX(∞)EwPr
{
T[Df ,X(∞),w] ≤ t

}
, t > 0,

(6.16)

with θ = {θD, θX} denoting all the unknown parameters.
There is usually no closed form expression of F(t; θ). Hence,
the cdf at any estimated θ̂ is estimated through Monte Carlo
simulation outlined in the following steps [25]:

1. Simulate the covariate process based on the estimated
parameter θ̂X .

2. Simulate the random effects w from N(0,�w) with the
estimated parameter θ̂D.

3. Compute D[t;X(∞)] + G(t;w) based on the simulated
covariate process and random effects.

4. For the degradation path in step 3, determine the failure
time tD by Eq. (6.15).

5. Repeat steps 1 to 4 for M times to obtain the simulated
failure times tmD, m = 1, . . . , M. Then F(t; θ̂) is estimated
by the empirical cdf, F(t; θ̂) = M−1∑M

m=1 1(tmD≤t).

By using the bootstrap approach, the point estimates and the
CIs of F(t; θ) can be calculated using the sample mean and
quantiles of the bootstrap estimates ofF(t; θ̂) based on a large
number of bootstrap estimates θ̂ . By usingDf = −0.4,M =
200 Monte Carlo simulations, and 10000 bootstrap samples,
Fig. 6.12 shows the predicted F(t; θ) and its 95% pointwise
CIs for theNIST coating degradation data.We can see that for
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Fig. 6.12 The estimated cdf and corresponding 95% pointwise CIs for
a population of units with random starting time between 161 and 190
days. Figure reproduced with permission from Taylor and Francis

a population of units with random starting time between 161
and 190 days, a majority of the population will fail between
50 and 150 days in service.

6.5 Recurrent Event Data Analysis

In this section, we briefly introduce the multilevel trend-
renewal process (MTRP) model and its application on the
Vehicle B data as described in Xu et al. [36].

6.5.1 Background and Data

Xu et al. [36] consider the modeling and analysis of the Vehi-
cle B data, which consist of recurrent event data from a batch
of industrial systems. Vehicle B is a two-level repairable
system. During its life span, Vehicle Bmay experience events
at subsystem level (e.g., engine failures) and/or events at
component level (e.g., oil pump failures). In the field data,
we have n = 203 units from a 110-month observation period.
There are 219 component events and 44 subsystem events
observed during the study period. Figure 6.13 shows the
event plot for ten randomly selected units. We also have the
cumulative usage information available for each unit, which
is a dynamic covariate. The cumulative usage information
is shown in Fig. 6.14. The goal is to make a prediction for
the cumulative number of component event occurrences at a
future time.
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Fig. 6.13 The recurrent event processes for ten randomly selected units
in the Vehicle B fleet. Figure reproduced with permission from Taylor
and Francis
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Fig. 6.14 The cumulative usage processes for ten randomly selected
units in the Vehicle B fleet. Figure reproduced with permission from
Taylor and Francis

We need some notation to introduce the MTRP model.
Suppose there are n units under observation from time 0 to τi.
Let Xi(t) be the time-dependent covariate at time t for system
i. Let Nis(t) be the number of subsystem events, and let Nic(t)
be the number of component events up to time t. The total
number of replacement events is Ni(t) = Nis(t) +Nic(t). The
subsystem event time is sorted as 0 < tsi1 < · · · < tsi,Nis(τi) <

τi. The component event time is sorted as 0 < tci1 < · · · <

tci,Nic(τi) < τi. Let 0 < ti1 < · · · < ti,Ni(τi) < τi be the
replacement event times, regardless of the types.

6.5.2 TheMTRPModel and Parameter
Estimation

For a two-level repairable system, Xu et al. [36] propose
the following MTRP model to describe events occurred at
component level. In particular, the intensity function is

λci (t|Fi,t−; θc) = hc
{

�s
i (t|F si,t−) − �s

i

[
ti,Ni(t−) |F s

i,t−
i,Ni(t

−)

]
; θc

}

× λsi (t|F si,t−; θc). (6.17)

Here F s
i,t− denotes the historical information. In this multi-

level model framework, the effect of subsystem events on the

component event process is modeled by λsi (t|F s
i,t−; θ c), which

takes the form

λsi (t|F s
i,t−; θ c) = hs{�i(t) − �i[tsi,Nis(t−)]; θ c}λi(t; θ c).

(6.18)

Here, θ c denotes the vector of unknown parameters. The cu-
mulative event intensity functions can be obtained as�i(t) =∫ t
0 λi(u; θ c) du, and �s

i (t|F s
i,t−) = ∫ t

0 λsi (u|F s
i,u−; θ c) du. The

baseline function λi(t; θ c) models the intensity of the com-
ponent process when there is no event adjustment, and the
function hs(·) is used to model the adjustment for the effect of
events from the subsystem. The renewal distribution function
Fc(·) is used to describe the distribution of gap times under
the transformed scale. The model in (6.18) can be extended
to incorporate dynamic covariates and random effects.

To model the dynamic covariates, the intensity function
can be extended as

λi(t; θ c) = λb(t) exp{γ g[Xi(t)]}, (6.19)

where λb(t) denotes the intensity trend function under the
baseline and γ is the regression coefficient. In the Vehicle B
application, we use g[Xi(t)] = log[Xi(t)]. To incorporate ran-
dom effects, the intensity function can be further extended as

λi(t; θ c) = λb(t) exp{γ log[Xi(t)] + wi}. (6.20)

Here wi’s are independent and identically distributed with
N(0, σ 2

r ). The MTRP with random effects is referred to
as HMTRP(Fc, Fs, λi), in which the HMTRP stands for
heterogenous MTRP.

To estimate the model parameters, one needs to construct
the likelihood function. The component event data can be
denoted as {tij, δcij} with tij being the event time and δcij being
the component-event indicator. The event history is denoted
as F = {Nic(u), Nis(u), Xi(u) : 0 < u ≤ τi, i = 1, · · · , n}.
The likelihood function is given by

L(θc) =
n∏
i=1

Ni(τi)+1∏
j=1

({
f c[�s

i (tij|Fsi,t−ij ) − �s
i (ti,j−1|Fsi,t−i,j−1

)]λsi (tij|Fsi,t−ij ; θc)

}δcij

×
{
Sc[�s

i (tij|Fsi,t−ij ) − �s
i (ti,j−1|Fsi,t−i,j−1

)]
}1−δcij

)
. (6.21)

Xu et al. [36] use Bayesian methods with diffuse priors
to estimate the model parameters. The Metropolis-within-
Gibbs algorithm is used to obtain the posterior distributions,
and then the inference can be carried out using the Markov
chain Monte Carlo (MCMC) samples from the posterior
distributions.
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6.5.3 Prediction for Component Events

To make predictions for component events, let θ denote the
vector of all the parameters and Xi(t1, t2) = {Xi(t); t1 <

t ≤ t2} is the covariate information between t1 and t2. The
prediction for the counts of component events at time t∗ is

Nc(t
∗; θ) =

n∑
i=1

Nic(t
∗; θ)

=
n∑
i=1

EXi(τi ,τi+t∗)|X(τi)Ewi

{
Nic[t∗,Xi(τi, τi + t∗),

wi; θ ]}. (6.22)

Here Nic(t∗; θ) denotes the prediction for unit i. Because
there is no closed form expression for (6.22), theMonte Carlo
simulation approach is used.

By fitting the MTRP model to the Vehicle B data using
Bayesian estimation, one needs to specify the prior distribu-
tions for the unknown parameters. The Weibull distribution
was used as renewal functions for Fc and Fs. To check
the performance of the predictions, the last 15 months of
the Vehicle B data were held back, and only the first 95
months of data were used to estimate the MTRPmodel. Then
we generate predictions for the last 15 months. Figure 6.15
shows the predicted cumulative number of component events
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Fig. 6.15 Back test based on an early subset of the data. The plot shows
the predicted cumulative number of component events for Vehicle B
for the last 15 months based on the earlier 95 months of data. Figure
reproduced with permission from Taylor and Francis
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Fig. 6.16 Prediction of future events. The plot shows the predicted
cumulative number of component events for Vehicle B in the future 30
months based on all observed data. Figure reproduced with permission
from Taylor and Francis

for the last 15 months based on the earlier data. One can see
that the actual observed cumulative numbers of component
events are closely located around the predicted values and
also well bounded within the pointwise PIs. Figure 6.16
shows the predicted future events given all the observed data
for the next 30 months, which indicates that the total number
of component events is expected to range between 62 and 90
with a 95% confidence level.

6.6 Sequential Test Planning of
Accelerated Life Tests

In this section, we briefly introduce the sequential Bayesian
design (SBD) for fatigue test experiments described in Lee
et al. [43].

6.6.1 Background and Historical Data

A sequential Bayesian test planning strategy for the acceler-
ated life tests was proposed by Lee et al. [43]. The fatigue
test for glass fiber, a composite material, is considered to
illustrate the sequential design strategy. In the test, a tensile/-
compressive stress s (positive/negative value) is applied to the
test unit, and the material life is observed under that stress.
In this work, 14 observations of E-glass are made including
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Fig. 6.17 The stress-life plot of historical data from a fatigue testing
of the glass fiber. Figure reproduced with permission from Taylor and
Francis

11 failed and three right censored units. Historical data of the
observations are shown in Fig. 6.17. Several other important
factors in the test are set as follows. Let R = σm/σM denote
the stress ratio, where σm is the minimum stress and σM is
the maximum stress. The range of R can reveal different test
types, and it is set at R = 0.1 for a tension-tension loading
test in this application. The ultimate stress σult, where the
material breaks at the first cycle, is set to be 1339.67 MPa.
The frequency of the cyclic stress testing (f ) is set at 2 Hz,
and the angle (α) between the testing direction and material
is set at 0.

6.6.2 LifetimeModel

Consider using a log-location-scale distribution to model the
cycles to failure, T . The cdf and pdf are given as

F (t; θ) = �

[
log (t) − μ

ν

]
and

f (t; θ) = 1

νt
φ

[
log (t) − μ

ν

]
,

where �(·) and φ(·) are the standard cdf and pdf, respec-
tively. The lognormal and Weibull distributions are the com-
mon choices. In the ALT modeling, we assume a constant
scale parameter ν and the location parameter is μ = μβ (x),
where x is the stress level and β is the vector of unknown

parameters. The following nonlinear model for composite
materials proposed in [54] is used to describe μ = μβ (x)
in the form of

μβ (x) = 1

B
log

{(
B

A

)
hB
(σult

x
− 1

) (σult

x

)γ (α)−1
[1 − ψ (R)]−γ (α) + 1

}
.

(6.23)

In the above model, A and B are effects from environment
and material, and β = (A, B)′. The function ψ(R) = 1/R
if R ≥ 1 and ψ(R) = R if −∞ < R < 1, and γ (α) =
1.6 − ψ |sin (α)|. Then θ = (β ′, ν)′ denotes the unknown
parameters in the ALT modeling.

The lower quantile of the cycles-to-failure distribution is
of interest as it contains material life information. The log of
the pth quantile is

log
(
ξp,u
) = μβ(u) + zpν, (6.24)

where ξp,u is the pth quantile at the use condition u and
zp is the pth quantile of the standard distribution. Our goal
is to propose test planning under multiple use conditions
to approximate the real scenarios. The use stress profile
consists of a set of use levels, {u1, · · · , uK}, with weights
{ω1, · · · ,ωK} and∑K

k=1 ωk = 1.
Let (xi, ti, δi) denote the data for the ith testing unit, where

xi is the stress level of the accelerating factor and ti is the
observed cycles to failure (or censoring cycles). Let δi be a
censoring indicator where δi = 1 if the observation is censored
and δi = 0 if the observation fails. Then, the log-likelihood
function is given by

l (θ |xn, tn, δn) =
n∑
i=1

(1 − δi) [log φ (zi) − log(ti) − log(ν)]

+ δi log [1 − �(zi)] , (6.25)

where zi = [log(ti) − μβ(xi)] /ν. Let θ̂ be the ML estimate of
θ and let log(̂ξp,u) be the ML estimate of the logarithm of the
pth quantile at the use level u, obtained by substituting β and
ν by β̂ and ν̂ in (6.24). Given the use level u, the asymptotic
variance of log(̂ξp,u) is

Avar
[
log
(̂
ξp,u
)] = c′ �θ (xn) c,

where c = [∂μβ(u)/∂A, ∂μβ(u)/∂B, zp]
′, �θ (xn) =

I−1
n (θ), and In (θ) is the Fisher information matrix based
on n observed data. The details for calculating In (θ) can be
found in [43]. A weighted version of asymptotic variance
can be expressed as

K∑
k=1

ωk Avar
[
log
(̂
ξp,uk

)]
. (6.26)
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Given {(uk,ωk)}Kk=1, the weighted asymptotic variance only
depends on the observed testing levels xi, where i = 1, . . . , n.

Therefore, the optimum design should determine
x1, . . . , xn to minimize the weighted asymptotic variance
in (6.26).

6.6.3 Test Plan Development

To obtain an accurate prediction from an efficient ALT, the
optimum test planning can be determined by minimizing the
asymptotic variance in (6.26). In the literature, when deter-
mining an optimal test plan, it often requires pre-specifying
the values of parameters (known as the planning values).
The optimal design based on some chosen planning values
of parameters is known as the local c-optimality design.
However, the planning values are not precisely known a priori
for many experiments in practice. Hence, the SBD is useful
for improving our understanding of the unknown parameters
as more data become available during the experiment, when
there is little knowledge or historical data available.

Before the test planning, the stress levels are often stan-
dardized to be between 0 and 1, denoted by qi = xi/
σult. In practice, a range of testing levels, [qL, qU], is often
determined at the very early stage of the test planning, where
qL is the lower bound and qU is the upper bound. To design
an efficient ALT via the sequential planning, the objective
function based on (6.26) is chosen as

ϕ (qnew) =
∫

�

[
K∑
k=1

ωkck′ �θ

(
qnew

)
ck

]
π
(
θ |qn, tn, δn

)
dθ ,

(6.27)

where �θ

(
qnew

) = [
In
(
θ , qn

)+ I1 (θ , qnew)
]−1

, qnew =
(q′

n, qnew)′, qn = (q1, . . . , qn)′, and π
(
θ |qn, tn, δn

)
is the

posterior distribution of θ . Specifically,

π
(
θ |qn, tn, δn

) ∝ f (tn|θ , xn, δn) π(θ),

where f (tn|θ , xn, δn) is the joint pdf of the historical data and
π(θ) is the prior distribution of θ . Then, the optimum (n +
1)th design point is determined by

q∗
n+1 = arg min

qnew∈[qL,qU ]
ϕ (qnew) . (6.28)

The procedure of the sequential Bayesian design is sum-
marized as follows:

1. Specify prior distributions of model parameters. Specify
prior distributions of A and B as A ∼ N(μA, σ 2

A) and B ∼
N(μB, σ 2

B), where μA, σ 2
A , μB, and σ 2

B are the parameters
of the normal distributions and set to be known constants.

Let ν2 ∼ Inverse Gamma(κ , γ ), where κ and γ can be
known from the historical data or experience.

2. Evaluate the asymptotic variance. Use the technique of
MCMC to approximate (6.27). The details of the related
algorithms can be found in [43].

3. Determine the optimum next testing point q∗
n+1. Given a

candidate set of design points, their corresponding values
of the objective function in (6.27) can be evaluated in step
2. Then, one can determine the optimumnext design point,
which offers the smallest value of the asymptotic variance.

4. Obtain the failure data at the level q∗
n+1. Under the stress

level q∗
n+1, conduct the experiment and obtain the failure

information (tn+1, δn+1).
5. Repeat steps 2 to 4 till the desired number of
testing units is obtained. Add the new lifetime data,
(q∗

n+1, tn+1, δn+1), to the historical dataset, and repeat
steps 2 to 4 till the desired number of new design points is
obtained.

6.6.4 Illustration of Test Plans

For the original data, we can fit the lognormal distribu-
tion, and the corresponding ML estimates are θ0 = θ̂ =
(0.0157, 0.3188, 0.7259)′. Before the testing planning, the
setup for the sequential Bayesian design is as follows:

1. Prior information: Let A and B be from the normal
distributions, where A ∼ N(0.08, 0.0008) and
B ∼ N(1, 0.0833). The prior distribution for ν2 is
Inverse Gamma(4.5, 3).

2. Historical data: In practical implementation, the sample
size at the beginning of testing is limited. Hence, three
failed observations at stress levels x3 = (621, 690, 965)′
from Fig. 6.18 were chosen as the historical dataset.

3. Total size of design points: Let the sample size of the new
design points be 12.

4. Design candidate: The standardized levels of historical
data are 0.46, 0.52, and 0.72, and the candidate points are
from qL = 0.35 to qU = 0.75 with a 5% incremental step.

For the illustrative purpose, we assume the true values
of parameters to be θ0. When an optimum design point
is determined, the new observation is generated from the
lognormal distribution with parameter θ0 and the censoring
time at 2 × 106 cycles. Repeat steps 2 to 4 in Sect. 6.6.3
till 12 testing locations are obtained. Then, the results of
four simulation trials are shown in Fig. 6.19. It consistently
shows that only two stress levels at 0.35 and 0.75 are selected,
and 8 and 4 units are allocated to the levels 0.35 and 0.75,
respectively. Figure 6.20 shows that the resulting asymptotic
variance decreases as the size of sequential runs increases for
the simulation trials.



120 Y. Wang et al.

0 200 400 600 800 1000 1200

6
8

10
12

14

Exact observations
Censored observations
Fitted S−N curve by �0

lo
g 

(C
yc

le
s)

Stress

Fig. 6.18 The fitted stress-life relationship from a fatigue testing data
of the glass fiber. Figure reproduced with permission from Taylor and
Francis

Using the same historical data, the developed SBD is
also compared with the local c-optimality design. For the
local c-optimality design, the estimated values of parameters
from historical data are usually used as the planning val-
ues of the parameters. With only three observations avail-
able from the historical data, the ML estimates are θ̂1 =
(0.0005, 0.7429, 0.1658)′. The resulting local c-optimality
design chooses 11 and 1 unit at the testing levels at 0.65 and
0.75, respectively. Now, we compare the performance on the
value of the asymptotic variance based on the ML estimates
of the final dataset including the 12 new testing observations
and three historical observations. With 100 simulations, the
average asymptotic variances for the SBD and the local c-
optimality designs are 0.6048 and 4.0337, respectively. It
shows that the SBD is more efficient than the traditional
local c-optimality design when there is too little historical
data available to provide accurate estimates of the model
parameters. The proposed SBD can be also applied when
there is no historical data but only prior information based
on subject matter expertise.
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Fig. 6.19 Plots show the results of the four simulation trials including the sequential design points. Figure reproduced with permission from Taylor
and Francis
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Fig. 6.20 The asymptotic variance of the four simulation trails. Figure
reproduced with permission from Taylor and Francis

6.7 Sequential Test Planning Considering
Dual Objectives

In the previous section, a sequential test plan was proposed
based on the c-optimality, which focuses on obtaining pre-
cise prediction of the quantile lifetime at the normal use
conditions. The D-optimality designs could be sought for
when the focus is on obtaining precise estimates of the model
parameters. The selection of optimal test plans requires spec-
ifying some planning values of the model parameters. It is
often hard to precisely specify these parameter values at
the early stage of the test when there is little information
available about them. Hence, the chosen test plan based on
the imprecisely specified parameter values might be subop-
timal for the objective of interest. To quickly obtain good
estimates of model parameters to guide more informative
test planning, Lu et al. [44] propose a sequential test plan
based on considering dual objectives. Particularly, it is rec-
ommended to consider D-optimality in the early stage of
the sequential test plan to maximize the information gain
on the model parameters and then followed by seeking c-
optimality in the later stage to maximize the precision of the
predictions at the normal use conditions. The idea is to use the
early test units to maximally improve our knowledge on the
unknown model parameters and then use later runs to gather
more information on improving our capability of making
predictions. The proposed dual objective sequential design is
also applied to the polymer composites fatigue testing and
is compared with alternative single objective test plans to
demonstrate its performance [44].

6.7.1 Testing Criteria

When using D-optimality in the sequential framework, the
criterion for selecting the (n+ 1)th run given the first n runs
can be expressed as

ψ (qnew) =
∫

�

[log |In+1(θ , qnew)|]π (θ |qn, tn, δn
)
dθ ,

(6.29)

where In+1(θ , qnew) = In
(
θ , qn

) + I1 (θ , qnew) and
|In+1(θ , qnew)| is the determinant of the Fisher information
matrix based on the first n + 1 runs. Under the sequential
framework, the total information gained from the first n+ 1
runs can be updated from what was gained from the first n
test units by adding the additional information obtained from
testing the (n+ 1)th unit at qnew. Then, the optimal (n+ 1)th
design point given the first n test units is determined by
maximizing the total expected information gain under the
posterior distribution of parameters conditioned on the first
n runs as in

q∗
n+1 = arg max

qnew∈[qL,qU ]
ψ (qnew) . (6.30)

Since the precision of model parameters is of major con-
cern in the early stage of testing, the test units are determined
based on optimizing the conditional information gain given
the earlier runs via (6.30). When we have obtained sufficient
information about the model parameters, the precision of
predictions at the normal use condition is more of interest.
Therefore, we switch to choosing further sequential runs by
optimizing the asymptotic prediction variance in (6.28).

6.7.2 Procedure of Sequential Planning
Based on Dual Objectives

We use N to denote the total number of test units used in
the dual objective sequential test plan, and let N1 and N2

denote the units selected by the D-optimality and the c-
optimality, respectively, where N1 + N2 = N. Similarly to
the sequential test plan discussed in Sect. 6.6.3, the steps for
sequential test planning based on considering dual objectives
are summarized below:

1. Specify prior distributions of model parameters. For the
polymer fatigue testing example, we specify prior distri-
butions of A and B as A ∼ N(μA, σ 2

A) and B ∼ N(μB, σ 2
B),

where μA, σ 2
A , μB, and σ 2

B are the hyperparameters of the
normal prior distributions and are assumed to be known
constants. Also we assume ν2 ∼ Inverse Gamma(κ , γ ),
where κ and γ are the known hyperparameters specified
from the historical data or based on the subject matter
expertise.
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Table 6.1 Five sequential Bayesian designs. Table reproduced with permission from Springer

Design Description

A: 12 c-opt All 12 sequential runs are generated based on c-optimality

B: 12 D-opt All 12 sequential runs are generated based on D-optimality

C: 6 D-opt + 6 c-opt First 6 runs are obtained via D-optimality and last 6 runs via c-optimality

D: 4 D-opt + 8 c-opt First 4 runs are obtained via D-optimality and last 8 runs via c-optimality

E: 2 D-opt + 10 c-opt First 2 runs are obtained via D-optimality and last 10 runs via c-optimality

2. Evaluate the asymptotic variance. We recommend using
the MCMC approach to approximate (6.29) and (6.27) for
D-optimality and c-optimality, respectively.

3. Determine the optimal next testing point q∗
n+1 at (n +

1)th run. Given a candidate set of design points, their
corresponding values of the objective function in (6.29)
or (6.27) can be evaluated in step 2. Then, the optimal next
design point is determined by optimizing the criterion over
all the candidate points. If the criterion is D-optimality,
then the optimum point is determined by (6.30). If the
criterion is c-optimality, the optimum level is determined
by (6.28).

4. Obtain the failure data at the selected level q∗
n+1. At the

selected stress level q∗
n+1 from step 3, conduct the experi-

ment to obtain the failure information on (tn+1, δn+1).
5. Repeat steps 2 to 4 till the desired number of testing units
is obtained.Add the new lifetime data at the (n+1)th run,
(q∗

n+1, tn+1, δn+1), to the sequential test dataset. Repeat
steps 2 to 4 till N1 D-optimal test units and N2 c-optimal
runs are obtained, respectively.

6.7.3 Polymer Composites Fatigue Testing

Here we revisit the example of polymer composites fatigue
testing in Sect. 6.6.4.With the same settings of the prior infor-
mation and historical data in Sect. 6.6.4, we also consider the
scenario of collecting 12 new test units as in Sect. 6.6.4. To
evaluate the proposed dual objective test plans, we compare
five different test plans (summarized in Table 6.1) of the same
sample size with two test plans obtained based on a single
objective (either D- or c-optimality) and the remaining three
being dual objective test plans with different sample size
allocations among the D-optimal and c-optimal runs. Note
that Design A is the c-optimal sequential test plan proposed
in Sect. 6.6.

For each scenario, 100 simulation trials are generated and
summarized to compare the performance on the asymptotic
variance in (6.26) and the precision of estimated model pa-
rameters among the five test plans. To quantify the precision
of estimation, the following metric of the relative precision
of estimated model parameters is used:

m
(
θj
) = 1

K

K∑
k=1

(
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Fig. 6.21 Plot of AVar, the estimated asymptotic variance of the es-
timated quantile of lifetime averaged over a range of specified use
condition as in (6.26) for the five designs from Table 6.1. Figure
reproduced with permission from Springer
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Fig. 6.22 Comparison of theMmeasure, the total relative mean square
error for all three model parameters for the five designs from Table 6.1.
Figure reproduced with permission from Springer
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Fig. 6.23 Plot of sample size allocation for the five designs. Figure reproduced with permission from Springer

where θj represents the jth parameter of θ and θ̂j,k represents
the estimates of θj from the kth trial for k = 1, · · · , K = 100.
To summarize m(θj) across the three model parameters,

M =
3∑
j=1

m
(
θj
)

was used to measure the total relative mean squared error of
all the parameters. That is,M quantifies the overall precision
of the estimates of all the model parameters in the ALT
model. Note that the smaller value of M indicates overall
more precisely estimated model parameters.

Figures 6.21 and 6.22 show the values of the asymptotic
variance and M for the five scenarios, respectively. We can

see thatDesign A (12 units all generated by the c-optimality)
has the smallest values of asymptotic variance AVar and
the largest values of M for all the runs. This indicates that
DesignA focusesmore on obtainingmost precisely predicted
quantile of lifetime but less on the precision of estimated
parameters. In addition, Design B (12 units all generated by
theD-optimality) has the largest values of AVar and relatively
small M values for all the runs. Particularly, it achieves the
best D-optimality after testing 8 units. This suggests that the
D-optimal design does not provide the best predictions but
instead offers more precise estimation of model parameters.
However, theD-optimality is guaranteed at a relatively larger
sample size.

Other three designs obtained by the dual objectives
(Designs C, D, and E) generally perform well on the
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Fig. 6.24 Plot of the sample size allocation for the 12 sequential runs for the five designs. Figure reproduced with permission from Springer

both metrics, which offer more balanced performance
between the asymptotic variance and the prediction of the
estimated model parameters. Particularly, Design D with
4 D-optimality runs followed by 8 c-optimality runs has
slightly better performance than other designs, which offers
both the smallest AVar and M. Based on the case study,
the dual objective sequential designs outperform the D-
optimality design if one is limited to 8 sequential runs. The
dual objective sequential designs have better precision in
terms of estimatingmodel parameters and predicting quantile
of lifetime.

Figure 6.23 shows the sample size allocation of the 12
sequential test units averaged over 100 simulation trials for
the five test plans. In general, the test units are allocated
to either the lowest or highest levels across the range of
stress levels [0.35, 0.75]. The proportion of allocations to the
lowest and highest stress levels for theD-optimality design is
different from the c-optimality design and the dual objective

test plans. It is noted that there are twice as many units
allocated to the highest level than the lowest level by the
D-optimality test plan, while both c-optimality and the dual
objective test plans allocate more test units to the lowest
level. The c-optimality design has almost twice units tested
at the lowest level than the highest level, while the dual
objective designs provide similar allocation with a slightly
larger sample size at the highest stress level. This is intuitive
as the c-optimality emphasizes more on the prediction at the
normal use condition; hence, testing more units at the lowest
stress level with the closest proximity to the normal use
condition would offer more useful information on improving
the predictions.

Figure 6.24 shows the proportion of sample allocations
for the five test plans. The plots show the allocations for
each sequential run based on the 100 simulation trials. The
light-to-dark gray shades indicate small to large allocation
at the different testing levels. First, we can observe a large
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middle region in the lightest gray shade for all the test plans,
which indicates there is rarely a sample allocated to the
middle levels (i.e., between q = 0.4 and q = 0.7) for all
the scenarios. As compared to the c- and D-optimal plans,
the D-optimality design allocates more runs at the highest
stress level during the later runs, and for the earlier runs, the
samples are evenly allocated between the highest and lowest
levels. For the c-optimality design, it tends to allocate more
units at the lower stress level during the later stage. This is
because more samples at the higher stress levels can quickly
improve the precision of estimated parameters. Testing units
at the lower levels is more relevant for improving the predic-
tion precision.

6.8 Concluding Remarks

In this chapter, we review recent developments on statistical
reliability analysis utilizing dynamic covariates and sequen-
tial test planning. For time-to-event data, we introduce a cu-
mulative damage model to account for the effect of dynamic
covariates and illustrate the method with the Product D2
application. For degradation data, we present the general path
model for incorporating dynamic covariates and illustrate
the method with the NIST coating degradation data. We
also introduce the MTRP model for recurrent events using
dynamic covariates and illustrate it with the Vehicle B data.
With regard to test planning for ALTs, we focus on the SBDs
and illustrate it with the ALTs for polymer composites fatigue
testing.

Looking forward, more versatile data become available
due to the rapid advance of modern technology, and new
statistical methods need to be developed to make use of those
new data for improving reliability modeling and prediction.
As described in [3], many data types such as spatial data,
functional data, image data, and text data all have great po-
tential to be used for reliability modeling and analysis. New
methods that are available in statistical and machine learn-
ing can also be transformed and integrated with reliability
domain knowledge for improving reliability analysis, which
provides tremendous opportunity in reliability research.
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Abstract

This work deals with a comprehensive solution to the
problem of finding the joint k-variate probability distri-
butions of random vectors (X1, . . . ,Xk), given all the
univariate marginals. The general and universal analytic
form of all solutions, given the fixed (but arbitrary) uni-
variate marginals, was given in proven theorem. In order
to choose among these solutions, one needs to determine
proper “dependence functions” (joiners) that impose spe-
cific stochastic dependences among subsets of the set {X1,
. . . ,Xk} of the underlying random variables. Some meth-
ods of finding such dependence functions, given the fixed
marginals, were discussed in our previous papers (Filus
and Filus, J Stat Sci Appl 5:56–63, 2017; Filus and Filus,
General method for construction of bivariate stochastic
processes given two marginal processes. Presentation at
7-th International Conference on Risk Analysis, ICRA 7,
Northeastern Illinois University, Chicago, 4 May 2017).
In applications, such as system reliability modeling and

L. Z. Filus
Department of Mathematics, Northeastern Illinois University, Chicago,
IL, USA
e-mail: L-Filus@neiu.edu

J. K. Filus (�)
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other, among all the available k-variate solutions, one
needs to choose those that may fit particular data, and,
after that, test the chosen models by proper statistical
methods. The theoretical aspect of the main model, given
by formula (7.3) in Sect. 7.2, mainly relies on the existence
of one [for any fixed set of univariate marginals] general
and universal form which plays the role of paradigm
describing the whole class of the k-variate probability dis-
tributions for arbitrary k = 2, 3, . . . . An important fact is
that the initial marginals are arbitrary and, in general, each
may belong to a different class of probability distributions.
Additional analysis and discussion are provided.

Keywords

Competitive to the copula methodology · Universal form
of k-variate probability distributions · Stochastic
dependences general structure · Joiners as “dependence
functions” · r-independence · Reliability

7.1 Introduction

Consider a new approach to the old problem of finding a k-
variate joint probability distributions of a random vector (X1,
. . . , Xk), given its univariate marginals S1(x1), . . . ,Sk(xk). (In
this chapter, all the probability distributions will be repre-
sented by the corresponding survival functions. Nevertheless,
we mostly will call them “distributions” for short, as they
are equivalent to probability distributions. At this point also
recall that in reliability theory the survival functions are
called “reliability functions”). The problem, even if it often
appears in literature (see, for example the references in [10])
with a variety of different formulations [3, 4, 8, 9, 11], is
actually far from a comprehensive solution.

As an exception may serve the copula methodology by
Sklar [12], which however has serious drawbacks that make
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it difficult to use in most practical applications. The practi-
tioners in their mutual discussions often indicate on the need
for other methods of construction that would complement
those by copulas. This need becomes especially vital when
the dimension of the underlying random vector is higher than
2 or 3. Also the number of models created by use of copulas
is rather limited.

In this work, we attempt to build a new, competitive to
the copula methodology, theory of k-variate survival func-
tions that has three important features. First, of theoretical
nature, is providing the general structure (a universal form)
of any k-variate survival function by means of the joiners
[6, 7]. Second, the structure’s form facilitates processes of
constructions in various applications especially in reliability
problems. As a result, a huge number of new bivariate and
trivariate probability distributions can be found. The third
feature of the here created theory is that the considered
marginals S1(x1), . . . ,Sk(xk) may belong to arbitrary classes
of survival functions and that the classes, in general, may be
different from each other. Thus, in the general case, some
of the univariate marginals may be of the continuous type,
some of the discrete, and some neither. The stochastic depen-
dence structure that “connects” finite subsets {Xi(1), . . . ,Xi(r)}
(r ≤ k) of the set of random variables {X1, . . . ,Xk} provide
the already mentioned dependence functions (joiners) of the
r finite real variables xi(1), . . . ,xi(r).

The created general theory starts with the bivariate case as
developed in our previous papers [5–7].

In the beginning (in [5]), we started with bivariate models
construction as an extension of the Aalen version [1] of the
Coxmodel [3] of stochastic dependence towards construction
of bivariate distributions.

Then we realized in [6, 7] that the so obtained construction
method, in its full generality, may be formulated indepen-
dently from the original Cox and the Aalen ideas.

As we have found, the construction can be based on the
created notion of (bivariate) joiner.

It was then realized that in so doing one obtains a univer-
sal representation of any (!) bivariate survival function.

Namely, according to [5, 6], any bivariate survival func-
tion, say S(x1, x2), can be represented by the factored (uni-
versal) form:

S (x1, x2) = S1 (x1) S2 (x2) J (x1, x2) , (7.0)

where S1(x1) and S2(x2) are the marginal survival functions
and the function J(x1, x2) determines the stochastic depen-
dencies between the random variables X1, X2 is the “joiner.”

Whenever a construction process was faced (with the
initial data: the marginals S1(x1), S2(x2) given), the problem
reduces to finding a proper joiner J(x1, x2) “connecting” the
two marginals.

The methods of finding the function J(x1, x2), by solving a
proper integral equation or inequality, as well other criteria of
“fitting” the joiner to the given marginals [2], were developed
in our, mentioned above, previous papers. Some important
bivariate models were immediately found. Others that require
more effort were postponed to a future.

Anyway, the “bivariate part” of our theory can be consid-
ered sufficiently developed even if many important particular
problems remain open.

The extension of this theory to k-dimensional (k≥ 3) cases
was initiated in [7] with special emphasis on the k = 3 case.
The general case was only sketched. Here, we concentrate on
the general case for k = 3, 4, . . . .

The main result is formulated as theorem 1 and proven by
mathematical induction with respect to k (see formula (7.3)).

In discussion that follows the proof, we show some meth-
ods that allow simplification of formula (7.3) by assuming
that some of the underlying r-variate joiners (r ≤ k) reduce
to 1, which corresponds to “partial independence.” Assuming
all the r-variate (for r ≥ 3) joiners are 1, we arrive at the
notion of “bi-dependence” which means that all the depen-
dences reduce to those between pairs of random variables,
and in so doing we obtain the corresponding formula (7.11)
that determines simplified version of the general pattern
(7.3). In the case of bi-dependence, which seems to be quite
realistic, the task of construction reduces to finding proper
bivariate joiners of (not necessarily all) pairs of underlying
random variables (Xi, Xj) for 1 ≤ i < j ≤ k.

Consequently, in bi-dependence case, the theory of gen-
eral k-variate distributions essentially reduces to the, already
developed, general theory of bivariate distributions.

All those properties, possibly, make the bi-variate and the
general k-variate theories competitive to the copula method-
ology [2].

7.2 General Structure of Any k-Variate
Survival Function

Now, we start with the analysis of the general cases for
any k.

The essence of k-dimensional models’ general structure
(k = 3, 4, . . . ) relies on recurrence transition from all
its (k − 1)-dimensional marginals to the constructed k-
dimensional survival function.

Namely, the algebraic structure of any k-dimensional
probability distribution S(x1, . . . ,xk) obeys the following
factorization pattern:

S (x1, . . . , xk) = J1,...,k (x1, . . . , xk−1, xk) S(1) (x2, x3, . . . , xk)
S(2) (x1, x3, . . . , xk) . . . S(k−1) (x1, . . . , xk−2, xk)
S(k) (x1, . . . , xk−1)

(7.1)
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where for each j= 1, . . . ,k the (k− 1) dimensional marginal
survival function
S(j)(x1, x2, . . . ,xj−1, xj+1, xj+2, . . . , xk) contains all the

arguments x1, . . . ,xk with exception of xj.
The function J12 . . . k(x1, . . . ,xk) that wewill call “k-joiner”

determines stochastic “k – dependence ” between all the
(k − 1) – dimensional random vectors

(X1, X2, . . . , Xk−1) , (X1, X2, . . . , Xk−2, Xk) , . . . ,

(X2, X3 . . . , Xk).

For a, given in advance, survival function S(x1, . . . ,xk),
the corresponding (unique) k-joiner simply is given by the
formula that follows from (7.1):

J12...k (x1, . . . , xk) = S (x1, . . . , xk) /
{
S(1) (x2, x3, . . . , xk)

S(2) (x1, x3, . . . , xk) . . . S(k−1) (x1, . . . , xk−2, xk)
S(k) (x1, . . . , xk−1)

}
.

(7.1*)

For values of x1, . . . ,xk that make the denominator in
(7.1*) equal zero the k-joiner J12 . . . k(x1, . . . ,xk) is undefined,
but in this case we set in (7.1) S(x1, . . . ,xk) = 0 so the k-
dimensional survival function in (7.1) is still well defined.

In the case J12 . . . k(x1, . . . ,xk) = 1, for all points
(x1, . . . ,xk), we say that the random vector (X1, . . . ,Xk)
is k-independent.

The form (7.1) is universal, so every (!) survival function
S(x1, . . . ,xk) can be represented like that. This rather strong
statement is the conclusion from the following realization of
the common arithmetic identity:

S(x1, . . . , xk) = [
S (x1, . . . , xk) /

{
S(1) (x2, x3, . . . , xk)

S(2) (x1, x3, . . . , xk) . . . S(k−1) (x1, . . . , xk−2, xk)
S(k) (x1, . . . , xk−1)

}] {
S(1) (x2, x3, . . . , xk)

S(2) (x1, x3, . . . , xk) . . . S(k−1) (x1, . . . , xk−2, xk)
S(k) (x1, . . . , xk−1)

}

(7.1**)

which in light of (7.1*) is another version of (7.1).
The identity (7.1**) is always true whenever the underly-

ing fraction is well defined. Otherwise, we set (7.1**) equal
zero which is consistent with determination of (7.1).

Suppose all the (k− 1) – dimensional distributions S(1)(x2,
x3, . . . ,xk), S(2)(x1, x3, . . . ,xk), . . . ,S(k−1)(x1, . . . ,xk−2, xk),
S(k)(x1, . . . ,xk−1) are given.

The question that arises [2] is:
For which functions K(x1, . . . ,xk) [that are only

candidates for joiners], the product K(x1, . . . ,xk) S(1)(x2,
x3, . . . ,xk) S(2)(x1, x3, . . . ,xk) . . . S(k−1)(x1, . . . ,xk−2, xk)
S(k)(x1, . . . ,xk−1) is a valid k-dimensional survival function,

so that K(x1, . . . ,xk) = J12 . . . k(x1, . . . ,xk) and formula (7.1)
is satisfied for some survival function S(x1, . . . ,xk).

Solutions of this problem for k = 2, 3, . . . yield solutions
of the problem stated in the beginning of Sect. 7.1. To this,
however, we need first to be able to solve the problem of
finding joint distributions of all random vectors of (k − 1)
dimension. For this task, we need in turn to find or have all
the joint distributions of dimension (k− 2) and so on, until we
encounter the univariate distributions (k = 1) that are given
in advance.

The structure of the problem solving within here created
new theory is then hierarchical. The essence of the structure
is the recurrence formula (7.1) that describes the transition
from (k − 1) dimensions to k. However, when goes to the
construction’s practice, we need to start at the lowest “level
zero” where we choose the univariate distributions as given
by S1(x1), . . . ,Sk(xk) to work with. No new theory at level
zero (k = 1) needs to be provided. Actual first step of this
theory is the transition from k = 1 to k = 2. This means a
need for a theory of forming bivariate distributions from any
two univariates. This was the subject of our previous papers
already cited.

Now, we start to derive the general formula for
S(x1, . . . ,xk) that “exhibits” all the steps of the construction.
The theory for k = 2 was (to a satisfactory degree) already
developed in [5]. The case k = 3 was described in [7]. Since
the recent position was submitted but not yet published,
we repeat the main result here for 3-dimensional survival
function’s universal representation:

S (x1, x2, x3) = J123 (x1, x2, x3) S(3) (x1, x2) S(2) (x1, x3)

S(1) (x2, x3)

= J123 (x1, x2, x3) [ J12 (x1, x2) S1 (x1) S2 (x2) ]

[ J13 (x1, x3) S1 (x1) S3 (x3) ] [ J23 (x2, x3) S2 (x2)

S3 (x3) ]

= J123 (x1, x2, x3) J12 (x1, x2) J13 (x1, x3)

J23 (x2, x3) [ S1 (x1) ]2 [ S2 (x2) ]2[ S3 (x3) ]2,
(7.2)

where for each pair (i, j) of subscripts, such that 1≤ i < j≤ 3,
Sij (xi, xj) is bivariate distribution of the random vector (Xi,
Xj) so it is a bivariate marginal of the tri-variate distribution.
S(x1, x2, x3) of the random vector (X1, X2, X3), and, for

each bivariate distribution Sij (xi, xj), Jij (xi, xj) denotes the
corresponding joiner which “ties” the univariate marginal
distributions Si (xi), Sj (xj). In (7.2) we denoted by S(i) (xk, xl)
the bivariate survival function of those two arguments among
x1, x2, x3 that are different from xi, for i = 1, 2, 3.
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7.3 TheMain Result

The analogical to (7.2) formula for an arbitrary dimension
k≥ 3 is given by the following theorem, which will be proven
by mathematical induction with respect to k.

Theorem 1 Suppose a sequence of random vectors {(X1,
X2, . . . ,Xk−1, Xk)}k=1

∞ is consistent in the sense of Daniell-
Kolmogorov Consistency Theorem (however, the problem of
symmetry of the random vectors is not analyzed here).

Under that assumption, for every k = 2, 3, . . . the
“universal” form of any survival function S(x1, x2, . . . ,xk−1,
xk) of an arbitrary random vector (X1, X2, . . . ,Xk−1, Xk),
whose marginals X1, X2, . . . ,Xk−1, Xk take on finite real
values, is given by the following formula:

S (x1, x2, . . . , xk−1, xk)
= J1,...,k (x1, . . . , xk−1, xk) S(1) (x2, x3, . . . , xk)

S(2) (x1, x3, . . . , xk) . . . S(k−1) (x1, . . . , xk−2, xk) S(k) (x1, , xk−1)

= J1,...,k (x1, . . . , xk−1, xk)
∏

s=1
k−1∏

( j(1),...,j(k−s) )[
J(j(1),...,j(k−s))

(
xj(1), . . . , xj (k−s)

)]s! �
(7.3)

As for the middle expression in equalities (7.3), J1, . . . ,k
(x1, . . . ,xk−1, xk) is the k-joiner introduced above and (for
j = 1, 2, . . . ,k) S(j)( . . . ) are (k − 1) – dimensional marginal
survival functions of the random vector (X1, X2, . . . ,Xk−1,
Xk) obtained from its survival function S(x1, x2, . . . ,xk−1, xk)
by setting xj = 0.

In the last expression of (7.3) symbol,
∏

s=1
k−1 means

the product taken from s = 1 to s = k − 1, while, for each
particular s, the symbol

∏
(j(1), . . . ,j(k−s)) denotes product of all

expressions (joiners) each being a function of some (k − s)
arguments x(j(1), xj(2), . . . ,xj(k−s) only, where:

1 ≤ j(1) < j(2) < · · · < j (k − s) ≤ k, for some s.

The symbol J(j(1), . . . ,j(k−s)) (xj(1), . . . ,xj(k−s)) denotes the
(k − s)-dimensional joiner for the (marginal) random vector
(Xj(1), . . . ,Xj(k−s)). Because of the consistency assumption,
this joiner is raised to the power s!.

To achieve more uniform notation, for s = k − 1 we
introduced the notation

J(j(1),...,j(k−s)) ( ) = Jj(1)
(
xj(1)

) = Sj(1)
(
xj(1)

) = Sr (xr)

for some r = j(1) = 1, . . . , k.

Thus, the so obtained “one-dimensional joiner” actually is
not a joiner but rather the one-dimensional survival function.
Realize that these survival functions are raised to the power
(k − 1)! so that the product

S1(x1)(k−1)! . . . Sk(xk)(k−1)! is always the factor of S(x1,
x2, . . . ,xk−1, xk) given by (7.3).

Proof of the Theorem We set k=m+ 1 and prove the theo-
rem by mathematical induction with respect to m. According
to formulas (7.0) and (7.2), the theorem holds for m ≤ 2.

Now, suppose that it holds for some arbitrary m.

This means that similarly as in (7.3) we have:

S (x1, x2, . . . , xm−1, xm)

= J1,...,m (x1, . . . , xm−1, xm) S(1) (x2, x3, . . . , xm)

S(2) (x1, x3, . . . , xm) . . . S(m−1) (x1, . . . , xm−2, xm)

S(m) (x1, . . . , xm−1)

= J1,...,m (x1, . . . , xm−1, xm)
∏

s=1
m−1

∏
( j(1),...,j(m−s) )J(j(1),...,j(m−s))

s! ( xj(1), . . . , xj(m−s)
)
,

(7.4)

where 1≤ j(1) < j(2) < . . . < j(m− s)≤m; s= 1, . . . ,m− 1.
According to defining formulas (7.1) and (7.1*), we also

have

S+ (x1, x2, . . . , xm, xm+1) = (
J1,...,m+1(x1, . . . , xm, xm+1)

+

S(1) (x2, x3, . . . , xm+1)
+S(2) (x1, x3, . . . , xm+1)

. . .+S(m)(x1, . . . , xm−1, xm+1)
+S(m+1) (x1, . . . , xm)

)
,

(7.5)

where J1,. . . . ,m+1 (x1, . . . ,xm, xm+1) is the (m + 1)-joiner for
the whole random vector (X1, . . . ,Xm,Xm + 1).

As for the remaining factors on the right hand side of
(7.5), the marginal factor +S(m+1)(x1, . . . ,xm) is (by the Kol-
mogorov consistency assumption that we adopted) identical
to the function S(x1, x2, . . . ,xm−1, xm) given by (7.4).

[As the conclusion of that consistency restriction, any
(m+ 1)-dimensional survival function has the product form:

S+ (x1, x2, . . . , xm, xm+1) = S (x1, x2, . . . , xm)

� (x1, x2, . . . , xm, xm+1)
]
.

The remaining factors +S(i)() (i = 1, . . . ,m) in (7.5)
must obey the scheme given by (7.3) for any set of m
real arguments. Therefore, they are products of the powers
J(j(1), . . . ,j(m−s)) s! (xj(1), . . . ,xj(m−s)) of the underlying joiners
having nearly the same syntax structure as that of S(x1,
x2, . . . ,xm−1, xm) given by (7.4).

All the joiners present in the marginals +S(i)() that do not
contain the argument xj(m−s) = xm+1 are, by the consistency
assumption, exactly the same as the corresponding factors
of S(x1, x2, . . . ,xm−1, xm) whenever they have the same
arguments.
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Other factors that contain the (“new”) argument xm+1

[such as, for example, J2,m+1(x2, xm+1)] differ from those
which form the expression for S(x1, x2, . . . ,xm−1, xm).

Consider again (m + 1) of m-variate marginals of S+(x1,
x2, . . . ,xm, xm+1), present in (7.5).

Realize that every single variable xi (i = 1, 2, . . . ,m + 1)
occurs in exactly m out of m + 1 marginals:

+S(1) (x2, x3, . . . , xm+1) ,
+S(2) (x1, x3, . . . , xm+1) ,

. . . ,+S(m) (x1, . . . , xm−1, xm+1) ,
+S(m+1) (x1, . . . , xm) (M)

The above functions are distinct, and each of them con-
tains all the variables x1, x2, . . . ,xm, xm+1 with exception of
exactly one.

Consequently, each variable xi (i = 1, . . . ,m + 1) occurs
in exactly m out of m + 1 functions in (M).

The functions given by (M) represent m-dimensional sur-
vival functions. Thus, according to (7.4), for a given i, each
such function contains the factor [Si(xi)](m−1)!. This factor
repeats m-times in the product

+S(1)(x2, x3, . . . , xm+1)
+S(2) (x1, x3, . . . , xm+1)

. . .+S(m)(x1, . . . , xm−1, xm+1)
+S(m+1) (x1, . . . , xm)

and therefore is raised to the power m, which results in the
factor

[Si (xi)]
m of S+ (x1, x2, . . . , xm, xm+1).

Since above reasoning is valid for every i, the product
[S1(x1)]m! . . . [Sm+1(xm+1)]m! is a factor of S+(x1, x2, . . . ,xm,
xm+1).

Recall, the corresponding factor of S(x1, x2, . . . ,xm−1, xm)
was the product [S1(x1)](m−1)! . . . [Sm(xm)](m−1)! as in the
first product in (7.4) we have 1 ≤ s ≤ m − 1.

Before we consider 2-dimensional factors (i.e., all the 2-
dimensional joiners in (7.5*) below), we provide in advance
the (final) formula for the (m + 1)- dimensional case, which
is the continuation of (7.5):

S+ (x1, x2, . . . , xm, xm+1)

= J1,...,m+1 (x1, . . . , xm, xm+1) S(1) (x2, x3, . . . , xm+1)

S(2) (x1, x3, . . . , xm+1) . . . S(m) (x1, . . . , xm−1, xm+1)

S(m+1) (x1, . . . , xm)

= J1,...,m+1 (x1, . . . , xm, xm+1)∏
s=1

m∏
(j(1),...,j(m+1−s))J(j(1),...,j(m+1−s))

s!(xj(1), . . . , xj (m+1−s)
)
,

(7.5*)

where 1 ≤ j(1) < j(2) < . . . < j(m + 1 − s) ≤ m + 1.

Now, consider all the bivariate joiners J(j(1), j(2)) (xj(1),
xj(2)) present in the last expression of (7.4). Similarly, as we
proceeded with 1-dimensional joiners (the marginal distribu-
tions) realize that [for s=m – 2] in (7.4), the bivariate joiners
J(j(1), j(2)) (xj(1), xj(2)) are all raised to the power (m − 2)!.

Roughly the same happens for all the factors

S(1) (x2, x3, . . . , xm+1) S
(2) (x1, x3, . . . , xm+1) . . .

S(m) (x1, . . . , xm−1, xm+1) S
(m+1) (x1, . . . , xm) of

(
7.5∗) .

Thus, in (7.5*) each two-dimensional expression,
J(j(1), j(2)) (xj(1), xj(2))(m−2)! is present (m − 1) times [(m + 1)
times but two] as the factors. This is exactly the same
as raising it to the power m − 1. Thus, as formula (7.4)
transforms to formula (7.5*) [m ➔ m + 1], the factor
J(j(1), j(2))(xj(1), xj(2))(m−2)! transforms to the factor

J(j(1),j(2))
(
xj(1), xj(2)

)(m−1)!

(in the last case, however, we have 1 ≤ j(1) < j(2) ≤ m + 1).
In the same way, one can show that since the factors

J(j(1), j(2), j(3) (xj(1), xj(2), xj(3))(m−3)! in (7.4) are present in
(7.5*) (m− 2) times (again:m+ 1 times but three) the factor
J(j(1), j(2), j(3) (xj(1), xj(2), xj(3))(m−3)! transforms (as m ➔ m+ 1)
into the factor J(j(1), j(2), j(3) (xj(1), xj(2), xj(3))(m−2)!.

Doing this successively in the same way, we see that, as
the dimension raises fromm tom+ 1, every factor J(j(1), . . . , j(r)
(xj(1), xj(2), . . . , xj(r))(m−r)! in (7.4) transforms into the factor
J(j(1), . . . , j(r) (xj(1), xj(2), . . . , xj(r))(m−r+1)!, in (7.5*), where r= 1,
2, . . . ,m.

The single factor J1, . . . ,m+1 (x1, . . . ,xm, xm+1) in (7.5*)
plays the same role as the single factor J1, . . . ,m (x1, . . . ,xm−1,
xm) in (7.4).

Concluding, the survival function S+(x1, x2, . . . ,xm, xm+1)
given by (7.5*) one can obtain from the survival function
S(x1, x2, . . . ,xm−1, xm) given by (7.4) just by replacing all the
indexes 1 ≤ j(1) < j(2) < . . . < j(m− s) ≤mwith the indexes
1 ≤ j’(1) < j’(2) < . . . < j’(m + 1 − s) ≤ m + 1 and all the
exponents [with the same basis] (n − r)! to the exponents
(n − r + 1)!. Without going too far into details one may
conclude that the syntax form of the survival function S+(x1,
x2, . . . ,xm, xm+1) is “the same” as that of S(x1, x2, . . . ,xm−1,
xm), and therefore, the formulas (7.4) and (7.5*) are basically
“the same.” Thus, the pattern for the survival function given
by (7.4) naturally transforms into the same pattern given by
(7.5*).

Bymathematical induction, we conclude [upon k− 1=m]
that formula (7.3) holds for any k = 2, 3, . . . . �
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7.4 Commentaries

Remark 1 For more clarification, in addition to the
above proof, notice that the m-dimensional factor J1, . . . ,m
(x1, . . . ,xm−1, xm), present only once in (7.4), will be
“replaced” in (7.5*) by the product of m + 1 distinct factors
J(j(1), . . . , j(m) (xj’(1), xj’(2), . . . , xj’(m)) each of them “raised” to
the power 1.

This time, however, j’(m) ≤ m + 1.
Hypothetically, if [as a possible “next step”] the random

vector dimensionwould be increased fromm+ 1 tom+ 2, all
the factors corresponding to those m-dimensional would be
raised to second (2!) power and next (form+ 3 – dimension)
to 3! power, and so on.

Thus, for a given random vector (X1, . . . ,Xm, Xm+1),
formula (7.5*) determines its joint survival function, given
the joiners of all the [marginal] random vectors (Xj(1),Xj(2), . . . ,

Xj(r)), r = 1, 2, . . . ,m and one (m + 1)- dimensional joiner
J1, . . . ,m+1 (x1, . . . ,xm, xm+1) which stands for a single factor
in (7.5*). �

Remark 2 For formula (7.5*) to hold, the assumption of the
Kolmogorov consistency is the substantial one. Otherwise,
for s= 1, . . . ,m− 1, m= 2, 3, . . . the joiners J(j(1), . . . ,j(m−s))
(xj(1), . . . ,xj(m−s)) with the same arguments could be changed
after each transition from m to m + 1. Therefore, instead of
the powers J(j(1), . . . ,j(m+1−s))

s!, one could encounter fairly long
products of distinct factors. The construction of k-variate
survival function in such a case would still be possible but
the underlying formulas would be much longer. In the 2-
dimensional case (see, [7]), this “inconsistency phenomena”
is possibly related to two different representations [marginal
and baseline] of the same bivariate distribution.

In that, two single random variables are differently dis-
tributed when considered separately (baseline distributions)
and in bivariate distribution (as the marginals). �

Because of the complexity of formula (7.3) which is
somewhat unintuitive, in our opinion formula (7.2) is not
yet sufficient illustration of the pattern of the general
k-dimensional survival function. To better exhibit the
mechanism of “forming” k-dimensional distribution from
a (k − 1)-dimensional, we decided to provide additional
example of forming 4-dimensional survival function from
the 3-dimensionals whose forms are given by (7.2).

Example In accordance with (7.5) (for m = 3) the general
form, a 4-dimensional survival function can be expressed by
the product of the common 4-joiner and four 3-dimensional
marginals. Thus, we have:

S (x1, x2, x3, x4) =
= J1234 (x1, x2, x3, x4) {S123 (x1, x2, x3) } {S124 (x1, x2, x4) }

{S134 (x1, x3, x4) } {S234 (x2, x3, x4) } .

(7.6)

In accordance with the Kolmogorov consistency condi-
tion, the factor S123(x1, x2, x3) in (7.6) is the same as S(x1,
x2, x3) given by (7.2). Other marginal factors containing
arguments different from the triple (x1, x2, x3) are, in general,
different. However, their syntax structure (i.e., as long as only
the names of the underlying functions in the expressions are
considered) is always the same.

Expanding each of the expressions of (7.6) in the paren-
thesis according to pattern (7.2), one obtains:

S (x1, x2, x3, x4)

= J1234 (x1, x2, x3, x4)
{
J123 (x1, x2, x3) J12 (x1, x2)

J13((x1, x3) J23 (x2, x3) [S1 (x1)]
2[S2 (x2)]

2[S3 (x3)]
2
}

{
J124 (x1, x2, x4) J12 (x1, x2) J14 (x1, x4) J24 (x2, x4)

[S1 (x1)]
2[S2 (x2)]

2[S4 (x4)]
2
}

{
J134 (x1, x3, x4) J13 (x1, x3) J14 (x1, x4) J34 (x3, x4)

[S1 (x1)]
2[S3 (x3)]

2[S4 (x4)]
2
}

{
J234 (x2, x3, x4) J23 (x2, x3) J24 (x2, x4) J34 (x3, x4)

[S2 (x2)]
2[S3 (x3)]

2[S4 (x4)]
2
}

(7.7)

After regrouping all the factors in (7.7) and matching re-
peating factors that occur in different parentheses, we obtain
the following formula:

S (x1, x2, x3, x4) = J1234 (x1, x2, x3, x4) J123 (x1, x2, x3)

J124 (x1, x2, x4) J134 (x1, x3, x4) J234 (x2, x3, x4)

[J12 (x1, x2)]
2 [J13 (x1, x3)]

2 [J14 (x1, x4)] 2 [J23 (x2, x3)] 2

[J24 (x2, x4)] 2 [J34 (x3, x4)] 2 [S1 (x1)] 6 [S2 (x2)] 6

[S3 (x3)]
6[S4 (x4)]

6

(7.8)

Formula (7.8) seems not to be so complicated, but it is
pretty long and the underlying (6-th) powers of the univariate
marginals could make us somewhat uncomfortable. And this
is only the 4-dimensional case. Raising this dimension only
by one [see formula (7.5*) and proof of theorem 1] causes
raising the 1-dimensional marginals to the power 24 and all
the bivariate joiners to the power 6. That may suggest that
such formulas are useless from a practical (reliability, for
example) point of view, and what remains would be only the
theoretical value of formula (7.5*). This “first impression,”
however, is not well grounded. To see this only recall the
defining formulae (7.1), (7.1*) and (7.1**). Thus, however
small the factors J(j(1), . . . ,j(m+1−s))

s! (xj(1), . . . ,xj(m+1−s)) are,
the products forming the corresponding value of the joiner’s
J1, . . . ,k (x1, . . . ,xk−1, xk) denominator [see (7.1*)] is propor-
tionally high (much greater than 1).
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As the net result, one always obtains a reasonable value,
that is, the joint survival function S(x1, x2, . . . ,xk−1, xk),
we analyzed (see formula (7.1**) and its further expansion
(7.3)). �

In vast majority of “regular” cases, formulas (7.8) and
(7.3), in their full extend, are unrealistic especially whenever
applications are of interest. Fortunately, the results as given
by those formulas are just the first step that comprises the
full generality which is seldom met in practice. Obviously, in
applications, it is not too realistic situation when “everything
depends on everything else.”

In reality (including also “most of” the “mathematical
reality”), the vast majority of the joiners (present in (7.5*)
and in (7.8)) should be considered to be equal to 1, which
means corresponding stochastic independence.

The important theoretical (and practical as well)
fact is that all the stochastic dependences (as well as
independence) among the random variables X1, . . . ,Xk are
entirely described by the set of all the joiners

J(j(1),...,j(r))
(
xj(1), . . . , xj(r)

)
, where r = 2, 3, . . . , k.

Thus, the dependences’ analysis mathematically reduces
to analysis of the functions J(j(1), . . . ,j(r)) (xj(1), . . . ,xj(r)) which
fully represent the corresponding stochastic dependence. One
can say they play a role similar to that of having only numer-
ical values “correlation coefficients” defined in literature in
variety of ways.

Remark 3 At this point is good to notice that the k-joiner
J1, . . . ,k (x1, . . . ,xk−1, xk) describes exclusively stochastic
dependence of the set of all the (k − 1)-dimensional random
vectors

{(
Xj(1), . . . , Xj(k−1)

)}
,where 1 ≤ j(1) < j(2) < . . .

< j (k − 1) ≤ k.

This joiner “is responsible” only for the dependence be-
tween these (k − 1)-dimensional random vectors. If it equals
1 (which means the k-independence; see in above) then, in
accordance with (7.3), we have

S (x1, x2, . . . , xk−1, xk)
= S(1) (x2, x3, . . . , xk) S(2) (x1, x3, . . . , xk) . . .

S(k−1) (x1, . . . , xk−2, xk) S(k) (x1, . . . , xk−1)

(7.9)

so that the survival functions of all the (k − 1)-dimensional
marginals simply multiply by each other.

This factorization agrees with the common intuition of
stochastic independence’ analytic descriptions.

It may happen that some disjoint proper subsets of the set
{Xj(1), . . . ,Xj(k−1)} that form random (sub)vectors marginal
to the corresponding (k − 1)-dimensional marginal random

vector (Xj(1), . . . ,Xj(k−1)) are independent from each other,
while their corresponding (“inner”) “k-sub-joiners” [factors
of the k-joiner] are not equal to 1.

This phenomenon may be called “group independence,”
where random variables within each such “group” [subset]
may be dependent.

Returning to the general case of the joiners (factored or
not), notice that any r-joiner J(j(1), . . . ,j(r)) (xj(1), . . . ,xj(r)) of
any r-dimensional marginal random vector (Xj(1), . . . ,Xj(r))
(r ≥ 2) only describes dependences between the (r − 1)-
dimensional marginals of this vector.

The considered r-joiner may be factored or not according
to existence or nonexistence of independence between some
disjoint proper subsets of the associated sets {Xj(1), . . . ,Xj(r)}
that form at most (r-1)-dimensional marginal random sub-
vectors of the random vectors (Xj(1), . . . ,Xj(r)).

In particular, if the r-joiner is factored, some of the factors
may be equal 1. �

As already mentioned, in practical reality the number of
dependent random subvectors (i.e., r-dimensional [r≤ k− 1]
marginals) of the randomvector (X1, . . . ,Xk) is rather limited.

This means most of the underlying r-variate joiners
present in formulas (7.3) or (7.8) are simply equal to 1.

Regarding that phenomenon, the defined below notion
of r-independence may be useful in various specific model
constructions.

We finalize our present considerations by introducing the
following definition of r-independence that may serve as a
guidance in future constructions.

Definition For any r such that 2 ≤ r ≤ k, by r-
independence, we will understand the fact that for each
q ≥ r, all the q-dimensional joiners are equal to 1. �

Thus, 2-independence is equivalent to the ordinary inde-
pendence of the random variables X1, . . . ,Xk so, as usually,
we have: S(x1, x2, . . . ,xk−1, xk) = S1(x1) S2(x2) . . . Sk(xk).

It seems to be reasonable to assume that the underlying
random variables X1, . . . ,Xk are only “pairwise dependent,”
that is, to reduce the construction of a joint survival function
S(x1, x2, . . . ,xk−1, xk) to construction of [not necessarily all]
its bivariate marginals, say, Sij (xi, xj), where 1 ≤ i < j ≤ k.
Then we may apply scheme (7.3) by setting all the joiners
having at least three arguments (and most of those having
two arguments) to 1.

By the way, in this case formula (7.3) and some of its
special realizations such as (7.8) should be a little redefined.

As a hint to this task realize that, in this case, instead of
the arithmetic identity (7.1**), one may (preserving the main
idea) apply the following, corresponding, arithmetic identity:

S (x1, . . . , xk) =
[
S (x1, . . . , xk) /

∏

i<j
Si j

(
xi, xj

)]

∏

i<j
Si j

(
xi, xj

)
. (7.10)
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Now, the corresponding to the former k-joiner, “bi-joiner”
J(2) (x1, . . . ,xk) is defined as

J(2) (x1, . . . , xk) = S (x1, . . . , xk) /
∏

i<j
Si j

(
xi, xj

)
,

while formula (7.3) is replaced by the following scheme:

S (x1, . . . , xk) = J(2) (x1, . . . , xk)
∏

i<j
Si j

(
xi, xj

)
. (7.11)

Again, in concrete applications, most of the factors Si j (xi,
xj) in (7.11) are reduced to products Si(xi) Sj(xj), whichmeans
the associated bi-joiners are reduced to 1.

As an important special case, one may consider the situa-
tion when we have

J(2) (x1, . . . , xk) = 1.

Then (7.11) reduces to:

S (x1, . . . , xk) =
∏

i<j
Si j

(
xi, xj

)
(7.12)

and now the theory reduces to the theory of bivariate proba-
bility distributions as described in [5] and [7].

This case is especially convincing when the only non-
trivial factors in the product

∏
i<j Si j (xi, xj) are those for

which any two element subsets {xi,xj} of the variables set
{x1, . . . ,xk} are disjoint.
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Abstract

This chapter briefly discusses stochastic processes, in-
cluding Markov processes, Poisson processes, renewal
processes, quasi-renewal processes, and nonhomogeneous
Poisson processes. The chapter also provides a short list of
books for readers who are interested in advanced topics in
stochastic processes.

Keywords

Markov processes · Poisson processes · Renewal
processes · Stochastic processes · Nonhomogeneous
Poisson processes

H. Pham (�)
Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA
e-mail: hopham@soe.rutgers.edu

8.1 Introduction

Stochastic processes are used to describe the operation of
a system over time. There are two main types of stochastic
processes: continuous and discrete. A complex continuous
process is a process describing a system transition from state
to state. The simplest process that will be discussed here is
a Markov process. In this case, the future behavior of the
process does not depend on its past or present behavior. In
many systems that arise in practice, however, past and present
states of the system influence the future states, even if they
do not uniquely determine them.

8.2 Markov Processes

In this section, we will discuss discrete stochastic processes.
As an introduction to the Markov process, let us examine the
following example.

Example 8.1 Consider a parallel system consisting of two
components (see Fig. 8.1). From a reliability point of view,
the states of the system can be described by

State 1: Full operation (both components operating);

State 2: One component is operating and one
component has failed;

State 3: Both components have failed.

Define

Pi(t) = P [X(t) = i]

= P [system is in state i at time t]
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1

2

Fig. 8.1 A two-component parallel system

and

Pi (t + dt) = P [X (t + dt) = i]

= P [system is in state i at time t + dt].

Define a random variable X(t) which can assume the values
1, 2, or 3 corresponding to the states mentioned above. Since
X(t) is a random variable, one can discuss P[X(t) = 1],
P[X(t) = 2] or the conditional probability P[X(t1) = 2 |
X(t0) = 1]. Again, X(t) is defined as a function of time t,
while the conditional probability P[X(t1) = 2 | X(t0) = 1]
can be interpreted as the probability of being in state 2 at
time t1, given that the system was in state 1 at time t0. In
this example, the “state space” is discrete, i.e., 1, 2, 3, etc.,
and the parameter space (time) is continuous. The simple
process described above is called a stochastic process: a
process that develops over time (or space) in accordance with
some probabilistic (stochastic) laws. There are many types of
stochastic processes.

Here we emphasize theMarkov process, which is a special
type of stochastic process. Let the system be observed at
discrete moments of time tn, where n = 0, 1, 2, . . . , and let
X(tn) denote the state of the system at time tn.

Definition 8.1 Let t0 < t1 < . . . < tn. If

P
[
X (tn) = xn | X (tn−1)

= xn−1, X (tn−2) = xn−2, . . . , X (t0) = x0
]

= P [X (tn) = xn|X (tn−1) = xn−1]

(8.1)

then the process is called aMarkov process.
From the definition of aMarkov process, given the present

state of the process, its behavior in the future does not depend
on its behavior in the past.

The essential characteristic of a Markov process is that
it is a process that has no memory; its future is determined
by the present and not the past. If, in addition to having
no memory, the process is such that it depends only on the
difference (t + dt) − t = dt and not the value of t – in
other words P[X(t + dt) = j | X(t) = i] is independent of
t – then the process is Markov with stationary transition

probabilities or is homogeneous in time. This is the same
property noted in exponential event times; in fact, refer-
ring back to the graphical representation of X(t), the times
between state changes are exponential if the process has
stationary transition probabilities.

Thus, a Markov process which is homogeneous in time
can describe processes with exponential event occurrence
times. The random variable of the process is X(t), the state
variable rather than the time to failure used in the exponential
failure density. To illustrate the types of processes that can be
described, we now review the exponential distribution and
its properties. Recall that, if X1, X2, . . . , Xn, are independent
random variables, each with exponential density and a mean
of 1/λi, then min{X1, X2, . . . , Xn} has an exponential density
with a mean of (

∑
λi)−1.

The significance of this property is as follows:

1. The failure behavior of components operated simultane-
ously can be characterized by an exponential density with
a mean equal to the reciprocal of the sum of the failure
rates.

2. The joint failure/repair behavior of a system where com-
ponents are operating and/or undergoing repair can be
characterized by an exponential density with a mean equal
to the reciprocal of the sum of the failure and repair rates.

3. The failure/repair behavior of a system similar to that
described in (2) above but further complicated by active
and dormant operating states and sensing and switching
can be characterized by an exponential density.

The above property means that almost all reliability
and availability models can be characterized by a time-
homogeneous Markov process if the various failure times
and repair times are exponential. The notation for theMarkov
process is {X(t), t > 0}, where X(t) is discrete (state space)
and t is continuous (parameter space). By convention, this
type of Markov process is called a continuous-parameter
Markov chain.

From a reliability/availability viewpoint, there are two
types of Markov processes. These are defined as follows:

1. Absorbing process: Contains an “absorbing state,” which
is a state that, once entered, the system can never leave
(e.g., a failure which aborts a flight or a mission).

2. Ergodic process: Contains no absorbing states, meaning
that X(t) can move around indefinitely (e.g., the operation
of a ground power plant where failure only temporarily
disrupts the operation).

Figure 8.2 presents a summary of Markov processes bro-
ken down into absorbing and ergodic categories. Both the
reliability and the availability can be described in terms of
the probability of the process or system being in defined “up”
states, e.g., states 1 and 2 in the initial example. Likewise,
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Fig. 8.2 State transition diagram for a two-component system

the mean time between failures (MTBF) can be described as
the total time spent in the “up” states before proceeding to
the absorbing state or failure state.

Define the incremental transition probability as

Pij (dt) = P [X (t + dt) = j|X(t) = i].

This is the probability that the process [random variable X(t)]
will move to state j during the increment t to (t + dt), given
that it was in state i at time t. Since we are dealing with time-
homogeneous Markov processes (exponential failure and
repair times), the incremental transition probabilities can be
derived from an analysis of the exponential hazard function.
It was shown that the hazard function for an exponential
with a mean of 1/λ was just λ. This means that the limiting
(as dt → 0) conditional probability of an event occurring
between t and t + dt, given that an event had not occurred
at time t, is simply λ, in other words:

h(t) = lim
dt→0

P [t < X < t + dt|X > t]
dt

= λ.

The equivalent statement for the random variable X(t) is

h(t) dt = P [X (t + dt) = j|X(t) = i] = λ dt.

Now, h(t) dt is in fact the incremental transition probability,
so Pij(dt) can be stated in terms of the basic failure and/or
repair rates. Define

Pi(t): the probability that the system is in state i at time t
rij(t): transition rate from state i to state j

In general, the differential equations can be written as
follows:

∂Pi(t)

∂t
= −

∑
j

rij(t)Pi(t) +
∑
j

rji(t)Pj(t). (8.2)

Solving the above differential equations, one can obtain the
time-dependent probability of each state.

Returning to Example 8.1, it is easy to construct a state
transition showing the incremental transition probabilities
between all possible states for the process:

State 1: Both components operating

State 2: One component up and one component down

State 3: Both components down (absorbing state)

The loops in Fig. 8.2 indicate the probability of remaining
in the present state during the dt increment

P11 (dt) = 1 − 2λ dt
P21 (dt) = 0
P31 (dt) = 0

P12 (dt) = 2λ dt
P22 (dt) = 1 − λ dt
P32 (dt) = 0

P13 (dt) = 0
P23 (dt) = λ dt
P33 (dt) = 1

The zeros for Pij, i > j show that the process cannot go
backwards: this is not a repair process. The zero on P13

shows that, for a process of this type, the probability of more
than one event (e.g., failure, repair, etc.) occurring in the
incremental time period dt approaches zero as dt approaches
zero.

Except for the initial conditions of the process (the state in
which the process starts), the process is completely specified
by incremental transition probabilities. The reason that this is
useful is that assuming exponential event (failure or repair)
times allows us to characterize the process at any time t,
since the process depends only on what happens between
t and (t + dt). The incremental transition probabilities can
be arranged into a matrix in a way that depicts all possible
statewide movements. Thus, for parallel configurations,

[Pij (dt)] =
⎛
⎝
1 − 2λdt 2λdt 0

0 1 − λdt λ dt
0 0 1

⎞
⎠

for i, j= 1, 2, or 3. Thematrix [Pij(dt)] is called the incremen-
tal, one-step transition matrix. It is a stochastic matrix (the
rows sum to 1.0). As mentioned earlier, this matrix, along
with the initial conditions, completely describes the process.

Now, [Pij(dt)] gives the probabilities of remaining or
moving to all of the various states during the interval t to
t + dt; hence,

P1 (t + dt) = (1 − 2λ dt)P1(t)
P2 (t + dt) = 2λ dtP1(t) (1 − λ dt)P2(t)
P3 (t + dt) = λ dtP2(t) + P3(t)

By algebraic manipulation, we have
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Fig. 8.3 Markov transition rate diagram for a two-component parallel
system

[P1 (t + dt) − P1(t)]
dt

= −2λ P1(t),

[P2 (t + dt) − P2(t)]
dt

= 2λ P1(t) − λ P2(t),

[P3 (t + dt) − P3(t)]
dt

= λ P2(t).

Taking limits of both sides as dt → 0, we obtain (also see
Fig. 8.3):

P′
1(t) = −2λP1(t),

P′
2(t) = 2λP1(t) − λP2(t),

P′
3(t) = λP2(t).

(8.3)

The above system of linear first-order differential equations
can be easily solved for P1(t) and P2(t), meaning that the
reliability of the configuration can be obtained:

R(t) =
2∑
i=1

Pi(t). (8.4)

Actually, there is no need to solve all three equations,
only the first two, because P3(t) does not appear and also
P3(t) = [1 − P1(t)] − P2(t). The system of linear, first-
order differential equations can be solved by various means,
including both manual and machine methods.We use manual
methods employing the Laplace transform (see Appendix A)
here.

L [Pi(t)] =
∫ ∞

0
e−stPi(t)dt = fi(s),

L [P′
i(t)] =

∫ ∞

0
e−stP′

i(t)dt = sf i(s) − Pi(0).

(8.5)

Application of the Laplace transform will allow us to trans-
form the system of linear, first-order differential equations
into a system of linear algebraic equations that can easily
be solved, and solutions of Pi(t) can be determined via the
inverse transforms.

Returning to the example, the initial condition of a parallel
configuration is assumed to be “fully up”, such that

P1 (t = 0) = 1, P2 (t = 0) = 0, P3 (t = 0) = 0.

Transforming the equations for P1
′
(t) and P2

′
(t) gives

s f1(s) − P1(t)|t=0 = −2λ f1(s),
s f2(s) − P2(t)|t=0 = 2λ f1(s) − λ f2(s).

Evaluating P1(t) and P2(t) at t = 0 gives

s f1(s) − 1 = −2λ f1(s),
s f2(s) − 0 = 2λ f1(s) − λ f2(s).

from which we obtain

(s+ 2λ) f1(s) = 1,
−2λ f1(s) + (s+ λ) f2(s) = 0.

Solving the above equations for f1(s) and f2(s), we have

f1(s) = 1

(s+ 2λ)
,

f2(s) = 2λ

[(s+ 2λ) (s+ λ)]
.

From the inverse Laplace transforms in Appendix A,

P1(t) = e−2λt,
P2(t) = 2e−λt − 2e−2λt,
R(t) = P1(t) + P2(t) = 2e−λt − e−2λt.

(8.6)

The example given above is that of a simple absorbing
process where we are concerned about reliability. If a repair
capability were added to the model in the form of a repair rate
μ, the methodology would remain the same, with only the
final result changing.With a repair rateμ added to the parallel
configuration (see Fig. 8.4), the incremental transition matrix
would be

[Pij (dt)] =
⎛
⎝
1 − 2λ dt 2λ dt 0

μ dt 1 − (λ + μ) dt λ dt
0 0 1

⎞
⎠ .

The differential equations would become (see Fig. 8.4)

P′
1(t) = −2λP1(t) + μP2(t),
P′
2(t) = 2λP1(t) + (λ + μ)P2(t),

and the transformed equations would become

(s+ 2λ) f1(s) − μf2(s) = 1,
−2λ f1(s) + (s+ λ + μ) f2(s) = 0.

Hence, we obtain

f1(s) = (s+ λ + μ)

(s− s1) (s− s2)
,

f2(s) = 2λ

(s− s1) (s− s2)
,

(8.7)
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1

2λ

μ

λ

2 3

Fig. 8.4 Markov transition rate diagram for a two-component parallel
repairable system

where

s1 = − (3λ + μ) +
√

(3λ + μ)2 − 8λ2

2
,

s2 = − (3λ + μ) −
√

(3λ + μ)2 − 8λ2

2
.

(8.8)

Using the Laplace transform, we obtain

P1(t) = (s1 + λ + μ) e−s1t

(s1 − s2)
+ (s2 + λ + μ) e−s2t

(s2 − s1)
,

P2(t) = 2λe−s1t

(s1 − s2)
+ 2λe−s2t

(s2 − s1)
,

(8.9)

where s1 and s2 are given in Eq. (8.8).
Thus, the reliability of a two-component parallel

repairable system is given by

R(t) = P1(t) + P2(t)

= (s1 + 3λ + μ) e−s1t − (s2 + 3λ + μ) e−s2t

(s1 − s2)

(8.10)

Example 8.2 Consider a three-unit shared load parallel sys-
tem where

λ0 is the constant failure rate of a unit when all the three units
are operational;

λh is the constant failure rate of each of the two surviving
units, each of which shares half of the total load; and

λf is the constant failure rate of a unit at full load.

For a shared-load parallel system to fail, all the units in the
system must fail. We now derive the reliability of a three-unit
shared-load parallel system using the Markov model.

In reliability analysis, for the three-unit load-sharing sys-
tem to work the following events would be considered:

Event 1: All the three units are working until the end of the
mission time twhere each unit shares one-third of the total
load.

Event 2: All the three units are working until time t1 (each
shares one-third of the total load). At time t1, one of the
units (say unit 1) fails, and the other two units (say units 2

i = 3 i = 0

i = 2 i = 1

1

2lh

1

l f3l0

Fig. 8.5 Markov model diagram for a three-unit shared-load parallel
system

and 3) remain towork until themission time t. Here, once a
unit fails at time t1, the remaining twoworking units would
take half each of the total load and have a constant rate λh.
As for all identical units, there are three possibilities under
this situation.

Event 3: All the three units are working until time t1 (each
shares one-third of the total load) when one (say unit 1)
of the three units fails. At time t2, (t2 > t1) one more unit
fails (say unit 2) and the remaining unit works until the
end of the mission time t. Under this event, there are six
possibilities that the probability of two units failing before
time t and only one unit remains to work until time t.

Define state i represents that i components are working.
Let Pi(t) denote the probability that the system is in state i
at time t for i = 0,1,2,3. Figure 8.5 below shows the Markov
diagram of the system.

The Markov modeling system of differential equations
based on Fig. 8.1 can be easily derived as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP3(t)

dt
= −3λ0P3(t)

dP2(t)

dt
= 3λ0P3(t) − 2λhP2(t)

dP1(t)

dt
= 2λhP2(t) − λfP1(t)

dP0(t)

dt
= λfP1(t)

P3(0) = 1
Pj(0) = 0, j �= 3
P0(t) + P1(t) + P2(t) + P3(t) = 1

(8.11)

Solving the above differential equations using the Laplace
transform method (see Appendix A), we can easily obtain
the following results:

P3(t) = e−3λ0t
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P2(t) = 3λ0

3λh − 3λ0

(
e−3λ0t − e−2λht

)

P1(t) = 6λ0λh

(2λh − 3λ0)[
e−3λ0t

(λf − 3λ0)
− e−2λht

(λf − 2λh)
+ (2λh − 3λ0) e−λf t

(λf − 3λ0) (λf − 2λh)

]

(8.12)

Hence, the reliability of a three-unit shared load parallel
system can be obtained as follows:

R(t) = P3(t) + P2(t) + P1(t)

= e−3λ0t + 3λ0

2λh − 3λ0

(
e−3λ0t − e−2λht

)

+ 6λ0λh

(2λh − 3λ0)

[
e−3λ0t

(λf − 3λ0)
− e−2λht

(λf − 2λh)

+ (2λh − 3λ0) e−λf t

(λf − 3λ0) (λf − 2λh)

]

(8.13)

8.2.1 SystemMean Time Between Failures

Another parameter of interest for absorbing Markov pro-
cesses is the MTBF. Recalling Example 8.1 of a parallel
configuration with repair, the differential equations P′

1(t) and
P′
2(t) describing the process were

P′
1(t) = −2λP1(t) + μP2(t),
P′
2(t) = 2λP1(t) − (λ + μ)P2(t).

Integrating both sides of the above equations yields

∫ ∞

0
P1

′(t)dt = −2λ
∫ ∞

0
P1(t)dt + μ

∫ ∞

0
P2(t)dt,

∫ ∞

0
P2

′(t)dt = 2λ
∫ ∞

0
P1(t)dt − (λ + μ)

∫ ∞

0
P2(t)dt.

For the repairable system, we have

∫ ∞

0
R(t)dt = MTBF. (8.14)

Similarly,

∫ ∞

0
P1(t)dt = mean time spent in state 1, and

∫ ∞

0
P2(t)dt = mean time spent in state 2.

Designating these mean times as T1 and T2, respectively, we
have

P1(t)dt|∞0 = −2λT1 + μT2,
P2(t)dt|∞0 = 2λT1 − (λ + μ) T2.

But P1(t) = 0 as t → ∞ and P1(t) = 1 for t = 0. Likewise,
P2(t) = 0 as t → ∞ and P2(t) = 0 for t = 0. Thus,

−1 = −2λT1 + μT2,
0 = 2λT1 − (λ + μ)T2,

or, equivalently,

(−1
0

)
=
(−2λ μ

2λ − (λ + μ)

)(
T1
T2

)
.

Therefore,

T1 = (λ + μ)

2λ2
, T2 = 1

λ
,

MTBF = T1 + T2 = (λ + μ)

2λ2
+ 1

λ
= (3λ + μ)

2λ2
.

(8.15)

The MTBF for unmaintained processes is developed in ex-
actly the same way as just shown.

The last case to consider for absorbing processes is that
of the availability of a maintained system. The difference
between reliability and availability is somewhat subtle for
absorbing processes. A good example is that of a commu-
nications system where the mission would continue if such
a system failed temporarily, but if it failed permanently the
mission would be aborted. Consider a cold-standby system
consisting of two units: one main unit and one spare unit [1]:

State 1: Main unit operating and the spare is OK

State 2: Main unit out and restoration underway

State 3: Spare unit is installed and operating

State 4: Permanent failure (no spare available)

The incremental transition matrix is given by

[Pij (dt)] =

⎛
⎜⎜⎝

1 − λdt λ dt 0 0
0 1 − μ dt μ dt 0
0 0 1 − λ dt λ dt
0 0 0 1

⎞
⎟⎟⎠ .

We obtain

P′
1(t) = −λP1(t),
P′
2(t) = λP1(t) − μP2(t),
P′
3(t) = μP2(t) − λP3(t).

Using the Laplace transform, we obtain the following results.
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The probability of full-up performance P1(t) is given by

P1(t) = e−λt.

The probability of a down system that is under repair P2(t) is

P2(t) =
(

λ

(λ − μ)

) (
e−μt − e−λt

)
.

Similarly, the probability of a fully up system with no spare
available P3(t) is

P3(t) =
(

λμ

(λ − μ)2

) [
e−μt − e−λt − (λ − μ) t e−λt

]
.

Hence, the point availability A(t) is given by

A(t) = P1(t) + P3(t). (8.16)

If average or interval availability is required, this is achieved
by

(
1

t

)∫ T

0
A(t)dt =

(
1

t

)∫ T

0
[P1(t) + P3(t)] dt,

where T is the interval of concern.
Ergodic processes, as opposed to absorbing processes, do

not have any absorbing states, and hence movement between
states can go on indefinitely. For the latter reason, availabil-
ity (point, steady-state, or interval) is the only meaningful
measure. As an example of an ergodic process, we will use a
ground-based power unit configured in parallel.

The parallel units are identical, each with exponential
failure and repair times with means 1/λ and 1/μ, respectively.
Assume a two-repairmen capability if required (both units
down), then

State 1: Fully up (both units operating)

State 2: One unit down and under repair (other unit up)

State 3: Both units down and under repair

It should be noted that, as in the case of failure events, two
or more repairs cannot be made in the dt interval.

[Pij (dt)] =
⎛
⎝
1 − 2λ dt 2λ dt 0

μ dt 1 − (λ + μ) dt λdt
0 2μ dt 1 − 2μ dt

⎞
⎠ .

Case I: Point Availability – Ergodic Process. For an er-
godic process, as t → ∞ the availability settles down to
a constant level. Point availability allows us to study the
process before this “settling down,” and it reflects the initial
conditions in the process. We can obtain a solution for the
point availability in a similar way to that for absorbing

processes, except that the last row and column of the tran-
sition matrix must be retained and entered into the system of
equations. For example, the system of differential equations
becomes

⎛
⎝
P1

′(t)
P2

′(t)
P3

′(t)

⎞
⎠ =

⎛
⎝

−2λ μ 0
2λ − (λ + μ) 2μ
0 λ −2μ

⎞
⎠
⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠ .

Similar to the absorbing case, the Laplace transform can be
used to solve for P1(t), P2(t) and P3(t); the point availability
A(t) is given by

A(t) = P1(t) + P2(t).

Case II: Interval Availability – Ergodic Process. This is
the same as the absorbing case, with integration over the time
period T of interest. The interval availability, A(T), is

A(T) = 1

T

∫ T

0
A(t)dt. (8.17)

Case III: Steady State Availability – Ergodic Process.
Here, the process is examined as t → ∞, with complete
“washout” of the initial conditions. By letting t → ∞, the
system of differential equations can be transformed into
linear algebraic equations. Thus,

lim
t→∞

⎛
⎝
P′
1(t)
P′
2(t)
P′
3(t)

⎞
⎠

= lim
t→∞

⎛
⎝

−2λ μ 0
2λ − (λ + μ) 2μ
0 λ −2μ

⎞
⎠
⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠ .

As t → ∞, Pi(t) → constant and P1
′
(t) → 0. This leads to an

unsolvable system, namely,

⎛
⎝

0
0
0

⎞
⎠ =

⎛
⎝

−2λ μ 0
2λ −(λ + μ) 2μ
0 λ −2μ

⎞
⎠
⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠ .

To avoid the above difficulty, an additional equation is intro-
duced:

3∑
i=1

Pi(t) = 1.

With the introduction of the new equation, one of the original
equations is deleted and a new system is formed:

⎛
⎝

1
0
0

⎞
⎠ =

⎛
⎝

1 1 1
− 2λ μ 0
2λ − (λ + μ) 2μ

⎞
⎠
⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠
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or, equivalently,

⎛
⎝
P1(t)
P2(t)
P3(t)

⎞
⎠ =

⎛
⎝

1 1 1
− 2λ μ 0
2λ − (λ + μ) 2μ

⎞
⎠

−1⎛
⎝

1
0
0

⎞
⎠ .

We now obtain the following results:

P1(t) = μ2

(μ + λ)2
,

P2(t) = 2λμ

(μ + λ)2
,

and

P3(t) = 1 − P1(t) − P2(t)

= λ2

(μ + λ)2
.

Therefore, the steady state availability A(∞) is given by

A3 (∞) = P1(t) + P2(t)

= μ (μ + 2λ)

(μ + λ)2
.

(8.18)

Note that Markov methods can also be employed when
failure or repair times are not exponential but can be repre-
sented as the sum of exponential times with identical means
(an Erlang distribution or gamma distribution with integer-
valued shape parameters). Basically, the method involves
introducing “dummy” states which, although being of no
particular interest in themselves, change the hazard function
from constant to increasing.

Example 8.3 A system is composed of eight identical active
power supplies, at least seven of the eight are required for the
system to function. In other words, when two of the eight
power supplies fail, the system fails. When all eight power
supplies are operating, each has a constant failure rate λa per
hour. If one power supply fails, each remaining power supply
has a failure rate λb per hour where λa ≤ λb We assume that a
failed power supply can be repaired with a constant rateμ per
hour. The system reliability function, R(t), is defined as the
probability that the system continues to function throughout
the interval (0, t). Here wewish to determine the systemmean
time to failure (MTTF).

Define

State 0: All 8 units are working
State 1: 7 units are working
State 2: More than one unit failed and system does not

work
The initial condition: P0(0) = 1, P1(0) = P2(0) = 0

0

8la 7lb

m

1 2

Fig. 8.6 Markov transition rate diagram for a 7-out-8 dependent sys-
tem

The Markov modeling of differential equations (see Fig. 8.6)
can be written as follows:

P′
0(t) = −8λaP0(t) + μP1(t)
P′
1(t) = 8λaP0(t) − (7λb + μ)P1(t)
P′
2(t) = 7λbP1(t)

Using the Laplace transform, we obtain

⎧⎨
⎩
sF0(s) − P0(0) = −8λaF0(s) + μF1(s)
sF1(s) − P1(0) = 8λaF0(s) − (7λb + μ)F1(s)
sF2(s) − P2(0) = 7λbF1(s)

(8.19)

When s = 0:

Fi(0) =
∫ ∞

0
Pi(t)dt.

Thus, the system reliability function and system MTTF,
respectively, are

R(t) = P0(t) + P1(t). (8.20)

and

MTTF =
∫ ∞

0
R(t)dt =

∫ ∞

0
[P0(t) + P1(t)] dt =

2∑
i=1

Fi(0).

(8.21)

From Eq. (8.19), when s = 0, we have

{ −1 = −8λaF0(0) + μF1(0)
0 = 8λaF0(0) − (7λb + μ)F1(0).

(8.22)

From Eq. (8.22), after some arrangements, we can obtain

7λbF1(0) = 1 ⇒ F1(0) = 1

7λb

and
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F0(0) = 7λb + μ

8λa
F1(0)

= 7λb + μ

8λa

1

7λb
= 7λb + μ

56λaλb

From Eq. (8.21), the system MTTF can be obtained

MTTF =
∫ ∞

0
R(t)dt =

∫ ∞

0
[P0(t) + P1(t)] dt

= F0(0) + F1(0)

= 7λb + μ

56λaλb
+ 1

7λb
= μ + 8λa + 7λb

56λaλb
.

Given λa = 3 × 10−3 = 0.003, λb = 5 × 10−2 = 0.05, and
μ = 0.8, then the system mean time to failure is given by:

MTTF = μ + 8λa + 7λb

56λaλb

= 0.8 + 8(0.003) + 7(0.05)

56(0.003)(0.05)
= 1.174

0.0084
= 139.762 hours.

8.3 Counting Processes

Among various discrete stochastic processes, counting pro-
cesses are widely used in engineering statistics to describe
the appearance of events in time, such as failures, the number
of perfect repairs, etc. The simplest counting process is a
Poisson process. The Poisson process plays a special role in
many applications related to reliability [1]. A classic example
of such an application is the decay of uranium. Here, radioac-
tive particles from nuclear material strike a certain target in
accordance with a Poisson process of some fixed intensity.
One well-known counting process is the so-called renewal
process. This process is described as a sequence of events
where the intervals between the events are independent and
identically distributed random variables. In reliability theory,
this type of mathematical model is used to describe the
number of occurrences of an event or the number of renewals
(i.e., replacements of objects) over a time interval. A light
bulb is shining in your living room and it blows ups suddenly.
You replace it by a new bulb. It lasts for a few months, then
burns out again. You then replace it again, and so on. One
would be interested to know about the total number of bulbs
is needed to be replaced in 2 years.

In this subsection, we discuss the concepts and properties
of the Poisson process, renewal process, quasi-renewal pro-
cess, and nonhomogeneous Poisson process.

A non-negative, integer-valued stochastic process N(t) is
called a counting process if N(t) represents the total number
of occurrences of an event in the time interval [0, t] and
satisfies these two properties:

1. If t1 < t2, then N(t1) ≤ N(t2)
2. If t1 < t2, then N(t2) − N(t1) is the number of occurrences

of the event in the interval [t1, t2].

For example, if N(t) equals the number of persons who
have entered a restaurant at or prior to time t, then N(t) is a
counting process in which an event occurs whenever a person
enters the restaurant.

8.3.1 Poisson Processes

One of the most important counting processes is the Poisson
process.

Definition 8.3 A counting process N(t) is said to be a
Poisson process with intensity λ if

1. The failure process N(t) has stationary independent incre-
ments

2. The number of failures in any time interval of length s has
a Poisson distribution with a mean of λs; in other words

P {N (t + s) − N(t) = n} = e−λs(λs)n

n!
n = 0, 1, 2, . . . ;

(8.23)

3. The initial condition is N(0) = 0

This model is also called a homogeneous Poisson process,
indicating that the failure rate λ does not depend on time t. In
other words, the number of failures that occur during the time
interval (t, t + s] does not depend on the current time t, only
the length of the time interval s. A counting process is said
to possess independent increments if the number of events in
disjoint time intervals are independent.

For a stochastic process with independent increments, the
autocovariance function is

Cov [X (t1) , X (t2)]

=
{
Var [N (t1 + s) − N (t2)] for 0 < t2 − t1 < s
0 otherwise

,

where

X(t) = N (t + s) − N(t).

If X(t) is Poisson-distributed, then the variance of the Poisson
distribution is

Cov [X (t1) , X (t2)]

=
{

λ [s− (t2 − t1)] for 0 < t2 − t1 < s
0 otherwise

.
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This result shows that the Poisson increment process is
covariance stationary. We now present several properties of
the Poisson process.

Property 8.1 The sum of independent Poisson processes
N1(t), N2(t), . . . , Nk(t) with mean values λ1t, λ2t, . . . , λkt,

respectively, is also a Poisson process with mean

(
k∑
i=1

λi

)
t.

In other words, the sum of the independent Poisson processes
is also a Poisson process with a mean that is equal to the sum
of the means of the individual Poisson processes.

Property 8.2 The difference between two independent Pois-
son processes,N1(t) andN2(t), with mean λ1t and λ2t, respec-
tively, is not a Poisson process. Instead, it has a probability
mass function of

P [N1(t) − N2(t) = k]

= e−(λ1+λ2)t

(
λ1

λ2

) k
2

Ik
(
2
√

λ1λ2t
)
,

where Ik(.) is a modified Bessel function of order k.

Property 8.3 If the Poisson process N(t) with mean λt is
filtered such that not every occurrence of the event is counted,
then the process has a constant probability p of being counted.
The result of this process is a Poisson process with mean λpt.

Property 8.4 Let N(t) be a Poisson process and Yi a family
of independent and identically distributed random variables
which are also independent of N(t). A stochastic process
X(t) is said to be a compound Poisson process if it can be
represented as

X(t) =
N(t)∑
i=1

Yi.

8.3.2 Renewal Processes

A renewal process is a more general case of the Poisson pro-
cess inwhich the inter-arrival times of the process or the times
between failures do not necessarily follow the exponential
distribution. For convenience, we will call the occurrence of
an event a renewal, the inter-arrival time the renewal period,
and the waiting time the renewal time.

Definition 8.3 A counting process N(t) that represents the
total number of occurrences of an event in the time interval
(0, t] is called a renewal process if the times between the
failures are independent and identically distributed random
variables.

The probability that exactly n failures occur by time t can
be written as

P [N(t) = n] = P [N(t) ≥ n] − P [N(t) > n] . (8.24)

Note that the times between the failures are T1, T2, . . . , Tn,
so the failures occurring at time Wk are

Wk =
k∑
i=1

Ti

and

Tk = Wk −Wk−1.

Thus,

P [N(t) = n] = P [N(t) ≥ n] − P [N(t) > n]

= P [Wn ≤ t] − P [Wn+1 ≤ t]

= Fn(t) − Fn+1(t),

(8.25)

where Fn(t) is the cumulative distribution function for the
time of the nth failure and n = 0, 1, 2, . . . .

Example 8.4 Consider a software testing model for which
the time at which an error is found during the testing phase
has an exponential distribution with a failure rate of X. It can
be shown that the time of the nth failure follows the gamma
distribution with parameters k and n. From Eq. (8.24), we
obtain

P [N(t) = n] = P [N(t) ≤ n] − P [N(t) ≤ n− 1]

=
n∑

k=0

(λt)k

k! e−λt −
n−1∑
k=0

(λt)k

k! e−λt

= (λt)n

n! e−λt for n = 0, 1, 2, . . . .

(8.26)

Several important properties of the renewal function are
given below.

Property 8.5 The mean value function of the renewal pro-
cess, denoted by m(t), is equal to the sum of the distribution
functions for all renewal times, that is,

m(t) = E [N(t)]

=
∞∑
n=1

Fn(t).
(8.27)

Property 8.6 The renewal functionm(t) satisfies the follow-
ing equation:

m(t) = Fa(t) +
∫ t

0
m (t − s) dFa(s), (8.28)
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where Fa(t) is the distribution function of the inter-arrival
time or the renewal period.

In general, let y(t) be an unknown function to be eval-
uated and x(t) be any non-negative and integrable function
associated with the renewal process. Assume that Fa(t) is
the distribution function of the renewal period. We can then
obtain the following result.

Property 8.7 Let the renewal equation be

y(t) = x(t) +
∫ t

0
y (t − s) dFa(s). (8.29)

Then its solution is given by

y(t) = x(t) +
∫ t

0
x (t − s) dm(s)

wherem(t) is the mean value function of the renewal process.
The proof of the above property can be easily derived

using the Laplace transform. Let x(t) = a. Thus, in Property
8.7, the solution y(t) is given by

y(t) = x(t) +
∫ t

0
x (t − s) dm(s).

= a+
∫ t

0
a dm(s)

= a
{
1 + E [N(t)]

}
.

8.3.3 Quasi-Renewal Processes

In this section we discuss a general renewal process: the
quasi-renewal process. Let {N(t), t > 0} be a counting process
and let Xn be the time between the (n− 1)th and the nth event
of this process, n ≥ 1.

Definition 8.4 [2] If the sequence of non-negative random
variables {X1, X2, . . . } is independent and

Xi = αXi−1 (8.30)

for i≥ 2 where α > 0 is a constant, then the counting process
{N(t), t ≥ 0} is said to be a quasi-renewal process with
parameter α and the first inter-arrival time X1.

When α = 1, this process becomes the ordinary renewal
process. This quasi-renewal process can be used to model
reliability growth processes in software testing phases and
hardware burn-in stages for α > 1, and in hardware mainte-
nance processes when α ≤ 1.

Assume that the probability density function (pdf), cu-
mulative distribution function (cdf), survival function, and
failure rate of random variable X1 are f1(x), F1(x), s1(x) and

r1(x), respectively. Then the pdf, cdf, survival function, and
failure rate of Xn for n = 1, 2, 3, . . . are, respectively, given
below [2]:

fn(x) = 1

αn−1
f1

(
1

αn−1
x

)
,

Fn(x) = F1

(
1

αn−1
x

)
,

sn(x) = s1

(
1

αn−1
x

)
,

fn(x) = 1

αn−1
r1

(
1

αn−1
x

)
.

(8.31)

Similarly, the mean and variance of Xn is given as

E (Xn) = αn−1E (X1) ,
Var (Xn) = α2n−2Var (X1) .

(8.32)

Because of the non-negativity of X1, and the fact that X1 is
not identically 0, we obtain

E (X1) = μ1 �= 0.

It is worth noting that the shape parameters for Xn are the
same for n = 1, 2, 3, . . . for a quasi-renewal process if X1

follows the gamma, Weibull, or log normal distribution.
This means that the shape parameters of the inter-arrival

time will not change after “renewal”. In software reliability,
the assumption that the software debugging process does not
change the error-free distribution seems reasonable. Thus, if a
quasi-renewal process model is used, the error-free times that
occur during software debugging will have the same shape
parameters. In this sense, a quasi-renewal process is suitable
for modeling the increase in software reliability. It is worth
noting that

lim
n→∞

E (X1 + X2 + · · · + Xn)

n
= lim

n→∞
μ1 (1 − αn)

(1 − α) n

=
{
0 if α < 1,
∞ if α > 1.

(8.33)

Therefore, if the inter-arrival time represents the error-
free time of a software system, then the average error-free
time approaches infinitywhen its debugging process has been
operating for a long debugging time.

Distribution of N(t)
Consider a quasi-renewal process with parameter α and a first
inter-arrival time X1. Clearly, the total number of renewals
N(t) that occur up to time t has the following relationship to
the arrival time of the nth renewal SSn:

N(t) ≥ n if and only if SSn ≤ t.
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In other words, N(t) is at least n if and only if the nth renewal
occurs prior to time t. It is easily seen that

SSn =
n∑
i=1

Xi =
n∑
i=1

αi−1X1 for n ≥ 1. (8.34)

Here, SS0 = 0. Thus, we have

P {N(t) = n} = P {N(t) ≥ n} − P {N(t) ≥ n+ 1}
= P {SSn ≤ t} − P {SSn+1 ≤ t}
= Gn(t) − Gn+1(t),

where Gn(t) is the convolution of the inter-arrival times F1,
F2, F3, . . . , Fn. In other words,

Gn(t) = P {F1 + F2 + · · · + Fn ≤ t} .

If the mean value of N(t) is defined as the renewal function
m(t), then

m(t) = E [N(t)]

=
∞∑
n=1

P {N(t) ≥ n}

=
∞∑
n=1

P {SSn ≤ t}

=
∞∑
n=1

Gn(t).

(8.35)

The derivative of m(t) is known as the renewal density

λ(t) = m′(t).

In renewal theory, random variables representing inter-
arrival distributions assume only non-negative values, and
the Laplace transform of its distribution F1(t) is defined by

L {F1(s)} =
∫ ∞

0
e−sxdF1(x).

Therefore,

LFn(s) =
∫ ∞

0
e−an−1stdF1(t) = LF1

(
αn−1s

)

and

Lmn(s) =
∞∑
n−1
LGn(s)

=
∞∑
n−1
LF1(s)LF1 (αs) · · ·LF1

(
αn−1s

)
.

(8.36)

Since there is a one-to-one correspondence between distri-
bution functions and its Laplace transform, it follows that
the first inter-arrival distribution of a quasi-renewal process
uniquely determines its renewal function.

If the inter-arrival time represents the error-free time
(time to first failure), a quasi-renewal process can be
used to model reliability growth in both software and
hardware.

Suppose that all software faults have the same chance of
being detected. If the inter-arrival time of a quasi-renewal
process represents the error-free time of a software system,
then the expected number of software faults in the time
interval [0, t] can be defined by the renewal function, m(t),
with parameter α > 1. Denoted by mr(t), the number of
remaining software faults at time t, it follows that

mr(t) = m (Tc) − m(t),

where m(Tc) is the number of faults that will eventually be
detected through a software lifecycle Tc.

8.3.4 Nonhomogeneous Poisson Processes

The nonhomogeneous Poisson process model (NHPP),
which represents the number of failures experienced up
to time t, is a nonhomogeneous Poisson process {N(t) with
t ≥ 0}. The main issue with the NHPP model is to determine
an appropriate mean value function to denote the expected
number of failures experienced up to a certain time.

Different assumptions mean that the model will end up
with different functional forms of the mean value function.
Note that the exponential assumption for the inter-arrival time
between failures is relaxed in a renewal process, and the
stationary assumption is relaxed in the NHPP.

The NHPP model is based on the following assump-
tions:

• The failure process has an independent increment; in other
words, the number of failures during the time interval (t,
t + s) depends on the current time t and the length of the
time interval s, and does not depend on the past history of
the process.

• The failure rate of the process is given by

P {exactly one failure in (t, t + �t)}
= P {N (t + �t) − N(t) = 1}
= λ(t)�t + o (�t) ,

where λ(t) is the intensity function.
• During a small interval �t, the probability of more than

one failure is negligible; that is,
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P {two or more failures in (t, t + �t)} = o (�t) ,

• The initial condition is N(0) = 0.

Based on these assumptions, the probability that exactly n
failures occur during the time interval (0, t) for the NHPP is
given by

Pr {N(t) = n} = [m(t)]n

n! e−m(t) n = 0, 1, 2, . . . , (8.37)

where m(t) = E [N(t)] = ∫ t
0 λ(s) ds and λ(t) is the intensity

function. It is easily shown that the mean value function m(t)
is nondecreasing.

The reliability R(t), defined as the probability that there
are no failures in the time interval (0, t), is given by

R(t) = P {N(t) = 0}
= e−m(t).

(8.38)

In general, the reliability R(x | t) – the probability that there
are no failures in the interval (t, t + x) – is given by

R (x | t) = P {N (t + x) − N(t) = 0}
= e−[m(t+x)−m(t)]

and its density is given by

f (x) = λ (t + x) e−[m(t+x)−m(t)],

where

λ(x) = ∂

∂x
[m(x)] .

The variance of the NHPP can be obtained as follows:

Var [N(t)] =
∫ t

0
λ(s)ds

and the autocorrelation function is given by

Cor [s] = E [N(t)]E [N (t + s) − N(t)] + E
[
N2(t)

]

=
∫ t

0
λ(s)ds

∫ t+s

0
λ(s)ds+

∫ t

0
λ(s)ds

=
∫ t

0
λ(s)ds

[
1 +

∫ t+s

0
λ(s)ds

]
.

(8.39)

Example 8.5 Assume that the intensity λ is a random vari-
able with pdf f (λ). Then the probability that exactly n failures
occur during the time interval (0, t) is given by

P {N(t) = n} =
∫ ∞

0
e−λt (λt)

n

n! f (λ) dλ. (8.40)

If the pdf f (λ) is given as the following gamma density
function with parameters k and m:

f (λ) = 1

�(m)
kmλm−1e−kλ for λ ≥ 0 (8.41)

then it can be shown that

P {N(t) = n} =
(
n+ m− 1

n

)
pmqn n = 0, 1, 2, . . .

(8.42)

(this is also called a negative binomial density function),
where

p = k

t + k
and q = t

t + k
= 1 − p. (8.43)

8.4 Further Reading

The reader interested in a deeper understanding of advanced
probability theory and stochastic processes should note the
following citations, which refer to highly recommended
books: Feller [3]; Pinksy and Karlin [4], Parzen [5], Melsa
and Sage [6].

Appendix A: Laplace Transformation
Functions

Let X be a nonnegative life time having probability density
function f. The Laplace transform of a function f (x), denote
f*, is defined as

� {f (x)} = f ∗(s) =
∫ ∞

0
e−sxf (x)dx for s ≥ 0. (8.44)

The function f* is called the Laplace transform of the func-
tion f. The symbol � in Eq. (8.44) is called the Laplace trans-
form operator. Note that f∗(0) = 1. By taking a differential
derivative of f*(s), we obtain

∂f ∗(s)
∂s

= −
∫ ∞

0
xe−sxf (x)dx.

Substitute s = 0 into the above equation, the first derivative
of f*, it yields the negative of the expected value of X or the
first moment of X:

∂f ∗(s)
∂s

∣∣∣∣
s=0

= −E(X).

Similarly, the second derivative yields the second moment of
X when s = 0, that is,
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∂f ∗(s)
∂s

∣∣∣∣
s=0

=
∫ ∞

0
x2e−sxf (x)dx

∣∣∣∣
s=0

= E
(
X2
)
.

In general, it can be shown that

∂nf ∗(s)
∂ns

∣∣∣∣
s=0

=
∫ ∞

0
(−x)ne−sxf (x)dx

∣∣∣∣
s=0

= (−1)nE (Xn)

Note that

e−sx =
∞∑
n=0

(−sx)n
n!

then f*(s) can be rewritten as

f ∗(s) =
∞∑
n=0

(−s)n
n! μn,

where

μn = (−1)n
∂nf ∗(s)

∂ns

∣∣∣∣
s=0

=
∫ ∞

0
xne−sxf (x)dx

∣∣∣∣
s=0

= E (Xn) .

We can easily show that � is a linear operator, that is

� {c1f1(x) + c2f2(x)} = c1� {f1(x)} + c2� {f2(x)} .

If �{f (t)} = f∗(s), then we call f (t) the inverse Laplace trans-
form of f*(s) and write �−1{f∗ (s)} = f (t) A summary of some
common Laplace transform functions is listed in Table 8.1.

Example 8.6 Use the Laplace transforms to solve the fol-
lowing

∂f (t)

∂t
+ 3f (t) = e−t, (8.45)

with an initial condition: f (0) = 0. Obtain the solution f (t).
Here the Laplace transforms of ∂f (t)

∂t , f (t), and e−t are

sf ∗(s) − f (0), f ∗(s), and
1

s+ 1

respectively. Thus, the Laplace transform of Eq. (8.45) is
given by

sf ∗(s) − f (0) + 3f ∗(s) = 1

s+ 1
.

Since f (0) = 0 we have

(s+ 3) f ∗(s) = 1

s+ 1
or f ∗(s) = 1

(s+ 1) (s+ 3)
.

Table 8.1 List of common Laplace transforms

f (t) �{f (t)} = f∗ (s)

f (t) f ∗(s) = ∫∞
0 e−stf (t)dt

∂f (t)
∂t s f∗ (s) − f (0)

∂2

∂t2
[f (t)] s2f ∗(s) − s f (0) − ∂

∂t f (0)

∂n

∂tn [f (t)] sn f ∗(s) − sn−1 f (0) − · · · −
∂n−1

∂tn−1 f (0)

f (at) 1
a f

∗ ( s
a

)

1 1
s

t 1
s2

a a
s

e−at 1
s+a

teat 1
(s−a)2

(1 + at)eat s
(s−a)2

1
a e

− t
a 1

(1+sa)
tp for p > − 1 �(p+1)

sp+1 for s > 0

tn n = 1, 2, 3, . . . n!
sn+1 s > 0

1
a

(
1 − e−at) 1

s(s+a)
1
a

(
eat − 1

) 1
s(s−a)

1
a2
(
e−at + at − 1

) 1
s2(s+a)

1
b−a

(
e−at − e−bt) 1

(s+a) (s+b) a �= b
(
aeat−bebt)
a−b

s
(s−a) (s−b) a �= b

αktk−1e−αt

�(k)

(
α

α+s
)k

From Table 8.1, the inverse transform is

f (t) = 1

3 − 1

(
e−t − e−3t

) = 1

2

(
e−t − e−3t

)
. (8.46)

Example 8.7 Let X be an exponential random variable with
constant failure rate λ, that is, f (x) = λe−λx then we have

f ∗(s) =
∫ ∞

0
λe−sxe−λxdx = λ

s+ λ
. (8.47)

If X and Y are two independent random variables that repre-
sent life times with densities f1 and f2, respectively, then the
total life time’s Z of those two X and Y, says Z = X + Y, has
a pdf g that can be obtained as follows

g(z) =
∫ z

0
f1(x)f2 (z− x) dx.

The Laplace transform of g in terms of f1 and f2 can be written
as
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g∗(s) =
∫ ∞

0
e−szg(z)dz =

∫ ∞

0

∫ z

0
e−szf1(x)f2 (z− x) dxdz

=
∫ ∞

0
e−sxf1(x)dx

∫ ∞

x
e−s(z−x)f2 (z− x) dz

= f ∗1 (s)f ∗2 (s).
(8.48)

Example 8.8 If X and Y are both independent having the
following pdfs: f1(x) = λe−λx and f2(y) = λe−λy for x, y ≥ 0
and λ ≥ 0 then we have

g∗(s) = f ∗1 (s)f ∗2 (s) =
(

λ

s+ λ

)2

. (8.49)

From the Laplace transform Table 8.1, the inverse transform
to solve for g(z) is

g(z) = λ2t e−λt

�(2)

which is a special case of gamma pdf.
From Eq. (8.48), one can easily show the Laplace trans-

form of the density function gn of the total life time Sn of n
independent life time’s Xi with their pdf fi for i = 1,2,...,n,
that

g∗
n(s) = f ∗1 (s)f ∗2 (s) . . . f ∗n (s) =

n∏
i=1

f ∗1 (s) (8.50)

If the pdf of n life time X1, X2,...,Xn are independent and
identically distributed (i.i.d.) having a constant failure rate
λ, then

g∗
n(s) = (

f ∗(s)
)n =

(
λ

s+ λ

)n

.

From the Laplace transform table, we obtain the inverse
transform for the solution function g as follows

gn(z) = λntn−1e−λt

�(n)
. (8.51)
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Abstract

Progressive censoring has received great attention in the
last decades especially in life testing and reliability. This
review highlights fundamental applications, related mod-
els, and probabilistic and inferential results for progres-
sively censored data. Based on the fundamental models
of progressive type I and type II censoring, we present
related models like adaptive and hybrid censoring as well
as, e.g., stress-strength and competing risk models for pro-
gressively censored data. Focusing on exponentially and
Weibull distributed lifetimes, an extensive bibliography
emphasizing recent developments is provided.
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9.1 Introduction and Fundamental
Models

Monograph-length accounts on progressive censoring
methodology have been provided by Balakrishnan and
Cramer [1] and Balakrishnan and Aggarwala [2], while
detailed reviews are due to [3] and [4]. In particular, [1]
provides an up-to-date account to progressive censoring
including many references and detailed explanations.
Therefore, we provide essentially the basic models
and results in the following, accompanied by recent
developments and references which are not covered in the
mentioned monograph.
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9.1.1 Basic Ideas of Progressive Censoring

According to [5], a progressively censored life testing exper-
iment is conducted as follows. n items are put simultaneously
on a test. At times τ1 < · · · < τm, some items are
randomly chosen among the surviving ones and removed
from the experiment (see Fig. 9.1). In particular, at time τj,
Rj items are withdrawn from the experiment. Originally,
[5] had introduced two versions of progressive censoring,
called type I and type II progressive censoring. In progressive
type I censoring, the censoring times τ1 < · · · < τm are
assumed to be fixed in advance (e.g., as prefixed inspection or
maintenance times). For a better distinction, fixed censoring
times are subsequently denoted by T1 < · · · < Tm. Moreover,
the censoring plan R = (R1, . . . , Rm) is prespecified at the
start of the life test. But, as failures occur randomly, it may
happen that at some censoring time Tj, less than Rj items have
survived. In that case, all the remaining items are withdrawn,
and the life test is terminated at Tj. Notice that, due to this
construction, observations beyond the largest censoring time
Tm are possible. At this point, it is worth mentioning that the
understanding of progressive type I censoring has changed
over time. As has been noted in [6], the understanding of the
term progressive type I censoring has been used differently
after the publication of monograph [2] [see also 7]. Since
then, right censoring has been considered as a feature of
progressive type I censoring, that is, Tm is considered as a

termination time of the experiment (see Fig. 9.2). Therefore,
in progressive type I censoring, we distinguish the initially
planned censoring plan R0 = (R0

1, . . . , R
0
m−1) from the

effectively applied one denoted by R = (R1, . . . , Rm−1).
Notice that we drop the mth censoring number Rm in the
plan since it is always random due to the right censoring. In
order to distinguish these scenarios, [6] called the original
scenario Cohen’s progressive censoring scheme with fixed
censoring times.

The second version of progressive censoring proposed by
Cohen [5] is called progressive type II censoring which may
be considered as the most popular version of progressive
censoring. Here, the censoring times are induced by the
lifetimes of the surviving units in the sense that the next
withdrawal is carried out the first failure after the removal
of items. Suppose the items are numbered by 1, . . . , n with
lifetimes X1, . . .Xn and denote by the set Rj the numbers of
the items available before the jth removal. Then, the next
removal time is defined by Xj:m:n = mini∈Rj

Xi (see Fig. 9.3),
j = 1, . . . , m. Clearly, R1 = {1, . . . , n} and X1:m:n = X1:n is
given by the minimum of the lifetimes. Furthermore, |Rj| =
n − j + 1 − ∑j−1

i=1 Ri = γj, j = 1, . . . , m. The censoring
times are iteratively constructed and random so that they are
not known in advance (in contrast to the type I censoring
scheme). However, the censoring plan and the sample size
are fixed here. In fact, given n and m, the set of admissible
progressive type II censoring plans is given by

t1 t2 tm�1 tm

R1

Withdrawal

R2

Withdrawal

Rm�1

Withdrawal

Rm

Withdrawal

Time

Fig. 9.1 Progressive censoring scheme with censoring times τ1 < · · · < τm and censoring plan R = (R1, . . . , Rm)

R1 R2 Rm�1 Rm

T1 T2 Tm�1 Tm

0

Withdrawal

0

Withdrawal

0

Withdrawal Censoring

Time

Fig. 9.2 Progressive type I censoring with censoring times T1 < · · · < Tm−1, time censoring at Tm, and initial censoring plan R0 =
(R01, . . . , R

0
m−1)
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X1:m:n X2:m:n Xm�1:m:n Xm:m:n

R1

Withdrawal

R2

Withdrawal

Rm�1

Withdrawal

Rm

Censoring

Time

Fig. 9.3 Progressive type II censoring with censoring times X1:m:n < · · · < Xm:m:n and censoring plan R = (R1, . . . , Rm)

T1 T2 Tm�1 Tm

R1
0

Withdrawal

R2
0

Withdrawal

Rm�1
0

Withdrawal

Rm
0

Withdrawal

D2���1D1���1 D3���··· Dm�1���··· Dm���0 Dm�1���2

Time

Fig. 9.4 Progressive interval censoring with censoring times T1 < · · · < Tm, initial censoring plan R0 = (R01, . . . , R
0
m), and random counters

D1, . . . , Dm+1

C m
m,n =

{
(r1, . . . , rm) ∈ N

m
0 :

m∑

i=1

ri = n− m
}
. (9.1)

Based on the above fundamental models, further versions
of progressive censoring have been proposed. Progressive
type I interval censoring uses only partial information from
a progressively type I censored life test. In particular, it is
assumed that only the number Dj of items failing in an inter-
val (Tj−1, Tj] is known (see Fig. 9.4 for Cohen’s progressive
censoring with fixed censoring times). The corresponding
situation under type I right censoring is depicted in Fig. 9.5.

The above censoring schemes have been extended in
various directions. For instance, a wide class of models
called progressive hybrid censoring has been generated by
combining type I and type II censoring procedures. In type
I progressive hybrid censoring, a type I censoring mech-
anism has been applied to progressively type II censored
data X1:m:n, . . . , Xm:m:n by Childs et al. [8] [see also 9, 10],
extending a model of [11] by introducing a threshold T .
The resulting time censored data Xh,Ij:m:n = min{Xj:m:n, T},
j = 1, . . . , m, will be discussed further in Sect. 9.4.2. Consid-
ering the so-called extended progressively type II censored
sample by dropping the right censoring (see (9.15)), that is,

X1:m+Rm:n, . . . , Xm+Rm:m+Rm:n, a type II progressively hybrid
censored sample can be defined by the condition XK:m+Rm:n ≤
T < XK+1:m+Rm:n, m ≤ K ≤ m + Rm. Further versions
have been summarized in [12]. An extensive survey on (pro-
gressive) hybrid censoring schemes is provided in the recent
monograph by [380].

Motivated by the Ng-Kundu-Chan model introduced in
[13], adaptive progressive censoring schemes have been
proposed by Cramer and Iliopoulos [14] and Cramer and
Iliopoulos [15]. In these models, censoring plans and
censoring times may be chosen adaptively according to
the observed data. Such models are presented briefly in
Sect. 9.4.3.

In most cases, progressive censoring is studied under the
assumption that the underlying lifetimes X1, . . . , Xn are in-
dependent and identically distributed (iid) random variables.
If not noted explicitly, all results presented in the following
are based on this assumption. However, relaxations of this
assumption have been made. For instance, [16] discussed the
case of heterogeneous distributions, that is, Xi ∼ Fi, 1 ≤ i ≤
n, are independent random variables but may have a different
cumulative distribution function (see also [17,18]). Rezapour
et al. [19,20] assumed dependent underlying lifetimes. For a
review, we refer to [1, Chapter 10].
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Notation Explanation

cdf Cumulative distribution function

pdf (Probability) density function

iid Independent and identically distributed

BLUE Best linear unbiased estimator

MLE Maximum likelihood estimator

UMVUE Uniformly minimum variance unbiased estimator

PHR model Proportional hazard rates model

R Set of real numbers

N,N0 Set of positive and nonnegative integers, respectively

F← Quantile function of a cdf F

IA(t) Indicator function for a set A; IA(t) = 1 for t ∈ A, IA(t) = 0, otherwise
d= Identical in distribution

xm xm = (x1, . . . , xm)

xn ∧ yn xn ∧ yn = (min(x1, y1), . . . ,min(xn, yn))

xn ∨ yn xn ∨ yn = (max(x1, y1), . . . ,max(xn, yn))

[x]+ max(x, 0)

d•m d•m = ∑m
i=1 di for d1, . . . , dm ∈ R

R Censoring plan R = (R1, . . . , Rm) with censoring numbers R1, . . . , Rm
C m
m,n Set of admissible (progressive type II) censoring plans defined in (9.1)

(γ1, . . . , γm) γi = ∑m
j=i(Rj + 1), 1 ≤ i ≤ m, for a censoring plan R = (R1, . . . , Rm)

X1:m:n, . . . , Xm:m:n, XR
1:m:n, . . . , XR

m:m:n Progressively type II censored order statistics based on a sample X1, . . . , Xn and censoring plan R

XR XR = (XR
1:m:n, . . . , XR

m:m:n)
U1:m:n, . . . , Um:m:n Uniform progressively type II censored order statistics

XI1:K:n, . . . , XIK:K:n Progressively type I censored order statistics or progressively censored order statistics with fixed
censoring times based on a sample X1, . . . , Xn

XI,R XI,R = (XI1:K:n, . . . , XIK:K:n)
X1:n, . . . , Xn:n Order statistics based on a sample X1, . . . , Xn
Exp(μ,ϑ) Two-parameter exponential distribution with pdf f (t) = 1

ϑ
e−(t−μ)/ϑ , t > μ

Exp(ϑ) = Exp(0,ϑ) Exponential distribution with mean ϑ and pdf f (t) = 1
ϑ
e−t/ϑ , t > 0

Fexp cdf of standard exponential distribution Exp(1); Fexp(t) = 1 − e−t, t ≥ 0

Wei(ϑ ,β) Weibull distribution with parameters ϑ ,β > 0 and pdf f (t) = β
ϑ
tβ−1e−tβ/ϑ , t > 0

U(0, 1) Uniform distribution on the interval (0, 1)

χ2(r) χ2-distribution with r degrees of freedom

X ∼ F X is distributed according to a cdf F

X1, . . . , Xn
iid∼ F X1, . . . , Xn are independent and identically distributed according to a cdf F

9.1.2 Notation

Throughout, we use the following notation and abbreviations.

9.1.3 Organization of the Paper

In the following sections, we discuss the most popular ver-
sions of progressive censoring in detail, that is, progressive
type II censoring (Sect. 9.2) and progressive type I censoring
(Sect. 9.3). Further, progressive censoring with fixed censor-
ing times is also addressed in Sect. 9.3. In Sect. 9.4, related
data like progressive interval censoring, progressive hybrid
censoring, and adaptive progressive censoring as well as
applications in reliability and lifetime analysis are discussed.
Due to their importance, we focus on exponentially and

Weibull distributed lifetimes. Except when otherwise stated,
the underlying lifetimes X1, . . . , Xn are supposed to be inde-
pendent and identically distributed according to a cdf F, that

is, X1, . . . , Xn
iid∼ F.

9.2 Progressive Type II Censoring

9.2.1 Probabilistic Results

Fundamental tools in studying properties of progressively
type II censored order statistics are the joint pdf of
X1:m:n, . . . , Xm:m:n and the quantile representation. The
joint pdf of progressively type II censored order statistics
X1:m:n, . . . , Xm:m:n based on an (absolutely continuous) cdf F
with pdf f is given by



9 Progressive Censoring Methodology 157

9

T1 T2 Tm�1 Tm

R1
0 R2

0 Rm�1 Rm
0

D2���1D1���1 D3���··· Dm�1���··· Dm���0

Withdrawal Withdrawal Withdrawal Censoring

Time

Fig. 9.5 Progressive type I interval censoring with censoring times T1 < · · · < Tm−1, time censoring at Tm, initial censoring plan R0 =
(R01, . . . , R

0
m−1), and random counters D1, . . . , Dm

f X
R

(xm) =
{∏m

j=1

[
γjf (xj)(1 − F(xj))Rj

]
, x1 ≤ · · · ≤ xm

0, otherwise
(9.2)

where γj = ∑m
i=j(Ri + 1) denotes the number of items

remaining in the experiment before the jth failure, 1 ≤ j ≤ m.
Notice that n = γ1 > · · · > γm ≥ 1. It is immediate from
(9.2) that progressively type II censored order statistics are
connected to the distributional model of generalized order
statistics (see [21–23]) which covers progressively type II
censored order statistics as a particular case (for details, see
[1], Section 2.2).

Exponential Distributions
From (9.2), the pdf for an exponential population Exp(μ,ϑ)

can be directly obtained, that is, the pdf of exponential
progressively type II censored order statistics XR =
(X1:m:n, . . . , Xm:m:n) is given by

f X
R

(xm) = 1

ϑm

( m∏

j=1

γj

)
exp

(
− 1

ϑ

m∑

j=1

(Rj + 1)(xj − μ)
)
,

μ ≤ x1 ≤ · · · ≤ xm.

This expression is important in deriving, e.g., properties of
exponential progressively type II censored order statistics as
well as in developing statistical inference. As pointed out
by Thomas and Wilson [24] (see also [25]), the normalized
spacings SR

j = γj(Xj:m:n − Xj−1:m:n), 1 ≤ j ≤ m, with
X0:m:n = μ defined as left endpoint of support are iid random
variables, that is (see [1], Theorem 2.3.2),

SR
1 , . . . , S

R
m

iid∼ Exp(ϑ). (9.3)

On the other hand, exponential progressively type II censored
order statistics can be written in terms of their spacings
yielding the identity

Xr:m:n = μ +
r∑

i=1

1

γi
SR
i = Xr−1:m:n + 1

γr
SR
r , 1 ≤ r ≤ m,

(9.4)
where X0:m:n = μ. This representation allows us to derive
many properties of exponential progressively type II cen-
sored order statistics. For instance, using (9.3) and (9.4), the
one-dimensional marginal pdfs and cdfs are given by (see
also [26])

f Xr:m:n(t) =
( r∏

j=1

γj

) r∑

j=1

aj,re−γjt,

FXr:m:n(t) = 1 −
( r∏

i=1

γi

) r∑

j=1

1

γj
aj,re−γjt , t > 0,

where aj,r = ∏r
i=1
i	=j

1
γi−γj

, 1 ≤ j ≤ r ≤ n. Representations

of bivariate and arbitrary marginals can be found in [1,
Section 2.4], (see also [27, 28]). Moreover, it follows from
(9.4) that X1:m:n, . . . , Xm:m:n form a Markov chain, that is, for
2 ≤ r ≤ m,

Xr:m:n | (Xr−1:m:n = xr−1, . . . , X1:m:n = x1)

d= Xr:m:n | (Xr−1:m:n = xr−1)

d= 1

γr
SR
r + xr−1 ∼ Exp(xr,ϑ/γr).

Furthermore, X1:m:n
d= Exp(μ,ϑ/γ1). These representations

allow direct calculation of moments. For instance, one gets

EXr:m:n = μ + ϑ

r∑

j=1

1

γj
, VarXr:m:n = ϑ2

r∑

j=1

1

γ 2
j

,

Cov(Xr:m:n, Xs:m:n) = VarXr:m:n = ϑ2
r∑

j=1

1

γ 2
j

, 1 ≤ r ≤ s ≤ m.

(9.5)
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Further results on moments, e.g., higher order moments,
existence of moments, bounds, and recurrence relations, can
be found in [1] and the references cited therein.

Other Distributions
Probabilistic results for other distributions can be obtained
from the pdf in (9.2) or, alternatively, from the results ob-
tained for the exponential distribution and the following
result due to [29,30] (for a proof, see [1]). It shows that most
of the distributional results can be obtained for a uniform
distribution and then transformed to an arbitrary cdf F.

Theorem 9.2.1 Suppose X1:m:n, . . . , Xm:m:n and U1:m:n, . . . ,
Um:m:n are progressively type II censored order statistics
based on a cdf F and a uniform distribution, respectively.
Then,

(Xj:m:n)1≤j≤m
d= (

F←(Uj:m:n)
)
1≤j≤m .

Theorem 9.2.1, together with the representation of the
joint pdf for uniform distributions, yields an expression for
progressively type II censored order statistics based on an
arbitrary cdf F, that is,

FXr:m:n(t) = 1 −
( r∏

i=1

γi

) r∑

j=1

1

γj
aj,r(1 − F(t))γj , t ∈ R.

If F is absolutely continuous with pdf f , then the pdf is given
by

f Xr:m:n(t) =
( r∏

j=1

γj

)
f (t)

r∑

j=1

aj,r(1 − F(t))γj−1, t ∈ R.

Similar representations can be obtained for multiple progres-
sively type II censored samples (see [1], p.41, [28,31]). Log-
concavity and unimodality properties of the distributions are
studied in [32–36].

From (9.4), it follows that Fexp(Xr:m:n) = 1 −
∏r

j=1

(
e−SR

j /ϑ
)1/γj

with SR
1 , . . . , S

R
m as in (9.3). Thus,

Uj = e−SR
j /ϑ , 1 ≤ j ≤ m, are independent uniformly

distributed random variables. This yields the identity

Ur:m:n
d= 1 −

r∏

j=1

U
1/γj
j , 1 ≤ r ≤ m,

of Ur:m:n as a product of independent random variables.
Combining this expression with the quantile representation
fromTheorem 9.2.1, we arrive at the following representation
[see also 37].

Theorem 9.2.2 Let X1:m:n, . . . , Xm:m:n be progressively type
II censored order statistics from an arbitrary cdf F and

U1, . . .Um
iid∼ U(0, 1). Then,

X1:m:n, . . . , Xm:m:n
d= F←

(

1 −
r∏

j=1

U
1/γj
j

)

, 1 ≤ r ≤ m.

As has been noticed in [38], this representation provides
an alternative method to simulate progressively type II cen-
sored order statistics from a cdf F (for a survey on simulation
methods, see [1, Chapter 8]). Alternatively, one can also write

Xr:m:n
d= F←

(

Fexp

( r∑

j=1

1

γj
Zj
))

, 1 ≤ r ≤ m,

with Z1, . . . , Zm
iid∼ Exp(1). This result illustrates that

X1:m:n, . . . , Xm:m:n form a Markov chain with transition
probabilities

P(Xr:m:n ≤ t | Xr−1:m:n = s) = 1−
(
1 − F(t)

1 − F(s)

)γr

, s≤ t with F(s) < 1.

Further results on the dependence structure of progressively
type II censored order statistics are available. For instance,
[28] has shown that progressively type II censored order
statistics exhibit the MTP2-property which implies that pro-
gressively type II censored order statistics are always posi-
tively correlated. The block independence property has been
established by Iliopoulos and Balakrishnan [39]. In order to
formulate the result, we introduce the number of progres-
sively type II censored order statistics that do not exceed
a threshold T , i.e., D = ∑m

j=1 I(−∞,T](Xj:m:n). Then, the
probability mass function of D is given by the probabilities

P(D = 0) = (1 − F(T))n,

P(D = d) =
( d∏

i=1

γi

) d+1∑

j=1

aj,d+1(1 − F(T))γj , d = 1, . . . , m− 1,

P(D = m) = FXm:m:n (T).

Given d ∈ {1, . . . , m − 1}, a cdf F, and a censoring
plan R = (R1, . . . , Rm), the block independence property
is as follows: Conditionally on D = d, the random vectors
(X1:m:n, . . . , Xd:m:n) and (Xd+1:m:n, . . . , Xm:m:n) are indepen-
dent with

(X1:m:n, . . . , Xd:m:n)
d=
(
VKd
1:d:κd , . . . , V

Kd
d:d:κd

)
,

(Xd+1:m:n, . . . , Xm:m:n)
d= (

W1:m−d:γd , . . . , Wm−d:m−d:γd
)

(9.6)

where Kd = (K1, . . . , Kd) is a random censoring plan on

the Cartesian product
d×
j=1

{0, . . . , Rj} with probability mass

function
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pKd (kd) = 1

P(D = d)
Fη1(d)(T)(1 − F(T))n−η1(d)

d∏

i=1

γi

ηi(d)

(
Ri
ki

)

,

κd = ∑d
j=1(1 + Kj), and ηi(d) = ∑d

j=i(kj + 1), 1 ≤ i ≤ d.
Further:

1. V1, . . . , Vn are iid random variables with right truncated
cdf FT given by FT(t) = F(t)

F(T)
, t ≤ T .

2. W1, . . . , Wγd are iid random variables with left truncated
cdf GT given by GT(t) = 1 − 1−F(t)

1−F(T)
, t ≥ T .

The sample size κd of the progressively type II cen-
sored order statistics VKd

1:d:κd , . . . , V
Kd
d:d:κd is a random vari-

able. The above representation means that the distribution of
(X1:m:n, . . . , Xd:m:n), givenD = d, is a mixture of distributions
of progressively type II censored order statistics with mixing
distribution pKd. It is well known that right truncation of
progressively type II censored order statistics does not result
in progressively type II censored order statistics from the
corresponding right truncated distribution [see, e.g., 2]. This
is due to the fact that those observations (progressively)
censored before T could have values larger than T .

Connection to Order Statistics and Other Models
of Ordered Data
Order statistics [see, e.g., 40,41] can be interpreted as special
progressively type II censored order statistics by choosing the
censoring plan O = (0, . . . , 0). Then, we have m = n and
XO
j:n:n = Xj:n, 1 ≤ j ≤ n. Furthermore, the censoring plan

O∗ = (0, . . . , 0, Rm)with n = m+Rm yieldsXO
j:m:n = Xj:m+Rm ,

1 ≤ j ≤ m, leading to a type II right censored sample. Thus,
all the results developed for progressively type II censored
order statistics can be specialized to order statistics. Detailed
accounts to order statistics are provided by Arnold et al. [40]
and David and Nagaraja [41].

As mentioned above, progressively type II censored order
statistics can be seen as particular generalized order statistics
and sequential order statistics, respectively (see [21,23,37]).
In this regard, results obtained in these models hold also for
progressively type II censored order statistics by specifying
model parameters and distributions suitably. For pertinent
details, we refer to the references given above.

Moments
Many results on moments have been obtained for
progressively type II censored order statistics (see, e.g.,
[1], Chapter 7). This discussion includes explicit results for
selected distributions, e.g., exponential distributions (see
(9.5)), Weibull, Pareto, Lomax, reflected power, and extreme
value distributions. Further topics are existence of moments
(see [42, 43]), bounds (see, e.g., [32, 44, 45]), recurrence
relations (see, e.g., [27, 46]), and approximations (see, e.g.,
[47]). Furthermore, the accurate computation of moments

has been discussed in [48] (see also [49]). It should be
noted that an enormous number of papers have discussed
moments as well as related recurrence relations for particular
distributions.

Stochastic Orders and Stochastic Comparisons
Results on various stochastic orders of progressively type
II censored order statistics have been mostly established
in terms of generalized and sequential order statistics (see
[1], Section 3.2). Therefore, the results can be applied to
progressively type II censored order statistics by choosing
particular parameter values. For information, we present def-
initions of the most important stochastic orders discussed for
progressively type II censored order statistics. For a general
discussion, we refer to [50,51], and [52]. A review of results
on multivariate stochastic orderings for generalized order
statistics is provided in [53] (see also [1]).

Let X ∼ F, Y ∼ G be random variables and let f and
g denote the respective pdfs. For simplicity, it is assumed
that the supports are subsets of the set of positive values. In
the following, we present some selected results on stochastic
orderings under progressive type II censoring and provide
references for further reading.

Stochastic Order/Multivariate Stochastic Order

(i) X is said to be stochastically smaller than Y , that is, X ≤st

Y or F ≤st G, iff F(x) ≤ G(x) for all x ≥ 0.
(ii) Let X = (X1, . . . , Xn)′, Y = (Y1, . . . , Yn)′ be random

vectors. Then, X is said to be stochastically smaller than
Y, that is, X ≤st Y or FX ≤st FY , iff Eφ(X) ≤ Eφ(Y) for
all nondecreasing functions φ : Rn −→ R provided the
expectations exist.

Notice that, for n = 1, the definition of the multivariate
stochastic order is equivalent to the (common) definition in
the univariate case.

Belzunce et al. [54] has established the preservation of the
stochastic order when the baseline distributions are stochas-
tically ordered.

Theorem 9.2.3 Let XR and YR be vectors of progressively
type II censored order statistics from continuous cdfs F and
G with censoring plan R, respectively. Then, for F ≤st G,
XR ≤st YR.

A comparison in terms of the univariate stochastic order
has been established by Khaledi [55] using the following
partial ordering of γ -vectors (see [56, 57]). Let R and S
be censoring plans with corresponding γ -values γi(R) =
∑m1

k=i(Rk + 1) and γi(S ) = ∑m2
k=i(Sk + 1). For 1 ≤ j ≤ i,

(γ1(S ), . . . , γj(S )) ≤p (γi−j+1(R), . . . , γi(R)) (9.7)
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iff

∏

k=1

γi−k+1(R) ≤

∏

k=1

γk(S ) for 
 = 1, . . . , j.

Theorem 9.2.4 Let F, G be continuous cdfs with F ≤st G
and X ∼ F, Y ∼ G. Moreover, let R ∈ C m1

m1,n1 ,S ∈ C m2
m2,n2

with m1, m2 ∈ N be censoring plans. Then:

(i) XR
i:m1:m1

≤st YR
i:m1:m1

, 1 ≤ i ≤ m1.
(ii) If 1 ≤ j ≤ i and condition (9.7) holds, then XS

j:m2:m2
≤st

YR
i:m1:m1

.

Applications to stochastic ordering of spacings of progres-
sively type II censored order statistics can be found in [58].

Failure Rate/Hazard Rate Order, Reversed Hazard Rate
Order

(i) X is said to be smaller than Y in the hazard rate order,
that is, X ≤hr Y or F ≤hr G, iff F(x)G(y) ≤ F(y)G(x)
for all 0 ≤ y ≤ x.

(ii) X is said to be smaller than Y in the reversed hazard rate
order, that is, X ≤rh Y or F ≤rh G, iff F(x)G(y) ≤
F(y)G(x) for all 0 ≤ y ≤ x.

For the hazard rate order, the ratio F(x)
G(x)

is nonincreasing in
x ≥ 0 where a

0 is defined to be ∞. If F and G are absolutely
continuous cdfs with pdfs f and g, respectively, then hazard
rate ordering is equivalent to increasing hazard rates, that is,

λF(x) = f (x)

1 − F(x)
≤ g(x)

1 − G(x)
= λG(x) for all x ≥ 0.

For the reversed hazard rate order, the ratio F(x)
G(x) is nonincreas-

ing in x ≥ 0, where a
0 is defined to be ∞.

Results for (multivariate) hazard rate orders of progres-
sively type II censored order statistics have been obtained by
Belzunce et al. [54], Khaledi [55], and Hu and Zhuang [59].
For instance, replacing the stochastic order by the hazard rate
order in Theorem 9.2.4, an analogous result is true (see [1,
Theorem 3.2.3]).

Likelihood Ratio Order/Multivariate Likelihood Ratio
Order

(i) X is said to be smaller than Y in the likelihood ratio order,
that is, X ≤lr Y or F ≤lr G, iff f (x)g(y) ≤ f (y)g(x) for all
0 ≤ y ≤ x.

(ii) Let X = (X1, . . . , Xn)′, Y = (Y1, . . . , Yn)′ be random
vectors with pdfs f X and f Y . Then, X is said to be smaller
than Y in the multivariate likelihood ratio order, that is,
X ≤lr Y or FX ≤lr FY , iff

f X(xn)f Y(yn) ≤ f X(xn ∧ yn)f
Y(xn ∨ yn)

for all x = (x1, . . . , xn)′, y = (y1, . . . , yn)′ ∈ R
n.

The (multivariate) likelihood ratio order has been dis-
cussed, e.g., by Korwar [60], Hu and Zhuang [59], Cramer
et al. [61], Belzunce et al. [54], Zhuang and Hu [62], Balakr-
ishnan et al. [63], Sharafi et al. [64], and Arriaza et al. [65].
The following result is due to [60] (see [59] for generalized
order statistics).

Theorem 9.2.5 Let R ∈ C m1
m1,n1 ,S ∈ C m2

m2,n2 with m1, m2 ∈
N be censoring plans and XS

j:m2:m2
, XR

i:m1:m1
be progressively

type II censored order statistics from the same absolutely
continuous cdf F. If 1 ≤ j ≤ i and γk(R) ≤ γk(S ),
k = 1, . . . , j, then XS

j:m2:m2
≤lr XR

i:m1:m1
.

Comparisons of vectors of progressively type II censored
order statistics (generalized order statistics) with different
cdfs and different censoring plans have been considered in
[54]. In particular, they found the following property.

Theorem 9.2.6 Let XR
i:m:n, Y

R
i:m:n, 1 ≤ i ≤ m ≤ n, be

progressively type II censored order statistics from absolutely
continuous cdfs F and G, respectively, with F ≤lr G and
censoring plan R. Then, XR

i:m:n ≤lr YR
i:m:n, 1 ≤ i ≤ m.

Ordering of p-spacings is discussed in [54, 66–68].

Dispersive Order X is said to be smaller than Y in the
dispersive order, i.e., X ≤disp Y or F ≤disp G, iff F←(x) −
F←(y) ≤ G←(x) − G←(y) for all 0 < y < x < 1.

Results for the (multivariate) dispersive order are estab-
lished in [55,69–71]. For instance, [55] has shown a result as
in Theorem 9.2.4 for the dispersive order provided that the
cdf F has the DFR-property. Belzunce et al. [54] have shown
that XR ≤disp YR and that XR

i:m:n ≤disp YR
i:m:n, 1 ≤ i ≤ m,

when F ≤disp G.
Further orderings likemean residual life, total time on test,

and excess wealth orders have also been discussed (see [72–
75]). Results for the increasing convex order of generalized
order statistics have been established in [76]. Orderings of
residual life are discussed in [77, 78]. Stochastic orderings
of INID progressively type II censored order statistics have
been studied in [79].

Ageing Notions
Ageing properties have also been studied for progressively
type II censored order statistics. For general references on
ageing notions and their properties, we refer to, e.g., [80–82].
Results have been obtained for various ageing notions, e.g.,
increasing/decreasing failure rate (IFR/DFR), increasing/
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decreasing failure rate on average (IFRA/DFRA), and new
better/worse than used (NBU/NWU). Fundamental results
on progressively type II censored order statistics for the most
common ageing notions are mentioned subsequently.

IFR/DFR A cdf F is said to be IFR (DFR) iff the ratio
F(t+x)−F(t)

1−F(t) is increasing (decreasing) in x ≥ 0 for all t with
F(t) < 1.

If F exhibits a pdf then the IFR-/DFR-property means
that the hazard rate function λF = f /(1 − F) is increasing
(decreasing).

IFRA/DFRA A cdf F is said to be IFRA (DFRA) iff, for the
hazard function R = − logF, the ratio R(x)/x is increasing
(decreasing) in x > 0.

NBU/NWU A cdf F is said to be NBU (NWU) iff F(t+x) ≤
(≥)F(t)F(x) for all x, t ≥ 0.

The IFR- and IFRA-property of progressively type II
censored order statistics have been investigated in [33]. It
has been shown that all progressively type II censored order
statistics are IFR/IFRA provided that the baseline cdf F
is IFR/IFRA. The respective result for the NBU-property
as well as further results can be found in [83] in terms
of sequential order statistics (see also [84]). Preservation
properties are presented in [23], e.g., it has been proved that
the DFR-property is preserved by spacings (see also [21]).
The reversed hazard rate has been studied in [85]. Belzunce
et al. [86] considered multivariate ageing properties in terms
of nonhomogeneous birth processes and applied their results
to generalized order statistics. A restriction to progressive
censoring shows that progressively type II censored order
statistics XR are M-IFR if F is an IFR-cdf. Moreover, XR

is multivariate Polya frequency of order 2 (MPF2) if the pdf
of F is log-concave. Further notions of multivariate IFR/DFR
and its applications to generalized order statistics have been
discussed in [87]. The connection of ageing properties and
residual life has been considered in [88] in terms of general-
ized order statistics.

Further Topics
The following probabilistic topics have also been discussed
in progressive type II censoring, but, for brevity, we only
mention them here briefly. Many publications deal with
various kinds of characterizations of probability distributions
[see, e.g., 1, Chapter 3.1]. Limit theorems have also been
established imposing different assumptions on the censoring
plans and distributions. For instance, [89] considered normal
approximations using an approach inspired by Hoadley [90].
Cramer [91] discussed extreme value analysis which in-
cludes extreme, central, and intermediate progressively type

II censored order statistics [see also 92,93]. Counting process
approaches in combination with limiting distributions have
been extensively discussed in [94] [see also 95,96]. Hofmann
et al. [97] has discussed a block censoring approach.

Information measures have also found some interest [see,
e.g., 1, Chapter 9]. Results on the Fisher information have
been established in, e.g., [98–102]. A detailed approach
in terms of the more general model of generalized order
statistics is discussed in [103, 104]. Asymptotic results are
provided in [105]. Entropy-type measures are investigated in
[106–110]. Kullback-Leibler-related measures are addressed
in [106, 107, 111–115]. Pitman closeness for progressively
type II censored data has been considered in, e.g., [116–119].

Concomitants for progressively type II censored order
statistics have been addressed [120–122] (see also [1]).

As already mentioned above, progressive type II censor-
ing has also been discussed under nonstandard conditions.
Specifically, the underlying random variables X1, . . . , Xn are
supposed to be distributed according to some (multivariate)
distribution function FX1,...,Xn . A general mixture representa-
tion of the distribution in terms of distributions of order statis-
tics has been established by Fischer et al. [17]. Assuming
independence but possibly different marginals, [16] found
representations of the joint density functions. Inference in
such a model has been discussed in [123]. Given a copula
of the lifetimes X1, . . . , Xn, [19, 20] addressed dependent
random variables. Progressive censoring of random vectors
has been discussed in [124] [see also 125,126].

9.2.2 Inference

Inference for progressively type II censored data has been
widely discussed in the literature. Most of the material is
devoted to parametric inference. In the following, we present
a selection of results for exponential andWeibull distribution.
In addition, references to other distributions are provided. A
standard reference for all these results is [1]. If nothing else
is mentioned, we discuss inference on a single progressively
type II censored sample X1:m:n, . . . , Xm:m:n.

Point Estimation
The most popular parametric estimation concepts applied to
progressively type II censored data are linear, likelihood, and
Bayesian estimation. Assuming a location-scale family of
distributions

F =
{
Fμ,ϑ = F

( · − μ

ϑ

) ∣
∣
∣μ ∈ R,ϑ > 0

}
,

with a known cdf F, a progressively type II censored sample
XR from Fμ,ϑ can be written as a linear model:

XR = μ · 1 + ϑYR = μ · 1 + ϑEYR +WR = Bθ +WR,
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where EWR = 0, Cov(WR) = ϑ2� denotes the variance-
covariance matrix of WR, � = Cov(YR), B = [1, b] is
the known design matrix, and θ = (μ,ϑ)′ is the (unknown)
parameter vector. Notice that the distribution of YR is param-
eter free, and it depends only on the standard member F.

Thus, as pointed out in [1, Chapter 11], least squares
estimation can be applied in order to obtain the best linear
unbiased estimator (BLUE) of θ (see, e.g., [127]) as

θ̂ = (B′�−1B)−1B′�−1XR.

Obviously, the estimator can be applied when the first and
second moments of XR can be computed (at least numer-
ically). This has been done for many distributions. For in-
stance, given exponential distributions, explicit expressions
result since the respective moments have a closed form
expression (see, e.g., [128–130]). Form ≥ 2, the BLUEs μ̂LU

and ϑ̂LU are given by

μ̂LU = X1:m:n − ϑ̂LU

n
,

ϑ̂LU = 1

m− 1

m∑

j=2

(Rj + 1)(Xj:m:n − X1:m:n).

Further results for particular distributions are summarized
in [1, Chapter 11]. In case of Weibull distributions, the
model can be transformed to a linear model from extreme
value distributions by a log-transformation of the data. Thus,
estimators of the Weibull parameters can be obtained by
using the BLUEs of the transformed parameters when the
data results from an extreme value distribution. Results in
this direction can be found in [24, 131, 132]. The mixture
representation in terms of order statistics can also be utilized
to compute the moments (see [17, 133,134]).

Similar to least squares estimation, one can consider the
best linear equivariant estimators (BLEEs). This problem has
been discussed, e.g., by Balakrishnan et al. [135], Burkschat
[136] (see also [137] for the best linear (risk) invariant
estimators).

The most popular approach to the estimation problem is
likelihood inference since the joint pdf given in (9.2) leads to
tractable expressions inmany situations (see [1, Chapter 12]).
For generalized Pareto distributions, explicit expressions re-
sult. For exponentially distributed lifetimes with mean ϑ , the
MLE is given by

ϑ̂MLE = 1

m

m∑

j=1

(Rj + 1)Xj:m:n = 1

m

m∑

j=1

SR
j , (9.8)

which is also the BLUE in this model. The representation
in terms of the spacings SR

1 , . . . , S
R
m is important in the

analysis of the MLE since it enables easy derivation of

the exact distribution of the MLE. For two-parameter expo-
nential distribution, explicit expressions for the MLEs are
also available. For Weibull distribution Wei(ϑ ,β), the MLE
(ϑ̂ , β̂) of (ϑ ,β) uniquely exists (see [138]). They are given

by ϑ̂ = 1
m

∑m
j=1(Rj + 1)Xβ̂

j:m:n where, for the observed data
Xj:m:n = xj, 1 ≤ j ≤ m, the estimate β̂ is the unique solution
of the equation:

m

β
+

m∑

j=1

log xj −
∑m

j=1(Rj + 1) log(xj)x
β

j
∑m

j=1(Rj + 1)xβ

j

= 0.

The above equation has to be solved numerically, e.g., by
the Newton-Raphson procedure. Ng et al. [98] proposed an
EM-algorithm approach to compute theMLE (see also [139])
which, suitably adapted, has successfully been applied for
other distributions, too. Results on likelihood inference for
other distributions can be found in [1, Chapter 12]. Recent
references for other distributions are, e.g., [140] (Rayleigh),
[141] (modified Weibull), [142, 143] (Lindley), and [144]
(Gompertz).

For some distributions, related concepts like modified and
approximate maximum likelihood estimation have been dis-
cussed. The latter concept due to [145] has been successfully
applied in many cases, e.g., for extreme value distribution
[146] and Weibull distributions [147] (see also [1, Chap-
ter 12.9.2]).

Bayesian inference has also been discussed considerably
for progressively type II censored data under various loss
functions (see [1, Chapter 15]). Under squared error loss
function, the Bayes estimate of the scale parameter α = 1/ϑ
of an exponential lifetime is given by the posterior mean

α̂B = a+ m

b+ ∑m
j=1(Rj + 1)Xβ

j:m:n

given a gamma prior

πa,b(α) = ba

�(a)
αa−1e−bα , α > 0,

with hyperparameters a, b > 0. Using a similar inverse
gamma prior, [148] obtained the corresponding Bayes esti-
mator of ϑ as

ϑ̂B = 1

a+ m− 1

( m∑

j=1

γj(Xj:m:n − Xj−1:m:n) + b
)
,

where X0:m:n = 0. Two-parameter Weibull distribution with
appropriate priors has been discussed in [149] and [150]. For
further results, we refer to [1, Chapter 15].

Using a counting process approach, [94] and [151] have
addressed nonparametric inference with progressively type
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II censored lifetime data for the population cdf F and the
survival function. For instance, they presented a Nelson-
Aalen-type estimator and a smoothed hazard rate estimator
as well as asymptotic results for these estimators. A survey
is provided in [1, Chapter 20].

Statistical Intervals
Various kinds of statistical intervals have been discussed for
progressively type II censored data. In particular, confidence
intervals have been studied under different assumptions. In
some situations, exact confidence intervals with level 1 − α

can be constructed using properties of the estimators. For
exponential distribution, it follows from the independence
of the spacings (9.3) that the distribution of the MLE ϑ̂MLE

in (9.8) can be obtained as 2mϑ̂MLE/ϑ ∼ χ2(2m). Hence,[
2mϑ̂MLE

χ2
1−α/2(2m)

, 2mϑ̂MLE
χ2

α/2(2m)

]
is a two-sided (1 − α)-confidence in-

terval for ϑ . Similarly, one may obtain confidence intervals
and confidence regions for the two-parameter exponential
distribution (see [1, Chapter 17], [152]). For Wei(ϑ ,β)-
distribution, [153] has obtained confidence intervals for the
scale and shape parameters of aWei(ϑ ,β)-distribution using
a transformation to exponential data and the independence of
the spacings. An exact (1 − α)-confidence interval for β is
given by

K =
[
ψ∗(XR , Fα/2(2(m−1), 2)),ψ∗(XR , F1−α/2(2(m−1), 2))

]
,

whereψ∗(XR,ω) is the unique solution for β of the equation

m∑

j=2

(Rj + 1)
( Xj:m:n
X1:m:n

)β = γ2 + n(m− 1)ω.

Wang et al. [154] established a confidence interval forβ using
the pivotal quantity

τ(XR,β) = 2
m−1∑

j=1

log

( ∑m
i=1(Ri + 1)Xβ

i:m:n
∑j−1

i=1(Ri + 1)Xβ

i:m:n + γjX
β

j:m:n

)

.

They showed that an exact (1− α)-confidence interval for β

is given by

K =
[
τ−1(XR ,χ2

α/2(2(m− 1))), τ−1(XR ,χ2
1−α/2(2(m− 1)))

]
,

where τ−1(XR,ω) is the unique solution for β of the equation
τ(XR,β) = ω with ω > 0. A simultaneous confidence re-
gion has been obtained by Wu [153]. The same ideas may be
applied to Pareto distributions (see [155–158]). In [158,159],
and [160], optimal confidence regions are discussed (for a
location-scale family, see [161]). Nonparametric confidence
intervals for quantiles have been discussed in [133] (for

multiple samples, see [162,163]). Exact confidence intervals
based on conditional inference have been proposed for pro-
gressively type II censored data by Viveros and Balakrishnan
[25] (see also [2, Chapter 9]). In particular, exponential,
extreme value, log-gamma distributions, Pareto, and Laplace
have been discussed. Asymptotic confidence intervals have
been applied in various situations by assuming asymptotic
normality of some pivotal quantities. The asymptotic vari-
ance is estimated by the observed likelihood. Generalized
confidence intervals for distribution parameters using Weer-
ahandi’s approach (see [164]) can be found in [154].

Furthermore, prediction intervals and tolerance intervals
have been discussed. References for the latter concept are
[134, 162, 165, 166]. The highest posterior density credible
intervals have been established in [148,149], and [167].

Prediction
Prediction problems have been discussed for both point and
interval prediction, respectively (see [1, Chapter 16 & 17.4]).
In particular, they have been considered for:

(I) Progressively censored failure times at censoring steps
1, . . . , m; in particular, the progressively censored or-
dered failure times Wj,1:Rj , . . . , Wj,Rj:Rj , 1 ≤ j ≤ m, are
predicted.

(II) For future observations in the same sample (this is a
particular case of (I) in the sense that the lifetimes of the
items removed in the final progressive censoring step
are predicted).

(III) Observations of an independent future sample from the
same population.

Problem (I) has been considered by Basak et al. [168] (the
special case Wm,1:Rm , . . . , Wm,Rm:Rm is addressed by Balakr-
ishnan and Rao [169]). Given exponential lifetimes with
unknownmean ϑ , they found that the best unbiased predictor
of the rth ordered progressively censored lifetime Wj,r:Rj in
step j is given by

Ŵj,r:Rj(X
R) = Xj:m:n + ϑ̂MLE

r∑

k=1

1

Rj − k + 1
,

where ϑ̂MLE is the MLE of ϑ . Further results have been ob-
tained for extreme value distribution [168], normal distribu-
tion [170], and Pareto distribution [171]. Prediction intervals
based on various prediction concepts (e.g., best linear unbi-
ased prediction, maximum likelihood prediction, and median
unbiased prediction) have been obtained for exponential and
extreme value distributions in [168]. Normal and Pareto
distributions are considered in [170] and [171], respectively.
Generalized exponential and Rayleigh distributions are dis-
cussed in [172] and [173], respectively.
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The best linear unbiased/equivariant prediction of future
observations Xr+1:m:n, . . . , Xm:m:n, based on the first r pro-
gressively type II censored order statistics X1:m:n, . . . , Xr:m:n,
has been discussed in [136]. The same problem has been
investigated in a Bayesian framework, too, and the corre-
sponding results can be found in [148] and [152]. Predic-
tion intervals for a general class of distributions, including
exponential, Weibull, and Pareto distributions, can be seen
in [174]. Results for Weibull distribution have also been
presented in [175].

Problem (III) has mainly been discussed in a Bayesian
framework. Relevant references are [141, 143, 175–183].
Results on nonparametric prediction of future observations
can be found in [134,162,184].

Testing
Statistical tests under progressive censoring have mainly
been discussed in the context of precedence-type testing,
homogeneity, and goodness-of-fit tests. A good source for
precedence-type tests is [185] (see also [1, Chapter 21]).
Particular results can be found in [186] and [187]. Homo-
geneity tests based on several progressively type II censored
samples have been addressed in [188]. For related results
in terms of sequential order statistics, we refer to [23]. A
review on goodness-of-fit-tests for exponential distributions,
including a power study, has recently been presented in
[114] (see also [1, Chapter 19]). Goodness-of-fit tests for
location-scale families are discussed in, e.g., [189]. Tests
have been constructed by means of spacings and deviations
from the uniform distribution as well as from the empirical
distribution function (e.g., Kolmogorov-Smirnov-type statis-
tics; see [190,191]). Furthermore, information measures like
(cumulative) Kullback-Leibler information and entropy have
been used (see [106,111,113]).

9.2.3 Experimental Design

Initiated by Balakrishnan and Aggarwala [2, Chapter 10],
problems of experimental design have been discussed ex-
tensively for progressively type II censored lifetime experi-
ments. A review on various results and optimality criteria has
been provided by Balakrishnan and Cramer [1, Chapter 26].
Assuming that progressive type II censoring is carried out
by design, the experimenter has to choose an appropriate
censoring plan prior to the start of the experiment. Thus,
assuming the sample size n and the number m of observed
items as fixed, the censoring planR = (R1, . . . , Rm) has to be
chosen in an optimal way. Burkschat [58] has formulated the
problem as a mathematical optimization problem in a very
general way (see also [192, 193]), that is, given a criterion
ψ : C m

m,n −→ R, a censoring plan S is said to be ψ-
optimal if

ψ(S ) = min
R∈Cm

m,n

ψ(R),

where C m
m,n is given in (9.1). Various optimality criteria have

been used, e.g., probabilistic criteria [58], variance criteria
[2,139,192–194], information measures like Fisher informa-
tion [100,104,105,139] and entropy [107,195,196], optimal
estimation of quantiles [139,149,197,198], Pitman closeness
[117], and optimal block censoring [97]. A detailed review is
provided in [1, Chapter 26].

It turns out that the optimal designs depend heavily on
both the optimality criterion to be used and the distributional
assumption made. Due to the large number of admissible
censoring plans, i.e.,

(n−1
m−1

)
(see [1, p. 531]), [199] proposed

a variable neighborhood search algorithm to identify optimal
plans in a reasonable time. It should be mentioned that the so-
called one-step censoring plans turn out to be optimal inmany
cases. This means that progressive censoring is carried out
only at one failure time, whereas at the other failure times no
censoring occurs. Such plans are discussed in [100,102], and
[200]. Recently, restrictions on censoring plans have been
addressed in [49].

9.2.4 Connection of Progressive Type II
Censoring to Coherent Systems

Cramer and Navarro [201] established a connection of failure
data from coherent systems to progressively type II censored
order statistics. They showed that the joint distribution of the
component failures (Y(1), . . . , Y(m)) (given the number M =
m of component failures leading to the system failure) in a
coherent system can be seen as a mixture of progressively
type II censored order statistics:

PY(1),...,Y(m)|M=m =
∑

r∈Sm

P(R = r|M = m)PX
r
1:m:n,...,Xrm:m:n ,

(9.9)

where Sm denotes the set of all admissible censoring plans
r = (r1, . . . , rm) of lengthm. The probabilitiesP(R = r|M =
m) depend only on the structure of the coherent system and
therefore can be calculated directly [see also 202]. Utilizing
this connection, inference for coherent system data can be
carried out using inferential methods for progressively type II
censored data. For exponentially distributed lifetimes as well
as PHR models, we refer to [201], while Weibull distribution
is discussed in [203].

Cramer and Navarro [202] applied this connection to de-
fine a progressive censoring signature (PC-signature) which
can be used to compare the lifetimes of different coherent
systems with respect to stochastic orderings.
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9.2.5 Connection of Progressive Type II
Censoring to Ordered Pooled Samples

In (9.9), a mixture of some random variables in terms of
progressively type II censored order statistics has been estab-
lished. A similar mixture representation has been found in the
context of pooling two independent type II censored samples.
Let X1:n, . . . , Xr:n and Y1:m, . . . , Ys:m be independent right
censored samples from a uniform distribution with sample
sizes n and m, respectively. Without loss of any generality,
let r ≥ s and denote the ordered pooled sample by W(1) ≤
· · · ≤ W(r+s). Then, [162] showed that the joint distribution
of the ordered pooled sampleW(1), . . . ,W(r+s) is a mixture of
uniform progressively type II censored order statistics, that is,

PW(1),...,W(r+s) =
r−1∑

j=0

πjP
(T

Rj
1:r+s:n+m,...,T

Rj
r+s:r+s:n+m)

+
s−1∑

j=0

π∗
j P

(T
R∗
j

1:r+s:n+m,...,T
R∗
j

r+s:r+s:n+m),

with appropriately chosen discrete probability distributions
π0, . . . ,πr−1 and π∗

0 , . . . ,π
∗
s−1 and two-step censoring plans

Rj, 0 ≤ j ≤ r− 1 and R∗
j , 0 ≤ j ≤ s− 1, respectively [162],

[1, Section 17.1.6]. An extension to multiple pooled samples
is presented in [204].

9.3 Progressive Type I Censoring

As mentioned in Sect. 9.1, progressive type I censoring as
introduced in [5] does not have a prefixed termination time,
that is, the last censoring time Tm (see Fig. 9.1) has not
been considered as termination time. As pointed out in [6],
inference for this model has been considered up to the early
1990s (see, e.g., [5,205–209], and the monographs by Nelson
[210] andCohen andWhitten [211]). In the following, we call
this censoring scheme Cohen’s progressive censoring with
fixed censoring times. The understanding of Tm as a time
censoring point seems to have changed after the publication
of the monograph [2] [see also 7]. Since then, almost all pub-
lications dealing with progressive type I censoring interpret
Tm as the termination time of the experiment.

9.3.1 Distributional Results for Cohen’s
Progressive Censoring with Fixed
Censoring Times

We start with a short review of progressive censoring with
fixed censoring times as presented in [6]. In principle, the

procedure is quite similar to progressive type II censoring, but
the censoring times are fixed in advance. Due to this property,
we have to distinguish the initially planned censoring plan
R0 = (R0

1, . . . , R
0
m) and the effectively applied censoring

plan R = (R1, . . . , Rm) (see [1, 2]) where

R0 = (
R0
1, . . . , R

0
m

) ∈ C m
l,n

=
{(
r1, . . . , rm

) ∈ N
m
0

∣
∣ r•m ≤ n− l

}
, l ∈ {0, . . . , n},

with m, n ∈ N and 0 ≤ Rj ≤ R0
j , 1 ≤ j ≤ m, and C m

l,n denotes
the set of admissible censoring plans. As mentioned in the
introduction, the censoring times of a progressively type I
censored life test are prefixed, and the number of observa-
tions is random. Thus, we get a sample XI1:K:n ≤ · · · ≤ XIK:K:n
with random censoring plan R and random sample size K.
Notice that the important difference between progressive
censoring with fixed censoring times and progressive type I
censoring is the fact that we can ensure aminimum number of
observations, that is,K ≥ n−R0•m ≥ n−(n−l) = l.Moreover,
it is possible to observe values exceeding the threshold Tm.
Progressive type I censoring can be interpreted as a type I
hybrid version of progressive censoring with fixed censoring
times (see Sect. 9.4.2). Denoting the number of observations
in the intervals

(−∞, T1], (T1, T2], . . . , (Tm−1, Tm], (Tm,∞)

by the random variables D1, D2, . . . , Dm, Dm+1 and by
d1, . . . , dm+1 their realizations, the effectively applied
censoring numbers are given by

Rj = Rj(dj) = min
{
R0
j , [n− d•j − R•j−1]+

}
, 1 ≤ j ≤ m,

where n − d•i − R•i−1 equals the number of units still
remaining in the experiment before the ith withdrawal at
time Ti. Notice that Dm+1 is a (deterministic) function of
D1, . . . , Dm, i.e., Dm+1 = n− D•m − R•m. Then, the set

D(m+1) = {
am+1 ∈ N

m+1
0

∣
∣ ai ≤ [n− a•i−1 − R•i−1(ai−1)]+,

i = 1, . . . , m,

am+1 = [n− a•m − R•m(am)]+
}

denotes the support of (D1, . . . , Dm+1) for a progressively
censored life test with fixed censoring times.

Similarly to Theorem 9.2.1, we get the following quantile
representation.

Theorem 9.3.1 Suppose XI1:K:n ≤ · · · ≤ XIK:K:n and U
I
1:K:n ≤

· · · ≤ UI
K:K:n are progressively censored order statistics with

fixed censoring times based on a continuous cdf F and a stan-
dard uniform distribution, respectively. The censoring times
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are given by T1, . . . , Tm and F(T1), . . . , F(Tm), respectively.
Then,

(
XI1:K:n, . . . , X

I
K:K:n

)
d=
(
F←(

UI
1:K:n

)
, . . . , F←(

UI
K:K:n

))
.

Assuming X1, . . . , Xn
iid∼ F with an absolutely continuous

cdf F and a pdf f , Tm+1 = ∞, and Rm+1 = 0, the joint
pdf f X

I ,Dm+1 of XI,R = (XI1:K:n, . . . , X
I
K:K:n) and Dm+1 =

(D1, . . . , Dm+1) is given by

f X
I,R,Dm+1(xk, dm+1)

=
{m+1∏

j=1

(
n− d•j−1 − R•j−1

dj

)

dj! [1−F(Tj)]
Rj

}{ k∏

i=1

f (xi)

}

(9.10)

for dm+1 ∈ D(m+1) with k = d•m+1 and x1 ≤ · · · ≤ xk.
Clearly, (9.10) can be rewritten as

f X
I,R,Dm+1(xk, dm+1) = C(dm+1)

m+1∏

j=1

[1 − F(Tj)]
Rj

k∏

i=1

f (xi)

which illustrates the structural similarities to the pdf
under progressive type II censoring given in (9.2). Notice
that the value of D(m+1) is defined uniquely by XI,R =
(XI1:K:n, . . . , X

I
K:K:n).

The joint probability mass function pDm+1 ofDm+1 is given
by

pDm+1(dm+1) =
m+1∏

j=1

(
n− d•j−1 − R•j−1

dj

)

[F(Tj) − F(Tj−1)]
dj

× [1 − F(Tj)]
Rj , dm+1 ∈ D(m+1).

Further, the conditional density function ofXI,R, givenDm+1,
is given by

f X
I,R|Dm+1(xk | dm+1) =

m+1∏

j=1,dj>0

f (j)1...dj:dj(xdj) I(Tj−1,Tj](xdj)

(9.11)

for dm+1 ∈ D(m+1) withm = d•m+1 and x1 ≤ · · · ≤ xk. f
(j)
1...dj:dj

denotes the density function of order statistics X(j)
1:dj , . . . , X

(j)
dj:dj

from the (doubly) truncated cdf F in the interval (Tj−1, Tj].
As for progressive type II censoring, the conditional block

independence of progressively censored order statistics with
fixed censoring times holds which for progressive type I
censoring and progressive type II censoring has first been es-
tablished by Iliopoulos and Balakrishnan [39]. It follows di-
rectly from the joint pdf. Conditionally on (D1, . . . , Dm+1) =
(d1, . . . , dm+1), the progressively censored order statistics
with fixed censoring times are block independent, that is, the
random vectors

(
XId•j−1+1:d•m∗+1:n, . . . , X

I
d•j:d•m∗+1:n

)
, j ∈ {1 ≤ i ≤ m+ 1 | di > 0},

are independent with

(
XId•j−1+1:d•m∗+1:n, . . . , X

I
d•j:d•m∗+1:n

)

d=
(
X(j)
1:dj , . . . , X

(j)
dj:dj

)
, j ∈ {1 ≤ i ≤ m+ 1 | di > 0},

where X(j)
1:dj , . . . , X

(j)
dj:dj are order statistics from the (doubly)

truncated cdf F in the interval (Tj−1, Tj], j ∈ {1 ≤ i ≤ k |
di > 0}.

9.3.2 Distributional Results for Progressive
Type I Censoring

Since progressive type I censoring results from Cohen’s
progressive censoring model with fixed censoring times by
interpreting the final censoring time Tm as a threshold or
termination point, the respective sample results fromXI1:K:n ≤
· · · ≤ XIK:K:n is given by XI,R,Tm = (XI1:K:n, . . . , X

I
D•m:K:n).

Notice that this sample may result in an empty sample when
all items are either progressively censored at T1, . . . , Tm−1 or
right censored at Tm. Thus, no failures have been observed
due to the time censoring at Tm. As a consequence, inferen-
tial results are often obtained and discussed subject to the
assumption that at least one failure has been observed, that
is, D•m ≥ 1 which happens with probability

P(D•m ≥ 1) = 1 −
m∏

i=1

(
1 − F(Ti)

)R0
i .

Then, the distributional results presented before can be ap-
plied to progressive type I censoring. For instance, the quan-
tile representation in Theorem 9.3.1 holds, too. The pdf of
XI,R,Tm and Dm can be seen as a marginal pdf of (9.10) with
an appropriate restriction on the domain. This leads to the pdf
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f X
I,R,Tm ,Dm(xk, dm)

=
{

m∏

i=1

(
n− d•i−1 − R•i−1

di

)

di![1 − F(Ti)]Ri
}

{ k∏

j=1

f (xj)
}

(9.12)

for dm ∈ D(m) with k = d•m ≥ 1 and x1 ≤ · · · ≤ xk ≤
Tm (see [1, p. 121]). Notice that Rm is defined differently in
comparison with (9.10).

Apart from the above presented results, almost no prob-
abilistic results seem to be available for (Cohen’s) progres-
sively type I censored order statistics. Obviously, this is
caused by the problems due to the random sample size K
and the random censoring plan R. Nevertheless, numerous
inferential results have been obtained.

9.3.3 Inference

Most of the results established in progressive type I censoring
are connected to likelihood inference. Since the likelihood
functions are given by the joint pdfs (9.10) and (9.12), re-
spectively, the MLEs can be obtained by direct optimization.
In the following, we present only the progressive type I
censoring model (with time censoring). Similar results can
be obtained for Cohen’s progressive censoring with fixed
censoring times model (see, e.g., [6]). A summary with more
details is provided in [1, Chapter 12]. Notice that, due to
the similarity of the likelihood function to the progressive
type II censoring case, the computation of MLEs proceeds
quite similarly to this case. In particular, explicit expressions
result in the same cases, and the likelihood equations are
similar (replace the censoring time Ti in progressive type I
censoring by the observed failure time Xi:m:n in progressive
type II censoring; cf. (9.8) and (9.13)). For exponentially
distributed lifetimes with mean ϑ , one gets the MLE as

ϑ̂ I
MLE = 1

K

⎡

⎣
K∑

i=1

XIi:K:n +
m∑

j=1

RjTj

⎤

⎦ . (9.13)

Although the structure is similar to the MLE under pro-
gressive type II censoring, the distribution of the estimator
is quite complicated. Using a moment generating function
approach, [212] established the conditional pdf of ϑ̂ I

MLE, given
D•m ≥ 1, as a generalized mixture of (shifted) gamma
distributions (for a direct approach under progressive cen-
soring with fixed censoring times, see [6]). Establishing the
stochastic monotonicity of the (conditional) survival function
by the three monotonicity lemmas (see also [212–214]), con-
structed exact (conditional) confidence intervals for ϑ using
the method of pivoting the cdf (see [215–217]). A multi-

sample model has been studied in [218] who presented
an alternate representation of the pdf in terms of B-spline
functions. Two-parameter exponential distribution Exp(μ,ϑ)

has been considered, e.g., in [211, 219], and [220]. Cohen
[219] proposed also modified MLEs. Weibull distribution
has been discussed in [205, 219, 221, 222], and [2]. Explicit
expressions for the MLEs are not available, and the estimates
have to be computed by numerical procedures. Balakrishnan
and Kateri [138] have established the existence and unique-
ness of the MLEs. Three-parameter Weibull distributions are
considered in [206, 208], and [223]. Further distributions
considered are, e.g., extreme value distribution [219], nor-
mal distribution [5], Burr-XII distribution [209], and logistic
distribution [224].

9.4 SamplingModels Based on
Progressively Censored Data

Progressively type I and type II censored data have been con-
sidered as a basis for inferential purposes in various models.
In the following, we sketch some of these applications and
provide some recent references.

9.4.1 Progressive (Type I) Interval Censoring

In progressive type I censoring, the number of observations
observed between censoring times is random. It is assumed
that only these numbers are observed (see Fig. 9.5), whereas
the exact values of the failure times are not observed. This
kind of data has been introduced in [7] (see also [1, Chap-
ter 12]) assuming an absolutely continuous cdf Fθ . This
yields the likelihood function (cf. (9.11))

L(θ) ∝
m∏

j=1

(
Fθ (Tj) − Fθ (Tj−1)

)djF
Rj
θ (Tj),

where θ = (θ1, . . . , θp)′ ∈ � ⊆ R
p denotes the parameter

vector and d1, . . . , dm are realizations of the number of ob-
served failures D1, . . . , Dm. T0 = −∞ < T1 < · · · < Tm are
the censoring times, and R = (R1, . . . , Rm) is the effectively
applied censoring plan.

Inferential results have been established for various distri-
butions. Asymptotic results for MLEs with general distribu-
tion have been established in [225]. Exponential distribution
has been discussed in [7] and [226]. For (inverse) Weibull
distribution, we refer to [226,227], and [228]. Further distri-
butions considered are generalized exponential distributions
[228–230], generalized Rayleigh distribution [231], gamma
distribution [232], and Burr-XII [233]. Further examples are
given in [1, Chapter 18].
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Under progressive type I censoring, the optimal choice
of both inspection times and censoring proportions has been
addressed by many authors [1, Chapter 18.2 & 18.3]. Other
relevant references in this direction are [225,233–241].

9.4.2 Progressive Hybrid Censoring

In progressive hybrid censoring, progressive type II censored
data is subject to, e.g., additional time censoring at some
threshold T . There are many variations available in the
literature so far. For reviews, see [242], [1, Chapter 5 & 14],
[12, 243, 244] and the recent monograph [380]. For
illustration, we sketch the idea of the two basic hybrid
censoring models under progressive censoring. Let D =∑m

i=1 I(−∞,T](Xi:m:n) denote the total number of observed
failures. As in [10], we perceive the data with possibly less
than m observed failure times as a sample of size m by
adding the censoring time in the required number. For a
progressively type II censored sample X1:m:n, . . . , Xm:m:n with
censoring planR, type I progressively hybrid censored order
statistics Xh,I1:m:n, . . . , X

h,I
m:m:n are defined via

Xh,Ij:m:n = min(Xj:m:n, T), 1 ≤ j ≤ m. (9.14)

Notice that the names type I/type II progressive hybrid cen-
soring are differently used in the literature which may result
in some confusion. From (9.14), it is evident that the sample
may include both observed failure times and censoring times.
Conditionally on D = d, d ∈ {0, . . . , m}, we have

Xh,I1:m:n, . . . , X
h,I
m:m:n|(D = d)

d= X1:m:n, . . . , Xd:m:n, T, . . . , T︸ ︷︷ ︸
m−d times

.

For d = 0, the experiment has been terminated before
observing the first failure, and, thus, the sample is given
by the constant data (T, . . . , T) ∈ R

m. Some probabilistic
results have been obtained (see [1, Chapter 5], [10]). For
instance, as under progressive type II censoring, a quantile
representation similar to that given in Theorem 9.2.1 holds.
The (conditional) joint pdf is given by Childs et al. [see also
8, 9]:

f
Xh,Ij:m:n,1≤j≤m|D=d

(td, T
∗(m−d)

= Cd
P(D = d)

(1 − F(T))γd+1 f
Rd
1,...,d:d:n−γd+1

(td), t1 ≤ · · · ≤ td ≤ T,

where fRd
1,...,d:d:n−γd+1

denotes the pdf of the progressively type
II censored sample with a censoring plan Rd. In case of the
exponential distribution, [10] established the (conditional)
joint density function of the spacings Wh,I

j:m:n = γj(X
h,I
j:m:n −

Xh,Ij−1:m:n), 1 ≤ j ≤ d, as

f W
h,I
j:m:n,1≤j≤d|D=d

(wd) = γd+1e−γd+1(T−μ)/ϑ

ϑ fd+1:m:n(T)

×
⎡

⎣
d∏

j=1

1

ϑ
exp

{

−
(
1 − γd+1

γj

)wj
ϑ

}
⎤

⎦ ,

wd ∈Wd(T),

with support

Wd(T) =
{
wd | wj ≥ 0, 1 ≤ j ≤ d,

d∑

j=1

wj
γj

≤ T − μ
}
.

As a difference to the case of progressive type II censoring,
the spacings are no longer independent although the pdf
exhibits a product structure. These results can be utilized to
obtain the exact distribution of the MLE for exponential life-
times. A moment generating function approach is advocated
in, e.g., [8]. The MLE of ϑ exists provided D > 0 and is
given by

ϑ̂ = 1

D

⎡

⎣
D∑

j=1

γj(X
h,I
j:m:n − Xh,Ij−1:m:n) + γDd+1T

⎤

⎦ .

Its distribution can be written in terms of B-spline functions
(see [10]) or in terms of shifted gamma functions (see [8]).
The connection of the particular representations has been
studied in [243]. The result can be applied to construct exact
(conditional) confidence intervals by pivoting the cdf since
the corresponding survival function is stochastically mono-
tone (see [213,214,245]). For the multi-sample case, we refer
to [246]. Results for two-parameter exponential distribution
are given in [10] and [247]. Inference forWeibull distribution
has been discussed in [248]. Results for other distributions
can be found in, e.g., [249–255]. Optimal censoring plans are
discussed in [256,257].

Childs et al. [8] and Kundu and Joarder [9] proposed an
alternative hybrid censoring procedure called type II progres-
sive hybrid censoring. Given a (fixed) threshold time T , the
life test terminates at T∗

2 = max{Xm:m:n, T}. This approach
guarantees that the life test yields at least the observation
of m failure times. Given the progressively type II censored
sample X1:m:n, . . . , Xm:m:n with an initially planned censoring
plan R = (R1, . . . , Rm), the right censoring at time Xm:m:n
is not carried out. The monitoring of the failure times after
Xm:m:n is continued until time T is reached or the maximum
in the extended progressively type II censored sample

X1:m+Rm:n, . . . , Xm:m+Rm:n, Xm+1:m+Rm:n, . . . , Xm+Rm:m+Rm:n
(9.15)



9 Progressive Censoring Methodology 169

9

is observed. Notice that this sample can be viewed as pro-
gressively type II censored data with extended censoring
plan R∗ = (R1, . . . , Rm−1, 0, . . . , 0) of length m + Rm.
Furthermore, γj = ∑m

i=j(Ri + 1), j = 1, . . . , m − 1, γj =
m + Rm − j + 1, j = m, . . . , m + Rm. As in the case of
type I progressive hybrid censoring, the random counterD =
∑m+Rm

i=1 I(−∞,T](Xi:m+Rm:n) represents the sample size having
support {0, . . . , m+ Rm}. Again, the exact distribution of the
MLE given by

ϑ̂ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

m

m∑

j=1

(Rj + 1)Xj:m:n, D < m

1

D

( m∑

j=1

(Rj + 1)Xj:m:n +
D∑

j=m+1

Xj:m+Rm:n + γD+1T

)

, D ≥ m

can be obtained. Furthermore, exact confidence intervals can
be established (see [8, 258]) since the cdf is stochastically
monotone (see [214]). For the multi-sample case, we refer
to [259]. Inferential results for this kind of data have been
obtained in, e.g., [8,9,258,260]. Mokhtari et al. [261], Alma
and Arabi Belaghi [262], and Noori Asl et al. [263].

There are many extensions on this basic progressive hy-
brid censoring. Generalized progressive hybrid censoring is
discussed in, e.g., [243, 264–270]. Further extensions can be
found in [12] and [271]. The Fisher information in hybrid
censoring schemes is discussed in [272] and [273]. Further-
more, interval censored data have been studied in [274].

9.4.3 Adaptive Progressive Censoring

A common feature of the abovementioned progressive cen-
soring schemes is that the design of the experiment (i.e.,
initially planned censoring plan, censoring times) is prefixed,
that is, these quantities are known in advance. Since such a
designmay not be possible or be useful in practical situations,
[13] came up with the idea that the censoring plan may be
adapted during the experiment. Given some prefixed censor-
ing plan S = (S1, . . . , Sm) and a threshold T , the plan is
adapted after step j∗ = max{j : Xj:m:n < T} such that no
further censoring is carried out until the mth failure time has
been observed. Hence, the censoring plan is changed at the
progressive censoring step j∗ + 1, i.e., at the first observed
failure time exceeding the threshold T . The effectively ap-
plied censoring plan in the Ng-Kundu-Chan model is given
byS ∗ = (S1, . . . , Sj∗ , 0, . . . , 0, n−m−∑j∗

i=1 Si). This model
has been extensively investigated, andmany results have been
obtained (see [248,260,275,276]).

A general approach to adaptive progressive censoring has
been proposed by Cramer and Iliopoulos [15] allowing for a
flexible choice of the censoring plan and the censoring times.
This approach covers both adaptive progressive type I and
adaptive progressive type II censoring. Adaptive progressive

type II censoring has been discussed in detail in [14] who
particularly showed that the model covers the Ng-Kundu-
Chan model as well as the model of progressive type II
censoring with random removals (see also [1, Chapter 6]).
The latter model has been proposed by Yuen and Tse [277]
assuming that the censoring numbers are chosen according to
some probability distribution on the set of possible censoring
numbers. Further references discussing this model are, e.g.,
[278–280]. For interval censored data, we refer to [281] and
[282]. Flexible progressive censoring introduced in [283]
can also be seen as a special adaptive progressive censoring
model (see also [284,285]).

9.4.4 Reliability and Stress-Strength
Reliability

Applications in reliability based on progressively type II
censored data have been addressed by many authors. The
analysis is mostly based on a single progressively type II cen-
sored sample X1:m:n, . . . , Xm:m:n, but the situation of multiple
samples has also been taken into account. In the following,
we summarize some scenarios where this kind of data has
been considered.

Given a lifetime X with cdf F, the reliability function R =
F = 1−F can be estimated parametrically and nonparametri-
cally. Nonparametric estimators under progressive censoring
are mentioned in Sect. 9.2.2. Parametric estimators of Rθ can
be constructed as plug-in estimators by replacing θ by an
appropriate estimator θ̂ , e.g., the MLE (see, e.g.,[142, 286–
291]). Furthermore, Bayesian approaches have also been
extensively discussed. However, for exponential distributions
and t ∈ R, the UMVUE of Rϑ(t) = Pϑ(X > t) is given by
(see (9.8))

R̂(t) =
(

1 − t

mϑ̂MLE

)m−1

I[t,∞)(mϑ̂MLE)

(see [292]). The result can be slightly extended to an ex-
ponential family with cdf Fϑ defined by Fϑ(t) = 1 −
exp(−g(t)/ϑ) and a suitable function g (see, e.g., [23,293]).

Inference for the stress-strength reliability R = P(X <

Y) has also been addressed under progressive censoring for
various distributions (for a general account, see [294]). For
exponential distribution, the problem has been considered
in terms of Weinman exponential distributions in [295] and
[296]. For two independent progressively type II censored
samples XR

1:m:n, . . . , X
R
m:m:n and YS

1:r:s, . . . , Y
S
r:r:s, based on ex-

ponential distributions Exp(ϑ1) and Exp(ϑ2), theMLEs of the
parameters are given by ϑ̂j,MLE, j = 1, 2, as in (9.8). Then, the

MLE of R = ϑ2
ϑ1+ϑ2

is given by RMLE = ϑ̂2

ϑ̂1+ϑ̂2
. Furthermore,

the UMVUE is given by
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R̂UMVUE =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r−1∑

j=0
(−1)j

(r−1
j )

(m+j−1
j )

(
mϑ̂1,MLE
rϑ̂2,MLE

)j
, mϑ̂1,MLE ≤ rϑ̂2,MLE

1 −
m−1∑

j=0
(−1)j

(m−1
j )

(r+j−1
j )

(
rϑ̂2,MLE
mϑ̂1,MLE

)j
, mϑ̂1,MLE > rϑ̂2,MLE

Saraçoğlu et al. [see also 297, who addressed Bayesian
inference, too]. Confidence intervals are discussed in [295,
296], and [297]. Two-parameter exponential distributions
with common location parameter are investigated in [295,
296] [see also 1, Chapter 24]. Other distributions considered
in the literature are generalized (inverted) exponential distri-
bution [289, 298], Weibull distribution [299, 300], general-
ized Pareto distributions [301], the PHR model [302, 303],
Birnbaum-Saunders distribution [304], generalized logistic
distribution [305], and finite mixtures [306].

Stress-strength models under joint progressive censoring
have been considered in [307]. Progressively type I interval
censored data has been discussed by Bai et al. [306].

9.4.5 Competing Risks

In competing risk modeling, it is assumed that a unit may fail
due to several causes of failure. For two competing risks, the
lifetime of the ith unit is given by

Xi = min {X1i, X2i} , i = 1, . . . , n,

where Xji denotes the latent failure time of the ith unit under
the jth cause of failure, j = 1, 2. In most models considering
competing risks under a progressive censoring scheme, the
latent failure times are assumed to be independent with
Xji ∼ Fj, j = 1, 2, i = 1, . . . , m. Additionally, the
sample X1, . . . , Xn is progressively type II censored, and it is
assumed that the cause of each failure is known. Therefore,
the available data are given by

(X1:m:n, C1) , (X2:m:n, C2) , . . . , (Xm:m:n, Cm) ,

where Ci = 1 if the ith failure is due to first cause
and Ci = 2 otherwise. The observed data is denoted
by (x1, c1), (x2, c2), . . . , (xm, cm). Further, we define the
indicators

I{j}(Ci) =
{
1, Ci = j

0, otherwise
.

Thus, the random variables m1 = ∑m
i=1 I{1}(Ci) and m2 =

∑m
i=1 I{2}(Ci) describe the number of failures due to the

first and the second cause of failure, respectively. Given the
assumptions, m1 and m2 are binomials with sample size m
and probability of success R = P(X11 ≤ X21) and 1 − R,
respectively. For a given censoring plan R = (R1, . . . , Rm),
the joint pdf is given by Kundu et al. [see 308]

fX
R ,C(xm, cm)

=
( m∏

j=1

γj

) m∏

i=1

[ [
f1(xi)F2(xi)

]I{1}(ci) [
f2(xi)F1(xi)

]I{2}(ci) [F1(xi)F2(xi)
]Ri

]
.

[308] discussed competing risks for Exp(ϑj)-distributions,
j = 1, 2, under progressive type II censoring. The MLEs of
the parameters are given by

ϑ̂j = 1

mj

m∑

i=1

(Ri + 1)Xi:m:n, j = 1, 2,

provided that mj > 0. In this framework, inferential top-
ics like point and interval estimation as well as prediction
problems have been discussed. To keep things short, we
provide references for further reading. Competing risks under
progressive type II censoring have been considered for, e.g.,
Weibull distribution [309–311], Lomax distribution [312],
half-logistic distribution [313], and Kumaraswamy distribu-
tion [314].

Progressive type I interval censoring in the presence of
competing risks has been investigated by Wu et al. [234],
Azizi et al. [315], and Ahmadi et al. [316]. Competing risks
under hybrid censoring are investigated in, e.g., [317–325].

9.4.6 Applications to SystemData

In the standardmodels of progressive censoring, it is assumed
that the underlying random variables are iid random variables
distributed according to a cdf F. Progressive censoring has

also been studied in terms of iid system data Y, . . . , Yn
iid∼ G,

where G = h ◦ F with some known function h and a cdf
F. F is supposed to model the component lifetime, whereas
h describes the technical structure of the system. In a series
system with s components, we have G = Fs with h(t) = ts.
For a parallel system with s components, the function h is
given by h(t) = 1 − (1 − t)s.

As pointed out in [1, Chapter 25], the case of progressively
type II censored series system data is included in the standard
model by adapting the censoring plan appropriately. Given
a censoring plan R = (R1, . . . , Rm) and series systems
with s components, the corresponding progressively type II
censored system data can be interpreted as standard progres-
sively type II censored data with censoring plan

S = sR + (s−1)(1∗m), i.e., Sj = sRj + s−1, j = 1, . . . , m.

This kind of data has also been entitled first-failure censored
data (see, e.g., [326, 327]), and many results have been
published for this model. However, as mentioned before,
the respective results are covered in the standard model by
adapting the censoring plan.
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The situation is more involved for parallel or, more gen-
eral, for coherent systems. Parallel systems are studied in
[166,328,329], and [330]. k out-of-n system data is addressed
in [331], and coherent systems are addressed in [332].

9.4.7 Applications in Quality Control

Applications of progressively censored data in quality control
have been discussed in terms of reliability sampling plans
(acceptance sampling plans) and the lifetime performance
index, respectively.

Reliability sampling plans based on progressively type
II censored exponential lifetimes have been considered by
Balasooriya and Saw [333], Balakrishnan andAggarwala [2],
and [334] [see also 1, Chapter 22]. For a progressively cen-
sored sample XR from an Exp(μ,ϑ)-distribution, the MLEs
of the parameters are used to estimate the parameters and,
thus, to construct the decision rule. Since the distributions
of the MLEs do not depend on the censoring plan R, the
resulting sampling plans coincide with those for type II right
censoring. Pérez-González and Fernández [335] established
approximate acceptance sampling plans in the two-parameter
exponential case. Balasooriya et al. [147] addressed reliabil-
ity sampling plans for a Weibull distribution employing the
Lieberman-Resnikoff procedure for a lower limit using the
approximate MLEs of the parameters. Ng et al. [139] tackled
the same problem using the MLEs. Fernández et al. [336]
considered progressively censored group sampling plans for
Weibull distributions. For a log-normal distribution, [337]
applied the Lieberman-Resnikoff approach using approxi-
mate BLUEs for the location and scale parameters. Further
reference in this direction is [338].

Inference for the lifetime performance index (or capa-
bility index) has been discussed for various distributions in
[339] including exponential and gamma distributions (see
also [340–343]). Weibull distribution has been considered in
[344, 345], and Rayleigh distribution in [341]. Lomax and
Pareto distributions are discussed by Mahmoud et al. [346]
and Ahmadi and Doostparast [347], respectively. Progres-
sively type I interval censored data has been considered in
[348–350].

9.4.8 Accelerated Life Testing

In accelerated life testing, progressive censoring has been
mostly discussed in terms of step-stress testing. Recent re-
views on the topic are provided by Kundu and Ganguly
[351] and Balakrishnan and Cramer [1, Chapter 23] (see also
[352]). Assuming a cumulative exposure model for the life-
time distribution, the basic model in simple step-stress model
with a single stress change point is applied to progressively

type II censored data, that is, at a prefixed time τ , the stress
level is to be increased to a level s1 > s0 (see Fig. 9.6). Then,
the data

X1:r:n < · · · < XD:r:n ≤ τ < XD+1:r:n < · · · < Xr:r:n

results where D denotes the number of failures observed
before τ . Obviously, the sample X1:r:n, . . . , XD:r:n is a type
I progressive hybrid censored sample so that the inferential
results can be taken from this area. Assuming exponential
lifetimes with means ϑ1 and ϑ2 (before and after τ ) as well
as a cumulative exposure model, the MLEs of the parameters
are given by

ϑ̂1 = 1

D

(
D∑

k=1

(Rk + 1)Xk:r:n + τγD+1

)

,

ϑ̂2 = 1

r − D

r∑

k=D+1

(Rk + 1)(Xk:r:n − τ),

provided that 1 ≤ D ≤ r − 1. As mentioned above,
distributional results for ϑ̂1 are directly obtained from type
I progressive hybrid censoring leading to, e.g., exact (condi-
tional) confidence intervals (see [353,354]). Using the result
in (9.6), we get 2(r − D)ϑ̂2/ϑ2|D = d ∼ χ2(2r − 2d),
d < r. In particular, E(ϑ̂2|D = d) = ϑ2 and Var(ϑ̂2|D =
d) = ϑ2

2/(r− d). Weibull lifetimes are investigated in [355].
Extensions to multiple stress changing times are discussed in
[356,357]. Themodel has also been discussed for progressive
type I interval censored data (see [358–360]).

Wang and Yu [361] discussed a simple step-stress model
where the stress changing time τ is replaced by a failure time
Xr1:r:n. It is shown in [1, p. 492] that this model is connected
to sequential order statistics which can be utilized to estab-
lish easily properties of the resulting MLEs. Following the
ideas of [362], a multiple step-stress model with additional
progressive censoring has been proposed in [1, p. 503]. The
resulting model corresponds to that proposed in [361] and is
further discussed in [363].

Another kind of accelerated life testing model in the
presence of progressive censoring, called progressive stress
model, has been proposed by Abdel-Hamid and AL-Hussaini
[364].

9.4.9 Stage Life Testing

A common argument used to justify progressive censoring
is that the intentionally removed objects are utilized for other
tests (cf., e.g., [2, p. 3], [365, p. 336]). In order to include such
an information in the statistical analysis, [366] connected the
notion of progressive censoring with ideas from accelerated



172 N. Balakrishnan and E. Cramer

� x
d
1  �2:m:n

x
d
1  �1:m:n

x
d
1 :m:n

x
2:m:n

x
1:m:n

x
n�d

1  �1:m:n

s0

s1

n � d1

d1

n � d1

Time

S
tr

es
s 

le
ve

l

Fig. 9.6 Step-stress testing with single stress change time τ

life testing and proposed a stage life testing model with a
single stage change time. In fact, they adapted the idea of
step-stress testing and assumed that the removed objects are
tested on a different level, whereas the remaining items are
still tested under standard conditions. The basic situationwith
a single censoring time τ and two stages s0, s1 is depicted in
Fig. 9.7.

Inspired by simple step-stress testing (see Fig. 9.6), the
stage life testing model is introduced as follows. Assume
that n identical objects are placed on a life test. The initial
conditions are called stage s0. At the prefixed stage-change
time τ , 0 ≤ R�

1 ≤ n of the surviving items are randomly
withdrawn (if possible) and further tested on stage s1. Notice
that this may be regarded as a different life test with used
components. The testing of the remaining items is continued
on stage s0. The life test terminates when all n objects have
failed.

Let D1 and D2 denote the random number of failures
occurring on stage s0 before and after τ1, respectively. Fur-
thermore, M = D1 + D2 and

• Y1,D1 = (
Y1:M:n, . . . , YD1:M:n

)
denote the (ordered) obser-

vations on stage s0 before τ .
• Y2,D2 = (

YD1+1:M:n, . . . , YD1+D2:M:n
)
denote the (ordered)

observations on stage s0 after τ .
• ZR�

1
= (

Z1:R�
1
, . . . , ZR�

1:R�
1

)
denote the (ordered) observa-

tions on stage s1 after τ with YD1:M:n ≤ τ < Z1:R�
1
.

The order statistics on stage s0 and the order statistics on stage
s1 are represented by the random vectors Y = (

Y1,D1 ,Y2,D2

)

and Z, respectively. Figure 9.7 illustrates this representation
of the stage life testing order statistics.

Assuming a cumulative exposure model with cdfs F0 and
F1 and utilizing progressive censoring with fixed censoring
times (see [6]), inferential results have been obtained for

exponential, Weibull, and other lifetime distributions. The
results are based on the joint pdf f Y,Z,D1

1...n of (Y,Z) andD1 given
by

f Y,Z,D1
1...n (y1,d1 , y2,d2 , z, d1)

=
(
n

d1

)

d1! d2! r�1!
d1+d2∏

h=1

f0(yh:m:n)
r�1∏

j=1

f1(zj:r�1 + v1 − τ),

for y1,d1=(y1:m:n, . . . , yd1:m:n), y2,d2=(yd1+1:m:n, . . . , yd1+d2:m:n),
and z = (z1:r�1 , . . . , zr�1:r�1), where d2 = n − d1 − r�1, and r

�
1 =

�(d1) denotes the number of objects selected for testing on
stage s1. fi denotes the pdf of Fi, i ∈ {0, 1}.

In fact, the function � may be chosen according to the
needs of the experimenter. Inspired by procedures to generate
the censoring number in progressive censoring (see [7]),
[366] proposed two options to define R�

1, that is,

R�
1 = �(D1) with

�(x) =
⎧
⎨

⎩

�π1 · (n− x)�, Type-P

min
{
n− x, R0

1

}
, Type-M

, x ∈ {0, . . . , n},

where the proportion π1 ∈ [0, 1] and the number R0
1 ∈ N

are prespecified, respectively. Under the type P scheme, at
τ , a (fixed) proportion π1 of the surviving objects is selected
for testing on stage s1. In case of the type M scheme, given
a prefixed number R0

1, it is intended to select at τ as many
items as possible (at most R0

1) for testing on stage s1.
Assuming exponential lifetimes with means ϑ0 and ϑ1, the

corresponding MLEs are obtained as

ϑ̂0 = 1

D1 + D2

(
D1+D2∑

i=1

Yi:M:n + R�
1τ

)

,
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Fig. 9.7 Stage life testing with single stage change time τ

ϑ̂1 = 1

R�
1

⎛

⎝
R�
1∑

j=1

Zj:R�
1
− R�

1τ

⎞

⎠ (provided that R�
1 > 0).

As for other progressive censoring models, exact inferential
results, e.g., exact confidence intervals, can be established.
An extension to multiple stage change times τ1 < · · · < τm
has been introduced in [367]. Stage changes at failure times
are discussed in [368]. For a survey on these models as well
as more details, we refer to [369].

9.4.10 Joint Progressive Censoring Schemes

In joint progressive type II censoring, the sample is based on

two baseline samples X1, . . . , Xn1
iid∼ F1 (product/type A) and

Y1, . . . , Yn2
iid∼ F2 (product/type B) of independent random

variables. The progressive censoring is applied to the pooled
sample X1, . . . , Xn1 , Y1, . . . , Yn2 given a prefixed censoring
R ∈ C m

m,n1+n2 . Moreover, it is assumed that the type of the
failed unit as well as the types of withdrawn units are known.
Therefore, the sample is given by (C,WR,S ), where

C = (C1, . . . , Cm) ∈ {0, 1}m,
WR = (W1:m:n1+n2 , . . . , Wm:m:n1+n2),S = (S1, . . . , Sm).

The indicators Cj have the value 1 if the failed unit is of
type A, and otherwise Cj = 0. Wj:m:n denotes the jth failure
time in the progressively censored experiment. Finally, S
denotes a random censoring plan. Sj is the number of removed
units of type A in the jth withdrawal. Thus, Rj − Sj denotes
the numbers of withdrawn units of type B at the jth censoring
step. This model has been discussed in [370–376]. Joint

progressive type I censoring has been proposed in [377]. A
hybrid version is discussed in [378]. Another version of joint
progressive censoring leading to more tractable results has
been investigated in [376] and [379].
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Sankhyā 71-B, 222–247 (2009)

171. Raqab, M.Z., Asgharzadeh, A., Valiollahi, R.: Prediction for
Pareto distribution based on progressively Type-II censored sam-
ples. Comput. Stat. Data Anal. 54(7), 1732–1743 (2010)

172. Madi, M.T., Raqab, M.Z.: Bayesian inference for the generalized
exponential distribution based on progressively censored data.
Commun. Statist. Theory Methods 38(12), 2016–2029 (2009)

173. Raqab, M.Z., Madi, M.T.: Inference for the generalized Rayleigh
distribution based on progressively censored data. J. Statist. Plann.
Inference 141(10), 3313–3322 (2011)

174. Abdel-Aty, Y., Franz, J., Mahmoud, M.A.W.: Bayesian prediction
based on generalized order statistics using multiply Type-II cen-
soring. Statistics 41(6), 495–504 (2007)

175. Huang, S.-R., Wu, S.-J.: Bayesian estimation and prediction for
Weibull model with progressive censoring. J. Stat. Comput. Simul.
82(11), 1607–1620 (2012)

176. Ghafoori, S., Habibi Rad, A., Doostparast, M.: Bayesian two-
sample prediction with progressively Type-II censored data for
some lifetime models. J. Iran. Stat. Soc. (JIRSS) 10, 63–86 (2011)

177. Wu, S.-J., Chen, D.-H., Chen, S.-T.: Bayesian inference for
Rayleigh distribution under progressive censored sample. Appl.
Stoch. Models Bus. Ind. 22(3), 269–279 (2006)

178. Soliman, A.A., Al-Hossain, A.Y., Al-Harbi, M.M.: Predicting
observables from Weibull model based on general progressive
censored data with asymmetric loss. Statist. Methodol. 8(5), 451–
461 (2011)

179. Ali Mousa, M.A.M., Jaheen, Z.F.: Bayesian prediction for pro-
gressively censored data from the Burr model. Statist. Papers
43(4), 587–593 (2002)

180. Jaheen, Z.F.: Prediction of progressive censored data from the
Gompertz model. Commun. Statist. Simulation Comput. 32(3),
663–676 (2003)

181. Klakattawi, H.S., Baharith, L.A., AL-Dayian, G.R.: Bayesian
predictions of progressive censored data from the exponentiated
modified Weibull distribution. Canad. J. Comput. Math. Natur.
Sci. Eng. Med. 3, 247–255 (2012)

182. Mohie El-Din, M.M., Shafay, A.R.: One- and two-sample
Bayesian prediction intervals based on progressively Type-II cen-
sored data. Statist. Papers 54, 287–307 (2013)

183. Ali Mousa, M.A.M., Al-Sagheer, S.: Bayesian prediction for
progressively Type-II censored data from the Rayleigh model.
Commun. Statist. Theory Methods 34(12), 2353–2361 (2005)

184. Beutner, E., Cramer, E.: Using linear interpolation to reduce the
order of the coverage error of nonparametric prediction intervals
based on right-censored data. J. Multivariate Anal. 129, 95–109
(2014)

185. Balakrishnan, N., Ng, H.K.T.: Precedence-Type Tests and Appli-
cations. Wiley, Hoboken (2006)



178 N. Balakrishnan and E. Cramer

186. Ng, H.K.T., Balakrishnan, N.: Weighted precedence and maximal
precedence tests and an extension to progressive censoring. J.
Statist. Plann. Inference 135(1), 197–221 (2005)

187. Balakrishnan, N., Tripathi, R.C., Kannan, N., Ng, H.K.T.: Some
nonparametric precedence-type tests based on progressively cen-
sored samples and evaluation of power. J. Statist. Plann. Inference
140(2), 559 – 573 (2010)

188. Alvarez-Andrade, S., Balakrishnan, N., Bordes, L.: Homogeneity
tests based on several progressively Type-II censored samples. J.
Multivariate Anal. 98, 1195–1213 (2007)

189. Balakrishnan, N., Ng, H.K.T., Kannan, N.: A test of exponentiality
based on spacings for progressively type-II censored data. In:
Huber-Carol, C., Balakrishnan, N., Nikulin, M., Mesbah, M.
(eds.) Goodness-of-Fit Tests and Model Validity, pp. 89–111.
Birkhäuser, Boston (2002)

190. Marohn, F.: A characterization of generalized Pareto distributions
by progressive censoring schemes and goodness-of-fit tests. Com-
mun. Statist. Theory Methods 31(7), 1055–1065 (2002)

191. Pakyari, R., Balakrishnan, N.: A general purpose approximate
goodness-of-fit test for progressively Type-II censored data. IEEE
Trans. Reliab. 61, 238–244 (2012)

192. Burkschat, M., Cramer, E., Kamps, U.: On optimal schemes in
progressive censoring. Statist. Probab. Letters 76(10), 1032–1036
(2006)

193. Burkschat, M., Cramer, E., Kamps, U.: Optimality criteria and op-
timal schemes in progressive censoring. Commun. Statist. Theory
Methods 36, 1419–1431 (2007)

194. Salemi, U.H., Rezaei, S., Si, Y., Nadarajah, S.: On optimal pro-
gressive censoring schemes for normal distribution. Annals of
Data Science 5(4), 637–658 (2018)

195. Abo-Eleneen, Z.A.: A novel approach for optimal schemes in
progressive censoring plans. J. Commun. Comput. 9, 426–433
(2012)

196. Mishra, N.: Optimal one-step censoring schemes under entropy
criterion. Commun. Stat.- Simul. Comput. 49(8), 2068–2081
(2018)

197. Pradhan, B., Kundu, D.: On progressively censored generalized
exponential distribution. TEST 18, 497–515 (2009)

198. Pradhan, B., Kundu, D.: Inference and optimal censoring schemes
for progressively censored Birnbaum-Saunders distribution. J.
Statist. Plann. Inference 143(0), 1098–1108 (2013)

199. Bhattacharya, R., Pradhan, B., Dewanji, A.: On optimum life-
testing plans under Type-II progressive censoring scheme using
variable neighborhood search algorithm. TEST 25(2), 309–330
(2016)

200. Salemi, U.H., Rezaei, S., Nadarajah, S.: A-optimal and D-optimal
censoring plans in progressively Type-II right censored order
statistics. Stat. Pap. 60(4), 1349–1367 (2017)

201. Cramer, E., Navarro, J.: Progressive Type-II censoring and coher-
ent systems. Nav. Res. Logist. 62, 512–530 (2015)

202. Cramer, E., Navarro, J.: The progressive censoring signature of
coherent systems. Appl. Stoch. Model. Bus. Ind. 32(5), 697–710
(2016)

203. Jablonka, A., Cramer, E., Hermanns, M.: Statistical inference for
coherent systems with Weibull distributed component lifetimes
under complete and incomplete information. Appl. Stoch. Model.
Bus. Ind. 35(4), 1011–1027 (2019)

204. Volterman, W., Balakrishnan, N.: Exact nonparametric confi-
dence, prediction and tolerance intervals based on multi-sample
Type-II right censored data. J. Statist. Plann. Inference 140(11),
3306–3316 (2010)

205. Cohen, A.C.: Maximum likelihood estimation in the Weibull
distribution based on complete and on censored samples. Tech-
nometrics 7, 579–588 (1965)

206. Cohen, A.C.: Multi-censored sampling in the three parameter
Weibull distribution. Technometrics 17, 347–351 (1975)

207. Cohen, A.C.: Progressively censored sampling in the three param-
eter log-normal distribution. Technometrics 18, 99–103 (1976)

208. Wingo, D.R.: Solution of the three-parameter Weibull equations
by constrained modified quasilinearization (progressively cen-
sored samples). IEEE Trans. Reliab. R-22, 96–102 (1973)

209. Wingo, D.R.: Maximum likelihood methods for fitting the Burr
type XII distribution to multiply (progressively) censored life test
data. Metrika 40, 203–210 (1993)

210. Nelson, W.: Applied Life Data Analysis. Wiley, New York (1982)
211. Cohen, A.C., Whitten, B.J.: Parameter Estimation in Reliability

and Life Span Models. Marcel Dekker, New York (1988)
212. Balakrishnan, N., Han, D., Iliopoulos, G.: Exact inference for

progressively Type-I censored exponential failure data. Metrika
73, 335–358 (2011)

213. Balakrishnan, N., Iliopoulos, G.: Stochastic monotonicity of the
MLE of exponential mean under different censoring schemes.
Ann. Inst. Statist. Math. 61, 753–772 (2009)

214. van Bentum, T., Cramer, E.: Stochastic monotonicity of MLEs of
the mean for exponentially distributed lifetimes under sequential
hybrid censoring. Statist. Probab. Lett. 148, 1–8 (2019)

215. Casella, G., Berger, R.L.: Statistical Inference, 2 edn. Duxbury
Press, Boston (2002)

216. Hahn, G.J., Meeker, W.Q., Escobar, L.A.: Statistical Intervals: A
Guide for Practitioners. Wiley, New York (2017)

217. Balakrishnan, N., Cramer, E., Iliopoulos, G.: On the method of
pivoting the CDF for exact confidence intervals with illustration
for exponential mean under life-test with time constraints. Statist.
Probab. Lett. 89, 124–130 (2014)

218. Cramer, E., Górny, J., Laumen, B.: Multi-sample progressive
Type-I censoring of exponentially distributed lifetimes. Commun.
Statist. Theory Methods 50(22), 5285–5313 (2020)

219. Cohen, A.C.: Truncated and Censored Samples. Theory and Ap-
plications. Marcel Dekker, New York (1991)

220. Cramer, E., Tamm, M.: On a correction of the scale MLE for a
two-parameter exponential distribution under progressive Type-
I censoring. Commun. Statist. Theory Methods 43, 4401–4414
(2014)

221. Cohen, A.C.: Life testing and early failure. Technometrics 17,
347–351 (1966)

222. Gibbons, D.I., Vance, L.C.: Estimators for the 2-parameter
Weibull distribution with progressively censored samples. IEEE
Trans. Reliab. 32, 95–99 (1983)

223. Lemon, G.H.: Maximum likelihood estimation for the three pa-
rameter Weibull distribution based on censored samples. Techno-
metrics 17, 247–254 (1975)

224. Gajjar, A., Khatri, C.: Progressively censored samples from log-
normal and logistic distributions. Technometrics 11, 793–803
(1969)

225. Budhiraja, S., Pradhan, B., Sengupta, D.: Maximum likelihood
estimators under progressive Type-I interval censoring. Statist.
Probab. Lett. 123, 202–209 (2017)

226. Cheng, C., Chen, J., Li, Z.: A new algorithm for maximum like-
lihood estimation with progressive Type-I interval censored data.
Commun. Statist. Simulation Comput. 39(4), 750–766 (2010)

227. Ng, H.K.T., Wang, Z.: Statistical estimation for the parame-
ters of Weibull distribution based on progressively type-I inter-
val censored sample. J. Statist. Comp. Simul. 79(2), 145–159
(2009)

228. Lin, Y.-J., Lio, Y.L.: Bayesian inference under progressive type-I
interval censoring. J. Appl. Stat. 39(8), 1811–1824 (2012)

229. Chen, D.G., Lio, Y.L.: Parameter estimations for generalized ex-
ponential distribution under progressive Type-I interval censoring.
Comput. Statist. Data Anal. 54(6), 1581–1591 (2010)

230. Peng, X.-Y., Yan, Z.-Z.: Bayesian estimation for generalized expo-
nential distribution based on progressive type-I interval censoring.
Acta Math. Appl. Sin. Engl. Ser. 29(2), 391–402 (2013)



9 Progressive Censoring Methodology 179

9

231. Lio, Y.L., Chen, D.-G., Tsai, T.-R.: Parameter estimations for gen-
eralized Rayleigh distribution under progressively Type-I interval
censored data. Open J. Statist. 1(2), 46–57 (2011)

232. Xiuyun, P., Zaizai, Y.: Parameter estimations with gamma distri-
bution based on progressive Type-I interval censoring. In: IEEE
International Conference on Computer Science and Automation
Engineering (CSAE), 2011, pp. 449–453. IEEE, NewYork (2011)

233. Arabi Belaghi, R., Noori Asl, M., Singh, S.: On estimating the pa-
rameters of the Burr XII model under progressive Type-I interval
censoring. J. Stat. Comput. Simul. 87(16), 3132–3151 (2017)

234. Wu, S.-J., Chang, C.-T., Liao, K.-J., Huang, S.-R.: Planning of
progressive group-censoring life tests with cost considerations. J.
Appl. Stat. 35(11), 1293–1304 (2008)

235. Lin, C.-T., Wu, S.J.S., Balakrishnan, N.: Planning life tests with
progressively Type-I interval censored data from the lognormal
distribution. J. Statist. Plann. Inference 139(1), 54–61 (2009)

236. Lin, C.-T., Balakrishnan, N., Wu, S.J.S.: Planning life tests based
on progressively Type-I grouped censored data from the Weibull
distribution. Commun. Statist. Simulation Comput. 40(4), 574–
595 (2011)
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Abstract

Warranty is a topic that has been studied extensively by
different disciplines including engineering, economics,
management science, accounting, and marketing
researchers (Blischke andMurthy, Warranty cost analysis.
Marcel Dekker, NewYork, 1994, p 47).Warranty policy is
a guarantee for the seller of a product to provide the buyer
with a specific service, such as replacement or repair, in
the event of the product failure. Today warranty policy is
an important marketing factor used by the manufacturers
and corporates to promote its product to consumers
(Park and Pham, IEEE Trans Syst Man Cybern A
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Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA
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40:1329–1340, 2010). This chapter aims to provide an
overview on warranties focusing on the cost and benefit
perspective of various warranty and maintenance policies.
After a brief introduction of the current status of warranty
research, the second part of this chapter classifies various
existing and several recent promotional warranty policies
to extend the taxonomy initiated by Blischke and Murthy
(Eur J Oper Res 62:127–148, 1993).

Focusing on the quantitative modeling perspective of
both the cost and benefit analyses of warranties, we sum-
marize five problems that are essential to warranty issuers.
These problems are: (i) what are the warranty cost factors;
(ii) how to compare different warranty policies; (iii) how
to analyze the warranty cost of multi-component systems;
(iv) how to evaluate the warranty benefits; (v) how to
determine the optimal warranty policy.

A list of future warranty research topics are presented
in the last part of this chapter. We hope that this will stim-
ulate further interest among researchers and practitioners.

Keywords

Preventive maintenance · Warranty period · Warranty
service · Minimal repair · Indifference price · Warrant
policies

10.1 Introduction

Warranty is an obligation attached to products (items or
systems) that requires the warranty issuers (manufacturers or
suppliers) to provide compensation to consumers according
to the warranty terms when the warranted products fail to
perform their pre-specified functions under normal usage
within the warranty coverage period. Similar definitions can
be found in Blischke and Murthy [1, 2], McGuire [3], and
Singpurwalla and Wilson et al. [4]. Based on this defi-
nition, a warranty contract should contain at least three
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characteristics: the coverage period (fixed or random), the
method of compensations, and the conditions under which
such compensations would be offered. The last characteristic
is closely related to warranty execution since it clarifies
consumers, rights and protects warranty issuers from exces-
sive false claims. From the costing perspective, the first two
characteristics are more important to manufacturers because
they determine the depth of the protection against premature
failures and the direct cost related to those failures.

Traditionally, warranty serves as a protection instrument
attached to products sold to consumers. There are two facets
of the protection role: on one hand, it guarantees a prop-
erly functioning product for at least a period of w, either
financially or physically. On the other hand, it also specifies
an upper bound on the liability of the supplier induced by
the warranty. In addition to the protection role, warranty has
always been one of the most important elements in business
marketing strategy. As indicated in [3, p. 1], manufacturers,
primary rationale for offering warranty is to support their
products to gain some advantage in the market, either by
expressing the company,s faith in the product quality or by
competing with other firms. Due to the more than ever fierce
competition in the modern economy, the market promotion
role of warranty has become even more significant. Manu-
facturers are fighting with each other through various chan-
nels from competitive pricing, improved product reliability,
to more comprehensive warranties. Because of technology
constraints or time constraint, it is usually difficult to improve
product quality in a short time. As a result, warranty has
evolved as an essential part of marketing strategy, along with
pricing and advertising, which is especially powerful during
the introduction period of new, expensive products such as
automobiles and complex machinery.

In the last two decades, warranty has been studied ex-
tensively among many disciplines such as engineering, eco-
nomics, statistics, marketing and management science, to
name a few. Consequently, the literature on warranty is not
only vast, but also disjoint [1]. There are three books and
hundreds of journal articles that have addressed warranty-
related problems within the last 10 years. A comprehensive
collection of related references up to 1996 can be found in
[2]. In general, researchers in engineering are interested in
quality control and improving product reliability to reduce
production and service costs. Some of the major references
are Chen et al. [5], Djamaludin et al. [6], Hedge and Kubat
[7], Mi [8], Murthy and Hussain [9], Nguyen and Murthy
[10], and Sahin [11]. Economists usually treat warranty as
a special type of insurance. Consequently, they developed
the economic theory of warranties as one of many applica-
tions of microeconomics. We refer readers to DeCroix [12],
Emons [13, 14], Lutz and Padmanabhan [15], Padmanab-
han and Rao [16], Murthy and Asgharizadeh [17] and the
references therein. Statisticians mainly focus on warranty

claim prediction, statistical inference of warranty cost, and
estimation of product reliability or availability. Some of the
key references are Frees [18, 19], Ja et al. [20], Kalbfleisch
[21], Kao and Smith [22, 23], Menzefricke [24], Padmanab-
han andWorm [25] and Polatoglu [26]. A long-term trend in
warranty study is the focus on various warranty-management
aspects. Some recent references are Chun and Tang [27], Ja
et al. [20], Lam and Lam [28], Wang and Sheu [29], and
Yeh et al. [30, 31]. Blischke and Murthy [32] developed a
framework for the analytical study of various issues related
to warranty. Recently,Murthy and Djamaludin [33] enriched
the framework by summarizing the literature since 1992 from
an overall business perspective. Another review by Thomas
and Rao [34] provided some suggestions for expanding the
analysis methods for making warranty decisions. Park and
Pham [35] discussed several cost models with consideration
of non-renewable and renewable warranty policies based on
two-dimension aspects such as failure times and repair times.

In this chapter, we briefly review some recent work in
warranty literature from the manufacturers, perspective. The
objectives of this chapter are to classify various existing
and relatively new warranty policies to extend the taxonomy
discussed in [36], and to summarize and illustrate some
fundamental warranty economic problems including several
warranty-maintenance policies such as the block replacement
and age replacement policies.

10.2 Classification of Warranty Policies

Numerous warranty policies have been studied in the last sev-
eral decades. Blischke andMurthy [37] presented a taxonomy
of more than 18 warranty policies and provided a precise
statement of each of them. In this section, we extend the
taxonomy by addressing several recently proposed policies
that might be of interests to warranty managers. It should be
noted that we mainly focus on type A policies [37], which,
based on the taxonomy, are referred to as policies for single
items and not involving product development.

10.2.1 Renewable and Nonrenewable
Warranties

One of the basic characteristics of warranties is whether
they are renewable or not. For a regular renewable policy
with warranty period w, whenever a product fails within
w, the buyer is compensated according to the terms of the
warranty contract and the warranty policy is renewed for
another period w. As a result, a warranty cycle T, starting
from the date of sale, ending at the warranty expiration date,
is a random variable whose value depends on w, the total
number of failures under the warranty, and the actual failure
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inter-arrival times. Renewable warranties are often offered
for inexpensive, nonrepairable consumer electronic products
such as microwaves, coffee makers, and so forth, either
implicitly or explicitly. One should notice that theoretically
the warranty cycle for a renewable policy can be arbitrarily
large. For example, consumers can induce the failures so that
they keep on getting new warranties indefinitely. Such moral
hazard problems might be one of the reasons that renewable
policies are not as popular as nonrenewable ones among
warranty issuers.

One way to remedy this problem is to modify the regular
renewable policy in the following way: instead of offering the
original warranty with a period of w repeatedly upon each
renewing, warranty issuers could set wi = αwi–1,α ∈ (0, 1],
for i = 1, 2,· · · , where wi is the warranty length for the
i-th renewing, and w0 = w. Actually, this defines a new
type of renewable warranty, which we refer to as geometric
renewable warranty policies. Clearly, a geometric renewable
policy is a generalization of a regular renewable policy, which
degenerates to the latter when α = 1.

The majority of warranties in the market are nonrenew-
able; for these the warranty cycle, which is the same as the
warranty period, is not random, but predetermined (fixed),
since the warranty obligation will be terminated as soon as
w units of time pass after sale. This type of policies is also
known as a fixed-period warranty.

10.2.2 FRW, FRPW, PRW, CMW, and FSW
Policies

According to the methods of compensation specified in a
warranty contract upon premature failures, there are three
basic types of warranties: free replacement warranty (FRW),
free repair warranty (FRPW), and pro-rata warranty (PRW).
Combination warranty (CMW) contains both features of
FRW/FRPW and PRW. Full-service warranty, (FSW), which
is also known as preventive maintenance warranty, is a policy
that may be offered for expensive deteriorating complex
products such as automobiles. Under this type of policies,
consumers not only receive free repairs upon premature
failures, but also free (preventive) maintenance.

For nonrepairable products, the failed products under war-
ranty will usually be replaced free of charge to consumers.
Such a policy is often referred to as a free replacement
warranty or an unlimited warranty. In practice, even if a prod-
uct is technically repairable, sometimes it will be replaced
upon failure since repair may not be economically sound.
As a result, for inexpensive repairable products, warranty
issuers could simply offer FRWpolicies. Consequently, these
inexpensive repairable products can be treated as nonre-
pairable. However, for repairable products, if the warranty
terms specify that, upon a valid warranty claim, the warranty

issuer will repair the failed product to working condition free
of charge to buyers, then such a policy is a so-called free
repair warranty. In practice, it is not rare that a warranty
contract specifies that the warranty issuer would repair or
replace a defective product under certain conditions. This
is the reason why most researchers do not treat FRW and
FRPW separately. Nevertheless, we feel that it is necessary to
differentiate these two type of policies based on the follow-
ing reasoning: first, repair cost is usually much lower than
replacement cost except for inexpensive products; secondly,
by clearly defining the compensation terms, warranty issuers
may establish a better image among consumers, which can
surely be helpful for the marketing purpose.

Under a FRW policy, since every failed product within T
is replaced by a new one, it is reasonable to model all the
subsequent failure times by a single probability distribution.
However, under a FRPW, it is necessary to model the repair
impact on failure times of a warranted product. If it is
assumed that any repair is as-good-as-new (perfect repair),
then from the modeling perspective, there is little differ-
ence between FRW and FRPW. For deteriorating complex
systems, minimal repair is a commonly used assumption.
Under this assumption, a repair action restores the system,s
failure rate to the level at the time epoch when the last failure
happened.Minimal repair was first introduced byBarlow and
Proschan [38]. Changing a broken fan belt on an engine is a
good example of minimal repair since the overall failure rate
of the car is nearly unchanged. Perfect repair and minimal
repair represent two extremes relating to the degree of repair.
Realistically, a repair usually makes a system neither as-
good-as-new, nor as-bad-as-old (minimal repair), but to a
level in between. This type of repair is often referred to as
imperfect repair. In the literature of maintenance and reli-
ability, many researchers have studied various maintenance
policies considering imperfect repair. A recent review on
imperfect maintenance was given by Pham andWang [39]. In
the warranty literature, the majority of researchers consider
repairs as either perfect or minimal. Little has been done on
warranty cost analysis considering imperfect repair.

Both FRW and FRPW policies provide full coverage to
consumers in case of product failures within T. In contrast,
a PRW policy requires that buyers pay a proportion of the
warranty service cost upon a failure within T in exchange
for the warranty service such as repair or replacement, cash
rebate or a discount on purchasing a new product. The
amount that a buyer should pay is usually an increasing
function of the product age (duration after the sale). As an
example, suppose the average repair/replacement cost per
failure is cs, which could be interpreted as the seller,s cost
per product without warranty, if a linear pro-rata function
is used, then the cost for a buyer upon a failure at time
t, t < w, is cs tw . The corresponding warranty cost incurred
to the manufacturer is cs

(
1 − t

w

)
. PRW policies are usually
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renewable and are offered for relatively inexpensive products
such as tires, batteries, and so forth.

Generally speaking, FRW and FRPW policies are in the
favor of buyers since manufacturers take all the responsibil-
ity of providing products that function properly during the
whole warranty cycle [1, p. 221]. In other words, it is the
manufacturers that bear all the warranty cost risk. In contrast,
for PRW policies manufacturers have the relative advantage
with regard to the warranty cost risk. Although they do have
to offer cash rebates or discounts to consumers if failures
happen during T, they are usually better off no matter what
consumers choose to do. If a consumer decides not to file a
warranty claim, then the manufacturer saves himself the cash
rebate or other type of warranty service. If instead a warranty
claim is filed, the manufacturer might enjoy the increase in
sales or at least the warranty service cost is shared by the
consumer.

To balance the benefits between buyers and sellers, a
combination warranty (CMW) that contains both features
of FRW/FRPW and PRW policies was created. CMW is a
policy that usually includes two warranty periods: a free
repair/replacement period w1 followed by a pro-rata period
w2. This type of warranties is not rare today because it has
significant promotional value to sellers, while at the same
time it provides adequate control over the costs for both
buyers and sellers [2, p. 12].

For deteriorating complex products, it is essential to
perform preventive maintenance to achieve satisfactory
reliability performance. Maintenance involves planned and
unplanned actions carried out to retain a system at, or restore
it to, an acceptable operating condition [40]. Planned mainte-
nance is usually referred to as preventive maintenance, while
unplanned maintenance is labeled as corrective maintenance
or repair. The burden of maintenance is usually on the
consumers, side. In [41],Bai andPham proposed a renewable
full-service warranty for multi-component systems under
which the failed component(s) or subsystem(s) will be
replaced; in addition, a (preventive) maintenance action will
be performed to reduce the chance of future product failures,
both free of charge to consumers. They argue that such a pol-
icy is desirable for both consumers and manufacturers since
consumers receive better warranty service compared to tradi-
tional FRPW policies, while at the same time manufacturers
may enjoy cost savings due to the improved product reliabil-
ity by the maintenance actions. By assuming perfect mainte-
nance, they derived the probability distributions and the first
two moments of the warranty cost per warranty cycle for
series, parallel, series–parallel, and parallel–series systems.

Many researchers have studied warranty-maintenance
problems. Among them Chun [42] determined the optimal
number of periodic maintenance actions during the warranty
period by minimizing the expected warranty cost (EWC).
Jack and Dagunar [43] generalized Chun,s idea by

considering unequal preventive maintenance intervals. Yeh
[31] further extended the work by including the degree of
maintenance as one of the decision variables along with
the number of maintenance actions and the maintenance
schedule. All of these three researches aim to obtain the
optimal maintenance warranty to assist manufacturers,
decision-making. A related problem is the determination
of the optimal maintenance strategy following the expiration
of warranty from the consumers, perspective. Dagpunar
and Jack [44] studied the problem by assuming minimal
repair. Through a general approach, Sahin and Polatoglu [45]
discussed both stationary and non-stationary maintenance
strategies following the expiration of warranty. They proved
the pseudo-convex property of the cost rate function under
some mild conditions.

10.2.3 Repair-Limit Warranty

In maintenance literature, many researchers studied main-
tenance policies set up in such a way that different main-
tenance actions may take place depending on whether or
not some pre-specified limits are met. Three types of lim-
its are usually considered: repair-number-limit, repair-time-
limit, and repair-cost-limit. Those maintenance policies are
summarized byWang [36].

Similarly, three types of repair-limit warranties may be
considered by manufacturers: repair-number-limit warranty
(RNLW), repair-time-limit warranty (RTLW), and repair-
cost-limit warranty (RCLW). Under a RNLW, the manufac-
turer agrees to repair a warranted product up to m times
within a period of w. If there are more than m failures
withinw, the failed product shall be replaced instead of being
repaired again. Bai and Pham [46] recently studied the policy
under the imperfect-repair assumption. They derived the
analytical expressions for the expected value and the variance
of warranty cost per product sold through a truncated quasi-
renewal-process approach.

AN RTLW policy specifies that, within a warranty cycle
T, any failures shall be repaired by the manufacturer, free
of charge to consumers. If a warranty service cannot be
completed within τ unit of time, then a penalty cost oc-
curs to the manufacturer to compensate the inconvenience
of the consumer. This policy was analyzed by Murthy and
Asgharizadeh [17] in the context of maintenance service
operation.

For a RCLWpolicy, there is a repair cost limit τ in addition
to an ordinary FRPWpolicy. That is, upon each failure within
the warranty cycle T, if the estimated repair cost is greater
than τ , then replacement instead of repair shall be provided
to the consumer; otherwise, normal repair will be performed.
This policy has been studied by Nguyen andMurthy [47] and
others.
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It should be noted that various repair limits as well as other
warranty characteristics such as renewing may be combined
together to define a new complex warranty. For example, it is
possible to have a renewable repair-time-limit warranty for
complex systems. Such combinations define a large set of
new warranty policies that may appear in the market in the
near future. Further study is needed to explore the statistical
behavior of warranty costs of such policies to assist decisions
of both manufacturers and consumers.

10.2.4 One-AttributeWarranty
and Two-AttributeWarranty

Most warranties in practice are one-attribute, for which the
warranty terms are based on product age or product usage,
but not both. Compared to one-attribute warranties, two-
attribute warranties are more complex since the warranty
obligation depends on both the product age and product
usage as well as the potential interaction between them. Two-
attribute warranties are often seen in automobile industry.
For example, Huyndai, the Korean automobile company, is
currently offering 10 years/100,000 miles limited FRPW on
the powertrain for most of their new models.

One may classify two-attribute warranties according to
the shape of warranty coverage region.Murthy et al. defined
four types of two-attribute warranties labeled as policy A to
policy D (Fig. 1 in [48]). The shapes of the warranty regions
are rectangular, L-shaped with no limits on age or usage, L-
shaped with upper limits on age and usage, and triangular,
respectively. Based on the concept of the iso-cost curve,
Chun and Tang [27] proposed a set of two-attribute warranty
policies for which the expected present values of future
repair costs are the same. Some other plausible warranty
regions for two-attribute warranty policies were discussed by
Singpurwalla andWilson [4].

In general, there are two approaches in the analysis of
two-attribute warranties, namely, the one-dimensional (1-D)
approach [48] and the two-dimensional (2-D) approach [49].
The 1-D approach assumes a relationship between product
age and usage; therefore it eventually converts a two-attribute
warranty into a corresponding one-attribute warranty. This
approach is used by Moskowitz and Chun [50], and Chun
and Tang [27]. The 2-D approach does not impose a de-
terministic relationship between age and usage. Instead, a
bivariate probability distribution is employed for the two
warranty attributes. Murthy et al. [48] followed the idea
and derived the expressions for the expected warranty cost
per item sold and for the expected life cycle cost based
on a two-dimensional renewal processes. Kim and Rao [51]
obtained the analytical expressions for the warranty cost for
the policies A and B defined in [48] by considering a bivariate
exponential distribution. Perhaps the most comprehensive

study of two-attribute warranties so far is by Singpurwalla
and Wilson [4], in which, through a game-theory set up,
they discussed in detail both the optimum price-warranty
problem and the warranty reserve determination problem.
Park and Pham [49] recently discussed several warranty
cost models for complex systems considering two types of
warranty periods such as warranty period and post warranty
period subject to minimal repairs. They presented the long
run expected cost models per unit time with consideration
of both the manufacturer and the customer perspectives and
provided the optimum decision variables including warranty
period, repair time limit and periodical maintenance cycles
that minimizes the total expected cost.

10.3 Evaluation of Warranty Policies

Two phenomena make the study of warranties important.
First, warranty has become common practice for manufactur-
ers. According to the survey conducted by McGuire, nearly
95% of producers of industrial products provide warranties
on all of their product lines [3, p. 1]; secondly, there is
a huge amount of money involved in warranty programs.
Based on a report by the Society of Mechanical Engineering
(www.sme.org), the annual warranty cost is about 6 billion
dollars for Ford, General Motors and Chrysler combined in
the year 2001.

Among many issues related to warranty, there are two
fundamental questions that must be answered, especially for
warranty issuers: (1) how much a warranty will cost; (2) how
much benefit can be earned from a certain warranty. This
section summarizes some ideas and discussions appeared in
the literature that are closely related to these two questions.

10.3.1 Warranty Cost Factors

Due to the random nature of many warranty cost factors
such as product failure times, warranty cost is also a random
variable whose statistical behavior can be determined by
establishing mathematical links between warranty factors
and warranty cost. There are numerous factors that may be
considered in warranty studies. Among them, we believe that
the followings are of great importance: the characteristics of
warranty policies; warranty service cost per failure; product
failure mechanism; impact of warranty service on product
reliability; warranty service time; andwarranty-claim-related
factors.

Different warranty policies may require different math-
ematical models for warranty cost. One way to model the
warranty cost per item sold is through a stochastic counting
process [N(t), t ≥ 0], which represents the number of fail-
ures over time of a warranted product. Let S1, S2,· · · be the

http://www.sme.org
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subsequent failure times, and denote by CSi the warranty cost
associated with the i-th failure. Assuming that all product
failures are claimed, that all claims are valid, and instant
warranty service, then the total warranty cost per item sold,
C(w), can be expressed as

C(w) =
{ ∑N[T(w)]

i=0 CSi , for N [T(w)] = 1, 2, · · ·
0, for N [T(w)] = 0.

(10.1)

From (10.1), it is clear that the probabilistic behavior of
C(w) solely depends on N[T(w)] (the number of failures
within a warranty cycle T) and CSi , as well as the potential
interaction between them. In general it is very difficult to
determine the distribution of C(w). However, it is possible to
obtain the moments of C(w) using modern stochastic process
theory and probability theory.

For nonrepairable products or repairable products with
a single component, warranty service cost per failure is
often assumed to be constant. However, for repairable multi-
component products, warranty service cost per failure in
general is a random variable whose distribution is related to
the product (system) structure and the warranty service cost
for each component.

Product (system) failure mechanism can be described by
the distributions of subsequent system failure times. This
involves the consideration of system structure, the reliability
of components, and the impact of repair on components,
reliability and system reliability. System structure is essen-
tial in determining system reliability. Extensive research on
reliability modeling has been done for different systems such
as series–parallel systems, parallel–series systems, standby
systems, k-out-of-n systems, and so forth, in the literature of
reliability [52]. Unfortunately, to our knowledge, there is no
complete theory or methodology in warranty that incorpo-
rates the consideration of various system structure.

If a warranted product is nonrepairable or the as-good-as-
new repair assumption is used for repairable products, then a
single failure-time distribution can be adopted to describe the
subsequent product failure times under warranty. However,
if a warranted product is repairable and repairs are not as-
good-as-new, then the failure time distribution(s) of repaired
products differ(s) from that of a new product. This situation
may bemodeled by considering a failure-time distribution for
all repaired products different from that of new products [1].
Strictly speaking, distributions of subsequent failure times of
a repairable product are distinct, therefore, such an approach
can be only viewed as an approximation.

As mentioned in section “Evaluation of Warranty Poli-
cies,” warranty compensation includes free replacement, free
repair or cash rebate. For the case of free replacement,
warranty service cost per failure for manufacturers is simply
a constant that does not depend on the product failure times.
In the case of cash rebate (pro-rata policy), warranty cost

per failure usually relies on product failure time as well as
the rebate function. When repair, especially the not as-good-
as-new repair, is involved in warranty service, one has to
model the repair impact on product reliability, which in turn
has a great impact on warranty cost per failure. One way
to model subsequent failure times under this situation is to
consider them as a stochastic process. Consequently, modern
stochastic theory of renewal processes, nonhomogeneous
Poisson processes, quasi-renewal processes [40] and general
point processes could be applied.

To our knowledge, most warranty literature assumes that
warranty service is instant. This may be justified when the
warranty service time is small compared to the warranty
period or the warranty cycle. A better model is to incorporate
explicitly the service times into warranty cost modeling. One
recent attempt to include non-zero service time in warranty
analysis is byMurthy and Asgharizadeh [17]. In this chapter,
they developed a game-theoretic formulation to obtain the
optimal decision in a maintenance service operation.

Warranty claims-related factors include the response of
consumers to product failures and the validation of warranty
claims by warranty issuers. It is no secret that not all con-
sumers will make warranty claims even if they are entitled
to do so. It is also true that warranty issuers, to serve their
own benefits, usually have a formal procedure to validate
warranty claims before honoring them. Such situations may
be modeled by assigning two new parameters α and β, where
α is the probability that a consumer will file a claim upon
a failure within T, and β is the proportion of the rejected
claims [53].

There are other factors that may be of importance in
warranty cost evaluation such as nonconforming product
quality [5], multiple modes of failure, censored observations
[19], etc. Unfortunately, it is impossible to consider all the
factors in one warranty cost model. Even if such a model
exists, it would be too complicated to be applied.

10.3.2 Criteria for Comparison of Warranties

Warranty managers usually have several choices among var-
ious warranty policies that might be applied to a certain type
of products. This requires some basic measures as the criteria
to make the comparison among these policies.

There are several measures available, including expected
warranty cost (EWC) per product sold, expected discounted
warranty cost (EDWC) per warranty cycle, monetary utility
function and weighted objective function. EWC and EDWC
are more popular than the others since they are easy to
understand and can be estimated relatively easily. The key
difference between them is that the latter one considers the
value of time, an important factor for warranty cost account-
ing and financial managers.
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To our opinion, monetary utility function,U(x), is a better
candidate for the purpose of comparing warranty policies.
The functional form of U(x) reflects the manufacturer,s risk
attitude. If a manufacturer is risk-neutral, then U(x) is linear
in x. This implies that maximizing E[U(x)] is the same as
maximizing U[E(x)]. However, manufacturers may be risk-
averse if they are concerned about the variations in profit
or in warranty cost. For example, a particular manufacturer
may prefer a warranty with less cost variation than another
with much larger variation in warranty cost if the difference
between the EWCs is small. If this is the case, then it can
be shown that the corresponding utility function is concave
[54]. The main difficulty of the utility theory approach is that
utility functions are subjective.

Weighted objective functions could also be used for
the purpose of comparing warranties for manufacturers.
One commonly used weighted objective function is
E[π (x)] − ρV[π (x)], where ρ is a positive parameter
representing the subjective relative importance of the risk
(variance or standard deviation) against the expectation and
π (x) is the manufacturers profit for a given warranty policy x.
Interestingly, such an objective function coincides to a special
case of the utility theory approach when the manufacturer,s
subjective utility function is assumed to only depend on the
first two centered moments of π (x) [55, 56].

In the above discussion, the term warranty cost refers
to the manufacturer,s cost per warranted product. In our
opinion, this is the fundamental measure for the purpose of
evaluating any warranty for manufacturers since it provides
precise information on the additional cost incurred to manu-
facturers due to warranty. An equally useful measure is the
discounted warranty cost (DWC) per cycle. This measure
incorporates the value of time, therefore it is useful when
warranty managers are interested in determining warranty
reserve level. It is also of importance to financial managers
performing warranty cost analysis.

Some researchers have proposed warranty cost per unit
time, or warranty cost rate, as the primary warranty cost
measure. As indicated by Blischke and Murthy [2], warranty
cost rate is useful in managing warranty servicing resources,
such as parts inventory over time with dynamic sales.

Another related measure is warranty cost over a product
life cycle. Blischke and Murthy named this cost as life cycle
cost-II (LCC-II) [1]. A product life cycle begins with the
launch of the product onto the market and ends when it is
withdrawn. For consumers, warranty cost analysis is usually
conducted over the life time of a product. In [1], this cost is
labeled as life cycle cost-I (LCC-I). LCC-I is a consumer-
oriented cost measure and it includes elements such as pur-
chase cost, maintenance and repair costs following expiration
of a warranty, operating costs as well as disposal costs.
Park and Pham [35] studied the expected warranty cost

models for twomaintenance policies such as age replacement

and block replacement policies with various warranty poli-
cies. For instant, if a failed product is delivered to the war-
ranty service center, the repair service is provided, and if
the repair time exceeds the repair time limit the replacement
service is provided.

10.3.3 Warranty Cost Evaluation for Complex
Systems

Most products (systems), especially expensive ones, are com-
posed of several nonrepairable components. Upon a failure,
the common repair practice is to replace failed components
instead of replacing the whole system. For such products,
warranty may be offered for each of the individual com-
ponents, or for the whole system. For the former case, the
warranty cost modeling and analysis for single-component
products can be applied readily. In fact, most warranty litera-
ture focuses on the analysis of warranty for single-component
systems via a black-box approach. However, for the latter
case, it is necessary to investigate warranty with explicit
consideration of system structure because evidently system
structure has a huge impact on product reliability, therefore
it is a crucial factor in warranty cost study. Unfortunately, as
indicated by Chukova and Dimitrov [57, p. 544], so far there
has been only limited study on this topic.

Some researchers have discussed the warranty cost model-
ing for parallel systems. For example, Ritchken [58] provided
an example of a two-component parallel system under a
two-dimensional warranty. Hussain and Murthy [59] also
discussed warranty cost estimation for parallel systems under
the setting that uncertain quality of new products may be a
concern for the design of warranty programs. Chukova and
Dimitrov [57] presented a two-component parallel system
under a FRPW policy. Actually, for nonrepairable parallel
systems, the modeling techniques of warranty cost is essen-
tially the same as that of black-box systems unless the system
is considered as repairable.

To our knowledge, the only published work about war-
ranty study on series systems is by Chukova and Dimitrov
[57, pp. 579–580]. They derived the EWC per system sold for
a two-component series system under a FRPW policy which
offers free replacement of the failed component if any system
failure happens within the warranty period w. Recently, Bai
and Pham [41] obtained the first twomoments of a renewable
FSW policy for series, parallel, series–parallel, and parallel–
series systems. The derivation of the first two moments of
the DWC of nonrenewable FRPW and PRW policies for
minimally repaired series systems can be found in [60].

It is possible to use a Markovian model to analyze war-
ranty cost for complex systems. Balachandran et al. [61]
dealt with the problem of determining warranty service cost
of a three-component system using the Markovian approach.



192 H. Pham and J. Bai

A similar discussion can be seen in [57] and the references
therein. Although this approach is a powerful tool in the
literature of reliability, queuing systems, and supply-chain
management, there are some limitations in the applications of
warranty. First of all, it is difficult to determine the appropri-
ate state space and the corresponding transition matrix for the
applications in warranty. Secondly, most Markovian models
only provide the analysis of measures in the steady states
by assuming infinite horizon. In other words, the statistical
behavior of those measures in finite horizon (short-run) is
either too difficult to obtain or not of practical interest.
However, in warranty study, it is crucial to understand the
finite-horizon statistical behavior of warranty cost. Thirdly,
warranty claim data as well as reliability data are scarce
and costly. Markovian models usually require more data
since they contain more parameters than ordinary probability
models that could be applied to warranty cost study.

Using a quasi-renewal process [62], Park and Pham [63,
64] discussed several warranty cost models including re-
pairable models with a fixed warranty period for multicom-
ponent systems subject to imperfect repair service. In their
models, they considered that: (i) the interoccurrence failure
intervals are independent of each other and its follow an ex-
ponential distribution; (ii) the failed products are repairable;
and (iii) the inspection time that examines whether the failed
components need repair services or not is negligible. Using
a quasi-renewal process [62, 65], they derived the expected
warranty cost and the standard deviation of the warrant
cost for systems including parallel-series and series-parallel
systems. Sgarbossa and Pham [66] and Pham and Zhang [67]
developed several cost models of software systems with con-
siderations of risk and warranty factors to obtain the software
testing policies that minimizes the total system costs.

10.3.4 AssessingWarranty Benefits

As mentioned in the introduction, warranty is increasingly
used as a promotional device for marketing purposes. Con-
sequently, it is necessary to predict and assess quantita-
tively the benefit that a manufacturer might generate from
a specific warranty [34, p. 189]. For promotional warranties,
such benefit is usually realized through the demand side.
Manufacturers generally expect that the increase in profit as
a result of the increase in sale, which is boosted by warranty,
should cover the future warranty cost.

A simple way to quantify the benefit is to model it as a
function of the parameter(s) of a warranty policy, for exam-
ple, w, the warranty period. A linear form and a quadratic
form of w were employed by Thomas [34, 68] for this
purpose. As he acknowledged, both forms were not well-
founded and shared the problem of oversimplification [34,
p. 193]. Another approach is to estimate the demand function

empirically. Menezes and Currim [69] posited a general
demand function where the quantity sold by a firm offering
a warranty with period w is a function of its price, warranty
length, advertising, distribution, quality, product feature, and
the corresponding values for the firm,s competitor. Based
on the data from Ward,s Automotive Yearbook, Consumer
Reports, Advertising Age, Leading National Advertisers, and
other sources during the period 1981–1987, they obtained
the price elasticity and the warranty elasticity, which enabled
them to obtain the optimal warranty length through maximiz-
ing the present value of cumulative future profit over a finite
planning horizon. One of the limitations of this approach, as
pointed out by the authors, is that it requires the support of
historical sales data. As a result, it cannot be applied to new
products or existing products without such historical data [69,
p. 188].

A related problem of the demand side of warranty is
the modeling of sales over time. Mahajan et al. presented
several variant diffusion models that may be appropriate
for consumer durables [70]. Ja et al. obtained the first two
moments of warranty cost in a product life cycle by assuming
a nonhomogeneous Poisson sale process [20]. It seems that
such models do not allow the interaction between warranty
and sales, therefore, they may not be used in estimating
warranty benefit.

There is some research (Emons [14], Lutz and Padmanab-
han [15], Padmanabhan and Rao [16], etc.) on the demand
side of warranty concerning moral hazard, advertising, con-
sumers satisfaction, and so forth. However, compared to the
vast warranty literature on estimating total warranty cost, the
study on the demand side of warranty is far behind. Hopefully
we will see more studies on this aspect in the future.

10.3.5 On the Optimal Warranty Policy

One of the most important objectives of warranty study
is to assist warranty management. In particular, in the de-
sign phase of a warranty program, there are often a set of
warranties that might be appropriate for a specific type of
products. The problem faced by warranty managers therefore
is how to determine the optimal warranty policy.

An early attempt to address the warranty design prob-
lem is based on the concept of life-cycle costing (Blischke
[71], Mamer [72]). It is assumed that a consumer requires
the product over a certain time period or life cycle from
the same producer repeatedly upon each product failure no
matter whether under warranty or not. Under this idealized
producer–consumer relationship, the producer,s life-cycle
profit and the consumer,s life-cycle cost can be calculated.
Consequently, a consumer indifference price may be de-
termined by comparing consumer,s life-cycle costs with or
without warranty. Similarly, the producer,s indifference price
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may be calculated based on the comparison of the life-cycle
profits with or without warranty.

An alternative approach is to set up an optimization prob-
lem to determine the optimal price and warranty length
combination jointly through a game-theoretic perspective. In
general, two parties, a warranty issuer and a representative
consumer, participate in the game. The latter acts as a fol-
lower who responses rationally to each potential warranty
offer by maximizing his/her utility. The former, as a leader,
makes the decision on the optimal warranty strategy, which
maximizes the expected profit, based on the anticipated ratio-
nal response by the consumer. Singpurwalla and Wilson [4]
studied two-attribute warranties through this approach. Some
others references are Chun and Tang [73], DeCroix [12],
Glickman and Berger [74], Ritchken [75], Thomas [68], and
the references therein. In the context of production planning
and marketing, Mitra and Patankar [76] presented a multi-
criteria model that could be used in warranty design.

Now, we present a general formulation of the warranty
design problem with some discussion, which may raise more
interest among researchers and practitioners for further study.

Let Ψ = {ψ1,ψ2,· · · ,ψn} represent the set of appropriate
warranty policies for a given type of products. Policy ψ i may
contain more than one parameter. Denote by wi the set of
warranty parameters for ψ i; then we can represent ψ i by
ψ(wi) or wi. If wi contains only one parameter, say, wi, the
warranty period, then wi = {wi}. Denote by p(wi) the selling
price under the policyψ i, and by Cj(wi) the random warranty
cost for the j-th product sold under the policy ψ i. Let p0 be
the production cost per unit (not including the warranty cost),
then the optimal warranty policy ψ(w*) may be obtained by
solving

max{wi,∀i,i=1,2,··· ,n}
E

{
U [π(wi)]

}

s.t. wli ≤ wi ≤wui ,∀i, i = 1, 2, · · · , n

P

[
d(wi)∑

j=1
Cj (wi) ≥ R0

]

≤ α,∀i, i = 1, 2, · · · , n,

where
U(·) is the monetary utility function that reflects the risk

attitude of the manufacturer. It is a linear function if the
manufacturer is risk-neutral and a concave function in the
case of a risk-averse manufacturer;

π (wi) =
∑d(wi)

j=1
[p (wi) − p0 − Cj (wi)] ,

wl
i, w

u
i : are some lower and upper bounds of wi;

d(wi) represents the demand function for ψ(wi);
R0 is the predetermined warranty budget level; and
α is the risk-tolerance level of the manufacturer with regard

to R0.

One should note that the second set of constraints is
actually related to value at risk (VaR), a concept widely
used in risk management, which indicates the maximum
percentage value of an asset that could be lost during a fixed
period within a certain confidence level [77]. It is reasonable
to assume that manufacturers want to control VaR such that
the probability that the total warranty cost is over the budget
is within the accepted level α.

Solving the optimization problem might be a challenge.
First of all, it is difficult to determine the demand function
d(wi), although it is possible to estimate it through marketing
surveys or historical data. Secondly, it is required that war-
ranty managers have complete knowledge of the selling price
p(wi). This requires a pricing strategy in the design phase of
warranty. It should be noted that we could have considered
p(wi) as one of the decision variables, but this makes the
problem more complicated. Besides, it is not rare in practice
that the price is simply set by adding a fixed margin over
the estimated production cost with warranty. Thirdly, it is
required that the probability distribution of warranty cost
should be known. Little research has been done with regard
to this issue except Polatoglu and Sahin [26] and Sahin and
Polatoglu [78]. In general, numerical methods are required
for this purpose. Fourthly, the problem is formulated as a
nonlinear optimization problemwith some constraints, which
may be solved by nonlinear optimization software such as
GAMS. However, in general there is no guarantee of the
existence of a global optimal solution.

10.4 Concluding Remarks

A warranty problem, by its nature, is a multi-disciplinary re-
search topic. Many researchers ranging from the industry en-
gineer, economist, statistician, to marketing researchers have
contributed greatly to warranty literature. In this chapter, we
present an overview of warranty policies, focusing on the
cost and benefit analysis from warranty issuers, perspective.
Although we have successfully addressed several problems
in this area, there are still a lot of opportunities for future
research, a few of which are listed below:

• To advance warranty optimization models and perform
empirical study based on the new developed models.

• To develop and apply efficient algorithms to solve war-
ranty optimization problems.

• To propose and analyze new warranty policies appropriate
for complex systems.

• To Study the distribution and the moments of discounted
warranty cost for various policies.

• Warranty cost modeling for systems with more complex
structures, including standby systems, bridge systems,
network systems, etc.
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• Develop warranty models considering failure dependency
between components due to environmental impact.
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Abstract

The first section of this chapter introduces statistical pro-
cess control (SPC) and robust design (RD), two impor-
tant statistical methodologies for quality and productivity
improvement. Section 11.1 describes in-depth SPC theory
and tools for monitoring independent and autocorrelated
data with a single quality characteristic. The relation-
ship between SPC methods and automatic process control
methods is discussed and differences in their philosophies,
techniques, efficiencies, and design are contrasted. SPC
methods for monitoring multivariate quality characteris-
tics are also briefly reviewed.

Section 11.2 considers univariate RD, with empha-
sis on experimental design, performance measures and
modeling of the latter. Combined and product arrays are
featured and performance measures examined, include
signal-to-noise ratios SNR, PerMIAs, process response,
process variance, and desirability functions. Of central
importance is the decomposition of the expected value
of squared-error loss into variance and off-target com-
ponents which sometimes allows the dimensionality of
the optimization problem to be reduced. Besides, this
section deals with multivariate RD and demonstrates that
the objective function for the multiple characteristic case
is typically formed by additive or multiplicative combina-
tion of the univariate objective functions, and lists RD case
studies originating from applications in manufacturing,
reliability, and tolerance design.

Section 11.3 discusses the mainstream methods used
in the prognostics and health management (PHM) frame-
work, including updated research from the literatures of
both statistical science and engineering. Additionally, this
section provides an overview of the systems health mon-
itoring and management (SHMM) framework, discusses
its basic structure, and lists several applications of SHMM
to complex systems and to critical components within the
context of a big data environment.
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In the current international marketplace, continuous quality
improvement is pivotal for maintaining a competitive ad-
vantage. Although quality improvement activities are most
efficient and cost-effective when implemented as part of the
design and development stages (off-line), on-line activities
such as statistical process control (SPC) are vital for main-
taining quality during manufacturing.

Statistical process control (SPC) is an effective tool for
achieving process stability and improving process capability
through variation reduction. Primarily, SPC is used to clas-
sify sources of process variation as either common cause
or assignable cause. Common cause variations are inherent
to a process and can be described implicitly or explicitly
by stochastic models. Assignable cause variations are unex-
pected and difficult to predict beforehand. The basic idea
of SPC is to quickly detect and correct assignable cause
variation before quality deteriorates and defective units are
produced. The primary SPC tool was developed in the 1920s
by Walter Shewhart of Bell Telephone Laboratories and
has been tremendously successful in manufacturing applica-
tions [1–3].

Robust design (RD) is a systematic methodology that
uses statistical experimental design to improve the design
of products and processes. By making product and process
performance insensitive (robust) to hard-to-control distur-
bances (noise), robust design simultaneously improves prod-
uct quality, the manufacturing process, and reliability. The
RDmethod was originally developed by the Japanese quality
consultant,Genichi Taguchi [4]. Taguchi’s 1980 introduction
of robust parameter design to several major American indus-
tries resulted in significant quality improvements in product
and process design [5]. Since then, a great deal of research on
RD has improved related statistical techniques and clarified
underlying principles.

In addition, many RD case studies have demonstrated
phenomenal cost savings. In the electronics industry, Kackar
and Shoemaker [6] reported a 60% process variance reduc-
tion; Phadke [5] reported a fourfold reduction in process
variance and a twofold reduction in processing time – both
from running simple RD experiments. In other industries,
the American Supplier Institute (1983–1990) reported a large
number of successful case studies in robust design.

Although most data is multivariate in nature, research in
both areas has largely focused on normally distributed uni-
variate characteristics (responses).Montgomery andWoodall
[2] present a comprehensive panel discussion on SPC (see
alsoWoodall andMontgomery [7]) and multivariate methods
are reviewed by Lowry and Montgomery [8] and Mason [9].

Seminal research papers on RD include Kackar [10], Leon
et al. [11], Box [12], Nair [13], and Tsui [14]. RD problems
with multiple characteristics are investigated by Logothetis
and Haigh [15], Pignatiello [16], Elsayed and Chen [17],
and Tsui [18]. This research has yielded techniques allowing
engineers to effectively implement SPC and RD in a host of
applications.

This chapter briefly revisits the major developments in
both SPC and RD that have occurred over the last 30 years
and suggests future research directions while highlighting
multivariate approaches. Section 11.1 covers SPC of uni-
variate and multivariate random variables for both Shewhart
(including x and s charts) and non-Shewhart approaches
(CUSUM and EWMA), while assessing the effects of au-
tocorrelation and automatic process control. Section 11.2
considers univariate RD, emphasizing performancemeasures
and modeling for loss functions, dual responses, and desir-
ability functions; deals with multivariate and dynamic RD;
and recaps RD case studies from the statistics literature in
manufacturing, process control, and tolerance design. Fi-
nally, Sect. 11.3 provides an overview of PHM and SHMM
framework.

11.1 Statistical Process Control for Single
Characteristics

The basic idea in statistical process control is a binary view
of the state of a process; in other words, it is either running
satisfactorily or not. Shewhart [19] asserted that the process
state is related the type of variation manifesting itself in the
process. There are two types of variation, called common
cause and assignable or special cause variation. Common
cause variation refers to the assumption that “future behavior
can be predicted within probability limits determined by the
common cause system” [20]. Special cause variation refers
to “something special, not part of the system of common
causes” [21]. A process that is subject only to common cause
variation is “statistically” in control, since the variation is
inherent to the process and therefore eliminated only with
great difficulty. The objective of statistical process control is
to identify and remove special cause variation as quickly as
possible.

SPC charts essentially mimic a sequential hypothesis test
to distinguish assignable cause variation from common cause
variation. For example, a basic mathematical model behind
SPC methods for detecting change in the mean is

Xt = ηt + Yt,

where Xt is the measurement of the process variable at
time t, and ηt is the process mean at that time. Here Yt
represents variation from the common cause system. In some
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applications, Yt can be treated as an independently and identi-
cally distributed (iid) process. With few exceptions, the mean
of the process is constant except for abrupt changes, so

ηt = η + μt,

where η is the mean target and μt is zero for t < t0 and
has nonzero values for t ≥ t0. For analytical simplicity step
changes are often assumed; in other words μt remains at a
new constant level μ for t ≥ t0.

11.1.1 SPC for I.I.d. Processes

The statistical goal of SPC control charts is to detect the
change point t0 as quickly as possible and trigger corrective
action to bring the process back to the quality target. Among
many others, the Shewhart chart, the EWMA chart, and the
CUSUM chart are three important and widely used control
charts.

Shewhart Chart
The Shewhart control chart monitors the process observa-
tions directly,

Wt = Xt − η.

Assuming that the standard deviation of Wt is σW , the
stopping rule of the Shewhart chart is defined as |Wt | > LσW ,
where L is prespecified to maintain particular probability
properties.

EWMA Chart
Roberts [22] introduces a control charting algorithm based
on the exponentially weighted moving average of the obser-
vations,

Wt =
∞∑

i=0

wi (Xt−i − η) ,

where wi = λ(1 − λ)i, (0 < λ ≤ 1). It can be rewritten as

Wt = (1 − λ)Wt−1 + λ(Xt − η) , (11.1)

where W0 = 0 or the process mean. The stopping rule of the
EWMA chart is |Wt | > LσW where σW = √

λ/(2 − λ)σX .
The Shewhart chart is a special case of the EWMA chart with
λ = 1. When the underlying process is i.i.d, the EWMA chart
with small λ values is sensitive to the detection of small and
medium shifts in mean [23].

CUSUM Chart
Page [24] introduces the CUSUM chart as a sequential prob-
ability test. It can be simply obtained by letting λ approach
zero in (11.1). The CUSUM algorithm assigns equal weights
to past observations, and its tabular form consists of two
quantities,

W+
t = max

[
0, W+

t−1 + (Xt − η) − kσX
]
,

W−
t = min

[
0, W−

t−1 + (Xt − η) − kσX
]
,

where W+
0 = W−

0 = 0. It can be shown that the CUSUM
chart with k = μ/2 is optimal for detecting a mean change in
μ when the observations are i.i.d.

Because of the randomness of the observations, these con-
trol charts may trigger false alarms – out-of-control signals
issued when the process is still in control. The expected num-
ber of units measured between two successive false alarms
is called the in-control average run length (ARL)0. When a
special cause presents itself, the expected period before a
signal is triggered is called the out-of-control average run
length (ARL1). The ideal control chart has a long ARL0 and
a short ARL1. The Shewhart chart typically uses the constant
L= 3, so that the in-control ARL is 370 when the underlying
process is i.i.d. with normal distribution.

These SPC charts are very effective for monitoring the
process meanwhen the process data is i.i.d. It has been shown
that the Shewhart chart is sensitive for detecting large shifts
while the EWMA and CUSUM charts are sensitive to small
shifts [23]. However, a fundamental assumption behind these
SPC charts is that the common cause variation is free of serial
correlation. Due to the prevalence of advanced sensing and
measurement technology in manufacturing processes, the
assumption of independence is often invalid. For example,
measuring critical in-process dimensions is now possible on
every unit in the production of discrete parts. In continuous
process production systems, the presence of inertial elements
such as tanks, reactors, and recycle streams often result in
significant serial correlation in the measured variables. Serial
correlation creates many challenges and opportunities for
SPC methodologies.

11.1.2 SPC for Autocorrelated Processes

Traditional SPC charts have been shown to function poorly
while monitoring and controlling serially correlated pro-
cesses [25, 26]. To accommodate autocorrelation, the follow-
ing time series methods have been proposed.

Modifications of Traditional Methods
One common SPC strategy is to plot the autocorrelated data
on traditional charts whose limits have been modified to
account for the correlation. Johnson and Bagshaw [27] and
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Bagshaw and Johnson [28] consider the effects of autocor-
relation on CUSUM charts using the weak convergence of
cumulative sums to a Wiener process. Another alternative
is the exponentially weighted moving average chart for sta-
tionary processes (EWMAST) studied by Zhang [29]. Jiang
et al. [30] extend this to a general class of control charts
based on autoregressive moving average (ARMA) charts.
The monitoring statistic of an ARMA chart is defined to be
the result of a generalizedARMA(1, 1) process applied to the
underlying process {Xt},

Wt = θ0Xt − θXt−1 + φWt−1

= θ0 (Xt − βXt−1) + φWt−1,
(11.2)

where β = θ /θ0 and θ0 is chosen so that the sum of the
coefficients is unity when Wt is expressed in terms of the
Xt’s, so θ0 = 1 + θ − φ. The authors show that these
charts exhibit good performance when the chart parameters
are chosen appropriately.

Forecast-BasedMonitoringMethods
Forecast-based charts started with the special-cause charts
(SCC) proposed by Alwan and Roberts [31]. The general idea
is to first apply a one-step-ahead predictor to the observation
{Xt} and then monitor the corresponding prediction error,

Wt = et, (11.3)

where et = Xt − X̂t is the forecast error of predictor X̂t. The
SCC method is the first example that uses minimum mean
squared error (MMSE) predictors and monitors the MMSE
residuals. When the model is accurate, the MMSE prediction
errors are approximately uncorrelated. This removal of cor-
relation means that control limits for the SCC can be easily
calculated from traditional Shewhart charts, EWMA charts,
and CUSUM charts. Another advantage of the SCC method
is that its performance can be analytically approximated.

The SCC method has attracted considerable attention and
has been extended by many authors. Among them, Harris
and Ross [25] and Superville and Adams [32] investigate
process monitoring based on the MMSE prediction errors
for simple autoregressive [AR(1)] models; Wardell et al.
[33, 34] discuss the performance of SCC for ARMA(1, 1)
models; and Vander Wiel [35] studies the performance of
SCC for integrated moving average [IMA(0, 1, 1)] models.
SCC methods perform poorly when detecting small shifts
since a constant mean shift always results in a dynamic shift
pattern in the error term.

In general this approach can be applied to any predictor.
Montgomery and Mastrangelo [36] recommend the use of
EWMA predictors in the SCC method (hereafter called
the M–M chart). Jiang et al. [37] propose the use of

proportional-integral-derivative (PID) predictors

X̂t = X̂t−1 + (kP + kI + kD)et−1

− (kP + 2kD) et−2 + kDet−3,

(11.4)

where kP, kI, and kD are parameters of the PID controller
defined in Sect. 11.1.3. The family of PID-based charts
includes the SCC, EWMA, and M–M charts as special cases.
Jiang et al. [37] show that the predictors of the EWMA chart
and M–M chart may sometimes be inefficient and the SCC
over-sensitive to model deviation. They also show that the
performance of the PID-based chart is affected by the choice
of chart parameters. For any given underlying process, one
can therefore tune the parameters of the PID-based chart to
optimize its performance.

GLRT-BasedMultivariate Methods
Since forecast-based residual methods monitor a single
statistic et, they often suffer from the problem of a narrow
“window of opportunity” when the underlying process is
positively correlated [35]. If the shift occurrence time is
known, the problem can be alleviated by including more
historical observations/residuals in the test. This idea was
first proposed by Vander Wiel [35] using a generalized
likelihood ratio test (GLRT) procedure. Assuming residual
signatures {δi} when a shift occurs, the GLRT procedure
based on residuals is

Wt = max
0≤k≤p−1

∣∣∣∣∣

k∑

i=0

δiet−k+i

∣∣∣∣∣ /

√√√√
k∑

i=0

δ2i , (11.5)

where p is the prespecified size of the test window. Apley and
Shi [38] show that this procedure is very efficient in detecting
mean shifts when p is sufficiently large. Similar to the SCC
methods, this is model-based and the accuracy of signature
strongly depends on the window length p. If p is too small and
a shift is not detected within the test window, the signature in
(11.5) might no longer be valid and the test statistic no longer
efficient.

Note that a step mean shift at time t − k + 1 results in a
signature

dk =
⎛

⎝0, · · · , 0,
k︷ ︸︸ ︷

1, · · · , 1
⎞

⎠
′

(1 ≤ k ≤ p)

and

dk = (1, 1, · · · , 1)′ (k > p)

on Ut = (Xt − p + 1,Xt − p + 2, · · · ,Xt)′. To test these signa-
tures, the GLRT procedure based on observation vector Wt
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is defined as

Wt = max
0≤k≤p−1

∣∣d′
k	

−1
U Ut

∣∣ /
√
d′
k	

−1
U dk, (11.6)

where 	U is the covariance matrix of Ut. Jiang [39] points
out that this GLRT procedure is essentially model-free and
always matches the true signature of Ut regardless of the
timing of the change point. If a non-step shift in the mean
occurs, multivariate charts such as Hotelling’s T2 charts can
be developed accordingly [40].

Monitoring BatchMeans
One of the difficulties with monitoring autocorrelated data is
accounting for the underlying autocorrelation. In simulation
studies, it is well known that batch means reduce autocor-
relation within data. Motivated by this idea, Runger and
Willemain [41, 42] use a weighted batch mean (WBM) and
a unified batch mean (UBM) to monitor autocorrelated data.
The WBMmethod weighs the mean of observations, defines
batch size so that autocorrelation among batches is reduced
to zero and requires knowledge of the underlying process
model [43]. The UBM method determines batch size so that
autocorrelation remains below a certain level and is “model-
free”. Runger and Willemain show that the UBM method is
simple and often more cost-effective in practice.

Batch-means methods not only develop statistics based on
batch-means, but also provide variance estimation of these
statistics for some commonly used SPC charts. Alexopoulos
et al. [44] discuss promising methods for dealing with cor-
related observations including nonoverlapping batch means
(NBM), overlapping batch means (OBM) and standardized
time series (STS).

11.1.3 SPC Versus APC

Automatic process control (APC) complements SPC as a
variation reduction tool for manufacturing industries. While
SPC techniques are used to reduce unexpected process vari-
ation by detecting and removing the cause of variation,
APC techniques are used to reduce systematic variation by
employing feedforward and feedback control schemes. The
relationships between SPC and APC are important to both
control engineers and quality engineers.

Feedback Control Versus Prediction
The feedback control scheme is a popular APC strategy that
uses the deviation of output from target (set-point) to signal
a disturbance of the process. This deviation or error is then
used to compensate for the disturbance. Consider a pure-gain
dynamic feedback-controlled process, as shown in Fig. 11.1.
The process output can be expressed as

Process

Disturbance
Process
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generator

Targets

+

Fig. 11.1 Automatic process control

et = Xt − Zt−1. (11.7)

Suppose X̂t is an estimator (a predictor) of Xt that can be
obtained at time t − 1. A realizable form of control can be
obtained by setting

Zt−1 = −X̂t (11.8)

so that the output error at time t + 1 becomes

et = Xt − X̂t, (11.9)

which is equal to the “prediction error”. Control and predic-
tion can therefore have a one-to-one corresponding relation-
ship via (11.8) and (11.9).

As shown in Box and Jenkins [45], when the process can
be described by an ARIMA model, the MMSE control and
the MMSE predictor have exactly the same form. Serving as
an alternative to the MMSE predictor, the EWMA predictor
corresponds to the integral (I) control [46] and is one of the
most frequently used prediction methods due to its simplicity
and efficiency. In general, the EWMA predictor is robust
against nonstationarity due to the fact that the I control can
continuously adjust the process whenever there is an offset.

An extension of the I control is the widely used PID
control scheme,

Zt = −kPet − kI
1

1 − B
et − kD (1 − B)et, (11.10)

where kP, kI, and kD are constants that, respectively, deter-
mine the amount of proportional, integral, and derivative
control action. The corresponding PID predictor (11.4) can
be obtained from (11.8) and (11.10). When λ3 = 0, in other
words when kD = 0 (and thus λ1 = kP + kI and λ2 = − kP), we
have a PI predictor corresponding to the proportional-integral
control scheme commonly used in industry.
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Process Prediction Versus Forecast-Based
MonitoringMethods
As discussed in Sect. 11.1.2, one class of SPC methods for
autocorrelated processes starts from the idea of “whitening”
the process and then monitoring the “whitened” process with
time series prediction models. The SCC method monitors
MMSE prediction errors and the M–M chart monitors the
EWMA prediction error. Although the EWMA predictor is
optimal for an IMA(0, 1, 1) process, the prediction error is no
longer i.i.d. for predicting other processes. Most importantly,
the EWMA prediction error that originated from the I control
can compensate for mean shifts in steady state which makes
the M–M chart very problematic for detecting small shifts in
mean.

Since PID control is very efficient and robust, PID-based
charts motivated by PID predictors outperform SCC and M–
Mcharts. APC-based knowledge of the process canmoreover
clarify the performance of PID-based charts. In summary,
the P term ensures that process output is close to the set
point and thus sensitive in SPC monitoring, whereas the I
term always yields control action regardless of error size
which leads to a zero level of steady-state error. This implies
that the I term is dominant in SPC monitoring. The purpose
of derivative action in PID control is to improve closed-
loop stability by making the D term in SPC monitoring
less sensitive. Although there is no connection between the
EWMA predictor and the EWMA chart, it is important to
note that the I control leads to the EWMA predictor and the
EWMA prediction-based chart is the M–M chart. As shown
in Jiang et al. [37], the EWMA chart is the same as the
P-based chart.

11.1.4 SPC for Automatically Controlled
Processes

Although APC and SPC techniques share the objective of
reducing process variation, their advocates have quarreled
for decades . It has recently been recognized that the two
techniques can be integrated to produce more efficient tools
for process variation reduction [47–52]. This APC/SPC in-
tegration employs an APC rule to regulate the system and
superimposes SPC charts on the APC-controlled system to
detect process departures from the system model. Using
Deming’s terminology, the APC scheme is responsible for
reducing common cause variation, while the SPC charts are
responsible for reducing assignable cause variation. From
the statistical point of view, the former part resembles a
parameter estimation problem for forecasting and adjusting
the process and the latter part emulates a hypothesis test of
process location. Figure 11.2 pictures a conceptual integra-
tion of SPC charts into the framework of a feedback control
scheme. To avoid confusion, Box and Luceno [46] refer to
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Fig. 11.2 APC/SPC integration

APC activities as process adjustment and to SPC activities
as process monitoring. Since this chapter emphasizes SPC
methods for quality improvement, we discuss only the mon-
itoring component of APC/SPC integration.

As discussed in Sect. 11.1.3, control charts developed
for monitoring autocorrelated observations shed light on the
monitoring of integrated APC/SPC systems. Fundamentally,
the output of an automatically controlled process is recom-
mended for SPC monitoring. This is equivalent to forecast-
based control charts of the corresponding predictor. For ex-
ample, if the process is controlled by an MMSE controller,
monitoring the output is exactly the same as the SCCmethod.
Similar to forecast-based methods, assignable causes have
an effect that is always contaminated by the APC control
action which results in a limited “window of opportunity”
for detection [35]. As an alternative, some authors suggest
that monitoring the APC control action may improve the
probability of detection [20]. Jiang and Tsui [53] compare the
performance ofmonitoring the output vs. the control action of
an APC process and show that for some autocorrelated pro-
cesses monitoring the control action may be more efficient
than monitoring the output of the APC system.

In general, the performance achieved by SPC monitoring
an APC process depends on the data stream (the output or
the control action) being measured, the APC control scheme
employed, and the underlying autocorrelation of the process.
If information from process output and control action can be
combined, a universal monitor with higher SPC efficiency
[51] can be developed. Kourti et al. [54] propose a method
of monitoring process outputs conditional on the inputs or
other changing process parameters. Li et al. [55] propose
multivariate control charts such as Hotelling’s T2 chart and
the Bonferroni approach to monitor output and control action
simultaneously. Defining the vector of outputs and control
actions as Vt = (et,· · · , et−p+1,Xt,· · · ,Xt−p+1)′, a dynamic T2
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chart with window size p monitors statistic

Wt = V ′
t	

−1
V Vt,

where	V is the covariance matrix of Vt [56].Wt follows a χ2

distribution during each period given known process param-
eters. However, strong serial correlation exists so that the χ2

quantiles cannot be used for control limits. By recognizing
the mean shift patterns of Vt, Jiang [57] develops a GLRT
procedure based on Vt. This GLRT procedure is basically
univariate and more efficient than the T2 chart.

11.1.5 Design of SPCMethods: Efficiency
Versus Robustness

Among many others, the minimization of mean squared er-
ror/prediction error is one of the important criteria for predic-
tion/control scheme design. Although the special cause chart
is motivated by MMSE prediction/control, many previously
mentioned SPC charts such as the PID chart have fundamen-
tally different criteria from those of the corresponding APC
controllers. When selecting SPC charts, the desired goal is
maximization of the probability of shift detection.

For autocorrelated processes, Jiang [37] propose an ad
hoc design procedure using PID charts. They demonstrate
how two capability indices defined by signal-to-noise ratios
(SNR) play a critical role in the evaluation of SPC charts.
They denote σW as the standard deviation of charting statistic
Wt andμT (/μS) as the shift levels ofWt at the first step (/long
enough) after the shift takes place. The transient state ratio is
defined asCT = μT/σW , which measures the capability of the
control chart to detect a shift in its first few steps. The steady
state ratio is defined as CS = μS/σW , which measures the
ability of the control chart to detect a shift in its steady state.
These two signal-to-noise ratios determine the efficiency of
the SPC chart and can be manipulated by selecting control
chart parameters.

For a particular mean shift level, if the transient state
ratio/capability can be tuned to a high value (say 4–5) by
choosing appropriate chart parameters, the corresponding
chart will detect the shift very quickly. Otherwise the shift
will likely be missed during the transient state and will need
to be detected in later runs. Since a high steady state ratio/-
capability heralds efficient shift detection at steady state, a
high steady state ratio/capability is also desired. However,
the steady state ratio/capability should not be tuned so high
that it results in an extremely small transient ratio/capability,
indicative of low probability of detection during the transient
state. To endow the chart with efficient detection at both
states, a tradeoff is needed when choosing the charting pa-
rameters. An approximate CS value of 3 is generally appro-
priate for balancing the values of CT and CS.

One of the considerations when choosing an SPC method
is its robustness to autocorrelated and automatically con-
trolled processes. Robustness of a control chart refers to
how insensitive its statistical properties are to model mis-
specification. Reliable estimates of process variation are of
vital importance for the proper functioning of all SPC meth-
ods [58]. For process Xt with positive first-lag autocorrela-
tion, the standard deviation derived from moving range is
often underestimated because

E
(
σ̂MR

) = E
(
MR/d2

) = σX
√
1 − ρ1,

where ρ1 is the first-lag correlation coefficient of Xt [59].
A more serious problem with higher sensitivity control

charts such as the PID chart is that they may be less robust
than lower sensitivity control charts such as the SCC. Berube
et al. [60] and Luceno [61] conclude that PID controllers are
generally more robust than MMSE controllers against model
specification error. However Jiang [37] shows that PID charts
tend to have a shorter “in-control” ARL when the process
model is mis-specified since model errors can be viewed as a
kind of “shift” from the “true” process model. This seems to
be a discouraging result for higher sensitivity control charts.
In practice, a trade-off is necessary between sensitivity and
robustness when selecting control charts for autocorrelated
processes. Apley and Lee [62] recommend using a conserva-
tive control limit for EWMA charts when monitoring MMSE
residuals. By using the worst-case estimation of residual
variance, the EWMA chart can be robustly designed for the
in-control state with a slight efficiency loss in the out-of-
control state. This design strategy can be easily generalized
to other SPC methods for autocorrelated or automatically
controlled processes.

11.1.6 SPC for Multivariate Characteristics

Through modern sensing technology that allows frequent
measurement of key quality characteristics during manu-
facturing, many in-process measurements are strongly cor-
related to each other. This is especially true for measure-
ments related to safety, fault detection and diagnosis, quality
control, and process control. In an automatically controlled
process, for example, process outputs are often strongly
related to process control actions. Joint monitoring of these
correlated characteristics ensures appropriate control of the
overall process. Multivariate SPC techniques have recently
been applied to novel fields such as environmental monitor-
ing and detection of computer intrusion.

The purpose of multivariate on-line techniques is to inves-
tigate whether measured characteristics are simultaneously
in statistical control. A specific multivariate quality control
problem is to consider whether an observed vector of mea-
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surements x = (x1, . . . , xk) exhibits a shift from a set of
“standard” parameters μ0 = (

μ0
1, . . . ,μ

0
k

)′
. The individual

measurements will frequently be correlated, meaning that
their covariance matrix 	 will not be diagonal.

Versions of the univariate Shewhart, EWMA and CUSUM
charts have been developed for the case of multivariate nor-
mality.

Multivariate T2 Chart
To monitor a multivariate vector,Hotelling [63] suggested an
aggregated statistic equivalent to the Shewhart control chart
in the univariate case,

T2 = (
x− μ0

)′
	̂−1
x

(
x− μ0

)
, (11.11)

where 	̂x is an estimate of the population covariance
matrix 	. If the population covariance matrix is known,
Hotelling’s T2 statistic follows a χ2 distribution with
k degrees of freedom when the process is in-control.
A signal is triggered when χ2 > χ2

k,α . One of the
important features of the T2 charts is that its out-of-control
performance depends solely on the noncentrality parameter

δ =
√(

μ − μ0
)′
	̂−1
x

(
μ − μ0

)
, where μ is the actual

mean vector. This means that its detectional performance
is invariant along the contours of the multivariate normal
distribution.

Multivariate EWMA Chart
Hotelling’s T2 chart essentially utilizes only current process
information. To incorporate recent historical information,
Lowry [64] develop a similar multivariate EWMA chart

W2
t = w′

t	
−1
w wt,

where wt = (xt − μ0) + (I − )wt − 1 and  = diag(λ1,
λ2,· · · , λk). For simplicity, λi = λ (1 ≤ i ≤ k) is generally
adopted and 	w = λ/(2 − λ)	x.

Multivariate CUSUM Chart
There are many CUSUM procedures for multivariate data.
Crosier [65] proposes two multivariate CUSUM procedures,
cumulative sum of T (COT) and MCUSUM. The MCUSUM
chart is based on the statistics

st =
{
0 if Ct ≤ k1
(st−1 + xt) (1 − k1/Ct) if Ct ≤ k1,

(11.12)

where s0 = 0, Ct =
√

(st−1 + xt)′	−1
x (st−1 + xt), and k1 > 0.

The MCUSUM chart signals when Wt = s′t	−1
x st > h1.

Pignatiello and Runger [66] propose another multivariate
CUSUM chart (MC1) based on the vector of cumulative
sums,

Wt = max
(
0,
√
D′
t	

−1
x Dt − k2lt

)
(11.13)

where k2 > 0, Dt = ∑t
i=t−lt+1xi, and

lt =
{
lt−1 + 1 if Wt−1 > 0
1 otherwise.

Once an out-of-control signal is triggered from a multi-
variate control chart, it is important to track the cause of the
signal so that the process can be improved. Fault diagnosis
can be implemented by T2 decompositions following the sig-
nal and large components are suspected to be faulty. Orthogo-
nal decompositions such as principal component analysis are
popular tools.Hayter and Tsui [67] propose other alternatives
which integrate processmonitoring and fault diagnosis. Jiang
and Tsui [68] provide a thorough review of these methods.

Variable-Selection-BasedMultivariate Chart
In high dimensional applications, it is very rare to see all
interested variables or quality characteristics change or shift
at the same time. Rather, a typical yet common phenomenon
observed in practice is that a subset of variables, which is
dominated by a common latent physical mechanism or com-
ponent, deviate from their normal condition due to abnormal
changes of the common mechanism or component [69–71].
By penalizing likelihood functions to locate potential out-of-
control variables, Wang and Jiang [72] and Zou and Qiu [73]
independently propose to monitor a variable-dimension T2

statistic, which has better efficiency than traditional full-size
T2 statistic. Zou et al. [74] and Jiang et al. [75] further utilized
the LASSO algorithm for fault diagnosis.

Multivariate Chart Using Real-Time Contrast
Instead of monitoring departures from a nominal mean vector
in Phase II, multivariate RTC control chartsmonitor distances
between real time data and Phase I reference data using
classification methods. Mis-classification probabilities serve
as a reasonable candidate for monitoring differences between
the two populations [76]. Classification methods such as lin-
ear discrimination analysis (LDA), support vector machines
(SVM), etc. can be deployed and kernel-based methods can
also be adapted to account for nonlinear boundary between
Phases I and II data [77, 78]. Since these classification
methods look for a projection direction such that certain
“distance” metric are optimized, projection pursuit can be
generalized by measuring empirical divergence between the
two probability distributions for real-time monitoring [79].
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11
11.1.7 SPC for Profile Monitoring

In many applications, the quality of a process or product is
best characterized and summarized by a functional relation-
ship between a response variable and one or more explana-
tory variables. Profile monitoring is used to understand and
to check the stability of this relationship over time. At each
sampling stage one observes a collection of data points that
can be represented by a curve (or profile). In some calibration
applications, the profile can be represented adequately by a
simple linear regression model, while in other applications
more complicated models are needed.

Profile monitoring is very useful in an increasing number
of practical applications. Much of the work in the past few
years has focused on the use of more effective charting
methods, the study ofmore general shapes of profiles, and the
study of the effects of violations of assumptions. There are
many promising research topics yet to be pursued given the
broad range of profile shapes and possible models. Woodall
et al. (2004) [80] highlighted the following important issues
when monitoring profiles:

1. The usefulness of carefully distinguishing between Phase
I and Phase II applications.

2. The decision regarding whether or not to include some
between profile variation in common cause variation.

3. The use of methods capable of detecting any type of shift
in the shape of the profile.

4. The use of the simplest adequate profile model.

Paynabar et al. [81] developed a new modeling, mon-
itoring, and diagnosis framework for phase-I analysis of
multichannel profiles. Woodall et al. [82] conducted a com-
prehensive review on the use of control charts to monitor
process and product quality profiles.

11.2 Design of Experiment and Robust
Parameter Design

11.2.1 Robust Design for Single Responses

Taguchi [4] introduced parameter design, a method for de-
signing processes that are robust (insensitive) to uncontrol-
lable variation, to a number of American corporations. The
objective of this methodology is to find the settings of design
variables that minimize the expected value of squared-error
loss defined as

L(Y, t) = (Y − t)2, (11.14)

where Y represents the actual process response and t the
targeted value. A loss occurs if the response Y deviates from

its target t. This loss function originally became popular
in estimation problems considering unbiased estimators of
unknown parameters. The expected value of (Y − t)2 can be
easily expressed as

E(L) = A0E(Y − t)2

= A0
[
Var(Y) + (E(Y) − t)2

]
,

(11.15)

where Var(Y) and E(Y) are the mean and variance of the
process response and A0 is a proportional constant represent-
ing the economic costs of the squared error loss. If E(Y) is
on target then the squared-error loss function reduces to the
process variance. Its similarity to the criterion of least squares
in estimation problems makes the squared-error loss function
easy for statisticians and engineers to grasp. Furthermore the
calculations for most decision analyses based on squared-
error loss are straightforward and easily seen as a trade-off
between variance and the square of the off-target factor.

Robust design (RD) assumes that the appropriate perfor-
mance measure can be modeled as a transfer function of the
fixed control variables and the random noise variables of the
process as follows:

Y = f (x,N, θ) + ε, (11.16)

where x = (x1, . . . , xp)T is the vector of control factors,
N = (N1, . . . ,Nq)T is the vector of noise factors, θ is the
vector of unknown response model parameters, and f is
the transfer function for Y. The control factors are assumed
to be fixed and represent the fixed design variables. The
noise factors N are assumed to be random and represent
the uncontrolled sources of variability in production. The
pure error ε represents the remaining variability that is not
captured by the noise factors and is assumed to be normally
distributed with zero mean and finite variance.

Taguchi divides the design variables into two subsets,
x = (xa, xd), where xa and xd are called respectively the
adjustment and nonadjustment design factors. An adjustment
factor influences process location while remaining effec-
tively independent of process variation. A nonadjustment
factor influences process variation.

Experimental Designs for Parameter Design

Taguchi’s Product Arrays and Combined Arrays
Taguchi’s experimental design takes an orthogonal array for
the controllable design parameters (an inner array of control
factors) and crosses it with another orthogonal array for the
factors beyond reasonable control (an outer array of noise
factors). At each test combination of control factor levels,
the entire noise array is run and a performance measure is
calculated. Hereafter we refer to this design as the product
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array. These designs have been criticized by Box [12] and
others for being unnecessarily large.
Welch [83] combined columns representing the control

and noise variables within the same orthogonal array. These
combined arrays typically have a shorter number of test
runs and do not replicate the design. The lack of replication
prevents unbiased estimation of random error but we will
later discuss research addressing this limitation.

Which to Use: Product Array or Combined Array
There is a wide variety of expert opinion regarding choice of
experimental design in Nair [13]. The following references
complement Nair’s comprehensive discussion. Ghosh and
Derderian [84] derive robustness measures for both product
and combined arrays, allowing the experimenter to objec-
tively decide which array provides a more robust option.
Miller et al. [85] consider the use of a product array on gear
pinion data. Lucas [86] concludes that the use of classical,
statistically designed experiments can achieve the same or
better results than Taguchi’s product arrays. Rosenbaum [87]
reinforces the efficiency claims of the combined array by giv-
ing a number of combined array designswhich are smaller for
a given orthogonal array strength or stronger for a given size.
Finally, Wu and Hamada [88] provide an intuitive approach
to choosing between product and combined array based on
an effect-ordering principle.

They list the most important class of effects as those
containing control–noise interactions, control main effects
and noise main effects. The second highest class contains the
control–control interactions and the control–control–noise
interactions while the third and least important class contains
the noise–noise interactions. That array producing the highest
number of clear effect estimates in the most important class
is considered the best design.

Noting that the combined array is often touted as being
more cost-effective due to an implied smaller number of runs,
Wu and Hamada place the cost comparison on a more objec-
tive basis by factoring in both cost per control setting and cost
per noise replicate. They conclude that the experimenter must
prioritize the effects to be estimated and the realistic costs
involved before deciding which type of array is optimal.

Choosing the Right Orthogonal Array for RD
Whether the experimenter chooses a combined or product
array, selecting the best orthogonal array is an important
consideration. The traditional practice in classical design of
experiments is to pick a Resolution IV or higher design so
that individual factors are aliased with three factor inter-
actions, of which there are relatively few known physical
examples.

However, the estimation of main effects is not necessarily
the best way to judge the value of a test design for RD. The
control–noise interactions are generally regarded as having
equal importance as the control effects for fine tuning the

final control factor settings for minimal product variation.
Hence evaluation of an experimental design for RD purposes
must take into account the design’s ability to estimate the
control–noise interactions deemed most likely to affect prod-
uct performance.
Kackar and Tsui [89] feature a graphical technique for

showing the confounding pattern of effects within a two-
level fractional factorial. Kackar et al. [90] define orthogonal
arrays and describe how Taguchi’s fixed element arrays are
related to well known fractional factorial designs. Other
pieces related to this decision are Hou and Wu [91], Berube
and Nair [60], and Bingham and Sitter [92].

D-Optimal Designs
In this section several authors show how D-optimal designs
can be exploited in RD experiments. A D-optimal design
minimizes the area of the confidence ellipsoids for param-
eters being estimated from an assumed model. Their key
strength is their invariance to linear transformation of model
terms and their characteristic weakness is a dependence on
the accuracy of the assumed model. By using a proper prior
distribution to attack the singular design problem and make
the design less model-dependent, Dumouchel and Jones [93]
provide a Bayesian D-optimal design needing little modifi-
cation of existing D-optimal search algorithms.
Atkinson and Cook [94] extend the existing theory of D-

optimal design to linear models with nonconstant variance.
With a Bayesian approach they create a compromise design
that approximates preposterior loss. Vining and Schaub [95]
use D-optimality to evaluate separate linear models for pro-
cess mean and variance. Their comparison of the designs
indicates that replicated fractional factorials of assumed con-
stant variance best estimate variance while semi-Bayesian
designs better estimate process response.
Chang [96] proposes an algorithm for generating near D-

optimal designs for multiple response surface models. This
algorithm differs from existing approaches in that it does
not require prior knowledge or data-based estimates of the
covariance matrix to generate its designs.Mays [97] extends
the quadratic model methodology of RSM to the case of
heterogeneous variance by using the optimality criteria D
(maximal determinant) and I (minimal integrated prediction
variance) to allocate test runs to locations within a central
composite design.

Other Designs
The remaining references discuss types of designs used in
RD which are not easily classified under the more common
categories previously discussed.
Pledger [98] divides noise variables into observable and

unobservable and argues that one’s ability to observe se-
lected noise variables in production should translate into
better choices of optimal control settings. Rosenbaum [99]
uses blocking to separate the control and noise variables in



11 Statistical Methods for Quality and Productivity Improvement 209

11
combined arrays, which were shown in Rosenbaum [87] to
be stronger for a given size than the corresponding product
array designs. Li and Nachtsheim [100] present experimental
designs which don’t depend on the experimenter’s prior de-
termination of which interactions are most likely significant.

PerformanceMeasures in RD
In Sect. 11.2.1, we compared some of the experimental
designs used in parameter design. Of equal importance is
choosing which performance measure will best achieve the
desired optimization goal.

Taguchi’s Signal-to-Noise Ratios
Taguchi introduced a family of performance measures called
signal-to-noise ratios whose specific form depends on the
desired response outcome. The case where the response has
a fixed nonzero target is called the nominal-the-best case
(NTB). Likewise, the cases where the response has a smaller-
the-better target or a larger-the-better target are, respectively,
called the STB and LTB cases.

To accomplish the objective of minimal expected squared-
error loss for the NTB case, Taguchi proposed the following
two-step optimization procedure: (i) Calculate and model
the SNRs and find the nonadjustment factor settings which
maximize the SNR. (ii) Shift mean response to the target by
changing the adjustment factor(s).

For the STB and LTB cases, Taguchi recommends directly
searching for the values of the design vector x which max-
imize the respective SNR. Alternatives for these cases are
provided by Tsui and Li [101] and Berube and Wu [102].

Performance Measure Independent of Adjustment
(PerMIAs)
Taguchi did not demonstrate howminimizing the SNRwould
achieve the stated goal ofminimal average squared-error loss.
Leon et al. [11] defined a function called the performance
measure independent of adjustment (PerMIA)which justified
the use of a two-step optimization procedure. They also
showed that Taguchi’s SNR for the NTB case is a PerMIA
when both an adjustment factor exists and the process re-
sponse transfer function is of a specific multiplicative form.
When Taguchi’s SNR complies with the properties of a
PerMIA, his two-step procedure minimizes the squared-error
loss.
Leon et al. [11] also emphasized two major advantages of

the two-step procedure:

• It reduces the dimension of the original optimization prob-
lem.

• It does not require reoptimization for future changes of the
target value.

Box [12] agrees with Leon et al. [11] that the SNR is
only appropriately used in concert with models where pro-
cess sigma is proportional to process mean. Maghsoodloo
[103] derives and tabulates exact mathematical relationships
between Taguchi’s STB and LTB measures and his quality
loss function.
Leon and Wu [104] extend the PerMIA of Leon et al.

[11] to a maximal PerMIA which can solve constrained
minimization problems in a two-step procedure similar to
that of Taguchi. For nonquadratic loss functions, they intro-
duce general dispersion, location, and off-target measures,
while developing a two-step process. They apply these new
techniques in a number of examples featuring additive and
multiplicative models with nonquadratic loss functions. Tsui
and Li [101] establish a multistep procedure for the STB and
LTB problem based on the response model approach under
certain conditions.

Process Response and Variance as Performance
Measures
The dual response approach is a way of finding the optimal
design settings for a univariate response without the need
to use a loss function. Its name comes from its treatment
of mean and variance as responses of interest which are
individually modeled. It optimizes a primary response while
holding the secondary response at some acceptable value.
Nair andPregibon [105] suggest using outlier-robust mea-

sures of location and dispersion such as median (location)
and interquartile range (dispersion). Vining and Myers [106]
applied the dual response approach to Taguchi’s three SNRs
while restricting the search area to a spherical region of
limited radius. Copeland and Nelson [107] solve the dual
response optimization problem with the technique of direct
function minimization. They use the Nelder-Mead simplex
procedure and apply it to the LTB, STB, and NTB cases.
Other noteworthy papers on the dual response method in-
clude Del Castillo and Montgomery [108] and Lin and Tu
[109].

Desirability as a Performance Measure
The direct conceptual opposite of a loss function, a utility
function maps a specific set of design variable settings to an
expected utility value (value or worth of a process response).
Once the utility function is established, nonlinear direct
search methods are used to find the vector of design variable
settings that maximizes utility.
Harrington [110] introduced a univariate utility function

called the desirability function, which gives a quality value
between zero (unacceptable quality) and one (further im-
provement would be of no value) of a quality characteristic
of a product or process. He defined the two-sided desirability
function as follows:
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di = e−|Y ′
i |c , (11.17)

where e is the natural logarithm constant, c is a positive num-
ber subjectively chosen for curve scaling, and Yi

′
is a linear

transformation of the univariate response Yi whose properties
link the desirability values to product specifications. It is of
special interest to note that for c = 2, a mid-specification
target and response values within the specification limits, this
desirability function is simply the natural logarithm constant
raised to the squared-error loss function.

Other Performance Measures
Ng and Tsui [111] derive a measure called q-yield which
accounts for variation from target among passed units as
well as nonconforming units. It does this by penalizing yield
commensurate with the amount of variation measured within
the passed units. Joseph andWu [102] develop modeling and
analysis strategies for a general loss function where the qual-
ity characteristic follows a location-scale model. Their three-
step procedure includes an adjustment step which moves the
mean to the side of the target with lower cost. Additional
performancemeasures are introduced in Joseph andWu [112]
and Joseph andWu [113].

Modeling the PerformanceMeasure
The third important decision the experimenter must grap-
ple with is how to model the chosen performance mea-
sure. Linear models are by far the most common way to
approximate loss functions, SNR’s, and product responses.
This section covers response surface models, the generalized
linear model, and Bayesian modeling.

Response Surface Models
Response surface models (RSM) are typically second-order
linear models with interactions between the first-order model
terms. While many phenomena cannot be accurately repre-
sented by a quadratic model, the second-order approximation
of the response in specific regions of optimal performance
may be very insightful to the product designer.
Myers et al. [114] make the case for implementing

Taguchi’s philosophy within a well established, sequential
body of empirical experimentation, RSM. The combined
array is compared to the product array and the modeling of
SNR compared to separate models for mean and variance.
In addition, RSM lends itself to the use of mixed models for
random noise variables and fixed control variables. Myers
et al. [115] incorporate noise variables and show how mean
and variance response surfaces can be combined to create
prediction limits on future response.

Analysis of Unreplicated Experiments
The most commonly cited advantage of modeling process
responses rather than SNR is the use of more efficient

combined arrays. However, the gain in efficiency usually
assumes there is no replication for estimating random error.
Here we review references for analyzing the data from
unreplicated fractional factorial designs.
Box andMeyer [116] present an analysis technique which

complements normal probability plots for identifying signif-
icant effects from an unreplicated design. Their Bayesian ap-
proach assesses the size of contrasts by computing a posterior
probability that each contrast is active. They start with a prior
probability of activity and assume normality of the significant
effects and deliver a nonzero posterior probability for each
effect.
Lenth [117] introduces a computationally simple and intu-

itively pleasing technique for measuring the size of contrasts
in unreplicated fractional factorials. The Lenth method uses
standard T statistics and contrast plots to indicate the size and
significance of the contrast. Because of its elegant simplicity,
the method of Lenth is commonly cited in RD case studies.
Pan [118] shows how failure to identify even small and

moderate location effects can subsequently impair the correct
identification of dispersion effects when analyzing data from
unreplicated fractional factorials. Wu and Hamada [88] pro-
pose a simple simulation method for estimating the critical
values employed by Lenth in his method for testing signifi-
cance of effects in unreplicated fractional factorial designs.
McGrath and Lin [119] show that a model that does

not include all active location effects raises the probability
of falsely identifying significant dispersion factors. They
show analytically that without replication it is impossible to
deconfound a dispersion effect from two location effects.

Generalized Linear Model
The linear modeling discussed in this chapter assumes nor-
mality and constant variance.When the data does not demon-
strate these properties, the most common approach is to
model a compliant, transformed response. In many cases,
this is hard or impossible. The general linear model (GLM)
was developed by Nelder andWedderburn [120] as a way of
modeling data whose probability distribution is any member
of the single parameter exponential family.

The GLM is fitted by obtaining the maximum likelihood
estimates for the coefficients to the terms in the linear predic-
tor, which may contain continuous, categorical, interaction,
and polynomial terms. Nelder and Lee [121] argue that
the GLM can extend the class of useful models for RD
experiments to data-sets, wherein a simple transformation
cannot necessarily satisfy the important criteria of normality,
separation, and parsimony. Several examples illustrate how
the link functions are chosen.
Engel and Huele [122] integrate the GLM within the

RSM approach to RD. Nonconstant variance is assumed and
models for process mean and variance are obtained from
a heteroscedastic linear model of the conditional process
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response. The authors claim that nonlinear models and tol-
erances can also be studied with this approach. Hamada
and Nelder [123] apply the techniques described in Nelder
and Lee [121] to three quality improvement examples to
emphasize the utility of the GLM in RD problems over its
wider class of distributions.

Bayesian Modeling
Bayesian methods of analysis are steadily finding wider
employment in the statistical world as useful alternatives
to frequentist methods. In this section we mention several
references on Bayesian modeling of the data.

Using a Bayesian GLM, Chipman and Hamada [124]
overcome the GLM’s potentially infinite likelihood estimates
from categorical data taken from fractional factorial designs.
Chipman [125] uses the model selection methodology of Box
and Meyer [126] in conjunction with priors for variable se-
lection with related predictors. For optimal choice of control
factor settings, he finds posterior distributions to assess the
effect of model and parameter uncertainty.

11.2.2 Robust Design for Multiple Responses

Earlier we discussed loss and utility functions and showed
how the relation between off-target and variance components
underlies the loss function optimization strategies for single
responses. Multi-response optimization typically combines
the loss or utility functions of individual responses into a
multivariate function to evaluate the sets of responses created
by a particular set of design variable settings. This section is
divided into two subsections which, respectively, deal with
the additive andmultiplicative combination of loss and utility
functions, respectively.

Additive Combination of Univariate Loss, Utility
and SNR
The majority of multiple response approaches additively
combine the univariate loss or SNR performance measures
discussed. In this section, we review how these performance
measures are additively combined and their relative advan-
tages and disadvantages as multivariate objective functions.

Multivariate Quadratic Loss
For univariate responses, expected squared-error loss is a
convenient way to evaluate the loss caused by deviation from
target because of its decomposition into squared off-target
and variance terms. A natural extension of this loss function
to multiple correlated responses is the multivariate quadratic
loss (MQL) function of the deviation vector (Y − τ ) where
Y = (Y1, . . . ,Yr)T and τ = (t1, . . . , tr)T, i.e.,

MQL(Y, τ) = (Y − τ)TA (Y − τ) , (11.18)

where A is a positive definite constant matrix. The values
of the constants in A are related to the costs of nonoptimal
design, such as the costs related to repairing and/or scrapping
noncompliant product. In general, the diagonal elements
of A represent the weights of the r characteristics and the
off-diagonal elements represent the costs related to pairs of
responses being simultaneously off-target.

It can be shown that, if Y follows a multivariate normal
distribution with mean vector E(Y) and covariance matrix
	Y, the average (expected) loss can be written as:

E(MQL) = E(Y − τ)TA(Y − τ)

= Tr (A	Y)

+
[
E(Y) − τ

)
TA[E](Y) − τ

]
.

(11.19)

The simplest approach to solving the RD problem is to ap-
ply algorithms to directly minimize the average loss function
in (11.19). Since the mean vector and covariance matrix are
usually unknown, they can be estimated by the sample mean
vector and sample covariance matrix or a fitted model based
on a sample of observations of the multivariate responses.
The off-target vector product [E (Y) − τ ]T A[E (Y) − τ ]
and Tr(A 	Y) are multivariate analogs to the squared off-
target component and variance of the univariate squared-error
loss function. This decomposition shows how moving all
response means to target simplifies the expected multivariate
loss to the Tr(A 	Y) term. The trace-covariance term shows
how the values of A and the covariance matrix 	Y directly
affect the expected multivariate loss.

Optimization of Multivariate Loss Functions
For the expected multivariate quadratic loss of (11.19), Pig-
natiello [16] introduced a two-step procedure for finding the
design variable settings that minimize this composite cost
of poor quality. Tsui [18] extended Pignatiello’s two-step
procedure to situations where responses may be NTB, STB
or LTB.

To this point we have examined squared-error loss func-
tions whose expected value is decomposed into off-target and
variance components. Ribeiro and Elsayed [127] introduced
a multivariate loss function which additionally considers
fluctuation in the supposedly fixed design variable settings.
Ribeiro et al. [128] add a term for manufacturing cost to the
gradient loss function of Ribeiro and Elsayed.

Additive Formation of Multivariate Utility Functions
Kumar et al. [129] suggest creating a multiresponse utility
function as the additive combination of utility functions from
the individual responses where the goal is to find the set
of design variable settings that maximizes overall utility.
Additional papers related to this technique include Artiles-
Leon [130] and Ames et al. [131].
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Quality Loss Functions for Nonnegative Variables
Joseph [132] argues that, in general, processes should not be
optimized with respect to a single STB or LTB characteristic,
rather than a combination of them. He introduces a new class
of loss functions for nonnegative variables which accommo-
dates the cases of unknown target and asymmetric loss and
which can be additively combined for themultiresponse case.

Multivariate Utility Functions fromMultiplicative
Combination
In this section, a multivariate desirability function is con-
structed from the geometric average of the individual desir-
ability functions of each response.

The geometric average (GA) of r components (d1, . . . , dr)
is the rth root of their products:

GA (d1, . . . , dr) =
(

r∏

i=1

di

) 1
r

. (11.20)

The GA is then a multiplicative combination of the indi-
viduals. When combining individual utility functions whose
values are scaled between zero and one, the GA yields a value
less than or equal to the lowest individual utility value. When
rating the composite quality of a product, this prevents any
single response from reaching an unacceptable value, since
a very low value on any crucial characteristic (such as safety
features or cost) will render the entire product worthless to
the end user.

Modifications of the Desirability Function
In order to allow placement of the ideal target value any-
where within the specifications, Derringer and Suich [133]
introduced a modified version of the desirability functions
of Harrington [110] which encompassed both one-sided and
two-sided response specifications. Additional extensions of
the multivariate desirability function were made by Kim and
Lin [134].

Alternative PerformanceMeasures for Multiple
Responses
Duffy et al. [135] propose using a reasonably precise estimate
of multivariate yield, obtained via Beta distribution discrete
point estimation, as an efficient alternative to Monte Carlo
simulation. This approach is limited to independently dis-
tributed design variables. Fogliatto and Albin [136] propose
using predictor variance as a multiresponse optimization
criterion. They measure predictive variance as the coefficient
of variance (CV) of prediction since it represents a normal-
ized measure of prediction variance. Plante [137] considers
the use of maximal process capability as the criterion for
choosing control variable settings in multiple response RD
situations. He uses the concepts of process capability and

desirability to develop process capability measures for mul-
tiple response systems.

11.2.3 Dynamic Robust Design

Taguchi’s Dynamic Robust Design
Up to this point, we’ve discussed only static RD, where the
targeted response is a given, fixed level and is only affected
by control and noise variables. In dynamic robust design
(DRD) a third type of variable exists, the signal variable
M whose magnitude directly affects the mean value of the
response. The experimental design recommended by Taguchi
for DRD is the product array consisting of an inner control
array crossed with an outer array consisting of the sensitivity
factors and a compound noise factor.

A common choice of dynamic loss function is the
quadratic loss function popularized by Taguchi,

L [Y, t(M)] = A0[Y − t(M)]2, (11.21)

where A0 is a constant. This loss function provides a good
approximation to many realistic loss functions. It follows that
the average loss becomes

R (x) = A0EMEN,ε[Y − t(M)]2

= A0EM
{
VarN,ε(Y) + [EN,ε(Y) − t(M)]2

}
.

(11.22)

Taguchi identifies dispersion and sensitivity effects by
modeling SNR respectively as a function of control factors
and sensitivity factors. His two-step procedure for DRD finds
control factor settings to minimize SNR and sets other, non-
SNR related control variables to adjust the process to the
targeted sensitivity level.

References on Dynamic Robust Design
Ghosh and Derderian [138] introduce the concept of ro-
bustness of the experimental plan itself to the noise factors
present when conducting DRD. For combined arrays they
consider blocked and split-plot designs and for product arrays
they consider univariate and multivariate models. In product
arrays they do this by choosing settings which minimize
the noise factor effects on process variability and for the
combined array they attempt to minimize the interaction
effects between control and noise factors.
Wasserman [139] clarifies the use of the SNR for the

dynamic case by explaining it in terms of linear modeling
of process response. He expresses the dynamic response as a
linear model consisting of a signal factor, the true sensitivity
(β) at specific control variable settings, and an error term.
Miller and Wu [140] prefer the term signal-response system
to dynamic robust design for its intuitive appeal and its iden-
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tification of two distinct types of signal-response systems.
They call them measurement systems and multiple target
systems, where this distinction determines the performance
measure used to find the optimal control variable settings.
Lunani et al. [141] present two new graphical procedures

for identifying suitable measures of location and dispersion
in RD situations with dynamic experimental designs. Mc-
Caskey and Tsui [142] show that Taguchi’s two-step proce-
dure for dynamic systems is only appropriate for multiplica-
tive models and develop a procedure for dynamic systems
under an additive model. For a dynamic system this equates
to minimizing the sum of process variance and bias squared
over the range of signal values.
Tsui [143] compares the effect estimates obtained using

the response model approach and Taguchi’s approach for
dynamic robust design problems. Recent publications on
DRD include Joseph and Wu [144], Joseph and Wu [145],
and Joseph [146].

11.2.4 Applications of Robust Design

Manufacturing Case Studies
Mesenbrink [147] applied the techniques of RD to opti-
mize three performance measurements of a high volume
wave soldering process. They achieved significant quality
improvement using a mixed-level fractional factorial design
to collect ordered categorical data regarding the soldering
quality of component leads in printed circuit boards. Lin and
Wen [148] apply RD to improve the uniformity of a zinc
coating process.
Chhajed and Lowe [149] apply the techniques of RD to the

problem of structured tool management. For the cases of tool
selection and tool design, they use Taguchi’s quadratic loss
function to find the most cost effective way to accomplish the
processing of a fixed number of punched holes in sheet metal
products.

Reliability Applications
Reliability is the study of how to make products and pro-
cesses function for longer periods of time with minimal
interruption. It is a natural area for RD application and the
Japanese auto industry has made huge strides in this area
compared to its American counterpart. In this section several
authors comment on the application of RD to reliability.
Hamada [150] demonstrates the relevance of RD to relia-

bility improvement. He recommends the response model ap-
proach for the additional information it provides on control–
noise interactions and suggests alternative performance cri-
teria for maximizing reliability. Kuhn et al. [151] extend the
methods ofMyers et al. [114] for linear models and normally
distributed data to achieve a robust process when time to an
event is the response.

Tolerance Design
This chapter has focused on RD, which is synonymous with
Taguchi’s methods of parameter design. Taguchi has also
made significant contributions in the area of tolerance design.
This section reviews articles which examine developments in
the techniques of tolerance design.
D’errico and Zaino [152] propose a modification of

Taguchi’s approach to tolerance design based on a product
Gaussian quadrature which provides better estimates of high-
order moments and outperforms the basic Taguchi method
in most cases. Bisgaard [153] proposes using factorial
experimentation as a more scientific alternative to trial and
error to design tolerance limits when mating components of
assembled products.
Zhang and Wang [154] formulate the robust tolerance

problem as amixed nonlinear optimizationmodel and solve it
using a simulated annealing algorithm. The optimal solution
allocates assembly and machining tolerances so as to max-
imize the product’s insensitivity to environmental factors.
Li and Wu [55] combined parameter design with tolerance
design.
Maghsoodloo and Li [155] consider linear and quadratic

loss functions for determining an optimal process mean
which minimizes the expected value of the quality loss
function for asymmetric tolerances of quality characteristics.
Moskowitz et al. [156] develop parametric and nonparametric
methods for finding economically optimal tolerance
allocations for a multivariable set of performance measures
based on a common set of design parameters.

11.3 Reliability and Prognostics
and Health Management

11.3.1 Prognostics and Health Management

Prognostics and health management (PHM) is a framework
that offers comprehensive solutions for monitoring and man-
aging health status of individual machine and engineering
systems. In recent years, PHM has emerged to be a popular
approach for improving reliability, maintainability, safety,
and affordability. Concepts and components in PHM have
been applied in many domain areas such as mechanical
engineering, electrical engineering, statistical science, etc.

Due to high impact and extreme costs associated with
system failures, it is important to develop methods that can
predict and prevent such catastrophes before they occur.
Many application methods have been developed in domains
such as electronics-rich systems, aerospace industries, or
even the public health environment [157, 158], which can be
grouped under the framework of prognostics and health man-
agement (PHM). Prognostics is the process of predicting the
future reliability of a product by assessing the its degradation
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from its expected normal operating conditions; health man-
agement is the process of real time monitoring the extent
of deviation or degradation from normal operating condition
[159, 160]. Traditional reliability prediction methods (e.g.,
US Department of Defense Mil-Hdbk-217 and Telcordia SR-
332 (formerly [161])), make strong assumptions that constant
hazard rate of each component can be modified to account
for various operating and environmental conditions. In PHM
approach, we monitor the system’s health status in real time
and dynamically update the reliability and hazard function
based on in situ measurements and update the current models
based on historical data. Due to the success of the PHM
approach, new PHM techniques and methods are needed and
to apply and implement PHM to other and underdeveloped
domains.

Due to the increasing complexity of modern systems, one
most prominent problem is called the No Fault Found (NFF)
problem (similarly, “trouble not identified,” “intermittent
malfunctions,” etc.,) [162–164], particularly in electronics-
rich systems. It refers to the situation that no failure or fault
can be detected or duplicated during laboratory tests even
when the failure has been reported in the field [165]. NFF
issues not only make diagnosis extremely difficult but also
result in skyrocketingnificant maintenance costs. As reported
by Williams et al. [165], NFF failures account for more than
85%or 90%of all filed failures and overall maintenance costs
in avionics respectively, which cost the US Department of
Defense roughly 2 ∼ 10 billion US dollars annually [166].
Similarly, NFF contributes to significant operational costs in
many other domain areas. In addition, NFF contributes to
potential safety hazards in other industries For example, both
Toyota and National Highway Traffic Safety Administration
(NHTSA) spent quite a time and efforts to investigate the
root causes of sudden acceleration failures in certain car
models, which is linked to 89 deaths in 71 crashes since
2000 [167]. Unfortunately, no conclusive finding has been
reached despite efforts to replicate the failures in a variety
of laboratory conditions. From these examples, it was found
that intermittent faults are often related to environmental
conditions and operation histories of the particular individ-
ual system, and thus difficult to duplicated repeated under
newly unknown random disturbances. Traditional laboratory
testing and assessment data only provide information on
the characteristics of the population and are insufficient to
lead accurate prediction for each individual performance. To
reduce maintenance cost and avoid safety hazards caused by
NFF, the approach of PHM shifts from traditional population
data modeling from individual data modeling.

In response to these challenges, the fast development of
information and sensing technology has enabled the collec-
tion of many in situ measurements during operations that
provides the capability of real time data management and
processing for each individual. These advancements provide

a great opportunity to develop sophisticated models with
increasing accuracy of prognostics for individual items. For
instance, many different types of data during the whole life
cycle of the products can be easily retrieved, especially in
crit- ical applications. These data could include production
process information, quality records, operation logs, and
sensor measurements. Moreover, unlike manually entered
data, which are slow, costly, and error-prone, many current
records are accurate and timely due to advancements in auto-
mated technology. The use of Radio Frequency Identification
(RFID) technology, for example, is commonly used in supply
chain distribution networks, healthcare, and even military
applications, because it provides reliable and timely tracking
of products/components. Advanced sensor technologies also
enable abundant measurements at both macro and micro
scales, such as those used to measure vibration, frequency
response, magnetic fields, and the current/voltage, to name a
few.

In general, typical workflows in a PHM system can be
conceptually divided into three major tasks: fault diagnostics,
prognostics, and condition-based maintenance. The first task
is on diagnose and root causes identification for system
failures. The root causes provide useful information for prog-
nostic and feedback for system design improvement. The
prognostic task takes the processed data, system models,
or failure mode analysis as inputs and employs the devel-
oped prognosis algorithms to update the degradation models
for failure time prediction. The last task makes use of the
prognosis results with consideration of the cost and benefits
to determine the optimal maintenance actions to achieve
minimal operating costs and risks. All of these three tasks
are necessarily executed dynamically and in real time.

11.3.2 Systems Health Monitoring
andManagement

Systems health monitoring and management (SHMM) refers
to the framework of continuous surveillance, analysis, and
interpretation of relevant data for system maintenance, man-
agement, and strategic planning, where “system” is generally
defined as “an organized set of detailed methods, procedures,
and routines created to carry out a specific activity or solve
a specific problem,” ranging from mechanical systems to
public health [168–170]. SHMM differs from PHM by its
distinct emphasis and its definitions of monitoring, prognos-
tics, and management, and can be considered an extended
version of PHM.More specifically, system health monitoring
includes detection, forecasting, diagnostics, and prognos-
tics, while system health management includes decision,
financial, and risk management. A fundamental problem in
SHMM is on how to make use of correlated active and
passive data in various tasks of prediction and forecasting,
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monitoring and surveillance, fault detection and diagnostics,
engineering management, supply chain management, and
many more. In application to complex human and engi-
neering systems, challenging research problems may arise
in various domains driven by big data analytics, such as
syndromic surveillance [171, 172], electronics-rich system
management [173], simulation and optimization of emer-
gency departments inmedical systems [174], andmass transit
planning [175].

SHMM covers many broad topics, ranging from experi-
mental design and data collection, data mining and analytics,
optimization, decision-making, etc. As more and more sys-
tems become data-rich, the theoretical foundation of SHMM
is a natural complement to the “data to knowledge to action”
paradigm, and therefore to benefit from future developments
in data science. Data science shows all the signs of growing
into a discipline in its own right, with a strong theoretical
foundation at its heart, such foundations being paramount
in the development of any new scientific field. Specifically,
theoretical research on the foundation of SHMM will build
upon theoretical foundational research in data science, which
is intrinsically inter-disciplinary. In particular, establishing
the theoretical basis of SHMM is likely to involve interdis-
ciplinary collaborations between computer scientists, math-
ematicians, and statisticians, as these three disciplines are at
the heart of the theoretical foundation of SHMM’s closest
relative, data science.

For SHMM to make impact to real-life applications, close
collaboration is required among SHMM researchers from
different disciplines and domain experts. We believe that
much of the theoretical foundation of SHMM lies at the
intersection of computer science, statistics, and mathematics.
Each of those disciplines, however, has been built around
particular ideas and in response to particular problems that
may have existed for a long time. Thus, the research devel-
opment of SHMM requires rethinking not only how those
three foundational areas interact with each other, but also
how each interacts with specific implementations and appli-
cations. In particular, the design requirements of business,
internet, and social media applications lead to questions that
tend to be very different from those in scientific and medical
applications in the past. Both the similarities and differences
between these areas are striking. Designing the theoreti-
cal foundations of SHMM requires paying attention to the
problems of researchers implementing SHMM in specific
fields as well as to the environments and platforms where
computations are to be done. A general framework of SHMM
is summarized in Fig. 11.3.

In SHMM, one frequently encounters mixed-type and
multi-modality data. For example, a typical dataset may
be aggregated from many data sources, including imaging,
numerical, graph, text data, etc. Although each specific data
type has been researched intensively in isolation, developing

a unified framework will be a more desirable approach to
study mixed data systematically. This field has both theoret-
ical and applied implications, and would benefit from a col-
laboration between statistics, theoretical computer science,
mathematics, and practitioners of SHMM. Further research
promises to lead to breakthroughs and important progress in
science and engineering. A comprehensive review of SHMM
can be found in the work by Tsui et al. [176].
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Abstract

A brief introduction to the concept of chain sampling for
quality inspection is first presented. The chain sampling
plan of type ChSP-1 selectively chains the past inspection
results. A discussion on the design and application of
ChSP-1 plans is presented in the second section of this
chapter. Various extensions of chain sampling plans such
as ChSP-4 plan are discussed in the third part. Repre-
sentation of the ChSP-1 plan as a two-stage cumulative
results criterion plan and its design are discussed in the
fourth part. The fifth section relates to the modification
of ChSP-1 plan which results in sampling economy. The
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sixth section of this chapter is on the relationship between
chain/dependent sampling and deferred sentencing type
of plans. A review of sampling inspection plans that
are based on the ideas of chain or dependent sampling
or deferred sentencing is also made in this section. A
large number of recent publications based on the idea
of chaining past and future lot results are also reviewed.
The economics of chain sampling when compared to
the two-plan quick switching system is discussed in the
seventh section. The eighth section extends the attribute
chain sampling rule to variables inspection. In the ninth
section, chain sampling is compared with the well-known
CUSUM approach for attribute data. The tenth section
gives several other interesting extensions such as chain
sampling for mixed inspection and process control. The
final section gives the concluding remarks.

Keywords

Acceptance quality limit · Attribute inspection · Chain
sampling · Cumulative result criterion · Deferred
sentencing · Destructive testing · Operating
characteristic · Quick switching · Sampling economy ·
Variables inspection

12.1 Introduction

Acceptance sampling is the methodology that deals with
procedures by which decision to accept or not accept lots of
items is based on the results of the inspection of samples. Spe-
cial purpose acceptance sampling inspection plans (shortly
special purpose plans) are tailored for special applications as
against general or universal use. Prof. Harold F. Dodge, who
is regarded as the father of acceptance sampling, introduced
the idea of chain sampling in [1]. Chain sampling inspection
can be viewed as a protocol or plan based on a cumulative
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results criterion (CRC), where related batch information is
chained or cumulated. The phrase chain sampling is also used
in sample surveys to imply snowball sampling for collection
of data. It should be noted that this phrase was originally
coined in the acceptance sampling literature and should be
distinguished from its usage in other areas.

Chain sampling is extended to two or more stages of
cumulation of inspection results with appropriate acceptance
criteria for each stage. The theory of chain sampling is also
closely related to the various other methods of sampling
inspection such as dependent-deferred sentencing, tightened-
normal-tightened sampling, quick switching inspection, etc.
In this chapter, we provide an introduction to chain sampling
and discuss briefly various generalizations of chain sampling
plans. We also review a few sampling plans which are related
to or based on the methodology of chain sampling. The
selection or design of various chain sampling plans is also
briefly presented.

12.2 ChSP-1 Chain Sampling Plan

A single sampling attributes inspection plan calls for accep-
tance of a lot under consideration if the number of noncon-
forming units found in a random sample of size n is less
than or equal to the acceptance number Ac. Whenever the
operating characteristic (OC) curve of a single sampling plan
is required to pass through a prescribed point, the sample size
n will be an increasing function of the acceptance number
Ac. This fact can be verified from the table of np or unity
values given in [2] for various values of the probability
of acceptance Pa(p) of the lot under consideration whose
fraction nonconforming units is p. The same result is true
when the OC curve has to pass through two predetermined
points, usually one at the top and the other at the bottom of the
OC curve (see [3]). Thus, for situations where small sample
sizes are preferred, only single sampling plans with Ac = 0
are desirable (see [4]). However, as observed by Dodge [1]
and several authors, the Ac = 0 plan has a “pathological” OC
curve in that the curve starts to drop rapidly even for a very
small increase in the proportion or fraction nonconforming.
In other words, the OC curve of the Ac = 0 plan has no
point of inflection. Whenever a sampling plan for costly or
destructive testing is required, it is common to force the OC
curve to pass through a point, say (LQL, β), where LQL is
the limiting quality level for ensuring consumer protection
and β is the associated consumer’s risk. All other sampling
plans such as double andmultiple sampling plans will require
more sample size for a one-point protection such as (LQL,
β). Unfortunately, the Ac = 0 plan has the following two
disadvantages:

1. The OC curve of the Ac = 0 plan has no point of inflection
and hence it starts to drop rapidly even for a smallest
increase in the fraction nonconforming p.

2. The producer dislikes an Ac = 0 plan because a single
occasional nonconformity will call for the rejection of the
lot.

The chain sampling plan ChSP-1 of [1] is an answer to
the question whether anything can be done to improve the
“pathological” shape of the OC curve of a zero acceptance
number plan. A production process, when in a state of sta-
tistical control, maintains nearly a constant but unknown
fraction nonconforming p. If a series of lots formed from
such a stable process is submitted for inspection, known
as a Type B situation, then the samples drawn from the
submitted lots are simply random samples drawn directly
from the production process. Hence, it is logical to allow a
single occasional nonconforming unit in the current sample
whenever the evidence of good past quality, as demonstrated
by the i preceding samples containing no nonconforming
units, is available. Alternatively, we can chain or cumulate
the results of past lot inspections to take a decision on the
current lot without increasing the sample size.

The operating procedure of the chain sampling plan of
type ChSP-1 is formally stated below:

1. From each of the lots submitted, draw a random sample of
size n and observe the number of nonconforming units d.

2. Accept the lot if d is zero. Reject the lot if d > 1. If
d = 1, the lot is accepted provided all the samples of
size n each drawn from the preceding i lots are free from
nonconforming units; otherwise, reject the lot.

Thus the ChSP-1 plan has two parameters, namely, the
sample size n and i, the number of preceding sample results
chained for making a decision on the current lot. It is also
required that the consumer has confidence in the producer,
and the producer will not deliberately pass a poor-quality lot
taking advantage of the small samples used and the utilization
of preceding samples for taking a decision on the current lot.

The ChSP-1 plan always accepts the lot if d = 0 and
conditionally accepts if d = 1. The probability of preceding i
samples of size n to be free from nonconforming units is Pi0,n.
Hence, the OC function is Pa(p) = P0,n + P1,nPi0,n where
Pd,n is the probability of getting d nonconforming units in
a sample of size n. Figure 12.1 shows the improvement in
the shape of the OC curve of the zero acceptance number
single sampling plan by the use of chain sampling. Clark [5]
provided a discussion on the OC curves of chain sampling
plans, a modification, and some applications. Liebesman
and Hawley [6] argued in favor of chain sampling because
the attribute international sampling standards suffer from
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the small or fractional acceptance numbers. Liebesman and
Hawley [6] also provided necessary tables and examples for
the chain sampling procedures. Most textbooks on statistical
quality control also contain a section of chain sampling and
provide some applications.

Soundararajan [7, 8] constructed tables for the selection
of chain sampling plans for given acceptable quality level
(AQL, denoted as p1), producer’s risk α, LQL (denoted as
p2), and β. ChSP-1 plans found from this source are approx-
imate, and a more accurate procedure that also minimizes
the sum of actual producer’s and consumer’s risks is given
in [9]. Table 12.1, adapted from [9], is based on the binomial
distribution for OC curve of the ChSP-1 plan. This table can
also be used to select ChSP-1 plans for given LQL and β

which may be used in place of zero acceptance number plans.
Ohta [10] investigated the performance of ChSP-1 plans

using the Graphical Evaluation and Review Technique
(GERT) and derived measures such as OC, average sample
number (ASN) for the ChSP-1 plan. Raju and Jothikumar
[11] provided a ChSP-1 plan design procedure based on
Kullback-Leibler information and necessary tables for the
selection of the plan. Govindaraju [12] discussed the design
ChSP-1 plan for minimum average total inspection (ATI).
There are a number of other sources where the ChSP-1
plan design is discussed. This chapter provides additional
references on designing chain sampling plans, inter alia,
discussing various extensions and generalizations.

12.3 Extended Chain Sampling Plans

Frishman [13] extended the ChSP-1 plan and developed
ChSP-4 and ChSP-4A plans which incorporate a rejection
number greater than 1. Both ChSP-4 and ChSP-4A plans are

Table 12.1 ChSP-1 plans indexed by AQL and LQL (α = 0.05,
β = 0.10) for fraction nonconforming inspection

AQL in %

LQL in % 0.1 0.15 0.25 0.4 0.65 1

1.5 154:02

2.0 114:04 124:01

2.5 91:04 92:02

3.0 76:03 76:03 82:01

3.5 65:03 65:03 70:01

4.0 57:02 57:02 57:02

4.5 51:02 51:02 51:02 Key n : i

5.0 45:03 45:03 45:03 49:01

5.5 41:03 41:03 41:03 45:01

6.0 38:03 38:02 38:02 38:02

6.5 35:03 35:02 35:02 35:02

7.0 32:03 32:03 32:03 32:03

7.5 30:03 30:03 30:02 30:02

8.0 28:03 28:03 28:02 28:02 30:01

8.5 26:03 26:03 26:03 26:03 29:01

9.0 25:03 25:03 25:02 25:02 27:01

9.5 24:03 24:03 24:02 24:02 24:02

10 22:03 22:03 22:03 22:03 23:02

11 20:03 20:03 20:02 20:02 20:02

12 19:03 19:03 19:02 19:02 19:02 20:01

13 17:03 17:03 17:03 17:02 17:02 18:01

14 16:03 16:03 16:03 16:02 16:02 16:02

15 15:03 15:03 15:03 15:02 15:02 15:02

Table 12.2 ChSP-4A plan

Stage Sample size Acceptance number Rejection number

1 n a r

2 (k − 1)n b b+ 1

operated like a traditional double sampling attributes plan but
use (k−1) past lot results instead of actually taking a second
sample from the current lot. Table 12.2 is a compact tabular
representation of Frishman’s ChSP-4A plan.

ChSP-4 plan restricts r to b+ 1whichmeans that the same
rejection number is used for both stages. Conditional double
sampling plans of [14] and the partial and full link sampling
plans of [15] are actually particular cases of the ChSP-4A
plan when k = 2 and k = 3, respectively. However the fact
that the OC curves of these plans are the same as the ChSP-
4A plan is not reported in both papers (see [16]).

Extensive tables for the selection of ChSP-4 and ChSP-
4A plans under various selection criteria were constructed
by Raju [17, 18], Raju and Murthy [19, 20], and Raju and
Jothikumar [21]. Raju and Jothikumar [21] provided a com-
plete summary of various selection procedures for ChSP-4
and ChSP-4A plans and also discussed two further types of
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optimal plans: the first one involving minimum risks and the
second one based on Kullback-Leibler information. Unfortu-
nately, the tables given in [17–21] for the ChSP-4 or ChSP-
4A design require the user to specify the acceptance and
rejection numbers. This serious design limitation is not an
issue with the procedures and computer programs developed
by Vaerst [22] who discussed the design of ChSP-4A plans
involvingminimum sample sizes for givenAQL, α, LQL, and
β without assuming any specific acceptance numbers. Raju
[17, 18], Raju and Murthy [19, 20], and Raju and Jothiku-
mar [21] considered a variety of design criteria, while [22]
discussed only the (AQL, LQL) criterion. The ChSP-4 and
ChSP-4A plans were obtained from [17–21]. The procedure
given in [21] can be used in any Type B situation of a series of
lots from a stable production process, not necessarily when
the product involved costly or destructive testing. This is
because the acceptance numbers covered are well over zero.
The major disadvantage of [13] extended ChSP-4 and ChSP-
4A plans is that the neighboring lot information is not always
utilized. Vidya [23] considered the variance of the outgoing
quality limit (VOQL) criterion for designing ChSP-4 plans.
Even though ChSP-4 and ChSP-4A plans require smaller
sample size than the traditional double sampling plans, these
plansmay not be economical to other comparable conditional
sampling plans.

Bagchi [24] presented an extension of the ChSP-1 plan,
which calls for additional sampling only when one noncon-
forming unit is found. The operating procedure of Bagchi’s
extended chain sampling plan is given below:

1. At the outset, inspect n1 units selected randomly from
each lot. Accept the lot if all the n1 units are conforming;
otherwise, reject the lot.

2. If i successive lots are accepted, then inspect only n2 <

n1 items from each of the submitted lots. Accept the lot
as long as no nonconforming units are found. If two or
more nonconforming units are found, reject the lot. In the
event of one nonconforming unit is found in n2 inspected
units, then inspect a further sample (n1−n2) units from the
same lot. Accept the lot under consideration if no further
nonconforming units are found in the additional (n1 − n2)
inspected units; otherwise, reject the lot.

Representing Bagchi’s plan as a Markov chain, [25] de-
rived the steady-state OC function and few other performance
measures.

Gao [26] considered the effect of inspection errors on a
chain sampling plan with two acceptance numbers and also
provided design procedures. Application of chain sampling
for a reliability acceptance test for exponential life times is
also given in [26].

12.4 Two-Stage Chain Sampling

Dodge and Stephens [27] viewed the chain sampling ap-
proach as a cumulative result criterion (CRC) applied in two
stages and extended it to include larger acceptance numbers.
Their approach calls for the first stage of cumulation of a
maximum of k1 consecutive lot results, during which accep-
tance is allowed if the maximum allowable nonconforming
units is c1 or less. After passing the first stage of cumulation
(i.e., when consecutive lots are accepted), the second stage
cumulation of k2 (> k1) lot results begins. In the second
stage of cumulation, an acceptance number of c2 (> c1)
is applied. Stephens and Dodge [28] presented a further
generalization of the family of “two-stage” chain sampling
inspection plans by using different sample sizes in the two
stages. The complete operating procedure of a generalized
two-stage chain sampling plan is stated below:

1. At the outset, draw a random sample of n1 units from the
first lot. In general, a sample of size nj (j = 1, 2) will be
taken while operating in jth stage of cumulation.

2. Record d the number of nonconforming units in each sam-
ple, as well asD the cumulative number of nonconforming
units from the first and up to, and including, the current
sample. As long as Di ≤ c1 (1 ≤ i ≤ k1), accept the ith
lot.

3. If k1 consecutive lots are accepted, continue to cumulate
the number of nonconforming units D in the k1 samples
plus additional samples up to but nomore than k2 samples.
During this second stage of cumulation, accept the lots as
long as Di ≤ c2 (k1 < i ≤ k2).

4. After passing the second stage of k2 lot acceptances,
start cumulation as a moving total over k2 consecutive
samples (by adding the current lot result and dropping the
preceding k2th lot result). Continue to accept lots as long
as Di ≤ c2 (i > k2).

5. In any stage of sampling, reject the lot ifDi > ci and return
to Step 1 (a fresh restart of the cumulation procedure).

Figure 12.2 shows how the cumulative result criterion
is used in a two-stage chain sampling plan for k1 = 3
and k2 = 5.

An important subset of the generalized two-stage chain
sampling plan is when n1 = n2, and this subset is designated
as ChSP-(c1, c2), which has five parameters n, k1, k2, c1, and
c2. The original chain sampling planChSP-1 of [1] is a further
subset of the ChSP-(0,1) plan with k1 = k2 − 1, that is,
the OC curve of the generalized two-stage chain sampling
plan is equivalent to the OC curve of the ChSP-1 plan when
k1 = k2−1. Dodge and Stephens [27] derived the OC function
of ChSP-(0,1) plan as
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Pa(p) =
P0,n(1 − P0,n) + Pk10,nP1,n

(
1 − Pk2−k10,n

)

1 − P0,n + Pk10,nP1,n

(
1 − Pk2−k10,n

) , k2 > k1.

Both the ChSP-1 and ChSP-(0,1) plans overcome the
disadvantages of the zero acceptance number plan mentioned
earlier. The operating procedure of the ChSP-(0,1) plan can
be succinctly stated as follows:

1. A random sample of size n is taken from each succes-
sive lot, and the number of nonconforming units in each
sample is recorded, as well as the cumulative number of
nonconforming units found so far.

2. Accept the lot associated with each new sample as long as
no nonconforming units are found.

3. Once k1 lots have been accepted, accept subsequent lots
as long as the cumulative number of nonconforming units
is no greater than one.

4. Once k2 > k1 lots have been accepted, cumulate the
number of nonconforming units over the most k2 lots, and
continue to accept as long as this cumulative number of
nonconforming units is one or none.

5. If, at any stage, the cumulative number of nonconforming
units becomes greater than one, reject the current lot and
return to Step 1.

Procedures and tables for the design of ChSP-(0,1) plan
are available in [29, 30]. Govindaraju and Subramani [31]
showed that the choice of k1 = k2 − 1 is always forced on
the parameters of the ChSP-(0,1) plan when a plan is selected
for given AQL, α LQL, and β, that is, a ChSP-1 plan will be
sufficient, and one need not opt for a two-stage cumulation
of nonconforming units.

In various technical reports of the Statistics Center, Rut-
gers University (see [32] for a list), Stephens and Dodge for-
mulated the two-stage chain sampling plan as aMarkov chain
and evaluated its performance. The performance measures
considered by them include the steady-state OC function,
ASN, average run length (ARL), etc. For comparison of chain
sampling plans with the traditional or noncumulative plans,
two types of ARLs are used. The first type of ARL, i.e.,
ARL1, is the average number of samples to the first rejection
after a sudden shift in the process level, say from p0 to ps.
The usual ARL, i.e., ARL2, is the average number of samples
to the first rejection given the stable process level p0. The
difference (ARL1 − ARL2) measures the extra lag due to
chain sampling. However, this extra lag may be compensated
by the gains in sampling efficiency as explained in [33].

Stephens and Dodge [34] summarized the Markov chain
approach to evaluate the performance of some selected two-
stage chain sampling plans, while more detailed derivations
were published in their technical reports. Based on the ex-
pressions for the OC function derived by Stephens andDodge
in their various technical reports listed in [32]. Raju and
Murthy [35] and Jothikumar and Raju [36] discussed various
design procedures for the ChSP-(0,2) and ChSP-(1,2) plans.
Raju [37] extended the two-stage chain sampling to three
stages and evaluated the OC performances of few selected
chain sampling plans fixing the acceptance numbers for the
three stages. The three-stage cumulation procedure becomes
very complex and will play only a limited role for costly or
destructive inspections. The three-stage plan will however be
useful for general Type B lot by lot inspections.

12.5 Modified ChSP-1 Plan

In [1], chaining of past lot results does not always occur. It
occurs only when a nonconforming unit is observed in the
current sample. This means that the available historical evi-
dence of quality is not utilized fully. Govindaraju and Lai [38]
developed a modified chain sampling plan (MChSP-1) that
always utilizes the recently available lot quality history. The
operating procedure of the MChSP-1 plan is given below.

1. From each of the submitted lots, draw a random sample of
size n. Reject the lot if one or more nonconforming units
are found in the sample.

2. Accept the lot if no nonconforming units are found in the
sample provided the preceding i samples also contained
no nonconforming units except in one sample which may
contain at most one nonconforming unit. Otherwise, reject
the lot.
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Start

Inspect a sample of size n from the current lot
and observe the number of nonconforming units d

Reject the
current lot

Yes

No

Cumulate the number of nonconforming
units D in the preceding i samples

YesNoAccept the
current lot

Is d > 0

Is D > 1?

Fig. 12.3 Operation of the MChSP-1 plan

A flow chart showing the operation of the MChSP-1 plan
is in Fig. 12.3. MChSP-1 plan allows a single nonconforming
unit in any one of the preceding i samples, but the lot
under consideration is rejected if the current sample has a
nonconforming unit. Thus, the plan gives a “psychological”
protection to the consumer in that it allows acceptance only
when all the current sample units are conforming. Allowing
one nonconforming unit in any one of the preceding i samples
is essential to offer protection to the producer, i.e., to achieve
an OC curve with a point of inflection. In MChSP-1 plan,
rejection of lots would occur until the sequence of submis-
sions advances to a stage where two or more nonconforming
units were no longer included in the sequence of i samples.
In other words, if two or more nonconforming units are
found in a single sample, it will result in i subsequent lot
rejections. In acceptance sampling, one has to look at the
OC curve to have an idea of the protection to the producer as
well as to the consumer, and what happens in an individual
sample or for a few lots is not very important. If two or
more nonconforming units are found in a single sample, it
does not mean that the subsequent lots need not be inspected
since they will be automatically rejected under the proposed
plan. It should be noted that results of subsequent lots will
be utilized continuously and the producer has to show an
improvement in quality with one or none nonconforming
unit in the subsequent samples in order to permit future
acceptances. This will act as a strong motivating factor for
quality improvement.

The OC function Pa(p) of theMChSP-1 plan is derived by
Govindaraju and Lai [38] as Pa(p) = P0,n

(
Pi0,n + iPi−1

0,n P1,n
)
.

Figure 12.4 compares the OC curves of ChSP-1 andMChSP-
1 plans. From Fig. 12.4, we observe that the MChSP-1 plan
decreases the probability of acceptance at poor-quality levels
but maintains the probability of acceptance at good-quality
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levels when compared to the OC curve of the zero acceptance
number single sampling plan. The ChSP-1 plan, on the other
hand, increases the probability of acceptance at good-quality
levels but maintains the probability of acceptance at poor-
quality levels. In order to compare the two sampling plans,
we need to match them. That is, we need to design sampling
plans whose OC curves approximately pass through two pre-
scribed points such as (AQL, 1−α) and (LQL, β). Figure 12.5
gives such a comparison and establishes that MChSP-1 plan
is efficient in requiring a very small sample size compared
to the ChSP-1 plan. A two-stage chain sampling plan would
generally require a sample size equal to or more than the
sample size of a zero acceptance single sampling plan. The
MChSP-1 plan will however require a sample size smaller
than the zero acceptance number plan.
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12.6 Chain Sampling and Deferred
Sentencing

Like chain sampling plans, there are other plans that use the
results of neighboring lots for taking a conditional decision of
acceptance or rejection. Plans that make use of past lot results
are either called chain or dependent sampling plans. Similarly
plans that make use of future lot results are known as deferred
sentencing plans. These plans have a strategy of accepting
the lots conditionally based on the neighboring lot quality
history and hence referred to as conditional sampling plans.
We will briefly review several such conditional sampling
plans available in the literature.

Contrary to chain sampling plans that make use of past
lot results, deferred sentencing plans use future lot results.
The idea of deferred sentencing was first published in a paper
by Anscombe et al. [39]. The first simplest type deferred
sentencing scheme of [39] requires the produced units be
split into small size lots, and one item is selected from each
lot for inspection. The lot sentencing rule is that whenever Y
nonconforming units are found out of X or fewer consecutive
lots tested, all such cluster of consecutive lots starting from
the lot that resulted the first nonconforming unit to the lot
that resulted the Yth nonconforming unit are rejected. Lots
not rejected by this rule are accepted. This rule is further
explained in the following sentences. A run of good lots
of length X will be accepted at once. If a nonconforming
unit occurs, then the lot sentencing or disposition will be
deferred until either further (X − 1) lots have been tested or
(Y − 1) further nonconforming items are found, whichever
occurs the sooner. At the outset, if the (X − 1) succeeding
lots result in fewer than (Y − 1) nonconforming units, the lot
that resulted the first nonconforming unit and any succeeding
lots clear of nonconforming units will be accepted. As soon
as Y nonconforming units occur in no more than X lots,
all lots not so far sentenced will be rejected. Thus the lot
disposition will sometimes be made at once and sometimes
with a delay not exceeding (X − 1) lots. Some of the lots
to be rejected according to the sentencing rule may already
have been rejected through the operation of the rule on a
previous cluster of Y nonconforming units partly overlap-
ping the one being considered. The actual number of new
lots rejected under the deferred sentencing rule can be any
number from 1 to X. Anscombe et al. [39] also considered
modifications of the above deferred sentencing rule, includ-
ing inspection of a sample of size more than one from each
lot. Anscombe et al. [39] originally presented their scheme
as an alternative to [40] continuous sampling plan of type
CSP-1 which is primarily intended for the partial screening
inspection of produced units directly (when lot formation is
difficult).

The deferred sentencing idea was formally tailored into an
acceptance sampling plan by Hill et al. [41]. The operating
procedure of [41] scheme is described below:

1. From each lot, select a sample of size n. The lots are
accepted as long as no nonconforming units are found
in the samples. If one or more nonconforming units are
found, the disposition of the current lot will be deferred
until (X − 1) succeeding lots are inspected.

2. If the cumulative number of nonconforming units for X
consecutive lots is Y or more, then a second sample of
size n is taken from each of the lots (beginning with the
first lot and ending with the last batch that showed a
nonconforming unit in the sequence of X nonconforming
units). If there are less than Y nonconforming units in the
X, accept all lots from the first up to but not including
the next batch that showed a nonconforming unit. The
decision on this batch will be deferred until (X − 1)
succeeding lots are inspected.

Hill et al. [41] also evaluated the OC function of some
selected schemes and found them very economical when
compared to the traditional sampling plans, including the
sequential attribute sampling plan.

Wortham and Mogg [42] developed a dependent stage
sampling plan which is operated under steady state as fol-
lows:

1. For each lot, draw a sample of size n and observe the
number of nonconforming units d.

2. If d ≤ r, accept the lot; if d > r + b, reject the lot. If
r + 1 ≤ d ≤ r + b, accept the lot if the (r + b+ 1 − d)th

previous lot was accepted; otherwise, reject the current lot.

Govindaraju [43] has observed that the OC function of
DSSP(r, b) is the same as the OC function of the repetitive
group sampling (RGS) plan of [44]. This means that the
existing design procedures for the RGS plan can also be used
for the design ofDSSP(r, b) plan. The deferred state sampling
plan of [45] has a similar operating procedure except in Step
2 in which when the current lot is accepted if the forthcoming
(r + b + 1 − d)th lot is accepted. The steady-state OC
function of the dependent (deferred) stage sampling plan is
given by

Pa(p) = Pa,r(p)

1 − Pa,r+b(p) + Pa,r(p)

where Pa,r(p) is the OC function of the single sampling
plan with acceptance number r and sample size n. Similarly
Pa,r+b(p) is the OC function of the single sampling plan with
acceptance number r+ b and sample size n. A procedure for
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the determination of plan for given AQL, α, LQL, and β was
also developed by Vaerst [22].

Wortham and Baker [46] extended the dependent (de-
ferred) state sampling into a multiple dependent (deferred)
state (MDS) plan MDS(r, b, m). The operating procedure of
the MDS(r, b, m) plan is given below:

1. For each lot, draw a sample of size n and observe the
number of nonconforming units d.

2. If d ≤ r, accept the lot; if d > r+ b, reject the lot. If
r+ 1 ≤ d ≤ r+ b, accept the lot if the consecutive m pre-
ceding lots were all accepted (consecutive m succeeding
lots must be accepted for the deferred MDS(r, b, m) plan).

The steady-state OC function of the MDS(r, b, m) plan is
given by the recursive equation

Pa(p) = Pa,r(p) + [Pa,r+b(p) − Pa,r(p)] (Pa(p))m

Vaerst [47], Soundararajan and Vijayaraghavan [48], Ku-
ralmani and Govindaraju [49], and Govindaraju and Subra-
mani [50] provided detailed tables and procedures for the de-
sign of MDS(r, b, m) plans for various requirements. Afshari
andGildeh [51] provided a procedure to design theMDS plan
in a fuzzy environment such when testing is imperfect.

Vaerst [22, 47] modified the MDS(r, b, m) plan to make it
on par with the ChSP-1 plan. The operating procedure of the
modified MDS(r, b, m) plan, called MDS-1(r, b, m), is given
below:

1. For each lot, draw a sample of size n and observe the
number of nonconforming units d.

2. If d ≤ r accept the lot; if d > r+ b, reject the lot. If
r+ 1 ≤ d ≤ r+ b, accept the lot if r or less nonconform-
ing units are found in each of the consecutivem preceding
(succeeding) lots.

When r = 0, b = 1, and m = i, MDS-1(r, b, m) plan
becomes the ChSP-1 plan. The OC function of the plan is
given by recursive equation

Pa(p) = Pa,r(p) + [Pa,r+b(p) − Pa,r(p)]
(
Pa,r(p)

)m

Vaerst [47, 52], and [53] provided detailed tables and
procedures for the design of plans for various requirements.
The major but an obvious shortcoming of the chain sampling
plans is that since they use sample information from past lots
for disposing the current lot, there is a tendency to reject the
current lot of given good quality when the process quality
is improving or accept the current lot of given bad quality
when the process quality is deteriorating. Similar criticisms
(in reverse) can be leveled against the deferred sentencing

plans. As mentioned earlier, [33] recognizing this disad-
vantage of chain sampling defined the ARL performance
measures ARL1 and ARL2. Recall that ARL2 is the average
number of lots that will be accepted as a function of the
true fraction nonconforming. ARL1 is the average number
of lots accepted after an upward shift in the true fraction
nonconforming occurred from the existing level. Stephens
and Dodge [54] evaluated the performance of the two-stage
chain sampling plans comparing the ARLs with matching
single and double sampling plans having approximately the
same OC curve. It was noted that the slightly poorer ARL
property due to chaining of lot results is well compensated
by the gain in sampling economy. For deferred sentencing
schemes, [41] investigated trends as well as sudden changes
in quality. It was found that the deferred sentencing schemes
will discriminate better between fairly constant quality at one
level and fairly constant quality at another level than will a
lot-by-lot plan scheme with the same sample size. However,
when quality varies considerably from lot to lot, the deferred
sentencing scheme found to operate less satisfactorily, and
in certain circumstances the discrimination between good
and bad batches may even be less than for the traditional
unconditional plans with the same sample size. Further the
deferred sentencing scheme may pose problems of flow,
supply storage space, and uneven workload (which is not a
problem with chain sampling).

Cox [55] provided a more theoretical treatment and con-
sidered one-step forward and two-step backward schemes.
The lot sentencing rules and inspection are modeled as a
stochastic process and applied Bayes’s theorem for the sen-
tencing rule. He did recognize the complexity of modeling
a multistage procedure. When the submitted lot fraction
nonconforming vary, say when a trend exists, both chain
and deferred sentencing rules have disadvantages. But this
disadvantage can be overcome by combining chain and de-
ferred sentencing rules into a single scheme. This idea was
first suggested by Baker [56] in his dependent deferred state
(DDS) plan. Osanaiye [57] provided a complete methodol-
ogy of combining chain and deferred sentencing rules and
developed the chain-deferred (ChDP) plan. The ChDP plan
has two stages for lot disposition and its operating procedure
is given below:

1. From lot numbered k, inspect n units and count the number
of nonconforming units dk. If dk ≤ c1, accept lot num-
bered k. If dk > c2, reject lot numbered k. If c1 < dk ≤ c2,
then combine the number of nonconforming units from
the immediate succeeding and preceding samples, namely,
dk−1 and dk+1.

2. If dk ≤ c, accept the kth lot provided dk+dk−1 ≤ c3 (chain
approach). If dk > c, accept the lot provided dk + dk+1 ≤
c3 (deferred sentencing).
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One possible choice of c is the average of c1 and c3 + 1.
Osanaiye [57] also provided a comparison of ChDP with
the traditional unconditional double sampling plans as the
OC curves of the two types of plans are the same (but
the ChDP plan utilizes the neighboring lot results). Shankar
and Srivastava [58] and Shankar and Joseph [59] provided
a GERT analysis of ChDP plans taking the approach of
[10]. Shankar and Srivastava [60] discussed the selection
ChDP plans using tables. Osanaiye [61] provided a multiple
sampling plan extension of the ChDP plan (called MChDP
plan). MChDP plan uses several neighboring lot results to
achieve sampling economy.

Osanaiye [62] provided a practically useful discussion on
the choice of conditional sampling plans considering autore-
gressive processes, inert processes (constant process quality
shift), and linear trends in quality. Based on a simulation
study, it was recommended that the chain-deferred schemes
are the cheapest if either the cost of 100% inspection or
sampling inspection is high. He recommended the use of
the traditional single or double sampling plans only if the
opportunity cost of rejected items is very high. Osanaiye
and Alebiosu [63] considered the effect of inspection errors
on dependent and deferred double sampling plans vis-à-vis
ChDP plans. They observed that the chain-deferred plan in
general has a greater tendency to reject nonconforming items
than any other plans irrespective of the magnitude of any
inspection error.

Many of the conditional sampling plans, which follow
either the approach of chaining or deferring or both, have
the same OC curve of a double (or a multiple) sampling
plan. Exploiting this equivalence, [64] provided a general
selection procedure for conditional sampling plans for given
AQL and LQL. The plans considered include the conditional
double sampling plan of ChSP-4A plans of [13], conditional
double sampling plan of [14], link sampling plan of [15],
and ChDP plan of [57]. A perusal of the operating ratio
LQL/AQL of [64] tables reveal that these conditional sam-
pling plans apply in all Type B situations because a wide
range of discrimination between good and bad qualities is
achievable. However, the sample sizes, even though smaller
than the traditional unconditional plans, will not be as small
as the zero acceptance number single sampling plans. This
limits the application of the conditional sampling plans to
this special purpose situation, where ChSP-1 or MChSP-1
plan suits the most.

Govindaraju [65] developed a conditional single sampling
(CSS) plan, which has desirable properties for general ap-
plications as well as for costly or destructive testing. The
operating procedure of the CSS plan is as follows:

1. From lot numbered k, select a sample of size n and observe
the number of nonconforming units dk.

2. Cumulate the number of nonconforming units observed
for the current lot and the related lots. The related lots will
be either past lots, future lots, or a combination depending
on whether one is using dependent sampling or deferred
sentencing. The lot under consideration is accepted if the
total number of nonconforming units in the current lot and
the m related lots is less than or equal to the acceptance
number, Ac. If dk is the number of nonconforming units
recorded for the kth lot, the rule for disposition for the kth
lot is as follows:
a. For dependent or chain sampling, accept the lot if

(dk−m + · · · + dk−1 + dk) ≤ Ac; otherwise, reject the
lot.

b. For deferred sampling, accept the lot if (dk + dk+1+
· · · + dk+m) ≤ Ac; otherwise, reject the lot.

c. For dependent-deferred sampling, where m is desired
to be even, accept the lot if

(
dk− m

2
+ · · · + dk + · · · +

≤ dk+ m
2

) ≤ Ac; otherwise, reject the lot.

Thus, the CSS plan has three parameters, the sample size
n, acceptance number Ac, and number of related lot results
used,m. As in the case of any dependent sampling procedure,
dependent single sampling takes full effect only from the
(m + 1)st lot. In order to maintain equivalent OC protection
for the first m lots, additional sample mn units can be taken
from each lot and the lot can be accepted if the total number of
nonconforming units is less than or equal to Ac or additional
samples of size (m + 1 − i)n can be taken for the ith lot
(i = 1, 2, . . . , m) and the same decision rule be applied. In
either case, the results of the additional samples should not
be used for lot disposition from lot (m+ 1). Govindaraju [65]
has shown that the CSS plans require much smaller sample
sizes than all other conditional sampling plans. In case of
trends in quality, the CSS plan can also be operated as a
chain-deferred plan, and this will ensure that the changes in
lot qualities are somewhat averaged out.

12.7 Comparison of Chain Sampling with
Switching Systems

Dodge [66] first proposed the quick switching sampling
(QSS) system which basically consists of two intensities of
inspection, i.e., normal (N) and tightened (T) plans. Rom-
boski [67] investigated the QSS system and introduced sev-
eral modifications of the original QSS system. Under the
QSS system, if a lot is rejected under the normal inspec-
tion, a switch tightened inspection will be made; otherwise,
normal inspection shall continue. If a lot is accepted under
the tightened inspection, then the normal inspection will be
restored; otherwise, tightened inspection will be continued.
For a review of quick switching systems, see [68] or [69].
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Taylor [68] introduced a new switch number to the orig-
inal QSS-1 system of [67] and compared it with the chain
sampling plans. When the sample sizes of normal and tight-
ened plans are equal, the quick switching systems and the
two-stage chain sampling plans were found to give nearly
identical performance. Taylor’s comparison is only valid for a
general situation where acceptance numbers of greater than
zero are used. For costly or destructive testing, acceptance
numbers are kept at zero for achieving minimum sample
sizes. In such situations, both ChSP-1 and ChSP-(0,1) plans
will fare poorly against other comparable schemes when the
incoming quality is at AQL. This fact is explained in the
following paragraph using an example.

For costly or destructive testing, a quick switching system
employing zero acceptance number was studied in [70] and
[71]. Under this scheme, the normal inspection plan has a
sample size of nN units, while the tightened inspection plan
has a higher sample size nT (> nN). The acceptance number
is kept at zero for both normal and tightened inspections.
The switching rule is that a rejection under the normal plan
(nN, 0) will invoke the tightened plan (nT, 0). An acceptance
under the (nT, 0) plan will revert back to normal inspection.
This QSS system, designated as of type QSS-1(nN, nT; 0),
can be used in place of the ChSP-1 and ChSP-(0,1) plans. Let
AQL= 1%, α = 5%, LQL= 15%, and β = 10%. The ChSP-
1 plan for the prescribed AQL and LQL conditions is found
as n = 15 and i = 2 (from Table 12.1 of this chapter). The
matching QSS-1 system for the prescribed AQL and LQL
conditions can be found as QSS-1(nN = 5, nT = 19) from
the tables given in [70] or [72]. At good-quality levels, the
normal inspection plan will require sampling only 5 units.
Only at poor-quality levels, 19 units will be sampled under
the QSS system. Hence, it is obvious that Dodge’s chain
sampling approach is not truly economical at good-quality
levels but fares well at poor-quality levels. However, if the
modified chain sampling plan MChSP-1 plan of [38] is used,
then the sample size needed will be only 3 units (and i, the
number of related lot results to be used is fixed at 7 or 8). The
other alternative is to use the chained quick switching system
proposed in [73]. For a detailed discussion of this approach,
consult [74].

A more general two-plan system having zero acceptance
numbers for the tightened and normal plans was studied by
Calvin [75], Soundararajan and Vijayaraghavan [76], and
Subramani and Govindaraju [77]. Calvin’s TNT scheme
uses zero acceptance numbers for normal and tightened
inspection and employs the switching rules of [78], which
is also roughly employed in [79]. The operating procedure
of the TNT scheme, designated as TNT(nN, nT; 0), is given
below:

1. Start with the tightened inspection plan (nT, 0). Switch
to normal inspection (Step 2) when t lots in a row are

accepted; otherwise, continue with the tightened inspec-
tion plan.

2. Apply the normal inspection plan (nN, 0). Switch to the
tightened plan if a lot rejection is followed by another lot
rejection within the next s lots.

Using the tables of [80], the zero acceptance number
TNT(nN, nT; 0) plan for given AQL = 1%, α = 5%, LQL
= 15%, and β = 10% is found as TNT(nN = 5, nT =
16;Ac = 0). We again find that the MChSP-1 plan calls
for a smaller sample size when compared to Calvin’s zero
acceptance number TNT plan.

Skip-lot sampling plans of [81] and [82] are based on
skipping of sampling inspection of lots on the evidence of
good-quality history. For a detailed discussion of skip-lot
sampling, [32] may be consulted. In skip-lot sampling plan
of type SkSP-2 of [82], once m successive lots are accepted
under the reference plan, the chosen reference sampling plan
is applied only for a fraction of the time. Govindaraju [83]
studied the employment of the zero acceptance number plan
as a reference plan (among several other reference sampling
plans) in the skip-lot context. For given AQL = 1%, α =
5%, LQL = 15%, and β = 10%, the SkSP-2 plan with a
zero acceptance number reference plan is found as n = 15,
m = 6, and f ≈ 1/5. Hence, the matching ChSP-1 plan n =
15 and i = 2 is not economical at good-quality levels when
compared to the SkSP-2 plan n = 15, m = 6, and f ≈ 1/5.
This is because the SkSP-2 plan requires the zero acceptance
number reference plan with a sample of size 15 to be applied
only to one in every five lots submitted for inspection once
six consecutive lots are accepted under the reference single
sampling plan (n = 10, Ac = 0). However, the modified
MChSP-1 plan is more economical at poor-quality levels
when compared to the SkSP-2 plan. Both plans require about
the same sampling effort at good-quality levels.

12.8 Chain Sampling for Variable
Inspection

The main assumption made for the various types of chain
sampling plans and other attribute schemes such as deferred-
dependent plans and quick switching systems is that the
fraction nonconforming p in a series of lots roughly remains
a constant. No other distributional assumptions are made
for attribute sampling inspection plans. If the assumption of
constant p for a series of lots is violated, there can be a delay
in detection of a change in p. This delay is measured using the
difference (ARL1 − ARL2) (see Sect. 12.4). However, if the
rule of chaining lot inspection results is modified as a chain-
deferred rule, the overall producer’s and consumer’s risk will
remain the same even if there is a linear trend in p in a series of
lots (see the discussion in Sect. 12.5). If the distribution of the
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Table 12.3 Limits for deciding unsatisfactory variable plans

nσ kσ l nσ kσ l nσ kσ l nσ kσ l
1 0 16 2.3642 31 3.3970 46 4.1830

2 0.4458 17 2.4465 32 3.4549 47 4.2302

3 0.7280 18 2.5262 33 3.5119 48 4.2769

4 0.9457 19 2.6034 34 3.5680 49 4.3231

5 1.1278 20 2.6785 35 3.6232 50 4.3688

6 1.2869 21 2.7515 36 3.6776 51 4.4140

7 1.4297 22 2.8227 37 3.7312 52 4.4588

8 1.5603 23 2.8921 38 3.7841 53 4.5032

9 1.6812 24 2.9599 39 3.8362 54 4.5471

10 1.7943 25 3.0262 40 3.8876 55 4.5905

11 1.9009 26 3.0910 41 3.9384 56 4.6336

12 2.0020 27 3.1546 42 3.9885 57 4.6763

13 2.0983 28 3.2169 43 4.0380 58 4.7186

14 2.1904 29 3.2780 44 4.0869 59 4.7605

15 2.2789 30 3.3380 45 4.1352 60 4.8021

quality characteristic of interest is known, variable inspection
becomes feasible. Govindaraju and Balamurali [84] extended
the idea of chain sampling to variable inspection assuming
normality. This approach is particularly useful when test-
ing is costly or destructive provided the quality variable is
measurable on a continuous scale and known to be normally
distributed. It is well known that the variable plans do call for
a very low sample sizes when compared to the attribute plans.
However, not all variable plans possess a satisfactory OC
curve as shown by Govindaraju and Kuralmani [85]. Often,
a variable plan is unsatisfactory if the acceptability constant
is too large particularly when the sample size is small. Only
in such cases, it is necessary to follow the chain sampling
approach to improve upon the OC curve of the variable plan.
Table 12.3 is useful for deciding whether a given variables
sampling plan has a satisfactory OC curve or not. If the
acceptability constant kσ of a known sigma variables plan
exceeds kσ l, then the plan is deemed to have an unsatisfactory
OC curve like an Ac = 0 attribute plan.

The operating procedure of the chain sampling plan for
variables inspection is as follows:

1. Draw a random sample of size nσ , say
(
x1, x2, . . . , xnσ

)
,

and then compute ν = (U − X̄)/σ where X̄ =
nσ∑
i=1

xi/nσ .

2. Accept the lot if ν ≥ kσ and reject if ν < k′
σ . If k

′
σ ≤

ν < kσ , accept the lot provided the preceding i lots were
accepted on the condition that ν ≥ kσ .

Thus the variable chain sampling plan has four parame-
ters, namely, the sample size nσ ; the acceptability constants
kσ and k′

σ (< kσ ); and i, the number of preceding lots
used for conditionally accepting the lot. The OC function of
this plan is given by Pa(p) = PV + (P′

V − PV)PiV where

PV = Pr(ν ≥ kσ ) is the probability of accepting the lot
under the variables plan (nσ , kσ ) and P′

V = Pr(ν ≥ k′
σ ) is

the probability of accepting the lot under the variables plan
(nσ , k′

σ ). Even though the above operating procedure of the
variables chain sampling plan is of a general nature, it would
be appropriate to fix k′

σ = kσ l. For example, suppose that
a variable plan with nσ = 5 and kσ = 2.46 is currently
under use. From Table 12.3, the limit for the undesirable
acceptability constant kσ l for nσ = 5 is obtained as 1.1278.
Since the regular acceptability constant kσ = 2.26 is greater
than k′

σ = 1.1278, the variable plan can be declared to
possess an unsatisfactory OC curve. Hence, it is desirable
to chain the results of neighboring lots to improve upon the
shape of the OC curve of the variable plan (nσ = 5, kσ =
2.26), that is, the variable plan currently under use will be
operated as a chain sampling plan fixing i as four. A more
detailed procedure on designing chain sampling for variable
inspection, including the case when sigma is unknown, is
available in [84]. The chain sampling for variables will be
particularly useful when inspection costs are prohibitively
high, and the quality characteristic is measurable on a con-
tinuous scale.

Luca [86] extended the modified chain sampling plan
MChSP-1 of [38] for variable inspection. The main advan-
tage of the MChSP-1 is the reduction of sample size com-
pared to the ChSP-1 plan. While the variable chain sampling
approach reduces the amount inspection substantially, the
variable inspection based on the modified chain sampling
plan rule can achieve some marginal gains.

The idea of using chain sampling rules for variables
inspection proved popular in the recent years, and a large
number of plans using conditional lot disposition rules ap-
peared in the literature. Balamurali and Jun [87] extended the
variable chain sampling idea to MDS sampling plans based
on the normal distribution. Balamurali et al. [88] employed
the Weibull distribution so that the plans can be used for
lifetime assurance (see [89] and [90]). Aslam et al. [91]
extended the MDS rule to a lifetime characteristic following
the Burr XII distribution.

Arizono et al. [92] first coined the idea of employing the
process capability index for the design of a variables inspec-
tion plan. Wu et al. [93] extended the work of [87] to MDS
sampling plan using the capability index Cpk for normally
distributed processes with two-sided specification limits (see
[94] who also developed a variables MDS sampling plan for
lot sentencing based on the process capability index) (also
see [95]). Wu et al. [96] employed the quick switching rules
and presented variable quick switching sampling (VQSS)
system based on the Cpk index. There are numerous papers
employing rules based on chaining lot results which employ
various process capability indices, and the reader is suggested
to refer to the review given in [96]. Kurniati et al. [97]
employed the TNT plan rules with a unilateral specification
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limit based on one-sided capability indices. Yan et al. [98]
extended the MDS rules to assure protection of coefficient of
variation of a normally distributed quality characteristic.

12.9 Chain Sampling and CUSUM

In this section, we will discuss some of the interesting rela-
tionships between the cumulative sum (CUSUM) approach
of [99, 100] and chain sampling approach of [1]. As ex-
plained in [101], the CUSUM approach for Gaussian pro-
cesses is largely popular in the area of statistical process
control (SPC), but [99] proposed it to be used with at-
tribute (binomial) inspection problems arising in acceptance
sampling as well. Page [99] compares the CUSUM-based
inspection scheme with the deferred sentencing schemes of
[39] and the continuous sampling plan CSP-1 of [40] for
evaluating their relative performance. In fact Dodge’s CSP-
1 plan forms the theoretical basis for the ChSP-1 chain
sampling plan. A more formal acceptance sampling scheme
based on the one-sided CUSUM for lot-by-lot inspection was
proposed in [102]. Beattie’s plan calls for drawing a random
sample of size n from each lot and observing the number
of nonconforming units d. For each lot, a CUSUM value is
calculated for a given slack parameter k. If the computed
CUSUM is within the decision interval (0, h), then the lot
is accepted. If the CUSUM is within the return interval
(h, h′), then the lot is rejected. If the CUSUM falls below
zero, it is reset to zero. Similarly, if the CUSUM exceeds
h+ h′, it is reset to h+ h′. In other words, for the jth lot,
the plotted CUSUM can be succinctly defined as Sj =
min

(
h+ h′, max(dj − k + Sj−1)

)
with S0 = 0. Beattie’s

plan is easily implemented using the typical number of non-
conforming units CUSUMchart for lot-by-lot inspection (see
Fig. 12.6).

Lot number j 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

Cusum sj

Return interval

h

h
+
h'

Decision interval

Fig. 12.6 Beattie’s CUSUM acceptance sampling plan

Prairie and Zimmer [103] provided detailed tables and
nomographs for the selection of Beattie’s CUSUM accep-
tance sampling plan. An application is also reported in [104].

Beattie [105] introduced a “two-stage” semicontinuous
planwhere the CUSUMapproach is followed and the product
is accepted as long as the CUSUM Sj is within the deci-
sion interval (0, h). For product falling in the return interval
(h, h′), an acceptance sampling plan such as the single or
double sampling plan is used for lot disposition. Beattie
[105] compared the “two-stage” semicontinuous plan with
the ChSP-4A plan of [13] and the deferred sentencing scheme
of [41]. It is also remarked in [105] that chain sampling plans
(ChSP-4A type) call for steady rate of sampling and simple
to administer. The two-stage semicontinuous sampling plan
achieved some gain in the average sample number at good-
quality levels but is more difficult to administer. The two-
stage semicontinuous plan also requires more sample size
than ChSP-4A plans when the true quality is poorer than
acceptable levels.

We will now explore an interesting equivalence between
the ChSP-1 plan and a CUSUM scheme intended for high-
yield or low-fraction nonconforming production processes
for which the traditional p or np control charts are not useful.
Lucas [106] gave a signal rule for lack of statistical control if
there are two or more counts within an interval of t samples.
In case of low-process fraction nonconforming, this means
that if two or more nonconforming units are observed in any
t consecutive samples or less, a signal for an upward shift in
the process fraction level is obtained. It should be noted that if
two or more nonconforming units are found even in the same
sample, a signal for lack of statistical control will be obtained.
Govindaraju and Lai [107] discussed the design given in
[106] and provided a method of obtaining the parameters n
(the subgroup or sample size) and t (the maximum number of
consecutive samples considered for a signal). Lucas [106] has
shown that his signal rule is equivalent to a CUSUM scheme
having a reference value k = 1/t and decision interval (0, h =
1) for detecting an increase in the process count level. It was
also shown that a fast initial response (FIR) feature can be
added to the CUSUM scheme (see [108]) with an additional
subrule of signaling lack of statistical control if the first count
occurs before the tth sample. This FIR CUSUM scheme has a
head start of S0 = 1−kwith k = 1/t and h = 1. Consider the
ChSP-1 plan of [1] which rejects a lot if two or more counts
(of nonconformity or nonconforming units) occur but allows
acceptance of the lot if no counts occur or a single count
is preceded by t (the symbol i was used before) lots having
samples with no counts. If the decision of rejecting a lot is
translated as the decision of declaring the process to be not in
statistical control, then it is seen that Lucas’s scheme and the
ChSP-1 plan are the same. This equivalence will be further
clearer if one considers the operation of two-stage chain
sampling plan ChSP-(0,1) of [27] given in Sect. 12.4. When
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k2 = k1 + 1, the ChSP-(0,1) plan is equivalent to the ChSP-1
plan with t = k1. Hence, it can also be noted that the subrule
of not allowing any count for the first t samples suggested
for the FIR CUSUM scheme of [106] is an inherent feature
of the two-stage chain sampling scheme. This means that the
ChSP-1 plan is equivalent to the FIR CUSUM scheme with
the head start (1 − k) with k = 1/t and h = 1.

12.10 Other Interesting Extensions

If homogeneous lot formation is difficult, and random sam-
pling from the lot is harder, the binomial assumption may not
be valid. Gao and Tang [109] considered the chain sampling
rule when testing for conformance status which exhibits cor-
relation between successive units. A two-state Markov chain
model for the correlation within each sample was assumed
as against a two-state Markov chain model for the fraction
nonconforming p. In acceptance sampling, random samples
are taken; hence, the correlation within the sample is not
an issue. The proposal given in [109] may only apply when
random samples are difficult to obtain.

Mixed sampling plans are two-phase sampling plans in
which both variable quality characteristics and attribute qual-
ity measures are used in deciding the acceptance or rejection
of the lot. Baker and Thomas [110] reported the application
of chain sampling for acceptance testing for armor packages.
Their procedure uses chain sampling for testing structural
integrity (attributes inspection), and a variable sampling plan
is used for testing penetration depth quality characteristic.
Baker and Thomas [110] also suggested the simultaneous
use of control charts along with their proposed acceptance
sampling procedures. Suresh and Devaarul [111] proposed a
more formal mixed acceptance sampling plan where a chain
sampling plan is used for the attribute phase. Suresh and De-
vaarul [111] also obtained the OC function for their mixed
plan and discussed various selection procedures. For control-
ling multidimensional characteristics, [112] developed mul-
tidimensional mixed sampling plans (MDMSP). This plan
handles several quality characteristics during the variable
phase of the plan, while the attribute sampling phase can
be based on chain sampling or other attribute plans. Aslam
et al. [113] presented mixed multiple dependent state sam-
pling plans based on the popular process capability index.
Balamurali [114] and Usha and Balamurali [115] extended
the mixed chain sampling approach using the process capa-
bility index Cpk. In a similar vein, another form of mixed
modified chain sampling plan is given in [116]. Balamurali
et al. [117] generalized the mixed sampling incorporating
the multiple dependent state sentencing rule. Balamurali and
Usha [118] also extended the mixed sampling incorporating
the quick switching system rules. These approaches would

further reduce the sampling effort but no investigation was
done on the delay in detection of a shift.

In some situations, it is desirable to adopt three attribute
classes where items are classified into three categories,
namely, good, marginal, and bad (see [119]). Shankar et al.
[120] developed three class chain sampling plans and derived
various performance measures through GERT approach and
also discussed their design.

Suresh and Deepa [121] provided a discussion on formu-
lating a chain sampling plan given a gamma or beta prior
distribution for product quality. Tables are for the selection
of the plans and examples are also provided by Suresh and
Deepa [121]. Latha and Jeyabharathi [122] considered the
beta-binomial process for the operation of the ChSP-1 plan.
The main limitation of this approach is that the assumption
of nearly constant process fraction nonconforming needed
for chain sampling is not fulfilled. As a result, the (ARL1 −
ARL2) delay will be higher. A number of other lot chaining
rules were also proposed such as the rule given in [123] where
the number of preceding lot results employed depends on
the number of nonconforming results found in the current
sample.

Tang and Cheong [124] extended the idea of the chain
inspection procedure to enhance its sensitivity in detecting
a process shift while monitoring high-quality processes with
low fraction nonconforming. The MDS plan rules are also
used in control charting (see [125] and [126]).

12.11 Concluding Remarks

Chain sampling attribute inspection plans for a series of lots
can be implemented without any distributional assumption.
The main requirement is that the fraction nonconforming p in
the series of lots submitted for inspection is fairly constant.
If there is any linear trend in p, the chain sampling inspection
can be modified as a chain-deferred inspection procedure
so that the producer’s and consumer’s risks are maintained
the same for the series of lots inspected. If the chain sam-
pling rule is applied for variable inspection, distributional
assumptions such as a normality must be met. For costly
and destructive testing, the sample size must be kept small.
Small sample sizes such as five can be effective when lot
results are chained under variable inspection. If the normality
assumption is suspect, it is desirable to employ the regular
attribute chain sampling in order to assure the set risks.

This chapter largely reviewed the methodology of chain
sampling inspection of quality in a series of lots. Various
extensions of the original chain sampling plan ChSP-1 of
[1] and modifications are briefly reviewed. Chain sampling
approach is primarily useful for costly or destructive testing,
where small sample sizes are preferred. Chain sampling
achieves greater sampling economywhen it is combined with
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the approach of deferred sentencing so that the combined
plan can be used for any general situations. This chapter does
not cover designing of chain sampling plans in any great
detail. Onemay consult textbooks such as [74] or [32,127] for
detailed tables. A large number of papers primarily dealing
with the design of chain sampling plans are available only
in journals, and some of them are listed as references. It is
often remarked that designing sampling plans is more of an
art than a science. There are statistical, engineering, and other
administrative aspects that are to be taken into account for
successful implementation of any sampling inspection plan,
including the chain sampling plans. For example, the sample
size may be fixed due to administrative and other reasons.
Given this limitation, what sampling plan should be used
requires careful consideration. Several candidate sampling
plans, including chain sampling plans, must be sought first,
and then the selection of a particular type of plan must be
made based on the performance measures such as the OC
curve, etc. Sampling plans that make use of related lot results
must also be investigated for their performance against trend
in the submitted lot quality as well as sudden jumps. The
effectiveness of a chosen plan or a sampling scheme must
be monitored over time for a series of batches. The severity
of inspection is reduced with the chaining-related lot results,
but consumer protection should receive more attention by
way of minimizing the delay in detection of a poor-quality
lot submission.
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Abstract

Six Sigma, which was first launched by Motorola in
the late 1980s, has become a successful standard-quality
initiative to achieve and maintain excellent business per-
formance in today’s manufacturing and service industries.
In this chapter, we provide a systematic and principled
introduction of Six Sigma from its various facets. The
first part of this chapter describes what Six Sigma is, why
we need Six Sigma, and how to implement Six Sigma
in practice. A typical business structure for Six Sigma
implementation is introduced, and potential failure modes
of Six Sigma are also discussed.

The second part describes the core methodology of
Six Sigma, which consists of five phases, i.e., Define,
Measure, Analyze, Improve, and Control (DMAIC). Spe-
cific operational steps in each phase are described in se-
quence. Key tools to support the DMAIC process includ-
ing both statistical tools and management tools are also
presented. The third part highlights a specific Six Sigma
technique for product development and service design,
Design for Six Sigma (DFSS), which is different from
DMAIC.DFSS also has five phases: Define,Measure, An-
alyze, Design, and Verify (DMADV), spread over product
development. Each phase is described, and the corre-
sponding key tools to support each phase are presented.

In the fourth part, a real case study on printed cir-
cuit board (PCB) improvement is used to demonstrate
the application of Six Sigma. The company and process
background are provided. TheDMAIC approach is specif-
ically followed, and key supporting tools are illustrated
accordingly. At the end, the financial benefit of this case
is realized through the reduction of cost of poor quality
(COPQ). The fifth part provides a discussion of Six Sigma
in current Big Data background. A brief introduction of
Big Data is first given, and then the tremendous opportuni-
ties offered by Big Data analytics to the core methodology
of Six Sigma, i.e., DMAIC, are outlined in detail. The ca-
pabilities of each phase that would be greatly enhanced are
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emphasized. Finally, the last part is given to conclusions
and a discussion of prospects of Six Sigma.

Keywords

DFSS · DMAIC · DOE · Quality Big Data · Quality
engineering · SPC · Six Sigma

13.1 Introduction

Since the early 1990s, Six Sigma has been sweeping the busi-
ness world, driving an unprecedented emphasis on greater
manufacturing and service quality. Six Sigma is one of the
few quality initiatives that actually originated from industrial
practice. Six Sigma was originally devised as a measure of
quality that strives for near perfection. It has developed into
a disciplined, data-driven, and customer-focused approach to
reduce defects and bring about substantial financial growth.
Although most of the Six Sigma efforts were focused on
manufacturing operations in the early years, the Six Sigma
approach has now been more widely used in the nonman-
ufacturing industry, such as in finance, insurance, health
care, and telecommunications. Users include American Ex-
press, American International Group (AIG), Bank of Amer-
ica, Citibank, JPMorgan, Chase, Merrill Lynch, Vanguard,
etc. These companies have actually seen larger business
impacts and cost savings of Six Sigma than those in man-
ufacturing.

13.1.1 What Is Six Sigma?

Motorola first introduced the Six Sigma program in the late
1980s with the aim to increase profitability by reducing
defects. General Electric (GE) followed the approach at
their manufacturing sites and later at their financial service
divisions. After that, Six Sigma is thought to be applica-
ble to all processes and transactions within GE. Six Sigma
has now evolved from a quality improvement program to
an overall business strategy executive system and business
results-oriented program, which seems more “total” than
“total quality management (TQM).” We describe the ba-
sic definition of Six Sigma in this section and elaborate
its systematic methodology and business structure in later
sections.

Six Sigma is both a business improvement strategy and
a methodology to measure process performance. It is used to
increase profits by eliminating defects, waste, and variability,
and to find the causes of mistakes in products, processes,
and services to increase yields. In Six Sigma, a focus on the

customer is the top priority. Performance standards are based
on actual customer input, so that process effectiveness can be
measured and customer satisfaction can be predicted.

In terms of business process improvement, variation re-
duction is the key since variation signals fluctuation in the
process output and, often times, is a major source of poor
quality.Variation is present in all processes and every aspect
of work. Unintended variation reduces process performance
and decreases customer satisfaction. Because of the existence
of variation, producing high-quality products and services in
the modern industrial environment is a tough task.

Therefore, Six Sigma aims particularly at reducing varia-
tion. Theword “sigma” or the symbol “σ” is used in statistical
notation to represent the standard deviation in a population.
The standard deviation is used as a general measure of
variation in any kind of product or process. With six standard
deviations between the process mean and the customer’s
specification limit, we arrive at 3.4 defects per million
opportunities (DPMO), that is, a 99.9997 percent yield.
Before the Six Sigma technique was introduced, a three-
sigma level of variation was regarded as being fairly good-
quality performance. Three Sigma may be acceptable for a
product or process having only a single or a few stages. It
is not good enough for many products that are the result of
hundreds of thousands of stages, such as automobiles and
computers.

For example, if a production process is made up of ten
stages where the yield of each stage is as high as 90%,
the probability of producing a satisfactory product in the
final run would be 0.910 = 35%. This indicates that about
65% of the products are defective. If a production pro-
cess is made up of 100 stages, the probability of produc-
ing a satisfactory product under the Three Sigma program
could be as low as 0.1%, as shown in Table 13.1. The
Six Sigma regime, however, allows only 3.4 defects for
every million opportunities, which ensures a quality prod-
uct even if the process involves a large number of stages
(see Table 13.1). Part of the reason for using such a strict
requirement in quality management is actually to accommo-
date the common multistage processes in modern industrial
practice.

Table 13.1 Final yield for different sigma levels in multistage pro-
cesses

Average sigma level 1 2 3 4 5 6

Final yield for 10
stages

0.0% 2.5% 50.1% 94.0% 99.8% 100.0%

Final yield for 100
stages

0.0% 0.0% 0.1% 53.6% 97.7% 100.0%

Final yield for 1000
stages

0.0% 0.0% 0.0% 0.2% 79.2% 99.7%
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13.1.2 Why Six Sigma?

The successful implementation of Six Sigma can benefit the
areas of cost reduction, increased profit, increased market
share, and enhanced business competitiveness, mainly by the
reduction of the cost of poor quality (COPQ).

COPQ usually includes appraisal costs, internal failure
costs, and external failure costs. Appraisal and inspection
costs are often incurred, for example, in checking finished
goods before they leave the factory, inspecting purchased
equipment/supplies, proofreading financial and legal docu-
ments, reviewing charges prior to billing, etc. Internal failure
costs are those for repairing, replacing, or discarding work in
progress or completedwork before the delivery of the product
to the customer. External failure costs are those that directly
affect the customer and are the most expensive to correct,
including the tangible remedial costs and the intangible costs
associated with losing dissatisfied customers.

COPQ cannot be underestimated. In manufacturing indus-
tries, COPQ sometimes reaches 15% of total sales (source:
Six Sigma Academy). In service industries, the situation
is even more serious. COPQ may account for as much as
50% of total costs. However, these COPQ could be saved
with the use of Six Sigma. General Electric has estimated
saving of 2 billion US dollars during the first 5 years of Six
Sigma implementation, and Allied Signal has estimated sav-
ing of 1.1 billion US dollars in 2 years. Indeed, thousands of
companies around the world have enjoyed the breakthrough
benefits of Six Sigma. For example, Legend Computers in
China reported in 2002 savings of $20 million dollars dur-
ing the first year of implementation. In the same year, the
International Bank of Asia in Hong Kong reported savings
of 1.4% of total costs during the first year of Six Sigma
implementation.

13.1.3 Six Sigma Implementation

Six Sigma implementation is usually a top-down approach,
i.e., from the strong commitment of top management. As
most Six Sigma projects span across several departments,
the organizational barrier could not be removed without
leadership commitment to Six Sigma. Strong commitment,
leadership, and strategic involvement have proven to be key
factors of Six Sigma’s success. Second, as Six Sigma requires
a long-term mentality, it needs to be positioned first as a
strategic initiative and then be linked to operational goal.
It is important to tie the Six Sigma implementation to cor-
porate goals, such as increased profits through lower costs
and higher loyalty as an example. Also, effective internal
communication is another key issue for the success of Six
Sigma implementation.

In the following, a typical business structure for Six
Sigma implementation is introduced. Several potential
failure modes and practical considerations of Six Sigma
implementation are also discussed.

Training and Belt Structure
The deployment of Six Sigma in a company usually starts
with education. Without necessary training, people are not
able to bring about the breakthrough improvement of Six
Sigma. Six Sigma establishes well-defined and structural
roles and responsibilities for a project team, and team mem-
bers are given formal training according to their roles to
help the team work effectively. A Six Sigma team is usu-
ally organized in a belt structure (as in martial arts) as
follows.

At the top of the belt structure is the Six Sigma Executive.
The Six Sigma Executive could be a council that consists of
top managers who have the vision and make strategic deci-
sions for a company. They are responsible for establishing
the roles and structures of Six Sigma projects. They also
need to make decisions on project selection and resources
allocations. A progress review is conducted periodically to
monitor projects.

Champions are the senior managers who supervise Six
Sigma projects. They report directly to the Six Sigma Execu-
tive and represent the team to the Executive. They also need
to seek resources and to learn the focus of the business from
the Executive. In addition, Champions meet Black Belts and
Green Belts periodically to review the progress and coach the
team.

Master Black Belts work with the Champions to ensure
that Six Sigma objectives and targets are set. Meanwhile,
they are the statistical problem-solving experts in a company.
Their responsibilities include determining plans, providing
technical expertise, and training and coaching Black and
Green belts.

Black Belts, as on-site Six Sigma experts, usually pos-
sess the technical background needed to help Green belts
and the other team members to understand the project and
apply appropriate statistical techniques. Their roles are to
provide formal training to local personnel in new strate-
gies and tools, provide one-on-one support to local per-
sonnel, pass on new strategies and tools in the form of
training, workshops, case studies, local symposia, etc., and
find application opportunities for breakthrough strategies and
tools, both internal and external (i.e., to the suppliers and
customers).

Green Belts, on the other hand, execute Six Sigma in
their specific area as a part of their overall job. They may
assist Black belts in completing sections of their projects
and apply their learning in their daily performance of
their jobs.
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According to the Six Sigma Academy, Black Belts are
able to save companies approximately US$230,000 per
project and can complete four to six projects per year. The
American Society for Quality (ASQ) provides the certifica-
tion of Six Sigma Black Belts (SSBB) internationally.

Six Sigma Failures (Sick Sigma)
Although Six Sigma is a powerful approach, it can lead to
failure when some critical issues are neglected. However,
as more companies have implemented Six Sigma since the
1990s, the factors that have led to failure have been identified
and summarized. According to [1], project selection and
management support are usually the two main sources of
failure.

The failure modes in project selection usually include
projects not tied to financial results, poorly defined project
scopes, metrics and goals, projects lasting more than
6 months, the wrong people assigned to projects, project
teams that are too large, and infrequent team meetings. On
the other hand, the failure modes in management support
may include Black belts with little time to work on projects,
poor or infrequent management reviews, poor support from
finance, information technology (IT), human resource (HR),
and poor communication of initiatives and progress [1].

Especially, for a Six Sigma program to sustain without
failure, recognition and reward systemswould be the key. If
a lack of or no change on the recognition and reward systems,
the program has no way to last. Necessary practices include
establishing and using selection and promotion criteria and
developing corresponding performance management and re-
ward systems. GE way which links 40% of management
bonus to Six Sigma may be too aggressive, but a company
must adequately compensate those high-performing mem-
bers.

Note that the use of statistical methods is not on the
list of major failure modes. With the recent advances in
information technology, computing and sensing technology,
the use of advanced statistical methods has become handy
via commercial software packages (such as MINITAB, JMP,
etc.). Therefore, the use of statistical tools is no longer a
bottleneck in Six Sigma implementation.

Besides, various industry types and company natures are
also not an excuse for the Six Sigma failure. Six Sigma
has been successfully applied to many processes outside
of manufacturing, regardless of their company size or their
industry nature. In particular, transactional processes, such as
software coding, billing, customer support, etc., often contain
variation or excessive cycle time and can be optimized by
applying Six Sigma. For example, HR managers may apply
it to reduce the cycle time for hiring employees, and regional
sellers may apply it to improve forecast reliability, pricing
strategies, or variations.

13.2 The DMAICMethodology

13.2.1 Introduction

The development of Six Sigma is evolutionary, not revolu-
tionary, and it integrates many useful quality management
tools. Thus, it is not surprising to find overlaps between Six
Sigma, TQM, Lean, and ISO. The core methodology of Six
Sigma is driven by the close understanding of customers’
needs and the disciplined use of facts, data, and statistical
analysis, which consists of five phases, i.e., Define, Measure,
Analyze, Improve, and Control (DMAIC).

In the Define phase, the specific problem is identified,
and the project goals and deliverables are defined. In the
Measure phase, the critical-to-quality (CTQ) characteristics
are identified and the measurement system is reviewed. The
nature and properties of the data collection have to be un-
derstood thoroughly to ensure the quality of the data. In the
Analyze phase, both quantitative (i.e., statistical) methods
and qualitative (i.e., management) tools are used to isolate
the key information that is important to explaining defects.
In the Improve phase, the key factors that cause the problem
should be discovered. In the Control phase, the key factors
and processes are controlled and monitored continuously to
ensure that the improvement is sustainable and the problem
will not occur again. A detailed case study on the imple-
mentation of the DMAIC methodology in printed circuit
board (PCB) manufacturing can be found in [2]. The paper
“Six Sigma approach to reducing fall hazards among cargo
handlers working on top of cargo containers: a case study”
[3] is another case study using DMAIC that focuses on a
nonmanufacturing case.

13.2.2 The DMAIC Process

More specifically, we implement the DMAIC methodology
in detailed steps in sequence in order to shift our focus
from the output performance (i.e., y) to the root causes (i.e.,
the x). Based on these steps, we transfer a practical problem
into a statistical problem (e.g., mapping x and y), find out
a statistical solution for that (e.g., solving y = f (x)) and
then transfer the statistical solution back into a practical
solution. Each step is described in the following, and the
corresponding key tools will be further explained in a later
section.

Phase 1. Define (D)
This phase defines the Six Sigma project that includes a
problem statement, the objectives of the project, the expected
benefits, the team structure, and the project time line. At
the end of this phase, we should have a clear operational
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definition of the project metrics for the final evaluation. In
this phase, the main tasks are to identify who the customer is,
select the project area, define the goal, scope, and resources
of the project, form a Six Sigma project team, define the team
members’ responsibilities, and estimate the profit and cost
for this project to ensure the value of the project. Key Tools
in this phase include the project charter, business process
mapping, SIPOC, etc.

Phase 2. Measure (M)
By taking steps in the measure phase, we have a clear
understanding of the performance of the current process, and
only after knowing where we are now, we can determine
where we should be in the future. Three implementation steps
in this phase are to select the critical-to-quality (CTQ) mea-
sures, determine deliverables, and quantify the measurability
of y.
Select the Critical to Quality (CTQ) Measures
In this step, we will identify the external CTQ from the

customer point of view (i.e., the big Y) that will be improved,
and then link that with the internal CTQ (i.e., the small y),
which is a quantitative measure in the company and will
be the focus of the project. Key tools in this step include
Customer NeedsMapping (CNM), Quality Function Deploy-
ment (QFD), Failure Modes and Effects Analysis (FMEA),
etc.
Determine Deliverables
We establish a performance standard and develop a data

collection plan for the internal CTQ y in this step. If the
measure of y from the previous step is attributal, what is the
definition of a defect? If the data are continuous, what are
the lower and upper specifications for defectiveness? Key
tools used in this step include process mapping and yield
calculation.
Quantify Measurability
We validate the measurement system on how to ensure the

measurement results are accurate for the following analysis.
We may need to improve the measurement system before
continuing. Key tools include measurement system analysis
(MSA), Gauge R&R study.

Phase 3. Analyze (A)
After we identify the “y” in the process, we need to determine
the x (root causes), which may impact the performance of
“y.” In the analyze phase, we use various management and
statistical tools to discover the x’s for future improvements.
Three implementation steps in this phase are to establish the
baseline, determine the improvement plan, and identify the
sources of variation.
Establish the Baseline
We will establish the process capability for the current

process to understand where we are now. We need to collect

the current process data, use graphical tools to analyze the
data, and calculate the process capability indices, the defect
per million opportunities (DPMO), and the sigma level (Z).
Key tools include the following: histograms, process capabil-
ity indices (PCI), etc.
Determine Improvement Plan
We quantify the goals for the improvement to make the

aim of the project clear, and we may determine if the goal
is significantly different from today’s performance (i.e.,
the baseline) through hypothesis testing. Key tools include
benchmarking, hypothesis testing, t test, ANOVA, etc.
Identify Variation Sources
We list all the potential factors (x’s) that may influence the

performance of “y.” Regression analysis may be conducted
where applicable to identify potential x’s. Key tools include
brainstorming, cause and effect diagram, regression analysis,
etc.

Phase 4. Improve (I)
As the root causes for variation are obtained, it becomes
possible for us to fix these root causes. In the improve phase,
the way that we can achieve a better process needs to be
found, where the Design of Experiments (DOE) is a key
technique to help us quantify the relation between y and x’s,
and to improve the process by finding the optimal setting of
x’s for each y. In this phase, we follow three implementation
steps: screen potential sources of variation, discover variable
relationships, and formulate the implementation plan.
Screen Potential Sources of Variation
We determine the vital few x’s from the trivial many x’s

in this step. DOE is a key tool for factor screening. Both full
factorial and fractional factorial experiments can be used. If
necessary, historical data can be used with care, and a similar
model or simulation may be used as well.
Discover Variable Relationships
We develop the transfer function (y = f (x)) linking the y

to the vital x’s. Based on that, we then determine and confirm
the optimal settings for the vital few x’s. DOE is a key tool
for characterization and optimization as well. Various DOE
techniques, such as the response surface method (RSM),
robust design, and the Taguchi method, can be applied in this
step. Other than that, simulation or surveys can also be used
to find the relationship.
Formulate Implementation Plan
In this step, if a new process or process steps have been put

in place, show the new process map. For the new process,
indicate the new in-process measurements and associated
specifications. If there is not a new process, indicate any new
measurements put in place.We list how the changes to the x’s
will be implemented and how much flexibility is available in
the settings of each x. Key tools in this step include tolerance
design, main effects plots, and interaction plots.
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Phase 5. Control (C)
After determining how to fix the process, we want the im-
provement for the process to be sustainable. The control
phase is set up to ensure the sustainable improvement and
to deploy measurement tools to confirm that the process is in
control. It is also critical to realize the financial benefits and
develop a transfer plan in this phase. Three implementation
steps include validating the implementation plan, controlling
the inputs and monitoring the outputs, and finally sustaining
the change.
Validate the Implementation Plan
To determine how well the x’s can be controlled, we

will validate the measurement system on the x’s, and we
may need to improve measurement system before continu-
ing. We will also report new sigma levels and new DPMO
levels at this step. Key tools include Gauge R&R, ANOVA,
etc.
Control Inputs and Monitor Outputs
We determine how each vital x can be controlled (e.g., at-

tribute control chart, variable control chart, mistake-proofing,
etc.) and set up a monitoring plan for the y and x’s in this step.
Key tools include statistical process control (SPC), attribute
control charts, variable control charts, Poka-Yoke (mistake-
proofing), etc.
Sustain the Change
The objective of this step is to ensure that changes

last after the improvement strategy has been implemented.
Process control plans need to be developed and implemented
for each x. We will also verify financial gains can be achieved
and if this project is translatable to any other regions, lines,
sites, processes, etc. Key tools in the final step include
out-of-control plans, mistake-proofing, audit strategy,
etc.

13.2.3 Key Tools to Support the DMAIC Process

This section presents the key tools to support the DMAIC
process. Only a few key tools can be covered in this section,
and each method is outlined briefly with the basic ideas and
mechanisms. The books and papers cited in this section give
more details.

A. Business Process Mapping (SIPOC Diagrams)

Purpose:

SIPOC stands for Suppliers, Inputs, Process, Outputs,
and Customer. SIPOC diagrams are graphical tools
to identify all relevant elements or stakeholders of a
business process and map the process flow before the
project begins. They are usually used in the Define
phase.

Definition:

Supplier: Whoever produces, provides, or furnishes the
products or services for the input of the process, either
an internal or an external supplier

Inputs: Material, resources, and data required to exe-
cute the process

Process: The manufacturing or service process of inter-
est which transforms the inputs into the outputs

Outputs: The tangible products or intangible services
that result from the process

Customer: Whoever receives the outputs of the process,
either an internal customer or an external customer

How to do it:

Step 1. Clear statement of CTQ and the process.
Step 2. Clear statement of stat/end point.
Step 3. Identifymajor customers, suppliers, outputs, and
inputs.

Step 4. Identify the five to seven major process steps
using brainstorming and storyboarding.

Step 5. Decide what step to map in detail.
Step 6. Complete detail map.

B. Quality Function Deployment (QFD)

QFD is a systematic approach to prioritize and translate
customer requirements (i.e., external CTQ) into ap-
propriate company requirements (i.e., internal CTQ) at
each stage from product development to operations to
sales/marketing to distribution. This method is usually
used in the Measure phase. It is also useful in the
design for Six Sigma (DFSS) and will be introduced
in more detail in the DFSS section.

C. Failure Modes and Effects Analysis (FMEA)
Purpose:

FMEA is a tool to reduce the risk of failures. It is also
a tool to identify and prioritize CTQ at the Measure
phase.

Definition:

Severity: The assessment of how severe a failure mode
is. The severity usually scales from 1 to 10. Scale 1
means a minor failure mode that may not be noticed,
and 10means a very serious failure that may affect safe
operations.

Occurrence: The likelihood that a specific cause will
result in the failure mode, which scales from 1 to 10
with 10 the highest likelihood.

Detection: The assessment of the ability to identify the
failure mode. A 1–10 scale is often used with 10 the
lowest detectability.
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RPN: The risk priority number (RPN) is the output of an
FMEA. RPN = Severity × Occurrence × Detection.

How to do it (refer to [4, 5]):

Step 1. Identify the products, services, or processes.
Step 2. Identify the potential failure that would arise in
the target process.

Step 3. Identify the causes of the effects and their
likelihood of occurrence.

Step 4. Identify the current controls for detecting each
failure mode and the ability of the organization to
detect each failure mode.

Step 5. Calculate RPN by multiplying the values of
severity, potential causes, and detection.

Step 6. Identify the action for reducing or eliminating
the RPN for each failure mode.

D. Measurement System Analysis (MSA)
Purpose:

A statistical evaluation of the measurement system must
be undertaken to ensure effective analysis of any sub-
sequent data generated for a given process/product
characteristic. MSA is usually used in theMeasure and
Control phases to validate the measurement system for
y and x’s.

Definition:

Gauge R&R: A tool to study the variation in the mea-
surement process arising from the measurement de-
vice and the people taking the measurement.

Repeatability: The variability that reflects the basic
inherent precision of the gauge itself.

Reproducibility: The variability due to different op-
erators using the gauge (or different time, different
environments) [6].

How to do it:

Step 1. Collect the data. Generally, two to three opera-
tors, ten units to measure, and each unit is measured
two-three times by each operator.

Step 2. Perform the calculations to obtain %R&R (see
[6]).

Step 3. Analyze the results. A rule of thumb is that:
• %R&R < 10%: measurement system is acceptable.
• %R&R between 10% and 30%: measurement sys-

tem may be acceptable. We will make decisions
based on the classification of the characteristics,
hard applications, customer inputs, and the Sigma
levels of the process.

• %R&R > 30%: measurement system is not accept-
able. We should improve the measurement system
by finding problems and removing root causes.

E. Process Capability Analysis
Purpose:

Process capability analysis is a statistical technique to
quantify process variability, analyze this variability
relative to customer requirements or specifications,
and assist in reducing the variability [6]. It is used in
the Analyze phase.

Definition:

Cp: Process/Product capability index is the relationship
of the process/product variation to the upper and lower
specification limits. It is related to the potential process
capability and not a measure of how centered the data
are.

Cpk: It compares process variability with the speci-
fication’s width and location. It takes into account
that the sample mean may be shifted from the target.
Since both the mean shift and the variability of the
characteristics are considered, Cpk is better related to
the capability of the current process.

How to do it:

The detailed calculation and analysis are given in Chap.
� 8 in [6].

F. Cause-Effect Diagram (Fishbone Diagram)
Purpose:

This is a graphical brainstorming tool to explore the
potential causes (i.e., x’s) that result in a significant
effect on y. It is usually used in the Analyze phase.

How to do it:

Step 1. Define clearly the effect or analyzed symptom
(y) for which the possible causes (x’s) must be identi-
fied.

Step 2. Place the effect or symptom (y) being explained
on the right of a sheet of paper.

Step 3. Use brainstorming or a rational step-by-step ap-
proach to identify the possible causes in areas related
to man, machine, material, method, and environment.

Step 4.Each of themajor areas of possible causes should
be connected with the central spine by a line.

Step 5. Add possible causes (x’s) for each main area.
Step 6. Check for completeness.

G. Design of Experiments (DOE)
Purpose:

DOE is a major tool in the Improve phase. It is used for
screening the vital few x’s, characterizing the relation-
ship between y and x’s, and optimizing the setting of
the vital x’s.
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Definition:

Factor: An independent variable (i.e., x) whose state can
be varied.

Level of a factor: The state of the factor.
Full Factorial Experiments: Discover the factor effects
and relationship between y and x’s by running all the
combinations of factor levels.

Fractional Factorial Experiments:An economical ap-
proach to discovering the factor effects and to screen-
ing the vital few x’s by running only part of the
combinations of factor levels.

Response Surface Methodology (RSM):A DOE tech-
nique that is useful for modeling and optimization
in which a response of interest y is influenced by
several factors x’s and the objective is to optimize this
response. This method is discussed more in the DFSS
section.

How to do it (see [7, 8]):

Step 1. State the problem.
Step 2. Choose the response variable (y).
Step 3. Choose the factors (x’s) and their levels and
ranges.

Step 4.Determine the experimental plan (i.e., the design
matrix).
(a) For screening the x’s to obtain vital few x’s, we

often use factorial experiments. In such cases,
if the number of runs is moderate and we have
enough time and resources, we may conduct a full
factorial experiment; if the number of runs is large
or time and resources are limited, wemay consider
a fractional factorial experiment.

(b) For obtaining the optimal response, we may con-
duct RSM, which is usually conducted after vari-
able screening.

Step 5. Run the experiments under the prescribed con-
ditions and collect the response data.

Step 6. Analyze the data collected using main effect
plots, interaction plots, ANOVA, etc.

Step 7. Conclude the experiment and make recommen-
dations. A confirmation run or a follow-up DOE is
usually needed.

H. Statistical Process Control (SPC)
Purpose:

SPC is a major tool in the Control phase. It is used to
control and monitor the stability and capability of the
vital few x’s for CTQ.

How to do it:

This method is discussed in more detail in the DFSS
section. For a general introduction about SPC, see

[6, 9]. For recent advances in SPC, the readers may
refer to http://qlab.ieda.ust.hk and references therein.

As a final note, we summarize the main purposes and key
tools of each of the five phases demonstrated throughout Sect.
2 in the following figure, so that practitioners can have a
better idea on how to systematically implement the DMAIC
approach to solve a real quality problem (Fig. 13.1).

13.3 Design for Six Sigma

13.3.1 Introduction

The success of Six Sigma’s DMAICmethodology has gener-
ated enormous interest in the business world. One of the basic
ideas is to measure existing defective processes quantita-
tively and then to improve them. Compared with this defect-
correction methodology, Design for Six Sigma (DFSS) is a
proactive methodology, which focuses on the new product/
service development to prevent quality defects the first time
instead of solving problems when they happen in existing
processes.

DFSS is a disciplined and statistical approach to product
and service design that ensures the new designs can meet
customer requirements at launch. The objective of DFSS is
to eliminate and reduce the design vulnerabilities in both the
conceptual and operational phases by employing scientific
tools and statistical methods.

Unlike the DMAIC methodology, the phases of DFSS are
not universally defined. There are many methodologies, such
as Woodford’s IDOV (Identify, Design, Optimize, Validate),
El-haik’s ICOV (Identify, Characterize, Optimize, Verify),
Tennant’s DCCDI (Define, Customer Concept, Design, and
Implement), and so on. All these approaches share common
themes, objectives, and tools. In this section, we refer to
above methodologies, especially General Electric’s DFSS
approach called DMADV:

Define the project goals and customer requirements.
Measure and determine customer needs and specifications.
Analyze the options of conceptual solutions to meet customer

needs.
Design the product/service to meet customer needs.
Verify the design performance and ability to meet customer

needs.

13.3.2 Why DFSS?

Proactive Versus Retroactive
During the product/service design process, conceiving, eval-
uating, and selecting good design solutions are difficult tasks

http://qlab.ieda.ust.hk
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Identify project, champion and project owner
Determine customer requirements and CTQs
Define problem, objective, goals and benefits
Define stakeholder/resource analysis
Map the process
Develop project plan

Process mapping

Key analytical toolsDefine

Measure

Analyze

Improve

Control

Measurement system
analysis & process
capability, QFD, pareto
diagram, check sheet

Statistical tests, cause-
effect diagram, histogram,
scatter plot, modeling &
root cause analysis

Brainstorming, design of
experiments, FMEA, &
validation

Statistical process control,
poka yoke

Determine critical Xs and Ys
Determine operational definitions
Establish performance standards
Develop data collection and sampling plan
Validate the measurements
Measurement system analysis
Determine process capability and baseline

Benchmark the process or product
Establish causal relationships using data
Analysis of the process map
Determine root causes using data

Develop solution alternatives
Assess risks and benefits of solution alternatives
Validate solution using a pilot
Implement solution
Determine solution effectiveness using data

Determine needed controls (measurement, design, etc.)
Implement and validate controls
Develop transfer plan
Realize benefits of implementing solutions
Close project and communicate results

Fig. 13.1 Six sigma DMAIC road map

with enormous consequences. Usually, organizations operate
in two modes: “proactive,” that is, conceiving feasible and
healthy conceptual solutions the first time; and “retroactive,”
that is, an after-the-fact practice that drives design in a design-
test-fix-retest cycle and creates what is broadly known as
the “fire fighting” mode of design. If a company follows
this practice, it would suffer from high development costs,
longer times to market, lower quality levels, and marginal
competitive edge [10].

Compared to retroactive approaches such as DMAIC,
which apply performance improvement in the later stages of
the product/service life cycle, DFSS shifts the attention to
improving performance in the front-end design stages. That
is, the focus is on problem prevention instead of problem
solving. This action is motivated by the fact that the design
decisions made during the early stages of the product/service
life cycle have the largest impact on both total cost and
quality of the system. It is often claimed that up to 80% of
the total cost is committed in the concept development stage.
Also, at least 80% of the design quality is committed in the
early design stages. According to a study of the design com-
munity [10], at the early design stage, the impact (influence)
of design activity is much higher than a later stage, while the
correction cost in the early stage is much lower.

Experience Dependency Versus Scientific and Systematic
Methodology
Currently, most design methods are empirical in nature,
while the work of the design community is often based on
experience. This experience-based tradition often leads to
unnecessary variation and is difficult for project manager to
control. As a result, vulnerabilities are introduced to the new
design that makes it impossible for the product/service to
achieve Six Sigma performance. This is another motivation
for devising DFSS as a scientific and systematic design
method to address such needs.

13.3.3 Design for Six Sigma: The DMADV
Process

Generally speaking, DFSS has five phases spread over prod-
uct development. They are called DMADV, Define, Measure,
Analyze, Design, and Verify.

Phase 1. Define (D)
The process of product/service design begins when there is
a need (internal or external), which can be a problem to be
solved or a new invention. In this phase, design objectives,
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scope, and available resources should be simply and clearly
defined in the design project charter as the key deliverables.

Phase 2. Measure (M)
In particular, the Voice of Customer (VOC) is the critical
input in customer-oriented design. Based on the VOC, the
internal CTQ measures (critical to quality or critical to sat-
isfaction, i.e., the y), such as cost, performance, reliability,
esthetics, and serviceability, need to be identified quantita-
tively and to be prioritized according to their importance to
customers. This kind of information can help to define the
function requirements in a later phase.

Phase 3. Analyze (A)
In this phase, the CTQs will be decomposed into measurable
and solution-free Functional Requirements (FRs). Then, a
number of conceptual-level design alternatives should be
produced by the design team for the FRs, considering cost,
physical properties, the difficulties to operate, manufacture,
and maintain, etc. Through summarizing the design require-
ments and conceptual-level design alternatives, an overall
set that contains high-potential and feasible solutions can
be produced to help the design team to decide on the best
solution considering the original design charter including the
performance, the constraint of cost, and available resources.

Phase 4. Design (D)
Once the design team fixes the selection of the concep-
tual solutions, they need to decompose the FRs into De-
sign Parameters (DPs). And at the same time, they need
to consider the potential risk to achieve CTQs when they
create detailed designs to the level of design parameters.
Then, optimization tools will be used to get optimal values
for the design parameters. In DFSS, optimization can be
reached statistically, and by using statistical tools, the transfer
functions can be generated to mathematically represent the
relationships between the input and output of a product or
a service process. Then, the design team can rely on the
transfer function to optimize the design solutions so that
the product/service can achieve a target performance and be
insensitive to uncontrollable factors (noise factors), such as
the environment and production case-to-case variation.

Phase 5. Verify (V)
In this phase, the design team makes a model formed by the
simulation of a service process or a physical prototype that
is the first working version of the product. Based on these
few prototypes, the design team evaluates and tests the whole
design to predict if future product’s performance canmeet the
design charter and how to improve the solution when failure
occurs.

13.3.4 Key Tools to Support the DMADV
Process

Below is a summary of the key tools used to support the
DMADV process.

A. Voice of Customer (VOC)
Purpose:

Define customer needs/requirements for the new produc-
t/service design or existing product/service redesign.

Input:

Market segment defined – who the customers are and
their environment

Output:

Detailed customer requirements

How to do it (refer to [11]):

Step 1.Define market segments – to understand who the
customers are and where to go to gather their needs.

Step 2. Identify objective for interviews of customer – to
learnwhich of their needs are new, unique, and difficult
(NUD).

Step 3. Select customer groups within the target market
segments.

Step 4. Decide on the customer visit team – divide
into three roles: leader, subordinate interviewer that
helps adding balance and diversity in the discussion,
and statement writer that writes down the VOC needs
statement.

Step 5. Create an interview guide based on objectives –
to get customers’ responses that are rich in description
of needs.

Step 6. Listen, probe, and observe customers by ask-
ing stimulating questions and open-ended statements
to gather the VOC. Image data can be gathered by
actual observation of customers’ responses to existing
products or services.

B. KJ Method (See [12])
Purpose:

Structure and rank the customer requirements

Input:

The detailed VOC

Output:

Organized customer requirements
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How to do it (refer to [13]):

Step 1.Write down customer descriptions as “statements
of customer requirements” on a POST-IT note and put
them on the wall.

Step 2. Group the similar customer requirements to-
gether.

Step 3. Review the customer requirements statements
and throw out redundant ones.

Step 4.Write a summary to express the general idea for
each group. For those that do not relate to anything
else, label it as “independent.”

Step 5. Vote for the most important groups and rank the
top three groups and assign some relationships. If a
group supports another group in a positive manner, we
add an arrow pointing from the supporting group to the
supported group. If the relationship is contradictory,
we add a line pointing between the two groups with
blocks on the end.

Step 6. Look at each detailed customer requirement and
highlight the new, unique, or difficult (NUD) ones.

Step 7. Ask customers to rank (on a scale of 1–10) the
strength of importance for each requirement.

The result of these ranked and structured customer
requirements will flow into the QFD process.

C. Quality Function Deployment (QFD): The Houses of
Quality (HOQ) (see [14])

QFD is a methodology that establishes “bridges”
between qualitative, high-level customer needs/require-
ments and the quantitative engineering terms that are
critical to fulfilling these high-level needs. By following
QFD, relationships can be explored among customer
requirements, CTQ measures, Function Requirements
(FRs), Design Parameters (DPs), and Process Variables
(PVs), and the priorities of each CTQ, FR, DP, and PV
can be quantitatively calculated.

Generally, the QFD methodology is deployed through
a four-phase sequence.

Phase 1 – critical-to-satisfaction planning (HOQ1)
Phase 2 – functional requirements planning (HOQ2)
Phase 3 – design parameters planning (HOQ3)
Phase 4 – process variable planning (HOQ4)

In this chapter, HOQ 1 will be introduced in detail as
an example.
Input:

Structured and ranked New, Unique, and Difficult
(NUD) VOC from the KJ diagram

Key Output:

The priorities of each CTQ

How to do it (refer to [10, 15]):

Step 1. Convert NUD VOC (“WHATs”) into a list of
CTQs (“HOWs”) in terms of the engineering perspec-
tive to support customer requirements along the roof of
the house. Theremay bemore than one CTQ to achieve
each customer requirement.

Step 2.Quantify the relationship between each customer
requirement to each CTQ on a 1-3-9 scale (9 = Strong
fulfillment, 3 = Moderate fulfillment, 1 = Weak ful-
fillment, or 0 = No relationship). These values help to
identify which CTQs are critical while some are not.

Step 3. Identify the correlation between each pair of
CTQ to address the cooperative and conflicting rela-
tionships among CTQs to develop the design to be as
cooperative as possible.

Step 4. Conduct a competitive assessment with a main
competitor. The comparison with the key competitor
on each customer requirement is on a 1–5 scale with 5
being high.

Step 5. Prioritize customer requirements. These
priorities include importance to customer from
the KJ method, improvement factor, and absolute
weight. Customer requirements with low completive
assessments and high importance are candidates for
improvement, which will be assigned improvement
factors on a 1–5 scale with 5 being the most essential
target to improve. The absolute weight can then be
calculated by multiplying the customer importance
and the improvement factor.

Step 6. Priority CTQs. The CTQs are prioritized by
determine absolute weight and relative weight. The ab-
solute weight is calculated by the sum of the products
of the relationship between customer requirements and
CTQs and the importance to the customer. The relative
weight is the sum of the products of the relationship
between customer requirements and CTQs and cus-
tomer requirements’ absolute weights. The relative and
absolute weights are evaluated to prioritize and select
CTQs for improvement.

Furthermore, the design team can apply the same
method for identifying the relationship among CTQs,
functional requirements, design parameters, and process
variables.

D. The Pugh Concept Evaluation and Selection Process
(See [16])

The Pugh concept evaluation is a solution-iterative
selection process. The method alternates between gener-
ation and selection activities. The “generation” activity
can be enriched by TRIZ (Theory of Inventive Problem
Solving, see [17]) methodology to generate conceptual
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solutions for each functional requirement. The “selection”
activity can use a scoring matrix called the Pugh Matrix
or the criteria-based matrix to evaluate the concepts.
Input:

Functional requirements and conceptual solutions to
achieve corresponding FRs

Output:

The conceptual solutions, which are selected and ready
to go forward into the design phase

How to do it (refer to [18, 19]):

Step 1. Define concept selection criteria from a clear
and complete set of requirements.

Step 2. Define a best-in-class benchmarked datum
concept.

Step 3. Provide candidate concepts to evaluate against
the datum.

Step 4. Evaluate each concept against the datum using
(+)s, (−)s, and (S)s to rank the fulfillment of the
concept selection criteria.
(+) means the concept is better than the benchmarked
datum concept.
(−) means the concept is worse than the benchmarked
datum concept.
(S) means the concept is the same with the
benchmarked datum concept.

Step 5. Refine criteria as necessary during the first cycle
of evaluation.

Step 6. Analyze the results from the first cycle of
evaluation: Sum of (+)s, (−)s, and (S)s.

Step 7. Identify weakness in concepts that can be turned
into (+)s.

Step 8. Create hybrid “super concepts” by integrating
the strengths of like concepts to remove (−) s
and (S)s.

Step 9. Select a new datum based on the scoring that
suggests a superior concept after the first cycle of
evaluation.

Step 10. Add any new concepts that have been
developed.

Step 11. Repeat the evaluation process through the
second cycle.

Step 12. The superior concept is selected and ready to
go forward into the development or design phase.

E. Design Failure Modes and Effects Analysis (DFMEA)
(See [20])

DFMEA is applied to define qualitatively and rank
quantitatively the failure modes and effects for new
products and service processes across all the phases of
DMADV. In particular, the design team can use DFMEA
in a design concept for potential failure modes, so it can
address them early in the design. Usually, DFMEA is

conducted on the superior concept, which is chosen from
all the candidate concepts in the Pugh concept selection
process.

Input:

Superior concept architectures, functional requirements,
the physical form, etc.

Output:

Causes of failure and corrective action

How to do it (refer to [10, 19]):

Step 1. Develop a block diagram of the design element
or function being analyzed (at system, subsystem,
subassembly, or component level).

Step 2. Determine the ways in which each design
element or function can fail (failure modes).

Step 3. Determine the effects of the failure on the
customer(s) for each failure mode associated with
the element or function.

Step 4. Identify potential causes of each failure mode.
Step 5. List the current design controls for each cause
or failure mode.

Step 6. Assign severity, occurrence, and detection
ratings to each cause.

Step 7. Calculate risk priority numbers (RPN) for each
cause.

Step 8. Apply tools and best practices to reduce the
sensitivity to root causes of failure or eliminate root
causes of failure and recalculate RPNs.

Step 9.Document causes of failure and corrective action
results qualitatively and quantitatively.

F. Response Surface Methods (See [7, 21])
Purpose:

Optimize the system performance in the Design phase
by constructing a statistical model and response sur-
face map that represents the relationship between the
response and the critical design parameters. If the
design parameters are quantitative and there are only
a few of them, RSM is an effective tool for modeling
and optimization.

Input:

Critical design parameters

Output:

Surface map and equations that determine the level of
the factors

How to do it (refer to [22]):

Step 1. Choose a CTQ response to be studied by exper-
imentation.
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Step 2. Determine the critical parameter to be modified
with the experiments. Focus on the significant factors
that affect the response.

Step 3. Select the measurement system used to analyze
the parameters.

Step 4. Create the transfer function from the experi-
mental data. The transfer function is a mathematical
description of the behavior of the system that can be
used to create surface plots and optimize the system’s
performance.

Step 5. Plot the response surface maps to observe the
system behavior.

Step 6. Final Output: a surface map and an equation that
is used to determine the level of the factors. Sensitivity
of the factors can also be analyzed.

G. Inferential Statistics
Inferential statistics is often employed in the Verify

phase.
Purpose:

Identify and control variation in the critical responses.

Input:

The new product/service’s performance data

Output:

The decision on which factors have an effect on the
design’s response

Definition:

Hypotheses and Risk: There are null hypothesis and
alternate hypothesis. Once we have data, we can de-
termine whether we should accept or reject the null
hypothesis, by calculating a test statistic.

The t-Test: Used to compare two samples, or one sam-
ple with a standard. The null hypothesis is that the
means are equal or the difference between the two
population means is zero. For example, the t-test can
be used to determine if two types of shoe solematerials
wear differently, or whether the change to a process
can affect the cycle time.

Analysis of Variance (ANOVA): The analysis of vari-
ance is a generalization of the two-sample t test which
enables us to test for the significance of the difference
among k (k > 2) factor and/or treatment means. A real
scenario can be that a process engineer needs to assess
the effect of three process times and three strength
levels on the density of plastic. Another example is
that an administrative team has four new form layouts
to reduce data entry time on license agreements.

In the null hypothesis of ANOVA, the means of
multiple populations or different treatments are as-
sumed to be equal, whereas in the alternative hypoth-

esis, at least one mean is different. The key idea of
ANOVA is that the total variation in the experiment
data can be decomposed into two components: One is
the between-treatment (factor) variation, and the other
is the within-treatment (error) variation, i.e.,

SStotal = SStreatment + SSerror,

where SS refers to the sum of squares. If the between-
treatment (factor) variation dominates, or the corre-
sponding F score exceeds a threshold at a certain sig-
nificance level, we will reject the null hypothesis and
get a conclusion that the means of different treatments
are significantly different.

H. Statistical Process Control (See [6, 9])
Purpose:

Monitor the critical response of the new product/service
in the Verify phase to assess stability and predictability
and detect important changes.

Input:

The new product/service’s performance data

Output:

Assessment of the new product/service’s stability, pre-
dictability, sigma level, and capability for commercial-
ization readiness.

Main Considerations:

Sample size – sample size should be large enough to
provide good sensitivity in detecting out-of-control
conditions.

Sampling frequency – sampling should be frequent
enough to ensure the opportunities for process control
and improvement.

Concepts:

A production/service process that is operating with only
chance causes (common causes) of variation present is
said to be “in statistical control.” A process is out of
control if there exist assignable causes (special causes)
that are not part of the chance cause pattern such as
improperly adjusted or controlled machines, operator
errors, or defective raw material [6]. An SPC chart
is used to distinguish these two types of causes by
upper and lower control limits (UCL and LCL). As
long as all the sample points plot within the control
limits, the process is assumed in statistical control. If
a charting point is out of the control limits, this implies
that there is evidence that the process is out of control.
We then should investigate the assignable causes and
take corrective actions.
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We can use SPC charts to determine if a new pro-
duct/service’s CTQ measure is in control. If it is,
the product/service may move to the mass production
phase.

How to do it (refer to [6]):

Step 1. Select the environment in which the data will be
collected.

Step 2. Select the responses and parameters that will be
monitored.

Step 3. Select the measurement systems used to acquire
the data.

Step 4. Run the system in the prescribed environment
and acquire the data.

Step 5. Plot the data using the appropriate type of SPC
chart.

Step 6. Assess the plots for stability and predictability.
Step 7. Calculate the estimates of sigma level and pro-
cess capability.

A typical X-bar control chart with sample size five for
monitoring the mean of a process is given as an example

in Figs. 13.2 and 13.3, where the out-of-control points are
highlighted as red squares.

13.4 Six Sigma Case Study

13.4.1 Introduction

In this section, a case study on printed circuit board (PCB)
quality improvement by the authors is used to demonstrate
the application of Six Sigma, which is digested from [2]. A
more detailed report of this case may be found in [2]. This
study was conducted in reference to the DMAIC approach,
and the objective is to improve the sigma level for a series of
product called PSSD in the screening process.

13.4.2 Process Background

This case study was conducted in an electronic company,
which is located at an industrial park in southern China. The
company manufactures multilayer PCB by using the surface
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mount technology (SMT), which is a technique of placing
surface mount devices (SMDs) on the surface of a PCB.
SMDs are microminiature leaded or leadless electronic com-
ponents that are soldered directly to the pads on the surface of
the PCB. The major manufacturing processes in the company
are solder screen, component placement, and solder reflow.
As any defect in any of the solder joints can lead to the failure
of the circuit, the screening process is regarded as the most
critical process in the PCB manufacturing.

The screening process is a manufacturing process that
transfers solder paste onto the solder pad of a PCB. The
application method of solder paste is printing, and the print-
ing technique used is off-contact printing in which there is
a snap-off distance between a stencil and a PCB. The type
of screening machine used to manufacture PSSD products
is semiautomatic. During a printing process, two PCBs are
placed side by side on the holder of a screening machine.
The solder paste is then placed onto a stencil manually
before printing. The front/back blade makes a line contact
with the stencil and a close contact with the given amount
of solder paste. The solder paste is then rolled in front of
the front/back blade. In this way, solder paste is pressed
against the stencil and transferred onto the solder pad through
the stencil openings. More detailed operation of a screening
process is described in [2].

13.4.3 Define Phase

In this case, we specifically focus on the improvement of the
sigma level of the PCB screening process. In the screening
process, the solder paste volume (height) transferred onto the
PCB is the most important factor that needs to be controlled
carefully. This is because too little solder paste can cause
open circuits and too much solder paste can cause bridging
between solder pads in the subsequent processes. As a result,
the solder paste height on the solder pads is identified as a
critical-to-quality (CTQ) characteristic (i.e., the y) that needs
to be controlled in a very precise way by the company.
According to that, a project team is formed and a project
charter is constructed.

13.4.4 Measure Phase

To control the screening process, the project team in the
company has asked operators to measure the solder paste
height for the PSSD product on five different points on a
PCB. The solder paste height on the five points is measured
by using the Cyberoptics Cybersentry system every 4 hours.
The gauge repeatability and reproducibility (R&R) of the
measurement system was verified before the study on the
solder paste height is conducted. The gauge R&R results

ensured that the data from the current measurement system
are accurate enough for the following analysis.

13.4.5 Analyze Phase

Currently, six semiautomatic screening machines are used to
manufacture the PSSD product. Therefore, the data on solder
paste height of these six machines was collected from the
company, and the process capability analysis was conducted
for these screening machines in order to analyze the current
printing performance. According to the analytical results, the
process capability in machine no. 12 was not satisfactory
because the capability index Cp was only 1.021, which was
smaller than 1.33 (the four-sigma level). Moreover, another
capability index Cpk was 0.387. This showed that the screen-
ing process was off-center. As shown in the capability plot in
Fig. 13.4, we concluded that there exist both a high variance
and a mean shift in the solder paste process. Therefore, we
list all the potential factors (x’s) that may cause this through
brainstorming and constructing a cause and effect diagram.

13.4.6 Improve Phase

In the analysis of the current printing performance, the result
showed that the screening process capability of machine no.
12 was not satisfactory. After brainstorming with the me-
chanical engineers in the company, the designed experiments
were decided to conduct on machine no. 12 in order to
determine the optimal settings of all the input factors (x’s)
in the screening process. In this phase, DOE was used as a
core statistical tool for the sigma level improvement.

In the initial experiments, several possible factors that
might have influence on the printing performance were taken
into account. These experiments were used to screen out new
factors that have influence on the printing performance. A
full factorial experiment was carried out, and the considered

3.5 4.0 4.5 5.0 5.5 6.0 6.5

USLLSL

Mil

Fig. 13.4 Capability plot of machine no. 12
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Table 13.2 Four factors and their levels in the initial experiments

Factor Level 1 Level 2

Age of stencil Old (25 months) New (8 months)

Solder paste volume Small Large

Blade type Front Back

Side of stencil Left Right

0 2
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Fig. 13.5 Normal probability plot of the standardized effects

Table 13.3 The levels of each factor in the further experiments

Factor Level 1 Level 2 Level 3

Solder paste viscosity <150 mPa.s >190 mPa.s /

Speed of squeegee 0.4 inch/sec 0.7 inch/sec 1 inch/sec

Pressure of squeegee 18 bar 28 bar /

Side of stencil Left Right /

Blade type Front Back /

four factors and their levels are given in Table 13.2. From
the experimental results, the main effect of the solder paste
volume and the side of stencil showed significant influence
on the solder paste height. The interaction between the blade
type and the side of stencil was also significant. These
significant effects were supported by the normal probability
plot of the standardized effects shown in Fig. 13.5.

These significant factors (blade type and side of stencil;
solder paste volume was excluded since it was difficult to
control the operator-to-operator variation in refilling the vol-
ume of the solder paste) would then be included together with
the already-known significant factors (solder paste viscosity,
speed of squeegee, and pressure of squeegee) in the further
experiments. The aim of the further experiments was to
determine the standard settings of all the significant factors
(i.e., the vital few x’s). A full factorial experiment was carried
out. The factors and their levels are given in Table 13.3.

To study the influence of these factors on the solder paste
height and to draw conclusions, the main effect plots and
the interaction plots were used. From the main effect plots
shown in Fig. 13.6, the pressure of squeegee, blade type, and

side of stencil were significant factors for the height average.
From the main effect plots shown in Fig. 13.7, the solder
paste viscosity, speed of squeegee, blade type, and side of
stencil were significant factors for the height variation. From
the interaction plots for the height average shown in Fig.
13.8, the interaction between solder paste viscosity and blade
type showed significant influence on the solder paste printing
performance. The interaction between the speed of squeegee
and blade type was also significant.

From the analytical results, the solder paste viscosity,
speed of squeegee, blade type, and side of stencil were
significant factors for the height variation. Therefore, low
solder paste viscosity (<150 mPa.s), low speed of squeegee
(0.4 inch/sec), front blade, and right side of stencil could re-
sult in small height variation. By using these optimal settings,
the variation of the solder paste height can be reduced. After
reducing the height variation, the sigma level of the screening
process on machine no. 12 can be improved.

13.4.7 Control Phase

To sustain the improvement of the sigma level in the screen-
ing process, control plans for all the important x’s were
proposed to the company. For example, both the CTQ y and
the vital x’s should be monitored by SPC charts over time, so
that the solder paste height variation and the sigma level can
be controlled and sustained continuously. Also, the financial
benefits through the reduction of COPQ were calculated.

The comparison of the printing performance before and
after the project was reported in Table 13.4. After using the
optimal settings, the sigma level of the screening process can
be improved from 1.162 to 5.924. This shows that a nearly
six-sigma performance can be achieved. According to [23],
the level of defects per million opportunities (DPMO) would
reduce to near 3.4 and the COPQwould be less than 1% of the
sales. As a result, after the Six Sigma practice, the COPQ of
the process for this company has been significantly reduced.

13.5 Six Sigma and Big Data

13.5.1 Background

The recent rapid advances in information technologies have
reshaped today’s business world into a digital regime. The
widely deployed Internet-of-Things (IOT) infrastructure in
both manufacturing and service industries generates massive
amounts of data every moment, such as sensor data, images,
videos, texts, etc. [24]. This coming Big Data era where data
volume, variety, and velocity have all been increasing at an
unprecedented scale is driving forward the next industrial
revolution, also acknowledged as Industry 4.0. Many leading
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countries including the USA, Germany, China, and Japan
have already launched their national strategies to catch this
wave of data-enabled revolution.

It is believed that taking advantages of Big Data will
become basic competition for today’s enterprises. According
to a report of McKinsey institute in 2011 [25], up to 50%
decrease in product development and assembly costs will
be achieved for global manufacturing sectors, and over 60%
increase in net margin will be gained for retail markets.
Big Data also provides an excellent opportunity for modern
quality engineering and Six Sigma as data analytics has
performed an essential role in their implementation. This
created data-rich environment is pushing the traditional qual-
ity control and improvement practices toward an automatic,

intelligent, and integrated paradigm [26–32]. However, chal-
lenges also exist due to some intrinsic weaknesses of tradi-
tional quality control tools in Six Sigma:

• Most statistical analysis tools in Six Sigma, for example,
inferential statistics and hypothesis testing, take sampling-
based information which in fact only reflects partial status
of underlying production or service processes.

• A universal quality data and information fusion center
is not proposed and emphasized. Traditional existing
databases in companies do not effectively integrate
manufacturing information generated on the shop floor.
Hence, it is usually very hard to share and track quality
data.
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Table 13.4 Comparison of printing performance before and after
using optimal settings

Mean S.D. Cp Cpk
Sigma
level ppm COQ

Before 4.974 0.408 1.021 0.387 1.162 122,173 >40% of
sales

After 5.750 0.211 1.975 1.975 5.924 3.4 <1% of
sales

• Typical Six Sigma tools such as FMEA and cause-effect
diagrams for failure root causes analysis rely greatly on
intensive human participation and subjective judgment.
The automation and intelligence level of these tools are
relatively low for efficient Big Data analytics.

Six Sigma has achieved extraordinary levels of success in
productivity improvement and cost saving in almost every
industry since the early 1990s. To accommodate the current
Big Data era, the toolkit of Six Sigma has to be expanded and
updated accordingly. Journal of Quality Technology (JQT),
a flagship refereed journal of the American Society for
Quality (ASQ), has recently published three special issues
in 2018 which discuss the potential applications of Big Data
analytics in reliability and maintenance, statistical process
control (SPC), and advanced manufacturing. We refer in-
terested readers to the papers therein. In the following sec-
tion, the new specific opportunities brought about by Big
Data to the core methodologies of Six Sigma are outlined
in detail.

13.5.2 DMAIC: NewOpportunities

Six Sigma is usually implemented in a sequential and disci-
plinedmanner through five incremental phases, i.e., DMAIC,
each phase of which is now faced with tremendous op-
portunities offered by Big Data to significantly enhance its
capabilities. Generally speaking, data become new treasures
and resources in an enterprise that should be leveraged by
every quality participant from top leaders to floor operators.
It is expected the combination of Big Data thinking and
methodologies with Six Sigma will become popular in the
very near future.

Phase 1. Define (D)
To define current Six Sigma projects, the capability of the
Big Data infrastructure in the company should be taken into
account in the project charter. The problem may be defined
from a new prospective by using Big Data thinking, the
objectives may be quantified more clearly, and more benefits
can be expected with the usage of Big Data technologies.
Additionally, specialists for information technology (IT en-
gineers) as well as for data modeling and analysis (Data
scientists) should both be incorporated into a Six Sigma team
and collaborate with other engineers within that team. It has
been observed by authors that, in many advanced industries,
such as semiconductors and smart phones, data collection and
knowledge discovery through the cooperation of IT engineers
and data scientists has become a routine and essential part in
quality initiatives.
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Phase 2. Measure (M)
This phase will take more advantage of the available massive
data to clarify the status of the processes of interest. The mea-
sure data nowadays have more complex characteristics:

• Quality data are no longer only univariate variables; they
can be time series or profiles, product images, 3D scanned
surfaces, surveillance videos, and customer comments.
Each data type needs specific tools to extract relevant
quality information.

• Quality data arrive at an extremely high speed, also
termed as data streams. The high data velocity requires
real-time responses in data collection, processing, and
analysis.

• Data visualization, especially when data are of high di-
mension and huge size, becomes useful for practitioners
to understand the inherent data patterns.

The effective handling of the above heterogeneous and
massive data streams will generate a global and complete
picture of the manufacturing and service processes, which
also acts as a solid preparation for the Analyze phase in the
following.

Phase 3. Analyze (A)
The Analyze phase will be enhanced to a large extent with
the rapid development of machine learning tools. The data
analytics has been evolving from the Descriptive level to Di-
agnostic and Predictive levels. Specifically, two main classes
of machine learning tools can be adopted for Big Data
analytics [33].

• Unsupervised learning. It discovers an internal rep-
resentation or features based only on the input data
or process variables (x’s). The common method is
the clustering. The engineers can grasp the behavior
and variation of the process variables to stabilize the
processes.

• Supervised learning. It develops a relationship between
process variables or input data (x’s) and product quality
or output data (y). Upon this predictive model, product
quality can be forecast beforehand and accidents can be
early signaled. It includes a variety of powerful methods
for either classification or regression purpose, such as
support vector machines, neural networks, and ensemble
methods.

The wide applications of the above machine learning
tools, along with the emerging artificial intelligence (AI)
methodologies, will definitely promote intelligence prosper-
ity in Six Sigma.

Phase 4. Improve (I)
Quality improvement solutions in the Big Data era can be
conducted in a real time basis. As the data are acquired and
analyzed without time delay, the optimization solutions for
the current process status can also been immediately given
by using modern powerful parallel and cloud-computing
technologies. The well-developed optimization theory, for
example, the convex optimization and combinatorial opti-
mization, can be introduced into this phase to seek for optimal
improvement directions. Process variables are thus adjusted
in a dynamic manner to maintain high quality level for
every process. In a word, the traditional static improvement
solution based on historical off-line data will be replaced by
an adaptive alternative which flexibly responds to real-time
online data.

Phase 5. Control (C)
To ensure the process improvement is sustainable, the
Control phase monitors the new improved process to check
if it is always in control. Big Data leads to high-dimension,
large-scale, and real-time data streams that need to be
effectively monitored. The SPC surveillance tools now have
developed many computationally efficient versions for these
challenges [34]. On the other hand, instead of waiting for
abundant reference data before launching a monitoring
scheme for a particular process, the collected data from
similar processes can be borrowed to start the monitoring
task as soon as possible by using current transfer learning
techniques [35]. Once an out-of-control signal is issued,
the fault diagnosis methods which combine the hypothesis
testing, Bayesian network, and variable selection methods
with Big Data can quickly track the process variables that
have been changed to enable the root causes discovery and
correction.

As a final note in this section, we summarize the maturity
levels of Big Data analytics when it is applied to quality
projects in Six Sigma. By referring to these levels, quality
practitioners can have a better understanding of where they
are at present and where they should head for in the future.

• Level 1. We only use experience, not data.
• Level 2. We collect data but just look at the numbers.
• Level 3.We group the data so as to form charts and graphs.
• Level 4. We use census data with descriptive statistics.
• Level 5. We use sample data with descriptive statistics.
• Level 6. We use sample data with inferential statistics.
• Level 7. We use real-time heterogeneous sensor data with

descriptive statistics/visualization.
• Level 8. We use real-time heterogeneous sensor data

with inferential/predictive statistics to support decision-
making.
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13.6 Conclusion

As Six Sigma is evolving over time, the advantages and
benefits of other business excellence approaches can still be
learned and utilized in future Six Sigma programs. According
to [36], combining other tools or methodologies and the Six
Sigma methodology may be a future trend. For example,
combining Lean tools to the Six Sigma methodology has
become popular during the last few years. And there are
expected to be more combinations in the future.

These years, the Six Sigma efforts have been pushed to
both the external suppliers and external customers along
a supply chain, which have resulted in even larger overall
business impacts and cost savings. We have also observed
an increasing trend outside the USA, where more and more
companies in Asia and Europe, including small-to-medium-
sized enterprises, have been in various stages of Six Sigma
deployment and discovered its far-reaching benefits. On the
other hand, the coming Big Data era has shifted current
quality projects in Six Sigma toward data-driven practices,
and more new advanced tools in statistical learning, machine
learning, and AI are needed to integrate Six Sigma and Big
Data.
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Abstract

One important application of statistical models in the
industry is statistical process control. Many control charts
have been developed and used in the industry. They are
easy to use but have been developed based on statistical
principles. However, for today’s high-quality processes,
traditional control-charting techniques are not applicable
in many situations. Research has been going on in the last
few decades, and new methods have been proposed. This
chapter summarizes some of these techniques.
High-quality processes are generally defined as those

with very low defective rate or defect-occurrence rate,
which is achieved in six sigma environment and in the ad-
vanced manufacturing environment. Control charts based
on the cumulative count of conforming items are recom-
mended for such processes. The use of such charts has
opened up new frontiers in the research and applications of
statistical control charts in general. In this chapter, several
extended or modified statistical models are described.
They are useful when the simple and basic geometric
distribution is not appropriate or is insufficient.

In particular, we present some extended Poisson distri-
bution models that can be used for count data with large
numbers of zero counts. We also extend the chart to the
case of general time-between-events monitoring; such an
extension can be useful in service or reliability moni-
toring. Traditionally, the exponential distribution is used
for the modeling of time-between-events, although other
distributions such as the Weibull or gamma distribution
can also be used in this context.

Keywords

CCC chart · CQC chart · Statistical process monitoring ·
Time-between-events · Zero-inflated models
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14.1 Introduction

Control charting is one of the most widely used statistical
techniques in the industry for process control andmonitoring.
It dates back to the 1920s when Walter Shewhart intro-
duced the basic charting techniques in the United States [1].
Since then, it has been widely adopted worldwide, mainly in
manufacturing and also in the service industries. The sim-
plicity of the application procedure allows a non-specialist
user to observe the data and plot the control chart for simple
decision making. At the same time, it provides sophisticated
statistical interpretation in terms of false-alarm probability
and average run length, among other important statistical
properties associated with decision-making based on sam-
ple information. The implementation of control charts had
helped many companies to focus on important quality issues
and problems such as those raised by out-of-control points
on a control chart.

However, for high-quality or near-zero-defect processes,
traditional Shewhart charts may not be suitable for process
monitoring and decision-making. This is especially the case
for Shewhart attribute charts [2]. Many problems, such as
high false-alarm probability, inability to detect process im-
provement, unnecessary plotting of many zeros, etc., have
been identified by various researchers [3–6]. To resolve these
problems, new models and monitoring techniques have been
developed recently.

Traditional charts are all based on the principle of the
normal distribution, and the upper control limit (UCL) and
lower control limit (LCL) are routinely computed as themean
plus and minus three times the standard deviation. That is, if
the plotted quantity Y has mean μ and standard deviation σ ,
the control limits are given by

UCL = μ + 3σ and LCL = μ − 3σ. (14.1)

Generally, when the distribution of Y is skewed, the proba-
bility of false alarm (FAR), i.e., the probability that a point
indicating out-of-control when the process has actually not
changed, is different from the nominal value of 0.0027 asso-
ciated with a truly normal distribution. Note that for attribute
charts, the plotted quantities usually follow a binomial or
Poisson distribution, and this is far from the normal distri-
bution unless the sample size is very large.

The purpose of this chapter is to review the important
models and techniques that can be used to monitor high-
quality processes. The procedure based on a general principle
of the cumulative count of conforming items is first described;
this is then extended to other distributions. The emphasis is
on recent developments and also on practical methods that
can be used by practitioners.

This chapter is organized as follows. First, the use of
probability limits is described. Next, control charts based
on monitoring of the cumulative count of conforming items

and simple extensions are discussed. Control charts based on
the zero-inflated Poisson distribution and generalized Pois-
son distribution are then presented. These charts are widely
discussed in the literature, and they are suitable for count or
attribute data. For process monitoring, time-between-events
monitoring is of growing importance, and we also provide
a summary of methods that can be used to monitor process
change based on time-between-events data. Typical models
are the exponential, Weibull and gamma distribution.

14.2 Use of Exact Probability Limits

For high-quality processes, it is important to use probability
limits instead of traditional three-sigma limits. This is true
when the quality characteristic that is being plotted follows a
skewed distribution. For any plotted quality characteristic Y,
the probability limits LCLY and UCLY can be derived as

P(X < LCLY) = P(X > UCLY) = α/2, (14.2)

where α is the false-alarm probability, i.e., when the process
is in-control (IC), the probability that the control chart raises
the alarm. Assuming that the distribution F(x) is known or
has been estimated accurately from the data, the control limits
can be computed.

Probability limits are very important for attribute charts
as the quality characteristics are usually not normally dis-
tributed. If this is the case, the false-alarm probability could
be much higher than the nominal value (α = 0.0027 for tradi-
tional three-sigma limits). Xie and Goh [7] studied the exact
probability limits calculated from the binomial distribution
and the Poisson distribution applied for the np chart and the
c chart.

For control-chart monitoring, the number of nonconform-
ing items in samples of size n, assuming that the process
fraction nonconforming is p, the probability that there are
exactly k nonconforming items in the sample is

P(X = k) =
(
n
k

)
pk(1 − p)n−k, k = 0, 1, . . . n (14.3)

and the probability limits can be computed as

P (X � LCL) =
LCL∑
i=0

(
n
i

)
pi(1 − p)n−i = α

2
(14.4)

and

P (X � UCL) =
UCL∑
i=0

(
n
i

)
pi(1 − p)n−i = 1 − α

2
. (14.5)

As discussed, probability limits can be computed for any
distribution and should be used when the distribution is
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skewed. This will form the basis of the following discus-
sion in this chapter. In some cases, although the solution is
analytically intractable, they can be obtained with computer
programs. It is advisable that probability limits be used unless
the normality test indicates that deviation from a normal
distribution is not significant.

14.3 Control Charts Based on Cumulative
Count of Conforming Items

High-quality processes are usually characterized by low
defective rates. In a near-zero-defect manufacturing
environment, items are commonly produced and inspected
one-by-one, sometimes automatically. We can record and use
the cumulative count of conforming items produced before
a nonconforming item is detected. This technique has been
intensively studied in recent years.

14.3.1 CCC Type Control Charts

The idea of tracking the cumulative count of conforming
(CCC) items to detect the onset of assignable causes in
an automated (high-quality) manufacturing environment was
first introduced by Calvin [13]. Goh [4] further developed
this idea into what is known as the CCC charting technique.
Some related discussions and further studies can be found
in [8–14], among others. Xie et al. [15] provided extensive
coverage of this charting technique and further analysis of
this procedure.

CCC Chart Based on Geometric Distribution
For a process with a defective rate of p, the cumulative count
of conforming items before the appearance of a nonconform-
ing item say Y, follows a geometric distribution. This is given
by

P (Y = n) = (1 − p)n−1p, n = 1, 2, . . . . (14.6)

The cumulative probability function of count Y is given by

P (Y � n) =
n∑
i=1

(1 − p)i−1p = 1 − (1 − p)n. (14.7)

Assuming that the acceptable false-alarm probability is α, the
probability limits for the CCC chart are obtained as

UCL = ln(α/2) / ln(1 − p) (14.8)

and

LCL = ln (1 − α/2) / ln (1 − p) (14.9)

Usually, the center line (CL) is computed as

CL = ln (1/2) / ln (1 − p). (14.10)

Note that the decision rule is different from that of the tra-
ditional p or np chart. If a point is plotted above the UCL, the
process is considered to have improved. When a point falls
below the LCL, the process is judged to have deteriorated. An
important advantage is that the CCC chart can detect not only
the increase in the defective rate (process deterioration) but
also the decrease in the defective rate (process improvement).
Further, the relation between the CCC chart based on the
geometric and binomial distribution was presented by Riaz
et al. [16]. They showed that the survival function of the
geometric distribution equals the probability of the binomial
distribution. Hence, this relation leads to a new way for the
monitoring of CCC charts.

The CUSUM Chart for the Cumulative Count
of Conforming (CUSUM-CCC)
Chang and Gan [17] proposed a Cumulative Sum (CUSUM)
control chart,which is capable of detecting the small number
of shifts in the defective rate of the process. The upper and
lower CUSUM statistics are defined as:

C+
t = max

(
0, k+ − Yt + C+

t−1

)
,

C−
t = min

(
0, k− − Yt + C−

t−1

)
,

(14.11)

where t indexes the order of observations and k+ and k−
are the reference values which are based on the sequential
probability ratio test (SPRT) approach as:

k = ln [p1 (1 − p0) /p0 (1 − p1)]
ln [(1 − p0) / (1 − p1)]

. (14.12)

where the p0 is the IC defective rate while p1 is the OOC
defective rate. The decision limits h+ and h− for the respec-
tive charting statistics are obtained for the fixed value of α

which is the inverse of the in-control average number of items
sampled (ANIS0). The process is declared as detroit when
C+
t < h+ and the process is declared as improved when

C−
t < h−.

The EWMA Chart for the Cumulative Count
of Conforming (EWMA-CCC)
The Exponentially Weighted Moving Average (EWMA) con-
trol chart is an alternative memory type chart, which is also
effective than the Shewhart chart in detecting small changes
in the population parameters. The EWMA control chart for
the CCC items was proposed by Yeh et al., [18], and its
statistic can be defined as:

Et = wYt + (1 − w)Et−1 (14.13)
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where, t indexes the order of observations and w is the
weighted parameter of statistics which lies between zero and
one (i.e., 0 < w ≤ 1). By using the properties of geometric
series, the mean and variance of the EWMA statistics are
defined as:

E(Et) = 1

p0
, (14.14)

Var(Et) = 1

p0

w
[
1 − (1 − w)2t

]
(2 − w)

. (14.15)

Note that an increase in the defective rate may lead to a
decrease in Yt so, for the process deterioration, lower control
limit (LCLEt ) is defined as follows:

LCLEt = 1

p0
− LEt ×

1

p0

√
w

[
1 − (1 − w)2t

]
(2 − w)

, (14.16)

where LEt is the control charting constant that depends on the
choice of w and desired α. A Process is declared as detroit
when Et < LCLEt . Further, an optimal choice of this chart is
discussed in [19].

A Simulated Example
For the application purpose, we have simulated 30 in-control
(IC) data points with p0 = 0.0005 and the last 20 out-of-
control (OOC) data points with p1 = 0.00075. The value of
α is set to be 0.0000833 for the calculation of control limits
(Table 14.1).

In Fig. 14.1, control charts for the CCC items are plotted,
where Fig. 14.1a is about the typical CCC chart. For the
conventional CCC chart, LCL is set at 0.08331423 and UCL
is set at 20166.57. The amount of shift is too small that’s why
CCC chart does not indicate any abnormality. Further, the
CUSUM-CCC chart is plotted in Fig. 14.1b where k+ = 1622
and h+ = 1607 are set against the fixed p0, p1, and α (See,
Chang and Gan [17]). The findings of the CUSUM-CCC
chart showed few FAR and detected all the OOC signals.

The EWMA-CCC chart is plotted in Fig. 14.1c where
w = 0.10 and LEt = 0.315 are set against the fixed p0 and α

(See, Yeh et al. [18]). The results showed that EWMA-CCC
suffered from few FAR as compared to CUSUM-CCC and
all the OOC signals are detected.

Table 14.1 A set of cumulative count of conforming items data

3349 4020 1912 4201 339 543 2659 546 2027 820

2621 2199 1867 3597 1146 3097 2192 1009 5099 611

1950 586 1686 2472 942 3784 688 1753 1366 9

900 73 1984 41 1274 1002 9 34 1117 747

1348 1171 335 556 30 410 579 342 474 61

14.3.2 CCC-r Chart Based on Negative
Binomial Distribution

A simple idea to generalize a CCC chart is to consider
plotting of the cumulative count of items inspected until
observing two nonconforming items. This was studied in [20]
resulting in the CCC-2 control chart. This chart increases
the sensitivity of the original CCC chart for the detection of
small process shifts in p. The CCC-2 chart has smaller type
II error, which is related to chart sensitivity, and steeper OC
(Operating Characteristic) curves than the CCC chart with
the same type I error, which is the false alarm probability.
Further, Bersimis et al. [21] provided a compound methodol-
ogy based on the CCC-1 and CCC-2 charts, which has better
performance ability as compared to individual CCC-1 and
CCC-2 charts.

A CCC-r chart [22, 23] plots the cumulative count of
items inspected until r nonconforming items are observed.
This will further improve the sensitivity and detect small
changes faster. However, it requires more counts to be cu-
mulated in order to generate an alarm signal. The CCC-r
charting technique was also studied by Xie et al. [22].

Let Y be the cumulative count of items inspected until
r nonconforming items have been observed. Suppose p the
probability of an item to be nonconforming. Then Y follows
a negative binomial distribution and its probability mass
function is given by

P (Y = n) =
(
n− 1
r − 1

)
pr(1 − p)n−r,

n = r, r + 1, . . . .
(14.17)

The cumulative distribution function of count Y would be

F (n, r, p) =
n∑
i=r
P (Y = i)

=
n∑
i=r

(
i− 1
r − 1

)
pr(1 − p)i−r.

(14.18)

If the acceptable false-alarm probability is α, then the upper
control limit and the lower control limit, UCLr and LCLr,
respectively, of the CCC− r chart can be obtained as the
solution of the following equations:

F(UCLr, r, p) =
UCLr∑
i=r

(
i− 1
r − 1

)
pr(1 − p)i−r

= 1 − α/2
(14.19)

and

F(LCLr, r, p) =
LCLr∑
i=r

(
i− 1
r − 1

)
pr(1 − p)i−r = α/2.

(14.20)
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Fig. 14.1 Control charts based on CCC items

Note that this chart is suitable for the one-by-one inspection
process, and so no subjective sample size is needed. On the
other hand, the selection of r is a subjective issue if the cost
involved is not a consideration. As the value of r increases,
the sensitivity of the chart may increase, but the user probably
needs to wait too long to plot a point. For this issue, Albers
[24] designed a study to demonstrate the optimal value of r,
which is related to the increase of p.Ohta et al. [23] addressed
this issue from an economic design perspective and proposed
a simplified design method to select a suitable value of r
based on the economic design method for control charts that
monitor discrete quality characteristics.

A CCC-r chart provides better detection ability when
a large amount of drifts are present in the process while
to obtain the better detection ability on small to moderate
amount of shifts, Kotani et al. [25] proposed EWMACCC−r
chart. The statistic of EWMACCC−r chart can be defined as:

Et = wYt + (1 − w)Et−1 (14.21)

where, Yt is the cumulative count of items inspected until r
nonconforming ones, t indexes the order of observations and
w is the weighted parameters of statistics, which lies between
zero and one (i.e., 0 < w ≤ 1). The mean and variance of
the EWMACCC−r statistics are defined as:

E (Et) = r

p
, (14.22)

Var(Et) = r (1 − p)

p2
w

[
1 − (1 − w)2t

]
(2 − w)

. (14.23)

The decision lines of the EWMACCC−r are defined as:

LCLEt = r

p
− LEt ×

√
r (1 − p)

p

√
w

[
1 − (1 − w)2t

]
(2 − w)

,

UCLEt = r

p
+ LEt ×

√
r (1 − p)

p

√
w

[
1 − (1 − w)2t

]
(2 − w)

.

(14.24)

where LEt is the control charting constant that depends on the
choice of w and desired α. When Et lies between LCLEt and
UCLEt , the process is declared as stable process otherwise,
process is said to be unstable. Further, the EWMACCC−r is
improved by Kusukawa et al. [26].

14.4 Generalization of the c-Chart

The c-chart is based on monitoring of the number of defects
in a sample. Traditionally, the number of defects in a sample
follows the Poisson distribution. The control limits are com-
puted as

UCL = c+ 3
√
c and LCL = c− 3

√
c, (14.25)

where c is the average number of defects in the sample, and
the LCL is set to be zero when the value computed with
(14.25) is negative.
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However, for high-quality processes, it has been shown
that these limits may not be appropriate. Some extensions of
this chart are described in this section.

14.4.1 Charts Based on the Zero-Inflated
Poisson Distribution

In a near-zero-defect manufacturing environment, many sam-
ples will have no defects. However, for those containing
defects, we have observed that there could be many defects
in a sample, and hence, the data has an over-dispersion
pattern relative to the Poisson distribution. To overcome this
problem, a generalization of Poisson distribution was used in
[6, 27].

This distribution is commonly called the zero-inflated
Poisson (ZIP) distribution. Let Y be the number of defects
in a sample; the probability mass function is given by

⎧⎨
⎩
P (Y = 0) = (1 − p) + pe−λ

P (Y = d) = p
λde−λ

d! d = 1, 2, . . . .
(14.26)

This has an interesting interpretation. The process is basically
zero-defect, although it is affected by causes that lead to one
or more defects. If the occurrence of these causes is p, and
the severity is λ, then the number of defects in the sample
will follow a zero-inflated Poisson distribution.

The Shewhart Chart for ZIP Process
When the zero-inflated Poisson distribution provides an ex-
cellent fit to the data, two types of control charts can be
applied. One is the exact probability limits control chart, and
the other is the CCC chart. When implementing the exact
probability limits chart, Xie and Goh [6] suggested that only
the upper control limit nu should be considered, since the
process is in a near-zero-defect manufacturing environment
and the probability of zero is usually very large. The upper
control limit can be determined by:

∞∑
d=nu

p
λde−λ

d! ≤ α, (14.27)

where α is the probability of the type I error. It should be
noticed that nu could easily be solved because it takes only
discrete values.

Control charts based on the zero-inflated Poisson distri-
bution commonly have better performance in the near-zero-
defect manufacturing environment. However, the control
procedure is more complicated than the traditional methods
since more effort is required to test the suitability of this
model with more parameters.

For the zero-inflation Poisson distribution, we have that
[28]

E(Y) = pλ (14.28)

and

Var(Y) = pλ + pλ (μ − pλ). (14.29)

It should be pointed out that the zero-inflation Poisson model
is straightforward to use, as the mean and variance are of
the closed-form. For example, the moment estimates can be
obtained straightforward. On the other hand, the maximum-
likelihood estimates can also be derived.

The maximum-likelihood estimates can be obtained by
solving

⎧⎨
⎩
p = 1 − n0/n

1 − exp (−λ)
λ = y/p

, (14.30)

where y = ∑n
i=1yi/n [28].

When the count data can be fitted by a zero-inflation
Poisson model, statistical process control procedures can be
modified. Usually, the lower control limit for zero-inflation
Poisson model will not exist, because the probability of zero
is larger than the predetermined type I error level. This is
common for the attribute control chart. In the following
section, the upper control limit will be studied.

The upper control limit nu for a control chart based on the
number of nonconformities can be obtained as the smallest
integer solution of the following equation:

P (nu or more nonconformities in a sample) � αL,
(14.31)

where αL is the predetermined false-alarm probability for the
upper control limit nu.

Here our focus is on data modeling with appropriate
distribution. It can be noted that the model contains two
parameters. To be able to monitor the change in each pa-
rameter, a single chart may not be appropriate. Xie and Goh
[6] developed a procedure for the monitoring of individual
parameter. First, a CCC chart is used for data with zero count.
Second, a c-chart is used for those with one or more non-
zero count. Note that a useful model should have practical
interpretations. In this case, p is the occurrence probability
of the problem in the process, and λ measures the severity of
the problem when it occurs. Hence it is a useful model and
important to be able to monitor each of these parameters so
that any change from normal behavior can be identified.
Chang and Gan [9] extended the above-mentioned

method by considering the g chart instead of the c chart and
obtained better performance in terms of an average number
of samples (ANS). Furthermore, the effect of estimation
errors in the ZIP control chart was discussed by [27]. Where
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p considered as known in the whole study and the estimation
effects of λ were discussed. It was recommended that at any
given λ value, around 50–100 observations are enough to
meet pre-determined FAR.

The MLE estimates of the ZIP distribution consists of the
average y which leads to misleading results when outliers
exist in the dataset. Therefore, robust estimates of the ZIP dis-
tribution are necessary under extreme outliers. Hence, Yang
et al. [29] and Li et al. [30] proposed control charts based
on the robust estimators such as trimmed mean, winsorized
mean and middle mean. Furthermore, Rakitzis and Castagli-
ola [31] discussed the estimation effects of ZIP Shewhart
control chart under Phase I study. They mentioned that there
is no particular trend of historical samples regarding the
estimation of appropriate ZIP parameters, but in most of the
examined cases, it is necessary that the historical samples
exceed 105.

The CUSUM Chart for ZIP Process
The structure of a CUSUM chart consists of the previous
and the current sample. Therefore, it is more sensitive to
small and moderate parameter shifts. He et al. [32] proposed
CUSUM structures for the ZIP distribution to tackle the
simultaneous shifts in p and λ. Let p0 and λ0 are the IC
parameters of the ZIP distribution than the p-CUSUM chart
was designed to detect a shift from p0 to p1. The p −
CUSUM statistic is designed on the base of the likelihood
ratio method, which is defined as follows:

Bi = max(0, Bi−1 + Ki); i = 1, 2, . . . , (14.32)

where the initial value of the p − CUSUM statistic is set at
zero and the Ki for the specific shift size is obtained as,

Ki =
{

ln 1−p1+p1e−λ0

1−p0+p0e−λ0
Yi = 0

ln p1
p0

Yi > 0
(14.33)

The p − CUSUM chart resulted in a signal when Bi exceeds
from the hp. Where the hp is selected to achieve the desired
IC performance.

Further, the λ −CUSUM chart is designed to detect a shift
from λ0 to λ1 and the statistic based on the likelihood ratio
method is defined as follows:

Li = max(0, Li−1 +Mi); i = 1, 2, . . . (14.34)

Where the initial value of the λ − CUSUM statistic is set at
zero and theMi for the specific shift size is obtained as,

Mi =
{

ln 1−p1+p1e−λ1

1−p0+p0e−λ0
Yi = 0

Yi ln λ1
λ0

+ (λ0 − λ1) Yi > 0
(14.35)

The λ − CUSUM chart signals when Li exceeds from the
hλ. Where the hλ is also selected to achieve the desired IC
performance. The p− λ CUSUM chart is further obtained by
the combination of p − CUSUM and λ − CUSUM charts.

For the simultaneous monitoring of the ZIP parameters p
and λ. They also proposed another chart known by the t −
CUSUM chart. The t − CUSUM chart is designed to detect
shifts from p0 to p1 and λ0 to λ1. The statistic for t−CUSUM
chart is also based on the likelihood ratio method, which is
defined as follows:

Ti = max(0, Ti−1 + Ni); i = 1, 2, . . . (14.36)

where the initial value of the t − CUSUM statistic is set at
zero and the Ni for the specific shift size is obtained as,

Ni =
{

ln 1−p1+p1e−λ1

1−p0+p0e−λ0
Yi = 0

Yi ln λ1
λ0

+ (λ0 − λ1) + ln p1
p0
Yi > 0

(14.37)

The t − CUSUM chart signals when Ti exceeds from the
ht. Where the ht is also selected to achieve the desired IC
performance. Their findings revealed that the t − CUSUM
structure outperforms all other charts in all increasing shifts
except the increase in parameter p while the p − λ CUSUM
structure is effective to detect inverse shifts in both parame-
ters (i.e., one increase while another decrease). Although the
t − CUSUM structure is useful to discuss the simultaneous
shifts but using this structure, it is very difficult to diagnose
and interpret OOC signals.

Furthermore,He et al. [33] proposed a combined CUSUM
structure to monitor a ZIP process. In this combined method,
a CUSUM chart was designed for the zero part of the process
based on Bernoulli distribution while other CUSUM chart
was developed for the non-zero portion of the process by
using zero-truncated Poisson distribution. The comparison
of the combined method is made with simultaneous charts
proposed by [32], and findings depicted that the proposed
method outperformed all other methods under discussion.

The EWMA Chart for ZIP Process
Fatahi et al. [34] proposed an EWMA structure for the
monitoring of ZIP parameters. The proposed structure was
designed on the moment method estimates which are defined
as,

λ̂ =
∑m

t=1

(
Y2
t − Yt

)
∑m

t=1 Yt
, (14.38)

and

p̂ =
(∑m

t=1 Y
2
t

)2
m

∑m
t=1

(
Y2
t − Yt

) . (14.39)
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Where m denotes the number of subgroups in the Phase I
samples. The statistic of ZIP-EWMA chart can be defined as:

Et = wYt + (1 − w)Et−1 (14.40)

where, t indexes the order of observations and w is the
weighted parameter of statistics which lies between zero and
one (i.e., 0 < w ≤ 1). The mean and variance of the ZIP-
EWMA statistics are defined as:

E(Et) = λ̂p̂, (14.41)

Var(Et) =
[
λ̂p̂+ λ̂p̂

(
λ̂ − λ̂p̂

)] w
[
1 − (1 − w)2t

]
(2 − w)

.

(14.42)

The decision lines of the ZIP-EWMA chart are defined as:

LCLEt = λ̂p̂−LEt ×
[
λ̂p̂+λ̂p̂

(
λ̂ − λ̂p̂

)] √
w

[
1− (1− w)2t

]
(2−w)

,

UCLEt = λ̂p̂+LEt ×
[
λ̂p̂+ λ̂p̂

(
λ̂−λ̂p̂

)]√
w

[
1−(1−w)2t

]
(2−w)

.

(14.43)

where LEt is used to decide the width of control limits and
depends on the choice of w and desired α. When Et lies
between LCLEt and UCLEt , the process is declared as stable
process, otherwise the process is said to be unstable. Further,
this method is extended by [35] into a combined structure
and a simultaneous structure of EWMA chart (alternative
method of simultaneous CUSUM chart proposed by [33]) for
the monitoring of ZIP parameters.

An Example
An example is used here for illustration [2]. The data set
used in Table 14.2 is the read-write errors discovered in a
computer hard disk in the manufacturing process.

For the data set in Table 14.2, it can be seen that it
contains many samples with no nonconformities. From the
data set, the maximum-likelihood estimates are p̂ = 0.1346
and μ̂ = 8.6413. The overall zero-inflation Poisson model
for the data set is

f (y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 0.1346 + 0.1346 exp (−8.6413) ,
if y = 0,

0.13468.6413y exp(−8.6413)
y! ,

if y > 0.

(14.44)

Table 14.2 A set of defect count data

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 0 9

11 0 1 2 0 0 0 0 0 0 0 0 3 3 0 0 5 0 15 6

0 0 0 4 2 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0

0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 1 0 0 0 0 0

For the data set in Table 14.2, it can be calculated that the
upper control limit is 14 at an acceptable false-alarm rate of
0.01. This means that there should not be an alarm for values
less than or equal to 14 when the underlying distribution
model is a zero-inflated Poisson distribution.

Note that for the CUSUM structures of ZIP distribution,
real-life example about LED packaging process is discussed
in He et al. [32, 33] while the ZIP-EWMA chart with health-
related illustration is presented in Fatahi et al. [34].

14.4.2 Chart Based on the Generalized Poisson
Distribution

The generalized Poisson distribution is another useful model
that extends the traditional Poisson distribution, which only
has one parameter. A two-parameter model is usually much
more flexible and able to model different types of data sets.
Since in the situation of over-dispersion or under-dispersion,
the Poisson distribution is no longer preferable as it must have
equalmean and variance, the generalized Poisson distribution
[36] can be used.

This distribution has two parameters (θ , λ) and the proba-
bility mass function is defined as

PX(θ , λ) = θ(θ + xλ)x−1e−θ−xλ

x! , x = 0, 1, 2 . . . ,

(14.45)

where λ, θ > 0.
For the generalized Poisson distribution, we have that [36]

E(X) = θ(1 − λ)−1 (14.46)

and

Var(X) = θ(1 − λ)−3. (14.47)
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14

It should be pointed out that the generalized Poisson
distribution model is straightforward to use as both the mean
and variance are of closed-form. For example, the moment
estimates can easily be calculated. On the other hand, the
maximum-likelihood estimates can also be obtained straight-
forwardly. Consider a set of observation (X1,X2, . . . ,Xn)
with sample size n, the maximum-likelihood estimation (θ̂ ,λ̂)
can be obtained by solving

⎛
⎜⎝

n∑
i=1

xi (xi − 1)

x+ (xi − x) λ̂
− nx = 0,

θ̂ = x
(
1 − λ̂

)
.

(14.48)

Here a similar approach as for the zero-inflated Poisson
model can be used. One could also develop two charts for
practical monitoring. One chart can be used to monitor the
severity and another to monitor the dispersion or variability
in terms of the occurrence of defects.

Furthermore, Chen et al. [37] proposed three control
charts named by the Shewhart GZIP chart, ranked probability
chart (RPC), and GZIP-CUSUM chart. The findings of the
study revealed that the shape of the distribution is severely
affected by λ and behave almost similar to a change in
parameter θ . When relative difference among λ’s was
small, then similar performance was observed for the both
Shewhart GZIP and RPC charts, while in the presence of
large differences, the RPC performed well as compared to
all other charts. The GZIP-CUSUM chart performed well
when the shifts are introduced in θ , while for the shifts in
λ, the GZIP-CUSUM chart has satisfactory performance.
In general, with probability control limits, some values are
omitted that may have relatively high occurrence possibility,
and some are included that may have a relatively small
occurrence possibility. In such a case, probability control
limits have a credibility issue which is improved by [38]
using the narrowest confidence interval for the Shewhart
GZIP chart.

An Example
The data in Table 14.2 can also be modeled with a general-
ized Poisson distribution. Based on the data, the maximum-
likelihood estimates can be computed as θ̂ = 0.144297 and
λ̂ = 0.875977. The overall generalized Poisson distribution
model for the data set is

f (x) = 0.144297(0.144297+0.875977x)x−1

x!

× e−0.144297−0.875977x

x! , x = 0, 1, 2 . . . .

(14.49)

With this model, it can be calculated that the upper control
limit is 26 at a false-alarm rate of 0.01. This means that there
should not be any alarm for the values less than or equal to
26 when the underlying distribution model is the generalized

Poisson distribution. It should bementioned here that, for this
data set, both models can fit the data well, and the traditional
Poisson distribution is rejected by statistical tests.

Recently, Mahmood and Xie [39] designed a comprehen-
sive review of the control charts based on the zero-inflated
models and their applications. Moreover, they have provided
some future topics which are not covered in the monitoring
methodologies of zero-inflated models.

14.5 Control Charts for theMonitoring
of Time-Between-Events

Chan et al. [40] proposed a charting method called the
cumulative quantity control chart (CQC chart). Suppose that
defects in a process are observed according to a Poisson
process with a mean rate of occurrence equal to λ (>0). Then
the number of units Q required to observe exactly one defect
is an exponential randomvariable. The control chart forQ can
be constructed to monitor possible shifts of λ in the process,
which is the CQC chart.

The CQC chart has several advantages. It can be used for
low-defective-rate processes as well as moderate-defective-
rate processes. When the process defect rate is low or moder-
ate, the CQC chart does not have the shortcoming of showing
up frequent false alarms. Furthermore, the CQC chart does
not require rational grouping of samples. The data required is
the time between defects or defective items. This type of data
is commonly available in equipment and process monitoring
for production and maintenance.

When process failures can be described by a Poisson pro-
cess, the time between failures will be exponential, and the
same procedure can be used in reliability monitoring. Here
we briefly describe the procedure for this type of monitoring.
Since time is our preliminary concern, the control chart will
be termed a t-chart in this chapter. This is in line with the
traditional c-chart or u-chart, to which our t-chart may be a
more suitable alternative. In fact, the notation also makes it
easier for the extension to be discussed later.

14.5.1 CQC Chart Based on the Exponential
Distribution

The distribution function of the with parameter λ is given by

F(t; λ) = 1 − e−λt, t � 0. (14.50)

The control limits for t-chart are defined in such a manner
that the process is considered to be out of control (OOC)
when the time to observe exactly one failure is less than
the lower control limit (LCL), TL, or greater than the upper
control limit (UCL), TU. When the behavior of the process
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is normal, there is a chance for this to happen, and it is
commonly known as a false alarm. The traditional false-
alarm probability is set to be 0.27%, although any other
false-alarm probability can be used. The actual acceptable
false-alarm probability should, in fact, depend on the actual
product or process. Assuming an acceptable probability for
false alarms of α, the control limits can be obtained from the
exponential distribution as:

TL = λ−1 ln
1

1 − α/2
(14.51)

and

TU = λ−1 ln
2

α
. (14.52)

The median of the distribution is the center line (CL), TC, and
it can be computed as

TC = λ−1 ln 2 = 0.693λ−1. (14.53)

These control limits can then be utilized tomonitor the failure
times of components. After each failure, the time can be
plotted on the chart. If the plotted point falls between the
calculated control limits, this indicates that the process is in
the state of statistical control and no action is warranted. If
the point falls above the upper control limit, this indicates
that the process average, or the failure occurrence rate, may
have decreased, resulting in an increase in the time between
failures. This is an important indication of possible process
improvement. If this happens, the management should look
for possible causes for this improvement, and if the causes
are discovered, then action should be taken to maintain them.
If the plotted point falls below the lower control limit, this
indicates that the process average, or the failure occurrence
rate, may have increased, resulting in a decrease in the failure
time. This means that the process may have deteriorated and
thus, actions should be taken to identify and remove them.

In either case, the people involved can know when the
reliability of the system has changed, and by a proper follow-
up, they can maintain and improve the reliability. Another
advantage of using the control chart is that it informs the
maintenance crew when to leave the process alone, thus
saving time and resources.

The CQC chart based on exponential distribution under
CUSUM structure was studied by Gan [41] and Gan [42]
extended this chart under EWMA structure to obtained better
performance on the small or moderate shifts in the process.
However, computation of run-length properties of exponen-
tial EWMA chart was discussed by Gan and Chang [43],
and a comparative study based on these charts was reviewed
by Liu et al. [43, 44]. Further, the robustness of this chart
was discussed in [45, 46], and the estimation effects were

discussed in [47, 48]. Recently, [49, 50] extended this chart
into other competitive charting methodologies.

14.5.2 Chart Based on theWeibull Distribution

It is well known that the lifetime distribution of many com-
ponents follows a Weibull distribution [51]. Hence when
monitoring reliability or equipment failure, this distribution
has been shown to be very useful. The Weibull distribution
function is given as

F(t) = 1 − exp
[
−

( t
θ

)β
]
, t ≥ 0, (14.54)

where θ > 0 and β > 0 are the so-called scale parameter and
shape parameter, respectively.

The Weibull distribution is a generalization of the expo-
nential distribution, which is recovered for β = 1. Although
the exponential distribution has been widely used for time-
between-events, Weibull distribution is more suitable as it
is more flexible and is able to deal with different types of
the aging phenomenon in reliability. Hence in reliability
monitoring of equipment failures, the Weibull distribution is
a good alternative.

A process can be monitored with a control chart, and the
time-between-events can be used. For the Weibull distribu-
tion, the control limits can be calculated as:

UCL = θ0

[
ln

(
2

α

)]1/β0

(14.55)

and

LCL = θ0

[
ln

(
2

2 − α

)]1/β0

, (14.56)

where α is the acceptable false-alarm probability, and β0 and
θ0 are the in-control shape and scale parameter, respectively.
Generally, the false-alarm probability is fixed at α = 0.0027,
which is equivalent to the three-sigma limits for an X-bar
chart under the normal-distribution assumption.

The center line can be defined as

CL = θ0[ln 2]1/β0 , (14.57)

Xie et al. [52] carried out some detailed analysis of this
procedure. Since this model has two parameters, a single
chart may not be able to identify changes in a parameter.
However, since in a reliability context, it is unlikely that the
shape parameter will change, and it is the scale parameter that
could be affected by ageing or wear, a control chart as shown
in Fig. 14.2 can be useful in reliability monitoring.
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Fig. 14.2 A set of Weibull data and the plot

The CUSUM structure for the study variable, which fol-
lows the Weibull distribution was designed by Shafae et al.
[53], and themixed EWMA-CUSUM chart was developed by
Aslam [54]. Further, a comparative study on the charts based
on Weibull distribution was discussed by Wang et al. [55],
and advanced methods related to this chart were presented in
[56–58] and references therein.

14.5.3 General t-Chart

In general, to model time-between-events, any distribution
for positive random variables could be used. Which distri-
bution is used should depend on the actual data, with the
exponential, Weibull and Gamma being the most common
distributions. However, these distributions are usually very
skewed. The best approach is to use probability limits. It
is also possible to use a transformation so that the data
is transformed to near-normality so that traditional chart
for individual data can be used; such charting procedure is
commonly available in statistical process control software.

In general, if the variable Y follows the distribution F(t),
the probability limits can be computed as usual, that is:

F(LCLY) = 1 − F(UCLY) = α/2, (14.58)

where α is the fixed false-alarm rate. This is an approach that
summarizes the specific cases described earlier. However, it
is important to be able to identify the distribution to be used.

Furthermore, to make better use of the traditional moni-
toring approach, we could use a simple normality transforma-
tion. The most common ones are the Box-Cox transformation
and the log or power transformations. They can be easily real-
ized in software such asMINITAB. Figure 14.2 shows a chart
for a Weibull-distributed process characteristic and Fig. 14.3
shows the individual chart with a Box-Cox transformation.
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Fig. 14.3 The same data set as in Fig. 14.2 with the plot of the Box-
Cox transformation

Recently, real time monitoring of the time-between-events
applied to several bio-medical applications [59] and discus-
sion on these methods are made in [60, 61].

The traditional t chart is used tomonitor the time-between-
events while X chart is used to monitor the magnitude of
the events. Recently, few researchers suggested monitoring
magnitude and time-between-events together. Similar to the
X&R or X&S chart, Wu et al., [62] provided a combined
scheme T &X chart for the joint monitoring ofmagnitude and
time-between-events. Further, the rate chart was proposed by
Wu et al. [63] which is more efficient method than the T & X
chart while a comparative study for combined structure was
designed by Rahali et al. [64]. These proposals were designed
by assuming the independence between magnitude and time-
between-events which may not hold in real situations. Hence,
to alleviate this problem Cheng et al., [65] provided a si-
multaneous monitoring method based on bivariate gamma
distribution. Furthermore, jointmonitoringmethods based on
the distance andmax-typemeasures were proposed by Sanusi
and Mukherjee [66] which is a flexible scheme for any para-
metric distribution of magnitude and time-between-events.

14.6 Discussion

In this chapter, some effective control-charting techniques are
described. The statistical monitoring technique should be tai-
lored to the specific distribution of the data that are collected
from the process. Perfunctory use of the traditional chart will
not help much in today’s manufacturing environment toward
the near-zero-defect process. For high-quality processes, it
is more appropriate to monitor items inspected between two
nonconforming items or the time between two events.

The focus of this chapter is to highlight some common
statistical distributions for process monitoring. Several
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statistical models such as the geometric, negative binomial,
zero-inflated Poisson, and generalized Poisson can be used
for count-data monitoring in this context. The exponential,
Weibull and Gamma distributions can be used to monitor
time-between-events data, which is common in reliability or
equipment failure monitoring. Other general distributions of
time-between-events can also be used when appropriate. The
approach is still simple: by computing the probability limits
for a fixed false-alarm probability, any distribution can be
used in a similar way. The simple procedure is summarized
below:

Step 1. Study the process and identify the statistical distribu-
tion for the process characteristic.

Step 2. Collect data and estimate the parameters (and validate
the model, if needed).

Step 3. Compute the probability limits or use an appropriate
normality transformation with an individual chart.

Step 4. Identify any assignable cause and take appropriate
action.

The distributions presented in this chapter open the door
to further implementation of statistical process control tech-
niques in a near-zero-defect era. Several research issues
remain. For example, the problem with correlated data and
the estimation problem has to be studied. In a high-quality
environment, failure or defect data is rare, and the estimation
problem becomes severe. In the case of continuous produc-
tion and measurement, data correlation also becomes an im-
portant issue. It is possible to extend the approach to consider
the exponentially weighted moving average (EWMA) or
cumulative-sum (CUSUM) charts that are widely advocated
by statisticians. A further area of importance is multivariate
quality characteristics. However, a good balance between
statistical performance and ease of implementation and un-
derstanding by practitioners is essential.
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Abstract

In recent years, increased emphasis has been placed on
improving decision-making in business and government.
A key aspect of decision-making is being able to
predict the circumstances surrounding individual decision
situations. Examining the diversity of requirements in
planning and decision-making situations, it is clearly
stated that no single forecasting methods or narrow
set of methods can meet the needs of all decision-
making situations. Moreover, these methods are strongly
dependent on factors, such as data quantity, pattern,
and accuracy, that reflect their inherent capabilities and
adaptability, such as intuitive appeal, simplicity, ease
application, and, least but not last, cost.

Section 15.1 deals with the placement of demand fore-
casting problem as one of biggest challenge in the repair
and overhaul industry; after this brief introduction, Sect.
15.2 summarizes the most important categories of fore-
casting methods; paragraphs from 15.3 to 15.4 approach
the forecast of spare parts first as a theoretical construct,
but some industrial applications and results are added
from field training, as in many other parts of this chapter.

Section 15.5 undertakes the question of optimal stock
level for spare parts, with particular regards to Low
Turnaround Index (LTI) parts conceived and designed
for the satisfaction of a specific customer request, by
the application of classical Poisson methods of minimal
availability and minimum cost; similar considerations are
drawn and compared in Sect. 15.6 dealing with models
based on binomial distribution. An innovative extension of
binomial models based on total cost function is discussed
in Sect. 15.7. Finally, Sect. 15.8 adds the Weibull failure
rate function to LTI spare parts stock level in maintenance
system with declared wear conditions.
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15.1 The Forecast Problem of Spare Parts

Demand forecasting is one of the most crucial issues of
inventory management. Forecasts, which form the basis for
the planning of inventory levels, are probably the biggest
challenge in the repair and overhaul industry.

An example is in the airlines industry, when a common
problem is the need to forecast short-term demand with the
highest possible degree of accuracy. The high cost of modern
aircraft and the expense of such repairable spares, as aircraft
engines and avionics, greatly contributes to the consider-
able total investment of many airline operators. These parts,
though low in demand, are critical to operations, and their
unavailability can lead to excessive down time costs.

This problem is absolutely relevant in case of intermittent
demand. A demand of an item is classified as intermittent
when irregular and sporadic. This type of demand, typical
for a great amount of spare parts, is very difficult to predict.
This complicates the efficient management and control of
the inventory system, which requires an acceptable balance
between inventory costs, on the one hand, and stock-outs,
on the other. Inventory management models require accurate
forecasts in order to true this balance up.

We can consider explicitly both the demand pattern and
the size of the demand when it occurs for the classification
of the data demand patterns and classify them into four
categories [1], as follows:

• Intermittent demand, which appears randomly with many
time periods having no demand.

• Erratic demand, which is (highly) variable, erratic relating
to the demand size rather than demand per unit time
period.

• Slow moving (“smooth”) demand, which also occurs at
random with many time periods having no demand. De-
mand, when it occurs, is for single or very few units.

• Lumpy demand, which likewise seems random with many
time periods having no demand. Moreover, demand, when
it occurs, is (highly) variable. Lumpy concept corresponds
to an extremely irregular demand, with great differences
between each period’s requirements and with a great
number of periods with zero requirements.

Traditionally, the characteristics of intermittent demand
are derived from two parameters: the average inter-demand
interval (ADI) and the coefficient of variation (CV). ADI
measure the average number of time periods between two

successive demands, and CV represents the standard devi-
ation of period requirements divided by the average period
requirements.

CV =

√
√
√
√
√

n∑

i=1
(εri − εa)

2

n

εa
(15.1)

where n is the number of periods and εri and εa are real and
average demand of spare parts in period i. The four resulting
demand categories are graphically presented in Fig. 15.1.

The categorization scheme should suggest the different
ways to treat the resulting categories according to the fol-
lowing characteristics:

• The “ADI ≤ x; CV2 ≤ y” condition tries effectively to
test for stock-keeping units, SKUs, which are not very
intermittent and erratic (i.e., faster moving parts or parts
whose demand pattern does not raise any significant fore-
casting or inventory control difficulties).

• The “ADI > x; CV2 ≤ y” condition tests for low-demand
patterns with constant, or more generally, no highly vari-
able demand sizes (i.e., not very erratic).

• The “ADI > x; CV2 > y” condition tests for lumpy de-
mand items. Lumpy demand may be defined as a demand
with great differences between each period’s requirements
and with a great number of periods having zero requests.

• Finally, the “ADI ≤ x; CV2 > y” condition tests for
erratic (irregular) demand items with rather frequent de-
mand occurrences (i.e., not very intermittent).

In all these cases, x denotes the ADI cutoff value
(ADI = 1.32) measuring the average number of time periods
between two successive demands and y the corresponding
CV2 cutoff value (CV2 = 0.49) that is equal to the square

ADI

CV2
 0.49 (cut-off value)

1.32
(cut-off

value)

“Lumpy” demand
(great differences
among each period´s
requirements, lot of
periods with no
request)

Erratic but not very
intermittent (i.e. low
demand patterns
with constant, or more
generally, no highly
variable demand sizes)

Intermittent but not
very erratic (irregular
demand items
with rather frequent
demand occurences)

“Smooth” demand
(i.e. faster moving parts
or parts whose demand
pattern does not raise
any significant fore-
casting or inventory
control difficulties)

Fig. 15.1 Categorization of demand pattern
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standard deviation of period requirements divided by the
average period requirements.

Forecasting systems generally depend on the category of
part used. Therefore, it is much more important to have two
dependent factors to indicate deviation from expected values
of demand, in respect of both demand size and inter-demand
interval. The performance of a forecasting method should
vary with the level and type of lumpiness. A classification of
research on intermittent demand forecasting can be arranged
according to Willemain as follows:

1. Extension of standard methods (Lau and Wang, Tyworth
and O’Neill) [8, 9] and variants of Poisson model (Ward,
Williams, Mitchell et al., Van Ness et al., Schultz, Watson,
Dunsmuir et al.) [10–15]

2. Reliability theory and expert systems (Petrovic & Petro-
vic) [16]

3. Single exponential smoothing, Winter’s models (Bier,
Sani, and Kingsman, Willemain et al.) [17, 18]

4. Croston’s variant of exponential smoothing (Croston,
Segestedt, Willemain et al., Johnston) [19–21]

5. Bootstrap methods (Bookbinder and Lordahl, Wang and
Rao, Kim et al., Park and Willemain) [22–25]

6. Moving average and variants (Ghobbar et al., Bartezzaghi)
[26, 27]

7. Model based on binomial distribution (Pareschi et al.)
[32–35]

The principle forecasting methods are briefly summarized
in Table 15.1.

15.1.1 Exponential Smoothing

Exponential Smoothing methods (ES) are largely used time-
series methods when reasonably good forecasts are needed
over the short-term horizon, using historical data to obtain a
“smoothed” value for the series. This smoothed value is then
extrapolated to become the forecast for the future value of the
series. The ES methods apply to past data an unequal set of
weights exponentially decreasing with time, that is, the more
recent the data value, the greater its weighting. In particular,
the general form used in computing a forecast by the method
of Single Exponential Smoothing (SES) is given by Eq. 15.2,
where Ft represents the “smoothed estimate,” Xt the actual
value at time t, and α the smoothing constant which has a
value between 0 and 1. SES is best suited to data that exhibits
a flat trend:

Ft+1 = αXt + (1 − α)Ft (15.2)

When a trend exists, the forecasting technique must con-
sider the trend as well as the series average; ignoring the trend
will cause the forecast to underestimate or to overestimate,

according to an increasing or decreasing trend, the actual de-
mand. In fact, Double Exponential Smoothing (DES), useful
when the historic data series are not stationary, applies SES
twice, and the general form is

F′′
t+1 = αFt+1 + (1 − α)Ft (15.3)

15.1.2 Croston’s Method

A little-known alternative to single exponential smoothing
is Croston’s method that separately forecasts the nonzero
demand size and the inter-arrival time between successive
demands using simple exponential smoothing (SES), with
forecasts being updated only after demand occurrences. Let
Ft and Yt be the forecasts of the (t + 1)th demand size and
inter-arrival time, respectively, based on data up to demand t
and Qt the inter-arrival time between two successive nonzero
demand. Then Croston’s method gives:

Ft = (1 − α)Ft−1 + αYt (15.4)

Yt = (1 − α) Yt−1 + αQt (15.5)

The predicted demand at time t is the ratio between Ft
and Yt

Pt = Ft/Yt (15.6)

SES and Croston methods are most frequently used for
low and intermittent demand forecasting; in particular, Cros-
ton can be useful with intermittent, erratic, and slow-moving
demand, and its use is significantly superior to ES under
intermittent demand conditions, accordingly with the catego-
rization scheme of Fig. 15.1. Also, the straight Holt method
(EWMA) is applicable only with low levels of lumpiness.
The widespread use of SES and MTBR methods for parts
with high variation (lumpy demand) is questionable as they
consistently create poor forecasting performance which re-
mains poor as the demand variability increases. The only
method that fits quite well lumpy demand is the WMA, and
its superiority to ES methods is proved: Its use could provide
tangible benefits to maintenance service organizations fore-
casting intermittent demand. We mean for WMA the moving
average method in which for computing the average of the
most recent n data, the more recent observations are typically
given more weight than older observations.

15.1.3 Holt Winter Models

Winter’s models (AW, MW) methods consider the seasonal
factor and provide the highest forecasting error with high
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variation (lumpy demand). While computing Holt-Winter
filtering of a given time series, unknown parameters are
determined by minimizing the squared prediction error.

α, β, and γ are parameters of Holt-Winter filter, respec-
tively, for level, trend, and seasonal component; if beta is set
to 0, the function will perform exponential smoothing, while
if gamma parameter is set to 0, a nonseasonal model is fitted.

The additive Holt-Winter prediction function (for time
series with period length p) is

Y [t + h] = a [t] + h · b [t] + s [t + 1 + (h− 1) |p|] (15.7)

where a[t], b[t], and s[t] are given by

a [t] = α
(

Y [t] − s [t − p]
) + (1 − α)

(

a [t − 1] + b [t − 1]
)

(15.8)

b [t] = β
(

a [t] − a [t − 1]
) + (1 − β) b [t − 1] (15.9)

s [t] = γ
(

Y [t] − a [t]
) + (1 − γ ) s [t − p] (15.10)

The multiplicative Holt-Winter prediction function (for
time series with period length p) is

Y [t + h] = (

a [t] + h · b [t]
) · s [t + 1 + (h− 1) |p|]

(15.11)

where a[t], b[t], and s[t] are given by

a [t] = α

(

Y [t]
s [t − p]

)

+ (1 − α)
(

a [t − 1] + b [t − 1]
)

(15.12)

b [t] = β
(

a [t] − a [t − 1]
) + (1 − β) b [t − 1] (15.13)

s [t] = γ

(

Y [t]
a [t]

)

+ (1 − γ ) s [t − p] (15.14)

The function tries to find the optimal values of α and/or β

and/or γ byminimizing the squared one-step prediction error,
if they are omitted. For seasonal models, starting values for a,
b, and s are detected by performing a simple decomposition in
trend and seasonal component using moving averages on first
periods (a simple linear regression on the trend component is
used for starting level and trend). For level/trend-models (no
seasonal component), starting values for a and b are X[2] and
X[2] – X[1], respectively. For level-only models (ordinary
exponential smoothing), the start value for a is X[1].

15.2 ForecastingMethods

In our opinion, considering major approaches to forecast-
ing although many different classification schemes could be
used, maybe the most significant scheme for their classi-
fication divides those methods into three major categories,
as summarized in Table 15.2 [2]: judgmental, quantitative,
and technological. Each category includes several types of
methods, many individual techniques, and variations. Judg-
mental methods are most commonly used in business and
government organizations. Such forecasts are most often
made as individual judgments or by committee agreements.
Nevertheless, quantitative methods are better than judgmen-
tal ones in determining spare part-inventory level, and we can
suggest judgmental methods only in extremis.

The second category – quantitative methods – is the type
on which the majority of the forecasting literature has been
focused. There are three subcategories of these methods.
Time-series methods seek to identify historical patterns (us-
ing a time reference) and then forecast using a time-based
extrapolation of those patterns. Explanatory methods seek to
identify the relationships that led to observed outcomes in the
past and then forecast by applying those relationships to the
future.Monitoring methods, which are not yet in widespread
use, seek to identify changes in patterns and relationships.
They are used primarily to indicate when extrapolation of
past patterns or relationship is not appropriate.

The third category – technological methods – addresses
long-term issues of a technological, societal, economic, or
political nature. The four subcategories here are extrapolative
(using historical patterns and relationships as a basis for
forecasts), analogy-based (using historical and other analo-
gies to make forecasts), expert-based, and normative-based
(using objectives, goals, and desired outcomes as a basis for
forecasting, thereby influencing future events).

15.2.1 Characterizing ForecastingMethods

In describing forecasting methods, we have found 7 most
important factors reflecting their inherent capabilities and
adaptability.

1. Time horizon – two aspects of the time horizon relate to
individual forecasting method. First is the span of time in
the future for which different forecasting methods are best
suited. Generally speaking, qualitative methods of fore-
casting are used more for longer-term forecasts, whereas
quantitative methods are used more with intermediate and
shorter-term situations. The second important aspect of
the time horizon is the number of periods for which a
forecast is desired. Some techniques are appropriate for
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Table 15.2 A summary of selected forecasting methods

No. Method Abbreviation Description

1 Additive Winter AW Assumes that the seasonal effects are of constant size

2 Multiplicative Winter MW Assumes that the seasonal effects are proportional in size to the local
de-seasonalized mean level

3 Seasonal regression model SRM It is used in time series for modeling data with seasonal effects

4 Component service life (replacement) MTBR Estimates of the service life characteristics of the part (MTBR = Mean
Time Between Replacement), derived from historical data

5 Croston Croston Forecasting in case of low and intermittent demand

6 Single exponential smoothing SES Forecasting in case of low and intermittent demand

7 Exponential weighted moving average EWMA, Holt An effective forecasting tool for time series data that exhibits a linear trend

8 Trend adjusted exponential smoothing TAES Forecasting time series data that have a linear trend

9 Weighted moving averages WMA A simple variation on the moving average technique that allows for such a
weighing to be assigned to the data being averaged

10 Double exponential smoothing DES Forecasting time series data that have a linear trend

11 Adaptive-response-rate single
exponential smoothing

ARRSES Has an advantage over SES in that it allows the value of α to be modified in
a controlled manner as changes in the pattern of data occur

12 Poisson’s model POISSON Models based on Poisson’s distribution with the definition of a customer’s
service level

13 Binomial models BM Methods based on binomial distribution

forecasting only one or two periods in advance; others can
be used for several periods. There are also approaches for
combining forecasting horizons of different lengths.

2. Pattern of data – underlying the majority of forecasting
methods is an assumption as to the type of pattern(s) found
in the data to be forecast, for example, some data series
may contain seasonal as well as trend patterns; others
may consist simply of an average value with random
fluctuations around that, and still others might be cyclical.
Because different forecasting methods vary in their ability
to predict different types of patterns, it is important to
match the presumed pattern(s) in the data with the appro-
priate technique.

3. Cost – generally three direct elements of costs are in-
volved in the application of a forecasting procedure: de-
velopment, data preparation, and actual operation. The
variation in costs obviously affects the attractiveness of
different methods for different situations.

4. Accuracy – closely related to the level of detail required
in a forecast is desired accuracy. For some decision situa-
tions, plus or minus 10%may be sufficient while in others
a little variation of 2% could spell disaster.

5. Intuitive appeal, simplicity, and ease of application – a
general principle in the application of scientific methods
to management is that only methods that are understood
in deep get used by decision makers over time. This is
particularly true in the area of forecasting.

6. Number of data required from past history – some meth-
ods produce good results without consistent number of
data from the past, because they are less affected by
estimation errors in input parameters.

7. Availability of computer software – it is seldom possible
to apply a given quantitative forecasting method unless

an appropriate computer program exists. Such a software
must be user friendly and well conceived.

15.3 ForecastingMethods Applicability
Related to Spare Parts Demands

Companies have to select in advance the appropriate forecast-
ing method matching their cyclical demand for parts at best.
Particular attention has to be paid to the demand for service
parts inventories that is generally irregular and difficult to
predict [3]. A summary of the better forecasting methods in
relation to the categorization scheme of Fig. 15.1 is presented
in Table 15.3.

15.4 Prediction of Aircraft Spare Parts: A
Case Study

Airlines technical divisions are based on total hours flied and
on the fleet size. With this data, the purchasing department
tries to determine the quantity of stock necessary for a
particular operating period. Alternatively, when new types of
aircrafts are introduced, the airframe and engine manufac-
turers normally provide a recommended spares provisioning
list, which is based on the projected annual flying hours,
and includes forecast usage information on new aircraft.
Also, the original equipment manufacturers provide overhaul
manuals for aircraft components capable of supporting the
assessment of required parts based on reliability information,
i.e., on the specified components’ operational and life limits.
Consequently, the forecast of spare parts is practically based
on past usage patterns and personnel experience.
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Table 15.3 Summary of the better forecasting methods

Categorization of the demand

Forecasting methods Intermittent Erratic Slow moving Lumpy

Additive Winter – AW • •

Multiplicative Winter – MW • •

Seasonal regression model – SRM • •

Component service life (replacement) • •

Croston • • •

Single exponential smoothing – SES • •

Double exponential smoothing – DES • •

Exponentially weighted moving average – EWMA • •

Trend-adjusted exponential smoothing • •

Weighted moving averages • • • •

Adaptive-response-rate single exponential smoothing • •

Poisson models • •

Binomial models • • • •

Before any consideration about lumpiness and aircraft
spare parts forecast, a discussion on the selection of the
main variables used as “clock” for spare part life evaluation
is absolutely necessary. According to Campbell’s study on
maintenance records of United State air force [4], the spare
parts demand appears strongly related to flying hours, but this
sometimes does not appear the best indicator, e.g., to forecast
landing gears, where it does not matter how long the aircraft
is in the air, but how often it lands, or radar components that
work only when the aircraft is on the ground. In conclusion,
often flying hours are the best “clock,” but for each item a
demonstration of its effectiveness is necessary [5].

In this study, different forecasting methods have been
considered [6, 7], briefly:

(a) Additive/Multiplicative Winter (AW/MW)
For each forecast, the optimal combination of level,

trend, and seasonal parameters is realized. Available val-
ues for each variable (level and trend) are 0.2 and 0.01;
seasonal length used is 12 periods.

(b) Seasonal Regression Model (SRM)
Multiplicative model with trend and seasonal compo-

nents. Seasonal length is 12 periods.
(c) Single Exponential Smoothing (SES)

The statistical software applied (Minitab 14.0©) sup-
ports the research of the optimal weight of smoothing
constant. Then the result is the best forecast with this
method.

(d) Double Exponential Smoothing (DES)
Dynamic estimates are calculated for two components:

level and trend; the software supports their optimization.
Also, in this case the best forecast with DES is guaran-
teed.

(e) Moving Average (on the generic i-period) (MA(i))
Moving Averages are calculated with different time

horizons (i period). The notation is MA(i).

This analysis employs every period length from 2 to
12.

(f) Exponentially Weighted Moving Average (EWMA(i))
Also, in this case a weight optimization of smoothing

coefficient for MA series has been realized. EWMA(i) is
calculated for i = 3, 4, 5 and 8 periods.

Despite their importance in literature, we do not evaluate
and compare methods based on Poisson approach because
they reveal inadequate in intermittent demand prediction.

The case study deals with more than 3000 different items,
with different levels of lumpiness, of Airbus fleet belonging
to Italian national-flag airline. For each component, records
relate to the daily demand level grouped in monthly interval
of item usage, from 1998 to 2003. In terms of lumpiness,
these avionic spare parts are classified in five different classes
of behavior; for each class, a representative item, named a, x,
y, z, and w for confidentiality, is indicated.

Figure 15.2 presents an exemplifying demand of item z.
The 5 “lumpiness” levels are reported in Fig. 15.3.

TheMeanAbsolute Deviation (MAD) of the forecast error
is adopted as a performance index

MAD =

n∑

i=1
|εri − εfi|
n

(15.15)

where εfi is the forecasted demand for period i. Some authors
propose the Mean Absolute Percentage Error (MAPE) for
this comparison, but in lumpy condition many item demands
are zero, and as a consequence MAPE is not defined. For this
reason, some authors propose a similar index, calledMAD/A,
also defined when the demand for items is zero:

MAD/A = MAD

AVERAGE
(15.16)
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Fig. 15.2 Demand pattern for item z
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Fig. 15.3 CV2 and ADI on monthly period for five representative
“lumpy” items

where AVERAGE is the average value of historical item
demand. Tracking signal (TS), as defined by Brown, is used
to check if forecasts are in control or not.

TSt =
∣
∣
∣
∣

CUSUMt

EMADt

∣
∣
∣
∣

(15.17)

where CUSUMt = (εrt − εft) + CUSUMt − 1 and
EMADt = α|εrt − εft| + (1 − α) EMADt−1

Limit values of TS and the optimal α value (0.25) are
derived from Alstrom and Madsen approach. For analyzed
items, forecasts are in control since the third year (that is their
tracking signals respect the limits). The different forecasting
methods are compared for all items and in particular for the
proposed five components.

Table 15.4 and Figs. 15.4 and 15.5 show, respectively,
some brief and full results of MAD and MAD/A for item
z. Table 15.5 presents, for each representative item, the list
of forecasting methods ordered by decreasing MAD, thus as-
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signing a “relative weight” related to the ranking position: A
simple elaboration of these weights permits a full comparison
in terms of total and average scores (* MW not defined for w
item, due to its characteristics).

By means of MAD/A, it is possible to compare different
forecasting methods on different items and their behavior in
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Table 15.4 Comparison among some methods

Item z MW AW SES DES MA(3) MA(4) MA(5) MA(8) SRM EWMA(3) EWMA(4) EWMA(5) EWMA(8)

MAD 4.04 3.71 4.54 5,74 5.16 4.80 4.97 4.43 3.53 3.92 3.88 4.06 4.01

MAD/A 0.58 0.53 0.65 0.82 0.74 0.68 0.71 0.63 0.50 0.56 0.55 0.58 0.57

Table 15.5 Ranking based on performance evaluation (MAD)

Weight z y x a w

20 SRM EWMA(3) SRM EWMA(4) SRM

19 AW SRM AW EWMA(3) EWMA(5)

18 EWMA(4) SES MW EWMA(5) EWMA(4)

17 EWMA(3) EWMA(4) EWMA(5) EWMA(8) EWMA(3)

16 EWMA(8) EWMA(5) EWMA(4) SES SES

15 MW EWMA(8) SES MW AW

14 EWMA(5) AW EWMA(8) SRM EWMA(8)

13 MA(12) MA(10) EWMA(3) MA(7) MA(5)

12 MA(8) MW MA(10) MA(8) MA(4)

11 MA(7) MA(11) MA(11) MA(11) MA(12)

10 SES MA(12) MA(9) MA(4) MA(9)

9 MA(9) MA(9) MA(12) MA(9) MA(10)

8 MA(11) MA(6) MA(8) MA(12) MA(11)

7 MA(10) MA(8) MA(7) AW MA(7)

6 MA(6) MA(7) MA(5) MA(10) MA(8)

5 MA(4) MA(5) MA(6) MA(6) MA(6)

4 MA(5) MA(4) MA(4) MA(5) MA(3)

3 MA(3) MA(3) MA(3) MA(3) DES

2 DES DES MA(2) DES MA(2)

1 MA(2) MA(2) DES MA(2)

Method Tot score Average score

SRM 93 18,6

EWMA4 89 17,8

EWMA3 86 17,2

EWMA5 84 16,8

EWMA8 76 15,2

MW * 60 * 15

SES 75 15

AW 74 14,8

MA12 51 10,2

MA11 49 9,8

MA9 47 9,4

MA10 47 9,4

MA7 44 8,8

MA8 43 8,6

MA4 35 7

MA5 32 6,4

MA6 29 5,8

MA3 16 3,2

DES 10 2

MA2 7 1,4

face of different lumpiness conditions: SRM, EWMA(i), and
Winter are the best forecasting methods. This result is not
related to lumpiness level, at least for lumpiness represented
by ADI < 3.3 and CV2 < 1.8, typical range for aircraft
components. Some interesting observations can be drawn:

• Figure 15.6 clearly attests the item lumpiness as a domi-
nant parameter, while the choice of the forecastingmethod
has a secondary relevance; all methods for a “little-lumpy”
item (e.g., items y and z) generally perform better than the
best method for a “high-lumpy” component (e.g., items
x and w). However, lumpiness is an independent variable
and is not controllable.

• The value of the average MAD/A calculated for all fore-
casts generated by all methods is 1.02. The aim of this
study is a comparison of different forecasting methods,
but we can conclude that demand forecasting for lumpy
items is very difficult, and results are not very accurate.
Besides, lumpy demand is often equal to zero or one: All
prediction lower than 1 must be rounded up to one. This
phenomenon introduces another source of error.

• For a single component, the average fluctuation (in terms
of MAD/A) of the ratio maximum/minimum, among dif-
ferent techniques, is about 1.55 (usually between 1.40 and
1.70); for a single forecasting method, the average fluc-
tuation (in terms of MAD/A) of the ratio maximum/min-
imum, among different components, is about 2.17 (usu-
ally between 1.57 and 2.18). Then the main relevance of
lumpiness is proclaimed again.

• Analyzing the effectiveness of a single model, research
demonstrates (Tables 15.3 and 15.4) that the Seasonal
Regression Model (SRM), the Exponentially Weighted
Moving Average (EWMA(i)), and Winter are the best
forecasting methods. It is important to remember that an-
alyzed items are effectively representative of a population
of aircraft spare parts. This result is not related to lumpi-
ness level, at least for lumpiness represented by ADI < 3.3
and CV2 < 1.8 (typical range for aircraft components).

In conclusion, intermittent demand for service parts, usu-
ally highly priced, is a very critical issue, especially for
lumpy demand prediction, as typical for avionic spare parts.
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In literature, lumpy demand forecasting is not deeply in-
vestigated, Ghobbar interesting research apart, and some-
times conflicting results are recovered. The introduction of
economic question is the final development: It is absolutely
necessary to check the impact of stocking costs and costs
due to component lacks on the forecasting methods; aircraft
operator can incur costs of more than 30,000 $ per hour if a
plane is on the ground.

15.5 PoissonModels

For builders of high-technology products, as automatic pack-
aging machines, the supply of spare parts creates a strategic
advantage respect to the competitors, with particular regard
to Low Turnaround Index (LTI) parts conceived and designed
for the satisfaction of a specific customer request. The strate-
gic problem to solve is to individualize the minimum number
of spare parts capable of avoiding the customers plants’
downtimes for a specific period, called covering period, that
coincides with the time between two consecutive consign-
ments.

The procedure actually used by a great number of manu-
facturers, named “recommended parts,” consists in the cre-
ation, at design stage, of some different groups of replace-
able parts with different covering time for every functional
machine group. This methodology is very qualitative, and
it strongly depends on the designer opinion; besides, not
considering the information feedback from customers, it
usually estimates in excess the number of spare parts in
respect to the real demands of customers. Even though this
way avoids plant downtimes, absolutely forbidden for the
high costs of production loss, it normally creates exuberant
and expensive stocks, with unsought high risks of damage
and obsolescence. For LTI items, the usual economic batch
or safety stock methods are not suitable to forecast the spare

Optimal level Storage level

No-producion costs

Storage
costs

Total costs

Fig. 15.7 Economic approach

parts amount. For such a situation, during last years a lot of
different approaches, usually based on Poisson distribution,
have been developed: Stock level conditioned to minimal
availability or to minimum total cost (see Fig. 15.7) is con-
sidered the most interesting.

Every study reported in literature assumes that item’s fail-
ure time (for spare parts demand) is exponentially distributed
and as a consequence the failure rate λ(t) is independent from
the time. This simplifying hypothesis is due to the difficul-
ties in estimating Mean Time Before Failure (MTBF) real
values. Finally, it is important to underline that the quantity
of spare parts and its temporal distribution also represent a
strategic information during the negotiations with customers
for the purchase of the plants and the quantification of related
costs.

15.5.1 Stock Level Conditioned toMinimal
Availability Method

This method first needs to calculate the asymptotic availabil-
ity A by the known formula:
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Fig. 15.8 MTTR’s structure

A = MTBF

MTBF + MTTR
(15.18)

The Mean Time To Repair (MTTR) term is derived from
different factors, as shown in Fig. 15.8:

Its value strongly depends on the spare part being on
consignment or not, and it can be calculated by the formula:

MTTR = T1 +
∫ Ts

0
(Ts − Tx) f (Tx) dTx = MTTR(N)

(15.19)

where T1 is amount of time due to factors except time of sup-
ply (for instance, disassembling), TS lead-time of supply for
not available components, N number of spare parts available
in stock at the time zero, Tx time interval between the instant
when the consumption of the part reaches the valueN (empty
stock situation) and the consignment of spare part, and f (t)
density of failure distribution.

PN = (λTs)
N · e(λTs)

N! . (15.20)

It is worth to note that for increasing N we get decreasing
MTTR, increasing availability A, and the downtimes costs
fall down. Second, the method affords the quantitative def-
inition of the storage cost that requires the definition of the
average number of parts storing during the time of supply TS.
If the warehouse contains N parts at time zero, the probability
PN of N failures in TS can be pointed out by Poisson formula:

In the same way, it is possible to calculate the probability
of one, two, or N failures.

Let R indicate the cost of each spare part, and s the stoking
cost index per year; the annual stockcosts C can be evaluated
by the formula C = R · s [N · P0 + (N − 1) · P1 + (N − 2) ·
P2 + . . .PN−1] that can be used in an iterative process in
order to find the optimum level N that leads to a minimum
for the cost C, all the while allowing the minimum level of

availability AMIN(N) to guarantee on-time technical requests
to be satisfied (for example, safety questions or productivity
level).

⎧

⎨

⎩

min [C = R · s (NP0 + (N − 1)P1 + (N − 2)P2

+ . . . . . . . . . . . . . . . · · · + PN−1)]
subject to A(N) = MTBF

MTBF + MTTR(N)
≥ A min

(15.21)

15.5.2 Stock Level Conditioned toMinimum
Total Cost

The aim of thismethod is to determinate the total amountN of
replaceable parts in order to minimize the total cost function
Ctot defined by

Ctot(N) = C1 + C2 (15.22)

The warehousing cost term C1 can be estimated as in
(15.21), while for the cost C2 it is necessary to quantify the
probability of stock-out situations. During the time TS, pro-
duction losses could occur if the number of failures exceeds
the number N of parts supplied at the consignment time,
assumed as zero. The cumulative probability calculated by
Poisson distribution is:

P = PN+1 + PN+2 + PN+3 + .. . . . (15.23)

Let d indicate the annual part consumption of a customer
and CM the cost corresponding to a loss of production; the
term due to stock-out is

C2 = CM · d · P (15.24)

For a rapid choice, it is possible to employ the following
user-friendly abacus (Fig. 15.9):
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15.6 Models Based on Binomial
Distribution

Industrial applications show that the methodologies based
on Poisson formula usually overstimate the real replace-
ments consumption. To overcome this problem, we present
a new quantitative procedure that does not consider the re-
quest of parts being linear during time, as Poisson procedure
does.

The innovative approach calculates the requirement of
components, for a given covering period T, by the addition
of two addenda x1 and x2: The first is related to the wear
damage of the replaceable component and can be deducted by
MTBF value, while the second is related to the randomness
of the breakdowns and covers the possibility of failures in
advance respect to the average situation. The optimal number
of replacements is N = x1 + x2.

Let n be the number of different employments for compo-
nent in several machines owned by the customer and T the
covering period; x1 can be expressed by:

x1 = int
(

T

MTBF

)

· n (15.25)

This average term assumes interesting values only in
presence of a high consumption of the component, in par-
ticular in the rare situations when an LTI part has a lot of
applications, indicated by n. Anyway, this term x1 represents
a scanty information; we have to consider the second term
that corresponds to the number of parts to get the required
value of the customer service level LS in the residual time
Tresidual, defined as the residue of the ratio between T and
MTBF. The customer service level is the probability that the
customer finds the parts during the remaining period and
can be fixed separately according to strategic and economic
assessments.

The value of x2 is got by the following formulas:

Tresidual = T − int
(

T

MTBF

)

· MTBF (15.26)
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p = Q (Tresidual) = 1 − e−( Tresidua1
MTBF ) (15.27)

where p represents the failure probability during Tresidual; by
p and the binomial distribution, it is easy to calculate the
probability that a component (with n applications) requires
less than x2 replacements in Tresidual:

P (x ≤ x2; n;Q (Tresidual)) =
x2∑

i=0

(

n
i

)

(1 − p)n−i · pi

(15.28)

As a consequence, it is possible to quantify the no-stock-
out confidence level to compare with the customer satisfac-
tion as

LS (x2) = 1 – P(x ≤ x2; n; 0Q (Tresidual)) (15.29)

The main innovative result is that the procedure does not
consider the total request of spare parts to be linear versus
time, as other methods do; it tries to set the best moment for
the supply in order to maximize the customer service level
without increasing the average amount of spare parts. In fact,
the new method respects the average consumption by the
term x1 and increases the customer service levels planning
the requirement for spare parts in the residual time by the
term x2.

15.6.1 An Industrial Application

This procedure is successfully running on PC systems in
an Italian company leader in manufacturing of packaging
machines. The supply of spare parts creates a strategic ad-
vantage in respect to competitors, because the automatic
packaging machines usually present a long-life cycle and
contain a lot of functional groups, often ad hoc conceived
and designed. The economic impact of replacement activity
is not negligible: It usually amounts up to 15% of the global
business volume. Surely a good forecast of spares parts can
simplify the manufacturer production planning. Before its
industrial real-time application, the innovative procedure was
tested to forecast the consumption of 190 different spare parts
indicated by several customers over a 33-month period (Figs.
15.10 and 15.11).

The experimental results of these procedures were evalu-
ated by two performance indexes:

1. Percentage number of spare parts without stock-out peri-
ods

2. Effective utilization of replacements by the customer

As a first test, the new procedure was applied with the
restrictive hypothesis of a covering period of 1 month: Using
LS equal to 99.8%, the method was good performing for
166 replaceable parts and there was a very good correlation

Fig. 15.10 A packaging machine example for cigarettes production



288 E. Ferrari et al.

Fig. 15.11 Example of N
evaluation for a specific item
(code 0X931: pin for hoes gear
levers)

X2 LS (X1+X2) X2 LS (X1+X2)

(items) (items) (items) (items)

MTBF (h) 3945 0 0 0 14 0,883 14

Positions (n) 26 1 0 1 15 0,943 15
Confidence level 97% 2 0 2 16 0,976 16

Supplying time (h) 2300 3 0 3 17 0,991 17

4 0,002 4 18 0,997 18
5 0,007 5 19 0,999 19

6 0,022 6 20 1 20
Failure ratio � 0,000253 7 0,055 7 21 1 21

X1 0 8 0,118 8 22 1 22

Tresidual (h) 2300 9 0,218 9 23 1 23
P(Tresidual) 0,442 10 0,351 10 24 1 24

X2 See table 11 0,505 11 25 1 25
N = X1 + X2 16 12 0,658 12 26 1 26

13 0,787 13

INPUT

OUTPUT

Spares number

Time (mon)
1 33

70

60

50

40

30

20

10

0
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

consum.

LA = 99.8%

Poisson 90%

Fig. 15.12 Pin for hoes gear levers forecasts and applications

between prevision and real customer consumption, as shown
in comparison in Fig. 15.12 to the real consumption and
Poisson linear forecast (LS = 90%) for a pin for hoes gear
levers with 26 applications in the customer machine park.

The 88% of components investigated did not present any
month with stock-out, 3% presented less than 3 months of
underevaluation, and 9% had more than 3 months in stock-
out. On the other hand, the utilization index showed that the
87% of the components had a normal or good or optimal
customer use: In other words, they did not remain in spare
parts warehouse more than 15 days before the installation
(see Fig. 15.13).

Moreover, parts with bad forecasts were investigated to
understand the reasons with very encouraging results: In fact,
errors were usually caused by preventive maintenance oper-
ations, machines revision, changes of suppliers, or changes

No stockout
88%

> 3.9%

Up to 3%

Normal use
51%

Good use
19%

Optimum use
17%

  Total
 use
8%

No-sufficient 1%

No-use 4%

Fig. 15.13 Simulated stock-out periods (months) and real utilization
of dispatched replacements

in the application of the component not pointed out by the
customer. The effect of the extension of the covering period
was analyzed by testing the newmethod with different values
of T. For increasing T, we get an increasing stock of spare
parts, but the number of stock breakages strongly decreases:
In fact for T = 1 month, the method well-performed for the
88% of the parts is investigated, and this percentage increased
up to 90% for T = 3 months, to 95% for T = 6 months, and
to 98% for T = 1 year. Therefore, it was possible to study the
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Fig. 15.14 Real use compared to supplying time T
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Fig. 15.15 Sensibility to MTBF evaluation

optimum extension of the covering period that for the 190
components investigated was found equal to 3 periods (see
Fig. 15.14).

Some simulations with different values of MTBF show
the influence of its approximate evaluation: Values of MTBF
overestimated for 10% and 20% reduce the performance
of the method, respectively, of 6% and 9% in terms of
percentage number of spare parts without stock-out periods
(see Fig. 15.15).

In spite of this important conclusion, it is important to re-
member that MTBF values have to be updated, starting from
the initial value of MTBFinitial, by the feedback information
from the customers; the most suitable control parameter is
the component quantity Y employed by the customer during
the covering period T and the relation (15.30) that gave the
best results, as shown in Figs. 15.16 and 15.17:

MTBFupdated = MTBFinitial · (MTBFinitial) + nT
Y · (nT)

MTBFinitial + nT
(15.30)

where MTBFupdated is the weighted average of MTBFinitial,
and nT

Y (weights under round brackets).

100

90
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70

60

50
MTBFMTBF(C)

% underesteemated

Stockout
periods

> 3

< 3

1 use

0

Fig. 15.16 MTBF correction effect on stock-out
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Normal use

No-use

Fig. 15.17 MTBF correction effect on items’ utilization

15.7 Binomial Model Extension Based
on Total Cost Function

The proposed model required the assumption of a specific
spare part LS defined as the probability of finding the part in
case of breakdown. Some simulations with different values
of LS show that it is important to assume LS ≤ 80% and
to reserve LS ≥ 90% for particular situation, e.g., customers
placed in a far country or without skilled workers. It is
possible to determinate the number N of replaceable parts
needs and therefore the LS value capable of minimizing a
total cost function defined by the sum of storage costs and
production losses costs [30, 31].

15.7.1 Service Level Optimization: Minimum
Total Cost Method

The aim of this paragraph is to determine the requirement
N of replaceable parts capable of minimizing a total cost
function defined by the sum of production losses costs C1

and storage costs C2. During the time TS, production losses
could occur if the number of failures exceeds the number N
of supplied parts which are available after the consignment
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at the time zero. The corresponding cumulative probability
can be calculated by formula:

P = P (N + 1) + P (N + 2) + P (N + 3) + . . . . . . . . .

= 1 − LS (x2) = 1 − LS (N − x1) (15.31)

LS (N − x1) = P (X ≤ N − x1, n, Q (Tresidual)) (15.32)

If d and CM represent, respectively, the customer annual
part consumption and the cost for a production lack, the total
cost C1 due to stock-out is

C1 = CM · d · P (15.33)

The storage cost C2 requires the definition of the average
number of parts storing during the supplying time TS. Two
different situations are possible related to spare part MTBF
and TS:

Case (a) MTBF < TS; in this case, N = x1 + x2 = x2
because x1 = 0

If the warehouse contains N parts at time zero, the proba-
bility PN of N failures in TS can be pointed out as in (15.21).
Let R indicates the cost of each spare part, and t the annual
stoking cost index; the global annual storage cost C can be
evaluated by the following:

C = R · t
N

∑

k=0

((

N
k

)

(1 − p)N−k · pk
)

(N − k) (15.34)

Case (b) MTBF ≥ TS
In this case, the definition of the average number of parts

storing during the supplying time TS has to take into account
both contributions, in terms of average stock S(x1) and S(x2),
of x1 and x2. LS is connected to x2, and the minimum real
value of N is therefore x1. We can get these contributions in
(15.36) by the previously defined values of x1 and x2. The
annual stock cost C can be evaluated by

C = R · t · [S (x1) + S (x2)] (15.35)

that can be used in an iterative process in order to find the
optimum level N according to the minimization of previous
cost C.

S (x1) = 1

2

(
x1 · MTBF

Ts

)

; S (x2) =

⎛

⎜
⎜
⎜
⎝

x2 · MTBF +
(
N−x1∑

k=0

(

( Nkx1) (1 − p)N−x1−k · pk) · (N − x1 − k)

)

· (Ts − MTBF)

Ts

⎞

⎟
⎟
⎟
⎠

(15.36)

15.7.2 Simulation and Results

A simulative model has been designed in order to find the
optimum value of LS for different values of the parame-
ters. Input data are MTBF, number of employments n, time
for supply TS, cost of each spare part R, annual stoking
cost index t, down time cost per hour Cm, MTTR, total
hours per year of up times plus down times H, and the
customer annual part consumption d. Assuming, for instance,
MTBF = 10,000 hours and n = 5, the optimum value of
LS versus the two variables (Rt)/(Cmd) and Tsd is reported
in Tables 15.6 and 15.7 (n = 5 and n = 15, respectively).
It is worth to state that LS must be close to 100% when
Cm � R, while in the opposite case the optimum LS is
variable in function of TSd, and is anyway tending upward for
decreasing n.

Figure 15.18 shows how to employ the abacus.

15.7.3 An Industrial Application

The case study is related to an important producer of steam
boiler systems, actually manufacturing components for

Table 15.6 LS % and minimum cost related to Tsd and Rt/(Cmd) − n◦
of employments n = 5

LS % (n = 5) Tsd

Rt/(Cmd) 5 4 2 1 0.8 0.2 0.02 0.02

9 0.7 1.8 13.5 37 44.9 81.9 98 99.8

3 6.5 13.1 13.5 37 44.9 81.9 98 99.8

1.5 26.4 40.6 46.8 37 44.9 81.9 98 99.8

0.9 60.5 40.6 46.8 78 44.9 81.9 98 99.8

0.3 89.9 74.3 79.6 78 83.9 81.9 98 99.8

0.1 100 94.9 95.7 95 97.4 81.9 98 99.8

0.03 100 100 99.6 100 97.4 98.6 98 99.8

0.003 100 100 100 100 99.8 99.9 100 99.8

0.0003 100 100 100 100 100 100 100 100
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Fig. 15.18 Graphical solution for this methodology

Table 15.7 LS % and minimum cost related to Tsd and Rt/(Cmd) − n◦
of employments n = 15

LS % (n = 5) Tsd

Rt/(Cmd) 5 4 2 1 0.8 0.2 0.02 0.02

9 4.7 10.2 13.5 37 45.0 81.9 98 99.8

3 34.8 28.2 42.5 75 45.0 81.9 98 99.8

1.5 57.3 52 71.4 75 81.9 81.9 98 99.8

0.9 76.9 73.8 71.4 75 81.9 81.9 98 99.8

0.3 89.8 88.5 89.3 93 96 98.4 98 99.8

0.1 96.4 95.9 96.9 99 99.4 98.4 98 99.8

0.03 99 98.8 99.3 100 99.4 99.9 98 99.8

0.003 100 100 100 100 99.9 99.9 100 100

0.0003 100 100 100 100 100 100 100 100

internal use and for replacements ordered by customers
according to a fixed EOQ (Economic Order Quantity). The
application deals with the optimization of supplying time in
order to reduce the total management costs of spare parts at
assigned EOQ, that is, the aim is to define the time between
consignments capable of reducing total costs with the same
value of EOQ. Three components (a support grid, the

clamp, and a special gasket) are considered with a downtime
calculated as

Downtime = MTTR · d · n (15.37)

In particular, the support grid has n = 5 employments,
H = 1760 total hours per year, d = 0.5 annual part con-
sumption [unit/year] on the whole, MTTR = 10 [hours],
MTBF = 8800 [hours], down time cost per hour Cm = 1000
[AC/hour], and as a consequence, CM = Cm· MTTR= 10,000
[AC] cost for a production lack. This component was supplied
in fixed EOQ with N = 3 elements, at a cost per unit
R = 100 [AC/unit] (R � Cm); the relative risk of damage and
obsolescence suggests t = 0,1 for the annual stoking cost
index. Entering the abacus with these values for N, CM, and
R·t (see Fig. 15.18), we obtain as a result the optimal time for
supply TS = 400 [days]; bymeans of Eqs. (15.31) and (15.32)
with N = x1 + x2 = 0 + 3 (x1 = 0 because MTBF < TS),
we determine LS ≈ 99%: This very high level is due to low
values for t and R/Cm rate.

The results following by the use of the graphic abacus are
shown in Table 15.8 for the whole set of components.
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Table 15.8 Optimization of TS for fixed number of spare parts N

Component N = x1 + x2 TS (days) LS

Support grid 3 400 99%

Clamp 4 90 98%

Special gasket 5 90 95%

Down time (h)

Support grid Clamp Special gasket Others

1400

1200

1000

800

600

400

200

0

Fig. 15.19 Downtimes for grid, clamp, gasket, and all the other com-
ponents (cumulative)

Results are summarized in Fig. 15.19 and compared with
the output of an existent minimum cost method based on
Poisson distribution.

15.8 Weibull Extension

The innovative methodology can be extended to the whole
lifetime by implementing the Weibull failure rate function
to LTI spare parts stock level in maintenance system with
declared wear conditions. Weibull distribution is one of the
most commonly used lifetime distributions, and it is flexible
in modeling failure time data, as the corresponding failure
rate function can vary or assumed to be constant. Litera-
ture offers a lot of papers dealing with models for bathtub-
shaped failure rate. For example, Hjorth [36] proposed a
three-parameter distribution; Mudholkar and Srivastava in-
troduced an exponential Weibull distribution [37]; Chen [39]
spoke about a two-parameter lifetime distribution with bath-
tub shape or increasing failure rate function; Xie [39] wrote
a very interesting paper about a model that can be seen as a

generalization of theWeibull distribution and tries to improve
the procedure of estimation of the parameters.

The estimation of well-known parameters η (scale) and β

(shape) in a Weibull distribution can be performed graphi-
cally, but this is not accurate unless we have a large sample
size, not always available in case of LTI spare parts; anyway,
we focus our attention to the final zone in the traditional “bath
tub” wear model, and our aim is to understand whether the
hypothesis of constant failure rate in our previous works in-
creases or not the spare parts costs, in comparison with more
sophisticated distributions. For this reason, we developed our
model by the use of traditional Weibull distribution, but any
model mentioned above can be easily stretched.

15.8.1 TheModifiedModel Extension
byWeibull Distribution

By historical data, it is possible to determine the cumulative
percentage of components failures related to the lifetime. The
graphic approach of Fig. 15.20 permits the definition of the
Weibull distribution parameters η (scale parameter) and β

(shape parameter). This is possible by Plait transformation
(Weibull transformation): Starting from the failure rate calcu-
lated as in (15.38), the reliability as in (15.39), the cumulative
distribution functions as in (15.40), and the definition of a
normalized parameter x as in (15.41), find a linear correlation
between the parameter x and cumulative distribution function
(15.42 and 15.43), represented in Fig. 15.20.

λ(t) = d

dt

(
t

η

)β

= β

η

(
t

η

)β−1

= β

ηβ
tβ−1 (15.38)

R(t) = e
−

(
t
η

)β

(15.39)

F(t) = 1 − R(t) = e
(

− t
η

)β

(15.40)

x = − t

η
(15.41)

βLn(x) = Ln

(

Ln

(
1

1 − F(x)

))

(15.42)

The optimal replacements number of LTI spare parts are
also given by relation (15.25), while relations (15.27) and
(15.28) are modified with Weibull parameters η and β:

p = Q (Tresidual) = 1 − e
−

(
t
η

)β

(15.43)
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Fig. 15.20 Graphical estimation of the β value

P (x ≤ x2; n;Q (Tresidual)) =
x2∑

i=0

(

n
i

)

(1 − p)n−i · pi

(15.44)

It is possible to quantify the no-stock-out confidence level
to compare with the customer satisfaction as LS(x2) = 1 –
P(x ≤ x2; n;Q(Tresidual)). As previously stated, LS must be
close to 100% when Cm � R, while in the opposite case the
optimum LS is variable in function of TS · d, but in this case
for assigned MTBF the optimum LS increases likewise the
number of employments n.

15.8.2 Simulation and Results

This extended model is compared with previously proposed
models for different values of the parameters involved. The
relation between the parameters MTBF, TS, and β appears

very interesting. In fact, the first two parameters are fun-
damental to find the quantity x2 (15.29), (15.44), while β

indicates the gap from the hypothesis of constant failure
rate. Surface of Fig. 15.21 (with TS equal to 500 hours and
customer service level 95%) relates the difference of optimal
replacement numbers, respectively, calculated by (15.29) or
(15.44) for given MTBF and β values. For a fixed value of
MTBF, the saving increases with greater values of β, because
the use of Weibull distribution takes into account that the
failures are grouped in a specific time region where part
breakdowns present a high probability to occur. The MTBF
value of 500 hours is very important because it definesTresidual
equal to zero, and so x2 is equal to zero for any approach.
Values of MTBF lower than 500 hours mean that optimal
replacements number is influenced by quantity x1, while
values greater than 500 are defined by the only use of quantity
x2 (x1 equal to zero). Considering an MTBF range starting
from TS value and for a specific value of β, the saving of
spare parts needed decreases with greater values of MTBF,
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Fig. 15.21 Difference of optimal replacements numbers respectively calculated by (15.29) or (15.44) respect to the average life of the component
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as shown in Fig. 15.22 where two different values of the pa-
rameter TS (respectively, 500 and 1000 hours) are compared.
Figure 15.23, as Fig. 15.24, relates the difference between
the optimal replacements number calculated by (15.29) and
by (15.44) for TS equal to 1500 hours.

Obviously, a low frequency of consignment creates a
greater requirement of spare parts. Also in this case, it is
important to notice that methods behave as one for MTBF
equal to TS.
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Fig. 15.24 Number of spare parts saved

15.9 A Differentiated Approach for Spare
Parts: Standard Versus Custom-Made
Components

There are many situations in which it is necessary to manage
different components, commercial components and specific
components. The former identify the so-called “standard”

materials, which can be found directly on the common spare
parts market, while the construction codes are all those
custom-made components. Each macrofamily requires dif-
ferentiated management depending on different factors, such
as the differential cost, which often characterizes the con-
struction materials from the commercial, rather than the sup-
ply lead times, usually longer for the former. The case study
refers to a large-scale plant engineering sector with a spare
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Part Description PREV TAB SS Stock LS des LS stock T.A. LT

CM01 CUSCINETTI A COPPIA 420 RD 10 10 0,75 0,00 F40 28

CM02 ROTELLA MCYRD17-3 600 RD 20 127 0,75 1,00 F 28

CM03 STELLA ELAST. 105x26 90 RD 3 92 0,75 1,00 F 28

CM04 GUARNIZIONE ORM 055-10 30000 RD 500 7995 0,75 1,00 F40 28

CM05 CARTUCCIA FIOA 360 240 RD 10 125 0,75 1,00 F 60

CS01 NASTRO 180 RD 5 90 0,75 1,00 F 28

CS02 GUIDA TAPPI 160 RD 10 43 0,75 1,00 F 50

CS03 GUIDA 16 RB 1 18 0,75 1,00 F 28

CS04 STELLA 9 R3 1 1 0,75 0,02 F 28

CS05 TESTA TRANCIANTE D=6 800 RD 30 30 0,75 0,00 F40 90

Fig. 15.25 Reference sample of the codes (CM ## commercial code, CS ## constructive code)

parts park consisting of these two macrofamilies; in order
to perform detailed and consistent analyzes, a representative
sample of the entire spare parts park was extracted. The
sample contains different types of codes (5 commercial and
5 constructive) with different characteristics:

• Codes subject to wear – theymust be replaced periodically
with new ones; therefore, they present a consumption
history characterized by significant movement. These are
therefore interesting codes to be analyzed in terms of
forecasting.

• Planned codes (Fig. 15.25).

The following information is also shown in the table:

• Current forecast value (PREV) set by the spare parts dealer
• Current safety stock value (SS) set by the spare parts

dealer
• Repetitiveness (TAB) set by the spare parts dealer
• Current stock value (Giac)
• Service level (LS Des) imposed by company policy
• Calculated service level (LS Giac) based on the current

stock value
• Type of code (T.A.)
• Lead time (LT) set to system

The following data was retrieved for each code:

• Average consumption in the past years (from 01/2013 to
06/2018) [units/month]

• Monthly stock trend (from 01/2013 to 06/2018)
• Total number of applications, calculated on the basis of

the number of machines in the park installed, globally, in
which the code is mounted, and the number of components
present in each equipment

• Average consumption calculated as the reciprocal of the
component’s running time (Fig. 15.26)

All forecasting methods, except for the Poisson method
and the binomial method, use only the consumption history
as the database and provide the sales trend; on the contrary,
the Poisson method and the binomial method provide a sales
forecast value for a given time horizon. The results obtained
from the application of the models to the components of
the commercial (CM) and construction (CS) categories are
critically compared below. The results relating to the codes
CM01 and CS01 are reported, to which all the models ex-
cluded the Poisson method and the binomial method, and
CM02 and CS03, to which only the Poisson method and the
binomial method are applied. In the following is the historical
consumption and monthly trend of stock patterns five years
and a half long [units] for codes CM01 (a coupled bearing),
CS01 (a belt), CM02 (a roller), and CS03 (a guide) (Figs.
15.27, 15.28, 15.29, and 15.30):

15.9.1 Performance Analysis of Statistical
Models

The performance of statistical methods for the analysis of
time series with exponential smoothing parameters depends
on how the same smoothing parameters are estimated: Sig-
nificant improvements in the performance of the forecasting
methods can be obtained by further analyzing the historical
series of consumption relating to the various codes making
up the selected reference sample. The following values were
used for the applications discussed:

• For the SES and DES models, the optimal parameters are
calculated using an ARIMA model.

• For the Winter models (MW and AW), smoothing param-
eters are used for the various components equal to 0.2, as
recommended by the literature.
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Fig. 15.26 Forecasting methods applied to the reference sample

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

0

2013 2014 2015 2016 2017 2018

200
150
100

50

250

38

11
3

16 20 17
6

22 16
8

20 22

6

29
14

2932

5 5

50 45

8

34

11

34

54
46

36
48

66

32
24

59
48

35

54

35 34 30
38

29

10

135

75

27

74

34

10

50

74
60

50

27
10

3632
22 22 25

46

83

34

15

50
64

53

G
IA

C
E

N
Z

A

MESE

2013 2014 2015 2016 2017 2018

Fig. 15.27 Historical consumption and monthly trend of stock patterns for code CM01

• For the WMA and EWMAmodels, it is advisable to carry
out the analysis of the optimal value of the parameter N,
number of periods considered in the time window.

• For the Croston model, it is advisable to carry out the
analysis of the smoothing coefficient α.

The proposed Key Performance Indicator for a quantita-
tive evaluation of the predictive capacity of the models is a
standardized MAD:

KPI = MAD

A
=

∑n
i=1 [εri − εfi]

n
∑n

i=1 εri

n

εri = real historical consumption data for the i-th period
εfi = forecast for the i-th period
n = number of periods (months)

The indicator was calculated for each code in the sample
codes and for all the models considered in order to draw up
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Fig. 15.29 Historical consumption and monthly trend of stock patterns for code CM02

a performance classification; the best performances corre-
spond to MAD/A values much lower than the unit, while the
worst ones are characterized by values higher than the unit
(Fig. 15.31).

The average value of MAD/A is 0.78, which means that
on average the forecasting methods used have performed

well; moreover, best values are obtained for CS03 and CS04
codes having a lumpy demand. The following table shows
the ranking of the performance of the different methods for
all the codes analyzed (Fig. 15.32).

It is therefore possible to construct a ranking based on
the performances obtained by the different methods for the



15 Statistical Management and Modeling for Demand Spare Parts 299

15

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

0

2013

6 7 7

4 5

2 2

5 4 4
6 6

5 5 5 5

8

3 3 3
5

7
9

7 7 7 7 7

10

13
15

4 4 4

7 7
6 6 6

5 5 5 5 5 5 5 5 5 54 3 3 3
2 2

4

7 7 7

21
20 20

19

3
4

3

G
IA

C
E

N
Z

A

2014 2015

MESE

2016 2017 2018

2013 2014 2015 2016 2017 2018

2

4

6

8

10

12

14

Fig. 15.30 Historical consumption and monthly trend of stock patterns for code CS03

0,00

M
W AW SES

DES

M
A(2

)

M
A(3

)

M
A(4

)

M
A(5

)

M
A(6

)

M
A(7

)

M
A(8

)

M
A(9

)

M
A(1

0)

M
A(1

1)

M
A(1

2)

SRM
_M

SRM
_A

EW
M

A
W

M
A

CROSTON

0,20

0,40

0,60

0,80

M
A

D
/A 1,00

1,20

1,40

1,60

1,80
CM01

CM02

CM03

CM04

CM05

CS01

CS01

CS03

CS04

CS05

Fig. 15.31 Rend of the MAD/A indicator by code for different methods

various codes, associating a score to each method, corre-
sponding to its position. For instance, Croston method ranks
in fourth position for CM01, in sixth position for CM02,
etc.; to this model, 4 points for CM01, 6 points for CM02,
etc., are assigned, for a total amount of 62 points. On the
basis of this allocation criterion, the lower the score, the
better the overall performance of the model. The Additive
Seasonal RegressionModel (SRM_A) appears to be the most
applicable forecasting method to the spare parts fleet.

15.9.2 Performance Analysis of Poisson
and Binomial Models

The same methodology of investigation was adopted for the
Poisson method and the binomial method, as they can be
easily compared; since they both provide a prediction con-
cerning the number of pieces that will be consumed during
a certain time horizon, set a certain level of service (LS).
The following tables show the forecast values provided by
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Posizione CM01 CM02 CM03

CODICI COMMERCIALI CODICI COSTRUTTIVI

CM04 CM05 CS01 CS02 CS03 CS04 CS05

1 SRM_A SRM_A SRM_A SRM_A SRM_A SRM_A SRM_A SRM_A SRM_M SRM_A

2 SRM_M SRM_M SES SRM_M SRM_M SRM_M SRM_M SES SRM_A SES

3 SES MW CROSTON SES MA(7) MW SES SRM_M EWMA MA(9)

4 CROSTON AW MA(12) MA(5) SES AW CROSTON CROSTON AW MA(11)

5 MA(12) SES MA(11) MA(9) MA(10) SES MA(11) MA(9) SES MA(10)

6 MA(11) CROSTON MA(10) MA(6) MA(11) MA(8) MA(12) MA(11) CROSTON CROSTON

7 MA(10) MA(12) EWMA MA(10) CROSTON MA(7) MA(10) MA(10) WMA MA(7)

8 EWMA MA(11) MA(9) MA(11) MA(12) MA(4) MA(9) WMA MA(11) MA(5)

9 MA(6) MA(8) WMA MA(8) MA(9) MA(9) MA(7) MA(8) MA(12) MA(12)

10 WMA MA(7) AW MA(7) MA(8) MA(6) MA(8) MA(12) MA(10) AW

11 MA(8) MA(10) MA(8) CROSTON MA(6) CROSTON AW EWMA MA(8) MA(8)

12 MA(9) MA(9) MA(7) MA(4) MA(5) MA(5) MA(6) MA(5) MA(5) MA(6)

13 MA(7) MA(6) MA(6) WMA MA(4) MA(10) MA(5) MA(7) MA(9) MW

14 MA(5) WMA MW EWMA MW MA(11) MW MA(6) MA(6) WMA

15 MA(4) MA(4) MA(3) MA(12) AW MA(12) MA(4) MA(4) MA(7) EWMA

16 MA(3) EWMA MA(2) MW WMA WMA MA(3) MA(3) MA(3) MA(3)

17 AW MA(5) MA(4) AW EWMA EWMA WMA AW MA(4) MA(4)

18 MA(2) MA(3) MA(5) DES MA(3) MA(3) EWMA MW MA(2) DES

19 DES DES DES MA(3) MA(2) DES MA(2) DES DES MA(2)

20 MW MA(2) SRM_M MA(2) DES MA(2) DES MA(2) MW SRM_M

Fig. 15.32 Ranking of the performance of the adopted forecasting methods

PREV TAB SS N° of applications n° parts LS�75% n° parts LS�85% n° parts LS�95%

CM01 420 RD 10 9866 483 491 504

CM02 600 RD 20 1140 740 750 757

CM03 90 RD 3 572 100 103 109

CM04 30000 RD 500 1189 26014 26072 26170

CM05 240 RD 10 771 271 277 287

CS01 180 RD 5 503 178 183 191

CS02 160 RD 10 61 172 177 185

CS03 16 RB 1 58 17 19 21

CS04 9 R3 1 47 9 10 12

CS05 800 RD 30 1202 975 987 1006

T1 = 12 months

Consumption history

Fig. 15.33 Forecast values based on the consumption history with the Poisson method

the Poisson method and the binomial method, as regards the
consumption history (Figs. 15.33 and 15.34).

By cross-checking the forecast values obtained by the
Poissonmodel, with those generated by the binomial method,
the fact immediately emerges that the former, with the same
time horizon and service level adopted, are greater than the

latter. This is in accordance with the technical literature, from
which it is derived that the binomial method was precisely
introduced as a development of the application of the Poisson
formula with which often inaccurate and tending to over-
estimate forecasts are recorded. It can therefore be stated
that based on the information and the methods with which
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PREV TAB SS N° of applications n° parts LS�75% n° parts LS�85% n° parts LS�95%

CM01 420 RD 10 9866 471 479 492

CM02 600 RD 20 1140 546 552 563

CM03 90 RD 3 572 92 95 100

CM04 30000 RD 500 1189 25629 25635 25645

CM05 240 RD 10 771 229 234 241

CS01 180 RD 5 503 150 154 160

CS02 160 RD 10 61 155 156 168

CS03 16 RB 1 58 15 16 19

CS04 9 R3 1 47 8 9 11

CS05 800 RD 30 1202 670 677 687

T1 = 12 months

consumption history

Fig. 15.34 Forecast values based on the consumption history with the binomial method

Codice MAD A MAD/A

CM01 131,33 256,67 0,512

CM02 114,33 391,00 0,292

CM03 15,33 60,00 0,256

CM04 3503,67 17724,00 0,198

CM05 36,00 126,33 0,285

CS01 18,67 107,67 0,173

CS02 29,67 81,00 0,366

CS03 2,67 4,67 0,571

CS04 3,33 3,33 1,000

CS05 155,33 419,67 0,370

Fig. 15.35 Values of MAD/A related to the binomial method

the forecast analyses were conducted, the binomial method
is more efficient than the Poisson model. Also, for this
comparison the same KPI used for the comparison between
the statistical models was used.

From the observation of the obtained MAD/A values,
it can immediately be deduced that, CS04 code apart, the
binomial method has excellent performances. The average
value of MAD/A is 0.40, which means that the binomial
method is the best performing for the spare fleet (Fig. 15.35).

15.9.3 Operational Management of Spare
Parts

In addition to identifying the best method for forecasting
the quantity of parts for each spare part that the market

will require, the company must also be able to operatively
manage its own codes, with the aim of achieving a correct
optimization policy. Therefore, the company will have to si-
multaneously determine the spare parts that will be consumed
in the coming months, using one of the forecasting models
studied, and define what will actually be the correct quantity
of components to keep in stock over a given time horizon.
The objective of the criterion of minimum global cost is to
determine the optimal number of spare parts to keep in stock
corresponding to the best trade-off between the overall cost
related to their management.

minCtot(N) = C1 + C2

N = optimal number of spare parts of the code to keep in
stock

C1 = R·ϕ·[N·pd,T,0 + (N − 1)·pd,T,1 + (N − 2)·pd,T,2
+· · · + pd,T,N − 1] storage cost

T = duration of the procurement cycle [unit of time]; it is
the sum of the time of issue of the purchase order and the
procurement time

d = average code consumption per unit of time [units/unit
of time]; it is the average value based on the consumption
history

Pd,T,x = probability that x requests of the same spare will
occur in the interval T

R = purchase cost of the code [AC]
ϕ = distribution overhead [%]; it is the percentage rate

expressing the cost of stock
R · ϕ = specific annual cost of storage [AC/year]
C2 = Cm · d · P stock-out cost
Cm = unit cost of stock-out [AC/units]
P = probability of higher demand for N spare parts in the

interval T
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Fig. 15.36 Optimal units in stock and trade-off for the CS04 code (d = 0.62 units/month, T = 4033 months, R = 9,59 AC,ϕ = 0.2)

P = Pd,T,N+1 + Pd,T,N+2 + Pd,T,N+3 + · · ·
= 1 − (

Pd,T,0 + Pd,T,1 + Pd,T,2 + · · · + Pd,T,N
)

The distribution overhead ϕ depends on the fixed and
variable costs related to the management of the materials in
stock and the number of movements in a year. The following
cost items are considered as follows (annual costs):

• Overhead costs on the “warehouse cost center”
• Cost of the staff involved
• Cost of utilities (electricity, methane gas...)
• Cost for warehouse maintenance
• Cost of material handling
• Depreciation
• Other costs

The total amount of these costs is spread over the number
of units handled in a year for each code; this means that the
costs of the spare parts in stock, with zero rotation index,
are then divided between the materials with nonzero rotation
index.

The determination of the costs of stock-out is differ-
ent for a manufacturing company with respect to a user:
The unavailability of a spare part for a customer can have
different effects on company costs, depending on different
factors; among themmay be the importance of this spare code
for the requesting customer, which fundamentally depends
on the possibility that the unavailability of the component
entails the nonproduction of the customer. This situation is
reflected in the issue of an urgent request by the customer.
In other cases where production is not stopped, for example,
for material required to replenish the customer’s spare parts
warehouse, the customer’s request follows an ordinary pro-
cedure: In these cases, there is no economic damage for the
manufacturing company (Fig. 15.36).

Cm = α·R+ V

α = percentage corresponding to the increase in the purchase
cost that the producer must incur for his emergency supply
[%]; in this case study, α = 0.1 and α = 0.05 for construc-
tion and commercial components, respectively

V = sale price of the code to the customer [AC]
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Abstract

Definitive screening design (DSD) is a new class of three-
level screening designs proposed by Jones and Nacht-
sheim [3] which only requires 2m+1 runs for experiments
with m three-level quantitative factors. The design matri-
ces for DSDs are of the form (C′, − C′, 0)′ where C is
a (0,±1) submatrix with zero diagonal and 0 is a column
vector of 0’s. This paper reviews recent development on
D-efficient mixed-level foldover designs for screening
experiments. It then discusses a fast coordinate-exchange
algorithm for constructing D-efficient DSD-augmented
designs (ADSDs). This algorithm provides a new class
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of conference matrix-based mixed-level foldover designs
(MLFODs) for screening experiments as introduced by
Jones and Nachtsheim [4]. In addition, the paper also
provides an alternative class of D-efficient MLFODs and
an exhaustive algorithm for constructing the new designs.
A case study comparing two candidate MLFODs for a
large mixed-level screening experiment with 17 factors
used is used to demonstrate the properties of the new
designs.

Keywords

Conference matrix · Coordinate-exchange algorithm ·
Foldover design · Hadamard matrix · Plackett-Burman
design

16.1 Introduction

Screening experiments are designed to sort a typically long
list of factors that can potentially affect the response variables
of a product or process. The sorting highlights active factors.
This experimentation strategy is widely applied in science
and engineering. Another approach, pioneered by Genichi
Taguchi, is to follow an experimental path of system design,
parameter design, and tolerance design [6]. In this paper
we consider the screening-optimizing continuum with the
objective of improving the knowledge acquisition effort by
increasing its quality and reducing the required effort. Most
screening experiments in engineering and science involve
both two-level and three-level factors. Yet, the most popular
screening designs are two-level designs such as resolution
III and IV fractional factorial designs (FFDs). Jones and
Nachtsheim [3] pointed out the following disadvantages of
using two-level FFDs to study quantitative factors:

(i) Quadratic effects are not estimable if they are included
in the model;
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(ii) Main effects are not completely orthogonal to two-factor
interactions as in the case of resolution III FFDs;

(iii) Certain two-factor interactions are fully aliased with one
another as in the case of resolution IV FFDs;

A new class of three-level screening designs called DSDs
introduced by Jones and Nachtsheim [3] eliminates these
shortcomings. In addition, all quadratic effects of DSDs are
orthogonal to main effects and not fully aliased with two-
factor interactions. The design matrix for a DSD can be
written as: ⎛

⎝
C

−C
0′

⎞
⎠ , (16.1)

where C is an m × m (0,±1) submatrix with zero diagonal
and 0 is a column vector of 0’s. Xiao et al. [14] pointed out
that if we use a conference matrix of order m for C, i.e.,
if C′C = (m − 1) Im×m, then the DSD is also orthogonal
for main effects, i.e., all main effects are orthogonal to one
another. For even m ≤ 50 except for m = 22 and m = 34,
the C matrices which are also conference matrices are given
by Xiao et al. [14] and Nguyen and Stylianou [11]. All the
Cmatrices we use in this paper are conference matrices with
the exception of the one of order 22. Figure 16.1 shows theC
matrices of order m = 4, 6, 8, and 10 generated by the cyclic
generators given by Nguyen and Stylianou [11].

The limitation of a DSD is that all factors should be
quantitative. Jones and Nachtsheim [4] (hereafter abbrevi-
ated as JN) introduced two types of conference matrix-
based mixed-level screening designs. They called the more
D-efficient, more economic one, DSD-augmented designs
(ADSDs). ADSDs are in fact belonging to a class of mixed-
level foldover designs (MLFODs), and, as such, they retain
two advantages of the original DSD, namely, (i) all quadratic
effects are orthogonal to main effects and (ii) all main effects
are orthogonal to two-factor interactions. The latter feature is
extremely useful when the experimenter wishes to include a

m=4
0+++
+0–+
++0–
+–+0

m=6
0+++++
+0–++–
+–0–++
++–0–+
+++–0–
+–++–0

m=8
0+++++++
+0++–+––
+–0++–+–
+––0++–+
++––0++–
+–+––0++
++–+––0+
+++–+––0

m=10
0+––+–++++
+0+––+–+++
–+0+–++–++
––+0++++–+
+––+0++++–
–++++–0–++–
+–+++––0–++
++–+++––0–+
+++–+++––0–
++++––++––0

Fig. 16.1 Conference C matrices of order m (+ denotes +1 and −
denotes −1)

specific two-factor interaction in the model. The limitation of
this class of designs is that it has a high correlation among the
quadratic effects. JN showed that this correlation was 1

2 − 2
n−4

where n is the number of runs.
Nguyen et al. [12] introduced a new class of Hadamard

matrix-based mixed-level foldover designs (MLFODs)
and an algorithm which produces these MLFODs. These
MLFODs were constructed by converting some two-level
columns of a Hadamard matrix to three-level ones (see
[2] for the information on Hadamard matrices and their
use in design construction). Like the two-level foldover
designs (FODs), each new MLFOD was constructed by a
half fraction and its foldover. These Hadamard matrix-based
MLFODs require fewer runs and compare favorably with
the conference matrix-based MLFODs of [4] in terms of
the D-efficiencies and rmax, the maximum of the absolute
values of the correlation coefficients among the columns of
the model matrix. Like the ADSDs, these MLFODs are also
definitive in the sense that the estimates of all main effects are
unbiased with respect to any active second-order effects. The
limitation of this class of Hadamard matrix-based MLFODs
is that it is not very efficient when the number of three-level
factors is greater than the number of two-level ones.

The design matrix of a conference matrix-based MLFOD
for m3 three-level factors and m2 two-level factors has a
foldover structure and can be written as:

(
D

−D

)
, (16.2)

where the submatrix Dm∗×(m3+m2) can be constructed from
a matrix of order m (m3 + m2 ≤ m ≤ m∗). In the fol-
lowing sections, we describe (i) a fast coordinate-exchange
algorithm (CEA) [8] for constructing ADSDs which are con-
ference matrix based and (ii) an exhaustive search algorithm
or ESA for constructing an alternative class of MLFODs.
Both algorithms attempt to transform a base matrix to the
submatrix D in (16.2) from which a D-efficient MLFOD can
be obtained. For ADSDs, the base matrix is a conference
matrix. For the new MLFODs, the base matrix is a two-level
orthogonal matrix such as Hadamard matrix or a Plackett-
Burman design [13].

16.2 A CEA for Constructing D-efficient
ADSDs

The Appendix shows that the first-order and second-order
D-efficiencies d1 and d2 of an ADSD are functions of
|B| (= |D′D|) where |B| is the determinant of matrix B.
Our algorithm minimizes the sum of squares of the off-
diagonal elements ofB as an indirect attempt tomaximize |B|
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(see, e.g., [9]). The steps of our CEA for obtaining a
submatrix D in (2) from which a D-efficient ADSD for
m3 three-level factors and m2 two-level factors are:

1. Form a starting design D(m+1)×(m3+m2) = (dij) by first
picking m3 + m2 columns from a conference matrix
of order m at random and add an extra zero row to
the bottom of these columns. Mark the positions of
the 2m2 zero entries in the last m2 columns of D,
and replace these 0’s by ±1 in a random manner.
Calculate the vector Ji (i = 1, . . . , m + 1) of length
m3m2 + (

m2
2 ) for each row of D where Ji is defined

as (di1di(m3+1), . . . , dim3di(m3+m2), di(m3+1)di(m3+2), . . . ,
di(m3+m2−1)di(m3+m2)). Let J = ∑m+1

i=1 Ji and f equal the
sum of squares of the elements of J.

2. Among the 2m2 marked positions in Step 1, search for a
position such that the sign switch in this position results
in the biggest reduction in f . If the search is successful,
update f, J andD. Repeat this step until f equals the length
of J (i.e., all elements of J equal ±1) or this value cannot
be reduced further by any sign switch.

Remarks

(i) The above steps correspond to one “try” of the CEA and
each try produces a matrix D. Among a large number of
tries whose f value reaches its lower bound, i.e., f equals
J’s length (or f cannot be reduced further), the one with
the largest value of |B| is selected.

(ii) The purpose of picking at random m3 +m2 columns
from a conference matrix of order m (m ≥ m3 + m2)

to form D in a random manner is to avoid being trapped
in the local optima.

(iii) When the input matrix in Step 1 is a conference matrix,
the firstm3m2 elements of J always take values±1. This
is not the case when the input matrix is not a conference
matrix such as the one of order 22.

(iv) Our CEA is less prone to the curse of dimensionality
than JN’s exhaustive algorithm for ADSD construction
which attempts to maximize |B| from among the 22m2

arrangements for 2m2 entries in D.

Figure 16.2 shows the steps of constructing an ADSD
for four three-level factors and four two-level factors.
Figure 16.2a displays a starting design in Step 1. Figure
16.2b shows that the eight 0’s in the last four columns
of the design in Fig. 16.2a are being replaced by ±1
in a random manner. At this point, the vector J is
(1, 1, 1, 1, 1, −1, 1, 1, 1, 1, 1, −1, −1, −1, 1, 1, −3, 1, −1, 1,
−1, 3) and f is 38. Figure 16.2c,d correspond to Step
2. In Fig. 16.2c, the value 1 in the position (1, 7) of the
design in Fig. 16.2b is replaced by −1. At this point,

++++++0+
–––+0+++
–++0–++–
+–+––0++
–+0–+–++
++–+––+0
+0––+++–
0–+++–+–
00000000

a) b) c) d)
++++++++
–––+–+++
–++0–++–
+–+––+++
–+0–+–++
++–+––++
+0––+++–
0–+++–+–
0000+–++

++++++–+
–––+–+++
–++0–++–
+–+––+++
–+0–+–++
++–+––++
+0––+++–
0–+++–+–
0000+–++

++++++–+
–––+++++
–++0–++–
+–+––+++
–+0–+–++
++–+––++
+0––+++–
0–+++–+–
0000+–++

Fig. 16.2 Steps of constructing an ADSD for four three-level factors
and four two-level factors

the vector J is (1, 1,−1, 1, 1,−1,−1, 1, 1, 1,−1,−1,
−1,−1,−1, 1,−3,−1,−1,−1,−1, 1) and f is reduced to
30. In Fig. 16.2d, the value −1 in the position (2, 5) of
the design in Fig. 16.2c is replaced by 1. At this point,
the vector J is (−1, 1,−1, 1,−1,−1,−1, 1,−1, 1,−1,
−1, 1,−1,−1, 1,−1, 1, 1,−1,−1, 1) and f is reduced to
22 which is its lower bound.

16.3 An ESA for Constructing D-efficient
MLFODs

While the CEA attempts to convert some three-level columns
of a conference matrix into two-level columns, the ESA
attempts to convert some two-level columns of a two-level or-
thogonal matrix into three-level columns. The ESA requires
three simple steps:

1. From each base matrix of order m, generate m − 1 ad-
ditional matrices by shifting the columns of this matrix
to the left cyclically. From each matrix, use the first m3 +
m2 (≤ m) columns to form a starting designDm×(m3+m2) =
(dij).

2. For each matrix obtained from Step 1, generate (mk ) new
matrices by replacing k elements in each of its first m3

columns by 0’s. Here k = 2, . . . , x where x is an integer
chosen to be �m5 � where �.� denotes the ceiling function.

The replacement is performed so that if (i1, j), (i2, j),
. . . , (ik, j) are entries in column j being replaced by 0’s,
and then the entries being replaced by 0’s in the next
column are ((i1+1) mod m, j+1), ((i2+1) mod m, j+
1), . . . , ((ik + 1) mod m, j+ 1).

3. For each matrix in Step 2, calculate rmax, the maximum
in terms of absolute value of the correlation coefficients
among the columns of the model matrix. Then among the
designs with smallest rmax, pick the one with the highest
d2, the D-efficiency for the pure quadratic model (see
Eq. (16.8) in the Appendix).
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0+++++++
(1) (2) (3) (4)

00++–+––
+00++–+–
+–00++–+
++–0+++–
+–+––+++
++–+––++
+++–+––+

0+++++++
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0+++++++
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+++0+––+

Fig. 16.3 Some candidate designs generated in Step 2 for an MLFOD
for four three-level factors and four two-level factors

Remarks

(i) In Step 1, the base matrix is a two-level orthogonal
matrix. This is a Hadamard matrix or a Plackett-Burman
design if m is divisible by 4 or a conference matrix with
the 0’s on the diagonal being replaced by 1’s if m is
not divisible by 4 but is divisible by 2. The base matrix
slightly affects the goodness of the resulting design.

(ii) For small m, say m ≤ 12, the starting designs in Step 1
can also be constructed by randomly selecting a subset
of m3 + m2 from m columns of the base matrix.

(iii) For each pair (m3, m2) and a given x, the number of zeros
in each of the m3 three-level columns, the number of
candidate designs we have to consider is m

∑x
k=2(

m
k ).

(iv) rmax in Step 3 is calculated from the vector J =∑m
i=1 Ji of length 2(m3

2 ) + m3m2 where Ji is defined
as (d2i1d

2
i2, . . . , d

2
i(m3−1)d

2
im3
, di1di2, . . . , di(m3−1)dim3 ,

di1di(m3+1), . . . , dim3di(m3+m2)).

Figure 16.3 shows some candidate designs generated in Step
2 for an MLFOD for four three-level factors and four two-
level factors.

16.4 Results and Discussion

Table 16.1 provides d1, d2, and rmax of 69 D-efficient ADSDs
and two sets of corresponding new MLFODs with m3 =
4, . . . , 12, m2 = 1, . . . , m3, and n ≥ 16. The goodness
statistics are the first-order D-efficiency and the second-order
D-efficiency, the maximum in terms of the absolute value of
the correlation coefficients among 2m3 + m2 columns of the
model matrix X for the pure quadratic model, respectively.
The D-efficiencies d1, d2 of ADSDs are calculated according
to Eqs. (16.5) and (16.8) in the Appendix. The first set of
MLFODs labeled MLFOD1 was obtained by selecting the
firstm3+m2 columns of a conference matrix and then change
the 0’s to 1’s in the last m2 columns. The second set of
MLFODs labeled MLFOD2 was constructed by the ESA in
Sect. 16.3 using x = �m5 �.

The advantage of the MLFODs over the orthogonal arrays
(for the same number of three-level and two-level factors) is
that the former require much less runs. At the same time, the
former, unlike the latter, could guarantee that (i) all quadratic
effects are orthogonal to main effects and (ii) all main effects
are orthogonal to two-factor interactions. While orthogonal-
ity does not help in simplifying the data analysis which is now
done entirely by computers, they help in the interpretations
of the results which is the aim of the experimenters.

ADSDs, due to their method of construction, always have
two runs more than the corresponding new MLFODs. It
can be seen in Table 16.1 that all ADSDs have higher d1’s
than the corresponding MLFOD2’s (but smaller d1’s than
the corresponding MLFOD1’s). At the same time, nearly all
MLFOD2’s have higher d2’s than the corresponding ADSDs.
The rmax’s of the ADSDs are always higher than the ones of
MLFODs. This is due to the fact that the correlation between
any two quadratic effect columns is 1

2 − 2
n−4 (see JN p. 129).

This value approaches 1/2 as n becomes large. In table 16.1,
d1 (or d2) values of MLFODs printed in bold are higher than
the ones of ADSDs for the same set of (m3,m2). rmax values of
MLFODs printed in bold are smaller than the ones of ADSDs
for the same set of (m3, m2).

With the exception of the ADSD for m3 = m2 = 9
and four ADSDs constructed from a C matrix of order 22
(see Table 16.1), all ADSDs in Table 16.1 have the f values
reaching their lower bound. This fact guarantees that the
constructedADSDswill haveminimum correlations between
a two-level factor and a three-level factor and between any
two two-level factors.

Unlike ADSDs, our MLFOD2’s do not guarantee zero
correlation among three-level factors. At the same time,
unlike our MLFOD2’s with n = 16, 24, 32, 40, and 48
(whose D matrices were constructed from the Hadamard
matrices or Plackett-Burman designs), ADSDs do not have
zero correlation among the two-level factors.

16.5 An Industrial Case Study

Lin andKacker [7] describe an experiment aiming to improve
the quality and productivity of wave soldering of circuit pack
assemblies (CPA). This experiment, summarized in a study
by Kenett et al. [6] (p. 474), has four yield variables and 17
factors (controllable variables). The four yield variables are:
(i) Insulation resistance, (ii) Cleaning characterization, (iii)
Soldering efficiency, and (iv) Solder mask cracking. The 17
factors are: (A) Type of activator, (B) Amount of activator,
(C) Type of surfactant, (D)Amount of surfactant, (E) Amount
of antioxidant, (F) Type of solvent, (G) Amount of solvent,
(H) Amount of flux, (I) Preheat time, (J) Solder tempera-
ture, (K) Conveyor speed, (L) Conveyor angle, (M) Wave
height setting, (N) Detergent concentration, (O) Detergent
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Table 16.1 Comparison of D-efficiencies and rmax of MLFODs and ADSDs

MLFOD1 MLFOD2 ADSD

m3 m2 na d1 d2 rmax d1 d2 rmax d1 d2 rmax

4 3 16 0.909 0.443 0.143 0.831 0.484 0.333 0.858 0.478 0.357

5 2 16 0.899 0.390 0.143 0.795 0.412 0.333 0.836 0.426 0.357

6 1 16 0.892 0.348 0.143 0.764 0.352 0.333 0.818 0.386 0.357

4 4 16 0.911 0.469 0.143 0.839 0.508 0.333 0.862 0.502 0.357

5 3 16 0.900 0.415 0.143 0.797 0.432 0.333 0.843 0.450 0.357

6 2 16 0.892 0.371 0.143 0.744 0.364 0.333 0.826 0.408 0.357

7 1 16 0.888 0.331 0.143 0.812 0.376 0.357

5 4 20 0.902 0.414 0.200 0.822 0.452 0.375 0.882 0.455 0.389

6 3 20 0.907 0.375 0.200 0.811 0.411 0.375 0.869 0.411 0.389

7 2 20 0.910 0.342 0.200 0.803 0.359 0.375 0.856 0.376 0.389

8 1 20 0.911 0.312 0.111 0.784 0.314 0.375 0.845 0.347 0.389

5 5 20 0.888 0.430 0.200 0.814 0.466 0.375 0.884 0.475 0.389

6 4 20 0.896 0.392 0.200 0.804 0.425 0.375 0.873 0.431 0.389

7 3 20 0.903 0.359 0.200 0.795 0.373 0.375 0.861 0.395 0.389

8 2 20 0.907 0.329 0.200 0.785 0.330 0.375 0.850 0.365 0.389

9 1 20 0.909 0.300 0.111 0.768 0.293 0.375 0.841 0.340 0.389

6 5 24 0.939 0.403 0.091 0.806 0.481 0.333 0.900 0.434 0.409

7 4 24 0.933 0.366 0.091 0.793 0.443 0.333 0.890 0.396 0.409

8 3 24 0.929 0.335 0.091 0.764 0.406 0.333 0.881 0.365 0.409

9 2 24 0.926 0.309 0.091 0.738 0.370 0.333 0.872 0.339 0.409

10 1 24 0.924 0.285 0.091 0.714 0.339 0.333 0.865 0.316 0.409

6 6 24 0.940 0.422 0.091 0.811 0.496 0.333 0.903 0.452 0.409

7 5 24 0.934 0.384 0.091 0.791 0.456 0.333 0.893 0.413 0.409

8 4 24 0.930 0.352 0.091 0.767 0.419 0.333 0.884 0.381 0.409

9 3 24 0.926 0.325 0.091 0.743 0.383 0.333 0.876 0.354 0.409

10 2 24 0.924 0.300 0.091 0.722 0.352 0.333 0.869 0.331 0.409

11 1 24 0.923 0.276 0.091 0.696 0.322 0.333 0.863 0.312 0.409

7 6 28 0.923 0.381 0.143 0.816 0.463 0.273 0.912 0.416 0.423

8 5 28 0.927 0.351 0.143 0.803 0.432 0.273 0.905 0.383 0.423

9 4 28 0.930 0.326 0.143 0.786 0.406 0.273 0.898 0.354 0.423

10 3 28 0.933 0.303 0.143 0.771 0.382 0.273 0.892 0.331 0.423

11 2 28 0.934 0.283 0.143 0.757 0.361 0.273 0.886 0.310 0.423

12 1 28 0.934 0.265 0.077 0.744 0.340 0.273 0.881 0.292 0.423

7 7 28 0.917 0.395 0.143 0.808 0.472 0.273 0.913 0.431 0.423

8 6 28 0.921 0.365 0.143 0.798 0.442 0.273 0.907 0.398 0.423

9 5 28 0.925 0.339 0.143 0.780 0.416 0.273 0.901 0.369 0.423

10 4 28 0.929 0.317 0.143 0.766 0.391 0.273 0.895 0.345 0.423

11 3 28 0.931 0.296 0.143 0.753 0.370 0.273 0.889 0.323 0.423

12 2 28 0.932 0.277 0.143 0.743 0.350 0.273 0.884 0.305 0.423

8 7 32 0.954 0.374 0.067 0.857 0.467 0.231 0.923 0.400 0.433

9 6 32 0.951 0.345 0.067 0.835 0.432 0.231 0.917 0.371 0.433

10 5 32 0.948 0.321 0.067 0.815 0.402 0.231 0.912 0.345 0.433

11 4 32 0.945 0.299 0.067 0.795 0.375 0.231 0.906 0.323 0.433

12 3 32 0.944 0.281 0.067 0.778 0.351 0.231 0.902 0.304 0.433

8 8 32 0.955 0.388 0.067 0.860 0.479 0.231 0.925 0.414 0.433

9 7 32 0.951 0.359 0.067 0.834 0.443 0.231 0.919 0.384 0.433

10 6 32 0.948 0.334 0.067 0.814 0.412 0.231 0.914 0.358 0.433

11 5 32 0.946 0.312 0.067 0.793 0.385 0.231 0.909 0.336 0.433

12 4 32 0.944 0.293 0.067 0.778 0.361 0.231 0.904 0.316 0.433

9 8 36 0.939 0.357 0.111 0.845 0.447 0.200 0.929 0.386 0.441

(continued)



310 N.-K. Nguyen et al.

Table 16.1 (continued)

MLFOD1 MLFOD2 ADSD

m3 m2 na d1 d2 rmax d1 d2 rmax d1 d2 rmax

10 7 36 0.941 0.333 0.111 0.840 0.422 0.200 0.925 0.359 0.441

11 6 36 0.943 0.312 0.111 0.832 0.397 0.200 0.921 0.336 0.441

12 5 36 0.945 0.293 0.111 0.827 0.373 0.200 0.917 0.316 0.441

9 9 36 0.935 0.368 0.111 0.844 0.456 0.200 0.929 0.398 0.441

10 8 36 0.938 0.344 0.111 0.838 0.431 0.200 0.926 0.371 0.441

11 7 36 0.940 0.323 0.111 0.829 0.406 0.200 0.922 0.348 0.441

12 6 36 0.942 0.304 0.111 0.821 0.381 0.200 0.919 0.328 0.441

10 9 40 0.963 0.351 0.053 0.867 0.440 0.216 0.937 0.374 0.447

11 8 40 0.961 0.328 0.053 0.857 0.414 0.216 0.933 0.350 0.447

12 7 40 0.959 0.308 0.053 0.844 0.390 0.216 0.930 0.329 0.447

10 10 40 0.963 0.363 0.053 0.867 0.450 0.216 0.938 0.385 0.447

11 9 40 0.961 0.339 0.053 0.858 0.424 0.216 0.935 0.361 0.447

12 8 40 0.959 0.319 0.053 0.845 0.400 0.216 0.931 0.339 0.447

11 10 44 0.946 0.337 0.095 0.841 0.460 0.222 0.935 0.361 0.452

12 9 44 0.946 0.317 0.095 0.832 0.438 0.222 0.931 0.339 0.452

11 11 44 0.944 0.347 0.095 0.842 0.469 0.222 0.933 0.370 0.452

12 10 44 0.943 0.326 0.140 0.830 0.446 0.222 0.932 0.349 0.452

12 11 48 0.969 0.333 0.043 0.874 0.457 0.200 0.947 0.353 0.457

12 12 48 0.969 0.343 0.043 0.877 0.466 0.200 0.948 0.362 0.457

aRun size of MLFODs. For the same set of (m3, m2) ADSD requires two extra runs

temperature, (P) Cleaning conveyor speed (Q) Rinse water
temperature. Out of these 17 factors, 7 factors (A), (C), (F),
(M), (N), (O), and (Q) are two-level factors and the rest are
three-level factors. The aim of this experiment is to single
out the active factors and then apply a full quadratic model in
these factors.

Let us consider two candidate MLFODs for ten three-
level factors and eight two-level factors (including a block-
ing factor): (a) a 36-run MLFOD constructed by the ESA
and (b) a 38-run ADSD. Both designs were constructed
from a conference matrix of size 18. We do not consider
the 30-run mixed-level screening design of [10] and the
orthogonal arrays (http://support.sas.com/techsup/technote/
ts723_Designs.txt) for the same number of three- and two-
level factors as they are not MLFODs and as such might
not possess the advantages of an MLFOD, namely, (i) all
quadratic effects are orthogonal to main effects and (ii) all
main effects are orthogonal to two-factor interactions. Be-
sides, a 72-run orthogonal array exceeds the available budget
for this experiment. Figure 16.4 displays the D matrices of
two mentioned candidate MLFODs.

Table 16.1 shows the goodness statistics of the two can-
didate designs. The d1, d2, and rmax of the 38-run ADSD are
0.926, 0.371, and 0.441, and the one of the corresponding
36-run MLFOD are 0.838, 0.410, and 0.2. While the 38-run
ADSD is superior to the 36-run MLFOD in terms of d1, it is
inferior to the latter in terms of d2 and rmax. This pattern can
be observed in Table 16.1 for all MLFOD2’s with n ≥ 24.

The correlation cell plots of the two candidate designs
are shown in Fig. 16.5. These plots, used in Jones and
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Fig. 16.4 TheDmatrices of two candidateMLFODs for ten three-level
factors and eight two-level factors (including a blocking factor) for the
PCA experiment described by Kenett et al. [6]: (a) of a 36-run MLFOD
constructed by the ESA and (b) of a 38-run ADSD

Nachtsheim [3], display the magnitude of the correlation
between main effects, quadratic effects of three-level factors
and two-factor interactions in screening designs. The color
of each cell in these plots goes from white (no correlation)

http://support.sas.com/techsup/technote/ts723_Designs.txt
http://support.sas.com/techsup/technote/ts723_Designs.txt
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Fig. 16.5 Correlation cell plots of (a) 36-run MLFOD constructed by the ESA and (b) a 38-run ADSD for the experiment with ten three-level
and eight two-level factors (including a blocking factor)

to dark (correlation of 1 or close to 1). Figure 16.5 confirms
that for both designs, the main effects are orthogonal to the
quadratic effects and two-factor interactions. It can be seen
in Fig. 16.5b that while the main effects of three-level factors
have zero correlation, the quadratic effects of these factors
have fairly high correlation.

Both algorithms in Sects. 16.2 and 16.3 appear to be very
fast and do not seem to be affected by the curse of dimen-
sionality for design optimization. Both algorithms construct
the abovementioned 38-run ADSD and 36-run MLFOD for
ten three-level factors and eight two-level factors in less than
1 s on an HP EliteBook 8770w laptop. Note that the CEA
uses 10,000 tries and out of 10,000 tries, 366 have the f
values reaching the lower bound and all of them have the
same values of (d1, d2, rmax).

16.6 Conclusion

Screening designs precede efforts to optimize a product or
process. Their goal is to reduce a long list of factors so that
the optimization effort can focus on a shorter list of fac-
tors. The literature on screening experiments in engineering
and science popularized experiments with two-level factors
such as orthogonal FFDs [1]. This constraint slows down
the knowledge acquisition process by producing information
only on main effects and interactions. In mixed-level screen-
ing designs, one combines factors at two and three levels,
thus also producing information on quadratic effects. This
paper presents two new classes of MLFODs. Both classes
are economical and efficient. These designs provide more
choices for the experimenters and help them to “design for

experiments instead of experiment for the design.” A wider
scope to this work is the augmentation of data collected
in nonexperimental contexts with experimentally designed
add-on observations. The analysis of observed data provides
initial information on the X space characteristics. To achieve
the optimized conditions, the designs discussed in this paper
can be used to expand the initial data sets. This approach was
mentioned by Kenett and Nguyen [5] with examples of tools
used to assess the X space statistical properties. In summary,
we aim here at expanding the screening-optimization contin-
uum with more flexible and optimized designs.

The zipped file containing the D matrices (i.e., half
fractions) for the designs in Table 16.1 and the input
matrices we use to construct these D matrices as well as the
Java programs implementing the algorithms in Sects. 16.2
and 16.3 is downloadable from https://drive.google.com/
open?id=16thajCMzr4WLIb-GkyKrBv2HHnziAIMr.

Appendix: Calculating (d1, d2) Values of an
MLFOD

Recall that Dm∗×(m3+m2)(= (dij)) in (16.2) is the submatrix
from which an MLFOD for m3 three-level factors and m2

two-level factors can be constructed from a matrix of order
m (m3 + m2 ≤ m ≤ m∗). For ADSDs m∗ = m + 1 and
for our MLFODs m∗ = m. The first-order D-efficiency d1
and the pure quadratic D-efficiency d2 of this MLFOD can
be calculated as:

|X′X|1/p/n (16.3)

whereX, p, and n are the model matrix, the number of param-
eters for the models, and the number of runs, respectively.

https://drive.google.com/open?id=16thajCMzr4WLIb-GkyKrBv2HHnziAIMr
https://drive.google.com/open?id=16thajCMzr4WLIb-GkyKrBv2HHnziAIMr
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For the first-order model, p = 1 + m3 + m2 and the ith
row of X can be written as (1, di1, . . . , di(m3+m2)). Thus the
(information matrix) X′X will be of the form

2

(
m∗ 0′
0 B

)
, (16.4)

where 0m3+m2 is a column vector of 0’s andB(m3+m2)×(m3+m2) =
D′D. The determinant of X′X for the first-order model can
now be calculated as

|X′X| = 21+m3+m2 m∗ |B|. (16.5)

For the pure quadratic model, p = 1 + m3 +
m3 + m2 and the ith row of X can be written as
(1, d2i1, . . . , d

2
im3
, di1, . . . , di(m3+m2)). Thus, the matrix X′X

will be of the form

2

(
A 0′
0 B

)
, (16.6)

where 0(m3+m2)×(1+m3) a matrix of 0’s and A(1+m3)×(1+m3) is a
matrix of the form (

m∗ b1′
b1 A∗

)
(16.7)

assuming each of them3 three-level columns ofD has a fixed
number b of ±1’s. Here 1m3 is a column vector of 1’s and
A∗
m3×m3

the core of A in (16.7), i.e., the matrix A without its
first row and first column. The determinant of X′X for the
pure quadratic model can now be calculated as

|X′X| = 21+2m3+m2 m∗ |A∗ − b2

m∗ J| |B|. (16.8)

For some MLFODs such as ADSDs, MLFOD1, and
MLFOD2 with n = 16 and 38, the matrix A∗ in (16.7)
will be of the form cJ + dI where I is the identity matrix
and J is a matrix of 1’s. Nguyen et al. [12] denoted this
class of MLFODs as MLFOD*s. In these cases, A∗ − b2

m∗ J
will also be of the form cJ + dI. The determinants of a
matrix of this form can be calculated as dm3 (1 + c m3

d ). For

ADSDs, c = m − 2 − (m−1)2

m+1 and d = 1. For MLFOD1,

c = m− 2 − (m−1)2

m and d = 1.
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Abstract

The contribution of this chapter is to solve two common
problems in analysis. The first contribution is that we
propose twomethods to predict censored data. The second
contribution is to automatically select the most suitable
distribution function instead of subjective judgment. In
this chapter, we propose three approaches of model selec-
tion. To demonstrate our approach, two members in the
location-scale family, the normal distribution and small-
est extreme value distribution, are used as candidates to
illustrate the best model competition for the underlying
distribution via using the proposed prediction methods.
According to the result ofMonte Carlo simulations, model
misspecification has impact on the prediction precision
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and the proposed three model selection approaches per-
form well when more than one candidate distributions
are competing for the best underlying model. Finally,
the proposed approaches are applied to three data sets.
This chapter is based on Chiang et al. (Math Probl Eng,
3465909, 2018).

Keywords

Discrimination · Maximum likelihood estimate ·
Censored data · Prediction · Location-scale distribution

17.1 Introduction

At present, the advanced manufacturing technology is con-
tinuously improving the quality of components. If all test
components are to be observed for failure time, it will lead
to long experiment time. In order to save testing time and
sample resource, censoring schemes are often considered to
implement life tests. The type I censoring scheme and type II
censoring scheme are two popular censoring schemes based
on the criteria of test time censoring and failure number
censoring.

In this chapter, the focus is using the type II censoring
scheme for predicting the censored data for reliability eval-
uation when a discriminant problem is considered. In the
type II censoring scheme, we consider an experiment where
n identical components are placed in the test simultane-
ously. Assuming that the rth component fails, the experiment
would be terminated. Thus, the last (n − r) components
are censored. In many engineering applications, censored
data are not allowed for implementing statistical methods
to obtain information. For example, if practitioners hope to
integrate the life test and design of experimental methods,
such that manufacturers can introduce a new product into
the market quickly. The major difficulty is to implement the
design of experimental methods for censored data. Predicting
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unobserved order statistics from samples is a way to un-
derstand more about the censored data. Once the censored
data are predicted, the predicted informationwith uncensored
data can be merged as a pseudo-complete data set. Then
the design of experiment methods can be employed for the
pseudo-complete data set. The purpose of predicting life
length of sth(r < s ≤ n) item is equivalent to the life length
of a (n − s + 1)-out-of-n system that was made up of n
identical components with independent life lengths. When
s = n, it is better known as the parallel system. For this
issue, various methods have been developed to predict the
censored data. In the paper of Kaminsky and Nelson [1],
they provided interval and point prediction of order statis-
tics. Fertig et al. [2] proposed Monte Carlo estimates of
percentiles of the distribution to construct prediction intervals
for samples from a Weibull or extreme value distribution.
Kaminsky and Rhodin [3] obtained the maximum likelihood
predictor (MLP) to predict the future order statistics for
the normal distribution. Wu et al. [4] obtained prediction
intervals of future order statistics for the Pareto distribu-
tion based on the five new pivotal quantities. Kundu and
Raqab [5] proposed the Bayesian prediction for the two-
parameter Weibull distribution. Panahi and Sayyareh [6] pro-
vided parameter estimation and prediction of order statistics
for the Burr type XII distribution. Some of these predictions
are complex, or demand complex statistical models. There-
fore, these existing methods are not easy to use in the real
world.

Many authors also try to simplify the difficulty of the for-
mula, and Raqab [7] provided four modifiedMLPs (MMLPs)
to predict the future order statistics for the normal distribution
(ND). Yang and Tong [8] used MMLP method to predict
type II censored data from factorial experiments. Chiang [9]
provided another three MMLP procedures to predict type II
censored data for the Weibull distribution. In his procedures,
it is difficult to find the only root solution to the parameter
estimation. According to the previous literature, the MMLP
method only has simple estimation results under ND, and
the prediction results under other distributions are still very
complex. So the parameter estimation of MMLP loses the
advantage over other commonly used distributions.

The second important problem in life testing experiments
is the model selection based on the existing sample. In
practical applications, many statistical distributions are much
alike, especially in censored data, and the underlying distri-
bution of product quality characteristics is usually unknown.
Several candidate models may fit the data well in practical
applications. However, the predictions based on different
candidate models may lead to a significant difference. There-
fore, correct choice of the underlying distribution is of great

importance and has long been studied by many authors.
Dumonceaux and Antle [10] used ratio of maximized like-
lihood (RML) to discriminate between the lognormal and
Weibull distributions. Kundu and Manglick [11] proposed
a model selection to discriminate between the lognormal
and gamma distributions. Kundu and Raqab [12] provided
a model selection method to discriminate between the gener-
alized Rayleigh and lognormal distribution. Yu [13] provided
a misspecification analysis method for the ND and smallest
extreme value distribution (SEV). Ashour and Hashish [14]
proposed a numerical comparison study for using RML-
procedure, S-procedure, and F-procedure in failure model
discrimination. Pakyari [15] proposed diagnostic tools based
on the likelihood ratio test and the minimum Kolmogorov
distance method to discriminate between the generalized ex-
ponential, geometric extreme exponential, andWeibull distri-
butions. Elsherpieny et al. [16] provided a model selection to
discriminate the gamma and log-logistic distributions based
on progressive type II censored data.

In order to demonstrate our approaches, we take the
location-scale family of distributions as an example, due to
the well-developed theory and inferential procedures for the
location-scale family of distributions, the model discrim-
ination within the location-scale family of distributions is
particularly important and it has received much attention.
The main purpose of this chapter is to solve these issues
and provide simple and satisfactory estimators of parameters
and predictors of future order statistics when the underlying
model is unknown but belongs to the location-scale family.
Specifically, the prediction process of this study for censoring
data prediction is presented in Fig. 17.1.

This chapter is based on Chiang et al. [17] and the rest
of this chapter is organized as follows. Section 17.2 presents
materials and methods. In this section, statistical methods
to obtain approximate predictors for type II right-censored
variables are studied and two prediction methods are pro-
posed to predict the type II right-censored data based on the
AMLEs. The ND and SEV are considered as the candidate
distributions in this study to compete for the best model for
obtaining the predictors of type II right-censored variables.
In Sect. 17.3, we provide three algorithms to implement the
three proposed model selection approaches to deal with the
discrimination problemwhen obtaining the predictors of type
II right-censored variables based on the proposed methods.
An intensive simulation study is conducted in Sect. 17.4 to
evaluate the performance of the proposed approaches. Then,
three examples are used to demonstrate the applications of
the proposed methodologies in Sect. 17.5. Some concluding
remarks are provided in Sect. 17.6. The notations used in this
chapter are defined in Table 17.1.
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Collect a type II censoring
sample

Do we know the
underlying

distribution?

Yes

No

Model selection
approaches:

RRML
Dsp

D

Calculate approximate
maximum likelihood
estimation (AMLE)

Calculate approximate maximum likelihood
predictors (AMLPs) to predict future order statistics:

Expected value prediction method
Taylor series prediction method

Fig. 17.1 The flow chart of the major contribution of this study

17.2 Methods for Approximate Predictors

17.2.1 Approximate Maximum Likelihood
Estimation

Assume that random variable Yi denotes the failure time of ith
item and Xi = log (Yi), which follows a location-scale family,
having the probability density function (PDF) and cumulative
distribution function (CDF):

f (x; μ, σ) = 1

σ
g

(
x− μ

σ

)
, (17.1)

and

f (x; μ, σ) = G

(
x− μ

σ

)
,−∞ < μ < ∞, σ > 0,

− ∞ < x < ∞,

(17.2)

respectively, where μ is location parameter and σ is scale
parameter. g(·) andG(·) are the PDF and CDF of a member in
the location-scale family. Let x = (x1:n, x2:n, . . . , xr:n) denote
a type II censored sample and our goal is to predict xs:n, where
1 ≤ r < s ≤ n. Let f (x) ≡ f (x;μ, σ ) and F(x) ≡ F(x;μ, σ )
here and after to simplify the notations. Based on the paper
of Kaminsky and Rhodin [3], they considered prediction of
Xs:n having observed. So the predictive likelihood functions
(PLF) of Xs:n, μ and σ is

L (Xs:n,μ, σ ; x)

≡ f (x, Xs:n; μ, σ) = n!
(s− r − 1)! (n− s)!

r∏
j=1

f
(
xj:n
)

[f (Xs:n) − f (xr:n)]s−r−1f (Xs:n) [1 − f (Xs:n)]n−s.
(17.3)

Based on the proposed method by Raqab [7], the PLF of Xs:n,
μ and σ in Eq. (17.3) can be represented as a product of
two likelihood functions, the PLF of μ and σ (i.e., which is
denoted as L1) and the PLF of Xs:n (i.e., which is denoted as
L2). Both likelihood functions are can be rewritten as

L1 (μ, σ ; x) = n!
(n− r)!

r∏
j=1

f
(
xj:n
)
[1 − f (xr:n)]n−r, (17.4)

and

L2 (Xs:n; μ, σ , x) = (n− r)!
(s− r − 1)! (n− s)!

[f (Xs:n) − f (xr:n)]s−r−1

[1 − f (xr:n)]n−r
× [1 − f (Xs:n)]n−sf (Xs:n) .

(17.5)

In practice, we can obtain the MLEs of μ and σ , denoted by
μ̂ and σ̂ , respectively, through maximizing L1(μ, σ ; x) in Eq.
(17.4). Then using μ̂ and σ̂ to replace μ and σ as the plug-in
parameters in Eq. (17.5) to predict Xs:n. Let zj:n = (xj:n − μ)/σ
for j= 1, . . . , r, Zs:n = (Xs:n − μ)/σ for s= r + 1, . . . , n and
z= (z1:n, z2:n, . . . , zr:n), then the Eq. (17.4) and Eq. (17.5) can
be rewritten as

L1 ≡ L1 (μ, σ ; z) = C1

r∏
j=1

σ−1f
(
zj:n
)
[1 − f (zr:n)]n−r

(17.6)

and

L2 ≡ L2
(
Zs:n; μ̂, σ̂ , z

) = C2σ
−1 [f (Zs:n) − f (zr:n)]s−r−1

[1 − f (zr:n)]n−r

[1 − f (Zs:n)]n−sf (Zs:n) ,
(17.7)
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Table 17.1 Notations and their descriptions

Notations Descriptions

Yi The failure time of ith item of Y, i = 1, . . . n

Xi Take the logarithm of the Yi
f (x;μ, σ ), F(x;μ, σ ) The PDF and CDF of location-scale family with location parameter μ and scale parameter σ ,

respectively

g(·), G(·) The standard PDF and CDF of location-scale family, respectively

xi : n The ith failure time of n samples of x, i = 1, . . . n

r The last sample number that can be observed

s Sample number to prediction, s = r + 1, . . . , n

n Sample size of x

x The type II censored sample

z The standardized value of x

L(Xs:n,μ, σ ; x) The PLF of Xs:n
L1(μ, σ ; x) or L1 The PLF of μ and σ

L2(Xs:n;μ, σ , x) or L2 The PLF of Xs:n
C1, C2 The constant in likelihood function

μ̂, σ̂ The MLEs of μ and σ

μ̃, σ̃ The AMLEs of μ and σ

K, L, λ1, λ2, Ai, Bi, Cr, Dr The functions in the AMLE of μ and σ

T
′
(.), h

′
(.), f

′
(.), φ

′
(.) The first derivative of T(.), h(.), f (.) and φ(.), respectively

Ψ (·), h(·), h1(·) The functions in the log likelihood function

MLPE, MLPT The predictors of Xs:n based on the expected prediction method and the Taylor series prediction,
respectively

X̂M,1s:n , X̂M,2s:n The MLPE and MLPT of the Xs:n under the candidate modelM, respectively

ND, SEV The abbreviations of the Normal and smallest extreme value distribution.

α, β, γ , vs, ρ The functions in the MLPT of the Xs:n under the ND

αs, βs, γ E, vE, ρE The functions in the MLPT of the Xs:n under the SEV

M The candidate model,M = N (the ND) or SEV

L̂Mi (·), L̂N (·), L̂S (·) The PLF of Xs:n based on the candidate modelM, ND and SEV, respectively

μ̂N, σ̂N The MLEs of μ and σ based on the ND

φ(·), 
(·) The PDF and CDF of the standard ND, respectively

μ̂S, σ̂S The MLEs of μ and σ based on the SEV.

φsev, 
sev The PDF and CDF of the standard SEV, respectively.

L̂A1 (·) The maximum likelihood function value in all candidate models

μ̂A1, σ̂A1 The MLEs of μ and σ in the distribution corresponding to L̂A1 (·).
X̂A1,j
s:n , X̂A2,j

s:n , X̂A3,j
s:n The best prediction value selected by three models respectively, j = 1, 2

RRML The ratio of the maximized likelihood approach

Dsp(·) The modification of Michael statistic

D̂A2
SP (·) The smallest Dsp(·) in all candidate models

μ̂A2, σ̂A2 The MLEs of μ and σ in the distribution corresponding to D̂A2
SP (·)

D(·) The statistic of the Kolmogorov-Smirnov test

D̂A3 (·) The smallest D(·) in all candidate models

μ̂A3, σ̂A3 The MLEs of μ and σ in the distribution corresponding to D̂A3 (·)
D̂N
SP (·), D̂SEV

SP (·) Evaluate the value of DSP through using the ND and SEV

D̂N (·), D̂SEV (·) Evaluate the value of D through using the ND and SEV

cp The censoring proportion

correct(%) The correct model selection rate

N The Monte Carlo runs



17 Censored Data Prediction Based on Model Selection Approaches 319

17

where C1 = n!/(n − r)! and C2 = (n − r)!/[(s − r − 1)!
(n − s)!]. Then, we can obtain the log-likelihood equation
as:

∂ log (L1)

∂μ
= 1

σ

⎡
⎣ r∑

j=1

�
(
zj:n
)+ (n− r) h (zr:n)

⎤
⎦ = 0

(17.8)

∂ log (L1)

∂σ

= 1

σ

⎡
⎣−r +

r∑
j=1

�
(
zj:n
)
zj:n + (n− r) h (zr:n) zr:n

⎤
⎦ = 0

(17.9)

and

∂ log (L2)

∂Zs:n
= (s− r − 1) h1 (zr:n, Zs:n)

− � (Zs:n) − (n− s) h (Zs:n) = 0,

(17.10)

where

�
(
Zj:n
) = − f ′

(
Zj:n
)

f
(
Zj:n
) , j = 1, . . . , n,where Zj:n = zj:n if j ≤ r,

(17.11)

h
(
Zj:n
) = f

(
Zj:n
)

1 − f
(
Zj:n
) , j = 1, . . . , n,where Zj:n = zj:n if j ≤ r,

(17.12)

and

h1 (zr:n, Zs:n) = f (Zs:n)
f (Zs:n) − f (zr:n)

. (17.13)

We can see that the MLEs of μ and σ cannot be obtained in
a closed form. Therefore, the MLEs of μ and σ need to be
searched using numerical methods. To obtain proper initial
solutions for implementing gradient computation methods,
we consider using the AMLEs of μ and σ, denoted by μ̃

and σ̃ , respectively, from Hossain and Willan [18] as their
initial solutions in this chapter. From the paper of Hossain
and Willan [18], the AMLE of μ and σ as:

μ̃ = K − Lσ̃ , (17.14)

and

σ̃ =
−λ1 +

√
λ2
1 + 4rλ2

2r
, (17.15)

where

K =
∑r

i=1 BiZj:n + (n− r)DrZr:n∑r
i=1 Bi + (n− r)Dr

L =
∑r

i=1 Ai − (n− r)Cr∑r
i=1 Bi + (n− r)Dr

λ1 =
r∑
i=1

(
Zj:n − K

)
Ai − (n− r)Cr (Zr:n − K)

λ2 =
r∑
i=1

(
Zj:n − K

)2
Bi + (n− r)Dr(Zr:n − K)2

Ai = T (νi:n) − νi:nT ′ (νi:n)

Bi = −T ′ (νi:n)

Cr = h (νr:n) − νr:nh′ (νr:n)

and

Dr = h′ (νr:n),

where T ′(.) and h′(.) are the first derivative of T(.) and h(.),
respectively.

17.2.2 ApproximateMaximum Likelihood
Predictors

We propose two approximation prediction methods to predict
Xs:n, the expected value prediction method and Taylor series
prediction method. The resulting predictors of Xs:n based on
the expected prediction method are denoted by MLPE, and
the resulting predictors of Xs:n based on the Taylor series
prediction method are denoted by MLPT. The two approx-
imate methods mainly use two different methods to get the
approximate h1(zr:n,Zs:n) and h(Zs:n).
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The Expected Value Prediction Method
Based on the expected value prediction method, replacing
(μ, σ ) with

(
μ̂, σ̂

)
, and replacing h1(zr:n,Zs:n) and h(Zs:n) by

their respective expected values in Eq. (17.10). According to
Raqab [7], the expected values of f (Zj:n), h1(zr:n,Zs:n), and
h(Zs:n) can be presented, respectively, by

E
[
f
(
Zj:n
)] = 1

n+ 1

n+1∑
k=j+1

E [� (Zk:n+1)] , j ≤ n and

Zj:n = zj:n if j ≤ r,

(17.16)

E
[
h
(
Zj:n
)] = 1

n− j

n∑
k=j+1

E [� (Zk:n)] , j ≤ n− 1 and

Zj:n = zj:n if j ≤ r,
(17.17)

and

E
[
h1
(
Zi:n, Zj:n

)] = 1

j− i− 1

n∑
k=j

E [� (Zk:n)] , j− i ≥ 2, and

Zj:n = zj:n if j ≤ r.
(17.18)

We denote the MLPE of the Xs:n under the candidate model
M by X̂M,1s:n .

The Taylor Series Prediction Method
Based on the Taylor series prediction method, replacing
(μ, σ ) with

(
μ̂, σ̂

)
and replacing h(Zs:n) and h1(Zr:n,Zs:n) by

their Taylor series approximations at the points F−1(ps) and
(F−1(pr), F−1(ps)), respectively, in Eq. (17.10). We denote
the MLPT of the Xs:n under the candidate model M by X̂M,2s:n .

In this study, we use ND and SEV as candidates to
illustrating the applications of the proposed method. But the
suggested algorithms in this study can be applied for the
cases with more than two candidate members. The reason to
select the ND and SEV as candidates is due to the Weibull
distribution and lognormal distribution, which are twowidely
used distributions for life testing applications. The Weibull
and lognormal distributions can be transformed into the SEV
and ND, respectively, by taking log-transformation.

• The normal distribution case:

If the underlying distribution is normal, the PDF of normal
distribution is given by

g(Z) = φ(z) = 1√
2π

e−z2/2. (17.19)

According to Eq. (17.19), we can obtain�(z)= − φ
′
(z)/φ(z)

= z. The MLEs of ND parameters are denoted by μ̂N and σ̂N.
Replacing μ and σ with μ̂N and σ̂N in Eq. (17.6), the Eq.
(17.6) can be rewritten as

L̂N
(
μ̂N, σ̂N

) = C1

r∏
j=1

σ̂−1
N φ

(
zj:n
)
[1 − 
(zr:n)]n−r, (17.20)

where 
(·) is the CDF of the standard ND. According to
Eq. (17.17) and Eq. (17.18), h1(zr:n,Zs:n) and h(Zs:n) can be
replaced by their respective expected values in Eq. (17.10).
The Eq. (17.10) can be rewritten as

E (Zs:n) − Ẑs:n = 0. (17.21)

The value of E(Zj:n) is available and has been tabulated by
Teichroew [19]. Hence, the MLPE of Xs:n for ND can be
derived as

X̂N,1
s:n = μ̂N + σ̂NE (Zs:n) . (17.22)

Because E(Zs:n) ≥ zr:n is a necessary condition, we modify
Eq. (17.22) by

X̂N,1
s:n = max

{
μ̂N + σ̂NE (Zs:n) , xr:n

}
(17.23)

and use the X̂N,1s:n in Eq. (17.23) to protect Xs:n for
r + 1 ≤ s ≤ n.

Based on the Taylor series prediction method, the func-
tions h(Zs:n) and h1(zr:n,Zs:n) are expand by using the Taylor
series around the points F−1(ps) and (F−1(pr), F−1(ps)),
respectively. According to Raqab [7], we can approximate
h(Zs:n) and h1(zr:n,Zs:n) by

h (Zs:n) = f (Zs:n)
1 − f (Zs:n)

≈ α + βZs:n, (17.24)

and

h1 (zr:n, Zs:n) = f (Zs:n)
f (Zs:n) − f (zr:n)

≈ γ + ρzr:n − vsZs:n,

(17.25)

respectively, where

α = f (ηs)
{(
1 + η2

s

)
qs − ηsf (ηs)

}
q2s

,
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β = f (ηs) {f (ηs) − qsηs}
q2s

,

γ = f (ηs)
{(
1 + η2

s

)
psr + ηsf (ηs) − ηrf (ηr)

}
p2sr

,

ρ = f (ηr) f (ηs)

p2sr
,

vs = f (ηs) {ηspsr + f (ηs)}
p2sr

,

pij = pi − pj, pi = i/ (n+ 1) .

and
ηi = F−1(pi) for i = 1, 2, . . . , n. The Eq. (17.10) can be

rewritten by

(s− r − 1) (γ + ρzr:n − vsZs:n) − zs:n

− (n− s) (α + βZs:n) = 0.
(17.26)

The MLPT of Xs:n can be obtained by

X̂N,2s:n = max
{

(s− r − 1) ρxr:n
(s− r − 1) vs + 1 + (n− s) β

+
[
1 − (s− r − 1) ρ

(s− r − 1) vs + 1 + (n− s) β

]
μ̂N

+ (s− r − 1) γ − (n− s) α

(s− r − 1) vs + 1 + (n− s) β
σ̂N, xr:n

}
,

(17.27)

where r + 1 ≤ s ≤ n.

• The smallest extreme value distribution

If the underlying distribution is SEV, the PDF of the SEV
is given by

g(z) = φsev(z) = ez−e
z
. (17.28)

Based on the expected value prediction method, the
�(z) = − φ′

sev(z)/φsev(z) = ez − 1. Using Eqs. (17.8)
and (17.9), the MLEs of μ and σ are denoted by μ̂S and
σ̂S, respectively. Replacing μ and σ with μ̂S and σ̂S in Eq.
(17.6), Eq. (17.6) can be represented by

L̂S
(
μ̂S, σ̂S

) = C1

r∏
j=1

σ̂−1
S φsev

(
zj:n
)
[1 − 
sev (zr:n)]n−r,

(17.29)

where 
sev(z) = 1 − exp [− exp (z)] is the CDF of the
standard SEV. Then h1(zr:n,Zs:n) and h(Zs:n) are replaced
by their respective expected values in Eq. (17.10). The Eq.
(17.10) can be rewritten as

(s− r − 1)E [h1 (zr:n, Zs:n)] −
(
eẐs:n − 1

)

− (n− s)E [h (Zs:n)] = 0.
(17.30)

The MLPE of Xs:n can be obtained as

X̂SEV,1
s:n = max

{
μ̂S + σ̂S ln

(
E [� (Zs:n)] + 1

)
, xr:n

}
(17.31)

for r + 1 ≤ s ≤ n and E� (Zs:n) = E
(
eZs:n − 1

)
.

Based on the Taylor series prediction method, expanding
h(Zs:n) and h1(zr:n,Zs:n) by using the Taylor series at the points
F−1(ps) and (F−1(pr), F−1(ps)), respectively. We obtain

h (Zs:n) = f (Zs:n)
1 − f (Zs:n)

≈ 1 − αs − βsZs:n,

and

h1 (zr:n, Zs:n) = f (Zs:n)
f (Zs:n) − f (zr:n)

≈ γE + ρEzr:n + vEZs:n.

where

αs = 1 + ln (qs) − ln (qs) ln (− ln qs) ,

βs = ln (qs) ,

γE = qs ln (qs)
{
qrs [−1 + (1 + ln (qs)) ln (− ln (qs))]

+qs ln (qs) ln (− ln (qs)) − qr ln (qr) ln (− ln (qr))} /q2rs,

ρE = −qs ln (qs) [(1 + ln (qs)) qrs + qs ln (qs)] /q2rs,

vE = qs ln (qs) qr ln (qr) /q2rs,

and
qij = q − qj. Eq. (17.10) can be rewritten as

(s− r − 1) (γE + ρEzr:n + vEZs:n) − eZs:n − 1

− (n− s) (1 − αs − βsZs:n) = 0
(17.32)
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The MLPT of Xs:n can be derived as

X̂SEV,2
s:n = max

{ − (s− r − 1) vExr:n
(s− r − 1) ρE + βs + (n− s) βs

+
[
1 + (s− r − 1) vE

(s− r − 1) ρE + βs + (n− s) βs

]
μ̂S

− (s−r−1) γE+αs− (n−s) + (n−s) αs

(s−r−1) ρE+βs+ (n−s) βs
σ̂S, xr:n

}
,

(17.33)

for r + 1 ≤ s ≤ n.

17.3 ThreeModel Selection Approaches

When we collect a data set, sometimes we cannot determine
the best distribution of data. When the assumed distribution
is incorrect, it may lead to incorrect results. Therefore, we
suggest three approaches to discriminate the candidate dis-
tributions, the ratio of the maximized likelihood (RRML)
approach, modification DSP approach (shorted as DSP ap-
proach), and modification D approach (shorted as the D
approach), to obtain the predictor of X̂s:n. All these three
approaches can be implemented to obtain the predictor ofXs:n
via using Algorithm 1 to Algorithm 3.

Algorithm 1: The RRML Approach

Step 1: Collect a type II censoring sample, which has size
n and r observed failure times, we consider k candidate
distributions.

Step 2: Obtain (μ̂Mi , σ̂Mi) and L̂Mi

(
μ̂Mi, σ̂Mi

)
for the candidate

model Mi, i = 1, 2, . . . , k. Obtain the Xs:n under the
candidate model Mi and label it by X̂Mi,j

s:n for s = r + 1,
. . . , n, i = 1, 2, . . . , k and j = 1 or 2.

Step 3: Let X̂A1,j
s:n denote the predicted value of Xs:n for j = 1

or 2. Based on the method proposed by Dumonceaux and
Antle [10], we can obtain X̂A1,j

s:n , which can provide the
largest maximum likelihood information by

L̂A1
(
μ̂A1, σ̂A1

) = max
{
L̂M1

(
μ̂M1 , σ̂M1

)
, L̂M2

(
μ̂M2 , σ̂M2

)
, . . . , L̂Mk

(
μ̂Mk , σ̂Mk

)}

If the candidate distributions are ND and SEV, the Step 2
and Step 3 in the Algorithm 1 can be reduced to

Step 2′: Obtain (μ̂N, σ̂N), (μ̂S, σ̂S), L̂N
(
μ̂N, σ̂N

)
and

L̂S
(
μ̂S, σ̂S

)
. Obtain the Xs:n under the ND (X̂N,js:n ) and

obtain the Xs:n under the SEV (X̂SEV,j
s:n ) for s = r + 1, . . . ,

n and j = 1 or 2.
Step 3′: Let X̂A1

s:n denote the predicted value of Xs:n. Then

X̂A1
s:n =

{
X̂N,j
s:n if L̂N

(
μ̂N, σ̂N

)
> L̂S

(
μ̂S, σ̂S

)
X̂SEV,j
s:n , otherwise.

for s = r + 1, . . . , n and j = 1 or 2.

Algorithm 2: The DSP Approach

Step 1: Collect a type II censoring sample, which has size n
and r observed failure times.

Step 2: Obtain (μ̂Mi , σ̂Mi ) for i= 1, 2, . . . , k, and then obtain
X̂Mi,j
s:n for s = r + 1, . . . , n, i = 1, 2, . . . , k and j = 1 or 2.

Step 3: Based on the method proposed by Castro-Kuriss et al.
[20], the modification of DSP with censored observations
can be presented by

DSP (μ, σ) = max
1 ≤ i ≤ r

{
2

π

∣∣∣∣∣arcsin

(√
i− 0.5

n

)

− arcsin
(√

Ui:n
) ∣∣∣∣∣
}
,

(17.34)

where Ui:n = G
( xi:n−μ

σ

)
. The definition of G(·) is the same

as that of Eq. (17.2); it represents the CDF of the assumed

distribution in model selection. Evaluate the value of DSP

through using the candidate modelMi for i = 1, 2, . . . , k.
Step 4: Let X̂A2,j

s:n be the predicted value of Xs:n for j = 1 or 2,
then X̂A2,j

s:n can be obtained with the smallest D̂SP. That is,
X̂A2,j
s:n is the value corresponding to D̂A2

SP

(
μ̂A2, σ̂A2

)
, which

is defined by

D̂A2
SP

(
μ̂A2, σ̂A2

) = min
{
D̂SP

(
μ̂M1 , σ̂M1

)
,

D̂SP
(
μ̂M2 , σ̂M2

)
, . . . , D̂SP

(
μ̂Mk , σ̂Mk

)}
.

If the candidate distributions are ND and SEV, the Step
2–Step 4 in the Algorithm 2 can be reduced to

Step 2′: Obtain (μ̂N, σ̂N) and (μ̂S, σ̂S). Obtain the X̂N,j
s:n under

the ND and obtain theX̂SEV,j
s:n under the SEV distribution

for s = r + 1, . . . , n and j = 1 or 2.
Step 3′: The modification of DSP with censored observations

can be presented by
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DSP (μ, σ) = max
1 ≤ i ≤ r

{
2

π

∣∣∣∣∣arcsin

(√
i− 0.5

n

)

− arcsin
(√

Ui:n
) ∣∣∣∣∣
}
,

where Ui:n = G
( xi:n−μ

σ

)
. The definition of G(·) is the same as

that of Eq. (17.2); it represents the CDF of the assumed

distribution in model selection. Evaluate the value of DSP

through using the normal and smallest extreme value
distributions, and denoted them by D̂N

SP

(
μ̂N, σ̂N

)
and

D̂SEV
SP

(
μ̂S, σ̂S

)
, respectively.

Step 4′: Let X̂A2,j
s:n denote the predicted value of Xs:n, then X̂

A2,j
s:n

can be obtained by

X̂A2
s:n =

{
X̂N,j
s:n , if D̂N

SP

(
μ̂N, σ̂N

)
< D̂SEV

SP

(
μ̂S, σ̂S

)
X̂SEV,j
s:n , if D̂N

SP

(
μ̂N, σ̂N

) ≥ D̂SEV
SP

(
μ̂S, σ̂S

) for s = r + 1, . . . , n and j = 1 or 2.

Algorithm 3: The D Approach

Step 1: Collect a type II censoring sample, which has size n
and r observed failure times.

Step 2: Obtain (μ̂Mi , σ̂Mi ) for i= 1, 2, . . . , k, and then obtain
X̂Mi,j
s:n for s = r + 1, . . . , n, i = 1, 2, . . . , k and j = 1 or 2.

Step 3: Based on the method proposed by Castro-Kuriss
et al. [20], the modification of D(μ, σ ) with censoring
observations can be presented by

D (μ, σ) = max
1 ≤ i ≤ r

{
2

π

∣∣∣∣∣
√
i− 0.5

n
− Ui:n

∣∣∣∣∣
}

+ 0.5

n
,

(17.35)

where Ui:n = G
( xi:n−μ

σ

)
.

Step 4: Let X̂A3,j
s:n be the predicted value of Xs:n for j = 1 or 2,

then X̂A3,j
s:n can be obtained with the smallest D̂

(
μ̂Mi , σ̂Mi

)
.

That is, X̂A3,j
s:n is the value corresponding to D̂A3

(
μ̂A3, σ̂A3

)
,

which is defined by

D̂A3
(
μ̂A3, σ̂A3

) = min
{
D̂
(
μ̂M1 , σ̂M1

)
, D̂
(
μ̂M2 , σ̂M2

)
,

. . . , D̂
(
μ̂Mk , σ̂Mk

)}
.

If the candidate distributions are ND and SEV, the Step 2,
Step 3, and Step 4 in the Algorithm 3 can be reduced to

Step 2′: Obtain (μ̂N, σ̂N) and (μ̂S, σ̂S). Obtain the X̂N,j
s:n under

the ND and obtain theX̂SEV,j
s:n under the SEV for s= r + 1,

. . . , n and j = 1 or 2.
Step 3′: The modification of D(μ, σ ) with censoring obser-

vations can be presented by

D (μ, σ) = max
1 ≤ i ≤ r

{
2

π

∣∣∣∣∣
√
i− 0.5

n
− Ui:n

∣∣∣∣∣
}

+ 0.5

n
,

where Ui:n = G
( xi:n−μ

σ

)
. Evaluate the value of D(μ, σ ) by

using the ND and SEV, and denoted them by D̂N
(
μ̂N, σ̂N

)
and D̂SEV

(
μ̂S, σ̂S

)
.

Step 4′: Let X̂A3,j
s:n denote the predicted value of Xs:n, then X̂

A3,j
s:n

can be obtained by

X̂A3,j
s:n =

{
X̂N,js:n , if D̂N

(
μ̂N, σ̂N

)
< D̂SEV

(
μ̂S, σ̂S

)
X̂SEV,j
s:n , if D̂N

(
μ̂N, σ̂N

) ≥ D̂SEV
(
μ̂S, σ̂S

) for s = r + 1, . . . , n and j = 1 or 2.

17.4 Monte Carlo Simulations

In this section, the performance of the proposed three ap-
proaches with two predicting methods is investigated. The
ND and SEV are considered as the candidate distributions for
competing the best lifetime model in the simulation study.
The data sets of type II censoring sample, x1:n, . . . , xr:n,
used in the simulation were randomly generated from the ND

and SEV with location parameter μ = 0 and scale parameter
σ = 1. Then, the sth order statistic is predicted and denoted
by X̂s:n for s = r + 1, r + 2, . . . , n for the sample sizes
n= 20, 40, and 60. In this simulation, we considered different
censoring proportions (cp = r/n) cp = 0.9, 0.8, 0.7, 0.6, 0.5
and different predicting 100pth percentile (cp < p ≤1). For
the purpose of comparison, the values of the bias and mean
square error (MSE) of X̂s:n are evaluated with N = 10000
Monte Carlo runs:
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Table 17.2 The corresponding bias and MSEs for different settings with model misspecification when true distribution is ND

Assumed distribution

Normal distribution Extreme value distribution

X̂N,1
s:n X̂N,2

s:n X̂SEV,1
s:n X̂SEV,2

s:n
n cp p bias MSE bias MSE bias MSE bias MSE

20 0.8 0.9 −0.0559 0.0912 −0.2224 0.1268 −0.1951 0.1157 −0.2709 0.1504

0.7 0.8 −0.0494 0.0594 −0.1832 0.0860 −0.1335 0.0702 −0.2076 0.0955

0.7 0.9 −0.0685 0.1309 −0.1485 0.1422 −0.2873 0.1989 −0.3216 0.2193

0.6 0.7 −0.0459 0.0481 −0.1623 0.0710 −0.1032 0.0547 −0.1773 0.0763

0.6 0.8 −0.0739 0.1036 −0.1345 0.1119 −0.2257 0.1417 −0.2579 0.1567

0.6 0.9 −0.0999 0.1967 −0.1574 0.2052 −0.3965 0.3212 −0.4213 0.3406

0.5 0.6 −0.0542 0.0456 −0.1585 0.0659 −0.0953 0.0501 −0.1694 0.0694

0.5 0.7 −0.0644 0.0878 −0.1145 0.0946 −0.1832 0.1144 −0.2152 0.1271

0.5 0.8 −0.0921 0.1497 −0.1322 0.1554 −0.3146 0.2292 −0.3358 0.2423

0.5 0.9 −0.1277 0.2668 −0.1747 0.2741 −0.5038 0.4667 −0.524 0.4863

40 0.8 0.9 0.0776 0.0724 −0.0546 0.0494 −0.2573 0.1319 −0.2022 0.0932

0.7 0.8 0.0696 0.0506 −0.0404 0.0305 −0.1829 0.0765 −0.1336 0.0498

0.7 0.9 0.0744 0.0711 −0.0146 0.0545 −0.3102 0.171 −0.2323 0.1123

0.6 0.7 0.0633 0.0419 −0.034 0.0243 −0.1543 0.0584 −0.1045 0.0364

0.6 0.8 0.0691 0.0576 −0.0064 0.0407 −0.234 0.116 −0.1464 0.0654

0.6 0.9 0.0799 0.0807 0.009 0.0671 −0.3082 0.1776 −0.2455 0.1309

0.5 0.6 0.0524 0.0398 −0.0337 0.0232 −0.1507 0.0544 −0.0927 0.0324

0.5 0.7 0.0628 0.0465 0.0032 0.0321 −0.1996 0.0947 −0.0963 0.0454

0.5 0.8 0.0728 0.0591 0.0195 0.0482 −0.2273 0.1168 −0.1436 0.0717

0.5 0.9 0.0768 0.0809 0.0235 0.0714 −0.2995 0.1728 −0.2438 0.1334

60 0.8 0.9 0.0762 0.0535 −0.0227 0.0356 −0.2778 0.1286 −0.1802 0.072

0.7 0.8 0.0686 0.0389 −0.0143 0.0224 −0.1969 0.0723 −0.1095 0.0365

0.7 0.9 0.0766 0.0507 0.0076 0.0391 −0.3142 0.1573 −0.2203 0.0936

0.6 0.7 0.0631 0.0317 −0.0112 0.0176 −0.1673 0.0561 −0.0799 0.0256

0.6 0.8 0.0697 0.0425 0.0111 0.0309 −0.2381 0.1069 −0.1341 0.0529

0.6 0.9 0.0798 0.0598 0.0268 0.0506 −0.3148 0.1652 −0.2406 0.1153

0.5 0.6 0.0538 0.0295 −0.0104 0.0172 −0.1664 0.0546 −0.0676 0.0234

0.5 0.7 0.0692 0.0322 0.0212 0.0222 −0.2064 0.0846 −0.0842 0.0336

0.5 0.8 0.0803 0.0413 0.0388 0.0337 −0.2302 0.1063 −0.1358 0.0592

0.5 0.9 0.0894 0.0534 0.0453 0.0469 −0.3072 0.1608 −0.2448 0.1179

bais = 1

N

N∑
i=1

(
X̂s:n,i − Xs:n

)

and

MSE = 1

N

N∑
i=1

(
X̂s:n,i − Xs:n

)2
,

where X̂s:n,i is the predicted value of Xs:n that is obtained
in the ith iteration of simulation for i = 1, . . . , N. All
simulation results are displayed in Tables 17.2 and 17.3 with
the candidate distributions of ND and SEV. From Tables 17.2
and 17.3, we notice that:

1. The bias and MSE are large when the misspecification
model is used.

2. The impact of misspecification depends on the values of r
and s.

3. As n or r increases, the simulated bias and MSE decrease.
4. We also find that theMSE based on using the Taylor series

prediction method is smaller than that based on using the
expected values prediction method when the sample size
is or larger than 40.

To evaluate the performance of the three proposed model
selection approaches for MLP. Tables 17.4, 17.5, and 17.6
report the simulation results for three model selection ap-
proaches from the ND. Tables 17.7, 17.8, and 17.9, respec-
tively, report the simulation results for three model selec-
tion approaches from the SEV. The column “correct(%)”
presented in Tables 17.4, 17.5, 17.6, 17.7, 17.8, and 17.9 is
the correct model selection rate in all simulation runs. From
Tables 17.4, 17.5, 17.6, 17.7, 17.8, and 17.9, we find that:
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Table 17.3 The corresponding bias and MSEs for different settings with model misspecification when the true distribution is SEV

Assumed distribution

Normal distribution Extreme value distribution

X̂N,1
s:n X̂N,2

s:n X̂SEV,1
s:n X̂SEV,2

s:n
n cp p bias MSE bias MSE bias MSE bias MSE

20 0.8 0.9 0.3244 0.2161 −0.0603 0.0588 −0.0318 0.0633 −0.1622 0.0837

0.7 0.8 0.2185 0.1425 −0.0896 0.0546 −0.0323 0.0511 −0.1526 0.0719

0.7 0.9 0.3428 0.2439 0.1161 0.0999 −0.0580 0.1011 −0.1205 0.1081

0.6 0.7 0.1554 0.1142 −0.1068 0.0551 −0.0315 0.0474 −0.1516 0.0675

0.6 0.8 0.2358 0.1802 0.0564 0.0891 −0.0621 0.0968 −0.1206 0.1025

0.6 0.9 0.3805 0.3264 0.2218 0.2011 −0.0829 0.1660 −0.1282 0.1704

0.5 0.6 0.1089 0.1028 −0.1238 0.0641 −0.0374 0.0534 −0.1596 0.0747

0.5 0.7 0.1864 0.1518 0.0396 0.0913 −0.0549 0.1009 −0.1120 0.1075

0.5 0.8 0.2897 0.2633 0.1697 0.1855 −0.0802 0.1709 −0.1187 0.1748

0.5 0.9 0.4603 0.5008 0.3419 0.3814 −0.1115 0.2556 −0.1471 0.2586

40 0.8 0.9 0.5659 0.3576 0.1264 0.0432 0.0838 0.0487 −0.0235 0.0311

0.7 0.8 0.4603 0.2426 0.0696 0.0263 0.0807 0.0432 −0.0214 0.0246

0.7 0.9 0.5673 0.3535 0.2467 0.0897 0.0864 0.0472 0.0160 0.0339

0.6 0.7 0.4053 0.2016 0.0423 0.0214 0.0741 0.0414 −0.0231 0.0218

0.6 0.8 0.4595 0.2434 0.1558 0.0536 0.0790 0.0474 0.0118 0.0334

0.6 0.9 0.5704 0.3647 0.3146 0.1367 0.0920 0.0564 0.0399 0.0459

0.5 0.6 0.3854 0.1911 0.0264 0.0229 0.0697 0.0442 −0.0262 0.0243

0.5 0.7 0.4169 0.1981 0.1172 0.0387 0.0828 0.0424 0.0181 0.0289

0.5 0.8 0.4685 0.2452 0.2188 0.0754 0.0908 0.0472 0.0440 0.0369

0.5 0.9 0.5746 0.3562 0.3594 0.1576 0.0982 0.0506 0.0582 0.0426

60 0.8 0.9 0.5740 0.3528 0.1625 0.0464 0.0754 0.0357 −0.0028 0.0238

0.7 0.8 0.4607 0.2327 0.0933 0.0250 0.0694 0.0320 −0.0046 0.0187

0.7 0.9 0.5751 0.3519 0.2741 0.0948 0.0788 0.0344 0.0261 0.0255

0.6 0.7 0.4073 0.1872 0.0636 0.0189 0.0659 0.0302 −0.0040 0.0167

0.6 0.8 0.4602 0.2324 0.1754 0.0518 0.0710 0.0346 0.0227 0.0259

0.6 0.9 0.5740 0.3554 0.3363 0.1385 0.0809 0.0422 0.0426 0.0356

0.5 0.6 0.3812 0.1740 0.0434 0.0189 0.0570 0.0318 −0.0080 0.0182

0.5 0.7 0.4144 0.1865 0.1343 0.0338 0.0743 0.0311 0.0299 0.0215

0.5 0.8 0.4702 0.2319 0.2349 0.0714 0.0836 0.0346 0.0506 0.0284

0.5 0.9 0.5830 0.3496 0.3826 0.1611 0.0921 0.0363 0.0625 0.0313

1. The three model selection approaches have good ability
to identify the correct underlying distribution with a high
probability.

2. The MSEs of these three approaches are close to those
simulated MSEs of the cases by using the real underlying
distribution.

3. The correct model selection rates through using the DSP

approach or D approach are higher than that of using
the RRML approach when the sample size is smaller
than 40. When the sample size grows to or over 40, the
performance of the RRML approach is improved and
the correct model selection rate of the RRML approach
is higher than that is obtained by using the DSP or D
approach.

4. To compare the performance of using two different MLPs,
the MSEs of using the expected values prediction method

are smaller than that using the Taylor series prediction
method when the sample size is smaller than 40.

5. The proposed approaches can perform well under large
sample size cases.

17.5 Illustrative Examples

In this section, three numerical examples are presented to
illustrate the proposed approaches in Sects. 17.2, 17.3, and
17.4.

Example 1
In the paper of Mann and Fertig [21], a test airplane compo-
nent’s failure time dataset is provided, in which 13 compo-
nents were placed on test, and the test was terminated at the
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Table 17.4 The corresponding bias and MSEs for different settings of
RML approach when the true distribution is ND

RML approach

X̂A1,1
s:n X̂A1,2

s:n
n cp p bias MSE bias MSE correct(%)

20 0.8 0.9 −0.1178 0.0965 −0.2419 0.1365 0.7204

0.7 0.8 −0.0955 0.0636 −0.1961 0.0911 0.6963

0.7 0.9 −0.1619 0.1584 −0.2159 0.1752 0.6963

0.6 0.7 −0.0814 0.0513 −0.1720 0.0744 0.6665

0.6 0.8 −0.1473 0.1212 −0.1884 0.1329 0.6657

0.6 0.9 −0.2262 0.2529 −0.2644 0.2671 0.6657

0.5 0.6 −0.0826 0.0484 −0.1665 0.0686 0.6477

0.5 0.7 −0.1249 0.1009 −0.1609 0.1106 0.6477

0.5 0.8 −0.1934 0.1886 −0.2202 0.1981 0.6477

0.5 0.9 −0.2884 0.3606 −0.3199 0.3739 0.6477

40 0.8 0.9 0.0656 0.0693 −0.0585 0.0503 0.9726

0.7 0.8 0.0608 0.0488 −0.0428 0.0309 0.9762

0.7 0.9 0.0636 0.0701 −0.0202 0.0557 0.9762

0.6 0.7 0.0575 0.0404 −0.0354 0.0245 0.9785

0.6 0.8 0.0621 0.0564 −0.0094 0.0411 0.9777

0.6 0.9 0.0713 0.0801 0.0037 0.0682 0.9777

0.5 0.6 0.0474 0.0388 −0.0347 0.0234 0.9817

0.5 0.7 0.0571 0.0459 0.0012 0.0323 0.9817

0.5 0.8 0.0664 0.0588 0.0161 0.0487 0.9817

0.5 0.9 0.0687 0.0808 0.0178 0.0723 0.9817

60 0.8 0.9 0.0709 0.0525 −0.0245 0.0360 0.9922

0.7 0.8 0.0654 0.0380 −0.0152 0.0224 0.9927

0.7 0.9 0.0733 0.0503 0.0058 0.0395 0.9927

0.6 0.7 0.0607 0.0313 −0.0115 0.0177 0.9941

0.6 0.8 0.0667 0.0422 0.0086 0.0310 0.9933

0.6 0.9 0.0764 0.0597 0.0246 0.0510 0.9933

0.5 0.6 0.0523 0.0292 −0.0107 0.0172 0.9928

0.5 0.7 0.0673 0.0317 0.0203 0.0223 0.9928

0.5 0.8 0.0785 0.0413 0.0378 0.0338 0.9928

0.5 0.9 0.0869 0.0532 0.0435 0.0469 0.9928

time of the 10th failure. The failure times (in hours) of the 10
components that failed were

D1 : 0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 1.54, 1.76, 2.50, 3.00.

Suppose Y1 is the logs of the ten observations, that is,
Y1 = ln (D1). Figure 17.2 presents the histogram and the
estimated PDFs of the ND and SEV distribution. From
Fig. 17.2, it is difficult to full decide the best distribution
for lifetime fitting, because both candidate distributions can
provide good fitting for this data set. In this example, theDSP

approach is considered to discriminate competing models
and use expected values prediction method and Taylor series
prediction method to predict the future order statistics, which
are censored.

Table 17.5 The corresponding bias and MSEs for different settings of
Dsp approach when the true distribution is ND

Dsp approach

X̂A2,1
s:n X̂A2,2

s:n
n cp p bias MSE bias MSE correct(%)

20 0.8 0.9 −0.1036 0.0933 −0.2374 0.1342 0.7323

0.7 0.8 −0.0760 0.0609 −0.1906 0.0890 0.7206

0.7 0.9 −0.1334 0.1500 −0.1987 0.1660 0.7206

0.6 0.7 −0.0618 0.0490 −0.1665 0.0725 0.6943

0.6 0.8 −0.1184 0.1149 −0.1711 0.1259 0.6935

0.6 0.9 −0.1869 0.2357 −0.2355 0.2479 0.6935

0.5 0.6 −0.0619 0.0459 −0.1602 0.0664 0.6781

0.5 0.7 −0.0953 0.0946 −0.1428 0.1036 0.6781

0.5 0.8 −0.1561 0.1719 −0.1926 0.1801 0.6781

0.5 0.9 −0.2360 0.3249 −0.2765 0.3358 0.6781

40 0.8 0.9 −0.0293 0.0601 −0.0890 0.0583 0.7009

0.7 0.8 −0.0155 0.0369 −0.0610 0.0339 0.6966

0.7 0.9 −0.0345 0.0693 −0.0678 0.0679 0.6966

0.6 0.7 −0.0095 0.0300 −0.0479 0.0263 0.7018

0.6 0.8 −0.0154 0.0489 −0.0381 0.0453 0.7010

0.6 0.9 −0.0270 0.0820 −0.0530 0.0812 0.7010

0.5 0.6 −0.0085 0.0283 −0.0432 0.0243 0.7535

0.5 0.7 0.0008 0.0381 −0.0142 0.0337 0.7535

0.5 0.8 0.0012 0.0548 −0.0132 0.0525 0.7535

0.5 0.9 −0.0126 0.0833 −0.0336 0.0824 0.7535

60 0.8 0.9 −0.0131 0.0473 −0.0541 0.0421 0.7529

0.7 0.8 −0.0047 0.0299 −0.0331 0.0248 0.7452

0.7 0.9 −0.0154 0.0535 −0.0402 0.0503 0.7452

0.6 0.7 −0.0007 0.0234 −0.0234 0.0188 0.7643

0.6 0.8 −0.0017 0.0383 −0.0182 0.0344 0.7635

0.6 0.9 −0.0072 0.0647 −0.0263 0.0627 0.7635

0.5 0.6 0.0024 0.0226 −0.0182 0.0178 0.7864

0.5 0.7 0.0172 0.0277 0.0056 0.0237 0.7864

0.5 0.8 0.0202 0.0401 0.0099 0.0371 0.7864

0.5 0.9 0.0083 0.0605 −0.0087 0.0587 0.7864

Based on this censored data, the AMLEs of the model
parameters via using the normal distribution and extreme
value distribution are (μ̃N, σ̃N) = (0.474, 0.936) and
(μ̃EV, σ̃EV) = (0.811, 0.708), respectively. Through using
Newton-Raphson algorithm with the initial values of
(μ̃N, σ̃N) and (μ̃EV, σ̃EV), we obtained the MLEs of μ and σ

as
(
μ̂N, σ̂N

) = (0.479, 0.938) and
(
μ̂S, σ̂S

) = (0.821, 0.705)
for the ND and SEV, respectively.

The DSP values via using ND and SEV are 0.223 and
0.212, respectively. We claim the best distribution of this
data set is SEV. The Taylor series prediction and expected
values prediction for (Y11:13,Y12:13,Y13:13) under the extreme
value distribution with the censored sample can be obtained

by
(
ŶA2,2
11:13, Ŷ

A2,2
12:13, Ŷ

A2,2
13:13
)

= (1.098, 1.281, 1.567) and(
ŶA2,1
11:13, Ŷ

A2,1
12:13, Ŷ

A2,1
13:13
)

= (1.186, 1.369, 1.636), respectively.
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Table 17.6 The corresponding bias and MSEs for different settings of
D approach when the true distribution is ND

D approach

X̂A3,1
s:n X̂A3,2

s:n
n cp p bias MSE bias MSE correct(%)

20 0.8 0.9 −0.1040 0.0934 −0.2375 0.1343 0.7302

0.7 0.8 −0.0761 0.0609 −0.1907 0.0890 0.7198

0.7 0.9 −0.1336 0.1501 −0.1987 0.1661 0.7198

0.6 0.7 −0.0618 0.0490 −0.1665 0.0725 0.6941

0.6 0.8 −0.1184 0.1149 −0.1711 0.1259 0.6933

0.6 0.9 −0.1870 0.2358 −0.2356 0.2480 0.6933

0.5 0.6 −0.0619 0.0459 −0.1602 0.0664 0.6781

0.5 0.7 −0.0953 0.0946 −0.1428 0.1036 0.6781

0.5 0.8 −0.1561 0.1719 −0.1926 0.1801 0.6781

0.5 0.9 −0.2360 0.3249 −0.2764 0.3358 0.6781

40 0.8 0.9 −0.0335 0.0604 −0.0905 0.0587 0.6921

0.7 0.8 −0.0168 0.0370 −0.0613 0.0340 0.6924

0.7 0.9 −0.0364 0.0692 −0.0689 0.0680 0.6924

0.6 0.7 −0.0100 0.0300 −0.0480 0.0263 0.6998

0.6 0.8 −0.0162 0.0489 −0.0384 0.0454 0.6990

0.6 0.9 −0.0278 0.0821 −0.0535 0.0813 0.6990

0.5 0.6 −0.0084 0.0283 −0.0432 0.0243 0.7536

0.5 0.7 0.0009 0.0381 −0.0142 0.0337 0.7536

0.5 0.8 0.0013 0.0548 −0.0132 0.0525 0.7536

0.5 0.9 −0.0125 0.0832 −0.0334 0.0824 0.7536

60 0.8 0.9 −0.0171 0.0477 −0.0556 0.0425 0.7402

0.7 0.8 −0.0067 0.0300 −0.0337 0.0249 0.7392

0.7 0.9 −0.0180 0.0537 −0.0416 0.0505 0.7392

0.6 0.7 −0.0016 0.0234 −0.0236 0.0188 0.7625

0.6 0.8 −0.0025 0.0383 −0.0185 0.0344 0.7617

0.6 0.9 −0.0080 0.0649 −0.0268 0.0629 0.7617

0.5 0.6 0.0025 0.0226 −0.0182 0.0178 0.7867

0.5 0.7 0.0173 0.0277 0.0056 0.0237 0.7867

0.5 0.8 0.0202 0.0400 0.0100 0.0371 0.7867

0.5 0.9 0.0085 0.0605 −0.0086 0.0587 0.7867

Example 2
Lieblein and Zelen [22] provided a test on endurance of deep
groove ball bearings data and further studied by Meeker and
Escobar [23], which is used to illustrate the methodologies
developed in this chapter. The data are the numbers of million
revolutions before failure for each of the 23 ball bearings in
the life test. In the paper of Meeker and Escobar [23], they
pointed out that this data (D2) follows lognormal distribution
or Weibull distribution. Hence, Y2 = ln (D2) follows a ND
or SEV. The data is given below:

D2 : 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84,
51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12,

98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

Table 17.7 The corresponding bias and MSEs for different settings of
RML approach when the true distribution is SEV

RML approach

X̂A1,1
s:n X̂A1,2

s:n
n cp p bias MSE bias MSE correct(%)

20 0.8 0.9 0.0034 0.0634 −0.1503 0.0803 0.7460

0.7 0.8 −0.0090 0.0502 −0.1460 0.0698 0.7011

0.7 0.9 0.0110 0.1050 −0.0642 0.1038 0.7011

0.6 0.7 −0.0142 0.0468 −0.1473 0.0662 0.6556

0.6 0.8 −0.0059 0.0983 −0.0722 0.0982 0.6548

0.6 0.9 0.0346 0.1863 −0.0212 0.1780 0.6548

0.5 0.6 −0.0249 0.0527 −0.1570 0.0738 0.6058

0.5 0.7 −0.0037 0.1006 −0.0655 0.1020 0.6058

0.5 0.8 0.0258 0.1833 −0.0185 0.1787 0.6058

0.5 0.9 0.0732 0.3096 0.0272 0.2949 0.6058

40 0.8 0.9 0.1053 0.0562 −0.0159 0.0316 0.9450

0.7 0.8 0.1001 0.0482 −0.0160 0.0247 0.9401

0.7 0.9 0.1116 0.0592 0.0296 0.0375 0.9401

0.6 0.7 0.0939 0.0461 −0.0182 0.0217 0.9354

0.6 0.8 0.1020 0.0554 0.0220 0.0350 0.9346

0.6 0.9 0.1229 0.0709 0.0598 0.0523 0.9346

0.5 0.6 0.0882 0.0486 −0.0222 0.0241 0.9227

0.5 0.7 0.1044 0.0483 0.0261 0.0299 0.9227

0.5 0.8 0.1158 0.0565 0.0577 0.0402 0.9227

0.5 0.9 0.1328 0.0671 0.0825 0.0516 0.9227

60 0.8 0.9 0.0841 0.0392 0.0005 0.0244 0.9817

0.7 0.8 0.0781 0.0346 −0.0020 0.0189 0.9739

0.7 0.9 0.0896 0.0403 0.0323 0.0276 0.9739

0.6 0.7 0.0748 0.0326 −0.0019 0.0168 0.9715

0.6 0.8 0.0819 0.0385 0.0279 0.0269 0.9707

0.6 0.9 0.0965 0.0494 0.0531 0.0391 0.9707

0.5 0.6 0.0664 0.0336 −0.0061 0.0182 0.9633

0.5 0.7 0.0846 0.0339 0.0339 0.0220 0.9633

0.5 0.8 0.0957 0.0387 0.0574 0.0301 0.9633

0.5 0.9 0.1075 0.0460 0.0738 0.0369 0.9633

For more information about this carbon fiber breaking
strength data set, one can be referred to Meeker and
Escobar [23]. In this example, we assume that the censoring
proportion is 0.8696 (r = 20, n = 23). Figure 17.3 presents
the histogram and the estimated PDFs of ND and SEV
based on the type II right-censored data. From Fig. 17.3,
it is difficult to decide the best distribution from these two
candidate distributions.

We consider using D approach in Example 2 for
model selection and use expected values prediction
method to predict the future order statistics, which are
censored. Based on this censored data, the AMLEs of
the model parameters are (μ̃N, σ̃N) = (4.147, 0.523)
and (μ̃EV, σ̃EV) = (4.363, 0.426) for the ND and SEV,
respectively. The MLEs of μ and σ can be obtained
via using Newton-Raphson algorithm with the initial
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Table 17.8 The corresponding bias and MSEs for different settings of
Dsp approach when the true distribution is SEV

Dsp approach

X̂A2,1
s:n X̂A2,2

s:n
n cp p bias MSE bias MSE correct(%)

20 0.8 0.9 0.0344 0.0655 −0.1398 0.0777 0.6417

0.7 0.8 0.0176 0.0517 −0.1383 0.0677 0.5703

0.7 0.9 0.0625 0.1159 −0.0295 0.1041 0.5703

0.6 0.7 0.0141 0.0475 −0.1397 0.0639 0.5019

0.6 0.8 0.0478 0.1053 −0.0350 0.0958 0.5011

0.6 0.9 0.1230 0.2154 0.0516 0.1890 0.5011

0.5 0.6 0.0105 0.0540 −0.1469 0.0708 0.4051

0.5 0.7 0.0643 0.1107 −0.0163 0.1003 0.4051

0.5 0.8 0.1271 0.2097 0.0661 0.1871 0.4051

0.5 0.9 0.2376 0.3965 0.1735 0.3487 0.4051

40 0.8 0.9 0.1253 0.0555 −0.0073 0.0324 0.9077

0.7 0.8 0.1193 0.0455 −0.0089 0.0248 0.8803

0.7 0.9 0.1380 0.0630 0.0459 0.0421 0.8803

0.6 0.7 0.1115 0.0421 −0.0121 0.0217 0.8590

0.6 0.8 0.1254 0.0546 0.0347 0.0372 0.8582

0.6 0.9 0.1522 0.0804 0.0812 0.0617 0.8582

0.5 0.6 0.1067 0.0438 −0.0163 0.0239 0.8438

0.5 0.7 0.1234 0.0463 0.0352 0.0309 0.8438

0.5 0.8 0.1421 0.0597 0.0749 0.0449 0.8438

0.5 0.9 0.1633 0.0799 0.1072 0.0640 0.8438

60 0.8 0.9 0.0997 0.0409 0.0069 0.0254 0.9500

0.7 0.8 0.0936 0.0344 0.0033 0.0194 0.9280

0.7 0.9 0.1125 0.0458 0.0460 0.0317 0.9280

0.6 0.7 0.0906 0.0312 0.0028 0.0170 0.9124

0.6 0.8 0.1036 0.0404 0.0390 0.0289 0.9116

0.6 0.9 0.1230 0.0582 0.0721 0.0464 0.9116

0.5 0.6 0.0847 0.0319 −0.0014 0.0183 0.8991

0.5 0.7 0.1042 0.0345 0.0425 0.0232 0.8991

0.5 0.8 0.1197 0.0438 0.0724 0.0342 0.8991

0.5 0.9 0.1382 0.0460 0.0977 0.0470 0.8991

values of (μ̃N, σ̃N) and (μ̃EV, σ̃EV); the resulting MLEs are(
μ̂N, σ̂N

) = (4.148, 0.524) and
(
μ̂S, σ̂S

) = (4.369, 0.425)
for the ND and SEV, respectively. The D values based on
using the ND and SEV are 0.181 and 0.297, respectively.
Because the D value obtained from ND is smaller than that
obtained from SEV, we claim the best model is normal.
The expected values prediction of (Y21:23,Y22:23,Y23:23) via

using ND is
(
ŶA3,1
21:23, Ŷ

A3,1
22:23, Ŷ

A3,1
23:23
)

= (4.784, 4.922, 5.160).

In addition, we compare our prediction results with the
MMLP values that proposed by Yang and Tong [8]. The

MMLP of (Y21:23,Y22:23,Y23:23) is
(
Ŷ21:23, Ŷ22:23, Ŷ23:23

)
=

(4.662, 4.936, 5.175). Our predicted results are close to that
proposed by Yang and Tong [8] even we cannot initially
assume which one of the ND or SEV is the best distribution.

Table 17.9 The corresponding bias and MSE for different settings of
D approach when the true distribution is SEV

D approach

X̂A3,1
s:n X̂A3,2

s:n
n cp p bias MSE bias MSE correct(%)

20 0.8 0.9 0.0335 0.0654 −0.1401 0.0778 0.6450

0.7 0.8 0.0173 0.0516 −0.1384 0.0677 0.5723

0.7 0.9 0.0621 0.1156 −0.0297 0.1040 0.5723

0.6 0.7 0.0141 0.0475 −0.1398 0.0639 0.5022

0.6 0.8 0.0478 0.1054 −0.0350 0.0958 0.5014

0.6 0.9 0.1230 0.2154 0.0515 0.1890 0.5014

0.5 0.6 0.0105 0.0540 −0.1469 0.0708 0.4050

0.5 0.7 0.0644 0.1107 −0.0163 0.1003 0.4050

0.5 0.8 0.1271 0.2097 0.0661 0.1871 0.4050

0.5 0.9 0.2377 0.3965 0.1736 0.3487 0.4050

40 0.8 0.9 0.1226 0.0544 −0.0083 0.0322 0.9135

0.7 0.8 0.1173 0.0454 −0.0095 0.0248 0.8839

0.7 0.9 0.1366 0.0625 0.0451 0.0419 0.8839

0.6 0.7 0.1109 0.0420 −0.0122 0.0217 0.8606

0.6 0.8 0.1249 0.0545 0.0345 0.0371 0.8598

0.6 0.9 0.1513 0.0800 0.0807 0.0615 0.8598

0.5 0.6 0.1068 0.0438 −0.0162 0.0239 0.8433

0.5 0.7 0.1235 0.0463 0.0352 0.0309 0.8433

0.5 0.8 0.1422 0.0598 0.0749 0.0449 0.8433

0.5 0.9 0.1634 0.0799 0.1073 0.0641 0.8433

60 0.8 0.9 0.0968 0.0400 0.0058 0.0252 0.9563

0.7 0.8 0.0926 0.0341 0.0030 0.0193 0.9309

0.7 0.9 0.1114 0.0452 0.0454 0.0315 0.9309

0.6 0.7 0.0902 0.0311 0.0027 0.0170 0.9135

0.6 0.8 0.1029 0.0402 0.0387 0.0288 0.9127

0.6 0.9 0.1219 0.0580 0.0715 0.0463 0.9127

0.5 0.6 0.0847 0.0319 −0.0014 0.0183 0.8990

0.5 0.7 0.1043 0.0345 0.0426 0.0232 0.8990

0.5 0.8 0.1198 0.0438 0.0724 0.0342 0.8990

0.5 0.9 0.1383 0.0572 0.0978 0.0470 0.8990

Example 3
A survival time (in days) of pigs injected with different doses
of tubercle Bacilli dataset was provided in Bjerkedal [24].
Because guinea pigs have a high susceptibility to human
tuberculosis, they are often used for research. There were 72
observations listed below:

D3 : 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53,
54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65,

65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95,

96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175,

175, 211, 233, 258, 258, 263, 297, 341, 341, 376.
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Fig. 17.2 The histogram and the estimated PDFs of airplane compo-
nent’s failure time in Example 1
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Fig. 17.3 The histogram and the estimated PDFs of tests on endurance
of deep groove ball bearings in Example 2

In this example, we assume that the censoring proportion
is 0.930 (r = 67, n = 72). Let Y3 be the logs of the ten
observations, that is, Y3 = ln (D3).

Figure 17.4 presents the histogram and the estimated
PDFs of the ND and SEV of Y3. From Fig. 17.4, we find
that it is difficult to decide the best distribution from the ND

Y3
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0.0

0.2

0.4

0.6

0.8

1.0 ND
SEV

Fig. 17.4 The histogram and the estimated PDFs of survival times (in
days) of pigs injected in Example 3

or SEV distribution. We consider using RML approach for
model selection and use Taylor series prediction method to
predict the future order statistics, which are censored.

Based on this censored data, the AMLEs of the model
parameters in ND and SEV distribution are obtained by
(μ̃N, σ̃N) = (4.348, 0.723) and (μ̃EV, σ̃EV) = (4.671, 0.707),
respectively. The MLEs of μ and σ are then obtained
via using the Newton-Raphson algorithm with the initial
values of (μ̃N, σ̃N) and (μ̃EV, σ̃EV), and the resulting
MLEs are

(
μ̂N, σ̂N

) = (4.348, 0.723) and
(
μ̂EV, σ̂EV

) =
(4.671, 0.707) for the ND and SEV distribution, respectively.
The value of τ is evaluated with τ = 7.302. Because
L̂N
(
μ̂N, σ̂N

)
> L̂S

(
μ̂S, σ̂S

)
, we claim that this data

is automatically determined to have a ND. The Taylor
series prediction of (Y68:72,Y69:72,Y70:72,Y71:72,Y72:72)

for the ND is
(
ŶA1,2
68:72, Ŷ

A1,2
69:72, Ŷ

A1,2
70:72, Ŷ

A1,2
71:72, Ŷ

A1,2
72:72
)

=
(5.553, 5.553, 5.626, 5.711, 5.836).

17.6 Conclusions

In the real world, it is possible that we cannot make a clear
judgment of the distribution of data, especially in the case of
censored data. In this study, we focus on providing reliable
methods to obtain predicting values of censored data to
reduce the impact of model misspecification.We provide two
prediction methods and three model selection approaches for
type II censored data, in which the quality characteristic is
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assumed to follow a location-scale family. The ND and SEV
are considered as the candidate members in the location-scale
distribution to compete for the best underlying distribution.

Numerical results show that the three proposed model
selection approaches are robust and effective for obtaining
good predicted values for the future order statistics, which are
censored. In comparing these three proposed approaches, we
recommend usingDSP approach orD approach for model se-
lection and use expected values prediction method to predict
the future order statistics for n is less than 40.When n is larger
than 40, we recommend using RRML approach for model
selection and using Taylor series predictionmethod to predict
the future order statistics. The simulation results also show
that the proposed approaches have strong robustness and can
greatly reduce the impact of model assumption uncertainty.
If more than two candidate distributions are competing for
the optimal distribution, the proposed method can also work
well.

In future researches, it is worthwhile to improve the accu-
racy of model selection or to predict other types of censored
data. Other model selection methods from the current three
proposed approaches could also be competitive. How to
apply the new model selection method for the topic of type
II censored data prediction could be studied in the future.
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Abstract

In the field of statistical process control, the cumulative
sum (CUSUM) control chart is used as a powerful tool
to detect process shifts. One of the main features of the
CUSUM control chart is that it takes into account the
past information at each sampling time of the process. Re-
cently, the rapid development of optimization algorithms
and software makes the CUSUM chart easier to be imple-
mented. As a result, the CUSUM control chart has been
increasingly applied widely. The goal of this chapter is
to present some recent innovative CUSUM control charts
monitoring the coefficient of variation (CV). We address
several problems related to the CUSUM chart monitoring
the CV. The first section provides important definitions
of a CUSUM control chart, including the CUSUM se-
quence, the CUSUM statistics, the implementation of a
CUSUM control chart, the average run length (ARL), and
the expected average run length (EARL). In the second
section, we investigate the effect of measurement error on
the CUSUM control chart monitoring the CV. Finally, a
fast initial response strategy to improve the performance
of the CUSUM control chart is presented.

Keywords

Cumulative sum · Coefficient of variation ·
Measurement error · Fast initial response · Statistic
process control · Control chart

Control charts are very powerful tools widely used in sta-
tistical process control (SPC) to detect assignable causes
that lead to changes in the process output. Ever since being
introduced by Shewhart, it has become a common practice for
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practitioners to use various control charts to monitor different
processes. The practical applications of control charts, which
were primarily in manufacturing, now extend far beyond
manufacturing into a large number of other fields in real
life, such as engineering, environmental science, genetics,
epidemiology, medicine, finance, and even law enforcement
and athletics (Stoumbos and Reynolds [1]).

A standard Shewhart control chart consists of a center
line and the control limits (upper and lower). A process is
monitored using this control chart by plotting directly the
statistical values of interest on the chart. If these values
exceed the control limits, the chart will signal an alarm to
show that the process is in out-of-control condition, and a
special case could occur that affects the process. Otherwise,
the process is considered to be still in control.

It is well documented that in the SPC literature, the tradi-
tional Shewhart control chart is quite slow in detecting small
or moderate shifts. Themain reason is that this type of control
chart is based purely on the latest update of observations from
the process instead of utilizing the information embedded in
the entire sequence of measurements. In other words, it has
no “memory.” To overcome this drawback, other advanced
control charts with “memory” have been suggested such as
the exponentially weighted moving average (EWMA) con-
trol chart and the cumulative sum (CUSUM) control chart.
During the last decade, the CUSUM control chart has been
increasingly used as a powerful tool in SPC to detect small
shifts in the process of interest. The CUSUM control chart
takes into account the past information at each sampling time
of the process. As a result, it is very sensitive to small process
shifts. In recent years, the rapid development of optimization
algorithms and software makes the CUSUM chart easier to
be implemented. Thus, similar to the discussion about the
application of the EWMA chart in Castagliola et al. [2],
the CUSUM chart could be applied in various industrial
environments, such as (1) the semiconductor industry at the
level of wafer fabrication where the extremely high level of
precision in critical dimensions of parts is required to avoid
the rejection of the product at the testing stage or during the
operating conditions, (2) automotive manufacturing industry
where the technological process of producing mechanical
parts like CNC operations in machining centers requires a
small variability as possible, and (3) service control activities
where healthcare outcomes such as the occurrence of infec-
tions are monitored. In general, the CUSUM chart is suitable
for any process or service when it is expected to detect
small process shifts in the process. In the SPC literature, the
CUSUM control chart has also been a major concern in sev-
eral studies. Chang and McLean [3] used the CUSUM chart
as an early performance indicator of a clinical procedure
before its implementation. Yashchin [4] studied CUSUM
control schemes for serially correlated observations with an

application to the process of galvanic plating used to deposit
copper on the surface of certain items. A CUSUM-based
method for monitoring simple linear profiles and the variance
when parameters are estimated was introduced by Saghaei
et al. [5] and Castagliola and Maravelakis [6], respectively.
Hawkins and Olwell [7] provided an extensive overview of
the CUSUM methodology for quality improvement in SPC.

The coefficient of variation (CV) is a quantity to evaluate
the dispersion of a probability distribution. It is defined
as the ratio of the standard deviation to the mean of the
distribution. In many practical situations, this measure plays
an important role in ensuring the quality and stability of
the process. More specifically, the mean of the quantity of
interest is expected to vary from time to time and its standard
deviation changes with the mean. However, the process is
still considered to be in control as long as the CV remains
stable. Many opportunities for control chart monitoring the
sample CV have been discussed in industrial manufacturing.
In the field of materials engineering like tool cutting life
and sintered materials, some quality characteristics related
to the physical properties of products constituted by metal
alloys or composite materials often have a standard deviation
which is proportional to their population mean due to the way
atoms of a metal diffuse into another (Castagliola et al. [8]).
In the textile industry, the variation among tensile strength
measurements from the thin thread is significantly smaller
than that from heavy thread because of the inherent physi-
cal properties of fiber (Yeong et al. [9]). In the machining
process, monitoring the CV is useful to detect the presence
of chatter, a severe form of self-excited vibration which
results in many machining problems: by adopting the CV, the
process monitoring works for different machining materials
and machining parameters (Ye et al. [10]). More applications
ofmonitoring of the CV have beenmentioned byMuhammad
et al. [11].

On account of the importance of monitoring the CV in
many processes, a large number of the CV control charts has
been suggested in the literature. Through a clinical chemical
example, Kang et al. [12] were pioneering authors to show the
efficiency of the Shewhart CV chart in quality improvement,
when neither the process mean nor the process variance is
constant. However, this control chart is only effective in
detecting large CV shifts. For small or moderate CV shifts,
it takes a large number of samples plotted beyond the control
interval before the Shewhart CV chart signals an alarm.
The EWMA CV control chart was then studied by Hong
et al. [13] to improve the performance of the Shewhart CV
chart. Using the same EWMA control chart, Castagliola et
al. [8] pointed out that monitoring the CV squared is more
effective than monitoring the CV itself. The performance
of the standard Shewhart CV control chart could also be
improved by the Shewhart chart with supplementary run
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rules (Castagliola et al. [14]). Recently, Tran et al. [15]
improved the performance of run rules control chart [14] by
using one-sided run rules to monitor CV squared. They also
considered the performance of these charts in the presence
of measurement errors (ME). Moreover, another strategy
that could be used to improve the performance of Shewhart
chart is the synthetic CV chart (Calzada and Scariano [16]).
A comparison between the performances of synthetic and
EWMA charts for monitoring the CV made by Teoh et al.
[17] showed that the EWMA CV squared chart outperforms
the synthetic CV chart for detecting small shifts in the CV.
Based on the preliminarywork of Castagliola et al. [8], Zhang
et al. [18] presented a modified EWMACV control chart that
is superior to some other competing control charts. Further-
more, Hong et al. [19] developed a CV control chart using
a generally weighted moving average (GWMA) technique,
called the GWMA CV control chart. The authors showed
that this new type of control chart brings more excellent
performance than the EWMA control chart in detecting small
shifts in the CV. Subsequently, the run sum CV control chart
was investigated by Teoh et al. [20]. Tran and Tran [21]
considered two one-sided CUSUM CV control charts and
their control charts lead to better performance than some
previous ones. In addition, the adaptive strategies were also
adopted to develop new charts monitoring the CV. Recently,
Tran et al. [22] suggested CUSUM control charts to monitor
CV squared with a fast initial response (FIR) strategy. The
performance of FIR CUSUM CV squared charts in their
results is greater than the initial CUSUM CV squared ones.
Furthermore, the variable sampling interval (VSI) CV control
chart was first proposed by Castagliola et al. on 2013. [23].
Although its performance cannot overcome the performance
of other advanced charts like EWMA CV chart or CUSUM
CV chart, this kind of chart is still a major concern in several
situations because of its simplicity in implementation and its
better performance compared to the standard Shewhart CV
chart. Then, the variable sample size strategy was adopted for
the CV control chart by Castagliola et al. [24] and Yeong et
al. [25] where the first author group monitored a transformed
statistic of the CV while the second one monitored directly
the CV without any transformation. Subsequently, the vari-
able sampling interval and variable sample size (VSSI) CV
control charts were investigated by Khaw et al. [26]. At
the highest level of adaptive strategies, Yeong et al. [27]
designed the variable parameter (VP) chart that includes all
VSSI, VSI, and VSS strategies to monitor the CV. It was
shown in this study that the VP CV chart outperforms the
VSSI CV, VSI CV, VSS CV, and Shewhart CV charts in
detecting the CV shifts. The adaptive strategies were also
combined efficiently with the advanced control chart. For
example, the VSI EWMA CV control chart and the VSS
EWMA CV control chart were proposed by Yeong et al. [28]
and Muhammad et al. [11] with higher performance than the

original EWMA CV control chart, respectively. Lately, Tran
et al. [29] investigated on VSI CUSUM control charts that
have highest performance in comparison with previous charts
such as, respectively, original CUSUM, EWMA, and VSI
EWMA control charts. Other problems related to the design
of a control chart monitoring the CV were also considered
in the SPC literature. For instance, the CV control charts in
short production runs were investigated by Castagliola et al.
[30] with a Shewhart chart and Amdouni et al. [31–33] with
a VSI chart, a run rules chart, and a VSS chart, respectively.
The performance of the CV control charts in Phase I data
was considered by Dawod et al. [34]. The effect of ME on
the CV control chart is investigated by Yeong et al. [35] with
the Shewhart type chart, Tran et al. [36] with the synthetic
chart, Nguyen et al. [37] with the VSI type chart, and Tran et
al. [38] with the CUSUM-type chart respectively.

Table 18.1 provides a brief overview of control chart
monitoring the CV in the literature.

The goal of this chapter is to present some recent innova-
tive CUSUM control charts monitoring the CV. A number
of important problems related to the CUSUM CV control
chart will be addressed. First, we describe several definitions
used in the design of a CUSUM control chart, including the
definition of a CUSUM sequence, the CUSUM statistics, the
implementation of a CUSUM control chart, and the widely
usedmeasures to evaluate the performance of a CUSUMcon-
trol chart, i.e., the average run length (ARL) and the expected
average run length (EARL). This is to provide practitioners
with a quick overview and a comprehensive understanding
of a CUSUM control chart. Then, the effect of ME on the
CUSUM control chart monitoring the CV is investigated
using a linear covariate error model. The obtained results
from this section are important for applying the CUSUM
chart in reality because it is necessary to understand the effect
of the ME, which is unavoidable in practice, and discuss
the method to reduce the negative effects on the CUSUM
CV chart performance. In the next section, we present a
fast initial response strategy to improve the performance
of the CUSUM control chart. Some perspectives related to
designing a control chart monitoring the CV are discussed in
the conclusion.

18.1 The CUSUM Control Charts

18.1.1 The Cumulative Sum

Let Y1, Y2, . . . be a sequence of independent observations,
where Yi represents the measurement of a quality of interest
at time i. Let μ0 denote the target value. From the sequence
Y1, Y2, . . . , one can define a new sequence, say the cumulative
sum sequence, as
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Table 18.1 The CV control charts in the SPC literature

Type of control chart References Additional description

Shewhart chart Kang et al. [12]

Castagliola et al. [30] Short production runs

Dawod et al. [34] Phase I data

Yeong et al. [35] Considering ME

Synthetic chart Calzada and Scariano [16]

EWMA chart Hong et al. [13]

Castagliola et al. [8] Monitoring the CV squared

Zhang et al. [18] Modified EWMA chart

GWMA chart Hong et al. [19]

CUSUM chart Tran and Tran [21]

Tran et al. [38] Considering ME

Tran et al. [22] Considering FIR strategy

Run rules chart Castagliola et al. [14]

Amdouni et al. [32] One-sided run rules in short production runs

Tran et al. [15] One-sided run rules; monitoring the CV squared; considering ME

Run sum chart Teoh et al. [20]

VSI chart Castagliola et al. [23]

Amdouni et al. [31] Short production runs

Nguyen et al. [37] Considering ME

VSS chart Yeong et al. [25]

Castagliola et al. [24] Monitoring a transformed statistic of the CV

Amdouni et al. [33] Short production runs

VSSI chart Khaw et al. [26]

VP chart Yeong et al. [27]

VSI EWMA chart Yeong et al. [28]

VSS EWMA chart Muhammad et al. [11]

VSI CUSUM chart Tran et Heuchenne [29] Monitoring the CV squared

Ci =
i∑

j=1

(Yi − μ0), i = 1, 2, . . .

The new sequence works by accumulating the deviations
from μ0. Remark that this sequence can be rewritten in a
recursive form as

C0 = 0,

Ci = Ci−1 + (Yi − μ0), i = 1, 2, . . .

This form explains the memory of the actual CUSUM: its
mechanism is to add the current value (Yi−μ0) to the previous
memory Ci−1. The effect of the mean shift on Ci can be seen
by the formula

E(Ci) = E(Ci−1) + μi − μ0,

where μi = E(Yi), i = 1, 2 . . . . Indeed, if μi = μ0, then
E(Ci) = E(Ci−1) and the cumulative sum Ci remains where
it was. If μi > μ0, then E(Ci) > E(Ci−1) and Ci tends to be
shifted upward. By contrast, when μi < μ0, Ci tends to be

shifted downward since E(Ci) < E(Ci−1). That is to say, the
trend in Ci is an indicator of changes in the process.

18.1.2 The CUSUM Statistics

In a practical implementation of the CUSUM control chart,
the cumulative sum Ci is not monitored directly. Instead, the
following is the statistics of interest:

C+
i = max[0, C+

i−1 + Yi − (μ0 + K+)], (18.1)

C−
i = max[0, C−

i−1 + (μ0 − K−) − Yi], (18.2)

where the starting values are C+
0 = C−

0 = 0 and the
parameters K+(K−) are predetermined positive constants.

Compared to the original CUSUM statistic, the new for-
mulation has more advantages. First, the simultaneous use of
two separated statistics C+

i and C−
i , which are called one-

sided upper and lower CUSUM, allows decoupling of the
positive and negative mean shifts so that they can elimi-
nate the previous effect of each other. Second, the constant
K+(K−) plays the role of a “safeguarding threshold” to pre-
vent small fluctuations from the accumulation and to cause
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the CUSUM chart to signal. In the literature, K+(K−) is
called the reference value (or the allowance). For simplicity
of presentation, sometimes we denote K as a general refer-
ence value for both cases.

18.1.3 The Implementation of a CUSUM
Control Chart

Like other control charts, it is necessary to assign a prede-
termined threshold for the one-sided CUSUM control charts,
called the control limit. This threshold is denoted by H+ or
UCL for the upper control chart (the control chart that aims to
detect the increasing shifts) andH− or LCL for the lower one
(the control chart that aims to detect the decreasing shifts).
Especially, when we do not want to emphasize the one-sided
charts, we denote this value by H for a general case. Then, in
the implementation of the one-sided CUSUM control chart,
the statistics C+

i and C−
i are plotted on it. If either C+

i or C−
i

exceeds the control limits, i.e., over H+ for the upper chart
and under H− for the lower chart, the process is considered
to be out-of-control. In contrast, when these statistics are in
the interval control, i.e., under H+ for the upper chart and
above H− for the lower chart, the process is said to be still
in-control.

The CUSUMcontrol chart is designed by assigning values
for the reference parameter K and the control limit H. There
are different advices for choosing K and H depending on the
situation under study. For example, in the CUSUM control
chart monitoring the process mean, it is suggested to choose
K equal to one-half the magnitude of the shift size and H
equal to five times the process standard deviation (Douglas
[39]). In general cases, these values are usually chosen based
on some constraints on the standard measure that is used to
evaluate the performance of the control chart.Wewill present
a widely used measure called the average run length (ARL)
in the next section. In the design of the CUSUM control
charts, the parameters K and H are selected to satisfy two
following constraints: (1) the in-control ARL0 value is equal
to a predetermined desired value, and (2) the out-of-control
ARL1 value is minimized.

18.1.4 AMeasure to Evaluate the Performance
of a CUSUM Control Chart

The Average Run Length
At the beginning of the implementation, the initial states C+

0
and C−

0 are plotted on the axis (as in the general case, we
suppose C+

0 = C−
0 = 0). Then, the change in the process is

cumulative and the statisticsC+
i andC−

i are added by positive
values. The number of points (or samples) from the starting

point up to the point at which the control limit is crossed is
called the run length (RL). This is a random variable taking
integer values only, RL ∈ {1, 2, 3, . . . }.

There is an analogy between a false alarm of a control
chart and a Type I in classical hypothesis testing. A false
alarm means that the CUSUM signals when there is no shift
occurred. It makes the process be interrupted and waste time
when one would like to find out nonexistent special causes.
Therefore, the runs between unavoidable false alarms are
expected to be as long as possible. Similarly, a Type II error
in classical hypothesis testing is analogous to the situation
where the CUSUM is still within its control limits even
though the process has been shifted because of assignable
causes. To attain the quality of the process, whenever an
assignable cause occurs that shifts the process, we would
like to detect them as soon as possible. That is to say, it
is expected in practice to have a short run before the chart
signals actual shifts. The expectation of long runs before false
alarms conflicts with that of short runs before the control
chart signals an actual shift. In practice, a trade-off between
these two objectives is made by using the average run length
(ARL), which is the mean of RL.

By its definition, the ARL represents the expected number
of samples on which a control chart first signals, i.e., the
number of samples inside the control limits before the first
point indicates an out-of-control condition.When the process
is in-control, it is normally denoted by ARL0; otherwise, it is
denoted by ARL1. The trade-off between two conflicting de-
sires is now implemented by fixing the ARL0 at an acceptable
value and minimizing the ARL1.

As discussed by Douglas and David [40], the ARL is not
a perfect measure for the general tendency toward long or
short runs. Since the run length distribution could be highly
variable, a high ARL0 does not always lead to a very short
run before a false alarm given by the chart. Similarly, a
low ARL1 does not make sure that an actual shift could be
detected after a not long run. However, the ARL measure
has its own advantage in that it is easy to be interpreted
and well-defined. Therefore, it is considered as a standard
measure of performance of the CUSUM control chart. When
the CUSUM control chart is combined with other adaptive
strategies like variable sampling interval and variable sample
size, this measure is transformed into other measures like
average time to signal (ATS, the expected length of time from
the start of process monitoring until a signal is generated),
the average number of observations to signal (ANOS, the
expected number of observations from the start of process
monitoring until a signal is given), and the average number
of samples to signal (ANSS, the expected number of obser-
vations and the expected number of samples from the start
of process monitoring until a signal is given). However, the
calculation of these measures is based on the calculation of
the ARL.
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The widely used methods to calculate the ARL are given
in the sequel.

Methods to Calculate the ARL
In the literature, several methods to calculate the ARL for a
CUSUM control chart are available. For the CUSUM control
chart monitoring the process mean, one can use Siegmund’s
approximation as suggested by Woodall and Adams [41] or
Hawkins’s approximation as presented by Hawkins [42]. In
general cases, one can use the Fredholm integral equation
proposed by Page [43] and Crowder [44] or the Markov
chain approach proposed by Brook and Evans [45]. Among
these methods, theMarkov chain approach and the Fredholm
integral equation are widely used due to their flexibility and
simplicity.

TheMarkov ChainMethod
The states of the Markov chain are defined by partitioning
the control interval into a finite set of subintervals and by
considering the midpoint value within each subinterval to
approximate the value of the CUSUM statistic. In particular,
we assume to have a discrete-time Markov with p + 1
different transitional states, where states 0, 1, . . . , p − 1 are
transient states and state p is an absorbing one corresponding
to a signal from the CUSUM control chart. This is equivalent
to dividing the control interval into p subintervals; each
subinterval represents a transient state of a Markov chain.
To get a better approximation, the “restart state” should be
represented by the first subinterval which has half size of
others. Figure 18.1 demonstrates this subdivision for the
upward chart, where the threshold is denoted by H+. The
transition probability matrix P of this discrete-time Markov
chain is

H0 = 0 d

Hi−1

...

Hi 2d

Hi+1

...

Hp −1

H+

Fig. 18.1 A subdivision of the control limit interval of upward chart

P =
(
Q r
0T 1

)
=

⎛

⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 . . . Q0,p−1 r0
Q1,0 Q1,1 · · · Q1,p−1 r1

...
...

...

Qp−1,0 Qp−1,1 . . . Qp−1,p−1 rp−1

0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟⎠
,

where Q is the (p, p) matrix of transient probabilities,
0 = (0, 0, . . . , 0)T , and the p vector r satisfies r = (1 − Q1)
(i.e., row probabilitiesmust sum to 1) with 1 = (1, 1, . . . , 1)T .
For the upward (downward) CUSUM control chart, the
statistic C+

i (C−
i ) experiences p different transitional states

before being absorbed into the out-of-control state. The
states 0 to (p − 1) are in-control states and state p is an
out-of-control state. The width δ of the interval of each in-
control state is given as δ = 2H+

2p−1 (δ = 2H−
2p−1 ). By definition,

we have Hj = j × δ, j = 0, 1, . . . , p − 1. When the number
p of subintervals is sufficiently large, this finite approach
provides an effective method that allows the run-length
properties (ARL) to be accurately evaluated. In this study, the
generic element Qi,j, i = 0, 1, . . . , p − 1 of the matrix Q of
transient probabilities is equal to the following:

• for the upward CUSUM control chart

Qi,0 = FYk
(
μ0 − Hi + K+ + 0.5δ

)
, (18.3)

Qi,j = FYk
(
μ0 + Hj − Hi + 0.5δ + K+)

−FYk
(
μ0 + Hj − Hi − 0.5δ + K+)

,

j = 1, . . . , p− 1;

• for the downward CUSUM control chart

Qi,0 = 1 − FYk
(
μ0 + Hi − K− − 0.5δ

)
, (18.4)

Qi,j = FYk
(
μ0 + Hi − Hj + 0.5δ − K−)

−FYk
(
μ0 + Hi − Hj − 0.5δ − K−)

,

j = 1, . . . , p− 1,

where FYk(.) is the c.d.f . of Yk. Let q be the (p− 1, 1) vector
of initial probabilities associated with the p transient states,
i.e., q = (q0, q1, . . . , qp−1)

T . As proposed by Neuts [46]
and Latouche [47], since the number of steps RL until the
process reaches the absorbing state is a discrete phase-type
random variable of parameters (Q,q), the mean (ARL) and
the standard-deviation (SDRL) of the RL of the one-sided
CUSUM control charts are equal to

ARL = qT(I − Q)−11, (18.5)

SDRL =
√
2qT(I − Q)−1Q1 − ARL2 + ARL. (18.6)
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The ARL of the two-sided CUSUM control chart, denoted by
ARLtwo-sided, can be obtained from the ARL of the one-sided
CUSUM charts by

1

ARLtwo-sided
= 1

ARLU
+ 1

ARLD
, (18.7)

where ARLU and ARLD stand for the ARL of the upward chart
and the downward chart, respectively.

The Fredholm Integral EquationMethod
Denote L(y) the ARL for one-sided CUSUM scheme given
that the initialization is C+

0 = y(C−
0 = y). According to Page

[43] and Crowder [44], L(y) can be defined in the following
form:

L(y) = 1 + L(0)FYk(−y) +
∫ H

0
L(s)fYk(s− y)ds (18.8)

By applying the Gauß-Legendre-Nyström approach, we can
numerically solve the integral equation (18.8). In particular,
the integration in (18.8) can be replaced by an appropriate
quadrature, considering the equation only at the related nodes
of the quadrature and solving the resulting linear equation
system. Suppose that from the quadrature rule we obtain
nodes s1, s2, . . . , sN and weights w1, w2, . . . , wN for given
N ∈ N.

The resulting linear equation system has the following
form (for i = 1, 2, . . . , N):

L(si) = 1+L(0)FYk(−y)+
N∑

j=1

wjfYk
(
sj − si

)
L(sj). (18.9)

Then, after solving this linear equation system, L(y) can be
evaluated for arbitrary y ∈ [0, H] by replacing si by y in
(18.9). More details regarding this numerical procedure can
be seen in a study by Crowder [44].

18.2 CUSUM Control Chart Monitoring
the CV

As discussed by Castagliola et al. [8], monitoring the S2

statistic using the CUSUM control chart is more efficient
than monitoring directly the S statistic. Therefore, in this
study, we will focus on monitoring the CV squared rather
than monitoring the CV itself to obtain a control chart with
high performance.

18.2.1 Basic Properties of Sample CV Squared

Let X be a positive random variable. The CV γ of the random
variable X is defined as the ratio of its standard deviation
σ = σ(X) to its mean μ = E(X), that is

γ = σ

μ
.

Suppose that a set of i.i.d. samples {X1, . . . , Xn} is col-
lected where each sample follows a normal distribution with
parameters (μ, σ 2). Let X̄ and S be the sample mean and the
sample standard-deviation of X1, . . . , Xn, i.e.

X̄ = 1

n

n∑

i=1

Xi,

and

S =
√√√√ 1

n− 1

n∑

i=1

(Xi − X̄)2.

Then the sample CV γ̂ is defined as

γ̂ = S

X̄
.

In the literature, the distribution of the sample CV γ̂ has
been studied by many authors (see, e.g., Mckay [48], Hen-
dricks and Robey [49], Iglewicz and Myers [50], Iglewicz
et al. [51], Vangel [52], Waren [53] and Reh and Scheffler
[54]). However, the exact cumulative distribution function
(c.d.f .) of γ̂ has a complicated form. Furthermore, Iglewicz
et al. [51] showed that if 0 < γ ≤ 0.5,

√
n/γ̂ follows a

noncentral t-distribution with n − 1 degrees of freedom and
noncentrality parameter

√
n/γ . From this result, it is easy

to prove that n/γ̂ 2 follows a noncentral F distribution with
(1, n − 1) degrees of freedom and noncentrality parameter
n/γ 2. Therefore, the c.d.f . of the sample CV squared γ̂ 2 can
be derived as

• for x � 0, Fγ̂ 2(x | n, γ ) = 0;
• for x > 0,

Fγ̂ 2(x | n, γ ) = P(γ̂ 2 � x | n, γ )

= P

(
n

γ̂ 2
� n

x
> 0 | n, γ

)

= 1 − P

(
0 <

n

γ̂ 2
� n

x
| n, γ

)

= 1 − FF

(
n

x

∣∣∣ 1, n− 1,
n

γ 2

)
, (18.10)

where FF(.) is the c.d.f . of the noncentral F distribution.
Inverting Fγ̂ 2(x | n, γ ) gives the inverse c.d.f . F−1

γ̂ 2 (α | n, γ )

of γ̂ 2 as

F−1
γ̂ 2 (α | n, γ ) = n

F−1
F

(
1 − α

∣∣∣1, n− 1, n
γ 2

) , (18.11)
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Fig. 18.2 The approximate density function of the sample CV squared
for γ = 0.2

where F−1
F (.) is the inverse c.d.f . of the noncentral F distri-

bution.
Figures 18.2 and 18.3 display the approximate density

function of γ̂ 2 for several situations of parameters.
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Fig. 18.3 The approximate density function of the sample CV squared
for n = 5

In the literature, there is no closed form for the mean
and the standard deviation of γ̂ 2. Nevertheless, Breunig
[55] provided an accurate approximation for μ0(γ̂

2)

and σ0(γ̂
2) as

μ0(γ̂
2) = γ 2

0

(
1 − 3γ 2

0

n

)
, (18.12)

σ0(γ̂
2) =

√

γ 4
0

(
2

n− 1
+ γ 2

0

(
4

n
+ 20

n(n− 1)
+ 75γ 2

0

n2

))
− (μ0(γ̂ 2) − γ 2

0 )2. (18.13)

18.2.2 Implementation and Design of
CUSUM-γ 2 Control Charts

As can be seen from Figures 18.2 and 18.3, the distribution of
the CV squared is skewed. Monitoring this variable using a
two-sided control chart may lead to the ARL-biased property.
That is to say, the out-of-control value ARL1 can be larger
than the in-control value ARL0. The main reason for this
ARL-biased property is that in a two-sided control chart, the
symmetrical control limits above and below the centerline are
designed for the variables which follow an asymmetrical dis-
tribution. To avoid this situation, the one-sided control charts
are proposed in the literature, that is, instead of monitoring
both the increase and the decrease of the characteristic of
interest simultaneously, each of these changes is monitored
separately in different control charts. Castagliola et al. [8]
also discussed several reasons for the advantage of using a
one-sided control chart to monitor the CV, which is:

– It is able to control separately the in-control value ARL0
from each one-sided chart.

– In general, the out-of-control tendency is usually known
in advance and typically corresponds to an increase (or a
decrease) in γ . Thus, it is possible to tune the upward and
downward parts separately.

Therefore, we apply two one-sidedCUSUMcontrol charts
to monitor the CV squared in this study. In particular, these
two control charts (denoted by CUSUM-γ 2 from now in this
chapter) involved:

• an upward CUSUM chart (denoted by “upward CUSUM-
γ 2”) for detecting an increase in the CV

C+
i = max{0, C+

i−1 + (γ̂ 2
i − μ0(γ̂

2) − K+},(18.14)
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with the initial values C+
0 = 0, reference value K+ =

k+σ0(γ̂
2), and corresponding upper control limit H+ =

h+μ0(γ̂
2)

• a downward CUSUM chart (denoted by “downward
CUSUM-γ 2”) for detecting a decrease in the CV

C−
i = max(0, C−

i−1 − (γ̂ 2
i − μ0(γ̂

2) − K−),(18.15)

with the initial values C−
0 = 0, the reference value

K− = k−σ0(γ̂
2), and the corresponding upper control

limit H− = h−μ0(γ̂
2).

The parameters (k+, h+) and (k−, h−) are the upward
and downward CUSUM-γ 2 chart coefficients, respectively.
These coefficients define a CUSUM-γ 2 control chart. The
performance of the charts is evaluated by using the ARL
measure which can be numerically calculated for a particular
shift size τ . The values τ ∈ (0, 1) correspond to a decrease
of the nominal CV, while the values τ > 1 correspond to an
increase of the nominal CV.

In general, the design of the CUSUM-γ 2 charts is im-
plemented by finding out the optimal couples (k+, h+) or
(k−, h−) that minimize the out-of-controlARL1 for a given in-
control value ARL0 where the ARL value is calculated based
on the formula (18.5) with the c.d.f . of γ̂ 2 is defined in
(18.24). This procedure includes two main steps:

(i) Find the potential combinations (k+, h+) or (k−, h−) such
that ARL = ARL0, where ARL0 is a predefined in-control
ARL value.

(ii) Among these combinations, choose an optimal one, say
(k∗+, h∗+) or (k∗−, h∗−), that gives the best performance,
i.e., the smallest out-of-controlARL value for a particular
shift τ , from an in-control value γ0 to an out-of-control
value γ1 = τγ0.

The above procedure is designed for a specific value of
the shift size. However, it is usually not possible to predict
exactly the shift size of τ in practice. A consequence of the
wrong prediction where the actual process shift is different
from the one used to design the control chart is that the
designed control chart can have a poor performance. In order
to overcome this problem, one can consider τ as a random
variable and assume a statistical distribution to model it.
If the quality practitioners prefer to get an optimal design
of a control chart with respect to a range of shifts sizes
[a, b] without any preference for a specific size, a uniform
distribution fτ (τ ) = 1

b−a can be used to give equal weight
to each shift size included within the interval [a, b]. In this
situation, the performance of control charts is evaluated by
the expected average run length (EARL), which is defined by

EARL =
∫ b

a
ARL× fτ (τ ) dτ. (18.16)

Therefore, the optimal coefficients (k∗+, h∗+) or (k∗−, h∗−)
should satisfy the following conditions:

• for the downward CUSUM-γ 2 control chart

(k∗−, h∗−) = argmin(k−,h−)EARL(γ0, τ , k
−, k−, n)

(18.17)
subject to the constraint

EARL(γ0, τ = 1, k−, h−, n) = ARL(γ0, τ = 1, k−, h−, n) = ARL0,

(18.18)
• for the upward CUSUM-γ 2 control chart

(k∗+, h∗+) = argmin(k+,h+)EARL(γ0, τ , k
+, h+, n)

(18.19)
subject to the constraint

EARL(γ0, τ = 1, k+, h+, n) = ARL(γ0, τ = 1, k+, h+, n) = ARL0.

(18.20)

18.2.3 Performance of the CUSUM-γ 2 Control
Charts

The performance of the CUSUM-γ 2 control charts and a
direct comparison with other control charts monitoring the
CV squared have been investigated by Tran and Tran [21].
Given the value of n, γ0, the ARL and SDRL of the CUSUM-
γ 2 control charts can be calculated with respect to a specific
shift size following the formulas (18.5)–(18.6). The optimal
parameters (k∗+, h∗+) and (k∗−, h∗−) and the corresponding
(ARL, SDRL) values are presented in Tables 18.2 and 18.3 for
the shift size τ = {0.5, 0.65, 0.8, 1.25, 1.5, 2.0}, in-control
CV γ0 = {0.05, 0.1, 0.15, 0.2}, sample size n = {5, 7}
(Table 18.2) and n = {10, 15} (Table 18.3). In the optimiza-
tion procedure, the in-control ARL is set at ARL0 = 370.4.

It can be seen from the obtained results that given τ and
n, the value of γ0 has a trivial impact on the performance of
the one-sided CUSUM-γ 2 control charts. When γ0 increases
from 0.05 to 0.2, the values of both ARL1 and SDRL1 change
insignificantly. For example, with n = 5, τ = 0.8 we
have ARL1 = 20.0, SDRL1 = 10.0 when γ0 = 0.05 and
ARL1 = 20.4, SDRL1 = 10.4 when γ0 = 0.2. By contrast,
the performance of the CUSUM-γ 2 control charts depends
strongly on the sample size n: the larger the value of n,
the smaller the value of the ARL1. For example, when τ =
1.25, γ0 = 0.1, we have ARL1 = 14.8 if n = 5, and we have
ARL1 = 6.0 if n = 15.

Table 18.4 shows the overall performance of the CUSUM-
γ 2 control charts according to theEARLmeasure. The unique
optimal couples (k∗+, h∗+) and (k∗−, h∗−) are found satisfy-
ing equations (18.17) and (18.19) subject to the constraints
(18.18) and (18.20) where the support of τ is �I = (1, 2]
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Table 18.2 The optimal couples (k∗+, h∗+) when τ = {0.5, 0.65, 0.8, 0.9}, (k∗−, h∗−) when τ = {1.1, 1.25, 1.5, 2} (first row) and the
corresponding (ARL1, SDRL1) values (second row) of the CUSUM-γ 2 charts for n = {5, 7} and γ0 = {0.05, 0.1, 0.15, 0.2}
τ γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

n = 5

0.50 (0.7474, 0.8105) (0.7383, 0.7915) (0.7124, 0.7980) (0.6762, 0.8127)

(4.3, 1.5) (4.3, 1.5) (4.3, 1.5) (4.3, 1.6)

0.65 (0.5203, 1.6283) (0.5044, 1.6444) (0.4805, 1.6731) (0.4493, 1.7126)

(8.2, 3.5) (8.2, 3.5) (8.3, 3.5) (8.3, 3.5)

0.80 (0.2864, 3.3713) (0.2740, 3.3938) (0.2532, 3.4601) (0.2256, 3.5586)

(20.0, 10.0) (20.0, 10.1) (20.2, 10.2) (20.4, 10.4)

1.25 (0.0683, 4.8431) (0.0556, 4.9781) (0.0352, 5.2355) (0.0081, 5.6251)

(14.7, 10.1) (14.8, 10.2) (15.0, 10.4) (15.4, 10.6)

1.50 (0.0683, 3.5041) (0.0556, 3.6291) (0.0352, 3.8568) (0.0081, 4.1954)

(5.6, 3.8) (5.6, 3.8) (5.7, 3.9) (5.9, 4.0)

2.00 (0.0683, 2.5174) (0.0556, 2.6300) (0.0352, 2.8313) (0.0081, 3.1351)

(2.3, 1.5) (2.3, 1.5) (2.4, 1.6) (2.5, 1.6)

n = 7

0.50 (0.9283, 0.5307) (0.9105, 0.5274) (0.8844, 0.5300) (0.8459, 0.5421)

(3.1, 1.1) (3.1, 1.1) (3.1, 1.1) (3.1, 1.1)

0.65 (0.6349, 1.1324) (0.6182, 1.1400) (0.5989, 1.1446) (0.5701, 1.1631)

(5.9, 2.4) (5.9, 2.4) (6.0, 2.5) (6.0, 2.5)

0.80 (0.3582, 2.3581) (0.3438, 2.3851) (0.3235, 2.4313) (0.2961, 2.5021)

(14.8, 7.4) (14.8, 7.4) (15.0, 7.5) (15.2, 7.6)

1.25 (0.0870, 3.4343) (0.0744, 3.5308) (0.0555, 3.6938) (0.0296, 3.9375)

(11.0, 7.3) (11.1, 7.4) (11.3, 7.5) (11.6, 7.7)

1.50 (0.0870, 2.4048) (0.0744, 2.4893) (0.0555, 2.6311) (0.0296, 2.8450)

(4.1, 2.7) (4.2, 2.7) (4.3, 2.8) (4.4, 2.9)

2.00 (0.0870, 1.6354) (0.0744, 1.7075) (0.0555, 1.8323) (0.0296, 2.0195)

(1.8, 1.0) (1.8, 1.0) (1.8, 1.1) (1.9, 1.1)

(increasing case) and �D = [0.5, 1) (decreasing case),
respectively. The values of γ0 and n are the same as the ones in
Tables 18.2 and 18.3. A similar tendency of the dependence
of the CUSUM-γ 2 control charts’ performance on γ0 and
n can be seen in Table 18.4: the EARL does not change
much when γ0 varies, but it decreases significantly when n
increases.

Example
Table 18.5 presents a real phase II dataset from a sintering
process in an Italian company that manufactures sintered
mechanical parts, which is introduced by Castagliola et al.
[8]. Throughout the sintering process, molten copper is used
to filling pores, allowing the drop time to be prolonged
notably. Moreover, the larger the quantity QC of molten
copper absorbed within the sintered compact during cooling
is, the more the expected pressure drop time Tpd is. It is
stated that the preliminary regression study relating Tpd to the
quantity QC of molten copper has demonstrated the presence
of a constant proportionality σpd = γpd × μpd between the
standard deviation of the pressure drop time and its mean.
The CV γpd = σpd/μpd is then monitored to detect changes
in the process variability. The recorded data consists of 20

new samples taken from the process after the occurrence of
a special cause increasing process variability.

The upward CUSUM-γ 2 control chart is designed for the
unknown shift size case. From the Phase I data, the in-control
CV has been estimated as γ̂0 = 0.417. The in-control mean
and variance are calculated from (18.12) and (18.13) asμ0 =
0.15575 and σ0 = 0.164307. The chart coefficients which
are optimal for detecting a shift with a uniform distribution
over the interval (1, 2) are found to be k∗+ = 0.3898930 and
h∗+ = 12.264137. Then, we obtain K+ = 0.064062 and
H+ = 1.910097. The values of C∗

i are then presented in the
rightmost column in Table 18.5 and plotted in Fig. 18.4 along
with the control limitH+. As can be seen from this figure, the
CUSUM-γ 2 chart detects several out-of-control samples (in
bold in Table 18.5), from the 13th sample onward.

18.3 CUSUM Control Chart Monitoring the
CV in the Presence of Measurement
Error

The CUSUM-γ 2 control charts designed above are based on
an assumption that the quality of interest Xi can be measured
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Table 18.3 The optimal couples (k∗+, h∗+) when τ = {0.5, 0.65, 0.8, 0.9}, (k∗−, h∗−) when τ = {1.1, 1.25, 1.5, 2} (first row) and the
corresponding (ARL1, SDRL1) values (second row) of the CUSUM-γ 2 charts for n = {10, 15} and γ0 = {0.05, 0.1, 0.15, 0.2}
τ γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

n = 10

0.50 (0.9385, 0.5557) (1.1201, 0.3581) (1.0939, 0.3526) (1.0558, 0.3554)

(2.4, 0.6) (2.3, 0.8) (2.3, 0.8) (2.3, 0.8)

0.65 (0.7737, 0.7932) (0.7552, 0.7884) (0.7440, 0.7761) (0.7129, 0.7917)

(4.4, 1.8) (4.3, 1.7) (4.3, 1.8) (4.4, 1.8)

0.80 (0.4318, 1.7024) (0.4271, 1.6708) (0.4036, 1.7169) (0.3824, 1.7415)

(10.9, 5.3) (10.9, 5.3) (11.0, 5.3) (11.2, 5.5)

1.25 (0.1094, 2.4092) (0.0966, 2.4735) (0.0799, 2.5811) (0.0580, 2.7378)

(8.2, 5.3) (8.2, 5.3) (8.4, 5.4) (8.6, 5.6)

1.50 (0.9729, 1.6244) (0.0966, 1.6786) (0.0799, 1.7719) (0.0580, 1.9056)

(3.1, 1.9) (3.1, 1.9) (3.2, 2.0) (3.3, 2.1)

2.00 (1.7924, 1.0143) (1.7732, 1.0605) (0.0799, 1.1389) (0.0580, 1.2541)

(1.4, 0.6) (1.4, 0.7) (1.5, 0.7) (1.5, 0.8)

n = 15

0.50 (0.8349, 0.6833) (1.2498, 0.3121) (1.2087, 0.3111) (1.1998, 0.2973)

(2.1, 0.3) (1.7, 0.6) (1.6, 0.6) (1.6, 0.6)

0.65 (0.8349, 0.6833) (0.7872, 0.6981) (0.9395, 0.5133) (0.9109, 0.5143)

(3.2, 1.1) (3.1, 1.0) (3.1, 1.2) (3.1, 1.2)

0.80 (0.5328, 1.1938) (0.5183, 1.1810) (0.5124, 1.1619) (0.4890, 1.1855)

(7.9, 3.7) (7.8, 3.6) (7.9, 3.7) (8.0, 3.8)

1.25 (0.1387, 1.6150) (0.6337, 1.6566) (0.1115, 1.7265) (0.0917, 1.8239)

(5.9, 3.7) (6.0, 3.7) (6.1, 3.8) (6.2, 3.9)

1.50 (0.1387, 1.0351) (1.2037, 1.0688) (0.1115, 1.5118) (1.1702, 1.2059)

(2.2, 1.3) (2.2, 1.3) (2.4, 1.2) (2.3, 1.4)

2.00 (0.1387, 1.4481) (2.2136, 0.5695) (2.1751, 0.6188) (2.1238, 0.6897)

(1.2, 0.4) (1.1, 0.4) (1.1, 0.4) (1.2, 0.5)

Table 18.4 The control coefficients (k∗+, h∗+) for �D = [0.5, 1) and (k∗−, h∗−) for �I = (1, 2] (first row) and the corresponding EARL values
(second row) of the CUSUM-γ 2 control charts for n = {5, 7, 10, 15}, γ0 = {0.05, 0.1, 0.15, 0.2}
� γ0 = 0.05 γ0 = 0.1 γ0 = 0.15 γ0 = 0.2

n = 5

D (0.1880, 4.8034) (0.1743, 4.8684) (0.1544, 4.9673) (0.1270, 5.1334)

28.9 29.0 (29.2 29.5

I (0.2107, 6.0442) (0.2194, 6.2329) (0.2366, 6.5034) (0.2576, 6.9412)

15.6 15.7 15.8 16.1

n = 7

D (0.2124, 3.7306) (0.1995, 3.7721) (0.1808, 3.8468) (0.1568, 3.9463)

22.9 22.9 23.1 23.4

I (0.2321, 4.6091) (0.2422, 4.7089) (0.2559, 4.8963) (0.2734, 5.1788)

12.4 12.5 12.6 12.9

n = 10

D (0.2278, 3.0091) (0.2264, 2.9250) (0.2114, 2.9581) (0.1898, 3.0278)

18.0 18.0 18.2 18.4

I (0.2608, 3.4709) (0.2660, 3.5625) (0.2805, 3.6630) (0.2939, 3.8532)

9.7 9.8 10.0 10.2

n = 15

D (0.2630, 2.2677) (0.2595, 2.2123) (0.2480, 2.2191) (0.2300, 2.2591)

13.8 13.7 13.8 14.0)

I (0.2951, 2.5435) (0.3035, 2.5828) (0.3112, 2.6676) (0.3227, 2.7825)

7.4 7.5 7.6 7.8
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Table 18.5 Phase II datasets from a sintering process introduced by
Castagliola et al. [8]

Phase II

i X̄i Si γ̂ γ̂ 2
i lC+

i

1 906.4 476.0 0.525 0.27563 0.055816

2 805.1 493.9 0.614 0.37700 0.213004

3 1187.2 1105.9 0.932 0.86862 0.861819

4 663.4 304.8 0.459 0.21068 0.852691

5 1012.1 367.4 0.363 0.13177 0.764652

6 863.2 350.4 0.406 0.16484 0.709679

7 1561.0 1562.2 1.058 1.11936 1.609234

8 697.1 253.2 0.363 0.13177 1.521195

9 1024.6 120.9 0.118 0.01392 1.315310

10 355.3 235.2 0.662 0.43824 1.533745

11 485.6 106.5 0.219 0.04796 1.361898

12 1224.3 915.4 0.748 0.55950 1.701593

13 1365.0 1051.6 0.770 0.59290 2.074684
14 704.0 449.7 0.639 0.40832 2.263197
15 1584.7 1050.8 0.663 0.43957 2.482957
16 1130.0 680.6 0.602 0.36240 2.625552
17 824.7 393.5 0.477 0.22753 2.633273
18 921.2 391.6 0.425 0.18062 2.594089
19 870.3 730.0 0.839 0.70392 3.078201
20 1068.3 150.8 0.141 0.01988 2.878274
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Fig. 18.4 CUSUM-γ 2 charts applied to the sintering process (Phase
II)

exactly, i.e., without any measurement error. However, this
assumption may not be reached in practice since the ME
is almost ineluctable no matter how exact the measurement
system is. It is proven within the industrial context that the
MEmay affect the performance of SPCmethodologies. Since
Bennet [56] investigated the effect of ME on the Shewhart
X̄ chart, the topic has been widely studied in the SPC liter-
ature. Linna and Woodall [57] suggested a linear covariate
error model to represent the relation between the observed
value and the true value. Following this model, Maravelakis
[58] and Maravelakis et al. [59] presented the effect of ME
on the EWMA and CUSUM X̄ control chart, respectively.

Noorossana and Zerehsaz [60] discussed a problem of ME
on the control chart monitoring the linear profiles. Tran
et al. [61] provided a synthetic median control chart for
monitoring the process mean with ME. The performance of a
number of CV control charts in the presence of ME has also
been recently studied by Nguyen et al. [37] and Tran et al.
[36, 38, 62].

18.3.1 Linear Covariate Error Model for the
Coefficient of Variation

In this section, we present briefly the linear covariate error
model for the CV as suggested by Tran et al. [62]. Let
{Xi,1, Xi,2, . . . , Xi,n} be a set of samples of the quality of
interest, i = 1, 2, . . .. The variable Xi,j refers to the jth

sample taken at times i. Suppose that Xi,j follows a normal
distribution with mean μ0 + aσ0 and standard deviation bσ0.
The constants a and b represent a shift of the process. If a = 0
and b = 1, the process is said to be in-control; otherwise, it
is considered to be out-of-control.

Because of the ME problem, the true value of Xi,j is not
observable. Instead, this value can only be assessed through
m real observations {X∗

i,j,1, X
∗
i,j,2, . . ., X

∗
i,j,m}, m � 1. Linna and

Woodall [57] suggested the following linearly covariate error
model:

X∗
i,j,k = A+ BXi,j + εi,j,k,

whereX∗
i,j,k is the observed value in the k

thmeasurement of the
item j at the sampling i, A and B are two constants depending
on the gauge location error, and εi,j,k ∼ N(0, σM) is the
random error term due to the gauge precision error which
is independent of Xi,j. In particular, A is the constant bias
component, B is the parameter modeling the linearity error,
and σM is the precision error. Figure 18.5 presents a graphical
representation of the ME model.

Then, the mean

X̄∗
i,j =

1

m

m∑

k=1

X∗
i,j,k = A+ BXi,j + 1

m

m∑

k=1

εi,j,k

of m observed quantities of the same item j is consdered as
a representation of Xi,j. By its definition, X̄∗

i,j also follows a
normal distribution with parameters

{
μ∗ = A+ B(μ0 + aσ0),

σ ∗2 = B2b2σ 2
0 + σ 2

M
m .

Thus, the CV of the measured quantity X̄∗
i,j is defined by

γ ∗ =
√
B2b2σ 2

0 + σ 2
M
m

A+ B(μ0 + aσ0)
=

√
B2b2 + η2

m

θ + B(1 + aγ0)
× γ0, (18.21)
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Fig. 18.5 A representation of the measurement error model

where η = σM
σ0
, γ0 = σ0

μ0
, θ = A

μ0
; η and θ represent the

precision error ratio and the accuracy error ratio.
It is important to consider that the ME also affects the

relation between the in-control and the out-of-control values
of the CV. Indeed, without ME, we have γ1 = τγ0 where τ

is the true shift size. With the introduction of a and b, the
out-of-control CV is defined by

γ1 = bσ0

μ0 + aσ0
= b

1 + aγ0
γ0.

Then, the shift size τ can be expressed by τ = b
1+aγ0 .

Under the presence of ME, the in-control value of the CV
(corresponding to a = 0 and b = 1) now becomes

γ ∗
0 =

√
B2 + η2

m

θ + B
× γ0, (18.22)

and the out-of-control value is

γ ∗
1 =

√
B2b2 + η2

m

θ + Bb/τ
× γ0. (18.23)

Equations (18.22)–(18.23) show that in general γ ∗
1 �= τγ ∗

0 .

Let ¯̄X∗
i and S∗

i denote the sample mean and the sample
standard deviation of X̄∗

1,j, . . . , X̄
∗
n,j, i.e.,

¯̄X∗
i = 1

n

n∑

j=1

X̄∗
i,j and S∗

i =
√√√√ 1

n− 1

n∑

j=1

(
X̄∗
i,j − ¯̄X∗

i

)2
.

Then, the sample CV squared in the presence of ME, γ̂ ∗
i , is

defined by

γ̂ ∗
i = S∗

i

¯̄X∗
i

.

From (18.24) and (18.25), the c.d.f . and i.d.f . of γ̂ ∗2 are
defined as

Fγ̂ ∗2(x | n, γ ) = 1 − FF

(
n

x

∣∣∣ 1, n− 1,
n

γ ∗2

)
, (18.24)

where FF(.) is the c.d.f . of the noncentral F distribution, and

F−1
γ̂ ∗2(α | n, γ ) � n

F−1
F

(
1 − α

∣∣∣1, n− 1, n
γ ∗2

) , (18.25)

where F−1
F (.) is the inverse c.d.f . of the noncentral F distri-

bution.

18.3.2 The Effect of Measurement Error on the
CUSUM-γ 2 Control Charts

In a recent study on the effect of measurement error on the
performance of the CUSUM-γ 2 control chart (Tran et al.
[38]), the authors suggested using globally optimized coef-
ficients which optimize the chart’s performance in an antici-
pated interval of the shift size τ . In this study, we consider
designing this control chart under the presence of ME for
both cases of specific shift sizes and unknown shift sizes.

With the presence of ME, the implementation of
the CUSUM-γ 2 control charts is similar to the one in
Sect. 18.2.2. The optimal control chart coefficients (k∗+, h∗+)

and (k∗−, h∗−) are also the solutions of the optimal problem
of the function ARL (for a specific shift size) or EARL
(for the unknown shift size which is considered within a
predetermined range) subject to a constraint on the in-control
value ARL0. The difference is that the value ARL or EARL
should be calculated by using the distribution of γ ∗2 rather
than the distribution of γ 2.

To investigate the effect of ME on the CUSUM-γ 2 control
charts’ performance, we set the in-control value ARL0 at
370.4. Without loss of generality, the shift in the variance
is assumed to be a unit, i.e., b = 1. Several scenarios of
other parameters are considered, where γ0 = {0.05, 0.1, 0.2},
n = {5, 7, 10, 15}, m = {1, 3, 5, 7, 10}. Moreover, following
the guidelines in the AIAG manual [63] for measurement
system analysis, the value of η and θ is chosen less than 0.3,
and the value of B is considered within the range [0.8, 1.2].

Given the values of m, n, B, η, θ , and γ0, the optimal cou-
ples (k∗−, h∗−) for the downward chart and (k∗+, h∗+) for
the upward chart are solved. Tables 18.6 and 18.7 show
the reference coefficients k∗+, k∗− (first row for each value
of τ ) and the limit coefficients h∗+, h∗− (second row for
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Downward chart, − = 0.3, = 1; = 1; � = (0.5; 1)
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Fig. 18.6 The effect of η and θ on the overall performance of the CUSUM-γ 2 control charts in the presence of measurement error

each value of τ ) for θ = 0.05, m = 1, B = 1, η =
{0, 0.05, 0.1, 0.15, 0.2, 0.25}, n = {5, 7} (Table 18.6) and n =
{10, 15} (Table 18.7). These coefficients for other situations
of parameters are not presented here for the sake of brevity
but are available upon requests from authors.

Using these optimized coefficients, we can calculate the
corresponding out-of-control ARL1 value. The results are
presented in Tables 18.8, 18.9, 18.10, and 18.11. Some con-
clusions can be drawn from these tables as follows:

• The accuracy error has a negative effect on the perfor-
mance of the CUSUM-γ 2 control charts: the larger the
value of θ , the larger the value of ARL1. For example, with
n = 5, τ = 1.3, γ0 = 0.05, m = 1, B = 1, η = 0.28, we
have ARL1 = 14.67 when θ = 0 and ARL1 = 17.28 when
θ = 0.1 (see Table 18.9).

• The increase of the linearity error B leads to the decrease
of the ARL1. For example, from Table 18.10 we have
ARL1 = 21.52 for B = 0.8 and ARL1 = 21.02 for B = 1.2

when η = 0.28, θ = 0.05, γ0 = 0.1, m = 1 and n = 5.
This can be explained by the fact that the rise of B tends
to amplify the actual value of observations, making them
run out of the control limits faster. However, this does not
mean that increasing the linearity error in the measure-
ment system is encouraged because it affects the quality
of the measurement, leading to the misunderstanding of
the quantity of interest.

• The precision error ratio has not much effect on the
performance of the CUSUM-γ 2 control charts. Indeed,
when η varies in [0, 0.25], the value of the ARL1 changes
insignificantly as can be seen in Table 18.8.

• The number of multiple measurements per item m has a
positive impact on the proposed charts: whenm increases,
the ARL1 decreases. However, this impact is not really
significant as the decrease of the ARL1 is trivial when
m increases from m = 1 to m = 10. For example, in
Table 18.11 with τ = 0.7η = 0.028, θ = 0.05, B =
1, γ0 = 0.2 and n = 7, we have ARL1 = 6.29 whenm = 1
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Fig. 18.7 The effect of B on the performance of the CUSUM-γ 2 charts in the presence of measurement error for n = 5 (-�-) and n = 15 (−�−)

and ARL1 = 6.28 when m = 10. We then conclude that
increasing the number of multiple measurement per item
is not an efficient way to reduce the effect of ME on the
CUSUM-γ 2 control chart.

• As expected, when n increases, the value of the ARL1 de-
creases sharply. The increase of n also reduces the negative
effect of θ on the CUSUM-γ 2 charts’ performance. For
example, when n = 5, we have ARL1 = 19.96 if θ = 0,
compared to ARL1 = 22.35 if θ = 0.1, and when n = 15,
we have ARL1 = 7.93 if θ = 0 compared to ARL1 = 8.99
if θ = 0.1, where τ = 0.8, γ0 = 0.05 (Table 18.9).

The overall effect of ME on the CUSUM-γ 2 control charts
when the shift size is not predetermined is shown in
Figs. 18.6, 18.7, and 18.8, where the reference coefficient
k+(k−) is set at 0.3, and the support of τ is �I = (1, 2] for

the upward control chart, �D = [0.5, 1) for the downward
case. These figures show a similar tendency of the effect of
ME as for the case of the specific shift size: the increase of
θ reduces significantly the chart performance, the increase
of B leads to the decrease of the ARL1, the variation of m
and η has a trivial impact, and the sample size n has a strong
impact on the chart performance.

18.4 Using FIR to Improve the Performance
of the CUSUM-γ 2 Control Chart

In the previous design of the CUSUM-γ 2 control chart, we
have supposed that C+

0 = C−
0 = 0, i.e., the process starts

from an in-control state. However, it is not always the case
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Fig. 18.8 The effect of m on the performance of the CUSUM-γ 2 charts in the presence of measurement error for n = 5 (-�-) and n = 15 (−�−)

as the process may be in the out-of-control state at startup or
when the process is restarted after an adjustment has been
made to the process in practice. In order to improve the
performance of the CUSUM chart in such special situations,
Lucas and Crosier [64] suggested a fast initial response
(FIR) strategy (FIR) strategy. According to this method, the
standard CUSUM procedure is modified by initially setting
a CUSUM to a specified positive headstart C+

0 = C−
0 = c.

The design of the FIR CUSUM chart is still the same as the
design of the standard CUSUM chart. However, instead of
setting up c = 0, in the FIR CUSUM chart, we choose the
value of c between 0 and the control limit H.

The FIR strategy has a valuable advantage in that it
enhances significantly the CUSUM chart performance when
the process starts from an out-of-control state but costs only a

small penalty if the process starts in control. The price for this
improvement and formaintaining the same in-controlARL0 is
the somewhat increase of the control limitH. In the literature,
the FIR was used to improve the performance of the CUSUM
chart monitoring process dispersion in a study by Sanusi et al.
[65]. An extensive discussion of the FIR feature can be seen
in a study by Hawkins and Olwell [7].

In this section, we apply the FIR strategy in designing the
CUSUM-γ 2 control chart. The value of optimal reference
coefficients h∗+(h∗−) and the corresponding ARL1 of the FIR
CUSUM-γ 2 are presented in Tables 18.12 and 18.13, re-
spectively. In the current study, the FIR CUSUM-γ 2 control
chart is applied with the values of k∗+ and k∗− in Tables 18.2
and 18.3. We consider several situations of the headstart, that
is, c ∈ {

0, 0.25H, 0.5H, 0.75H
}
. It can be seen that the use
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of FIR leads to the better performance of the CUSUM-γ 2

control chart. In particular, when C0 = c increases, the ARL1
decreases. For example, with n = 5, γ0 = 0.1, τ = 0.8,
we have ARL1 = 20.025 when C−

0 = 0 and ARL1 =
7.6025 when C−

0 = 0.75H−. In addition, the increase of c
increases the value of h∗+(h∗−) (corresponding to the control
limit H∗+(H∗−) ) as well. For example, when n = 7, γ0 =
0.05, τ = 1.3, the optimal values of reference coefficient
h∗+ is h∗+ = 4.0796 if C0 = 0 and h∗+ = 4.2962 if
C0 = 0.75H+. These results are consistent with the findings
by Lucas and Crosier [64]. Using a head start routinely is then
recommended as a good strategy to obtain better performance
in designing a CUSUM control chart monitoring the CV.

18.5 Conclusions and Perspectives

In this chapter, we have investigated several problems related
to the CUSUMcontrol chart monitoring the CV, involving the
design of the CUSUM-γ 2 control chart, the effect ofME, and
the FIR strategy to improve the performance of the proposed
charts. The chart performance is measured by using the ARL,
which is the expected number of samples to be taken before a
signal from the chart. This measurement has been calculated
based on an approximateMarkov chainmethod.We have also
considered the measurement of EARL when a specific shift
size of the process cannot be predicted accurately in advance.

Thanks to the definition of the CUSUM statistic, the
CUSUM-γ 2 control chart is able to cumulate information
on the whole process from the past. As a result, it is quite
sensitive to the process shift and it outperforms the statistical
performance of the traditional Shewhart control chart.

The numerical results have shown that the ME has a
significant impact on the chart’s performance. In particular,
the increase of the accuracy error or the precision error leads
to the decrease of the efficiency of the chart in detecting
process shifts. Moreover, the traditional method of increasing
the number of multiple measurements per item is not an
efficient way to reduce these negative effects of ME. By
contrast, increasing the sample size is a very effective way
to enhance the performance of the CUSUM-γ 2 control chart
regardless of ME.

Another way to improve the CUSUM-γ 2 control chart’s
performance is to apply the FIR strategy. In this strategy,
the process is supposed to start from an out-of-control state.
Then, the initial values of the CUSUM statistics are chosen to
be strictly greater than 0. This choice could lead to somewhat
larger interval controls, but it can reduce significantly the
average number of samples that need to be taken from the
chart to alarm an abnormal state. These findings could be
useful for practitioners in designing a CUSUM control chart
to monitor the CV.

The obtained results in this chapter can be applied in
various industrial environments when the change in the CV
is considered as a source that leads to the change of the
process output and the small and moderate shifts in the CV
are expected to detect as quickly as possible. It is also applied
for the case when one considers a practical problem of ME
in the implementation of the CUSUM−γ 2 chart.

From this chapter, several important problems related
to the CUSUM-γ 2 control chart could be investigated in
future research. For example, one can think of combining the
CUSUM chart with other adaptive strategies like changing
the sample size, changing the sampling interval, or changing
both of them to obtain a control chart monitoring the CV (i.e.,
the VSI CUSUM-γ 2 chart, VSS CUSUM-γ 2 chart, or VSSI
CUSUM-γ 2 chart) with higher performance. Moreover, in
Sect. 18.3, we have modeled ME by applying a linear co-
variate error model. In some situations, the additive linear
model could be too simple and it does not model ME well.
For such situations, one can think about using a more general
model for ME like the two-component error model suggested
by Rocke and Lorenzato [66]. However, the general model
is such that the observations are no longer normal and sim-
ulation is needed to get the control charts’ statistical prop-
erties. Finally, investigating the effect of skew distributions
on the CUSUM-γ 2 is also an interesting problem with a
practical meaning. In the SPC literature, this problem has
been presented in several studies (see, e.g., Bai and Choi [67],
Derya and Canan [68]). Particularly, Stoumbos and Reynolds
[1] also studied the robustness and performance of CUSUM
control charts based on a double-exponential distribution.
However, a CUSUM control chart monitoring the CV with a
skew distribution has not been investigated yet, and it is worth
considering it to make it more practical for practitioners.
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Abstract

In the current era of computers, statistical monitoring
of sequential observations is an important research area.
In problems such as monitoring the quality of industrial
products, health variables, climatological variables, etc.,
we are often interested in detecting a change in the process
distribution in general, not just in mean or variance. We

P. S. Mukherjee (�)
Interdisciplinary Statistical Research Unit (ISRU), Indian Statistical
Institute (ISI), Kolkata, West Bengal, India
e-mail: psm@isical.ac.in

first briefly discuss a few commonly used SPC charts
along with relevant references and then present a new
chart for univariate continuous processes. Unlike most
SPC charts in the literature, it neither assumes any “in-
control” probability distribution nor requires any “in-
control” Phase I data, and it aims to detect arbitrary
distributional change. This chart uses a computationally
efficient method to find the possible change-point. More-
over, the proposed chart uses a p-value-based data pruning
approach to further increase the efficiency, and it com-
bines the strengths of two different tests of hypotheses,
which has a potentially broad application. Numerical sim-
ulations and two real-data analyses show that the chart can
be used in various monitoring problems when the nature
of distributional change is unknown.

Keywords

Ansari-Bradley test · Cramer-von Mises test ·
Distributional change · Nonparametric SPC · Pruning ·
P-value

19.1 Introduction

Statistical process control (SPC) charts are widely used for
monitoring the stability of certain sequential processes in
various disciplines including manufacturing and healthcare
systems. Typically, the SPC charts assume that there are two
causes of variability in the process measurements: one is
“common cause” which is due to unavoidable randomness
and another is “special cause” when an undesirable variabil-
ity intervenes, for example, mechanical defects, improper
handling of machines, human errors, onset of certain medical
conditions, etc. When the variability is only due to common
causes, the process is said to be “in-control”. “In-control”
process measurements can be considered as realizations of
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a random model, for example, independent and identically
distributed (i.i.d.) observations from a cumulative distribu-
tion function (c.d.f.) F1. When a special cause interferes,
the process measurements no longer appear as i.i.d. real-
izations of F1, and then the system is said to be “out-of-
control”. Practitioners typically divide SPC into two phases.
Initially, a set of process measurements are analyzed in Phase
I. If any “unusual” patterns in the process measurements
are found, they make necessary adjustments and fine-tuning
of the system. After removing all such special causes, we
have a clean set of process measurements data under stable
operating conditions, and they are representative of the actual
process performance. The major goal of Phase II SPC control
charts is to detect any change in process distribution after an
unknown time-point.

A change in the process distribution may not always be
in location and scale only; it can be general, for example,
changes in degrees of freedom of chi-squared distribution.
Furthermore, changes can either be isolated, i.e., the system
goes “out-of-control” for a short time and then returns to
“in-control”, or persistent, i.e., once the system goes “out-
of-control,” it remains “out-of-control” or even goes further
away from control until the special causes are removed.
Among existing SPC charts in the literature, Shewhart-type
[1] charts are used to detect isolated changes and cumulative
sum (CUSUM) type charts (e.g., [2]) are used to detect
persistent changes. However, most SPC charts consider shifts
in location and/or scale, because they are most common
and often capture other departures. In real-world problems,
shifts in skewness and kurtosis can happen without much
change in location and scale. For example, the shape of the
process distribution gradually changing over time without
much change in mean or variance. If we fail to detect those
changes and let the process run, it can eventually become
worse and a shift in location and scale can creep in.Moreover,
the special causes that initiated the change can cause more
damage to the system, and it may become a challenge to fix.
If we can detect such a change in skewness, we can avoid
subsequent troubles. Therefore, it is imperative to develop an
SPC chart that can detect changes in the process distribution
in general. The proposed chart precisely focuses on this.

Various types of SPC control charts have been proposed
in the literature including Shewhart-type charts [1], cumu-
lative sum (CUSUM)-type charts (e.g., [2]), exponentially
weighted moving average (EWMA chart) [3] (e.g., [4, 5]),
etc.Many control charts assume that “in-control” process dis-
tribution F1is either known or has a known parametric form
(e.g., normal). In real-life problems, this is usually not the
case. It has been demonstrated in the literature that the SPC
charts using prespecified distribution in their designs may not
be reliable in such cases (e.g., [6,7]). To address this, a num-
ber of non-parametric or distribution-free SPC charts have
been proposed. For example [8–18], and so on. [19] provides

an overview of nonparametric SPC charts. Discussions for
multivariate cases are provided by Qiu and Hawkins [20,21]
and Qiu [22]. Some SPC charts (e.g., [23–25]) monitor pro-
cess mean and variance jointly. Moustakides [26] proposes
a method to detect distributional changes when both “in-
control” and “out-of-control” distributions are known. Ross
and Adams [27] propose two nonparametric control charts
to detect arbitrary distributional change under the change
point detection (CPD) framework when both “in-control”
and “out-of-control” distributions are unknown. Mukherjee
[28] also proposes a Phase II nonparametric SPC chart for
detecting arbitrary distributional change, but it requires a
substantial amount of “in-control” Phase I data. A thorough
literature review on SPC charts can be found in [29] as well as
in [30].

Most existing SPC charts mentioned above focus to detect
changes in process location and scale but do not consider
an arbitrary distributional change. Moreover, some methods
require multiple observations at each time-point; some others
require “in-control” Phase I observations. All of these may
not be reasonable in many real-life problems. The proposed
chart focuses on univariate continuous processes and pro-
poses a p-value-based nonparametric SPC chart to detect
an arbitrary distributional change when we can assume that
the observations we collect are independent, but “in-control”
c.d.f. F1 is unknown, and “in-control” Phase I data are un-
available. p-value-based SPC charts are new trends as some
researchers have already started developing those for better
interpretation, e.g., [31, 32], etc.

Additionally, the proposed chart uses the strengths of
Cramer-von Mises test and Ansari-Bradley test and demon-
strates a better performance in detecting an arbitrary distri-
butional change early. It is demonstrated in the literature [27]
that the power of two-sample Cramer-vonMises test to detect
a small change in standard deviation or scale is rather weak.
The proposed chart overcomes that by integrating this test
with Ansari-Bradley test, a nonparametric test for detecting
scale change. The integration process is quite general in
nature, and hence similar integration techniques can be used
to design better control charts in many scenarios.

The major steps of the proposed SPC chart are the follow-
ing: First, we estimate the possible change-point that gives
the minimum p-value of the relevant two-sample Cramer-
von Mises test statistic. We use a computationally efficient
method to do this. Using that change-point, we calculate the
p-value of Ansari-Bradley test and pick the smallest of the
two p-values as the effective p-value and use it as the charting
statistic. Since it is demonstrated in the literature (e.g., [27])
that Cramer-von Mises test does not have strong power to
detect scale changes, if there is indeed a scale change in the
process distribution, Ansari-Bradley test gives a smaller p-
value than Cramer-von Mises test . Therefore, to detect such
changes, it is better to use the smaller of the p-values. If
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the process distribution changes without affecting the scale
parameter, Cramer-von Mises test gives a smaller p-value
than Ansari-Bradley test. It is also better to use the smaller of
the two p-values to detect such a change as well. If the p-value
is large enough, and our effective sequence of observations
is too long, we prune observations from distant past and
we collect the next observation. The amount of pruning is a
nondecreasing function of the effective p-value as the higher
the p-value, the more likely it is that no distributional change
has occurred, and it is therefore better to ignore information
from distant past to speed up computation. If the p-value is
small enough, the chart signals a distributional change.

The remainder of the chapter is organized as follows.
At the end of this paragraph, a nomenclature subsection is
provided so that this chapter can be read smoothly. Next, brief
descriptions of traditionally used SPC charts are provided
in Sect. 19.2. The proposed control chart is described in
Sect. 19.3. Numerical studies to evaluate its performance in
comparison with several existing control charts are presented
in Sect. 19.4. A climatological data analysis and a blood
sugar monitoring data analysis by the proposed chart and
its competitors are presented in Sect. 19.5. A few remarks in
Sect. 19.6 conclude this chapter.

19.2 Traditionally Used SPC Charts

Statistical process control of a production process is roughly
divided into two phases: Phase I and Phase II. In Phase
I, i.e., in the initial stage, we usually do not have enough
information about the performance of the production process,
and our major goal in this stage is to adjust the production
process so that it can run in a stable manner. First, we usually
let the process produce a given amount of products, and then
the quality characteristics of these products are analyzed. If
the statistical analysis of these data shows indication that the
process is not running stably, we try to figure out the root
causes for that and make adjustments of the process so that
it can run stably. After the adjustments, another set of data
is collected and analyzed, and the production process should
be adjusted again, if necessary. The analysis and adjustment
process is iterated several times until we are confident that
the performance of the production process is stable. Once
all “special causes” have been removed and the production
process is “in-control,” we collect an “in-control” dataset
from the products manufactured under the stable operating
conditions, and the “in-control” data are used for estimating
the “in-control” distribution of the quality characteristic(s)
of interest. Based on the actual “in-control” distribution if
known, or estimated “in-control” distribution otherwise, a
Phase II SPC control chart is designed. It is typically used for
online monitoring of the production process. When the chart
detects a significant change in the distribution of the quality

characteristic(s) from “in-control” distribution, it gives a
signal and the production process is stopped immediately
for identification of the root cause for such a change and its
removal. This online monitoring stage is often called Phase
II SPC.

In both Phase I and Phase II of SPC, many statistical
tools such as histograms, stem-and-leaf plots, regression, and
design of experiments are very helpful. Among all these,
control charts are especially useful since they are constructed
specifically to detect “out-of-control” performance of the
production process. A charting statistic should be chosen
such that it contains as much of the information in the ob-
served data about the distribution of the quality characteris-
tic(s) as possible and be sensitive to any distributional change
as well. In the literature, different types of control charts
have been developed including the Shewhart charts, the cu-
mulative sum (CUSUM) charts, the exponentially weighted
moving average (EWMA) charts, charts based on change-
point detection (CPD), and so on. Brief descriptions of some
of these control charts are provided below.

19.2.1 Shewhart Chart

The first control chart was proposed by Shewhart [1] in 1931.
The chart assumes that the quality variable X follows normal
distribution N(μ0, σ 2), and at each time-point we obtain m
independent quality observations. Denote (Xn1, Xn2, . . . , Xnm)

to be the n-th batch of observations, where the batch size
is m ≥ 2. Traditional z-test is used to check if the process
observations are “in-control” at the n-th time-point. The
process is considered “out-of-control” when

Xn > μ0 + z1−α/2
σ√
m

or Xn < μ0 − z1−α/2
σ√
m
,

where Xn is the sample mean of (Xn1, Xn2, . . . , Xnm) and
z1−α/2 is (1 − α/2)-th quantile of the standard normal dis-
tribution. This version can be used when both μ0 and σ are
known. However, it is usually not the case in reality. In that
case, they have to be estimated from a dataset known to be
“in-control.” Suppose,

(
X∗
i1, X

∗
i2, . . . , X

∗
im

)
, i = 1, 2, . . . , M be

an “in-control” dataset. Let X
∗
i and R∗

i be the sample mean
and sample range of the i-th batch of “in-control” dataset and

X
∗
and R

∗
be the sample means of {X∗

i , i = 1, 2, . . . , M}
and {R∗

i , i = 1, 2, . . . , M}, respectively. It can be easily

verified that X
∗
is an unbiased estimator of μ0 and R

∗
/d1(m)

is an unbiased estimator of σ , where d1(m) = E(R∗
i /σ)

is a constant depending on m. When m = 2, d1(m) =
1.128, when m = 5, d1(m) = 2.326. d1(m) values for
many other commonly used m are provided in Table 3.1 of
[30]. Therefore, the Shewhart chart signals a shift in process
mean if
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Xn > X
∗ + z1−α/2

R
∗

d1(m)
√
m

or

Xn < X
∗ − z1−α/2

R
∗

d1(m)
√
m

. (19.1)

Traditionally, the manufacturing industry uses α =
0.0027, and hence (1 − α/2)-th quantile of N(0, 1), i.e.,
z1−α/2 is 3. Therefore, the chart signals mean shift at time-
point n if Xn falls outside the interval of width six sigma
centered at μ0 and where sigma is the standard deviation
of Xn. Thus, the terminology “six sigma” originated in the
domain of quality control.

The performance of a control chart is traditionally mea-
sured by average run length (ARL). Since the charts use
control limits for making decision on process performance,
an “in-control” process sometimes give false signals of dis-
tributional shift. This phenomenon is analogous to having
type I error in hypothesis testing. The number of samples or
batches collected from the initial time-point of consideration
to the occurrence of first false “out-of-control” signal when
the process remains “in-control” is called “in-control” run
length. The mean of such a run length is called “in-control”
average run length denoted as ARL0. On the other hand, the
number of samples or batches collected from the time-point
when the shift actually occurs to the time-point of signal of
shift is called “out-of-control” run length. Its mean is called
“out-of-control’ average run length denoted as ARL1. The
ideal situation is that, for a control chart, ARL0 value is large
and ARL1 value is small. However, similar to type I and type
II error probabilities in hypothesis testing, it is difficult to
achieve. Usually, when ARL0 is large, ARL1 is also relatively
large and vice versa. In SPC literature, we usually fix the
ARL0 value at a given level and compare the performances of
the control charts by comparing how small their ARL1 values
are. In the X Shewhart chart as described above, the distri-
bution of “in-control” run length is clearly geometric with
parameter α. α = 0.0027 makes ARL0 = 1/α = 370.37.
ARL1 can also be computed easily as a function of the shifted
mean.

In the literature, there are many versions of Shewhart
chart. One of them uses sample standard deviation to estimate
σ rather than sample range. In this case, the chart gives a
signal for mean shift when

Xn > X
∗ + z1−α/2

S
∗

d3(m)
√
m

or Xn < X
∗ − z1−α/2

S
∗

d3(m)
√
m
, (19.2)

where S
∗
is the sample mean of the batch-wise sample

standard deviations {S∗
i , i = 1, 2, . . . , M}, i.e.,

S∗
i =

√√√
√ 1

m− 1

m∑

j=1

(Xij − X
∗
i ) for 1, 2, . . . , M,

and d3(m) = E(S∗
i /σ) is a constant depending on the value of

m. Under the same setup, Shewhart charts were constructed

to monitor process variability. Defining d2(m) =
√
Var

(
R∗
i

σ

)
,

and using d1(m) = E(R∗
i /σ), we can estimate σR∗

i
by d2(m)

d1(m)
R

∗
.

Therefore, this version of Shewhart chart gives a signal for a
change in variability if

Rn > R
∗ + z1−α/2

d2(m)

d1(m)
R

∗
or Rn < R

∗ − z1−α/2
d2(m)

d1(m)
R

∗
.

(19.3)

Similarly, another version of Shewhart chart was constructed
using sample standard deviation instead of sample range.

Using the result σS∗
i

= σ

√
1 − d23(m) proved by Kenney

and Keeping [34], σS∗
i
can be estimated by S

∗

d3(m)

√
1 − d23(m).

Therefore, the chart gives a signal of a change in variability
if Sn, the sample standard deviation of (Xn1, Xn2, . . . , Xnm),
satisfies the following condition:

Sn > S
∗ + z1−α/2

√
1 − d23(m)

d3(m)
S

∗

or Sn < S
∗ − z1−α/2

√
1 − d23(m)

d3(m)
S

∗
. (19.4)

Using the result that (m−1)[S∗
i ]2

(σ 2)
∼ χ2

m−1, another chart was
constructed using sample variance instead of sample standard
deviation. This chart gives a signal for a change in process
variance when

S2n > S∗2χ2
1−α/2,m−1

m− 1
or S2n < S∗2χ2

α/2,m−1

m− 1
, (19.5)

where S∗2 is the sample average of {S∗
i
2, i = 1, 2, . . . , M}.

Next, we discuss X Shewhart chart for monitoring individ-
ual observations rather than batched observations in Phase
I SPC. The idea is to artificially create grouped data by
grouping consecutive observations. First, we fix the size of
each group m̃ > 1. Then, the first m̃ observations form the
first group, the next m̃ observations form the second group,
and so on. Next, we can apply X Shewhart chart (19.1) on the
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grouped data. However, one problem here is that consecutive
groups are m̃ time-points apart. Hence, it is difficult to know
the process behavior at each time-point. To overcome this
limitation, most people adopt the idea of moving windows.
We artificially create grouped data as follows: Group 1 (X1,
X2, . . ., Xm̃), Group 2 (X2, X3, . . ., Xm̃+1), and so on until
Group (n− m̃+ 1) (Xn−m̃+1, Xn−m̃+2, . . ., Xn). Denote MR1,
MR2, . . ., MRn−m̃+1 to be the sample ranges of the (n− m̃+
1) groups of data and MR to be their sample mean. From
the definition of d1(m̃), we can estimate σ by MR/d1(m̃).
Therefore, the X Shewhart chart for monitoring individual
observations gives a signal of mean shift when

Xn > X + z1−α/2
MR

d1(m̃)
or Xn < X − z1−α/2

MR

d1(m̃)
.

(19.6)

Similarly, R Shewhart chart for monitoring individual obser-
vations gives a signal of a variability shift when

MRi > MR + z1−α/2
d2(m̃)

d1(m̃)
MR

or MRi < MR − z1−α/2
d2(m̃)

d1(m̃)
MR. (19.7)

Here, we should check at all time-points that belong to the
i-th group, i.e., from the i-th to the (i+ m̃−1)-th time-points.
Other Shewhart charts formonitoring individual observations
were constructed similarly.

In many applications, quality characteristics are categori-
cal. Now, we describe some Shewhart charts for monitoring
such characteristics. After certain products are randomly cho-
sen for monitoring purposes, they are classified in conform-
ing and nonconforming products based on requirements on
the quality characteristics. Now, we monitor the proportion
of nonconforming products over time. We assume that when
a production process is “in-control,” the true proportion of
nonconforming products is π0, and we obtain a random
sample of m products at each time-point. Let Y be the
number of nonconforming products obtained at a given time-
point. Therefore, Y ∼ Binomial(m,π0) when the process
is “in-control.” Let p = Y/m be the sample proportion of
nonconforming products at the time-point. When m is large,
the probability distribution of p can be well approximated by
N (π0,π0(1 − π0)/m) by the central limit theorem when the
process is “in-control.” Hence, the process can be called “out-
of-control” if

p > π0 + z1−α/2

√
π0(1 − π0)

m

or p < π0 − z1−α/2

√
π0(1 − π0)

m
.

In practice, π0 is often unknown and should be estimated
from collected Phase I data, just like in the original version
of X Shewhart chart use estimated μ0 and σ . As before,
we assume that we have M batches of Phase I data. Let p∗

i

be the sample proportion of nonconforming products in the
i-th batch of Phase I data for i = 1, 2, . . . , M and p∗ be
their sample mean. Therefore, we can estimate π0 by p∗, and
hence the p Shewhart chart gives a signal for a change in
the proportion of nonconforming products at n-th time-point
when

pn >p∗ + z1−α/2

√
p∗(1 − p∗)

m

or pn < p∗ − z1−α/2

√
p∗(1 − p∗)

m
. (19.8)

There are other versions of Shewhart chart in the literature
for monitoring count processes having distributions such as
Poisson. Detailed descriptions of such charts are provided in
Chapter 3 of [30].

Shewhart charts are good at detecting relatively large
isolated shifts, but not so efficient in detecting relatively small
but persistent shifts. This is because Shewhart charts evaluate
the process performance based on the observed data collected
at each individual time-point and ignore observations col-
lected previously. Therefore, Shewhart charts are popular in
Phase I SPC where large and isolated shifts are common but
less commonly used in Phase II SPC.

As we mentioned before, the X, R, and S Shewhart charts
are appropriate to use only in cases when the process dis-
tribution is normal and the observations are independent of
each other. When the process distribution is not normal, the
probability of type I error, i.e., the probability of false “out-
of-control” signal when the process is actually “in-control,”
can substantially differ from the prefixed value of α. If the
type I probability of a Shewhart chart is larger than α, then
the chart will give false “out-of-control” signal more often
than expected. Consequently, much time and resource will
be wasted to find the cause of such signals and adjusting the
related production process. On the other hand, if the type I
probability of a Shewhart chart is smaller than α, then real
shifts will be missed more often than expected and hence
many nonconforming products could be manufactured. How-
ever, when the distribution of Xij is non-normal but the batch
size m is large, the issue described above will not be serious,
because the distribution of Xn can be well approximated by
normal distribution due to the central limit theorem. In cases
when the distribution of Xij is non-normal and the batch size
m is small, mainly two approaches are usually taken. One
approach is to transform the non-normal data to normal and
then use the conventional Shewhart charts to the transformed
data [35,36], and the other approach is to use Shewhart charts
that are constructed to monitor non-normal data.
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If the performances of the Shewhart charts are evaluated
by “in-control” average run lengthARL0 and “out-of-control”
average run length ARL1, then the performance measures will
be not accurate if the observations are correlated [37–39]. In
these cases, correlations have to be handled properly.

19.2.2 CUSUM Chart

Shewhart chart makes a decision whether a process is “in-
control” or not at a time-point using only the observations
obtained at that time-point and ignoring all previous observa-
tions. Therefore, it is not very effective in Phase II monitoring
in most cases, because previous observations contain helpful
information about process performance at present. Page [2]
suggested the first cumulative sum (CUSUM) chart to over-
come this limitation. Let us first describe the basic CUSUM
chart for detecting mean shift of a process following normal
distribution. Again, the chart assumes that the process obser-
vations X1, X2, X3, . . . follow N(μ0, σ 2) and are independent.
The CUSUM charting statistics are given by

C+
n = max

(
0, C+

n−1 ((Xn − μ0)/σ ) − k
)
, (19.9)

C−
n = min

(
0, C−

n−1 ((Xn − μ0)/σ ) + k
)

(19.10)

where C+
0 = C−

0 = 0, and k > 0 is an allowance constant.
The CUSUM chart gives a signal of mean shift if

C+
n > ρc or C−

n < −ρc (19.11)

where ρc > 0 is a control limit. The allowance constant
k is prespecified, and the value of ρc is chosen so that the
average run length when the process is “in-control,” denoted
as ARL0, equals a given number, say, 200, 370, 500, etc. Table
4.1 of [30] provides the values of ρc for various values of
allowance constant k and ARL0. We can easily see that the
charting statistics C+

n and C−
n make use of all available data

before the n-th time-point, and they restart from 0 when the
cumulative charting statistics suggest no significant evidence
for mean shift in the sense that C+

n−1 ((Xn − μ0)/σ ) < k
and C−

n−1 ((Xn − μ0)/σ ) > −k. Because of this restarting
mechanism, the CUSUM chart enjoys a good theoretical
property that it has smallest “out-of-control” ARL, denoted
as ARL1, among all control charts having the same value of
ARL0. Moustakides [26] proved that the CUSUM chart with
an allowance constant k has the shortest ARL1 value among
all charts with a fixed ARL0 value for detecting a persistent
shift of size δ = 2k.

To be able to use the above CUSUM chart, the process
observations should be independent before and after a poten-
tial shift, both “in-control” and “out-of-control” distributions
have to be normal, and the parameters μ0 and σ of the “in-
control” distribution have to be known. However, in practice
these assumptions may not be reasonable.

If the observations are autocorrelated, then the actual
value of ARL0 will be different from the specified value for
which the control limit ρc is determined in case of i.i.d. (in-
dependent and identically distributed) normal observations as
provided by Table 4.1 of [30]. For example, if the production
process is autoregressive of order 1, and the autocorrelation is
negative, then the actual value of ARL0 will be larger than the
specified value for which ρc is determined. Consequently, the
chart will not be sensitive enough to mean shifts and a lot of
nonconforming products can be manufactured. On the other
hand, if the production process is autoregressive of order 1,
with positive autocorrelation, then the actual value of ARL0
will be smaller than the specified value for which ρc is deter-
mined. That means the chart will give too many false signals
of mean shift than expected and the production process has
to be stopped too many times unnecessarily, and hence many
resources will be wasted. One commonly used approach
to accommodate possible autocorrelation among observed
data is to group neighboring observations into batches and
then apply conventional CUSUM charts for independent data
to the batch means. One major reason behind this idea is
that possible autocorrelation in the original data will be
mostly eliminated in the new batch means [40]. Because
of autocorrelation, the standard deviation of standardized
group means may not be 1, and it can differ very much
from 1. Therefore, the actual ARL0 may be far away from
the specified ARL0 value. To overcome this limitation of
the grouping approach, the group means need to be scaled
properly which is difficult to do unless we know the nature
of correlation in the original data. For related descriptions,
see [40, 41], and [42]. Another disadvantage of the grouping
approach is that the control chart cannot detect a mean shift
promptly as it has to wait until all observations within a
group are obtained. An alternative approach to the grouping
idea is to describe the correlation by a statistical model
such as autoregressive moving average (ARMA) model. In
many practical applications, appropriate special cases of the
ARMA model, such as first-order autoregressive model, can
be used; otherwise, an appropriate model can be selected
by a model selection procedure. After a time-series model
is chosen and fitted by a certain routine procedure in time-
series analysis, we can calculate the residuals. If the chosen
time-series model describes the observed “in-control” data
adequately, and the production process is “in-control” until
the given time-point, the residuals should approximately be
independent with a zero-mean common normal distribution
whose variance can be estimated by an appropriate estimator.
Then, we can apply the conventional CUSUM chart to the
calculated residuals. However, we should be careful that an
“out-of-control” signal may not always be due to a shift in
mean; it can be due to a change in correlation structure in
the observations as well. Related discussions onmodel-based
control charts for monitoring autocorrelated processes can be
found in [43–45], and so on.
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In cases when the observations are i.i.d. normal but the
“in-control” mean μ0 and variance σ 2 are unknown, a com-
mon approach is to estimate those from a large “in-control”
dataset. However, even a small randomness of these esti-
mated values affects the performance of the CUSUM charts
in a significant way. Hawkins [46] explored this research
question in detail. Since in many applications we cannot have
an extremely large “in-control” dataset, Hawkins [46] pro-
posed the self-starting CUSUM charts in which “in-control”
parameters are estimated from the observations collected in
Phase II SPC. Assume that no “out-of-control” signal is given
until the (n−1)-th time-point. A new observation is collected
at the n-th time-point andwewant tomake a decisionwhether
a signal of mean shift should be given at this time-point.
Since no signal for mean shift is given at (n − 1)-th time-
point, we can consider all observations collected at that time-
point and before, i.e., Xn−1, Xn−2, . . ., X1, as “in-control”
observations. Therefore, μ0 and σ 2 can be estimated by their
sample mean Xn−1 and sample variance S2n−1, respectively,
as long as n ≥ 3. Therefore, for constructing a CUSUM
chart, it is natural to replace (Xn − μ0)/σ in (19.9) and
(19.10) by Tn = (Xn − Xn−1)/Sn−1. When X1, X2, . . ., Xn
are i.i.d. N(μ0, σ 2) which is the case when the process is “in-
control” up to the n-th time-point, we can easily check that(√

(n− 1)/n
)
Tn ∼ tn−2. As proved in [47], T1, T2, . . ., Tn are

independent of each other when the process is “in-control” up
to the n-th time-point. Therefore, in that case,

Zn = �−1

[

ϒn−2

(√
n− 1

n
Tn

)]

follow i.i.d. N(0, 1) distribution, where � and ϒn−2 are
cumulative distribution functions (c.d.f.) of N(0, 1) and tn−2,
respectively. Since �−1 and ϒn−2 are increasing functions, a
mean shift in the original observationsXi, 1 ≤ i ≤ n indicates
a mean shift in the transformed observations Zi, 1 ≤ i ≤ n
and vice versa. Therefore, detection of mean shift in Phase
II monitoring can be accomplished by using transformed
observations Zn, n ≥ 1 in place of (Xn − μ0)/σ in (19.9) and
(19.10). It has been demonstrated in the literature that if a
persistent mean shift occurs within the first few observations
in Phase II monitoring, the self-starting CUSUM chart as
described above has a weak power to detect it. Therefore, in
practice, at least a dozen or more “in-control” observations
should be collected in Phase II before using the self-starting
CUSUM chart. Self-starting control charts are now popular
in the literature ([48, 49], and so on).

The traditional CUSUM chart (19.9–19.10) has an al-
lowance parameter k, which should be set as δ/2 where δ

is the size of potential mean shift. In practice, δ is often
unknown at the time when we design the CUSUM chart
and hence choice of k is not straightforward. Sparks [50]
proposed two approaches to solve this issue. Sparks’ first
approach is to use several CUSUM charts with different k

values simultaneously so that these charts target to detect
mean shifts of different sizes. Such a joint control scheme
gives an “out-of-control” signal of mean shift if at least one
of the CUSUM charts detects a mean shift. Of course, the
ARL0 values of these CUSUM charts have to be the same
prefixed number. If we have prior information about the
potential mean shift, we should incorporate the information
while determining the k values. Sparks’ second approach is
to estimate the size of mean shift δ recursively at each time-
point and updating the value of k accordingly. The control
limit should also be updated at each time-point so that we
can maintain the prespecified ARL0 value. These are called
adaptive CUSUM charts.

When the “in-control” distribution of the production pro-
cess is not normal, then the traditional CUSUM charts should
not be used. If we know that the “in-control” distribution is in
exponential family such as gamma and Weibull distribution,
then we can similarly construct CUSUM charts by using
sequential probability ratio test. However, if the “in-control”
distribution is completely unknown, we can use nonparamet-
ric control charts [11–18] that do not assume any “in-control”
distribution.

The versions of CUSUM chart mentioned above were
designed for detecting a step shift in process mean. How-
ever, in many applications, the process mean and/or vari-
ance changes gradually with or without a known parametric
pattern, after the process becomes “out-of-control.” Such
changes are called drifts. Gan [51], Davis and Woodall [52],
and many other researchers proposed CUSUM charts for
detecting linear drifts.

Recently, CUSUM charts with variable sampling rate
become popular ([53, 54] and many others). In this type of
CUSUM chart, the sampling rate varies over time based on
all observed data. There are many different types of sampling
rate such as variable sampling intervals, variable sample
sizes, etc. One major advantage of variable sampling rate
CUSUM charts compared to fixed sampling rate CUSUM
charts is faster detection of small to moderate shift in process
mean. Recently, Li and Qiu [32] suggested implementing a
CUSUM chart using statistical p-values and proposed the
concept of dynamic sampling.

In the literature, researchers have constructed CUSUM
charts for monitoring the variance of the process distribution
as well.

19.2.3 EWMA Chart

In spite of having good theoretical properties, CUSUMcharts
were difficult to use in the 1950s when there was there was
no computers. A simpler chart, called exponentially weighted
moving average (EWMA) chart, was proposed by Roberts
[55] in 1959. Under the same assumptions and notations of
CUSUM chart, the EWMA charting statistic is defined as
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En = λXn + (1 − λ)En−1 (19.12)

where E0 = μ0 and 0 < λ ≤ 1 is a weighting parameter. We
can easily check that

En = λ

n∑

i=1

(1 − λ)n−iXi + (1 − λ)nμ0, (19.13)

and when the process is “in-control,”

En ∼ N

(
μ0,

λ

2 − λ
[1 − (1 − λ)2n]σ 2

)
.

That means En is a weighted average of μ0 and all ob-
servations up to time-point n, and the weight received by
Xi decays exponentially fast when i moves away from n.
Therefore, it becomes easy to study the properties of En when
the process is “in-control.” From the probability distribution
of En, EWMA chart gives a signal for mean shift when

|En − μ0| > ρeσ

√
λ

2 − λ
[1 − (1 − λ)2n], (19.14)

where ρe > 0 is a control limit. λ > 0 is chosen beforehand,
and the value of ρe is determined such that a specified value
of ARL0 is achieved.

To be able to use the EWMA chart in practice, we need
to choose λ values properly and then the value of ρe so
that the prespecified ARL0 value is achieved. Just like the
CUSUM charts, we need to specify a target shift size first
and then we can search for a λ value and the corresponding
ρe value such that the prespecified ARL0 value is achieved
and the ARL1 value for detecting the mean shift of target
size is minimized. As a general guideline, small λ values are
good for detecting relatively small mean shifts, and large λ

values are good for detecting relatively large means shifts.
Crowder [56] provides a discussion on this issue. While we
assume that the “in-control” process distribution is normal,
some researchers have demonstrated that the EWMA chart is
quite robust to normality assumption [3].

In case of autocorrelated observations, similar approaches
as we described in the CUSUM chart can be implemented in
case of EWMA charts as well. However, some researchers
suggest applying the EWMA charts directly to the original
data and then adjusting the control limits to reflect the impact
of autocorrelations [57].

For using Shewhart, CUSUM, or EWMA chart as de-
scribed before,μ0 and σ has to be known or estimated before
the monitoring starts. As we have discussed before, this is not
convenient in many applications, and hence we should use
self-starting control charts. Just like the self-starting CUSUM
control charts, we first transform the original data to Zi,
i ≥ 1 and then apply the traditional EWMA chart to the

transformed data. In the literature, there are several methods
such as [58] where λ is chosen adaptively depending on the
size of potentialmean shift. These are called adaptive EWMA
charts.

In the literature, EWMA charts have been developed
when the process distribution follows other parametric forms.
Some researchers [59, 60] constructed EWMA charts for
monitoring processes followingWeibull distributions. Borror
et al. [61], Gan [62], and some others discussed process
monitoring when the process distribution is Poisson. Perry
and Pignatiello [63], Sparks et al. [64], and many others dis-
cussed EWMAprocess monitoring with binomial or negative
binomial distributions.

All versions EWMA charts that we discussed so far are
designed for detecting step shift in the process mean. In
some practical situations, when the process becomes “out-
of-control,” its mean departs gradually from the “in-control”
level. It is important that we can detect such gradual depar-
tures, called drifts, as early as possible. In the literature, some
researchers have modified EWMA charts to detect drifts
efficiently ([65] and others).

Just like CUSUM charts, researchers have constructed
EWMA charts to monitor the variance of the production
processes as well.

19.2.4 Control Charts by Change-Point
Detection (CPD)

In change-point detection (CPD), the distribution of the first
part of a sequence of random variables is assumed to be the
same, the distribution of the remaining part of the random
variables of that sequence is also assumed to be the same,
but the distributions of the two parts are assumed to be
different. The specific position in the sequence at which the
distribution of the random variables changes from one to the
next is called a change-point. Our major goal is to estimate
the position of the change-point. Gombay [66], Hinkley [67],
and many others in the literature provide detailed descrip-
tion of this topic. In change-point detection problems, the
sample size is usually fixed. In Phase I SPC, the sample
size is usually fixed, and then the change-point methods can
be applied directly. In Phase II SPC, observations are ob-
tained sequentially over time. Therefore, change-point meth-
ods must be applied appropriately in such cases. Recently,
change-point methods have been modified and applied to
the SPC problems ([4, 5], and others) as well. Change-
point-based control charts are good at detecting small and
persistent shifts and can estimate the position of change-point
efficiently.

Let us describe the change-point based control chart pro-
posed by Hawkins et al. [4]. It assumes that the observations
X1, X2, . . ., Xn follow this change-point model
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Xi = μ0 + εi for 1 ≤ i ≤ r

Xi = μ1 + εi for (r + 1) ≤ i ≤ n

where r is the change-point and εi, 1 ≤ i ≤ n is a sequence
of i.i.d. random variables having the common distribution
N(0, σ 2). For testing the existence of the change-point, the
likelihood ration test statistic is

Tmax,n = max
1≤j≤n−1

√
j(n− j)

n

∣
∣
∣Xj − X

′
j

∣
∣
∣ /̃Sj (19.15)

where Xj and X
′
j are sample means of first j and the remaining

(n− j) observations, and S̃2j = ∑j
i=1(Xi−Xj)2+∑n−j

i=j+1(Xi−
X

′
j)
2. The change-point-based chart gives an “out-of-control”

signal of mean shift when

Tmax,n > ρn (19.16)

where ρn > 0 is a control limit. If we have an “out-
of-control” signal, then the position of change-point r is
estimated by the maximizer in (19.15). Hawkins et al. [4]
provided formulas to calculate the values of ρn for commonly
used prespecified values of ARL0.

Just like other control charts, change-point-based charts
were also constructed to accommodate other situations such
as if the “in-control” process distribution is not normal, but
other known parametric distribution. Change-point-based
charts were also developed to monitor process variance as
well.

Although the change-point-based control charts have their
advantages over Shewhart, CUSUM, and EWMA charts,
their computation is still relatively complex. This is because
the estimator of the position of change-point has to be re-
calculated each time a new observation is obtained which
involve a search in a sequence of n time-points. A systematic
comparison between the performances of self-starting and
adaptive traditional (CUSUM and EWMA) control charts
and the change-point-based control charts is currently lack-
ing in the literature.

In practice, many variables do not follow normal distribu-
tion. For example, many economic indices, rainfall distribu-
tion, lifetime distribution of many products, etc. are usually
skewed to the right. In most instances it is difficult to find
an appropriate parametric distribution for their modeling.
Researchers use nonparametric methods to describe their
distributions. When the normality assumption is not reason-
able, several researchers have pointed out that the traditional
control charts would be unreliable for process monitoring
([6,7,16], andmany others). In such cases, nonparametric sta-
tistical methods based on the ranking or ordering information
of the observations can be considered for making inferences
about the underlying process distribution. Another approach
is based on data categorization. Clearly, both approaches

have the limitation of losing useful information during rank-
ing and categorization. However, the methods based on data
categorization seem to be more efficient in process mon-
itoring as use some information about observation magni-
tudes. Nonparametric versions of conventional charts such as
Shewhart, CUSUM, EWMA, and change-point-based have
been developed in the literature. Most nonparametric control
charts in the literature are for Phase II SPC. However, there
is only a limited discussion on Phase I SPC when the process
distribution does not follow any common parametric form
[68,69].

Many researchers have developed control charts in the
literature to jointly monitor process mean and variance as
well. We skip such details in this chapter. We also omit
descriptions of multivariate control charts as well. Interested
readers should go through [30].

19.3 The Proposed SPC Chart

In this section, we describe our proposed Phase II chart for
detecting persistent distributional change in univariate con-
tinuous processes. We assume that “in-control” probability
distribution of the process is unknown, “in-control” Phase
I data are unavailable, and the observations we collect are
independent of each other. Let Y1, Y2, . . . , Yt, . . . be a se-
quence of independent observations during Phase II process
monitoring. We start performing statistical monitoring right
after time-point S0 ≥ 4, because we need to need have at
least a few observations so that statistical tests have enough
power. This is a common practice as discussed in [4,27], etc.
At each time t ≥ S0, we consider the following change-
point framework. Assuming τ , 2 ≤ τ ≤ t − 2 to be a
possible point of distributional change, we consider two sam-
ples {Y1, Y2, . . . , Yτ } and {Yτ+1, Yτ+2, . . . , Yt}, and perform
Cramer-von Mises test to check if they are coming from the
same unknown continuous cumulative distribution function
(cdf). For statistically testing whether two samples are from
the same continuous distribution, two tests are commonly
used: Kolmogorov-Smirnov test and Cramer-von Mises test.
Kolmogorov-Smirnov test does not work well if there are
ties in the samples. Also, Cramer-von Mises test usually
have more power than Kolmogorov-Smirnov test in many
situations. Therefore, we use Cramer-von Mises test ahead
of Kolmogorov-Smirnov test. The two-sample Cramer-von
Mises test statistic is given by

Cτ (t) = τ(t − τ)

t2

(
τ∑

i=1

(F∗(Yi) − G∗(Yi))2

+
t∑

j=τ+1

(F∗(Yj) − G∗(Yj))2
⎞

⎠ ,

(19.17)
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where F∗ and G∗ are the empirical distributions associated
with the samples {Y1, Y2, . . . , Yτ } and {Yτ+1, Yτ+2, . . . , Yt}.
Large values of Cτ means {Y1, Y2, . . . , Yτ } and {Yτ+1, Yτ+2,
. . . , Yt} are possibly coming from different cdfs. Suppose
P(CvM)

τ (t) is the p-value of the two-sample Cramer-von Mises
test. The details of computing P(CvM)

τ (t) are provided in
Sect. 19.3.5 along with other computational technicalities of
the proposed chart. A natural approach in this framework is
to (i) calculate the p-values of two-sample Cramer-vonMises
test for all possible values of τ , i.e., τ = 2, 3, . . . , t − 2, (ii)
determine τ ∗(t) = arg minτ∈{2,3,...,(t−2)} P(CvM)

τ (t), and (iii)
use P(CvM)

τ ∗ (t) as the charting statistic.
However, there are two major drawbacks of this approach.

The first drawback is that the determination of τ ∗(t) can
be computationally expensive because we have to compute
P(CvM)

τ (t) for all possible values of τ , i.e., 2, 3, . . . , (t − 2).
Moreover, we need to execute similar procedures for all
values of t ≥ S0 until we get a signal. We run into this issue
in the change-point framework wherever we need to compute
the relevant statistic for each value of the possible change-
point. To reduce computation, we consider the following two
techniques and both can be applied to the proposed SPC
chart. The first technique is to estimate τ ∗(t) efficiently by
the method proposed in Sect. 19.2.1 which can be applied to
other change-point problems of similar nature. The second
technique is the pruning of data from distant past based on p-
values as proposed byMukherjee [28]. The second drawback
is the weakness of the power of Cramer-von Mises test to
detect a change in standard deviation or scale. The proposed
chart addresses this issue by integrating Cramer-von Mises
test with Ansari-Bradley test which is a nonparametric test to
detect scale difference. We describe these approaches below.

19.3.1 A Computationally Efficient Approach
to Estimate τ∗(t)

We note that the values of P(CvM)
τ (t) and P(CvM)

τ ′ (t) should not
be too different as long as τ and τ ′ are close. In other words,
for each t, the values of P(CvM)

τ (t) for different τ are strongly
autocorrelated. Therefore, we can make the procedure faster
by first calculatingP(CvM)

τ (t) for τ -values that aremultiples of
	√t
 instead of all possible values of τ . For a demonstration
purpose, consider the case when t = 100. Calculate P(CvM)

τ (t)
for τ = 10, 20, . . . , 90 instead of τ = 2, 3, 4, . . . , 98. Then,
select the value of τ for which P(CvM)

τ (t) is minimum, and
calculateP(CvM)

τ (t) for τ -values in the two adjoining intervals.
In other words, if τ = 30 gives the smallest P(CvM)

τ (t)-value
among τ = 10, 20, 30, . . . , 90, compute P(CvM)

τ (t) for τ =
21, 22, . . . , 29, 30, 31, . . . 39 and select the τ -value for which
P(CvM)

τ (t) is the smallest. The detailed procedure to estimate
τ ∗(t) is described below.

For each t, instead of calculating P(CvM)
τ (t) for possible

values of τ , i.e., 2, 3, . . . , (t − 2), calculate the statistic for
τ = i.	√t
, where possible values of i are 1, 2, . . . , I(t),
where I(t) is the largest integer for which I(t).	√t
 ≤
(t − 2). Here, 	√t
 is the largest integer smaller than or
equal to t. Since we start monitoring when the time-point
t ≥ S0 ≥ 4, we always have at least one positive integer
i for which we can compute P(CvM)

τ (t). For example, when
t = S0 = 4, we have to compute P(CvM)

τ (t) for only
one value of τ , i.e., when τ = 2. Next, we find τ̃ =
arg mini∈{1,2,...,I(t)} P(CvM)

i.	√t
 . Since the τ ∗(t) should be close to

τ̃ , we calculate P(CvM)
τ (t) for all integer values of τ within[

max {(τ̃ −	√t
+ 1), 2},min {(τ̃ + 	√t
− 1), (t−2)}] and
pick the integer within that interval for which P(CvM)

τ (t) is
minimum. This is our estimated τ ∗(t) and we call it τ̂ ∗(t).
The method is summarized as follows:

(i) Calculate P(CvM)
τ (t) for τ = i.	√t
, where possible

values of i are 1, 2, . . . , I(t), where I(t) is the largest
integer for which I(t).	√t
 ≤ (t − 2).

(ii) Find τ̃ = arg mini∈{1,2,...,I(t)} P(CvM)

i.	√t
 .
(iii) Calculate P(CvM)

τ (t) for all integer values of τ within the
interval:

[
max {(τ̃ − 	√t
 + 1), 2},min {(τ̃ + 	√t
 − 1), (t − 2)}] .

(iv) Estimate τ ∗(t) by the integer within the interval in (iii)
for which P(CvM)

τ (t) is minimum.

19.3.2 Integration of Ansari-Bradley Test with
Cramer-vonMises Test

It is well documented in the literature (e.g., [27]) that Cramer-
von Mises test does not have high power to detect changes
in scale parameters. However, it has high power to detect
changes in location parameters. Because of this weakness,
we integrate Cramer-von Mises test with Ansari-Bradley test
[70] in the proposed control chart. Ansari-Bradley test is a
nonparametric test based on rank sum to detect differences
in scale parameters. The integration procedure is as follows.
For each t, once τ ∗(t) is estimated by the procedure in
Sect. 19.2.1:

(i) Record the p-value of two-sample Cramer-von
Mises test for checking if {Y1, Y2, . . . , Yτ̂ ∗ } and
{Yτ̂ ∗+1, Yτ̂ ∗+2, . . . , Yt} are realizations from the same
continuous cdf. Obviously, it is P(CvM)

τ̂ ∗(t) (t).
(ii) Perform Ansari-Bradley two-sample test for checking

if the scale parameters of {Y1, Y2, . . . , Yτ̂ ∗ } and
{Yτ̂ ∗+1, Yτ̂ ∗+2, . . . , Yt} are same. Call the p-value
P(AB)

τ̂ ∗(t) (t).
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(iii) Calculate p(E)(t) = min{P(CvM)

τ̂ ∗(t) (t), P(AB)

τ̂ ∗(t) (t)}, and use
this as charting statistic.

When we integrate two different tests in a change-point-
based chart, it is natural to perform change-point analysis
for both tests, because the estimated change-points can be
different for different tests. However, to avoid extra compu-
tation, we do not consider this approach. Numerical studies
show that the proposed chart based on the procedures as
described performs well in detecting changes in scale param-
eters. When there is a small change in scale parameters and
the p-value of Cramer-von Mises test is not small enough to
give a signal, it is still small and hence the change-points
based on both tests should be close. The proposed chart
just detects such change by integrating a more powerful test
appropriately.

19.3.3 Data Pruning Based on P-Values

In case the proposed chart does not detect any distributional
change for a long time, the sequence of “in-control” ob-
servations will be long, and hence calculation of τ̂ ∗(t) as
described in Sect. 19.2.1 can be time-consuming as well. If
the influx of observations is rapid, then this chart in its present
form cannot be used to monitor such processes. To solve this
problem, consider datapruning from distant past. If p(E)(t),
calculated by the procedure described in Sect. 19.2.2 is large,
it is very unlikely that a distributional change has taken place.
Therefore, we prune a few observations from distant past
and focus on more recent observations. In this way, we make
sure that the sequence of “in-control” observations does not
become too long. We provide the description of the method
below.

When t̃ ≥ T0, where t̃ is the current length of the
sequence of observations, and T0 is a threshold parameter of
the SPC chart, we consider the possibility of data pruning.
If p(E)(t) ≥ P0, we prune the oldest C(t̃, p(E)(t), P0) =⌊
t̃. min

(
0.2,

(
p(E)(t)−P0

1−P0

))⌋
number of observations. Here,

wemake sure not to prune toomuch in one step, by specifying
that we cannot prune more than 20% of the current length of
the sequence at one step. Here, we set the maximum amount
of pruning at one step to be 20% based on the performance of
the chart in our simulation experiments in terms of how fast it
can compute and how early it can give a signal when a process
goes “out-of-control.” While one can introduce a parameter
for the maximum percentage we can prune at one step and
select its value based on a reasonable criterion, we set it
equal to 20% for simplicity. Once we prune, we can estimate
τ ∗(t) faster in the next step, i.e., after the arrival of next
observation. The summary of data pruning is as follows:

(i) When p(E)(t) < P0, give a signal for distributional
change and stop process monitoring; otherwise, go to
Step (ii).

(ii) If t̃ ≥ T0, prune the oldest C(t̃, p(E)(t), P0) =⌊
t̃. min

(
0.2,

(
p(E)(t)−P0

1−P0

))⌋
number of observations,

and collect the next observation. Otherwise, go to Step
(iii).

(iii) Do not prune and collect the next observation.

19.3.4 The Algorithm of the Proposed Control
Chart

The summary of the procedures to run the proposed control
chart is as follows:

1. When t̃ < S0, collect the next observation. Otherwise, go
to Step 2.

2. Calculate τ̂ ∗(t), an estimate of τ ∗(t) by the method de-
scribed in Sect. 19.2.1. Go to Step 3.

3. Calculate P(CvM)

τ̂ ∗(t) (t), P(AB)

τ̂ ∗(t) (t), and p
(E)(t) by the method

described in Sect. 19.2.2. If p(E)(t) < P0, give a signal
for distributional change and stop process monitoring;
otherwise, go to Step 4.

4. Perform the data pruning procedure as described in
Sect. 19.2.3. Go to Step 1.

19.3.5 Implementation

Calculation of p-values for two-sample Cramer-von Mises
tests is computationally expensive and time-consuming
especially when the sample sizes are large [71]. However,
[72] provide the asymptotic distribution of two-sample
Cramer-von Mises criterion. We also note that the
convergence rate is rapid. Therefore, in our implementation,
we use asymptotic p-values rather than the exact ones.
Using the software R (https://www.r-project.org/) and the
R-package CvM2SL2Test developed by Xiao [73], we
extend the table provided by Anderson and Darling [72]
to calculate p-values of two-sample Cramer-von Mises
tests when they are smaller than 0.01. We use the same R-
package CvM2SL2Test to calculate the two-sample Cramer-
von Mises test statistics given as in (1) and then calculate
their asymptotic p-values. For calculating (1), the R-package
uses a C++ program developed by Xiao et al. [74]. We use
R-function ansari.test() to perform Ansari-Bradley tests. It
should be noted that approximate p-values are calculated
even for small samples in presence of ties. The proposed
method is designed to monitor univariate continuous

https://www.r-project.org/


372 P. S. Mukherjee

processes and hence cannot handle even a moderate number
of ties in the observation sequence. However, this chart
can still perform well in presence of a small number of
ties.

19.4 Numerical Studies

We perform several numerical studies to evaluate the per-
formance of the proposed method in comparison with a
number of state-of-the-art change-point-based control charts.
Our main goal is to find a chart that shows overall better
performance to detect arbitrary distributional changes. We
also study how the performances are affected by the number
of “in-control” observations before the distributional change.
Like most research articles in the literature, we also evaluate
the performances of the control charts by the average number
of observations, called “run length” after the first observation
from the changed distribution is obtained. We call it ARL1.
The smaller the value of ARL1, the better the performance.
Of course, we set the control limits of all control charts such
that the average number of “in-control” observations required
to give a false signal when no distributional change takes
place is a prefixed large number. We call it ARL0. In all our
numerical simulations, we set ARL0 = 500 unless mentioned
otherwise.

We compare the proposed method with four other change-
point-based methods. The first method is proposed by
Hawkins and Deng [13]. It is based on Mann-Whitney test
and it aims to detect location shift. We call this method MW.
The next competing control chart, proposed by Ross et al.
[33], is based on Mood test [75]. This chart aims to detect
scale change in the process distribution. We call it Mood.
The third competing chart, also proposed by Ross et al. [33],
is based on Lepage test [76]. It aims to detect changes in both
location and scale of the process distribution, and we call it
Lepage. Our fourth competing chart, proposed by Ross and
Adams [27], aims to detect arbitrary distributional change
using Cramer-von Mises test. We call this chart CvM.

Initially, we consider three “in-control” process
distributions: standard normal, N(0, 1); standardized t-
distribution with 2.5 degrees of freedom, ST(2.5); and
standardized log-normal distribution with parameters 1.0
and 0.5, SLN(1.0, 0.5). Note that the mean and standard
deviation of log-normal distribution with parameters 1.0
and 0.5 are 3.08 and 1.64, respectively. However, we
approximate those by 3 and 1.6 while standardizing. We
first consider shifts in location only, scale only, and both
location and scale simultaneously. Finally, we consider
arbitrary changes of various distributions. To compare
the performances of various methods, we consider two
cases: when the distribution change occurs early, right after

time-point τ = 50, and when the change occurs late, right
after time-point τ = 300. It should be noted that if a false
signal occurs before the actual distributional change, we
disregard that sequence in our simulation, as it is a reasonable
practice.

We use the R-package cpm to run the competing charts.
For the proposed method, we need to select S0 and T0. For
all methods, we select the startup time to be 20, and for the
proposed method, we select S0 = 20 and T0 = ARL0 = 500.
For comparing the performances of the methods when the
distributional change is arbitrary, we run four versions of
the proposed chart called P250, P500, P1000, and P∞ when
T0 = 250, 500, 1000, and ∞, respectively. From Table 19.6,
we see that T0 = 500 is a reasonable choice considering
the fact that larger values of T0 requires more time for
computation. It should be noted that the proposed chart that
is designed to detect an arbitrary distributional change may
not outperform the charts designed to detect a specific type of
distributional changes when the actual distributional change
is of that particular type. For example, MW should perform
better than the proposed chart when the distributional change
involves location change only. However, our goal is to find a
chart that performs well to detect all types of distributional
changes so that it can be used in various applications where
the natures of changes are unknown.

19.4.1 Location Changes

First, we focus on changes in location only. We consider
four different amounts of shift, δL = 0.25, 0.5, 1.0, and
2.0. For each of three distributions N(0, 1), ST(2.5), and
SLN(1.0, 0.5), we generate 50, 000 sequences of observa-
tions where the post-change observations right after time-
point τ are calculated by adding δL. From Table 19.1, we
observe that

• MW and CvM are slightly better than the proposed
method when δL is small or moderate. When δL is large,
all methods except Mood perform well. The reason is
that MW is designed to detect location changes only;
therefore, it has better power when detecting location
changes compared to the methods designed to detect
arbitrary distributional changes. Mood is designed to
detect scale changes; therefore, it cannot perform well in
this case.

• Detections of location changes are faster when the “in-
control” distribution is ST(2.5) or SLN(1.0, 0.5) com-
pared to the N(0, 1) case.

• Changes occurring right after time-point τ = 300 are
easier to detect compared to the changes occurring right
after τ = 50.
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Table 19.1 Mean delay in
detection of various location
shifts δL occurring right after
time τ . “In-control” distributions
considered are N(0, 1), ST(2.5),
and SLN(1.0, 0.5). The results
are based on 50,000 random
simulations when ARL0 = 500

τ = 50 τ = 300

δL = δL =
N(δL, 1) 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

MW 377.1 134.3 13.8 4.9 150.8 35.1 10.2 3.9

Mood 502.6 506.3 310.5 32.9 479.3 399.0 71.2 4.3

Lepage 434.4 225.6 20.0 3.7 228.6 49.5 11.5 3.1

CvM 387.7 153.9 14.8 4.3 168.3 37.8 10.7 3.9

Proposed 400.0 169.6 16.0 4.8 190.5 41.5 12.3 5.3

ST(2.5) + δL

MW 199.8 21.4 6.0 3.5 46.8 13.3 5.2 3.1

Mood 492.1 346.5 72.1 11.5 446.0 180.0 7.9 2.5

Lepage 299.2 38.3 6.4 2.4 74.9 16.9 4.5 2.1

CvM 195.5 20.6 5.7 3.2 46.3 13.1 4.9 3.0

Proposed 212.1 22.3 6.2 3.6 50.3 14.6 6.4 4.2

SLN(1.0, 0.5) + δL

MW 368.4 96.0 10.9 4.3 113.8 26.4 8.4 3.8

Mood 527.3 272.4 71.5 45.9 406.2 171.3 139.3 5.6

Lepage 411.3 93.9 15.9 4.4 143.3 37.6 11.9 3.3

CvM 378.1 103.3 10.7 4.0 122.3 27.0 8.3 3.6

Proposed 356.9 93.0 11.2 4.4 120.8 28.2 9.6 5.0

Table 19.2 Mean delay in
detection of various scale
changes δS occurring right after
time τ . “In-control” distributions
considered are N(0, 1), ST(2.5),
and SLN(1.0, 0.5). The results
are based on 50,000 random
simulations when ARL0 = 500

τ = 50 τ = 300

δS = δS =
N(0, δ2S) 1.50 2.00 0.50 0.25 1.50 2.00 0.50 0.25

MW 320.2 226.4 753.0 843.5 154.0 73.7 1470.1 1929.3

Mood 94.6 17.1 37.2 11.2 26.9 10.6 21.3 10.1

Lepage 144.6 25.8 63.3 15.4 34.1 13.2 31.0 14.8

CvM 320.5 196.6 563.9 69.4 131.6 47.2 102.8 30.4

Proposed 195.2 37.8 84.6 13.2 59.1 24.4 31.9 13.8

ST(2.5).δS
MW 359.4 273.6 704.5 816.5 205.1 107.8 1272.2 1798.7

Mood 205.0 49.4 79.8 14.0 49.2 17.3 31.0 12.3

Lepage 246.8 85.3 141.3 19.7 64.0 21.3 45.6 17.9

CvM 348.9 252.5 613.3 140.6 182.4 68.6 161.4 38.7

Proposed 275.4 80.1 144.9 17.2 89.4 33.0 42.5 16.1

SLN(1.0, 0.5).δS
MW 274.5 167.1 671.4 660.7 102.7 47.1 721.6 485.9

Mood 66.2 13.8 28.8 12.0 20.4 8.8 20.1 11.3

Lepage 95.9 17.3 42.6 15.3 25.0 10.7 27.3 15.3

CvM 268.0 123.5 421.5 47.3 83.9 33.8 65.4 24.2

Proposed 142.1 27.3 55.7 12.6 45.1 20.3 26.7 13.5

19.4.2 Scale Changes

Now, we focus on changes in scale only. We consider
four scale changes, namely, δS = 1.50, 0.50, 2.00, and 0.25.
For each of three distributions, N(0, 1), ST(2.5), and
SLN(1.0, 0.5), we generate 50, 000 sequences of observa-
tions where the post-change observations are calculated by
multiplying δS. From Table 19.2, we observe that

• Mood and Lepage are slightly better than the proposed
method in some cases. The reason is thatMood is designed

to detect scale changes only and Lepage is designed to
detect both location and scale change. Therefore, they
have better powers when detecting scale changes com-
pared to the methods designed to detect arbitrary dis-
tributional changes. MW is designed to detect location
changes; therefore, it cannot performwell in this case. The
proposed method performs much better than CvM. The
reason is the incorporation of Ansari-Bradley test with
Cramer-von Mises test.

• MW performs fairly well when δS > 1.00 but performs
very poorly when δS < 1.00. One explanation of this is
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when δS > 1.00, extremely large or small numbers are
more likely, and MW interprets those as location changes.
This phenomenon is commented in [27] and in [24].

• Detections of scale changes are faster when the “in-
control” distribution is ST(2.5) and SLN(1.0, 0.5)
compared to the N(0, 1) case.

• In this case also, changes occurring right after time-point
τ = 300 are easier to detect compared to the changes
occurring right after τ = 50. MW, however, cannot detect
a decrease in scale at all.

19.4.3 Location-Scale Changes

Now, we focus on changes in location and scale simul-
taneously. We consider 8 changes in location and scale
simultaneously, namely, (δL, δS) = (0.50, 1.50), (0.50, 0.50),
(0.50, 2.00), (0.50, 0.25), (1.00, 1.50), (1.00, 0.50), (1.00,
2.00), and (1.00, 0.25). For each of the three distribu-
tions N(0, 1), ST(2.5), and SLN(1.0, 0.5), we generate
50, 000 sequences of observations where the post-change
observations are calculated by multiplying δS and then
adding δL. From Tables 19.3, 19.4, and 19.5, we observe
that

• Lepage performs the best, as it should because it is de-
signed to detect changes in location and scale simulta-
neously. Mood works well in some cases. The proposed
method works well, better than CvM in many cases.

• In these case also, detections of changes in location and
scale simultaneously are faster when the “in-control”
distribution is ST(2.5) and SLN(1.0, 0.5) compared to
N(0, 1) case.

• Changes occurring right after time-point τ = 300 are
easier to detect compared to the changes occurring right
after τ = 50. MW, however, cannot detect a decrease in
scale at all.

19.4.4 General Distributional Changes

Finally, we consider general changes of various “in-control”
distributions. The corresponding changes in the pair of
mean and standard deviations are large in some cases (e.g.,
Weibull(1) to Weibull(3) and vice versa, Gamma(2,2) to
Gamma(3,2) and vice versa) and small or zero in some other
cases (e.g., N(0, 1) to ST(2.5) and vice versa, N(0, 1) to
SLN(1.0, 0.5) and vice versa). From Table 19.6, we observe
that

Table 19.3 Mean delay in
detection of various amounts of
changes in location and scale
simultaneously, i.e., (δL, δS),
occurring right after time τ .
“In-control” distribution
considered here is N(0, 1). The
results are based on 50,000
random simulations when
ARL0 = 500

N(δL, δ2S) (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 50 and (δL, δS) =
MW 137.1 125.4 127.2 129.0 20.2 9.4 28.3 8.3

Mood 116.6 45.6 18.2 20.4 168.0 62.1 23.3 44.5

Lepage 90.4 31.2 20.7 16.8 19.7 14.0 12.5 12.0

CvM 131.0 66.9 94.6 19.9 20.9 8.7 24.0 6.6

Proposed 116.4 33.1 33.5 14.0 21.7 9.2 19.0 7.1

τ = 300 and (δL, δS) =
N(δL, δ2S) (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

MW 38.7 26.9 37.1 23.7 13.6 7.5 16.4 6.6

Mood 22.5 52.0 9.9 26.9 14.0 148.4 8.3 136.8

Lepage 21.1 27.7 11.3 18.9 10.2 10.7 8.3 9.9

CvM 37.9 20.7 30.4 13.1 13.9 7.0 15.6 5.6

Proposed 33.9 20.8 20.8 13.8 15.1 8.5 14.6 7.0

Table 19.4 Mean delay in
detection of various amounts of
changes in location and scale
simultaneously, i.e., (δL, δS),
occurring right after time τ .
“In-control” distribution
considered here is ST(2.5). The
results are based on 50,000
random simulations when
ARL0 = 500

ST(2.5).δS + δL (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 50 and (δL, δS) =
MW 33.9 13.4 47.4 10.8 7.7 4.7 10.0 4.3

Mood 241.9 66.4 70.1 41.8 110.2 52.5 87.0 46.3

Lepage 57.1 18.5 34.1 14.2 7.4 5.1 7.9 4.7

CvM 31.4 11.0 36.7 7.9 7.4 4.3 9.3 3.8

Proposed 33.3 11.6 30.6 8.3 7.9 4.7 9.3 4.2

τ = 300 and (δL, δS) =
MW 17.3 9.4 20.5 7.9 6.4 4.1 7.9 3.8

Mood 25.0 166.7 12.5 120.7 7.6 6.9 6.8 6.0

Lepage 14.7 14.6 11.6 12.7 5.1 3.7 5.4 3.4

CvM 16.8 8.5 18.7 6.5 6.2 3.8 7.5 3.4

Proposed 17.8 9.9 17.3 7.9 7.7 5.3 8.7 4.8
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Table 19.5 Mean delay in
detection of various amounts of
changes in location and scale
simultaneously, i.e., (δL, δS),
occurring right after time τ .
“In-control” distribution
considered here is SLN(1.0, 0.5).
The results are based on 50,000
random simulations when
ARL0 = 500

(SLN(1, .5)).δS + δL (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 50 and (δL, δS) =
MW 201.5 40.7 216.0 33.9 19.8 7.9 44.2 7.4

Mood 273.6 32.2 28.5 24.9 384.2 47.4 140.2 42.5

Lepage 217.9 19.1 45.0 15.2 33.3 11.7 48.1 10.7

CvM 206.1 17.9 185.3 11.1 21.6 6.6 42.2 5.6

Proposed 224.4 14.8 67.7 10.5 23.8 7.0 44.7 6.1

τ = 300 and (δL, δS) =
MW 53.3 15.1 65.2 13.0 12.9 6.4 20.2 5.9

Mood 69.0 55.8 13.3 48.3 154.7 137.8 18.9 133.5

Lepage 44.7 19.8 16.1 17.5 15.7 9.3 14.6 8.6

CvM 54.4 11.6 47.8 8.6 13.6 5.5 20.1 4.9

Proposed 55.7 12.6 28.4 9.8 15.3 7.0 20.6 6.3

Table 19.6 Mean delay in
detection of various general
changes in distribution. The
results are based on 50,000
random simulations when
ARL0 = 500

MW Mood Lepage CvM P250 P500 P1000 P∞
τ = 50

N(0, 1) → ST(2.5) 685.7 109.4 192.2 617.5 173.1 178.1 173.4 173.1

ST(2.5) → N(0, 1) 299.6 101.5 149.7 272.3 125.8 109.9 100.8 96.1

N(0, 1) → SLN(1, 0.5) 555.5 539.1 544.9 516.2 455.8 478.0 487.8 499.1

SLN(1, 0.5) → N(0, 1) 430.7 376.9 366.8 416.7 423.0 418.8 412.5 412.5

Gamma(2,2) → Gamma(3,2) 46.8 466.0 86.3 55.0 63.0 60.2 60.5 62.2

Gamma(3,2) → Gamma(2,2) 39.9 464.5 76.8 46.4 56.6 52.9 51.4 52.2

Weibull(1) → Weibull(3) 657.5 18.3 23.2 177.7 25.5 24.9 24.0 23.6

Weibull(3) → Weibull(1) 117.8 8.0 9.7 52.7 15.7 15.2 14.5 14.2

Uniform(0,1) → Beta(5,5) 794.2 19.5 28.5 385.3 34.5 34.4 32.5 32.4

Beta(5,5) → Uniform(0,1) 178.5 9.7 12.5 119.6 20.1 19.4 18.5 17.9

τ = 300

N(0, 1) → ST(2.5) 1168.9 37.4 55.9 190.5 51.3 47.2 46.2 45.7

ST(2.5) → N(0, 1) 129.9 23.0 28.7 79.4 40.6 37.4 36.3 35.9

N(0, 1) → SLN(1, 0.5) 643.8 462.1 458.5 449.7 356.8 346.7 373.0 419.4

SLN(1, 0.5) → N(0, 1) 316.1 168.9 178.0 265.0 322.5 277.9 269.6 288.0

Gamma(2,2) → Gamma(3,2) 19.7 316.8 27.4 21.0 23.8 22.9 22.4 22.2

Gamma(3,2) → Gamma(2,2) 18.7 155.3 21.7 20.2 22.9 22.2 21.8 21.5

Weibull(1) → Weibull(3) 512.2 15.7 20.7 37.9 19.7 20.3 19.8 19.6

Weibull(3) → Weibull(1) 31.1 5.9 7.1 21.8 13.4 14.2 14.0 13.8

Uniform(0,1) → Beta(5,5) 1670.0 15.2 22.1 60.1 21.3 22.1 21.7 21.4

Beta(5,5) → Uniform(0,1) 48.9 7.0 8.7 30.2 16.5 17.3 16.8 16.6

• No one method is uniformly best. P500 works well in all
cases. Note that P500 is the proposed method when T0 =
500 as defined in the fourth paragraph of Sect. 19.3.

• In cases where another method is the best, P500 is not far
behind.

• The performance of P500 is not far from the best
choice of T0 for the proposed method. The larger the
value of T0, the more the computing time. Therefore,
P500 is a good balance between computing time and
performance. Hence, we suggest using T0 = ARL0 in most
applications.

• In cases where location change is large, MW works well,
and when scale change is large, Mood works well, as
expected.

• Distributional change fromN(0, 1) to SLN(1.0, 0.5)which
does not alter the mean and standard deviation is detected
by the proposed method earlier than other charts.

• When we are not sure about the nature of possible distri-
butional change, the proposed method is a good choice.

• Changes occurring right after time-point τ = 300 are
easier to detect compared to the changes occurring right
after τ = 50. MW cannot detect an arbitrary distributional
change well if the median does not change by much.
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Table 19.7 Mean delay in
detection of various location
shifts δL occurring right after
time τ . “In-control” distributions
considered are N(0, 1), ST(2.5),
and SLN(1.0, 0.5). The results
are based on 10,000 random
simulations when ARL0 = 200

τ = 30 τ = 150

δL = δL =
N(δL, 1) 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

MW 165.4 85.4 13.3 3.8 102.5 29.2 8.5 3.2

Mood 195.3 198.3 156.4 36.9 185.2 161.5 54.4 2.6

Lepage 150.6 100.4 18.9 3.1 112.7 39.0 9.2 2.3

CvM 166.4 95.1 15.2 3.7 106.6 32.5 8.9 3.1

Proposed 166.5 103.0 16.8 4.3 116.0 37.6 10.2 4.0

ST(2.5) + δL

MW 110.0 24.3 5.2 3.0 40.0 11.1 4.2 2.7

Mood 191.0 154.4 52.6 17.4 178.8 105.4 8.8 2.0

Lepage 118.5 35.7 6.1 1.9 57.5 14.2 3.8 1.5

CvM 110.5 22.8 5.0 2.6 40.2 10.9 4.0 2.3

Proposed 119.1 26.1 5.6 3.2 46.6 12.2 4.9 3.1

SLN(1.0, 0.5) + δL

MW 167.9 78.9 11.0 3.7 94.0 22.9 7.0 3.1

Mood 205.1 150.6 52.7 34.8 202.9 106.1 76.1 6.0

Lepage 153.0 69.9 13.6 4.1 101.8 30.1 9.8 2.7

CvM 165.8 82.5 10.6 3.4 95.0 23.5 7.0 2.9

Proposed 158.7 72.8 11.2 4.0 89.5 24.8 7.9 3.7

Table 19.8 Mean delay in
detection of various scale
changes δS occurring right after
time τ . “In-control” distributions
considered are N(0, 1), ST(2.5),
and SLN(1.0, 0.5). The results
are based on 10,000 random
simulations when ARL0 = 200

τ = 30 τ = 150

δS = δS =
N(0, δ2S) 1.50 2.00 0.50 0.25 1.50 2.00 0.50 0.25

MW 129.2 93.5 299.8 340.8 73.4 39.8 561.6 739.2

Mood 60.7 16.8 39.8 9.6 20.1 8.0 17.5 8.1

Lepage 61.8 20.4 61.8 13.1 22.7 9.2 25.8 11.9

CvM 128.0 87.7 253.5 97.2 68.2 31.5 106.2 26.9

Proposed 94.3 31.6 70.2 13.7 45.7 18.9 26.9 10.9

ST(2.5).δS
MW 145.2 111.4 284.3 332.1 92.2 54.1 481.6 685.7

Mood 103.4 41.3 68.7 12.4 37.6 13.8 25.3 9.9

Lepage 90.7 46.1 97.4 17.3 41.9 16.0 38.4 14.3

CvM 144.2 105.1 256.2 151.4 88.0 44.1 173.5 34.5

Proposed 119.5 55.5 95.9 18.3 68.0 26.0 35.3 13.2

SLN(1.0, 0.5).δS
MW 113.8 75.2 281.6 296.5 55.7 29.0 381.0 357.7

Mood 47.6 13.9 31.9 10.1 15.6 6.6 16.4 9.1

Lepage 46.3 13.9 43.8 12.8 16.9 7.4 22.2 12.2

CvM 110.3 65.5 217.7 69.3 51.9 22.7 64.0 21.0

Proposed 76.1 22.8 53.8 12.3 34.8 15.5 22.5 10.6

Numerical simulations when ARL0 = 200 are provided
in Tables 19.7, 19.8, 19.9, 19.10, 19.11, and 19.12. Similar
conclusions as provided above can be drawn from these
tables as well.

From these simulation studies, we see that the proposed
method works well in most applications. When we are
trying to detect a specific type of distributional change,
its performance is slightly worse than the chart that is
designed to detect that particular type of changes. However,
in most cases, the differences are not much. Therefore,

when the nature of distributional change is unknown, the
proposed chart can be used with anticipation of a good
performance.

19.5 Analysis of Various Real-World Data

Now, we focus on applications of the proposed chart on real-
world problems.We consider two datasets: a climate data and
a blood glucose monitoring data.
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Table 19.9 Mean delay in
detection of various changes
in location and scale simul-
taneously, i.e., (δL, δS) occurring
right after time τ . “In-control”
distribution considered here is
N(0, 1). The results are based on
10,000 random simulations when
ARL0 = 200

N(δL, δ2S) (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 30 and (δL, δS) =
MW 76.2 99.7 68.0 103.7 19.4 9.5 24.4 8.7

Mood 71.2 41.9 18.4 15.9 93.2 42.9 24.4 29.9

Lepage 45.7 29.2 17.2 13.3 17.8 12.0 11.0 9.8

CvM 75.8 71.1 59.2 26.4 20.2 8.4 22.2 6.2

Proposed 70.3 33.0 28.2 11.9 22.3 9.0 17.9 6.6

τ = 150 and (δL, δS) =
MW 29.3 24.7 25.0 22.2 10.9 6.2 12.6 5.5

Mood 17.5 37.6 7.5 20.0 11.4 82.8 6.5 76.1

Lepage 15.2 21.8 8.1 14.7 7.8 8.8 6.0 8.3

CvM 28.8 18.3 21.7 11.4 11.1 5.8 11.8 4.7

Proposed 27.0 17.6 16.3 11.3 12.2 6.9 11.4 5.5

Table 19.10 Mean delay in
detection of various changes in
location and scale simul-
taneously, i.e., (δL, δS) occurring
right after time τ . “In-control”
distribution considered here is
ST(2.5). The results are based on
10,000 random simulations when
ARL0 = 200

ST(2.5).δS + δL (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 30 and (δL, δS) =
MW 32.4 15.1 38.8 12.7 6.9 4.1 8.9 3.8

Mood 111.1 47.4 51.9 28.6 74.8 36.9 59.3 32.0

Lepage 42.1 15.4 28.2 11.3 7.1 4.9 7.9 4.4

CvM 30.4 11.8 32.8 7.5 6.5 3.7 8.2 3.3

Proposed 34.5 11.5 29.5 7.7 7.2 4.3 8.4 3.8

τ = 150 and (δL, δS) =
MW 14.0 7.9 15.8 6.7 5.4 3.4 6.4 3.1

Mood 24.2 91.7 10.6 68.9 6.9 10.6 5.8 10.1

Lepage 12.0 12.1 9.2 10.5 4.3 3.1 4.3 2.8

CvM 13.4 7.1 14.4 5.4 5.1 3.1 6.2 2.8

Proposed 14.4 8.2 13.7 6.3 6.0 3.9 6.8 3.5

Table 19.11 Mean delay in
detection of various changes in
location and scale simul-
taneously, i.e., (δL, δS) occurring
right after time τ . “In-control”
distribution considered here is
SLN(1.0, 0.5). The results are
based on 10,000 random
simulations when ARL0 = 200

SLN(1, 0.5).δS + δL (.5, 1.5) (.5, .5) (.5, 2) (.5, .25) (1, 1.5) (1, .5) (1, 2) (1, .25)

τ = 30 and (δL, δS) =
MW 101.6 49.1 96.5 43.4 20.7 8.0 38.1 7.3

Mood 119.9 24.2 26.0 18.1 176.4 31.9 76.3 27.8

Lepage 85.2 15.5 28.5 11.8 30.1 9.7 34.1 8.9

CvM 105.9 24.1 84.9 11.4 23.1 6.2 37.7 5.1

Proposed 110.3 13.6 47.4 9.0 27.6 6.5 40.9 5.6

τ = 150 and (δL, δS) =
MW 40.6 13.2 38.6 11.3 10.6 5.3 16.2 4.9

Mood 47.9 37.0 10.2 32.1 91.3 76.2 15.6 74.7

Lepage 31.8 15.6 11.0 13.6 12.8 7.8 11.2 7.2

CvM 42.5 9.9 32.5 7.3 11.3 4.6 16.2 4.0

Proposed 47.6 10.5 21.9 8.1 13.0 5.5 16.5 4.8

19.5.1 Climate Data onMinneapolis, USA

Monitoring for the changes of patterns of various clima-
tological measurements such as maximum and minimum
temperatures on a daily, monthly, and yearly basis, amounts
of rainfall, snow, measurements of snow depth, number
of rainy or snowy days is an emerging research area. In
the literature, various statistical methods are demonstrated
with the capacity of analyzing such data. Modern statistical
process control (SPC) charts also deserve a chance tomonitor
such climatological variables. In this context, we consider

mean daily maximum temperature in Fahrenheit in the
month of January in Minneapolis, USA. We collect the
data from http://www.dnr.state.mn.us/climate/twin_cities/
listings.html. The data are from 1873 to 2017 with no
missing value and are presented in Fig. 19.1. At first, before
applying the control charts, we check if our assumption of
independence of the observations is reasonable. Durbin-
Watson test (R function: dwtest, R package: lmtest) for
two-sided alternative gives a high p-value 0.8359 showing
lack of autocorrelation. Therefore, we can assume that
the observations are independent. Now, we apply the

http://www.dnr.state.mn.us/climate/twin_cities/listings.html
http://www.dnr.state.mn.us/climate/twin_cities/listings.html
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Table 19.12 Mean delay in
detection of various general
changes in distribution. The
results are based on 10,000
random simulations when
ARL0 = 200

MW Mood Lepage CvM P100 P200 P400 P∞
τ = 30

N(0, 1) → ST(2.5) 276.8 79.9 107.6 256.3 104.8 105.6 109.4 113.2

ST(2.5) → N(0, 1) 121.0 67.0 70.2 114.0 78.5 69.1 63.5 62.1

N(0, 1) → SLN(1, 0.5) 218.2 210.8 176.9 206.8 173.4 183.4 186.7 192.0

SLN(1, 0.5) → N(0, 1) 174.1 155.1 121.3 166.3 161.7 160.5 159.0 157.2

Gamma(2,2) → Gamma(3,2) 45.2 191.7 59.2 50.2 58.4 56.7 58.6 55.9

Gamma(3,2) → Gamma(2,2) 38.4 184.8 51.3 42.4 54.6 50.3 49.0 48.8

Weibull(1) → Weibull(3) 286.1 16.9 21.6 153.6 27.3 26.4 25.9 26.0

Weibull(3) → Weibull(1) 56.8 7.7 7.6 41.2 14.0 12.7 12.4 12.0

Uniform(0,1) → Beta(5,5) 322.6 19.7 29.3 219.5 38.8 37.7 39.4 41.4

Beta(5,5) → Uniform(0,1) 77.9 9.2 9.7 62.8 17.9 16.4 15.4 15.0

τ = 150

N(0, 1) → ST(2.5) 444.9 30.4 45.0 194.6 60.6 40.7 40.7 39.7

ST(2.5) → N(0, 1) 61.9 19.0 22.0 51.6 44.6 29.0 28.4 28.2

N(0, 1) → SLN(1, 0.5) 252.4 202.7 168.9 209.6 156.4 157.2 174.9 196.9

SLN(1, 0.5) → N(0, 1) 137.9 85.4 69.6 123.6 141.3 127.8 129.7 131.0

Gamma(2,2) → Gamma(3,2) 16.4 151.0 22.2 17.7 23.7 20.0 19.3 18.8

Gamma(3,2) → Gamma(2,2) 15.5 86.6 17.0 16.6 22.1 19.1 18.3 17.9

Weibull(1) → Weibull(3) 340.9 12.7 16.7 34.2 17.6 16.6 16.0 16.1

Weibull(3) → Weibull(1) 20.8 4.5 5.0 15.4 11.5 11.0 10.7 10.4

Uniform(0,1) → Beta(5,5) 640.5 12.4 18.0 56.2 21.6 18.5 18.2 18.0

Beta(5,5) → Uniform(0,1) 29.3 5.4 6.2 20.4 13.9 13.2 12.8 12.6
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Fig. 19.1 Mean daily maximum temperature in the month of January in Minneapolis, USA. Setting ARL0 = 500, the proposed chart detects a
distributional change in the year 1956 estimating the change-point to be just after 1947. Other charts do not detect any distributional change

proposed method along with other competing methods
when we set ARL0 = 500. For the proposed method, we set
T0 = ARL0 = 500 as per our suggestion mentioned before.
The proposed method detects a distributional change at 1956
while the estimated change-point is 1947. All other methods,
i.e., MW, Mood, Lepage, and CvM, do not detect any
distributional change.We also run all SPC charts when we set
ARL0 = 200. In this case also, the proposed method detects
a distributional change at 1956 while the estimated change-
point is 1947. Mood also detects distributional change but at

a later time at 1960 while the estimated change point is 1947.
MW, Lepage, and CvM still do not detect any distributional
change. Now, we study the “in-control” distribution and the
estimated “out-of-control” distribution. Table 19.13 shows
the first four sample moments of “in-control” observations
from 1873 to 1947 and “out-of-control” observations
from 1948 to 1956. From Table 19.13, we see that the
second moment changed a lot, but not the other three
moments. We carry out the calculations using R-package
moments.
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19.5.2 Blood GlucoseMonitoring Data

Monitoring blood glucose level on a daily basis is essen-
tial for advanced diabetic patients. It gives information on
whether the particular lifestyle change and the treatment pro-
cedure including the medicine with its administered dosage
are working well for the patient. Monitoring such mea-
surements is complicated because we are not just focusing
on the mean and the standard deviation only; we need to
monitor the stability of its probability distribution as well.
We collect a data from UCI Machine Learning Repository
[77]. This directory contains a dataset prepared for the use
of participants for the 1994 AAAI Spring Symposium on
Artificial Intelligence in Medicine. For our analysis, we pick
the data from the first patient. We choose to monitor pre-
breakfast blood glucose level on a daily basis. We prefer
this over blood glucose measurements at other times because
they depend too much on many variables like the type of
food, amount of food, etc. The data from the first patient
contains daily pre-breakfast observations from 21 April 1991
to 3 September 1991 with the number on 18 August 1991
missing. The data are presented in Fig. 19.2 ignoring the only
one missing value. As always, before applying the control
chart, we check if our assumption of independence of the
observations is reasonable. Durbin-Watson test for two-sided

Table 19.13 First four sample moments of the observations from 1873
to 1947 and 1948 to 1956

Mean St. deviation Skewness Kurtosis

1873–1947,
“in-control”

21.7067 7.0842 −0.1898 2.3666

1948–1956,
“out-of-control”

20.6778 2.0795 −0.1350 2.6056

alternative gives a high p-value 0.7727 showing lack of
autocorrelation. Therefore, our assumption of independence
is reasonable. Now,we apply the proposedmethod alongwith
other competing methods when we set ARL0 = 500. For the
proposed method, we set T0 = ARL0 = 500 like before.
The proposed method detects a distributional change on 11
June 1991 while the estimated change-point is on 5 June
1991. Other competing charts do not detect any distributional
change. Running the charts for ARL0 = 200 gives similar
results except that the proposed chart detects distributional
change one day earlier on 10 June 1991 while the estimated
change-point being the same as before. Table 19.14 shows
first four moments before and after the distributional change.
The standard deviation decreases a lot showing a more stable
fasting blood glucose numbers, and also the skewness ap-
pears to have decreased considerably. It is to be noted that
the phrases “in-control” and “out-of-control” we use are in
the sense of standard terminologies in SPC literature, not in
the sense of blood glucose control.

19.6 Concluding Remarks

This chapter first describes a few commonly used tradi-
tional statistical process control (SPC) charts such as She-
whart, CUSUM, EWMA, and change-point-based (CPD)
control charts and discusses a number of situations where
these charts should be appropriate modified for practical use.
Next, this chapter proposes a change-point based nonpara-
metric statistical process control chart for detecting arbi-
trary distributional changes when the process distribution is
univariate continuous. There are two specifically important
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Fig. 19.2 Daily pre-breakfast blood glucose measurements of a selected patient. Setting ARL0 = 500, the proposed chart detects a distributional
change at the 52nd day estimating the change-point to be the 46th day. Other charts do not detect any distributional change
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Table 19.14 First four sample moments of the observations from 21
April 1991 to 5–6 June 1991 to 11 June 1991

Mean St. deviation Skewness Kurtosis

21st April to 5th
June, “in-control”

166.9 80.8 0.3824 1.7221

6th June to 11th
June,
“out-of-control”

160.8 17.2 −0.0981 1.4267

contributions of the proposed chart. The first one is the
combination of the strengths of two statistical tests: Cramer-
vonMises test and Ansari-Bradley test. The second one is the
introduction of a numerically efficient technique to estimate
the possible change-point without sacrificing the accuracy by
much. Both these contributions are quite general in nature
and have broad applications well beyond the numerical ex-
amples and real-world data analyses shown in this chapter
including monitoring fast data streams. Another important
aspect of this control chart is that runtime distribution is not
geometric even when the process is “in-control.” The reason
is that the probability of getting a signal is a function of
current runtime. However, it appears that such charts can still
be used in many applications. However, further research is
required to fully understand the pros and cons of such charts.
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Abstract

This chapter presents reliability characteristics and opti-
mal redundancy allocation of k-out-of-n warm standby
systems consisting of identical components having ex-
ponential time to failure distributions. It is shown that
the state probabilities of the warm standby system can
be represented using the formulas that are applicable
for active redundancy system. Subsequently, it is shown
that all properties and computational procedures that are
applicable for active redundancy are also applicable for
the warm standby redundancy. The new results prove that
the system reliability can be computed using robust and
efficient computational algorithms with O(n-k + 1) time
complexity. Further, it is proved that the time-to-failure
distribution of k-out-of-n warm standby system is beta-
exponential. Using this property, closed-form expressions
for various reliability characteristics and statistical mea-
sures of system failure time are presented. It has shown
that the system reliability function is log-concave in n
and this property is used to find efficient algorithms for
determining optimal system configurations. Because ac-
tive redundancy is a special case of the warm standby
redundancy, indirectly this chapter also provides some
new results for the active redundancy case as well.

Keywords

System reliability · Warm standby system · Log-concave
property · k-out-of-n redundancy · Beta-exponential
distribution · Regularized incomplete beta function ·
Optimization

20.1 Introduction

Standby redundancy is one of the primary techniques used
to improve the system reliability to meet the requirements.
Warm standby is a generic form of redundancy and it has been
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used in a wide range of applications and systems including
power systems applications [1], space applications [2], and
telecommunications systems [3]. Both hot and cold standby
redundancies are special cases of warm standby redundancy
[4]. In a cold standby system, inactive components have
a zero failure rate, whereas in a hot standby system, both
active and redundant (inactive) components have the same
failure rates. Examples of a hot standby redundancy include
a computing system with multiple servers that operate si-
multaneously and mirror the data in real time. In this case,
both primary and redundant (secondary) servers have the
same failure rate. In a warm standby redundancy, the inac-
tive components have a failure rate that falls between cold
and hot, inclusive. When switch delays and failures are not
considered, the stochastic models for hot standby and active
redundancy structures are equivalent [5]. Hence, the active
redundancy structure can be considered as a special case of
the warm standby structure. Therefore, the reliability charac-
teristics presented in this chapter can also be applicable for
the k-out-of-n active redundancy case.

Due to the generic nature of thewarm standby redundancy,
it is difficult to analyze the systems with these configurations
as compared to the corresponding systems with active redun-
dancy as well as cold and hot standby redundancies. There-
fore, there are very few articles on reliability modeling for
standby redundancy [6–8], nonrepairable warm standby sys-
tems in particular. This is because warm standby redundancy
introduces complex, temporal, dynamic dependencies among
the component lifetimes, and, therefore, the independence
assumption of components in active redundancy is no longer
valid for these systems [9]. For example, Yearout et al. [10]
reviewed and categorized 156 papers specifically focusing
research in standby redundancy. However, only 4 out of 156
papers were on non-repairable standby systems and none of
them addresses the warm standby redundancy.

She and Pecht [4] derived a general closed-form relia-
bility expression for k-out-of-n warm standby systems with
s-identical components following exponential failure time
distributions. Gnedenko et al. [11] analyzed the 1-out-of-n
warm standby redundancy considering identical components
with arbitrary failure time distributions applying the con-
cept of equivalent age associated with cumulative exposure
model. Li et al. [12] discussed a warm standby system with
component lives following proportional hazard rate model.
Morrison and David [13] proposed an efficient method based
on counting process to analyze the system reliability of k-out-
of-n cold standby redundancy configurations with identical
components subject to arbitrary failure time distributions.
This method is also described in [14]. Integrating the con-
cepts used in [11, 13], Amari and Dill [9] developed an
efficient computational method based on counting processes
to evaluate system reliability of k-out-of-n warm standby
redundancy with components following arbitrary failure time

distributions. This method was further extended to analyzing
systems with components following specific failure time
distributions including the Erlang [15], gamma [16], and
Rayleigh [17] distributions. Eryilmaz [18] studied reliability
of a k-out-of-n system having a single warm standby redun-
dant component where the standby unit is used only after
consumption of all active redundant components. In other
words, the standby unit is kept into operation after the failure
of the k-out-of-n active system by replacing the last failed
unit, and then the system works until the failure of one of
the k remaining components. Therefore, it can be considered
as a nonstandard model that is applicable to a very specific
scenario.

Using the reliability evaluation algorithm presented in [9],
Amari and Dill [19] studied the constrained redundancy opti-
mization problem for a series system consisting ofmultiple k-
out-of-nwarm standby subsystems. Levitin et al. [20] studied
the 1-out-of-n:G cold standby systems subject to imperfect
even backups and investigated the effects of backup system
reliability in connection with other system parameters in-
cluding data volume, frequency and duration of backups, re-
placement time and failure probability, and number of system
elements. Wang et al. [21] presented a redundancy allocation
problem for maximizing system reliability considering cold
standby redundancy and degrading components.

Recently, the use of cold/warm standby systems has been
expanded to several application areas. Tannous et al. [22]
studied the reliability of warm standby systems subjected to
imperfect fault coverage in the context of wireless sensor
networks. For the identical component case, Amari et al.
[23] provided closed-form expressions for reliability of warm
standby systems subjected to imperfect coverage. Amari et al.
[24] studied warm standby systems in the context of phased
mission systems that are used in aerospace and defense
applications. Levitin [25] studied the consecutive sliding
window systemswith warm standby components considering
dynamic demands. When nonidentical cold/warm standby
spares are used, the reliability and energy consumption of
the system can depend on the sequence of standby units used
in the operation [26]. Boddu et al. [27] considered optimal
sequencing problem considering k-out-of-n:G cold standby
systems. Levitin et al. [28] studied the optimal configuration
of a series system consisting of 1-out-of-n warm standby
subsystems performing operation and rescue functions. Fur-
ther, Levitin et al. [29] studied heterogeneous warm standby
systems and analyzed the effects of failure propagation on
mission abort policy. They also [30] analyzed the dynamic
checkpointing policy in heterogeneous real-time standby sys-
tems subjected to a constraint on allowed task completion
time in performing the failure recovery. Jia et al. [31] stud-
ied the reliability modeling of standby systems considering
multistate components subject to constant state transition
rates.
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20
However, as mentioned earlier, reliability characteristics

of standby redundancy, in particular for the warm standby
configurations, are less explored. For example, most of the
research contributions on ageing properties are limited to
active redundancy systems. Due to the complex nature of
warm standby configurations, neither the closed-form ex-
pressions nor closure properties of mean residual life (MRL),
probability density function (pdf), and hazard rate function-
s/classes are studied for warm standby systems. In addition
to studying these properties, it is important to derive closed-
form expressions for pdf, hazard (failure) rate, reliability, and
MRL functions that can lead to robust and computationally
efficient evaluation of these fundamental reliability charac-
teristics for warm standby systems.

This chapter presents recent results on reliability charac-
teristics of k-out-of-n warm standby systems with s-identical
components following exponential lifetimes. This model was
initially studied in [4]. Later Amari et al. [23, 32] have
presented closed-form expressions and efficient computa-
tional methods for reliability characteristics of warm standby
systems. These results provide new insights into the system
behavior and aging properties that in turn lead to efficient
algorithms for finding optimal system configurations [33].
This chapter summarizes these results and then provide a set
of new formulas on various statistical properties of the system
failure time distribution.

20.2 Warm StandbyModel and Related
Works

Consider a k-out-of-n warm standby system model studied
in [4].

20.2.1 Model Description and Assumptions

1. The system consists of n identical components.
2. Initially all components are in good conditional.
3. There shall be a minimum of k operating components for

a successful operation.
4. The system redundancy configuration is k-out-of-n:G

warm standby.
5. As long as the system is working, only k components are

in operation and the remaining components are kept in
the warm standby (dormant) mode.

6. Each component has a constant operating-failure rate
(λo) and a constant dormant-failure rate (λd). Usually,
λd ≤ λo, and in many practical cases, λd is much smaller
than λo. However, the analysis provided in this chapter
is also applicable even when λd > λo.

7. There are no simultaneous failure of components.
8. Components are nonrepairable (no repair).

9. No sensing and switching delays (instantaneous).
10. Perfect switches (failure free). Note: Imperfect switches

are considered in Sect. 20.3.4 by relaxing this assump-
tion.

20.2.2 RelatedWorks

Considering failure time of each component follows the
exponential distribution with rate parameter λo in the oper-
ational state and rate parameter λd in the standby state, She
and Pecht [4] provided a closed-form expression for system
reliability at time t for the warm standby model described in
Sect. 20.2.1:

R(t) ≡ R(t; k, n, λo, λd)

= 1

(n− k)!λn−kd

n−k∑

i=0

(−1)i
(
n− k

i

)

×
⎡

⎣
n−k∏

j=0,j�=i
(kλo + jλd)

⎤

⎦ exp {− (kλo + iλd) t}

(20.1)

In addition to standby systems, Eq. (20.1) can also be used
to evaluate the reliability of system with active redundancy.
However, Eq. (20.1) cannot be used directly to evaluate the
reliability of a cold standby system, but it should be evaluated
at the limit λd → 0. At this limit, the reliability expression
becomes the survival function (Sf) of the gamma distribution.
Hence

R(t) ≡ lim
λd→0

R(t; k, n, λo, λd)

= exp {−kλot}
[
n−k∑

i=0

(kλdt)i

i!

]

= poif(kλot, n− k)

= gamfc(kλot, n− k + 1) (20.2)

where poif(·) is the cdf of Poisson distribution and gamfc(·)
is the Sf of Erlang (gamma with integer shape parameter)
distribution and these are available in all standard statistical
packages.

Although Eq. (20.1) provides a theoretically exact expres-
sion for system reliability, it is unstable for large values of
(n − k) and/or small values of λd

λo
, and therefore, it cannot

be used directly for these cases. This is because Eq. (20.1)
is prone to numerical roundoff errors due to the presence of
alternative positive and negative terms [23]. The results of
experiments presented in [23] indicate that, in some cases,
the computed reliability values are not even within the valid
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range for the reliability (probability), i.e., [0,1]. Therefore,
the system reliability should be expressed in the forms that
can lead to computationally efficient and robust numerical
evaluation. A detailed discussion on numerical instability of
Eq. (20.1) and the efficiency and robustness of the new results
are available in [23, Section IV].

Amari and Pham [32] studied a special case of the warm
standby system where kd ≡ kλo/λd is an integer. For this
special case, it was shown that the Markov state transition
diagram of this model is the same as that of kd-out-of-(n-
k+kd) active redundancy configuration where hazard (failure)
rate of each component is λd. Hence, it was shown that the
warm standby configuration behaves like an active redun-
dancy configuration with modified parameters. For example,
consider a 2-out-of-4 warm standby system where λo = 3
and λd = 0.5. Hence, kd ≡ 2 · (3/0.5) = 12 and nd =
n− k+ kd = 5−3+12 = 14. Hence, from Amari and Pham
[32], it behaves like a 12-out-of-14 active redundancy system
where the component failure rate is λd = 0.5. Hence, the
system reliability function, state probabilities, system hazard
(failure) rate function, pdf, MRL function, and failure time
moments of the 2-out-of-4 warm standby system (with λo =
3 and λd = 0.5) are equivalent to the corresponding functions
for the 12-out-of-14 active redundancy configuration with
modified parameters (i.e., failure rate equal to λ = 0.3).

Further, Amari et al. [23] considered the general case of
warm standby system, where kd ≡ kλo/λd is not restricted to
an integer, and proved the following results:

• All properties and computational procedures that are
available for active redundancy case are also applicable
for the warm standby configurations.

• Reliability of both active redundancy and warm standby
systems can be expressed and evaluated using beta distri-
bution.

• The system reliability improvement with an additional
redundant component follows negative binomial (Pólya)
distribution.

In addition, Levitin et al. [23] expressed the system relia-
bility in several forms that can allow and enable robust and
efficient evaluation of system reliability, state probabilities,
and reliability improvement factors with additional spares.
Similarly, closed expressions were provided for higher order
moments of the system failure time. Further, it was shown
that the hazard rate of the warm system is a monotonically
increasing function. Similarly, Levitin et al. [23] provided
several closed-form expressions for the MRL function, and
some of these forms also provide new and compact closed-
form expressions for the MRL function of the k-out-of-
n system with active redundancy [8]. In addition, it was
shown that the system failure time follows beta-exponential
distribution [34]. Using these results, some additional closed-

form expressions are derived in this chapter. These new
closed-form expressions derived include moment-generating
function, characteristic function, variance, cumulants, mo-
ments, skewness, kurtosis, Rényi entropy, and Shannon en-
tropy. The closed-form expression in [23] also allowed prov-
ing several log-concave properties and aging properties that
are applicable for both active and standby redundancies.

20.3 Reliability Analysis

The system failure time can be expressed as a sum of ex-
ponentially distributed random variables as shown in the
Markov state transition diagram in Fig. 20.1, where state-
i corresponds to the system state with i failures (including
active and dormant failures), state 0 is the initial state and the
state (n− k + 1) is a failed state.

20.3.1 State Probabilities

The Markov state transition diagram in Fig. 20.1 indicates
that the system failure time (T) can be expressed as the sum
of exponential random variables

T = X0 + X1 + · · · + Xn−k (20.3)

where Xi is the time spent in state i; i = 0, · · · , (n − k)
and it follows exponential distribution with rate parameter
λi = kλo + (n− k − i)λd. Further, the Laplace transform of
probability of state-i, i.e., Pi(t), can be expressed as

L{Pi(t)} = Bi∏i
j=0(s+ λj)

; i = 0, · · · , n− k

Bi ≡
i−1∏

j=0

λj; i = 1, · · · , n− k (20.4)

where λj = kλo + (n − k − j)λd and B0 = 1. Hence, using
the closed-form expressions for inverse Laplace transforms
in [35], Pi(t) can be expressed as

0 1 2 n–k

(n–k)ld
+ klo

(n–k–1)ld
+ klo

(n–k–2)ld
+ klo

ld
+ klo klo

n–k+1

Fig. 20.1 Markov state transition diagram for k-out-of-nwarm standby
system [23,32]
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20Pi(t) = Bi

i∑

j=0

Aij exp(−λjt); i = 0, · · · , n− k

Aij ≡
i∏

m=0
m �=j

1

λm − λj
; j = 0, · · · , i (20.5)

Further,

Aij =
[
j−1∏

m=0

1

λm − λj

] ⎡

⎣
i∏

m=j+1

1

λm − λj

⎤

⎦

=
[

1

j!λjd

][
(−1)i−j

(i− j)!λi−jd

]

= (−1)i−j

j!(i− j)!λid
(20.6)

Similarly, we can simplify Bi, i = 1, · · · , n− k:

Bi =
i−1∏

j=0

λj

=
i−1∏

j=0

[kλo + (n− k − j)λd]

=
i−1∏

j=0

[kdλd + (n− k − j)λd]

= λid

i−1∏

j=0

[(n− k + kd) − j]

= λid

i−1∏

j=0

(nd − j)

= λid
�(nd + 1)

�(nd − i+ 1)
(20.7)

Note that nd in Eq. (20.7) is not necessarily an integer. If
kd ≡ kλo/λd is a real number, then nd ≡ n − k + kd
also becomes a real number. Hence, the gamma function
in Eq. (20.7) can be replaced with a factorial function only
when nd is an integer. Substituting Aij and Bi in Eqs. (20.6)
and (20.7) into Eq. (20.5), we have

Pi(t) = �(nd + 1)

�(nd − i+ 1)

i∑

j=0

(−1)i−j

j!(i− j)!exp(−λjt)

= �(nd + 1)

�(nd − i+ 1)
exp(−λit)

i∑

j=0

(−1)i−j

j!(i− j)!exp{−(i− j)λdt}

= �(nd + 1)

�(nd − i+ 1)
exp(−λit)

i∑

j=0

[− exp{−λdt}]i−j
j!(i− j)! (20.8)

Now Eq. (20.8) can be simplified using the following identity
for the binomial expansion:

(1 − x)i =
i∑

j=0

i!
j!(i− j)! (−x)

i−j (20.9)

Hence

Pi(t) = �(nd + 1)

i!�(nd − i+ 1)
exp{−λit} [1 − exp{−λdt}]i

(20.10)

Further

λi = kλo + (n− k − i)λd = kdλd + (n− k − i)λd = (nd − i)λd
(20.11)

Therefore

Pi(t) = �(nd + 1)

i!�(nd − i+ 1)
(exp{−λdt})nd−i (1 − exp{−λdt})i

=
(
nd
i

)
(pd)

nd−i (1 − pd)
i (20.12)

Note that the nd in Eq. (20.12) can be a real number. Specifi-
cally, if kd ≡ kλo/λd is a real number, then nd ≡ n− k + kd
is also a real number. Therefore, the binomial coefficient in
Eq. (20.12) is expressed using a real valued parameter nd
[36]. Further, note that Eq. (20.12) is also applicable even
when λd > λo. For the active redundancy (hot standby),
λd = λo. Further, kd = k, nd = n,�(nd+1) = n!, and�(nd−
i+1) = (n−i)!. Hence, for the active redundancy, Eq. (20.12)
reduces to the probability density function (pmf) of the bino-
mial distribution [6,7]. In addition, as shown in [32], (20.12)
is equal to the pmf of the binomial distribution when kd =
kλo/λd is an integer. Similarly, it is straightforward to prove
that when λd → 0 (for cold standby), Eq. (20.12) approaches
the cdf of the Poisson distribution in (20.2). Similarly, for
the cold standby system, Pi(t) is equal to the pmf of the
Poisson distribution. Hence, the state probability distribution
in (20.12) includes binomial distribution as the special case
and Poisson distribution as the limiting distribution. Hence,
the new form of distribution for system state probabilities
in (20.12) can be called a generalized truncated binomial
distribution with a real valued n.
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20.3.2 System Reliability

The system reliability can be evaluated as the sum of the
probabilities of all good states. Hence, the reliability of the
system is

R(t) ≡
n−k∑

i=0

Pr{system is in state i} =
n−k∑

i=0

Pi(t)

=
n−k∑

i=0

�(nd + 1)

i!�(nd − i+ 1)
(pd)

nd−i (1 − pd)
i

=
n−k∑

i=0

(
nd
i

)
(pd)

nd−i (1 − pd)
i (20.13)

where pd ≡ pd(t) = exp(−λdt). Note that Eq. (20.13) is
applicable for both real and integer values of kd ≡ kλo/λd.
In other words, nd ≡ n − k + kd in Eq. (20.13) can be a real
number and the binomial coefficient is defined for both real
and integer valued arguments [36]. It is interesting to note that
the reliability expression for warm standby system is similar
in form to that of the active redundancy case. Therefore, the
warm standby redundancy configuration can be viewed as an
active redundancy configuration with modified parameters.
These results may, at the first glance, seem to be counterin-
tuitive or too good to be true. However, in addition to the
detailed proofs provided in the previous section, the equiva-
lence of results in Eqs. (20.1) and (20.13) can easily be cross-
verified using numerical examples. In addition, the equiv-
alence of these two expressions in (20.1) and (20.13) can
easily be proved, because these are the two different forms of
the same regularized incomplete beta function presented in
Sections 26.5.6 and 26.5.7 of Abramowitz and Stegun [37],
respectively. Hence, Eq. (20.1) is equivalent to Eq. (20.13)
that was derived in She and Pecht [4]. However, the system
reliability expressed using Eq. (20.13) provides more insight
into the system reliability characteristics and leads to robust
and computationally efficient numerical evaluation.

Note that P0 = pndd and Pi = Pi−1.
nd−i+1

i .
1−pd
pd

for i =
1, · · · , n − k. Hence, the system reliability can be evaluated
in O(n-k+1) time complexity algorithms [6]. The algorithm
evaluating the system reliability is described in Algorithm-A.

Algorithm-A: Reliability Evaluation Using State
Probabilities

Inputs: k, n, λo, λd, t

nd = n− k + kλo/λd; pd = exp{−λdt}
x = pndd ; R = x; y = (1 − pd)/pd

for i = 1 to (n− k) do

x = x · y · nd − i+ 1

i
; R = R+ x

done

At the end of the algorithm, R contains the system reliability.
At each iteration of i, x is equals to the probability of state i,
Pi(t). Hence, the system state probabilities (Pi(t)) can also be
evaluated inO(n-k+1) computational time. Further, for active
redundancy case (when kd is an integer), the system reliability
can be evaluated with O(min{k, n − k + 1}) computational
time algorithms [6, 32].

Example 1 2-out-of-4 warm standby system where λo =
0.0025, λd = 0.0004, and t = 100. Hence, kd = 12.5,
nd = 14.5, (n-k) = 2, pd = 0.960789, and 1−pd

pd
= 0.040811.

Further, P0 = pndd = (0.960789)14.5 = 0.5599 and Pi =
Pi−1.

13.5−i
i .(0.040811) for i = 1, 2. Hence, P1 = 0.33132

and P2 = 0.091271. Finally, the system reliability is R =
P0 + P1 + P2 = 0.98249.

Further, the system reliability (or unreliability) can be
expressed in terms of either Sf or cdf of the beta distribution
with parameters a and b. When b is an integer, the cdf of beta
distribution, FB(x; a, b) ≡ Ix(a, b), can be expressed as [37]

Ix(a, b) =
b−1∑

i=0

�(a+ b)

�(i+ 1)�(a+ b− i)
xa+b−1−i(1 − x)i

(20.14)

By substituting a = kd, b = nd − kd + 1, and x = pd, we can
express the system reliability in (20.13) using Ix(a, b). Hence

R(t) ≡ Ipd (kd, nd − kd + 1) = FB(pd; kd, nd − kd + 1)
(20.15)

where FB is the cdf of the beta distribution and is available
in all standard statistical packages. Further, there are sev-
eral well-established numerical methods for computing the
regularized incomplete beta function Ix(a, b) [38], and this
function is available in all standard mathematical software
libraries including MATLAB®, Mathematica®, Mathcad®,
and Microsoft® Excel. In fact, reliability evaluation us-
ing (20.15) is preferred for large values of (n − k). Because
Ix(a, b) = 1− I(1−x)(b, a) [37], the system reliability can also
be expressed as the Sf of the beta distribution:

R(t) ≡ 1 − I1−pd (nd − kd + 1, kd)

= 1 − FB(1 − pd; nd − kd + 1, kd)

= F̄B(1 − pd; nd − kd + 1, kd) (20.16)

where F̄B is the Sf of the beta distribution.
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Example 2 Same as Example 1, except R(t) is calculated
from (20.15) and (20.16) using the MATLAB® function be-
tainc. From (20.15), the reliability of the system can be calcu-
lated as R(t) = I0.960789(12.5, 3) = betainc(0.960789,12.5,3)
= 0.98249. Similarly, from (20.16), R(t) = 1 −
I0.039211(3, 12.5) = betainc(0.039211,3,12.5,’upper’) =
0.98249.

Note that Ix(a, b) itself can be expressed in several forms
[37]. Therefore, the reliability of warm standby system can
be expressed in several forms. Some of these forms are used
to derive other reliability characteristics.

20.3.3 Nonidentical Operational Failure Rates

Although the analysis presented in this chapter is based on the
assumption that all units are identical, it can also be applied
to the case where the active components experience noniden-
tical operational stresses. Specifically, the same reliability
formula can also be applied to the situation where failure
rates of k operational units are distinct (or not necessarily
identical). In other words, even though the failure rate in
the standby mode is the same for every unit (spare), the
operational failure rate of a component can depend on its
location or configuration of its operation. However, as long
as the system is functioning, there will be the same number
of operational units (k units) and the sum of their failure
rates will be the same throughout the mission. Let λo,j be the
operational failure rate of a component located at position j.
Because there are k operational units, the sum and average of
their failure rates can be computed as λo,sum and λo,avg:

λo,sum ≡
k∑

j=1

λo,j

λo,avg ≡ 1

k

k∑

j=1

λo,j (20.17)

These failure rates, i.e., λo,sum and λo,avg, are the same for
any combination of component failures (i.e., system state).
Hence, the state transition diagram in Fig. 20.1 is still appli-
cable for modeling this situation. However, the operational
failure rate λo in Fig. 20.1 should be replaced with λo,avg.
Hence, as long as the average of operational rates is used

in the reliability formula, the same analysis can be used
even when the operational units experience distinct location-
dependent failure rates. Hence, Algorithm-A can also be
used for evaluating the system reliability with nonidentical
operational failure rates.

20.3.4 Switch Failures

In a standby redundancy configuration, upon a failure of an
operational component, the failed component is replaced by
a redundant component when available. If the failure occurs
in a dormant component, it will be removed. Therefore, a
warm standby redundancy configuration requires a switching
mechanism to sense the presence of a failed component
and to activate a redundant component, if one is available.
However, the switch itself can fail on demand, i.e., it may fail
to perform its operation up on a failure of a component, which
in turn leads to system failure. When the system reliability
is expressed as a sum of probabilities of good states, it is
straightforward to include the effects of switch failures in
the reliability expression [9]. Let psw be the switch reliability
on demand. If there are exactly i failures in the system, the
switch needs to operate successfully at all these i requests
(corresponding to i failures). Hence, the switch reliability for
i requests is pisw. Therefore, the reliability of the system with
switch failures on demand is

R(t) ≡
n−k∑

i=0

piswPi(t) =
n−k∑

i=0

(
nd
i

)
(pd)

nd−i [psw (1 − pd)]
i

(20.18)

The derivation of Eq. (20.18) is based on the assumption
that the switch is needed at each instance of every com-
ponent failure irrespective of its standby/operational status.
Equation (20.18) has important applications in safety critical
systems where all failed components must be detected, lo-
cated, and permanently removed from the system to eliminate
the failure propagation due to imperfect fault coverage [39].
However, if the switches are needed only for replacing the
failed components in operation with the standby ones, but
not the removal of the failed components in the dormant
state, then the following equation shall be used (the proof is
straightforward and the results can be verified using Markov
models):

R(t) ≡
n−k∑

i=0

(nd+kd[1−psw]
i

)
(nd
i

) Pi(t) =
n−k∑

i=0

(
nd + kd[1 − psw]

i

)
(pd)

nd−i (1 − pd)
i (20.19)
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Similarly, it is straightforward to modify (20.13) to in-
clude the effects of various types of imperfect fault coverage
models [39].

20.3.5 Reliability Improvement

It is a well-known fact that increasing the number of spares
increases the system reliability. Specifically, when k is fixed,
system reliability is an increasing function in n. Understand-
ing the properties of reliability improvement (expressed in
terms of n) is important in determining the optimal system
configurations [40]. The following identity is used to derive
the expression for reliability improvement [37]:

Ix(a, b+ 1) = Ix(a, b) + �(a+ b)

�(a)�(b+ 1)
xa(1 − x)b (20.20)

Therefore

∇R(n; k) ≡ �R(n− 1; k) ≡ R(n; k) − R(n− 1; k)

= �(nd)

�(kd)�(nd − kd + 1)
(pd)

kd (1 − pd)
nd−kd

=
(
nd − 1

kd − 1

)
(pd)

kd (1 − pd)
nd−kd (20.21)

It can easily be verified that (20.21) reduces to the reliability
improvement equation available in [7, 41] for the active
redundancy when kd = k, nd = n, and pd = p. Note that
Eq. (20.21) can also be derived using the pivotal decompo-
sition because the warm standby model can be expressed in
terms of an active redundancy model with modified parame-
ters. Further, define

δi ≡ ∇R(k + i; k) =
(
kd + i− 1

i

)
(pd)

kd (1 − pd)
i ;

for i = 0, 1, · · · (20.22)

where δi is the improvement in system reliability when the
number of spares is increased from (i − 1) to i. Further,
R(k, n) = 0 for n < k, and δ0 = R(k, k). Hence, the system
reliability is the sum of δi’s:

R(k, n) =
n−k∑

i=0

δi (20.23)

Note that δ0 = pkdd and δi = δi−1.
kd+i−1

i .(1 − pd) for i =
1, · · · , n− k. Hence, using (20.23), the system reliability can
be computed in O(n-k+1) computational time [6]. Refer to
Algorithm-B for the detailed steps for evaluating the system
reliability.

Algorithm-B: Reliability Evaluation Using
Reliability Improvement Factors

Inputs: k, n, λo, λd, t

kd = kλo/λd; pd = exp{−λdt}
x = pkdd ; R = x; y = 1 − pd

for i = 1 to (n− k) do

x = x · y · kd + i− 1

i
; R = R+ x

done

At the end of the algorithm, R contains the system reliability.
At each iteration of i, x is equal to the reliability improve-
ment factor corresponding to δi(t). Hence, the reliability
improvement factors can also be computed with O(n-k+1)
computational time algorithms.

Example 3 Same as Example 1, except R(t) is calculated
from (20.23). Here, kd = 12.5, (n-k) = 2, pd = 0.960789, and
(1 − pd) = 0.039211. Further, δ0 = pkdd = (0.96079)12.5 =
0.60653 and δi = δi−1.

11.5+i
i .(0.039211) for i = 1, 2. Hence,

δ1 = 0.29728 and δ2 = 0.078682. Finally, the system
reliability is R = δ0 + δ1 + δ2 = 0.98249.

It is interesting to note that δi is nothing but the probability
of state-i of theMarkov chain shown in Fig. 20.2, where state-
0 is the initial state and state-(n−k+1) is the final state. Note
that the state transition diagrams in Figs. 20.1 and 20.2 are
similar, except the occurrence of states are reversed. The time
to reach the absorbing state in Fig. 20.1 is equivalent to the
corresponding time in Fig. 20.2, because they both represent
the sum of the same set of exponential random variables.
When n = k, the state transition diagrams in Figs. 20.1
and 20.2 are equivalent. Hence, the probability of state-0 in
Fig. 20.2 is equal to δ0. For n = k + 1, it should satisfy the
following equation: P0(n = k + 1) + P1(n = k + 1) =
R(k, n = k + 1) = δ0 + δ1. Hence, from Eq. (20.23), it can
be shown that the probability of state-1 in Fig. 20.2 is equal
to δ1. Using the similar arguments, it can be proved that the
probability of state-i in Fig. 20.2 is equal to δi for any non-
absorbing state-i.

0 1 2 n–k

(n–k)ld
+ klo

(n–k–1)ld
+ klo

2ld
+ klo

ld
+ kloklo

n–k+1

Fig. 20.2 Markov state transition diagram for k-out-of-nwarm standby
system
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20
Note that δi in (20.22) is the pmf of the negative binomial

(Pólya) distribution [42]. Therefore, the system reliability
in (20.23) can be expressed as the cdf of the negative binomial
distribution:

δi = fNB(i; pd, kd) and R(k, n) =
n−k∑

i=0

δi = FNB(n− k; pd, kd)

(20.24)

where fNB(x; p, r) and FNB(x; p, r) are the pmf and cdf of
negative binomial distribution.

Although the negative binomial distribution is also defined
for the positive real values of r, the applications for this case
are rare. Hence, the warm standby system provides a new
application for this distribution with a real valued parameter
r. Note that the negative binomial is a unimodal distribution.
Hence, δi attains its maximum value at the mode of the NB
distribution. Define

m ≡ max
{
0,

⌊
(kd − 1)(1 − pd)

pd

⌋}
(20.25)

Thus, the δi at first increases and then decreases, reaching
its maximum value at i = m. If (k−1)(1−p)

p is an integer, then
δm = δm−1. The ∇R(n; k) in (20.21) and δi in (20.22) are
equivalent, except that i represents the number of spares and
n ≡ k+ i represents the total number of components. There-
fore, ∇R(n; k) first increases and then decreases, reaching its
maximum value at n = nmode = k + m. Hence

nmode ≡ max
{
k,

⌊
(kd − 1)(1 − pd)

pd
+ k

⌋}

= max
{
k,

⌊
kd − 1

pd
+ k − kd + 1

⌋}
(20.26)

It is interesting to note that Pi = δi for the cold standby
system. This can be verified by comparing the individual
terms in the cdf of the Poisson distribution. In addition,
this equivalence can also be verified by comparing the state
transition diagrams in Figs. 20.1 and 20.2 by setting λd = 0.
Specifically, it can be easily observed that these two diagrams
are equivalent when λd = 0. Hence, Pi = δi. Further, using
the properties of Poisson distribution, it can be shown that
δi first increases and then decreases, reaching its maximum
value at i = ms ≡ max{0, �kλot	}.

Example 4 Case 1: Same as Example 1, except n is not
specified. Here, k = 2, kd = 12.5, and pd = 0.960789.
Therefore, from (20.26), nmode = 2. Hence, ∇R(n; k) ≡
∇R(n) reaches its maximum value at n = k = 2, and it
always decreases with increase in n. Case 2: Same as Case
1, except t = 1000. Hence, pd = 0.67032 and nmode = 7.

Therefore, ∇R(n; k) ≡ ∇R(n) first increases for n ≤ 7 and
then decreases for n > 7, reaching its maximum value at
n = 7.

It is well known that the pmf of the NB distribution is
a log-concave function [43]. Hence, δi+1/δi is a decreasing
function in i. In other words, δ2i ≥ δi−1δi+1. Hence, from
[43, Theorem 3.1], it can be shown that the cdf of NB dis-
tribution is also log-concave. Therefore, from (20.24), R(n)
is log-concave in n. In other words, R(n+1)

R(n) is a decreasing
function in n. Hence, the reliability improvement percentage
with an additional component decreases with the number of
redundant components. This log-concave property allows us
to apply efficient methods to find optimal redundancy lev-
els [44]. Therefore, the optimal spares allocation procedure
proposed in [44] for the series system with 1-out-of-n cold
standby subsystems can be extended for the series systems
with k-out-of-nwarm standby subsystems with exponentially
distributed component lifetimes. These details are provided
in Sect. 20.5.

20.4 Reliability Characteristics

20.4.1 Cumulative Distribution Function

The cdf, F(t), is equivalent to the system unreliability, Q(t):

F(t) = Q(t; k, n) ≡ 1 − R(t; k, n)
= 1 − Ipd (kd, nd − kd + 1)

= I1−pd (nd − kd + 1, kd) (20.27)

20.4.2 Probability Density Function

The pdf, f (t), can be found as a first-order derivative of F(t)
with respect to t:

f (t; k, n) ≡ dF(t)

dt
= −dR(t; k, n)

dt
(20.28)

For nonrepairable systems, pdf also equals to system failure
intensity (frequency) [45]. From the Markov state transition
diagram in Fig. 20.1, it can be noted that the system has only
one failed state and it is the state (n − k + 1). The system
reaches state (n− k+ 1) only from state (n− k). Hence, the
transition from state (n− k) to state (n− k + 1) leads to the
system failure. The state transition frequency is equal to the
product of probability of state (n− k) and the transition rate
from state (n− k) to state (n− k+ 1). Therefore, the failure
frequency is kλoPn−k(t). Hence, the pdf is
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f (t; k, n) ≡ kλoPn−k(t) = kdλdPn−k(t)

= kdλd

(
nd

nd − kd

)
[pd]kd [1 − pd]nd−kd

= λd

B(nd − kd + 1, kd)
[exp{−λdt}]kd [1 − exp{−λdt}]nd−kd

(20.29)

Note that pd and (1 − pd) are the Sf and cdf of an ex-
ponentially distributed r.v. Hence, these are log-concave in
t [46]. Further, the product of two log-concave functions
is also a log-concave function. Therefore, f (t; k, n) is log-
concave in t. Hence, the system reliability, R(t; k, n), and
system unreliability,Q(t; k, n), are also log-concave in t [46].
Because f (t; k, n) is log-concave, it can be shown that the
system time to failure distribution is in the IFR class [46].

20.4.3 Failure Rate Function

The system failure (hazard) rate function can be determined
as h(t) = f (t)/R(t). Hence

h(t) ≡ h(t; k, n) = f (t; k, n)
R(t; k, n)

= kdλd
( nd
nd−kd

)
[pd]

kd [1 − pd]
nd−kd

∑n−k
i=0

(nd
i

)
[pd]

nd−i [1 − pd]
i

= kλo
( nd
n−k

)
∑n−k

i=0

(nd
i

)
[θ(t)]n−k−i

(20.30)

where θ(t) = pd
1−pd = exp{−λdt}

1−exp{−λdt} . The θ(t) is a decreasing
function in t. Hence, even without the knowledge of log-
concave properties of pdf, it can be shown that h(t) is strictly
an increasing function in t when k < n and is a constant (still
IFR) when k = n. From (20.30), for any value of t, we have

0 = h(0) ≤ h(t) ≤ h(∞) = kdλd = kλo (20.31)

20.4.4 System Time to Failure Distribution

From the Markov state transition diagram in Fig. 20.1, it
can be shown that the system failure time, T , is the sum of
independent exponential random variables. Therefore, from
[42], it is a hypo-exponential distribution. Further, it can be
shown that T follows phase-type (PH) distribution, because
it can be viewed as the time to absorption of a finite-state
Markov process. However, due to the generic nature of PH
distributions, this property does not provide much insight of

the behavior of T . Amari et al. [23] have shown that T follows
beta-exponential (BE) distribution proposed by Nadarajah
and Kotz [34] as a generalization of beta distribution. The
cdf of the BE distribution is

FBE(x) = I1−exp(−λx)(a, b) (20.32)

for x > 0, a > 0, b > 0, and λ > 0. The pdf of BE r.v. is

fBE(x) = λ

B(a, b)
exp(−bλx){1 − exp(−λx)}a−1 (20.33)

Comparing the cdf expressions in (20.27) and (20.32), Amari
et al. [23] have shown that these two expressions are identical
when a = nd − kd + 1 and b = kd. Hence, the failure time
distribution of the k-out-of-n warm standby system, as well
as its special case k-out-of-n active redundancy system, can
be represented as a BE distribution with parameters a = nd−
kd + 1 = n− k+ 1, b = kd = kλo/λd, and λ = λd. The same
results can also be obtained by comparing the pdf expressions
in (20.29) and (20.33). For the BE distribution, Nadarajah
and Kotz [34] provided closed-form expressions for vari-
ance, characteristic function, moment-generating function,
moments, cumulants, skewness, kurtosis, Rényi entropy, and
Shannon entropy. Therefore, substituting a = nd − kd + 1 =
n − k + 1, b = kd = kλo/λd, and λ = λd, these functions
can be represented directly in terms of the model parameters
of the warm standby system. Note that a = n − k + 1 is an
integer (even for the generic case). Hence, the corresponding
expressions for warm standby systems can be simplified
further.

20.4.5 Moment-Generating and Characteristic
Functions

This subsection provides derivations for moment-generating
function (mgf) and the characteristic function of random
variable T having the pdf in Eq. (20.29). From Nadarajah and
Kotz [34], the mgf is defined byM(t) = E[exp(tX)]. Hence

M(t) = λ

B(a, b)

∫ ∞

0
exp{(t − bλ)x}{1 − exp(−λx)}a−1

(20.34)

By substituting y = exp(−λx), the integral on the right-hand
side reduces to

∫ 1

0
yb−t/λ−1(1 − y)a−1dy = 1

λ
B(b− t/λ, a) (20.35)

Hence, the moment-generating function is
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20M(t) = B(b− t/λ, a)

B(a, b)

= B(kd − t/λd, nd − kd + 1)

B(nd − kd + 1, kd)

= B(kλd − t/λd, n− k + 1)

B(n− k + 1, kλ0/λd)
(20.36)

Note that T can be expressed as a sum of s-independent
exponential r.v. Therefore, M(t) can also be expressed as

M(t) =
n−k∏

j=0

[
1 − t

(kd + j)λd

]−1

(20.37)

Hence, the characteristic function of X defined by ϕ(t) =
E[exp(itX)] takes the following form [34]:

ϕ(t) = B(b− it/λ, a)

B(a, b)

= B(kd − it/λd, nd − kd + 1)

B(nd − kd + 1, kd)

= B(kλd − it/λd, n− k + 1)

B(n− k + 1, kλ0/λd)
(20.38)

Further, ϕ(t) can also be expressed as

ϕ(t) =
n−k∏

j=0

[
1 − it

(kd + j)λd

]−1

(20.39)

20.4.6 Mean and Variance

The mean of T can be written as [34]

E[T] = {ψ(a+ b) − ψ(b)}/λd = {ψ(nd + 1) − ψ(kd)}/λd

=
n−k∑

i=0

1

(kd + i)λd
=

n−k∑

i=0

1

kλo + iλd
(20.40)

The variance of T can be written as

Var[T] = {ψ ′(b) − ψ ′(a+ b)}/λ2d = {ψ ′(kd) − ψ ′(nd + 1)}/λ2d

=
n−k∑

i=0

1

[(kd + i)λd]2 =
n−k∑

i=0

1

[kλo + iλd]2 (20.41)

20.4.7 Moments

As shown in Nadarajah and Kotz [34], it is immediate from
Eq. (20.29) that the rth moment of T can be written as

E[Tr] = (−1)r

λrB(a, b)

∂rB(a, 1 + p− a)

∂pr

∣∣∣∣
p=a+b−1

(20.42)

Because a ≡ n − k + 1 is an integer, it can be simplified
further for the warm standby system. The explicit expression
for rth moment of T can be written as [23]

E[Tr] =
n−k∑

i=0

(
n

i+ kd

)(
i+ kd − 1

i

)
(−1)i

r!
(i+ kd)rλrd

= r!λd
B(kλo/λd, n− k + 1)

n−k∑

i=0

(
n− k

i

)
(−1)i

(kλo + iλd)r+1

(20.43)

Equation (20.43) has several applications in reliability field:
(1) estimate parameters of the system using method of mo-
ments [34], (2) determine bounds and approximations for
reliability of a complex system [47], and (3) dependability
analysis considering reliability and performance measures
simultaneously [42].

20.4.8 Skewness and Kurtosis

The skewness T can be written as

Skewness(T) = ψ ′′(a+ b) − ψ ′′(b)
{ψ ′(b) − ψ ′(a+ b)}3/2

= ψ ′′(nd + 1) − ψ ′′(kd)
{ψ ′(kd) − ψ ′(nd + 1)}3/2 (20.44)

The kurtosis of T can be written as

Kurtosis(T) = 3{ψ ′(b)}2 − 6{ψ ′(b)ψ ′(a+ b)} + 3{ψ ′(a+ b)}2 + ψ ′′′(b) − ψ ′′′(a+ b)

{ψ ′(b) − ψ ′(a+ b)}2

= 3{ψ ′(b)}2 − 6{ψ ′(kd)ψ ′(nd + 1)} + 3{ψ ′(nd + 1)}2 + ψ ′′′(kd) − ψ ′′′(nd + 1)

{ψ ′(kd) − ψ ′(nd + 1)}2 (20.45)
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20.4.9 Rényi and Shannon Entropies

An entropy of a random variable T is a measure of variation
of the uncertainty [34]. Rényi entropy of order γ is defined
by

Hγ (T) = 1

1 − γ
ln

{∫
f γ (x)dx

}
(20.46)

where γ ≥ 0 and γ �= 1. For the BE distribution, it can be
expressed as [34]

Hγ (T) = − ln λ + 1

1 − γ
ln

[
B(γ a− γ + 1, γ b)

Bγ (a, b

]

(20.47)

Hence, for the warm standby system, it can be expressed as

Hγ (T) = − ln λd + 1

1 − γ
ln

[
B(γ (nd − kd) + 1, γ kd)

Bγ (nd − kd + 1, kd)

]

= − ln λd + 1

1 − γ
ln

[
B(γ (n− k) + 1, γ kλo/λd)

Bγ (n− k + 1, kλo/λd)

]

(20.48)

Shannon entropy defined by H(X) ≡ E[− ln f (X)] is the
particular case of (20.46) for γ → 1. Limiting γ → 1
in (20.48) and using L’Hospital’s rule, the Shannon entropy
for warm standby system can be derived:

H(T) = E [−lnf (T)] = − ln λd + lnB(a, b) + (a+ b− 1)ψ(a+ b) − (a− 1)ψ(a) − bψ(b)

= − ln λd + lnB(nd − kd + 1, kd) + (nd)ψ(nd + 1) − (nd − kd)ψ(nd − kd + 1) − bψ(kd) (20.49)

20.4.10 Mean Residual Life Function

Mean residual life (MRL) is the expected remaining lifetime
of the system given that it has survived until time t. Specifi-
cally, MRL is defined as m(t) = E[T − t|T > t].

m(t) ≡ E[T − t|T > t] =
∫ ∞
t R(x)dx

R(t)
(20.50)

TheMRL function of k-out-of-nwarm standby system can be
represented in several forms. Some of these forms also pro-
vide new and compact expressions for the active redundancy
model [8]:

m(t) =
∑n−k

i=0 Pi(t)μi∑n−k
i=0 Pi(t)

=
∑n−k

i=0
R(t;k+i,n)
(kd+i)λd

R(t; k, n)

=
1
λd

∑n−k
i=0

( nd
i+kd

)(i+kd−1
i

)
(−1)i p

i+kd
d

(kd+i)∑n−k
i=0

( nd
i+kd

)(i+kd−1
i

)
(−1)ipi+kdd

(20.51)

where μi is the MTTF of k-out-of-(n − i) warm standby
system: μi = ∑n−k−i

j=0
1

kλo+jλd . The MRL expressions can be
simplified by canceling the like terms in the numerator and
the denominator:

m(t) =
∑n−k

i=0

(nd
i

)[φ(t)]iμi
∑n−k

i=0

(nd
i

)[φ(t)]i

=
∑n−k

i=0

(nd
i

)[θ(t)]kd+iμn−k−i
∑n−k

i=0

(nd
i

)[θ(t)]kd+i

= 1

λd

∑n−k
i=0 (−1)i

(n−k
i

) pid
(kd+i)2

∑n−k
i=0 (−1)i

(n−k
i

) pid
kd+i

(20.52)

where φ(t) = 1−pd
pd

= 1−exp{−λdt}
exp{−λdt} = exp{λdt}−1 and θ(t) =

pd
1−pd = 1

φ(t) . Because the system time to failure distribution
is IFR, from [46], it can be shown that m(t) is a decreasing
function in t. Further, it can be shown that for any t:

n−k∑

i=0

1

kλo + iλd
= μ = m(0) ≥ m(t) ≥ m(∞) = 1

kdλd
= 1

kλo

(20.53)

20.4.11 Mean Past Life or Mean Inactive Time
Function

The mean past life (MPL), also called mean inactive time
or mean elapsed time, corresponds to the mean time elapsed
since the failure of the system at time T until the observed
time t given that T ≤ t [48, 49]. In this case, the random
variable of interest is {t−T|T ≤ t}. This conditional random
variable is elapsed time since the failure of the system at
T given that it has failed at or before t. The expectation of
this random variable, denote by κ(t), is known as the MPL.
Specifically, MPL is defined as κ(t) = E[t − T|T ≤ t]:
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20κ(t) ≡ E[t − T|T ≤ t] =
∫ t
0 F(x)dx

F(t)
(20.54)

The MPL can be expressed in terms of MRL function,
m(t), and mean life function, E[T]:

κ(t) =
∫ t
0 F(x)dx

F(t)
= t − ∫ t

0 R(x)dx

F(t)

= t − ∫ ∞
0 R(x)dx+ ∫ ∞

t R(x)dx

F(t)

= t − E[T] + m(t)R(t)

F(t)
(20.55)

Substituting m(t) and R(t) in (20.55), the MPL can be
expressed as

κ(t) = t − E[T] + ∑n−k
i=0 Pi(t)μi

1 − ∑n−k
i=0 Pi(t)

= t − ∑n−k
i=0

1
(kd+i)λd + ∑n−k

i=0
R(t;k+i,n)
(kd+i)λd

1 − R(t; k, n)

= t − ∑n−k
i=0

1−R(t;k+i,n)
(kd+i)λd

1 − R(t; k, n)

= t − ∑n−k
i=0

F(t;k+i,n)
(kd+i)λd

F(t; k, n) (20.56)

where μi is the MTTF of k-out-of-(n − i) warm standby
system μi = ∑n−k−i

j=0
1

kλo+jλd and F(t; k + i, n) is the unre-
liability of (k + i)-out-of-n system where F(t; k + i, n) =
1 − R(t; k + i, n).

20.5 Optimal Reliability Design

A primary objective of reliability engineering is designing
highly reliable systems considering available resources and
design constraints [1, 2]. One of the primary techniques
in improving reliability is employing redundancy (spares).
However, improvements in reliability must be made without
violating system constraints [1]. When redundancy is used
to improve reliability of a system consisting of multiple sub-
systems, it is important to determine the optimal redundancy
levels for each subsystem. In general, the optimal spares
allocation is a well-known NP-hard problem [1, 2]. Hence,
there are no efficient solutions for the generic case of large-
scale systems. This is because the computational time to
solve this problem increases exponentially with the system
size. Hence, all existing methods are applicable to either
small-scale problems or to find approximate solutions. This
is the case even if system configuration is series structure
where all subsystems are connected logically in a series.
However, an effective use of log-concave properties can

improve the efficiency of redundancy allocation problem
[44]. Specifically, using log-concave properties, Amari [33]
proposed an efficient linear-time algorithm to find optimal
design configurations for nonrepairable series systems with
a single system-level constraint. This section describes the
method proposed in [33].

20.5.1 OptimizationModel Description

• the system hasM subsystems in series. Hence, the system
is good only if all of its subsystems are good.

• The subsystems are s-independent.
• The subsystems use a k-out-of-n cold/warm standby or

active redundancy. The subsystem-i requires at least ki
components for successful operation.

• The components within each subsystem are S-identical.
• The type of components used can vary with the subsys-

tems.
• Each component has its own operational and dormant

(standby) failure rates as well as resource consumption
rates.

• The systems and its components are nonrepairable.

The objective is to maximize the system reliability through
optimal allocation of spares for different subsystems without
violating the system-level constraints such as total system
cost/budget, weight, or volume (only one type of constraint
is considered).

20.5.2 OptimizationModel Formulation

The objective function is the system reliability and it can be
expressed as

R(t;k,n) =
M∏

i=1

R(t; ki, ni) (20.57)

where the reliability of each subsystem can be evaluated
using Eqs. (20.13), (20.15), or (20.16).

The optimization method presented here is based on
the log-concave properties of the warm standby systems
discussed in Sect. 20.3.5. In other words, the optimization
method is based on the property that R(n+1)

R(n) is a decreasing
function in n. To demonstrate the role of the log-concave
properties, a 2-out-of-n warm standby system with varying
number of components is considered where (n-2) is the
number of spares. Let λo = 1, λd = 0.2, and t = 1.
The system reliability and its improvement factors at
different number of spares are shown in Table 20.1. The
results demonstrate that both δi+1

δi
and R(n+1)

R(n) are decreasing
functions.
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Table 20.1 Log-concave properties of 2-out-of-n warm standby sys-
tem

n i = n− k δi R(n) δi+1
δi

R(n+1)
R(n)

2 0 0.1353 0.1353 1.8127 2.8127

3 1 0.2453 0.3807 0.9970 1.6425

4 2 0.2446 0.6252 0.7251 1.2836

5 3 0.1773 0.8026 0.5891 1.1302

6 4 0.1045 0.9071 0.5076 1.0585

7 5 0.0530 0.9601 0.4532 1.0250

Table 20.2 Log-concave properties of 2-out-of-n cold standby
system

n i = n− k δi R(n) δi+1
δi

R(n+1)
R(n)

2 0 0.1353 0.1353 2.0000 3.0000

3 1 0.2707 0.4060 1.0000 1.6667

4 2 0.2707 0.6767 0.6667 1.2667

5 3 0.1804 0.8571 0.5000 1.1053

6 4 0.0902 0.9473 0.4000 1.0381

7 5 0.0361 0.9834 0.3333 1.0122

Similarly, to demonstrate the log-concave properties of
cold standby redundancy, the same 2-out-of-n configuration
is considered. However, for the cold standby systems, the dor-
mant failure rate is set to zero: λd = 0. The system reliability
and its improvement factors are shown in Table 20.2. The
results demonstrate that both δi+1

δi
and R(n+1)

R(n) are decreasing
functions even for the cold standby redundancy.

20.5.3 Optimal Allocation of Fixed Number of
Total Spares

Consider a special case of the optimization problem where
the total number of spares that are allocated to all subsystems
is fixed. Further, consider that there is a fixed budget for
procuring the spares and the cost (weight or volume) of
each spare is the same. The objective is to find the optimal
allocation of spares at each subsystem that maximizes the
overall system reliability. From amathematical point of view,
it is a nonlinear integer programming problem. Prior to the
publication of [23,33] there were no efficient solutions to find
the global optimal allocation spares when subsystems were
modeled using k-out-of-n cold/warm standby redundancy.

The system reliability can be obtained from (20.57). Fur-
ther, the reliability of each subsystem can be expressed as a
product of different factors. Specifically,

Ri(ki, ni) = Ri(ki, ki)
ni−ki∏

j=0

φi(j)

φi(j) = Ri(ki, ki + j)

Ri(ki, ki + j− 1)
(20.58)

The number of φi(j) terms in the product is equal to the
number of spares in the subsystem. For example, consider
a 2-out-of-4 warm standby configuration for a specific sub-
system (e.g., subsystem 1). The subsystem reliability can be
expressed as

R1(2, 4) = R1(2, 2) · R1(2, 3)

R1(2, 2)
· R1(2, 4)

R1(2, 3)
(20.59)

From the log-concave properties of warm standby systems,
φi(j) is known to be a decreasing function in j for each i
(subsystem). When no spares are added to the subsystems,
the system reliability is

Rsys =
M∏

i=1

Ri(ki, ki) (20.60)

Now assume that si spares have already been added to
subsystem-i and the total number of spares added to all
subsystems is S. In other words, S = ∑M

i=1 si. Hence, the
system reliability is

Rsys =
[

M∏

i=0

Ri(ki, ki)

]
·
⎡

⎣
M∏

i=1

si∏

j=1

φi(j)

⎤

⎦ (20.61)

The product term in the first set of square brackets is the
same for any given set of spares allocation. Hence, it can be
considered as constant. Therefore, system reliability can be
maximized by maximizing the product term in the second set
of square brackets. The number of terms in the second set
of square brackets is equal to the total number of spares (S)
added to the system. If this term includes only the highest
possible φi(j) values, then the system reliability is maxi-
mized. Alternatively, if all possible values of φi(j) can be
arranged in a descending order and we were able to select
the first S values, the system reliability can be maximized.
However, such a selection is valid only if, for any given
subsystem-i, the factor corresponding to the jth spare can
appear only if the factor corresponding to (j − 1)th spare is
already added. Mathematically, φi(j) can be included only
if φi(j − 1) has been already included. However, such a
selection is possible for the warm standby system due to its
log-concave property. Therefore, it plays a key role in finding
the solution to optimal allocation problem.

Note that φi(j − 1) > φi(j) for warm standby system.
Hence, φi(j− 1) will be included in the list before including
φi(j). Further, due to the log-concave property, it is easy to
identify the top φi(j) values without explicitly sorting them,
because φi(j) is a decreasing function in j for each i. Hence,
the highest value among all φi(j) is corresponding to the
highest value among φi(1) for i ∈ {1, 2, · · · , M}. Let φi(1)
be the current set of φi(j) values. It has M elements. Let the
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corresponding subsystem that has the highest value of φi(1)
be subsystem-m. To find the next highest φi(j) value, only the
mth element of the current set of φi(j) values needs to be up-
dated with φm(2). This selection procedure can be continued
until the maximum limit on S, i.e., (Smax), is reached.

Algorithm-C: Optimal Redundancy Allocation for
Fixed Number of Spares
The detailed steps of the proposed algorithm are shown
below:

Step 1: Set(s∗1, · · · s∗M) = (0, · · · 0) and ν = 0.

Step 2: If(ν < Smax)then goto step 3

else take s∗ = (s∗1, · · · s∗M) as the optimal allocation;

Stop

End If

Step 3: Find m such that

φm(s∗i + 1) = max
1≤i≤M

[φi(s∗i + 1)]

Step 4: Set s∗m = s∗m + 1 : increase the allocation to

subsystem m by 1 and

Setν = ν + 1. Go to step 2

The above algorithm can be explained in simple terms. It
adds a spare to the system one at a time until the allowed
limit is reached. At each step, it allocates a spare to one of
its subsystems where the percentage of improvement is the
highest. This allocation algorithm is nothing but a simple
greedy algorithm based on the steepest increment method. In
other words, the allocation algorithm is not only simple but

also leads to global optimal solution in spite of its greedy
nature. Note that the optimal allocation method is not the
same as themethod that improves the least reliable subsystem
or allocates a spare to a subsystem where the improvement
itself is the highest. The key factor is to allocate the spares to
a subsystem where reliability improvement percentage is the
highest rather than improving the least reliable subsystem or
adding spares to a subsystem where the reliability improve-
ment is the highest.

20.5.4 Optimal Allocation with Different
Resource Consumption Rates

The allocation method described in Sect. 20.5.3 can also be
extended to the case where different spares have different re-
source consumption rates (costs). In this chapter, we assume
that the resource consumption rates are integers. When the
consumption rates are real, in most cases, an appropriate mul-
tiplication factor can be used to convert them into integers.
Further, the cost of spares can be specified in dollars or cents.
However, to improve computation efficiency, it is recom-
mended to represent them as the smallest possible integers.
For example, if the costs of spares are in thousands of dollars,
then the resource consumption rates can be represented in
units of thousand dollars.

Algorithm-D: Optimal Redundancy Allocation for
Spares with Different Resource Consumption
Let ci be the cost of a spare (or resource consumption rate)
used in subsystem-i. Let C be the total allowed budget for
procuring the spares. Note that the proposed method com-
putes the optimal allocation of spares for each integer value
of budget B where B ≤ C. The algorithm to find the optimal
allocation of spares is

Step 1: Set s∗1(0) = 0, · · · , s∗M(0) = 0 and B = 0.

Step 2: Compute R∗(0) using s∗(0).

Step 3: If(B < C) then go to step 4

elsetake s∗ = (s∗1, · · · s∗M) as the optimal allocation; Stop

EndIf

Step 4: Find m such that

m = argmax
1≤i≤M

[R∗(B− ci) · φi(s
∗
i (B− ci) + 1)]

Step 5: Set R∗(B) as:

R∗(B) = R∗(B− cm) · φm(s∗m(B− cm) + 1)

Step 6: Set s∗(B) = s∗(B− cm).

Then update s∗(B) = s∗(B− cm) : increase the allocation to subsystem m by 1 and

Set B = B+ 1.Go to step 3
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20.5.5 Numerical Example

Example 5 Consider a system consisting of five subsystems
(I, II, III, IV, and V) in a series. Subsystem-I uses cold
standby; subsystems II, III, and IV use warm standby redun-
dancy; and subsystem-V uses active redundancy. Table 20.4
shows the operational and dormant (standby) failure rates of
components used in the subsystems and minimum number
of components needed for the successful operation of the
subsystems.

The objective is to allocate a total of 20 spares among all
subsystems to maximize the system reliability for mission
time t = 1. To demonstrate the allocation method discussed
in Sect. 20.5.3, Table 20.4 shows the intermediate results, i.e.,
Ri(ki, ki) and φi(j) values. The table also includes the ranks
of φi(j) values as their subscripts for the range of ranks from
1 to 20, i.e., from 1 to Smax (Table 20.3).

At the every step where the first spare is added, the current
φi(j) values are nothing but the φi(1) values: [2.60, 1.58, 2.88,
1.73, 1.54]. The largest value corresponds to subsystem-III.
So, a spare is added to subsystem-III and then the φi(j)
values are updated to [2.60, 1.58, 1.65, 1.73, 1.54]. Now the
largest value corresponds to subsystem-I. So, the next spare is
allocated to subsystem-I and then the φi(j) values are updated
to [1.49, 1.58, 1.65, 1.73, 1.54]. Hence, the next spare is
added to subsystem-IV. Continuing the same procedure, the
final optimal allocation of spares for different subsystems are
obtained. The spares are added in the following order: {III, I,
IV, III, II, V, I, III, IV, I, V, III, II, I, IV, III, V, II, III, I}, and
the final allocation of the spares at subsystems [I, II, III, IV,
V] are [5, 3, 6, 3, 3], and the corresponding system reliability
is 0.9436.

Further, consider the generic case where the cost of spares
is different for different subsystems. Let [c1, c2, c3, c4, c4]
be [5, 6, 10, 7, 4]. The budget for procuring all spares
is 140. Using the Algorithm-D in Sect. 20.5.4, the optimal

Table 20.3 Optimization problem parameters of the subsystems

Subsystem index: i Redundancy type λo,i λd,i ki
I Cold standby 0.8 0 2

II Warm standby 0.6 0.06 1

III Warm standby 0.5 0.125 4

IV Warm standby 0.4 0.2 2

V Active 0.2 0.2 3

spares allocation is [5, 3, 6, 3, 4]. The system reliability
corresponding to the optimal allocation is 0.9521. Note that
storing all possible values of si(j) is not needed. At any given
step of the optimization, the algorithm needs to keep track of
at most max(ci) entries of si(j) values for each combination
of i and j. Hence, the storage requirement is M · max(ci),
which is much lower than M · C.

20.6 Conclusions

This chapter presents reliability analysis and optimal redun-
dancy allocation of k-out-of-n warm standby redundancy
with identical components following exponential failure time
distributions. Closed-form expressions for various reliabil-
ity characteristics and measures are presented. Specifically,
expressions for system reliability, state probabilities, failure
(hazard) rate, pdf, and MRL & MPL functions are presented
in the forms that are similar to the case of active redundancy.
Subsequently, the system reliability is expressed in several
forms to gain new insights into the system reliability char-
acteristics. The closed-form expressions and computational
algorithms presented in this chapter produce robust and nu-
merically stable system reliability evaluation. The analysis
accounts for the effects of switch failures on demand on
system reliability [9]. Further, it is proved that the time-to-
failure distribution of k-out-of-n warm standby system is
beta-exponential. Using this property, closed-form expres-
sions for statistical measures of system failure time distri-
bution are presented. Specifically, closed-form expressions
are provided for moment-generating function, characteristic
function, variance, higher order moments, skewness, kurto-
sis, and Rényi and Shannon entropies of the random variable
representing the system failure time.

The system reliability improvement with an additional
redundant component follows a negative binomial (Pólya)
distribution and is log-concave. Further, it has shown that the
system reliability function is log-concave n. Hence, the per-
centage improvement in system reliability with an additional
spare decreases with the number of spares already added
to the system. Using these log-concave properties, efficient
linear-time computational algorithms for finding optimal sys-
tem designs are presented. Because active redundancy is
a special case of the warm standby redundancy, indirectly
this chapter also provides some new results for the active
redundancy case as well.

Table 20.4 Intermediate results: Ri(ki, ki) and φi(j) Values

Subsystem index: i Ri(ki, ki) φi(1) φi(2) φi(3) φi(4) φi(5) φi(6)

I 0.202 2.6002 1.4927 1.17610 1.05914 1.01820 1.004

II 0.549 1.5825 1.11813 1.02518 1.005 1.0001 1.0001

III 0.135 2.8801 1.6524 1.2788 1.12212 1.01916 1.01919
IV 0.449 1.7253 1.1919 1.05815 1.017 1.001 1.0013

V 0.549 1.5446 1.12711 1.03417 1.009 1.001 1.0005
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The exponential component lifetimes assumption made

in this paper can be removed by extending the result to
proportional hazards models subjected to arbitrary general
baseline failure time distributions [50]. Similarly, in addition
to switch failures on demand, the results can be extended
to account for the failure effects of continuously monitoring
switches on the system reliability [7, 9]. The same concepts
used in this chapter can also be extended to analyze a k-
out-of-nwarm standby systemwith nonidentical components
by considering different paths that lead the system failure.
Similar to nonrepairable case, the simple formulas presented
in this chapter can also be extend to k-out-of-nwarm standby
system with identical but repairable components. The results
presented in this chapter can easily be extended to find the
optimal cost-effective designs that consider the cost of spares
as well as cost of system failure [41]. We consider these
extensions as a future research work.
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Abstract

The identification of the components which are responsi-
ble for the performance of system is a key task to improve
the safety and reliability. However, such analysis is dif-
ficult and challenging when large and complex systems
are analyzed. The survival signature which is presented
recently cannot only hold the merits of the former system
signature but is efficient to deal with complex system with
multiply component types. In real engineering applica-
tions, components can be repaired after failure. Hence,
it is essential to identify which component or component
set is most critical the complex repairable system. What
is more, due to lack of data or the confidential informa-
tion, it is difficult to know the full configuration of the
system, which leads to an imprecise survival signature.

G. Feng (�)
School of Engineering, University of Central Lancashire, Preston, UK
e-mail: gfeng@uclan.ac.uk

In order to address the above questions, the efficient
simulation approaches based on structure function and
survival signature have been proposed respectively to
analyze the complex repairable systems. Based on this,
component importance index has been introduced to per-
form sensitivity analysis on a specific component or a set
of components within the repairable system. In addition,
the proposed simulation method can be used to deal with
imprecision within the survival signature. Numerical ex-
amples are presented to show the applicability of the above
approaches.

Keywords

Importance measures · Sensitivity analysis · Complex
systems · Survival signature · Reliability · Repairable
system

21.1 Introduction

System signature has been introduced recently by Samaniego
[25]; it can separate the system structure form the compo-
nents failure time distributions, which makes it efficient to
quantify the reliability of the system. However, system signa-
ture has a very important assumption that all components in
the coherent system should be in a single type, which makes
it intractable to analyze complex system with two or more
component types.

In order to overcome the limitations of the system sig-
nature, [7] proposed the survival signature, which not only
reserves the merits of the system signature but can be applied
to analyze systemwithmultiple component types. In essence,
it does not have the assumption that components of different
types are exchangeable, which overcomes the long-standing
limitation of the system signature. This is useful when a
system may have components with failure times that follow
different probability distributions [8]. Therefore, survival

© Springer-Verlag London Ltd., part of Springer Nature 2023
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signature is a promising method for application to complex
systems and networks.

Recently, Aslett developed an R package to calculate the
survival signature [1], and an efficient algorithm for the exact
computation of the survival signature of large systems was
put forward by Reed [24]. A nonparametric predictive infer-
ence for system reliability using the survival signature was
proposed by Coolen et al. [11]. Based on the above concepts,
Feng et al. developed an analytical and numerical method
to perform reliability analysis on systems with uncertain
components parameters [14]. These survival signature-based
methods are efficient for non-repairable system reliability
analysis; however, they do not take the complex repairable
system into consideration. Simulation methods has attractive
features for analyzing complex and large systems [22], which
makes it possible to deal with the repairable complex systems
reliability. Survival signature methodology is extended to
analyze systems with common cause failures [13, 18].

The risks are unavoidable, and as such the key challenge
in engineering risk analysis is to identify the components
of the system that contribute most to risk [20]. Importance
and sensitivity analysis is an essential way to find out the
most critical component, which helps engineers to allocate
the limited resources. Therefore, importance and sensitiv-
ity analysis is a key point in tracing bottlenecks in sys-
tems and in identifying the most important component [19].
The definition of component importance measure is first
introduced by Birnbaum [3], which is obtained by partial
differentiation of the system reliability with respect to the
given component reliability. An improvement or decline in
reliability of the component with the highest importance will
cause the greatest increase or decrease in system reliability.
Based on this achievement, many other component impor-
tance measures have been introduced, e.g., Fussell-Vesely
importance measure [17, 27], failure criticality index [28],
structure importance measure [4], risk reduction worth, and
risk achievement worth [5]. The aforementioned importance
measures mainly focus on an individual component of a non-
repairable system; however, it is important to calculate the
importance degree of component within a repairable system.
What is more, it is of interest to evaluate the importance of a
set of components or a subsystem with a few components in
many practical situations.

Probabilistic uncertainty and imprecision in structural pa-
rameters and in environmental conditions and loads are chal-
lenging phenomena in engineering analysis [2]. There is a
wide variety of reasons why imprecise probability might
be of particular relevance in the area of system reliability
[6, 23]. For example, due to limited data or confidentiality
for the system, it sometimes cannot get the precise survival
signature. In order to deal with imprecision, Ferson et al.
introduced the probability box, which is also called p-box,
to define the set of the imprecise values [15, 16]. Coolen

and Coolen-Maturi [9] linked the (imprecise) probabilistic
structure function to the survival signature. The interval of
the survival signature will lead to imprecise survival function
of the system.

The structure function-based method and the survival
signature-based method are both based on the Monte Carlo
simulation, which is general and useful for many problems.
By generating the state evolution of each component, the
structure function is computed to determine the state of the
system, while survival signature is a summary of the struc-
ture signatures, which is efficient to deal with the complex
configuration systems.

A survival signature-based method is proposed in this
paper, which is efficient to analysis repairable system relia-
bility. This is essential when dealing with complex repairable
systems since they can only be analyzed through simulation
method. In order to find out the most “critical” component
in the system, new component importance measures which
based on survival signature are introduced to analysis indi-
vidual component and component sets respectively. What is
more, a new relative criticality index is used to quantify the
importance degree of the component. There exists imprecise
survival signature if the full configuration of the system
is unknown or only uncertain survival signature is known
due to confidential contract, it is essential to deal with the
imprecision by simulation methods. Therefore, the intervals
of the survival function of the complex system can be gotten.
The applicability of the proposed approach is demonstrated
by solving the numerical examples.

This paper is organized as follows. Section 21.2 gives
a conception and relationship between the structure func-
tion and survival signature. The relative importance index
and quantitative importance index to perform importance
and sensitivity analysis on complex repairable systems are
proposed in Sect. 21.3. Section 21.4 shows how to deal
with the imprecise survival signature. The applicability and
performance of the proposed approaches are presented in
Sect. 21.5. Finally Sect. 21.6 closes the paper with conclu-
sions.

21.2 Relationship Between Structure
Function and Survival Signature

For a system with m components, let state vector x =
(x1, x2, . . . , xm) ∈ {0, 1}m, with xi = 1 if the ith component
works and xi = 0 if not. The structure function φ(x) :
{0, 1}m → {0, 1}, defined for all possible x, takes the value
1 if the system functions and 0 if not for state vector x.
In this paper, attention is restricted to coherent systems,
for which φ(x) is not decreasing in any of the components
of x, so system functioning cannot be improved by worse
performance of one or more of its components. It is further
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assumed that φ(0) = 0 and φ(1) = 1, so the system fails
if all its components fail and functions if all its components
function.

Now consider a system with K ≥ 2 types of compo-
nents, with mk components of type k ∈ {1, 2, . . . , K} and
∑K

k=1 mk = m. Assume that the random failure times of
components of the system type are exchangeable, while full
independence is assumed for components belong to different
types. The components of the same type can be grouped
together due to the arbitrary ordering of the components
in the state vector, which leads to a state vector can be
presented as x = (x1, x2, . . . , xK), with xk = (xk1, x

k
2, . . . , x

k
mk

)

illustrating the states of the components of type k. Coolen
[7] introduced the survival signature for such a system,
denoted by Φ(l1, l2, . . . , lK), with lk = 0, 1, . . . , mk for k =
1, 2, . . . , K, which is defined to be the probability that the
system functions given that lk of its mk components of type k
work, for each k ∈ {1, 2, . . . , K}.

There are
(mk

lk

)
state vectors xk with

∑mk
i=1 x

k
i = lk (k =

1, 2, . . . , K), and let Sl1,l2,...,lK denote the set of all state vectors
for the whole system. Due to independent and identical
distributed (iid) assumption, all the state vectors xk ∈ Sklk
are equally likely to occur, so the survival signature can be
written as:

Φ(l1, . . . , lK) =
[

K∏

k=1

(
mk

lk

)−1
]

×
∑

x∈Sl1 ,...,lK
φ(x) (21.1)

It can be seen from Eq. 21.1 that survival signature is a
summary of structure functions. Let Ck(t) ∈ {0, 1, . . . , mk}
denote the number of k components working at time t. As-
sume that the components of type k have a known cumulative
distribution function (CDF) Fk(t) and the component failure
times of different types are independent; then:

P

(
K⋂

k=1

{Ck(t) = lk}
)

=
K∏

k=1

P(Ck(t) = lk)

=
K∏

k=1

(
mk

lk

)

[Fk(t)]mk−lk [1 − Fk(t)]lk (21.2)

Hence, the survival function of the system with K types of
components becomes:

P(Ts > t) =
m1∑

l1=0

. . .

mK∑

lK=0

Φ(l1, . . . , lK)P

(
K⋂

k=1

{Ck(t) = lk}
)

(21.3)

Equation 21.3 shows that the survival signature can sep-
arate the structure of the system from the failure time distri-
bution of its components, which is the main advantage of the
system signature. What is more, the survival signature only

needs to be calculated once when perform reliability analysis
on the same system. The survival signature is closely related
with system signature. For a special case of a system with
only one type (K = 1) of components, the survival signature
and the Samaniego’s system signature are directly linked
to each other through a simple equation [7]; however, the
latter cannot be easily generalized for systems with multiple
types (K ≥ 2) of components. As a result, the survival
signature cannot only hold the merits of system signature
but is efficient for complex systemwith multiple components
types.

21.3 Importance and Sensitivity Analysis
on Repairable System

Component importance measures and sensitivity analysis
is evaluable in real engineering world. The existing im-
portance measures are mostly calculated through analytical
approaches, and application of these measures to complex
repairable systems may be intractable. In order to overcome
intractability, two important measures work by figuring out
how much each component or a component set contribute to
system unavailability. What is more, another index is used to
quantify the importance degree of the specific component and
component set. It always takes the systemwithm components
which belong to K component types, for example, in this
section.

21.3.1 Reliability Analysis on Repairable
System

If a system with m components is repairable [12], the state
transition diagram of a component is presented in Fig. 21.1.
The schematic diagram of the m components status and the
corresponding system performance can be seen in Fig. 21.2.

Work

Fail

Fig. 21.1 State transition diagram of a component
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Fig. 21.2 Schematic diagram of the m components status and the
corresponding system performance

The reliability analysis on repairable systems can turn
to structure function-based method and survival signature-
based method, respectively.

For the structure function-based method, it is essential to
estimate the system status at each critical time points, which
means the beginning time for each component fails and the
its finish time to repair.

While for the second repairable system reliability analysis
method, it is based on the survival signature, and it uses the
system “production level” idea that is proposed in [29].

The flowchart of the repairable system survival function
is evaluated by structure function, and survival signature can
be seen in Fig. 21.3. These algorithms can be obtained from
the approach proposed by one of the authors in [29].

21.3.2 ImportanceMeasure of a Specific
Component

The relative importance index RIi(t) of the ith component at
time t that first used in [14] can be extended to analyze the
importance degree of components in the repairable system.
To be specific, it is the repairable system survival function
probability differences if the ith component works or not. The
mathematical expression formula of the relative importance
index which is based on survival signature can be expressed
as:

RISSi (t) = P(TS > t | Ti > t) − P(TS > t | Ti ≤ t) (21.4)

where P(TS > t | Ti > t) represents the probability that
the repairable system works knowing that the ith component
functions; P(TS > t | Ti ≤ t) denotes the repairable system
survival probability if the same component fails.

However, since the relative importance index calculated
by survival signature needs to know the survival signature
of the new system. If the system is complex, it is a time-
consuming work. Therefore, the structure function-based
relative importance index has been introduced to identify the
specific component’s importance degree; its equation is:

RI SF
i (t) = P(TS > t | xi repairable)

− P(TS > t | xi non-repairable) (21.5)

where P(TS > t | xi repairable) means the survival function
of the repairable system if the ith component can be repaired
normally, while P(TS > t | xi non-repairable) indicates the
probability that the system functions knowing that the same
component cannot be repaired after failure.

21.3.3 ImportanceMeasure of a Set of
Components

It is sometimes important to evaluate the importance of
a set of components instead of a specific one in the real
engineering world. Therefore, the relative importance index
for a specific component can be extended to component set
of k, which can be denoted by RIk(t). The set of components
can be either in one single type or different types.

For the first situation,RIk(t) is convenient to combine with
the survival signature, and it is the probability difference
values of the repairable system works if the components
of type k are repairable or they cannot be repaired. The
expression can be written as follows:

RISSk (t) = P(TS > t | lk repairable)
− P(TS > t | lk non-repairable) (21.6)

where P(TS > t | lk repairable) represents the probability
that the repairable system works if components of type k
are repairable; P(TS > t | lk non-repairable) denotes the
probability that the repairable system functions knowing that
the components of type k cannot be repaired.

While for the second condition, it is more efficient to
analyze the importance degree of a set of components that
belong to different types. The mathematical equation of the
structure function-based method is:

RI SF
k (t) = P(TS > t | xki repairable)

− P(TS > t | xki non-repairable) (21.7)

where P(TS > t | xki repairable) means the survival probabil-
ity of the repairable system if the set of the ith component
of type k is repairable; here i ∈ (1, 2, . . . , mk) and k ∈
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Compute structure function F and survival signature �

Sample components transition times

Update 
component status Ck 

is ti  smaller than
the mission time?

Identify smallest transition time
and its corresponding component

Collect survival signature 
�(C1,C2, ..., Ck) for ti−1 to ti

Yes

Sample the next transition time

Yes

No

New sample

Plot survival function

Update
component status Xi 

Collect structure function
F (X1,X2, ..., Xm) for ti−1 to ti 

Fig. 21.3 Flowchart of structure function and survival signature based survival function evaluation method for repairable system

(1, 2, . . . , K). P(TS > t | xki non− repairable) represents the
survival function of the system given that the ith component
of type k set is non-repairable.

It can be seen that both RIi(t) and RIk(t) are time-
dependent and both of them can be calculated by survival
signature-based method and structure function-based
method, respectively. What is more, they reveal the trend
of the importance degree of a specific component or a set of
components within the repairable system during the survival
time. The bigger the value of RIi(t) or RIk(t) is, the more
“critical” is the ith component or the set of components on
the repairable system reliability at a specific time t, and
vice versa. This helps to allocate resources, which might

include resources for reliability improvement, surveillance
and maintenance, design modification, security, operating
procedure, training, quality control requirements, and a
wide variety of other resource expenditures. By using the
importance of a specific component or a set of components,
resources expenditure can be properly optimized to reduce
the total life cycle resource expenditures while keeping the
risk as low as possible. In other words, for a given resource
expenditure such as formaintenance, the importancemeasure
of a specific component or set of components can be used
to allocate resources to minimize the total system risk. This
approach allows the risk manager to offer the “biggest bang
for the buck” [21].
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21.3.4 Quantify Importance Degree

In order to quantify importance degree of the specific com-
ponent or a set of components, the quantitative importance
index (QI) is introduced in this paper. The numerically ob-
tained index for a repairable system is through Monte Carlo
simulation method which is based on survival signature and
structure function. The failure times of the system can be
gotten through each trial; after having simulated many histo-
ries of the system, estimates are made of the desired relative
criticality index statistically. For a systemwithm components
belonging toK types, the quantitative importance index of the
specific component i is expressed as:

QIi = Nf
i

max
{
Nf
1, . . . , N

f
i , . . . , N

f
m

} (21.8)

where Nf
i represents average number of system failures if

the ith component cannot repair while the other components
can be repaired normally; and max{Nf

1, . . . , N
f
i , . . . , N

f
m} de-

notes the biggest value of all Nf
i with i = 1, 2, . . . , m.

Similarly, for component set k, the QI can be written as:

QIk = Nf
k

max
{
Nf
1, . . . , N

f
k , . . . , N

f
K

} (21.9)

where Nf
i denotes the average failure number of the system if

the component set k are non-repairable but the other com-
ponent sets are repairable, while max{Nf

1, . . . , N
f
k , . . . , N

f
K}

denotes the maximum number of all Nf
k with k = 1, 2, . . . , K.

These two indexes can quantify the importance degree of a
specific component and a component set respectively, and the
quantitative importance index values of all the components
are comparedwith the biggestQI value. Therefore, the bigger
the value is, the bigger influence of the ith component or the
component set k on the repairable system.

21.4 ImprecisionWithin Survival Signature

Imprecise probability [10] generalizes classical probability
in the sense that uncertainty about events are quantified via
intervals, instead of single numbers. For example, the interval
of an uncertain event A is [P(A), P(A)] with 0 ≤ P(A) ≤
P(A) ≤ 1, where P(A) is called the lower probability for
event A, P(A) is called the upper probability for event A, and
Δ(A) = P(A)−P(A) is called the imprecision for eventA [6].

As requirements for system quality have increased, the
need for high system reliability is also increasing [26]. In the
real industrial world, it is sometimes difficult to know the full
configuration of the system if there has confidential contract
of the company or only know the bounds of survival signature

due to lack of data. The interval of the survival signature can
be presented by [Φ(l1, . . . , lK),Φ(l1, . . . , lK)]; therefore, the
lower bound of the survival function of the system is:

P(Ts > t) =
m1∑

l1=0

. . .

mK∑

lK=0

Φ(l1, . . . , lK)

P

(
K⋂

k=1

{Ck(t) = lk}
)

(21.10)

and the corresponding upper bound of the survival function
is:

P(Ts > t) =
m1∑

l1=0

. . .

mK∑

lK=0

Φ(l1, . . . , lK)

P

(
K⋂

k=1

{Ck(t) = lk}
)

(21.11)

It can be seen that the limited information about the
survival signature can be used to derive bounds of the lower
and upper survival function of the system.

21.5 Numerical Examples

Figure 21.4 shows the block diagram of a simplified auxiliary
feed water system, which consists of fourteen components
that belong to six component types, while Table 21.1 indi-
cates the distribution types and parameters for failure process
(1 → 2) and repair process (2 → 1) of all the components.

21.5.1 Importance and Sensitivity Analysis

Let’s first perform the importance measure of a specific
component which is based on structure function. The results
can be seen in Fig. 21.5.

1
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Fig. 21.4 The complex repairable system with six types of compo-
nents. The numbers inside the component boxes indicate the component
type. The numbers above the component boxes indicate the component
indices
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It is clear that component 14 always has higher rela-
tive importance index than the other 13 components, which
means it is the most “critical” component in the repairable
system. Then it comes to component 8. Component 13 has
litter relative importance index values at the first time; how-
ever, its relative importance index values become bigger and
bigger as time goes on, which just follows components 14
and 8. Component 1 and component 2 have similar relative
importance values, which are sometimes crossover. The same
circumstance occurs on components 4 and 6. The relative

Table 21.1 Distribution for failure and repair process of components

Component type Process Distribution Parameters

1 1 → 2 Exponential 2.3

1 2 → 1 Uniform (0.4,0.6)

2 1 → 2 Exponential 1.2

2 2 → 1 Uniform (0.9,1.1)

3 1 → 2 Weibull (1.7,3.6)

3 2 → 1 Uniform (0.6,0.8)

4 1 → 2 Lognormal (1.5,2.6)

4 2 → 1 Uniform (1.0,1.2)

5 1 → 2 Weibull (3.2,2.5)

5 2 → 1 Uniform (1.2,1.4)

6 1 → 2 Gamma (3.1,1.5)

6 2 → 1 Uniform (1.1,1.3)

importance of the five components (3, 5, 7, 9, 10) is always
within 0.1, which means they have less importance influence
degree than that of other components on the repairable sys-
tem.

In the real application world, sometimes people want to
know the importance degree of a set of components, i.e., the
relative importance index of components of set 1 to set 6 in
this repairable system. Figure 21.6 shows the results of them.

It can be seen that the relative importance index values
of component sets 1 and 2 are bigger than that of other
component sets; therefore, components of type 1 and 2 are
more important than components of other types in this re-
pairable system. On the contrary, component set 4 is the least
important within the system because it has the smallest values
of relative importance index. The values of component set
1 are higher than 2 at the beginning time; however, their
values are the same as the survival time goes on. Component
set 5 has lower relative importance values than component
sets 3, but the values go up and rank the third within the six
component sets in the last. Component sets 3 and 6 have the
same relative importance values trend, although the value of
set 5 is bigger than that of set 6 at the beginning time.

When it comes to analyzing the importance degree of
a set of components which belong to different types, the
efficient structure function method can be used. Suppose it is
a necessary to perform sensitivity analysis on six component
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Fig. 21.5 Relative importance index of the specific component in the system
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Fig. 21.6 Relative importance index of the component sets with same type in system
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Fig. 21.7 Relative importance index of the component sets with different types in system
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sets, that is, set 1 with three components (5, 7, 9), set 2 with
components (1, 6, 10), set 3 with components (3, 4, 13), set
4 with components (2, 8, 13), set 5 with components (12,
14), and set 6 with four components (1, 3, 7, 9). Figure 21.7
indicates the importance degree of these six component sets
which belong to different component types.

It can be gotten from the above figure that the relative
importance index value of different sets at each time. For
example, at time t = 8, component set 5 has the biggest influ-
ence on this repairable system. Then it comes to component
set 4 and 3. The component sets 6 and 2 ranked the fourth
and fifth, respectively, while component set 1 has the least
relative importance index value.

If using the quantitative importance index to quantify the
importance degree during the survival time, the QI of a
specific component and different types component set can be
seen in Figs. 21.8 and 21.9, respectively.
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Fig. 21.8 Quantitative importance index of the specific component in
the system
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Fig. 21.9 Quantitative importance index of the component sets with
different types in the system

The first figure shows that component 14 is the most
“critical” one to the whole system, while the second figure
indicates set 5 with components (12 14) has the biggest
influence degree on the repairable system.

21.5.2 ImprecisionWithin the System

Due to lack to exact data or the confidential contract of
the company, the precise configuration of the system or the
survival signature cannot be gotten. Figure 21.10 shows a
coherent system with an imprecise part, that is, the con-
figuration of the fifteen components which belong to five
component types cannot be known exactly. To be specific, the
unknown part of the system is composed of two components
of type 5 and one component of type 3 and 6, respectively.
Therefore, the survival signature of this coherent system is
imprecise with bounds. What is more, there exists impreci-
sion within the component failure times, just as Table 21.2
indicates.

The upper and lower survival function bounds of the
coherent imprecise system can be calculated through the
Monte Carlo simulationmethod, which is performed by using
100,000 samples. The reliability intervals of the imprecise
system can be seen in Fig. 21.11. This example indicates
that the simulation method is general to deal with imprecise
systems, despite the imprecision within the survival signature
or component failure parameters.
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Fig. 21.10 Imprecise coherent system with fifteen components which
belong to five types

Table 21.2 Distribution for failure and repair process of components

Component type Distribution type Imprecise parameters

1 Exponential [2.1, 2.5]

2 Exponential [0.9, 1.4]

3 Weibull ([1.6,1.8], [3.3,3.9])

4 Lognormal ([1.3,1.8], [2.3,2.9])

5 Weibull ([3.1,3.3], [2.3,2.7])

6 Gamma ([2.9,3.3], [1.3,1.8])
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Fig. 21.11 Intervals of the survival function of the imprecise system
in Fig. 21.10

21.6 Conclusions

This paper mainly focuses on complex repairable systems.
The efficient simulation methods which are based on
structure function and survival signature have been proposed,
respectively. The survival signature is a summary of structure
function, which opens a new pathway for reliability analysis
on complex repairable systems.

In order to find out which component or component set
is “critical” to the whole repairable system, the importance
and sensitivity analysis is needed. Therefore, engineers can
allocate the limited resources to the most important compo-
nent or component set. To be specific, relative importance
index of a specific component and a set of components
which based on structure function and survival signature are
presented in this paper. All of relative importance index are
time-dependent, so it is easy to identify which component
has the biggest influence degree on the repairable system at
each time. In order to quantify importance degree of them
during the survival time, the quantitative importance index is
introduced.

Sometimes the full configuration of the system is un-
known if there has confidential contract or only know the
bounds of survival signature due to lack of data. What is
more, there exist imprecision within the component failure
parameters. All of these will lead to survival function inter-
vals of the system.

The feasibility and effectiveness of the proposedmeasures
which based on simulationmethod are demonstrated by some
numerical examples; the results show that the approaches
are useful for analyzing component importance of complex
repairable systems and the system with imprecision.
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Abstract

Hardware and software together are now part and par-
cel of almost all the modern devices. Hence, the study
of both hardware reliability and software reliability has
become very important in order to ensure availability
of the devices. There are several distinct differences be-
tween hardware and software, and hence, even though
the definition of reliability in both the cases remains the
same, finding out reliability of a hardware may call for
a different methodology than that for a software. Since a
software cannot be seen, nor can it be touched, finding
out reliability of a software becomes difficult as such. In
this chapter we discuss in brief the concepts and method-
ologies adopted to find out reliabilities of software and
hardware.We also discuss some basic differences between
hardware and software. A few important methods used
for estimating hardware and software reliability have been
discussed in brief. A thorough bibliography has been
provided for the readers to look into the details of the
methodologies wherever required.

Keywords

Hardware and software reliability · Hazard rate · System
reliability · Censoring · Accelerated life testing ·
Repairable system · Maintainability · Software
validation · Software testing · Optimum time for testing

22.1 Hardware Reliability

This chapter discusses about various reliability concepts. It
starts with a general introduction to reliability data and use-
fulness of reliability analysis and modeling. Further, various
types of reliability modeling including system reliability,
censoring, accelerated life testing, repairable system, etc. are
discussed. This chapter also presents a list of references.

© Springer-Verlag London Ltd., part of Springer Nature 2023
H. Pham (ed.), Springer Handbook of Engineering Statistics, Springer Handbooks,
https://doi.org/10.1007/978-1-4471-7503-2_22

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-7503-2_22&domain=pdf
https://orcid.org/0000-0003-0808-2904
https://orcid.org/0000-0002-8226-184X
https://orcid.org/0000-0003-4848-1627
https://doi.org/10.1007/978-1-4471-7503-2_22


416 A. K. Chakraborty et al.

22.1.1 Introduction

The reliability engineering field was developed mainly dur-
ingWorldWar II. Problems related to maintenance and avail-
ability of equipment forced the Department of Defense to
develop the area of reliability engineering. Initially, Depart-
ment of Defense, through sponsored research, developed a
significant part of reliability theory. Federal Aviation Admin-
istration and Department of Defense recognized the urgent
need to develop Reliability requirements with the introduc-
tion of solid-state electronics and more complex equipments.
Reliability is no longer a desirable, but vague, adjective; it is
now a well-defined and often specifically required statistic. It
has also gained momentum among practicing engineers and
researchers. Reliability concepts in all phases of the product
life cycle from design to manufacture have resulted in devel-
oping cost-effective systems that result in better performance.
In the medical field, while studying about the life of patients,
survival analysis is widely used.

Earlier, the product designers were primarily responsible
for creating a design that would meet the “performance”
requirements. For example, a pump should do the needed
pumping at good efficiency. Now there is a paradigm shift
in this thought process. Designers are strongly influenced
by the fact that the “performance” requirements need to be
sustainable for a specified period of time.

A general definition of reliability can be the probability
that a product will perform the specified functions without
failure, under required environmental and operational condi-
tions, for a defined period of time. This definition focuses on
four important points: probability of survival, performance
requirements of the product, customer usage conditions, and
expected life or time to failure [33].

Reliability Function
Let the random variable X be the lifetime or the time to
failure of a component. The probability that the component
survives until sometime t is called the reliability R(t) of the
component:

R(t) = P(X > t) = 1 − F(t) (22.1)

where F is the distribution function of the component life-
time, X. Thus:

R(t) = P(X > t) =
∫ ∞

t
f (x)dx (22.2)

f (x) is the density function.
If the random variable X follows exponential distribution

with failure rate λ, then the reliability function R(t) can be
estimated as:

R(t) =
∫ ∞

t
λe−λxdx (22.3)

Hence, in this case, R(t) = e−λt. Thus, the reliability function
can be estimated for the failure data of system, sub-system,
or component after identifying the underlying distribution.

Expected Life
The expected life or the expected time during which a com-
ponent will perform successfully, is defined as:

E(t) =
∫ ∞

0
xf (x)dx (22.4)

When the system being tested is renewed through main-
tenance and repairs, E(t) is also known as the mean time
between failures (MTBF) otherwise mean time to failure
(MTTF).

The Failure Rate and Hazard Rate Function
The probability of failure of a system in a given time interval
[t1, t2] can be expressed in terms of the reliability function as:

t2∫

t1

f (t)dt =
∞∫

t1

f (t)dt −
∞∫

t2

f (t)dt = R(t1) − R(t2) (22.5)

The rate at which the failure occurs in a certain interval of
time [t1, t2] is called the failure rate during that interval. It is
defined as the conditional probability that a failure occurs in
the interval, given that a failure has not occurred prior to t1,
the beginning of the interval. Thus, the failure rate is:

R(t1) − R(t2)

(t1 − t2)R(t1)
(22.6)

If the interval is refined as [t, t+Δt], then the above equation
becomes:

R(t) − R(t, t + Δt)

ΔtR(t)
(22.7)

The hazard function is defined as the limit of the failure
rate as the interval approaches zero. Thus, the hazard function
is the instantaneous failure rate. The hazard function h(t) is
defined as:

h(t) = lim
Δt→0

R(t) − R(t, t + Δt)

ΔtR(t)
= 1

R(t)

[
− d

dt
R(t)

]
= f (t)

R(t)
(22.8)

The Concept of the Bathtub Curve
The hazard function h(t) will change over the lifetime of
products. The whole pattern of failures could be depicted
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by a bathtub curve as shown in Fig. 22.1. This curve can be
divided into three different parts, viz., infant mortality period,
useful life period, and wear-out period (refer Nelson [48]).

Infant Mortality Period
Infant mortality period is characterized by rapidly decreas-
ing failure rate starting with high failure rate, the failures
show up in the form of poor welds or seals, poor solder
joints, poor connections, contamination on surfaces, chem-
ical impurities in metals, voids/cracks in protective coatings,
incorrect positioning of parts, etc. Early failures can be
prevented through improved process control during manu-
facturing. The practice of shaking-off and burning-in on new
products and equipment is designed to discover the weak
items and get rid of them before further usage or dispatch to
customers.

Useful Life Period
Useful life period is characterized by chance failure, which
means, any failure whose cause and/or mechanism makes
its time of occurrence unpredictable but which is predictable
only in a probabilistic or statistical sense. When the lifetime
is governed by exponential law, the failure rate during useful
life period will be a constant, denoted by, λ. The causes
of failure are the limitations inherent in design, usage, and
maintenance. The prevention of failures can be achieved
through:

• Improvement in design
• Provision for redundancy
• Better maintenance

Wear-Out Period
This period is characterized by rapidly increasing failure rate
with increasing age as a result of deterioration processes
or mechanical wear. The deterioration process may include
corrosion/oxidation, insulation breakdown or leakage, ionic

migration of metals in vacuum or on surfaces, and shrinkage
or cracks in plastics. When the failure rate due to wear out
becomes unacceptably high, replacement or repair of the item
is to be undertaken.

22.1.2 Reliability Models/Distributions

Quite a few distributions are used for modelling the life data.
A few of the most commonly used distributions and the
corresponding reliability functions are discussed below.

Exponential Distribution
Exponential distribution is widely used in reliability mod-
elling and prediction because of its simple properties. An
exponential distribution with failure rate λ is defined as:

f (t) = λe−λt, t ≥ 0 and λ > 0 (22.9)

The reliability function:

R(t) = e−λt, t ≥ 0 (22.10)

The hazard function is:

h(t) = f (t)

R(t)
= λ (22.11)

Log Normal Distribution
The density function of log normal distribution is

f (t) = 1

ρt
√
2π

exp

[
−1

2

(
ln t − μ

σ

)2
]
, t ≥ 0 (22.12)

The cumulative distribution function:

F(t) =
t∫

0

1

ρx
√
2π

exp

[
−1

2

(
ln x− μ

σ

)2
]
dx (22.13)

This can be written in terms of the standard normal deviate
z as:

F(t) = P[X ≤ t] = P

[
Z ≤ ln t − μ

σ

]

The reliability function is:

R(t) = P[X > t] = P

[
Z >

ln t − μ

σ

]
(22.14)

The hazard function is:

h(t) = f (t)

R(t)
=

φ
(

ln t−μ

σ

)

tσR(t)
(22.15)
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where φ is the standard normal probability density function
and μ and σ are the mean and standard deviation of the
natural logarithm of time to failure.

Weibull Distribution
The probability density function for Weibull distribution is:

f (t) = β(t − δ)β−1

(θ − δ)β
exp

[
−

(
t − δ

θ − δ

)β
]
, t ≥ δ ≥ 0

(22.16)

where β is the shape parameter and (θ − δ) is the scale pa-
rameter. The reliability and hazard function are, respectively:

R(t) = exp

[
−

(
t − δ

θ − δ

)β
]

(22.17)

h(t) = β(t − δ)β−1

(θ − δ)β
(22.18)

Gamma Distribution
The density function, reliability function, and the hazard
function for gamma distribution are as follows:

f (t) = λη

Γ (η)
tη−1e−λt, t ≥ 0, η > 0, λ > 0, (22.19)

where η is the shape parameter and λ is the scale parameter.

R(t) = 1 − F(t) =
η−1∑
k=0

(λt)k exp[−λt]
k! (22.20)

h(t) =
λη

Γ (η)
tη−1e−λt

η−1∑
k=0

(λt)k exp[−λt]
k!

(22.21)

Smallest Extreme Value Distribution
The density function, reliability function, and the hazard
function for the smallest extreme value distribution are as
follows:

f (t) = 1

σ
ΦSEV

(
t − μ

σ

)
(22.22)

Where −∞ < μ < ∞ is the location parameter, σ > 0 is
the scale parameter, and:

ΦSEV = exp
(
t − μ

σ

)
exp

{
− exp

(
t − μ

σ

)}
(22.23)

R(t) = 1 − ΦSEV

(
t − μ

σ

)
(22.24)

h(t) = 1

σ
exp

(
t − μ

σ

)
(22.25)

Largest Extreme Value Distribution
The density function, reliability function, and the hazard
function for the largest extreme value distribution are as
follows:

f (t) = 1

σ
ΦLEV

(
t − μ

σ

)
(22.26)

where −∞ < μ < ∞ is the location parameter, σ >

0 is the scale parameter, −∞ < t < ∞ and ΦLEV =
exp

(
μ−t
σ

)
exp

{− exp
(

μ−t
σ

)}

R(t) = 1 − ΦLEV

(
t − μ

σ

)
(22.27)

h(t) = exp
( t−μ

σ

)
σ

{
exp

[
exp

( t−μ

σ

)] − 1
} (22.28)

Logistic Distribution
The density function, reliability function, and the hazard
function for logistic distribution are as follows:

f (t) = 1

σ
Φlogis

(
t − μ

σ

)
(22.29)

where −∞ < μ < ∞ is the location parameter and σ > 0
is the scale parameter.

R(t) = 1 − Φlogis

(
t − μ

σ

)
(22.30)

h(t) = 1

σ
Φlogis

(
t − μ

σ

)
(22.31)

Loglogistic Distribution
The density function, reliability function, and the hazard
function for log-logistic distribution are as follows:

f (t) = 1

σ t
Φlogis

(
log t − μ

σ

)
(22.32)

where σ > 0 is the scale parameter, t > 0, and:

Φlogis =
exp

(
− ln t−μ

σ

)
[
1 + exp

(
− ln t−μ

σ

)]2

R(t) = 1 − Φlogis

(
logt − μ

σ

)
(22.33)

h(t) = 1

σ t
Φlogis

(
logt − μ

σ

)
(22.34)



22 Hardware and Software Reliability, Verification, and Testing 419

22

22.1.3 System Reliability

A system consisting of two or more parts or components is
designed to perform one or more of functions. In different
systems, these components can have different configurations.
The reliability-wise configuration of the components to be
studied to prepare a reliability block diagram. The estimation
and prediction of system reliability is based on the type
of configuration of the components or subsystems. These
configurations can be a pure series or parallel arrangement
or a very complex configuration. The following are the most
commonly used system configurations.

• Series system
• Parallel system
• k-out-of-n system
• Complex system

Series System
The series system is the one in which every component must
function if the system is to function. Complex systems are
sometimes subdivided into a series arrangement for analysis
by properly grouping components into a unit such that the
units are in series. A schematic representation of the series
system is provided in Fig. 22.2.

Let ti be the random variable of the time to failure for the
ith component; then for an n component series system, the
system reliability is:

RS(t) = P [t1 > t ∩ t2 > t ∩ · · · ∩ tn > t] (22.35)

If we assume independence, then:

RS(t) = P(t1 > t)P(t2 > t) · · ·P(tn > t)

or, RS(t) =
n∏
I=1

P(ti > t) =
n∏
i=1

Ri(t) (22.36)

Example 1 A simple computer consists of a processor, a bus,
and a memory. The computer will work only if all three
are functioning correctly (Fig. 22.3). The probability that the
processor is functioning is 0.99, that the bus is functioning
0.95, and that the memory is functioning is 0.99. What is the
probability that the computer will work?

1 2 3

Fig. 22.2 Reliability block diagram for series system

Solution: System Reliability = 0.99 × 0.95 × 0.99 =
0.931095. So, even though all the components have 95% or
more reliability, the overall system reliability of the system
is only 93%.

Example 2 An electronic product contains 100 integrated
circuits. The probability that any integrated circuit is defec-
tive is 0.001, and the integrated circuits are independent. The
product operates only if all the integrated circuits are opera-
tional. What is the probability that the product is operational?
Solution: The probability that any component is functioning
is 0.999. Since the product operates only if all 100 compo-
nents are operational, the probability that the 100 compo-
nents are functioning is system reliability = (0.999)100 =
0.9047921. The reliability is just over 90% even though each
component has a reliability of 99.9%.

Parallel System
This is a system that will fail only if all the components or
subsystems fail. This means any of the elements in parallel
structure permit the system function. A block diagram of the
parallel system is presented in Fig. 22.4.

In this case, the system will work if at least one of
the n components works. Hence, the expression for system
reliability is:

Processor

Input Output0.99 0.95 0.99

Bus Memory

Fig. 22.3 Reliability block diagram for Example 1

1

2

n

Fig. 22.4 Reliability block diagram for parallel system
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RS = 1 − (1 − R1)(1 − R2) · · · (1 − Rn) = 1 −
n∏
i=1

(1 − Ri)

(22.37)

Example 3 A subassembly has a high failure rate of λ =
0.002 per hour. As an insurance backup, a second subassem-
bly is kept in a standby mode. What is the reliability of such
a system for a period of thousand hours?
Solution: Here, R = R1 = R2 = e−0.002×1000 = 0.8187,
Rs = 1 − (1 − R)(1 − R) = 0.9671.

K-out-of-n-structure
A k-out-of-n structure is defined as a system which works, if
and only if, at least k components out of the n the components
work where n is the total number of components and 1 ≤
k ≤ n. The k-out-of-n system is one of the most commonly
used configurations. In this configuration, all the components
have the same failure distribution, and the failure of one
component is independent of the failure of other components.

The reliability of a k-out-of-n system can be estimated
with the help of binomial distribution. In this case, the system
reliability RS can be defined as:

RS =
n∑
r=k

(
n

r

)
Rr(1 − R)n−r (22.38)

where n is the number of units in the system and k is the
minimum number of units required for functioning of the
system and R is the reliability of each unit in the system.

Example 4 A system consists of six components of which at
least four must function properly for the system to perform.
Each component has a reliability of 0.85 during the func-
tioning of the system. Estimate the probability of successful
performance of the system.
Solution: This system can be considered as a k-out-of-n
system, where k = 4 and n = 6,

RS =
6∑
r=4

0.85r(.85)6−r = 95.26%

The effect of increasing the number of units required for
successful performance of the system can be studied while
the total number of units remains constant (in this example,
six units). The Table 22.1 provides, the reliability of the k-
out-of-6 configuration versus different numbers of required
units.

Complex Systems
Certain design configurations may produce systems in which
pure parallel or series configurations are not appropriate.
Most of the smaller systems can be represented either by a

Table 22.1 Reliability for a k-out-6 system for different k values

k Reliability

1 0.9999

2 0.9996

3 0.9941

4 0.9526

5 0.7765

6 0.3772

1 2

3

Fig. 22.5 Reliability block diagram for Example 5

simple series or parallel configuration. But, there are large
systems, which may be a combination of series and paral-
lel configurations. The reliability of such systems can be
estimated by considering the individual series or parallel
subsystems. These subsystems can be further combined to
get the reliability estimate.

Example 5 Suppose a complex system consists of three
units/subsystems in which subsystems 1 and 2 are connected
in series. Further, subsystem 3 is connected in parallel
with the first two subsystems, as shown in Fig. 22.5.
Calculate the system reliability at 100 hours if R1 = 0.995,
R2 = 0.987, and R3 = 0.973. First, the reliability of the
series segment consisting of Units 1 and 2 is calculated as,
R1,2 = R1×R2 = 0.995×0.987 = 0.9820654. The reliability
of the overall system is then calculated by treating Units 1
and 2 as one unit with a reliability of 98.2065% connected in
parallel with Unit 3. Therefore, the system reliability Rs is:

RS = 1 − (1 − 0.982065)(1 − 0.973)

= 1 − 0.17935 × 0.027

= 0.99515755

= 99.95%

Example 6 Consider an equipment/system which has seven
subsystems with the following configuration (Fig. 22.6). Es-
timate the system reliability by considering the subsystem
reliability values provided in the diagram.
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R1=0.9

A C

a

b d

c

R2=0.8

R3=0.8

R7=0.9

R4=0.8 R5=0.9 R6=0.9

Fig. 22.6 Reliability block diagram for Example 6

A C
RS1=0.881 R6=0.9

R7=0.9

Fig. 22.7 Modified reliability block diagram for Example 6

For calculating the system reliability, first, subsystems
which are connected as series or parallel can be considered.
Further, by combining the subsystems, the system reliability
can be calculated. For example:

Ra = R1R2 = 0.72

Rb = R3R4R5 = 0.576

Now, Ra and Rb are connected in parallel, and hence its
reliability can be estimated as RS1 = 0.881. Now the system
can be represented as presented in Fig. 22.7.

Using similar arguments, the system reliabilityRS = 0.979.
Thus, the reliability of the system is 0.979.

22.1.4 Censoring

Consider a situation of performing reliability testing of n
(non-repairable) units taken randomly from a population. We
are investigating the population to determine if its failure rate
is acceptable.

A life testing or observing the life data for a product/com-
ponent in real life can be censored at a particular time or when
a particular number of failures are observed. In fact the test
can continue till all the products/components fail. But this
will prolong the test duration and become very expensive.
Also sometimes it is not possible to test till all the units in
test fail. Hence, most of the life tests are censored. There
are various types of censoring schemes available. The most
common among them are known as type-1 censoring, type-2
censoring, hybrid censoring, and interval censoring.

Type I Censoring
Consider a life testing scenario with n units under test. This
test is continued until time period T and observe howmany of
these units have failed and how many of them are surviving.
This type of censoring scheme is known as Type I censoring.
During this time period T , let the number of failures be r, 0 ≤
r ≤ n. Let t1, t2, . . . , tr be the exact time to failure of these r
units. The remaining n-r units survived after the time period
T . In this case T is fixed and r is random. The data on time
to failure for the r failed units are recorded. This censoring
scheme is also known as “right censoring,” as data larger than
T is not available. Let, in this case, the mean life θ̂ can be
estimated as follows:

Define δi, such that δi = 1, if the unit has failed and δi = 0,
if the unit is censored.

θ̂ =

n∑
i=1

{δiti + (1 − δi)T}
r

(22.39)

where “n” is the number of units in test, “T” is the time
interval, and “r” is the number of failures. The confidence
interval for θ̂ can be obtained as:

X2
1− α

2 ,2r
≤ 2rθ̂

θ
≤ X2

α
2 ,2r

(22.40)

Type II Censoring
One disadvantage of Type-1 censoring scheme is that, there
may not be any failures at all during the time period T , under
observation. Hence, one can perform a life test until r failures
are observed out of n units under study. In this case, the test
is continued till r units have failed. As an example, consider
a life test with 50 units and the reliability engineer would
like to continue the test till 25 of them fails. In this case
n = 50 and r = 25. Also, note that the total time of the
life test is unknown until the test is completed. This type of
censoring scheme is known as Type-II censoring. In this case,
the observed failure times are t1, t2, . . . , tr, where r is fixed
prior to the test. In this case also, n − r units have survived
after the termination of the test.

In this scheme, it is known in advance regarding the total
number of failed units during the test. But, the termination
time of the test is not known in advance.

Type-II censoring scheme is also known as failure censor-
ing, as the test is terminated after a definite number of failures
are observed.

The mean life θ can be estimated as:

θ̂ =

r∑
i=1

Xi + (n− r)Xr

r
(22.41)



422 A. K. Chakraborty et al.

where “n” is the number of units in test and “r” is the number
of failures. The confidence interval for “θ” is defined as:

X2
1− α

2 ,2r
≤ 2rθ̂

θ
≤ X2

α
2 ,2(r+1) (22.42)

Hybrid Censoring
The hybrid censoring scheme is a mixture of type-I and type-
II censoring schemes. The test is terminated when a pre-
fixed number, r < n, out of n items have failed, or when a
pre-fixed time T , has been reached. In other words, the life
test is terminated at a random time T∗ = min(tr, T), where
tr is the failure time corresponding to the r-th failure. It is
also usually assumed that the failed units are not replaced
in the experiment. This hybrid censoring scheme, which was
originally introduced by Epstein [23], has been used quite
extensively in reliability acceptance test (Standard [59]).

Interval Censoring
Sometimes exact times of failures are not known; only an
interval of time inwhich the failure occurred is recorded. This
type of censoring scheme is known as interval censoring, and
the situation is shown in Fig. 22.8.

This type of censoring scheme is used in survival analysis
performed in medical field to study the efficacy of drugs or
treatment of specific disease, etc.

Progressive Censoring
None of the censoring schemes discussed above allow the
items to be withdrawn from the testing before the final
termination time of the testing. Sometimes units are lost or
removed from experimentation before failure. The loss may
occur unintentionally, or it may have been designed so in the
study. Unintentional loss may be due to accidental breakage
of an experimental unit or the individual under study drops
out from the study. Sometimes removal is pre-planned or
intentional. For example, to free up testing facilities for other
experimentation or to save time and cost, the removal of
experimental unit may be pre-planned. Intermediate removal
may also be desirable when removed items can be used
for some other tests. In view of this, a censoring scheme
is developed, known as progressive censoring, where tested

items could be withdrawn at different time points before the
end of the experiment [18]. In progressive censoring scheme,
items under test could be withdrawn at different time points
before the end of the experiment. This type of censoring
scheme is widely used in reliability and survival analysis.

To incorporate these situations, censoring is done in sev-
eral stages. Two important progressive censoring schemes
are type-I and type-II progressive censoring. In progressive
type-I censoring schemes, m censoring times t1, t2, . . . , tm
are prefixed, and n units are put on life test simultaneously
[8]. At time point ti remove Ri units, for i = 1, . . . , m of
the surviving units randomly from the test. The experiments
terminate at tm with Rm units still surviving. In progressive
type-II censoring scheme, n units are put on life test. At
the first failure, R1 units are randomly removed from the
remaining surviving units. At the second failure, R2 units are
randomly removed from the remaining (n − 2 − R1) units.
The test continues until the m-th failure, when all remaining
Rm units are removed. More examples are provided in [4–
7,18, 53, 62].

The likelihood function for progressive type – 1 interval
censoring can be written as (Aggarwala [2]):

L(θ) = [F(t1)]d1 × [1 − F(t1)]R1 × [F(t2) − F(t1)]d2
[1 − F(t2)]R2 × · · ·
× [F(tm) − F(tm−1)]dm[1 − F(tm)]Rm

=
m∏
i=1

[F(ti) − F(ti−1)]di[1 − F(ti)]Ri (22.43)

where F(0) = 0. For any assumed distribution for t, the pa-
rameters can be estimated by using this likelihood function.

As suggested in Aggarwala [2], if one parameter exponen-
tial distribution is assumed, then:

F(t) = 1 − e−
t
θ , t > 0, θ > 0. (22.44)

The corresponding likelihood function can be written as:

L(θ) =
m∏
i=1

[
e−ti−1/θ − e−ti/θ

]di × [
e−ti/θ

]Ri (22.45)

r1 fail

n units
start test

r4 fail n – �ri leftr3 failr2 fail

T2 T3 T4 Tk = TT10

Fig. 22.8 Schematic diagram of interval censoring
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If the life time is assumed to have lognormal distribution,
as discussed in Roy et al. [55], with PDF

f (t) = 1

tσ
√

π
exp

{
− 1

2σ 2
(ln t − μ)2

}
,

t > 0,−∞ < μ < ∞, σ > 0 (22.46)

The corresponding likelihood function can be written as:

L(θ) =
m∏
i=1

[
Φ

(
ln ti − μ

σ
− ln ti−1 − μ

σ

)]di

[
1 − Φ

(
ln ti − μ

σ

)]Ri
(22.47)

where Φ
(

ln ti−μ

σ

)
is the CDF for lognormal distribution.

By maximization of L(θ), one can obtain the MLE of
the respective parameters. Similarly, for any distribution of
t, L(θ) can be defined and MLE of the parameters can be
obtained.

Random Censoring in the Intervals
In the censoring schemes discussed so far, it was assumed that
the censoring occurs at the end of the inspection intervals. If
C is a random censoring time, an observation is censored in
the interval (ti−1, ti] if ti−1 < C ≤ ti, and C ≤ T (Meeker
and Escobar [40]). Similarly, an observation is a failure in
that interval if ti−1 < T ≤ ti and T ≤ C. Then the likelihood
function can be written as:

L(θ) = {P[(T ≤ C) ∩ (ti−1 < T ≤ ti)]}di × {P[(C ≤ T) ∩ (ti−1 < C ≤ ti)]}ri

=
⎧⎨
⎩

ti∫

ti−1

fT(t)[1 − FC(t)]dt
⎫⎬
⎭
di

×
⎧⎨
⎩

ti∫

ti−1

fC(t)[1 − FT(t)]dt
⎫⎬
⎭
ri

(22.48)

The MLE can be obtained for the parameters of any
assumed distribution based on L(θ).

22.1.5 Accelerated Life Testing

It is important for a manufacturer to study the reliability of
components and products, even if it has a very large life
span. In such situations, under normal operating conditions,
it may take a long time for the components and products
to fail and hence calculating reliability based on time to
failure data is extremely difficult. Under these circumstances,
concept of accelerated life testing is widely used in industry
to study the reliability of products. In accelerated life testing,
the components and products are subjected to a stress level
higher than the usual operating stress so that the failure
occurs more quickly. There can be various categories of
stress accelerating variables like mechanical, electrical, and
environmental (Nelson [48, 49]).

Accelerated Life Testing Models
Under the accelerated life testing scheme, the components
and products are subjected to different stress levels, say,
s1, s2, . . . , sn. The time to failure of the component or product
at each stress levels are then studied. This time to failure
data is used to obtain a suitable time to failure probability
distribution. Further, the parameters of the selected distribu-
tion are estimated. The following can be the basic functional

relationship between the normal operating conditions and
stress conditions applied to the component or product:

The time to failure, t0 = AFts, where t0 is the time to fail-
ure of the product under usual operating and environmental
conditions and ts is the time to failure under stress conditions
and AF, is defined as the acceleration factor. The cumulative
distribution function under normal operating condition is:

F0(t) = FS

(
t

AF

)
(22.49)

The probability density function is:

f0(t) =
(

1

AF

)
fS

(
t

AF

)
(22.50)

The hazard function is:

h0(t) =
(

1

AF

)
hS

(
t

AF

)
(22.51)

Themost commonly used parametricmodels are exponen-
tial and weibull models.

Exponential Model
In this case, we assume that the time to failure under stress
conditions is exponentially distributed with constant failure
rate λS. Then the cumulative distribution function (CDF) at
stress S is:
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FS(t) = 1 − e−λSt (22.52)

The CDF under normal condition is:

F0(t) = FS

(
t

AF

)
= 1 − e−

λSt
AF (22.53)

The failure rates are related as:

λ0 = λS

AF
(22.54)

Weibull Model
The cumulative distribution function (CDF) at stress S for a
Weibull model is:

FS(t) = 1 − e−( t
θS

)γS , t ≥ 0, γS ≥ 1, θS > 0 (22.55)

where γS is the shape parameter of the Weibull distribution
under stress condition and θS is the scale parameter under
stress condition (Pham [52]). The CDF under normal operat-
ing condition is:

F0(t) = FS

(
t

AF

)
= 1 − e−[ t

AF θS
]γS (22.56)

The MTTF under normal operating condition is:

MTTF0 = θ
1/γ
0 Γ

(
1 + 1

γ

)
(22.57)

and the failure rate under normal operating conditions is:

h0(t) = γ

AFθS

(
t

AFθS

)γ−1

= hS(t)

Aγ

F

(22.58)

22.1.6 Repairable System Reliability

Consider a repairable system that is put into operation at
time t = 0. When the first failure happens due to failure
of any subsystem or component, it will be brought back to
a functioning state after suitable repair or replacement of the
component or subsystem. It is assumed that the repair time
is negligible in this case. Further, when the second failure
occurs, again the system will be repaired and brought back to
service. This process continues for all the failures which have
occurred in the system. Thus, we get the data on a sequence
of time to failure. Let t1 be the time to first failure. When this
failure happens, the system will be restored to a functioning
state. The repair time is assumed to be negligible. The second
failure will occur at time t2 and so on. Thus, we get a sequence
of failure times t1, t2, . . . Let us define Ti as the time between
(i − 1)-th and i-th failure, for i = 1, 2, . . . , where t0 is

considered as 0. The variables T1, T2, T3, . . . , are known as
inter-arrival times (time between failures).

This sequence of inter-arrival times T1, T2, . . . , will gen-
erally not be independently and identically distributed (i.i.d)
unless the system is brought back to a state of as good as new
condition. Also, for i.i.d assumption, it is necessary that the
operational and environmental conditions remain constant
throughout the whole period of operation.

Consider a multicomponent repairable system in oper-
ation. Depending on how many of its components are in
operation, it will have a number of possible states. The state
of the system at time t is denoted by a variable X(t). This
stochastic process {X(t), t ≥ 0}, is defined as a Markov
process and is characterized by its lack of memory property.
This means that, if a Markov process is in a state j at time
t, we will get no further information about its future states
by knowing the past performance of the process up to time
period t. Let N(t) be the number of failures in the interval
(0, t]. Then, the stochastic process {N(t), t ≥ 0}, is called a
counting process.

A stochastic process {N(t), t ≥ 0} is defined as a counting
process if N(t) satisfies:

• N(t) ≥ 0
• N(t) is integer valued
• If s < t, then N(s) < N(t)
• For s < t, [N(t) – N(s)] represents the number of failures

that have occurred in (s, t].

Depending on the behavior of N(t), one can determine
whether the system is deteriorating or improving. If N(t) is
plotted against time t, and if the graph tends to be convex, it
indicates that the system is deteriorating. The graphwill show
concave pattern when the system performance is improving.
If N(t) is approximately linear, the system is steady.

Example 7 The failures times (in continuous operating
hours) is as follows: 177, 242, 293, 336, 368, 395, 410.

Example 8 The failures times (in continuous operating days)
is as follows: 1.0, 4.0, 92.0, 252.0, 277.0, 277.5, 284.5, 374,
440, 444, 475, 536, 568,744, 884, 904, 1017.5, 1288, 1337,
1338, 1351, 1393, 1412.

Some Properties of N(t)
Independent Increments
A counting process {N(t), t ≥ 0} is said to have independent
increments if for 0 < t1 < · · · < tk, k = 2, 3, . . . , [N(t1) −
N(0)], [N(t2)−N(t1)], . . . , [N(tk)−N(tk−1)] are all indepen-
dent random variables. In that case, the number of failures in
an interval is not influenced by the number of failures in any
strictly earlier intervals.
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Stationary Increments
A counting process {N(t), t ≥ 0} is said to have stationary
increments if for any two disjoint time points t > s ≥ 0 and
for any constant c > 0, the random variable [N(t) − N(s)]
and [N(t + c) − N(s + c)] are identically distributed. This
means that the distribution of the numbers of failures in a
time interval depends only on the length of the interval and
not on the intervals distance from the origin.

Availability/Maintainability
Availability and maintainability are two important aspects of
any reliability study.

Availability
Availability is the ability of the system to perform required
functions over the life of the system. It is the probability that
a system is not failed or undergoing a repair action when it
needs to be used. It is the proportion of the system “up-time”
to the total time (up + down) over a long period.

Availability = Up time

Up time + down time
(22.59)

Maintainability
Maintainability refers to the measures taken during the devel-
opment, design, and installation of a manufactured product
that reduce required maintenance, tools, logistic cost, and
skill levels and ensures that the product meets the require-
ments for its intended use.

Maintainability is the ability of a component to be retained
in, or restored to, a specified condition when maintenance is
performed using prescribed procedures and resources. Main-
tainability is a characteristic of design and is essentially a
measure of the ease with which the system can bemaintained,
because maintainability is often expressed as mean time to
repair (MTTR), or how quickly the system can be restored to
mission function. Hence, maintainability can be defined as
the probability that a device or a system that has failed will
be restored to operational effectiveness within a given time
[22]. MTTR is defined as:

MTTR =

m∑
i=1

λiTi

m∑
i=1

λi

(22.60)

where m is the total number of units and Ti is the correc-
tive maintenance or repair time needed to repair unit for
i = 1, 2, . . . , m. λi is the constant failure rate of unit i =
1, 2, . . . , m. Maintainability functions are used to predict the
probability that a repair, beginning at time t = 0, will be
accomplished in a time t. For any identified distribution for
repair time, the maintainability function can be estimated.

The maintainability function, m(t), for any distribution is
expressed by:

m(t) =
t∫

0

fr(t)dt (22.61)

where t is time and fr(t) are the probability density function
of the repair time. If the repair time, t follows an exponential
distribution with mean time to repair, MTTR, then:

m(t) =
t∫

0

(
1

MTTR

)
exp

(
− 1

MTTR

)
dt

= 1 − exp
(

− 1

MTTR

)
(22.62)

Similarly, if the repair time, t, follows lognormal distribu-
tion with mean of natural logarithm of t as β and standard
deviation of natural logarithm of t as σ , with pdf:

fr(t) = 1

tσ
√
2π

exp
{
− 1

2σ 2
[ln t − β]2

}
(22.63)

then

m(t) = 1

σ
√
2π

∞∫

0

exp

[
−1

2

(
ln t − β

σ

)2
]
dt (22.64)

22.1.7 Verification and Validation

Verification and validation activities, in short, V&V, are
applicable for hardware and software products and also for
processes. However, for hardware, the V&V activities are
conductedmainly to checkwhether the design for the product
has been correctly carried out. For important medical devices
where both hardware and software form part of the device,
V&V are to be done both for hardware and software. V&V
activities for most software, whether critical or not, are to be
done. Hence, verification and testing of software is discussed
separately in a later section.

Verification and Validation for Hardware
Verification and validation for hardware is applicable to
products which are newly developed and brought to the
market. Verification activities mainly ensures that the
design for the device is right, whereas, the validation
is meant for checking and ensuring that the design is
made for the right device that customers will be satisfied
with. FDA (https://www.accessdata.fda.gov/scripts/cfdocs/
cfCFR/CFRSearch.cfm?fr=820.3) defines verification as
confirmation by examination and provision of objective
evidence that specified requirements have been fulfilled and

https://www.accessdata.fda.gov/scripts/cfdocs/cfCFR/CFRSearch.cfm?fr=820.3
https://www.accessdata.fda.gov/scripts/cfdocs/cfCFR/CFRSearch.cfm?fr=820.3
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validation as confirmation by examination and provision
of objective evidence that the particular requirements for a
specified intended use can be consistently fulfilled.

Design verificationmay be carried out using variousmeth-
ods among which inspection, analysis, and tests are more
popular. One may refer to FDA guidelines for other methods
as well (https://www.fda.gov/media/116573/download, De-
sign control guidance for medical device manufacturers).

V&V of design has a lot to do with design inputs.
Customer requirements, applicable legal and regulatory
requirements, relevant earlier design output which may
be used in the current design, feedback from marketing
and other departments about an earlier similar design and
appropriate guidelines/ procedures or standards etc. form the
input to the design process. Inputs for design can also come
from the discussion with peer groups. The output of a design
and development process could be in the form of a drawing,
specification, or results of the analysis. Design output could
also be a calculation itself. The ISO 9001 quality manage-
ment system standard has given guidelines for sufficient
control of all such important activities right from its first
version released in 1987 [14]. It is also a requirement of the
standard that the design or development process output must
be documented and be expressed in terms that can be verified
as conforming to the input requirements. The users of design
output like the production or purchase processes can also
sometimes provide important inputs for the design process.

The ISO 9001 standard has categorically stressed upon a
planned design review process with appropriate traceability
issues to be addressed in all its versions. Two of the important
activities under design review is design verification, and
validation for all new products that are developed.

Through design and development verification process
one needs to ensure that the output of the design and
development process meets the requirements given as input
to the design process. It is also expected that verification
should be planned process to be undertaken by competent
personnel. However, there may be several ways for such
verification to be conducted by an organization. Verification
activities are required for all purchased products as per ISO
9001 standard. Validation of a process is also a must as per
the standard, if the product coming out of the process cannot
be checked immediately [14].

Validation of design can often be performed by customers
or customers representatives. One needs to keep in mind
that a proper design evaluation can only be done under user
operating conditions. For example, for a motor vehicle, the
design would be validated by building a prototype model
and driving it over typical road conditions that a variety of
customers are expected to use.

Any changes in the design that may be required because
of several reasons, calls for a V&V to be conducted again.

22.2 Software Reliability

22.2.1 Introduction

The subject called software reliability was developed as a
separate topic of research only in the early seventies of the
last century. Most of the people used to consider software
as a service giving device and hence were not interested in
knowing how its reliability can be measured. It was only
after a lot of problems faced with software which started
slowly replacing the hardware in developing new devices
that researchers and software specialist understood the im-
portance of studying software reliability. But it was known
that the theory, that are developed for hardware, cannot
be straightaway used for software. Some of the differences
between hardware and software are listed in Fig. 22.9. It is,
however, noted that day by day, the importance of software
will increase and the definition of software reliability can be
borrowed from hardware reliability, though the treatment for
finding reliability of a software needs to be different.

Under such a scenario, Jelinski and Moranda [29] came
out with a very simple model to find out reliability of a
software. This model is discussed thoroughly in a later sec-
tion since their paper throws open the path of thinking about
how software reliability can be measured. Subsequent to this
development several questions were raised about the sources
of uncertainty that is coming into the software, when we
know for certain that software does not deteriorate with time
unlike hardware items. In fact the term software reliability
was not universally accepted, since it is argued that reliability
implies that there is some uncertainty about the outcomes,
whereas a program either contains one or more error in which
case the probability of failure in certain circumstances is
unity or it contains no error, in which case the probability
of failures is zero.

Considering users point of view, a software output is
uncertain since the user will observe software failures at some
time point and he would not know when the next failure will
occur. Hence, for the software user uncertainty remains.

A software basically transforms an input in the form of
data to one or more outputs. Let the input space (totality
of all possible inputs) be denoted by Itotal and that of the
output space beOtotal. The operational profile of the user will
however determine the probabilities of selection of different
inputs during execution. It is quite likely that different users
of a program have different operational profiles.

A software failure occurs when with an input or some-
times it may be called as a case or a test case (during testing of
the software); the software is run and the output obtained does
not match with the specified output for the case. Let IF de-
notes the set of such cases for which the system failures occur.
Detection of failures, however, is a nontrivial task [36]. Often

https://www.fda.gov/media/116573/download
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Software reliability

1.  Without considering program evolution,
     failure rate is statistically non-increasing.

2.  Failure never occurs if the software is not
     used.

3.  Most models are analytically derived from
     assumptions. Emphasis is on developing
     the model, the interpretation of the model
     assumptions, and the physical meaning of
     the parameters.

4.  Incorrect logic, incorrect statements or
     incorrect input data cause failures. This is
     similar to design errors of a complex
     hardware system.

5.  Increasing the testing effort and correcting
     detected faults can improve software
     reliability. Reliability tends to change
     continuously during testing due to the
     addition of problems in new code or to the
     removal of problems by debugging errors.

6.  Software repairs establish a new piece of
     software.

7.  Software failures are rarely preceded by
     warnings.

8.  Software components have rarely been
     standardized.

9.  Software essentially requires infinite
     testing.

Hardware reliability

1.  Failure rate has a bathtub curve.
     The burn-in state is similar to the
     software debugging state.
2.  Material deterioration can cause
     failures even though the system
     is not used.

3.  Some distributions are fitted to
     failure data. The selection of the
     underlying distribution is based
     on the analysis of failure data and
     experiences. Emphasis is placed
     on analyzing failure data.

4.  Material deterioration, random
     failures, design errors, misuse
     and environment are the causes
     of failures.

5.  Better design, better material,
     applying redundancy and
     accelerated life testing can
     improve hardware reliability.

6.  Hardware repairs restore the
     original conditional.

7.  Hardware failures are usually
     preceded by warnings.

8.  Hardware components can be
     standardized.

9.  Hardware can usually be tested
     exhaustively.

Fig. 22.9 Difference between software reliability and hardware reliability

researchers assume that each software failures is caused
by only one fault. With the same input space Itotal, if we
randomly choose a case and run it through two programs or
software which are made based on the same specification but
two different sets of developers; in one the output may match
with the expected output whereas for: the other it may result
in a software failure. So, apart from the uncertainty about
the next input that the software is going to face, probabilistic
concepts for software reliability study is valid since the group
of developers of the software also contributes to the quality of
the software. In a similar way, efficacy of testing and debug-
ging personnel could contribute to the uncertainty in software
quality. Broadly software quality can be characterized by two
different groups; one for operation of the software and the
other for product transition. The following figure (Fig. 22.10)
gives the taxonomy of software qualities. However, it is
quite obvious that unless the software is reliable, or in other

words, unless it does what we wanted it to do, no matter
how good it is with respect to other quality characteris-
tics, the software reliability is the most important quality
characteristics.

In satellite launching process, it takes several phases of
what is known as rocket technology to lift the satellite to the
required height in space, but finally the placement of satellite
in the right orbit is done through software. Assume that all
the rockets in different phases work as per the requirement,
but the software finally fails to deliver its job, then the whole
launching process becomes a failure. This also shows the
importance of reliability of the software. In fact, in all such
modern, sophisticated, and complicated processes software
plays a major role; many a times a software replaces a hard-
ware device also. Hence reliability of software has become
an interesting topic of research since the 1970s of the last
century. There are examples galore, which shows that a small
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Fig. 22.10 Taxonomy of software qualities

fault in a software had caused havoc in the process. Several
such examples can be found in Pham [52] and in many other
books. This also shows the importance of software quality
characteristics, particularly software reliability. Normally,
software is validated using one of the two methods:

• Proving the correctness of the software and
• Testing the software

Proving the correctness of the software is a formal and
mathematical process. Methods of proving the correctness of
a software include inductive assertion, symbolic execution,
and the method of functional verification [34]. In all these
methods, a sequence of logically related statements is to be
proved. This final statement is usually the output specifica-
tion statement [26].

Software Testing
Software errors or bugs can arise from the specification,
the software system design and from the coding process.
Ideally a software should be built in such a way that no
bugs are produced during the above three stages of software
production [42]. Despite all our efforts to make a reliable
software, it is a normal practice to check and test the software
before it is released for usage. Formal program checking
involving the design team and independent people is called
a structured walk through or a code review. An essential part
of the software development process is to test the software
in such a way that it ensures that the software will operate
satisfactorily over the range of possible input conditions.
Generally software testing is considered as a planned and
disciplined activity so that existence of errors or bugs in the
software is minimized. Since a software is a human intensive
product, any reasonably large software may carry bugs, even
after intensive testing, since testing alone may not be able
to guarantee that no bugs will be present in the marketed
software. A software normally has several modules and a

full software run may need several module interfacing, which
remains a difficult area for software testing.

Software testing group faces several limitations. On the
one hand, it is not practical to test a reasonably complex pro-
gram exhaustively, because the cost and effort for the same
could be exorbitant. Software can effectively be considered
as having several program paths and testing all the possible
paths for the existence of bugs, could be ideal, but remains
impractical. Hence, a test strategy needs to be developed
wherein the test cases are selected in such a way that will
ensure successful operation of the software under the likely
range of input conditions without having a cost overrun.

To summarize, a failure is defined as a departure of the
output through software operation from requirements. Obvi-
ously, a failure occurs when there is some error or fault in
the software. This fault is known in the software field as a
bug. The process of detecting and removing bugs is known
as debugging. For our purposes we assume that when testing
of software starts all obvious bugs are removed. This helps
us to concentrate and use our resources for detecting and
removing nontrivial bugs. We now discuss a bit more detail
about software testing since testing is an important activity
for evaluating reliability of software. We will use bug, fault,
and error in software interchangeably referring to the one and
the same thing.

Any mistake in a stage of higher order is going to be more
costly than a mistake in a stage of lower order. From the
customer point of view, a good software product will have all
the eight quality characteristics discussed earlier. All of these
requirements should be placed in the very first stage of soft-
ware development and the stage of understanding customer
requirements. The specification or design stage should follow
only after the first stage is complete. A good programming
technology desires that the specification should not only be
developed for the software product but also, at the same time,
the specification for testing and validating the software prod-
uct. Cho [17] calls this as concurrent software design and test
design. He also suggests concurrent software implementation
and test implementation.

The present-day devices are mostly built with some soft-
ware as part of the system. Due to the specific nature of
software failures, which is not affected by fatigue and which
does not fail if it is kept unused for sometime unlike hard-
ware, replacing hardware by software is also very popular.
It may be noted that each copy of a software is exactly
same as the original. This also helps in avoiding the inherent
variation that hardware copies have. Storage of software also
become relatively easier and mostly cost effective compared
to hardware. Hence, performing functions with software may
lead to less complex but more robust systems in the modern-
day devices.

Measurement of software reliability is important for the
following reasons also.
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• Software reliability measures and the information gath-
ered through their use may be exploited to enhance the
reliability of the software before releasing it in the market.

• Such measures may be used to predict future behaviors of
the software.

• Such measures may be used to monitor the progress
of software testing or the operational performance of
software using continually updated estimates of current
reliability.

The reliability of a unit for a given time is expressed as the
probability that no failure occurs in the interval [0, t]. Failure
for a software occurs when the software results in an output
which deviates from the expected output given a particular
input. Such failure occurs due to an error or fault in the
software. Software reliability at time t = 0 is defined to be 1.
A couple of problems related to software reliability are

• Determining optimal time for software testing.
• Choosing a suitable model for estimating reliability of

software.
– A Software Developer Dilemma

To understand software reliability better, we have to un-
derstand the very process of generating a software. Broadly,
like any other product, software when considered as a prod-
uct, goes through a few stages like:

• Understanding customer requirements
• Developing specification
• Implementation or making the software as per specifica-

tion
• Validation and
• Delivery which includes packaging and handling also.

Essentially there are three different ways to pursue highly
reliable software. They are:

• To avoid the occurrence of faults in the design and devel-
opment of the program.

• To make use of fault tolerant structures.
• To remove faults during testing phase.

Since software testing is an important activity in the life
cycle of a software, a challenging problem being faced by the
software manufacturing companies is when to stop testing of
the software? There are several authors who worked on this
problem (e.g., Chakraborty et al. [15]). We will discuss more
about this area in a later section. Also, since several hundreds
of software reliability models(SRMs) have already been de-
veloped, a common dilemma with the software companies is
which model to be used for their particular case.

22.2.2 Software Reliability Models

The very first published work on software reliability is at-
tributed to Jelinski and Moranda [29], in short JM model.
The fact that software reliability needs different treatment
is quite clear from this model itself. Let us assume that
the data available are in terms of time between failures,
t1, t2, . . . , tn (assuming that there are n observations taken
on a continuous time scale and one has observed the time
points Ti, i = 1, 2, . . . , n when the i-th bug is detected).
Note that tn = Tn − Tn−1. Assume that each of the N
faults in the software system will cause a failure after a time
which follows exponential distribution with parameter λ, λ

being the failure rate of the software. It is also assumed that
software faults are independent of each other and are equally
likely to cause a failure. It is further assumed that the failure
rate λ, at any time point is proportional to the fault content of
the software. The authors then assumed that a detected fault
is corrected with certainty in a negligible amount of time and
no new faults are introduced in the process. Under this set of
assumptions, it is clear that the log likelihood function for the
observed data t1, t2, . . . , tn is given by

ln L =
n∑
i=1

ln {φ(N − i+ 1)} −
n∑
i=1

{φ(N − i+ 1)ti}
(22.65)

where φ is the proportionality constant. JM model considers
N and φ as unknown parameters to be estimated from data.
Assuming that N and φ are continuous variables, the log-
likelihood function is used to find out the partial derivatives
with respect to N and φ separately. Setting the partial deriva-
tives equal to zero, one gets:

φ = n
n∑
i=1

(N − i+ 1)ti

(22.66)

and
n∑
i=1

1

N − i+ 1
− n

N − c
= 0 (22.67)

where,

c =

n∑
i=1

(i− 1)ti

n∑
i=1

ti

Though the first published work on software reliability by
Jelinski and Moranda was simple to understand, there were
a few fundamental mistakes in the model which had been
unnoticed for a long time. The unknown constant N in the
model being the number of bugs in the software is a discrete
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number. Hence taking the partial derivatives with respect toN
is not actually valid. However, this model was path breaking
which helped many other models to follow. One may refer to
Musa et al. [45] to get details of various models developed in
the initial years, followed by Chakraborty andArthanari [13];
Pham [52]; Yang andXie [63] andmany others to know about
the software reliability models that were developed later.

The software reliability problems can be broadly classi-
fied into two:

1. When one should stop testing software?
2. What is the reliability of the software at any given point

in time?

The first problem is also known as optimum testing time
problem, whereas the second problem is known as reliability
growth problem. For each such problems, several different
models are available. The optimum software testing time
problem can be based on several different criteria including

1. A threshold value of the reliability of the software to be
achieved; typically such software are known as critical or
very critical software;

2. The optimal stopping time is based on some cost or reward
considerations.

Chaktaborty and his team [15,16] amongmany others give
the developments in the area of software reliability models
to find out optimum software release time. Some authors like
Nayak [47] questioned the conventional time-between failure
data. Following Nayak [47], Chakraborty and Arthanari [13]
showed that the data that are collected particularly for critical
and large software are discrete in nature. This shift in data
type helped developing several models which assumed a
discrete set up. In such a case an input when is used for
a software result in either a “success” meaning a bug is
detected; or a “failure” meaning the output is as expected.”
These terminologies are appropriate since the objective of
software testing is to find out as many bugs as possible,
so that after debugging the identified bugs, the reliability
of the software can be enhanced. Also, in most of the soft-
ware reliability models, it is assumed that the time-between-
failure distribution is exponential. Chakraborty studied this
phenomenon and finally concluded that the exponentiality
assumption for failure time distribution of a software is a
valid assumption.

22.2.3 Software Reliability GrowthModels

Time Between Failure Models
In software reliability assessment, this class is one of the old-
est. It is expected that during modelling of time between the

failures, the successive time between failures will gradually
increase as faults are being removed from the system, and
no new faults are introduced during correction. The above
statement may not be exactly true, for a given set of observed
values since failure times are random and observed values
may fluctuate.

Let the time between (i − 1)-th and i-th failures be Ti,
a random variable and independent of each other. Usually,
it is assumed that Ti follows a distribution with parameters,
which depends on the remaining faults after (i−1)-th failure.
Since the faults are detected and debugged from the system,
it is assumed that the distribution considered reflects the
improvement in the quality of the software. J.M model is one
of its kind, which is already explained above. Given below
are some of these kinds of models (Fig. 22.11).

Schick and Wolverton (SW) Model
This model (Schick andWolverton [56]) is based on the same
JM model assumptions except that the hazard function is
assumed proportional to the time elapsed since the last failure
as well as to the current fault content of the program and is
given by:

Z(ti) = φ(N − (i− 1))ti (22.68)

where the various quantities are as defined above. Note that
within each failure interval, the above hazard rate is linear
with time. It returns to zero when a failure is occurred and
again increases linearly but at a reduced slope as the decrease
in slope being proportional to φ. In 1978 a modification of
the above model was proposed, and in test time the hazard
function is assumed to be a parabolic and is given by:

Z(ti) = φ[N − (i− 1)](−at2i + bti + c) (22.69)

where a, b, and c are constants and the other quantities are
same as defined above. The above hazard function consists
of two components. The first is the hazard function of the JM
model, and the superimposition of the second term indicates
that as the test time accumulates within a testing interval, the
likelihood of a failure occurring increases rapidly. At failure
times ti = 0, the hazard function is proportional to that of the
JM model.

Goel and Okumoto Imperfect Debugging Model
Most of the software reliability models, including the ones
that are discussed so far, assume that the fault that is detected
through testing is completely removed during debugging.
But, it has been observed that many a times, this assumption
is not valid. One way to model such a phenomenon is to
take resort to an imperfect debugging model developed by
Goel and Okumoto [27], which is an extension of the JM
model. Goel and Okumoto [27] considered that the number
of faults Xt, in the software at time t is represented by
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Fig. 22.11 Classification of Growth models

a Markov process, wherein the transition probabilities are
based on the probability of perfect debugging. The time
intervals between the transitions of Xt s are assumed to be
following an exponential distribution whose failure rates are
considered as a function of the number of faults that exists in
the software at time t. The hazard function during the interval
between the (i− 1)-th and the i-th failures is given by:

Z(ti) = [N − p(i− 1)]λ, (22.70)

where, N is the initial fault content of the system, p is the
probability of imperfect debugging, and λ is the failure rate
per fault.

Littlewood-Verrall Bayesian Model
Littlewood and Verall [37] took a different approach in the
development of amodel. They argued that software reliability
in terms of the number of errors should not be specified in
a program. Specifically, in their model, the times between
failures are assumed to follow an exponential distribution
but the parameter of this distribution is treated as a random
variable with gamma distribution, viz.:

f (ti | λi) = λie
−λiti and (22.71)

f (ti | α,ψ(i)) = (ψ(i))αλα−1
i e−ψ(i)λi

Γ (α)
(22.72)

In the above, ψ(i) describes the difficulty of the program-
ming task and the quality of the programmer. It is claimed
that in this model the failure phenomena can be explained
in different environments by taking different forms for the
parameter ψ(i).

22.2.4 Fault Count (FC) Models

Fault count models deal with the modelling of the number of
faults or failures in the testing intervals. It is expected that
after the removing of the faults from the given system, the
number of faults will decrease. Here the time used can be
calendar time, CPU time, or others. In these models, the time
intervals are taken as fixed but the number of failures vary
for individual intervals. The concept behind most of these
models is that the distribution considered here is Poisson
distribution with different parameters for different models.
Some common assumptions are like, each testing intervals
should be independent, and within the interval, testing should
be homogeneous. During the detection of the faults, the
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number of faults should be independent in nonoverlapping
intervals. Some of the models of this class are given below:

Goel-Okumoto Nonhomogeneous Poisson Process Model
(Goel and Okumoto [28])
The authors here assumed that the software system fails at
random time points because of the presence of faults in the
software. They defined N(t) to be the cumulative number
of failures observed by time t. They then modeled N(t)
as a nonhomogeneous Poisson process (NHPP) where the
failure rate is considered as a function of time. They had
the opportunity to study several real-life failure data from
many systems. This experience helped them to propose the
following model.

P[N(t) = y] = m(t)y

y! e−m(t), y = 0, 1, 2, · · · (22.73)

where m(t) = expected number of failures observed by time
t = a(1 − e−bt) and λ(t) = failure rate = m′(t) = abe−bt.

It is easy to note that a = the expected number of failures
observed eventually and b = the fault detection rate per fault.
Unlike the Jelinski-Moranda [29] and many other models,
Goel and Okumoto allowed the number of faults to be de-
tected as a randomvariable. The value of this randomvariable
may depend on several factors, including the environmental
factors.

A big advantage of the nonhomogeneous Poisson process
model is that by suitably varying the mean value function,
m(t), many other models may be developed.

In an earlier attempt, Schneidewind [57] studied the num-
ber of bugs detected during a given time interval using a
somewhat different approach. In his approach he considered
the failure process to be a nonhomogeneous Poisson process
which has an exponentially decaying intensity function given
by:

d(i) = αe−βi ,α,β > 0, i = 1, 2, · · · (22.74)

where α and β are the parameters of the model.

Goels Generalized Nonhomogeneous Poisson Process Model
(Goel [26])
Further generalization of the Goel-Okumoto NHPP model
was proposed by Goel [26], where he considered m(t) =
a(1− e−btc), a is the expected number of faults to be eventu-
ally detected, and b and c are constants that reflect the quality
of testing. The main formulation of the model remains the
same as given in (22.73), that is:

P[N(t) = y] = m(t)y

y! e−m(t), y = 0, 1, 2, · · · (22.75)

The failure rate for the model proposed by Goel is given
by:

λ(t) ≡ m′(t) = abe−bt
c
tc−1 (22.76)

It is generally assumed that reliability of software im-
proves with testing, since as the testing and debugging in-
creases, it is expected that the remaining number of bugs in
the software will decrease. Hence, most of the times between
failures and failure count models assume software reliability
growth, which in a way assumes that a software system
exhibits a decreasing failure rate pattern during testing. How-
ever, in reality, it may be observed that in many testing situ-
ations, the failure rate first increases and then decreases. In
order tomodel this increasing/decreasing failure rate process,
Goels proposed generalization of the Goel-Okumoto NHPP
model may be more appropriate.

Musa Execution Time Model (Musa [43])
In this model, the focus is on the number of failures in
a specified execution (of the software) time interval. The
assumptions for the model are similar to that of the Jelinski-
Moranda model. The hazard function, z(τ ), is given by:

z(τ ) = φf (N − nc) (22.77)

where τ is the execution time utilized in executing the pro-
gram up to the present; f is the linear execution frequency
(average instruction execution rate divided by the number of
instructions in the program); φ is a proportionality constant,
which is a fault exposure ratio that relates fault exposure
frequency to the linear execution frequency; and nc is the
number of faults corrected during (0, τ).

Generalized Poisson Model
This is a variation of the NHPP model of Goel and Okumoto
and assumes a mean value function of the following form.

m(ti) = φ(N −Mi−1)tα (22.78)

where Mi−1 is the total number of faults removed up to the
end of the (i − 1)-th debugging interval, φ is a constant of
proportionality, and α is a constant used to rescale time ti.

IBM Binomial and Poisson Models
Brooks and Motley [10], probably for the first time, guessed
that the software testing process may be considered as a
discrete process. Quite obviously, the number of detected
faults may then be modeled under a Binomial or a Poisson
distribution. They proposed, as is normally the case, that
the software is to be developed and tested incrementally.
Further, they advised their models to be applicable both for
the modules, as well as, for the whole software.
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Musa-Okumoto Logarithmic Poisson Execution Time
Model
Taking cue from the Goel-Okumoto model, Musa and Oku-
moto [44] developed another NHPP model where the mean
value function considered was different. Let τ denote the
time, then:

μ(τ) = 1

θ
ln(λ0θτ + 1) (22.79)

where λ0 and θ represent the initial failure intensity and the
rate of reduction in the normalized failure intensity per fail-
ure, respectively. It may be noted that Musa-Okumoto model
resembledMorandas geometric de-eutrophication model and
may be considered as a continuous version of Morandas
model.

22.2.5 Fault Seeding and Input Domain based
Models

In this section, we will discuss about a few time-independent
models for assessing software reliability. The two approaches
are fault seeding and input domain-based models.

In fault seeding models, in a program, a known number
of faults are seeded. After testing the number of native faults
along with the exposed seeded faults are counted. Applying
maximum likelihood estimation and using combinatorics,
the number of native faults and reliability of the software
are estimated in a program. In case of input domain-based
models, the basic idea is to generate a set of test cases from
an input distribution. The input domains are partitioned into
equivalence classes in various models in this group because
the input distribution is difficult to estimate. The classes
are related with the program path. The reliability measure
is calculated from the number of failures observed during
physical or symbolic execution of the sampled test case.

Mills Seeding Model
One of the techniques used in estimating the number of
bugs present in a software quite early in the development of
software reliability is called the error seeding model (Mills
[41]). The procedure consists of generating several faults that
are randomly seeded into the software that will be tested.
The program is then tested in order to find as many faults
as possible. Subsequently, among the faults detected, the
number of original faults and the specially seeded faults are
counted. Based on this data, a hypergeometric distribution is
used to estimate the total original number of faults that were
originally present in the software. This technique, however,
had been used earlier in similar situations, for example, for
estimating the number of fish in a pond or for estimating

wildlife population in a given area. Sometimes these models
are also known as tagging models since the seeded faults are
tagged for identification purpose.

A modification of this problem where the probability of
finding a fault, of either kind, is considered by Lipow [35].
Then, assuming independence of tests, the probability of
finding given numbers of indigenous and seeded faults can be
calculated. In a further modification of this model, Basin [9]
used a two-stage procedure with the use of two programmers
which can be used to estimate the number of indigenous
faults in the program.

Nelson Model
TheNelsonmodel is one of those input domain-basedmodels
where the reliability of the software is determined based on
the results obtained by testing the sofware with a sample of
n inputs which are chosen randomly from the input domain
set E = (Ei : i = 1, . . . , N) where each Ei is the set of data
values needed to make a run. The operational profile of the
user is represented by a probability distribution {Pi : i =
1, . . . , N}, and the n random samples are chosen according to
the probability distribution Pi. Assuming that ne represents
the number of inputs that resulted in execution failures, an
unbiased estimate of the reliability of the software is given
by the following formula.

R̂1 =
(
1 − nθ

n

)
(22.80)

However, one may observe that the test cases used dur-
ing the verification phase or even afterwards may not rep-
resent the expected operational profile of the users. This
may be the case more often than not. In such circumstances,
Brown and Lipow [11] suggested an alternative formula for
the reliability of the software, R which is:

R̂2 = 1 −
N∑
j=1

(
fj
nj

)
p(Ej) (22.81)

where nj denotes the number of runs sampled from input
subdomain Ej and fj is the number of failures observed out of
nj runs. The basic difference between R̂1 and R̂2 is that the for-
mer explicitly incorporates the usage distribution or the test
case distribution while the latter implicitly assumes that the
accomplished testing is representative of the expected usage
distribution. Hence, both models assume prior knowledge of
the operational profile in terms of a probability distribution.

Ramamoorthy and Bastani Model [54]
This model is also an input domain-based model where the
authors considered the real-time, critical, process control
systems for estimating reliability. It is expected that for such
systems, the reliability should be very close to one. Hence, it
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is also important that we have high confidence in the estimate
for reliability of the software. Using this model one can get
an estimate of the conditional probability that the software
will give correct output for all possible inputs given that it is
correct for a specified set of inputs. The interesting idea used
in the model is that each output from the software gives some
stochastic information about the behavior of the software for
other inputs which are close to the test case used.

One of the important results in this model can be written
as:
P (program is correct for all points in [a, a+V]| it is correct

for test cases having successive distances xj, j = 1, . . . ,
(n− 1))

= e−λV
n−1∏
j=1

2(1 + e−λxj)−1 (22.82)

where λ is a parameter which is dependent on the complexity
of the source code.

This model allows any test case selection strategy, which
is unusual. As is practiced in many organizations, test cases
are chosen that run through error-prone constructs. This also
helps in reducing testing effort. However, the model concern-
ing the parameter λ needs to be validated experimentally.

22.3 Optimum Release TimeModels

A very important part of the software testing problem is when
to stop testing the software? (Dalal and Mallows [19]). The
main aim of testing a software is to find out as many bugs
as possible before the software is released. Also, once a bug
is identified, it is debugged and hence the reliability of the
software is improved. Several authors have worked over this
optimization problem and looked into it from various angles.
One of the important constraints that is used to solve the
optimization problem is the cost or time constraint. Normally
this type of constraints is relevant for commercial software.
But there are other types of software as well, like the software
used for space research. These are called critical or mission
critical software. For such software, achieving a high relia-
bility is more important than the cost of testing it (Dewanji
et al. [21]). Also, over the decades the type of test data avail-
able got changed, which led to the development of discrete
framework in the software reliability arena (Chakraborty and
Arthanari [13]). Long before that Nayak [47] proposed to log
software data in a different way. A few authors worked on a
discrete framework for optimum software release time.

The data that are normally available for mission critical
and large software are of the discrete data type. In such cases,
for each test data the outcome is known in the form of either
a success, meaning a bug is found or a failure, meaning no
bug is found with the present test case. Also, there is a major

violation of the assumption that most software reliability
models have is as soon as a bug is found it is debugged.
Such an assumption remained valid for the initial stages of
software reliability developments. However, as the software
becomes larger and larger, the developer and testers became
two different groups and the assumption started getting vio-
lated. This necessitates development of different models for
optimum software release time (Chakraborty et al. [15]).

However, majority of the models developed for optimum
time for software release still adopt the assumption of imme-
diate debugging in order to make the models relatively less
complex. Dalal and Mallows [19] derived an optimum stop-
ping rule for testing of a software prior to release, based on a
trade-off between the cost of testing for a longer period and
expected loss due to any bugs that may remain in the software
after release. Singpurwalla [58] addressed the same problem
by maximizing expected utility functions of two different
types. The information available during the testing phase is,
like many other models, the time between failures. Dalal and
Mallows [20] later developed methods for optimum stopping
with exact confidence limits on the remaining number of
bugs in a software. Nayak [47] proposed for the first time
that software testing data should capture test case-based
information in order to have more insight into the reliability
aspect of the software. Chakraborty [12] proposed a discrete
framework for software testing data where the information
obtained from software testing is for every test case. The
outcome is either a success which indicates detection of a
bug or a failure indicating that no bugs are found using the
test case. This kind of information are largely logged for large
and critical softwares (Dewanji et al. [21]).

Usage of Bayesian concepts in software reliability field
has not been regular. Chakraborty and Arthanari [13], Vas-
anthi and Arulmozhi [61], and Chakraborty et al. [15, 16]
are some references where the Bayesian concepts were used
to solve the problems. In a discrete framework, Chakraborty
and Arthanari [13] show how to find out optimal time of
testing. They, however, used the standard assumption that
as soon as a bug is identified, it is fixed. This assumption
does not hold good for many large and critical software
(Dewanji et al. [21]). After dropping this critical assumption,
Chakraborty et al. [15] developed the Bayesian methodology
to find out the optimum time for software release.

A new twist in the development of the software reliability
models is given by looking at the software as a bunch of
several paths and sub-paths. Each test case is expected to go
through a particular path in the software. The test case can
identify a bug if and only if the bug lies on the path that the
test case is supposed to traverse. This concept, though not
new, gives rise to a newly developing theory of size-biased
concept in software reliability filed (Chakraborty et al. [16]).
The idea seems to be very interesting and opens up new areas
of research in the software reliability arena.
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22.4 Software Testing and Validation

Testing is a group of techniques to determine the correct-
ness of the application under the predefined script, with an
intention to detect a major portion of its bugs, so that they
are discovered and debugged, and, at the same time, verified
that the software product under consideration is fit for use.
However, it does not demonstrate that a product functions
systematically under all conditions but it only ensures that
it is not working in some specific formats (Kaner [31]). In
software testing and management, verification and validation
(V & V) are the process of checking that a software system
meets specifications and that it fulfills its intended purpose. It
may also be referred to as software quality control. In general,
the quality assurance team conducts the verification process.
This is followed by testing of the software and its validation
that are both executed by the testing team.

22.4.1 Introduction to Software Testing

Software testing is a process, or a series of processes, de-
signed in such a manner so as to ensure that computer code
does what it was designed to do and that it does not do
anything unintended. Any software released in the market
should be predictable and consistent, offering no surprises
to users.

In the present-day circumstances, due to the advance-
ment in operating systems and other very useful software,
which provide some intrinsic, well tested routines that can be
made use of during software development itself. This helps
programmers/testers to develop better software rather easily
without developing the routines from scratch. Graphical user
interfaces (GUIs) can be built from a development language
library, and since they are pre-programmed objects that have
been debugged and tested previously, the need for testing
them as a part of a custom application is much reduced
(Jorgensen [30]).

22.4.2 Some Basic Definitions

The International Software Testing Qualification Board
(ISTQB) has produced an extensive glossary of testing terms
and some of them need to be considered before moving on to
understandingwhat is actually software testing (Martin [39]).

Error
The mistakes committed while coding of a program are
termed as errors or more appropriately as bugs. Errors tend
to propagate and can also be magnified during design or
amplified even more during coding.

Fault
A fault can be considered as a manifestation of an error in the
program. A fault in the program may appear due to design
deficiency, incorrect coding, etc. Quite often faults could be
elusive. For example, a fault may exist due to an error of
omission on the part of the programmer or even designer.

Failure
A failure occurs when a faulty code is executed. Thus,
failures occur in the executable source code or loaded object
code. In the process, the expected outcome from the input
cannot be obtained.

Incident
Failures in a program may occur without the user or testers
apparent knowledge. However, a symptom may be apparent
that is connected with a failure which usually provides alarms
to the user indicating occurrence of a failure. These symp-
toms are called incidents.

Test
When a software is executed with some test cases, we say that
the software is being tested. Testing of a software, using a test
case, may lead to either a failure or a success, where success
means demonstration of correct execution. Thus, testing is
normally connected with failures and incidents which in turn
are connected with errors and faults.

Test Case
A test case has a set of inputs for which the outputs are
known. Usually a test case has some identification which
helps all concerned to understand why the test case was run
and is associated with the program behavior.

Figure 22.12 represents a life cycle model for testing a
software. It is to be noted that although the development
phases of a software, errors may creep in resulting in faults
that may propagate through the remainder of the development
process. Also, more errors may be added during the fault
resolution step as well.

It is important to note that developing appropriate test
cases is a key for effective testing. In fact, the whole of
the testing process consists of making a proper test plan,
developing effective test cases, which is followed by actually
running the test cases as per the plan and finally evaluating
the test results.

22.4.3 What Is Software Testing?

Testing of a software is considered to be a process through
which the software and its components are evaluated with the
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Fig. 22.12 A testing life cycle

aim to find out whether it satisfies the specified and desired
requirements or not. In other words, software testing refers
to the process of execution of the software based on a plan,
in order to identify any gaps, errors or missing requirements
in contrary to the actual requirements (Lyu et al. [38]).

According to ANSI/ IEE 1059 Standard, Software Testing
can be defined as “A process of analyzing a software item to
detect the differences between existing and required condi-
tions (i.e., defects/ errors/ bugs) and to evaluate the features
of the software item.

22.4.4 The Psychology of Testing

Commonsense says that if all possible permutation of a soft-
ware could be tested, it would have been ideal. However, such
a possibility is simply remote in most cases. Even if we take
a relatively simple program, then also the possible input and
output combinations may run into thousands and developing
test cases for such a huge number is just impractical. Many
software are as such quite complex in nature and trying to test
it completely could be economically infeasible.

Also, a software tester must have the proper attitude or
vision in achieving the goal towards testing a given software
application. One of the primary causes of poor program
testing may be the fact that most programmers start with an
incorrect definition of the term software testing. They might
say that “Software testing is a process of demonstrating that
errors are not present.”

But in fact, while software is being tested, the target
is to add some value to it. Adding value through testing
means enhancing the quality or reliability of the program
and hence of the software with finding and debugging of
errors. Therefore, the correct approach is to start with the

assumption that the software contains bugs and then test
the program to detect as many errors as possible. Thus, a
more appropriate definition may be “Software testing is the
process of executing a program with the intention of finding
errors.”

Human beings tend to be highly goal-oriented, and estab-
lishing the proper goal has an important psychological effect.
If our goal is to demonstrate that a software is completely
non-erroneous, then we will subconsciously be steered to-
wards achieving this goal. On the other hand, if the goal
was to demonstrate that a software does possess some errors,
then the test data will have a higher probability of finding
the same. The latter approach is likely to add more value
to the software program as compared to the former (Myers
et al. [46]).

22.4.5 Who Does Testing?

Depending on the process and associated stakeholders of the
project(s), a person or a group of personswith sufficient expe-
rience is chosen to execute the testing process. Testing, as has
been said earlier is a planned and a must activity for any soft-
ware developer. Large IT companies generally engage a set
of people who are given the responsibility to test the software
against the given requirements. In order to ensure satisfactory
output from the software, most organizations start testing at
the module and or function level itself, which is known as
unit testing. Also, the end user normally checks the software
for satisfactory outcomes. Thus, in most organizations the
professionals who are associatedwith the testing processmay
be designated as software tester, software developer, software
quality assurance engineer, quality assurance analyst, project
manager/lead, and customer/end user, among others.
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22.4.6 The Optimal Time for Testing

Since identifying faults in a software is a nontrivial problem
and also it is known that the faults may be created at every
stage of the software development process, it is ideal that
testing starts right from the first stage called requirement
gathering phase and continued till the deployment of the
software. This helps in reducing the overall cost associated
with the software development life cycle (SDLC). However,
the testing strategy may depend upon the development model
that is being followed. In many organizations, formal testing
is carried out in the testing phase, whereas for others, testing
may be conducted at the end of every phase and the whole
software is tested at the end (Ammann and Offutt [3]).

In most situations, testing is carried out in different forms
at every developmental phase of the software, such as:

• During the requirement gathering phase, the analysis and
verification of requirements are considered as testing.

• Reviewing the design in the design phase with the target
of improving the design is also considered as testing.

• Testing performed by a developer on completion of the
code is also categorized as testing.

It is difficult to determine when one should stop testing,
as testing is usually a never-ending process and no one can
claim that a software is 100% tested. However, some of these
aspects can be considered for stopping the testing process.

• When testing deadlines are met.
• When test case execution is completed.
• When functional and code coverage is completed to a

certain extent.
• When the bug rate falls below a certain level with no high-

priority bugs being identified further.
• When the management team decides that the given testing

can be brought to an end.

Several models for deciding the optimal time for testing a
software are discussed in section 22.3.

22.4.7 Black-Box andWhite-Box Testing

In order to make a software reliable, its testing strategies
can broadly be classified as either a black-box testing or a
white box testing. In black-box testing strategy, the program
is viewed as a black box, whereas for white-box testing,
the internal logic and structure of the program becomes the
main focus. Black box testing is data-driven or one can say
input-output driven whereas white box testing depends on the
internal logic (logic-driven) based on which the software has
been developed.

As the name suggests, in black box testing, the test data
are generated only from the specifications, without trying to
know its internal structure. The aim is to find circumstances
in which the program behavior does not match with the
specifications.

In white box testing on the other hand, the tester examines
the internal structure of the software. The test data in this case
are generated based on the program logic, even sometimes
neglecting the specifications (refer Everett and McLeod
Jr. [24]).

22.4.8 To Conclude Testing

Certain principles of testing must be kept in mind before
moving on to software validation.

• Testing is the process of executing a program with the aim
of finding as many bugs as possible.

• A good test case is considered to be the one that has a high
chance of detecting as yet undetected bug(s).

• Hence, a successful test case is the one that detects an as
yet undetected bug.

22.4.9 Software Verification and Validation

The Quality System Regulation is harmonized with ISO
8402: 1994, which treats “verification and validation” as sep-
arate and distinct terms. However, quite often, many software
engineering journals use these two terms interchangeably, or
in some cases refer to software “verification, validation and
testing (VV&T)” as if it is a single concept with no distinction
among the three terms. Boehm succinctly expressed the
difference between the two terms as in (refer Pham [51]).

• Verification—Are we building the product right?
• Validation—Are we building the right product?

By verifying the software at each phase of the software
development process, we try to provide objective evidence
that the design outputs of a particular phase meet all the
requirements specified for that phase. It looks for consis-
tency, completeness, and correctness of the software, and
its supporting documentation, as it is being developed, and
provides support for a subsequent conclusion that the given
software under consideration is validated. Software testing is
used as one of the several verification techniques intended
to assure that software development output meets its input
requirements. Other verification methodologies include var-
ious static and dynamic analyses code and document inspec-
tions, walk through among others (refer Abdeen [1])
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Software validation is a part of the design validation for
a developed software. It may be formally defined as (refer
[60]): The confirmation by examination and provision of ob-
jective evidence that software specifications conform to user
needs and intended uses, and that the particular requirements
implemented through software can be consistently fulfilled.

Validation of software, which may be conducted both
during as well as at the end of the software development life
cycle, is for ensuring that all the expected requirements are
satisfied. In many cases, software are used as a part of a larger
hardware system. Hence, by validating a software evidence
is provided that all software necessities have been correctly
and completely catered to and are traceable to the system
requirements

A conclusion that software is validated is highly de-
pendent upon comprehensive software testing, inspections,
analyses, and other verification tasks performed at each stage
of the software development life cycle. Testing of device
software functionality in a stimulated user environment and
user site testing are typically included as components of an
overall design validation program for a software automated
device.

Verification and validation of software are difficult phases
of the software development process, because it is not known
to the developer how much evidence can be considered to be
enough and also the software cannot be tested forever. Hence,
software validation is considered as developing certain level
of confidence that the device meets all the requirements and
expectations from the users about the software automated
functions and features of the device. Different measures
which include (i) defects found in specifications, (ii) docu-
mented records, (iii) estimates of remaining defects/bugs in
the software, (iv) testing coverage, etc. are used to obtain an
acceptable level of confidence before a decision is taken to
release the software in the market. In terms of some latest
developments in the software reliability field, a sufficiently
small total remaining bug size [16] may be a better indicator
for proving that the software is reliable.

The level of confidence and therefore the level of software
validation, verification, and testing effort needed will vary
depending upon the safety risk (hazard) posed by the auto-
mated functions of the device (refer Freund [25]).

22.4.10 Software Validation as Part of System
Design

System functionality is usually implemented in the designing
phase of the software. Software requirements, in particular,
depend on the overall system requirements as well as the
design of the software that has been initially modeled. User
needs depend a lot on the expected uses of a finished product,

and these specifications can be addressed by either software,
hardware, or a combination of both. Therefore, software
validation should be incorporated within the framework of
the overall design validation for the system.

In the software requirement analysis phase, user needs
and its intended uses based on which the software should be
developed are documented. This documented software and
system requirements are to be proved to have been satisfied
completely during validation of software product. The appro-
priateness and completeness of both the system requirements
and the software requirements should be addressed as part of
the design validation process for the device. Thus, software
validation includes confirmation of satisfactory conformance
to all software specifications and confirmation of traceability
to the system specifications of all software requirements.
Confirmation is an important part of the overall design val-
idation to ensure that all aspects of the software confirm to
user needs and intended uses (refer [60]).

22.4.11 Principles of Software Validation

Some of the general principles that should be considered for
the validation of software are defined by (refer Freund [25]).

Requirements
Software requirements analysis phase of the software devel-
opment life cycle consists of documentation of the require-
ments from the software and the specifications derived from
it forms part of the design phase. These documented versions
form the baseline for both verification and validation. Hence,
a software validation process cannot be carried out without an
established software requirements specification.

Defect Prevention
Quality assurance for software should focus on prevention
of introduction of errors during the software development
process and definitely not to test quality into the software
code that is already written.

Though testing is a part and parcel of any software devel-
opment process, it cannot ensure detection of all defects in
a software code. As such, the complexity of most software
prevents it from being exhaustively tested. Software testing
alonemay not be able to provide sufficient confidence that the
software is fit for its intended use, though it is a necessary ac-
tivity. A better way to develop confidence into the product is
to use an ensemble of methods that on one hand will prevent
occurrence of errors when the software is being developed
and on the other detect as many bugs as possible that has
already gone in the software. There is no one best mix of
these methods for all software; however, the strategy depends
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on several important factors which include the development
environment, application, size of project, language, and risk.

Time and Effort
A lot of time and effort is required to build a case that is
used to validate a software. In fact, one should prepare for
software validation right in the beginning, that is, during
design and development planning stage itself. Planned efforts
put throughout the software life cycle and the evidence ob-
tained through that should be the basis for finally validating
a software.

Software Life Cycle
There are several software life cycle models. All the models
aim at developing a software that will ultimately satisfy
the intended users. Sufficient documentation and software
engineering tasks are required in order to support software
verification and validation efforts.

Plans
A software validation plan must necessarily include the ulti-
mate goal of the software validation process. Hence, the plan
needs to be defined before the validation process starts. The
software validation plan forms an important quality system
tool which includes the following: (i) scope, (ii) approach,
(iii) resources, and (iv) schedules along with the different
types and extent of activities, tasks, and various work items
(refer [60]).

Procedures
The software validation process is generally a step-by-step
approach which uses some specific procedures to answer the
question as to how the software validation effort should be
conducted. These procedures also include identification of
specific activities or a sequence of activities that need to be
followed in order to complete individual validation activities,
tasks, and work items (refer [60]).

Software validation After a Change
A seemingly small local change in the software may result
in a drastic alteration on the global system, on account
of the complexity of software. When any change (even a
small change) is made to the software, the validation status
of the software needs to be re-established. Any change in
the software calls for a validation analysis of not just the
particular change that has been effected, but the analysis
should determine the extent towhich the change has impacted
the whole software. Based on this analysis, the software
developer needs to carry out a suitable software regression
testing in order to ensure that vulnerable portions of the
system are not affected adversely. Through design controls
and suitable regression testing confidence can be built that
the software is validated after a software change (refer [60]).

Validation Coverage
The complexity of the software and issues like safety risk
should determine the validation coverage of the software un-
der consideration. Determinants such as firm size or resource
constraints cannot be considered to be adequate. The selec-
tion of validation activities, tasks, and work items should be
adaptable to the complexity of the software design and the
risk associated with the use of the software for the specified
intended use. For the devices that are not that much vulner-
able to risks, only baseline validation activities may suffice.
As the risk becomes more and more, additional validation
activities need to be fulfilled in order to make up for the addi-
tional risk. Validation documentation should be sufficient to
demonstrate that all software validation plans and procedures
have been completed successfully (refer [60]).

Independence of Review
A number of reviews are essential before final release of
the product into the market, but these reviews should not
depend on one another. Self-validation is not only extremely
difficult, it does not properly serve the purpose. Like most
management systems, independent reviews are always better,
particularly for complicated and high-risk applications. Some
organizations hire from outside a software verification and
validation team; however, this may not always work out to be
the appropriate one. In most cases, experienced and knowl-
edgeable internal members who are not associated with the
design of the software or its implementation are assigned the
job of conducting the verification and validation activities.
However, for smaller organizations the challenge remains as
to how to organize and assign the tasks in order to ensure that
the reviews so undertaken are independent.

Flexibility and Responsibility
Like all other quality system management standards, soft-
ware validation principles also may be implemented in dif-
ferent ways for different software and their applications. The
freedom of planning lies with the software developer or the
device manufacturer as to how to apply different validation
principles in order to demonstrate that the software has been
validated.

Software may need to be developed for a wide variety
of devices with a wide spectrum of environments having
different levels of risk. An example could be the software
that are used in medical devices for which FDA regulations
are applicable. Such a software could be a component or part
or may work as an accessory of a medical device. It could by
itself be amedical device, or it may be used inmanufacturing,
design and development of a system, or it could be used for
other parts of a quality management system.

Given an environment, a software may consist of several
different components, some of which are developed in-house,
some may be purchased off-the-shelf, whereas some may
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be contract software or shareware. Also, software compo-
nents that are developed can be used as application software,
operating systems, compilers, debuggers, and configuration
management tools, among others.

Validating software in such different environments is a
nontrivial task, and hence, it is all the more necessary that
software validation process is designed keeping in view all
of these software validation principles. The validation pro-
cess thus developed should normally be equivalent to the
safety risk associated with the system, device, or process
(refer [60]).

22.4.12 Benefits of Software Validation

Software validation process is an important process step
of the overall software development process and it helps
build confidence in the product and its automated operations.
This process helps in the enhancement of the reliability of
the software, which automatically is reflected in decreasing
failure rate, less number of recalls and corrective actions
required. This also helps in reducing the liability of the
software developer and finally helps in minimizing risks to
the ultimate users and stakeholders.

It is a known fact that like testing of software, maintenance
of software also is an important activity and both the activities
take away a large chunk of the cost involved for the entire life
cycle of the software. A software validation process which
is comprehensive and well documented helps not only to
reduce the life cycle cost of the present software; it also
helps reducing the long-term cost of development of any
subsequent versions of the software (refer Koopman [32]).

In other words, the validation process actually reduces the
long-term cost by making it not only easier but less costly,
as well, for reliably modifying the software and revalidating
software changes.

Though software validation activity may be carried out
from different geographical locations involving many differ-
ent groups, the onus of ultimate responsibility for ensuring
that the software is validated, rests on the developer.

22.4.13 Validation vs. Verification

According to the “capability maturity model,” the two terms
may be defined as:

• Software Validation: The process of evaluating software
during or at the end of the development process to deter-
mine whether it satisfies specified requirements.

• Software Verification: The process of evaluating software
to determine whether the products of a given development

phase satisfy the conditions imposed at the start of that
phase (refer Osherove [50]).

In the above definition of software validation, the “speci-
fied requirements” though mean ultimate user requirements,
there could, however, be requirements from internal cus-
tomers as well.

Software verification however, may be done in different
phases of software development process in order to ensure
that the output of each such phase satisfies the requirements,
design, etc. of that phase.

In other words, software validation is a process of ensuring
that the final software productmeets the requirements (needs)
of all the stakeholders, though some of these needs might
not have been spoken out clearly. This, in a way, also checks
whether the documented requirements could capture all the
needs of the stakeholders. The oft-quoted saying is that
software verification ensures that “you built it right” and
confirms that the product, as provided, fulfills the plans of
the developers. Software validation ensures that “you built
the right thing” and confirms that the product, as provided,
fulfills the intended use and goals of the stakeholders.

22.4.14 Conclusion

Each of software testing, validation and verification are es-
sential in a program and all of them must be executed
by balancing each other for the increased efficiency of the
software. It must be remembered that different error filters
are provided by each of them. All the processes are used to
find a defect or a bug in a different manner, so the significance
of each needs to be considered and utilized accordingly.

While software testing is an activity to investigate soft-
ware under test in order to provide quality-related informa-
tion to stakeholders, verification and validationmust meet the
compliance requirements of law regulated industries, which
are often guided by government agencies. The success of
software depends upon the acceptance of its targeted audi-
ence, easy graphical user interface, and strong functionality
load test, among others. Thus, when a software product is
being developed, the organization needs to assess whether it
will be beneficial to its purchasers as well as other audience.
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Abstract

OSS (open-source software) systems serve as the key
components of critical infrastructures in the society. As
for the OSS development paradigm, the bug tracking sys-
tems are used for software quality management in many
OSS projects. It is important to appropriately control the
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quality for the progress status of OSS project, because the
software failure is caused by the poor handling of effort
control. In particular, the GUI of OSS will be frequently
made a dramatic difference according to the major version
upgrade. The changing in GUI of OSS will depend on
the development and management effort of OSS in the
specified version. Considering the relationship between
GUI and OSS development process, the UX/UI design of
OSS will change with the procedure of OSS development.
This chapter focuses on themethod of effort estimation for
OSS project. Then, the pixel data and OSS fault big data
are analyzed by using the deep learning. Moreover, we
discuss the effort assessment method in the development
phase by using the effort data.

Keywords

Open source software · Stochastic model · Deep
learning · GUI

23.1 Introduction

Many traditional software reliability growth models [1–3]
(SRGMs) have been used to assess the reliability for quality
management under the system testing phase of waterfall
software development. Moreover, we have been energeti-
cally proposed several reliability analysis methods based
on computational intelligence for an open-source software
(OSS) in the last decade; see e.g., [4]. Its measurement and
management technologies for OSS are essential to produce
and maintain reliable system for OSS. As for the OSS de-
velopment paradigm, the bug tracking systems are used for
software quality management in many OSS projects. In the
bug tracking systems, many fault data sets are recorded by
several users and developers. It will be helpful for OSS
project managers to assess the reliability and maintainability
of OSS, if many fault data recorded on the bug tracking
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system are used for software quality improvement. Further, it
is efficient to compare with the conventional methods [1–3]
based on SRGMs if the software managers can use the
development effort data in bug tracking system in terms of
QCD (quality, cost, delivery) [4].

In this chapter, we focus on themethod of effort estimation
based on the deep learning for OSS project by using the OSS
fault big data [5–7]. For example, Fig. 23.1 represents the
relationship of fault and effort data analysis in the case of
the Waterfall model. It is important to appropriately manage
the quality according to the progress status of OSS project,
because the software failure is caused by the poor handling
of effort control as shown in Fig. 23.1. In particular, we can
totally assess the development phase by using the effort data.
Also, the appropriate control of management effort for OSS
will indirectly link to the quality, reliability, and cost. Also,
theGUI ofOSSwill be frequentlymade a dramatic difference
according to the major version-upgrade.

Then, we discuss the method of effort estimation of OSS
project based on the deep learning. In particular, we use the
GUI data and the effort data obtained from fault big data.
Then, we use the pixel data sets obtained from GUI of OSS
for the actual OSS project. Also, several numerical examples
of the proposed method based on the deep learning by using
the pixel data and maintenance effort data in the actual OSS
projects are shown in this chapter. Moreover, we discuss the
results of numerical examples by using our proposedmethod.

23.2 Reliability of OSS

23.2.1 Open-Source Project and Reliability

All over the world, people can obtain a lot of information
at the same time by growing rate of Internet access around
the world in recent years. In accordance with such a pene-

tration of the Internet, it is increasing public awareness of
the importance of online real-time and interactive functions.
Therefore, the distributed software development paradigm
based on the information technologies are expanding at an
explosive pace. Especially, new development paradigm, such
as client/server system, web programming, object-oriented
development, and also on, by using network technologies
have been in heavy usage by the software developers.

At present, there are a number of development paradigms
within the same company, the development environment
joined hands with several software company, and the collab-
orative development based on consortia formation in terms
of the distributed development environment. Furthermore,
a software development paradigm based on an open-source
project is rapidly spreading.

The open-source project contains special features so-
called software composition. These geographically dispersed
several components are developed in all parts of the world.
The successful experiences as the distributed development
model in open-source projects include GNU/Linux operating
system,1 Apache Web server, and so on.2 Especially, OSS
is frequently applied as server use, instead of client use.
Then, such an open-source system development is still ever-
expanding now.

A computer-software is developed by human work; there-
fore, many software faults must be introduced into the soft-
ware product during the development process. Thus, these
software faults often cause complicated breakdowns of com-
puter systems. Recently, it becomes more difficult for the
developers to produce highly reliable software systems ef-
ficiently because of the diversified and complicated software
requirements. Therefore, it is necessary to control the soft-
ware development process in terms of quality and reliability.
Note that a software failure is defined as an unacceptable
departure of program operation caused by a software fault re-
maining in the software system. Basically, the software relia-
bility can be evaluated by the number of detected faults or the
software failure-occurrence time. Especially, the software re-
liability models which can describe software fault-detection
or failure-occurrence phenomena are called SRGMs [1]. The
SRGMs are useful to assess the reliability for quality control
and testing-process control of software development.

On the other hand, the effective testing management
method for distributed development environment as typified
by open-source project has only a few presented [8, 9]. In
the case of considering the effect of a debugging process on
entire system in the development of a method of reliability
assessment for the distributed development environment, it
is necessary to grasp the deeply intertwined factors, such as

1Linux is a Registered Trademark of Linus Torvalds.
2Other company, product, or service names may be trademarks or
service marks of others.
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programming path, size of component, skill of fault reporter,
and so on.

23.2.2 OSS and Definitions of Reliability

At present, OSS systems serve as the key components of
critical infrastructures in the society. OSS projects possess
a unique feature known as software composition by which
components are developed by teams that are geographically
dispersed throughout the word. Successful OSS projects in-
clude Apache HTTP server, MySQL database server, Open-
Stack cloud software, Firefox Web browser, and GNU/Linux
operating system. However, poor handling of quality issues
and customer support has limited the progress of OSS, be-
cause the development cycle of OSS has no testing phase.
For example, mobile OSS has been gaining a lot of attention
in the embedded system area, i.e., Android, BusyBox, and
Firefox OS. However, the installer software developed under
the third-party developers indirectly effects the reliability of
a mobile device. Therefore, it is difficult for many com-
panies to assess the reliability of a mobile OSS, because
a mobile OSS includes several software versions. Another
closely related issue is that of software vulnerability posed
by the open-source nature of the code, raising the possibility
of security loopholes. For the abovementioned reasons, it
is difficult for software managers to assess the reliability
of OSS.

We compare the characteristics of software reliability with
those of hardware reliability as follows:

Hardware Reliability

1. Hardware failures can be due to wear out.
2. Hardware reliability is affected by deficiencies injected

during all phases of the development, operation, andmain-
tenance.

3. Hardware reliability can be improved by redundancy with
identical units.

4. A testing method of hardware reliability is established and
standardized.

5. Amaintenance technology is advanced since themarket of
hardware products is established and the user environment
is seized.

Software Reliability

1. Software failures can be due to no wear-out phenomenon.
2. Software reliability is, inherently, determined during the

earlier phase of the development process, i.e., specifica-
tion and design phases.

3. Software reliability cannot be improved by redundancy
with identical versions.

4. A verification method of software reliability has not been
established.

5. A maintenance technology is not established since the
market of software products is rather recent.

Generally, software failures caused by software faults
latent in the software system cannot occur expected for a
special occasion when a set of special data is put into the
system under a special condition, i.e., the program path
including software faults is executed. Therefore, the software
reliability is determined by the input data and the internal
condition of the program. We summarize the definitions of
the terms related to the software reliability in the following.

A software system is a product which consists of the
programs and documents as a result of the software de-
velopment process. Specification derived by analyzing user
requirements for the software system is a document which
describes the expected performance of the system. When the
software performance deviates from the specification and
the output variable has an improper value or the normal
processing is interrupted, it is said that a software failure
occurs. That is, software failure is defined as a departure
of program operation from the program requirements. The
cause of software failure is called a software fault. Then,
software fault is defined as a defect in the program which
causes a software failure. The software fault is usually called
software bug. Software error is defined as human action that
results in the software system containing a software fault.
Thus, the software fault is considered to be a manifestation
of software errors. In this chapter, software error may be used
to mean a defect detected and corrected during the testing or
the operation phase without distinction from software fault.

23.2.3 Development Paradigm of OSS

At present, many OSS are developed under several open-
source projects. For example, the Firefox Web browser, Fire-
fox OS, and Thunderbird mailer are developed and managed
under the Mozilla.org project. Also, Apache HTTP server,
Tomcat, and Flex are developed and managed under the
Apache software foundation. These open-source projects
control the development phase of many open source projects.
The open-source project has no the specific testing phase.
Also, the specification of OSS continuously changes with the
version upgrade, because the software of several versions is
uploaded to the website of OSS project.

It is difficult for software managers to assess OSS reliabil-
ity because of the differences among the development style
of OSS and traditional software. Therefore, it is important to
assess and manage considering the characteristics of the OSS
development paradigm.
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In particular, OSS have several versions of the develop-
ment process as follows:

1. Bug Fix Version (most urgent issue such as patch)
2. Minor Version (minor revision by the addition of a com-

ponent and module)
3. Major Version (significant revision for specification)

Also, the version number of OSS is generally described as
the “(Major version number.Minor version number. Revision
number. Build number),” e.g., (2.1.2103.1104). There are
several versions for each OSS. Therefore, it is known that it is
difficult for software managers to select the appropriate OSS,
because several OSS are uploaded to the website of open-
source project.

This chapter focuses on the reliability of OSS with the
abovementioned characteristics. Several methods of reliabil-
ity assessment for OSS are presented in this chapter. Also,
several numerical examples for each method of reliability
assessment based on computational intelligence are given by
using actual fault data of OSS. These methods introduced in
this chapter may be useful for software managers to assess
the reliability of a software system developed using the OSS
paradigm.

23.3 Stochastic Modeling Approach

Generally, a mathematical model based on probability theory
and statistics is useful to describe the software fault-detection
phenomena or the software failure-occurrence phenomena
and estimate the software reliability quantitatively. During
the testing phase in the software development process, soft-
ware faults are detected and removed with a lot of test-effort
expenditures. Then, the number of remaining faults in the
software system is decreasing as the testing goes on. This
means that the probability of software failure occurrence
is decreasing so the software reliability is increasing and
the time-interval between software failures becomes longer
with the testing time. A mathematical tool which treats such
software reliability aspect is a SRGM [1].

23.3.1 Hazard Rate Model

Based on the definitions discussed previous section, we can
make a software reliability growth model based on the as-
sumptions for actual environments during the testing phase
or the operation phase. Then, we can define the following
random variables on the number of detected faults and the
software failure-occurrence time.

N(t): the cumulative number of detected software faults
(or the cumulative number of observed software fail-
ures), up to testing time t,

Si: the i-th software failure occurrence time (i =1,2,· · · ;
S0 = 0),

Xi: the time-interval between (i−1)-st and i-th software
failures (i =1,2,· · · ; X0 = 0).

Figure 23.2 shows the occurrence of event {N(t) = i}
since ith faults have been detected up to time t. From these
definitions, we have

Si =
i∑

k=1

Xk, Xi = Si − Si−1. (23.1)

Assuming that the hazard rate, i.e., the software failure
rate, forXi (i = 1, 2, · · · ), zi(x), is proportional to the current
number of residual faults remaining in the system, we have

zi(x) = (N − i+ 1)λ(x), i = 1, 2, · · · , N; x ≥ 0,

λ(x) > 0, (23.2)

where N is the initial fault content and λ(x) the software
failure rate per fault remaining in the system at time x. If we
consider two special cases in Eq. (23.2) as:

λ(x) = φ, φ > 0, (23.3)

λ(x) = φxm−1, φ > 0, m > 0, (23.4)

then two typical software hazard rate models, respectively,
called the Jelinski-Moranda model and the Wagoner model
can be derived, where φ and m are constant parameters.
Usually, it is not completely fault free or failure free. Then,
we have a software hazard rate model called the Moranda
model for the case of the infinite number of software failure
occurrences as

t = 0 1 2 3 i

Si–1

Si
t

Time

{ N(t) = i }

(X: Software fault detection or software failure occurrence)

(S0 = 0, X0 = 0)

X1 X2 X3

(i–1)

Fig. 23.2 The stochastic quantities related to a software fault detection
phenomenon or a software failure occurrence phenomenon
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zi(x) = Dki−1, i = 1, 2, . . . ; D > 0, 0 < k < 1,
(23.5)

where D is the initial software hazard rate and k the de-
creasing ratio. Equation (23.5) describes a software failure-
occurrence phenomenon where a software system has high
frequency of software failure occurrence during the early
stage of the testing or the operation phase and it gradually de-
creases thereafter. Based on the software hazard rate models
above, we can derive several software reliability assessment
measures. For example, the software reliability function for
Xi (i = 1, 2, · · · ) is given as

Ri(x) = exp
[
−

∫ x

0
zi(x)dx

]
, i = 1 , 2, · · · . (23.6)

23.3.2 NHPPModel

Further, we also discuss nonhomogeneous Poisson process
(NHPP)models, which are modeled for random variableN(t)
as typical SRGMs. In theNHPPmodels, anNHPP is assumed
for the random variable N(t), the distribution function of
which is given by

Pr{N(t) = n} = H(t)n

n! exp[−H(t)], n = 1, 2, · · · ,

H(t) ≡ E[N(t)] =
∫ t

0
h(x)dx, (23.7)

where Pr[·] and E[·] mean the probability and expectation,
respectively. H(t) in Eq. (23.7) is called a mean value func-
tion which indicates the expectation ofN(t), i.e., the expected
cumulative number of faults detected (or the expected cumu-
lative number of software failures occurred) in the time in-
terval (0, t], and h(t) in Eq. (23.7) called an intensity function
which indicates the instantaneous fault-detection rate at time
t. From Eq. (23.7), various software reliability assessment
measures can be derived. For example, the expected number
of faults remaining in the system at time t is given by:

n(t) = a− H(t), (23.8)

where a ≡ H(∞), i.e., parameter a denotes the expected
initial fault content in the software system. Given that the
testing or the operation has been going on up to time t, the
probability that a software failure does not occur in the time
interval (t, t + x](x ≥ 0) is given by conditional probability
Pr{Xi > x|Si−1 = t} as:

R(x|t) = exp[H(t) − H(x+ t)], t ≥ 0, x ≥ 0.
(23.9)

R(x|t) in Eq. (23.9) is a so-called software reliability. Mea-
sures of MTBF (mean time between software failures or
fault-detections) can be obtained follows:

MTBFl(t) = 1

h(t)
, (23.10)

MTBFc(t) = t

H(t)
. (23.11)

MTBFs in Eqs. (23.10) and (23.11) are called instantaneous
MTBF and cumulative MTBF, respectively. It is obvious that
the lower the value of n(t) in Eq. (23.8), the higher the value
R(x|t) for specified x in Eq. (23.9), or the longer the value of
MTBFs in Eqs. (23.10) and (23.11), the higher the achieved
software reliability is. Then, analyzing actual test data with
accepted NHPP models, these measures can be utilized to
assess software reliability during the testing or operation
phase, where statistical inferences, i.e., parameter estimation
and goodness-of-fit test, are usually performed by a method
of maximum likelihood.

To assess the software reliability actually, it is necessary
to specify the mean value function H(t) in Eq. (23.7). Many
NHPPmodels [1] considering the various testing or operation
environments for software reliability assessment have been
proposed in the last decade. As discussed above, a software
reliability growth is described as the relationship between the
elapsed testing or operation time and the cumulative number
of detected faults and can be shown as the reliability growth
curve mathematically.

Among the NHPP models, the exponential and the mod-
ified exponential software reliability growth models are ap-
propriate when the observed reliability growth curve shows
an exponential curve. Similarly, the delayed S-shaped and the
inflection S-shaped software reliability growth models are
appropriate when the reliability growth curve is S-shaped.

In addition, as for computer makers or software houses in
Japan, logistic curve and Gompertz curve models have often
been used as software quality assessment models, on the
assumption that software fault-detection phenomena can be
shown by S-shaped reliability growth curves. In these deter-
ministic models, the cumulative number of faults detected up
to testing t is formulated by the following growth equations:

L(t) = k
1+me−at , m > 0, α > 0, k > 0, (23.12)

G(t) = ka(bt), 0 < a < 1, 0 < b < 1, k > 0. (23.13)

In Eqs. (23.12) and (23.13), assuming that a convergence
value of each curve (L(∞) or G(∞)), i.e., parameter k,
represents the initial fault content in the software system, it
can be estimated by a regression analysis.
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23.3.3 Stochastic Differential Equation
Modeling for OSS

We focus on an OSS developed under the open-source
project. We discuss a useful software reliability assessment
method in open-source project as a typical case of new
distributed development paradigm. Especially, we introduce
a software reliability growth model based on stochastic
differential equations in order to consider the active state of
the open source project. We assume that the software failure
intensity depends on the time, and the software fault-report
phenomena on the bug tracking system keep an irregular
state.

Let S(t) be the number of faults in the OSS system at
testing time t (t ≥ 0). Suppose that S(t) takes on continuous
real values. Since latent faults in the OSS system are detected
and eliminated during the operational phase, S(t) gradually
increases as the operational procedures go on. Thus, under
common assumptions for the software reliability growth
modeling, we consider the following linear differential
equation:

dS(t)

dt
= λ(t)S(t), (23.14)

where λ(t) is the intensity of inherent software failures at
operational time t and is a nonnegative function.

In most cases, the faults of OSS are not reported to the
bug tracking system at the same time as fault detect but rather
reported to the bug tracking system with the time lag of fault-
detection and report. As for the fault report to the bug tracking
system, we consider that the software fault-report phenomena
on the bug tracking system keep an irregular state. Moreover,
the addition and deletion of software component is repeated
under the development of OSS, i.e., we consider that the
software failure intensity depends on the time.

Therefore, we suppose that λ(t) in Eq. (23.14) has the
irregular fluctuation. That is, we extend Eq. (23.14) to the
following stochastic differential equation [4]:

dS(t)

dt
= {λ(t) + σγ (t)} S(t), (23.15)

where σ is a positive constant representing amagnitude of the
irregular fluctuation and γ (t) a standardized Gaussian white
noise.

We extend Eq. (23.15) to the following stochastic differ-
ential equation of an Itô type:

dS(t) =
{
λ(t) + 1

2
σ 2

}
S(t)dt + σS(t)dW(t), (23.16)

where W(t) is a one-dimensional Wiener process which is
formally defined as an integration of thewhite noise γ (t)with

respect to time t. The Wiener process is a Gaussian process
and it has the following properties:

Pr[W(0) = 0] = 1, (23.17)

E[W(t)] = 0, (23.18)

E[W(t)W(t′)] = Min[t, t′]. (23.19)

By using Itô’s formula [4], we can obtain the solution of
Eq. (23.15) under the initial condition S(0) = v as follows:

S(t) = v · exp
(∫ t

0
λ(s)ds+ σW(t)

)
, (23.20)

where v is the number of detected faults for the previous
software version. Using solution process S(t) in Eq. (23.20),
we can derive several software reliability measures.

Moreover, we define the intensity of inherent software
failures, λ(t), as follows:

∫ t

0
λ(s)ds = (1 − exp[−αt]), (23.21)

where α is an acceleration parameter of the intensity of
inherent software failures.

From Eq. (23.20), we can confirm that the number of de-
tected faults cannot converge to a finite value as the following
equation:

lim
t→∞ S(t) = ∞. (23.22)

The operation environment of OSS has the characteris-
tics of the susceptible to various operational environments.
Therefore, it is different from conventional software sys-
tems developed under the identical organization. Then, the
expected number of detected faults continues to increase
from the effect of the interaction among various operational
environments, i.e., the number of detected faults can not
converge to a finite value [4].

23.4 Pixel Data-Driven Approach Based on
Software GUI

23.4.1 Effort EstimationModel

Considering the characteristic of the operation phase of
OSS projects, the time-dependent expenditure phenomena of
maintenance effort depend on the change in UI/UX design
during the operation phase, because the OSS are developed
and maintained by several developers and users. UI means
the user interface, UX the user experience. The operation
phases of many OSS projects are influenced from external
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factors by triggers such as the difference of skill, time lag
of development, and maintenance. Considering the above
points, we apply the mathematical model to manage the OSS
project. Then, let λ(t) be the cumulative maintenance effort
expenditures up to operational time t(t ≥ 0) in the OSS
development project. Suppose that λ(t) takes on continuous
real values. Since the estimated maintenance effort can be
observed during the operational phase of the OSS project,
λ(t) gradually increases as the operational procedures go on.
Based on the same approach in software reliability growth
modeling [1–3], the following linear differential equation in
terms of maintenance effort can be formulated:

d�(t)

dt
= β {α − �(t)} , (23.23)

where β is the increase rate of maintenance effort expendi-
tures at operational time t, and α means the estimated amount
of maintenance effort required until the end of operation.
Then, we can solve Eq. (23.23) under the initial condition
λ(0) = 0. Therefore, the cumulative maintenance effort
expenditures up to time t are obtained as follows:

�(t) = α(1 − e−βt). (23.24)

Moreover, we discuss the parameter estimation by consid-
ering the UX/UI design, because UX/UI design changes with
the operation procedure, i.e, we consider that the changing
in UX/UI design depends on the cumulative maintenance
effort expenditures. We assume that a set of data (ti, λi)(i =
1, 2, · · · , n) in terms of development effort data is obtained
from the bug tracking system, where λi is the cumulative
maintenance effort expenditures up to operational time ti in
the OSS development project. Then, we consider the follow-
ing two kinds of data o1 (0 < o1 < 1) and o2 (0 < o2 < 1)
as the learning data in the deep learning:

o1 = λn − λb

λn
, (23.25)

where λb is the cumulative maintenance effort expenditures
up to previous version. Then, the parameter α in Eq. (23.24)
is given by α ≡ λn (1+o1). From Eq. (23.24), we can obtain
the following equation:

β ≡ o2 = 1

tn
ln

[
α

α − λn

]
. (23.26)

Abovementioned o1 (0 < o1 < 1) and o2 (0 < o2 < 1)
are obtained from the actual data on the bug tracking system
are used as the learning data.

23.4.2 Parameter Estimation of Maintenance
Effort Model Based on the Deep
Learning

In this chapter, we apply the deep feedforward neural network
(DFNN) and deep convolutional neural network (DCNN) to
learn the UX/UI design of open-source projects. In particular,
theGUI ofOSSwill be frequentlymade a dramatic difference
according to the major version upgrade. Then, it is very
important to consider the pixel data such as GUI. We apply
the following pixel data of UX/UI design to the parameters of
pre-training units. Then, the objective variable is given as the
numerical value from 0 to 1 in terms of o1 (0 < o1 < 1) and
o2(0 < o2 < 1), respectively. In other words, we apply two
kinds of parameters o1 (0 < o1 < 1) and o2 (0 < o2 < 1) to
the amount of compressed characteristics, respectively.

The structure of the DFNN in this chapter is shown in
Fig. 23.3. In Fig. 23.3, zl (l = 1, 2, · · · , L) and zm (m =
1, 2, · · · , M) means the pre-training units. Also, on (n =
1, 2, · · · , N) is the amount of compressed characteristics.
Several algorithms in terms of the deep learning have been
proposed [10–15]. In particular, the network structure of
DCNN is shown in Fig. 23.4.

23.4.3 The Procedure of Our Method

The procedures of the proposed method based on the deep
learning are shown as follows:

• We obtain the fault big data sets from the bug tracking
system.

• The development effort is calculated from the fault big
data.

1

2

L

1

2

M

1

2

N

Output layer Input layer
Zm

Zl on

Hidden layer

Deep feedforward
neural network 

i-th hidden layer
(i=1, 2, ..., I )

Fig. 23.3 The structure of DFNN
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Input layer Output layerFully connectedPoolingConvolutionPoolingConvolution

Fig. 23.4 The structure of DCNN

• We collect GUI data as UX/UI design for each software
version.

• Then, the pixel data sets of GUI for each software version
are given by the standardization of size in GUI.

• The pixel data is used as the input data of the deep
learning. Then, the output data is o1 (0 < o1 < 1) and
o2 (0 < o2 < 1).

• The DFNN and DCNN are used as the deep learning
algorithm in this chapter.

23.4.4 Goodness-of-Fit Comparison

We compare the goodness-of-fit of DFNN with DCNN for
the observed data set. We adopt the value of the root mean
square error (RMSE) as comparison criteria of goodness of
fit. Suppose that K data pairs (tk, yk)(k = 1, 2, · · · , K) are
observed during the OSS operating-phase where yk is the
cumulative software effort expenditures observed in the time
interval (0, tk]. RMSE can be obtained by using the sum
of square errors between the observed value, yk, and the
estimated one, ŷk, by the number of data pairs, K. That is:

RMSE =
√√√√ 1

K

K∑

k=1

(yk − ŷk)2, (23.27)

where ŷk in Eq. (23.27) is obtained from estimated �̂(tk) (k =
1, 2, · · · , K) in Eq. (23.24). RMSE indicates that the selected
model fits better to the observed data as the RMSE becomes
small.

23.4.5 Numerical Illustrations

In this chapter, we focus on Apache OpenOffice [16] in
order to evaluate the performance of our methods. Several
numerical examples by using the data sets for Apache
OpenOffice as OSS are shown in this chapter. The data
used in this chapter are collected in the bug tracking
system on the website of Apache OpenOffice open-source
project. We obtain 10,000 fault data sets from the data
recorded on bug tracking system of Apache OpenOffice.
The development effort data are analyzed by using the
obtained 10,000 fault data sets. We show the actual data in
Table 23.1.

We show the estimated cumulative maintenance effort
expenditures in the case of DFNN and DCNN up to time
t in Figs. 23.5 and 23.6. From Figs. 23.5 and 23.6, we find
that our method will be helpful for the OSS managers to
confirm the trend of maintenance effort by using UX/UI
data such as GUI in terms of the long-term prediction. For
example, the estimated cumulative software effort expen-
ditures is about 1.20 × 109 man-month in 200 months in
Fig. 23.5. The OSS managers can estimate the maintenance
effort from the pixel data of GUI by using the proposed
method.

Based on the results of DFNN and DCNN, the estimated
RMSE in the case of o1 and o2 are shown in Figs. 23.7,
23.8, 23.9, 23.10. Moreover, Table 23.2 shows the com-
parison of goodness of fit based on RMSE in terms of
maintenance effort. From Table 23.2, we have found that the
estimated RMSE in the case of DCNN fits better than one
of DFNN.
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Fig. 23.5 The estimated cumulative software effort in the case of
DFNN
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Fig. 23.6 The estimated cumulative software effort in the case of
DCNN
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Fig. 23.7 The estimated RMSE of o1 in the case of DFNN

23.5 Calculation byMXNet Package

In the case of DFNN, we can calculate by using the MXNeT
package via Statistical Computing R. Then, we can imple-
ment the program of DFNN as follows:
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Fig. 23.8 The estimated RMSE of o2 in the case of DFNN
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Fig. 23.9 The estimated RMSE of o1 in the case of DCNN
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Fig. 23.10 The estimated RMSE of o2 in the case of DCNN

Similarly, we can calculate by using the MXNeT package
via Statistical Computing R in the case of DCNN. Then, we
can implement the program of DCNN as follows:
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Listing 23.1 Implementation example of DFNN
library(Metrics)
library(ggplot2)
library(data.table)

data <- fread("data.csv")

train_data <- head(data.frame(data), n=300)
test_data <- tail(data.frame(data), n=200)

dim(train_data)
dim(test_data)

xx <- data.matrix(train_data [ ,3:94502])
yy <- train_data [,1]
pxx <- data.matrix(test_data [ ,3:94502])
pyy <- test_data [,1]

library(mxnet)

data <- mx.symbol.Variable ("data")

fc1 <- mx.symbol.FullyConnected(data , name = "fc1", num_hidden = 200)
act1 <- mx.symbol.Activation(fc1 , name = "relu1", act_type = "relu")
drop1 <- mx.symbol.Dropout(act1 , p = 0.2)

fc2 <- mx.symbol.FullyConnected(drop1 , name = "fc2", num_hidden = 150)
act2 <- mx.symbol.Activation(fc2 , name = "relu2", act_type = "relu")
drop2 <- mx.symbol.Dropout(act2 , p = 0.2)

fc3 <- mx.symbol.FullyConnected(drop2 , name = "fc3", num_hidden = 50)
act3 <- mx.symbol.Activation(fc3 , name = "relu3", act_type = "relu")
drop3 <- mx.symbol.Dropout(act3 , p = 0.2)

fc4 <- mx.symbol.FullyConnected(drop3 , num_hidden = 1)

output <- mx.symbol.LinearRegressionOutput(fc4)

mx.set.seed (1)

logger <- mx.metric.logger$new ()

model <- mx.model.FeedForward.create(output , X = xx , y = yy ,
ctx=mx.cpu(), num.round=20, array.batch.size =100, learning.rate =0.01,
momentum =0.9, wd=0.01, eval.metric=mx.metric.rmse ,
epoch.end.callback = mx.callback.log.train.metric(5,logger ))
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Listing 23.2 Implementation example of DCNN
library(Metrics)
library(ggplot2)
library(data.table)

data <- fread("data.csv")

train_data <- head(data.frame(data), n=300)
test_data <- tail(data.frame(data), n=200)

dim(train_data)
dim(test_data)

xx <- data.matrix(train_data [ ,3:94502])
yy <- train_data [,1]
pxx <- data.matrix(test_data [ ,3:94502])
pyy <- test_data [,1]

library(mxnet)

data <- mx.symbol.Variable ("data")

#fc1 <- mx.symbol.FullyConnected(data , name = "fc1", num_hidden = 200)
#act1 <- mx.symbol.Activation(fc1 , name = "relu1", act_type = "relu")
#drop1 <- mx.symbol.Dropout(act1 , p = 0.2)

fc1 <- mx.symbol.Convolution(data=data , kernel=c(5,5), num_filter =10)
act1 <- mx.symbol.Activation(data=fc1 , act_type ="tanh")
pool1 <- mx.symbol.Pooling(data=act1 , pool_type ="max", kernel=c(5,5),
stride=c(2,2))

fc2 <- mx.symbol.Convolution(data=pool1 , kernel=c(5,5), num_filter =10)
act2 <- mx.symbol.Activation(data=fc2 , act_type ="tanh")
pool2 <- mx.symbol.Pooling(data=act2 , pool_type ="max", kernel=c(2,2),
stride=c(2,2))

fc3 <- mx.symbol.FullyConnected(pool2 , name = "fc3", num_hidden = 100)
act3 <- mx.symbol.Activation(fc3 , name = "relu3", act_type = "relu")
drop3 <- mx.symbol.Dropout(act3 , p = 0.2)

fc4 <- mx.symbol.FullyConnected(drop3 , num_hidden = 1)

output <- mx.symbol.LinearRegressionOutput(fc4)

mx.set.seed (1)

logger <- mx.metric.logger$new ()

model <- mx.model.FeedForward.create(output , X = train.array , y = yy ,
ctx=mx.cpu(), num.round =100, array.batch.size =100, learning.rate =0.01,
momentum =0.9, wd=0.01, eval.metric=mx.metric.rmse ,
epoch.end.callback = mx.callback.log.train.metric(5,logger ))

23.6 Concluding Remarks

This chapter has focused on the method of maintenance
effort estimation related to reliability analysis based on the
deep learning by using fault big data on bug tracking system
and GUI data. In particular, our method based on the deep
learning has used the fault big data and GUI of OSS. Then,

the changing in GUI of OSS will depend on the development
and management effort of OSS in the specified version. Con-
sidering the relationship between GUI and OSS development
process, the UX/UI design of OSS will change with the
procedure of OSS development.

Therefore, we have focused on the maintenance effort of
OSS and GUI data. Moreover, we have shown the numeri-
cal illustrations of our method based on the deep learning.
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Table 23.1 The actual data

Time Effort Time Effort Time Effort

0 0 52 462245670 104 1067245901

1 11242 53 484592919 105 1069101192

2 81687 54 516998422 106 1069777567

3 151771 55 543744487 107 1070795028

4 419919 56 561214473 108 1072155427

5 988874 57 573350012 109 1073177882

6 1297656 58 583136767 110 1073861275

7 1942925 59 589657167 111 1075402199

8 2585842 60 600964595 112 1076259622

9 3095149 61 622307407 113 1077805430

10 3977554 62 640528209 114 1078665962

11 5204038 63 654526074 115 1079876837

12 6141696 64 669931665 116 1081619528

13 7737537 65 679991316 117 1083373725

14 10144016 66 690375293 118 1084607220

15 12307828 67 702043919 119 1086378005

16 14115921 68 714319511 120 1086910444

17 16013042 69 726665947 121 1087622126

18 20154925 70 739361520 122 1088157826

19 24526178 71 751194991 123 1088336474

20 34156018 72 761035714 124 1089232878

21 39611898 73 774980221 125 1091388752

22 43690308 74 789705980 126 1097870373

23 50142720 75 802263993 127 1105087734

24 55547182 76 816456806 128 1107983430

25 62986272 77 826571311 129 1109252640

26 71065755 78 837875789 130 1111799297

27 77509641 79 850103559 131 1112529511

28 87621023 80 864787201 132 1112895955

29 96656346 81 879264020 133 1113446237

30 106121972 82 896185115 134 1113997908

31 117197371 83 912643005 135 1114920303

32 131682720 84 925633810 136 1116215453

33 143577935 85 944251733 137 1118068558

34 160708649 86 960253359 138 1119183774

35 171961368 87 971028535 139 1120676344

36 188933756 88 984453051 140 1125734290

37 201072867 89 998855510 141 1133427805

38 210782860 90 1019053506 142 1135501260

39 223482044 91 1036872416 143 1138524374

40 233011838 92 1040159902 144 1139473017

41 244549868 93 1043484519 145 1140044481

42 256969749 94 1047156948 146 1140999352

43 268215630 95 1050376746 147 1141381659

44 278275066 96 1052963680 148 1142148952

45 292618694 97 1054753956 149 1142535167

46 311410264 98 1056896849 150 1142729155

47 331548254 99 1058717013 151 1143119002

48 351585734 100 1060874627 152 1144095627

49 381001674 101 1062541648 153 1146055373

50 412419834 102 1064553663 154 1147037419

51 440049846 103 1065225570 155 1147824308

(continued)

Table 23.1 (continued)

Time Effort Time Effort Time Effort

156 1149401799 166 1160799310 176 1165826931

157 1149994837 167 1161205800 177 1166688184

158 1150984029 168 1161409329 178 1166904411

159 1151380520 169 1161818719 179 1167121734

160 1152772429 170 1162023803 180 1167343434

161 1152971629 171 1162642892 181 1167572822

162 1154367833 172 1163057500 182 1168047129

163 1155168131 173 1163264970 183 1168289321

164 1156371951 174 1163899094

165 1159786977 175 1165397161

Table 23.2 The results of goodness-of-fit comparison based onRMSE
in terms of software effort

Compared models RMSE

DFNN 4.1 × 1016

DCNN 3.9 × 1016

Thereby, we have found that our proposed method can esti-
mate the development effort of OSS based on the GUI data
and the fault big data on bug tracking system. In particular,
this chapter shows the practical computational methods by
using the MXNeT package the via Statistical Computing R.
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Abstract

The recent rapid advancement in technology has affected
the security of software products. The number of threats
and cyber-attacks are intensifying both in number and
in complexity. Therefore, software system requires
protection against threats and vulnerabilities. When

P. K. Kapur (�)
Amity Center for Interdisciplinary Research, Amity University, Noida,
Uttar Pradesh, India

S. Panwar
Department of Operational Research, University of Delhi, Delhi, India

defects in the software have an effect on the security
of the software system, then these defects are called
vulnerabilities. It is essential for vendors to rigorously
identify and remove vulnerabilities present in the system.
This chapter aims to explain the vulnerability discovery
and patching process mathematically. Patch is a security
update released by software developers to eliminate
vulnerabilities from the system. Quantitative measures are
discussed in the present study to predict the vulnerability
discovery growth function by incorporating various
attributes, namely, software users, operational effort,
and coverage functions. Joint optimization problem
for optimal software and patch time-to-market are
also discussed with an aim of minimizing the cost
functions. Numerical examples are provided to validate
the mathematical models andminimization problem using
the actual vulnerability data sets. The results indicate
that the discussed models can objectively determine
the vulnerability discovery paradigm. Moreover, the
optimization models will assist the management team
in optimal decision making pertaining to release time of
software and security patch in the market.

Keywords

Software vulnerability · Prediction modeling · Patching ·
Joint optimization · Software time-to-market · Patch
release time

24.1 Introduction

In the last two decades, the software industry has witnessed
tremendous advancements at an accelerated pace. The soft-
ware is pervasive and has widespread utility. The human
activities are notably dependent on the software. Indeed, the
employment of the software has transformed humankind in
every facet. Therefore, reliability and quality of software
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system is most essential aspect of the software develop-
ment life cycle. In software engineering literature, academi-
cians and practitioners have suggested numerous software
reliability growth models (SRGMs) to predict the reliabil-
ity of software packages over their life cycle. SRGMs are
mathematical models that assist testers in identifying the
failure occurrence phenomenon and fault content of soft-
ware systems at any point of time [1]. In software industry,
the nonhomogenous process (NHPP)-based SRGMs are of-
ten applied to quantify the failure occurrences of software
systems.

Software products are designed using varied procedures
and are based on diverse technologies [2]. However, every
piece of software has its own benefits as well as drawbacks.
Themain concern associated with the software industry is the
security of the software packages. The prime characteristic
of security is confidentiality, integrity, and availability [3].
Confidentiality refers to impediment of unauthorized disclo-
sure of information. Integrity involves stopping of unautho-
rized alteration of information, and availability signifies the
accessibility of critical information to the authorized unit.
Absence of any of these three aspects from the software
indicates security infractions in the system, which can cause
loss and exploitation of crucial information. These secu-
rity breaches in software are commonly known as software
vulnerabilities.

In reference of software security, vulnerabilities are all
about faults or oversights in the software system, which
enables the hackers to sidestep the security measures and
perform malicious activities to disrupt the confidentially,
integrity, and availability of the software program. Thus,
vulnerabilities are a division of bugs present in the system,
which affects the security of the software [4]. The menace
caused by the security breaches has different severity degree,
depending on the elements such as manipulation intricacy
and attack-surface [5]. Several instances have been observed
in the recent past in which software vulnerabilities have
inflicted substantial harm to people and technological in-
dustries [6]. Presently, every software product in the market
is confined to security infractions. According to Computer
Emergency Response Team (CERT) [7], hundreds of new
vulnerabilities are reported every week. National Vulnera-
bility Database (NVD) [8] reports that overall 16,555 vul-
nerabilities are accounted for the year 2018, which is the
largest figure until date. Therefore, discovering vulnerabil-
ities is a preeminent activity that needs momentous human
efforts.

Due to the continuous improvement in the information
systems, software vulnerabilities pose a severe threat to the
software engineers. Owing to the alarming intensity of these
vulnerabilities, the research in the area of software security

has gained momentum from the past decade to provide secu-
rity solutions to the industries. However, most of these studies
are qualitative in nature. The quantitative aspect of vulnera-
bility discovery process has not been given high importance
in the software engineering literature. With the help of quan-
titative statistical analysis, team of software developers can
predict the vulnerability discovery pattern more precisely by
using the data-specific forecasting methods [9]. In recent
past, few attempts have been carried out to characterize the
security vulnerabilities mathematically. The first quantitative
model for vulnerability discovery process was provided by
Anderson [10], which is widely known as Anderson’s ther-
modynamic model. Anderson [10] developed the thermo-
dynamic vulnerability discovery model to measure the se-
curity in open and closed systems. The model illustrates the
discovery rate based on mean time between failures (MTBF).
According to their research, there is no difference between
open and closed system in the end.

Rescorla [11] determined the economic effectiveness of
finding and fixing the identified vulnerabilities for the com-
pany especially when they are discovered by the black hat.
Their model is based on the nonhomogeneous Poisson pro-
cess (NHPP) to assess the vulnerability discovery rate over
time. Two statistical models, namely, Rescorla Exponential
(RE) and Rescorla Linear or Quadratic (RL or RQ) model,
were suggested by the author to fit the different growth func-
tion of vulnerability data. Further, to investigate the S-shaped
behavior of vulnerability discovery process, Alhazmi and
Malaiya [12] proposed the logistic vulnerability discovery
model that measures the expected vulnerabilities discovered
over time. They have also suggested the new metric known
as vulnerability density to measure the security risk asso-
ciated with the software. They segregated the vulnerability
discovery process into three phases, namely, linear, learning,
and saturation phase. Another significant contribution to the
vulnerability discovery modeling literature was provided by
Joh et al. [13]. They developed the vulnerability discovery
model (VDM) using the Weibull distribution function. Their
model is commonly known as Joh Weibull (JW) Model. The
model depicts the asymmetric nature of vulnerability dis-
covery rate because of the skewness present in probabilistic
density function.

Recently, Kapur et al. [14] have provided a comparative
study of vulnerability discovery modeling and its interdis-
ciplinary nature. They have proposed two different VDMs
and compared the prediction capability with existing models.
Many other studies have also been proposed in the past litera-
ture to quantify the vulnerability discovery paradigm [6, 15–
20]. The mathematical forms of some existing vulnerability
discovery models important to the present study are given in
Table 24.1.
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Table 24.1 Existing vulnerability discovery models

Vulnerability discovery model Vulnerability discovery rate Mean value function

Rescorla Exponential (RE) Model d�(t)
dt = A (B− �) �(t) = B(1 − e−At)

Rescorla Linear/Quadratic (RL/RQ) Model d�(t)
dt = Bt + k �(t) = Bt2

2 + kt

Alhazmi Malaiya Logistic (AML) Model d�(t)
dt = A�(B− �) �(t) = B

1+BCe−AB

Joh Weibull (JW) Model d�(t)
dt = B

{
α
β

·
(
t
β

)α−1
e
−
(
t
β

)α}
�(t) = B

{
1 − e

−
(
t
β

)α}
or �(t) = B

{
1 − e−Atα}

24.1.1 Notations

�(t) Expected number of vulnerabilities discovered in interval [0, t]

B Initial number of vulnerabilities

A/γ Vulnerability discovery rate

k, C Integration constants

α Shape parameter

β Scale parameter

The defect identification process is affected by various
testing and environment conditions. However, all the above-
mentioned vulnerability discovery models are the function
of time alone. Less or no attention is given to other at-
tributes such as number of software end-users, intensity of
operational efforts, and coverage function. Therefore, in this
chapter, the influence of these critical factors on the vulnera-
bility discovery process has been studied. The mathematical
models describing the prediction of vulnerability discovery
growth function on different factors have been described and
further validated on the real-life vulnerability data.

Another important stream of literature in the field of
software engineering has focused on the optimal release time
of a software and patch time management. Developers must
understand themarket and release the software at an optimum
time with minimum cost and maximum reliability. In soft-
ware reliability literature, various studies have been designed
to formulate optimal software time-to-market [21–27]. In
addition, several researchers have also focused on patch time
problem. Patch is a piece of code designed by the experts
to update the software and remove the malicious faults and
security breaches from the software system. However, the
time to release the patch to its end-users requires crucial
examination as it incurs huge cost in a form of testing, vul-
nerability discovery, goodwill loss, and market opportunity
cost. Beattie et al. [28] formulated the cost minimization
problem to determine the optimal time to release the patches.
The cost function associated with their model considers
the cost of attack due to the vulnerability and the cost of
depraving due to flawed patches over time. Some authors
have also distinguished the time of vulnerability disclosure
(publication of vulnerability existence in the system) and
patch release. In this regard, Telang and Wattal [29] explore
the losses incurred to the software firms because of the public

disclosure of vulnerabilities. Arora et al. [30, 31] also sug-
gested the optimal policy for software vulnerability disclo-
sure and firm’s patch release behavior. However, limitations
of these studies are that they either have focused on software
time-to-market policy or patch release time management. In
this chapter, joint optimization of software time-to-market
and patch release time policies is described. The objective
of the present study is to predict the vulnerability discovery
growth function with respect to factors such as number of
end-users, effort consumption rate, coverage function, and
time. In addition, the optimal policy for software and patch
release time is discussed, which can facilitate the software
vendors for optimal decision-making.

The rest of the chapter is organized in the following
sections. Firstly, the mathematical modeling for vulnerability
discovery process is discussed by incorporating different
criteria such as software users, operational effort function,
and coverage rate. The empirical analysis is described in the
next section to assess the prediction capability and estimation
efficiency of all the vulnerability discovery models. After
that, the chapter deals with three different optimization prob-
lems with the aim of determining the optimal patch time-to-
market. Numerical illustrations are also provided to compre-
hend the practical application of the release policies. Finally,
the chapter is summarized using the concluding remarks.

24.2 Mathematical Modeling

24.2.1 NHPP-Based Vulnerability Discovery
Models

In this chapter, the quantitative techniques described to assess
the growth of software vulnerability discovery during the
operational phase have been classified using nonhomogenous
poison process (NHPP). Different attributes such as software
users growth function, intensity of operational efforts, and
coverage functions have been applied to illustrate the vul-
nerability discovery process of software products. According
to the NHPP-based models, the software security failures
occur at random times during operational phase caused by
vulnerabilities lying hidden in the software, which arises due
to the instructions executed by users. The counting process
{N(t), t ≥ 0} of an NHPP is defined as:
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Pr [V(t) = n] = [�(t)]n

n! .e−�(t), n = 0, 1, 2 . . .

where�(t) is the basic building block of all the NHPPmodels
and it is defined as the expected number of vulnerabilities
discovered by time t.

24.2.2 Notations

�(t) Expected number of vulnerabilities discovered by
time t

V Fixed number of vulnerabilities present in the
software.

Sb Potential users of a software product

Sb(t) Cumulative number of software users by time t

Ie(t) Expected number of actions performed or
instructions executed

We(t) Operational effort function; number of users who
reports the presence of vulnerability in the system by
time t

Cf(We(t)) Operational coverage function; the proportion of
software covered for vulnerability discovery by time t

24.2.3 User-Dependent VDM

In this subsection, a user-dependent vulnerability discovery
model is suggested [32]. The model is based on the key
theory that total vulnerabilities identified in the software
system are a function of the three critical factors: residual
vulnerabilities present in the software system, number of
instruction performed by the software users, and cumulative
users of the software system. The model is described using
the following assumptions:

• The software system fails randomly due to vulnerabilities
present in the software.

• The total vulnerabilities identified at any instance are
directly proportional to the undetected vulnerabilities in
the software, number of instructions executed by the users,
and the number of users of the system.

• The number of software buyers is a function of
time that affects the vulnerability discovery process
considerably.

• The vulnerability discovery process is modeled by the
nonhomogeneous Poisson process (NHPP).

• Vulnerability discovery is a deterministic process in a
continuous-state space.

Thus, the instantaneous vulnerability discovery at a time-
point t can be described using the following differential
equation [32]:

d�(t)

dt
=
(
d�(t)

dIe(t)

)
·
(
dIe(t)

dSb(t)

)
·
(
dSb(t)

dt

)
(24.1)

where time-dependent functions �(t), Ie(t), and Sb(t) clearly
depend on the functions Ie(t), Sb(t), and t, respectively. The
above-stated equation addresses that the vulnerability dis-
covery in any software product is a function of number
of instructions implemented, software users, and time. A
detailed description of each component (or faction) of the
model is presented below.

Component 1 The first component illustrates the rate of
change in the number of vulnerabilities discovered with
respect to the rate of change in number of instructions per-
formed by the users. When software is released in the market,
the developers continuously monitor and test its performance
to identify any security breach present in the system. It has
also been established that most of the vulnerabilities are
interdependent [33]. Therefore, the probability of detecting
other vulnerabilities increases when first vulnerability is
identified. Thus, the total vulnerabilities can be classified into
two classes: unique and interdependent.

Let unique vulnerabilities are discovered with rate x and y
is the rate of discovery of dependent vulnerabilities, then the
mathematical expression for the instantaneous vulnerabilities
discovered at a time-point t is a function of two additive
terms, that is:

d�(t)

dIe(t)
=
(
x+ y · �(t)

V

)
· (V − �(t)

)
(24.2)

where
(
V − �(t)

)
are the vulnerabilities which are not iden-

tified as yet; the first term on the right hand describes the
discovery of independent or unique vulnerabilities with rate
x, and the second term represents the identification of de-
pendent vulnerabilities with rate y, which is dependent on
the proportion of already discovered vulnerabilities. It may
be noted that the vulnerability discovery is an increasing
function of the number of instructions executed. The number
of vulnerabilities discovered increases as large number of
instructions are executed.

Component 2 When users execute instructions on the soft-
ware system, they may encounter some irregularities or secu-
rity breaches. They report these discoveries to the developers
for further investigation and timely removal of the vulner-
abilities. Thus, the rate of change of instruction executed
depends directly on the rate with which the number of users
of the software system changes. Let φ be the proportionality
constant, then the mathematical expression for the instanta-
neous change in the executed instructions at any time-point t
becomes:
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dIe(t) = φdSb(t) (24.3)

⇒ dIe(t)

dSb(t)
= φ (24.4)

On substituting the expression of Eqs. (24.2) and (24.4) in
Eq. (24.1), following mathematical expression is formed:

d�(t)

dt
=
{(

x+ y · �(t)

V

)
· (V − �(t)

)} · {φ} · dSb(t)
dt
(24.5)

The above differential equation can be further expressed
as:

d�(t)
dt

dSb(t)
dt

=
{(

x+ y · �(t)

V

)
· (V − �(t)

)} · {φ} (24.6)

The above-equation can be solved using the boundary
condition,�(t)= 0, Sb(t)= 0 at t= 0, to attain the following
closed-form solution:

�(t) = V ·
(
1 + h · e−(x+y)·Sb(t))φ − ((1 + h) · e−(x+y)·φ·Sb(t))(

1 + h · e−(x+y)·Sb(t))φ
(VDM1)

(24.7)

where h = y
x ; b = x + y and Eq. (24.7) represents the user-

dependent vulnerability discovery model.

Modeling Software Buyers Growth Function
The third component of Eq. (24.1) relates to the change in the
number of software users with time. Numerous expressions
have been suggested to represent the relationship between the
users and the time. One of the well-known expressions was
given by Kenny [34], who has established that the growth rate
of software users is a power function of the time. According,
to his study, the usage of the software in the field environment
is governed by a power law function, that is,

Sb(t) = tλ+1

λ + 1
(24.8)

where λ is any real constant. However, the power function is
seldom used in describing the relation between the users and
the time. This is because the parameter of the expression is
not interpretable in context of user’s growth rate.Moreover, it
does not differentiate the two classes of buyers, particularly,
innovators, who buy the new product under the influence
of mass-communication and imitators, who purchase a new

product under the influence of interpersonal communication.
Therefore, in the present study, the mathematical expression
given byBass [35] is employed to differentiate the two groups
of buyers categorically.

According to the Bass study, there exists a finite popu-
lation of prospective users, say Sb, who time increasingly
purchases a product. Let p be the rate of innovation and
q be the rate of imitation then the differential equation for
instantaneous in the change the number of users at any time-
point becomes:

dSb(t)

dt
=
(
p+ q · Sb(t)

Sb

)
· (Sb − Sb(t)

)
(24.9)

where
(
Sb − Sb(t)

)
signify the probable users who are still

left to purchase a software product and Sb(t) is the cumulative
software buyers by time t. It is believed that the vulnerabil-
ities discovery increases with the increase in the number of
instructions implemented at the user’s end and on the other
hand, number of executed instruction accelerated with the
growth of software buyers. Thus, it can be interpreted that
the growth function of software users affects the discovery
of vulnerabilities. The above differential equation can be
evaluated using the following integral structure:

∫
dSb(t) =

∫ (
p+ q · Sb(t)

Sb

)
· (Sb − Sb(t)

) · dt (24.10)

On solving the Eq. (24.10) under the boundary condition,
Sb(t) = 0 at t = 0, following expression for the cumulative
software users by time t is formed:

Sb(t) = Sb ·
⎛
⎜⎝ 1 − e−(p+q)t

1 + q

p
e−(p+q)t

⎞
⎟⎠ (24.11)

where γ = q/p, r = p + q
Equation (24.11) denotes the mathematical expression for

the total software users by time t. The user’s growth can be
used to evaluate the vulnerability discovery growth function.

24.2.4 Effort-Dependent VDM

This subsection explores the vulnerability discovery model
by examining the consequences of operational effort and
operational coverage function [36]. As the total efforts or
resources consumed in the operational phase increase, more
and more coverage can be provided to the software product.
Thus, this increase in coverage will in turn accelerate the
vulnerability discovery process. The model is based on the
following key assumptions:
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• The vulnerability discovery process is a function of num-
ber of vulnerabilities present in the system at that instance
and the software coverage rate.

• The software coverage function directly depends on the
efforts or resources (such as user/reporters) consumed in
the operational phase.

• In addition, the rate of operational effort is a function of
time.

Based on the above-mentioned assumptions, the instan-
taneous vulnerability discovery at a time-point t can be
expressed as [36]:

d�(t)

dt
= d�(t)

dWe(t)
· dWe(t)

dt
(24.12)

The differential equation described in Eq. (24.12) is a
function of two components or fractions. The first component
explains that the rate of vulnerability discovery at any time
instant depends on the rate of change in operational efforts
consumed at that point. The second component describes
that the rate of change in efforts is a function of time. The
mathematical expression for the two components is provided
below:

Component 1 During operational phase, the amount of vul-
nerabilities discovered is directly proportional to the vulnera-
bilities present in the software at that instant. As the coverage
of the software increased, more vulnerabilities are identified.
Therefore, the change of vulnerability discovery with respect
to change in operational efforts is considered dependent on
the amount of software coverage, that is,

d�(t)

dWe(t)
=
(

C′(We(t))

z− C (We(t))

)
· (V − �(t)

)
(24.13)

where C′(We(t)) is the coverage density function rate,
C(We(t)) is coverage distribution function, z is the maximum
proportion of software to be covered with 0 ≤ z ≤ 1. Thus,
z − C(We(t)) denotes the proportion of software, which
remains uncovered. Coverage distribution functions can be
modeled using the following functions:

(a) When the coverage function is taken as constant, then

(
C′(We(t))

z− C(We(t))

)
= b (24.14)

On substituting, the value of Eq. (24.14) in Eq. (24.12),
then the vulnerability discovery process can be described
as:

d�(t)

dt
= b

(
V − �(t)

) dWe(t)

dt
(24.15)

Further, the differential equation (24.15) is solved using
the boundary condition, �(t) = 0, We(t) = 0 at t = 0 to
get the following vulnerability discovery model:

�(We(t)) = V
(
1 − e−bWe(t)

)
(VDM2) (24.16)

Equation (24.16) describes the cumulative vulnerabilities
discovered by time t when coverage function hazard-rate
is constant.

(b) When the coverage rate is assumed to follow logistic
distribution function, then

(
C′(We(t))

z− C(We(t))

)
= b(

1 + h · e−bWe(t)
) (24.17)

On substituting, the value of Eq. (24.17) in Eq. (24.12),
then the vulnerability discovery process can be described
as:

d�(t)

dt
= b(

1 + h · e−bWe(t)
) · (V − �(t)

) dWe(t)

dt
(24.18)

Further, the differential equation (24.18) is solved using
the boundary condition, �(t) = 0, We(t) = 0 at t = 0 to
get the following vulnerability discovery model:

�(We(t)) = V

(
1 − e−bWe(t)

1 + he−bWe(t)

)
(VDM3) (24.19)

Equation (24.19) describes the cumulative vulnerabilities
discovered by time t when coverage function follows
logistic distribution.

Modeling Operational Effort Function
The pace of almost all the software operations such as in-
house testing, debugging faults, vulnerability discoveries is
governed by the amount of resources utilized in the process.
The second component of Eq. (24.12) represents the rate of
change in operational efforts with respect to rate of change
in time. In software reliability literature, effort function is
modeled using the following distribution functions:

Exponential Effort When the effort consumption rate fol-
lows exponential distribution function, then operational ef-
fort function is defined as:

We(t) = W
(
1 − e−λt

)
(24.20)

where λ is a scale parameter specifying the rate with which
efforts are being consumed and W is the fixed amount of
resources available for the vulnerability discovery process.
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Weibull Effort When the effort consumption rate follows
Weibull distribution function, then operational effort function
is defined as:

We(t) = W
(
1 − e−λtk

)
(24.21)

where λ is a scale parameter, k is a shape parameter, and W
is the total operational efforts to be utilized.

24.2.5 Generalized Coverage-Dependent VDM

In this subsection, the vulnerability discovery models
discussed in earlier sections have been extended to include
the effect of operational coverage, executed instructions,
operational efforts, and time simultaneously. The model
discussed in this section forms a generalized coverage-
dependent model. Operational coverage is software metric
that assists in evaluating the completeness and effectiveness
of the usage process [37]. In general, coverage is a criterion to
measure the thoroughness in executing the software system.
It is considered that in the user environment, the probable
vulnerable sites of the software product are covered using
the efforts to discover vulnerabilities with some certainty.
The model is based on the following assumptions:

• Vulnerabilities exist and uniformly spread in the software
system over all potential vulnerable sites.

• When a potential vulnerable site is covered, using efforts
at time t, the vulnerabilities at particular site are identified
with certain probability.

• The expected vulnerabilities discovered in a small time-
internal, say (t, t + dt), are directly dependent on the
number of vulnerabilities present in the system.

• The rate with which vulnerabilities are discovered is as-
sumed a function of operational coverage.

• The operational coverage rate is a function of number of
instructions executed.

• The number of executed instructions is considered effort
dependent.

• The operational effort utilized in the vulnerability discov-
ery process is a function of time.

In operational phase, the security breaches that are left
unattended in the testing phase are discovered and patched.
An operational coverage-based mathematical model is dis-
cussed to understand the underlying assumptions and predict
the behavior of vulnerabilities. The model focuses on the
effort spend in covering large proportion of the software
for discovering vulnerabilities. Operational coverage is very
important for both software developers and users. It can
determine the effectiveness of a given operational effort.
For developers, coverage information estimates the degree

of confidence of vulnerabilities that helps in vulnerability
disclosure and patching. Coverage-based vulnerability dis-
covery rate during the operational phase is defined as [38]:

d�(t)

dt
= d�(t)

dCf(t)
· dCf(t)

dIe(t)
· dIe(t)

dWe(t)
· dWe(t)

dt
(24.22)

where the functions �(t), Cf(t), Ie(t), and We(t) clearly de-
pend on the functions Cf(t), Ie(t), We(t), and t, respectively.
A detailed description of each fraction on right-hand side is
explained below:

Component 1 The instantaneous change of the vulnerabil-
ity discovery rate with respect to operational coverage rate
is directly dependent on the software vulnerabilities present
in the software and indirectly proportional to uncovered
proportion of software. A perfect coverage demonstrates that
at infinity Cf(∞) = 1, which is difficult to achieve in the
operational phase. Consequently, for the modeling purpose,
a target proportion of software, z has been taken that must be
covered to identify vulnerabilities, where 0 < z < 1.Moreover,
the vulnerability discovery rate will enhance with increase in
software coverage rate. Accordingly, the first component can
be described as:

d�(t)

dCf(t)
= A1

(
C′(We(t))

z− C(We(t))

) (
V − �(t)

)
(24.23)

where A1 is the proportionality constant representing the

vulnerability discovery rate;
(

C′(We(t))
z−C(We(t))

)
is the conditional

probability that describes the rate with which the software
is covered during the operational phase at any time t. Also,
the operational coverage is a function of efforts employed in
the operation phase.

Component 2 The instantaneous coverage rate correspond-
ing to instantaneous number of executed instructions is taken
as constant. As more and more instructions are performed on
the software system, more software surface can be covered
to discover vulnerabilities, that is,

dCf(t)

dIe(t)
= φ1 (24.24)

Component 3 The third component demonstrates the rate of
change in executed instructions with respect to rate of change
in operational efforts. Moreover, this change in execution rate
of instructions per operational effort is considered constant.
However, for some commercial software, the number of
instruction executed is observed to be either increasing or
decreasing, but it does not lead to much loss in generality.
Thus, the third component is defined as:
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dIe(t)

dWe(t)
= φ2 (24.25)

On combining the differentiable equations of above-
mentioned components, and substituting Eqs. (24.23),
(24.24), and (24.25) in Eq. (24.22), the following functional
form is obtained:

d�(t)

dt
=
{
A1

(
C′(We(t))

z− C(We(t))

) (
V − �(t)

)} · {φ1} · {φ2}

· dWe(t)

dt
(24.26)

The above differential equation can be further expressed
as:

d�(t)
dt

dWe(t)
dt

= A1

(
C′(We(t))

z− C(We(t))

) (
V − �(t)

) · φ1 · φ2 (24.27)

The above equation can be solved using the condition,
�(0) = C(0) = 0 to obtain the mean value function repre-
senting the expected number of discovered vulnerabilities by
time t:

�(We(t)) = V

(
1 −

(
1 − C(We(t))

p

)A1φ1φ2
)

(24.28)

Equation (24.28) represents the total vulnerabilities dis-
covered by time t when total We(t) operational efforts have
been expended.

Modeling Operational Effort Function
As mentioned before, the swiftness in the software opera-
tions is highly dependent on the amount of resources em-
ployed in the process. By utilizing efforts, the developers
can meticulously identify security threats with an accelerated
rate. Therefore, it is imperative to incorporate the effect of
operational efforts for modeling the vulnerability discovery
process. Thus, the fourth component in the differential equa-
tion (24.22) addresses the instantaneous rate of change in
the operational efforts with respect to time. In present study,
following distribution functions are applied to model the
operational effort functions:

Weibull Effort When the effort consumption rate follows
Weibull distribution function, then operational effort function
is defined as:

We(t) = W
(
1 − e−λtk

)
(24.29)

where λ is a scale parameter, k is a shape parameter, and W
is the total operational efforts to be utilized.

Logistic Effort When the effort consumption rate follows
Logistic distribution function, then operational effort func-
tion is defined as:

We(t) = W

(
1 − e−λt

1 + βe−λt

)
(24.30)

where λ is a scale parameter and β is a learning parameter.

Modeling Operational Coverage Function
The operational coverage is assumed to follow following
distribution functions:

(a) When coverage function follows Weibull distribution
function, then

C(We(t)) = p
(
1 − e−A2We(t)

h
)

(24.31)

where A2 is a scale parameter and h is a shape parame-
ter. Thus, the total vulnerability discovered (Eq. 24.28)
becomes

�(We(t)) = V
(
1 − e−A2We(t)

hA1φ1φ2
)

(VDM4)

(24.32)

Equation (24.32) describes the cumulative vulnerabilities
discovered by time t when coverage function follows
Weibull distribution function.

(b) When coverage function follows Logistic distribution,
then

C(We(t)) = p

(
1 − e−A2We(t)

1 + re−A2We(t)

)
(24.33)

where A2 is a scale parameter and r is a learning param-
eter. Thus, the total vulnerability discovered (Eq. 24.28)
becomes

�(We(t)) = V

(
1 −

(
1 −

(
1 − e−A2We(t)

1 + re−A2We(t)

))A1φ1φ2
)

(VDM5)
(24.34)

Equation (24.34) describes the cumulative vulnerabilities
discovered by time t when coverage function follows
Logistic distribution function.
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24.3 Empirical Analysis

Empirical analysis is the most crucial phase in the model
development process. Use of a better-fit software reliability
growth model provides appropriate solutions to the funda-
mental engineering and technical problems. This section
focuses on the validation of the above-discussed vulnerability
discovery models and comparison of their prediction effi-
ciency with existing models.

24.3.1 Parameter Estimation and Goodness
of Fit Criteria

The nonlinear least square estimation procedure is applied
for parameter estimation purpose. Least square estimation
is an effective measure for small and medium size samples.
For model validation, the unknown parameters, that is, the
number of vulnerabilities that are potentially discovered,
vulnerability discovery rate, number of software users buying
the product, and software usage rate is estimated using the
software known as Statistical Package of Social Sciences
(SPSS) tool. If the expected value of the total vulnerability
discovered by time t is given by �(t), then the least square
estimators of the parameters of the model can be defined as:

Z =
n∑
i=1

[
�

� (ti) − �(ti)

]2
(24.35)

where n is the number of observations;
�

�(t) is the predicted
value, and �(t) is the actual value of the expected number of
vulnerabilities discovered in the software.

The prediction ability of the model is said to be accurate
if its simulating behavior matches with the actual software
data. Therefore, to compare the goodness-of-fit for different
vulnerability discovery models, five statistical measures such
as Bias, Mean Square Error (MSE), Mean Absolute Error
(MAE), Root Mean Square Prediction Error (RMSPE), and
Coefficient of Determination (R2) are applied.

(a) Bias: It is the sum of the difference between the pre-
dicted and actual value. Lower the value of bias, better
is the model fit to the data. If the predicted and actual
value is same, then the model is known as unbiased
model.

Bias =

(
n∑
i=1

[
�

� (ti) − �(ti)

])

n
(24.36)

where n is the number of observations

(b) Mean Square Error (MSE): It refers to the average value
of the deviation between the estimated value and the
actual value as follows:

MSE =

(
n∑
i=1

[
�

� (ti) − �(ti)

]2)

n
(24.37)

where n is the number of observations. The lower MSE
represents less fitting error, thus superior goodness of fit.

(c) Mean Absolute Error (MAE): It measures the closeness
of prediction and the eventual outcomes. It is calculated
as the absolute difference between the actual and pre-
dicted values divided by the difference of number of
observations and degree of freedom, that is,

MAE =

(
n∑
i=1

∣∣∣∣
�

� (ti) − �(ti)

∣∣∣∣
)

n
(24.38)

(d) Root Mean Square Prediction Error (RMSPE): It cal-
culates the closeness with which a model predicts the
actual observations.

RMSPE =
√(

Bias2 + Variation2
)

(24.39)

Lower value of RMSPE Error signifies high predictive
accuracy of the model.

(e) Coefficient of Determination (R2): It evaluates the per-
centage of the total variation about the mean accounted
for the fitted curve. It ranges in value from 0 to 1. It is
calculated as:

R2 = 1 − residual SS

corrected SS
(24.40)

Small values indicate that the model does not fit the data
well. The larger the value, the better the model explains
the variation in the data.

(f) Predictive Ratio Risk (PRR): It measures the error be-
tween actual and estimated values using the following
formula:

PRR =
n∑
i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�(ti) − �

� (ti)

)2

�(ti)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(24.41)

(g) Akaike Information Criterion (AIC): This criterion
judge the quality of a set of statistical models to each
other. It is evaluated using the following formula:
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AICc = n ∗ ln (likelihood) + 2 ∗ K + ((2 ∗ K
∗ (K + 1)) / (n− K − 1))

(24.42)

where ln is the natural algorithm; K is the number of
parameters in the model and n is the number of obser-
vations.

(h) Bayesian Information Criterion (BIC): It is relatively
similar to the AIC. Nevertheless, it describes the over
fitting issue by adding a penalty term for the number of
parameters in the model. It is defined as:

BIC = n ∗ ln (likelihood) + K∗ ln(n) (24.43)

24.3.2 Data

The validation of a model requires some historical data of
actual fault count of commercial software project, some
metrics, and statistical tools. The first requirement, that is,
the historical data, has been obtained from the governmental
and private repositories of software vulnerabilities. The data
sets have been obtained from the Common Vulnerability
Exposure repository [39]. The vulnerability data set of sev-
eral commercial software applications that are being used
very often by software users has been chosen. The detailed
description of data sets is described below:

1. Oracle VM VirtualBox (DS 1): It is a leading corporation,
which is completely integrated with cloud applications
and platform services. VirtualBox is free and open-source
software (FOSS) whose source code is available for pub-
lic access. Open-source software packages are type of
computer software, which can be modified and shared
by its users [40]. In this data set, 66 vulnerabilities were
discovered from Jan 2011 to Jan 2017 by 29 software
users or buyers. These vulnerabilities belong to Oracle
VM Virtual box version 4.x and 5.x. Oracle Virtual box
version 4.0 was initially released on 22 December 2010
and its version 5 was released on 9 July 2015.

2. Google Chrome (DS 2): The Google chrome is a web
browser that offers web services to its clients by connect-
ing them to the Internet. Due to immense dependency
on web platforms for day-to-day activities, these plat-
forms are broadly used and as a result, the probability
of web attack on Google chrome is quite high. Google
Chrome has more than 1300 vulnerabilities in total that
are published in CVE until May 2016. For the present
analysis purpose, data set has been filtered by “DOS
Overflow” vulnerability typewith the severity greater than
8 and overall 47 vulnerabilities were observed that were
reported by 46 users between September 2008 and May
2016. The objective is to concentrate on only those vul-
nerabilities that have the potential to harm the developer

economically; therefore, the vulnerabilities with severity
level greater than 8 are considered.

24.3.3 Validation Results of User-Dependent
and Effort-Dependent VDMs

Firstly, the parameters of the user growth function given in
Eq. (24.11) are estimated using the data of actual users of
the software. The result is listed in Table 24.2. Moreover,
the results of goodness-of-fit criteria such as Mean Square
Error (MSE), Coefficient of Determination, R2 are also eval-
uated and the result is summarized in Table 24.2. Further,
Fig. 24.1a provides the goodness-of-curve for the predicted
software users and actual buyers. Secondly, the parameters
of the operational effort function given in Eqs. (24.20) and
(24.21) are estimated using the actual effort data for the two
dataset. Data consist of actual number of reporters over time.
Corresponding parameter estimation values are provided in
Table 24.2. The results provided in Table 24.2 show that
all the estimated coefficients are highly reliable and signif-
icant. Moreover, the values of statistical performance for all
vulnerability discovery models as provided in Table 24.2
establish the predictive power and prediction efficiency of the
vulnerability discovery models. Graphically, the goodness-
of-curves for two efforts functions with actual effort data are
represented in Fig. 24.1b.

Further, the model parameters are estimated using the vul-
nerability data. Moreover, the model fitness with the actual
data is evaluated and the prediction efficiency of the present
model is further compared with the previously established
vulnerability models such as Anderson Thermodynamic Vul-
nerability Discovery model, Rescorla exponential model,
Rescorla quadratic model, Alhazmi Malaiya Logistic model,
and Joh model. The parameter values obtained during the fit
and the corresponding goodness-of-fit criteria for the data set
DS1 are given in Table 24.3. The results of the statistical mea-
sures as displayed in Table 24.3 depict that all the suggested
vulnerability discovery models have high prediction efficacy.
Goodness-of-fit curves for VDM1, VDM2, and VDM3 are
also illustrated graphically in Fig. 24.2.

Table 24.2 Parameter estimation result for software users and opera-
tional effort functions

Sb(t)∼ Logistic Growth function

VDM1 S γ r MSE R2

43.167 26.004 0.049 0.688 0.989

We(t) ∼ Exponetial Effort

VDM2 W λ K MSE R2

624.093 4.4e(−4) – 8.124 0.873

We(t) ∼ Weibull Effort

VDM2 W λ k MSE R2

99.114 6.1e(−5) 1.969 0.825 0.987
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Fig. 24.1 Fitting Oracle VM virtual box (a) software buyers to the software user’s growth model and (b) effort function to the operational effort
growth model

Table 24.3 Estimation results for VDM1 and VDM2 on Oracle VM Virtual Box (DS1) data set

Model MSE R2 Bias MAE RMPSE Parameter estimates

Rescorla Exponential (RE) model 65.008 0.82 0.002 0.0026 0.023 B = 14720 A = 0.00004

Rescorla Quadratic (RQ) model 5.253 0.985 −0.01 0.0148 0.129 B = 0.023 k = − 0.68

Alhazmi Malaiya Logistic (AML) model 4.185 0.989 0.001 0.0013 0.011 B = 71.653 A = 0.001, C = 1.224

Joh Weibull (JW) Model 4.592 0.987 −9.1 0.1740 0.1106 B = 92.676 A = 8.22 e(−6), α = 2.711

VDM1 3.898 0.99 −002 0.0031 0.0265 V = 70.22, b = 0.132 h = 4.56, φ = 1.002

VDM2 (Exponential Operational Effort) 65.143 0.819 0.0183 0.019 0.1642 V = 15791.7 b = 1.37e(−4)

VDM2 (Weibull Operational Effort) 8.364 0.977 −0.009 −0.009 0.0867 V = 6934.859 b = 3.2e(−4)

VDM3 (Exponential Operational Effort) 4.337 0.988 −0.012 0.0128 0.1114 V = 75.010 b = 0.263, h = 68.08

VDM3 (Weibull Testing Effort) 4.575 0.987 −0.144 0.15 0.1719 V = 75.433 b = 0.124, h = 6.167
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Fig. 24.2 Goodness of fit for Oracle VM virtual box (a) VDM1 (b) VDM2 & VDM3
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The Rescorla exponential (RE) model for vulnerability
discovery process is equivalent to the Goel-Okumuto (GO)
model for software reliability growth function. In this model,
the number of vulnerabilities discovered per unit time
assumes to follow a Poisson process. From Table 24.3, it
can be interpreted that the model does not provide good fit
to the actual vulnerability data of Oracle virtual Machine
virtual box with a R2 value of 0.82. Rescorla Quadratic
(RQ) model is also known as Rescorla linear model as it
follows a uniform trend. The model provides reasonably
good fit to the Oracle virtual box data set with the R2 value
of 0.985. Another established VDM is Alhazmi Malaiya
Logistic (AML) model that examines the change in the
cumulative number of vulnerabilities by the number of
remaining vulnerabilities and the share of the installed base.
The AML model follows an S-shaped pattern that contains
three phases: learning phase, linear phase, and saturation
phase. From the goodness-of-fit measures results, it can be
deduced that the model provides good fit to the data with
R2 value of 0.989. The Joh vulnerability discovery model
considers the Weibull distribution to model an asymmetric
probability density function. This model is also supposed
to follow the S-shaped pattern like AML model. It provides
good fit to data with R2 value of 0.987. It has been observed
that the estimated and the actual data are following the
same trend that shows a significant fit. The results in the
Table 24.3 also suggest that for Oracle VM Virtual box, the
model with least MSE and highest R2 value is user-dependent
vulnerability discovery model (VDM1), Joh model has
least bias value, VDM2 with Weibull effort has the least
MAE, while the least value of RMSPE is obtained by AML
model.

24.3.4 Validation Result of Generalized
Coverage-Dependent VDM

Initially, the parameters of the operational effort function
given in Eq. (24.29) and (24.30) are estimated and the results
are provided in Table 24.4. Additionally, Table 24.5 lists the
estimated values of VDM3 and existing vulnerability discov-
ery models such as RE, RL, and AML. Also, the goodness-
of-fit measures such as R2, MSE, Bias, AIC, and PRR are
calculated for the all the models. Results are summarized in
Table 24.5. From the results displayed in Table 24.5, it can be
interpreted that the value of MSE for all four VDMs provides
good fit to data with low values of MSE, PRR, AIC, and
BIC and significantly high value of R2. Further, Fig. 24.3
graphically depicts the fitting capability of different VDMs
to the Google Chrome data set.

Table 24.4 Estimated values of operational effort function

Effort function W λ k/β MSE R2

Weibull 40.672 0.001 2.116 2.414 0.989

Logistic 40.686 0.102 16.84 2.55 0.988

24.4 Optimal Patch Time Release Policies

In operational phase, vulnerability discovery by the devel-
opers is an ongoing process and does not end until the
software is completely out of use or taken over by a new
software. Thus, software is continuously monitored for new
threats and flaws. New threats keep popping up and resources
are required to correct and completely remove them. As a
result, some coding is done to eliminate the threats in the
form of a patch. The patch is then applied to the software
and after testing, the patch is commercially released for the
users. Patches are often released to secure software from new
threats and identified flaws.

To evaluate the optimal time to release a patch keeping
the cost expenditure minimum poses an insightful study for
the software companies. Consequently, in the present section
optimal patch release policies are discussed that may provide
managerial aid and actionable recommendations to the soft-
ware firms. There has been substantial argument as to when
a company should disclose the discovered vulnerabilities
and accordingly release a patch for the users. The software
patch release time is a critical issue for the policy-makers
that depends on various decisive factors such as companies’
desired risk level, vulnerabilities discoverers, competence of
patch testing, and market opportunity loss due to delay in
software patch. The optimization problems discussed in this
section yield optimal patch release-time situation. The opti-
mization models are formulated with an aim of keeping the
development cost and risk level minimum and high product
reliability. The chapter covers the optimization problem of
patch release time for faults and vulnerabilities.

24.4.1 Assumption

The optimization models are based on the following key
assumptions:

• The fault and vulnerability discovery process follows a
nonhomogeneous Poisson process (NHPP) phenomenon.

• The time lag between the fault detection and its removal
is negligible.

• Faults are identified according to a Poisson process with
mean value function (MVF) m(t).
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Table 24.5 Estimates values of different vulnerability discovery models for Google Chrome data set

Model MSE PRR R2 AICC BIC Parameter estimates

Rescorla Exponential (RE) model 21.372 11.616 0.989 281.624 289.128 B = 55.797, A = 0.019

Rescorla Quadratic (RQ) model 85.704 53.325 0.953 405.981 411.001 B = 0.11, k = 0.982

Alhazmi Malaiya Logistic(AML) model 21.372 11.616 0.989 281.624 289.128 B = 41.333, A = 0.003 C = 0.528

VDM4 (Weibull Testing Effort) 2.667 174.417 0.988 96.068 110.128

V = 169.219, h = 0.975

A1 = 0.028, A2 = 0.281

φ1 = 0.939,φ2 = 1.029

VDM4 (Logistic Testing Effort) 2.54 28.0740 0.988 91.609 105.668

V = 122.042, h = 1.018

A1 = 0.272, A2 = 0.027

φ1 = 1.108,φ2 = 1.192

VDM5 (Weibull Testing Effort) 2.661 216.149 0.988 95.86 109.92

V = 108.615, r = 0.167

A1 = 0.156, A2 = 0.128

φ1 = 0.781,φ2 = 0.781

VDM5 (Logistic Testing Effort) 2.526 29.7027 0.989 91.121 105.181

V = 110.584, r = 0.204

A1 = 0.022, A2 = 0.21

φ1 = 1.12,φ2 = 2.241

N
ov

-0
8

M
ar

-0
9

Ju
l-

09

N
ov

-0
9

M
ar

-1
0

Ju
l-

10

N
ov

-1
0

M
ar

-1
1

Ju
l-

11

N
ov

-1
1

M
ar

-1
2

Ju
l-

12

N
ov

-1
2

M
ar

-1
3

Ju
l-

13

N
ov

-1
3

M
ar

-1
4

Google chrome data

RE model

AML model

RQ model

VDM4-weibull effort

VDM4-logistic effort

VDM5-weibull effort

VDM5-logistic effort

Ju
l-

14

N
ov

-1
4

M
ar

-1
5

M
ar

-1
6

Ju
l-

15

N
ov

-1
5

0

5

10

15

20

25

30

35

40

45

50

Fig. 24.3 Fitness of VDMs with Google Chrome Data

• Vulnerabilities are also discovered with respect to Poisson
process with mean value function �(t)

• The debugging process of defects is considered perfect,
that is, faults and/or vulnerabilities are removed perfectly
without introducing new faults and/or vulnerabilities in
the system.

• There is fixed and finite number of defects in the system.
• Every software product has finite life cycle.
• Cost of patch development and delivery to the end-users

is negligible.
• Market opportunity cost is assumed monotonically

increasing and twice continuously differentiable convex
function of the software release time.

• In postpatch release phase, no further patch will be re-
leased in the market for remaining defects rather a new
upgraded version of the software will be released later by
the company by removing the discovered vulnerabilities.

24.4.2 Optimal Release and Patching Time
of Software withWarranty

This subsection presents a study to determine the optimal
time to release a software and security patch when product is
under warranty period [41]. The total life span of software is
considered finite and it lies between the interval [0, Tlc]. The
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entire software lifecycle is broadly divided into two phases,
namely, testing phase [0, τ ] and operational or maintenance
phase [τ , Tlc]. A warranty is offered on the software product
at the time of the purchase so that if any failure occurs
within the warranty period, it is rectified by the software
vendors without any charge to the users. In operational phase,
software is continuously tested for any security threats. Also,
the manger’s idea is to release a patch in the warranty period
itself for the vulnerabilities discovered by that time. Thus,
maintenance phase is further divided into prepatch release
phase under warranty [τ , τ 1], postpatch release phase under
warranty [τ 1, τ + w], and operational phase after warranty
[τ + w, Tlc]. The goal of the current optimization problem
is to minimize the overall cost associated with the fault and
vulnerability discovery and testing process with a constraint
to maintain a desired reliability level.

Mathematical Modeling
In this subsection, the mathematical structure of the expected
number of faults encountered in the entire software life cycle
is studied in different phases. The pictorial representation
of phase-wise description of software life cycle is given in
Fig. 24.4.

Phase 1: Pre-release Testing Phase [0, τ ]
During this period, software is rigorously tested by the de-
velopers for any bugs present in the system. This is the most
critical phase of software development life cycle because
the stability, availability, and reliability of the software are
determined based on testing process. If any test case is
failed to perform during this phase, then the probability of
failures increases in the operational phase. Therefore, vital
importance is given to this phase by the software developers.
The expected number of faults identified during this phase
can be described using following expression:

m (τ ) = aF1 (τ ) (24.44)

Software release time
(t)

Testing phase Warranty phase

Operational phase

Patch release time
(t1)

Warranty time
(t+w) (Tlc)

Fig. 24.4 Phase-wise description of software life cycle for fault dis-
covery

where a is the total fault content present in the software;F1(τ )
describes the fault distribution function of the testing team;
τ is the release time of software in the market. It is further
assumed that the faults detection phenomenon follows an
exponential distribution pattern, that is,

m (τ ) = a
(
1 − e−bτ ) (24.45)

where b is the fault detection rate and a is the potential fault
content present in the system.

Phase 2: Prepatch Release Phase UnderWarranty [τ , τ 1]
After the software is released in the market at time τ , users
meticulously identify flaws remaining in the system during
its execution and report it to the developers. In this phase,
a warranty is provided to the users to assure that if any dis-
crepancy is observed then it will be solved by the developers
without any charge. The faults detected during this phase
are rectified by the developing team and a patch in the form
of piece of code is developed to eliminate the faults. Thus,
expected faults identified during this phase become:

m (τ1 − τ) = a (1 − F1 (τ ))F2 (τ1 − τ) (24.46)

where a(1 − F1(τ )) are the leftover bugs from the phase 1
that are left unidentified in the pre-release testing phase and
F2(τ 1 − τ ) is the distribution function of fault detection by
the users. Now, when fault detection phenomenon follows
exponential distribution function, then mean value function
of faults detection is expressed as:

m (τ1 − τ) = ae−bτ (1 − e−b·r1·(τ1−τ)
)

(24.47)

where b · r1 (0 < r1 ≤ 1) is the combined fault detection rate
of all the users. Since the competency of users in detecting
the faults is less as compared to the testing team, the fault
detection rate of users is considered some proportion of
tester’s bug detection rate.

Phase 3: Postpatch Release Phase Under Warranty
[τ 1, τ + w]
For strengthening the position in the market, Software Com-
pany makes sure to provide a patch to its users for updating
the systemwithin the warranty period. It is considered that τ 1

is the optimal time when company should release its patch.
Now, on receiving the patch, users successfully install it to
update their product. However, not all faults can be fixed by a
single patch. Therefore, theremay be few faults that remained
undetected in the previous phases and may be identified by
the users after time-point τ 1. It is assumed that the fault
detection rate of users improves during postpatch release
phase as they have attained experience through previous
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phase [τ , τ 1]. Thus, the bug detection effectiveness increases
during this phase. The expected number of bugs identified in
third phase may be expressed as:

m ((τ + w) − τ1) = a (1 − F1 (τ )) (1 − F2 (τ1 − τ))

F3 ((τ + w) − τ1)
(24.48)

where a(1 − F1(τ ))(1 − F2(τ 1 − τ )) represents the propor-
tion of bug content which left undetected in the previous
phase. Moreover, it is assumed that the bug detection phe-
nomenon follows exponential distribution function. Then, the
expected number of bugs detected during this phase becomes:

m ((τ + w) − τ1) = ae−bτ e−b·r1·(τ1−τ)
(
1 − e−br2(τ+w−τ1)

)
(24.49)

where b · r2 is the increased bug detection rate of the users in
phase 3.

Phase 4: Postwarranty Phase [τ + w, Tlc]
It is assumed that warranty is terminated at a fixed time-point
(τ + w). Generally, companies abort their free support to
debug the reported faults after the warranty period is over.
However, it has been observed that sometimes firms sign an
agreement with the software users to correct software failures
due to the faults present in the system throughout the product
life cycle. Thus, the users continuouslymonitor and report the
bugs to the developers for removal. The mean value function
of faults detection during this phase can be modeled as:

m (Tlc − (τ + w)) = a (1 − F1 (τ )) (1 − F2 (τ1 − τ))

(1 − F3 ((τ + w) − τ1))F4 (Tlc − (τ + w))

(24.50)

where a(1 − F1(τ ))(1 − F2(τ 1 − τ ))(1 − F3((τ + w) − τ 1))
correspond to the proportion of remaining faults and
F4(Tlc − (τ + w)) is the cumulative fault detection function
of the user in this phase. Now, the mean value function when
fault detection process follows exponential distribution can
be re-written as:

m (Tlc − (τ + w)) = ae−bτe−b·r1·(τ1−τ)e−b·r2·(τ+w−τ1)

(
1 − e−b·r3·(Tlc−(τ+w))

)
(24.51)

Cost Modeling
The following cost components are considered for modeling
the cost function:

(a) Testing cost : It is the cost to execute testing of each soft-
ware unit. It includes all the effort expends in developing
and running the test cases. In software literature, this cost
is assumed to increase linearly with time. Thus, if C1 is
the per unit testing cost, then total testing cost can be
defined as:

Ctesting_cost(t) = C1τ (24.52)

(b) Market Opportunity Cost: Before initializing the soft-
ware development project, every company performs a
market survey to investigate the expected profit and rev-
enue gained by introducing a new software product. If a
firm fall short in delivering the software at the scheduled
launch time then the market opportunities are missed.
Therefore, a cost in a form of market opportunity is
implemented in the cost model, which is a nonlinear
increasing function of release time, that is,

Cmarket_opporunity(t) = C2τ
2 (24.53)

where C2 is the market opportunity cost per unit time.
(c) Cost of fault debugging during testing phase: It is the

cost incurred in fixing the detected faults during the
testing period. It is assumed that the debugging cost is
directly proportional to the number of faults identified by
the testers. If C3 is the per unit debugging cost during
testing phase then the overall cost of debugging in testing
phase is represented as:

C[0,τ ](t) = C3m (τ ) (24.54)

(d) Cost of fault debugging in prepatch release phase:After
the release of the software in the market, it is in the
operational environment where the faults are continu-
ously discovered and reported by the users. The potential
loss possessed by developers during this phase is huge
as it includes the liability cost, loss of goodwill due to
customer’s dissatisfaction, the cost of developing and
distributing patches, and the cost of revenue loss when
failures are observed within warranty, etc. If C4 is the
per unit fault debugging cost in this phase, the total cost
incurred by the testing team in prepatch release patch
becomes:

C[τ ,τ1](t) = c4 · m (τ1 − τ) (24.55)

(e) Cost of fault debugging in postpatch release phase:
Even after the release of first patch, some proportion
of total faults remains undetected in the software. As
software is still in the warranty period, developers have to
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correct the failure causing bugs. If C5 is the per unit bug
removal cost in this phase, then effective cost incurred in
postpatch release warranty phase is given as:

C[τ1,τ+w] = C5m (τ + w− τ1) (24.56)

(f) Cost of fault debugging in postwarranty phase: Even
after the termination of warranty at time-point (τ + w),
software developers keep on debugging the faults re-
ported by the users. Moreover, the postwarranty period
is much longer than the other software lifecycle phases,
which results in high utilization of resources during this
period. Therefore, per unit cost of bug correction is
highest during this phase. The total debugging cost in
postwarrant phase when C6 cost of fault removal per unit
can be defined as:

C[τ+w,Tlc] = C6 · m (Tlc − (τ + w)) (24.57)

Thus, the total cost can be obtained by adding all the cost
components, that is,

Total_Cost, C(t) =C1τ + C2τ
2 + C[0,τ ](t) + C[τ ,τ1](t)

+ C[τ1,τ+w](t) + C[τ+w,Tlc](t)
(24.58)

Based on the aforementioned assumptions and modeling
framework, the following constrained optimization problem
is defined with an objective of minimizing the total cost and
maintaining the certain level of software reliability.

Minimize C(t) =C1τ + C2τ
2 + C[0,τ ](t) + C[τ ,τ1](t)

+ C[τ1,τ+w](t) + C[τ+w,Tlc](t)
(24.59)

Subject to, R (x|t) ≥ Ro (24.60)

where R(x| t) is the conditional reliability function that states
software will perform failure-free in a small time interval
[t, t + x] under specified user environment and mathemati-
cally it is defined as:

R (x|t) = e−{m(t+x)−m(t)} (24.61)

Numerical Example
The constrained optimization problem defined in the previ-
ous section has been numerically illustrated in the present
section. The numerical enunciates the procedure for evalu-
ating the optimal release time of software and the security
patch in the market. The actual fault count data of Tandem
computers is obtained from the software literature [42] for

numerical purpose. In the data set, there are total of 100
faults that are discovered in 20 weeks of testing. The model
parameters for the testing period are estimated using the
nonlinear least square method, which is solved using the
SPPS software. The estimated values of exponential SRGM
are a = 130.201 and b = 0.083. The rest of the software
parameters are assumed by making use of the experts option
and previous studies. The assumed parameter values (cost
values are in dollars) are given as:

r1 = 0.2, r2 = 0.3, r3 = 0.4, C1 = 70, C2 = 5, C3 = 30,
C4 = 66, C5 = 90, C6 = 215,
R0 = 0.9, w = 26 weeks

In the present study, an optimization software known as
MAPLE has been applied to numerically solve and graphi-
cally interpret the optimization problem. After applying the
values of all the parameters, following optimal results are ob-
tained: optimal software time-to-market, τ ∗ = 21.86 weeks
and optimal patch time-to-market τ 1

∗ = 2.29 weeks with
the total minimum cost of C(t)∗ = 10061.61(in dollars). The
convexity of the cost function is pictorially represented in
Fig. 24.5. Further, the phase-wise faults discovered by testers
and users are summarized in Table 24.6. From Table 24.6,
it can be observed that testers are able to debug maximum
number of faults (109 out of 130 faults) in the testing phase.
However, the remaining untraced faults (21 faults) are being
detected and reported by the customers to the testing team
after the release of the software. Ten faults were detected
during the warranty period and nine faults were detected
postwarranty period.
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Table 24.6 Phase-wise quantification of vulnerabilities

Phase Mean value function No. of faults removed

Pre-release phase [0, τ ] m(τ*) 108.9 (109 approx.)

First patch release phase under warranty [τ , τ 1] m(τ 1−τ*) 0.74 (1 approx.)

Postpatch release phase under Warranty [τ 1, τ + w] m(τ + w – τ1*) 9.16 (9 approx.)

Postwarranty phase [τ , w,Tlc] m(Tlc − (τ + w)*) 9.29 (9 approx.)

24.4.3 Optimal Patch Release Time for Both
Faults and Vulnerabilities

In this section, the optimization model [43] for patch release
time considers the debugging process of both faults and
security vulnerabilities. When company develops different
patches for faults and vulnerabilities, extra resources are
required that increase both the development cost and time.
Therefore, software developers tend to release a single patch
that fixes both the “faults” and “vulnerabilities” of the soft-
ware. In the present section, an optimal release time problem
is studied with two optimal patch release approaches. Ac-
cording to first approach, both the faults and vulnerabilities
are fixed by the developers via single patch. As the severity
of vulnerabilities is much higher than the faults, the second
approach considers the release of two patches where the first
patch corrects both faults and vulnerabilities together while
second patch is released by the testing team to specifically
fixed vulnerabilities. Hence, two optimization problems are
developed by keeping the cost minimization as an objective
function.

Mathematical Model
The present software reliability growth model is based on the
nonhomogenous Poisson process (NHPP). The hazard rate
approach is applied for predicting the mean value function
of total number of faults and vulnerabilities detected during
the software life cycle. The differential equation of the mean
value can be described as:

dm(t)

dt
=
(

f (t)

1 − F(t)

)
(a · pi − m(t)) for i = 1, 2

(24.62)

where p1 is the fraction of faults out of total a defects present
in the software and p2 is the fraction of vulnerabilities, also
p1 + p2 = 1; f (t)

1−F(t) is the combined hazard rate of fault and
vulnerability detection.

The above equation can be further solved using the initial
value condition that at t = 0, m(t) = 0, F(t) = 0 to obtain the
closed-form solution:

m(t) = a · piF(t) for i = 1, 2 (24.63)

Two different patch release approaches are considered in
this section. In the first, no clear distinction between the faults

Software release time
(t )

Testing phase

0

Operational phase

Patch release time
(t1)

Software support cycle
(Tlc)

Fig. 24.6 Phase-wise description of software life cycle for faults and
vulnerability discovery for approach 1

Software release
time (t )

0

Testing phase Operational phase

First patch
time (t v) Second patch

time (t1)
Tlc

Fig. 24.7 Phase-wise description of software life cycle for faults and
vulnerability discovery for approach 2

and vulnerabilities is employed with respect to criticality,
discovery rate, and cost function. The pictorial representation
of first approach is provided in Fig. 24.6. In the second
approach, vulnerability prioritization is considered. Accord-
ing to this case, first patch specifically for vulnerability is
released and then the fixing of faults is considered. The
purpose of releasing the vulnerability patch is to make certain
that the risks generated due to vulnerability exploitation are
reduced on time. The phase-wise description of software life
cycle for second approach is represented in Fig. 24.7.

Phase 1: Testing Phase [0, τ ]
As mentioned in the previous section, testing team indepen-
dently works to detect and debug defects present in the soft-
ware. In this phase, debuggers assess every fault and vulner-
ability as equally severe. For both the approaches discussed
above, the first phase has same mathematical interpretation.
Thus, the expected number of faults and vulnerabilities iden-
tified during this phase can be described using the following
expression:

m (τ ) = aF1 (τ ) (24.64)
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where F1(τ ) describes the fault distribution function of the
testing team; τ is the release time of software in the market.
It is further assumed that the faults detection phenomenon
follows an exponential distribution pattern, that is,

m (τ ) = a
(
1 − e−bτ ) (24.65)

where b is the fault detection rate and a is the potential fault
and vulnerability content present in the system.

Phase 2: Prepatch Release Phase [τ , τ 1]
Approach 1: When only single patch is released for fixing
faults and vulnerabilities

After introducing the software in the market, the work
of critical identification of faults and vulnerabilities is left
with customers. However, the efficiency of users is much
lower as compared to the professional testers. Moreover, the
seriousness and criticality of vulnerability is much intensive
than any other fault. Also, the cost incurred in the discovery
and correction of vulnerability is quite higher as compared to
the cost employed for debugging faults. Therefore, for devel-
oper’s convenience, from this interval the defect distinction
process starts for evaluating the debugging cost for faults
and vulnerabilities separately. The total number of faults
discovered and removed in this interval is represented as:

mf (τ1 − τ) = a · p1 · (1 − F1 (τ )) · F2 (τ1 − τ) (24.66)

where a · p1 · (1 − F1(τ )) is defined as the proportion of
faults remained to debug from the previous phase; F2(τ 1 − τ )
is fault detection function of the users. It is further assumed
that the faults detection phenomenon follows an exponential
distribution pattern, that is,

mf (τ1 − τ) = a · p1 · e−bτ · (1 − e−b·r1·(τ1−τ)
)

(24.67)

where b · r1 (0 < r1 ≤ 1) is the fault detection rate of the
users which is some fraction of the tester’s fault detection
rate. In similar lines, the expected vulnerabilities discovered
and corrected in this interval are defined as:

�(τ1 − τ) = a · p2 · (1 − F1 (τ )) · F3 (τ1 − τ) (24.68)

where a · p2 · (1 − F1(τ )) is defined as the proportion of
vulnerability remained to debug from the previous phase;
F3(τ 1 − τ ) is vulnerability detection function of the users.
If vulnerability discovery phenomenon follows exponential
distribution function, then

�(τ1 − τ) = a · p2 · e−bτ · (1 − e−b·r2·(τ1−τ)
)

(24.69)

Approach 2: When two different patches are released for
fixing vulnerabilities and both faults and vulnerabilities,
respectively

According to this scenario, if developers encounter any
vulnerability in the list of reported defects then they con-
struct a patch for vulnerabilities first because they have more
severe impact than any other faults. In addition, a second
patch is released for correcting both vulnerabilities and faults
collectively after releasing the vulnerability patch first. At
time point τ v, the patch for reported vulnerabilities during
the time interval [τ , τ v] is released. The expected number of
vulnerabilities reported during this interval becomes:

�(τv − τ) = a · p2 · (1 − F1 (τ )) · F2 (τv − τ) (24.70)

where a · p2 · (1 − F1(τ )) is the proportion of vulnerabilities
that remained undetected in the testing phase; F2(τ v − τ ) is
the vulnerability detection function of the users. Now, as the
vulnerability discovery follows an exponential distribution
function, the mean value function of vulnerability discovery
can be described as:

�(τv − τ) = a · p2 · e−bτ · (1 − e−b·r2·(τ1−τ)
)

(24.71)

Further, a second patch is released at time-point τ 1 to
fix faults and vulnerabilities simultaneously. The expected
number of vulnerabilities reported by the users in the interval
[τ v, τ 1] until the second patch is given as:

�(τ1 − τv) = a · p2 · (1 − F1 (τ )) · (1 − F2 (τv − τ))

· F3 (τ1 − τv)

(24.72)

where a · p2 · (1 − F1(τ )) · (1 − F2(τ v − τ )) is defined as the
proportion of vulnerabilities that remain undetected by time
τ v; F3(τ 1 − τ v) is the cumulative distribution function of
vulnerability discovery. When vulnerability discovery phe-
nomenon follows exponential distribution function, then

�(τ1 − τv) = a · p2 · e−bτ · e−b·r2·(τv−τ)
(
1 − e−b·r2·(τ1−τv)

)
(24.73)

Similarly, the expected number of faults identified and
reported by the users in the entire interval [τ , τ 1] until the
patch for faults is released is given as:

mf (τ1 − τ) = a · p1 · (1 − F1 (τ )) · F4 (τ1 − τ) (24.74)

where a · p1 · (1 − F1(τ )) is the proportion of faults that
remain unidentified in the previous phase; F4(τ 1 − τ ) is
the cumulative distribution function of fault detection by the
users in the second phase. If fault detection phenomenon
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follows exponential function, then expected number of faults
identified during this phase becomes:

mf (τ1 − τ) = a · p1 · e−bτ · (1 − e−b·r1·(τ1−τ)
)

(24.75)

Phase 3: Postpatch Release Phase [τ 1, Tlc]
Approach 1: When only single patch is released for fixing
faults and vulnerabilities

After the patch is delivered to the users, they install it to
fix the bugs and vulnerabilities, which were identified and
reported by them. However, not all defects will be fixed by
the single patch. Therefore, faults and vulnerability discovery
phenomenon continues even after the release of a patch.
Developers assist their customers for correcting the bugs
and security vulnerabilities till the software lifecycle. Thus,
the expected number of faults detected by the users during
postrelease phase becomes:

mf (Tlc − τ1) = a · p1 · (1 − F1 (τ )) · (1 − F2 (τ1 − τ))

· F4 (Tlc − τ1)

(24.76)

Further, the total number of vulnerabilities discovered and
removed during this phase is expressed as:

�(Tlc − τ1) = a · p2 · (1 − F1 (τ )) · (1 − F3 (τ1 − τ))

· F5 (Tlc − τ1)

(24.77)

where a · p1 · (1 − F1(τ )) · (1 − F2(τ 1 − τ )) and
a · p1 · (1 − F1(τ )) · (1 − F3(τ 1 − τ )) are the residual faults
and vulnerabilities, respectively, that remain undetected
in the previous period; F4(Tlc − τ 1) is the fault detection
function and F5(Tlc − τ 1) is the vulnerability discovery
function in duration [τ 1, Tlc]. For exponentially discovery
distribution, the expected number of faults and vulnerabilities
detection, respectively, becomes:

mf (Tlc − τ1) = a · p1 · e−bτ · e−b·r1·(τ1−τ) · (1 − e−b·r1·(Tlc−τ1)
)

(24.78)

�(Tlc − τ1) = a · p2 · e−bτ · e−b·r2·(τ1−τ)
(
1 − e−b·r2·(Tlc−τ1)

)
(24.79)

Approach 2: When two different patches are released for
fixing vulnerabilities and both faults and vulnerabilities,
respectively

After the release of two patches at time-point τ v and
τ 1, the fault and vulnerability discovery process continues
until the software life cycle ends at time Tlc. Therefore, the
expected number of faults identified in the last phase is given
as:

mf (Tlc − τ1) = a.p1 (1 − F1 (τ )) (1 − F4 (τ1 − τ))

F5 (Tlc − τ1)

(24.80)

Similarly, the expected number of vulnerabilities discov-
ered is represented as:

�(Tlc − τ1) = a · p1 · (1 − F1 (τ )) · (1 − F2 (τv − τ))

· (1 − F3 (τ1 − τv)) · F6 (Tlc − τ1)

(24.81)

When detection distribution follows exponential function,
then

mf (Tlc − τ1) = a · p1 · e−bτ · e−b·r1·(τ1−τ) · (1 − e−b·r1·(Tlc−τ1)
)

(24.82)

�(Tlc − τ1) = a · p2 · e−bτ · e−b·r2·(τv−τ) · e−b·r2·(τ1−τv)

(
1 − e−b·r2·(Tlc−τ1)

)
(24.83)

Cost Modeling
The cost functions associated with the testing and debugging
of faults and vulnerabilities in the software are listed in
Table 24.7.

Thus, the total cost can be obtained by adding all the cost
components become:

Total_Cost, C(t) =Ctesting_phase(t) + C[0,τ ](t)

+ C[τ ,τ1](t) + C[τ1,Tlc](t)
(24.84)

The optimization problem with an aim of minimizing the
overall cost function is defined as:

Approach 1: Single-patch model
Minimize

C1(t) = C1 · τ + C2 · a (1 − e−bτ )+ C3 · ap1
(
e−bτ )

(
1 − e−br1(τ1−τ)

)+ C4 · ap2
(
e−bτ ) (1 − e−br2(r1−τ)

)
+ C5 · ap1

(
e−bτ ) (e−br1(r1−τ)

) (
1 − e−br1(Tlc−τ1)

)
+ C6 · ap2

(
e−bτ ) (e−br2(r1−τ)

) (
1 − e−br2(Tlc−τ1)

)
(24.85)
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Table 24.7 Components of different cost functions

Cost components Description Cost function

Testing cost Testing cost refers to per unit testing cost and is
associated with the tester’s activities such as such as
test planning, test case generation, test execution, and
analysis of testing results.

Ctesting(t) = C1τ

Faults debugging
cost during testing
phase

This cost comprises direct cost associated with
identifying and fixing the bugs

C[0, τ ](t) = C2m(τ )

Faults debugging
cost during prepatch
release phase

Debugging cost during this phase is the cost of
debugging of the faults and vulnerabilities detected
and reported by the users

Approach 1: C[τ ,τ1](t) = C3mf (τ1 − τ) + C4�(τ1 − τ)

Approach 2:
C[τ ,τ1](t) = C3�(τv − τ) + C4�(τ1 − τv) + C5mf (τ1 − τ)

where τ < τ v < τ 1

Faults debugging
cost during
postpatch release
period

This cost includes the debugging cost in operational
phase after patch has been released for the faults and
vulnerabilities reported by the users

Approach 1: C[τ1 ,Tlc](t) = C5mf (Tlc − τ1) + C6�(Tlc − τ1)

Approach 2:
C[ τ1 ,Tlc](t) = C6mf (Tlc − τ1) + C7�(Tlc − τ1)

Approach 2: Two-patch model
Minimize

C2(t) = C1 · τ + C2 · a (1 − e−bτ )+ C3 · ap2
(
e−bτ )(

1 − e−br2(rv−τ)
)+ C4 · ap2

(
e−bτ ) (e−br2(rv−τ)

)
(
1 − e(−br2(τ1−τv))

)+ C5 · ap1
(
e−bτ ) (1 − e−br1(τ1−τ)

)
+C6 · ap1

(
e−bτ ) (e−br1(r1−τ)

) (
1 − e−br1(Tlc−τ1)

)
+C7 · ap2

(
e−bτ ) (e−br2(rv−τ)

) (
e(−br2(τ1−τv))

)
(
1 − e−br2(Tlc−τ1)

)
(24.86)

Numerical Example
To understand the practical application of the above-
discussed model, a numerical example is provided. The past
data set of fault count consisting of 535 defects that were
identified during the testing of 109 days was obtained from
Tohma et al. [44]. It is considered that the data set contains
both faults and vulnerabilities. The mean value function for
exponential model is m(t) = a · p1 · (1 − exp(−b · t)) for
faults andm(t)= a · p2 · (1− exp(−b · t)) for vulnerabilities.
The estimated values of the parameters of the exponential
model using the SPSS software are: a = 713.889 and
b = 0.015. Further, the remaining parameter values are
assumed based on the experts opinion, that is, r1 = 0.5,
r2 = 0.3, p1 = 0.9, p2 = 0.1, and Tlc = 1000.

The objective of the optimization problem is to evaluate
the optimal time-to-market the new software and optimal
time to release the patch for fixing the vulnerabilities and
faults. The cost minimization problem is solved using the
computational software known as MAPLE using the follow-
ing cost parameters value (in dollars):

C1 = 350, C2 = 260, C3 = 300, C4 = 2400, C5 = 310,

C6 = 2300 (For Approach 1)

C1 = 350, C2 = 260, C3 = 2400, C4 = 2400,

C5 = 300, C6 = 310, C7 = 2300 (For Approach 2)

The optimal results obtained using the above-mentioned
values of the parameter set are summarized in Table 24.8.
From the results listed in the Table 24.8, it can be comprehend
that for the both the approaches whether releasing a single
patch or two patches, the optimal time to release a software
will be same, that is, the software should be released after
approximately 114 days of testing. Nevertheless, according
to the actual observation of the debug data, the testing was
done only for 109 days in which 535 defects were found. It
indicates that the developer should extend the testing for 5
more days in order to debug more faults and vulnerabilities
at a minimum cost.

Further, the phase-wise description of number of faults
and vulnerabilities debugged is summarized in Table 24.9.
From Table 24.9, it can be observed that the number of
defects detected/debugged in the testing phase is 584.6 (ap-
proximately 585). If testing is continued for extra 5 days, then
50 more defects can be debugged in the testing phase. Also,
during operational phase, the number of faults detected in
prepatch release phase are 74.12 and number of vulnerabil-
ities discovered/patched are 5.89 when only single patch is
released. Similarly, when two patches are released, then the
total vulnerabilities discovered until second patch is released
are 5.88. Additionally, the total defects debugged in the post
patch release in both the approaches are 48.86.

24.4.4 Optimal Patch Release Time for
Vulnerable Software Systems

In this section, the debugging process of vulnerabilities in
the operational phase is explicitly considered. The optimal
patch time-to-market for fixing the software vulnerabilities
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Table 24.8 Optimal release time results

Patch policy Optimal release time Optimal patch release time Optimal cost (in dollars)

Approach 1 113.9 135.15 239606.9

First patch Second patch

Approach 2 113.9 75.03 60.12 239606.9

Table 24.9 Phase-wise description of defects using different approaches

Single-patch optimization problem Two-patch optimization problem

Phase Mean value function No. of defects removed Phase Mean value function No. of defects removed

[0, τ ] m(τ ) 584.6 [0, τ ] m(τ ) 584.6

[τ , τ1] mf(τ 1−τ ) 74.12 [τ , τ v] �(τ v − τ ) 3.7

�(τ 1 − τ ) 5.89 [τ v, τ 1] �(τ 1 − τ v) 2.18

[τ 1, Tlc] mf(Tlc − τ 1) 42.07 [τ , τ 1] mf(τ 1−τ ) 74.12

�(Tlc – τ 1) 6.79 [τ 1, Tlc] mf(Tlc – τ1) 42.07

�(Tlc – τ 1) 6.79

whose severity is much greater than the faults is determined.
It is assumed that the software is released at time-point
0. The objective of the study is to determine the optimal
patch release time τ that minimizes the total cost incurred
by developer in vulnerability discovery process. Further, the
vulnerability discovery process in the operational phase is
divided into parts: prepatch release phase [0, τ ] and postpatch
release phase [τ , Tlc]. Also, the time instant at which software
vendor releases the patch is also the testing termination time.
It is also assumed that the cost of patching is negligible and
does not introduce any new vulnerability in the system.

Mathematical Modeling
The mathematical expression for the vulnerability discovery
process in the operational phase is described in this subsec-
tion. The pictorial representation of phase-wise description
of software life cycle is given in Fig. 24.8. When software
is in market, the vulnerabilities are identified by both the
testers and the users. Users on the other hand may belong
to either category of white hat or black hat depending on
their intention of discovering vulnerabilities. Black hat are
unethical hackers who attempt to identify security loopholes
in order to exploit the system, whereas white hat discover
vulnerabilities with the permission of the company. They act
as reporters who inform about the security weaknesses to the
appropriate authority in order to fix them.

Phase 1: Prepatch Release Phase [0, τ ]
It is considered that software product is released in themarket
at time 0. Even after the release, some security breaches are
still present in the system. Therefore, in operational phase,
vulnerabilities are being identified by the testers and users
(black hat and white hat), that is,

�(τ) = �tester (τ ) + �black_hat (τ ) + �white_hat (τ )

(24.87)

Patch release time (t )

0

Operational phase

Pre-patch release phase
Post-patch release phase

(Tlc)

Fig. 24.8 Phase-wise description of software life cycle for vulnerabil-
ity discovery

Besides, it is assumed that the some fraction, say λ1, of the
total vulnerabilities is discovered by the testing team during
this phase and identified by the testing team during field-
testing. The λ2 fraction of undetected vulnerabilities is being
exploited by the black hat users and the remaining, that is,
λ3 = (1 − λ1 − λ2) proportion of the undiscovered bugs, are
detected by the customers who then immediately report it to
the developers for correcting it. Thus, the total vulnerability
discovery during this phase becomes:

�(τ) = λ1VFtester (τ )+λ2VFblack_hat (τ )+λ3VFwhite_hat (τ )

(24.88)

where

Ftester(τ ) = (1 − ebτ ) is the exponential distribution function
for vulnerability discovery by testers in interval [0, τ ]

Fblack_hat(τ ) = (1 − e−brτ ) is the exponential distribution
function for vulnerability discovery by hackers or black
hat users

Fwhite_hat(τ ) = (1 − e−bsτ ) is the exponential distribution
function for vulnerability discovery by white hat users
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Moreover, the vulnerability discovery rate of black-hat
(b · r) and white hat (b · s) users is some fraction of the
vulnerability discovery rate of the testing team.

Phase 2: Postpatch Release Phase [τ , Tlc]
At time τ , the developers release the patch for the discov-
ered vulnerabilities and at this time point testers stop the
vulnerability discovery process. Therefore, during postpatch
release phase, only users either black hat or white hat identify
the vulnerabilities in the software system. The remaining
number of vulnerabilities that were undetected in previous
phase is discovered during this period. Let λ4 proportion of
undetected vulnerabilities is identified by the hackers and the
remaining proportion of vulnerabilities, that is, 1 − λ4 = λ5,
is detected by the white hat users. Thus, the total number of
vulnerabilities discovered in this phase is given by:

�(Tlc − τ) = λ4
(
V − �(τ)

)
Fblack_hat (Tlc − τ)

+ λ5
(
V − �(τ)

)
Fwhite_hat (Tlc − τ)

(24.89)

where
(
V − �(τ)

)
is the undiscovered vulnerabilities from

phase 1 that are identified by the users in this phase and
λ4 + λ5 = 1. If vulnerability discovery process follows
exponential distribution function, then

�(Tlc − τ) = λ4
(
V − λ1V

(
1 − e−bτ )

− λ2V
(
1 − e−brτ )− λ3V

(
1 − e−bsτ )) (1 − e−br(Tlc−τ)

)
+ λ5

(
V − λ1V

(
1 − e−bτ )− λ2V

(
1 − e−brτ )

−λ3V
(
1 − e−bsτ )) (1 − e−bs(Tlc−τ)

)
(24.90)

Cost Modeling
The cost functions associated with the testing and debug-
ging of vulnerabilities in the software system are listed in
Table 24.10.

Thus, the objective function can be obtained by adding all
the cost components:

Minimize Total_Cost, C(t) =Ctesting_phase(t) + C[0,τ ](t)

+ C[τ ,Tlc](t)
(24.91)

Numerical Example
The vulnerability data for numerical illustration purpose is
collected from National Vulnerability Database (NVD), the
Mitre Corporation website, and ICAT database. The testing
and debugging data of an operating system Windows XP
(SP2 Professional) is obtained for the present study. In this
data set, execution time is reported in terms of months and
vulnerabilities in terms of cumulative vulnerabilities at the
end of each month. The data set consists of 17 vulnerabilities,
which were reported from January 2007 to 2013. Statistical
Package for Social Science (SPSS) tool has been used for
estimating the parameter values. The estimated values of the
parameters are V = 17.902 and b = 0.284.

Furthermore, the vulnerability discovery rate of hacker
and white hat users is considered some fraction of the tester’s
vulnerability discovery rate, that is, the detection rate of black
hat and white hat users are b · r and b · s (0 < r, s≤ 1), respec-
tively. The remaining parameter values (cost parameters are
in dollars) are assumed based on the expert’s opinion, that is,

r = 0.1136, s = 0.0568, C1 = 50, C2 = 100, C3 = 250,
C4 = 150, C5 = 250, C6 = 150,
λ1 = 0.5, λ2 = 0.3, λ3 = 0.2, λ4 = 0.6, λ5 = 0.4,
Tlc = 50

The values of the parameters are substituted in the ob-
jective function to evaluate the optimal time-to market the
patch, which minimizes the total cost function. The op-
timization problem is solved using MAPLE software and
calculated value of optimal patch release time as τ ∗ = 3.320,
that is, software vendors should release the software vul-
nerability patch after 3 months (approximately) from the

Table 24.10 Components of different cost functions

Cost components Description Cost function

Testing cost Testing cost refers to per unit testing cost and is
associated with the tester’s activities such as such as
test planning, test case generation, test execution, and
analysis of testing results

Ctesting(t) = C1τ

Vulnerability
discovery cost
during prepatch
release phase

This cost function includes the efforts expended on
discovering the vulnerabilities by the testers and white
hat users. It also includes the loss company suffer due
the vulnerabilities identified by the black hat users

C[0,τ ](t) = C2�tester (τ ) + C3�black_hat (τ ) + C4�white_hat (τ )

Vulnerability
discovery cost
during postpatch
release period

This includes the cost of vulnerabilities discovery by
the users after patch release

C[τ ,Tlc](t) = C5�black_hat (Tlc − τ) + C6�white_hat (Tlc − τ)
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Fig. 24.9 Convexity plot for the cost function

release of the software and corresponding minimum cost is
C∗ (t) = 2614.76 (in dollars). The convexity of the objective
function is established using the graph as shown in Fig. 24.9.

24.5 Concluding Remarks

The present study focuses on predicting the vulnerability
discovery and optimal patching phenomenon of software
products. The first part of the chapter examines the vul-
nerability discovery process by reviewing the mathematical
models that examines the discovery pattern of security weak-
nesses. The role of software users, resource consumption,
and coverage function on the defect detection process are
analyzed. The actual vulnerability data of the software prod-
ucts were obtained to validate the models. The second part
of the chapter centered on determining the optimal time to
release the software and security patch in the market. Three
different cost models are formulated by considering differ-
ent scenarios. The results obtained in the current research
can help managers in assessing the vulnerability discovery
growth rate and optimal patch management practices.
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Abstract

After a brief overview of existing models in software
reliability in Sects. 25.1 and 25.2 discusses a generalized
nonhomogeneous Poisson process model that can be used
to derive most existing models in the software reliability
literature. Section 25.3 describes a generalized random
field environment (RFE) model incorporating both the
testing phase and operating phase in the software devel-
opment cycle for estimating the reliability of software
systems in the field. In contrast to some existing models
that assume the same software failure rate for the software
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testing and field operation environments, this generalized
model considers the random environmental effects on
software reliability. Based on the generalized RFE model,
Sect. 25.4 describes two specific RFE reliability models,
the γ -RFE and β-RFE models, for predicting software
reliability in field environments. Section 25.5 illustrates
themodels using telecommunication software failure data.
Some further considerations based on the generalized
software reliability model are also discussed.

Keywords

Reliability prediction · Software testing · Software
reliability · Software development process · Software
failure · Model criteria

Many software reliability models have been proposed to help
software developers and managers understand and analyze
the software development process, estimate the development
cost, and assess the level of software reliability. Among these
software reliability models, models based on the nonhomo-
geneous Poisson process (NHPP) have been successfully
applied to model the software failure processes that possess
certain trends such as reliability growth or deterioration.
NHPP models seem to be useful to predict software failures
and software reliability in terms of time and to determine
when to stop testing and release the software [1].

Currently most existing NHPP software reliability models
have been carried out through the fault intensity rate function
and the mean-value functions (MVF)m(t) within a controlled
operating environment [2–55]. Obviously, different models
use different assumptions and therefore provide different
mathematical forms for the mean-value function m(t). Table
25.1 shows a summary of several existing models appearing
in the software reliability engineering literature [14]. Gen-
erally, these models are applied to software testing data and
then to make predictions of software failures and reliability
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Table 25.1 Summary of NHPP software reliability models [44, 50]

Model name MVF [m(t)]

Goel–Okumoto (G–O) m(t) = a(1 − e−bt)
Delayed S-shaped m(t) = a[1 − (1 + bt)e−bt]

Inflection S-shaped SRGM m(t) = a
(
1−e−bt

)

1+βe−bt

HD/G–O model m(t) = log
[
(ea − c) /

(
eae

−bt − c
) ]

Yamada exponential m(t) = a
(
1 − e−rα(1−e(−βt)

))

Yamada Rayleigh m(t) = a

⎛

⎝1 − e
−rα

(
1−e(−βt2/2)

)⎞

⎠

Yamada imperfect debugging model (1) m(t) = ab
α+b

(
eαt − e−bt)

Yamada imperfect debugging model (2) m(t) = a
(
1 − e−bt) (1 − α

b

)+ αat

PNZ model m(t) = a
1+β

e−bt [(1 − e−bt) (1 − α
b

)+ αat
]

Pham–Zhang model m(t) = 1
1+βe−bt

[
(c+ a)

(
1 − e−bt)− a

b−α

(
e−αt − e−bt)

]

Dependent-parameter model (Model 1) [26] m(t) = α(1 + γ t)(γ t + e−γ t − 1)

Dependent-parameter model with m(t0) �= 0 (Model 1a) [26]
m(t) = m0

(
γ t+1
γ t0+1

)
e−γ (t−t0)

+ α (γ t + 1)
[
γ t − 1 + (1 − γ t0) e−γ (t−t0)]

Vtub-shaped fault-detection rate model [28] m(t) = N

(
1 −

(
β

β+atb−1

)α)

Pham Inflexion model [29] m(t) = N

⎛

⎝1 − 1
(

β+ebt
1+β

) a
b

⎞

⎠

Logistic fault-detection model [44] m(t) = a

1+d
(

1+β

β+ebt

)

Pham-Zhang model [8] m(t) = 1
1+βe−bt

(
(c+ a)

(
1 − e−bt)− a

b−α

(
e−αt − e−bt)

)

in the field. The underlying assumption for this application
is that the field environments are the same as, or close to, a
testing environment; this is valid for some software systems
that are only used in one environment throughout their entire
lifetime. However, this assumption is not valid for many
applications where a software program may be used in many
different locations once it is released.

The operating environments for the software in the field
are quite different. The randomness of the field environment
will affect software failure and software reliability in an
unpredictable way. Yang and Xie [15] mentioned that the op-
erational reliability and testing reliability are often different
from each other, but they assumed that the operational failure
rate is still close to the testing failure rate, and hence that the
difference between them is that the operational failure rate
decreases with time, while the testing failure rate remains
constant. Zhang et al. [16] proposed an NHPP software relia-
bility calibration model by introducing a calibration factor.
This calibration factor, K, obtained from software failures
in both the testing and field operation phases will be a
multiplier to the software failure intensity. This calibrated
software reliability model can be used to assess and adjust
the predictions of software reliability in the operation phase.

Instead of relating the operating environment to the failure
intensity λ, in this chapter we assume that the effect of

the operating environment is to multiply the unit failure-
detection rate b(t) achieved in the testing environment using
the concept of the proportional hazard approach suggested
by Cox [56]. If the operating environment is more liable to
software failure, then the unit fault-detection rate increases
by some factor η greater than 1. Similarly, if the operating
environment is less liable to software failure, then the unit
fault-detection rate decreases by some positive factor η less
than 1.

This chapter describes a model based on the NHPP model
framework for predicting software failures and evaluating the
software reliability in random field environments. A general-
ized random field environment (RFE) model incorporating
both the testing phase and operating phase in the software
development cycle with Vtub-shaped fault-detection rate is
discussed. An explicit solution of the mean value function
for this model is derived. Numerical results of some selected
NHPP models are also discussed based on existing crite-
ria such as mean squared error (MSE), predictive power,
predictive-ratio risk, and normalized criteria distance from
a set of software failure data.

Based on this model, developers and engineers can further
develop specific software reliability models customized to
various applications.
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Notations

R(t) Software reliability function

η Random environmental factor

G(η) Cumulative distribution function of η

γ Shape parameter of gamma distributions

θ Scale parameter of gamma distributions

α,β Parameters of beta distributions

N(t) Counting process which counts the number of
software failures discovered by time t

m(t) Expected number of software failures detected by
time t, m(t) = E[N(t)]

a(t) Expected number of initial software faults plus
introduced faults by time t

m1(t) Expected number of software failures in testing by
time t

m2(t) Expected number of software failures in the field by
time t

a1(t) Expected number of initial software faults plus
introduced faults discovered in the testing by time t

a Number of initial software faults at the beginning of
testing phase, is a software parameter that is directly
related to the software itself

T Time to stop testing and release the software for field
operations

aF Number of initial software faults in the field (at
time T)

b(t) Failure detection rate per fault at time t, is a process
parameter that is directly related to testing and
failure process

p Probability that a fault will be successfully removed
from the software

q Error introduction rate at time t in the testing phase

MLE Maximum likelihood estimation

RFE-model Software reliability model subject to a random field
environment

γ -RFE Software reliability model with a gamma distributed
field environment

β-RFE Software reliability model with a beta distributed
field environment

NHPP Nonhomogeneous Poisson process

SRGM Software reliability growth model

HD Hossain–Ram

PNZ Pham–Nordman–Zhang

G–O Goel–Okumoto

MLE Maximum likelihood estimation

RFE Random field environment

25.1 A Generalized NHPP Software
Reliability Model

A generalized NHPP model studied by Zhang et al. [7] can
be formulated as follows:

m′(t) = ηb(t) [a(t) − pm(t)] , (25.1)

a′(t) = q · m′(t), (25.2)

where m(t) is the number of software failures expected to be
detected by time t. If the marginal conditions are given as
m(0) = 0 and a(0) = a, then for a specific environmental
factor η, the solutions to (25.1) and (25.2) are, given in [7],
as follows

mη(t) = a
∫ t

0
ηb(u)e−∫ u0 η(p−q)b(τ )dτdu, (25.3)

aη(t) = a

[
1 +

∫ t

0
ηqb(u)e−∫ u0 η(p−q)·b(τ )dτdu

]
. (25.4)

This is the generalized form of the NHPP software relia-
bility model. When p = 1, η = 1, and q = 0, then for any
given function a(t) and b(t), all the functions listed in Table
25.1 can easily be obtained.

25.2 Generalized Random Field
Environment (RFE) Model

The testing environment is often a controlled environment
with much less variation compared to the field environ-
ments, which may be quite different for the field application
software. Once a software program is released, it may be
used in many different locations and various applications
in industries. The operating environments for the software
are quite different. Therefore, the randomness of the field
environment will affect the cumulative software failure data
in an unpredictable way.

Figure 25.1 shows the last two phases of the software
life cycle: in-house testing and field operation [18]. If T is
the time to stop testing and release the software for field
operations, then the time period 0 ≤ t ≤ T refers to the time
period of software testing, while the time period T ≤ t refers
to the postrelease period – field operation.

The environmental factor η is used to capture the uncer-
tainty about the environment and its effects on the software
failure rate. In general, software testing is carried out in a
controlled environment with very small variations, which
can be used as a reference environment where η is constant
and equals to 1. For the field operating environment, the

0 tT

In-house-testing θ =1 Field operation

θ =random variable

Fig. 25.1 Testing versus field environment where T is the time to stop
testing and release the software
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environmental factor η is assumed to be a non-negative ran-
dom variable (RV) with probability density function (PDF)
f (η), that is,

η =
{
1 t ≤ T
RV with PDF f (η) t ≥ T

. (25.5)

If the value of η is less than 1, this indicates that the condi-
tions are less favorable to fault detection than that of testing
environment. Likewise, if the value of η is greater than 1,
it indicates that the conditions are more favorable to fault
detection than that of the testing environment.

From (25.3) and (25.5), the mean-value function and the
function a1(t) during testing can be obtained as

m1(t) = a
∫ t

0
b(u)e−∫ u0 (p−q)b(τ )dτdu t ≤ T,

a1(t) = a

[
1 +

∫ t

0
qb(u) × e−∫ u0 (p−q)·b(τ )dτdu

]
t ≤ T.

(25.6)

For the field operation where t ≥ T, the mean-value function
can be represented as

m2(t) =m1(T) +
∫ ∞

0
mη(t)f (η) dη = m1(T)

+
∫ ∞

0

[
aF

∫ t

T
ηb(u) × e−∫ uTη(p−q)b(τ )dτ du

]
f (η)dη t ≥ T

=m1(T) +
∫ t

T
aFb(u)

[∫ ∞

0
η × e−η

∫ u
T (p−q)b(τ )dτ f (η)dη

]
du,

(25.7)

where aF is the number of faults in the software at time
T. Using the Laplace transform formula, the mean-value
function can be rewritten as

m2(t) = m1(T)+
∫ t

T
aFb(u)×

(

− dF∗(s)
ds

∣∣
∣
∣
s= ∫ u

0 (p−q)b(τ )dτ

)

du,

t ≥ T

=m1(T)+ aF
(p− q)

×
∫ t

T

{
−dF∗

[
(p− q)

∫ u

T
b (τ ) dτ

]}
,

where F*(s) is the Laplace transform of the PDF f (x) and

∫ ∞

0
xe−x·sf (x)dx = −dF∗(s)

ds

or, equivalently,

m2(t) = m1(T) − aF
(p−q) × F∗ [(p− q)

∫ u
T b (τ ) dτ

]∣∣t
T
, t ≤ T

= m1(T) + aF
(p−q) × {

F∗(0) − F∗ [(p− q)
∫ t
T b (τ ) dτ

]}
.

Notice that F∗(0) = ∫∞
0 e−0xf (x)dx = 1, so

m2(t) =m1(T) + aF
(p− q)

×
{
1 − F∗

[
(p− q)

∫ t

T
b (τ ) dτ

]}
t ≥ T.

The expected number of faults in the software at time T is
given by

aF = a1(T) − pm1(T)

= a

[
1 −

∫ t

0
(p− q) b(u)e−∫ u0 (p−q)·b(τ )dτdu

]

= ae−∫ t0 (p−q)b(τ )dτ .

The generalized RFE model can be obtained as

m(t) =
⎧
⎨

⎩

a
(p−q)

(
1 − e−(p−q)∫ u0 b(τ )dτ

)
t ≤ T

a
(p−q)

{
1 − e−(p−q)∫ T0 b(τ )dτ × F∗ [(p− q)

∫ t
T b(τ )dτ

]
t ≥ T.

(25.8)

The model in (25.8) is a generalized software reliability
model subject to random field environments. The next sec-
tion presents specific RFE models for the gamma and beta
distributions of the random field environmental factor η.

25.3 RFE Software Reliability Models

Obviously, the environmental factor η must be non-negative.
Any suitable non-negative distribution may be used to de-
scribe the uncertainty about η. In this section, we present
two RFE models. The first model is a γ -RFE model, based
on the gamma distribution, which can be used to evaluate
and predict software reliability in field environments where
the software failure-detection rate can be either greater or
less than the failure detection rate in the testing environment.
The second model is a β-RFE model, based on the beta
distribution, which can be used to predict software reliability
in field environments where the software failure detection
rate can only be less than the failure detection rate in the
testing environment.

25.3.1 γ-RFEModel

In this model, we use the gamma distribution to describe
the random environmental factor η. This model is called the
γ -RFE model.

Assume that η follows a gamma distribution with a prob-
ability density function as follows:
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Fig. 25.2 A gamma density function

fγ (η) = θγ ηγ−1e−θ ·η

	 (γ )
, γ , θ > 0; η ≥ 0. (25.9)

The gamma distribution has sufficient flexibility and has
desirable qualities with respect to computations [18]. Figure
25.2 shows an example of the gamma density probability
function. The gamma function seems to be reasonable to de-
scribe a software failure process in those field environments
where the software failure-detection rate can be either greater
(i.e., η > 1) or less than (i.e., η < 1) the failure-detection rate
in the testing environment.

The Laplace transform of the probability density function
in (25.9) is

F∗(s) =
(

θ

θ + s

)γ

. (25.10)

Assume that the error-detection rate function b(t) is
given by

b(t) = b

1 + ce−b·t . (25.11)

where b is the asymptotic unit software-failure detection
rate and c is the parameter defining the shape of the learn-
ing curve, then from (25.8) the mean-value function of the
γ -RFE model can be obtained as follows

mγ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

a
(p−q)

[
1 −

(
1+c
ebt+c

)(p−q)]
t ≤ T,

a
(p−q)

[

1 −
(

1+c
ebT+c

)(p−q) ×
(

θ

θ+(p−q) ln
(
c+ebt

c+ebT

)

)γ ]

t ≥ T.

(25.12)

25.3.2 β-RFEModel

This section presents a model using the beta distribution
that describes the random environmental factor η, called the
β-RFE model.

4

3

2

1

0
0 0.2 0.4 0.6 0.8 1

Fig. 25.3 A PDF curve of the beta distribution

The beta PDF is

fβ(η) = 	(α + β)

	(α) 	(β)
ηα−1(1 − η)β−1,

α > 0,β > 0; 0 ≤ η ≤ 1. (25.13)

Figure 25.3 shows an example of the beta density function. It
seems that the β-RFE model is a reasonable function to de-
scribe a software failure process in those field environments
where the software failure-detection rate can only be less
than the failure-detection rate in the testing environment. This
is not uncommon in the software industry because, during
software testing, the engineers generally test the software
intensely and conduct an accelerated test on the software in
order to detect most of the software faults as early as possible.

The Laplace transform of the PDF in (25.13) is

F∗
β(s) = e−s · HG ([β] , [α + β] , s

)
, (25.14)

where HG([β], [α + β], s) is a generalized hypergeometric
function such that

HG
(
[a1, a2, . . . , am] , [b1, b2, . . . , bn] , s

)

=
∞∑

k=0

⎛

⎝
sk

m∏

i=1

	(ai+k)
	(ai)

n∏

i=1

	(bi+k)
	(bi)

k!

⎞

⎠ .

Therefore,

F∗
β(s) = e−s

∞∑

k=0

(
	(α + β)	(β + k) sk

	(β) 	(α + β + k) k!
)

=
∞∑

k=0

(
	(α + β)	(β + k)

	(β) 	(α + β + k)

ske−s

k!
)

=
∞∑

k=0

(
	(α + β)	(β + k)

	(β) 	(α + β + k)
Poisson (k, s)

)
.

where the Poisson PDF is given by

Poisson (k, s) = ske−s

k! .
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Using the same error-detection rate function in (25.11) and
replacing F*(s) by Fβ

*(s), the mean-value function of the
β-RFE model is

mβ(t)=
⎧
⎨

⎩

a
(p−q)

[
1 −

(
1+c
ebt+c

)(p−q)]
t ≤ T,

a
(p−q)

[
1 −

(
1+c
ebT+c

)(p−q)×
∞∑
k=0

(
	(α+β)	(β+k)Poisson(k,s)

	(β)	(α+β+k)
)]

t ≥ T.

(25.15)

where

s = (p− q)

[
ln
(
c+ ebt

c+ ebT

)]
.

The next section will discuss the parameter estimation
and illustrate the applications of these two RFE software
reliability models using software failure data.

25.4 Parameter Estimation

25.4.1 Maximum Likelihood Estimation (MLE)

We use the MLE method to estimate the parameters in these
twoRFEmodels. Let yi be the cumulative number of software
faults detected up to time ti, i = 1, 2, . . . , n. Based on the
NHPP, the likelihood function is given by

L =
n∏

i=1

[m (ti) − m (ti−1)]
yi−yi−1

(yi − yi−1)! e−[m(ti)−m(ti−1)]. (25.16)

The logarithmic form of the above likelihood function is

ln L =
n∑

i=1

{yi − yi−1} ln [m (ti) − m (ti−1)]

− [m (ti) − m (ti−1)] − ln [(yi − yi−1)!] .
(25.17)

In this analysis, the error-removal efficiency p is given.
Each model has five unknown parameters. For example, in
the γ -RFE model, we need to estimate the following five
unknown parameters: a, b, q, γ , and θ . For the β-RFEmodel,
we need to estimate: a, b, q, α, and β. By taking derivatives
of (25.17) with respect to each parameter and setting the
results equal to zero, we can obtain five equations for each
RFE model. After solving all those equations, we obtain the
maximum likelihood estimates (MLEs) of all parameters for
each RFE model.

Table 25.2 shows a set of failure data from a telecommuni-
cation software application during software testing [16]. The
column “Time” shows the normalized cumulative time spent
in software testing for this telecommunication application,

Table 25.2 Normalized cumulative failures and times during software
testing

Time Failures Time Failures Time Failures

0.0001 0.0249 0.0038 0.3483 0.0121 0.6766

0.0002 0.0299 0.0044 0.3532 0.0128 0.7015

0.0002 0.0647 0.0048 0.3682 0.0135 0.7363

0.0003 0.0647 0.0053 0.3881 0.0142 0.7761

0.0005 0.1095 0.0058 0.4478 0.0147 0.7761

0.0006 0.1194 0.0064 0.4876 0.0155 0.8159

0.0008 0.1443 0.0070 0.5224 0.0164 0.8259

0.0012 0.1692 0.0077 0.5473 0.0172 0.8408

0.0016 0.1990 0.0086 0.5821 0.0176 0.8458

0.0023 0.2289 0.0095 0.6119 0.0180 0.8756

0.0028 0.2637 0.0105 0.6368 0.0184 0.8955

0.0033 0.3134 0.0114 0.6468 0.0184 0.9005

Table 25.3 Normalized cumulative failures and their times in opera-
tion

Time Failures Time Failures Time Failures

0.0431 0.9055 0.3157 0.9751 0.7519 0.9900

0.0616 0.9104 0.3407 0.9751 0.7585 0.9900

0.0801 0.9204 0.3469 0.9751 0.7718 0.9900

0.0863 0.9254 0.3967 0.9751 0.7983 0.9900

0.1357 0.9303 0.4030 0.9801 0.8251 0.9900

0.1419 0.9353 0.4291 0.9851 0.8453 0.9900

0.1666 0.9453 0.4357 0.9851 0.8520 0.9900

0.2098 0.9453 0.4749 0.9851 0.9058 0.9900

0.2223 0.9502 0.5011 0.9851 0.9126 0.9900

0.2534 0.9502 0.5338 0.9851 0.9193 0.9900

0.2597 0.9502 0.5731 0.9851 0.9395 0.9950

0.2659 0.9502 0.6258 0.9900 0.9462 0.9950

0.2721 0.9552 0.6656 0.9900 0.9529 1.0000

0.2971 0.9602 0.6789 0.9900 0.9865 1.0000

0.3033 0.9701 0.7253 0.9900 1.0000 1.0000

and the column “Failures” shows the normalized cumulative
number of failures occurring in the testing period up to the
given time.

The time to stop testing is T = 0.0184. After the time
T, the software is released for field operations. Table 25.3
shows the field data for this software release. Similarly, the
column “Time” shows the normalized cumulative time spent
in the field for this software application, and the time in
Table 25.3 is continued from the time to stop testing T.
The column “Failures” shows the normalized cumulative
number of failures found after releasing the software for field
operations up to the given time. The cumulative number of
failures is the total number of software failures since the
beginning of software testing.

To obtain a better understanding of the software devel-
opment process, we show the actual results of the MLE
solutions instead of the normalized results. In this study, let
us assume that testing engineers have a number of years of



25 Software Reliability Modeling and Prediction 487

25

Table 25.4 MLE solutions for the γ -RFE model

â b̂ q̂ ĉ γ̂ θ̂

236.58 0.001443 0 0 0.2137 10.713

Table 25.5 MLE solutions for the β-RFE model

â b̂ q̂ ĉ α̂ β̂

236.07 0.001449 0 0 0.1862 8.6922

experience of this particular product and software develop-
ment skills and therefore conducted perfect debugging during
the test. In other word, p = 1. The maximum likelihood
estimates of all the parameters in the γ -RFE model are
obtained as shown in Table 25.4.

Similarly, set p = 1, the MLE of all the parameters in the
β-RFE model are obtained as shown in Table 25.5.

For both RFE models, the MLE results can be used to
obtain more insightful information about the software devel-
opment process. In this example, at the time to stop testing
the software T = 0.0184, the estimated number of remaining
faults in the system is aF = a − (p − q)m(T) = 55.

25.4.2 Mean-Value Function Fits

After we obtain the MLEs for all the parameters, we can plot
the mean-value function curve fits for both the γ -RFE and
β-RFE models based on the MLE parameters against the
actual software application failures.

Table 25.6 shows the mean-value function curve fits for
both the models where the columns mγ (t) and mβ(t) show
the mean-value function for the γ -RFEmodel and the β-RFE
model, respectively.

The γ -RFE and β-RFE models yield very close fits and
predictions on software failures. Figure 25.4 shows themean-
value function curve fits for both the γ -RFE model and
β-RFE model. Both models appear to be a good fit for the
given data set. Since we are particularly interested in the
fits and the predictions for software failure data during field
operation, we also plot the detailed mean-value curve fits for
both the γ -RFE model and the β-RFE model in Fig. 25.5.

For the overall fitting of the mean-value function against
the actual software failures, the MSE is 23.63 for the
γ -RFE model fit and is 23.69 for the β-RFE model. We
can also obtain the fits and predictions for software failures
by applying some existing NHPP software reliability models
to the same set of failure data. Since all these existing models
assume a constant failure-detection rate throughout both the
software testing and operation periods, we only apply the
software testing data to the software models and then predict
the software failures in the field environments.

Table 25.6 The mean-value functions for both RFEs models

Time Failures mγ (t) mβ (t) Time Failures mγ (t) mβ (t)

0.0000 0.0000 0.0000 0.0000 0.1357 0.9303 0.9340 0.9341

0.0001 0.0249 0.0085 0.0085 0.1419 0.9353 0.9352 0.9354

0.0002 0.0299 0.0152 0.0152 0.1666 0.9453 0.9398 0.9399

0.0002 0.0647 0.0219 0.0219 0.2098 0.9453 0.9469 0.9467

0.0003 0.0647 0.0302 0.0302 0.2223 0.9502 0.9487 0.9485

0.0005 0.1095 0.0466 0.0467 0.2534 0.9502 0.9530 0.9525

0.0006 0.1194 0.0547 0.0548 0.2597 0.9502 0.9538 0.9533

0.0008 0.1443 0.0708 0.0709 0.2659 0.9502 0.9545 0.9540

0.0012 0.1692 0.1023 0.1025 0.2721 0.9552 0.9553 0.9547

0.0016 0.1990 0.1404 0.1406 0.2971 0.9602 0.9582 0.9575

0.0023 0.2289 0.1915 0.1917 0.3033 0.9701 0.9589 0.9582

0.0028 0.2637 0.2332 0.2335 0.3157 0.9751 0.9603 0.9594

0.0033 0.3134 0.2667 0.2670 0.3407 0.9751 0.9628 0.9618

0.0038 0.3483 0.3053 0.3056 0.3469 0.9751 0.9635 0.9624

0.0044 0.3532 0.3422 0.3426 0.3967 0.9751 0.9681 0.9667

0.0048 0.3682 0.3718 0.3721 0.4030 0.9801 0.9686 0.9672

0.0053 0.3881 0.4003 0.4007 0.4291 0.9851 0.9708 0.9692

0.0058 0.4478 0.4332 0.4336 0.4357 0.9851 0.9713 0.9697

0.0064 0.4876 0.4648 0.4651 0.4749 0.9851 0.9743 0.9725

0.0070 0.5224 0.4998 0.5002 0.5011 0.9851 0.9761 0.9742

0.0077 0.5473 0.5332 0.5335 0.5338 0.9851 0.9783 0.9762

0.0086 0.5821 0.5772 0.5775 0.5731 0.9851 0.9808 0.9785

0.0095 0.6119 0.6205 0.6208 0.6258 0.9900 0.9839 0.9813

0.0105 0.6368 0.6600 0.6602 0.6656 0.9900 0.9860 0.9833

0.0114 0.6468 0.6953 0.6955 0.6789 0.9900 0.9867 0.9839

0.0121 0.6766 0.7210 0.7211 0.7253 0.9900 0.9890 0.9860

0.0128 0.7015 0.7479 0.7479 0.7519 0.9900 0.9902 0.9871

0.0135 0.7363 0.7684 0.7684 0.7585 0.9900 0.9905 0.9874

0.0142 0.7761 0.7924 0.7924 0.7718 0.9900 0.9911 0.9879

0.0147 0.7761 0.8050 0.8049 0.7983 0.9900 0.9923 0.9890

0.0155 0.8159 0.8294 0.8292 0.8251 0.9900 0.9934 0.9900

0.0164 0.8259 0.8522 0.8520 0.8453 0.9900 0.9943 0.9908

0.0172 0.8408 0.8713 0.8710 0.8520 0.9900 0.9945 0.9910

0.0176 0.8458 0.8804 0.8801 0.9058 0.9900 0.9966 0.9929

0.0180 0.8756 0.8897 0.8893 0.9126 0.9900 0.9969 0.9932

0.0184 0.8955 0.8987 0.8983 0.9193 0.9900 0.9971 0.9934

0.0184 0.9005 0.8995 0.8991 0.9395 0.9950 0.9979 0.9941

0.0431 0.9055 0.9092 0.9092 0.9462 0.9950 0.9981 0.9943

0.0616 0.9104 0.9153 0.9155 0.9529 1.0000 0.9983 0.9945

0.0801 0.9204 0.9208 0.9210 0.9865 1.0000 0.9995 0.9956

0.0863 0.9254 0.9224 0.9227 1.0000 1.0000 1.0000 0.9960

Figure 25.6 shows the comparisons of the mean-value
function curve fits between the two RFE models and some
existing NHPP software reliability models. It appears that
the two models that include consideration of the field en-
vironment on the software failure-detection rate perform
better in terms of the predictions for software failures in the
field.
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25.4.3 Software Reliability

Once the MLEs of all the parameters in (25.12) and (25.14)
are obtained, the software reliability within (t, t + x) can be
determined as
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Fig. 25.7 Reliability prediction comparisons

R(x|t) = e−[m(t+x)−m(t)]. (25.18)

Let T = 0.0184, and change x from 0 to 0.004, then we
can compare the reliability predictions between the two RFE
models and some other NHPP models that assume a constant
failure-detection rate for both software testing and operation.
The reliability prediction curves are shown in Fig. 25.7.
From Fig. 25.7, we can see that the NHPP models without
consideration of the environmental factor yield much lower
predictions for software reliability in the field than the two
proposed RFE software reliability models.

25.4.4 Confidence Interval

γ -RFEModel
To see how good the reliability predictions given by the two
RFE models are, in this section we describe how to construct
confidence intervals for the prediction of software reliability
in the random field environments. FromTables 25.4 and 25.5,
the MLEs of c and q are equal to zero and, if p is set to 1, then
the model in (25.12) becomes

m(t) =
⎧
⎨

⎩

a
(
1 − e−b·t) t ≤ T,

a
[
1 − e−b·t

(
θ

θ+b(t−T)

)γ ]
t ≥ T.

(25.19)

This model leads to the same MLE results for the parameters
a, b, γ , and θ and also yields exactly the same mean-value
function fits and predictions as the model in (25.12). To
obtain the confidence interval for the reliability predictions
for the γ -RFE model, we derive the variance–covariance
matrix for all the maximum likelihood estimates as
follows.
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If we use xi, i= 1, 2, 3, and 4, to denote all the parameters
in the model, or

x1 → a x2 → b x3 → θ x4 → γ.

The Fisher information matrix H can be obtained as

H =

⎛

⎜⎜
⎝

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

⎞

⎟⎟
⎠ ,

where

hij = E

(
− ∂2L

∂xi∂xj

)
i, j = 1, . . . , 6.

where L is the log-likelihood function in (25.18).
If we denote z(tk) = m(tk) − m(tk–1) and �yk

= yk − yk–1, k = 1, 2, . . . , n, then we have

∂2L

∂xi∂xj
=

n∑

k=1

[
− �yk
z(tk)

2

∂z (tk)

∂xi
· ∂z (tk)

∂xj

+
(

�yk − z (tk)

z (tk)
· ∂2z (tk)

∂xi∂xj

)]
.

Then we can obtain each element in the Fisher information
matrix H. For example,

h11 = E
(
− ∂2L

∂x21

)

=
n∑

k=1

{
∞∑

�yk=0

[
�yk
z(tk)

2

(
∂z(tk)
∂a

)2]× [z(tk)]�yk e−z(tk)
(�yk)!

}

=
n∑

k=1

{
∞∑

�yk=0

[
�yk
z(tk)

2

(
z(tk)
a

)2]× [z(tk)]�yk e−z(tk)
(�yk)!

}

=
n∑

k=1

(
1
a2

∞∑

�yk=0
�yk

[z(tk)]�yk e−z(tk)
(�yk)!

)

=
n∑

k=1

[
1
a2 · z (tk)

]

= 1
a2m (tn) .

The variance matrix, V, can also be obtained

V = (H)−1 =

⎛

⎜
⎜
⎝

v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

⎞

⎟
⎟
⎠ .

The variances of all the estimate parameters are given by

Var
(
â
) = Var(x1) = v11,

Var
(
b̂
)
= Var(x2) = v22,

Var
(
γ̂
) = Var(x3) = v33,

Var
(
θ̂
)

= Var(x4) = v44.

The actual numerical results for the γ -RFE model variance
matrix are

Vγ =
⎛

⎜
⎝

703.8472 −0.005387 −88.6906 −2.6861
− 0.005387 7.3655 × 10−8 1.11 × 10−3 3.097 × 10−5

− 88.6906 1.11 × 10−3 92.4287 1.1843
− 2.6861 3.097 × 10−5 1.1843 0.0238

⎞

⎟
⎠ .

β-RFEModel
The model in (25.14) can also be simplified given that the
estimates of both q and c are equal to zero and p is set to 1.
The mean-value function becomes

mβ(t) =
{

a
(
1 − e−bt) t ≤ T,

a

[
1 − e−bT ×

∞∑
k=0

(
	(α+β)	(β+k)Poisson[k,b(t−T)]

	(β)	(α+β+k)
)]

t ≥ T.

This model leads to the same MLE results for the parameters
a, b, α, and β and also yields exactly the same mean-
value function fits and predictions. To obtain the confidence
interval for the reliability predictions for the β-RFE model,
we need to obtain the variance–covariance matrix for all the
maximum likelihood estimates.

If we use xi, i= 1, 2, 3, and 4, to denote all the parameters
in the model, or

x1 → a x2 → b x3 → α x4 → β,

and go through similar steps as for the γ -RFE model, the
actual numerical results for the β-RFEmodel variancematrix
can be obtained as

Vβ =
⎛

⎜
⎝

691.2 −0.00536 −2.728 −66.2172
− 0.00536 7.4485 × 10−8 2.671 × 10−5 0.00085
− 2.7652 2.671 × 10−5 0.01820 0.8295
− 66.2172 0.00085 0.8295 60.5985

⎞

⎟
⎠

Confidence Interval of the Reliability Predictions
If we define a partial derivative vector for the reliability
R(x | t) in (25.18) as

vR (x|t) =
(

∂R(x|t)
∂x1

,
∂R(x|t)

∂x2
,
∂Rb(x|t)

∂x3
,
∂R(x|t)

∂x4

)

then the variance of R(x | t) in (25.18) can be obtained as

Var [R(x|t)] = vR(x|t)V[vR(x|t)]T.
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Fig. 25.9 β-RFE model reliability growth prediction and its 95%
confidence interval

Assume that the reliability estimation follows a normal dis-
tribution, then the 95% confidence interval for the reliability
prediction R(x | t) is

[
R (x|t) − 1.96 ×

√
Var [R (x|t)], R (x|t)

+ 1.96 ×
√
Var [R (x|t)]

]
.

Figures 25.8 and 25.9 show the 95% confidence interval
of the reliability predicted by the γ -RFE and β-RFE models,
respectively.
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Fig. 25.10 Reliability growth prediction curves and their 95% confi-
dence intervals for the γ -RFE model and the β-RFE model
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Fig. 25.11 Mean-value function curve fit and its 95% confidence
intervals for the γ -RFE model

We plot the reliability predictions and their 95% confi-
dence interval for both the γ -RFE model and the β-RFE
model in Fig. 25.10. For this given application data set, the
reliability predictions for the γ -RFE model and the β-RFE
model are very close to each other, as are their confidence
intervals. Therefore, it would not matter too much which one
of the two RFE models was used to evaluate the software
reliability for this application. However, will these two RFE
models always yield similar reliability predictions for all
software applications? or which model should one choose
for applications if they are not always that close to each
other? We will try to answer these two questions in the next
section. Figure 25.11 shows the 95% confidence interval for
the mean-value function fits and predictions from the γ -RFE
model.
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Table 25.7 MLEs and fitness comparisons

Parameter γ -RFE β-RFE

â 236.5793016l 236.0745369

b̂ 0.001443362 0.001448854

θ̂ 10.7160153

γ̂ 0.213762945

α̂ 0.186224489

β̂ 8.692191792

Mean 0.019948 0.020975

Variance 0.0018615 0.002079

MSE 23.63 23.69

Likelihood − 136.1039497 − 129.7811199

25.4.5 Concluding and Remarks

Table 25.7 shows all the maximum likelihood estimates of
all the parameters and other fitness measures. The maximum
likelihood estimates (MLEs) on common parameters, such as
a – the initial number of faults in the software and b – the unit
software failure-detection rate during testing, are consistent
for both models. Both models provide very close predictions
for software reliability and also give similar results for the
mean and variance of the random environment factor η.

The underlying rationale for this phenomenon is the sim-
ilarity between the gamma and beta distributions when the
random variable η is close to zero. In this application, the
field environments are much less liable to software failure
than the testing environment. The random field environmen-
tal factor, η, is mostly much less than 1 with mean (η)≈ 0.02.

Figure 25.12 shows the PDF curves of the environmental
factor η based on the MLEs of all the parameters for both
the γ -RFE model and the β-RFE model. We observe that
the PDF curves for the beta and gamma distributions are also
very close to each other. The two RFEs models give similar
results because this software application is much less likely
to fail in the field environment, with mean (η) = 0.02. If the
mean (η) is not so close to 0, then we would expect to have
different prediction results from the γ -RFE model and the
β-RFE model.

We suggest the following criteria as ways to select be-
tween the two models discussed in this chapter for predicting
the software reliability in the random field environments:

1. Software less liable to failure in the field than in testing,
that is, η ≤ 1

In the γ -RFE model, the random field environmental
factor, η following a gamma distribution, ranges from
0 to +∞. For the β-RFE model, the random field
environmental factor, η following a beta distribution,
ranging from 0 to 1. Therefore, the β-RFE model will
be more appropriate for describing field environments in
which the software application is likely to fail than in the
controlled testing environment.
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Fig. 25.12 PDF curves comparison for the environmental factor η

For this given application, we notice that when
the field environmental factor η is much less than 1
[mean(η) = 0.02], the γ -RFE model yields similar results
to the β-RFE model. However, we also observe that the
γ -RFE model does not always yield similar results to
the β-RFE model when η is not close to 0. In this case,
if we keep using the γ -RFE model instead of the β-
RFE model, we would expect to see a large variance in
the maximum likelihood estimates for all the unknown
parameters, and hence a wider confidence interval for the
reliability prediction.

2. Smaller variance of the RFE factor η

A smaller variance of the random environmental factor
η will generally lead to a smaller confidence interval for
the software reliability prediction. It therefore represents
a better prediction in the random field environments.

3. Smaller variances for the common parameters a and b
The software parameter a and the process parameter

b are directly related to the accuracy of reliability
prediction. They can also be used to investigate the
software development process. Smaller variances of a and
b would lead, in general, to smaller confidence intervals
for the mean-value function predictions and reliability
predictions.

4. Smaller MSE of the mean-value function fits
A smaller MSE for the mean-value function fits means

a better fit of the model to the real system failures. This
smaller MSE will usually lead to a better prediction of
software failures in random field environments.

The above criteria can be used with care to determine
which RFE model should be chosen in practice. They may
sometime provide contradictory results. In the case of con-
tradictions, practitioners can often consider selecting the
model with the smaller confidence interval for the reliability
prediction.
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25.5 A RFEModel with Vtub-Shaped
Fault-Detection Rate

In this section, we present a specific RFE model with
Vtub-shaped fault-detection rate. Numerical results of some
selected NHPP models based on MSE, predictive power,
predictive-ratio risk, and normalized criteria distance from a
set of software failure data are discussed.

Here we assume that a detected fault will be 100% suc-
cessfully removed from the software during the software
testing period and the software fault-detection rate per unit
time, h(t), with a Vtub-shaped function [22], is as follows:

h(t) = b ln(a)tb−1at
b

for a > 1, b > 0 (25.20)

We also assume that the random variable η as defined in
(25.1) has a gamma distribution with parameters α and β,
that is, η ∼ gamma(α, β) where the PDF of η is given by

g(x) = βαxα−1e−βx

	(α)
for α,β > 0; x ≥ 0 (25.21)

From Eq. (25.1), we can obtain the expected number of
software failures detected by time t subject to the uncertainty
of the environments as follows:

m(t) = N

(
1 −

(
β

β + atb − 1

)α)
(25.22)

where N is the expected number of faults that exists in the
software before testing.

25.5.1 Model Criteria

We briefly discuss some common criteria such as MSE,
predictive-ratio risk (PRR), and predictive power (PP) that
will be used to compare the performance of some selected
models from Table 25.1 to illustrate the modeling analysis.

The MSE measures the difference between the estimated
values and the actual observation and is defined as:

MSE =

n∑

i=1

(
m̂ (ti) − yi

)2

n− k
(25.23)

where yi = total number of actual failures at time ti;
m̂ (ti) = the estimated cumulative number of failures at time
ti for i = 1, 2, . . . , n; and n and k = number of observations
and number of model parameters, respectively.

The predictive-ratio risk (PRR) measures the distance
of model estimates from the actual data against the model
estimate and is defined as [22]:

PRR =
n∑

i=1

(
m̂ (ti) − yi
m̂ (ti)

)2

(25.24)

The predictive power (PP) measures the distance of model
estimates from the actual data against the actual data [22]:

PP =
n∑

i=1

(
m̂ (ti) − yi

yi

)2

(25.25)

For all these three criteria – MSE, PRR, and PP – the smaller
the value, the better the model fits.

Pham [28] discussed a normalized criteria distance,
or NCD criteria, to determine the best model from a set
of performance criteria. The NCD criteria is defined as
follows:

Di =
d∑

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

√√
√√
√
√√

⎡

⎢⎢
⎣

2∑

i=1

⎛

⎜⎜
⎝

Cijk
s∑

i=1
Cijk

⎞

⎟⎟
⎠

2⎤

⎥⎥
⎦

⎞

⎟
⎟
⎟
⎠
wj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(25.26)

where s and d are the total number of models and criteria,
respectively.

wj = the weight of the jth criteria for j = 1, 2, ... ,d

k =
{
1 represent criteria j value
2 represent criteria j ranking

}

Cij1 = the ranking based on specified criterion ofmodel iwith
respect to (w.r.t.) criteria j

Cij2 = criteria value of model i w.r.t. criteria j where i = 1,
2, ..., s and j = 1, 2, ... ,d

Obviously the smaller the NCD value, Di, it represents the
better rank.

25.5.2 Model Analysis

A set of system test data which is referred to as Phase 2 data
set [22] is used to illustrate the model performance in this
subsection. In this data set, the number of faults detected in
each week of testing is found and the cumulative number of
faults since the start of testing is recorded for each week. This
data set provides the cumulative number of faults by each
week up to 21 weeks.

Table 25.8 summarizes the result as well as the ranking of
nine selected models from Table 25.1 based on MSE, PRR,
PP, and NCD criteria. It is worth to note that one can use
the NCD criterion to help in selecting the best model from
among model candidates. Table 25.8 shows the NCDs and
its corresponding ranking for w1 = 2, w2 = 1.5, and w3 = 1
with respect to MSE, PRR, and PP, respectively.
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Table 25.8 [28, page 1488]: Parameter estimation and model comparison when w1 = 2, w2 = 1.5, w3 = 1

Model/criteria MSE (Rank) PRR (Rank) PP (Rank) NCD value (Dk) Model rank

1. G-O Model 6.61 (7) 0.69 (1) 1.10 (7) 0.1366837 6

2. Delayed S-shaped 3.27 (5) 44.27 (8) 1.43 (8) 0.1511403 7

3. Inflection S-shaped 1.87 (2) 5.94 (5) 0.90 (4) 0.0801189 2

4. Yamada imperfect debugging model 4.98 (6) 4.30 (4) 0.81 (3) 0.1022629 5

5. PNZ model 1.99 (3) 6.83 (7) 0.96 (6) 0.0855598 4

6. Pham-Zhang model 2.12 (4) 6.79 (6) 0.95 (5) 0.0855490 3

7. Dependent-parameter model (model 1) 43.69 (9) 601.34 (9) 4.53 (9) 1.3395573 9

8. Dependent-parameter model with m(t0) �= 0, t0 �= 0 (model 2) 24.79 (8) 1.14 (2) 0.73 (1) 0.3893950 8

9. Vtub-shaped fault-detection rate model 1.80 (1) 2.06 (3) 0.77 (2) 0.0692175 1

Based on the results as shown in Table 25.8, the Vtub-
shaped fault-detection rate model seems to provide the best
fit based on the normalized criteria distance method.
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Abstract

The first part of this chapter provides a brief introduction
to statistical maintenance modeling subject to multiple
failure processes. It includes a description of general
probabilistic degradation processes.

H. Pham (�)
Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA
e-mail: hopham@soe.rutgers.edu

W. Li
Marketing Science, Javelin Direct, Inc., Irving, TX, USA

The second part discusses detailed reliability model-
ing for degraded systems subject to competing failure
processes without maintenance actions. A generalized
multi-state degraded-system reliability model with mul-
tiple competing failure processes including degradation
processes and random shocks is presented. The operating
condition of the multi-state system is characterized by a
finite number of states. A methodology to generate the
system states when multi-failure processes exist is also
discussed. The model can be used not only to determine
the reliability of the degraded systems in the context of
multi-state functions but also to obtain the probabilities of
being in a given state of the system.

The third part describes the inspection–maintenance
issues and reliability modeling for degraded repairable
systems with competing failure processes. A generalized
condition-based maintenance model for inspected
degraded systems is discussed. An average long-run
maintenance cost rate function is derived based on an
expression for degradation paths and cumulative shock
damage, which are measurable. An inspection sequence
is determined based on the minimal maintenance cost rate.
Upon inspection, a decision will be made on whether to
perform preventive maintenance or not. The optimum
preventive maintenance thresholds for degradation
processes and inspection sequences are also determined
based on a modified Nelder–Mead downhill simplex
method.

The fourth part briefly discusses some dependent com-
peting risk models with various applications subject to
multiple degradation processes and random shocks espe-
cially using time-varying copulas.

Finally, the last part is given over to the conclusions and
a discussion of future perspectives for degraded-system
maintenance modeling.
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26.1 Introduction

Technology advances mean that most new products are, on
one hand, more reliable but, on the other hand, very difficult
to maintain during the product life cycle. Designers have
been challenged to find new, effective approaches to evaluate
reliability in a timely fashion and to maintain such systems
in an optimum way. This chapter presents reliability and
maintenancemodels for degraded systems subject to compet-
ing failure processes. The accuracy of reliability estimation
through a degradation model cannot be ensured unless the
unit-to-unit initial variation and within-unit degradation-rate
variation are considered. This chapter also discusses a gener-
alized random-coefficient degradation process and random-
ized logistic degradation process to model the degradation.

26.2 Literature Review

As degradation occurs, system performance changes from
perfect functioning to complete failure; the binary assump-
tion used to analyze, model, and compute system reliability
is relaxed. Using degradation measures to assess reliability
has seen some important findings in the literature. Tomsky [1]
investigated two regression models for detecting degradation
reliability. Nelson [2] briefly surveyed the application of ac-
celerated degradation. Lu [3] introduced a nonlinear mixed-
effects model and estimated model parameters in a two-stage
way. Recently, multi-state reliability has received consider-
able attention. Levitin [4] extended the reliability importance
measures for multi-state systems with different measures of
performance. When the multi-state nature of a system is
addressed, a better understanding of the system reliability
behavior is obtained. Our third new development is to build
a methodology based on the formulation of degradation in
terms of a finite discrete state.

It is well known that the effectiveness of a system depends
on both the quality of its design andmanufacturing process as
well as the proper inspection–maintenance actions to prevent
it from failing. Inspection–maintenance issues are considered
in the second part of this chapter.

Maintenance has evolved from a simple model that deals
with machinery breakdowns, to time-based preventive main-
tenance, to today’s condition-based maintenance. It is of
great importance to avoid the failure of a system during its ac-
tual operating; especially, when such failures are dangerous

and costly. Time-based and condition-based maintenance are
the two major approaches for maintenance. Condition-based
maintenance is often profitable since it can be used to avoid
failure occurrence at the lowest cost and to improve the
availability and reliability of complex systems. This chapter
examines the problem of developing a mathematical mainte-
nance cost model to determine both the optimal inspection
interval time and preventive maintenance threshold of de-
graded systems with competing failure processes subject to a
condition-based maintenance policy.
Pham et al. [5] presented a Markov model for predicting

the reliability of k-out-of-n systems in which components are
subject tomulti-stage degradation as well as catastrophic fail-
ures. Due to the aging effect, the failure rate of the component
will increase. They considered the state-dependent transition
rates for the degradation process. Pham et al. [6] derived
models for predicting the availability and mean lifetime of
multistage degraded systems with partial repairs. In some
production systems failures are not possible to detect but can
only be determined by inspection [7]. Several authors [8–
22] have proposed various inspection policies and models for
systems with a degradation process. Grall et al. [8] studied
a system subject to a random deterioration process. They
developed amodel based on a stationary process to determine
both the preventive maintenance threshold and inspection
dates that minimized the average long-run cost rate. Chelbi
and Ait-Kadi [10] addressed optimal inspection strategies for
deteriorating equipment subject to preventive and corrective
maintenance. Klutke and Yang [11] studied the availability of
maintained systems subject to both the effects of the degra-
dation and random shocks. They considered the degradation
process as a deterministic function of time t and that shocks
occurred according to a Poisson process in which the shock
magnitudes are independent and identically distributed (iid)
random variables. Pham and Xie [13] developed a gener-
alized surveillance model consisting of dual, mutually de-
pendent stochastic processes for surveillance systems. Their
model can be used to better understand both the inspection
process, the repair unit itself, and to provide information that
can be used to assist inspectors in scheduling and prioritizing
their future inspections.

The choice of the inspection schedule and preventive
maintenance threshold(s) obviously has an important in-
fluence on the economic performance of the maintenance
policy. The inspection dates and the preventive maintenance
threshold(s) are two main decision variables. However, in
industrial applications of condition-based maintenance, the
preventive maintenance threshold is usually decided based
upon the recommendation made by the maintenance people
and the inspection schedule often appears to be set by little
more than a rule of thumb. Because of the lack of appropriate
modeling support, the preventive maintenance threshold is
likely to be set conservatively and the inspection schedule
may be performed more than is perhaps necessary. The need
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for a maintenance model with cost consideration is obvious
in this case.

The chapter is organized as follows. The basic concepts
and a review of maintenance, as well as a brief description
of probabilistic processes for the modeling of degradation
and random shocks, is discussed in Sect. 26.3. A general
reliability model for degraded nonrepairable systems subject
to multiple competing processes is discussed in Sect. 26.4.
The inspection–maintenance modeling issues and detection
policies for degraded repairable systems consideringmultiple
competing processes are described in Sect. 26.5. Several
numerical examples are given in Sects. 26.4 and 26.5. Finally
in Sect. 26.6, several future research perspectives and conclu-
sions are briefly discussed.

26.3 General Probabilistic Processes
Description

We consider three random processes. The first two are used
to model degradation, while the third is a compound Poisson
process used for modeling random shocks:

1. Y(t) = A + Bg(t) is called a random-coefficient degrada-
tion path, where A> 0 and B > 0 are independent random
variables and g(t) is an increasing time-dependent func-
tion. The random variable A measures the initial value of
degradation due to a different manufacturer, the manufac-
turing quality control of new items, variable deterioration
during storage until the item is put into service, and so
forth [14]. Therefore, the initial degradation value A is a
random variable. The variable B is the degradation rate (B
> 0) and represents the variations among the population;
g(t) is an increasing function.

2. Y(t) = WeBt

A+eBt is called a randomized logistic degrada-
tion path function where A and B are independent non-
negative random variables, and W is a constant. The
random variable A represents the initial threshold level of
degradation and B describes the rate at which degradation
accumulates. It should be noted that Y(t) = WeBt

A+eBt is an S-
shaped curve and describes the degradation process well.
It matches the path of the cumulative degradation of many
systems in practice. The S-shaped curve reflects an initial
run-in period of low usage, followed by a period of steady
rate of usage, and finally ending with an increasing rate
of use due to the aging of the system. We establish the
relationship between the two random variables A and B
via some rearrangements as follows:

W
eBt

A+ eBt
< H ⇒ B <

1

t
ln

u1A

1 − u1
, (26.1)

where H is a constant and u1 = H

W
.

3. Let D(t) = ∑N(t)
i=0 Xi represent a sequence of random

shocks in which each shock causes independent damage
Xi to the whole system where the Xi are iid with a proba-
bility distribution function (pdf) of fX(x), and a cumulative
distribution function (cdf) of FX(x); {N(t), t ≥ 0} is a
Poisson process with parameter λ > 0 that is independent
of the sequence {Xi}; F(k)

X (x) denotes the k-th convolution.
The stochastic process D(t) = ∑N(t)

i=0 Xi is called a
compound Poisson process where N(t) is the number of
shocks that have occurred up to time t, Xi is the damage
caused by the i-th shock, and D(t) is the cumulative
damage up to time t.

26.4 Nonrepairable Degraded Systems
Reliability Modeling

This section addresses reliability models for nonrepairable
degraded systems. First, we discuss a model for systems
subject to two competing processes. Then, we present a
generalized situation where systems are subjected to three
competing processes.

26.4.1 Degraded Systems Subject to Two
Competing Processes

Model Description
The modeling assumptions are as follows:

1. Each system has a state space �U = {M, . . . , 1, 0,F}.
2. The system fails either due to degradation (Y(t) > G) or

catastrophic failure
[
D(t) = ∑N2(t)

i=1 Xi > S
]
. The system

may either go from state i to the next degraded state i − 1
or directly to the catastrophic failure state F, i=M, . . . , 1.

3. No repair or maintenance is performed on the system.
4. Since Y(t) describes the total damage up to time t, it is

natural to assume that it is nondecreasing.
5. The two processes Y(t) and D(t) are independent.
6. At time t = 0, the system is in stateM.

We consider a degradable system suited at a random environ-
ment where degradation and random shocks can contribute
to an effect of the life of a system. In this section, we discuss
the case where systems are subject to two failure processes,
called a continuous and increasing degradation process Y(t),
and a random shock process D(t). Whichever process occurs
first causes the system to failure.

Figure 26.1 illustrates the system flow diagram of the two
competing failure processes. In Fig. 26.1, we use either of
the random processes described in Sect. 26.3 to represent a
degradation process where random shocks are represented by
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M M – 1 1 0

FD(t) � S

Fig. 26.1 The flow diagram of a system subjected to two competing
failure processes

a stationary and independent increment process. Then, we
discuss a method to formulate these two processes from a
multi-state standing point. That is, suppose that the operating
conditions of the system at any point in time could be
classified into one of a finite number of the states, say �U =
{M, . . . , 1, 0,F}. We view the degradation process in terms of
a finite number of states. For example, when the value of the
degradation process Y(t) falls into a predefined interval then
its corresponding state will be determined. Let us define as
follows:

[0,WM], . . . , (W2,W1] are the intervals associated with the
degradation process where WM < WM−1 < . . . < W2 < W1.
A one-to-one relationship between the element of � =
{M, . . . , 1, 0} and its corresponding interval is set up as fol-
lows:

when Y(t) ∈ [0, WM] ⇒ in state M,
when Y(t) ∈ (WM,WM−1) ⇒ in state M − 1,

...

when Y(t) ∈ [ Wi,Wi−1] ⇒ in state i,
when Y(t) ∈ [W2, W1] ⇒ in state 1,

when Y(t) > W1 ⇒ in state 0.

Reliability Evaluation
The most general situation is to allow each degradation
process to be described by a number of different discrete
states. We now define the probability in each state. Let Pi(t)
be the probability that the value of Y(t) will fall within a
predefined interval corresponding to state i with D(t) ≤ S.
From state i, the system will make a direct transition to state
i − 1 due to gradual degradation, or to catastrophic failure
state F due to a random shock.

The reliability function is defined as:

RM(t) = P (state ≥ 1)

=
M∑

i=1
Pi(t)

= P [Y(t) ≤ G,D(t) ≤ S] ,

(26.2)

where Pi(t) is the probability of being in state i.
Suppose a system fails if the degradation process crosses

some threshold, say G; or the shock damage process crosses
some threshold, say S; T is defined as:

T = inf [t : Y(t) > G or D(t) > S] . (26.3)

The mean time to failure is expressed as:

E [T] = ∫∞
0 P [T > t] dt

= ∫∞
0 P [Y(t) ≤ G,D(t) ≤ S] dt

= ∫∞
0 P [Y(t) ≤ G]

∞∑

j=0

(λ2t)
je−λ2t

j! F(j)
X (S)dt

or, equivalently, that

E [T] =
∞∑

j=0

F(j)
X (S)

j!
∫ ∞

0
P [Y(t) ≤ G] (λ2t)

je−λ2tdt. (26.4)

The specific expression for E[T] depends on the probability
function P[Y(t) ≤ G]. Sometimes, it is hard to find a closed-
form solution. In this case, one can use a numerical method
to solve the problem in (26.4).

The probability density function of the time to failure fT(t)
is as follows:

fT(t) = − d

dt
R(t)

= − d
dt

{
P [Y(t) ≤ G] P [D(t) ≤ S]

}

= − d
dt

{

P [Y(t) ≤ G]
∞∑

j=0

(λ2t)
je−λ2t

j! F(j)
X (S)

}

= −
∞∑

j=0

F(j)
X (S)
j!

d
dt

{
P [Y(t) ≤ G] (λ2t)

je−λ2t
}

Let FG(t) = P[Y(t) ≤ G], then fG(t) = d
dt FG(t).

fT(t) = −
∞∑

j=1

F(j)
X (S)

j!
[
fG(t)(λ2t)

je−λ2t

+ FG(t)jλ2(λ2t)
j−1e−λ2t − λ2FG(t)(λ2t)

je−λ2t
]
.

(26.5)

Reliability models
Model 1:

{
Y(t) = A+ Bg(t)

D(t) = ∑N2(t)
i=0 Xi

〈
case 1 : A ∼ normal, B ∼ normal
case 2 : A ∼ U [0, a] , B ∼ Exp(b)

Model 2:

{
Y(t) = W eBt

A+eBt ,where A ∼ U [0, a] , B ∼ Exp(b)

D(t) = ∑N2(t)
i=0 Xi
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The two reliability models for the system are depicted in Fig.
26.1. In the following, we will take model 2 as an example to
illustrate the results in this section. One can also easily apply
it for the model 1.

Assume that the degradation process is described by the
function Y(t) = W eBt

A+eBt , where the two random variables A
and B are independent, and A follows a uniform distribution
with parameter interval [0, a] and B follows an exponential
distribution with parameter β > 0. In short, A ∼ U[0, a], a >
0 andB ∼ Exp(β),β > 0.

The probability that the system is in stateM is as follows:

PM(t) = P

[

Y(t) = W eBt

A+eBt ≤ WM,D(t) =
N2(t)∑

i=0
Xi ≤ S

]

=
[
∫

∀A

(
B < 1

t ln u1A
1−u1 |A = x

)
fA(x)dx

]

× P

[

D(t) =
N2(t)∑

i=0
Xi ≤ S

]

=
[

1 − 1
a

(
1−u1
u1

) β

t
(

t
t−β

) (
a1−

β

t − 1
)]

× e−λ2t
∞∑

j=0

(λ2t)
(j)

j! F(j)
X (S).

(26.6)

The probability that the system is in state i is calculated as
follows:

Pi(t) = P

[

Wi+1 < W eBt

A+eBt ≤ Wi, D(t) =
N2(t)∑

i=0
Xi ≤ S

]

=
[∫ a

0 P
(
1
t ln ui−1A

1−ui−1
< B ≤ 1

t ln uiA
1−ui |A = x

)
fA(x)dx

]

× e−λ2t
∞∑

j=1

(λ2t)
j

j! F(j)
X (S)

=
{

1
a

(
t

t−β

) (
a1−

β

t

) [(
1−ui
ui

) β

t −
(
1−ui−1

ui−1

) β

t

]}

× e−λ2t
∞∑

j=0

(λ2t)
j

j! F(j)
X (S),

(26.7)

where μi = Wi
W , i = M − 1, . . . , 1.

Similarly, the probability that the system is in state 0 is as
follows:

P0(t) = P

[

Y(t) = W eBt

A+eBt > G,D(t) =
N2(t)∑

i=0
Xi ≤ S

]

=
[
1
a

(
1−uM
uM

) β

t
(

t
t−β

) (
a1−

β

t

)]

e−λ2t

×
∞∑

j=0

(λ2t)
j

j! F(j)
X (S).

(26.8)
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Fig. 26.2 Reliability versus time

The probability for a catastrophic failure state F is given
by:

PF(t) = P

[

Y(t) = W eBt

A+eBt ≤ G,D(t) =
N2(t)∑

i=0
Xi > S

]

=
[

1 − 1
a

(
1−u1
u1

) β

t
(

t
t−β

) (
a1−

β

t

)]

×
[

1 − e−λ2t
∞∑

j=0

(λ2t)
j

j! F(j)
X (S)

]

.

(26.9)

The reliability RM(t) is expressed as:

RM(t) =
M∑

k=1
Pk(t)

=
[

1 − 1
a

(
1−uM
uMa

) β

t
(

t
t−β

) (
a1−

β

t

)]

×
[

e−λ2t
∞∑

j=0

(λ2t)
j

j! F(j)
X (S)

]

.

(26.10)

A Numerical Example
Assume that the degradation is modeled as the function
Y(t) = W eBt

A+eBt where A ∼ U[0, 5] and B ∼ Exp(10). The
critical values for the degradation and the shock damage are
G = 500 and S = 200, respectively. The random shocks are
measured by the function D(t) = ∑N2(t)

i=1 Xi, where Xi ∼
Exp(0.3) and Xis are iid. Figure 26.2 shows the reliability
of the system as a function of time, where the solid line
represents N2(t) with λ2 = 0.12 and the dotted line represents
N2(t) with λ2 = 0.20.
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M1 (M–1)1 11 01

M2 (M–1)2 12 02

FD(t) >

Degradation 1

Degradation 2

Fig. 26.3 The flow diagram of a system subjected to multiple failure
processes [15]

26.4.2 Systems Subject to Three Competing
Processes

SystemDescription
In some applications, the systems are subjected to a variety of
governing failure processes. In this section, we consider three
independent competing failure processes in which two of
them are degradation processes (called degradation process
1, which is measured by the function Y1(t), and degradation
process 2, which is measured by Y2(t)), and the third is a
random shock process D(t) [15]. Whichever process occurs
first causes the system to fail.

Initially, the system is considered to be in its good state
(i.e., M1 and M2). As time progresses, it can either go to
the first degraded state [i.e., (M − 1)1 or (M − 1)2] upon
degradation or can go to a failed state (state F), if subject
to random shocks. When a system reaches the first degraded
state, it can either stay in that state until the mission time, or
it can go to the second degradation state [i.e., (M − 2)1 or
(M − 2)2] upon degradation, or it can go to a failed state (F
state) upon random shocks.

The same process will be continued for all stages of
degradation except the last degradation, either stage 01 or
stage 02. If the system reaches the last degradation state,
it cannot perform its functions satisfactorily and must be
treated as a failure (state 0). Figure 26.3 shows the system
flow diagram of the multiple competing transition processes.
In Fig. 26.3, the above represents the degradation process 1;
the bottom represents the degradation process 2; F represents
a catastrophic failure state due to random shocks.

Assumptions
1. The system consists of (M + 2) states where state 0

and state F are both complete failure states. State i is a
degradation state, 1 ≤ i ≤ M.

2. No repair or maintenance is performed on the system.
3. We assume that Yi(t), i= 1, 2 is a nonnegative nondecreas-

ing function at time t, since degradation is an irreversible
accumulation of damage.

4. Yi(t), i = 1, 2 and D(t) are statistically independent. The
independence assumption implies that the state of one
process will have no effect on the state of the others.

5. At time t = 0, the system is in stateM.
6. The system can fail either due to any of the degradation

process when Yi(t) > Gi, i = 1, 2 or due to random shocks
(in which case it goes to a catastrophic failure state F), i.e.,
D(t)= ∑N(t)

i=1 Xi > S.
7. The critical threshold valueGi depends upon a function of

the states of the degraded systems.

Methodology
In this section, we consider that the degradation paths are
modeled by some continuous probabilistic functions. Since
the operating condition of the systems is characterized by a
finite number of states, let us call the system state space �U.
First, we need the discrete continuous processes. In Step 1
below, we discuss a procedure for forcing two degradation
processes to become discrete in order to obtain �1 and �2,
which correspond to degradation process 1 and 2, respec-
tively. After we have obtained the degradation process spaces
�1 and �2, we present a methodology for how to establish
a relationship between the system state space �U and the
degradation and random shock state spaces {�1,�2,F} in
Step 2.

Step 1: Formulate the Degradation Processes
in Terms of Discrete State Sets
The two-degradation-process case is considered here. The
most general situation is to allow each degradation process
to be described by a number of different discrete states. The
state space denoted by �1 = {M1, . . . , 11, 01} corresponds to
degradation process 1 withM1 + 1 states. Similarly, the state
space denoted by �2 = {M2, . . . , 12, 02} is associated with
degradation process 2, havingM2 + 1 states.M1 andM2 may
or may not be the same, andMi < ∞, i = 1, 2.

We view the degradation process from the perspective of
a finite number of states. For example, when the value of
degradation process 1 Y1(t) falls into a predefined interval,
then its corresponding state will be determined. Let us define
as follows:

[0,WM], . . . , (W2,W1] are the intervals on the degradation
1 curve (Fig. 26.4a) corresponding to stateM1, 01, whereWM

< WM−1 < . . . < W1 and [0,AM], . . . , (A2,A1] are intervals
associated with the curve for degradation process 2 (Fig.
26.4b) corresponding to state M2, 02, where AM < AM−1 <
. . . < A1.

Mathematically, the relationship between the degradation
process states �1 = {M1, . . . , 11, 01}, �2 = {M2, . . . , 12, 02}
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… 02M2

Fig. 26.4 The degradation process functions in multi-state terms for:
(a) degradation 1, (b) degradation 2

and their corresponding degradation intervals are given as
follows:

Degradation process 1
0 < Y1(t) ≤ WM : state M1

WM < Y1(t) ≤ WM−1 : state (M − 1)1
...

W2 < Y1(t) ≤ W1 : state 11
G1 = W1 < Y1(t) : state 01

Degradation process 2
0 < Y2(t) ≤ AM : state M2

AM < Y2(t) ≤ AM−1 : state (M − 1)2
...

A2 < Y2(t) ≤ A1 : state 12
G2 = A1 < Y2(t) : state 02

Step 2: Generate the System State Space
The system state space is defined as �U = {M, . . . , 1, 0,F},
and consists of M + 2 states. In this step, we discuss a
methodology to develop a function to generate a relationship
between the system state space �U and the degradation state
spaces {�1,�2,F}. For example, at a given time t, suppose
that degradation process 1 is at state i1 ∈ �1, and degradation
process 2 is at state j2 ∈ �2; what is the system state? This
question is addressed as follows.

Let us assume that at the current time the system is not in
a catastrophic failure state. So state F can be ignored for the
time being. Therefore, we can simply look at ways to define
a function that has a relationship between � and {�1,�2}
instead of �U and {�1,�2,F}.

The operation is described by a mapping function f, which
can be written as

f : R = �1 × �2 → � = {M, . . . , 1, 0}

R = � �1 � 2 f Hc

Fig. 26.5 A mapping function

where R = �1 × �2 = {(i1, j2) | i1 ∈ �1, j2 ∈ �2} is a Carte-
sian product as the input space domain, as shown in Fig. 26.5.
The matrix Hc given below is an output space consisting of
M + 1 elements corresponding to each input-space domain
through the function f.

01 11 · · · M1

Hc =
02
12
...

M2

⎛

⎜
⎜
⎜
⎜
⎝

× 0 · · · 0

0
. . .

...
...

. . .
...

0 · · · · · · M

⎞

⎟
⎟
⎟
⎟
⎠

.

The top row of this matrixHc represents the state from degra-
dation process 1. The leftmost column represents the state
from degradation process 2. The elements of Hc represent
f (i1, j2) = k where i1 ∈ �1, j2 ∈ �2 and k∈ �. Notice that,
in the matrix Hc, all the elements in the first row and first
column are zero except that denoted by× because the system
will go to a degraded failure state (state 0) when either of
the degradation processes reaches state 0i, i = 1, 2. Besides,
some elements in the matrixHc are also zeros since we define
that, when degradation 1 is in some low state l1(01 < l1 <M1)
and degradation 2 is also in some low state l2(02 < l2 < M2),
we consider it a degradation failure. It is also observed that
f (M1,M2)=M, because initially the system is in a brand-new
state (perfect state M).

As we mentioned above, the first element in Hc is marked
by ×, which means it does not exist. The reason is presented
as follows. We define the time to failure as

T = inf [t : Y1(t) > G1, Y2(t) > G2 or D(t) > S] . (26.11)

It should be noted that all three processes are competing
against each other for the life of a system. However, only
one of the three processes (whichever occurs first when its
corresponding critical threshold value is exceeded) causing
the system to fail. Hence, the following events will not
happen:

P [Y1(t) > G1, Y2(t) > G2, D(t) ≤ S] = 0,
P [Y1(t) > G1, Y2(t) > G2, D(t) > S] = 0,
P [Y1(t) > G1, Y2(t) > G2, D(t) > S] = 0,

and
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f k
i1
j2

Fig. 26.6 A representation of a system state-generating box

P [Y1(t) < G1, Y2(t) > G2, D(t) > S] = 0,

Because f (01, 02) = P[Y1(t) > G1,Y2(t) > G2,D(t) ≤ S], so
the combination of f (01, 02) does not exist.

The function f :R = �1 × �2 → � = {M, . . . , 1, 0} is
defined with following requirements:

1. f (01, b) = f (a, 02) = 0, where b∈ �2, a∈ �1f (M1,M2) =
M

2. f is monotonic and nondecreasing in each argument

For instance,

f (a1, b2) ≥ f (l1, b2) if a1 ≥ l1,
f (a1, b2) ≥ f (a1, l2) if b2 ≥ l2.

Figure 26.6 demonstrates the system’s state-generating box.
There are two inputs i1 and j2 and an output k. The inside
mapping mechanism is performed by the function f. At time
t, suppose that degradation 1 is at state i1 and degradation 2
is at state j2; i1 and j2 are inputs. Via matrix Hc, the system
state k is then generated as output.

In the matrix Hc, different state-combination inputs can
generate the same results for the system state. To explain this,
we need the following definition of the equivalence class.

Definition 26.1
The i-th equivalence class, Ri, is defined as follows:

Ri = [(k1, j2) where k1 ∈ �1, j2 ∈ �2|f (k1, j2) = i] ,

i = 0, 1, . . . , M, (26.12)

Ri represents all possible state combinations that generate the
system state i; R0, . . . ,RM are disjointed sets that partition R
into (M + 1) equivalence classes, so that

R =
M⋃

i=0

Ri.

26.4.3 Reliability Evaluation

In this section, the probability density functions and the sys-
tem mean time to failure are derived based on the state prob-
abilities given in Sect. 26.4.1. Now, we derive the probability

of being in each state. Initially, the system is in a brand-new
state; i.e., in stateM = fs(RM). The probability for stateM is
given by

Pt(M) = Pt [fs (RM)] . (26.13)

As defined previously, Ri represents all possible state combi-
nations generating the system state i. The probability of being
in state i is the union of all the elements in Ri

Pt(i) = P [fs (Ri)] . (26.14)

The probability for a catastrophic failure state F is given by

Pt(F) = P [Y1(t) ≤ G1, Y2(t) ≤ G2, D(t) > S] . (26.15)

The reliability R(t) can be calculated as follows:

R(t) = P (system state ≥ 1)

=
M⋃

i=1
P [fs (Ri)]

=
M∑

i=1
Pt(i),

(26.16)

where Pt(i) is the probability of being in state i.
The mean time to failure is expressed as [15]:

E [T] = ∫∞
0 P (T > t) dt

= ∫∞
0 P [Y1(t) ≤ G1]P [Y2(t) ≤ G2] ×

∞∑

j=0

(λ2t)
je−λ2 t

j! F(j)
X (S)

or, equivalently, that

E [T] =
∞∑

j=0

F(j)
X (S)

j!
∫ ∞

0
P [Y1(t) ≤ G1] × P [Y2(t) ≤ G2]

(λ2t)
je−λ2tdt.

(26.17)

The result in (26.17) obviously would depend on the expres-
sion P[Y1(t) ≤ G1]P[Y2(t) ≤ G2]. The probability density
function of time to failure, fT(t) is therefore as follows:

fT(t) = − d
dt [P (T > t)]

= − d
dt

{

P[Y1 (t≤G1)]P [Y2(t)≤G2]×
∞∑

j=0

(λ2t)
je−λ2 t

j! F(j)
X (S)

}

.

(26.18)

26.4.4 Numerical Examples

This example aims to illustrate the results discussed in the
previous sections. Consider a system subjected to two degra-
dation processes and random shocks.
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Assume that degradation process 1 is described by the
function Y1(t) = A + Bg(t), where the random variables A
and B are independent and both follow normal distributions,
with mean 90 and variance 2.5, and mean 78 and variance 6,
respectively. In short, A ∼ N(90, 2.5) and B ∼ N(78, 6). The
degradation function is assumed to be g(t) = t3. Also G1 =
2500,W3 = 1500,W2 = 2000, andW1 = 2500.

Assume that degradation process 2 is described by Y2(t) =
W eBBt

AA+eBBt , where the random variables AA and BB are in-
dependent and follow uniform distributions with parameter
interval [0,100] and an exponential distribution with param-
eter 0.1, respectively. In other words, AA ∼ U[0, 100] and
BB ∼ Exp(0.01). Also G2 = 5000,A2 = 2600,A1 = 500 0,
andW = 7000. Assume that the random shock is represented
by D(t) = ∑N(t)

i=0 Xi with critical value S = 200, where Xi ∼
Exp(0.1) and the Xi are iid.

Assume that the states associated with degradation pro-
cess 1 and degradation process 2 are, respectively, �1 =
{31, 21, 11, 01} and �2 = {22, 12, 02}. We define the system
state space as �U = {3, 2, 1, 0,F} and the matrix Hc is given
as

01 11 21 31

Hc =
02
12
22

⎛

⎝
× 0 0 0
0 0 2 3
0 1 2 3

⎞

⎠ .

Then we obtain

R =
{

(01, 12) , (01, 22) , (11, 02) , (21, 02) , (31, 02) ,

(11, 12) , (21, 12) , (31, 12) , (11, 22) , (21, 22) ,

(31, 22)
}

The equivalence classes can be listed as follows:

R0 = {(01, 12) , (01, 22) , (11, 02) , (21, 02) , (31, 02) , (11, 12)} ,
R1 = {(11, 22)} ,
R2 = {(21, 12) , (21, 22)} ,
R3 = {(31, 12) , (31, 22)} ,
R =

3∑

i=0
Ri.

According to this expression for Hc, the probability of the
system being in state 3 is the sum of the probability f (31, 22)
and of the probability f (31, 12). That sum is calculated as

Pt(3) = Pt [fs (R3)] = �
(
1500−(90+78t)√

2.5+6t6

)

[
1 − 1

100 (0.4)
0.01
t × (

t
t−0.01

) (
0.011−

0.01
t

)]

× e−λ2t
∞∑

j=0

(
λ2t
j!
)
F(j)
X (200),

(26.19)

where � is a standard normal distribution.
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Fig. 26.7 Probability plot for state 3 versus time

Figure 26.7 shows the probability for the system to be in
state 3 as a function of time t, where the solid line represents
the compound Poisson process D(t) = ∑N(t)

i=0 Xi with rate λ

= 0.04 and the dotted line represents the compound Poisson
process with rate λ = 0.8. In Fig. 26.7 we observe that, as t
progresses to 50, the probability that the system is in state 3
quickly approaches 0 when the rate is given as λ = 0.8, and
is stable with λ = 0.04.

Because R2 = {(21, 12), (21, 22)}, the probability of being
in state 2 is given by

Pt(2) = Pt [ f (21, 12)] + Pt [f (21, 22)]

= (UV) e−λ2t
∞∑

j=0

(
λ2t

j!
)

F(j)
X (200),

(26.20)

where

U = �

(
2000 − (90 + 78t)√

2.5 + 6t6

)

− �

(
1500 − (90 + 78t)√

2.5 + 6t6

)

,

and

V=1− 1

100

(
1

t − 0.01

)

(0.4)
0.01
t ×

(
t

t − 0.01

)

(0.01)1− 0.01
t .

Figure 26.8 shows the probability of being in state 2 as
a function of time t, where the solid line represents the
compound Poisson process D(t) = ∑N(t)

i=0 Xi with rate λ =
0.04, and the dotted line represents the compound Poisson
processwith rate λ = 0.8. In Fig. 26.8, we observe that, before
the time t progresses to 5, the probability of being in state 2
stays close to zero for both rates λ = 0.8 and λ = 0.04. It
should be noted that the two curves are almost the same for
the different values of the rate λ = 0.8 and λ = 0.04.

Similarly, the probability of being in state 1 is calculated
as:
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Fig. 26.8 Probability plot for state 2 versus time
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Fig. 26.9 Probability plot for state 1 versus time

Pt(1) = Pt [ f (11, 22)]

= E1E2e−λ2t
∞∑

j=0

(
λ2t
j!
)
F(j)
X (200),

where E1 = �
(
2500−(90+78t)√

2.5+6t6

)
− �

(
2000−(90+78t)√

2.5+6t6

)
,

E2 = 1 − 1
100

(
t

t−0.01

) (
22
13

) 0.01
t (0.01)1−

0.01
t .

(26.21)

Figure 26.9 shows the probability of being in state 1 versus
time t, where the solid line represents the compound Poisson
process D(t) = ∑N(t)

i=0 Xi with rate λ = 0.04, and the dotted
line represents the compound Poisson process with rate λ =
0.8. In Fig. 26.9, we observe that, before the time t progresses
to 15, the probability of being in state 1 for both rates λ = 0.8
and λ = 0.04 are about the same.

We can also easily obtain the probability of being in state
0 as follows:
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Fig. 26.10 Probability plot for state 0 versus time

Pt(0) = P [ f (01, 12) + f (01, 22) + f (11, 02)

+ f (21, 02) + f (31, 02) + f (11, 12)]

= (X1Y1 + X2Y2 + X3Y3) e−λ2t

×
∞∑

j=0

(
λ2t

j!
)

F(j)
X (200),

where X1 = 1 − �

(
2500 − (90 + 78t)√

2.5 + 6t6

)

,

X2 = �

(
2500 − (90 + 78t)√

2.5 + 6t2

)

,

Y1 = 1 − 1

100
(0.4)
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(
t
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,
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(
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×
(
0.011−

0.01
t

)
,
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(
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− �

(
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)

,

Y3 = 1 − 1
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[(
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) 0.01
t

+ (0.4)
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t
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×
(

t
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)(
0.011−
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)
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(26.22)

Figure 26.10 shows the probability that the system is in
state 0 versus the time t, where the solid line represents the
compound Poisson process D(t) = ∑N(t)

i=0 Xi with rate λ =
0.04, and the dotted line represents the compound Poisson
process with rate λ = 0.8. In Fig. 26.10, we observe that the
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Fig. 26.11 Probability plot for state F versus time

probability of being in state 0 is close to zero when t > 100
for the rate λ = 0.8.

The probability of being in state F is calculated as:

Pt(F) = P [Y1(t) ≤ G1, Y2(t) ≤ G2, D(t) > S]

= KL

⎡

⎣1 − e−λ2t
∞∑

j=0

(
λ2t

j!
)

F(j)
X (200)

⎤

⎦ ,

where K = �

(
2500 − (90 + 78t)√

2.5 + 6t6

)

,

L = 1 − 1

100
(0.4)

0.01
t

(
t

t − 0.01

)(
0.011−

0.01
t

)
.

(26.23)

Figure 26.11 shows the probability of being in state F as
a function of time t, where the solid line represents the
compound Poisson process D(t) = ∑N(t)

i=0 Xi with rate λ =
0.04, and the dotted line represents the compound Poisson
process with rate λ = 0.8.

Finally, the system reliability R(t) is given by

R(t) = P (system state ≥ 1)

=
3∑

i=1

Pt(i)

= X3Y3e
−λ2t

∞∑

j=0

(
λ2t

j!
)

F(j)
X (200),

where X3 = �

(
2000 − (90 + 78t)√

2.5 + 6t6

)

×
{
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. (26.24)

Figure 26.12 shows the system reliability versus time t, where
the solid line represents the compound Poisson process with
rate λ = 0.04, and the dotted line represents the compound
Poisson process with rate λ = 0.8. As for the rate λ = 0.8
we observe that the system will probably fail after a time
t of 50. It seems that the random shock process governs
the behavior of the reliability function. Therefore, the dotted
line quickly approaches the failure caused by the shock
damage.

26.5 Repairable Degraded Systems
Modeling

26.5.1 Inspection–MaintenanceModel Subject
to Two Competing Processes

Model Description

Assumptions
The system starts in a new condition. The assumptions are as
follows [22]:

1. The system is not continuously monitored, its state can
be detected only by inspection, but system failure is self-
announcing without inspection.

2. After a PM or CM action, the system will be restored back
to an as-good-as-new state.

3. A CM action is more costly than a PM, and a PM costs
much more than an inspection. This implies Cc > Cp > Ci.

4. The two processes Y(t) and D(t) are independent.
5. Repair time is not negligible.

Although continuous monitoring processes are feasible for
some systems, the cost to monitor the process and the labor
required would, however, not make it realistic in practice.
Therefore, we need to improve the system performance by
determining the periodic inspections with maintenance ac-
tion that will minimize the average total system maintenance
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Fig. 26.12 Reliability versus time

cost. Since system deterioration while running leads to sys-
tem failure, it proves better to assume that the degradation
paths are continuous and increasing functions.

Inspection–Maintenance Policy
It is proposed that the system is periodically inspected at
times {I, 2I, . . . , nI, . . . }. We assume that the degradation
({Y(t)}t≥0) and random shock processes ({D(t)}t≥0) are inde-
pendent. Let T denote the time to failure, defined as

T = inf [t > 0 : Y(t) > G or D(t) > S] ,

where G is the critical value for {Y(t)}t≥0 and S is the
threshold level for {D(t)}t≥0.

The two threshold values L and G (where G is fixed)
effectively divide the system state into three regions, as
illustrated in Fig. 26.13. They are: the doing-nothing zone;
the PM zone; and the CM zone. The maintenance action
will be performed when either of the following situations
occurs.

1. The current inspection reveals that the system condition
falls into the PM zone, and this state was not found on
previous inspection. At inspection time iI, the system falls
into the PM zone, which means {Y[(i − 1)I] ≤ L,D[(i −
1)I] ≤ S} ∩ {L < Y(iI) ≤ G,D(iI) ≤ S}. Then PM action is
performed and will take a random time R1.

2. When the system fails at T, a CM action is taken immedi-
ately and takes time R2.

It is assumed that both PM and CM actions are considered
to be perfect. Even though both PM and CM actions bring the
system back to an as-good-as-new state, they are, physically,
not necessarily the same, since a CM has to performed on

G

L

Y(t)

S
D(t)

CM zone

PM zone

Doing
nothing
zone

W1 W2 W3

I1 … Ii Ii +1 R1 I1 … Ii T R2 I1 … Ii T R2

Fig. 26.13 The evolution of the system

a worse system. Hence, CM is likely to be more complex
and expensive. Therefore, it is realistic to assume that the
repair time is not negligible. This chapter considers that the
PM action will take a random amount of time R1 and that a
CM action will take a random amount of time R2. After a PM
or a CM action is performed, the system is renewed. A new
sequence of the inspection would start again, defined in the
same way.

Maintenance Cost Modeling
In this section, an explicit expression for the average long-
run maintenance cost per unit time is derived. The objectives
of the model are to determine the optimal PM threshold L
and the optimal inspection time I. From the basics of renewal
reward theory, we have

lim
t→∞

C(t)

t
= E [C1]
E [W1]

.

We now model the average total maintenance cost per unit
time on a single renewal cycle instead of limt→∞ C(t)

t ; then
we will analyze E[C1] and E[W1].

Expected Maintenance Cost Analysis in a Cycle
The expected total maintenance cost during a cycle E[C1] is
expressed as [22]:

E [C1] = CiE [NI ] + CpE [R1]Pp + CcE [R2]Pc. (26.25)

During a renewal cycle, activities in terms of costs include:
inspection cost, time to repair, and PM or CM actions. The
renewal cycle will end by either a PM or a CM action. With a
probability of Pp, the cycle will end with a PM action and
it will take on average an amount of time E[R1] to com-
plete a PM action, with a corresponding cost of CpE[R1]Pp.
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Similarly, if a cycle ends with a CM action with probability
Pc, it will take on average an amount of time E[R2] to com-
plete a CM action, with a corresponding cost of CcE[R2]Pc.
In the following, we will perform the analysis of E[C1].

Calculate E[NI]
Let E[NI] denote the expected number of inspections during
a cycle. E[NI] can be obtained as:

E [NI ] =
∞∑

i=1

(i)P(NI = i) . (26.26)

Obviously
∑∞

i=1P (NI = i) = 1. There will be a
total of i inspections during a cycle if the first PM
trigger falls within the time interval [(i − 1)I, iI], or
if the system condition is in the doing-nothing zone
before time iI and the system fails during the interval [iI,
(i + 1)I]. In other words, the inspection will stop when the
i-th inspection finds that a PM condition is satisfied while
this situation was not revealed in the previous inspection, or
the system fails during the interval [iI < T ≤ (i + 1)I] while
the system is in the doing-nothing zone before iI.

Let P(NI = i) denote the probability that there a total of i
inspections occur in a renewal cycle. Then we have

P (NI = i) = P
{
Y [(i− 1) I] ≤ L,D [(i− 1) I] ≤ S

}

× P [L < Y(iI) ≤ G,D(iI) ≤ S]

+ P [Y(iI) ≤ L,D(iI) ≤ S]

× P [iI < T ≤ (i+ 1) I] .
(26.27)

Hence,

E [NI ] =
∞∑

i=1

i
{
P
{
Y [(i− 1) I] ≤ L,D [(i− 1) I] ≤ S

}

× P [L < Y(iI) ≤ G,D(iI) ≤ S]

+ P [Y(iI) ≤ L,D(iI) ≤ S]

× P [iI < T ≤ (i+ 1) I]
}
.

(26.28)

We now calculate the probabilities P{Y[(i− 1)I] ≤ L,D[(i−
1)I] ≤ S} and P[L < Y(iI) ≤ G,D(iI) ≤ S] with the following
two different expressions for Y(t).

A. Assume Y(t) = A + Bg(t) where A ∼ N
(
μA, σ 2

A

)
B ∼

N
(
μB, σ 2

B

)
, and A and B are independent. Given g(t) =

t. D(t) = ∑N(t)
i=0 Xi where the Xi are iid and N(t) ∼

Poisson(λ). Then

P
{
Y [(i− 1) I] ≤ L,D [(i− 1) I] ≤ S

}

= P [A+ B (i− 1) I ≤ L]

× P

⎧
⎨

⎩
D [(i− 1) I] =

N[(i−1)I]∑

i=0

Xi ≤ S

⎫
⎬

⎭

= �

⎛

⎝L− (μA + μB (i− 1) I)
√

σ 2
A + σ 2

B((i− 1) I)2

⎞

⎠ e−λ(i−1)I

×
∞∑

j=0

(λ (i− 1) I)j

j! F(j)
X (S)

(26.29)

and

P [L < Y(il) ≤ G,D(il) ≤ S]

=
⎡

⎣�

⎛

⎝G− (μA + μBiI)
√

σ 2
A + σ 2

B(iI)2

⎞

⎠

− �

⎛

⎝L− (μA + μBiI)
√

σ 2
A + σ 2

B(iI)2

⎞

⎠

⎤

⎦ e−λiI

×
∞∑

j=0

(λiI)j

j! F(j)
X (S).

(26.30)

B. Assume Y(t) = W eBt

A+eBt , where W is a constant, A ∼
U[0, a], a > 0; B ∼ Exp(β),β > 0, A and B are indepen-
dent. D(t) = ∑N(t)

i=0 Xi where the Xi are iid and N(t) ∼
Possion(λ). Then

P
{
Y [(i− 1) I] ≤ L,D [(i− 1) I] ≤ S

}

=
[

1 − 1
a

(
1−u1
u1

) β

Ii−1
(

(i−1)I
(i−1)I−β

)
×
(
a1−

β

(i−1)I1 − 1
)]

e−λ(i−1)I

×
∞∑

j=0

[λ(i−1)I]j

j! F(j)
X (S),

(26.31)

where u1 = L/W. Similarly,

P [L < Y(il) ≤ G,D(iI) ≤ S]

=
{

1
a

(
iI

iI−β

)
×
(
a1−

β

iI

) [(
1−u3
u3

) β

iI −
(
1−u2
u2

) β

iI

]}

e−λiI

×
∞∑

j=0

(λiI)j

j! F(j)
X (S),

(26.32)

where u2 = G/W, u3 = L/W.
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Secondly, we discuss the calculation of P[iI < T ≤ (i +
1)I]. The definition of T is T = inf [t > 0:Y(t) > G or D(t) >
S]. According to the definition, we derive the expression:

P [iI < T ≤ (i+ 1) I]

= P
{
Y(iI) ≤ L, Y [(i+ 1) I] > G

}

× P
{
D [(i+ 1) I] ≤ S

}

+ P
{
Y [(i+ 1) I] ≤ L

}

× P
{
D(iI) ≤ S, D [(i+ 1) I] > S

}
.

(26.33)

In (26.33), since Y(iI) and Y[(i+ 1)I] are not independent,
we could obtain the joint pdf fY(iI),Y[(i+1)I](y1, y2) in order to
compute P{Y(iI) ≤ L,Y[(i + 1)I] > G}. We consider two
different expressions for Y(t). The details are as follows:

A. Assume Y(t) = A + Bg(t) where A > 0 and B > 0 are two
independent random variables, and g(t) is an increasing
function of time t. Assume that A ∼ fA(a),B ∼ fB(b). Let

{
y1 = a+ bg(iI)
y2 = a+ bg [(i+ 1) I]

.

After simultaneously solving the above equations in terms
of y1 and y2, we obtain:

a = y1g [(i+ 1) I] − y2g(iI)

g [(i+ 1) I] − g(iI)
= h1 (y1, y2) ,

b = y2 − y1
g [(i+ 1) I] − g(iI)

= h2 (y1, y2) .

The Jacobian J is given by

J =
∣
∣
∣
∣
∣

∂h1
∂y1

∂h1
∂y2

∂h2
∂y1

∂h2
∂y2

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

1

g(iI) − g [(i+ 1) I]

∣
∣
∣
∣ .

Then the random vector {Y(iI),Y[(i + 1)I]} has a joint
continuous pdf as follows

fY(iI),Y[(i+1)I] (y1, y2)
= J | fA [h1 (y1, y2)] fB [h2 (y1, y2)] .

(26.34)

B. Assume Y(t) = WeAt

B+eAt where A> 0 and B > 0 are indepen-
dent. Assume A ∼ fA(a),B ∼ fB(b). Let

⎧
⎨

⎩

y1 = WeaiI

b+eaiI

y2 = Wea(i+1)I

b+ea(i+1)I

.

The solutions for a and b can be easily found from the
above equations in terms of y1and y2 as follows:

⎧
⎪⎪⎨

⎪⎪⎩

a = ln
(
y2(y1−W)
y1(y2−W)

)

I = h1 (y1, y2)

b = − e

ln
(
y2(y1−W)
y1(y2−W)

(i+1)I

)

I (y2−W)

y2
= h2 (y1, y2)

.

It can be shown that the random vector {Y(iI), Y[(i+ 1)I]}
has a joint density function given by

fY(iI),Y[(i+1)I] (y1, y2)
= | J | fA [h1 (y1, y2)] fB [h2 (y1, y2)] ,

(26.35)

where the Jacobian determinant J is given in Appendix A.

As for the term P{D(iI) ≤ S,D[(i + 1)I] > S} in (26.30),
since D(t) = ∑N(t)

i=0 Xi is a compound Poisson process,
the compound Poisson process has a stationary independent
increment property. Therefore, the random variables D(iI)
and D[(i+ 1)I] − D(iI) are independent. Using the Jacobian
transformation, the random vector {D(iI),D[(i + 1)I] −
D(iI)} is distributed in the same way as vector {D(iI),D[(i +
1)I]}. Note that D(iI) and D(Ii+1) are independent, therefore,

P
{
D(iI) ≤ S, D [(i+ 1) I] > S

}

= P [D(iI) ≤ S]P
{
D [(i+ 1) I] > S

}
.

(26.36)

Calculate Pp
Note that either a PM or CM action will end a renewal cycle.
In other words, these two events are mutually exclusive at
the renewal time point. As a consequence, Pp + Pc = 1. The
probability Pp can be obtained as follows:

Pp = P (PM ending a cycle)

=
∞∑

i=1

P
{
Y [(i− 1) I] ≤ L, L < Y(iI) ≤ G

}

× P [D(iI) ≤ S] .

(26.37)

Analysis of Expected Cycle Length
Since the renewal cycle ends either by a PM action with
probability Pp or a CM action with probability Pc, the mean
cycle length E[W1] is calculated as follows:

E [W1] =
∞∑

i=1

E
[
(iI + R1) IPM occurs in [(i−1)I,iI]

]

+ E [(T + R2) 1CM occurs]

=
{ ∞∑

i=1

iIP
{
Y [(i− 1) I] ≤ L,D [(i− 1) I] ≤ S

}

P [L < Y(iI) ≤ G,D(iI) ≤ S]
}

+ E [R1]Pp + (
E [T] + E [R2]

)
Pc, (26.38)
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where IPM occurs in[(i−1)I,iI] and ICM occurs are the indicator func-
tions.

The mean time to failure, E[T] is given by [22]:

E [T] =
∫ ∞

0
P {T > t} dt

=
∫ ∞

0
P [Y(t) ≤ G,D(t) ≤ S] dt

=
∫ ∞

0
P [Y(t) ≤ G]

∞∑

j=0

(λ2t)
je−λ2t

j! F(j)
X (S)dt

or, equivalently:

E [T] =
∞∑

j=0

F(j)
X (S)

j!
∫ ∞

0
P [Y(t) ≤ G] (λ2t)

je−λ2tdt (26.39)

The expression E[T] depends on the probability P[Y(t) ≤ G]
and cannot always easily be obtained in closed form.

Optimization of theMaintenance Cost Rate Policy
We determine the optimal inspection time I and PM thresh-
old L such that the long-run average maintenance cost rate
EC(L, I) is minimized. Mathematically, we wish to minimize
the following objective function [22]:

EC (L, I) =
∑∞

i=1 iP1P2
{∑∞

i=1IiP1P2
} + E [R1]Pp + E [R2]Pc

+
∑∞

i=1 iVi {P3P4 + P5P6}
{∑∞

i=1IiP1P2
} + E [R1]Pp + E [R2]Pc

+ CpE [R1]
∑∞

i=1P1P2
{∑∞

i=1IiP1P2
} + E [R1]Pp + E [R2]Pc

+ CpE [R2]
{
1 − ∑∞

i=1P1P2
}

{∑∞
i=1IiP1P2

} + E [R1]Pp + E [R2]Pc
,

(26.40)

where Ii−1 = (i− 1)I, Ii = iI, Ii+1 = (i+ 1)I and Vi = P[Y(iI)
≤ L,D(iI) ≤ S], P1: P[Y(Ii−1) ≤ L, D(Ii−1) ≤ S], P2: P[L
< Y(Ii) ≤ G,D(Ii) ≤ S], P3: P[Y(Ii) ≤ L,Y(Ii+1) > G], P4:
P[D(Ii+1) ≤ S], P5: P[Y(Ii+1) ≤ L], P6: P[D(Ii) ≤ S,D(Ii+1)
> S].

This complex objective function is a nonlinear optimiza-
tion problem, and it is hard to obtain closed-form optimal
solutions for L and I. Nelder and Mead [23] introduced a
downhill simplexmethod that does not require the calculation
of derivatives. A simplex is the most elementary geometrical
scheme that can be formed in n dimensions and has (n + 1)
vertices. A brief summary of the steps of the method is: each
iteration generates a new vertex for the simplex. If the new
point is better than at least one of the existing vertices, it then

replaces the worst vertex. The search direction is generated
through reflection, expansion, and contraction operations.

A step-by-step algorithm proposed by Li and Pham [21]
based on the Nelder–Mead downhill simplex method is sum-
marized as follows:

• Step 1: choose (n + 1) distinct vertices as an initial
set {Z(1), . . . ,Z(n+1)}. Then calculate the function value
f (Z) for i = 1, 2, . . . , (n + 1), where f (Z) = EC(I,L).
Put the values f (Z) in an increasing order where
f (Z(1))= min [EC(I,L)] and f (Z(n+1)) = max [EC(I,L)].
Set k = 0.

• Step 2: compute the best-n centroid X(k) = 1
n

∑n
i=1Z

(i).
• Step 3: use the centroidX(k) in Step 2 to compute the away-

from-worst move direction

�X(k+1) = X(k) − Z(n+1).

• Step 4: set λ = 1 and compute f (X(k) + λ�X(k+1)). If f (X(k)

+ λ�X(k+1)) ≤ f (Z(1)) then go to Step 5. Otherwise, if
f (X(k) + λ�X(k+1)) ≥ f (Z(n)) then go to Step 6. Otherwise,
fix λ = 1 and go to Step 8.

• Step 5: Set λ = 2 and compute f (X(k) + 2�X(k+1)). If
f (X(k) + 2�X(k+1)) ≤ f (X(k) + �X(k+1)) then set λ = 2.
Otherwise, set λ = 1. Then go to Step 8.

• Step 6: If f (X(k) + λ�X(k+1)) ≤ f (Z(n+1)) then set λ = 1/2.
Compute f

(
X(k) + 1

2�X
(k+1)

)
. If f

(
X(k) + 1

2�X
(k+1)

) ≤
f
(
Z(n+1)

)
then set λ = 1/2 and go to Step 8. Otherwise, set

λ = − 1/2 and, if f
(
X(k) + 1

2�X
(k+1)

) ≤ f
(
Z(n+1)

)
, then

set λ = − 1/2 and go to Step 8. Otherwise, go to Step 7.
• Step 7: shrink the current solution set toward the best Z(1)

by Z(i) = 1
2

(
Z(1) + Z(i)

)
, i = 2, . . . , n + 1. Compute

the new f (Z(2)), . . . , f (Z(n+1)), let k = k + 1, and return to
Step 2.

• Step 8: Replace the worst Z(n+1) by X(k) + λ�X(k+1). If√
1

n+1

∑n+1
i=1

[
f
(
Z(i)

) − f
]2

< 0.5, where f is an average
value, then STOP. Otherwise, let k = k + 1 and return
to Step 2. (It should be noted that the criterion in Step
8 is not unique but will depend on how soon you would
like the algorithm to stop when the function values at the
vertices are close. Here we do this when the difference
between themaximum and theminimum values of f is less
than 0.5.)

A Numerical Example
Here we present an example to illustrate the results and the
step-by-step application procedure.

Assume that the degradation process is described by
Y(t) = A+ Bg(t), where A and B are independent and follow
a uniform distribution with parameter interval [0,4] and an
exponential distribution with parameter 0.3, i.e., A∼ U(0, 4)
and B ∼ Exp(− 0.3t), respectively, and g(t) = √

te0.005t.
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Table 26.1 Optimal values I and L

k Z(1) Z(2) Z(3) Search result

0 (25,20) (20,18) (15,10) (37.5, 38)

EC(I, L) = 564.3 EC(I, L) = 631.1 EC(I, L) = 773.6 EC(I, L) = 440.7

1 (37.5,38) (25,20) (20,18) (42.5,40)

EC(I, L) = 440.7 EC(I, L) = 564.3 EC(I, L) = 631.1 EC(I, L) = 481.2

2 (37.5,38) (42.5,40) (25,20) (32.5,29)

EC(I, L) = 440.7 EC(I, L) = 481.2 EC(I, L) = 564.3 EC(I, L) = 482.2

3 (37.5,38) (42.5,40) (32.5,29) (32.5,33.5)

EC(I, L) = 440.7 EC(I, L) = 481.2 EC(I, L) = 482.2 EC(I, L) = 448.9

4 (37.5,38) (32.5,33.5) (42.5,40) (38.75,37.125)

EC(I, L) = 440.7 EC(I, L) = 448.9 EC(I, L) = 481.2 EC(I, L) = 441.0

5 (37.5,38) (38.75,37.125) (32.5,33.5) (35.3125,35.25)

EC(I, L) = 440.7 EC(I, L) = 441.0 EC(I, L) = 448.9 EC(I, L) = 441.1

6 (37.5,38) (38.75,37.125) (35.3125,35.25) Stop

EC(I*, L*) = 440.7 EC(I, L) = 441.0 EC(I, L) = 441.4

Assume that the random shock damage is described by
D(t) = ∑N(t)

i=1 Xi, where Xi follows an exponential distri-
bution, i.e., Xi ∼ Exp(− 0.04t) and N(t) ∼ Poisson(0.1).
Also G = 50, S = 100,Ci = 900/inspection,Cc = 5600/CM,
Cp = 3000/PM, R1 ∼ Exp(− 0.1t), and R2 ∼ Exp(− 0.04t).
We now determine both the values of I and L so that the aver-
age total cost per unit time EC(I,L) is minimized. Following
are step-by-step procedure [22]:

• Step 1: since there are two decision variables I and L, we
need (n + 1) = 3 initial distinct vertices, which are Z(1) =
(25, 20),Z(2) = (20, 18), and Z(3) = (15, 10). Set k= 0. We
calculate the value of f

(
Z(·)

)
corresponding to each vertex

and sort them in increasing order of EC(I,L).
• Step 2: calculate the centroid: X(0) = (Z(1) + Z(1))/2 =

(22.5, 19).
• Step 3: generate the search direction: �X = X(0) − Z(2) =

(7.5, 9).
• Step 4: set λ = 1, which will produce a new minimal

EC(30, 28)= 501.76 that leads us to try an expansion with
λ = 2, that is (37.5, 38).

• Step 5: set λ = 2. Similarly, calculate f (Z), which leads to
EC(37.5, 38) = 440.7. Go to Step 8. This result turns out
to be a better solution, hence (15, 10) is replaced by (37.5,
38).

The iteration continues and stops at k = 6 (Table

26.1) since
√

1
3

∑3
i=1

[
EC

(
Z(i)

) − EC (I, L)
]2

< 0.5, where

EC (I, L) is the average value.
Table 26.1 illustrates the process of the Nelder–Mead

algorithm. In Table 26.1, Z(.) = (I, L). From Table 26.1, we
observe that a set of the optimal values is

I∗ = 37.5, L∗ = 38

and the corresponding cost value is EC*(I, L) = 440.7.

Table 26.2 The effect of L on Pc for I = 37.5

L Pc
33 0.465

35 0.505

37 0.654

39 0.759

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45
33 34 35 36 37 38 39

Pc

L

I = 35
I = 37.5
I = 40

Fig. 26.14 Pc versus L

Table 26.2 illustrates the various values of L on Pc for
given I = 37.5. From Table 26.2, we observe that the prob-
ability Pc increases as L increases. In other words, a larger
value for L will put the system at high risk of failure.

Figure 26.14 shows the relationship between L and Pc for
different I values, such as I = 35, I = 37.5, and I = 40. From
Fig. 26.14, we observe that Pc is an increasing function of
L. This means a higher preventive-maintenance threshold is
more likely to result in a failure.

Figure 26.15 depicts the effect of the first inspection time
onPp for various L values such as L= 33, L= 35, L= 37, and
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Fig. 26.15 The effect of the inspection sequence on Pp for given L

L = 39. Shorter inspection times will cause more-frequent
inspection and, as a result, will increase the probability of
a PM. From Fig. 26.15, we also observe that, for smaller L
values (L = 33 and L = 35), the curve decreases slightly as
I increases; while, for larger values of L such as L = 37 and
L = 39, the curve has a larger decrease as I increases. We
also observe that the curve is more sensitive to the value of
L, especially when L is large.

In summary, we observe that, on one hand, a lower value
of L will result in frequent PM action and prevents full usage
of the residual life of the systems. Frequent PM actions might
reduce the chance of high deterioration and failures, but will
also be costly. On the other hand, a higher L value will
keep the system working in a higher-risk condition. Also,
frequent inspections will reduce the probability of failure,
while incurring additional cost.

26.5.2 Inspection–MaintenanceModel for
Degraded Systems with Three
Competing Processes

General Inspection–Maintenance Description
This section considers systems with inspection-based main-
tenance subject to three failure processes that are competing
for the life of such systems: two of these are degradation
processes called degradation process i (measured by Yi(t) for
i = 1, 2) and the third is a random shock process measured
by the function D(t) [21].

We assume that the three processes are independent and
whichever process occurs first will cause the system to fail,
where the failure of the system is defined as when Y1(t) >
G1, Y2(t) > G2 or D(t) > S. The state of the system can only
be revealed through inspection.

Assumptions
1. System failure is only detected by inspection. Inspections

are assumed to be instantaneous, perfect, and nondestruc-
tive. Since the system is not continuously monitored,
if the system fails it will remain failed until the next
inspection, which causes a loss of Cm per unit time. In
this case, a maintenance action is begun instantaneously
at the inspection time.

2. After a maintenance action, either PM or CM, the system
state will start as good as new.

3. A CM action will cost more than a PM action. Similarly,
a PM action will cost much more than an inspection itself.
This implies that Cc > Cp > Ci.

4. The three nondecreasing processes Y1(t), Y2(t), and D(t)
are independent.

5. No continuous monitoring is performed on the system.
6. The time for a CM or PM action is negligible.

We consider a system subject to three competing pro-
cesses; two of them are continuous, gradual degradation
processes with different characteristics, and the third is a
random shock process. Applications of such systems can
be found in the Space Shuttle computer complex due to
critical mission phases such as boost, reentry, and landing
and in electric generator power systems due to the loss of
commercial power systems. More related applications can be
found in [13].

Although a continuous monitoring process is feasible
for some systems, the cost of monitoring the process and
the labor required would not make it realistic in practice.
Therefore the criteria we consider here is to improve the sys-
tem performance by performing periodic inspections, with a
maintenance action if necessary, to minimize the total system
maintenance cost.

Inspection–Maintenance Policy
The length of the inspection will be reduced as the sys-
tem ages. In other words, the intervals between successive
inspections become shorter as the system ages. A geomet-
ric sequence is applied in this study to develop the inter-
inspection sequence. The inspection time is constructed as
In = ∑n

j=1α
j−1I1, where 0 < α ≤ 1 and I1 is the first

inspection time. We define Un = In − In−1 = αn−1I1 as
the inter-inspection interval and (Ui)i∈N as a decreasing
geometric sequence. According to the state detected at the
inspection In, n = 1, . . . , one of the following actions will
happen [21]:

1. If both degradation values are below their PM thresholds
and the shock damage value is less than its threshold, in
other words [Y1(In) ≤ L1, Y2(In) ≤ L2] ∩ [D(In) ≤ S], then
the system is still in a good condition. In this case, we do
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Y2(t)

G2

L2

Y1(t)

G1

L1

D(t)

S

W1

I1 Ii Ii+1

Wi

I1 Ii Ii+1

Fig. 26.16 The evolution of the system condition

nothing but determine the next inspection at In+1 = In +
Un, whereUn is the inter-inspection time between the n-th
and the n + 1-th inspection interval.

2. If a degradation process falls into the PM zone [Li < Yi(In)
≤ Gi, i = 1, 2] and the other two processes are less than
their corresponding critical thresholds, then the system
calls for a PM action and it is instantaneously performed
accordingly.

3. If any of the process values exceed their corresponding
critical thresholds [Yi(t) > Gi, i = 1, 2, or D(t) > S], then
the system calls for a CM action and it is instantaneously
performed. In this case, the system has failed and a CM is
performed on the system.

A new sequence of inspection begins, defined in the same
way, and the system maintenance follows the same decision
rules outlined above. Figure 26.16 shows the evolution of the
system, where Y1(t) and Y2(t) represent the degradation pro-
cesses 1 and 2, respectively, andD(t) represents a cumulative
shock damage. (Wi)i∈N is a renewal sequence. Figure 26.17
shows the maintenance zone projected onto the Y1(t), Y2(t)
planes; Gi and Li are the CM and PM critical thresholds for
Y1(t), and Y2(t) respectively.

Y2(t)

G2

L2

L1 G1 Y1(t)

CM zone

PM zone

No actions

CM zone

Fig. 26.17 Maintenance zone projected onto Y1(t), Y2(t)

Maintenance Cost Analysis
The expected total maintenance cost per cycle, E[C1], is
given as:

E [C1] = CiE [NI ] + CpPp + CcPc + CmE [ζ ] , (26.41)

where Ci is the cost associated with each inspection,Cp is the
cost associated with a PM action, and Cc is the CM action
cost. Since failure is not self-announcing and it can occur at
any given instant time T within the inspection time interval
[Ii, Ii+1], the system will remain idle during the interval
[T, Ii+1]. The cost coefficient Cm is defined as the penalty
cost per unit time associated with such an event.

Calculation
1. Let P(NI = i + 1) be the probability that there are a total

of (i + 1) inspections in the cycle. The expected number
of inspections during a cycle, E[NI], is

E [NI ] =
∞∑

i=0

(i+ 1)Pi+1, (26.42)

where Pi+1 = P(NI = i + 1). Note that

Pi+1 = P (NI = i+ 1) =
⋃17

j=1
P
(
E(i+1)
j

)
,

where E(i+1)
j (j= 1, . . . , 17) denotes the renewal cycle that

ends at the j-th possible time Ii+1. The details of all E
(i+1)
j ,

where the E(i+1)
j are mutually disjoined events for j =

1, . . . , 18 are listed in Appendix B.
There are a total of 18 system state combinations

revealed at any given interval (Ii, Ii+1] where there is only
one state event, E(i+1)

18 (Appendix B) representing that the
system is in a good condition and that no maintenance
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action will be required. Any other remaining state events
will trigger either a PM or a CM action at time Ii+1.

After some simplifications, we have

Pi+1 = P [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S]

− P [Y1 (Ii+1) ≤ L1, Y2 (Ii+1) ≤ L2, D (Ii+1) ≤ S] .
(26.43)

Therefore,

E [N1] =
∞∑

i=0

(i+ 1) {P[Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2,

D (Ii) ≤ S] − P[Y1 (Ii+1) ≤ L1, Y2 (Ii+1) ≤ L2,

D (Ii+1) ≤ S]} .

2. There will be either a PM or CM action to end a renewal
cycle. It is obvious that the two events (PM and CM) are
mutually exclusive at the renewal time point: Pp + Pc =
1. We now calculate Pp as follows:

Pp = P (the cycle ends due to a PM action)

=
∞∑

i=0

3∑

j=1

P
[
E(i+1)
j

]
.

After some simplifications, we obtain

Pp =
∞∑

i=0

{
P [Y1 (Ii) ≤ L1, L1 < Y1 (Ii+1) ≤ G1]

× P [Y2 (Ii) ≤ L2, Y2 (Ii+1) ≤ G2]

× P [D (Ii+1)] + P [Y1 (Ii+i) ≤ L1]

× P [Y2 (Ii) ≤ L2, L < Y2 (Ii+1) ≤ G2]

× P [D (Ii+1)]
}

(26.44)

and Pc = 1 − Pp. We can obtain the joint probability
density function fY (Ii ), Y(Ii+1)(y1, y2) of Y(Ii) and Y(Ii+1)
by computing P[Y1(Ii) ≤ L1, Y1(Ii+1) ≤ G1] and P[Y2(Ii)
≤ L2, Y2(Ii+1) ≤ G2].

3. Let T denote the time to failure. That is T = inf [t:Y1(t)
> G1, Y2(t) > G2 or D(t) > S]. If Ii < T ≤ Ii+1, the unit
will be idle during the interval [T, Ii+1]. Let E[ζ ] denote
the average idle time between the failure occurrence epoch
and its inspection during the cycle. ThenE[ξ ] is calculated
as follows:

E | ξ |=
∞∑

i=0
E [(Ii+1 − T) 1Ii<T≤Ii+1 ]

=
∞∑

j=0
Rj
∫ Ii+1

Ii
(Ii+1 − t) dFT(t),

(26.45)

where

Rj =
{
P [Y1 (Ii) ≤ L1, L1 < Y1 (Ii+1) ≤ G1]

× P [Y2 (Ii) ≤ L2, L1 < Y1 (Ii+1)]

+ P [Y2(Ii) ≤ L2]

× P [Y1 (Ii) × L1, Y1 (Ii+1) > G1]

+ P [Y1 (Ii+1) ≤ L1]

× P [Y2 (Ii) ≤ L2]
}
P [D (Ii) ≤ S]

F(t) = P [Y1(t) > G1, Y2(t) ≤ G2, D (Ii) ≤ S]

+ P [Y1(t) ≤ G1, Y2(t) > G2, D (Ii) ≤ S]

+ P [Y1(t) ≤ G1, Y2(t) ≤ G2, D (Ii) > S}

and 1Ii<T≤Ii+1 is an indicator function.

Expected Cycle Length
The expected cycle length E[W1] is given as follows:

E [W1] = E [E [W1|NI ]]

=
∞∑

i=0

E [W1|NI = i]P (Ni = i)

=
∞∑

i=0

Ii+1Pi+1,

(26.46)

where Pi+1is given in (26.43).
Therefore, the average long-run maintenance cost rate

function EC(L1, L2, I1) is a function of the inspection times
{I1, . . . , Ii, . . . } and the PM critical threshold values (L1, L2)
through the functions Pp, Pc, E[NI], E[ζ ], and E[W1]. The
average long-run maintenance cost rate is, in other words,
EC (L1, L2, I1) = E[C1]

W1
, and can be obtained by computing

the two functions given in (26.41) and (26.46).

Optimization of theMaintenance Cost Rate
The geometric inspection sequence {I1, . . . , Ii, . . . }, where
In = ∑n

j=1α
j−1I1, depends on I1 for given α. In this

section, we develop a step-by-step algorithm based on
the Nelder–Mead downhill simplex method to obtain the
optimum decision variables (I1, L1, L2) such that the long-run
average maintenance cost rate EC(L1, L2, I1) is minimized.
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Mathematically, the optimization problem of the cost rate
function can be formulated as follows [21]:

Optimization Problem
Find I1, L1 and L2(0 < L1 ≤ G1, 0 < L2 ≤ G2) such that

EC (L1, L2, I1)

= Ci
∑∞

i=0(i+1)
{
P
[
Y1
(∑i

j=1α
j−1I1

)
≤L1,Y2

(∑i
j=1α

j−1I1
)
≤L2,D

(∑1
j=1α

j−1I1
)
≤S

]
−P

[
Y1

(∑i+1
j=1α

j−1I1
)
≤L1,Y2

(∑i+1
j=1α

j−1I1
)
≤L2,D

(∑i+1
j=1α

j−1I1
)
≤S

]}

∑∞
i=0

(∑i+1
j=1α

j−1I1
){
P
[
Y1
(∑i

j=1α
j−1I1

)
≤L1,Y2

(∑i
j=1α

j−1I1
)
≤L2,D

(∑1
j=1α

j−1I1
)
≤S

]
−P

[
Y1

(∑i+1
j=1α

j−1I1
)
≤L1,Y2

(∑i+1
j=1α

j−1I1
)
≤L2,D

(∑i+1
j=1α

j−1I1
)
≤S

]}

+ Cp
∑∞

i=0

{
P
[
Y1
(∑i

j=1α
j−1I1

)
≤L1,Y2

(∑i
j=1α

j−1I1
)
≤G2

]
P
[
Y2
(∑i

j=1α
j−1I1

)
≤ L2,Y2

(∑i+1
j=1α

j−1I1
)
≤G2

]
P
[
D
(∑i+1

j=1α
j−1I1

)
≤S

] }

∑∞
i=0

(∑i+1
j=1α

j−1I1
){
P
[
Y1
(∑i

j=1α
j−1I1

)
≤L1,Y2

(∑i
j=1α

j−1I1
)
≤L2,D

(∑1
j=1α

j−1I1
)
≤S

]
−P

[
Y1

(∑i+1
j=1α

j−1I1
)
≤L1,Y2

(∑i+1
j=1α

j−1I1
)
≤L2,D

(∑i+1
j=1α

j−1I1
)
≤S

]}

+ Cc(1−∑∞
i=0

{
P
[
Y1
(∑i

j=1α
j−1I1

)
≤L1,Y2

(∑i
j=1α

j−1I1
)
≤G2

]
P
[
Y2
(∑i

j=1α
j−1I1

)
≤ L2,Y2

(∑i+1
j=1α

j−1I1
)
≤G2

]
P
[
D
(∑i+1

j=1α
j−1I1

)
≤S

] }

∑∞
i=0

(∑i+1
j=1α

j−1I1
){
P
[
Y1
(∑i

j=1α
j−1I1

)
≤L1,Y2

(∑i
j=1α

j−1I1
)
≤L2,D

(∑1
j=1α

j−1I1
)
≤S

]
−P

[
Y1

(∑i+1
j=1α

j−1I1
)
≤L1,Y2

(∑i+1
j=1α

j−1I1
)
≤L2,D

(∑i+1
j=1α

j−1I1
)
≤S

]}

+
Cm

∑∞
i=0

{
(R1i+R2i+R3i) P

[
D
(∑i+1

j=1α
j−1I1

)
≤S

]}∫
∑i+1
j=1 αj−1 I1

∑i
j=1 αj−1 I1

(∑i+1
j=1α

j−1I1−t
)
dFT(t)

∑∞
i=0

(∑i+1
j=1α

j−1I1
){
P
[
Y1
(∑i

j=1α
j−1I1

)
≤L1,Y2

(∑i
j=1α

j−1I1
)
≤L2,D

(∑1
j=1α

j−1I1
)
≤S

]
−P

[
Y1

(∑i+1
j=1α

j−1I1
)
≤L1,Y2

(∑i+1
j=1α

j−1I1
)
≤L2,D

(∑i+1
j=1α

j−1I1
)
≤S

]}

is minimum, where

R1i = P

⎡

⎣Y1

⎛

⎝
i∑

j=1

αj−1I1

⎞

⎠ ≤ L1, L1 < Y1

⎛

⎝
i+1∑

j=1

αj−1I1

⎞

⎠ ≤ G1

⎤

⎦ × P

⎡

⎣Y2

⎛

⎝
i∑

j=1

αj−1I1

⎞

⎠ ≤ L2, L1 < Y1

⎛

⎝
i+1∑

j=1

αj−1I1

⎞

⎠

⎤

⎦ ,

R2i = P

⎡

⎣Y1

⎛

⎝
i∑

j=1

αj−1I1

⎞

⎠ ≤ L1, G1 < Y1

⎛

⎝
i+1∑

j=1

αj−1I1

⎞

⎠

⎤

⎦ × P

⎡

⎣Y2

⎛

⎝
i∑

j=1

αj−1I1

⎞

⎠ ≤ L2

⎤

⎦ ,

R3i = P

⎡

⎣Y1

⎛

⎝
i∑

j=1

αj−1I1

⎞

⎠ ≤ L1

⎤

⎦ × P

⎡

⎣Y2

⎛

⎝
i∑

j=1

αj−1I1

⎞

⎠ ≤ L2

⎤

⎦ .

This optimization function is a complex nonlinear func-
tion, the optimum solution of which is difficult to find. The
Nelder–Mead downhill simplex method (discussed in Sect.
26.5.1) is the most popular direct-search method for ob-
taining the optimum solution of an unconstrained nonlinear
function and does not require the calculation of derivatives.

Numerical Examples
This section illustrates the results in the Sect. 26.5.2. Assume
that degradation process 1 is described as the function
Y1(t) = WeB1 t

A1+eB1 t
,, where the random variables A1 and B1

are independent and follow a uniform distribution with
parameter interval [0,40], and exponential distribution with
parameter 1, respectively. In short, A1 ∼ U[0, 40] and
B1 ∼ Exp(1). Similarly, assume that degradation process
2 is modeled as Y2(t) = A2 + B2g(t) where A2 ∼ U[0, 2],
B2 ∼ Exp(0.2) and g(t) = √

te0.01t. Assume that the random
shock is represented by the function D(t) = ∑N2(t)

i=0 Xi, where
Xi ∼ Exp(0.04) and N(t) ∼ Poisson(0.1). Also G1 = 300, G2

= 70, and S = 100. Assume that the cost parameters are as

follows: Cc = 560 units/CM, Cp = 400 units/PM, Ci = 100
units/inspection, Cm = 500 units/unit time and α = 0.97.
The inspection sequence {I1, . . . , In, . . . } is constructed with
In = ∑n

j=1α
j−1I1. We want to determine the values of I1 and

(L1, L2) so that the average long-run maintenance cost rate
per unit time is minimized. Following are the steps using our
proposed algorithm in Sect. 26.5.1:

• Step 1: There are three decision variables, say L1, L2, and
I1, so we need four distinct vertices as an initial set of
values: Z(1) = (270, 56, 76), Z(1) = (280, 60, 72), Z(2) =
(290, 52, 66), and Z(3) = (300, 50, 57). Set k = 0.

We now calculate the function value f (Z) corresponding to
each vertex and put them in increasing order of the objective
value EC(L1, L2, I1) from smallest to highest.

• Step 2: Compute the centroid:X(0) = 1
3

(
Z(1) +Z(2) +Z(3)

)

= − (−20, 6, 14.3).
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Table 26.3 Nelder–Mead algorithm results

k Z(1) = (L1, L2, I1) Z(2) Z(3) Z(4) Search result

0 (270,56,76) (280,60,72) (290,52,66) (300,50,57) λ = 2

E[C1]
E[W1]

= 300.7 E[C1]
E[W1]

= 332.2 E[C1]
E[W1]

= 360.4 E[C1]
E[W1]

= 388.2 E[C1]
E[W1]

= 247.9

1 (240,60,99.9) (270,56,76) (280,60,72) (290,52,66) λ = 1

E[C1]
E[W1]

= 247.9 E[C1]
E[W1]

= 300.7 E[C1]
E[W1]

= 332.2 E[C1]
E[W1]

= 360.4 E[C1]
E[W1]

= 248.0

2 (236,60,99.2) (240,60,99.9) (270,56,76) (280,60,72) λ = 2

E[C1]
E[W1]

= 247.9 E[C1]
E[W1]

= 248.0 E[C1]
E[W1]

= 300.7 E[C1]
E[W1]

= 332.2 E[C1]
E[W1]

= 246.7

3 (187,56,131) (236,60,99.2) (240,60,99.9) (270,56,76) λ = 1

E[C1]
E[W1]

= 246.7 E[C1]
E[W1]

= 247.9 E[C1]
E[W1]

= 248.0 E[C1]
E[W1]

= 300.7 E[C1]
E[W1]

= 245.9

4 (172,60,144) (187,56,131) (236,60,99.2) (240,60,99.9) Stop

E[C1]
E[W1]

= 245.9 E[C1]
E[W1]

= 246.7 E[C1]
E[W1]

= 247.9 E[C1]
E[W1]

= 248.0

• Step 3: Search for the away-from-worst direction: �X =
X(0) − Z(4) = (− 20, 6, 14.3).

• Step 4: Set λ = 1, which will generate a new minimal
EC(260, 60, 85.6) = 291.9 that leads to an expansion with
λ = 2 that is (240, 60, 99.9).

• Step 5: Set λ = 2. Similarly, compute f (Z), which leads to
247.9. Go to Step 8.

This result turned out to be a better solution, hence
(300, 50, 57) is replaced by (240, 60, 99.9).

The iteration continues and stops at k= 4 (see Table 26.3)
since

√
√
√
√1

4

4∑

i=1

[
EC

(
Z(i)

) − EC (L1, L2, I1)
]2 = 0.449 < 0.5,

where EC (L1, L2, I1) is the average value.
From Table 26.3, we obtain the optimal solution for

(L1, L2, I1) as:
(
L∗
1 = 172, L∗

2 = 60, I∗1 = 144
)

and the
corresponding average long-run maintenance cost rate is
EC

(
L∗
1, L

∗
2, L

∗
1

) = 245.9. Figure 26.18 depicts the average
long-run maintenance cost-rate curve EC(L1, L2, I1) as a
function of the inspection time interval I1 for L1 = 172 and
L2 = 60.

Table 26.4 presents a sensitivity analysis in terms of the
probability that the cycle will end due to a PM action, Pp,
for various values of (L1, L2) for α = 0.97 and I1 = 144.
From Table 26.4, we observe that the probability Pp slightly
increases as both L1 and L2 decrease. This in fact shows that
one would performmore PMs than CMswhen L1 and L2 both
become smaller.

258

256

254

252

250

248

246

244
130 135 140 145 150 155

Inspection time

EC

Fig. 26.18 The average maintenance cost EC(L1, L2, I1) versus I1

Table 26.4 The effect of (L1, L2) on Pp for a given inspection se-
quence

L1 L2 Pp
200 60 0.5910

190 58 0.5928

180 56 0.5936

170 54 0.5948

160 52 0.5950

150 50 0.5968

Similarly, Table 26.5 presents the probability that the cycle
will end due to a PM action, Pp, for various values of I1
given L1 = 172, L2 = 60, and α = 0.97. From Table 26.5,
we observe that the probability Pp decreases as I1 increases.
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Table 26.5 The effect of the inspection sequence on Pp for fixed PM
values

I1 Pp
110 0.642

120 0.610

130 0.578

140 0.510

150 0.480

160 0.430

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4
11 0 115 120 125 130 135 140 145 150 155 160

Inspection time

L1 = 172, L2 = 60
L1 = 200, L2 = 50
L1 = 150, L2 = 50

Pp

Fig. 26.19 The probability Pp versus I1 for various pairs (L1, L2)

In other words, the maintenance cycle will be more likely
to end due to corrective rather than preventive maintenance
if one delays inspection. This result can help maintenance
managers or inspectors to allocate resources and time.

Figure 26.19 shows the results for the probability that the
cycle ends due to PM versus the inspection interval time I1
for given values of the threshold PM levels (L1, L2). It is
interesting to observe from Fig. 26.19 that the results are
about the same for the two combinations of (L1 = 172,
L2 = 60) and (L1 = 200, L2 = 50).

26.6 Complex Systems with Dependent
Competing Risks and Random Shocks
Using Copulas

In this subsection, we discuss briefly some dependent
competing risk models for systems subject to multiple
degradation processes and random shocks especially using
time-varying copulas. Assuming independence between
degradation processes may underestimate the entire system
reliability [24]. There exist two types of the dependent

configurations that should be taken into consideration: (i) the
dependent relationship between degradation processes and
random shocks, and (ii) the dependent relationship among
various degradation processes.

Taking a human heart as an example, at the age of early
40s, the efficiency of the heart delivering blood to the body
will begin to be greatly reduced because of the gradual loss
of elasticity of blood vessels. As a result, the arteries may
harden or become blocked. Also, many factors can contribute
as a shock to the human body, such as non-normal living
environment and illness. Diabetes can damage many parts
of the human body, such as the heart, kidneys, and blood
vessels. Therefore, the human body is a complex system with
correlated multiple organs and subsystems that contribute to
the proper functioning of the physical mechanism [24].

Finkelstein [25] introduced a generalized Strehler-
Mildvan model to estimate the first passage time of the
survival function for the system subject to cumulative
damage due to biological aging, and sudden killing events.
Van Noortwijk et al. [26] put forward a novel approach to
combine two stochastic processes of deteriorating resistance
and fluctuating load for the reliability analysis of a structural
component. Ye et al. [27] proposed a degradation model
to capture the two failure mechanisms of degradation and
shocks using the Brown-Proschan model under the condition
that only failure times and failure modes are recorded
without the observable information of shock magnitude
and degradation amount. Wang and Pham [28] studied a
multi-objective imperfect preventive maintenance policy for
complex systems subjected to the dependent competing risks
of degradation wear and random shocks, by simultaneously
maximizing the system asymptotic availability and
minimizing the system cost rate. Sari et al. [29] studied
a bivariate degradation model with constant stress to
accommodate the dependency between more degradation
measures distributed with different marginal functions.

Considerable attention has been paid in the early 2000s to
the dependence behavior between random variables modeled
by copulas which allows to link the univariate marginal
distributions to obtain a joint probability of the events, Cos-
sette et al. [30] studied the discounted penalty function for
a generalized Farlie-Bumbel-Morgenstern copula model in
the presence of the associations between the claim sizes and
inter-claim time in a compound Poisson risk model. Lo and
Wilke [31] develop a new copula graphic estimator applied to
a model with multiple dependent competing risks, and apply
the model to the data set of unemployment duration from
Germany. In the work by Miladinovic and Tsokos [32], a
modified Gumbel failure model is used to study the system
failure time and Bayesian reliability estimates.
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The copula method is a flexible, powerful technique to
build multivariate distributions which is widely used in var-
ious applications including economics, finance, and actu-
arial science. Kaishev et al. [33] developed a dependent
multiple-degradation model to examine the dependencies
among causes of death to analyze the impact of complete
or partial elimination of causes of death on the survival
function from competing risks using copulas. Wang and
Pham [24] studied an important classical dependent compet-
ing risk model by combining time-scaled covariate factors
governed by random shocks into the degradation paths using
a copula method. They employed the copula method to build
a more flexible dependent competing model for continu-
ously degraded complex systems in which the dependent
configuration between random shocks and various degrada-
tion processes are linked by time-scaled covariate copula
methods. A detail of modeling the dependent competing risks
with multiple degradation processes and random shocks of
complex systems can be found in [24].

Bedford and Alkali [34] studied a competing risk and
opportunistic informative maintenance modeling involving
censoring through opportunistic maintenance. Recent studies
in the areas of competing risk and dependent failures of
systems with various applications can be founded in Liu
[35] on the system maintenance modeling for competing risk
processes with inter-arrival shocks; in Fang et al. [36] using
copula; Palayangoda and Ng [37] considering semiparamet-
ric and nonparametric; Donev and Hoffmann [38] on the road
transportation research in the presence of data censoring and
dependent competing risks; and Austin and Fine [39] and
Noordzij et al. [40] about the survival competing risks in
medical applications .

26.7 Conclusions and Perspectives

In this chapter, we present reliability and maintenance mod-
els for degraded systems with multiple competing failure
processes. For mathematical modeling, it is always nec-
essary to make some assumptions in order to make the
modelapplicable in practice. For reliability and maintenance

modeling, assumptions have often played an important role
in determining the structure and complexity of the models.

The results of the maintenance models in this chapter
can be used to help practitioners and inspectors as well
as marketing managers to allocate resources and for the
promotion strategies for new products. It would be of interest
for future research to implement these results by collecting
data and observing product system degradations in practice.
Other research problems worth exploring in the future are as
follows [22].

1. The objective function discussed in this chapter is to min-
imize the expected long-run maintenance cost. In prac-
tice, costs associated with inspections, preventive mainte-
nance, corrective maintenance, and downtime are some-
times difficult to obtain, even when used in practice. For
some critical systems, the overriding goal is to ensure that
the system should be available when needed; availability
is, therefore, of primary interest, and cost is secondary.

To achieve a high level of availability for a specified
inspection rate, it is worth to determine the optimum num-
ber of inspections with respect to imperfect repairs, such
as minimal and opportunistic schemes, that maximizes
the system availability. The time required for imperfect
repairs and for replacement policies are random.

2. This chapter assumed that at any time there is unlimited
supply of systems available for replacement. In reality,
this assumption might not be true due to budget allocation
and other constraints. In this case, a random lead time
for delivering the new system when needed should be
considered. It is essential and practical to analyze the
effect of this random lead time on availability. When
incorporating random lead time, the expected downtime
will increase; therefore, system availability will decrease.

Appendix A

JacobianDeterminant

Below is a 2 × 2 Jacobian determinant

J =
y1 (y2 −W)

(
y2

y1(y2−W)
− y2(y1−W)

y1(y2−W)

)
[−d (y1, y2) − d1 (y1, y2) + d2 (y1, y2)]

y2 (y1 −W) (Ii+1 − Ii)
+ d3 (y1, y2) ,
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where

d (y1, y2) =

⎡

⎢
⎢
⎣

(
y1−W

y1(y2−W)
− y2(y1−W)

y1(y2−W)2

)
y1(y2 −W)2Ii+1 e

⎛

⎝
ln

(
y2(y1−W)
y1(y2−W)

)

Ii+1

Ii+1−Ii

⎞

⎠

⎤

⎥
⎥
⎦

y22 (y1 −W) (Ii+1 − Ii)
, y1 = W, y2 = W,

d1 (y1, y2) = e

⎛

⎝
ln

(
y2(y1−W)
y1(y2−W)

)

Ii+1

Ii+1−Ii

⎞

⎠

y2
, y2 = W,

d2 (y1, y2) = e

⎛

⎝
ln

(
y2(y1−W)
y1(y2−W)

)

Ii+1

Ii+1−Ii

⎞

⎠

(y2 −W)

y22
, y2 = W,

d2 (y1, y2) = d31 (y1, y2) d32 (y1, y2)

y32(y1 −W)2(Ii+1 − Ii)
2 , y1 = W,

d31 (y1, y2) =
(

y1 −W

y1 (y2 −W)
− y2 (y1 −W)

y1(y2 −W)2

)

y21(y2 −W)3, y2 = W,

d32 (y1, y2) =
(

y2
y1 (y2 −W)

− y2 (y1 −W)

y21 (y2 −W)

)

Ii+1e

⎛

⎝
ln

(
y2(y1−W)
y1(y2−W)

)

Ii+1

Ii+1−Ii

⎞

⎠

, y2 = W.

Appendix B

A list of all 18 events:

E(i+1)
1 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 < Y1 (Ii+1) ≤ G1, L2 < Y2 (Ii+1) ≤ G2, D (Ii+1) ≤ S]
E(i+1)
2 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 < Y1 (Ii+1) ≤ G1, Y2 (Ii+1) ≤ L2, D (Ii+1) ≤ S]
E(i+1)
3 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [Y1 (Ii+1) ≤ L1, L2 < Y2 (Ii+1) ≤ G2, D (Ii+1) ≤ S]
E(i+1)
4 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 < Y1 (Ii+1) ≤ G1, Y2 (Ii+1) > G2, D (Ii+1) ≤ S]
E(i+1)
5 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 < Y1 (Ii+1) ≤ G1, L2 < Y2 (Ii+1) ≤ G2, D (Ii+1) > S]
E(i+1)
6 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 < Y1 (Ii+1) ≤ G1, Y2 (Ii+1) > G2, D (Ii+1) > S]
E(i+1)
7 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [Y1 (Ii+1) > G1, L2 > Y2 (Ii+1)D (Ii+1) ≤ S]
E(i+1)
8 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [Y1 (Ii+1) > G1, L2 < Y2 (Ii+1) ≤ G2, D (Ii+1) ≤ S]
E(i+1)
9 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [Y1 (Ii+1) > G1, L2 > Y2 (Ii+1) , D (Ii+1) > S]
E(i+1)
10 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [Y1 (Ii+1) > G1, L2 < Y2 (Ii+1) ≤ G2, D (Ii+1) > S]
E(i+1)
11 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [Y1 (Ii+1) > G1, Y2 (Ii+1) > G2, D (Ii+1) ≤ S]
E(i+1)
12 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [Y1 (Ii+1) > G1, Y2 (Ii+1) > G2, D (Ii+1) > S]
E(i+1)
13 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 < Y1 (Ii+1) ≤ G1, L2 > Y2 (Ii+1) , D (Ii+1) > S]
E(i+1)
14 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 > Y1 (Ii+1) , L2 > Y2 (Ii+1) , D (Ii+1) ≤ S]
E(i+1)
15 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 > Y1 (Ii+1) L2 > Y2 (Ii+1) , D (Ii+1) > S]
E(i+1)
16 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 > Y1 (Ii+1) , L2 < Y2 (Ii+1) ≤ G2, D (Ii+1) > S]
E(i+1)
17 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [L1 > Y1 (Ii+1) , Y2 (Ii+1) > G2, D (Ii+1) ≤ S]
E(i+1)
18 = [Y1 (Ii) ≤ L1, Y2 (Ii) ≤ L2, D (Ii) ≤ S] ∩ [Y1 (Ii+1) ≤ L1, Y2 (Ii+1) ≤ L2, D (Ii+1) ≤ S]
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Abstract

Digital technologies improve the information collected
on systems and allow the development of condition-based
maintenance policies andmodels using the remaining use-
ful life. Accordingly, maintenance policies have evolved
from a simple time-based to a more complex and competi-
tive predictive approach. However, considering a dynamic
maintenance decision framework with a self-adaptive
decision rule has not been thoroughly addressed. This
chapter deals with continuously deteriorating systems and
focuses on dynamic maintenance policies, i.e., policies
using real-time information to update the decision
rule and handle the model’s uncertainty. The first part
presents popular stochastic processes for degradation

A. Grall (�) · E. M. Omshi
LIST3N, Université de Technologie de Troyes, Champagne, de Troyes,
France
e-mail: antoine.grall@utt.fr; elham.mosayebi@utt.fr

modeling and condition-based maintenance decision rule.
Then, dynamic maintenance policies are described in
two different contexts: for groupings of maintenance
actions and for reducing uncertainty in modeling. Finally,
a particular case of dynamic preventive maintenance
model is described in detail for a system with continuous
degradation and unknown degradation parameters. It is
based on the inverse Gaussian process with a nonperiodic
inspection policy and includes parameters update.

Keywords

Predictive maintenance · Condition-based maintenance ·
Adaptive maintenance · Dynamic maintenance ·
Deterioration · Stochastic process · Inverse Gaussian ·
Bayesian update

27.1 Introduction

Many structures or systems can be restored to working con-
dition through maintenance actions that range from minimal
repair, allowing the restart of the system, to total replacement.
Depending on the equipment’s operating costs or availability,
it may be worthwhile to anticipate the failure and intervene
while the system is still operating. Maintenance modeling
addresses the overall planning of monitoring and mainte-
nance actions throughout the equipment’s useful life cycle.
Possible actions can be envisaged, for example, as in [1] with
an immediate online response to a detection of an unexpected
sudden change in the system’s operating mode. However,
decision-making must be more broadly integrated into an
overall supervision system.

Choosing a maintenance policy allows the maintenance
decision-maker responding judiciously to questions such as
“what has to be done?” and “when has it to be done?”.
The decision can be supported and improved by information
retrieved “online.”
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Maintenance actions can be classified into two main cate-
gories concerning failure time. Preventive maintenance ac-
tions are programmed to prevent or delay a failure, and
corrective maintenance actions occur in response to, and
therefore due to, a system failure.

The development of a maintenance strategy for repairable
systems requires the adoption of decision rules allowing
jointly and, if possible, on the one hand, to choose the type
of maintenance action to be implemented among those that
are permitted, on the other hand, to plan the different actions
over time. The choice and optimization of a maintenance
policy require the ability to assess a given strategy’s impact
on the system’s performance under consideration. The effects
of policy need to be quantified. Performance evaluation re-
quires developing models that represent the behavior of the
maintained system and allow its characterization. All in all,
it is necessary to combine:

• A representation of the system’s behavior from a “new”
state to failure;

• A model of the rule for monitoring and maintenance
planning;

• A criterion for evaluating the performance of the main-
tained system.

In the last 50 years, manymodels have been developed and
enriched under various assumptions. They allow considering
different aspects of maintenance issues for systems with
stochastic failure or degradation. Detailed summaries exist
from different perspectives and can be found, for example,
in [2–13]. Note that the models’ different classifications
can be proposed depending on the item which is primarily
considered.

First, let us consider the system description. Based on the
system modeling characteristics, it is possible to distinguish
mono-component and multi-component representations. The
primary representation is for single individuals or complex
systems which can considered as a whole, i.e., without de-
scribing their inner reliability structure. The next one pro-
poses a description of the system as an assembly of parts
or subsystems which can be modeled individually. For the
latter, different forms of interactions between the compo-
nents can be highlighted depending on the system’s main
characteristics under study. Consequently, different classes
can be adopted. For instance, links developed for the system
reliability structure (series, parallel, k out of n), or types of
dependency between the components (economic, stochastic,
or structural).

In parallel, the system’s behavior or its components up to
failure can be described in different ways. It can be based
either directly on lifetimes’ characterization or represent
the evolution of observable conditions from “new” state to
“failed” state. Direct lifetime modeling for a component

can be seen as a “two-states” representation of the system’s
condition (“working” and “failed”). In that case, the rele-
vant indicator is the failure rate, which describes aging and
can evolve more or less complicatedly. Moreover, modeling
a system’s degradation or wear evolution leads to a dis-
crete (countable) or continuous state space with underlying
stochastic processes.

Moreover, if the main classification viewpoint is guided
by maintenance, models existing in the literature can be
associated with the type of maintenance action (inspection,
replacement, repair) and its efficiency (minimal, imperfect
repair, intervention degrading the system), or with the class
of decision rule (time-based rule, age-based rule, condition-
based rule).

Finally, policies can be differentiated according to their
assessment criteria (cost, reliability, or availability) and the
considered time horizon (finite or infinite). In addition to the
previous categories, one could also consider classifications
depending on the methodology used to develop the cost
model, whether it is based on, e.g., renewal theory or Markov
decision processes. The characteristics of the information
available online about the system to be maintained can also
be considered.

This chapter concentrates on maintenance modeling for
gradually deteriorating systems and which deterioration can
be modeled continuously in time. Consequently, the degra-
dation modeling framework will focus on continuous-time
stochastic processes. The most commonly used stochastic
processes in degradation modeling for prognosis and main-
tenance are the Wiener process, gamma process, and inverse
Gaussian process. The last two processes allow describing
the monotone degradation phenomenon. The gamma process
has been widely considered in maintenance modeling; e.g.,
[14–17] to mention a few. The inverse Gaussian process
has been considered more recently in this concept; see, for
example, [18–20]. The Wiener process allows us to focus
on the maintenance of non-monotone degradation behaviors;
see, for example, [21–23], and [24].

Predictive and condition-based maintenance policies in-
clude all preventive policies for whichmaintenance decisions
are taken based on observations of the system’s current state.
Decisions can possibly include future use conditions. When
properly implemented, the performance of these classes of
policies exceeds that of conventional static policies that do
not exploit any information from online monitoring [25–27].
In this context, the main objective is to enable the appropriate
use of all system monitoring information available in real-
time to enhance maintenance decision-making effectiveness.

In this chapter, attention is paid mainly to the dynamic
decision framework. There is no formal and precise definition
of dynamic maintenance policies. It can be related to a wide
range of configurations. We will consider that the dynamic
maintenance decision framework refers to decision rules with
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an embedded online self-modification process updated from
real-time information. A dynamic maintenance policy must
include updating the decision rule parameters or structure
or modifying some model elements as new information be-
comes available. The mentioned information can be related
to the system by itself (degradation level, state of other
components in case of multi-component systems, …), or
some external influencing factors (covariates related to the
environment, hypotheses on the system’s future mission,…).
A classical condition-based maintenance policy with fixed
decision variables will not be hereafter considered dynamic.
Even if decisions are made based on the current observed
degradation level, the decision rule by itself is set from the
beginning and does not include any adaptive process.

The first part of the chapter is devoted to general def-
initions and notations about continuous-time degradation
processes and usual maintenance decision rules. Then de-
scriptions of the two main configurations and frameworks
related to dynamic maintenance policies with gradual dete-
rioration are given. One of the configurations corresponds
to imperfect knowledge of the degradation process due to
a noninformative database, identification of some random
effect, or specific expert opinion. The other one is devoted to
systems described as multi-component systems with possible
interactions and influence of the environment.

The second part focuses on one specific case of main-
tenance policy that precisely illustrates the framework and
adaptive process of a dynamic maintenance policy for a
system described by a scalar degradation indicator. The infor-
mation collected online by inspections is used to dynamically
improve the maintenance decision rule and update it in real-
time.

27.2 Gradual Deterioration and Predictive
Maintenance

27.2.1 Stochastic Processes

In the following, the process {Xt}t≥0 represents the evolution
of the degradation indicator over time. The following is
not an exhaustive presentation of the stochastic processes
considered for maintenance modeling. It focuses on the ones
verifying the following properties:

1. X0 = 0 almost surely; i.e., the system, component or struc-
ture is considered as “new” on the date of commissioning;

2. Non-overlapping increments are statistically independent;
i.e., for any partition 0 ≤ t0 < t1 < . . . < tn < ∞ the
increments Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 represent n
mutually independent random variables;

3. The increments are stationary; i.e., ∀t, s ≥ 0, Xt+s − Xt
depends only on the length s of the interval, but not on its
position on the time axis.

Remark that as a consequence of items 2 and 3, the
distribution ofXt+s−Xt is infinitely divisible. It means that for
all integer n > 0 it is the sum of n independent variables with
the same distribution as Xt+s/n − Xt. Therefore, appropriate
infinitely divisible distributions are good candidates deriving
stochastic processes. Here, we focus on continuous-state
stochastic processes to model degradation. The relevance
of utilizing a stochastic process for degradation modeling
depends on several requirements, such as:

• Having clear physical explanations,
• Being easy to understand and use,
• Having good mathematical properties,
• Being adequate for easy incorporation of prior informa-

tion and agile in dealing with covariates and random
effects.

A limit value is typically considered to describe system
failure in conjunction with degradation modeling. It will
be referred to as L in the following. The failure time is
then the first passage time of this limit. It should be noted
that reaching this threshold does not necessarily correspond
to a hard failure. It can be considered an exit from the
acceptable use area to represent the system’s inability to
meet the requirements. By this definition, the system lifetime
corresponds to the hitting time defined as:

σL = inf{t > 0 : Xt ≥ L}. (27.1)

The first passage time distribution plays an essential role
in reliability and maintenance. However, the remaining use-
ful life(RUL) distribution is needed, especially in deteri-
orating systems. Given the current information about the
system’s condition at time tk, it is related to the time duration
the system can still work before failure. That means the RUL
Rk of the system at tk is defined as:

Rk = inf{r > 0 : Xtk+r ≥ L|Xtk = x < L}. (27.2)

In other words, the RUL Rk is related to the first passage time
σL−x by the process {Xt}t≥0. In Eq. (27.2), x is the measured
degradation level at time tk. The important point to note
here is that the information about the system is supposed
to be perfect when available, which means that the system’s
measured degradation value is exact.

Focusing on continuous degradation modeling, three
stochastic processes are widely used. Two of them
correspond to nondecreasing degradation indicators and
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can be easily used to model various strictly increasing
degradation processes like fatigue, corrosion, and crack
propagation. In contrast, the other process’s distinct feature
is the modeling of degradation measures, which are not
necessarily monotone. The next paragraphs are devoted to
short introductions of Wiener, gamma, and inverse Gaussian
processes and their essential functions.

Wiener Process
TheWiener process has normally distributed increments, that
is, Xt+s − Xt, for s, t ≥ 0 has a normal distribution with drift
parameter μs and diffusion parameter σ 2s. Then, the pdf of
such increment is:

fW
μs,σ 2s(x) = 1√

2πσ 2s
exp

{
− (x− μs)2

2σ 2s

}
.

With this consideration, the mean and variance of Xs are:

E(Xs) = μs and V(Xs) = σ 2s.

Whitmore and Seshadri [28] derived the first passage time
distribution with a Heuristic method. They showed that the
cumulative probability function for the first passage time T
is:

P(σL ≤ s) = P

(
max
0≤t≤s

X(t) ≥ L
)

=
∫ ∞

L
p(x)

{
1 + Q(x)

}
dx

= �

[
μs− L√

σ 2s

]

+ exp
(
2μL

σ 2

)
�

[
−μs+ L√

σ 2s

]
. (27.3)

Here � denotes the cumulative distribution function of a
standard normal distribution and the functions p(x) and Q(x)
are, respectively:

p(x) = (2πσ 2s)−1/2 exp
{
− (x− μs)2

2σ 2s

}
,

and

Q(x) = exp
{−2μ(x− L)/σ 2} .

Taking the derivative of (27.3) with respect to s, one obtains,
after simplification,

f WσL (s) = L√
2πσ 2s3

exp
{
− (L− μs)2

2σ 2s

}
.

Reparameterizing λ = L2/σ 2 and η = L/μ, leads to
the usual form of the first passage time distribution for the
Wiener process. It follows an inverse Gaussian distribution.
Similarly, the pdf of the RUL at time tk can be written as:

f WRk (r) = L− xk√
2πσ 2r3

exp
{
− (L− xk − μr)2

2σ 2r

}
.

Gamma Process
The gamma process is such that the degradation increment
Xt+s − Xt, for s, t ≥ 0 has a gamma distribution with shape
parameter αs and scale parameter β where α,β > 0. The
probability density function is:

fGαs,β(x) = 1

	(αs)

xαs−1

βαs
exp

(
− x

β

)
I{x≥0}, (27.4)

where 	(x) is the gamma function, i.e.,

	(x) =
∫ +∞

0
ux−1e−udu,

and I{A} is equal to 1 if A is true, 0, otherwise.
The mean and variance of one increment over time s are,

respectively, given by:

E(Xs) = αsβ and V(Xs) = αsβ2. (27.5)

The homogeneous gamma process has been widely consid-
ered for degradation modeling, residual lifetime or reliability
assessment, and maintenance modeling [17].

Let, respectively, FGσL(s) = P(σL ≤ s) and f GσL(s) denote
the cumulative distribution and probability density functions
of σL when the degradation process is a gamma process.
Then:

P(σL > s) = P(Xs < L)

=
∫ L

0
fGαs,β(y)dy

=
∫ L

0

1

	(αs)

yαs−1

βαs
exp

(
− y

β

)
dy

= 1

	(αs)

∫ L/β

0
xαs−1e−xdx.

The cumulative distribution of σL can be expressed as:

FGσL(s) = P(σL ≤ s) = 	(αs, L/β)

	(αs)
, (27.6)

where 	(α, x) is the incomplete gamma function, i.e.:
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	(α, x) =
∫ +∞

x
uα−1e−udu.

Then, the corresponding pdf is :

f GσL(s) = α

	(αs)

∫ +∞

L/β

(
log(x) − 	′(αs)

	(αs)

)
xαs−1e−xdx,

which is difficult to compute in practice. Usually, a sim-
pler approximate distribution is used for computation. The
approximated pdf of the first passage time for the gamma
process is [29]:

f GσL(s) ≈ L

β
√
2παs3

exp

{
−α(s− L

αβ
)2

2s

}
.

Therefore, the pdf of RUL at time tk can simply be approxi-
mated by:

f GRk(r) ≈ L− xk

β
√
2παr3

exp

{
−α(r − L−xk

αβ
)2

2r

}
.

Inverse-Gaussian Process
According to this process, the degradation increment Xt+s −
Xt for s > 0, t ≥ 0 follows an inverse Gaussian distribution
(or Wald distribution) with mean parameter s/δ and shape
parameter λs2. The related pdf and cdf are defined for x > 0
as follows:

f IGs/δ,λs2(x) =
√

λs2

2πx3
exp

{
− λ

2x
(δx− s)2

}

and

FIGs/δ,λs2(x) = �

(√
λ

x
(s− δx)

)

− exp(2sδλ)�

(
−

√
λ

x
(s+ δx)

)
,

where δ, λ > 0 and � is the cdf of the standard normal
distribution. The mean and variance of the increment over
time s are:

E(Xs) = s

δ
and V(Xs) = s

δ3λ
· (27.7)

The inverse Gaussian process has been considered more
recently for degradation modeling [30, 31].

The cumulative distribution function of σL when the the
degradation process is an inverse Gaussian process can be
written as:

FIGσL (s) = P(σL ≤ s) = �

(√
λ

L
(s− δL)

)

− exp(2sδλ)�

(
−

√
λ

L
(s+ δL)

)
.

By derivation with respect to s, the pdf is:

f IGσL (s) = 2

√
λ

L
�

(√
λ

L
(s− δL)

)

− 2δλ exp(2sδλ)�

(
−

√
λ

L
(s+ δL)

)
.

Accordingly, the RUL has the following cdf:

FIGRk (r) = �

(√
λ

L− xk
(r − δ(L− xk))

)

− exp(2rδλ)�

(
−

√
λ

L− xk
(r + δ(L− xk))

)
.

(27.8)

27.2.2 Maintenance and Inspection Decision
Rules

It is necessary to choose a specific structure of decision rule
for continuous deterioration models. Most the existing works
propose parametric structures based on control limit decision
rules. The aim is to decide whether a maintenance action
must be performed or not and define the next inspection time.
All such decisions must be made given the current measured
degradation level.

For this aim, let {Tn}n∈N with T0 = 0, denote the sequence
of inspection times such that:

Tn+1 = Tn + 
Tn.

Inspections can be planned either periodically or aperiod-
ically. In the periodic inspection planning, the system is
inspected at each T unit of time. That means 
Tn = T ,
for all n. In this case, the constant T is a decision variable
and must be optimized. Periodic inspection planning is easy
to implement in practice, but some concerns may arise,
especially in deteriorating systems. As a matter of fact, the
probability of failure increases with time or usage as the
degradation level increases. Consequently, when a system is
new, there is no need to have numerous inspections; as it ages,
more frequent inspections are needed. Hence, in some cases,
the maintenance cost will be high in the case of periodic
inspections.
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Aperiodic inspection planning is related to the current
state of the system. It is self-adaptive and takes into account
the most recent information about the system state. This
alternative has become more popular for gradually deteri-
orating systems, see for example [21, 32–34]. Nonperiodic
inspection scheduling leads to better results than periodic one
as the latter can often be considered a limit case of aperiodic
planning.

To implement aperiodic inspection planning, a decreasing
function of system state, m, can be used to set the time
between two inspections, i.e.,


Tn = m(XTn).

The general idea is to decrease the time between succes-
sive inspections as the degradation level increases. Refer-
ences [32, 35] used a special linear case of such function.
Characteristics of this linear function were considered as
decision variables to optimize. Utilizing the remaining useful
life function is also another appropriate option [36,37]. In this
case:


Tn = τp(XTn),

where

τp(XTn) = {
t : P(XTn+
t ≥ L|XTn) = p}. (27.9)

In other words, τp(XTn) is the p-quantile of the remaining
useful life distribution. Here, p is a decision variable. It is
worthy to note that RUL-based inspection planning provides
a reliability (safety) level equal to (1 − p).

Along with inspection scheduling, maintenance actions
must be arranged. To this aim, fixed thresholds are considered
on the degradation level for preventive repairs or replace-
ments. That means the systems with degradation higher than
a specified level are highly risky, hence better to be replaced
preventively. Replacements can alternatively be triggered
as soon as the interval between two successive inspections
is less than a given threshold. It is also reasonable be-
cause, as already mentioned, only the systems with a higher
chance of failure need frequent inspections. In all these
cases, the thresholds are decision variables that have to be
optimized.

For more details about maintenance actions based on a
threshold of degradation level, let XT−

n
(n ∈ N) refer to the

degradation level at the corresponding inspection time before
potential maintenance action. Classically, with a preventive
threshold M, the structure of the decision rule for perfect
maintenance is as follows:

• If XT−
n

≥ L, the system has failed and is correctively
replaced. The next inspection is planed at time T−

n +m(0).

• If M ≤ XT−
n

< L, the system has not yet failed but is con-
sidered as “close to failure.” As a consequence, preventive
action is taken immediately. The next inspection is planed
at time T−

n + m(0).
• If XT−

n
< M, the system is still properly functioning, and

there is no need for replacement. The system is left as it
is. The next inspection is planed at time T−

n + m(XT−
n
).

In this consideration, m(.) can equivalently be replaced by
τp(.). The decision-maker must determine the decision vari-
ables to optimize a given assessment criterion, usually the
global maintenance cost. Decision variables are typically M
and parameters of the functionm or τp. In the case of discrete
degradation modeling, i.e., with discrete state space, it may
be possible to find the optimal decision structure, e.g., with
Markov decision theory.

Note that, in imperfect maintenance actions, the structure
of the decision rule is not so straightforward and requires
additional elements and parameters. For instance, selection
between imperfect preventive repair and perfect preventive
replacement can be based on two preventive thresholds M1

andM2 with 0 < M1 < M2 < L. Imperfect action takes place
as the system state at inspection time is betweenM1 andM2.
Perfect ones are needed when the system state is higher than
M2 and less than L; see, for example, [38]. Describing the
gain of imperfect intervention with a specified distribution
and defining appropriate characteristics for this distribution
is also done in [39].

27.3 Framework of Dynamic Maintenance
Policy

A dynamic maintenance policy is a maintenance policy that
implements online modifications of an initial inspection/-
maintenance planning from new monitoring information.
It adapts itself to the level of information which is avail-
able at a given time. The framework of dynamic mainte-
nance covers a vast range of configurations. New infor-
mation can be related directly to the maintained system,
its environment or future usage. Two different cases are
considered hereafter, which can lead to the development
of dynamic maintenance policies. The first one focuses on
multi-unit or multicomponent systems with dependencies
between components. In that case, the dynamic characteristic
is directly related to the grouping of maintenance actions,
which requires successive updates for future action plan-
ning. The terminology “dynamic maintenance” has initially
been introduced in this context. The second case deals with
maintenance problems when the degradation phenomenon
is not fully characterized. More precisely, a degradation
model is chosen, but its parameters are unknown. In that
case, successive inspections have to be considered online to
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improve the maintenance model dynamically in real time.
These two cases are described more precisely in the next two
sections.

27.3.1 Grouping and Opportunistic
Maintenance

Complex deteriorating systems or subsystems can be
considered as a whole and characterized by a unique
degradation indicator. Nevertheless, such systems may
be composed of components, some of which deteriorate
individually. The interaction between these components
and their related degradation leads to the system’s overall
deterioration. Different specific information is collected if
these components can be inspected andmonitored separately.
Therefore, it is interesting to consider a multivariate model
that describes possible dependencies between components or
the effect of specific missions on certain parts of the system.
A dynamic decision framework can improve maintenance
decision-making for such multi-component systems or fleets
of units, especially when the timing of interventions needs
to be managed rationally.

This section focuses on how dynamic maintenance can be
implemented for multicomponent systems to handle short-
term information obtained online. It is interesting for such
systems to take advantage of dependencies between compo-
nents, leading to maintenance opportunities. Different classi-
fications of dependencies can be found in the literature. From
the extended scheme proposed in [40], four different types
of dependencies exist in contributions on condition-based
maintenance policies: structural dependency, stochastic de-
pendency, resource dependency, and economic dependency.
Briefly, structural dependency can be related to the system
reliability block diagram or some technical dependence when
the maintenance of one component requires replacing other
components. Stochastic dependency describes the relation-
ship between the degradation of different components due
to, e.g., load sharing, common causes of failure, or when
the failure of one component modifies others’ deterioration.
Resource dependency deals with restrictions due to limited
resources for maintenance, whether in spare parts, logistics,
tools, maintenance workers, or budget. Finally, the system
is subject to negative or positive economic dependencies
when maintaining several components together is respec-
tively more expensive or less expensive than maintaining
them separately.

Dynamic maintenance grouping strategies have been de-
veloped mainly for economic dependencies in the context
of continuously deterioratingmulticomponent systems.More
precisely, most of the models consider setup costs as fol-
lows. When maintenance is triggered, a system-dependent
cost or setup cost S is incurred systematically. It is counted

only once, regardless of the number of components to be
maintained simultaneously. In addition, let ci be the indi-
vidual maintenance cost of component i. Hence if all the
components from the subset of components Em are main-
tained simultaneously, it incurs the total maintenance cost
S + ∑

i∈Em ci at that time. Nonsimultaneous maintenance
actions would lead to a cost equal to

∑
i∈Em(S + ci). Due to

the possibility of grouping maintenance activities, relevant
groupings can reduce maintenance costs over a given plan-
ning horizon. The failure of a critical component can be con-
sidered an opportunity for additional preventive maintenance
actions. Short-term additional information can be obtained
in real time. For example, it can be linked to changes in the
system’s operational environment. This type of information
is interesting to dynamically improve groupings on a rolling
short-term horizon [41].

The seminal work on dynamic maintenance policy for
grouping maintenance is developed in [42], which deals with
the lifetime modeling of components. It does not consider
continuously deteriorating systems but allows us to define
the “dynamic” characteristic of maintenance policy. This
characteristic is related to the availability of information and
the choice to take it into account “online” with possible
modifications of the decision rule’s structure or decision
variables’ updates. Specifically, the authors in [42] consider
an iterative procedure that characterizes dynamic rules as
described in Fig. 27.1.

First, long-term tentativemaintenance planning is defined,
which consists of individual maintenance planning for each
activity or component. It is based on long-run maintenance
costs and stationary states. For each component, a penalty
cost function is jointly derived to assess the drawback due
to shifting the execution time of maintenance actions from
the tentative planning. At a given time t, current information
about the system state and the planned future solicitation
is introduced. That step is considered on a short-term time
horizon and allows us to shift the tentatively planned times
obtained from the first step. Based on the penalty cost func-
tion, an optimal grouping structure is derived on the short-
term horizon and iteratively updated when it is needed. The
reiteration of this procedure at different successive times cor-
responds to the “rolling-horizon step.” As alreadymentioned,
the work in [42] does not consider gradual deterioration but
rather lifetime modeling. It is devoted to series systems, and
an algorithm based on dynamic programming technics is
proposed for optimal grouping. The information about the
system state available online is related to replacement and
repair times of components and their usage rates. In [42],
the latter can be updated. It illustrates the possibilities of
their approach. Short-term knowledge about the future tasks
planned for the system is also included when it is available.
The “dynamic” property of the maintenance decision rule is
related explicitly to the maintenance groupings’ successive
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Fig. 27.1 The dynamic process for multiunit systems

updates. Other work has been subsequently published fol-
lowing the same idea; we refer to [43] to see a more complex
structure for multicomponent systems. It is worthy to note
that the optimal grouping strategy can be obtained via a
Genetic algorithm.

Let’s now consider systems that gradually deteriorate with
time or usage. In such cases, information about the degrada-
tion level can be obtained by inspections or continuous mon-
itoring. Condition-based or predictive maintenance policies
can be implemented, and dynamic procedures may be de-
rived. To illustrate and give more details about these dynamic
policies, we focus hereafter on the works of Bouvard et al.
[44], and Van Horenbeek and Pintelon [45]. It highlights the
main characteristics of the dynamic maintenance framework
for multicomponent deteriorating systems.

Consider a system with n components that deterio-
rate gradually. Each component is characterized by its
degradation indicator Xi(t) obtained by synthesizing

information from several sensors or directly representing a
physical variable. In the mentioned papers, [44] and [45],
the degradation processes are modeled classically with
homogeneous gamma processes described in Sect. 27.2.1.
Information about the degradation level of each component
can be obtained at inspection times. Component i is
considered failed when its degradation level crosses a
failure threshold Li, which may be a constant as in [44]
or a random variable depending on operating load, operating
environment, etc, as in [45]. In that case, information about
the value of Li can be obtained on a given time horizon. Each
component can be preventively or correctively maintained,
and the structure of the costs is as described previously: the
system-dependent or set-up cost S is incurred once at each
maintenance time. With the same notations as in [44,45], the
total maintenance cost on a finite planning horizon including
m maintenance times referred as ti, i = 1, . . . , m and ending
at time tm can be written in a very general way as:

C(tm) = mS+
m∑
i=1

∑
j∈Gi

(
cj,pIXj(ti)≤Lj + cj,cIXj(ti)>Lj

)
,

whereGi is a subset of {1, . . . , n}, which refers to the numbers
of the components maintained at time ti. ci,p and ci,c are,
respectively, preventive and corrective maintenance cost for
component i. IA is equal to 1 if A is true, 0 otherwise. The
main issue is then determining the groupsGi and the dates of
intervention on the considered period to minimize C(tm).

The dynamic maintenance policy aims to optimally define
the maintenance times and determine the associated groups
of components to be maintained simultaneously. The pro-
posed algorithms in [44, 45] follow the same procedure as
in [42]. Each component is firstly considered individually.
A provisional individual schedule is derived based on a
classical maintenance policy for single unit systems, and it
is optimized in order to minimize the long-run cost rate.
This cost is evaluated by taking into account updated mon-
itoring information. If new information becomes available
and if necessary, the long-run cost rate expression can be
updated.

Advanced continuous condition-based or predictive main-
tenance policies for single-unit systems could be considered
for individual tentative planning. However, these decision
rules use the last observed level of degradation to determine
online the next time between inspections and the decision
about the maintenance date. This real-time adaptive process
makes the aggregation step difficult. Consequently, an age-
based maintenance policy is chosen by the authors in [44]
and [45] for the sake of simplicity. According to such a policy
and considering each component individually, the component
i is replaced at failure time or age θ∗

i [7]. In this case,
the long-run cost rate can be expressed analytically from
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the conditional reliability of components. The associated
asymptotic cost rate can be obtained from renewal theory for
component i as:

C∞
i (θ) = lim

t→∞
Ci(t, θ)

t
= E[Ci(Tri , θ)]

E[Tri ]

= ci,p + (ci,c − ci,p)Fi(θ)∫ θ

0

(
1 − Fi(u)

)
du

, (27.10)

where Ci(t, θ) is the cumulative maintenance cost up to time
t and Tri represents the first replacement time, i.e., the length
of the first renewal cycle. Moreover, Fi is the cumulative dis-
tribution function of the failure time of component i denoted
by σLi . That means:

Fi(θ) = P(σLi ≤ θ) = P(Xi(θ) ≥ Li).

With notations from Sect. 27.2.1, it can be rewritten:

Fi(θ) = GG
σLi

(θ) = 	(αiθ , Li/β)

	(αiθ)
·

Aforementioned, the policy’s optimal decision variable is
the limit age of replacement θ∗

i , which minimizes C∞
i (θ).

Authors in [44] and [45] made calculations with a dis-
cretized degradation process in order to assess such optimal
decision variables. The cumulative distribution function of
the failure time for the initial gamma process is converted
into a discretized reliability function that is easier to handle
numerically. Let the step of this discretization be hereafter
denoted as δt. According to this discretization, tk = kδt and
the conditional reliability over one time step δt given that the
component’s current age is tk is:

Ri,k = R(tk+1|σLi > tk)

= P(σLi > tk + δt|σLi > tk),

and by definition, it comes:

Ri,k = P(σLi > tk+1)

P(σLi > tk)

= 1 − Fi(tk+1)

1 − Fi(tk)
.

The values of Ri,k can then be obtained as a discretization
of the failure probability distribution Fi(.), which is obtained
byMonte-Carlo simulation in [45] (with random failure limit
Li). Then, the maintenance cost rate can be rewritten as:

C∞
i (θ) 

ci,p + (ci,c − ci,p)

(
1 − ∏l−1

k=0 Ri,k

)

1 + ∑l
p=2

∏p−2
k=0 Ri,k

, (27.11)

with θ = l.δt. Maintenance downtimes can also be intro-
duced additionally in the previous expression.

Note that up-to-date information, i.e., the current degra-
dation level of the component, only influences short-term
predictions and planning. On a long-term basis, the stationary
state or mean behavior is considered. Nevertheless, it is
possible to consider the last measured degradation level of
the component jointly with the expression of the long-run
cost rate. Let the observed degradation level of component
i at time t0 be denoted by Xi(t0) = xi,0. It is possible to
consider the cost expression from Eqs. (27.10) or (27.11)
by replacing Li with Li − xi,0 in the expressions above. It
is equivalent to considering cycles where the initial state
is xi,0 instead of 0. Let θ∗

i,0 be the value of θ , which mini-
mizes this cost. The next preventive replacement given the
degradation level xi,0 at time t0 can be scheduled at time
t0 + θ∗

i,0.
As an illustration, let’s focus on the expression of cost in

continuous case specified by Eq. (27.10). Given the current
degradation level of the component i at time t, the main-
tenance cost function can be written as a function of the
conditional cumulative distribution function Fi, i.e.:

C∞
i (θ |Xi(t) = xi,t) = g

(
Fi(θ |Xi(t) = xi,t)

)
,

where g is a known function depending on maintenance unit
costs and:

Fi(θ |Xi(t) = xi,t) = 1 − Ri,t(θ |Xi(t) = xi,t)

= P(Xi(t + θ) ≥ L|Xi(t) = xi,t),

where Ri,t(θ |Xi(t) = xi,t) is the conditional reliability of
component i at time θ with last inspection at time t. It can be
obtained from the expression of the hitting time, as defined in
Sect. 27.2.1. At time t, two different versions of the cost are
considered as criteria to be minimized for the determination
of the age of preventive maintenance:

• the criterium of short-term optimal maintenance time for
component i takes into account the last monitoring infor-
mation. It means that at inspection time t, this criterium is
the cost:

CST
i (τ ) = C∞

i (τ |Xi(t) = xi,t).

It can also include short-term prognosis information about
future missions;

• the criterium of long-term optimal maintenance time for
component i is based on the maintained component’s sta-
tionary behavior. It is obtained considering the component
is new at time t, i.e., the cost is

CLT
i (τ ) = C∞

i (τ |Xi(t) = 0).
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In the case of imperfect maintenance, the expectation
over the degradation level of component i just after main-
tenance is considered. It requires the knowledge of the
corresponding degradation level distribution.

The value τ ∗
i,1 which minimizes CST

i (τ ) gives the time
interval before the next tentative maintenance time. For the
following maintenance times the value τ ∗

i,+ which minimizes
CLT
i (τ ) is considered. In other words, the k-th planned main-

tenance time for component i takes place at time t+τi,1+(k−
1)τi,+ in the absence of failure. Downtime due tomaintenance
duration can be considered but is neglected here. In both
cases, the cost expression comes from a formulation over an
infinite horizon and uses renewal properties. The dynamic
decision-making process leads to using it only on a limited
time horizon and then updating it.

A strategy for maintenance groupings must be defined to
exploit economic dependencies represented by setup costs.
For this purpose, a penalty cost function is defined along with
the initial individual tentative planning. It allows evaluation
of how the cost is affected by shifting maintenance activities
from the previous tentative planning for each component.
Two cases are considered by including or not the knowledge
about Xi(t), in accordance with the way short-term and long-
term optimal maintenance times have been determined previ-
ously. In case of failure of component i at time t, the penalty
function is infinite if the replacement is delayed and null if it
is moved forward. LetGj denote a group of components to be
maintained at the same time. Assume the maintenance of the
group takes place at time tg. The penalty cost associated with
this group is denoted by HGj(tg), which is the sum of short-
term penalty costs of all components from Gj. The optimal
maintenance time t∗Gj

for groupGj is the one minimizingHGj .
When the maintenance time is determined for the group, it is
possible to evaluate the savings obtained if the maintenance
of all the elements of the groupGj is simultaneously executed
at time t∗Gj

. It is given by:

QGj(t
∗
Gj

) = (|Gj| − 1
)
S− HGj(t

∗
Gj

),

where |Gj| is the number of elements in Gj and S is the setup
cost.

Maintenance groupings are considered on a given plan-
ning horizon HP, i.e., considering all the tentative planned
maintenance actions within this time horizon. The length of
the planning horizon can be determined in different ways. For
example, it is defined as:

• HP = maxi∈{1,...,n}{τi,1} in [44];
• HP = maxi∈{1,...,n}{τi,1 + τi,+; εi} where εi is the time be-

tween two successive inspections of component i in [45].

Information about production planning or intended short-
term use could be considered. The planning horizon is chosen
to include maintenance actions on all the components and
has to be short enough to allow optimal groupings. The set
of optimal groups Gj over horizon HP is determined heuris-
tically based on the grouping algorithm from [42]. Accord-
ing to the dynamic framework, a rolling-horizon approach
is considered. The planning horizon is modified whenever
new monitoring information is obtained, and the groups are
updated accordingly. In summary, the problem complex-
ity in grouping strategies is mainly due to the number of
components and the juxtaposition of multiple degradation
processes. The degradation models and individual inspection
and maintenance policies are chosen as simply as possible.
They are supposed to be perfectly known. The next section
deals with another difficulty, not related to the system struc-
ture but to the degradation model itself. The different case
of a single subsystem or component is considered but with
a degradation model which is not entirely known. It leads to
additional uncertainty, which can be handled with the help of
monitoring information.

27.3.2 Uncertainty in DegradationModels

The problem of determining the optimal maintenance strat-
egy for deteriorating systems has been studied extensively.
Almost all of these studies assume that the degradation
process and its parameters are knownwith certainty, although
this is usually not the case in practice. Based on the situation,
uncertainty can be considered in the model in different ways.
A common approach is to assume a specific degradation
process and consider the related parameters as unknown [46,
47]. This assumption is helpful when a flexible degradation
process is chosen, which can be appropriate in various cases.

With the consideration mentioned earlier, the parameter
estimation must be regarded. The parameters can be esti-
mated either by gathering data and then using the frequentist
perspective or using the Bayesian approach. In the latter
case, the expert judgment or the previous information about
the system can be considered for prior distribution. The
more information is in hand; the more informative the prior
distribution will be. Otherwise, noninformative priors can
be assumed. Here, we refer to some examples of such esti-
mations. Paroissin [48] provided recursive estimators based
on the moments of the gamma process. As the author men-
tioned, this online estimation method could be applied jointly
with a condition-based maintenance policy. Kallen and van
Noortwijk [46] employed the Bayes method to estimate the
unknown degradation parameters. Iterative Bayesian updates
of degradation parameters can be found in [49–51]. Liu et al.
[52] considered a maintenance model taking account of both
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degradation and aging. Their model updates the degradation
processes’ parameters at each inspection with maximum a
posteriori (MAP) estimation when a new observation is in
hand.

Attempts to analyze the influence of Bayesian updates on
maintenance decision-making have been made in [47,53,54].
Flage et al. [53] gave a general description of aperiodic
condition-based maintenance by focusing on safety con-
straints. Papers [47,54] also deal with a dynamic and adaptive
predictive maintenance policy for degradation processes with
unknown parameters. The authors introduced a heuristic way
to assess the long-runmaintenance cost in [47], while [54] in-
cludes the simulation-based version of the research. Adaptive
preventive maintenance policies in lifetime modeling with
Bayes’ theorem can also be found in [55, 56].

The uncertainty in the parameters can also happen due to
a sudden change in the environment. Fouladirad and Grall
[57] and Fouladirad et al. [58] studied the case in which
the degradation rate is subject to sudden changes. Fouladirad
and Grall [59, 60] investigated the situation that after such
an abrupt change in the system degradation rate, the new
parameters are unknown.

The change in degradation rate can also be related to
imperfect actions for a system as preventive maintenance.
Generally, two main effects have been considered for imper-
fect maintenance actions: (i) restoring the system to a state
between good-as-new and bad-as-old and (ii) changing, or in
severe cases, accelerating the degradation rate. Therefore, the
degradation rate after imperfect maintenance action may be
different and unknown. The second effect, which usually is
referred to as imperfect maintenance’s negative effect, must
be regarded carefully. To deal with this problem, Zhang et al.
[61] employed the random improvement factor model when
a Wiener process governs the underlying degradation. They
considered that the degradation rate after a repair would
be bν(t) with 0 < b < 1, while the degradation rate
before the repair is ν(t). The random variable b is called the
degradation-rate-reduction factor and has a specific distribu-
tion. Considering this, each imperfect maintenance action has
a different degree of impact on the rate of deterioration. They
used the quasi-Monte Carlo method to estimate the fixed
model parameters. Then the impact of each maintenance
action is dynamically estimated with filtering techniques.
Zhao et al. [62] also employed the random improvement
factor to model the system’s condition after an imperfect
repair. Consider that an imperfect repair takes place at time Ti
which is driven by the remaining useful lifetime information,
then:

X+
i = aiXi,

where 0 < ai < 1, and Xi, X
+
i are, respectively, the condition

of system before and after the maintenance action at time
Ti. Another work related to this issue is Shen et al. [63].

They considered that after j-th imperfect maintenance action
the threshold of failure L will be substituted by (1 − δj)L
where 0 < δ < 1. The reason for such a description is
that after an imperfect maintenance action, the condition of
a system will not be better than its condition at previous
maintenance. Hence, the system will fail sooner. To mention
other works in which the system’s state gets worse by increas-
ing the number of imperfect maintenance, we may refer to
Huynh [64,65]. Do et al. [36] and Chen et al. [39] considered
the gamma process and tried to model the negative effect of
imperfect maintenance by defining additive random models
for the rate of the degradation procedure. Assume that the
shape parameter of degradation process before and after j-
th imperfect maintenance are, respectively, νj−1 and νj. To
describe the effect of j-th imperfect maintenance on the
system deterioration speed, Do et al. [36] suggested

νj = νj−1 + εj,

where εj follows an exponential distribution. While, Chen
et al. [39] proposed:

νj = ρνj−1 + error,

where ρ > 1 and the error term represents the effect of
the difference between the environment before and after the
maintenance action.

Another source of uncertainty may be due to heterogene-
ity. Many papers assume that the parameters are fixed for
all units across the population in maintenance or degradation
modeling. This assumption is not usually correct since units’
degradation characteristics can be identical due to different
environments and usage. Utilizing a random effect model
can help take account of heterogeneities commonly observed
among a product population. As an example of such consider-
ation inmaintenance policies, we can refer to Chen et al. [18].
They have chosen an inverse Gaussian process for modeling
degradation and assumed the inverse of the degradation rate
has a truncated normal distribution. Hence different products
may deteriorate at various speeds. They also supposed the
chosen distribution for random effect can be updated when
more degradation observations are available.

The dynamic maintenance framework is of great interest
in the case of uncertainty in degradation models and the
grouping of maintenance actions. It allows taking advantage
of real-time monitoring data to improve decision-making
according to the general framework described above. The
following section will detail more precisely an example of
a dynamic maintenance framework introduced in [47]. It
is specifically developed for a deteriorating system with
unknown deterioration parameters. This system can be mon-
itored only by inspections. The maintenance decision rule
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Fig. 27.2 The dynamic process of the model update from monitoring
data

belongs to the class of condition-based predictive policies,
which allows the optimization of aperiodic inspection times
as well as system replacements or perfect repairs. Accord-
ing to the dynamic process described in Sect. 27.3.1, the
general scheme is based on alternating long-run cost rate
optimization for a given planning horizon and successive
updates using the information collected online as described
in Fig. 27.2.

27.4 Dynamic Policy with Parameter
Updates

27.4.1 Unknown Degradation Parameters and
Update

Degradation Process
As it is already mentioned in Sect. 27.3.2, the assumption
of having a specified degradation process with an unknown
parameter is appropriate when the degradation process is
flexible enough to fit a various range of degradation data. As
Wang and Xu [30] showed, the inverse Gaussian (IG) process
is a suitable model to handle such a situation. On the other
hand, the IG process has a close relationship with normal
distribution; hence Bayesian inference can be convenient.
For these reasons, this section will focus on the IG process
while describing dynamic condition-based maintenance with
Bayesian updates. More precisely, the system degradation

behavior will be modeled by an IG process, as described in
Sect. 27.2.1.

If degradation parameters are unknown, expert opinion
and other information about degradation can be used to
choose a prior distribution for parameters. This prior distri-
bution can be updated in the Bayesian framework when new
information arises. For the sake of simplicity and the ease of
calculations, conjugate priors will be considered preferably.
With the same notations as in Sect. 27.2.1, two unknown pa-
rameters of the IG process are respectively denoted by δ and
λ. Focusing on conjugate priors, the joint prior distribution
of (δ, λ) is given by f (δ, λ) = f1(δ|λ)f2(λ) where λ is gamma
distributed with shape and scale parameters α and β such that
E[λ] = αβ and V[λ] = αβ2, i.e.,

f2(λ) = λα−1

	(α)βα
exp{−λ/β}, (27.12)

and given λ, δ is normally distributed with mean ξ and
variance σ 2/λ, i.e.:

f1(δ|λ) =
√

λ

2πσ 2
exp

{
−λ(δ − ξ)2

2σ 2

}
. (27.13)

The hyper-parameters of the degradation model, α, β, ξ and
σ , can be updated with new information.

Remaining Useful Lifetime
In the rest of this chapter, when the inspection times and
associated degradation level are noted, respectively, tk and xk,
the notation Rk = Rtk will be used for the RUL Rtk as defined
in (27.2).

As mentioned in Sect. 27.2.1, a failure occurs once degra-
dation exceeds the threshold L. The system lifetime σL and
the RUL Rk are defined, respectively, by Eqs. (27.1) and
(27.2). RUL’s cdf is given by:

FRK (r|Xt=xt)=
∫ ∞

0

∫ +∞

−∞
FIGR|δ,λ(r|δ, λ, xt)f1(δ|λ)f2(λ)dδdλ,

where FIGR|δ,λ(r|δ, λ, xt) is RUL cdf in case of IG degradation
process with known parameters, as given in Eq. (27.8). Ref-
erence [66] proposed developments leading to:

FRk(r|Xt = xk) = 1 −
√

β

2π

	(α + 1/2)r

	(α)

×
∫ L−xt

0
z−3/2(σ 2z+ 1)−1/2

×
(
1 + β(ξz− r)2

2z(σ 2z+ 1)

)−(α+1/2)

dz.

(27.14)
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which can also be rewritten as a function of the standard t-
distribution.

Bayesian Update
Consider that the system degradation level has been mea-
sured at k+1 successive times t0, . . . , tk, k ∈ N. The observed
data are

Data = {(t0, x0), (t1, x1), . . . , (tk, xk)}.

Let 
xi = xi − xi−1 and 
ti = ti − ti−1 denote the
observed degradation increments and the corresponding time
intervals, for i ∈ {1, . . . , k}. Then, the likelihood function of
degradation parameters, δ and λ, is:

L(δ, λ|Data) ∝ λ
k
2 exp

{
−λ

2

k∑
i=1

(
xiδ − 
ti)2

xi

}
, (27.15)

and given the observed data, the joint posterior distribution
of (δ, λ) is such that:

f (δ, λ|Data) ∝ L(δ, λ|Data)f1(δ|λ)f2(λ).

From Eqs. (27.12), (27.13) and (27.15) it can be shown that
(see for example [47]):

f (δ, λ|Data) = f1(δ|λ,Data)f2(λ|Data),

where

f1(δ|λ,Data) =
√

λ

2πσ ∗2 exp
{

− λ(δ − ξ ∗)2

2σ ∗2

}
,

f2(λ|Data) = λα∗−1

	(α∗)β∗α∗ exp
{ − λ/β∗}.

The posterior distributions of δ|λ and λ are respectively
the normal and gamma distributions. The updated values of
hyper-parameters are:

ξ∗ = B/A, σ ∗ = A−1/2, (27.16)

α∗ = α + k/2 β∗ = (1/β + 1/D)−1 (27.17)

with

A =
k∑
i=1


xi + 1

σ 2
B =

k∑
i=1


ti + ξ

σ 2

C =
k∑
i=1

(
ti)2

xi + ξ 2

σ 2
D = 1

2

(
C − B2

A

)
.

The Bayesian procedure can update the joint probabil-
ity law of δ and λ using new observations. The hyper-
parameters are modified sequentially. After i-th update, they
will be written in the following as α(i), β(i), ξ (i) and σ (i)

and the corresponding prior distribution will be f (i)(δ, λ) =
f (i)1 (δ|λ)f (i)2 (λ). The values of hyper-parameters related to
initial prior are α(0), β(0), ξ (0) and σ (0).

27.4.2 Maintenance and Inspections Decision
Rule

Let’s consider a predictive maintenance policy with aperiodic
inspection planning. Such a policy allows adapting the time
between inspections to the current degradation level of the
maintained system. When the system is inspected, the next
inspection time can be determined. As a predictive policy, it
is based on the system’s RUL described in Sect. 27.2.2. Let
{Tn}n∈N denote the sequence of inspection times, with T0 =
0. Consider:

Tn+1 = Tn + τp(XTn),

where τp(XTn) is defined from Eq. (27.9) as the p-quantile
of the remaining useful life distribution given in Eq. (27.14),
i.e.,

τp(XTn) = {
t : FRk(
t|XTn = xn) = p}. (27.18)

Figures 27.3 and 27.4 show respectively the pdf and cdf of
the system’s RUL at inspection times between two replace-
ments. The simulated sample path has been generated with
the decision variable p = 0.045. It ends when the degradation
level is greater than M = 6.44. As explained previously,
the times between successive inspections are defined, and
the degradation model is with unknown parameters with the
same model as in Sect. 27.4.1. The degradation parameters’
distributions are such that E[λ] = 1, V[λ] = 0.1, E[δ] = 1
and V[δ] = 0.07.

According to Sect. 27.2.2, T−
n for n ∈ N refers to the

inspection time just before possible maintenance action. The
decision rule at each inspection time is as follows:

• If XT−
n

≥ L, the system has failed and is correctively
replaced.

• If M ≤ XT−
n

< L, the system has not yet failed but
is considered as “close to failure”. As a consequence,
preventive action is taking place immediately.

• If XT−
n

< M, the system is still properly functioning, and
there is no need for replacement. The system is left as it is.

As preventive and corrective replacements are supposed to be
perfect, the system degradation level after maintenance is 0.
In other words, it is “as good as new.” More precisely:
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Fig. 27.5 The degradation path for a maintained system with unknown
degradation parameters such that E[δ] = 1, V[δ] = 0.5, E[λ] = 1 and
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Fig. 27.6 The degradation path for a maintained system with known
degradation parameters, δ = 1 and λ = 1. Decision variables are p =
0.035 andM = 6.46

If XT−
n

≥ L then XTn = 0

If M ≤ XT−
n

< L then XTn = 0

If 0 ≤ XT−
n

< M then XTn = XT−
n

For more illustration, Figs. 27.5 and 27.6 represent the
evolution of the degradation level of a component that is
maintained according to the previous maintenance decision
rule. For Fig. 27.5, the degradation parameters are unknown
and described as in Sect. 27.4.1. Figure 27.6 is with known
degradation parameters. As expected, lifetime modeling
hence the inspection planning is more accurate when
parameters are known. It can be seen that the mean number of
inspections in a renewal cycle is higher in case of uncertainty
on degradation parameters.
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Finally, the considered decision rule has two decision
variables: p and M. The decision-maker must determine
these two variables to optimize a given assessment criterion.
Classically, the economic criterion is considered, as defined
in the next section. Note that in Figs. 27.5 and 27.6, optimal
decision variables are considered. They have been optimized
by minimization of the maintenance costs with the same unit
costs.

27.4.3 Maintenance Cost

The inspections are planned sequentially, and each inspection
incurs a unit cost denoted by Ci. Preventive and corrective
actions are performed with respective costs Cp and Cc such
that Cc > Cp. Failures are not self-announcing; hence,
they can only be diagnosed and isolated at inspection times.
Consequently, an additional cost at a rate of Cd is incurred
from the failure time until the next replacement time. It
is hereafter referred to as the unavailability cost rate. Let
C(t) define the cumulative maintenance cost up to time t.
Considering that Ni(t), Np(t) and Nc(t) are, respectively,
the numbers of inspections, preventive replacements, and
corrective replacements in [0, t], it comes:

C(t) = CiNi(t) + CpNp(t) + CcNc(t) + Cdd(t), (27.19)

where d(t) is the total time passed in a failed state in [0, t).
As in the usual framework for dynamic maintenance, a

long-run cost rate is considered to propose a tentative plan-
ning or decision rule settings for inspections andmaintenance
actions. It is intended to be applied on a rolling horizon basis
and modified dynamically based on information obtained in
real-time. The baseline objective cost function is then the
long-term expected maintenance cost per time unit, which is
defined by:

EC∞ = lim
t→∞

E[C(t)]
t

= lim
t→∞

1

t
E

[∑
n∈N

I{Tn<t}
(
1 + I{M≤XT−

n
<L}

+ I{XT−
n

≥L}
) +

∫ t

0
I{Xs≥L}ds

]
.

Note that mathematical derivation of such a criterion may
take advantage of renewal theory. Notably, in the presence of
perfect repair or replacement, the stochastic process describ-
ing the maintained system is regenerative. Renewal property
allows rewriting the long-run average cost per time unit as
the ratio of the expected cost on the first renewal cycle over
this cycle’s expected length. In other words:

EC∞ = E[C(S1)]
E(S1)

· (27.20)

where S1 is the first regeneration time, i.e., the time of first
preventive or corrective replacement.

The decision variables for the maintenance policy are p
and M. Tentative values can be obtained by minimization of
the maintenance cost EC∞. The optimal decision variables,
p∗ andM∗, are such that:

EC∞(p∗, M∗) ≤ EC∞(p,M),

∀(p,M) ∈ [0, 1] × [0, L],

For an aperiodic maintenance policy with a gradual dete-
rioration process, analytical expressions of EC∞ cannot be
derived easily from Eq. (27.20) because of the complexity of
scenarios that can arise. The next section will focus on using
of Markov renewal properties to overcome this difficulty.

27.4.4 Decision Variables Based on Long-Term
Assessment

In this section, the maintained system’s evolution is char-
acterized to derive an expression for the long-run expected
maintenance cost. As the degradation parameters are un-
known, the calculation has to be done based on the avail-
able information at the time of calculation. As explained in
Sect. 27.4.1, the prior distribution of δ and λ contains all this
information.

Semi-regenerative Process and Cost Rate
The process {Xt}t≥0 is a regenerative process, with regenera-
tion times being the dates of replacement. Let’s consider the
discrete-time stochastic process describing the system state
at inspection times and after maintenance action, if any. It
is hereafter denoted {Yn}n∈N with Yn = XTn . The embedded
process {Yn, Tn}n∈N is a Markov renewal process, and the
process {Xt}t≥0 is a semi-regenerative process with semi-
regeneration times being the inspection times. Due to the
maintenance policy with perfect replacements, the embedded
Markov chain {Yn}n∈N has {0} as the regeneration set. Such a
Markov chain is called Harris recurrent (or just Harris chain)
in [67]. A stationary measure π can be defined, and it is
unique up to a multiplicative constant; see [67] (pages 200-
201). Then it comes (see [35]):

EC∞ = lim
t→∞

E[C(t)]
t

= Eπ [C(T1)]
Eπ [T1] ,
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where T1 is the first inspection time and Eπ refers to the
expectation with respect to the stationary probability distri-
bution π .

Note that the previous equality holds since the process
C(t) is such that:

• C(t) is positive;
• C(0) = 0;
• C(t) is given by C(t) = �t(Xu, 0 ≤ u ≤ t) and is such that

for 0 ≤ s ≤ t, C(t) − C(s) = �t−s(Xu, s ≤ u ≤ t) which
is true for a cumulative cost.

With the classical renewal property, the expression of the
maintenance cost EC∞ can be obtained from the analysis of
the system behavior on a regenerative cycle, i.e., between
two replacements. The semi-regenerative property allows
derivingEC∞ from the analysis on a semi-regenerative cycle,
i.e., between two successive inspections, which is simpler.
As a prerequisite, this approach requires the knowledge of
the stationary probability distribution π . It is derived from
the transition probability density function of {Yn}n∈N which
is developed in next paragraphs.

Degradation at Inspection Times
For all n ∈ N, Yn describes the system degradation level at n-
th inspection time and after maintenance action if necessary.
Thus, the process {Yn}n∈N takes values in [0, M). In the
following, Y−

n = XT−
n
will denote the system degradation

level at inspection time T−
n , i.e., just before maintenance

action.
First, consider the case that the two degradation param-

eters, δ and λ, are given. From Markovian properties and
given the current state x with x < M, the probability of
transition from state Yn = x at time Tn to state Yn+1 = y
at time Tn+1 is given according to the maintenance decision
rule. Two scenarios can arise if Y−

n+1 ≥ M the degradation
level overpasses the maintenance threshold, and the system
or component is replaced, i.e., Yn+1 = 0; if Y−

n+1 < M, only
the next inspection is scheduled and Yn+1 = Y−

n+1. It comes:

Pr(Yn+1 = 0|Yn = x, δ, λ) = Fτp(x)/δ,λτ 2
p (x)(M − x)

(case y = 0)

Pr(Yn+1 ≤ y|Yn = x, δ, λ) = Fτp(x)/δ,λτ 2
p (x)(y− x)

(case x ≤ y < M)

with

Fτp(x)/δ,λτ 2
p (x)(y− x)

= Pr(Xt+τp(x) − Xt ≤ y− x|Xt = x)

=
∫ y−x

0
fτp(x)/δ,λτ 2

p (x)(u)du

and

Fτp(x)/δ,λτ 2
p (x)(M − x) = 1 − Fτp(x)/δ,λτ 2

p (x)(M − x).

Consequently, the transition probability distribution func-
tion of {Yn}n∈N can be written as:

Pr(dy|x, δ, λ) = Fτp(x)/δ,λτ 2
p (x)(M − x)δ0(dy)

+ fτp(x)/δ,λτ 2
p (x)(y− x)I{x≤y<M}dy, (27.21)

where δ0 denotes the Dirac delta function.
As explained previously, the first part of the right-hand

side in Eq. (27.21) is associated with replacements when the
degradation level is higher than M at inspection time just
before maintenance. The second part describes a classical
degradation increment from x to y for x ≤ y and when y < M.

In the case of unknown degradation parameters, the transi-
tion probability density function of {Yn}n∈N is obtained from
the transition pdf knowing the degradation parameters by:

Pr(dy|x) =
∫ ∞

0

∫ +∞

−∞
Pr(dy|x, δ, λ)

f1(δ|λ)f2(λ)dδdλ. (27.22)

Replacing Pr(dy|x, δ, λ) by its expression from Eq.(27.21)
leads to:

Pr(dy|x) = Gτp(x)(M − x)δ0(dy)

+ gτp(x)(y− x)I{x≤y<M}dy, (27.23)

where

gτp(x)(z) =
√

β

2π

	(α + 1/2)τp(x)

	(α)
z−3/2

× (σ 2z+ 1)−1/2

(
1 + β(ξz− τp(x))2

2z(σ 2z+ 1)

)−(α+1/2)

,

and

Gτp(x)(z) =
∫ ∞

z
gτp(x)(u)du.

Stationary Law
The unique stationary probability distribution π of the
Markov chain {Yn}n∈N has the same structure as Pr(dy|x)
with a mass and a density part, i.e.:

π(dx) = ã1δ0(dx) + ã2b(x)dx. (27.24)

Besides, the stationary law is a solution of the stationary
equation:
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π(dy) =
∫

[0,M]
Pr(dy|x)π(dx). (27.25)

Let replace, respectively, Pr(dy|x) and π(.) in (27.25) by
their expressions from Eqs. (27.23) and (27.24). The density
part of the resulting equation can be written for y < M:

ã2b(y) = ã1gτp(0)(y) + ã2

∫ y

0
gτp(x)(y− x)b(x)dx. (27.26)

and as
∫
[0,M] π(dx) = 1, it can be shown that ã1 = 1 − ã2. If

B(y) is defined for any y ∈ [0, M] by:

B(y) = 1 − ã1
ã1

b(y), (27.27)

Equation (27.26) can be rewritten:

B(y) = gτp(0)(y) +
∫ y

0
B(x)gτp(x)(y− x)dx. (27.28)

The resulting equation is the Volterra equation of the second
kind. Then, B(.) can be obtained numerically through classi-
cal numerical schemes; see, for example, [68]. Finally, from∫
[0,M] π(dx) = 1 and the expression of π(dx) in Eq. (27.24),
it comes:

1

ã1
= 1 +

∫
[0,M]

B(x)dx,

hence

ã1 = 1

1 + ∫ M
0 B(x)dx

· (27.29)

As an illustration, Fig. 27.7 shows the density functions
of the stationary probability distribution π obtained for four
different configurations of degradation parameters. The fail-
ure threshold is L = 9 and the decision variables are set
to p = 0.036 and M = 6.45 for all cases. Configurations
considered in Fig. 27.7 are of two types:

(i) The case of known degradation parameters with λ = 1
and δ = 1(= 1/μ), and

(ii) For unknown parameters, three different prior distribu-
tions are considered, as given in Table 27.1.

The probability density functions of priors given in
Table 27.1 are depicted, respectively, in Figs. 27.8, 27.9
and 27.10. The expected values of δ and λ are identical for
the three cases and equal to the values considered for known
parameters.

Figure 27.7 shows, for fixed decision variables, that the
probability of observing a low degradation level (less than
3) at inspection times decreases when the uncertainty of
degradation parameters decreases.
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Fig. 27.7 Stationary probability distributions for known and unknown
degradation parameters with L = 9, p = 0.036, and M = 6.45

Table 27.1 Configurations for prior distribution considered on
Fig. 27.7

Case 1 Case 2 Case 3

E[λ] 1 1 1

V[λ] 0.5 0.2 0.1

E[δ] 1 1 1

V[δ] 0.5 0.2 0.07
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Fig. 27.8 Prior distributions of degradation parameters: Case 1

Long-Run Cost Rate
Finally, the long-term expected maintenance cost of the
system per unit of time can be assessed by expectation with
respect to π as:

EC∞ = lim
t→∞

E[C(t)]
t

= Eπ [C(T1)]
Eπ [T1] , (27.30)
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Fig. 27.10 Prior distributions of degradation parameters: Case 3

whereC(t) is defined in Eq. (27.19). Obviously,Eπ [Ni(T1)] =
1. The other expectations are given by:

Eπ (Np(T1)) = Pπ (M ≤ XT−
1

< L)

=
∫ M

0

[
Gτp(x)(M − x) − Gτp(x)(L− x)

]
π(dx),

Eπ (Nc(T1)) = Pπ (XT−
1

≥ L)

=
∫ M

0
Gτp(x)(L− x)π(dx),

Eπ (d(T1)) =
∫ M

0

[∫ τp(x)

0
Gs(L− x)ds

]
π(dx),

and finally:

Eπ (T1) =
∫ M

0
τp(x)π(dx).

These integrals can be calculated using standard numeri-
cal integration techniques like the trapezoidal rule or Simp-
son’s rule.

27.4.5 Dynamic Policy

The long-run expected maintenance cost for a given level of
information about degradation parameters is developed in the
previous section. It is then possible to optimize the decision
variables p and M with respect to that cost. This section
describes the dynamic procedure to adjust the maintenance
decision rule parameters according to updated information.
In the dynamic framework, decision parameters are derived
from maintenance costs assessed on a long-term horizon.
They are considered on a short-term rolling horizon. New
information obtained on that short-term horizon is included
and helps to update the expression of long-term maintenance
cost hence the values of decision parameters for the next plan-
ning horizon. The planning horizon hereafter is the length of
a renewal cycle, i.e., the time to the next perfect repair or
replacement.

Algorithm
Let �(i) = (

α(i),β(i), ξ (i), σ (i)
)
denote the values of hyper-

parameters after i-th update, starting from the initial prior for
i = 0. The function f (i)(δ, λ) is the joint prior distribution
of (δ, λ) obtained with values �(i) of hyperparameters. The
algorithm for maintenance decision-making is as follows:

Step 0: Initialization. Set i = 0, k = 0, Xk = 0, and Tk =
0. Choose the initial values of the hyper-parameters �(0).

Step 1: Optimize the value of decision variables for the
renewal cycle i by minimizing the cost rate given in
Eq. (27.30). The long-run cost rate optimization requires
assessments of the stationary law π(i), which is obtained
from Eq. (27.24) with hyper-parameters �(i).

Step 2: Clean up the memory of degradation increments.
Apply the aperiodic maintenance policy for the current
cycle:

• 2.1: Evaluate 
Tk = τp(XTk) according to the RUL
distribution with �(i), see Eq. (27.14).

• 2.2: Inspect the system at time Tk+1 = Tk + 
Tk.
• 2.3: If Xk+1 < M, then memorize the degradation

increment �Xk+1 = XTk+1 −XTk and the corresponding
time interval 
Tk. Set k = k + 1, and go back to sub-
step 2.1.
Else if Xk+1 ≥ M then let Xk+1 = 0 (i.e., maintain

the system) and set k = k + 1.

Step 3: Update the degradation model from observations
during the last cycle, i.e., find the new values of hyper-
parameters �(i+1) from all the degradation increments
which are in memory, see Eq. (27.16). Set i = i + 1 and
go to step 1.
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Fig. 27.11 Level curves of long-run cost rate with E[δ] = 1.1,V[δ] =
1.1, E[λ] = 1 and V[λ] = 1
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Fig. 27.12 Level curves of long-run cost rate for case 1 from Ta-
ble 27.1

As stated above, each step of the dynamic process
requires the minimization of the long-run cost rate for
hyper-parameters current values. No analytical expression
is available for optimal values. The long-run cost rate must
have a unique minimum to ensure that such optimal values
can be determined without ambiguity. Numerous numerical
experiments have been carried out for a wide range of
hyper-parameters. They all show convex shapes for the
cost as a function of decision variables. For illustration
purposes, three examples of cost rate functions are given
in Figs. 27.11, 27.12, and 27.13 for different sets of
hyper-parameters with decreasing variance for degradation
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Fig. 27.13 Level curves of long-run cost rate for case 3 from Ta-
ble 27.1

parameters δ and λ as happening during the dynamic process.
The variance of δ is successively 1.1, 0.5 and 0.07 and these
values for λ are, respectively, 1, 0.5, and 0.1.

Due to observed convexity, classical nonlinear optimiza-
tion algorithms can be used for numerical optimization. The
downhill simplex method proposed in [69], also known as
Nelder-Mead method, has been considered for optimization
in this chapter. This method requires a significant number of
successive numerical evaluations of the cost function during
the optimization process. As a consequence, it is not very
efficient in terms of computing speed. However, it does not
require derivatives evaluations and can be robust [68].

Behavior of the Dynamic Policy
A numerical study and analysis of such a dynamic mainte-
nance policy can be found in [47], as well as its compari-
son with other policies. It shows the relevance of dynamic
strategies that are based on long-term cost rates with updates
from monitoring information. Figures 27.14 and 27.15 give
examples of inspection times and related degradation levels
for two levels of information based on cases 1 and 3 consid-
ered previously. It can be seen that as the uncertainty about
degradation parameters decreases, from case 1 to case 3, the
number of inspections in a renewal cycle decreases.

Figure 27.16 is an example of the mean evolution of two
decision variables, p and M, after successive updates. It is
based on the simulation of 50 paths from time t = 0 to 100.
The main modifications of the values take place in the first
quarter of the sequence. The information collected online
leads to significant updates and substantial effects on the
evolution of parameters p andM.
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Fig. 27.14 Inspection times and degradation levels on one cycle:
Case 1
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Fig. 27.15 Inspection times and degradation levels on one cycle:
Case 3

27.5 Conclusion

This chapter is related to dynamic condition-based and
predictive maintenance modeling. It focuses on the case
of continuous degradation and aims to describe a dynamic
decision-making framework’s characteristics. Classical
stochastic processes for continuous degradation modeling
are firstly recalled with their main indicators for failure
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Fig. 27.16 Example of dynamic evolution of decision variables

prediction. The most common structure of the maintenance
decision rule is also given. The context resulting in a
need for a dynamic approach is then described in two
main directions. The first one is related to maintenance
grouping in multicomponent systems, with opportunistic
maintenance and (economic) dependencies. The second
one deals with uncertainty in degradation description or
behavior. Information collected in real time is used to
update the planning or improve the degradation model
and the maintenance decision rule. The general framework
of dynamic decision-making is described with successive
cycles on a finite time-rolling horizon. On each cycle, the
starting point for maintenance and inspection planning is
based on long-term system behavior. A long-term cost
rate is optimized to determine tentative planning for each
component or the decision rule variables. In the case of
maintenance grouping, this planning may be modified with a
short-term criterion. The availability of new information
leads to an update of the maintenance model and the
beginning of a new cycle. Finally, a specific case related
to gradual degradation modeling with unknown parameters
is described precisely as an example of dynamic condition-
based predictive maintenance.
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Abstract

Many serious accidents have happened as systems
have become large scale and complex, and moreover,
advanced nations have almost finished infrastructures and
rushed into a maintenance period. Maintenance would
be more important than production and construction for
environment consideration and the protection of natural
resources. A variety of maintenance policies have been
established to prevent failures for objective systems
in reliability theory. It has been well-known that high
system reliability can be achieved through redundancy.
Alternatively, several maintenance policies are planned
simultaneously, such as bivariate, trivariate, andmultivari-
ate policies with multiple maintenance plans. This chapter
takes up age and periodic replacements that are the most
standardmaintenance policy, shows their optimal policies,
and proposes redundant replacement policies with time T
and n kinds of replacements. The results obtained in this
chapter would be applied to maintenances for redundant
systems, imperfect repair, and several failure nodes.

Keywords

Reliability · Maintenance · Age replacement · Periodic
replacement · Replacement first · Replacement last ·
Replacement overtime · Redundant maintenance

28.1 Introduction

Performance degradation and replacement strategy for man-
ufacturing systems are commonly encountered in practice.
Replacements done after failure and before failure are
called corrective replacement and preventive replacement,
respectively [1]. Age and periodic replacement policies have
been modelled extensively in maintenance engineering. Age
replacement is a time-based policy in which an operating unit
is replaced by a new one or is perfectly repaired and becomes
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like new at failures [2, p. 69]. On the other hand, when the
unit undergoes imperfect repair at failures, this is called
imperfect maintenance [2, p. 171], and its age becomes you-
nger at repair. Especially, When the unit has the same age be-
fore repair at failures, this is called minimal repair [1, p. 96],
[2, p. 95] and is commonly used with complex systems such
as computers and airplanes. Such two replacement policies
have been generally taken up for most reliability models
theoretically and practically in maintenance engineering.

It has also been well-known that high system reliability
can be achieved through redundancy, e.g., parallel systems
with n units in parallel structures [3]. When several replace-
ment policies are planned simultaneously as alternatives, they
can be considered as redundancies with each other, such as
bivariate policies of replacement first and last [4], trivariate
policies of replacement middle [5], and general policies with
multiple replacement plans [6].

In this chapter, we name the replacements with redun-
dancies as redundant replacement policies and survey the
recent redundant policies that are based on the approaches
of whichever occurs first and last, overtime approach for
replacement delay, and triggering policies at middle times.
From such a viewpoint, we firstly give the single age re-
placement policies that are planned at time T , at cycle N of
working times, and at the first completion of working cycles
over time T , respectively [7]. For a large and complex system,
which consists of many kinds of units, minimal repairs that
cost less are always taken into considerations at failures
[1]. Next, we use the cumulative hazard function H(t) to
count the number of minimal repairs and survey periodic
replacement policies that are planned at time T , at number
K of failures, at cycle N of working times, and at the first
failure or the first completion of working cycles over time T ,
respectively.

When a bivariate replacement policy is planned, it has
been shown that the policies based on the approaches of
whichever occurs first and last [4] become good alternatives
from the points of cost and maintainability. For example,
replacement first could be done for high system reliabil-
ity but could not complete the necessary working cycles,
while replacement last could let the system operate for a
longer time and avoid operational interruptions to complete
the running working cycles. On the other hand, when the
system is running some successive jobs without stops, it is
better to perform replacement policies after several jobs are
completed even though the replacement time has arrived [7].
Replacement policies scheduled at the first completion of
some working cycle over a planned time T were summarized
[8]. That is, replacement scheduled at continuous times could
be modified to be done at discrete applications. For the above
viewpoint, we combine the above respective single replace-
ment policies for bivariate replacement policies, such that the
unit is replaced at time T or at cycle N, whichever occurs
first and last, and the unit is replaced at cycle N or at the first

completion of working cycles over time T . When minimal
repair is taken into considerations, the number K of failures
is modeled for the periodic policies of replacement first and
last and replacement overtime first and last [9]. In addition,
we begin to plan replacement time T once the Kth failure has
occurred and plan failure number K once time T has arrived,
as the extensions of the above overtime replacement.

When a trivariate replacement policy is planned, i.e., time
T , cycle N of working times, and number K of failures are
planned simultaneously, we survey the models of replace-
ment first and last, and meanwhile, replacement middle in
which the policy is only available at middle times rather
than the first or last times [5]. The modified replacement
first and last for trivariate policies also contains some cases
when replacement is done at middle times. Finally, redundant
replacement policies, which means replacement planned at
time T , have n redundant policies that can be done at n
random times [6]. Age and periodic replacement policies,
using the approaches of first and last, are surveyed. For each
policy, we give the models of the expected cost rates, and
their optimal replacement solutions are obtained analytically
and discussed numerically.

Throughout this chapter, it is assumed that the failure time
of the unit has a failure distribution F(t), its density function
f (t) ≡ dF(t)/dt, i.e., F(t) = ∫ t

0 f (u)du for t ≥ 0, and its finite
mean μ ≡ ∫ ∞

0 F(t)dt, where F(t) ≡ 1 − F(t). Furthermore,
it is assumed that the failure function is h(t) ≡ f (t)/F(t),
which increases strictly with t from h(0) = 0 to h(∞) = ∞,
and the cumulative hazard function is H(t) ≡ ∫ t

0 h(u)du, i.e.,
h(t) = dH(t)/dt and F(t) = 1−e−H(t). Generally, we use the
following notations throughout this chapter for the simplicity
of equations: �(t) ≡ 1 − �(t), limt→0 �(t) ≡ �(0) and
limt→∞ �(t) ≡ �(∞) for a general function �(t).

When failures occur at a nonhomogeneous Poisson pro-
cess with hazard rate H(t), the probability that k failures
occur in [0, t] is pk(t) ≡ [H(t)k/k!]e−H(t) (k = 0, 1, 2, . . . ),
and PK(t) ≡ ∑∞

k=K pk(t) (K = 0, 1, 2, . . . ), PK(t) ≡ 1 −
PK(t) = ∑K−1

k=0 pk(t), where note that PK(0) = 0, PK(∞) =
1, P0(t) = 1, and limK→∞ PK(t) = 0. Furthermore, we have
the following relations: For 0 < t < ∞ and K = 0, 1, 2, . . . ,

PK+1(t) =
∫ t

0
pK(u)h(u)du,

PK+1(t) =
∫ ∞

t
pK(u)h(u)du,

∫ ∞

0
pK(t)h(t)dt = 1,

∫ ∞

0
H(t)dPK(t) =

∫ ∞

0
PK(t)h(t)dt

=
K−1∑

k=0

∫ ∞

0
pk(t)h(t)dt = K,
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and letting N(t) be the expected number of failures during
[0, t],

E{N(t)} =
∞∑

k=1

kpk(t) =
∞∑

k=1

Pk(t) = H(t).

In addition, when the unit operates for successive jobs
without stops, the working cycles Yj (j = 1, 2, . . . ) are
independent random variables with an identical distribution
G(t) ≡ Pr{Yj ≤ t} with finite mean 1/θ ≡ ∫ ∞

0 G(t)dt,
where Y0 ≡ 0. Furthermore, denote G(j)(t) (j = 0, 1, 2, . . . )
as the j-fold Stieltjes convolution of G(t) with itself, where
G(0)(t) ≡ 1 for t ≥ 0.

28.2 Single Policy

28.2.1 Age Replacement

We introduce the age replacement policies in which the unit
is replaced at failure, time T , or cycle N. The expected cost
rates are obtained, and optimal policies whichminimize them
are theoretically shown.

(1) Time T
Suppose that the unit is replaced at a planned time T (0 <

T ≤ ∞) or at failure, whichever occurs first, which is called
standard age replacement. Then, the expected cost rate is [1,
p. 88], [2, p. 72]

C(T) = cT + (cF − cT)F(T)
∫ T
0 F(t)dt

, (28.1)

where cT = replacement cost at timeT and cF = replacement
cost at failure with cF > cT . We find optimal T∗ to minimize
C(T). Differentiating C(T) with respect to T and setting it
equal to zero,

h(T)

∫ T

0
F(t)dt − F(T) = cT

cF − cT
, (28.2)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗ (0 < T∗ < ∞)
which satisfies (28.2), and the resulting cost rate is

C(T∗) = (cF − cT)h(T
∗). (28.3)

(2) Cycle N
Suppose that the unit is replaced at cycle N (N = 1, 2, . . . )
of working times or at failure, whichever occurs first, which
is called random replacement. Then, the expected cost rate is
[7, p. 44]

C(N) = cN + (cF − cN)
∫ ∞
0 [1 − G(N)(t)]dF(t)

∫ ∞
0 [1 − G(N)(t)]F(t)dt

, (28.4)

where cN = replacement cost at cycle N with cN < cF. We
find optimal N∗ to minimize C(N). Forming C(N + 1) −
C(N) ≥ 0,

Q(N)

∫ ∞

0
[1 − G(N)(t)]F(t)dt

−
∫ ∞

0
[1 − G(N)(t)]dF(t) ≥ cN

cF − cN
, (28.5)

where

Q(N) ≡
∫ ∞
0 [G(N)(t) − G(N+1)(t)]dF(t)

∫ ∞
0 [G(N)(t) − G(N+1)(t)]F(t)dt

.

Thus, if Q(N) increases strictly with N to h(∞), then there
exists a finite and unique minimum N∗ (1 ≤ N∗ < ∞) which
satisfies (28.5).

In particular, when G(t) = 1 − e−θ t, i.e., G(j)(t) =∑∞
i=j[(θ t)i/i!]e−θ t (j = 0, 1, 2, . . . ), (28.5) becomes

Q(N)

∫ ∞

0
[1 − G(N)(t)]F(t)dt

−
∫ ∞

0
[1 − G(N)(t)]dF(t) ≥ cN

cF − cN
, (28.6)

where

Q(N) ≡
∫ ∞
0 (θ t)Ne−θ tdF(t)

∫ ∞
0 (θ t)Ne−θ tF(t)dt

,

which increases strictly with N to h(∞) from Appendix 2.
Thus, noting that the left-hand side of (28.6) increases strictly
with N to ∞, there exists a finite and unique minimum N∗
(1 ≤ N∗ < ∞) which satisfies (28.6).

(3) Overtime T
Suppose that the unit is replaced at the first completion of
working cycles over time T (0 ≤ T < ∞) or at failure,
whichever occurs first, which is called age replacement over-
time. Then, the expected cost rate is [7, p. 35], [8, p. 7]

CO(T) =
cO+(cF−cO)

(
F(T)+∑∞

j=0

∫ T
0

{ ∫ ∞
T−t[F(t+u)

F(T)]dG(u)
}
dG(j)(t)

)

∫ T
0 F(t)dt + ∑∞

j=0

∫ T
0 [

∫ ∞
T−t G(u)F(t + u)du]

× dG(j)(t)

, (28.7)

where cO = replacement cost over time T with cO < cF.
In particular, when G(t) = 1 − e−θ t, (28.7) becomes

CO(T) =
cO + (cF − cO)[F(T) + ∫ ∞

T e−θ(t−T)dF(t)]
∫ T
0 F(t)dt + ∫ ∞

T e−θ(t−T)F(t)dt
. (28.8)
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We find optimal T∗
O to minimize CO(T). Differentiating

CO(T) with respect to T and setting it equal to zero,

Q̃O(T)

∫ T

0
F(t)dt − F(T) = cO

cF − cO
, (28.9)

where

Q̃O(T) ≡
∫ ∞
T e−θ tdF(t)

∫ ∞
T e−θ tF(t)dt

,

which increases strictly with T to h(∞) from Appendix 1.
Thus, noting that the left-hand side of (28.9) increases strictly
with T from 0 to ∞, there exists a finite and unique T∗

O (0 <

T∗
O < ∞) which satisfies (28.9), and the resulting cost rate is

CO(T∗
O) = (cF − cO)Q̃O(T∗

O)

= cF − (cF − cO)F(T∗
O)

∫ T∗
O

0 F(t)dt
, (28.10)

which agrees with (28.1) when cO = cT and T∗
O = T .

In addition, when cO = cT , comparing (28.9) with (28.2),
T∗
O < T∗ because Q̃O(T) > h(T). Therefore, from (28.10),
CO(T∗

O) > C(T∗), i.e., age replacement is better than re-
placement overtime when both replacement costs are the
same.

28.2.2 Periodic Replacement

An operating unit undergoes minimal repair at each failure,
and the failure rate remains undisturbed by any repair of fail-
ures between replacements. Then, we introduce the standard
periodic replacement policies in which the unit is replaced
at time T , failure K, and cycle N. The results obtained in
this section could be applied easily to imperfect maintenance
policies [2, p. 175].

(1) Time T
Suppose that the unit is replaced at a planned time T (0 <

T < ∞) which is called standard periodic replacement.
Then, the expected cost rate is [1, p. 97], [2, p. 102]

C(T) = cT + cMH(T)

T
, (28.11)

where cT = replacement cost at time T and cM = cost
of minimal repair at each failure. We find optimal T∗ to
minimize C(T). Differentiating C(T) with respect to T and
setting it equal to zero,

Th(T) − H(T) = cT
cM

, (28.12)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗ (0 < T∗ < ∞)
which satisfies (28.12), and the resulting cost rate is

C(T∗) = cMh(T
∗). (28.13)

(2) Failure K
Suppose that the unit is replaced at a number K (K =
1, 2, . . . ) of failures. Then, the expected cost rate is [2, p. 104]

C(K) = cK + cMK
∫ ∞
0 PK(t)dt

, (28.14)

where cK = replacement cost at failure K. We find optimal
K∗ to minimize C(K). Forming C(K + 1) − C(K) ≥ 0,

1
∫ ∞
0 pK(t)dt

∫ ∞

0
PK(t)dt − K ≥ cK

cM
, (28.15)

whose left-hand increases strictly with K to ∞. Thus, there
exists a finite and unique minimum K∗ (1 ≤ K∗ < ∞) which
satisfies (28.15).

(3) Cycle N
Suppose that the unit is replaced at cycle N (N = 1, 2, . . . )
of working times. Then, the expected cost rate is [7, p. 76]

C(N) = cN + cM
∫ ∞
0 [1 − G(N)(t)]h(t)dt

N/θ
, (28.16)

where cN = replacement cost at cycle N. We find optimal N∗
to minimize C(N). Forming C(N + 1) − C(N) ≥ 0,

NH(N)

θ
−

∫ ∞

0
[1 − G(N)(t)]h(t)dt ≥ cN

cM
, (28.17)

where

H(N) ≡ θ

∫ ∞

0
[G(N)(t) − G(N+1)(t)]h(t)dt.

Thus, if H(N) increases strictly with N to h(∞), then noting
that the left-hand side of (28.17) increases strictly with N to
∞, there exists a finite and unique minimum N∗ (1 ≤ N∗ <

∞) which satisfies (28.17).
In particular, when G(t) = 1 − e−θ t, (28.17) becomes

NH(N)

θ
−

∫ ∞

0
[1 − G(N)(t)]h(t)dt ≥ cN

cM
, (28.18)

where

H(N) ≡
∫ ∞

0

θ(θ t)N

N! e−θ th(t)dt,
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which increases strictly with N to h(∞) from Appendix 3.
Thus, there exists a finite and uniqueminimumN∗ (1 ≤ N∗ <

∞) which satisfies (28.18).

(4) Overtime T
Suppose that the unit is replaced at the first failure over time
T , which is called periodic replacement overtime. Then, the
expected cost rate is [8, p. 47]

COK(T) = cOK + cM[H(T) + 1]
T + ∫ ∞

T e−H(t)+H(T)dt
, (28.19)

where cOK = replacement cost at the first failure over time
T . We find optimal T∗

OK to minimize COK(T). Differentiating
COK(T) with respect to T and setting it equal to zero,

TQ(T) − H(T) = cOK
cM

, (28.20)

where

Q(T) ≡ 1
∫ ∞
T e−H(t)+H(T)dt

= F(T)
∫ ∞
T F(t)dt

,

which increases strictly with T from 1/μ to h(∞) from
Appendix 1. Thus, noting that the left-hand side of (28.20)
increases strictly with T from 0 to ∞, there exists a finite and
unique T∗

OK (0 < T∗
OK < ∞) which satisfies (28.20), and the

resulting cost rate is

COK(T∗
OK) = cOKQ(T∗

OK) = cOK + cMH(T∗
OK)

T∗
OK

, (28.21)

which agrees with (28.11) when cOK = cT and T∗
OK = T . In

addition, when cOK = cT , comparing (28.20) with (28.12),
T∗
OK < T∗, because Q(T) > h(T). Therefore, from (28.21),
COK(T∗

OK) > C(T∗), i.e., periodic replacement is better than
replacement overtime when both replacement costs are the
same.

Next, suppose that the unit is replaced at the first comple-
tion of working cycles over time T . Then, the expected cost
rate is [8, p. 39]

CON(T) =
cON+cM∑∞

j=0

∫ T
0 [∫ ∞

0 G(u)h(t+u)du]dG(j)(t)

(1/θ)
∑∞

j=0 G
(j)(T)

, (28.22)

where cON = replacement cost at the first cycle over time
T . We find optimal T∗

ON to minimize CON(T). Differentiating
CON(T) with respect to T and setting it equal to zero,

∫ ∞

0
G(t)h(T + t)dt

∞∑

j=0

G(j)(T)

−
∞∑

j=0

∫ T

0

[ ∫ ∞

0
G(u)h(t + u)du

]
dG(j)(t) = cON

cM
,

(28.23)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

ON (0 < T∗
ON < ∞)

which satisfies (28.23).
In particular, when G(t) = 1 − e−θ t, (28.23) becomes

T
∫ ∞

0
θe−θ th(T + t)dt − H(T) = cON

cM
, (28.24)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

ON (0 < T∗
ON < ∞)

which satisfies (28.24), and the resulting cost rate is

CON(T∗
ON) = cM

∫ ∞

0
θe−θ th(T∗

ON + t)dt

= cON + cMH(T∗
ON)

T∗
ON

, (28.25)

which agrees with (28.11) when cON = cT and T∗
ON = T . In

addition, when cON = cT , comparing (28.24) with (28.12),
T∗
ON < T∗, because

∫ ∞
0 θe−θ th(T + t)dt > h(T). Therefore,

from (28.25), CON(T∗
ON) > C(T∗), i.e., periodic replacement

is better than replacement overtime when both replacement
costs are the same. However, if replacement cost at overtime
would be smaller than that at time T , then replacement
overtime might be better than periodic replacement.

28.3 Two Policies

28.3.1 Age Replacement

Combining age replacements with time T and cycle N in
Sect. 28.2.1, we introduce the following four policies:

(1) Replacement First
Suppose that the unit is replaced preventively at time T (0 <

T ≤ ∞) or at cycle N (N = 1, 2, . . . ), whichever occurs first.
Then, the expected cost rate is [7, p. 43]

CF(T, N) =

cT + (cF − cT)
∫ T
0 [1−G(N)(t)]dF(t)

+ (cN − cT)
∫ T
0 F(t)dG(N)(t)

∫ T
0 [1 − G(N)(t)]F(t)dt

. (28.26)

Note that CF(T,∞)=C(T) in (28.1) and CF(∞,N) = C(N)

in (28.4).
When cT = cN , we find optimal T∗

F and N∗
F to minimize

CF(T, N). Differentiating CF(T, N) with respect to T and
setting it equal to zero,

h(T)

∫ T

0
[1 − G(N)(t)]F(t)dt

−
∫ T

0
[1 − G(N)(t)]dF(t) = cT

cF − cT
, (28.27)
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whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

F (0 < T∗
F < ∞)

which satisfies (28.27) for any N, and the resulting cost rate
is

CF(T
∗
F, N) = (cF − cT)h(T

∗
F). (28.28)

Furthermore, noting that the left-hand side of (28.27) in-
creases with N to that of (28.2), T∗

F decreases with N to T∗
given in (28.2), and T∗

F ≥ T∗.
Forming CF(T, N + 1) − CF(T, N) ≥ 0,

Q(T, N)

∫ T

0
[1 − G(N)(t)]F(t)dt

−
∫ T

0
[1 − G(N)(t)]dF(t) ≥ cT

cF − cT
, (28.29)

where

Q(T, N) ≡
∫ T
0 [G(N)(t) − G(N+1)(t)]dF(t)

∫ T
0 [G(N)(t) − G(N+1)(t)]F(t)dt

,

and Q(T, N) < h(T). Substituting (28.27) for (28.29),

Q(T, N) ≥ h(T),

which does not hold for any T , i.e., CF(T, N+ 1) < CF(T, N)

andN∗
F = ∞. Therefore, the optimal policy which minimizes

CF(T, N) is N∗
F = ∞ and T∗

F = T∗ given in (28.2).
In particular, when G(t) = 1 − e−θ t,

Q(T, N) =
∫ T
0 (θ t)Ne−θ tdF(t)

∫ T
0 (θ t)Ne−θ tF(t)dt

,

which increases strictly with T to Q(N) in (28.6) and in-
creases strictly with N to h(T) from Appendix 2. Thus, the
left-hand side of (28.29) increases strictly with N to that
of (28.2). Therefore, if T ≤ T∗, then N∗

F = ∞, and
conversely, if T > T∗, then there exists a finite and unique
minimum N∗

F (1 ≤ N∗
F < ∞) which satisfies (28.29). In

addition, because the left-hand side of (28.29) increases with
T to that of (28.6), N∗

F decreases with T to N∗ given in (28.6),
and N∗

F ≥ N∗.

(2) Replacement Last
Suppose that the unit is replaced preventively at time T (0 ≤
T < ∞) or at cycle N (N = 0, 1, 2 . . . ), whichever occurs
last. Then, the expected cost rate is [7, p. 47]

CL(T, N) =
cT + (cF−cT)

{
F(T) + ∫ ∞

T [1−G(N)(t)]dF(t)
}

+ (cN−cT)
∫ ∞
T F(t)dG(N)(t)

∫ T
0F(t)dt +∫ ∞

T [1−G(N)(t)]F(t)dt
, (28.30)

which agrees with (28.1) when N = 0 and (28.4) when
T = 0.

When cT = cN , we find optimal T∗
L and N∗

L to minimize
CL(T, N). Differentiating CL(T, N) with respect to T and
setting it equal to zero,

h(T)

{∫ T

0
F(t)dt +

∫ ∞

T
[1 − G(N)(t)]F(t)dt

}

− F(T) −
∫ ∞

T

[
1 − G(N)(t)

]
dF(t) = cT

cF − cT
, (28.31)

whose left-hand side increases strictly to ∞. Thus, there
exists a finite and unique T∗

L (0 ≤ T∗
L < ∞) which

satisfies (28.31) for any N, and the resulting cost rate is

CL(T
∗
L) = (cF − cT)h(T

∗
L). (28.32)

Furthermore, noting that the left-hand side of (28.31) de-
creases with N from that of (28.2), T∗

L increases with N from
T∗ given in (28.2), and T∗

L ≥ T∗.
Forming CL(T, N + 1) − CL(T, N) ≥ 0,

Q̃(T, N)

{∫ T

0
F(t)dt +

∫ ∞

T
[1 − G(N)(t)]F(t)dt

}

− F(T) −
∫ ∞

T
[1 − G(N)(t)]dF(t) ≥ cT

cF − cT
, (28.33)

where

Q̃(T, N) =
∫ ∞
T [G(N)(t) − G(N+1)(t)]dF(t)

∫ ∞
T [G(N)(t) − G(N+1)(t)]F(t)dt

,

and Q̃(T, N) > h(T). Substituting (28.31) for (28.33),

Q̃(T, N) ≥ h(T),

which always holds for any T , i.e., CL(T, N + 1) ≥ CL(T, N).
Therefore, the optimal policy which minimizes CL(T, N) is
N∗
L = 0 and T∗

L = T∗ given in (28.2).
In particular, when G(t) = 1 − e−θ t,

Q̃(T, N) =
∫ ∞
T (θ t)Ne−θ tdF(t)

∫ ∞
T (θ t)Ne−θ tF(t)dt

,

which increases strictly with T from Q(N) to h(∞) and
increases strictly with N from Q̃O(T) to h(∞) from Ap-
pendix 2. Thus, the left-hand side of (28.33) increases strictly
with N from

Q̃O(T)

∫ T

0
F(t)dt − F(T)

> h(T)

∫ T

0
F(t)dt − F(T),
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which agrees with (28.2). Therefore, if T ≥ T∗, then N∗
L = 0,

and conversely, if T < T∗, then there exists a finite and
unique minimum N∗

L (0 ≤ N∗
L < ∞) which satisfies (28.33).

In addition, the left-hand side of (28.33) increases with T
from that of (28.6), N∗

L decreases with T from N∗ given
in (28.6), and N∗

L ≤ N∗.
Therefore, from the above results, if T > T∗, replacement

first is better than replacement last, if T = T∗, then age
replacement is better than replacement first and last, and if
T < T∗, replacement last is better than replacement first.

Finally, compare replacement first and replacement last
for given N. From (28.27) and (28.31), denoting

L1(T;N) ≡

h(T)

{∫ T

0
F(t)dt +

∫ ∞

T
[1 − G(N)(t)]F(t)dt

}

− F(T) −
∫ ∞

T
[1 − G(N)(t)]dF(t)

− h(T)

∫ T

0
[1 − G(N)(t)]F(t)dt

+
∫ T

0
[1 − G(N)(t)]dF(t)

=
∫ T

0
G(N)(t)F(t)[h(T) − h(t)]dt

−
∫ ∞

T
[1 − G(N)(t)]F(t)[h(t) − h(T)]dt,

we have

L1(0;N) = −
∫ ∞

0
[1 − G(N)(t)]dF(t) < 0,

L1(∞) = ∞,

L′
1(T;N) = h′(T)

{ ∫ T

0
G(N)(t)F(t)dt

+
∫ ∞

T
[1 − G(N)(t)]F(t)dt

}
> 0.

Thus, there exists a finite and uniqueTA (0 < TA < ∞) which
satisfies L1(T;N) = 0. In addition, noting that L1(T;N)

decreases withN, TA increases withN from T∗ given in (28.2)
to ∞. We set that

L(TA) ≡ h(TA)
∫ TA

0
[1 − G(N)(t)]F(t)dt

−
∫ TA

0
[1 − G(N)(t)]dF(t).

Then, it is shown from (28.27) and (28.31) that if L(TA) ≥
cT/(cF − cT), i.e., cF/cT ≥ 1 + 1/L(TA), then T∗

F ≤ T∗
L ,

and from (28.28) and (28.32), replacement first is better than
replacement last. Conversely, if L(TA) < cT/(cF − cT), then
T∗
F > T∗

L , and replacement last is better than replacement
first. This means that if the ratio of cT/cF is greater than
L(TA)/[1 + L(TA)], i.e., replacement cost cF is nearly equal
to cost cT , replacement last is better than replacement first.

On the other hand, noting that L1(T, N) decreases with N
from

L1(T; 0) =
∫ T

0
F(t)[h(T) − h(t)]dt > 0,

to

L1(T; ∞) = −
∫ ∞

T
F(t)[h(t) − h(T)]dt < 0,

there exists a finite and unique maximum NA (0 ≤ NA <

∞) which satisfies L1(T, N) > 0. Thus, if N ≥ NA, then
L1(T, N) ≤ 0, i.e., T∗

F ≤ T∗
L and replacement first is

better than replacement last. Conversely, if N < NA, then
L1(T, N) > 0, i.e., T∗

F > T∗
L and replacement last is better

than replacement first.
From the above results, if cF and N are small, replacement

last is better than replacement first, and vice versa.

(3) Replacement Overtime First
Suppose that the unit is replaced preventively at cycleN (N =
1, 2, . . . ) before time T or at the first completion of working
cycles over time T (0 ≤ T < ∞), whichever occurs first.
Then, the expected cost rate is [8, p. 9]

COF(T, N)

=

cO + (cN − cO)
∫ T
0 F(t)dG(N)(t)

+ (cF − cO)
( ∫ T

0 [1 − G(N)(t)]dF(t)

+ ∑N−1
j=0

∫ T
0

{ ∫ ∞
T−t[F(t + u) − F(T)]dG(u)

}

× dG(j)(t)
)

∫ T
0 [1 − G(N)(t)]F(t)dt

+ ∑N−1
j=0

∫ T
0 [

∫ ∞
T−t G(u)F(t + u)du]dG(j)(t)

,

(28.34)

which agrees with (28.4) when T = ∞ and (28.7) when N =
∞.

When cO = cN and G(t) = 1 − e−θ t, the expected cost
rate is

COF(T, N) =
cO + (cF − cO)

{ ∫ T
0 [1 − G(N)(t)]dF(t)

+ [1 − G(N)(T)] ∫ ∞
T e−θ(t−T)dF(t)

}

∫ T
0 [1 − G(N)(t)]F(t)dt

+ [1 − G(N)(T)] ∫ ∞
T e−θ(t−T)F(t)dt

. (28.35)
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We find optimal T∗
OF and N∗

OF to minimize COF(T, N).
Differentiating COF(T, N) with respect to T and setting it
equal to zero,

Q̃O(T)

∫ T

0
[1 − G(N)(t)]F(t)dt

−
∫ T

0
[1 − G(N)(t)]dF(t) = cO

cF − cO
, (28.36)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

OF (0 < T∗
OF < ∞)

which satisfies (28.36) for any N, and the resulting cost rate
is

COF(T
∗
OF) = (cF − cO)Q̃O(T∗

OF)

= cO + (cF − cO)
∫ T∗

OF
0 [1 − G(N)(t)]dF(t)

∫ T∗
OF

0 [1 − G(N)(t)]F(t)dt
, (28.37)

which agrees with (28.26) when cO = cT = cN and T∗
OF =

T . Furthermore, noting that the left-hand side of (28.36)
increases strictly with N to that of (28.9), T∗

OF decreases with
N to T∗

O given in (28.9), and T∗
OF ≥ T∗

O.
Forming COF(T, N + 1) − COF(T, N) ≥ 0,

Q1(T, N − 1)

{

[1 − G(N)(T)]
∫ ∞

T
e−θ(t−T)F(t)dt

+
∫ T

0
[1 − G(N)(t)]F(t)dt

}

− [1 − G(N)(T)]
∫ ∞

T
e−θ(t−T)dF(t)

−
∫ T

0
[1 − G(N)(t)]dF(t) ≥ cO

cF − cO
, (28.38)

where

Q1(T, N) ≡
∫ T
0 (θ t)N [

∫ ∞
t e−θudF(u)]dt

∫ T
0 (θ t)N [

∫ ∞
t e−θuF(u)du]dt

,

which increases strictly with T toQ1(∞, N) = Q(N+1), and
increases strictly with N to Q̃O(T), and Q1(T, N) < Q̃O(T)

from Appendix 4. Substituting (28.36) for (28.38),

Q1(T, N − 1)

{

[1 − G(N)(T)]
∫ ∞

T
e−θ(t−T)F(t)dt

+
∫ T

0
[1 − G(N)(t)]F(t)dt

}

− [1 − G(N)(T)]
∫ ∞

T
e−θ(t−T)dF(t)

≥ Q̃O(T)

∫ T

0
[1 − G(N)(t)]F(t)dt,

which does not hold for any T , i.e., COF(T, N + 1) ≤
COF(T, N). Therefore, the optimal policy which minimizes
COF(T, N) is N∗

OF = ∞ and T∗
OF = T∗

O given in (28.9).
Furthermore, note that the left-hand side of (28.38) in-

creases strictly with N to that of (28.9). Therefore, if T ≤ T∗
O,

then N∗
OF = ∞, and conversely, if T > T∗

O, then there
exists a finite and unique minimum N∗

OF (1 ≤ N∗
OF < ∞)

which satisfies (28.38). In addition, because the left-hand
side of (28.38) increases with T to

Q1(∞, N − 1)
∫ ∞

0
[1 − G(N)(t)]F(t)dt

−
∫ ∞

0
[1 − G(N)(t)]dF(t) <

Q(N)

∫ ∞

0
[1 − G(N)(t)]F(t)dt

−
∫ ∞

0
[1 − G(N)(t)]dF(t),

which agrees with (28.6), N∗
OF decreases with T to N∗ given

in (28.6), and N∗
OF ≥ N∗.

(4) Replacement Overtime Last
Suppose that the unit is preventively at cycle N (N =
0, 1, 2, . . . ) or at the first completion of working cycles over
time T (0 ≤ T < ∞), whichever occurs last. Then, the
expected cost rate is [8, p. 13]

COL(T, N) =
cO + (cN − cO)

∫ ∞
T F(t)dG(N)(t)

+ (cF − cO)
(
F(T) + ∫ ∞

T [F(t) − F(T)]dG(N)(t)

+ ∑∞
j=N

∫ T
0

{ ∫ ∞
T−t[F(t+u)−F(T)]dG(u)

}
dG(j)(t)

)

∫ T
0 F(t)dt + ∫ ∞

T [1 − G(N)(t)]F(t)dt
+ ∑∞

j=N
∫ T
0 [

∫ ∞
T−t G(u)F(t + u)du]dG(j)(t)

, (28.39)

which agrees with (28.4) when T = 0 and (28.7) when N =
0, and note that COL(T, 0) = COL(T, 1).

When cO = cN and G(t) = 1 − e−θ t, the expected cost
rate is

COL(T, N) =
cO + (cF − cO)

{
F(T) +∫ ∞

T [1 − G(N)(t)]dF(t)
+ G(N)(T)

∫ ∞
T e−θ(t−T)dF(t)

}

∫ T
0 F(t)dt + ∫ ∞

T [1 − G(N)(t)]F(t)dt
+ G(N)(T)

∫ ∞
T e−θ(t−T)F(t)dt

. (28.40)

We find optimal T∗
OL and N∗

OL to minimize COL(T, N).
Differentiating COL(T, N) with respect to T and setting it
equal to zero,
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Q̃O(T)

∫ ∞

T
[1 − G(N)(t)]F(t)dt

−
∫ ∞

T
[1 − G(N)(t)]dF(t)

+ Q̃O(T)

∫ T

0
F(t)dt − F(T) = cO

cF − cO
, (28.41)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

OL (0 < T∗
OL < ∞) which

satisfies (28.41) for any N, and the resulting cost rate is

COL(T
∗
OL, N) = (cF − cO)Q̃O(T∗

OL) =
cO+(cF−cO)

{
F(T∗

OL)+
∫ ∞
T∗
OL
[1−G(N)(t)]dF(t)

}

∫ T∗
OL

0 F(t)dt + ∫ ∞
T∗
OL

[1 − G(N)(t)]F(t)dt
, (28.42)

which agrees with (28.30) when cO = cT = cN and T∗
OL =

T . Furthermore, noting that the left-hand side of (28.41)
decreases with N from that of (28.9), T∗

OL increases with N
from T∗

O given in (28.9), and T∗
OL ≥ T∗

O.
Forming COL(T, N + 1) − COL(T, N) ≥ 0,

Q̃1(T, N − 1)
{ ∫ ∞

T
[1 − G(N)(t)]F(t)dt

+ G(N)(T)

∫ ∞

T
e−θ(t−T)F(t)dt

}

−
∫ ∞

T
[1 − G(N)(t)]dF(t)

− G(N)(T)

∫ ∞

T
e−θ(t−T)dF(t)

+ Q̃1(T, N − 1)
∫ T

0
F(t)dt − F(T) ≥ cO

cF − cO
, (28.43)

where

Q̃1(T, N) ≡
∫ ∞
T (θ t)N [

∫ ∞
t e−θudF(u)]dt

∫ ∞
T (θ t)N [

∫ ∞
t e−θuF(u)du]dt

,

which increases strictly with T from Q(N + 1) to h(∞)

and increases strictly with N from Q̃1(T, 0) to h(∞), and
Q̃1(T, N) > Q̃O(T) > Q1(T, N) from Appendix 4. Substi-
tuting (28.41) for (28.43),

Q̃1(T, N − 1)
{ ∫ ∞

T
[1 − G(N)(t)]F(t)dt

+ G(N)(T)

∫ ∞

T
e−θ(t−T)F(t)dt

}

− G(N)(T)

∫ ∞

T
e−θ(t−T)dF(t)

+ Q̃1(T, N − 1)
∫ T

0
F(t)dt

≥ Q̃O(T)

∫ ∞

T
[1 − G(N)(t)]F(t)dt

+ Q̃0(T)

∫ T

0
F(t)dt,

which always holds for any T , i.e., COL(T, N + 1) ≥
COL(T, N). Therefore, the optimal policy which minimizes
COL(T, N) is N∗

OL = 0 or 1 and T∗
OL = T∗

O given in (28.9).
Furthermore, note that the left-hand side of (28.43) in-

creases strictly with N from more than that of (28.9). There-
fore, if T ≥ T∗

O, thenN
∗
OL = 1 and conversely, if T < T∗

O, then
there exists a finite and unique minimum N∗

OL (1 ≤ N∗
OL <

∞) which satisfies (28.43). In addition, because the left-hand
side of (28.43) decreases with T from

Q(N)

∫ ∞

0
[1 − G(N)(t)]F(t)dt −

∫ ∞

0
[1 − G(N)(t)]dF(t),

which agreeswith (28.6),N∗
OL increases with T fromN∗ given

in (28.6), and N∗
OL ≥ N∗.

Therefore, from the above results, if T > T∗
O, replacement

overtime first is better than overtime last, if T = T∗
O, then

replacement overtime is better than overtime first and last,
and if T < T∗

O, replacement overtime last is better than
overtime first.

Finally, compare replacement overtime first and last for
given N (N ≥ 1) when G(t) = 1 − e−θ t. From (28.36)
and (28.41), denoting

L2(T, N) ≡
∫ T

0
G(N)(t)F(t)[Q̃O(T) − h(t)]dt

−
∫ ∞

T
[1 − G(N)(t)]F(t)[h(t) − Q̃O(T)]dt, (28.44)

we have

L2(0, N) =

−
∫ ∞

0
[1 − G(N)(t)]F(t)[h(t) − Q̃O(0)]dt < 0,

L2(∞) = ∞,

L′
2(T, N) = e−θTF(T)[Q̃O(T) − h(T)]

∫ ∞
T e−θ tF(t)dt

×
{ ∫ T

0
G(N)(t)F(t)dt +

∫ ∞

T
[1 − G(N)(t)]F(t)dt

}

+ F(T)[Q̃O(T) − h(T)] > 0.
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Thus, there exists a finite and unique TOA (0 < TOA < ∞)
which satisfies L2(T, N) ≡ 0. In addition, noting that L2(T, N)

decreases with N, TOA increases with N from T∗
O. We set that

L(TOA)≡
∫ TOA

0
[1 − G(N)(t)]F(t)[Q̃O(TOA) − h(t)]dt.

Then, it is shown from (28.36) and (28.41) that if L(TOA) >

cO/(cF − cO), i.e., cF/cO ≥ 1 + 1/L(TOA), then T∗
OF ≤ T∗

OL,
and from (28.37) and (28.42), replacement overtime first is
better than overtime last. Conversely, if L(TOA) < cO/(cF −
cO), then T∗

OF > T∗
OL, and replacement overtime last is better

than overtime first. This means that if the ratio of cO/cF is
greater than L(TOA)/[1 + L(TOA)], i.e., replacement cost cF
is nearly equal to cost cO, replacement overtime last is better
than overtime first.

On the other hand, noting that L2(T, N) decreases with N
from

L2(T; 0) =
∫ T

0
F(t)[Q̃O(T) − h(t)]dt > 0,

to

L2(T; ∞) = −
∫ ∞

T
F(t)[h(t) − Q̃O(T)]dt < 0,

there exists a finite and unique maximum NOA (0 ≤ NOA <

∞) which satisfies L2(T, N) > 0. Thus, if N ≥ NOA, then
L2(T, N) ≤ 0, i.e., T∗

OF ≤ T∗
OL, and replacement overtime

first is better than overtime last. Conversely, ifN < NOA, then
L2(T, N) > 0, i.e., T∗

OF > T∗
OL, and replacement overtime last

is better than overtime first. From the above results, if cF and
N are small, replacement overtime last is better than overtime
first and vice versa.

28.3.2 Periodic Replacement

Combining replacements with time T , failure K, and cycle N
in Sect. 28.2.2, we introduce the following twelve policies:

(1) Replacement First with Time T and Failure K
Suppose that the unit is replaced at time T (0 < T ≤ ∞) or
at failure K (K = 1, 2, . . . ), whichever occurs first. Then, the
expected cost rate is [9]

CF(T, K) =
cT + (cK − cT)PK(T) + cM

∫ T
0 PK(t)h(t)dt

∫ T
0 PK(t)dt

, (28.45)

which agrees with (28.11) when K = ∞ and (28.14) when
T = ∞.

When cT = cK , we find optimal T∗
F and K∗

F to minimize
CF(T, K). Differentiating CF(T, K) with respect to T and
setting it equal to zero,

h(T)

∫ T

0
PK(t)dt −

∫ T

0
PK(t)h(t)dt = cT

cM
, (28.46)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

F (0 < T∗
F < ∞)

which satisfies (28.46) for any K, and the resulting cost rate
is

CF(T
∗
F, K) = cMh(T

∗
F). (28.47)

Furthermore, noting that the left-hand side of (28.46) in-
creases with K to that of (28.12), T∗

F decreases with K to T∗
given in (28.12), and T∗

F ≥ T∗.
Forming CF(T, K + 1) − CF(T, K) ≥ 0,

H(T, K)

∫ T

0
PK(t)dt −

∫ T

0
PK(t)h(t)dt ≥ cT

cM
, (28.48)

where

H(T, K) ≡
∫ T
0 pK(t)h(t)dt
∫ T
0 pK(t)dt

,

which increases strictly with T to H(∞, K) = 1/
∫ ∞
0 pK(t)dt

and increases strictly with K to h(T), and H(T, K) < h(T)

from Appendix 5. Substituting (28.46) for (28.48),

H(T, K) ≥ h(T),

which does not hold for any T , i.e., CF(T, K+1) < CF(T, K).
Therefore, the optimal policy which minimizes CF(T, K) is
K∗
F = ∞ and T∗

F = T∗ given in (28.12).
Furthermore, noting that the left-hand side of (28.48)

increases strictly with K to that of (28.12), if T ≤ T∗, then
K∗
F = ∞, and if T > T∗, then there exists a finite and

unique minimum K∗
F (1 ≤ K∗

F < ∞) which satisfies (28.48).
In addition, because the left-hand side of (28.48) increases
with T to that of (28.15), K∗

F decreases with T to K∗ given
in (28.15), and K∗

F ≥ K∗.

(2) Replacement Last with Time T and Failure K
Suppose that the unit is replaced at time T (0 ≤ T < ∞) or
at failure K (K = 0, 1, 2, . . . ), whichever occurs last. Then,
the expected cost rate is [9]

CL(T, K) =
cT + (cK − cT)PK(T)

+ cM
[
H(T) + ∫ ∞

T PK(t)h(t)dt
]

T + ∫ ∞
T PK(t)dt

, (28.49)
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which agrees with (28.11) when K = 0 and (28.14) when
T = 0.

When cT = cK , we find optimal T∗
L and K∗

L to minimize
CL(T, K). Differentiating CL(T, K) with respect to T and
setting it equal to zero,

h(T)
[
T +

∫ ∞

T
PK(t)dt

]
− H(T) −

∫ ∞

T
PK(t)h(t)dt

= cT
cM
, (28.50)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

L (0 < T∗
L < ∞) which

satisfies (28.50) for any K, and the resulting cost rate is

CL(T
∗
L , K) = cMh(T

∗
L). (28.51)

Furthermore, noting that the left-hand side of (28.50) in-
creases strictly withK from that of (28.12), T∗

L decreases with
K from T∗ given in (28.12), and T∗

L ≤ T∗.
Forming CL(T, K + 1) − CL(T, K) ≥ 0,

H̃(T, K)
[
T +

∫ ∞

T
PK(t)dt

]

− H(T) −
∫ ∞

T
PK(t)h(t)dt ≥ cT

cM
, (28.52)

where

H̃(T, K) ≡
∫ ∞
T pK(t)h(t)dt
∫ ∞
T pK(t)dt

,

which increases strictly with T from 1/
∫ ∞
0 pK(t)dt to h(∞)

and increases strictly with K from H̃(T, 0) = Q(T) in (28.20)
to h(∞), and H̃(T, K) > h(T) from Appendix 5. Substitut-
ing (28.50) for (28.52),

H̃(T, K) ≥ h(T),

which always holds for any T , i.e., CL(T, K+ 1) > CL(T, K).
Therefore, the optimal policy which minimizes CL(T, K) is
K∗
L = 0 and T∗

L = T∗ given in (28.12).
Furthermore, noting that the left-hand side of (28.52)

increases strictly with K from

TQ(T) − H(T) > Th(T) − H(T),

which agrees with that of (28.12), if T ≥ T∗, then K∗
L = 0,

and if T < T∗, then there exists a finite and unique minimum
K∗
L (0 ≤ K∗

L < ∞) which satisfies (28.52). In addition,
because the left-hand side of (28.52) increases with T from
that of (28.15),K∗

L decreases with T fromK∗ given in (28.15),
and K∗

L ≤ K∗.

Comparing replacement first and last with T and K, if
T < T∗, then replacement last is better than replacement
first, if T = T∗, then replacement with time T∗ is better than
replacement first and last, and if T > T∗, then replacement
first is better than replacement last.

(3) Replacement First with Time T and Cycle N
Suppose that the unit is replaced at time T (0 < T ≤ ∞) or
at cycle N (N = 1, 2, . . . ), whichever occurs first. Then, the
expected cost rate is [7, p. 76]

CF(T, N) =
cT + (cN − cT)G(N)(T)

+ cM
∫ T
0 [1 − G(N)(t)]h(t)dt

∫ T
0 [1 − G(N)(t)]dt , (28.53)

which agrees with (28.11) when N = ∞ and (28.16) when
T = ∞.

When cT = cN and G(t) = 1 − e−θ t, we find optimal T∗
F

and N∗
F to minimize CF(T, N). Differentiating CF(T, N) with

respect to T and setting it equal to zero,

h(T)

∫ T

0
[1 − G(N)(t)]dt

−
∫ T

0
[1 − G(N)(t)]h(t)dt = cT

cM
, (28.54)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

F (0 < T∗
F < ∞)

which satisfies (28.54) for any N, and the resulting cost rate
is

CF(T
∗
F, N) = cMh(T

∗
F). (28.55)

Furthermore, noting that the left-hand side of (28.54) in-
creases strictly with N to that of (28.12), T∗

F decreases with
N to T∗ given in (28.12), and T∗

F ≥ T∗.
Forming CF(T, N + 1) − CF(T, N) ≥ 0,

H(T, N)

∫ T

0
[1 − G(N)(t)]dt

−
∫ T

0
[1 − G(N)(t)]h(t)dt ≥ cT

cM
, (28.56)

where

H(T, N) ≡
∫ T
0 (θ t)Ne−θ th(t)dt
∫ T
0 (θ t)Ne−θ tdt

,

which increases strictly with T toH(N) and increases strictly
with N to h(T), and H(T, N)< h(T) from Appendix 3. Sub-
stituting (28.54) for (28.56),

H(T, N) ≥ h(T),
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which does not hold for any T . Therefore, the optimal policy
which minimizes CF(T, N) is N∗

F = ∞ and T∗
F = T∗ given

in (28.12).
Furthermore, noting that the left-hand side of (28.56)

increases strictly with N to that of (28.12), if T ≤ T∗, then
N∗
F = ∞, and if T > T∗, then there exists a finite and

unique minimum N∗
F (1 ≤ N∗

F < ∞) which satisfies (28.56).
In addition, because the left-hand side of (28.56) increases
with T to that of (28.18), N∗

F decreases with T to N∗ given
in (28.18), and N∗

F ≥ N∗.

(4) Replacement Last with Time T and Cycle N
Suppose that the unit is replaced at time T (0 ≤ T < ∞) or at
cycle N (N = 0, 1, 2, . . . ), whichever occurs last. Then, the
expected cost rate is [7, p. 79]

CL(T, N) =
cT + (cN − cT)[1 − G(N)(T)]
+cM

{
H(T)+∫ ∞

T [1 − G(N)(t)]h(t)dt}

T + ∫ ∞
T [1 − G(N)(t)]dt , (28.57)

which agrees with (28.11) when N = 0 and (28.16) when
T = 0,

When cT = cN and G(t) = 1 − e−θ t, we find optimal T∗
L

and N∗
L to minimize CL(T, N). Differentiating CL(T, N) with

respect to T and setting it equal to zero,

h(T)
{
T +

∫ ∞

T
[1 − G(N)(t)]dt

}

− H(T) −
∫ ∞

T
[1 − G(N)(t)]h(t)dt = cT

cM
, (28.58)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

L (0 < T∗
L < ∞) which

satisfies (28.58) for any N, and the resulting cost rate is

CL(T
∗
L , N) = cMh(T

∗
L). (28.59)

Furthermore, noting that the left-hand side of (28.58) de-
creases strictly withN from that of (28.12), T∗

L increases with
N from T∗ given in (28.12), and T∗

L ≤ T∗.
Forming CL(T, N + 1) − CL(T, N) ≥ 0,

H̃(T, N)
{
T +

∫ ∞

T
[1 − G(N)(t)]dt

}
− H(T)

−
∫ ∞

T
[1 − G(N)(t)]h(t)dt ≥ cT

cM
, (28.60)

where

H̃(T, N) ≡
∫ ∞
T (θ t)Ne−θ th(t)dt
∫ ∞
T (θ t)Ne−θ tdt

,

which increases strictly with T fromH(N) in (28.18) to h(∞)

and increases strictly with N from
∫ ∞
0 θe−θ th(T + t)dt to

h(∞), and H̃(T, N) > h(T) from Appendix 3. Substitut-
ing (28.58) for (28.60),

H̃(T, N) ≥ h(T),

which always holds for any T , i.e., CL(T, N + 1) ≥ CL(T, N).
Therefore, the optimal policy which minimizes CL(T, N) is
N∗
L = 0 and T∗

L = T∗ given in (28.12).
Furthermore, noting that the left-hand side of (28.60)

increases strictly with N from

T
∫ ∞

0
θe−θ th(T + t)dt − H(T) > Th(T) − H(T),

which agrees with that of (28.12), if T ≥ T∗, then N∗
L = 0,

and if T < T∗, then there exists a finite and unique minimum
N∗
L (0 ≤ N∗

L < ∞) which satisfies (28.60). In addition,
because the left-hand side of (28.60) increases with T from
that of (28.18),N∗

L decreases with T fromN∗ given in (28.18),
and N∗

L ≤ N∗.
Comparing replacement first and last with T and N, if

T < T∗, then replacement last is better than replacement
first, if T = T∗, then replacement with time T∗ is better than
replacement first and last, and if T > T∗, then replacement
first is better than replacement last.

(5) Replacement Overtime First with Time T and
Failure K
Suppose that the unit is replaced at failure K (K = 1, 2, . . . )
before time T or at the first failure over time T (0 ≤ T ≤
∞), whichever occurs first. Then, the expected cost rate is
[8, p. 47]

COF(T, K) =
cOK + (cK − cOK)PK(T)

+ cM[PK(T) + ∫ T
0 PK(t)h(t)dt]

∫ T
0 PK(t)dt + PK(T)

∫ ∞
T e−H(t)+H(T)dt

, (28.61)

which agrees with (28.14) when T = ∞ and (28.19) when
K = ∞.

When cK = cOK , we find optimal T∗
OF and K∗

OF to
minimize COF(T, K). Differentiating COF(T, K) with respect
to T and setting it equal to zero,

Q(T)

∫ T

0
PK(t)dt −

∫ T

0
PK(t)h(t)dt = cOK

cM
, (28.62)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

OF (0 < T∗
OF < ∞)

which satisfies (28.62) for any K, and the resulting cost rate
is
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COF(T
∗
OF, K) = cMQ(T∗

OF)

= cOK + cM
∫ T∗

OK
0 PK(t)h(t)dt

∫ T∗
OF

0 PK(t)dt
, (28.63)

which agrees with (28.45) when cK = cOK = cT and
T∗
OF = T . Comparing (28.62) with (28.46), T∗

OF < T∗
F

because Q(T) > h(T), and from (28.63), when cK =
cOK , replacement first is better than replacement overtime
first. Furthermore, noting that the left-hand side of (28.62)
increases strictly withK to that of (28.20), T∗

OF decreases with
K to T∗

OK given in (28.20), and T∗
OF ≥ T∗

OK .
Forming COF(T, K + 1) − COF(T, K) ≥ 0,

H1(T, K)
[ ∫ T

0
PK(t)dt

+ PK(T)

∫ ∞

T
e−H(t)+H(T)dt

]

− PK(T) −
∫ T

0
PK(t)h(t)dt ≥ cM

cOK
, (28.64)

where

H1(T, K) ≡ PK(T)
∫ T
0 [

∫ ∞
t e−H(u)+H(t)du]dPK(t)

,

which increases strictly with T to 1/
∫ ∞
0 pK(t)dt and in-

creases strictly with K to Q(T), and H1(T, K) < Q(T) from
Appendix 6. Substituting (28.62) for (28.64),

H1(T, K) ≥ Q(T),

which does not hold for any T , i.e., COF(T, K + 1) <

COF(T, K). Therefore, the optimal policy which minimizes
COF(T, K) is K∗

OF = ∞ and T∗
OF = T∗

OK given in (28.20).
Furthermore, noting that the left-hand side of (28.64)

increases with K to that of (28.20), if T ≤ T∗
OK , then K

∗
OF =

∞, and if T > T∗
OK , then there exists a finite and unique

minimum K∗
OF (1 ≤ K∗

OF < ∞) which satisfies (28.64).
In addition, because the left-hand side of (28.64) increases
with T to that of (28.15), K∗

OF decreases with T to K∗ given
in (28.15), and K∗

OF ≥ K∗.

(6) Replacement Overtime Last with Time T and
Failure K
Suppose that the unit is replaced at failureK (K = 0, 1, 2, . . . )
after time T (0 ≤ T < ∞) or at the first failure over time
T , whichever occurs last. Then, the expected cost rate is [8,
p. 50]

COL(T, K) =
cOK + (cK − cOK)PK(T)

+ cM
[
H(T) + PK(T) + ∫ ∞

T PK(t)h(t)dt
]

T + ∫ ∞
T PK(t)dt

+PK(T)
∫ ∞
T e−H(t)+H(T)dt

, (28.65)

which agrees with (28.14) when T = 0 and (28.19) when
K = 0, and COL(T, 0) = COL(T, 1) when cK = cOK .

When cK = cOK , we find optimal T∗
OL and K∗

OL to
minimize COL(T, K). Differentiating COL(T, K) with respect
to T and setting it equal to zero,

Q(T)
[
T +

∫ ∞

T
PK(t)dt

]
− H(T)

−
∫ ∞

T
PK(t)h(t)dt = cOK

cM
, (28.66)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and uniqueminimum T∗

OL (0 < T∗
OL < ∞)

which satisfies (28.66) for anyK, and the resulting cost rate is

COL(T
∗
OL) = cMQ(T∗

OL)

=
cOK + cM[H(T∗

OL) + ∫ ∞
T∗
OL
PK(t)h(t)dt]

T∗
OL + ∫ ∞

T∗
OL
PK(t)dt

, (28.67)

which agrees with (28.49) when T∗
OL = T and cK =

cOK = cT . Comparing (28.66) with (28.50), T∗
OL < T∗

L

because Q(T) > h(T), and from (28.67), when cK = cOK ,
replacement last is better than replacement overtime last.
Furthermore, noting that the left-hand side of (28.66)
increases strictly with K from (28.20), T∗

OL decreases with K
from T∗

OK given in (28.20), and T∗
OL ≤ T∗

OK ≤ T∗
OF.

Forming COL(T, K + 1) − COL(T, K) ≥ 0,

H̃1(T, K)
[
T +

∫ ∞

T
PK(t)dt

+ PK(T)

∫ ∞

T
e−H(t)+H(T)dt

]
− H(T) − PK(T)

−
∫ ∞

T
PK(t)h(t)dt = cOK

cM
, (28.68)

where

H̃1(T, K) ≡ PK(T)
∫ ∞
T [

∫ ∞
t e−H(u)+H(t)du]dPK(t)

,

which increases strictly with T from 1/
∫ ∞
0 pK(t)dt to h(∞)

and increases strictly with K from H̃1(T, 1) to h(∞), and
H̃1(T, K) > Q(T) from Appendix 6. Substituting (28.66)
for (28.68),
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H̃1(T, K) ≥ Q(T),

which always holds for any T , i.e., COL(T, K + 1) ≥
COL(T, K). Therefore, the optimal policy which minimizes
COL(T, K) is K∗

OL = 0 or 1 and T∗
OL = T∗

OK given in (28.20).
Furthermore, noting that the left-hand side of (28.68)

increases strictly with K from

H̃1(T, 1)
[
T +

∫ ∞

T
e−H(t)+H(T)dt

]
− H(T) − 1

> TQ(T) − H(T),

which agrees with that of (28.20), if T ≥ T∗
OK , then K

∗
OL =

0, and if T < T∗
OK , then there exists a finite and unique

minimum K∗
OL (1 ≤ K∗

OL < ∞) which satisfies (28.68). In
addition, because the left-hand side of (28.68) increases with
T from that of (28.15), K∗

OL decreases with T from K∗ given
in (28.15), and K∗

OL ≤ K∗ ≤ K∗
OF.

Comparing replacement overtime first and last with T and
K, if T < T∗

OK , then replacement overtime last is better than
overtime first, if T = T∗

OK , then replacement overtime with
T∗
OK is better than overtime first and last, and if T > T∗

OK ,
then replacement overtime first is better than overtime last.

(7) Replacement Overtime First with Time T and
Cycle N
Suppose that the unit is replaced at cycle N (N = 1, 2, . . . )
before time T or at the first cycle over time T (0 ≤ T ≤
∞), whichever occurs first. Then, the expected cost rate is
[8, p. 42]

COF(T, N) =

cON + (cN − cON)G(N)(T)

+ cM
{ ∫ T

0 [1 − G(N)(t)]h(t)dt
+ ∑N−1

j=0

∫ T
0 [

∫ ∞
T−t G(u)h(t + u)du]dG(j)(t)

}

∫ T
0 [1 − G(N)(t)]dt
+ ∑N−1

j=0

∫ T
0 [

∫ ∞
T−t G(u)du]dG(j)(t)

, (28.69)

which agrees with (28.16) when T = ∞ and (28.22) when
N = ∞.

When cN = cON and G(t) = 1 − e−θ t, (28.69) is

COF(T, N) =

cON + cM
{ ∫ T

0 [1 − G(N)(t)]h(t)dt
+ [1−G(N)(T)]∫ ∞

0 e−θ th(T + t)dt
}

∫ T
0 [1 − G(N)(t)]dt+(1/θ)[1 − G(N)(T)] . (28.70)

We find optimal T∗
OF and N∗

OF to minimize COF(T, N).
Differentiating COF(T, N) with respect to T and setting it
equal to zero,

∫ ∞

0
θe−θ th(T + t)dt

∫ T

0
[1 − G(N)(t)]dt

−
∫ T

0
[1 − G(N)(t)]h(t)dt = cON

cM
, (28.71)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

OF (0 < T∗
OF < ∞)

which satisfies (28.71) for any N, and the resulting cost rate
is

COF(T
∗
OF, N) = cM

∫ ∞

0
θe−θ th(T∗

OF + t)dt

= cON + cM
∫ T∗

OF
0 [1 − G(N)(t)]h(t)dt

∫ T∗
OF

0 [1 − G(N)(t)]dt
, (28.72)

which agrees with (28.53) when cN = cON = cT and
T∗
OF = T . Comparing (28.71) with (28.54), T∗

OF < T∗
F

because
∫ ∞
0 θe−θ th(T + t)dt > h(T), and from (28.72),

when cN = cON , replacement first is better than replacement
overtime first. Furthermore, noting that the left-hand side
of (28.71) increases strictly with N to that of (28.24), T∗

OF

decreases with N to T∗
ON given in (28.24), and T∗

OF ≥ T∗
ON .

Forming COF(T, N + 1) − COF(T, N) ≥ 0,

H1(T, N)

θ

N−1∑

j=0

G(j)(T) −
∫ T

0
[1 − G(N)(t)]h(t)dt

− [1 − G(N)(T)]
∫ ∞

0
e−θ th(T + t)dt ≥ cON

cM
, (28.73)

where

H1(T, N) ≡
∫ T
0 [

∫ ∞
0 θe−θuh(t + u)du]dG(N)(t)

G(N)(T)
,

which increases strictly with T to H(N) and increases
strictly with N to

∫ ∞
0 θe−θ th(T + t)dt, and H1(T, N) <∫ ∞

0 θe−θ th(T + t)dt from Appendix 7. Substituting (28.71)
for (28.73),

H1(T, N) ≥
∫ ∞

0
θe−θ th(T + t)dt,

which does not hold for any T . Therefore, the optimal policy
which minimizes COF(T, N) is N∗

OF = ∞ and T∗
OF = T∗

ON

given in (28.24).
Furthermore, noting that the left-hand side of (28.73)

increases strictly with N to that of (28.24), if T ≤ T∗
ON ,

then N∗
OF = ∞, and if T > T∗

ON , then there exists a
finite and unique minimum N∗

OF (1 ≤ N∗
OF < ∞) which

satisfies (28.73) and approaches to N∗ given in (28.5) as
T → ∞.
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(8) Replacement Overtime Last with Time T and
Cycle N
Suppose that the unit is replaced at cycle N (N = 0, 1, 2, . . . )
or at the first cycle over time T (0 ≤ T < ∞), whichever
occurs last. Then, the expected cost rate is [8, p. 44]

COL(T, N) =

cON + (cN − cON)[1 − G(N)(T)]
+ cM

{ ∫ ∞
0 [1 − G(N)(t)]h(t)dt

+ ∑∞
j=N

∫ T
0 [

∫ ∞
0 G(u)h(t + u)du]dG(j)(t)

}

(1/θ)[N + ∑∞
j=N G(j)(T)] , (28.74)

which agrees with (28.16) when T = 0 and (28.22) when
N = 0, and COL(T, 0) = COL(T, 1) when cN = cON .

When cN = cON and G(t) = 1 − e−θ t, (28.74) is

COL(T, N) =

cON + cM
{
H(T) +∫ ∞

T [1 − G(N)(t)]h(t)dt
+ G(N)(T)

∫ ∞
0 e−θ th(T + t)dt

}

(1/θ)[N + ∑∞
j=N G(j)(T)] . (28.75)

We find optimal T∗
OL and N∗

OL to minimize COL(T, N).
Differentiating COL(T, N) with respect to T and setting it
equal to zero,

∫ ∞

0
e−θ th(T + t)dt

[
N +

∞∑

j=N+1

G(j)(T)
]

− H(T) −
∫ ∞

T
[1 − G(N)(t)]h(t)dt = cON

cM
, (28.76)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

OL (0 < T∗
OL < ∞) which

satisfies (28.76) for any N, and the resulting cost rate is

COL(T
∗
OL, N) = cM

∫ ∞

0
θe−θ th(T∗

OL + t)dt

=
cON+cM

{
H(T∗

OL)+
∫ ∞
T∗
OL

[1−G(N)(t)]h(t)dt}

(1/θ)[N + ∑∞
j=N+1G

(j)(T∗
OL)]

, (28.77)

which agrees with (28.57) when T∗
OL = T and cN = cON =

cT . Comparing (28.76) with (28.58), T∗
OL < T∗

L because∫ ∞
0 θe−θ th(T + t)dt > h(T), and from (28.77), when cN =
cON , replacement last is better than replacement overtime
last. Furthermore, noting that the left-hand side of (28.76)
increases strictly with N from (28.24), T∗

OL decreases with N
from T∗

ON given in (28.24), and T∗
OL ≤ T∗

ON ≤ T∗
OF.

Forming COL(T, N + 1) − COL(T, N) ≥ 0,

H̃1(T, N)

θ

[

N +
∞∑

j=N+1

G(j)(T)

]

− H(T)

−
∫ ∞

T
[1 − G(N)(t)]h(t)dt ≥ cON

cM
, (28.78)

where

H̃1(T, N) ≡
∫ ∞
T [

∫ ∞
0 θe−θuh(t + u)du]dG(N)(t)

1 − G(N)(T)
,

which increases strictly with T from H(N) to h(∞)

and increases strictly with N from H̃1(T, 1) to h(∞),
and H̃1(T, N) >

∫ ∞
0 θe−θ th(T + t)dt from Appendix 7.

Substituting (28.76) for (28.78),

H̃1(T, N) ≥
∫ ∞

0
θe−θ th(T + t)dt,

which always holds for any T . Therefore, the optimal policy
which minimizes COL(T, N) is N∗

OL = 0 or 1 and T∗
OL = T∗

ON

given in (28.24).
Furthermore, noting that the left-hand side of (28.78)

increases strictly with N from

H̃1(T, 1)

θ
[θT + e−θT ] − H(T) −

∫ ∞

T
e−θ th(t) dt

> T
∫ ∞

0
θe−θ th(T + t) dt − H(T),

which agrees with (28.24), if T ≥ T∗
ON , then N

∗
OL = 0, and if

T < T∗
ON , then there exists a finite and unique minimum N∗

OL

(1 ≤ N∗
OL < ∞) which satisfies (28.78). In addition, because

the left-hand side of (28.78) increases strictly with T from

N
∫ ∞

0

θ(θ t)N

N! e−θ th(t)dt −
∫ ∞

0
[1 − G(N)(t)]h(t)dt,

which agrees with that of (28.18),N∗
OL decreases with T from

N∗, and N∗
OL ≤ N∗.

Comparing replacement overtime first and last with T and
N, if T < T∗

ON , then replacement overtime last is better than
overtime first, if T = T∗

ON , then replacement overtime with
T∗
ON is better than replacement overtime first and last, and

if T > T∗
ON , then replacement overtime first is better than

overtime last.

(9) Replacement First with Failure K and Cycle N
Suppose that the unit is replaced at failure K (K = 1, 2, . . . )
or at cycle N (N = 1, 2, . . . ), whichever occurs first. Then,
the expected cost rate is [10]
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CF(K,N) =
cK − (cK − cN)

∫ ∞
0 PK(t)dG(N)(t)

+ cM
∫ ∞
0 [1 − G(N)(t)]PK(t)h(t)dt

∫ ∞
0 [1 − G(N)]PK(t)dt

, (28.79)

which agrees with (28.14) when N = ∞ and (28.16) when
K = ∞.

We find optimal K∗
F and N∗

F to minimize CF(K,N) when
cK = cN and G(t) = 1 − e−θ t. Then, (28.79) is

CF(K,N) =
cK + cM

∫ ∞
0 [1 − G(N)(t)]PK(t)h(t)dt

∫ ∞
0 [1 − G(N)(t)]PK(t)dt

. (28.80)

Forming CF(K + 1, N) − CF(K,N) ≥ 0,

H1(K,N)

∫ ∞

0
[1 − G(N)(t)]PK(t)dt

−
∫ ∞

0
[1 − G(N)(t)]PK(t)h(t)dt ≥ cK

cM
, (28.81)

where

H1(K,N) ≡
∫ ∞
0 [1 − G(N)(t)]pK(t)h(t)dt
∫ ∞
0 [1 − G(N)(t)]pK(t)dt

,

which increases strictly withK to h(∞) and increases strictly
with N to 1/

∫ ∞
0 pK(t)dt from Appendix 8. Thus, because the

left-hand side of (28.81) increases strictly with K to ∞, there
exists a finite and unique minimum K∗

F (1 ≤ K∗
F < ∞) which

satisfies (28.81) for any N. In addition, noting that the left-
hand side of (28.81) goes to that of (28.15) as N → ∞, K∗

F

approaches to K∗ given in (28.15) as N → ∞.
Forming CF(K,N + 1) − CF(K,N) ≥ 0,

H2(K,N)

∫ ∞

0
[1 − G(N)(t)]PK(t)dt

−
∫ ∞

0
[1 − G(N)(t)]PK(t)h(t)dt ≥ cN

cM
, (28.82)

where

H2(K,N) ≡
∫ ∞
0 (θ t)Ne−θ tPK(t)h(t)dt
∫ ∞
0 (θ t)Ne−θ tPK(t)dt

,

which increases strictly withN to h(∞) and increases strictly
with K to H(N) from Appendix 9. Thus, because the left-
hand side of (28.82) increases strictly with N to ∞, there
exists a finite and unique minimum N∗

F (1 ≤ N∗
F < ∞)

which satisfies (28.82) for any K. In addition, noting that the

left-hand side of (28.82) goes to that of (28.18) as K → ∞,
N∗
F approaches to N∗ given in (28.18) as K → ∞.

(10) Replacement Last with Failure K and Cycle N
Suppose that the unit is replaced at failureK (K = 0, 1, 2, . . . )
or at cycle N (N = 0, 1, 2, . . . ), whichever occurs last. Then,
the expected cost rate is [10]

CL(K,N) =
cK−(cK−cN)

∫ ∞
0 PK(t)dG(N)(t)

+ cM
∫ ∞
0 [1−G(N)(t)PK(t)]h(t)dt

∫ ∞
0 [1 − G(N)(t)PK(t)]dt , (28.83)

which agrees with (28.14) when N = 0 and (28.16) when
K = 0.

We find optimal K∗
L and N∗

L to minimize CL(K,N) when
cK = cN and G(t) = 1 − e−θ t. Then, (28.83) is

CL(K,N)= cK+cM
∫ ∞
0 [1−G(N)(t)PK(t)]h(t)dt

∫ ∞
0 [1 − G(N)(t)PK(t)]dt . (28.84)

Forming CL(K + 1, N) − CL(K,N) ≥ 0,

H3(K,N)

∫ ∞

0
[1 − G(N)(t)PK(t)]dt

−
∫ ∞

0
[1 − G(N)(t)PK(t)]h(t)dt ≥ cK

cM
, (28.85)

where

H3(K,N) ≡
∫ ∞
0 G(N)(t)pK(t)h(t)dt
∫ ∞
0 G(N)(t)pK(t)dt

,

which increases strictly withK to h(∞) and increases strictly
with N from 1/

∫ ∞
0 pK(t)dt to h(∞) from Appendix 9. Thus,

because the left-hand side of (28.85) increases strictly with
K to ∞, there exists a finite and unique K∗

L (0 ≤ K∗
L < ∞)

which satisfies (28.85) for any N. In addition, noting that the
left-hand side of (28.85) agrees with that of (28.15) when
N = 0, K∗

L = K∗ given in (28.15) when N = 0.
Forming CL(K,N + 1) − CL(K,N) ≥ 0,

H4(K,N)

∫ ∞

0
[1 − G(N)(t)PK(t)]dt

−
∫ ∞

0
[1 − G(N)(t)PK(t)]h(t)dt ≥ cK

cM
, (28.86)

where

H4(K,N) ≡
∫ ∞
0 (θ t)Ne−θ tPK(t)h(t)dt
∫ ∞
0 (θ t)Ne−θ tPK(t)dt

,
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which increases with N to h(∞) and increases strictly with
K from H(N) to h(∞) from Appendix 9. Thus, because the
left-hand side of (28.86) increases strictly with N to ∞, there
exists a finite and unique minimum N∗

L (0 ≤ N∗
L < ∞) which

satisfies (28.86) for any K. In addition, noting that the left-
hand side of (28.86) agrees with that of (28.18) when K = 0,
N∗
L = N∗ given in (28.18) when K = 0.
As modified policies of periodic replacements with two

variables, we consider the following two policies:

(11) Modified Replacement with Time T after
Failure K
Suppose that the unit is replaced at time T (0 ≤ T < ∞)
after Kth (K = 0, 1, 2, . . . ) failure. Then, the mean time to
replacement is

∫ ∞

0
(t + T)dPK(t) = T +

∫ ∞

0
PK(t)dt,

and the expected number of failures until replacement is

∫ ∞

0
[K + H(T + t) − H(t)]dPK(t)

=
∫ ∞

0
H(T + t)dPK(t) =

∫ ∞

0
h(T + t)PK(t)dt.

Thus, the expected cost rate is

CM1(T, K) = cT + cM
∫ ∞
0 H(T + t)dPK(t)

T + ∫ ∞
0 PK(t)dt

, (28.87)

which agrees with (28.11) when K = 0 and (28.14) when
T = 0.

We find optimal T∗
M1 and K∗

M1 to minimize CM1(T, K).
Differentiating CM1(T, K) with respect to T and setting it
equal to zero,

∫ ∞

0
h(T + t)dPK(t)

[
T +

∫ ∞

0
PK(t)dt

]

−
∫ ∞

0
H(T + t)dPK(t) = cT

cM
, (28.88)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

M1 (0 ≤ T∗
M1 < ∞) which

satisfies (28.88) for any K, and the resulting cost rate is

CM1(T
∗
M1) = cM

∫ ∞

0
h(T∗

M1 + t)dPK(t). (28.89)

In addition, noting that the left-hand side of (28.88) increases
strictly with K from that of (28.12) to ∞, T∗

M1 decreases with
K from T∗ given in (28.12), and T∗

M1 ≤ T∗.

Forming CM1(T, K + 1) − CM1(T, K) ≥ 0,

HM1(T, K)
[
T +

∫ ∞

0
PK(t)dt

]

−
∫ ∞

0
H(T + t)dPK(t) ≥ cT

cM
, (28.90)

where

HM1(T, K) ≡
∫ ∞
0 h(T + t)pK(t)dt

∫ ∞
0 pK(t)dt

,

which increases strictly with T from 1/
∫ ∞
0 pK(t)dt to h(∞) and

increases strictly with K to h(∞) from Appendix 10. Thus,
because the left-hand side of (28.90) increases strictly with
K to ∞, there exists a finite and unique minimum K∗

M1 (0 ≤
K∗
M1 < ∞) which satisfies (28.90) for any T . Noting that the

left-hand side of (28.90) increases strictly with T from that
of (28.15), K∗

M1 decreases with T from K∗ given in (28.15),
and K∗

M1 ≤ K∗.

(12) Modified Replacement with Failure K after
Time T
Suppose that the unit is replaced at failureK (K = 0, 1, 2, . . . )
after time T (0 ≤ T < ∞). Then, the mean time to
replacement is

T +
∫ ∞

T
(t − T)dPK(t, T) = T +

∫ ∞

T
PK(t, T)dt,

where for T ≤ t < ∞,

pK(t, T) ≡ [H(t) − H(T)]K
K! e−[H(t)−H(T)],

PK(t, T) ≡
∞∑

j=K
pj(t, T) (K = 0, 1, 2, . . . ),

and the expected number of failures until replacement is

H(T) + K.

Thus, the expected cost rate is

CM2(T, K) = cK + cM[H(T) + K]
T + ∫ ∞

T PK(t, T)dt
, (28.91)

which agrees with (28.11) when K = 0, (28.14) when T = 0,
and (28.19) when K = 1.

We find optimal T∗
M2 and K∗

M2 to minimize CM2(T, K).
Differentiating CM2(T, K) with respect to T and setting it
equal to zero,
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HM2(T, K − 1)
[
T +

∫ ∞

T
PK(t, T)dt

]

− H(T) − K = cK
cM

, (28.92)

where

HM2(T, K)≡

⎧
⎪⎨

⎪⎩

1
∫ ∞
T pK(t, T)dt

(K = 0, 1, 2, . . . ),

h(T) (K = −1),

which increases strictly with K from h(T) to h(∞) and
increases strictly with T from 1/

∫ ∞
0 pK(t)dt to h(∞) from

Appendix 11. Thus, because the left-hand side of (28.92)
increases strictly with T to∞, there exists a finite and unique
T∗
M2 (0 ≤ T∗

M2 < ∞) which satisfies (28.92) for any K, and
the resulting cost rate is

CM2(T
∗
M2, K) = cMHM2(T

∗
M2, K − 1). (28.93)

In addition, noting that the left-hand side of (28.92) increases
strictly with K from that of (28.12), T∗

M2 decreases with K
from T∗ given in (28.12), and T∗

M2 ≤ T∗.
Forming CM2(T, K + 1) − CM2(T, K) ≥ 0,

HM2(T, K)
[
T +

∫ ∞

T
PK(t, T)dt

]
−H(T) −K ≥ cK

cM
. (28.94)

Substituting (28.92) for (28.94),

HM2(T, K) ≥ HM2(T, K − 1),

which always holds for any T . Thus, the optimal policy which
minimizes CM2(T, K) is K∗

M2 = 0 and T∗
M2 = T∗ given

in (28.12).
Therefore, because the left-hand side of (28.94) increases

strictly with K from that of (28.12), if T ≥ T∗, then K∗
M2 = 0,

and if T < T∗, then there exists a finite and unique minimum
K∗
M2 (1 ≤ K∗

M2 < ∞) which satisfies (28.94). In addition,
noting that the left-hand side of (28.94) increases with T
from that of (28.15), K∗

M2 decreases with T from K∗ given
in (28.15), and K∗

M2 ≤ K∗.

28.4 Three Policies

Combining periodic replacement with time T , failure K, and
cycle N, we consider five replacement policies. The expected
cost rates are obtained, and when the replacement costs cT ,
cN , and cK are equal, optimal policies are discussed. Using
these results, we could derive optimal policies for different
replacement costs.

28.4.1 Replacement First and Last

Suppose that the unit is replaced at time T (0 < T ≤ ∞),
at failure K (K = 1, 2, . . . ) or at cycle N (N = 1, 2, . . . ),
whichever occurs first. Then, the expected cost rate is [8,
p. 87]

CF(T, K, N) =
cT + (cN − cT)

∫ T
0 PK(t)dG(N)(t)

+ (cK − cT)
∫ T
0 [1−G(N)(t)]dPK(t)

+ cM
∫ T
0 [1 − G(N)(t)]PK(t)h(t)dt

∫ T
0 [1 − G(N)(t)]PK(t)dt

. (28.95)

Clearly, CF(T,∞,∞) = C(T) in (28.11), CF(∞, K,∞) =
C(K) in (28.14), CF(∞,∞, N) = C(N) in (28.16),
CF(T, K,∞) = CF(T, K) in (28.45),CF(T,∞, N) = CF(T, N)

in (28.53), and CF(∞, K, N) = CF(K,N) in (28.79).
Differentiating CF(T, K, N) with respect to T when cT =

cK = cN and setting it equal to zero,

h(T)

∫ T

0
[1 − G(N)(t)]PK(t)dt

−
∫ T

0
[1 − G(N)(t)]PK(t)h(t)dt = cT

cM
, (28.96)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

F (0 < T∗
F < ∞)

which satisfies (28.96) for any K and N, and the resulting
cost rate is

CF(T
∗
F, K, N) = cMh(T

∗
F). (28.97)

Noting that the left-hand side of (28.96) increases with K and
N, T∗

F decreases with K and N, and T∗
F goes to T

∗ as K → ∞
and N → ∞.

Furthermore, by making similar discussions in Sect. 28.3,
the optimal policy to minimize CF(T, K, N) is K∗

F = N∗
F = ∞

and T∗
F = T∗ given in (28.12).

Next, suppose that the unit is replaced at time T (0 ≤
T < ∞), at failure K (K = 0, 1, 2, . . . ) or at cycle N
(N = 0, 1, 2, . . . ), whichever occurs last. Then, the expected
cost rate is [8, p. 88]

CL(T, K, N) =
cT + (cN − cT)

∫ ∞
T PK(t)dG(N)(t)

+ (cK − cT)
∫ ∞
T G(N)(t)dPK(t)

+ cM
{
H(T) + ∫ ∞

T [1 − G(N)(t)PK(t)]h(t)dt}

T + ∫ ∞
T [1 − G(N)(t)PK(t)]dt . (28.98)

Clearly, CL(T, 0, 0) = C(T) in (28.11), CL(0, K, 0) = C(K)

in (28.14), CL(0, 0, N) = C(N) in (28.16), CL(T, K, 0) =
CL(T, K) in (28.49), CL(T, 0, N) = CL(T, N) in (28.57), and
CL(0, K, N) = CL(K,N) in (28.83).
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Differentiating CL(T,K,N) with respect to T when cT =
cK =cN and setting it equal to zero,

h(T)
{
T +

∫ ∞

T
[1 − G(N)(t)PK(t)]dt

}

− H(T) −
∫ ∞

T
[1 − G(N)(t)PK(t)]h(t)dt = cT

cM
, (28.99)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

L (0 < T∗
L < ∞) which

satisfies (28.99) for any K and N, and the resulting cost rate
is

CL(T
∗
L) = cMh(T

∗
L). (28.100)

Noting that the left-hand side of (28.99) decreases withK and
N, T∗

L increases with K and N, and T∗
L = T∗ given in (28.12)

when K = N = 0.
Furthermore, by making similar discussions in Sect. 28.3,

the optimal policy to minimize CL(T, K, N) is K∗
L = N∗

L = 0
and T∗

L = T∗ given in (28.12).

28.4.2 Replacement Middle

Suppose that the unit is replaced at time T (0 ≤ T < ∞),
at cycle K (K = 0, 1, 2, . . . ) or at cycle N (N = 0, 1, 2, . . . ),
whichever occurs middle. That is, when tK and tN are denoted
by the respective occurrence times of failure K and cycle N,
the unit is replaced at time T for {tN < T < tK} or {tK < T <

tN}, at failure K for {T < tK < N} or {N < tK < T}, and
at cycle N for {T < tN < tK} or {tK < tN < T}. Then, the
expected cost rate is [5, 8, p. 90]

CM(T, K, N) =
cT + (cN − cT)[

∫ ∞
T PK(t)dG(N)(t)

+ ∫ T
0 PK(t)dG(N)(t)]

+ (cK − cT)
{ ∫ ∞

T [1 − G(N)(t)]dPK(t)

+ ∫ T
0 G(N)(t)dPK(t)

}

+ cM
{∫ T

0 [1 − G(N)(t)PK(t)]h(t)dt
+∫ ∞

T [1 − G(N)(t)]PK(t)h(t)dt
}

∫ T
0 [1 − G(N)(t)PK(t)]dt
+ ∫ ∞

T [1 − G(N)(t)]PK(t)dt

. (28.101)

Clearly,

CM(0, K, N) = CF(∞, K, N),

CM(∞, K, N) = CL(0, K, N),

CM(T, 0, N) = CF(T,∞, N),

CM(T,∞, N) = CL(T, 0, N),

CM(T, K, 0) = CF(T, K,∞),

CM(T, K,∞) = CL(T, K, 0).

Differentiating CM(T, K, N) with respect to T when cT =
cK = cN and setting it equal to zero,

h(T)
{ ∫ T

0
[1 − G(N)(t)PK(t)]dt

+
∫ ∞

T
[1 − G(N)(t)]PK(t)dt

}

−
∫ T

0
[1 − G(N)(t)PK(t)]h(t)dt

−
∫ ∞

T
[1 − G(N)(t)]PK(t)h(t)dt = cM

cT
, (28.102)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

M (0 < T∗
M < ∞) which sat-

isfies (28.102) for any K and N, and the resulting cost rate is

CM(T∗
M, K, N) = cMh(T

∗
M). (28.103)

28.4.3 Modified Replacement First and Last

Suppose that the unit is replaced at time T (0 < T ≤ ∞) or at
Max{tK, tN} (K,N = 1, 2, . . . ), whichever occurs first. Then,
the probability that the unit is replaced at time T is

1 − G(N)(T)PK(T),

the probability that it is replaced at failure K is

∫ T

0
G(N)(t)dPK(t),

and the probability that it is replaced at cycle N is

∫ T

0
PK(t)dG(N)(t).

Thus, the mean time to replacement is

T[1 − G(N)(T)PK(T)] +
∫ T

0
tPK(t)dG(N)(t)

+
∫ T

0
tG(N)(t)dPK(t)

=
∫ T

0
[1 − G(N)(t)PK(t)]dt,

and the expected number of failures until replacement is

H(T)[1 − G(N)(T)PK(T)]

+
∫ T

0
H(t)PK(t)dG(N)(t)+

∫ T

0
H(t)G(N)(t)dPK(t)

=
∫ T

0
[1 − G(N)(t)PK(t)]h(t)dt.
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Thus, the expected cost rate is

CMF(T, K, N) =
cT + (cK − cT)

∫ T
0 G(N)(t)dPK(t)

+ (cN − cT)
∫ T
0 PK(t)dG(N)(t)

+ cM
∫ T
0 [1 − G(N)(t)PK(t)]h(t)dt

∫ T
0 [1 − G(N)(t)PK(t)]dt . (28.104)

Clearly,

CMF(∞, K, N) = CL(0, K, N) = CM(∞, K, N),

CMF(T, 0, N) = CF(T,∞, N) = CM(T, 0, N),

CMF(T, K, 0) = CF(T, K,∞) = CM(T, K, 0).

Differentiating CMF(T, K, N) with respect to T when cT =
cK = cN and setting it equal to zero,

h(T)

∫ T

0
[1 − G(N)(t)PK(t)]dt

−
∫ T

0
[1 − G(N)(t)PK(t)]h(t)dt = cT

cM
, (28.105)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

MF (0 < T∗
MF < ∞)

which satisfies (28.105) for any K and N, and the resulting
cost rate is

CMF(T
∗
MF, K, N) = cMh(T

∗
MF). (28.106)

Next, suppose that the unit is replaced at time T (0 ≤ T <

∞) or at Min{tK, tN} (K,N = 0, 1, 2, . . . ), whichever occurs
last. Then, the probability that the unit is replaced at time T
is

PK(T) + G(N)(T)PK(T),

the probability that it is replaced at failure K is

∫ ∞

T
[1 − G(N)(t)]dPK(t),

and the probability that it is replaced at cycle N is

∫ ∞

T
PK(t)dG(N)(t).

Thus, the mean time to replacement is

T[PK(T) + G(N)(T)PK(T)]

+
∫ ∞

T
t[1 − G(N)(t)]dPK(t)

+
∫ ∞

T
tPK(t)dG(N)(t)

= T +
∫ ∞

T
{1 − [1 − G(N)(t)]PK(t)}dt,

and the expected number of failures until replacement is

H(T)[PK(T) + G(N)(T)PK(T)]

+
∫ ∞

T
H(t)[1 − G(N)(t)]dPK(t)

+
∫ ∞

T
H(t)PK(t)dG(N)(t)

= H(T) +
∫ ∞

T
{1 − [1 − G(N)(t)]PK(t)}h(t)dt.

Thus, the expected cost rate is

CML(T, K, N) =
cT + (cK−cT)

∫ ∞
T [1−G(N)(t)]dPK(t)

+ (cN−cT)
∫ ∞
T PK(t)dG(N)(t) + cM

(
H(T)

+ ∫ ∞
T

{
1 − [1 − G(N)(t)]PK(t)

}
h(t)dt

)

T + ∫ ∞
T

{
1 − [1 − G(N)(t)]PK(t)

}
dt

. (28.107)

Clearly,

CML(0, K, N) = CL(0, K, N) = CM(∞, K, N),

CML(T,∞, N) = CF(T,∞, N) = CM(T, 0, N),

CML(T, K,∞) = CF(T, K,∞) = CM(T, K, 0).

Differentiating CML(T, K, N) with respect to T when cT =
cK = cN and setting it equal to zero,

h(T)
(
T +

∫ ∞

T
{1 − [1 − G(N)(t)]PK(t)}dt

)

− H(T) −
∫ ∞

T
{1 − [1 − G(N)(t)]PK(t)}h(t)dt

= cT
cM

, (28.108)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

ML (0 < T∗
ML < ∞) which

satisfies (28.108) for any K and N, and the resulting cost rate
is

CML(T
∗
ML) = cMh(T

∗
ML). (28.109)

28.5 Redundant Replacement Policies

We have introduced the age and periodic replacements with
one, two, and three policies. Using these results, we can
extended them to the following replacements with time T and
n number of policies, which is called redundant replacement
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policy: Assume that the unit is replaced at time T (0≤T ≤ ∞)
or random times Y1, Y2, . . . , Yn (n = 1, 2, . . . ), where Yj is
independent with each other and has a general distribution
Gj(t) ≡ Pr{Yj ≤ t} with finite mean 1/θj (0 < θj < ∞) [6,8,
p. 100].

28.5.1 Age Replacement

(1) Replacement First
Suppose that the unit is replaced preventively at time T (0 <

T ≤ ∞) or at time Y1, Y2, . . . , Yn (n = 1, 2, . . . ), whichever
occurs first. Then, by setting Zm = Min{T, Y1, . . . , Yn}, Zm
has a distribution

GF(t) ≡ Pr{Zm ≤ t}

=
{
1 − ∏n

j=1Gj(t) for t < T,

1 for t ≥ T.

The probability that the unit is replaced at time T is

F(T)

n∏

j=1

Gj(T),

the probability that it is replaced at time Yj is

∫ T

0
F(t)

[ n∏

i=1,i	=j
Gi(t)

]
dGj(t) (j = 1, 2, . . . , n),

and the probability that it is replaced at failure is

∫ T

0

[ n∏

j=1

Gj(t)
]
dF(t).

Thus, the mean time to replacement is

TF(T)
[ n∏

j=1

Gj(T)
]

+
n∑

j=1

∫ T

0
tF(t)

[ n∏

i=1,i	=j
Gi(t)

]
dGj(t)

+
∫ T

0
t
[ n∏

j=1

Gj(t)
]
dF(t)=

∫ T

0
F(t)

[ n∏

j=1

Gj(t)
]
dt.

Therefore, the expected cost rate is

CF(T) =
cT + ∑n

j=1(cj − cT)
∫ T
0 F(t)

× [
∏n

i=1,i	=j Gi(t)]dGj(t)

+ (cF − cT)
∫ T
0 [

∏n
j=1Gj(t)]dF(t)

∫ T
0 F(t)[

∏n
j=1Gj(t)]dt

, (28.110)

where cj = replacement cost at time Yj (j = 1, 2, . . . , n) and
cF > cj.

We find optimal T∗
F to minimize CF(T) when cj = cT .

Differentiating CF(T) with respect to T and setting it equal
to zero,

h(T)

∫ T

0
F(t)

[ n∏

j=1

Gj(t)
]
dt

−
∫ T

0

[ n∏

j=1

Gj(t)
]
dF(t) = cT

cF − cT
, (28.111)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and unique T∗

F (0 < T∗
F < ∞)

which satisfies (28.111), and the resulting cost rate is

CF(T
∗
F) = (cF − cT)h(T

∗
F). (28.112)

In addition, because the left-hand side of (28.111) decreases
with n, T∗

F increases with n.

(2) Replacement Last
Suppose that the unit is replaced preventively at time T (0 ≤
T < ∞) or at time Y1, Y2, . . . , Yn (n = 1, 2, . . . ), whichever
occurs last. Thus, by setting ZM ≡ Max{T, Y1, . . . , Yn}, ZM
has a distribution

GL(t) ≡ Pr{ZM ≤ t} =
⎧
⎨

⎩

0 for t < T,
∏n

j=1 Gj(t) for t ≥ T.

The probability that the unit is replaced at time T is

F(T)

n∏

j=1

Gj(T),

the probability that it is replaced at time Yj is

∫ ∞

T
F(t)

[ n∏

i=1,i	=j
Gi(t)

]
dGj(t) (j = 1, 2, . . . , n),

and the probability that it is replaced at failure is

F(T) +
∫ ∞

T

[
1 −

n∏

j=1

Gj(t)
]
dF(t).
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Thus, the mean time to replacement is

TF(T)

n∏

j=1

Gj(T)

+
n∑

j=1

∫ ∞

T
tF(t)

[ n∏

i=1,i	=j
Gi(t)

]
dGj(t)

+
∫ T

0
t dF(t) +

∫ ∞

T
t
[
1 −

n∏

j=1

Gj(t)
]
dF(t)

=
∫ T

0
F(t)dt +

∫ ∞

T
F(t)

[
1 −

n∏

j=1

Gj(t)
]
dt.

Therefore, the expected cost rate is

CL(T) =
cT + ∑n

j=1(cj − cT)
∫ ∞
T F(t)

× [
∏n

i=1,i	=j Gi(t)]dGj(t)
+ (cF − cT)

{
F(T)

+ ∫ ∞
T [1 − ∏n

j=1 Gj(t)]dF(t)
}

∫ T
0 F(t)dt + ∫ ∞

T F(t)[1 − ∏n
j=1Gj(t)]dt

. (28.113)

We find optimal T∗
L to minimize CL(T) when cj = cT .

Differentiating CL(T) with respect to T and setting it equal
to zero,

h(T)
{ ∫ T

0
F(t)dt +

∫ ∞

T
F(t)

[
1 −

n∏

j=1

Gj(t)
]
dt

}

− F(T) −
∫ ∞

T

[
1 −

n∏

j=1

Gj(t)
]
dF(t) = cT

cF − cT
,

(28.114)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

L (0 < T∗
L < ∞) which

satisfies (28.114), and the resulting cost rate is

CL(T
∗
L) = (cF − cT)h(T

∗
L). (28.115)

In addition, because the left-hand side of (28.114) decreases
with n, T∗

L increases with n.

28.5.2 Periodic Replacement

(1) Replacement First
Suppose that the unit is replaced at time T (0 < T ≤ ∞) or
at time Y1, Y2, . . . , Yn (n = 1, 2, . . . ), whichever occurs first.
Then, the probability that the unit is replaced at time T is

n∏

j=1

Gj(T),

and the probability that it is replaced at time Yj is

∫ T

0

[ n∏

i=1,i	=j
Gi(t)

]
dGj(t) (j = 1, 2, . . . , n).

Thus, the mean time to replacement is

T
n∏

j=1

Gj(T) +
n∑

j=1

∫ T

0
t
[ n∏

i=1,i	=j
Gi(t)

]
dGj(t)

=
∫ T

0

[ n∏

j=1

Gj(t)
]
dt,

and the expected number of failures is

H(T)

n∏

j=1

Gj(T)

+
n∑

j=1

∫ T

0
H(t)

[ n∏

i=j,i	=j
Gi(t)

]
dGj(t)

=
∫ T

0

[ n∏

j=1

Gj(t)
]
h(t)dt.

Therefore, the expected cost rate is

CF(T) =

cT + ∑n
j=1(cj − cT)

∫ T
0 [

∏n
i=1,i	=j Gi(t)]dGj(t)

+ cM
∫ T
0 [

∏n
j=1 Gj(t)]h(t)dt
∫ T
0 [

∏n
j=1 Gj(t)]dt

. (28.116)

We find optimal T∗
F to minimize CF(T) when cj = cT .

Differentiating CF(T) with respect to T and setting it equal
to zero,

h(T)

∫ T

0

[ n∏

j=1

Gj(t)
]
dt −

∫ T

0

[ n∏

j=1

Gj(t)
]
h(t)dt

= cT
cM

, (28.117)

whose left-hand side increases strictly with T from 0 to ∞.
Thus, there exists a finite and uniqueminimum T∗

F (0 < T∗
F <

∞) which satisfies (28.117), and the resulting cost rate is

CF(T
∗
F) = cMh(T

∗
F).

In addition, because the left-hand side of (28.117) decreases
with n, T∗

F increases with n.
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(2) Replacement Last
Suppose that the unit is replaced at time T (0 ≤ T < ∞) or
at time Y1, Y2, . . . , Yn (n = 1, 2, . . . ), whichever occurs last.
Then, the probability that the unit is replaced at time T is

n∏

j=1

Gj(T),

and the probability that it is replaced at time Yj is

∫ ∞

T

[ n∏

i=1,i	=j
Gi(t)

]
dGj(t) (j = 1, 2, . . . , n).

Thus, the mean time to replacement is

T
n∏

j=1

Gj(T) +
n∑

j=1

∫ ∞

T
t
[ n∏

i=1,i	=j
Gi(t)

]
dGj(t)

= T +
∫ ∞

T

[
1 −

n∏

j=1

Gj(t)
]
dt,

and the expected number of failures until replacement is

H(T)

n∏

j=1

Gj(T) +
n∑

j=1

∫ ∞

T
H(t)

[ n∏

i=1,i	=j
Gi(t)

]
dGj(t)

= H(T) +
∫ ∞

T

[
1 −

n∏

j=1

Gj(t)
]
h(t)dt.

Therefore, the expected cost rate is

CL(T) =
cT + ∑n

j=1(cj − cT)
∫ ∞
T [

∏n
i=1,i	=j Gi(t)]dGj(t)

+ cM
{
H(T) + ∫ ∞

T [1 − ∏n
j=1Gj(t)]h(t)dt

}

T + ∫ ∞
T [1 − ∏n

j=1Gj(t)]dt
. (28.118)

We find optimal T∗
L to minimize CL(T). Differentiating

CL(T) with respect to T and setting it equal to zero,

h(T)
{
T +

∫ ∞

T

[
1 −

n∏

j=1

Gj(t)
]
dt

}
− H(T)

−
∫ ∞

T

[
1 −

n∏

j=1

Gj(t)
]
h(t)dt = cT

cM
, (28.119)

whose left-hand side increases strictly with T to ∞. Thus,
there exists a finite and unique T∗

L (0 < T∗
L < ∞) which

satisfies (28.118), and the resulting cost rate is

CL(T
∗
L) = cMh(T

∗
L). (28.120)

In addition, because the left-hand side of (28.119) increases
with n, T∗

L decreases with n.

Appendix 1

It is assumed that the failure rate h(t) ≡ f (t)/F(t) increases
strictly with t from h(0) to h(∞), and for N = 0, 1, 2, . . . and
K = 0, 1, 2, . . . .

g(N+1)(t) = θ(θ t)N

N! e−θ t,

G(N)(t) =
∫ t

0
g(N)(u)du =

∞∑

j=N

(θ t)j

j! e−θ t,

pK(t) = H(t)K

K! e−H(t),

PK(t) =
∞∑

j=K
pj(t) =

∞∑

j=K

H(t)j

j! e−H(t).

When F(t) = 1 − e−H(t), for 0 < T < ∞,

Q(T) = F(T)
∫ ∞
T F(t)dt

, QO(T) =
∫ T
0 e

−θ tdF(t)
∫ T
0e

−θ tF(t)dt
,

Q̃O(T) =
∫ ∞
T e−θ tdF(t)

∫ ∞
T e−θ tF(t)dt

,

all of which increase strictly with T , and for 0 < T < ∞,

Q(∞) = Q̃O(∞) = h(∞),

QO(T) < h(T) < Q̃O(T) < Q(T).

Appendix 2

1. For N = 0, 1, 2, . . . and 0 < T ≤ ∞,

Q(T, N) ≡
∫ T
0 (θ t)Ne−θ tdF(t)

∫ T
0 (θ t)Ne−θ tF(t)dt

increases strictly with T from h(0) to Q(N) ≡∫ ∞
0 (θ t)Ne−θ tdF(t)/

∫ ∞
0 (θ t)Ne−θ tF(t)dt and increases

strictly with N from QO(T) to h(T).
2. For N = 0, 1, 2, . . . and 0 ≤ T < ∞,

Q̃(T, N) ≡
∫ ∞
T (θ t)Ne−θ tdF(t)

∫ ∞
T (θ t)Ne−θ tF(t)dt

increases strictly with T fromQ(N) to h(∞) and increases
strictly with N from Q̃O(T) to h(∞).
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Proof. Note that

Q(0, N) = h(0), Q(∞, N) = Q(N),

Q(T, 0) = QO(T), Q(T,∞) = h(T),

Q̃(0, N) = Q(N), Q̃(∞, N) = h(∞),

Q̃(T, 0) = Q̃O(T), Q̃(T,∞) = h(∞).

Differentiating Q(T, N) with respect to T ,

(θT)Ne−θTF(T)

∫ T

0
(θ t)Ne−θ t[h(T) − h(t)]dt > 0,

which follows that Q(T, N) increases strictly with T from
h(0) to Q(N) for any N. Forming Q(T, N + 1) −Q(T, N) and
denoting

L1(T) ≡
∫ T

0
(θ t)N+1e−θ tdF(t)

∫ T

0
(θ t)Ne−θ tF(t)dt

−
∫ T

0
(θ t)Ne−θ tdF(t)

∫ T

0
(θ t)N+1e−θ tF(t)dt,

we have L1(0) = 0 and

L′
1(T) = (θT)Ne−θTF(T)

×
∫ T

0
(θ t)Ne−θ tF(t)(θT−θ t)[h(T)−h(t)]dt > 0,

which follows that Q(T, N) increases strictly with N from
QO(T) to h(T) for any T .

Using the similar method, we can easily prove 2. There-
fore, taking T → ∞,Q(N) increases strictly withN to h(∞),
and for 0 < T, N < ∞,

Q(T, N) < h(T) < Q̃O(T) < Q̃(T, N),

Q(T, N) < Q(N) < Q̃(T, N).

Appendix 3

1. For N = 0, 1, 2, . . . and 0 < T ≤ ∞,

H(T, N) ≡
∫ T
0 (θ t)Ne−θ th(t)dt
∫ T
0 (θ t)Ne−θ tdt

increases strictly with T from h(0) to H(N) ≡∫ ∞
0 [θ(θ t)N/N!]e−θ th(t)dt and increases strictly with N

from H(T, 0) = ∫ T
0 θe−θ th(t)dt/(1 − e−θT) to h(T).

2. For N = 0, 1, 2, . . . and 0 ≤ T < ∞,

H̃(T, N) ≡
∫ ∞
T (θ t)Ne−θ th(t)dt
∫ ∞
T (θ t)Ne−θ tdt

increases strictly with T fromH(N) to h(∞) and increases
strictly with N from

∫ ∞
0 θe−θ th(T + t)dt to h(∞).

Proof. Note that

H(0, N) = h(0), H(∞, N) = H(N),

H(T, 0) =
∫ T
0 θe−θ th(t)dt

1 − e−θT
, H(T,∞) = h(T),

H̃(0, N) = H(N), H̃(∞, N) = h(∞),

H̃(T, 0) =
∫ ∞

0
θe−θ th(T+t)dt, H̃(T,∞) = h(∞).

Using the similar method in Appendix 1, we can prove 1 and
2. Therefore, for 0 < T, N < ∞,

H(T, N) < h(T) < H̃(T, N),

H(T, N) < H(N) < H̃(T, N),

and H(N) increases strictly with N from
∫ ∞
0 θe−θ th(t)dt to

h(∞).

Appendix 4

1. For N = 0, 1, 2, . . . and 0 < T ≤ ∞,

Q1(T, N) ≡
∫ T
0 (θ t)N [

∫ ∞
t e−θudF(u)]dt

∫ T
0 (θ t)N [

∫ ∞
t e−θuF(u)du]dt

increases strictlywithT from Q̃O(0) = ∫ ∞
0 e−θ tdF(t)/

∫ ∞
0

e−θ tF(t)dt to Q(N+ 1) and increases strictly with N from
Q1(T, 0) to Q̃O(T).

2. For N = 0, 1, 2, . . . and 0 ≤ T < ∞,

Q̃1(T, N) ≡
∫ ∞
T (θ t)N [

∫ ∞
t e−θudF(u)]dt

∫ ∞
T (θ t)N [

∫ ∞
t e−θuF(u)du]dt

increases strictly with T from Q(N + 1) to h(∞) and
increases strictly with N from Q̃1(T, 0) to h(∞).

Proof. Note that

Q1(0, N) =
∫ ∞
0 e−θ tdF(t)

∫ ∞
0 e−θ tF(t)dt

= Q̃O(0),
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Q1(∞, N) = Q(N + 1), Q1(T,∞) = Q̃O(T),

Q̃1(0, N) = Q(N + 1), Q̃1(∞, N) = h(∞),

Q̃1(T,∞) = h(∞).

Differentiating Q1(T, N) with respect to T ,

(θT)N
∫ ∞

T
e−θ tF(t)dt

∫ T

0
(θ t)N

×
[ ∫ ∞

t
e−θuF(u)du

]
[Q̃O(T) − Q̃O(t)]dt > 0,

which follows that Q1(T, N) increases strictly with T from
Q̃O(0) toQ(N+1) for anyN. FormingQ1(T, N+1)−Q1(T, N)

and denoting

L3(T) =
∫ T

0
(θ t)N+1

[ ∫ ∞

t
e−θudF(u)

]
dt

×
∫ T

0
(θ t)N

[ ∫ ∞

t
e−θuF(u)du

]
dt

−
∫ T

0
(θ t)N

[ ∫ ∞

t
e−θudF(u)

]
dt

×
∫ T

0
(θ t)N+1

[ ∫ ∞

t
e−θuF(u)du

]
dt,

we have L3(0) = 0 and

L′
3(T) = (θT)N

[ ∫ ∞

T
e−θ tF(t)dt

]

×
∫ T

0
(θ t)N

[ ∫ ∞

t
e−θuF(u)du

]

× (θT − θ t)[Q̃O(T) − Q̃O(t)]dt > 0,

which follows that Q1(T, N) increases strictly with N from
Q1(T, 0) to Q̃O(T) for any T .

Using the similar method, we can prove 2, and for 0 <

T, N < ∞,

Q1(T, N) < Q̃O(T) < Q̃1(T, N),

Q1(T, N) < Q(N + 1) < Q̃1(T, N).

Appendix 5

1. For K = 0, 1, 2, . . . and 0 < T ≤ ∞,

H(T, K) ≡
∫ T
0 pK(t)h(t)dt
∫ T
0 pK(t)dt

increases strictly with T from h(0) to H(∞, K) =
1/

∫ ∞
0 pK(t)dt and increases strictly with K from

F(T)/
∫ T
0 F(t)dt to h(T).

2. For K = 0, 1, 2, . . . and 0 ≤ T < ∞,

H̃(T, K) ≡
∫ ∞
T pK(t)h(t)dt
∫ ∞
T pK(t)dt

increases strictly with T from 1/
∫ ∞
0 pK(t)dt to h(∞) and

increases strictly with K from Q(T) to h(∞).

Proof. Note that

H(0, K) = h(0), H(∞, K) = 1
∫ ∞
0 pK(t)dt

,

H(T, 0) = F(T)
∫ T
0 F(t)dt

, H(T,∞) = h(T),

H̃(0, K) = 1
∫ ∞
0 pK(t)dt

, H̃(∞, K) = h(∞),

H̃(T, 0) = Q(T), H̃(T,∞) = h(∞).

Differentiating H(T, K) with respect to T

pK(T)

∫ T

0
pK(t)[h(T) − h(t)]dt > 0,

which follows that H(T, K) increases strictly with T from
h(0) to 1/

∫ ∞
0 pK(t)dt for any K. Forming H(T, K + 1) −

H(T, K) and denoting

L4(T) ≡
∫ T

0
pK+1(t)h(t)dt

∫ T

0
pK(t)dt

−
∫ T

0
pK(t)h(t)dt

∫ T

0
pK+1(t)dt,

we have L4(0) = 0 and

L′
4(T) = pK(T)h(T)

(K + 1)

×
∫ T

0
pK(t)[H(T) − H(t)][h(T) − h(t)]dt > 0,

which follows that H(T, K) increases strictly with K from
F(T)/

∫ T
0 F(t)dt to h(T) for any T .

Using the similar method, we can prove 2. Therefore, for
0 ≤ K < ∞ and 0 < T < ∞,

H(T, K) < h(T) < H̃(T, K),

H(T, K) <
1

∫ ∞
0 pK(t)dt

< H̃(T, K),

and 1/
∫ ∞
0 pK(t)dt increases strictly with K from

1/
∫ ∞
0 p0(t)dt = 1/μ to h(∞).
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Appendix 6

1. For K = 0, 1, 2, . . . and 0 < T ≤ ∞,

H1(T, K) ≡ PK(T)
∫ T
0 [

∫ ∞
t e−H(u)+H(t)du]dPK(t)

increases strictly with T from 1/μ to 1/
∫ ∞
0 pK(t)dt

and increases strictly with K from 1/μ to Q(T).
2. For K = 1, 2, . . . and 0 ≤ T < ∞,

H̃1(T, K) ≡ PK(T)
∫ ∞
T [

∫ ∞
t e

−H(u)+H(t)du]dPK(t)

increases strictly with T from 1/
∫ ∞
0 pK(t)dt to h(∞) and

increases strictly with K from H̃1(T, 1) to h(∞).

Proof. Note that

H1(0, K) = 1

μ
,

H1(∞, K) = 1
∫ ∞
0 [

∫ ∞
t e−H(u)+H(t)du

]
dPK(t)

= 1
∫ ∞
0 pK(t)dt

,

H1(T,∞) = F(T)
∫ ∞
T F(T)dt

= Q(T),

H̃1(0, K) = 1
∫ ∞
0 pK(t)dt

,

H̃1(∞, K) = h(∞), H̃1(T,∞) = h(∞).

Using the similar method in Appendix 4, we can prove 1 and
2. Therefore, for 0 < T , K < ∞,

H1(T, K) < Q(T) < H̃1(T, K),

1

μ
< H1(T, K) <

1
∫ ∞
0 pK(t)dt

< H̃1(T, K).

Appendix 7

1. For N = 0, 1, 2, . . . and 0 < T ≤ ∞,

H1(T, N) ≡
∫ T
0 [

∫ ∞
0 θe−θuh(t + u)du]dG(N)(t)

G(N)(T)

increases strictly with T from
∫ ∞
0 θe−θ t h(t)dt to H(N)

and increases strictly with N from
∫ ∞
0 θe−θ th(t)dt to∫ ∞

0 θe−θ th(T + t)dt.

2. For N = 1, 2, . . . and 0 ≤ T < ∞,

H̃1(T, N) ≡
∫ ∞
T [

∫ ∞
0 θe−θuh(t + u)du]dG(N)(t)

1 − G(N)(T)

increases strictly with T fromH(N) to h(∞) and increases
strictly with N from H̃1(T, 1) to h(∞).

Proof. Note that

H1(0, N) =
∫ ∞

0
θe−θ th(t)dt,

H1(∞, N) =
∫ ∞

0

[∫ ∞

0
θe−θuh(t + u)du

]

dG(N)(t)

= H(N),

H1(T, 0) =
∫ ∞

0
θe−θ th(t)dt,

H1(T,∞) =
∫ ∞

0
e−θ th(T + t)dt,

H̃1(0, N) = H(N), H̃1(∞, N) = h(∞),

H̃1(T,∞) = h(∞).

Differentiating H1(T, N) with respect to T ,

g(N)(T)

∫ T

0

[ ∫ ∞

0
θe−θuh(T + u)du

−
∫ ∞

0
θe−θuh(t + u)du

]
dG(N)(t) > 0,

which follows that H1(T, N) increases strictly with T from∫ ∞
0 θe−θ th(t)dt to H(N) for any N. Forming H1(T, N + 1) −
H1(T, N) and denoting

L5(T) ≡

G(N)(T)

∫ T

0

[ ∫ ∞

0
θe−θuh(t + u)du

]
dG(N+1)(t)

− G(N+1)(T)

∫ T

0

[ ∫ ∞

0
θe−θuh(t+u)du

]
dG(N)(t),

we have L5(0) = 0 and

L′
5(T) = g(N)(T)

∫ T

0

[ ∫ ∞

0
θe−θuh(T + u)du

−
∫ ∞

0
θe−θuh(t+u)du

]
(θT−θ t)dG(N)(t) > 0,

which follows that H1(T, N) increases strictly with N from
H1(T, 1) to

∫ ∞
0 θe−θ th(T + t)dt for any T .



28 Stochastic Redundant Replacement Maintenance Models 569

28

Using the similar method, we can easily prove 2. There-
fore, for 0 < T , N < ∞,

H1(T, N) <

∫ ∞

0
θe−θ th(T + t)dt < H̃1(T, N),

H1(T, N) < H(N) < H̃1(T, N).

Appendix 8

1. For N = 1, 2, . . . and K = 0, 1, 2, . . . ,

H1(K,N) ≡
∫ ∞
0 [1 − G(N)(t)]pK(t)h(t)dt
∫ ∞
0 [1 − G(N)(t)]pK(t)dt

increases strictly with K from H(0, N) to h(∞) and in-
creases strictly with N from H(K, 1) to 1/

∫ ∞
0 pK(t)dt.

2. For N = 0, 1, 2, . . . and K = 1, 2, . . . ,

H2(K,N) ≡
∫ ∞
0 (θ t)Ne−θ tPK(t)h(t)dt
∫ ∞
0 (θ t)Ne−θ tPK(t)dt

increases strictly with K from H2(1, N) to H(N) and
increases strictly with N from H2(K, 0) to h(∞).

Proof. Denoting that for 0 < T ≤ ∞,

H1(T;K,N) ≡
∫ T
0 [1 − G(N)(t)]pK(t)h(t)dt
∫ T
0 [1 − G(N)(t)]pK(t)dt

,

we have

lim
K→∞H1(T;K,N) = h(T),

lim
N→∞H(T;K,N) =

∫ T
0 pK(t)h(t)dt
∫ T
0 pK(t)dt

= H(T, K).

Furthermore, using the similar methods in Appendixes 3 and
5,H1(T;K,N) increases strictly with K and increases strictly
with N. Thus, H1(T;K,N) increases strictly with K to h(T)

and increases strictly with N to H(T, K) for any T . Taking
T → ∞, H1(K,N) increases strictly with K to h(∞) for any
N and increases strictly with N to 1/

∫ ∞
0 pK(t)dt for any N.

Using the similar method, we can prove 2.

Appendix 9

1. For N = 0, 1, 2, . . . and K = 0, 1, 2, . . . ,

H3(K,N) ≡
∫ ∞
0 G(N)(t)pK(t)h(t)dt
∫ ∞
0 G(N)(t)pK(t)dt

increases strictly with K from H3(0, N) to h(∞) and
increases strictly with N from 1/

∫ ∞
0 pK(t)dt to h(∞).

2. For N = 0, 1, 2, . . . and K = 0, 1, 2, . . . ,

H4(K,N) ≡
∫ ∞
0 (θ t)Ne−θ tPK(t)h(t)dt
∫ ∞
0 (θ t)Ne−θ tPK(t)dt

increases strictly withK fromH(N) to h(∞) and increases
strictly with N from H4(K, 0) to h(∞). Therefore, for 0 <

K, N < ∞,

H1(K,N) <
1

∫ ∞
0 pK(t)dt

< H3(K,N),

H2(K,N) < H(N) < H4(K,N).

Proof. Using the similar method in Appendix 8, we can
prove 1 and 2.

Appendix 10

For K = 0, 1, 2, . . . and 0 ≤ T ≤ ∞,

HM1(T, K) ≡
∫ ∞
0 h(T + t)pK(t)dt

∫ ∞
0 pK(t)dt

increases strictly with T from 1/
∫ ∞
0 pK(t)dt to h(∞) and

increases strictly with K from HM1(T, 0) to h(∞).

Proof. It can be clearly shown that HM1(T, K) increases
strictly with T from 1/

∫ ∞
0 pK(t)dt to h(∞) for any K. Next,

denoting that for 0 < T1 < ∞,

H(T1, T, K) ≡
∫ T1
0 h(T + t)pK(t)dt

∫ T1
0 pK(t)dt

,

we have limK→∞ H(T1, T, K) = h(T + T1). Forming
H(T1, T, K + 1) − H(T1, T, K) and denoting

L6(T1) ≡
∫ T1

0
h(T + t)pK+1(t)dt

∫ T1

0
pK(t)dt

−
∫ T1

0
h(T + t)pK(t)dt

∫ T1

0
pK+1(t)dt,
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we have L6(0) = 0 and

L′
6(T1) = pK(T1)

K + 1

∫ T1

0
pK(t)[H(T1) − H(t)]

× [h(T + T1) − h(T + t)]dt > 0,

which follows that H(T1, T, K) increases strictly with K to
h(T + T1) for any T1. Taking T1 → ∞, HM1(T, K) increases
strictly with K to h(∞) for any T , andHM1(T, K) ≥ h(T) and
HM1(T, K) ≥ 1/

∫ ∞
0 pK(t)dt.

Appendix 11

For K = 0, 1, 2, . . . and 0 ≤ T < ∞,

HM2(T, K) ≡ 1
∫ ∞
T pK(t, T)dt

increases strictly with T from 1/
∫ ∞
0 pK(t)dt to h(∞) and

increases strictly with K from Q(T) to h(∞).

Proof. Note first that

HM2(T, K) =
∫ ∞
T [H(t) − H(T)]Ke−H(t)h(t)dt
∫ ∞
T [H(t) − H(T)]Ke−H(t)dt

,

because

∫ ∞

T
[H(t) − H(T)]Ke−H(t)h(t)dt = K!e−H(T).

Next, note that

HM2(0, K) = 1
∫ ∞
0 pK(t)dt

, HM2(∞, K) = h(∞),

HM2(T, 0) = Q(T), HM2(T,∞) = h(∞).

Differentiating HM2(T, K) with respect to T ,

Kh(T)
{ ∫ ∞

T
[H(t) − H(T)]KdF(t)

×
∫ ∞

T
[H(u) − H(T)]K−1F(u)du

−
∫ ∞

T
[H(t) − H(T)]K−1dF(t)

×
∫ ∞

T
[H(u) − H(T)]KF(u)du

}

= Kh(T)

∫ ∞

T
[H(t) − H(T)]K−1F(t)dt

×
∫ t

T
[H(u) − H(T)]K−1F(u)

× [h(t) − h(u)][H(t) − H(u)]du > 0,

because

∫ ∞

T
[H(t)−H(T)]KdF(t)

×
{∫ t

T
[H(u)−H(T)]K−1F(u)du

+
∫ ∞

t
[H(u)−H(T)]K−1F(u)du

}

=
∫ ∞

T
[H(t) − H(T)]KdF(t)

×
∫ t

T
[H(u) − H(T)]K−1F(u)du

+
∫ ∞

T
[H(t) − H(T)]K−1F(t)dt

×
∫ t

T
[H(u) − H(T)]KdF(u),

which follows that HM2(T, K) increases strictly with T from
1/

∫ ∞
0 pK(t)dt to h(∞) for any K. Forming HM2(T, K + 1) −

HM2(T, K), and denoting

L7(T) ≡
∫ ∞

T
[H(t) − H(T)]K+1dF(t)

×
∫ ∞

T
[H(u) − H(T)]KF(u)du

−
∫ ∞

T
[H(t) − H(T)]KdF(t)

×
∫ ∞

T
[H(u) − H(T)]K+1F(u)du,

we have L7(∞) = 0 and L′
7(T) < 0 which follows that

HM2(T, K) increases strictly with K from Q(T) to h(∞) for
any T , and HM2(T, K) ≥ 1/

∫ ∞
0 pK(t)dt, HM2(T, K) ≥ Q(T).
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Abstract

This chapter introduces to readers the new concept and
methodology of confidence distribution and the modern-
day distributional inference in statistics. This discussion
should be of interest to people who would like to go into
the depth of the statistical inference methodology and to
utilize distribution estimators in practice. We also include
in the discussion the topic of generalized fiducial infer-
ence, a special type of modern distributional inference,
and relate it to the concept of confidence distribution. Sev-
eral real data examples are also provided for practitioners.
We hope that the selected content covers the greater part
of the developments on this subject.

Y. Cui (�)
Zhejiang University, Hangzhou, Zhejiang, China
e-mail: cuiyf@zju.edu.cn

M. Xie
Rutgers University, New Brunswick, NJ, USA
e-mail: mxie@stat.rutgers.edu

Keywords
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29.1 Introduction

A confidence distribution (CD) refers to a sample-dependent
distribution function that can represent confidence intervals
(regions) of all levels for a parameter of interest [74, 90].
Instead of the usual point estimator or confidence interval,
CD is a distribution estimator of a parameter of interest with
a pure frequentist interpretation. The development of the CD
can be traced back to, for example, [16,28,47,66]. However,
its associated inference schemes and applications have not
received much attention until the recent surge of interest in
the research of CD and its applications [25, 46, 52, 53, 72–
74, 77, 78, 82, 90, 91, 94]. All of these developments of CDs,
along with a modern definition and interpretation, provide a
powerful inferential tool for statistical inference.

One of the main contributions of CD is its applications
on fusion learning [12, 15, 40, 51–53, 72, 75, 77, 81, 91, 92].
Combining CDs from independent studies naturally pre-
serves more information from the individual studies than
a traditional approach of combining only point estimators.
A unified framework of combining CDs for fusion learning
generally includes three steps: (1) using a CD to summarize
relevant information or obtain an inference result from each
study, (2) combining information from different sources or
studies by combining these CDs, and (3) making inference
via the combined CD. This approach has sound theoretical
support and has been applied to many practical situations
with much success.

On a different note, the fiducial distribution may be
considered as one special type of CD, which provides a
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systematic way to obtain a CD. The origin of fiducial
inference can be traced back to R.A. Fisher [28] who
introduced the concept of a fiducial distribution for
one parameter and proposed the use of this fiducial
distribution to avoid the problems related to the choice
of a prior distribution. Since the mid-2000s, there has
been a renewed interest in modifications of fiducial
inference [2, 7, 8, 22, 24, 30, 31, 33–37, 41, 56, 57, 59–
63,68, 73, 74, 79, 85, 87, 90, 93, 96].

We briefly overview these modern approaches which ex-
tend Fisher’s original fiducial argument. We then focus on
a recent development termed generalized fiducial inference
and its applications [14,17,37,41,42,44,49,50,65,86,88,89]
that greatly expand the applicability of fiducial ideas. We
demonstrate this recipe on several examples of varying com-
plexity. The statistical procedures derived by the generalized
fiducial inference often have very good performance from
both theoretical and numerical points of view.

29.2 Confidence Distribution

29.2.1 The Concept of CD

This section will mainly focus on the concept of CD. The
CD can be viewed as a distribution estimator, which can
be utilized for constructing statistical procedures such as
point estimates, confidence intervals, hypothesis tests, etc.
The basic notion of CDs is related to the fiducial distribution
of [28]; however, it is a pure frequentist concept. Some
have suggested to view CD as the frequentist analog of
Bayesian posterior distribution [e.g., 73, 74]. More broadly,
if the credible intervals or regions obtained from a Bayesian
posterior match with frequentist intervals or regions (either
exactly or asymptotically), then the Bayesian posterior can
be viewed as CD, and thus Bayesian approach is also a way
to obtain CD [90].

Suppose X1, , X2, . . . , Xn are independent and identically
distributed and X is the sample space corresponding to the
dataset (X1, X2, . . . , Xn). Let θ be a scalar parameter of in-
terest and � be the parameter space. The following formal
definitions of CD and asymptotic CD are proposed in [72,77].

Definition 29.2.1 (CD and Asymptotic CD) A function
Hn(·) = Hn(x, ·) on X × � → [0, 1] is called a CD for a
parameter, if (1) for each given x ∈ X,Hn(·) is a (continuous)
cumulative distribution function on � and (2) at the true
parameter value θ = θ0, Hn(θ0) ≡ Hn(x, θ0), as a function
of the sample x, follows the uniform distribution U(0, 1). In
addition, the function Hn(·) is called an asymptotic CD if
condition (2) is replaced by (2’) at the true parameter θ = θ0,

Hn(θ0)
d→ U(0, 1) as n → ∞.

From a nontechnical point of view, a CD is a function
of both the parameter and the sample which satisfies two
conditions. The first condition basically states that for any
fixed sample, a CD is a distribution function on the parameter
space. The second condition essentially requires that the cor-
responding inference derived by a CD has desired frequentist
properties. Section 29.2.2 will further discuss how to use the
second condition to extract information from a CD to make
inference.

Birnbaum [9] introduced the concept of confidence curve
as “an omnibus technique for estimation and testing statistical
hypotheses,” which was independent of the development
of CD. From a CD Hn(θ), the confidence curve can be
written as

CVn(θ) = 2min{Hn(θ), 1 − Hn(θ)}.

Indeed, confidence curve is an alternative expression of
CD and it is a very useful graphical tool for visualizing
CDs. On a plot of CVn(θ) versus θ , a line across the y-
axis of the significance level α, for any 0 < α < 1,
intersects with the confidence curve at two points, and these
two points correspond to an 1 − α level, equal-tailed, two-
sided confidence interval for θ . In addition, the maximum
of a confidence curve is the median of the CD which is the
recommended point estimator.

We present below five illustrating examples of CDs. More
examples refer to [74, 77, 90].

Example 29.2.1 Suppose the data Xi ∼ N(μ, 1), i =
1, . . . , n, with unknown μ. Let x̄n denote the sample mean.
ThenN(x̄n, 1/n) is a CD forμ, and it can be represented in the
following three forms: (i) confidence distribution (cumulate
distribution form), Hn(μ) = �(

√
n(μ− x̄n)); (ii) confidence

density (density form), hn(μ) = 1√
2π/n

exp{− n
2 (μ − x̄n)2};

and (iii) confidence curve, CVn(μ) = 2min{�(
√
n(μ −

x̄n)), 1 − �(
√
n(μ − x̄n))}. See Fig. 29.1 for an illustration.

The data are generated from N(0.3, 1) with sample size 100.

Example 29.2.2 ([77]) Suppose the data Xi ∼ N(μ, σ 2), i =
1, . . . , n, with both unknownμ and σ . A CD forμ isHn(μ) =
Ftn−1(

√
n(μ−x̄n)
sn

), where sn is the sample standard deviation
and Ftn−1(·) is the cumulative distribution function of stu-
dent t distribution with parameter n − 1. A CD for σ 2 is

Hn(σ
2) = 1−Fχ2

n−1
(

(n−1)s2n
σ 2 ), where Fχ2

n−1
(·) is the cumulative

distribution function of the χ2
n−1-distribution.

Example 29.2.3 ([77]) Let ̂θ be a consistent estimator of θ .
For bootstrap, the distribution of ̂θ∗ − θ is estimated by the
bootstrap distribution ̂θ∗ − ̂θ , where ̂θ∗ is the estimator of
θ computed on a bootstrap sample [26]. An asymptotic CD
for θ is given by Hn(θ) = 1 − Pr(̂θ∗ − ̂θ ≤ ̂θ − θ) =
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Fig. 29.1 Confidence distribution presented in Example 29.2.1 in the forms of density function, cumulative distribution function, and confidence
curve

Pr(̂θ∗ ≥ 2̂θ − θ). In addition, when the limiting distribution
of normalized ̂θ is symmetric, the raw bootstrap distribution
Hn(θ) = 1 − Pr(̂θ − ̂θ∗ ≤ ̂θ − θ) = Pr(̂θ∗ ≤ θ) is also an
asymptotic CD.

Example 29.2.4 Suppose we are interested in the location
parameter θ of a continuous distribution. When the distribu-
tion F is symmetric, i.e., F(θ − y) = 1 − F(θ + y), θ is the
median. The Wilcoxon rank test for H0 : θ = t, H1 : θ �= t is
based on the summation of signed ranks of Yi− t, i.e., the test
statisticW = ∑n

i=1 ZiRi, where Ri is the rank of |Yi−t| and Zi
is an indicator variable with 1 if Yi− t > 0 and−1 otherwise.
Denote by p(t) the p-value associated with the Wilcoxon
rank test for H0 : θ = t, H1 : θ �= t. When t varies in
(−∞,∞), the p-value p(t) is referred to as a p-value function.
We can prove that the p-value function p(t) is an asymptotic
CD [90]. Figure 29.2 provides illustrations of the asymptotic
CD density p′(t), the asymptotic CD function p(t), and the
asymptotic CV 2min{p(t), 1−p(t)} for two sample sizes. The
data are generated fromN(0, 1)with sample sizes n = 10 and
100, respectively.

Example 29.2.5 ([78]) Suppose that there is an independent
and identically distributed sample of size n from a semi-
parametric model involving multiple parameters. Let ln(θ)

be the log profile likelihood function and Jn(θ) = −l̈n(θ)

be the observed Fisher information for a scalar parameter of
interest θ . Under certain mild assumptions, Theorem 4.1 of
[78] proves that, for any given θ ,

Gn(θ) = Hn(θ) + op(1), whereGn(θ) =
∫ θ

−∞ exp{ln(x)}dx
∫ ∞
−∞ exp{ln(x)}dx ,

Hn(θ) = �

(

θ − ̂θ
√

Jn(̂θ)/n

)

, ̂θ = arg max
θ

ln(θ).

Because at the true parameter value θ = θ0,Hn(θ0) converges
to U(0, 1) as n → ∞, it follows that Gn(θ0) converges
to U(0, 1). Thus, Gn(θ) is an asymptotic CD. From this
observation, we see that CD-based inference may subsume
a likelihood inference in some occasions.

If the sample X is from a discrete distribution, we can
typically invoke a large sample theory to obtain an asymptotic
CD to ensure the asymptotic frequentist coverage property,
when the sample size is large. However, when the sample size
is limited, we sometimes may want to exam the difference
between the “distribution estimator” and the U(0, 1) distri-
bution to get a sense of under and over coverage. To expand
the concept of CD to cover the cases of discrete distributions
with finite sample sizes, we introduce below the notions of
lower and upper CDs. The lower and upper CDs provide us
inference statements that are associated with under and over
coverages at every significant level.

Definition 29.2.2 (Upper and Lower CDs) A function
H+
n (·) = H+

n (x, ·) on X × � → [0, 1] is said to be an
upper CD for a parameter, if (i) for each given x ∈ X,
Hn(·) is a monotonic increasing function on � with values
ranging within (0, 1) and (ii) at the true parameter value
θ = θ0, H+

n (θ0) ≡ H+
n (x, θ0), as a function of the sample x,

is stochastically less than or equal to a uniformly distributed
random variable U ∼ U(0, 1), i.e.,

Pr
(

H+
n

(

X, θ0
) ≤ t

) ≥ t. (29.1)

Correspondingly, a lower CD H−
n (·) = Hn(x, ·) for

parameter θ can be defined but with (29.1) replaced by
Pr

(

H−
n (X, θ0) ≤ t

) ≤ t for all t ∈ (0, 1).

More generally, we also refer to H+
n (·) and H−

n (·) as the
upper and lower CD, respectively, even when the monotonic
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Fig. 29.2 Confidence distributions presented in Example 29.2.4 in the forms of density function, cumulative distribution function, and confidence
curve. The top row is for sample size n = 10 and the bottom row is n = 100

condition (i) is removed. Note that, due to the stochastic
dominance inequalities in the definition, we have, for any
α ∈ (0, 1),

Pr
(

θ0 ∈ {

θ : H+
n

(

X, θ
) ≤ α

}) ≥ α and
Pr

(

θ0 ∈ {

θ : H−
n (X, θ) ≤ α

}) ≤ α.

Thus, a level-(1 − α) confident interval (or set) {θ :
H+
n (X, θ) ≤ 1 − α} or {θ : H−

n (X, θ) ≥ α} has guaranteed
the coverage rate of (1 − α)100%, regardless of whether
we have the monotonic condition in (i). After we remove
the monotonic condition in (i), H+

n (·) and H−
n (·) may not

be a distribution function, and the “nest-ness property” of
confidence intervals/sets may also be lost. Here, the “nest-
ness property” refers to “a level-(1− α) confidence set C1−α

is not necessarily inside its corresponding level-(1 − α′)
confidence set C1−α′ , when 1 − α < 1 − α′.”

To conclude this section, we present an example of lower
and upper CDs.

Example 29.2.6 ([40]) Suppose sample X is from Binomial
(n, p0) with observation x. Let Hn(p, x) = Pr(X > x) =
∑

x<k≤n
(n
k

)

pk(1 − p)n−k. We can show that P(Hn(p0, X) ≤
t) ≥ t and P(Hn(p0, X − 1) ≤ t) ≤ t. Thus, H+(p, x) =

Hn(p, x) and H−
n (p, x) = Hn(p, x − 1) are lower and upper

CDs for the success rate p0. The half-corrected CD [25,37,72]
is

H−
n (p, x) + H+

n (p, x)

2
=

∑

x<k≤ni

(

n

k

)

pk(1 − p)n−k

+ 1

2

(

n

x

)

px(1 − p)n−x.

29.2.2 CD-Based Inference

Analogous to the Bayesian posterior, a CD contains a wealth
of information for constructing any type of frequentist infer-
ence. We illustrate three aspects of making inference based
on a given CD. Figure 29.3 from [90] provides a graphical
illustration of the point estimation, confidence interval, and
hypothesis testing. More specifically:

Point Estimation The natural choices of point estimators
of the parameter θ given a CD Hn(·) include (i) the median
˜θn = Hn(1/2), (ii) the mean θ̄n = ∫

θ∈�
θdHn(θ), and (iii) the

mode ̂θn = arg maxθ∈� hn(θ), where hn(θ) = dHn(θ)/dθ
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Fig. 29.3 A graphical illustration of CD-based inference [90]

is the confidence density function. Under some moderate
conditions, these three point estimators are consistent
[77, 90, 91].

To further understand these three types of estimators, the
median ˜θn is an unbiased estimator with Prθ0(

˜θn ≤ θ0) =
Prθ0(1/2 ≤ Hn(θ0)) = 1/2. The mean θ̄n can be viewed as
a frequentist analog of Bayesian estimator under the squared
loss function. Themodêθnmatches with themaximum likeli-
hood estimator if the confidence density is from a normalized
likelihood function [90].

Confidence Interval As discussed in Sect. 29.2.1, in a
confidence curve, a line across the y-axis of the significance
level α intersects with the confidence curve at two points, and
these two points correspond to an 1 − α level, equal-tailed,
two-sided confidence interval for θ , i.e., (H−1

n (α/2), H−1
n (1−

α/2)). Furthermore, (−∞, H−1
n (1−α)] and [H−1

n (α),∞) are
one-sided 1−α level confidence intervals for the parameter θ .

Hypothesis Testing From a CD, one can obtain p-values for
various hypothesis testing problems. The natural thinking is
to measure the support that Hn(·) lends to a null hypothesis
[29]. Xie and Singh [90] summarized making inference for
hypothesis testing from a CD in the following theorem.

Theorem 29.2.1 (i) For the one-sided test K0 : θ ∈ C
versus K1 : θ ∈ Cc, where c denotes the complementary
set and C is an interval of the type of Cl = (−∞, b] or
Cu = [b,∞), we have supθ∈C Prθ (p(C) ≤ α) = α, and
p(C) = Hn(C) is the corresponding p-value of the test. (ii)

For the singleton test K0 : θ = b versus K1 : θ �= b,
we have Prθ=b(2min{p(Cl), p(Cu)} ≤ α) = α, and
2min{p(Cl), p(Cu)} = 2min{Hn(b), 1 − Hn(b)} is the p-
value of the corresponding test.

Example 29.2.7 ([90]) Consider Example 29.2.2 again. A
CD for θ is Hn = Ftn−1(

√
n(μ−x̄n)
sn

). For a one-sided test
K0 : μ ≤ b versus K1 : μ > b, its support on the null set
C = (−∞, b] is

p(C) = p((−∞, b]) = Hn(b) = Ftn−1(
√
n(b− x̄n)/sn).

This is the same p-value using the one-sided t-test. For a two-
sided test K0 : θ = b versus K1 : θ �= b, the null set C =
{b}. We would like to measure the supports of two alternative
sets p(Cc

l ) and p(C
c
u). The rejection region is defined as {x :

2max{p(Ccl ), p(Cc
u)} ≥ 1 − α}, i.e.,

{x : 2min{p(Cl), p(Cu)} ≤ α} = {x : 2min{Hn(b),

1 − Hn(b)} ≤ α}. (29.2)

Under K0 with θ = b, 2min{p(Cl), p(Cu)}= 2min{Hn(b),
1 − Hn(b)} ∼ U(0, 1) by the definition of a CD. Thus,

Prθ=b(2min{p(Cl), p(Cu)} ≤ α) = Prθ=b(2min{Hn(b),

1 − Hn(b)} ≤ α) = α

and the reject region (29.2) corresponds to a level α test.
Again, the p-value 2min{p(Cl), p(Cu)} is the standard p-
value from a two-sided t-test.
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29.2.3 Combination of CDs for Fusion Learning

One of the important applications of CD development is
on fusion learning, which synthesizes information from
disparate sources with deep implications for meta-analysis
[12, 15, 40, 51–53, 72, 75, 77, 81, 91, 92]. Fusion learning
aims to combine inference results obtained from different
data sources to achieve a more efficient overall inference
result. CD-based fusion learning applies even when inference
results are derived from different tests or different paradigms,
i.e., Bayesian, fiducial, and frequentist (BFF).

The combination of CD can be considered as a unified
framework for fusion learning. Suppose there are k inde-
pendent studies that are dedicated to estimate a common
parameter of interest θ . We assume that we have a CD Hi(·)
for θ for the sample xi of the i-th study. Singh et al. [77]
proposed a general recipe for combining these k independent
CDs:

Hc(θ) ≡ Gc{gc(H1(θ), . . . , Hk(θ))}, (29.3)

where gc is a given continuous function on [0, 1] which
is nondecreasing in each coordinate, the function Gc is
determined by the monotonic function gc with Gc(t) =
Pr(gc(U1, . . . , Uk) ≤ t), and U1, . . . , Uk are independent
uniform random variables. The function Hc(·) contains
information from all k samples and is referred to as a
combined CD for the parameter θ . Furthermore, the CD
obtained by Eq. (29.3) does not require any information
regarding how the input CDs are obtained.

A special class of the general combining framework (29.3)
plays a prominent role in unifying many modern meta-
analysis approaches. The choice of the function gc for this
special class is

gc(u1, . . . , uk) = w1F
−1(u1) + · · · + wkF

−1(uk), (29.4)

where F(·) is a given cumulative distribution function and
wi ≥ 0 with at least one wi �= 0 are generic weights for the
combination rule. Generally, there are two types of weights:
fixed weights to improve the efficiency of combination and
adaptive weights based on data.

As shown in [91], it is remarkable that by choosing
different gc functions, all the classic approaches of combining
p-values including Fisher, Normal (Stouffer), Min (Tippett),
Max, and Sum methods [55] and all the five model-based
meta-analysis estimators described in [67] including the
maximum likelihood method and Bayesian approach under
fixed-effects model, method of moment estimators, restricted
maximum likelihood method, and Bayesian estimator with a
normal prior under random-effects model, can all be obtained
through a CD combination framework. Furthermore, it was
shown in [94] thatMantel-Haenszel and Petomethods as well

as Tian et al.’s method of combining confidence intervals [81]
for meta-analysis of 2 × 2 tables can also all be obtained
through a CD combination framework. An R-package
“gmeta” developed by [95] implements the CD combining
framework for fusion learning including classical p-value
combination methods from [55], meta-analysis estimators
with both fixed-effects and random-effects models, andmany
other approaches.

Fusion learning under the framework of combining CD
provides an extensive and powerful tool for synthesizing
information from diverse data sources. This approach has
sound theoretical support and has been applied to many prac-
tical situations including robust fusion learning [91], exact
fusion learning for discrete data [52, 81], fusion learning for
heterogeneous studies [53], nonparametric fusion learning
[15, 51], split-conquer-combine approach [12], individual-
ized fusion learning (i-fusion) [75], etc. We refer to [13] for
more detailed discussions.

29.2.4 Multivariate CDs

A simultaneous CD for vector parameters can sometimes be
difficult to define [72], especially on how to define a multi-
variate CD in the exact sense in some non-Gaussian settings
to ensure that their marginal distributions are CDs for the
corresponding single parameter. We consider the Behrens-
Fisher problem of testing for the equality of means from
two multivariate normal distributions when the covariance
matrices are unknown and possibly not equal. A joint CD of
the two population means (μ1,μ2) has a joint density of the
form

f1

(

μ1 − x̄1
s1/

√
n1

)

f2

(

μ2 − x̄2
s2/

√
n2

)

/
(

s1s2
√
n1n2

)

,

where fi is the density function for the student t-distribution
with ni − 1 degrees of freedom, i = 1, 2. The marginal
distribution of μ1 − μ2 is only an asymptotic CD but not a
CD in the exact sense.

The good news in the multidimensional case is that under
asymptotic settings or wherever bootstrap theory applies, one
can still work with multivariate CDs [90]. When no analytic
confidence curve for the parameter vector θ of interest is
available, the product method of [4] can be used if confidence
curves are available for each component of the vector [72].
Additionally, if we only consider center-outward confidence
regions instead of all Borel sets in the p×1 parameter space,
the central-CDs considered in [78] and the confidence net
considered in [71] offer coherent notions of multivariate CDs
in the exact sense [90].

There are many approaches to obtain CDs. One way is
normalizing a likelihood function curve with respect to its
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parameters so that the area underneath the curve is one.
The normalized likelihood function is typically a density
function. For instance, under some mild conditions, Fraser
and McDunnough [32] show that this normalized likelihood
function is the normal density function of an asymptotic CD.
Other ways like bootstrap distributions and p-value functions
also often provide valid CDs. Finally, CDs and fiducial dis-
tributions have been always linked since their inception. The
class of fiducial inference provides another systematic way
to obtain CDs and we will further discuss fiducial inference
in the next section.

29.3 Fiducial Inference

CD can be somehow viewed as “the Neymanian interpreta-
tion of Fisher’s fiducial distributions” [74]. From the defi-
nition of CD and fiducial distribution, we may consider the
fiducial distribution as one special type of CD, though the CD
looks at the problem of obtaining an inferentially meaningful
distribution on the parameter space from a pure frequentist
point of view [90]. Nevertheless, fiducial inference provides
a systematic way to obtain a CD, and its development pro-
vides a rich class of literature for CD inference. We briefly
review fiducial inference and its recent developments in this
section.

29.3.1 Fiducial Inference

R.A. Fisher introduced the idea of fiducial probability and
fiducial inference [28] as a potential replacement of the
Bayesian posterior distribution. Although he discussed fidu-
cial inference in several subsequent papers, there appears
to be no rigorous definition of a fiducial distribution for a
vector parameter. The basic idea of the fiducial argument
is switching the role of data and parameters to introduce
the distribution on the parameter space. This obtained distri-
bution then summarizes our knowledge about the unknown
parameter. Since the mid-2000s, there has been a renewed
interest in modern modifications of fiducial inference. The
common approaches for these modifications rely on a defini-
tion of inferentially meaningful probability statements about
subsets of the parameter space without introducing any prior
information.

These modern approaches include generalized fiducial in-
ference [37, 41], Dempster-Shafer theory [22, 24], and infer-
ential models [56, 61]. Objective Bayesian inference, which
aims at finding nonsubjective model-based priors, can also
be seen as addressing the same question. Examples of recent
breakthroughs related to reference prior and model selection
are [2, 7, 8]. Another related approach is based on higher-
order likelihood expansions and implied data-dependent

priors [30, 31, 33–36]. There are many more references that
interested readers can find in [41].

29.3.2 Generalized Fiducial Distribution

Generalized fiducial inference, motivated by [83, 84], has
been at the forefront of the modern fiducial revival. Gener-
alized fiducial inference defines a data-dependent measure
on the parameter space by using an inverse of a deterministic
data generating equation without the use of Bayes theorem.

Motivated by Fisher’s fiducial argument, generalized fidu-
cial inference begins with expressing the relationship be-
tween the data Y and the parameters θ as

Y = G(U, θ), (29.5)

where G(·, ·) is a deterministic function termed as the data
generating equation and U is the random component of this
data generating equation whose distribution is independent
of parameters and completely known.

The data Y are created by generating a random variable U
and plugging it into the data generating equation (29.5). For
example, a single observation from N(μ, 1) distribution can
be written as Y = μ + U, where θ = μ and U is N(0, 1)
random variable.

Fisher’s original fiducial argument only addresses the
simple case where the data generating equation (29.5) can
be inverted and the inverse Qy(u) = θ exists for any ob-
served y and for any arbitrary u. One can define the fiducial
distribution for θ as the distribution of Qy(U	) where U	 is
an independent copy of U. Equivalently, a sample from the
fiducial distribution of θ can be obtained by first generating
U	
i , and then let θ	

i = Qy(U	
i ), i = 1, . . . , n. Point estimation

and confidence intervals for θ can be obtained based on this
sample. In the N(μ, 1) example, Qy(u) = y − u and the
fiducial distribution is therefore the distribution of y−U	 ∼
N(y, 1).

In the case of no θ satisfying Eq. (29.5), Hannig [37]
proposed to use the distribution ofU conditional on the event
{u : y = G(u, θ), for some θ}. Hannig et al. [41] generalized
this approach and proposed an attractive definition of gener-
alized fiducial distribution (GFD) through a weak limit.

Definition 29.3.1 A probability measure on the parameter
space � is called a GFD if it can be obtained as a weak limit

lim
ε→0

[

arg min
θ	

‖y−G(U	, θ	)‖
∣

∣

∣ min
θ	

‖y−G(U	, θ	)‖ ≤ ε

]

.

(29.6)

Hannig et al. [41] pointed out a close relationship between
GFD and approximate Bayesian computations (ABC) [3].
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In an idealized ABC, one first generates an observation θ∗
from the prior, then generates a new sample using a data
generating equation y	 = G(U	, θ	), and compares the
generated data with the observed data y. If the observed
and generated datasets are close, i.e., ‖y − y	‖ ≤ ε, the
generated θ	 is accepted; otherwise it is rejected and the
procedure is repeated. On the other hand, as for GFD, one
first generates U	, finds a best fitting θ	 = arg minθ	 ‖y −
G(U	, θ	)‖, computes y	 = G(U	, θ	), again accepts θ	 if
‖y − y	‖ ≤ ε, and rejects otherwise. In either approach an
artificial dataset y	 = G(U	, θ	) is generated and compared
to the observed data. The main difference is that the Bayes
posterior simulates the parameter θ	 from the prior, while
GFD uses the best-fitting parameter.

Fiducial distributions often have good frequentist prop-
erties, and corresponding fiducial confidence intervals often
give asymptotically correct coverage [37, 41]. In addition,
fiducial distribution is a data-dependent measure on the pa-
rameter space and thereby a CD. Xie and Singh [90] de-
scribed the relation between the concepts of CD and fiducial
distributions using an analogy in point estimation: A CD
is analogous to a consistent estimator and a fiducial dis-
tribution is analogous to a maximum likelihood estimator.
In the context of point estimation, a consistent estimator
does not have to be a maximum likelihood estimator. But
under some regularity conditions, the maximum likelihood
estimator typically provides a standard procedure to obtain a
consistent estimator. In the context of distribution estimator,
a CD does not have to be a fiducial distribution. However,
under suitable conditions, a fiducial distribution often has
good frequentist properties and thus a CD.

29.3.3 A User-Friendly Formula for GFD

While Definition (29.6) for GFD is conceptually and mathe-
matically appealing, it is not clear how to compute the limit in
most of practical situations. The following theorem proposed
by [41] provides a computational tool.

Theorem 29.3.1 Under certain assumptions, the limiting
distribution in (29.6) has a density

r(θ |y) = f (y, θ)J(y, θ)
∫

�
f (y, θ ′)J(y, θ ′) dθ ′ , (29.7)

where f (y, θ) is the likelihood and the function

J(y, θ) = D

(

d

dθ
G(u, θ)

∣

∣

∣

∣

u=G−1(y,θ)

)

. (29.8)

If (i) n = p, then D(A) = | detA|. Otherwise the
function D(A) depends on the norm used; (ii) the l∞

norm gives D(A) = ∑

i=(i1,...,ip)
|det(A)i|;1 (iii) under an

additional assumption stated in [41], the l2 norm gives
D(A) = (detA�A)1/2.

Hannig et al. [41] recommended using (ii) for practition-
ers. A nice property of GFD is that GFD is invariant under
smooth re-parameterizations. This property follows directly
from (29.6), since for an appropriate selection of minimizers
and any one-to-one function θ = φ(η),

φ

(

arg min
η	

‖y−G(U	,φ(η	))‖
)

= arg min
θ	

‖y−G(U	, θ	)‖.

Note that GFD could change with transformations of the
data generating equation. Assume that the observed dataset
has been transformed by a one-to-one smooth transformation
Z = T(Y). By the chain rule, the GFD based on this new
data generating equation and observed data z = T(y) is the
density (29.7) with the Jacobian function

JT(z, θ) = D

(

d

dy
T(y) · d

dθ
G(u, θ)

∣

∣

∣

∣

u=G−1(y,θ)

)

, (29.9)

where for simplicity we write y instead of T−1(z).

29.3.4 Examples of GFD

In this section we will consider two examples, linear regres-
sion and uniform distribution. In the first case, the GFD is
the same as Bayes posterior with respect to the independence
Jeffreys prior, while in the second case, the GFD is not a
Bayes posterior with respect to any prior (that is not data
dependent).

Linear Regression [41] We consider a generalized fiducial
approach to regression problem.We express linear regression
via the data generating equation,

Y = G(U, θ) = Xβ + σU,

where Y is the dependent variables, X is the design matrix,
θ = (β, σ) are the unknown parameters, and U is a random
vector with known density f (u) independent of θ and X. Note
that d

dθG(U, θ) = (X,U) and U = (y− Xβ)/σ ; the Jacobian
in (29.9) using the l∞ norm simplifies to

1In (ii) the sum spans over
(n
p

)

of p-tuples of indexes i = (1 ≤ i1 <

· · · < ip ≤ n). For any n× p matrix A, the sub-matrix (A)i is the p× p
matrix containing the rows i = (i1, . . . , ip) of A.
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J∞(y, θ) = σ−1

∑

i=(i1,...,ip)
1≤i1<···<ip≤n

|det (X, Y)i| ,

and the density of GFD is

r(β, σ |y) ∝ σ−n−1f ((Y − Xβ)/σ).

The fiducial solution is the same as the Bayesian solution
using Jeffreys prior [5]. Furthermore, by a simple calculation,
the Jacobian with l2 norm differs from J∞(y, θ) only by a
constant; the GFD remains unchanged.

GFD in Irregular Models [41] We consider an irregular
model U

(

a(θ) − b(θ), a(θ) + b(θ)
)

. The reference prior for

this model has been shown complex in Theorem 8 from [7].
Considering GFD approach, we first express the observed
data by the following data generating equation:

Yi = a(θ) + b(θ)Ui, Ui
i.i.d.∼ U(−1, 1).

By simple algebra,

d

dθ
G(u, θ) = a′(θ) + b′(θ)U with U = b−1(θ)(Y − a(θ)).

If a′(θ) > |b′(θ)|, (29.8) simplifies to

J1(y, θ) = n[a′(θ) − a(θ){log b(θ)}′ + ȳn{log b(θ)}′],

and the GFD is

r1(θ |y) ∝ a′(θ) − a(θ){log b(θ)}′ + ȳn{log b(θ)}′
b(θ)n

I{a(θ)−b(θ)<y(1) & a(θ)+b(θ)>y(n)}.

Consider an alternative fiducial solution, which constructs
the GFD based on the minimal sufficient and ancillary statis-
tics Z = {h1(Y(1)), h2(Y(n)), (Y−Y(1))/(Y(n) −Y(1))}�, where

Y(1), Y(n) are order statistics, h−1
1 (θ) = EY(1) = a(θ) −

b(θ)(n− 1)/(n+ 1) and h−1
2 (θ) = EY(n) = a(θ) + b(θ)(n−

1)/(n+ 1). By a simple calculation,

J2(y, θ) = (w1 + w2)

[

a′(θ) − a(θ){log b(θ)}′ + w1y(1) + w2y(n)
w1 + w2

{log b(θ)}′
]

,

r2(θ |y) ∝ I{a(θ)−b(θ)<y(1) & a(θ)+b(θ)>y(n)}
[(w1 + w2)[a′(θ) − a(θ){log b(θ)}′] + (w1y(1) + w2y(n)){log b(θ)}′]−1 b(θ)n

,

where w1 = h′
1(y(1)) and w2 = h′

2(y(n)).
Hannig et al. [41] performed extensive simulation studies

for a particular caseU(θ , θ2) comparingGFD to the Bayesian
posteriors with the reference priorπ(θ) = (2θ−1)

θ(θ−1)e
ψ( 2θ

2θ−1 ) [7]2

and flat prior π(θ) = 1. The simple GFD, the alternative
GFD, and the reference prior Bayes posterior maintain nomi-
nal coverage for all parameter settings. However, the flat prior
Bayes posterior does not have a satisfactory coverage, with
the worst departures from nominal coverage for small sample
size and large parameter θ .

Nonparametric Fiducial Inference with Right-Censored
Data [17] Let failure times Xi (i = 1, . . . , n) follow the true
distribution functionF0 and censoring timesCi (i = 1, . . . , n)
have the distribution function R0. We treat the situation when
failure and censoring times are independent and unknown.

2ψ(x) is the digamma function defined by ψ(z) = d
dz log(�(z)) for z >

0, where � is gamma function.

Suppose we observe right-censored data {yi, δi} (i = 1, . . . n),
where yi = xi∧ci is the minimum of xi and ci, δi = I{xi ≤ ci}
denotes censoring indicator.

Consider the following data generating equation:

Yi = F−1(Ui) ∧ R−1(Vi), �i = I{F−1(Ui) ≤ R−1(Vi)}
(i = 1, . . . n),

where Ui, Vi are independent and identically distributed
U(0, 1).

For a failure event δi = 1, we have full information about
failure time xi, i.e., xi = yi, and partial information about
censoring time ci, i.e., ci ≥ yi. Thus,

F−1(ui) = yi ⇐⇒ F(yi) ≥ ui, F(yi − ε) < ui for any ε > 0.

For a censored event δi = 0, we only know partial
information about xi, i.e., xi > yi, and full information on
ci, i.e., ci = yi. Similarly,
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F−1(ui) > yi ⇐⇒ F(yi) < ui,

R−1(vi) = yi ⇐⇒ R(yi) ≥ vi, R(yi − ε) < vi for any ε > 0.

The complete inverse map of the data generating equation
is

QF,R(y, δ, u, v) =
⋂

i

QF,R
δi

(yi, ui, vi) = QF(y, δ, u)×QR(y, δ, v),

(29.10)
where

QF(y, δ, u) =
{

F :
{

F(yi) ≥ ui, F(yi − ε) < ui for any ε > 0 for all i such that δi = 1

F(yj) < uj for all j such that δj = 0

}

, (29.11)

and QR(y, δ, v) is analogous.
Let (U∗, V∗) be an independent copy of (U, V). Because

the inverse (29.10) separates into a Cartesian product, and of
the fact thatU∗ and V∗ are independent, the marginal fiducial
distribution for the failure distribution function F is

QF(y, δ, U∗) | {QF(y, δ, U∗) �= ∅}.

Figure 29.4 from [17] demonstrates the survival func-
tion representation of QF(y, δ, u), as defined in Eq. (29.11),
for one dataset with n = 8 observations of X following
Weibull(20, 10) censored by Z following Exp(20). Each of
the panels corresponds to a different value of u, where each
u is a realization of U∗. Any survival function lying between
the upper red and the lower black fiducial survival functions
corresponds to an element of the closure of QF(y, δ, u). The
technical details of sampling refer to Algorithm 1 in [17]. The
corresponding fiducial-based confidence intervals proposed
in [17] maintain coverage in situations where asymptotic
methods often have substantial coverage problems. Further-
more, as also shown in [17], the average length of their log-
interpolation fiducial confidence intervals is often shorter
than the length of confidence intervals for competing meth-
ods that maintain coverage. As pointed by [80], it would also
be interesting to consider other choices of fiducial samples
such as monotonic spline interpolation.

GFDs for Discrete Distributions [41] Let Y be a random
variable with distribution function F(y|θ). Assume there is
Y so that Pθ (Y ∈ Y) = 1 for all θ , and for each fixed y ∈ Y,
the distribution function is either a nonincreasing function of
θ , spanning the whole interval (0, 1), or a constant equal to 1;
the left limit F(y−|θ) is also either a nonincreasing function
of θ spanning the whole interval (0, 1) or a constant equal
to 0.

Define F−(a|θ) = inf{y : F(y|θ) ≥ a}. It is well known
[11] that if U ∼ U(0,1), Y = F−(U|θ) has the correct
distribution and we use this association as a data generating
equation. It follows that both Q+

y (u) = sup{θ : F(y|θ) = u}
and Q−

y (u) = inf{θ : F(y−|θ) = u} exist and satisfy
F(y|Q+

y (u)) = u and F(y−|Q−
y (u)) = u. Consequently,

P(Q+
y (u) ≤ t) = 1 − F(y|t) and

P(Q−
y (u) ≤ t) = 1 − F(y−|t).

Note that for all u ∈ (0, 1), the function F−(u|θ) is nonin-
creasing in θ and the closure of the inverse image Q̄y(u) =
{Q−

y (u), Q+
y (u)}. The half-corrected GFD has distribution

function

R(θ |y) = 1 − F(y|θ) + F(y−|θ)

2
.

If either of the distribution functions is constant, we interpret
it as a pointmass at the appropriate boundary of the parameter
space. Analogous argument shows that if the distribution
function and its left limit were nondecreasing in θ , the half-
corrected GFD would have distribution function

R(θ |y) = F(y|θ) + F(y−|θ)

2
.

Hannig et al. [41] provide a list of the half-corrected GFDs
for three well-known discrete distributions. Let Beta(0, n +
1) and Beta(x + 1, 0) denote the degenerate distributions
on 0 and 1, respectively. Let �(0, 1) denote the degenerate
distribution on 0:

• X ∼ Binomial(m, p) with m known. GFD is the mixture
of Beta(x+ 1, m− x) and Beta(x, m− x+ 1) distributions
[37].

• X ∼ Poisson(λ). GFD is the mixture of �(x + 1, 1) and
�(x, 1) distributions [22].

• X ∼ Negative Binomial(r, p) with r known. GFD is the
mixture of Beta(r, x−r+1) and Beta(r, x−r) distributions
[38].

Model Selection via GFD [41] Hannig and Lee [39] intro-
duced model selection into the generalized fiducial inference
paradigm in the context of wavelet regression. Two impor-
tant ingredients are needed for fiducial model selection: (1)
include the choice of model as one of the parameters; (2)
include penalization in the data generating equation.

Consider a finite collection of modelsM. The data gener-
ating equation is
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Fig. 29.4 Two realizations of fiducial curves for a sample of size 8
from Weibull(20, 10) censored by Exp(20) [17]. Here fiducial curves
refer to Monte Carlo samples SLi , S

U
i , and S

I
i (i = 1, 2) from the GFD.

The red and black curves are corresponding realizations of the upper

and lower fiducial survival functions. The green curve is the log-linear
interpolation type of survival functions. The circle points denote failure
observations. The triangle points denote censored observations. The
dashed blue curve is the true survival function of Weibull(20, 10)

Y = G(M, θM,U), M ∈M, θM ∈ �M, (29.12)

where Y is the observation, M is the model considered, θM
includes the parameters associated with modelM, and U is a
random vector of with fully known distribution independent
of any parameters. Hannig and Lee [39] proposed a novel
way of adding a penalty into the fiducial model selection. In
particular, for each model M, they proposed to augment the
data generating equation (29.12) by

0 = Pk, k = 1, . . . ,min(|M|, n), (29.13)

where Pk are independent and identically distributed continu-
ous random variables independent of U with fP(0) = q and q
is a constant determined by the penalty. Hannig and Lee [39]
recommended using q = n−1/2 as the default penalty. Note
that the number of additional equations is the same as the
number of unknown parameters in the model. As we never
actually observe the outcomes of the extra data generating
equations, we will select their values as pi = 0.

For the augmented data generating equation, we have the
following theorem from [41]. The quantity r(M|y) can be
used for inference in the usual way. For example, fiducial
factor, the ratio r(M1|y)/r(M2|y), can be used in the same
way as a Bayes factor, as discussed in [6] in the context of
Bayesian model selection.

Theorem 29.3.2 ([41]) Suppose |M| ≤ n and certain as-
sumptions hold; the marginal generalized fiducial probabil-
ity of model M is

r(M|y) = q|M| ∫
�M

fM(y, θM)JM(y, θM) dθM
∑

M′∈M q|M′| ∫
�M′ fM′(y, θM′)JM′(y, θM′) dθM′

,

(29.14)

where fM(y, θM) is the likelihood and JM(y, θM) is the Jaco-
bian function computed using (29.9) for each fixed model M.

For more details on the use of fiducial model selection, see
[39] and [43].

29.4 Applications and Numerical Examples

29.4.1 CD-Based Inference

Two-Parameter Exponential Distribution Inference
procedures based on the two-parameter exponential model,
Exp(μ, σ), are extensively used in several areas of statistical
practice, including survival and reliability analysis. The
probability distribution function and cumulative distribution
function of a random variable X ∼ Exp(μ, σ) are given,
respectively, by

f (x) = 1

σ
exp

{

− x− μ

σ

}

,

F(x) =

⎧

⎪

⎨

⎪

⎩

1 − exp
{

− x−μ

σ

}

if x > μ,

0 if x ≤ μ,
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and survival function (also known as reliability function) is
S(x) = 1−F(x). The inference problem of interest is to obtain
confidence intervals (sets) of μ, σ and S(t) at a given t > 0.

Let X(1), . . . , X(k) be the k (k > 1) smallest observations
among X1, . . . , Xn. Then the maximum likelihood estimator
of μ and σ are

μ̂ = X(1), and σ̂ = 1

k

{

k
∑

i=1

X(i) + (n− k)X(k) − nX(1)

}

.

It turns out that μ̂ and σ̂ are independent and they follow the
distributions

U = 2n(μ̂ − μ)/σ ∼ χ2(2), V = 2kσ̂ /σ ∼ χ2(2k − 2),
(29.15)

respectively. Here χ2(m) is the chi-square distribution with
degree of freedom m. We provide below a simple CD-based
method to answer the inference problem of interest.

From Eq. (29.15), we have

n(μ̂ − μ)

kσ̂
= U/2

V/(2k − 2)
∼ F(2, 2k − 2),

where F(a, b) is the F-distribution with degrees of freedom
a and b. By the pivot-based CD construction method [78,
p134], a CD for μ is H1(μ) = 1 − FF(2,2k−2)(

n(μ̂−μ)

kσ̂ ),
where FF(2,2k−2) is the cumulative distribution function of
F(2, 2k − 2)-distribution. Similarly, a CD for σ is H2(σ ) =
1−Fχ2(2k−2)(

2k(̂σ )

σ
), where Fχ2(2k−2) is the cumulative distri-

bution function of χ2(2k − 2)-distribution. Inferential state-
ments regarding μ and σ , including confidence intervals
and testing results, can be obtained from these two CDs.
Coverage rates and test errors obtained from these two CDs
are exact.

We can also consider the inference for (μ, σ) jointly. Here,
we introduce a simulation-based approach. Let U∗ ∼ χ2(2)
andV∗ ∼ χ2(2k−2) be two independently simulated random
numbers. Define

ξ ∗ = μ̂ − kσ̂

n

U∗

V∗ and ζ ∗ = 2kσ̂

V∗ .

Then, ξ ∗|(μ̂, σ̂ ) ∼ H1(μ) and ζ ∗|(μ̂, σ̂ ) ∼ H2(σ ), and
they are called CD random variables [90]. Furthermore,
the underlying joint distribution of (ξ ∗, ζ ∗), given (μ̂, σ̂ ),
is a joint CD function H3(μ, σ) of (μ, σ). If we simulate
a large number of, say M, copies of (U∗, V∗), then we
can get M copies of (ξ ∗, ζ ∗). In order to make inference
statements about (μ, σ), we can treat these M copies of
(ξ ∗

1 , ζ
∗
1 ), . . . , (ξ ∗

M, ζ
∗
M) as if they were M copies of bootstrap

estimators in bootstrap inference or as if they wereM copies
of random samples from the posterior distribution of (μ, σ)

in a Bayesian inference.

Additionally, we can also use the M copies of CD ran-
dom variables (ξ ∗

1 , ζ
∗
1 ), . . . , (ξ ∗

M, ζ
∗
M) to obtain a pointwise

confidence band for S(t), t > 0. For each given t > 0, we
compute κ∗

j (t) = exp{−(t− ξ ∗
j )/ζ ∗

j }, for j = 1, . . . , M. Then
[κ∗

[αM](t),+∞) and [κ∗
[ α
2M](t), κ

∗
[ (1−α)

2 M](t)] are the one-sided

and two-sided level-α confidence intervals of S(t), respec-
tively, where κ∗

[qM](t) is the q-th quantile of κ∗
1 (t), . . . , κ

∗
M(t).

Now by varying t, [κ∗
[αM](t),+∞) forms a level-α lower

confidence band, and [κ∗
[ α
2M](t), κ

∗
[ (1−α)

2 M](t)] forms a level-α

confidence band for the survival function S(t).

We can show that this set of exact confidence bands
derived from the CD method matches with those obtained
in [69] using Tsui and Weerahandi’s generalized inference
approach [83], but the CD approach is very simple and more
direct. Roy and Mathew [69] illustrated the 95% lower limit
˜S(t) for time ranging from 150 to 2000 in Figure 1 of [69]
using a real data example with 19 observations taken from
[45]. The data deal with mileages for military personnel
carriers that failed in service. Figure 29.5 is a similar plot for
the confidence band, using our CD approach withM = 1000.

Data [45]:
162, 200, 271, 320, 393, 508, 539, 629, 706, 777, 884, 1008,
1101, 1182, 1463, 1603, 1984, 2355, 2880

Bivariate Normal Correlation Suppose we have the fol-
lowing bivariate normal distribution:

N

((

μ1

μ2

)

,

(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

))

,

500 1000 1500 2000

0.2

0.4

0.6

0.8

t

S(
t)

Fig. 29.5 Point estimate (solid line) and 95% confidence band (dashed
line) of CD-based inference



29 Confidence Distribution and Distribution Estimation for Modern Statistical Inference 587

29
and let ρ denote the correlation coefficient. One could use the
asymptotic pivot, Fisher’s Z [27, 78],

1

2
log

1 + r

1 − r
− 1

2
log

1 + ρ

1 − ρ
,

where r is the sample correlation. The limiting distribution of
the above pivot is N(0, 1

n−3 ). Therefore, the asymptotic CD is

Hn(ρ) = 1 − �

(√
n− 3

[

1

2
log

1 + r

1 − r
− 1

2
log

1 + ρ

1 − ρ

])

, − 1 ≤ θ ≤ 1.

Figure 29.6 presents the CD of correlation coefficient ρ for
a simulated dataset with n = 50,μ1 = μ2 = 1, σ1 = σ2 =
1, ρ = 0.5.
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Fig. 29.6 CD of the correlation coefficient ρ
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Fig. 29.7 (a) Kaplan-Meier estimators for two treatment groups [17]. (b) Difference of two sample fiducial distributions

In addition to the above two examples, there also are
recent developments of CDs on causal inference; see more
applications in [54].

29.4.2 Nonparametric GFD-Based Inference

[17] proposed a fiducial approach to testing reliability func-
tion with an infinite dimensional parameter. Their approach
does not assume a parametric distribution and is robust to
model mis-specification. In [17], they considered a clinical
trial of chemotherapy against chemotherapy combined with
radiotherapy in the treatment of locally unresectable gastric
cancer conducted by the Gastrointestinal Tumor StudyGroup
[70]. In this trial, 45 patients were randomized to each of
the 2 groups and followed for several years. The censoring
percentage is 13.3% for the combined therapy group, and
4.4% for the chemotherapy group.We are interested in testing
whether the two treatment groups have the same survival
functions.

The Kaplan-Meier curves for these two datasets are pre-
sented in Fig. 29.7a. We notice that the two hazards appear to
be crossing, which could pose a problem for some log-rank
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tests. In this instance, the fiducial approach gives a small p-
value 0.002. The p-values of other types of log-rank tests are
reported in [17]. To explain why their proposed fiducial ap-
proach works good, they plot the sample of the difference of
two fiducial distributions in Fig. 29.7b. If these two datasets
are from the same distribution, 0 should be well within the
sample curves. However, from Fig. 29.7b, we could see that
the majority of curves are very far away from 0 on the
interval [0.5, 1]. This gives strong evidence that the group

with combined therapy has significantly worse early survival
outcomes.

In [17], they choose to use the sup-norm in the defi-
nition of the curvewise confidence intervals and tests. It
could be possible to make the procedure more powerful
by using a different (possibly weighted) norm [64]. Simi-
larly, it might also be possible to use the choice of norm
motivated by inferential models [18, 58, 61]. Besides the
above example, there also are recent developments of non-

Table 29.1 Inference on correlation coefficient: combining independent bivariate normal studies

Methods 95% CI CDs

Fisher’s Z method (0.348,0.845)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D

Bootstrap BCa (0.317,0.818)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D

Profile likelihood (0.346,0.827)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D

Bayes (uniform prior) (0.188,0.790)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D

Combination (0.505,0.760)

0.3 0.5 0.7

0.0

0.4

0.8

�

C
D
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parametric fiducial inference on interval-censored data and
Efron’s empirical Bayes deconvolution; see [19,20] for more
applications.

Data [70]: (* indicates a censored event)
Combination group: 0.05 0.12 0.12 0.13 0.16 0.20 0.20 0.26
0.28 0.30 0.33 0.39 0.46 0.47 0.50 0.51 0.53 0.53 0.54 0.57
0.64 0.64 0.70 0.84 0.86 1.10 1.22 1.27 1.33 1.45 1.48 1.55
1.58 1.59 2.18 2.34 3.74 4.32 5.64 6.61* 6.81* 7.66* 7.68*
8.04* 8.19*
Chemotherapy group: 0.00 0.17 0.29 0.35 0.50 0.59 0.68 0.72
0.82 0.82 0.94 0.97 0.98 0.98 1.04 1.05 1.05 1.06 1.08 1.12
1.26 1.34 1.37 1.43 1.44 1.47 1.54 1.56 1.85 1.85 2.05 2.13
2.15 2.18 2.62 2.65 2.74 3.41 3.48 3.89 4.25 4.64 6.47 7.55*
8.08*

29.4.3 Combining Information fromMultiple
CDs

We use simple cluster of differentiation 4 (cd-4) count data
considered in [23] to demonstrate combining information
from CDs. Twenty HIV-positive subjects received an
experimental antiviral drug. The cd-4 counts in hundreds
were recorded for each subject at baseline and after 1 year of
treatment.

We obtained the summary statistics and simulated four
independent datasets from the following bivariate normal
distribution:

N

((

μ1

μ2

)

,

(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

))

,

where μ1 = 3.288, μ2 = 4.093, σ 2
1 = 0.657, σ 2

2 = 1.346,
and ρ = 0.723.

Suppose each study makes its own inference conclu-
sion individually. Each dataset was analyzed by Fisher’s Z
method [27, 76], the bias-corrected and accelerated (BCa)
bootstrap [10, 21, 23], the profile likelihood approach [48],
and Bayesian with uniform prior [1], respectively. One nat-
ural question we would like to ask is if we can combine
the inferences from four independent studies, given that ρ

is the same in all studies. The answer is yes. As introduced in
Section 29.2.3, combination of CDs is a powerful inferential
tool. We fused studies by combining p-values (Stouffer)
[55, 95].

The results of the analysis are summarized in Table 29.1.
As we can see from the table, four methods in different
studies provide more or less similar results, and the com-
bined interval is much shorter than any of the four indi-
vidual intervals. In order to study the performance of the
combination of CDs in this situation, we present a sim-
ulation study with 200 replications. Table 29.2 shows the

Table 29.2 Combination of four independent bivariate normal studies
via CDs

Methods Coverage Mean length (sd) of 95% CIs

Fisher’s Z method 0.948 0.484 (0.140)

Bootstrap BCa 0.936 0.464 (0.156)

Profile likelihood 0.918 0.436 (0.131)

Bayes (uniform prior) 0.964 0.522 (0.128)

Combination 0.954 0.226 (0.041)

coverage and average length of 95% CIs. We see that not
only the combined approach maintains the desired coverage
but also the length of CIs is roughly half of the lengths
of CIs from individual studies. This result is as expected,
since theoretically each study provides a n−1/2-CIs and the
sample size of combined data is 4n so we expect to obtain
(4n)−1/2-CI.

Data [23]:
Baseline: 2.12, 4.35, 3.39, 2.51, 4.04, 5.10, 3.77, 3.35, 4.10,
3.35, 4.15, 3.56, 3.39, 1.88, 2.56, 2.96, 2.49, 3.03, 2.66, 3.00
One year: 2.47, 4.61, 5.26, 3.02, 6.36, 5.93, 3.93, 4.09,
4.88, 3.81, 4.74, 3.29, 5.55, 2.82, 4.23, 3.23, 2.56, 4.31,
4.37, 2.40
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Abstract

Ordinary logistic regression (OLR)models the probability
of a binary outcome. A logistic regression tree (LRT) is a
machine learning method that partitions the data and fits
an OLR model in each partition. This chapter motivates
LRT by highlighting the challenges of OLR with respect
to model selection, interpretation, and visualization on a
completely observed dataset. Being nonparametric, a LRT
model typically has higher prediction accuracy than OLR
for large datasets. Further, by sharing model complexity
between the tree structure and the OLR node models, the
latter can be made simple for easier interpretation and
visualization.

OLR is more challenging if there are missing values
in the predictor variables, because imputation must be
carried out first. The second part of the chapter reviews the
GUIDE method of constructing LRT models. A strength
of GUIDE is its ability to deal with large numbers of
variables and without the need to impute missing values.
This is demonstrated on a vehicle crash-test dataset for
which imputation is difficult due to missing values and
other problems.

W.-Y. Loh (�)
Department of Statistics, University of Wisconsin, Madison, WI, USA
e-mail: loh@stat.wisc.edu

Keywords

Classification and regression trees · Imputation ·
Logistic regression · Machine learning · Missing data ·
Visualization

30.1 Introduction

Ordinary logistic regression (OLR) is a technique for model-
ing the probability of a binary outcome in terms of one or
more predictor variables. Consider, for example, a dataset
on tree damage during a severe thunderstorm over 477,000
acres of the Boundary Waters Canoe Area Wilderness in
northeastern Minnesota in July 4, 1999 (R package alr4
[1]). Observations from 3666 trees were collected, including
for each tree, whether it was blown down (Y = 1) or not
(Y = 0), its trunk diameter D in centimeters, its species S,
and the local intensity L of the storm, as measured by the
fraction of damaged trees in its vicinity.

Let p = P(Y = 1) denote the probability that a tree is
blown down. OLR approximates the logit function logit(p) =
log(p/(1 − p)) as a function of the predictor variables linear
in any unknown parameters. A simple linear OLR model has
the form logit(p) = log(p/(1−p)) = β0+β1X, whereX is the
only predictor variable. Solving for p yields the p-function

p = exp(β0 + β1X)

1 + exp(β0 + β1X)
= 1

1 + exp(−β0 − β1X)
.

In general, if there are k predictor variables, X1, . . . , Xk, a
multiple linear OLR model has the form logit(p) = β0 +∑k

j=1 βjXj. The parameters β0,β1, . . . ,βk are typically esti-
mated by maximizing the likelihood function. Let n denote
the sample size, and let (xi1, . . . , xik, yi) denote the values
of (X1, . . . , Xk, Y) for the ith observation (i = 1, . . . , n).
Treating each yi as the outcome of an independent Bernoulli
random variable with success probability pi, the likelihood
function is
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n∏

i=1

pyii (1 − pi)
1−yi = exp{∑i yi(β0 + ∑

j βjxij)}
∏

i{1 + exp(β0 + ∑
j βjxij)}

.

The maximum likelihood estimates are the values of
(β0,β1, . . . ,βk) that maximize this function.

30.2 Fitting OLRModels

Fitting a simple linear OLR model to the tree damage data
using L yields

logit(p) = −1.999 + 4.407L (30.1)

with estimated p-function shown in Fig. 30.1. The equa-
tion implies that the stronger the local storm intensity, the
higher the chance that a tree is blown down. The boxplots
in Fig. 30.2 show that the distributions of D are skewed. To
reduce the skewness, Cook and Weisberg [2] transformed D
to log(D) and obtained the model

logit(p) = −4.792 + 1.749 log(D) (30.2)

which suggests that larger trees are less likely to survive the
thunderstorm than narrower ones. If both log(D) and L are
used, the model becomes

logit(p) = −6.677 + 1.763 log(D) + 4.42L. (30.3)

The relative stability of the coefficients of L and log(D) in
Eqs. (30.1)–(30.3) is due to the weak correlation of 0.168
between the two variables. If the interaction L log(D) is
included, the model changes to

logit(p) = −4.341+0.891 log(D)−1.482L+2.235L log(D)

(30.4)

and the coefficients of log(D) and L are changed more
dramatically.

So far, species S has been excluded from the models. As
in linear regression, a categorical variable having m distinct
values may be represented by (m − 1) indicator variables,
U1, . . . , Um−1, each taking value 0 or 1. The variables for
species are shown in Table 30.1, which uses the “set-to-zero
constraint” that sets all the indicator variables to 0 for the
first species (aspen). A model that assumes the same slope
coefficients for all species but that gives each a different
intercept term is

logit(p) = −5.997 + 1.581 log(D) + 4.629L

− 2.243U1 + 0.0002U2 + 0.167U3 − 2.077U4

+ 1.040U5 − 1.724U6 − 1.796U7

− 0.003U8. (30.5)
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Fig. 30.1 Estimated probability of blowdown computed from a simple
linear logistic regression model using L as predictor
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Fig. 30.2 Boxplots of trunk diameter D. The dotted line marks the
median value of D

Table 30.1 Indicator variable coding for species variable S

Species U1 U2 U3 U4 U5 U6 U7 U8

A (aspen) 0 0 0 0 0 0 0 0

BA (black ash) 1 0 0 0 0 0 0 0

BF (balsam fir) 0 1 0 0 0 0 0 0

BS (black spruce) 0 0 1 0 0 0 0 0

C (cedar) 0 0 0 1 0 0 0 0

JP (jack pine) 0 0 0 0 1 0 0 0

PB (paper birch) 0 0 0 0 0 1 0 0

RM (red maple) 0 0 0 0 0 0 1 0

RP (red pine) 0 0 0 0 0 0 0 1

How well do models (30.1)–(30.5) fit the data? One popu-
lar way to assess fit is by means of significance tests based on
the residual deviance and its degrees of freedom (df)—see,
e.g., [3, p. 96] for the definitions. The residual deviance is
analogous to the residual sum of squares in linear regression.
For model (30.5), the residual deviance is 3259 with 3655
df. We can evaluate the fit of this model by comparing its
residual deviance against that of a larger one, such as the 27-
parameter model
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logit(p) = β0 + β1 log(D) + β2L+
8∑

j=1

γjUj

+
8∑

j=1

β1jUj log(D) +
8∑

j=1

β2jUjL (30.6)

that allows the coefficients of log(D) and L to vary with
species. It has a residual deviance of 3163 with 3639 df. If
model (30.5) fits the data well, the difference between its
residual deviance and that of model (30.6) is approximately
distributed as a chi-squared random variable with df equal
to the difference in df of the two models. The difference in
deviance is 3259−3163 = 96, which is improbably large for
a chi-squared random variable with 3655 − 3639 = 16 df.

Rejection of model (30.5) does not necessarily imply that
model (30.6) is satisfactory. To find out, it may be compared
with a larger one, such as the 28-parameter model

logit(p) = β0 + β1 log(D) + β2L+ β3L log(D) +
8∑

j=1

γjUj

+
8∑

j=1

β1jUj log(D) +
8∑

j=1

β2jUjL (30.7)

that includes an interaction between L and log(D). This
has a residual deviance of 3121 with 3638 df. Therefore
model (30.6) is rejected because its residual deviance differs
from that of (30.7) by 42 but their dfs differ only by 1.
With this procedure, each of models (30.1) through (30.6)
is rejected when compared against the next larger model in
the sequence.

Another way to select a model employs a function such as
AIC, which is residual deviance plus two times the number of
estimated parameters. AIC tries to balance deviance against
model complexity (see, e.g., [4, p. 234]), but it tends to over-
fit the data. That is, AIC often chooses a large model. In
this dataset, if we apply AIC to the set of all models up to
third order, it chooses the largest, namely, the three-factor
interaction model

logit(p) = β0 + β1 log(D) + β2L+
8∑

j=1

γjUj

+ β3L log(D) +
8∑

j=1

β1jUj log(D)

+
8∑

j=1

β2jUjL+
8∑

j=1

δjUjL log(D) (30.8)

which has 36 parameters.

1.0

0.8

0.6

0.4

0.2

0.0
2 3 4 5 6 7

Pr
ob

 (
bl

ow
do

w
n)

Z = 0.78 log(D) + 4.10 L

111

222
333

444

555
666

777

1 JP
2 RP
3 A
4 PB
5 RM
6 C
7 BA

Fig. 30.3 Estimated probability of blowdown for seven species,
excluding balsam fir (BF) and black spruce (BS), according to
model (30.9)

Models (30.7) and (30.8) are hard to graph. Plotting the
estimated p-function as in Fig. 30.1 is impossible if a model
has more than one predictor variable. This problem is exac-
erbated by the tendency of model complexity increasing with
increase in sample size and number of predictors. Interpreta-
tion of the estimated coefficients is futile then, as they often
change from one model to another, due to multicollinearity
among the terms. For example, the coefficient for L is 4.424,
−1.482, and 4.629 in models (30.3), (30.4), and (30.5),
respectively.

To deal with this problem, [2] used a “partial one-
dimensional model” (POD) that employs a linear function
of log(D) and L as predictor variable. They found that if
the observations for balsam fir (BF) and black spruce (BS)
are excluded, the model logit(p) = β0 + Z + ∑

j γjUj, with
Z = 0.78 log(D) + 4.1L, fits the remaining data quite well.
Now the estimated p-function can be plotted as shown in
Fig. 30.3, but the graph is not as simple to interpret as that in
Fig. 30.1 because Z is a linear combination of two variables.
To include species BF and BS, [2] settled on the larger
model

logit(p) = β0 + Z +
9∑

j=1

γjUj + (θ1IBF + θ2IBS) log(D)

+ (φ1IBF + φ2IBS)L (30.9)

which contains separate coefficients (θj,φj) for BF and BS.
Here I(·) denotes the indicator function, i.e., IA = 1 if species
is A, and IA = 0 otherwise. The model cannot be displayed
graphically for species BF and BS because it is a function of
three predictor variables.
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30.3 Logistic Regression Trees

A logistic regression tree (LRT) model is a machine learning
solution that simultaneously retains the graphical advantage
of simple models and the prediction accuracy of more com-
plex ones. It recursively partitions the dataset and fits a simple
or multiple linear OLR model in each partition. As a result,
the partitions can be displayed as a decision tree [5] such
as Fig. 30.4, which shows a simple linear LRT model fitted
to the tree damage data by the GUIDE algorithm [6, 7]. A
terminal node represents a partition, and an OLR model with
a single linear predictor is fitted in each one. Beside each
intermediate node is a condition stating that an observation
goes to the left subnode if and only if the condition is
satisfied. Below each terminal node are the sample size (in
italics), the proportion of blown down trees, and the name of
the best linear predictor variable. The split at the root node
(labeled “1”) sends observations to node 2 if and only if S is
A, BS, JP, or RP. (Node labels employ the convention that
a node with label k has left and right child nodes labeled 2k
and 2k + 1, respectively.) Node 5, consisting of the JP and
RP species, has the highest proportion of blown down trees
at 0.82. Node 9, which consists of species A and BS trees
with diameters greater than 9.75 cm, has the second highest
proportion of 0.67. Variable L is the best linear predictor
in all terminal nodes except nodes 13 and 15, where D is
the best linear predictor. The main advantage in using one
linear predictor in each node is that the fitted p-functions
can be displayed graphically, as shown in Fig. 30.5. It is not
necessary to transform D to log(D) in the LRT.

The LRT model in Fig. 30.4 may be considered a different
kind of POD model from that proposed in [2]. Whereas the

S = A, BS, JP, RP 1

S = A, BS 2
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Fig. 30.4 GUIDE simple linear LRT model for P(blowdown). At each
split, an observation goes to the left branch if and only if the condition
is satisfied. Sample size (in italics), proportion of blowdowns, and name
of regressor variable are printed beneath each terminal node. Green and
yellow terminal nodes haveL andD, respectively, as best linear predictor

word “partial” in POD refers to model (30.9) being one-
dimensional if restricted to certain parts of the data (species
in this example), it refers to partitions of the predictor space
in a LRT. In addition, whereas “one-dimensional” refers to Z
being a linear combination of log(D) and L in (30.9), the OLR
predictor in each node of a LRT is trivially one-dimensional
because it is an original variable.

GUIDE is a classification and regression tree algorithm
with origins in the FACT [8], SUPPORT [9], QUEST [10],
CRUISE [11,12], and LOTUS [13] methods; see [14]. All of
them split a dataset recursively, choosing a single X variable
to split each node. If X is an ordinal variable, the split
typically has the form s = {X ≤ c}, where c is a constant.
If X is a categorical variable, the split has the form s =
{X ∈ ω}, where ω is a subset of the values taken by X. For
linear regression trees, algorithms such as AID [15], CART
[16], and M5 [17] choose s to minimize the total sum of
squared residuals of the regression models fitted to the two
data subsets formed by s. Though seemingly innocuous, this
approach is flawed as it is biased toward choosing X variables
that allowmore splits. To see this, suppose thatX is an ordinal
variable havingm distinct values. Then there are (m−1)ways
to split the data along the X axis, with each split s = {X ≤ c}
being such that c is the midpoint between two consecutively
ordered distinct values of X. This creates a selection bias
toward X variables with large values of m. In the current
example, variable L has 709 unique values butD has only 87.
Hence L has eight times as many opportunities as D to split
the data. The bias is worse if there are high-level categorical
variables, because a categorical variable havingm categorical
values permits (2m−1−1) splits of the form s = {X ∈ ω}. For
example, variable S permits (29−1 − 1) = 255 splits, which
is almost three times as many splits as D allows. The earliest
warning on the potential for the bias to produce misleading
conclusions seems to be [18].

GUIDE avoids the bias by using a two-step approach to
split selection. First, it uses significance tests to select the X
variable. Then it searches for c or ω for X. For linear regres-
sion trees, this is achieved by fitting a linear model to the data
in the node and using a contingency table chi-squared test
of the association between grouped values of each predictor
variable and the signs of the residuals. If X is ordinal, the
groups are intervals between certain order statistics. If X is
categorical, the groups are the categorical levels. Then the X
variable having the smallest chi-squared p-value is selected.
Repeating this procedure recursively produces a large binary
tree that is pruned to minimize a cross-validation estimate of
prediction mean squared error [16].

Let p̂(x) denote the estimated value of p(x) = P(Y =
1 |X = x). The preceding split variable selection method
needs modification for logistic regression, because the resid-
ual y − p̂(x) is positive if y = 1 and negative if y = 0,
irrespective of the value of p̂(x). Consequently, the residual
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Fig. 30.5 Estimated p-functions in terminal nodes of the tree in Fig. 30.4

signs provide no information on the adequacy of p̂(x). A first
attempt at a solution was proposed in [19], where the residu-
als y− p̂(x) are replaced with “pseudo-residuals” p̄(x)− p̂(x),
with p̄(x) being a weighted average of the y values in a
neighborhood of x. Its weaknesses are sensitivity to choice
of weights and neighborhoods and difficulty in specifying the
neighborhoods if the dimension of the predictor space is large
or if there are missing values. LOTUS uses a trend-adjusted
chi-squared test [20, 21] that effectively replaces p̄(x) with a
linear estimate.

For logistic regression, GUIDE uses the average from an
ensemble of least-squares GUIDE regression trees (called a
“GUIDE forest”) to form the pseudo-residuals for variable
selection. The main steps are as follows:

1. Fit a least-squares GUIDE forest [22] to the data to obtain
a preliminary estimate p̃(x) of p(x) for each observed x.
(Random forest [23] cannot substitute for GUIDE forest
if the data contain missing values.)

2. Beginningwith the root node, carry out the following steps
on the data in each node, stopping only if the number of
observations is below a pre-specified threshold or if all
the values of the predictor variables or the Y values are
constant:
(a) For each X variable to be used in fitting an OLRmodel

in the node, temporarily impute its missing values
with its node sample mean.

(b) Fit a simple or multiple linear OLR model to the im-
puted data in the node. If a simple linear OLRmodel is
desired, fit one to each linear predictor variable in turn,
and choose the one with smallest residual deviance.

Let p̂(x) denote the estimated value of p(x) from the
fitted model.

(c) Revert the imputed values in step (2a) to their original
missing state.

(d) For each ordinal X variable, let q1 ≤ q2 ≤ q3
denote its sample quartiles at the node, and define the
categorical variable V = ∑3

j=1 I(X > qj). If X is
a categorical variable, define V = X. Add an extra
“missing” category to V if X has missing values.

(e) Form a contingency table for each X variable using
the signs of p̃(x)− p̂(x) as rows and the values of V as
columns. Find the chi-squared statistic χ2

ν for the test
of independence between rows and columns.

(f) Let Gν(x) denote the distribution function of a chi-
squared variable with ν df, and let ε = 2 × 10−6.
Convert each χ2

ν to its equivalent one-df χ2
1 value as

follows:
i. If ε < Gν(χ

2
ν ) < 1−ε, define χ2

1 = G−1
1 (Gν(χ

2
ν )).

ii. Otherwise, to avoid dealing with very small or
large p-values, use the following dual application
of the Wilson-Hilferty approximation [24]. Define

W1 =
{√

2χ2
ν − √

2ν − 1 + 1

}2

/2

W2 = max

(

0,

[
7

9
+ √

ν

{(
χ2

ν

ν

)1/3

−1 + 2

9ν

}]3
)

.
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Approximate the one-df chi-squared value with

χ2
1 =

⎧
⎪⎪⎨

⎪⎪⎩

W2 if χ2
ν < ν + 10

√
2ν

(W1 +W2)/2 if χ2
ν ≥ ν + 10

√
2ν and

W2 < χ2
ν

W1 otherwise.

An earlier one-step approximation is used in [7].
Tables 30.2 and 30.3 show the contingency tables and
corresponding chi-squared statistics for Species,
Intensity, and Diameter at the root node of the
tree in Fig. 30.4.

(g) Let X∗ be the variable with the largest value of χ2
1 , and

let NA denote the missing value code:
i. If X∗ is ordinal, let s be a split of the form {X∗ =
NA}, {X∗ ≤ c} ∪ {X∗ = NA}, or {X∗ ≤ c} ∩ {X∗ 	=
NA}.

ii. If X∗ is categorical, let s be a split of the form
{X∗ ∈ ω}, where ω is a proper subset of the values
(including NA) of X∗.

(h) For each split s, apply steps (2a) and (2b) to the data in
the left and right subnodes induced by s, and let dL(s)
and dR(s) be their respective residual deviances.

(i) Select the split s that minimizes dL(s) + dR(s).
3. After splitting stops, prune the tree with the CART cost-

complexity method [16] to obtain a nested sequence of
subtrees.

4. Use the CART cross-validation method to estimate the
prediction deviance of each subtree.

5. Select the smallest subtree whose estimated prediction
deviance is within a half standard error of the minimum.

Figure 30.6 shows the LOTUS tree for the current data.
MOB [25] is another algorithm that can construct a LRT, but
for simple linear LRT models, it requires the linear predictor
to be pre-specified and to be the same in all terminal nodes.
Figure 30.7 shows the MOB tree with L as the common

Table 30.2 Chi-squared test for Species with Wilson-Hilferty χ2
1

value

A BA BF BS C JP PB RM RP

p̃ > p̂ 413 0 239 673 0 501 0 2 47

p̃ ≤ p̂ 23 75 420 297 355 1 497 121 2

χ2
8 = 2125, χ2

1 = 1942

Table 30.3 Chi-squared tests for Intensity and Diameter with
quartile intervals Q1, Q2, Q3, Q4 and Wilson-Hilferty χ2

1 values

Intensity Diameter

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

p̃ > p̂ 327 418 527 603 14 543 637 681

p̃ ≤ p̂ 595 493 390 313 933 424 281 153

χ2
3 = 195, χ2

1 = 171 χ2
3 = 1378, χ2

1 = 1314

S = BA,BF,C,PB,RM

C,PB,RM
S = BA,

�11
D

L
0.10
459

L
0.20
591

L � �

�

�0.3

L
0.14
263

D
0.49
396

D 14

D 9

L
0.25
237

BS,RP
S = A,

L
0.58
391

0.82
60

L 0.4

A,BS
S =

L
0.47
309

L
0.69
200

L
0.88
760

Fig. 30.6 LOTUS simple linear LRT model for P(blowdown). At each
split, an observation goes to the left branch if and only if the condition
is satisfied. Sample size (in italics), proportion of blowdowns, and name
of regressor variable (if any) are printed below nodes. Green and yellow
terminal nodes have L and D, respectively, as best linear predictor

� �

� �

� �

�

�

�

�

��

S = BA,BF,C,PB,RM

S = BF

D 9
D
6

181 210

D
10.5

56 212

D
11

459 591

D 9.5
S =

A,JP

22

D
6

49 167

S = A,BS
L

0.445
D
23

434 111

628

D 22
L

0.128

32

L
0.345

72 132

L
0.196

45 265

Fig. 30.7 MOB simple linear LRT model with L pre-specified as the
common linear predictor in all nodes. At each split, an observation goes
to the left branch if and only if the condition is satisfied. Sample sizes
(in italics) are printed below nodes

linear predictor. Figure 30.8 compares the values of p̂(x) from
a GUIDE forest of 500 trees, model (30.9) and the simple
linear GUIDE, LOTUS, and MOB LRT models. Although
there are clear differences in the values of p̂(x) between
GUIDE, LOTUS, and MOB, they seem to compare similarly
against (30.9) and GUIDE forest. Figure 30.9 shows the
corresponding results where LOTUS fits the multiple linear
LRT model logit(p) = β0 + β1D + β2L and GUIDE and
MOB fit logit(p) = β0 + β1D + β2L + ∑8

j=1 γjUj in
each terminal node. (LOTUS does not convert categorical
variables to indicator variables to serve as regressors.) The
correlations among the p̂(x) values are much higher.

30.4 Missing Values and Cyclic Variables

The US National Highway Traffic Safety Administration has
been evaluating vehicle safety by performing crash tests with
dummy occupants since 1972 (ftp://www.nhtsa.dot.gov/ges).

ftp://www.nhtsa.dot.gov/ges
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Fig. 30.8 Comparison of fitted values p̂ of Cook-Weisberg model (30.9) and GUIDE forest versus simple linear LRT models

We use data from 3310 crash tests where the test dummy is
in the driver’s seat to show how GUIDE deals with missing
values and cyclic variables. Each test gives the severity of
head injury (HIC) sustained by the dummy and the values of
about 100 variables describing the vehicle, test environment,
and the test dummy. The response variable is Y = 1 if
HIC >1000 (threshold for severe head injury) and Y = 0
otherwise. About half of the predictor variables are ordinal,
six are cyclic, and the rest are categorical.

Three features in the data make model building particu-
larly challenging. The first is missing data. Missing values
in categorical variables are not problematic, as they can
be assigned a “missing” category. Missing values in other
variables, however, need to be imputed before application of
OLR. This can be extraordinarily difficult if there are many
missing values and the missingness patterns are complex
[22, 26]. All ordinal and cyclic variables here have missing
values. Table 30.4 gives the names and numbers of missing
values of some of them (see [27] for the others). For example,
IMPANG, the angle between the axis of a vehicle and the

axis of another vehicle or barrier, is undefined for a rollover
crash test, where there is no barrier and only one vehicle is
involved. In such cases, the value of IMPANG is recorded
as missing and imputing it with a number is inappropriate.
The situation is worse for variable CARANG, which has
991 missing values. Given that the crash tests are carefully
monitored and have been performed for years, it is unlikely
for so many observations to be missing by chance.

For split selection, GUIDE sends all missing values in
the selected ordinal or cyclic variable either to the left or to
the right subnode, depending on which split gives a smaller
sum of residual deviances in the two subnodes. Hence no
imputation is carried out in this step. To fit an OLR model
to a node, GUIDE imputes missing values in the selected
predictor variable with its node mean.

A second challenging feature is the presence of cyclic
variables that are angles with periods of 360 degrees. These
variables are traditionally transformed to sines and cosines,
but splits on one of them at a time are not as meaningful
as splits on the angles themselves. The problem is more
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Fig. 30.9 Comparison of fitted values p̂ of Cook-Weisberg model (30.9) and GUIDE forest versus multiple linear LRT models

Table 30.4 Definitions and
numbers of missing values of
some predictor variables in the
crash-test data

Variable Description Missing

BARRIG Rigid or deformable barrier 1

BARSHP Barrier shape (21 types) 0

BX2 Rear surface of vehicle to front of engine 288

BX5 Rear surface of vehicle to upper leading edge of left door 288

CARANG Angle between surface of rollover test cart and ground 991

COLMEC Steering column collapse mechanism (9 types) 248

ENGDSP Engine displacement 24

IMPANG Angle between axis of vehicle 2 and axis of vehicle 1 or barrier
(0 degree is perpendicular to barrier)

4

CLSSPD Closing speed: relative velocity of approach of two centers of gravity
before contact

2

VEHSPD Resultant speed of vehicle before impact 1

VEHTWT Vehicle test weight 4

VEHWID Vehicle width 90

WHLBAS Vehicle or impactor’s wheelbase 30

YEAR Vehicle model year 4

difficult if the variable has missing values. Should we impute
the angles and then compute the sines and cosines of the
imputed values, or should we impute the sines and cosines

directly? GUIDE avoids imputation entirely by restricting
cyclic variables to split the nodes. If a cyclic variable is
selected, the split takes the form of a sector “X ∈ [θ1, θ2],”
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where θ1 and θ2 are angles, and missing values are sent to
the left or right subnode in the same fashion as noncyclic
variables.

The third challenging feature is that, apparently by de-
sign, high-speed crash tests are more often carried out on
deformable barriers and low-speed tests more often on rigid

Deformable Rigid Unknown

0

20

40

60

80

100

Barrig

C
ls

sp
d 

(k
m

/h
)

Fig. 30.10 Boxplots of closing speed by barrier rigidity for the crash-
test data, with box width proportional to square root of sample size

barriers. This is evident from the boxplots of CLSSPD by
BARRIG in Fig. 30.10, where half of the tests with de-
formable barriers are above closing speeds of 60 km/h, but
less than one quarter of those with rigid barriers are above
60 km/h. Presumably, crashes into rigid barriers are not per-
formed at high speeds because the outcomes are predictable,
but this confounds the effects of CLSSPD and BARRIG in an
OLR model.

We say that X is an “s” variable if it can be used to split
the nodes and an “f” variable if it can be used to fit OLR
models in the nodes. To limit the amount of imputation in
this example, we restrict ordinal variables with more than 20
percent missing values to serve as s variables only. Cyclic
and categorical variables are also restricted to splitting nodes.

Figure 30.11 shows the LRT where a simple linear OLR
model is fitted in each node. The root node is split on
COLMEC, which is steering wheel collapse mechanism. Ob-
servations with COLMEC equal to BWU (behind wheel unit),
EMB (embedded ball), EXA (extruded absorber), NON (none),
or OTH (other) go to node 2. Otherwise, if COLMEC is CON
(convoluted tube), CYL (cylindrical mesh tube), NAP (not
applicable), UNK (unknown), or missing, observations go to
node 3. At node 2, observations go to node 4 if BX2≤ 3496.5
ormissing (the asterisk beside the inequality sign in the figure
indicates that missing values go to the left node). At node 3,

COLMEC
in S 1 1

BX2
∗3496.5 2

BX5
82.50* 4

VEHTWT
1368.5 8

16

89
0.12

–WHLBAS

VEHWID
1847 17

34

70
0.44

–ENGDSP

35

70
0.14

–Year

9
76

0.39
+BX5

5

357
0.34

+VEHSPD

BARSHP
in S 2 3

IMPANG
in [284, 286] 6

12

67
0.24

–Year

BARSHP
= LCB 13

26

1150
0.04

–Year

27

364
0.02

–Year

7

1033
0.01

–Year

�

�

�

�

Fig. 30.11 GUIDE piecewise simple linear LRT for crash-test data.
At each split, an observation goes to the left branch if and only if the
condition is satisfied. The symbol “≤∗” stands for “≤ or missing.” Set
S1 = {BWU, EMB, EXA, NON, OTH}. Set S2 = {LCB, POL, US2, US3}.

Sample size (in italics), proportion of cases with Y = 1, and sign and
name of regressor variable printed below nodes. Terminal nodes with
proportions of Y = 1 above and below value of 0.08 at root node are
colored yellow and green, respectively
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Fig. 30.12 Fitted logistic regression curves in terminal nodes of Fig. 30.11; horizontal dotted lines indicate proportion of severe injury in the node

observations go to node 6 if BARSHP is LCB (load cell
barrier), POL (pole), US2, or US3 (different barrier types).
Node 6 is split on impact angle IMPANG, where 0 degree
indicates impact is head-on. If an observation has IMPANG
between 284 and 286 degrees inclusive (i.e., Driver side), it
goes to node 12. The 2-degree range may seem narrow, but
there are 67 observations in the node, suggesting that the tests
were by design. Below each terminal node are the sample
size (in italics), proportion of Y = 1, and the selected OLR
predictor variable, with the sign of its estimated coefficient.

The tree shows that nodes 5, 9, and 34 have the highest
proportions of severe head injury, at 34, 39, and 44%, respec-
tively. Vehicles in these nodes have certain steering wheel
collapse mechanisms, and they tend to be longer (BX2 >

3496.5 or BX5 > 82.5) or are heavy (VEHTWT > 1368.5)
and narrow (VEHWID ≤ 1846). Figure 30.12 shows the
fitted logistic regression curves in the terminal nodes. The
proportion of tests with severe head injury is indicated by a
dotted line in each plot.

30.5 Conclusion

Logistic regression is a technique for estimating the probabil-
ity of an event in terms of the values of one or more predictor
variables. If there are missing values among the predictor
variables, they need to be imputed first. Otherwise, the ob-
servations or variables containing the missing values would
need to be deleted. Neither solution is attractive. In practice,
finding a logistic regression model with good prediction
accuracy is seldom automatic; it usually requires trial-and-
error selection of variables, choice of transformations, and
estimation of the accuracy of numerous models. Even when a
model with good estimated accuracy is found, interpretation
of the regression coefficients is not straightforward if there
are two or more predictor variables.

A logistic regression tree is a piecewise logistic regression
model, with the pieces obtained by recursively partitioning
the space of predictor variables. Consequently, if there
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is no over-fitting, it may be expected to possess higher
prediction accuracy than a one-piece logistic regression
model. Recursive partitioning has two advantages over a
search of all partitions: it is computationally efficient and
it allows the partitions to be displayed as a decision tree.
At a minimum, a logistic regression tree can serve as an
informal goodness of fit test of whether a one-piece logistic
model is adequate for the whole sample. A nontrivial pruned
tree would indicate that a one-piece logistic model has lower
prediction accuracy, possibly due to unaccounted interactions
or nonlinearities among the variables. Ideally, an effective
tree-growing and pruning algorithm would automatically
account for the overlooked effects, making it unnecessary
to specify interaction and higher-order terms. It would also
allow the models in the terminal nodes to be as simple as
desired (such as fitting a single linear predictor in each
node).

Tree pruning is very important for prediction accuracy.
Many methods adopt the AIC-type approach of selecting the
tree that minimizes the sum of the residual deviance and a
multiple, K, of the number of terminal nodes. There being no
value of K that works for all datasets [16], the advantage of
this approach is mainly computational speed. Our experience
indicates that it is inferior to a pruning approach that uses
cross-validation to estimate prediction accuracy.

Despite a binary decision tree being intuitive to interpret, a
poor split selectionmethod can yieldmisleading conclusions.
A common cause is selection bias. The greedy approach used
by CART and many other algorithms is known to prefer
variables that permit more splits of the data. Consequently,
it is hard to know if a variable is chosen due to its predictive
power or because it has more ways to partition the data.
LOTUS and GUIDE avoid the bias by selecting variables
with chi-squared tests. At the time of completion of this
article, GUIDE is the only tree algorithm that can deal with
cyclic variables and with two or more missing value codes
[22]. The GUIDE software andmanual may be obtained from
www.stat.wisc.edu/~loh/guide.html.
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Abstract

This chapter reviews diagnostic and robust procedures
for detecting outliers and other interesting observations in
linear regression. First, we present statistics for detecting
single outliers and influential observations and show their
limitations for multiple outliers in high-leverage situa-
tions. Second, we discuss diagnostic procedures designed
to avoid masking by finding first a clean subset for es-
timating the parameters and then increasing its size by

D. Peña (�)
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Spain
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incorporating, one by one, new homogeneous observa-
tions until a heterogeneous observation is found. We also
discuss procedures based on sensitive observations for
detecting high-leverage outliers in large data sets using the
eigenvectors of a sensitivity matrix. We briefly review ro-
bust estimation methods and its relationship with diagnos-
tic procedures. Next, we consider large high-dimensional
data sets where the application of iterative procedures can
be slow and show that the joint use of simple univariate
statistics, as predictive residuals, Cook’s distances, and
Peña’s sensitivity statistic, can be a useful diagnostic tool.
We also comment on other recent procedures based on
regularization and sparse estimation and conclude with
a brief analysis of the relationship of outlier detection
and cluster analysis. A real data and a simulated example
are presented to illustrate the procedures presented in the
chapter.

Keywords

Cook’s distance · Influential observations · Influence
matrix · Leverage · Masking · Predictive residuals ·
Sensitivity matrix · Robust estimation

31.1 Introduction

Data often contains outliers or atypical observations. Outliers
are points which are heterogeneous with the rest, due to
large measurement errors, different experimental conditions,
or unexpected variability. Detecting these observations is
important: first, because they can lead to new discoveries
and, second, because they can modify completely the con-
clusions we draw from the data. For instance, penicillin was
found because Pasteur instead of ignoring an outlier tried to
understand the reason of an atypical effect. As Box [1] has
emphasized: “Every operating system supplies information
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on how it can be improved and if we use this information
it can be a source of continuous improvement.” A way in
which this relevant information may appear is in outlying
observations that, in many engineering processes, can show
the way to improve the process. For instance, in a production
process, a large value in one of the variables we monitor may
be due, among other causes, to (1) a large value of one of the
input control variables, (2) an unexpected interaction among
the input variables, and (3) a large measurement error due to
some defect in the measurement instrument. In the first case,
the outlying observations may provide no new information
about the performance of the process; in the second case, may
lead to a potentially useful discovery; and in the third one, to
an improvement of the process control.

Detection of outliers has a long tradition in engineer-
ing statistics, see Chapter 1 of Hampel et al. [2], and now
it has a growing importance in the big data environment.
Many communications and controlling devices are auto-
matically collecting large data sets with many observations
and variables using wireless sensor networks. Sensor nodes
sometime fail to record the data correctly, due to depletion
of batteries or environmental influence, and congestion in
communication may lead to packet loss. These failures will
produce outliers, and their identification is very important
when building regression models as otherwise we may fail to
explain the relationship between the variables in the data set.
An alternative way to deal with the problem of contaminated
data is to use robust methods that avoid large outliers effects
on the estimation of the parameters, and this approach will
be also briefly discussed.

This chapter defines outliers, influential and sensitive
observations in regression models, and presents diagnostic
methods to detect them. Outliers are observations that are
very different from its forecast, or interpolation, with the rest
of the available data. Note that this implies that an outlier
is defined with respect to a model, or in general a rule to
forecast the observations, and, therefore, an observation can
be an outlier given a model and a common point under an-
other. Influential observations are those which have a strong
influence on the estimation of the model parameters. Again,
as outliers, they are model dependent. These observations
are obtained by looking at the standardized change they
produce in the parameter vector or in the vector of forecasts.
Influence is a global analysis. A third type of interesting
points in the sample is sensitive observations which are those
points that suffer an unusual influence from the rest of the
sample. Sensitivity is more a local concept, it shows how
each observation is affected by the rest, and it is computed by
deleting each sample point in turn and looking at the change
that these modifications produce in the forecast of a single
point. We will see that influence and sensitivity are important
concepts for understanding the effect of data in building a
regression model and in finding groups of outliers.

Many procedures are available to identify a single outlier
or an isolated influential point in linear regression. The books
of Belsley et al. [3], Hawkins [4], Cook and Weisberg [5],
Atkinson [6], Chatterjee and Hadi [7], Barnett and Lewis
[8], Atkinson and Riani [9], and Carroll [10] present good
analyses of this problem. To identify outliers and to measure
influence, each point can be deleted, as proposed by Cook
[11] and Belsley et al. [3], or its weight decreased, as in the
local influence analysis introduced by Cook [12]. See Suárez
Rancel and González Sierra [13] and Hartless et al. [14] for a
review of local influence in regression and many references.
A related way to analyze influence has been proposed by
Critchley et al. [15] by an extension of the influence-curve
methodology.

The detection of influential subsets, or multiple outliers,
is more difficult due to the masking and swamping problems.
Masking occurs when one outlier is not detected because of
the presence of others; swamping happenswhen a non-outlier
is wrongly identified due to the effect of some hidden out-
liers, see Lawrance [16]. Several procedures have been pro-
posed for dealing with multiple outliers; see Hawkins et al.
[17], Gray and Ling [18], Marasinghe [19], Kianifard and
Swallow [20,21], Hadi and Simonoff [22,23], Atkinson [24],
and Swallow and Kianifard [25]. A different analysis for
detecting groups of outliers by looking at the eigenvectors
of an influence matrix, or even better those of a sensitivity
matrix, is presented by Peña and Yohai [26, 27].

We briefly discuss in this chapter the relationship between
theses diagnostic procedures and robust regression methods.
See Huber [28] and Hampel et al. [2] for good discussions of
the complementary role of diagnosis and robustness and for
robust estimation in regression and the books by Rousseeuw
and Leroy [29] and Maronna et al. [30] for robust regression
estimates. This problem has also received attention in the
Bayesian literature since the seminal article of Box and Tiao
[31]. See Peña and Guttman [32], Berger et al. [33], Justel
and Peña [34], and Hans [35] for a Bayesian approach to this
problem and references.

The chapter is organized as follows. In Sect. 31.2 we
present the regression model and the notation we will use
in this chapter and define the main measures which will be
introduced for outlier analysis. Section 31.3 reviews pro-
cedures for detecting single outliers and influential obser-
vations in regression. In Sect. 31.4 we discuss the mul-
tiple outlier problem and two types of diagnostic proce-
dures: first, those based on an initial clean subset and, sec-
ond, those based on eigenvalue analysis of some diagnos-
tic matrices. Section 31.5 briefly discusses robust estima-
tion and its connection to diagnostic methods. Section 31.6
presents some fast procedures to find outliers in large data
sets. In particular we introduce a simple statistic proposed
by Peña [36] as a diagnostic tool for large data set that
avoids the masking problem. Section 31.7 includes two ex-
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amples, one simulated and the other with real data, to illus-
trate some of the diagnostic methods presented for detecting
groups of outliers. Section 31.8 summarizes some concluding
remarks.

31.2 Residuals and Leverage in the
RegressionModel

We assume that we have observed a sample of size n of
a random variable y = (y1, . . . , yn)′ and a set of p − 1
explanatory variables which are linearly related by

yi = x′
iβ + ui, (31.1)

where the ui are the measurement errors, which will be inde-
pendent normal zero mean random variables with variance
σ 2 and u = (u1, . . . , un)′. The xi = (1, x2i, . . . , xpi)’s are
numerical vectors in Rp, and we will denote by X the n × p
matrix of rank p whose i-th row is x′

i. The usual criterion to
estimate the parameters β is to minimize

n∑

i=1

(yi − x′
iβ)2 (31.2)

that is the least squares (LS) criterion that is optimal for
normally distributed data. The LS estimate of β is obtained
by projecting the vector y on the space generated by the
columns of X, which leads to

β̂ = (X′X)−1X′y,

and the vector of fitted values, ŷ = (ŷ1, . . . , ŷn)′, is given by

ŷ = Xβ̂ = Hy, (31.3)

where H = X(X′X)−1X′ is the idempotent projection ma-
trix. The vector orthogonal to the space generated by the X
variables is the residual vector, e = (e1, . . . , en)′, which is
defined by

e = y − ŷ = y − Xβ̂ = (I − H)y, (31.4)

and we will let ŝ2R = e′e/(n − p) be the estimated residual
variance.

From (31.4), inserting Xβ + u instead of y and using
HX = X, we obtain the relationship between the residuals
and the measurement errors, e = (I − H)u. Thus, each
residual is a linear combination of the measurement errors.
Letting hij = x′

i

(
X′X

)−1
xj be the elements of the matrix, H,

we have

ei = ui −
n∑

j=1

hijuj (31.5)

and, if the second term is small, the residual ei will be close
to the measurement error, ui.The variance of this second term
is

var(
n∑

j=1

hijuj) = σ 2
n∑

j=1

h2ij = σ 2hii

and if hii, the diagonal term of H, is large, the difference
between the residual and the measurement error can be large.
The values hii are called the leverage of the observation and
measure the discrepancy of each observation xi with respect
to themean of the explanatory variables. It can be shown (see,
for instance, [11] p. 12) that

hii = x′
i

(
X′X

)−1
xi = 1

n

(
1 + (̃xi − x)′ S−1

xx (̃xi − x)
)

where x̃i = (x2i, . . . , xpi) does not include the constant term, x
is the vector of means of the p−1 explanatory variables, and
Sxx is their covariance matrix. Note that if the explanatory
variables were uncorrelated, hii would be the sum of the
standardized distances to the means, ((xij − xj)/sj)2. As∑n

i=1 hii = tr(H) = p, the average value of the leverage is
h = ∑

hii/n = p/n, and it can be shown that 1/n ≤ hii ≤ 1.
From (31.5) we conclude that the residual will be close to the
measurement error for those observations close to the center
of the explanatory data, where hii � 1/n, but will be very
different for the extreme points where hii � 1. The residual
covariance matrix is

Var(e) = E[ee′] = E((I − H)uu′(I − H)) = σ 2(I − H)

(31.6)

andVar(ei) = σ 2(1−hii),which will be large when hii � 1/n
and close to zero if hii � 1. As the mean of the residuals is
zero if the variance of ei is very small, this implies that its
value will be close to zero, whatever the value of ui is.

To avoid residuals with different variances, the standard-
ized residuals are defined as

ri = ei
ŝR

√
1 − hii

(31.7)

which will have variance equal to one. A third type of
useful residuals are the predictive, deleted, or out-of-sample
residuals, defined by e(i) = yi − ŷi(i), where ŷi(i) is computed
in a sample with the ith observation deleted. It can be shown
that

e(i) = ei
(1 − hii)

(31.8)

and the variance of these predictive residuals is σ 2/(1− hii).
If we estimate σ 2 by ŝ2(i)R, the residual variance in a regression
which does not include the ith observation, the standard-
ization of the predictive residual leads to the studentized
residual, defined by
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t̂i = ei
ŝR(i)

√
1 − hii

(31.9)

which has a student t distribution with n − p − 1 degrees of
freedom. An alternative useful expression of these residuals
is based on hii(i) = x′

i

(
X(i)X(i)

)−1
xi = hii/(1 − hii), where

X(i) is the (n−1)×pmatrix without the row x′
i, and therefore,

we have the alternative expression

t̂i = e(i)
ŝR(i)

√
1 + hii(i)

. (31.10)

31.3 Diagnosis for a Single Outlier

31.3.1 Outliers

If one observation, yh, does not follow the regression model,
either because its expected value is not x′

hβ or its conditional
variance is not σ 2, we will say that this observation is an
outlier. The discrepancy is usually translated to the residual.
For instance, if the hth observation has not been generated
by the linear model yh = x′

hβ + uh, but by a different model,
g(x′

h) + uh, then

eh = g(x′
h) − x′

hβ̂ + uh

and the hth point will be an outlier if the deviation∣∣∣g(x′
h) − x′

hβ̂

∣∣∣ is much larger than
∣∣∣x′
h(β − β̂)

∣∣∣ . Suppose,

in order to simplify, that g(x′
h) = x′

hα, that is, the data are
also generated by a linear model but with different parameter
values. Then, even if α is very different from β, the size of∣∣∣x′
h(α − β̂)

∣∣∣ depends on x′
h, and the discrepancy between

the parameter values would be easier to detect when
∣∣x′
h

∣∣
is large than when it is small. When the observation is an
outlier because its measurement error comes from a different
distribution, for instance, one with variance kσ 2, instead of
σ 2, where k > 1, we expect that |uh| will be larger than
the rest of the measurement errors. It is intuitive, and it
has been formally shown [33] that we cannot differentiate
between a change in the mean and a change in the variance
of a distribution by using just one observation; also models
which assume a change in the variance are equivalent to
those which assume shifts in the mean of the observations.
Thus, a simple model for a single outlier at time hth is to
consider the mean shift model

yh = x′
hβ + w+ uh (31.11)

where w is the size of the outlier and uh is N(0, σ 2). In gen-
eral, the size of a possible outlier at every point is estimated
by the parameter w in the model

yi = x′
iα + wI(h)i + ui, i = 1, .., n (31.12)

where I(h)i is a dummy variable given by I(h)i = 1,when i = h,
and I(h)i = 0 otherwise. We can test for outliers by fitting
this model for h = 1, . . . , n and checking if the estimated
coefficient ŵh is significant. It is easy to show that:

(1) α̂h =
(
X′

(h)X(h)

)−1
X′

(h)y(h) = β̂(h), the regression pa-

rameters in the model with the dummy variable at point
hth are estimated by deleting the case (yh, xh) affected
by the dummy variable and applying to the rest of the
observations the usual procedure;

(2) ŵh = yh − x′
hα̂, and, therefore, the estimated residual at

the hth point is zero, as eh = yh − x′
hα̂h − ŵh = 0.

(3) The t statistic to check if the parameter ŵh is signifi-
cant is equal to the studentized residual, th, as defined
in (31.9).

Assuming that only one observation is an outlier, the
test is made by comparing the standardized residual to the
maximumof a t distributionwith n−p−2 degrees of freedom.
Often, for moderate n, a point is considered as an outlier if
its studentized residual is larger than 3.5.

31.3.2 Influential Observations

An intuitive way to measure the effect of an observation
on the vector of estimated parameters, or in the vector of
forecasts, is to delete this observation from the sample and
see how its deletion affects these vectors. A measure of the
influence of the ith observation on the parameter estimate is
given by

D(i) = (β̂ − β̂
′
(i))X

′X(β̂ − β̂(i))

p̂s2R
, (31.13)

which, as the covariance of β̂ is ŝ2R(X
′X)−1, measures the

change between β̂ and β̂(i) with relation to the covariance
matrix of β̂, standardized by the dimension of the vector p.
This measure was introduced by Cook [11]. Of course, other
standardizations are possible, Belsley et al. [3] proposed
using instead of ŝ2R, the variance of the regression model
when the ith observation is deleted, ŝ2(i)R, and Diaz-García
and Gonzalez-Farias [37] have suggested standardizing the
vector (β̂ − β̂(i)) by its variance, instead of using the variance
of β̂. See Cook, Peña and Weisberg [38] for a comparison of
some of these possible standardizations.

Equation (31.13) can also be written as the standardized
change in the vector of forecast:
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Di =
(
ŷ − ŷ(i)

)′ (
ŷ − ŷ(i)

)

p̂s2R
(31.14)

where ŷ(i) = Xβ̂(i) = (ŷ1(i), . . . , ŷn(i))′. Note that from (31.3)
we have that var(̂yi) = σ 2hii and as the average value of hii
is p/n, (31.14) is standardized by this average value and by
the dimension, n, of the vector. A third way to measure the
influence of the ith point is to compare ŷi with ŷ(i), where
ŷ(i) = x′

iβ̂(i). With the usual standardization by the variance,
we have

Di =
(
ŷi − ŷ(i)

)2

p̂s2Rhii
(31.15)

and using the relation between the inverse of X′X and
X′

(i)X(i), we obtain

β − β̂(i) = (X′X)−1xi
ei

1 − hii
(31.16)

inserting this in (31.13), it is easy to see that (31.15) is
equivalent to (31.13) and (31.14). Also, as from (31.16) we
have that

ŷ − ŷ(i) = hi
ei

1 − hii
(31.17)

where hi is the ith column of the H matrix. Using this
expression in (31.14), we obtain a convenient way to compute
Cook’s statistic:

Di = r2i hii
p(1 − hii)

(31.18)

where ri is the standardized residual given by (31.7). For large
n, the expected value of Di can be approximated by

E(Di) � hii
p(1 − hii)

, (31.19)

and it will be very different for observations with different
leverage.

Cook proposed judging the values of Di by an
F (p; n− p; 1 − α) , where F is the distribution used in
building a confidence region for the β parameters. Thus, we
may identify points as influential when they are able to move
the estimate out of the confidence region for a fixed value of
α and declare as influential those observations which verify
Di ≥ F (p; n− p; 1 − α). This solution is not satisfactory for
large sample size because it is difficult that any observation
is deemed as influential. Muller and Mok [39] have obtained
the distribution of the Di for normal explanatory variables,
but this distribution is complicated.

Cook [12] proposed a procedure for the assessment of the
influence on a vector of parameters θ of minor perturbations
of a statistical model. This approach is very flexible and can
be used to see the effect of small perturbations which would
not normally be detected by deletion of one observation. He
suggested introducing a n × p vector ω of case weights and

using the likelihood displacement (L(θ̂ ) − L(θ̂w)), where θ̂

is the maximum likelihood (ML) estimator of θ̂ and θ̂ω the
ML when the case weight ω is introduced. Then, he showed
that the directions of greatest local change in the likelihood
displacement for the linear regression model are given by the
eigenvectors linked to the largest eigenvalues of the curvature
matrix, L = EHE, where E is the vector of residuals. Later,
we will see the relation of this approach to some procedures
for multiple outlier detection.

31.3.3 The Relationship Between Outliers and
Influential Observations

An outlier may or may not be an influential observation, and
an influential observation may or may not be an outlier. To
illustrate this point, consider the data in Table 31.1. We will
use these data to build four data sets. The first one includes
cases 1 to 9 repeated three times and has sample size n = 27.
The other three sets are formed by adding a new observation
to this data set. The set (a) is built by adding case 28(a), the set
(b) by adding case 28(b), and the set (c) by adding case 28(c).
Table 31.2 shows some statistics of these four data sets where
(0) refers to the set of 27 observations and (a), (b), and (c) to
the sets of 28 observations, as defined before. The table gives
the values of the estimated parameters, their t statistics under
parenthesis, the residual standard deviation, the leverage of
the added point, the standardized residual for the added point,
and the value of Cook’s statistics.

In set (a) observation 28 is clearly an outlier with a value
of the standardized residual of 4.68, but it is not influential,
as D28(a) = 0.92 which is a small value. In case (b) the 28th
point is not an outlier as r28(b) = 1.77 is not significant, but

Table 31.1 Three sets of data which differ in one observation

Case 1 2 3 4 5 6 7 8 9 (a) (b) (c)

x1 −2 0 2 −4 3 1 −3 −1 4 0 −3 −3

x2 6, 5 7, 3 8, 3 6, 0 8, 8 8, 0 5, 9 6, 9 9, 5 7, 2 9, 7, 3

y −1, 5 0, 5 1, 6 −3, 9 3, 5 0, 8 −2, 7 −1, 3 4, 1 5 −1, 5 4

Table 31.2 Some statistics for the three regression fitted to the data
in Table 31.1

β̂0 β̂2 β̂1 ŝR h28 r28 D28

(0)
2.38 −0.30 1.12

0.348 − − −
(0.82) (0.78) (6.24)

(a)
13.1 −1.72 1.77

0.96 0.11 4.68 0.92
(1.7) (−1.66) (3.69)

(b)
−2.74 0.38 0.80

0.36 0.91 1.77 11.1
(−2.9) (3.08) (13.87)

(c)
−25.4 3.43 −0.624

0.91 0.65 4.63 13.5
(−5.41) (5.49) (2.22)



610 D. Peña

it is very influential as is indicated by the large D28 value.
Finally, in set (c) the observation is both an outlier, r28 =
4.63, and very influential, D28 = 13.5.

Note that if the leverage is small hii � 1/n, hii/(1−hii) �
(n− 1)−1, and by (31.18)

Di = r2i
p

(
1

n− 1

)

then if n is large, the observation cannot be influential,
whatever the value of r2i . On the other hand, high-leverage
observations with hii close to one will have a ratio hii/(1−hii)
arbitrarily large and, even if r2i is small, will be influential

31.4 Diagnosis for Groups of Outliers

The procedures that we have presented in the previous sec-
tion are designed for a single outlier. We can extend these
ideas to multiple outliers as follows. Let I be an index set
corresponding to a subset of r data points. The checking of
this subset can be done by introducing dummy variables, as
in the univariate case. Assuming normality, the F test for the
hypothesis that the coefficients of the dummy variables are
zero is given by

Fr,(n−p−r) = e′
I(I − HI)

−1eI
r̂s2(r)R

where eI is the vector of least squares residuals; HI the r ×
r submatrix of H, corresponding to the set of observations
included in I; and ŝ2(r)R the residual variance of the regression
with the set I deleted. Cook and Weisberg [5] proposed to
measure the joint influence of the data points with index in I
by deleting the set I and computing, as in the single outlier
case,

DI = (β̂ − β̂
′
(I))X

′X(β̂ − β̂(I))

p̂s2R
which can also be written, as a generalization of (31.18), by
DI = (e′

I(I − HI)
−1HI(I − HI)

−1eI)/p̂s2R. Note that a large
value of DI may be due to a single influential observation
included in the set I, but it can also be due to the sum of small
individual effects of a set of observations that are masking
each other. However, in the first case, this single observation
will be easily identified. Also, a subset of individually highly
influential points, whose effect is to cancel each other out,
will lead to a small value of DI , but, again in this case, the
individual effects will be easy to identify. However, to build
this measure, we should compute all the set of I in the n data,
and this task will be impossible to do for large I and n.

The procedures for finding multiple outliers in regression
can be divided into three main groups. The first one is based
on robust estimation that will be discussed in Sect. 31.5. The

main idea is to compute an estimate that is not affected by the
outliers and then find the outliers as those cases with large
residuals with respect to the robust fit. A second class of pro-
cedures uses also robust ideas to build an initial clean subset
and then combine least squares estimates in clean subsets and
diagnosis ideas for outlier detection. Three procedures in this
spirit will be presented next, and they can be very effective
when p and n are not large. For large data sets with many
predictors and high-leverage observations, robust estimates
can be very difficult to compute, and procedures based on the
clean set idea may not work well, because of the difficulty
in selecting the initial subset. The third type of procedures
is based on the eigen-structure analysis of some diagnostic
matrices and is specially useful for large data sets.

31.4.1 Methods Based on an Initial Clean Set

Kianifard and Swallow [20, 21] proposed to build a “clean”
set of observations and check the rest of the data with respect
to this set. If the observation closest to the clean set is not
an outlier, then increase the “clean” set by one observation,
and continue checking points until no new observation can be
incorporated into the basic set. The key step in this procedure
is to find the initial subset because if it contains outliers, all
the procedure breaks down. These authors proposed using
either the predictive or standardized residuals or a measure
of influence as Di.

A similar procedure was proposed by Hadi and Simonoff
[22,23]. They recommend building the initial subset using as
robust estimate the least median of squares estimate (LMS)
that will be presented in Sect. 31.5. The clean set is built by
computing this robust estimate and then uses the h = [ n+p+1

2 ]
observations with the smallest residuals with respect to this
robust fit to form the initial “clean” set, which we call M. The
procedure continues by fitting a regression model by least
squares to this clean set, M. Calling β̂M the LS estimated
parameters and σ̂M the residual standard deviation, a set of
in-sample and out-of-sample residuals is obtained as follows:

di =
∣∣yi − x′

iβM

∣∣

σ̂M
√
1 − x′

i(X
′
MXM)−1xi

, if i ∈ M

di =
∣∣yi − x′

iβM

∣∣

σ̂M
√
1 + x′

i(X
′
MXM)−1xi

, if i /∈ M

That is, di represents the standardized residual (31.7) for
the data in set M and the predictive residual (31.10) for
observations outside this set. Then, all the observations are
arranged in increasing order according to di. Let s be the
size of the set M (which is h in the first iteration, but will
be changing as explained below). If d(s+1) is smaller than
some critical value, a new set of size s + 1 is built with the
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s + 1 observations with smallest d values. If d(s+1) is larger
than some critical value, all observations out of the set M are
declared as outliers, and the procedure stops. If n = s + 1,
we stop and declare no outliers in the data. These authors
proposed using as critical values those of the t distribution
adjusted by Bonferroni, that is, t( α

2(s+1) , s− p).
Atkinson [24, 40] proposed a similar approach called the

forward search. His idea is again to combine a robust estimate
with diagnostic analysis. He computes also the LMS estimate
but instead of generating a large set of candidates by random
sample, he generates a set of candidate values of β̂ fitting
by least squares subsamples of size p, p + 1, . . . , n. The
procedure is as follows. We start generating a random sample
of size p, let Ip the indices of the observations selected. Then,
we compute the parameters β̂(p) by LE and the residual for
all the cases, e = y − Xβ̂(p). The residuals are corrected by

u2i = e2i , i ∈ I (31.20)

u2i = e2i /(1 + hii), i /∈ I

and these residuals, u2i , are ordered and the smallest p + 1
are selected. With this new sample of size m = p + 1, the
process is repeated, that is, the parameters are computed by
LE and the residuals to this fit for the n points are obtained.
The corrected residuals (31.20) are computed and the pro-
cess is continued. In this way we obtain a set of estimates,
β̂(m), m = p, .., n, the corresponding residuals; e(m) =
y−Xβ̂(m); and the robust scales (31.27), s(β̂(m)). The value
selected is the β̂(m) which minimizes the robust scale. This
process is a complete forward search, and several forward
searches are done starting by different random samples. The
residuals are then identified by using this LMS estimate

computed from several forward searches. An improvement
of this procedure was proposed by Atkinson and Riani [9],
which separates clearly the estimation of the clean subset
and the forward search. The initial estimate is computed as
proposed by LMS, by taking many random samples of size p.
Then, the forward search is applied but stressing the use
of diagnostic statistics for monitoring the performance of
the procedure. Finally, Swallow and Kianifard [25] suggest
also a similar procedure which uses a robust estimate of the
scale and determines the cutoff values for the testing from
simulations.

These procedures work when both p and n are not large
and the proportion of outliers is moderate, as shown in the
simulated comparison by Wisnowski et al. [41]. However,
they do not work as well in large data sets with high contami-
nation. The LMS estimates rely on having at least a sample of
size p without outliers, and we need an unfeasible number of
samples to have a large probability of this event when p and
n are large (see [27]). This good initial estimate is the key for
the procedures of the clean set. In the next section, we will
present more effective procedures for large data sets.

31.4.2 Methods Based on Eigenvectors of the
Influence and Sensitivity Matrix

The matrix of forecast changes was defined by Peña and
Yohai [26] by looking at the vectors of changes in the forecast
vector when each observation is deleted. Calling as before
ŷi to the forecast of the ith observation and ŷi(j) to the
forecast when the parameters are computed deleting the jth
observations, this matrix of forecast changes is given by

T =

⎡

⎢⎢⎢⎢⎣

ŷ1 − ŷ1(1) ŷ1 − ŷ1(2) . . . ŷ1 − ŷ1(n−1) ŷ1 − ŷ1(n)
ŷ2 − ŷ2(1) ŷ2 − ŷ2(2) . . . ŷ2 − ŷ2(n−1) ŷ2 − ŷ2(n)

. . . . . . . . . . . . . . .

ŷn−1 − ŷn−1(1) ŷn−1 − ŷn−1(2) . . . ŷn−1 − ŷn−1,(n−1) ŷn−1 − ŷn−1(n)

ŷn − ŷn(1) ŷn − ŷn(2) . . . ŷn − ŷn(n−1) ŷn − ŷn(n)

⎤

⎥⎥⎥⎥⎦

The columns of this matrix are the vectors ti = ŷ − ŷ(i), and
the Cook’s statistic (31.14) is their standardized norm. These
vectors can also be written as ti = e(i) − e, where e(i) is the
vector of residuals when observation ith is deleted. Therefore,
T can also be considered the matrix of residual changes. Peña
and Yohai [26] define the n× n influence matrixM as

M = 1

ps2R
T′T.

The matrix T has columns X(β̂ − β̂(i)), and using (31.16) it
is easy to see that the ij-th element ofM is

mij = eiejhij
(1 − hii)(1 − hjj)ps2R

= ei(i)ej(j)hij
ps2R

.

andM can be written as

M = 1

ps2R
WHW (31.21)

where W is the diagonal matrix of predictive residuals
(31.8). Assuming that all the residuals are different from
zero, from (4) the rank of M is equal to p, the rank of H.
Observe that the diagonal elements of M are the Cook’s
statistics.
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Let rij = mij/m
1/2
ii m1/2

jj be the uncentered correlation co-
efficient between ti and tj. Let us show that the eigenvectors
of the matrixM will be able to indicate groups of influential
observations. Suppose that there are k groups of influential
observations I1, . . . , Ik, such that:

(i) If i, j ∈ Ih, then |rij| = 1. This means that the effects
on the least squares fit produced by the deletion of two
points in the same set Ih have correlation 1 or −1.

(ii) If i ∈ Ij and l ∈ Ih with j �= h, then ril = 0. This
means that the effects produced on the least squares fit
by observations i and j belonging to different sets are
uncorrelated.

(iii) If i does not belong to any Ih, then mij = 0 for all j.
This means that data points outside these groups have
no influence on the fit.

Now, according to (i) we can split each set Ih in I1h and
I2h such that: (1) If i, j ∈ Iqh , then rij = 1. (2) If i ∈ I1h and
j ∈ I2h , then rij = −1. Let v1 = (v11, . . . , v1n)′, . . . , vk =
(vk1, . . . , vkn)′ be defined by vhj = m1/2

jj if j ∈ I1h , vhj =
m1/2
jj if j ∈ I1h , vhj = −m1/2

jj if j ∈ I2h , and vhj = 0 if j /∈ Ih.
Then, if (i)–(iii) hold, by (6) the matrixM is

M =
k∑

i=1

viv′
i,

and since the vi’s are orthogonal, the eigenvectors of M are
v1, . . . , vk, and the corresponding eigenvalues λ1, . . . , λk are
given by

λh =
∑

i∈Ih
mii.

It is clear that when the matrix M satisfies (i)–(iii), the
only sets I with large CI are I

q
h , 1 ≤ h ≤ k, q = 1, 2,

and these sets may be found by looking at the eigenvectors
associated with non-null eigenvalues ofM. Note that (6) can
also be written as

rij = sign(ei)sign(ej)hij/(hiihjj)
1/2

whichmeans that, in the extreme case that we have presented,
the H matrix and the signs of the residuals are able, by
themselves, to identify the set of points that are associated
with masking. For real data sets, (i)–(iii) do not hold exactly.
However, the masking effect is typically due to the presence
of blocks of influential observations in the sample having
similar or opposite effects. These blocks are likely to produce
a matrix M with a structure close to the one described on
(i)–(iii). In fact, two influential observations i, j producing
similar effects should have rij close to 1 and close to −1
when they have opposed effects. Influential observations
with non-correlated effects have |rij| close to 0. The same

will happen with non-influential observations. Therefore, the
eigenvectors will have approximately the structure described
above, and the null components will be replaced by small
values. This suggests finding the eigenvectors corresponding
to the p non-null eigenvalues of the influence matrixM, con-
sidering the eigenvectors corresponding to large eigenvalues,
and defining the sets I1j and I

2
j by those components with large

positive and negative weights, respectively.
The influence matrix M may be considered a general-

ization of Cook’s local influence matrix L = EHE (see
Cook [12]). It replaces the matrix of residuals E by the
matrix of standardized residuals W. If there are no high-
leverage observations and the hii are similar for all points,
both matrices will also be similar and will have similar eigen-
vectors. However, when the observations have very different
leverage, the directions corresponding to the eigenvectors of
the matrix M give more weight to the influence of the high-
leverage observations, which are precisely those more likely
to produce masking effects.

An alternative way to analyze the information contained in
the matrix of forecast changes,T, is to look at its rows instead
of at its columns. The rows of T indicate the sensitivity of
each point, that is, how the forecast of a given point is affected
by all the other points in the sample. In fact the rows of this
matrix

si = (̂yi − ŷi(1), . . . , ŷi − ŷi(n))
′

describe how the forecast of the ith observation is affected by
deleting any of the observations in the sample. From (31.17)
we can write

si = (hi1e1/(1 − h11), . . . , hinen/(1 − hnn)) = Whi,

(31.22)

where W is the diagonal matrix con elements ei/(1 − hii)
and hi is the ith column ofH. Peña and Yohai [27] define the
sensitivity matrix as the covariance matrix of the sensitivity
vectors of the sample points by

P = 1

p̂s2R

⎡

⎣
s′1s1 . . . s′1sn
. . . . . . . . .

s′1sn . . . s′nsn

⎤

⎦ .

with elements

pij = 1

p̂s2R
h′
iW

2hj = 1

p̂s2R

n∑

k=1

e2k
(1 − hkk)2

hikhjk,

which can be computed by

P = 1

p̂s2R
HW2H. (31.23)
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It can be shown that the sensitivity and the influence matrix
have both rank p and the same eigenvalues but different
eigenvectors. In fact, influence and sensitivity are comple-
mentary ways to look at the observations, and the sum of the
influence of all the points is equal to the sum of sensitivities.
Peña and Yohai [27] have shown that the eigenvectors of the
sensitivity matrix are more powerful to identify groups of
outliers than those of the influence matrix and have proposed
the following iterative procedure for identifying groups of
outliers avoiding the masking effect:

Iteration 1: Put k = 1, and form a set A1 that includes
3p+1 possible regression LS estimates computed as follows.
The first is the standard LS estimate, computed by using all
the data points. Then, for each of the p eigenvector zi, 1 ≤
i ≤ p, of the Pmatrix, with elements zij, 1 ≤ j ≤ n, we obtain
three other LS estimates: the first is computed dropping the
points corresponding to them largest elements zij, the second
to the m smallest elements, and the third to the largest

∣∣zij
∣∣ .

Then define

β̂
(k) = arg min

β∈Ak

S(y − Xβ)

where S is a robust measure of variability of the residuals as
theMAD (median of the absolute values of the residuals) and

ŝ(k) = min
β∈Ak

S(y − Xβ)

is the value of this scale.
Iteration k: Suppose that we have selected a value β̂

(k)
.

Compute the residuals e(k)i = yi − x′
iβ̂

(k)
for 1 ≤ i ≤ n, and

all observations with residual larger than

∣∣∣e(k)i > Ĉs(k)
∣∣∣

are deleted, and the rest of observations are used to a new
sensitivity matrix (31.23), and its eigenvectors are used to
compute the new set of estimates Ak+1. The procedure ends

when β̂
(k) = β̂

(k−1)
and the observations deleted in the last

iteration formed the set of outliers in the sample.
The values recommended by Peña and Yohai arem = n/2

and C = 2.

31.5 Robust Regression

An alternative approach to search for outliers is to use esti-
mation methods that are robust to outliers. It is well known
that LS is optimal for normal distributed data, but it may
be inefficient when the data comes from a heavy tail dis-
tribution that can produce outliers. The breakdown point of
an estimator is defined as the minimum fraction of outliers
in the sample that makes the estimate take any arbitrary

value. For instance, the LS estimate has a breakdown point
of 1/n because a single outlier may change β to any arbitrary
value. If instead of LS we use a robust estimate with high
breakdown point, b/n, and we have a fraction of outlier
smaller than this number, b/n, we can find atypical points
as observations with high residuals with respect to the robust
model. These robust estimates can be obtained by, instead of
finding the parameters that minimize the squared residuals
as in (31.2), minimizing another function of the residuals that
grows slower than the squares or, even better, that is bounded,
so that the maximum effect of an outlier is limited. Robust
estimation and diagnostic methods are complementary ways
to analyze the problem of data heterogeneity. Diagnostic
methods emphasize the need to find the possible outliers,
whereas robustmethods try to estimate the parameters in such
a way that they are not affected by possible outliers. Both
approaches complement each other, and the best procedures
are often those that use ideas and results coming from both
fields.

A general class of robust estimates for regression are M-
estimators that minimize

M =
n∑

i=1

ρ

(
ei(β)

σ̂

)
(31.24)

where ρ is a nondecreasing bounded function with ρ(0) =
0, and ρ(∞) = 1, so that the effect of each residual,
ei(β) = yi − x′

iβ, is bounded, and σ̂ is an initial estimate
of σ that makes the M-estimate independent of the scale of
the observations. Particular members of this class are the LS
estimate obtained, for ρ(x) = x2, and the L1 estimate, for
ρ(x) = |x| . Note also that these two estimates do not require
an initial value of σ̂ . For M-estimates the value of σ̂ can be
obtained by an initial estimate that does not require the scale,
as, for instance, minimizing the L1 distances

n∑

i=1

∣∣∣yi − x′
iβ̂

L
∣∣∣ =

n∑

i=1

∣∣eLi
∣∣

that gives an estimate more robust than LS. Then, we can
obtain an initial estimate, σ̂ , by theMAD (median of absolute
deviations) of these residuals by

σ̂ = 1

0.675
Med(

∣∣eLi
∣∣ , eLi �= 0).

The function (31.24) is minimized by an iterative algo-
rithm as follows. Taking the derivative of M in (31.24) with
respect to β, the estimate must verify

n∑

i=1

ρ ′
(
ei(β)

σ̂

)
xi = 0 (31.25)
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where ρ ′(x) = dρ(x)/dx.Nowwe define the weight function

ω(x) = ρ ′(x)/x if �= 0; ω(0) = 0

and the solution of (31.25) can be written as

n∑

i=1

ωi(yi − x′
iβ)xi = 0

where ωi = ω(ei(β)/σ̂ ); this implies

β =
( n∑

i=1

ωixix′
i

)−1( n∑

i=1

ωiyixi

)
(31.26)

that is a weighted LS estimate that gives a weight to each ob-
servation that depends on its standardized residual ei(β)/σ̂ ,
so that observations with large residuals will have small
weight in the estimation. The function (31.24) is minimized
by using some initial β value to obtain the residuals and
then computing a new value of the estimate by (31.26). This
estimate will produce new residuals and new weights, and
this procedure is iterated until convergence.

These M-estimates are useful when the samples only
have low-leverage outliers but do not work for high-leverage
outliers because, as we have seen, the residuals at these points
can be very small. A better alternative is the MM-estimates
in which the estimation is made in two steps: (1) an initial
consistent estimate β̂0 is computed that has high breakdown
point, although it may be non-efficient, and a robust scale is
obtained with this estimate; (2) Eq. (31.24) is minimized by
the previous iterative procedure starting with β̂0.

A possible initial consistent estimate is the least median
of squares (LMS) estimate, proposed by Rousseeuw [42],
that is computed by generating many possible values of
the parameters, β1, . . . ,βN by resampling: many random
samples of size p, (Xi, yi) where the matrix Xi is p× p and yi
is p×1, are generated, and with each sample the LS estimate,
β i = X−1

i yi, is computed. For each value β i (i = 1, .., N), the
residuals associated are obtained, ei = y−X β i (i = 1, .., N),
and the median of these residuals is used to form a robust
scale

s(β i) = median(e21i, . . . , e
2
ni). (31.27)

The value β i which minimizes this robust scale is the LMS
estimate. This LMS estimate, although very robust, is not
efficient. A better method is to use as initial estimate the
one proposed by Peña and Yohai [27] that we have presented
in Sect. 31.4.2, which can be shown has a breakdown point
close to 1/2 for high-leverage concentrated outliers and p/n
small. See Maronna et al. [30] for a comparison of different
estimates in regression.

31.6 Detecting Outliers in Large Data Sets

The previous procedures can be very useful for moderate
data sets, but they can be very slow with big data with many
variables and observations. In these large data sets, iterative
procedures are unfeasible and other methods are required.
In this section we will recommend a simple approach and
review briefly other possibilities.

A useful approach is to compute a few diagnostic statistics
that can identify single and masked outliers. For masked
outliers Peña [36] has proposed a single statistic that is
able to identify groups of high-leverage outliers, which are
the most difficult to identify. This statistic can be obtained
through a proper standardization of the diagonal elements
of the sensitivity matrix. Peña’s Pi statistic is defined as the
squared norm of the standardized sensitivity vector si, given
by (31.22), that is,

Pi = s′isi
p v̂ar(ŷi)

, (31.28)

and using (31.17) and v̂ar(ŷi) = ŝ2Rhii, this statistic can be
written as

Pi = 1

p̂s2Rhii

n∑

j=1

h2jie
2
j

(1 − hjj)2
. (31.29)

An alternative way to write Pi is as a linear combination
of the sample Cook’s distance. From (31.15) and (31.29), we
have

Pi =
n∑

j=1

ρ2
jiDj, (31.30)

where ρij = (h2ij/hiihjj)
1/2 ≤ 1 is the correlation between

forecasts ŷi and ŷj.Also, using the predictive residuals, ej(j) =
ej/(1 − hjj), we have that

Pi = 1

p̂s2R

n∑

j=1

ωjie
2
j(j) (31.31)

and Pi is a weighted combination of the predictive residuals.
The sensitivity Peña’s statistics has three interesting

properties. The first one is that in a sample without outliers
or high-leverage observations, all the cases have the same
expected sensitivity, approximately equal to 1/p. This is
an important advantage over Cook’s statistic, which has
an expected value that depends heavily on the leverage of
the case. The second property is that for large sample sizes
with many predictors, the distribution of the Si statistic
will be approximately normal. This again is an important
difference from Cook’s distance which has a complicated
asymptotic distribution (see Muller and Mock [39]). This
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normal distribution allows for computing cutoff values for
finding outliers. The third property is that when the sample
is contaminated by a group of similar outliers with high
leverage, the sensitivity statistic will discriminate between
the outliers and the good points, and the sensitivity statistic
Si is expected to be smaller for the outliers than for the good
data points.

The normality of the distribution of the Si statistic implies
that we can search for outliers by finding observations with
large values of (Pi−E(Pi))/std(Pi).As the possible presence
of outliers and high-leverage points will affect the distribu-
tion of Si, it is better to use robust estimates as the median
andMAD (median of the absolute deviations from the sample
median) and consider as heterogeneous observations those
which satisfy

|Pi − med(P)| ≥ 4.5MAD(P) (31.32)

where med(P) is the median of the Pi values andMAD(P) =
median |Pi − med(P)| . For normal data MAD(P)/.645 is a
robust estimate for the standard deviation, and the previous
rule is roughly equivalent to take three standard deviations in
the normal case. See Kashif et al. [43] for other applications
of this statistic.

An alternative approach is based on using the simple idea
of introducing dummy variables at each point in the sample.
The basic model will be

yi = x′
iβ +

h2∑

j=h1
wjI

(i)
j + ui, i = 1, .., n (31.33)

where I(i)j is a dummy variable such that I(i)j = 1 if j = i

and I(i)j = 0 if j �= i, and we allow for the possibility of
an outlier at each point h1 = 1 and h2 = n. This model
cannot be estimated because it includes p + n parameters,
more than the n observations, and Hendry et al. [44] and
Hendry and Doornik [45] proposed the following impulse
indicator saturation method: (1) Introduce dummy variables
in the first half of the observations and estimatemodel (31.33)
with h1 = 1 and h2 = n/2, find observations with significant
wi coefficients, and form with them a set of potential outliers.
(2) Estimate model (31.33) with h1 = n/2 + 1 and h2 = n
in the second half of the sample, and include the outliers
found in this second half in the set of potential outliers. (3)
Estimate a model with dummy variables corresponding to all
the observations in the set of potential outliers, and check
the new estimated parameters wi for significance. In order to
control for the large number of tests made in this process,
the significance level of the t test on the coefficients of the
dummy variables is chosen as α = 1/n, so that we expect
to find nα = 1 false outlier in the sample. Johansen and
Nielsen [46] have shown that this procedure can be related
to M regression estimates.

This method may work well when the groups of outliers
occur in patches along some clear dimension, as time. If
we have data ordered over time, we expect that groups of
outliers will be roughly consecutive and, therefore dividing
the sample into two periods of time, they will be analyzed
together. Of course, we may not see the effect of a patch of
outliers that occur just in the middle of the observed period,
because they will be split into the two halves, but we may
have an opportunity in the final estimation where dummies
from both sides can be included. However, this procedure
may not be very useful when there is not a clear way to
split the sample and the split is made at random. Then the
probability that each group of outliers appear together in one
of the two halves at random will be small. We will need
to repeat the procedure several times with different random
splitting, but this will be unfeasible for large data sets.

A third approach is also based on model (31.33), but
instead of splitting the sample, restrictions are added to
estimate the parameters. These procedures still require a
heavy computational burden and therefore are not suitable
for very large data sets, but they are presented here because
they are based on sparse analysis that may lead to powerful
future procedures for big data. She and Owen [47] proposed
to estimate the model assuming sparsity of the coefficientswi
and adding a Lasso penalty function

min
( n∑

i=1

(yi − x′
iβ + wiI

(h)
i )2 +

n∑

i=1

λi |wi|
)
,

and Kong, Bondell, and Wu [48] improve this approach for
many variables by adding penalties on the β and on the wi
coefficients. Thus, they propose to estimate the model

min
( n∑

i=1

(yi − x′
iβ + wiI

(h)
i )2 + λn

n∑

i=1

|βi| + μn

n∑

i=1

|wi|
|w̃i|

)

(31.34)

where w̃i are residuals of an initial robust regression fit and
λn and μn are penalty parameters. In order to implement the
procedure, we need some initial robust fit, and then (31.34)
is minimized by a quadratic programming algorithm.

31.7 Examples

Wewill show two examples in order to illustrate the previous
procedures. The first is a simulated example and the second
a well-known data set.

31.7.1 A Simulated Example

As an illustration we will use the simulated data from Ta-
ble 31.3, which are plotted in Fig. 31.1.
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Fig. 31.1 The simulated data from Table 31.3

The three sets of data have in common cases 1 to 8 and
differ in cases 9 and 10. In the first set of data, the largest
values of the Cook’s statistics are D10 = 0.795, D1 = 0, 29,
and D9 = 0.228. The most influential observation is the
tenth which has a standardized residual r10 = 1.88; thus
there is no evidence that the point is an outlier. However,
the first eigenvector of the influence matrix leads to the
results shown in Table 31.4. We see that both cases 9 and 10
appear separated from the rest. When they are deleted from
the sample and checked against the first eight observations,
we obtain the values indicated in Table 31.5, where they
are clearly declared as outliers. Thus, in this example the
eigenvalues of the influence matrix are able to avoid the
masking effect which was clearly present in the univariate
statistics.

In case (b) as both outliers have a different sign, they do
not produce masking, and both of them are detected by the
univariate analysis, D9 = 1.889 and D10 = 1.893, and the
outlier tests are t10 = 5.20 and t9 = −5.24. The two points
are also shown in the extremes of the eigenvalue. Finally in
case (c) there is only an outlier which is detected by both the
univariate and multivariate analysis.

Table 31.5 Values of the t statistic for testing each point as an outlier

Case 9 10

(a) 27.69 32.28

(b) 31.94 −32.09

(c) −0.07 −32.09

If we compute the eigenvectors of the sensitivity matrix
for these data, we obtain the results presented in Table 31.6.
The first eigenvector clearly separates the observations 9 and
10 from the rest. In fact, if we order the coordinates of this
vector, we find the largest ratio at 170/22 = 8.5 which
separates cases 9 and 10 from the others.

31.7.2 The Housing Boston Data

We analyze the Boston housing data set which consists of 506
observations on 14 variables, available at http://lib.stat.cmu.
edu/datasets/boston. This data set was given by Belsley et al.
[3] and we have used the same variables they considered: The
dependent variable is the logarithm of the median value of
owner-occupied homes.

Figure 31.2 shows the diagnostic analysis of this data set.
The first row corresponds to the residuals of the regression
model. The residuals have been divided by their standard
error, and the first plot shows a few points which can be
considered as outliers. The plot of the studentized residual is
similar and identifies the same points as outliers. The second
row gives information about the Cook’s D statistics. There
are clearly some points in the middle of the sample which
are more influential than the rest, but all the values of the
statistic are small and, as we expect a skew distribution, the
conclusion is not clear. However, the sensitivity statistics
clearly identifies a group of extreme observations which are
not homogeneous with the rest. The median of the sensitivity
statistic is 0.0762, very close to the expected value 1/p =
1/14 = 0.0714. The MEDA is 0.0195 and the plot indicates
that 45 observations are heterogeneous with respect to the
rest. These observations are most of the cases 366–425 and
some other isolated points. From Belsley et al. [3], we obtain
that cases 357–488 correspond to Boston, whereas the rest
correspond to the suburbs. Also, the 45 points indicated by

Table 31.3 A simulated set of
data from which three different
samples are generated

1 2 3 4 5 6 7 8 9(a) 10(a) 9(b) 10(b) 9(c) 10(c)

x 1 2 3 4 5 6 7 8 12 12 12 12 12 12

y 2.0 2.9 3.9 5.1 6.2 6.9 7.8 9.1 19 20 19 7 13 7

Table 31.4 Eigenanalysis of the
influence matrix for the three
samples from Table 31.3. The
first two eigenvalues and the first
eigenvector are shown

λ1 λ1/λ2 1 2 3 4 5 6 7 8 9 10

(a) 1.27 2.87 −.17 −.06 −.00 −.00 −.02 −.10 −.22 −.33 .42 .79

(b) 3.78 3.783 .00 −.00 −.00 −.00 −.00 .00 −.00 −.00 −.71 .71

(c) 3.25 32 −.05 −.02 −.00 −.00 −.01 −.02 −.04 −.10 −.50 .85

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
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Table 31.6 Eigenvalues of the
sensitivity matrix for data from
Table 31.3

1 2 3 4 5 6 7 8 9 10

v1 0.502 0.455 0.407 0.360 0.312 0.264 0.217 0.170 −0.020 −0.020

v2 −0.191 −0.119 −0.046 0.026 0.099 0.172 0.245 0.318 0.610 0.610

Residuals

0
–5

0

5

Cook D

0
0

0.05

0.1

0.15

0.2

Si

0
0

0.1

0.2

0.3

0.4

–4
0

0
0

0
0

–2 0 2 4 6

100

200

300

100

200

300

200 400 600

200 400 600

200 400 600 0.1 0.2 0.3 0.4

0.05 0.1 0.15 0.2

200

400

600

Fig. 31.2 Residuals, Cook’s statistics, and sensitivity statistics for the Boston housing data. Right, histogram; left, case plot of the value of the
statistic

statistic Si as outliers all correspond to some central districts
of Boston, including downtown, which suggests that the rela-
tion among the variables could be different in these districts
than in the rest of the sample. In fact, if we fit regression
equations to these two groups, we find very different coeffi-
cients for the regression coefficients in both groups of data,
and in the second group, only five variables are significant.
Also, we obtain a large reduction in residual sum of squares
(RSE) when fitting different regression equations in the two
groups.

Figure 31.3 shows the first eigenvalues of the matrix of in-
fluence and sensitivity. Although both eigenvectors indicate
the heterogeneity, the one from the matrix of sensitivity is
more clear.

The procedure of impulse indicator saturation identifies
54 outliers in the second half of the observations correspond-

ing to the downtown area. In this case the procedure works
well because the group of consecutive outliers is in agreement
with the sequence of the observations.

31.8 Final Remarks

We have shown different procedures for diagnosis in regres-
sion model and have stressed that the detection of groups
of outliers in regression in large data sets can be made by
the eigenanalysis of the influence and sensitivity matrices.
We have also shown that a single statistic of sensitivity is
able to reveal masked outliers in large data set. The most
challenging problem today is to identify heterogeneity when
we do not have a central model which explains more than
50% of the data and some groups of outliers, as it has been
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Fig. 31.3 First eigenvalue of the influence and sensitivity matrices

assumed in this chapter, but different regression models in
different regions of the parameter space. In this case the
robust methods are no longer useful and we need other
methods to solve this problem. These situations are very
close to cluster analysis, and [10] showed the usefulness
of clustering procedures in detecting outliers. In fact, if we
apply k-means to the housing data analyzed in Sect. 31.7, the
two groups of regression are found. Better cluster procedures
can be developed by searching directly for clusters around
different regression lines; see Peña, Rodriguez, and Tiao [49]
and García-Escudero et al. [50, 51] for different approaches
to this problem.
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Abstract

The purpose of this chapter is to describe and review a
variety of statistical issues and methods related to the
analysis of microarray data. In the first section, after a
brief introduction of the DNA microarray technology in
biochemical and genetic research, we provide an overview
of four levels of statistical analyses. The subsequent sec-
tions present the methods and algorithms in detail.

In the second section, we describe the methods for
identifying significantly differentially expressed genes in
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different groups. The methods include fold change, differ-
ent t-statistics, empirical Bayesian approach, and signifi-
cance analysis ofmicroarrays (SAM).We further illustrate
SAM using a publicly available colon cancer dataset as an
example. We also discuss multiple comparison issues and
the use of false discovery rate.

In the third section, we present various algorithms
and approaches for studying the relationship among
genes, particularly clustering and classification. In
clustering analysis, we discuss hierarchical clustering,
and k-means and probabilistic model-based clustering
in detail with examples. We also describe the adjusted
Rand index as a measure of agreement between different
clustering methods. In classification analysis, we first
define some basic concepts related to classification.
Then we describe four commonly used classification
methods including linear discriminant analysis (LDA),
support vector machines (SVM), neural network,
and tree-and-forest-based classification. Examples are
included to illustrate SVM and tree-and-forest-based
classification.

The fourth section is a brief description of the
meta-analysis of microarray data in three different
settings: meta-analysis of the same biomolecule and
same platform microarray data, meta-analysis of the
same biomolecule but different platform microarray data,
and meta-analysis of different biomolecule microarray
data.

We end this chapter with final remarks on future
prospects of microarray data analysis.
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32.1 Introduction

Since the seminal work on microarray technology of Schena
et al. [1], microarray data have attracted a great deal of
attention, as reflected by the ever-increasing number of pub-
lications on this technology in the past decade. The ap-
plications of the microarray technology encompass many
fields of science from the search for differentially expressed
genes [2] to the understanding of regulatory networks [3],
DNA sequencing and mutation study [4], single-nucleotide
polymorphism (SNP) detection [5], cancer diagnosis [6], and
drug discovery [7].

Accompanying the advancement of the microarray tech-
nology, analyzing microarray data has arguably become the
most active research area of statistics and bioinformatics.
Figure 32.1 provides a four-level overview of the analytic
process. The first challenge in dealing with the microarray
data is to preprocess the data, which involves background
subtraction, array normalization, and probe-level data sum-
marization. The purpose of this preprocessing is to remove
noise and artifacts in order to enhance and extract hybridiza-
tion signals. This data preprocessing is also often referred
as the low-level analysis [8]. After the data are processed

First-level analysis
(also called low-level
analysis)

Background substraction

Second-level analysis

Third-level analysis
(also called high-level
analysis)

Fourth-level analysis
(also called meta-
analysis)

Normalization

Probe-level summarization

Etc.

Gene filtration

Identify differentially
expression genes

Clustering analysis

Classification analysis

Pathway analysis

Etc.

Same biomolecule and same
platform meta-analysis.
E.g., two cDNA arrays

Same biomolecule but diffe-
rent platform meta-analysis.
E.g., one cDNA and one oli-
gonucleotide arrays

Etc.

Different biomolecule micro-
array meta-analyses. E.g.,
one DNA array and one Pro-
tein array

Fig. 32.1 Diagram of the four-level analysis of microarray data

and cleaned, they are analyzed for different purposes. The
focus of this article is on the methods for this postprocessing
analysis.

The second-level analysis usually contains two steps: one
is to filter unusual genes whose expression profiles are sus-
picious due to noise or are too extreme, and the other is to
identify the differentially expressed genes across different
samples. The gene filtration process is generally heuristic
and specific to known biological contents. Thus, we will
not discuss it here. To identify genes that have significantly
different expression profiles, the commonly used approaches
include the estimation of fold change, Student’s t-test, the
Wilcoxon rank sum test, the penalized t-test, empirical Bayes
[9], and significance analysis of microarray (SAM, Tusher
et al. [10]). We will review these methods in Sect. 32.2.

We will review the third-level analysis in Sect. 32.3. This
type of analysis is also called high-level analysis [11], and
it includes clustering, classification, and pathway analysis.
This is usually conducted on a subset of genes that are
selected from the second-level analysis. To identify genes
that may be correlated to each other, clustering analysis
has become particularly popular, and the approaches include
hierarchical clustering [12], k -means [13], self-organization
maps (SOM) [14], principle component analysis (PCA) [15],
and probabilistic model-based clustering [16].

To classify tissue samples or diagnose diseases based on
gene expression profiles, both classic discriminant analysis
and contemporary classification methods have been used and
developed. The methods include k-nearest neighbors (KNN)
[17], linear discriminant analysis (LDA) [18], support vector
machine (SVM) [19], artificial neural networks (ANN) [20],
classification trees [21], and random and deterministic forests
[18]. It is noteworthy that tree- and forest-based approaches
can be easily applied to the entire microarray dataset without
restricting our attention to a subset of selected genes.

To identify genes that may be on the same pathway of a
particular biological process, relevance networks [22], linear
differential equation [23], Boolean networks [24], Bayesian
networks [25], and the probabilistic rational model (PRM)
[26] have been used and developed.

The fourth-level analysis, also referred as meta-analysis,
is a relatively new topic for the analysis of microarray data.
Because many different types and platforms of microarrays
can be designed to address the same (or similar) biological
problems, it is useful to compare and synthesize the results
from different studies.

Before we introduce specific methods, we should point
out that, as a result of high-throughput technology, the unique
challenge from analyzingmicroarray data is the large number
of genes (tens of thousands) and relatively small sample sizes
(commonly on the order of tens or hundreds). In this article,
n denotes the number of genes and m the number of arrays. n
is generally much greater than m.
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32.2 Second-Level Analysis of Microarray
Data

32.2.1 Notation

For a two-channel cDNA microarray data [1], we have a
2n × m matrix of imaging data reflecting the red (cy5) and
green (cy3) signals for each of the n genes on m arrays. The
log ratio of the red to green signal is usually taken for each
gene, and the analysis will be based on an n× m data matrix.

For one-channel Affymetrix Oligonucleotide Gene-Chip
data [27], we have a 2

∑n
i=1pi × m matrix of raw image

data where pi is the number of probes for the i-th gene. Note
that, for each probeset, Affymetrix uses a pair of perfect
match (PM) and mismatch (MM). As for oligonucleotide
microarrays, steps (differences, ratios, analysis of variance
(ANOVA) models, etc.) can be taken to summarize the PM
and MM signals for each gene, and we still have an n × m
data matrix.

A major objective of microarray analysis is to infer sig-
nificantly differentially expressed genes (abbreviated as SDE
genes) across different samples, e.g., m1 tumor samples ver-
sus m2 normal samples.

Let Yij,k be the expression level of the i-th gene on the
j-th array in the k-th sample. Let Yi.,1 and Yi.,2 denote the
average expression level of the i-th gene in samples 1 and
2, respectively.

32.2.2 Fold Change

Many studies identify SDE genes in two samples based on
simple fold-change thresholds such as a two-fold change in
means. Although the choice of a threshold is somewhat ar-
bitrary, fold change is intuitive and biologically meaningful,
and serves as an effective preliminary step to eliminate a large
portion of genes whose data are of little interest in a particular
study.

32.2.3 t-Statistic

As in many clinical studies, the t-statistic provides a simple,
extremely useful tool to compare the data from two samples.
LetM be the mean difference between the expression profiles
of a gene in two groups and se

(
M

)
be the standard error of

M. The t-statistic, defined as

t = M

sd
(
M

) ,

is useful to test a null hypothesis that the gene is not differ-
entially expressed in the two groups against the alternative
hypothesis that the gene is differentially expressed.

Unlike a typical clinical study, in which we have one
pair or a very few pairs of hypotheses to test, in microarray
analysis we have a pair of hypotheses for every gene of
interest. This means that we inevitably deal with the multiple
comparison issue. Although this issue is difficult and there
is no clear-cut, ideal answer, many reasonable solutions have
been proposed.
Efron et al. [9] proposed to inflate se

(
M

)
by adding a

constant that equals the 90-th percentile of the standard errors
of all the genes. Tusher et al. [10] call such a constant a
fudge factor, and propose to estimate it by minimizing the
coefficient of variation of the absolute t-values. We will dis-
cuss this approach in detail in Sect. 32.2.4. Other approaches
have also been proposed; for example, Smyth [28] replaces
se

(
M

)
with a Bayesian shrinkage estimator of the standard

deviation.
The permutation test is also commonly used to compare

the microarrays. Permutations are usually performed at the
array level to create a situation similar to the null hypothesis
while maintaining the dependence structure among the genes
[10]. In every permutation, a t-statistic can be calculated for
each gene. Once a large number of permutations are com-
pleted, we have an empirical distribution for the t-statistic
under the null hypothesis, which then can be used to identify
SDE genes.

32.2.4 TheMultiple Comparison Issue

As we mentioned earlier, we have to control the type I error
rate α while testing a large number of hypotheses simulta-
neously. There are two commonly used approaches to deal
with this issue. One is to control the family-wise error rate
(FWER) and the other is to control the false discovery rate
(FDR).

The FWER controls the probability of making at least one
false positive call at the desired significance level. FWER
guarantees that the type I error rate is less than or equal to
a specified value for any given set of genes. The most known
example of FWER is Bonferroni correction that divides the
desired significance level α by total number of hypotheses.
If the desired significance level is 0.05 and we compare
expression profiles in 10,000 genes, a gene is declared to have
significantly different profiles in two groups if the P-value is
not greater than 0.05

10 000 = 5×10−6. Another FWER approach
is the so-called Šidák correction in which the adjusted type
I error rate is at 1 − (1 − α)

1
n [29], which is close to α/n.

Clearly, Bonferroni and Šidák corrections are sufficient but
not necessary conditions [30], and FWER approaches are
generally very conservative and set a stringent bar to declare
SDE genes.

Because of the conservative nature of the FWER ap-
proaches, the FDR concept has flourished since it was pro-
posed by [31]. FDR is defined as the mean of the ratio of the
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number, denoted by V, of falsely rejected hypotheses to the
total rejected hypotheses, denoted by R, namely,

FDR = E

(
V

R
|R > 0

)

Pr (R > 0) ,

where Pr(R > 0) is the probability of rejecting at least one
hypothesis.

The FDR can be controlled at a given α level through the
following steps. First, for n genes, we have n null hypotheses
and np values, denoted by p1, . . . , pn. Then, we sort the
p-values in ascending order such that p(1) ≤ · · · ≤ p(n).
We reject any gene i that satisfies the condition p(i) ≤
i
n × α

p0
, where p0 is the proportion of genes for which the

null hypotheses are indeed true. Because p0 is unknown
in practice, the most conservative approach is to replace it
with 1. Recently, attempts have been made to estimate p0
as in Tusher et al.’s SAM, where they used a permutation
procedure to estimate p0. Similar to the classical p-values,
the significance measures for each gene in terms of FDR
are called q-values, a name that was introduced by Storey
[32, 33].

In addition, the FDR concept has been generalized. For
example, Storey and Tibshirani [9] and Storey et al. [32]
proposed positive FDR (pFDR), which corrects the error rate
only when there are positive findings. For microarray data,
many gene profiles are correlated; Troendle [34] proposed an
adjusted FDR to address the correlation and demonstrated the
benefit in terms of gained power.

32.2.5 Empirical Bayesian Approach

Using microarray data from a breast cancer study, Efron
et al. [9, 35] described the empirical Bayesian method. As
an initial step, a summary statistic, Z, needs to be defined for
every gene to reflect the scientific interest; this can be the
t-statistic as described above, a Wilcoxon rank statistic, or
another choice. All genes are perceived to belong to either
the differentially or nondifferentially expressed group. The
density of Zi is f0(zi) if gene i is in the nondifferentially
expressed group, and f1(zi) otherwise. Without knowing the
group, Zi has the following mixture distribution:

p0f0 (zi) + p1f1 (zi) ,

where p0 is the prior probability that gene i is not differen-
tially expressed, and p1 = 1 − p0.

Based on Bayes’ theorem, the posterior probability that
gene i is not differentially expressed given Zi is

p0 (zi) = p0
f0 (zi)

f (zi)
.

We can estimate the mixture density f (zi) by the empirical
distribution f̂ (zi) because the genes of interest are naturally
a mixture of the two groups. In addition, the null density f0(zi)
can be estimated through the permutation that artificially
generates data under the null hypothesis. In other words, we
can derive the posterior probability p0(zi).

For a given prior p0. The choice of p0 can be subjec-
tive. One conservative possibility is to choose p0 to be the
minimum of f̂ (zi) /f̂0 (zi) so that the posterior probability
p1(zi) that gene i is differentially expressed is non-negative.
Note that p1(zi) = 1 − p0(zi). Finally, all genes can be
ranked according to p1(zi) and highly probably differentially
expressed genes can be selected.
Efron et al. [9, 35] did not assume a specific form for f (zi).

In contrast, Lonnstedt and Speed [36] assumed that the data
comes from the mixture of normal distributions and used the
conjugate priors for the variances and the means. Under those
assumptions, they derived the log odds posterior test. Smyth
[28] extended the hierarchical model of Lonnstedt and Speed
[36] to deal with microarray experiments with more than two
sample groups. The method is called the Limma algorithm.

32.2.6 Significance Analysis of Microarray
(SAM)

Tusher et al. [10] introduced the SAM algorithm. SAM iden-
tifies genes with statistically significant changes in expres-
sion by assimilating a set of gene-specific t-tests in which the
standard error is adjusted by adding a small positive constant.
It performs a random permutation among experiments and
declares the significant genes based on a selected threshold.
For the given threshold, SAM estimates the FDR by compar-
ing the number of genes significant in the permuted samples
with the number of genes significant in the original sample.

SAM can be downloaded from http://www-stat.stanford.
edu/∼tibs/SAM/. Specifically, first, for each gene i, SAM
computes a t-like statistic

ti = ri
si + s0

,

where ri is the difference between the expression means
of gene i in the two groups (expression is on a logarithm
scale), si is the standard error, and s0 is the fudge factor to
be estimated. Secondly, similarly to the FDR scheme, all ti
values are sorted into the order statistics

t(1) ≤ t(2) ≤ · · · ≤ t(n).

To choose the significance threshold, the expression data are
permuted in the two groups within each gene B times, and
during each permutation, we repeat the first two steps, which
leads to a set of order statistics:

http://www-stat.stanford.edu/$\sim $tibs/SAM/
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tb(1) ≤ tb(2) ≤ · · · ≤ tb(n).

After the permutations, we calculate the mean of the order
statistics for each gene as follows:

t(i) = 1

B

B∑

b=1

tb(i).

For a given threshold �, a gene is considered significant if∣
∣t(i) − t(i)

∣
∣ > �, and the FDR is estimated by the ratio of the

number of genes found to be significant in the permutation
samples to the number of genes called significant in the
original sample.

Example 1: Identification of SDE Genes Using
SAM
In this example, we apply SAM to examine a publicly
available colon cancer dataset [37]. This dataset contains the
expression profiles of 2000 genes using an Affymetrix
oligonucleotide array in 22 normal and 40 colon cancer
tissues.

Figure 32.2 displays the quantile–quantile plot fromSAM.
The two dashed lines determine a boundary to call genes SDE
depending on the choice of �. For example, � was chosen
as 0.9857 in Fig. 32.2 to control the FDR at about 5%. The
white square and triangle points in the figure correspond to
the genes that are declared to be significantly overexpressed
and underexpressed, respectively. Out of the 490 declared
SDE genes (440 overexpressed and 50 underexpressed), 25
genes are expected to be declared falsely.
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Fig. 32.2 The quantile–quantile plot from SAM for the colon cancer
dataset. Genes are declared significantly changed when their corre-
sponding t-values are outside the two dashed lines. The white square
and triangle points correspond to the genes that are significantly over-
expressed and underexpressed, respectively

32.3 Third-Level Analysis of Microarray
Data

The third-level microarray analysis includes clustering, clas-
sification, and pathway analysis. These approaches usually,
though not always, follow the second-level microarray anal-
ysis because most of them can work effectively on only a
small number of genes.

32.3.1 Clustering

Clustering is arguably the most commonly used approach at
the third level of analysis [38, 39]. It is an unsupervised learn-
ing algorithm from a machine learning viewpoint, because
the gene classes are unknown or not used, and need to be
discovered from the data. Therefore, the goal of clustering
analysis is to group genes (or arrays) based on their similarity
in the feature space (e.g., expression pattern).

The underlying assumption behind clustering is that genes
with similar expression profiles should share some common
biological behaviors, e.g., belonging to the same protein
complex or gene family [40], having common biological
functions [41], being regulated by common transcription
factors [3], belonging to the same genetic pathway, or coming
from the same origin [39].

After the clusters are formed, a dendrogram or a tree of
all genes will be viewed, although the views are not unique,
because there is a left-or-right selection at each splitting step.
Two popular programs for gene clustering are Eisen et al.’s
TreeView program [12] and Li and Wong’s dChip programs
[8]. Routines are also available in standard statistical pack-
ages such as R, Splus, and SAS.

Distance
In order to group objects (genes or arrays) together, we need
to define a measure to quantify the similarity among objects
in the feature space. Such a measure of similarity is called
a distance. There are several commonly used definitions of
distance. Suppose that the expression profiles of two genes
are Yi = (yi1, yi2, . . . , yim) and Yj = (yj1, yj2, . . . , yjm).

The Euclidean distance between Yi and Yj is

dE
(
Yi, Yj

) =
[

m∑

k=1

(
yik − yjk

)2
] 1

2

.

The city-block distance between Yi and Yj is

dC
(
Yi, Yj

) =
m∑

k=1

∣
∣yi1 − yj1

∣
∣ .

The Pearson correlation distance between Yi and Yj is
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dR
(
Yi, Yj

) = 1 − rYiYj ,

where rYiYj is the Pearson correlation coefficient between Yi
and Yj.

The Spearman correlation distance between Yi and Yj uses
the rank-based correlation coefficient in which the expression
levels are replaced with the ranks.

More definitions can be found in the book by Draghici
[30]. We should note that the Euclidean and city-block dis-
tance look for similar expression numerical values while the
Pearson and Spearman distances tend to emphasize similar
expression patterns.

The distances defined above measure the gene-wise dis-
tance.When clusters are found, we also need to define the dis-
tance between two clusters. The four approaches are: single
linkage distance (the minimum distance between any gene
in one cluster and any gene in the other cluster), complete
linkage distance (the maximum distance between any gene in
one cluster and any gene in the other cluster), average linkage
distance (the average of all pair-wise distances between any
gene in one cluster and any gene in the other cluster), and
centroid linkage distance (the distance between the centroids
of the two clusters).

ClusteringMethods
When a distance measure is chosen, there are different ways
to execute the clustering process. The clustering methods
broadly fall into two categories: hierarchical methods and
partitioning methods. Hierarchical methods build up a hier-
archy for clusters, from the lowest one (all genes are in one
cluster) to the highest one (all genes are in their own clusters),
while partitioning methods group the genes into the different
clusters based on their expression profiles. Therefore, one
does not need to provide the cluster number for hierarchical
clustering methods but it is necessary for the partitioning
clustering methods.

Hierarchical methods include agglomerative hierarchical
methods and divisive hierarchical methods.

The agglomerative hierarchical methods use a bottom-up
strategy by treating each individual gene as a cluster at the
first step. Then two nearest genes are found and assigned into
a cluster where the nearest is defined by the distance between
these two genes, e.g., for a Pearson distance nearest means
the two genes having the largest correlation coefficient. Then
an agglomerative hierarchical method assigns a new expres-
sion profile for the formed clusters, and repeats these steps
until there is only one cluster left.

The divisive hierarchical methods, on the other hand, treat
all genes belonging to one cluster at the beginning. Then
in each step they choose a partitioning method to divide
all genes into a predecided number of clusters, e.g., using
k-means to partition genes into two clusters at each single

step. Therefore, the decisive hierarchical clustering methods
employ the bottom-down strategy.

The k-means clustering is the simplest and fastest clus-
tering algorithm [42] among the partitioning methods. It has
been widely used in many microarray analyses. To form K
clusters, the k-means algorithm allocates the observations
into different groups in order to minimize the within-group
sum of squares

min
SK

⎡

⎣
K∑

k=1

∑

i∈SK

m∑

j=1

(
yij − ykj

)2

⎤

⎦ ,

where K is the prespecified cluster number, Sk is the set
of objects in the k-th cluster, and ykj is the mean of group
j in cluster k. In other words, k-means clustering uses the
Euclidean distance.

The k-means clusters are formed through iterations as
follows: First, k center genes are randomly selected, and
every other gene is assigned to the closest center gene. Then,
the center is redefined for each cluster to minimize the sum of
squares toward the center. In fact, the coordinates of a cluster
center are themean expressions of all the genes in that cluster.
After the centers are redefined, all genes are regrouped and
the iteration process continues until it converges.

After analyzing a yeast cell cycle expression dataset,Duan
and Zhang [43] noted that it could be particularly useful to
use a weighted sum of squares for gene clustering to take
into account the loss of synchrony of cells. We refer to Duan
and Zhang [43] for the details.

Another widely used partitioning clustering algorithm
is self-organizing maps (SOMs) which were developed by
Kohonen [44]. In essence, SOM clustering is a spatial version
of the k-means clustering. For a prespecified grid (i.e., a
6 × 8 hexagonal grid), SOMs project high-dimensional gene
expression data onto a two- or three-dimensional map and
place similar genes close to each other. Here, the centroid
positions of clusters are related to one another via a spatial
topology (e.g., the squared map), and are also iteratively
adjusted according to the data.

Both the k-means and SOMs are algorithmic methods
and do not have a probabilistic justification. Probabilistic
model-based clustering (PMC) analysis, on the other hand,
assumes that the data is generated by a mixture of underlying
probability distributions and uses the maximum likelihood
method to estimate parameters that define the number of
clusters as well as the clusters. Hence, we do not need
to specify the number of clusters. Using the probabilistic
model, we can even consider covariates while determining
the clusteringmemberships of the genes. However, the model
can quickly become complicated as the number of clusters
increases. Thus, we must try to use parsimonious models as
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much as possible. Finally, PMC and k-means are also closely
related. In fact, k-means can be interpreted as a parsimonious
model of simple independent Gaussians [15, 45, 46].

Example 2: Clustering Analysis
In this example, first we perform a hierarchical clustering
analysis on the 490 SDE genes from example 1. The clus-
tering analysis is applied in two directions: clustering on
samples and clustering on genes. Although we do not present
the entire clustering tree here, two major clusters are formed
to distinguish tumor and normal samples. For clustering on
the genes, there are roughly five major patterns in terms
of the gene expressions. One pattern corresponds to the

underexpressed genes and the other four corresponds to the
overexpressed genes in the tumor samples versus the normal
ones.

For illustration, we selected the first 10 normal arrays
and the first 10 cancer arrays, and 20 overexpressed
and 20 underexpressed genes randomly from the 490
SDE genes. Figure 32.3 is from the heatmap function in
R. Though not perfect, two patterns are formed mostly
along the line of normal versus tumor tissues. There are
roughly five major patterns in terms of expression profiles.
Overexpressed and underexpressed genes tend to belong to
different clusters. For example, pattern 3 (P3) and pattern
4 (P4) are mainly composed of underexpressed genes,
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Fig. 32.3 Hierarchical clustering based on a subset of the colon cancer dataset. Each column corresponds to a sample, and each row a gene. The
underexpressed genes were assigned numbers above 440, and the overexpressed genes at or below 440
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Table 32.1 The numbers of genes belonging to the intersects of the
five k-means clusters and the 13 PMC clusters

k-Means clusters PMC clusters
1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 11 0 0 0 57 35 0 0 0 0 29 0

2 25 8 0 0 62 5 0 0 0 0 0 0 0

3 0 0 2 13 0 0 0 0 23 0 0 0 0

4 0 0 15 0 0 0 0 0 1 31 0 0 41

5 0 2 0 0 0 0 1 65 0 34 24 6 0

while the other three clusters contain mainly overexpressed
genes.

Following the hierarchical clustering analysis presented
above, we also applied the k-means approach to the 490 SDE
genes and set the number of clusters to five. Furthermore, we
applied probabilistic model-based clustering (PMC) to the
same dataset. We examined the BIC (Bayesian information
criterion) for different numbers of clusters, and it turned out
that the value of BIC reaches its minimum at 13 clusters,
which is much more than heuristic choice of five. Table 32.1
displays the numbers of genes belonging to the intersects of
the five k-means clusters and the 13 PMCclusters. Each of the
five k-means clusters is a union of four or so PMC clusters. In
fact, if we choose five PMC clusters, they are very similar to
the formation of the five k-means clusters, and we will assess
this similarity in the next section.

Measure of Agreement Between Two Sets
of Clusters
From both the methodological and biologic points of view,
there is a need to compare the clusters from different clus-
tering methods. For example, to evaluate the performance of
a new clustering approach, we need to compare the derived
clusters with the underlying membership in a simulation
study. We may also be interested in comparing clustering
results derived from the same mRNA samples but being
hybridized and analyzed in two different laboratories.

A commonly usedmeasure of agreement between two sets
of clusters is the so-called adjusted Rand index (ARI) [15, 47,
48]. Let us consider the partitions U and V, and let nij be the
number of genes falling in the intersect of the i-th cluster in
U and the j-th cluster in V. The ARI is defined as

∑
i,j

( nij
2

)
−

[∑
i

(
ni.
2

) ∑
j

( n.j
2

)]/(
n
2

)

1
2

[∑
i

(
ni.
2

)
+ ∑

j

(n.j
2

)]
−

[∑
i

(
ni.
2

) ∑
j

(n.j
2

)]/ (
n
2

) ,

where ni· and n.j are the numbers of genes in the i-th cluster
of U and the j-th cluster of V, respectively.

We suggested some similarity between the k-means and
PMC clusters. In fact, the ARI value between the two sets
of clusters is 0.425, and it increases to 0.94 if both methods

use five clusters. This similarity is expected, because PMC
and k-means are equivalent if PMC assumes an independent
Gaussian covariance structure [15].

32.3.2 Classification

In most microarray experiments, we know the groups on the
arrays. For example, some mRNA samples were extracted
from tumor cells and the others from normal cells. This is
similar to the situation in Sect. 32.2.1. Therefore, it is natural
to use this information in analysis and to class cells based on
the expression profiles. This is so-called supervised learning.

In Sect. 32.2.1, Yij,k denotes the expression level of the i-th
gene on the j-th array in the k-th sample. Here, we also use
(Yij,Z = k) to reflect the fact that the expression level Yij of
the i-th gene on the j-th array comes from the k-th sample. In
other words, the sample group is represented by Z, which is
the response or dependent variable in classification.

The essence of classification is to define domains in the
feature space spanned by Yij and to assign a class member-
ship Z to each domain. Classification methods differ in the
choice of the shape for the domain and in the algorithm to
identify the domain. Some elementary concepts are useful
to distinguish these differences. The first one is linearity. It
refers to a linear combination of the features (expressions of
different genes) that forms a hyperplane separating different
domains in the feature space. The second term is separability.
It reflects the extent that the different classes of samples
are separable. The third concept is misclassification. Often,
data are only partially separable, and misclassification is
inevitable. In this circumstance, we may need to define a cost
function to accommodate different classification errors.

In the machine learning literature, there is also a distinc-
tion between the learning (i.e., training) and the test samples.
The learning data are used to train the classification algorithm
and the test data are used to test the predictive ability of
the trained classification algorithm. In practice, however, we
usually have one dataset and have to split the sample into
the training and test samples by leaving a portion of data
out during the learning process and saving it as the test data.
This procedure is called cross-validation. More precisely,
for a v-fold cross-validation, we first divide the data into
v approximately equal subsamples. Then, we use v − 1
subsamples as the training data to construct a classification
rule and the leftover subsample as the test data to validate the
classification rule. After rotating every subsample between
training and test data, the performance of the classification
rule is assessed through the average in the v runs of validation
in the test sample.

In the next subsections, we will review four classification
methods that are useful for classifying tissue samples based
on gene expression profiles. The methods are linear discrim-
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inant analysis (LDA), support vector machines (SVM), arti-
ficial neural networks (ANN), and tree-based classification.

LDA
LDA was introduced by Fisher in 1936 for classifying sam-
ples by finding a hyperplane that maximizes the between-
class variances. Let SY be the common sample covariance
matrix of all gene expressions, Y1 and Y2 be the average
expression levels of the genes in groups 1 and 2, respectively.
The solution to LDA is S−1

Y

(
Y1 − Y2

)
.

SVM
SVM was first proposed by Boser et al. [49] and Cortes and
Vapnik [50]. SVM finds an optimal hyperplane to separate
samples and to allow the maximum separation between
different classes of samples. The margin of the region that
separates samples is supported by a few vectors, termed
support vectors.

In a two-class classification problem, let Z = 1 or −1
denote the two classes. If the two classes of samples are sepa-
rable, we find a hyperplane {y : yTβ + β0 = 0, ‖β‖ = 1} such
that (yTβ + β0)Z≥C≥ 0, whereC is themargin optimized to
allow the maximal space between the two classes of samples.

For nonseparable case, the procedure is much compli-
cated. Some points will inevitably be on the wrong side of the
hyperplane. The idea is to introduce a slack variable to reflect
how far a sample is on the wrong side, and then look for
the hyperplane at the condition of the total misclassification
less than a user-selected limit (i.e., bound the sum of slack
variables by a constant). We refer to Vapnik [51] for the
details.

Example 3: Support Vector Machine (SVM)
In this example, we perform a classification analysis on the
colon cancer data by SVM. We use M26697 and M63391,
the two most significant genes that were identified by SAM
from example 1. Specifically, M26697 is the most signifi-
cant overexpressed gene and M63391 is the most significant
underexpressed gene. We used the SVM function in R with
the cost equal to 100, γ of 1 and tenfold cross-validation,
where γ is the coefficient of the radial kernel used to form a
hyperplane. Figure 32.4 displays the contour plot of the SVM
result. The prediction model correctly classifies 37 cancer
and 20 normal samples, but misclassifies three cancer and
two normal samples.

Neural Network
The artificial neural network (ANN) is a very popular
methodology in machine learning. Also referred to as
connectionist architectures, parallel distributed processing,
and neuromorphic systems, ANN is an information-
processing paradigm with collections of mathematical
models that emulate the densely interconnected, parallel
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Fig. 32.4 Contour plot of the SVM result using two genes: M26997
and M63391 for the colon cancer data. C represents cancer and N
represents normal. The light-gray area is the cancer region and the
brown area is the normal region. Square points represent the support
vectors and the triangle points represent the data points other than
support vectors. The brown and white points belong to the cancer and
the normal regions, respectively

structure of the mammalian brain and adaptive biological
learning. It is composed of a large number of highly
interconnected processing elements that are analogous to
neurons and are tied together with weighted connections
that are analogous to synapses. Learning typically occurs
by example through training, or exposure to a true set of
input/output data where the training algorithm iteratively
adjusts the connection weights (synapses). These connection
weights store the knowledge necessary to solve specific
problems.

ANN can be used for feature selection and feature ex-
traction. The former amounts to variable selection and re-
duction in statistics and the latter is a generation of the
statistical techniques such as principal component analysis,
factor analysis, and linear discriminant analysis that are
intended to identify lower-dimensional data structures such
as linear directions. These lower-dimensional structures usu-
ally depend on all of the original variables (i.e., features).
Thus, ANN is in essence a computationally intensive version
of traditional statistical methods such as regression, clas-
sification, clustering, and factor analysis. However, ANN
is designed in a way that mimics neural networks and is
biologically intuitive and appealing in many applications.
This is the major reason that we plan to consider ANN
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as one of the primary tools to explore the unknown rela-
tionship in our data, which is usually referred to as pattern
recognition.

The advantage of ANNs lies in their resilience against
distortions in the input data and their capability for learning.
They are often good at solving problems that are too complex
for conventional technologies (e.g., problems that do not
have an algorithmic solution, or for which an algorithmic
solution is too complex to be found), and are often well suited
to problems that people are good at solving, but for which
traditional methods are not.

There are multitudes of different types of ANNs. Some
of the more popular include the multilayer perceptron, which
is generally trained with the backpropagation of error algo-
rithm, learning vector quantization, radial basis functions,
Hopfield, and Kohonen, to name a few. Some ANNs are
classified as feed-forward while others are recurrent (i.e.,
implement feedback) depending on how data is processed
through the network. Some ANNs employ supervised train-
ing while others are referred to as unsupervised or self-
organizing.

Figure 32.5 illustrates a conventional three-layer neural
network with n features and K classes. For this feed-forward
neural network, the inputs are y1, · · · , yn which correspond
to the gene expression profiles and the outputs are z1,· · · , zK ,
which correspond to the K samples in the microarray data.
The middle layer consists of many hidden units (also called
neurons) and the number of hidden units can be freely chosen
and determine the maximum nonlinearity. Each line in Fig.
32.5 indicates a weight – the edge – in the network. This
weight represents how much the two neurons which are
connected by it can interact. If the weight is larger, then the
two neurons can interact more, that is, a stronger signal can

Z1 Z2 ZK…

Y1 Y1 Y1 Yn–1
… Yn

X1 X2 X3 Xm
…

Fig. 32.5 Architecture of a conventional three-layered feed-forward
neural network

pass through the edge. The nature of the interconnections
between two neurons can be such that one neuron can ei-
ther stimulate (a positive weight α) or inhibit (a negative
weight α) the other. More precisely, in each hidden unit, we
have

Xm = σ
(
α0m + αT

mY
)
,

where σ is called the activation function or neural function
and (α0m, α

T
m) are the weights. A common choice for σ is the

sigmoid function

σ (υ) = 1

1 + e−υ
.

The output function allows a final transformation of the linear
combinations of the hidden unit variables

fk(z) = gk
(
β0k + βT

k X
)
.

For a K-class classification, a softmax (logistic) function is
usually chosen for the output function

gk(T) = eTk

K∑

l=1
eTl

.

During the training period, we present the perceptron with
inputs one at a time and see what output it gives. If the output
is wrong, we will tell it that it has made a mistake. It should
then change its weights and/or threshold properly to avoid
making the same mistake later.

32.3.3 Tree- and Forest-Based Classification

One of the most convenient and intuitive approaches for
classification is classification trees [52–54]. Classification
trees, and their expansion to forests, are based on the so-
called recursive partitioning technique. The basic idea of
recursive partitioning is to extract homogeneous strata of the
tissue samples through expression profiles depending on the
expression levels of a particular gene.
Zhang and Yu [55] reanalyzed the dataset from Hedenfalk

et al. [56] to classify breast cancer mutations in either the
BRCA1 or BRCA2 gene using gene expression profiles.
Hedenfalk et al. [56] collected and analyzed biopsy speci-
mens of primary breast cancer tumors from seven and eight
patients with germline mutations of BRCA1 and BRCA2,
respectively. In addition, seven patients with sporadic cases
of primary breast cancer whose family history was unknown
were also identified. They obtained cDNA microarrays from
5361 unique genes, of which 2905 are known genes and 2456
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are unknown. Thus, in this dataset, let Z = 1, 2, 3 denote
BRCA1, BRCA2, and sporadic cases, respectively.

If we use this entire breast cancer dataset to construct
a tree, these 22 samples form the initial learning sample,
which is called the root node and labeled as node 1 in the
tree diagram (Fig. 32.6). The tree structure is determined by
recursively selecting a split to divide an upper layer node
into two offspring nodes. To do this, we need to evaluate the
homogeneity, or the impurity to its opposite, of any node. A
common measure of node impurity is the entropy function

it = −
K∑

k=1

P (Z = k|node t) log [P (Z = k|node t)] .

If node t is the root node, thenP(Z= 1 | node t)= 7/22,P(Z=
2 | node t)= 8/22, and P(Z = 3 | node t)= 7/22. Thus, the im-
purity it of the root node can be calculated easily as follows:
it = − (7/22) log (7/22) − (8/22) log (8/22) − (7/22)
log (7/22) = 1.097.

How good is the root node? The impurity is zero for a
perfect node in which P(Z = k |Node t) is either 0 or 1,
and reaches its worst level when P (Z = k|node t) = 1

3 with
it = 1.099. Therefore, the impurity of the root node is near
the worst level by design, motivating us to partition the root
node into small nodes to reduce the impurity.

The first step of the recursive partitioning process is to
divide the root of 32 samples in Fig. 32.6 into two nodes,
namely, nodes 2 and 3 in Fig. 32.6. There are many ways
of partitioning the root node, because we can take any of
the 5361 genes and split the root node according to whether
the expression level of this chosen gene is greater than
any threshold c. After comparing all possible partitions, we
choose the gene and its threshold to keep both i2 in node 2 and
i3 in node 3 at their lowest possible levels simultaneously.
Mathematically, we achieve this goal by minimizing the
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Fig. 32.6 Classification tree for breast cancer data

weighted impurity r2 i2 + r3 i3, where r2 and r3 are the pro-
portions of tissue samples in nodes 2 and 3, respectively. This
is precisely how the first split (i.e., whether ST13 > 0.835) in
Fig. 32.6 is determined.

Once the root is split into nodes 2 and 3, and we can apply
the same procedure to potentially split nodes 2 and 3 further.
Indeed, the tree in Fig. 32.6 divides the 22 samples into four
groups using Heping Zhang’s RTREE (http://c2s2.yale.edu/
software). Nodes 2 and 3 are divided based on the expression
levels of genes ARF3 and LRBA.

Using a variety of analytic techniques including a modi-
fied F- and t-test and amutual information scoring,Hedenfalk
et al. [56] selected nine differentially expressed genes to
classify BRCA1-mutation-positive and negative tumors and
then 11 genes for BRCA2-mutation-positive and negative
tumors. Clearly, the tree in Fig. 32.6 uses fewer genes and
is a much simpler classification rule.

Although Fig. 32.6 is simple, it does not contain the
potentially rich information in the dataset. To improve the re-
liability of the classification and to accommodate potentially
multiple biological pathways, Zhang and Yu [55] and Zhang
et al. [57] proposed expanding trees to forests. The large
number of genes in microarray makes it an ideal application
for these forests.

The most common approach to constructing forests is
to perturb the data randomly, form a tree from the per-
turbed data, and repeat this process to form a series of trees;
this is called a random forest. After a forest is formed, we
aggregate information from the forest. One such scheme,
called bagging (bootstrapping and aggregating), generates a
bootstrap sample from the original sample. The final classi-
fication is then based on the majority vote of all trees in the
forest [58].

It is well known that random forests [18, 58] improve
predictive power in classification. After observing the
fact that there are typically many trees that are of equally
high predictive quality in analyzing genomic data, Zhang
et al. [18] proposed a method to construct forests in a
deterministic manner. Deterministic forests eliminate the
randomness in the random forests and maintain a similar,
and sometimes improved, level of precision as the random
forests.

The procedure for constructing the deterministic forests
is simple. We can search and collect all distinct trees that
have a nearly perfect classification or are better than any
specified precision. This can be carried out by ranking the
trees in deterministic forests. One limitation for the forests
(random or deterministic) is that we cannot view all trees in
the forests. However, we can examine the frequency of genes
as they appear in the forests. Frequent and prominent genes
may then be used and analyzed by any method as described
above. In other words, forest construction offers amechanism
for data reduction. For the breast cancer data, one of the most

http://c2s2.yale.edu/software
http://c2s2.yale.edu/software
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prominent genes identified in the forests is ERBB2. Kroll
et al. [59] analyzed the gene expression patterns of four breast
cancer cell lines: MCF-7, SK-BR-3, T-47D, and BT-474, and
reported unique high levels of expressions in the receptor
tyrosine kinase ERBB2.

32.4 Fourth-Level Analysis of Microarray
Data

Nowadays, different types and platforms of microarray have
been developed to address the same (or similar) biological
problems. How to integrate and exchange the information
contained in different sources of studies effectively is an
important and challenging topic for both biologists and statis-
ticians [60]. The strategy depends on the situation. When
all studies of interest were conducted under the same ex-
perimental conditions, this is a standard situation for meta-
analysis. There are situations where the experiments are
similar, but different platforms were measured, such as the
integration of one cDNA array-based study and one oligonu-
cleotide array-based study. There are also situations where
different biomolecule microarrays were collected, such as the
integration of a genomic array study and a proteomic array
study.

Integrating a cDNA array and an Affymetrix chip
is complicated because genes on a cDNA array may
correspond to several genes (or probesets) on the Affymetrix
chip based on the Unigene cluster-matching criteria [61].
Instead of matching by genes, matching by the sequence-
verified probes may increase the correlation between two
studies [62].

Most meta-analyses of microarray data have been per-
formed in a study-by-study manner. For example, Yauk et al.
[63] use the Pearson coefficient to measure the correlation
across studies; Rhodes et al. [64] and Wang et al. [65] use
the estimations from one study as prior knowledge while
analyzing other studies; and Welsh et al. [66] treat DNA mi-
croarrays as a screening tool and then use proteinmicroarrays
to identify the biomarker in cancer research. While they are
convenient, these strategies are not ideal [64, 67]. Thus, it is
imperative and useful to develop better methods to synthesize
information from different genomic and proteomic studies
[60, 63, 68].

32.5 Final Remarks

The technology of gene and protein chips is advancing
rapidly, and the entire human genome can be simultaneously
monitored on a single chip. The analytic methodology

is evolving together with the technology development,
but is far from satisfactory. This article reviews some of
the commonly used methods in analyzing microarrays.
Analyzing microarray data is still challenging; some of
the important issues include how to interpret the results in
the biological context, how to improve the reproducibility
of the conclusions, and how to integrate information from
related but different studies.
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Abstract

The first part of this chapter describes the foundation of
genetic algorithms. It includes hybrid genetic algorithms,
adaptive genetic algorithms, and fuzzy logic controllers.
After a short introduction to genetic algorithms, the
second part describes combinatorial optimization
problems including the knapsack problem, the minimum
spanning tree problem, the set-covering problem, the bin-
packing problem, and the traveling-salesman problem;
these are combinatorial optimization problems which are
characterized by a finite number of feasible solutions.
The third part describes network design problems.
Network design and routing are important issues in the
building and expansion of computer networks. In this
part, the shortest-path problem, maximum-flow problem,
minimum-cost-flow problem, centralized network design,
and multistage process planning problem are introduced.
These problems are typical network problems and have
been studied for a long time. The fourth section describes
scheduling problems. Many scheduling problems from
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manufacturing industries are quite complex in nature
and very difficult to solve by conventional optimization
techniques. In this part the flow-shop sequencing problem,
job-shop scheduling, the resource-constrained project
scheduling problem, and multiprocessor scheduling
are introduced. The fifth part introduces the reliability
design problem, including simple genetic algorithms for
reliability optimization, reliability design with redundant
units and alternatives, network reliability design, and tree-
based network topology design. The sixth part describes
logistic problems including the linear transportation
problem, the multiobjective transportation problem, the
bicriteria transportation problem with fuzzy coefficients,
and supply chain management network design. Finally,
the last part describes location and allocation problems
including the location-allocation problem, capacitated
plant-location problem, and obstacle location-allocation
problem.

Keywords

Genetic algorithms · Network design · Scheduling ·
Reliability design · Logistics · Location and allocation

33.1 Foundations of Genetic Algorithms

Recently, genetic algorithms (GAs) have received consider-
able attention regarding their potential as an optimization
technique for complex problems and have been successfully
applied in the area of industrial engineering. The well-known
applications include scheduling and sequencing, reliability
design, vehicle routing location, transportation, and many
others.

There are three major advantages when applying GA to
optimization problems:

1. Adaptability: GA does not have much mathematical re-
quirements about the optimization problems. Due to the
evolutionary nature, GA will search for solutions without
regard to the specific inner workings of the problem. GA
can handle any kind of objective functions and any kind
of constraints, i.e., linear or nonlinear, defined on discrete,
continuous, or mixed search spaces.

2. Robustness: The use of evolution operators makes GA
very effective in performing global search (in probability),
while most of conventional heuristics usually perform
local search (LS). It has been proved by many studies
that GA is more efficient and more robust in locating
optimal solution and reducing computational effort than
other conventional heuristics.

3. Flexibility: GA provides us a great flexibility to hybridize
with domain-dependent heuristics to make an efficient
implementation for a specific problem.

33.1.1 Basic Genetic Algorithm

Since the 1960s there has been being an increasing interest in
imitating living beings to solve such kinds of hard optimiza-
tion problems. Simulating natural evolutionary processes of
human beings results in stochastic optimization techniques
called evolutionary algorithms (EAs) that can often outper-
form conventional optimizationmethods when applied to dif-
ficult real-world problems. EAsmostly involve metaheuristic
optimization algorithms such as genetic algorithm (GA) [1],
evolutionary programming (EP), evolution strategy (ES), ge-
netic programming (GP), particle swarm optimization (PSO),
and ant colony optimization (ACO) [2, 3]. Among them,
genetic algorithms are perhaps the most widely known type
of evolutionary algorithms used today [4].

Genetic algorithms are stochastic search algorithms based
on the mechanism of natural selection and natural genetics.
Genetic algorithms, in contrast to conventional search tech-
niques, start with an initial set of random solutions called
the population. Each individual in the population is called
a chromosome, encoding a solution to the problem at hand.
A chromosome is a string of symbols, usually, but not neces-
sarily, a binary bit string. The chromosomes evolve through
successive iterations, called generations. During each genera-
tion, the chromosomes are evaluated, using somemeasures of
fitness [5]. To create the next generation, new chromosomes,
called offspring, are formed by either merging two chromo-
somes from the current generation using a crossover operator
or modifying a chromosome using a mutation operator.

A new generation is formed by selecting, according to the
fitness values, some of the parents and offspring and rejecting
others so as to keep the population size constant.

Fitter chromosomes have higher probabilities of being se-
lected. After several generations, the algorithms converge to
the best chromosome, whichwe hope represents the optimum
or suboptimal solution to the problem when decoded. Let
P(t) and C(t) be population or parents and offspring in the
current generation t; the general structure of GAs (Fig. 33.1)
is described as follows:

procedure: Genetic Algorithms (GA)
input: problem data, paramters
output: the best solution
begin
t ← 0;
initialize P(t) by encoding routine;
evaluate P(t) by decoding routine & keep
best solution;
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Fig. 33.1 The general structure of genetic algorithms

while (not terminating condition) do
create C(t) from P(t) by crossover routine;
create C(t) from P(t) by mutation routine;
evaluate C(t) by decoding routine & up-
date the best solution;

reproduce P(t + 1) from P(t) and C(t) by
selection routine;

t ← t + 1;
end

output: the best solution;
end;

Crossover is the main genetic operator. It operates on two
chromosomes at a time and generates offspring by combin-
ing both chromosomes’ features. A simple way to achieve
crossover would be to choose a random cut-point and gener-
ate the offspring by combining the segment of one parent to
the left of the cut-point with the segment of the other parent
to the right of the cut-point.

Mutation is a background operator, which produces spon-
taneous random changes in various chromosomes. A simple
way to achieve mutation would be to alter one or more genes.

33.1.2 Hybrid Genetic Algorithms

Genetic algorithms (GAs) have proved to be a versatile
and effective approach for solving optimization problems.
Nevertheless, there are many situations in which the simple
GA does not perform particularly well, and various methods
have been proposed [5]. One of the most common forms of
hybrid genetic algorithms is to incorporate local search (LS)
or traditional optimization as an add-on extra to the canonical
GA loop of recombination and selection [6–9]. With the
hybrid approach, local optimization such as hill climbing is
applied to each newly generated offspring tomove it to a local
optimum before injecting it into the population as shown
in Fig. 33.2. Genetic algorithms are used to perform global
exploration among the population, while heuristic methods
are used to perform local exploitation around chromosomes.
Because of the complementary properties of genetic algo-
rithms and conventional heuristics, the hybrid approach often
outperforms either method operating alone. Some work has
been done to reveal the natural mechanism behind such a
hybrid approach, among which is Lamarckian evolution. The
hybrid GA can be combined with LS and tuned parameters
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Fig. 33.2 General structure of hybrid genetic algorithms

by FLSI routines. The general structure of hybrid genetic
algorithms is described as follows:

procedure: Hybrid Genetic Algorithm (HGA)
input: problem data, paramters
output: the best solution
begin
t ← 0
initialize P(t) by encoding routine;
evaluate P(t) by decoding routine & keep
the best solution;

while (not termination condition) do
create C(t) from P(t) by crossover routine;
create C(t) from P(t) by mutation routine;
evaluate C(t) by decoding routine &
update best solution;

improve best solution by LS routine;
tune parameters by FLC routine;
reproduce P(t + 1) from P(t) and C(t) by
selection routine;

t ← t + 1;
end

output: the best solution;
end;

33.1.3 Adaptive Genetic Algorithms

There are two basic approaches to applying the genetic
algorithms to a given problem: (1) to adapt a problem to the
genetic algorithms and (2) to adapt the genetic algorithms to
a problem.

Genetic algorithms were first created as a kind of generic
and weak method featuring binary encoding and binary ge-
netic operators. This approach requires a modification of the
original problem into an appropriate form suitable for the
genetic algorithms, as shown in Fig. 33.3.

To overcome such problems, various nonstandard imple-
mentations of the genetic algorithm have been created for

Problem

Adaption

Adapted problem GAs

Fig. 33.3 Adapt a problem to the genetic algorithms

Problem

Adaption

Adapted problem

GAs

Fig. 33.4 Adapt the genetic algorithms to a problem

particular problems, which leave the problem unchanged and
adapt the genetic algorithms by modifying a chromosome
representation of a potential solution and applying appro-
priate genetic operators, as shown in Fig. 33.4. This ap-
proach has been successfully applied in the area of industrial
engineering and is becoming the main approach in recent
applications of genetic algorithms [4, 10, 11].

33.1.4 Fuzzy Logic Controller (FLC)

Fuzzy logic is much closer in spirit to human thinking
and natural language than the traditional logical systems.
In essence, the fuzzy logic controller (FLC) provides an
algorithm which can convert a linguistic control strategy
based on expert knowledge into an automatic control strategy.
In particular, this methodology appears very useful when
the processes are too complex for analysis by conventional
techniques or when the available sources of information are
interpreted qualitatively, inexactly, or with uncertainty [7–9].

Lin and Gen reported auto-tuning strategy by using fuzzy
logic control for evolutionary algorithms adaptively regula-
tion for taking the balance among the stochastic search and
local search probabilities based on the change of the average
fitness of parents and offspring in each generation [9].

The pioneering work to extend the fuzzy logic technique
to adjust the strategy parameters of genetic algorithms dy-
namically was carried out by Yun, Lin, and Gen [7–9]. The
experts’ knowledge is stored in the knowledge base in the
form of linguistic control rules. The inference system is the
kernel of the controller, which provides an approximate rea-
soning based on the knowledge base. The generic structure
of a fuzzy logic controller is shown in Fig. 33.5.
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33.1.5 Multiobjective Optimization Problems

Many real-world decision-making problems involve multiple
and conflicting objectives which need to be tackled while re-
specting various constraints, leading to overwhelming prob-
lem complexity. The multiobjective optimization problem
(MOP) has been receiving growing interest from researchers
with various backgrounds since early 1960. There are a
number of scholars who have made significant contributions
to the problem. Among them, Pareto is perhaps one of the
most recognized pioneers in the MOP field [4, 12].

Multiobjective optimization problem with q objectives
and m constraints will be formulated as follows:

max [z1 = f1(x), z2 = f2(x), . . . , zq = fq(x)], (33.1)

s. t. gi(x) ≤ 0, i = 1, 2, . . . , m. (33.2)

x ≥ 0 (33.3)

where x ∈ Rn is a vector of n decision variables, fj(x)is
the objective function, and gi(x) are inequality constraint
functions, which form the area of feasible solutions. We
usually denote the feasible area in decision space with the
set S as follows:

S = {x ∈ Rn| gi(x) ≤ 0, i = 1, . . . , m, x ≥ 0} (33.4)

We sometimes graph the multiple objective problem in
both decision space and criterion space. S is used to denote
the feasible region in the decision space, and Z is used to
denote the feasible region in the criterion space as follows:

Z = {x ∈ Rq| z1 = f1(x), . . . , zq = fq(x), x ∈ S} (33.5)

where z ∈ Rq is a vector of values of q objective functions.
In other words, Z is the set of images of all points in S.

Although S is confined to the nonnegative orthant of Rn, Z is
not necessarily confined to the nonnegative orthant of Rq.

Definition 1 For a given point z0 ∈ Z, it is nondominated if
and only if there does not exist another point z ∈ Z such that,
for the maximization case,

zk > z0k , for some k ∈ {1, 2, . . . , q} and (33.6)

zl ≥ zlk, for all l �= k (33.7)

where z0 is a dominated point in the criterion space Z.

A point in the decision space is efficient if and only if its
image is a nondominated point in the criterion space Z.

Definition 2 For a given point x0 ∈ S, it is efficient if and
only if there does not exist another point x ∈ S such that, for
the maximization case,

fk(x) > fk(x0), for some k ∈ {1, 2, . . . q} and (33.8)

fl(x) ≥ fl(x0), for all l �= k (33.9)

where x0 is inefficient.

A point in the decision space is efficient if and only if its
image is a nondominated point in the criterion space Z.

A. The Concept of a Pareto Solution
In most existing methods, Pareto solutions are identified at
each generation and are only used to calculate fitness values
or ranks for each chromosome. The overall structure of the
basic multiobjective genetic algorithm (MoGA) is given as
follows:

procedure: Multiobjective Genetic Algorithm
input: problem data, paramters
output: the best Pareto optimal solution
begin
t ← 0
initialize P(t) by encoding routine;
calculate each fi(P) by decoding;
create Pareto frontier E(P) by non-
dominated;

evaluate P(t) by fitness assignment function
& keep the best Pareto solution;
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while (not termination condition) do
create C(t) from P(t) by crossover routine;
create C(t) from P(t) by mutation routine;
calculate each fi(C) by decoding;
update Pareto frontier E(P) by non-
dominated;

evaluate C(t) by fitness assignment func-
tion and update the best Pareto solution;

reproduce P(t + 1) from P(t) and C(t) by
selection routine;

t ← t + 1;
end

output: the best Pareto optimal solution;
end;

B. Fitness Assignment Function
Adaptive-Weight Genetic Algorithm (AWGA: Gen and
Cheng 2000): Gen and Cheng proposed an adaptive-weight
approach which utilizes some useful information from the
current population to readjust weights to obtain a search
pressure toward a positive ideal point.

For the examined solutions at each generation, we define
two extreme points: the maximum extreme point z+ and the
minimum extreme pint z− in criteria space as follows:

z+ = (zmax
1 , zmax

2 , . . . , zmax
q ), (33.10)

z− = (zmin
1 , zmin

2 , . . . , zmin
q ), (33.11)

where zmax
k and zmin

k are the maximum value and minimum
value for objective k in the current population. Let P denote
the set of the current population. For a given individual x,
the maximal value and minimal value for each objective are
defined as follows:

zmax
k = max{fk(x)|x ∈ P}, k = 1, 2, . . . , q, (33.12)

zmin
k = min{fk(x)|x ∈ P}, k = 1, 2, . . . , q, (33.13)

The hyperparallelogram defined by the two extreme points
is a minimal hyperparallelogram containing all current solu-
tions. The two extreme points are renewed at each generation.
The maximum extreme point will gradually approximate the
positive ideal point. The adaptive weight for objective k is
calculated by

wk = 1

zmax
k − zmin

k

, k = 1, 2, . . . , q. (33.14)

For a given individual x, the weighted-sum objective function
is given by
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Fig. 33.6 Adaptive weights and adaptive hyperplane

eval(x) =
q∑

k=1

wk(zk − zmin
k ) (33.15)

=
q∑

k=1

zk − zmin

zmax
k − zmin

k

(33.16)

=
q∑

k=1

fk(x) − zmin

zmax
k − zmin

k

. (33.17)

As the extreme points are renewed at each generation, the
weights are renewed accordingly. Figure 33.6 is a hyperplane
defined by the extreme points in the current solutions. It is an
adaptive moving line defined by the extreme points (zmax

1 ,
zmin
2 ) and (zmin

1 , zmax
2 ) as shown Fig. 33.6. The rectangle

defined by the extreme points (zmax
1 , zmin

2 ) and (zmin
1 , zmax

2 )
is the minimal rectangle containing all current solutions.

Nondominated Sorting Genetic Algorithm II (NSGA II:
Deb 2001) Deb developed a Pareto ranking-based fitness
assignment, and it is called NSGA[12]. In each method, the
nondominated solutions constituting a nondominated front
are assigned the same dummy fitness value. These solu-
tions are shared with their dummy fitness values (phenotypic
sharing on the decision vectors) and ignored in the further
classification process. Finally, the dummy fitness is set to a
value less than the smallest shared fitness value in the current
non-dominated front. Then the next front is extracted. The
procedure of NSGA II is repeated until all individuals in the
population are classified [12].

Strength Pareto Evolutionary Algorithm 2 (SPEA2: Zit-
zler et al. [13]) Zitzler and Thiele proposed strength Pareto
evolutionary algorithm and an extended version SPEA2 [13]
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that combines several features of previousMoGA in a unique
manner. The fitness assignment procedure is a two-stage
process. The individuals in the external nondominated set P’
are ranked.

Interactive Adaptive-Weight Genetic Algorithm
(i-AWGA: Lin and Gen [9]) Lin and Gen proposed an
interactive AWGA, which is an improved adaptive-weight
fitness assignment approach with the consideration of
the disadvantages of weighted-sum approach and Pareto
ranking-based approach [14]. They combined a penalty term
to the fitness value for all of dominated solutions. Firstly,
we calculate the adaptive weight wi = 1/(zmax

i − zmin
i )for

each objective by using AWGA. Afterward, we calculate the
penalty term p(vk) = 0, if vk is nondominated solution in
the nondominated set P. Otherwise p(v′k)=1 for dominated
solution vk’. Lastly, we calculate the fitness value of each
chromosome by combining the i-AWGA method:

eval(vk) =
q∑

i=1

wi(z
k
i − zmin

i ) + p(vk), ∀k ∈ popSize

(33.18)

Hybrid Sampling Strategy-Based EA Zhang et al. [15]
Zhang et al. proposed a hybrid sampling strategy-based evo-
lutionary algorithm [15,16]. A Pareto dominating and domi-
nated relationship-based fitness function (PDDR-FF) is pro-
posed to evaluate the individuals. The PDDR-FF of an indi-
vidual Si is calculated by the following function:

eval(Si) = q(si) + 1

p(si + 1)
, i = 1, 2, . . . , popSize

(33.19)

where p() is the number of individuals which can be dom-
inated by the individual S. q() is the number of individuals
which can dominate the individual S. The PDDR-FF can
set the obvious difference values between the nondomi-
nated and dominated individuals. The general structure in
the pseudocode of multiobjective hybrid genetic algorithm
(Mo-HGA) is designed MoGA with a local search and FLC
in HGA.

33.1.6 Genetic Algorithmwith Learning

Earlier attention of the interaction between machine learning
(ML) and genetic algorithm (GA) was presented by Goldberg
and Holland in 1988 [1, 17]. During the search process,
the GA can store ample data about the search information,
population information, and problem features. Thus, the ML
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Fig. 33.7 An illustration of the hybridization taxonomy [18]

technique is helpful in analyzing these data for enhancing the
search performance of GAs. Recently Lin and Gen surveyed
hybrid evolutionary optimization algorithms with learning
for various production scheduling problems [18]. In this
way, useful information can be extracted to understand the
search behavior and to assist with future searches for the
global optimum. In many applications, GAs incorporating
ML techniques have been proven to be advantageous in both
convergence speed and solution quality. Jourdan et al. [19]
and Zhang et al. [20] presented surveys of ML technique
enhanced GAs.

The ML techniques can be incorporated into different
GAs in various ways, and they affect GA also on various
aspects. To classify the different ways to hybridization ofML
techniques and GAs, Jourdan et al. presented a taxonomy by
knowledge type/localization/aim as shown in Fig. 33.7.

Knowledge Type
ML as a knowledge discovery technique is the process of
automatically exploring large volumes of data. For enhancing
the performance of EAs, two kinds of knowledge can be
distinguished:

(1) A priori knowledge, a previously acquired knowledge,
such as problem features and problem data set.

(2) Dynamic knowledge, a dynamically acquired knowledge
which is extracted or discovered during the search, such
as search information and population information.

Aim
Another useful information to classify algorithms is to dis-
tinguish the aim of the hybridization:
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(1) Speeding-up: The hybridization is used to reduce the
computational time, i.e., speed up techniques, by simpli-
fication of the fitness, i.e., fitness approximation, or by
significantly reducing the search space, e.g., leading the
EAs in promising area

(2) Quality improvement: The hybridization is used to im-
prove the quality of the search by introducing knowledge
in EA operations or in other parts of the EAs.

In fact, the insertion of ML techniques often leads to both
speeding up the EAs and improving the quality.

Localization
Different EAs have similar framework in implementation
and algorithmic characteristics.Michalewicz [5] summarized
five basic components of EAs, and a general evolution pro-
cess of the EAs is shown in Fig. 33.8:

• An evolutionary representation of potential solutions to
the problem.

• A way to create a population (an initial set of potential
solutions).

• An evaluation function rating solutions in terms of their
fitness.

• Evolutionary operators that alter the genetic composition
of offspring (crossover, mutation, selection, etc.).

• Parameter values that evolutionary algorithm uses (popu-
lation size, probabilities of applying evolutionary opera-
tors, etc.).

33.2 Combinatorial Optimization
Problems

Combinatorial optimization studies problemswhich are char-
acterized by a finite number of feasible solutions. An impor-
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Fig. 33.8 A general evolution process of the EAs [18]
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tant and widespread area of application concerns the efficient
use of scarce resources to increase productivity.

33.2.1 Knapsack Problem

Suppose that we want to fill up a knapsack by selecting
some objects among various objects (generally called items).
There are n different items available, and each item j has a
weight of wj and amazing profit of pj.The knapsack can hold
a weight of at most W. The problem is to find an optimal
subset of items so as to maximize the total profit subject
to the knapsack’s weight capacity. The profits, weights, and
capacity are positive integers [21].
Let xj be binary variables given by

xj =
{
1 if item j is selected,

0 otherwise.
(33.20)

The knapsack problem can be mathematically formulated as

max
n∑

j=1

pjxj, (33.21)

s. t.
n∑

j=1

wjxj ≤ W, (33.22)

xj = 0 or 1 j = 1, 2, . . . , n. (33.23)

Binary Representation Approach
The binary string is a natural representation for the knapsack
problem, where one means the inclusion and zero the exclu-
sion of one of the n items from the knapsack. For example,
a solution for the 10-item problem can be represented as the
following bit string:

x =(x1x2 . . . x10)

(0 1 0 1 0 0 0 0 1 0),

meaning that items 2, 4, and 9 are selected for inclusion in
the knapsack.

33.2.2 Minimum Spanning TreeModel

Consider a connected undirected graph G = (V, E), where
V = {v1, v2, . . . , vn} is a finite set of vertices representing ter-
minals or telecommunication stations, etc. and E = {eij|eij =
(vi, vj), vi, vj ∈ V} is a finite set of edges representing connec-
tions between these terminals or stations. Each edge has an
associated positive real number denoted by W = {wij|wij =
w(vi, vj), wij > 0, vi, vj ∈ V} representing distance, cost, and

so on. The vertices and edges are sometimes referred to as
nodes and links, respectively.

Based on their different backgrounds, many researchers
have proposed varieties of spanning tree problems with some
constraints on them, such as the spanning tree problem with
a degree constraint, the stochastic spanning tree problem, the
quadratic spanning tree problem, the multicriteria spanning
tree problem, and the spanning tree problemwith a constraint
on the number of leaves or leaf-constrained spanning tree
problem [22,23].

A spanning tree is a minimal set of edges from E that con-
nects all the vertices in V , and therefore at least one spanning
tree can be found in graph G. The minimum spanning tree is
just one of the spanning trees whose total weight of all edges
is minimal. It can be formulated as

min z(x) =
n−1∑

i=1

n∑

j=2

wijxij, (33.24)

s. t.
n−1∑

i=1

n∑

j=2

xij = n− 1; (33.25)

∑

i∈S

j>1∑

j∈S
xij ≤ |S| − 1, S ⊆ V\{1}, |S| ≥ 2,

(33.26)

xij = 0 or 1, i = 1, 2, . . . , n− 1,

j = 2, 3, . . . , n, (33.27)

where

xij =
{
1, if edge(i, j) is selected in a spanning tree

0, otherwise

(33.28)

and T is a set of the spanning trees of graph G.
A. Tree Encodings
For the minimum spanning tree (MST) problem, the method
of encoding a tree is critical for the genetic algorithm ap-
proach because the solution should be a tree.

If we associate an index k with each edge, i.e., E = {ek},
k = 1, 2, . . . , K, where k is the number of edges in a graph,
a bit string can represent a candidate solution by indicating
which edges are used in a spanning tree, as illustrated in
Fig. 33.9.
B. Genetic Algorithm Approach

Representation The chromosome representation for a span-
ning tree should contain, implicitly or explicitly, the degree
on each vertex. Among the several tree encodings, only the
Prüfer number encoding explicitly contains the information
of vertex degree, i.e., that any vertexwith degree dwill appear
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Fig. 33.9 A graph with its edge encoding for a spanning tree

exactly d-1 times in the encoding. Thus the Prüfer number
encoding is adopted.

Crossover and Mutation Prüfer number encoding can still
represent a tree after any crossover or mutation operations.
Simply, the one-point crossover operator is used, as illus-
trated in Fig. 33.10. Mutation is performed as random per-
turbation within the permissive integer from 1 to n (n is
the number of vertices in graph). An example is given in
Fig. 33.11.

33.2.3 Set-CoveringModel

The problem is to cover the rows of an m-row/n-column
zero-one matrix by a subset of columns at minimal cost.
Considering a vector n, xj is 0–1 variable that takes on the
3 value 1, if item j is selected (with a cost cj > 0). The set-
covering problem is then formulated as

min z(x) =
n∑

j=1

cjxj, (33.29)

s. t.
n∑

j=1

aijxj ≤ 1 i = 1, 2, . . . , m, (33.30)

xj ∈ {0, 1}, j = 1, 2, . . . , n. (33.31)

Genetic Algorithm Approach

Representation The fitness f (x) of an individual is calcu-
lated simply by

f (x) =
n∑

j=1

cjxj. (33.32)

The initial population can be generated randomly.

9Parent 1

Cut-point

7Parent 2

7

2 3 4 7 1 8

8 4 6 2 8 9

2 3 4 7 8 9

8 4 6 2 1 8 9

Off-
spring 1

Off-
spring 2

Fig. 33.10 Illustration of the crossover operation
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Fig. 33.11 Illustration of the mutation operation

Genetic Operators Beasley and Chu proposed a generalized
fitness-based crossover operator called the fusion operator.

Let P1 and P2 be the parent strings. Let fP1 and fP2 be the
fitness values of the parent stringsP1 andP2, respectively. Let
C be the child string. The fusion operator works as follows:

Procedure: Fusion Operator

Step 1. i = 1.
Step 2. If P1[i] = P2[i], then C[i] ← P1[i] = P2[i].
Step 3. If P1[i] �= P2[i], then

(a) C[i] ← P1[i]
with probability p = fp2/(fp1 + fp2).

(b) C[i] ← P2[i] with probability 1-p
Step 4. If i = n, stop; otherwise, set i ← i+1 and go to step 1.

33.2.4 Bin-PackingModel

The bin-packing problem consists of placing n objects into
a number of bins (at mostn bins). Each object has a weight
(wi > 0) and each bin has a limited bin capacity (ci > 0).
The problem is to find the best assignment of objects to bins
such that the total weight of the objects in each bin does not
exceed its capacity and the number of bins used is minimized.
Genetic Algorithm Approach

Representation The most straightforward approach is to en-
code the membership of objects in the solution. For instance,
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Object

Bin 1 4 2 3 5 2

1 2 3 4 5 6

Fig. 33.12 Representation of membership of objects

the chromosome [1 4 2 3 5 2] would encode a solution where
the first object is in bin 1, the second in bin 4, the third in bin
2, the fourth in bin 3, the fifth in bin 5, and the sixth in bin 2.
This representation for the bin-packing problem is illustrated
in Fig. 33.12.

A mathematical formulation for the bin-packing problem
is given as follows [10, 21]:

min z(y) =
n∑

i=1

yi, (33.33)

s. t.
n∑

j=1

wjxij ≤ ciyi, i ∈ N = {1.2, . . . , n}, (33.34)

n∑

i=1

xij = 1, j ∈ N (33.35)

yi = 0 or 1, i ∈ N (33.36)

xij = 0 or 1, i, j ∈ N (33.37)

where

yi =
{
1, if bin i is used

0, otherwise,
(33.38)

xij =
{
1, if object j is assigned to bin i

0, otherwise.
(33.39)

Genetic Operators

Procedure: Crossover

Step 1 Select at random two crossing sites, delimiting the
crossing section, in each of the two parents.

Step 2 Inject the contents of the crossing section of the first
parent at the first crossing site of the second parent.

Step 3 Eliminate all objects now occurring twice from the
bins they were members of in the second parent, so
that the old membership of these objects gives way to
the membership specified by the new injected bins.
Consequently, some of the old groups coming from
the second parent are altered.

Step 4 If necessary, adapt the resulting bins, according to the
hard constraints and the cost function to optimize.

Step 5 Apply steps 2–4 to the two parents with their roles
permuted to generate the second child.

33.2.5 Traveling-SalesmanModel

The traveling-salesman problem (TSP) is one of the most
widely studied combinatorial optimization problems. Its
statement is deceptively simple: a salesman seeks the shortest
tour through n cities.

For example, a tour of a nine-city TSP

3 − 2 − 5 − 4 − 7 − 1 − 6 − 9 − 8

is simply represented as follows:

[3 2 5 4 7 1 6 9 8].

This representation is also called a path representation or
order representation. This representation may lead to illegal
tours if the traditional one-point crossover operator is used;
therefore many crossover operators have been investigated
for it. Another method is the random keys representation.
This representation encodes a solution with random numbers
from (0,1). These values are used as sort keys to decode the
solution.

For example, a chromosome for a nine-city problem
may be

[0.23 0.82 0.45 0.74 0.87 0.11 0.56 0.69 0.78]

where position i in the list represents city i. The random
number in position i determines the visiting order of city i
in a TSP tour. We sort the random keys in ascending order to
get the following tour:

6 − 1 − 3 − 7 − 8 − 4 − 9 − 2 − 5.

Genetic Algorithm Approach Representation: Permuta-
tion representation is perhaps the most natural representation
of a TSP tour, where cities are listed in the order in which
they are visited [24, 25].
Crossover Operators

Procedure Partial-Mapped Crossover (PMX) [25].

Step 1. Select two positions along the string uniformly at
random.

Step 2. Exchange two substrings between parents to produce
proto-children.

Step 3. Determine the mapping relationship between two
mapping sections.

Step 4. Legalize offspring with the mapping relationship.
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Select three positions at random

The neighbors from the cities

1 2 6 4 5 3 7

1 2 3 4 5 6 7

1 2 3 4 5 8 7

1 2 8 4 5 3 7

1 2 8 4 5 6 7

1 2 6 4 5 8 7

8 9

8 9

6 9

6 9

3 9

3 9

Fig. 33.13 Illustration of the heuristic mutation operator

1. Select the substring at random

2. Exchange substring between parents

3. Determine mapping relationship

4. Legalize offspring with mapping relationship

Parent 1

Parent 2

Proto-child 1

Proto-child 2

Offspring 1

Offspring 2

1

5

1

5

6 9 2 1

3 4 5 5

1
2
9

6
5
4

3

3

2

2 3 4 5 6 7 8 9

4 6 9 2 1 7 8 3

2 6 9 2 1 7 8 9

4 3 4 5 6 7 8 3

5 6 9 2 1 7 8 4

9 3 4 5 6 7 8 1

Fig. 33.14 Illustration of the PMX operator

The procedure is illustrated in Fig. 33.13.
Mutation Operators
Procedure : Heuristic Mutation [26, 27].

Step 1. Pick n genes at random.
Step 2. Generate neighbors according to all possible permu-

tation of the selected genes.
Step 3. Evaluate all neighbors and select the best one as

offspring.

The procedure is illustrated in Fig. 33.14.

33.3 Network Design Problems

Network design and routing are one of important issues in the
building and expansion of computer networks. Many ideas

2

6

54

1
3

3

7
2

9

6

3 3

3

4 1

Fig. 33.15 Simple undirected graph with six nodes and ten edges

and methods have been proposed and tested in the past two
decades. Recently, there is an increasing interest in applying
genetic algorithms to problems related to computer network
[4, 28].

33.3.1 Shortest-PathModel

An undirected graph G = (V, E) comprises a set of nodes
V = {1, 2, . . . , n} and a set of edges E ∈ V × V connecting
nodes in V.

Corresponding to each edge, there are two nonnegative
numbers c1ij and c

2
ij representing the cost and distance, or other

items of interest, from node i to node j is a sequence of edges
(i, l), (l, m), . . . , (k, j) from E in which no node appears more
than once. A path can also be equivalently represented as a
sequence of nodes (i, l, m, . . . , k, j). For the example given in
Fig. 33.15, (1,4), (4,3), (3,5), (5,6)is a path from node 1 to
node 6. The node representation is (1, 4, 3, 5, 6).

Let 1 denote the initial node and n denote the end node of
the path. Let xij be an indicator variable defined as follows:

xij =
{
1, if edge (i, j) is included in the path

0, otherwise.

(33.40)

Genetic Algorithm Approach

Priority-Based Encoding [14,29–32] The position of a gene
is used to represent a node, and the value is used to represent
the priority of the node for constructing a path among the
candidates. The encoding method is denoted by priority-
based encoding. The path corresponding to a given chromo-
some is generated by a sequential node appending procedure,
beginning from the specified node 1 and terminating at the
specified node n. The bicriteria shortest-path problem can be
formulated as follows:

min z1(x) =
∑

i

∑

j

c1ijxij, (33.41)



33 Genetic Algorithms and Their Applications 647

33

101 5 7

2 4 8

3 6 9

Fig. 33.16 Simple undirected graph with 10 nodes and 16 edges

Position: node ID

Value: priority

1 2 3 4 5 6 7 8 9 10

7 3 4 6 2 5 8 10 1 9

Fig. 33.17 Example of priority-based encoding

min z2(x) =
∑

i

∑

j

c2ijxij, (33.42)

s. t.
∑

j

xij ≤ 2,∀i ∈ V, (33.43)

∑

j

xij ≥ xik,∀(i, k) ∈ E,∀i ∈ V\{1, n} (33.44)

∑

j

x1j =
∑

j

xjn = 1,∀i, j ∈ V, (33.45)

xij = xji, ∀(i, j) ∈ E, (33.46)

0 ≤ xij ≤ 1, ∀(i, j) ∈ E (33.47)

Consider the undirected graph shown in Fig. 33.16. Sup-
pose we are going to find a path from node 1 to node 10.
An encoding of the instance is given in Fig. 33.17. At the
beginning, we try to find a node for the position next to node
1. Nodes 2 and 3 are eligible for the position, which can be
easily fixed according to the adjacency relation among nodes.
The priorities of them are 3 and 4, respectively. Node 3 has
the highest priority and is put into the path. The possible
nodes next to node 3 are nodes 2, 5, and 6. Because node
6 has the largest priority value, it is put into the path. Then
we form the set of nodes available for the next position and
select the one with the highest priority among them. These
steps are repeated until we obtain a complete path (1, 3, 6, 7,
8, 10).

For an n-node problem, let � be a set containing integer
exclusively from the set �, that is, � = {1, 2, . . . , n}; let
pi denote the priority for node i, which is a random integer
exclusively from the set �. Priorities pi of all nodes satisfy
the following conditions:

pi �= pj, pi, pj ∈ �, i �= j, i, j �= 1, 2 . . . n (33.48)

Parent 1

Child

Parent 2

5 1 2 4 3 8 9 10 7 6

6 1 5 4 2 7 9 10 3 8

6 5 9 2 10 37 1 4 8

Fig. 33.18 Position-based crossover operator

Parent 1

Child

5 1 2 4 3 8 9 10 7 6

5 10 2 4 3 8 9 1 7 6

Fig. 33.19 Swap mutation operator

Then the priority-based encoding can be formally defined as

[
p1 p2 . . . pn

]

Genetic Operators
Here the position-based crossover operator proposed by

Syswerda is adopted. It can be viewed as a kind of uniform
crossover operator for integer permutation representation
together with a pairing procedure, as shown in Fig. 33.18.
Essentially, it takes some genes from one parent at random
and fills the vacuum positionwith genes from the other parent
using a left-to-right scan. The swap mutation operator is used
here, which simply selects two positions at random and swaps
their contents as shown in Fig. 33.19.

33.3.2 Maximum-FlowModel

There have been many applications of the maximum-flow
problem (MXF) in the real world. One of them is to determine
the maximum flow through a pipeline network. Assume that
oil should be shipped from the refinery (the source) to a
storage facility (the sink) along arcs of the network. Each arc
has a capacity which limits the amount of flow along that arc.
Here, we want to determine the largest possible.

This is a flow that can be sent from the refinery to the
storage facility with the restriction that no arc (pipe) capacity
can be exceeded. MXF has also been applied to some other
applications such as the problem of selecting sites for an
electronic message-transmission system and dynamic flows
in material-handling systems [14, 32, 33]. A mathematical
formulation for the bin-packing problem is given by
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max f (33.49)

s. t.
n∑

j=1

xij −
m∑

k=1

xki =

⎧
⎪⎨

⎪⎩

f, if i = 1

0, if i = 2, 3, . . . , m− 1

−f, if i = m

(33.50)

0 ≤ xij ≤ uij, i, j = 1, 2, . . . , m (33.51)

where f is the amount of flow in the network from node 1 to
node m and uij is arc capacities.

Genetic Algorithm Approach
The priority-based encoding method is used to represent the
chromosome. The chromosome here is represented by m-
digit numbers that are generated randomly. Each number
represents the priority of the node.

Crossover As the first step in the crossover operation,
we generate random numbers γk in the range [0, 1]
(k = 1, 2, . . . , popSize). Next, we select the chromosomes
vk to which the crossover operation will be applied. If
γk < pC, then the crossover operation will be applied to
chromosome vk.

Mutation Similarly, the first step in the mutation opera-
tion is to generate a random γr in the range [0, 1], (r =
1, 2, . . . , popSize).

If γr < pM, then the chromosome vk(l = (r/m+1)) is chosen
for the mutation operation.

33.3.3 Minimum-Cost-FlowModel

Theminimum-cost-flow (MCF) problem is known as a useful
type of network optimization problem. It consists of finding
the minimum-cost flows in the networks. For this problem,
we are given a directed network G = (X, A) in which each
arc connecting nodes i and j in the network is associated
with a cost cij and a capacity uij. A feasible solution to
the MCF problem should satisfy two constraints. First, the
flow through each arc should satisfy the capacity constraint.
Second, the conservation of flow in all nodes should also
be preserved. The conservation of flows here means that the
flow into a node must equal the flow out of the node. The
common objective is to determine the feasible network flow
that minimizes the total cost.

A mathematical formulation for the bin-packing problem
is given by

min z =
m∑

i=1

m∑

j=1

cijxij, (33.52)

s. t.
m∑

j=1

xij −
m∑

k=1

xki = bi, i = 1, . . . , m, (33.53)

xij ≥ 0, i, j = 1, . . . , m, (33.54)

where xij is the flow through an arc and cij is the unit
shipping cost along the arc. Equation (33.53) is called the
flow conservation or Kirchhoff equation and indicates that
flow may be neither created nor destroyed in the network.
Genetic Algorithm Approach

Representation The chromosome here is represented by m-
digit numbers generated randomly. Each number represents
the priority of the node respectively.

Crossover The crossover is done by selecting two chro-
mosome randomly. We use the partially matched crossover
(PMX) method for the crossover operation.

Mutation Mutation here is done by selecting a chromosome
at random. Two bit positions of the chromosome are ex-
changed.

33.3.4 Centralized Network Design

Consider a complete, undirected graph G = (V, E); let
V = {1, 2, . . . , n} be the set of nodes representing terminals.
Denote the central site or root node as node 1, and let E =
{(i, j)|i, j ∈ V} be the set of edges representing all possible
telecommunication wiring. For a subset of nodes S(⊆ V),
define E(S) = {(i, j)|i, j ∈ S} as the edges whose endpoints
are both in S. Define the following binary decision variables
for all edges (i, j) ∈ E:

xij =
{
1, if edge (i, j) is selected

0, otherwise.
(33.55)

Let cij be the fixed cost with respect to edge (i, j) in the
solution, and suppose that di represents the demand at each
node i ∈ V , where by convention the demand of the root
node is d1 = 0. Let d(S), S ⊆ V denote the sum of the
demands of nodes of S. The subtree capacity is denoted with
k. The centralized network design problem can be formulated
as follows:

min z =
n−1∑

i=1

n∑

j=2

cijxij, (33.56)
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s. t.
n−1∑

i=1

n∑

j=2

xij = 2(n− 1), (33.57)

∑

i∈S

∑

j∈S
xij ≤ 2[|S| − λ(S)]

S ⊆ V\{1}, |S| ≥ 2, (33.58)
∑

i∈U

∑

j∈U
xij ≤ 2(|U| − 1), U ⊂ V,

|U| ≥ 2, {1} ∈ U, (33.59)

xij = 0 or 1, i = 1, 2, . . . , n− 1,

j = 2.3, . . . , n, (33.60)

Equality (33.57) is true of all spanning trees: a tree with n
nodes must have n−1 edges. Inequality (33.58) is a standard
inequality for spanning trees: if more than |U| − 1 edges
connect the nodes of a subset U, then the set U must contain
a cycle. The parameter λ(S) refers to the bin-packing number
of set S, namely, the number of bins of size k needed to pack
the nodes of items of size di for all i∈ S. These constraints are
similar to those for inequality (33.59), except that they reflect
the capacity constraint: if the set S does not contain the root
node, then the nodes of S must be contained in at least λ(S)
different subtrees of the root.

In Fig. 33.20, node ID is the node number based on the
depth-first search (DFS), and the degree at node ID is the
number of connecting nodes.
Genetic Algorithm Approach
To solve the centralized network design problem by using a
genetic algorithm, a tree-based permutation encodingmethod
is adopted to encode the candidate solutions, as illustrated in
Fig. 33.20.

33.3.5 Multistage Process PlanningModel

The multistage process planning (MPP) system usually con-
sists of a series of machining operations, such as turning,
drilling, grinding, finishing, and so on, to transform a part into
its final shape or product. The whole process can be divided
into several stages. At each stage, there are a set of similar
manufacturing operations. The MPP problem is to find the
optimal process planning among all possible alternatives
given certain criteria such as minimum cost, minimum time,
and maximum quality or under several of these criteria.

For an n-stage MPP problem, let sk be some state at stage
k, Dk(sk) be the set of possible states to be chosen at stage k,
and k = 1, 2, . . . , n, xk be the decision variable to determine
which state to choose at stage k; obviously xk ∈ Dk(sk), k =
1, 2, . . . , n. Then the MPP problem can be formulated as
follows:

Node ID

Degree at node ID

1 2 5 6 3 4 7 8

3 3 1 1 1 3 1 1

Root

Rooted
tree

1

3 42

5 6 7 8

Fig. 33.20 Rooted tree and its tree-based permutation

Parent
individual

Neighbor
individuals

Mutated gene

2 1 2 3 2 1

2 1 1 3 2 1

2 1 3 3 2 1

2 1 4 3 2 1

Fig. 33.21 Mutation with neighborhood search

min
xk∈Dk(sk), k=1,2...n

V(x1, x2,...,xn) =
n∑

k=1

vk(sk, xk). (33.61)

where vk(sk, xk) represents the criterion to determine xk under
state sk at stage k, usually defined as a real number such as
cost, time, or distance.
Genetic Algorithm Approach

Representation The MPP solution can be concisely encoded
in a state permutation format by concatenating all the set
states of stages. This state permutation encoding has a one-
to-one mapping for the MPP problem. The probability of
randomly producing a process planning is definitely 1.
It is also easy to decode and evaluate. As to the initial
population for an n-stage MPP problem, each individual
is a permutation with n− 1 integers, whereas the integers are
generated randomly with the number of all possible states in
the corresponding stage.

Genetic Operation: In Zhou and Gen’s method, only the
mutation operation was adopted because it is easy to hybrid
the neighborhood search technique to produce more adapted
offspring[10]. This hybrid mutation operation provides a
great chance to evolve to the optimal solution.

Figure 33.21 shows an example for this mutation oper-
ation with a neighborhood search technique supposing that
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Fig. 33.22 A simple network with 11 nodes and 22 edges

the gene is at stage 3 and the number of possible states to be
chosen is 4.

33.3.6 Bicriteria MXF/MCFModel

The bicriteria network design (BND) problem is known as
NP-hard; it is not simply an extension from single objective
to two objectives. Considering the characteristic of priority-
based encoding method, we applied a new crossover operator
called as weight mapping crossover (WMX), and insertion
mutation operator is adopted [34].

Mathematical Formulation
Consider a directed network G = (N, A), consisting of a
finite set of nodes N = {1, 2, . . . , n} and a set of directed arcs
A = {(i, j), (k, l), . . . , (s, t)} joining pairs of nodes in N. Arc
(i, j) is said to be incident with nodes i and j and is directed
from node i to node j. We shall assume that the network has
n nodes and m arcs. Figure 33.22 presents a simple network
with 11 nodes and 22 arcs.

The decision variables in the BND problem are the max-
imum possible flow z1 with minimum cost z2 from source
node 1 to sink node n. Mathematically, this problem is formu-
lated as follows (where summations are taken over existing
arcs):

max z1 = f (33.62)

min z2 =
n∑

i=1

n∑

j=1

cijxij (33.63)

s. t.
n∑

j=1

xij −
n∑

k=1

xki =

⎧
⎪⎨

⎪⎩

f (i = 1)

0 (i = 2, 3, . . . , n− 1)

−f (i = n)

(33.64)

11 1 10 3 8 9 5 7 4 2 6

1Locus :

Node ID :

2 3 4 5 6 7 8 9 10 11

Fig. 33.23 An example of priority-based chromosome

0 ≤ xij ≤ uij ∀(i, j) (33.65)

xij = 0 or 1 ∀i, j (33.66)

The first objective function (33.62) is maximizing the total
flow, and second objective function (33.63) is minimizing
the total cost. Constraints (33.64) are called the flow con-
servation or Kirchhoff equations and indicate that the flow
may be neither created nor destroyed in the network. In the
conservation equations, sum of xjk represents the total flow
out of node j, while sum of xij indicates the total flow into
node j. These equations require that the net flow out of node
j should equal f . If f < 0, then there should be more flow into
j than out of j.
Genetic Representation

In this problem, we consider a priority-based encoding
method with special decoding for various network design
problems. Cheng and Gen proposed priority-based genetic
algorithm (priGA) firstly for solving resource-constrained
project scheduling problem (rcPSP) [27]. The priority-based
encoding method is an indirect approach. As it is known,
a gene in a chromosome is characterized by two factors:
locus, i.e., the position of gene located within the structure of
chromosome, and allele, i.e., the value the gene takes. An ex-
ample of priority-based encoding is shown in Fig. 33.23. For
designing the decoding method, we first design a one-path
growth procedure that obtains a path base on the generated
chromosome with given network. We then design an overall-
path growth procedure that removes the used flow from each
arc and deletes the arcs whose capacity is 0. Table 33.1 shows
two examples of the solution of bDN with various paths.
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Table 33.1 Examples of the
solutions with various paths

Solution

1

2

# of paths K Path P(�) Total flow z1 Total cost z2

3 (1-3-6-5-8-11), (1-3-6-8-11), (1-3-7-6-9-11)

(1-3-6-5-8-11), (1-3-6-8-11), (1-3-7-6-9-11),
(1-4-7-6-9-11), (1-4-7-10-11), (1-2-5-8-11),
(1-2-5-8-9-11), (1-2-6-9-10-11)

60

160

4660

124508

Genetic Operators
For priority-based representation as a permutation repre-
sentation, several crossover operators have been proposed,
such as partial-mapped crossover (PMX), order crossover
(OX), cycle crossover (CX), position-based crossover (PX),
heuristic crossover, etc. [4]. In this BND model, we propose
a weight mapping crossover (WMX); it can be viewed as
an extension of one-cut-point crossover for permutation rep-
resentation. At one-cut-point crossover, two chromosomes
(parents) would choose a random cut-point and generate the
offspring by using a segment of its own parent to the left
of the cut-point and then remap the right segment based on
the weight of other parent of the right segment. An example
of the WMX is given in Fig. 33.24. For the mutation, we
examine several kinds of mutation operators, and effective-
ness of insertion mutation is the best one for priority-based
representation. For the selection, it is mainly used to adjust
genetic search in favor of a wide exploration of the search
space when solving BND problems by the weighted-sum
approach. We adopted roulette wheel selection that is the
best selection type as supplementary to the weighted-sum
approach.

In the BND model, we propose a fitness assignment
approach by an interactive adaptive-weight GA (i-AWGA),
which is an improved adaptive-weight fitness assignment
approach with the consideration of the disadvantages of
weighted-sum approach and Pareto ranking-based approach.
We combine a penalty term to the fitness value for all of
dominated solutions. Calculate the adaptive weight w1 =
1/(fmax

1 − fmin
1 ) for objective 1 and the adaptive weight

w2 = 1/(fmax
2 − fmin

2 ) for objective 2. Afterward, calculate
the penalty term p(vk) = 0, if vk is nondominated solution
in the nondominated set P. Otherwise p(vk′) = 1 for dom-
inated solution vk′ . Last, calculate the fitness value of each
chromosome by combining the method as follows, and we
adopted roulette wheel selection as supplementary to the i-
AWGA fitness assignment approach based on the following
equation:

eval(vk) = w1(f
k
1 − fmin

1 ) + w2(f
k
2 − fmin

2 ) + p(vk),

∀k ∈ popSize (33.67)

Performance Measures

1 2 3 4 5 6 7 8

A cut-point

9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

7 8 9 10 11

10

6 5 8 1 3

Step 2: exchange substrings between parents

Step 3: mapping the weight of the right segment

Step 4: generate offspring with mapping relationship

11 2 4 7 10 9

8 2 4 1 9 6 11 7 3 5

10

6 5 8 1 3 11 6 11 7 10 5

8 2 4 1 9 2 4 7 10 9

10

6 5 8 1 3 11 7 10 9 2 4

8 2 4 1 9 3 4 6 11 7

6
6

11
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7
7

3
3

5
5

2 24 47 710 109 9

Step 1: select a cut-point

parent 1:

parent 2:

Parent 1:

Offspring 1:

Offspring 2:

Parent 2:

Fig. 33.24 An example of WMX

In order to evaluate the results of each test for the bicriteria
network design problem, we are using the performance mea-
sures: average of the best solutions (ABS), percent deviation
(PD) from optimal solution, and standard deviation (SD). We
also give a statistical analysis by ANOVA and give examples
of Pareto frontier, convergence patterns for the problems:

(1) The number of obtained solutions |Sj|.
(2) The ratio of nondominated solutions RNDS(Sj): A

straightforward performance measure of the Sj with
respect to the J solution sets is the ratio of solutions in Sj
that are not dominated by any other solutions in S. The
RNDS(Sj) measure can be written as follows:
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Table 33.2 Fitness assignment
approaches for the 25/49 test
problem # of

eval.
solut.

50 41.20 43.60 42.60 44.00 0.35 0.33 0.34 0.33 181.69 180.64 168.73 168.96

2000 62.90 62.90 55.30 64.70 0.61 0.65 0.51 0.65 74.76 81.24 95.70 76.41

5000 67.80 68.40 60.70 69.40 0.73 0.72 0.64 0.73 62.97 62.77 80.68 62.33

500 49.80 56.60 51.60 57.50 0.47 0.50 0.42 0.46 104.77 114.62 119.53 103.13

spEA nsGAll rwGA i-awGA i-awGA i-awGAspEA spEAnsGAll nsGAllrwGA rwGA

|Sj| RNDS(Sj) D1R(Sj)

Table 33.3 Comparison results
using the three performance
measures Test problems

(# of nodes/ # of arcs)

25/49 5860 0.379 0.483 1.945 0.727

25/56 6067 0.516 0.597 1.647 1.207

pri-awGA pri-awGA pri-awGA mo-hGAmo-hGAmo-hGA

|Sj| RNDS(Sj) D1R

RNDS(Sj) = |Sj{x ∈ Sj|∃r ∈ S∗ : r ≺ x}|
|Sj| (33.68)

(3) The distance D1_R measure can be written as follows:

D1R = 1

|S∗|
∑

r∈S∗
min{drx|xt ∈ sj} (33.69)

where S* is a reference solution set for evaluation of the
solution set Sj and dxr is the distance between a current
solution x and a reference solution r.

drx =
√

(f1(r) − f (x1)2 + (f2(r) − f2(x))
2 (33.70)

Experimental Result
We compare i-AWGA with SPEA, NSGA II, and rwGA
through computational experiments under the same stopping
condition (i.e., evaluation of 5000 solutions). Each algo-
rithm was applied to each test problem 10 times and gives
the average results of the three performance measures. In
Table 33.2, better results of |Sj| andD1R were obtained by the
i-AWGA than other fitness assignment approach. As shown
in Table 33.3, theMo-HGAgot the shortest distance D1R and
also gives better performance than pri-AWGA by RNDS(Sj)
measure. However, Mo-HGA did not effectively combine
the number of obtained solutions |Sj|. We show the Pareto
optimal solutions obtained from pri-AWGA and Mo-HGA
with the test problem comprised of 25 nodes and 49 arcs in
Fig. 33.25.

33.4 Scheduling Problem

Scheduling problems exist almost everywhere in real-world
situations, especially in the industrial engineering world.
Many scheduling problems from manufacturing industries
are quite complex in nature and very difficult to solve by
conventional optimization techniques [35].

33.4.1 Flow-Shop SequencingModel

The flow-shop sequencing problem is generally described as
follows: there are m machines and n jobs, each job consists
of m operations, and each operation requires a different
machine. n jobs have to be processed in the same sequence
on m machines. The processing time of job i on machine j
is given by tij(i = 1, . . . , n; j = 1, . . . , m). The objective is
to find the sequence of jobs minimizing the maximum-flow
time, which is called makespan.

Heuristics for general m-machine problems: i.e., genetic
algorithms have been successfully applied to solve flow-
shop problems. We describe Gen, Tsujimura, and Kubota’s
approach [36].

Representation Because the flow-shop problem is essen-
tially a permutation schedule problem [4, 37, 38], we can
use the permutation of jobs as the representation scheme
of chromosome, which is the natural representation for
a sequencing problem. For example, let the k-th chromosome
be
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Fig. 33.25 Pareto optimal solutions by pro-AWGA and Mo-HGA with the 25/49 test problem. (a) The result is obtained at generation gen = 50.
(b) The result is obtained at generation gen = 100

Parent

Off-
spring

Select two genes

1 2 3 4 5 6 7 8 9

1 2 7 4 5 6 3 8 9

Fig. 33.26 Swap mutation

vk = [3 2 4 1]

meaning that the jobs sequence is j3, j2, j4, j1.

Crossover and Mutation Here, Goldberg’s PMX is used.
Mutation is designed to perform random exchange; that is, it
selects two genes randomly in a chromosome and exchanges
their positions. An example is given in Fig. 33.26.

33.4.2 Job-Shop SchedulingModel

In the job-shop scheduling problem (JSP), we are given a
set of jobs and a set of machines. Each machine can handle
at most one job at a time. Each job consists of a chain of
operations, each of which needs to be processed during an
uninterrupted time period of a given length on a given ma-
chine. The purpose is to find a schedule, that is, an allocation
of the operations to time intervals on the machines, which has
a minimum duration required to complete all jobs [36,39,40].

Adapted Genetic Operators
During the past two decades, various crossover operators
have been proposed for literal permutation encodings, such

as partial-mapped crossover (PMX), order crossover (OX),
cycle crossover (CX), etc.
PMX is explained in the previous section.

Order Crossover (OX): Order crossover was proposed by
Davis. OX has the following major steps [4, 25]:

Step 1. Select a substring from one parent at random.
Step 2. Produce a proto-child by copying the substring into

the corresponding positions as they are in the parent.
Step 3. Delete all the symbols from the second parent that

are already in the substring. The resulted sequence
contains the symbols the proto-child needs.

Step 4. Place the symbols into the unfixed positions of the
proto-child from left to right according to the order
of the sequence to produce an offspring.

Cycle Crossover (CX): Cycle crossover was proposed by
Oliver et al. CX works as follows:

Step 1 Find the cycle which is defined by the corresponding
positions of symbols between parents.

Step 2 Copy the symbols in the cycle to a child with the
corresponding positions of one parent.

Step 3 Determine the remaining symbols for the child by
deleting those symbols which are already in the cycle
from the other parent.

Step 4 Fill the child with the remaining symbols.

Mutation: It is relatively easy to make some mutation op-
erators for the permutation representation. During the last
decade, several mutation operators have been proposed for
permutation representation, such as inversion, insertion, dis-
placement, reciprocal exchange mutation, and shift mutation.
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Inversion mutation selects two positions within a chromo-
some at random and then inverts the substring between these
two positions. Insertion mutation selects a gene at random
and inserts it in a random position.

33.4.3 Flexible Job-Shop SchedulingModel

Flexible job-shop scheduling problem (FJSP) is an exten-
sion of the traditional job-shop scheduling problem, which
provides a closer approximation to real scheduling problems
[41–44]. In the job-shop scheduling problem (JSP), there are
n jobs that must be processed on a group ofmmachines. Each
job i consists of a sequence of ni operations (oi1, oi2, . . . oini),
where oik (the k-th operation of job i) must be processed
without interruption on a predefinedmachine mik for pik time
units. The operations oi1, oi2, . . . , oini must be processed one
after another in the given order, and eachmachine can process
at most one operation at a time.

The first objective function accounts for makespan,
Eq. (33.71) combining with Eq. (33.72) giving a physical
meaning to the FJSP, referring to reducing total processing
time and dispatching the operations averagely for each
machine.

Mathematical Model of FJSP

min cM = max
1≤i≤n

{cini} (33.71)

min wM = max
1≤j≤m

{
n∑

i=1

ni∑

k=1

tikjxikj

}
(33.72)

min wT =
n∑

i=1

ni∑

k=1

m∑

j=1

tikjxikj (33.73)

s. t. cik − ci(k−1) ≥ tikjxikj, k = 2, . . . , ni; ∀i, j (33.74)

[(chg − cik − thgj)xhgjxikj ≥ 0] ∨ [(cik
− chg − tikj)xhgixikj) ≥ 0],∀(i, k), (h, g), j (33.75)
∑

j∈Aik
xikj = 1,∀i, k (33.76)

xikj ∈ 0, 1,∀i, k, j (33.77)

cik > 0,∀i, k (33.78)

function Eq. (33.73) is to minimize the total workload. Con-
sidering both equations, our objective is to balance the work-
loads of all machines. Inequality (33.74) describes the op-
eration precedence constraints. Inequality (33.75) is a dis-
junctive constraint, where one or the other constraint must
be observed.

It represents that the operation ohg should not be started
before the completion of operation oik or that the operation

ohg must be completed before the starting of operation oik,
if they are assigned on the same machine j. Shortly, the
execution of operation oik cannot be overlapped in time
with the execution of operation ohg, which describes the
operation precedence constraints. Equation (33.76) states
that one machine must be selected from a set of available
machines for each operation. Equations (33.77–33.78) are
variable restrictions on decision variables [45, 46].

Multistage Operation-Based GA
For saving CPU time on several representations, a multi-
stage operation-based GA approach has been proposed [47].
The two-vector multistage operation-based genetic algorithm
(MoGA) for the FJSP is as follows:

Phase 1: Creating an operation sequence

Step 1.1: Generate a random priority to each operation
in the model using priority-based encoding procedure
for the vector v1.

Step 1.2: Decode a feasible operation sequence that
satisfies the precedence constraints of FJSP by the
priority-based decoding procedure.

Phase 2: Assigning operations to machines

Step 2.1: Input the operation sequence found in step
1.2.

Step 2.2: Generate a permutation encoding for machine
assignment of each operation (second vector v2 ).

Phase 3: Designing a schedule

Step 3.1: Create a schedule S using operation sequence
and machine assignments.

Step 3.2: Draw a Gantt chart for the schedule.

For introducing the multistage operation-based GA for
solving a simple example of the FJSP model, we first prepare
the data set including three jobs operated on four machines
in Table 33.4.

Table 33.4 Data set of a three-job four-machine problem

M1

J1

O11

O12

O13

O21

O22

O31

O32

O23

1

3

3

4

2

8

4

9

3

8

5

1

3

6

5

1

4

2

4

1

9

3

8

2

1

1

7

4

3

5

1

2

J2

J3

M2 M3 M4
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Fig. 33.27 Multistage operation-based representation of simple FJSP example

1 2 3 4 5 6 Time

M4

M3

M2

M1 O11

O21

O31

O12

O22

O13

O23

J1

J2

J3O32

Makespan: 6 (units)

Fig. 33.28 Gantt chart for simple FJSP example

For the multistage operation-based representation of the
simple FJSP example shown in Table 33.4, we denote each
operation as one stage and each machine as one state; the
problem can be formulated into an eight-stage, four-state
problem; and also connected by the dashed arcs, a feasible
schedule can be obtained as Fig. 33.27.

After Phases 1 and 2 of the multistage operation-based
GA, we can create a schedule S using operation sequence and
machine assignments as follows:

S = {(o11, M1), (o12, M4), (o13, M1), (o21, M2),

(o22, M2), (o23, M1), (o31, M3), (o32, M4)}
= {(o11, M1 : 0 − 1), (o11, M4 : 1 − 2), (o11, M1 :
2 − 5), (o11, M2 : 0 − 1), (o11, M2 : 1 − 4), (o11,

M1 : 4 − 6), (o11, M3 : 1 − 3), (o11, M4 : 3 − 4)}

From this schedule S, we can draw the Gantt chart as shown
in Fig. 33.28.

The main advantages of the two-vector representation are
that each possible chromosome always represents a feasible
solution candidate and that the coding space is smaller than
that of permutation representation. For the detailed solving
process of the FJSP such as the priority-based decoding
and neighborhood search method using critical path, we can
refer to Section 5.3 Flexible Job-Shop Scheduling Model
in [48–51].

Fitness Function
The three considered objective functions do not conflict with
one another as seriously as in most other multiobjective opti-
mization problems, because a small makespan (cM) requires
a small maximal workload (wM) and a small maximal work-
load implies a small total workload (wT). During evaluation,
the fitness of a solution is calculated by synthesizing the
three objectives into a weighted sum. We have to normalize
the objective values on the three criteria before they are
summed since they are of different scales. Let cM(v) be the
makespan of the chromosome. The scaled makespan (c′M(v))
of a solution v is as follows:

c′M(v) =

⎧
⎪⎨

⎪⎩

cM(v) − cmin
M

cmax
M − cmin

M

, if cmax
M �= cmin

M , for all v

0.5 otherwise,

(33.79)
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where

cmin
M = min

1≤1≤p
{cM(v)} (33.80)

cmax
M = max

1≤1≤p
{cM(v)} (33.81)

After scaling, the three objectives all take values from the
range of [0, 1]. In order to guide the genetic and local search
to the most promising area, makespan is given a very large
weight since the other two objectives heavily depend on it.
Additionally, it is typically the most important criterion in
practical production environments. For the FJSP problem,
a number of solutions with different maximal workloads or
total workloads may have the same makespan. From this
point of view, we firstly find the solutions with the minimum
makespan and then minimize the maximal workload and the
total workload in the presence of the minimum makespan.
The fitness of a solution v then is

eval(v) = α1 · c′M(v) + α2 · w′
M(v) + α3 · w′

T(v)

where,α1 > α2 > α3 > 0 and α1 + α2 + α3 = 1. (33.82)

33.4.4 Resource-Constrained Project
SchedulingModel

The problem of scheduling activities under resource and
precedence restrictions with the objective of minimizing the
project duration is referred to as the resource-constrained
project scheduling problem in the literature [27, 52].

The problem can be stated mathematically as follows:

min tn, (33.83)

s. t. tj − ti ≥ di, ∀j ∈ Si, (33.84)
∑

ti∈Aii
rik ≤ bk, k = 1, 2, . . . , m, (33.85)

ti ≥ 0, i =, 2, . . . , n, (33.86)

where ti is the starting time of activity i, di the duration
(processing time) of activity i, Si the set of successors of
activity i, rik the amount of resource k required by activity
i, bk the total availability of resource k, Ati the set of activities
in process at time ti, and m the number of different resource
types. Activities 1 and n4 are dummy activities which mark
the beginning and end of the project. The objective is to
minimize the total project duration.

A. Priority-Based Encoding
For this problem, priority-based encoding is used; it is ex-
plained in the previous section.

Child

Parent 1

5 10 2 4 3 8 9 1 7

5 1 2 4 3 8 9 10 7

6

6

Fig. 33.29 Swap mutation operator

B. Genetic Operators
Position-Based Crossover: The position-based crossover op-
erator is used. This crossover is explained in the previous
section.
Swap Mutation: The swap mutation operator was used

here, which simply selects two positions at random and swaps
their contents, as shown in Fig. 33.29.

33.4.5 Multiprocessor SchedulingModel

The multiprocessor scheduling is to assign n tasks to m
processors in such a way that precedence constraints are
maintained and to determine the start and finish times of each
task with the objective of minimizing the completion time.
There is a paper which deals with real-time tasks [4, 53].
However, here we introduce an algorithm concerned with
general tasks. The mathematical formulation of the problem
is given as

min[max
j

(xjyij)] (33.87)

s. t. xk − xj ≥ Pk, Tj < Tk, (33.88)

n∑

j=1

pjyij, j = 1, . . . , n, (33.89)

m∑

j=1

yij = 1, j = 1, . . . , n, (33.90)

yij = 0 or 1, i = 1, . . . , n, j = 1, . . . , n, (33.91)

where

xij =
{
1, if task Tj is assigned to processor Pi
0, otherwise.

(33.92)

and where tmax = maxi(ti), xj is the completion time of task
Tj, pj is the processing time of task Tj, ti is the time required
to process all tasks assigned to process Pi, and ≺ represents
a precedence relation; a precedence relation between tasks,
Tj ≺ Tk, means that Tk precedes Tj.
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Genetic Algorithm for MSP
For the chromosome representation scheme and genetic op-
erations, we adopt the concept of the height function, which
considers precedence relations among the tasks in the imple-
mentation of a genetic algorithm.

Height Function To facilitate the generation of the schedule
and the construction of the genetic operators, we define the
height of each task in the task graph as

height(Ti) =
{
0, if pre(Ti) = φ

1 + maxτiεpre(Ti)[heightTj], otherwise.
(33.93)

height′(Tj) = rand ∈ {max[height(Ti)] + 1},
min[height′(Tk)] over all Ti ∈ pre(Tj) and

Tk ∈ suc(Tj) (33.94)

where pre(Tj) is the set of predecessors of Tj and suc(Tj) is
the set of successors of Tj.

Representation The chromosome representation used here
is based on the schedule of the tasks in each processor.
The representation of the schedule for genetic algorithms
must accommodate the precedence relations between the
computational tasks.

Genetic Operators The function of the genetic operators is
to create new search nodes based on the current population
of search nodes. New search nodes are typically constructed
by combining or rearranging parts of the old search nodes.

Operation 1: Operation 1 is performed in the following
steps:

Step 1 Generate a random number c from the range [1,
max(height′)].

Step 2 Place the cut-point at each processor in such a way
that the tasks′ height′ before the cut-point is less than
c and more than or equal to c after the cut-point.

Step 3 Exchange the second partial schedules.

Operation 2: Operation 2 is performed in the following
steps:

Step 1 Generate a random number c from the range [1,
max(height′)]

Step 2 At each processor, pick all tasks whose height′ is c.
Step 3 Replace the position of all tasks randomly.

33.4.6 Assembly Line Balancing

An assembly line (AL) is a manufacturing process consisting
of various tasks in which interchangeable parts are added
to a product in a sequential manner at a station to produce
a finished product. Most of the works related to the ALs
concentrate on the assembly − line balancing (ALB). The
ALB model deals with the allocation of the tasks among
stations so that the precedence relations are not violated and
a given objective function is optimized [54, 55].

Based on the model structure, ALB models can be
classified into two groups. The first group [55] includes
single-model assembly line balancing (smALB), multi-
model assembly line balancing (muALB), and mixed-
model assembly line balancing (mALB); the second group
includes simple assembly linebalancing (sALB) and general
assembly line balancing (gALB) [56–60].

Mathematical Model
For formulating a mathematical programming model, firstly
we define the following utilization and average utilization of
the station, respectively:

ui = 1

max1≤i≤m{t(Si)} t(Si) (33.95)

u = 1

m

m∑

i=1

ui (33.96)

The mathematical model for the simple assembly line bal-
ancing (sALB) Type 1 can be stated as the 0-1 as follows:

max E = 1

mcT

∑

j∈Si
tixij (33.97)

min m =
M∑

i=1

max
1≤j≤x

{xij} (33.98)

min V =
√√√√ 1

m

m∑

i=1

(ui − u)2 (33.99)

s. t.
M∑

i=1

xij = 1,∀j (33.100)

M∑

i=1

ixik ≤
M∑

i=1

ixij,∀j,∀k ∈ pre(j) (33.101)

t(Sj) =
∑

j∈si
tj =

M∑

j=1

tjxij ≤ cT,∀ i (33.102)

xij = 0 or 1, ∀i, j. (33.103)
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M: maximum number of stations available (n ≤ M).
In this mathematical model, the first objective Eq. (33.101)
is to maximize the line efficiency. The second objective
Eq. (33.102) is to minimize the number of stations actually
employed. The third objective Eq. (33.103) is to minimize the
variation of workload. The constraints given in Eqs. (33.104–
33.106) are used to formulate the general feasibility of the
problem. The constraint (33.104) states that each taskmust be
assigned to one and only one station. The inequality (33.105)
represents the precedence constraints, and it states that the
direct predecessor of task j must be assigned to a station
which is in front of or the same as the station that task j is
assigned in. This constraint stresses that if a task is assigned
to a station, then the predecessor of this task must be already
assigned to a station. The inequality (33.106) denotes that the
available time at each station should be less than or equal to
the given cycle time. Constraint (33.107) represents the usual
integrity restriction.

Priority-Based GA
In this section, we will introduce a priority-based genetic
algorithm (priGA) for solving the multiobjective sALB Type
1 model. The priGA approach was originally developed by
Gen and Cheng [10] in order to handle the problem of
creating encoding while treating the precedence constraints
efficiently. For applying a priority-based genetic representa-
tion for the sALB model, there are three main phases:

Phase 1: Creating a task sequence

Step 1.1: Generate a random priority to each task in the
model using encoding procedure.

Step 1.2: Decode a feasible task sequence TS that satis-
fies the precedence constraints.

Phase 2: Assigning tasks to stations

Step 2.1: Input the task sequence found in TS
Step 2.2: Obtain a feasible solution set according to this

task sequence.

Phase 3: Designing a schedule

Step 3.1: Create a schedule S using station assignments
found in step 2.2.

Step 3.2: Draw a Gantt chart for this schedule.

Table 33.5 presents the data set for an example sALB
model, which contains 12 tasks. Using this data set, the
precedence graph in Fig. 33.30 is constructed.
The precedence graph contains 12 nodes for tasks, node
weights for task processing times, and arcs for orderings.
Phase 1: Creating a Task Sequence

By using the priority-based encoding, the position of a
gene was used to represent a task node, and the value of
the gene was used to represent the priority of the task node

Table 33.5 Data set of the sALB model

Task j Sue(j) Task time tj
1 {2,4} 5

2 {3} 3

3 {6} 4

4 {5} 3

5 {6} 6

6 {7,9,10} 5

7 {8} 2

8 {12} 6

9 {12} 1

10 {11} 4

11 {12} 4

12 {} 7

1

5

4

3

5

6

2

3

3

4

7

2

9

1

8

6

4

10 11

4

12

7

6

5

Fig. 33.30 Precedence graph of the sALB model

1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12

Step 1: input priority number

Step 3: output priority- based chromosome

Step 2: swapping two nodes randomly

Task ID j:
Priority v( j):

1 2 3 4 5 6 7 8 9 10 11 12
9 2 6 8 5 1 4 7 10 3 11 12

Task ID j:
Priority v( j):

1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12

Task ID j:
Priority v( j):

Fig. 33.31 Illustration of an example priority-based encoding

for constructing a schedule among candidates. This encoding
method verifies any permutation-type representations, so that
most of the existing genetic operators can be easily applied.
Figure 33.31 illustrates the process of this encoding proce-
dure on a chromosome.

Then the next possible nodes are 2 and 5. They have
priority of 2 and 5, respectively, and then we put 5 into task
sequence TS. Finally, we repeat these steps until we obtain a
complete schedule TS = {1, 4, 5, 2, 3, 6, 9, 7, 8, 10, 11, 12}.
Phase 2: Assigning Tasks to Stations
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Fig. 33.32 Gantt chart for the sALB model (one unit of product)

In this phase, the assignments of task to stations are
formed using the task sequence found in step 1.2. For the
illustration of this decoding procedure, the task sequence
TS = {1, 4, 5, 2, 3, 6, 9, 7, 8, 10, 11, 12}found in step 1.2 is
used. Table 33.6 presents the trace table for the decoding pro-
cedure. In the example, we obtained a feasible line balance
with cycle time 10 time units and 6 stations represented by
the station loads S1 = 1, 4, S2 = 2, 5, S3 = 3, 6, 9, S4 =
7, 8, S5 = 10, 11, S6 = 12. While no idle time occurs in
station 3, stations 1, 2, 4, 5, and 6 show idle times of 2, 1,
2, 2, and 3 time units, respectively.
Phase 3: Designing a Schedule

For creating a schedule S, we can use the station assign-
ment found in Step 2.2. Using the trace table for the decoding
procedure, the schedule can be constructed as follows:
Schedule S = {(j, Si, tj)}:

S ={(1, S1, t1), (4, S1, t4), (5, S2, t5), (2, S2, t2),
(3, S1t3), (6, S1, t8), (9, S1, t9), (7, S1, t7),

(8, S1, t8), (10, S1, t10), (6, S1, t8), (9, S1, t9),

(7, S1, t7), (8, S1, t8), (10, S1, t10), (11, S1, t11),

(12, S1, t12)}
={(1, S1, 0 − 5), (4, S1, 5 − 8), (5, S1, 8 − 14),

(2, S1, 14 − 17), (3, S1, 17 − 21), (6, S1, 21 − 26),

(9, S1, 26 − 27), (7, S1, 27 − 29), (8, S1, 29 − 35),

(10, S1, 35 − 39), (11, S1, 39 − 43),

(12, S1, 43 − 50)}

By using the schedule S, we can draw a Gantt chart as
shown in Fig. 33.32 which illustrates a feasible schedule for
one unit of product. However, since a single type of product is
produced on a simple assembly line system, theminimization
of the makespan becomes an important production manage-
ment issue.

Table 33.6 Trace table for task to station assignment decoding proce-
dure

j v( j)

v(1)=9

v(2)=2, v(4)=8

v(2)=2, v(5)=5

v(3)=6

v(3)=6

v(6)=1

v(7)=4, v(9)=10,
v(10)=3

v(7)=4, v(10)=3

v(8)=7, v(10)=3

v(10)=3

v(11)=11

v(12)=12

j* ( tj) Si={}; t(Si) (cT-t(Si))

S1={1}; 5 (5)

S1={1,4}; 8 (2)

S2={5}; 6 (4)

S2={5,2}; 9 (1)

S3={3}; 4 (6)

S3={6}; 9 (1)

S3={3,6,9}; 10 (0)

S4={7}; 2 (8)

S4={7,8}; 8 (2)

S5={10}; 4 (6)

S5={10,11}; 8 (2)

S6={12}; 7 (3)

1(5)

4(3)

5(6)

2(3)

3(4)

6(5)

9(1)

7(2)

8(6)

10(4)

11(4)

12(7)

s–

1

4

5

2

3

6

9

7

8

10

11

0 {1}

{2,4}

{2,5}

{2}

{3}

{6}

{7,9,10}

{7,10}

{8,10}

{10}

{11}

{12}

This time, Fig. 33.33 shows a Gantt chart for three units
of product in which the makespan is 70 time units for three
units of products.

In this study, adaptive-weight approach that utilizes some
useful information from the current population to readjust
weights for obtaining a search pressure toward a positive
ideal point I is used. Two objective functions, i.e., maxi-
mization of line efficiency (Eq. 42.97) and minimization of
variation of workload (Eq. 42.99), are used in this study:

eval (vk) = w1(f1
(
vk) − zmin

1

) + w3(f3
(
vk) − zmin

3

)

= w1

⎧
⎨

⎩
1

mcT

n∑

j=1

tj − zmin1

⎫
⎬

⎭ + w3

⎧
⎨

⎩1 −
√√√√ 1

m

m∑

i=1

(ui − u)2 − zmin
3

⎫
⎬

⎭

k = 1, . . . , popSize (33.104)

33.5 Reliability Design Problem

Reliability optimization appeared in the late 1940s and was
first applied to communication and transportation systems.
Much of the earlyworkwas confined to the analysis of certain
performance aspects of systems. One goal of the reliability
engineer is to find the best way to increase system reliability.
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Fig. 33.33 Gantt chart for the sALB model (three units of product)

The reliability of a system can be defined as the probabil-
ity that the system has operated successfully over a specified
interval of time under stated conditions [61].

33.5.1 Genetic Algorithm for Reliability
Optimization

The problem is to maximize the system reliability subject to
three nonlinear constraints with parallel redundant units in
subsystems that are subject to A failures, which occur when
the entire subsystem is subjected to the failure condition. It
can be mathematically stated as follows:

maxR(m) =
3∏

i=1

{1 − [1 − (1 − qi1)
mi+1]

−
4∑

n=2

(qiu)
mi+1}, (33.105)

s. t. G1(m) = (m1 + 3)2 + (m2)
2 + (m3)

2 ≤ 51,
(33.106)

G2(m) = 20
3∑

i=1

[mi + exp(−mi)] ≥ 120 (33.107)

G3(m) = 20
3∑

i=1

[mi exp(−mi/4)] ≥ 65 (33.108)

1 ≤ m1 ≤ 4, 1 ≤ m2, m3 ≤ 7 (33.109)

mi ≥ 0; Integer, i = 1, 2, 3 (33.110)

Table 33.7 Failure modes and probabilities in each

1

Subsystem i

Failure modes
si = 4, hi =1

Failure probability
qiu

2

3

O

A

A

A

A

A

A

A

A

A

O

O

0.01

0.05

0.10

0.18

0.02

0.15

0.12

0.05

0.20

0.10

0.08

0.04

where m = (m1 m2 m3). The subsystems are subject to four
failure modes (si = 4) with one O failure (hi = 1) and three
A failures, for i = 1, 2, 3. For each subsystem the failure
probability is shown in Table 33.7.
Genetic Algorithm Approach
Representation: The integer value of each variable mi is
represented as a binary string. The length of subsystem the
string depends on the upper bound ui of the redundant units.
For instance, when the upper bound ui equals 4, we need three
binary bits to represent mi.

In this example, the upper bounds of the redundant units
in each subsystem are u1 = 4, u2 = 7, and u3 = 7, so each
decision variable mi needs three binary bits. This means that
a total of nine bits are required. If m1 = 2, m2 = 3, and
m3 = 3, we have the following chromosome:
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v = [
x33 x32 x31 x23 x22 x21 x13 x12 x11

]

= [
0 1 1 0 1 1 0 1 0

]

where xij is the symbol for the j-th binary bit of variable mi.
Crossover: One-cut-point crossover is used here.
Mutation: Mutation is performed on a bit-by-bit basis.

33.5.2 Reliability Design with Redundant Unit
and Alternatives

Gen, Yokota, Ida, and Taguchi further extended their work
to the reliability optimization problem by considering both
redundant units and alternative design [30, 61, 62, 75].
The example used here was firstly given by Fyffe et al. as
follows:

maxR(m,α) =
14∏

i=1

{1 − [1 − Ri(αi)]mi}, (33.111)

s. t. G1(m,α) =
14∑

i=1

ci(αi)mi ≤ 130, (33.112)

G2(m,α) =
∑

14
i=1wi(αi)mi ≤ 170, (33.113)

1 ≤ mi ≤ ui, ∀i, (33.114)

1 ≤ αi ≤ βi, ∀i, (33.115)

mi, αi ≥ 0; Integer, ∀i, (33.116)

where αi represents the design alternative available for the
i-th subsystem, mi represents the identical units used in
redundancy for the i-th subsystem, ui is the upper bound of
the redundant units for the i-th subsystem, and βi is the upper
bound of alternative design for the i-th subsystem.
Genetic Algorithm Approach

Representation The representation can bewritten as follows:

v = [
(αk1, mk1) (αk2, mk2) . . . (αk14, mk14)

]

where αki is a design alternative, mki is a redundant unit, and
the subscript k is the index of chromosome.

Crossover The uniform crossover operator given by
Syswerda is used here, which has been shown to be superior
to traditional crossover strategies for combinatorial problem.
Uniform crossover firstly generates a random crossover mask
and then exchanges relative genes between parents according
to the mask. A crossover mask is simply a binary string with
the same size of chromosome.

33.5.3 Network Reliability Design

A communication network can be represented by an undi-
rected graph G = (V, E), in which the nodes V and edges E
represent computer sites and communication cables, respec-
tively. The optimal design of network can be represented as
follows [63]:

min z(x) × 1 =
n−1∑

i=1

n∑

j=i+1

cijxij (33.117)

s. t. R(x) ≥ Rmin (33.118)

Genetic Algorithm Approach
Representation: A genetic algorithm lends itself to this prob-
lem because each network design x is easily formed into a
binary string which can be used as a chromosome for genetic
algorithms. Each element of the chromosome represents a
possible edge in the network design problem, so there are
n(n − 1)/2 string components in each candidate architec-
ture Z.
Crossover: The one-cut-point crossover operation is used.
Mutation: The bit-flip mutation operation is employed, per-
formed on a bit-by-bit basis.

33.5.4 Tree-Based Network Design

Consider a local-area network (LAN) that connects m users
(stations). Also, we assume the n×m service center topology
matrix x1, which represents the connection between service
centers. An element x1ijis represented as

x1ij =
{
1, if the center i and j are connected

0, otherwise.

(33.119)

Assume that the LAN is partitioned into n segments (service
centers or clusters). The users are distributed over those n
service centers. The n × m clustering matrix X2 specifies
which user belongs to which center. Thus

x2ij =
{
1, if user j belongs to center i

0, otherwise.
(33.120)

A user can only belong to one center; thus,∀j =
1, 2, . . . , m,

∑n
i=1 x2ij = 1. We define an n×(n+m)matrix X

called the spanning tree matrix (X1 X2). The bicriteria LAN
topology design problem can be formulated as the following
nonlinear 0–1 programming model [23, 64], where R(X)
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is the network reliability and w1ij is the weight of the link
between the centers i and j:

maxR(x) (33.121)

min
n−1∑

i=1

n∑

j=i+1

w1ijx1ij +
n∑

i=1

m∑

j=1

w2ijx2ij (33.122)

s. t.
m∑

j=1

x1ij ≤ gi, i = 1, 2, . . . , m (33.123)

n∑

i=1

x2ij = 1, j = 1, 2, . . . , m, (33.124)

w2ij is the weight of the link between the center i and the
user j, and gi is the maximum number that can connect to the
center i.
Genetic Algorithm Approach
Representation: We can easily construct an encoding as fol-
lows:
Procedure: Encoding of Prüfer Number

Step 1 Let node i be the smallest labeled leaf node in a
labeled tree T

Step 2 Let j be the first digit in the encoding as the node j in-
cident to node iis uniquely determined. The encoding
is built by appending digits from left to right.

Step 3 Remove node i and the link from i to j; thus we have
a tree with k − 1 nodes.

Step 4 Repeat the above steps until one link is left. We
produce a Prüfer number or an encoding with k − 2
digits between 1 and k inclusive.

Crossover: Uniform crossover is used. This type of crossover
is accomplished by selecting two parent solutions and ran-
domly taking a component from one parent to form the
corresponding component of the offspring (Fig. 33.34).
Mutation: Swapmutation is used, as explained in the previous
section.

Parent 1

Parent 2

Offspring 1 1

1 1 1 1 0 1

1 1 0 1

0 1 1 0 1 0

Fig. 33.34 Uniform crossover operator

33.6 Logistics Network Problems

The transportation problem is a basic model in the logistics
networks. Many scholars have since refined and extended the
basic transportation model to include not only the determina-
tion of optimum transportation patterns but also the analysis
of production scheduling problems, transshipment problems,
and assignment problems.

33.6.1 Linear TransportationModel

The linear transportation problem (LTP) involves the ship-
ment of some homogeneous commodity from various origins
or sources of supply to a set of destinations, each demand-
ing specified levels of the commodity. The usual objective
function is to minimize the total transportation cost or total
weighted distance or to maximize the total profit contribution
from the allocation. Given m origins and n destinations,
the transportation problem can be formulated as a linear
programming model[4, 5]:

min z
m∑

ix−1

n∑

j=1

cijxji, (33.125)

s. t.
n∑

j=1

xij ≤ ai, i = 1.2, . . . , n, (33.126)

m∑

i=1

xij ≥ bj, j = 1, 2, . . . , n, (33.127)

xij ≥ 0, for all i and j (33.128)

where xij is the amount of units shipped from origin i to
destination j, cij is the cost of shipping one unit from source
i to destination j, ai is the number of units available at origin
i, and bj is the number of units demanded at destination j.

Genetic Algorithm Approach

Representation. Perhaps the matrix is the most natural rep-
resentation of a solution for the transportation problem. The
allocation matrix for the transportation problem can be writ-
ten as follows:

Xp =

⎛

⎜⎜⎝

x11 x12 . . . xin
x21 x22 . . . x2n
. . . . . . . . . . . .

xm1 xm2 . . . xnm

⎞

⎟⎟⎠ (33.129)

where Xp denotes the p-th chromosome and xij is the corre-
sponding decision variable.
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Crossover Assume that two matrices X1 = (x1ij) and X2 =
(x2ij) are selected as parents for the crossover operation. The
crossover is performed in the following three main steps:

Step 1 Create two temporary matrices D = (dij) and R =
(rij) as follows: dij = [(x1ij + x2ij)/2] and rij = [(x1ij +
(x2ij)/2] mode 2.

Step 2 Divide matrix R into two matrices R1 = (r1ij) and

R2 = (r2ij) such that R = R1 + R2

Step 3 Then we produce two offspring of X′
1 and X′

2 as
follows: X′

1 = D+ R1 and X′
2 = D+ R2

Mutation The mutation is performed in following three main
steps:

Step 1 Make a submatrix from the parent matrix. Randomly
select i1, . . . , ip rows and ji, . . . , jq columns to create
a (p ∗ q) submatrix Y = (yij), where i1, . . . , ip is a
proper subset of 1, 2, . . . , m i1, . . . , ip and 2 ≤ p ≤
m, ji, . . . , jq is a proper subset of 1, 2, . . . , n and 2 ≤
q ≤ n, and yij takes the value of the element in the
crossing position of selected row i and column j in
the parent matrix.

Step 2 Reallocate commodity for the submatrix. The avail-
able amount of commodity ayi and the demands byj for
the submatrix are determined as follows:

ayi =
∑

j∈{j1,...jq}
yij, i = i1, i2, . . . , ip, (33.130)

byj =
∑

i∈{i1,...iq}
yij, j = j1, j2, . . . , jq, (33.131)

Step 3 Replace appropriate element of the parent matrix by
new elements from the reallocated submatrix Y.

Spanning Tree-Based Approach Transportation problems
(TP) as a special type of network problem have a special
data structure characterized as a transportation graph in their
solutions. The spanning tree-based GA incorporating this
data structure of TP was proposed by Gen and Li. This GA
utilized the Prüfer number encoding based on a spanning
tree, which is adopted because it is capable of representing
all possible trees. Using the Prüfer number representation, the
memory only requiresm+n−2 entries for a chromosome in
the TP. Transportation problems have separable sets of nodes
for plants and warehouses. From this point, Gen and Cheng
designed the criterion for feasibility of the chromosome.
The proposed spanning tree-based GA can find the optimal
or near-optimal solution for transportation problems in the
solution space [10, 61, 64].

33.6.2 Multiobjective Transportation

In the transportation problem, multiple objectives are re-
quired in practical situations, such as minimizing transporta-
tion cost, minimizing the average shipping time to priority
customers, maximizing production using a given process,
minimizing fuel consumption, and so on. The traditional
multiobjective transportation problem (moTP) with m plants
and n warehouses can be formulated as

min zq =
m∑

i=1

n∑

j=i
cqijxij, q = 1, 2, . . . , Q, (33.132)

s. t
n∑

j=1

xij ≤ ai, i = 1, 2, . . .m, (33.133)

m∑

i=1

xij ≥ bj, j = 1, 2, . . . , n, (33.134)

xij ≥ 0, ∀i, j, (33.135)

where q means the q-th objective function.
Spanning Tree-Based GA for Multiobjective TP
The Pareto optimal solutions are usually characterized as
the solutions of the multiobjective programming problem
[37,65].

33.6.3 Bicriteria TransportationModel with
Fuzzy Coefficients

Consider the following two objectives: minimizing total
transportation cost and minimizing total delivery time. Let
c̃1ij be the fuzzy data representing the transportation cost of
shipping one unit from plant i to warehouse j, c̃2ij be the fuzzy
data representing the delivery time of shipping one unit of
the product from plant i to warehouse j, ai be the number
of units available at plant i, and bj be the number of units
demanded at warehouse j. This problem with m plants and n
warehouses can be formulated as

min z̃1 =
m∑

i=1

n∑

j=1

c̃1ijxij, (33.136)

min z̃2 =
m∑

i=2

n∑

j=1

c̃2ijxij, (33.137)

s. t.
n∑

j=1

xij ≤ ai, i = 1, 2, . . .m, (33.138)

n∑

j=1

xij ≥ bj, j = 1, 2, . . . n, (33.139)

xij ≥ 0, ∀i, j, (33.140)
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where P and W are upper limits on total number of plants or
DCs that can be opened. where xij is the unknown quantity to
be transported from plant i to warehouse j.

Genetic Algorithm Approach
The proposed genetic algorithm approach is based on span-
ning tree. In multicriteria optimization, we are interested in
finding Pareto solutions. When the coefficients of objectives
are represented with fuzzy numbers, the objective values
become fuzzy numbers. Since a fuzzy number represents
many possible real numbers, it is not easy to compare so-
lutions to determine which is the Pareto solution. Fuzzy
ranking techniques can help us to compare fuzzy numbers.
In this approach, Pareto solutions are determined based on
the ranked values of fuzzy objective functions, and genetic
algorithms are used to search for Pareto solutions.

Representation The spanning tree encoding, the Prüfer num-
ber, is used to represent the candidate solution. The criterion
for the solution’s feasibility designed in the proposed span-
ning tree-based GA is also employed.

Crossover For simplicity one-point crossover is used.

Mutation Inversion mutation and displacement mutation are
used.

33.6.4 Multistage Logistics Model

Logistics network design is one of the most important fields
of supply chain management (SCM). SCM describes the
discipline of optimizing the delivery of goods, services, and
information from supplier to customer. Typical SCM goals
include transportation network design, plant/DC location,
production schedule streamlining, and efforts to improve
order response time. Logistics network design is one of the
most important fields of SCM. It offers great potential to
reduce costs and to improve service quality. There are now
expandedmultistage logistics models for applications to real-
world cases so the supply chain network (SCN) design prob-
lem is referred to as three-stage, i.e., suppliers, plants, DCs,
and customers [65–69]. The design task involves the decision
of choosing to open a facility (plant or DCs) or not and the
distribution network design to satisfy the customer demand
at minimum cost. The three-stage logistics network model is
formulated as a 0-1 mixed-integer programming as follows:

min
∑

i

∑

j

sijxij +
∑

j

∑

k

tjkyjk

+
∑

k

∑

l

uklzkl +
∑

j

fjwj +
∑

k

gkzk (33.141)

s. t.
∑

j

xij ≤ ai, ∀i (33.142)

∑

k

yjk ≤ bjwj, ∀j (33.143)

∑

j

wj ≤ P (33.144)

∑

l

zkl ≤ ckzk, ∀k (33.145)

∑

k

zk ≤ W, (33.146)

∑

k

zkl ≥ dl, ∀l (33.147)

wj, zk = (0, 1), ∀j, k, (33.148)

xij, yjk, zkl ≥ 0, ∀i, j, k, l, (33.149)

where P and W are upper limits on total number of plants or
DCs that can be opened.
Transportation Tree Representation
For a two-stage transportation problem (tsTP) as a simple ex-
ample of multistage logistics model, a chromosome consists
of priorities for sources and depots to obtain a transportation
tree. Its length is equal to the total number of sources (|K|)
and depots (|J|), i.e., |K| + |J|.
For a given chromosome, the transportation tree is generated
by a sequential arc appending procedure between sources and
depots. At each step, only one arc is added to the tree by se-
lecting a source (depot) with the highest priority and connect-
ing it to a depot (source) with theminimum cost. Figure 33.35
represents a transportation tree with three sources and four
depots, its cost matrix, and the corresponding priority-based
encoding.

1
1 300
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300

350

2
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2

2

3

3

4
11 19 17 18

16 14 18 15

15 16 19 13

1 2 3 1 2 3 4Node ID l

Priority v (l) : 2 5 3 7 4 1 6

Fig. 33.35 A sample of transportation tree and its encoding
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Table 33.8 Trace table of
decoding procedure

0

1

2

3

4

5

6

[2 5 3 | 7 4 1 6]

[2 5 3 | 0 4 1 6] 

[2 5 3 | 0 4 1 0]

[2 0 3 | 0 4 1 0]

[2 0 3 | 0 0 1 0]

[2 0 0 | 0 0 1 0]

[0 0 0 | 0 0 0 0]

(550, 300, 450)

(250, 300, 450)

(250, 300, 100)

(250, 0, 100)

(250, 0, 50)

(250, 0, 0)

(0, 0, 0)

(300, 350, 300, 350)

(0, 350, 300, 350)

(0, 350, 300, 0)

(0, 50, 300, 0)

(0, 0, 300, 0)

(0, 0, 250, 0)

(0, 0, 0, 0)

300

350

300

50

50

250

1

3

2

3

3

1

1

Iteration v(k+j) a b gkjk j

4

2

2

3

3

The decoding process by the priority-based encoding is
given in Table 33.8. As shown in the trace table, at the first
step of the decoding procedure, an arc between Depot 1 and
Source 1 is added to the transportation tree since Depot 1 has
the highest priority in the chromosome and the lowest cost
between Source 1 and Depot 1. After determining the amount
of shipment that is g11 = min{550, 300} = 300, capacity of
source and demand of depot are updated as a1 = 550−300 =
250andb1 = 300 − 300 = 0, respectively. Since b1 = 0,
the priority of Depot 1 is set to 0, and Depot 4 with the next
highest priority is selected.

After adding arc between Depot 4 and Source 3, the
amount of shipment between them is determined and their
capacity and demand are updated as explained above, and this
process repeats until demands of all depots are met.

For the priority-based encoding and decoding algorithms
for any transportation tree, we can refer to Section 3.4 Multi-
stage Logistics Models in [4].

As shown in Fig. 33.36, we consider a simple example
that has three feasible plants, four feasible DCs, and five
customers.

As shown in Fig. 33.36, we consider a simple example
that has three feasible plants, four feasible DCs, and five
customers. When the upper limit of opened DCs is taken
as three, the first part of chromosome consists of seven
digits, and the second part consists of nine digits. The total
capacity of DCs which will be opened has to satisfy the
total demand of customers. Considering this property, we
first decode the second part of chromosome. In this phase,
transportation tree on the second stage and decision related
with which DCs will be opened are obtained simultaneously.
After that the transportation tree on the first stage is obtained
by considering DCs which were opened in the second stage
of the decoding procedure. In the second stage, it is possible
to obtain a transportation tree that doesn’t satisfy the upper
limit of opened DCs, since connection between source and
depot is realized considering minimum cost.

Genetic Operation
In this multistage logistics model, we adopt the weight map-
ping crossover (WMX). Similar to crossover, mutation is
done to prevent the premature convergence, and it explores
new solution space. However, unlike crossover, mutation is
usually done by modifying a gene within a chromosome.
We also investigated the effects of two different mutation
operators on the performance of GA. Insert and swap muta-
tions were used for this purpose. For the selection, we adopt
the roulette wheel selection (RWS). This is to determine
selection probability or survival probability for each chro-
mosome proportional to the fitness value. For the numerical
experiments of the various sizes of test problems, refer to
Section 3.4 Multi-stage Logistics Models in [4].

33.6.5 SCMNetwork Design

Supply chain management (SCM) is to choose the subset of
plants and distribution centers to be opened and to design the
distribution network strategy that can satisfy all capacities
and demand requirements imposed by customers with mini-
mum cost. We formulate the problem by using the following
mixed-integer linear programming (MILP) model:

min
∑

i

∑

j

sijxij +
∑

j

∑

k

tjkyjk +
∑

k

∑

l

uklxkl

+
∑

j

fjxj +
∑

k

gkxk (33.150)

s. t.
∑

j

xij ≤ ai, ∀i (33.151)

∑

k

yjk ≤ bjwj, ∀j (33.152)

∑

j

wj ≤ P, (33.153)
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2nd stage1st stage

1 2 3 4
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Fig. 33.36 An illustration of chromosome, transportation trees, and transportation costs for each stage on tsTP

∑

l

zkl ≤ ckuk, ∀k (33.154)

∑

k

uk ≤ W, (33.155)

∑

k

zkl ≥ dl,∀l (33.156)

wj, uk = {0, 1},∀j, k (33.157)

xij, yjk, zkl ≥ 0,∀i, j, k, l (33.158)

where I is the number of suppliers, J is the number of plants,
K is the number of distribution centers, L is the number of
customers, ai is the capacity of supplier i, bi is the capacity
of plant j, ck is the capacity of distribution center k, dl is the
demand of customer l, sij is the unit cost of production in
plant j using material from supplier i, tjk is the unit cost of
transportation from plant j to the distribution center k, ukl is
the unit cost of transportation from distribution k to customer
l, fj is the fixed cost for operating plant j, gk is the fixed cost
for operating distribution center k,W is an upper limit on the
total number of distribution centers that can be opened, and
P is an upper limit on the total number of plants that can be
opened.
Here, xij is the quantity produced at plant j using rawmaterial
from supplier i, yjk is the amount shipped from plant j to

distribution center k, and zkl is the amount shipped from
distribution center k to customer l. wj and uk are defined as

wj =
{
1, if production takes place at plant j

0, otherwise.

(33.159)

uk =
{
1, if distribution center k is opened

0, otherwise.
(33.160)

Crossover: The crossover is done by exchanging the infor-
mation of two parents to provide a powerful exploration
capability. We employ a one-cut-point crossover operation,
which randomly selects one cut-point and exchanges the right
parts of the two parents to generate offspring.
Mutation: Modifying one or more of the gene values of
an existing individual, mutation creates a new individual to
increase the variability of the population. We use inversion
and displacement mutation operations.

33.6.6 Reverse Logistics Model

Beyond the current interest in supply chain management,
recent attention has been given to extending the traditional
forward supply chain to incorporate a reverse logistic element
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Fig. 33.37 Logistics flow of forward and reverse

owing to liberalized return policies, environmental concern,
and a growing emphasis on customer service and parts reuse.
Implementation of reverse logistics especially in product
returns would allow not only for savings in inventory carrying
cost, transportation cost, and waste disposal cost due to
returned products but also for the improvement of customer
loyalty and future sales.

As shown in Fig. 33.37, the reverse logistics problem
(or closed-loop recycling problem) can be formulated as a
multistage logistics network model.

First, recovered products from customers are transported
to disassembly center, in the first stage. Then disassembled
parts are transported to processing center, in the second
stage. Last, in the third stage, processed parts are trans-
ported to manufacturer. In the third stage, if the quantity
of provided parts from processing center is not enough for
requirement of manufacturer, then manufacturer must buy
parts from suppliers. In case of opposition, then exceeded
capacities are distributed in order of recycling and disposal.
The illustrative of the multistage reverse logistics network
model is shown in Fig. 33.38. For a mathematical model of
the multistage reverse logistics network formulated as a 0-
1 mixed programming and genetic algorithm based on the
priority encoding method, refer to [4, 70]. Recently reported
is the multistage reverse logistics network design for product
resale by adaptive genetic algorithm [35,66–69].

Lee et al. [71] proposed a multiobjective hybrid genetic
algorithm for minimizing the total cost and delivery tardiness
in a reverse logistics designing problem. Guo et al. [72, 73]
reported the case study of lead battery in Shanghai for the dy-
namic joint construction and optimal strategy of multiobjec-
tive multi-period multistage government-enterprise reverse
logistics network.

33.7 Location and Allocation Problems

Location-allocation problems arise in many practical set-
tings. The classical single location-allocation problem is
to find the single location which minimizes the summed
distance from some number of fixed points, representing
customers with known locations.

33.7.1 Location-AllocationModel

There are m facilities to be located, and n customers with
known locations are to be allocated to the variable facilities.
Each customer has the requirement qj, j = 1, 2, . . . , n, and
each facility has the capacity bi, i = 1, 2, . . . , m. We need to
find the locations of facilities and allocations of customers to
facilities so that the total summed distance among the cus-
tomers and their serving facilities is minimized (Fig. 33.39).
This problem is formulated mathematically as [24, 74]

min
m∑

i=1

n∑

j=1

√
(xi − uj) + (yi − uj)2 zij (33.161)

s. t.
n∑

j=1

qj · zij ≤ bi, i = 1, 2, . . .m, (33.162)

m∑

i=1

zij = 1, j = 1, 2, . . . , m, (33.163)

zij = 0 or 1, i = 1, 2, . . .m, j = 1, 2, . . . n, (33.164)

where

(uj, vj) = location of customer j, j = 1, 2, . . . n, (33.165)

(xi,yi) = location of facility i,

decision variables i = 1, 2, . . .m

zij = 0 − 1 decision variable,

zij =
{
1, customer j is served by facility i

0, otherwise.

(33.166)

A. Genetic Algorithm Approach

Representation: Since location variables are continuous, the
float-value chromosome representation is used. A chromo-
some is given as follows:

ck = [(xk1, yk1)(xk2, yk2) . . . (xkm, y
k
m)]
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Fig. 33.38 Multistage reverse logistics network model

where (xki , y
k
i ) is the location of the i-th facility in the k-th

chromosome, i = 1, 2, . . . , m.
Crossover: Two mating strategies are used: one is free mat-
ing, which selects two parents at random; another is dom-
inating mating, which uses the fittest individual as a fixed
parent and randomly selects another parent from the popu-
lation pool. These two strategies are used alternatively in the
evolutionary process. Suppose two parents with the following
chromosomes are selected to produce a child:

ck1 = [(xk11 , yk11 )(xk12 , y
k1
2 ) . . . (xk1m , y

k1
m )]

ck2 = [(xk21 , yk21 )(xk22 , y
k2
2 ) . . . (xk2m , y

k2
m )]

Only one child is allowed to be produced:

c = [(x1, y1)(x2, y2) . . . (xm, ym)]
xi = ri · xk1i + (1 − ri)x

k2
i ,

yi = ri · yk1i + (1 − ri)y
k2
i , (33.167)

Mutation: Suppose the candidate chromosome to be mutated
is as follows:

ck = [(xk1, yk1)(xk2, yk2) . . . (xkm, y
k
m)]

then the chromosome of the child produced by subtle muta-
tion c = [x1, y1, x2, y2, . . . , xm, ym] is as follows:

xi = xki + random value in [−ε, ε],
yi = yki + random value in [−ε, ε], (33.168)

Facility

Customer

Fig. 33.39 Location-allocation problem

B. Numerical Example
Cooper and Rosing’s examples are used to test the effec-
tiveness of this method. Cooper carefully constructed the
front half data which contains three natural groups, and
Rosing increased the number of customers with random
points. These examples provide a good benchmark to test
the effectiveness of the proposedmethod because their global
optimal solutions have already been found.

These examples include 30 customers whose location
coordinates are shown in Table 33.9. Theirs is a common
location-allocation problem where the requirements of the
customers are treated as equal and the capacities of the
facilities are assumed to be unlimited.

33.7.2 Capacitated Plant LocationModel

The capacitated plant location problem (cPLP) is referred to
as a fixed-charge problem to determine the locations of plants
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Table 33.9 Coordinates of Cooper and Rosing’s example

1

Order
number

Order
numberX Y X Y

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5

5

5

13

12

13

28

21

25

31

39

39

45

41

49

9

24

48

4

19

39

37

45

50

9

2

16

22

30

31

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

53

1

33

3

17

53

24

40

22

7

5

39

50

16

22

8

34

8

26

9

20

17

22

41

13

17

3

50

40

45

with minimal total cost, including production, shipping costs,
and fixed costs where the plants are located. In this case, m
sources (or facility locations) produce a single commodity
for n customers, each with demand of bj(j = 1, . . . , n) units.
If a particular source i is opened (or facility is built), it has a
fixed cost di ≥ 0 and a production capacity a1 ≥ 0 associated
with it. There is also a positive cost cij for shipping a unit
from source i to customer j. The problem is to determine the
locations of the plants so that capacities are not exceeded and
demands are met, all at a minimal total cost. The cPLP is a
mixed-integer program, as shown in the following:

min z(x) =
m∑

i=1

n∑

j=1

cijxij +
m∑

i=1

diyi (33.169)

s. t.
m∑

i=1

xij = bj, j = 1, 2, . . . , n (33.170)

n∑

j=1

xij ≤ aiyi, i = 1.2, . . . , m (33.171)

xij ≥ 0, ∀i, j, (33.172)

yi = 0 or 1, i = 1, 2, . . . , m, (33.173)

The variables are xij and yi, which represent the amount
shipped from plant i to warehouse j and whether a plant is
open (or located) (yi = 1) or closed (yi = 0), respectively.
Spanning Tree-Based GA for Plant Location Problems

The spanning tree-based GA for the capacitated plant
location problem is the same as that of the fixed-charge

transportation problem except there is a different evaluation
function in the evolutionary process[61].

33.7.3 Obstacle Location-AllocationModel

There are n customers with known locations and m facilities
to be built to supply some kind of services to all customers,
for example, supplying materials or energy. There are also
p obstacles representing some forbidden areas. The formu-
lation of the mathematical model is based on the following
assumptions:

• Customer j has service demand qj, j = 1, 2, . . . , n,
• Facility i has service capacity bi, i = 1, 2, . . . , m,
• Each customer should be served by only one facility,
• New facilities should not be built within any obstacle,
• Connecting paths between facilities and customers should

not be allowed to pass through any of the obstacles.

The problem is to choose the best locations for facilities so
that the sum of distances between customers and their serving
facilities is minimal, as illustrated in Fig. 33.40. The obstacle
location-allocation problem can be formulated as follows:

min f (D, z) =
m∑

i=1

n∑

j=1

t(Di, Cj) · zij (33.174)

s. t.
m∑

j=1

zij = 1, i = 1, 2, . . . , m (33.175)

m∑

i=1

djzij = bj, j = 1, 2, . . . , n (33.176)

Di = (xi, yi) /∈ Qk, i = 1, 2, . . . , m,

k = 1, 2, . . . , q, (33.177)

Customer

Connecting path

Facility

Obstacle

Fig. 33.40 Obstacle location-allocation problem
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(xi, yi) ∈ RT, i = 1, 2, . . . , m, (33.178)

xi, yi ∈ RT, i = 1, 2, . . . , m, (33.179)

zij = 1 or 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (33.180)

where Cj = (uj, vj) is the location of the j-th customer,
Di = (xi, yi) is the decision variable, the location of the j-
th distribution center DCi should not fall within any of the
obstacles, t(Di, Cj) is the shortest connecting path from the
set of possible paths between the distribution center DCi and
the customer Cj which avoids all obstacles, RT is the total
area considered for the location and allocation problem, and
zij is a 0–1 decision variable; zij = 1 indicates that the j-th
customer is served by DCi, zij = 0 otherwise.

Hybrid Evolutionary Method
Since there are obstacles, the locations of the chromosome
produced by initialization, crossover, andmutation procedure
may become infeasible. Generally, there are three kinds
of methods to treat infeasible chromosomes as shown in
Table 33.10. The first is to discard it, but according to
the experience of other researchers, this method may lead
to very low efficiency. The second is to add a penalty to
infeasible chromosomes. The third is to repair the infeasible
chromosome according to the characteristics of the specified
problem.

33.7.4 LAP withMulti-facility Service

LAP Model with Multiple facility Service The sugarcane
loadingwithmulti-facility problem is identified as a location-
allocation problem (LAP) for multi-facility services in sugar-
cane supply system. The m loading stations are considered as
candidate facilities. They are selected to satisfy n sugarcane

fields (Ci) each of which contains ai tons of sugarcane,
i = 1, 2, . . . , n. We assume that the capacity of a facility is
specified or known. The several k types of facility services
(Ljk ) are assigned for each loading station (Fj ). This model
is formulated as a 0–1mixed-integer programming (0-1MIP)
model for locating a number of loading stations among a
finite set of potential sites and assigning the several types
of facility services to each loading station and allocating
sugarcane between these loading stations and growers’ fields.

Based on the characteristics of the LAP, the mathematical
model will be constructed as follows: The objective function
is to minimize the total cost in any period (week or month)
within 1 crop year in which the first term is the transportation
cost from a field to a loading station. The second term is
the transportation cost from the loading station to a sugar
mill. The third term is the fixed cost of each loading station.
Finally, the fourth and fifth terms are the operation cost of
loading sugarcane to a truck or trailer and the fixed cost of
each transloader, respectively:

f (x, y, z) =
n∑

i=1

m∑

j=1

hdijxij +
m∑

j=1

hljMyj +
m∑

j=1

ejyj

+
m∑

j=1

p∑

k=1

okzjk +
m∑

j=1

p∑

k=1

fkzjk (33.181)

Seven constraints are formulated as follows:

gj(x, y) =
n∑

i=1

aixij ≤ Bjyj, j = 1, 2, . . . , m (33.182)

gm+i(x) =
m∑

j=1

xij = 1, j = 1, 2, . . . , m (33.183)

Table 33.10 Comparison results of Cooper and Rosing’s example
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2.14

0.0004
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Fig. 33.41 Illustration of a representation chromosome

gm+n+1(y) =
m∑

j=1

yj ≤ M (33.184)

gm+n+1+j(z) =
n∑

i=1

aixij ≤
p∑

k=1

bkzjk, j = 1, 2, . . . , m

(33.185)

xij = 0 or 1, i = 1, 2, . . . , n i = 1, 2, . . . , m (33.186)

yj = 0 or 1, j = 1, 2, . . . , n (33.187)

zjk ≥ 0 Interger, j = 1, 2, . . . , m, k = 1, 2, . . . , p (33.188)

Constraints (33.182) ensure that the service capacity of
each loading station shall not exceed its capacity. Constraints
(33.183) ensure that every field shall be served by only one
loading station. Constraints (33.183) reflect that total number
of opened loading stations shall not exceed the total number
of candidate loading stations. Constraints (33.185) ensure
that the total quantity of sugarcane can be served by each
loading station. Constraints (33.186–33.188) are variable
restrictions for the decision variables to be found.

Designing Representation and Feasibility of Chromo-
some For designing a natural representation of LAP for
multi-facility services, an effective chromosome representa-
tion was built by employing three parts of chromosomes in
the encoding method. The design of the chromosome and
its parameters is by necessity specific to the problem to be
solved, and each chromosome in the population consists of
three parts as shown in the example in Fig. 33.41:

(1) Facility location (or loading station’s location; Fj, j =
1, 2, ..., m): 0–1 chromosome.

(2) Customer allocation (or sugarcane allocation; Ci, i =
1, 2, . . . , n): Heuristics-based chromosome.

(3) Facility service assignment (or transloader assignment;
Lk, k = 1, 2, ..., p): Integer-based chromosome.

The procedure of initialization based on heuristics is given as
follows:

Step 1 Calculate the distance between each sugarcane field
and each loading station.

Step 2 Find the minimum distance between each sugarcane
field and loading stations.

Step 3 Assign all sugarcane fields to the nearest loading
stations with adequate available capacity. If not, then
the sugarcane field will be assigned to the loading
station which is the second nearest to the field and
so on.

Genetic Operations

Crossover Generally, crossover generates offspring that
combines both parents’ features by exchanging the
information of each. Based on the characteristics of the
chromosome, we apply displacement crossover.

Check-and-Repair Problem Constraints for Offspring
Although GAs are powerful and popular optimization tools
because of their simplicity and ease of implementation, they
do not incorporate constraint-handling features. Hence, they
may encounter difficulties when applied for solving highly
constrained problems. This is because the search operators
of GAs (i.e., crossover and mutation) are blind to constraints
[74] which can result in infeasible offspring. Therefore, a
proper constraint-handling method is required to maintain
the applicability of GAs with the solutions satisfying the
constraints.

Mutation This operator produces random changes in a chro-
mosome of a population generation. By using swapping
mutation operators with one or more genes are swapped
by randomly selecting two genes within a chromosome and
exchanging their positions with one another.

For designing a hybrid genetic algorithm, fuzzy logic
controller (FLC) is combined to automatically tune crossover
and mutation parameters by Yun and Gen [7,8] who reported
a case study of a sugar industry in northeastern Thailand in
which there are 14 sugar mills out of a total 47 sugar mills
in the entire country. The case study’s sugar mill produces
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approximately 23,000 tons of sugarcane per day over an area
of 4.68 × 104 [ha] in eight provinces, and for the detailed
contents, refer to [74].
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Abstract

In the context of big data analysis, stochastic optimization
algorithms arewidely used as effective tools to handle data
complexity and data uncertainty. These algorithms usually
aim to solve problems modeled as stochastic programs.

H. A. Le Thi (�) · H. P. H. Luu · H. M. Le
University of Lorraine, Metz, France

Institut Universitaire de France (IUF), Paria, France
e-mail: hoai-an.le-thi@univ-lorraine.fr;
hoang-phuc-hau.luu@univ-lorraine.fr; minh.le@univ-lorraine.fr

T. Pham Dinh
National Institute of Applied Sciences – Rouen, Rouen, France
e-mail: pham-dinh.tao@insa-rouen.fr

Some of these problems admit nonconvex objective func-
tions. On the other hand, DCA (difference of convex func-
tions algorithm) has proven its strength in tackling a large
class of smooth or nonsmooth, nonconvex optimization
problems called DC programming. The key advantages
of DCA come from its simplicity and flexibility that
allows it to treat large-scale problems arising in various
contexts. This chapter concerns methods incorporating
ideas of stochastic optimization in an online manner into
DCA framework to create new algorithms called online
stochastic DCA. The first section introduces the chapter.
The second section accounts for deterministic DC pro-
gramming and DCA. The third section briefly reviews
stochastic optimization. The fourth section is dedicated to
stochastic DC programming and DCA, where we propose
two online stochastic DCA schemes for solving a class of
stochastic DC programs. The last section concludes the
chapter with discussions about promising aspects of the
topic.

Keywords

DC programming · DCA · Stochastic DC programming ·
Online stochastic DCA · Conditional expectation

34.1 Introduction

In many real-life problems, uncertainty appears naturally due
to the insufficiency of our knowledge. The unknown quantity
in which we are interested is modeled as a random variable
or a random vector called Z. Suppose that we have to make
a decision called w prior to knowing Z. When a realization z
of Z becomes known, depending on the decision which was
made, we have to pay a cost of f (w, z). The optimization
problem involved consists of finding the optimal decision
w minimizing the cost f (w, z). Since the realization z is un-
known before the decision is made, one reasonable approach
is minimizing the cost on average, i.e., the expected cost (the
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expected loss) considered is F(w) = E(f (w,Z)). Further-
more, if we have a piece of information P about Z, the loss
should be updated as FP(w) = E(f (w,Z)|P). Obviously,
if P is independent to Z, its information is useless, and we
then recover E(f (w,Z)|P) = E(f (w,Z)). In contrast, when
P gives enough information to determine Z, a realization z of
Z becomes known, and the following relation holds:

E(f (w,Z)|P) = f (w, z).

Solving stochastic programming problems is a challenging
task because the underlying distribution of Z is usually un-
known. If sampling independently from the distribution of Z
is possible, one can solve the empirical loss instead. However,
the empirical loss is well-approximated to the expected loss
only if the sample size is large enough. Hence, solving
directly the empirical loss could be very expensive. The
main idea of stochastic optimization in an online manner
consists of using one or several samples at a time, combining
with information of the previous iteration to create a new
optimization problem. The new problem is simpler than the
original problem with the empirical loss, so it is more likely
easier to solve. On top of that, stochastic optimization is
the most applicable regarding sequential data since it gives
elegant ways to integrate new information into the previous
solution.

In order tomodel accurately real-world problems, stochas-
tic programming framework usually takes into account non-
convexity. When it relates to nonconvexity, things become
complicated and they require novel robust tools. However,
even in deterministic nonconvex programming, finding ef-
fective algorithms that ensure both the quality of solutions
and the scalability for large-scale problems is a great chal-
lenge. In this deterministic context, it is well-known that
most nonconvex nonsmooth problems encountered in real life
fall into the framework of DC programming. In nonconvex
programming, DCA is one of the rare algorithms that allow
to solve problems in a large-scale setting. This renowned
method is used by researchers and practitioners worldwide
and is usually proven to be state-of-the-art comparing with
other related standard methods [1–3].

Despite of its efficiency and scalability in deterministic
nonconvex optimization, traditional DCA finds it difficult to
apply directly to solve stochastic programming problems due
to the lack of knowledge of the distribution. For this reason,
it is natural to develop stochastic versions of DCA.

In this chapter, we propose two stochastic DCA schemes
for solving a class of stochastic DC problems. Our main idea
is quite simple; we replace some deterministic quantities in
the DCA by their corresponding stochastic approximations.
The stochastic approximations are constructed in an online
manner since we are interested in sequential data coming
from the distribution of Z. Our algorithms, on the one hand,

confront nonconvexity. On the other hand, they handle the
stochastic nature of the problems.

34.2 Deterministic DC Programming and
DCA

It goes, without saying, that in applied mathematics and
computer science, nonconvex (differentiable or nondiffer-
entiable) programming have experienced over the past two
decades dramatic developments in the world. The explana-
tion for this explosion is quite simple: on the one hand, the
variational optimization approaches are flexible and efficient
alongside the classical ones, which know their limits on qual-
ities of numerical solutions and sizes of tackled problems;
and on the other hand, modern convex analysis and convex
optimization widely studied since the early 1960s (at the time
being, one can say that available theoretical and algorithmic
tools might allow to formulate/reformulate suitable convex
programs and to design efficient related solution algorithms)
are forced to a logical and natural extension to noncon-
vexity/nondifferentiability. As most real-world optimization
problems are nonconvex and in many areas of industrial,
economic, and financial applications, current requirements
lead to replacements of older convex models by nonconvex
ones, more complex (especially for large-scale problems)
but more reliable (because they represent more accurately
the nature of considered problems), and especially more
economical and competitive.

The absence of convexity is a source of difficulties of all
kinds, namely, the distinction between the local and global
minima and the nonexistence of verifiable characterizations
of global solutions, etc. Passing from convex to nonconvex
programming causes all the computational complexity. If one
word is used to differentiate between easy and hard prob-
lems, convexity is probably thewatershed (dixit Rockafellar).
Finding a global solution of nonconvex programs is the holy
grail of the optimization community.

Really realistic and pragmatic extension of convex analy-
sis, convex programming to nonconvex analysis, nonconvex
programming, should be sufficiently large to cover most real-
world nonconvex programs, but not too much broad in order
to use the powerful arsenal of convex analysis/programming.

We hear more and more often speaking of trading con-
vexity for scalability and the blessings and the curses of
dimensionality in areas such as data mining and machine
learning, transport and logistic, communication networks,
computational biology, finance and economy, image science,
etc., to name but a few, and those now grouped into the dis-
cipline called data science, where we have to deal with very
large nonconvex programs. Consequently, one should rather
look for inexpensive, scalable, and efficient local approaches
for the large-scale setting.
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Idea (philosophy/principle):

If there is a problem you can’t solve, then there is an easier
problem you can solve: find it. (George Polya)

1. How to approximate a DC function by a convex function
to get a convex program.

2. What to do with a solution x∗ of such a convex program.
3. How to iterate the process.

Reply to these three questions implies the construction of
DCAwhich consists in iteratively generating a sequence {xk}
of solutions of successive convex subprograms. For standard
DC programs (i.e., with only convex constraints), one can
state local/global optimality conditions by using just basic
modern convex analysis (convex analysis by Rockafellar,
1970 [4]), more precisely fundamental properties of conju-
gate and subdifferential of convex functions.

DC programming and DCA, which constitute the back-
bone of nonconvex programming, are introduced in 1985 by
PhamDinh Tao in the preliminary state, as a quite natural and
logical extension of his previous works on concave program-
ming at the early 1970s, and extensively developed by Le Thi
Hoai An and PhamDinh Tao since 1994 to become now clas-
sic and increasingly popular. Being a descent method without
line search, DCA, which is one of rare effective algorithms in
nonsmooth nonconvex programming, has proven its strength
in this framework, especially in a large-scale setting. Regard-
less of its local behavior, DCA finds itself quite often reach-
ing a global solution if the initial point is good enough. The
DC structures of the objective and constraint functions are
exploited by DCA in a suitable way which allows us to make
use of powerful tools in convex optimization. In fact, solving
a DC program using DCA amounts to solving successively
convex optimization problems. That is, at each iteration, the
method minimizes a convex surrogate of the objective. By its
way of incorporating convex optimization in each iteration,
DCA can be considered as a natural extension of convex
optimization to DC programming. Moreover, with suitable
DC decomposition of the objective, DCA can recover most
of existing algorithms in nonconvex programming.

With themain strength coming from its deepmathematical
foundation, simplicity and flexibility, DCA has found its
applications in numerous areas of applied sciences. We list
here some areas using DCA (with just a few citations): data
mining and machine learning [5–7], finance [8, 9], trans-
port logistics [10, 11], image processing [12, 13], computer
vision [14], cryptology [15], computational chemistry and
biology [16,17], game theory [18], telecommunications[19],
multiobjective programming [20], inverse problems and ill-
posed problems [21], mathematical programming with equi-
librium constraints [22,23], etc. The reader can see the list of
reference in [1, 2].

34.2.1 Preliminaries

This subsection recalls some basic notions from convex anal-
ysis and nonsmooth analysis [4,24,25] to make preparations
for giving the theory of DC programming and DCA.

The space X := R
n is equipped with the canonical inner

product 〈·, ·〉. Its dual space Y is identified with X itself. The
effective domain of a function f : X → R ∪ {+∞}, denoted
by dom f , is

dom f := {x ∈ X : f (x) < +∞}.

It is called proper if dom f 	= ∅. Let C be a nonempty and
convex set contained in dom f . By definition, f is convex on
C if the following inequality holds for all x,u ∈ C, λ ∈ [0, 1]:

f (λx+ (1 − λ)u) ≤ λf (x) + (1 − λ)f (u).

Let ρ ≥ 0; f is called ρ-convex on C if f − ρ

2
‖·‖2 is convex

on C. The modulus of strong convexity of f on C, denoted by
ρ(f, C) or ρ(f ) if C = dom f , is defined by

ρ(f, C) := sup{ρ ≥ 0 : f − (ρ/2)‖·‖2 is convex on C}.

Obviously, ρ-convexity implies convexity. The function f is
called strongly convex on C if ρ(f, C) > 0. Let x ∈ dom f ; a
vector z ∈ X is called a subgradient of f at x if

∀y ∈ X, f (y) − f (x) ≥ 〈z, y− x〉.

The whole set of subgradients of f at x, denoted by ∂f (x), is
called the subdifferential of f at x. In general, ∂f (x) can be
empty. We say that f is subdifferentiable at x if ∂f (x) 	= ∅.

The set A ⊂ X is called an affine space if

∀t ∈ R,∀x, y ∈ A : x+ t(y− x) ∈ A.

Let C ⊂ X; the affine hull of C, denoted by aff(C), is the
smallest affine space containing C.

The relative interior of a convex set C, denoted by riC, is
defined as follows:

riC := {x ∈ aff(C) | ∃ε > 0, B(x, ε) ∩ aff(C) ⊂ C},

where B(x, ε) is the open ball with the center x and the
radius ε.

We next recall two concepts of subdifferential, namely,
Fréchet subdifferential and Clarke subdifferential.

Let f : X → R ∪ {+∞} be a proper function; the Fréchet
subdifferential of f at x ∈ dom f , denoted by ∂Ff (x), is
defined as follows:
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∂Ff (x) =
{
y ∈ Y : lim inf

h→0

f (x+ h) − f (x) − 〈y,h〉
‖h‖ ≥ 0

}
.

For x /∈ dom f, we set ∂Ff (x) = ∅. If f is a convex function,
then ∂Ff coincides with the subdifferential ∂f . A point x0 ∈
X is called a (Fréchet) critical (or stationary) point for the
function f, if 0 ∈ ∂Ff (x0).

If f is locally Lipschitz at x ∈ X, then the Clarke
directional derivative f C(x; ·) at x along a direction d ∈ X
is defined by

f C(x; d) := lim
(t,u)→(0+,x)

f (u+ td) − f (u)
t

.

The Clarke subdifferential set of f at x is defined as

∂Cf (x) := {y ∈ Y : 〈y, d〉 ≤ f C(x; d),∀d ∈ X}.

If f is continuously differentiable at x, ∂Cf (x) coincides with
the Fréchet derivative of f at x, {∇f (x)}. When f is a convex
function, then ∂Cf coincides with the subdifferential ∂f . The
two basic operators to manipulate the Clarke subdifferential
are presented as follows:

∂C(−f )(x) = −∂Cf (x),

∂C(f + g)(x) ⊂ ∂Cf (x) + ∂Cg(x),

where f , g are locally Lipschitz at a given x ∈ X. The equality
in the latter inclusion holds if f is continuously differentiable
at x. For a DC function f , i.e., f := g− h, where g and h are
convex functions, one has

∂Ff (x) ⊂ ∂g(x) − ∂h(x),

wherever h is continuous at x. Especially, if h is differentiable
at x, then the equality holds:

∂Ff (x) = ∂g(x) − ∇h(x).

34.2.2 DC Programming and DCA: Basic
Results

Let �0(X) denote the convex cone of all lower semicontinu-
ous proper convex functions on X. The vector space of DC
functions is denoted by

DC(X) := �0(X) − �0(X).

The richness of this class of DC functions allows it to contain
most objective functions arising in real-life problems.

The standard DC program takes the form

(Pdc) α := inf{f (x) := g(x)−h(x) : x ∈ X}

with g, h ∈ �0(X). Such a function f is called DC on X, g−h
is DC decomposition, while g and h are DC components of f .
One can, without loss of generality, assume that g and h are
strongly convex based on the fact that we can replace g and
h by g + ρ

2 ‖·‖2 and h + ρ

2 ‖·‖2 with ρ > 0. It also implies
that a DC function f has infinitely many DC decompositions.
Since DCA works on each DC component of f , the DC
decomposition highly affects the practical performance of
DCA including quality of computed solutions, computational
efficiency and scalability, etc.

Note that a DC programwith closed convex constraint x ∈
C can be equivalently written as a standard DC program by
adding the indicator function χC to the first component g:

inf{f (x) := g(x) − h(x) : x ∈ C}
= inf{χC(x) + g(x) − h(x) : x ∈ X}.

Under the convention +∞− (+∞) = +∞, the finiteness of
the optimal value α implies

dom f = dom(g+ χC) = dom g ∩ dom χC = C ⊂ dom h.

The dual DC program (Ddc) of (Pdc) is

(Ddc) α = inf{h∗(y) − g∗(y) : y ∈ Y}.

Here g∗ and h∗ are the conjugate functions of g and h,
respectively, i.e.,

g∗(y) := sup{〈x, y〉 − g(x) : x ∈ X}.

Critical and Strongly Critical Points of g− h
A point x∗ is a critical point of (Pdc) (or f = g − h), iff
∂g(x∗) ∩ ∂h(x∗) 	= ∅, or equivalently 0 ∈ ∂g(x∗) − ∂h(x∗),
while it is called strongly critical point of (Pdc) (or f = g−h),
iff ∅ 	= ∂h(x∗) ⊂ ∂g(x∗). The sets of critical (resp. strongly
critical) points of g− h are denoted by Pc (resp. Psc), and Pl
is the set of local minimizers of g − h. Likewise, replacing
(Pdc) by (Ddc) gives the similar notations for h∗ − g∗.

Due to the symmetry between the primal DC program
and the dual DC program, the following necessary local
optimality conditions for the primal problem can be deduced
to the dual problem without difficulty [3, 26, 27].

The notion of DC criticality has a close connection to
Clarke/Fréchet stationarity that is presented in the following.

The point x∗ is called Clarke/Fréchet stationary if 0 ∈
∂Cf (x∗) (resp. 0 ∈ ∂F f (x∗)). On the other hand, under
technical assumptions, the following inclusions hold:
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∂Cf (x) ⊂ [∂g(x) − ∂h(x)],
∂Ff (x) ⊂ [∂g(x) − ∂h(x)].

As a consequence, Clarke stationarity of x∗ or its Fréchet
stationarity implies DC criticality of x∗. Equivalence be-
tween them depends on conditions that make these inclusions
become equalities.

DC Strong Criticality and d-Stationarity
As mentioned, DC criticality and strong criticality depend
on DC decomposition of DC objective function f = g − h.
Since a DC function has infinitely many DC decompositions,
it is natural and important to find relations between DC
criticality and some stationarity concepts that depend only
on f . Therefore, we present the commonly used directional
stationarity and point out its link with DC criticality.

Some useful results of these different criticalities are
presented as follows [4, 28].

Let ϕ : X → R ∪ {+∞} be a proper function on X and
x ∈ dom ϕ. The directional derivative ϕ′(x; ·) of ϕ at x along
a direction u ∈ X is defined by

ϕ′(x;u) := lim
t↓0

ϕ(x+ tu) − ϕ(x)
t

.

If ϕ is convex, then it becomes

ϕ′(x;u) := inf
t>0

ϕ(x+ tu) − ϕ(x)
t

.

Assume that the function ϕ : X → R ∪ {+∞} is proper
convex on X; then for x ∈ dom ϕ,

(a) ϕ′(x; ·) is convex positively homogeneous.
(b) y ∈ ∂ϕ(x) if and only if ϕ′(x;u) ≥ 〈u, y〉 for every

u ∈ X, i.e.,

ϕ′(x;u) ≥ sup{〈u, y〉 : y ∈ ∂ϕ(x)} = χ∗
∂ϕ(x)(u).

In fact, the closure of ϕ′(x;u) as a convex function of u is
the support function of the closed convex set ∂ϕ(x)

cl(ϕ′(x;u)) = χ∗
∂ϕ(x)(u).

Moreover, if x ∈ ri(dom ϕ), then ∂ϕ(x) is nonempty, and
ϕ′(x;u) is semicontinuous and proper on X as a function of
u such that

ϕ′(x;u) = sup{〈u, y〉 : y ∈ ∂ϕ(x)} = χ∗
∂ϕ(x)(u).

Let C be a nonempty closed convex set in X. Then, for
x ∈ C,

∂χC(x) = {y ∈ Y : 〈u− x, y〉 ≤ 0 ∀u ∈ C} = N(C, x),

where N(C, x) is the (closed convex) normal cone to C at x.
(c) Let C1 and C2 be two closed convex sets in X. Then,

C1 ⊂ C2 ⇔ χ∗
C1

≤ χ∗
C2

.

The d-Stationarity of a Proper Function
A vector x ∈ dom ϕ is d-stationary of ϕ, iff ϕ′(x;u) ≥ 0
for every u ∈ X. The following theorem presents the key
relations between d-stationarity and strong criticality. The
proof follows directly from the mentioned properties a), b),
and c).

Theorem 34.1 Let f := g− h be the DC objective function
of the primal DC program (Pdc) with g, h ∈ �0(X) and its
optimal value α being finite (implying dom f = dom g ⊂
dom h). Then, the following properties hold:

(1) f ′(x;u) = g′(x;u) − h′(x;u) for all u ∈ X.

(2) The vector x ∈ dom f is d-stationary of f (or for (Pdc))
if and only if g′(x;u) ≥ h′(x;u) for all u ∈ X. Hence
for x ∈ dom f, if both equalities g′(x;u) = χ∗

∂g(x)(u) and
h′(x;u) = χ∗

∂h(x)(u) hold for all u ∈ X, then there is
an identity between the d-stationarity of x and the strong
criticality of x.

(3) If x ∈ ri(dom g)∩ ri(dom h), then the d-stationarity of x
is equivalent to the strong criticality of x.

(4) If x ∈ ri(dom g), then the d-stationarity of x implies the
strong criticality of x.

(5) If x ∈ ri(dom h), then the strong criticality of x implies
the d-stationarity of x.

(6) If the affine hulls of dom g and of dom h are identical,
then ri(dom g) ⊂ ri(dom h), and for x ∈ ri(dom g), the
d-stationarity of x is equivalent to the strong criticality
of x.

Duality and Local Optimality Conditions in DC
Programming
The following theorem and its corollaries give some im-
portant results about DC programming including its duality,
(strict) local optimality, and the transportation of local min-
imizer between primal and dual DC problems [1–3, 26, 27].
These results are useful to understand and analyze DCA.

Theorem 34.2 Let x∗ be a critical point of g − h and y∗ ∈
∂g(x∗) ∩ ∂h(x∗). Let U be a neighborhood of x∗ such that
(U ∩ dom g) ⊂ dom ∂h. If for any x ∈ U ∩ dom g there is
y ∈ ∂h(x) such that

h∗(y) − g∗(y) ≥ h∗(y∗) − g∗(y∗),

then x∗ is a local minimizer of g− h. More precisely,
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g(x) − h(x) ≥ g(x∗) − h(x∗), ∀x ∈ U ∩ dom g.

Corollary 34.1 (Sufficient Local Optimality) Let x∗ be a
point that admits a neighborhood U such that ∂h(x) ∩
∂g(x∗) 	= ∅,∀x ∈ U ∩ dom g. Then, x∗ is a local minimizer
of g− h. More precisely,

g(x) − h(x) ≥ g(x∗) − h(x∗),∀x ∈ U ∩ dom g.

Corollary 34.2 (Sufficient Strict Local Optimality) If
x∗ ∈ int(dom h) verifies ∂h(x∗) ⊂ int(∂g(x∗)), then x∗ is a
strict local minimizer of g− h.

Corollary 34.3 (DC Duality Transportation of a Local
Minimizer) Let x∗ ∈ dom ∂h be a local minimizer of g− h,
and let y∗ ∈ ∂h(x∗) (i.e., ∂h(x∗) is nonempty and x∗ admits
a neighborhood U such that

g(x) − h(x) ≥ g(x∗) − h(x∗),∀x ∈ U ∩ dom g).

If
y∗ ∈ int(dom g∗) and ∂g∗(y∗) ⊂ U (34.1)

((34.1) holds if g∗ is differentiable at y∗), then y∗ is a local
minimizer of h∗ − g∗.

DCA and Its Convergence Properties
Philosophy of DCA: As a convex analysis approach to DC
programming, the main idea of DCA is quite simple: at the
iteration k, the second DC component h is approximated by
its affine minorization at xk,

hk(x) := h(xk) + 〈x− xk, yk〉

with yk ∈ ∂h(xk). The resulting function is convex and DCA
minimizes it to get the next point xk+1.

Basic DCA scheme.
Initialization: Let x0 ∈ dom ∂h.
For k = 0, 1, 2 . . .

Step 1: Compute yk ∈ ∂h(xk).
Step 2: Compute

xk+1 ∈ arg min{g(x) − hk(x) : x ∈ X} (Pk).

Step 3: If f (xk+1) = f (xk), then stop: xk and xk+1 are
critical points of (Pdc).

Despite of its simple idea, DCA is a powerful method
which enjoys some nice properties mainly coming from local
optimality conditions and duality in DC programming.

The following theorem recalls some major results on
DCA’s convergence [3, 26, 27].

Theorem 34.3 The DCA is a descent method without line
search, but with global convergence, which enjoys the follow-
ing properties (C and D are two convex sets in X, containing
the sequences {xk} and {yk}, respectively):

(1) The sequences {g(xk) − h(xk)} and {h∗(yk) − g∗(yk)} are
decreasing and convergent to the same limit, and
• g(xk+1) − h(xk+1) = g(xk) − h(xk) iff [ρ(g, C) +

ρ(h, C)]‖xk+1 − xk‖ = 0, yk ∈ ∂g(xk) ∩ ∂h(xk), and
yk ∈ ∂g(xk+1)∩∂h(xk+1). Moreover if g or h is strictly
convex on C, then xk = xk+1. In such a case, the DCA
terminates at the kth iteration (finite convergence of
DCA).

• h∗(yk+1) − g∗(yk+1) = h∗(yk) − g∗(yk) iff xk+1 ∈
∂g∗(yk) ∩ ∂h∗(yk), xk+1 ∈ ∂g∗(yk+1) ∩ ∂h∗(yk+1), and
[ρ(g∗, D)+ρ(h∗, D)]‖yk+1 − yk‖ = 0. Moreover if g∗
or h∗ is strictly convex on D, then yk+1 = yk. In such
a case, the DCA terminates at the kth iteration (finite
convergence of DCA).

(2) If ρ(g, C)+ρ(h, C) > 0 (resp. ρ(g∗, D)+ρ(h∗, D) > 0),
then the series {‖xk+1 − xk‖2} and {‖yk+1 − yk‖2} are
convergent.

(3) If the optimal value α of the problem (Pdc) is finite, let x∗
be a limit point of {xk}, then

ρ(g, C) + ρ(h, C)

2

k−1∑
l=0

‖xl+1 − xl‖2 ≤ f (x0) − f (x∗).

As a consequence,

k

2
(ρ(g, C) + ρ(h, C)) × min

{
‖xl − xl+1‖2 : l = 0, k − 1

}

≤ f (x0) − f (x∗).

If ρ(g, C) + ρ(h, C) > 0, then

min
{
‖xl − xl+1‖ : l = 0, k − 1

}
≤

(
2(f (x0) − f (x∗))

k(ρ(g, C) + ρ(h, C))

) 1
2

,

and consequently, the sequence

{ηk} := {
min

{‖xl − xl+1‖ : l = 0, k − 1
}}

k

converges to 0with the convergence rate O(k−1/2), where
k is the number of iterations. This implies that in order to
achieve ηk ≤ ε, we must run O(ε−2) iterations of DCA.

(4) If the optimal value α of the problem (Pdc) is finite, let x∗
be a limit point of {xk}, then

min{f (xl) − f (xl+1) : l = 0, k − 1} ≤ f (x0) − f (x∗)
k

.
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Consequently, the sequence

{μk} := {
min

{
f (xl) − f (xl+1) : l = 0, k − 1

}}
k

converges to 0 with the convergence rate O(k−1), where
k is the number of iterations. This implies that in order to
achieve μk ≤ ε, we must run O(ε−1) iterations of DCA.

(5) If the optimal value α of problem (Pdc) is finite and the
sequences {xk} and {yk} are bounded, then every limit
point x̃ (resp. ỹ) of the sequence {xk} (resp. {yk}) is a
critical point of g− h (resp. h∗ − g∗).

(6) For polyhedral DC program (i.e., a DC program in which
at least one of the functions g and h is polyhedral), the
sequences {xk} and {yk} contain finitely many iterates,
and hence they have finite convergence (i.e., after a finite
number of iterations).

In general, establishing the convergence rate for the whole
sequence {xk} generated by DCA is a challenging task. Thus,
Theorem 34.3(5) only ensures that the sequence {xk} admits
a subsequence converging to the a critical point of g− h. It is
worth noting that, if ρ(g, C)+ρ(h, C) > 0, Theorem 34.3(3)
implies that the series

∞∑
k=0

‖xk − xk+1‖2

is convergent. On the other hand, if the series

∞∑
k=0

‖xk − xk+1‖ (34.2)

is convergent, {xk} is a Cauchy sequence and, as a con-
sequence, it is convergent. In [29], the authors studied the
convergence of (34.2) with the help of Łojasiewicz subgradi-
ent inequality for DC programs with subanalytic data. The
main results of [29] are summarized as follows with the
convergence rates provided.

DCAwith Subanalytic Data
Firstly, let us recall some notions of subanalytic sets and
functions with their basic properties [30–32].

Definition 34.1

(1) A subset C of X is said to be semianalytic iff for each
point of X, there exists a neighborhood V such that C∩V
is of the following form:

C ∩ V =
p⋃
i=1

q⋂
j=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where fij, gij : V → R (1 ≤ i ≤ p, 1 ≤ j ≤ q) are
real-analytic functions.

(2) A subset C of X is called subanalytic iff for each point of
X, there exists a neighborhood V such that

C ∩ V = {x ∈ X : ∃ y ∈ R
m, (x, y) ∈ D},

whereD is a bounded semianalytic subset of X×R
m with

m ≥ 1.
(3) A function f : X → R ∪ {+∞} is said to be subanalytic

iff its graph gph f is a subanalytic subset of X × R.

The class of subanalytic sets (resp. functions) contains all
analytic sets (resp. functions). The class of subanalytic sets
are closed under locally finite union and intersection, com-
plement and under the natural projection. The distance func-
tion to a subanalytic set is a subanalytic function; the sum
or difference of the continuous subanalytic functions is also
subanalytic. We refer the reader to [31, 33, 34] for further
properties.

The subanalyticity of the conjugate of subanalytic func-
tion is stated as follows.

Proposition 34.1 If f : X → R ∪ {+∞} is a lower
semicontinuous subanalytic strongly convex function, then its
conjugate f ∗ is a C1,1 (the class of functions whose derivative
is Lipschitz) subanalytic convex function.

Let us recall next the Łojasiewicz subgradient inequality
established by Bolte-Daniliidis-Lewis [35].

Theorem 34.4 (Theorem 3.1 [35]) Let f : X → R ∪ {+∞}
be a subanalytic function such that its domain dom f is
closed and f |dom f is continuous, and let x0 be a Fréchet
critical point of f . Then, there exist θ ∈ [0, 1), L > 0 and
a neighborhood V of x0 such that the following inequality
holds:

|f (x) − f (x0)|θ ≤ L‖x∗‖ ∀ x ∈ V, x∗ ∈ ∂Ff (x),

where a convention 00 = 1 is used.

The number θ is called a Łojasiewicz exponent of the function
f at the critical point x0. We now have all elements necessary
to establish the convergence results of DCA with subanalytic
data. The following theorem is about the convergence of the
sequences {xk} and {yk}.

Theorem 34.5 Let us consider DC problem (Pdc) with α ∈
R. Suppose that the sequences {xk} and {yk} are defined by
the DCA.



682 H. A. Le Thi et al.

(1) Suppose that the DC function f := g − h is subanalytic
such that dom f is closed; f |dom f is continuous; and
around every critical point of (Pdc), either g or h is
differentiable with locally Lipschitz derivative. Assume
that ρ := ρ(g) + ρ(h) > 0, where ρ(g) and ρ(h) are
modulus of the strong convexity of g and h, respectively.
If either the sequence {xk} or {yk} is bounded, then {xk}
and {yk} are convergent to critical points of (Pdc) and
(Ddc), respectively.

(2) Similarly, the dual problem has the counterpart: suppose
that h∗ − g∗ is subanalytic such that dom(h∗ − g∗) is
closed, (h∗ − g∗) |dom(h∗−g∗) is continuous, and around
critical point of (Ddc), either g∗ or h∗ is differentiable
with locally Lipschitz derivative. If ρ(g∗) + ρ(h∗) > 0
(ρ(g∗) and ρ(h∗) are modulus of the strong convexity
of g∗ and h∗, respectively) and either the sequence {xk}
or {yk} is bounded, then {xk} and {yk} are convergent to
critical points of (Pdc) and (Ddc), respectively.

Corollary 34.4 Suppose that g − h and h∗ − g∗ are
subanalytic functions with closed domain such that
(g − h) |dom(g−h)and (h∗ − g∗) |dom(h∗−g∗) are continuous.
Assume that ρ(g) + ρ(h) > 0 as well as ρ(g∗) + ρ(h∗) > 0.
If either the sequence {xk} or {yk} is bounded, then these
sequences converge to critical points of (Pdc) and (Ddc),
respectively.

We next state a theorem about the convergence rate of {xk} to
its limit point x∞.

Theorem 34.6 Suppose that the assumptions of Theo-
rem 34.5(1) are satisfied. Let x∞ be the limit point of {xk} at
which the Łojasiewicz exponent θ ∈ [0, 1) of the function f
is given. Then, there exist constants τ1, τ2 > 0 such that, for
all k ∈ N,

‖xk−x∞‖ ≤
∞∑
j=k

‖xj−xj+1‖ ≤ τ1‖xk−xk−1‖+τ2‖xk−xk−1‖ 1−θ
θ .

As a result, one has:

• If θ ∈ (1/2, 1), then ‖xk − x∞‖ ≤ ck
1−θ
1−2θ for some c > 0.

• If θ ∈ (0, 1/2], then ‖xk − x∞‖ ≤ cqk for some c > 0 and
q ∈ (0, 1).

• If θ = 0, then {xk} is convergent in a finite number of steps.

Recent Developments and Open Problems in DC
Programming and DCA
So far DCA seems to be the sole existing algorithm in
nonsmooth nonconvex programming; the method is surely
expected to continue to thrive. We summarize here some
recent developments and open problems in DC programming
and DCA:

1. Finding reformulations and DC decompositions well
adapted to DC programs.

2. Exact penalty with/without error bounds in general DC
programs, i.e., DC programs with DC constraints.

3. Using Nesterov smoothing techniques applied to gener-
ated convex subprograms for accelerating DCA, similar
to the fast iterative shrinkage-thresholding algorithm.

4. Using proximal approaches techniques for both reg-
ularization and decomposition and improving DCA’s
convergence speed.

5. Using line search –standard DCA’s step size being equal
to 1– for the DC objective function in DCA.

6. Estimating DCA’s convergence rate for special classes
of DC programs.

7. DCA’s global convergence for special DC programs,
for example, DC programs with subanalytic data using
the Lojasiewicz inequality for nonsmooth subanalytic
functions.

8. Strategy for choosing initial points, taking into account
specific structures of DC programs.

9. Composite functions techniques in DC programming
and DCA.

10. Finding convex minorants of DC functions for comput-
ing lower bounds of optimal values.

11. Does DCA generate all existing algorithms for convex
programming?

34.2.3 Links Between DCA and Standard
Convex/Nonconvex Programming
Approaches

This subsection discusses the links between DCA and
majorization-minimization (MM), the successive convex
approximation (SCA) approaches. Furthermore, some
convex/nonconvex programming approaches are shown as
special versions of DCA.

DCA Versus theMM and SCA Approaches
The general principle behind the MM was first introduced
in the early work [36] by Ortega and Rheinboldt, followed
by the work of de Leeuw [37]. Hunter and Lange named the
method MM for the first time in [38]. The MM, like DCA,
is a philosophy rather than a specific algorithm. Specifically,
for solving the minimization problem

min{f (x) : x ∈ X ⊂ R
n},

theMMconstructs a majorization function ϑ overX×X such
that

f (x) ≤ ϑ(x, y),∀x, y ∈ X
and
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f (x) = ϑ(x, x),∀x ∈ X.

At the iteration k, the MM updates

xk+1 ∈ arg min{ϑ(x, xk) : x ∈ X}.

In the literature, there are four typical approaches used to con-
struct the surrogate: Jensen’s inequality, convexity inequality,
Cauchy-Schwartz inequality, and inequality of arithmetic and
geometric means. When ϑ is convex, theMM, more recently,
is also referred to as SCA. The idea of the MM is quite
general, and it leaves us with a challenging task which is how
to choose the appropriate surrogate. Working directly on the
objective function f is also a source of difficulty of the MM.
When it comes to DC programming context, DCA gives the
simplest and the most closed convex surrogate function of f
that benefits us in many aspects.

Regardless of its generality, most related works using the
MM/SCA method in the literature can be recovered as ver-
sions of DCA based on latent DC structures of the problems.
To demonstrate this statement, we consider here several ways
to choose the convex surrogate in SCA.

Linear Upper Bounds of Concave Functions
When f is concave differentiable, the following affine func-
tion is often used as the surrogate of f :

ϑ(x, xk) = f (xk) + 〈∇f (xk), x− xk〉,

and the SCA solve the following program to get xk+1:

min
{
f (xk) + 〈∇f (xk), x− xk〉 : x ∈ X}

.

Obviously, this algorithm is DCA for the following DC
program:

min{g(x) − h(x) : x ∈ X},
where g(x) = 0, h(x) = −f (x) that are both convex.

Quadratic Upper Bounds of Smooth Functions
When f is twice differentiable, the following upper bound is
usually employed:

ϑ(x, xk) = f (xk) + 〈∇f (xk), x− xk〉 + 1

2
(x− xk)T

H(x− xk),

where H is a positive semidefinite matrix such that H −
∇2f (x) is also positive semidefinite.

This algorithm is a version of DCA applied to the follow-
ing DC function:

f (x) = 1

2
xTHx−

(
1

2
xTHx− f (x)

)
.

34.2.4 Proximal Upper Bounds of Convex
Functions

The proximal upper bound of f ,

ϑ(x, xk) = f (x) + ρ

2
‖x− xk‖2,

is frequently used to gain the strong convexity of f . The
corresponding SCA algorithm is known as the proximal point
algorithm in convex programming. This algorithm, in the
more specific setting, will be shown below as a version of
DCA.

Proximal Point Algorithm for Convex
Programming Is a DCA Version
Let f ∈ �0(X) and C be a nonempty closed convex set in X.
Consider the following convex program:

α = inf{ f (x) : x ∈ C},

or equivalently,

α = inf{χC(x) + f (x) : x ∈ X}.

This convex program can be considered as a DC program by
the following DC decomposition:

(
χC(x) + 1

2
λ‖x‖2 + f (x)

)
− 1

2
λ‖x‖2,

where λ > 0.
The DCA iterates

xk+1 ∈ arg min
{
f (x) + 1

2
λ‖x‖2 − 〈x, λxk〉

}
,

and we recover the proximal point algorithm.

Goldstein-Levitin-Polyak Projection Algorithm Is
a DCA Version
Let λ be a positive number such that the function h(x) =
1

2
λ‖x‖2 − f (x) is convex, and let g(x) = χC(x) + 1

2
λ‖x‖2.

Hence g, h are DC components of χC + f and the DCA takes
steps

yk = λxk − ηk, ηk ∈ ∂f (xk);

xk+1 = PC

(
xk − 1

λ
ηk

)
.

This is exactly the Goldstein-Levitin-Polyak projection algo-
rithm [39].
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Iterative Shrinkage-Thresholding Algorithm Is a
DCA Version
Iterative shrinkage-thresholding algorithm was first intro-
duced in [40] and later developed in [21, 41]. The most
general case considered [21] is

min
x

{f (x) = g1(x) + g2(x)},

where g1, g2 are convex and g2 is differentiable with
L-Lipschitz gradient. ISTA proposed in [21] iteratively
computes xk+1 by solving

min
x

{
g1(x) + L

2
‖x−

(
xk − 1

L
∇g2(xk)

)
‖2

}
.

It is observed that this algorithm is a version of DCAwith the
following DC decomposition:

f (x) =
(
g1(x) + L

2
‖x‖2

)
−

(
L

2
‖x‖2 − g2(x)

)
.

When the Lipschitz constant L is unknown, the iterative
shrinkage-thresholding algorithmwith backtracking step size
may be employed. Likewise, this algorithm is a version of
DCA with successive DC decomposition.

The EMAlgorithm for Exponential Families Is a
Version of DCA
In statistics and data science, the EM (expectation maximiza-
tion) algorithm is a popular tool for statistical estimation with
incomplete data. The algorithm was named in 1977 in the
work by Arthur Dempster et al. [42], where they pointed
out that the method had already been proposed many times
in special circumstances by earlier authors. In fact, EM is
an MM-type algorithm where the surrogate is constructed
by Jensen’s inequality. When the likelihood function is an
exponential family, the EM algorithm is a version of DCA.
Specifically, we consider the following form of the likeli-
hood:

P(x, v,w|θ) = 1

Z(x|θ)
exp

(
D∑
i=1

θ imi(x, v,w)

)
,

where x is a vector observation, v is a visible state, w is a
hidden variable, mi(x, v,w) is some real or binary function,
and

Z(x|θ) =
∑
v,w

exp

(
D∑
i=1

θ imi(x, v,w)

)

is the normalization term.
Given the data set X, the parameter θ is chosen to maxi-

mize the log-likelihood function:

L(θ) =
∑
x∈X

log
∑
w

P(x, v,w|θ).

The EM algorithm for maximizingL(θ) consists of two steps
described as follows:

• E-step: Determine the lower bound Q(θ , θ k) of L(θ) by

L(θ , θ k) =
∑
x

∑
w

P(w|x, v; θ k) logP(x, v,w|θ)

−
∑
x

∑
w

P(w|x, v; θ k) logP(w|x, v; θ k),

where

P(w|x, v; θ k) =
exp

(∑D
i=1 θ ki mi(x, v,w)

)
∑

w′ exp
(∑D

i=1 θ ki mi(x, v,w′)
) .

• M-step: Compute θ k+1 by maximizing Q(θ , θ k).

It can be shown that this EM algorithm is DCA for mini-
mizing −L(θ) with the DC decomposition −L(θ) = g− h,
where

g(θ) =
∑
x∈X

log
∑
v,w

exp

(
D∑
i=1

θ imi(x, v,w)

)
,

h(θ) =
∑
x∈X

log
∑
w

exp

(
D∑
i=1

θ imi(x, v,w)

)
.

The Concave-Convex Procedure Is an Instance of
DCA in Smooth Optimization
The concave-convex procedure was first proposed in 2003
[43], where the authors assumed that the objective function f
is twice differentiable with the DC decomposition

f (x) = fvex(x) + fcav(x),

and the feasible set C is defined by linear constraints. Under
these assumptions, the concave-convex procedure takes steps

xk+1 ∈ arg min{fvex(x) + 〈x,∇fcav(xk)〉 : x ∈ C}.

Different from other mentioned algorithms where the DC
structure of the problems is somehow hidden, the concave-
convex procedure is easily recognized as nothing but the
DCA.
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34.3 Stochastic Optimization in the
Literature

Although deterministic programming is able to cover a large
class of optimization problems in our real world, such a
modeling framework would find it difficult to cope with the
presence of randomness. The randomness appears unavoid-
ably since many real-world systems are very complicated,
for instance, one input can lead to many possible outcomes,
relations between parameters are unclear, or data is uncertain.
In these cases, stochastic programming would be a better
choice to fit the system. Sometimes, one can nevertheless
simplify the problems to make them deterministic in order to
use powerful tools of deterministic optimization. However,
stochastic programming is more suitable for representing
the true nature of the problems and preserving as much as
possible the information we are given. In the context of
stochastic programming, objective and constraints can be
uncertain in various forms such as expectation, conditional
expectation, probability, etc. Therefore, we are quite flexible
to manipulate the models to describe reasonably our real-
life problems. We refer the reader to [44] for some important
problems such as the new vendor problem, portfolio selection
problem, supply chain network design problem,multiproduct
assembly problem, etc. These problems could be one-stage,
two-stage, or multistage, with or without chance constraints.

In addition, when solving deterministic programming
problems by using multistage algorithms, there is an error
εk at each step. This error is unknown in general, so it can
be viewed as a random quantity. Hence, the randomness
again appears even in the deterministic programming
context [45–51].

It is noteworthy that, among the general class of stochastic
optimization algorithms, there is a special class of algorithms
whose stochastic approximations are constructed by new
fresh samples from the interested distribution. That is to say,
the update rules of these stochastic algorithms are performed
by using streaming data coming from a certain (possibly
unknown) distribution. In this chapter, we refer to these kinds
of stochastic algorithms as online stochastic.

In the literature of stochastic optimization, it can be traced
back to the pioneering work by Robbins and Monro [52],
where the authors designed a (nonstationary) Markov chain
for solving stochastically the equation

M(x) = a,

where M is unknown by nature. The Markov chain is con-
structed in a way that, under some assumptions, it converges
in probability to a unique solution θ of the above equation.

The idea of this chapter has inspired many researchers to
adopt this method for various challenging problems, espe-
cially for those that arise in optimization. It has been followed

by many stochastic methods for solving deterministic or
stochastic programs.

Stochastic optimization, in a same way as determinis-
tic optimization, has been developed highly in convex or
strongly convex programming. Here we present some of
these algorithms.

The stochastic subgradient method for minimizing a func-
tion F,

wk+1 ← wk − αk(yk + ξ k),

where yk ∈ ∂F(wk) and ξ k is some random noise satisfying
certain conditions. This method generalizes stochastic gradi-
ent descent. The explicit form and computational advantages
of these two algorithmsmake them the objects of manyworks
and applications [53–58]. Besides, some variants of these
methods which pay attention to second-order information but
still remain robust for large-scale setting are studied [59–67].
These works mainly focus on smooth programming since the
methods require second-order information. Furthermore, the
problems can be convex or nonconvex, but convexity is more
favorable. These algorithms are based on the classical quasi-
Newton method combining with stochastic approximation
idea. Broadly, these algorithms take steps

wk+1 ← wk − αkHk × (yk + ξ k),

where yk + ξ k is some stochastic quantity approximating to
∇F(wk) and Hk is an appropriate deterministic or stochastic
matrix approximating to the inverse of the Hessian matrix
∇2F(wk).

When it comes to large-sum problem, it is worth noting
that the sum of deterministic functions can be rewritten in
the expectation form as follows:

F(w) = 1

n

n∑
i=1

fi(w) = E(fI(w)),

where I is a uniform random variable over the set
{1, 2, . . . , n}.

This kind of function has been of great concern. It appears
frequently in various contexts of applied mathematics. Re-
garding its special structure, many stochastic methods have
been developed to handle this class of problems. We name
some well-known algorithms in this context. Roux et al. [68]
proposed an algorithm called stochastic average gradient that
can be viewed as a stochastic version of incremental average
gradient [69]. Stochastic average gradient needs to store n
gradients of the previous iteration. After drawing a random
index Ik from {1, 2, . . . , n}, the algorithm updates

wk ← wk−1 − αk

n

n∑
i=1

yki ,
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with

yki =
{
f ′i (wk−1) if i = Ik
yk−1
i otherwise.

Ghadimi and Lan [70] proposed an algorithm named the
accelerated stochastic approximation. The algorithm is in-
spired by accelerated algorithm of Nesterov [71]. The idea is
replacing the gradients in Nesterov’s algorithm by stochastic
gradients or subgradients.

To name more works in the similar stochastic approxima-
tion manner, we refer to stochastic dual coordinate ascent and
its proximal versions [72–74], stochastic variance reduced
gradient and its proximal variants [75–77], stochastic mirror
descent [78–80], etc.

In nonconvex programming, Mairal [81] designed a
stochastic version, called MISO, of the basic majorization-
minimization scheme by exploiting the structure of the
objective. At the iteration k, instead of choosing a surrogate
gk for F nearwk−1, the algorithm constructs a surrogate gIk for
one random element fI . The surrogate gIk is then combined
with information of the previous iteration to construct a
stochastic surrogate for F near wk−1. The minimization
process is then applied to this stochastic surrogate to get wk.

Recently, a new class of stochastic model-based algo-
rithms has been developed for stochastic composite function

F(w) = E(h(c(w,Z),Z) =
∫
S
h(c(w, s), s)dP(s),

where the function w �→ h(w, s) is closed convex and the
function w �→ c(w, s) is continuous for each s ∈ S.

The minimization problem corresponding to this objective
is a special case of stochastic weakly convex optimization
[82, 83]:

minimize
w∈X F(w) + ϕ(w) = E(f (w,Z)) + ϕ(w),

where X ⊂ R
d is a closed convex set, ϕ is a closed convex

function, and f (·, s) is weakly convex for each s in S.
The model-based strategy computes wk+1 by solving the

following problem:

minimize
y∈X

{
fwk(y,Zk) + ϕ(y) + 1

2αk
‖y− wk‖2

}
,

where Zk ∼ Z, αk > 0 is a step size and fwk(·, s) is an
approximation, or a model, of f (·, s) at wk.

With different choices of the model fw(·, s), the men-
tioned stochastic model-based algorithm can recover many
classical stochastic algorithms including stochastic subgradi-
ent method, stochastic prox-linear method, stochastic prox-
imal point method, and guarded stochastic proximal point
method [82].

Regarding the outperformance of DCA in deterministic
nonconvex programming, it is natural to develop stochastic
versions for DCA. This idea is the subject of some recent
works. However, such kinds of works remain to be rare. Le
Thi et al. [84] proposed a stochastic DCA scheme for the
large sum of nonconvex functions problem:

F(w) = 1

n

n∑
i=1

fi(w) + λp(w),

where p is DC, p = g̃ − h̃, and fi is differentiable with L-
Lipschitz gradient. The problem can be reformulated as the
following stochastic programming problem:

minimize
w

{F(w) = G(w) − H(w)} , (34.3)

where H(w) = E(hI(w)) and I is a uniform random variable
over {1, 2, . . . , n}.The proposed algorithmmodifies the tradi-
tional DCA by approximating stochastically the subgradient
∂H(w).

Le Thi et al. [85] developed the idea of [84] to encounter
directly the general nonconvex large-sum problem

F(w) = G(w) − 1

n

n∑
i=1

hi(w).

It is observed that this problem can be written in the form
of (34.3).

The authors introduced two stochastic DCA schemes for
solving this problem. The first scheme replaces deterministic
subgradient ∂H(w) by its stochastic estimator and proceeds
the same as traditional DCA, while the second scheme only
requires to compute inexactly stochastic estimator of ∂H(w)

and solve inexactly subproblems.
Le Thi et al. [86] introduced seven stochastic DCA

schemes for minimizing directly the expected loss with the
general underlying distribution Z:

F(w) = E(g(w, Z)) − E(h(w, Z)) + r(w).

Roughly speaking, g, h, r are satisfied some assumptions and
F is DC. The mentioned seven algorithms consist of many
forms such as approximating both ∂H and G or approximat-
ing only ∂H, the ways of updating stochastic subgradients,
adding proximal terms to subproblems or not, etc.

Nitanda and Suzuki [87] gave a proximal stochastic DCA
scheme for DC program g(w) − h(w) by using an unbiased
estimator vh(w) for∇h(w), where h is assumed to be differen-
tiable. After that, the algorithm solves inexactly the following
proximal convex program to get wk+1:
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minimize
w∈Rd

{
φk(w) = g(w) + 1

2
‖w− wk‖2Hk

− (
h(wk) + 〈vh(wk),w− wk〉)} ,

where Hk is a positive definite matrix and the norm ‖·‖Hk is
Mahalanobis norm with respect to Hk.

Similar ideas were adopted by Xu et al. [88].
Liu et al. [89] proposed an online stochastic DCA scheme

called RCS algorithm for solving a special class of two-
stage stochastic programs with a linearly bi-parameterized
recourse function defined by a convex quadratic program.
Broadly, the authors approximated both components G and
∇H by new samples and added the proximal term 1

2γ ‖w −
wk‖2 to subproblems. The RCS algorithm was then ana-
lyzed in the context of the mentioned two-stage stochastic
programs. Under some assumptions, every limit point of
the sequence generated by RCS algorithm is a generalized
critical point, or a d-stationary point of the problem.

It is worth noting that, in the context of nonconvex opti-
mization, some stochastic algorithms are based on DCA, but
the authors are not aware of this fact. For example, Allen-Zhu
et al. [90] proposed a stochastic variance reduction algorithm
for a sum of nonconvex functions with L-Lipschitz contin-
uous gradient (L-smooth). As a variance reduction method,
the proposed algorithm consists of two loops. The inner loop
takes steps

wk+1
s ← wks − η

(∇fi(wks) − ∇fi(w0
s ) + ∇f (w0

s )
)
,

where s is the index of the outer loop, i is a uniformly random
choice in {1, 2, . . . , n}, and η ≤ 1/L is a learning rate.

We can see that, with the L-smooth property, f becomes
DC with the following decomposition:

f (w) = 1

2η
‖w‖2 −

(
1

2η
‖w‖2 − f (w)

)
,

where η ≤ 1/L.
The DCA iterates

wk+1 ← wk − η∇f (wk).

It is observed that the update term in the Allen-Zhu’s algo-
rithm can be viewed as a stochastic approximation of∇f (wks),
so this algorithm can be referred to as a stochastic version
of DCA.

In this chapter, we design two stochastic versions of DCA
in an online manner. Our setting is quite general in terms of
the distribution of Z which does not need to be discrete. The
concave part of our DC decomposition does not need to be
differentiable. The first scheme stochastically approximates
a subgradient ofH across iterations. Furthermore, our second

online stochastic algorithm approximates stochastically not
only the subgradient ∂H but also the convex part G, which
let us be able to handle situations where the distribution
of Z is unknown. However, unlike algorithms mentioned
in [87, 88], our algorithms require to solve exactly subprob-
lems for guaranteeing the almost sure convergence in our
analysis. Our algorithms are distinct from [86] by the ways
of approximating subgradients.

34.4 Stochastic DC Programming and DCA

This section introduces a class of stochastic DC programs
and proposes two stochastic DCA schemes for solving this
class. Our stochastic DCA schemes are designed in an online
manner, so we name them online stochastic DCA.

From now on, the reader may be aware that most of the
statements are understood as almost sure (a.s), i.e., they are
true with probability 1.

34.4.1 A Class of Stochastic DC Programs

This section introduces a class of stochastic DC programs
that we study in this chapter.

Let (�,M, P) be a complete probability space and Z be a
random vector, Z : � → R

n.
Let � = supp (PZ) be a support of the probability

measure PZ, where PZ, the probability measure on Rn, is the
distribution of Z.

By definition, a point x ∈ R
n is in supp(PZ) ifPZ(Nx) > 0

for every neighborhood Nx of x, where the topology used to
define neighborhood is the Euclidean topology of Rn.

A basic property of the support � is that it is closed in Rn.
Moreover, PZ(�C) = 0 sinceRn is the topological Hausdorff
space and PZ is a Radon measure in Rn.

Consider a function f : Rm × � → R∪ {+∞}. Since R∪
{+∞} is a totally ordered set, there is a corresponding order
topology τ∞. Let B∞ = B(τ∞) be a Borel sigma-algebra
generated by τ∞. The function f is assumed to be measurable
with respect to (B(Rm)⊗A,B∞), whereA is a Borel sigma-
algebra relative to �.

The effective domain of f is assumed to be

dom f := {(x, ξ) ∈ R
m × � | f (x, ξ) < +∞} = S× �,

where S ⊂ R
m is a nonempty, compact, and convex set.

Suppose that for all x ∈ S,
∫
�

| f (x, ξ) | dPZ < +∞.
Let ϕ(x) = ∫

�
f (x, ξ)dPZ,∀x ∈ S. The optimization

problem considered is

minimize ϕ(x), x ∈ S.
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The function f is extended to the entire space as f̄ : R
m ×

R
n → R ∪ {+∞},

f̄ (x, ξ) =
{
f (x, ξ) if (x, ξ) ∈ S× �,

+∞ otherwise.

It is verified that this extension reserves measurability, i.e., f̄
is (B(Rm) ⊗ B(Rn),B∞) measurable.

Suppose that f̄ can be written as f̄ = g − h, where g, h :
R
m ×R

n → R∪ {+∞} are Borel measurable functions with
dom g = dom h = S× �.

The first assumption of g and f is formally stated as the
following:

Assumption 1

(1) For all z ∈ �, g(·, z) and h(·, z) are convex, lower semi-
continuous.

(2) For all w ∈ S, g(w,Z), h(w,Z) ∈ L1(�).
(3) For all z ∈ �, dom ∂h(·, z) = S.
(4) There exists a Borel measurable selector

τ : Rm × R
n → R

m

such that

∀w ∈ S, z ∈ �, τ(w, z) ∈ ∂wh(w, z).

(5) There exists a Borel measurable function

τ̃ : Rn → R

such that
∫
�

| τ̃ (z) | dPZ < ∞ and

for all w ∈ S, z ∈ �, ‖τ(w, z)‖ ≤ τ̃ (z).

(6) For all w ∈ S, E(‖τ(w,Z)‖2) < +∞. ��

Assumptions 1(1) and 1(2) are merely regular assumptions,
andAssumption 1(3)means that subgradient vectors of h(·, z)
do not explode at the boundary of the domain. Assump-
tion 1(4) is that we can choose a measurable selector from the
beginning, and then an algorithm will choose subgradients
following this selector. Assumptions 1(5) and 1(6) are for the
boundedness of the selector.

Under Assumption 1, let G(w) = E(g(w,Z)) and H(w) =
E(h(w,Z)); then domG = domH = S and G,H are convex.
Let C = G − H; then domC = S and the optimization
problem becomes

minimizeC(w),w ∈ R
m.

We now add some assumptions for G and H.

Assumption 2

(1) G,H are lower semicontinuous.
(2) dom ∂H = S and ρ(H) > 0.
(3) supw∈S | C(w) |< +∞. ��

Assumption 2(1) is for the DC form of the objective function
C. In fact, Assumption 2(2) can be induced by Assump-
tion 1(1) with some additional conditions. For example, if
g(w,Z) are uniform bounded below by a L1 random vari-
able, then Assumption 2(1) is verified by Fatou’s lemma.
Assumption 2(2) can be interpreted that subgradient vec-
tors of H do not explode at the boundary of the domain.
Finally, Assumption 2(3) states that C is nowhere going to
infinity.

34.4.2 Online Stochastic DCA1

This subsection proposes the first online stochastic DCA
scheme for solving the stochastic DC problem introduced in
Sect. 34.4.1.

Firstly, let us define a function denoted by ϑ as the
following:

ϑ : Rm × R
m → R ∪ {+∞}

(w, t) �→ G(w) − 〈w, t〉.

We can see that ϑ is Borel measurable and lower semicontin-
uous.

Since G−〈·, t〉 is lower semicontinuous and S is compact,
it follows that arg minw∈Rm{G(w) − 〈w, t〉} is nonempty, for
all t ∈ R

m.
By applying selection theorem [91], there exists a Borel

measurable function κ : R
m → R

m such that κ(t) ∈
arg minw∈Rm{G(w) − 〈w, t〉}, for all t ∈ R

m.
We now give the online stochastic DCA scheme called

online stochastic DCA1 as follows.

Algorithm 1 Online stochastic DCA1
Step 1. Choose w0 ∈ S.
Step 2. For k = 0, 1, 2 . . . do

1. Draw independently Zk,1,Zk,2, . . . , Zk,nk from Z in such a
way that they are also independent to the past.

2. Compute tk = 1

nk

∑nk
i=1 τ(wk,Zk,i).

3. Solve the convex program to get wk+1:

wk+1 = κ(tk) ∈ arg min
w∈Rm

{
G(w) − 〈tk,w〉} .

4. If stopping criteria are satisfied, break. ��
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It is clear that online stochastic DCA1 is well-defined.
Moreover, the sequence created by the algorithm is contained
in S.

For short, we denote Zk = Zk,1:nk for every k ∈ N and let
Pk = σ(Z0,Z1, . . . ,Zk−1). By the Borel measurability of τ

and κ , it follows by induction that wk is Pk measurable, for
all k ≥ 1, and tk is Pk+1 measurable, for all k ≥ 0.

Lemma 34.1 Let 0 < ρ̄ < ρ(H). Under assumptions 1,2,
the following inequality holds for all k ∈ N:

E(C(wk+1)|Pk) ≤ − ρ̄

2
E

(‖wk − wk+1‖2|Pk
) + C(wk)

+ VZ(τ (wk, Z))
1
2√

nk
E

(‖wk+1 − wk‖2|Pk
) 1

2 ,

where

VZ(τ (wk,Z)) = EZ
(‖τ(wk,Z)‖2) − ‖EZ(τ (wk,Z))‖2.

Proof. Since ν(wk) ∈ ∂wH(wk), it follows that

H(wk+1) ≥ H(wk) + 〈ν(wk),wk+1 − wk〉 + ρ̄

2
‖wk+1 − wk‖2.

(34.4)
By the definition of wk+1, it follows that

G(wk) ≥ G(wk+1) + 〈tk,wk − wk+1〉. (34.5)

From (34.4) and (34.5),

G(wk+1) − H(wk+1) ≤G(wk) − H(wk)

+ 〈tk − ν(wk),wk+1 − wk〉

− ρ̄

2
‖wk − wk+1‖2,

or equivalently

C(wk+1) ≤ C(wk) − ρ̄

2
‖wk − wk+1‖2 + 〈tk − ν(wk),wk+1 − wk〉.

(34.6)

ByAssumptions 1(5) and 2(3),C(wk), 〈tk−ν(wk),wk+1−wk〉
belong to L1(�). By taking conditional expectation of (34.6)
with respect to Pk, we get

E(C(wk+1)|Pk) ≤ E
(〈tk − ν(wk),wk+1 − wk〉|Pk

) + C(wk)

− ρ̄

2
E

(‖wk − wk+1‖2|Pk
)
.

By applying Schwartz inequality and Holder inequality,
we get

E
(〈tk − ν(wk),wk+1 − wk〉|Pk

) ≤ E
(‖tk − ν(wk)‖

×‖wk+1 − wk‖|Pk
)

≤ E
(‖tk − ν(wk)‖2|Pk

) 1
2

E
(‖wk+1 − wk‖2|Pk

) 1
2 .

Therefore,

E(C(wk+1)|Pk) ≤ C(wk) − ρ̄

2
E

(‖wk − wk+1‖2|Pk
)

+ E
(‖tk − ν(wk)‖2|Pk

) 1
2

E
(‖wk+1 − wk‖2|Pk

) 1
2 .

We now calculate E(‖tk−ν(wk)‖2|Pk). By the independence
of Zk,i,Zk,j when i 	= j, it follows that

E
(
‖tk − ν(wk)‖2|Pk

)
= E

(
‖ 1

nk

nk∑
i=1

(τ (wk,Zk,i) − ν(wk))‖2|Pk
)

= 1

n2k

nk∑
i=1

E
(
‖τ(wk,Zk,i) − ν(wk)‖2|Pk

)
.

We have an observation that

E
(‖τ(wk,Zk,i) − ν(wk)‖2|Pk

)
= E

(‖τ(wk,Zk,i)‖2|Pk
) + E

(‖ν(wk)‖2|Pk
)

− 2E
(〈τ(wk,Zk,i), ν(wk)〉|Pk

)
= EZ

(‖τ(wk,Z)‖2) + ‖ν(wk)‖2

− 2〈E(τ (wk,Zk,i)|Pk), ν(wk)〉
= EZ

(‖τ(wk,Z)‖2) + ‖ν(wk)‖2

− 2〈EZ(τ (wk,Z)), ν(wk)〉
= EZ

(‖τ(wk,Z)‖2) − ‖ν(wk)‖2. (34.7)

In the computation (34.7), the theorem in appendix A is
applied. This result is classic and important in martingale
theory, for example, we refer to [92] for its special case. We
dedicate appendix A to its detail proof.

We get the result

1

n2k

nk∑
i=1

E
(‖τ(wk,Zk,i) − ν(wk)‖2|Pk

)

= 1

nk

(
EZ

(‖τ(wk,Z)‖2) − ‖ν(wk)‖2) .

Therefore, we achieve
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E
(‖tk − ν(wk)‖2|Pk

) = 1

nk

(
EZ

(‖τ(wk,Z)‖2) − ‖ν(wk)‖2)

= 1

nk

(
EZ

(‖τ(wk,Z)‖2)

−‖EZ(τ (wk,Z))‖2) .

The variance is denoted as

VZ(τ (wk,Z)) := EZ
(‖τ(wk,Z)‖2) − ‖EZ(τ (wk,Z))‖2,

and we get an inequality

E(C(wk+1)|Pk) ≤ − ρ̄

2
E

(‖wk − wk+1‖2|Pk
) + C(wk)

+ VZ(τ (wk,Z))
1
2√

nk
E

(‖wk+1 − wk‖2|Pk
) 1

2 .

(34.8)

Assumption 3 (Variance is Bounded in Expectation)
There exists M > 0 such that

∀k ∈ N, E(VZ(τ (wk,Z))) ≤ M.

Theorem 34.7 Under the Assumptions 1, 2, 3, if the se-
quence of sample size {nk} satisfies

∞∑
k=1

1

nk
< ∞,

the iterates of online stochastic DCA1 satisfy:

(1) There exists C∞ ∈ L1(�) such that

C(wk) → C∞ a.s.

(2) ‖wk+1 − wk‖ → 0 a.s.
(3) There exists a measurable set L ⊂ � with P(L) = 1

such that for each ω ∈ L, the sequence {wk(ω)} has
a subsequence converging to a point w∗(ω) which is a
critical point of C = G− H.

Proof. (1) From (34.8), we apply AM-GM inequality to get

E(C(wk+1) − C(wk)|Pk)

≤ VZ(τ (wk,Z))
1
2√

nk
E

(‖wk+1 − wk‖2|Pk
) 1

2

− ρ̄

2
E

(‖wk − wk+1‖2|Pk
)

≤ VZ(τ (wk,Z))

2ρ̄ · nk .

By the Assumption 2(3), there exists R such that C(w) ≥
R,∀w ∈ S.

Let D(w) = C(w) − R ≥ 0; we get

E(D(wk+1) − D(wk)|Pk) ≤ VZ(τ (wk,Z))

2ρ̄ · nk .

Let Fk = [E(D(wk+1) − D(wk)|Pk) > 0],
∞∑
k=1

E(1Fk(D(wk+1) − D(wk)))

=
∞∑
k=1

E(E(1Fk(D(wk+1) − D(wk))|Pk))

=
∞∑
k=1

E(1FkE(D(wk+1) − D(wk)|Pk))

≤ 1

2ρ̄

∞∑
k=1

E(VZ(τ (wk,Z))

nk

≤ M

2ρ̄

∞∑
k=1

1

nk
< +∞.

Since D(wk) ≥ 0 a.s,∀k ∈ N, it follows from semi-
martingale convergence theorem [93] that there exists
D∞ ∈ L1(�) such that

D(wk) → D∞ a.s.

As a consequence,

C(wk) → C∞ := D∞ + R a.s.

(2) From (34.6),

C(wk+1) ≤ C(wk) − ρ̄

2
‖wk − wk+1‖2

+ 〈tk − ν(wk),wk+1 − wk〉

≤ C(wk) − ρ̄

2
‖wk+1 − wk‖2 + ‖tk − ν(wk)‖

× ‖wk+1 − wk‖

≤ C(wk) + 1

ρ̄
‖tk − ν(wk)‖2 − ρ̄

4
‖wk+1 − wk‖2.

Therefore,

0 ≤ ρ̄

4
‖wk+1 − wk‖2 ≤ C(wk) − C(wk+1) + 1

ρ̄
‖tk − ν(wk)‖2.
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On the other hand,

E
(‖tk − ν(wk)‖2) = 1

nk
E(VZ(τ (wk,Z))) ≤ M

nk
.

Therefore,

E

( ∞∑
k=1

‖tk − ν(wk)‖2
)

≤ M
∞∑
k=1

1

nk
< +∞.

It follows that

∞∑
k=1

‖tk − ν(wk)‖2 < +∞ a.s.

As a consequence, ‖tk − ν(wk)‖ → 0 a.s. Therefore, we
can conclude that

‖wk+1 − wk‖ → 0 a.s.

(3) Since ν(wk) ∈ ∂wH(wk), we have

〈ν(wk),wk〉 = H(wk) + H∗(ν(wk)). (34.9)

On the other hand, since tk ∈ ∂G(wk+1), we get

〈tk,wk+1〉 = G(wk+1) + G∗(tk). (34.10)

From (34.9) and (34.10), we achieve

G(wk+1) − H(wk) + G∗(tk) − H∗(ν(wk))

= 〈wk+1, tk〉 − 〈wk, ν(wk)〉. (34.11)

By the definition of wk+1,

G(wk+1) − 〈tk,wk+1〉 ≤ G(wk) − 〈tk,wk〉. (34.12)

Combining (34.11) and (34.12), we get

G(wk) − H(wk) ≥ H∗(ν(wk)) − G∗(tk) + 〈wk, tk − ν(wk)〉.
(34.13)

Moreover, since ν(wk) ∈ ∂wH(wk), we have the
inequality

H(wk+1) ≥ H(wk) + 〈ν(wk),wk+1 − wk〉. (34.14)

Combining (34.11) and (34.14), we get

G(wk+1) − H(wk+1) ≤ H∗(ν(wk)) − G∗(tk) + 〈wk+1, tk − ν(wk)〉.
(34.15)

From (34.13) and (34.15), we get the inequalities

C(wk) ≥ H∗(ν(wk)) − G∗(tk) + 〈wk, tk − ν(wk)〉
≥ C(wk+1) + 〈wk − wk+1, tk − ν(wk)〉.

It is observed that 〈wk, tk − ν(wk)〉 → 0 a.s and 〈wk −
wk+1, tk − ν(wk)〉 → 0 a.s, so

C(wk) − H∗(ν(wk)) + G∗(tk) → 0 a.s,

or equivalently,

G(wk) − H(wk) − H∗(ν(wk)) + G∗(tk) → 0 a.s.

Since H(wk) + H∗(ν(wk)) = 〈wk, ν(wk)〉, we get

G(wk) + G∗(tk) − 〈wk, ν(wk)〉 → 0 a.s.

Let L be an intersection of all sets with probability 1
gained from the almost sure true statements from the
beginning of the proof, P(L) = 1 (since we have at most
countably finite statements).
Let ω ∈ L; since the sequence {wk(ω)} is bounded, we

can extract a subsequence {wkj(ω)} such that

wkj(ω) → w∗(ω) ∈ S.

By the boundedness of ν and passing to subsequence if
necessary, we get

ν(wkj(ω)) → ν(w∗(ω)).

On the other hand,

‖tkj(ω) − ν(w∗(ω))‖ ≤ ‖tkj(ω) − ν(wkj(ω))‖ + ‖ν(wkj(ω))

− ν(w∗(ω))‖,

which converges to 0. Therefore,

tkj(ω) → ν(w∗(ω)), j → ∞.

We achieve the following limit:

lim
j→∞

(
G(wkj(ω)) + G∗(tkj(ω))

) = 〈w∗(ω), ν(w∗(ω))〉.

By using the semicontinuity property of

θ(w, z) = G(w) + G∗(z),

we achieve

G(w∗(ω)) + G∗(ν(w∗(ω))) ≤ 〈w∗(ω), ν(w∗(ω))〉
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and by Young inequality, the equality must hold:

G(w∗(ω)) + G∗(ν(w∗(ω))) = 〈w∗(ω), ν(w∗(ω))〉.

In other words, ν(w∗(ω)) ∈ ∂G(w∗(ω)). Consequently,

∂G(w∗(ω)) ∩ ∂H(w∗(ω)) 	= ∅,

and we conclude that w∗(ω) is a critical point of C = G−H.
The proof is completed.

34.4.3 Online Stochastic DCA2

The whole set of assumptions for online stochastic DCA1
is applied to online stochastic DCA2, together with the
following assumption.

Assumption 4

(1) There exists a Borel measurable function

g̃ : Rn → R

such that
∫
�

|g̃(z)|dPZ < +∞ and

for all w ∈ S, z ∈ �, | g(w, z) |≤ g̃(z).

(2) For all w ∈ S, E(g(w,Z)2) < +∞.
(3) The family of functions G = {g(·, z)|z ∈ �} is equicon-

tinuous in S, i.e., for each w ∈ S, for every ε > 0, there
exists δ > 0 such that

| g(w, z)−g(w′, z) |< ε,∀z ∈ �,∀w′ ∈ S : ‖w−w′‖ < δ.

(4) For all w ∈ S, g(w, ·) is lower semicontinuous.

Notice that, due to the compactness of S, the equicontinuity
of G is equivalent to G being uniform equicontinuous, i.e.,
for every ε > 0, there exists δ > 0 such that

| g(w, z) − g(w′, z) |< ε,∀z ∈ �,∀w,w′ ∈ S : ‖w− w′‖ < δ.

Let {Zp}∞p=1 be a sequence of independent random variables
which is of identical distribution with Z. We prove that the
family

J =
{

sup
w∈S

| p−1
p∑
i=1

g(w,Zi) − E(g(w,Z)) |: p ∈ N

}

is uniform integrable.

Proof. The proof is divided into two parts.

(a) We show that there is ϒ > 0 such that for all X ∈ J,
E(| X |) ≤ ϒ .

Thus, due to the uniform equicontinuity of G, there is
δ > 0 such that

∀z ∈ �,w,w′ ∈ S : ‖w− w′‖ < δ, | g(w, z) − g(w′, z) |< 1.

Since S ⊂ ∪w∈SB(w, δ) and S is compact, there exists
w1,w2, . . . ,wr ∈ S such that

S ⊂ ∪r
i=1B(wi, δ).

Let w ∈ S; there is j ∈ {1, 2, . . . , r} such that

w ∈ B(wj, δ).

It follows that

| g(w, z) − g(wj, z) |< 1,∀z ∈ �.

Let p ∈ N; on ∩∞
k=1(Zk ∈ �), we have

| p−1
p∑
i=1

g(w,Zi) − E(g(w,Z)) |

≤| p−1
p∑
i=1

g(wj,Zi) − E(g(wj,Z)) |

+ p−1
p∑
i=1

| g(w,Zi) − g(wj,Zi) | + E(| g(w,Z) − g(wj,Z) |)

≤| p−1
p∑
i=1

g(wj,Zi) − E(g(wj,Z)) | +2.

As a consequence, for all w ∈ S,

| p−1
p∑
i=1

g(w,Zi) − E(g(w,Z)) |≤ max
j=1,r

| p−1
p∑
i=1

g(wj,Zi) − E(g(wj,Z)) | +2.

It follows that

sup
w∈S

| p−1
p∑
i=1

g(w,Zi) − E(g(w,Z)) |≤ max
j=1,r

| p−1
p∑
i=1

g(wj,Zi) − E(g(wj,Z)) | +2.

On the other hand,
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max
j=1,r

| p−1
p∑
i=1

g(wj,Zi) − E(g(wj,Z)) |≤
r∑
j=1

| p−1
p∑
i=1

g(wj,Zi) − E(g(wj,Z)) |.

By the independence of Z′
is,

E

(
| p−1

p∑
i=1

g(wj,Zi) − E(g(wj,Z)) |
)

≤ E

(
| p−1

p∑
i=1

g(wj,Zi) − E(g(wj,Z)) |2
) 1

2

= V(g(wj,Z))
1
2√

p
≤ V(g(wj,Z))

1
2 .

Therefore,

E

(
sup
w∈S

| p−1
p∑
i=1

g(w,Zi) − E(g(w,Z)) |
)

≤
r∑
j=1

V(g(wj,Z))
1
2 + 2 := ϒ ,

where ϒ is finite due to the finiteness of the second
moment of g(w,Z) (Assumption 4(2)).

(b) We next prove that for every ε > 0, there exists η > 0
such that, for every measurable set A such that P(A) ≤ η

and every X ∈ J, E(| X | 1A) ≤ ε.

Thus, let X ∈ J, from (a)

| X |≤
r∑
j=1

| p−1
p∑
i=1

g(wj,Zi) − E(g(wj,Z)) | + 2.

Therefore,

E(| X | 1A) ≤ 2P(A) +
r∑
j=1

E

(
| p−1

p∑
i=1

g(wj,Zi) − E(g(wj,Z)) | 1A
)

≤ 2P(A) + √
P(A)

r∑
j=1

E

(
| p−1

p∑
i=1

g(wj,Zi) − E(g(wj,Z)) |2
) 1

2

≤ √
P(A) ·

r∑
j=1

V(g(wj,Z))
1
2 + 2P(A)

≤ ϒ
√
P(A),

which can be arbitrarily small.
We conclude thatJ is uniform integrable. ��

Moreover, the uniform strong law of large number ensures
that

sup
w∈S

| p−1
p∑
i=1

g(w,Zi) − E(g(w,Z)) |→ 0 a.s. (34.16)

The uniform strong law of large numbers (34.16) can be
found in [94], but here we give a detail proof in appendix
B.1 for the sack of completeness.

It follows from Vitali convergence theorem [95] that

E

(
sup
w∈S

| p−1
p∑
i=1

g(w,Zi) − E(g(w,Z)) |
)

→ 0

when p → ∞.
Now let {αk} be a sequence of positive number such that∑∞
k=1 αk < ∞; we can construct a sequence {Nk} satisfying

∀p ≥ Nk, E

(
sup
w∈S

| p−1
p∑
i=1

g(w,Zi) − E(g(w,Z)) |
)

< αk.

(34.17)

We make an additional setting before giving a new online
stochastic DCA scheme.

For every r ∈ N, we consider a function called �r:

�r : Rnr × R
2m → R ∪ {+∞}

(z1, z2, . . . , zr, t,w) �→ 1

r

r∑
i=1

g(w, zi) − 〈t,w〉.

Under Assumptions 4(3),(4), g is lower semicontinuous;
therefore, �r is lower semicontinuous.

Furthermore, for each (z1, z2, . . . , zr) ∈ �r and for t ∈ R
m,

arg min
w∈Rm

�r(z1, z2, . . . , zr, t,w) 	= ∅.

By selection theorem, there exists a Borel measurable func-
tion �r : Rnr × R

m → R
m such that

�r(z1, z2, . . . , zr, t) ∈ arg min
w∈Rm

�r(z1, z2, . . . , zr, t,w)
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for all z1, z2, . . . , zr ∈ � and t ∈ R
m. We now propose a new

DCA scheme as the following.

Algorithm 2 Online stochastic DCA2.
Step 1. Choose w0 ∈ S.
Step 2. For k = 0, 1, 2, . . . do

1. Draw independently Zk,1,Zk,2, . . . ,Zk,nk from Z in such a
way they are also independent to the past.

2. Compute tk = 1

nk

∑nk
i=1 τ(wk,Zk,i).

3. Solve the convex program to get wk+1

wk+1 = �nk(Zk,1,Zk,2, . . . ,Zk,nk , t
k) ∈ arg min

w∈Rm{
1

nk

nk∑
i=1

g(w,Zk,i) − 〈tk,w〉
}

.

4. If stopping criteria are satisfied, break. ��

The algorithm is well-defined with probability 1. We study
convergence properties of online stochastic DCA2 in the set
of events which makes the algorithm works.

To be more specific, the set of events that make the
algorithm works is

V =
∞⋂
k=1

nk⋂
i=1

(Zk,i ∈ �).

By the Borel measurability of �r and τ , it follows by induc-
tion that wk is Pk measurable, for all k ≥ 1, and tk is Pk+1

measurable, for all k ≥ 0.

Theorem 34.8 Let 0 < ρ̄ < ρ(H). Under Assumptions 1, 2,
3, 4 (Assumption 3 applying to the sequence {wk} generated
by online stochastic DCA2), if the sequence of sample size
satisfies

∞∑
k=1

1

nk
< ∞ and nk ≥ Nk,∀k ∈ N,

where {Nk} is determined by (34.17), the iterates of online
stochastic DCA2 satisfy:

(1) There exists C∞ ∈ L1(�) such that

C(wk) → C∞ a.s.

(2) ‖wk+1 − wk‖ → 0 a.s.
(3) There exists a measurable set Y with P(Y) = 1 such

that for every ω ∈ Y, the sequence {wk(ω)} has a
subsequence converging to w∗(ω) which is a critical
point of C = G− H.

Proof. (1) Since ν(wk) ∈ ∂H(wk), we get

H(wk+1) ≥ H(wk) + 〈ν(wk),wk+1 − wk〉 + ρ̄

2
‖wk+1 − wk‖2.

(34.18)

By the definition of wk+1,

1

nk

nk∑
i=1

g(wk+1,Zk,i) − 〈tk,wk+1〉 ≤ 1

nk

nk∑
i=1

g(wk,Zk,i)

− 〈tk,wk〉. (34.19)

Combining these two inequalities, we get

1

nk

nk∑
i=1

g(wk+1,Zk,i) − H(wk+1)

≤ 1

nk

nk∑
i=1

g(wk,Zk,i) − ρ̄

2
‖wk+1 − wk‖2

+ 〈tk − ν(wk),wk+1 − wk〉 − H(wk). (34.20)

By taking the conditional expectation (34.20) with re-
spect to Pk and noticing that

E

(
1

nk

nk∑
i=1

g(wk,Zk,i)|Pk
)

= G(wk),

E(〈tk − ν(wk),wk+1 − wk〉|Pk) ≤ E
(‖wk+1 − wk‖2|Pk

) 1
2

VZ(τ (wk,Z))
1
2√

nk
,

we get

E
(
C(wk+1) − C(wk)|Pk

)

≤ − ρ̄

2
E

(‖wk+1 − wk‖2|Pk
)

+ E

(
G(wk+1) − 1

nk

nk∑
i=1

g(wk+1,Zk,i)|Pk
)

+ E
(‖wk+1 − wk‖2|Pk

) 1
2
VZ(τ (wk,Z))

1
2√

nk

≤ E

(
sup
w∈S

∣∣∣∣∣G(w) − 1

nk

nk∑
i=1

g(w,Zk,i)

∣∣∣∣∣ |Pk
)

+ VZ(τ (wk,Z))

2ρ̄ × nk
.

By Assumption 2(3), there exists R such that

C(w) ≥ R,∀w ∈ S.
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Let D(w) = C(w) − R; we get

E(D(wk+1) − D(wk)|Pk)

≤ VZ(τ (wk,Z))

2ρ̄ × nk
+ E

(
sup
w∈S

| G(w) − 1

nk

nk∑
i=1

g(w,Zk,i) | |Pk
)

.

Let Fn = [E(D(wk+1) − D(wk)|Pk) > 0],
∞∑
k=1

E(1Fk(D(wk+1) − D(wk)))

=
∞∑
k=1

E(E(1Fk(D(wk+1) − D(wk))|Pk))

=
∞∑
k=1

E(1FkE(D(wk+1) − D(wk)|Pk))

≤
∞∑
k=1

E

(
sup
w∈S

| G(w) − 1

nk

nk∑
i=1

g(w,Zk,i) |
)

+ M

2ρ̄

∞∑
k=1

1

nk

≤
∞∑
k=1

αk + M

2ρ̄

∞∑
k=1

1

nk
< ∞.

By applying semimartingale convergence theorem, there
exists D∞ ∈ L1(�) such that

D(wk) → D∞ a.s.

As a consequence, C∞ = D∞ + R ∈ L1(�) and

C(wk) → C∞ a.s.

(2) From (34.20), using the AM-GM inequality

〈tk − ν(wk),wk+1 − wk〉 ≤ 1

ρ̄
‖tk − ν(wk)‖2

+ ρ̄

4
‖wk+1 − wk‖2,

we achieve

ρ̄

4
‖wk+1 − wk‖2 ≤ 1

ρ̄
‖tk − ν(wk)‖2 + H(wk+1) − H(wk)

+ 1

nk

nk∑
i=1

g(wk,Zk,i) − 1

nk

nk∑
i=1

g(wk+1,Zk,i)

= 1

ρ̄
‖tk − ν(wk)‖2 − C(wk+1) + C(wk)

+ G(wk+1) + 1

nk

nk∑
i=1

g(wk,Zk,i) − G(wk)

− 1

nk

nk∑
i=1

g(wk+1,Zk,i).

By uniform strong law of large number,

‖tk − ν(wk)‖ → 0 a.s,

1

nk

nk∑
i=1

g(wk,Zk,i) − G(wk) → 0 a.s,

G(wk+1) − 1

nk

nk∑
i=1

g(wk+1,Zk,i) → 0 a.s,

we conclude that ‖wk+1 − wk‖ → 0 a.s.

The uniform strong law of large number for triangular arrays,

sup
w∈S

| 1

nk

nk∑
i=1

g(w,Zk,i) − G(w) |→ 0 a.s (34.21)

is proven in appendix B.2.
(3) Since ν(wk) ∈ ∂wH(wk), we have

〈ν(wk),wk〉 = H(wk) + H∗(ν(wk)). (34.22)

Denoting Gk(w) = 1

nk

∑nk
i=1 g(w,Zk,i),∀w ∈ R

m, it follows

from the definition of wk+1 that

〈wk+1, tk〉 = Gk(wk+1) + G∗
k(t

k). (34.23)

From (34.22) and (34.23),

Gk(wk+1) − H(wk) + G∗
k(t

k) − H∗(ν(wk))

= 〈wk+1, tk〉 − 〈ν(wk),wk〉. (34.24)

Combine (34.24) with the following inequality

H(wk+1) ≥ H(wk) + 〈ν(wk),wk+1 − wk〉,

to get

Gk(wk+1) − H(wk+1) + G∗
k(t

k) − H∗(ν(wk))

≤ 〈wk+1, tk − ν(wk)〉. (34.25)

On the other hand, by combining (34.24) with the following
inequality

Gk(wk+1) − 〈tk,wk+1〉 ≤ Gk(wk) − 〈tk,wk〉

we get

Gk(wk) − H(wk) + G∗
k(t

k) − H∗(ν(wk)) ≥ 〈tk − ν(wk),wk〉.
(34.26)
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From (34.25) and (34.26), we have these inequalities

Gk(wk) − H(wk) ≥ H∗(ν(wk)) − G∗
k(t

k) + 〈tk − ν(wk),wk〉
≥ Gk(wk+1) − H(wk+1)

+ 〈tk − ν(wk),wk − wk+1〉.

By uniform strong law of large number,

Gk(wk) − H(wk) → C∞ a.s,

Gk(wk+1) − H(wk+1) → C∞ a.s,

‖tk − ν(wk)‖ → 0 a.s,

we are left with

Gk(wk) + G∗
k(t

k) − H(wk) − H∗(ν(wk)) → 0 a.s,

or equivalently,

G(wk) + G∗
k(t

k) − 〈wk, ν(wk)〉 → 0 a.s.

We have an observation that

| G∗
k(t

k) − G∗(tk) | = | sup
x∈S

{〈x, tk〉 − Gk(x)
} − sup

x∈S{〈x, tk〉 − G(x)
} |

≤ sup
x∈S

| Gk(x) − G(x) |→ 0 a.s,

here we use the inequality

| sup
x∈S

u(x) − sup
x∈S

v(x) |≤ sup
x∈S

| u(x) − v(x) | .

By this evaluation we get the result

G(wk) + G∗(tk) − 〈wk, ν(wk)〉 → 0 a.s.

With the same argument as the proof of online stochastic
DCA1, we conclude that the sequence {wk} admits a subse-
quence converging to a critical point of C = G − H with
probability 1.

34.5 Conclusion

In this chapter, we have studied ways to combine stochastic
optimization in an online manner and DCA to make use of
their premier features. The main idea is quite simple; some
deterministic quantities in the traditional DCA are replaced
by their corresponding stochastic approximations in order
to reduce the computational cost or deal with uncertainty.
Intuitively, the more deterministic quantities we replace, the

more instability the new algorithm gets. In the first online
stochastic algorithm, we only use stochastic approximation
for the subgradient component, while in the second one, the
replacement is applied for two components including the
subgradient and G. The first scheme admits an explicit con-
dition for the rate of sample size, while an implicit condition
appears in the second algorithm. For both algorithms, the
number of samples used increases over time to make the ap-
proximations more accurate. Consequently, these two online
stochastic algorithms are similar to the traditional DCA as
time step tends to infinity. This leads to similar behaviors
between online stochastic DCA and traditional DCA. Thus,
these two schemes have convergence properties in terms of
subsequence to critical points with probability 1. Besides the
wide class of one-stage stochastic programming problems
mentioned in the chapter, multistage stochastic programming
is such a promising area where stochastic optimization will
findmany deterministic quantities to substitute. Furthermore,
a deterministic function sometimes has its convenient proba-
bilistic representation, so it would be a chance for stochastic
algorithms to prove their capability. Regarding DC program-
ming and DCA, since its day of birth in 1985, its various
variations have been studied extensively such as proximal
DCA [96], DCA with successive DC decomposition [1], etc.
Therefore, it is a natural idea that each of these variations
should have corresponding stochastic versions to offer us
more options in practice as well as many nice results interfac-
ing between probability and optimization theory to discover.

34.6 Appendix A: A Theorem on
Conditional Expectation

This appendix states and proves a theorem which is used fre-
quently in our study to manipulate conditional expectation.

Theorem A.1 Let (Ω ,M, P) be a probability space and let
P be a sub-sigma-algebra ofM.
Let X be a n-dimensional random vector which is P-

measurable and let Y be a m-dimensional random vector
which is P-independent.
Let α : Rn × R

m → R
d be Borel measurable such that

E(‖α(X,Y)‖) < +∞. Then the following equality holds,

E(α(X,Y)|P) = EY(α(X,Y)).

Proof. Let μX,μY be probability measures on R
n and R

m

generated by X and Y, respectively.
Since

∫
Rn×Rm

‖α(x, y)‖d(μX × μY) = E(‖α(X,Y)‖)
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is finite, we have
∫
Rn ‖α(x, y)‖d(μY) < ∞, for μX almost

sure. Equivalently,

g(x) := E(α(x,Y))

is well-defined for μX almost sure. Moreover, we have g ∈
L1(Rn,B(Rn),μX).

For every set A ∈ P, we show that

E(α(X,Y)1A) = E(g(X)1A). (A.27)

If P(A) = 0, (A.27) is obviously true.

Consider P(A) > 0, (A.27) can be written as

∫
A
α(X,Y)dP =

∫
A
g(X)dP. (A.28)

Let (A,MA, PA) be a probability space induced by (Ω ,M, P)

on A, then (A.28) can be rewritten as

∫
A
α(X,Y)dPA =

∫
A
g(X)dPA.

It is observed that,

∫
A
α(X,Y)dPA =

∫
Rm+n

α(x, y)dπ∗,

where π∗ is a probability measure on R
m+n defined by

π∗(D) = PA(A ∩ [(X,Y) ∈ D]),∀D ∈ B(Rm+n).

Let μ∗
X,μ

∗
Y be probability measures on R

n and R
m corre-

sponding to X and Y, where X,Y are viewed as random
vectors defined on probability space A,

μ∗
X(B) = PA(A ∩ [X ∈ B]), ∀B ∈ B(Rn),

μ∗
Y(C) = PA(A ∩ [Y ∈ C]), ∀C ∈ B(Rm).

We show that π∗ = μ∗
X × μ∗

Y .
Thus, let B ∈ B(Rn), C ∈ B(Rm).

π∗(B× C) = PA(A ∩ [(X,Y) ∈ B× C])
= PA(A ∩ [X ∈ B] ∩ [Y ∈ C])

= P(A ∩ [X ∈ B] ∩ [Y ∈ C])
P(A)

= P(A ∩ [X ∈ B])P(Y ∈ C)

P(A)
.

since A ∩ [X ∈ B] and [Y ∈ C] are independent.
On the other hand,

(μ∗
X × μ∗

Y)(B× C) = μ∗
X(B)μ∗

Y(C)

= PA(A ∩ [X ∈ B]) × PA(A ∩ [Y ∈ C])

= P(A ∩ [X ∈ B])
P(A)

× P(A ∩ [Y ∈ C])
P(A)

= P(A ∩ [X ∈ B])P(Y ∈ C)

P(A)
,

since A and [Y ∈ C] are independent.
Consequently, π∗ ≡ μ∗

X × μ∗
Y due to the uniqueness of

product measure.
Therefore,

∫
Rm+n

α(x, y)dπ∗ =
∫
Rm+n

α(x, y)d(μ∗
X × μ∗

Y).

By applying Fubini theorem, we get

∫
Rm+n

α(x, y)d(μ∗
X × μ∗

Y) =
∫
Rn

∫
Rm

α(x, y)dμ∗
Ydμ

∗
X

We show that μY = μ∗
Y . Thus, let C ∈ B(Rm), we have

μ∗
Y(C) = PA(A ∩ [Y ∈ C])

= P(A ∩ [Y ∈ C])
P(A)

= P(Y ∈ C) = μY(C).

Therefore, we achieve

∫
Rm+n

α(x, y)d(μ∗
X × μ∗

Y) =
∫
Rn

∫
Rm

α(x, y)dμYdμ
∗
X

=
∫
Rn

∫
Ω

α(x,Y)dPdμ∗
X

=
∫
Rn

g(x)dμ∗
X =

∫
A
g(X)dPA,

the proof is completed.
Remark Roughly speaking, the theorem says that, if the infor-
mation P is known, it follows that X is known (since X is P-
measurable) and thenX is fixed, denoted byXP. On the other
hand, P provides no information about Y. Consequently,
the conditional expectation becomes the expectation in the
normal sense, E(α(XP,Y)).

34.7 Appendix B: Uniform Strong Law of
Large Number

This appendix proves two uniform strong laws of large num-
ber that are used for studying online stochastic DCA.
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B.1 Uniform Strong Law of Large Number
for a Sequence

In this section, we prove (34.16).
Let ε ∈ Q

+, there exists δ > 0 such that

∀z ∈ Ξ ,w,w′ ∈ S : ‖w− w′‖ < δ, | g(w, z) − g(w′, z) |< ε.

By the axiom of choice, we fix theway of choosing δ, denoted
by δε , i.e, δ can be seen as a function of ε. This idea is helpful
at the end of the proof.

Since S ⊂ ∪w∈SB(w, δε) and S is compact, there are
w1,w2, . . . ,wr ∈ S such that

S ⊂ ∪r
i=1B(wi, δε).

Again, we fix the way of choosing one set {w1,w2, . . . ,wr},
denoted by K(ε) = {w1,w2, . . . ,wr}.

Let Λ := ∩∞
k=1(Zk ∈ Ξ), then P(Λ) = 1.

Let ω ∈ Λ, p ∈ N and w ∈ S, there exists j in {1, 2, . . . , r}
such that w ∈ B(wj, r), it follows that

| p−1
p∑
i=1

g(w,Zi(ω)) − E(g(w,Z)) |≤ | p−1
p∑
i=1

g(wj,Zi(ω))

− E(g(wj,Z)) | +2ε.

Therefore

| p−1
p∑
i=1

g(w,Zi(ω)) − E(g(w,Z)) |

≤ max
j=1,r

| p−1
p∑
i=1

g(wj,Zi(ω)) − E(g(wj,Z)) | +2ε.

As a consequence

sup
w∈S

| p−1
p∑
i=1

g(w,Zi(ω)) − E(g(w,Z)) |

≤ max
j=1,r

| p−1
p∑
i=1

g(wj,Zi(ω)) − E(g(wj,Z)) | +2ε. (B.1)

Let Λε ⊂ Λ be a set of event ω satisfying

max
j=1,r

| p−1
p∑
i=1

g(wj,Zi(ω)) − E(g(wj,Z)) |→ 0.

Here we write Λε to emphasize the dependence of
{w1,w2, . . . ,wr} to ε. By strong law of large number, it
follows that P(Λε) = 1. Let

Λ̄ = ∩ε∈Q+Λε ,

then P(Λ̄) = 1. We now prove

∀ω ∈ Λ̄, sup
w∈S

| p−1
p∑
i=1

g(w,Zi(ω)) − E(g(w,Z)) |→ 0.

Let η > 0, we choose ε ∈ Q
+ and ε <

η

3
. We can recover

the inequality (B.1) because the choice mappings are fixed
from the beginning. On the other hand, there exists M such
that ∀p ≥ M,

max
j=1,r

| p−1
p∑
i=1

g(wj,Zi(ω)) − E(g(wj,Z)) |< η

3
.

Therefore, for all p ≥ M,

sup
w∈S

| p−1
p∑
i=1

g(w,Zi(ω)) − E(g(w,Z)) |< η.

The proof is completed.

B.2 Uniform Strong Law of Large Number
for Triangular Arrays

In this section, we prove (34.21),

sup
w∈S

| 1

nk

nk∑
i=1

g(w,Zk,i) − E(g(w,Z)) | → 0 a.s.

Let ε ∈ Q
+, there exists δ > 0 such that

∀z ∈ Ξ ,w,w′ ∈ S : ‖w− w′‖ < δ, | g(w, z) − g(w′, z) |< ε.

We fix the way of choosing δ, denoted by δε .
Since S ⊂ ∪w∈SB(w, δε) and S is compact, there are

w1,w2, . . . ,wr ∈ S such that

S ⊂ ∪r
i=1B(wi, δε).

We also fix the way of choosing the set {w1,w2, . . . ,wr},
denoted by K(ε) = {w1,w2, . . . ,wr}.

Let Λ := ∩∞
k=1 ∩nk

i=1 (Zk,i ∈ Ξ), then P(Λ) = 1.
Let ω ∈ Λ, k ∈ N and w ∈ S, there exists j in {1, 2, . . . , r}

such that w ∈ B(wj, r), it follows that

| n−1
k

nk∑
i=1

g(w,Zk,i(ω)) − E(g(w,Z)) |≤| n−1
k

nk∑
i=1

g(wj,Zk,i(ω)) − E(g(wj,Z)) | +2ε.
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Therefore

| n−1
k

nk∑
i=1

g(w,Zk,i(ω)) − E(g(w,Z)) |

≤ max
j=1,r

| n−1
k

nk∑
i=1

g(wj,Zk,i(ω)) − E(g(wj,Z)) | +2ε.

As a consequence,

sup
w∈S

| n−1
k

nk∑
i=1

g(w,Zk,i(ω)) − E(g(w,Z)) |

≤ max
j=1,r

| n−1
k

nk∑
i=1

g(wj,Zk,i(ω)) − E(g(wj,Z)) | +2ε.

(B.2)

Let Λε ⊂ Λ be a set of event ω satisfying

max
j=1,r

| n−1
k

nk∑
i=1

g(wj,Zi(ω)) − E(g(wj,Z)) |→ 0.

We show that P(Λε) = 1. Thus, for each j in {1, 2, . . . , r},

E

(
| n−1

k

nk∑
i=1

g(wj,Zk,i) − E(g(wj,Z)) |2
)

≤ V(g(wj,Z))

nk
.

Therefore

E

( ∞∑
k=1

| n−1
k

nk∑
i=1

g(wj,Zk,i) − E(g(wj,Z)) |2
)

≤ V(g(wj,Z))

∞∑
k=1

1

nk
< ∞.

It follows that

| n−1
k

nk∑
i=1

g(wj,Zk,i) − E(g(wj,Z)) |→ 0 a.s.

As a consequence,

max
j=1,r

| n−1
k

nk∑
i=1

g(wj,Zk,i) − E(g(wj,Z)) |→ 0 a.s.

Let Λ̄ = ∩ε∈Q+Λε , then P(Λ̄) = 1. We now prove

∀ω ∈ Λ̄,

sup
w∈S

| n−1
k

nk∑
i=1

g(w,Zk,i(ω)) − E(g(w,Z)) |→ 0.

Let η > 0, we choose ε ∈ Q
+ and ε <

η

3
. We can recover

the inequality (B.2) because the choice mappings are fixed
from the beginning. On the other hand, there exists M such
that ∀k ≥ M,

max
j=1,r

| n−1
k

nk∑
i=1

g(wj,Zk,i(ω)) − E(g(wj,Z)) |< η

3
.

Therefore, for all k ≥ M,

sup
w∈S

| n−1
k

nk∑
i=1

g(w,Zk,i(ω)) − E(g(w,Z)) |< η.

The proof is completed.
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Abstract

Coherent systems are widely studied in reliability exper-
iments. Under the assumption that the components of a
coherent system follow a two-parameter Weibull distribu-
tion, maximum likelihood inference for n-component co-
herent systemswith known signatures under a simple step-
stress model is discussed in this paper. The detailed steps
of the stochastic expectation maximization algorithm un-
der this setup are also developed to obtain estimates of the
model parameters. Asymptotic confidence intervals for
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the model parameters are constructed using the observed
Fisher information matrix and missing information prin-
ciple. Parametric bootstrap approach is used also to con-
struct confidence intervals for the parameters. A method
based on best linear unbiased estimators is developed
to provide initial values that are needed for numerical
computation of maximum likelihood estimates. The per-
formance of the methods developed is assessed through
an extensive Monte Carlo simulation study. Finally, two
numerical examples are presented for illustrative purpose.

Keywords

Coherent systems · Best linear unbiased estimators ·
Bootstrap method · Confidence intervals · Maximum
likelihood estimates · Stochastic expectation
maximization algorithm · Missing information
principle · Step-stress model · Total time on test
transforms · Type-II censoring · Weibull distribution

35.1 Introduction

Due to their high reliability, the products that are tested in
different industrial experiments often have very large mean
failure times under normal operating conditions. As a re-
sult, very few failures, if any, are observed in life testing
experiments involving such products. Hence, due to lack
of sufficient amount of information, efficient inference re-
garding the lifetimes of such units cannot be made even
after employing sophisticated statistical methods for Type-
I or Type-II censored data. One way out for this problem
is to use accelerated testing procedures, wherein the units
are subjected to higher stress level than normal, in order to
accelerate their failures. For example, in order to assess the
effect of temperature, load, voltage, etc., on the lifetimes of
engineering products, an experimenter may use accelerated
tests, which may then be performed using constant stress
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or linearly increasing stress levels. Once the experiment
accelerates the failures of the experimental units, the obtained
data may then be extrapolated using appropriate techniques
to estimate the underlying failure time distribution under
normal operating conditions. This process requires a model
relating the stress level and the failure time distribution. For
details, one may see Nelson [1, 2], Nelson and Meeker [3],
Meeker and Hahn [4], Meeker and Escobar [5], and Bagdon-
avicius and Nikulin [6].

The step-stress experiment is a special case of accelerated
testing. Here, under an initial stress level, say s0, n identical
units are placed on a life test. Then, at pre-fixed times τ1,
τ2, …, τk, the stress levels are increased to s1, s2, . . . , sk,
respectively. Under this condition, one may then fix Type-I
or Type-II censoring scheme for termination of the exper-
iment, and suitable methods may then be applied to make
necessary inference. A simple step-stress model is the one
with only two stress levels; it has been studied extensively
in the literature. For example, Miller and Nelson [7] and
Bai et al. [8] determined the optimal time at which the
stress level is changed from the first to second; DeGroot
and Goel [9] developed a Bayesian framework for optimal
tests. More recently, the simple-stress experiment has been
discussed extensively under different censoring schemes,
for different lifetime models; see Balakrishnan et al. [10],
Balakrishnan [11], Balakrishnan and Xie [12, 13], Han and
Balakrishnan [14], Kateri and Balakrishnan [15], and the
references therein.

Coherent systems in reliability analysis can be quite com-
plex sometimes, having many different components with
many different connections. The failure of such a system,
clearly, depends on the failure of one or more of its com-
ponents. The system signature of a coherent system is a
purely distribution-free measure that has been widely used
in the literature to develop statistical inference regarding
system as well as component lifetime characteristics. For
details regarding system signature-based statistical inference
for coherent systems, see Samaniego [16] and Navarro et al.
[17], among others. Recently, Balakrishnan et al. [18, 19]
have analyzed the lifetime distribution of the components
of coherent systems with known system signatures based on
system-level failure time data, through linear and nonpara-
metric statistical inferential techniques.

Suppose 200 components are placed in a simple step-
stress life test with the change of stress at time τ . Instead
of such a step-stress test on components, one may construct
a step-stress life test based on some systems that have been
formed with these components. For example, Table 35.1
shows the first 30 failures from 50 4-component coherent
systems with the change of stress done at time τ=10 hours.
In this example, the probability a system will breakdown is
0,1/2,1/4, and 1/4 after the failure of the 1st, 2nd, 3rd, and
4th components, respectively. Then, it will be of interest to
develop the estimation of model parameters based on such
a system lifetime data. These estimates can be then used
to estimate some reliability characteristics of systems and
components as well. We may also be interested in comparing
the efficiency of the tests based on systems instead of on
components directly. Here, we assume the components are
Weibull distributed and the signature of the system under
consideration is known.

In this paper, we develop statistical inference for the
lifetime distribution of components of coherent systems with
known signatures based on system-level failure time data,
when the coherent systems are put on a simple step-stress
experiment. The components of a coherent system are as-
sumed to follow, independently and identically, a Weibull
distribution, which is a widely used lifetime model. In this
regard, it may be mentioned that Kateri and Balakrishnan
[15] developed inference for a simple step-stress model with
Weibull distributed lifetimes, under Type-II censoring. Here,
we develop likelihood inference for the model parameters
under the abovementioned setup.We also develop asymptotic
confidence intervals (CIs) for the parameters.

It can be easily understood that for such a complex model,
explicit expressions for the maximum likelihood estimates
(MLEs) cannot be obtained, and one has to use a numerical
technique. We take two different approaches to estimate
the parameters. The first approach is the direct method of
maximizing the observed likelihood by Newton-Raphson
method to obtain the numerical MLEs. The other approach
is based on the stochastic expectation-maximization (St-
EM) algorithm, for which we develop the problem from
the perspective of incomplete data. The St-EM algorithm,
originally proposed by Celeux and Diebolt [20], is a variant
of the expectation-maximization (EM) algorithm proposed

Table 35.1 Failure time data of four-component coherent systems with signature vector P = (0, 1/2, 1/4,1/4)

Stress level Failure times

First 6.3767 7.1181 7.5412 8.1062 8.6519 8.8920

9.4739 9.7148

Second 10.0610 10.1218 10.2550 10.2824 10.4467 10.5271

10.7169 10.7643 10.7677 10.8292 10.8777 10.9346

11.0665 11.0897 11.1372 11.1797 11.1986 11.2969

11.3438 11.4184 11.4482 11.4770
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by Dempster et al. [21]. While the EM algorithm is a very
powerful tool for analyzing incomplete data, the algorithm
may get very complex sometimes when the required condi-
tional expectations are difficult to obtain analytically. More-
over, it is well-known that the EM algorithm suffers from
the existence of local optima [22]. The St-EM algorithm is
one of the many variants of the EM algorithm that have
been proposed to overcome the difficulties of the original
EM algorithm. We develop the steps of the St-EM algorithm
under this setup, to estimate the parameters.

For a numerical estimation of the parameters, one needs
to give carefully chosen initial values, especially given the
complex nature of the likelihood function to be optimized.
We propose a technique to provide reasonable initial values
for the algorithm. Then, through an extensive Monte Carlo
simulation study, we examine the performance of the pro-
posed methods of statistical inference.

The rest of this paper is organized as follows. In Sect. 35.2,
we discuss the structure of the data and present the model.
The likelihood function, derivation of the MLEs, and asymp-
totic CIs for the parameters are discussed in Sect. 35.3. For-
mulating this problem as an incomplete data problem, we
also present the steps of the St-EM algorithm under this
setup in this section and discuss construction of asymptotic
confidence intervals for the model parameters within the
framework of the St-EM algorithm. In addition, this section
also contains a discussion on the choice of initial values.
Finally, construction of asymptotic confidence intervals for
the model parameters by the observed Fisher information
matrix, missing information principle, and parametric boot-
strap technique are discussed in this section. We present an
outline of Bayesian analysis under this setup in Sect. 35.4.
In Sect. 35.5, we present the numerical results of a detailed
simulation study to assess and compare the performances of
the inferential methods presented in this paper. A numerical
example for illustrative purpose is presented in Sect. 35.6.
Finally, we conclude the paper with some comments in
Sect. 35.7.

35.2 A Simple Step-Stress Model for
Coherent Systems

Let there bem coherent systems, eachwith n components. Let
T denote the lifetime of a coherent system, and let X1, …, Xn
denote the lifetimes of its components, which are assumed
to be independently and identically (i.i.d.) distributed with
probability density function (PDF) fX(·) and cumulative dis-
tribution function (CDF) FX(·). Let SX(·) denote the survival
function (SF) of the component lifetime distribution.

Then, the system signature of a coherent system is given
by p, where p = (p1, . . . , pn)′ with

pi = P(T = Xi:n), i = 1, 2, . . . , n,

Xi:n being the i−th smallest order statistic arising out of
X1, . . . , Xn. Clearly, we have

(i) pi ≥ 0, ∀i,
(ii) p′

is do not depend on the component lifetime distribu-
tion, and

(iii)
∑n

i=1 pi = 1;

see Samaniego [16] for a detailed discussion on system
signatures.

Equivalent to the system signature, one can define the
minimal signature a = (a1, . . . , an), with a′

is being negative
and non-negative quantities satisfying

∑n
i=1 ai = 1; see

Navarro et al. [23]. The system signature p and minimal
signature a are related by

ai = 1

i

n∑

j=1

j(−1)i+j−n−1

(
j− 1

n− i

)

pj

(
n

j

)

, i = 1, 2, . . . , n.

The PDF fT(·) and SF ST(·) of the system lifetime T can
be expressed as a mixture of distributions of order statistics
arising from the component lifetimes in the system as follows
(see Samaniego [24] and Kochar et al. [25]):

fT(t) =
n∑

i=1

pifi:n(t),

ST(t) =
n∑

i=1

piSi:n(t),

where fi:n(·) and Si:n(·) are the PDF and SF of the i-th order
statistic Xi:n arising out of X1, . . . , Xn, given by

fi:n(t) =
(
n

i

)

ifX(t)[FX(t)]i−1[SX(t)]n−i,

Si:n(t) =
i−1∑

j=0

(
n

j

)

[FX(t)]j[SX(t)]n−j;

see Arnold et al. [26].

Using minimal signature, similarly, the distribution of T
can be expressed as a generalized mixture of distributions
of order statistics arising from the component lifetimes.
Precisely, the PDF and SF of T can be expressed using the
minimal signature as (see Navarro et al. [23])

fT(t) =
n∑

i=1

aif1:i(t) =
n∑

i=1

aiifX(t)[SX(t)]i−1,

ST(t) =
n∑

i=1

aiS1:i(t) =
n∑

i=1

ai[SX(t)]i.
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Suppose m n−component coherent systems are placed on
a simple step-stress experiment with stress levels s1 and s2
and with τ being the time point at which the stress level
changes from s1 to s2. In practice, the experimenter will
often have failure time data at the system level, i.e., he/she
observes failure times of systems, rather than their compo-
nents. Also, due to time constraint on the test, one always
observes censored data. We assume Type-II censoring, or
failure censoring, here; that is, the experiment is terminated
when r system failures are observed. Let n1 be the random
number of system failures observed before time τ (i.e., at
stress level s1) and n2 = r − n1 be the random number of
system failures observed after time τ (i.e., at stress level s2).
The observed Type-II censored data are then represented by
the ordered system failure times

t1:m < t2:m < . . . < tr:m.

As mentioned earlier, in a step-stress experiment, a model
relates the stress level and the failure time distribution. Here,
we assume the well-known cumulative exposure model; see
Nelson [2]. We assume that the lifetime of a component of
a system follows Weibull distribution with scale parameters
θ1 and θ2 and a common shape parameter β, under stress
levels s1 and s2, respectively. Then, under the assumption
of cumulative exposure model, the CDF of the lifetime of a
component of a system is given by

FX(t) =
{
F1(t), 0 < t < τ ,

F2

(
θ2
θ1

τ + t − τ
)
, τ ≤ t < ∞,

(35.1)

where Fj(x) = 1 − e−(x/θj)β , with x > 0, θj > 0, β > 0
j = 1, 2. Correspondingly, the PDF of a component is given
by

fX(t) =

⎧
⎪⎪⎨

⎪⎪⎩

β

θ
β

1

tβ−1e−(t/θ1)β , 0 < t < τ ,

β

θ
β

2

(
θ2
θ1

τ + t − τ
)β−1

e
−
(

θ2
θ1

τ+t−τ

θ2

)β

, τ ≤ t < ∞.

(35.2)

The following propositions are necessary for the com-
pleteness of the model and the subsequent developments on
inference.

Proposition 2.1 Suppose the component lifetimes are
Weibull distributed. Then, if a simple step-stress life test
is conducted on a coherent system with lifetime T under the
cumulative exposure model, it is equivalent to conducting a
simple step-stress test on its components with lifetimes X′

i s,
under the cumulative exposure model.

Proof. If FT,1(·) and FT,2(·) are the CDFs of the system life-
time T under the first and second stress levels, respectively,
then from (35.1) we have

FT(t) =
{
FT,1(t), 0 < t < τ ,

FT,2
(

θ2
θ1

τ + t − τ
)
, τ ≤ t < ∞,

=

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1
piFi:n(t), 0 < t < τ ,

n∑

i=1
piFi:n

(
θ2
θ1

τ + t − τ
)
, τ ≤ t < ∞,

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

i=1
pi

n∑

j=i

(n
j

)[FX(t)]j[SX(t)]n−j, 0 < t < τ ,

n∑

i=1
pi

n∑

j=i

(n
j

) [
FX
(

θ2
θ1

τ + t − τ
)]j

[
SX
(

θ2
θ1

τ + t − τ
)]n−j

, τ ≤ t < ∞.

From above, the required result follows. �

Proposition 2.2 Under a simple step-stress life testing ex-
periment on a coherent system with lifetime T and a Weibull
component lifetime distribution as in (35.2), the SF of T is a
non-decreasing function of θ2.

Proof. Evidently,

∂ST(t; θ1, θ2,β)

∂θ2
=
{
0, 0 < t < τ ,
t−τ
θ2
fT(t, θ1, θ2,β) > 0, τ ≤ t < ∞,

which proves the required result. �

35.3 Likelihood Inference

35.3.1 Direct Maximization of the Observed
Likelihood

The statistical inference developed here assumes that the
system signatures (or equivalently, minimal signatures) are
available. Based on the observed ordered Type-II censored
lifetimes of systems t1:m < . . . < tr:m arising out of the m
systems, the likelihood function can be written for different
values of the random number of failures n1: (i) n1 = r, i.e.,
all the r failures are observed in the first stress level s1, (ii)
n1 = 0, i.e., all the r failures are observed in the second
stress level s2, and (iii) 1 ≤ n1 ≤ r − 1. We present the
likelihood function below for these three cases under a simple
step-stress model:
Case (i): n1 = r

L(θ) = C
r∏

k=1

[
n∑

i=1

aiifX(tk:m){SX(tk:m)}i−1

]

[
n∑

i=1

ai{SX(tr:m)}i
]m−r

;
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Case (ii): n1 = 0

L(θ) = C
r∏

k=1

[
n∑

i=1

aiifX(tk:m){SX(tk:m)}i−1

]

[
n∑

i=1

ai{SX(tr:m)}i
]m−r

;

Case (iii): 1 ≤ n1 ≤ r − 1

L(θ) = C
n1∏

k=1

[
n∑

i=1

aiifX(tk:m){SX(tk:m)}i−1

]

×
r∏

k=n1+1

[
n∑

i=1

aiifX(tk:m){SX(tk:m)}i−1

]

[
n∑

i=1

ai{SX(tr:m)}i
]m−r

,

where C = m!
(m−r)! and θ is the parameter vector of the

component lifetime distribution. Since we have assumed that
the components of the systems are Weibull distributed, the
likelihood function takes the following forms for the three
cases; here, we have θ = (θ1, θ2,β)′:
Case (i): n1 = r

L(θ) = C

(
β

θ
β

1

)r r∏

k=1

[

tβ−1
k:m

n∑

i=1

aiie
−i(tk:m/θ1)

β

]

[
n∑

i=1

aie
−i(tr:m/θ1)

β

]m−r
; (35.3)

Case (ii): n1 = 0

L(θ) = C

(
β

θ
β

2

)r r∏

k=1

[(
θ2

θ1
τ + tk:m − τ

)β−1

n∑

i=1

aiie
−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β
⎤

⎥
⎦

×
⎡

⎢
⎣

n∑

i=1

aie
−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β
⎤

⎥
⎦

m−r

; (35.4)

Case (iii): 1 ≤ n1 ≤ r − 1

L(θ) = C

(
β

θ
β

1

)n1 n1∏

k=1

[

tβ−1
k:m

n∑

i=1

aiie
−i(tk:m/θ1)

β

]

×
(

β

θ
β

2

)r−n1 r∏

k=n1+1

[(
θ2

θ1
τ + tk:m − τ

)β−1

n∑

i=1

aiie
−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β
⎤

⎥
⎦

×
⎡

⎢
⎣

n∑

i=1

aie
−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β
⎤

⎥
⎦

m−r

. (35.5)

Note thatMLE of θ2 does not exist in Case (i). So, we shall
consider the case 0 ≤ n1 ≤ r − 1 to obtain the MLEs; note
that this includes both Cases (ii) and (iii). The log-likelihood
function becomes

log L(θ) = C + r log β − n1β log θ1 − (r − n1)β log θ2

+
n1∑

k=1

[

(β − 1) log tk:m

+ log

(
n∑

i=1

aiie
−i(tk:m/θ1)

β

)]

+
r∑

k=n1+1

[

(β − 1) log
(

θ2

θ1
τ + tk:m − τ

)

+ log

⎛

⎜
⎝

n∑

i=1

aiie
−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β
⎞

⎟
⎠

⎤

⎥
⎦

+ (m− r) log

⎛

⎜
⎝

n∑

i=1

aie
−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β
⎞

⎟
⎠ . (35.6)

From the log-likelihood function in (35.6), we get the first-
order derivatives as follows:

∂ log L
∂θ1

= − n1β

θ1
+

n1∑

k=1

⎡

⎢
⎢
⎣

βtβk:m
θ

β+1
1

∑n
i=1 aii

2e−i(tk:m/θ1)
β

n∑

i=1
aiie−i(tk:m/θ1)β

⎤

⎥
⎥
⎦

− θ2τ

θ2
1

r∑

k=n1+1

⎡

⎣ β − 1
(

θ2
θ1

τ + tk:m − τ
)

− β

θ
β

2

(
θ2

θ1
τ + tk:m − τ

)β−1

n∑

i=1
aii2e

−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β

n∑

i=1
aiie

−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β
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+ (m− r)
β

θ
β

2

(
θ2

θ1
τ + tr:m − τ

)β−1 ∑n
i=1 aiie

−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β

n∑

i=1
aie

−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(35.7)

∂ log L
∂θ2

= − (r − n1)β

θ2
+

r∑

k=n1+1

⎡

⎣
(β − 1) τ

θ1

( θ2
θ1

τ + tk:m − τ)
+ β

(
θ2
θ1

τ + tk:m − τ

θ2

)β−1

×
(
tk:m − τ

θ2
2

) ∑n
i=1 aii

2e
−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β

∑n
i=1 aiie

−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β

⎤

⎥
⎥
⎥
⎦

+ (m− r)β

(
θ2
θ1

τ + tr:m − τ

θ2

)β−1 (
tr:m − τ

θ2
2

)

×
∑n

i=1 aiie
−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β

n∑

i=1
aie

−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β
, (35.8)

∂ log L
∂β

= r

β
− n1 log θ1 − (r − n1) log θ2

+
n1∑

k=1

[

log tk:m −
(
tk:m
θ1

)β

log
(
tk:m
θ1

) ∑n
i=1 aii

2e−i(tk:m/θ1)
β

∑n
i=1 aiie

−i(tk:m/θ1)β

]

+
r∑

k=n1+1

⎡

⎣log
(

θ2

θ1
τ + tk:m − τ

)

−
(

θ2
θ1

τ + tk:m − τ

θ2

)β

× log

(
θ2
θ1

τ + tk:m − τ

θ2

) ∑n
i=1 aii

2e
−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β

∑n
i=1 aiie

−i
(

θ2
θ1

τ+tk:m−τ

θ2

)β

⎤

⎥
⎥
⎥
⎦

− (m− r)

(
θ2
θ1

τ + tr:m − τ

θ2

)β

log

(
θ2
θ1

τ + tr:m − τ

θ2

)

×

n∑

i=1
aiie

−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β

n∑

i=1
aie

−i
(

θ2
θ1

τ+tr:m−τ

θ2

)β
. (35.9)
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Equating expressions (35.7)–(35.9) to zero and then solving
these likelihood equations, we get the MLEs. It is clear
from the expressions in (35.7)–(35.9) that the MLEs are not
available in explicit form, and one has to employ numerical
techniques, such as Newton-Raphson method, to obtain the
MLE, which we denote by θ̂ . For an iterative algorithm like
Newton-Raphson, at each stage i we get an estimate θ̂ (i) and
stop at a stage lwhen two successive estimates at stages l and
l− 1 are such that ||̂θ (l) − θ̂ (l−1)|| < ε, for a pre-fixed ε > 0.

35.3.2 Estimation Using the St-EM Algorithm

Because of its stochastic nature, the St-EM algorithm can
avoid some of the common pitfalls of the traditional EM
algorithm. For example, to implement St-EM algorithm, it is
not required to obtain the complex conditional expectations
that may arise in an incomplete date problem; only the appro-
priate conditional distributions need to be identified. Also,
the sequence of estimates obtained through St-EM algorithm
does not get trapped into saddle points, if they exist, unlike
the EM algorithm [27]. After it was proposed by Celeux and
Diebolt [20], many researchers have investigated the St-EM
algorithm in further detail and have applied it successfully
to various incomplete data problems; see Celeux et al [28],
Chauveau [29], Diebolt and Celeux [30], and Nielsen [31].

Broadly speaking, the St-EM algorithm has two steps –
the stochastic expectation (St-E) step and the maximization
(M) step. Given the observed data and current values of
the parameters, random observations are generated from ap-
propriate conditional distributions to replace the unobserved
(or censored) data in the St-E step. Then, with the pseudo-
complete data thus obtained, the pseudo-complete likelihood
is constructed and is maximized to obtain updated estimates
of the parameters in theM-step. The St-E and theM-steps are
then iterated for sufficiently large number of times.

To implement St-EM algorithm, one needs to construct
the pseudo-complete likelihood with the pseudo-complete
data as obtained from the St-E step. To construct the pseudo-
complete likelihood, in this section we follow the earlier for-
mulation of the problem as detailed in Sect. 35.3.1. Keeping
the symbols unchanged, we need to consider the following
three cases: (i) n1 = r, (ii) n1 = 0, and (iii) 1 ≤ n1 ≤ r − 1.
For these three cases, the pseudo-complete likelihood is as
follows:
Case (i): n1 = r

LPC(θ) =
m∏

j=1

{ n∑

i=1

aiifX(tj:m){SX(tj:m)}i−1

}

Case (ii): n1 = 0

LPC(θ) =
m∏

j=1

{ n∑

i=1

aiifX(tj:m){SX(tj:m)}i−1

}

Case (iii): 1 ≤ n1 ≤ r − 1

LPC(θ) =
n1∏

j=1

{ n∑

i=1

aiifX(tj:m){SX(tj:m)}i−1

}

×
m∏

j=n1+1

{ n∑

i=1

aiifX(tj:m){SX(tj:m)}i−1

}

The St-EM algorithm under this setup takes the following
shape:

Algorithm: At the l−th stage of the algorithm:
The St-E step:

(1) Based on the value of n1, generate m− r system lifetimes from the
appropriate conditional distribution with CDF FT (t|tr:m, θ l), where
θ is the appropriate parameter vector.

(2) Using the generated data, order the pseudo-complete data t1:m <

. . . < tr:m < tgr+1:m < . . . < tgm:m, where the superscript (g)
indicates the randomly generated observations.

(3) Using the pseudo-complete data, construct the pseudo-complete
likelihood depending on the value of n1, according to the cases (i),
(ii), and (iii) as mentioned above.

TheM-step: Maximize the pseudo-complete likelihood as obtained the
St-E step to obtain updated estimate of the parameter vector, i.e., θ l+1.

The St-E and M-steps are then repeated for N number
of times, to obtain sequences of estimates for the
parameters, i.e., (θ̂11, θ̂12, . . . , θ̂1N), (θ̂21, θ̂22, . . . , θ̂2N), and
(β̂1, β̂2, . . . , β̂N). Finally, after discarding first N1 estimates
for each of them for burn-in, we select every 5th value from
these sequences starting from (N1+1)−th value till theN−th
value and average over the selected values to get the final
estimates of θ1, θ2 and β. Every 5th value starting from the
(N1 +1)th value is selected to eliminate the auto-correlation,
if any, among the successive values.

The conditional distributions required in the St-E step are
as follows:
Case (i): n1 = r

FT(t|tr:m, θ) = FT,1(t) − FT,1(tr:m)

1 − FT,1(tr:m)
, t > tr:m, (35.10)

Case (ii): n1 = 0

FT(t|tr:m, θ) = FT,2(t) − FT,2(tr:m)

1 − FT,2(tr:m)
, t > tr:m, (35.11)
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Case (iii): 1 ≤ n1 ≤ r − 1

FT(t|tr:m, θ) = FT,2(t) − FT,2(tr:m)

1 − FT,2(tr:m)
, t > tr:m, (35.12)

whereFT,1(·) andFT,2(·) are as described in Proposition 2.1. If
the denominator is extremely close to 0, for example,< 10−8,
we then conclude the estimates diverge.

As Ye and Ng [27] mentioned, the experimenter should
choose the values of N and N1 wisely. In particular, N should
be sufficiently large so that the final estimates obtained from
the St-EM algorithm closely resemble theMLEs of themodel
parameters. In the simulation, we choose N1 = 304 and N =
800.

35.3.3 Providing Initial Values to the
Algorithm

In this subsection, we propose initial values by using best
linear unbiased estimators (BLUEs) and moment estimates
under the condition 1 ≤ n1 ≤ r − 1. Now, let

Uj:m =
⎧
⎨

⎩

ln
(
Tj:m
θ1

)
, Tj:m < τ ,

ln
(
Tj:m−τ

θ2
+ τ

θ1

)
, Tj:m > τ ,

(35.13)

and denoteU1 = (U1:m, · · · , Un1:m)′ andU2 = (Un1+1:m, · · · ,
Ur:m)′. By neglecting the fact that all entries in U1 are less
than ln τ/θ1, we treat U1 as an ordinary Type-II censored
sample from extreme-value distribution with location param-
eter μ = ln θ1 and scale parameter σ = 1

β
, and do similarly

for U2. Let us further denote μ1 = (μ1:m, · · · ,μn1:m)′, μ2 =
(μn1+1:m, · · · ,μr:m)′, �1 = ((σi,j:m)) for i, j = 1, · · · , n1,
�2 = ((σi,j:m)) for i, j = n1 +1, · · · , r, where μj:m = E(Uj:m)

and σi,j:m = cov(Ui:m, Uj:m). Balakrishnan et al. [18] derived
the following expressions for n-component extreme-value
distributed coherent system lifetimes:

μ1:m = m
∑

j1,··· ,jn≥0
j1+···+jn=m−1

(
m− 1

j1, · · · , jn
)

aj11 · · · ajnn

×
n∑

i=1

aii[−γ − ln(j1 + 2j2 + · · · + njn + i)]
(j1 + 2j2 + · · · + njn + i)

, (35.14)

μ
(2)
1:m = m

∑

j1,··· ,jn≥0
j1+···+jn=m−1

(
m− 1

j1, · · · , jn
)

aj11 · · · ajnn

×
n∑

i=1

aii
{

π2

6 + [γ + ln(j1 + 2j2 + · · · + njn + i)]2
}

(j1 + 2j2 + · · · + njn + i)
, (35.15)

μs,s+1:m = m!
(s− 1)!(m− s− 1)!

s−1∑

l=0

(−1)l
(
s− 1

l

) ∑

k1,··· ,kn≥0
k1+···+kn=l

(
l

k1, · · · , kn
)

×
∑

j1,··· ,jn≥0
j1+···+jn=m−s−1

(
m− s− 1

j1, · · · , jn
)

aj1+k11 · · · ajn+knn

n∑

i=1

n∑

i′=1

aiai′ ii
′φ(δ,α), (35.16)

where μ
(2)
j:m = E

[
(Uj:m)2

]
, μi,j:m = E(Ui:mU∗

j:m), γ =
0.57721566490 · · · is the Euler-Mascheroni constant, δ =
k1 + 2k2 + · · · + nkn + i, α = j1 + 2j2 + · · · + njn + i′, and

φ(δ,α) =
∫ ∞

−∞

∫ u

−∞
tuet−δet eu−αeudtdu.

We can then find all the values of μ1, μ2, �1, and �2, by
further using the well-known triangle and rectangle rules for
moments of order statistics (see Arnold et al. [26]), as

sμ(l)
s+1:m + (m− s)μ(l)

s:m = mμ
(l)
s:m−1,

s = 1, 2, · · · , m− 1, l = 1, 2, (35.17)
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(i− 1)μi,j:m + (j− i)μi−1,j:m + (m− j+ 1)μi−1,j−1:m

= mμi−1,j−1:m−1,

2 ≤ i < j ≤ m. (35.18)

By using the transferred data U1 = (U1:m, · · · , Un1:m) ob-
tained from the first stress level, we then have the BLUEs of
μ and σ as

μ̃ = μ′
1�U1 and σ̃ = −1′�U1, (35.19)

where

� = �−1
1

(
μ11

′ − 1μ′
1

)
�−1

1
(
μ′
1�

−1
1 μ1

) (
1′�−1

1 1
)− (μ′

1�
−1
1 1
)2 .

Using these, we obtain the initial values of θ1 and β as

θ̃1 = eμ̃ and β̃ = σ̃−1. (35.20)

At the second stress level, we replace θ1, β by θ̃1 and β̃. Now,
by equating

r∑

i=n1+1

(m− i+ 1)

(
Ti:m − τ

θ2
+ τ

θ̃1

)

=
r∑

i=n1+1

(m− i+ 1)e
μi:m

β̃ , (35.21)

we then obtain the estimate of θ2 as

θ̃2 =

r∑

i=n1+1
(m− i+ 1)(Ti:m − τ)

r∑

i=n1+1
(m− i+ 1)

(
e

μi:m
β̃ − τ

θ̃1

) . (35.22)

To provide the initial values in the case when n1=1, one
can use the following two equations

ln T1:m = 1

β
μ1:m + ln θ1 and

ST(τ ) = m

m+ 1
, (35.23)

where ST(·) is as defined before and then use the above
procedure to obtain the estimate of θ2. When n1 = 0, one
can simply take θ̃1 = τ and β̃ = 1 and, then by using them,
can proceed to obtain θ̃2 as described above.

35.3.4 Confidence Intervals

Observed Fisher InformationMatrix
From the asymptotic properties of MLEs, it is known that as
m → ∞, we have

√
m(̂θ − θ)

D−→ N(0, I−1(θ)),

where I(θ) is estimated by the observed information matrix.
Then, one can easily construct asymptotic CIs for the model
parameters. The observed information matrix is given by

Iobs(θ) =

⎛

⎜
⎜
⎝

− ∂2 log L
∂θ2

1
− ∂2 log L

∂θ1∂θ2
− ∂2 log L

∂θ1∂β

− ∂2 log L
∂θ2∂θ1

− ∂2 log L
∂θ2

2
− ∂2 log L

∂θ2∂β

− ∂2 log L
∂β∂θ1

− ∂2 log L
∂β∂θ2

− ∂2 log L
∂β2

⎞

⎟
⎟
⎠

θ=θ̂

.

The elements of the observed information matrix are pre-

sented in the Appendix.

Missing Information Principle
Louis’s [32] missing information principle is a commonly
used technique to obtain asymptotic variance-covariance ma-
trix of the MLEs within the EM algorithm framework. Ye
and Ng [27] adopted the missing information principle suc-
cessfully within the framework of the St-EM algorithm. We
follow Ye and Ng’s [27] approach to construct the asymp-
totic variance-covariance matrix of the parameter estimates
obtained by the St-EM algorithm.

Let the pseudo-complete data be denoted by

tpc = t ∪ t(g),

where t = t1:m < . . . < tr:m is the observed data and t(g) =
tgr+1:m < . . . < tgm:m is the randomly generated data from
the appropriate conditional distributions in (35.10), (35.11),
and (35.12). Let H1(tpc, θ) and H2(tpc, θ) denote the matrix
of first derivatives and matrix of the negative of the second
derivatives of the pseudo-complete likelihood with respect to
θ . Then, by using themissing information principle following
Ye and Ng [27], the observed information matrix is given by

I(θ) = E[H2(tpc, θ)|t] − E[H2
1(tpc, θ)|t] + {E[H1(tpc, θ)|t]}2.

(35.24)

For evaluating (35.24), we impute R samples t(g)(j), j =
1, . . . , R corresponding to themissing data, conditional on the
observed data t and θ , by generating samples from the appro-
priate conditional distributions (35.10), (35.11), and (35.12),
and obtain the pseudo-complete data t(j)pc , j = 1, . . . , R.
Finally, estimate of (35.24) is obtained as

Î(θ) = 1

R

R∑

j=1

H2(t(j)pc , θ) − 1

R

R∑

j=1

[H1(t(j)pc , θ)]2

+
[
1

R

R∑

j=1

H1(t(j)pc , θ)

]2
. (35.25)
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Finally, (35.25) is evaluated at the estimated value of θ

obtained from the St-EM algorithm, and the resulting matrix
is then inverted to obtain the asymptotic variance-covariance
matrix of the parameter estimates. The asymptotic confi-
dence intervals for the model parameters can then be easily
constructed.

Bootstrap Confidence Intervals
It is also possible to construct parametric bootstrap CIs for the
parameters. To do so, we first compute the MLE θ̂ based on
the Type-II censored data onm n−component systems. Then,
treating θ̂ as the true value of the parameter θ , in the same
sampling framework, we generate a sample of n−component
systems of size m and calculate the MLE θ̂

∗
for this sample.

This process is repeated B times, to get B bootstrap estimates
θ̂

∗
(1), . . . , θ̂

∗
(B). Finally, a 100(1− α)% CI for θ1, for example,

can be obtained as

LCL: θ̂1 − bθ1 − zα/2
√
vθ1 , UCL: θ̂1 − bθ1 + zα/2

√
vθ1 ,

where bθ1 and vθ1 are the bootstrap bias and variance, re-
spectively, for the estimate of θ1, calculated based on the B
bootstrap estimates, and zα is the upper α−percentage point
of a standard normal variable. The same method applies to
the other parameters θ2 and β as well.

One more variant of the 100(1−α)% bootstrap CIs would
be

θ̂∗
1([ αB

2 ]), θ̂
∗
1([(1− α

2 )B]),

where θ̂∗
1(k) is the k−th smallest value in the ordered sequence

of B bootstrap estimates for θ1, [x] representing the greatest
integer contained in x. One can refer to Efron and Tibshirani
[33] for elaborate details on various bootstrap CIs.

Note that the inferential procedures described above are
carried out conditionally on the number of failures between
1 and r−1, i.e., 1 ≤ n1 ≤ r−1, since this is the condition for
the existence of theMLEs. Naturally, the different confidence
intervals can be obtained under this condition only, and all
subsequent computational results are carried out condition-
ally on this.

35.4 Outline of Bayesian Analysis

Many researchers have explored Bayesian analysis of relia-
bility data [34]. In particular, Ganguly et al. [35] discussed
Bayesian analysis of data from simple step-stress experi-
ments under the assumption of Weibull lifetimes. Recently,
Jablonka et al. [36] have presented a discussion on Bayesian
inference for coherent systems withWeibull distributed com-
ponents. Following these works, we present here an outline
of Bayesian inference for a simple step-stress experiment

involving coherent systems with Weibull distributed compo-
nents with known signatures.

While prior elicitation is an involved problem in itself,
here, following Berger and Sun [37], Kundu [38], and Gan-
guly et al. [35], we assume gamma priors on the scale
parameters θ1 and θ2, i.e.,

θ1 ∼ π1(θ1), θ2 ∼ π2(θ2),

where
πi(θi) ∝ θ

ai−1
i e−biθi , θi > 0, (35.26)

with ai and bi as known hyper-parameters, i = 1, 2. Further,
we assume a gamma prior on the shape parameter β, i.e., for
known hyper-parameters a3 and b3

β ∼ π3(β), (35.27)

where

π3(β) ∝ βa3−1e−b3β , β > 0, a3, b3 > 0. (35.28)

It may be noted here that for building the theory, it is also
possible to just assume that the prior on β is a log-concave
density, without referring to any specific form for it [36].
Finally, we assume that the priors are independent.

The joint posterior distribution of θ1, θ2, and β is then
given by

π(θ1, θ2,β|DATA) ∝ L(θ) × π1(θ1) × π2(θ2) × π3(β)

∝ L(θ) × θ
a1−1
1 θ

a2−1
2

βa3−1e−(b1θ1+b2θ2+b3β), (35.29)

with L(θ) as the likelihood function as given in Sect. 35.3.1
for different values of n1. Thus, under squared error loss
function, the Bayes estimates of any parametric function
p(θ1, θ2,β) are given by

̂p(θ1, θ2,β) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
K × p(θ1, θ2,β)L(θ)θ

a1−1
1 θ

a2−1
2

βa3−1e−(b1θ1+b2θ2+b3β)dθ1dθ2dβ, (35.30)

K being a normalizing constant. Note that it is not possible to
obtain closed form expression for this Bayes estimate. One
can use a general purpose approximation method such as
Lindley’s approximation [39]. However, unfortunately, cred-
ible intervals cannot be constructed in conjunction with Lind-
ley’s approximation. Alternatively, one can use an MCMC-
based approach to calculate the Bayes estimates and credible
intervals. Here, following Ganguly et al. [35], we outline
an algorithm based on importance sampling for obtaining
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the Bayes estimate and credible intervals for the parametric
function p(θ1, θ2,β).

Note that the joint posterior density can be decomposed as

π(θ1, θ2,β|DATA) = g1(θ1|β, DATA) × g2(θ2|β, DATA)

× g3(β|DATA),

where forms of g1(·), g2(·), g3(·) will depend upon L(θ)

based on different values of n1, i.e., for Cases (i)–(iii) in
Sect. 35.3. It is usually possible to approximate g3(β|DATA)

by a known log-concave density [35, 38]. To obtain an ap-
proximating density, one may plot g3(β|DATA) and then
select an appropriate approximating density by equating the
mean and variance of g3(β|DATA) to those of the approx-
imating density along the lines of Kundu [38] and Ganguly
et al. [35]. Let g4(β|DATA) denote the approximating density.
Then, the joint posterior density can be written as

π(θ1, θ2,β|DATA) = w(β) × g1(θ1|β, DATA)

× g2(θ2|β, DATA) × g4(β|DATA),

where w(β) = g3(β|DATA)

g4(β|DATA)
is the weight function. Finally, an

algorithm similar to the one proposed by Ganguly et al. [35]
may be given as:

Algorithm:

1. Generate β1 from g4(β|DATA)

2. Given β1, generate θ11 from g1(θ1|DATA)

3. Given β1, generate θ21 from g2(θ2|DATA)

4. Repeat steps 1 to 3 N times, to get (θ11, θ21,β1), …, (θ1N, θ2N,βN)

5. Compute pi = p(θ1i, θ2i,βi), i = 1, . . . , N
6. Compute wi = w(βi), i = 1, . . . , N
7. Compute the Bayes estimate ̂p(θ1, θ2,β) = 1

N

∑N
i=1 wipi.

Embedded in this process, credible intervals for
p(θ1, θ2,β) can also be constructed using the values pi,
i = 1, . . . , N.

35.5 Simulation Study

In this section, we carry out a detailed Monte Carlo simula-
tion study for several three-component systems, withm = 50
and 100, and by taking θ1 = 1 without loss of any generality,
to numerically investigate the proposedmethods of inference.
The values of θ2 are chosen as 0.50 and 0.25; values of β are
chosen as 1.00, 2.00, and 3.00; and values of τ are chosen so
that FT(τ ) = 0.20 and 0.30, respectively, for system tests.

Based on these chosen values of the parameters, we com-
pare the performances of the two methods of estimation,
namely, the direct likelihood-based approach using numer-

ical optimization through the Newton-Raphson method and
the approach based on St-EM algorithm. The results of this
comparison are presented in Table 35.2, suggesting that the
performances of these two approaches are quite close. For
this reason, we will present only the results obtained from the
direct likelihood-based approach for the remaining tables.

Based on the above settings, and form as 150 and 300, we
also carry out a simulation study for individual components,
the results of which are presented in Tables 35.3 and 35.4,
which are then compared with the inference obtained from
the system lifetimes. For example, when FT(τ ) = 0.20 for a
parallel system, with the same value of τ , we found FX(τ ) =
0.58 for component lifetimes. We compute the means and
mean squared errors (MSEs) of θ̂1, θ̂2 and β̂ through simu-
lations. The coverage probabilities are then equi-tailed CIs
obtained by the asymptotic approach. In order to compare
the relative efficiency between different coherent systems, we
calculate the trace and determinant of the observed Fisher
information matrix, as well as the total time on test (TTT).
We observe that in almost all system tests, all the MLEs are
positively biased.

We would like to point out some relative advantages of
testing coherent systems over individual components in this
setting here. Note that one would expect to have smaller
TTT when testing coherent systems as compared to testing
individual components. We observe in Tables 35.3 and 35.4
that this is always the case. This is a clear advantage in the
setting of step-stress experiments when TTT is a concern.
Also, one may consider the information contained in coher-
ent systems and individual components and compare them.
For example, one may compare the information contained
in 30 coherent systems with signature (1/3, 2/3, 0) with
50 individual components, as the number of components
expected to fail when 30 coherent systems with signature
(1/3, 2/3, 0) are tested is 50. For series and parallel systems,
the comparison is clear. Note that for three-component series
systems, we compare the information obtained from the first
failure (or equivalently, the smallest order statistics) among
a sample of size 3, with one individual component (since
the expected number of failed component of a series system
is 1). Clearly, the system will involve more information in
this case. However, for three-component parallel systems,
we actually compare the information obtained from the third
failure (or equivalently, the largest order statistics) among a
sample of size 3, with three individual components (since the
expected number of failed component of a parallel system
is 3). Clearly, the system will involve less information in
this case. Thus, under this setting, from the perspective of
information contained in failures, testing three-component
series systems is preferred over individual components.

Based on the trace and determinant of the observed Fisher
information matrix, denoted by tr(I) and det(I), respectively,
we find that the parallel system always has the highest
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Table 35.2 Simulated values of means and MSEs of the estimates from direct likelihood (in the first line) and St-EM approach (in the second
line)

m r FT (τ ) θ2 E(θ̂1) E(θ̂2) E(β̂) MSE(θ̂1) MSE(θ̂2) MSE(β̂) Prob. of con.

(includ. n1 = r)

P = (0, 0, 1) (equivalently, a = (3,−3, 1))

β = 1.00

50 40 0.20 0.50 1.0407 0.5742 1.1020 0.0514 0.0723 0.1177 0.9929

1.0380 0.5862 1.1281 0.0473 0.0739 0.1249 0.9993

0.25 1.0397 0.2876 1.1034 0.0504 0.0181 0.1186 0.9838

1.0381 0.2933 1.1289 0.0473 0.0186 0.1268 0.9997

0.30 0.50 1.0265 0.5551 1.0696 0.0234 0.0528 0.0696 0.9972

1.0274 0.5610 1.0848 0.0229 0.0534 0.0722 1.0000

0.25 1.0255 0.2782 1.0708 0.0230 0.0132 0.0693 0.9879

1.0274 0.2805 1.0848 0.0229 0.0134 0.0722 1.0000

100 80 0.20 0.50 1.0179 0.5354 1.0475 0.0180 0.0280 0.0456 0.9906

1.0168 0.5422 1.0615 0.0174 0.0284 0.0472 1.0000

0.25 1.0159 0.2685 1.0493 0.0175 0.0070 0.0453 0.9810

1.0168 0.2711 1.0615 0.0174 0.0071 0.0472 1.0000

0.30 0.50 1.0117 0.5282 1.0338 0.0095 0.0236 0.0302 0.9908

1.0123 0.5313 1.0416 0.0094 0.0237 0.0308 1.0000

0.25 1.0112 0.2645 1.0347 0.0094 0.0059 0.0299 0.9864

1.0123 0.2656 1.0416 0.0094 0.0059 0.0308 1.0000

β = 2.00

50 40 0.20 0.50 1.0202 0.5601 2.2080 0.0139 0.0590 0.5685 0.9867

1.0205 0.5634 2.2375 0.0131 0.0584 0.5767 0.9995

0.25 1.0159 0.2827 2.2237 0.0122 0.0145 0.5584 0.9624

1.0205 0.2819 2.2394 0.0131 0.0149 0.5976 0.9998

0.30 0.50 1.0113 0.5400 2.1327 0.0053 0.0385 0.2926 0.9890

1.0128 0.5405 2.1497 0.0054 0.0382 0.2977 1.0000

0.25 1.0104 0.2709 2.1377 0.0052 0.0096 0.2911 0.9721

1.0128 0.2702 2.1496 0.0054 0.0096 0.2977 1.0000

100 80 0.20 0.50 1.0083 0.5294 2.0978 0.0043 0.0238 0.2167 0.9786

1.0085 0.5311 2.1125 0.0043 0.0237 0.2193 1.0000

0.25 1.0052 0.2683 2.1172 0.0040 0.0059 0.2175 0.9371

1.0085 0.2655 2.1125 0.0043 0.0059 0.2193 1.0000

0.30 0.50 1.0048 0.5205 2.0637 0.0022 0.0177 0.1271 0.9805

1.0056 0.5212 2.0735 0.0022 0.0176 0.1286 1.0000

0.25 1.0038 0.2621 2.0733 0.0022 0.0043 0.1253 0.9601

1.0056 0.2606 2.0735 0.0022 0.0044 0.1286 1.0000

β = 3.00

50 40 0.20 0.50 1.0121 0.5555 3.3132 0.0058 0.0533 1.3254 0.9828

1.0135 0.5559 3.3417 0.0059 0.0531 1.3466 0.9996

0.25 1.0095 0.2807 3.3406 0.0053 0.0135 1.3617 0.9561

1.0135 0.2782 3.3447 0.0059 0.0136 1.3973 0.9998

0.30 0.50 1.0072 0.5351 3.1941 0.0023 0.0346 0.6640 0.9879

1.0083 0.5339 3.2116 0.0023 0.0339 0.6696 1.0000

0.25 1.0063 0.2686 3.2017 0.0022 0.0085 0.6565 0.9714

1.0083 0.2669 3.2116 0.0023 0.0085 0.6696 1.0000

100 80 0.20 0.50 1.0050 0.5268 3.1455 0.0018 0.0217 0.4994 0.9748

1.0053 0.5276 3.1622 0.0018 0.0218 0.5072 1.0000

0.25 1.0023 0.2681 3.1843 0.0016 0.0055 0.5056 0.9150

1.0053 0.2638 3.1621 0.0018 0.0054 0.5072 1.0000

0.30 0.50 1.0031 0.5181 3.0933 0.0010 0.0159 0.2879 0.9790

1.0036 0.5179 3.1039 0.0010 0.0158 0.2905 1.0000

0.25 1.0024 0.2611 3.1082 0.0009 0.0039 0.2870 0.9537

1.0036 0.2590 3.1039 0.0010 0.0040 0.2905 1.0000

(continued)



35 Inference for Coherent Systems with Weibull Components Under a Simple Step-Stress Model 715

35

Table 35.2 (continued)

m r FT (τ ) θ2 E(θ̂1) E(θ̂2) E(β̂) MSE(θ̂1) MSE(θ̂2) MSE(β̂) Prob. of con.

(includ. n1 = r)

P = (1, 0, 0) (equivalently, a = (0, 0, 1))

β = 1.00

50 40 0.20 0.50 1.2515 0.5051 1.0918 1.9512 0.0120 0.0852 0.9931

1.2097 0.5004 1.1340 1.5880 0.0116 0.1012 0.9951

0.25 1.2528 0.2526 1.0935 1.9698 0.0030 0.0891 0.9924

1.2102 0.2502 1.1361 1.6009 0.0029 0.1062 0.9985

0.30 0.50 1.1322 0.5078 1.0809 0.7399 0.0122 0.0721 0.9983

1.1117 0.5043 1.1107 0.7103 0.0119 0.0811 1.0000

0.25 1.1325 0.2540 1.0811 0.7407 0.0031 0.0727 0.9959

1.1117 0.2521 1.1107 0.7103 0.0030 0.0811 1.0000

100 80 0.20 0.50 1.0944 0.5023 1.0445 0.3883 0.0059 0.0328 0.9977

1.0768 0.4996 1.0665 0.3726 0.0058 0.0368 0.9999

0.25 1.0929 0.2512 1.0445 0.3811 0.0015 0.0324 0.9916

1.0766 0.2498 1.0665 0.3721 0.0014 0.0368 1.0000

0.30 0.50 1.0585 0.5043 1.0378 0.2126 0.0059 0.0290 0.9978

1.0474 0.5022 1.0534 0.2055 0.0059 0.0310 1.0000

0.25 1.0584 0.2521 1.0379 0.2123 0.0015 0.0290 0.9944

1.0474 0.2511 1.0534 0.2055 0.0015 0.0310 1.0000

β = 2.00

50 40 0.20 0.50 1.1415 0.5194 2.2039 0.9091 0.0089 0.5062 0.9931

1.1102 0.5198 2.2753 0.6004 0.0090 0.5603 0.9973

0.25 1.1396 0.2600 2.2099 0.9078 0.0023 0.5329 0.9914

1.1112 0.2602 2.2808 0.6136 0.0023 0.5930 0.9993

0.30 0.50 1.0538 0.5160 2.1554 0.1935 0.0107 0.3394 0.9980

1.0426 0.5145 2.1967 0.1796 0.0105 0.3588 1.0000

0.25 1.0537 0.2580 2.1550 0.1937 0.0027 0.3355 0.9940

1.0426 0.2572 2.1967 0.1796 0.0026 0.3588 1.0000

100 80 0.20 0.50 1.0467 0.5100 2.1017 0.1330 0.0038 0.2002 0.9964

1.0377 0.5102 2.1365 0.1260 0.0038 0.2102 1.0000

0.25 1.0468 0.2550 2.1010 0.1328 0.0010 0.1979 0.9923

1.0377 0.2551 2.1366 0.1259 0.0010 0.2102 1.0000

0.30 0.50 1.0229 0.5081 2.0721 0.0567 0.0049 0.1362 0.9972

1.0176 0.5072 2.0930 0.0552 0.0049 0.1402 1.0000

0.25 1.0234 0.2539 2.0715 0.0567 0.0012 0.1357 0.9942

1.0176 0.2536 2.0930 0.0552 0.0012 0.1402 1.0000

β = 3.00

50 40 0.20 0.50 1.0934 0.5262 3.3087 0.5752 0.0152 1.2948 0.9903

1.0732 0.5272 3.3964 0.3419 0.0151 1.3994 0.9978

0.25 1.0923 0.2635 3.3151 0.5775 0.0039 1.3489 0.9855

1.0733 0.2639 3.4035 0.3389 0.0039 1.4739 0.9993

0.30 0.50 1.0298 0.5196 3.2243 0.0818 0.0146 0.7895 0.9961

1.0232 0.5178 3.2729 0.0737 0.0142 0.8237 1.0000

0.25 1.0295 0.2599 3.2236 0.0819 0.0036 0.7806 0.9919

1.0232 0.2589 3.2729 0.0737 0.0036 0.8237 1.0000

100 80 0.20 0.50 1.0278 0.5134 3.1523 0.0610 0.0064 0.5003 0.9947

1.0227 0.5139 3.1939 0.0587 0.0064 0.5208 1.0000

0.25 1.0252 0.2573 3.1563 0.0601 0.0016 0.5013 0.9806

1.0227 0.2569 3.1939 0.0587 0.0016 0.5208 1.0000

0.30 0.50 1.0127 0.5096 3.1028 0.0245 0.0066 0.3149 0.9959

1.0095 0.5088 3.1279 0.0239 0.0066 0.3232 1.0000

0.25 1.0124 0.2549 3.1034 0.0244 0.0017 0.3157 0.9915

1.0095 0.2544 3.1279 0.0239 0.0016 0.3232 1.0000

(continued)
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Table 35.2 (continued)

m r FT (τ ) θ2 E(θ̂1) E(θ̂2) E(β̂) MSE(θ̂1) MSE(θ̂2) MSE(β̂) Prob. of con.

(includ. n1 = r)

P = (0, 2/3, 1/3) (equivalently, a = (1, 1,−1))

β = 1.00

50 40 0.20 0.50 1.0733 0.5434 1.1028 0.2273 0.0298 0.1101 0.9957

1.0554 0.5526 1.1385 0.2039 0.0310 0.1224 0.9986

0.25 1.0738 0.2720 1.1038 0.2296 0.0077 0.1152 0.9919

1.0560 0.2766 1.1396 0.2044 0.0080 0.1278 0.9999

0.30 0.50 1.0390 0.5364 1.0734 0.0886 0.0287 0.0687 0.9986

1.0315 0.5407 1.0948 0.0828 0.0290 0.0730 1.0000

0.25 1.0390 0.2683 1.0735 0.0887 0.0072 0.0688 0.9957

1.0315 0.2703 1.0948 0.0828 0.0073 0.0730 1.0000

100 80 0.20 0.50 1.0346 0.5190 1.0465 0.0734 0.0117 0.0410 0.9977

1.0265 0.5240 1.0651 0.0695 0.0120 0.0439 1.0000

0.25 1.0351 0.2595 1.0460 0.0738 0.0029 0.0410 0.9901

1.0265 0.2620 1.0651 0.0695 0.0030 0.0439 1.0000

0.30 0.50 1.0184 0.5169 1.0348 0.0327 0.0125 0.0288 0.9974

1.0149 0.5193 1.0461 0.0318 0.0126 0.0300 1.0000

0.25 1.0177 0.2587 1.0350 0.0327 0.0031 0.0288 0.9899

1.0149 0.2597 1.0461 0.0318 0.0031 0.0300 1.0000

β = 2.00

50 40 0.20 0.50 1.0400 0.5456 2.2126 0.0762 0.0368 0.5640 0.9929

1.0337 0.5503 2.2606 0.0655 0.0368 0.5880 0.9992

0.25 1.0383 0.2736 2.2183 0.0738 0.0095 0.5911 0.9855

1.0336 0.2754 2.2636 0.0655 0.0095 0.6159 0.9999

0.30 0.50 1.0172 0.5313 2.1379 0.0212 0.0275 0.2963 0.9959

1.0153 0.5323 2.1652 0.0203 0.0272 0.3055 1.0000

0.25 1.0168 0.2659 2.1392 0.0212 0.0069 0.2964 0.9890

1.0153 0.2662 2.1652 0.0203 0.0068 0.3054 1.0000

100 80 0.20 0.50 1.0173 0.5200 2.0953 0.0214 0.0145 0.2088 0.9915

1.0153 0.5221 2.1186 0.0206 0.0145 0.2136 1.0000

0.25 1.0155 0.2603 2.0974 0.0206 0.0036 0.2086 0.9794

1.0153 0.2611 2.1185 0.0206 0.0036 0.2136 1.0000

0.30 0.50 1.0078 0.5148 2.0659 0.0079 0.0122 0.1253 0.9925

1.0072 0.5151 2.0791 0.0079 0.0121 0.1275 1.0000

0.25 1.0072 0.2576 2.0671 0.0078 0.0030 0.1249 0.9835

1.0072 0.2575 2.0791 0.0079 0.0030 0.1275 1.0000

β = 3.00

50 40 0.20 0.50 1.0249 0.5460 3.3171 0.0368 0.0395 1.3288 0.9894

1.0224 0.5483 3.3729 0.0315 0.0394 1.3936 0.9994

0.25 1.0213 0.2746 3.3363 0.0348 0.0101 1.4102 0.9773

1.0224 0.2743 3.3763 0.0313 0.0101 1.4486 0.9999

0.30 0.50 1.0103 0.5295 3.2016 0.0087 0.0273 0.6749 0.9948

1.0098 0.5288 3.2310 0.0084 0.0269 0.6889 1.0000

0.25 1.0091 0.2654 3.2074 0.0082 0.0069 0.6770 0.9865

1.0098 0.2644 3.2310 0.0084 0.0067 0.6889 1.0000

100 80 0.20 0.50 1.0104 0.5200 3.1418 0.0093 0.0156 0.4936 0.9895

1.0097 0.5209 3.1668 0.0091 0.0155 0.5021 1.0000

0.25 1.0073 0.2615 3.1567 0.0087 0.0039 0.4941 0.9646

1.0097 0.2604 3.1668 0.0091 0.0039 0.5020 1.0000

0.30 0.50 1.0048 0.5137 3.0951 0.0034 0.0122 0.2853 0.9944

1.0046 0.5134 3.1102 0.0034 0.0121 0.2888 1.0000

0.25 1.0041 0.2575 3.0996 0.0033 0.0030 0.2852 0.9816

1.0046 0.2567 3.1102 0.0034 0.0030 0.2888 1.0000

(continued)
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Table 35.2 (continued)

m r FT (τ ) θ2 E(θ̂1) E(θ̂2) E(β̂) MSE(θ̂1) MSE(θ̂2) MSE(β̂) Prob. of con.

(includ. n1 = r)

P = (1/3, 2/3, 0) (equivalently, a = (0, 2,−1))

β = 1.00

50 40 0.20 0.50 1.1631 0.5180 1.0984 0.7661 0.0106 0.0993 0.9923

1.1336 0.5214 1.1394 0.6994 0.0110 0.1157 0.9958

0.25 1.1627 0.2592 1.0996 0.7668 0.0027 0.1016 0.9904

1.1345 0.2608 1.1407 0.7169 0.0028 0.1176 0.9984

0.30 0.50 1.0752 0.5205 1.0858 0.2840 0.0139 0.0819 0.9986

1.0599 0.5223 1.1139 0.2651 0.0141 0.0897 0.9999

0.25 1.0747 0.2603 1.0861 0.2835 0.0035 0.0824 0.9960

1.0597 0.2612 1.1140 0.2633 0.0035 0.0902 1.0000

100 80 0.20 0.50 1.0716 0.5085 1.0456 0.2082 0.0047 0.0381 0.9974

1.0574 0.5104 1.0669 0.1969 0.0048 0.0419 1.0000

0.25 1.0723 0.2543 1.0455 0.2087 0.0012 0.0381 0.9941

1.0574 0.2552 1.0669 0.1969 0.0012 0.0419 1.0000

0.30 0.50 1.0351 0.5101 1.0402 0.0989 0.0062 0.0328 0.9980

1.0280 0.5111 1.0549 0.0959 0.0063 0.0348 1.0000

0.25 1.0355 0.2551 1.0399 0.0992 0.0016 0.0328 0.9929

1.0280 0.2555 1.0549 0.0959 0.0016 0.0348 1.0000

β = 2.00

50 40 0.20 0.50 1.0898 0.5307 2.2155 0.2826 0.0199 0.5600 0.9910

1.0761 0.5347 2.2815 0.2489 0.0202 0.6200 0.9974

0.25 1.0898 0.2658 2.2193 0.2841 0.0051 0.5876 0.9858

1.0767 0.2677 2.2859 0.2577 0.0052 0.6580 0.9988

0.30 0.50 1.0322 0.5252 2.1653 0.0715 0.0191 0.3754 0.9968

1.0267 0.5258 2.2043 0.0671 0.0190 0.3954 1.0000

0.25 1.0321 0.2627 2.1655 0.0716 0.0048 0.3763 0.9924

1.0249 0.2610 2.1953 0.0572 0.0045 0.3742 1.0000

100 80 0.20 0.50 1.0368 0.5143 2.0986 0.0686 0.0084 0.2177 0.9963

1.0320 0.5162 2.1302 0.0654 0.0084 0.2267 1.0000

0.25 1.0358 0.2574 2.0996 0.0684 0.0021 0.2188 0.9859

1.0320 0.2581 2.1302 0.0654 0.0021 0.2267 1.0000

0.30 0.50 1.0152 0.5121 2.0764 0.0255 0.0085 0.1509 0.9972

1.0129 0.5124 2.0955 0.0251 0.0084 0.1554 1.0000

0.25 1.0148 0.2562 2.0767 0.0253 0.0021 0.1512 0.9906

1.0129 0.2562 2.0954 0.0251 0.0021 0.1554 1.0000

β = 3.00

50 40 0.20 0.50 1.0585 0.5349 3.3230 0.1505 0.0265 1.3693 0.9872

1.0515 0.5381 3.4069 0.1307 0.0270 1.5155 0.9979

0.25 1.0516 0.2691 3.3432 0.1281 0.0069 1.4711 0.9736

1.0519 0.2694 3.4136 0.1355 0.0070 1.6186 0.9988

0.30 0.50 1.0186 0.5266 3.2407 0.0299 0.0225 0.8649 0.9951

1.0161 0.5260 3.2868 0.0279 0.0221 0.9042 1.0000

0.25 1.0175 0.2636 3.2435 0.0293 0.0056 0.8561 0.9881

1.0161 0.2630 3.2868 0.0279 0.0055 0.9042 1.0000

100 80 0.20 0.50 1.0225 0.5159 3.1459 0.0312 0.0111 0.5250 0.9930

1.0200 0.5174 3.1855 0.0303 0.0112 0.5538 1.0000

0.25 1.0158 0.2600 3.1663 0.0290 0.0028 0.5427 0.9554

1.0200 0.2587 3.1855 0.0303 0.0028 0.5537 1.0000

0.30 0.50 1.0088 0.5127 3.1110 0.0108 0.0100 0.3501 0.9946

1.0079 0.5123 3.1325 0.0107 0.0099 0.3570 1.0000

0.25 1.0070 0.2570 3.1158 0.0104 0.0025 0.3497 0.9819

1.0079 0.2562 3.1325 0.0107 0.0025 0.3570 1.0000
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Table 35.4 Relative efficiency of the MSEs, TTT, trace, and determi-
nant of observed Fisher information matrix for some three-component
coherent systems and component life tests. The quantity F(τ ) in the

third column corresponds to FT (τ ) in case of system lifetimes and
corresponds to FX(τ ) in case of component lifetimes

m r F(τ ) θ2 MSE(θ̂1) MSE(θ̂2) MSE(β̂) tr(I) det(I) TTT

β = 1.00

P = (0, 0, 1) (equivalently, a = (3,−3, 1))

50 40 0.20 0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.30 0.50 0.4553 0.7303 0.5913 0.8986 1.4357 1.0701

100 80 0.20 0.50 0.3502 0.3873 0.3874 1.8147 7.4033 2.0008

0.30 0.50 0.1848 0.3264 0.2566 1.6562 10.4950 2.1405

Individual components

150 120 0.58 0.50 0.2607 0.1618 0.0824 1.0727 10.2729 1.6962

0.67 0.50 0.2101 0.2586 0.0697 0.9735 8.8785 1.7992

300 240 0.58 0.50 0.1284 0.0761 0.0391 2.0863 78.3679 3.3909

0.67 0.50 0.1012 0.1176 0.0331 1.8829 65.8178 3.5957

P = (1, 0, 0) (equivalently, a = (0, 0, 1))

50 40 0.20 0.50 37.9611 0.1660 0.7239 0.8443 0.6700 0.1359

0.30 0.50 14.3949 0.1687 0.6126 0.7282 0.6263 0.1496

100 80 0.20 0.50 7.5545 0.0816 0.2787 1.3874 3.0341 0.2721

0.30 0.50 4.1362 0.0816 0.2464 1.2628 3.2727 0.2993

Individual components

150 120 0.07 0.50 8.8735 0.0387 0.1308 1.7063 4.0937 1.0682

0.11 0.50 3.7179 0.0470 0.1572 1.6505 4.6355 1.1179

300 240 0.07 0.50 2.3813 0.0180 0.0586 3.3296 27.6250 2.1352

0.11 0.50 1.4942 0.0221 0.0705 3.2278 32.7520 2.2333

P = (0, 2/3, 1/3) (equivalently, a = (1, 1,−1))

50 40 0.20 0.50 4.4222 0.4122 0.9354 0.7143 0.5290 0.5613

0.30 0.50 1.7237 0.3970 0.5837 0.6357 0.7070 0.6072

100 80 0.20 0.50 1.4280 0.1618 0.3483 1.2901 3.8588 1.1223

0.30 0.50 0.6362 0.1729 0.2447 1.1769 5.2089 1.2138

Individual components

150 120 0.35 0.50 0.7510 0.0927 0.1410 1.3517 8.1124 1.4067

0.44 0.50 0.4689 0.1093 0.1130 1.2424 9.5004 1.5175

300 240 0.35 0.50 0.3560 0.0443 0.0663 2.6586 61.8858 2.8096

0.44 0.50 0.2218 0.0526 0.0544 2.4392 73.3652 3.0312

P = (1/3, 2/3, 0) (equivalently, a = (0, 2,−1))

50 40 0.20 0.50 14.9047 0.1466 0.8437 0.7065 0.4013 0.2993

0.30 0.50 5.5253 0.1923 0.6958 0.6148 0.4676 0.3298

100 80 0.20 0.50 4.0506 0.0650 0.3237 1.2455 2.5222 0.5988

0.30 0.50 1.9241 0.0858 0.2787 1.1097 3.1659 0.6593

Individual components

150 120 0.17 0.50 2.1381 0.0609 0.1699 1.5665 5.4080 1.1947

0.25 0.50 1.2918 0.0747 0.1631 1.4663 6.5515 1.2898

300 240 0.17 0.50 0.9708 0.0290 0.0773 3.0746 39.5939 2.3852

0.25 0.50 0.5837 0.0360 0.0756 2.8833 49.2141 2.5748

P = (0, 0, 1) (equivalently, a = (3,−3, 1))

50 40 0.20 0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.30 0.25 0.4563 0.7293 0.5843 0.8348 1.4316 1.1255

100 80 0.20 0.25 0.3472 0.3867 0.3820 1.8247 7.4248 2.0002

0.30 0.25 0.1865 0.3260 0.2521 1.5230 10.5041 2.2510

Individual components

150 120 0.58 0.25 0.2679 0.1602 0.0818 0.8720 10.3194 1.8720

0.67 0.25 0.2163 0.2597 0.0691 0.6784 8.8965 2.0582

(continued)
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Table 35.4 (continued)

m r F(τ ) θ2 MSE(θ̂1) MSE(θ̂2) MSE(β̂) tr(I) det(I) TTT

Individual components

300 240 0.58 0.25 0.1270 0.0773 0.0396 1.6816 78.9226 3.7430

0.67 0.25 0.1032 0.1160 0.0329 1.2823 66.2139 4.1154

P = (1, 0, 0) (equivalently, a = (0, 0, 1))

50 40 0.20 0.25 39.0833 0.1657 0.7513 0.8237 0.6761 0.1139

0.30 0.25 14.6964 0.1713 0.6130 0.6670 0.6306 0.1383

100 80 0.20 0.25 7.5615 0.0829 0.2732 1.4028 3.0575 0.2279

0.30 0.25 4.2123 0.0829 0.2445 1.1852 3.2988 0.2767

Individual components

150 120 0.07 0.25 9.0496 0.0387 0.1298 2.1069 4.1239 0.7438

0.11 0.25 3.7956 0.0442 0.1560 1.9946 4.6749 0.8327

300 240 0.07 0.25 2.4365 0.0166 0.0582 4.1148 27.7306 1.4878

0.11 0.25 1.5437 0.0221 0.0700 3.9075 32.8352 1.6655

P = (0, 2/3, 1/3) (equivalently, a = (1, 1,−1))

50 40 0.20 0.25 4.5556 0.4254 0.9713 0.7309 0.5320 0.5285

0.30 0.25 1.7599 0.3978 0.5801 0.6208 0.7117 0.6106

100 80 0.20 0.25 1.4643 0.1602 0.3457 1.3811 3.8781 1.0568

0.30 0.25 0.6488 0.1713 0.2428 1.1686 5.2459 1.2208

Individual components

150 120 0.35 0.25 0.7698 0.0939 0.1408 1.4099 8.1625 1.3512

0.44 0.25 0.4762 0.1105 0.1121 1.2020 9.5674 1.5498

300 240 0.35 0.25 0.3631 0.0442 0.0649 2.7767 61.7787 2.7027

0.44 0.25 0.2222 0.0497 0.0531 2.3550 73.2460 3.0997

P = (1/3, 2/3, 0) (equivalently, a = (0, 2,−1))

50 40 0.20 0.25 15.2143 0.1492 0.8567 0.7841 0.4037 0.2636

0.30 0.25 5.6250 0.1934 0.6948 0.6436 0.4710 0.3180

100 80 0.20 0.25 4.1409 0.0663 0.3212 1.4525 2.5352 0.5272

0.30 0.25 1.9683 0.0884 0.2766 1.2036 3.1855 0.6357

Individual components

150 120 0.17 0.25 2.1825 0.0608 0.1686 1.8274 5.4504 0.9705

0.25 0.25 1.3175 0.0718 0.1619 1.6324 6.5973 1.1411

300 240 0.17 0.25 0.9802 0.0276 0.0767 3.5932 39.6349 1.9411

0.25 0.25 0.5913 0.0331 0.0742 3.2156 49.0583 2.2826

β = 2.00

P = (0, 0, 1) (equivalently, a = (3,−3, 1))

50 40 0.20 0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.30 0.50 0.3813 0.6525 0.5147 0.8490 1.4368 1.0403

100 80 0.20 0.50 0.3094 0.4034 0.3812 1.6758 7.6775 2.0006

0.30 0.50 0.1583 0.3000 0.2236 1.5158 10.9245 2.0808

Individual components

150 120 0.58 0.50 0.2374 0.1746 0.0686 0.8336 10.2178 2.1675

0.67 0.50 0.1942 0.2932 0.0573 0.7867 8.2826 2.2275

300 240 0.58 0.50 0.1151 0.0847 0.0331 1.6110 78.8412 4.3355

0.67 0.50 0.0935 0.1288 0.0271 1.5200 61.4296 4.4556

P = (1, 0, 0) (equivalently, a = (0, 0, 1))

50 40 0.20 0.50 65.4029 0.1508 0.8904 0.6141 0.2673 0.3403

0.30 0.50 13.9209 0.1814 0.5970 0.4964 0.3408 0.3656

100 80 0.20 0.50 9.5683 0.0644 0.3522 0.9898 1.8730 0.6810

0.30 0.50 4.0791 0.0831 0.2396 0.8370 2.4895 0.7316

Individual components

150 120 0.07 0.50 12.7482 0.0966 0.3022 1.7488 2.7752 1.5271

0.11 0.50 6.1439 0.1102 0.2922 1.5708 3.5362 1.6190

300 240 0.07 0.50 4.2590 0.0407 0.1277 3.3436 21.6263 3.0546

0.11 0.50 2.5180 0.0492 0.1261 3.0055 27.5936 3.2385

(continued)
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Table 35.4 (continued)

m r F(τ ) θ2 MSE(θ̂1) MSE(θ̂2) MSE(β̂) tr(I) det(I) TTT

P = (0, 2/3, 1/3) (equivalently, a = (1, 1,−1))

50 40 0.20 0.50 5.4820 0.6237 0.9921 0.7132 0.4855 0.7324

0.30 0.50 1.5252 0.4661 0.5212 0.5954 0.7056 0.7696

100 80 0.20 0.50 1.5396 0.2458 0.3673 1.1887 3.8481 1.4650

0.30 0.50 0.5683 0.2068 0.2204 1.0542 5.5298 1.5392

Individual components

150 120 0.35 0.50 0.7122 0.1136 0.1295 1.0557 8.8016 1.9559

0.44 0.50 0.4245 0.1220 0.0973 0.9511 10.2401 2.0457

300 240 0.35 0.50 0.3453 0.0542 0.0607 2.0355 69.8602 3.9121

0.44 0.50 0.2014 0.0593 0.0464 1.8379 81.1530 4.0919

P = (1/3, 2/3, 0) (equivalently, a = (0, 2,−1))

50 40 0.20 0.50 20.3309 0.3373 0.9850 0.6756 0.2769 0.5180

0.30 0.50 5.1439 0.3237 0.6603 0.5548 0.3940 0.5537

100 80 0.20 0.50 4.9353 0.1424 0.3829 1.1228 2.1409 1.0362

0.30 0.50 1.8345 0.1441 0.2654 0.9529 3.0867 1.1073

Individual components

150 120 0.17 0.50 2.9424 0.1136 0.2331 1.3739 4.8569 1.7316

0.25 0.50 1.4101 0.1102 0.1745 1.2031 6.6812 1.8431

300 240 0.17 0.50 1.3165 0.0525 0.1047 2.6369 38.2157 3.4636

0.25 0.50 0.6547 0.0525 0.0807 2.3150 52.8738 3.6868

P = (0, 0, 1) (equivalently, a = (3,−3, 1))

50 40 0.20 0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.30 0.25 0.4262 0.6621 0.5213 0.7803 1.4448 1.0656

100 80 0.20 0.25 0.3279 0.4069 0.3895 1.7260 7.6675 2.0004

0.30 0.25 0.1803 0.2966 0.2244 1.3806 10.9519 2.1312

Individual components

150 120 0.58 0.25 0.2705 0.1793 0.0698 0.7153 10.3851 2.2750

0.67 0.25 0.2213 0.2966 0.0586 0.5593 8.4136 2.3724

300 240 0.58 0.25 0.1311 0.0828 0.0335 1.3640 80.0918 4.5512

0.67 0.25 0.1066 0.1310 0.0283 1.0551 62.6725 4.7467

P = (1, 0, 0) (equivalently, a = (0, 0, 1))

50 40 0.20 0.25 74.4098 0.1586 0.9543 0.7320 0.2719 0.3132

0.30 0.25 15.8770 0.1862 0.6008 0.5616 0.3461 0.3544

100 80 0.20 0.25 10.8852 0.0690 0.3544 1.3188 1.9041 0.6268

0.30 0.25 4.6475 0.0828 0.2430 1.0258 2.5276 0.7091

Individual components

150 120 0.07 0.25 14.9344 0.0966 0.3016 2.7804 2.8156 1.2333

0.11 0.25 7.0000 0.1172 0.3043 2.4151 3.6074 1.3825

300 240 0.07 0.25 4.9508 0.0414 0.1259 5.4617 21.9152 2.4664

0.11 0.25 2.9508 0.0552 0.1313 4.7462 28.0879 2.7656

P = (0, 2/3, 1/3) (equivalently, a = (1, 1,−1))

50 40 0.20 0.25 6.0492 0.6552 1.0586 0.7769 0.4920 0.7133

0.30 0.25 1.7377 0.4759 0.5308 0.6079 0.7157 0.7737

100 80 0.20 0.25 1.6885 0.2483 0.3736 1.3906 3.9096 1.4265

0.30 0.25 0.6393 0.2069 0.2237 1.1035 5.6101 1.5474

Individual components

150 120 0.35 0.25 0.8115 0.1172 0.1325 1.3127 8.9487 1.9303

0.44 0.25 0.4836 0.1241 0.0992 1.0485 10.3893 2.0768

300 240 0.35 0.25 0.4016 0.0552 0.0636 2.5524 70.8271 3.8615

0.44 0.25 0.2295 0.0621 0.0478 2.0242 81.8279 4.1548

P = (1/3, 2/3, 0) (equivalently, a = (0, 2,−1))

50 40 0.20 0.25 23.2869 0.3517 1.0523 0.8318 0.2807 0.4887

0.30 0.25 5.8689 0.3310 0.6739 0.6348 0.4000 0.5466

(continued)
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Table 35.4 (continued)

m r F(τ ) θ2 MSE(θ̂1) MSE(θ̂2) MSE(β̂) tr(I) det(I) TTT

P = (1/3, 2/3, 0) (equivalently, a = (0, 2,−1))

100 80 0.20 0.25 5.6066 0.1448 0.3918 1.5154 2.1761 0.9773

0.30 0.25 2.0738 0.1448 0.2708 1.1570 3.1347 1.0929

Individual components

150 120 0.17 0.25 3.3443 0.1172 0.2398 2.0143 4.9445 1.5657

0.25 0.25 1.5984 0.1103 0.1796 1.6550 6.7819 1.7474

300 240 0.17 0.25 1.5492 0.0552 0.1123 3.9616 38.9043 3.1316

0.25 0.25 0.7705 0.0552 0.0870 3.2344 53.9356 3.4939

β = 3.00

P = (0, 0, 1) (equivalently, a = (3,−3, 1))

50 40 0.20 0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.30 0.50 0.3966 0.6492 0.5010 0.8632 1.4137 1.0278

100 80 0.20 0.50 0.3103 0.4071 0.3768 1.6518 7.7256 2.0004

0.30 0.50 0.1724 0.2983 0.2172 1.5432 10.7998 2.0557

Individual components

150 120 0.58 0.50 0.2586 0.1876 0.0663 0.8234 9.8810 2.3818

0.67 0.50 0.2069 0.3208 0.0555 0.8125 7.8007 2.4231

300 240 0.58 0.50 0.1207 0.0901 0.0315 1.6003 75.9735 4.7644

0.67 0.50 0.1034 0.1388 0.0263 1.5849 57.3792 4.8471

P = (1, 0, 0) (equivalently, a = (0, 0, 1))

50 40 0.20 0.50 99.1724 0.2852 0.9769 0.5264 0.2201 0.4777

0.30 0.50 14.1034 0.2739 0.5957 0.4250 0.3092 0.5036

100 80 0.20 0.50 10.5172 0.1201 0.3775 0.8264 1.7113 0.9560

0.30 0.50 4.2241 0.1238 0.2376 0.7080 2.4218 1.0074

Individual components

150 120 0.07 0.50 19.1379 0.2195 0.4850 1.5561 2.3375 1.8348

0.11 0.50 8.3448 0.1989 0.3912 1.3603 3.2759 1.9285

300 240 0.07 0.50 6.2414 0.0919 0.1993 2.8424 18.8638 3.6697

0.11 0.50 3.2414 0.0863 0.1640 2.5164 26.2704 3.8571

P = (0, 2/3, 1/3) (equivalently, a = (1, 1,−1))

50 40 0.20 0.50 6.3448 0.7411 1.0026 0.6870 0.4885 0.8083

0.30 0.50 1.5000 0.5122 0.5092 0.5775 0.7127 0.8370

100 80 0.20 0.50 1.6034 0.2927 0.3724 1.1143 3.9249 1.6167

0.30 0.50 0.5862 0.2289 0.2153 1.0151 5.6170 1.6740

Individual components

150 120 0.35 0.50 0.7414 0.1313 0.1277 0.9306 9.1158 2.2238

0.44 0.50 0.4483 0.1351 0.0945 0.8724 10.3629 2.2932

300 240 0.35 0.50 0.3621 0.0638 0.0598 1.7821 72.7254 4.4481

0.44 0.50 0.2069 0.0657 0.0449 1.6813 82.0973 4.5870

P = (1/3, 2/3, 0) (equivalently, a = (0, 2,−1))

50 40 0.20 0.50 25.9483 0.4972 1.0331 0.6219 0.2637 0.6360

0.30 0.50 5.1552 0.4221 0.6526 0.5146 0.3918 0.6672

100 80 0.20 0.50 5.3793 0.2083 0.3961 0.9945 2.1329 1.2723

0.30 0.50 1.8621 0.1876 0.2641 0.8695 3.1388 1.3344

Individual components

150 120 0.17 0.50 3.3793 0.1614 0.2626 1.1689 4.8887 2.0342

0.25 0.50 1.5000 0.1370 0.1799 1.0308 6.9452 2.1317

300 240 0.17 0.50 1.5000 0.0769 0.1169 2.1980 39.1702 4.0688

0.25 0.50 0.7069 0.0657 0.0831 1.9582 55.6000 4.2639

P = (0, 0, 1) (equivalently, a = (3,−3, 1))

50 40 0.20 0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.30 0.25 0.4151 0.6296 0.4821 0.7820 1.4222 1.0439

100 80 0.20 0.25 0.3019 0.4074 0.3713 1.6741 7.6638 2.0003

0.30 0.25 0.1698 0.2889 0.2108 1.3853 10.7988 2.0879

(continued)
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Table 35.4 (continued)

m r F(τ ) θ2 MSE(θ̂1) MSE(θ̂2) MSE(β̂) tr(I) det(I) TTT

Individual components

150 120 0.58 0.25 0.2830 0.1852 0.0646 0.7059 10.0502 2.4593

0.67 0.25 0.2264 0.3185 0.0538 0.5962 7.9107 2.5246

300 240 0.58 0.25 0.1321 0.0889 0.0308 1.3514 77.2053 4.9192

0.67 0.25 0.1132 0.1407 0.0256 1.1372 58.2686 5.0492

P = (1, 0, 0) (equivalently, a = (0, 0, 1))

50 40 0.20 0.25 108.9623 0.2889 0.9906 0.6840 0.2235 0.4539

0.30 0.25 15.4528 0.2667 0.5733 0.5168 0.3142 0.4946

100 80 0.20 0.25 11.3396 0.1185 0.3681 1.2058 1.7433 0.9080

0.30 0.25 4.6038 0.1259 0.2318 0.9265 2.4601 0.9895

Individual components

150 120 0.07 0.25 20.8868 0.2296 0.4903 2.7929 2.4056 1.5945

0.11 0.25 8.7358 0.2074 0.3943 2.3321 3.3659 1.7423

300 240 0.07 0.25 6.8113 0.0889 0.1789 5.4012 19.2992 3.1894

0.11 0.25 3.5849 0.0889 0.1554 4.5323 26.8149 3.4853

P = (0, 2/3, 1/3) (equivalently, a = (1, 1,−1))

50 40 0.20 0.25 6.5660 0.7481 1.0356 0.7619 0.4949 0.7951

0.30 0.25 1.5472 0.5111 0.4972 0.5905 0.7228 0.8405

100 80 0.20 0.25 1.6415 0.2889 0.3629 1.3120 3.9748 1.5904

0.30 0.25 0.6226 0.2222 0.2094 1.0546 5.6867 1.6810

Individual components

150 120 0.35 0.25 0.8113 0.1259 0.1246 1.1899 9.2383 2.2098

0.44 0.25 0.4906 0.1333 0.0922 0.9649 10.5229 2.3193

300 240 0.35 0.25 0.3962 0.0667 0.0599 2.3004 73.6726 4.4197

0.44 0.25 0.2453 0.0667 0.0449 1.8554 82.7799 4.6403

P = (1/3, 2/3, 0) (equivalently, a = (0, 2,−1))

50 40 0.20 0.25 24.1698 0.5111 1.0803 0.8048 0.2683 0.6133

0.30 0.25 5.5283 0.4148 0.6287 0.6030 0.3977 0.6626

100 80 0.20 0.25 5.4717 0.2074 0.3985 1.4046 2.1707 1.2269

0.30 0.25 1.9623 0.1852 0.2568 1.0686 3.1867 1.3250

Individual components

150 120 0.17 0.25 3.3962 0.1630 0.2591 1.8785 4.9952 1.9096

0.25 0.25 1.6038 0.1333 0.1763 1.5100 7.0493 2.0641

300 240 0.17 0.25 1.6604 0.0815 0.1155 3.6456 39.8536 3.8198

0.25 0.25 0.7925 0.0667 0.0845 2.9159 56.3961 4.1283

efficiency. It is also of interest to note that the test of parallel
systems in some cases results in more information (in trace)
than the test of individual components even though the latter
has a larger TTT.

Note that the exponential distribution is a special case
of the Weibull distribution when the value of the shape
parameter β = 1. Thus, it is possible to carry out a test of a
hypothesis whether the data have come from an exponential
distribution. In our simulation study, we calculate the Type-I
error for testing the hypothesis Ho : β = 1 based on log-
likelihood ratio test and score test. For other values of β,
we recorded the powers of the log-likelihood ratio test and
score test, and these results are presented in Table 35.3. By
comparing the likelihood ratio and score tests, we find that

the likelihood ratio test performs better in both Type-I error
and power for most of the cases and hence is the one to be
preferred!

Finally, we report the relative efficiency of MSEs, tr(I),
and det(I) in Table 35.4 under the same θ1, θ2, and β, but
different values of m, r, FT(τ ), and signature vectors. Here,
the relative efficiency of MSE is defined as

RE = MSE of the Model of Interest

MSE of the Reference Model
,

where the models with m = 50, r = 40, FT(τ ) = 0.2, and
p = (0, 0, 1) are the reference models. The relative efficiency
of other quantities is defined similarly.
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Table 35.5 MLEs of the parameters based on data in Table 35.1, their SEs, and 95% CIs based on the asymptotic approach using observed Fisher
information matrix and the bootstrap method

Observed Fisher Bootstrap

Parm. MLEs SE Asymptotic CI SE Bootstrap CI

θ1 14.6054 2.0939 (10.5012, 18.7095) 7.0973 (11.6166, 25.3188)

θ2 4.8595 1.5253 (1.8700, 7.8490) 2.2765 (2.4757, 10.8768)

β 3.2160 0.9893 (1.2771, 5.1550) 1.7563 (1.6681, 7.8655)

Table 35.6 Log-likelihood ratio test and AIC for β = 1

ln L0 ln L1 2(ln L1 − ln L0) χ0.05,1 AIC0 AIC1

−76.7407 −71.2022 11.0770 3.8415 157.4814 148.4044

35.6 Illustrative Example

For the data presented in Table 35.1, we consider a Type-II
censored system lifetime data in hours (withm=50 and r=30)
with signature vector P = (0, 1/2, 1/4, 1/4). In this case,
we have n1=8 and n2 = r − n1=30 − 8 = 22. From Equa-
tions (35.20) and (35.22), we first determine the initial esti-
mates of θ1, θ2, and β to be θ̃1 = 14.4607, θ̃2 = 5.8330, and
β̃ = 3.0581, respectively. Upon using these initial values, we
determine the MLEs, as well as their standard errors (SEs)
and the 95% CIs, based on the asymptotic approach and the
bootstrap method. These results are presented in Table 35.5.
The likelihood ratio test presented in Table 35.6 as well as the
CI obtained in Table 35.5 both show that in this case, there
is enough evidence against the hypothesis Ho : β = 1.0,
that is, against the exponential distribution. Once again, we
notice here that the SEs from bootstrap are larger than those
obtained from the observed Fisher information matrix and
also the bootstrap CIs are wider than those determined by the
asymptotic approach.

35.7 Concluding Remarks

In this article, we develop inference for coherent systems
with known signatures when they are placed on a simple
step-stress experiment and that Type-II censored data are
available on system lifetimes. We assume the component
lifetimes to be distributed as Weibull. It is observed that
the maximum likelihood estimates of the model parame-
ters cannot be obtained in a closed-form and a numerical
algorithm needs to be employed. MLEs of the model pa-
rameters are obtained through direct maximization of the
observed likelihood by using the Newton-Raphson method,
and construction of asymptotic confidence intervals by using
the observed Fisher information matrix and a parametric
bootstrap approach is discussed. The detailed steps of the
St-EM algorithm for estimating the model parameters under
this setup are developed. Within the framework of the St-EM
algorithm, the asymptotic confidence intervals for the model

parameters by using the missing information principle are
also developed. A method based on BLUEs is proposed for
providing initial values for the numerical algorithm. Through
a detailed Monte Carlo study, we examine and compare the
performances of the two different methods for obtaining
point and interval estimates. It is noted that under this setup,
the observed likelihood-based direct maximization approach
and the St-EM algorithm yield results that are quite close. It
is observed that the MLEs are biased, with bias decreasing as
sample size increases. It is also observed that the coverage
probabilities of the confidence intervals are close to the
nominal confidence level in general.

Naturally, it will be of interest to extend these results in
different directions, such as for step-stress experiments under
time constraint (see Balakrishnan et al. [40]) and step-stress
experiment with random stress change times (see Xiong and
Milliken [41]). It will also be of interest to determine an
optimal time τ for changing the stress level (see Gouno
et al. [42]). Work on these problems is currently under
progress, and we hope to report the findings in a future
paper.
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Abstract

In this chapter we mainly discuss classes of bivariate
distributions with singular components. It is observed
that there are mainly two different ways of defining bi-
variate distributions with singular components, when the
marginals are absolutely continuous. Most of the bivariate

D. Kundu (�)
Department of Mathematics and Statistics, Indian Institute of
Technology Kanpur, Kanpur, Uttar Pradesh, India
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distributions available in the literature can be obtained
from these two general classes. A connection between the
two approaches can be established based on their copulas.
It is observed that under certain restrictions both these
classes have very similar copulas. Several properties can
be established of these proposed classes. It is observed
that the maximum likelihood estimators (MLEs) may not
always exist; whenever they exist, they cannot be ob-
tained in closed forms. Numerical techniques are needed
to compute the MLEs of the unknown parameters. Al-
ternatively, very efficient expectation maximization (EM)
algorithm can be used to compute the MLEs. The cor-
responding observed Fisher information matrix also can
be obtained quite conveniently at the last stage of the
EM algorithm, and it can be used to construct confidence
intervals of the unknown parameters. The analysis of one
data set has been performed to see the effectiveness of
the EM algorithm. We discuss different generalizations,
propose several open problems, and finally conclude the
chapter.

Keywords

Absolute continuous distribution · Singular distribution ·
Fisher information matrix · EM algorithm · Joint
probability distribution function · Joint probability
density function

AMS Subject Classifications: 62F10, 62F03, 62H12

36.1 Introduction

Bivariate continuous distributions occur quite naturally in
practice. An extensive amount of work has been done on
different bivariate continuous distributions in the statistical
literature. Some of the well-known absolutely continuous
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bivariate continuous distributions are bivariate normal,
bivariate-t, bivariate log-normal, bivariate gamma, bivariate
extreme value, bivariate Birnbaum-Saunders distributions,
bivariate skew normal distribution, bivariate geometric skew
normal distribution, etc., see, for example, the books by
Balakrishnan and Lai [7], Kotz et al. [27] on different
bivariate and multivariate distributions, the recent review
article by Balakrishnan and Kundu [6] on bivariate and
multivariate Birnbaum-Saunders distributions, the article by
Azzalini and Dalla Valle [4] and the monograph by Azzalini
and Capitanio [3] on multivariate skew-normal distribution,
the recent article by Kundu [29] on multivariate geometric
skew-normal distribution, and the references cited therein.
The main purpose of any bivariate distribution is to model
the two marginals and also to find association between the
two marginals.

It may be mentioned that although there are numerous
absolutely continuous bivariate distributions available in the
literature, if there are ties in the data set, then these abso-
lutely continuous bivariate distributions cannot be used to
analyze this data set. Sometimes, the ties may occur due to
truncation, but in many situations the ties may occur naturally
and with a positive probability. To analyze a bivariate data
set with ties, one needs a bivariate model with a singular
component. These class of bivariate distributions assign a
positive probability on X = Y , where X and Y denote
the two marginals, and both are assumed to be absolutely
continuous.

Marshall and Olkin [44] first proposed a bivariate distribu-
tion such that its both the marginals X and Y have exponential
distributions, and P(X = Y) > 0. From now on we call
this distribution as the Marshall-Olkin bivariate exponential
(MOBE) distribution, and popularly it is also known as
the shock model. Since its inception, an extensive amount
of work has been done related to this distribution. Several
properties have been established, its characterizations, and
both classical and Bayesian inferential procedures have been
developed, see, for example, Arnold [2], Baxter and Rachev
[8], Boland [14], Muliere and Scarsini [50], Pena and Gupta
[54], Ryu [57], the review article by Nadarajah [51], and the
references cited therein.

Lu [41] provided the Weibull extension of the MOBE
model. Since then quite a bit of work has been done on
this and some related distributions mainly developing infer-
ence procedures under complete sample and under various
sampling schemes and develop the properties of the order
statistics. This model has been used quite successfully to
analyze dependent competing risks data. See, for example,
Begum and Khan [10], Cai et al. [15], Feizjavadian and
Hashemi [18], Jose et al. [25], Kundu and Dey [30], Kundu
and Gupta [35], and Lai et al. [39], and see the references
cited therein.

Some of the other bivariate distributions with singular
components which can be found in the literature are bi-
variate Kumaraswamy (BVK), bivariate Pareto (BVP), bi-
variate double generalized exponential (BDGE), bivariate
exponentiated Frechet (BEF), and bivariate Gumbel (BVG)
distributions; see, for example, Barreto-Souza and Lemonte
[9], bivariate generalized exponential (BGE)model of Kundu
and Gupta [32], Sarhan-Balakrishnan’s bivariate (SBB) dis-
tribution introduced by Sarhan and Balakrishnan [58], mod-
ified Sarhan-Balakrishnan’s bivariate (MSBB) distribution
introduced by Kundu and Gupta [33], bivariate model with
proportional reversed hazard marginals proposed by Kundu
andGupta [34], bivariate generalized linear failure ratemodel
introduced by Sarhan et al. [60], the generalized Marshall-
Olkin bivariate distributions introduced by Gupta et al. [23],
and bivariate inverse Weibull distribution as proposed by
Muhammed [49] and Kundu and Gupta [37], and see the
references cited therein.

In many situations although the data are continuous in
nature, say time, pressure, etc., they are often measured in
discrete units. In a situation like this, we often get ties in a
bivariate data set. But we will provide few examples where
ties occur naturally.

Shock Model It was originally proposed by Marshall and
Olkin [44], and it is considered to be the most classical
model of a bivariate distribution with a singular component.
Suppose there are two components of a system, and there
are three shocks which can affect the two components. The
shocks appear randomly, and they affect the systems. Shock
1 affects the Component 1, Shock 2 affects the Component
2, and Shock 3 affects both the components. The component
fails as soon as it receives a shock. The failure times of
the both the components are observed as a bivariate random
variable. In this case clearly there is a positive probability that
the failure times of the two components become equal.

Stress Model It was originally proposed by Kundu and
Gupta [32], and it can be described as follows. Suppose a
system has two components, and each component is subject
to individual stress, say V1 and V2. Other than the individ-
ual stresses, the system has an overall stress V3 which has
been propagated to both the components equally irrespective
of their individual stresses. Therefore, the observed stress
at the two components are X = max{V1, V3} and Y =
max{V2, V3}, respectively.

Soccer Model Suppose the first component of a bivariate
data represents the time of the first kick goal scored by any
team, and second component represents the time of the first
goal of any type by the home team. In this case also if the
first goal is scored by the home team and it is a kick goal,
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then there is a tie of the two components, and it happens with
a positive probability.

Maintenance Model Suppose a system has two compo-
nents, say Component 1 and Component 2, and it is assumed
that both components have been maintained independently,
and also there is an overall maintenance to both the compo-
nents. It is assumed that due to component maintenance, sup-
pose the lifetime of Component i is increased by Ui amount,
for i = 1 and 2, and because of the overall maintenance,
the lifetime of each component is increased by U3 amount.
Hence, the increased lifetimes of the two components are
X1 = max{U1, U3} and X2 = max{U2, U3}, respectively, see,
for example, Kundu and Gupta [32] in this respect.

Note that most of the bivariate distributions with sin-
gular components are based on two different approaches,
namely, minimization approach and maximization approach.
The main aim of this manuscript is to put both the methods
under the same framework. It may be mentioned that any
bivariate distribution is characterized by its marginals and the
copula function. It is observed that based on the copula many
properties can be derived for any class of bivariate distribu-
tion functions. We derive some basic properties in both the
cases, and it is observed that under certain restrictions they
can be generated from very similar copulas. Some specific
examples have been provided.

The maximum likelihood estimators (MLEs) of the un-
known parameters may not always exist, and even if they
exist, they cannot be obtained in explicit forms. One needs to
solve a higher dimensional optimization problem to compute
theMLEs. To avoid that we have proposed to use this problem
as a missing value problem, and we have used a very efficient
EM algorithm to compute the MLEs of the unknown pa-
rameters. It avoids solving a higher-dimensional optimization
problem. Moreover, the observed Fisher information matrix
also can be obtained quite conveniently at the last step of the
EM algorithm, and it can be used to construct confidence
intervals of the unknown parameters. The analysis of one
real-life data set has been performed to see the effectiveness
of the EM algorithm.

Finally, we provide few examples, and they cannot be
obtained directly using the two methods which we have
mentioned above. In all the cases we have provided explicit
expressions of the joint PDF and have mentioned the esti-
mation procedures of the unknown parameters in each case.
We have further mentioned few bivariate distributions with
singular components which cannot be obtained by the above
two methods, and finally we conclude the paper.

The rest of the paper is organized as follows. In Sect. 36.2,
we provide some preliminaries, and in Sect. 36.3 we describe
the two main approaches to produce bivariate distribution
with a singular component. Some special cases are presented

in Sect. 36.4, and the MLEs are provided in Sect. 36.5. In
Sect. 36.6 we have provided the analysis of a data set. We
have provided examples of few bivariate distributions which
cannot be obtained by the proposed methods in Sect. 36.7,
and finally we presented several open problems and conclude
the paper in Sect. 36.8.

36.2 Preliminaries

In this section we discuss two important class of distribution
functions, namely, (i) proportional hazard class and (ii) pro-
portional reversed hazard class of distribution functions. We
will also discuss briefly about the copula function and three
important class of distribution functions which will be used
quite extensively later.

36.2.1 Proportional Hazard Class

Suppose FB(t; θ) is a distribution with the support on the pos-
itive real axis as mentioned before and SB(t, θ) = 1−FB(t; θ)

is the corresponding survival function. Let us consider the
class of distribution functions which has the survival function
of the following form:

SPHM(t; α, θ) = [SB(t; θ)]α; t > 0, (36.1)

with parameters θ , α > 0, and zero otherwise. Here θ can
be vector valued, and SB(t; θ) is called as the base line sur-
vival function. In this case the class of distribution functions
defined by (36.1) is known as the proportional hazard model
(PHM). In this case the PDF of the PHM becomes

fPHM(t; α, θ) = αfB(t; θ)[SB(t; θ)]α−1; t ≥ 0, (36.2)

and zero otherwise. The proportional hazard model was orig-
inally proposed by Cox [16] as a regression model in the life-
table data analysis. The class of distribution functions defined
through the survival function (36.1) is called the proportional
hazard class because if the hazard function of fB(t; θ) is

hB(t; θ) = fB(t; θ)

SB(t; θ)
,

then the hazard function of fPHM(t; α, θ) becomes

hPHM(t; α, θ) = fPHM(t; α, θ)

SPHM(t; α, θ)
= α

fB(t; θ)

SB(t; θ)
= αhB(t; θ).

Hence, in this case the hazard function of any member of
the proportional hazard class is proportional to the base
line hazard function. Since the inception of the model by
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Cox [16], an extensive amount of work has been done related
to Cox’s PHMs. Most of the standard statistical books on sur-
vival analysis discuss this model in detail; see, for example,
Cox and Oakes [17], Therneau and Grambsch [63], and the
references cited therein.

36.2.2 Proportional Reversed Hazard Class

Suppose FB(t; θ) is a distribution with the support on the
positive real axis. Then consider the class of distribution
functions of the form

FPRHM(t; α, θ) = [FB(t; θ)]α; t > 0, (36.3)

with parameters α > 0 and θ (may be a vector valued)
and base line distribution function FB(t; θ). This class of
distribution functions is known as the proportional reversed
hazard model (PRHM). If FB(t; θ) admits the PDF fB(t; θ),
then the PRHM has a PDF

fPRHM(t; α, θ) = α[FB(t; θ)]α−1fB(t; θ); t ≥ 0.

Lehmann [43] first proposed this model in the context of
hypotheses testing. It is known as the proportional reversed
hazard class because if the base line distribution function
FB(t; θ) has the reversed hazard function

rB(t; θ) = fB(t; θ)

FB(t; θ)
,

then FPRHM(t; α, θ) has the reversed hazard function

rPRHM(t; α, θ) = fPRHM(t; α, θ)

FPRHM(t; α, θ)
= α

fB(t; θ)

FB(t; θ)
= αrB(t; θ).

Hence, the reversed hazard function of any member of the
proportional reversed hazard class is proportional to the base
line reversed hazard function. For a detailed discussion on
this issue, one is referred to Block et al. [13]. An extensive
amount of work has been done on different proportional
reversed hazard classes; see, for example, exponentiated
Weibull distribution of Mudholkar et al. [48], generalized
exponential distribution of Gupta and Kundu [21], exponen-
tiated Rayleigh of Surles and Padgett [62], and generalized
linear failure rate model of Sarhan and Kundu [59], see also
Kundu and Gupta [31] and the references cited therein.

36.2.3 Copula

The dependence between two random variables, say X and
Y , is completely described by the joint distribution function

FX,Y(x, y). The main idea of separating FX,Y(x, y) in two parts,
the one which describes the dependence structure, and the
other one which describes the marginal behavior, leads to
the concept of copula. To every bivariate distribution func-
tion FX,Y(x, y), with continuous marginals FX(x) and FY(y),
corresponds to a unique function C : [0, 1] × [0, 1] → [0, 1],
called a copula function such that

FX,Y (x, y) =C(FX(x), FY (y)); for (x, y) ∈ (−∞,∞) × (−∞,∞).

Note that C(u, v) is a proper distribution function on [0, 1] ×
[0, 1]. Moreover, from Sklar’s theorem (see, e.g., Nelsen
[53]), it follows that if FX,Y(·, ·) is a joint distribution function
with continuous marginals FX(·), FY(·), and if F−1

X (·), F−1
Y (·)

are the inverse functions of FX(·), FY(·), respectively, then
there exists a unique copula C in [0, 1] × [0, 1], such that

C(u, v) = FX,Y(F
−1
X (u), F−1

Y (v)); for (u, v) ∈ [0, 1]× [0, 1].

Moreover, if SX,Y(x, y) is the joint survival function of X and
Y , and SX(x) and SY(y) are survival functions of X and Y ,
respectively, then there exists unique function C : [0, 1] ×
[0, 1] → [0, 1], called a (survival) copula function such that

SX,Y (x, y) = C(SX(x), SY (y)); for (x, y) ∈ (−∞,∞) × (−∞,∞).

In this case

C(u, v) = SX,Y(S
−1
X (u), S−1

Y (v)); for (u, v) ∈ [0, 1]× [0, 1].

Moreover,

C(u, v) = u+ v−1+C(1−u, 1− v); for (u, v) ∈ [0, 1]× [0, 1].

It should be pointed out that the survival copula is also a
copula, i.e., C(u, v) is also a proper distribution function
on [0, 1] × [0, 1]. It is well known that many dependence
properties of a bivariate distribution are copula properties
and, therefore, can be obtained by studying the corresponding
copula. These properties do not depend on the marginals.

36.2.4 Three Important Distributions

In this section we discuss three important distribution func-
tions which will be used quite extensively in our future
development.
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Exponential Distribution
A random variable X is said to have an exponential distribu-
tion with the parameter λ > 0, if the CDF of X is as follows:

FX(x; λ) = P(X ≤ x) = 1 − e−λx; x > 0,

and zero, otherwise. The corresponding PDF of X becomes

fX(x; λ) = λe−λx; for x > 0,

and zero, otherwise. From now on we will denote it by
Exp(λ). The PDF of an exponential distribution is always a
decreasing function, and it has a constant hazard function for
all values of λ. The exponential distribution is the most used
distribution in lifetime data analysis. It has several interesting
properties including the lack of memory property, and it
belongs to the PHM class. Interested readers are referred
to Balakrishnan and Basu [5] for a detailed discussions on
exponential distribution.

Weibull Distribution
A random variable X is said to have a two-parameter Weibull
distribution if it has the following CDF:

FX(x; α, λ) = 1 − e−λxα ; for x > 0,

and zero, otherwise. Here, α > 0 is called the shape parame-
ter and λ > 0 as the scale parameter. The corresponding PDF
becomes

fX(x; α, λ) = αλxα−1e−λxα ; for x > 0,

and zero, otherwise. From now on it will be denoted by
WE(α, λ).

A two-parameter Weibull distribution is more flexible
than a one-parameter exponential distribution. The shape
of the PDF and the hazard function depend on the shape
parameter α. The PDF can be a decreasing or a unimodal
function if α ≤ 1 or α > 1, respectively. Similarly, for α ≤ 1,
the hazard function is a decreasing function, and for α > 1,
the hazard function is an increasing function. Because of its
flexibility it has been used quite extensively in reliability and
in survival analysis. It is a PHM. An excellent handbook on
Weibull distribution is by Rinne [56]. Interested readers are
referred to that handbook for further reading.

Generalized Exponential Distribution
A random variable X is said to have a two-parameter gener-
alized exponential distribution if it has the following CDF:

FX(x; α, λ) = (1 − e−λx)α; for x > 0,

and zero, otherwise. Here also α > 0 is called the shape pa-
rameter and λ > 0 as the scale parameter. The corresponding
PDF becomes

fX(x; α, λ) = αλe−λx(1 − e−λx)α−1; for x > 0,

and zero, otherwise. From now on we will denote it by
GE(α, λ).

A two-parameter GE distribution was first introduced
by Gupta and Kundu [21] as an alternative to the two-
parameter Weibull and gamma distribution. Since it has been
introduced, it has been used quite extensively in analyzing
different lifetime data. It may bementioned that it is a PRHM.
Interested readers are referred to the review article by
Nadarajah [52] or a book length treatment by Al-Hussaini
and Ahsanullah [1] for different developments on the GE
distribution till date.

36.3 TwoMain Approaches

In this section we provide the two main approaches, namely,
the minimization and maximization approaches, to construct
a bivariate distribution with a singular component. We pro-
vide both the methods briefly and discuss several common
properties of the general class of distribution functions. It is
assumed throughout that FB(t; θ) is an absolutely continuous
distribution function with the support on the positive real axis
and SB(t; θ) = 1 − FB(t; θ). Moreover, the PDF of FB(t; θ)

is fB(t; θ) for t > 0 and zero, otherwise. Here θ can be vector
valued also as mentioned in the previous section.

36.3.1 Minimization Approach (Model 1)

In this section we provide the bivariate distributions with
singular components which are based on minimum. Suppose
U1, U2, and U3 are three independent nonnegative random
variables with survival functions S1(t; α1, θ) = [SB(t; θ)]α1 ,
S2(t; α2, θ) = [SB(t; θ)]α2 , S3(t; α3, θ) = [SB(t; θ)]α3 , re-
spectively for α1 > 0,α2 > 0,α3 > 0. Now we define a
new bivariate random variable (X, Y) as follows:

X = min{U1, U3} and Y = min{U2, U3}. (36.4)

Note that although U1, U2, and U3 are independent, due to
presence of U3 in both X and Y , X and Y are dependent. We
would like to obtain the joint cumulative distribution function
(JCDF) and the joint probability density function (JPDF) of
X and Y . But before that let us observe the following facts.
Since X is defined as in (36.4), the survival function of X
becomes
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P(X > x) = SX(x; α1,α3, θ) = P(U1 > x, U3 > x)
= P(U1 > x)P(U3 > x) = [SB(x; θ)]α1+α3 .

Hence, the survival function and the CDF of X depend on θ

and α1 + α3. Similarly, the survival function of Y becomes

P(Y > y) = [SB(y; θ)]α2+α3 . Hence, if U1, U2, and U3 are
absolutely continuous random variables, then X and Y are
also absolutely continuous random variables. Moreover, in
this case

P(X = Y) = P(U3 < U1, U3 < U2)

= α3

∫ ∞

0
fB(t; θ)[SB(t; θ)]α3−1[SB(t; θ)]α1 [SB(x; θ)]α2dt

= α3

α1 + α2 + α3

∫ ∞

0
(α1 + α2 + α3)fB(t; θ)[SB(t; θ)]α1+α2+α3−1

= α3

α1 + α2 + α3
> 0. (36.5)

Hence, (36.5) indicates that X = Y has a positive probability
and for fixed α1 and α2, lim

α3→0
P(X = Y) = 0 and lim

α3→∞P(X =
Y) = 1. Along the same line it can be easily obtained that

P(X < Y) = α1

α1 + α2 + α3
and P(Y < X) = α2

α1 + α2 + α3
.

(36.6)

Now we will provide the joint survival function of X and Y
and also derive the joint PDF of X and Y . The joint survival
function of X and Y can be written as

SX,Y(x, y) = P(X > x, Y > y)

= P(U1 > x, U2 > y, U3 > max{x, y})
= [SB(x, θ)]α1 [SB(y, θ)]α2 [SB(z, θ)]α3 , (36.7)

here z = max{x, y}. Equivalently, (36.7) can be written as
follows:

SX,Y(x, y) =
{ [SB(x, θ)]α1 [SB(y, θ)]α2+α3 if x < y

[SB(x, θ)]α1+α3[SB(y, θ)]α2 if x ≥ y.
(36.8)

Now we will show that the joint survival function (36.7) or
(36.8) is not an absolutely continuous survival function. Let
us recall that a joint survival function S(x, y) is said to be
absolute continuous if there exists a f (x, y) ≥ 0, such that

S(x, y) =
∫ ∞

x

∫ ∞

y
f (u, v)dudv for all x > 0, y > 0.

In that case f (x, y) can be recovered from S(x, y) as

f (x, y) = ∂2

∂x∂y
S(x, y).

Let us denote f (x, y) = ∂2

∂x∂y
SX,Y(x, y). Hence, from (36.8),

f (x, y) =
{

α1(α2 + α3)fB(x, θ)[SB(x, θ)]α1−1fB(y, θ)[SB(y, θ)]α2+α3−1 if x < y
α2(α1 + α3)fB(x, θ)[SB(x, θ)]α1+α3−1fB(y, θ)[SB(y, θ)]α2−1 if x > y.

Now it can be easily observed that

∫ ∞

0

∫ ∞

0
f (x, y)dxdy =

∫ ∞

0

∫ ∞

y
f (x, y)dxdy+

∫ ∞

0

∫ ∞

x
f (x, y)dydx = α1 + α2

α1 + α2 + α3
< 1.

Hence, clearly SX,Y(x, y) is not an absolutely continuous
survival function. Moreover,

∫ ∞

0

∫ ∞

0
fX,Y(x, y)dxdy+ P(X = Y) = 1.
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Let us denote for x > 0 and y > 0

fac(x, y) = α1 + α2 + α3

α1 + α2
f (x, y). (36.9)

Clearly, fac(x, y) is a bivariate density function on the positive
quadrant. Observe that for x > 0, y > 0 and for z =
max{x, y},

SX,Y(x, y) = P(X > x, Y > y) =
∫ ∞

x

∫ ∞

y
f (u, v)dudv+ P(X = Y > z)

= α1 + α2

α1 + α2 + α3

∫ ∞

x

∫ ∞

y
fac(u, v)dudv+ α3

α1 + α2 + α3

∫ ∞

z
fs(u)du. (36.10)

Here fac(u, v) is same as defined in (36.9) and

fs(u) = (α1 + α2 + α3)fB(u; θ)[SB(u; θ)]α1+α2+α3−1,

and it is a probability density function on the positive real
axis. Based on (36.10), for x > 0, y > 0 and for z =
max{x, y}, the random variable (X, Y) has the joint PDF
fX,Y(x, y) of the form

fX,Y(x, y) =
⎧⎨
⎩

α1(α2 + α3)fB(x, θ)[SB(x, θ)]α1−1fB(y, θ)[SB(y, θ)]α2+α3−1 if x < y
α2(α1 + α3)fB(x, θ)[SB(x, θ)]α1+α3−1fB(y, θ)[SB(y, θ)]α2−1 if x > y
α3fB(x; θ)[SB(x; θ)]α1+α2+α3−1 if x = y.

(36.11)

In this case the random variable (X, Y) has an absolute
continuous part and a singular part. The function fX,Y(x, y)
is considered to be a density function of (X, Y), if it is un-
derstood that the first two terms are densities with respect to
a two-dimensional Lebesgue measure and the third term is a
density function with respect to a one dimensional Lebesgue
measure; see, for example, Bemis, Bain, and Higgins [11]. It
simply means that

P(X > x, Y > y) =
∫ ∞

x

∫ ∞

y
fX,Y (u, v)dvdu+

∫ ∞

max{x,y}
fX,Y (v, v)dv.

From (36.10) it is immediate that

SX,Y(x, y) = α1 + α2

α1 + α2 + α3
Sac(x, y) + α3

α1 + α2 + α3
Ssi(x, y),

(36.12)

here Sac(x, y) is the absolutely continuous part of the survival
function,

Sac(x, y) =
∫ ∞

x

∫ ∞

y
fac(u, v)dudv,

and Ssi(x, y) is the singular component of SX,Y(x, y), and it can
be written for z = max{x, y}, as

Ssi(x, y) = [SB(z; θ)]α1+α2+α3 .

Now we would like to find the copula associated with
SX,Y(x, y). Since X and Y have the survival functions as
[SB(x; θ)]α1+α3 and [SB(y; θ)]α2+α3 , respectively, therefore

C(u, v) =
{
u

α1
α1+α3 v if u < v

α1+α3
α2+α3

u v
α2

α2+α3 if u ≥ v
α1+α3
α2+α3 .

If we write β = α3/(α1 + α3) and δ = α3/(α2 + α3), then

C(u, v) =
{
u1−β v if uβ < vδ

u v1−δ if uβ ≥ vδ.

If we consider a special case α1 = α2, and η = α3/(α1 +
α3) = α3/(α2 + α3), then

C(u, v) =
{
u1−η v if u < v
u v1−η if u ≥ v.

36.3.2 Maximization Approach (Model 2)

In the last section we had provided the bivariate distributions
with singular components which are based on minimum, and
in this section we provide the bivariate distributions with
singular components which are based on maximum. Let us
assume that V1, V2, and V3 are three independent nonnegative
random variables with distribution functions F1(t; β1, λ) =
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[FB(t; λ)]β1 , F2(t; β2, λ) = [FB(t; λ)]β2 , and F3(t; β3, λ) =
[FB(t; λ)]β3 , respectively, for β1 > 0, β2 > 0, and β3 >

0. Let us define a new bivariate random variable (X, Y) as
follows:

X = max{V1, V3} and Y = max{V2, V3}. (36.13)

In this case also similarly as before, X and Y will be de-
pendent random variables due to the presence of V3. The
following results can be easily obtained following the same
line as the previous section. The CDFs of X and Y become

P(X ≤ x) = FX(x; β1,β3, λ) = [FB(x; λ)]β1+β3 and

P(Y ≤ y) = FY(x; β2,β3, λ) = [FB(x; λ)]β2+β3 .

P(X = Y) = β3

β1 + β2 + β3
, P(X < Y) = β1

β1 + β2 + β3
, P(X > Y) = β2

β1 + β2 + β3
.

The joint CDF of X and Y for z = min{x, y} becomes

FX,Y (x, y) = P(X ≤ x, Y ≤ y)

= P(V1 ≤ x, V2 ≤ y, V3 ≤ min{x, y})

= [FB(x, λ)]β1 [FB(y, λ)]β2 [FB(z, λ)]β3

=
{ [FB(x, λ)]β1+β3 [FB(y, λ)]β2 if x < y

[FB(x, λ)]β2+β3 [FB(x, λ)]β1 if x ≥ y
(36.14)

Following the same approach as before, the joint PDF of X
and Y can be obtained as

fX,Y(x, y) =

⎧⎪⎨
⎪⎩

β2(β1 + β3)fB(x, λ)[FB(x, λ)]β1+β3−1fB(y, λ)[FB(y, λ)]β2−1 if x < y

β1(β2 + β3)fB(x, θ)[SB(x, θ)]β1−1fB(y, θ)[FB(y, θ)]β2+β3−1 if x > y

β3fB(x; λ)[FB(x; λ)]β1+β2+β3−1 if x = y.

(36.15)

In this case also the joint CDF of the random variable (X, Y)

has an absolute continuous part and a singular part, and the
function (36.15) is considered to be the joint PDF of X and Y
in the same sense as before. Moreover, the copula associate
with the joint CDF FX,Y(x, y) becomes

C(u, v) =
{
uv

β2
β2+β3 if u < v

β1+β3
β2+β3

u
β1

β1+β3 v if u ≥ v
β1+β3
β2+β3

(36.16)

Therefore, if we write as before that β = β3/(β1 + β3) and
δ = β3/(β2 + β3), then (36.16) becomes

C(u, v) =
{
uv1−δ if uβ < vδ

u1−βv if uβ ≥ vδ.

Hence, for the special case β1 = β2, and for η = β3/(β1 +
β3) = β3/(β2 + β3), the copula C(u, v) becomes

C(u, v) =
{
uv1−η if u < v
u1−ηv if u ≥ v.

36.4 Some Special Cases

In this section we provide some special cases based on these
two approaches. Different special cases have been considered
in detail in the literature. In this section our main aim is to
provide those special cases and mention relevant references
associate with those models. We also provide some new
bivariate models where more work can be done.

36.4.1 Model 1

Marshall-Olkin Bivariate Exponential Distribution
Marshall-Olkin bivariate exponential (MOBE) distribution
seems to be the most popular bivariate distribution with
a singular component, and it was originally introduced by
Marshall and Olkin [44]. In this case the survival function
of the base line distribution, namely, SB(t, θ) = e−t, for
t > 0, and zero, otherwise. Hence, U1, U2, and U3 as
defined in Sect. 36.3.1 followExp(α1), Exp(α2) and Exp(α3),
respectively. Hence, the joint PDF of X and Y becomes
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Fig. 36.1 PDF plots of MOBE(α1,α2,α3) distribution for different (α1,α2,α3) values: (a) (2.0,2.0,1.0) (b) (1.0,1.0,1.0) (c) (1.0,2.0,1.0) (d)
(2.0,1.0,1.0)

fX,Y(x, y) =
⎧⎨
⎩

α1(α2 + α3)e−α1xe−(α2+α3)y if x < y
α2(α1 + α3)e−(α1+α3)xe−α2y if x > y
α3e−(α1+α2+α3)x if x = y,

and it will be denoted by MOBE(α1,α2,α3). The absolute
continuous part of the PDF ofMOBE(α1,α2,α3) for different
values of α1, α2, and α3 is provided in Fig. 36.1. It is clear
from the figures that for all parameter values the maximum
occurs at (0, 0).

Note that the marginals of the MOBE distribution are ex-
ponential distributions. In this case X and Y follow Exp(α1 +
α3) and Exp(α2+α3), respectively. This model is also known

as the shock model since it has been introduced as modeling
shocks to a parallel system and it has an interesting con-
nection with the homogeneous Poisson process. Interested
readers are referred to the original paper of Marshall and
Olkin [44] in this respect. An extensive amount of work
has been done dealing with different aspects of the MOBE
model. Arnold [2] discussed the existence of the maximum
likelihood estimators of the unknown parameters. Bemis
et al. [11] and Bhattacharyya and Johnson [12] discussed
different properties of the MOBE distribution. Pena and
Gupta [54] developed the Bayesian inference of the unknown
parameters based on a very flexible beta-gamma priors, and
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Karlis [26] provided a very efficient EM algorithm to com-
pute the maximum likelihood estimators of the unknown
parameters.

Marshall-Olkin Bivariate Weibull Distribution
It can be seen that the MOBE has exponential marginals,
and due to this reason it has some serious limitations. For
example, if the data indicate that themarginals have unimodal
PDFs, then clearly MOBE may not be used. Due to this
reason, in the same paper Marshall and Olkin [44] introduced
the Marshall Olkin bivariate Weibull (MOBW) model by
replacing the exponential distribution with the Weibull
distribution. In this case the base line survival function is
a Weibull distribution, and it is taken as SB(t, θ) = e−tθ , for
t > 0, and zero otherwise. Hence, the base line distribution is
a Weibull distribution with the shape parameter θ and scale
parameter 1. Using the same notations as in Sect. 36.3.1,
it can be easily seen that U1, U2, and U3 follow Weibull
distribution with the same shape parameter θ and having
scale parameter α1, α2, and α3, respectively. Hence, the joint
PDF of X and Y becomes

fX,Y (x, y) =

⎧⎪⎨
⎪⎩

θ2α1(α2 + α3)xθ−1yθ−1e−α1xθ e−(α2+α3)yθ if x < y
θ2α2(α1 + α3)xθ−1yθ−1e−(α1+α3)xθ e−α2yθ if x > y
θα3xθ−1e−(α1+α2+α3)xθ if x = y,

(36.17)

and it will be denoted byMOBW(α1,α2,α3, θ). The absolute
continuous part of the PDF of MOBW(α1,α2,α3, θ) for
different values of α1, α2, α3, and θ is provided in Fig. 36.2.
It is clear from the figures that for all parameter values the
maximum occurs at (0, 0) if the common shape parameter
0 < θ ≤ 1; otherwise it is always unimodal.

Note that the marginals of the MOBW distributions are
Weibull distributions with the same shape parameter, namely,
X follows WE(θ ,α1 + α3) and Y follows WE(θ ,α2 + α3).
This model has several real-life applications, and it has an
interesting connection with the renewal process. An exten-
sive amount of work has been done mainly related to the
estimation of the unknown parameters both for classical
and Bayesian methods. It may be noted that the maximum
likelihood estimators of the unknown parameters cannot be
obtained in closed form. It needs solving a four-dimensional
optimization problem. Kundu and Dey [30] developed a very
efficient EM algorithm to compute the maximum likelihood
estimators of the unknown parameters which needs solving
only one one-dimensional optimization problem. Kundu and
Gupta [36] developed a very efficient Bayesian inference of
the unknown based on a very flexible priors. Different meth-
ods have been evolved for analyzing censored data also. See,
for example, Lu [41,42]. Recently, Feizjavadian andHashemi
[18] and Shen and Xu [61] used MOBW distribution for ana-
lyzing dependent competing risks data. They have developed

very efficient EM algorithm to compute the known parame-
ters of the model. It will be interesting to develop Bayesian
inference of the unknown parameters in this case also.

Weighted Marshall-Olkin Bivariate Exponential Distri-
bution
Jamalizadeh and Kundu [24] introduced the weighted
Marshall-Olkin bivariate exponential distribution as an
alternative to the MOBW distribution. It is also a bivariate
singular distribution, and it can be a very flexible distribution
similar to the MOBW distribution. It may be recalled that
a random variable X is said to have a weighted exponential
(WEE) distribution with parameters α > 0 and λ > 0, if the
PDF of X is of the form:

fWEE(x; α, λ) = α + 1

α
λe−λx

(
1 − e−λx

) ; x > 0,

and 0, otherwise. The WEE distribution was originally in-
troduced by Gupta and Kundu [22] as an alternative to the
two-parameter Weibull, gamma, or generalized exponential
distributions. The PDFs and the hazard functions of the
WEE distribution can take a variety of shapes similar to the
Weibull, gamma, or generalized exponential distributions.
The weighted Marshall-Olkin bivariate exponential (BWEE)
distribution introduced by Jamalizadeh and Kundu [24] has
the following PDF:

fX,Y (x, y) =
⎧⎨
⎩

α+λ
α

λ1e−λ1x(λ2 + λ3)e−(λ2+λ3)y(1 − e−xα) if x < y
α+λ
α

(λ1 + λ3)e−(λ1+λ3)xλ2e−λ2y(1 − e−yα) if x > y
α+λ
α

λ3e−λx(1 − e−xα) if x = y,
(36.18)

for λ = λ1 + λ2 + λ3, and it will be denoted by
BWEE(λ1, λ2, λ3,α). The absolute continuous part of the
PDF of BWEE(λ1, λ2, λ3,α) for different values of λ1, λ2,
λ3, and α is provided in Fig. 36.3. It is clear from the figures
that for all parameter values the joint PDF is unimodal.

The marginals of the BWEE distribution are WEE dis-
tributions. Jamalizadeh and Kundu [24] established different
properties of a BWEE distribution. The maximum likelihood
estimators of the unknown parameters cannot be obtained in
explicit forms. Efficient EM algorithm has been proposed
by Jamalizadeh and Kundu [24] to compute the maximum
likelihood estimators of the unknown parameters.

Bivariate Kumaraswamy Distribution
Barreto-Souza and Lemonte [9] considered the bivariate
Kumaraswamy (BVK) distribution whose marginals are
Kumaraswamy distribution. Since the Kumaraswamy
distribution has the support on [0,1], the BVK distribution
has the support [0,1]× [0,1]. It may be recalled that a random
variable X is said to have a Kumaraswamy distribution with
parameters α > 0 and β > 0, if it has the following CDF
and PDF, respectively
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Fig. 36.2 PDF plots of MOBW(α1,α2,α3, θ) distribution for different (α1,α2,α3, θ ) values: (a) (1.0,1.0,1.0,0.5) (b) (1.0,1.0,1.0,0.75) (c)
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FK(x; α,β) = 1 − (1 − xβ)α and fK(x; α,β) = αβxβ−1(1 − xβ)α−1, for x > 0. Hence, a BVK distribution with parameters α1, α2,
α3, and β has the following PDF:
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fX,Y(x, y) =
⎧⎨
⎩

α1(α2 + α3)β
2xβ−1(1 − xβ)α1−1yβ−1(1 − yβ)α2+α3−1 if x < y

(α1 + α3)α2β
2xβ−1(1 − xβ)α1+α3−1yβ−1(1 − yβ)α2−1 if x > y

θα3βxβ−1(1 − xβ)α1+α2+α3−1 if x = y,
(36.19)

and it will be denoted by BVK(α1,α2,α3,β).
The PDF of the absolute continuous part of BVK(α1,α2,

α3,β) distribution for different α1,α2,α3, β are provided in

Fig. 36.4. It is clear that it has bounded support on [0,1] ×
[0,1], and it can take a variety of shapes depending on the
parameter values.
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Barreto-Souza and Lemonte [9] developed several proper-
ties of the BVK distribution and also provided a very efficient
EM algorithm to compute the maximum likelihood estima-
tors of the unknown parameters. They have used this model
to analyze a bivariate singular data set with bounded support.

36.4.2 Model 2

Bivariate Proportional Reversed Hazard Distribution
Kundu and Gupta [32] introduced the bivariate generalized
exponential (BVGE) distribution as a stress model and as a

maintenance model. The idea is very similar to the MOBE
or the MOBW distribution, but in this case the authors
considered themaximization approach than theminimization
method. It is assumed that the base line distribution function
is an exponential distribution with the scale parameter λ, i.e.,
FB(t; λ) = (1 − e−tλ), for t > 0 and zero, otherwise. Let
us assume that V1, V2, and V3 have the CDFs (1 − e−tλ)β1 ,
(1 − e−tλ)β2 , and (1 − e−tλ)β3 , and they are independently
distributed. Here β1 > 0, β2 > 0, and β3 > 0. It is
clear that V1, V2, and V3 have GE(β1, λ), GE(β2, λ), and
GE(β3, λ), respectively. Hence, the joint PDF of (X, Y) in this
case becomes

fX,Y(x, y) =
⎧⎨
⎩

(β1 + β3)β2(1 − e−λx)β1+β3−1(1 − e−λy)β2−1e−λ(x+y) if 0 < x < y < ∞
(β2 + β3)β1(1 − e−λx)β1−1(1 − e−λy)β2+β3−1e−λ(x+y) if 0 < y < x < ∞
β3(1 − e−λx)β1+β2+β3−1e−λx if 0 < y = x < ∞,

(36.20)

and it will be denoted by BVGE(β1,β2,β3, λ). The absolute
continuous part of the PDF of BVGE(β1,β2,β3, λ) for differ-
ent values of β1, β2, β3, and λ is provided in Fig. 36.5. It is
clear that the joint PDF of a BVGE is very similar to the joint
PDF of a MOBW distribution for different parameter values.
It is clear that if 0 < β1 + β3 < 1 and 0 < β1 + β2 < 1, then
the maximum occurs at (0, 0); otherwise it is unimodal.

It is observed that the BVGE distribution is also quite
flexible like the BVWE distribution, and the marginals of
the BVGE distribution follow generalized exponential distri-
butions. Because of the presence of the four parameters, the
BVGE distribution can be used quite effectively in analyzing
various bivariate data sets. Kundu and Gupta [32] provided
a very effective EM algorithm in computing the maximum
likelihood estimators of the unknown parameters. It will be
interesting to see how the EM algorithm can be modified
for analyzing censored data also. No work has been done in
developing Bayesian inference of the unknown parameters. It
may be mentioned that as MOBW has been used for analyz-
ing dependent competing risks data, BVGE distribution may
be used for analyzing dependent complementary risks data;
see, for example, Mondal and Kundu [47] in this respect.

Kundu and Gupta [34] extended the BVGE distribution to
a more general class of bivariate proportional reversed hazard
(BVPRH) distribution. In that paper the authors introduced
three other classes of bivariate distributions, namely, (a)
bivariate exponentiated Weibull (BVEW) distribution, (b)
bivariate exponentiated Rayleigh (BVER) distribution, and
(c) bivariate generalized linear failure rate (BVGLF) distri-
bution. The BVEW distribution has been obtained by taking
the base line distribution as FB(t; α, λ) = (1 − e−λtα ), i.e., a

Weibull distribution with the scale parameter λ and the shape
parameter α. The BVER distribution can be obtained by tak-
ing the base line distribution as a Rayleigh distribution, i.e.,
FB(t; λ) = (1−e−λt2). Similarly, the BVGLF distribution can
be obtained by taking FB(t; λ, θ) = (1 − e−(λt+θλt2)). Sarhan
et al. [60] provided the detailed analysis of the BVGLF
distribution. They obtained various properties and developed
classical inference of the unknown parameters. It will be
interesting to develop Bayesian inferences in all the above
cases.

36.5 Classical Inference

In this section we present the classical inferences of the
unknown parameters for both the classes of models. It may
be mentioned that Arnold [2] first considered the MLEs of
the unknown parameters for the Marshall-Olkin bivariate
and multivariate normal distributions. Karlis [26] proposed
the EM algorithm to compute the MLEs of the unknown
parameters of the MOBE distribution. Kundu and Dey [30]
extended the result of Karlis [26] to the case of MOBW
distribution. In a subsequent paper, Kundu and Gupta [32]
provided an EM algorithm to compute the MLEs of the
unknown parameters for the modified Sarhan-Balakrishnan
singular bivariate distribution. In this section we provide a
general EM algorithm which can be used to compute the
MLEs of the unknown parameters of bivariate distributions
with singular components which can be obtained either by
minimization or maximization approach.
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Fig. 36.5 PDF plots of MOBE(α1,α2,α3, θ) distribution for different (α1,α2,α3, θ ) values: (a) (1.0,1.0,1.0,0.5) (b) (1.0,1.0,1.0,0.75) (c)
(2.0,2.0,1.0,1.5) (d) (2.0,2.0,1.0,3.0) (e) (3.0,3.0,3.0,1.5) (f) (3.0,3.0,3.0,3.0)



748 D. Kundu

36.5.1 EM Algorithm: Model 1

In this section we provide the EM algorithm to compute the
MLEs of the unknown parameters when the data are coming
from the joint PDF (36.11). It is assumed that we have the
following data:

D = {(x1, y1), . . . , (xn, yn)}.

It is assumed that α1,α2,α3, and θ are unknown parameters
and the form of SB(t; ·) is known. It may be mentioned that θ

may be a vector valued also, but in this case we assume it to
be a scalar for simplicity. Our method can be easily modified
for the vector valued θ also. We further use the following
notations:

I0 = {i : xi = yi}, I1 = {i : xi < yi},
I2 = {i : xi > yi}, I = I0 ∪ I1 ∪ I2,

|I0| = n0, |I1| = n1 |I2| = n2,

here |Ij| for j = 0, 1, 2 denotes the number of elements in the
set Ij. The log-likelihood function can be written as

l(α1,α2,α3, θ) = n0 ln α3 + n1 ln α1 + n1 ln(α2 + α3) + n2 ln α2 + n2 ln(α1 + α3)

+
∑
i∈I

ln fB(xi, θ) +
∑
i∈I1∪I2

ln fB(yi, θ) + (α1 + α2 + α3 − 1)
∑
i∈I0

ln SB(xi, θ)

+ (α1 − 1)
∑
i∈I1

ln SB(xi, θ) + (α2 + α3 − 1)
∑
i∈I1

ln SB(yi, θ)

(α1 + α3 − 1)
∑
i∈I1

ln SB(xi, θ) + (α2 − 1)
∑
i∈I1

ln SB(yi, θ). (36.21)

Hence, theMLEs of the unknown parameters can be obtained
by maximizing (36.21) with respect to the unknown parame-
ters. It is known that even in special cases, i.e., in case of ex-
ponential andWeibull distribution (see, e.g., Bemis et al. [11]
and Kundu and Dey [30]), the MLEs do not exist if n1n2n3 =
0. If n1n2n3 > 0, then the MLEs exist, but they cannot be
obtained in explicit forms. The MLEs have to be obtained
by solving nonlinear equations, and it becomes a nontrivial
problem. Note that in case of exponential, one needs to
solve a three-dimensional optimization problem, and in case
of Weibull, it is a four-dimensional optimization problem.
Due to this reason several approximations and alternative
estimators have been proposed in the literature; see, for ex-
ample, Arnold [2] and Proschan and Sullo [55] in this respect.

We propose an EM algorithm which can be used to com-
pute the MLEs of the unknown parameters, and it is an
extension of the EM algorithm originally proposed by Karlis
[26] for the exponential distribution. The basic idea of the
proposed EM algorithm is quite simple. It may be observed
that if instead of (X, Y), (U1, U2, U3) are known, then the
MLEs of the unknown parameters can be obtained quite
conveniently. Suppose we have the following complete data:

Dc = {(u11, u12, u13), . . . , (un1, un2, un3)}, (36.22)

then the log-likelihood function of the complete data can be
written as

lc(α1,α2,α3, θ) = n ln α1 + α1

n∑
i=1

ln SB(ui1, θ) +
n∑
i=1

(ln fB(ui1, θ) + ln SB(ui1, θ))

n ln α2 + α2

n∑
i=1

ln SB(ui2, θ) +
n∑
i=1

(ln fB(ui2, θ) + ln SB(ui2, θ))

n ln α3 + α3

n∑
i=1

ln SB(ui3, θ) +
n∑
i=1

(ln fB(ui3, θ) + ln SB(ui3, θ)) . (36.23)



36 Bivariate Distributions with Singular Components 749

36

Hence, for a fixed θ , the MLEs of α1, α2, and α3 can be
obtained as

α̂1c(θ) = − n∑n
i=1 ln SB(ui1, θ)

, α̂2c(θ) = − n∑n
i=1 ln SB(ui2, θ)

, α̂3c(θ) = − n∑n
i=1 ln SB(ui3, θ)

. (36.24)

Once, α̂1c(θ), α̂2c(θ), and α̂3c(θ) are obtained, the MLE of
θ can be obtained by maximizing the profile log-likelihood
function lc(̂α1c, α̂2c, α̂3c, θ) with respect to θ . Therefore, in-
stead of solving a four -dimensional optimization problem,
one needs to solve only a one-dimensional optimization
problem in this case. Due to this reason we treat this problem

as a missing value problem. The Table 36.1 will be useful
in identifying the missing Uis in different cases and the
associated probabilities.

We need the following derivations for developing the EM
algorithm for i, j = 1, 2, 3 and i �= j.

E(Uj|Uj > u) = 1

[SB(u, θ)]αj
∫ ∞

u
αjtfB(t; θ)[SB(t; θ)]αj−1dt (36.25)

E(Uj| min{Ui, Uj} = u) = αj

αi + αj
u+ αi

αi + αj
× 1

[SB(u, θ)]αj
∫ ∞

u
αjtfB(t; θ)[SB(t; θ)]αj−1dt. (36.26)

Using (36.25) and (36.26), we estimate the missing Uis
by its expected value. The expectation either can be per-
formed by a direct numerical integration or by Monte Carlo
simulations. Therefore, the following EM algorithm can be
used to compute the MLEs of the unknown parameters in
this case.Start with an initial guess of α1, α2, α3, and θ as

α
(0)
1 , α(0)

2 , α(0)
3 , and θ(0), respectively. We provide the explicit

method how the (k + 1)-th iterate can be obtained from the
k-th iterate. Suppose at the k-th iterate the values of α1, α2,
α3, and θ are α

(k)
1 , α(k)

2 , α(k)
3 , and θ(k), respectively. Then if a

data point (xi, xi) ∈ I0, clearly, ui3 = xi, and the missing ui1
and ui2 can be obtained as

u(k)
i1 = 1

[SB(xi, θ(k))]α(k)
1

∫ ∞

xi

α
(k)
1 tfB(t; θ(k))[SB(t; θ(k))]α(k)

1 −1dt, and

u(k)
i2 = 1

[SB(xi, θ(k))]α(k)
2

∫ ∞

xi

α
(k)
2 tfB(t; θ(k))[SB(t; θ(k))]α(k)

2 −1dt.

Similarly, if (xi, yi) ∈ I1, then ui1 = xi, and the missing ui2
and ui3 can be obtained as

u(k)
i2 = yiα

(k)
2

α
(k)
2 + α

(k)
3

+ α
(k)
3

α
(k)
2 + α

(k)
3

× 1

[SB(xi, θ(k))]α(k)
2

∫ ∞

yi

α
(k)
2 tfB(t; θ(k))[SB(t; θ(k))]α(k)

2 −1dt,

u(k)
i3 = yiα

(k)
3

α
(k)
2 + α

(k)
3

+ α
(k)
2

α
(k)
2 + α

(k)
3

× 1

[SB(xi, θ(k))]α(k)
3

∫ ∞

yi

α
(k)
3 tfB(t; θ(k))[SB(t; θ(k))]α(k)

3 −1dt.
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If (xi, yi) ∈ I2, then ui2 = yi, and the missing ui1 and ui3 can
be obtained as

u(k)
i1 = xiα

(k)
1

α
(k)
1 + α

(k)
3

+ α
(k)
3

α
(k)
1 + α

(k)
3

× 1

[SB(yi, θ(k))]α(k)
1

∫ ∞

xi

α
(k)
1 tfB(t; θ(k))[SB(t; θ(k))]α(k)

2 −1dt,

u(k)
i3 = xiα

(k)
3

α
(k)
1 + α

(k)
3

+ α
(k)
1

α
(k)
1 + α

(k)
3

× 1

[SB(yi, θ(k))]α(k)
3

∫ ∞

xi

α
(k)
3 tfB(t; θ(k))[SB(t; θ(k))]α(k)

3 −1dt.

Therefore, we can obtain α̂
(k+1)
1c (θ), α̂(k+1)

2c (θ), and α̂
(k+1)
3c (θ)

from the Eq. (36.24) by replacing (i) ui1 by u
(k)
i1 if i ∈ I0 ∪ I2,

(ii) ui2 by u
(k)
i2 if i ∈ I0 ∪ I1, and (iii) ui3 by u

(k)
i3 if i ∈ I1 ∪ I2.

Obtain θ(k+1) as

θ(k+1) = arg max lc(̂α
(k+1)
1c (θ), α̂(k+1)

2c (θ), α̂(k+1)
3c (θ), θ).

Here the function lc(·, ·, ·, ·) is the log-likelihood function of
the complete data set as defined by (36.23). Once we obtain
θ(k+1), α(k+1)

1 , α(k+1)
2 , and α

(k+1)
3 can be obtained as

α
(k+1)
1 = α̂

(k+1)
1c (θ(k+1)), α

(k+1)
2 = α̂

(k+1)
2c (θ(k+1)), α

(k+1)
3 = α̂

(k+1)
3c (θ(k+1)).

The process continues unless convergence takes place.

36.5.2 EM Algorithm: Model 2

In this section we provide the EM algorithm when the data
are coming from a bivariate distribution with the joint PDF
(36.15). In this case we have assumed that the data are of the
same form as in the previous case,and we have the sets I0, I1,

and I2 as defined before. In this case the unknown parameters
are β1, β2, and β3 and λ. In general λ can be vector valued
also, but for simplicity it has been assumed to be a scalar
valued. If it is assumed that the complete data are of the form

Dc = {(v11, v12, v13), . . . , (vn1, vn2, vn3)},

then the log-likelihood function based on the complete data
can be written as

lc(β1,β2,β3, λ) = n ln β1 + β1

n∑
i=1

lnFB(vi1, λ) +
n∑
i=1

(ln fB(vi1, θ) + lnFB(vi1, θ))

n ln β2 + β2

n∑
i=1

lnFB(vi2, θ) +
n∑
i=1

(ln fB(vi2, θ) + lnFB(vi2, θ))

n ln β3 + β3

n∑
i=1

lnFB(vi3, θ) +
n∑
i=1

(ln fB(vi3, θ) + lnFB(vi3, θ)). (36.27)

Hence, for a fixed λ, the MLEs of β1, β2, and β3 can be
obtained as

β̂1c(λ) = − n∑n
i=1 lnFB(vi1, λ)

, β̂2c(λ) = − n∑n
i=1 lnFB(vi2, λ)

, β̂3c(λ) = − n∑n
i=1 lnFB(vi3, λ)

. (36.28)
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As before, once, β̂1c(λ), β̂2c(λ). and β̂3c(λ) are obtained,
the MLE of λ can be obtained by maximizing the profile log-
likelihood function lc(β̂1c(λ), β̂2c(λ), β̂3c(λ), λ)with respect

to λ. We have a similar Table 36.2 as Table 36.1, identifying
the missing Vis in different cases. Similar to (36.25) and
(36.26), we need the following expressions in this case for
developing the EM algorithm for i, j = 1, 2, 3 and i �= j.

E(Vj|Vj < u) = 1

[FB(u, λ)]βj
∫ u

0
βjtfB(t; λ)[FB(t; λ)]βj−1dt (36.29)

E(Vj| max{Vi, Vj} = u) = βj

βi + βj
u+ βi

βi + βj

1

[FB(u, λ)]βj
∫ u

0
βjtfB(t; λ)[FB(t; λ)]βj−1dt. (36.30)

Now we provide the explicit method in this case how the
(k + 1)-th iterate can be obtained from the k-th iterate. Let
us assume that at the k-th iterate the values of β1, β2, β3, and
λ are β

(k)
1 , β(k)

2 , β(k)
3 , and λ(k), respectively. Then if a data point

(xi, xi) ∈ I0, clearly, ui3 = xi, and the missing vi1 and vi2 can
be obtained as

v(k)i1 = 1

[FB(xi, λ(k))]β(k)
1

∫ xi

0
β

(k)
1 tfB(t; λ(k))[FB(t; λ(k))]β(k)

1 −1dt,

and

v(k)i2 = 1

[FB(xi, λ(k))]β(k)
2

∫ xi

0
β

(k)
2 tfB(t; λ(k))[FB(t; λ(k))]β(k)

2 −1dt.

Similarly, if (xi, yi) ∈ I1, then vi2 = yi, and the missing vi1
and vi3 can be obtained as

v(k)i1 = xiβ
(k)
1

β
(k)
1 + β

(k)
3

+ β
(k)
3

β
(k)
1 + β

(k)
3

× 1

[FB(xi, λ(k))]β(k)
1

∫ xi

0
β

(k)
1 tfB(t; λ(k))[FB(t; λ(k))]β(k)

1 −1dt,

v(k)i3 = xiβ
(k)
3

β
(k)
1 + β

(k)
3

+ β
(k)
1

β
(k)
1 + β

(k)
3

× 1

[FB(xi, λ(k))]β(k)
3

∫ xi

0
β

(k)
3 tfB(t; λ(k))[SB(t; θ(k))]β(k)

3 −1dt.

If (xi, yi) ∈ I2, then vi1 = xi, and the missing vi2 and vi3 can
be obtained as

v(k)i2 = yiβ
(k)
2

β
(k)
2 + β

(k)
3

+ β
(k)
3

β
(k)
2 + β

(k)
3

× 1

[FB(yi, λ(k))]β(k)
2

∫ yi

0
β

(k)
2 tfB(t; λ(k))[FB(t; λ(k))]β(k)

2 −1dt,

v(k)i3 = yiβ
(k)
3

β
(k)
2 + β

(k)
3

+ β
(k)
2

β
(k)
2 + β

(k)
3

× 1

[FB(yi, λ(k))]β(k)
3

∫ yi

0
β

(k)
3 tfB(t; λ(k))[FB(t; λ(k))]β(k)

3 −1dt.

In this case also similarly as before, we can obtain β̂
(k+1)
1c (λ),

β̂
(k+1)
2c (λ), and β̂

(k+1)
3c (λ) from the Eq. (36.28) by replacing (i)

vi1 by v
(k)
i1 if i ∈ I0 ∪ I1, (ii) vi2 by v

(k)
i2 if i ∈ I0 ∪ I2, and (iii)

vi3 by v
(k)
i3 if i ∈ I1 ∪ I2. Obtain λ(k+1) as

λ(k+1) = arg max lc(β̂
(k+1)
1c (λ), β̂(k+1)

2c (λ), β̂(k+1)
3c (λ), λ).

Here the function lc(·, ·, ·, ·) is the log-likelihood function of
the complete data set as defined by (36.27). Once we obtain
λ(k+1), β(k+1)

1 , β(k+1)
2 , and β

(k+1)
3 can be obtained as

β
(k+1)
1 = β̂

(k+1)
1c (λ(k+1)), β

(k+1)
2 = β̂

(k+1)
2c (λ(k+1)),

β
(k+1)
3 = β̂

(k+1)
3c (λ(k+1)).

The process continues unless convergence takes place.
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Table 36.1 Different cases and
missing Uis

Different cases X & Y Set Value of Ui’s Missing Ui’s Probability of Missing Ui’s

U3 < min{U1, U2} X = Y I0 U3 = X = Y U1 & U2 1

U1 < min{U2, U3} X < Y I1 X = U1, Y = U2 U3
α2

α2+α3

U1 < min{U2, U3} X < Y I1 X = U1, Y = U3 U2
α3

α2+α3

U2 < min{U1, U3} Y < X I2 X = U1, Y = U2 U3
α1

α1+α3

U2 < min{U1, U3} Y < X I2 X = U3, Y = U2 U1
α3

α1+α3

Table 36.2 Different cases and
missing Vis

Different cases X & Y Set Value of Vis Missing Vis Probability of Missing Vis

V3 > max{V1, V2} X = Y I0 V3 = X = Y V1 & V2 1

V2 > max{V1, V3} X < Y I1 X = V1, Y = V2 V3
β1

β1+β3

V2 > max{V1, V3} X < Y I1 X = V3, Y = V2 V1
β3

β1+β3

V1 > max{V2, V3} Y < X I2 X = V1, Y = V2 V3
β2

β2+β3

V1 > max{V2, V3} Y < X I2 X = V1, Y = V3 V2
β3

β2+β3

In both the cases the associated Fisher information matrix
can be easily obtained at the last step of the EM algorithm,
and it can be used to construct confidence intervals of the
unknown parameters.

36.6 Data Analysis

In this section we provide the analysis of one data set mainly
to show how the proposed EM algorithms work in practice.
It is observed that it might be possible to provide some phys-
ical justification also in certain cases under some simplified
assumptions.

This data set is originally available in Meintanis [46], and
it is presented in Table 36.3. This data set represents the
soccer data where at least one goal is scored by the home
team and at least one goal is scored directly from a penalty
kick, foul kick, or any other direct kick by any team. All
these direct goals are usually called as kick goals. Here X
represents the time in minutes of the first kick goal scored by
any team, and Y represents the time in minutes the first goal
of any type scored by the home team. Clearly, in this case all
the three possibilities are present, namely, X < Y , X > Y ,
and X = Y .

Let us consider three random variables U1, U2, and U3 as
follows:

U1 = time in minutes that a first kick goal has been scored

by the opponent

U2 = time in minutes that a first non-kick goal has been

scored by the home team

U3 = the time in minutes that a first kick goal has been

scored by the home team

Table 36.3 UEFA Champion League data

2005–2006 X Y 2004–2005 X Y

Lyon-Real Madrid 26 20 Internazionale-Bremen 34 34

Milan-Feberbahce 63 18 Real Madrid-Roma 53 39

Chensea-Anderlecht 19 19 Man. United-Fenerbahce 54 7

Club Brugge-Juventus 66 85 Bayern-Ajax 51 28

Fenerbahce-PSV 40 40 Moscos-PSG 76 64

Internazionale-Rangers 49 49 Barcelona-Shakhtar 64 15

Panathinaikos-Bremen 8 8 Leverkusen-Roma 26 48

Ajax-Arsenal 69 71 Arsenal-Panathinaikos 16 16

Man. United-Benfica 39 39 Bayern-M. TelAviv 55 11

Juventus-Bayern 66 62 Bremen-Internazionale 49 49

Club Brugge-Rapid 25 9 Anderlecht-Valencia 24 24

Olympiacos-Lyon 41 3 Panathinaikos-PSV 44 30

Internazionale-Porto 16 75 Arsenal-Rosenborg 42 3

Schalke-PSV 18 18 Liverpool-Olympiacos 27 47

Barcelona-Bremen 22 14 M. TelAviv-Juventus 28 28

Milan-Schalke 42 42 Bremen-Panathinaikos 2 2

Rapid-Juventus 36 52

In this case X = min{U1, U3} and Y = min{U2, U3}. If it is
assumed that U1, U2, and U3 are independently distributed,
then (X, Y) can be obtained as Model 1. In this case we have
used three different SB(t; θ) and analyze the data set. The
following SB(t; θ) has been used in this case:

(a) SB(t; θ) = e−t, (b) SB(t; θ) = e−t
2
, (c) SB(t; θ) = e−t

θ

.

Note that SB(t; θ) in three different cases are as follows: (a)
exponential, (b) Rayleigh, and (c) Weibull, and the corre-
sponding hazard functions are (a) constant, (b) increasing,
and (c) increasing or decreasing. We have divided all the data
points by 100, and it is not going to make any difference
in the inference procedure. We compute the MLEs of the
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Table 36.4 MLEs of the
different parameters, 95%
confidence intervals, and
associated log-likelihood values

SB(t; θ) α1 α2 α3 θ ll

e−t 0.7226 1.6352 1.7676 — −22.757

(0.1844, 1.2608) (0.8877, 2.3826) (1.0378, 2.4975)

e−t2 1.7523 3.2157 2.9556 — −18.342

(0.5687, 2.3212) (2.1033, 4.3281) (1.9967, 3.9145)

e−tθ 1.2192 2.8052 2.6927 1.6954 −13.118

(0.2708, 2.1415) (2.0921, 3.5184) (1.5011, 3.8852) (1.3248, 2.0623)

Table 36.5 MLEs of the different parameters, 95% confidence intervals, and associated log-likelihood values

FB(t; λ) β1 β2 β3 λ α ll

1 − e−λt 1.4552 0.4686 1.1703 3.8991 — −20.592

(0.6572, 2.2334) (0.1675, 0.7694) (0.6512, 1.6894) (2.8009, 4.4991) —

1 − e−λt2 0.4921 0.1659 0.4101 4.0263 — −22.737

(0.1704, 0.7343) (0.0648, 0.2687) (0.2466, 0.5748) (2.5141, 5.5382) —

1 − e−λtα 1.2071 0.3387 0.8434 3.852 1.1328 −17.236

(0.5612, 1.8534) (0.0888, 0.5893) (0.4187, 1.2695) (2.7163, 4.9897) (0.7154, 1.5102)

unknown parameters based on the proposed EM algorithm.
We start the EM algorithm with some initial guesses and
continue the process. We stop the EM algorithm when the
ratio |l(k+1)−l(k)|/l(k)| < 10−8; here l(k) denotes the value
of the log-likelihood function at the k-th iterate. Based on
the method proposed by Louis [40], it is possible to compute
the observed Fisher information matrix at the final step of the
EM algorithm. We have provided the MLEs of the unknown
parameters, the associate 95% confidence intervals, and the
corresponding log-likelihood values for different cases in
Table 36.4.

For illustrative purposes, we have used Model 2 also to
analyze this data set. We have used three different FB(t; λ),
Namely, (i) FB(t; λ) = (1−e−λt), (ii) FB(t; λ) = (1−e−λt2),
and (iii) FB(t; λ1, λ2) = (1 − e−λ1tλ2 ). In this case (i)
represents exponential, (ii) represents Rayleigh, and (iii)
represents Weibull distributions. In this case also we have
calculated the MLEs of the unknown parameters using EM
algorithm as mentioned before, and we have used the same
stopping rule as in the previous case here also. The MLEs
of the unknown parameters, the associated 95% confidence
intervals, and the corresponding log-likelihood values are
reported in Table 36.5. In all the cases it is observed
that the EM algorithm converges within 25 iterations.
It seems EM algorithm works quite well for both the
models.

36.7 Some Other Bivariate Distributions

In this section we provide few other bivariate distributions
with singular components which are available in the liter-
ature, which cannot be obtained as special cases of Model

1 or Model 2. It can be seen that in the first two examples,
although the construction remains the same, their final forms
are different. Reasons will be clear soon. Efficient estimation
procedures using EM algorithm can be developed in both
the cases. Marshall and Olkin [45] proposed a method to
introduce an extra parameter to an univariate distribution, and
they have shown how it can be done in case of an exponential
or Weibull distribution. They have indicated how it can be
done for the bivariate cases also. Kundu and Gupta [36]
developed bivariate distributions with singular components
based on the idea of Marshall and Olkin [45]. Different
properties and efficient estimation procedures have been
developed.

36.7.1 Sarhan-Balakrishnan Bivariate
Distribution

Sarhan and Balakrishnan [58] proposed this distribution
based on minimization approach, but they have not taken the
base line distribution as the proportional hazard class. Sarhan
and Balakrishnan [58] assumed the distribution functions of
U1, U2, and U3, for t > 0, as FU1(t,α1) = (1 − e−t)α1 ,
FU2(t,α2) = (1 − e−t)α2 , and FU3(t; λ) = (1 − e−λt),
respectively. Consider a bivariate random variable (X, Y),
such that X = min{U1, U3} and Y = min{U2, U3}. It
may be mentioned that although U1, U2, and U3 belong
to proportional reversed hazard class, the authors considered
the minimization approach. Due to that reason the joint PDF
of X and Y is not a very a compact form. The joint SF and
the joint PDF of X and Y also can be derived along the same
way, as we have mentioned in the previous section. The joint
SF of X and Y in this case becomes
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SX,Y(x, y) = P(X > x, Y > y)

=
{
e−λx(1 − (1 − e−x)α1)(1 − (1 − e−y)α2) if 0 < y < x < ∞
e−λy(1 − (1 − e−x)α1)(1 − (1 − e−y)α2) if 0 < x ≤ y < ∞,

and the joint PDF can be obtained as

fX,Y(x, y) =
⎧⎨
⎩
f1(x, y) if 0 < y < x < ∞,
f2(x, y) if 0 < x < y < ∞,
f0(x) if 0 < x = y < ∞.

Here

f1(x, y) = α2e
−(λx+y)(1 − e−y)α2−1

(
λ − λ(1 − e−x)α1 + α1e

−x(1 − e−x)α1−1
)

f2(x, y) = α1e
−(λy+x)(1 − e−x)α1−1

(
λ − λ(1 − e−y)α2 + α2e

−y(1 − e−y)α2−1
)

f0(x) = λe−λx
(
1 − (1 − e−x)α1

) (
1 − (1 − e−y)α2

)
.

Therefore, the SF and X and Y become

SX(x) = P(X > x) = e−λx(1 − (1 − e−x)α1) and SY(y) = P(Y > y) = e−λy(1 − (1 − e−y)α2),

respectively. It should also be mentioned that the copula as-
sociated with the Sarhan-Balakrishnan bivariate distribution
cannot be obtained in an explicit form.

36.7.2 Modified Sarhan-Balakrishnan
Bivariate Distribution

Kundu and Gupta [33] proposed a modified version of the
Sarhan-Balakrishnan bivariate distribution, and the latter can
be obtained as a special case of the former. The idea is
as follows: Suppose U1, U2, and U3 are three independent
random variables, such that for t > 0, the CDF of U1, U2,
and U3 are FU1(t; α1, λ) = (1− e−λt)α1 , FU2(t; α2, λ) = (1−
e−λt)α2 , and FU3(t; α3, λ) = (1− e−λt)α3 , respectively. In this
case also consider a bivariate random variable (X, Y), such
that X = min{U1, U3} and Y = min{U2, U3}. Clearly, the
modified Sarhan-Balakrishnan bivariate distribution is more
flexible than the Sarhan-Balakrishnan bivariate distribution.

The joint survival function in this case can be obtained as

SX,Y(x, y) = P(X > x, Y > y)

= (1 − (1 − e−λx)α1)(1 − (1 − e−λy)α2)

(1 − (1 − e−λz)α3),

where z = max{x, y}. Hence the marginal survival function
can be obtained as

P(X > x) = (1 − (1 − e−λx)α1)(1 − (1 − e−λz)α3)

P(Y > y) = (1 − (1 − e−λy)α2)(1 − (1 − e−λz)α3).

Along the same line as before, the joint PDF of the
modified Sarhan-Balakrishnan bivariate distribution can be
obtained as

fX,Y(x, y) =
⎧⎨
⎩
f1(x, y) if 0 < y < x < ∞,
f2(x, y) if 0 < x < y < ∞,
f0(x) if 0 < x = y < ∞,

where

f1(x, y) = f (x; α1, λ)[f (y; α2, λ) + f (y; α3, λ)

− f (y; α2 + α3, λ)

f2(x, y) = f (y; α2, λ)[f (x; α1, λ) + f (x; α3, λ)

− f (x; α1 + α3, λ)

f0(x) = α1
α1+α3

f (x; α1 + α3, λ) + α2
α2+α3

f (x; α2 + α3, λ)

− α1+α2
α1+α2+α3

f (x; α1 + α2 + α3, λ).
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Here

f (x; α, λ) =
{

αλe−λx(1 − e−λx)α−1 if x > 0
0 if x ≤ 0.

In this also the copula associated with the modified Sarhan-
Balakrishnan bivariate distribution cannot be obtained in a
compact form. Note that this idea can be extended for the
proportional reversed hazard classes also. The necessary EM
algorithm also can be developed for this model along the
same line.

36.7.3 Bivariate Weibull-Geometric
Distribution

As it has been mentioned before, Marshall and Olkin [45]
proposed a method to introduce a parameter in a family of

distributions. It introduces an extra parameter to a model;
hence it brings more flexibility. The model has some inter-
esting physical interpretations also. The basic idea is very
simple, and it can be defined as follows. Suppose {Xn; n =
1, 2, . . .} is a sequence of i.i.d. random variables and N is a
geometric random variable with parameter 0 < p ≤ 1 having
probability mass function

P(N = n) = p(1 − p)n−1; n = 1, 2, . . . . (36.31)

Here, X′
ns and N are independently distributed. Consider the

random variables,

Y = min{X1, . . . , XN}.

Wedenote SX(·), SY(·), fX(·), and fY(·) as the survival function
of X, survival function of Y , PDF of X1, and PDF of Y ,
respectively. The CDF of Y becomes

SY(y) = P(Y > y) = P(X1 > y, . . . , XN > y) =
∞∑
n=1

(X1 > y, . . . , Xn > y|N = n)P(N = n)

= p
∞∑
n=1

SnX(y)(1 − p)n−1 = pSX(y)

1 − (1 − p)SX(y)
.

Therefore, the PDF of Y becomes

fY(y) = pfX(y)

(1 − (1 − p)SX(y))2
.

If X1 is an exponential random variable with mean 1/λ,
then Y is called Marshall-Olkin exponential (MOE) random
variable. The PDF of a MOE distribution with parameter λ

and p, MOE(p, λ), is

fY(y; p, λ) = pλe−λy

(1 − (1 − p)e−λy)2
; y > 0. (36.32)

When p = 1, it becomes an exponential random variable.
From the PDF (36.32), it is clear that MOE is a weighted
exponential random variable, where the weight function is

w(y) = p

(1 − (1 − p)e−λy)2
; y > 0.

Hence, the two-parameter MOE distribution is more flexible
than the one parameter exponential distribution. Similarly, if
X1 is a Weibull random variable with the shape parameter
α > 0 and scale parameter λ > 0, with the PDF

fX(x; α, λ) = αλxα−1e−λxα ; x > 0

then the associated Y is said to have Marshall-Olkin Weibull
(MOWE) distribution. The MOWE has the PDF

fY(y; p,α, λ) = pαλyα−1e−λyα

(1 − (1 − p)e−λyα )2
.

It is immediate that the MOWE distribution is a weighted
Weibull distribution, and in this case the weight function is

w(y) = p

(1 − (1 − p)e−λyα )2
; y > 0.

The three-parameter MOWE distribution is more flexible
than the two-parameter Weibull distribution. Marshall and
Olkin [45] developed several properties of the MOE and
MOWE distributions. Although Marshall and Olkin [45] did
not develop any estimation procedure, very effective EM
algorithm can be developed as it has been obtained in case of
the corresponding bivariate model by Kundu and Gupta [36].

In the same paperMarshall and Olkin [45] mentioned how
their method can be extended to the multivariate case also,
although they did not provide much detail. Moreover, the
extension to the bivariate or multivariate case may not be
unique. Kundu and Gupta [36] first used the method of Mar-
shall and Olkin [45] to extendMOBWdistribution and called
it as the bivariate Weibull-Geometric (BWG) distribution.
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It has five parameters, and MOBW can be obtained as a
special case of BWG distribution. The details are given
below.

Suppose {(X1n, X2n); n = 1, 2, . . .} is a sequence of i.i.d.
random variables with parameters α1, α2, α3, θ as given in
(36.17) and

Y1 = min{X11, . . . , X1N} and Y2 = min{X21, . . . , X2N},

then (Y1, Y2) is said to have BWG distribution.
The joint survival function of (Y1, Y2) becomes

P(Y1 > y1, Y2 > y2) =
∞∑
n=1

Pn(X11 > y1, X21 > y2)

p(1 − p)n−1

= pP(X11 > y1, X21 > y2)

1 − (1 − p)P(X11 > y1, X21 > y2)

=

⎧⎪⎨
⎪⎩

pe−α1y
θ
1 e−(α2+α3)yθ2

1−(1−p)e−α1y
θ
1 e−(α2+α3)yθ2

if y1 ≤ y2

pe−(α1+α3)yθ1 e−α2y
θ
2

1−(1−p)e−(α1+α3)yθ1 e−α2y
θ
2
if y1 > y2.

The joint PDF of (Y1, Y2) can be obtained as

g(y1, y2) =
⎧⎨
⎩
g1(y1, y2) if y1 > y2
g2(y1, y2) if y1 < y2
g0(y) if y1 = y2 = y,

(36.33)

where

g1(y1, y2) = pθ2yθ−1
1 yθ−1

2 (α3 + α1)α2e−(α1+α3)yθ1−α2yθ2 (1 + (1 − p)e−(α1+α3)yθ1−α2yθ2 )

(1 − (1 − p)e−(α3+α1)yθ1−α2yθ2 )3

g2(y1, y2) = pθ2yθ−1
1 yθ−1

2 (α3 + α2)α1e−(α2+α3)yθ2−α1yθ1 (1 + (1 − p)e−(α2+α3)y
β

2−α1yθ1 )

(1 − (1 − p)e−(α3+α2)yθ2−α1yθ1 )3

g0(y) = pθyθ−1α3e−(α1+α2+α3)yθ

(α1 + α2 + α3)(1 − (1 − p)e−(α1+α2+α3)yθ )2

The surface plot of the absolute continuous part of BWG for
different parameter values is provided in Fig. 36.6. It is clear
from Fig. 36.6 that BWG is more flexible than the MOBW
distribution.

From the joint PDF of (Y1, Y2) it can be seen that

P(Y1 = Y2) = α3

α1 + α2 + α3
> 0,

hence it has a singular component. The marginals of Y1 and
Y2 are geometric-Weibull distribution as defined by Marshall
and Olkin [45]. It may be mentioned that when θ = 1,
BWG distribution becomes the MOBW distribution. There-
fore, MOBW distribution can be obtained as a special case
of the BWG distribution. Estimation of the unknown five
parameters for the BWG distribution based on a bivariate
set of data set is a challenging problem. The MLEs of the
unknown parameters can be obtained by solving a five-
dimensional optimization problem. To avoid that, Kundu and
Gupta [36] proposed a very efficient EM algorithm, which
involves solving a one-dimensional optimization problem at
each “E”-step of the EM algorithm. In the same paper Kundu
and Gupta [36] developed the testing problem so that based
of the observed data it should be possible to test whether it
is coming from BWG or MOBW model. This model can be
used for modeling dependent competing risks data.

36.7.4 Bivariate PHM-Geometric Distribution

Although Kundu and Gupta [36] proposed the Marshall-
Olkin method for the MOBW distribution, it can be extended
for a general bivariate PHM as provided in (36.11). Similar
to the bivariate Weibull-geometric model, more general the
bivariate PHM-geometric distribution can be obtained as
follows: Suppose {(X1n, X2n); n = 1, 2, . . .} is a sequence of
i.i.d. random variables with parameters α1, α2, α3 as follows:

SX,Y(x, y) =
{ [SB(x)]α1 [SB(y)]α2+α3 if x < y

[SB(x)]α1+α3 [SB(y)]α2 if x ≥ y.
(36.34)

Here SB(·) is the base line survival function. It may depend
on some parameter, but we do not make it explicit. Further,
N is a geometric random variable with parameter 0 < p ≤
1 having probability mass function as given in (36.31), and
it is independent of {(X1n, X2n); n = 1, 2, . . .}. Consider the
random variables,

Y1 = min{X11, . . . , X1N} and Y2 = min{X21, . . . , X2N},

then (Y1, Y2) is said to have bivariate PHM-Geometric
(PHMG) distribution. The joint survival function of the
bivariate PHMG becomes
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Fig. 36.6 PDF plots of MOBE(α1,α2,α3, θ ,p) distribution for different (α1,α2,α3, θ , p) values: (a) (2.0,2.0,2.0,2.0,0.5) (b) (2.0,2.0,2.0,3.0,0.5)
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758 D. Kundu

P(Y1 > y1, Y2 > y2) = ∑∞
n=1 P

n(X11 > y1, X21 > y2)

p(1 − p)n−1

= pP(X11 > y1, X21 > y2)

1 − (1 − p)P(X11 > y1, X21 > y2)

=
⎧⎨
⎩

p[SB(y1)]α1 [SB(y2)]α2+α3

1−(1−p)[SB(y1)]α1 [SB(y2)]α2+α3 if y1 ≤ y2

p[SB(y1)]α1+α3 [SB(y2)]α2
1−(1−p)[SB(y1)]α1+α3 [SB(y2)]α2 if y1 > y2.

If we denote fB(·) as the base line PDF, then the joint PDF of
the bivariate PHMG can be written as

g(y1, y2) =
⎧⎨
⎩
g1(y1, y2) if y1 > y2
g2(y1, y2) if y1 < y2
g0(y) if y1 = y2 = y,

where

g1(y1, y2) = c1fB(y1)[SB(y1)]α1+α3−1fB(y2)[SB(y2)]α2−1(1 + (1 − p)[SB(y1)]α1+α3[SB(y2)]α2)

(1 + (1 − p)[SB(y1)]α1+α3[SB(y2)]α2)3

g2(y1, y2) = c2fB(y1)[SB(y1)]α1−1fB(y2)[SB(y2)]α2+α3−1(1 + (1 − p)[SB(y1)]α1 [SB(y2)]α2+α3)

(1 + (1 − p)[SB(y1)]α1 [SB(y2)]α2+α3)3

g0(y) = pfB(y)α3[SB(y)]α1+α2+α3−1

(α1 + α2 + α3)(1 − (1 − p)[SB(y)]α1+α2+α3)2

c1 = p(α3 + α1)α2, c2 = p(α3 + α2)α1.

Clearly, bivariate PHMG is more flexible than the BWG
distribution. When the base line distribution is Weibull with
the scale parameter one, and the shape parameter θ , then
the bivariate PHMG becomes the BWG distribution. This
model can also be used for analyzing dependent competing
risks data. It will be interesting to develop both classical
and Bayesian inference procedures for this distribution.More
work is needed in this direction.

36.7.5 Bivariate GE-Geometric Distribution

In this section first we introduceMarshall-OlkinGE (MOGE)
distribution similar to theMOE andMOWE distribution. The

idea is very similar, and it can be defined as follows. Suppose
{Xn; n = 1, 2, · · · } is a sequence of i.i.d. GE(α, λ) random
variables andN is a geometric random variable with the PMF
as given in (36.31). Moreover, N and {Xn; n = 1, 2, · · · }
are independently distributed. Let us define a new random
variable Y as

Y = max{X1, . . . , XN}.
The random variable Y is said to have GE-Geometric (GEG)
distribution with parameter p, α, λ, and it will be denoted by
GEG(p,α, λ).

The CDF of Y for y > 0 can be obtained as

FY(y; ,α, λ) = P(Y ≤ y) = P(X1 ≤ y, · · · , XN ≤ y) = p
∞∑
n=1

Pn(X1 ≤ y)(1 − p)n−1

= p(1 − e−λx)α

1 − (1 − p)(1 − e−λx)α
.

The corresponding PDF becomes

fY(y; p,α, λ) = pαλe−λx(1 − e−λx)α−1

(1 − (1 − p)(1 − e−λx)α)2
for y > 0,

and zero, otherwise.
Now we can define bivariate GEG (BGEG) along the

same line as before. Suppose {(X1n, X2n); n = 1, 2, . . .} is a

sequence of i.i.d. random variables with parameters β1, β2,
β3, λ having the joint PDF as given in (36.20) and

Y1 = max{X11, . . . , X1N} and Y2 = max{X21, . . . , X2N},

then (Y1, Y2) is said to have BGEG distribution with param-
eters β1,β2,β3, λ, p.

The joint CDF of (Y1, Y2) becomes
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P(Y1 ≤ y1, Y2 ≤ y2) = ∑∞
n=1 P

n(X11 ≤ y1, X21 ≤ y2)

p(1 − p)n−1

= pP(X11 ≤ y1, X21 ≤ y2)

1 − (1 − p)P(X11 ≤ y1, X21 ≤ y2)

=
⎧⎨
⎩

p(1−e−λy1 )β1 (1−e−λy2 )β2+β3

1−(1−p)(1−e−λy1 )β1 (1−e−λy2 )β2+β3
if y1 > y2

p(1−e−λy1 )β1+β3 (1−e−λy2 )β2

1−(1−p)(1−e−λy1 )β1+β3 (1−e−λy2 )β2
if y1 ≤ y2.

It will be interesting to develop different properties of this
distribution similar to the BWG distribution as it has been
obtained by Kundu and Gupta [36]. Moreover, classical
and Bayesian inference need to be developed for analyzing
bivariate data sets with ties. This model also can be used for
analyzing dependent complementary risks data. More work
is needed along this direction.

36.8 Conclusions

In this chapter we have considered the class of bivariate
distributions with a singular component. Marshall and Olkin
[44] first introduced the bivariate distribution with singular
component based on exponential distributions. Since then an
extensive amount of work has taken place in this direction.
In this chapter we have provided a comprehensive review of
all the different models. It is observed that there are mainly
two main approaches available in the literature to define
bivariate distributions with singular components, and they
produce two broad classes of bivariate distributions with
singular components. We have shown that these two classes
of distributions are related through their copulas under certain
restriction. We have provided very general EM algorithms
which can be used to compute the MLEs of the unknown
parameters in these two cases. We have provided the analysis
of one data set to show how the EM algorithms perform in
real life.

There are several open problems associated with these
models. Although in this chapter we have mainly discussed
different methods for bivariate distributions, all the methods
can be generalized for the multivariate distribution also.
Franco and Vivo [20] first obtained the multivariate Sarhan-
Balakrishnan distribution and developed several properties,
although no inference procedures were developed. Sarhan
et al. [60] provided the multivariate generalized failure rate
distribution, and Franco, Kundu, and Vivo [19] developed
multivariate modified Sarhan-Balakrishnan distribution. In
both these papers, the authors developed different properties
and very efficient EM algorithms for computing the maxi-
mum likelihood estimators of the unknown parameters. More
general multivariate distributions with proportional reversed
hazard marginals can be found in Kundu, Franco, and Vivo
[38]. Note that all these models can be very useful to analyze

dependent competing risks model with multiple causes. No
work has been done along that like; more work is needed
along these directions.
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Abstract

Bayesian modelling has come a long way from the first
appearance of the Bayes theorem. Now it is being applied
in almost every scientific field. Scientists and practitioners
are choosing to use Bayesian methodologies over the
classical frequentist framework because of its rigourmath-
ematical framework and the ability to combine prior infor-
mation to define a prior distribution on the possible values
of the unknown parameter. Here in this chapter we briefly
discuss various aspects of Bayesian modelling. Starting
from a short introduction on conditional probability, the
Bayes theorem, different types of prior distributions, hier-
archical and empirical Bayes and point and interval esti-
mation, we describe Bayesian regression modelling with
more detail. Then we mention an array of Bayesian com-
putational techniques, viz. Laplace approximations, E-M
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algorithm, Monte Carlo sampling, importance sampling,
Markov chainMonte Carlo algorithms, Gibbs sampler and
Metropolis-Hastings algorithm. We also discuss model
selection tools (e.g. DIC, WAIC, cross-validation, Bayes
factor, etc.) and convergence diagnostics of the MCMC
algorithm (e.g. Geweke diagnostics, effective sample size,
Gelman-Rubin diagnostic, etc.). We end the chapter with
some applications of Bayesian modelling and discuss
some of the drawbacks in using Bayesian modelling in
practice.

Keywords

Bayesian modelling · Prior distribution · Bayesian
regression · Bayesian computation · Markov chain
Monte Carlo · Gibbs sampler · Metropolis-Hastings
algorithm · Bayesian model selection · WAIC ·
Cross-validation · Bayes factor

37.1 Introduction

Bayesian has a wide range of applications in various fields,
namely: (a) medicine, (b) document classification, (c) infor-
mation retrieval, (d) semantic search, (e) image processing,
(f) spam filter and (g) reliability.

An advantage of Bayesian statistics is its ability to com-
bine prior information regarding a parameter with the data
and compute the posterior distribution. Thus, the prominent
features of available information are used in Bayesian statis-
tics to obtain the posterior distribution which can further be
used as prior with the availability of new observations.

It is usually known that the larger the data, the better is the
inference regarding the population. But there is no concept of
‘too little data’ in Bayesian statistics [1]. Bayesian method is
helpful in modelling data with small sample sizes with a good
prediction accuracy.

Bayesian statistics follows the ‘Likelihood Principle’
which states that all information from the data that is relevant
to inferences about the value of the model parameters is in the
equivalence class to which the likelihood function belongs.

The Bayesian concept of a credible interval is sometimes
put forward as a more practical concept than the confidence
interval.

Bayesian modelling framework provides a convenient set-
ting for a wide range of models, such as hierarchical mod-
els and missing data problems. Numerical methods (e.g.,
Markov chain Monte Carlo, the Laplace approximation) al-
low computational tractability of these models.

Different methods such as importance sampling, rejection
sampling, uniform sampling, Monte Carlo Markov chain
and Gibbs sampling help to give reliable estimates of pa-
rameters involving tractable computations. Also, meaningful

inferences regarding parameters can be made in presence of
missing observations.

37.2 Conditional Probability

Let n1 denote the number of persons who smoke and have
cancer. Let n2 denote the number of persons who smoke. Let
n denote the total number of persons. You are now asked to
find the probability that a person will have cancer given that
he smokes. To answer such questions, we have to know what
conditional probability is. Conditional probabilities arise nat-
urally in the investigation of experiments where an outcome
of a trial may affect the outcomes of the subsequent trials. The
conditional probability of an event B given an event A is the
probability that the event B will occur given the knowledge
that the event A has already occurred. This can be denoted by
P(B|A).

Bayes’ Theorem
In probability theory and statistics, Bayes’ theorem describes
the probability of an event, based on prior knowledge of
conditions that might be related to the event. For example,
if cancer is related to age, then, using Bayes’ theorem, a
person’s age can be used to more accurately assess the
probability that they have cancer, compared to the assessment
of the probability of cancer made without knowledge of the
person’s age. Mathematically, Bayes’ theorem can be stated
as:

P(A|B) = P(B|A)P(A)

P(B)
,

where A and B are events and P(B) �= 0. P(A|B) is a condi-
tional probability: the likelihood of event A occurring given
that B is true. P(B|A) is also a conditional probability: the
likelihood of event B occurring given that A is true. P(A)
and P(B) are the probabilities of observing A and B inde-
pendently of each other; this is known as the marginal prob-
ability. In the Bayesian interpretation, probability measures
a ‘degree of belief.’ Bayes’ theorem then links the degree
of belief in a proposition before and after accounting for
evidence, and hence the probabilities of Bayes’ theorem have
the following interpretation: P(A) is termed the prior, i.e. the
initial degree of belief in A; P(A|B) is termed the posterior,
i.e. the degree of belief having accounted for B. The ratio
P(B|A)

P(B)
represents the support B provides for A.

37.3 Some Examples

37.3.1 Prosecutor’s Fallacy

Prosecutor’s fallacy is a very famous application of Bayes’
rule. A fallacy for statistical reasoning, prosecutor’s fallacy,
is used by the prosecution in the criminal trial to argue if
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the person suspected is guilty. The problem is as follows:
A number of persons in a city having a population of, say,
100, have been suspected of committing a crime, and one
of the defendants is brought to trial. Further, the blood that
has been found in the crime scene matches with that of the
defendants’. The court has to judge if he/she is guilty or
innocent. To solve the problem and to understand where the
fallacy lies, let us first understand the following notations:
G denotes the defendant is guilty, Gc denotes the defendant
is innocent. B: Blood found in the crime scene is consistent
with the defendant’s blood. Let us understand the following
conditional probabilities: P(B|Gc) = Probability that a person
who is not guilty matches the blood. P(Gc|B) = Probability
that a person who matches the blood description is innocent.
Now the prosecutor’s fallacy is, if P(B|Gc) = 0.01, then
P(Gc|B) = 0.01. This means that if there is a 1% chance
of a random person’s blood type matching with that of the
crime scene, then there is a 1% chance of the defendant
being not guilty. Following the prosecutor’s arguments, the
conditional probabilities might seem similar. But the result
of the conditional probability P(Gc|B) using Bayes’ theorem
is inconsistent with the prosecutor’s argument. Applying
Bayes’ theorem, P(G|B) = P(B|G)P(G)

P(B|G)P(G)+P(B|Gc)P(Gc)
. Now if a

person is guilty, then it is obvious that his/her blood type
would match that at the crime scene. Thus, P(B|G) = 1. We
also have P(G|B) = 1×P(G)

[1×P(G)]+[0.01×P(Gc)] = 1
0.99+0.01/P(G)

.

37.3.2 Monty Hall Problem

TheMonty Hall problem, a brain teaser, is a statistical puzzle
named after its host Monty Hall, which was aired in the
television show ‘Let’s Make a Deal’. In the show, each con-
testant was given an opportunity of winning the grand prize
by selecting one of the three doors. The grand prize was a car
which was placed behind one of the doors and the other two
contained goats. After the contestant picked a door, Monte
used to show him one of the two remaining doors which did
not contain the car and the contestant was given an option to
alter his decision. According to some, swapping would not
be advantageous since there is a 50% chance that the car
is behind one of the two unopened doors. However it can
be shown using Bayes’ theorem that swapping would lead
to an approximate 66% chance of winning the car, whereas
not swapping would lead to an approximate 33% chance
of not winning the car. Let P denote the door containing
the car, C denote the initial choice of the contestant and M
denote the door shown by Monty. The car is placed behind a
door randomly, prior to the selection made by the contestant.
Thus, selection of the door is independent of the prize being
placed behind a door, i.e. P is independent of C. Therefore,
P(P = p) = P(P = p|C = c) = 1/3, p = 1, 2, 3, c = 1, 2, 3.
However the door Monte shows depends on where the car is
with the conditional probability, P(M = m/P = p, C = c),

c = 1, 2, 3, p = 1, 2, 3, m = 1, 2, 3. WLG, we assume that
the contestant selects door number 3. Define Pr(P = 1) =
p1;Pr(P = 2) = p2;Pr(P = 3) = p3; and Pr(M = m|P =
p, C = c) = ampc; m = 1, 2, 3; p = 1, 2, 3; c = 1, 2, 3

P(P = 1|M = 2) = a213p1
a213p1 + a223p2 + a233p3

.

Since the contestant selects door number 3, Monty would
either show door number 1 or 2 depending on where the car
is. Let us say, if the car is behind door number 2, then Monty
would show door number 1 and vice versa. However if the car
is behind door number 3, then Monty can show door number
1 or 2. The possible cases are as follows:

m 1 2 3

P(M=m |P=1,C=3) 0 1 0

P(M=m |P=2,C=3) 1 0 0

P(M=m |P=3,C=3) 0.5 0.5 0

Therefore, P(P=1 | M=2) = 1×1/3
[1×1/3]+[0×1/3]+[0.5×1/3] = 2

3
.

Again, P(P = 3|M = 2) = a233p3
a213p1+a223p2+a233p3 =

0.5×1/3
[1×1/3]+[0×1/3]+[0.5×1/3] = 1

3 . It is obvious that P(P = 2|
M = 2) = 0, since Monty would not reveal the door
containing the car. Thus, it can be seen that if the contestant
alters their decision, then the chances of getting the car are
higher.

37.3.3 Types of Prior

Improper Prior
If the prior distribution is not previously known, it is deter-
mined on a subjective or theoretical basis, which may lead
to the situation

∫
�

π(θ)dθ = ∞. In such cases the prior
distribution is said to be improper (or generalised). But as
long as the posterior distribution is defined, one can use the
Bayesian method, even if the prior is improper.

Example

Let us consider a pdf f (x|θ) = N(θ , 1) and π(θ) = c,
where c is an arbitrary constant. The posterior distribution

is given by: p(θ |y) = f (x|θ)p(θ)∫
f (x|θ)p(θ)dθ = c 1√

2π
e−

1
2 (y−θ)2

∫∞
−∞ c 1√

2π
e−

1
2 (y−θ)2

dθ .

Thus, θ |y ∼ N(y, 1). Hence, the prior is improper, but the
posterior is tractable. �

Non-informative Prior
Non-informative priors favour no particular values of the
parameter over others. If� is finite, we choose uniform prior.
If � is infinite, there are several ways of choosing a prior
distribution some of which may be improper.
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Location Density For a location density f(x|θ ) = f(x-θ ), the
location-invariant non-informative prior is π(θ) = π(0).
(a constant). We usually choose π(0) = 1(improper prior).

Example

Suppose X ∼ N(θ , σ 2). Let Y = X + c. Then Y ∼
N(η, σ 2), where η = θ +c. Thus, Y has the density fy(y) =

f(y-η) = 1√
2πσ

exp −(y−η)2

2σ 2 . Assume π(θ) and π∗(η) are

the non-informative priors of θ and η = θ+c, respectively.
Let A be any set. Then,

∫
A π(θ)dθ = ∫

A π∗(η)dη =∫
A−c π(θ)dθ (because η ε A ⇔ θ + c ε A ⇔ θ ε A-c)

= ∫A π(θ −c)dθ . Thus, π(θ) = π(θ −c). Now, let θ = c.
Then π(c) = π(0), a constant. It is generally convenient
to choose π(c) = 1. �

Scale Density
For a scale density, f (x|σ) = 1

σ
f ( x

σ
), for σ > 0, the scale-

invariant non-informative prior is π(σ) ∝ 1
σ
.

Example

Let X ∼ N(0, σ 2) and Y = cX. Then, Y ∼ N(0, c2σ 2).
The density of Y is fy(y) = 1√

2πcσ
exp − y2

2c2σ 2 =
1√
2πη

exp − y2

2η2 = 1

η
f ( x

η
), where η = cσ . �

Assume π(θ) and π∗(η) are the non-informative priors
of σ and η = cσ , respectively. Let A be any set. Then,∫
A π(σ)dσ = ∫

A π∗(η)dη = ∫
A/c π(σ)dσ (because ηεA ⇔

cσεA ⇔ σεA/c = ∫A π(
σ

c
)
1

c
dσ .

Thus, π(σ) = π(
σ

c
)
1

c
. Let, σ = c. Then, π(c) = π(1)

1

c
.

It is generally convenient to set π(1)=1. Then, π(c) = 1

c
⇔

π(σ) = 1

σ
. Note that, π(σ) = 1

σ
is an improper prior since

∫∞
0

1

σ
dσ = ∞. Jeffreys’ prior is given by: π(θ) ∝ I(θ)1/2.

Example

f (x|p) = (n
x

)
px(1 − p)n−x. I(p) = n

p(1 − p)
Let

y1, y2, . . . , yn be n independent samples from N(βxi, 1)
distribution where β is an unknown parameter and
x1, x2, . . . , xn are known. Then, I(β)= Sxx, where Sxx =
∑n

i=1 x
2
i . So Jeffreys’ prior is proportional to S

1
2
xx. The

posterior distribution has a N(
Sxy
Sxx
, S−1

xx ) where Sxy =
∑n

i=1 xiyi �

Conjugate Prior
A family F of probability distributions on Θ is said to be
conjugate or closed under sampling for a likelihood f (x | θ),

if for every prior π ∈ F, the posterior distribution π(θ | x)
also belongs to F. Choosing a conjugate prior makes com-
putation of posterior quantities easier. Further, updating the
distribution under the new data is also convenient.

Example

Let y ∼ Poisson(θ), θε(0,∞) = �. θ ∼ Gamma(c,α).
Then θ |y ∼ �(c + 1,α + y). y|θ ∼ Bin(n, θ) for y =
0, 1, 2, . . . , n. f (y|θ) = (n

y

)
θ y(1 − θ)n−y. θ ∼ Beta(a, b)

with density p(θ) = �(a+b)
γ (a)�(b) θa−1(1−θ)b−1. The posterior

distribution of θ |y is given by : θ | y ∼ Beta(y+a, n− y+
b). The posterior distribution can be obtained by applying
Bayes’ theorem to the densities. p(θ |y) = f (y|θ)p(θ)∫

f (y|θ)p(θ)dθ =
�(n+a+b)

�(y+a)�(n−y+b) θ
y+a−1(1 − θ)n−y+b−1.

Now y1, y2, · · · , yn|θ ∼ N(θ , σ 2). Let τ = 1
σ 2 . The

likelihood function is given by: L(y|θ) = ∏n
i=1 f (yi|θ)

= (τ/2π)n/2 e−τ/2
∑n

i=1(yi−θ)2 . θ ∼ N(θ0, 1/τ0). Hence,
the posterior distribution is given by: θ |y ∼ N( τ0

τ0+nτ θ0 +
nτ

τ0+nτ ȳ,
1

τ0+nτ ). �

TheMultinomial Distribution and the Dirichlet
Prior
Suppose an experiment is conducted having n independent
trials and each trial produces exactly one of the k events E1,
E2,· · · , Ek with respective probabilities θ1, θ2, · · · , θk. These
k events are mutually exclusive and collectively exhaustive.
Here, θ1 + θ2 + · · · + θk = 1. Define:

X1 = number of trials in which E1 occurs.

X2 = number of trials in which E2 occurs.

...

Xk = number of trials in which Ek occurs.

Then X = (X1, X2, . . . , Xk) is said to have a multinomial
distribution with index n and parameter π = (θ1, θ2, · · · , θk).
In most problems, n is regarded as fixed and known. Then,
f (X|π) ∝ ∏k

i=1 θ
Xi
i . We here introduce the Dirichlet dis-

tribution which is nothing but the multivariate generalisa-
tion of the beta distribution as the conjugate prior distri-
bution for the multinomial distribution. The pdf is given
by: π(θ1, θ2, · · · , θk|α1,α2, · · · ,αk) ∝ ∏k

i=1 θ
αi−1
i . We say

that (θ1, θ2, · · · , θk) ∼ Dirichlet(k; (α1,α2, · · · ,αk)). The
posterior distribution of θ1, θ2, · · · , θk given X∼ also follows

Dirichlet with parameter set (k; α1+X1,α2+X2, · · · ,αk+Xk).

37.3.4 Reference Prior

A reference prior distinguishes between the parameters
of interest and the nuisance parameters. Let X ∼ f (x|θ)
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where θ = (θ1, θ2, . . . , θp, . . . , θq). Also, define θA =
(θ1,θ2,· · · ,θq) and θB = (θq+1, · · · , θp). Let π(θB|θA) be
Jeffreys’ prior associated with f (x|θ), when θA is fixed.
To obtain the reference prior, we then derive the marginal
distribution f ∗(x|θA) = f ∗(x|θ1, θ2, · · · , θq) =

∫ ∫ · · · ∫ f (x|θ)

π(θq+1, · · · , θp|θ1, θ2, · · · , θq)dθq+1 · · · dθp and then com-
pute Jeffreys’ prior associated with f ∗(x|θA). In this process,
the nuisance parameter gets eliminated by using a Jeffreys’
prior where the parameters of interest remain fixed.

Example

Let us consider the Neyman-Scott problem. Here, xij ∼
N(μi, σ 2), i = 1, 2, · · · , n; j = 1, 2. The goal is to
estimate the variance of the whole population σ 2. After
several steps of calculation, the usual Jeffreys’ prior is ob-
tained as: π(μ1,μ2, · · · ,μn, σ) = σ−n−1. But, by action
E[σ 2|x11, · · · , xn2] = s2/(n−2); s2 =∑n

i=1
(xi1−xi2)2

2 . The
posterior expectation converges to σ 2/2. In our example
θA = σ and θB = (μ1,μ2, · · · ,μn). The reference
prior associated with θA and θB gives a flat prior for
θB; θB being a location parameter. Then, f ∗(x|θA) =∏n

i=1 e
−(xi1−xi2)2/4σ 2 1√

2π2σ
is a scale family and π(σ) = 1

σ
.

Therefore, by action E[σ 2|x11, · · · , xn2] = s2/(n − 2)
which is consistent for σ . �

37.4 Hierarchical Bayes

The choice of prior in Bayesian is subjective. So, the sub-
jective part should be modified. On the other hand, the prior
information is barely rich enough to define the prior distri-
bution exactly. So, it is necessary to include this uncertainty
in the model. Under hierarchical Bayes’ analysis, the prior
information decomposes the prior distribution into several
parts. It improves the robustness of the resulting Bayes’
estimate.

A Bayesian statistical model is hierarchical if it involves
several levels of conditional prior distributions. This particu-
lar modelling of the prior information decomposes the prior
distribution into several conditional levels of distributions so
as to introduce a distinction between structural and subjective
parts of information. In the simplest case, the hierarchical
structure is used to two levels, the parameters of the first
being associated with a prior distribution defined on the
second. The first-level distribution is generally a conjugate
prior for computational tractability.

One noteworthy drawback of the hierarchical Bayes
method is that often it is difficult to derive the explicit Bayes’
estimate even when the successive levels are conjugate. In
such cases, one has to depend on numerical computations for
obtaining posterior estimates.

Example 1 Software is to be tested before release in the
market so that it carries minimum number of errors while
using it. In a software testing problem, a success occurs
when the software fails to provide the right output for an
input. The size of a bug is defined as the number of inputs
that would have eventually passed through the bug, if the
bug were not fixed. From the definition of the size of the
bug, the appearance of a bug may be termed as a success
in a sequence of independent trials. Hence, we say that
Si|ti ∼ Bin(ni, ti) where Si = Eventual size of the ith bug;
i = 1, 2, · · · , m. Now there should be a distribution for the
probability of detection of a bug ti, since it would vary for
different bugs. One reasonable distribution is that ti’s are i.i.d.
from a beta distribution, say, ti| α1, α2 ∼ Beta(α1, α2) as it
is a conjugate prior. Hyperpriors can also be assigned on the
parameters α1, α2 by deducing from domain knowledge on
quantities that are comparatively easier to obtain, e.g., mean
and variance.

Example 2 The regression set-up is as follows: yij = α+βi+
eij where βis’ are identically and independently distributed as

N(0,
1

γ1
); eijs’ are identically and independently distributed

asN(0,
1

γ2
); i = 1, 2, · · · , p; j = 1, 2, . . . , ni. Here,βi and eij’s

are all independent. Thus, Y∼ follows a multivariate normal

distribution with yij following N(α,
1

γ1
+ 1

γ2
), where

Cov(yij, yi′j′) =
{
0 if i �= i′

1/γ1 if i = i′.j �= j′.

However, in Bayesian approach, the traditional method of
writing the sampling model takes altogether a different no-
tation: yij|ηi, γ1 independently follows N(ηi, 1

γ1
), and ηi|α, γ1

independently follows N(μ, 1
γ1

). Here, we can see that yij ⊥
α, γ1|ηi, γ2 and ηi ⊥ γ2|α, γ1. It can be easily shown that:

yij|ηi, γ1, γ2 independently follows N(ηi,
1

α2
); ηi|α, γ1, γ2 is

independently and identically distributed as N(α,
1

γ1
); i =

1, 2, · · · , p. Since α, γ1, γ2 are not known, we can specify
normal, gamma and gamma priors for them respectively.

37.5 Empirical Bayes

In this method, we approximate the prior distribution by
frequentist methods when the prior distribution is vague.
This method can be considered as a dual method of hier-
archical Bayes’ analysis. It is asymptotically equivalent to
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the Bayesian approach. Further, it may be an acceptable
approximation in problems for which a proper Bayesian
modelling is too complicated.

37.5.1 Non-parametric Empirical Bayes

Given n+1 independent observations x1, x2, · · · , xn+1, with
densities f (xi|θi), the problem is to draw an inference on
θi+1 under the additional assumption that θis’ have all been
generated according to some unknown prior distribution g,
i.e. the sampling distribution f (xi|θi) is known but the prior
distribution is unknown.

The marginal distribution fg(x) = ∫
�
f (x|θ)g(θ)dθ . This

marginal distribution can be used to recover the distribution g
from the observations, since x1, x2, · · · , xn can be considered
as an i.i.d. sample from fg(x). Deriving an approximation g̃n
in this way, we can use it as a substitute for the two prior
distributions and prepare the approximation to the posterior
distribution as

π̃(θn+1|xn+1) ∝ f (xn+1|θn+1)g̃n(θn+1).

This approach is not Bayesian. In Bayesian, ignorance on
g would index this distribution by a hyperparameter λ and
second level prior distribution π2(λ).

37.5.2 Parametric Empirical Bayes

In an exponential family setting, a sample prior choice for
f (x|θ) is the conjugate prior, sayπ(θ |λ). TheBayesian school
models uncertainty by a probability distribution over param-
eters. The choice of prior distribution is the most important
criterion, since choosing an alternate prior could lead to a
more robust inference. Let us define θ as the unknown state
of nature, i.e. the parameter, and X as the data that provides
information about θ . Suppose X ∼ f (x|θ), where f is the
possible distribution of X. In addition to having a model
f (x|θ) for the data X, Bayesian assumes a distribution for θ .
This distribution is called the prior distribution or simply a
prior, since it quantifies the uncertainty about the parameter
prior to observing the data. If the prior represents Bayesian’s
subjective belief and knowledge, then it is called a subjective
prior. On the other hand, if it is a conventional representing
small or no information, then it is an objective prior.

Given the model for the data and the prior π(θ) of θ , the
conditional distribution of θ given X = x is given by Bayes’
formula, π(θ |x) = f (x|θ)π(θ)∫

f (x|θ)π(θ)dθ . To get a composite picture
about final belief about θ , the posterior distribution comes
into the scenario which combines the prior belief about
the parameter θ and also any available sample information

about θ . Thus we can very easily say that the posterior
distribution reflects the updated belief about θ after the data
is being observed since the transition from the prior to the
posterior is basically what we have learnt from the data. If
the posterior distribution can be known, instead of reporting
the whole posterior distribution, one may also report the
summary descriptive measures associated with it like mean,
variance, median and others. One may also use the posterior
distribution to answer questions related to more structural
problems like estimation and testing.

37.6 Point Estimation

37.6.1 Univariate Case

A point estimate of θ , say, θ̂ , is obtained by simply using
the commonly used summaries of the posterior distribution
like mean, median and mode. Again, when we consider a
flat prior for θ , the maximum likelihood estimate can also be
used as an estimate of the parameter θ since hereMLE simply
becomes the mode. However, when the posterior distribution
is symmetric, one may report the mean or the median as they
become equal. If, in particular, this distribution is unimodal,
the value of mode will also be equal to that of the mean
and the median. A measure of extent of uncertainty is also
reported together with the point estimate. We can look at the
posterior SD or variance together with the posterior mean to
obtain a measure of accuracy of the point estimate, ˆθ(y). The
posterior variance is given by:

Eθ |y[θ − ˆθ(y)]2.

Let the posterior mean be given by Eθ |y(θ) = μy; we may
write

Eθ |y[θ − ˆθ(y)]2

= Eθ |y[θ − μ + μ − ˆθ(y)]2

= Varθ |y[θ ] + (μ − ˆθ(y))2.

Thus, we can very easily see that if ˆθ(y) = μ(y), then
the posterior variance is minimised with respect to ˆθ(y) over
all point estimators ˆθ(y). Our aim is to define the optimum
estimate. So, we bring in the concept of loss function.

Define L(θ , a) as the cost of estimating the parameter θ

by action a. Average loss in estimating the parameter θ by
action a is given by Eθ |y[L(θ |a)] = ∫

�
L(θ , a)π(θ |y)dθ. The

estimate of θ where this loss is minimised is the best estimate
called Bayes’ estimate.
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37.6.2 Multivariate Case

We denote estimate of a vector of parameters θ as θ̂ =
(θ̂1, θ̂2, · · · , θ̂p). The posterior mode and posterior median
can be considered as estimates of θ . However computation
of these quantities can be difficult to carry out in practice.
Another commonly used estimator of θ is its posterior mean
μ = Eθ |y[θ ] because it is well defined and a measure
of uncertainty can be captured by the posterior covariance
matrix, V = Eθ |y[θ − μ][θ − μ]′. It can be shown that

Eθ |y[(θ − θ̂ (y))(θ − θ̂ (y))′] = V + (μ − θ̂ (y))(μ − θ̂ (y))′.
Thus the posterior mean minimizes the posterior covariance.

37.7 Bayesian Interval Estimation

The confidence interval in the Bayesian approach referred
to as a ‘credible set’ is analogous to that of the confidence
interval concept in the frequentist approach. A set C (⊂ Θ)
is called a 100(1 − α)% credible set of θ if P(C|data) ≥
1 − α, where P(C|data) is expressed as

∫
C p(θ |y)dθ (if θ is

continuous) or
∑

C p(θ |y) (if θ is discrete). In other words,
the probability that θ lies in C given the observed data is at
least (1 − α), i.e. it gives direct probability statements about
the likelihood of θ falling in C. However, the frequentist
definition of confidence interval is that if C is computed for a
large number of data sets, about (1−α)100% of them would
contain the true value of θ . Suppose there is only one data set.
Then according to the Bayesian definition, the credible set
would either contain the credible set or not. In other words, it
would give an actual coverage probability (1 or 0). However
according to the frequentist definition, it won’t be possible to
compute C, as there is only one data set. Then if θ belongs
to the 90% confidence interval, then it would belong to the
95% confidence interval as well. Credible sets are not unique.
So how to determine which set would be most suitable? A
technique for doing this is given by the highest posterior
density, or HPD credible set, defined as the set
C = {θε� : p(θ |data) ≥ k(α)}, where k(α) is the largest

constant satisfying P(C|data) ≥ 1 − α.

37.8 Bayesian Regression

Regression is a widely used method in statistics, so the
Bayesian approach to it is also important to practitioners.
There are two main goals for doing a regression analysis:
(i) to understand how some predictor(s) influence the values
of the variable of interest and (ii) to predict the value of the
variable of interest for some new value of predictor variable.
Here we shall discuss some basics of regression analysis
under the Bayesian approach.

37.8.1 Bayesian Linear Regression

Regression studies the relationship between two or more
variables. Let y denote the variable of interest, also called
the response variable , and x = (x1, . . . , xr)′ denotes a vector
of predictor variables or covariates which may be used to
explain y. Regression method can be viewed as a problem
of predicting y using the predictor variables x1, . . . , xr. The
distribution of y given x is usually studied, and the conditional
mean h(x) := E(y | x) can be obtained as the best predictor
with respect to mean squared error criterion [2]. However in
practice, the exact expression of h(x) is not known, so the
function h(X) is needed to be estimated using data. h(x) can
be modelled in different ways; the simplest and commonly
used approach is to use a linear regression model

h(x) = β1x1 + · · · + βrxr = x′β, (37.1)

where β = (β1, . . . ,βr)′ is vector of unknown regression
parameters.

Next we describe Bayesian regressionwith a normal linear
model. Suppose we have n observations on y and also on
each of the r components of x : {(yi, x′

i)
′ = (yi, xi1, . . . , xir)′ :

i = 1, . . . , n}. In matrix notation we write y = (y1, . . . , yn)′,
X = ((xij))1≤i≤n, 1≤j≤r. We assume the observation errors
are independently and identically distributed normal variable
with mean zero and unknown variance σ 2. This yields the
linear model

y |X,β, σ 2 ∼ Nn(Xβ, σ 2In), (37.2)

where In denotes the n×n identity matrix. Then the parameter
vector is (β, σ 2). The Bayesian approach to inference now
requires a prior distribution on (β, σ 2). A standard prior
distribution for this normal regression model assumes a non-
informative uniform prior on (β, log σ), or equivalently, the
prior density on (β, σ 2),

π(β, σ 2) ∝ σ−2. (37.3)

For a large sample size and a relatively smaller dimensional
β, this non-informative prior distribution gives acceptable re-
sults and takes less effort than specifying prior knowledge in
probabilistic form. We factor the joint posterior distribution
of β and σ 2 as

π(β, σ 2 | y) = π1(β | σ 2, y) π2(σ
2 | y). (37.4)

Conditional posterior distribution of β given σ 2 can be ob-
tained as

β | σ 2, y ∼ Nr(β̂, σ
2(X′X)−1), (37.5)
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where β̂ = (X′X)−1X′y. The marginal posterior distribution
of σ 2 can be obtained as

σ 2 | y ∼ Inv-χ2(n− r, s2), (37.6)

where s2 = (y−Xβ̂)′(y−Xβ̂)/(n−r). Themarginal posterior
density of β, i.e. β | y, has a multivariate-t distribution with
degrees of freedom (n − r), mean β̂ and shape matrix
s2(X′X)−1, provided (n− r) > 2. The 100(1 − α)% highest
posterior density (HPD) credible region for β is given by the
ellipsoid

{
β : (β − β̂)′X′X(β − β̂) ≤ rs2Fr,n−r(α)

}
, (37.7)

where Fr,n−r(α) is the (1 − α) quantile of the Fr,n−r distribu-
tion. For any analysis based on an improper prior distribution,
it is important to check the propriety of the posterior distri-
bution. The posterior π(β, σ 2 | y) is proper if n > r and rank
of X is of full column rank r.

Suppose we wish to predict a new data set ỹwith observed
predictor variables X̃. The posterior predictive density of ỹ is
obtained as

f (ỹ | y) =
∫
f (ỹ | β, σ 2) π(β, σ 2 | y) dβ dσ 2. (37.8)

Note that the posterior predictive distribution has two sources
of variation: the first source is due to the observational
variability in the model and the second source of variability is
coming from the joint posterior distribution of the parameters
β and σ 2. The above integration can be performed in two
steps: first by averaging over the conditional posterior density
π1(β | σ 2, y), we obtain the conditional posterior predictive
density f (ỹ | σ 2, y), which is distributed as a normal variable
with mean X̃β̂ and covariance matrix σ 2(In + X̃(X′X)−1X̃

′
).

In the second step, we average this conditional posterior
predictive density f (ỹ | σ 2, y) over the marginal posterior
distribution π2(σ

2 | y). The resulting posterior predictive dis-
tribution f (ỹ | y) is the multivariate-t with mean X̃β̂, shape
matrix s2(In + X̃(X′X)−1X̃

′
) and (n− r) degrees of freedom.

To draw a random sample ỹ from the posterior predictive
distribution, we first draw (β, σ 2) from their joint posterior
distribution and then draw a new ỹ from f (ỹ | β, σ 2). Bayesian
regression with unequal variances or unknown covariance
matrix follows a similar path as discussed in [3].

Bayesian regression with unequal variances or an n × n
covariance matrix follows a similar path as discussed above.
If we replace the covariance matrix σ 2 In with a symmetric
positive definite matrix Σ in (37.2), the model becomes

y |X,β,� ∼ Nn(Xβ,�). (37.9)

Assuming a non-informative uniform prior for β (i.e.
π(β | �) ∝ 1), the conditional posterior distribution of β

given y and � follows a multivariate normal distribution
with mean β̂ = (X′�−1X)−1X′�−1y and covariance
matrix (X′�−1X)−1. The matrix inversion to compute the
posterior covariance can be made computationally efficient
by first computing a Cholesky factor of �, viz. �1/2,
and then by obtaining the upper triangular matrix R of a
QR decomposition of �−1/2X. Note that (X′�−1X)−1 =
R−1(R−1)′ and computing inverse of an upper triangular
matrix R is comparatively easier. For known �, we can carry
out the posterior inference on β as described above. However
unknown�, we need to obtain the posterior distribution of�
as well. Assuming π(�) denotes the prior density of �, the
posterior density of � is then obtained from the following
identity:

π(� | y) = π(β,� | y)
π(β | �, y) ∝ f (y |X,β,�)π(β | �)π(�)

π(β | �, y) ,

(37.10)

which must hold for any β. This calculation in (37.10) often
gets very complex and depends on the prior density π(�),
and giving a prior for � is not an easy task. The practition-
ers often consider re-parameterisation of � to simplify the
complexity, e.g. � = σ 2�0, where �0 is known, but σ 2 is
unknown.

37.8.2 Hierarchical Bayesian Linear Regression

In practice, we often encounter data that are grouped into
different hierarchical levels. For example, if we consider
exam scores obtained by students as data, then it is organised
at various hierarchical levels: students, class, school, district,
etc. Analysis of hierarchical data should be analysed in
an appropriate statistical framework that accounts for the
different hierarchy, such as hierarchical linear modelling.

Hierarchical linear modelling can be thought of as an
extension of conventional linear modelling where variabil-
ity in the response variable is analysed with the predictor
variables being at different hierarchical levels. Hierarchical
linear models are sometimes called multi-level linear models
or nested models. Hierarchical Bayesian linear model is
essentially a hierarchical linear model that is estimated using
Bayesian methods.

Let us explain the idea of hierarchical Bayesian
linear modelling with an example. Assume that each yj,
j = 1, 2, . . . , J is a vector of observation (length nj)
from a Nnj(Xjβ j, σ

2
j Inj) population where the parameter

β j = (β1j, . . . ,βrj)′ governs the data generating process
for yj, j = 1, 2, . . . , J. We also assume that each of the
parameters β1, . . . ,βJ follows a Nr(α1,�) and that they
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are exchangeable, i.e. the joint distribution of β1, . . . ,βJ

is invariant under permutations of the indices [4, 5]. The
Bayesian hierarchical model contains the following stages:

Stage 1 (Observation process): yj |Xj,β j, σ
2
j ∼ Nnj

(Xjβ j, σ
2
j Inj)

Stage 2 (Population process): β j | α,� ∼ Nr(α1,�), σ 2
j

∼ Inv-Gamma(τa, τb)

Stage 3 (Hyperprior distribution): α | α0, σ
2
α ∼ N (α0, σ

2
α )

Here we assume �, τa, τb, α0 and σ 2
α as known quantity.

However the above hierarchical Bayesian linear model can
be extended to allow specification of prior distributions on
these parameters if they are unknown to the practitioners.
Obtaining posterior inference on such models is often not
straightforward, and advance computing techniques are re-
quired to facilitate the inference. We shall discuss them in
Sect. 37.9.

37.8.3 Generalised Linear Models

Generalised linear models are widely used in most areas of
statistical applications. This class of modelling is applied in
cases where the linear relationship between predictor variable
x and conditional mean of response variable E(y | x) is not
appropriate (cf., we have defined E(y | x) = x′β in the above
examples of linear models ). For example, in the cases where
response y takes only the value 0 or 1 (binary), then a linear
model will not be appropriate since the linear function x′β
is likely to predict values other than 0 or 1 which are out
of bounds for y. There are two components of a generalised
linear model: (i) the conditional distribution of the response
variable y given predictor x (a matrix with dimension n× r)
with mean E(y | x) = μ and (ii) an invertible function h(·),
called the ‘link function, that relates the mean of the response
variable to the linear predictor x′β, i.e. h(μ) = x′β. Logistic
regression, Poisson regression and probit regression are very
popular examples of generalised linear models. We shall give
examples of these popular regression models below.

Logistic Regression
Logistic regression is a very popular example of gener-
alised linear modelling for binary data. Assume that y =
(y1, . . . , yn)′ is a vector of random variables where each com-
ponent yi independently follows a binomial distribution with
parameters mi and pi. Note that E(yi/mi) = pi. Now we need
to specify the link function to complete the generalised linear
model. logit(·) is a very common choice for link function un-
der this model setting: h(pi) = logit(pi) = log(

pi
1−pi ) = x′

iβ.

The model likelihood function for β is

l(β | y) =
n∏

i=1

(
mi

yi

)(
exp(x′

iβ)

1 + exp(x′
iβ)

)yi

(

1 − exp(x′
iβ)

1 + exp(x′
iβ)

)mi−yi
. (37.11)

Note that the logit link maps its argument with domain (0, 1)
to the whole real line, which is appropriate for a linear predic-
tor. One then can fix a prior for the regression coefficient β to
complete Bayesian formulation (e.g. a Nr(α1, σ 2

β Ir) prior or
a non-informative uniform prior, etc.). Suppose π(β) denotes
the prior density; then the posterior density of β is

π(β | y) =

π(β)
∏n

i=1

(mi

yi

)
(

exp(x′
iβ)

1+exp(x′
iβ)

)yi(

1 − exp(x′
iβ)

1+exp(x′
iβ)

)mi−yi

∫
b π(b)

∏n
i=1

(mi

yi

)
(

exp(x′
ib)

1+exp(x′
ib)

)yi(

1 − exp(x′
ib)

1+exp(x′
ib)

)mi−yi
db

.

(37.12)

Probit Regression
The probit regression model is very similar to the logis-
tic regression where we use a standard normal distribution
function �(·) as the link function. The probit link h(p) =
�−1(p) = x′β is commonly used in practice. If each response
yi independently follows a Bernoulli distribution with param-
eter pi, then the data distribution for probit model becomes

l(β | y) =
n∏

i=1

(�(x′
iβ))yi(1 − �(x′

iβ))1−yi . (37.13)

Then we employ prior distribution for β to complete the
Bayesian model and obtain the posterior density as

π(β | y) = π(β)
∏n

i=1(�(x′
iβ))yi(1 − �(x′

iβ))1−yi
∫
b π(b)

∏n
i=1(�(x′

ib))yi(1 − �(x′
ib))1−yi db

.

(37.14)

Poisson Regression
Count data is a frequent data type in statistics. In count data,
the observations can only take non-negative integer values
{0, 1, 2, 3, . . . }. So naturally, the Poisson model serves as a
standard model for count data. Here we assume that response
variable yi follows a Poisson distribution with parameter
μi(> 0), i = 1, 2, . . . , n. Note that E(yi | μi) = μi for a
Poissonmodel. Thenwe choose a logarithmic link function to
relate the mean to the linear predictor: h(μ) = log(μ) = x′β.
The model likelihood is then expressed as
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l(β | y) =
n∏

i=1

1

yi! exp(− exp(x′
iβ)) (exp(x′

iβ))yi . (37.15)

We specify a prior for β to complete the Bayesian formula-
tion of modelling and obtain the posterior density as

π(β | y) =
π(β)

∏n
i=1

1
yi! exp(− exp(x′

iβ)) (exp(x′
iβ))yi

∫
b π(b)

∏n
i=1

1
yi! exp(− exp(x′

ib)) (exp(x′
ib))yi db

.

(37.16)

37.9 Bayesian Computation

Computations of various posterior quantities are needed in a
Bayesian analysis. For example, posterior mean is popularly
used as a standard Bayes estimate of a parameter. Posterior
mode and posterior median are also used in some cases.

Posterior variance is computed to find the accuracy of the
estimate, and posterior quantiles are used to find the Bayesian
credible regions. As we know, posterior distribution can be
obtained in a standard form by the use of conjugate priors.
Posterior quantities such as above are computed very easily
in these cases. However, we do not always use conjugate
priors in practice and sometimes they do not even exist. If
conjugate priors are not used, we often encounter a situation
where posterior distributions are not in a standard form. We
present a simple example of univariate case in below.

Example

Let us consider the successful passing rates y =
(y1, y2, . . . , yn)′ of a football team in its past n matches.
Assume that each yi independently follows a beta
distribution with parameters (α, 2), yi ∈ (0, 1), α > 0,
i = 1, 2, . . . , n. Unfortunately, there are not any useful
conjugate priors available for this model. If we assign
a gamma (b1, b2) prior for α (a standard choice), the
posterior density function becomes: �

π(α | y) = l(α | y) π(α)

m(y)

=
{∏n

i=1 Beta(α, 2)
−1yα−1 (1 − yi)

}
× �(b1)−1 bb12 αb1−1 e−b2α

∫
α0

{∏n
i=1 Beta(α0, 2)−1yα0−1 (1 − yi)

}
× �(b1)−1 bb12 α

b1−1
0 e−b2α0 dα0

= Const ×
{
αn(α + 1)n

n∏

i=1

yα
}

× αb1−1 e−b2α , (37.17)

which does not belong to any standard family of probability
distributions.

In such cases, we need different techniques to compute
posterior quantities. In many cases these quantities of interest
involved are obtained by integration. Even though numerical
integration methods (e.g. integrate, R2Cuba packages in R
software) can be used for approximation, they fail to provide
accurate estimateswhen the number dimension of the integral
gets high. In this section, we shall briefly describe differ-
ent computing techniques that are needed for a Bayesian
analysis.

37.9.1 Laplace Approximation

Suppose we need to compute the posterior mean of h(θ),
which is expressed as

E(h(θ) | y) =
∫

θ

h(θ) π(θ | y) dθ =
∫
θ
h(θ) l(θ | y) π(θ) dθ
∫
θ
l(θ | y) π(θ) dθ

,

(37.18)

where l(θ | y) denotes the model likelihood of θ (a p-
dimensional parameter vector) given data y, π(θ) denotes
prior density and each of h(·), f (·), π(·) is a smooth function.
Consider an integral of the form

I =
∫

θ

g(θ)enγ (θ)dθ , (37.19)

where γ (·) is a smooth function with its unique maximum at
θ̂ . We obtain the Laplace approximation of the integral after
expanding g(·) and γ (·) in Taylor series about θ̂ :

I =
{

g(θ̂)+ (θ − θ̂)′ g′(θ̂)+ 1

2
(θ − θ̂)′�g(θ̂)(θ − θ̂) + . . .

}
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× enγ (θ̂) exp
(n

2
(θ − θ̂)′�γ (θ̂)(θ − θ̂) + . . .

)
dθ

= enγ (θ̂) (2π)p/2 n−p/2 | − �γ (θ̂)|−1/2
{
g(θ̂) + O(n−1)

}
.

(37.20)

where g′(·) and γ ′(·) denote the first derivative of g(·) and
γ (·), respectively, and �g and �γ denote the Hessian matri-
ces for g(·) and γ (·), respectively:

�g(θ) =
((

∂2

∂θi∂θj
g(θ)

))

, �γ (θ) =
((

∂2

∂θi∂θj
γ (θ)

))

.

(37.21)

Now by letting q(·) as h(·) and 1 for the numerator and
denominator of (37.18), respectively, we obtain a first order
approximation of E(h(θ) | y) as:

E(h(θ) | y) ≈ h(θ̂)
{
1 + O(n−1)

}
. (37.22)

Now suppose that h(·) in (37.18) is positive and we let
nγ (θ) = log h(θ) + log l(θ | y) + log π(θ) for the numerator
and nγ ∗(θ) = log l(θ | y) + log π(θ) for the denominator
in (37.18). Tierney and Kadane [6] proposed the following
approximation under these conditions:

E(h(θ) | y) ≈
( |�γ (θ̂)|

|�γ ∗(θ̃)|
)1/2

exp
(
n(γ ∗(θ̃) − γ (θ̂))

)

{
1 + O(n−2)

}
, (37.23)

where γ ∗(·) attains its maximum at θ̃ and γ (·) attains its
maximum at θ̂ . There are many other analytic approxima-
tions in the literature which we did not include here. This
is because the superior alternative computation techniques,
such as Metropolis-Hastings algorithm, Gibbs algorithm,
etc., have made the above analytic approximation methods
less popular.

37.9.2 The E-M Algorithm

Now suppose that π(θ | y) is of a non-standard form and
computationally difficult to handle. In E-M algorithm, we
augment the observed data y with unobserved latent data
z such that the augmented posterior density π(θ | y, z) is
easier to handle. E-M algorithm [see 7] is essentially an
iterative method to find maximum likelihood estimates of
parameters in a statistical model. Here we shall use the
algorithm to estimate the maximum a posteriori (MAP). Note
that π(θ | y) = π(θ , z | y)/f (z | y, θ) where f (z | y, θ) denotes
the predictive density of z given y and θ . From this we have

the following identity:

log π(θ | y) =
∫

z
log π(θ , z | y) f (z | y, θ̂ (i)

) dz

−
∫

z
log f (z | y, θ) f (z | y, θ̂ (i)

) dz

= Q(θ , θ̂
(i)

) − H(θ , θ̂
(i)

), (37.24)

where θ̂
(i)
is an estimate of θ from the ith step of the iteration.

The E-M algorithm essentially involves two steps at each
iteration:

E-step: Calculate Q(θ , θ̂
(i)

) = E
z|y,θ̂ (i) (log π(θ , z | y))

M-step: Maximise Q(θ , θ̂
(i)

) with respect to θ , and obtain

θ̂
(i+1)

such that

Q(θ̂
(i+1)

, θ̂
(i)

) = max
θ

Q(θ , θ̂
(i)

).

We start by finding z(i) = E(z | y, θ̂ (i)
), (if exact mean is not

available, we get an estimate of E(z | y, θ̂ (i)
) as z(i)). Then we

use this z(i) to maximise π(θ | y, z(i)) to obtain θ̂
(i+1)

. Then

we find z(i+1) using θ̂
(i+1)

and continue the iterations in this

manner. Also note that π(θ̂
(i+1) | y) ≥ π(θ̂

(i) | y) for each
iteration i. Therefore, the E-M algorithm can be expected to
converge to a local maximum from any starting point.

37.9.3 Monte Carlo Sampling

Simulation of random processes saw its popularity only after
the beginning of computer era in the 1990s. Before that,
simulations were only used in a handful of studies [8, 9],
mainly in the fields of physics and chemistry. Monte Carlo
sampling is named after a famous casino at ‘Monte Carlo’ in
the 1950s. Monte Carlo method is also known as ‘Ordinary
Monte Carlo’ (OMC). Let us consider an expectation μ =
E[g(X)] of a random variable X, where g(·) is a real valued
function on the state space such that this expectation is not
available in closed form. If i.i.d. sample X1, X2, . . . can be
simulated from the same distribution as X, then

μ̂n = 1

n

n∑

i=1

g(Xi) (37.25)

converges almost surely to E[g(X)]. Therefore, for large n,
we can use μ̂n as an estimate ofμ. If σ 2 = Var[g(X)] is finite,
then σ 2 can be estimated by σ̂ 2

n = 1
n

∑n
i=1(g(Xi)−μ̂n)

2. Now
we have the asymptotic distribution of μ̂n using the central
limit theorem (CLT)
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μ̂n − μ

σ̂n/
√
n

d−−−→
n→∞ N (0, 1). (37.26)

Hence μ̂n ± zα/2σ̂n/
√
n is an asymptotic 100(1 − α)% con-

fidence interval for μ with zα/2 denoting the 100(1− α/2)%
quantile of standard normal distribution. Note that each addi-
tional significant figure in the estimate (i.e. a tenfold increase
in accuracy) requires a hundredfold increase in the sample
size. This is because accuracy is inversely proportional to the
square root of the sample size (just like classical statistics).
Since computer simulations do not generate random samples,
they are rather pseudorandom; we call μ̂n as Monte Carlo
approximation of μ, σ̂n/

√
n as Monte Carlo standard error

(MCSE) and n as Monte Carlo sample size.

37.9.4 Importance Sampling

Suppose we want to obtain an estimate of μ = E[g(X)] and
it is difficult or costly to sample from the distribution of X. In
that case Monte Carlo sampling will not work and we need
alternative strategy. Importance sampling uses the idea that a
sample can be generated from any distribution. That means,
we can use a sample generated from another distribution
(other than distribution of X) to compute an estimate of μ.
Assume that the probability distribution of X has a density f
and there exists another density f0 which behaves very similar
to f but is easy to sample from. Then

μ̂n = 1

n

n∑

i=1

g(Xi)
f (Xi)

f0(Xi)
(37.27)

can be used as an estimate of μ for large n, where
(X1, X2, . . . , Xn) is an i.i.d. sample generated from f0. Also
note that

E0[μ̂n] = 1

n

n∑

i=1

E0

[
g(Xi)

f (Xi)

f0(Xi)

]
=
∫
g(X)

f (X)

f0(X)
f0(X) dX

= E[g(X)] = μ.

(37.28)

and consequently μ̂n converges to μ almost surely. The
density f0 is called an importance function in this context.
The rationale behind this will be discussed later. Monte Carlo
standard error can be calculated using sn/

√
n in the same

manner as described in (37.9.3), but by replacing g(Xi) by
g(Xi) f (Xi) / f0(Xi). Note that method of importance sampling
also works with a Markov chain X1, X2, . . . drawn from f0
rather than an i.i.d. sample.

So far we have assumed that both f and f0 are normalised
densities. In the situation where we have only unnormalised
densities h and h0, we will require a different estimator of μ.
We define

μ̄n = 1

n

n∑

i=1

g(Xi)w(Xi), where w(Xi)= h(Xi)/h0(Xi)∑n
i=1 h(Xi)/h0(Xi)

.

(37.29)

This new statistic μ̄n can be regarded as an estimate of μ, for
large n. We also have

μ̄n
a.s−−−→

n→∞

E0

[
g(X) h(X)

h0(X)

]

E0

[
h(X)

h0(X)

] =
∫
g(X) h(X)

h0(X)
f0(X) dX

∫ h(X)

h0(X)
f0(X) dX

=
C
C0

∫
g(X) f (X)dX

C
C0

∫
f (X)dX

= E[g(X)], (37.30)

where f (X) = h(X)/C and f0(X) = h0(X)/C0 with C =∫
h(X) dX, C0 = ∫ h0(X) dX.

37.9.5 Rejection Sampling

Rejection sampling is a very standard method of stochastic
simulation [10, 11]. Consider the problem where we want
to simulate from an unnormalised density g(·). Suppose that
there exists a density h(·) such that (a) it is easy to simulate
a sample from h(·), (b) h(·) is very close to g(·) and (c) for
someM > 0, we have g(x) < Mh(x) for all x. Thenwe follow
the following steps:
Step 1. Generate x from h(·) and generate u from

Uniform(0, 1).
Step 2. If u ≤ g(x)

Mh(x) , we accept the proposed value x.
Step 3. We repeat Steps 1 and 2 until we obtain a sample

of size n (here n is a prefixed positive integer).
The components of the sample can be regarded as a sample

from the target density g(·). Ideally, the positive constant M
should be chosen as small as possible to complete the above
sampling algorithm with fewer iterations. Note that if we
choose h(x) = g(x)/c where c is the normalising constant of
g(·), the optimised value ofM would be c and we would have
gotten the acceptance probability of the sampling algorithm
as 1.

37.9.6 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) came into the picture
just after the invention ofMonte Carlo sampling in the 1950s.
The theory of MCMC shares the same motive as Monte
Carlo sampling, that is, to compute expectations, but it uses
Markov chains. This overcomes the serious drawback that
Monte Carlo sampling has, that is, to draw samples directly
from the respective distribution. In many of the Bayesian
modelling in practice, posterior distribution is incompletely
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or implicitly specified that is difficult to handle (e.g. joint
posterior distribution of a parameter vector gets specified
by their conditional distributions and marginal distributions).
Therefore Monte Carlo sampling cannot be used in these
cases.

MCMC draws sample by carefully constructing a Markov
chain of relatively longer size. The key idea behind the theory
of MCMC is that Markov chain with the same equilibrium
distribution can also be used to infer about the quantity of
interest. There are many available techniques to construct
such a Markov chain, most famous ones are Metropolis
algorithm [8],Metropolis-Hastings algorithm [a generalised
version of Metropolis algorithm, 9] and Gibbs sampler [a
special case of Metropolis-Hastings algorithm, 12]. It is to be
noted that Markov chain Monte Carlo techniques can be used
in both the paradigms: Bayesian and frequentist. Many of the
posterior quantities in a Bayesian analysis require integrating
over the posterior distribution of the parameters given the
data. In likelihood-based inference, onemay need to integrate
the likelihood over the conditional distribution of observables
given the parameters, or one simply may need to calculate a
likelihood with complicated dependence [13–16].

Markov Chains and Stationarity
A sequence of random variables {Xn : n ≥ 1} is called a
stochastic process. When these random variables also follow
the Markov property, i.e. the probability of moving to the
next state depends only on the present state and not on the
past states, then the sequence {Xn : n ≥ 1} is called a
Markov chain (here we only use a discrete-time Markov
chain to explain the main ideas). We shall denote the chain
{Xn : n ≥ 1} by {Xn} for notational convenience. The set of
all possible value of Xi is called the state space of theMarkov
chain, denoted by S. The marginal distribution of X1, denoted
by p(x), is called the initial distribution. For general state
space S, the transition probabilities are specified by defining
a kernel, viz. transition kernel.

Definition 1 (Transition kernel) Let S be a set and S a σ -
field on S. A transition kernel H is a function from S× S into
[0, 1] such that

(i) H(x, A) = Pr(Xn+1 ∈ A |Xn = x), x ∈ S, A ∈ S.
(ii) For all x ∈ S, A �→ H(x, A) is a probability measure on

(S,S).
(iii) For all A ∈ S, x �→ H(x, A) is a measurable function

on S.

A transition probability of aMarkov chain is called stationary
if the conditional probabilities H(x, A) = Pr(Xn+1 ∈ A |
Xn = x) do not depend on n for any x ∈ S, A ∈ S. A Markov
chain is called stationary (or invariant or time homogeneous)
if the conditional distribution of (Xn+1, Xn+2, . . . , Xn+k) given

Xn does not depend on the value of n. It consequently follows
that a Markov chain is stationary if and only if the marginal
distribution of Xn does not depend on n. An initial distri-
bution is called stationary (or invariant or equilibrium) for
some transition probability distribution if the corresponding
Markov chain specified by this initial distribution and tran-
sition probability distribution is stationary. It is to be noted
that transition probability distribution of a Markov chain is
stationary if the corresponding Markov chain is stationary,
but the converse is not generally true.

Definition 2 Consider a Markov chain {Xn} with general
state space S and transition kernel H.

(a) A Markov chain {Xn} is φ-irreducible if there exists a
probability distribution φ and a positive integer n ≥ 1
such that the n-step transition density

H(n)(x, A) = P(Xn+1 ∈ A |X1 = x) > 0, (37.31)

for any x ∈ S and for all A ∈ S with φ(A) > 0. AMarkov
chain {Xn} is irreducible if it is φ-irreducible for some
probability distribution φ.

(b) AMarkov chain {Xn} is reversiblewith respect to a prob-
ability distribution p if it satisfies the following condition:

p(dx)H(x, dy) = p(dy)H(y, dx) for all x, y ∈ S.
(37.32)

(c) A φ-irreducible Markov chain {Xn} is recurrent if for all
A ∈ S with φ(A) > 0 we have

Eφ

[ ∞∑

n=1

I(Xn+1 ∈ A)

∣
∣
∣X1 = x

]
= ∞, for any x ∈ A.

(37.33)

(d) An irreducible and aperiodic Markov chain {Xn} is called
positive recurrent if it has a stationary probability distri-
bution, i.e. there exists a unique p such that

p(A) =
∫

S
p(x)H(x, A) dx for all A ∈ S. (37.34)

(e) A Markov chain {Xn} with stationary distribution p is
aperiodic if there does not exist any d ≥ 2 and disjoint
subsets S1, S2, . . . , Sd ⊆ S with H(x, Si+1) = 1 for all
x ∈ Si, i = 1, 2, . . . , d − 1, and H(x, S1) = 1 for all
x ∈ Sd, such that p(S1) > 0.

Theorem 1 Consider a φ-irreducible and aperiodicMarkov
chain {Xn} with a general state space S and transition kernel
H. If the Markov chain has a stationary distribution p, then
the following hold:
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(a) The chain {Xn} is p-irreducible and the stationary dis-
tribution p is unique (that means, the chain is positive
recurrent).

(b) ||H(n)(x, ·) − p(·)|| = sup
A∈S

|H(n)(x, A) − p(A)| −−−→
n→∞ 0,

for p-a.e. x ∈ S.
(c) H(n)(x, A) −−−→

n→∞ p(A), for p-a.e. x ∈ S and for any A ∈ S
with p(A) > 0.

(d) For any real valued function g(·) such that Ep[|g(X)|] <

∞,

μ̂n = 1

n

n∑

i=1

g(Xi)
a.s.−−−→
n→∞ Ep[g(X)] =

∫

S
g(x) p(x) dx.

(37.35)

The result in Theorem 1(d) is called the strong law of large
numbers for Markov chain. This result guarantees that each
iterate of an ergodic Markov chain except a first few is
approximately distributed as p. However, it does not give
any information about how many iterations will be needed
to reach the convergence.

Definition 3 (Geometric ergodicity) A Markov chain {Xn}
with stationary distribution p is geometrically ergodic if there
exists a constant λ ∈ [0, 1) such that

||H(n)(x, ·) − p(·)|| ≤ γ (x)λn, for p-a.e. x ∈ S and n ≥ 1.
(37.36)

with γ (x) < ∞ for p-a.e. x ∈ S.

We define λ∗ = inf{λ : ∃ γ (·) satisfying (37.36)}, i.e. the
smallest λ for which there exists a function γ (·) that satis-
fies (37.36). This λ∗ is called the rate of convergence. The
discussion of Markov chains and stationarity for a countable
state space is covered in [17].

Theorem 2 (Central Limit Theorem) Consider a φ-
irreducible and aperiodic Markov chain {Xn} on a general
state space S with transition kernel H and a stationary
distribution p. Assume that p is also the initial distribution,
i.e., X1 ∼ p. Then for a real valued function g(·) : S → R

with finite mean μ = Ep[g(Xi)] and Varp[g(Xi)] < ∞, the
following hold:

√
n(μ̂n − μ)

d−−−→
n→∞ N (0, σ 2), (37.37)

where σ 2 = Varp[g(Xi)] +∑∞
j=1 Covp[g(Xi), g(Xi+j)] < ∞.

If this σ 2 is very large compared to Varp[g(Xi)], the
MCMC algorithm behaves very inefficiently [18]. We
could estimate Monte Carlo variance of μ̂n by σ̂ 2

n /n where

σ̂ 2
n = 1

n

∑n
i=1(g(Xi) − μ̂n)

2, but this is expected to be an
underestimate of Var(μ̂n) due to the positive autocorrelation
in MCMC samples. We define effective sample size (ESS)
[19] as ESS = n/κ(μ) where κ(μ) is the autocorrelation
time for μ:

κ(μ) = 1 + 2
∞∑

j=1

ρj(μ), (37.38)

with ρj(μ) denoting the autocorrelation at lag j forμ. In prac-
tice, κ(μ) is computed by using the corresponding MCMC
chain ofμ and by truncating the summation when the sample
autocorrelations get very small (e.g. below 0.1) [20]. Then
we estimate Var(μ̂n) by σ̂ 2

n /ESS(μ). Another method of
variance estimation is via batching. Let us define

μ̂b,n = 1

K

bK∑

i=(b−1)K+1

g(Xi), b = 1, 2, . . . , B, (37.39)

where iterates of the Markov chain (Xi’s) are of length n =
BK for a sufficiently large K. Then

√
K(μ̂b,n − μ) converges

in distribution to N (0, σ 2), for each b = 1, 2, . . . , B. There-
fore σ 2 can be estimated by

σ̂ 2
bm = K

B− 1

B∑

b=1

(μ̂b,n − μ̂)2. (37.40)

Here, μ̂b,n’s are called batchmeans and σ̂ 2
bm is called the batch

means estimator of σ 2. It is known that σ̂ 2
bm is not a consistent

estimator of σ 2 [21,22]. However, σ̂ 2
bm is strongly consistent

for σ 2 if the batch size (K) and number of batches (B) also
increase with n (e.g. by setting B = K = �n1/2�) [23].
Overlapping batch means estimator generally has better

finite sample properties than σ̂ 2
bm. Here we define the batch

means by μ̂j,K = K−1∑K
i=1 g(Xj+i), for j = 0, 1, . . . , n − K.

The overlapping batch means estimator of σ 2 is defined as

σ̂ 2
obm = nK

(n− K)(n− K + 1)

n−K∑

j=0

(μ̂j,K − μ̂)2. (37.41)

This σ̂ 2
obm is also strongly consistent under some mild con-

ditions. Under geometric ergodicity of the Markov chain
and existence of a little more than fourth-order moment,
both batch means estimator and overlapping batch means
estimator are MSE consistent, i.e. Ep(σ̂

2
n − σ 2)2 → 0 as

n → ∞ [24].
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A reasonable Monte Carlo standard error estimate of μ̂n

is given by σ̂n/
√
n, which helps to assess the accuracy of μ̂n.

The estimation of variance for aMarkov chain is an important
step in a MCMC practice and is discussed in detail in [20,24]
and the references therein. We would also like to emphasise
here that we are only being able to cover basic theories and
techniques on MCMC. Please refer to the following sources
for a detailed treatment on the topic: [17, 18, 25, 26]. We
describe some well-known MCMC algorithms in the next
few sections.

Metropolis-Hastings Algorithm
In MCMC, we are interested in update techniques to con-
struct a Markov chain {Xn} that preserves a specified distri-
bution p in each update. In Bayesian analysis, this specified
distribution will always be the posterior distribution. Let us
consider a general state space S, and let Q be a transition
kernel with density q such that

q(x, y) ≥ 0, for all x, y ∈ S (37.42)

and Q(x, S) =
∫

S
q(x, y)dy = 1, x ∈ S. (37.43)

In practice, we choseQ in such a way that it is easy to sample
from. This transition density q(x, y) is sometimes referred
to as proposal density or candidate density. We start the
algorithm by initialising the chain at a possible state x1 such
that p(x1) > 0. Then we perform the following steps for
m = 2, . . . , n.
Step 1. Draw a proposal value (or candidate value) y from

density q(xm−1, y).
Step 2. Compute the Hastings ratio

ρ(xm−1, y) = p(y) q(y, xm−1)

p(xm−1) q(xm−1, y)
. (37.44)

and acceptance probability α(xm−1, y) =
min{ρ(xm−1, y), 1}.

Step 3. Set the next iterate Xm as

xm =
{
y with probability α(xm−1, y),
xm−1 with probability 1 − α(xm−1, y).

(37.45)

Observe that {Xn} is a Markov chain with transition kernel
H with density h such that h(x, y) = α(x, y) q(x, y) for
all x, y ∈ S. Also note that {Xn} satisfies the condition:
p(x) h(x, y) = p(y) h(y, x) for all x, y ∈ S [27]. This implies
that the Markov chain is {Xn} reversible. Consequently, we
have

∫
S p(x)H(x, A) dx = p(A), i.e. p is a stationary distribu-

tion for transition kernel H. This algorithm is known as the
Metropolis-Hastings algorithm [9]. Note that it is enough to
have an unnormalised version of the density p to run the algo-

rithm. This is particularly useful in Bayesian analysis where
it is often difficult to compute the normalisation constant of
the posterior distribution. Now if S is irreducible with respect
toQ and p(x) > 0 for all x ∈ S, the above constructedMarkov
chain {Xn}with transition kernelH and stationary distribution
p is also irreducible, and hence ergodic theorem holds.

The rejection probability from a point x ∈ S is defined as

r(x) = 1 −
∫

S
h(x, y) dy, (37.46)

and the expected acceptance rate of the algorithm is defined
as

a =
∫

S
(1 − r(x)) p(x) dx. (37.47)

The empirical acceptance rate (i.e. the proportion of proposed
updates during the MCMC iterations that are accepted) is
used as an estimate of the expected acceptance rate a. For a
discrete state space S, we proceed as in the general case. Here
we assume the transition probabilitymatrixQ = ((q(i, j))) on
the countable state space S. We define the Hasting ratio as

ρ(i, j) = p(j) q(j, i)

p(i) q(i, j)

and the acceptance probability as α(i, j) = min{ρ(i, j), 1} for
all i, j ∈ S.

Metropolis Algorithm
Metropolis algorithm is a special case of Metropolis-
Hastings algorithm where the proposal density q is
symmetric with respect to its arguments, i.e. q(x, y) = q(y, x)
for all states x, y ∈ S [8]. Then the Hastings ratio in (37.44)
reduces to ρ(x, y) = p(y)/p(x), which is now called the
Metropolis ratio.

RandomWalkMetropolis Algorithm
Random walk Metropolis algorithm [28] is a specific case of
the Metropolis-Hastings algorithm, where the candidates X∗

m

are constructed as X∗
m = Xm−1 + εm, with the εm chosen to be

i.i.d. with a symmetric distribution. We also assume that εm
is stochastically independent of Xm. Then q(Xm−1, X∗

m) can be
expressed as g(X∗

m−Xm−1)where g denotes the density of εm.
Some popular choices of the proposal density g areN (0, τ 2),
Uniform(−δ, δ). The choice of the variance parameter τ 2 in
case of a normal proposal is very important in MCMC, and
choosing an optimal value of it is itself a different area of
research [29,30]. It is suggested to choose the scale parameter
(e.g. τ 2 in the normal proposal) appropriately as it directly
influences the overall acceptance rate of the algorithm. If τ 2

is larger than necessary, the algorithmwill have high rejection
rate, and as a result the chainwill move slowly. If τ 2 is smaller
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than necessary, the algorithm will have high acceptance rate,
but will result in slowmixingwithin the state space. In both of
these two cases, the algorithm will fail to behave efficiently.

Independence Sampler
Independence sampler is also a special case of Metropolis-
Hastings algorithmwhere the proposal density q(x, y) = q(y)
and therefore transition kernel Q(x, ·) do not depend on its
first argument x. The Hastings ratio becomes

ρ(x, y) = p(y)q(x)

p(x)q(y)
.

This algorithm is also called as the independenceMetropolis-
Hastings algorithm [28]. It is to be noted that the convergence
of the Markov chain will be fast if the independence proposal
density is a good approximation of the density of the station-
ary distribution. Hence the practitioner should be careful in
choosing the proposal density for getting a better efficiency
of the algorithm.

Gibbs Sampler
Around the time when Gibbs sampler was first developed
by [12], the algorithm was mostly used in spatial statistics.
It was the seminal article [31] that made the Gibbs sampler
popular to the Bayesian community making them aware of
this incredible method of drawing sample from the posterior
distribution. The algorithm is as follows. Let p be the target
distribution for a random vector X = (X1, . . . , Xk)′, k ≥
2. We assume that it is possible to generate samples from
each full conditional distribution with densities {p(Xi |X−i)},
where X−i = (X1, . . . , , Xi−1, Xi+1, . . . , Xk)′. Gibbs sampling
is then used to produce sample from the stationary distribu-
tion of the Markov chain under some regularity conditions
[32], by drawing sample from these full conditional distri-
butions. The steps of Gibbs sampling algorithm are given
below. We start the sampling by fixing a set of initial values
(X(1)

2 , . . . , X(1)
k ) for parameters (X2, . . . , Xk). Then we repeat

the following steps for m = 2, . . . , n.
Step 1. DrawX(m)

1 from p(X1 |X(m−1)
2 , X(m−1)

3 , . . . , X(m−1)
k ).

Step 2. Draw X(m)
2 from p(X2 |X(m)

1 , X(m−1)
3 , . . . , X(m−1)

k ).
...
...

Step k. Draw X(m)
k from p(Xk |X(m)

1 , X(m)
2 , . . . , X(m)

k−1).
This algorithm defines a Markov chain with transition prob-
ability from X(m−1) to X(m) as

k∏

i=1

p(X(m)
i |X(m)

1 , . . . , X(m)
i−1, X

(m−1)
i+1 , . . . , X(m−1)

k ).

The following condition, viz. the positivity condition [33],
is needed to explain the convergence properties of Gibbs
sampler without resorting to Metropolis-Hastings algorithm.

Definition 4 (Positivity condition) Suppose that p(x1, . . . ,
xp) is the joint probability density of a random vector X =
(X1, . . . , Xp)′ and p(i)(xi) denotes the marginal probability
density of Xi, i = 1, . . . , p. If p(i)(xi) > 0 for every i =
1, . . . , p implies that p(x1, . . . , xp) > 0, then the joint density
p is said to satisfy the positivity condition.

Under the positivity condition, it can be shown that the
simulated Markov chain {X(m) : m = 1, . . . , n} is irreducible.
This in turn validates that the Markov chain has a stationary
distribution which is same as the joint posterior distribution
p. Thus after discarding all draws from the burn-in period
m = 1, . . . , nburn (here nburn is an iteration number specified
by the practitioner after which the Markov chain would
have approximately distributed as the stationary distribution).
Summaries of the distribution can be obtained by using the
sample {X(m) : m = nburn + 1, . . . , n}, for a sufficiently
large n.

It is important to note that the above full condition-
als have sufficient information to uniquely determine the
joint density. Brook’s lemma [34] (also known as the fac-
torisation theorem) demonstrates that given the full condi-
tional density p(xi | x−i), we can determine the joint density
p(x1, x2, . . . , xp) of a random vector X = (X1, X2, . . . , Xp)′.

Lemma 1 (Brook’s lemma) The joint density of a random
vector X = (X1, X2, . . . , Xp)′ can be determined up to a
constant by its full conditionals as

p(x1, . . . , xp) = p(x1 | x2, . . . , xp)
p(x10 | x2, . . . , xp) · p(x2 | x10, . . . , xp)

p(x20 | x10, . . . , xp)

· · · · · · p(xp | x10, . . . , xp−1,0)

p(xp0 | x10, . . . , xp−1,0)

· p(x10, . . . , xp0), (37.48)

where x = (x1, x2, . . . , xp)′ and x0 = (x10, x20, . . . , xp0)′ are
two fixed points in the support of p(x1, x2, . . . , xp).

It can also be shown that Gibbs sampling algorithm is a spe-
cial case of Metropolis-Hastings algorithm. Let us consider
the block updating of X to X∗ where only one component Xi
is getting updated for some fixed i, i.e. X∗ = (X1, . . .Xi−1,
X∗
i , Xi+1, . . . , Xp). We factor the joint density of X as

p(x) = p1(x−i) p2(xi | x−i),

where X−i denotes the parameter vector without the com-
ponent Xi, p1 denotes the marginal posterior density of X−i
and p2 denotes full conditional density of Xi. Now in Gibbs
sampling, we generate x∗

i from p2(xi | x−i) which can be con-
sidered as the proposal distribution in Metropolis-Hastings
algorithm. The corresponding Hastings ratio is
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ρ(x, x∗) = p(x∗) p2(xi | x−i)
p(x) p2(x∗

i | x−i)

= p1(x−i) p2(x∗
i | x−i) p2(xi | x−i)

p1(x−i) p2(xi | x−i) p2(x∗
i | x−i)

= 1,

implying that the proposal values are always accepted in
Gibbs sampling.

Slice Sampler
Slice sampler is another popular MCMC algorithm where we
use auxiliary variables [35]. Suppose we want to simulate a
sample (X1, X2, . . . , Xn) from an unnormalised density g(·).
In a Bayesian analysis, g(·) will be the unnormalised poste-
rior, that is, the product of likelihood and the prior density.
We consider an auxiliary random variable Y with Y |X = x
following Uniform(0, g(x)). Then the joint density of Y and
X is

p(x, y) ∝ g(x)
1

g(x)
I(y < g(x)) = I(y < g(x)), (37.49)

where I(y < g(x)) takes the value 1 if y < g(x) and 0
otherwise. This joint density is essentially a uniform density
with the support 0 < Y < g(X). The full conditionals for a
Gibbs sampler will be the following:

1. Generate Y from Y |X = x ∼ Uniform(0, g(x)).
2. Note that X |Y = y follows a uniform distribution over

the values of x for which g(x) ≥ y. Generate X from this
conditional distribution.

Repeating these two steps for n iterations will obtain
a sample {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} from the joint
density p(x, y), and hence (X1, X2, . . . , Xn) will be a sample
from the marginal density g(x). The name ‘Slice sampler’
came from the observation that the line Y = y (which
is horizontal to the x-axis) slices the unnormalised density
curve g(x) into two parts, and we consider only the values of
X for which g(x) ≥ y.

Reversible JumpMarkov Chain Monte Carlo
The reversible jump Markov chain Monte Carlo (RJMCMC)
is an extension of Metropolis-Hastings MCMC sampling
algorithm where the dimension of the parameter space is also
allowed to be updated in different MCMC iterations [36]. We
will describe this algorithm in a Bayesian context. Suppose
that we have a countable collection of competing models
{Mk, k ∈ K} for observed data y. Let eachmodelMk have an
nk dimensional parameter vector, denoted by θ k ∈ Sk(⊂ R

nk).
It is to be noted that nk’s are allowed to vary for different
models. Then the posterior density of (θ k,Mk) is obtained as

π(θ k,Mk | y)

= l(θ k,Mk | y) π(θ k |Mk) π(Mk)∑
m∈K

∫
l(θ ′

m,Mm | y) π(θ ′
m |Mm) π(Mm) dθ ′

m

(37.50)

where l(θ k,Mk | y) denotes the corresponding model likeli-
hood, π(θ k |Mk) denotes the prior density of θ k under model
Mk and π(Mk) denotes the prior density of modelMk. This
joint posterior density π(θ k,Mk | y) is considered to be the
target density in RJMCMC, and the new state space is given
by S = ⋃

k∈K({Mk}, Sk). RJMCMC is essentially a strategy
of constructing a Markov chain on this general state space S
with the joint posterior distribution as its stationary distribu-
tion. RJMCMC uses the following steps at each iteration.

Step 1. Suppose that (θ k,Mk) denotes the current state
of the chain and nk denotes the length of θ k. We
generate a candidate model M∗

k with transition
probability q(Mk,Mk∗).

Step 2. A random vector u is generated from a known
density hk,k∗(u | θ k).

Step 3. We map (θ k, u) to (θ∗
k∗ , u∗) by defining a bijective

function g(·) such that g(θ k,u) = (θ∗
k∗ , u∗) and

nk + length(u) = nk∗ + length(u∗).
Step 4. The acceptance probability α{(θ k,Mk),

(θ∗
k∗ ,Mk∗)} of the candidate value (θ∗

k∗ ,Mk∗) is
min(1, ρ{(θ k,Mk), (θ

∗
k∗ ,Mk∗)}) where

ρ{(θ k,Mk), (θ
∗
k∗ ,Mk∗)} (37.51)

= l(θ∗
k∗ ,Mk∗ | y) π(θ∗

k∗ |Mk∗) π(Mk∗) q(Mk∗ ,Mk) hk∗,k(u∗ | θ k∗)

l(θ k,Mk | y) π(θ k |Mk) π(Mk) q(Mk,Mk∗) hk,k∗(u | θ k)
∣
∣
∣
∣
∂g(θ k, u)

∂(θ k, u)

∣
∣
∣
∣, (37.52)

where q(Mk,Mk∗) denotes the transition proba-
bility from model Mk to model Mk∗ . We accept
the proposed update (θ∗

k∗ ,Mk∗) with probability
α{(θ k,Mk), (θ

∗
k∗ ,Mk∗)}.

Repeating the above steps for n iterations will obtain a
sample which can then be used to derive the posterior sum-

maries. The dimension matching in Step 2 implies that the
constructed Markov chain is reversible and hence converges
to the stationary distribution as in Metropolis-Hastings algo-
rithm.
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37.10 Monitoring Convergence

Although convergence rates are available for most MCMC
algorithms owing to the active research in this field, they
cannot be directly used in practice to know when a chain
has converged since the rates are typically available up to an
arbitrary constant [37]. Practitioners usually take the help of
the diagnostic tools to justify the convergence of the chain.
However, it should be noted that diagnostic tools cannot
prove convergence of MCMC algorithms as they use only
a finite subset of the chain. It is to be noted that the chains
obtained from an MCMC algorithm reach the stationary
distribution only after a finite number of iterations. Because
of this, we truncate these chains from the left to alleviate
the effect of starting values and to keep only the part of the
chain which can be taken as a sample from the stationary
distribution. We call the truncated part as the burn-in period.

Estimating the burn-in period is an important aspect of
monitoring convergence. If the burn-in is taken too small,
we will have some draws left in the sample which cannot
be taken as representatives from the stationary distribution;
hence, the standard error of the parameter estimate will
unnecessarily increase. If the burn-in period is too large, then
we are essentially throwing away data which could have been
used to improve accuracy of the parameter estimate.

37.10.1 Geweke Diagnostic

Assume that {θ (1), θ (2), . . . , θ (n)} is an MCMC sample for
a scalar parameter θ and g(θ) is the posterior quantity of
interest. Let n0 denote the iteration number where we want
to check whether the chain has converged. We define A =
{n0+1, n0+2, . . . , n0+nA}, B = {n0+n∗, n0+n∗+1, . . . , n}
where 1 < nA < n∗ < n1, nB = n1 − n∗ + 1, nA + nB < n1
and n0 + n1 = n. Let

ḡA = 1

nA

∑

i∈A
g(θ(i)), ḡB = 1

nB

∑

i∈B
g(θ(i)),

(37.53)

and let SAg and S
B
g denote consistent spectral density estimates

for {g(θ(i)) : i ∈ A} and {g(θ(i)) : i ∈ B}, respectively. Then

Zn = ḡA − ḡB√
SAg/nA + SBg/nB

d−−−→
n→∞ N (0, 1), (37.54)

provided that the sequence g(θ(i)) is stationary and the ratios
nA/n and nB/n are fixed [38]. Using the above property, we
can test the equality of mean at different windows A and B
of the sample and reject the null hypothesis if |Zn| is larger
than the critical point. This would indicate that the chain has

not converged by iteration n0. Geweke [38] suggested nA and
nB to be n1/10 and n1/2. At first, the test is applied to the
whole chain by considering n0 = 0. If the test is rejected,
we sequentially apply the test for different values of n0 (e.g.
n/10, n/5, 3n/10, 2n/5, etc.). If the test gets rejected at all
the values of n0, this would indicate that the chain has not
converged.

37.10.2 The Serial Correlation and the
Effective Sample Size (ESS)

There is another factor to be considered while drawing infer-
ence using a Markov chain. Each component of an MCMC
sample, after attaining convergence, follows the target dis-
tribution (which is the posterior distribution in case of a
Bayesian analysis). Since the sample draws are correlated
within themselves, the efficiency of the estimates using the
correlated sample is usually lesser than what we would have
obtained by using an independent sample. For instance, if
we wish to reduce the standard error of an estimator by a
factor of 10, we would require to increase the sample size by
a factor of 100. However, sample size should be increased
by a larger number if we use a correlated sample instead.
In such cases, we need to first compute the effective sample
size ESS = n/κ where κ is the autocorrelation time for the
corresponding parameter and can be computed from (37.38)
and then increase the sample size by a factor of 100/ESS to
reduce the standard error by a factor of 10.

37.10.3 Gelman-Rubin Diagnostic

Convergence of every quantity of interest should be
monitored while running an MCMC algorithm (e.g. some
parametric function, logarithm of posterior density, etc.).
Gelman-Rubin diagnostic [3] assesses convergence by
checking both mixing and stationarity of the simulated
Markov chain. At first, one should simulate m number
of chains for the parameter of interest, each of length n.
Then, for each scalar parameter θ , we will have the chains
{θij : i = 1, 2, . . . , n; j = 1, 2, . . . , m}. We compute the
between-sequence variance B and within-sequence variance
W as the following

B = n

m− 1

m∑

j=1

(θ̄·j − θ̄··)2 and W = 1

m

m∑

j=1

s2j , (37.55)

where θ̄·j = 1
n

∑n
i=1 θij, θ̄·· = 1

n

∑m
j=1 θ̄·j and s2j =∑n

i=1(θij −
θ̄·j)2. We estimate the marginal posterior variance Var(θ | y)
by
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V̂ar(θ | y) = n− 1

n
W + 1

n
B. (37.56)

The estimator V̂ar(θ | y) overestimatesVar(θ | y) if the initial
distribution is overdispersed. However, the estimator is unbi-
ased if the chain is stationary or in the limit as n → ∞. On
the other hand, W underestimates Var(θ | y) for every finite
positive integer values of n, but is asymptotically unbiased
as n approaches ∞. Potential scale reduction factor R̂ of the
distribution of θ is defined as

R̂ =
(
V̂ar(θ | y)

W

)1/2

, (37.57)

which declines to 1 in the limit as n → ∞. The convergence
of the chain is monitored by value of R̂. In practice, a higher
value of R̂ indicates that the practitioner should continue the
simulation to improve the inference on the target distribution
of θ . Gelman et al. [3] also suggests to always start by
simulating at least two chains and then split each chain in
half (after discarding the draws from the burn-in period), so
that m ≥ 4.

37.10.4 Model Robustness and Sensitivity
Analysis

Bayesian modelling assumes every aspect of a model includ-
ing the likelihood and the prior(s). So it is not surprising that
the inference drawn from fitting of such models to the data
is prone to be dependent on these assumptions. To check
robustness, a standard approach is to study the sensitivity
in the estimated posterior quantities of a Bayesian analysis
when we make small changes in the likelihood or prior or
other parts of the model. If the perturbations in parts of the
model do not lead to effecting the conclusions, we say that the
data set is informative enough for the model assumptions. If
the conclusions get affected, then we rethink about the model
assumptions and/or collect more data.

Example

We take an example of a beta-binomial model with ob-
served data y following a binomial distribution with pa-
rameters n and p; the parameter p is given a beta(a, b)
prior. To check the sensitivity, we increase or decrease a
and b separately (and together), and then we compute the
posterior quantities of interest in each of the cases. �

Sensitivity analysis requires further sampling, which may
be time-consuming and costly in many practical scenarios.
However, we can avoid the additional sampling in some
situations. Suppose we have a data set y = (y1, y2, . . . , yn)

and we model it using the likelihood l(θ | y) =∏n
i=1 l(θ | yi).

We want to investigate the effect of removing the observation
yj from the data set. Assume that {θ (1), θ (2), . . . , θ (N)} is a
sample from the posterior distribution with density p(θ | y).
If posterior mean of g(θ) is the posterior quantity of interest,
then we estimate it as

Ê(g(θ) | y) =
N∑

i=1

g(θ (i))/N.

After deleting the j-th observation from the data set y, the
modified posterior density can be expressed as

p∗(θ | y) ∝ l(θ | y−j) p(θ) ∝ p(θ | y)
l(θ | yj) .

We estimate the posterior mean of g(θ) after deleting yj as

Ê
∗(g(θ) | y) =

∑N
i=1 g(θ

(i))/l(θ | yj)
∑N

i=1 1/l(θ | yj)
, (37.58)

using the importance sampling estimator. Thus we can obtain
the posterior quantities under such cases without additional
sampling.

37.10.5 Posterior Predictive Checking

Assessing the fit of the model to the data is an important
part of statistical modelling. Therefore, in every Bayesian
analysis, it is recommended to check the quality of the fit.
If a model fits well to the data, the replicated data simulated
from the model is expected to be similar as the observed data.
Let yrep denote a replication as observed data y that also could
have been observed with the same model and ỹ denote future
observations. The posterior predictive density is defined as

p(yrep | y) =
∫
l(θ | yrep) p(θ | y) dθ . (37.59)

The Bayesian p-value, denoted by pB, is defined as

pB = Pr(T(yrep, θ) ≥ T(y, θ) | y), (37.60)

where T(y, θ) is a scalar function of both the observed data
y and the parameter θ . In practice, if we have an MCMC
sample for θ of length n : {θ (1), θ (2), . . . , θ (n)}, we draw yrep

for each iteration θ (i), and consequently we have a sample
{(yrep,(i), θ (i)) : i = 1, 2, . . . , n} from the joint posterior
distribution with density p(yrep, θ | y). The Bayesian p-value
pB is then estimated as the proportion of the n iterations such
that T(yrep,(i), θ (i)) ≥ T(y, θ (i)), i = 1, 2, . . . , n. The function
T(y, θ) should be chosen to represent relevant aspects of the
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model fitting. Choosing of the functional T(y, θ) is described
in detail by [3]. If the model is nearly true, pB should be
close to 0.5. If pB is estimated as close to 0 or 1, the model is
likely to be poor because of its predictions that do not fit the
observed data. Under the model, (i) a scatterplot of the values
T(yrep,(i), θ (i)) against T(y, θ (i)) should be symmetric about
the 45◦ line, and (ii) a histogram of the differences T(y, θ (i))−
T(yrep,(i), θ (i)) should include 0. A deviation from the above
expected outcomes should indicate that the assumed model
possesses poor predictive ability.

37.11 Model Comparison

Model comparison is a key practice in Bayesian modelling.
As we already know, all the models usually applied to the
data are wrong, but among them some can be less wrong
and may be informative for making comparisons between
several models. Model comparison methods usually focus
on predictive ability of a model while penalising for model
complexity. Over the years, this topic has been an active
area of research, and numerous model comparison methods
have been developed. However, there is no unanimity among
the Bayesian practitioners about the most appropriate model
comparison method. We will not be able to go in much depth
in this topic and will only be providing brief descriptions on
the methods. Let us start by assuming that we have L number
of competing models {M1,M2, . . . ,ML}.

37.11.1 Akaike Information Criterion (AIC)

Akaike information criterion [AIC, 39] is undoubtedly the
most popular model comparison method. AIC is defined as

AIC = −2 log l(θ̂mle | y) + 2p, (37.61)

where l(θ | y) denotes the model likelihood for data y and
parameter θ . The dimension of the parameter θ is denoted by
p, and the maximum likelihood estimate is denoted by θ̂mle.
The second term in the expression of AIC stands for a bias
correction for the deviance (a measure of predictive accuracy
of a model)

D(θ) = −2 log l(θ | y) (37.62)

computed at the point θ̂mle. In fact, the approximation in AIC
is based on asymptotic normality of posterior distribution.
However, when the sample size is small, AIC tends to favour
models with higher number of parameters. We calculate AIC
for each of the L competing models {M1,M2, . . . ,ML}
and choose the one with the minimum AIC value. Under
some conditions, AIC has been shown to be asymptotically

equal to leave-one-out cross-validation (LOO-CV) when it is
computed using the maximum likelihood estimate [40].

37.11.2 Deviance Information Criterion (DIC)

The computation of AIC or BIC requires the number of
parameters to apply the bias correction. In Bayesian analyses,
the number of parameters is often not clear, and the param-
eters are constrained by the prior in some manner. Deviance
information criterion [DIC, 41] is defined as

DIC = −2 log l(θ̂ | y) + 2 pd (37.63)

where the bias correction term

pD = −2Eθ | y[log l(θ | y)] + 2 log l(θ̂ | y)

is computed as

p̂D = −2

n

n∑

i=1

log l(θ (i) | y) + 2 log l(θ̂ | y), (37.64)

where {θ (1), θ (2), . . . , θ (n)} denotes an MCMC sample for θ

of length n and θ̂ denotes the estimate of posterior mean or
posterior mode. An alternative version of DIC, viz. DICalt =
−2 log l(θ̂ | y) + 2 pD,alt, is also available [42] that makes a
modification in the bias correction term

pD,alt = 2Varθ | y[log l(θ | y)]

which is computed as

p̂D,alt = 2

n− 1

n∑

i=1

(
log l(θ (i) | y) − 1

n

n∑

j=1

log l(θ (j) | y)
)2

.

(37.65)

We compute DIC for each model and prefer the model with
smallest DIC value. It is to be noted that DIC is numerically
more stable in practice than DICalt. But the bias correction
term corresponding to the alternative version has the advan-
tage of being always positive. Under some conditions, DIC
has been shown to be asymptotically equal to LOO-CV using
plug-in predictive densities [43].

37.11.3 Widely Applicable Information
Criterion (WAIC)

Assuming that data y can be partitioned into d data points
such that y = (y1, y2, . . . , yd)′ and joint likelihood l(θ | y) =∏d

i=1 l(θ | yi), widely applicable information criteria, also
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known as Watanabe-Akaike information criterion [WAIC,
44], is defined as

WAIC = −2
d∑

i=1

logEθ | y[l(θ | yi)] + 2 pWAIC. (37.66)

Two versions of pWAIC are generally used in practice

pWAIC1 = 2
d∑

i=1

{
logEθ | y[l(θ | yi)] − Eθ | y[log l(θ | yi)]

}
,

pWAIC2 =
d∑

i=1

Varθ | y[log l(θ | yi)].
(37.67)

We compute pWAIC using MCMC draws {θ (1), θ (2), . . . , θ (n)}
from p(θ | y) as follows:

p̂WAIC1 = 2
d∑

i=1

{
log
(1

n

n∑

m=1

l(θ (m) | yi)
)

− 1

n

n∑

m=1

log l(θ (m) | yi)
}
,

p̂WAIC2 =
d∑

i=1

{1

n

n∑

m=1

(
log l(θ (m) | yi)

− 1

n

n∑

m=1

log l(θ (m) | yi)
)2}

.

A model with smaller WAIC value is preferred. The second
bias correction term pWAIC2 looks similar to pD,alt but is more
stable because of summing up the variances. WAIC has the
desirable property of averaging over the posterior distribution
rather than conditioning on a point estimate like DIC. WAIC
is considered as a fully Bayesian approach for estimating
out-of-sample predictive accuracy of a model. Under some
conditions,WAIC has been proven to be asymptotically equal
to Bayesian LOO-CV [44].

37.11.4 Out-of-Sample Validation

If we have a large data set at hand, we split the data set
into two parts – (i) one part is the within sample data
y = (y1, y2, . . . , yd)′ which is used to fit or train the model,
and (ii) the other part is the out-of-sample data yoos =
(y1,oos, y2,oos, . . . , ydoos,oos)

′ that is used to validate the model.
Suppose ŷoos = (ŷ1,oos, ŷ2,oos, . . . , ŷdoos,oos)

′ are obtained
as model predictions of the data yoos under model M. The
predictions ŷoos can be computed as the estimate of

E(yoos | y) =
∫
yoos p(yoos | y) dyoos.

which can be computed as
∑n

m=1 y
(m)
oos/n. Here y

(m)
oos denotes

a draw from likelihood l(θ(m) | yoos) at each MCMC iteration
m = 1, 2, . . . , n. We compute the mean squared prediction
error (MSPE) [42]

MSPE = 1

doos

doos∑

i=1

(yi,oos − ŷi,oos)
2 (37.68)

independently for each of the Lmodels {M1,M2, . . . ,ML}.
The model which corresponds to minimum MSPE is consid-
ered to be the best model in the set.

37.11.5 Bayesian Cross-Validation

Cross-validation is a method of measuring predictive ability
of a model and is very useful for smaller sample sizes.
Leave-one-out cross-validation is the simplest approach for
conducting a cross-validation study [3, 42]. In leave-one-out
cross-validation, the score is defined as

score =
d∑

i=1

log p(yi | y−i), (37.69)

where each p(yi | y−i) can be computed as

1

n

n∑

m=1

p(yi | y−i, θ
(i,m)). (37.70)

Here {θ (i,1), θ (i,2), . . . , θ (i,n)} denotes MCMC sample for pa-
rameter θ using only y−i = (y1, y2, . . . , yi−1, yi+1, . . . , yd)′ as
data, i = 1, 2, . . . , d. This score statistic underestimates the
predictive ability of the model as it uses only d−1 data points
while conditioning. The bias is expressed as

bias =
d∑

i=1

log p(yi | y) − 1

d

d∑

i=1

d∑

j=1

log p(yj | y−i), (37.71)

where each p(yj | y−i) can be computed as (notice the differ-
ence with (37.70))

1

n

n∑

m=1

p(yj | y−i, θ
(i,m)). (37.72)

The bias corrected score is then expressed as scoreb =
score+ bias.
K-fold cross-validation can be thought of as an extension

of leave-one-out cross-validation where the whole data set y
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is partitioned into K subsets y1, y2, . . . , yK , and we define the
score as

score =
K∑

k=1

log p(yk | y−k). (37.73)

where each p(yk | y−k) can be computed similarly as

1

n

n∑

m=1

p(yk | y−k, θ
(k,m)). (37.74)

with {θ (k,1), θ (k,2), . . . , θ (k,n)} denoting an MCMC sample for
parameter θ using y−k as data, k = 1, 2, . . . , K. We compute
the cross-validation score for each of the competing models
and consider the model with largest score as the best in the
model set.

37.11.6 Posterior Predictive Loss

Gelfand and Ghosh [45] recommended a decision theoretic
approach for model comparison based on predictive accu-
racy. The goal of this approach is to obtain good predictions
for replicates yrep of the observed data y and, at the same time,
to be faithful to the observed values. To attain this objective,
they proposed a loss function in terms of unobserved replicate
yrep :

L(yrep, a; y) = L(yrep, a) + wL(y, a), (37.75)

where yrep has the same first stage distribution as y and a
is an ‘action’ or an estimate for yrep. In the proposed loss
function (37.75), w is constrained to be non-negative and
viewed as a relative weight of how important it is for a to
be close to y, compared to yrep.

Gelfand and Ghosh [45] derived a posterior predictive risk
by averaging their proposed loss function (37.75) over the
predictive distribution of yi,rep given y. The resulting risk is
then minimised with respect to the prediction ai and summed
over all observations i = 1, . . . , d to yield the model selection
criterion

Dw =
d∑

i=1

min
ai

Eyrepi | y
[
L(yrepi , ai) + wL(yi, ai)

]
. (37.76)

Provided a loss function L(·) and weight w, the model with
the smallest Dw is favoured. In practice, it can be difficult to
carry out the computation in (37.76). If we select the squared
error loss function, the criterion becomes

Dw2 = w

w+ 1

d∑

i=1

(yi − E(yi,rep | y))2 +
d∑

i=1

Var(yi,rep | y).
(37.77)

Further, by letting w → ∞, we get

D∞ =
d∑

i=1

(yi − E(yrepi | y))2 +
d∑

i=1

Var(yrepi | y). (37.78)

Although D∞ was first proposed by [45, 46] showed that it
comes as the limit of Dw2. The first term in the D∞ criterion
is the goodness-of-fit term, while the second term in the
right-hand side of the above (37.78), i.e.

∑d
i=1 Var(y

rep
i | y),

can be viewed as a penalty and will tend to increase in an
overfitted model where the prediction variance gets larger
with an increasing number of parameters. In general, the
ordering of models under Dw2 agrees with the ordering of
D∞. Then the model for which D∞ is the smallest can be
chosen while doing model comparison.

We compute the expectation E(yrepi | y) and variance
Var(yrepi | y) using MCMC draws. Given an MCMC sample
{θ (1), θ (2), . . . , θ (n)} from p(θ | y), we simulate yrep,(m) from
l(θ (m) | y) for each m = 1, 2, . . . , n. We compute the
quantities as follows:

Ê(yrepi | y) = 1

n

n∑

m=1

yrep,(m)

i

V̂ar(yrepi | y) = 1

n

n∑

m=1

(
yrep,(m)

i − 1

n

n∑

m=1

yrep,(m)

i

)2
.

37.11.7 Bayes Factor

Let θ i denote the vector of parameters under a model Mi,
with prior density p(θ i |Mi) such that

∫
p(θ i |Mi) dθ i =

1. Let y denote the observed data with probability density
li(θ i | y) under Mi. The posterior density of θ i can be ex-
pressed as

p(θ i | y,Mi) = li(θ i | y) p(θi |Mi)

m(y |Mi)
(37.79)

where m(y |Mi) denotes the marginal likelihood of data y
underMi and is computed as

m(y |Mi) =
∫
li(θ i | y) π(θ i |Mi) dθ i. (37.80)

This marginal likelihood is also viewed as the predictive
density of the data under Mi before the data is actually
observed, that is, the probability density of the observed data
y accounting for the prior uncertainty in θ i specified by Mi.
Thus the value of the marginal or predictive density has the
ability in assessing themerit of the correspondingmodel. The
Bayes factor [see, e.g. 47] of Mi relative to another model
Mj is defined as the ratio of respective marginal densities
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BF(Mi,Mj) = m(y |Mi)

m(y |Mj)
. (37.81)

Now suppose we want to test

M0 : θ ∈ �0 versus M1 : θ ∈ �1. (37.82)

Let Pr(Mi) be the prior probability of Mi and π(θ |Mi) be
the prior density of θ under Mi such that

∫
π(θ |Mi) dθ =

1, i = 0, 1. Then the posterior model probability Pr(Mi | y)
is calculated as

Pr(Mi | y) = m(y |Mi) Pr(Mi)

m(y)
, i = 0, 1, (37.83)

where m(y) = Pr(M0)m(y |M0)+Pr(M1)m(y |M1) and
m(y |M0) can be calculated as showed in (37.80). For the
test, we compute the posterior odds ofM0 relative toM1

Pr(M0 | y)
Pr(M1 | y) = m(y |M0) Pr(M0) /m(y)

m(y |M1) Pr(M1) /m(y)
= Pr(M0)

Pr(M1)
.
m(y |M0)

m(y |M1)

= Pr(M0)

Pr(M1)
× BF(M0,M1). (37.84)

Consequently, (37.84) gives us

BF(M0,M1) = Posterior odds(M0,M1)

÷ Prior odds(M0,M1). (37.85)

This shows the importance of Bayes factor in the context of
Bayesian testing and model selection. It is to be noted that
it does not depend on any prior model probability Pr(M0)

or Pr(M1). Higher values of BF(M0,M1) suggest stronger
evidence in favour of M0. Note that Bayes factor is well
defined if the assigned prior distribution on the parameters
is proper. However, it can be sensitive to the choice of the
prior distribution. Thus it is important to conduct a sensitivity
analysis by studying the range of the Bayes factor over a class
of possible prior distributions [48].

The computation of marginal likelihood of data is of
considerable interest in the Bayesian literature due to its
importance in Bayesian model comparison [47]. Marginal
likelihood of data is obtained by integrating the likelihood
function with respect to the prior distribution, which is also
the normalising constant of posterior distribution of the un-
known parameter. There is a vast literature on estimating the
normalising constant of a given density by Markov chain
Monte Carlo (MCMC) methods; more details on this can be
found in [49–52]. The existing approaches for computing the
marginal likelihood often use MCMC draws, even though,
as attractive as it sounds, it comes with its advantages and
disadvantages [see the discussion in 53]. In spite of the
substantial progress, estimation of marginal likelihoods for
hierarchical models is still a difficult problem, especially in
high dimensions and in the presence of latent variables.

Laplace Approximation
We start by assuming that the posterior density p(θ i | y,Mi)

is unimodal and has mode at θ̃ . The Laplace approximation
of m(y |Mi) [6, 54] is obtained as

m̂(y |Mi) = (2π)pi/2|�̃i|1/2li(θ̃ i | y) p(θ̃ i |Mi), (37.86)

where θ i has dimension pi and �̃i = {−D2 log(li(θ i | y)
p(θ i |Mi))} denotes the inverse of the negative Hessian
matrix. Using this approximation to the BF(Mi,Mj) yields

logBF(Mi,Mj) = m̂(y |Mi) − m̂(y |Mj)

= li(θ̃ i | y) − lj(θ̃ j | y) + log p(θ̃ i |Mi) − log p(θ̃ j |Mj)

+ 1

2
(pi − pj) log(2π) + 1

2
(log |�̃i| − log |�̃j|).

(37.87)
The above Laplace approximation of m(y |Mi) satisfies
m(y |Mi) = m̂(y |Mi)(1 + O(d−1)) where d denotes the
sample size [54].

Monte Carlo Estimator
Given a sample {θ (1)

i , θ (2)
i , . . . , θ (n)

i } from the prior density
p(θ i |Mi), we can obtain Monte Carlo estimate of the
marginal likelihood m(y |Mi) as

m̂(y |Mi) = 1

n

n∑

j=1

li(θ
(j)
i |Mi). (37.88)

This estimate may be very inaccurate if the sample from the
prior density fails to include the values pf θ for which the
likelihood is high. Thus a very large sample may be required
to improve the accuracy of the estimate.

Importance Sampling Estimator
For a proper density g(θ i |Mi), the following identity holds

m(y |Mi) =
∫
li(θ i | y)w(θ i |Mi) g(θ i |Mi) dθ i, (37.89)

where w(θ i |Mi) = p(θ i |Mi)/g(θ i |Mi). The importance
density g(θ i |Mi) should be chosen carefully as different
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choices of importance density lead to different accuracies for
the importance sampling estimator [55]. For the importance
sampling estimator to have a smaller variance, the importance
density should have thicker tail than the prior density.

Gelfand-Dey Estimator of Marginal Likelihood of
Data
Observe that the following identity holds for any proper
density g(θ i |Mi),

m(y |Mi) =
[ ∫

g(θ i |Mi) p(θ i | y,Mi)

li(θ i | y) p(θ i |Mi)
dθ i

]−1

.

(37.90)

Based on this identity (37.90), [49] proposed an estimator for
the marginal likelihood m(y |Mi)

m̂GD(y |Mi) =
[
1

n

n∑

j=1

g(θ (j)
i |Mi)

li(θ
(j)
i | y) p(θ (j)

i |Mi)

]−1

, (37.91)

where {θ (1)
i , θ (2)

i , . . . , θ (n)
i } is a set of MCMC draws from the

posterior π(θ i | y,Mi) under the modelMi. m̂GD(y |Mi)
−1

is an unbiased and consistent estimator of m(y |Mi)
−1.

Even though the estimator is defined for any proper density
g(θ i |Mi), shape of g(θ i |Mi) should be similar with thinner
tails to the posterior p(θ i | y,Mi) for Gelfand-Dey estimator
to have a smaller variance (like importance sampling). It
also satisfies a Gaussian central limit theorem if the tails of
g(θ i |Mi) are thin enough, specifically if

∫
g(θ i |Mi)

2

li(θ i | y) p(θ i |Mi)
dθ i < ∞.

In practice, it may be hard to find a density g(θ i |Mi) that has
sufficiently thin tails in all direction of the parameter space
simultaneously, especially when the posterior has nonellipti-
cal contours. If g(θ i)/{li(θ i | y) p(θ i |Mi)} is bounded above,
then the approximation shows less variation over different
simulations and the rate of convergence is likely to be practi-
cal. In addition, if the posterior density is uniformly bounded
away from 0 on every compact subset of the parameter
space, then the function g(θ i |Mi)/{li(θ i | y) p(θ i |Mi)} has
posterior moments of all orders [see 56]. Note that choosing
g(θ i |Mi) = p(θ i |Mi) gives the harmonic mean estimator:

m̂HM(y |Mi) =
[
1

n

n∑

j=1

1

li(θ
(j)
i | y)

]−1

. (37.92)

The Gelfand-Dey estimator is occasionally termed as recip-
rocal importance sampling estimator because of its similarity
with importance sampling. For more details please refer to
[47, 49–51].

37.11.8 BayesianModel Averaging

Given a set of models {M1,M2, . . . ,ML} with prior model
probabilities {Pr(M1), Pr(M2), . . . ,Pr(ML)}, the posterior
model probability Pr(Mi | y) for modelMi is calculated as

Pr(Mi | y) = m(y |Mi) Pr(Mi)
∑L

k=1 m(y |Mk) Pr(Mk)
, i = 1, 2, . . . , L.

(37.93)

where m(y |Mi) denotes the marginal likelihood of data
y under Mi and can be calculated as showed in (37.80).
Posterior model probabilities can also be expressed in terms
of Bayes factor (defined in (37.81))

Pr(Mi | y) = BF(Mi,M1) Pr(Mi)
∑L

k=1 BF(Mk,M1) Pr(Mk)
, i = 1, 2, . . . , L.

(37.94)

The posterior model probabilities can be used to select or
compare models, and of course, the models with higher
probabilities should be preferred.

Let θ be a quantity of interest, and its marginal posterior
density function is expressed as

π(θ | y) =
L∑

k=1

π(θ | y,Mk) Pr(Mk | y) (37.95)

which is a weighted average over all the competing models
with weights {Pr(M1 | y),Pr(M2 | y), . . . ,Pr(ML | y)}. The
posterior means and variances can also be obtained by this
model averaging

E(θ | y) =
L∑

k=1

θ̂k Pr(Mk | y)

Var(θ | y) =
L∑

k=1

(Var(θ | y,Mk) + θ̂2
k )

Pr(Mk | y) − E(θ | y)2 (37.96)

where θ̂k = E(θ | y,Mk) [57, 58]. For more details on
Bayesian model averaging, interested reader can refer to
[59, 60].

37.11.9 Bayesian Information Criterion (BIC)

Bayesian information criterion [BIC, 61] is defined as

BIC = −2 log l(θ̂ | y) + p log d, (37.97)



37 Bayesian Models 787

37

where d denotes the sample size and θ̂ denotes the estimate
of posterior mean or posterior mode. We calculate BIC for
each of the L competing models and choose the one with the
minimum BIC value. Note that BIC gives larger correction
for bias as sample size increases and thus tends to favour
simpler models. BIC is essentially used as an approximation
of the marginal likelihood of the data y and is not an estimate
of the predictive accuracy of the model. In this way, it is
different than AIC and the other criteria that we will discuss
below.

Given a set of models {M1,M2, . . . ,ML} and their re-
spective BIC scores {BIC1,BIC2, . . . ,BICL}, the posterior
probability of model Mi, i = 1, 2, . . . , L, can be approxi-
mated as [see 62]

Pr(Mi | y) ≈ exp(−BICi/2)
∑L

k=1 exp(−BICk/2)
. (37.98)

In practice, first we calculate the differences �i = BICi −
BICmin, where BICmin is the minimum BIC score among the
L competing models. Then we calculate

Pr(Mi | y) ≈ exp(−�i/2)
∑L

k=1 exp(−�k/2)
. (37.99)

Computing the posterior model probabilities in this way
helps in avoiding underflow or overflow of large quantities
while exponentiating the BIC scores.

37.12 Some Applications of Bayesian
Methods in Different Fields of
Research

Bayesian concepts have been applied to many areas like
process control, reliability and survival analysis, time se-
ries, statistical ecology and the like. We will briefly discuss
some of these applications in this section. Congdon [63] has
prescribed various modelling techniques for different appli-
cations. In the case of non-linear and also non-parametric
Bayesian models, [3] discuss in details the part V of the
book.

37.12.1 Example from Statistical Ecology

Estimation of animal abundances over large regions by in-
tegrating multiple data sources is one of the key challenges
in statistical ecology. Estimating animal population size is
needed to be performed at large geographical scales that will
actually be useful for management and conservation. How-
ever, reliable estimation of population size is highly resource
intensive (e.g. capture-recapture survey) and only possible

at a smaller scale. Cost-effective and less resource-intensive
surveys on animal signs are conducted at the larger scale, but
these kind of surveys do not yield animal abundance estimate;
instead it provides habitat occupancy probability. In an ap-
plication, [64] have developed a Bayesian smoothing model
by using a conditionally autoregressive prior to address the
problem. Their approach is briefly described below. Assume
that the region under study is divided into p sites and the
number of individuals in ith site, denoted by Ni, follows a
Poisson distribution with parameter λi, i = 1, 2, . . . , p. They
have modelled λi’s as

νi = log(λi) = x′
iβ + φi, i = 1, 2, . . . , p, (37.100)

where β is the regression coefficient, xi is the vector of
covariates and φi incorporates the spatial association between
sites. Here φ = (φ1,φ2, . . . ,φp)′ is given a conditionally
autoregressive prior

φ ∼ Np(0, δ2(Dw − ρW)−1), (37.101)

where δ2 > 0, ρ ∈ (0, 1), W = (wij) denotes a p × p
proximity matrix with wij taking the value 1 if sites i and
j are neighbours and 0 otherwise. They set wii = 0 for
all i and Dw = diag(w10, . . . , wp0). They use the reliable
estimates of λi, viz. λ̂i(ct), as responses that are available
for the sites i = 1, 2, . . . , k1, (k1 < k) from camera trap
data. Estimates of occupancy probabilities ψ̂1, ψ̂2, . . . , ψ̂p are
also available for all the sites from count data on animal
signs. Now observing that occupancy probability and true
latent abundance are related as ψi = Pr(Ni > 0) =
1 − exp(−λi), they have transformed the occupancy proba-
bility estimates to obtain indicative estimates of abundance
λ̂i(os) = − log(1 − ψ̂), i = 1, 2, . . . , p. It is also noted
that the exact relationship between estimates of occupancy
probability ψi and estimates of true latent abundance λi is
very complex in general, and hence estimates λ̂i(os) cannot
be perceived as reliable estimates of λi. They have used the
following notations for further model development: ν̂i(ct) =
log(λ̂i(ct)), X denotes the data on all the covariates including
λ̂i(os), R = {1, 2, . . . , k1} denotes the set of sites with reliable
data and S = {k1 + 1, k1 + 2, . . . , p} denotes the set of
remaining sites. Consequently, ν = (νR

′
, νS

′
)′, where νR =

(ν1, . . . , νk1)
′, νS = (νk1+1, . . . , νp)′, ν̂

R
(ct) = ν̂(ct) and

λ̂(os) = (λ̂
R′
(os), λ̂

S′
(os))′, X = (XR′

XS′
)′. It is assumed

that

ν̂(ct) | ν, σ 2 ∼ Nk1(ν, σ
2Ik1). (37.102)

The prior on ν is then derived from (37.100) and (37.101) as

ν | β, ρ, δ2 ∼ Np(Xβ, δ2(Dw − ρW)−1), (37.103)
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where β, δ2 and ρ are hyper-parameters. Then they obtain

ν̂(ct) | σ 2,β, δ2, ρ ∼ Nk1(X
Tβ, σ 2Ik1 + δ2Q1(ρ)),

(37.104)

whereQ1(ρ) is the top k1 ×k1 square block of (Dw−ρW)−1.
In order to obtain the posterior density π(σ 2,β, δ2, ρ | ν̂(ct)),
one needs to assign priors on the parameters σ 2, β, δ2, ρ.
Also note that

⎛

⎝
ν̂(ct)
νT

νS

⎞

⎠ | σ 2,β, δ2, ρ ∼ Np+k1

⎛

⎝

⎛

⎝
XTβ

XTβ

XSβ

⎞

⎠ ,

⎛

⎝
σ 2Ik1 + δ2Q1(ρ) δ2Q1(ρ) δ2Q12(ρ)

δ2Q1(ρ) δ2Q1(ρ) δ2Q12(ρ)

δ2Q21(ρ) δ2Q21(ρ) δ2Q2(ρ)

⎞

⎠

⎞

⎠ ,

(37.105)

where Q1, Q2, Q12 and Q21 = Q′
12 are as in (Dw − ρW)−1 =(

Q1(ρ) Q12(ρ)

Q21(ρ) Q2(ρ)

)

. From (37.105), the full posterior of νS is

obtained as follows:

νS | ν̂(ct), σ 2,β, δ2, ρ ∼Np−k1
(
XSβ + δ2Q21(ρ)

(
σ 2Ik1 + δ2Q1(ρ)

)−1
(ν̂(ct) − XTβ),

δ2Q2(ρ) − δ4Q21(ρ)
(
σ 2Ik1 + δ2Q1(ρ)

)−1
Q12(ρ)

)
. (37.106)

The fully hierarchical Bayes estimate of νS and its
posterior covariance matrix can be obtained from (37.106).
From (37.105),

ν | ν̂(ct), σ 2,β, δ2, ρ ∼ Np
(
μ(σ 2,β, δ2, ρ), P(σ 2,β, δ2, ρ)

)
,

(37.107)

where (suppressing the dependence on ν̂(ct))

μ(σ 2,β, δ2, ρ) = Xβ + δ2(Q1(ρ), Q12(ρ))′(σ 2Ik1 + δ2Q1(ρ))−1(ν̂(ct) − XTβ),

P(σ 2,β, δ2, ρ) = δ2
(
Q1(ρ) Q12(ρ)

Q21(ρ) Q2(ρ)

)

− δ4
(
Q1(ρ)

Q21(ρ)

)

(σ 2Ik1 + δ2Q1(ρ))−1

(
Q1(ρ)

Q21(ρ)

)′
. (37.108)

Proposition 1 The hierarchical Bayes estimate of total
abundance and its posterior variance are, respectively,

E(A(λ) | ν̂(ct)) =∑p
i=1 E

∗(eμi+Pii/2), and
Var(A(λ) | ν̂(ct)) = E

∗(
∑p

i=1 e
2μi+Pii(ePii − 1

)
)

+E
∗(
∑

i�=j eμi+μj+(Pii+Pjj)/2(ePij −1
)
)+Var∗(

∑p
i=1 e

μi+Pii/2),
whereE∗ (andVar∗) denotes expectation (and variance) with
respect to the posterior distribution π(σ 2,β, δ2, ρ | ν̂(ct)).

The above result is then used to obtain the posterior estimate
of the total abundance. They have also extended their work to
perform model comparison by computing the Bayes factors
and developed another Bayesian spatial model that allevi-
ates the issue of spatial confounding (i.e. multicollinearity

between spatial covariates and the spatial random effect).
They have applied their developed model on tiger population
survey data from the Malenad landscape of southwestern
India (viz. Malenad Tiger Landscape (MTL)). For brevity,
we are not going into the results of the application. However,
interested readers are suggested to see [64] for details.

37.12.2 Process Control

Statistical process control has been a very interesting topic
since the days of Shewhart, the father of Statistical Quality
Control. His famous idea of control charts could help or-
ganisations for decades to keep control over a process. Later
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on, problems crept in the form of less data, for example, for
‘short run’ products. Some statisticians used Bayesian con-
cepts to use some prior ideas about the process parameters.
One may refer to [65] for a detailed discussion on various
modelling approaches to process control using Bayesian
concepts. However, modern-day problems are generally Big
Data problems where Bayesian approach can give useful
results [66]. Shiau et al. [67], Niverthi and Dey [68], Cheng
and Spring [69] and many others have developed Bayesian
approaches in measuring process capability of a given pro-
cess.

37.12.3 Reliability

Several authors have used Bayesian methodology to relia-
bility theory. Reliability domain can broadly be classified as
hardware and software. Research on hardware reliability the-
ory has been continuing over several decades, whereas soft-
ware reliability concepts and models have its origin in 1972
[70]. Some of the latest applications of Bayesian method-
ology in software reliability aspects can be seen in [71]
and [72]. The authors have optimised the time for software
release using Bayesian concepts. Various other authors have
found optimum release time of software using non-Bayesian
methods.

In their latest article [72], the authors propounded a new
direction to develop software reliability models. Reliability
of software depends very much on the remaining number of
bugs in the software. However, it has been observed that even
if bugs are there in the software, but if the data does not go
through the path where the bug exists, then the software does
not create a problem in getting the right answer. This neces-
sitates the development of the new concept of size of a bug,
where the size here basically means the number of input data
that may eventually traverse through the path where the bug
exists. So, even if several bugs exist in the software, but all of
them are in such paths which are rarely traversed by the data
sets to be used by the users, the software is expected to show
high reliability. This idea was modelled through the concept
of size-biased sampling, originally developed in [73]. On the
hardware reliability front, Bayesian methods have been used
by several authors; see, for example, [74, 75], etc.

37.13 Discussion

Although Bayesian analysis provides a natural and compre-
hensive approach of combining prior information with data,
within a solid decision theoretical framework, it has certain
issues and criticisms which stem from the paradigm.

37.13.1 Pitfalls in the Choice of Prior

As we have seen above, there are many ways to construct
a prior; there is no uniformly correct way to select it. As it
requires skills to mathematically formulate subjective prior
information, it may generate misleading results if not pro-
ceeded carefully. Scientists who are experts in their own field
but not skilled enough with the practice of Bayesian analysis
can construct a prior distribution which is inconsistent and
imprecise [76]. Often posterior distributions are heavily in-
fluenced by the priors which makes the results misleading
and raises questions on the selection of the prior. In the
absence of sufficient amount of data, the choice of prior
can lead to wrong conclusions in the case of limited prior
information. It is to be noted that the majority of the concerns
encountered during assessment of a Bayesian analysis arise
from this issue regarding the choice of prior distributions.
The construction of informative priors is productive and sug-
gested in general. If possible, involvement of subject matter
experts (i.e. biologists, industry, conservationist, etc.) should
be ensured in the process of construction of the priors. This
helps in correctly interpreting and defending the results.

37.13.2 Computationally Intensive

It becomes extremely computationally challenging to con-
duct a Bayesian analysis in complex models and in mod-
els with a large number of parameters. The computational
challenges come in with both mathematical skills (requiring
the knowledge of probability and algebra) and computational
time (requiring a high performance computer with higher
RAM, cores and processing power). The posterior distri-
butions often do not have a proper and/or standard form
necessitating simulation (such as Monte Carlo or MCMC,
etc.). These simulations provide a little different answers if
different random seeds are used, i.e. for a particular posterior
distribution, simulation-based estimates can vary for differ-
ent random number generator used in the analyses. For more
comprehensive and thorough treatments on the advantages
and disadvantages of Bayesian analysis, see [37, 77–82].

37.13.3 BayesianMarginalisation Paradox

Now it is well-known to the Bayesian community that ap-
parent inconsistency may arise in the Bayesian inference due
to the use of improper priors. The marginalisation paradox
is a particular type of such inconsistency which arises when
there are different approaches to compute the same marginal
posterior [83,84], resulting in incompatible densities by using
improper priors. This inconsistency does not arise by using
proper priors.
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If p(x | θ) denotes the density function for a certain sta-
tistical model, π(θ) denotes the assumed improper prior and
π(θ | x) denotes the posterior distribution of the parameter θ

given the data x, the posterior π(θ | x) is computed by using
the Bayes theorem. Now suppose that θ = (θ1, θ2) and x =
(x1, x2). We also assume that the marginal density p(x2 | θ)

depends on θ only through θ2 and that the marginal posterior
π(θ2 | x) depends on x only through x2. Hence we should
have the posterior of θ2 given x2, π(θ2 | x2) = p(x2 | θ2) π(θ2)

when density function of x2 is denoted by p(x2 | θ2) with
some prior density π(θ2). This marginal density does not
satisfy the Bayes theorem, although it should have. One
could integrate π(θ1, θ2 | x1, x2) ∝ p(x1, x2 | θ1, θ2) π(θ1, θ2)
with respect to θ1 to obtain the marginal posterior density
π(θ2 | x2). As an alternative approach, one could first in-
tegrate p(x1, x2 | θ1, θ2) π(θ1, θ2) with respect to x1 to ob-
tain p(x2 | θ2) and then obtain p(x2 | θ2) π(θ2). It turns out
π(θ2 | x2) obtained by the former approach is not always
proportional to p(x2 | θ2) π(θ2) that is obtained in the latter
approach. There are numerous examples of such inconsis-
tency that arise in ordinary problems, e.g. the change point
problem and the problem of discrimination parameter for
two populations [84]. This paradox is important as it shows
certain inconsistency which raises concerns regarding the use
of improper priors in objective Bayes. Recently, under some
conditions, it has been shown that the marginalisation para-
dox can be resolved by considering the improper inferences
as probability limits [85].

37.13.4 Bayesian Discrepant Posterior
Phenomenon

The posterior distribution combines the information obtained
from the prior and the likelihood to provide estimates of a
parameter – hence it can be expected to give an improved
estimate. For example, the posterior estimate of the mean pa-
rameter in a Gaussian conjugate model (with unknown mean
and known variance) is a weighted average of the maximum
likelihood estimate and the prior mean. Consequently the
posterior estimate lies between the estimates based on the
likelihood and the prior in this model. But in a model with
multivariate parameters and an informative prior, we may
get counterintuitive inference on the parameter of interest
based on its marginal posterior density (which is obtained by
marginalising the joint posterior density), i.e. it is possible
to obtain a point estimate of the parameter of interest based
on its marginal posterior density which can be regarded as
extreme under the prior and the posterior. This is called the
discrepant posterior phenomenon (DPP) [86, 87].

For example, in a binomial clinical trial conducted by
Johnson & Johnson (J&J) Inc., both the prior density and the

likelihood of the improvement δ = p1−p0, where p0 denotes
the control success rate and p1 denotes the treatment success
rate, had its mean, median and mode around 0.1. However,
it was found that the posterior of δ has its mean, median and
mode around 0.2 from several competing Bayesian models
[86, see Table 3]. In Fig. 4 of [86] and Fig. 2(b) of [87], it can
also be seen that the marginal posterior density of δ peaks
near the region that is less likely under the marginal prior
and the marginal likelihood of δ. The readers are advised to
refer to [88] who provides a comprehensive discussion of the
DPP. They recommend (1) to have uncorrelated dimensions
for the parameters in both the prior and likelihood; (2) to do
re-parameterisation for prior-likelihood curvature alignment
such that the prior and likelihood is not highly skewed and
homogeneous variance across dimensions is desired; and
(3) in case the different dimensions of the parameter are
correlated in both the prior and the likelihood, it should be
made sure that the correlation patterns are the same between
the prior and the likelihood which could alleviate or prevent
DPP. When informative prior is needed to be used, their
discussion can serve as a precaution and guidance for the
Bayesian practitioners for prior constructions to mitigate the
effect of DPP.

37.13.5 Lack of Inference Results

Often the Bayesian practitioners encounter a situation where
an approximation of intractable integrals is needed to obtain
inferences. Variational Bayesian methods (VBM) provide
suites of techniques for approximating such integrals. VBMs
are primarily used to provide an analytical approximation to
the posterior probability of the unobserved variables (i.e. the
unknown parameters and the latent variables). VBM can be
seen as a quicker alternative to MCMC methods providing
locally optimal exact analytic solution to posterior approxi-
mation. However, the derivation of the set of equations that
are used in the iterative updates of the parameters requires
more intensive mathematical work [89, 90].

Variational Bayes can be seen as an extension of the EM
(expectation-maximisation) algorithm based on dependent
set of equations that cannot be solved analytically – both
methods require finding a maximum a posteriori (MAP)
estimate of each parameter and approximating the posterior
density. But unlike EM algorithm, both types of unobserved
variables (i.e. parameters and latent variables) are treated
as the same, i.e. as random variables. Estimates for the
variables can then be derived in the standard Bayesian ways,
e.g. calculating the mean of the distribution to get a single
point estimate or deriving a credible interval, highest density
region, etc. [91].
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Abstract

In this chapter, we provide a review of the knowledge
discovery process, including data handling, data mining
methods and software, and current research activities. The
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introduction defines and provides a general background to
data mining knowledge discovery in databases, following
by an outline of the entire process in the second part.
The third part presents data handling issues, including
databases and preparation of the data for analysis. The
fourth part, as the core of the chapter, describes popu-
lar data mining methods, separated as supervised versus
unsupervised learning. Supervised learning methods are
described in the context of both regression and classifi-
cation, beginning with the simplest case of linear models,
then presenting more complex modeling with trees, neural
networks, and support vector machines, and concluding
with some methods only for classification. Unsupervised
learning methods are described under two categories: as-
sociation rules and clustering. The fifth part presents past
and current research projects, involving both industrial
and business applications. Finally, the last part provides a
brief discussion on remaining problems and future trends.

Keywords

Data mining · Linear discriminant analysis · Association
rule · Unsupervised learning · Statistical process control

Data mining (DM) is the process of exploration and analysis,
by automatic or semiautomatic means, of large quantities of
data to discover meaningful patterns and rules [1]. Statistical
DM is exploratory data analysis with little or no human
interaction using computationally feasible techniques, i.e.,
the attempt to find unknown interesting structure [2]. Knowl-
edge discovery in databases (KDD) is a multidisciplinary
research field for nontrivial extraction of implicit, previously
unknown, and potentially useful knowledge from data [3].
Although some treat DM and KDD equivalently, they can
be distinguished as follows. The KDD process employs DM
methods (algorithms) to extract knowledge according to the
specifications of measures and thresholds, using a database
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along with any necessary preprocessing or transformations.
DM is a step in the KDD process consisting of particular
algorithms (methods) that, under some acceptable objective,
produce particular patterns or knowledge over the data. The
two primary fields that develop DM methods are statistics
and computer science. Statisticians support DM by mathe-
matical theory and statistical methods while computer scien-
tists develop computational algorithms and relevant software
[4]. Prerequisites for DM include: (1) advanced computer
technology (large CPU, parallel architecture, etc.) to allow
fast access to large quantities of data and enable computa-
tionally intensive algorithms and statistical methods and (2)
knowledge of the business or subject matter to formulate
the important business questions and interpret the discovered
knowledge.

With competition increasing, DM and KDD have become
critical for companies to retain customers and ensure prof-
itable growth. Although most companies are able to collect
vast amounts of business data, they are often unable to
leverage this data effectively to gain new knowledge and
insights. DM is the process of applying sophisticated ana-
lytical and computational techniques to discover exploitable
patterns in complex data. In many cases, the process of DM
results in actionable knowledge and insights. Examples of
DM applications include fraud detection, risk assessment,
customer relationship management, cross-selling, insurance,
banking, retail, etc.

While many of these applications involve customer rela-
tionship management in the service industry, a potentially
fruitful area is performance improvement and cost reduc-
tion through DM in industrial and manufacturing systems.
For example, in the fast-growing and highly competitive
electronics industry, total revenue worldwide in 2003 was
estimated to be $900 billion, and the growth rate is estimated
at 8% per year (www.selectron.com). However, economies of
scale, purchasing power, and global competition are making
the business such that one must either be a big player or
serve a niche market. Today, extremely short life cycles
and constantly declining prices are pressuring the electronics
industry to manufacture their products with high quality, high
yield, and low production cost.

To be successful, industry will require improvements at
all phases of manufacturing. Figure 38.1 illustrates the three
primary phases: design, ramp-up, and production. In the
production phase, maintenance of a high-performance level
via improved system diagnosis is needed. In the ramp-up
phase, reduction in new product development time is sought
by achieving the required performance as quickly as possible.
Market demands have been forcing reduced development
time for new product and production system design. For
example, in the computer industry, a product’s life cycle has
been shortened to 2–3 years recently, compared to a life
cycle of 3–5 years a few years ago. As a result, there are a
number of new concepts in the area of production systems,

Define & validate
product

Define & validate
process

Design &
refinement

Launch /
Ramp-up

Production

Product and process design
Ramp-up
time Production

Lead time

(KPCs)

(KCCs)

(KPCs, KCCs)

(KPCs,
KCCs)

Fig. 38.1 Manufacturing system development phases. KPCs key prod-
uct characteristics, KCCs key control characteristics

such as flexible and reconfigurable manufacturing systems.
Thus, in the design phase, improved system performance
integrated at both the ramp-up and production phases is
desired. Some of the most critical factors and barriers in the
competitive development of modern manufacturing systems
lie in the largely uncharted area of predicting system perfor-
mance during the design phase [5, 6]. Consequently, current
systems necessitate that a large number of design/engineering
changes be made after the system has been designed.

At all phases, system performance depends on many
manufacturing process stages and hundreds or thousands of
variables whose interactions are not well understood. For
example, in the multistage printed circuit board (PCB)
industry, the stages include process operations such as
paste printing, chip placement, and wave soldering, and
also include test operations such as optical inspection, vision
inspection, and functional test. Due to advancements in
information technology, sophisticated software and hardware
technologies are available to record and process huge
amounts of daily data in these process and testing stages. This
makes it possible to extract important and useful information
to improve process and product performance through DM
and quality improvement technologies.

38.1 The KDD Process

The KDD process consists of four main steps:

1. Determination of business objectives
2. Data preparation

(a) Create target datasets
(b) Data quality, cleaning, and preprocessing
(c) Data reduction and projection

http://www.selectron.com
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3. Data mining

(a) Identify DM tasks
(b) Apply DM tools

4. Consolidation and application
(a) Consolidate discovered knowledge
(b) Implement in business decisions

As an example of formulating business objectives, consider
a telecommunications company. It is critically important to
identify those customer traits that retain profitable customers
and predict fraudulent behavior, credit risks, and customer
churn. This knowledge may be used to improve programs
in target marketing, marketing channel management, mi-
cromarketing, and cross-selling. Finally, continually updat-
ing this knowledge will enable the company to meet the
challenges of new product development effectively in the
future. Steps 2–4 are illustrated in Figs. 38.2, 38.3, and 38.4.
Approximately 20–25% of effort is spent on determining
business objectives, 50–60% of effort is spent on data prepa-
ration, 10–15% is spent on DM, and about 10% is spent on
consolidation/application.

38.2 Handling Data

The largest percentage effort of the KDD process is spent on
processing and preparing the data. In this section, common
forms of data storage and tools for accessing the data are
described, and the important issues in data preparation are
discussed.

38.2.1 Databases and DataWarehousing

A relational database system contains one or more objects
called tables. The data or information for the database are
stored in these tables. Tables are uniquely identified by their
names and are comprised of columns and rows. Columns
contain the column name, data type, and any other attributes
for the column. Rows contain the records or data for the
columns. The structured query language (SQL) is the com-
munication tool for relational database management systems.
SQL statements are used to perform tasks such as updating
data in a database, or retrieving data from a database. Some
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common relational database management systems that use
SQL are: Oracle, Sybase, Microsoft SQL Server, Access,
and Ingres. Standard SQL commands, such as select, insert,
update, delete, create, and drop, can be used to accomplish
almost everything that one needs to do with a database.

A data warehouse holds local databases assembled in
a central facility. A data cube is a multidimensional array
of data, where each dimension is a set of sets representing
domain content, such as time or geography. The dimensions
are scaled categorically, for example, region of country, state,
quarter of year, and week of quarter. The cells of the cube
contain aggregated measures (usually counts) of variables.
To explore the data cube, one can drill down, drill up, and
drill through. Drill down involves splitting an aggregation
into subsets, e.g., splitting region of country into states. Drill
up involves consolidation, i.e., aggregating subsets along a
dimension. Drill through involves subsets crossing multiple
sets, e.g., the user might investigate statistics within a state
subset by time. Other databases and tools include object-
oriented databases, transactional databases, time series and
spatial databases, online analytical processing (OLAP), mul-
tidimensional OLAP (MOLAP), and relational OLAP using
extended SQL (ROLAP). See Chap. 2 of Han and Kamber
[7] for more details.

38.2.2 Data Preparation

The purpose of this step in the KDD process is to identify
data quality problems, sources of noise, data redundancy,
missing data, and outliers. Data quality problems can involve
inconsistency with external datasets, uneven quality (e.g., if
a respondent fakes an answer), and biased opportunistically
collected data. Possible sources of noise include faulty data
collection instruments (e.g., sensors), transmission errors
(e.g., intermittent errors from satellite or Internet transmis-
sions), data entry errors, technology limitations errors, mis-
used naming conventions (e.g., using the same names for
different meanings), and incorrect classification.

Redundant data exists when the same variables have dif-
ferent names in different databases, when a raw variable
in one database is a derived variable in another, and when
changes in a variable over time are not reflected in the
database. These irrelevant variables impede the speed of
the KDD process because dimension reduction is needed to
eliminate them. Missing data may be irrelevant if we can
extract useful knowledge without imputing the missing data.
In addition, most statistical methods for handling missing
data may fail for massive datasets, so new or modified
methods still need to be developed. In detecting outliers,
sophisticated methods like the Fisher information matrix or
convex hull peeling are available, but are too complex for
massive datasets. Although outliers may be easy to visualize

in low dimensions, high-dimensional outliers may not show
up in low-dimensional projections. Currently, clustering and
other statistical modeling are used.

The data preparation process involves three steps: data
cleaning, database sampling, and database reduction and
transformation. Data cleaning includes removal of dupli-
cate variables, imputation of missing values, identification
and correction of data inconsistencies, identification and
updating of stale data, and creating a unique record (case)
identification (ID). Via database sampling, the KDD process
selects appropriate parts of the databases to be examined.
For this to work, the data must satisfy certain conditions
(e.g., no systematic biases). The sampling process can be
expensive if the data have been stored in a database system
such that it is difficult to sample the data the way you
want and many operations need to be executed to obtain
the targeted data. One must balance a trade-off between
the costs of the sampling process and the mining process.
Finally, database reduction is used for data cube aggregation,
dimension reduction, elimination of irrelevant and redun-
dant attributes, data compression, and encoding mechanisms
via quantizations, wavelet transformation, principle compo-
nents, etc.

38.3 Data Mining (DM)Models
and Algorithms

The DM process is illustrated in Fig. 38.5. In this process,
one will start by choosing an appropriate class of models.
To fit the best model, one needs to split the sample data
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into two parts: the training data and the testing data. The
training data will be used to fit the model and the testing
data is used to refine and tune the fitted model. After the final
model is obtained, it is recommended to use an independent
dataset to evaluate the goodness of the final model, such
as comparing the prediction error to the accuracy require-
ment. (If independent data are not available, one can use the
cross-validation method to compute prediction error.) If the
accuracy requirement is not satisfied, then one must revisit
earlier steps to reconsider other classes of models or collect
additional data.

Before implementing any sophisticated DMmethods, data
description and visualization are used for initial exploration.
Tools include descriptive statistical measures for central ten-
dency/location, dispersion/spread, and distributional shape
and symmetry; class characterizations and comparisons
using analytical approaches, attribute relevance analysis, and
class discrimination and comparisons; and data visualization
using scatter-plot matrices, density plots, 3D stereoscopic
scatter plots, and parallel coordinate plots. Following this
initial step, DM methods take two forms: supervised versus
unsupervised learning. Supervised learning is described
as learning with a teacher, where the teacher provides
data with correct answers. For example, if we want to
classify online shoppers as buyers or nonbuyers using an
available set of variables, our data would include actual
instances of buyers and nonbuyers for training a DM
method. Unsupervised learning is described as learning
without a teacher. In this case, correct answers are not
available, and DM methods would search for patterns or
clusters of similarity that could later be linked to some
explanation.

38.3.1 Supervised Learning

In supervised learning, we have a set of input variables
(also known as predictors, independent variables, x) that are
measured or preset, and a set of output variables (also known
as responses, dependent variables, y) that are measured and
assumed to be influenced by the inputs. If the outputs are
continuous/quantitative, then we have a regression or predic-
tion problem. If the outputs are categorical/qualitative, then
we have a classification problem. First, a DM model/system
is established based on the collected input and output data.
Then, the established model is used to predict output val-
ues at new input values. The predicted values are denoted
by ŷ.

The DM perspective of learning with a teacher follows
these steps:

• Student presents an answer (ŷi given xi)
• Teacher provides the correct answer yi or an error ei for

the student’s answer

• The result is characterized by some loss function or lack-
of-fit criterion:LOF

(
y, ŷ

)

• The objective is to minimize the expected loss

Supervised learning includes the common engineering task
of function approximation, in which we assume that the
output is related to the input via some function f (x, ε), where
ε represents a random error, and seek to approximate f (·).

Below, we describe several supervised learning methods.
All can be applied to both the regression and classification
cases, except for those presented below under “Other Classi-
fication Methods.” We maintain the following notation. The
j-th input variable is denoted by xj (or random variable Xj)
and the corresponding boldface x (or X) denotes the vector of
p input variables (x1, x2, . . . , xp)T, where boldface xi denotes
the i-th sample point;N is the number of sample points, which
corresponds to the number of observations of the response
variable; the response variable is denoted by y (or random
variable Y), where yi denotes the i-th response observation.
For the regression case, the response y is quantitative, while
for the classification case, the response values are indices for
C classes (c = 1, . . . , C). An excellent reference for these
methods is Hastie et al. [8].

Linear and Additive Methods
In the regression case, the basic linear method is simply the
multiple linear regression model form

μ (x; β) = E [Y | X = x] = β0 +
M∑

m=1

βmbm (x) ,

where themodel terms bm(x) are prespecified functions of the
input variables, for example, a simple linear term bm(x) = xj
or a more complex interaction term bm (x) = xjx2k . The key is
that the model is linear in the parameters β. Textbooks that
cover linear regression are abundant (e.g., [9, 10]). In partic-
ular,Neter et al. [11] provides a good background on residual
analysis, model diagnostics, and model selection using best
subsets and stepwise methods. In model selection, insignif-
icant model terms are eliminated, thus the final model may
be a subset of the original prespecified model. An alternate
approach is to use a shrinkage method that employs a penalty
function to shrink estimated model parameters toward zero,
essentially reducing the influence of less important terms.
Two options are ridge regression [12], which uses the penalty
form

∑
β2
m, and the lasso [13], which uses the penalty form∑ | βm |.

In the classification case, linear methods generate linear
decision boundaries to separate the C classes. Although a
direct linear regression approach could be applied, it is known
not to work well. A better method is logistic regression
[14], which uses log-odds (or logit transformations) of the
posterior probabilities μc(x) = P(Y = c| X = x) for classes
c = 1, . . . , C − 1 in the form
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log
μc (x)
μC (x)

= log
P (Y = c|X = x)
P (Y = C|X = x)

= βc0 +
p∑

j=1

βcjxj,

where the C posterior probabilities μc(x) must sum to one.
The decision boundary between class c < C and class C is de-
fined by the hyperplane {x|βc0 + ∑

βcjxj = 0}, where the
log-odds are zero. Similarly, the decision boundary between
classes c �=C and d �=C, derived from the log-odds for classes
c and d, is defined by {x|βc0 + ∑

βcjxj = βd0 + ∑
βdjxj}. In

the binary case (C= 2), if we defineμ(x)= P(Y = 1|X= x),
then 1 − μ(x) = P(Y = 2| X = x). The logit transformation
is then defined as g(μ) = μ/(1 – μ).

Closely related to logistic regression is linear discrim-
inant analysis [15], which utilizes exactly the same linear
form for the log-odds ratio, and defines linear discriminant
functions δc(x), such that x is classified to class c if its
maximum discriminant is δc(x). The difference between the
two methods is how the parameters are estimated. Logistic
regression maximizes the conditional likelihood involving
the posterior probabilities P(Y = c| X) while linear discrimi-
nant analysis maximizes the full log-likelihood involving the
unconditional probabilities P(Y = c, X). More general forms
of discriminant analysis are discussed below under “Other
Classification Methods.”

Finally, it should be noted that the logistic regression
model is one form of generalized linear model (GLM) [16].
GLM forms convert what appear to be nonlinear models into
linear models, using tools such as transformations (e.g., logit)
or conditioning on nonlinear parameters. This then enables
the modeler to use traditional linear modeling analysis tech-
niques. However, real data often do not satisfy the restrictive
conditions of these models.

Rather than using prespecified model terms, as in a linear
model, a generalized additive model (GAM) [17] provides
a more flexible statistical method to enable modeling of
nonlinear patterns in each input dimension. In the regression
case, the basic GAM form is

μ (x) = β0 +
p∑

j=1

fj
(
xj
)
,

where the fj(·) are unspecified (smooth) univariate functions,
one for each input variable. The additive restriction
prohibits inclusion of any interaction terms. Each function
is fitted using a nonparametric regression modeling
method, such as running-line smoothers (e.g., lowess, [18]),
smoothing splines, or kernel smoothers [19–21]. In the
classification case, an additive logistic regression model
utilizes the logit transformation for classes c = 1, . . . , C – 1
as above

log
μc (x)
μC (x)

= log
P (Y = c|X = x)
P (Y = C|X = x)

= β0 +
p∑

j=1

fj
(
xj
)
,

where an additive model is used in place of the linear model.
However, even with the flexibility of nonparametric regres-
sion, GAMmay still be too restrictive. The following sections
describe methods that have essentially no assumptions on the
underlying model form.

Trees and RelatedMethods
One DM decision tree model is chi-square automatic inter-
action detection (CHAID) [22, 23], which builds nonbinary
trees using a chi-square test for the classification case and
an F-test for the regression case. The CHAID algorithm
first creates categorical input variables out of any continuous
inputs by dividing them into several categories with approxi-
mately the same number of observations. Next, input variable
categories that are not statistically different are combined,
while a Bonferroni p-value is calculated for those that are
statistically different. The best split is determined by the
smallest p-value. CHAID continues to select splits until the
smallest p-value is greater than a prespecified significance
level (α).

The popular classification and regression trees (CART)
[24] utilize recursive partitioning (binary splits), which
evolved from the work of Morgan and Sonquist [25]
and Fielding [26] on analyzing survey data. CARTs have
a forward stepwise procedure that adds model terms
and backward procedure for pruning. The model terms
partition the x-space into disjoint hyper-rectangular regions
via indicator functions: b+(x; t) = 1{x > t}, b−(x;
t) = 1{x ≤ t}, where the split-point t defines the borders
between regions. The resulting model terms are:

fm (x) =
Lm∏

l=1

bSl,m
(
xv(l,m); tl,m

)
, (38.1)

where, Lm is the number of univariate indicator functions
multiplied in the m-th model term, xv(l,m) is the input variable
corresponding to the l-th indicator function in them-th model
term, tl,m is the split-point corresponding to xv(l,m), and sl,m
is +1 or −1 to indicate the direction of the partition. The
CART model form is then

f (x; β) = β0 +
M∑

m=1

βmfm (x) . (38.2)

The partitioning of the x-space does not keep the parent
model terms because they are redundant. For example, sup-
pose the current set has the model term:
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fa (x) = 1 {x3 > 7} · 1 {x4 ≤ 10} ,

and the forward stepwise algorithm chooses to add

fb (x) = fa (x) · 1 {x5 > 13}
= 1 {x3 > 7} · 1 {x4 ≤ 10} · 1 {x5 > 13}.

Then the model term fa(x) is dropped from the current set.
Thus, the recursive partitioning algorithm follows a binary
tree with the current set of model terms fm(x) consisting of the
M leaves of the tree, each of which corresponds to a different
region Rm.

In the regression case, CART minimizes the squared error
loss function,

LOF
(
f̂
)

=
N∑

i=1

[
yi − f̂ (xi)

]2
,

and the approximation is a piecewise constant function. In
the classification case, each region Rm is classified into one
of the C classes. Specifically, define the proportion of class c
observations in region Rm as

δ̂mc = 1

Nm

∑

xi∈Rm
1 {yi = c} ,

where Nm is the number of observations in the region Rm.
Then the observations in region Rm are classified into the
class c corresponding to the maximum proportion δ̂mc. The
algorithm is exactly the same as for regression, but with a dif-
ferent loss function. Appropriate choices include minimizing
the misclassification error (i.e., the number of misclassified

observations), the Gini index,
∑C

c=1δ̂mc

(
1 − δ̂mc

)
, or the

deviance
∑C

c=1δ̂mc log
(
δ̂mc

)
.

The exhaustive search algorithms for CART simultane-
ously conduct variable selection (x) and split-point selection
(t). To reduce computational effort, the fast algorithm for
classification trees [27] separates the two tasks. At each ex-
isting model term (leaf of the tree), F-statistics are calculated
for variable selection. Then linear discriminant analysis is
used to identify the split-point. A version for logistic and
Poisson regression was presented by Chaudhuri et al. [28].

The primary drawback of CART and FACT is a bias to-
ward selecting higher-order interaction terms due to the prop-
erty of keeping only the leaves of the tree. As a consequence,
these tree methods do not provide robust approximations
and can have poor prediction accuracy. Loh and Shih [29]
address this issue for FACT with a variant of their classi-
fication algorithm called QUEST that clusters classes into
superclasses before applying linear discriminant analysis.
For CART, Friedman et al. [30] introduced to the statistics
literature the concepts of boosting [31] and bagging [32]

from the machine learning literature. The bagging approach
generatesmany bootstrap samples, fits a tree to each, and then
uses their average prediction. In the framework of boosting,
a model term, called a base learner, is a small tree with only
L disjoint regions (L is selected by the user), call it B(x, a),
where a is the vector of tree coefficients. The boosting
algorithm begins by fitting a small treeB(x, a) to the data, and
the first approximation, f̂1 (x) , is then this first small tree. In
the m-th iteration, residuals are calculated, then a small tree
B(x, a) is fitted to the residuals and combined with the latest
approximation to create the m-th approximation:

f̂m (x; β0,β1, . . . ,βm) = f̂m−1

(
x; β0,β1,

. . . ,βm−1

)
+ βmB (x, a) ,

where a line search is used to solve for βm. The result-
ing boosted tree, called a multiple additive regression tree
(MART) [33], then consists of much lower-order interaction
terms. Friedman [34] presents stochastic gradient boosting,
with a variety of loss functions, in which a bootstrap-like
bagging procedure is included in the boosting algorithm.

Finally, for the regression case only,multivariate adaptive
regression splines (MARS) [35] evolved from CART as an
alternative to its piecewise constant approximation. Like
CART, MARS utilizes a forward stepwise algorithm to select
model terms followed by a backward procedure to prune
the model. A univariate version (appropriate for additive
relationships) was presented by Friedman and Silverman
[36]. The MARS approximation bends to model curvature at
knot locations, and one of the objectives of the forward step-
wise algorithm is to select appropriate knots. An important
difference from CART is that MARS maintains the parent
model terms, which are no longer redundant but are simply
lower-order terms.

MARS model terms have the same form as (38.1), except
the indicator functions are replaced with truncated linear
functions,

[
b+ (x; t) = [+ (x− t)]+, b− (x; t) = [− (x− t)] + ,

where [q]+ = max(0, q) and t is an univariate knot. The
search for new model terms can be restricted to interactions
of a maximum order (e.g., Lm ≤ 2 permits up through two-
factor interactions). The resulting MARS approximation,
following (38.2), is a continuous, piecewise linear
function. After selection of the model terms is completed,
smoothness to achieve a certain degree of continuity may be
applied.
Hastie et al. [8] demonstrate significant improvements in

accuracy using MART over CART. For the regression case,
comparisons between MART and MARS yield comparable
results [34]. Thus, the primary decision between these two
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methods is whether a piecewise constant approximation is
satisfactory or if a continuous, smooth approximation would
be preferred.

Artificial Neural Networks and Convolutional
Neural Networks
Artificial neural network (ANN) models have been very
popular for modeling a variety of physical relationships (for
a general introduction see Lippmann [37] or Haykin [38];
for statistical perspectives see White [39], Baron et al. [40],
Ripley [23], or Cheng and Titterington [41]). The original
motivation for ANNs comes from how learning strengthens
connections along neurons in the brain. Commonly, an ANN
model is represented by a diagram of nodes in various layers
with weighted connections between nodes in different lay-
ers (Fig. 38.6). At the input layer, the nodes are the input
variables and at the output layer, the nodes are the response
variable(s). In between, there is usually at least one hidden
layer which induces flexibility into the modeling. Activation
functions define transformations between layers (e.g., input
to hidden). Connections between nodes can feed back to
previous layers, but for supervised learning the typical ANN
is feedforward only with at least one hidden layer.

The general form of a feedforward ANN with one hidden
layer and activation functions b1(·) (input to hidden) and b2(·)
(hidden to output) is

fc (x;w, v, θ , γc) =
b2

[
H∑

h=1
whc · b1

(
p∑

j=1
vjhxj + θh

)

+ γc

]

,
(38.3)

where c = 1, . . . , C and C is the number of output variables,
p is the number of input variables, H is the number of
hidden nodes, the weights vjh link input nodes j to hidden

Inputs Hidden layer Outputs

X1

X2

X3

Y1

Y2

Y3

Z1

Z2

V11

V12

V21

V22

V31

V32

W11

W21

W12

W13

W22

W23

Fig. 38.6 Diagram of a typical artificial neural network for function
approximation. The input nodes correspond to the input variables, and
the output node(s) correspond to the output variable(s). The number of
hidden nodes in the hidden layer must be specified by the user

nodes h and whc link hidden nodes h to output nodes c,
and θh and γ c are constant terms called bias nodes (like
intercept terms). The number of coefficients to be estimated
is (p + 1)H + (H + 1)C, which is often larger than N. The
simplest activation function is a linear function b(z) = z,
which reduces the ANN model in (38.3) with one response
variable to a multiple linear regression equation. For more
flexibility, the recommended activation functions between
the input and hidden layer(s) are the S-shaped sigmoidal
functions or the bell-shaped radial basis functions. Com-
monly used sigmoidal functions are the logistic function

b(z) = 1

1 + e−z

and the hyperbolic tangent

b(z) = tanh(z) = 1 − e−2x

1 + e−2x
.

The most common radial basis function is the Gaussian
probability density function.

In the regression case, each node in the output layer repre-
sents a quantitative response variable. The output activation
function may be either a linear, sigmoidal, or radial basis
function. Using a logistic activation function from input to
hidden and from hidden to output, the ANN model in (38.3)
becomes

fc (x;w, v, θ , γc) =
[

1 + exp

(

−
H∑

h=1

whczh + γc

)]−1

,

where for each hidden node h

zh =
⎡

⎣1 + exp

⎛

⎝−
p∑

j=1

vjhxj + θh

⎞

⎠

⎤

⎦

−1

.

In the classification case with C classes, each class is
represented by a different node in the output layer. The rec-
ommended output activation function is the softmax function.
For output node c, this is defined as

b (z1, . . . , zc; c) = ezc

C∑

d=1
ezd

.

This produces output values between zero and one that sum
to one and, consequently, permits the output values to be in-
terpreted as posterior probabilities for a categorical response
variable.

Mathematically, an ANN model is a nonlinear statistical
model, and a nonlinear method must be used to estimate the
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Fig. 38.7 Diagram of a typical convolutional neural network

coefficients (weights vjh and whc, biases θh and γ c) of the
model. This estimation process is called network training.
Typically, the objective is to minimize the squared error lack-
of-fit criterion

LOF
(
f̂
)

=
C∑

c=1

N∑

i=1

[
yi − f̂c (xi)

]2
.

The most common method for training is backpropagation,
which is based on gradient descent. At each iteration, each
coefficient (say w) is adjusted according to its contribution to
the lack-of-fit

�w = α
∂ (LOF)

∂w
,

where the user-specified α controls the step size; see Rumel-
hart et al. [42] for more details. More efficient training
procedures are a subject of current ANN research.

Another major issue is the network architecture, defined
by the number of hidden nodes. If too many hidden nodes
are permitted, the ANN model will overfit the data. Many
model discrimination methods have been tested, but the
most reliable is validation of the model on a testing dataset
separate from the training dataset. Several ANN architec-
tures are fitted to the training dataset and then prediction
error is measured on the testing dataset. Although ANNs
are generally flexible enough to model anything, they are
computationally intensive, and a significant quantity of rep-
resentative data is required to both fit and validate the model.
From a statistical perspective, the primary drawback is the
overly large set of coefficients, none of which provide any
intuitive understanding for the underlying model structure.
In addition, since the nonlinear model form is not motivated
by the true model structure, too few training data points can
result in ANN approximations with extraneous nonlinearity.
However, given enough good data, ANNs can outperform
other modeling methods.

Convolutional neural network (CNN) [43] is a feedfor-
ward ANN network effective for pattern recognition and
feature extraction of image data. The CNN combines three
architectural ideas: local receptive fields, shared weights,
and spatial subsampling. As in Fig. 38.7, a typical CNN for
character recognition usually consists of an input layer, a
convolutional layer, a pooling layer, a fully connected layer,
and an output layer. Before feeding into the input plane,
images of characters are size normalized and centered. In the
convolutional layer, each neuron receives inputs from a set
of neurons located in a small neighborhood in the previous
layer. By using the same convolutional filter, the neurons
share the filter weights and the number of free parameters
in the convolutional layer is greatly reduced. With local re-
ceptive fields, neurons can extract elementary visual features
such as corners, end points, and oriented edges. These basic
features are then combined in higher layers to form useful
information. Each convolutional layer is followed by an ad-
ditional pooling layer which performs a local averaging and
a subsampling, reducing the resolution of the feature map, as
well as the sensitivity of the outputs to shifts and distortions.
The CNN extracts the topological and spatial features hidden
inside the image data through layer-by-layer convolution and
pooling operations. These features are finally fed into the
fully connected layer for classification or regression.

Support Vector Machines
Referring to the linear methods for classification described
earlier, the decision boundary between two classes is a hy-
perplane of the form {x|β0 + ∑

β jxj = 0}. The support
vectors are the points that are most critical to determining the
optimal decision boundary because they lie close to the points
belonging to the other class. With support vector machines
(SVM) [44], the linear decision boundary is generalized to
the more flexible form

f (x; β) = β0 +
M∑

m=1

βmgm (x) , (38.4)
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where the gm(x) are transformations of the input vector. The
decision boundary is then defined by {x| f (x;β) = 0}. To
solve for the optimal decision boundary, it turns out that we
do not need to specify the transformations gm(x), but instead
require only the kernel function [21, 45]:

K
(
x, x′) = 〈

[g1 (x) , . . . , gM (x)] ,
[
g1
(
x′) , . . . , gM

(
x′)]〉 .

Two popular kernel functions for SVM are polynomials of
degree d, K(x, x

′
) = (1 + 〈x, x′ 〉)d, and radial basis functions,

K(x, x
′
) = exp (−‖x − x

′ ‖2/c).
Given K(x, x′), we maximize the following Lagrangian

dual-objective function:

max
α1,...αN

N∑

i=1
αi − 1

2

N∑

i=1

N∑

i′=1
αiαi′yiyi′K

(
xi, x′

i

)

s.t. 0 ≤ αi ≤ γ , for i = 1, . . . , N and
N∑

i=1
αiyi = 0,

where γ is an SVM tuning parameter. The optimal solution
allows us to rewrite f (x; β) as

f (x; β) = β0 +
N∑

i=1

αiyiK (x, xi) ,

where β0 and α1, . . . , αN are determined by solving f (x;
β) = 0. The support vectors are those xi corresponding to
nonzero αi. A smaller SVM tuning parameter γ leads to more
support vectors and a smoother decision boundary. A testing
dataset may be used to determine the best value for γ .

The SVM extension to more than two classes solves
multiple two-class problems. SVM for regression utilizes the
model form in (38.4) and requires specification of a loss
function appropriate for a quantitative response [8, 46]. Two
possibilities are the ε-insensitive function

V∈(e) =
{
0 if |e| < ε,
|e| − ε otherwise,

which ignores errors smaller than ε, and the Huber [47]
function

VH(e) =
{
e2
/

2 if |e| ≤ 1.345,

1.345 |e| − e2/2 otherwise,

which is used in robust regression to reduce model sensitivity
to outliers.

Other ClassificationMethods
In this section, we briefly discuss some other concepts that
are applicable to DM classification problems. The basic

intuition behind a good classification method is derived from
the Bayes classifier, which utilizes the posterior distribution
P(Y = c| X = x). Specifically, if P(Y = c| X = x) is the
maximum over c = 1, . . . , C, then x would be classified to
class c.
Nearest neighbor (NN) [48] classifiers seek to estimate

the Bayes classifier directly without specification of any
model form. The k-NN classifier identifies the k closest
points to x (using Euclidean distance) as the neighborhood
about x, then estimates P(Y = c| X = x) with the fraction of
these k points that are of class c. As k increases, the decision
boundaries become smoother; however, the neighborhood
becomes less local (and less relevant) to x. This problem of
local representation is even worse in high dimensions, and
modifications to the distance measure are needed to create
a practical k-NN method for DM. For this purpose, Hastie
and Tibshirani [49] proposed the discriminant adaptive NN
distance measure to reshape the neighborhood adaptively at
a given x to capture the critical points to distinguish between
the classes.

As mentioned earlier, linear discriminant analysis may
be too restrictive in practice. Flexible discriminant analysis
replaces the linear decision boundaries with more flexible
regression models, such as GAMorMARS.Mixture discrim-
inant analysis relaxes the assumption that classes are more or
less spherical in shape by allowing a class to be represented
by multiple (spherical) clusters; see Hastie et al. [50] and
Ripley [23] for more details.
K-means clustering classification applies the K-means

clustering algorithm separately to the data for each of the C
classes. Each class cwill then be represented by K clusters of
points. Consequently, nonspherical classes may be modeled.
For a new input vector x, determine the closest cluster, then
assign x to the class associated with that cluster.
Genetic algorithms [51, 52] use processes such as ge-

netic combination, mutation, and natural selection in an
optimization based on the concepts of natural evolution. One
generation of models competes to pass on characteristics to
the next generation of models, until the best model is found.
Genetic algorithms are useful in guiding DM algorithms,
such as neural networks and decision trees [53].

38.3.2 Unsupervised Learning

Unsupervised learning, often called “learning without a
teacher,” has been widely used for exploratory analysis to
identify hidden patterns or groups in data. Unlike supervised
learning, it draws inferences from data without predefined
label information (i.e., response variables are not available).
Given a set of observations of a random variable X, the goal
of unsupervised learning is to directly infer properties of
the probability density P(X) without the label information.
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It may be noted that labeled samples are sometimes
significantly more expensive to collect (e.g., by asking
human experts to make judgments) than unlabeled samples.
Therefore, unsupervised learning has gained increasing
interest in a variety of applications when labels are difficult
to obtain, including biology, medicine, social science,
business marketing, etc. In this subsection, we introduce
two commonly used unsupervised learning techniques:
association rules and cluster analysis.

Association Rules
Association rule analysis [8] seeks to discover co-occurrence
between items in a collection and expresses such relation-
ships as association rules. It is most often applied as market
basket analysis, which deals with sales transactions to link
specific products for the analysis of purchasing behaviors of
customers. For example, the following rule:

{Diapers} → {Beer}

suggests co-occurrence exists between the sale of diapers and
beer. In other words, customers tend to purchase diapers and
beer together. Such information is helpful for retailers to in-
crease profit by optimizing their cross-promotion strategies,
catalog design, stocking shelves, and customer relationship
management.

In association analysis, a collection of one or more items
is termed an itemset. If an itemset contains k items, it is
called a k-itemset. For example, {Diapers, Beer, Eggs} is a
3-itemset. An important property of an itemset is its support
count σ , which is defined as the number of transactions that
contain this itemset. In the dataset below, the support count
for {Diapers, Beer, Eggs} is two because only transactions #3
and #4 contain these three items.

TID Items

#1 {Bread, Diapers}
#2 {Bread, Diapers, Milk, Eggs}
#3 {Diapers, Beer, Eggs}
#4 {Milk, Eggs, Beer, Diapers}
#5 {Bread, Milk, Diapers, Beer}

An association rule is expressed as A → B, where A is
called the antecedent and B is called the consequent. Given
an itemset, association rule can be generated by assigning
one or more items as the antecedent and one or more items
as the consequent. Notably, A and B are disjoint sets, i.e.,
A ∩ B = ∅. The importance of an association rule can be
measured in terms of its support and confidence. Support
(s) determines how frequently a rule appears among all
transactions and it is defined as the support count of the rule
over the total number of transactions N:

s (A → B) = σ (A ∪ B)

N

For example, support of rule {Diapers} → {Beer}is 3/5 and
support of rule {Diapers, Eggs} → {Beer} is 2/5. Notably, a
low support indicates the rule is uninteresting and customers
seldom buy these items together. Minimum support (minsup)
can be defined to eliminate uninteresting rules with s < min-
sup.
Confidence (c), on the other hand, represents how fre-

quently items in B appear in transactions that contain A. It
is defined as:

c (A → B) = σ (A ∪ B)

σ (A)

For example, the confidence of rule {Diapers} → {Beer} is
3/5, and the confidence of rule {Diapers, Eggs} → {Beer} is
2/3. A high confidence suggests it is likely for B to be present
in transactions that contain A. In other words, customers tend
to buy these items together and it is profitable to promote
them together.

Furthermore, lift can be calculated as the ratio of the
confidence over the expected confidence,

L (A → B) = c (A → B)

σ (B)/N

which, if greater than one, can be interpreted as the increased
prevalence of B when associated with A. For example, if σ

(B)/ N = 5%, then B is estimated to occur unconditionally
5% of the time. If c(A → B) = 40%, then given A occurs, B
is estimated to occur 40% of the time. This results in a lift of
8, implying that B is 8 times more likely to occur if A occurs.

Cluster Analysis
Cluster analysis, or clustering, seeks to segment a set of
objects into clusters, such that objects within a cluster are
more similar to each other than those assigned to different
clusters [54]. It is an unsupervised learning method since no
predefined label information is needed. The goal of cluster
analysis is to discover the underlying structure of the data to
obtain insight into the data distribution, arrange objects into
a natural hierarchy, or serve as a preprocessing step for other
algorithms. Notably, defining the similarity measure among
objects is critical for cluster analysis. Each object i can be
represented as a set of measurements, xip (p = 1, 2, . . .P),
where P is the number of variables (also called attributes).
Then, the pairwise distance between objects i and j is defined
as d

(
xi, xj

) = ∑P
p=1dp

(
xip, xjp

)
, and dp(xip, xjp) is the dissim-

ilarity between the values of the pth variable. For quantitative
variables, the common choice for dp(xip, xjp) is the squared
distance, i.e., dp(xip, xjp) = (xip − xjp)2. For nonquantitative
variables (e.g., ordinal or categorical variables), numerical
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coding approaches [55] or Hamming distance [56] can be
used. Below, we introduce some widely used algorithms for
cluster analysis.
K-means [57] is one of the most popular clustering

tools. It aims to partition the N objects into K clusters
C = {C1,C2, . . . ,CK}, so that the within-cluster distance
is minimized as follows:

argmin
C

K∑

k=1

∑

i∈Ck

∥
∥xi − μk

∥
∥2

where μk is the mean of objects in cluster Ck. The objective
function is minimized using an iterative refinement approach:
In the assignment step, the distance between each object
to the means of K clusters are calculated and the object
is assigned to the cluster with minimum distance. In the
update step, the new means of the objects in new clusters
are calculated. The initialization of cluster means can be
randomly selectedK objects. The assignment step and update
step are repeated until assignments are no longer changed.
Notably, K-means needs to specify the desired number of
clusters K, which can be selected by using prior knowledge
or by trying different values and looking for the one with
the most interpretable solution. Also, it is sensitive to the
initialization and may converge to a local optimum. Thus,
it is crucial to run the algorithm many times from multiple
random starting points. The best solution is selected with
the smallest value of the objective function. In addition, it is
difficult for K-means to handle noisy data and outliers. Many
algorithms, such as K-Medoids, were developed to improve
the robustness of K-means [58].
Density-based clustering (DBSCAN) [59] is rooted in the

idea that clusters are dense regions with objects packed to-
gether, separated by regions of lower density. It is associated
with two key parameters: the radius of a neighborhood with
respect to an object (ε) and theminimumnumber of objects to
form a dense region (MinPts). The ε-neighborhood of object
w is defined as Nε(w) : {v| d(w, v) ≤ ε}. Then, objects can
be segmented into three groups: if Nε(w) contains at least
MinPts objects, then the object w is a core object; if object
w has fewer than MinPts objects in its ε-neighborhood, but
it is in the ε-neighborhood of a core object, it is called a
border object; and if the object is neither a core object nor
a border object, it is categorized as a noise object. An object
v is called directly density-reachable from an object w w.r.t.
ε and MinPts if w is a core object and v ∈ Nε(w). An object
v is called density-reachable from w w.r.t. ε and MinPts if
there is a chain of objects o1, o2, . . . , on with o1 = w and
on = v, and oi + 1 is directly reachable from oi. Two objects
v and w are called density-connected if there is an object o
such that both v and w are density-reachable from o. Then,
a cluster satisfies two properties: (i) all objects within the

cluster are mutually density-connected and (ii) if an object
is density-reachable from any object of the cluster, it should
be included into the cluster. To find a cluster, DBSCAN starts
with an object o that has not been visited. If o is a core object,
then it collects all objects that are density-reachable from o
and forms a cluster. Otherwise, the object is considered as
noise. As opposed to K-means, DBSCAN is less sensitive
to outliers and better handles data with arbitrary geometric
shapes. However, it cannot handle data with varying density
and is sensitive to parameters settings.
Hierarchical clustering [8] seeks to build a hierarchy of

clusters based on pairwise dissimilarities among objects.
Strategies for hierarchical clustering generally fall into
two categories: agglomerative (bottom up) and divisive
(top down). Agglomerative strategies start at the bottom
with each object in its own cluster. It recursively merges
pairs of clusters with smallest inter-cluster dissimilarity
as one moves up the hierarchy. Divisive strategies start at
the top with all objects in one cluster. It moves down the
hierarchy by recursively splitting an existing cluster into
two new clusters with the largest inter-cluster dissimilarity.
Let W and V represent two clusters of objects. The
dissimilarity of W and V is computed from the pairwise
dissimilarities dwv, where one member of the pair w is
from W and the other one v is from V. Average linkage:
dAL (W,V) = 1

NWNV

∑
v∈V

∑
w∈W dwv, complete linkage:

dCL (W,V) = max
v∈V,w∈W dwv, and single linkage: dSL (W,V) =

min
v∈V,w∈W dwv are commonly used to measure the inter-cluster

dissimilarity. It is up to the user to decide when (i.e., at
which level) to stop to obtain a “natural” result: objects
within each cluster are sufficiently more similar to each other
than to objects assigned to different clusters. The resulting
hierarchical structure can be graphically represented as a
dendrogram.
Affinity propagation (AP) [60] is based on neighbor

information propagation. It finds the optimal set of class
representative objects (i.e., exemplars), which make the sum
of the similarities of all objects to their nearest exemplars
as large as possible. For objects i, j, and k, a similarity
matrix s is defined such that s(i, j) > s(i, k), if object i
is more similar to object j than to k. A commonly used
function is s(i, j) = −‖xi − xj‖2. The AP algorithm
proceeds by letting all objects send messages to all other
objects to determine exemplars with two matrices: (1) a
“responsibility matrix” with element r(i, j) that quantifies
how well-suited object j is to be an exemplar to object i and
(2) an “availabilitymatrix” with element a(i, j) that represents
how appropriate it would be for object i to choose object j
as its exemplar. As such, responsibility messages are sent
around as: r (i, k) ← s (i, k) − max

k1 �=k
{a (i, k1) + s (i, k1)}.

The availability messages are updated as: a (i, k) ←
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min

{
0, r (k, k) + ∑

i1 �=i&i1 �=k max {0, r (i1, k)}
}

for i �= k

and a (k, k) ← ∑
i1 �=k max {0, r (i1, k)}. The algorithm

iterates until cluster assignments are not changed. The
final exemplars are chosen as those with r(i, i) + a(i, i) > 0.
Although exemplars are similar to “centroids” generated by
the K-means, the AP algorithm does not require the number
of clusters to be predefined.

A self-organizing map (SOM) [61] is a type of unsuper-
vised ANN model that represents high-dimensional input
data in a low-dimensional map, preserves the topological re-
lationship of the original data, and organizes the data accord-
ing to inherent structures. Given an input x= (x1, x2, . . . , xd),
the distance to each neuron in the SOM is calculated as
di = ‖wi − x‖, wherewi = (wi1,wi2, . . . ,wid) is the weight of
the ith neuron in the SOM (in totalM neurons). The resulting
distance vector d= (d1, d2, . . . , dM) is obtained to determine
the best matching neuron (BMN) by finding the smallest di.
Then, di is assigned as 1 and all other elements in d are
set as 0. Further, the weights of the BMN and its neighbors
are updated toward the input according to the rule of the
Kohonen update as: wt+1

i ← wti + ht · (xt − wti
)
, where t

is the iteration index and ht is a neighborhood function to
characterize the closeness of the BMN to other neurons in the
map. In this way, a SOM arranges high-dimensional input in
a two-dimensional map such that similar inputs are mapped
onto neighboring regions. Thus, similar patterns of the input
data are preserved. Outputs of a SOM can be characterized
using a U-matrix or a Hits Map to visualize the clustering
results. Conventional SOMs are designed for unsupervised
learning, whereas supervised SOMs are also investigated in
the literature that integrate label information as an additional
element in the input vector x during the training phase [62].

38.3.3 Software

Several DM software packages and libraries are available:

• SAS Enterprise Miner (www.sas.com/technologies/
analytics/datamining/miner/)

• SPSS Clementine (www.spss.com/clementine/)
• XLMiner in Excel (www.xlminer.net)
• Ghostminer (www.fqspl.com.pl/ghostminer/)
• Quadstone (www.quadstone.com/)
• Insightful Miner (www.splus.com/products/iminer/)
• Statsmodels (www.statsmodels.org)
• SciKit-Learn (www.scikit-learn.org)
• Keras (www.keras.io)
• Tensorflow (www.tensorflow.org)
• Deep Learning Toolbox (www.mathworks.com/solutions/

deep-learning/)
• Darknet (www.pjreddie.com/darknet/)

Haughton et al. [63] present a review of the first five listed
above. The SAS and SPSS packages have the most complete
set of KDD/DM tools (data handling, DM modeling, and
graphics), while Quadstone is the most limited. Insightful
Miner was developed by S+ [www.splus.com], but does not
require knowledge of the S+ language, which is only recom-
mended for users that are familiar with statistical modeling.
For statisticians, the advantage is that Insightful Miner can
be integrated with more sophisticated DMmethods available
with S+, such as flexible and mixture discriminant analysis.
All six packages include trees and clustering, and all except
Quadstone include ANN modeling. The SAS, SPSS, and
XLMiner packages include discriminant analysis and associ-
ation rules. Ghostminer is the only one that offers SVM tools.

SAS, SPSS, and Quadstone are the most expensive (over
$ 40 000) while XLMiner is a good deal for the price (under $
2 000). The disadvantage of XLMiner is that it cannot handle
very large datasets. Each package has certain specializations,
and potential users must carefully investigate these choices
to find the package that best fits their KDD/DM needs.
Below we describe some other software options for the DM
modeling methods presented.

GLM or linear models are the simplest of DM tools and
most statistical software can fit them, such as SAS, SPSS, S+,
and Statistica [www.statsoftinc.com/]. However, it should be
noted that Quadstone only offers a regression tool via score-
cards, which is not the same as statistical linearmodels. GAM
requires access to more sophisticated statistical software,
such as S+.

Software for CART, MART, and MARS is available from
Salford Systems [www.salford-systems.com]. SAS Enter-
prise Miner includes CHAID, CART, and the machine learn-
ing program C4.5 [www.rulequest.com], which uses clas-
sifiers to generate decision trees and if–then rules. SPSS
Clementine and Insightful Miner also include CART, but
Ghostminer and XLMiner utilize different variants of de-
cision trees. QUEST [www.stat.wisc.edu/loh/quest.html] is
available in SPSS’s AnswerTree software and Statistica.

Python provides many open-source libraries for machine
learning and deep learning. Statsmodels is a library that
enables its users to conduct data exploration via the use
of various methods of estimation of statistical models and
performing statistical assertions and analysis. Scikits are
additional packages of SciPy Stack designed for specific
functionalities like image processing and machine learning
facilitation. Keras and Tensorflow are two most prominent
and convenient open-source libraries for deep learning. Keras
builds neural networks at a high level of the interface. Ten-
sorflow is developed by Google and sharpened for machine
learning. It was designed to meet the high-demand require-
ments of Google environment for training neural networks
and is a successor of DistBelief, a machine learning system
based on neural networks.

http://www.sas.com/technologies/analytics/datamining/miner/
http://www.spss.com/clementine/
http://www.xlminer.net
http://www.fqspl.com.pl/ghostminer/
http://www.quadstone.com/
http://www.splus.com/products/iminer/
http://www.statsmodels.org
http://www.scikit-learn.org
http://www.keras.io
http://www.tensorflow.org
http://www.mathworks.com/solutions/deep-learning/
http://www.pjreddie.com/darknet/
http://www.splus.com
http://www.statsoftinc.com/
http://www.salford-systems.com
http://www.rulequest.com
http://www.stat.wisc.edu/loh/quest.html
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Other softwares for ANN include Matlab’s [http://www.
mathworks.com] Neural Network Toolbox, Matlab’s Deep
Learning Toolbox, and Darknet [http://www.pjreddie.com/
darknet/]. The Neural Network Toolbox provides a complete
package for ANN modeling. The Deep Learning Toolbox
supports CNN networks for classification and regression on
image data. The Darknet is an open-source deep learning
framework written in C and CUDA, which is fast, easy to
install, and provides state-of-art methods for real-time object
detection.

38.4 DM Research and Applications

Many industrial and business applications require modeling
and monitoring processes with real-time data of different
types: real values, categorical, and even text and image.
DM is an effective tool for extracting process knowledge
and discovering data patterns to provide a control aid for
these processes. Advanced DM research involves complex
system modeling of heterogeneous objects, where adaptive
algorithms are necessary to capture dynamic system behav-
ior. Various data mining algorithms [63], such as logistic
regression, support vector machines, convolutional neural
networks, decision trees, and combinations of these, have
been widely adopted in practical applications. Some appli-
cation examples include activity monitoring, manufacturing
process modeling, object detection, health assessment, fault
diagnosis, and remaining useful life prediction. DM algo-
rithms serve as solutions to these tasks.

38.4.1 Activity Monitoring

One important DM application is the development of an
effective data modeling and monitoring system for under-
standing customer profiles and detecting fraudulent behavior.
This is generally referred to as activity monitoring for inter-
esting events requiring action [65]. Other activity monitoring
examples include credit card or insurance fraud detection,
computer intrusion detection, some forms of fault detection,
network performance monitoring, and news story monitor-
ing.

Although activity monitoring has only recently received
attention in the information industries, solutions to similar
problems were developed long ago in the manufacturing in-
dustries, under the moniker statistical process control (SPC).
SPC techniques have been used routinely for online process
control and monitoring to achieve process stability and to
improve process capability through variation reduction. In
general, all processes are subject to some natural variability
regardless of their state. This natural variability is usually

small and unavoidable and is referred to as common cause
variation. At the same time, processes may be subject to
other variability caused by improper machine adjustment,
operator errors, or low-quality raw material. This variability
is usually large, but avoidable, and is referred to as special
cause variation. The basic objective of SPC is to detect
the occurrence of special cause variation (or process shifts)
quickly, so that the process can be investigated and corrective
action may be taken before quality deteriorates and defective
units are produced. The main ideas and methods of SPC
were developed in the 1920s by Walter Shewhart of Bell
Telephone Laboratories and have had tremendous success in
manufacturing applications [66]. Montgomery and Woodall
[67] provide a comprehensive panel discussion on SPC, and
multivariate methods are reviewed by Hayter and Tsui [68]
andMason et al. [69].

Although the principle of SPC can be applied to ser-
vice industries, such as business process monitoring, fewer
applications exist for two basic reasons that Montgomery
identified. First, the system that needs to be monitored and
improved is obvious in manufacturing applications, while it
is often difficult to define and observe in service industries.
Second, even if the system can be clearly specified, most
nonmanufacturing operations do not have natural measure-
ment systems that reflect the performance of the system.
However, these obstacles no longer exist, due to the many
natural and advanced measurement systems that have been
developed. In the telecommunications industry, for example,
advanced software and hardware technologies make it pos-
sible to record and process huge amounts of daily data in
business transactions and service activities. These databases
contain potentially useful information to the company that
may not be discovered without knowledge extraction or DM
tools.

While SPC ideas can be applied to business data, SPC
methods are not directly applicable. Existing SPC theories
are based on small- or medium-sized samples, and the basic
hypothesis testing approach is intended to detect only simple
shifts in a process mean or variance. Recently, Jiang et al.
[70] successfully generalized the SPC framework to model
and track thousands of diversified customer behaviors in the
telecommunication industry. The challenge is to develop an
integrated strategy to monitor the performance of an entire
multistage system and to develop effective and efficient
techniques for detecting the systematic changes that require
action.

A dynamic business process can be described by the
dynamic linear models introduced byWest [71],

Observation equation : Xt = Atθt + �t,
System evolution equation : θt = Btθt−1 + �t,
Initial information : π (S0) ,

http://www.mathworks.com
http://www.pjreddie.com/darknet/
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whereAt andBt represent observation and state transitionma-
trices, respectively, and �t and �t represent observation and
system transition errors, respectively. Based on the dynamic
system model, a model-based process monitoring and root-
cause identification method can be developed. Monitoring
and diagnosis include fault pattern generation and feature
extraction, isolation of the critical processes, and root-cause
identification. Jiang et al. [70] utilize this for individual
customer prediction and monitoring. In general, individual
modeling is computationally intractable and cluster models
should be developed with mixture distributions [72].

One particularly competitive industry is telecommunica-
tions. Since divestiture and government deregulation, various
telephone services, such as cellular, local and long distance,
domestic, and commercial, have become battle grounds for
telecommunication service providers. Because of the data
and information-oriented nature of the industry, DMmethods
for knowledge extraction are critical. To remain competitive,
it is important for companies to develop business planning
systems that help managers make good decisions. In partic-
ular, these systems will allow sales and marketing people
to establish successful customer loyalty programs for churn
prevention and to develop fraud detection modules for reduc-
ing revenue loss through market segmentation and customer
profiling.

A major task in this research is to develop and implement
DM tools within the business planning system. The objec-
tives are to provide guidance for targeting business growth,
to forecast year-end usage volume and revenue growth, and
to value risks associated with the business plan periodically.
Telecommunication business services include voice and non-
voice services, which can be further categorized to include
domestic, local, international, products, toll-free calls, and
calling cards. For usage forecasting, a minutes growth model
is utilized to forecast domestic voice usage. For revenue
forecasting, the average revenue per minute on a log scale is
used as a performance measure and is forecasted by a double
exponential smoothing growth function. A structural model
is designed to decompose the business growth process into
three major subprocesses: add, disconnect, and base. To im-
prove explanatory power, the revenue unit is further divided
into different customer groups. To compute confidence and
prediction intervals, bootstrapping and simulation methods
are used.

To understand the day effect and seasonal effect, the
concept of bill-month equivalent business days (EBD) is
defined and estimated. To estimate EBD, the factor charac-
teristics of holidays (non-EBD) are identified and eliminated
and the day effect is estimated. For seasonality, the US
Bureau of the Census X-11 seasonal adjustment procedure
is used.

38.4.2 Mahalanobis–Taguchi System

Genichi Taguchi is best known for his work on robust
design and design of experiments. The Taguchi robust design
methods have generated a considerable amount of discussion
and controversy and are widely used in manufacturing [73–
76]. The general consensus among statisticians seems to be
that, while many of Taguchi’s overall ideas on experimental
design are very important and influential, the techniques he
proposed are not necessarily the most effective statistical
methods. Nevertheless, Taguchi has made significant contri-
butions in the area of quality control and quality engineering.
For DM, Taguchi has recently popularized theMahalanobis–
Taguchi System (MTS), a new set of tools for diagnosis,
classification, and variable selection. The method is based
on a Mahalanobis distance scale that is utilized to measure
the level of abnormality in abnormal items as compared
to a group of normal items. First, it must be demonstrated
that a Mahalanobis distance measure based on all available
variables is able to separate the abnormal from the normal
items. Should this be successfully achieved, orthogonal ar-
rays and signal-to-noise ratios are used to select an optimal
combination of variables for calculating the Mahalanobis
distances.

TheMTSmethod has been claimed to be very powerful for
solving a wide range of problems, including manufacturing
inspection and sensing, medical diagnosis, face and voice
recognition, weather forecasting, credit scoring, fire detec-
tion, earthquake forecasting, and university admissions. Two
recent books have been published on the MTS method by
Taguchi et al. [77] and Taguchi and Jugulum [78]. Many suc-
cessful case studies in MTS have been reported in engineer-
ing and science applications in many large companies, such
as Nissan Motor Co., Mitsubishi Space Software Co., Xerox,
Delphi Automotive Systems, ITT Industries, Ford Motor
Company, Fuji Photo Film Company, and others. While the
method is getting a lot of attention in many industries, very
little research [79] has been conducted to investigate how and
when the method is appropriate.

38.4.3 Manufacturing Process Modeling

One area of DM research in manufacturing industries is qual-
ity and productivity improvement through DM and knowl-
edge discovery. Manufacturing systems nowadays are often
very complicated and involve many manufacturing process
stages where hundreds or thousands of in-process measure-
ments are taken to indicate or initiate process control of the
system. For example, a modern semiconductor manufactur-
ing process typically consists of over 300 steps, and in each
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step multiple pieces of equipment are used to process the
wafer. Inappropriate understanding of interactions among in-
process variables will create inefficiencies at all phases of
manufacturing, leading to long product/process realization
cycle times and long development times, resulting in exces-
sive system costs.

Current approaches to DM in electronics manufacturing
include neural networks, decision trees, Bayesian models,
and rough set theory [80, 81]. Each of these approaches
carries certain advantages and disadvantages. Decision trees,
for instance, produce intelligible rules and hence are very
appropriate for generating process control or design of ex-
periments strategies. They are, however, generally prone to
outlier and imperfect data influences. Neural networks, on
the other hand, are robust against data abnormalities but do
not produce readily intelligible knowledge. These methods
also differ in their ability to handle high-dimensional data,
to discover arbitrarily shaped clusters [57] and to provide a
basis for intuitive visualization [82]. They can also be sensi-
tive to training and model building parameters [59]. Finally,
the existing approaches do not take into consideration the
localization of process parameters. The patterns or clusters
identified by existing approaches may include parameters
from a diverse set of components in the system. Therefore,
a combination of methods that complement each other to
provide a complete set of desirable features is necessary.

It is crucial to understand process structure and yield
components in manufacturing, so that problem localization
can permit reduced production costs. For example, semicon-
ductor manufacturing practice shows that over 70% of all
fatal detects and close to 90% of yield excursions are caused
by problems related to process equipment [83]. Systematic
defects can be attributed to many categories that are generally
associated with technologies and combinations of different
process operations. To implement DM methods successfully
for knowledge discovery, some future research for manufac-
turing process control must include yield modeling, defect
modeling, and variation propagation.

Yield Modeling
In electronics manufacturing, the ANSI standards [84] and
practice gene rally assume that the number of defects on
an electronics product follows a Poisson distribution with
mean λ. The Poisson random variable is an approximation
of the sum of independent Bernoulli trials, but defects on
different components may be correlated since process yield
critically depends on product groups, process steps, and
types of defects [85]. Unlike traditional defect models, an
appropriate logit model can be developed as follows. Let the
number of defects of category X on an electronics product be

UX =
∑

YX

and

logit [E (YX)] = α0
X + αOX · OX

+ αCX · CX + αOCX · OX · CX,

where logit(z) = log[z/(1 − z)] is the link function for
Bernoulli distributions, and YX is a Bernoulli random variable
representing a defect from defect category X. The default
logit of the failure probability is αOX , and αOX and αCX are the
main effects of operations (OX) and components (CX). Since
the YXs are correlated, this model will provide more detailed
information about defects.

Multivariate Defect Modeling
Since different types of defects may be caused by the same
operations, multivariate Poisson models are necessary to
account for correlations among different types of defects.
The trivariate reduction method suggests an additive Poisson
model for the vector of Poisson countsU= (U1,U2,· · · ,Uk)′,

U = AV,

whereA is amatrix of zeros and ones, andV= (v1, v2, . . . , vp)
′

consists of independent Poisson variables vi. The variance–
covariance matrix takes the form Var(U)= A�A′ = Φ + νν ′,
where Φ = diag(μi) is a diagonal matrix with the mean of
the individual series, and ν is the common covariance term.
Note that the vi are essentially latent variables, and a factor
analysis model can be developed for analyzing multivariate
discrete Poisson variables such that

log [E(U)] = μ + L · F,

where U is the vector of defects, L is the matrix of factor
loadings, andF contains common factors representing effects
of specific operations. By using factor analysis, it is possible
to relate product defects to the associated packages and
operations.

Multistage Variation Propagation
Inspection tests in an assembly line usually have functional
overlap, and defects from successive inspection stations ex-
hibit strong correlations. Modeling serially correlated de-
fect counts is an important task for defect localization and
yield prediction. Poisson regression models, such as the
generalized event-count method [86] and its alternatives, can
be utilized to account for serial correlations of defects in
different inspection stations. Factor analysis methods based
on hidden Markov models [87] can also be constructed to
investigate how variations are propagated through assembly
lines.
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38.4.4 Object Detection

One area of DM image research is object detection, a
computer technology related to computer vision and image
processing that deals with detecting instances of semantic
objects of a certain class in digital images and videos. An
object-class detection is to localize and extract information
of all objects in an image that belongs to a given class. Well-
studied domains of object detection include face detection
and pedestrian detection.

Face detection, as a specific case of object-class detec-
tion, focuses on the detection of frontal human faces. It is
analogous to image detection in which the image of a person
is matched bit by bit. Image matches with the image stores
in database. Any facial feature changes in the database will
invalidate the matching process. The main difficulties in face
detection includes severe occlusion and variation of head
poses.

Pedestrian detection provides fundamental information
for semantic understanding of the video footages and consid-
ered an essential and significant in intelligent video surveil-
lance system. It has an obvious extension to automotive
applications due to enhance road safety and is offered as
an advanced driver assistant system option by many car
manufacturers in 2017. The major challenges of pedestrian
detection arise from different possible posture, various ap-
pearance styles, the presence of occluding accessories, and
frequent occlusions among pedestrians.

Existing methods for object detection generally fall into
machine learning approaches and deep learning approaches.
For machine learning approaches, it first extracts handcrafted
features such as edges, corners, colors, etc. of the region of
interest cropped by sliding window, then uses classifiers such
as SVM to do the classification. On the other hand, deep
learning approaches use CNN to extract the image features
and thus able to do end-to-end object detection without
specifically defining features. Ross et al. [88] prompted re-
gions with CNN (R-CNN) to achieve dramatic improvements
in accuracy of objects detection, which can be seen as a major
breakthrough in the field of object detection. Subsequently,
a series of R-CNN-based detection methods such as Fast R-
CNN [89] and Faster R-CNN [90] were proposed. Those are
classic two-stage object detection approaches that usually
include a region proposal localization stage and a network
classification stage. Then single shot detection methods,
such as single shot detector (SSD) [91], RetinaNet [92],
you only look once (YOLO) [93–95], etc., are developed.
They skip the region proposal stage and run detection di-
rectly over a dense sampling of possible locations through
a single CNN. The “one-stage” detection methods treat the
detection as a single regression problem and are faster and
simpler.

38.4.5 Surveillance of Public Health Systems

Public health surveillance is another important DM applica-
tion. The objective of public health surveillance is to examine
health trends, detect changes in disease incidence and death
rates, and to plan, implement, and evaluate public health prac-
tice by systematically collecting, analyzing, and interpreting
public health data (chronic or infectious diseases). Under-
standing challenges to nations’ public health systems and
how those challenges shift over time is of crucial importance
for policymakers to establish effective strategies. In public
health surveillance, the volume and velocity of data streams
have dramatically grown in recent decades. In spite of the
growing data volume, advances in information technology
have enabled collection of cause-of-death data in a more
timely manner.

The availability of public health big data provides a com-
prehensive picture of health system status in terms of the
causes of significant population-wide changes, the underly-
ing risks, the changes in the pattern of health-related losses,
etc. Numerous efforts have been made to monitor and evalu-
ate the health of populations by taking advantage of public
health big data and data mining techniques. For example,
Google flu trend (GFT) is a data analytics model developed
by Google for predicting weekly reported influenza-like ill-
ness (ILI) rates using instant query data [96]. However, as
reported in Refs. [96, 97], GFT failed to provide accurate
predictions, and predicted more than double the actual rate
of doctor visits for ILI reported by the Centers for Disease
Control and Prevention during the 2012–2013 season. The
model’s failure has led to a large number of research pa-
pers aiming to improve its predictive accuracy [98–100].
One representative method was ARGO, proposed in Ref.
[98], which not only incorporated seasonality in historical
ILI rates, but also captured changes in the public’s online
searching behaviors over time.

38.5 Concluding Remarks

While DM and KDD methods are gaining recognition and
have become very popular in many companies and enter-
prises, the success of these methods is still somewhat limited.
Below, we discuss a few obstacles.

First, the success of DM depends on a close collaboration
of subject-matter experts and data modelers. In practice, it is
often easy to identify the right subject-matter expert, but diffi-
cult to find the qualified datamodeler.While the datamodeler
must be knowledgeable and familiar with DM methods, it is
more important to be able to formulate real problems such
that the existingmethods can be applied. In reality, traditional
academic training mainly focuses on knowledge of modeling
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algorithms and lacks training in problem formulation and
interpretation of results. Consequently, many modelers are
very efficient in fitting models and algorithms to data, but
have a hard time determining when and why they should use
certain algorithms. Similarly, the existing commercial DM
software systems include many sophisticated algorithms, but
there is a lack of guidance on which algorithms to use.

Second, implementation of DM is difficult to apply effec-
tively across an industry. Although it is clear that extracting
hidden knowledge and trends across an industry would be
useful and beneficial to all companies in the industry, it
is typically impossible to integrate the detailed data from
competing companies due to confidentiality and proprietary
issues. Currently, the industry practice is that each company
will integrate their own detailed data with the more general,
aggregated industry-wide data for knowledge extraction. It is
obvious that this approach will be significantly less effective
than the approach of integrating the detailed data from all
competing companies. It is expected that, if these obstacles
can be overcome, the impact of the DM and KDD methods
will be much more prominent in industrial and commercial
applications.
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Abstract

This book chapter provides a brief introduction of tensors
and a selective overview of tensor data analysis. Tensor
data analysis has been an increasingly popular and also

Q. Mai · X. Zhang (�)
Department of Statistics, Florida State University, Tallahassee, FL,
USA
e-mail: mai@stat.fsu.edu; henry@stat.fsu.edu

a challenging topic in multivariate statistics. In this book
chapter, we aim to review the current literature on statisti-
cal models and methods for tensor data analysis.

Keywords

Discriminant analysis · Dimension reduction ·
Generalized linear model · Multivariate linear
regression · Tensor data

39.1 Background

39.1.1 Popularity and Challenges

In many contemporary datasets, the measurements on each
observation are stored in the form of a tensor. For example,
in neuroimaging studies, electroencephalography (EEG) data
are collected as two-way tensors (i.e., matrices), where the
rows correspond to electrodes placed at different locations
on the scalp, and the columns correspond to times points. The
anatomical magnetic resonance image (MRI) is a three-way
tensor, as it measures the activities of brains in the 3D space.
By adding the time domain, functional MRI is a four-way
tensor. Other research areas that frequently involve tensor
data include computational biology, personalized recommen-
dation, signal processing, computer vision, graph analysis,
and data mining [42].

However, the popularity of tensor data is accompanied by
many challenges in the analysis. We highlight two of them
here. On the one hand, tensor data are often of intimidating
dimensions. For example, in the benchmark EEG data (http://
kdd.ics.uci.edu/databases/eeg/eeg.data.html), each subject is
measured by 64 channels of electrodes at 256 time points.
The resulting 64 × 256 matrix has a total number of 16,384
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elements in total. The modeling of such a high-dimensional
dataset is generally impossible with classical statistical meth-
ods. Moreover, in many applications we have tensors of
higher orders, and the issue of high dimensionality is even
more severe.

On the other hand, there is a lack of analysis methods that
directly target tensor data. Most familiar statistical methods
are designed for vector data. While one can always force a
tensor to be a vector, we lose the information contained in
the tensor structure in doing so. To see this, again consider
the EEG data as an example. In principle, we can stack the
columns in the data matrix to form a long vector and proceed
with vector-based methods. However, each column in the
matrix corresponds to measurements at the same time point.
Once we transform the matrix to a vector, we no longer have
such an intuitive interpretation for the data. The statistical
analysis is thus susceptible to loss of efficiency for the same
reason. Consequently, although there have been impressive
developments in high-dimensional statistics [25, 26, 28, 29,
47, 51, 55, 57, 72, 83, 88, 98, 99, e.g.], we are still in demand
of tensor data analysis methods.

These challenges have motivated many research efforts
on tensor data analysis. A central interest in such research
is the control of model complexity by leveraging the ten-
sor structure. Usually this is achieved by imposing low-
rank, sparse, and/or separable covariance assumptions. In
Sects. 39.2–39.5, we review several methods that resort to
such assumptions. But we first introduce some basics for
tensor that are necessary to understand the methods in this
chapter. A comprehensive review on tensor operation can be
found in [42].

39.1.2 Basics

For a positive integer M, an M-way tensor is an object in
R
p1×···×pM , where R denotes the field of real numbers and

pm’s are positive integers. It is easy to see that a vector is
a one-way tensor, and a matrix is a two-way tensor.

For an M-way tensor A ∈ R
p1×···×pM , pm is its dimension

along the m-th mode. We can vectorize A to vec(A) ∈ R
p,

where p = ∏M
m=1 pm. The element ai1···iM becomes the j-th

element in vec(A), where j = 1 +∑M
m=1(im − 1)

∏m−1
m′=1 pm′ .

Similarly, a tensor can be unfolded along a mode to form a
matrix. The mode-m matricization of A is denoted as A(m), a
pm×∏j�=m pj matrix. The element ai1···iM inA is mapped to be

the (im, j) element in A(m), where j = 1+∑k=M
k=1,k �=m(ik −1)Jk

with Jk = ∑m′ �=m pm′ . The norm of A is denoted as ‖A‖ =
√∑

j1,...,jM
a2j1···jM = √vecT(A)vec(A). For two tensors A,B

of the same dimensions, their inner product is defined as
〈A,B〉 = vec T(A)vec(B).

A tensor can be multiplied with matrices or vectors
along each mode. For G ∈ R

d×pm , we define the mode-
m matrix product of A with G to be D = A ×m G ∈
R
p1×···×pm−1×pm+1×···×pM if and only if D(m) = GA(m).

Similarly, we define the mode-m vector product of A with a
vector v ∈ R

pm to be A×̄mv ∈ R
p1×···×pm−1×pm+1×···×pM , with

the (i1, · · · im−1, im+1, · · · iM) element being
∑pm

im=1 ai1···iM vim .
In particular, for matricesGm ∈ R

dm×pm andM-way tensor
C ∈ R

d1×···×dM , ifA = C×1G1×2G2 · · ·×MCM ∈ R
p1×···×pM ,

we use the shorthand notation

A = �C;G1, . . . ,GM�. (39.1)

Alternatively, (39.1) is also called the Tucker decomposition
ofA. See Fig. 39.1 for an illustration whenA andC are three-
way tensors.

The matrix Kronecker product often appears in tensor
literature. For two matrices F ∈ R

I×J,G ∈ R
K×L, we define

their Kronecker product to be

F ⊗ G =

⎛

⎜
⎜
⎝

f11G f12G · · · f1JG
...

...
. . .

...

fI1G fI2G . . . fIJG

⎞

⎟
⎟
⎠ ∈ R

(IK)×(JL). (39.2)

For a series of matrix Gm, m = 1, . . . , M, G = ⊗M
m=1Gm

is invertible if and only if G−1
m exists for m = 1, . . . , M.

Moreover, G−1 = ⊗M
m=1G

−1
m . With Kronecker product,

we note a useful fact about the Tucker decomposition. If
A,C,Gm, m = 1, . . . , M satisfy (39.1), then we must have
that vec(A) = (GM ⊗· · ·⊗G1)vec(C) = (⊗M

m=1Gm)vec(C),
where ⊗ is the Kronecker product.

Another related matrix product is the Khatri-Rao product.
For F ∈ R

I×K,G ∈ R
J×K , their Khatri-Rao product is

F 	 G = [f1 ⊗ g1 · · · fM ⊗ gM] ∈ R
(IJ)×K . (39.3)

A = C
1G

3G

[ ]1 1 2 2 3 3 1 2 3; , ,A C G G G C G G G� � � � �

2
G

Fig. 39.1 An illustration of the Tucker decomposition A =
�C;G1,G2,G3�
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39.1.3 The CANDECOMP/PARAFAC
Decomposition

In this section, we highlight the CANDECOMP/PARAFAC
(CP) decomposition that serves as the foundation of many
statistical methods [41]. It can be viewed as a generalization
of singular value decomposition for matrices.

ConsiderX ∈ R
p1×···×pM . For a pre-chosen positive integer

R, the CP decomposition looks for R sets of vectors a(m)
r , m =

1, . . . , M that jointly best approximate X. In other words, for
each (j1, · · · , jM), we expect

xj1···jM ≈
R∑

r=1

a(1)
rj1
a(2)
rj2

· · · a(M)
rjM

. (39.4)

Two equivalent shorthand notations for the CP decompo-
sition are

X ≈
R∑

r=1

a(1)
r ◦ · · · ◦ a(M)

r = �A(1), . . . ,A(M)�, (39.5)

where A(m) = [a(m)
1 · · · a(m)

R ]. See Fig. 39.2 for a demon-
stration of CP decomposition on a three-way tensor.

The CP decomposition is formally recast as the following
minimization problem:

{
a(m)
r

}
m=1,...,M;r=1,...,R = arg min ‖X − X̂‖2,

s.t X̂ = �A(1), . . . ,A(M)�. (39.6)

This problem can be solved iteratively over the A(m)’s. When
A(m′) are fixed for all m′ �= m, (39.6) reduces to a least
squares problem over A. This iterative algorithm is known
as the alternating least squares (ALS) [8,37]. Since the intro-
duction of the ALS algorithm, many other efforts have been
spent on alternative ways to perform the CP decomposition
[62,73,74], but the ALS algorithm seems to remain the most
popular.

The CP decomposition is widely used on tensor data in a
way much like principal component analysis on vector data.
Many researchers obtain a multilinear reduction of X and

A =

b1

a1

c1

+

rb

ra

+ 

rc

...

Fig. 39.2 CP decomposition of a three-way tensor X

then perform analysis on the reduced predictor [9, 52, 87,
e.g.]. Alternatively, one could use the CP decomposition to
reduce the number of parameters, as the tensor generalized
linear mode we discuss in Sect. 39.2.

39.1.4 The Tensor Normal Distribution

We will repeatedly use the tensor normal distribution that
generalizes the matrix normal distribution [35]. A tensor
Z ∈ R

p1×···×pM is said to be a standard tensor normal random
variable if each element in Z has the univariate standard
normal distribution. Then, for anyX of the same dimension of
Z, we say X is tensor normal, i.e., X ∼ TN(μ; �1, . . . ,�M),
if

X = μ +
�
Z; �

1/2
1 , . . . ,�1/2

M

�
, (39.7)

where μ ∈ R
p1×···×pM and �m ∈ R

pm×pm are symmetric
positive definite matrices (Fig. 39.3). The parameters μ and
�m are similar to the mean and covariance parameters for the
multivariate normal distribution. In particular, μ = E(X) is
the expectation of X, and

�m ∝ E
{
(X − μ)(m)(X − μ) T

(m)

}
(39.8)

characterizes the dependence structure along the m-th mode
of X.

The tensor normal distribution is related to the multivari-
ate normal distribution by the fact that vec(X) = vec(μ) +
�1/2vec(Z), where � = ⊗m=1

m=M�m ∈ R
p×p, where p =∏M

m=1 pm. In other words, vec(X) ∼ N(vec(μ),�). Note that,
although � is of dimension p × p, it is fully determined by
∑M

m=1 pm(pm + 1)/2 free parameters.
A minor issue with the tensor normal distribution is,

though, that the covariances �m are not identifiable them-
selves. We can change their scales without affecting the
tensor normal distribution. For example, when M = 2,
TN(0; �1,�2) is exactly the same as TN(0; c�1, c−1�2) for
any c > 0. In practice, researchers often resolve this issue by
fixing the scale of all the covariancematrices except for 1. For

= +

1/2

1/2

1/2
1�

2�

3�

X �

1 2 3( , , , )X TN � � � �~

Z

Fig. 39.3 A demonstration for tensor normal distribution when X is a
three-way tensor
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example, we could require the Frobenius norms of �m, m <

M to be 1, and only allow �M to have an arbitrary Frobenius
norm. Alternatively, we could require σm,11 = 1, m < M. In
the following sections, we do not reiterate on this issue unless
necessary, as this is not a central problem in tensor modeling.

39.1.5 Notation and Organization

Throughout the rest of this chapter, a scalar is written as
a lower-case letter (e.g., x), a vector is written as a lower-
case letter in boldface (x), and a tensor (2-way and above)
is written as a capital letter in boldface (X). For any positive
integer r, Ir denotes the identity matrix with dimension r× r.
The notation X ⊥⊥ Y means that the random variables X
and Y are independent, while X d= Y means that X and
Y have the same distribution. For ease of presentation, if
a matrix is of the form � = �M ⊗ · · · ⊗ �1, we denote
�−m = �M ⊗ · · · ⊗ �m+1 ⊗ �m−1 ⊗ · · · ⊗ �1.

In Sect. 39.2 we introduce generalized linear models with
tensor predictors. Section 39.3 contains an introduction to
the tensor response regression; a tensor partial least squares
(PLS) algorithm is presented in Sect. 39.4. In Sect. 39.5 we
discuss classification based on a mixture of tensor and vector
predictors. In each section we first introduce the related vec-
tor methods and then proceed to tensor data. We emphasize
that the research in tensor data analysis has witnessed rapid
developments in the recent years [3,63,69,75,84,86,87, e.g.].
It is impossible to conduct an exhaustive review, but we list
some papers that propose methods closely related to those we
introduce in Sects. 39.2–39.5. Finally, a real data example is
given in Sect. 39.6.

Regression with tensor predictors (related to Sect. 39.2)
is one of the most studied topics in tensor analysis. See
[34,40,49,53,63,64,70,76,77,89,92,95,97]. Tensor response
regression (related to Sect. 39.3) is studied in [44, 68, 80].
Tensor PLS algorithms (related to Sect. 39.4) are proposed
in [5, 24, 93]. Classification methods (related to Sect. 39.5)
are developed in [1, 43, 50, 71, 82, 85, 94].

39.2 The Tensor Generalized Linear Model

39.2.1 Background: The Generalized Linear
Model

The generalized linear model (GLM) includes a family of
most popular statistical models for vector data, with linear
regression and logistic regression as two important examples.
Consider {Y,X}, where Y ∈ R is the response and X ∈ R

p

is the vector predictor. GLM assumes that Y is drawn from
an exponential family with a probability mass or density
function of the form

f (y | θ ,φ) = exp
{
yθ − b(θ)

a(φ)
+ c(y,φ)

}

, (39.9)

where θ is the natural parameter and φ > 0 is the dispersion
parameter. Denote μ = E(Y | X) and g as a strictly
increasing link function. GLM assumes that

g(μ) = a+ βTX,

where β ∈ R
p. The parameter of interest, β, is often

estimated by the maximum likelihood estimator (MLE). For
most generalized linear models such as logistic regression
and Poisson regression, the MLE does not have an explicit
form, but efficient algorithms have been developed to find
the solution. More recently, there have been considerable
interests in regularized estimators for GLM, where penalty
functions are added to enhance stability and/or enforce vari-
able selection [28, 72, 99, e.g.].

When the predictor X is a tensor instead of a vector,
in principle we could fit GLM on Y, vec(X). However, this
brutal-force approach leads to an overwhelmingly large num-
ber of parameters. In most applications we do not have
sufficient samples to estimate all these parameters, and the
computation could be painfully slow. In note of this issues,
tensor GLM is proposed to control the number of parameters
by utilizing the tensor structure. Also, tensor GLM allows us
to model vector and tensor predictors simultaneously, as we
discuss in Sect. 39.2.2.

39.2.2 Model

Consider {Y,U,X}, where Y ∈ R is the response, U ∈ R
q

is the vector predictor, and X ∈ R
p1×···×pM is the tensor

predictor. Just as in GLM, we assume that Y is drawn from
an exponential family with the probability mass or density
function in (39.9). Similarly, define μ = E(Y | U,X) and a
strictly increasing link function g(μ). Tensor GLM assumes
that

g(μ) = β0 + γ TU +
〈

R∑

r=1

β
(r)
1 ◦ β

(2)
2 ◦ · · · ◦ β

(r)
M ,X

〉

,

(39.10)

where r ≥ 1 is a positive integer, γ ∈ R
q, and β(r)

m ∈
R
pm for r = 1, . . . , R. Obviously, tensor GLM inherits the

nice interpretation of GLM that the predictors have linear
effects on g(μ). As a concrete example, one may consider
the simplest case where R = 1, M = 2. Now X is a matrix,
and the model in (39.10) reduces to

g(μ) = β0 + γ TU + βT
1Xβ2, (39.11)
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where β1 ∈ R
p1 is the effect across rows ofX, whileβ2 ∈ R

p2

is the effect across the columns of X. In this sense, β1,β2

jointly reducesX by row and column. A similar idea has also
been proposed in the framework of the so-called dimension
folding on tensor data [45], although dimension folding is
proposed for sufficient dimension reduction [6,14–16,46,48,
56, 96].

To further see that tensor GLM reduces the number of
parameters by honoring the tensor structure, we compare it
to GLM on {Y,U, vec(X)}. The vectorized GLM is equivalent
to

g(μ) = β0 + γ TU + 〈B,X〉, (39.12)

where B ∈ R
p1×···×pM ; recall that 〈B,X〉 = vec T(B)vec(X).

It is now apparent that the tensor GLM is a special case of
the vectorized GLM by requiring that the coefficient tensor
B has a rank-RCP decomposition, i.e.,B =∑R

r=1 β
(r)
1 ◦β

(2)
2 ◦

· · · ◦β
(r)
M . The low-rank assumption on B reduces the number

of free parameters from q+∏M
m=1 pm to q+ R

∑
m pm.

39.2.3 Estimation

Similar to classical GLM, tensor GLM is estimated by max-
imizing the likelihood function. Let

B =
R∑

r=1

β
(r)
1 ◦ β

(2)
2 ◦ · · · ◦ β

(r)
M = �B1, . . . ,BM�,

where Bm = [β(1)
m , . . . ,β(R)

M ] ∈ R
pm×R. The log-likelihood

function for tensor GLM is

l(α, γ ,B1, . . . ,BM) =
n∑

i=1

yiθi − b(θi)

a(φ)
+

n∑

i=1

c(yi,φ),

(39.13)

where θi is linked to the parameters through the model in
(39.10).

Although g(μ) is not linear in (B1, . . . ,BM), it is linear in
Bm when we fix Bm′ for m′ �= m. More specifically, it can be
shown that

〈
R∑

r=1

β
(r)
1 ◦ β

(r)
2 ◦ · · · ◦ β

(r)
M ,X

〉

= 〈Bm,X(m)(BM 	 · · · 	 Bm+1 	 Bm−1 	 · · · 	 B1)〉,

where we recall that 	 is the Khatri-Rao product between
matrices.

It follows that, given Bm′ , m′ �= m, we can fit a classical
GLM over {Y,U, vec(X̂(m))} to obtain Bm, where X̂(m) =
X(m)(BM	· · ·	Bm+1	Bm−1	· · ·	B1). Iteratively updating

Bm yields our final estimator. Note that, in each step of this
iterative algorithm, we only need to solve for the parameter
Bm of dimension pm×R, which is usually efficient, especially
when R is small. Hence, the iterative algorithm can fit models
on large tensors within a reasonably short amount of time.

If wewant to further boost the stability in our estimation of
tensor GLM, regularization can be applied just as in classical
GLM. Denote Pα(t, λ) as a penalty function, where λ is the
tuning parameter, and α is an index for the penalty function.
For example, the elastic net penalty is Pα(t, λ) = λ[(α −
1)t2/2 + (2 − λ)t], λ ∈ [1, 2]. The regularized estimator is
defined as the maximizer of

l(β0, γ ,B1, . . . ,BM) −
M∑

m=1

R∑

r=1

pm∑

j=1

Pα

(
|β(r)
mj |, λ

)
. (39.14)

The regularized estimator can be found by an iterative
algorithm as well. When we fix Bm′ , m′ �= m, Bm is the
regularized estimator for GLM over {Y,U, vec(X̂(m))}. For
various penalty functions, efficient algorithms have been de-
veloped for their combination with the classical GLM. These
algorithms can be readily borrowed to implement regularized
tensor GLM.

We close this section by listing some theoretical properties
for tensor GLM. We focus on tensor GLM without regular-
ization. The consistency of tensor GLM involves an identifi-
ability condition that does not appear in classical GLM. Note
that the CP decomposition of B is not identifiable in general.
We can permute and/or rescale the basis B1, . . . ,BM without
changing the coefficient tensor B. To resolve this issue, we
consider the parameter space

B =
{
(B1, . . . ,BM) : β

(r)
m1 = 1, for m = 1, . . . , M,

r = 1, . . . , R and β
(1)
M1 > · · · > β

(R)
M1

}
,

which is open and convex. If we restrict our attention to this
parameter space and further assume that the parameters are
identifiable, it can be shown that vec(B̂1, . . . , B̂M) are

√
n-

consistent estimators for vec(B1, . . . ,BM).

39.3 Envelope Tensor Response Regression

39.3.1 Multivariate Response EnvelopeModel

In this section, we review the multivariate response regres-
sion that motivates the tensor response regression. We also
briefly discuss the envelope assumption that will be devel-
oped in parallel for tensor data. Consider {Y,X}, where Y ∈
R
q is the response and X ∈ R

p is the predictor. The classical
multivariate response regression model is
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Y = βX + ε, (39.15)

where β ∈ R
q×p is the coefficient matrix and ε ∈ R

q

is the statistical error independent of X with Eε = 0 and
var(ε) = � ∈ R

q×q. Without loss of generality, we assume
that the intercept is zero. The parameter of interest β can be
estimated with the ordinary least squares (OLS) estimator. If
we further assume that ε is normal, the OLS estimator is also
the MLE, although statisticians often use the OLS estimator
even without the normality assumption.

The envelope assumption is more recently proposed to
improve estimation efficiency. When the dimension of Y, q,
is large, likely not all of them are related to the predictor X.
Hence, the envelope assumption indicates that the response
is only related to the predictor when refined on a low-
dimensional subspace. In other words, there exists a subspace
S ⊆ R

q such that

QSY | X d= QSY, QSY ⊥⊥ PSY | X, (39.16)

where PS is the projection on to S and QS = Iq − PS.
These assumptions imply that the subspace S contains all the
material information for the regression, while its complement
only brings in variability that degrades our inference about it
is desirable to identify S before estimating β.

The multivariate response envelope model can be esti-
mated by MLE. A key step is rewriting the envelope as-
sumption in (39.16) into a new parameterization of β and
�. With some linear algebra it can be shown that (39.16) is
equivalent to that span(β) ⊂ S and � = Ps�Ps + QS�QS.
Hence, we can estimate the coordinate of S and estimate
the other parameters accordingly. For more background on
[12, 13, 17, 18, 66, 67, 90].

39.3.2 Model

On tensor data, it often makes sense to treat the tensor as
the response and perform regression on vector predictors.
For example, in the EEG data, we may want to compare the
brain activities for subjects with and without recent alcohol
consumption. Such comparison can be viewed as a regression
problemwith the EEG tensor as the response and an indicator
function of alcohol consumption as the predictor. The coef-
ficients in these model characterize the difference between
EEGs. In some other applications, additional covariates may
be available as well, such as age and gender. These covariates
can be included as part of the vector predictor to eliminate
possible confounding factors.

For the tensor response Y ∈ R
q1×···×qM and the vector

predictor X ∈ R
p, we consider the tensor response linear

model:
Y = B×̄(M+1)X + ε, (39.17)

where B ∈ R
q1×···×qM×p is the parameter of interest and

ε ∈ R
q1×···×qM . We assume that ε ∼ TN(0; �1, . . . ,�M), al-

though the normality is not essential. Rather, the main advan-
tage in this assumption is that we determine the covariance of
ε with a smaller number of parameters in �m, m = 1, . . . , M.
Such an approach is common in the tensor literature; see
Sects. 39.4 and 39.5 for example. Other works that involve
similar assumptions include [30, 39].

Similar to tensor GLM, estimation ofB is difficult without
additional assumptions, because B is extremely high dimen-
sional. To this end, we further assume that the parameter B
has the envelope structure. Let P(Y) = �Y;P1, . . . ,PM� and
Q(Y) = Y − P(Y), where Pm ∈ R

qm×qm is the projection
matrix onto a linear subspace Sm ⊂ R

qm . We consider the
following envelope assumption:

Q(Y) | X d= Q(Y), Q(Y) ⊥⊥ P(Y) | X. (39.18)

Parallel to the multivariate response envelope model, the
envelope assumption in (39.18) indicates that there is a series
of possibly low-rank subspaces s1, . . . , sM that contain all
the information for the estimation of B. If we identify these
subspaces, we can discard their complements without any
loss of information.

Moreover, if we set um ≤ qm to be the rank of Sm, �m ∈
R
qm×um to be a basis for Sm and �0m to be the orthogonal

complement of �m, the envelope assumption leads to the
following parsimonious representation of B and �m:

B = ��; �1, . . . ,�M, Ip�, �m = �m	m� T
m+�0m	0m�T

0m,
(39.19)

where � ∈ R
u1×···×um×p,	m ∈ R

um×um , and 	0m ∈
R

(qm−um)×(qm−um). As a result, we can extract all the
information about B by focusing on the “surrogate
response” Z = �Y; � T

1 , . . . ,�
T
M� ∈ R

u1×···×uM . With the
envelope representation, the number of free parameters
reduces from p

∏M
m=1 qm + ∑M

m=1 qm(qm + 1)/2 to
p
∏M

m=1 um + ∑M
m=1{um(qm − um) + um(um + 1)/2 +

(qm − um)(qm − um + 1)/2}, which leads to a reduction
of p(

∏M
m=1 qm − ∏M

m=1 um) free parameters. The smaller
number of parameter encourages efficient estimation and
computation in the estimation, which we discuss in the next
section.

39.3.3 Estimation

The parameters in the tensor response envelope model are
estimated by MLE. For the covariance matrices �m, we let
� = �M ⊗ · · · ⊗ �1. We want to minimize the negative
log-likelihood function:
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�(B,�) = log |�| + 1

n

n∑

i=1

{
vec(Yi) − B T

(M+1)Xi
} T

�−1
{
vec(Yi) − B T

(M+1)Xi
}
. (39.20)

Note that, because of our envelope assumption in (39.19),
the objective function �(B,�) implicitly depends on �m,
�,	m,	0m as well.

The minimization of (39.20) is performed by minimizing
�(B,�) over one parameter while fixing all the others fixed.
We start by finding initial estimates for B and �. We fit each
element of the tensor response Y versus X to find the OLS
estimator BOLS and use it as the initial value B(0). For �(0)

m ,
we employ the following estimator similar to that in [23]:

�(0)
m = 1

n
∏

j�=m pj

n∑

i=1

ei(m){�(0)
−m}−1ei(m), (39.21)

where ei(m) is the mode-m matricization of ei = Yi −
B(0) ×M+1 Xi.

We iterate over m to determine �(0)
m . In the following

iterations, it is easy to update B and � when �m, �,	m,	0m

are fixed, thanks to (39.19). Thus we focus on the update of
�,	m,	0m at the (t + 1)-th iteration. It can be shown that

�(t+1)
m = arg min

Gm∈Rpm×um
log |G T

mM
(t)
m Gm|

+ log |G T
m(N(t)

m )−1Gm|,

s.t GT
mGm = Ium , (39.22)

where M(t)
m = (n

∏
j�=m qj)−1∑n

i=1 δ
(t)
i(m){�(t)

−m}−1δTi(m),N
(t)
m =

(n
∏

j�=m qj)−1∑n
i=1 Y

(t)
i(m){�(t)

−m}−1YT
i(m), and δ

(t)
i = Yi −

�BOLS;P(t)
�1
, . . . ,P(t)

�m−1
, Iqm ,P�m+1 , . . . ,P

(t)
�m
, Ip� ×(M+1) XT

i is
the current fitted envelope model residual. The optimization
in (39.22) is over all (qm×um)-dimensional Grassmann man-
ifolds and is the most time-consuming step in our estimation.

With {�m}Mm=1, the parameter � can be estimated
by restricting our attention to the regression problem
with the surrogate response Z = �Y; � T

1 , . . . ,�
T
M�

and the predictor X. More specifically, define Z(t)
i =

�Yi; (�
(t+1)
1 ) T, . . . , (�(t+1)

M )T� and stack them to form
Z

(t) ∈ R
u1×···×uM×n. Similarly, stack Xi to form X ∈ R

p×n.
Our estimate for � is

�(t+1) = Z
(t) ×(M+1) {(XX T)−1

X}. (39.23)

Finally, we have

	(t+1)
m = 1

n
∏

j�=m qj

n∑

i=1

s(t)i(m)

{
	

(t+1)
−m
}−1

sTi(m), (39.24)

	
(t+1)
0m = 1

n
∏

j�=m qj

n∑

i=1

(
�

(t+1)
0m

) T
Yi(m)

{
�

(t+1)
−m
}−1

YT
i(m)�

(t+1)
0m , (39.25)

where s(t)i = Z(t)
i − �(t+1) ×(M+1) Xi.

With these results, the MLE can be found with an iterative
algorithm. However, if time becomes an issue, one could
consider two modifications to speed up the computation.
First, the most challenging step in the optimization is
apparently (39.22). One could carry out this step with an
efficient 1D algorithm [19] shown to be faster and more
stable. Second, instead of iterating over the steps, we can
only update the estimates once. As it turns out, whether we
iterate until convergence or not, the final estimates are

√
n-

consistent, with smaller asymptotic variance than the OLS
estimator.

Finally, we note that the envelope dimensions um are typ-
ically unknown in practice [91]. We select them individually
by minimizing

BICm = −n

2
log |�T

m�(0)
m �m| − n

2
log |�T

m(N(0)
m )−1�m|

+ log n · pum. (39.26)

Since the dimensions are selected marginally, the compu-
tation is usually very fast for this aspect.

39.3.4 A Technical Remark

Although seemingly straightforward, the estimation of the
tensor response regression is made possible by a striking
difference between vector and tensor data. Note that to find
the initial value �(0)

m , we have to invert the large covariance
�

(0)
−m ∈ R

(
∏

j�=m pj)×(
∏

j�=m pj). It is well-known that, on vector
data, we want to avoid inverting the covariance if the dimen-
sion is large, because the inverse does not exist when the
dimension exceeds the sample size. However, this is not an
issue for tensor data even when

∏
j�=m pj is much larger than

the sample size. Note that �
(0)
−m is invertible if and only if

�
(0)
j , j �= m are all invertible. With some linear algebra we

can show that this is true as long as n
∏

j�=m pj > pm. In most
tensor data applications, pj, j = 1, . . . , M are roughly of the
same order. It follows that �

(0)
j is typically invertible, even

for very small sample sizes.
Moreover, because of the tensor structure, finding the in-

verse is generally fast. Recall that {�(0)
−m}−1 = ⊗j�=m{�(0)

j }−1.

Hence, there is no need to direct invert the large matrix �
(0)
−m.

Instead, we only need to invert the much smaller matrices
�

(0)
j . Indeed, this trick is used in many tensor methods that

require inverting the separable covariance.
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Algorithm 1 The SIMPLS algorithm
1. Initialize C0 = cov(X,Y) ∈ R

p×q.
2. For j = 1, . . . , u, do the following:

a. Find wj = arg maxw∈RpwTCj−1Cj−1w, s.t wTw = 1;
b. Let uj = wT

j X ∈ R;
c. Compute vj = cov(X, tj)/var(tj) ∈ R

p;
d. Deflate the cross covariance Cj = QjC0, where Qj ∈

R
p×p is the projection matrix onto the orthogonal subspace of

span(v1, . . . , vu).
3. Reduce X ∈ R

p to U = W TX = (t1, . . . , tu) ∈ R
u, where W =

(w1, . . . ,wu).
4. Regress Y ∈ R

q on U ∈ R
u.

39.4 Tensor Envelope Partial Least Squares
Regression

39.4.1 Partial Least Squares Regression

We first review partial least squares (PLS) for vector data.
Consider the response Y ∈ R

q and the predictor X ∈ R
p.

PLS looks for a reduction of X in the form of U = W TX ∈
R
u that is used in the follow-up regression as the predictor.

Conceptually, PLS attempts to fit a factor model

X = TU + E, Y = VU + F, (39.27)

where U ∈ R
u contains the factors shared by X and Y,

T ∈ R
p×u,V ∈ R

q×u are the loadings, and E,F are
statistical errors. PLS first recovers the latent factor U and
then estimates the loading V by fitting a regression model on
{Y,U}.

However, unlike many other statistical methods, PLS was
first proposed as a heuristic algorithm, without a clear sta-
tistical model behind it. Nevertheless, its competitive perfor-
mance wins its wide popularity. Up until today, many PLS
algorithms have been developed [21,79, e.g.].We only review
one of them named SIMPLS, as it is one of the rare PLS algo-
rithms with a population interpretation [11, 38]. SIMPLS is
listed in Algorithm 1. To avoid notation proliferation, we use
the parameters such as the cross variance in this algorithm,
but of course in practice these parameters are replaced with
their sample estimates. SIMPLS sequentially maximizes the
correlation between the predictor and the response. It can be
shown that on the population level SIMPLS finds an envelope
of X that contains all the information for Y.

39.4.2 A Tensor PLS Algorithm

Consider a regression problem with Y ∈ R
q as the response

and X ∈ R
p1×···×pM as the predictor. This is different from

the tensor response regression discussed in Sect. 39.3, as now

Algorithm 2 The tensor PLS algorithm
1. Initialize C0 = cov(X,Y) ∈ R

p1×···×pM××q and the covariance
matrices �Y = cov(Y) and �X = cov{vec(X)} = �M ⊗ · · · ⊗ �1.

2. For m = 1, . . . , M, do the following:
a. Standardize the mode-m cross covariance matrix:

C̃0m = C0(m)(�
−1/2
Y ⊗ �

−1/2
−m ) ∈ R

pm×(q
∏
k �=m pk) (39.28)

b. For j = 1, . . . , um, do the following
i. Find wmj = arg maxw∈Rpm w TC̃j−1,mC̃j−1,mw, s.t wTw =

1;
ii. Let uj = wT

j X ∈ R;
iii. Compute vj = cov(X, tj)/var(tj) ∈ R

p;
iv. Deflate the cross covariance C̃jm = QjmC̃0m, where Qjm ∈

R
pm×pm is the projection matrix onto the orthogonal subspace

of span(�mWjm), and Wjm = (w1m, . . . ,wjm) ∈ R
pm×j.

3. Reduce X ∈ R
p1×···×pM to U = �X;W T

1 , . . . ,W
T
M� ∈ R

u1×···×uM ,
where Wm = (w1m, . . . ,wumm) ∈ R

pm×j.
4. Regress Y ∈ R

q on U ∈ R
u1×···×uM .

the tensor is in the place of the predictor. A natural way to
extend the PLS algorithm is to seek a low-rank reduction
U = �X;W T

1 , . . . ,W
T
M�, where Wm ∈ R

pm×um . However,
close attention is required to multiple details to ensure a
statistical interpretation behind the algorithm. We introduce
one such algorithm in Algorithm 2 [89].

We make two remarks concerning Algorithm 2. First,
we again use the parameters to avoid notation proliferation,
but in practice they should be replaced with estimates. The
parameters C0,�Y are replaced with their usual sample esti-
mates. We explain the more involved estimators for �m, m =
1, . . . , M in�X. By (39.8), The moment-based estimators are

�̂m =
⎛

⎝n
∏

j�=m
pj

⎞

⎠

−1
n∑

i=1

Xi(m)XT
i(m). (39.29)

Alternatively, if one strongly believes in the normality
assumptions, MLE can be applied [59]. It can be shown that
the MLE, �̂

MLE
m , m = 1, . . . , M must satisfy

�̂
MLE
m = 1

n
∏

j�=m pj

n∑

i=1

Xi(m)

{
�̂

MLE
−m
}−1

Xi(m). (39.30)

Hence, the MLEs can be computed iteratively over m.
Second, the tensor PLS algorithm has a similar structure

to SIMPLS, but it reduces the tensor predictor along all the
modes. Such reduction is important for the sake of both com-
putational and statistical efficiency. Because the reduction
is performed along each mode, the number of parameters is
under control even when the tensors have a huge number of
elements. Moreover, the tensor PLS algorithm turns out to
have a population interpretation as well, as we explain in the
next section.
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39.4.3 A PopulationModel

Recall that we have a q-dimensional response Y and a tensor
predictor X. Consider the model

Yk = 〈B::k,X〉 + εk, k = 1, . . . , q, (39.31)

where B::k ∈ R
p1×···×pM is the coefficient tensor for (Yk,X)

and εk is the statistical error independent of X. We collect
the coefficients B::k to form the coefficient tensor B ∈
R
p1×···×pM×q. The regression model in (39.31) can be equiva-

lently written as

Y = B(M+1)vec(X) + ε, (39.32)

where ε ∈ R
q. We further assume that the covariance of X

is separable in that �X = cov{vec(X)} = �M ⊗ · · · ⊗ �1.
Finally, similar to the tensor response regression model, we
assume an envelope structure exists. More specifically, we
assume the existence of a series of subspaces Sm ∈ R

pm , m =
1, . . . , M such that

X×mQm ⊥⊥ X×mPm, Y ⊥⊥ X×mQm | X×mPm, (39.33)

where Pm ∈ R
pm×pm is the projection matrix onto Sm and

Qm = Ipm − Pm is the orthogonal complement. Let �m ∈
R
pm×um be a basis of sm and �0m ∈ R

pm×(pm−um) be a basis of
the complement of sm. The envelope assumption implies that
that �X;P1, . . . ,PM� contains all the information for Y. Ex-
tracting this material part improves the estimation efficiency
and lowers the computation cost.

The envelope assumption is integrated into the estimation
by noting that

B = ��; �1, . . . ,�M, Iq�, for some � ∈ R
u1×···×uM ,

�m = �m	m� T
m + �0m	0m�T

0m, m = 1, . . . , M,

where 	m ∈ R
um×um ,	0m ∈ R

(pm−um)×(pm−um) are
symmetric positive definite matrices. When ums are small,
we achieve noticeable reduction in the number of free
parameters.

It can be shown that the tensor PLS algorithm estimates
the above model. LetWm ⊂ R

pm be the subspace spanned
by (w1m, . . . ,wumm) ∈ R

pm×um . As n → ∞,Wm converges
to Sm. Also, the resulting estimator B̂ is a

√
n-consistent

estimator for B. This fact provides supports and explanations
for the favorable performance of tensor PLS.

39.5 Covariate-Adjusted Tensor
Classification in High Dimensions

39.5.1 Linear Discriminant Analysis

The method covariate-adjusted tensor classification in high
dimensions (CATCH) is partially motivated by the well-
known linear discriminant analysis (LDA). We review some
basics for LDA for completeness. For a more comprehensive
introduction to LDA, see [60]. Consider the class label Y =
1, . . . , K and the vector predictor X ∈ R

p. The LDA model
assumes that

Pr(Y = y) = πy, X | Y = y ∼ N(μy,�), (39.34)

where μy ∈ R
p,� ∈ R

p×p. The optimal classifier can be
explicitly derived under this model, which takes the form

Ŷ = arg max
k=1,...,K

Pr(Y = k | X) = arg max
k=1,...,K

{ak + β T
k X},
(39.35)

where βk = �−1(μk −μ1) and ak = log (πk/π1)−β T
k (μk +

μ1)/2. LDA has been well-received since its introduction,
due to its elegant linear form and competitive performance
[36, e.g.,]. We note that the linear form is a result of the
normality assumption and the homogeneity across classes. In
the past a few years, there have been considerable interests
in generalizing LDA to high dimensions [7, 10, 27, 54, 58,
65, 78, 81], but these methods are not adapted to tensor
classification.

39.5.2 Model

Consider random variables {U,X, Y}, where U ∈ R
q is the

vector predictor, X ∈ R
p1×···×pM is the tensor predictor, and

Y = 1, . . . , K is the class label. Our goal is to build a classifier
for the prediction of Y based on {U,X}. The CATCH model
assumes that

Pr(Y = k) = πk, U | (Y = k) ∼ N(φk,�),
(39.36)

X | (U = u, Y = k) ∼ TN(μk + α×̄(M+1)u,�1, . . . ,�M),
(39.37)

whereφk ∈ R
qand� ∈ R

q×q are themean and the covariance
of U within Class k. The parameter α ∈ R

p1×···×pM×q is the
effect of U on X within class. After we adjust X for U, its
within-class mean and variance are given byμk ∈ R

p1×···×pM ,
and �m ∈ R

pm×pm , m = 1, . . . , M, respectively.
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The CATCH model is similar to the LDA model in the
assumption of normality and constant covariance. Indeed, if
we ignoreX, then (Y,U) follows the LDAmodel. However, in
the CATCHmodel there are two layers of dependence, which
allows us to model the relationship between X andU as well.
Within Class Y = k, X and U are connected with a tensor
response regression model with X as the response and U as
the predictor; see Sect. 39.3. Moreover, in the absence of U,
X is assumed to follow the tensor normal distribution:

X | Y = k ∼ TN(μk; �1, . . . ,�M). (39.38)

This can be viewed as a model for tensor discriminant anal-
ysis (TDA) that generalizes LDA to tensor data. The tensor
normal distribution reduces the number of free parameters in
the covariance of X.

Under the CATCHmodel, we derive the optimal classifier
to be

Ŷ = arg max
k=1,...K

Pr(Y = k | X,U) (39.39)

= arg max
k=1,...K

{
ak + γ T

k U + 〈Bk,X − α×̄(M+1)U〉} ,

where γ k = �−1(φk − φ1), Bk = �μk − μ1; �−1
1 , . . . ,�−1

M �,
and ak = log(πk/π1) − 1

2γ
T
k (φk + φ1) − 〈Bk,

1
2 (μk + μ1)〉

is a scalar that does not involve X or U. The coefficient γ k is
the direct effect of U on Y , while α is the indirect effect of
U on Y through X. The coefficients Bk summarizes the net
effect ofX on Y after it is adjusted forU. We demonstrate the
structure of our CATCH model in Fig. 39.4.

So far we only utilize the tensor structure of X by making
the tensor normal assumption. When the tensor is large,
more efforts may be needed for parsimonious modeling.
We achieve this goal by assuming that the coefficients
Bk are sparse. Note that, for any j1 · · · jM , the coefficients
b2,j1···jM , . . . , bK,j1···jM are related to the same element xj1···jM .
They are the effects of the same element in distinguishing

U

Covariates

X

Tensor

Y

Class
label

a

TRR m
odel 

(3.3)
B

2 , · · · , B
K

TDA model (5.5)

g 2 , · · · ,gK

LDA model (5.1)

Fig. 39.4 Graphical illustration of the CATCHmodel. TRR stands for
tensor response regression. A similar demonstration was presented in
the original proposal of CATCH [61] as well

between different pairs of classes. It follows that the sparsity
in Bk has a group structure:

xj1···jM is not important for classification ⇔ b2,j1···jM
= . . . = bK,j1···jM = 0. (39.40)

We will incorporate such sparsity assumption in estima-
tion.

39.5.3 Estimation

Suppose that we collect n observations {Xi,Ui, Yi}ni=1. We
construct estimators of the parameters in the optimal clas-
sifier (39.39). The estimators for {πk,φk, γ k,μk,Bk} can be
easily found bymaximizing the likelihood function, although
we need more notation to ease the presentation. For the
observations with Yi = k, let X̃i = Xi−Xk and Ũi = Ui−Uk

be the centered tensor and vector predictors. We further stack
these centered predictors to form X̃ ∈ R

p1×···×pM×n and
Ũ ∈ R

q×n, respectively. Straightforward calculation shows
that the MLEs are

π̂k = 1

n

n∑

i=1

1(Yi = k), φ̂k = Uk, γ̂ k = �̂
−1

(φ̂k − φ̂1), k = 1, . . . , K,

α̂ = X̃ ×(M+1) {(ŨŨT)−1Ũ},

where �̂ = 1

n

∑K
k=1

∑
Yi=k(Ui − φ̂k)(Ui − φ̂k)

T.

The estimation for Bk requires more attention, though, as
we want to impose sparsity. A most popular way to obtain
sparse estimates is to apply penalization. But to use penalty
functions, we first need to find an estimating equation for
Bk. We note that, on the population level, B2, . . . ,BK are the
solution to the following optimization problem:

(B2, . . . ,BK) = arg min
B2,...,BK

∑

k=2

{〈Bk, �Bk; �1, . . . ,�M�〉

− 2〈Bk,μk − μ1〉
}
. (39.41)

Equation (39.41) can be used as an estimating equation as
long as we find estimates of �m and μk. By the properties
of the tensor normal distribution in Sect. 39.1.4, we construct
the following moment-based estimators:

μ̂k = Xk − α̂×̄(M+1)Uk, k = 1, . . . , K,

�̂j = s̃−1
j,11S̃j for j = 1, . . . , M − 1; �̂M = v̂ar(X1···1)

∏M
j=1 s̃j,11

S̃M,

where S̃j = (n
∏M

l �=j pl)−1∑n
i=1 Ê

i
(j)(Ê

i
(j))

T with Êi = Xi −
μ̂k − α̂×̄(M+1)Ui = (Xi − Xk) − α̂×̄(M+1)(Ui − Uk). We
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Table 39.1 Classification errors on the ADHD datasets. Reported error rates are averages based on 100 replicates, and standard errors are in
parentheses. CP-GLM is not applicable for multiclass problem because multinomial logistic has not been implemented

CATCH CP-GLM �1-logistic regression �1-SVM

Binary 22.79 (0.2) 25.05 (0.19) 23.99 (0.16) 27.54 (0.31)

Multiclass 35.22 (0.25) NA 35.66 (0.21) 41.28 (0.32)

plug in these estimators and add the group-Lasso penalty to
(39.41). The parameters Bk are estimated by

min
B2,...,BK

[
K∑

k=2

(〈Bk, �Bk; �̂1, . . . , �̂M�〉 − 2〈Bk, μ̂k − μ̂1〉
)

+ λ
∑

j1...jM

√
√
√
√

K∑

k=2

b2k,j1···jM

⎤

⎦ , (39.42)

The problem in (39.42) can be solved by a blockwise coor-
dinate descent algorithmwhere in each stepwe soft-threshold
bk,j1···jM , k = 2, . . . , K. This algorithm is implemented in the
R package catch available on CRAN. It can be shown that,
with a probability of 1, the blockwise coordinate descent
algorithm converges to the global minimizer.

The CATCH classifier is also supported by theoretical
results. When log pm = o(n), under mild conditions the
CATCH classifier converges to the optimal classifier. The
classification error of CATCH converges to the lowest clas-
sification error possible as well.

39.6 A Real Data Example

We demonstrate the performance of CATCH and CP-
GLM on a real dataset regarding the attention-deficit
hyperactive disorder (ADHD). The ADHD dataset is shared
byNeoru Bureau at https://fcon_1000.projects.nitrc.org/indi/
adhd200/. The results in this section were originally reported
by Pan et al. [61].

The ADHD dataset contains complete rs-fMRI and s-
MRI data of 930 subjects. These subjects are divided into
four categories: typically developing children (TDC), ADHD
combined, ADHD hyperactive, and ADHD inattentive. In
addition to the images, age, gender, and handedness are
also recorded. Because of the apparent difference between
genders, we stratify the data according to the gender of each
subject. The MRI data are treated as the tensor predictor
(X), while age and handedness are treated as the vector
predictor (U). The MRI data are preprocessed to be of size
24 × 27 × 24. Two classification problems are considered:
a binary problem where we predict whether a subject shows
hyperactivity and a three-class problem where subjects are
classified into typically developing children (TDC), ADHD
combined/hyperactive, and ADHD inattentive.

We repeatedly form training sets of 762 subjects and
testing sets of 168 subjects. Two well-known classifiers, �1-
logistic regression [31, 33] and �1-support vector machine
(SVM) [2, 4, 20, 22, 32], are also included as baselines. The
results are listed in Table 39.1. The tensor methods are very
competitive, yielding similar or better accuracies than the
baselines.
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Abstract

One of the most commonly encountered problems in
biomedical studies is analyzing censored survival data.
Survival analysis differs from standard regression prob-
lems by one central feature: the event of interest may not
be fully observed. Therefore, statistical methods used to
analyze this data must be adapted to handle the missing
information. In this chapter, we provide a brief introduc-
tion of right-censored survival data and introduce survival
random forest models for analyzing them. Random forests
are among the most popular machine learning algorithms.
During the past decade, they have seen tremendous suc-
cess in biomedical studies for prediction and decision-
making. In addition to the statistical formulation, we also
provide details of tuning parameters commonly consid-
ered in practice. An analysis example of breast cancer
relapse free survival data is used as a demonstration. We
further introduce the variable importance measure that
serves as a variable selection tool in high-dimensional
analysis. These examples are carried out using a newly
developed R package RLT, which is available on GitHub.

Keywords

Random forests · Survival analysis · Random survival
forest · Tree estimator · Right censoring ·
High-dimensional data · Variable importance · Variable
selection · C-index · Brier score

40.1 Right-Censored Data and Survival
Analysis

Survival analysis focuses mainly on analyzing time-to-event
data. However, the event times may not be fully observed due
to losing a subject to follow-up, the study ending before all
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subjects experience the event, or due to other reasons. This
information loss is referred to as censoring. In this chapter,
we consider only the most commonly encountered censoring
type: right censoring. To be specific, assume that each subject
is waiting to experience a failure event, with the (random)
waiting time denoted as T . T is also commonly referred to as
the failure time. The subject may also be at risk of being lost
to follow-up, which would happen at a (random) censoring
time C. When C happens before T , we have a right-censoring
scenario in the sense that the failure time is at the right-hand
side of the censoring time. Hence, the failure time T cannot
be fully observed, and we observe C instead.

Following standard notations in survival analysis litera-
ture, e.g., [1], let Dn = {xi, yi, δi}ni=1 be a set of n inde-
pendently and identically distributed (i.i.d.) observed copies
of the triplet {X, Y,�}, where X is a p-dimensional random
covariate vector, Y is the observed outcome defined as Y =
min(T, C), where T is the random time until the event of
interest and C is the random time until the subject is lost
to follow-up. We only observe the shorter of the two times.
Lastly, � = 1(T ≤ C) is a censoring indicator, which
indicates if subject i experienced the event of interest or was
lost to follow-up. Note that both T and C may depend on the
covariate vector X and, therefore, so do Y and �. Using the
observed dataDn, our main goal is to estimate the conditional
survival function of T , defined as

S(t, x) = P(T > t|X = x). (40.1)

The survival function is also one minus the cumulative distri-
bution function F(t, x), defined as P(T ≤ t|X = x). Similar
notations are used for other quantities in the remaining parts
of this section. Two important related concepts are the cumu-
lative hazard function (CHF), defined as

�(t, x) = − log{S(t, x)}, (40.2)

and the hazard function, defined as

λ(t, x) = d�(t, x)/dt. (40.3)

It is then easy to see that knowing any of the above quantities
will allow us to calculate the rest. It should also be noted that,
for identifiability issues [1], we often assume conditional
independence (T ⊥ C|X), which essentially states that given
the covariate values X, the failure time and censoring time
do not provide any additional information to each other. An
example that violates this assumption is whenC could, with a
certain probability, happen at T − q for some unknown value
q. In that case, we will not be able to estimate the distribution
of T . For information regarding statistical properties and
assumptions of survival analysis models, we refer to [1].

40.1.1 Survival Estimation

To facilitate later arguments, we introduce two methods for
estimating a survival function given the data {yi, δi}ni=1. First,
a Nelson-Aalen estimator [2, 3] for the cumulative hazard
function is defined as

̂�(t) =
∑

k:tk≤t

∑n
i=1 1(δi = 1)1(yi = tk)

∑n
i=1 1(yi ≥ tk)

, (40.4)

where {t1, . . . , tK} is an ordered set of K unique failure times
(yi’s with δi = 1) within the observed data, with t1 as the
minimum. Then, the estimated survival function̂S(t) can be
calculated [4] by

̂S(t) = e−̂�(t). (40.5)

Another commonly used estimator for the survival function
is the Kaplan-Meier estimator [5], given by

̂S(t) =
∏

k:tk≤t

{

1 −
∑n

i=1 1(yi = tk)1(δi = 1)
∑n

i=1 1(yi ≥ tk)

}

. (40.6)

The two estimators are asymptotically equivalent [6] and are
both widely used in survival analysis.

For simplicity, no covariate information is used in this
section. In later sections, the covariate information will be
used to build a random forest, and the following quantities
can be used as an estimator at each terminal node and
averaged over all trees of a random forest. For details on the
estimation process, see Sect. 40.3.2.

40.1.2 Parametric and Semi-Parametric
Models for Survival Data

For modeling with covariates, the Cox proportional hazards
model [7] is the most popular choice. A Cox model assumes
that the effect of covariates actsmultiplicatively on the hazard
function [8] such that

λ(t, x) = λ0(t) exp(xTβ), (40.7)

where λ0(t) is called a baseline hazard function. This assump-
tion also implies that the log hazard ratio is a linear function
of the covariates. Furthermore, using the relationships we
introduced previously, the survival function can be defined
as

S(t, x) = exp{−�0(t)}exp(xTβ), (40.8)
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where the baseline cumulative hazard �0(t) = ∫ t
0 λ0(s)ds.

The Cox model is a semi-parametric model in the sense that
the hazard (or cumulative hazard) function is modeled non-
parametrically, while the effects of covariates are modeled
parametrically. The nice property of a Cox model is that
these parameters can be estimated by maximizing the partial
log-likelihood function, which does not involve estimating
the hazard function. To this end, the proportional hazard
assumption is crucial for formulating the Cox. Cox model
usually works well in practice. However, the proportional
hazard assumption can also be restrictive since it implies that
the fitted survival curves of the two subjects cannot cross each
other. If the underlying true curves cross, a Cox model may
fail to capture the effect of the covariates. For an example of
proportional versus nonproportional hazards, see Fig. 40.1.
The pair in Fig. 40.1a is Exponential(eX), with X = 1 in
orange and X = 2 in blue. The effect of X satisfies the
proportional hazard assumption since the hazard function of
an exponential distribution is its rate parameter. The pair in
Fig. 40.1b is Beta(α = 5,β = 10) for X = 0 in blue and
Exponential(3) for X = 1 in orange. Their survival functions
cross at around 0.4. This intersection may cause trouble
for the parameter estimate of X, which does not display a
strongly monotone effect on the hazard.

There are many alternatives to the Cox model, including
the accelerated failure time model [9], the proportional odds
model [10], the frailty model [11], and many others. How-
ever, all of these models are composed of specific parametric
components and underlying assumptions that could be vio-
lated, especially in a high-dimensional setting. In contrast,
a random forest model provides a more flexible nonpara-
metric framework for model estimation. We will focus on

introducing a breed of random forest models that can handle
right-censored survival outcomes. We start with introducing
tree-based models which serve as essential components of a
random forests.

40.2 Tree-BasedModels

A random forest is an ensemble of trees. Hence, we will first
introduce a single tree model as well as its estimation and
prediction procedures. A tree model recursively partitions
a p-dimensional feature space X (e.g., [0, 1]p) into disjoint
rectangular terminal nodes [12]. The model starts with a
root node X containing all observations and proceeds by
constructing binary splits in the form of 1(x(j) ≤ c), where
x(j) denotes the jth variable. It splits the current node into two
child nodes based on the output of this indicator function.
Note that this methodology does not only split the feature
space but also separates the observations into two subsets,
one for each child node. The process is then recursively
applied to each child node until reaching some stopping
criteria, which produces a terminal node that contains a few
observations. Following the notation in [6], we denote the
collection of terminal nodes in a tree asA = {Au}u∈U , where
U is a collection of indices. These terminal nodes satisfy two
properties: they jointly cover the whole feature space, i.e.,
X = ⋃

u∈U Au, and they do not overlap, i.e., Au ∩ Al = ∅ for
any u �= l. Throughout the following, we use A to represent
a single tree, i.e., one possible partition of the feature space
X resulting from a binary tree.

As a demonstration, we refer to Fig. 40.2. This tree was
built using the R packages rpart [13] and partykit [14].
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Fig. 40.1 Proportional versus nonproportional hazards. (a) is distributed as Exponential(eX), where X = 1 is orange and X = 2 is blue. (b) is
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Fig. 40.2 A tree model, built from survival data with p = 3 covariates using rpart [13] and partykit [14]

In this example, p = 3 and n = 1000 (for more details on the
generation of this data, see Sect. 40.6.2). The root node A, at
the top of the figure and labeled 1, contains all n = 1000 ob-
servations. Then the tree has a binary split on x(3) at 0.586. If
an observation i has a value of x(3)

i < 0.586, it is sent to node
AL, labeled in Fig. 40.2 with a 2. Otherwise, it is sent to node
AR, labeled in this plot with a 5. Then the left and right nodes
are each split one more time, creating four terminal nodes
that contain 89, 646, 135, and 130 observations, respectively.
The survival curves of each terminal node are estimated using
the Kaplan-Meier estimator (40.6) and plotted as the terminal
nodes. For example, the furthest left terminal node (labeled
as Node 3) contains 89 observations where x(3) < 0.586 and
x(1) < −1.179, and these limits do not overlap with any other
node. It also has the highest estimated survival curve through
the entire time domain, which implies that the observations
that fall into that node are estimated to have the highest
probability of survival. For this tree,A = {A3, A4, A6, A7}, or
A = {Au}u∈U where U = {3, 4, 6, 7}. Also note that, despite
the fact p = 3, the tree never splits on x(2). Not all variables
will necessarily be used for splitting. Hence, a tree model can
potentially be a sparse model.

There are many types of trees. They mainly differ in terms
of the criteria to find the splitting rule 1(x(j) ≤ c). For
example, [12] introduced classification and regression trees
and [15] outlined survival trees. There is a rich literature of
building survival trees, for example [16–18], and [19]. We
refer to [20] for a comprehensive review. However, the tree
building mechanisms are essentially the same for all these
methods. We will introduce a couple of versions that can
handle right-censored survival data.

40.2.1 SplittingMechanism

At any internal node A of a tree A, we search for a splitting
rule 1(x(j) ≤ c). This process leads to two child nodes: AL =
A

⋂ {x(j)
i ≤ c}, i.e., all the observations i from A that have a

value of x(j) ≤ c for a constant c, and AR =A
⋂ {x(j)

i > c}.
The best split is the split that maximizes the difference
between the observations in AL and AR. In the regression and
classification settings, the variance reduction and Gini index
[12] are commonly used to quantify this difference. In the
survival context, any calculation of the differences between
two potential child nodes has to account for censoring. In
this section, we introduce the log-rank test statistic [1, 15]
which is the default choice in many implementations, and an
alternative choice, the supremum log-rank test [21], which is
more sensitive to the distributional difference between two
survival curves.

Log-Rank Test
The log-rank test is a two-sample test that compares the
survival distributions of two groups when the observations
are subject to censoring. It can be viewed as an analog of
the two-sample t test in the regression setting. Here, the two
potential child nodes are treated as the two groups in this
test. To calculate the log-rank test statistic, we first define a
few key quantities. Consider any node A, let N(t) be the total
number of at-risk observations at time t, i.e.,

N(t) =
n

∑

i=1

1(xi ∈ A)1(yi ≥ t), (40.9)
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and let O(t) be the number of failure observations at time t,
i.e.,

O(t) =
n

∑

i=1

1(xi ∈ A)1(yi = t)1(δi = 1). (40.10)

For bothN(t) andO(t), we can correspondingly define the
child node versions for the left and right nodes. Denote these
quantities as NL(t), NR(t), OL(t), and OR(t), where L and R
indicate the side. Furthermore, define

EL(t) = OL(t)
NL(t)

N(t)
(40.11)

to be the expected failure counts at time t for the left child
node. This expectation is based on the intuition that the two
groups have the same failure rate at time point t under the null
hypothesis. Among the observed yi values within an internal
node A, we again use the notation {t1, . . . , tK} as the ordered
set of uniquely observed failure time points. We can then
construct the log-rank test statistic [7] for a possible split as

∑K
k=1

(

OL(tk) − EL(tk)
)

√

∑K
k=1 EL(tk)

NR(tk)
N(tk)

N(tk)−OL(tk)
N(tk)−1

. (40.12)

It can be shown that this test statistic follows asymp-
totically a standard normal distribution, which leads to a
valid p value. Essentially, the log-rank test statistic calculates
the difference between the observed failure counts and the
failure counts that would be expected if the groups came
from the same distribution. In the case that the alternative
hypothesis is proportional hazards (Fig. 40.1a), this statistic
is asymptotically efficient for testing the difference between
the two groups. However, this test may also have low power
against some alternatives. For example, when the hazards
are similar over most of the interval but diverge over a
particular segment [21] or the expected values are the same
(see Fig. 40.1b and Sect. 40.2.1), the log-rank test may fail.
As an alternative, [21] developed a supremum version of the
log-rank test statistic, hereafter referred to as the supremum
log-rank test statistic.

Supremum Log-Rank Test
In the case of nonproportional hazards or when the distribu-
tions diverge but expected values are the same, the power of
the supremum log-rank test is higher than that of the log-rank
test. Using the same notation as the previous calculations, we
can construct the supremum log-rank test [21,22] statistic for
a possible split as

max
j∈{1,··· ,K}

∣

∣

∑j
k=1

NL(tk)NR(tk)
N(tk)

(OL(tk)
NL(tk)

− OR(tk)
NR(tk)

)∣

∣

√

∑K
k=1

NL(tk)NR(tk)
N(tk)

O(tk)
N(tk)

(

1 − O(tk)−1
N(tk)−1

)

. (40.13)

Instead of summing over every time point, it searches for a
time point that displays the maximum divergence. Hence, the
supremum log-rank test can be used to detect any distribu-
tional differences between two potential child nodes, rather
than comparing the expected failures from the two groups.

Choosing the Best Split
For either the log-rank test or supremum log-rank test, a
more significant p value indicates a better split. We exhaust
all possible indices j ∈ {1, . . . , p} of the splitting variables
and cutting point c from all unique x(j) values within node
A to define the two groups. The splits that leads to the most
significant test is then used. However, this exhaustive search
may not be required when fitting a random forest model.
Section 40.3.3 introduces the details of these modifications.
As proposed by Ishwaran et al. [23], the splitting will stop
when there are too few failure observations in a node.

A Toy Example
To demonstrate the two splitting rules, we will use a set of
samples from the nonproportional hazard distribution setting
shown in Fig. 40.1b. We randomly sample 60 failure times
Tis, with 30 of them from Exponential(3) and another 30
from Beta(5,10). We use a corresponding covariate value
x(1)
i = 0 or 1 to indicate their group. For all observations,
the censoring times C are generated independently from a
Uniform(0,1) distribution to calculate the observed time y
and censoring indicator δ. Therefore, the maximum observed
time is less than or equal to 1, as the censoring time has
an upper bound. Additionally, we generated another group
indicator x(2) with P(x(2)

i = 0) = P(x(2)
i = 1) = 0.5

independently from all other quantities. This covariate mim-
ics the situation that we might be facing with other noise
variables that are not associated with survival time. For more
details on this simulation, see the sample code provided in
the supplementary material (Sect. 40.8).

The log-rank test statistic using x(1) as the group indicator
is 1.57, with a p-value of 0.2. When we use x(2) as the
group indicator, we get a log-rank test statistic of 3.64,
with a p-value of 0.06. For a split on this node using these
results, we would choose to split on x(2) with a cutting point
between 0 and 1. However, take a look at Fig. 40.3 again. The
true distributions of both groups have an expected survival
time equal to 1/3, but these two groups do not have the
same true survival distribution. There is about an equal area
where the orange line is greater than the blue line as the
opposite. Therefore, the log-rank test has trouble detecting
the difference between these particular two groups. On the
other hand, the supremum log-rank test for x(1) yields a p-
value of 0.05 compared to x(2) with a p-value of 0.11. As
the supremum log-rank test searches over the domain for the
section of greatest divergence, it selects the signal variable
first.
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Fig. 40.3 (a): A sample of 30 observations from each of the distribu-
tions referenced in 40.1b. x(1) = 0 is from Exponential(3) (orange),
x(1) = 1 is from Beta(5,10) (blue). (b): the same sample as in (a),

but x(2) is randomly assigned as 0 (orange) or 1 (blue). “+” indicates
censored observations. The survival curves are estimated using the
Kaplan-Meier estimator (40.6)

Other Splitting Rules
There are many variations on survival trees and survival
splitting rules. Besides the literature above, [24] uses the
imputation of censored data to improve prediction, and [6,25]
develop splitting rules that correct the bias caused by the
censoring distribution. For more splitting rules that can ac-
count for bias, see Sect. 40.6. After splitting is complete, one
possible next step is to prune the tree: starting from the fully
fitted tree, remove unnecessary branches to prevent over-
fitting. For example, the cost-complexity pruning is used in
[12] for the regression setting. For general concepts of over-
fitting in statistical learning algorithms, we refer to [26].

40.2.2 Tree Prediction

Using a partition of the feature space, we can produce pre-
dictions for any target point x0 ∈ X . For survival analysis,
the prediction for x0 is simply the survival function estimator
as defined in (40.4) or (40.6) applied to the data from the
terminal node that contains x0. For example, the Nelson-
Aalen estimator for the target point is given by

̂�(t, x0)

=
∑

k:tk≤t

∑n
i=1 1(δi = 1)1(yi = tk)

∑

u 1(x0 ∈ Au)1(xi ∈ Au)
∑n

i=1 1(yi ≥ tk)
∑

u 1(x0 ∈ Au)1(xi ∈ Au)
.

(40.14)

This formula resembles a form of the kernel estimator
[27, 28] (see Sect. 40.7 for more details), making tree-based
methods nonparametric by nature. From this point forward,

we will use the shortened notation, which indicates whether
two points xi and xj ever fall into the same terminal node in
a given tree:

K(xi, xj) =
∑

u∈U
1(xi ∈ Au)1(xj ∈ Au). (40.15)

Then the Nelson-Aalen formula for a terminal node becomes

̂�(t, x0) =
∑

k:tk≤t

∑n
i=1 1(δi = 1)1(yi = tk)K(x0, xi)

∑n
i=1 1(yi ≥ tk)K(x0, xi)

.

(40.16)

However, a tree model and its induced kernel function are
not smooth because there are abrupt jumps in the prediction
once the target point moves from one terminal node to
another. To introduce a smoother and more stable model, we
can build many trees with variations and average them.

40.3 Random Forests for Right-Censored
Survival Data

40.3.1 An Ensemble of Trees with Randomness

Random forest proposed by Breiman [29] is a prediction
model that consists of a collection of trees, with bootstrap
samples [30] and random feature selections [31,32] incorpo-
rated into each tree. The tree construction process stops when
the node sample size is sufficiently small, and the algorithm
does not perform pruning. Each tree produces a prediction
model for the outcome variable, and the forest generates
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a prediction from the average of the tree predictions [29]
in the regression setting, while majority voting is used for
classification. Random forests have been adapted to many
settings besides regression and classification, such as survival
analysis [23, 24, 33], quantile regression [34], unsupervised
learning [35], etc.

Random forests [29] utilize two main mechanics to con-
trol for over-fitting and to reduce correlations among trees:
bagging and random feature selection. To build each tree, the
bagging (bootstrap aggregating) procedure takes bootstrap
samples from the original data set [30]. Then trees are grown
using each bootstrap sample. These trees are then averaged
to produce a forest prediction. Note that other implementa-
tions also consider samplingwithout replacement [36]. These
choices may affect the calculation of other quantities, such as
the variable importance measure that will be introduced later
in Sect. 40.4.

The second main mechanic for controlling over-fitting
is the random feature selection. This procedure takes place
within the tree-building process. When trying to find a split
at any internal node, the algorithm considers only a set of
randomly selected mtry variables without replacement. The
splitting variables will be searched only within this set at
this internal node. When proceeding to the next node, this
set will be regenerated. This method is motivated by works
such as [31] and [32] which lead to less correlated trees.
By the corresponding statistical theory, averaging weakly
correlated estimators (trees) results in a smaller variation of
the averaged estimator (random forest). Hence, the prediction
accuracy of a random forest may be significantly better than
a simple tree version.

We note that there are other possible random mechanisms
such as the extremely randomized trees proposed by Geurts
et al. [37] that considers choosing random cut points when
splitting an internal node. In this case, one or several random
cut points are generated for each variable. The splitting test
statistic is calculated for each of them, and the best split
among them is selected. This mechanism further reduces the
correlation among trees and has a significant computational
advantage due to less number of evaluations of the test
statistics.

40.3.2 Ensemble Prediction

Random forest prediction is, in most cases, an averaged tree
predictor. For example, the prediction for a target point based
on a single tree is from one of the terminal nodes in a treeA =
{Au}u∈U . For a random forest, we have a collection of B such
trees, which can be denoted as {Ab}Bb=1 = {{Abu}u∈Ub}Bb=1.
Based on Eq. (40.14), we obtain a set of predictions ̂�b(t, x0),
b = 1, . . . , B, calculated using

̂�b(t, x0) =
∑

k:tk≤t

∑nb
i=1 1(δbi = 1)1(ybi = tk)Kb(xi, x0)

∑nb
i=1 1(ybi ≥ tk)Kb(xi, x0)

,

(40.17)

where {xbi , ybi , δbi }nbi=1 is the set of bootstrap/resampling obser-
vations used in the bth tree and Kb(xi, x0) = ∑

u∈Ub
1(xi ∈

Abu)1(x0 ∈ Abu) is the corresponding kernel (see Eq. (40.15))
that indicates whether xi and xj fall in the same terminal node
in tree b. Then the forest survival function estimator is simply
aggregating these tree estimators with

̂�(t, x0) = 1

B

B
∑

b=1

̂�b(t, x0), (40.18)

while the survival function can be calculated using

̂S(t, x0) = e−̂�(t,x0). (40.19)

We may also consider alternative definitions of the sur-
vival function estimation. For example, [24] considered di-
rectly averaging the Kaplan-Meier estimators [5] (40.6) from
each tree. Another possibility is to view the entire forest
as a single kernel, stacked from each individual tree. Then
the kernel version of the cumulative hazard function can be
defined as

̂�(t, x0) =
∑

k:tk≤t

∑

b

∑nb
i=1 1(δbi = 1)1(ybi = tk)Kb(xi, x0)

∑

b

∑nb
i=1 1(ybi ≥ tk)Kb(xi, x0)

.

(40.20)

Similar approaches of the kernel version of random forests
have been considered in the regression [38] and generalized
versions [39]. However, it has yet been reported if any of
the aforementioned averaging method lead to superior per-
formance.

40.3.3 Tuning Parameters

Tuning parameter selection is probably the most im-
portant part in the application of random forests. There
are many R packages such as randomForest [40],
randomForestSRC [41], and ranger [42] that offers
a variety of tuning parameter. We will use a newly developed
R package RLT [43] as demonstration. The RLT package
offers both standard tuning parameters and addition features
that improve the model fitting process and computational
performance. It is available on GitHub. The major tuning
parameters involved in a random forest aim at controlling
the randomness across different trees and the splitting
mechanism.
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• Sampling size (resample.prob): The proportion of
the total sample used for building each tree. In RLT,
resample.prob = 1 means each tree is fitted using
n observations.

• Sampling type (resample.replace): Whether the re-
sampling of observations for a tree is done with or without
replacement. In RLT, resample.replace=TRUE in-
dicates sampling with replacement.

• Number of trees (ntrees): The default value for
ntrees is 500. This value should be set as a relatively
large number so that the averaged model is stable.

• Number of random features sampled (mtry): This imple-
ments the random feature selection at each internal node
and only compares these selected features to search for the
best splitting rule. Common settings are mtry= √

p, p/3,
and possibly p, which exhausts all variables.

• Splitting score (split.rule under param.control
settings): The type of measure used to pick the best split.
The options for survival analysis are "logrank" (40.12)
and "suplogrank" (40.13).

• Type of search for the cutting point (split.gen): The
method used to generate potential cutting points for a
splitting rule. The common choices are split.gen
= "best" or "random". "best" is the mechanism
described Sect. 40.2.1: it considers all possible splits.
"random" generates a set of random cutting point and
selects the best among them. This setting mimics the
mechanism proposed in [37].

• Number of random splits (nsplit): if split.gen =
"random", this parameter controls the number of ran-
domly generated cutting points. This number is usually
small to achieve computational efficiency.

• Terminal node size (nmin): Splitting will not occur on a
node with less than 2×nmin observations. Under random
splitting, theremay not be at minimumnmin observations
at a terminal node. For survival analysis, it can be benefi-
cial to require 2×nmin number of observed failure events
to perform a split.

• Child node size control (alpha underparam.control
settings): At an internal node, if the sample size is
n, alpha ensures each child node contains at least
alpha ×n observations. This parameter is not effective
when the split.gen = "random". Setting a nonzero
alpha value can ensure additional theoretical properties
especially when nmin is small.

• Variable importance control (importance): Whether
variable importance (see Sect. 40.4) should be calculated.
In RLT, importance=FALSE will not calculate vari-
able importance, which will make the algorithm faster if
this measure is not desired for the analysis.

Finally, we provide a high-level algorithm for general
random forest models in Algorithm 1. Note that for different

types of random forest models, the main differences are the
splitting rule and terminal node estimation.

Algorithm 1: General algorithm for random forest
models
Input: Training data setDn and parameters from Sect. 40.3.3.

Let B = ntrees.
1 for b = 1 to B do
22 Initiate A = X , a bootstrap sampleDb

n of size
resample.prob× n from Dn, and the set of terminal
nodesAb = ∅;

33 At a node A, if
∑

xi∈Db
n

1(xi ∈ A) < 2 × nmin, proceed
to Line 5. Otherwise, construct a splitting rule
(Sect. 40.2.1) such that A = AL ∪ AR, where AL ∩ AR = ∅
and min(

∑

xi∈A 1(xi ∈ AL),
∑

xi∈A 1(xi ∈ AR)) >

alpha ×∑

xi∈Db
n

1(xi ∈ A);

44 Send the two child nodes AL and AR to Line 3 separately;
55 Conclude the current node A as a terminal node and update

Ab = Ab ∪ A.
6 end
7 return {Ab}Bb=1.

40.3.4 Evaluation Criteria for Survival Models

For regression, the commonly used error is the mean squared
error. Classification models often use the misclassification
rate.When calculating the error for a survival model, we have
to compare a fitted function (hazard or survival function)
with the observed survival outcomes. There are two popular
survival error metrics used in practice: the C-index error [44]
and the Brier Score error [45]. Other possible choices, such as
the Cox-Snell residual and the martingale residual, are more
commonly used for diagnosis in semi-parametric models.

The C-index is essentially a classification measure ad-
justed for censoring. It measures the probability that, for two
randomly drawn subjects, the subject with the lower survival
time is classified correctly as having a worse prediction
(higher hazard function or lower survival function) than the
other subject. However, since these functions are varying
according to t, we need a scalar summary of the prediction to
indicator whether a prediction is better or worse. As proposed
in [23], this prediction is defined as

νi =
K

∑

k=1

̂�(tk, xi), (40.21)

for each subject i. Hence, νi < νj indicates that subject j has
a worse predicted outcome than subject i. Then, we calculate
the ratio of corrected classified pairs over permissible pairs,
where the number of permissible pairs is defined as

P =
∑

i<j: yi �=yj,
δi=1 if yi<yj,
or δj=1 if yj<yi

1 +
∑

i<j: yj=yi
and δi+δj>0

1,
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and the number of correctly classified pairs is

C =
∑

i<j: yi<yj
δi=1

{

1(νi > νj) + 0.5 · 1(νi = νj)
}

(40.22)

+
∑

i<j: yj<yi
δj=1

{

1(νi < νj) + 0.5 · 1(νi = νj)
}

+
∑

i<j: yj=yi
δi=1, δj=1

{

1(νj = νi) + 0.5 · 1(νj �= νi)
}

+
∑

i<j: yj=yi
δi+δj=1

0.5 ·
{

1 + 1(νj > νi)1(δj = 1) + 1(νi > νj)1(δi = 1)
}

.

Then the C-index for a prediction function̂f is simply

C-index = C

P
, (40.23)

with larger values indicating better model fits. The C-index
error is then 1 − C/P.

Another choice is the Brier score, which was first intro-
duced byBrier [46] as a classificationmeasure and eventually
adjusted for survival [45]. Unlike the C-index, the Brier score
requires the conditional censoring distribution G(t, x) =
P(C > t|X = x) to be specified. Since the true censoring
distribution is unknown, the performances of a Brier score
can be affected by the choice of the censoring model to
estimate this distribution. In practice, this is often simplified
to a marginal censoring distribution G(t) = P(C > t), which
can be estimated through a Kaplan-Meier estimator (40.6)
using the data with 1− δi as the censoring indicator. Alterna-
tively, one can estimate the conditional functionG(t, x) using
a Cox proportional hazard model with the same strategy of
reversing the censoring indicator. Using an estimator ̂G(t, x),
the Brier Score at time t can be calculated as

BS(t)

= 1

n

n
∑

i=1

(

1(yi ≤ t)1(δi = 1)̂S(t, xi)2

̂G(y−i , xi)
+ 1(yi > t)(1 −̂S(t, xi))2

̂G(t, xi)

)

,

(40.24)

where y− is the left limit to incorporate the fact that ̂G(t, x)
is often times not smooth. Note that the Brier Score is only
defined on a single time point, we often use the integrated
Brier Score to summarize the errors. This is defined as

IBS(̂f ) =
∫ τ

t=0
BS(t)dt, (40.25)

where τ is a pre-chosen maximal time point, e.g., the maxi-
mum observed failure time. The integral has to be calculated
as a summation over all observed time points in practice.

It should be noted that if the observed data are extremely
noisy, empirical evaluations of both C-index and Brier score
could be insensitive to the performance.

40.3.5 Out-of-Bag Error

When using sampling with replacement (bootstrap) in ran-
dom forests, a sample size of n consists of approximately
0.632 × n unique samples. This is based on the fact that
each observation has a 1 − 1/n chance not to be selected
if we randomly pick one observation and the probability of
being in the testing data is then (1− 1/n)n, which converges
to e−1. This means that each tree excludes about one-third
of the data. These excluded observations are called the out-
of-bag samples (corresponding to the particular tree). It also
allows calculation of prediction error by treating them as an
independent testing set against the corresponding tree. This
testing set is particularly useful when evaluating the model
performance and selecting variables. The resulting test error
is referred to as the out-of-bag error for the corresponding
tree. The mechanism of out-of-bag error is essentially a
type of cross-validation. However, as an ensemble method,
random forests have their unique way of aggregating these
out-of-bag errors over the entire forest. Hence it does not
require explicitly splitting the data into training and testing
samples.

For each of the training observations, we may look at
all the trees that do not use that observation for building
the tree, i.e., the observation is in the out-of-bag sample
of these trees. As long as resample.replace=TRUE or
resample.prob<1, there will be an out-of-bag sample,
and the out-of-bag error can be calculated. Denote the collec-
tion of such out-of-bag samples as {Loob

b }Bb=1. The out-of-bag
prediction for xi is the average prediction over the trees that
exclude xi. In the survival case, (40.18) would be modified to

̂�oob(t, xi) = 1
∑B

b=1 I(xi ∈ Loob
b )

B
∑

b=1

I(xi ∈ Loob
b )̂�b(t, xi).

(40.26)

This prediction can then be compared with the observed
outcome value {yi, δi} to calculate a prediction error, such as
the C-index or Brier score.

40.4 Variable Selection via Variable
Importance in High-Dimensional
Settings

High-dimensional data are commonly observed in biomed-
ical studies. Gene expression data sets often consist of
30K∼35K variables. Variable selection tools are highly
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desirable for handling large amounts of variables. Random
forests provide a built-in mechanism, the variable importance
measure, for estimating and ranking the contribution of
each variable. This measure is again a by-product of the
bootstrapping and out-of-bag prediction errors. The basic
procedure works as follows:

• For the bth tree, calculate the prediction error of the out-
of-bag samples Loob

b using the fitted tree. Denote the out-
of-bag error as Errb for b = 1, . . . , B.

• For each tree, take the out-of-bag samples and randomly
shuffle the values of a variable j within these samples.
Using this newly created out-of-bag data, evaluate the
prediction error. Denote the errors as Err(j)b , for b =
1, . . . , B and j = 1, . . . p.

• Calculate the jth variable importance as

VI(j) = 1

B

B
∑

b=1

Err(j)b
Errb

− 1.

Alternatively, one can also use B−1 ∑B
b=1(Err

(j)
b − Errb).

In practice, we may use any of the previously introduced
error metrics for Errb. The logic behind the variable impor-
tance measure is that after randomly shuffling a variable j
within the out-of-bag data, its association with the outcome
is destroyed. Hence, if this variable is initially informative for
predicting the survival time, the prediction error Err(j)b should
be much larger than Errb calculated from original data due to
this loss of information. Hence, by taking the averaged ratio
(or difference) of the two, and subtracting one, the variable
importance measure should be positive. On the other hand,
if a variable is non-informative for predicting the outcome,
we would expect its variable importance to be approximately
zero. Theoretical analysis of the variable importance under
regression settings has been done by Zhu et al. [43], which
essentially explains these properties. However, note that the
variable importance relies on the behavior of the fitted tree
models. Therefore, random forest with different turnings
may lead to different rankings of the variable importance.
As a consequence, the variable importance from a random
forest should be interpreted as the importance reflected from
the model itself, rather than the importance of the under-
lying truth. Of course when random forest can consistently
estimate the underlying model [47], the two concepts are
asymptotically the same. These subtle differences are often
ignored in practice.

40.4.1 Other Methods for Calculating Variable
Importance

The process mentioned above (hereafter referred to as
“permutation variable importance”) is not the only way to

determine which variables have more predictive power. The
most naive approach is simple: count the number of times
each variable is used as a splitting variable within the forest
and rank accordingly [48]. However, the naive method is
strongly biased toward selecting continuous variables, as
these variables have more places to split.

One potential issue with permutation variable importance
arises when the variables are correlated [49]. For example,
let x(j) and x(l) be two correlated variables. When x(j) is
permuted, x(l) will still have its original values. Therefore, x(l)

may help correctly classify the observations evenwithout x(j).
In that case, the importance of correlated predictor variables
may be suppressed. It should be noted that, from a statistical
point of view, these issues are mainly caused by an identifia-
bility issue, in which the focus is variable selection. However,
from a prediction point of view, one may be interested in
both variables regardless of which is the truth. Hence, again,
a variable importance measure may be better interpreted as
the importance presented in the current fitted model as we
explained previously.

Nonetheless, some existing methods can be used to deal
with correlated variables, such as [49] who developed con-
ditional variable importance. Their process is a variation on
permutation variable importance that includes conditioning
on a second variable. For a variable j, determine all other
variables Z = {j(1), j(2), . . . , j(q)} that are correlatedwith j. It is
suggested in [49] to use only the variables whose correlation
with variable j exceeds a certain threshold. Then we calculate
conditional variable importance as follows:

• For the bth tree, calculate the prediction error of the out-
of-bag samples Loob

b using the fitted tree. Denote the out-
of-bag error as Errb for b = 1, . . . , B.

• For the bth tree, for each variable in the index set Z, extract
the cutting points used to split it and construct a grid by
bisecting the sample space using all variables and their
corresponding cutting points.

• Randomly shuffle the values of a variable j within each
section of the grid. Using this newly shuffled data, eval-
uate the out-of-bag prediction error. Denote the errors as
Err(j|Z)

b , for b = 1, . . . , B.
• Calculate the conditional variable importance of the jth

variable as

VI(j|Z) = 1

B

B
∑

b=1

Err(j|Z)

b

Errb
− 1

One obvious problem is that variables j and Z may not occur
in the same tree. However, [49] mentioned that with enough
trees, the different combinations should appear often enough
for an accurate estimate. While [49] developed the method
for regression forests, the same process can be adapted to
survival forests.
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Fig. 40.4 A survival tree with p = 3 covariates. Nodes are labeled with
depth measure

Another method for variable selection relies on using
maximal sub-trees [50] for a variable x(j), defined as “the
largest sub-tree (a connected tree within a tree) whose root
node is split using” the variable of interest. The associated
measure of the variable x(j)’s strength is the distance from
the root of the tree to the maximal sub-tree of x(j). As
a smaller distance indicates that x(j) is closer to the root,
a smaller value indicates a variable with higher predictive
power. For example, consider the tree in Fig. 40.4 from the
model defined in Sect. 40.6.2. We generated a plot using
rpart [13] and rpart.plot [51]. There are three sub-
trees for x(1): one starting at the split x(1) < −1.2, a second
at x(1) < 0.033, and lastly, one at x(1) < −0.91. These three
trees have depth 1, 1, and 2, respectively, from the root node.
Therefore, the minimal depth of x(1) is 1. x(3) has two sub-
trees: one starting at the root node and the other at the split
x(3) < −0.82. These trees have depth 0 and 2, respectively,
for a minimum depth of 0. As x(2) is not used in the tree,
its minimum depth is infinity. The advantage of this minimal
depth importance is that it does not depend on the particular
type of outcome. Hence, it does not rely on the accuracy of
the error measurement. Again, all the variable importance
measures introduced here rely on the accuracy of the fitted
tree model and should be viewed as a way of interpreting the
black-box algorithm.

40.5 Example: Breast Cancer Data Analysis

We use the data collected by Wang et al. [52] for
analyzing breast cancer relapse time as an illustration
of random survival forest. The data is available on the

Gene Expression Omnibus [53] under the ascension num-
ber GSE2034 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE2034). The goal of this analysis is to provide
a better way to assess the risk of relapse for patients with
lymph-node-negative breast cancer [52]. The code to pull
the data, the data itself, and the full code for our analysis
are available on Sarah E. Formentini’s GitHub repository
(https://github.com/sarahef2/springer-surv). We used the
RLT package, which is available on GitHub (https://github.
com/teazrq/RLT) to fit the survival random forest model. In
the analysis from [52], the authors used the estrogen receptor
(ER) status (+/−) as a stratification factor for analysis.
A univariate Cox proportional hazards model was used
to identify genetic covariates associated with relapse-free
survival for ER+ and ER− individually. The authors further
identified 60 genes related to ER+ patients and 16 genes
related to ER− patients. Together, the authors refer to this
group of 76 genes as a “gene signature.” They show this gene
signature to be powerful for predicting high risks of breast
cancer relapse [52].

40.5.1 Data Processing and Description

The data has 22,283 genes, the ER status, and the time until
relapse for the 286 patients. For this example, we did not
use the full 22,283 genetic variables. As [52] defined a 76
variable gene signature, we include these variables in our
analysis. We additionally selected the top 500 variables using
marginal screening via a Cox proportional hazards model,
similar to the initial analysis step in [52], but not stratified
by ER status. This selection leads to a total of 552 unique
genetic variables in our analysis. To mirror the study in [52],
we also included ER status as a covariate. None of the other
clinical variables such as age are available online with the rest
of the data, so they are not included.

A plot of the marginal survival function stratified by the
ER status of patients is given in Fig. 40.5. The patients’
censoring times are marked with “+” on the survival func-
tions. There are only 107 failures in the data set, which
gives a total failure rate of 37%. The median observed time
until relapse is 28 months, and the median censoring time is
104 months.

40.5.2 Fitting Survival Random Forest

To fit the model, we first consider a set of tuning parameters
to select the best tuning. We consider mtry = √

p, p/3, and
p, nmin = 1, log(n), and n1/3, split.rule=logrank
and suplogrank, and split.gen=best and random.
For each tuning, we use 20,000 trees, sampling with
replacement, and a bootstrap sample size of n. The rest
of the tuning parameters were left as their package defaults.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034
https://github.com/sarahef2/springer-surv
https://github.com/teazrq/RLT
https://github.com/teazrq/RLT
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Fig. 40.5 Marginal survival function until relapse, stratified by ER
status. The orange line is ER+; the blue line is ER−. “+” indicates
censored observations

Using the out-of-bag C-index error as the selection
criteria, the best combination of parameters is mtry =
p/3 ≈ 184, nmin = 1, split.rule=logrank, and
random split, with an out-of-bag C-index error of about
0.262. The worst combination, mtry = p, nmin = 1,
split.rule=logrank, and best split, has an out-of-
bag C-index error of 0.296, which is 13% larger. In this case,
the worst combination of parameters was the set that tried
every single variable and every cutting point on that variable
in every node, as well as only requiring a single observation
in each terminal node. That model likely overfit to the noise
in the fitting data, making it a poor predictor to new data.
Additionally, split.rule=suplogrank performed
rather similarly to split.rule=logrank. Alternatively,
we could have chosen the best set of parameters using k-fold
cross-validation. However, that would have required running
the algorithm k times for each combination of parameters,
which would be much more computationally expensive.

Using the best tuning parameter settings, we ran the final
model and calculated variable importance. Of the top 40
variables by importance (Fig. 40.6), 4 are among the 76 gene
signature provided by Wang et al. [52]. The other 36 are
from marginal screening. Finally, we plot the fitted survival
functions of four subjects. These four subjects were selected
based on ER status (“+” and “−”) and the variable with the
highest importance, the genetic variable 219478_at (high or
low). The chosen subjects have the maximum or minimum
value of 219478_at within the ER+ and ER− groups. Their
out-of-bag predicted survival curves are plotted in Fig. 40.7.
The ER+ subject with a high level of 219478_at has a shorter
predicted survival time than the ER+ subject with a low
219478_at value, and a similar effect is observed with the
ER− subjects. A large divergence in the most important
variable, 219478_at, led to very different predictions.

40.6 Bias and Corrections of Survival
Forests

Ideally, we would observe the time until the event in every
case. However, due to censoring, we only have incomplete
data about the time until the event. This is the central con-
cern of survival analysis. However, parametric and semi-
parametric models for handling censored data could be po-
tentially biased if the model is mis-specified. For example,
the Cox proportional hazard model is built to handle right
censored data. However, when there is no censoring, it does
not reduce to a standard linear regression model [54]. The
resulting bias is especially pronounced when the hazards
are not proportional. Some methods, such as the accelerated
failure time model [55], do reduce to an ordinary linear
regression model when there is no censoring. However, the
problem of bias is not confined solely to linear models.

40.6.1 Biasedness of Survival Forests

In many cases, especially in the case of genetics data, many
of the variables may be weakly (or even strongly) correlated.
In particular, some variables that affect failure times (“fail-
ure variables”) may be correlated with variables that affect
censoring times (“censoring variables”). Ideally, we would
split primarily on failure variables rather than censoring
variables. However, as long as there is a weak dependence,
splitting on censoring variables may be unavoidable using the
previously mentioned methods [6]. This phenomenon may
cause biased tree structure, as well as biased estimations.

Random forest models also suffer biasedness although
they are nonparametric in nature. This is mainly caused by
the single variable splitting rule. A splitting rule at any inter-
nal node essentially compares the survival curves computed
from two potential child nodes. Most existing analyses of
the Kaplan-Meier estimator assume that the observations
are i.i.d. [56, 57] or at least one set of the failure times or
censoring times are i.i.d. [58]. However, these assumptions
are almost always not true for tree-based methods because
both Ti and Ci typically depend on some shared covariates.
Thus, by leveraging the standard Kaplan-Meier estimator or
Nelson-Aalen estimator, the child node estimations of the
survival functions are not the true averaged failure distribu-
tion within the node. Hence, splitting on a nonideal covariate
may not be avoidable due to an entanglement between the
failure and censoring distributions. We shall see this clearly
from a toy example in the next section.

40.6.2 AMotivating Example

To demonstrate the problem within forests, consider the
example presented in [6], which we duplicated under slightly
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Fig. 40.6 Top 40 variables by variable importance, plotted in order. The blue bars are the only ones included in the 76 variable gene signature
found by Wang et al. [52]

different settings. Consider n = 1000 and p = 3. The
covariate matrixX follows a multivariate normal distribution
with mean 0 and the covariance between X(1) and X(2) is 0.8,
while X(3) is independent of both X(1) and X(2). The time
until event, T , follows Exponential(exp(1.25X(1)+X(3)−2)).
Hence X(1) contributes a stronger signal than X(3). For better
understanding, we consider the split at the root node. As such,
ideally, the random forest would always split on X(1) first.

We use two types of censoring distributions. In the
first scenario, censoring time is distributed as Exponential
(exp(−2)), so the censoring distribution is independent of
all the variables in X. In the second scenario, the censoring
distribution is Exponential(exp(3X(2) − 2)), so the censoring
distribution is no longer independent of the signal variables.
In both cases, approximately 50% of the observations are
censored.

The results of our simulation using the log-rank test are
displayed in Table 40.1. When the censoring is independent
of the signal variables (X(1) and X(3)), the random forest
correctly splits on X(1) first approximately 86% of the time.

However, when the censoring distribution depends on X(2)

and therefore is no longer independent of X(1), the random
forest splits on X(1) first in only 34% of cases. It splits first
on X(2) in 56% of the cases, when, ideally, we would not split
on X(2) at all. It is clear that the censoring distribution biases
the choice of splitting variables. The consequence of this bias
on the consistency of survival trees is much more involved
as the entire tree structure can be altered by the censoring
distribution. Cui et al. [6] developed a concentration bound
on the difference between the accurately predicted hazard
function (what we could find with complete data and an
unbiased model) and the censoring contaminated predicted
hazard function.

40.6.3 Some Solutions for Bias Correction

There have been multiple proposed adjustments to the sur-
vival random forest algorithm to deal with the bias. For
example, the inverse probability of censoring weights is
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subjects with high or low values of gene “219478_at” and ER+ or ER−

Table 40.1 Probability of selecting each variable in the first split

Censoring mechanism X(1) X(2) X(3)

Independent of signal variables 0.863 0.048 0.089

Not independent of signal variables 0.340 0.562 0.098

extensively considered in the literature [54,59]. For example,
[25] proposed utilizing censoring unbiased transformations
(CUTs). In particular, they developed a generalized doubly
robust transformation that is a CUT when either the survival
distribution or the censoring distribution is correctly speci-
fied but not necessarily both. They used the CUT to develop
a loss function that, when no censoring is present, reduces
to a full data function. Then the loss function is used as a
splitting rule to create a censoring unbiased regression tree
that can then be used for survival random forests.

However, CUTs work in the case where expected values
are the focus of analysis. We have seen an example earlier
in Sect. 40.2.1 where the expected values were not sufficient
to determine the difference between two distributions. To
help with bias and deal with the whole distribution (rather
than only expected values), we consider a different type of
correction. Cui et al. [6] proposed tackling the bias by using
a weighted Nelson-Aalen estimator, which is a variation
on (40.14):

̂�(t, x0) =
∑

k:tk≤t

∑n
i=1 1(δi = 1)1(yi = tk)K(x0, xi)/[1 − ̂G(tk, xi)]

∑n
i=1 1(yi ≥ tk)K(x0, xi)/[1 − ̂G(tk, xi)]

.

(40.27)

As in the calculation of the Brier score (40.24),̂G(tk, xi)’s for
consistency are estimates of the conditional censoring distri-
bution, which can be estimated by a separatemodel, or simply
plug-in the marginal censoring distributing estimation. Cui
et al. [6] estimated and compared the inverse probability
weighted hazard functions with the weights δi/{1−̂G(tk|xi)}
at each internal node, which accounts for the bias caused by
censoring and allows for the choice of the two most divergent
child nodes. This type of splitting rule, like the supremum
log-rank test (40.13), compares the survival functions rather
than the expected survival time.

Another appeal of this bias-corrected survival forest is
in high-dimensional settings. Cui et al. [6] showed that a
survival forest model with a marginal splitting rule has the
rate of convergence depending on the total number of vari-
ables included in both failure time and censoring time. While
[6] developed their results under a general framework where
the covariates are allowed to be weakly correlated, their
approach directly extends to the case where all the variables
in x are independent. In such cases, the biasedness is not
due to correlated variables but the entanglement between
failure time and censoring time marginally. For example,
if the censoring time and failure time depend on a shared
variable, all the other variables involved in the censoring
distribution may play a role in the limiting distribution of
(40.14). Hence, there is no guarantee of splitting only on
the failure variables, especially when the dimensionality is
high. The new type of survival forests in [6] that leverages
(40.27) untangles the failure and censoring distributions and
improves the rate of convergence of tree model so that the
rate depends only on the number of important variables that
define the failure distribution.

40.7 Theoretical Properties of Random
Forest

Theoretical analysis of random forests has been an active
research topic in recent years. Under assumptions of the ad-
ditive model, [47] showed the consistency of random forests.
One of the earlier attempts was made by Lin and Jeon
[60], which formulates random forests as a nearest-neighbor
model. An interesting insight provided by this paper is that
a random forest defines its neighborhood adaptively. For a
variable with a stronger signal, it will be repeatedly used
as the splitting rule, making the width of the variable in
a terminal node much smaller than other variables [43].
This partition resembles the properties of multidimensional
kernel estimators with adaptive bandwidth selection [61].
For random forests, we can easily derive the induced kernel
distance as an extension of (40.15)

K(xi, xj) = 1

B

B
∑

b=1

∑

u∈Ub

1
(

xi ∈ Abu
)

1
(

xj ∈ Abu
)

, (40.28)
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which can be used for a kernel version of the prediction [38].
Further exploiting the properties of this induced kernel is of
great interest. The technique may be universally applicable
to many types of random forest models and shed light on
proving the consistency of the method.

Another topic of random forests is to quantify its variation.
In statistics, this quantification is an important issue because
we may be able to provide a valid inference of the estimated
survival function and draw conclusions. For example, in
precision medicine [62, 63], one has to compare the sur-
vival function estimations that resulted from applying two
potential treatments and select the better one [64–66]. Being
able to quantify the confidence intervals of the estimations
is practically useful. To this end, recent literature proposes
to use jackknife [67, 68] or U-statistics [69]. U-statistic [70]
is a classical tool that provides asymptotic normality of an
averaged estimator based on all possible subsampling com-
binations. The particular version applicable to the random
forest is incomplete [69, 71] in the sense that a relatively
small number (ntrees) of such subsamples are used. With
suitable conditions, a normality result can be established, and
the variance can be estimated by deriving the leading term in
the Hoeffding decomposition. However, a relatively restric-
tive condition is that the subsample size must be smaller than√
n. This restriction is a limitation in practice since a small

sample size in each tree will lead to significant bias. Being
able to relax these conditions while not drastically increasing
the computational cost is a challenging statistical issue.

40.8 Supplementary Material

All examples provided in this chapter are created using
the R [72]. Source code for the examples is available at
https://github.com/sarahef2/springer-surv. The RLT package
is available at https://github.com/teazrq/RLT.

References

1. Fleming, T.R., Harrington, D.P.: Counting Processes and Survival
Analysis, vol. 169. Wiley, Hoboken (2011)

2. Nelson, W.: Hazard plotting for incomplete failure data(multiply
censored data plotting on various type hazard papers for engineer-
ing information on time to failure distribution). J. Qual. Technol. 1,
27–52 (1969)

3. Aalen, O.: Nonparametric inference for a family of counting pro-
cesses. Ann. Stat. 6(4), 701–726 (1978)

4. Altshuler, B.: Theory for the measurement of competing risks in
animal experiments. Math. Biosci. 6, 1–11 (1970)

5. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete
observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

6. Cui, Y., Zhu, R., Zhou, M., Kosorok, M.: Consistency of survival
tree and forest models: splitting bias and correction. Statistica
Sinica, 32(3), 1245–1267.

7. Cox, D.R.: Regression Models and Life-Tables. J. R. Stat. Soc. Ser.
B Methodol. 34(2), 187–220 (1972)

8. Wei, L.-J.: The accelerated failure time model: a useful alternative
to the cox regression model in survival analysis. Stat. Med. 11(14-
15), 1871–1879 (1992)

9. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure
Time Data. Wiley, New York (1980). ISBN 9780471055198

10. Bennett, S.: Analysis of survival data by the proportional odds
model. Stat. Med. 2(2), 273–277 (1983)

11. Vaupel, J.W.,Manton, K.G., Stallard, E.: The impact of heterogene-
ity in individual frailty on the dynamics of mortality. Demography
16(3), 439–454 (1979)

12. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classifi-
cation and Regression Trees. Taylor & Francis Group, LLC, Boca
Raton (1984). ISBN 9781315139470

13. Therneau, T., Atkinson, B.: rpart: Recursive partitioning and re-
gression trees (2019). https://CRAN.R-project.org/package=rpart.
R package version 4.1-15

14. Hothorn, T., Zeileis, A.: partykit: A modular toolkit for recursive
partytioning in R. J. Mach. Learn. Res. 16, 3905–3909 (2015).
http://jmlr.org/papers/v16/hothorn15a.html

15. Segal, M.R.: Regression trees for censored data. Biometrics 44(1),
35–47 (1988)

16. Loh, W.-Y.: Survival modeling through recursive stratification.
Comput. Stat. Data Anal. 12(3), 295–313 (1991)

17. Ahn, H., & Loh, W.-Y.: Tree-Structured Proportional Hazards
Regression Modeling. Biometrics, 50(2), 471–485 (1994).

18. Su, X., Fan, J.: Multivariate survival trees: a maximum likeli-
hood approach based on frailty models. Biometrics 60(1), 93–99
(2004)

19. Molinaro, A.M., Dudoit, S., Van der Laan, M.J.: Tree-based multi-
variate regression and density estimation with right-censored data.
J. Multivar. Anal. 90(1), 154–177 (2004)

20. Bou-Hamad, I., Larocque, D., Ben-Ameur, H.: A review of survival
trees. Statistics Surveys 5, 44–71 (2011)

21. Fleming, T.R., O’Sullivan, M., Harrington, D.P.: Supremum ver-
sions of the log-rank and generalized Wilcoxon statistics. J. Am.
Stat. Assoc. 82(397), 312–320 (1987). ISSN 1537274X. doi: 10.
1080/01621459.1987.10478435

22. Kosorok, M.R., Lin, C.-y.: The Versatility of Function-Indexed
Weighted Log-Rank Statistics. J. Am. Stat. Assoc. 94(445), 320–
332 (1999)

23. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Ran-
dom survival forests. Ann. Appl. Stat. 2(3), 841–860 (2008)

24. Zhu, R., Kosorok, M.R.: Recursively imputed survival trees. J. Am.
Stat. Assoc. 107(497), 331–340 (2012)

25. Steingrimsson, J.A., Diao, L., Strawderman, R.L.: Censoring unbi-
ased regression trees and ensembles. J. Am. Stat. Assoc. 114(525),
370–383 (2019)

26. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements
of statistical learning: data mining, inference and prediction. Math.
Intell. 27(2), 83–85 (2005)

27. Nadaraya, E.A.: On estimating regression. Theory Probab. Appl.
9(1), 141–142 (1964)

28. Dabrowska, D.M.: Uniform Consistency of the Kernel Conditional
Kaplan-Meier Estimate. Ann. Stat. 17(3), 1157–1167, (1989)

29. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
30. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140

(1996)
31. Amit, Y., Geman, D.: Shape quantization and recognition with

randomized trees. Neural Comput. 9(7), 1545–1588 (1997)
32. Ho, T.K.: The random subspace method for constructing decision

forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844
(1998)

33. Hothorn, T., Lausen, B., Benner, A., Radespiel-Tröger, M.: Bag-
ging survival trees. Stat. Med. 23(1), 77–91 (2004)

https://github.com/sarahef2/springer-surv
https://github.com/teazrq/RLT
https://CRAN.R-project.org/package=rpart
http://jmlr.org/papers/v16/hothorn15a.html


846 S. E. Formentini et al.

34. Meinshausen, N.: Quantile regression forests. J. Mach. Learn. Res.
7, 983–999 (2006)

35. Shi, T., Horvath, S.: Unsupervised learning with random forest pre-
dictors predictors. J. Comput. Graph. Stat. 15(1), 118–138 (2006).
doi: 10.1198/106186006X94072.

36. Liaw, A., Wiener, M., et al.: Classification and regression by
randomforest. R News 2(3), 18–22 (2002)

37. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees.
Mach. Learn. 63(1), 3–42 (2006)

38. Scornet, E.: Random forests and kernel methods. IEEE Trans. Inf.
Theory 62(3), 1485–1500 (2016)

39. Athey, S., Tibshirani, J., Wager, S., et al.: Generalized random
forests. Ann. Stat. 47(2), 1148–1178 (2019)

40. Liaw, A., Wiener, M.: Classification and regression by randomfor-
est. R News 2(3), 18–22 (2002). https://CRAN.R-project.org/doc/
Rnews/

41. Ishwaran, H., Kogalur, U.B.: Fast unified random forests for sur-
vival, regression, and classification (rf-src) (2019). https://cran.r-
project.org/package=randomForestSRC. R package version 2.9.1

42. Wright,M.N., Ziegler, A.: ranger: A fast implementation of random
forests for high dimensional data in C++ and R. J. Stat. Softw.
77(1), 1–17 (2017). doi: 10.18637/jss.v077.i01

43. Zhu, R., Zeng, D., Kosorok, M.R.: Reinforcement learning trees. J.
Am. Stat. Assoc. 110(512), 1770–1784 (2015)

44. Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.:
Evaluating the Yield of Medical Tests. JAMA 247(18), 2543–2546
(1982)

45. Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M.: Assessment
and comparison of prognostic classification schemes for survival
data. Stat. Med. 18(17-18), 2529–2545 (1999). ISSN 0277-6715

46. Brier, G.W.: Verification of forecasts expressed in terms of proba-
bility. Mon. Weather Rev. 78(1), 1–3 (1950)

47. Scornet, E., Biau, G., Vert, J.-P.: Consistency of random forests.
Ann. Stat. 43(4), 1716–1741 (2015)

48. Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in
random forest variable importance measures: Illustrations, sources
and a solution. BMC Bioinf. 8(1), 1–21 (2007). ISSN 14712105.
doi: 10.1186/1471-2105-8-25

49. Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A.:
Conditional variable importance for random forests. BMC Bioinf.
9, 1–11 (2008). ISSN 14712105. doi: 10.1186/1471-2105-9-307

50. Ishwaran, H., Kogalur, U.B., Chen, X., Minn, A.J.: Random sur-
vival forests for high-dimensional data. Stat. Anal. Data Min. 4(1),
115–132 (2011). ISSN 19321864. doi: 10.1002/sam.10103. http://
doi.wiley.com/10.1002/sam.10103

51. Milborrow, S.: rpart.plot: Plot ‘rpart’ models: An enhanced version
of ‘plot.rpart’ (2019). https://CRAN.R-project.org/package=rpart.
plot. R package version 3.0.8

52. Wang, Y., Klijn, J.G.M., Zhang, Y., Sieuwerts, A.M., Look, M.P.,
Yang, F., Talantov, D., Timmermans, M., Meijer-Van Gelder, M.E.,
Yu, J., Jatkoe, T., Berns, E.M.J.J., Atkins, D., Foekens, J.A.: Gene-
expression profiles to predict distant metastasis of lymph-node-
negative primary breast cancer. Lancet 365, 671–679 (2005). ISSN
01406736. doi: 10.1016/S0140-6736(05)70933-8

53. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 30(1), 207–210 (2002)

54. Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., Van Der Laan,
M.J.: Survival ensembles. Biostatistics 7(3), 355–373 (2005)

55. Buckley, J., James, I.: Linear regression with censored data.
Biometrika 66(3), 429–436 (1979)

56. Breslow, N., Crowley, J.: A large sample study of the life table and
product limit estimates under random censorship. Ann. Stat. 2(3),
437–453 (1974)

57. Gill, R.D.: Censoring and stochastic integrals. Statistica Neer-
landica 34(2), 124–124 (1980)

58. Zhou, M., et al.: Some properties of the kaplan-meier estimator
for independent nonidentically distributed random variables. Ann.
Stat. 19(4), 2266–2274 (1991)

59. Van der Laan, M.J., Laan, M.J., Robins, J.M.: Unified Methods for
Censored Longitudinal Data and Causality. Springer, Berlin (2003)

60. Lin, Y., Jeon, Y.: Random forests and adaptive nearest neighbors.
J. Am. Stat. Assoc. 101(474), 578–590 (2006)

61. Li, Q., Lin, J., Racine, J.S.: Optimal bandwidth selection for non-
parametric conditional distribution and quantile functions. J. Bus.
Econ. Stat. 31(1), 57–65 (2013)

62. Foster, J.C., Taylor, J.M.G., Ruberg, S.J.: Subgroup identification
from randomized clinical trial data. Stat. Med. 30(24), 2867–2880
(2011)

63. Wager, S., Athey, S.: Estimation and inference of heteroge-
neous treatment effects using random forests. J. Am. Stat. Assoc.
113(523), 1228–1242 (2018)

64. Zhao, Y.-Q., Zeng, D., Laber, E.B., Song, R., Yuan, M., Kosorok,
M.R.: Doubly robust learning for estimating individualized treat-
ment with censored data. Biometrika 102(1), 151–168 (2014)

65. Zhu, R., Zhao, Y.Q., Chen, G., Ma, S., Zhao, H.: Greedy outcome
weighted tree learning of optimal personalized treatment rules.
Biometrics 73(2), 391–400 (2017)

66. Cui, Y., Zhu, R., Kosorok, M.: Tree based weighted learn-
ing for estimating individualized treatment rules with censored
data. Electron. J. Statist. 11(2), 3927–3953 (2017). doi: 10.1214/
17-EJS1305. https://doi.org/10.1214/17-EJS1305

67. Sexton, J., Laake, P.: Standard errors for bagged and random forest
estimators. Comput. Stat. Data Anal. 53(3), 801–811 (2009)

68. Wager, S., Hastie, T., Efron, B.: Confidence intervals for random
forests: the jackknife and the infinitesimal jackknife. J. Mach.
Learn. Res. 15(1), 1625–1651 (2014)

69. Mentch, L., Hooker, G.: Quantifying uncertainty in random forests
via confidence intervals and hypothesis tests. J. Mach. Learn. Res.
17(1), 841–881 (2016)

70. Hoeffding, W.: A class of statistics with asymptotically normal
distribution. In: Breakthroughs in Statistics, pp. 308–334. Springer,
Berlin (1992)

71. Lee, A.J.: U-statistics: Theory and Practice. Routledge, London
(2019)

72. R Core Team. R: A Language and Environment for Statistical
Computing (2019). https://www.R-project.org

Ruoqing Zhu is an Associate Professor at the Department of Statistics
at UIUC. He obtained his Ph.D from UNC Chapel Hill in 2013 and
completed his postdoc training at Yale University in 2015. His expertise
is in statistical methodology and theory of machine learning methods
and their applications to biomedical data. Currently, his research focuses
on personalized medicine, random forests, reinforcement learning and
survival analysis.

https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://cran.r-project.org/package=randomForestSRC
https://cran.r-project.org/package=randomForestSRC
http://doi.wiley.com/10.1002/sam.10103
http://doi.wiley.com/10.1002/sam.10103
https://CRAN.R-project.org/package=rpart.plot
https://CRAN.R-project.org/package=rpart.plot
https://doi.org/10.1214/17-EJS1305
https://www.R-project.org


40 Random Forests for Survival Analysis and High-Dimensional Data 847

40
Sarah E. Formentini received her Ph.D. in Statistics at the University
of Illinois at Urbana-Champaign in 2022. Her research focused on
survival analysis and random forests, including survival data integration
and survival random forest variation estimation.

Yifan Cui received his Ph.D. from University of North Carolina at
Chapel Hill in 2018. He is currently a tenure track faculty member
at the Center for Data Science in Zhejiang University (ZJU). He has
worked atWharton Statistics Department, University of Pennsylvania as
a postdoctoral researcher andDepartment of Statistics andData Science,
National University of Singapore as an assistant professor. His main
research interests include nonparametric and semiparametric statistics,
random forests, causal inference, precision medicine, survival analysis,
generalized fiducial inference, and foundations of statistics.



41Probability Inequalities for High-Dimensional
Time Series Under a Triangular Array
Framework

Fang Han and Wei Biao Wu

Contents
41.1 The Measure of Dependence . . . . . . . . . . . . . . . . . . . . . 849

41.2 Probability and Moment Inequalities Under
Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851

41.2.1 Sample Sum for Scalars with dn = 1. . . . . . . . . . . . . . . . . 852
41.2.2 Sample Sum for Random Vectors with dn ≥ 1 . . . . . . . . 854
41.2.3 Sample Sum for Random Matrices with dn ≥ 1 . . . . . . . 856
41.2.4 U- and V-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857

41.3 A Cautionary Example . . . . . . . . . . . . . . . . . . . . . . . . . . 858

41.4 Statistical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 861

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862

Abstract

Study of time series data often involves measuring the
strength of temporal dependence, on which statistical
properties like consistency and central limit theorem
are built. Historically, various dependence measures
have been proposed. In this note, we first survey some
of the most well-used dependence measures as well
as various probability and moment inequalities built
upon them under a high-dimensional triangular array
time series setting. We then argue that this triangular
array setting will pose substantially new challenges to the
verification of some dependence conditions. In particular,
“textbook results” could now be misleading and hence are
recommended to be used with caution.
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41.1 TheMeasure of Dependence

We first introduce the mixing conditions defined on σ -fields.
Fix the probability space as (�,F ,P). For any two σ -fields
A,B belonging to F , define the following four measures of
dependence between A and B (cf. Chapter 3, [10]):

α(A,B) := sup
A∈A,B∈B

∣
∣
∣P(A ∩ B) − P(A)P(B)

∣
∣
∣,

β(A,B) := sup
1

2

I
∑

i=1

J
∑

j=1

∣
∣
∣P(Ai ∩ Bj) − P(Ai)P(Bj)

∣
∣
∣,

φ(A,B) := sup
A∈A,B∈B,P(A)>0

∣
∣
∣P(B | A) − P(B)

∣
∣
∣,

ρ(A,B) := sup
{∣
∣
∣Corr(f, g)

∣
∣
∣, f ∈ L2

R
(A), g ∈ L2

R
(B)
}

,

where the supremum in the definition of β(A,B) is taken
over all pairs of partitions {A1, . . . , AI} and {B1, . . . , BJ} such
that Ai ∈ A and Bj ∈ B for all i, j, and for any p ∈
[1,∞], let Lp

R
(A) represent the family of all real valued, A-

measurable random variables X on � such that ‖X‖Lp :=
(E|X|p)1/p < ∞. We refer to [9] for basic properties and
historical developments on these dependence measures.

Now let’s consider a (not necessarily stationary) time
series {Xt ∈ R

d}t∈Z with Z and Rd representing the sets of all
integers and all d-dimensional real vectors. For each “time
gap” m = 1, 2, . . ., with the above dependence measures,
we are now ready to define the following four mixing co-
efficients that appear frequently in literature:
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α({Xt}t∈Z;m) := sup
j∈Z

α(σ({Xt}t≤j), σ({Xt}t≥j+m)),

β({Xt}t∈Z;m) := sup
j∈Z

β(σ({Xt}t≤j), σ({Xt}t≥j+m)),

φ({Xt}t∈Z;m) := sup
j∈Z

φ(σ({Xt}t≤j), σ({Xt}t≥j+m)),

ρ({Xt}t∈Z;m) := sup
j∈Z

ρ(σ({Xt}t≤j), σ({Xt}t≥j+m)).

Here for any random variable X, σ(X) is understood to be
the σ -field generated by X. A review of the history of these
mixing coefficients can be found in Section 2.1 in [9]. We
also refer readers to the books of [10, 16], and [39].

The above mixing coefficients are defined on σ -fields and
are usually difficult to be explicitly calculated in practice,
though when the model is fixed, asymptotic bounds on coef-
ficients can be derived for many time series models and have
been established in many works. This is one of the reasons to
define weak dependence measures that are often much easier
to calculate. In the following we introduce several of the most
well-used ones.

Bickel and Bühlmann [8] and Doukhan and Louhichi
[17] introduced a notion of weak dependence that facilitates
explicit calculation of the independence strength between
“past” and “future” without resorting to the latent σ -fields.
They could be roughly understood as upper bounding

Cov(f (“ past”), g(“future”))

by the gap between “past” and “future” as well as some
parameters of the functions f and g. In detail, for a function
g : (Rd)u → R, let’s define

Lipδg := sup
{ |g(x1, . . . , xu)−g(y1, . . . , yu)|

δ((x1, . . . , xu), (y1, . . . , yu))
:

(x1, . . . , xu) 	=(y1, . . . , yu)
}

,

where δ(·) represents a certainmetric on the real vector space.
Denote 
δ := {g : (Ru)d → R for some u : Lipδg < ∞} and



(1)
δ := {g ∈ 
δ : ‖g‖∞ ≤ 1} with ‖g‖∞ := supx |g(x)|. In

the following, N represents the set of all natural numbers.

Definition 1.1 ([17,18]) The process {Xt}t∈Z is (

(1)
δ ,ψ , ζ )-

weakly dependent if and only if there exists a function ψ :
R

2+ × N
2 → R+ and a sequence ζ = {ζ(n)}n≥0 decreasing

to 0 as n goes to infinity, such that for any g1, g2 ∈ 

(1)
δ with

g1 : (Rd)u → R, g2 : (Rd)v → R, u, v ∈ N, and any u-tuple
(s1, . . . , su) and any v-tuple (t1, . . . , tv) with s1 ≤ · · · ≤ su <

t1 ≤ · · · ≤ tv, the following inequality is satisfied:

∣
∣
∣Cov

{

g1(xs1 , . . . , xsu), g2(xt1 , . . . , xtv)
}∣
∣
∣

≤ ψ(Lipδg1,Lipδg2, u, v)ζ(t1 − su).

Important examples of (

(1)
δ ,ψ , ζ )-weakly dependent pro-

cesses include θ -, η-, κ-, and λ-dependences, which are listed
in Table 41.1. They correspond to different choices of the
function ψ . Similar to the mixing coefficients, the sequence
ζ describes the degree of dependence over the process.

Later, in [13] and [14], the authors introduced a new set
of dependence measures that, instead of putting focus on
the covariance structure, highlights the intrinsic “coupling”
property of the sequence. This note shall focus on one im-
portant member in this family, the τ -dependence. Consider
a general probability space (�,F ,P) and a random variable
X taking value in a Polish space (X , ‖·‖X ) endowed with a
norm ‖·‖X and satisfying ‖‖X − x0‖X ‖L1 < ∞ for some
x0 ∈ X . Consider a σ -field A ⊂ F . The τ -measure of
dependence between X and A is defined to be

τ(A, X; ‖·‖X ) =
∥
∥
∥ sup
g∈
(‖·‖X )

{ ∫

g(x)PX|A(dx)

−
∫

g(x)PX(dx)
}∥
∥
∥
L1
,

where PX and PX|A represent the distribution and the condi-
tional distributions of X and X given A and 
(‖·‖X ) stands
for the set of 1-Lipschitz functions from X to R with respect
to the norm ‖·‖X .

The following theorem, extracted from [13] and [15],
characterizes the intrinsic “coupling property” of the τ -
measure of dependence and, as a matter of fact, gives an
alternative definition of τ -measure that is usually easier to
use.

Theorem 1.1 (Lemma 3 in [13], Lemma 5.3 in [15]) Let
(�,F ,P) be a probability space, A be a σ -field of F ,
and X be a random variable with values in a Polish space
(X , ‖·‖X ). If Y is a random variable distributed as X and
independent of A, then

τ(A, X; ‖·‖X ) ≤ E‖X − Y‖X .

Table 41.1 Important examples of weak dependence

θ -dependence: ψ(Lipδg1,Lipδg2, u, v) = vLipδg2
η-dependence: ψ(Lipδg1,Lipδg2, u, v) = uLipδg1 + vLipδg2
κ-dependence: ψ(Lipδg1,Lipδg2, u, v) = uvLipδg1Lipδg2
λ-dependence: ψ(Lipδg1,Lipδg2, u, v) = uLipδg1 + vLipδg2 +

uvLipδg1Lipδg2
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Assume that
∫ ‖x− x0‖XPX(dx) is finite for any x0 ∈ X .

Assume that there exists a random variable U uniformly
distributed over [0, 1], independent of the sigma-field gen-
erated by X and A. Then there exists a random variable X̃,
measurable with respect to A ∨ σ(X) ∨ σ(U), independent
of A and distributed as X, such that

τ(A, X; ‖·‖X ) = E‖X − X̃‖X .

We now apply the notion of τ -dependence to a time series
model. Let {Xj}j∈J be a set ofX -valued random variables with
index set J of finite cardinality. Then define

τ(A, {Xj ∈ X }j∈J; ‖·‖X ) =
∥
∥
∥ sup
g∈
(‖·‖′

X )

{ ∫

g(x)P{Xj}j∈J |A(dx)

−
∫

g(x)P{Xj}j∈J (dx)
}∥
∥
∥
L1
,

whereP{Xj}j∈J andP{Xj}j∈J |A represent the distribution of {Xj}j∈J
and the conditional distribution of {Xj}j∈J given A respec-
tively, and 
(‖·‖′

X ) stands for the set of 1-Lipschitz func-
tions:


(‖·‖′
X ) :=

{

f : X × · · · × X
︸ ︷︷ ︸

Card(J)

→ R;

f is 1-Lipschitz withrespect to ‖·‖′
X

}

with ‖x‖′
X := ∑

j∈J ‖xj‖X for any x = (x1, . . . , xJ) ∈
X Card(J).

Using these concepts, for a time series {Xt}t∈Z, it is ready
to define measure of temporal correlation strength as

τ({Xt}t∈Z;m, ‖·‖X ) :=
sup
i>0

max
1≤�≤i

�−1 sup
{

τ {σ(Xa−∞), {Xj1 , . . . , Xj�}; ‖·‖X }, a

+ m ≤ j1 < · · · < j�
}

,

where the inner supremum is taken over all a ∈ Z and all
�-tuples (j1, . . . , j�).

In the end, let’s consider {Xt}t∈Z to be a real stationary
causal process of the form

Xi = g(· · · , εi−1, εi), (41.1)

with {εi}i∈Z an independent and identically distributed (i.i.d.)
sequence and g(·) a measurable function such that the above
time series model is properly defined. In [42], the author
introduced the functional dependencemeasure, asmanifested
below.

Definition 1.2 (Functional Dependence Measure, [42])
Let {εi, ε′

j}i,j∈Z be i.i.d. random variables. Let X′
m :=

g(· · · , ε−2, ε−1, ε′
0, ε1, . . . , εm). The functional dependence

measure with regard to the Lp norm is defined to be

θm,p := ‖Xm − X′
m‖Lp

with the tail sum �m,p := ∑∞
k=m θk,p.

The functional dependence measure θm,p is flexible and
easy to compute in many applications; we refer the readers
of interest to [43] for a systematic review. In addition, given
the data generating mechanism g, one could numerically
compute functional dependence measures by Monte Carlo
simulations. In contrast, numeric computation of other de-
pendence measures can be highly nontrivial due to their
definitions.

We also mention a connection between physical depen-
dence and τ -dependence. As is apparent by comparing Theo-
rem 1.1 with Definition 1.2, τ -dependence and functional de-
pendence measure are interestingly intrinsically connected.
In particular, they are both adaptable to a notion of coupling.
However, as noted in Remark 3.1 in [15], coupling in func-
tional dependence is given in [13] with all elements in the
past, while in [42] with only element in the past.

41.2 Probability andMoment Inequalities
Under Dependence

Probability and moment inequalities play an important role
in studying the statistical properties of estimators of param-
eters in statistical models. They are key in high-dimensional
statistical theory, which is by its nature nonasymptotic. Of
particular importance are those that give rise to efficient
control of tail deviations, namely, higher-order moment and
exponential-type inequalities. In this section we will give a
brief review of some developed inequalities for time series,
which are promising to be applied to the analysis of high-
dimensional time series data. For this, this note is restricted
to those built on theweak dependencemeasures introduced in
Sect. 41.1, while those built on other structures like Markov
chains or martingales, though related, shall not be covered.

Before diving into the details, let’s first fix what we mean
a high-dimensional time series model. To characterize the
impact of dimensionality on the performance of an estimator,
it has become well-accepted in literature to model high-
dimensional data under a triangular-array setting; see, for
example, Section 1 in [21] for a comprehensive illustration.
Applied to time series models, the following model will be
used throughout the rest of this paper: For each n ∈ N,
let {Xt,n}t∈Z denote a dn-dimensional real time series with
dn ∈ N as well as the time series itself depending on n.
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For each n ∈ N, a length of n fragment {Xi,n}i∈[n], with
[n] := {1, 2, . . . , n}, is observed from the time series {Xt,n}t∈Z.
For different n, a different time series with possibly different
dimension is observed. In particular, as n goes to infinity, the
dimension of the n fragment time series, dn, is allowed to
increase to infinity as well.

To name one particular example, let’s consider the obser-
vations {Xi,n}i∈[n] to be generated from a VAR(1) model,Mn,
that is changing with n:

Mn :
{

{Xt,n}t∈Z : Xt,n = AnXt−1,n + Et,n, for all t ∈ Z

}

.

Here An is a dn×dn-dimensional transition matrix, and Et,n is
a dn-dimensional vector of error term. The value An and the
dimension dn are both allowed to change with n; e.g., it could
be true that

As n = 1, a 1-dimensional, length of 1 fragment, {X1,1}, is
observed from the model M1 with A1 = 0.5;

As n = 2, a 2-dimensional, length of 2 fragment time series,
{X1,2, X2,2}, is observed from the modelM2 with

A2 =
(

0.5 0.1
0.2 0.25

)

;

As n = 3, a 4-dimensional, length of 3 fragment time series,
{X1,3, X2,2, X3,3}, is observed from the model M3 with

A3 =

⎛

⎜
⎜
⎝

0.2 0 0.1 0.4
0.2 0.1 0.1 0.2
0.1 0.2 0.3 0.1
0 0 0 0.1

⎞

⎟
⎟
⎠

;

· · · · · · .

41.2.1 Sample Sum for Scalars with dn =1

Several of the most essential moment inequalities are cen-
tered around the sample sum. In detail, for any n ∈ N, con-
sider a time series {Xt,n}t∈Z and its size-n fragment {Xi,n}i∈[n].
Our aim is to characterize the moment and tail properties

for
∑n

i=1

(

Xi,n − EXi,n
)

. Without loss of generality, in the

following it is assumed that the time series has margin mean-
zero. In this section we are focused on the sample sum Sn :=
∑n

i=1 Xi,n of fixed dimension dn = 1; in the later sections we
shall allow dn to increase to infinity.

To start with, let’s first consider the case of linear pro-
cesses by assuming that {Xt,n}t∈Z follows a linear process

Xt,n =
∞
∑

j=0

fj,nεi−j,n, (41.2)

with {εj,n}j∈Z understood to be an i.i.d. scalar sequence with
mean zero and ‖ε0,n‖Lp < ∞ for some p > 2, and fn := {fj,n}

as a real coefficient sequence satisfying ‖fn‖22 := ∑∞
j=0 f

2
j,n <

∞. The form (41.2) is very general and includes many
famous time series models such as the ARMA processes.

The first result concerns such time series of the particular
form (41.2) and is from [44]. It gives a Nagaev-type inequal-
ity for linear processes, including both short- and long-range
dependence cases.

Theorem 2.1 (Theorem 1, [44]) Assume the linear process
in (41.2). Then the following two statements are true.

(i) (Short-range dependence) Let cp := 2e−p(p + 2)−2. If
‖fn‖1 := ∑∞

j=0 |fj,n| < ∞, then for any x > 0 we have

P(|Sn| ≥ x) ≤
(

1 + 2

p

)p · n‖fn‖
p
1‖ε0,n‖pLp
xp

+ 2 exp
(

− cpx2

n‖fn‖21‖ε0,n‖2L2
)

.

(ii) (Long-range dependence) AssumeKn := supj≥0 |fj,n|(1+
j)β < ∞ for some 1/2 < β < 1. Then there exist
constants C1, C2 only depending on p and β such that,
for all x > 0,

P(|Sn| ≥ x) ≤ C1

n1+p(1−β)Kp
n‖ε0,n‖pLp

xp

+ 2 exp
(

− C2x2

n3−2β‖ε0,n‖2L2K2
n

)

.

We then move on to the general possibly nonlinear case.
The first of such results considers the φ-mixing case and is
from [14].

Theorem 2.2 (Proposition 5, [14]) Let {Xt,n}t∈Z be a mean-
zero stationary sequence of dimension dn fixed to be 1. Let
φn(m) := φ({Xt,n}t∈Z;m) and |X0,n| ≤ Cn for some constant
Cn that possibly depends on n. Then, for every p = 2, 3, . . .
and any n ≥ 1, the following inequality holds:

E|Sn|p ≤
(

8C2
np

n−1
∑

i=0

(n− i)φn(i)
)p/2

.

The next result considers the α- and τ -mixing cases and
is from [35].

Theorem 2.3 (Theorem 2, [35]) Let {Xt,n}t∈Z be a station-
ary mean-zero sequence of dimension dn fixed to be 1. Sup-
pose that the sequence satisfies either a geometric α-mixing
condition:

α({Xt,n}t∈Z;m) ≤ exp(−γnm), for m = 1, 2, . . .
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or a geometric τ -mixing condition:

τ({Xt,n}t∈Z;m, | · |) ≤ exp(−γnm), for m = 1, 2, . . .

with some positive constant γn that could depend on
n, and there exists a positive constant Bn such that
supi≥1 ‖Xi,n‖L∞ ≤ Bn. Then there are positive constants
C1,n and C2,n depending only on γn such that for all n ≥ 2
and positive t satisfying t < 1/[C1Bn(log n)2], the following
inequality holds:

log[E exp(tSn)] ≤ C2,nt2(nσ 2
n + B2

n)

1 − C1,ntBn(log n)2
,

where σ 2
n is defined by

σ 2
n := Var(X1,n) + 2

∑

i>1

∣
∣
∣Cov(X1,n, Xi,n)

∣
∣
∣.

We note here that the dependence of C1,n and C2,n on γn
could be explicitly calculated, as have been made in [6] and
[23]; also refer to the later Theorems 2.10 and 2.11.

The next result considers the weak dependence case and
is the foundation of dependence measures proposed in [17].
We refer to [17] and [18] for the relation between those weak
dependences defined in Definition 1.1 and the following
Eqs. (41.3) and (41.4).

Theorem 2.4 (A Slight Modification to Theorem 1 in
[18]) Suppose {Xi,n}i∈[n] are real-valued random variables
with mean 0, defined on a common probability space
(�,A,P). Let � : N

2 → N be one of the four functions
defined in Table 41.1. Assume that there exist constants
Kn,Mn, L1,n, L2,n > 0, an, bn ≥ 0, and a nonincreasing
sequence of real coefficients {ρn(i)}i≥0 such that for any u-
tuple (s1, . . . , su) and v-tuple (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤
su < t1 ≤ · · · ≤ tv ≤ n, we have

∣
∣
∣Cov

( u
∏

i=1

Xsi,n,
v
∏

j=1

Xtj,n
)∣
∣
∣ ≤ K2

nM
u+v
n {(u+ v)!}bn�(u, v)

ρn(t1 − su), (41.3)

where the sequence {ρn(i)}i≥0 satisfies

∞
∑

s=0

(s+ 1)kρn(s) ≤ L1,nL
k
2,n(k!)an , for any k ∈ N. (41.4)

Moreover, we require that the following moment condition
holds:

E|Xi,n|k ≤ (k!)bnMk
n, i = 1, . . . , n, for any k ∈ N.

Then, for any n ≥ 1 and any x > 0, we have

P(Sn ≥ x) ≤ exp
{

− x2

C1,nn+ C2,nx(2an+2bn+3)/(an+bn+2)

}

,

where C1,n and C2,n are constants that can be chosen to be

C1,n = 2an+bn+3K2
nM

2
nL1,n(K

2
n ∨ 2),

C2,n = 2{MnL2,n(K
2
n ∨ 2)}1/(an+bn+2).

Proof. The proof follows that of Theorem 1 in [18] with
minor modifications, as listed below. Restricted to this proof,
we inherit the notation in [18] and abandon the subscript n.

Equation (30) in [18] can be strengthened to

E|Yj| ≤ 2k−j−1{(k − j+ 1)!}bK2Mkρ(ti+1 − ti).

This leads to

|E(Xt1 · · ·Xtk)| ≤ 2k−1(k!)bK2Mkρ(ti+1 − ti), (41.5)

which corresponds to Lemma 13 in [18]. Using (41.5), we
obtain that

∣
∣
∣�(Xt1 , . . . , Xtk)

∣
∣
∣ ≤

k
∑

ν=1

∑

⋃ν
p=1 Ip=I

Nν(I1, . . . , Iν)2
k−ν(k!)bK2νMk

min
1≤i<k

ρ(ti+1 − ti)

≤ K2(K2 ∨ 2)k−1Mk(k!)b{(k − 1)!}
min
1≤i<k

ρ(ti+1 − ti).

Thus, we have

∣
∣
∣�k(Sn)

∣
∣
∣ ≤ nK2(K2 ∨ 2)k−1Mk(k!)b+1

n−1
∑

s=0

(s+ 1)k−2ρ(s).

(41.6)

Equation (41.6) corresponds to Lemma 14 in [18]. The rest
follows the same technique as in [18]. �

Lastly we consider the functional dependence setting. The
first result is a Rosenthal-type inequality and is from [33].

Theorem 2.5 (Theorem 1, [33]) Assume {Xt,n}t∈Z is of di-
mensional dn = 1 and is generated from the model (41.1)
with functional dependence measures θm,p,n, which is of an
additional subscript n to highlight its dependence on n.
Assume further that EX0,n = 0, E|X0,n|p < ∞, and p > 2.
Then we have, for any n ≥ 1,
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‖Sn‖Lp ≤ n1/2
[ 87p

log p

n
∑

j=1

θj,2,n + 3(p− 1)1/2

∞
∑

j=n+1

θj,p,n + 29p

log p
‖X0,n‖L2

]

+ n1/p
[87p(p− 1)1/2

log p

n
∑

j=1

j1/2−1/pθj,p,n + 29p

log p
‖X0,n‖Lp

]

.

The second is a Nagaev-type inequality and is also from
[33].

Theorem 2.6 (Theorem 2, [33]) Assume {Xt,n}t∈Z is of di-
mensional dn = 1 and is generated from the model (41.1)
with functional dependence measures θm,p,n. Assume further
that EX0,n = 0, E|X0,n|p < ∞, and p > 2. Then we have the
following bounds for any n ≥ 1.

(i) Denote

μj,n := (jp/2−1θ
p
j,p,n)

1/(p+1) and νn :=
∞
∑

j=1

μj,n < ∞.

Then, for any x > 0,

P(|Sn| ≥ x) ≤ cp
n

xp

(

νp+1
n + ‖X0,n‖pLp

)

+ 4
∞
∑

j=1

exp

(

−cpμ2
j,nx

2

nν2
nθ

2
j,2,n

)

+ 2 exp

(

− cpx2

n‖X0,n‖2L2

)

,

where cp > 0 is a constant only depending on p.
(ii) Assume that�m,p,n := ∑∞

k=m θk,p,n = O(m−α) as m goes
to infinity, with some constant α > 1/2−1/p. Then there
exist absolute positive constants C1andC2 such that, for
any x > 0,

P(|Sn| ≥ x) ≤ C1�
p
0,p,nn

xp
+ 4G1−2/p

(
C2x√
n�0,p,n

)

,

where for any y > 0, q > 0, Gq(y) is defined to be

Gq(y) =
∞
∑

j=1

exp(−jqy2).

(iii) If �m,p,n = O(m−α) as m goes to infinity, with some
constant α < 1/2 − 1/p, then

P(|Sn| ≥ x) ≤ C1�
p
0,p,nn

p(1/2−α)

xp
+ 4G(p−2)/(p+1)

(
C2x

n(2p−1−2αp)/(2+2p)�0,p,n

)

.

It should be noted that Theorems 2.5 and 2.6 actually ap-
ply to cases beyond the sample sum, and the same inequalities
hold for the partial sum process

S∗
n := max

1≤k≤n
|

k
∑

i=1

Xi,n|.

However, if Sn, instead of S∗
n, is of interest, Theorem 2.6 could

be further strengthened, as wasmade in [44]. To this end, let’s
first introduce the dependence adjusted norm (DAN) for the
process {Xt,n}t∈Z as

‖X·,n‖p,α := sup
m≥0

(m+ 1)α�m,p,n. (41.7)

Theorem 2.7 (Theorem 2, [44]) Assume {Xt,n}t∈Z is of di-
mensional dn = 1 and is generated from the model (41.1)
with functional dependence measures θm,p,n. Assume further
thatEX0,n = 0 and ‖X·,n‖p,α < ∞ for some p > 2 and α > 0.
Let

an =
{

1, if α > 1/2 − 1/p,

np/2−1−αp, if α < 1/2 − 1/p.

Then there exist positive constants C1, C2, andC3 only de-
pending on q and α such that, for all x > 0, we have

P(|Sn| ≥ x) ≤ C1
ann‖X·,n‖pp,α

xp
+ C2 exp

(

− C3x2

n‖X·,n‖22,α
)

.

41.2.2 Sample Sum for RandomVectors with
dn ≥ 1

In this section we will concern the sample sum case when
d = dn potentially diverges with n. Let {Xt,n}t∈Z be a dn-
dimensional real time series of the form (41.1):



41 Probability Inequalities for High-Dimensional Time Series Under a Triangular Array Framework 855

41

Xt,n = gn(· · · , εt−1,n, εt,n) =

⎛

⎜
⎜
⎜
⎝

g1,n(· · · , εt−1,n, εt,n)
g2,n(· · · , εt−1,n, εt,n)

...

gdn,n(· · · , εt−1,n, εt,n)

⎞

⎟
⎟
⎟
⎠

.

(41.8)

Assume EXt,n = 0 and let Sn = ∑n
i=1 Xi,n. Theorem 2.8

below provides a tail probability for |Sn|∞, where for any
vector v = (v1, . . . , vd)� let |v|∞ = maxj∈[d] |vj|. Assume
E|Xi,n|q < ∞, q > 2, and define the uniform functional
dependence measure

δi,q,n = ‖|Xi,n − Xi,{0},n|∞‖Lq , (41.9)

where

|Xi,n − Xi,{0},n|∞ := max
j≤d

∣
∣
∣gj,n(· · · , εi−1,n, εi,n)

− gj,n(· · · , ε−2,n, ε−1,n, ε
′
0, ε1,n, . . . , εi,n)

∣
∣
∣.

(41.10)

Define the vector version DAN (cf. (41.7)) as

‖|X.,n|∞‖q,α = sup
m≥0

(m+1)α�m,q,n, where �m,q,n =
∞
∑

i=m
δi,q,n.

(41.11)

The constants Cq,α > 0 in Theorem 2.8 only depend on q and
α, and their values may change from place to place.

Theorem 2.8 (Theorem 6.2 in [45]) Assume ‖|X.,n|∞‖q,α <

∞, where q > 2,α > 0. Let

�2,α,n = max
j≤d ‖X·j,n‖q,α

be the counterpart of ‖|X.,n|∞‖q,α with the maximum over j ∈
[dn] taken outside instead of inside the expectation. Let �n =
max(1, log dn). Then the following two statements hold:

(i) If α > 1/2 − 1/q, then for all x ≥ Cq,α(
√
n�n�2,α,n +

n1/q�3/2n ‖|X.,n|∞‖q,α), we have

P

{

|Sn|∞ ≥ x
}

≤ Cq,α
n�q/2n ‖|X.,n|∞‖qq,α

xq

+ Cq,α exp
(

− Cq,α
x2

n�2
2,α,n

)

.

(ii) If α < 1/2 − 1/q, then for all x ≥ Cq,α(
√
n�n�2,α,n +

n1/2−α�
3/2
n ‖|X.,n|∞‖q,α), we have

P

{

|Sn|∞ ≥ x
}

≤ Cq,α
nq/2−αq�

q/2
n ‖|X.,n|∞‖qq,α
xq

+ Cq,α exp
(

−Cq,α x2

n�2
2,α,n

)

.

Example 2.1 As an application of Theorem 2.8, consider
the following example, with the subscript n omitted for
presentation simplicity. Let

Wi =
∞
∑

j=0

ajεi−j

be a linear process, where εj are i.i.d. innovations with finite
qthmomentμq := ‖εi‖Lq < ∞, q > 2, and aj are coefficients
satisfying a∗ := supm≥0(m+ 1)α

∑∞
i=m |ai| < ∞. Let

Xij = gj(Wi) − Egj(Wi),

where gj are Lipschitz continuous functions with constants
bounded by L. Then

|Xi − Xi,{0}|∞ ≤ L|ai||ε0 − ε′
0| and δi,q ≤ 2L|ai|μq.

The dependence adjusted norms

‖X·j‖q,α ≤ 2Lμqa∗ and ‖|X.|∞‖q,α ≤ 2Lμqa∗.

In comparison with Theorem 2.7, the bound in Theorem 2.8
is sharp up to a multiplicative logarithmic factor (log d)q/2,
adjusting for multi-dimensionality.

Example 2.2 (Largest Eigenvalues of Sample Auto-
Covariance Matrices) Let Wi in Example 2.1 be of the
form of stationary causal process (41.1) with EWi = 0,
E|Wi|q < ∞, q > 2. Again let’s omit the subscript n for no
confusion will be made. Let

ai = ‖Wi −W ′
i‖Lq

be the associated functional dependence measure, and as-
sume the dependence adjusted norm ‖X·‖q,α < ∞, α >

1/2 − 1/q. Let

Sn(θ) =
n
∑

t=1

Wt exp(
√−1tθ), 0 ≤ θ ≤ 2π ,
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be the Fourier transform of (Wt)
n
t=1, where

√−1 is the
imaginary unit. Let

d = n9and �θ�d = 2π�dθ/(2π)�/d.

By Theorem 2.8(i), the inequality therein holds with

max
0≤θ≤2π

|Sn(�θ�d)| = max
j≤d |Sn(2π j/d)|.

Noting that

‖ max
θ

|Sn(�θ�d) − Sn(θ)|‖q ≤ ‖W1‖q/n6.

Thus with elementary manipulations the same inequality in
Theorem 2.8(i) holds with the term max0≤θ≤2π |Sn(θ)|.

Given (Wt)
n
t=1, let the sample covariance matrix

�̂n = (γ̂j−k), where γ̂k = n−1
n
∑

l=k+1

WlWl−k, 0 ≤ k ≤ n− 1,

Notice that the largest eigenvalues

λmax(�̂n) ≤ max
0≤θ≤2π

|Sn(θ)|2/n.

We obtain the tail probability inequality

P

(

λmax(�̂n) ≥ u
)

≤ P

(

max
0≤θ≤2π

|Sn(θ)| ≥ (nu)1/2
)

≤ Cq,α
n(log n)q/2‖X.‖qq,α

(nu)q/2

+ Cq,α exp
(

− Cq,α
u

‖X.‖22,α
)

,

when u ≥ Cq,α‖X.‖22,α log n for a sufficient large constant
Cq,α .

41.2.3 Sample Sum for RandomMatrices with
dn ≥ 1

In this section we will consider the case of time-dependent
random matrices. Here Xt,n ∈ R

dn×dn is a dn-dimensional
random matrix, and {Xt,n}t∈Z is a matrix-valued time series.
Tail probability inequalities for spectral norms for the sum
∑n

t=1 Xt,n will be presented. The latter results are useful for
statistical inference of auto-covariance matrices generated
from high-dimensional time series.

Ahlswede and Winter [2], Oliveira [37], and Tropp [41],
among many others, have studied such bounds when {Xt,n}t∈Z
are mutually independent. For instance, [37] and [41] have
introduced the following Bernstein-type inequality for tails.

The result in [37] also applies to martingales (cf. Freedman’s
Inequality for matrix martingales [19]). Also see [34] for
further extensions to conditionally independent sequences
and combinatorial sums.

Theorem 2.9 (Corollary 7.1 in [37], Theorem 1.4 in [41])
Let X1,n, . . . , Xn,n be real, mean-zero, symmetric independent
dn × dn random matrices and assume there exists a positive
constant Mn such that λmax(Xi,n) ≤ Mn for all 1 ≤ i ≤ n.
Then for any x ≥ 0,

P

{

λmax

( n
∑

i=1

Xi,n
)

≥ x
}

≤ dn exp
(

− x2

2σ 2
n + 2Mnx/3

)

,

where σ 2
n := λmax(

∑n
i=1 EX

2
i,n) and recall that λmax(·)

represents the largest eigenvalue of the input.

Assuming {Xt,n}t∈Z satisfies a geometrically β-mixing de-
caying rate:

β({Xt,n}t∈Z;m) ≤ exp{−γn(m− 1)}, for m = 1, 2, . . .
(41.12)

with some constant γn > 0 possibly depending on n, [6]
proved the following theorem that extends the matrix Bern-
stein inequality to the β-mixing case. In the sequel, for any
set A, we denote Card(A) to be its cardinality.

Theorem 2.10 (Theorem 1 in [6]) Let {Xt,n}t∈Z be a se-
quence of mean-zero symmetric dn × dn random matrices
with supi∈[n] λmax(Xi,n) ≤ Mn for some positive constant Mn.
Further assume the β-mixing condition (41.12) holds. Then
there exists a universal positive constant C such that, for any
n ≥ 2 and x > 0,

P

{

λmax

( n
∑

i=1

Xi,n
)

≥ x
}

≤ dn exp
{

− Cx2

ν2
nn+M2

n/γn + xMnγ̃ (γn, n)

}

,

where

ν2 := sup
K⊂[n]

1

Card(K)
λmax

{

E

(∑

i∈K
Xi,n
)2}

and

γ̃ (γn, n) := log n
log 2

max
(

2,
32 log n
γn log 2

)

.

Later, this result is further extended to the τ -mixing case,
which was made in [23].

Theorem 2.11 (Theorem 4.3 in [23]) Consider a sequence
of real, mean-zero, symmetric dn × dn random matrices
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{Xt,n}t∈Z with supi∈[n]‖Xi,n‖ ≤ Mn for some positive constant
Mn that is allowed to depend on n and ‖·‖ represents the
matrix spectral norm. In addition, assume that this sequence
is of a geometrically decaying τ -mixing rate, i.e.,

τ({Xt,n}t∈Z;m, ‖·‖) ≤ Mnψ1,n exp{−ψ2,n(m− 1)},
for m = 1, 2, . . .

with some constants ψ1,n,ψ2,n > 0. Denote ψ̃1,n :=
max{d−1

n ,ψ1,n}. Then for any x ≥ 0 and any n ≥ 2, we
have

P

{

λmax

( n
∑

i=1

Xi,n

)

≥ x

}

≤ dn exp

{

− x2

8(152nν2
n + 602M2

n/ψ2,n) + 2xMnψ̃(ψ̃1,n,ψ2,n, n, dn)

}

,

where

ν2
n := sup

K⊂[n]
1

Card(K)
λmax

{

E

(
∑

i∈K
Xi,n

)2}

and ψ̃(ψ̃1,n,ψ2,n, n, dn) := log n
log 2

max
{

1,
8 log(ψ̃1,nn6dn)

ψ2,n

}

.

We note that the above matrix Bernstein inequalities for
weakly dependent data can be immediately applied to study
the behavior of many statistics of importance in analyzing a
high-dimensional time series model. In particular, tail behav-
iors for the largest eigenvalues of sample auto-covariances
in weakly dependent high-dimensional time series models
have been characterized in Theorems 2.1 and 2.2 in [23],
with bounds delivered for both general and Gaussian weakly
dependent time series (the later using a different set of
techniques tailored for Gaussian processes) separately; see
also Sect. 41.4 ahead for a concrete example.

41.2.4 U- and V-Statistics

Consider {Xi,n}i∈[n] to be n random variables of identical dis-
tribution in a measurable space (X ,BX ). Given a symmetric
kernel function hn(·) : X r → R, the U-and V-statisticUn(hn)
and Vn(hn) of order rn are defined as

Un(hn) :=
(
n

rn

)−1 ∑

1≤i1<···<irn≤n
hn(Xi1,n, . . . , Xirn ,n)

and Vn(hn) := n−rn
n
∑

i1,...,irn=1

hn(Xi1,n, . . . , Xirn ,n).

The V- and U-statistics are popular alternatives to sample
sums and have been routinely used in statistics nowadays (cf.
the textbooks [31] and [28]).

Nonasymptotic probability and moment inequalities for
V- and U-statistics in the i.i.d. case have been extensively
studied [1, 3, 20, 24]. Assuming {Xt,n}t∈Z to be geometrically
φ-mixing, [22] established the following theorem that gives
an exponential inequality for dependent U-statistics.

Theorem 2.12 (Theorem 2.1, [22]) Let {Xt,n}t∈Z satisfy

φ({Xt,n}t∈Z;m) ≤ cn exp(−Cnm) for m = 1, 2, . . .

with two constants cn, Cn > 0. Assume further that

‖hn‖∞ ≤ Mn,

symmetric and is mean-zero (i.e., Ehn = 0 with regard to the
product measure). Then there exist two constants c′n, C′

n > 0
that only depend on cn, Cn, and rn, such that, for any x ≥ 0
and n ≥ 4,

P(|Un(hn)| ≥ c′nMn/
√
n+ x)

≤ 2 exp
(

− C′
nx

2n

M2
n +Mnx(log n)(log log 4n)

)

.

With tedious calculations, the dependence of c′n, C′
n on

rn, cn, Cn in Theorem 2.12 can be explicitly obtained, as was
made in Theorems 2.10 and 2.11.

In order to present the next result, let’s first introducemore
concepts in U- and V-statistics. For presentation clearness,
let us assume the kernel hn(·), its order rn, and the dimension
dn are fixed and hence written as h(·), r, and d without the
subscript. Assume {Xt,n}t∈Z to be stationary for any n ∈
N. Let {X̃i,n}i∈[n] be an i.i.d. sequence with X̃1,n identically
distributed as X1,n. The mean value of a symmetric kernel
h (with regard to the marginal probability measure Pn) is
defined as

θn := θn(h) := Eh(X̃1,n, . . . , X̃r,n).

The kernel h(·) is called degenerate of level k−1 (2 ≤ k ≤ r)
with regard to the measure Pn if and only if

Eh(x1, . . . , xk−1, X̃k,n, . . . , X̃r,n) = θn

for any (x�
1 , . . . , x

�
k−1)

� ∈ supp(Pk−1
n ), the support of the

product measure Pk−1
n .
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When h is degenerate of level k−1, its Hoeffding decom-
position takes the form

h(x1, . . . , xr) − θn =
∑

1≤i1<...<ik≤r
hk,n(xi1 , . . . , xik)

+ . . . + hr,n(x1, . . . , xr),

where {hp,n}rp=k are recursively defined as

h1,n(x) := g1,n(x),

hp,n(x1, . . . , xp) := gp,n(x1, . . . , xp) −
p
∑

k=1

h1,n(xk)

− . . . −
∑

1≤k1<...<kp−1≤p
hp−1,n(xk1 , . . . , xkp−1),

for p = 2, · · · , r, with {gp,n}rp=1 defined as gr,n := h− θn, and

gp,n(x1, . . . , xp) := Eh(x1, . . . , xp, X̃p+1,n, . . . , X̃r,n) − θn

for 1 ≤ p ≤ r − 1. For each 1 ≤ p ≤ r, we denote the
V-statistic generated by hp,n by

Vn(hp,n) := n−p
n
∑

i1,...,ip=1

hp,n(Xi1,n, . . . , Xip,n).

Theorem 2.13 (A Slight Modification to Theorem 1 in
[40]) Suppose {Xi,n}ni=1 is part of a stationary sequence
{Xt,n}t∈Z that is geometrically α-mixing with coefficient

α({Xt,n}t∈Z;m) ≤ cn exp(−Cnm) for all m ≥ 1,

where cn and Cn are two positive constants. Suppose h ∈
L1(Rrd) is fixed, symmetric, continuous, and its Fourier trans-
form ĥ(u) := ∫

h(x)e−2π iu�xdx satisfies

∫

Rrd

∣
∣
∣̂h(u)

∣
∣
∣‖u‖qdu < ∞

for some q ≥ 1, where ‖ · ‖ represents the Euclidean norm.
Then, there exists a positive constant C′

n = C(r, cn, Cn) such
that for each 1 ≤ p ≤ r, and any n ≥ 2, x > 0,

P

(

|Vn(hp,n)| ≥ x
)

≤ 6 exp
{

− C′
nnx

2/p

A1/p
p,n + x1/pM1/p

p,n

}

with

Ap,n = 22r‖̂h‖2L1
{ 64c1/3n

1 − exp(−Cn/3) + (log n)4

n

}p
and

Mp,n = 2r‖̂h‖L1(log n)2p.

As Theorem 2.12, the dependence of C′
n on r, cn, Cn in the

above theorem could be explicitly calculated. We also note
that, though h(·) itself is assumed to be fixed, the “degener-
ate” kernels hp,n could depend on n through the measure Pn
in the triangular array setting, and hence the subscript n is
kept.

41.3 A Cautionary Example

Section 41.2 exemplifies the use of dependence measures to
construct desired moment/probability inequalities for quan-
tifying the statistical properties of procedures in a high-
dimensional time series model. The problem then reduces
to characterizing these dependence measures in a triangular
array setting as highlighted at the beginning of Sect. 41.2. As
is apparent from reading their definitions, those dependence
measures introduced in [13, 17], and [42] can be explicitly
calculated. Therefore, the verification of those dependence
measures, as were made in Section 3 in [15] as well as in
[23,42], andmany other places, are obviously still valid under
the high-dimensional triangular array framework.

The verifications for the mixing conditions introduced
at the beginning of Sect. 41.1, on the other hand, should
be checked with caution under this new framework. In the
following we will use the example of β-mixing to showcase
this new challenge of high dimensionality in establishing
mixing-type dependence for time series data.

In literature, for a time series model that is fixed (i.e., not
changing when more data points are observed), there have
been a variety of results to establish bounds for β-mixing
coefficients. See, for example, [32] for a review and [11] for
β-mixing of Markov processes. Let’s focus on a particular
example. Consider the following simple d-dimensional sta-
tionary Gaussian VAR(1) model:

Xt = κXt−1 + Et =
∞
∑

j=0

κ jEt−j, for all t ∈ Z. (41.13)

Here the autocorrelation coefficient κ ∈ R is assumed to be
fixed and satisfy 0 < κ < 1 for simplicity, and the innovation
noises {Et ∈ R

d} are i.i.d. Gaussian. Then it is immediate
(cf. Proposition 2 in [32]) that {Xt} is geometrically β-mixing
satisfying

β({Xt};m) ≤ Cγ m (41.14)

for some fixed constants C > 0, γ < 1.
However, in high dimensions such a derivation is prob-

lematic. Let’s fix the framework first. Adopting the triangular
array setting as described in the last section, we assume that
the studied model could change as more observations are
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available to us. In other words, let’s adopt a parallel model
to Eq. (41.13): for any n = 1, 2, 3, . . ., write

Xt,n =

⎛

⎜
⎜
⎜
⎝

Xt,1,n
Xt,2,n

...

Xt,dn,n

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

κn 0 . . . 0
0 κn . . . 0
...

...
. . . 0

0 0 0 κn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

Xt−1,1,n

Xt−1,2,n
...

Xt−1,dn,n

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Xt−1,n∈Rdn

+

⎛

⎜
⎜
⎜
⎝

Et,1,n
Et,2,n

...

Et,dn,n

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Et,n∈Rdn

,

for all t ∈ Z.

(41.15)

Here for any n, the observed data {X1,n, X2,n, . . . , Xn,n} are
assumed to be generated from a process

∑∞
j=0 κ

j
nEt−j,n, where

first of all the dimension of the time series dn has been
allowed to change with the sample size n. Moreover, as an
implicit consequence of the above high-dimensional trian-
gular array framework, all the parameters in Model (41.15),
including κn ∈ R, Cov(Xt,n) ∈ R

dn×dn , and Cov(Et,n) ∈
R
dn×dn , are now allowed to change as the sample size n is

increasing.
Once such a framework is fixed, it becomes clear that

the analysis of various dependence conditions has to be
nonasymptotic, i.e., we now have to provide an analysis of the
β-mixing coefficient that takes the change of dn, κn, and all
the other model parameters into account.With these concepts
in mind, we first state a somewhat comforting result that
certain desirable properties could still be established for α-
mixing (in contrast to the β-mixing) coefficient under the
triangular array setting.

Theorem 3.1 Consider the following simple stationary
Gaussian vector autoregressive model that general-
izes (41.15) by relaxing restrictions on the transition matrix:

Xt,n = AnXt−1,n + Et,n, t ∈ Z. (41.16)

We then have

α({Xt,n}t∈Z;m) ≤
{λmax(�n)

λmin(�n)

}1/2‖An‖m,

where �n := Cov(X0,n), λmin(·) stands for the smallest
eigenvalue of the input, and ‖·‖ is the matrix spectral norm.

Proof. For notation simplicity, let’s remove n from the sub-
script. Since VAR(1) is a stationary Markov chain, by [9], we
have the ρ-mixing coefficient

ρ{σ(X0
−∞), σ(X∞

m )} = ρ{σ(X0), σ(Xm)}.

ByTheorem 1 from [27], ifU1, U2, . . . , Um, V1, V2, . . . , V�

are jointly normal random variables, then there exist real
numbers a1, a2, . . . , am, b1, b2, . . . , b� such that

ρ{σ(Uk, 1 ≤ k ≤ m), σ(Vk, 1 ≤ k ≤ �)}

= Corr
( m
∑

k=1

akUk,
�
∑

k=1

bkVk
)

.

Since (X0, Xm) is multivariate normal, there exist real num-
bers a = (a1, a2, . . . , ap)�, b = (b1, b2, . . . , bp)� such that

ρ{σ(X0), σ(Xm)} = Corr(a�X0, b
�Xm) = a��(Am)�b√

a��ab��b

≤
√

‖� 1
2 (Am)��−1(Am)�

1
2 ‖,

where the last inequality is followed by Cauchy-Schwarz.
Hence we have

ρ{σ(X0
−∞), σ(X∞

m )} ≤
{λmax(�)

λmin(�)

} 1
2 ‖A‖m.

Now noticing

α{σ(X0
−∞), σ(X∞

m )} ≤ ρ{σ(X0
−∞), σ(X∞

m )}

finishes the proof. �

Applying Theorem 3.1 to Model (41.15), it is clear that
the α-mixing coefficient for Model (41.15) is bounded by
κmn , which will be exponentially tending to 0 if κn < 1 is
fixed, regardless of how large the dimension dn is. We then
state a possibly striking result, that, even if restricting to
the Model (41.15) and fixing κn, the β-mixing coefficient
of the time series {Xt,n}t∈Z could still be tending to 1 if dn
is sufficiently larger than the time gap. Thusly, β-mixing
coefficient is dimension dependent.

Theorem 3.2 Consider the model (41.15) under the tri-
angular array setting. If we further assume that E0,n =
(E0,1,n, . . . , E0,dn,n)

� have i.i.d. components, then for any pos-
itive integers n and m, we have

β({Xt,n}t∈Z;m) ≥ 1 − 2 exp
(

− dnκ2m
n

18π2

)

.

In particular, if (1) dn = d is not changing with n
but limn→∞ κ2n

n >
18π2 log 2

d , or (2) κn = κ is not
changing with n but limn→∞ dnκ2n > 18π2 log 2, then
lim infn→∞ β({Xt,n}t∈Z; n) > 0.

Theorem 3.2 is concerning a particularly simple model
that is merely aggregating dn i.i.d. AR(1) Gaussian sequences
once we have n data points. It is very unlikely that any
assumption in a general theorem for quantifying the behavior
of a high-dimensional time series could exclude such a simple
case. However, it has been apparent from this result that, once
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the triangular array framework is adopted, many simple and
elegant properties like Eq. (41.14) could no longer be trusted
because otherwise, the case that limn→∞ β({Xt,n}t∈Z; n) 	= 0
shall never happen. The reason is, once the model {Xt,n} is
allowed to change with n, the values of C and γ in (41.14)
will depend on the sample size n. Any solid analysis of the
β-mixing coefficient hence has to be fully nonasymptotic.
This, however, violates the spirit beneath the definition of
various mixing coefficients and, to the authors’ knowledge,
cannot be trivially handled (except for the α- and ρ-mixing
coefficients under a Gaussian process, as showcased above in
Theorem 3.1).

Proof of Theorem 3.2 The proof is nonasymptotic and relies
on several known results in the mixing literature. For pre-
sentation clearness, we omit the subscript n in the following
when no confusion is made.

In the first step, we need to establish a lower bound for
the marginal α-mixing coefficient α(σ(X0,1), σ(Xm,1)) with
the understanding that

Xt = (Xt,1, . . . , Xt,d)
�.

For any bivariate Gaussian random vector (Z1, Z2)� ∈ R
2,

the following two facts are known.

(1) One has

α(σ(Z1), σ(Z2)) ≤ ρ(σ(Z1), σ(Z2))

≤ 2πα(σ(Z1), σ(Z2)).

See, for example, Equation (1.9) in Chapter 4 of [25] or
Theorem 2 in [27].

(2) Theorem 1 in [27] gives

ρ(σ(Z1), σ(Z2)) = |Corr(Z1, Z2)|.

The above two results then yield

α(σ(X0,1), σ(Xm,1)) ≥ 1

2π
|Corr(X0,1, X0,m)| = κm

2π
.

In the second step, we are going to establish a lower bound
on β(σ(X0), σ(Xm)) based on the derived lower bound for the
marginal α-mixing coefficient. For any j ∈ [d], since

α(σ(X0,j), σ(Xm,j)) ≥ κm

2π
,

by definition, there must exist sets G ∈ σ(X0,j) and H ∈
σ(Xm,j) such that

∣
∣
∣P

(

X0,j ∈ G, Xm,j ∈ H
)

− P

(

X0,j ∈ G
)

P

(

Xm,j ∈ H
)∣
∣
∣

≥ κm

3π
=: η.

Without loss of generality, we may assume that

θ := P(X0,j ∈ Gn, Xm,j ∈ H) > P(X0,j ∈ G)P(Xm,j ∈ H)

=: ξ.

For j ∈ [d], let’s define Vj,Wj as

Vj = 1(X0,j ∈ G) and Wj = 1(Xm,j ∈ H),

where 1(·) represents the indicator function. Then we have

(1) For each j ∈ [d], EVj = P(X0,j ∈ G), EWj = P(Xm,j ∈
H), E(VjWj) = θ .

(2) By i.i.d.-ness of E0,1, . . . , E0,d, {(Vj,Wj), j ∈ [d]} is an
i.i.d. sequence.

Let’s now consider the following event

{1

d

d
∑

j=1

VjWj ≥ θ − η

2

}

. (41.17)

By Hoeffding’s inequality for i.i.d. data [24], we have

P

(1

d

d
∑

j=1

VjWj ≥ θ − η

2

)

≥ 1 − exp(−dη2/2).

On the other hand, consider a comparable event to (41.17)
under the product measure:

{1

d

d
∑

j=1

VjW̃j ≥ θ − η

2

}

,

where {W̃j}j∈[d] is a copy of {Wj}j∈[d] and is independent of
{Vj}j∈[d]. Again, by Hoeffding’s inequality, we have

P

(1

d

d
∑

j=1

VjW̃j ≥ θ − η

2

)

≤ P

(1

d

d
∑

j=1

VjW̃j ≥ ξ + η

2

)

≤ exp(−dη2/2)

as θ − ξ ≥ η.
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By definition of β-mixing coefficient, we then have

β(σ(X0), σ(Xm)) ≥
∣
∣
∣P

(1

d

d
∑

j=1

VjWj ≥ θ − η

2

)

− P

(1

d

d
∑

j=1

VjW̃j ≥ θ − η

2

)∣
∣
∣

≥ 1 − 2 exp
(

− dκ2m

18π2

)

.

Lastly, by noticing that the model studied is naturally a
Markov chain and by using Theorem 7.3 in [10], one obtains

β({Xt};m) = β(σ(X0), σ(Xm)),

which finishes the proof. �

41.4 Statistical Applications

In this section, let’s consider one particular example of statis-
tical application to exemplify a (correct) use of the probabil-
ity inequalities for analyzing a high-dimensional time series
analysis problem. In the following we omit the subscript n
when no confusion is possible.

We focus on the following simple lag-one vector autore-
gressive model that has been discussed in Theorem 3.1,

Xt = AXt−1 + Et, t ∈ Z, Xt ∈ R
d. (41.18)

In this section our task is to, given n observations X1, . . . , Xn
of a triangular array Model (41.18), estimate the transition
matrixA inModel (41.18) under a low-rank assumption. Here
the assumption, r := rank(A) < d, is regular in the related
literature [4,5,7,12,29,30,36,38]. In particular, it is motivated
by latent factor models, where a few latent factors drive the
main movement of the multivariate time series.

The problem of transition matrix estimation is naturally
related to multiple regression. For this, under the low-rank
assumption on A, the least squares estimator (LSE),

ÂLSE := argmin
Q∈Rd×d

1

n− 1

n
∑

t=2

‖Xt − QXt−1‖2F,

where ‖·‖F represents the matrix Hilbert-Schmidt norm, is
not statistically efficient for estimating A [26]. For improving
estimation efficiency, there have been a number of methods
introduced in the literature. In particular, [36] proposed the
following penalized-LSE:

Âλ := argmin
Q∈Rd×d

1

n− 1

n
∑

t=2

‖Xt − QXt−1‖2F + λ‖Q‖∗. (41.19)

Here thematrix nuclear norm ‖·‖∗ is added to induce the spar-
sity of the estimator’s singular values and hence encourages
low-rankness. The obtained estimator is easy to implement
and proves to enjoy good empirical performance as well as
preliminary theoretical properties under an additional Gaus-
sian process assumption.

In this section we plan to give a new analysis of the esti-
mator Âλ based on the newly developed probability bounds
in [23] (elaborated in Theorem 2.11), which is shown to be
able to eliminate the Gaussian assumption that is essential in
the original analysis of [36].

We start from the following general setting. SupposeM ∈
R
d×d and M1 ∈ R

d×d both to be of dimension d, are two
real matrices, M is symmetric and positive definite, and the
matrix of interest A could be written as A = M�

1 M
−1 ∈ R

d×d
of rank r ≤ d. Let M̂ and M̂1 be estimates of M and M1, and
define

ÂG
λ := argmin

Q∈Rd×d
Lλ(Q; M̂, M̂1),

where Lλ(Q; M̂, M̂1) := 〈−2M̂1 + M̂Q�, Q�〉 + λ‖Q‖∗.

It is direct to check that Âλ is a special case of ÂG
λ with M̂

and M̂1 chosen to the sample covariance and lag-one auto-
covariance matrices; this is the famous Yule-Walker formula.

The following lemma relates the analysis of Âλ to that
of analyzing the marginal and first-order auto-covariance
matrices. Its proof is straightforward given the literature.

Lemma 4.1 Assume M̂ and M̂1 are the estimates of M ∈
R
d×d and M1 ∈ R

d×d based on n observations, satisfying

P(‖M̂ −M‖ ≤ δ1) ≥ 1 − ε1 and P(‖M̂1 −M1‖ ≤ δ2) ≥ 1 − ε2.

Here δ1, δ2, ε1, ε2 are functions of (n, d), and ε1, ε2 go to zero
as (n, d) increases to infinity. Further assume

M = M�, λmin(M) ≥ γmin, A := M�
1 M

−1,

rank(A) ≤ r, ‖A‖2 ≤ γmax,

and
λ ≥ 2(γmaxδ1 + δ2) and μ ≤ γmin − δ1,

where γmin and γmax are two absolute positive constants. We
then have
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P

(

‖ÂG
λ − A‖F ≥ λ + 2

√
2(γmaxδ1 + δ2)

2μ

√
r
)

≤ ε1 + ε2.

The next result establishes convergence of sample auto-
covariance matrices in the following general VAR(p) model:

Yt = A1Yt−1 + · · · + A2Yt−p + Et,

where {Et}t∈Z is a sequence of zero-mean and subgaussian
independent (not necessarily identically distributed) vectors
such that for all t ∈ Z and u ∈ R

d, ‖u�Et‖ψ2 < ∞ for some
universal constant c′ > 0. Here ‖·‖ψ2 is the Orlicz ψ2 norm
defined as

‖X‖ψ2 := inf
{

k ∈ (0,∞) : E[exp{(|X|/k)2} − 1] ≤ 1
}

.

In addition, assume ‖Ak‖ ≤ ak < 1 for all 1 ≤ k ≤ p,
and

∑p
k=1 ak < 1, where {ak}pk=1 and p are some universal

constants.
Under these conditions, we have the following theorem,

which is a direct implementation of Theorem 2.11.

Theorem 4.1 For the above {Yt}t∈Z, let �̂m := (n −
m)−1∑n−m

t=1 YtY�
t be the m-th order auto-covariance matrix.

Define

κ1 := sup
t∈Z

sup
u∈Sd−1

‖u�Yt‖ψ2 < ∞,

κ∗ := sup
t∈Z

sup
v∈Sd−1

‖v�Yt‖ψ2 , and r
∗ = κ2

∗/κ2
1 ,

with the notations that

S
d−1 := {x ∈ R

d : ‖x‖2 = 1},
S
d−1 := {x ∈ R

d : |x1| = · · · = |xp| = 1},

and whose finiteness is guaranteed by that of ‖u�Et‖ψ2 . Let
us write

γ1 = (κ∗/κ1)(‖A‖/ρ1)
K, γ2 = log(ρ−1

1 ),

γ3 = p(‖A‖/ρ1)
K, γ4 = log(ρ−1

1 ).

Here we denote

A :=

⎡

⎢
⎢
⎣

a1 a2 . . . ad−1 ad
1 0 . . . 0 0

. . . . . . .

0 0 . . . 1 0

⎤

⎥
⎥
⎦
,

ρ1 is a universal constant such that ρ(A) < ρ1 < 1 whose
existence is guaranteed by the assumption that

∑d
k=1 ak < 1,

and K is some constant only depending on ρ1.

Assume further

γ1 = O(
√
r∗) and γ3 = O(1).

Then, for any integer n ≥ 2 and 0 ≤ m ≤ n− 1, we have

E‖�̂m − E�̂m‖ ≤ Cκ2
1

{
√

r∗ log ep
n− m

+ r∗ log ep(log np)3

n− m

}

for some universal constant C.

Combining Lemma 4.1 and Theorem 4.1 directly yields
the following large-sample property on approximating A
using Âλ.

Theorem 4.2 AssumeModel (41.18), the spectrum of�0 :=
E�̂0 upper and lower bounded by universal positive con-
stants, and assume the transition matrix A ∈ A(r, γmax) with

AM(r, γmax) :=
{

M ∈ R
d×d : rank(M) ≤ r, ‖M‖ ≤ γmax

}

for some universal positive constant γmax < 1. Suppose
further that λ � √

d/n and ‖u�Et‖ψ2 < ∞. We then have

‖Âλ − A‖F = OP(
√

dr log d/n),

provided that dr log d/n = o(1).
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Abstract

We are living in the golden era of machine learning as
it has been deployed in various applications and fields.
It has become the statistical and computational principle
for data processing. Despite the fact that most of the
existing algorithms in machine learning have been around
for decades, the area is still booming. Machine learning
aims to study the theories and algorithms in statistics,
computer science, optimization, and their interplay with
each other. This chapter provides a comprehensive review
of past and recent state-of-the-art machine learning tech-
niques and their applications in different domains. We

M. Arabzadeh Jamali (�) · H. Pham
Department of Industrial and Systems Engineering, Rutgers
University, Piscataway, NJ, USA
e-mail: ma.arabzade@rutgers.edu; ma1319@scarletmail.rutgers.edu;
hopham@soe.rutgers.edu

focus on practical algorithms of various machine learning
techniques and their evolutions. An in-depth analysis and
comparison based on the main concepts are presented.
Different learning types are studied to investigate each
technique’s goals, limitations, and advantages. Moreover,
a case study is presented to illustrate the concepts ex-
plained and make a practical comparison. This chapterl
helps researchers understand the challenges in this area,
which can be turned into future research opportunities,
and at the same time gain a core understanding of the most
recent methodologies in machine learning.

Keywords

Machine learning · Supervised learning · Unsupervised
learning · Model selection · Algorithms · Regression ·
Classification · Clustering

42.1 Introduction

Machine learning has become one of the most exciting and
popular areas in science and technology for a number of rea-
sons. This field is rapidly expanding and tremendously fast-
paced with novel algorithms and ideas introduced every day.
While the concepts of machine learning have been around for
decades, the progress toward developing its basis in today’s
technology and society is rather a new phenomenon.

In the recent decade, the growing mass of available data
and invention of powerful computational processing tools
has empowered machine learning and its applications sig-
nificantly. Machine learning (ML) now plays an important
role in today’s modern life and is an indispensable part
of our lives. Impacting many different businesses, we can
say that machine learning and Artificial Intelligence have
caused an industrial revolution by bringing many critical
innovations in technology. Consider finding the fastest route
to your destination using GPS navigation services such as
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Google Maps, the recommendations you receive every day
in Amazon and Netflix, and Fraud alerts on your credit card,
to more important applications such as Medical Diagnosis;
all are applications of ML in our lives.

The main goal in machine learning is to develop computer
programs and algorithms that can conduct experiments on
the data and learn from it to find specific patterns. In all
algorithms, the goal is to transform the raw input data to an
informative output. The computer (machine) is programmed
to automatically perform a model or algorithm on the input
dataset in order to get the desired output. However, some
of the complex learning algorithms in machine learning
have completely changed our perception of data processing
such as Neural Networks, boosting algorithms, and ensemble
methods. This chapter presents a comprehensive literature
review and future prospect of algorithms in machine learn-
ing with a multiscope perspective. In addition to in-depth
analysis of algorithms, formulations, applications of machine
learning, challenges, and research avenues are discussed.

42.1.1 History

Traditional statistical theories used for predictive analysis
purposes before 1950s are the basis of many machine learn-
ing algorithms. However, we can say that the concept of
machine learning that we know today began after the 1950s
with a series of inventions, and after the 1990s,mainly the last
30 years, machine learning entered its golden era. Machine
learning was first introduced by Arthur L. Samuel in the
1950s, and the term “machine learning” was defined as a
“computer’s ability to learn without being explicitly pro-
grammed” [1]. He designed a computer program that could
learn which moves and strategies win better in checkers and
improved as it ran. In 1957, Frank Rosenblatt designed the
first artificial neural network, called Perceptron, with the idea
to simulate the processes of the human brain [2]. The limi-
tations of Perceptron to recognize many classes of patterns
lead to the discovery of multilayer perceptron in the 1960s.
In the 1970s, the concept of Backpropagation was developed
[3] and was implemented in neural networks in 1986 [4]. In
1967, the “nearest neighbor” algorithm was developed for
pattern classification [5]. Bayesian methods and probabilistic
inference started to appear in machine learning research in
the 1980s. In the 1990s, Machine learning began focusing on
more data-driven approaches instead of parametric ones. In
1995, Vapnik developed a modified classification algorithm
for handling nonlinearly separable classes using Support
vector machines (SVMs) [6]. Tree-based learning algorithms
and Random forests were also introduced [7].

In the twenty-first century, with the invention of GPUs,
which havemuchmore processing power compared to CPUs,

along developing parallel computing frameworks and tools,
scientists began developing algorithms that can analyze large
amounts of data with the tools that speed up the training
process. Introducing models such as Boosting algorithms,
Ensemble methods, and Neural Networks which have in-
creasing accuracy and adaptive learning pace also played
an important role in ML industry in the past 20 years. ML
algorithms combined with new computing technologies have
boosted scalability and improve accuracy and efficiency.
Nowadays, machine learning is the one of the important
reasons for significant advancements in technology and has
created many application-based concepts. The applications
vary from predicting events and product recommendations
to analyzing stocks market.

42.1.2 Machine Learning Importance

Machine learning is a dynamic domain which intersects
statistics, operation research, and computer science. The
mathematical theories behind the algorithms, optimization
methods in hyper parameter estimation, and efficient comput-
ing frameworks are all used in ML which makes it one of the
most popular fields. Despite the progress and advancements,
there are still numerous challenges that machine learning
faces today. High dimensional unstructured data, finding the
balance point in the trade of overfitting and underfitting,
and achieving the satisfying accuracy level versus expensive
implementation and computational needs are among some of
the challenges data scientists deal with today. Data analysts
use these practical challenges and turn them into opportuni-
ties which makes machine learning a fast-evolving field. As
a result, there are new methodologies and models developed
by scientists every day. Machine learning is mainly related
to computational statistics; however, many algorithms are
driven by applications in real-world problems. How machine
learning impacts many industries, and the jobs within them,
has made it a competence area for researchers in all fields.
Applications are varying from health care to finance and
banking.

Another reason for the rapid developments of new algo-
rithms and models in ML is the need for different algorithms
based on different characteristics and the goal. Different al-
gorithms have different efficacy on datasets and systems. For
example, working with big scale unstructured data such as
images or text for predicting problems, neural networks tend
to outperform other algorithms. However, neural networks
required high working and storing memory space. On the
other hand, when it comes to structured or tabular data,
decision tree-based models are better choices historically.
These differences in the algorithms and also datasets and
systems necessitate developing new algorithms with faster,
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less memory consuming, and easier implementation models
and frameworks. Here, we intend to go through the most
popular algorithms in ML in both mathematical and practical
aspect. In addition, various machine learning applications
are reviewed to help other researchers expand their view
in machine learning. In Sect. 42.2, popular machine learn-
ing categorizations by scientists are presented. Section 42.3
discusses several algorithms, techniques, and frameworks in
machine learning in depth along with a number of machine
learning applications. Machine learning has been used for
a prediction case study to present a number of differences,
advantages, and limitations of some of machine learning
algorithms in Sect. 42.4. Finally, Sect. 42.5 concludes the
chapter with a summary.

42.2 Machine Learning Categories

42.2.1 Types of Learning

Most common categorization of machine learning algorithms
is based on their learning type. Algorithms learning types
can be supervised, semisupervised, unsupervised, and rein-
forcement learning. In the proceeding, we go through what
each learning type means and investigate the most common
algorithms in their domain.

Supervised Learning
Supervised learning aims to predict the label or outcome (de-
pendent variable) based on a set of predictors (independent
variables). The algorithm generates a mapping function that
takes the input data or training set and learns to map it to
the label or targeted variable (e.g., true/false). This function
can be used to predict the label of new or unseen data. Most
important property of supervised learning is that the dataset
is a collection of labeled examples {(xi, yi)} where xi’s are
the predictors, independent variables, or features vector and
yi is the label, response, or targeted variable. The goal of
supervised learning algorithms is to take labeled training data
and a set of features vector x as the input and output a model
that predicts the label of the testing set yi.

Unsupervised Learning
Contrary to supervised learning , in unsupervised learning
the input datasets are not labeled. This learning type can be
used when we only have input data xwith no output variables
or labels corresponding to the xi’s. Giving no labels to the
learning algorithm, a function is designed to find the patterns
in the datasets. Considering x as the feature vector, the main
goal in unsupervised learning is to produce a model that takes
this vector x as input and transforms it into an informative
value that can be used to find the structure of new unseen
datasets.

Semisupervised Learning
Semisupervised learning is a mixture of supervised and unsu-
pervised learning meaning the dataset contains both labeled
and unlabeled data y’s. The goal in semisupervised learning is
the same as the goal of the supervised learning algorithms but
with the difference that an incomplete training dataset with
missing target outputs is available. Semisupervised learning
is often used in situations where the cost associated with
the labeling process is expensive, whereas unlabeled data is
relatively inexpensive, and semisupervised learning can help
the learning process to result in a more accurate model.

Reinforcement Learning
Reinforcement learning is different than the three previous
learning types in the way that the machine learns from the
predefined actions and rewards associated with them. Here
the machine must take actions in a dynamic environment
in order to gain as many rewards as possible using training
data that is given as feedbacks to the machine’s actions
[8]. Reinforcement learning is primarily based on Markov
decision process, and the algorithm learns to choose actions
in different situations to maximize the reward or feedback
signal. Furthermore, the environment is formulated as a
Markov decision process, situations are defined as different
states in the state space, and the machine can execute actions
in every state. The algorithm is trained to learn and find the
most rewarding actions by trial and error. Each action brings
different rewards and moves the machine to another state
of the environment. The goal of a reinforcement learning
algorithm is to learn to map actions to the proceeding states
and their corresponding reward. It takes the feature vector of
a state as input and outputs an optimal action to execute in
that state by maximizing the expected average reward. Re-
inforcement learning is useful in sequential decision-making
problems with long-term objectives and therefore has appli-
cations in domains such as robotics, resource management,
and logistics. Another interesting topic that has been recently
introduced is deep reinforcement learning in which deep
neural network is implemented to avoid the need of explicitly
designing the state space [9, 10]. Most famous algorithms
used in Reinforcement learning are Q-learning, Deep Q
networks, Deep Deterministic Policy Gradient (DDPG), and
State-Action-Reward-State-Action (SARSA) [11–15].

42.2.2 Parametric Versus Nonparametric
Learning

Learning algorithms can be parametric or nonparametric. For
instance, most supervised learning algorithms are parametric
ormodel based. Parametric algorithms use the training data to
create a model that has parameters learned from the training
data. On the other hand, nonparametric or instance-based
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learning algorithms use the whole dataset to fit a model with
no specified parameters. One example of these algorithms
are instance-based classifiers, also called lazy learners, that
store all of the training samples and do not build a classifier
until a new, unlabeled sample needs to be classified. Con-
sider Regression problems, the most popular nonparametric
algorithms include K-Nearest Neighbors (KNN), Gaussian
Process, and Random Fores. Parametric algorithms used for
such problems include Ordinary Least Squares, MARS, and
ridge regression.

42.2.3 Deep Learning

In the conventional machine learning, the parameters of the
model are directly learnt from the dataset which is also
known as shallow learning. Deep learning, on the other hand,
is based on multilayer artificial neural networks and have
high level of complexity [16]. In deep learning, most model
parameters are learned not directly from the features of the
training instances, but rather from the outputs of the inner or
hidden layers of an artificial neural networks. In this case, we
can consider shallow learning as the output of a single layer
feed forward network. These concepts will be discussedmore
in the artificial neural networks chapter.

Deep learning algorithms such as deep belief networks
(DBN), recurrent neural networks (RNN) [17], convolutional
neural networks (CNN) [18, 19] and Auto-Encoders [20, 21]
have shown high performances in many applications such as
computer vision and image processing, speech recognition,
natural language processing, and audio recognition [15, 22].
Generative adversarial network (GAN) is one of the newest
concepts in deep learning introduced in recent years which
outperforms many techniques in areas such as computer
vision [23].

42.3 Machine Learning Algorithms Based
on Applications

Another categorization of machine learning task arises when
one considers the desired output of a machine-learned sys-
tem. Classification and prediction are two forms of data
analysis that can be used to extract models describing im-
portant data classes or to predict future data trends. In what
follows, we will go through most popular ML techniques
and categorize them based on their applications, linearity
or nonlinearity, accuracy, and preference over each other in
different situations. One of the challenges data analysts face
at the beginning is to use a linear model or nonlinear one
in their analysis. Despite the fact that nowadays there are
many nonlinear models to use which usually give you high
accuracy, many people still prefer linear models because of

their computational simplicity and interpretability.Moreover,
it has been shown that linear models tend to perform better
with small sample sizes.

Bias – Variance One of the important concepts in ML
is bias-variance trade-off in estimated models. The Mean
Square Error (MSE) can be decomposed into three terms, two
of which are in the hands of analyst.

MSE (x0) = E[ f (x0) − ŷ0]
2 = E

[
ŷ0 − E

(
ŷ0
)]2

+E
[
E
(
ŷ0
)−f (x0)

]2=Var
(
ŷ0
)+Bias2

(
ŷ0
)+ ε

(42.1)

Flexible algorithms such asK-Nearest Neighborswill give
a high-variance but low-bias model whereas nonflexible al-
gorithms like least square regressionwill give a low-variance,
but high bias model compared to the flexible ones.

42.3.1 Supervised Learning

Classification Algorithms
Classification is a problem of automatically predicting the
label or class of a data point. Spam detection in emails is a
famous example of classification. In machine learning, the
classification problem can be solved by different classifi-
cation learning algorithms that they all take a collection of
labeled examples (training dataset) as inputs and create a
model that can take an unlabeled example as input and either
directly output a label or class or they give a value that can
be used by the analysts to deduce the output label such as
the probability of being in each class. There are two main
approaches for classification among statisticians; the gen-
erative approach and the discriminative approach. Given an
independent variable X and a target variable Y, Ng and Jordan
(2002) distinguish the two categories as follows: A generative
classification model is a statistical model based on the joint
probability distribution of X × Y, P(x, y). A discriminative
classification model is based on the conditional probability
of the Y given an observation x, P(Y|X = x) [24]. Examples
of generative classifiers are Naive Bayes classifier and Linear
Discriminant Analysis (LDA). And nonmodel classifier or
loos discriminative is support vector machine. The most
famous and used algorithms in classification problems are
discussed in the following.

K-Nearest Neighbors (KNN)
A nonparametric, instance-based leaning method finds the k
closest observations in the training set (xi) in input space to
the new observation (x) and averages their responses (yi) in
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order to find predicted response Ŷ:

Ŷ(x) = 1

K

∑

xi∈Nk(x)
yi (42.2)

where Nk(x) is the k closest neighbors of x in the training
sample and Euclidean distance is used mostly as the measure
of closeness. In regression problems, Ŷ is the average of
responses (yi’s), and if it is a classification problem, Ŷ is
the majority vote. KNN will provide a nonlinear decision
boundary (nonlinear regression fit) for observations in dif-
ferent classes. Choosing k to be small (e.g., k = 1) will cause
the model to have a high variance but low bias. On the other
hand, if k is large (e.g., k= 10), a smoother decision boundary
will be obtained with low variance but rather higher bias
than the first case. Moreover, as dimension increases, MSE
tends to increase as dimension increases. The increase in the
bias term, and not the variance, is the reason for that since
when dimension increases the average distance to nearest
neighbors increases and causes the estimate to be bias.

Support Vector Machines (SVM)
This method classifies observations by constructing an opti-
mal separating hyperplane between two classes. Two cases
can happen: Either two classes are linearly separable or
nonlinear separable, where the classes overlap. In both cases,
SVM and its extension to nonlinear decision boundary can be
used.

Linear Case Considering our training dataset consists of
{xi, yi} where yi is either +1 or −1, we define a hyperplane
by

{
x : f (x) = xTβ + β0

}
(42.3)

And then a classification rule is set by

G(x) = sign
[
xTβ + β0

]
(42.4)

Here we want to find the hyperplane which creates the
biggest margin between training points of class +1 and
−1. Here we want to maximize the marginal which can be
rephrased as

M = 1

‖β‖ (42.5)

In this way, the optimization problem becomes

min
β,β0,‖β‖=1

‖β‖ (42.6)

subject to yi
(
xTi β + β0

) ≥ 1, i = 1, . . . , N (42.7)

Nonlinear Case If the classes overlap in feature space so
that we cannot separate them using linear hyperplane, we can
use a modified version of the linear case in such way that
we not only still maximize M but also allow some instances
to be on the wrong side of the margin. In this way, we
need to define slack variables ξ and modify the optimization
problem.

min
β,β0

‖β‖ (42.8)

subject to yi
(
xTi β + β0

) ≥ 1 − ξi, i = 1, . . . , N
(42.9)

ξi ≥ 0,
∑

ξi ≤ constant (42.10)

Probabilistic Models

LDA (Linear Discriminant Analysis)
LDA is based on Bayes’ Theorem for classifications in such
a way that the Bayes’ classifier chooses the class with the
highest posterior probability for minimum error. If we con-
sider fk(x) as the class conditional density of X in class k and
π k as the prior probability of class k, the theorem gives

P̂r (G = k |X = x) = P̂r (X = x|G = k) P̂r (G = k)
∑K

l=1 P̂r (X = x|G = l) Pr (G = l)

= fk(x)πk
∑K

l=1 fl(x)πl
(42.11)

Considering the class densities as multivariate Gaussian
distribution with common covariance matrix �, μk the mean
of the input variables for class k, and p as the number of
variables

P̂r (X = x|G = k) = f̂k(x) (42.12)

P̂r (G = k) = π̂k (42.13)

fk(x) = 1

(2π)
p
2 |�| 1

2

e− 1
2 (x−μk)

T�k
−1(x−μk) (42.14)

We can get the linear discriminant functions δk
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δk(x) = xT�−1μk − 1

2
μT
k�

−1μk + log πk (42.15)

which are equivalent to descriptions of the decision rule so
that

G(x) = argmaxkδk(x) (42.16)

π k is estimated as the fraction of training samples of class
k.

Considering we have only two classes, the LDA rule
classifies a new observation x to class 2 if

xT�−1
(
μ̂2−μ̂1

)
>

1

2

(
μ̂2+μ̂1

)T
�−1

(
μ̂2−μ̂1

)+ log
(
N2

N1

)

(42.17)

QDA (Quadratic Discriminant Analysis)
LDA was a special case when the density functions have
common covariance matrix �. If �k are not assumed to be
equal, we get quadratic discriminate function

δk(x) = −1

2
log |�k| − 1

2
(x− μk)

T�k
−1 (x− μk) + log πk

(42.18)

Logistic Regression
Logistic regression is a linear method, for that classifies
observations based on conditional probabilities and gives the
posterior probabilities of classes using linear function in x. It
has the form of (K − 1) log-odds or logit transformations.

log
Pr (G = i |X = x)

Pr (G = K |X = x)
= βi0 + βT

i x, i = 1, . . . , K − 1

(42.19)

which is equivalent to

Pr (G = i|X = x)

= exp
(
βi0 + βT

i x
)

1 +∑K−1
l=1 exp

(
βl0 + βT

l x
) , i = 1, . . . , K − 1

(42.20)

Pr (G = K |X = x) = 1

1 +∑K−1
l=1 exp

(
βl0 + βT

l x
)

(42.21)

Here the last class, class K, has been used as the denom-
inator in the odds-ratio, but in general it could be arbitrary.

Additionally, we should keep in mind that the sum of the
probabilities should be equal to 1.

Naïve Bayes Classifier
Naïve Bayes algorithm estimates the class conditional prob-
ability density function (pdf) by assuming that the features
Xi’s are conditionally independent given the class label. If we
consider fk(x) as the class conditional density of X in class k,
we can find it by:

fk(X) =
p∏

i=1

fki (Xi) (42.22)

The assumption of independency among features is gen-
erally not true, but it simplifies the estimation specially when
p or the number of dimensions is high.

Tree-Structured Learning

Classification and Regression Tree (CART)
Decision tree method consists of first dividing the feature
(predictors) space into a number of regions or rectangles by a
set of recursive binary splitting rules and then fitting a simple
regression or classification model in each one. In order to
make predictions for new observations in classification and
regression tree, known as CART, we usually take the mean
(regression setting) or majority votes (classification setting)
of trainings observations in the region it belongs to. Your pre-
diction values are at terminal nodes of leaves. ID3 (Iterative
Dichotomize 3) was the first Decision Tree implementations
developed by Ross Quinlan1986. C4.5 is the successor to
ID3 which did not have the restriction that features must be
categorical, and C5.0 is the most recent algorithm developed
by Quinlan [25, 26]. Decision trees are simple and easy to
interpret but not comparable to other methods in terms of
accuracy. Many advanced and powerful algorithms are based
on combining many decision trees to get the better prediction
accuracy. Considering a regression problem with R1, . . . ,RM
regions, the predictions yi’s in each region will be a constant
cm which is the average of response values in that region.

f (x) =
M∑

m=1

cmI (x ∈ Rm) (42.23)

ĉm = 1

Nm

∑

xi∈Rm
yi (42.24)

where Nm is instances in training set that belong to region Rm
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Nm =
N∑

i=1

I (xi ∈ Rm) (42.25)

The challenge in decision tree is how to grow the tree. In
other words, what is the best partition regions of input space
means deciding the splitting variable and split point at each
step of the tree. Considering variable j and split point s if we
define regions as

R1(j, s) = {
X|Xj ≤ s

}
and R2 (j, s) = {

X|Xj > s
}
,

(42.26)

we find the best split by the following optimization problem

min
j,s

⎡

⎣min
c1

∑

xi∈R1(j,s)

(
yi − ĉ1

)2 + min
c2

∑

xi∈R2(j,s)

(
yi − ĉ2

)2
⎤

⎦

(42.27)

In decision trees, the tree size is a tuning parameter that
needs to be optimized. In order to avoid overfitting, the idea
is to grow a really deep tree, T0, until some minimum node
size is reached, and then prune it by collapsing some internal
nodes so that it meets a certain cost complexity.

If we define a subtree T ⊂ T0, we will have the within-
node squared error as

Qm(T) = 1

Nm

∑

xi∈Rm

(
yi − ĉm

)2
(42.28)

And define cost complexity as

Cα(T) =
T∑

m=1

NmQm(T) + α |T| (42.29)

Where |T| is the tree size or number of terminal nodes in
the tree T, and we try to select the subtree with minimum Cα .

In classification setting, the squared error impurity mea-
sure cannot be used. If we consider the proportion of class k
observations in region m as

p̂mk = 1

Nm

∑

xi∈Rm
I (yi = k), (42.30)

we classify the observations in node m to the majority class
in node m

k(m) = argmaxk p̂mk (42.31)

The three impurity measures for classification are
Misclassification error:

1

Nm

∑

xi∈Rm
I (yi �= km) = 1 − p̂mk(m) (42.32)

Gini index:

K∑

k=1

p̂mk
(
1 − p̂mk

)
(42.33)

Cross-entropy or deviance:

−
K∑

k=1

p̂mk log p̂mk (42.34)

There is a special case when k = 2; Gini index will be
the sum of all variances which is the same as the impurity
measure in regression setting. Moreover, Gini index and
cross-entropy are sensitive to different splits unlike mis-
classification error. In this regard, misclassification error is
not really used for growing the tree among all measures.
Gini index is also computationally preferred to cross-entropy.
Usually, Gini index is used to grow the trees since we want
each group in each split node to be as pure as possible, and
thenmisclassification error and cross-entropy are referred for
performance evaluation. There are some types of functions
and datasets that CART does have trouble approximating.
Additive functions, functions with categorical variables, and
datasets with many missing observations are among them.

Bagging
Bagging averages predictions of bootstrap samples in order
to reduce the variance in expected error. For each bootstrap
sample Zb, b= 1, . . . , B,we can get the prediction f̂ b(x), and
the bagged estimate will be:

f̂bag(x) = 1

B

B∑

b=1

f̂ b(x) (42.35)

In Bagging, bootstrap samples of original training set are
used tomake sure sample predictions are independent of each
other. Bagging is especially useful in predictionmethodswith
high variance and unstable results like decision trees as it
lowers variance and improves prediction. However, if the
predictions are correlated, the variance will rise. That is one
of the reasons random forest was invented.

Random Forest
As peviously mentioned, because of the correlation between
trees in bagging method, the alternative, random forests,
came up to use uncorrelated trees and averages them. The
major modification is that rather than choosing the best j
variable among all variables x1, . . . , xp to grow the tree, we
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choose a subset M of size m randomly from {x1, . . . , xp}
at each step of the tree. This way, the trees become much
more uncorrelated. In fact, the higher the number of variables
in the subset m, the higher chance of correlation between
variables. Therefore, a smaller subset of m will more likely
give uncorrelated trees. In random forest, we draw a bootstrap
sample Zb, b= 1, . . . ,B, from the training and grow a random
forest Tb to the dataset by selecting m variables randomly at
each node.

f̂rf(x) = 1

B

B∑

b=1

Tb(x) (42.36)

The default values for m, for regression problems, are
usually

⌊ p
3

⌋
and

⌊√
p
⌋
for classification problems. One im-

portant aspect in random forest and bagging is the use of Out-
of-Bag samples. Since in bagging and random forest the trees
are fit to bootstrapped samples of observations, one can show
that approximately 30% of your data will not be selected in
the samples structuring the trees. This way, we get the out-
of-bag (OOB) error rate by predicting the response for the
observations by using only the trees that were not fit using
those observations and were OOB. The OOB error rate is
equivalent to the test error rate in cross-validation approach.
Mean Decrease in Impurity (MDI) and Mean Decrease in
Accuracy (MDA) are used for variable importance measure
and model selection.

Boosting Methods
The main idea in boosting is to combine many so-called
“weak learners” or base learners (decision stumps) to pro-
duce a powerful model. “weak leaner” is defined as one
whose error rate is slightly better than random guessing. In
this respective, it is similar to Bagging and other committee-
based approaches. In this study, most known boosting algo-
rithms will be reviewed.

AdaBoost
Considering a classification problem Y ∈ {1,−1}, boosting
applies weak classification algorithm and iteratively changes
weights of data points in training set so that at each round
more attention is paid to the misclassified ones. This way,
a sequence of weak classifiers Gm(x), m = 1,2, . . . ,M is
produced, and the prediction from all of them combined with
a weighted majority vote (contribution of each Gm(x)) gives
the final prediction G(x).

G(x) = sign

[
M∑

m=1

αmGm(x)

]

(42.37)

Here, αm’s are the weights in order to increase the influ-
ence of more accurate classifiers in sequence. We initialize

the algorithmswith all data points (xi, yi), i= 1, . . . ,N having
the same weight wi = 1

N , and then from m = 2 to M, we
proceed by assigning more weights αm, to the data points that
were misclassified in the previous step according to errm, and
train the classifier Gm(x).

errm =
∑N

i=1 wi I (yi �= Gm (xi))
∑N

i=1 wi
(42.38)

And

αm = log
(
1 − errm
errm

)
(42.39)

And weights for next iteration classifierGm+1(x) are com-
puted by

wi = wi. exp [αm.I (yi �= Gm (xi))] , i = 1, 2, . . . , N
(42.40)

Generally speaking, AdaBoost fits an additive model us-
ing an exponential loss function, and the population min-
imizer of this exponential loss function is the log-odds of
the class probabilities. Decision trees are found to be the
ideal weak learners or base learners for boosting. However,
in some situation where the data is noisy(outliers) or there is
a misspecification of class labels in the training set, the per-
formance of AdaBoost (generally exponential loss function)
degrades and is far less robust.

Gradient Boosting
Gradient boosting algorithm is a forward stepwise procedure
that solves an optimization problem to find the next tree
given the current model fm−1(x), and it incorporates gradient
descent into it.

At each iteration, a weak learner h(x) (typically a re-
gression tree) whose predictions are as close as possible to
the current residuals (negative gradient values) of the loss
function is added, as if in each iteration fm+1 tries to correct
the errors of fm.

fm+1 = fm(x) + h(x) = y (42.41)

h(x) = fm(x) − y (42.42)

This is of course an approximation algorithm in order to
find a good numerical result. This loss function could be
squared error, absolute error, or Huber for regression and
multinomial deviance for classification. In this algorithm, we
first initialize the model by the optimal constant model which
is a single terminal node tree.
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f0(x) = argminγ

N∑

i=1

L (yi, γ ) (42.43)

Where N is the number of observations in the training
dataset {(xi, yi)}, and L is the chosen loss function. And for
iteration m = 1 toM, we calculate the pseudoresiduals by:

rim = −
[
∂L (yi, f (xi))

∂f (xi)

]

f=fm−1

(42.44)

A base learner hm(x) is fitted to pseudoresiduals using the
training set afterward, followed by computing the multiplier
γ m (weight or proportion of hm(x) to be added to fm − 1(x)) by
solving the following optimization problem:

γm = argminγ

N∑

i=1

L ( yi, fm−1 (xi) + γ hm (xi)) (42.45)

And update the model:

fm(x) = fm−1(x) + γmhm(x) (42.46)

The final output is the prediction estimate

f̂ (x) = fM(x) (42.47)

Gradient Boosting Machine (Gradient Tree Boosting)
We can use this method using regression tree as our base
learners (for both classification and regression problem) also
known as MART (Multiple Additive Regression Trees) or
GBM (gradient boosting machine); rjm gives us the regions
Rjm, and h(x) becomes:

hm(x) = I
(
x ∈ Rjm

)
(42.48)

Consequently,

fm(x) = fm−1(x) +
Jm∑

j=1

γjm I
(
x ∈ Rjm

)
(42.49)

There are two tuning parameters, number of iteration M
and size of each constituent tree Jm = 1, . . . , M.

XGBoost
XGBoost method is an implementation of gradient boosting
algorithm with additional regularized loss (objective) func-
tion in order to counter overfitting.

L(q) = min
N∑

i=1

L ( yi, fm−1 (xi) + hm (xi)) +
M∑

m=1

�(hm)

(42.50)

where the added term � penalizes the complexity of the
model and is defined as �(h) = γT + 1

2λ‖w‖2, T is the
number of leaves in the tree, and q is the tree structure where
each leaf in the tree has a score wj, and the final prediction is
found by summing up the score in the corresponding leaves.

After expanding the loss function similar to Taylor series,
we can find the optimal weight w∗

j of leaf j and the loss
function:

w∗
j = −

∑
i∈Ij gi∑

i∈Rjm hi + λ
(42.51)

L(q) = −1

2

T∑

j=1

(∑
i∈Ij gi

)2

∑
i∈Ij hi + λ

+ γT (42.52)

where gi and hi are the first- and second-order gradient
statistics on the loss function L and Ij is the instance set in
leaf j. This last equation is used as a scoring function in order
to find the tree structure q by measuring the gain in different
splitting nodes. An approximate algorithm that starts with
a leaf and adds branches based on the gain is implemented
in XGBoost. The Gain when a leaf is split into two leaves,
where instance sets of the Left node IL and Right node IR
and I = IR ∪ IL , is calculated as (loss before splitting – loss
after splitting), and L(q) becomes:

Lsplit=1

2

[ (∑
i∈IL gi

)2
∑

i∈IL hi + λ
+
(∑

i∈IR gi
)2

∑
i∈IR hi + λ

−
(∑

i∈I gi
)2

∑
i∈I hi + λ

]

−γ

(42.53)

If the gain < γ , that branch will not be added to the model
and can be removed from the tree. Furthermore, XGBoost
uses two additional techniques in order to avoid overfit-
ting, column (feature) subsampling that speeds up parallel
computation, and shrinkage introduced by Friedman. For
the split-finding algorithms, XGBoost uses an approximate
algorithm instead of the common exact greedy algorithm; that
is because the exact algorithm is computationally expensive
and impossible when the data does not fit into memory. In the
approximate algorithm, candidate splitting points are chosen
based on the percentiles of feature distribution, and then
based on the aggregated statistics the best solution among the
candidates is found. In order to do the approximate algorithm
more efficiently, they use column block for parallel learning
which means collecting statistics for each column (feature)
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will be parallelized, giving us parallel algorithm for split find-
ing. Additionally, the column block technique also enables
column subsampling which was mentioned previously.

As previously mentioned, it has been seen that decision
trees do poorly with sparse data. In this regard, XGBoosting
suggests an improved sparsity-aware split-finding technique
in order to make the algorithm aware of the sparsity pattern
in the data. They propose a default direction in each splitting
node such that if a value is missing, the instance goes to
the default direction. The optimal directions are learnt from
the data and set as the default direction in each branch, and
the big improvement then would be that the algorithm only
visits the nonmissing entries. This way, the sparsity aware
algorithm runs 50 times faster than the naïve version.

XGBoost might be preferred to some competitive algo-
rithms such as Neural network because of fewer number of
parameters to tune, and also it is easy to implement. Light
GBM and Catboost are also new boosting algorithms that
came out in 2017 as a modification of XGboost [27, 28].

Artificial Neural Networks (ANN)
Neural network is different than the previous methodologies
as it constructs a framework that investigates underlying
behavioral trends of the system. Neural network recognizes
the hidden relationships between input variables and the
relationship between input and output variables that helps
making more accurate predictions [29]. Neural networks are
capable of learning complicated nonlinear relationships and
capture complex data patterns and hidden features. These
properties make them preferable for classification and pre-
diction problems that involve the detection of complicated
nonlinear patterns specially in high-dimensional datasets.

Perceptron learning is the foundation for the neural net-
work models introduced by Rosenblatt in 1958 [30]. A Per-
ceptron in neural network is an artificial neuron that performs
certain functions to the input data in order to generate fea-
tures. In neural network, we can have single-layer Perceptron
which can only learn linearly separable patterns or multilayer
Perceptron that have more than two layers and perform better
on more complex problems.

Neural networks use the Kolmogorov-Arnold representa-
tion theorem that any function f (x) can be exactly represented
by a (possibly infinite) sequence of addition, multiplication,
and composition with functions that are universal and do not
depend on f(x).

f (x) =
M∑

m=1

gm
(
wT
mx
)

(42.54)

Here the gm or g function is called the activation function
which does not depend on M and is typically taken to be
sigmoid function. However, hyperbolic tangent and rectified

linear unit (RelU) are among the most popular ones now
in industry. Wm is called the inner-layer or hidden layer
weight vector, and M is the width or number of hidden units
(wT

mx). In order to find the Risk function or the deviance, we
use gradient descent; the most popular learning technique in
neural network is back-propagation.

R̂ = 1

N

N∑

i=1

K∑

k=1

(yik − fk (xi))
2 (42.55)

where f (x) has the form of

f (x) =
M∑

m=1

βmσ
(
α0m + αT

mx
)

(42.56)

Neural network uses a set of chain rules in order to find
the minimum of R function. The parameters in this equation
that need to be optimized can be found with backpropagation
equations

∂Ri
∂βkm

= −2 (yi − fk (xi)) g
T
k (T)Zmi (42.57)

∂Ri
∂αml

= −2 (yi − fk (xi)) g
′
k(T)βkmσ ′ (α0m + αT

mxi
)
xil

(42.58)

where

Zmi = σ
(
α0m + αT

mxi
)

(42.59)

One of the disadvantages of neural networks is that it is
very subjective, where the model and results vary signifi-
cantly on the data analyst network configuring and architec-
ture, initialization, and parameter tuning. The problem may
rise as there are many parameters to be optimized in NN, and
overfitting might happen. In this regard, usually scientists
initialize the parameters with standard normal distribution
and add a penalization term to the risk function.

There are multiple neural network types, some of which
are most popular among researchers. Feedforward Neural
Network is the simplest and easiest type of neural network
in which the information can only move from the input layer
through the hidden layers and the output layer. On the other
hand, in Recurrent Neural Network (RNN) the output of
a layer is fed back to the input in order to improve the
final predictions. Convolutional Neural Networks (CNN) are
similar to feed forward neural networks but contain one or
more convolutional layers in which a convolutional operation
is performed to the input before passing to the next layer.
CNNs show highly competitive results in image and video
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recognition and natural language processing. Auto-Encoders
are another popular type of neural networks that are used in
unsupervised learning, specifically dimension reduction and
denoising. Further discussion about neural network and deep
learning is out of scope of this chapter but can be found in
references [31, 32].

Regression Algorithms
Regression is a problem of predicting a real-valued label
(often called a target) given an unlabeled example. The re-
gression problem is solved by a regression learning algorithm
that takes a collection of labeled examples as inputs and
produces a model that can take an unlabeled example as input
and output a target.

Linear Regression Methods

Least Squares Linear Regression
Least Squares Linear regression is a popular regression algo-
rithm that learns amodel inwhich target value is a linear com-
bination of features of the input observation. Least Squares
Linear regression is widely used because of computational
simplicity and good estimation for small sample sizes. Sup-
pose we have N observations {(xi, yi)},and we want to fit a
linear regression function f (xi) to our feature vector in order
to predict value of yi:

Y = f (x) + ε (42.60)

where ε is observed as independent and identically dis-
tributed random variable with mean zero and constant vari-
ance σ 2. In other words, we want to estimate the function:

f (x) = E {Y|X = x} = β0 +
p∑

j=1

βjXj (42.61)

where X = (X1, . . . , Xp)T and p is the number of predictors
x. Least square method is used to estimate β’s by minimizing
the Residual Sum of Square Errors:

RSS (β) = 1

N

N∑

i=1

(
yi − βTxi

)2

= 1

N
‖Y − Xβ‖2 (in the matrix format)

(42.62)

where β = (β0,β1, . . . .,βp) ∈ R
p + 1. If N is greater than p,

this equation is solvable, but if N is smaller than p,we cannot
find a unique solution and we should do regularization. Least
square method solution for β’s is:

β̂LS = (
XTX

)−1
XTY (42.63)

Based on the Gauss–Markov theorem, least square is the
best linear unbiased estimator among all estimations. Now
suppose we want a prediction at a new input X0:

Y0 = f (X0) + ε0 (42.64)

f̃ (X0) = XT
0 β̃0 (42.65)

We can find our prediction accuracy using expected pre-
diction error:

E

[(
Y0 − f̂ (X0)

)2] = Var (ε0) + MSE
(
f̃ (X0)

)
(42.66)

Shrinkage Methods via Regularization
Overfitting is a common issue in machine learning problems
and among different approaches to overcome this issue. Reg-
ularization is the most popular approach among researchers
in order to resolve and avoid overfitting. Regularized Regres-
sion methods retain a subset of the predictors and regularize
or shrink the remaining predictor’s coefficient estimates to-
ward zero or excluding them from the model. This can be
done by adding a penalty term to the lost (cost) function.

Ridge Regression
Ridge regression coefficients minimize a penalized residual
sum of squares, and λ is the parameter for controlling the
shrinkage. If λ is zero, then Ridge regression is the same as
ordinary sum of squares regression, and if we choose a large
λ, there will be more shrinkage. Ridge regression enforces
the β coefficients toward zero but does not set them to zero,
which means it does not omit insignificant features but rather
minimizes their impact on the model.

RSS (β) = 1

N

N∑

i=1

(
yi − βTxi

)2 + λ. penalty (β) (42.67)

penalty (β) =
p∑

j=1

β2
j (42.68)

writing B Ridge in terms of B Least square = 1

λ + 1
β̂ls

(42.69)

LASSO
Lasso is the same as ridge regression but uses L1 regular-
ization instead of L2. However, Lasso sets coefficients of
irrelevant features to zero instead of minimizing them. This
is one of Lasso’s advantages because this way fewer features
are included in the model, meaning a subset selection and
coefficient estimation at the same time.
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RSS (β) = 1

N

N∑

i=1

(
yi − βTxi

)2 + λ.penalty (β) (42.70)

penalty(β) =
p∑

j=1

∣∣βj
∣∣ (42.71)

writing BLASSO in terms of B Least square

=
(
sign β̂ls

)(∣∣∣β̂ls
∣
∣∣− λ

2

) (42.72)

Elastic Net
Elastic net is the combination of Ridge and LASSO

RSS (β) = 1

N

N∑

i=1

(
yi − βTxi

)2 + λ.penalty (β) (42.73)

penalty (β) = λ

⎛

⎝ α

p∑

j=1

∣
∣βj
∣
∣2 + (1 − α)

p∑

j=1

∣
∣βj
∣
∣

⎞

⎠

(42.74)

where α is the mixing parameter of ridge and lasso. When
α = 1, it becomes fully ridge regression, and when α = 0, it
becomes Lasso.

Support Vector Regression (SVR)
Support Vector Machine for Regression (SVR) is the same
as SVM for classification setting but with little modification.
The objective in SVM is to find a hyperplane that separates
the two classes with the minimum error in a way that the
distance between the training data points from either of the
two classes is maximized. However, the goal in SVR is to
find a hyperplane (function f (x))with points on both sides but
deviates from yn by errors that do not exceed the threshold ε

for each training point x. Considering our training, dataset
consists of {xi, yi} where yi is continued:

{
x : f (x) = xTβ + β0

}
(42.75)

The optimization problem becomes

min
β,β0,‖β‖=1

‖β‖ (42.76)

subject to
∣
∣yi −

(
xTi β + β0

)∣∣ ≤ ε, i = 1, . . . , N
(42.77)

In order to overcome infeasible constraints of the opti-
mization problem, formulation is modified with slack vari-
ables ξ i, ξ i∗ :

min
β,β0

‖β‖ + C
N∑

i=1

ξi + ξi
∗ (42.78)

subject to yi −
(
xTi β + β0

) ≤ ε + ξi (42.79)

(
xTi β + β0

)− yi ≤ ε + ξi
∗, i = 1, . . . , N (42.80)

ξi, ξi
∗ ≥ 0 (42.81)

42.3.2 Unsupervised Learning

In unsupervised learning, we are interested in estimating
the probability density p(x) based on a set of observations
(x1, . . . , xN) without considering its relationship to other
variables and having a “label” or associated response variable
Y. In this regard, we cannot use previous loss functions like
squared error to evaluate the methods. Unsupervised learning
can be categorized into clustering algorithms, dimension
reduction, and density estimation. There are many density
estimation methodologies such as Gaussian mixture, kernel
density, and deep Boltzmann machine, but it is a broad
topic by itself and cannot be covered in this chapter. Some
researchers categorize kernel methods as the fourth group in
unsupervised learning.

Clustering Analysis
Clustering is related to grouping or segmenting the dataset
into subsets or clusters in order to present p(x) by simpler
densities in a way that observations within each cluster
are more closely related to one another. One of the main
applications in clustering is to perform market segmentation.
Similarity/dissimilarity is the metric that shows how close
or far the data points are from clusters and each other in
clustering. Each clustering method attempts to group the
dataset points based on the dissimilarity measure defined in
that methodology.

In clustering algorithms, each observation xi is assigned to
one and only one cluster k, where k is specified and less than
N (total number of observations). This cluster assignment can
be defined as c(i) = k where k ∈ {1, . . . ,K}. In this way, we
will have the global dissimilarity of all clusters as

W(c) = 1

2

K∑

k=1

∑

c(i)=k

∑

c(i′)=k
D
(
xi, x

′
i

)
(42.82)
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where the inner summations give the within cluster dissim-
ilarity or scatter. We can show that minimizing the within
cluster scatter is equivalent to maximizing between cluster
scatter, if we consider T as all possible cluster assignments
and B(c) as between clusters point scatter:

T = 1

2

∑

i=1

∑

i′=1

D
(
xi, x

′
i

)

= 1

2

K∑

k=1

∑

c(i)=k

⎡

⎣
∑

c(i′)=k
D
(
xi, x

′
i

)+
∑

c(i′)�=k
D
(
xi, x

′
i

)
⎤

⎦

= W(c) + B(c)
(42.83)

W(c) = T − B(c) (42.84)

The best cluster assignment is Ĉ = argminc W(c) =
argmaxc B(c). We can see that the number of cluster assign-
ments needed to be checked is huge.

K-means Clustering
K-mean is the most popular iterative clustering method if all
variables are quantitative type. InK-mean, squared Euclidean
distance is used as the dissimilarity measure. InK -means, we
initialize the algorithm so that for a given cluster assignment
c, the total cluster variance is minimized with respect to the
means of currently assigned clusters, m1, . . . , mk.

W(c) = 1

2

K∑

k=1

∑

c(i)=k

∑

c(i′)=k
D
(
xi, x

′
i

)

=
K∑

k=1

p∑

j=1

V̂ar
(
xj|c(i) = k

)× N2
k

(42.85)

where

ˆVar (xj|c(i) = k
) = 1

Nk

∑

c(i)=k

(
xij − mjk

)2
(42.86)

mjk = xjk = 1

Nk

∑

c(i)=k
xij (42.87)

Nk is the number of observations in cluster k. Considering
the definitions above, W(c) becomes:

W(c) = min
m1,...,mk

K∑

k=1

p∑

j=1

Nk
∑

c(i)=k

(
xij − mjk

)2
(42.88)

Ĉ = min
c,M

W (c,M) where M is the vector of means

M = {m1, . . . ,mk}. Now given a current set of means
vector, we minimize W(c,M) by assigning each obser-
vation to the closest current cluster mean, i.e., c(i) =
min
1≤k≤K

∑p
j=1

(
xij − mjk

)2
and repeat the process until cluster

assignments do not change. There are many clustering
algorithms based on variations of k-means modifications
and centroid-based such as k-medoids, k-medians, or fuzzy
c-means [33–35].

Hierarchical Clustering
One of the disadvantages of K-means or K-medoids is that
the number of clusters and the initial assignments must be
selected. Therefore, the clustering results depend on the
analyst’s choice for the number of clusters and a starting
initialization. However, in hierarchical method based on the
measure of dissimilarity given, we can find the agglomerative
(bottom-up) or divisive (top-down) clusters. Agglomerative
method starts from the bottom and at each level joins a
pair of clusters into a single cluster based on the similarity
measure. Divisive method performs the opposite by starting
at the top and splitting each cluster into two clusters. In
these methods, we get a tree-structured map of the clusters
and dissimilarities between groups. Mostly, agglomerative
is popular among analysts because of an interesting feature
in its clustering map’s graphical display called a dendro-
gram. The dendrogram is plotted in a way that the length
(tree height) between each main cluster and subcluster is
proportional to the dissimilarity between them. The terminal
nodes of the dendrogram are the individual observations.
In agglomerative method, we can perform single linkage,
complete linkage, and group average clustering.

Density-Based Spatial Clustering of Applications
with Noise (DBSCAN)
DBSCAN is a popular density-based clustering algorithm
proposed by Ester et al. in 1996 [36]. It is a nonparamet-
ric clustering algorithm that finds neighborhoods with high
densities. How it differs from k-mean algorithm is that a
constant ε is predetermined so that any two points with
distance between them lower or equal to “eps” are considered
as neighbors. Furthermore, the minimum number of data
points within each neighborhood ε is also defined. DBSCAN
defines the neighborhoods recursively and setting all other
points outside of neighborhoods as Noise or outlier. Conse-
quently, this algorithm works well with noisy datasets.

Dimension Reduction Techniques

Principal Components Analysis
Principal Components Analysis (PCA) is a useful method in
many problems. The most important task of PCA is to repre-



878 M. Arabzadeh Jamali and H. Pham

sent the variability of a large number of correlated variables
in a much lower dimension. PCA provides a tool that finds a
low-dimensional representation of a data set, called principal
components Z1, . . . , Zk,with as much information and vari-
ation as possible. In order to find the principal component
of the features x1, . . . , xp, we look for normalized linear
combinations of the features that have the largest variance.

Z1 = ∅11x1 + ∅21x2 + · · · + ∅p1xp (42.89)

where
∑p

j=1 ∅
2
j1 = 1, Z1 is the first PC, and vector ∅i

is the PC loading vector. We need to solve the following
optimization to find the maximum sample variance of zi1
which can be solved with eigen decomposition method.

max
∅11,...,∅p1

⎡

⎢
⎣
1

n

n∑

i=1

⎛

⎝
p∑

j=1

∅j1xij

⎞

⎠

2
⎤

⎥
⎦ = max

1

n

n∑

i=1

z2i1 (42.90)

subject to
p∑

j=1

∅
2
j1 = 1 (42.91)

The second principal component is again the linear com-
bination of x1, . . . , xp with maximum variance that is un-
correlated with Z1. In order to find Z2,the same optimization
problem should be solved with an additional constraint that
the direction of ∅2 should be orthogonal to the direction
∅1 in order for them to be uncorrelated. It is recommended
to scale all variables to have mean zero before performing
PCA. One important metric in PCA is the proportion of
variance explained (PVE) by each principal component. The
cumulative PVE of the first M principal components can be
calculated by summing over each of the firstM PVEs.

PVEm =
∑n

i=1

(∑p
j=1 ∅jmxij

)2

∑p
j=1

∑n
i=1 x

2
ij

(42.92)

Furthermore, PCA transformation can also be helpful as
a preprocessing step before clustering the data. PCA helps
identify those data points which bring higher variance in
the original data and also removing multicollinearity among
different features. The results of PCA depend on the scale
of the variables, so it is better to scale each feature by its
standard deviation.

PCA can also be used in regression problems. To perform
principal components regression (PCR), we simply use prin-
cipal components as predictors in a regression model instead
of the original variables. Partial least squares (PLS) method
works the same way as PCR [37, 38].

t-Distributed Stochastic Neighbor Embedding (t-SNE)
unlike PCA is a nonlinear dimensionality reduction
technique that is primarily used for visualization purposes
of high-dimensional datasets. t-SNE is a newer machine
learning algorithm compared to PCA and PLS developed in
2008 [39]. PCA works with quantitative variables; however,
multiple correspondence analysis (MCA) is the PCA version
for qualitative variables [40].

42.3.3 Semisupervised Learning

Semisupervised learning comes when the cost of labeling
process may be large, some parts of labels are missing, or
a fully labeled data is infeasible. In these situations, semisu-
pervised learning can be used where we have a mixed dataset
of labeled and unlabeled observations. All semisupervised
algorithms assume the following about the data:

Continuity Assumption: Points which are closer to each
other with high probability will have the same output label.
Cluster Assumption: Assuming the data is divided into dif-
ferent clusters, points in the same cluster are more likely to
have the same output label. Manifold Assumption: The data
lie approximately on a manifold of much lower dimension
than the input space. Semisupervised learning is rather new
and evolving in machine learning. There are some popular
algorithms such as self-training, generative methods, mix-
ture models, graph-basedmethods, and semisupervised SVM
(S3VMs) [41–47].

42.4 Case Study

Datasets containing energy consumption in Netherlands be-
tween 2010 and 2020 have been used to investigate super-
vised prediction techniques mentioned in previous sections
[48]. Enexis, Liander, and Stedin are the three major energy
providers of theNetherlands, and the yearly energy consump-
tion of the areas under their administration is available online.
Each year dataset consists of annual energy consumption
of different neighborhood (including zip codes and street
names) in different cities under the company’s territory.
Each dataset is for a specific network administrator for a
specific year and contains the following columns: network
manager, purchase area, street name, zip code from and zip
code to (two columns for the range of zip codes covered),
city name, number of connections (number of connections
in that range of zip codes), delivery percentage (percentage
of the net consumption of electricity or gas – the lower this
number the more energy was given back to the grid for
instance if that neighborhood had solar panels to produce
energy), percentage of active connections, type of connection
(principal type of connection in the zip code range), type of
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Table 42.1 Summary of statistics

Number of
connections Delivery %

% of active
connections

Type connection
%

Annual
consumption low
tariff % Smart meter % Year

Annual
consumption

Count 156,791 156,791 156,791 156,791 156,791 156,791 156,791 156,791

Mean 30.17 99.28 91.45 77.28 25.93 20.40 2014.59 3478.69

Std 22.81 3.69 17.47 20.33 30.36 30.73 2.88 3220.31

Min 10 3.26 0 18 0 0 2010 52

25% 18 100 91.43 60 3.33 0 2012 1934

50% 25 100 97.67 82 11.54 2.5 2015 2509

75% 34 100 100 96 42.11 32 2017 3675

Max 669 100 100 100 100 100 2019 59,207

connection percentage, annual consume low tariff percentage
(percentage of consume during the low tariff hours -from 10
p.m. to 7 a.m. and during weekends), smart meter percentage
and finally annual consume kWh.

One of the important factors about this dataset is the infor-
mation it has about Smart meters. Smart meters record energy
consumption and send the observed data to the electricity
supplier. This information can be used for by the suppliers for
many applications such as monitoring and billing purposes.
Since smart meters enable the intelligent controlling systems,
they play an important role in the future energy grids. The
most important benefits of smart meters are increasing the
energy efficiency, reducing energy costs by enhancing the
provision of ancillary services, and empowering utilities
electricity production by integrating energy storages and
renewable energies during high demands [49, 50]. Moreover,
smart meters provide data for analysis of power quality and
power outages. Smart meters provide a two-way communi-
cation between grid and smart meter which has data storage
capability of outage records that can be used for predicting
blackouts [51].

Moreover, the consumers can also get direct information
about their energy consumption which motivates higher en-
ergy savings or consuming during low tariff times. The last
remark gives us the second most important information in
our dataset which is “percentage of consume during low tariff
hour.” Furthermore, The Netherlands has aimed to ban petrol
and diesel cars in the coming years making electric vehicles
a sustainable transport alternative. Concerning the remarks
mentioned about electricity in Netherlands, we chose this
dataset to help enlighten some useful information.

42.4.1 Exploratory Data Analysis (EDA)

For the purpose of this chapter, we focus only on the
dataset for the city of Amsterdam and predicting the
coming year’s energy consumption based on the information
available. Liander is the main company providing energy in
Amsterdam. The final dataset consists of both categorical

and numerical features. Combining the datasets for all years,
the final dataset consists of nine features or independent
variables including “year” as one of the features and
one response variable or dependent variable “energy
consumption.” The goal in this case study would be to predict
the energy consumption for the coming year of 2020.

The training data did not have any missing values to be
omitted or imputed, but categorical variables with categories
less than 10 times frequency have been omitted. Table 42.1
shows the summary of statistics for the numerical variables.

The histograms and pairwise scatterplot of numerical vari-
ables are presented below (Figs. 42.1 and 42.2 respectively).
We can visually see the relationship between annual con-
sumption versus all numerical variables (Fig. 42.2).

Moreover, the bar chart of the categorical variables (type
of connections and network manager) versus the annual
consumption is presented below (Fig. 42.3).

In order to evaluate the dependency among independent
variables and assessmulticolinearity, the correlationmatrix is
also presented (Fig. 42.4). We can see that annual consump-
tion has a positive correlation with annual consumption of
low-tariff electricity which is reasonable. Furthermore, we
can see as years have passed the number of installed smart
meters has increased, and consequently the percentage of
low tariff annual consumption has risen significantly. This
shows the importance of smart meters in increasing low-tariff
consumption for bill management and decrease of annual
consumption.

42.4.2 Modeling Selection Criteria

In order to evaluate the algorithms mentioned earlier, there
are numbers of evaluationmetrics.MSE (mean squared error)
is the most basic and famous metric used for regression
purposes. In order to compare different models, test MSE
may not be enough since in all regression models we fit a
model using least squares. More specifically, we estimate
the regression coefficients such that residual sum of squares
(RSS) is minimized. Therefore, other probabilistic statistical
metrics that quantify both the model performance and the
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Fig. 42.2 Pair plot of numerical variables

complexity of the model are also investigated. Among some
of most important ones are RMSE, MAE, R2, AIC, and BIC.
Each of these metrics is insightful in different aspects. RMSE
measures the difference between the model predictions and
the truth values. A large RMSE is equivalent to a large aver-
age error, so smaller values of RMSE are preferable. RMSE
presents the error in the units being measured which makes
it easily interpretable to say how incorrect the model might
be on unseen data. On the other hand, Mean Absolute Error
(MAE) is more robust to outliers compared to RMSE which

punishes large errors. R2 or the coefficient of determination
is the proportion of the variance in the response variable that
is explainable or predictable using the selected model and the
independent variables in it.

Akaike Information Criterion (AIC) is derived from
frequentist probability, and Bayesian Information Criterion
(BIC) is derived from Bayesian probability – these are two
ways of scoringmodels based on its complexity and goodness
of the fit using loglikelihood. The lower AIC score is, the
better the model is. For example, the AIC score is a trade-off
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Fig. 42.4 Correlation matrix heatmap

between a high goodness-of-fit score and model simplicity,
or the relative amount of information lost by a model and the
risk of overfitting and underfitting in it.

Table 42.2 presents the definition of each metric. Here n
is the number of observations, ŷi is the predicted value of
observation i and yi is the true value, k is the number of
parameters in the model, and L̂ is the estimated maximum
likelihood of the function for the model. We must note
that another equivalent formulation for AIC and BIC when
assuming a Gaussian model for the dataset with unknown

constant variance are 2k + n ln
∑n

i=1

(
yi − ŷi

)2
and k ln n +

n ln
∑n

i=1

(
yi − ŷi

)2
, respectively.

42.4.3 Results Analysis

The study dataset for Amsterdam energy consumption con-
sists of 156,963 observations. Total 30% of the dataset is set
as a testing set, and the remaining 70% is used for training
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and buildingmodels. After exploratory data analysis, we used
Cross-Validation (CV) to test the generalization ability of the
models and also tuning parameters in different models. In this
machine learning study, after the data is split into training and
testing set, 10-Fold CV is implemented in which we further
split our training set into ten numbers of subsets (folds).

Each time, we fit the model on nine (K − 1) of the
folds and test it on the tenth (Kth) fold. After finding the
best parameters of the models using K-Fold CV and hyper
parameter tuning, the final models are used to predict the test
dataset and the results are presented in Table 42.3.

Here Ensemble models such as boosting and bagging al-
gorithms have been usedwith decision tree as the base learner
of the model. Moreover, we can see that more advanced
machine learning models such as XGBoosting, LightGBM,
or Neural Network perform better compared to simpler one
such as OLS, Ridge, or KNN for our dataset. For instance,
R-square increases from 0.5 for linear model to 0.7 for
more flexible. More precisely, LightGBM outperforms all
algorithms with the lowest MSE and RMSE and highest R2.
XGboosting comes in the second-best model in terms ofMSE
and RMSE. However, if we compare MAE metric which is a
more robust metric, we can see that AdaBoost has the lowest

Table 42.2 Model evaluation metrics

Metric Definition

MSE 1
n

∑n
i=1

(
yi − ŷi

)2

RMSE
√

1
n

∑n
i=1

(
yi − ŷi

)2

MAE
∑n

i=1|yi−ŷi|
n

R2 1 −
∑n

i=1 (yi−ŷi)2∑n
i=1 (yi−yi)2

AIC 2k − 2 ln
(
L̂
)

BIC k ln(n) − 2 ln
(
L̂
)

MAE, and afterward XGBoosting and Gradient Boosting
methods come as second-best models.

Lowest AIC and BIC again present lightGBM as the best
model. In this study, we have implemented a simple sequen-
tial neural network model with three hidden layers using
Keras. Keras is an open source deep learning library that
we have the ability to define models as a sequence of layers
(Sequential model) and add layers to add more complexity
to the model [52]. As discussed previously, Neural Networks
might not perform very well for tabular structured datasets
which is the case for our dataset too. Overall, in our case
lightGBM outperforms all other algorithms because of its
flexibility, and AdaBoost is the more robust model to choose.
XGboosting comes in second place for almost all metrics
which makes it a good choice too, but this is still subjective
to the analysts and their objectives.

The main purpose in developing models in ML is to use
them as a prediction tool in unseen data and provide useful
information for our problem. Considering that, we used the
model with the better accuracy overall, LightGBM , to predict
the year 2020 energy consumption in Amsterdam. Perform-
ing prediction for year 2020 with the fitted LightGBMmodel
on years 2010–2019, we get the mean absolute percentage
deviation (MAPD) or the relative error of 28.17% which is
rather a good result in real-world problems. In other words,
Amsterdam energy consumption can be predicted using the
ML algorithms with 28.17% error rate.

42.5 Summary

For decades, scientists in machine learning have tried to
explore and discover meaningful patterns from the raw data.
Machine learning has become a new and interesting topic that
is defined as linear and nonlinear processing algorithms in or-

Table 42.3 The summary table of algorithms results

Metric MSE RMSE MAE R2 AIC BIC

Model

OLS regression 5242734.080 2289.702 1332.860 0.499 727826.573 727992.988

Lasso 5242755.679 2289.706 1332.875 0.499 727826.767 727993.182

Ridge regression 5242738.321 2289.703 1332.860 0.499 727826.611 727993.026

Elastic net 5246414.978 2290.505 1333.276 0.499 727859.586 728026.002

K-nearest neighbors 4271067.914 2066.656 1122.253 0.592 718184.759 718351.175

Linear SVR 9155695.147 3025.838 1414.157 0.125 754051.809 754218.224

Nonlinear SVR 9575522.378 3094.434 1427.333 0.085 756160.710 756327.125

Decision tree 4331435.097 2081.210 1129.735 0.586 718844.939 719011.354

Bagging 3032726.834 1741.473 958.436 0.710 702078.867 702245.282

Random forest 3039058.614 1743.290 961.350 0.710 702176.971 702343.387

AdaBoost 3082160.014 1755.608 939.577 0.705 702839.400 703005.816

Gradient boosting 3117359.154 1765.604 944.530 0.702 703373.543 703539.959

XGBoost 2981607.579 1726.733 942.577 0.715 701279.242 701445.657

LightGBM 2957935.150 1719.865 963.400 0.717 700904.294 701070.710
Neural network 4197413.977 2048.759 1114.023 0.599 717366.520 717532.936
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der to learn underlying representation of datasets. Therefore,
it has provided new opportunities and solutions to many real-
world problems and created many applications. This chap-
ter surveys the state-of-the-art algorithms and techniques in
machine learning starting with a history of machine learning
since the 1950s and moves to the recent and popular machine
learning algorithms. The most popular categorizations of the
algorithms such as learning types are discussed to present
differences between these algorithms and the necessity on
developing new novel algorithms. A little introduction to
deep learning as a black box solution for many applications
that can work with massive amount of unstructured data and
its difference with Machine learning is discussed.

Then, the popular and key algorithms aswell as techniques
in this are presented with detailed mathematical formulations
for better understanding. Several findings of this chapter
are summarized in this section. First, traditional classifica-
tion and regression methods and several supervised machine
learning algorithms are introduced each of which have as-
sumptions, advantages, and limits. For instance, KNN is a
very flexible nonparametric algorithm which is simple to im-
plement and fits nonlinear boundary/predictions to datasets.
KNN is rather robust to noise and outliers in the input data,
however not very efficient compared to other models since
the entire dataset is used for predicting each new observa-
tion. SVM works well with complex and high-dimensional
dataset specially because of kernel trick and tends to avoid
overfitting because of regularization. But the model might
underperform for large datasets which also has long training
time. Optimizing the kernel function, lack of interpretability
of the model, and variables importance and weights are other
limits of SVM. Linear and Quadratic Discriminant Analysis
models assume normality for the conditional densities which
might not be true in many applications. Logistic regression,
on the other hand, assumes linearity of independent variables
and log odds of the dependent variable which can be a
limit. Moreover, logistic regression returns the probabilities
for only two possible outcomes in a classification problem.
On the other hand, Naive Bayes classifier performs well in
multiclass prediction but has the assumption of independency
between predictors which is impossible in many real-life
problems. Classification and Regression Tree (CART) is
simple to implement and interpretable in business purposes
but has limits such as sensitivity to even small changes in
the data, high training time, and low accuracy. Traditional
regression methods with regularizations have been discussed
in detail and show how they overcome overfitting in regres-
sion problems. Ridge regression, for example, performs L2
regularization and does not produce unbiased estimators, so
the variance of the model can be very large. Moreover, Ridge
model does not perform feature selection whereas Lasso with
L1 regularization does so.

Afterward, more advanced algorithms such as ensemble
models and boosting algorithms are discussed. Bagging basi-

cally consists of weak learners operating independently from
each other in parallel and average them at the end. Boosting,
however, considers weak learners sequentially operating in
such a way that each model depends on the previous ones,
trying to improve it, and combines them by averaging all
at the end. Popular Boosting algorithms such as AdaBoost,
XGBoost, and lightGBM are explained thoroughly. The dif-
ferences between each of the algorithms and how they built
up upon each other show the historical time line. Different
types of Neural Networks and their applications have been
discussed.

In the following section, this chapter reviews the most
successful unsupervised learning methods such as clustering
analysis and dimension reduction techniques. K-Means is
most relatively simple to implement and computationally
faster than hierarchical clustering. However, in K-Means the
number of clusters should be chosen beforehand. Hierarchi-
cal clustering with structured tree diagram for the number of
clusters is more informative but has time complexity and is
sensitive to outliers. PCA as a statistical technique to reduce
the number of features (dimension) of data is discussed.
Moreover, definition and challenges in semisupervised learn-
ing have also been briefly provided.

Thereafter, a small case study is presented to illustrate
some of the algorithms and their differences more explicitly.
To summarize, this chapter discusses many algorithms and
challenges in machine learning and provides several exist-
ing solutions to these challenges. However, there are still
challenges and possible future research venues that need to
be addressed in the future of machine learning. Some of
which that have been found in this chapter are as follows:
The interpretability of many of machine-learning algorithms
can be investigated in the future. Many machine learning
models need extensive datasets for training before predicting
the unseen data, and this can be a problem when small
datasets are only available, or the data needs to be processed
in real time. In this regard, small sample learning, one-shot
learning and zero-shot learning, and online learning have
got attention among researchers the past years. Addition-
ally, the machine learning industry is gradually shifting its
focus to unsupervised and semisupervised learning instead
of supervised learning so that the machine can process data
without manual human labels. All in all, machine learning as
a new fast evolving area has numerous challenges as well as
opportunities in a variety of applications.
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S.: Recurrent neural network based language model. In: Eleventh
annual conference of the international speech communication as-
sociation (2010)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification
with deep convolutional neural networks. In: Pereira, F., Burges,
C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems, 60(6), 84–90. Curran Associates,
Inc. (2012)

19. Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G.,
Yu, D.: Convolutional neural networks for speech recognition.
IEEE/ACM Trans. Audio, Speech, Lang. Process. 22(10), 1533–
1545 (2014)

20. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extract-
ing and composing robust features with denoising autoencoders.
In: Proceedings of the 25th international conference on Machine
learning, pp. 1096–1103 (2008)

21. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.:
Stacked denoising autoencoders: learning useful representations in
a deep network with a local denoising criterion. J. Mach. Learn.
Res. 11(Dec), 3371–3408 (2010)

22. Bengio, Y.: Learning deep architectures for AI. Found. Trends
Mach. Learn. 2(1), 1–27 (2009)

23. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford,
A., Chen, X.: Ian claimed as feature learner. Improved techniques
for training gans. Adv. Neural Inf. Process. Syst. 29, 1–10 (2016)

24. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers:
a comparison of logistic regression and naive Bayes. Neural. Pro-
cess. Lett. 28(3), 169–187 (2008)

25. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–
106 (1986)

26. Salzberg, S.L.: C4.5: programs for machine learning by J. Ross
Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach. Learn.
16(3), 235–240 (1994)

27. Ke, G., et al.: LightGBM: A highly efficient gradient boosting
decision tree. Adv. Neural Inf. Process. Syst. 2017(Nips), 3147–
3155 (2017)

28. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V.,
Gulin, A.: Catboost: unbiased boosting with categorical fea-
tures. Adv. Neural Inf. Process. Syst. 2018(Section 4), 6638–6648
(2018)

29. Haykin, S.: Neural Networks: A Comprehensive Foundation. Pren-
tice Hall PTR (1994)

30. Rosenblatt, F.: The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. Psychol. Rev. 65(6), 386
(1958)

31. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford
University Press, Oxford (1995)

32. Paliwal, M., Kumar, U.A.: Neural networks and statistical tech-
niques: a review of applications. Expert Syst. Appl. 36(1), 2–17
(2009)

33. Park, H.-S., Jun, C.-H.: A simple and fast algorithm for K-medoids
clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)

34. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for
Euclidean k-medians and related problems. In: Proceedings of the
thirtieth annual ACM symposium on Theory of computing, pp.
106–113 (1998)

35. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clus-
tering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

36. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based
algorithm for discovering clusters in large spatial databases with
noise. Kdd. 96(34), 226–231 (1996)

37. Wold, S., Sjöström, M., Eriksson, L.: PLS-regression: a basic
tool of chemometrics. Chemom. Intell. Lab. Syst. 58(2), 109–130
(2001)

38. Jolliffe, I.T.: A note on the use of principal components in regres-
sion. J. R. Stat. Soc. Ser. C. Appl. Stat. 31(3), 300–303 (1982)

39. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J.
Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

40. Abdi, H., Valentin, D.: Multiple correspondence analysis. Encycl.
Meas. Stat. 2, 651–666 (2007)

41. Triguero, I., García, S., Herrera, F.: Self-labeled techniques for
semi-supervised learning: taxonomy, software and empirical study.
Knowl. Inf. Syst. 42(2), 245–284 (2015)

42. Fazakis, N., Karlos, S., Kotsiantis, S., Sgarbas, K.: Self-trained
LMT for semisupervised learning. Comput. Intell. Neurosci. 2016,
1–13 (2016)

43. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning.
Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)

44. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning
(Chapelle, O. et al., eds.; 2006) [book reviews]. IEEE Trans. Neural
Netw. 20(3), 542 (2009)

45. Zhu, X.J.: Semi-Supervised Learning Literature Survey. Univer-
sity of Wisconsin-Madison, Department of Computer Sciences
(2005)

46. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-
supervised learning with deep generative models. In: Ad-
vances in neural information processing systems, pp. 3581–3589
(2014)

47. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning
using gaussian fields and harmonic functions. In: Proceedings of
the 20th International conference on Machine learning (ICML-03),
pp. 912–919 (2003)

48. https:/978-1-4471-7503-2/www.kaggle.com/lucabasa/dutch-energy
49. Mahani, K., Jamali, M.A., Nazemi, S.D., Jafari, M.A.: Economic

and operational evaluation of PV and CHP combined with energy
storage systems considering energy and regulation markets. In:
2020 IEEE Texas Power and Energy Conference (TPEC), pp.
1–6 (2020)

50. Mahani, K., Nazemi, S.D., Jamali, M.A., Jafari, M.A.: Evaluation
of the behind-the-meter benefits of energy storage systems with
consideration of ancillary market opportunities. Electr. J. 33(2),
106707 (2020)

https:/978-1-4471-7503-2/www.kaggle.com/lucabasa/dutch-energy


886 M. Arabzadeh Jamali and H. Pham

51. Arabzadeh Jamali, M.: Study of Power Recoverability through
Optimal Design of Energy Storage Systems. Rutgers University-
School of Graduate Studies (2019)

52. Keras 2.3.1. [Online]. Available: https://github.com/keras-team/
keras/releases/tag/2.3.1

Maryam Arabzadeh Jamali is currently a PhD candidate in the De-
partment of Industrial and Systems Engineering at Rutgers University.
She received herMS degree in Industrial and Systems Engineering from
Rutgers University and BS degree in Industrial Engineering, from Sharif
University of Technology, Iran. Her research focuses on the reliability
and maintainability of complex systems and their interplay with AI and
machine learning models.

Hoang Pham is a Distinguished Professor and former Chairman of the
Department of Industrial & Systems Engineering at Rutgers University.
He is the author or coauthor of 7 books and has published over 200 jour-
nal articles, 100 conference papers, and edited 20 books. His numerous
awards include the 2009 IEEE Reliability Society Engineer of the Year
Award. He is a Fellow of the IEEE and IISE.

https://github.com/keras-team/keras/releases/tag/2.3.1


43Covariance Estimation via theModified
Cholesky Decomposition

Xiaoning Kang, Zhiyang Zhang, and Xinwei Deng

Contents
43.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887

43.2 Review of Modified Cholesky Decomposition . . . . . . . 888
43.2.1 MCD for Precision Matrix Estimation . . . . . . . . . . . . . . . 888
43.2.2 MCD for Covariance Matrix Estimation . . . . . . . . . . . . . 889
43.2.3 MCD for Banded Matrix Estimation . . . . . . . . . . . . . . . . 890
43.2.4 Adaptive Banding in the MCD. . . . . . . . . . . . . . . . . . . . . 890

43.3 Ordering Issue in the MCD . . . . . . . . . . . . . . . . . . . . . . 892

43.4 Real Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
43.4.1 MCD for Varying Covariance Matrix Estimation in

Multivariate Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 893
43.4.2 MCD for Portfolio Optimization . . . . . . . . . . . . . . . . . . . 894
43.4.3 MCD for Linear Discriminant Analysis . . . . . . . . . . . . . . 895

43.5 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896

43.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899

Abstract

In many engineering applications, estimation of
covariance and precision matrices is of great importance,
helping researchers understand the dependency and
conditional dependency between variables of interest.
Among various matrix estimation methods, the modified
Cholesky decomposition is a commonly used technique.
It has the advantage of transforming the matrix estimation
task into solving a sequence of regression models.
Moreover, the sparsity on the regression coefficients
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implies certain sparse structure on the covariance and
precision matrices. In this chapter, we first overview
the Cholesky-based covariance and precision matrices
estimation. It is known that the Cholesky-based matrix
estimation depends on a prespecified ordering of
variables, which is often not available in practice. To
address this issue, we then introduce several techniques
to enhance the Cholesky-based estimation of covariance
and precision matrices. These approaches are able to
ensure the positive definiteness of the matrix estimate and
applicable in general situations without specifying the
ordering of variables. The advantage of Cholesky-based
estimation is illustrated by numerical studies and several
real-case applications.

Keywords

Banded matrix · Cholesky-based · Linear discriminant
analysis · Ordering of variables · Positive definite ·
Portfolio optimization · Sparsity

43.1 Introduction

Estimation of covariance and precision matrices is of fun-
damental importance in the multivariate analysis [5]. It has
received wide attentions of scholars in various engineer-
ing applications such as additive manufacturing [30, 31],
biomedical engineering [17], and tissue engineering [39].
The resultant matrix estimation has also been widely used
in various statistical methods and applications. For example,
dimension reduction via the principal component analysis
(PCA) usually relies on the estimation of covariance matrix.
In the classification problem, the linear discriminant analysis
(LDA) constructs the classification rule through the precision
matrix. In the financial area, the portfolio optimization uses
the precision matrix to minimize the portfolio risk. In signal
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processing, the covariance matrix helps to distinguish be-
tween signals and noise. The covariance and precision matri-
ces also arise in the graphical models, multivariate volatility,
weather forecasting, social network, fMRI analysis, and so
forth.

For the matrix estimation, a desirable property is the spar-
sity in the sense that some elements in an estimated matrix
are zeros [13, 16, 20, 26, 37]. A sparse covariance matrix
estimate is useful for the subsequent statistical analysis, such
as inferring the correlation pattern among the predictor vari-
ables. A sparse precision matrix estimate often implies the
conditional independence among the corresponding predic-
tor variables. Therefore, a variety of classical approaches has
been developed in literature for estimating the covariance and
precision matrices with particular interest of sparse structure.
Yuan and Lin [38] introduced the graphical Lasso (Glasso)
model, which gives a sparse precision matrix estimate by
imposing an L1 penalty on the negative log-likelihood func-
tion. Bickel and Levina [1] proposed to threshold the small
elements of the sample covariance matrix directly to zeroes
with a large number of predictor variables. More work on the
sparse estimation of the covariance and precision matrices
can be found in [3–5, 10, 15, 21, 27, 32, 34, 36], among
others.

Another important property of covariance and precision
matrices is that they need to be positive definite for proper
inference. The modified Cholesky decomposition (MCD)
is a popular and commonly used technique for the ma-
trix estimation, which ensures the estimated matrix to be
positive definite. The MCD provides an unconstrained and
statistically interpretable parameterization of a matrix by
sequentially regressing the variables in a random variable
vector. This method reduces the challenge of estimating a
covariance or precision matrix into an easier task of solv-
ing a sequence of linear regression models. However, it is
known that the Cholesky-based matrix estimation relies on
the preknowledge of the ordering of variables.When the vari-
able ordering is not naturally available, we need to consider
several techniques to enhance the Cholesky-based estimation
of covariance and precision matrices. Such techniques are
able to ensure the positive definiteness of the matrix estimate
and applicable in general situations without specifying the
ordering of variables.

The remaining of this chapter is organized as follows.
Sect. 43.2 provides a comprehensive overview of the MCD
for the estimation of covariance and precision matrices, re-
spectively. We then point out the variable ordering issue in
the MCD and consider a couple of techniques to address the
variable ordering issue in Sect. 43.3. Several real-data appli-
cations and numerical examples are presented in Sects. 43.4
and 43.5 to examine the performances of the Cholesky-
based matrix estimates. We conclude this chapter with some
discussion in Sect. 43.6.

43.2 Review of Modified Cholesky
Decomposition

In this section, we review the modified Cholesky decomposi-
tion (MCD) in detail for estimating the covariance and preci-
sionmatrices, respectively. As proposed by Pourahmadi [24],
the MCD approach is statistically meaningful and guarantees
the positive definiteness of a matrix estimate. The sparsity
can be encouraged in the estimated matrix via the MCD
technique.

43.2.1 MCD for PrecisionMatrix Estimation

Without loss of generality, suppose that X = (X1, . . . , Xp)′
is a p-dimensional random vector with mean 0 and covari-
ance matrix �. Denote by x1, . . . , xn the n independent and
identically distributed observations following a multivariate
distribution with mean 0 and covariance matrix �−1, where
� = �−1 is the precision matrix. The key idea of the
MCD is that � can be diagonalized by a lower triangular
matrix constructed from the regression coefficients when Xj
is regressed on its predecessors X1, . . . , Xj−1. Specifically, for
j = 2, . . . , p, define

Xj =
j−1∑

i=1

ajiXi + εj

= ZTj aj + εj, (43.1)

where Zj = (X1, . . . , Xj−1)
′
, and aj = (aj1, . . . , aj,j−1)

′
is

the corresponding vector of regression coefficients. The error
term εj has population expectation E(εj) = 0 and population
variance Var(εj) = d2j . Hence, a lower triangular matrix A
can be formed as

A =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
a21 0 0 . . . 0
a31 a32 0 . . . 0
...

...
. . .

...
...

ap1 ap2 . . . ap,p−1 0

⎞

⎟⎟⎟⎟⎟⎠
,

which contains all the regression coefficients in (43.1). Also
define

d2j = Var(εj) =
{
Var(X1), j = 1,
Var(Xj − ZTj aj), j = 2, . . . , p.

(43.2)

Let D = diag(d21, . . . , d
2
p) be the diagonal covariance ma-

trix of the vector ε = (ε1, . . . , εp)′. Then, move the term∑j−1
k=1 ajkXk in Eq. (43.1) to the left side and rewrite it in the

following matrix form:
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ε = (I − A)X = TX, (43.3)

where I represents the p×p identity matrix and T = I−A is a
unit lower triangular matrix having ones on its diagonal. The
matrices T and D are called the Cholesky factor matrices. By
taking the variance operator on both sides of Eq. (43.3), one
can easily obtain

D = Var(ε) = Var(TX) = T�T′,

and thus

� = �−1 = T′D−1T. (43.4)

As a result, the decomposition (43.1) converts the constraint
entries of � into two groups of unconstrained “regression”
and “variance” parameters. Conceptually, this approach re-
duces the challenge of modeling a precision matrix into the
task of solving (p − 1) linear regression models, which is
much easier to implement.

A straightforward estimate T̂ of T can be obtained from
the least squares estimates of the regression coefficients

âj = arg min
aj

‖x(j) − Z
(j)aj‖22, j = 2, . . . , p, (43.5)

where x(j) is the jth column of the data matrix X =
(x1, . . . , xn)′ and Z

(j) = (x(1), . . . , x(j−1)) stands for the first
(j-1) columns of X. The estimate D̂ of D is constructed
from the corresponding residual variances according to
(43.2). Because the optimization (43.5) uses the ordinary
least squares, this approach of precision matrix estimation is
only suitable in low-dimensional settings with the number of
predictor variables p smaller than the sample size n. When
applying the MCD to the high-dimensional situations where
p is close to or even larger than n, the least squares estimation
is inaccurate or not available. In such cases, a natural idea is to
employ the Lasso regularization [33] to shrink the regression
estimates and encourage the sparsity on the Cholesky factor
matrix T

âj = arg min
aj

‖x(j) − Z
(j)aj‖22 + λj‖aj‖1, j = 2, . . . , p,

(43.6)

where λj ≥ 0 is a tuning parameter and ‖ · ‖1 stands for
the vector L1 norm. Note that the penalty in Eq. (43.6) is
often suitable for data with large number of variables such
as engineering data, social network data, and imaging data,
since their underlying matrix is usually sparse with no spe-
cific sparse pattern. The optimization problem (43.6) can be
solved by the coordinate descent algorithm [12]. The tuning
parameters are determined by the cross-validation scheme

for each Lasso regression. In addition, one can alternatively
consider the estimation of a2, . . . , ap in the Cholesky factor
matrix T under a joint fashion as

â2, . . . , âp = arg min
a2,...,ap

p∑

j=2

‖x(j) − Z
(j)aj‖22 + λ

p∑

j=2

‖aj‖1.

(43.7)

Such a joint estimation approach is used in [6, 13, 14, 40],
among others.

After obtaining âj, the lower triangular matrix T̂ is estab-

lished with ones on its diagonal and â
′
j as its jth row. Mean-

while, the diagonal matrix D̂ has its jth diagonal element
equal to d̂2j , where

d̂2j =
{
V̂ar(x(1)), j = 1,
V̂ar(x(j) − Z

(j)âj), j = 2, . . . , p,

where V̂ar(·) denotes the sample variance. Consequently,

�̂ = T̂
′
D̂

−1
T̂ (43.8)

is a sparse estimate for the precision matrix �.

Remark 1 For the optimization problem in (43.6) with λj =
0 and n > p, the estimated precision matrix in (43.8) is
equivalent to the inverse of the sample covariance matrix.

43.2.2 MCD for CovarianceMatrix Estimation

From (43.4), it is easy to see that a Cholesky-based estimate
for a covariance matrix can be expressed as

� = T−1DT′−1. (43.9)

The construction of the Cholesky factor matrices (T,D)

through a series of linear regressions (43.1) is thoroughly
discussed in Sect. 43.2.1. Such a covariance matrix estimate
via the MCD can perform well if one does not require the
estimated covariance matrix to be sparse. In other words, the
estimate obtained based on Eq. (43.9) generally does not have
sparse structure even though the Cholesky factor matrix T is
sparse. This is because the matrix T−1 often does not inherit
any sparse property from T, leading to a dense estimate of
covariance matrix �. It is thus not convenient to impose a
sparse structure on the estimate of � via Eq. (43.9).

Alternatively, one can consider a Cholesky-based latent
variable regression model, which enables the regularization
more easily. Write X = Lε, implying the predictor variable
Xj is regressed on its previous latent variables ε1, . . . , εj−1,
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and hence L = (lji)p×p is a unit lower triangular matrix
constructed from the regression coefficients of the following
sequential regressions:

Xj = lTj ε =
j−1∑

i=1

ljiεi + εj, j = 2, . . . , p, (43.10)

where lj = (lji) is the jth row of L. Here ljj = 1 and
lji = 0 for i > j. This decomposition is interpreted as
resulting from a different sequence of regressions, where
each variableXj is regressed on all the previous latent variable
ε1, . . . , εj−1 rather than themselves. As a result, this form of
the MCD by the latent variable regression model provides a
re-parameterization of the covariance matrix

Var(X) = Var(Lε)

� = LDL′.

This decomposition connects the covariance matrix � with
linear regressions (43.10), such that the Lasso penalty can
be imposed on the coefficients of the linear regressions, thus
conveniently encouraging the sparsity in the Cholesky factor
matrix L and the estimated covariance matrix.

Denote by x(j) the jth column of the data matrix X =
(x1, . . . , xn)′. Let e(j) represent the residuals for the linear
regression when x(j) is treated as the response data, j ≥ 2,
and e(1) = x(1). Let W(j) = (e(1), . . . , e(j−1)) be the matrix
containing the first (j − 1) residuals. Now we construct the
matrix L by employing the Lasso penalty to select important
predictor variables

l̂j = arg min
lj

‖x(j) − W
(j)lj‖22 + λj‖lj‖1, j = 2, . . . , p,

(43.11)

where λj ≥ 0 is a tuning parameter and selected by cross-
validation. e(j) = x(j)−W

(j) l̂j is used to construct the residuals
for the last column of W(j+1). Then the element d2j of the
diagonal matrix D = diag(d21 , . . . , d

2
p) is estimated as the

sample variance of e(j)

d̂2j = V̂ar(e(j)) = V̂ar(x(j) − W
(j) l̂j)

Consequently,

�̂ = L̂D̂L̂′ (43.12)

is a sparse estimate for the covariance matrix �. It is worth
pointing out that one can also consider estimating l2, . . . , lp
in a joint fashion similar as in (43.7). But the estimation
procedure will become more complicated since it involves
latent variables.

Remark 2 For the optimization problem in (43.11) with λj =
0 and n > p, the estimated covariance matrix in (43.12) is
equivalent to the sample covariance matrix.

43.2.3 MCD for BandedMatrix Estimation

In some applications such as assimilation [22] and social un-
rest study [35], the variables are strongly correlated with the
ones that are close to them in the ordering, and the variables
far apart in the ordering are weakly correlated. For example,
in the random variable vector X = (X1, . . . , Xp)′, the variable
X3 may have a strong correlation with its neighbor variables
X1, X2, X4, andX5, but it could beweakly correlated with vari-
ablesXj for j > 5. In this situation, the covariance or precision
matrices are usually assumed to have a banded structure. The
kth banded structure means that the first k < p sub-diagonals
elements of a matrix are non-zeroes with the rest elements
being zeroes. Bickel and Levina [2] proposed a banded
estimate for the covariance matrix by banding the sample
covariance matrix. Note that their estimate cannot guarantee
the positive definiteness. The MCD technique can also be
used for estimating a banded matrix by banding the Cholesky
matrix factor [28]. In this section, we focus on the estimation
for banded precision matrix via the MCD. The Cholesky-
based estimation for the banded covariance matrix follows
the similar principle by considering the banded L in (43.12).

The key idea is to band the Cholesky factor matrix T.
Recall that in the decomposition (43.1), the predictor variable
Xj is regressed on all of its predecessors X1, . . . , Xj−1. To
accommodate a banded estimate of precision matrix, each
predictor variable Xj is regressed only on its k previous
variables Xj−k, . . . , Xj−1, for all j = 2, . . . , p. The index j− k
is interpreted to mean max(1, j − k). Hence, we solve the
following (p− 1) linear regression models instead of (43.1)

Xj =
j−1∑

i=j−k
ajiXi + εj (43.13)

to construct the Cholesky factors (T,D), As a result, the
unit lower triangular matrix T, with ones as its diagonal
and (0, . . . , 0, aj,j−k, . . . , aj,j−1) as its jth row, has a banded
structure on its bottom left part. Then the estimate for the
precision matrix � = T′D−1T obtained from (43.13) has a
kth banded structure. This approach is designated to estimate
a banded matrix and guarantees the positive definiteness of
the estimated matrix.

43.2.4 Adaptive Banding in theMCD

Note that the kth banded matrix estimation in Sect. 43.2.3
considers the banding width k to be the same for each vari-
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able. In this section, we discuss amore flexible casewhere the
band for each variable to be different. That is, we allow k = kj
in the jth linear regression of (43.13), where the jth variable is
regressed on its kj closest predecessors with kj depending on j.
We call such a procedure as adaptive banding, which is useful
when each variable may depend on an unknown number of
its predecessors. It preserves sparsity in the resulting estimate
of precision matrix and produces a better estimate by being
able to adapt to the data. Next we introduce two types of
adaptive banding. They use two different techniques to obtain
an adaptively banded estimate for the Cholesky factor T.

Adaptive Banding: Levina and Zhu [19] applied a nested
Lasso penalty imposed on the negative normal log-likelihood
function to produce matrix T with adaptive banding kj. Spe-
cially, the negative log-likelihood of the data, up to a constant,
is

�(�, x1, . . . , xn) = n log |�| +
n∑

i=1

x′
i�

−1xi

= n log |D| +
n∑

i=1

x′
iT

′D−1Txi

=
p∑

j=1

�j(dj, aj, x1, . . . , xn),

where aj stands for the vector of regression coefficients for
the jth regression in the MCD and

�j(dj, aj, x1, . . . , xn) = n log d2j +
n∑

i=1

1

d2j

(
xij −

j−1∑

l=1

ajlxil

)2

.

Minimizing the negative log-likelihood �(�, x1, . . . , xn) is
equivalent to minimizing each �j(dj, aj, x1, . . . , xn). Then one
can consider to minimize

�j(�, x1, . . . , xn) + J(aj), (43.14)

where J(aj) is the nested Lasso penalty as

J(aj) = λ

(
|aj,j−1| + |aj,j−2|

|aj,j−1| + |aj,j−3|
|aj,j−2| + · · · + |aj,1|

|aj,2|
)
,

where λ ≥ 0 is a tuning parameter, and we define 0/0 = 0.
The effect of variable selection by the nested Lasso penalty
is that if the lth variable is not included in the jth regression
(ajl = 0), then all the subsequent variables (l− 1 through 1)
are also excluded. Hence, the jth linear regression only has
kj ≤ j− 1 closest predecessors, with values of kj varying for
each regression.

Since the expression in (43.14) is highly nonconvex and
nonlinear, an iterative algorithm is developed to minimize it
for constructing the Cholesky factor matrices T and D. Let
â(m)
j and d̂(m)

j represent the estimates of aj and dj at the mth
iteration. Then we repeat the following steps 1 and 2 until
convergence.

Step 1: Given â(m)
j , solve for d̂(m)

j

(d̂(m)
j )2 = 1

n

n∑

i=1

(
xij −

j−1∑

l=1

â(m)
jl xil

)2

.

Step 2: Given â(m)
j and d̂(m)

j , solve for â(m+1)
j . Here we use

the local quadratic approximation [9, 13]

∣∣∣a(m+1)
jl

∣∣∣ ≈
(
a(m+1)
jl

)2

2
∣∣∣a(m)
jl

∣∣∣
+

∣∣∣a(m)
jl

∣∣∣
2

.

Then the estimate of aj at iteration m+ 1 is

â(m+1)
j = arg min

aj

1

(d̂(m)
j )2

n∑

i=1

(
xij −

j−1∑

l=1

ajlxil

)2

+ λ

2

(
a2j,j−1

|â(m)
j,j−1|

+
j−2∑

l=1

a2jl

|â(m)
jl | · |â(m)

j,l+1|

)
.

This is a quadratic optimization problem, which can be
solved in closed form. Note that the algorithm needs an initial
value for aj. One could use the least squares estimates when
p < n. If p > n, we initialize with â(0)

jl = â�
jl, which are found

by regressing Xj on Xl alone, for l = 1, . . . , j− 1.
Forward Adaptive Banding: Instead of imposing a nested

Lasso penalty on the likelihood function, Leng and Li [18]
proposed a forward adaptive banding approach to determine
kj for each linear regression by minimizing their modified
Bayesian information criterion (BIC). Operationally, for the
jth variable, we fit j − 1 nested linear models by regressing
Xj on Xj−1, . . . , Xj−kj for kj = 1, . . . , j − 1. Then the optimal
kj is chosen to minimize

BIC = n log |�̂| +
n∑

i=1

x′iT̂
′
D̂

−1
T̂xi + Cn log(n)

p∑

j=1

kj

=
p∑

j=1

⎧
⎪⎨

⎪⎩
n log d̂2j +

n∑

i=1

1

d̂2j

⎛

⎝xij −
kj∑

l=1

aj,j−lxi,j−l

⎞

⎠
2

+ Cn log(n)kj

⎫
⎪⎬

⎪⎭
,

(43.15)
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for all kj ≤ min{n/(log n)2, j − 1}(j = 2, . . . , p) with
some diverging Cn. The expression in (43.15) implies that
the banding width kj can be chosen separately for each j. The
penalty coefficientCn log n is set to different values to accom-
modate the diverging number of predictor variables p. Leng
and Li [18] proved that this modified BIC is model selection
consistent under some regular conditions. The advantage of
this approach is that we determine the value of kj by only
fitting a sequence of linear models. Therefore, it can be easily
and efficiently implemented.

43.3 Ordering Issue in theMCD

Although the MCD approach has been widely investigated
for the matrix estimation, only a few work contributed to
solve a potential problem, the ordering issue. From the de-
compositions (43.1) and (43.10), it is clear to see that dif-
ferent orderings of the predictor variables X1, . . . , Xp used
in the MCD would lead to different linear regressions. If
a regularization is adopted to shrink the coefficients of the
linear regressions, such as the Lasso penalty in (43.6), the
Cholesky factor matrices estimates would be different under
different variable orderings, thus leading to the different
estimates for the covariance and precision matrices. As a
statistical decision problem, ordering variables is quite chal-
lenging. In practice, the MCD method can be suitably used
to estimate a matrix without this ordering issue when the
predictor variables have a natural ordering among them-
selves, as in time series, longitudinal data, or spatial data.
However, there are a large number of applications where such
a natural ordering is not available or the variable ordering
cannot be determined before the analysis, for example, gene
expressions, financial, and economic data. In these cases,
one may need to first determine a proper ordering among
the variables before employing the MCD method. Next, we
introduce three commonly used techniques to tackle this
issue. In this part, we focus on the ordering issue in the
MCD for the estimation of precision matrix. Ordering issue
for Cholesky-based estimation of covariance matrix can be
addressed in a similar fashion.

BIC: A search algorithm for ordering the predictor vari-
ables based on the BIC criterion can be easily implemented.
In each step, a new variable is selected into the ordering
with the smallest value of BIC when regressing it on the
rest of the candidate variables. Specifically, suppose we want
to construct an ordering for p variables X1, . . . , Xp. In the
first step, each variable Xj, j = 1, . . . , p is regressed on
the rest of variables, producing p values of BIC from p
linear regressions. Then the first variable determined into the
ordering is the response variable of the linear regression that
gives the minimum value of BIC. This selected variable is
denoted by Xip , and it is assigned to the pth position of the

ordering. All the variables excluding the selected variable
Xip consist of the candidate set C. In the second step, from
the set C, each variable is regressed on the rest of variables,
producing p− 1 values of BIC from p− 1 linear regressions.
Then the second variable, denoted by Xip−1 , determined into
the ordering is the response variable of the linear regression
that gives the minimum value of BIC. The variable Xip−1 is
assigned to the (p−1)th position of the ordering. Then all the
variables excludingXip andXip−1 compose of the candidate set
for the next round.

To sum up this procedure, let C = {Xi1 , . . . , Xik} be the
candidate set of variables, and there are p−k variables already
chosen into the ordering. By regressing each Xj, j = i1, . . . , ik
on the rest of the variables in C, the variable corresponding to
the minimum BIC value among the k regressions is assigned
to the kth position of the ordering. Then the ordering created
by this procedure is used for the MCD.

BPA: A popular method to recover the variable ordering
for the autoregressive model is the best permutation algo-
rithm (BPA) developed by Rajaratnam and Salzman [25]. It
is formulated as a well-defined optimization problem where
the optimal ordering is determined as the one minimizing the
sum of squared diagonal entries of the Cholesky factor matrix
D in the MCD. For the convenience of presentation, define a
permutation mapping π : {1, . . . , p} → {1, . . . , p} by

(π(1),π(2), . . . ,π(p)) . (43.16)

Denote the corresponding permutationmatrix byPπ of which
the entries in the jth column are all 0 except taking 1 at posi-
tion π(j). Let Sp be the symmetric group of all permutations
of the integers 1, . . . , p. For a given π ∈ Sp, let �π be the
precisionmatrix corresponding to the variable orderingπ and

�π = T′
πD

−1
π Tπ

be its MCD. Since the conditional variances can be used
as natural measures to quantify the extent to which the
variability of a random variable is explained by the ones
that precede it. Hence, the conditional variances give a sense
of closeness between variables. From this viewpoint, the
BPA is to find an ordering π∗ in Sp to minimize ||Dπ∗ ||2F,
where || · ||F represents the Frobenius norm. Then �̂ =
Pπ∗�̂π∗P′

π∗ = Pπ∗ T̂′
π∗D̂

−1
π∗ T̂π∗P′

π∗ is an estimate of precision
matrix based on BPA. Rajaratnam and Salzman [25] showed
the consistency of this approach in recovering the natural
order of variables in underlying autoregressive models.

Ordering-averaged method (OAM): To address the prob-
lem that the ordering of variables is often not available in
practice, we consider a Cholesky-basedmodel averaging idea
[40] by averaging a representative set of individual matrix
estimates obtained from random permutations of the variable
orderings. This method does not require any prior knowledge
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of the orderings of variables; hence, it is suitable for the
case where there is no natural ordering among the variables,
or such an ordering cannot be easily determined. Use the
definition of permutation mapping π in (43.16), a precision
matrix estimate under π is �π = T′

πD
−1
π Tπ . Transforming

back to the original ordering, we can estimate � as

�̂ = Pπ �̂πP′
π = PπT′

πD
−1
π TπP′

π . (43.17)

By incorporating several permutations of πs, one can obtain
a pool of precision matrix estimates. Taking the average of
these estimates leads to an ordering-averaged estimation. In
practice, a modest number of permutations are sufficient to
serve this purpose. Therefore, we randomly generatemultiple
permutations πk, k = 1, . . . , M and obtain the corresponding
estimates �̂ in (43.17), denoted by �̂k for the permutation πk.
The model averaging estimate of � is

�̂OAM = 1

M

M∑

k=1

�̂k. (43.18)

Similarly, it is very convenient to apply the OAM for the es-
timation of the covariance matrix. Combining Eq. (43.9) and
the averaging idea of (43.18), we have the model averaging
estimate of � as

�̂OAM = 1

M

M∑

k=1

�̂k = 1

M

M∑

k=1

Pk�̂kP′
k

= 1

M

M∑

k=1

PkT̂
−1
k D̂k(T̂

′
k)

−1P′
k,

where T̂k, D̂k, and �̂k represent the estimates of T, D, and �

under the permutation πk. According to the finite population
sampling survey theory [7], the selection of permutations πk
is not essential when we use a reasonable size M. Although
choosing a larger M would further reduce the variability of
the OAM estimate, Zheng et al. [40] showed that a modest
number M = 30 is seen to lead to stable results.

43.4 Real Applications

The covariance and precision matrices have been widely
used in various areas such as portfolio selection, risk
assessment, principle component analysis, social network,
graphical models, classification, and so forth. In this section,
real-data examples are used to illustrate the application of
the MCD approach for the estimation of covariance and
precision matrices.

43.4.1 MCD for Varying CovarianceMatrix
Estimation in Multivariate Time Series

In the financial management with multivariate time series,
a major task is to estimate the time-varying covariance ma-
trices {�t} based on the (conditionally) independently dis-
tributed data xt ∼ N(0,�t), t = 1, 2, . . . , n. The data xt can
be viewed as the returns of p assets in a portfolio at time t.

By the decomposition (43.9), the estimation of time-
varying covariance matrix is given by

�t = T−1DtT′−1,

where the Cholesky factor matrix T = Tt for all t =
1, 2, . . . , n is assumed to be time-invariant to reduce a large
number of parameters. For each element of the diagonal
matrix Dt = diag(d21;t, . . . , d

2
p;t), the logd2j;t, j = 1, 2, . . . , p,

is modeled using the log-GARCH(u, v) defined recursively
in time as

log d2j;t = β
(j)
0 +

v∑

i=1

(
α

(j)
i+1{εj;t−i>0} + α

(j)
i−1{εj;t−i<0}

)
log ε2j;t−i

+
u∑

k=1

β
(j)
k log d2j;t−k. (43.19)

where 1{·} is the indicator function and β
(j)
0 ,β

(j)
k ,α

(j)
i+,α

(j)
i− are

corresponding coefficients. The quasi-maximum likelihood
approach in Francq and Zakoïan [11] is used to fit the model
(43.19). Therefore, we combine the MCD method and the
log-GARCH model to analyze a stock return data from the
Standard and Poor’s 100 index (S&P100). The data set com-
prises of n = 436 returns and p = 97 stocks weekly recorded
from August 23, 2004, to December 12, 2012. For simplicity,
the log-GARCH (1, 1) model is used to estimate Dt.

To measure the accuracy of the covariance matrix esti-
mates, we consider the following loss functions: the entropy
loss	1t, the Kullback-Leibler loss	2t, and the quadratic loss
functions 	3t (up to some scale) defined as

	1t = 1

p

[
tr[�−1

t �̂t] − log |�−1
t �̂t| − p

]
,

	2t = 1

p

[
tr[�̂−1

t �t] − log |�̂−1
t �t| − p

]
,

	3t = 1

p

[
tr(�̂

−1
t �t − I)

]2
.

We also use the mean absolute error and mean squared error
loss functions given by
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MAEt = 1

p2

p∑

i=1

p∑

j=1

|ω̂ij;t − ωij;t| and

MSEt = 1

p2

p∑

i=1

p∑

j=1

(ω̂ij;t − ωij;t)2,

where �̂t = (ω̂ij;t)p×p stands for the estimate of the co-
variance matrix �t = (ωij;t)p×p, t = 1, . . . , n. For each
loss measure, we report their averages over the time t as
MAE = ∑n

t=1 MAEt/n, MSE = ∑n
t=1 MSEt/n, and 	i =∑n

t=1 	it/n, i = 1, 2, 3.
Since the true realized covariance matrix �t is unknown,

we employ a moving blocks approach to get a reliable proxy
[23]. Table 43.1 reports the averaged loss measures over
time t and their standard errors in parenthesis for methods
including ORIG, BIC, BPA, DCC, and OAM. ORIG rep-
resents the Cholesky-based method for the estimation of
covariance matrix based on the original ordering of variables.
Similarly, BIC and BPA are the Cholesky-based methods
for the estimation of covariance matrix based on the BIC
and BPA to determine the ordering of variables, respectively.
OAM stands for the Cholesky-based estimate of covari-
ance matrix using the ordering-averaged model. DCC repre-
sents for the dynamic conditional correlationGARCHmodel,
which is a popular tool to fit time series data in finance. It
imposes a dynamic structure on the conditional correlation
matrices.

It is clear to see from Table 43.1 that the OAM estimate
based on the MCD gives the best performance regarding all
the loss functions. The possible reason is that the stocks have
no natural ordering among themselves. For example, it is not
reasonable to order the stocks of Apple Inc., Dow Chemical
Co., Microsoft Corp, and Bank of America Corp. Hence, the
ordering-averaged model shows a relatively accurate estima-
tion. The second best is the BPA, which is slightly inferior
to the OAM. The DCC model does not provide accurate
estimates for the time-varying covariance matrices compared
with the OAM and BPA for this data set. The ORIG and
BIC methods produce large losses, especially in terms of the
quadratic loss 	3 and MSE. Overall, the MCD approach is
suitable for the time-varying covariancematrix estimation for
this time-series data.

43.4.2 MCD for Portfolio Optimization

Now we consider a portfolio optimization process that de-
termines the portfolio allocation of multiple assets to min-
imize the portfolio variance. The risk of a portfolio w =
(w1, . . . , wp) is measured by the variance w′�w of its return,
where wi ≥ 0 and

∑p
i=1 wi = 1. The estimated minimum

variance portfolio optimization problem is formulated as

min
w
w′�̂w (43.20)

s.t.
p∑

i=1

wi = 1,

where �̂ is an estimate of the true covariance matrix � of
asset returns.

We illustrate the performances of each method, including
ORIG, BIC, BPA, OAM, and DCC, applied into the portfolio
optimization problem using the same data set of 97 stock re-
turns from S&P100 as in Sect. 43.4.1. The first t observations
are used to estimate the Cholesky factor matrices (T,Dt) and

then predict the covariance matrices �̂t+1 = T̂
−1
D̂t+1T̂

′−1

at time t + 1, t = 350, 351, . . . , 435. Note that the value of
d2j;t+1, which is the diagonal element ofDt+1, can be estimated

from Eq. (43.19) by generating ε̂j;t = d̂j;tηt, where ηt is a
random variable with mean 0. For this application, we choose
ηt ∼ tdf=5 distribution. The estimated portfolio ŵt+1 is the
solution of (43.20) by replacing �̂ with �̂t+1. In practice, the
researchers care not only the portfolio risk in (43.20) but also
the reward and the information ratio (reward to risk). Hence,
the performance measures of interest are the average annual
realized return

AVG = 1

86

435∑

t=350

52 ∗ ŵ′
t+1xt+1,

their standard deviation (SD), and the information ratio
AVG/SD. Notice that the optimization (43.20) is designed
to minimize the portfolio variance rather than to maximize
the expected return or the information ratio. Therefore, any
portfolio should be primarily evaluated by how successfully
it achieves the minimum SD. A large realized return and a
high value of information ratio are naturally also desirable

Table 43.1 The averages and standard errors (in parenthesis) of loss measures for the weekly returns of 97 stocks

	1 	2 	3 MAE MSE

ORIG 3.397 (0.054) 3.196 (0.036) 1017 (28.35) 6.380 (0.089) 90.61 (2.167)

BIC 3.017 (0.077) 3.376 (0.049) 1176 (32.69) 9.004 (0.486) 364.0 (87.92)

BPA 0.747 (0.029) 0.446 (0.010) 14.94 (0.970) 3.877 (0.096) 36.12 (1.594)

DCC 0.902 (0.049) 0.825 (0.029) 142.3 (11.35) 5.338 (0.223) 172.8 (27.32)

OAM 0.681 (0.024) 0.335 (0.005) 6.183 (0.344) 3.687 (0.102) 35.27 (1.897)
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Table 43.2 The comparison of portfolio performances for the weekly
returns of 97 stocks

ORIG BIC BPA DCC OAM

AVG 8.078 10.93 10.70 8.738 9.840

SD 14.59 17.09 8.007 8.800 7.230

AVG/SD 0.554 0.640 1.336 0.993 1.361

but should be considered of secondary importance from the
point of view of evaluating the quality of a covariance matrix
estimate.

Table 43.2 summarizes the portfolio performances for
each method in terms of AVG, SD, and the information ratio.
The OAM estimate provides the smallest SD and the largest
information ratio, followed by the BPA method. Although
the BIC produces the highest value of the realized return, it
has the worst portfolio risk among all the approaches, hence
resulting in a low information ratio. The ORIG gives inferior
performance with relatively small AVG and large SD. The
DCCmodel does not perform well as the OAM and BPA, but
it is better than the BIC and ORIG for this set of data.

43.4.3 MCD for Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a commonly used
classification method in statistics and machine learning to
construct a decision boundary via a linear combination of
predictor variables that separates two or more classes of
objects. For a multiple-class discriminant problem, each ob-
servation x belongs to some class k ∈ 1, 2, . . . , K. Let Y ∈
{1, 2, . . . , K} represent K classes. Under the assumption that
the conditional density function f (x|Y = k) follows a normal
distribution N(μk,�), the LDA classification rule is

ηk(x) = x′�−1μk − 1

2
μ′
k�

−1μk + log πk, (43.21)

where πk is the prior probability for class k. The observation
x is assigned to the class k� if k∗ = arg max

k
ηk(x).

There are several unknown parameters in the classifica-
tion rule (43.21), the population mean μk, precision matrix
�−1, and prior probability πk. We estimate them from the
training data set. Let Ck be the set composed of the training
observations belonging to the class k. Denote by μ̂k the p×1
vector of the sample mean for the training data in class k. Let
�̂LDA = 1

n−K
∑K

k=1

∑
i∈Ck(xi−μ̂k)(xi−μ̂k)

′ be the estimated
within-class covariance matrix based on the training data.
Then the estimated LDA classification rule is

x′�̂
−1
LDAμ̂k − 1

2
μ̂

′
k�̂

−1
LDAμ̂k + logπ̂k,

Table 43.3 Misclassification rates (in percentage) under 50 times ran-
domly splitting for hand movement data

Method BIC BPA Glasso GLDA DLDA OAM

Misclassification 40.1 39.0 39.1 51.0 46.3 38.9

SE 0.5 0.5 0.6 0.5 0.6 0.5

where π̂k is the frequency of class k in the training data set.
It is clear that the estimation accuracy of the covariance or
precision matrix will have a profound effect on the accuracy
of the classification accuracy of the LDA methods. See the
derivation in the appendix for the details. For the high-
dimensional data, the �̂LDA is often unstable or singular.
Hence some other estimates of �−1 are used such as the
generalized inverse of the within-class covariance matrix
(GLDA) or Glasso estimate [38]. In this section, we consider
�−1 estimated by some Cholesky-based precision matrix
estimation methods such as BIC, OAM, and BPA and ex-
amine their performances under the LDA framework. We
also present the classification results obtained by estimating
�−1 from Glasso, GLDA, and DLDA methods. The DLDA
assumes the off-diagonal elements of the precision matrix to
be zeroes.

We apply each method into the hand movement data
set [29], which contains 15 classes with 24 observations in
each class. Every class refers to a hand movement type.
The hand movement is represented as a two-dimensional
curve performed by the hand in a period of time, where
each curve is mapped in a representation with 90 predictor
variables. The whole data set is randomly split into a training
set with 160 observations and testing set with the rest 200
observations. The 160 observations in the training set are
used to estimate the population means μk, the population
covariance matrix �, and the prior probability πk in the
classification rule (43.21). Then the testing data are used
to compute the misclassification rate for each method. The
above procedure is repeated 50 times, and Table 43.3 reports
the averages and standard errors (SE) of the misclassification
rate in percentage for each method.

We see that the Cholesky-based estimates of BIC, OAM,
BPA, and Glasso estimate perform comparably with respect
to the misclassification rate. The DLDA produces an inferior
performance result, possibly due to the reason that the under-
lying precision matrix of the 90 predictor variables might not
be a diagonal structure. In other words, some variables are
not conditional independent with each other. The GLDA does
not perform well for this data set. It only has a half chance
of assigning a new object to the correct class. Note that the
misclassification rate of each method is relatively large, since
the data contain 15 classes, which makes the discriminant
analysis more difficult.
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43.5 Numerical Study

In this section, we provide several numerical examples to fur-
ther illustrate the Cholesky-based estimation of covariance
and precision matrices. Here we consider the following two
covariance and two precision matrix structures.

Model 1. �1 = MA(0.5, 0.3). The diagonal elements are 1
with the first sub-diagonal elements 0.5 and the second sub-
diagonal elements 0.3.

Model 2. �2 is generated by randomly permuting rows
and corresponding columns of �1.

Model 3. �2 is a diagonal matrix with its diagonal ele-
ments the inverse of vector (p, p− 1, p− 2, . . . , 1)′.

Model 4. �1 = AR(0.5). The conditional covariance be-
tween any two random variables Xi and Xj is fixed to be
0.5|i−j|, 1 ≤ i, j ≤ p.

Model 1 is a banded sparse matrix, while Model 2 is an
unstructured sparse matrix. Model 3 is a diagonal matrix.
Model 4 is an autoregressive structure that has homoge-
neous variances and correlations declining with distance.
This model is more dense than the other models. For each
model, data x1, . . . , xn are generated independently from the
normal distribution N(0,�) with n = 50 and p ∈ {30, 50}.
We use the same loss functions as in the application section
to evaluate the accuracy of the estimates. Besides, to examine
the performances of the estimates in catching the sparse
structure, the false selection loss (FSL) is used, which is the
summation of false positive (FP) and false negative (FN). The
FSL is computed in percentage as (FP + FN) / p2. Tables 43.4
and 43.5 report the averages of loss measures and their

corresponding standard errors (in parenthesis), respectively,
for each method based on 50 replications. The dashed lines
in the tables represent the corresponding values not available
due to matrix singularity.

In Table 43.4, we compare the performances of the
sample covariance matrix S, BIC, BPA, OAM, and RLZ.
The RLZ represents the covariance estimator proposed
by Rothman et al. [28] (see details in Sect. 43.2.3), which
is designated for the banded matrix estimation. From the
table, it is seen that the ordering-averaged method OAM
gives better results than the sample covariance matrix,
BIC and BPA with respect to 	1,	2,	3, MAE, and MSE,
since it takes advantage of multiple variable orderings over
one single ordering. However, the OAM does not capture
the sparse structure, which is destroyed by the average
operation in (43.18). The BIC and BPA can have some
sparsity regarding FSL due to the Lasso regularization when
constructing the Cholesky factors. But their FSL are worse
than that of RLZ, which directly forces most of elements
in the Cholesky factors to be zeroes. In addition, it is not
surprising to observe that the RLZ performs better for the
covariance matrix�1 than�2, since�2 is no longer a banded
matrix after random permutations of rows and columns.

Table 43.5 presents the results obtained by the BIC, BPA,
OAM, and Glasso methods. The ordering-averaged method
OAM performs generally well but produces no sparsity for
thematrix. In contrast, theGlasso estimate is good at catching
the sparse structure as seen from FSL. The Glasso method
[38] imposes an L1 type penalty on the negative likelihood
function of �, hence encouraging the sparsity in the esti-

Table 43.4 The averages and standard errors of estimates for covariance matrix �

	1 	2 	3 MAE MSE FSL(%)

�1 p = 30 S 12.3 (0.12) 38.7 (1.11) 89.9 (4.54) 3.51 (0.04) 19.9 (0.46) 84.0 (0.02)

BIC 7.11 (0.12) 11.0 (0.53) 8.11 (0.84) 1.74 (0.02) 10.6 (0.19) 52.0 (0.80)

BPA 5.94 (0.10) 7.97 (0.28) 4.46 (0.35) 1.53 (0.02) 8.78 (0.19) 45.9 (0.91)

OAM 4.60 (0.07) 5.24 (0.11) 1.58 (0.11) 1.56 (0.02) 7.88 (0.17) 83.6 (0.04)

RLZ 9.34 (0.09) 6.58 (0.06) 0.35 (0.03) 1.04 (0.01) 8.51 (0.08) 6.22 (0.01)

p = 50 S – – – 5.77 (0.04) 53.0 (0.70) 90.2 (0.01)

BIC 15.7 (0.30) 52.8 (8.35) 147 (49.0) 1.96 (0.02) 20.3 (0.24) 42.6 (0.70)

BPA 13.0 (0.26) 20.3 (1.36) 16.2 (2.62) 1.82 (0.03) 18.4 (0.33) 41.1 (0.93)

OAM 9.31 (0.10) 10.0 (0.16) 2.88 (0.19) 1.79 (0.02) 15.6 (0.25) 89.2 (0.06)

RLZ 16.2 (0.10) 11.4 (0.08) 0.65 (0.07) 1.06 (0.01) 14.3 (0.13) 3.84 (0.01)

�2 p = 30 S 12.4 (0.12) 38.6 (1.11) 88.2 (4.56) 3.53 (0.03) 19.8 (0.37) 84.0 (0.01)

BIC 7.31 (0.14) 11.3 (0.51) 8.49 (0.84) 1.75 (0.02) 10.3 (0.17) 52.3 (0.66)

BPA 5.81 (0.12) 7.58 (0.31) 4.06 (0.43) 1.49 (0.02) 8.40 (0.18) 46.5 (1.02)

OAM 4.61 (0.08) 5.14 (0.11) 1.43 (0.12) 1.54 (0.01) 7.50 (0.16) 83.5 (0.05)

RLZ 17.0 (0.17) 10.2 (0.05) 0.28 (0.04) 1.68 (0.01) 18.9 (0.07) 15.6 (0.01)

p = 50 S – – – 5.73 (0.04) 52.7 (0.74) 90.2 (0.01)

BIC 16.0 (0.32) 50.1 (7.06) 121 (33.6) 1.97 (0.02) 20.4 (0.24) 43.2 (0.75)

BPA 12.8 (0.23) 20.3 (1.51) 16.6 (3.15) 1.83 (0.03) 18.5 (0.29) 40.9 (0.96)

OAM 9.39 (0.09) 10.3 (0.15) 3.08 (0.19) 1.81 (0.01) 15.9 (0.23) 89.2 (0.05)

RLZ 31.6 (0.25) 19.8 (0.08) 0.75 (0.09) 1.90 (0.01) 36.5 (0.08) 11.4 (0.01)
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Table 43.5 The averages and standard errors of estimates for precision matrix �

	1 	2 	3 MAE MSE FSL(%)

�1 p = 30 BIC 2.79 (0.26) 1.84 (0.09) 1.34 (0.23) 0.10 (0.01) 0.45 (0.09) 27.4 (2.09)

BPA 2.45 (0.13) 1.72 (0.06) 0.99 (0.12) 0.13 (0.01) 0.42 (0.05) 21.7 (1.69)

OAM 1.99 (0.14) 1.40 (0.06) 1.19 (0.16) 0.10 (0.01) 0.27 (0.04) 79.8 (0.84)

Glasso 2.86 (0.06) 5.48 (0.16) 1.65 (0.08) 0.07 (0.01) 0.80 (0.01) 8.24 (0.34)

p = 50 BIC 14.0 (3.78) 3.97 (0.22) 22.6 (12.8) 0.26 (0.09) 4.64 (2.57) 31.0 (2.41)

BPA 5.32 (0.47) 3.22 (0.15) 2.62 (0.39) 0.13 (0.02) 0.79 (0.34) 19.3 (1.21)

OAM 4.36 (0.28) 2.73 (0.09) 3.11 (0.26) 0.10 (0.01) 0.27 (0.03) 73.2 (1.28)

Glasso 5.45 (0.07) 11.9 (0.23) 2.74 (0.12) 0.05 (0.01) 1.00 (0.01) 7.97 (0.34)

�2 p = 30 BIC 9.03 (0.43) 6.05 (0.11) 5.92 (0.61) 3.34 (0.20) 42.3 (5.52) 45.7 (0.31)

BPA 6.29 (0.19) 5.20 (0.09) 2.84 (0.23) 2.29 (0.06) 17.5 (0.87) 44.8 (0.48)

OAM 5.51 (0.17) 3.98 (0.06) 3.68 (0.27) 2.15 (0.05) 12.9 (0.63) 46.7 (0.04)

Glasso 6.08 (0.10) 14.0 (0.37) 1.71 (0.07) 2.28 (0.01) 24.0 (0.24) 45.2 (0.17)

p = 50 BIC 32.6 (5.21) 12.8 (0.26) 61.8 (30.7) 8.09 (1.93) 221 (29.9) 55.3 (0.59)

BPA 14.2 (0.87) 10.8 (0.16) 8.54 (1.46) 3.21 (0.39) 81.1 (42.4) 44.0 (0.55)

OAM 14.1 (0.59) 8.63 (0.12) 13.0 (1.06) 3.47 (0.21) 49.7 (7.84) 65.4 (0.03)

Glasso 11.7 (0.12) 29.0 (0.47) 3.52 (0.09) 2.40 (0.01) 44.1 (0.25) 30.6 (0.07)

mated precision matrix. Because the underlying precision
matrix �2 is denser than �1, the Glasso method appears
to perform better with respect to FSL for �1. Additionally,
the Glasso also performs well regarding the loss measures
	3 and MAE. We also note that the BPA gives a superior
performance than BIC estimate. This superiority is more
evident for the precision matrix �2 compared with �1, since
�2 is an autoregressive model.

43.6 Discussion

This chapter reviews the modified Cholesky decomposition
(MCD)method for the estimation of covariance and precision
matrices. It is seen that theMCDmethod has the flexibility of
handling matrix estimation by transforming the problem into
a sequence of regression-based problems. The sparsity can be
easily imposed on the Cholesky factor matrices via the linear
regressions and hence encouraging the sparse structure in
the matrix estimate. The Cholesky-based methods guarantee
the positive definiteness of the estimated matrix. Note that
such Cholesky-based methods often require the knowledge
on the ordering of variables when estimating a sequence of
regressions. To address this issue, we thoroughly discuss the
ordering issue in the MCD approach and examine several
solutions to this ordering issue from the literature.

It is worth pointing out that the use of Cholesky-based
approach is not restricted for estimating covariance and pre-
cision matrices under the conventional setting. The idea
of MCD can also be used in constructing the covariance
function in spatial analysis such as Kriging and Gaussian
process [8], especially when involving the qualitative input
variables. Because of the Cholesky decomposition on the
matrix, the induced covariance matrix would have attractive

property in theGaussian processmodeling. Another direction
of using the MCD is the multi-response regression, where
the multivariate responses have certain dependency struc-
tures. Under this situation, the MCD method of estimating
the covariance or precision matrix for the multivariate re-
sponses will be coupled with the estimation of regression
coefficients.

Acknowledgments The authors would like to thank the editor and
reviewers for the constructive and insightful comments, which have
significantly enhanced the quality of this article.

Appendix

Proof of Remark 1 and 2 Since the conclusions of Re-
marks 1 and 2 are much similar, we only provide the proof
of Remark 2 here. Assume that there are n independent and
identically distributed observations x1, . . . , xn, which are
centered. Let S = 1

n

∑n
i=1 xix

′
i be the sample covariance

matrix and assume that S is non-singular since n > p. We
denote �̂0 as the estimated covariance matrix from (43.12)
with tuning parameters equal to zeroes in (43.11). Then
Remark 2 states that �̂0 = S in spite of any permutation of
x1, . . . , xn. Below is the proof.

Based on the sequential regression of (43.11), it is known
that the first step is X1 = ε1. It means that

ei1 = xi1, 1 ≤ i ≤ n, and σ̂ 2
1 = 1

n

n∑

i=1

e2i1

Then the second step is to consider X2 = l21ε1 + ε2, which
provides
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l̂21 =
∑n

i=1 xi2ei1∑n
i=1 e

2
i1

, ei2 = xi2 − l̂21ei1, 1 ≤ i ≤ n

σ̂ 2
2 = 1

n

n∑

i=1

e2i2,
n∑

i=1

ei2ei1 = 0

In general, the jth step is to consider the regression problem
as

Xj =
∑

k<j

ljkεk + εj

and we can obtain

l̂j1 =
∑n

i=1 xijei1∑n
i=1 e

2
i1

, . . . , l̂jk =
∑n

i=1 xijeik∑n
i=1 e

2
ik

, . . . , l̂j,j−1 =
∑n

i=1 xijei,j−1∑n
i=1 e

2
i,j−1

eij = xij −
∑

k<j

l̂jkeik, 1 ≤ i ≤ n

σ̂ 2
j = 1

n

n∑

i=1

e2ij,
n∑

i=1

eijei1 = 0, . . . ,
n∑

i=1

eijei,j−1 = 0

Therefore, we can express the (s, t) entry of the covariance
matrix estimate using the regression coefficients as

(�̂)st = (L̂D̂L̂
T
)st =

min(s,t)∑

u=1

l̂sul̂tuσ̂
2
u (l̂uu = 1).

Note that

xis =
s∑

u=1

l̂sueiu (l̂uu = 1), 1 ≤ i ≤ n,

xit =
t∑

v=1

l̂tveiv (l̂vv = 1), 1 ≤ i ≤ n,

and the (s, t) entry of the sample covariance matrix is

(S)st = 1

n

n∑

i=1

xisxit = 1

n

n∑

i=1

(
s∑

u=1

l̂sueiu

)(
t∑

v=1

l̂tveiv

)

= 1

n

s∑

u=1

t∑

v=1

l̂sul̂tv

(
n∑

i=1

eiueiv

)

=
min(s,t)∑

u=1

l̂sul̂tuσ̂
2
u (l̂uu = 1).

The last equality holds because of

n∑

i=1

eiueiv =
{
nσ 2

u u = v;
0 u �= v.

Thus, we can establish the result

S = L̂ diag
(
σ̂ 2
1 , . . . , σ̂

2
p

)
L̂
T
.

�
Conditional Misclassification Error of LDA
Without loss of generality, we consider a two-class classifi-
cation problem here. Suppose the binary classifier function
for LDA is g(x) = log[P(Y = 1|X = x)/P(Y = 2|X = x)].
Then

g(x) � aTx− b = (μ1 − μ2)
T�−1x

−
[
1

2
(μ1 + μ2)

T�−1(μ1 − μ2) − log
π1

π2

]
,

where π1 and π2 are the prior probabilities for class 1 and 2,
respectively, i.e., π1 = P(Y = 1) and π2 = P(Y = 2). For
a new observation x, we predict its class Y = 1 if g(x) > 0,
and Y = 2 otherwise. Then the conditional misclassification
error is

P(g(x) = 1|Y = 2)P(Y = 2) + P(g(x) = 2|Y = 1)P(Y = 1)

= P(aTx−b>0|Y=2)π2+P(aTx−b ≤ 0|Y=1)π1.

Since x|Y = 1 ∼ N(μ1,�), and x|Y = 2 ∼ N(μ2,�),
obviously aTx|Y = 1 ∼ N(aTμ1, a

T�a), and aTx|Y = 2 ∼
N(aTμ2, a

T�a). Therefore,

P(aTx− b > 0|Y = 2) = 

(
aTμ2 − b√

aT�a

)
,

P(aTx− b ≤ 0|Y = 1) = 

(
−aTμ1 − b√

aT�a

)
,

where (·) is the cumulative distribution function of the
standard normal random variable. As a result, the conditional
misclassification error is

π2

(
aTμ2 − b√

aT�a

)
+ π1

(
−aTμ1 − b√

aT�a

)
.

Assume π1 = π2 = 1/2. Then with the estimates of a and
b through μ̂1, μ̂2, �̂, the conditional misclassification error
γ (�̂, μ̂1, μ̂2) is

γ (�̂, μ̂1, μ̂2)

= 1

2


⎛

⎝ (μ̂1 − μ̂2)
T �̂

−1
μ2 − 1

2 (μ̂1 + μ̂2)
T �̂

−1
(μ̂1 − μ̂2)√

(μ̂1 − μ̂2)
T �̂

−1
��̂

−1
(μ̂1 − μ̂2)

⎞

⎠

+ 1

2


⎛

⎝− (μ̂1−μ̂2)
T �̂

−1
μ1− 1

2 (μ̂1+μ̂2)
T �̂

−1
(μ̂1−μ̂2)√

(μ̂1 − μ̂2)
T �̂

−1
��̂

−1
(μ̂1 − μ̂2)

⎞

⎠ .
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Abstract

One of the main goals of statistical learning is to char-
acterize how the excess risk depends on the sample size
n, on the complexity of the hypothesis class, and on the
underlying complexity of the prediction problem itself.
A related problem is to control the generalization error,
which is a measure of how accurately an algorithm is
able to predict outcome values for previously unseen data.
Establishing probability error bounds for these problems
can be converted into a problem of uniform convergence.
We first introduce some commonly used technical tools
for uniform convergence. Along the way, we highlight the
recent development of learning theory for deep neural net-
works (DNNs) and explain the theoretical benefit to im-
prove the generalization error in practice. Furthermore, we

Q. Gao · X. Wang (�)
Purdue University, West Lafayette, IN, USA
e-mail: gao424@purdue.edu; wangxiao@purdue.edu

present the generalization of DNNs for robust adversarial
learning with �∞ attacks. For general machine learning
tasks, we show that adversarial Rademacher complexity
is always larger than natural counterpart, but the effect of
adversarial perturbations can be limited under the weight
normalization framework.

Keywords

Adversarial learning · Excess risk · Generalization
error · Learning theory · Rademacher complexity ·
Uniform convergence

44.1 What Is Statistical Learning

In supervised learning problems such as classification and
regression, our target is to predict an output y ∈ Y based
on a set of features x ∈ X ⊆ R

d. Informally, we choose a
predictor f : X → Y from the hypothesis class F such that
f (x) is a good prediction of y. Let (x, y) be from an unknown
distribution D and the loss function be �(·, ·) : Y × Y �→
R. Define the expected risk as R(f ) = E(x,y)∼D [�(f (x), y)],
and our goal is to find the expected risk minimizer which
is denoted by f ∗ ∈ arg minf∈F R(f ). Given n i.i.d. samples
S = {(x1, y1), . . . , (xn, yn)}, where each pair is from D over
X × Y , the approximation of f ∗ is obtained by minimizing
the empirical risk:

̂R(f ) = 1

n

n
∑

i=1

�(f (xi), yi). (44.1)

The trained predictor f is also called the empirical risk
minimizer (ERM) defined as any hypothesis f ∈ F that
minimizes Eq. (44.1):

f̂ ∈ arg min
f∈F

̂R(f ). (44.2)
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In practice, we often choose the quadratic loss for regression
problems, while the hinge loss and the cross entropy loss are
commonly used in classification tasks. Statistical learning is
an active area of research in the past two decades: well-known
monographs in this area include [8, 26, 37].

The key question of statistical learning is to analyze and
control the excess risk, which is the difference between R(f ∗)
and R(f̂ ). The excess risk characterizes the gap between the
expected risk of f̂ and the optimal f ∗. Another related concept
is called the generalization error, which is the difference
between R(f̂ ) and ̂R(f̂ ). Mathematically, the generalization
error is a measure of how accurately an algorithm is able
to predict outcome values for previously unseen data. The
generalization error can be minimized by avoiding overfit-
ting in the learning algorithm. We will show later that the
generalization error is easy to control if the excess risk is
bounded. So, how do we analyze the excess risk? Note that
the excess risk is a random variable depending on the training
set via f̂ , and the sample size n is finite. Therefore, the central
limit theorem in asymptotics cannot be directly applied here.
We formulate the analysis as a probability statement. Given
η ∈ (0, 1), the excess risk is upper bounded by some ε with

probability at least 1 − η, that is, P
(

R(f̂ ) − R(f ∗) ≤ ε
)

≥
1 − η, or equivalently,

P

(

R(f̂ ) − R(f ∗) ≥ ε
)

≤ η, (44.3)

where ε is a function relying on η and the complexity of the
hypothesis class F .

To explicitly describe ε, we rewrite the excess risk as

R(f̂ ) − R
(

f ∗
) = R(f̂ ) −̂R(f̂ )

︸ ︷︷ ︸

(a)

+̂R(f̂ ) −̂R (f ∗)
︸ ︷︷ ︸

(b)

+̂R (f ∗)− R
(

f ∗
)

︸ ︷︷ ︸

(c)

.

Term (b), ̂R(f̂ ) −̂R(f ∗), is nonpositive, because f̂ is chosen
to minimize ̂R(f ) in the hypothesis class F . Term (c) is the
difference between a sample average and an expectation in
terms of the fixed function f ∗, such that

̂R
(

f ∗
)−R (f ∗) = 1

n

n
∑

i=1

�
(

f ∗(xi), yi
)−E(x,y)∼D

[

�
(

f ∗(x), y
)]

.

The law of large numbers shows that this term converges to
zero. With information about the tails of �(f ∗(x), y) such as
boundedness, we can use concentration inequalities that we
will introduce in the next section to bound its value. Term
(a), R(f̂ )−̂R(f̂ ), is more interesting and complicated, since f̂
is random based on the chosen data. An easy approach is to
provide a uniform upper bound,

R(f̂ ) −̂R(f̂ ) ≤ sup
f∈F

∣

∣R(f ) −̂R(f )
∣

∣ ,

which motivates us to study the uniform convergence. Sup-
pose we can ensure that R(f ) and̂R(f ) were close (say within
ε/2 ) for all f ∈ F . Then, we could guarantee that R(f̂ ) and
̂R(f ) were within ε/2, as well as R(f ∗) and̂R(f ∗). Therefore,
Eq. (44.3) can be written formally as

P

(

R(f̂ ) − R
(

f ∗
) ≥ ε

)

≤ P

(

sup
f∈F

∣

∣R(f ) −̂R(f )
∣

∣ ≥ ε

2

)

.

(44.4)

On the right-hand side is a statement about uniform conver-
gence, which describes the probability of the event that the
largest difference between the empirical and expected risk
is at least ε/2, or equivalently, the event that this difference
exceeds ε/2 for at least one f ∈ F .

44.1.1 Literature Review

Statistical learning has been widely used to analyze the
generalization performance such as kernel methods, support
vector machine (SVM), and deep neural networks (DNNs).

The good generalization ability of SVM is usually ex-
plained by the existence of a large margin. Such bounds on
the error rate for a hyperplane that separates the data with
some margin were obtained in [3, 31], which are mainly
based on the VC dimension. Reference [38] showed that the
generalization ability of SVM depends on more complex ge-
ometrical constructions than largemargin by proposing a new
concept called the span of support vectors. Kernel methods
have been successfully used in SVM, and the choice of kernel
is very critical. There is a large body of literature dealing
with the problem of learning kernels. For example, [33] gave
generalization bounds for linear combinations of kernels with

L1 regularization that have an order of O(

√

(

p+ 1/ρ2
)

/n),
where p is the number of kernels combined, n is the sample
size, and ρ is the margin of the learned classifier. Cortes
et al. [10] presented new generalization bounds for the fam-
ily of convex combinations of base kernels by using the
Rademacher complexity of the hypothesis set, which is of
order O(

√

(log p)/(ρ2n)).
The generalization bound of DNNs has been extensively

studied in literature, especially norm-constrained fully con-
nected DNNs [4, 6, 13, 22, 27, 28, 34]. In particular, spectral
norm-constrained fully connected DNNs were studied in
[6,22,27]. Assume that the spectral norm of theweightmatrix
in each layer equals to 1, and the width of each hidden layer
is d. Then the corresponding bound of generalization error
is of order

√

d3L2/n [6, 27] and
√
dLr/n [22], respectively,
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where n is the sample size, L is the depth, and r is the rank
of weight matrices. On the other hand, a lower bounds for
the generalization error with an order of

√
d/n is established

in [13]. In addition, some special cases of the matrix mixed
Lp,q norm-constrained fully connected DNNs were studied in
[4,13,28,34,39]. For example, [28] provided an exponential
bound on the width d based on the Frobenius norm of the
weight matrices; [6] provided a polynomial bound on L and
d based on the spectral norm and the L2,1 norm.

However, many recent studies have shown that DNNs are
vulnerable to adversarial attacks [7, 11, 36], which means
DNNs may not predict correct labels for inputs with small
adversarial perturbations. Reference [30] showed that for
natural learning, O(1) training data is enough to correctly
classify two separated d-dimensional Gaussian distribution,
but �(

√
d) data is needed for adversarial learning. Refer-

ence [2] provided adversarial generalization bounds only
considering a finite number of potential adversarial attacks.
Reference [40] used the SDP relaxation proposed by [29] to
establish adversarial generalization bound, but their results
are limited to linear classifiers and single hidden layer neural
networks. Reference [17] used a surrogate adversarial loss
called tree transform to upper bound the actual adversarial
loss and reduced the problem of deriving bounds on the
adversarial risk to the problem of deriving risk bounds us-
ing standard learning-theoretic techniques. However, their
bounds rely on �∞-operator norms, Frobenius norms, and
Lp,∞ norms of weight matrices, and polynomially depend
on the depth of DNNs. Reference [12] extended PAC-Bayes
framework to bound the generalization error for DNNs under
several particular adversarial strategies, but they focused
on �2 perturbations rather than �∞ perturbations, and their
results are based on spectral norms and Frobenius norms.

44.2 Uniform Convergence

In this section, we introduce some commonly used tech-
niques for establishing uniform convergence.

44.2.1 Concentration Inequalities

Let us first recall the central limit theorem. Assume
X1, . . . , Xn are n independent random variables withEXi = μ

and VarXi = σ 2 < ∞, then

lim
n→∞P

(

X̄n ≥ μ + σ t/
√
n
) = 1 − �(t) (44.5)

The central limit theorem tells us what happens asymptoti-
cally, but we usually have a fixed sample size. In this case,
what is P

(∣

∣X̄n − μ
∣

∣ ≥ ε
)

? It is answered by concentration
inequalities, a very powerful set of techniques providing

bounds on this kind of probability that X̄n is concentrated
about its mean. We start from Markov’s inequality, a simple
tool that allows us to control the deviation of a nonnegative
random variable from its mean using the expectation of that
random variable.

Theorem 44.2.1 (Markov’s Inequality) For a random
variable X ≥ 0 a.s., EX < ∞, t > 0: P(X ≥ t) ≤ EX

t .

We use |X − EX| to replace X in Markov’s inequality and
consider a strictly monotonic function f : [0,∞) �→ [0,∞).
Assume E[f (|X − EX|)] < ∞, we have

P (|X − EX| ≥ t) = P (f (|X − EX|) ≥ f (t))

≤ E[f (|X − EX|)]
f (t)

Different choices of f lead to different inequalities. f (a) = a2

gives Chebyshev’s inequality

P(|X − EX| ≥ t) ≤ Var(X)

t2
.

When f (a) = ak, we have

P(|X − EX| ≥ t) ≤ E|X − EX|k
tk

.

When f (a) = exp(λa) for λ > 0, we have the Chernoff
inequality

P(X − EX ≥ t) = P (exp(λ(X − EX))

≥ exp(λt)) ≤ e−λtMX−μ(λ), (44.6)

where EX = μ, and MX−μ(λ) = E exp(λ(X − μ)) is
the moment generating function. Consider a special case of
Gaussian distribution where X ∼ N(μ, σ 2), thenMX−μ(λ) =
exp(λ2σ 2/2). Thus,

P(X − μ ≥ t) ≤ inf
λ

exp
(

λ2σ 2

2
− λt

)

≤ exp
(

− t2

2σ 2

)

,

using the optimal choice λ = t/σ 2 > 0. How about non-
Gaussian variables? Note that the bounds would still hold
as long as MX−μ(λ) is upper bounded. This leads to the
definition of sub-Gaussian.

Definition 44.2.1 X is sub-Gaussian with parameter σ 2 if,
for all λ ∈ R,

MX−μ(λ) ≤ exp
(

λ2σ 2

2

)

.
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If X is a Gaussian random variable from N(0, σ 2), then X
is sub-Gaussian with parameter σ 2. However, exponential
and Gamma variables are not sub-Gaussian, since the tails
of these distributions are too fat. There are some properties
of sub-Gaussian.

• X sub-Gaussian iff −X sub-Gaussian.
• If X1, X2 are independent sub-Gaussian with parameters

σ 2
1 , σ

2
2 , then X1 +X2 is sub-Gaussian with parameter σ 2

1 +
σ 2
2 .

• If X is sub-Gaussian with parameter σ 2, then for any c >

0, cX is sub-Gaussian with parameter c2σ 2.

Equipped with this machinery, we can easily obtain the
following classic tail bound for bounded random variables.

Theorem 44.2.2 For independent X1, . . . , Xn, EXi = μi,
and Xi is sub-Gaussian with parameter σ 2

i , then for all t > 0,

P

(

n
∑

i=1

(Xi − μi) ≥ t

)

≤ exp
(

− t2

2
∑n

i=1 σ 2
i

)

.

The proof is easy by applying the Chernoff inequality. If each
Xi is bounded in [ai, bi], then σ 2

i = (bi − ai)2/4. Thus, we
have Hoeffding’s inequality

P

(

1

n

n
∑

i=1

Xi − 1

n

n
∑

i=1

μi ≥ t

)

≤ exp
(

− 2n2t2
∑n

i=1(bi − ai)2

)

.

Another important tool is the McDiarmid’s inequality, which
is a generalization of the Hoeffding’s inequality, where we
want to bound not the average of random variables X1 . . . , Xn
but any function on X1, . . . , Xn satisfying an appropriate
bounded differences condition.

Theorem 44.2.3 (McDiarmid’s Inequality) Let X1, . . . , Xn
be independent random variables with support on X . Let
f : X n �→ R be a function satisfying the following bounded
difference condition,

(∀i,∀x1, . . . , xn, x′
i)
∣

∣ f (x1, . . . , xi, . . . , xn)

−f (x1, . . . , x′
i, . . . , xn

)∣

∣ ≤ Bi,

then,

P (|f (X1, . . . , Xn) − E[f (X1, . . . , Xn)]| ≥ t)

≤ 2 exp
(

− 2t2
∑

i B
2
i

)

.

We apply martingale to prove this inequality, and please refer
to [26] for more details. This is a quite powerful result, as

it holds for any independent random variables, even if f is
complex such as neural networks. As long as the function is
not too sensitive to perturbations in one of its arguments, we
get good concentration.

So far, we have introduced several main concentration
inequalities. To have a better understanding, we now use them
to analyze the generalization results for a finite hypothesis
class. This is accomplished by a two-step concentration and
the union bound.

Theorem 44.2.4 Let S = {(x1, y1), . . . , (xn, yn)} be n i.i.d.
samples from the unknown distribution D. Assume that F is
a finite hypothesis class, i.e., F = {f1, . . . , fk}, where k < ∞
and fj : X �→ Y for ∀j. Let � be the zero-one loss, i.e.,
�(f (x), y) = I[f (x) �= y]. Let f̂ be the ERM defined in
Eq. (44.2). For fix η ∈ (0, 1), with probability at least 1 − η,
we have

R(f̂ ) − R
(

f ∗
) ≤
√

2(log k + log(2/η))

n
.

44.2.2 Rademacher Complexity

In the previous section, we analyzed the excess risk with a
finite hypothesis class F , i.e., |F | < ∞. However, the union
bound cannot be applied to infinite hypothesis classes. This
motivates us to explore more sophisticated approaches to
measure the capacity of a hypothesis class. In this section, we
will introduce a framework called Rademacher complexity
to uniformly bound the difference between the expected and
empirical risk for any f ∈ F .

Definition 44.2.2 (Empirical Rademacher Complexity)
Let H be a class of real-valued functions h : Z �→ R. The
empirical Rademacher complexity ofH is defined as

̂Rn(H) = Eδ

[

sup
h∈H

1

n

n
∑

i=1

δih(zi)

]

,

where S = {z1, . . . , zn} includes n i.i.d. samples from dis-
tribution D and δ = {δ1, . . . , δn} are n i.i.d. Rademacher
variables satisfying P(δi = 1) = P(δi = −1) = 1/2.

It is clear that the empirical Rademacher complexity is a
random variable depending on the data. By further taking
exception on these random samples, we have the definition
of Rademacher complexity.

Definition 44.2.3 (Rademacher Complexity) Let H be a
class of real-valued functions h : Z �→ R. The Rademacher
complexity ofH is defined as Rn(H) = ES∼Dn

[

̂Rn(H)
]

.
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Here we give an intuitive explanation about the
Rademacher complexity. Consider the simple binary
classification problem with inputs z1, . . . , zn. If the
corresponding labels are random δ1, . . . , δn, this becomes
a meaningless learning problem. Therefore, the Rademacher
complexity is used to capture how well the best function
from the function class H can fit these random labels. A
large H will be able to fit noise better and thus have a larger
Rademacher complexity. As we will see later, we would like
Rn(H) to go to zero as n increases.

The basic properties of Rademacher complexity are listed
as follows:

• Rn(H) = 0 forH = {h}.
• Rn(H1) ≤ Rn(H2) if H1 ⊆ H2.
• Rn(H1 +H2) ≤ Rn(H1)+Rn(H2) forH1 +H2 = {h1 +
h2 : h1 ∈ H1, h2 ∈ H2}

• Rn(cH) = |c|Rn(H)

• Rn(co(H)) = Rn(H), where co(H) is the convex hull of
H.

• Rn(φ ◦ H) ≤ cφRn(H), where φ ◦ H = {z �→ φ(h(z)) :
h ∈ H} and cφ is the Lipschitz constant of φ. This is also
called Ledoux-Talagrand contraction inequality (see [21]
for detailed proof).

The Ledoux-Talagrand contraction inequality is quite use-
ful when analyzing the Rademacher complexity of loss class
� ◦ F , since we can transfer it to analyze the complexity
of our hypothesis class F . Next, we will show the crucial
theorem that links the uniform convergency and Rademacher
complexity.

Theorem 44.2.5 Let S = {(x1, y1), . . . , (xn, yn)} be n i.i.d.
samples drawn from the unknown distribution D. Let F be
a hypothesis class and � be the loss function where � ◦ F
belongs to {�(f (x), y) | � ◦ f : X × Y → [0, 1], f ∈ F}. Fix
η ∈ (0, 1). With probability at least 1 − η, we have

(∀f ∈ F) R(f ) ≤̂R(f ) + 2Rn(� ◦ F) +
√

log (1/η)

2n
.

Equipped with this theorem, we further need several steps
to bound Eq. (44.3). We analogously define G′(S) for the
negative loss �′(f (x), y) = −�(f (x), y), so

P

(

R(f̂ ) − R (h∗) ≥ ε
)

≤ P

(

supf∈F |R(f ) −̂R(f )| ≥ ε
2

)

≤ P

(

G(S) ≥ ε
2

)+ P

(

G′(S) ≥ ε
2

)

.

Note that by the proof of Theorem 44.2.5 (see [5]),
E[G(S)] ≤ 2Rn(� ◦ F) and

P

(

G(S) − E [G(S)] ≥ ε
) ≤ exp

(−2nε2
)

.

SinceRn(�◦F) = Rn(−�◦F), we haveE[G′(S)] ≤ 2Rn(�◦
F). Therefore,

P

(

G(S) ≥ ε

2

)

≤ exp
(

−2n
(ε

2
− E [G(S)]

)2
)

≤ exp
(

−2n
(ε

2
− 2Rn(� ◦ F)

)2
)

for ε ≥ 4Rn(� ◦ F)

def= η

2

Similarly, we have P
(

G(S) ≥ ε
2

) ≤ η

2 . Adding them together
and solving for ε, with probability at least 1 − η, we have

R(f̂ ) − R
(

f ∗
) ≤ 4Rn(� ◦ F) +

√

2 log(2/η)

n
.

Using this conclusion and the Ledoux-Talagrand contraction
lemma, we can easily bound the difference between empirical
risk and expected risk as well as the excess risk once we have
the Rademacher complexity of hypothesis class F . There are
several tools helping control Rn(F) such as VC dimension
and covering number that we will see later.

Next, we provide a simple example of how to upper bound
the empirical Rademacher complexity for a class of linear
predictors.

Example 44.2.1 Let {x1, . . . , xn} be n i.i.d. samples from
X = {x ∈ R

d : ‖x‖2 ≤ B}. Let F be the class of linear
predictors, i.e.,

F = {〈w, x〉 | w ∈ R
d and ‖w‖2 ≤ c}.

We have ̂Rn(F) ≤ Bc√
n
.

44.2.3 Growth Function and VC Dimension

So far, we have set up Rademacher complexity as a measure
of the capacity of infinite hypothesis class. Let us instantiate
Rademacher complexity when the function class has finite
possible outputs such as binary classification problem. As-
sume the dataset S = {z1, . . . , zn} contains n i.i.d. samples
from distribution D. In general, we assume a function class
H ⊆ {h|h : Z → {0, 1}}. We introduce the following
shorthand notation: H(S) = {(h(z1), ..., h(zn)) ∈ {0, 1}n|h ∈
H}. That is, H(S) contains all the {0, 1}n vectors that can be
produced by applying all functions inH to the dataset S.

Definition 44.2.4 (Growth Function) The growth function
(or shatter coefficient) of a class of functions H ⊆ {h|h :
Z → {0, 1}} for n samples is



906 Q. Gao and X. Wang

G(H, n) = max
S∈Zn

|H(S)|.

For example, for the class of functions H = {z �→ I[z ≤
α] : z ∈ R,α ∈ R}, we have |H(S)| ≤ G(H, n) = n + 1.
Meanwhile, for boolean functions, ifG(H, n) = 2n, meaning
we obtain all possible labels, we say H shatters any n points
z1, . . . , zn that achieve the maximum ofH(S). One advantage
of growth function is that it turns the infinite function class
to a finite coefficient. Therefore, we can directly use the
following Massart’s finite lemma to link with Rademacher
complexity.

Lemma 44.2.1 (Massart’s Finite Lemma) For A ⊆
R
n with R2 = maxa∈A ‖a‖22

n ,

E

[

sup
a∈A

1

n

n
∑

i=1

δiai

]

≤
√

2R2 log |A|
n

,

where δ = {δ1, . . . , δn} are n i.i.d. Rademacher random
variables.

Taking A = H(S), we have R2 ≤ 1. By Massart’s finite
lemma, it is straightforward that

̂Rn(H) ≤
√

2 logG(H, n)
n

.

Thus, to get meaningful bounds, we want G(H, n) to
grow sub-exponentially with n. Otherwise, the Rademacher
complexitywill not go to zero, andwewill not obtain uniform
convergence. This is expected since if H can really hit all
labels for all n, we would be able to fit any label of the data,
leading to massive overfitting.

Although the growth function nicely captures the behavior
of an infinite H, it is not necessarily the most convenient
quantity to get a handle on. In the following, we use a concept
called VC dimension to gain more intuition about the growth
function.

Definition 44.2.5 The VC dimension of a class of functions
H with Boolean outputs is the maximum number of points
that can be shattered byH:

VC(H) = max
n∈N

{n|G(H, n) = 2n}

Here we list several examples of VC dimension.

• ForH = {z �→ I[z ≤ α] : α ∈ R}, VC(H) = 1.
• For H = {

z �→ I[z below and to left of y] : y ∈ R
2
}

,
VC(H) = 2.

• For H = {

z �→ I[z in box defined by a, b] : a, b ∈ R
d
}

,
VC(H) = 2d

• ForH = {x �→ I[sin(θx) ≥ 0] : θ ∈ R}, VC(H) = ∞.

Theorem 44.2.6 For the class of thresholded linear func-
tions,

H = {z �→ I[f (x) ≥ 0] : f ∈ F},
where F is a linear space, VC(H) = dim(F).

Lemma 44.2.2 (Sauer-Shelah Lemma) For a function
class H with Boolean outputs and VC dimension d, then
we have

G(H, n) ≤
d
∑

i=0

(

n
i

)

≤ (n+ 1)d.

This proof of Sauer-Shelah Lemma is very technical. For
more details please refer to [26]. Combining this theorem
with the previous conclusion, we have

̂Rn(H) ≤
√

2 logG(H, n)
n

≤
√

2VC(H) log(n+ 1)

n
.

44.2.4 Covering Number

For infinite hypothesis classes, we observe that growth func-
tion and VC dimension are appropriate measures since all
that mattered was the behavior of a function class on a
finite set of points. However, these two approaches only
work for functions that return a finite number of values. Can
we retain the combinatorial nature of growth function but
allow for real-valued functions such as regression problems?
We explore covering numbers in the section to solve this
problem. Covering numbers count the number of balls of size
ε one needs to cover the hypothesis class, then the Massart’s
finite lemma can be applied to control the representatives.
In essence, covering numbers allow us to discretize the
problem.

Definition 44.2.6 A metric space (X , ρ) is a set X and a
function ρ : X × X �→ [0,∞) satisfying

• Identity of indiscernibles: ρ(x, x) = 0
• Symmetry: ρ(x, y) = ρ(y, x)
• Triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

If ρ(x, y) = 0 is possible for x �= y, then we say ρ

is a pseudometric. In this section, we will work with the
pseudometric. For example, the pseudometric for a set of
functionsH mapping from Z to R is

ρ(h, h′) = ‖h− h′‖L1(Pn) := 1

n

n
∑

i=1

∣

∣h (zi) − h′ (zi)
∣

∣ .
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Definition 44.2.7

• An ε-cover of a subset H of a pseudometric space (X , ρ)

is a finite set H′ ⊂ H such that for each h ∈ H there is a
h′ ∈ H′ such that ρ(h, h′) ≤ ε.

• The ε-covering number ofH is

N (ε,H, ρ) = min{|H′| : H′ is an ε-cover ofH}.

• logN (ε,H, ρ) is the metric entropy ofH.
• If limε→0 logN (ε)/ log(1/ε) exists, it is called the metric

dimension.

From above definitions, it is straightforward that as ε

decreases, h′ in the cover H′ is a better approximation of
h, but N (ε,H, ρ) also increases. In general, we would like
N (ε,H, ρ) to be small, so what is the trade-off? The follow-
ing theorems establish that the covering number enables to
upper bound the Rademacher complexity, which also provide
hints for this trade-off.

Theorem 44.2.7 (Discretization Theorem) Let S =
{z1, . . . , zn} ∈ Z be n i.i.d. samples from distribution D.
LetH be a class of functions h : Z �→ [−1, 1], and consider
the L2(Pn) pseudometric onH,

ρ(h, h′) =
[

1

n

n
∑

i=1

(

h (zi) − h′ (zi)
)2

]1/2

.

Then,

̂Rn(H) ≤ inf
ε>0

(
√

2 log (2N (ε,H, ρ))

n
+ ε

)

.

The first term on the right-hand side is the covering
number, which increases as ε decreases as we discussed. The
second term is ε, which can be regarded as the penalty we
pay for having a discretization. We now introduce a clever
technique called chaining gets at the intuition by constructing
covers at multiple levels of resolution and using functions in
the coarser covers as waypoints. The idea is that the fewer
functions in the coarse cover can have larger deviation, and
the many functions in the finer covers has smaller devia-
tion. Note that compared with the discretization theorem,
this bound involves an integral that sweeps across different
resolutions ε and importantly removes the additive ε penalty.

Theorem 44.2.8 (Dudley’s Theorem) LetH be a family of
functions h : Z �→ R. Consider the L2(Pn) pseudometric on
H, then

̂Rn(H) ≤ 12
∫ ∞

0

√

2 logN (ε,H, ρ)

n
dε.

In simple discretization, we apply Massart’s finite class
lemma on functions whose magnitude is suph∈H ‖h‖L2(Pn),
whereas in chaining, we apply this lemma on differences
between functions in H′

j and H′
j−1 whose range is 3εj. This

leads chaining to produce better results.

44.3 Learning Theory for Deep Learning

In this section, we will mainly summarize recent results on
the generalization error of deep neural networks (DNNs).
DNNs are the essence of deep learning models. The goal
of a DNN is to approximate the unknown true function.
Reference [16] stated that a neural network with at least one
hidden layer with any “squashing” activation function (such
as the logistic sigmoid activation function) can approximate
any Borel measurable function with any desired nonzero
amount of error, provided that the network is given enough
hidden units. This universal property makes it the basis of
many important commercial applications. For instance, the
convolutional neural networks used for object recognition
from photos are a specialized kind of neural network. It is also
a conceptual stepping stone on the path to recurrent networks,
which power many natural language applications.

The architecture of neural networks is composed of an
input layer, multiple hidden layers, and an output layer. We
useFWL to denote a class of neural networks. Given the input
domain X = {x : x ∈ R

d0}, the form of each fWL ∈ FWL is

fWL(x) = σL(WLσL−1(WL−1 · · · σ1(W1x))), (44.7)

where for i = 1, . . . , L, Wi is the Rdi × R
di−1 weight matrix,

and σi(·) is element-wise nonlinear activation functions satis-
fying σi(0) = 0. In the above, we useWL to denote all weight
matrices (W1, . . . , WL). We denote L as the depth and d =
max{d0, . . . , dL} as the width of the neural network, which
are the total number of layers and the maximum number
of neurons in each layer, respectively. Typical examples of
activation functions include sigmoid, tanh, and Relu. Note
that Relu owns good properties, satisfying σ(0) = 0 and 1-
Lipschitz contentiousness.

Existing results imply that Rademacher complexity of
DNNs can be sufficiently controlled by the product of norms
of weight matrices, especially the spectral norm and the
Frobenius norm. In this section, we use ‖W‖2 to denote the
spectral norm, which is the maximum singular value of W.
And we use ‖W‖p,q to denote Lp,q-norm, defining as
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‖W‖p,q =
⎛

⎝

∑

j

(

∑

i

|wij|p
)q/p
⎞

⎠

1/q

.

When p = q = 2, this refers to Frobenius norm, denoted by
‖W‖F. The �p-norm of a vector x is denoted by ‖x‖p.

Reference [28] mainly focused on Relu and Lp,q-norm
of weight matrices. They extended prior work on per-unit
regularization for two-layer networks to the overall norm
regularization, which corresponds to the commonly used
technique of weight decay.

Theorem 44.3.1 ([28]) For any L, q ≥ 1, any 1 ≤ p < ∞,
and any n i.i.d. samples {x1, . . . , xn} from X , we have

̂Rn(FWL) ≤
√

√

√

√

1

n

L
∏

j=1

‖Wj‖2p,q
(

2d[
1
p∗ − 1

q ]+
)2(L−1)

min {p∗, 4 log(2d0)} max
i

‖xi‖2p∗ ,

where p∗ is such that 1
p + 1

p∗ = 1.

When p = q = 2, and if the �2-norm of each sample is
bounded by B, the upper bound of ̂Rn(FWL) can be reduced
to

O
(

B2L
∏L

j=1 ‖Wj‖F√
n

)

.

Although this bound has no explicit dependence on the
network width, it has a very strong exponential dependence
on the network depth L, even if ‖Wj‖F ≤ 1 for all j.

Reference [6] shows the generalization error of DNN is
proportional to its Lipschitz constant, particularly the Lip-
schitz constant normalized by the margin of the predictor.
It is easy to prove that the Lipschitz constant of DNNs is
actually the product of spectral norms of all weight matrices.
A detailed description of the margin of the predictor is as
follows. Given a neural network fWL defined in Eq. (44.7),
mapping from R

d0 to R
dL , where dL is also the number of

classes, the most natural way to predict classes is to select the
output coordinate with the largest magnitude, meaning x �→
arg maxj fWL(x)j. Then, the margin is defined as fWL(x)y −
maxj�=yfWL(x)j, which measures the gap between the output
for the correct label and other labels. The following theorem
shows the generalization bound for DNNs under this setting.

Theorem 44.3.2 ([6]) Let (σ1, . . . , σL) be 1-Lipschitz
activation function satisfying σi(0) = 0. Then for
(x, y), (x1, y1), . . . , (xn, yn) drawn i.i.d. from D, with
probability at least 1 − η over {(xi, yi)}ni=1, every margin
γ > 0 and network fWL : Rd0 �→ R

dL satisfy

Pr
[

arg max
j
fWL(x)j �= y

]

≤ 1

n

n
∑

i=1

I

[

fWL (xi)yi ≤ γ + max
j�=yi

fWL (xi)j

]

+ ˜O
(

‖X‖FRW
γ n

ln(d) +
√

ln(1/η)

n

)

,

where ‖X‖F =
√

∑

i ‖xi‖22 and

RW :=
⎛

⎝

L
∏

j=1

∥

∥Wj

∥

∥

2

⎞

⎠

⎛

⎜

⎝

L
∑

j=1

∥

∥

∥W�
j

∥

∥

∥

2/3

2,1
∥

∥Wj

∥

∥

2/3
2

⎞

⎟

⎠

3/2

.

As we can see, the above result mainly relies on the term RW ,
which actually polynomially depends on the depth of DNNs.
Since for any weight matrixWj,

∑

l

√∑

k Wj(l, k)2
∥

∥Wj

∥

∥

2

≥
∥

∥Wj

∥

∥

F
∥

∥Wj

∥

∥

2

≥ 1,

this means RW can never be smaller than
∏L

j=1 ‖Wj‖2
√
L3.

Recently, [13] proposed a nearly size-independent sample
complexity of DNNs based on Frobenius norms of weight
matrices. For linear predictor f (x) = w�x, we have proved
that the Rademacher complexity is upper bounded by
O(‖w‖2‖x‖2/√n), which is apparently independent of the
number of parameters. Motivated by this observation, they
came up with a nearly size-independent bound under some
mild conditions.

Theorem 44.3.3 ([13]) Let (x1, . . . , xn) be n i.i.d. samples
from X = {x : ‖x‖2 ≤ B}. Let (σ1, . . . , σL) be 1-
Lipschitz activation function satisfying σi(0) = 0. Assume
that parameter matrices Wj satisfy

∏L
j=1 ‖Wj‖2 ≥ �. With

additional assumptions about the loss function � and DNNs
class FWL , it holds that

̂Rn(� ◦ F) ≤ O
(

B
∏L

j=1 ‖Wj‖F
γ

·

min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

log3/4(n)
√

log
(

1
�

∏L
j=1 ‖Wj‖F

)

n1/4
,

√

L

n

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎠

,



44 Statistical Learning 909

44

where log(z) := max{1, log(z)} and γ is the margin.

Ignoring logarithmic factors and replacing the min by its first
argument, the bound in is at most

Õ

⎛

⎜

⎝

B
∏L

j=1 ‖Wj‖F
γ

√

√

√

√

log
(

1
�

∏L
j=1 ‖Wj‖F

)

√
n

⎞

⎟

⎠ .

Assuming that
∏L

j=1 ‖W‖F and
∏L

j=1 ‖W‖F/� are bounded
by a constant, a bound that does not depend on the width or
depth of the network can be obtained.

The above works discussed DNNs without including bias
terms. However, [39] provided some examples to state that
these conclusions may fail when bias terms are added for
each hidden layer. For the bias-included DNNs, the dimen-
sion of each weight matrix Wj is now R

dj × R
dj−1+1, and

we denote such DNNs class as FWL,b. An Lp,q-norm based
upper bound on the Rademacher complexity of FWL,b is
established. For simplicity, they assume that the Lp,q norms of
weight matrices of hidden layers are the same, i.e.,

∥

∥Wj

∥

∥

p,q ≡
c for j = 1, . . . , L − 1, and the norm of output layer is
controlled by a constant, i.e., ‖WL‖p,q ≤ co.

Theorem 44.3.4 ([39]) For any q ≥ 1, c, co > 0, and n i.i.d.
samples {x1, · · · , xn} from X , we have

1.

̂Rn(FWL,b) ≤ O
(

coc
L−1

√

L− 1

n

)

.

2. for p ∈ (1,∞),

̂Rn(FWL,b) ≤ O
(

co

√

L− 1

n

(

L−1
∑

i=2

cL−i
L−1
∏

l=i
d

[ 1
p∗ − 1

q ]+
l

))

,

where p∗ is such that 1
p + 1

p∗ = 1.

In Theorem 44.3.4, it is easy to show that the result has no
dependence on widths if q ∈ [1, p∗].

As a summary, we can see that the Rademacher complex-
ity of DNNs with and without bias terms can be controlled
by the product of norms of weight matrices. This infers that
the outstanding generalization performance of DNNs is not
due to the large number of parameters but the norms of
weight matrices. Under reasonable assumptions and appro-
priate norm constraints, DNNs can achieve both high training
accuracy and testing accuracy even if we use DNNs with
small width and depth. Typically in practice, we can add
weight decay [20] or use spectral weight normalization [41]
to improve the generalization behavior of DNNs.

44.4 Learning Theory for Robust
Adversarial Learning

Many recent studies have shown that DNNs are actually
vulnerable to adversarial attacks [7, 11, 36]. The adversarial
inputs are called adversarial examples, which are typically
generated by adding small perturbations that are impercepti-
ble to human eyes [35]. Although many deep learning mod-
els achieve the state-of-the-art performance in benchmark
datasets, they perform poorly on these adversarial examples.
For example, the adversarial test accuracy on CIFAR10 is
reported as only 47% in [24], instead the natural test accuracy
on CIFAR10 is around 95% [32]. Hence, it is necessary to
study the adversarial robust generalization property of DNNs
to theoretically gain deeper understanding of this problem.

As in the previous sections, assume that (x, y) is from an
unknown distribution D. For adversarial learning, we focus
on the �∞ white box adversarial attacks where an adversary
is allowed to observe the trained model. We choose some x′
such that ‖x′ −x‖∞ ≤ ε and �(f (x′), y) is maximized. There-
fore, the adversarial robust model is learned by minimizing
the empirical adversarial risk, that is,

min
f∈F

1

n

n
∑

i=1

max
‖x′

i−xi‖∞≤ε
�(f (x′

i), yi), (44.8)

where {(x1, y1), . . . , (xn, yn)} are n i.i.d. training samples
from D. The generalization behavior of the adversarial risk
when F is a set of predictors is the difference between the
expected adversarial risk

E(x,y)∼D[ max‖x′−x‖∞≤ε
�(f (x′), y)]

and the empirical adversarial risk in (44.8).
Let us start from simple predictors. Reference [40] proved

tight upper and lower bounds for the adversarial Rademacher
complexity of binary classifiers. Assume fw(x) = 〈w, x〉 is
the predictor, where w ∈ R

d. The label is then predicted as
the sign of fw(x). Since the label space Y = {−1, 1}, the loss
�(f (x), y) can be written as �(f (x), y) = φ(y〈w, x〉), where
φ(·) : R �→ [0, A] is monotonically nonincreasing and Lφ-
Lipschitz. Under the adversarial setting, we therefore have

max‖x′−x‖∞≤ε
�
(

fw
(

x′) , y
) = φ

(

min‖x′−x‖∞≤ε
y
〈

w, x′〉
)

Then it is easy to derive the Rademacher complexities with
adversarial attacks. The following theorem shows that the
adversarial Rademacher complexity is always at least as large
as the Rademacher complexity in the natural setting.
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Theorem 44.4.1 ([40]) Let F = {

fw(x) : ‖w‖p ≤ c
}

and
˜F = {min‖x′−x‖∞≤ε y

〈

w, x′〉 : ‖w‖p ≤ c
}

. Suppose that 1
p +

1
q = 1. Then, there exists a universal constant C ∈ (0, 1) such
that

max

{

Rn(F), Cεc
d

1
q√
n

}

≤ Rn(˜F) ≤ Rn(F) + εc
d

1
q√
n
.

For neural network classifiers, deriving the adversarial
Rademacher complexity is more sophisticated, because
Eq. (44.8) is an intractable optimization problem. The well-
known fast gradient sign method (FGSM) [15] proposes to
compute the adversarial examples as

x̃i = xi + ε · sign(∇x�(f (xi), yi)
)

, i = 1, . . . , n. (44.9)

The class of DNNs with spectral norm constraints and under
such adversarial attacks is defined as

˜FWL =
{

x �→ fWL(x̃) : x̃ = x+ ε · sign(∇x�(fWL(x), y));
∥

∥Wj

∥

∥

2 ≤ cj; rank(Wj) ≤ rj,∀j
}

, (44.10)

where fWL(x) is defined in Eq. (44.7) and cj and rj are positive
constants. The Rademacher complexity of FWL is given as
follows.

Theorem 44.4.2 Given {x1, . . . , xn} from X = {x ∈ R
d0 :

‖x‖ ≤ B}, each xi is perturbed by ε · sign(∇xi�(fWL(xi), yi)).
Assume that the activation function σ(·) is 1-Lipschitz
and 1-smooth. Assume that the loss function �(·, y) is
1-Lipschitz and 1-smooth for any fixed label y, and
minp∈[d] |∇(p)

xi �(fWL(xi), yi)| ≥ κ holds for a constant

κ > 0, where ∇(p)
xi �(fWL(xi), yi) is the p-th element of

∇xi g(fWL(xi), yi), for p = 1, . . . , d. Then ̂Rn(� ◦ ˜FWL) is
upper bounded by

O

⎛

⎝

∏L
j=1 cj

(

B+ √
dε
)

√
n

√

√

√

√d
L
∑

j=1

rj ln
(

L
√
n

(

1 + �

B+ √
dε

))

⎞

⎠ ,

where� = ε 1
κ
(1+ 1

κ

∏L
j=1 cj)

∏L
j=1 cj

(

1+B
L

∑L
j=1(j
∏j

k=1 ck)
)

This theorem shows that the effect of adversarial attacks
on generalization performance is an additional linear term
with ε. Besides an extra logarithm term, the coefficient of
this linear term for ε includes the Lipschitz constant of the
neural network, the width of the neural network, and the sum
of ranks of weight matrices. Assuming the ranks are all equal

to r,
∑L

j=1 rj turns to be a linear function of the depth, which
implies that the depth influences the generalization error of
adversarial learning to a certain extent.

Several interesting observations will lead this upper bound
to a tighter one. An L-layer neural network fWL : R

d0 →
R
dL is a

∏L
j=1 ‖Wj‖2-Lipschitz continuous function if all

activation functions are 1-Lipschitz. It is easy to show that
the covering number of DNNs class is independent of the
network depth if we regard the whole network as a Lipschitz
continuous function. In addition, weight matrices tend to
be low rank in many empirical results, and dropout can
be treated as the low-rank regularization. These take-home
points motivate us to decompose fWL as a shallow network
and a low-dimensional Lipschitz continuous function. Re-
lying on this decomposition, we established a tighter upper
bound on the Rademacher complexity in adversarial setting
and further limit the effect of adversarial perturbations on the
adversarial generalization performance.

In particular, suppose Wl = Ul�lV�
l for ∀ l ∈ {1, . . . , L},

where Ul and Vl are column-orthogonal matrices, and �l ∈
R
rl×rl is a diagonal matrix whose entries are nonzero singular

values ofWl. Then we rewrite fWL(x̃) as

fWL(x̃) = hrl ◦ fWl(x̃),

where
fWl(x̃) = V�

l σl−1(· · · σ1(W1(x̃)))

is a depth-l neural network and

hrl(z) = σL(WLσL−1(WL−1 · · · σl(Ul�lz)))

is a Lipschitz continuous function with low-dimensional
input, mapping fromR

rl toRdL . The composition implies that
� ◦ ˜FWL is a subset of � ◦ Hrl ◦ ˜FWl , where

Hrl =
{

hrl(z)
∣

∣

∣ ‖z‖ ≤
l−1
∏

j=1

‖Wj‖2(B+ √
dε),

Lipschitz constant is
L
∏

j=l
‖Wj‖2

}

. (44.11)

According to the properties of Rademacher complexity, we
have

̂Rn(� ◦ ˜FWL) ≤ ̂Rn(� ◦ Hrl ◦ ˜FWl).

Since this decomposition holds true for any l, we further
obtain the upper bound on ̂Rn(� ◦ ˜FWL) by choosing the
minimum among all ̂Rn(� ◦ Hrl ◦ ˜FWl) for l = 1, . . . , L.

Lemma 44.4.1 Under the same assumptions in Theo-
rem 44.4.2, and define � =∏L

j=1 cj(B+ √
dε), we have
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1. When rl = 1, ̂Rn(� ◦ Hrl ◦ ˜FWl) satisfies

R1
l := O

(

�√
n

√

√

√

√d
l
∑

j=1

rj ln
(

l
√
n
(

1 + �

B+ √
dε

)

) )

.

2. When rl = 2, ̂Rn(� ◦ Hrl ◦ ˜FWl) satisfies

R2
l := O

(

�√
n

(
√

(ln
√
n)3

+
√

√

√

√d
l
∑

j=1

rj ln
(

l
√
n
(

1 + �

B+ √
dε

))

) )

.

3. When rl ≥ 3, ̂Rn(� ◦ Hrl ◦ ˜FWl) satisfies

Rrll := O
(

�
rl
√
n

(
√

24rl ln( rl
√
n)

rl

+
√

√

√

√d
l
∑

j=1

rj ln
(

l rl
√
n
(

1 + �

B+ √
dε

))

) )

.

Theorem 44.4.3 For i = 1, . . . , d, define

l(i) = min
j∈[L]{j : rank(Wj) = i}.

Then,
̂Rn(g ◦ ˜FWL) ≤ min

i∈[d] R
i
l(i) ,

where the Ril(i) is defined in Lemma 44.4.1.

We ignore logarithmic factors for simplicity. Consider
two different scenarios. The first case is that there are low
rank matrices with rank 1 or 2 at layer l among weight
matrices. Theorem 44.4.3 shows that the upper bound on the
Rademacher complexity of � ◦ ˜FWL is at most of order

(

∏L
j=1 ‖Wj‖2

) (

B+ √
dε
)√

d
∑l

j=1 rj√
n

.

The second case is that the ranks of weight matrices are all
greater than or equal to 3. Theorem 44.4.3 shows that the
upper bound is at most of order

⎛

⎝

L
∏

j=1

‖Wj‖2
⎞

⎠

(

B+ √
dε
)

·

min

⎛

⎝

√

d
∑L

j=1 rj

n
,

√

d
∑l

j=1 rj +
√
24rl/rl

rl
√
n

⎞

⎠ .

These bounds are depth-free, depend on the Lipschitz con-
stant

∏L
j=1 ‖Wj‖2, and have a linear relationship with ε whose

coefficient is linear in the width d.
Following the above conclusion, it is clear that the

Rademacher complexity of DNNs under adversarial setting
only relies on the shallow part if a low rank weight matrix
exists. Correspondingly, the linear coefficient of adversarial

perturbations reduces to O(

√

∑l
j=1 rj). Thus, adversarial

attacks have a smaller influence on the Rademacher
complexity and also the generalization behavior of the
DNNs. To improve the training accuracy and testing accuracy
for experiments, we may adopt spectral normalization and
dropout.

44.5 Example: Generalization Bounds for
Logistic Regression

In this section, we consider a widely used model in statistical
machine learning, which is the logistic regression, to illus-
trate the previous theoretical results. Let (x, y) be the sample
from X × Y , where X = {x ∈ R

d0 : ‖x‖2 ≤ B} and
Y = {0, 1} are input domain and output domain, respectively.
The non-linear logistic regression model is

f (x) := P

(

Y = 1|x
)

= exp(h(x))

1 + exp(h(x))
,

where, for simplicity, h(x) = wTσ(Wx) is modeled by a
single hidden layer neural network, σ is the Sigmoid acti-
vation function, and W ∈ R

d1×d0 and w ∈ R
d1 are weight

parameters. Let F be a class of logistic regressions functions
with spectral normalization,

F = {x �→ f (x) : ‖W‖2 ≤ c1, ‖w‖2 ≤ c2, rank(W) ≤ r1}.

To find the optimal estimations for parameters, we minimize
the negative log-likelihood

�(f (x), y) = −y ln(f (x)) − (1 − y) ln(1 − f (x)).

It is easy to show that the Sigmoid activation function is
1-Lipschitz and 1-smooth. The log loss also satisfies these
conditions if the input is lower bounded by 1. Furthermore,
we may set κ ≤ c minp{|w�W(p)|} for some constant c,
where W(p) is the p-th column of W for p = 1, . . . , d0.
This satisfies the condition for κ in Theorem 44.4.2. Given n
i.i.d. samples (x1, y1), . . . , (xn, yn) from X × Y , we consider
the FGSM attack, that is, the perturbed predictors are x̃i =
xi + ε · sign(∇x�(f (xi), yi)) for i = 1, . . . , n. Then, with
probability at least 1 − η for η ∈ (0, 1), the generalization
error under the FGSM attack satisfies
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E(x,y)�(f (x̃), y) − 1

n

n
∑

i=1

�(f (x̃i), yi)

≤O

⎛

⎝

c1c2
(

B+ √
dε
)

√
n

√

d(1 + r1) ln
(√

n

(

1 + �

B+ √
dε

))

+
√

ln(1/η)

n

)

,

where d = max{d0, d1} and � = ε c1c2
κ

(1 + c1c2
κ

)
(

1 +
B(c1+2c1c2)

2

)

.
The upper bound on generalization error in natural learn-

ing case is straightforward by setting ε = 0. That is,

E(x,y)�(f (x), y) − 1

n

n
∑

i=1

�(f (xi), yi) ≤ O

(

c1c2B
√

d(1 + r1) ln(
√
n)√

n
+
√

ln(1/η)

n

)

.

The crucial observation is that, for logistic regression, the
adversarial generalization bound is always larger than its
natural learning counterpart, but the effect of adversarial
perturbations can be limited under our weight normalization
framework.

44.6 Discussion

We have presented a systematic framework of statistical
learning for supervised learning problems. This includes
common technical tools, generalization error bounds for
DNNs, and the sample complexity of DNNs for robust
adversarial learningwith �∞ attacks.We have omitted several
important theoretical results for other deep learning models,
which include generative adversarial networks (GANs)
[1, 14], deep graphical models [19], deep reinforcement
learning [23, 25], etc. In the end, we point out a few future
directions and hope that these open problems serve as a
stimulus for further statistical learning research.

• Generative Models. There are two main approaches for
generative modeling. The first one is called variational
auto-encoders (VAEs) [18], which use variational infer-
ence to learn a model by maximizing the lower bound
of the likelihood function. VAEs have elegant theoretical
foundations, but the drawback is that they tend to produce
blurry images. The second approach is called generative
adversarial networks (GANs) [14], which learn a model
by using a powerful discriminator to distinguish between
real data points and generative data points. GANs produce

more visually realistic images but suffer from the unstable
training and the mode collapse problem. How to provide
a unifying framework combining the best of VAEs and
GANs in a principled way is yet to be discovered.

• Trade-off between robustness and standard accuracy. The
trade-off between robustness and standard accuracy has
been consistently reported in the machine learning lit-
erature. Although the problem has been widely studied
to understand and explain this trade-off, no studies have
shown the possibility of a no trade-off solution. Is there
any way to overcome this trade-off?

• Latent variable models and theMLE. Latent variablemod-
els are powerful and cover a broad range of statistical and
machine learning models, such as Bayesian models, linear
mixed models, and Gaussian mixture models. Existing
methods often suffer from two major challenges in prac-
tice: (a) A proper latent variable distribution is difficult to
be specified, and (b) making an exact likelihood inference
is formidable due to the intractable computation. Is there
any framework which can overcome these limitations and
allows efficient and exact maximum likelihood inference?

Appendix

Proof of Theorem 44.4.2

To prove Theorem 44.4.2, we need the covering number of
˜FWL first.

Lemma 44.6.1 Under the same conditions as Theo-
rem 44.4.2, we have the covering number of ˜FWL with respect
to the metric ρn satisfies

N
(

τ , ˜FWL
, ρn
) ≤
⎛

⎝

9L
(

B+ √
dε + �

)

∏L
j=1 cj

τ

⎞

⎠

(2d+1)
∑L

j=1 rj

,

where ρn is the L2(Pn) metric and � = ε 1
κ
(1 +

1
κ

∏L
j=1 cj)

∏L
j=1 cj

(

1 + B
L

∑L
j=1(j
∏j

k=1 ck)
)

.

We use the following Lemma 44.6.2, Lemma 44.6.3 and
Lemma 44.6.4 to prove Lemma 44.6.1.

Lemma 44.6.2 Let Sc,r = {W : W ∈ R
d2×d1 , ‖W‖2 ≤

c, rank(W) ≤ r}. Then there exists an τ -covering of Sc,r with
respect to the spectral norm obeying

N (τ , Sc,r, ‖·‖2) ≤
(

9c

τ

)r(d2+d1+1)

.

Proof. We prove the lemma by extending the arguments
from [9]. We do SVD ofW in Sc,r,



44 Statistical Learning 913

44

W = U�V� = cU
�

c
V� := cU�̃V�, (44.12)

where � ∈ R
r×r is the diagonal matrix with singular values

and U ∈ R
d2×r and V ∈ R

d1×r are column orthogonal
matrices. Thus, ‖U‖2 = ‖V‖2 = 1, and ‖�̃‖2 ≤ 1. We will
construct an τ -covering for Sc,r by covering the set of U, �̃
and V . we assume d1 = d2 = d for simplicity.

Let � be the set of diagonal matrices with nonnegative
entries and spectral norm less than 1. We take �′ to be an
τ/(3c)-net for � with

|�′| ≤
(

9c

τ

)r

.

Let Od,r = {U ∈ R
d×r : ‖U‖2 = 1}. There also exists an

τ/(3c)-net O′
d,r for Od,r obeying

|O′
d,r| ≤

(

9c

τ

)dr

.

We now let S′
c,r = {cU′�′V ′� : U′, V ′ ∈ O′

d,r,�
′ ∈ �′}.

Thus,

|S′
r| ≤ |O′

d,r|2|�′| ≤
(

9c

τ

)r(2d+1)

.

It remains to show that there exists S′
c,r for Sc,r, such that

∥

∥W −W ′∥
∥

2 ≤ τ .

∥

∥W −W ′∥
∥

2

= c
∥

∥

∥U�̃V� − U′�′V ′�
∥

∥

∥

2

= c
∥

∥

∥U�̃V� − U′�̃V� + U′�̃V� − U′�′V�

+ U′�′V� − U′�′V ′�∥
∥

2

≤ c
( ∥

∥

∥(U − U′)�̃V�
∥

∥

∥

2
+
∥

∥

∥U′(�̃ − �′)V�
∥

∥

∥

2

+ ∥∥U′�′(V − V ′)�
∥

∥

2

)

For the first term,

∥

∥

∥(U − U′)�̃V�
∥

∥

∥

2
≤ ∥∥U − U′∥

∥

2

∥

∥

∥�̃

∥

∥

∥

2
‖V‖2 ≤ τ

3c
.

The same argument gives
∥

∥U′�′(V − V ′)�
∥

∥

2 ≤ τ/(3c). For
the second term,

∥

∥

∥U′(�̃ − �′)V�
∥

∥

∥

2
≤
∥

∥

∥�̃ − �′
∥

∥

∥

2
≤ τ

3c
.

Therefore,
∥

∥W −W ′∥
∥

2 ≤ τ . This completes the proof. ��

Lemma 44.6.3 Under the same conditions as Theo-
rem 44.4.2, given WL = (W1, . . . , WL), there exists
W ′

L = (W ′
1, . . . , W

′
L), where W

′
j is from the τj-covering of

Scj,rj , for j = 1, . . . , L. Then

∥

∥∇x�(fWL(x), y) − ∇x�(fW ′
L
(x), y)

∥

∥

2
≤

L
∏

j=1

cj

L
∑

j=1
(

τj

cj
+ B

j
∏

k=1

ck

j
∑

k=1

τk

ck

)

.

Proof. According to the Lipschitz and smooth assumptions
of the activation function and loss function, we have

∥

∥∇x�(fWL(x), y) − ∇x�(fW ′
L
(x), y)

∥

∥

2

≤ ∥∥∇xfWL(x)(∇�)(fWL(x), y))−∇xfW ′
L
(x)(∇�)(fWL(x), y))

∥

∥

2

+ ∥∥∇xfW ′
L
(x)(∇�)(fWL(x), y))−∇xfW ′

L
(x)(∇�)(fW ′

L
(x), y))

∥

∥

2

≤ ∥∥∇xfWL(x) − ∇xfW ′
L
(x)
∥

∥

2
+ ∥∥∇xfW ′

L
(x)
∥

∥

2
∥

∥(∇�)(fWL(x), y)) − (∇�)(fW ′
L
(x), y))

∥

∥

2

≤ ∥∥∇xfWL(x) − ∇xfW ′
L
(x)
∥

∥

2
+ ∥∥∇xfW ′

L
(x)
∥

∥

2
∥

∥fWL(x) − fW ′
L
(x)
∥

∥

2
(44.13)

≤ ∥∥∇xfWL(x) − ∇xfW ′
L
(x)
∥

∥

2
+

L
∏

j=1

c2j B
L
∑

j=1

τj

cj
. (44.14)

Note that (44.13) holds because �(·) is 1-smooth, and
∥

∥fWL(x) − fW ′
L
(x)
∥

∥

2
≤∏L

j=1 cjB
∑L

j=1 τj/cj in (44.14) can be
obtained from [6]. Next, we prove the following inequality
by induction.

∥

∥∇xfWL(x) − ∇xfW ′
L
(x)
∥

∥

2
≤

L
∏

j=1

cj

L
∑

j=1
(

τj

cj
+ B

j−1
∏

k=1

ck

j−1
∑

k=1

τk

ck

)

. (44.15)

When L = 0, fW0(x) = x,
∥

∥∇xfW0(x) − ∇xfW ′
0
(x)
∥

∥

2
= 0.

Assume (44.15) holds when there are L− 1 layers for DNN.
Then, we have

∥

∥∇xfWL(x) − ∇xfW ′
L
(x)
∥

∥

2

= ∥∥∇xfWL−1(x)(∇σL−1)(fWL−1(x))W
�
L

− ∇xfW ′
L−1

(x)(∇σL−1)(fW ′
L−1

(x))W ′�
L

∥

∥

2

≤ ∥∥∇xfWL−1(x)(∇σL−1)(fWL−1(x))W
�
L

− ∇xfWL−1(x)(∇σL−1)(fW ′
L−1

(x))W�
L

∥

∥

2
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+ ∥∥∇xfWL−1(x)(∇σL−1)(fW ′
L−1

(x))W�
L

− ∇xfWL−1(x)(∇σL−1)(fW ′
L−1

(x))W ′�
L

∥

∥

2

+ ∥∥∇xfWL−1(x)(∇σL−1)(fW ′
L−1

(x))W ′�
L − ∇xfW ′

L−1
(x)

(∇σL−1)(fW ′
L−1

(x))W ′�
L

∥

∥

2

≤
L−1
∏

j=1

cj
∥

∥fWL−1(x) − fW ′
L−1

(x)
∥

∥

2
cL

+
L−1
∏

j=1

cjτj +
∥

∥∇xfWL−1(x) − ∇xfW ′
L−1

(x)
∥

∥

2
cL

≤
L
∏

j=1

cj

L−1
∏

j=1

cjB
L−1
∑

j=1

τj

cj
+

L−1
∏

j=1

cjτj +
L
∏

j=1

cj

L−1
∑

j=1

(

τj

cj
+ B

j−1
∏

k=1

ck

j−1
∑

k=1

τk

ck

)

≤
L
∏

j=1

cj

L
∑

j=1

(

τj

cj
+ B

j−1
∏

k=1

ck

j−1
∑

k=1

τk

ck

)

Combining (44.14) and (44.15), we can get the conclusion.
��

Lemma 44.6.4 Under the same assumptions as Theo-
rem 44.4.2, we have

∥

∥sign(∇x�(fWL(x), y)) − sign(∇x�(fW ′
L
(x), y))

∥

∥

2

≤ 1

κ

⎛

⎝1 + 1

κ

L
∏

j=1

cj

⎞

⎠

L
∏

j=1

cj

L
∑

j=1

(

τj

cj
+ B

j
∏

k=1

ck

j
∑

k=1

τk

ck

)

Proof. According to the definition,

sign(∇x�(fWL(x), y)) = �−1∇x�(fWL(x), y),

where

� =

⎛

⎜

⎜

⎜

⎝

|∇(1)
x �(fWL (x), y)|

|∇(2)
x �(fWL (x), y)|

. . .

|∇(d)
x �(fWL (x), y)|

⎞

⎟

⎟

⎟

⎠

,

in which ∇(p)
x �(fWL(x), y) is the p-th element of ∇x�

(fWL(x), y). Similarly, define

�′ = diag
(|∇x�(fW ′

L
(x), y)|) .

Then, for fixed y,

∥

∥sign(∇x�(fWL(x), y)) − sign(∇x�(fW ′
L
(x), y))

∥

∥

2

= ∥∥�−1∇x�(fWL(x), y) − (�′)−1∇x�(fW ′
L
(x), y)

∥

∥

2

≤ ∥∥�−1∇x�(fWL(x), y) − �−1∇x�(fW ′
L
(x), y)

∥

∥

2

+ ∥∥�−1∇x�(fW ′
L
(x), y) + (�′)−1∇x�(fW ′

L
(x), y)

∥

∥

2

≤ ∥∥�−1
∥

∥

2

∥

∥∇x�(fWL(x), y) − ∇x�(fW ′
L
(x), y)

∥

∥

2

+ ∥∥�−1 − (�′)−1
∥

∥

2

∥

∥∇x�(fW ′
L
(x), y)

∥

∥

2

≤
(

∥

∥�−1
∥

∥

2 + 1

κ2

∥

∥∇x�(fW ′
L
(x), y)

∥

∥

2

)

∥

∥∇x�(fWL(x), y) − ∇x�(fW ′
L
(x), y)

∥

∥

2
(44.16)

≤ 1

κ
(1 + 1

κ

L
∏

j=1

cj)
∥

∥∇x�(fWL(x), y) − ∇x�(fW ′
L
(x), y)

∥

∥

2

(44.17)

≤ 1

κ
(1 + 1

κ

L
∏

j=1

cj)
L
∏

j=1

cj

L
∑

j=1

(τj

cj
+ B

j
∏

k=1

ck

j
∑

k=1

τk

ck

)

.

(44.18)

Under the assumptions, (44.16) is obtained by

∥

∥�−1 − (�′)−1
∥

∥

2 = max
p∈[d]

∣

∣|∇(p)
x �(fW ′

L
(x), y)| − |∇(p)

x �(fWL(x), y)|
∣

∣

|∇(p)
x �(fWL(x), y)||∇(p)

x �(fW ′
L
(x), y)|

≤ 1

κ2
max
p∈[d]
∣

∣|∇(p)
x �(fW ′

L
(x), y)| − |∇(p)

x �(fWL(x), y)|
∣

∣

≤ 1

κ2
max
p∈[d] |∇(p)

x �(fW ′
L
(x), y) − ∇(p)

x �(fWL(x), y)|

≤ 1

κ2

∥

∥∇x�(fWL(x), y) − ∇x�(fW ′
L
(x), y)

∥

∥

2
.

Equation (44.17) is obtained by
∥

∥�−1
∥

∥

2 = maxp∈[d]
(1/∇(p)

x �(fWL(x), y)) ≤ 1/κ and

∇x�(fW ′
L
(x), y)) = ∇xfW ′

L
(x)(∇�)(fW ′

L
(x), y)) ≤

L
∏

j=1

cj.

(44.18) is obtained from Lemma 44.6.3. ��

Now, we prove that under the assumptions of
Lemma 44.6.3, given τ > 0,
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ρn =
√

√

√

√

(1

n

n
∑

i=1

∥

∥fWL(xi + ε · sign(∇xi�(fWL(xi), y))) − fW ′
L
(xi + ε · sign(∇xi�(fW ′

L
(xi), y)))

∥

∥

2
2

)

≤ τ

by choosing

τj = τcj

L(B+ √
dε + �)

∏L
i=1 ci

. (44.19)

First, we inductively prove that

∥

∥fWL(x+ ε · sign(∇x�(fWL(x), y)))

− fW ′
L
(x+ ε · sign(∇x�(fW ′

L
(x), y)))

∥

∥

2

≤
L
∏

j=1

cj

L
∑

j=1

τj

cj
(B+ √

dε) +
L
∏

j=1

cjε

∥

∥sign(∇x�(fWL(x), y)) − sign(∇x�(fW ′
L
(x), y))

∥

∥

2

When L = 0, it is obvious that the above inequality holds.
Then,

∥

∥fWL(x+ ε · sign(∇x�(fWL(x), y)))

− fW ′
L
(x+ ε · sign(∇x�(fW ′

L
(x), y)))

∥

∥

2

≤ ∥∥WLσL−1(fWL−1(x+ ε · sign(∇x�(fWL(x), y))))

−W ′
LσL−1(fWL−1(x+ ε · sign(∇x�(fWL(x), y))))

∥

∥

2

+ ∥∥W ′
LσL−1(fWL−1(x+ ε · sign(∇x�(fWL(x), y))))

−W ′
LσL−1(fW ′

L−1
(x+ ε · sign(∇x�(fW ′

L
(x), y))))

∥

∥

2

≤τL

L−1
∏

j=1

cj(B+ √
dε) + cL

∥

∥fWL−1(x+ ε · sign

(∇x�(fWL(x), y))) − fW ′
L−1

(x+ ε · sign(∇x�(fW ′
L
(x), y)))

∥

∥

2

≤ τL

L−1
∏

j=1

cj(B+ √
dε) +

L
∏

j=1

cj

L−1
∑

j=1

τj

cj
(B+ √

dε)

+
L
∏

j=1

cjε
∥

∥sign(∇x�(fWL(x), y)) − sign(∇x�(fW ′
L
(x), y))

∥

∥

2

≤
L
∏

j=1

cj

L
∑

j=1

τj

cj
(B+ √

dε) +
L
∏

j=1

cjε
∥

∥sign(∇x�(fWL(x), y))

− sign(∇x�(fW ′
L
(x), y))

∥

∥

2
.

Applying Lemma 44.6.4 and (44.19), we have

∥

∥fWL(x+ ε · sign(∇x�(fWL(x), y))) − fW ′
L
(x+ ε·

sign(∇x�(fW ′
L
(x), y)))

∥

∥

2

≤
L
∏

j=1

cj

( L
∑

j=1

τj

cj
(B+ √

dε) + ε
1

κ
(1 + 1

κ

L
∏

j=1

cj)

L
∏

j=1

cj

L
∑

j=1

(τj

cj
+ B

j
∏

k=1

ck

j
∑

k=1

τk

ck

)

)

≤ τ

Therefore, the covering number of ˜FWL is

N (τ , ˜FWL , ρn) ≤
L
∏

j=1

sup
W1,...,Wj−1

∀i<j,Wi∈Sci,ri

N
(

τj,
{

Wj : Wj ∈ Scj,rj
}

, ‖·‖2
)

≤
L
∏

j=1

(

9cj
τj

)rj(dj+dj−1+1)

≤
(

9L(B+ √
dε + �)

∏L
j=1 cj

τ

)(2d+1)
∑

rj

.

This completes the proof of the covering number.
By standard Dudley’s entropy integral, we have

̂Rn(˜FWL) � inf
β>0

{

β + 1√
n

∫ α

β

√

lnN (τ , ˜FWL , ρn)dτ

}

≤ inf
β>0

{

β + 1√
n

∫ α

β

√

√

√

√(2d + 1)
L
∑

j=1

rj ln
(

9L(B+ √
dε + �)

∏L
j=1 cj

τ

)

dτ

}

≤ inf
β>0

{

β + α√
n

√

√

√

√(2d + 1)
L
∑

j=1

rj ln
(

9L(B+ √
dε + �)

∏L
j=1 cj

β

)}

Here α =∏L
j=1 cj(B+ √

dε). Take β = α/
√
n, we have

̂Rn(� ◦ ˜FWL) ≤ ̂Rn(˜FWL) ≤ O
(
∏L

j=1 cj(B+ √
dε)√

n

√

√

√

√d
L
∑

j=1

rj ln
(

L
√
n
(

1 + �

B+ √
dε

)

) )

.
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Proof of Lemma 44.4.1

Besides the covering number of DNNs, Lemma 44.4.1 is
obtained with the help of the covering number of Lipschitz
function.

Lemma 44.6.5 Given (z1, . . . , zn) from Z = {z ∈ R
r :

‖z‖ ≤ A}, assume that ˜H is a class of M-Lipschitz continuous
functions mapping from R

r to R. Then, the covering number
of ˜H with respect to the metric ρ∞ satisfies

N
(

τ , ˜H, ρ∞
) ≤
(

2

⌈

4MA

τ

⌉

+ 1

)( 6MA
τ )

r

.

Proof. We first scale z ∈ Z to be a unit ball, denot-
ing as Z/A for simplicity. For any τ1 > 0, there exists
a τ1-covering of Z/A consisting of N (τ1,Z/A, ρ∞) balls:
B1, . . . ,BN (τ1,Z/A,ρ∞). By [9], we have

N (τ1,Z/A, ρ∞) =
( 3

τ1

)r

Choose the center ot in each of the ball Bt, for t ∈
[N (τ1,Z/A, ρ∞)]. The function h̃(z) on the set Z will be
approximated by the construction:

h̃′(z) =
[

2h̃(Aot)
τ2

]

τ2
2 for z ∈ Bt

Take τ1 = τ2/(2MA), we have

sup
z

|h̃(z) − h̃′(z)| ≤ sup
z

∣

∣

∣

∣

h̃(z) − 2h̃(Aot)
τ2

τ2

2

∣

∣

∣

∣

+ sup
z

∣

∣

∣

∣

2h̃(Aot)
τ2

τ2

2
−
[2h̃(Aot)

τ2

]τ2

2

∣

∣

∣

∣

≤ sup
z

|h̃(z) − h̃(Aot)| + τ2

2

≤ M sup
z

‖z− Aot‖2 + τ2

2

≤ MA sup
z

‖z/A− ot‖2 + τ2

2
≤ MAτ1

+ τ2

2
≤ τ2

Let s = 2[4AM/τ2]+ 1. The function h̃′(z) assumes no more
thanN (τ1,Z/A, ρ∞) values on each set s, and, therefore, the
total number of all functions is no greater than the number
sN (τ1,Z/A,ρ∞), that is,

N (τ2, H̃, ρ∞) ≤
(

2
⌈4MA

τ2

⌉

+ 1
)( 6MA

τ2
)r

. ��

Note that Lemma 44.6.1 is also applied for any fixed l ∈
{1, . . . , L}. Using Lemmas 44.6.1 and 44.6.5, we compute the
Rademacher complexity for the decomposed DNN. First, we
argue that for τ > 0

N (τ , � ◦ Hrl ◦ ˜FWl , ρn) ≤ N (
τ

2
, � ◦ Hrl , ρ∞)N (

τ

2
∏L

j=l cj
, ˜FWl , ρn).

Pick any function h̃rl := � ◦ hrl ∈ � ◦ Hrl and fWl ∈ ˜FWl ,
and let h̃′

rl and f
′
Wl

be the closest function in � ◦Hrl and ˜FWl ,

respectively. Since h̃′
rl is
∏L

j=l cj-Lipschitz, we have

ρn(h̃rl fWl , h̃
′
rl f

′
Wl

) =
√

√

√

√

1

n

n
∑

i=1

|h̃rl fWl − h̃′
rl f

′
Wl

|2

≤
√

√

√

√

1

n

n
∑

i=1

|h̃rl fWl − h̃′
rl fWl |2 + 1

n

n
∑

i=1

|h̃′
rl fWl − h̃′

rl f
′
Wl

|2

≤ sup
x̃

|h̃rl(x̃) − h̃′
rl(x̃)| +

L
∏

j=l
cj

√

√

√

√

1

n

n
∑

i=1

‖fWl − f ′Wl
‖22

≤τ

2
+ τ

2
= τ
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Therefore, we can choose h̃′
rl and f

′
Wl

from the covers of
�◦Hrl and ˜FWl to cover �◦Hrl ◦ ˜FWl . By standard Dudley’s
entropy integral, we have

̂Rn(� ◦ Hrl ◦ ˜FWl) � inf
β>0

{

β + 1√
n

∫ α

β

√

lnN (τ , � ◦ Hrl ◦ ˜FWl , ρn)dτ

}

≤ inf
β>0

{

β + 1√
n

∫ α

β

√

lnN (
τ

2
, � ◦ Hrl , ρ∞)dτ + 1√

n

∫ α

β

√

lnN (
τ

2
∏L

j=l cj
, ˜FWl , ρn)dτ

}

≤ inf
β>0

{

β + 1√
n

∫ α

β

√

(12(B+ √
dε)
∏L

j=1 cj

τ

)rl
ln
(

2
⌈8(B+ √

dε)
∏L

j=1 cj

τ

⌉

+ 1
)

dτ

+ 1√
n

∫ α

β

√

√

√

√(2d + 1)
l
∑

j=1

rj ln
(18
∏L

j=1 cjl(B+ √
dε + �)

τ

)

dτ

}

:= inf
β>0

{P+ Q},

where

α = sup
x∈X

�hrl fWl∈�◦Hrl◦˜FWl

ρn(�hrl fWl(x), 0) = (B+ √
dε)

L
∏

j=1

cj.

We consider Q,

Q = 1√
n

∫ α

β

√

√

√

√

√(2d + 1)
l
∑

j=1

rj ln
( 18
∏L
j=1 cjl(B+ √

dε + �)

τ

)

dτ

≤ α√
n

√

√

√

√

√(2d + 1)
l
∑

j=1

rj ln
( 18l(α +∏l

j=1 cj�)

β

)

Then we consider P,

P = β + 1√
n

∫ α

β

√

(12α

τ

)rl
ln
(

2
⌈8α

τ

⌉

+ 1
)

dτ

�β + 1√
n

∫ α

β

√

(16α

τ

)rl
ln
(16α

τ

)

dτ

≤ β + 32α√
n

∫ −√
ln 16

−
√

ln 16α
β

e(rl/2−1)t2 t2dt

(a) When rl/2 − 1 < 0, i.e., rl = 1,

P ≤ β + 32α√
n

∫ −√
ln 16

−
√

ln 16α
β

e(rl/2−1)t2 t2dt ≤ β

+ 16α√
n

√

2π

2 − rl
Et2 = β +

√

2π

m

16α

(2 − rl)3/2

Therefore,

P+ Q ≤ β +
√

2π

m

16α

(2 − rl)3/2
+ α√

n
√

√

√

√(2d + 1)
l
∑

j=1

rj ln
(18l(α +∏l

j=1 cj�)

β

)

Take β = α/
√
n, we have

̂Rn(� ◦ Hrl ◦ ˜FWl) �
α√
n

(

1 + 16
√
2π

+
√

√

√

√(2d + 1)
l
∑

j=1

rj ln
(

18l
√
n(1 + �

B+ √
dε

)
)

)

(b) When rl/2 − 1 = 0, i.e., rl = 2,

P ≤ β + 32α√
n

∫ −√
ln 16

−
√

ln 16α
β

t2dt = β + 32α

3
√
n

(

(

ln
16α

β

)3/2 − (ln 16)3/2
)

Hence,
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P+ Q ≤ β + 32α

3
√
n

(

(

ln
16α

β

)3/2 − (ln 16)3/2
)

+ α√
n

√

√

√

√(2d + 1)
l
∑

j=1

rj ln
(18l(α +∏l

j=1 cj�)

β

)

Choose β = α/
√
n, we have

̂Rn(� ◦ Hrl ◦ ˜FWl) �
α√
n

(

1 + 16

(

(

ln(16
√
n)
)3/2 − (ln 16)3/2

))

+ α√
n
⎛

⎝

√

√

√

√(2d + 1)
l
∑

j=1

rj ln
(

18l
√
n(1 + �

B+ √
dε

)

)

⎞

⎠ .

(c) When rl/2 − 1 > 0, i.e., rl > 2,

P ≤ β + 32α√
n

∫ −√
ln 16

−
√

ln 16α
β

e(rl/2−1)t2 t2dt ≤ β + 16α

rl/2 − 1

√

ln(16α/β)

m

(

(16α

β

)rl/2−1 − 16rl/2−1

)

Therefore,

P+ Q ≤ β + 16α

rl/2 − 1

√

ln(16α/β)

m

(

(16α

β

)rl/2−1 − 16rl/2−1
)

+ α√
n

√

√

√

√

√(2d + 1)
l
∑

j=1

rj ln

(

18l(α +∏l
j=1 cj�)

β

)

Let β = α/ rl
√
m, we have

̂Rn(� ◦ Hrl ◦ ˜FWl) �
α
rl
√
n

(

1 + 32

rl − 2

√

16rl−2 ln(16 rl
√
n)

)

+ α
rl
√
n

⎛

⎝

√

√

√

√(2d + 1)
l
∑

j=1

rj ln
(

18l rl
√
n(1 + �

B+ √
dε

)
)

⎞

⎠ .

This completes the proof.
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Abstract

The monotone likelihood problem is often encountered
in the analysis of time-to-event data under a parametric
regressionmodel or a Cox proportional hazards regression
model when the sample size is small or the events are
rare. For example, with a binary covariate, the subjects
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can be divided into two groups. If the event of interest
does not occur (zero event) for all subjects in one of the
groups, the resulting likelihood function is monotonic and
consequently the covariate effects are difficult to estimate.
In this chapter, we carry out an in-depth examination of
the conditions of the monotone likelihood problem under
a parametric regression model and the partial likelihood
under the Cox proportional hazards regression model. We
review and discuss Bayesian approaches to handle the
monotone likelihood and partial likelihood problems. We
analyze the test data from a tire reliability study in details.

Keywords

Cox proportional hazards regression model · DIC ·
Monotone partial likelihood · Penalized maximum
likelihood · Piecewise constant hazards regression
model · Reliability analysis · WAIC · Zero events

45.1 Introduction

In [27], an overview of many aspects of the semiparametric
proportional hazards regression model of [6] is provided. The
overview covers parameter estimation, hypothesis testing,
estimation of the survival and cumulative hazard functions,
goodness-of-fit and model checking, and extensions to ac-
commodate stratified data and time-dependent covariates.
The authors also deal with models including random effects,
nonproportional hazards, and multivariate survival data. An
analysis of a data set on fatigue limit of two steel specimens
is given as illustration. All the methods discussed in [27] are
based on a frequentist (classic) point of view.

In many studies involving time-to-event data, it is often
the case that experimental units within at least one group
of the study will experience very few events or no event at
all. This could be due to the length of the study or due to
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the nature of the study itself. For example, among the subset
of the Surveillance, Epidemiology, and End Results (SEER)
program prostate cancer data in Example 3, no patients who
receive surgery treatment die. If the interest is to analyze
the surgery treatment effect on the time-to-event data in
Example 3, then the nonoccurrence of events in the surgery
treatment group will lead to a model identifiability issue.

We investigate the monotone likelihood problem when
fitting the piecewise constant hazards regression and Cox
proportional hazards regression models. Although wemainly
focus on these two models, the monotone likelihood problem
may also exist under different models such as accelerated
failure time models [17, Ch. 7], parametric hazards models,
and so on.

This chapter is organized as follows. In Sect. 45.2, we
describe the monotone likelihood problem and give some
examples. Section 45.3 is dedicated to Bayesian inference,
including prior and posterior distributions as well as condi-
tions for posterior propriety. In Sect. 45.4, we report results
from the analysis of data on a tire reliability study. Alternative
prior distributions, model comparison criteria, and software
for fitting the Cox proportional hazards regression model are
discussed in Sect. 45.5.

45.2 Models, Examples, andMonotone
Likelihood

45.2.1 Preliminary

Let yi denote the minimum of the censoring time Ci and the
survival time Ti, and let xi = (xi1, . . . , xip)′ be the p×1 vector
of covariates associated with yi for the ith subject. Denote by
β = (β1, . . . ,βp)′ the p× 1 vector of regression coefficients.
Also, νi = 1{Ti = yi} is the failure indicator for i = 1, . . . , n,
where n is the total number of subjects andR(t) = {i : yi ≥ t}
is the set of subjects at risk at time t. We assume throughout
this chapter that β does not include an intercept and that given
xi, Ti, and Ci are independent. Let Dobs = {(yi, νi, xi) : i =
1, . . . , n} denote the observed right censored data. Also write
y = (y1, . . . , yn)′ and ν = (ν1, . . . , νn)′.

45.2.2 Piecewise Constant Hazards Regression
Model

As discussed in [14, Ch. 3], one of the most popular mod-
els for semiparametric survival or reliability analysis is the
piecewise constant hazards regression model. This model is
constructed as follows. We first let 0 = s0 < s1 < s2 <

· · · < sJ = ∞ denote a finite partition of the time axis. Then,
we have J intervals (0, s1], (s1, s2], . . ., (sJ−1,∞). In the jth
interval, we assume a constant baseline hazard h0(y) = λj,

for y ∈ (sj−1, sj]. Letting λ = (λ1, . . . , λJ)′, the likelihood
function of (β,λ) is given by

L(β,λ|Dobs) =
n∏

i=1

J∏

j=1

{λj exp(x′
iβ)}δijνi

× exp
[

− δij

{
λj(yi − sj−1)

+
j−1∑

g=1

λg(sg − sg−1)
}

exp(x′
iβ)

]
, (45.1)

where δij = 1 if the ith subject failed or was censored in the
jth interval and 0 otherwise. Define �j(t) as follows:

�j(t) =

⎧
⎪⎨

⎪⎩

0, if t < sj−1,

t − sj−1, if sj−1 ≤ t < sj,

sj − sj−1, if t ≥ sj.

(45.2)

L(β,λ|Dobs) in (45.1) can also be written as

L(β,λ|Dobs) =
n∏

i=1

{
exp(x′

iβ)
νi
} J∏

j=1

λj
∑n

i=1 δijνi exp
{
−

J∑

j=1

n∑

i=1

�j(yi) exp(x′
iβ)λj

}
. (45.3)

Assume
∑n

i=1 δijνi > 0, for j = 1, . . . , J. After plugging in
the profile maximum likelihood estimator of λ in (45.3), the
profile likelihood function is given by

Lpf (β|Dobs) =
n∏

i=1

{
exp(x′

iβ)∑n
j=1 �ji(yj) exp(x′

jβ)

}νi

× exp

(
−

n∑

i=1

νi

)
J∏

j=1

(
n∑

i=1

δijνi

)∑n
i=1 δijνi

,

(45.4)

where ji is the interval in which the ith subject failed or was
censored.

45.2.3 Cox Proportional Hazards Regression
Model

The likelihood function under the Cox proportional hazards
regression model [7] is given by

L(β, h0|Dobs) =
n∏

i=1

{h0(yi) exp(x′iβ)}νi exp{−H0(yi) exp(x′
iβ)},
(45.5)
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where H0(t) = ∫ t
0 h0(u)du is the cumulative baseline hazard

function. Then, the partial likelihood function is given by

Lp(β|Dobs) =
n∏

i=1

{
exp(x′

iβ)∑
j∈R(yi)

exp(x′
jβ)

}νi

. (45.6)

45.2.4 Illustrative Examples

In this section, we provide a few examples in which the
monotone likelihood or themonotone partial likelihood prob-
lem arise.

Example 1 Consider a survival data set with n = 3 subjects,
p = 2 covariates, x1 = (0, 1)′, x2 = (1, 0)′, x3 = (0, 1)′, ν =
(1, 0, 0)′, and (y1, y2, y3)′ = (1, 1, 1)′. In this case, R(y1) =
{1, 2, 3}. Assuming J = 1 and letting λ = λ1, the likelihood
function in (45.1) takes the form

L(β, λ|Dobs) = λ exp(β2) exp
[
− λ{exp(β1) + 2 exp(β2)}

]
.

(45.7)

Thus, L(β, λ|Dobs) is monotonic in β1. The partial likelihood
function in (45.6) is given by

Lp(β|Dobs) = exp(β2)/{exp(β1) + 2 exp(β2)}. (45.8)

It is easy to see that Lp(β|Dobs) is a monotonic function of β1

or β2, as displayed in Fig. 45.1. The maximum of Lp(β|Dobs)

is attained when β1 −β2 → −∞. It is interesting to mention
that after profiling λ out in (45.7), the profile likelihood
function is given by

Lpf (β|Dobs) = exp(β2 − 1)/{exp(β1) + 2 exp(β2)},

which is proportional to Lp(β|Dobs) given in (45.8).

Example 2 Chen et al. [5] considered data, which consist of
n = 550 men who were treated with radiation therapy be-
tween 1989 and 2002 following with 6 months of with short-
course androgen suppression therapy for localized prostate
cancer with at least one adverse risk factor represented by
prostate-specific antigen (PSA) > 10 ng/ml, biopsy Gleason
score 7 to 10, or 2002 American Joint Commission on Cancer
(AJCC) clinical tumor category T2b or T2c. The outcome
variable (yi) in years was time to prostate cancer death, which
is continuous and subject to right censoring, and νi = 1 if
the ith subject died due to prostate cancer and 0 otherwise.
Define A = 1{PSA > 10}, B = 1{Gleason ≥ 7}, and C = 1
{T2b or T2c}. The Cox proportional hazards model with
covariates A×B, A×C, B×C, A×B×C, and age (in years)
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Fig. 45.1 Log partial likelihood function for (β1,β2)
′ in Example 1

Table 45.1 Output from SAS PHREG procedure—Example 2

Parameter Standard

Variable DF Estimate Error Chi-square Pr > ChiSq

A×B 1 0.39759 1.23355 0.1039 0.7472

A×C 1 −14.30314 2107 0.0000 0.9946

B×C 1 0.59060 1.22714 0.2316 0.6303

A×B×C 1 2.22155 0.80450 7.6253 0.0058

Age 1 0.02262 0.04821 0.2201 0.6390

was fitted to this data set and the results are displayed in
Table 45.1.

From Table 45.1, we see that the absolute value of the esti-
mate of the regression coefficient corresponding to A×Cwas
large and the corresponding standard error was huge, which
certainly implies a monotone partial likelihood problem.

Example 3 Wu et al. [29] considered 1840 men subjects
from the SEER prostate cancer data between 1973 to 2013,
who had all of the three intermediate risk factors: clinical
tumor stage is T2b or T2c, Gleason score equals 7, and PSA
level between 10 and 20 ng/ml. Among those 1840 subjects,
the total number of events due to prostate cancer was 8. The
covariates considered in the analysis were PSA level, surgery
treatment indicator (RP), radiation treatment only indicator
(RT), African-American indicator (Black), year of diagno-
sis (Year_diag), and age (in years). The Cox proportional
hazards model was fitted to study the death due to prostate
cancer. The resulting maximum partial likelihood estimates
(MPLEs) are shown in Table 45.2. Note that in Table 45.2,
Nc represents the number of censored, and Npc represents the
number of prostate cancer deaths. We see from Table 45.2
that for RP, the MPLE (Est) and the standard error (SE) were
−17.745 and 1680, respectively. These results indicate that
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Table 45.2 Maximum partial likelihood estimates for the prostate can-
cer data—Example 3

Variable Nc Npc Est SE p-value

PSA 1840 0.253 0.468 0.5881

RP 842 0 −17.745 1680 0.9916

RT 576 3 −1.150 0.742 0.1210

Black 279 1 −0.539 1.125 0.6318

Year_diag 1840 −0.377 0.743 0.6118

Age 1840 −0.372 0.416 0.3712

RP is not identifiable for the death caused by prostate cancer,
which is due to the absence of events (prostate cancer death)
in the “surgery treatment” group of patients.

45.2.5 Monotone Likelihood

Piecewise Constant Hazards RegressionModel
Note that the profile likelihood function in (45.4) is log-
concave with respect to β. Here, we give a general defini-
tion of the monotone likelihood problem for the piecewise
constant hazards regression model: the profile likelihood
function in (45.4) converges to a finite value when at least
one parameter estimate goes to −∞ or +∞, and thus the
maximum likelihood estimate (MLE) of the corresponding
parameter does not exist.

Cox Proportional Hazards RegressionModel
Similarly, the monotone likelihood problem for the Cox pro-
portional hazards regression model is defined as follows: the

partial likelihood function in (45.6) converges to a finite value
when at least one parameter estimate goes to −∞ or +∞,
and thus the MPLE does not exist. For the Cox proportional
hazards model, Bryson and Johnson [2] pointed out that for
any sample size, there is a non-null probability that theMPLE
of β will be infinite. Quoting Heinze and Ploner [12], “The
probability of occurrence of monotone likelihood is too high
to be negligible.”

45.3 Bayesian Inference

45.3.1 Prior and Posterior Distributions

Piecewise Constant Hazards RegressionModel
Let π(β) and π(λ) denote the prior distributions for β and λ,
respectively. To construct the joint prior for (β,λ), we assume
that β and λj are independent, for j = 1, . . . , J. We further
assume a Jeffreys-type prior for λj, j = 1, . . . , J. Then, the
joint prior is specified as

π(β,λ) = π(β)

J∏

j=1

π(λj) = π(β)

J∏

j=1

1/λj. (45.9)

By combining the likelihood function in (45.1) with the prior
distribution in (45.9), the posterior distribution for (β,λ) is
then given by

π(β,λ|Dobs) ∝ π(β,λ)L(β,λ|Dobs) = π(β)

J∏

j=1

1/λj

n∏

i=1

J∏

j=1

{λj exp(x′
iβ)}δijνi

× exp
[

− δij

{
λj(yi − sj−1) +

j−1∑

g=1

λg(sg − sg−1)
}

exp(x′
iβ)

]

= π(β)

n∏

i=1

{
exp(x′

iβ)
νi
} J∏

j=1

λj
∑n

i=1 δijνi−1 exp
{

−
J∑

j=1

n∑

i=1

�j(yi) exp(x′
iβ)λj

}
. (45.10)

If we further assume π(β) ∝ 1 in (45.9), the posterior
distribution in (45.10), after integrating out λ, is proportional
to the profile likelihood function in (45.4).

Cox Proportional Hazards RegressionModel
Kalbfleisch [16] and Sinha et al. [25] showed that the partial
likelihood function in (45.6) can be obtained as a limit-
ing case of the marginal posterior distribution of β with
continuous time survival data under a gamma process prior
for the cumulative baseline hazard function H0(·) using the

likelihood function in (45.5). If we treat the partial likelihood
Lp(β|Dobs) in (45.6) as the likelihood function, the posterior
distribution for β is then given by

π(β|Dobs) ∝ π(β)Lp(β|Dobs) = π(β)

×
n∏

i=1

{
exp(x′

iβ)∑
j∈R(yi)

exp(x′
jβ)

}νi

. (45.11)
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45.3.2 Conditions for Posterior Propriety

Piecewise Constant Hazards RegressionModel
Note that we can only carry out Bayesian inference when the
posterior distribution is proper, i.e., the integral of the right-
hand side in (45.10) over the parameter space is finite. Ge and
Chen [9] proved that with the joint prior of (β,λ) specified
in (45.9) and a uniform prior for β, the posterior distribution
(45.10) is proper, if conditions (i) yi > 0, for i = 1, . . . , n,
and (ii) [νi(δi1, . . . , δiJ , x′

i)
′, i = 1, . . . , n]′ is of full column

rank are satisfied. Condition (i) essentially requires that all
event times are strictly positive. Condition (ii) requires that
the corresponding matrix is of full rank and also implies at
least one event occurs in each interval, i.e.,

∑n
i=1 δijνi > 0,

for j = 1, . . . , J.

Cox Proportional Hazards RegressionModel
Define X∗ to be the matrix given by

X∗ = [νi(xj − xi) : j ∈ R(yi), i = 1, . . . , n]′. (45.12)

The necessary and sufficient conditions established in [4] for
propriety of the posterior when an improper uniform prior is
assumed for β are given by

C1. The matrix X∗ is of full column rank and

C2. There exists a positive vector v such that X∗′
v = 0.
(45.13)

A positive vector v means that each component of v is
positive. Condition C2 can be checked by solving a linear
programming problem [23].

Here we consider Example 1 again, which does not sat-
isfy C1 and C2. Thus, the MPLE of β does not exist, and
consequently, the posterior distribution is improper.

Example 1 (continuation) In this case, R(y1) = {1, 2, 3}
and X∗ in (45.12) has rows (0, 0), (1,−1), and (0, 0), so
that rank(X∗) = 1 and condition C1 in (45.13) breaks
down. The partial likelihood function in (45.6) is given by
Lp(β|Dobs) = exp(β2)/{exp(β1) + 2 exp(β2)}. The maxi-
mum of Lp(β|Dobs) is attained when β1 − β2 → −∞.

45.3.3 Remedies for Posterior Propriety

If conditions in Sect. 45.3.2 for the piecewise constant haz-
ards regression model and conditions in Sect. 45.3.2 for the
Cox proportional hazards model are not satisfied, the poste-
rior distribution under improper priors for β will be improper.
It thus becomes infeasible to carry out Bayesian inference.
Note that the posterior distribution is always proper under a

proper prior. Therefore, in order to guarantee the posterior
propriety, a proper prior need to be assumed for β. Below,
we introduce one of the most popular proper priors for β,
namely, the Zellner’s g-prior [30],

β ∼ N(0, (gX̃
′
X̃)−1),

where X̃ is the design matrix and g is either a constant or a
hyperparameter, which is a parameter of a prior distribution.
Note that a larger value of g corresponds to a more informa-
tive prior. More discussions about other proper priors for β

are given in Sect. 45.5.1.
In Sect. 45.3.2, for the piecewise constant hazard regres-

sion model, we assume an improper Jeffreys-type prior for
λj, for j = 1, . . . , J. However, if there are not many events in
certain intervals, we need to assume a proper prior for the
corresponding hazard parameter to guarantee the posterior
propriety.

45.4 Analysis of the Test Data from a Tire
Reliability Study

We consider the same test data set in [18] to study the time
to failure of automobile tire due to tread and belt separation
(TBS). Same as in [18], time to TBS failure was used as
the response variable. Covariates considered include wedge
gauge indicator (Wedge = 1 if wedge gauge is greater than
the median and 0 otherwise), peel force indicator (Peel = 1
if peel force is greater than the median and 0 otherwise), the
interaction between wedge gauge and peel force indicators
(Wedge×Peel), tire age (Tireage), interbelt gauge (Interbelt),
end of belt #2 to buttress (Eb2b), and percent of carbon
black (Crbnblk). Except for Wedge, Peel, and Wedge×Peel,
which are binary, all other covariates are continuous. The
total number of tires used in the analysis was 34 and the
number of TBS failure is 11. The continuous covariates were
standardized for numerical stability.

The Cox proportional hazards model was fitted to study
the effects of factors on time to TBS failure. The resulting
MPLEs are shown in Table 45.3. We see from Table 45.3 that
forWedge×Peel, theMPLE (Est) and the standard error (SE)
were −19.44641 and 2997, respectively (see also Fig. 45.2).
These results indicate that the interaction term is not iden-
tifiable. One solution to the monotone likelihood problem
from the frequentist point of view is to add the Firth’s penalty
to the likelihood function [13]. The detailed formulations
of the Firth’s penalty approach are given in Sect. 45.5.3.
Table 45.4 presents the SAS outputs using the Firth’s penalty.
Wedge×Peel is now identifiable with SE= 2.69102. Tireage
with p-value = 0.0294 and Eb2b with p-value = 0.0356
were both significant.
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Table 45.3 Output for the Cox proportional hazards regression model
from SAS PHREG procedure—tire reliability study

Parameter Standard

Variable DF Estimate Error Chi-square Pr > ChiSq

Wedge 1 −0.79045 1.03396 0.5845 0.4446

Peel 1 0.33247 0.90740 0.1342 0.7141

Wedge
×Peel

1 −19.44641 2997 0.0000 0.9948

Tireage 1 2.27269 0.97057 5.4831 0.0192

Interbelt 1 −0.17082 0.40221 0.1804 0.6711

Eb2b 1 −1.20412 0.51820 5.3994 0.0201

Crbnblk 1 0.33732 0.36852 0.8378 0.3600
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Fig. 45.2 Log partial likelihood function for βWedge×Peel in the tire
reliability study

Table 45.4 Output for the Cox proportional hazards regression model
from SAS PHREG procedure Using the Firth’s Penalty—tire reliability
study

Parameter Standard

Variable DF Estimate Error Chi-square Pr > ChiSq

Wedge 1 −0.63997 0.99544 0.4133 0.5203

Peel 1 0.35633 0.90299 0.1557 0.6931

Wedge
×Peel

1 −4.19009 2.69102 2.4244 0.1195

Tireage 1 2.00047 0.91872 4.7413 0.0294

Interbelt 1 −0.13587 0.38864 0.1222 0.7266

Eb2b 1 −0.99044 0.47128 4.4166 0.0356

Crbnblk 1 0.30669 0.36249 0.7158 0.3975

To solve this problem from the Bayesian perspective,
we first fit the tire data using the Cox proportional hazards
regression model under various Zellner’s g-priors for β.
In all the Bayesian computations, we used 10,000 Markov
chain Monte Carlo (MCMC) samples, after a burn-in of 2000
iterations for each model to compute all posterior estimates,
including posterior means, posterior standard deviations

(Standard Deviation), and 95% highest posterior density
(HPD) intervals. All the analyses were done using SAS
procedure PROC PHREG [24, Ch. 73]. The deviance
information criterion (DIC) [26] was used to guide the choice
of g in the Zellner’s g-prior. Based on the DIC criterion, the
model with the smallest DIC value is the most optimal
among all the models under consideration. As shown in
Fig. 45.3, the value of DIC has an increasing trend as g
increases from 0.001 to 0.1 with increment equals 0.001
and the value of the effective number of parameters (pD)
decreases as g increases. DIC attained the local minimum
with DIC = 49.791 at g = 0.001 among all the models
under consideration. Therefore, based on the DIC criteria,
the model under the Zellner’s g-priors with g = 0.001 is the
most optimal among all the models under consideration.

Table 45.5 shows the number of MCMC samples (N),
the posterior mean, the posterior standard deviation, and
95% HPD intervals under the Zellner’s g-priors with g =
0.001, 0.01, and 0.1. We took a posterior estimate to be
“statistically significant at a significance level of 0.05” if
the corresponding 95% HPD interval does not contain 0.
The three separate rows under each coefficient are outputs
for g = 0.001, 0.01, and 0.1, respectively. Based on the
posterior summaries in Table 45.5 for g = 0.001, Tireage
with 95% HPD interval = (0.1801, 4.2824) and Eb2b with
95% HPD interval = (−2.6131, −0.3745) were significant.
These results were similar to the results of the Firth’s penalty
approach in Table 45.4. As shown in Table 45.5, posterior
summaries were different under different Zellner’s g-priors.
Eb2b was still significant for g = 0.01 and 0.1, while Tireage
was not. We further note that the standard deviations of each
parameter decreased as g increased.

Next, we fit the tire data using the piecewise constant
hazards regression model. The Zellner’s g-priors with g =
0.001, 0.01, and 0.1 were used for β, and the non-informative
Jeffreys-type prior in Sect. 45.3.1 was assumed for λ. Due to
the small number of events (TBS failure), we assume J = 2
intervals for the partition of the time axis to ensure that λ is
identifiable. Under this joint prior, SAS PHREG procedure
failed to provide output and reported “floating point over-
flow” error. We then ran the model using WinBUGS [19],
which is another Bayesian software. The values of DIC (pD)
under the Zellner’s g-priors with g = 0.001, 0.01, and 0.1
were 106.4 (pD = 8.5), 106.7 (pD = 8.4), 106.6 (pD = 6.6),
respectively. Based on the DIC criterion, the Zellner’s g-
priors with g = 0.001 is still the most optimal among all
the three priors under consideration. Note that the values of
DIC from the piecewise constant hazards regression and Cox
proportional hazards models are not comparable since the
two models do not have the same number of terms.

Posterior summaries under the Zellner’s g-prior with g =
0.001, 0.01, and 0.1 are presented in Table 45.6. Note that
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Table 45.5 Bayesian output for the Cox proportional hazards regression model from SAS PHREG procedure under the Zellner’s g-priors with
g = 0.001, 0.01,and 0.1—tire reliability study

g = 0.001/0.01/0.1

Parameter N Mean Standard Deviation 95% HPD Interval

Wedge 10000 −0.8746 1.0944 (−3.0335, 1.2130)

10000 −0.7447 1.0111 (−2.6837, 1.2758)

10000 −0.4476 0.7816 (−1.9775, 1.0920)

Peel 10000 0.3266 1.0225 (−1.6347, 2.3533)

10000 0.4201 0.9863 (−1.6116, 2.2727)

10000 0.4057 0.8475 (−1.3320, 1.9741)

Wedge×Peel 10000 −8.6207 4.9396 (−18.8437, 0.1841)

10000 −2.6180 2.2867 (−7.0552, 1.9422)

10000 −0.4673 1.3798 (−3.2587, 2.1612)

Tireage 10000 2.2075 1.0463 (0.1801, 4.2824)

10000 1.2653 0.7918 (−0.3357, 2.7553)

10000 0.3534 0.4366 (−0.5179, 1.2081)

Interbelt 10000 −0.2972 0.4408 (−1.1655, 0.5691)

10000 −0.4159 0.4046 (−1.2167, 0.3704)

10000 −0.3412 0.3022 (−0.9347, 0.2313)

Eb2b 10000 −1.4398 0.5770 (−2.6131, −0.3745)

10000 −1.3336 0.5383 (−2.4116, −0.2970)

10000 −0.8725 0.3665 (−1.5901, −0.1560)

Crbnblk 10000 0.3104 0.3987 (−0.4904, 1.0911)

10000 0.1628 0.3744 (−0.5647, 0.9156)

10000 0.0226 0.2989 (−0.5533, 0.6124)

WinBUGS reports 95% credible intervals based on quantiles
rather than 95% HPD intervals. Similar to the HPD intervals,
a posterior estimate is considered “statistically significant
at a significance level of 0.05” if the corresponding 95%
credible interval does not contain 0. As shown in Table 45.6
for g = 0.001, Eb2b was significant with 95% credible

interval= (−2.916,−0.471). Similar to the Cox proportional
hazards model, posterior summaries of the piecewise con-
stant hazard model were not robust under different Zellner’s
g-priors. Eb2b was still significant for g = 0.01 and 0.1,
and the standard deviations of each parameter decreased as
g increased.
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Table 45.6 Bayesian output for the piecewise constant hazards regression model from WinBUGS under the Zellner’s g-priors with g =
0.001, 0.01,and 0.1—tire reliability study

g=0.001/0.01/0.1

Parameter Mean Standard Deviation 2.5% 25% 50% 75% 97.5%

Wedge −0.371 0.952 −2.326 −0.949 −0.342 0.295 1.349

−0.390 0.912 −2.318 −0.945 −0.377 0.267 1.305

−0.278 0.740 −1.854 −0.754 −0.240 0.214 1.086

Peel 0.027 0.921 −1.929 −0.550 0.105 0.668 1.710

0.120 0.946 −1.881 −0.467 0.198 0.750 1.783

0.137 0.816 −1.658 −0.385 0.174 0.714 1.593

Wedge×Peel −7.389 5.534 −20.215 −10.612 −6.319 −3.312 0.877

−2.123 2.135 −6.609 −3.509 −2.029 −0.628 1.883

−0.349 1.300 −2.880 −1.195 −0.389 0.498 2.270

Tireage 1.393 0.922 −0.463 0.807 1.403 1.982 3.242

0.995 0.743 −0.371 0.494 0.952 1.452 2.559

0.403 0.414 −0.388 0.106 0.410 0.673 1.233

Interbelt −0.604 0.431 −1.522 −0.873 −0.582 −0.319 0.147

−0.608 0.402 −1.405 −0.878 −0.602 −0.336 0.155

−0.456 0.303 −1.070 −0.642 −0.456 −0.247 0.112

Eb2b −1.511 0.606 −2.916 −1.874 −1.464 −1.082 −0.471

−1.402 0.552 −2.614 −1.740 −1.350 −1.026 −0.478

−0.914 0.372 −1.687 −1.162 −0.905 −0.638 −0.234

Crbnblk 0.306 0.397 −0.438 0.038 0.291 0.579 1.105

0.234 0.375 −0.463 −0.028 0.210 0.487 1.025

0.108 0.297 −0.487 −0.083 0.106 0.324 0.678

λ1 0.061 0.056 0.004 0.021 0.045 0.081 0.212

0.072 0.069 0.008 0.028 0.050 0.094 0.243

0.113 0.072 0.025 0.062 0.098 0.147 0.278

λ2 1.889 1.576 0.169 0.734 1.478 2.572 5.955

1.925 1.553 0.218 0.818 1.522 2.525 6.069

2.471 1.514 0.492 1.361 2.162 3.162 6.391

45.5 Discussion

45.5.1 Alternative Prior Distributions

In addition to Zellner’s g-priors, there are several other alter-
native proper priors to guarantee the posterior propriety under
the monotone (partial) likelihood problem.

Jeffreys-Type Prior Recall that the posterior distribution
for β is given by (45.11). Let | · | denote determinant. If we
take

π(β) ∝ |I(β)|1/2 (45.14)

in (45.11), the proposal by Heinze and Schemper [13] has
a Bayesian interpretation under the Jeffreys-type prior for
β. They also noted that the penalty function |I(β)|1/2 in
the penalized likelihood function of the Cox proportional
hazards model, which is L∗

p(β|Dobs) = Lp(β|Dobs)|I(β)|1/2,
is exactly the Jeffreys-type prior. If condition C1 in (45.13)
holds, then π(β) is proper, and thus the posterior distribution
is proper because Lp(β|Dobs) is bounded.

Shifted Jeffreys-Type Prior Let βM be a mode of the
prior distribution in (45.14). By adding βM to β, we get a
shifted Jeffreys-type prior given by πs(β) ∝ |I(β + βM)|1/2,
so that its mode is shifted to β = 0. Using πs(β), a
different posterior πs(β|Dobs) is obtained from (45.11).
The simulation study in [29] empirically suggests that
the shifted Jeffreys-type prior may potentially reduce
biases in MPLEs and posterior estimates of the regression
coefficients.

Jeffreys-Type Prior Based on the First Risk Set Let
y(1), . . . , y(n) denote the observed times arranged in ascending
order associated with x(1), . . . , x(n) and ν(1), . . . , ν(n). Let
πf (β) denote another variation of the Jeffreys-type prior,
which only depends on the first risk set R(yi0), where
i0 = min(i ∈ {1, . . . , n} : ν(i) = 1). Let X∗

(i0) be the
submatrix of X∗ corresponding to the first risk set. If X∗

(i0)
is of full column rank, then πf (β) exists and is proper. One
benefit of this prior is the computing time. Using the first
risk set to build the prior saves computation time especially
for data sets with a large number of subjects and covariates.
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Furthermore, constructing the prior based on the first risk set
will not lose much information [29].

log-F Prior Almeida et al. [1] proposed the log-F(l1/2, l2/2)
as a solution for the monotone (partial) likelihood issue,
where l1 and l2 are the degrees of freedom of the F distri-
bution.

Different priors may result in different posterior sum-
maries, interpretations, and degrees of difficulty in imple-
mentations, which deserves further research.

45.5.2 BayesianModel Comparison

SAS and WinBUGS only produce DIC values for Bayesian
model comparison. There are several other model selection
criteria for Bayesian analysis, including the logarithm of
the pseudomarginal likelihood (LPML) [15], the Watanabe-
Akaike information criterion (WAIC) [28], and the Bayes
factor [10], among others. However, it is still unknown
whether a “better” prior may be selected under these criteria
compared to DIC in the presence of monotone likelihoods.

45.5.3 Software

The solution to the monotone likelihood problem proposed
by Heinze and Schemper [13] is built on the idea of penal-
ization investigated by Firth [8]. For recent accounts on the
role of penalization for coping with the monotone likelihood
problem, see [11] and [1]. SAS, SPLUS, and R codes for
inference in the Cox proportional hazards model using the
penalized partial likelihood function were implemented by
Heinze and Ploner [12] and Ploner and Heinze [20]. The
MPLE of β is a solution to the estimating equationU(β) = 0,
where U(β) = ∂ log Lp(β|Dobs)/∂β and Lp(β|Dobs) is as in
(45.6). In the approach by Heinze and Schemper [13], the
estimate β̂

∗
is obtained by solving the equation U∗(β) = 0,

where U∗(β) = U(β) + trace{I(β)−1 ∂I(β)/∂β}/2, with
I(β) denoting minus the Hessian matrix of log Lp(β|Dobs).
The second term of U∗(β) acts as a penalty. Bayesian
approaches discussed in Sect. 45.3 can also be implemented
using other softwares such as R [22], JAGS [21], and
Stan [3].
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Abstract

This chapter reviews multivariate modeling using copulas
with illustrative applications in engineering such as mul-
tivariate process control and degradation analysis. A cop-
ula separates the dependence structure of a multivariate
distribution from its marginal distributions. Properties and
statistical inferences of copula-based multivariate models
are discussed in detail. Applications in engineering are
illustrated via examples of bivariate process control and
degradation analysis, using existing data in the litera-
ture. An R package copula facilitates developments and
applications of copula-based methods. The major change

J. Yan (�)
Department of Statistics, University of Connecticut, Storrs, CT, USA
e-mail: jun.yan@uconn.edu

from the last version (Yan 2006) is the update on the R
package copula (Hofert et al. 2018).

Section 46.1 provides the background and motivation
of multivariate modeling with copulas. Most multivariate
statistical methods are based on the multivariate normal
distribution, which cannot meet the practical needs to fit
non-normal multivariate data. Copula-based multivariate
distributions offer much more flexibility in modeling var-
ious non-normal data. They have been widely used in in-
surance, finance, risk management, and medical research.
This chapter focuses on their applications in engineering.

Section 46.2 introduces the concept of copulas and
its connection to multivariate distributions. The most im-
portant result about copulas is Sklar’s (1959) theorem
which shows that any continuous multivariate distribution
has a canonical representation by a unique copula and
all its marginal distributions. Scale-invariant dependence
measures for two variables, such as Kendall’s tau and
Spearman’s rho, are completely determined by their cop-
ula. The extremes of these two concordance measures,−1
and 1, are obtained under perfect dependence, correspond-
ing to the Fréchet-Hoeffding lower and upper bounds
of copulas, respectively. A general algorithm to simulate
random vectors from a copula is also presented.

Section 46.3 introduces two commonly used classes of
copulas: elliptical copulas and Archimedean copulas. El-
liptical copulas are copulas of elliptical distributions. Two
most widely used elliptical copulas, the normal copula
and the t copula, are discussed. Archimedean copulas are
constructed without referring to distribution functions and
random variables. Three popular Archimedean families,
Clayton copula, Frank copula, and Gumbel copula, each
having a mixture representation with a known frailty
distribution, are discussed. Simulation algorithms are also
presented.

Section 46.4 presents the maximum likelihood
inference of copula-based multivariate distributions given
the data. Three likelihood approaches are introduced.
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The exact maximum likelihood approach estimates
the marginal and copula parameters simultaneously
by maximizing the exact parametric likelihood. The
inference functions for margins approach is a two-step
approach, which estimates the marginal parameters
separately for each margin in a first step and then
estimates the copula parameters given the the marginal
parameters. The canonical maximum likelihood approach
is for copula parameters only, using uniform pseudo-
observations obtained from transforming all the margins
by their empirical distribution functions.

Section 46.5 presents two novel engineering applica-
tions. The first example is a bivariate process control prob-
lem, where the marginal normality seems appropriate, but
joint normality is suspicious. A Clayton copula provides
better fit to the data than a normal copula. Through sim-
ulation, the upper control limit of Hotelling’s T2 chart
based on normality is shown to be misleading when the
true copula is a Clayton copula. The second example is
a degradation analysis, where all the margins are skewed
and heavy-tailed. A multivariate gamma distribution with
normal copula fits the data much better than a multivariate
normal distribution.

Section 46.6 concludes and points to references about
other aspects of copula-based multivariate modeling that
are not discussed in this chapter.

Keywords

Association · Clustered data · Degradation · Failure
time · Longitudinal data · Multivariate analysis · Process
control

46.1 Introduction

Multivariate methods are needed wherever independence
cannot be assumed among the variables under investigation.
Multivariate data are encountered in real life much more
often than univariate data. This is especially true nowadays
with the rapid growth of data-acquisition technology. For
example, a quality control engineer may have simultane-
ous surveillance of several related quality characteristics
or process variables; a reliability analyst may measure the
amount of degradation for a certain product repeatedly over
time. Because of the dependence among the multiple quality
characteristics and repeated measurements, univariate meth-
ods are invalid or inefficient. Multivariate methods that can
account for the multivariate dependence are needed.

Classic multivariate statistical methods are based on the
multivariate normal distribution. Under multivariate normal-
ity, an elegant set of multivariate techniques, such as principal

component analysis and factor analysis, has become standard
tools and been successful in a variety of application fields.
These methods have become so popular that often times they
are applied without a careful check about the multivariate
normal assumption. Non-normality can occur in different
ways. First, the marginal distribution of some variables may
not be normal. For instance, in the degradation analysis in
Sect. 46.5, the error rates of magnetic-optic disks at all time
points are skewed and heavy-tailed and hence cannot be ade-
quately modeled by normal distributions. Second, even if all
the marginal distributions are normal, jointly these variables
may not be multivariate normal. For instance, in the bivariate
process control problem in Sect. 46.5, marginal normality
seems appropriate, but joint normality is suspicious. In both
examples, multivariate distributions more flexible than the
multivariate normal are needed.

Non-normal multivariate distributions constructed from
copulas have proved very useful in recent years in many
applications. A copula is a multivariate distribution function
whose marginals are all uniforms over the unit interval.
It is well-known that any continuous random variable can
be transformed to a uniform random variable over the unit
interval by its probability integral transformation. Therefore,
a copula can be used to “couple” different margins together
and construct new multivariate distributions. This method
separates a multivariate distribution into two components,
all the marginals and a copula, providing a very flexible
framework in multivariate modeling. Comprehensive book
references on this subject are Nelsen [39] and Joe [25]. For
widely accessible introductions, see, for example, Genest and
MacKay [17] and Fisher [11].

Copula-based models have gained much attention in var-
ious fields. Actuaries have used copulas in modeling de-
pendent mortality and losses [13–15]. Financial and risk
analysts have used copulas in asset allocation, credit scoring,
default risk modeling, derivative pricing, and risk manage-
ment [1,3,7]. Biostatisticians have used copulas in modeling
correlated event times and competing risks [9,49]. The aim of
this chapter is to provide a review of multivariate modeling
with copulas and to show that it can be extensively used in
engineering applications.

The chapter is organized as follows. Section 46.2 presents
the formal definition of copulas and construction of multi-
variate distribution with copulas. Section 46.3 presents de-
tails about two commonly used classes of copulas: elliptical
copulas and Archimedean copulas. Section 46.4 presents
likelihood-based statistical inferences for copula-based mul-
tivariate modeling. Section 46.5 presents two engineering
applications, multivariate process control, and degradation
analysis. Section 46.6 concludes and suggests future research
directions. Implementations have been made easy by the
open source software packagecopula [22] for theR project
[41].
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46.2 Copulas andMultivariate
Distributions

46.2.1 Copulas

Consider a random vector (U1, . . . , Up)
�, where each margin

Ui, i = 1, . . . , p, is a uniform random variable over the unit
interval. Suppose the joint cumulative distribution function
(CDF) of (U1, . . . , Up)

� is

C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up). (46.1)

Then, function C is called a p-dimensional copula. As Em-
brechts et al. [7] noted, this definition of a copula masks
some of the problems when constructing copulas using other
techniques, by not explicitly specifying what properties a
function must have to be a multivariate distribution function;
for a more rigorous definition, see, for example, Nelsen [39].
However, it is “operational” and very intuitive. For example,
one immediately obtains with this definition that for any p-
dimensional copula C, p ≥ 3, each k ≤ p margin of C is a k-
dimensional copula and that independence leads to a product
copula:

�p(u1, . . . , up) =
p∏

i=1

ui. (46.2)

Every continuous multivariate distribution function
defines a copula. Consider a continuous random vector
(X1, . . . , Xp)� with joint CDF F(x1, . . . , xp). Let Fi, i =
1, . . . , p, be the marginal CDF of Xi. Then, Ui = Fi(Xi) is
a uniform random variable over the unit interval. One can
define a copula C as

C(u1, . . . , up) = F{F−1
1 (u1), . . . , F

−1
p (up)}. (46.3)

The elliptical copulas in Sect. 46.3.1 are constructed this way.
Another important class of copulas, Archimedean copulas, is
constructed differently; see Sect. 46.3.2.

A copula (46.1) can be used to construct multivariate
distributions with arbitrarymargins. Suppose that it is desired
that the ith margin Xi has marginal CDF Gi. A multivariate
distribution function G can be defined via a copula C as

G(x1, . . . , xp) = C{G1(x1), . . . , Gp(xp)}. (46.4)

This multivariate distribution will have the desired marginal
distributions.

Clearly, there is a close connection between copulas and
multivariate distributions. It is natural to investigate the con-
verse of (46.4). That is, for a given multivariate distribu-
tion function G, does there always exist a copula C such

that (46.4) holds? If so, is this C unique? These questions are
answered by Sklar’s (1959) Theorem in the next subsection.

46.2.2 Copulas to Multivariate Distributions

Sklar’s Theorem is the most important result about copulas.
The bivariate version of the theoremwas established by Sklar
[45] almost a half century ago in the probability metrics
literature. The proof in the general p-dimensional case is
more involved and can be found in Sklar [44]. A formal
statement of the theorem is as follows [39, p.41].

Theorem 1 Let F be a p-dimensional distribution function
with margins F1, . . . , Fp. Then there exists a p-dimensional
copula C such that for all x in the domain of F,

F(x1, . . . , xp) = C{F1(x1), . . . , Fp(xp)}. (46.5)

If F1, . . . , Fp are all continuous, the C is unique; otherwise,
C is uniquely determined on RanF1 × · · · × RanFp, where
RanH is the range of H. Conversely, if C is a p-dimensional
copula and F1, . . . , Fp are distribution functions, then the
function F defined by (46.5) is a p-dimensional distribution
function with marginal distributions F1, . . . , Fp.

Sklar’s Theorem ensures that a continuous multivariate
distribution can be separated into two components: univariate
margins and multivariate dependence, where the dependence
structure is represented by a copula. The dependence struc-
ture of a multivariate distribution can be analyzed separately
from its margins. It is sufficient to study the dependence
structure of a multivariate distribution by focusing on its
copula.

The probability density function (PDF) of the CDF F
in (46.5) can be found from the PDF of C and F1, . . . , Fp.
The PDF c of the copula C in (46.1) is

c(u1, . . . , up) = ∂pC(u1, . . . , up)

∂u1 . . . ∂up
. (46.6)

When the density c is known, the density f of the multivariate
distribution F in (46.5) is

f (x1, . . . , xp) = c
{
F1(x1), . . . , Fp(xp)

} p∏

i=1

fi(xi), (46.7)

where fi is the density function of the distribution Fi. Ex-
pression (46.7) is called the canonical representation of a
multivariate PDF, which can be used to construct likelihood
for observed data.
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46.2.3 ConcordanceMeasures

The copula of two random variables completely determines
any dependence measures that are scale-invariant, that is,
measures remain unchanged under monotone increasing
transformations of the random variables. The construction
of the multivariate distribution (46.5) implies that the
copula function C is invariant under monotone increasing
transformations of its margins. Therefore, scale-invariant
dependence measures can be expressed in terms of the
copulas of the random variables.

Concordancemeasures of dependence are based on a form
of dependence known as concordance. The most widely used
concordance measures are Kendall’s tau and Spearman’s rho.
Both of them can be defined by introducing a concordance
function between two continuous random vectors (X1, X2)

and (X′
1, X

′
2) with possibly different joint distributions G and

H but with common margins F1 and F2. This concordance
function Q is defined as

Q=Pr{(X1−X′
1)(X2−X′

2) > 0}−Pr{(X1−X′
1)(X2−X′

2) < 0},
(46.8)

which is the difference between probability of concordance
and dis-concordance of (X1, X2) and (X′

1, X
′
2). It can be shown

that

Q = Q(CG, CH) = 4
∫ 1

0

∫ 1

0
CG(u, v) dCH(u, v)−1, (46.9)

where CG and CH are the copulas of G and H, respectively.
For a bivariate random vector (X1, X2) with copula C,

Kendall’s tau is defined as Q(C,C), interpreted as the dif-
ference between the probability of concordance and dis-
concordance of two independent and identically distributed
observations. Therefore, we have

τ = 4
∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2) − 1, (46.10)

where the range of τ can be shown to be [−1, 1]. Spearman’s
rho, on the other hand, is defined as 3Q(C,�), where � is
the product copula obtained under independence. That is,

ρ = 12
∫ 1

0

∫ 1

0
u1u2 dC(u1, u2) − 3. (46.11)

The constant 3 scales this measure into the range of [−1, 1]
[see, e.g., 39, p.129]. Spearman’s rho is proportional to the
difference between the probability of concordance and dis-
concordance of two vectors: both have the same margins,
but one has copula C, while the other has the product copula
�. It is straightforward to show that Spearman’s rho equals

to Pearson’s product-moment correlation coefficient for the
probability integral transformed variables U1 = F1(X) and
U2 = F2(Y):

ρ = 12E(U1U2) − 3 = E(U1U2) − 1/4

1/12

= E(U1U2) − E(U1)E(U2)√
Var (U1)Var (U2)

. (46.12)

There are other dependence measures based on copulas.
For example, tail dependence is a very important measure in
studying the dependence between extreme events. Details can
be found in Joe [25].

46.2.4 Fréchet-Hoeffding Bounds

Important bounds are defined for copulas and multivariate
distributions. These bounds are called the Fréchet-Hoeffding
Bounds, named after the pioneering work of Fréchet and
Hoeffding, who independently published their work on this
in 1935 and 1940, respectively [42]. Define functionsMp and
Wp on [0, 1]p as follows:

Mp(u1, . . . , up) = min(u1, . . . , up),

Wp(u1, . . . , up) = max(u1 + · · · + up − n+ 1, 0).

Then for every copula C,

Wp(u1, . . . , up) ≤ C(u1, . . . , up) ≤ Mp(u1, . . . , up). (46.13)

These bounds are general bounds, regardless of whether the
margins are continuous or not. Function Mp is always a p-
dimensional copula for p ≥ 2. Function Wp is a copula only
for p = 2; for p ≥ 3, although not a copula, it is still the
best possible lower bound since for any u = (u1, . . . , up) ∈
[0, 1]p, there exists a copula C (which depends on u) such
that C(u) = Wp(u). In the bivariate case, these bounds cor-
respond to perfect negative dependence and perfect positive
dependence, respectively. Within a given family of copulas,
they may or may not be attained [see, e.g., 39, Table 4.1]. For
p = 2, Fig. 46.1 shows the perspective plots of the Fréchet-
Hoeffding bounds copulas and the product copula.

Intuitively, perfect dependence should lead to extremes of
concordance measures. It can be shown that for continuous
random vector (X1, X2) with copula C, τ = −1 (or ρ = −1)
is equivalent to C = W2 and τ = 1 (or ρ = 1) is equivalent
to C = M2; see [8] for a proof.
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Fig. 46.1 Perspective plots of the Fréchet-Hoeffding bounds. (a) lower
bound; (b) upper bound

46.2.5 Simulation

Random number generation from a copula is very important
in statistical practice. Consider the p-dimensional copula
in (46.1). Let Ck(u1, . . . , uk) = C(u1, . . . , uk, 1, . . . , 1) for
k = 2, . . . , p − 1. The conditional CDF of Uk given U1 =
u1, . . . , Uk−1 = uk−1 is

Ck(uk|u1, . . . , uk−1) =
∂k−1Ck(u1, . . . , uk)

∂u1 . . . ∂uk−1

∂k−1Ck−1(u1, . . . , uk−1)

∂u1 . . . ∂uk−1

. (46.14)

Algorithm 1 is a general algorithm to generate a realization
(u1, . . . , up) fromC via a sequence of conditioning.When the

Algorithm 1 Generating a random vector from a copula

1. Generate u1 from a uniform over [0, 1].
2. For k = 2, . . . , p, generate uk from Ck(·|u1, . . . , uk−1).

expression of Ck(·|u1, . . . , uk−1) is available, a root finding
routine is generally needed in generating uk using the inverse
CDF method. With realizations from C, one can easily gen-
erate realizations from the multivariate distribution (46.4) by
applying the inverse CDF method at each margin.

46.3 Some Commonly Used Copulas

We introduce two commonly used copula classes in this
section: elliptical copulas and Archimedean copulas. A third
class of copulas, extreme value copulas, is very useful in
multivariate extreme value theory but is omitted here to limit
the scope of this chapter; more details about extreme value
copulas can be found in Joe [25].

46.3.1 Elliptical Copulas

Elliptical copulas are copulas of elliptical distributions.
A multivariate elliptical distribution of random vector
(X1, . . . , Xp) centered at zero has density of the form
φ(t) = ψ(t��t), where t ∈ Rp and � is a p × p
dispersion matrix, which can be parameterized such that
�ij = Cov (Xi, Xj) [10]. Let Rij and τij be Pearson’s linear
correlation coefficient and Kendall’s tau between Xi and Xj,
respectively. For an elliptical distribution, they are connected
through

τij = 2

π
arcsin(Rij). (46.15)

This relationship makes elliptical copulas very attractive in
applications since the Kendall’s tau matrix, similar to the cor-
relation matrix, can offer a full range dependence structures.
Tractable properties similar to those of multivariate normal
make another attractiveness of elliptical copulas. The most
popular elliptical distributions are multivariate normal and
multivariate t, providing two popular copulas: normal copula
and t copula.

The normal copula has been widely used in financial
applications for its tractable calculus [1, 46]. Consider the
joint CDF 
� of a multivariate normal distribution with
correlation matrix �. Let 
 be the CDF of a standard nor-
mal variable. A normal copula with dispersion matrix � is
defined as

C(u1, . . . , up; �) = 
�

(

−1(u1), . . . ,


−1(up)
)
. (46.16)
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Fig. 46.2 Contours of bivariate distributions with the same marginals but different copulas. Both marginal distributions are standard normal

Functions
,
−1, and
� are available in any reasonably
good statistical softwares, which makes their application
widely accessible.

The t copula can be constructed similarly [6]. Consider
the joint CDF T�,ν of the standardized multivariate Student’s
t distribution with correlation matrix � and degrees of free-
dom ν. Let Ftν be the CDF of univariate t distribution with ν

degrees of freedom. A t copula with dispersion matrix � and
degrees of freedom parameter ν is defined as

C(u1, . . . , up; �, ν) = T�,ν
(
F−1
tν (u1), . . . , F

−1
tν (up)

)
.

(46.17)

These copulas can be used to construct multivariate distri-
butions using (46.5). Note that a normal copula with normal
margins is the same as a multivariate normal distribution.
However, a t copula with t margins is not necessarily a
multivariate t distribution. A multivariate t distribution must
have the same degrees of freedom at all the margins. In
contrast, a t copula with t margins can have different degrees

of freedom at different margins. It offers a lot more flexibility
in modeling multivariate heavy-tailed data.

Figure 46.2 shows the density contours of bivariate dis-
tributions with same margins but different copulas. These
distributions all have standard normal as both margins, and
their values of Kendall’s tau are all 0.5. The three plots in
the first row of Fig. 46.2 are for normal copula, t copula
with 5 degrees of freedom, and t copula with 1 degree of
freedom (or Cauchy copula). These densities are computed
with (46.7). Note that a normal copula can be viewed as t
copula with degrees of freedom being infinity. Figure 46.2
illustrates that the dependence at tails gets stronger as the
degrees of freedom decrease.

Simulation from normal copulas and t copulas are
straightforward if random number generators for multivariate
normal and t are available. In R, package mvtnorm [18]
provides CDF, PDF, and random number generation for
multivariate normal and multivariate t distributions. These
facilities are used in the implementation of package copula
[22]. Figure 46.3 shows 1000 points from the corresponding
bivariate distributions in Fig. 46.2.
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Fig. 46.3 1000 random points from bivariate distributions with the same marginals but different copulas. Both marginal distributions are standard
normal

One caveat about elliptical copulas originates from the fact
that not all elliptical distributions are marginally consistent
[27]. Multivariate normal and t distributions have this prop-
erty. For example, the d-dimensional marginal distribution
for any p-dimensional normal distribution remains the same
for all p ≥ d. This property does not hold for some elliptical
distributions such as the exponential power family, which
has important practical consequences of the corresponding
elliptical copulas [50]. See Example 3.1.9 of [22] for an
illustration.

46.3.2 Archimedean Copulas

Archimedean copulas are constructed via a completely dif-
ferent route without referring to distribution functions or
random variables. A key component in this way of construc-
tion is a complete monotonic function. A function g(t) is
completelymonotonic on an interval J if it is continuous there
and has derivatives of all orders which alternate in sign, that
is,

(−1)k
d

dtk
ϕ(t) ≥ 0, k = 1, 2, · · · , (46.18)

for all t in the interior of J. Let ϕ be a continuous strictly
decreasing function form [0, 1] to [0,∞] such that ϕ(0) = ∞
and ϕ(1) = 0, and let ϕ−1 be the inverse of ϕ. A function
defined by

C(u1, . . . , up) = ϕ−1
{
ϕ(u1) + · · · + ϕ(up)

}
(46.19)

is a p-dimensional copula for all p ≥ 2 if and only if ϕ−1 is
completely monotonic over [0,∞) [see, e.g., 39, Theorem
4.6.2]. The copula C in (46.19) is called an Archimedean
copula. The name “Archimedean” for these copulas comes
from a property of the unit cube and copula C which is an
analog of the Archimedean axiom for positive real numbers
[see 39, p.98 for more details]. The function ϕ is called the
generator of the copula. A generator uniquely (up to a scalar
multiple) determines an Archimedean copula.

In the bivariate case, an Archimedean copula may be
obtained with weaker conditions on the generator ϕ and its
pseudo-inverse ϕ[−1]:
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C(u1, u2) = max
[
ϕ[−1] {ϕ(u1) + ϕ(u2)} , 0

]
, (46.20)

where the generator ϕ is a function with two continuous
derivatives such that ϕ(1) = 0, ϕ′(u) < 0, ϕ′′(u) > 0 for
all u ∈ [0, 1], and ϕ[−1] is the pseudo-inverse of ϕ defined as

ϕ[−1](v) =
{

ϕ−1(v) 0 ≤ v ≤ ϕ(0),

0 ϕ(0) ≤ v ≤ ∞.

The generator ϕ is called a strict generator if ϕ(0) = ∞,
in which case ϕ[−1] = ϕ. [17] give proofs to some basic
properties of bivariate copulas.

The generator ϕ plays an important role in the proper-
ties of an Archimedean copulas. It can be shown that the
Kendall’s tau for an Archimedean copula with generator ϕ

is

τ = 4
∫ 1

0

∫ 1

0

ϕ(v)

ϕ′(v)
dv+ 1. (46.21)

This relationship can be used to construct estimating equa-
tions that equate the sample Kendall’s tau to the theoretical
value from the assumed parametric copula family.

Due to the exchangeable structure in (46.19), the asso-
ciations among all variables are exchangeable too. As a
consequence, an Archimedean copula cannot accommodate
negative association unless p = 2. For Archimedean copulas
with positive associations, there is a mixture representation
due to Marshall and Olkin [34]. Suppose that conditional
on a positive latent random variable called frailty, γ , the
distribution of Ui is Fi(Ui|γ ) = Uγ

i , i = 1, . . . , p, and
U1, . . . , Up are independent. Then the copulaC ofU1, . . . , Up

is

C(u1, . . . , up) = E

(
p∏

i=1

uγ

i

)
, (46.22)

where the expectation is taken with respect to the distribution
of γ , Fγ . Recall that the Laplace transform of γ is

L(s) = Eγ (e−sγ ) =
∫ ∞

0
e−sx dFγ (x).

Laplace transform has well-defined inverse L−1. [34] show
that the copula in (46.22) is

C(u1, . . . , up) = L
(
L−1(u1) + · · · + L−1(up)

)
. (46.23)

This result suggests that an Archimedean copula can be
constructed using the inverse of a Laplace transform as the
generator.

Table 46.1 summarizes three commonly used one-
parameter Archimedean copulas. A comprehensive list of
one-parameter bivariate Archimedean copulas and their
properties can be found in Table 4.1 of [39]. The three
copulas in Table 46.1 all have inverse transforms of some
positive random variables as their generators. The Clayton
copula was introduced by Clayton [4] in modeling correlated
survival times with a gamma frailty. The Frank copula first
appeared in Frank [12]. It can be shown that the inverse of
its generator is the Laplace transform of a log series random
variables defined on positive integers. The Gumbel copula
traces back to Gumbel [21]. Hougaard [24] uses a positive
stable random variable to derive the multivariate distribution
based on Gumbel copula.

Density contours of bivariate distributions constructed
from these three Archimedean copulas are presented in the
second row of Fig. 46.2. Both margins of these distributions
are still standard normals. The parameters of these copulas
are chosen such that the value of Kendall’s tau is 0.5. The den-
sity of an Archimedean copula can be found by differentiat-
ing the copula as in (46.6). When the dimension p is high, the
differentiation procedure can be tedious. Symbolic calculus
softwares can be used for this purpose. From Fig. 46.2, one
observes that the Frank copula has symmetric dependence.
The dependence of the Clayton copula-based distribution
is stronger in the lower-left region than in the upper-right
region. In contrast, the dependence of the Gumbel copula-
based distribution is stronger in the upper-right region than
in the lower-left region.

Simulation from a general Archimedean can be done using
the general Algorithm 1 in Sect. 46.2. When the inverse of
the generator is known to be the Laplace transform of some
positive random variable, an algorithm based on (46.23) is
summarized in Algorithm 2 [14]. This algorithm is very easy
to implement, given that a random number generator of the
frailty is available. Gamma variable generator is available
in most softwares. Algorithms for generating positive stable
and log series variables can be found in Chambers et al. [2]
and Kemp [28], respectively. For bivariate case, the general
algorithm 1 can be simplified, avoiding numerical root find-
ing. These algorithms have been implemented in package
copula [22]. The lower panel of Fig. 46.3 shows 1000

Table 46.1 Some one-parameter (α) archimedean copulas

Family Generator ϕ(t) Frailty distribution Laplace transformation of frailty L(s) = ϕ−1(s)

Clayton (1978) t−α − 1 Gamma (1 + s)−1/α

Frank (1979) ln
eαt − 1

eα − 1
Log series α−1 ln

(
1 + es(eα − 1)

)

Gumbel (1960) (− ln t)α Positive stable exp(−s1/α)
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Algorithm 2 Generating a random vector from an
Archimedean copula with a known frailty distribution

1. Generate a latent variable γ whose Laplace transformation L is the
inverse generator function ϕ−1.

2. Generate independent uniform observations v1, . . . , vp, i = 1, . . . , p.
3. Output ui = L(−γ −1logvi), i = 1, . . . , p.

random points generated from the corresponding bivariate
distributions with Archimedean copulas in Fig. 46.2.

46.4 Statistical Inference

This section presents the maximum likelihood (ML) estima-
tion for multivariate distributions constructed from copulas.
Other methods, such as moment methods and nonparametric
methods, are less developed for copula-based models and
hence omitted.

Suppose that we observe a random sample of size n from
a multivariate distribution (46.5):

(Xi1, . . . , Xip)
�, i = 1, . . . , n.

The parameter of interest is θ = (β�,α�)�, where β is the
marginal parameter vector for the marginal distributions Fi,
i = 1, . . . , p, and α is the association parameter vector for the
copula C. Regression models for the marginal variables can
be incorporated easily by assuming that the residuals follows
a multivariate distribution (46.5).

46.4.1 Exact Maximum Likelihood

The exact log-likelihood l(θ) of the parameter vector θ can
be expressed from (46.7):

l(θ) =
n∑

i=1

logc
(
F1(Xi1; β), . . . , Fp(Xip; β); α

)

+
n∑

i=1

p∑

j=1

log fi(Xij; β). (46.24)

The ML estimator of θ is

θ̂ML = arg max
θ∈�

l(θ),

where � is the parameter space.
Under the usual regularity conditions for the asymptotic

ML theory, the ML estimator θ̂ML is consistent and asymp-
totically efficient, with limiting distribution

√
n(θ̂ML − θ0) → N

(
0, I−1(θ0)

)

where θ0 is the true parameter value and I is the Fisher
information matrix. The asymptotic variance matrix I−1(θ0)

can be estimated consistently by an empirical variancematrix
of the influence functions evaluated at θ̂ML.

In the copula package, a multivariate distribution
constructed with a copula can be constructed with function
mvdc(). Its log-likelihood can be computed with function
loglikMvdc(). The maximum likelihood estimates
and their standard errors are returned from function
fitMvdc().

The maximization of l(θ) in (46.24) may be a difficult
task, especially when the dimension is high and/or the num-
ber of parameters is large. The separation of the margins and
copula in (46.24) suggests that onemay estimate themarginal
parameters and association parameters in two steps, leading
the method in the next subsection.

46.4.2 Inference Functions for Margins (IFM)

The estimation method of IFM was proposed by Joe and Xu
[26]. This method estimates the marginal parameters β in a
first step by

β̂ = arg max
β

n∑

i=1

p∑

j=1

log fi(Xij; β), (46.25)

and then estimates the association parameters α given β̂ by

α̂ = arg max
α

n∑

i=1

log c
(
F1(Xi1; β̂), . . . , Fp(Xip; β̂); α

)
.

(46.26)

When each marginal distribution Fi has its own parameters
βi so that β = (β�

1 , . . . ,β
�
p )�, the first step consists of an

ML estimation for each margin j = 1, . . . , p:

β̂j = arg max
βj

n∑

i=1

log f (Xij; βj). (46.27)

In this case, each maximization task has a very small number
of parameters, greatly reducing the computational difficulty.
This approach is called the two-stage parametric ML method
by Shih and Louis [43] in a censored data setting.

The IFM estimator from (46.25) and (46.26), θ̂IFM, is in
general different from the ML estimate θ̂ML. The limiting
distribution of θ̂IFM is

√
n(θ̂IFM − θ0) → N

(
0, G−1(θ0)

)
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whereG is theGodambe informationmatrix [20]. Thismatrix
has a sandwich form as from the usual robust estimation with
estimating functions. Detailed expressions can be found in
Joe [25]. Using pseudo-observations from the fitted prob-
ability integral transformation with β̂ from (46.25), func-
tion fitCopula() called with method = ‘ml’ in the
copula package returns point estimate of α̂ in (46.26).
The returned standard error, however, should be ignored as
the observations of the copula in the fitting are estimated
instead of observed.

Compared to the ML estimator, the IFM estimator has
advantages in numerical computations and is asymptotically
efficient. Even in finite samples, it is highly efficient
relative to the exact ML estimator [25]. The IFM
estimate can be used as starting values in an exact ML
estimation.

46.4.3 Canonical Maximum Likelihood (CML)

When the association is of explicit interest, parameter
α can be estimated with the CML method without
specifying the marginal distribution. This approach uses
the empirical CDF of each marginal distribution to transform
the observations (Xi1, . . . , Xip)� into pseudo-observations
with uniform margins (Ui1, . . . , Uip)

� and then estimates
α as

α̂CML = arg max
α

n∑

i=1

log c(Ui1, . . . , Uip; α). (46.28)

The CML estimator α̂CML is consistent, asymptotically
normal, and fully efficient at independence [16,43]. Function
fitCopula() called with method = ‘mpl’, which
stands for maximum pseudo-likelihood, in the copula
package returns point estimate α̂CML in (46.28) with valid
standard errors.

46.5 Engineering Applications

Two engineering applications of copulas are considered in
this section: multivariate process control and degradation
analysis. An important third application is the modeling of
multivariate failure times which may be censored. We focus
on complete data applications in this chapter. In the example
of multivariate process control, marginal normality seems
appropriate, but joint normality is suspicious. In the example
of degradation analysis, the margins are right-skewed and
have long tails. We use a gamma distribution for each margin
and a normal copula for the association.

46.5.1 Multivariate Process Control

In quality management, multiple process characteristics ne-
cessitate multivariate method for process control. There are
three major control charts used in practice: Hotelling’s T2,
multivariate cumulative sum (MCUSUM), and multivari-
ate exponentially weighted moving average (MEWMA); see
Lowry and Montgomery [32] for a review. The most pop-
ular multivariate control chart is the T2 chart, which has a
long history since Hotelling [23]. Mason and Young [35]
give details on how to use it with industrial applications.
This method assumes that the multiple characteristics under
surveillances are jointly normally distributed. The control
limit of the chart is based on the sampling distribution of
statistic T2, which can be shown to have an F distribution.
When the multivariate normal assumption does not hold, due
to either univariate or multivariate non-normality, T2 control
chart based on multivariate normality can be inaccurate and
misleading.

Copula-based multivariate distributions open a new av-
enue for the statistical methods of multivariate process con-
trol. The parametric form of the multivariate distribution can
be determined from a large amount of historical in-control
data. Given a sample of observations when the process is
in control, one can estimate the parameters and propose a
statistic that measures the deviation from the target. The exact
distribution of this statistic is generally unknown, and the
control limit needs to be obtained from bootstrap; see for
example Liu and Tang [31].

As an illustration, consider the example of bivariate pro-
cess control in [33]. The data consists of 30 pairs of bivariate
measurements from an exhaust manifold used on a Chrysler
5.21 engine in a given model year. They were collected
from a machine capability study performed on the machine
builder’s floor. The sample correlation coefficient is 0.44.
The left panel of Fig. 46.4 shows the scatter plot of the 30
observations. Normal assumption for each margin seems fine
from the normal Q-Q plots (not shown). However, the joint
distribution may not be a bivariate normal. The scatter plot
suggests that the association may be stronger in the lower
end than in the higher end of the data. This nonsymmetric
association cannot be captured by a symmetric copula, such
as those elliptical copula and Frank copula in Fig. 46.2.
A better fit of the data may be obtained from a Clayton
copula, which allows the bivariate dependence to be stronger
at the left tail than at the right tail. The center panel of
Fig. 46.4 shows the contours of the ML bivariate normal fit.
The right panel of Fig. 46.4 shows the contours of the ML
bivariate fit with normal margins and the Clayton copula. The
maximized log-likelihood of the two models is 307.64 and
309.87, respectively. A formal test of the difference, which is
beyond the scope of this chapter, can be done by comparing



46 Multivariate Modeling with Copulas and Engineering Applications 941

46

0.820

a) b) c)

0.819

0.818

0.817

0.816

0.815

0.814

8.9508.9488.946449.8 059.8849.8249.8 8.946449.8 059.8849.8249.8 8.9468.9448.942

Fig. 46.4 Bivariate process characteristics and parametric fits. (a) scatter plot of the data; (b) contours of bivariate normal fit; (c) contours of
bivariate fit with normal margins and Clayton copula

non-nested models without knowing the true model based on
Kullback-Leibler information [48].

The T2 control chart of Lu and Rudy [33] is a phase II
chart for single observations to detect any departure of the
underlying process from the standard values. Suppose that
we observe a random sample of p-dimensional multivariate
observations with sample sizem. Let X̄m and Sm be the sample
mean vector and sample covariance matrix, respectively. For
a future p-dimension multivariate observation X, the T2 is
defined as

T2 = (X − X̄m)�S−1
m (X − X̄). (46.29)

Under joint normality, it can be shown that the exact distri-
bution of

m2 − mp

p(m+ 1)(m− 1)
T2

is F with degrees of freedom p and m − p. The exact upper
control limit for T2 with level α is then

UCLα = p(m+ 1)(m− 1)

m2 − mp
F1−α;p,m−p, (46.30)

where F1−α;p,m−p is the 100(1 − α) percentile of an F distri-
bution with p and m−p degrees of freedom. In this example,
m = 30, p = 2. The exact upper control limit for T2 with
level α is then

UCLα = 2(30 + 1)(30 − 1)/[302 − 2(30)]F1−α;2,28

= 2.14F1−α;2,28.

With α = 0.9973, the control limit UCL = 15.75.

When the true copula is a Clayton copula but is mis-
specified as a normal copula, the control limit in (46.30)
can be inaccurate and hence misleading. By comparing the
contours of a normal copula model with those of a Clayton
copula model in Fig. 46.2, one can conjecture that if the true
copula is a Clayton copula, and then Pr(T2 > UCLα) will be
greater than its nominal level α, because the bivariate density
with Clayton copula is more concentrated on the lower-left
part of the plot than the bivariate normal density. In other
words, in order to maintain the control level α, one needs to
increase the UCL of the T2 chart. This difference obviously
depends on the sample size m and the association parameter
of the true Clayton copula. For a given sample size m and a
Kendall’s τ value, which determines the association strength
of a Clayton copula, the control limit of T2 can be obtained
by simulation. Table 46.2 compares the 90%, 95%, 99%, and
99.73% percentiles of T2 when the true copula is normal
and when the true copula is Clayton. The percentiles under
Clayton copulas are obtained from 100,000 simulations. The
true Clayton copulas are parameterized to give Kendall’s τ

values 0.2, 0.4, 0.6, and 0.8. From Table 46.2, one observes
that the simulated percentiles of T2 are greater than those
based on the F distribution under the moral assumption.
The control region based on normal assumption is smaller
than expected, which will result in investigating the process
more often than necessary when the process is actually in
control. The difference increases with the strength of the
association.

This example illustrates that a non-normal joint distribu-
tion may have important influence on the control limit of
the widely used T2 chart, even when both the margins are
normals. The T2 statistic still measures the deviance from the
target, but its distribution is unknown under the non-normal
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Table 46.2 Comparison of T2 percentiles when the true copula is
normal and when the true copula is Clayton with various Kendall’s
τ . The percentiles under Clayton copulas are obtained from 100,000
simulations

Normal Clayton copula

Percentiles Copula τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

90% 5.357 5.373 5.416 5.590 5.868

95% 7.150 7.253 7.468 8.061 9.396

99% 11.672 12.220 13.080 15.764 23.526

99.73% 15.754 16.821 18.611 24.173 41.123

1.5

1.0

0.5

43210

Error rate

Hours/500

Fig. 46.5 Error rates (×105) of 16 magneto-optic data storage disks
measured every 500 hours

model. A comprehensive investigation of multivariate pro-
cess control using copula is a future research direction.

46.5.2 Degradation Analysis

Performance degradation data has repeated measures over
time for each test unit [see, e.g., 36, chapter 13]. These
repeated measures on the same unit are correlated. There
is a voluminous statistical literature on analysis of repeated
measurements [see, for example, 5]. Analysis of such data
has been implemented in popular statistical softwares, for ex-
ample, PROC MIXED of the SAS system [30] and the nlme
package [40] for R and Splus. Continuous response vari-
ables are generally assumed to be normally distributed, and
multivariate normal distribution is used in likelihood-based
approaches. The following example shows that a multivariate
gamma distribution with normal copula can provide much
better fit to the data than a multivariate normal distribution.

Degradation data on block error rates of 16 magneto-optic
data storage disks are collected every 500 hours for 2000
hours at 80◦C and 85% relative humidity [38]. Figure 46.5
shows these error rates at all five time points. A degradation
analysis often needs to fit a curve for the degradation trend

Table 46.3 IFM fit for all the margins using normal and gamma
distributions, both parameterized by mean and standard deviation.
Presented results are log-likelihood (Loglik), estimated mean, and
estimated standard deviation (StdDev) for each margin under each
model

Time in Normal margins Gamma margins

500 h Loglik Mean StdDev Loglik Mean StdDev

0 −0.484 0.565 0.062 2.568 0.565 0.054

1 −0.526 0.617 0.063 2.538 0.617 0.054

2 −2.271 0.709 0.070 −0.125 0.709 0.064

3 −4.441 0.870 0.080 −3.269 0.870 0.078

4 −6.996 1.012 0.094 −5.205 1.012 0.087

in order to do predictions at unobserved time points. Before
choosing a curve to fit, we first do exploratory data analysis
using the two-step IFM method to look into parametric
modeling for each margin and for copula separately.

Separate parametric fit for each margin is the first step
of the IFM approach in Sect. 46.4. Two parametric models
for each margin are used: normal and gamma. To make the
parameters comparable across models, the gamma distribu-
tion is parametrized by its mean μ and standard deviation σ ,
giving density function:

f (x; μ, σ) = 1

�(α)βα
xα−1e−

x
β , (46.31)

where α = μ2/σ 2 and β = σ 2/μ. Table 46.3 summarizes
the separate parametric fit for each margins using normal
and gamma distributions. For all the margins, the gamma
distribution fit yields higher log-likelihood than the normal
distribution fit. The estimated mean from both models is
the same for the first three digits after the decimal point.
The estimated standard deviation is noticeably lower in the
gamma model, especially at earlier time points where the
data are more skewed and heavier tailed. These estimates are
consistent with the descriptive statistics of each time point,
suggesting that the mean error rate is increasing over time,
and their standard errors is increasing with the mean level.

Given the parametric fit for each margins, we can explore
copula fitting in the second step of IFM. Due to the small
number of observations, we choose single parameter normal
copulas with three dispersion structures: AR(1), exchange-
able, and Toeplitz. In particular, with p = 5, the dispersion
matrices with parameter ρ under these structures are, respec-
tively,

⎛

⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ2 ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1

⎞

⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎝

1 ρ ρ ρ ρ

ρ 1 ρ ρ ρ

ρ ρ 1 ρ ρ

ρ ρ ρ 1 ρ

ρ ρ ρ ρ 1

⎞

⎟⎟⎟⎟⎠
, and

⎛

⎜⎜⎜⎜⎝

1 ρ

ρ 1 ρ

ρ 1 ρ

ρ 1 ρ

ρ 1

⎞

⎟⎟⎟⎟⎠
.

(46.32)
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Table 46.4 IFM and CML fit for single parameter normal copulas with dispersion structures: AR(1), exchangeable, and Toeplitz

IFM Fit CML Fit

Normal margins Gamma margins Empirical margins

Dispersion Structure Loglik ρ̂ Loglik ρ̂ Loglik ρ̂

AR(1) 39.954 0.917 66.350 0.892 10.380 0.964

Exchangeable 38.618 0.868 62.627 0.791 9.791 0.942

Toeplitz 23.335 0.544 39.975 0.540 5.957 0.568

Table 46.4 summarizes the log-likelihood and the estimated
association parameter ρ for the given estimated margins
in Table 46.3. Note that the log-likelihood values are not
comparable across models with different margins because
the data being used in the estimation are different. They are
comparable when the margins are modeled the same. For
both normal margins and gamma margins, the AR(1) struc-
ture gives the highest log-likelihood value. The estimated
parameter is about 0.9, indicating high dependence among
repeated measurements.

Table 46.4 also presents the normal copulas estimation
using the CML method. No parametric distribution is as-
sumed for each margin. The empirical distribution is used
to transform the observations of each margin into uniform
variables in [0, 1], which are then used in (46.28). The CML
fit also shows that the AR(1) structure gives the highest log-
likelihood and that the within disk dependence is high. Based
on these exploratory analysis, the AR(1) structure is used
for the dispersion matrix of normal copula in an exact ML
analysis.

We now present the exact ML estimation of a degradation
model. For the sake of simplicity, we use a linear function of
time to model the mean μ(t) and a linear function of μ(t) to
model the logarithm of the standard deviation σ(t). That is,

μ(t) = φ0 + φ1t, (46.33)

log σ(t) = ψ0 + ψ1[μ(t) − 1.0]. (46.34)

where φ0, φ1, ψ0, and ψ1 are parameters and the func-
tion of log σ(t) is centered at 1.0 for easier predictions of
the variance at higher error rates. Two parametric models
are considered for the repeated error rates: (1) multivariate
normal and (2) multivariate gamma via a normal copula.
Note that the two models both uses the normal copula. The
marginal distributions of the two models at time t are both
parameterized by mean μ(t) and standard deviation σ(t) for
comparison purpose. Similar parameterization has been used
in Lambert and Vandenhende [29] and Frees and Wang [15].

Table 46.5 summarizes the maximum likelihood estimate
of the parameters and their standard errors for both models.
These estimates for both marginal parameters and the copula
parameter are virtually the same or very close to each other.
However, the standard errors of these estimates are noticeably
smaller in the multivariate gamma model. The maximized

Table 46.5 Maximum likelihood results to the disk error rate data.
Parameter estimates, standard errors and log-likelihood are provided for
both the multivariate normal model and the multivariate gamma model
with a normal copula. The second entry of each cell is the corresponding
standard error

Marginal parameters

Mean StdDev. Copula Parameter

Model φ0 φ1 ψ0 ψ1 ρ Loglik

Normal 0.564 0.099 −0.849 1.439 0.899 34.719

0.057 0.019 0.262 0.557 0.034

Gamma 0.564 0.101 −0.986 1.383 0.900 48.863

0.051 0.015 0.185 0.442 0.033

1.0

0.8

0.6

0.4

0.2

0.0

43210

Density

Error rate

Fig. 46.6 Predictive density of disk error rate at 2500 h.The solid line
is from the gamma model; the dashed line is from the normal model

log-likelihood from the gamma model is much higher than
that from the normal model. Given that both models have
the same number of parameters, the multivariate gamma
distribution fits the data much better.

The difference between the two models can also be illus-
trated by their predictive density of the error rate at 2500 h.
Figure 46.6 presents the densities of the error rate at 2500 h
using the estimated mean μ(2500) and σ(2500) obtained
with φ̂0, φ̂1, ψ̂0, and ψ̂1. The normal model gives mean
1.058 and standard deviation 0.465, while the gamma model
gives mean 1.070 and standard deviation 0.411. Although the
mean values are close, the gammamodel gives small standard
deviation. It captures the skewness and long tail of the data.
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46.6 Conclusion

This chapter reviews multivariate modeling with copulas
and provides novel applications in engineering. Multivariate
distribution construction using copulas and their statistical
inferences are discussed in detail. Engineering applications
are illustrated via examples of bivariate process control and
degradation analysis, using existing data in the literature.
Copulas offer a flexible modeling strategy that separates
the dependence structure from the marginal distributions.
Multivariate distributions constructed with copula apply to
a much wider range of multivariate scenarios than the tradi-
tionally assumedmultivariate normal distribution. A publicly
available R package copula [22] facilitates methods devel-
opment applications.

Some important topics about copulas are not discussed in
this chapter. Survival function is of great concern in failure
time data analysis. Similar to (46.5), a multivariate survival
function can be constructed from via a copula with

S(x1, . . . , xp) = C{S1(x1), . . . , Sp(xp)},
where S is the joint survival function and Si(t) = 1 − F(t)
is the ith marginal survival function, i = 1, . . . , p. In this
setting C is called a survival copula. Censoring presents an
extra difficulty for multivariate failure time data analysis.
Georges et al. [19] gives an excellent review on multivariate
survival modeling with copulas. This chapter has focused
on parametric copula models. Standard inferences of the
maximum likelihood method can be applied under the usual
regularity conditions. However, which copula to choose and
how well it fits the data are important practical problems.
Diagnostic tools, particularly graphical tools, can be very
useful. See Hofert et al. [22] for a recent review.

Copulas have had a long history in the probability litera-
ture [42]. Recent development and application in insurance,
finance, and biomedical research have been successful. With
this chapter, it is hoped to encourage engineering researchers
and practitioners to stimulate more advancement on copulas
and seek more applications. Indeed, more engineering appli-
cations of copulas have appeared since the first version of this
chapter [51], including multivariate process control [e.g., 47]
and degradation analysis [e.g., 37], among others. Compared
to other fields such as finance and hydrology, however, there
seem to be potential to take fuller advantage of copulas in
engineering applications.
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Abstract

In this chapter the methodology of risk assessment
and decision making in the field of environmental
security is analyzed in view of complex novel threats
and challenges connected with development of important
multiscale tendencies of global climate and environmental
changes, globalization, decentralization, and social
transformation. To provide a methodological basis for
increasing the effectiveness of environmental security
management, a number of tasks were analyzed. A
nonparametric two-stage method of multi-source data
coupling and spatial–temporal regularization is proposed
and discussed. Next, an approach to multiscale local
and global model integration based on the modified
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Analysis (IIASA), Laxenburg, Austria
e-mail: kostyuchenko@iiasa.ac.at

ensemble transform Kalman filtration procedure is
proposed. An approach to a risk assessment based
on the nonparametric kernel analysis of coherent
complex measures of multidimensional multivariate
distributions is then proposed. A decision making
approach in the field of environmental risks analysis using
satellite data and multi-model data is also considered
and discussed. A number of important algorithms is
described. Finally, the capabilities, limitations, and
perspectives of the proposed methods and algorithms
are discussed.

Keywords

Climate and environmental change · Multisource data ·
Observations and measurements · Data regularization ·
Nonlinear component analysis · Kernel copulas ·
Coherent risk measures · Model integration ·
Nonparametric risk analysis · Socio-environmental
security

47.1 Introduction

The modern global community is facing complex novel
threats and challenges connected with development of
important multiscale tendencies of global climate and
environmental changes, globalization, decentralization,
and social transformation [1, 2]. Development of these
tendencies not only generates new types of nexus, nonlinear
interdependencies, and risks such as systems or chain risks,
but also limits the applicability of traditional approaches to
risk assessment [3, 4].

On the one hand, our understanding of multiscale and
multiphysics catastrophic drivers is becoming more deep and
comprehensive, which allows us to estimate a propagation
of dangerous processes more accurately and correctly. as
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Also, using modern GIS technologies and satellite obser-
vation leads to the increasing correctness of an estimation
of the damage – spatial and temporal distribution of the
infrastructure, houses, and other assets [4].

However, the number of resulting errors and, especially,
uncertainties, is still high, and this substantially limits our
ability to estimate risks. It is possible to say that the usual
approach to analysis of risks in complex socio-environmental
systems no longer leads to the correct assessment of losses,
and requires application of significant fitness functions in
every case. Studies show that the accuracy, correctness, re-
liability, and applicability of risk assessments vary widely
depending on the locality.

This situation requires new tasks in the field of socio-
environmental security to be formulated, and a new approach
to operating with new comprehensive multisource data to be
developed [5].

To provide a methodological basis for relatively reliable
public safety from environmental dangers caused by natural
or technological disasters, to support the state of human–
environment dynamics, which includes restoration of the en-
vironment damaged by negative human behavior, to support
the cycling of natural resources to products, to waste, to
natural resources, to maintain the physical surroundings of
society for its needs, aiming at the protection of society from
social instability due to environmental degradation [5], it
is necessary to propose a complex method to estimate the
complex environmental risks and decision making, taking
into account diverse multisource information.

Implementation of nonparametric methods for the analy-
sis of complexmultiscale, multicomponent, andmultiphysics
systems is widespread practice to obtain quantitative as-
sessments of many important parameters, including risks
[6]. In the context of novel threats, the key question is the
methodology of application of these methods in view of the
diversity of data sources.

Different data available have a different nature and require
different approaches to be included in the decision-making
process. Data from statistics, and from remote and direct
observations and measurements should be combined, regu-
larized, and also interpreted, verified, and calibrated using the
wide range of local and global natural and data-assembling
models, which should be harmonized (Fig. 47.1). This whole
mass of data may be a basis for risk assessment and decision-
making approaches in the field of socio-environmental secu-
rity.

This methodology requires the development of interlinked
approaches tomultisource data analysis and regularization, to
multiscale model integration, to multidriver risk assessment,
and to decision making in complex multiphysics systems. In
this chapter, such approaches will be considered.

47.2 Method of Nonparametric
Regularization of Multisource Data
Distributions for the Analysis
of Security and Risk Parameters

The experience of study of the genesis, expansion, distribu-
tion of disasters, as well as the methods of assessment of the
impact of the disasters to the socio-ecological systems, can
lead to several important conclusions [7].

Analysis (including mapping) of the spatial and temporal
distributions of varied types of disasters and data obtained
from different sources is a very difficult task, and the direct
comparison of these distributions is the not entirely the
correct method of analysis, first, because the long-term trends
in changes in the distribution of certain types of drivers of
disasters and their spatial and temporal scales obey different
laws and do not coincide [8]. In most usual cases, for the
assessment of socio-ecological system resilience, it is nec-
essary to assess the overall danger from all types of natural
(as well as from some types of technological) disaster. This
requires the various driving forces, data from varied sources
with different spatial and temporal scales, to be analyzed,
and, thus, the different distributions of physical and economic
parameters. This situation necessitates the determination of
the measure of statistical distributions of available data (ob-
servations, measurements, archives, etc.), to the different
spatial and temporal distributions of data.

Second, available data (statistics, archival records) usually
have significant corrections, modifications, and errors. Thus,
the data should be spatially and temporally regularized to
reduce nonlinear uncertainties and errors.

To solve these problems – to obtain statistically reliable
distributions of the disaster parameters per area unit during
a certain period of time –a nonparametric data regularization
algorithm may be proposed.

From the viewpoint of statistics, the proposedmethodmay
be presented as the following [8].

Correct statistical analysis requires the set of data xi
with controlled reliability, which reflects the distribution of
investigated parameters over the study area during the whole
observation period (taking into account variances in reliabil-
ity of observation and archive data xt). The set of observation
data xt (xt ∈ Rm) consists of multisource data: historical
records, archives, observations, measurements, etc., includ-
ing data with sufficient reliability xj (xj ∈ Rm), where j = 1,
. . . . N. The set xt also includes observed and detected satellite
indicators. The problem of the determination of controlled
quality and reliability of the spatial–temporal distribution of
the investigated parameters xi might be solved within the
framework of tasks ofmultivariate randomprocesses analysis
and multidimensional processes regularization [9].
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Fig. 47.1 Methodology of nonparametric methods implemented in tasks of socio-environmental security

Required regularization may be provided in different
ways. If we are able to formulate a stable hypothesis on the
distribution of the reliability of regional archives data within
the framework of the defined problem we may be able to
propose a relatively simple way of determining investigated
parameters distributions x(x,y)

t toward distributions on
measured sites xmt based on [10]:

x(x,y)
t =

n∑

m=1

wx,y
(
x̃mt
)
xmt , (47.1)

where the weighting coefficients wx,y
(
x̃mt
)
are determined

through the minimum task as:

min

⎧
⎨

⎩

n∑

m=1

∑

xmt ∈Rm
wx,y

(
x̃mt
) (

1 − xmt
x̃mt

)2
⎫
⎬

⎭ , (47.2)

according to Cowpertwait [11]. Here, m is the number of
records/points of measurements or observations; n is the
number of observation series; xmt is the distribution of ob-
servation data; Rm is the set (aggregate collection) of ob-
servations; and x̃mt is the mean distribution of the measured
parameters. This is the simple way of obtaining a regular
spatial distribution of analyzed parameters over the study
area, to which we can apply further analysis, in particular,
temporal regularization.

A further regularization step should take into account both
the observation distribution of temporal nonlinearity (caused
by the imperfection of the available statistics) and the features
of temporal–spatial heterogeneity of data distribution caused
by the systemic complexity of the studied phenomena –
natural and technological disasters. According to Mudelsee
et al., Lee et al., and Villez et al. [12–14], the kernel-based

nonlinear approaches are quite effective for the analysis of
such types of distributions.

Let us formulate the following task: using the method of
data regularization, reduce the data of observations, mea-
surements, and archive records received at random points,
at random times, with uncertain accuracy regarding the true
(most probable) state of the studied system.

The proposed two-step nonparametric regularization
method is based on modified kernel principal component
analysis (KPCA) [15–17].

First, it is necessary to find a set ¸, which closely cor-
responds to all available data distributions. If there are no
additional assumptions about¸, this taskmay be presented as
the distribution of data in the discrete space° using the map-
ping function·: � : X → H, x �→ �(x). In particular, on the
Hilbert space, this function will be presented as � : X → �X ,
x �→ K(·, x). The correspondence of the resulting distribution
of the input data will be determined by the point product
of this space, which can be defined using the appropriate
function: K : X × X → �, (x, x′) �→ K(x, x′), called the kernel
function, and all x, x′ ∈ X, K(x, x′) = 〈�(x),�(x′)〉H .

In the most usual cases the multisource data may be
presented as the Gaussian random process with distribution
f : X → �, with mean m : X → �, and with the covariation
function K : X × X → �. In this case m(x) = E[f (x)], and
K(x, x′) = E[(f (x) − m(x))(f (x′) − m(x′))]. A covariation
matrix will determine a distribution of the vector of output,
regularized data fx = (f (x1), . . . f (xn))T ≈ N(0,Kxx), which
is the multivariate Gaussian distribution. In this case, covari-
ation will define a form of the data distribution; thus, for the
Gaussian processes a covariation will play the role of the
kernel function.

Therefore, the task of regularization may be presented
through the covariation matrix ´ as:
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min
f∈H

1

2
‖f‖2H + C

n∑

i=1

max
{
0,max

(
�
(
x′
i, x

′)

− (
f
(
xi, x

′
i

)− f
(
xi, x

′)))} ,

(47.3)

where f (·, ·) =
N∑
i=1

∑
x∈X

αixK
(
(·, ·) ,

(
xi, x’

))
.

If principal components algorithms (PCAs) will be used,
the task of solving the system of equations:

Cνk = λkνk, (47.4)

should be formulated. The decomposition of eigenvalues of
the empirical matrix of covariance:

C = E
[
(x− E(x)) (x− E(x))T

]
, (47.5)

should be executed. In the general case of Gaussian processes
this solution may be presented as:

Cνk = 1

n

n∑

i=1

�(xi) �(xi)
Tνk = λkνk, (47.6)

where νk =
n∑
i=1

αki�(x), Kα = λα, and values Ø for any

principal component k may be calculated as:

(νk,�(x)) =
n∑

i=1

αkiK (x, xi) . (47.7)

Thus, within the framework of this approach the algorithm
of nonlinear regularization might be described as the follow-
ing rule:

xi =
N∑

i=1

αki k̃t (xi, xt) . (47.8)

In this equation, the coefficients α selected according to
the optimal balance of the relative validation function and the
covariance matrix, for example, as [13]:

CFv = 1

N

N∑

j=1

�
(
xj
)
�
(
xj
)T ·

N∑

i=1

αi�(xi) , (47.9)

where the nonlinear mapping function of input data distribu-
tion· is determined as [15]:

N∑

k=1

�(xk) = 0, (47.10)

and k̃t indicates the mean values of the kernel matrixK ∈ RN

([K]ij = [k(xi, xj)]). The vector components of the matrix
are determined as kt ∈ RN ; [ki]j = [kt(xt, xj)]. The matrix
is calculated according to the modified rule of Cowpertwait
and Mudelsee et al. [11, 12] as:

kt (xi, xt) =
〈
ρ
xj
j,t

(
1 − ρj,i

)xj〉 , (47.11)

where ρ indicates empirical parameters, selected according
to the classification model of study phenomena [14].

Using the described algorithm it is possible to obtain
regularized spatial–temporal distribution of the investigated
parameters over the whole observation period with recti-
fied reliability [12]. These distributions of multisource data
should be used for the further modeling of risks.

It may be noted that the obtained regularized distributions
can also be interpreted as the average for the observation
interval probability of disaster occurrence in a certain area
of the study territory.

47.3 Multimodel Data Utilization in Risk
Assessment Tasks: On theMethod
of Local Model Integration into Global
Models

The task of refinement of large-scale scenarios based on
global models using local modeling should be considered.
This task is fundamentally different from so-called region-
alization of climatic, ecological, or runoff models. The task
of the regionalization of models in the traditional sense is
usually reduced to the “downscaling” tasks, or to the change
(usually a decrease) in the spatial and temporal dimensions
of the distributions obtained from the models. The proposed
approach includes refinement of calculations based on the use
of additional data sets not included in the standard model
(typically, global models include 5–10% of the available
measurements in the research area, which is obviously not
sufficient for the calculation of local forecasts).

The principal complexity of this problem lies in the fact
that climatic model parameters are usually calculated in
the so-called geo-space, or, by definition, in the quasi-two-
dimensional space of the earth’s surface characterized by
closure, positive curvature (convexity), quasi-fractality, and
anisotropy in geophysical fields (for example, in the gravi-
tational, magnetic field of the Earth). Geospatial location is
determined by spherical (latitude and longitude) or rectangu-
lar coordinates. The anisotropy of the geo-space is expressed
in the unevenness of the horizontal and vertical directions
(vertical movement is fairly complicated), and results in
the sphericity of the Earth’s structure, as well as latitudinal
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and longitudinal directions, the manifestation of which is
latitudinal zonation. This determines the specific topology of
data allocations for model calculations. In this situation, the
results of observations are the sets of data obtained at certain
points, and thus, although they are geo-referred, they do not
necessarily correspond to all basic postulates that follow from
the definition of geo-space.

From a mathematical viewpoint, the problem is to include
the observation data (a priori stochastic data, which must be
described by completely different methods and which are not
necessarily complete) into the set of calculation data with
the given topology (into the model data calculated on geo-
space). In the general case, solving this task should solve the
topological problem of bringing the topology of one set (with
a given topology)with the number of sets of randomdatawith
an a priori indefinite topology.

In our case, the topology of the set of model data is
given by the definition of geo-space, although the topology of
sets of observational data is a priori not defined [18]. Based
on the general theory of obtaining and analyzing data from
experiments [9], we can analyze the data of current meteoro-
logicalmeasurements in terms of the theory ofHilbert spaces,
in which limited and unrestricted operators, and random
elements and operators are defined, and thus the elements
of linear and convex programming are determined. Thus, in
our case, the use of the theory of finite-dimensional Hilbert
spaces for the analysis of meteorological measurement data
distributions may allow us to obtain results that will enable
us to determine the topology of the corresponding sets and
integrate data into sets with the topology, defined in the geo-
space.

The representation of observations in Hilbert spaces al-
lows us to stay within the framework of the so-called local
simulation and thus avoid the need to determine boundary
conditions dependent on the data structure [19]. In the fu-
ture, this frees us from the need to harmonize the boundary
conditions of two different types of data. Thus, the mathe-
matical problem is reduced to finding the correct method for
integrating meteorological observations, in the general case
presented in the Hilbert random spaces, and simulation data
presented as uniform normalized sets of data defined in the
geo-space with the given topology.

Figuratively, this task can be represented as the gluing of
patches of arbitrary shape and size on the surface of a round
ball. In this case, the patches must be adjusted to each other,
the total area of the patches is much smaller than area of the
ball, the patches can have any shape and topology, and the
ball has a finite elasticity, i.e., it can never change the positive
curvature. The method proposed in this section is that the
patches are pre-smoothed, their edges are cut and fitted to
each other, after which they are consistently glued to the
surface of the ball.

Thus, we propose to embed into the model the additional
data not used during the construction of the model, and re-
calculate the necessary parameters on a grid that meets the
needs of local simulation and is based on available data.
This means that, unlike traditional downscaling, the proposed
approach is based not on the results of simulation and on the
properties of the resulting sets (with a substantially limited
spatial and temporal resolution), but on the data of regional
measurements. Therefore, the local data become decisive for
the regionalization of the model in this approach, which is a
fundamental difference.

Thus, the problem is divided into the problem of reduc-
ing the method of observing analysis and obtaining data
measurement distributions, and the task of integrating the
obtained reduced data into the model distributions with sub-
sequent calculation of parameters on a reduced grid.

When we solve the problem of specifying the model
on the sets of observational data presented as the Hilbert
spaces in part of the reduction of the method of observa-
tion analysis, we will consider sets of data ξ (xij), measured
within the framework of the method presented by linear
operators A0 → A. To refine A, with sufficiently known
(known and/or controlled epistemic reliability) signal f ′(xij),
represented by a random vector with a known covariance
operator F ∈ (� → �), Fx = Ef (x, f ), x ∈ �, we will be
measuring the sets of variables [9]:

ξ ′ = Af ′ + ν ′, (47.12)

where ν is a random element of a Hilbert space �̃ with
a correlation operator 	x = Eν (x, ν) , x ∈ �̃, Eν = 0,
which determines the error, or a “noise” – the measure of
aleatoric uncertainty of measurements; ξ ′ indicates measure-
ments refined with the model ξ ; ¨ indicates mathematical
expectation; £ indicates the methodology, or the “model
of measurements” are random linear operators (such that,
A ∈ B� → �̃, x ∈ �, y ∈ �, whereas the function
f (Ax, y) = f (x,A∗y)) defines the method of data transforma-
tion.

If we introduce any measurable set ¯ (M ⊂ �̃ Å �),
on which we define a random vector η, that describes the
distribution of regularized data with a certain reliability, then
in relation to it the problem of determining the methodology
for integrating observation data into a general model, that is,
refinement (reduction) operators, can be defined as [20]:

Aη = E (A|η) , Jη =
(
E
((
A− Aη

) ∗ F (A− Aη

) ∗ |η) .
(47.13)

Here, F is a covariance data operator; J is the operator of
uncertainty.
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In this case, the task of reducing the data distributions can
be formulated as:

E
(
inf
{
E
(∥∥R′ξ − Uf

∥∥2|η
)
R′ ∈

(
�̃ → U

)})

= E
(
E
(∥∥Rηξ − Uf

∥∥2|η
))

= E
∥∥Rηξ − Uf

∥∥2,
(47.14)

whereU is the orthogonal projector to the subspace �. Thus,
we are talking about the determination of a random operator
R′ = Rη, which corresponds to the condition (47.20):

inf
{
E
(∥∥R′ξ − Uf

∥∥2|η
)
R′ ∈

(
�̃ → U

)}

= E
(∥∥Rηξ − Uf

∥∥2|η
)

. (47.15)

After solving this problem, we obtain mutually coherent
distributions of observation data with coordinated bound-
aries, based on the results of the analysis of data from individ-
ual measurements. The resulting sets, represented on Hilbert
spaces, can be integrated (reduced) into the global models of
any complexity with current topological properties.

Thus, at the first stage, the problem is reduced to the de-
termination of regularized distributions of observation data.
In addition, it should be noted that the problem of esti-
mating the uncertainties of the distributions obtained is still
urgent.

The task of obtaining the sets of statistically reliable
distributions that are regularized in space and time of required
indicators from the observed data (for example, from meteo-
rological stations) in the research area can be solved using the
proposed [14] algorithm for nonlinear spatial–temporal data
regularization based on the analysis of the main components
with the modified method of the smoothing nonlinear ker-
nel function, kernel principal component analysis (KPCA)
[8]. Using the proposed algorithm we obtain a regularized
spatial–temporal distribution of the characteristics of the
investigated parameters throughout the observation period
with smooth reliability, taking into account all sources of
observation [8, 14].

In accordance with the above general approach, the task is
to integrate a plurality of data presented in the form of Hilbert
spaces with given linear transformation operators to a set of
data with a given topology (a set of model decisions).

Thus, based on the results of data analysis within the
framework of the described method, we obtain a set of
normalized distributions ξ t = Atf (xt)+ ν t, where t is the time
(defined as themodeling step for a plurality ofmodel data and
as a measure of the data set). In the future, it can be proposed
to jointly analyze the modeling and observation data in the
modified ensemble transform Kalman filter (ETKF) modifi-
cation method [21].

In this case, we assume that the vectors of the true state of
the system x at time k are determined in accordance with the
general law:

xt = Ftxt−1 + Btut + wt, (47.16)

where Ft is the matrix of the evolution of the system, or the
simulated effects on the vector xt − 1 at the moment t − 1; Bt
is the matrix of controls, measured by the effects ut on vector
x; wt is a random process with the covariant matrixQt. In this
way, we introduce the description of the model distributions
Fx and the observation data Bt.

Let us determine the extrapolation value of the vector of
the true state of the system by evaluating the state vector in
the previous step:

x̂t|t−1 = Ftx̂t−1|t−1 + Btut−1. (47.17)

For this extrapolation value of the vector of the true state
one can determine the general form of the covariance matrix:

Pt|t−1 = FtPt−1|t−1F
T
t + Qt−1. (47.18)

The difference between the estimated (extrapolation)
value of the vector of the true state of the system and that
obtained at the appropriate simulation step can be estimated
as:

�x̂t = ξt − Atx̂t|t−1, (47.19)

a covariance matrix of deviation:

St = AtPt|t−1A
T
t + Rt. (47.20)

Then, based on the covariance matrices of extrapolation to
the state vector and the measurements, we introduce a matrix
of optimal coefficients of the Kalman amplification:

Kt = Pt|t−1A
T
t S

−1
t . (47.21)

Using this, we will adjust the extrapolation values of the
vector of the true state of the system:

x̂t|t = x̂t|t−1 + Kt�x̂t. (47.22)

Also, we introduce a geo-referred filter for the distribution
of the vector of the state xij, which will depend on geograph-
ically bound j, i and in the general case, this will not depend
on the time t:

(
xij
)
t
= (xij

)α
t

= (xij
)
t
αij. (47.23)

Here, the coefficients α are chosen according to the intro-
duced KPCA algorithm [13], according to the rule of estimat-
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ing the optimal balance of the mutual validation function and
the covariance matrix:

CFv = 1

N

N∑

j=1

�
(
xj
)
�
(
xj
)T ·

N∑

i=1

αi�(xi) , (47.24)

where the nonlinear function of the data distribution · cor-

responds to conditions
N∑
k=1

�(xk) = 0, and k̃t is the average

value of kernel matrix K ∈ RN ([K]ij = [k(xi, xj)]). This
matrix consists of kernel vectors kt ∈ RN , [ki]j = [kt(xt, xj)],
and is calculated according to modified rule kt (xi, xt) =〈
ρ
xj
j,t

(
1 − ρj,i

)xj〉, where ρ indicates empirical coefficients,

selected from the model of the studied phenomena [8].
If we apply this filter and remember to reconcile the sets

of data, we can offer the form of the covariance matrix Pa to
analyze the actual errors based on the form of the covariance
matrix of the extrapolated value of the state vector of the Pf

system and the matrix of covariance of the observational data
R:

Pa = Pf − PfAT
(
APfAT + R

)−1
APf . (47.25)

Thus, we obtain a tool for optimizing the calculation of the
matrix of optimal coefficients of the Kalman amplification
and, accordingly, correction of the extrapolation values of
the vector of the true state of the system with regard to the
aggregate data of modeling and observations.

After completing the data integration procedure, we can
calculate the necessary parameters by the algorithm [8]:

x(ij)
t =

n∑

m=1

wij
(
x̂mt
)
xmt , (47.26)

wherewij
(
x̃mt
)
is the weighting coefficient, determined by the

rule [8, 13]:

min

⎧
⎨

⎩

n∑

m=1

∑

xmt ∈Rm
wij
(
x̃mt
) (

1 − xmt
x̂mt

)2
⎫
⎬

⎭ . (47.27)

In this equation, m is the number of experiments con-
ducted; n is the number of data sources; xmt is the distribution
of the results of observations; Rm is the set of data; x̂mt is the
corrected extrapolation values of the vector of the true state
of the system by aggregate modeling and observational data.

Therefore, we obtain a regular spatial distribution of mea-
surable characteristics in the local study area, both as a
result of model calculations, and taking into account regional
measurements on a grid that corresponds to the distribution
of data, that is, it has a much better resolution than the usual
model.

47.4 Approach to the Risk Assessment as
the Analysis of Coherent Complex
Measures of Multidimensional
Multivariate Distributions

The key question of the assessment is the quantification of
risk in cases of multidimensional multivariate variables. This
case requires a correct assessment of all parts of the loss
function. The set of corresponding probabilities p, that is,
the sets of quantiles q corresponding to the distribution p
should be analyzed and estimated. The distribution func-
tion can be continuous (and in this case the function q(p)
under the conditions of continuous distribution of p should
be analyzed), or discrete (and in this case we obtain a set
of N separate values q(p) for each p). In cases where the
distributions of the measured quantities and the distributions
of the corresponding probabilities p are not known and can-
not be represented as linear normal distributions (in most
real cases), nonparametric estimation methods should be
used.

Nonparametric methods are aimed at risk assessment
without applying rigorous assumptions about the properties
of the distributions studied. That is, instead of the input
of distribution parameters, we estimate the risk by empirical
distributions, which stem from the properties of the
distributions of data. In relation to parametric methods,
nonparametric methods can prevent the risk of a false a priori
estimation of distribution, which leads to large errors in the
final risk measurements. Nonparametric methods are based
on the assumption that the closest values are distributed in
the same way as the previous data; thus, we can predict the
evolution of the system using the latest data (represented by
empirical distributions). The usefulness of nonparametric
methods in practice depends on the observance of this
assumption in different situations. As practice shows, in most
cases this assumption is fulfilled and, thus, nonparametric
methods work well. On the other hand, if this assumption
is not fulfilled, especially at the boundaries of distributions,
nonparametric methods may have sensitive uncertainties, in
particular, if distributions have extremes.

Typically, quantile values are derived from histograms
of empirical data distributions, which are regularized and
specified in various ways. In particular, it is possible to
regularize the histograms using kernel methods, which are
the most complex of modern nonparametric methods for
estimating distributions, and allow smoothing of the toothed
histograms without introducing rigorous assumptions about
the properties of data distributions.

It is also possible to extend the range of nonparametric
estimation methods by including not only empirical statis-
tics known from observations, but also additional data, in
particular, artificially constructed distributions. For example,
it is possible to construct a separate hypothetical scenario
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based on individual data, with a certain probability of its
implementation, and to apply a nonparametric method of
joint assessment of the empirical (“historical”) and hypothet-
ical (“nonhistorical”) scenario. Inclusion of the consideration
of additional, for example, hypothetical distributions, allows
us to overcome the main disadvantage of nonparametric
estimation methods – their complete dependence on the sets
of empirical data and, thus, the weakness in determining
extremes. An important tool for studying the mutual depen-
dencies of sets of distributions is the copy function. In Frees
and Valdez [22] a general description of the use of copula
functions for quantitative risk assessment is presented. These
methods are described in more detail in Cherubini et al. [23].

For the assessment of long-term multidimensional inter-
relations in multivariate distributions, based on the results
of the data analysis, it is suggested that the copula might
be used in an elliptic form [23]. In particular, based on the
analysis of the obtained data, for the further analysis of risks
and the definition of strategies for minimization of disaster
losses, use of a multidimensional probability distribution
function can be proposed that takes into account the identified
multivariate internal dependencies in the structure of disaster
distributions in the best possible manner.

If the observation distribution can be described by ran-
dom vector (X1,X2, . . . ,Xn) with mutual distribution func-
tion FX1(x1) FX2(x2), . . . , FXn(xn) and marginal distribution
functions FX1(x1) FX2(x2), . . . , FXn(xn), on the hypercube
[0, 1]n a distribution function C with the uniform marginal
distributions on the segment [0,1] can be defined, and the
condition FX1, X2, . . . , Xn(x1, x2, . . . , xn) = C(FX1(x1), . . . ,
FXn(xn) will be fulfilled.

Application of the regularization algorithms allowed the
distributions satisfying the stated conditions to be obtained;
in addition, the distribution functions FXi may be presented
as continuous for all i = 1, 2, . . . , n, and, thus, the distribu-
tion function C, which is called the copula, will be defined
unambiguously. For our case, the copula can be represented
as:

Cv,c (u1, u2, . . . , un) = v
√|c| (vπ)n

v+ n
·

N∏
n=1

(1+ 1
n )

v+n
2

1+ v+n
2n

N∏
n=1

(1+ 1
n )

v
2

1+ v
2n

·

∫ (u1)

x1
. . .

∫ (un)

xn

(
1 + x(x,y)

i

cv

)
dx(x,y)

t ,

(47.28)

where Ô is the correlation matrix obtained from analysis of
regularized data.

The possibility of the application of this type of copulas
to describe the dependencies between the disaster risks is
confirmed by studies in the field of finance and insurance,

in particular, Bradley and Taqqu and Rachev et al. [24,
25]. Thus, the proposed formula can be considered with a
particular case of the general approach to risk assessment
described in Rachev et al. [25].

In this form, we get the opportunity to determine the long-
term trends of the interconnected processes and phenomena
represented by stochastic observational data [26, 27].

However, one should take into account the fact that the
risks in complex cases of describing large multicomponent,
multiphysics systems at certain time intervals cannot be
adequately described by linear superpositions of scalar cor-
relations [28]. Here, it is necessary to use more complex
dependencies, which reflect the complex interconnections in
the system, and take into account the spatial–temporal hetero-
geneity and uncertainty inherent in the studied phenomena.

For analysis of the studied phenomena in intervals, in
which its behavior differs essentially from normal, we pro-
pose using the following copula [29]:

C (u1, u2) = exp
(

−V
(

− 1

log u1
,− 1

log u2

))
, (47.29)

V (x, y) =
∫ 1

0
max

(
ω

x
,
1 − ω

y

)
dH (ω) , (47.30)

where:

H (ω) =
⎧
⎪⎨

⎪⎩

0,ω < 0;
1/2(ω (1 − ω))−1−α

(
ω−α(1 − ω)−α

) 1
α−2 dω, 0 ≤ ω < 1

1,ω ≥ 1

.

(47.31)

For analysis of interdependent (or weakly dependent)
phenomena, for example, hydrological disasters, we can use
the form 0 ≤ ω < 1.

This formalization allows a better understanding of the
interdependencies between climatic parameters and disaster
distribution on a regional scale, and additionally allows regu-
larization algorithms for reducing uncertainty to be integrated
[30].

For further analysis of risk behavior measurement depen-
dent on number of climatic, ecological, etc., independent het-
erogeneous parameters, we propose another algorithm. This
method is based on the approach to coupled nonparametric
analysis of multidimensional, multivariate distributions by
kernel copulas [31]. Using this approach it is possible to
reduce uncertainties and errors connected with differences in
measurement intervals, and to smooth gaps in data distribu-
tion [32].
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If Ku, h(x) is the kernel vector for u ε [0;1] on interval h > 0

we can propose accordingly [31]:

Ku,h(x) = K(x) (a2 (u, h) − a1 (u, h) x)

a0 (u, h) a2 (u, h) − a21 (u, h)
, (47.32)

al (u, h) =
∫ u

h

u−1
h

tlK(t)dt, l = 0, 1, 2. (47.33)

Also, in this case the functions Gu, h(t) and Tu, h:

Gu,h(t) =
∫ t

−∞
Ku,h(x)dx, (47.34)

Tu,h = Gu,h

(
u− 1

h

)
(47.35)

can be defined.
The distribution function of the complex parameter will

be determined by distribution functions of studied parameters
X1, X2, . . . , Xn using copula C:

F (x1, x2, . . . , xn) = C (F1 (X1) , F2 (X2) , . . . , Fn (Xn)) .

(47.36)

Distribution of extremes of the studied parameters will
be described by distribution functions Fi(x) corresponding to
threshold xi > ui as:

F̂i(x) = 1 − Nui
n

(
1 + ξ̂i

x− ui

β̂i

)− 1
ξ̂i
, i = 1, 2, (47.37)

where ξ indicates the smoothing parameter, and β indicates
interdependence parameter (β ε [0,1]; β = 0 for independent
distributions, and β = 1 for absolutely dependent distribu-
tions).

In this case, the optimal kernel copula estimator may be
presented as [8, 33]:

Ĉ (u, v) = n−1
n∑

i=1

Gu,h

(
u− F̂1 (Xi1)

h

)
Gu,h

(
v− F̂2 (Xi2)

h

)

− (uTu,h + vTu,h + Tu,hTv,h
)
. (47.38)

For example, for the area studied in northwestern part
of Ukraine, on the base of multiyear statistics an “optimal
correlator” between air temperature and disaster frequency
was determined: “reduced max temperature” [8]:

Tred =

⎛

⎜⎜⎜⎝1 −
1
N

N∑
n=1

Tn

Tmax

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝1 − 1

Tmax − 1
N

N∑
n=1

Tmax

⎞

⎟⎟⎟⎠ .

(47.39)

Here, N is the number of meteorological measurements,
Tn is the measured air temperature, Tmax is the maximum
registered air temperature. This parameter allows more accu-
rate interrelations between the long-term change of climatic
indicators and the frequency of hydrological and climatic
disasters to be calculated. The approach proposed is more
correct relative to the analysis with traditional variables.
Depending on the time interval, the multicomponent corre-
lation obtained allows increased accuracy of the assessment
of disaster frequency up to 22% [8]. This is an essential value
for mid- and long-term regional forecasting.

47.5 Notes on Decision-Making
Approaches in Environmental
Risk Analysis Using Satellite
Data

Despite a well-developed theory, risk assessment remains a
complex task with deep uncertainties in many important
cases. Especially in such complex cases as socio-
environmental tasks, when we are dealing with complex
multicomponent and multiphysics systems heterogeneously
distributed in time and space.

In the general sense, the risk of R causing damage or
potential losses L as a result of disaster occurring with
probability p can be estimated as:

Ri = Lip (Li) . (47.40)

Or for all assemblage of events i ∈ I on the interval I: R =∑
i
Lip (Li).

In the integral form [34] it is possible to present:

R (x, t) =
∫
fi (x,ω)P (x, dθ) , i = 1, . . . . , m, (47.41)

where f(x,ω), and P(x,ω) indicates stochastic functions and
random distributions of probable events, which lead to a neg-
ative impact. Thus, in the general case, the risk is described
as a superposition of several random processes.

In the general case, the definition of the functions f(x,ω)
and P(x,ω) is a very complex task, which requires the
introduction of additional conditions and restrictions. But
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application of satellite observations and modeling can help
to determine these functions.

Let us interpret the components of the equation of risk
f(x,ω) as a function of propagation of the natural process,
which produces hazardous effects on the components of the
natural and anthropogenic environment in the considered
area, and P(x,ω) as a function of the impact of individual
components and objects of natural and anthropogenic envi-
ronment in the considered territory under the influence of
dangerous influences, according to Ermoliev et al. and Pflug
and Werner [34, 35].

Under such an assumption, the risk assessment in each
individual case can be reduced to two general cases. In the
first case, we accept the impact function of the distribution
of vulnerable components over the observation area (for
example, vulnerable infrastructure, ecosystem component,
etc., obtained from satellite observation), in a certain way
ranked by the disaster statistics, and focus on the analysis,
and on the verification of the set of features derived from
the problem-oriented model of the drivers of a dangerous
process.

Otherwise, we confine ourselves to the general definition
of the properties of the propagation function, and concen-
trating on the analysis of the impact function, and on the
statistical properties of the distribution of indicators of influ-
ence that we can observe. Depending on the specific problem
being solved, the first, second path, or a combined approach
can be used.

Regarding the methods of integrated information gath-
ering, it should be noted that during the last 40 years, re-
mote sensing and especially satellite observation methods
have demonstrated explosive progress, including significant
development of its methodology [36, 37]. As long as the
basic methodological idea is now based on models of signal
formation, the monitoring methods are based on the models
of individual indicators, and control of natural processes is
based on the analysis of sets of indicators [36, 38]. Our under-
standing of ecosystem structure and functioning is now more
comprehensive and accurate: the complex nexus between
the processes and phenomena can be analyzed, the feedback
in an multi-agent environment can be simulated, and the
integrated dynamics of the processes can be modeled to
predict the behavior of multicomponent systems [39]. In this
context, the remote sensing methods play a role as a source of
information about the behavior of important variables of the
used interlinked models. Therefore, remote sensing is now
the tool not only for monitoring but also for predictions and
forecasts.

Therefore, further evolution of our ecological knowledge,
and the development of remote sensing technologies, require
further development of the methodology of remote sensing
applications, including new methods of data processing and

interpretation, a new foundation for the selection of the sets
of interrelated indicators, based on the new ecological models
[40]. Utilization of new kinds of indicators may also re-
quire new approaches to risk assessment, based on advanced
methodology. In particular, this kind of approach should not
be based on assessments of mean values and their deviations
[41], but should be focused on optimal decision making in a
complex multicomponent and multiphysics environment.

Let us consider a formal task. To solve the task of remote
sensing data utilization in a multimodel approach to risk as-
sessment for decision making in a complex multicomponent
and multiphysics environment as a formal representation, we
first need to consider the problem of the models’ applica-
tion to the selection of the optimal set of remote sensing
indicators [8].

The initial stage includes the process of forecast genera-
tion, which is based on the set of initial a priori assumptions,
observed or measured values [42], described as a vector x
(x = (x1, x2, . . . , xs)).

The further step is the modeling: model recalculation
of these values into a group of core hydrological, bio-
physical, and climatological series (with F(x, ε, y) = 0,
(x, ε) → y), collected in a vector y. Next, based on the
information from the pair (x,y), we calculate values for a list
of parameters, grouped into what is referred to as the vector
of satellite indicator-based models: z = (z1, z2, . . . , zs) (with
zs = gs(x, y), (x, y) → zs).

As a result of the integrated modeling we obtain
parameters summarized in the triplet (x,y,z). This combined
vector is a starting point for the modeling of socio-economic,
socio-ecological, and risk parameters, as presented in
Fig. 47.2 [42].

Usually, we consider a group of S satellite data-based
models, labeled s ∈ {1, 2, . . . , s}. Each of these equations is
such that the endogenous variables zs can be obtained as an
explicit mapping of the core variables zs = gs(x, y).

Therefore, the satellite model might be conceptually pre-
sented by the time-series (x,y,z), which will determine the
behavior of zst , with a residual term μs

t :

x = (x1, x2,..., xs)

Multi-source
data sets

F (x, e, y) = 0
(x, e) � y

Core natural models

zs = gs (x, y) 
(x, y) � zs

Satellite models

R (x, y) 
Risk models

Fig. 47.2 Approach to decisionmaking and risk assessment usingmul-
tisource and multimodel data in tasks of socio-environmental security



47 Environmental Risks Analysis Using Satellite Data 959

47
zst = f

(
xt, xt−1, . . . , xt−L, yt, yt−1, . . . , yt−L, zst−T ,μ

s
t

)
.

(47.42)

This presentation of the satellite model in the simple
unidirectional time-series form has neither interactions with
other variables nor any feedback between zst and the core
initial a priori assumptions [40]. Among the wide range of
satellite data-based models, the time-series models are well
known and widely used, for example, in the form of au-
toregressive moving average models including, for example,
autoregressive lags and/or moving-average components. To
find the most usable model of the data-generating process for
a given risk metric Zt a number of standard methodologies
may be applied:

Zt = c+
N∑

l=0

βlXt−l +
P∑

l=0

ρlYt−l +
L∑

l=1

∂lZt−l +
K∑

k=0

θkεt−k.

(47.43)

In this equation Zt is a satellite variable vector, Xt is a
vector of initial core variables, Yt is a row vector of the layer
of core parameters, εt is the stochastic error, and c, β, ρ, and
∂ are the unknown parameters.

It should be noted that in some cases, the approach is sen-
sitive to the used method: for example, using autoregressive
methods in the model may lead to a decrease in the impact
of the core drivers on the target variables [43]. Therefore,
depending on risk metric Zt and on the type of core and
supplementary variable the varied form of Eq. (47.43) may
be applied. In particular, for the analysis of climate-related
risk an approach based on copula utilization may be used [8].

In the modern paradigm of earth sciences complex risk
analysis requires involvement of statistics from a combina-
tion of ecology, climatology, hydrogeology, hydrology, and
geo-statistics to produce a correct analysis of the statistical
properties of the estimated model [8, 42]. Therefore, a vari-
able selection for identification of core drivers of the dynamic
behavior of the studied socio-ecological risk variable is a key
aspect of satellite model development [8, 42].

It should also be noted that the sensitivity of the approach
to the method is varied on different time and spatial scales.
For example, despite impressive results of recent years and
good fitting of the existing data, models based on data min-
ing, machine learning, or neural networks often fail in long-
term forecasts, because they are not able to follow a changing
external environment because they lack a theoretical basis. At
the same time, because machine learning in environmental
security can be interpreted as a nonparametric method of
assessment of the high dimensional systems, the proposed
approach may also be utilized as a way of adapting the
machine-learning methods to separate tasks. It makes sense
to assume that the best analytical and prediction approaches

should be based on a combination of statistics and physical
models, and should combine geo-ecological models with
statistical optimization [42]. Besides, models built this way
have the additional benefit of ease of interpretation.

To develop a satellite model the optimal exogenous drivers
Xt, Yt should be selected from a set of all potential drivers in
Eq. (47.43). Potential drivers can usually be defined based
on relevant theory or a priori assumptions and identified by
calibration measurements. Application of calibration mea-
surements ensures that the most robust model for the tested
variables is obtained. The selected drivers should be statisti-
cally significant and have the known distribution parameters;
to obtain a required distribution a regularization procedure
should be applied [8, 42]. The conditional dynamic forecasts
of Zt can be generated based on the selection and estimation
of the satellite model, taking into account the sets of final
parameter estimates and the forecasts of the core variables
from the first stage. The validation of the final model on
the number of samples is the final estimation step. The final
models selected by the search procedure are reviewed for
consistency with initial assumptions.

Thus, the problem is the selection of variables for each
model type (x, ε) → y, the search for the relevant type of
formal relationship (x, y) → zs between the physical and
observable variable parameter, and the development of the
total distribution for each type of risk investigated [42].
Directed modeling should solve this problem. The problem
of regularization of the initial distribution of variables should
be considered separately [42].

Therefore, using the proposed method the sets of param-
eters can be obtained, describing the state of the system ana-
lyzed. Further, based on the obtained parameter distributions,
it is possible to estimate a distribution of risk and make
management decisions.

Let us consider a task on the methodology of risk as-
sessment, based on the optimal decisions, and based on
the obtained sets of indicators [41]. First of all, it should
be noted that in the formal task of risk assessment and
management, the reduction or non-increase of losses should
be used as a quantitative parameter of control. At the same
time, the variables affecting the characteristics of the man-
agement or decision-making system can be both controlled
and unmanageable. In this situation the controlled variables
should be described as the parameters of decision making in
the context of the influence of input data on the behavior
of unmanageable variables. The full cycle of collecting,
processing, interpretation of information about the system
studied, the decision making, and the analysis of the sys-
tem’s response to decisions may be considered within the
framework of the “information–response” formalization. The
“information–response” formalization can be presented as
follows [9]. Let us define as presumably stochastic I(x,y,z) in-
put information obtained from measurements, observations,
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and model forecasts; HI(i|θ ) is the probability distribution
function, where θ is a state of the studied object or system.
Because the state of the system cannot be determined with
certainty, the appropriate probability distribution p(θ ) and
distribution HI(i|θ ), which describe a priori incompleteness
of information available on the studied system, should be
defined.

Let us define as the decision function d(I) a formalized
response to incoming information, presented as the making
and implementation of management decisions. Let us also
define losses as l(d(I), θ ) under conditions of a constant state
of the studied systems θ , or with a defined change in this
state. The expected losses associated with the expansion of
dangerous processes, connected to themanagement decisions
based on the information received, described by the decision
function d, can be presented as [44]:

R (I, d) = R
[
HI (•) , d

)
, d
]

=
∫∫

l (d(i), θ) dHI (i |θ ) p (θ) dθ. (47.44)

To minimize this risk the optimal Bayes decision function
d* can be applied:

R
(
I (zs) , d∗) = min

d(i)

∫∫
l (d(i), θ (x, y)) dHI (i |θ ) p (θ) dθ.

(47.45)

Thus, it is formally shown that the risk can be reduced to
a simple decision function. At the same time it is important
that the minimization of losses requires a completeness of
information on the studied system. In other words, all states
θ should be determined, for each of which a solution {a} can
be defined, which form a set of possible decisions A.

Let us further consider the realization that the set of
data i*, which consists of information obtained from direct
measurements, observations, and model forecasts, optimizes
the decision function d*, and can be applied to minimize risk.
This set of data nominally makes information (I) formally
completed (I*). Formally, we can assume that the information
is nominally full if there is a separate realization of informa-
tion I or a single state of the studied system that meets all of
the set of data; or, formally speaking: I* ≡ I if there exists
a function φ(i), that when HI(i|θ ) �= 0, θ = φ(i). In the case
analyzed it means that the set of models (x, ε) → y operated
the sets of parameters (x, y) → zs, controlled by certain
technological tools within the framework of a sustainable
methodology of measurement, should be developed. Taking
into account the above-described models, these requirements
correspond to the satellite models zst .

Basing on the requirement for information completeness,
an optimal decision function can be as follows:

d∗ (i∗
) = b, l

(
b,φ

(
i∗
)) = min

a
l
(
a,φ

(
i∗
))

. (47.46)

In this formal case, with an appropriately defined optimal
decision function and nominally complete information, the
risk function can be defined as:

R
(
I∗, d∗) =

∫
min
a∈A l (a, θ) p (θ) dθ. (47.47)

Although it is important to remember that this approach is
sensitive to the mutual completeness of information: for the
analysis of behavior of the distribution of HI(i|θ ) and Ó(θ )
and so to the determination of the realization of i* of set I,
the relevant models should be developed.

This formalization allows a wide range of optimal deci-
sion functions to be utilized: a stochastic [45], Bayesian [44],
or fuzzy operator [46], depending on the task, data availabil-
ity, and properties of their distributions can be applied.

The proposed approach is a complex of models and algo-
rithms, which is aimed at the calculation of a unique set of pa-
rameters that should be obtained from observation systems,
using determined tools for data processing and interpretation.
Equation (47.47), based on an important nexus, allows the
distributions of risk to be estimated and a basis for decision
making to be developed too.

Speaking of modern methods of statistical analysis of
multisource data in the tasks of environmental risk anal-
ysis, it should be noted that the modeling of geo-systems
and the remote sensing interpretation methods should be an
integral part of the risk assessment systems. We need to
increase our level of knowledge in the field of earth sciences,
as well to increase requirements in the area of decision
making, because new challenges define new methodolog-
ical frameworks. The approach proposed is based on the
methodology that allows the problem definition of using the
satellite observations in tasks of socio-ecological security
to be expanded. In particular, in addition to traditional sta-
tistical analysis directed at change detection, it is possible
to predict a state of the studied systems, basing on the
models of geo-systems. These capabilities certainly expand
the scope and sphere of the application or approach, and
could positively affect the reliability of the results obtained
through the use of different sources of data. Also important
is that the proposed methodology includes feedback between
management decisions and the system state, and it is formally
postulated that risks depend on the decisionmade and on past,
current, and planned management impacts on the system.
Therefore, such a complex of methods and algorithms, com-
bined into common methodology, could positive affect the
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effectiveness of management decisions and the quality of risk
assessment [41].

47.6 Conclusions and Discussion

A nonparametric, multistage algorithmic procedure for the
statistical analysis of observational, measurement, and statis-
tics data, which allows regularized distributions to be ob-
tained in units invariant to the nature of the data, is proposed
and discussed in this chapter. It allows input datasets for risk
modeling to be obtained, and at the same time the different
types of emergencies to be analyzed, irrespective of their
origin, despite the different time and spatial scales that are
inherent to driving forces and processes that generate danger.

In addition, the fundamentals of the regionalization of
climate change models based on regularized regional obser-
vations are proposed through the integration of local mete-
orological observations into global climate models based on
the Kalman filtration method. This approach allows multi-
scale modeling to be utilized, with multisource data in risk
assessment tasks.

Thus, it can be argued that a methodological basis for
assessing the long-term risks of disasters associated with
climate and environmental change has been proposed. That
is, a methodology for the estimation of long-term socio-
ecological risks based on integrated monitoring is proposed,
and an approach to mathematical modeling of the environ-
ment using satellite data is given. This approach can be used
as a methodological basis for decision making in the field of
socio-ecological security.

At the same time, some important limitations should be
mentioned.

The proposed method of multistage analysis of disaster
parameters, based on the KPCA algorithm has certain limi-
tations arising from the nature of the algorithm used.

First, the method relates to the so-called local modeling
methods [19], and thus to the family of nonparametric esti-
mation methods based on the properties of the studied data
distributions, and do not require the inclusion of additional
conditions, a priori distribution parameters, etc. In general,
local models, unlike “global” balance models, do not require
the implementation of conservation laws [19], or at least,
their simultaneous execution.

This allows the freedom of choosing the boundary condi-
tions, not imposing additional complex constraints, and using
the entire set of observational data.

At the same time there is another problem. The conserva-
tion laws are based on the assumption of the homogeneity of
time, and by abandoning the laws of conservation, we lose the
time scale, which can be significant for scenario calculations.
This problem can be solved by including an artificial timeline
for each (or for certain sets) distribution and modeling case,

or, as in our algorithm, by entering time as a universal
measure of random sets of observational data. In this way, we
are removing the general problem. Regularization of varied
sets of heterogeneous data can be correctly performed using
the proposed path.

However, when analyzing the distribution of extreme in-
dices in relation to the changes in themean value, the problem
of time arises again in a different form. Using time as a
universal measure does not allow distributions of mean and
extreme indicators to be analyzed independently in time. That
is, within the framework of the presented form of the pro-
posed algorithm it is impossible to accurately determine the
short-term gradients of extreme values under the monotonic
behavior of the mean.

In practice, this means that effective analysis of the ex-
treme parameters as the driving forces of disasters using
the proposed algorithm is possible, usually on a long and
on a medium scale. For short-term intervals, increasing the
reliability is possible only by improving the spatial resolution
of the method.

For the short-term (from several days to several weeks)
estimates, the method should be modified, in particular,
through verification by local measurement (from a method-
ological point of view – through the involvement of a quasi-
independent set of data with a definite time scale).

The mentioned limitations should be taken into account in
application of the proposed method.

Thus, although within the framework of the solved prob-
lem (construction of methodology for medium- and long-
term risk assessments) the proposed method is quite suitable
and is, according to individual indicators, better than existing
analogs, it has limitations in its application in solving other
types of tasks and requires some modifications.
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Abstract

The chapter presents a systematical method for prob-
abilistic analysis using safe-life and damage tolerance
models. In particular, the reliability analysis incorporating
those models are developed to provide a basic frame-
work for the life prediction given risk constraints and
the time-dependent probability of failure estimation. First,
the probabilistic modeling is presented, and the uncer-
tainties from model prediction and data are considered.
The uncertainties are quantified and are encoded in the
probability density functions of model parameters using
probabilistic parameter estimation. The propagation of
the characterized uncertainties to the result of quantity
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of interest can be obtained using probabilistic prediction.
Next, the reliability model based on the probabilistic
modeling is introduced, where the safe-life model and the
damage tolerance model are discussed in detail. The life
prediction given a certain risk constraint and the time-
dependent probability of failure estimation can be made
using the developed method. Two examples are employed
to demonstrate the overall method.

Keywords

Reliability · Probabilistic models · Safe-life · Damage
tolerance · Probability of failure · Bayesian

48.1 Introduction

The design philosophies have undergone a paradigm shift
over the past few decades. The investigation of the disinte-
gration of de Havilland Comet commercial jet in flight in
1950s made it clear that the life estimate of fatigue critical
structures are highly necessary. This requirement leads to the
safe-life designmethod. The design practice started to change
in the 1960s toward the fail-safe design, which essentially
is a principle to provide redundant load paths as backups
in the event of localized failure. The fail-safe design can be
viewed as an extended version of the safe-life design. In safe-
life approach, the fatigue life of a structure or a component
is certified by testing data and analysis. A fundamental as-
sumption in this approach is that the material has no initial
flaw at the beginning of the service. Although the existence
of material flaws depends on the scale at which the material
is examined, it is usually determined at a scale that a standard
inspection technique can be applied. For example, a turbine
disk is considered flawless when no indication is found using
the certified ultrasound inspection. An indication is defined
as the echo amplitude along the sound path being larger
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than a predefined threshold, e.g., 20% of the screen height.
This predefined threshold is used to differentiate a small
flaw from the backscattered noise components in the echo
signal data caused by material grain boundaries. As a result,
material flaws producing smaller echo amplitudes cannot
be effectively identified from the inspection data. Indeed in
certain circumstances, these flaws can be picked up using
special techniques such as micro-CT in the lab environment;
but time, cost, and environmental constraints restrict those
special techniques being used in amore general setting. Dam-
age tolerance design method, on the other hand, considers the
material of a component or a structure has initial natural flaws
at the beginning of the service. The failure of F-4 Phantom
II due to the fracture of the fail-safe wing structure in 1973
signified that a structure could not be fully fail-safe without
inspection. This failure event together with the following
DC-10 commercial jet landing crash at Sioux city in 1989
promoted the development of damage tolerance analysis, and
the development finally spawned the certification of damage
tolerance for life-limiting components in aircraft structures
and turbine engines [1, 2].

Reliability analysis entails the computation of the failure
probability under various sources of uncertainties. For me-
chanical components whose major failure modes are dom-
inated by fatigue and fracture, uncertainties can arise from
materials, manufacturing, service conditions, and so on. Due
to the inherent nature of those uncertainties, it is difficult
to complete eliminate all uncertain sources. The propaga-
tion of uncertainties from input or sources to the output
leads to uncertain results; therefore, uncertainty modeling
and quantification play an important role in risk mitigation
for critical engineering infrastructures. Although the nature
of uncertainties has been discussed in many fields for a long
time, from a pragmatic point of view, whether an uncertainty
is aleatory (intrinsic) or epistemic (lack of knowledge) can
be less interest to an engineering analysis as the uncertainty
quantification is made through a mathematical modeling
process [3]. The uncertainty due to the lack of knowledge is
encoded in the discrete model space where using one or more
alternative models becomes subjective. The uncertainty due
to intrinsic randomness is encoded in the parameter space of a
chosen model or a joint model parameter space when a set of
competing models are available. Instead of enforcing a clear
label for an uncertainty, it can be more beneficial to treat the
overall uncertainty as the model uncertainty and parameter
uncertainties associated withmodels in a hierarchical manner
for the ease of quantification [4]. This chapter is focused on
the safe-life and damage tolerance models in the context of
uncertainties; in particular, the uncertainties are dealt with in
a probabilistic inference framework.

48.2 Probabilistic Modeling

Following the convention random variables are denoted using
capital letters, and their samples are denoted using lowercase
letters. Denote Yi as a proposition asserting that the ith data
value is in the range of yi and yi + dyi. Similarly denote Zi
and Ei as propositions asserting that the model prediction
for the ith data value is in the range of zi and zi + dzi and
that the ith error value is in the range of ei and ei + dei,
respectively. The actual data value yi and model prediction
zi can be expressed as

yi = zi + ei. (48.1)

Denote the prediction value of a mathematical model M as
m(xi|θ)where xi is themodel independent variable and θ ∈ �

is the uncertain model parameter vector. Using p(·) to repre-
sent the probability distribution, the probability distributions
for propositions Zi and Ei are expressed, respectively, as

p(Zi|M, θ) = fZ(zi), (48.2)

and
p(Ei|M, θ) = fE(ei). (48.3)

Given Zi and Ei are independent the probability distribution
for proposition Yi can be expressed as

p(Yi|M, θ) =
∫ ∫

p(Zi|M, θ)p(Ei|M, θ)p(Yi|Zi, Ei,M, θ)

dZidEi. (48.4)

From Eq. (48.1)

p(Yi|Zi, Ei,M, θ) = δ(yi − zi − ei). (48.5)

Substitute Eq. (48.5) into Eq. (48.4) to obtain

p(Yi|M, θ) =
∫
fZ(zi)fE(yi − zi)dzi. (48.6)

For a deterministic model prediction, zi = m(xi|θ) and
fZ(zi) = δ(zi − m(xi|θ)). In this case Eq. (48.6) writes

p(Yi|M, θ) =
∫

δ(zi − m(xi|θ))fE(yi − zi)dzi

= fE(yi − m(xi|θ)). (48.7)

When the error term is a Gaussian variable, the above equa-
tion can be written as
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p(Yi|M, θ) = 1√
2πσe

exp

{
− [yi − m(xi|θ)]2

2σ 2
e

}
, (48.8)

where σe is the standard deviation of the error variable ei.
For a probabilistic model prediction including a statistical

error term εi such as zi = m(xi|θ) + εi, marginalizing

p(Zi|M, θ) =
∫
p(Zi|Ei, M, θ)p(Ei|M, θ)dEi (48.9)

over εi with p(Zi|Ei, M, θ) = δ(zi − m(xi|θ) − εi) to obtain

p(Zi|M, θ) =
∫

δ(zi − m(xi|θ) − εi)fE(εi)dεi

= fE(zi − m(xi|θ)) = fZ(zi). (48.10)

Substitute fZ(zi) in Eq. (48.6) with Eq. (48.10) and obtain

p(Yi|M, θ) =
∫
fE(zi − m(xi|θ))fE(yi − zi)dzi, (48.11)

which is the convolution of the two probability distributions.
It is known that when the error terms are two indepen-
dent Gaussian variables, the convolution is another Gaussian
probability distribution that can be expressed as

p(Yi|M, θ) = 1√
2π

√
σ 2
e + σ 2

ε

exp

{
− [yi − m(xi|θ)]2

2(σ 2
e + σ 2

ε )

}
,

(48.12)

where σε is the standard deviation of the statistical error
variable εi.

In addition if the model independent variable xi is also
uncertain with a distribution function p(X) = fX(xi) and
given that the model m(xi|θ) is monotonic and differentiable
over the domain of x, it is seen that

fZ(zi) = fX(xi)

∣∣∣∣dxidzi

∣∣∣∣ = fX(m
−1(zi|θ))

∣∣∣∣dm
−1(zi|θ)

dzi

∣∣∣∣. (48.13)

wherem−1(·) is the inverse function. Assume that X follows a
normal distributionwith amean of x̄i and a standard deviation
of σx, the uncertainty from variable xi can then be integrated
into Eq. (48.6) and obtain

p(Yi|M, θ) = 1√
2π

√
σ 2
e + σ 2

ε + (Jσx)2

× exp

{
− [yi − m(x̄i|θ)]2

2 [σ 2
e + σ 2

ε + (Jσx)2]

}
, (48.14)

where J =
∣∣∣∣ dm−1(zi|θ)

dzi

∣∣∣∣ and x̄i is the mean value of xi. For

multidimensional independent variable xi, the term (Jσx)2 in
Eq. (48.14) should be replaced with J�xJT where J is the
Jacobian matrix and �x is the covariance matrix of xi.

It is worth mentioning that for a forward analysis, e.g., the
analysis of uncertainty propagation from various sources to
result y through the model m(x|θ), the separated qualifica-
tions using σe, σε , σx or �x, and so on can be explicitly in-
cluded and used. For inverse problems, e.g., the estimation of
the model parameter θ , the detailed uncertainty contributions
from different sources are not known a priori; therefore, it
can be convenient to consider using a total standard deviation
σ 2
t ≡ σ 2

e + σ 2
ε + (Jσx)2 and rewrite Eq. (48.14) as

p(Yi|M, θ) = 1√
2πσt

exp

{
− [yi − m(x̄i|θ)]2

2σ 2
t

}
. (48.15)

48.2.1 Probabilistic Parameter
Estimation – Inverse Problem

The probabilistic parameter estimation can be recast into a
probabilistic inference problem. The Bayesian method is a
rational approach to perform probabilistic inference using
three pieces of information, namely, the prior, the likelihood
function, and the data. The basis of the Bayesian method is
nothing but the conditional probability and the product rule
of probability. The posterior probability distribution function
of the model parameter is expressed using the product of the
prior and the likelihood as

p(M, θ |Yi) ∝ p(M, θ)p(Yi|M, θ). (48.16)

The “proportional to” symbol ∝ in the above equation in-
dicates the actual posterior distribution is known up to an
normalizing constant

p(Yi) =
∑
M∈M

∫
θ∈�M

p(M, θ)p(Yi|M, θ)dθ , (48.17)

where M is a finite set of available models and �M is
the parameter space for θ under model M. The normalizing
constant is of no particular interest when the posterior is
evaluated using the Markov chain Monte Carlo (MCMC)
sampling method with only one model M available. It is
needed when multiple models M are compared in the con-
text of Bayesian model assessment. As only one model is
considered in this study, the symbol M is omitted hereafter
for simplicity. In addition the variable σt is also an uncertain
variable and is independent of the model parameter θ ; the
joint posterior probability density function (PDF) writes
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p(θ , σt|Y) ∝ p(θ , σt)p(Y|θ , σt). (48.18)

Given no prior information on (θ , σt), the Jeffreys’ nonin-
formative prior [5], i.e., p(θ , σt) ∝ 1/σt, can be used. In
this case the posterior PDF for a total of n data points Y =
(Y1, Y2, . . . , Yn) is expressed as

p(θ , σt|Y) ∝ 1

σt
· 1

(
√
2πσt)n

exp

{
−

∑n
i=1 [yi − m(x̄i|θ)]2

2σ 2
t

}
.

(48.19)

The approximation of the above PDF can be made using
samples obtained fromMCMC simulations with the standard
Metropolis-Hastings (MH) sampling strategy [6, 7]. An al-
ternative approach is using asymptotic approximation. The
widely used one is the Laplace method [8, 9]. The basic
idea of the Laplace method is to use a multivariate normal
distribution to approximate the posterior PDF of Eq. (48.19).
Under the condition that the PDF has one mode and is ap-
proximately symmetric around themode, the Laplacemethod
can yield accurate results.

48.2.2 Probabilistic Prediction: Forward
Problem

The basis for probabilistic prediction is centered on three
pieces of information, namely, a mathematical model corre-
lating the input (independent) variable and the output (de-
pendent) variable, a probabilistic representation of the model
parameters, and the input variable. Once the model is chosen
and the parameter is characterized in a probabilistic manner,
the next step is to propagate the uncertainty through the
model to output and quantify the uncertainty in the output
results.

A universal method for the purpose is to use Monte Carlo-
based method. The idea is to draw many samples of the
uncertain variables from its distributions. Each of the samples
can be seen as a realization of the randomness, and the
corresponding model output associated with that particular
sample is a realization of one possible output, following a
certain probability distribution. Given that the number of the
samples is sufficiently large (in statistical sense), the resulting
empirical distribution of the model output ensures a con-
vergence to the true distribution. The mean and confidence
intervals of the model prediction can trivially be obtained
using the empirical distribution.

A subtle but crucial point that is often overlooked is
the differentiation between the mean estimation confidence
interval and the prediction confidence interval. Recall the
uncertain parameters are (θ , σt) and the probabilistic model
prediction is

yj = m(x̄|θj) + ej, (48.20)

where θj is the jth sample, and ej is a random sample drawn
from the error distribution with a standard deviation of σt,j.
When using MC estimators for evaluation, the mean confi-
dence interval does not involve the generation of an error vari-
able according to Norm(0, σt,j) in jth realization; however, the
prediction confidence interval of an MC estimator requires
the error variable. The difference is signified in examples in
the next sections.

48.3 Reliability Model

The early and formal definition of the engineering “Relia-
bility” can be found in NASA’s report [10]: the probability
that a system, subsystem, component or part will perform its
intended functions under defined conditions at a designated
time for a specified operating period. It is a probabilistic
measure because of the existence of uncertainty. In practice,
the reliability can also be characterized using mean time
between failure (MTBF), failure rate, and the probability of
failure (POF), depending on the fields of applications and
the criteria for decision-making. The probability of failure
is widely used in structural reliability analysis and is adopted
here. To understand the probability of failure, it is necessary
to define a failure criterion for the problem in consideration.
The failure criterion is a subjective choice fully tied to the
specific engineering applications. For example, a failure can
be defined as the fracture of a component due to a crack
propagation in one case, but it can also defined as a fatigue
crack being larger than a length far below the one causing a
sudden fracture. In other cases, it can also be defined as when
a flaw is identified in a part in service using nondestructive
inspection. Once the failure criterion is chosen, the response
of a model becomes a binary output of failure or success.

Given a failure criterion such that the event of g(φ) ≤ g0
is considered as a failure where g(φ) is the model taking a pa-
rameter φ. The so-called response function is then defined as
h(φ) = g(φ)−g0. The failure criterion essentially divides the
entire multidimensional parameter space into two domains,
the failure domain and the success domain. The POF is the
failure domain portion of the entire domain. Mathematically
it is the integral over the failure domain of the performance
function and is expressed as

Pf ≡ Pr [h(φ) ≤ 0] =
∫
h(φ)≤0

p(φ)dφ. (48.21)

Using MC-based methods for POF evaluation, the MC esti-
mator of POF is

P̂f ≈ 1

Nmc

Nmc∑
i=1

1(φi), (48.22)
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where 1(·) is the identity function taking the value according
to

1(φ) =
{
1 h(φ) ≤ 0
0 otherwise

, (48.23)

Nmc is the total number of MC samples, and φi is the ith MC
sample of the parameter vector.

48.3.1 Safe-Life Model

The safe-life model for fatigue analysis is usually referred
to the Basquin law [11] for stress-life (s-N) data or Manson–
Coffin law [12,13] for strain-life (ε-N) data and their variants,
considering loading, environmental, work-hardening effects,
and so on. The most simple yet useful one is the log-linear
model, which presents the strain/stress and the fatigue life
as a linear relationship in the log-transformed coordinates.
For example, the log-transformed Manson-Coffin low-cycle
fatigue life model reads

logN = b0 + b1 log (
ε/2) , (48.24)

where N is the number of cycles to failure or fatigue life,

ε is the strain range during one load cycle, and (b0, b1)
are model parameters to be determined by testing data. For
linearized models (log-transformed linear, piece-wise linear,
and the combinations of the two), the conventional linear
regression can directly be applied. The median curve of the
fit, the confidence interval for the median curve, as well as
the prediction interval given the input can all analytically be
evaluated.

It is worth mentioning the difference between the confi-
dence interval of the median curve and the prediction interval
of the model is vital for reliability analysis. For prediction
purposes, the latter one should be pursued. Figure 48.1 shows
the life testing data, a log-linear model’s mean fit, confidence
interval of the mean, and the prediction confidence interval.
Note that the independent variable of the model is plastic
strain amplitude (
εp/2) and the dependent variable is the
number of cycles to failure (N). The dependent variable is
plotted in x-axis only to follow the convention. It can be
observed in Fig. 48.1 that the prediction confidence interval
is much wider than the confidence interval of the mean.
Figure 48.2 shows PDFs of the mean life and predicted life.

Cumulative DamageModels
The log-linear model or the more general linearized model
can be used to calculate life (N) under a given strain range
(
ε); however, a proper treatment is needed when different
strain ranges are repeated as a block loading. The fatigue pro-
cess can be virtually thought as a process of life consumption
by each of the strain ranges (
εi, i = 1, . . . , k). The concept
is shown in Fig. 48.3. For one cycle in the block with a strain
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Fig. 48.2 PDFs of the median and the predicted life for 
εp/2 =
10−2. The life is transformed back to the linear coordinates

range of
εi, the total useful life is consumed by a fraction of
1/Ni. Denote the number of cycles associated with the strain
range of 
εi in the block as ni. The consumed fraction of the
total life per one block is (n1/N1 +n2/N2 + . . .+nk/Nk) and
the total number of cycles in one block is (n1+n2+ . . .+nk).
The equivalent consumed fraction of the total life per one
cycle is


d =
n1
N1

+ n2
N2

+ . . . + nk
Nk

n1 + n2 + . . . + nk
=

k∑
i

fi
Ni
, (48.25)

where fi = ni/
∑k

i=1 ni is the percentage (or frequency) of

εi in the series of load cycles and Ni is the fatigue life at
strain range 
εi. Consequently the equivalent life in terms of
cycles writes
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Fig. 48.3 Illustration of the repeated load block consisting of load
cycles with different strain ranges

Neq = 1


d
=

[
k∑
i=1

fi
Ni

]−1

. (48.26)

Equation (48.25) is the linear damage rule (Palmgren–Miner
rule) originally suggested by Palmgren [15] and popularized
by Miner [16]. It is later observed that the load sequence
alters the accumulation and many variants accounting for
the load sequence effects have been proposed. A compre-
hensive survey of cumulative damage models can be found
in Ref. [17].

The aforementioned models describe the deterministic
relationship between stress/strain range with the fatigue life,
as well as the treatment for block loads. A probabilisticmodel
can be established given a deterministic model and PDFs of
the model parameters identified using experimental data. To
demonstrate the probabilistic safe-life model with the linear
damage rule, a repeated load block consisted of 
ε1 = 5 ×
10−3 and 
ε2 = 10−3 is considered. The frequency ratio
is n1/n2 = 1/3. The log-linear model in Eq. (48.24) and
a Gaussian likelihood with an unknown standard deviation
σt are used. The Bayesian posterior of (b0, b1, σt) with a
noninformative prior (i.e., ∝ 1/σt) writes

p(b0, b1, σt) ∝ 1

σt
· 1(√

2πσt

)n

× exp

{
−

∑n
i=1

[
log N̄i − b0 − b1 log (
ε̄i/2)

]2
2σ 2

t

}
,

(48.27)

where (ε̄i, N̄i), i = 1, . . . , n are experimental data. Here the
data in Fig. 48.1 (solid triangles) are used. MCMC simu-
lations are employed to draw samples from the Bayesian

posterior. The Metropolis-Hastings random walk [6, 7] is
adopted with an initial values of (b0, b1, σt) set to be the linear
regression mean (−0.1,−1.42, 0.23). A total number of 107

samples are obtained and the results are shown in Fig. 48.4.
The prediction of the life under the given block load can

be made with the MCMC samples. For each of the samples,
a random realization can be obtained using Eq. (48.26) and
Eq. (48.24). With all the MCMC samples, a total of 107

random realizations of the equivalent fatigue life are ob-
tained. Based on the 107 realizations of the equivalent life, the
empirical CDF of Neq is obtained and presented in Fig. 48.5.
Based on the empirical CDF of Neq, the equivalent life under
a probability of failure (POF) can be evaluated using the MC
quantile estimator. For example, the fatigue life associated
with a POF of 10−3 is the 0.001 quantile of the samples for
Neq. In addition, the asymptotic confidence interval for the
MC quantile estimator can also be obtained using central
limit theorem (CLT) as [19, 20]

Np,1−α = N̂p ± zα/2 ·
√
p(1 − p)

f (N̂p)
√
Nmc

, (48.28)

where p is the probability (e.g., p = 0.001), N̂p is the MC
estimation of p-quantile,Nmc is the number of samples, f (N̂p)
is the PDF of the life evaluated at N̂p, and zα/2 = −1(1 −
α/2) and −1(·) is the inverse CDF of the standard normal
variable. For example, if a 95% = 1 − α confidence interval
is chosen, α = 0.05 and zα/2 = 1.96. It should be noted
that the PDF f (·) is not known; therefore, a proper method
to estimate f (N̂p) should be used. Experiences have shown
that the kernel density estimator (KDE) method reported in
Ref. [18] can produce reliable and fast estimation using the
samples.

It should be stressed that the confidence interval is as-
sociated with the MC estimator, reflecting the sampling
uncertainty of the Monte Carlo method. For example, a 95%
confidence interval loosely means that there is 95% chance
that an individual MC estimation result of the POF falls in
the interval. On one hand the plot in Fig. 48.6 allows for
estimation of POF at a given time in terms of equivalent
cycles; on the other, given a prescribed POF, the usable
time in terms of equivalent cycles can be retrieved. For
instance, if the requirement for reliability is POF = 10−5,
the 95% confidence interval of the allowable life in terms
of equivalent cycles is 266∼310. The fatigue life in safe-life
design practice for many life-limiting parts such as turbine
disks and shafts refers to the crack initiation life. As in
these applications the goal is to avoid crack propagation
stage for safety purposes; therefore, fatigue testing must be
carefully designed to support the expectation. The criterion
for initiation may vary depending on the applications. For
turbine disks, and shafts, the crack initiation refers to an
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Fig. 48.5 Prediction results of the equivalent life under the given block
load. The density estimation result in solid line is made based on the fast
kernel density estimation method in [18]

engineering crack size (0.38mm radius) [21], which is tightly
associated with the capacity of the nondestructive inspection
for the parts. Conducting the fatigue testing of a specimen
until it breaks is not unusual since such a termination of
the testing is convenient; but this testing data includes both
crack initiation life and crack propagation life and should
be used with special care. Experiences have shown that for
particular materials the crack propagation life is roughly 1/3
of the fracture life; therefore, the 2/3 of the fracture life can
be used as a rough estimate for the crack initiation life. It is
noted that this type of special treatment is not universal for
all materials, but such a procedure does find its applications
in safety-critical components [22, 23].
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48.3.2 Damage ToleranceModel

Damage tolerance is the ability of the structure to resist fail-
ure due to the presence of flaws, cracks, or other damage, for
a specified period of unrepaired usage. The size of the flaw is
usually determined using the 90/95 probability of detection
(POD) curve offered by the nondestructive testing (NDT)
technique used in component manufacturing and in-service
inspection. The size is also called 90/95 flaw size, indicating
there is 95% confidence that at least 90% of all flaws of
this size would be detected. For example, the recommended
90/95 flaw sizes of aircraft engine components are 0.035-
inch diameter and 0.035 by 0.070 inches for embedded and
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Fig. 48.7 The process of fatigue crack growth. The stable growth
phase, also called Paris’ regime, can be described by the log-linear
Paris’s equation. Here the actual values for 
K and da/dN are just for
illustration purposes

surface flaws, respectively [24]. For conservativeness a flaw
is treated as a sharp fatigue crack with the worst orientation
and shape with respect to the local stress field. The crack can
propagate under cyclic loads to reach a critical size causing a
sudden fracture. The total durationmeasured in the number of
load cycles or equivalent operation hours is the fatigue crack
growth life. The main focus of damage tolerance analysis
is to evaluate the remaining useful life given an existing
flaw. The fatigue crack growth is one of the major dam-
age mechanisms for mechanical components; however, other
damage mechanisms such as creep crack growth, corrosion,
and wear are also commonly seen in realistic applications.
The cyclic variation of stress intensity factor (SIF) is the main
driving factor for fatigue crack growth. As shown in Fig. 48.7,
the fatigue crack growth process can be divided into three
phases. The widely used Paris’ model establishes the log-
linear relationship between the crack growth rate and the SIF
range in the stable growth phase (Paris’ regime) [25]:

da

dN
= C (
K)m , (48.29)

where a is the crack size, N is the number of load cycles,

K is the SIF variation during one load cycle, and C and m
are model parameters. Take logarithm on both sides to obtain
the log-linear model, allowing for linear regression on crack
growth testing data.

For constant amplitude cyclic load, Paris’ equation per-
forms well in the stable phase of the crack growth. Realistic
service load spectra contains variable amplitude load cycles,
and the effect of a load spike can alter the crack growth
rate significantly; therefore, the concept of
Keff is proposed
to include the effect of crack growth retardation [26–28].
The load ratio for constant amplitude load cycles also has

an impact on the fatigue crack growth rate over the entire
stable phase of the crack growth and can be accounted for by
introducing the load ratio parameterR into the Paris’ equation
[29–31]. For spectrum loading without load interactions or
overload/underload effects, the cumulative damage rule in
previous section can be applied:

da

dNeq
=

k∑
i=1

ωk · C (
Kk)
m , (48.30)

where ωk = ni/
∑k

i=1 ni is the frequency of kth cyclic stress
range in the repeated load block, as illustrated in Fig. 48.3.
To consider the load interaction and load ratio effects, appro-
priate variants of Paris’ equation should be used.

In this chapter the Paris’ equation is adopted for method-
ology demonstration without loss of generality. Figure 48.8
presents Virkler’s [32] fatigue growth testing data on alu-
minum alloy in (a) and log-linear fitting on da/dN vs. 
K
in (b). To obtain the da/dN and 
K, the following finite
difference scheme is used [33]. daj = aj − aj−1, dNj =
Nj − Nj−1, and 
Kj = √

π āj
σ · g(a,W). The index term
j = 2, . . . , qwhere q is the total number of a vs.N data points
of a crack growth trajectory,W is the width of the specimen,

σ is the stress amplitude of the remote loading, g(a,W) is
the geometry correction factor, and āj = (aj + aj−1)/2 is the
average crack size of two adjacent measurement points. For

a center through-thickness crack g(a,W) =
√

sec
(
π āj/W

)
.

More detailed geometry and loading information of the test-
ing data can be found in Ref. [32].

UsingVirkler’s crack growth data, the parameters of Paris’
equation are obtained using linear regression with da/dN vs.

K as a whole in log-transformed coordinates. Themean and
covariance matrix of (lnC,m) are μp = [−26.155, 2.874],
�p =

[
0.00235,−0.00038
−0.00038, 0.000063

]
, respectively. The standard

deviation of the error variable is σt = 0.236. It is known
that in linear regression on ln(da/dN) vs. ln 
K, the error
variable is an addition term to the log-linear model. However,
the error variable is transformed into an multiplication coeffi-
cient to the crack growth rate when the log-linear equation is
transformed back to the regular coordinates for cycle-based
integration of the crack growth trajectory. Consequently the
analytical formulation of linear model prediction is only valid
in the log-transformed space.

To perform the prediction for crack growth trajectory, the
MC estimator is employed. A total number of 107 samples
are drawn from the multivariate normal distribution with
mean μp and covariance matrix �p. For each of the samples
the crack growth trajectory is evaluated, and the median
prediction of the crack growth trajectory and median predic-
tion confidence interval are estimated from the resulting 107

trajectories. For prediction confidence interval considering



48 Probabilistic Models for Reliability Analysis Using Safe-Life and Damage Tolerance Methods 973

48

10

15

20

25

30

Data Data
Median
95% Prediction CI

35

40

45

a) b)

0 1 2 3

Number of cycles �K (MPa mm )

C
ra

ck
 s

iz
e 

(m
m

)

C
ra

ck
 g

ro
w

th
 r

at
e 

(m
m

/c
yc

le
)

× 105

400 600 800
10–5

10–4

10–3

10–2

Fig. 48.8 Virkler’s fatigue testing data. (a) Crack size vs. number of cycles and (b) da/dN vs. 
K and the log-linear fitting result. da/dN is
obtained using discrete a vs. N data points associated with each of the crack growth trajectories in (a)

0 0.5 1.5 2.51 2

Number of cycles

C
ra

ck
 s

iz
e 

(m
m

)

3 3.5

10× 5

10

15

20

25

30

35

40

45 Data
Median
95% Median CI
95% Prediction CI

Fig. 48.9 Median and predicted crack growth trajectories for Virkler’s
dataset

the modeling error, a number of 107 samples for the error
variables are drawn from the Gaussian distribution with a
zero mean and a standard deviation of σt. For each of the
samples (lnC,m, ε), the a multiplication coefficient exp(ε)

is applied to the right-hand side of Eq. (48.29), and the crack
growth trajectory is evaluated. The prediction confidence
interval is estimated using the resulting 107 prediction tra-
jectories. Figure 48.9 presents the results obtained using the
above MC estimator.

Given the definition of the failure event, e.g., the crack size
being larger than 40mm, the POF estimation is made using
the MC estimator Eq. (48.22). Figure 48.10 shows the time-
dependent POF results for Virkler’s dataset. The confidence
interval of theMC estimator for rare event probabilities reads
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Fig. 48.10 Prediction results of the probability of failure (POF) using
Virkler’s dataset. The failure is defined as the crack size being larger
than 40mm. Results are obtained using 107 MC samples. The median
and confidence interval of the Monte Carlo estimator are shown

P̂f ,1−α = P̂f ± zα/2

√
Var(P̂f), (48.31)

where zα/2 is defined as before in Eq. (48.28), P̂f is given in
Eq. (48.22), and Var(P̂f) is the variance of the MC estimator
given by

Var(P̂f) = 1

Nmc − 1

[
1

Nmc

Nmc∑
i=1

1(φi)2 − P̂f
2

]
. (48.32)

The term 1(φi) is the identity function defined in Eq. (48.23),
Nmc is total number of MC samples, and φi is the ith MC
sample (lnC,m, ε). It is worth mentioning that for rare event



974 X. Guan and J. He

probability estimations, a sufficient number of samples are
required to yield a small relative error (RE) in the results.
This is due to the fact that only when the number of sampling
is large enough the tail region (small probability) of the
distribution can be sufficiently sampled. A quick estimate for
the required number of samples for rare event simulations can
be made using the following equation [34]:

REmc
def= Var(P̂f)

Pf
≈

√
1

Nmc · Pf . (48.33)

For example, the MC estimator for a rare event with a prob-
ability of 10−5 needs a number of 107 to achieve a relative
error about 10%.

48.4 Application

Shaft couplings are key components connecting different
parts and transmitting torques in rotating machines such as
power transmission systems and turbine engines. Among
all the shaft couplings, Curvic couplings are widely used
in aeroengines, heavy-duty gas turbines and coaxial drive
systems due to its precise centering ability and excellent
load carrying capacity. The failure of Curvic couplings can
directly affect the overall structural integrity of a rotating
machine. The startup and shutdown of the rotating machines
form the mechanical load for Curvic couplings, and the
repeated startup and shutdown form the cyclic fatigue load.
As life-limiting parts in turbine machines, the assessment
of the fatigue life and reliability of Curvic couplings must
be carefully made to ensure the operation safety. The pre-
diction of the fatigue life of Curvic couplings requires the
material properties and loading information. Due to the com-
plex geometry and the contact working condition of Curvic
couplings, direct measurements of the loading information
such as stress and strain in a realistic working condition is
inaccessible. Finite element method (FEM) and/or boundary
element method (BEM) have been used to evaluate the stress
and strain profiles of Curvic couplings. Existing studies have
shown that the state of contact surface can affect the overall
stress and strain distribution around the contact surfaces of
the contacting parts. To evaluate fatigue life and reliability
of Curvic couplings, a full understanding of the stress and
strain state of the coupling incorporating the manufacturing
uncertainty is necessary. In addition, uncertainties from sur-
face roughness and material must be scientifically quantified.

A full three-dimensional contact FE model of a Curvic
coupling assembly in an aeroengine is employed for stress
and strain analysis. Typical rotation and loading conditions
are applied as boundary conditions, representing the realistic
operation environments. The surface uncertainty introduced
in the manufacturing process is modeled using the coefficient

of friction of contacting surfaces of the Curvic coupling, e.g.,
concave tooth/convex tooth. Transient analysis is performed
to obtain the time-dependent stress and strain profile formed
in a simplified duty cycle of the engine. A linear model is
used to correlate the coefficient of friction and the maximum
strain range in the duty cycle, and the variation of surface
state can propagate to the variation of the maximum strain
range at critical locations of the Curvic coupling. A proba-
bilistic low-cycle fatiguemodel considering the surface effect
is established by incorporating the surface parameter into the
classical Manson-Coffin model.

48.4.1 Reliability and Life Prediction of a
Curvic Coupling

The overall modeling process is presented in Fig. 48.11. The
first component is to obtain the surface-dependent stress/s-
train results. The second component is the probabilistic life
prediction module which considers the material uncertainty,
surface uncertainty, numerical modeling uncertainty, and so
on. The manufacturing-induced surface uncertainty is rep-
resented using the variation of the coefficient of friction
(ρ) as shown in the figure. Using different values of the
parameter ρ, the numerical analysis results of the Curvic
coupling are obtained using transient contact FE models.
Results are subsequently used to build the correlation model
between the coefficient of friction (ρ) and the maximum
cyclic strain/stress range (
ε). This correlation is then in-
corporated into the probabilistic life prediction module for
reliability and fatigue life estimation.

Stress and Strain States of Curvic Couplings
Subject to Surface Uncertainty
The transient analysis of the assembly of a Curvic coupling
is a complex modeling process. To perform an effective nu-
merical analysis, the boundary conditions and the load cycle
must be carefully set to represent the realistic working con-
dition. Manufacturing uncertainties can effect on the overall
efficiency, performance, and life of the engine, and it has be-
come an important issue in the aircraft engine manufacturing
industry [35]. Constrained by metal cutting conditions, the
uncertainty in the process will affect the surface roughness of
the components and further affect the friction coefficient of
contact surface [36,37]. In particular, the surface uncertainty
introduced in the manufacturing process is modeled using
the coefficient of friction (ρ). The coefficient of friction can
affect the contact model of the tooth-tooth contacting of
the Curvic coupling. Consequently, the deformation of the
contact teeth and the resulting strain and stress distributions
over the teeth are altered. The transient analysis is performed
for the Curvic coupling assembly with the following condi-
tion shown in Table 48.1. The configuration of the transient
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Fig. 48.11 The overall modeling process

analysis represents a simple startup-shutdown cycle of the
rotor. In the time duration of 1–10 s, a linear ramp up of
the rotational speed from 0 to 2094 rad/s is applied to realize
the speed up process of the rotor. A constant moment is
applied to the Curvic coupling to simulate the load. The
ferritic steel alloy material CrMoV with a Young’s modulus
of 200GPa, a Poisson’s ratio of 0.3, and a density of 7.85 ×
103 kg/m3 is used. To model the influence of the surface
uncertainty on the stress and strain of the Curvic coupling,
a set of discrete values for the coefficient of friction (ρi) are
uniformly chosen in the range of [0, 0.3] with a step size
of 0.05. For each of the values in (ρi), a transient contact
FE analysis is performed using the finite element package
ANSYS mechanical workbench. Ten-node quadratic tetra-
hedron elements are used in the mesh generation as shown
in Fig. 48.12a. The average element length is 1.7mm with
program-controlled curvature adaption. A total of seven nu-
merical cases are performed, and the results of the transient
stresses and strains are obtained. The location where the
strain range is maximized during 0–10s is considered as the
fatigue critical region as shown in Fig. 48.12c. To consider
the variation in all the contact pairs of the Curvic coupling,
the maximum ranges for stress and strain in the repeated
sectors shown in Fig. 48.12b are all obtained. The maximum
ranges for stress and strain are obtained in one numerical
analysis. The results of the maximum strain ranges are shown
in Fig. 48.13 as scatter dots. For each ρ value shown in x-axis,
a total of ten points from the repeated sectors are plotted.
From the results shown in Fig. 48.13, the maximum strain
range 
ε and the coefficient of friction ρ show a linearity.
Therefore, the following linear model can be built to correlate
the coefficient of friction and the maximum strain range:

Table 48.1 The transient analysis setting for the Curvic coupling

Time Rotational velocity (rad/s) Moment (N × m)

0 0 540

1 0 540

10 2094 540


ε = β0 + β1 · ρ + εβ , (48.34)

where β0 and β1 are fitting parameters and εβ is the error term
describing the difference between the model and the actual
data. Using linear regression, themean and covariancematrix
of β = [β0,β1] are obtained as

μβ = [1.9215 × 10−3,−4.7177 × 10−4], (48.35)

and

�β =
[

2.1768 × 10−11 −1.0047 × 10−10

−1.0047 × 10−10 6.6978 × 10−10

]
, (48.36)

respectively. The mean estimate of the standard deviation of
the error term εβ is σεβ

= 2.1653 × 10−5. The fitting and
prediction results are shown in Fig. 48.13.

Probabilistic LCF Life Prediction Incorporating
Surface Uncertainty
A probabilistic low-cycle fatigue (LCF) model considering
the surface uncertainty is proposed. The basic idea is to
incorporate the surface state parameter ρ into the classical
Manson-Coffin model in Eq. (48.24), so that the uncertainty
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Fig. 48.12 The maximum stress/strain range at critical location in one
of the ten repeated sectors. (a) Partial view of the finite element mesh,
(b) the sketch of the Curvic coupling and the repeated sector, and (c) the

critical location in one sector where the maximum stress/strain range
occurs in the representative load cycle in Table 48.1
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Fig. 48.13 The maximum strain range and the linear model fitting and
prediction results using Eq. (48.34)

from the surface state can propagate through the model to
the final fatigue life prediction. The low-cycle fatigue testing
data on CrMoV material reported in Ref. [38] are used to
estimate themodel parameters with Eq. (48.24), and themean
and covariance matrix of the parameter b = [b0, b1] are

μb = [5.358,−1.332], (48.37)

and

�b =
[
9.729 × 10−3 6.394 × 10−3

6.394 × 10−3 6.718 × 10−3

]
, (48.38)

respectively. The standard deviation of the error term is
estimated as σeb = 0.148. The low-cycle fatigue data and
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Δe

Fig. 48.14 The fitting and prediction results on CrMoV low-cycle
fatigue testing data (source [38]) using Manson-Coffin model

Manson-Coffin model fitting and predictions are shown in
Fig. 48.14.

Substitute Eq. (48.34) into Eq. (48.24) to obtain the
surface-dependent low-cycle fatigue life model:

lnN = b0 + b1 · ln(β0 + β1 · ρ + εβ) + eb, (48.39)

where εβ and eb are error terms due to surface uncertainty
and material uncertainty, respectively. Given the PDFs of the
six parameters θ = (b0, b1,β0,β1, σεβ

, σeb), the probabilistic
fatigue life prediction can be made using simulation-based
methods such as Monte Carlo (MC) simulations and its
variants. The variation of static friction of coefficient for
steel and steel in greasy condition is between 0.11 and 0.23
[39]. Without loss of generality, the uniform distribution in
the range of [0.10.25] is used for the friction of coefficient
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parameter ρ. The parameter b = [b0, b1] follows a bivariate
normal distribution with a mean vector of Eq. (48.37) and a
covariance matrix of Eq. (48.38), respectively. The parameter
β = [β0,β1] follows a bivariate normal distribution with a
mean vector and a covariance matrix given in Eq. (48.35)
and Eq. (48.36), respectively. The two Gaussian error terms
ε and e have zero mean and standard deviations of σεβ

=
2.1653 × 10−5 and σeb = 0.148, respectively.

A total number of 1 × 108 MC samples of θ =
[b0, b1,β0,β1, εβ , eb] are drawn according the above
distribution parameters. For each of the samples, a
deterministic fatigue life can be obtained using Eq. (48.34).
With all the samples, the empirical distribution based on
the resulting 1 × 108 fatigue lives can be estimated. The
results are shown in Fig. 48.15. The quantile of the fatigue
life prediction can be used to estimate the failure probability.
For example, the quantile point value Nq,MC with q = 10−6

is the estimate for probability Pr
(
N > Nq

) = 10−6, In this
case, the estimated fatigue life with q = 10−6 is found to be
1.03 × 105 cycles.

Time-Dependent Reliability Under Surface and
Material Uncertainty
Consider a simplified loading profile of the rotor consisted of
the nominal speed and the overspeed. For simplicity, assume
the overload increase the maximum strain range at critical
locations by 12% due to overspeed, overheat, etc., and the
overload corresponds to a ratio of 10% in the designed life-
time in terms of cycles. The load block is shown in Fig. 48.16.
This case can be modeled using the aforementioned block-
type of loading. In this case fj = (0.1, 0.9) and 
εj =
(1.12
ε,
ε). Here the term 
ε is given by Eq. (48.34), and

Overspeed
Normal

Load block

0.1 0.9

Δε
Δε

1.12

Fig. 48.16 The load block consisting 10% of overspeed and 90% of
normal speed

Nj is given by Eq. (48.39). Using the linear damage rule in
Eq. (48.25), the total damage accumulated after t cycles is


d(θ , t) = t ·
⎡
⎣ 2∑

j=1

fj
Nj

⎤
⎦ . (48.40)

The failure event occurs when the consumed accumulation
exceeds 1 or more conservatively, a number between 0 and
1. The limit state function which defines the hypersurface
separating the failure domain and normal domain can be
expressed as

h(θ , t) = 
d(θ , t) − 1. (48.41)

A total of 1×108 MC samples of θ = [b0, b1,β0,β1, εβ , eb]
are drawn. For each of the samples, the identity function
Eq. (48.23) is evaluated with the limit state function of
Eq. (48.41), and the time-dependent POF can be estimated
usingMC estimator in Eq. (48.22). The confidence interval of
the MC estimator of POF can be obtained using Eq. (48.31).
Results of the time-dependent reliability estimations and
the time-dependent failure rate in terms of failures per
cycle are shown in Fig. 48.17a and b, respectively. The risk
requirement for life-limiting parts in aeroengine is about
10−9 failure event per flight cycle according to the FAA
regulation [1]; the estimated life under the requirement is
1.3 × 105 cycles.

48.5 Summary

The chapter presents probabilistic models for fatigue
reliability analysis using safe-life and damage tolerance
methods. Probabilistic modeling is developed to formulate a
general uncertainty quantification framework. Uncertainties
from different sources are encoded into the distributions of
model parameters. An inverse problem is set up for parameter
estimation using the Bayesian method. A subsequent forward
uncertainty propagation using the estimated parameter
distributions can be used for probabilistic prediction. The
safe-life and damage tolerance methods are incorporated into
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Fig. 48.17 (a) The time-dependent reliability in terms of probabilities of failure and (b) failure rate in terms of failures per cycle

the probabilistic framework for fatigue reliability analysis.
The Monte Carlo estimators for reliability evaluations in
terms of probability of failures are given. Two examples with
realistic data are provided for demonstration. The difference
between the median confidence interval and prediction
confidence interval is signified using the examples.

The methods are applied to the reliability and low-cycle
fatigue life prediction of a realistic Curvic coupling compo-
nent in aeroengine. Contact surface uncertainty due to man-
ufacturing and the inherent material uncertainty are consid-
ered. The coefficient of friction is used to represent different
conditions of the surface state introduced by the manufac-
turing process. The strain and stress of Curvic couplings are
evaluated using numerical models considering different con-
tact surface coefficients of friction under working conditions.
Based on the numerical results, a linear model is proposed
to correlate the coefficient of friction and the resulting max-
imum principal strains at critical locations. Using the low-
cycle fatigue model, a probabilistic life model incorporating
the influence of surface roughness can be established to ac-
count for uncertainties from surface and material. Reliability
and the fatigue life results are demonstrated.
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Abstract

The multi-criteria character associated with making de-
cisions entails the need for analysis and evaluation of a
large amount of information and drawing conclusions on
the basis of such information. Since the process is time-
consuming and practically impossible to be performed
by a decision-maker in real time, it is necessary to use
computer decision support systems, including multi-agent
systems. To support financial decision-making, the cogni-
tive technologies can be used. These technologies support
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using natural language processing to sentiment analy-
sis for the consumer ambience and to buy/sell decision-
making. The aim of this chapter is to present an approach
to apply cognitive architecture in a multi-agent financial
decision support system. On the basis of performed re-
searches, it can be stated that cognitive architecture allows
to increase the usability of the multi-agent system and
consequently to improve the process of taking investment
decisions. The ability to make automatic decisions is
also of high importance here. For example, the cognitive
agent can make real transactions (open/close short/long
position) on the Forex market.

Keywords

Multi-agent systems · Cognitive technology · Fintech ·
Financial decisions · Artificial intelligence

49.1 Introduction

The financial market is characterized by high variability
of operating conditions [1]. Therefore, making financial
decisions is a continuous process, associated with multi-
criteria decisions nature. Subsequent decision situations
occur chronologically in near real time and are always
associated with risk.

The multi-criteria character associated with making de-
cisions entails the need for analysis and evaluation of a
large amount of information and drawing conclusions on
the basis of such information. Since the process is time-
consuming and practically impossible to be performed by a
decision-maker (a human) in real time, it is necessary to use
computer decision support systems, including multi-agent
systems. These systems enable an automatic and quick way
of finding information characterized by the appropriate value
and drawing conclusions based on such data [2]. As a rule,
each agent in the system uses a different method for financial
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decision support, as well as can analyze different, often
heterogeneous, data sources. A certain number of agents can,
for example, make decisions using technical analysis, based
on various types of indicators, which involves processing
mainly structured data. Increasingly, however, agents make
decisions using fundamental or behavioral analysis, which
involves processing of expert or investor opinions. These
opinions can be found, inter alia, on websites of brokerage
houses, banks, or on social networks/blogs about financial
matters. They are written mainly in a natural language, which
is associated with the problem of processing unstructured
data.

Parallelly, there are observed changes in the financial
industry related to the emergence of technology startup enter-
prises, which were previously outside of the financial sector.
They are called “Financial Technology” or “Fintech” enter-
prises [3]. Mondal and Singh [3] state that key research issues
for realizing innovations in the financial services include:

• Modeling and integrating large-scale and complex data
from disparate and heterogeneous sources

• Putting a context around the data for context-aware rea-
soning and analytics purposes

• Cognitive analytics and semantic understanding and inter-
pretation on the financial data

• Effective heuristics for detecting fraud
• Intelligent approaches for identifying cases of “creative

accounting”
• Techniques for working with huge amounts of uncer-

tain data from different modalities and identifying cross-
connections and correlations

Dapp [4], in turn, states that current challenges in Fin-
tech are related to using intelligent, cognitive, and self-
learning technologies to support financial decisions-making
processes. The authors have observed that new Fintech solu-
tions are easily adopted by customers.

Cognitive technologies serve as tools for problem-solving
that integrate such techniques, as machine learning, big data,
data mining, computer vision systems, robotics, and natural
language processing. Cognitive technologies can be used to
support financial decision-making [5]. These technologies
support using natural language processing (NLP) to senti-
ment analysis for the consumer ambience and to buy/sell
decision-making [5]. Schumaker et al. [6] state that in order
to support taking financial decisions, numerical and textual
data should be processed parallelly. For example, as a sup-
plement of technical analysis (based on quotation numerical
values) also the news (for example, from Tweeter) related
to particular quotations should be automatically analyzed
[7]. Jung et al. [8] and Alt et al. [9] address this problem

by applying a combined approach based on the technology
acceptance theory and cognitive technology. Nowadays, ma-
chine learning, including deep learning, is mainly used to
support taking financial decisions [10, 11]. They are useful
for analyzing large volumes of numerical data. Thus, they are
called cognitive tools in the explicit sense. However, a very
big challenge is that they still are not enough for a computer
system to learn a natural language and to understand the con-
text of phenomena occurring in the environment as quickly
and accurately as a several-year-old child [12, 13].

To resolve this problem, cognitive architectures, in the im-
plicit sense (based on cognitive cycle), can be used. Generally
speaking, the process of learning by humans is executed in
the form of a cognitive cycle, from perception to purposeful
actions. Many different artificial intelligence techniques are
needed to support the cognitive cycle. Cognitive technologies
must integrate them in a cognitive cycle of perception, learn-
ing, reasoning, and actions. This cycle is the key to designing
modern intelligent systems [13]. The cognitive cycle consists
of the following main stages [13]:

• Induction of new observations and generalizations of
knowledge

• Abduction – the process of revising beliefs to modify
theories

• Deduction, i.e., prediction
• Actions whose effects may confirm or refute the results of

previous stages

The process of learning is also very important – chunks
of knowledge are organized into theories – a set of consistent
beliefs. The value of theory is high, if predictions based on
this theory lead to successful actions. Learning is a permanent
process of transforming data to theories. The cognitive cycle
is a framework for accommodating multiple components of
any kind [12, 13].

The aim of this chapter is to present an approach to apply
cognitive architecture in a multi-agent financial decision
support system (MAFDSS). This system is built using the
framework Learning Intelligent Distribution Agent (LIDA)
[14]. In this chapter, we consider the cognitive technology
in the implicit sense (technologies based on cognitive sense
consists of different artificial intelligence techniques).

The first part of the chapter presents the analysis of related
works in the considered field. Issues related to cognitive
technologies’ characteristics are presented in the second part.
Next, the architecture of MAFDSS and functionalities of text
analysis–based buy/sell decision agent are presented. The last
part of the chapter presents the method of conducting and
the results of a research experiment aimed at verifying the
selected cognitive agents.
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49.2 RelatedWorks

There are different approaches to supporting financial
decision-making process using multi-agent systems. Luo
et al. [15] presents a multi-agent system for the stock
trading framework, which consists of the following types
of agents: the interface agent; the coordinator agent; the
profiler agent; the monitoring agent; the communication
agent; the risk management agent; the decision-making
agent; the technical analysis agent; and the fundamental
analysis agent. Such framework provides high performance
of systems, but the authors draw attention to one main
weakness – the coordinator agent is the critical component
of this framework. The reason for this is that if this agent
fails the whole system cannot work correctly.

Hafezi et al. [16] present a bat-neural network multi-
agent system (BNNMAS), which aims to predict the stock
prices. This framework uses four-layer genetic algorithm
neural networks (GANN) and the generalized regression
neural network (GRNN). Tan and Lim [17], in turn, in-
troduced a hybrid intelligent system based on case-based
reasoning (CBR) and the fuzzy ARTMAP (FAM) neural
network model. This system supports investment decision-
making process in manufacturing enterprises. The system
stores cases of past investment projects in a database, charac-
terized by a set of attributes indicated by human experts. The
FAM network compares the attributes of a new project with
attributes from past cases. Some similar projects are retrieved
and adapted. The information from these projects can be used
as an input to developing new investment projects.

Gottschlich and Hinz [18] present a system for support-
ing financial decision-making process based on collective
wisdom. It allows for taking into consideration the crowd’s
recommendations for supporting investment decisions.

A numerical Pareto optimization method based on an
evolutionary strategy has been presented by Xia [19] and
Roosen et al. [20]. Barbosa and Belo [21] present a multi-
agent approach based on a set of autonomous currency trad-
ing agents, using classification and regression models, a
case-based reasoning system, and an expert system. Each
agent supports a decision for different currency pairs. In
order to decrease the level of risk the agents share monetary
resources which have been used. Following such an approach
to investments allows for achieving better results.

Some decision support systems related to financial crisis
based on the investors’ psychological behavior and rational
reasoning are presented by Said et al. [22]. They focus
on three main biases: overconfidence, loss aversion, and
mimetic behavior. Authors state that for analyzing the fi-
nancial crises, the interaction between rational and irrational
behavior and the investor’s psychology must be taken into
consideration.

Chen et al. [23] present a hybrid multi-agent model de-
veloped based on mathematics and economics models. Here,
more qualitative features are considered. The authors state
that economic features, which cannot be modeled mathemat-
ically, can be difficult to be verified experimentally. Serrano
[10] presents a random neural network in a deep learning
cluster structure with learning based on a genetic algorithm,
where information is transmitted in the combination of genes
rather than the genes themselves. This approach has been
applied and validated in Fintech; O’Hare and Davy present
a solution based on classification of text opinions about
financial markets using machine learning techniques. They
use a multinomial naive Bayes (MNB) classier and a sup-
port vector machine (SVM), for opinions’ sentiment polarity
classification [24]. Wang [25], in turn, presents an approach
for supporting taking financial decisions based on the Mat-
lab neural network time series tool. Sohangir et al. [11]
applied several neural network models such as long short-
term memory, doc2vec, and convolutional neural networks,
to stock market opinions’ analysis posted in StockTwits.
Also, Li et al. [26] use convolution neural network (CNN)
and two recurrent neural networks (RNNs) – the simple
recurrent network (SRN) with traditional recurrent units and
a long short-term memory (LSTM) with gating mechanisms,
for analyzing opinions of investors. The machine learning
approach is also used by Chan and Chong [27]. They develop
two classifiers:

1. Making prediction of the right chunking point that lies
between two adjacent phrases

2. Figuring out the appropriate syntactic structure for the
chunks, such as noun phrases

Westerhoff [28] describes a system in which agents were
divided into two groups – agents of the first group make
decisions on the basis of methods of fundamental analysis,
while agents of the second group make decisions on the
basis of technical analysis. Paper [29] presents a multi-agent
system that supports investing in the Forex exchange market
and a method for assessing investment strategies of selected
agents. Korczak et al. [30] conclude that different AImethods
are used for supporting financial decision-making processes,
including:

• Strong AI
• Deep learning
• Robotics
• Advanced brain-machine interfaces
• Trisynaptic models
• Circuit of the hippocampus
• Massive parallel processing
• Feedforward as well as feedback inhibition
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In the process of document analysis, implemented also in
multi-agent financial decision support systems, the following
methods are used:

• Information retrieval
• Information extraction
• Text exploration
• Natural language processing [31]

The main purpose of information retrieval is to find an
answer to a user’s question among a collection of documents.
Information extraction consists in identifying instances of a
predefined class of events, their connections, and occurrences
in written documents in the natural language [32]. The aim
of text exploration is to learn the hidden information in the
text using methods adapted to a large number of text data
[33]. The natural language processing contains mechanisms
that attempt to “understand” the context of the text. These
methods do not include the term similarity values, but the
following categories of text analysis are carried out [33]:

• The shallow analysis. It is referred to the analysis of the
text, the effect of which is incomplete in relation to the
deep analysis. Usually, the limitation is the recognition of
nonrecursive or restricted recursion patterns that can be
recognized with a high degree of certainty.

• Deep text analysis is the process of computer linguistic
analysis of all possible interpretations and grammatical
relations occurring in the natural text. Such a full analysis
can be very complex.

In the process of text document analysis, semantic meth-
ods of knowledge representation, including semantic net-
works, are often used. Thanks to their application, a broadly
understood knowledge representation is possible, in which it
is important to draw attention to the interrelations between
objects.

A very important problem is also the sentiment analysis
related to other, than English, languages. Many tools for texts
analysis in English are insufficient for other languages and
it is needed to develop new, or to adjust existing tools to a
given language, which is also a very important research and
practical problem. For example, Ahmad et al. [7] develop the
grid-based sentiment analysis method for Arabic andChinese
languages.

To sum up, in multi-agent systems supporting financial
decision-making, the following methods are mainly used:
technical analysis, fundamental analysis, and behavioral
analysis. They are based on statistical methods and traditional
data mining methods, such as regression analysis and
decision trees and on training methods. Hassouna et al. [34]
have showed limitations of statistical methods and traditional
methods of data mining, such as:

• They do not explain the reasons for obtaining the value of
retention and the relationship between factors that affect
these values.

• Although they allow to define connections between vari-
ables and customer behavior, they do not allow to identify
causal relationships between these variables. Decision
trees can only be used in some cases to infer causation.

• Dataminingmodels have a relatively short validity period.
The application market, including mobile applications,
faces new technologies every day. As a result, historical
data becomes less valuable for prognosis.

• The level of analysis in data mining models reduces the
ability to capture the heterogeneity of customer behavior.

In order to circumvent the disadvantages of traditional
data mining techniques, themachine learning, including deep
learning, models are currently used. However, these models
also have limitations resulting from the following issues:

• Emergent character of ML – processing only numeric
data. Many problems of the real word often also need
symbolic data representation.

• The difficulties which use the hierarchical data (e.g., trees,
thesauruses, and relations 1:M in databases) as input data
model.

• The difficulties related to incomplete, contradictory data
representation (e.g., “null” values).

In order to reduce the number of disadvantages of tra-
ditional data mining and deep learning methods, cognitive
agents can be used in the multi-agent system supporting tak-
ing financial decisions. They perform cognitive and decision-
making functions, which take place in the human brain,
thanks to which they are able to analyze the real significance
of observed phenomena and processes taking place, among
others, on financial markets [12].

49.3 Recent Methods for Financial
Decision Supporting

The methods for supporting financial decisions are generally
divided into fundamental analysis, technical analysis, and
behavioral analysis.

Using fundamental analysis, the investor is only
interested in the issuer of the security and the economic envi-
ronment in which they operate. By examining their financial
condition, strengths, weaknesses, and development prospects,
the investor answers the question whether it is worth
investing in the issuer’s securities [35]. A comprehensive
examination of the issuer’s condition is accompanied by
an analysis of their macroeconomic environment, which
allows to identify the entity which has the best opportunities
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for future profit growth. Fundamental analysis is a form
of capital market valuation involving the assessment of
processes taking place in the macroeconomic environment
of the stock exchange.

When choosing the most attractive companies, supporters
of fundamental analysis refer, among others, to the
following [35]:

• Audits of periodic statements and annual balance sheets
of companies

• Analysis of the company’s future profit forecasts
• Analysis of profits generated in a given period as well as

incurred losses
• Examination of the development strategy chosen by the

company

The investment selection process also applies to [36] the
following:

• The general economic condition of the country
• The monetary policy implemented by the government and

the central bank
• The analysis of the industry in which the company oper-

ates
• Strengths and weaknesses, opportunities, and risks which

the company faces

It follows from the above that the fundamental analysis is
used to determine the profitability of investments in company
shares based on a comprehensive assessment of the company
from the past. The conclusions are reached after analyzing
the results of a minimum period of 3 years of the company’s
activity. To achieve a satisfactory result, the time projection
of analyzing the company’s results should be extended to
5 years.

The sense of fundamental analysis is not to identify good
companies, but to select companies that are better than any-
one can suppose or judge. Similarly, companies negatively
perceived by the market can be excellent investment opportu-
nities, if, of course, they are not as bad as it seems. Therefore,
it is not enough to conduct a good fundamental analysis; one
can only earnmoneywhen the conducted analysis is of higher
quality than the analysis of the competition [36].

Opponents of fundamental analysis often question the
possibility of including a large number of different types of
risk in the company’s valuation, such as interest rate risk re-
lated to the change in basic market interest rates, market cur-
rency risk, purchasing power risk – also known as inflation
risk, political risk related to legislative and tax changes, etc.
Fundamental analysis is not an ideal method, as it possesses
various disadvantages which affect the results of investment
decisions. Here are the most important of them [37]:

• The assumption that the company whose profits have risen
so far will continue to strengthen; the profits of companies
are not growing because they did so in the recent past,
but because the companies are well managed, have better
technology, and are well promoted.

• The assumption that the growth rate will be maintained at
its current level.

• There are no fluctuations in economic life; expansions and
recessions occur in the capitalist economy, the effects of
which are felt by almost all enterprises.

• Failure to take account of the fact that market prices
precede fundamental knowledge.

One of the major disadvantages of fundamental analysis
is the assumption that the current trends disclosed in the
financial reports will continue. In real economic life trends
change, which makes forecasting much more difficult. The
fundamental analysis consists of four stages: analysis of
the macroeconomic environment, financial analysis, analysis
of financial statements, and analysis of indicators. Let us,
therefore, discuss their brief characteristics.

The initial stage of the fundamental analysis is to deter-
mine the state of the economic environment and its impact on
investment decisions, i.e., the analysis of the macroeconomic
environment. The concept of growth is central to this type
of stock analysis, as the increase in profits and cash flow is
considered the basic condition for the increase in dividends
and share prices.

Macroeconomic analysis provides data used in industry
and enterprise analysis, and allows forecasting interest rate
levels and long-term trends in price and profit ratios. Analysts
try to identify sectors of the economy that offer higher-than-
average profit opportunities, and then relate this information
to specific companies.

Economic cycles and related trends are crucial for the
investor. The cyclicality of the stock market has been around
since 1961 and has become a major disincentive to invest in
the late 1970s and early 1980s [38].

Analysts who use fundamental analysis attach great im-
portance to profits achieved by enterprises as well as to the
analysis of the macroeconomic environment.

The macroeconomic analysis assesses the overall attrac-
tiveness of investing in a given stock market. This attractive-
ness depends on the economic and socioeconomic situation,
as well as on the economic and monetary policy of the
country inwhich the investor wants to invest, with a particular
emphasis on the investment risk in the given country. Subse-
quently, a sectoral analysis is performed, which assesses the
attractiveness of investing in companies be-longing to a given
sector of the economy. After choosing a sector, it is the turn
of the analysis of companies belonging to a given sector. At
the beginning, a situational analysis of the company is made
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(against other companies in the sector), where nonfinancial
aspects are assessed, e.g. [37]:

• Quality of management staff
• Modernity of production
• Company strategy
• Conducted marketing, etc.

It is clear that this stage of fundamental analysis is not
easy for practical application by an individual novice in-
vestor. Such an investor should be recommended a “short-
cut.” It involves studying ready-made analyses which are
published in financial magazines or in financial columns of
newspapers.

When choosing the most attractive companies, a special
role in fundamental analysis is played by financial analysis,
which is divided into three basic groups of investment tech-
niques [38]:

1. Examination of the vertical and horizontal structure of
the company’s balance sheet. This analysis includes de-
termining the regularity of financing investment activities
and the method of financing fixed assets, the method
and regularity of financing current stocks, the company’s
payment ability, and the ratio of receivables to liabilities.
Therefore, the balance sheet division determines the dy-
namics and development opportunities of the company,
while the horizontal layout checks its quality and market
value.

2. Analysis of changes in the company’s foreign capital. The
amount of foreign capital illustrates the degree of financial
security that an entity possesses. It also informs about the
amount of capital that will remain inside the entity after
paying off its current liabilities. If the foreign capital is
at a high level, this indicates a high investment risk and
carries a possible danger to the company in the event of
nonpayment of its obligations. The optimal situation is
when foreign capital is at a relatively low level, which
makes it possible to state that the given entity is in good
financial condition and it is unlikely that its position
among the competition will be violated.

3. Determining the company’s cash flow. This is the sum
of profit and depreciation for individual tasks that have
already been completed. This factor provides information
on the sources and purpose of cash, as well as the type and
method of financing the investment.

Technical analysis is not interested in the security issuer it
deals with. Using this method, all that is needed is the current
exchange rate and turnover, past data, and a reference point to
calculate the indicators. It is not necessary to know the name
of the security that is being analyzed in order to determine
the optimal buying and selling times [39].

Technical analysis is based on three basic premises [40]:

1. The market discounts everything. Supporters of technical
analysis claim that all factors that affect the price are
already included in it. This is due to the belief that price
behavior reflects changes in demand and supply relation-
ships. In other words, the technical analyst assumes that
one does not need to study the factors affecting the price of
the instrument or investigate the reasons for the decreases
or increases. The market knows everything and it shapes
the price, which is why it is important to study charts
and indicators for technical analysis to effectively fore-
cast market behavior. This does not mean that technical
analysts reject the claims that economic conditions are the
cause of trends on the stock market. They simply believe
that the market is easier to understand and predict by
analyzing the record of its behavior, i.e., the charts.

2. Prices are subject to trends. When drawing price charts,
the technical analyst tries to find a trend in them, i.e.,
the direction in which prices are moving. Recognizing
the trend in its early phase allows to make a transaction
that should bring profits (buy when the upward trend is
created, sell when the downward trend appears). Analysts
assume that the trend is more likely to continue than to
reverse.

3. History repeats itself. The study of charts allows to find
repetitive patterns (formations) by which prices move.
This is due to the repetition of human behavior in certain
situations. Knowing the most common patterns (forma-
tions), analysts try to find them in current quotations and
on this basis forecast the future.

To sum up, the first premise claims that the market fully
discounts all information that may affect the stock price,
which means that testing prices alone is a self-sufficient
approach. The second premise concerns the trend, one of the
basic concepts of technical analysis. It claims that courses
move in trends, and the task of technical analysis is to capture
their changes. The third premise concernsmarket psychology
and assumes that under similar conditions to the past, the
market situation will be similar.

Therefore, a technical analyst is a person who studies the
effects of market behavior (prices) and searches trends and
formations that will help predict market behavior on histor-
ical charts. In their work, analysts support themselves with,
among others, indicators which help them better understand
price movements [41].

Thanks to this, it is possible to find the answer to three
main questions that every investor asks [38]:

1. What to buy or sell?
2. When to buy?
3. When to sell?
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Table 49.1 Technical analysis indicators [38, 41]

Tracking indicators trend Oscillators Mood indicators

They work best when prices are “in motion”
but their signals are incorrect in the horizontal
trend; they are lagging behind the trend,
changing direction when reversed

They capture turning points in flat markets;
however, their signals are premature when a
new upward or downward trend begins; they
are indicators that are concurrent with or even
preceding a trend

Allow to study the “psychology of the
masses”; these indicators may be leading or
concurrent with the trend

Moving averages
MACD
MACD – histogram
OBV – On Balance Volume
A/D – accumulation/distribution

Stochastic
ROC – rate of change
Momentum
RSI – Relative Strength Index
Force Index
CCI – Commodity Channel Index

New High-New Low Index
Put-call ratio
Bullish Consensus
Commitments of Trade
Advance/Decline Index
Traders

Technical analysis, like fundamental analysis, is used to
determine the right time to buy and sell shares. To make
the investment as profitable as possible, a variety of tools
are used in technical analysis in order to study phenomena
occurring on the stock market. However, unlike the funda-
mental analysis, the whole process of assessing the amount of
future investment profits proceeds in a slightly different way.
In technical analysis, investors are guided in the stock market
game mainly by historical data, which do not have their roots
in reports, balance sheets, or profit and loss statements, but in
data from the direct economic environment of a given com-
pany and what happens directly on capital market. These data
are used by investors to construct stock market indicators,
helpful in assessing the attractiveness of shares of selected
companies. The first stock market indicators were created at
the end of the nineteenth century, but their full boom can
be considered only the period of the great bull market in
the USA from the 1920s. Since then, their popularity has
been established and continues to this day. The breakdown
of indicators is presented in Table 49.1.

The behavioral trend is not intended to provide guidelines
for rational behavior, as standard economic theory does, but
to describe and explain the mechanisms that control people’s
real decisions, mechanisms which stem from psychological
and institutional factors [42]. Numerous theories serve this
purpose, several of which are described below. The common
basis for each of these theories is the assumption that people
do not have perfect information or unlimited possibilities
to process it; in the real world, information is incomplete,
unclear, complicated, there may occur problems with its
interpretation, and for practical reasonswe are often unable to
compare all possible selection options in each of the relevant
aspects. For the abovementioned reasons, it cannot be said
that people take optimal actions from the point of view of
material rationality. Instead of striving to achieve maximum
utility or profit, we are content only with their satisfactory
level (satisfying behavior). In behavioral terms, the utility of
the decision-maker is not treated as a permanent, coherent,
and one-dimensional category [43]. On the contrary, several
types are distinguished, among others:

• Decision-making utility, most often found in traditional
economic approaches and referring to preferences that are
disclosed by the buyer at the time of purchase

• Experienced utility, which relates to the perceived level of
satisfaction

The literature mentions two research directions related to
behavioral finance: analysis of market behavior on a macroe-
conomic scale, especially in the context of numerous market
anomalies, and analysis of individual investors’ behavior
in terms of systematic cognitive errors made by them in
investment decisions.

Behavioral analysis usually employs the following [44]:

• Descriptive theory
• Predisposition effect
• Emotion changeability
• Cognitive distortions

Descriptive theory is the descriptive (i.e., based on the
results of experiments) theory of decision-making in condi-
tions of uncertainty, and it can be considered as the greatest
contribution of psychological sciences to economics and
finance. It is a model that somehow filled the gap between
the idealistic theory of the expected utility of von Neumann
and Morgenstern, and reality. The central assumption of the
theory of perspective is that it is not the absolute level of
wealth, but changes in its level (profit vs. loss) that are the
carriers of perceived value. Another important assumption
of this theory is decreasing sensitivity to losses. The last
important feature of the human psyche affecting the shape of
the function of value is the loss aversion, which is that losses
hurt more than profits please, despite the fact that they are of
the same absolute size. This means that the value function is
steeper in the area of losses than in the area of profits [42].

The predisposition effect is manifested in the fact that
shares in companies whose prices have risen are sold much
faster by individual investors compared to shares in com-
panies that have lost value. This is contrary to the classic
theory of finance, according to which in making investment
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decisions investors should be guided by expectations about
future stock prices and not their price in the past. Moreover,
the predisposition effect also negates two central assumptions
of the portfolio theory: the tendency to diversify one’s own
investment portfolio and the investors’ desire to sell shares
in order to increase their own liquidity. In both situations,
investors should sell those shares which possess the lowest
expected returns. In addition, it would be advisable to sell
shares of loss-making companies quickly, as this is the op-
timal solution from the tax point of view. Meanwhile, ac-
cording to the predisposition effect, investors do the opposite,
i.e., they are more willing to sell shares that have a higher
expected rate of return [42].

Investing in the stock market is frequently associated with
violent and variable emotions, which often have a significant
impact on decisions taken, causing significant deviations
from rational action. Making decisions on the capital market
takes place in conditions of considerable uncertainty, because
investors never know how the market will behave in a month,
in a week, or even in an hour. Psychologists have long proven
that the behavior of an individual is strongly dependent on
their emotional state (8). Additionally, cognitive errors and
distortions, which are usually a derivative of the impact of
emotions, have a significant relationship with the limited
rationality of the individual (9). Analyzing the impact of
emotions and the psyche of investors on making decisions
on capital market, one can get a real picture of investor
behavior on the stock market. One of the most important
manifestations of the impact of emotions on the investment
process is that investors give in to the feelings of regret.
Regret often accompanies investors after making a decision
whose consequences have proved unfavorable for them. The
theory of regret formulated by David Bell (10) assumes that
the feeling of regret associated withmaking the wrong invest-
ment decision is stronger than the possible feeling of pride
and satisfaction associated with making the right choice [43].

What follows is hasty selling of rising shares in order to
secure oneself against the future decline in their prices. In
addition, the regret caused by the loss on investing in a partic-
ular company is experienced more intensely than in the case
of a loss at the level of the entire stock exchange, because that
loss can be attributed by investors not to their own mistake,
but to unpredictable market forces. The regularities described
here affect the way investment portfolios are constructed by
individual investors who choose their portfolio so that some
of them provide a reduction in fear of potential loss, and some
give hope for future profits. This is, therefore, contrary to
Markovitz’s portfolio theory, as investment portfolios in a
behavioral perspective are not a set of analyzed and suitably
diversified assets, but rather a mosaic of little correlated
elements that reflect the investors’ emotions rather than a
rational assessment of the market’s situation [44].

In addition to emotions, investors often undergo various
cognitive distortions whenmaking investment decisions. One
of them is overconfidence. Investors are often so convinced
of their outstanding investment capabilities that they un-
dertake increasingly risky transactions, which often ends in
very severe losses. An important manifestation of excessive
self-confidence is unrealistic optimism, visible in making
mistakes in the planning process. Its important aspect is
the inability to learn from one’s mistakes – even if earlier
forecasts were excessively optimistic, most people believe
that the next time their choice will prove to be correct, which
can also be fatal in consequences for their state of ownership.
Another cognitive distortion is the so-called mental account-
ing, which involves a separate and selective analysis of the
various attributes of financial decisions. This leads to the fact
that investors are not able to close the loss positions and invest
funds from their shares in new ventures that resulted in losses,
because such shares are treated as a separate mental account.
Instead, many of them hope to change the trend and make
up for the losses in the future, which often deepens these
losses and causes a further decrease in the value of the entire
investment portfolio [42].

Finally, analyzing cognitive distortions in the process of
investment behavior, one should mention heuristics. These
are practical rules of thumb, based on experience or even
colloquial knowledge and used to make decisions without
a thorough comparison of all available options (13). If an
algorithm can be treated as an exact recipe for solving a
problem, heuristics is usually only useful as a tip that may
not necessarily bring the correct solution to the problem.
Heuristic distortions are quite common in the process of
making investment decisions on the stock exchange, where
information buzz prompts investors to make decisions based
on heuristics [44].

The financial decision support is always related to the risk.
Depending on the group of factors posing a threat to the
purpose of a given investment in capital assets, the following
types of risk can be distinguished [8]:

1. Political risk. It is associated with political events and
decisions taken in the country. Political decisions that
can affect the capital market (negatively or positively)
include, for example, the result of the election leading to
a change in the ruling political option [45].

2. Risk related to the situation on the stock exchange
market. It is associated with continuous movements
of securities prices. Stock market analyses lead to the
conclusion that prices are changing in line with trends.
Changing the direction of the trend from growing to
decreasing and vice versa causes a large uncertainty in
investment because it is impossible to clearly indicate
the point at which the trend will change [8].
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3. Market risk. It manifests itself in fluctuations in market
prices. It is associated primarily with changes in raw
material prices, supply prices, product selling prices on
the market, etc. [8].

4. Liquidity risk. It is associated with the difficulty of
liquidating investments. Liquidity should be understood
as the time necessary to convert assets (e.g., securities)
into cash. The longer this time, the greater the liquidity
risk [46].

5. Inflation risk. It is associated with a change in inflation
rate. In conditions of high inflation, this may mean that
investment income does not cover the increase in the cost
of maintaining it [47].

6. Interest rate risk. To a large extent, it is a consequence of
inflation risk. The level of return depends on the interest
rate offered by banks on the market. An increase in the
interest rate results in the outflow of capital from the
stock exchange and placing it on bank accounts. Bank
deposits are much less risky than investing on the stock
exchange market. The consequence of this situation is
a decrease in the rate of return on investment and vice
versa, lowering interest rates by banks leads to an in-
crease in the attractiveness of investing in securities. A
special case of interest rate risk is the risk of a price
change, often referred to as holding period risk. It is
characteristic of the bond market and is associated with a
situation in which the bond holder intends to sell it before
the date of buyout [48].

7. Exchange rate risk. It occurs when the financial instru-
ment in which one invests is denominated in a currency
other than that of the investor. In this situation, the rate
of return expressed in two different currencies is not
the same. Therefore, if the investor buys a financial
instrument in a foreign currency and the exchange rate
depreciates, this is a favorable situation for the investor.
When the exchange rate appreciates, the investor will
lose because the nominal return on investment will de-
crease [49].

8. Default risk. It occurs when the issuer of a financial
instrument fails to comply with the terms of the contract.
If the investor buys bonds issued, for example, by a listed
company, and the latter does not pay interest or fails
to timely redeem the bonds, the investor will incur a
loss [50].

9. Risk of reinvesting. It is related to a situation in which an
investor’s income from holding a financial instrument is
reinvested at a different interest rate (e.g., due to changes
in interest rates on the market) than the rate of return on
a given financial instrument [51].

10. Risk of redemption on demand. It is related to futures
and bonds. For example, if the investor has issued an
American option for sale, which can be exercised at
any time, the investor will incur a loss if the request

to exercise this option occurs when the value of the
instrument for which the option was written decreases.

11. Risk of interchangeability. It occurs in the case of in-
struments that can be converted into other instruments
(in Poland, an example of such financial instruments are
convertible bonds issued by the State Treasury). The risk
is that the exchange may occur in conditions that are
unfavorable to the investor [52].

12. Financial risk. It is a state of uncertainty that appears
when financing investments with foreign capital. The
use of debt capital leads to additional financial charges
associated with servicing the loan. The financial risk is
strongly influenced by interest rate fluctuations, which
are quite difficult to predict [53].

13. Banking risk. Banks are the second group, apart from
enterprises, using derivatives tominimize the risk of their
activities, i.e., minimizing banking risk. Banking risk is
associated with an extremely important role played by
banks in the national economy. This role boils down to
the three most important areas of the bank’s activity,
which are [54]:
• Participation in the creation of money
• Participation in the social division of labor
• Allocating and transforming funds

The risk issues should be taken into consideration regard-
less of the method used to support financial decisions.

The presented methods for financial decision supporting
are often implemented in agents’ architectures in multi-agent
systems. On the basis of decisions and data generated by
several agents (each agent uses a different decision support
method), it is possible to provide more sophisticated invest-
ment strategies. For example, the strategy can be built on the
basis of expert opinions (based on, for example, fundamental,
technical, or behavioral analysis). Such strategies can be
realized by cognitive architectures characterized in the next
part of the chapter.

49.4 Cognitive Architectures

49.4.1 Basic Issues

The cognitive architecture is defined as an organized struc-
ture of processes and knowledge trying to model itself on
cognitive dependencies [55]. The primary stimulant for the
creation of cognitive architectures was helping humans in
complex situations, where the computer could be character-
ized by a much faster reaction time in a situation in which
one should take into account many variables present in the
current situation. If we take into account human capabilities,
using the cognitive architectures can allow for mechanical
support of the activities in which humans are limited [12].
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Cognitive architectures are expected to be able to solve
not only one problem using the designated method, but also
to be able to analyze the problem from a broader perspective,
using a wider range of solutions. In addition, they will be
able to implement new solutions in a dynamically chang-
ing environment with the help of acquired experience and
knowledge. The acquisition and use of acquired knowledge
is special here. Thus, cognitive architectures should consist
of the following [56]:

• Memory that will store knowledge.
• Adequate representation of the knowledge.
• Processing units whose task will be to extract, combine,

and store available information; they are often called
operators that perform functions that “cause something to
happen”; from the point of view of architecture, it does not
matter if these functions describe the physical world, the
imaginary world (e.g., human mind/imagination), or any
virtual world generated for the chosen architecture.

Common important features of cognitive architectures are:
how their learning mechanisms are designed and how their
memory is organized. A large variety can be found in how
the role of memory is perceived in the various approaches to
building architectures [12].

Learning mainly consists in the fact that the acquired
knowledge will be remembered and the possibilities and sit-
uations in which it can be used are assigned. Effective design
and use of this process is a significant step in building higher
cognitive systems. The way in which memory is organized is
related to how knowledge is represented [12].

If we focus on these two important features, we can divide
architectures into three types [57]:

• Symbolic
• Emergent
• Hybrid

Figure 49.1 presents the examples of such architectures.
Each type of cognitive architecture can be represented as a
series of steps required by architecture to perform the desired
action (cognitive cycle). Although the term cognitive cycle is
used to describe most architectures, they differ in the type of
activities performed at each stage. The way they are grouped
depends on the type of information presented and processed,
and not on the various possibilities, properties, and criteria
for assessing a given architecture [57].

49.4.2 Symbolic Architecture

Symbolic architectures represent concepts using symbols
that can be manipulated using a predefined set of
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Cognitive architectures

Fig. 49.1 Examples of cognitive architectures

instructions [57]. In most cases, this type of architecture uses
centralized control of the flow of information from sensors
to effectors. The executive functions related to the working
memory are used here. In addition, knowledge stored in the
semantic memory is used. This memory can be organized by
means of production rules [12]. These rules are a very natural
and intuitive representation of knowledge, therefore these
are used by many practical solutions. Symbolic architectures
stand out in planning and reasoning and they are able to cope
with flexibility and resilience that enable us to cope with
the changing environment and perceptual processing [57].
They work based on expert knowledge, after perceiving and
identifying a problem. They are able to generate specific
actions in line with assumed objectives of an action using
their own knowledge.

Another organization of memory is graph representations,
i.e., a structure consisting of vertices and edges that connect
vertices. Usually, directed graphs are used where the edges
immediately precede the vertices, and the vertices are direct
successors of the edges. By transforming data into graphs,
you can simplify the network to a large extent and create a
clearer tool for solving problems [58].

Symbolic systems represent concepts using symbols that
can be manipulated using a predefined set of instructions.
Such instructions can be implemented as if-then rules applied
to symbols representing facts known around the world (e.g.,
ACT-R, Soar, and other architecture of production rules).

The process of learning can be divided into an analytical
(deductive) one and an inductive one. Analytical learning
works on the principle of creating new facts based on agent’s
knowledge. Inductive learning relies on finding the right
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hypothesis among the observed data, which would agree or
translate with already existing knowledge [12].

49.4.3 Emergent Architectures

An emergent architecture is not yet such an effective tool in
solving problems, nor does it represent complex forms of
knowledge like the symbolic architecture. This architecture
sooner solves problems based on the interpretation of the
observed data that reaches the system and the problems of
perception. Neurobiological inspirations of emergent archi-
tectures appear in the form of connectionist and neural mod-
els. The network is composed of signal processing elements
that represent specific memory traces, so one configuration
is responsible for specific arousal in neural networks. Transi-
tions between configurations are determined by connections
between network nodes. In the neural model, based on the
stimuli of several neurons (which individually fulfill specific
functions), the system may interpret this configuration as a
memory trace, e.g., of a specific object. There are associ-
ations between configurations, so that activation can pass
to subsequent configurations of neurons. The actions occur
between elements of the network. Changes take place in the
entire network and new properties are developed [12].

The organization of memory in emergent architectures is
carried out in two ways. One way is the global, distributed
memory. All parameters occurring during the program oper-
ation have a direct impact on the achieved result. The other
is local memory. The nodes of the network are activated by
stimulation, so that only a few affect the final result [12].

Learning, in turn, is divided into an associative one and a
competitive one. Associative learning transforms input data
into simplified representations of output data, which can be
divided into already known classes. The data are associated
as objects, properties are matched to the possessed knowl-
edge. Learning can be done under supervision, i.e., the data
provided is compared to the expected network responses or
by learning with the critic where the system is accounted
from the few steps it has been able to perform (the result
can be positive or negative). Competitive learning follows
the “winner takes everything” principle, where the victorious
element is the model for the next series of signals. The other
elements are slowed down to simplify the signal flow [13].

This architecture solves the problems of system adaptation
and learning by building parallel models, analogously to
neural networks, in which the flow of information is initiated
by signals from input nodes. However, the transparency of
the system is low because it is no longer a set of symbolic
entities, but it is distributed throughout the entire network.
Hence, a logical inference in the traditional sense becomes
problematic and unintuitive, which creates a new challenge
to overcome for modern architectures [57].

49.4.4 Hybrid Architecture

The hybrid architecture combines the advantages of previous
architectures, using effective planning and reasoning similar
to the symbolic architecture, and good transformation of a
large number of diverse data allowing the implementation
of higher cognitive functions, similar to emergent architec-
tures [12].

Memory organizations can be divided into a sprawled
locale that includes a combination of local and distributed
memory modules. The second division is symbolic-
connectionist memory, which can be a combination of
connectionist, dispersed, or local modules and symbolic
modules [57].

Learning is divided into top-down or bottom-up domina-
tion. In top-down learning, the subsymbolic level determined
by the lower level is taught by observing the dependencies
from the received information from the higher (symbolic)
level, where logical rules or other mechanisms of infer-
ence are operated. Teaching bottom-up mechanism works
the opposite way. From the subsymbolic level, knowledge is
transferred to the symbolic level in the form of formulated
concepts [13].

Based of different types of architectures the cognitive
agents are built.

49.4.5 Characteristic of Cognitive Agents

Cognitive agents internally regulate their goals based on their
beliefs (like their decisions and plans). Goals and beliefs are
a cognitive representation that can be internally generated,
manipulated, and subject to reasoning [58, 59].

Most cognitive models try to model a certain type of
cognitive process, e.g., perception, attention, memory, emo-
tions, decision-making, choice of action, etc. or some narrow
range within one of them. A much less frequent model at the
level of systems (cognitive architecture) tries the full range
of activities from incoming stimuli to outbound activities,
along with the full range of cognitive processes between
them [14].

Beliefs (knowledge possessed), expectations, goals, the-
ories (coherent and explained set of beliefs, e.g., rules of
production), plans, and intentions are representations used
by cognitive agents. These representations affect the actions
of themselves and other agents. A cognitive agent is defined
in various ways in the literature, but the most common
definition is that this type of agent is a computer program
that [57]:

• Is capable of taking action in the environment in which it
is located

• Can communicate directly with other agents
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Table 49.2 Comparison of the cognitive and reactive agent

Cognitive agent Reactive agent

Inference based on logic,
ontologies, and knowledge

Inference based on the state of
sensory inputs

Higher maintenance costs Low maintenance costs

Self-sufficiency Lack of self-sufficiency

Actions initiated by
environmental stimuli

Actions depending on specific
situations

Cognitive skills Lack of cognitive skills

Learning Functioning based on
programmed methods, no
learning opportunities

Source: own

• Is directed by a set of habits, tendencies that are specific
goals, or an optimized function of benefits

• Has its own resources
• Is able to receive stimuli from its environment, but to a

limited extent
• May have partial knowledge of this environment
• Has skills and can offer services
• Can reproduce, clone
• Displays behavior which urges it to strive to achieve goals

taking into account available knowledge, resources and
skills, and relying on the ability to receive stimuli from
the perception and communication

• Can learn about the environment and learn by gaining
experience

Therefore, it can be said that a cognitive agent is an
intelligent program that not only requests based on the data
received, takes specific actions to achieve the set goal (it
can be, for example, supporting decision-making), but also,
unlike a reactive agent, teaches while gaining experience.
Table 49.2 presents the differences between cognitive agents
and reactive agents.

It should be noted that the cognitive agent is self-
sufficient, i.e., it can make its own decisions without human
intervention (such agents are used, for example, in devices
operating in space).

Higher costs of maintaining a cognitive agent are pri-
marily associated with a greater demand for IT resources
(hardware, software, and data resources).

In this chapter, attention will be paid to several types
of cognitive agent architectures that we analyzed in our
research:

• BOID
• Cougaar
• Soar
• SNePS
• LIDA

Agent Goal
generation

Plan
generation

Input

Observation

Output

Plan

Goal

Fig. 49.2 Agent diagram in BOID architecture. (Source: own)

The first is the BOID architecture (beliefs, obligations,
intentions, and desires).

Beliefs reflect the agent’s knowledge of the world around
it, desires are defined as the states of the world – the potential
goals of the agent, and its responsibilities are determined
by tasks resulting from functioning in the group, while
intentions reflect the agent’s real goals. The agent observes
the environment and reacts appropriately to its changes
using detectors and working mechanisms. Each object in
the environment, called a component, is a process of input
and output nature and operates based on rule systems that
contain executable rule sets. The outputs represent the so-
called “mental attitude” depending on the state of the inputs
[59, 60].

Two modules are distinguished in this agent architecture
(Fig. 49.2):

1. A goal-generation module that generates goals based on
beliefs, desires, intentions, and responsibilities.

2. A plan-generationmodule that generates action sequences
based on the generated goals.

In the case of agents supporting decision-making, goals
and intentions are to help the decision-maker make decisions
or to make the decisions independently (e.g., granting a loan
and purchase shares), plans specify the actions to be taken
to achieve the goal (e.g., read data and process it), beliefs
express the decisions taken in the application process (for
example, grant a loan and buy shares of given companies),
while the obligations may specify that, for example, if a loan
was granted to person 1, then the loan should also be granted
to person 2 if he/she meets the same conditions as person
1 [61]. The BOID architecture is a symbolic architecture
and can be used for financial decision supporting, but the
frameworks of these architectures are to general and many of
mechanisms for input data processing must be implemented
by users.

Another cognitive architecture is Cougaar (cognitive
agents architecture), which enables the creation of multi-
agent systems using the Java programming language,
developed by the ALPINE consortium for the DARPA
(Defense Advanced Research Projects Agency). It consists
of numerous layers of interactive applications – systems
within systems [62]. This enables agents to be connected
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in different communities [63]. For example, if we consider
an enterprise, it may constitute a community, where the
departments of the enterprise will be smaller communities
located lower in the system hierarchy, while the counterparts
of individual employees will be specific agent programs. In
architecture, it is assumed that agents perform operations on
so-called components (in other words, objects; for example,
securities and currencies). The Cougaar architecture can
therefore be used in the construction of multi-agent financial
decision support systems, however it is a “black-box” and
modification of software code (for example, to adapt to the
field of the problem) is very difficult [64].

One of the more popular architectures is Soar (state,
operator, and result). It is a general cognitive architecture for
creating systems that exhibit intelligent behavior. Scientists,
both in the fields of artificial intelligence and cognitive
science, use Soar to perform a variety of tasks. It has been
in use since 1983, evolving through a number of different
versions. The creators of Soar have an ambitious plan to
create a general artificial intelligence agent that will cope on
many levels [65].

Plans for the functioning of Soar architecture provide
for:

• Working on the full range of significant problems, open
problems

• Using memory modules such as procedural, semantic,
episodic, and iconic memory

• Use a full range of problem-solving methods
• Appropriate operation in an external environment
• Ability to solve tasks and implement them in the envi-

ronment, combined with continuous learning about this
process

Total rationality is a direction for the development of
artificial intelligence. This means that the system, with the
extensive knowledge it would have, would be able to take on
any task it encounters. However, this goal is very difficult to
achieve, so all attempts are now limited to an approximate
version of rationality [65].

In Soar, decisions are made through current analysis and
interpretation of sensory data provided to the agent. Working
memory contains information needed to solve problems,
often in the form of production rules or graphs, and all this is
based on knowledge accumulated in long-term memory, e.g.,
semantic memory. Soar is characterized by functionality and
efficiency. Functionality is that Soar has primitive cognitive
skills that are needed to carry out tasks in accordance with
the pattern of human reasoning. Among other things, it is
able to make decisions based on reactions, understands the
environment in which it works, plans, uses several forms of
learning, and is aware of the situation. On the other hand,
efficiency is based on the fact that it is able to take advantage

of the system’s advantages, such as efficient calculation
of learned algorithms, has quick and easy access to saved
experiences, is able to make decisions faster, and acquires
and stores new knowledge.

In Soar there is a spatial visual system (SVS), independent
from the system, which supports the interaction between
connections needed for perception and motor control, and
the symbolic representations of these relationships. In ad-
dition to internal support, SVS also supports the system
externally. Thanks to this, the agent can use so-called mental
images. They allow continuous interpretation of a dynami-
cally changing environment. This is useful, e.g., in the use
of car controls, with modern algorithms that interpret the
planning of its path. Soar belongs to hybrid architecture;
it uses both symbolic and nonsymbolic structure [66]. The
working memory in the symbolic structure contains current
and recent sensory data, the current goal, and interpretations
of the situation in the context of implementation of this goal.
Working memory acts as a buffer for long-term memory and
motor function. The semantic memory contains information
that illustrates the agent’s model of the external world, but
it is downloaded to the working memory when it is needed.
Newly created information in the learning process is deliv-
ered to the semantic memory, although one can implement
the rules at the beginning of the agent’s creation. In the
episodic memory, on the other hand, there are snapshots of
the agent’s experience. Thismemory accumulates experience
and allows one to use it to guide future behaviors and draw
conclusions. Among numerous cognitive agent programs,
this type of memory is not frequently employed, but it is
extremely useful because it leads to maintaining greater
consistency between experiences [66].

The procedural memory contains production rules. Spe-
cific situations are coded there, including descriptions as
to how the system should deal with them. Processing units
are operators which arise in working memory and propose
solutions based on the current situation. They have their
preferences, which are analyzed using established decision-
making procedures. The agent determines whether the op-
erator is suitable to participate in the cognitive cycle, and
if not, it causes stagnation. This contributes to the fact that
the operator enters the substate in which there may be more
thought-out reasoning, task decomposition, changes in plan-
ning, and methods of finding solutions. The selected oper-
ator modifies working memory, e.g., by downloading from
semantic or episodic memory, or by issuing external motor
commands [65].

After selecting the operator, rules sensitive to his/her
choice perform their actions by modifying the working mem-
ory. The action can be an internal step of reasoning, a query
to SVS, downloading from episodic or semantic memory,
or an external motor command. The operators in Soar con-
ceptually correspond to the STRIPS operators; however, in
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Soar the constituent parts of the operators (preconditions and
actions) are broken down into individual rules to ensure the
preconditions and conditional disjunctive actions. In addi-
tion, Soar has rules which are dependent on the tasks to
assess the operator, ensuring contextual and precise control
of operator selection and application [65]. The Soar can
be used in multi-agent financial decision support systems,
however it is characterized by high demand for hardware
resources.

Another example of cognitive agent programs is SNePS –
the Semantic Network Processing System. It is a system
based on logical, framework, and network representations
of knowledge, inference, and action. Semantic knowledge
works on the principle of ordered direct graphs whose nodes
represent entities and arches represent the relationship be-
tween two nodes [66]. The unit represented by node n reacts
with the R arch with the unit represented by node m. In
SNePS, a set of nodes in the program network and a set of
logical conditions operate at the same time. When a problem
arises that needs to be resolved, the entire SNePS operation
is implemented at the node level, not at the arches. The
relationships represented by arches can be understood as part
of the structure of nodes that illustrate where certain activities
originate. Each time information is added to the network,
new connections are created that are implemented with the
principle of operation of nodes and arches. New information
is assigned to the appropriate relationship. Each autonomous
representation is expressed as a node or condition. Each
unit in the network is represented by a unique node. The
program user can add such representations according to their
needs [66].

There are four types of nodes [66]:

• Basic – they do not originate from arches, i.e., they do not
start further action; it is assumed that the basic nodes rep-
resent, e.g., a unit: objects, classes, properties of entities;
they can be ranked according to an equality or equivalence
relationship; and it is also possible to specify the rules for
using these nodes.

• Variables – additionally, they do not start an activity, but
they represent any units or suggestions in a similar way as
logical variables do.

• Molecular – they possess arches which extend from
them and they can represent various solutions, including
rules.

• Reference – they also possess arches coming out from
them; they represent any sentences or units of any struc-
ture; and they are similar to open tasks in the predicate
logic.

An important function of the SNePS program is the in-
troduction of context functions. It is a structure consisting of
three components [67]:

• A set of hypotheses, i.e., a set of nodes from which the
context is composed; the hypotheses are defined in such a
way that two contexts will not have the same set.

• A set of names, i.e., symbols that represent the context.
• A controller checking if a set of hypotheses for the struc-

ture of this context may be conflicting, in which case it
returns TRUE.

The agent having the entire structure in the semantic
network is supported by the SNIP: the SNePS inference pack-
age, which can be automatically applied. Whereas SNeRE:
the SNePS rational engine is a package responsible for plan-
ning and taking action. Also available is the SNaLPS pack-
age: the SNePS natural language processing system, which
efficiently analyses natural language [66].

SNePS agents are used for linguistic analysis, as they
possess the ability to expand vocabulary and create text
responses [12]. They also find their application as data man-
agers. SNePS works in specific databases, where there are
numerous connections between data tables and when the user
can search and organize data in many ways. This is a more
natural form of approach to working with data, because the
system is able to better understand the relationships between
them. Elements of such databases are represented by primary
nodes, rows are represented by molecular nodes, and arches
represent columns [66]. SNePS can be used in multi-agent
decision support system, however its documentation is very
weak.

In our research we use solution proposed by S. Franklin –
the Learning Intelligent Distribution Agent (LIDA). Its ar-
chitecture is shown in Fig. 49.3. A cognitive agent consists
of the following modules [13]:

• Workspace
• Global workspace
• Sensory memory
• Perceptual memory
• Episodic memory
• Declarative memory
• Sensory and motor memory
• Selection of actions

LIDA is an agent that works at the system level. It receives
many simultaneous incoming stimuli, and then internally
processes them, which is completed by choosing and per-
forming the appropriate action. The agent creates hypotheses,
acts as a cognitive help in the thinking and understanding
of individual cognitive activities and various executive pro-
cesses. As a model, it tries to explain and predict the phe-
nomena occurring in the environment. The basic function of
the agent is to constantly answer the question: “What should
I do next?” [13]. The agent’s operation is conditioned by the
stimuli it receives from the external or internal environment.
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Fig. 49.3 The LIDA architecture

The key is that its reaction results from the cognitive cycle,
which is the core of the agent’s activities. The cycle consists
of the higher-order cognitive processes, which include reflec-
tion, reasoning, problem-solving, planning, imagining, etc. It
is divided into three phases [13]:

• The phase of perception and understanding – after receiv-
ing input data from, for example, motor sensors or agent’s
memories, it tries to understand the actual situation.

• The phase of consciousness – in this phase the content
of this understanding is filtered, because the agent is
interested in keeping only relevant information that it will
be able to send to global workspace.

• The phase of action and learning – in this phase the system
selects and then performs selected actions and learns in
many memory mechanisms.

The LIDA cognitive cycle, presented in Fig. 49.1, begins
with sensory stimuli, both external and internal, reaching the
sensory memory, where early feature detectors are involved.
Received data goes to perceptual memory. In the perceptual
memory an associationmodel is created, which aims to create
perception and make it available to the workspace, which
is constantly updated by sending signals to the perceptual,
declarative, and episodic memory and receives local associa-
tions. The entire update happens in workspace by processing
units called codelets. These small pieces of code perform a
specific task when the expected conditions are met [13].

In the phase of consciousness, the codelets browse the
content contained in the workspace and decide which of
them should be introduced as a signal of consciousness
delivered to global workspace. There, on the other hand, these
data form coalitions, which, through competition, become
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selected as the right consciousness. The winning, most sig-
nificant coalition has its own content transmitted globally. It
becomes aware in the functional sense, completing the phase
of attention of the cognitive cycle [68].

In the last, third phase of the cognitive cycle, almost every
module can get the appropriate content of consciousness
that matches its data structure for learning. For example, the
procedural memory, which is responsible for “what to do
when . . . ” knowledge, uses information that in the future
will facilitate an immediate response to over-stimuli. In the
final stages of the cycle, the action selection module selects
one action from the schemas provided to it, then it is sent to
the sensory-motor memory to create or select an appropriate
action plan that can then be performed. This action completes
the cognitive cycle LIDA [69].

49.5 The Architecture and Functionality
of MAFDSS

The purpose of MAFDSS is to support investing in
financial markets by subcontracting the investor to buy/sell

decisions. The system consists of the following elements
(Fig. 49.4):

• Agents making buy/sell decisions that process structured
and unstructured knowledge.

• Knowledge integration module – operates using the con-
sensus method; in this module, based on decisions gener-
ated by agents, a final decision is presented to the user.
The issues related to this module has been presented
by Hernes et al. [69, 70] and they are not a subject of
this chapter.

• Users – people investing in the financial market.

The buy/sell decisions agents are divided into following
groups:

• Technical analysis agents (they have been described, for
example, by Korczak et al. [71])

• Fundamental analysis agents [72]
• Behavioral analysis agents [71]
• Deep learning agents [73]
• Text analysis agents



49 Application of Cognitive Architecture in Multi-Agent Financial Decision Support Systems 997

49

In this chapter, we focus on text analysis agents. The main
aim of these agents is to offer advise on buy/sell decision
based on expert or investors opinions stored in cyberspace
(e.g., portals, forums, and Tweeter).

The environment of the text analysis agent functioning is a
set of text documents containing such opinions. The analysis
of the opinion is carried out as follows:

1. On the basis of a training set (a set of opinions concerning
a given market, e.g., Forex), a semantic network is created
in the perceptual memory containing concepts (related
to the product) and connections (associations) between
them. The perceptual memory also stores synonyms and
various types of words. In the perceptual memory of the
LIDA agent, concepts are represented by nodes, while
associations by links.

2. Sensory memory (containing strings) is passed in turn to
individual opinions.

3. Opinion analysis is made by codelets (implemented in
the form of Java programming language classes). They
analyze the text according to the criteria defined by the
configuration parameters (stored in the xml file). The
values of parameters can be indicated by the user and
used in a codelet software code. An example of a codelet
configuration defining the sentiment of the opinion is
presented in Fig. 49.5.

The task name parameter (in the LIDA codelet ar-
chitecture is configured as a task, the task may also be
to refresh the GUI content and it is not implemented
by the codelet) means the codelet name. The task type
parameter indicates the name of the Java class in which
the codelet’s program code is located, the parameter-
named object specifies which words (or exceptions) are
searched by the codelet in the sensory memory. The no-
object parameter specifies which words (or expressions)
cannot be in the text (for example, the opinion has buy

<task name="buy">

<tasktype> CodeletObjectDetector </tasktype>

<param name="object" type="string">sold out</param>

<param name="object" type="string">market</param>

<param name="noobject" type="string">bought 
out</param>

<param name="distance" type="int">2</param>

<param name="node" type="string">buy</param>

</task>

Fig. 49.5 The example of the configuration of codelet

Market
Buy

Sold out

Fig. 49.6 The example of results of opinion analysis

sentiment when the word “sold out” appears in the text,
but the word “bought out” does not appear). The distance
parameter specifies the maximum distance between the
searched expression or expressions, the node parameter
specifies which node has to be placed in the workspace
in the case of finding the wanted items (or expression)
[74–76].

4. The results of the analysis, in the form of a semantic
network, are transferred to the working memory (the
current situational model is created). Figure 49.6 shows
an example of the results of the analysis of the following
Product Opinion 1: “The market is sold out.” Nodes are
marked with a large circle symbol, and links with the
arrow symbol. The dots indicate levels of link activation
(links can be determined with a certain level of probabil-
ity).

5. In the next step, the situational model is passed to the
global workspace and the following action schemes are
automatically selected from the procedural memory:
“writing the results of the analysis of the opinion to the
database” (noSQL database – analysis results – semantic
network – are saved in the XML format) and “loading
another opinion into sensory memory.” It is also possible
to select the action “statistical analysis,” as a result of
which the agent also indicates the features of the product
that are most desirable by customers.

The next part of the chapter presents the results of perfor-
mance evaluation of text analysis agent on the Forex market.

49.6 Research Experiment

The analysis of the efficiency of the developed method was
carried out on data from the H4 range of quotations from the
Forex. In order to make this analysis, a test was carried out
in which the following assumptions were made:

1. The GBP/PLN pair quotations were used from three ran-
domly selected periods:
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• 17-04-2018 0:00 to 23-04-2018 23:59
• 15-05-2018 0:00 to 21-05-2018 23:59
• 28-05-2018 0:00 to 01-06-2018 23:59

2. The verification was based on the opinions of experts
obtained from financial portals. These opinions were an-
alyzed by the cognitive agent and on the basis of the
analysis results, the agent determined which decisions
should be taken in the periods considered (buy value 1,
sell value −1, leave unchanged value 0).

3. It has been assumed that the unit of measure of effec-
tiveness (relative measures) is pip (price change by one
“point” on the Forex market is referred to as pips).

4. Transaction costs are not taken into account.
5. Moneymanagement – it was assumed that in each transac-

tion, the investor engages 100% of his capital. The capital
management strategy can be determined by the user. The
efficiency analysis was carried out using the following
measures (indicators):
• Rate of return (ratio x1)
• Number of transaction
• Gross profit (ratio x2)
• Gross loss (ratio x3)
• Total profit (ratio x4)
• Number of profitable transaction (ratio x5)
• Sharpe ratio (ratio x6)

S = E(r) − E(f )

|O(r)| × 100% (49.1)

where

E(r) – the arithmetic average of the rate of return
E(f ) – the arithmetic average of the risk-free rate of
return
O(r) – standard deviation of return rates

• Average coefficient of variation (ratio x7) is the ratio of
the average deviation to the arithmetic mean multiplied
by 100%:

V = s

|E(r)| × 100% (49.2)

where

V – average coefficient of variation
s – deviation of the average rate of return
E(r) – the arithmetic mean of the rate of return

6. The following performance evaluation function will be
used [42]:

y =
(
a1x1 + a2x2 + a3 (1 − x3) + a4x4 + a5x5 + a6x6

+ a7 (1 − x7)
)

(49.3)

where xi denotes normalized values of the indicators.

The results obtained on the basis of text analysis agent
have been compared with the results of the fundamental
analysis agent (based on fundamental analysis method –
described in detail by Korczak et al. [72]), technical analy-
sis agent (based on different technical analysis indicators –
described in detail by Korczak et al. [71]), and buy-and-hold
strategy (the investormakes a decision to buy at the beginning
of the period, and the decision to sell at the end of the period).
Table 49.3 presents the results of research experiment.

Analyzing the results, it can be stated that the values
of particular ratios are characterized by a high dispersion.
There is no agent which achieved the best values of particular
rations in all the periods. Taking into consideration a rate
of return, the text analysis agent achieved the highest value
in period 1 and 3. In period 2, the technical analysis agent
achieved the highest value of this ratio. The B & H is
characterized by the lowest values of rate of return in all
periods. The technical analysis agent generates the highest
number of transactions in each period. On the basis of values
of gross profit and gross losswe can conclude that even if the
overall rate of return in the given period is profitable, there
are transactions generating losses. Taking into consideration
the value of the number of profitable transactions it can be
stated that this value was 50% or higher only in the case of the
text analysis agent in all periods. The technical analysis agent
generated the highest number of unprofitable transactions
in relation to other agents. A large number of unprofitable
transactions can lead to losses in investment capital even if
the overall rate of return is profitable. Risk-based measures
are very important – Sharpe ratio (the risk is lower if the
ratio is higher) and average coefficient of volatility (the risk
is lower if the ratio is lower). The text analysis agent and the
fundamental analysis agent achieve the best values of these
ratios. The transactions generated by these agents are less
risky than transactions generated by the technical analysis
agent.

The analysis of particular ratios by a user is a very time-
consuming process. Therefore, the evaluation function is
very helpful in this purpose. Taking into consideration this
function, it can be stated that in period 1 and 3 the text
analysis agent achieved the highest value, the fundamental
agent was ranked higher in the second period. The B&H
benchmark was ranked lowest in all the periods.

49.7 Conclusions

The application of a cognitive architecture inmulti-agent sys-
tems supporting taking financial decisions allows performing
it on the basis of natural language processing. Decisions
generated by cognitive agent on the basis of opinions of
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Table 49.3 Results of research experiment

Ratio Text analysis agent Fundamental analysis agent Technical analysis agent B & H

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 Period 1 Period 2 Period 3

Rate of return
[Pips]

−274 9345 2487 −675 8237 2389 −578 9373 2285 −1016 7246 1996

Number of
transactions

4 7 5 3 6 6 11 16 9 1 1 1

Gross profit
[Pips]

378 1273 378 429 2419 437 214 942 194 0 7246 1996

Gross loss [Pips] −421 −438 −261 494 −685 −294 −396 −582 −146 −1016 0 0

Number of
profitable
transactions

2 5 4 1 5 4 4 10 5 0 1 1

Sharpe ratio 0.78 0.82 0.63 0.74 0.80 0.72 0.36 0.63 0.59 0.27 0.46 0.17

Average
coefficient of
volatility

0.28 0.36 0.32 0.31 0.28 0.42 0.47 0.43 0.58 – – –

Average rate of
return per
transaction

−68.5 1335.0 497.4 −225.0 1372.8 398.2 52.55 585.8 253.9 −1016 7246 1996

Value of
evaluation
function (y)

0.67 0.52 0.59 0.51 0.58 0.54 0.38 0.41 0.46 0.14 0.21 0.17

experts allow for achieving more satisfactory benefits in
relation to, for example, the fundamental analysis agent or
the technical analysis agent. It can result from the fact that
experts build their opinions on the basis of different methods
(including fundamental, behavioral, and technical analysis).
Expert’s opinions also consist of the market sentiment. It is
highly probable that the “wisdom of the crowd” phenomena
occurs also in this case.

To sum up, the cognitive architecture allows to increase
the usability of the multi-agent system and consequently
to improve the process of taking investment decisions. The
ability tomake automatic decisions is also of high importance
here. For example, the cognitive agent can make real trans-
actions (open/close short/long position) on the Forex market.

The further research works can be related, for example,
to implementing deep text analysis method into the cognitive
architecture and to developing an agent running on the basis
of summarization of opinions of experts and users.
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Abstract

In the semiconductor industry, the study of reliability and
the ability to predict temperature cycling fatigue life of
electronic packaging are of significance. For that purpose,
researchers and engineers frequently employ the finite
element method (FEM) in their analyses. It is primarily
a mechanics analysis tool that takes material properties,
manufacturing processes, and environmental factors into
consideration. Engineers also like to use FEM in their
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design of electronic package, but frequently the term
“reliability” they refer to only addresses the robustness
of a particular design. It has little to do with probability
and statistics. Meanwhile, in manufacturing factories of
electronic products, including packaging, accelerated life
testing (ALT) is carried out very often by quality engineers
to find lives of a product in more severe environmental
conditions than those of the field condition. Through
regression analysis of the test result based on an empirical
or semiempirical formula, the acceleration factor (AF) can
be obtained for use in predicting service life of the product
in field condition. Again, other than regression analysis,
little probability and statistics are involved. By taking
parameter uncertainties into consideration, this chapter
demonstrates by an example that FEM, ALT, and AF
can be combined to study the reliability of electronic
packaging in which probability and statistics are applied.

Keywords

Electronic packaging · Parameter uncertainty · Life
distribution · Probabilistic analysis · Statistical method ·
Reliability · Mechanics · Finite element method (FEM) ·
Accelerated life testing (ALT) · Acceleration factor (AF)

50.1 Introduction

The development of semiconductor in the past few decades
has changed dramatically the way we live. Today, the semi-
conductor industry is still prosperous, and its development
trend is that semiconductors are designed and manufactured
smaller and smaller with their performances become better
and better. Along with the development of semiconduc-
tor industry, electronic packaging industry has also been
thriving. The purpose of packaging is to connect together
and enclose appropriately semiconductor chips, components,
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printed circuit boards, and other assemblies and modules to
guarantee the performance of electronic devices and protects
them from mechanical damage, cooling, radio frequency
noise emission, and electrostatic discharge. Various kinds
of failure have to be avoided during the manufacturing and
product life cycle of a package. To that purpose, the reliability
of a packaged electronic device or equipment has to be
assured, and related research is needed [1–4]. Unlike the
design of semiconductor that relies primarily on electronic
and electrical engineers, electronic packaging is a major
discipline within the field of mechanical engineering, in
particular mechanics [5]. Principles such as dynamics, stress
analysis, heat transfer, and fluid mechanics are employed
extensively in the design and analysis of electronic pack-
aging. Thousands of researches have been carried out in
the last few decades under the general term of “reliability
of electronic packaging.” However, most researches have
nothing to do with probability and statistics. Researchers just
use the word “reliability” to address that their packaging
designs and products manufactured are strong and robust
enough to encounter environmental stresses, avoid failures,
and possess lives that are long enough.

A major issue among those encountered in the design
and manufacture of electronic packaging is the mismatch of
thermal conductivity among materials used in a package [6].
It may result in stress concentration, fracture, or warpage
that affects the performance and eventually causes failure of
the package. The life of package may not meet the need as
well. To overcome the problem, analysis has to be carried out
in the design stage of a new electronic package. Advanced
researches are also needed accompanying with the devel-
opment of smaller and smaller semiconductors. A powerful
tool used in the design of package as well as the research
of “reliability of electronic packaging” is the finite element
analysis (FEA), also called finite element method (FEM)
or finite element modeling (FEM) [7]. Based on mechanics
principles, the method has been developed for more than 50
years and is very much matured today. Commercial software
packages can be found in the market. A software package of
this kind usually covers analyses of solid mechanics (includ-
ing stress, strain, displacement, etc.), fluid mechanics, heat
transfer, temperature fatigue life, and many others. Modules
in consideration of uncertainty have been included in a few
software packages in recent years but in a rather primitive
stage. One purpose of the present chapter is to propose and
illustrate by examples a more complete mechanics analy-
sis of electronic packaging that employs FEM and takes
into account parameter uncertainties of materials as well
as environmental factors. By doing so, statistical analysis
can be connected to mechanics analysis, and the result is
truly meaningful under the term of “reliability of electronic
packaging.”

In fact, the idea of connecting mechanics analysis with
statistical analysis arose by the leading author of this chapter
more than 10 years ago. The reason was that several of his
acquaintances had been doing researches on “reliability of
electronic packaging,” but in fact, their research contents
had little to do with reliability in terms of probability and
statistics. The Weibull plots they drew and explained for ex-
perimental data might even be incorrect. The leading author
of this chapter considered that if researchers argued FEM
can describe accurately the mechanics behavior of a package
as compared with experimental data, it can also be used in
carrying out numerical simulation of mechanics behavior of
the package. Actually, the term “mechanics simulation” or
“numerical simulation” based on FEM has long been used
by researchers of “reliability of electronic packaging,” but
the simulation is in an average sense of everything that takes
no consideration of uncertainty. The “reliability” those re-
searchers address just reflects the strength and robustness of
the package without any quantitative measure. The purpose
of this chapter is to carry out mechanics-based numerical
simulation of electronic packaging by FEM and take into
account uncertainties of the manufacturing process, environ-
mental factors, and material properties. It can be considered
a kind of numerical experiment instead of true experiments
or tests. The latter are usually very expensive if quantitative
reliability measure and statistically meaningful sample size
are asked for. The simulation would save greatly the expense,
and its result would resemble experimental or test result if
appropriate uncertainties are measured and statistically ana-
lyzed in advance and then incorporated into the simulation.
Even under the same environmental condition, the simulation
result will be a set of data caused by the considered uncertain
factors but not a single-value data. It resembles a sample
in a statistical experiment. Statistical analyses can then be
employed to treat the data for drawing conclusion related
to not only mechanics but also quantitative reliability of the
electronic package. It would achieve truly the analysis of
“reliability of electronic packaging.”

Most of the following contents are abstracted from the
master thesis of the second author under direction of the lead-
ing author of this chapter. It presents to a certain extent the
applicability of the above idea with special emphasis put on
accelerated life testing (ALT) which is frequently practiced
in the electronic industry. The organization is as follows.
In Sect. 50.2, the background and research motivation are
addressed. In Sect. 50.3, literature and related theories are
reviewed briefly. In addition to the introduction of FEM and
ALT, parameter uncertainty and reliability is emphasized.
They make this study different from others. In Sect. 50.4, the
configuration of electronic package and the analytical model
used in this study are introduced. Verification of the model is
also presented. In Sect. 50.5, both results of the reliability and
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ALT analyses taking into account parameter uncertainties are
addressed, and conclusion is drawn based on results of the
analysis. In Sect. 50.6, a few comments are made to finally
conclude this chapter.

50.2 Background and ResearchMotivation

With the rise in both demands and popularity of electronic
products such as smart phones and personal computers, elec-
tronic packaging, being a vital component in these products,
has become the topic of numerous researches. In order to
keep upwith the current trend of low cost, lightweight, highly
efficient electronic products, many technological advances in
electronic packaging have been made in the past few years,
such as the replacement of lead wires with solder balls and
different board configurations accustomed to different needs.
To reduce sizes of the electronic product, the geometry of
package has also evolved from single chip package (SCP),
multichip package (MCP), system in package (SIP), system
on package (SOP), package on package (POP), system on
chip (SOC), and wafer-level chip-scale package (WLCSP) to
the so-called 2.5D and 3D packaging such as the most up-
dated fan-out wafer-level packaging (FOWLP) [1, 3]. These
advances present many new challenges for manufacturers
and engineers, with a special emphasis on the reliability of
package, which influences the life of a finished product. One
of the most popular electronic packaging configurations is
the ball grid array (BGA), with rows of solder balls trans-
mitting signals on a square or rectangular chip. Depending
on the manufacturing process, it can further be classified
as PBGA (plastic BGA), CBGA (ceramic BGA), CCBGA
(ceramic column BGA), CSP (chip scale package orμBGA),
and TBGA (tape BGA). The BGA has advantages of being
very efficient for its small size and is the configuration of
choice in many products. The main reliability concern of
BGAs is to prevent fracture of solder balls and prolong their
temperature-cycling fatigue lives. It is an important issue and
has been emphasized in electronic industry under the name
of “reliability of electronic packaging” [5, 8].

From mechanics point of view, the differences between
coefficients of thermal expansion (CTE) of the solder balls
and their surroundings result in creep strain accumulation
in solder balls when subjected to temperature-cycling con-
ditions. This could cause failure at the interfaces between
solder balls and their connected chip after a number of cycles.
To prevent failures in advance, design engineers frequently
employ finite element method (FEM) for prototyping and
parameter optimization of packages in the electronic pack-
aging industry. Researchers [9, 10] have also used FEM in
conjunction with fatigue formulas such as Coffin-Manson
equation [11, 12] to relate damage parameters accumulated

per cycle with fatigue life. These damage parameters include
creep strain and strain energy.

From quality point of view, the life of an electronic prod-
uct operated in a normal environmental condition, tempera-
ture in particular, has to be assured when it is manufactured.
To that purpose, temperature-cycling fatigue life tests in
factories are frequently required by purchasers. However,
under a normal environmental or field condition, the number
of cycles that leads to product failure is significantly large,
making experiments time consuming, expensive, and often
impractical. In order to obtain the reliability properties of
a given BGA package in a short amount of time, engineers
often carry out accelerated life testing (ALT) that tests the
product in more severe environmental conditions and then
employ empirical or semiempirical formulas (or ALTmodels
in short) to estimate fatigue life of the package when it is
operated in the normal or field condition [13]. However,
ALT presents its own problems in that many experiments
are required to curve-fit the coefficients of ALT models and
the accumulated time and cost are substantial. Also, the
accuracy of the empirical models is questionable and needs
to be recorrelated for different packages with different solder
materials.

This research plans to connect the above two types of
engineers, i.e., design engineers and quality engineers, by
combining FEA and ALT for studying the reliability of a
BGA. The proposed analysis can take advantage of the speed
and low cost of FEM, and use it as an experimental tool to
correlate the coefficients of ALT models. Current FEM tools
such as ANSYS have the ability to run a probabilistic design
system (PDS)-based simulation, introducing random param-
eter variations into the FEM model. This approach could be
used to simulate the manufacturing variations and natural
variation in material properties that are present in real-world
experiments, allowing FEM to be used as a substitute for ALT
under different environmental conditions. With the ability to
perform a large number of tests under different environmental
conditions at relatively low costs, the proposed method could
generate more relevant data to curve-fit existing ALT models
and produce results that are more accurate and closer to real-
life conditions.

50.2.1 Research Purpose

Traditional researches on the topic of “reliability of electronic
packaging” are of deterministic nature; however, real-life
conditions involve parameter uncertainties that result in the
fatigue life being a random nature and having a distribution.
This research combines traditional FEM approaches with
probabilistic design system (PDS) to investigate the effects
of parameter uncertainties on fatigue life distribution and
reliability of lead-free plastic ball grid arrays (PBGA) under
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different environmental conditions. This study also aims to
improve the accuracy of current accelerated life testing (ALT)
models such as the Norris-Landzberg (N-L) formula [13]
by using the probabilistic FEM model as a substitute for
real-life experiments. With a large number of individuals
generated by PDS for each of the test samples, we can
perform numerous ALTs without expensive cost, resulting in
a cheap and efficient prediction method. Fatigue life distri-
bution and reliability of PBGAs under different temperature
cycling conditions as well as their corresponding statistics are
emphasized in this chapter.

50.2.2 Research Procedure

The proposed method of fatigue life prediction combining
finite element analysis (FEA), accelerated life testing (ALT),
and probabilistic design system (PDS) is summarized in
Fig. 50.1 in which the research procedures are divided into
four parts. The first part is preparation and FEM model

verification.With experimental data collected from reference
[14], we can replicate a full temperature-cycling test using
FEM. Using the exact geometric dimensions and material
properties, we construct a representative finite element model
subject to boundary conditions and temperature cycling pro-
files of the said experiment. The cycles are performed several
times in order for the equivalent creep strain per cycle to
stabilize. The final results are recorded and applied to the
modified Coffin-Manson equation which relates the damage
parameter per cycle with fatigue life of the PBGA assembly.
We then introduce parameter uncertainties into the FEM
model using PDS, with 3% coefficient of variation [15, 16] on
selected geometric dimensions and material properties. This
simulates a real-life sample of 30 tests, and the fatigue life
distributions are recorded and studied. The results are then
verified with experimental data to ensure the FEM model is
an accurate representation of the actual test vehicle and can
be used for other temperature-cycling tests.

The second part is the traditional deterministic fatigue
analysis. The study uses the verified FEM model and per-

Investigate effects of environmental conditions on statistics of life distribution

Curve-fit parameters for ALT model and compare with the deterministic version

Evaluate effects of parameter uncertainties

Perform FEA with PDS under different temperature cycling conditions

Develop improved fatigue life equation in terms of environmental variables

Use life data to curve-fit parameters of the accelerated life testing (ALT) model

Deterministic finite element analysis (FEA) under different temperature cycling conditions

Verify FEA model

Use probabilistic design system (PDS) to introduce parameter uncertainties

Finite element analysis (FEA) and use modified Coffin-Manson equation to relate strain data to fatigue life

Obtain experiment data from literature

Fig. 50.1 Research procedure
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forms various deterministic temperature cycling tests follow-
ing JESD22-A104C of the JEDEC (Joint Electron Device
Engineering Council) standards [17]. The fatigue life results
are then used to curve-fit the N-LALT empirical formula, and
a deterministic version of the formula is devised. In the third
part, we perform probabilistic FEM tests using PDS under
each of the testing conditions. This creates samples of 30
per temperature-cycling condition resulting in a large set of
data that we could use for further investigations, including the
evaluation of the effect of each of the parameter uncertainties.
A probabilistic N-L ALT formula is curve-fitted from the
results, and its performance is compared with its determin-
istic counterpart. The fourth and final part of this chapter is
to investigate the effect of environmental condition on the
statistical quantities of fatigue life. The standard deviation,
Weibull scale, shape, and threshold parameters are discussed
in particular, and an attempt to summarize their behavior
under different temperature loading is carried out.

While the above procedures were proposed and carried out
by the second author of this chapter, it should be mentioned
that they have been reorganized a little by the leading author
in the following sections and subsections.

50.3 Fundamentals and Literature Review

This section gives an overview of fundamental theories used
in this research and, in the meantime, reviews related works
done by previous researchers on the subject of “reliability of
electronic packaging.”

50.3.1 Cause of Failure

Temperature-cycling fatigue has always been a major source
of failure in electronic components and products, and many
researches have been carried out to investigate its contribut-
ing factors. Darveaux et al. [18] were among those earlier
researchers who discovered that differences of coefficient
of thermal expansion (CTE) among materials are the main
cause of failure of electronic components and products under
temperature-cycling conditions. They showed that a small
amount of CTE difference is sufficient in producing instan-
taneous thermal strain, and the strain will accumulate under
temperature-cycling conditions to cause failure eventually.

The above temperature-cycling fatigue failure generally
arises from the propagation of a small crack in solder balls in
which materials containing led were frequently used before.
Spurred by a 2003 European Union directive known as RoHS
(Restriction of Hazardous Substances), led-free materials
have been required in recent years. In fact, as discovered by
Kim et al. [19], lead-free solder has a lower crack propagation
rate as compared to that with lead. The above situations

led to many more studies of reliability of electronic assem-
blies using solder material such as various configurations of
Sn-Ag-Cu (SAC) solder. Among them, Meilunas et al. [20]
have studied the reliability of both lead and lead-free solder
joints under accelerated life tests. In their study, failures were
determined and observed by X-ray, cross sectioning, and dye
penetration, and the results showed that lead-free solders
indeed have better performance against fatigue.

50.3.2 Finite Element Method (FEM)

Aside from actual temperature cycling fatigue tests, finite ele-
ment method (FEM) has gained popularity for the simulation
of mechanics behavior of electronic packages. Awide variety
of assemblies has been the subject of research using FEM,
notably Syed [21] who employed previous framework of
SnPb modeling on SnAgCu solder alloys, with the intention
of formulating a life prediction model that can be used in
early design stages of chip development. Accumulated creep
strain-based and creep strain density-based models were
developed, but the prediction errors were up to 25% in certain
cases. Pang and his associates [22] have done a collection
of studies on lead-free solder with one particular example
carried out by Che et al. [14] that focused on Sn-3.8Ag-
0.7Cu solder joint electronic assemblies such as PBGA 316,
PQFP208, PQFP176, and TSSOP48. The FEM as well as
experiment were used to determine the mean time to failure
(MTTF) and Weibull parameters against temperature cycles.
The vehicle dimensions and material properties are the basis
of this study and experimental data being a source of FEM
verification.

To save computation time, submodeling techniques are
commonly used in FEM. Lai and Wang [23] have once
compared the calculation time between full and submodeling
for flip-chip packages. They pointed out that computation
time and cost can be saved using submodeling technique
and found the solder ball on outer diagonal of the chip
is the first to fail. Different types of reduced model have
also been used to save computation time. They include slice
model or strip model, quadrant model, and octant model with
various degrees of accuracy and efficiency [24]. One thingwe
need to keep in mind while using reduced and submodeling
techniques is whether they have the same failure location and
mechanisms as the full model, otherwise the simplification
will lead to errors and contradictions.

50.3.3 Fatigue Life Prediction

Fatigue is defined as the process of permanent deformation
caused by continuously repeated loading. The loading is
often of a cyclic nature and could be significantly smaller
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than the yielding stress of the material. During the process
of fatigue failure, the material properties gradually change,
and cracks and creases are formed within the material. These
imperfections tend to increase both in size and number as
the cyclic loading continues, leading to total failure of the
material or structure. In this chapter, we are concerned with
the temperature fatigue failure of electronic packages, which
is the result of thermal stress induced by temperature-cycling
condition. These thermal stresses are caused by the mismatch
of coefficient of thermal expansion at the interfaces of differ-
ent material in the electronic package.

In the study of electronic packaging reliability, it is crucial
to have a way to predict the fatigue life of components subject
to temperature cycles. Many different fatigue life formulas
have been developed and tested by researchers. One of the
most widely used formulas is the Coffin-Manson equation,
also called Coffin-Manson model [12, 13], which uses plastic
strain amplitude as the damage parameter for correlating
with fatigue life. The Coffin-Manson model is used mainly
in the prediction of temperature cycling fatigue life of lead
solders, but modification for use on lead-free solders has
also produced reasonable results. Other models such as the
Goldmann model [25] focuses on the relationship between
fatigue life and geometry/material properties of the package,
and Darveaux et al. [18] tackled the problem using energy-
based methods, correlating inelastic strain energy density
with fatigue life. Most of these models and methods are
constructed using experimental data and are empirical or
semiempirical formulas that have certain degrees of variation
due to human and experimental errors. Further enhancements
and modifications are needed.

In this study, the following modified Coffin-Manson fa-
tigue life prediction formula is used:

N = 1

2

(
�γ

2εf

) 1
Ct

(50.1)

where N is the fatigue life, εf is a ductility coefficient, Ct

is the fatigue ductility exponent, and �γ is the shear strain
range also called strain amplitude per loading cycle. The last
quantity is related to the vonMises strain range�ε as follows

�γ = √
3�ε (50.2)

Since the shear strain range thus obtained is in an indirect
manner, it is also called equivalent shear strain range or
equivalent creep strain in short.

50.3.4 Accelerated Life Testing (ALT)

As mentioned before, another fatigue life prediction method
used frequently in the electronics industry is accelerated life

testing (ALT). It tests electronic components including pack-
ages under harsh environmental conditions to obtain their
failure times which are then correlated to components’ lives
under normal conditions through acceleration factor (AF)
derived based on physical principles. Norris and Landzberg
[13] used temperature cycling parameters such as cyclic
frequency, maximum temperature, and temperature differ-
ence to deduce an empirical formula that calculates the AF
between two different environmental conditions. The coef-
ficients of the N-L formula or N-L model were curve-fitted
using lead solders, but as lead-free solder gains popularity,
investigations of the corresponding coefficients were carried
out at later stages. These include Pan et al. [26], but with
limited success as experimental results and predictions were
found to have low correlation as those pointed out by Salmela
et al. [27] and Zhang and Clech [28]. New models and
modifications were proposed with new parameters added,
such as the works of Dauksher [29] and Vasudevan and Fan
[30], with a special emphasis on experimental confirmation.
Jong et al. [31] discovered that the size of BGA package and
other design parameters also have a profound effect on the
AF, leading to an evenmore complicatedmodel. For all above
results, there is still a large discrepancy among researchers,
which deserves further evaluation and improvements.

There are twomajor groups of accelerated life testing: One
is to increase the operating frequency of the test subject, and
the other to increase the intensity of the test loading. Raising
the number of repetitive operation needs to be carried out
carefully, if the frequency becomes too high, the operating
environment may change and result in higher load intensity.
On the other hand, while increasing experiment loading, one
should keep in mind that the failure mode and mechanism
should be consistent with normal loading for the experiment
to be meaningful. For electronics, increasing environmental
loading such as temperature or vibration is a commonmethod
to shorten the testing time. After obtaining life data from
accelerated life testing, one can use the abovementioned ac-
celeration factor (AF) to gain information of the test vehicle
under normal operating condition. The definition of AF is the
ratio between the fatigue lives of two environments, as shown
below:

AF = N1

N2
(50.3)

whereN1 andN2 are fatigue lives under two different environ-
mental conditions. Frequently,N1 is considered the life under
normal or field condition, and N2 the life under accelerated
or more severe condition; the expression becomes

AF = Nfield

Ntest
(50.4)

It results in that AF is always greater than one.
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Although ALT is frequently carried out in the electronics
industry, it may not be known to researchers and/or engi-
neers who employ FEM in the design and implementation
of electronic packaging. Only a few researchers have made
the connections. Among them, Norris and Landzberg are
two pioneers who proposed the following Norris-Landzberg
model [13]:

AF =
(
ffield
ftest

)m(
�Ttest
�Tfield

)n

exp
[
Ea

k

(
1

Tmax,field
− 1

Tmax,test

)] (50.5)

where f represents cyclic frequency of temperature change,
�T represents the temperature range of a cycle, Tmax is
the maximum temperature in a cycle, Ea is the activation
energy, k is Boltzmann’s constant, and m and n are empirical
constants to be determined from test data. The model is also
called N-L model in this study for simplicity. It should be
noted that while a few parameters in the above expressions
bear physical meanings, some are to be determined from test
data. It is the nature of ALT-data treatment in real practices.

50.3.5 Parameter Uncertainty

As stated before, many engineers and researchers engaging in
designs and/or researches related to “reliability of electronic
packaging” placed their emphases on mechanics analysis of
packages. They frequently employ FEM and empirical or
semiempirical fatigue prediction formulas in their analyses.
Although Weibull probability distribution has been adopted
by a small amount of people in fitting experimental life
data to obtain the mean or characteristic life of a package,
the “reliability” they mentioned really has little to do with
probability and statistics. The mechanics behavior most peo-
ple addressed is also the average trend of a package. With
regard to ALT employed frequently in factories of electronic
products, although more life data than those from FEM
are usually obtained, only the average life is considered in
most analyses. The acceleration factor (AF) which engineers
and/or researchers try to find from test result is also in an
average sense in most cases. However, uncertainty exists
in the real world, and if one wants the term “reliability
of electronic packaging” to reflect quantitative reliability,
one can take into account uncertainties of parameters in
mechanics analysis. The major difference of this study from
others is that FEM and ALT are employed at the same
time and uncertainty is taken into consideration as well.
By doing so, life distribution rather than life in its average
sense can be obtained, and quantitative reliability can be
addressed and predicted. If mechanics researchers assert their
analyses based on FEM reflect the true behavior of electronic

packaging, FEM can be used for numerical simulation tool to
obtain lives of a package subject to different environmental
conditions. Moreover, if parameter uncertainty is considered,
the simulation result will be life distribution rather than just
a single-value life under a certain environmental condition.
Using FEM as a tool to carry out numerical test in place of
real ALT is another innovative part of this study.

Uncertainties may arise during both the design and manu-
facturing stages of electronic packaging. The effect of param-
eter uncertainty on the prediction of fatigue life of electronic
assemblies has been studied and discussed previously. In a
study carried out byMercado and Sarihan [32] on plastic ball
grid array (PBGA) assemblies, uncertainties of parameters
including substrate thickness, solder height, and chip thick-
ness were addressed and investigated using FEM. Perkins
and Sitaraman [33] have also employed FEM to run a full
factorial design of simulations (DOS) in which variations of
parameters such as substrate size, CTE mismatch between
components, substrate/board thickness, and joint pitch were
discussed. In a later study, Wu and Barker [34] found the
geometric variation caused by imperfections in the manu-
facturing process will result in discrete life distribution, but
the effects of material properties are still open to further
investigations.

In summary, both FEM and ALT can be used for fatigue
life prediction of electronic components including packages
when they are subject to a certain environmental condition,
in particular temperature-cycling condition in this study.
Parameter uncertainties would make the predicted life ex-
hibit probability distribution which is related to quantitative
reliability.

50.3.6 Probabilistic Design and Reliability

Traditional engineering analyses including FEM are per-
formed under many different assumptions and simplifica-
tions concerning the dimensions and material properties.
In the real world, uncertainties are present in all of these
parameters, some of which may have significant effects on
the evaluation results. It is therefore worth considering those
effects. In fact, many software packages used in engineering
design and/or analysis have developed probabilistic modules
to treat uncertainties of parameters in recent years. However,
they are usually in rather primitive stages. The module has
been named “probabilistic design system” (PDS) in some
commercial software packages. It works by assuming some
parameters involved in the analysis follow normal distribu-
tion, randomly generating a large amount of sample points for
each uncertain parameter, carrying out finite element anal-
yses, handling the results by descriptive statistics, and dis-
cussing the effects of parameter uncertainties on the results.
The present study follows similar procedures but treats the
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simulation results in amore detailedmanner. In particular, the
results are related to quantitative reliability which has seldom
been seen before. Since the simulation is also considered as
numerical substitution of real ALT, its results are treated as
those obtained from ALT. The overall concept is also new, at
least to the writers.

Unlike traditional and deterministic FEM, parameter un-
certainties cause an electronic package to have life distri-
bution rather than a single-value life under the same envi-
ronmental condition and in consideration of the same mate-
rial properties. Under this circumstance, reliability analysis
based on probability and statistics can be carried out to treat
those simulated life data. Unfortunately, many engineers are
not familiar with probability and statistics and can only per-
form mechanics analyses using traditional and deterministic
FEM. A few of them sometimes use the following Weibull
probability density function to fit experimental life data for
the sake of comparing with their FEM results.

f (t) = β

θ

(
t − γ

θ

)β−1

exp

[
−

(
t − λ

θ

)β
]
,

β > 0, θ > 0, γ ≥ 0, t ≥ 0.

(50.6)

in which t is the life or fatigue life of a package in this study,
θ is a scale parameter which is also called characteristic life,
β is the shape parameter, and γ is a threshold parameter. The
mean and variance of the above distribution are

μ = γ + θ �

(
1 + 1

β

)
(50.7)

and

σ 2 = θ2

{
�

(
1 + 2

β

)
−

[
�

(
1 + 1

β

)2
]}

(50.8)

respectively, in which �(·) is the gamma function. The quan-
tity of Eq. (50.7) is frequently called the mean time to
failure (MTTF) in reliability engineering. The above three-
parameter Weibull becomes two-parameter Weibull proba-
bility density function if the threshold parameter is 0. It
is interesting to note that, other than normal probability
distribution, Weibull probability distribution is frequently
used in various engineering fields without knowing its reason
by most users. The leading author of this chapter believes,
other than its versatility in fitting all kinds of data, the fact
that Weibull was trained to be an engineer and eventually
became an outstanding professor makes the difference. In
fact, Weibull distribution is also used frequently in treating
test data of ALT. However, many engineers misinterpret the
characteristic life as the mean life.

50.4 Modeling and Verification

This section will introduce configuration of the studied elec-
tronic package and its material properties. One emphasis is
finite element modeling of the package and its verification.
After the analytical result being verified, the FEM can then
be used for performing numerical simulation of ALT, which
will be addressed in the last part of this section.

50.4.1 Configuration and Finite Element
Modeling

When running mechanics analysis concerning stress and
strain under certain loading and boundary conditions, ana-
lytical methods are only applicable to subjects with simple
geometries. However, engineering problems often involve
real-life parts and components that are very complex and
would be impossible to solve analytically. Therefore, a nu-
merical analysis method that could break down the problems
into smaller and manageable subproblems such as the finite
element method (FEM) will be needed for such engineering
needs. FEM divides an irregular geometry into many con-
nected simple polygons to approximate the result of a certain
loading by solving the relevant partial differential equations.
In the electronic industry, FEM is often used as a tool to
prototype chip design, since it can save time and money oth-
erwise necessary for experiments and manufacturing. In this
study, we utilized FEM to conduct our research on lead-free
electronic assembly under temperature-cycling conditions to
obtain the accumulated creep strain data needed for fatigue
life prediction.

In order to execute the methodology proposed in this
study, we first need to construct a finite element model that
can be verified as an acceptable representation of real-life ex-
periment. While many different types of lead-free electronic
assemblies are in use today, it is essential to use a package that
has experimental data available for calibration of our model.
We chose the plastic ball grid array with 316 inputs/outputs
(PBGA 316) presented in [14] as the basis of our model,
and its results as our benchmark for accuracy confirmation.
The schematic diagram of the package is shown in Fig. 50.2,
and the layout of 316 solder balls is shown in Fig. 50.3. The
bottom layer of the package is an FR4 PCB (printed circuit
board) with solder balls on top of it. Above the solder balls
lies a BT (bismaleimide triazine) substrate, and on top of
the substrate is a mold with the die embedded in the center.
The package has basically a square configuration, and its
dimensions are summarized in Table 50.1.

The material properties are listed in Tables 50.2 and
50.3. Since we are dealing with creep behavior of electronic
components under repeated temperature cycles, the material
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Fig. 50.2 Schematic diagram of PBGA 316

Fig. 50.3 Layout of solder balls in PBGA 316

Table 50.1 Dimensions of PBGA 316

Solder ball number 316

Pitch (mm) 1.27

Solder ball radius (mm) 0.20

Solder ball height (mm) 0.58

Die length (mm) 7.60

FR4 PCB length (mm) 30.5

BT substrate length (mm) 26.2

Mold length (mm) 25.4

Die thickness (mm) 0.25

FR4 PCB thickness (mm) 1.50

BT substrate thickness (mm) 0.25

Mold thickness (mm) 0.75

Table 50.2 Material properties of PBGA 316 [14]

Material
Modulus
(GPa)

Poisson’s
ratio

CTE
(ppm/◦C)

Solder See table in
[14]

0.35 24.5

FR4 PCB (in plane) 20 0.28 18

FR4 PCB (out of
plane)

9.8 0.11 50

Copper 155.17 0.34 See Table
50.3

BT substrate (in plane) 26 0.39 15

BT substrate (out of
plane)

11 0.11 52

Die See Table
50.3

0.278 See Table
50.3

Adhesive 7.38 0.3 52

Mold 16 0.25 15

Table 50.3 Time-dependent material properties [14]

Temperature −40 ◦C 25 ◦C 50 ◦C 125 ◦C
Solder modulus (GPa) 54.43 41.73 36.84 22.19

Copper CTE (ppm/◦C) 15.3 16.4 16.7 17.3

Die modulus (GPa) 192.1 191 190.6 190

Die CTE (ppm/◦C) 1.5 2.6 2.8 3.1

properties that change with temperature have to be han-
dled carefully with corresponding values entered at different
stages of the analysis.

With regard to this package, although FEM can simulate
a given environmental loading with accuracy, it is still near
impossible to fully represent all of the physical processes
that are present in a certain analysis, in the case of this
study, the strain distribution of PBGA under temperature
cycling. Therefore, it is essential that we make the following
assumptions in our analysis using FEM: (1) The model is
stress-free at room temperature (25 ◦C), and there are no
residual stress caused by the manufacturing process. (2) The
displacement on the symmetrical plane along the symmet-
ric direction is 0. (3) The material properties of all of the
components concerned are homogenous and isotropic. (4)
All contact surfaces within the model are in full contact, and
there are no impurities or voids inside the electronic pack-
ages. (5) Ignore the popcorn effect caused by humidity and
temperature change. (6) Ignore heat conduction, convection,
and radiation effects. (7) The inner parts of the model are of
the same temperature as the outside temperature. That is to
say, the system is under thermal equilibrium at all instants
during the analysis and the thermal field only changes with
time. It is interesting to point out that the above idealization
through assumptions justifies to a certain degree that our later
analysis taking into account uncertainties is meaningful.

Carrying out finite element analysis on a complex struc-
ture such as the PBGA array concerned in this study presents
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itself with many difficulties. One of the obstacles to over-
come is the long computational time required to evaluate
the creep behavior of each of the 316 solder balls. With
the need to repeat the analysis many times under different
design parameters, the task quickly becomes unmanageable.
It is therefore essential to make simplifications to the model
to shorten the calculation time; fortunately, the symmetry
of assembly means many different methods are available
to improve the efficiency of the analysis. One of them is
the so-called reduced modeling. It is a method used to take
advantage of symmetry of the test subject. In the example of
our study, the PBGA 316 assembly can be divided into dif-
ferent numbers of subsections. One popular method among
researchers is the one quadrant reduced model [9] shown in
Fig. 50.4. It is an effective method to obtain accurate result
with a reasonable reduction in computational time, but with
the amount of repetitions needed for this research, an even
more efficient method is necessary. The slice model [31]
shown in Fig. 50.5 is one such method, and it has been shown
that the sacrifice in accuracy is within the acceptable range.
Therefore, it is used as a basis of the rest of this study. The
slice is split along the diagonal axis of the package and has
the width of one-half of the pitch of the solder balls.

The technique of submodeling is also adopted in this
study. It is a combination of reduced modeling and full
modeling, in order to achieve better accuracy under a shorter
amount of time [35].While using the submodeling technique,
the global model is usually meshed with a coarse mesh, giv-
ing a rough idea of the global displacement of the assembly.
The data is then fed into various submodels at areas around

those focusing points such as the location of maximum stress
or the point of failure. These submodels are meshed using a
much finer mesh, as they are where maximum accuracy is
desired. As opposed to the large global model, the smaller
submodel will make fine meshes much less time consuming
while producing satisfactory results, which is a reasonable
compromise between accuracy and efficiency.

While using reduced modeling techniques such as the
three-dimensional slice models, it is essential to apply the
correct boundary and loading conditions in order to give an
accurate representation of real-life testing. The conditions for
our model follow that of the slice model found in literature
[31]. We develop a 1/2 symmetric slice model along the
diagonal of the package as that shown in Fig. 50.6 in which
the origin is set at the bottom of the symmetric center, having
x points to the long direction and y points upward. The
boundary conditions of the reduced model are also shown
in Fig. 50.6. It can be seen that all finite element nodes at
the center and sliced surface of the package are set to be
“symmetric” while those at the bottom are set to be “fixed.”
The fixed conditionmeans the displacement of those points in
all directions are 0, preventing rigid body motion that would
occur if being set otherwise, giving the model the freedom
to deform and warp freely. On the surface at half of the ball
pitch in the negative z-direction is where most difficulties are
found, as it is neither a free surface nor a true symmetry plane.
In order for this surface to move freely along the z-axis and
to prevent out-of-plane stress, we assign it with generalized
plane strain condition. The remaining surfaces not mentioned
are all assumed to be free surfaces.

Fig. 50.4 One quadrant reduced model
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Fig. 50.5 Slice model

Fig. 50.6 Reduced finite element model of PBGA 316
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The temperature-cycling conditions used in the finite
element analysis follow those of JEDEC testing standard
JESD22-A104C, a set of guidelines devised for testing of
electronic reliability as a result of CTE mismatch between
materials under different temperatures. Starting from room
temperature, the loading conditions are described by four
load steps: two dwells, one at the highest cycle temperature
and one at the lowest, and two temperature ramps in between
the dwells. The cycle can be represented visually using
the graph shown in Fig. 50.7. In this study, since FEM
is proposed as numerical substitution for ALT, six test
conditions covering a wide variety of temperatures and cycle
times as those shown in Table 50.4 are numerically studied.
It should be noted that values in the last two columns of Table
50.4 can be used for converting fatigue life from cycles to
hours. In later sections, these loading cycles will be used
in FEM analysis to determine the AF of the PBGA 316
assembly once the model is verified by experiment results.
For the time being, we chose Test A [14] as the basis of our
comparison and verification.

During the finite element analysis, meshing is a crucial
stage. Finer meshes result in more accurate result but are
computationally expensive. In order to carry out a large set of
simulation runs like our proposed method, it is important to
strike the right balance for the size of the mesh. In this study,
we examine different mesh density. Through many trial and
errors with different meshing options, it has been found that
the length of the simulation time mostly depends on the size
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of the mesh covering the solder balls, which is expected as
the majority of the calculation resource is spent on modeling
of the solder ball’s creep behavior.

In order to evaluate the reliability of PBGA 316 assembly
using FEM, we need to correlate the numerical result of
FEMwith experimental fatigue life of the package. As stated
before, we can use the Coffin-Manson model for our life
prediction, using maximum equivalent creep strain among all
elements per cycle as the damage parameter.

50.4.2 Verification of FEM

The result of the above finite element analysis indicates the
location of maximum equivalent creep strain occurs at the
interface (with PCB) of the outmost solder ball in the central
4 × 4 cluster, which is consistent with literature data. A
graph of the development of equivalent creep strain along
with time is shown in Fig. 50.8. It is found that value of
the equivalent creep strain per cycle stabilizes after three
cycles. Therefore, the equivalent creep strain range after the
fourth cycle is used in simulation afterward. The fatigue life
of the assembly can then be found by applying the Coffin-
Manson relationship of Eqs. (50.1) and (50.2), in which the
fatigue ductility coefficient is taken to be 0.325 [16, 27,
36]. The value is found to be 2746 temperature cycles or
2746 h since a temperature cycle is 1 h (Fig. 50.7). The
result is consistent with experimental data listed in Table 50.5
by Che et al. [14]. It is interesting to note that, although
small samples are usually obtained (as that of Table 50.5
which is a small sample of 5), engineers like to fit their
experimental or test data by Weibull probability distribution.
However, they usually do not address quantitative reliability
based on fitted distribution of the fatigue life and sometime
misinterpret the characteristic life as the mean life. The test
data thus fitted by Che et al. [14] has a Weibull slope β =
7.69 and a characteristic life θ = 2917 corresponding to an
MTTF of 2742 cycles calculated from Eq. (50.7). It is also
interesting to note the five test lives in Table 50.5 exhibit
a considerable scatter which is attributed to uncertainties
of parameters mentioned previously and emphasized in this
study.

Table 50.4 Temperature-cycling conditions

Test condition
Temperature range
(◦C) Ramp rate (◦C/min) Dwell time (min)

Cycle time
(min/cycle)

Frequency
(Cycle/day)

Test A −40 ∼ 125 11 15 60 24

Test B 0 ∼ 100 6.67 15 60 24

Test C −40 ∼ 85 13.89 1 20 72

Test D −40 ∼ 150 9.5 10 60 24

Test E −55 ∼ 85 14 5 30 48

Test F −55 ∼ 150 14.64 1 30 48
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Fig. 50.8 Development of equivalent creep strain

Table 50.5 Experimental data [14]

Test number Fatigue life (cycles)

1 2131

2 2745

3 2892

4 2972

5 3052

Average 2758

50.4.3 Probabilistic FEM and ALT

As stated before, ALT is frequently employed in the electron-
ics industry, but owing to the long test-time and the expensive
cost, its results under different environmental conditions are
usually small samples from statistics point of view. If re-
searchers and engineers assert their numerical analysis based
on FEM can capture the mechanics behavior and predict
the temperature-cycling fatigue life of electronic packaging
accurately, the analysis can be used for substitution of ALT
to save time and cost. Moreover, if parameter uncertainties
involved in the analysis are considered, the result of FEM
would not be a single-value fatigue life but a sample of fatigue
life under a particular environmental condition. Thus, not
only ALT under different environmental conditions can be
substituted by numerical simulation based on FEM but also
the results of fatigue lives exhibit distributions which are
related to quantitative reliability and can be treated by any
statistical methods. It can also bridge the gap between design
engineers and reliability engineers.

It has been shown that uncertainties in geometric param-
eters and material properties have a significant effect on the
temperature cycling fatigue life of electronic assemblies [33].
To construct an accurate simulation of real-life conditions in
this study, we assume the radius and height of the solder ball,
the thickness of the BT substrate, and Young’s Moduli and
CTEs of both the mold and the BT substrate in x, z plane
are random variables having normal distribution. They are
assumed to have mean values shown in Tables 50.1 and 50.2,
and a 3% coefficient of variation in each of the assumed

Table 50.6 Simulation results

Test A Test B Test C Test D Test E Test F

Average (h) 2947 9216 12,522 1482 10,687 1501

Standard deviation (h) 571 1093 3981 292 2853 188

random parameters. A lot of simulations have been carried
out, and some of the results will be reported in the following
section.

50.5 Result of Analysis

As mentioned preciously, introducing parameter uncertain-
ties into the analysis of FEM can form a methodology that
generates a large set of temperature fatigue life data of a
package but with less cost than that of real-life test. By
doing so, the procedure is combined with ALT under dif-
ferent temperature-cycling environments, and the results can
further be correlated to the acceleration factors (AFs). Also
stated before, the temperature profiles used in this study
follow the regulation of JESD22-A104C and are shown in
Table 50.4. The choices of temperature profiles include the
original condition used for verification purposes (Test A)
and others that explore different maximum temperatures, dif-
ferent temperature differences, different cycling frequency,
and even different dwell times and ramp times. The variety
of these profiles gives more flexibility while constructing
the ALT model, as many parameters could be considered
while performing regression analyses for coefficients. The
analysis (also called simulation) is performed on the PBGA
316 model for each of the six temperature profiles listed in
Table 50.4. In the analysis, the maximum equivalent strain
is found and applied to the Coffin-Manson relationship to
produce fatigue life in cycles. It can be converted to life in
hours if values of the last two columns in Table 50.4 are taken
into consideration.

Some results of this study will be introduced in the fol-
lowing three subsections. The content of the first subsection
is related to quantitative reliability, the second subsection
emphasizes more on ALT, and the third subsection tries a
preliminary study in combining the previous two.

50.5.1 Reliability of PBGA 316

In this study, the simulation is carried out 30 times for each
of the six test conditions resulting in 180 fatigue life data in
total. After being transformed into hours, themean values and
standard deviations of the results are shown in Table 50.6.
The Pearson correlation coefficients between the fatigue life
and each of the assumed random parameters are shown in
Table 50.7. We can see from the table that all variables
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Table 50.7 Pearson correlation coefficients of variables

Testcondition Solder radius Mold thickness
BT substrate
thickness Mold modulus

BT substrate
modulus Mold CTE

BT substrate
CTE

Test A 0.104 −0.141 0.557 −0.016 0.383 0.146 0.323

Test B 0.445 −0.158 0.310 0.046 0.123 0.072 −0.089

Test C −0.131 −0.384 −0.126 −0.258 −0.156 −0.541 −0.046

Test D −0.023 −0.161 0.351 0.053 0.009 0.139 0.396

Test E 0.231 −0.346 0.375 −0.129 −0.056 −0.119 −0.096

Test F −0.007 0.205 0.032 0.081 0.178 −0.099 0.167

Average 0.103 −0.164 0.250 −0.037 0.080 −0.067 0.109
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Fig. 50.9 Comparison among distributions (test A)

are moderately correlated to fatigue life of the assembly,
with the thickness of the BT substrate showing the most
obvious positive trend. This trend suggests that increasing
the thickness of the BT substrate can extend the fatigue life
of PBGA assemblies, the likely cause being a reduction of
warpage with thicker substrates, which leads to a decrease
in stress at the interfaces of the components. It is interesting
to point out that this kind of observation coincides with
conclusions made by other researchers based primarily on
mechanics analysis and, in fact, it should be like this.

The probabilistic method proposed in this study results in
multiple data for each test condition or temperature profile,
which can be considered random fatigue life having a proba-

bility distribution. The distribution can be used for reliability
evaluation and life prediction of the studied package such as
the failure rate and mean time to failure (MTTF). As stated
previously, traditional research often uses Weibull distribu-
tion as the default distribution for describing temperature
fatigue life. However, it has been shown to not always be the
case in real-life experiments. In our study, within concepts
of Anderson-Darling test and the least squared method, we
fit our life data-sets by normal, lognormal, Weibull, and 3-
parameter Weibull distributions with correlation coefficient
used as our indicator. It results in probability plots such as
those shown in Fig. 50.9 for Test A. Probability plots for
other tests conditions are neglected herein to save space. The
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summarized result in Table 50.8 shows that 5 out of the 6
tests are best fitted with 3-parameter Weibull distribution,
which is consistent with industry knowledge as the threshold
term of 3-parameter Weibull distribution implies a range of
time where no failure will occur. It is interesting to point out
that results such as in Fig. 50.9 and Table 50.8 can be used
for quantitative reliability evaluation of electronic packaging
but much of the time ignored by engineers who just want
to obtain characteristic life and/or MTTF of the package
through fitting test data primarily by Weibull probability
distribution. In our study, when we use 3-parameter Weibull
distribution to describe all sets of data, the corresponding
parameters are found and shown in Table 50.9, in which the
MTTF and standard deviation of life of the package under
each test condition are shown in the last two rows in hours.
When comparing with those data in Table 50.6, the MTTFs
are very close to mean values of the simulated data and
the standard deviations are also within 10% difference from
those simulated data except for Test B. One can also see that
all shape parameters are larger than 1 indicating failure rate of
the system increases with time, which is expected in an elec-
tronic assembly. The threshold parameter provides valuable
information for manufacturers and engineers as the failure-
free time can be used for guidelines for design and experi-
mental purposes. The probability density function, reliability
function, and failure rate function of the tested package can
be plotted accordingly as those shown in Fig. 50.10 for Test
A. The latter two quantities are frequently emphasized in
reliability engineering.

50.5.2 ALT of PBGA 316

As mentioned before, a major difference of our study
from others is that ALT is carried out numerically but not

Table 50.8 Correlation coefficients for different distributions

Test A Test B Test C Test D Test E Test F

Normal 0.950 0.957 0.866 0.993 0.969 0.963

Lognormal 0.978 0.963 0.934 0.986 0.991 0.961

Weibull 0.954 0.908 0.859 0.988 0.968 0.960

3-P Weibull 0.978 0.986 0.984 0.992 0.993 0.979

experimentally. Although the concept of applying Norris-
Landzberg model (or N-L model in brief) of Eq. (50.5) to
find AF factor from the ALT result may not be new, the
experimental or analytical data points are usually very few.
Previous studies such as [27, 36] were based primarily on
deterministic analyses with only a single data or an average
data point considered for each of the temperature-cycling
conditions. With the probabilistic approach, we have instead
30 data points for each temperature-cycling condition and
a total of 180 data points, giving us more flexibility when
performing regression analysis in search of parametric values
such as m, n, and Ea/k in Eq. (50.5).

In our study, the temperature-cycling condition of Test A
is considered the test condition in Eq. (50.5) with each of the
other conditions being considered a particular field condition.
After values of m, n, and Ea/k are evaluated, the package life
under each field condition is estimated from the test condition
and compared with FEM simulation result. As mentioned
previously, the FEM simulation is proposed to substitute real
ALT and can also be called numerical ALT.

Two different approaches are employed with regard to
the regression analysis of those simulation data. The first
approach uses all of the PDS data for curve fitting, with
all 180 data points contributing in obtaining the unknown
variables in the AFmodel of Eq. (50.5). The second approach
uses average values of each of the conditions as the data
set in the regression analysis. The latter still considers the
effects of all 180 simulation results but is much simpler.
The first approach results in m = 0.36, n = 2.43, and Ea/k
= 940.96. We then set Test A as our test condition and
consider the remaining 5 temperature-cycling conditions as
different field conditions for verifying the accuracy of Eq.
(50.5). Following what is usually done in real ALT and also
for the sake of simplicity, only the mean value of the 30
data points for each condition is considered at this stage. The
predicted temperature fatigue lives based on the simulation
result of Test A and Eq. (50.5) are compared with simulation
results of other tests, all in average sense. The prediction
errors for each of the condition are calculated and shown
in Table 50.10. Although the errors are comparably large,
they are compatible with and even better than those found by
Salmela and his associates when comparing their simulation
result with test data [27, 36]. For the second approach, the
best fitted parametric values are m = 0.14, n = 1.04, and

Table 50.9 Parameters of 3-P Weibull

Test A Test B Test C Test D Test E Test F

3-P Weibull scale 1581.79 1624.28 4054.47 1034.48 6246.04 433.59

3-P Weibull shape 2.84 1.22 1.09 3.37 2.01 1.80

3-P Weibull
threshold

1532.47 7724.19 8536.95 552.70 5166.68 1120.34

MTTF (h) 2942 9246 12,461 1482 10,701 1506

Standard deviation
(h)

535 1254 3583 305 2897 172
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Fig. 50.10 Reliability of the package (test A)

Table 50.10 Prediction errors of approach 1

Condition |Error|
Test A –

Test B 28%

Test C 20%

Test D 16%

Test E 23%

Test F 12%

Average 20%

Ea/k = 3662.06, and the prediction results become those
shown in Table 50.11. Although the approach is simpler, the
results are surprisingly better than those of the first approach.
It needs further study to clarify the ambiguity.

50.5.3 Combination of Reliability and ALT for
PBGA 316

It has been emphasized several times in the present chapter
that traditional study on the topic of “reliability of electronic
packaging” in fact has little to do with probability, statis-
tics, and reliability. Although accelerated life testing (ALT)

Table 50.11 Prediction results and errors of approach 2

Condition Fatigue life (h)
Predicted
fatigue life (h) |Error|

Test A 2947 – –

Test B 9216 9183 0.36%

Test C 12,522 12,763 1.92%

Test D 1476 1478 0.14%

Test E 10,687 10,737 0.47%

Test F 1501 1501 0.00%

Average 0.58%

has been carried out frequently in manufacturing factories
of electronic products including packaging, the afterward
analyses usually focus only on finding acceleration factor
(AF) between the test condition and the field condition in an
average sense. Other than regression analysis, no probability
and statistics are involved in the analyses. If the finite element
analysis is considered an appropriate method by researchers
and engineers in studying “reliability of electronic packag-
ing,” it can be extended to generate more data than those
obtained from real test under a given condition by taking
parameter uncertainties into consideration. Probability the-
ory and statistical methods can then be applied to treat data
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obtained through numerical simulation and draw conclusion
other than that of the traditional analysis. The above two
subsections present results in this study with one emphasiz-
ing in reliability of PBGA 316 and the other emphasizing
in numerical ALT of PBGA 316 together with its afterward
analysis. The present subsection tries to combine the above
two topics.

In addition to evaluating parametric values and predicting
the average life in practical ALT, we originally considered
predicting the life distribution of the studied PBGA316 under
a specific temperature-cycling condition for results similar
to those of Fig. 50.9. Since it is too complicated, we turn
to predicting statistical properties of the life distribution. To
make it simple in engineering applications, we assume the
statistical property other than the mean value of life has the
following linear relation with the environmental parameters:

S.P. = af + bTmax + c�T + d (50.9)

in which S. P. indicates the statistical property and the other
parameters are defined in the statement after Eq. (50.5),
with their meanings being seen in Fig. 50.7 and Table 50.4.
Based on results of Tables 50.6 and 50.9, coefficients a, b, c,
and d can be found by regression analysis, and the results
are shown in Table 50.12. The corresponding prediction

Table 50.12 Prediction coefficients using linear regression

Statistical
property of
life a b c d

Standard
deviation

34.60 −40.61 5.24 4008.08

Coefficient
of variation

0.00067 −0.0034 0.0018 0.30

3-P Weibull
scale

−31.32 −151.28 70.42 10,442.18

3-P Weibull
shape

−0.041 −0.029 0.031 2.24

3-P Weibull
threshold

90.61 44.14 −104.21 11,461.24

values and errors (in parenthesis) are summarized in Table
50.13 and Fig. 50.11. From the results, we can see that the
predictions of the threshold parameter of the 3-parameter
Weibull distribution are quite accurate with an average error
of less than 10%, showing that the linear regressionmethod is
applicable for this application. However, predictions for other
parameters are not that good, and the method also deviates
from the original purpose of ALT. Therefore, we seek for
further improvements.

The practical ALT is intended for predicting life of an elec-
tronic product in a particular filed condition using life data
of the product tested usually in more severely environmental
conditions. However, as stated previously, only the average
trend of life but not life distribution is considered. Since
many life data have been generated through PDS of FEM,
the present study tries to go a step further investigating the
effect of temperature-cycling condition on life distribution of
the studied PBGA 316. It is hoped that once life distributions
under two or more test conditions are obtained, and their rela-
tion being established, the quantitative reliability of package
under any other environmental conditions can be evaluated or
estimated. This is in fact a problem of studying the relation
between two degraded random processes and their corre-
sponding lives, each under its own environmental condition.
The problem is too complicated for engineers. Therefore, we
focus on the AF of Eq. (50.5) based on Norris-Landzberg
model and again consider Test A as our test condition and
the others as field conditions. Only a few statistical properties
are considered for simplicity.Wewant to find out whether the
statistical properties are related to environmental conditions
following Eq. (50.5). Using the data in Tables 50.6 and 50.9
and the AFs in the average sense, the respective results form,
n, andEa/k are found and listed in Table 50.14. The prediction
values and the errors (in parenthesis) concerning each of the
statistical properties are summarized in Table 50.15 and Fig.
50.12.We can see that the shape parameter of the 3-parameter
Weibull distribution shows the best prediction results with
the average error less than 5%. This could mean the trend
in failure rate of the assembly is highly dependent on the
temperature-cycling condition and can be predicted with the

Table 50.13 Predicted statistical properties using liner regression

Statistical property
of life Test A Test B Test C Test D Test E Test F

Standard deviation 621.4
(8.84%)

1298.4
(18.84%)

3698.2
(7.11%)

−263.6
(190.33%)

2945.8
(3.26%)

644.8
(243.52%)

Coefficient of
variation

0.18138
(6.38%)

0.14908
(25.76%)

0.27834
(12.46%)

0.14088
(28.74%)

0.28956
(8.48%)

0.18426
(47.38%)

3-P Weibull scale 2431.8
(53.74%)

1630.8
(0.40%)

4153.4
(2.44%)

416.8
(59.71%)

5960.6
(4.57%)

721.6
(66.43%)

3-P Weibull shape 2.7721
(2.32%)

1.4756
(20.97%)

0.7393
(32.18%)

2.8246
(16.15%)

2.1802
(8.21%)

2.3167
(26.68%)

3-P Weibull
threshold

1987.9
(29.72%)

7645.4
(1.02%)

8732.7
(2.29%)

490.4
(11.27%)

4998.3
(3.26%)

1104.8
(1.39%)
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Table 50.14 AF coefficients for statistical properties

Statistical
property of life m n Ea/k

Standard
deviation

−0.48 −0.15 5309.34

Coefficient of
variation

−0.30 −2.22 3898.83

3-P Weibull
scale

−0.98 −1.91 6665.62

3-P Weibull
shape

−0.86 −2.48 2389.43

3-P Weibull
threshold

1.13 1.32 5556.47

knowledge of the environmental parameters. It is interesting
to see that while the linear regression method did a good job
predicting the threshold parameter of the distribution, the AF
of Eq. (50.5) did poorly and shows the inability of the N-L
AF model to handle low-temperature cycling of Test C and
Test E, each with a significantly higher error than the other
tests. Aside from the shape parameter, the other predictions
of statistical properties prove to be less than satisfying, which
implies the environmental variables used for constructing the
AF model may be unsuitable for these terms and further
studies need to be carried out.

50.5.4 Conclusion of Analysis

The study proposes a method of fatigue life prediction of
electronic assemblies that improves on previous models
by implementing probabilistic concepts into FEM analysis.

Starting with the construction and verification of an FEM
model, the method uses the model as an experimental
tool instead of a design tool to perform accelerated life
testing, bridging the gap between design engineers and test
engineers. Working with the AF based on N-L model, the
deterministic approach (which is not reported in this chapter)
showed an inability to predict the fatigue lives of PBGA316
under lower temperature-cycling condition with a maximum
temperature of 85 ◦C. With the introduction of parameter
uncertainties in solder balls, mold, and BT substrate, a fatigue
life distribution was found for each of the six environmental
conditions. The height of the BT substrate has the most
obvious influence on temperature-cycling fatigue life of the
assembly, and it was found that the 3-parameter Weibull
distribution can be used to describe the sets of data. The AF
obtained using PDS showed a vast improvement over the
deterministic model, with average errors less than 0.6% and
the ability to handle lower temperature-cycling condition.
Finally, while investigating the effect different temperature
cycling conditions have on the distribution of thermal fatigue
life, predictions of statistical properties such as standard
variation and Weibull coefficients were carried out. It has
been found that the threshold parameter of the 3-P Weibull
distribution can be accurately obtained using a simple linear
regression method, while the shape parameter of the 3-
P Weibull distribution can be predicted using a modified
AF based on A-L model. This implies the dependency of
temperature-cycling fatigue life distribution on environment
parameters including the maximum temperature, cycling
frequency, and the temperature range in a temperature
cycle.
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Table 50.15 Predicted statistical properties from AF

Statistical property
of life Test A Test B Test C Test D Test E Test F

Standard deviation – 1295.88
(18.61%)

1432.76
(64.01%)

265.03
(9.18%)

1771.37
(37.91%)

191.96
(2.27%)

Coefficient of
variation

– 0.12281
(3.60%)

0.22509
(29.21%)

0.14856
(24.86%)

0.32677
(22.41%)

0.14302
(14.39%)

3-P Weibull scale – 1867.47
(14.97%)

2060.40
(49.18%)

769.66
(25.60%)

3806.52
(39.06%)

451.15
(4.05%)

3-P Weibull shape – 1.22601
(0.51%)

1.07948
(0.98%)

2.82383
(16.17%)

2.02940
(0.73%)

1.87341
(4.06%)

3-P Weibull
threshold

– 7565.71
(2.10%)

36,403.78
(326.41%)

557.41
(0.94%)

19,824.20
(283.71%)

1103.51
(122.90%)
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Fig. 50.12 Prediction errors of statistical property from AF

50.6 Final Comments

The application of FEM to study the quantitative reliability
of electronic packaging caused by parameter uncertainties
is meaningful and has been demonstrated in this study. The
uncertainties may include material, process, and environ-
mental factors since they all are parameters involved in the
analysis of FEM. The environmental factors, in particular,
are emphasized in practical ALTs in which one tries to
find the relationship between lives of a product subjected
to two or more different environmental conditions. Once the
relationship is established, it can be used for predicting lives
of the product subjected to various environmental conditions.
The present study proposes to employ FEM as a kind of
numerical ALT to substitute real ALT or part of real ALT
in order to save test cost. It has been demonstrated the AF
of ALT thus obtained can be used to predict the MTTF of
the studied PBGA 316 subjected to a given temperature-

cycling condition rather accurately. However, for the pur-
pose of reliability prediction, life distribution or higher-order
statistics of life in addition to MTTF have to be found, and
the relationship between life distributions or their statistical
properties of two different environmental conditions has to
be established. The demonstration in this study unfortunately
is not very successful. One major reason is that engineers
and/or engineering students are usually not very familiar with
probability and statistics, which limits their analyses in that
respect. It is believed that research can be carried out one
step further in the future based on the concept proposed and
demonstrated in the present study. The knowledge of proba-
bility and statistics is, of course, a plus to this kind of study.

It is interesting to point out that “uncertainty” addressed
in this chapter has also been noticed in two recent articles by
Wei et al. [37, 38]. Although the propagation of uncertainty
is emphasized therein, it still justifies to a certain degree the
concept of this chapter.
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Abstract

Accelerated life test (ALT) is a widely usedmethod during
product design with the aim to obtain reliability informa-
tion on components and subsystems in a timely manner.
Different types of ALTs provide different information
about product and its failure mechanisms. To ensure that
the ALTs can assess the product reliability accurately,
quickly, and economically, designing efficient test plans
is critically important. This chapter provides a limited
discussion and description of the models and methods
popularly used in ALT. The introduction describes the

Q. He (�) · W.-H. Chen · J. Pan
School of Mechanical Engineering, Zhejiang Sci-Tech University,
Hangzhou, China
e-mail: heqingchuan@zstu.edu.cn; chenwh@zstu.edu.cn;
panjun@zstu.edu.cn

background and motivations for using accelerated testing
and classifies the reliability tests. Section 51.2 provides
the basic concepts and factors, which should be taken into
account in planning and conducting ALTs. Sections 51.3
and 51.4 provide brief descriptions of specific applications
of statistical models including the life distribution and
the life-stress relationship. Section 51.5 illustrates an
approach for analyzing ALT data. The graphical and
numerical methods are discussed for fitting an ALTmodel
to data and for assessing its fit. Section 51.6 describes the
research development of the methods for planning optimal
ALTwith location-scale distribution. Section 51.7 reviews
some of the potential pitfalls of the ALT and gives some
suggestions.

Keywords

Accelerated life test (ALT) · Reliability test

51.1 Introduction

In reliability engineering, reliability tests are always used
to assess the reliability indices and improve the design of
products. To assess the reliability indices, it is mainly con-
cerned with how to test or estimate them accurately, quickly,
and economically. Determining a suitable statistical theory,
method and technology for experiment design and data anal-
ysis is the key of conducting reliability tests, and it is often
called statistical based reliability test (SRT). To improve the
reliability of products, it mainly focuses on how the processes
of design, material selection, manufacture, assemble, and
application affect the storage, performance, and maintenance
of the product. The key factor of achieving goals is the
profound understanding of the performance evolution law of
a particular product throughout the whole life cycle. This
type of test has a higher requirement for engineering expe-
rience, and it is often called engineering based reliability test
(ERT). Of course, this classification is only to emphasize the
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different focus of the two types of tests. In practice, to carry
out a SRT correctly, the engineering elements, such as usage
conditions, failure mode, failure mechanism, test equipment,
and cost limits, should be specified. In an ERT, there is also
a large quantity of data that should be gathered and analyzed
based on statistics.

In practice, ERT is often used in conjunction with SRT,
and they play different roles in various stages of whole
life cycle of a product. According to the testing purposes,
the reliability test could be further classified into reliability
growth test (RGT), reliability qualification test (RQT), relia-
bility screening test (RST), reliability acceptance test (RAT),
and reliability determination test (RDT). According to the
relationship between the test stress and the normal work
stress, the reliability test could be divided into traditional test
and accelerated test (AT). The types of the major reliability
tests are shown in Fig. 51.1 [1].

In general, as shown in Fig. 51.1, the major implemented
reliability tests are RGT, RQT, RST, RAT, and RDT corre-
sponding to the design, finalization of design, production,
delivery, and use phases of the product whole life cycle.
The RGT and RST belong to ERT. The RQT, RAT, and
RDT belongwith SRT. The statistical inferencemethods used
in RQT and RAT are mainly the hypothesis test. They are
often called reliability verification test (RVT). The statistical
inference methods used in RDT are mainly the parameter
estimation.

In the period when the subject of reliability just formed,
products usually have low reliability and short lifespan,
and the reliability test can be carried out by simulating the

actual usage conditions. However, with the improvement of
product reliability, this type of test is difficult to induce
product failure effectively and cannot obtain adequate
failure data within acceptable test time and cost. To solve
this problem, the AT method is developed: The sample is
tested within an environment more severe than the sample
would experience during normal operating conditions. Data
is collected from high stress levels and also is used to
predict the product life under the normal stress level and
to improve the product. Among the ATs, the ERT mainly
includes the accelerated RGT, the highly accelerated life
test (HALT) and the highly accelerated stress screening
test (HASS). The HALT and HASS are often referred
to as the reliability enhancement test (RET). The SRT
mainly includes the accelerated life test (ALT) and the
accelerated degradation test (ADT). ALT is a widely used
method for rapidly obtaining reliability information and
evaluating the useful life of product in a relatively short
period. To ensure that the reliability of products can be
assessed accurately, quickly, and economically, designing
an efficient plan is a critical step before conducting the
ALT, and that requires the support of relevant statistical
theories. With the promotion of the national strategy of
civil-military integration, the ALT will be widely applied
in the research and development (R&D) of products, and
the ALT plan design theory will also face more challenges.
Based on the overview and prospect on designing ALT
plan given in [1], this chapter provides a limited discussion
and description of the models and methods popularly used
in ALT.
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Fig. 51.1 Types, applications, and developments of reliability tests
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51.2 Types of ALT

Different types of ALTs provide different information about
product and its failure mechanisms. Generally, ALT exper-
iments can be conducted using two approaches. The first
is conducted by accelerating the use rate of the product at
normal operating conditions such as switches and printers,
and also home appliances such as refrigerator compressor
and washing machines that are used only a fraction of time
in one day. The manner in which the usage rate is increased
depends on the product. For example, the median life of a
switch for a light is 20 years (or 72,000 times), based on
an assumed usage rate of ten times one day. If the switch
is tested at 1200 h−1, the median life is reduced to roughly
60 h. ALTs with increased usage rate attempt to simulate
actual use. Therefore, the other environmental factors should
be controlled to mimic actual use environments. If the us-
age rate is too high, it cannot have test items cool down
between cycles of operation and thus can result in anomaly
failure.

The second is conducted by subjecting a product
to stresses severe-than-normal operating conditions to
accelerate the failure. Depending on the nature of the
product, life tests are accelerated by exposing the product to
higher levels of accelerating variables such as temperature,
pressure, and voltage. Thus, a sample at a high stress will
generally fail more rapidly than it would have failed at low
stress. With the premise that the failure modes and failure
mechanisms are the same as those under normal stress, the
samples are tested under stress levels higher than normal,
and the lifetime of product under normal stress level can be
estimated by extrapolating the life information of samples
under high stress levels to normal level based on the life-
stress relationship.

Different types of stress loadings can be considered when
an ALT is conducted. Figure 51.2 shows four different types

of stress loading applied in ALTs, which are constant stress,
step stress, progressive stress, and cyclic stress, respectively.
The four loading schemes correspond to the constant stress
ALT (CSALT), step stress ALT (SSALT), progressive stress
ALT (PSALT), and cyclic stress ALT, respectively. The con-
stant stress is time independent and also the most commonly
used in engineering. The other three stress loading schemes is
time dependent which means the stress level varies with time.
Usually, time-dependent stress loadings can yield failures
more quickly. In CSALT, samples are tested at constant,
severer-than-normal operating conditions until either all sam-
ples fail or the test is terminated. In SSALT, the stress is
increased at prespecified times or upon the occurrence of a
fixed number of failures until either all the samples fail or
the time period at the maximum stress level ends. In PSALT,
the stress level is continuously increased as time goes on.
In cyclic stress ALT, the stress level is periodically changed
over time. The CSALT is applied to many products because
it is easier to carry out, but need more samples and a long
time at low stress levels to yield failure data. The SSALT,
PSALT, and cyclic stress ALT could precipitate failures more
rapidly. However, it is very difficult to model the life-stress
relationship and, hence, to quantitatively predict the lifetime
under normal usage conditions.

The ALT can be classified in other ways. Usually, two
censoring schemes are widely used in ALT: time censoring
(the type I censoring), where the number of actual failures
is random upon the completion of test, and failure censoring
(the type II censoring), where the total test duration is random
at the end of test when certain number of failures is observed.
These two kinds of censoring scheme correspond to the type
I ALT and type II ALT. The two strategies of inspection
performance of samples include continuous and periodic
inspection, which can generate life data and group data,
respectively. The number of accelerated stresses included
single stress, two stresses, and multiple stresses. Usually,
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Fig. 51.2 Different types of accelerated stress loadings. (a) Constant stress. (b) Step stress. (c) Progressive stress. (d) Cyclic stress 1. (e) Cyclic
stress 2. (f) Cyclic stress 3
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the number of test stress is greater than or equal to three.
They correspond to the single-stress ALT, two-stresses ALT,
and multiple-stresses ALT, respectively. Comparing with the
single-stresses ALT, the multiple-stresses ALT can simulate
usage conditions better and can make the failure of products
faster.With the rapid development of environment simulation
technology, testing equipments used for multiple-stresses
ALT are developed. All these equipments can load two or
more environment stresses (such as the temperature and
humidity, temperature and vibration, thermal and vacuum,
and temperature and humidity and vibration) on products.
Therefore, multiple-stresses ALTs begin to be used in engi-
neering. For more details the reader is referred to Chap. � 12
of Patrick and Andre [2].

51.3 Life Distribution

In reliability engineering, it is significant to determine which
distribution best fits a set of data and to derive estimates of
the distribution parameters. Let the symbol T denote lifetime
for components, systems, etc. The cumulative distribution
function (CDF) F(t) = Pr(T ≤ t) is the probability of failure
by time t. The probability density function (pdf) f (t) is the
derivative of the CDF. That is, f (t) = dF(t)/dt. Determining
a probability distribution for lifetime means specifying ei-
ther F(t) or f (t). The exponential, Weibull, and lognormal
distributions are the most commonly used distributions in
reliability engineering. For the other members of the family,
the reader is referred to Chaps. � 4 and � 5 of Meeker and
Escobar [3].

51.3.1 Exponential Distribution

The exponential distribution is a single-parameter distribu-
tion. If lifetime T has an exponential distribution its CDF and
pdf are

F (t; λ) = 1 − exp (−λt) ,

f (t; λ) = λ exp (−λt) , t ≥ 0

where λ is the constant hazard rate. The mean life or mean
time to failure (MTTF) is 1/λ.

The λ is a significant characteristic of the exponential
distribution. It should be observed that λ has the same value
and is independent of time. The exponential distribution is
used for random failures. One salient feature is that the
same proportion of parts fail relative to the number of parts
remaining. Also, note that the exponential distribution is
usually not appropriate because it assumes a constant λ.

Thus, the practitioner should be cautioned against using the
exponential distribution, unless the underlying assumption of
a constant λ can be justified.

51.3.2 Lognormal Distribution

Lifetime T is lognormally distributed if the logarithm of the
T is normally distributed. When lifetime T has a lognormal
distribution, its CDF and pdf are

F (t; μ, σ) = �nor

(
log(t) − μ

σ

)
,

f (t; μ, σ) = 1

σ t
φnor

(
log(t) − μ

σ

)
, t > 0

where �nor and φnor are the standard normal CDF and pdf,
respectively. In particular,

φnor(z)=
1√
2π

exp
(

− z2

2

)

The parameters (μ, σ ) are the mean and the standard
deviation of log(T), respectively. The lognormal p quantile is
tp = exp

[
μ + �−1

nor(p)σ
]
. The lognormal distribution is used

to model situations where large occurrences are concentrated
at the tail (left) end of the range. It is based on the normal
distribution, but is a more versatile distribution than the
normal as it has a range of shapes, and therefore is often a
better fit to reliability data, such as for products with wearout
and fatigue characteristics.

51.3.3 Weibull Distribution

The Weibull distribution is developed in 1939 by Waloddi
Weibull, who presented it in detail in 1951. If lifetime T has
a Weibull distribution its CDF and pdf are

F (t; η, m) = 1 − exp
[
−

(
t

η

)m]
,

f (t; η, m) = m

η

(
t

η

)m−1

exp
[
−

(
t

η

)m]
, t > 0

where m is the shape parameter and η is the scale parameter.
Note that η is approximately the 0.63 quantile of the Weibull
distribution, or characteristic life. If, however, failures do not
start a t= 0, but only after a finite time γ , then the CDF takes
the form

https://doi.org/10.1007/978-1-4471-7503-2_12
https://doi.org/10.1007/978-1-4471-7503-2_4
https://doi.org/10.1007/978-1-4471-7503-2_5
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F (t; η, m, γ ) = 1 − exp
[
−

(
t − γ

η

)m]
,

that is, a three-parameter distribution. The γ is called failure
free time, location parameter, or minimum life.

The Weibull distribution is the most popular statistical
distribution used in reliability engineering. It has the great
advantage by adjusting the distribution parameters. It can be
approximated to other distributions under special or limiting
conditions. The Weibull distribution is widely used because
a wide diversity of hazard rate curves can be modeled with
it.

• If m = 1, the exponential reliability function (constant
hazard rate) results with η = mean life (1/λ) can be
obtained. It is usually associated with useful life.

• If m < 1, a decreasing hazard rate reliability function can
be obtained. It is usually associated with infant mortality,
sometimes referred as early failures.

• If m > 1, an increasing hazard rate reliability function
can be obtained. It is usually associated with wearout,
corresponding to the end life of the product with closer
inter-arrival failure times.

• Whenm= 3.5, for example, the distribution approximates
to the normal distribution.

• If m > 6, it may reflect an accelerated rate of failures and
fast wearout. Furthermore, it is time to doubt the accuracy
of the analytical results.

• If m > 10, it is time to highly doubt the analytical results.
Such a high β is fairly rare in practice.

The lognormal distribution and Weibull distribution are
also called log-location-scale distributions. A random vari-
able Y has a location-scale distribution if its CDF can be
written as:

F (y; μ, σ) = Pr(Y ≤ y) = �

(
y − μ

σ

)
,

where μ is a location parameter, σ is a scale parameter,
and � does not depend on any unknown parameters. In
many reliability applications, it is assumed that log (T) has
a location-scale distribution. Then T is said to have a log-
location-scale distribution.

51.4 Life-Stress Models

In reliability physics and engineering, the development and
use of the acceleration factor (AF) and the life-stress relation-
ship are vitally important to the theory of accelerated testing.
The AF permits one to take time-to-failure data rapidly
under accelerated test conditions, and then to extrapolate

the accelerated test results for a given set of operational
conditions. The AF can be defined as given (51.1):

AF = tnormal

tacceleration
(51.1)

where the tnormal and tacceleration are the time-to-failure data
under normal operating conditions and accelerated stress
conditions, respectively. Since tnormal may take many years to
occur, then experimental determination of the AF is usually
impractical. However, if one has proper life-stress relation-
ship models then one can use these models to derive the AF.

A life-stress relationship can be one of the empirically
derived relationship or a new one for the particular stress
and application. It is applied to describe a life characteristic
of the distribution from one stress level to another. The life
characteristic can be any measure such as the mean, median,
etc. For example, when considering the Weibull distribution,
the scale parameter η is chosen to be the “life characteristic,”
while m is assumed to remain constant across different stress
levels. This assumption implies that the same failure mech-
anism is observed at different stresses. There are many life-
stress models which have been used successfully in practice.
Generally, the most commonly used life-stress relationship
models include exponential model and power model.

51.4.1 Exponential Model

In this model, there is an exponential relationship between
the life characteristic and the stress, which can be written as:

Life = A× e−B×Stress (51.2)

where A is an empirical constant and B can be a constant
or function describing this relationship. Following are the
most commonly used models involving stresses caused by
temperature and humidity.

• Arrhenius Models

The Arrhenius equation is used to relate the rate of a
chemical reaction R to temperature, which can be written as:

R(T) = γ0 exp
( −Ea

kB × T

)
(51.3)

where the γ 0 and the activation energy Ea are constants
that depend on material properties, failure mechanism, and
test methods; kB = 8.62 × 10−5eV/K is Boltzmann’s con-
stant in units of electron volts per ◦C. The temperature
T = temp ◦ C+ 273.15 is the temperature in Kelvin. Let TField
and Ttest be equal to absolute Kelvin temperatures at field
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and test level, respectively. Then the Arrhenius acceleration
factor can be written as:

AF = exp
{
Ea

kB

(
1

TField
− 1

TTest

)}
. (51.4)

Based on (51.3), life is nonlinear in the single-stress
variable temperature (T). Empirical observations suggested
that the Arrhenius model has various applications, but it is
most commonly used to estimate the acceleration factor for
electronic component operating at a constant temperature.
However, the nature of the failure mechanism may limit the
range of temperature over which the Arrhenius relationship is
adequate. The Arrhenius acceleration factor is also very sen-
sitive to the value ofEa due to its exponential nature, therefore
the accuracy of estimating Ea is very important. The Ea has a
specific meaning as an atomic or material property. It simply
becomes an empirical constant appropriate for use with a
particular failure mechanism. There are no predetermined
generic values of Ea for the specific failure mechanisms due
to variation in parts characteristics. The only reliable way to
obtain Ea is to conduct a series of acceleration tests.

• Eyring Model

The Eyring model is usually applied to combine the effect
of more than one independent stress variables assuming no
interactions between the stresses. A generic form of the
Eyring equation can be written as:

Life = exp
{
Ea

kBT
f1 (S1) f2 (S2)

}
(51.5)

where f1(S1) and f2(S2) are the factors for other applied
stresses, such as temperature, humidity, voltage, current,
vibration, and so on. A form of the Eyring model for the
influence of voltage (V) in addition to temperature (T) is:

Life = AV−B exp
{
Ea

kBT
+

(
C + D

T

)
V

}
(51.6)

where A, B, C, and D are unknown parameters. Eyring also
suggests the following generalized model, which considers
the influences of temperature T and of further stresses Si as:

AF = (T2/T1)
−m exp

{
Ea

kB

(
1

TField
− 1

TTest

)}

exp
{
SField

(
C + D

kBTField

)
− Stest

(
C + D

kBTTest

)}
.

(51.7)

See Meeker and Escobar [4] and the above references for
more information on the Eyring model.

51.4.2 Power Model

A simple power relationship between the performance mea-
sure and the stress variable can be written as:

Life = A × Stress−B (51.8)

where A is an empirical constant and B can be a constant or
function describing this relationship. Following are the most
commonly used power models involving stresses caused by
temperature cycling, voltage, vibration, etc.

• Coffin-Manson Model

Models for mechanical failure, material fatigue, or mate-
rial deformation are not forms of the Eyring model. These
models typically have terms relating to cycles of stress or
frequency of change in temperatures. The Coffin-Manson
model is used successfully to model crack growth in solder
and other metals due to repeated temperature cycling as
equipment is turned on and off. It provides a relationship
between life in thermal cycles, Nf, and plastic strain range

γ p, and says that the number of cycles to failure is

Nf
(

γp

)m = Constant, (51.9)

where m is an empirical fatigue constant. During thermal
cycling, the strain range caused by the mismatch of the
coefficients of thermal expansion between solder and other
materials is proportional to the cycling temperature excursion

T = TMax − TMin. The acceleration factor can be approxi-
mated by:

AF =
(


TTest

TField

)m

(51.10)

In the case of low cycle fatigue, the acceleration factor
is typically used to the number of thermal cycles rather
than the temperature exposure time. There are extensions of
the Coffin-Manson model which account for the effect of
temperature transition during thermal cycling.

• Voltage Acceleration Models

A simple model having only voltage V dependency takes
the form:

AF =
(
VTest

VField

)B

(51.11)

An alternative exponential voltage model takes the form of
the following:
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AF = exp [B (VTest − VField)] exp
[
Ea

kB

(
1

TField
− 1

TTest

)]

(51.12)

where B is voltage acceleration parameter. Failure mecha-
nisms of electronic components usually follow this relation-
ship over most of their life for dependence on voltage.

• Vibration Acceleration Models

Most vibration models are based on the S-N curve. The
relationship between peak stress σ and the number of cycles
to failure N can be expressed as Nσ b = Constant (high cycle
fatigue). Assuming the linear relationship between the stress
and acceleration G during vibration, the model takes the
following form:

Sinusoidal vibration : AF =
(
GPeak−Test

GPeak−Filed

)b

(51.13)

Random vibration : AF =
(
GTest

GField

)n

(51.14)

where b is the slope of the S-N line in the log-log scale and
has different values for different materials. It is typical for
sinusoidal vibration to measure life in vibration time or a
number of cycles.

There are other models including the mix of exponential
and powermodel or other physical laws, such as temperature-
humidity model. Relative humidity is an environmental vari-
able that can be combined with temperature to accelerate
corrosion or other chemical reactions. As a special case of
the Eyring model, Peck’s equation is the most commonly
used model to address the combined effect of temperature
and humidity. The acceleration factor correlating product life
in the field with test period can be expressed as:

AF =
(
RHTest

RHField

)m

exp
[
Ea

kB

(
1

TField
− 1

TTest

)]
(51.15)

where m is a constant, typically ranging between 2.0 and
4.0, and RH = relative humidity measured as percent. Usu-
ally, Peck’s model can only be applied to wearout failure
mechanisms, including electromigration, corrosion, dielec-
tric breakdown, and dendritic growth. Another temperature-
humidity model is Lawson model, which is based on the
water absorption research:

AF = exp
[
Ea

kB

(
1

TField
− 1

TTest

)]
exp

[
b

(
RH2

Test − RH2
Field

)]
(51.16)

where b is an empirical humidity constant based on water
absorption.

Example 51.1 An electrical insulator is rated for normal use
at 12 V. Prior tests show this insulator can operate over 24 V
and a life-stress exponent of the power model was found to
be B= 6. How long must one run an ALT at 24 V to conduct
an equivalent B5 life if the B5 life at 12 V is desired to be at
least 20 years?

Let life Life = A × V−B represent the life relationship,
and applying (51.11) to calculate the acceleration factor due
to voltage only:

AF =
(
24 V

12 V

)6

= 64

Thus

Test time at 24 V = 20 years

AF
= 20 years × 8760 h/year

64

= 2737.5 h.

51.5 Statistical Analysis of ALT Data

An effective ALT conducted by using different types of stress
loading, test stopping criteria, and performance inspection
methods can produce different types of data such as failed and
not failed (censored) data. Therefore, when dealing with the
ALT data, appropriate data analysis methods must be used.
Nelson and Meeker et al. are the pacesetters in discussing the
method for statistical analysis of ALT data [2, 4]. Nelson and
Meeker provide the basic analysis framework for ALT data.
Although the ALT modes are extended, the statistical models
are generalized and improved, and the framework has not yet
been exceeded. In engineering, their researches and findings
are widely used as important references in promoting the
development of ALT design method. The most commonly
used models and methods belong to the parametric statistics.
The most widely used and advanced theory is the maximum
likelihood estimation (MLE) theory for the location-scale
distribution and the linear life-stress relationship. Neverthe-
less, the problems such as being difficult to determine the
type of product life distribution and the lack of test data
always bedevil the application of ALTs. See Meeker and
Escobar [2] and Nelson [4, 6], and the above references for
more information on statistical analysis of ALT data. There
is also commercially available software designed to analyze
ALT data. When sufficient data is available software pack-
ages such as ReliaSoft ALT can fit a statistical distribution
to a life data set at each stress level and model the resulting
life-stress relationship.

Generally, the first step in performing ALT dada analysis
is to determine an appropriate statistical distribution to de-
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scribe lifetime at fixed levels of the accelerating variable(s).
Typically, there is only one type of distribution used at all
levels of stress. This implies that the failure mechanisms re-
main the same at different stress levels. The statistical model
of CSALT includes the life distribution and the life-stress
relationship. The statistical model of SSALT and PSALT
includes the life distribution, the life-stress relationship, and
also the equivalent principle of stress level transition. In
studying the statistical theory of ALT, it began with suppos-
ing that the lifetime follows exponential distribution. From
an engineering point of view, the ALT is primarily oriented to
electronic products, and the exponential distribution is used
widely as “standard distribution” in the reliability analysis.
However, more engineers and applied statisticians find that it
is more appropriate to describe the product life distribution
as the function belong to the location-scale distribution (such
as the Weibull distribution and lognormal distribution) than
exponential distribution.

The process of finding the best statistical distribution is
based on the failure data, goodness-of-fit tests, and engi-
neering experience. Usually, probability plots are used to
identify an appropriate distribution and to derive estimates of
the distribution parameters. Probability plotting is a method
for determining whether data conform to a hypothesized
distribution. It in general involves a physical plot of the data
on specially constructed probability plotting paper. The axes
of probability plotting papers are transformed in such a way
that the true CDF plots as a straight line. If the plotted data can
be fitted by a straight line, the data fit the appropriate distribu-
tion. This approach can be easily implemented by hand under
the given probability plotting paper. Nowadays computer
software is used to assess the hypothesized distribution and
determine the parameters of the underlying distribution by
using MLE method or rank regression method. For example,
probability plotting papers exist for all the major distribution,

such as normal, lognormal, Weibull, exponential, extreme
value (see Reliasoft Weibull++ and Minitab 18).

Example 51.2 Assume that eight samples are tested. All of
these items fail during the test after operating the following
number of hours: 35, 40, 43, 47, 49, 54, 59, 63, 67, 74, 75,
77, 78, 86, 106, 108, 113, and 125. Find the best statistical
distribution to describe lifetime of the product based on the
observed failure data and determine the parameters.

Figure 51.3a, b show the Weibull distribution and lognor-
mal distribution plotted with Minitab. In the two figures, the
fitted line gives a good “eyeball fit” to the plotted data. It
is very difficult to determine the best statistical distribution
by using visual examination. However, the software employs
more sophisticated mathematical methodology, and thus of-
fers clear advantages by providing the capability to perform
more accurate and versatile calculations and data plotting.
See Fig. 51.3, the results (that is the value of AD and p) of
the Anderson-Darling test show the lognormal distribution
is a better one to describe lifetime of the product, and the
location parameter μ is 4.213 and the scale parameter σ is
0.376.

The second step is to select (or create) a model to describe
the relationship between the lifetime distributions and the
accelerating variables. It is best to develop a model based
on physical or chemical theory, empirical considerations,
or both. Then, the pdf at the normal use stress level can
be extrapolated based on the life-stress relationship and the
characteristics of the distributions at each accelerated stress
level. The life-stress relationships of single-stress, double-
stresses, and multiple-stresses ALTs are single, binary, and
multivariate functions, respectively. The number of stresses
changes, and we must change the ALT plan design method
with it. In practice, it is extremely difficult or impractical to
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verify acceleration relationships over the entire range of in-
terest. Escobar andMeeker provide some basic guidelines for
the use of acceleration models in reference [4]. Furthermore,
for more details about time-to-failure modeling, the reader is
referred to [6].

The next step is to assess statistical uncertainty in perform-
ing an ALT analysis. The statistical model and the statistical
analysis method are the indispensable part for statistical anal-
ysis of ALT. The actual effectiveness of statistical inference is
largely determined bywhether the statistical model is suitable
for engineering practices. Therefore, the statistical model
should be tested before it is used in reliability assessment.
The current theories provide methods for testing various life
distributions. The verification on the life-stress relationship
and the assumptions of cumulative damage is more con-
cerned in engineering. The traditional theories on regression
diagnosis are abundant, but few of them are applicable for
censored data and non-normal distribution. In general, testing
a model needs more sample sizes and stress levels than
estimating model parameters. It is also difficult to validate
the extrapolation effect of the model because of the long
product life and high reliability. There needs to develop some
new methods to deal with the uncertainty of the acceleration
model. For more details about life data analysis process, the
reader is referred to [1, 3, 5].

Example 51.3 To expedite product development of a capac-
itor, 45 capacitors are selected to conduct ALT. The capacitor
is designed to operate at room temperatures up to 85 ◦C.
The first group of 15 samples are tested at 1.4V0 (V0 is the

rated working voltage), second group at 1.6V0, and third at
1.8V0. The time-to-failure data obtained during this test are
presented in Table 51.1.

The first step is to run life data analysis at each stress level
and study how the accelerating variable affects the lifetime.
For each level of the accelerating variable(s), plot the life data
on probability paper for a suggested lifetime distribution.
The distribution adequately describes the data if, for each
individual condition, the points lie close to a straight line.
ML is used to fit a line through the points at each level. A
multiple probability plot shows fitted lines for all of the levels
of the accelerating variable. This provides a convenient visual
assessment of the assumption that all the samples have the
same failure modes. If the assumption is reasonable, the lines
will be approximately parallel.

Figure 51.4a, b show the Weibull and lognormal multiple
probability plots, respectively. The points for each voltage
stress level fall roughly along a straight line, and the lines
appear to be reasonably parallel, but more parallel with the
Weibull distribution. Thus, we confirm the consistency of
the failure mechanisms at the three stress levels. It appears
that both the Weibull and the lognormal distributions provide
adequate descriptions of the ALT data. By comparison, the
Weibull distribution is chosen as the life distribution. At
each level of voltage stress, the Weibull distribution is fitted
to the data, and estimates of η and m were computed by
using the method of ML. Table 51.2 gives the ML estimates
of η and m for each level of voltage stress obtained from
Minitab.

Table 51.1 Accelerated test results for Example 51.3

Stress Time to failure (h)

85 ◦C/1.4V0 89.3, 132.4, 276.3, 312.4, 346.6, 403.8, 476.8, 496.0, 682.4, 718.2, 897.4, 1008.3, 1036, 1094.5, 1136.0

85 ◦C/1.6V0 32.7, 34.8, 43.9, 57.2, 72.4, 99.5, 107.0, 123.7, 145.4, 180.1, 215.2, 235.5, 252.2, 280.0

85 ◦C/1.8V0 8.3, 9.6, 12.3, 17.5, 19.8, 24.0, 26.3, 36.2, 36.9, 45.5, 53.2, 63.6, 75.5, 76.3, 82.0

1
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Fig. 51.4 Multiple probabilities plotted: (a) Weibull distribution plotted; (b) lognormal distribution plotted
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The next step is to model a life-stress relationship. The
inverse power relationship is widely used to relate the lifetime
of a capacitor to voltage stress. Suppose that T (volt), the
lifetime at volt, has a log-location-scale distribution with
parameters (η, m) and that m does not depend on volt. Under
the inverse power relationship, η = β0 + β1 ln (V). Fitting
the model to data is accomplished by computing estimates
for the parameters β0 and β1. The result of fitting the inverse
power relationship is

η̂0 = 1458 − 2571 ln(V).

The estimate m̂ can be calculated by

m̂ = n1m̂1 + n2m̂2 + n3m̂3

n1 + n2 + n3
= 1.68

Then, the estimated rated lifetime at use conditions
(85 ◦C/V0) can be estimated by

η̂ = 1458 − 2571 ln (V0) = 1458 h.

And the reliability function at use conditions takes the form

R(t) = exp

[
−

(
t

η̂0

)m̂
]

= exp
[
−

( t

1458

)1.68
]

.

Example 51.4 Consider the following times-to-failure data
collected after testing 12 electronic devices at three different
voltage stress levels and three temperature stress levels. On
the i-th voltage stress level (i = 1, 2, 3) and the j-th tem-
perature stress level (j = 1, 2, 3), the sample size nij is 8,
the number of the failure data is rij, and the suspended time
τ ij is 10,000 h. Table 51.3 shows the time-to-failure data. As
shown in Fig. 51.5, by using multiple probability plotting
method, we found that the Weibull distribution is fitted to the

data at different stress levels. The estimates of η and m for
each combination of voltage stress and temperature stress are
obtained from Minitab. Suppose that the life-stress models
are as follows:

ηij = A× V−C
i × exp

(
B/Tj

)

where the A, B, and C are unknown parameters. Find the
reliability function at 120 V and 25 ◦C.

By using MLE, one can get the likelihood function as:

L =
3∏
i=1

3∏
j=1

nij!(
nij − rij

)!
{ rij∏
k=1

mtm−1
ij

ηmij
exp

[
−

(
t(k)ij
ηij

)m]}

× exp
[
−

(
t(k)ij
ηij

)m]nij−rij

Through maximizing ln L, the maximum likelihood estima-
tors of m, A, B, and C are the simultaneous solutions of four
equations that are as follows:

∂lnL

∂m
=

3∑
i=1

3∑
j=1

{
rij
m

+
rij∑
k=1

ln t(k)ij − rij ln ηij−

rij∑
k=1

(
t(k)ij
ηij

)m

ln
t(k)ij
ηij

− (
nij − rij

) (
τij

ηij

)m

ln
τij

ηij

}
= 0

∂lnL

∂A
=

3∑
i=1

3∑
j=1

m

A

{ rij∑
k=1

(
t(k)ij
ηij

)m

+ (
nij − rij

) (
τij

ηij

)m

− rij

}
= 0

∂lnL

∂B
=

3∑
i=1

3∑
j=1

m

Tj

{ rij∑
k=1

(
t(k)ij
ηij

)m

+ (
nij − rij

) (
τij

ηij

)m

− rij

}
= 0

Table 51.2 ML estimates for Example 51.3

Vi 1.4V0 1.6V0 1.8V0
η̂i 681.8 144.1 43.9

m̂i 1.79 1.62 1.63

Table 51.3 Time to failure for Example 51.4 (h)

Sample ID Voltage (V)/Temperature (◦C)
120/55 120/75 120/85 130/55 130/75 150/85 150/55 150/75 150/85

1 1523.8 138.4 255.1 1003.6 429.4 214.8 916.28 170.4 112.7

2 2916.7 873.9 492.0 2218.9 510.3 391.1 1036.5 237.3 203.1

3 3246.1 1221.6 640.0 2901.3 532.4 484.8 1748.5 413.1 245.2

4 3442.2 1316.7 682.5 3289.1 781.3 498.8 2959.4 917.1 462.7

5 6067.8 1557.0 685.0 4490.4 1337.8 573.0 3148.6 958.3 588.1

6 7169.1 1765.1 696.2 5220.8 1827.1 616.3 3841.5 1310.7 650.9

7 7705.3 2678.7 814.0 8320.5 2001.6 908.0 5221.9 1320.2 797.1

8 Suspended at 10,000 2914.8 1963.1 9043.8 2532.7 1643.4 6368.0 1448.1 1010.1
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∂lnL

∂C
=

3∑
i=1

3∑
j=1

m lnVi

{
rij −

rij∑
k=1

(
t(k)ij
ηij

)m

− (
nij − rij

) (
τij

ηij

)m}
= 0

Then, one can obtain that: m̂ = 1.8, Â = 0.1, B̂ =
7543.3 and Ĉ = 2.5. The estimate lifetime at use conditions
(120 V/25 ◦C) can be estimated by

η̂ = Â× V−Ĉ × exp
(
B̂/T

)
= 0.1 × 120−2.5×

exp
(
7543.3/

(
273 + 25

)
= 62418 h.

And the reliability function at 120 V and 25 ◦C takes the form

R(t) = exp

[
−

(
t

η̂

)m̂
]

= exp

[
−

(
t

62, 418

)1.8
]

.

51.6 Design of ALT Plans

Finding an appropriate ALT method and an optimal test
plan has become the common goal of all engineers. When
designing an ALT plan, the type of stress loading, the number
of stress levels and samples to be allocated to each stress
level, censoring schemes, and also an applicable lifetime dis-
tribution and a life-stress models need to be first determined
under many constraints, such as the limited test time, budget,
and availability of resources. Designing optimal ALT plan
should fit for the stress loading mode, ALT model, testing
condition limitation, and design objective.

There are various optimization objectives and constraints
such as V-optimization, D-optimization single objective,

multiple objectives, cost limits, and resource limits. By
using V optimization, one can obtain the optimal plan by
minimizing the asymptotic variance of the MLE of the p-th
quantile of the product life distribution under normal stress.
By using D optimization, one can obtain the optimal plan by
maximizing the determinant of the Fisher information matrix
of MLE. The most widely used researched ALT plan is the
V-optimal continuous-inspection type I censoring CSALT
plan with the location-scale distribution and linear life-stress
relationship. For an overview of ALT design and planning,
the reader is referred to [1, 7].

51.6.1 Method for Planning Single-Stress
CSALTs

During planning ALTs, firstly suppose that [7]: (1) the
logarithm life of product follows the Weibull distribution
or lognormal distribution, and the CDF is F(y; μ,
σ ) = �[(y − μ)/σ ], where μ is the location parameter,
σ is the scale parameter, and �(•) is the standard extreme
value or the standard normal distribution. (2) The location
parameter μ is a linear function of the standardized stress ξ

(0≤ ξ ≤ 1), or the life-stress relationship isμ(ξ )= γ 0 + γ 1ξ ,
where γ 1 < 0. The Arrhenius model and the inverse power
law model, which are the most widely used in engineering,
both could be transformed into linear life-stress relationship.
(3) The scale parameter σ is a constant and independent of ξ .
(4) The failure time is statistically independent. (5) The type
I censoring CSALT is considered, and the censoring time at
each stress level is τ .

Assume that there are k stress levels, the sample size
allocated to the i-th level ξ i (i = 1, 2, . . . , K) is Ni, and also
the lifetime of the j-th (j= 1, 2, . . . , Ni) samples on ξ i is (tij,
δij). If the sample fails, then δij = 1. If the sample is censored,
then δij = 0 and tij = τ . The log likelihood function of the
MLE is

ln L =
K∑
i=1

Ni∑
j=1

{
δij ln f

(
tij; μ (ξi) , σ

) + (
1 − δij

)

× ln (1 − F( τ ; μ (ξi) , σ ))
} (51.17)

where f (tij;μ(ξ i), σ ) is the pdf of the extreme value or normal
distribution. The problem of designing optimal ALT plan
could be also expressed as given in the following. Find the
number of stress levelsK*, the stress level ξ i*, and the sample
location ratio pi* that minimize the asymptotic variance of the
MLE for the p-th quantile yp of lifetime distribution under
normal stress level under some constraint conditions. These
conditions are mainly composed of the prior estimate values
γ 0,e, γ 1,e, and σ e of the model parameters γ 0, γ 1, and σ ,
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respectively, and also the censoring time τ and the failure
probability p under normal stress level.

However, the statistically optimal plan may not apply to
practice. Nelson and Meeker et al. suggested a “compromise
plan” with three or four stress levels can be used. The middle
stress level can be used to test the life-stress relationship,
prevent the test failures, and improve the plan robustness
to the deviations of the statistical model and model param-
eters. Furthermore, Meeker also proposed the criterion that
evaluates the ALT plan robustness to the deviations of the
model parameters and product life distribution. The best plan
of considering the estimation accuracy and robustness is the
optimal compromise plan. This plan has three equally spaced
test stresses and the sample location ratio of the middle stress
level is 10% or 20%. The ratio at minimum stress level should
be determined via optimization. This plan was also furtherly
simplified byMeeker et al. to become the “4:2:1 plan,” which
has three equally spaced levels andwith the sample allocation
ratio of 4:2:1 at the levels of lowest, the middle, and the
highest stress.

51.6.2 Method for PlanningMultiple-Stresses
CSALTs

When the number of accelerated stresses is greater than
1, the life-stress relationship will turn into a binary or
multivariate function. This leads to some problems, which
are very different form planning single-stress ALTs. Escobar
and Meeker carried out the earliest study on the theory
and method of planning the optimal multiple constant
stresses SALT for location-scale distribution. They used
the assumptions given in Sect. 51.6.1, and generalized the
life-stress relationship into a binary linear function μ(ξ 1,
ξ 2)= γ 0 + γ 1ξ 1 + γ 2ξ 2 (where γ i < 0, 0≤ ξ i ≤ 1, and i= 1,
2), and then proved the following important conclusions.
Firstly, the V-optimal MCSALT plan is not unique. Secondly,
there is a type of V-optimal plan of which the stress level
combinations ξ i

* = (ξ i1*, ξ i2*) (i = 1, 2, . . . , K*) distribute
on a straight line connecting the normal stress level (0, 0) and
the highest stress level (1, 1). However, all parameters of the
life-stress relationship cannot be determined by using these
plans which are defined as optimal degenerated plan. Thirdly,
each optimal degenerated plan corresponds to an infinite
number of optimal nondegenerated plans. All parameters
of the life-stress relationship can be determined by using
the nondegenerated plans. The stress level combinations of
optimal nondegenerated plans distribute on the life-stress
relationship contour through the point ξ i* = (ξ i1*, ξ i2*), and
can be related with the stress level combinations of optimal
degenerated plan by some equations.

Usually, the optimal plan is not just one. To get a deter-
mined plan one should restrict the arrangement mode of the

stress level combinations (called test points) in the feasible
region of the test (called test region), and restrict the sample
location ratio on test points. Escobar and Meeker proposed a
method of obtaining the optimal nondegenerated plan (called
splitting plan). Firstly, find the test point ξ i

* and sample
location ratios pi* by solving the optimization problem of
single-stress ALT. And then find the two intersection points
ξ i,1

* and ξ i,2
* of the life-stress relationship contour through

the point ξ i
* and the boundary of test region. The sample

location ratio on ξ i,1
* and ξ i,2

* also should be inversely
proportional to their distance to ξ i

*. The splitting plan is the
V-optimal plan, and is also the D-optimal plan among all V-
optimal plans.

Furthermore, for a splitting plan, the number of test points
and the difficulty of finding them increase with increasing in
the number of stresses. In addition, the sample allocations
at the test points are also reduced accordingly, and this will
increase the risks of test failure. However, the degenerated
plans are almost irrelevant to the dimension. The interaction
effect between the stresses will also make the life-stress
relationship to be a nonlinear function. In principle, with a
little generalization, the splitting plan, orthogonal plan, and
uniform plan are all applicable to the nonlinear life-stress
relationship. However, a “chord method” for planning the V-
optimal CSALT with time censoring and continuous inspec-
tion could be used to achieve a better plan [8]. For the prob-
lem of planning optimal MCSALT, whether the life-stress
relationship is univariate or multivariate, linear or nonlinear,
and whether the test region is rectangular or nonrectangular,
the method could transform it into the problem of planning a
single-stress ALT with linear life-stress relationship.

51.6.3 Design of SSALT Plans

Nelson firstly introduced the hypothesis of cumulative dam-
age, which stated that the development of product damage
under the same type of stress and failure mechanismwas only
related to the current state and current stress level, and was
independent of the previous history of stress loading. Based
on this hypothesis, Nelson established a rule of equivalent
conversion between the life distributions and test times under
different stress levels, and also proposed the theory and
method of applying the step stress test to the SRT. In SSALT,
the main method of estimating the model parameters is the
MLE. The simple SSALT that has only two steps is generally
used in practice. In addition, a three-step SSALT should be
used to check whether the life-stress relationship is linear
or not. The SSALT could save test costs although there is
still no sufficient evidence to determine which is the best
ALT mode among the CSALT and SSALT. When the total
sample size and censoring time are the same, if only one test
device is available, the SSALT can halved the test time by
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comparing with CSALT. For more details about ALT design
and planning, the reader is referred to [7, 9]. They give more
detailed discussions of issues related to plan SSALT.

51.7 Some Pitfalls of Accelerated Testing

The aim of ALT is to obtain the reliability information of a
product in a short period of time. There are numerous poten-
tial pitfalls in planning and conducting ALTs, as explained
below.

In data analysis and interpretation stage, determining the
appropriate accelerating variables and the associated life-
stress relationship adequate for extrapolation are critical con-
cerns. If the life-stress relationship does not reflect the actual
failure processes, it is impossible to obtain inappropriate
interpretations on the ALT data and assess the product re-
liability under the normal use conditions. Therefore, it is
necessary to test the statistical model first before it is used
in reliability assessment. The current theories provide meth-
ods for testing various common life distributions. However,
from the aspect of engineering application, it is not easy to
determine the life distribution and life-stress relationship of a
specific product with competitive failure, because once there
are more than one failure modes and failure causes, the data
collection and the physical analysis on failure will become
more difficult. The verification on the life-stress relationship
and the assumptions of cumulative damage (for SSALT and
PSALT) is more difficult. Testing amodel needsmore sample
sizes and stress levels than estimating model parameters.
For the ALT, it is difficult to directly validate the extrapo-
lation effect of the model because of the long product life
and high reliability. Furthermore, estimates and confidence
intervals from ALTs also contain statistical uncertainty due
to having only a limited amount of sample size and failure
data. More extrapolation will exacerbate the problem. The
Bayesianmethod and accelerated degradation test (ADT) can
reduce the requirements on sample size to a certain extent,
thus currently get more and more attention. Therefore, some
new methods are needed to be dealt with the uncertainty
of the acceleration model. Besides, for some products with
complicated structures, their life distribution and life-stress
relationship may be difficult to describe in a simple form.

When conducting ALT, the failure mechanisms at high
levels of accelerating variables may not be the same as those
at low levels. High levels of stresses may result in failure
modes that are not representative of the field application or
not occur in normal use of the product. Laboratory conditions
are also not always similar to field conditions. There are more
failures in the field than are predicted by analyzing the ALT
data. During testing one only could do a periodic inspection
that generates group data. Theoretically, there have special
data analysis methods and optimal plan design for group data.

However, a systematic study on the accuracy of this method
is not yet reported.

When planning ALT, different optimization criteria can be
considered and different methods can be used for estimation
of model parameters. However, each method has its inherent
statistical properties and also, strictly speaking, no statistical
model is exactly correct. Thus, the uncertainty reflected in the
ALT plan need to be recognized. Furthermore, there is a lack
of effective methods for planning ALTs of system-level prod-
ucts. For the system-level products, various problems, such as
minimal sample size, competitive failure, complex stresses,
and component relevance, often arise simultaneously, and
there are some technical problems followed.

Note, the pitfalls during planning and conducting of ALTs
must be considered. For more details about analysis of time-
dependent accelerated testing, the reader is referred to [8, 10,
11]. In practice, pressure from management to reduce test
time and cost can cause decisions that attempt to ignore these
pitfalls. However, this will compromise the results of the ALT
and result in misleading conclusions.

51.8 Summary

Reliability tests are always used to assess the reliability
indices of product and improve products. ALT is a widely
used method for rapidly obtaining reliability information and
evaluating the useful life of the product in a relatively short
period. In this chapter, we present a limited discussion and
description of the models and methods popularly used in
ALT, and also design of optimal test plans. Finally, we present
some of the potential pitfalls the practitioner of ALT may
face.
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Abstract

One-shot device testing data arises from devices that can
be used only once, for example, fire extinguishers, electro-
explosive devices, and airbags in cars. In life tests, only
the conditions of the tested devices at a specified time
can be observed, instead of their actual lifetimes. Such
data is therefore of either left- or right-censored. For
these heavily censored data, there is an increasing need to
develop innovative techniques for reliability analysis. In
this chapter, we provide an overview of analyses of one-
shot device testing data collected from accelerated life
tests and discuss some statistical issues on the statistical
estimation and inference as well as optimal designs of
accelerated life tests for one-shot devices.

Keywords

One-shot device · Accelerated life tests ·
Constant-stress · Step-stress · Likelihood inference ·
Minimum density power divergence · Model selection ·
Model mis-specification · Multiple failure modes · Test
plans

52.1 Introduction

One-shot device testing data analyses have recently received
great attention in reliability studies. This chapter aims at pro-
viding the latest progress of statistical models and methods
for analyzing one-shot device testing data collected from
accelerated life tests. One-shot device testing data differs
from typical data obtained bymeasuring lifetimes in standard
life tests and poses a unique challenge in reliability analysis,
due to a lack of lifetime information being collected from
life tests. A one-shot device is a unit that is accompanied by

© Springer-Verlag London Ltd., part of Springer Nature 2023
H. Pham (ed.), Springer Handbook of Engineering Statistics, Springer Handbooks,
https://doi.org/10.1007/978-1-4471-7503-2_52

1039

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-7503-2_52&domain=pdf
https://orcid.org/0000-0001-5842-8892
https://orcid.org/0000-0002-9954-8302
mailto:bala@mcmaster.ca
mailto:amhling@eduhk.hk
https://doi.org/10.1007/978-1-4471-7503-2_52


1040 N. Balakrishnan and M. H. Ling

an irreversible chemical reaction or physical destruction and
therefore no longer functions properly after use. As a result,
the actual lifetime of a one-shot device cannot be obtained
from life tests, and thus one-shot device testing data is binary;
researchers can only observe either a success or failure at
the inspection time as each device can be tested only once.
The lifetime is either left- or right-censored. If successful
tests occur, it implies that the lifetimes are beyond their
inspection times, leading to right-censoring. On the contrary,
the lifetimes are before their inspection times, leading to
left-censoring, if failed tests appear. Examples of one-shot
devices include explosive devices in stockpiles of military
weapons, missiles, rockets, fire extinguishers, and vehicle
airbags [3, 20, 48]. Shaked and Singpurwalla [39] proposed
a Bayesian approach to assess submarine pressure hull dam-
age. Hwang and Ke [22] developed an iterative procedure to
evaluate the storage life and reliability of one-shot devices.
Subsequently, Pan and Chu [37] studied one-shot devices in
a series system.

One-shot devices are required to perform its function only
once. Therefore, they are normally highly reliable and with
longer lifetimes under normal operating conditions; however,
it is very unlikely to observe many failures under normal
operating conditions in a short time. To accurately estimate
the reliability with a few or even no failures becomes very
challenging. Recently, accelerated life tests (ALTs) are often
applied to address this practical issue. In ALTs, devices are
subject to stress levels higher than normal operating condi-
tions to induce early failures. Consequently, more failures
can be obtained in a short time. As there is no interest in
estimating the reliability under the higher-than-normal stress
levels, ALT models are then typically used to extrapolate the
data obtained from the elevated stress levels to estimate the
reliability under normal operating conditions. Since, ALTs
are efficient in capturing valuable lifetime information within
a limited time and therefore become a substantial element
in a wide variety of reliability studies for many decades,
including batteries [32], tantalum capacitors [42], and power
modules [33]. Onemay refer to recent books with chapters on
ALTmodels [5,31,36,38] for details. There aremany types of
ALTs. Constant-stress ALTs (CSALTs) wherein each device
is subject to only one pre-specified stress level are frequently
used. On the other hand, step-stress ALTs (SSALTs) apply
stress to devices in the way that stress levels will increase at
pre-specified times step-by-step. These two types of ALTs
have received great attention in literature.

The rest of this chapter is organized as follows. Sec-
tion 52.2 presents literature reviews of one-shot device test-
ing data analyses. Section 52.3 describes one-shot device
testing data collected from CSALTs and statistical models
that have been studied for one-shot device testing data. Sec-
tion 52.4 considers the likelihood estimation and inference
for one-shot device testing and discusses some statistical
issues, including model mis-specification, model selection,

testing for proportional hazards rates, and designs of CSALTs
for one-shot devices. Sections 52.5–52.7 discuss some latest
developments of one-shot device testing data analyses. A
robust estimator and hypothesis tests for one-shot device
testing data, based on minimum density power divergence
measures, are presented in Sect. 52.5. Sections 52.6 and 52.7
consider analyses for one-shot device testing data with mul-
tiple failure modes and one-shot device testing data collected
from SSALTs, respectively.

52.2 Literature Reviews

This section provides an overview of one-shot device testing
data analyses under ALTs. Under CSALTs, Fan et al. [19]
compared three different priors in the Bayesian approach
for making predictions on the reliability at a mission time
and the mean lifetime of electro-explosive devices under
normal operating conditions. Balakrishnan and Ling [6–9]
subsequently developed expectation-maximization (EM)
algorithms for likelihood estimation based on one-shot
device testing data under exponential, Weibull, and gamma
distributions. In addition, several confidence intervals for
the mean lifetime and the reliability at a mission time under
normal operating conditions have been studied. Balakrishnan
et al. [14,15] recently developed weighted minimum density
power divergence estimators for one-shot device testing data
under exponential and gamma distributions. Ling et al. [25]
considered proportional hazards models for analyzing one-
shot device testing data. Apart from the statistical estimation
and inference, Balakrishnan and Ling [10] developed a
procedure to obtain CSALT plans with budget constraints for
one-shot devices. Ling and Balakrishnan [24] also studied
model mis-specification effects on one-shot device testing
data analyses between Weibull and gamma distributions and
Balakrishnan and Chimitova [4] conducted comprehensive
simulation studies to compare several goodness-of-fit tests
for one-shot device testing data. In addition, Balakrishnan
et al. [11–13] extended this line of work by introducing
competing risks models to analyze one-shot device testing
data with multiple failure modes. On the other hand,
Ling [23] recently presented an EM algorithm for one-shot
device testing data collected from SSALTs and also studied
SSALT plans for one-shot devices with lifetimes following
exponential distributions.

52.3 One-Shot Device Testing Data Under
CSALTs andModels

Suppose that CSALTs with I test groups are considered.
For i = 1, 2, . . . , I, in the i-th test group, Ki one-shot
devices are subject to J types of accelerating factors (i.e.,
temperature, humidity, voltage, and pressure) at stress levels
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Table 52.1 One-shot device testing data with multiple accelerating factors, various stress levels, and different inspection times

Test group Stress levels Inspection time # of tested devices # of failures

1 (x11, x12, . . . , x1J) τ1 K1 n1
2 (x21, x22, . . . , x2J) τ2 K2 n2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

I (xI1, xI2, . . . , xIJ) τI KI nI

xi = (xi1, xi2, . . . , xiJ) and are inspected at time τi. The
corresponding number of failures, ni, is then recorded. The
data thus observed can be summarized below in Table 52.1.

For notational convenience, we denote z = {τi, Ki, ni, xi,
i= 1, 2, . . . , I} for the observed data and θ for the model
parameters. Suppose the lifetime in the i-th test group has a
distribution with the cumulative distribution function (cdf),
F(t; Ψ i) with Ψ i = Ψ (xi; θ). The observed likelihood
function is then given by

L(θ; z) = C
I∏

i=1

[F(τi; Ψ i)]
ni [R(τi; Ψ i)]

Ki−ni ,

where R(τi; Ψ i) = 1 − F(τi; Ψ i) and C is the normalizing
constant. The data is used to determine some life charac-
teristics of the devices under normal operating conditions,
x0 = (x01, x02, . . . , x0J), namely, the mean lifetime, μ, and
the reliability at a mission time t, R(t).

52.3.1 Exponential Models

Fan et al. [19], Balakrishnan and Ling [6, 7] studied one-
shot device testing data under exponential distributions with
single and multiple accelerating factors. Let E denote the
lifetime that follows the exponential distribution. In the i-th
test group, the cdf and the probability density function (pdf)
of the exponential distributions with the rate parameter λi > 0
are given by

FE(t; λi) = 1 − exp(−λit), t > 0,

and

fE(t; λi) = ∂FE(t; λi)

∂t
= λi exp(−λit), t > 0,

respectively. Its mean lifetime and reliability at a mis-
sion time t under normal operating conditions, x0 =
(x01, x02, . . . , x0J), are then given by

μE =
∫ ∞

0
tfE(t; λ0)dt = λ−1

0 ,

and

RE(t) = 1 − FE(t; λ0) = exp(−λ0t),

respectively. As we need to extrapolate the data from the
elevated stress levels, xi = (xi1, xi2, . . . , xiJ), to the life char-
acteristics of the devices under normal operating conditions,
x0 = (x01, x02, . . . , x0J), the parameter λi is related to the
stress levels in a log-linear link function, with xi0 = 1, i.e.,

ln(λi) =
J∑

j=0

ejxij.

It is noting that many well-known stress-rate models, such
as Arrhenius, inverse power law, and Eyring models, are all
special cases of the log-linear link function, with appropriate
transformations on the stress levels [44]. In this setting, the
model parameters are θE = {ej, j = 0, 1, . . . , J} to be
estimated.

52.3.2 Weibull Models

As the exponential distributions enable us to model constant
hazard rate only, Balakrishnan and Ling [8] further extended
the work to Weibull distributions with multiple accelerating
factors that vary both scale and shape parameters, because
the Weibull distributions can model increasing, constant, and
decreasing hazard rates and include the exponential distribu-
tions as a special case.

Let W denote the lifetime that follows the Weibull distri-
bution. In the i-th test group, the cdf and the pdf of theWeibull
distributions with the shape parameter ηi > 0 and the scale
parameter βi > 0 are given by

FW(t; ηi,βi) = 1 − exp
(

−
(
t

βi

)ηi
)
, t > 0,

and

fW(t; ηi,βi) = ∂FW(t; ηi,βi)

∂t

= ηi

βi

(
t

βi

)ηi−1

exp
(

−
(
t

βi

)ηi
)
, t > 0,

respectively. Its mean lifetime and reliability at a mis-
sion time t under normal operating conditions, x0 =
(x01, x02, . . . , x0J), are, respectively, given by
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μW =
∫ ∞

0
tfW(t; η0,β0)dt = β0Γ

(
1 + 1

η0

)
,

and

RW(t) = 1 − FW(t; η0,β0) = exp
(

−
(
t

β0

)η0
)
,

where Γ (z) = ∫∞
0 xz−1 exp(−x)dx is the gamma function.

To extrapolate the data from the elevated stress levels, xi =
(xi1, xi2, . . . , xiJ), to the life characteristics of the devices
under normal operating conditions, x0 = (x01, x02, . . . , x0J),
the parameters ηi and βi are related to the stress levels in log-
linear link functions, with xi0 = 1, i.e.,

ln(ηi) =
J∑

j=0

rjxij, and ln(βi) =
J∑

j=0

sjxij.

Therefore, the model parameters are θW = {rj, sj, j =
0, 1, . . . , J} to be estimated.

52.3.3 GammaModels

In addition to the Weibull distributions, gamma distributions
can model increasing, constant, and decreasing hazard rates
and include the exponential distributions as a special case.
Balakrishnan and Ling [9] studied one-shot device testing
data under gamma distributions with multiple accelerating
factors that vary both scale and shape parameters.

LetG denote the lifetime that follows the gamma distribu-
tion. In the i-th test group, the cdf and the pdf of the gamma
distributions with the shape parameter αi > 0 and the scale
parameter βi > 0 are, respectively, given by

FG(t; αi,βi) = γ

(
αi,

t

βi

)
, t > 0,

and

fG(t; αi,βi) = ∂FG(t; αi,βi)

∂t
= tαi−1

Γ (αi)β
αi
i

exp
(

− t

βi

)
,

t > 0,

where γ (z, s) = ∫ s
0 x

z−1 exp(−x)dx/Γ (z) is the lower in-
complete gamma ratio. Its mean lifetime and reliability at
a mission time t under normal operating conditions, x0 =
(x01, x02, . . . , x0J), are, respectively, given by

μG =
∫ ∞

0
tfG(t; α0,β0)dt = α0β0,

and

RG(t) = 1 − FG(t; α0,β0) = Γ

(
α0,

t

β0

)
,

where Γ (z, s) = 1 − γ (z, s) is the upper incomplete gamma
ratio. Again, to extrapolate the data from the elevated stress
levels, xi = (xi1, xi2, . . . , xiJ), to the life characteristics
of the devices under normal operating conditions, x0 =
(x01, x02, . . . , x0J), the parameters αi and βi are related to the
stress levels in log-linear link functions, with xi0 = 1, i.e.,

ln(αi) =
J∑

j=0

ajxij, and ln(βi) =
J∑

j=0

bjxij.

Therefore, the model parameters are θG = {aj, bj, j = 0,
1, . . . , J} to be estimated.

52.3.4 Generalized GammaModels

Generalized gamma distribution that was introduced
by Stacy [41] includes the preceding popular lifetime
distributions. In this regard, we can consider this highly
flexible distribution to analyze one-shot device testing data
and used it to discriminate between the Weibull and the
gamma distributions.

Let GG denote the lifetime that follows the generalized
gamma distribution. In the i-th test group, the cdf and the
pdf of the generalized gamma distributions with the shape
parameters αi > 0, ηi > 0 and the scale parameter βi > 0
are, respectively, given by

FGG(t; αi, ηi,βi) = γ

(
αi,

(
t

βi

)ηi
)
, t > 0,

and

fGG(t; αi, ηi,βi) = ∂FGG(t; αi, ηi,βi)

∂t

= ηitηiαi−1

Γ (αi)β
ηiαi
i

exp
(

−
(
t

βi

)ηi
)
, t > 0.

It is noting that the generalized gamma distribution becomes
the Weibull distribution when αi = 1, while it becomes the
gamma distribution when ηi = 1 and further reduces to
the exponential distribution when αi = ηi = 1. Besides,
its mean lifetime and reliability at a mission time t under
normal operating conditions, x0 = (x01, x02, . . . , x0J), are,
respectively, given by

μGG =
∫ ∞

0
tfGG(t; α0, η0,β0)dt = α0Γ

(
β0 + 1

η0

)
/Γ (β0),
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and

RGG(t) = 1 − FGG(t; α0, η0,β0) = Γ

(
α0,

(
t

β0

)η0
)

.

Once again, to extrapolate the data from the elevated stress
levels, xi = (xi1, xi2, . . . , xiJ), to the life characteristics
of the devices under normal operating conditions, x0 =
(x01, x02, . . . , x0J), the parameters αi, ηi and βi are related to
the stress levels in log-linear link functions, with xi0 = 1, i.e.,

ln(αi) =
J∑

j=0

ujxij, ln(ηi) =
J∑

j=0

vjxij, and

ln(βi) =
J∑

j=0

wjxij.

Therefore, the model parameters are θGG = {uj, vj, wj, j =
0, 1, . . . , J} to be estimated.

52.3.5 Proportional Hazards Models

The former models are fully parametric models for one-shot
device testing data. Ling et al. [25] proposed proportional
hazards models that allow the hazard rate to change in a
nonparametric way and require a link function to relate the
stress levels to the lifetimes of the devices.

Under the proportional hazards assumption [16, 17], in
the i-th test group, the cumulative hazard function at the
inspection time τi is given by

H(τi; νi) = H0(τi)νi,

whereH0(τi) is the baseline cumulative hazard function. This
model is composed of two s-independent components. One
component measures the influence of the stress factors, and
the other measures the changes in the baseline. We now
assume a log-linear link function to relate the stress levels to
the lifetimes of the devices to obtain the cumulative hazard
function as

H(τi; νi) = H0(τi) exp

⎛

⎝
J∑

j=1

hjxij

⎞

⎠ ;

the corresponding reliability function is then

RPH(τi; νi) = exp (−H(τi; νi)) = ξ
νi
i = ξ

exp
(∑J

j=1 hjxij
)

i ,

where ξi = exp(−H0(τi)) is the baseline reliability at time τi
and xi0 = 1. It is of interest to note that the baseline reliability

is decreasing in time and bounded between 0 and 1, that is,
0 < ξi < ξj < 1 if τi > τj. Its reliability at a mission time τi
under normal operating conditions, x0 = (x01, x02, . . . , x0J),
is then given by

RPH(τi) = RPH(τi; ν0) = ξ
ν0
i .

Therefore, the model parameters are θPH = {ξi, i =
1, 2, . . . , I, hj, j = 1, 2, . . . , J} to be estimated.

We now present a connection between the proportional
hazards model and the Weibull distribution having propor-
tional hazard rates. In CSALTs, if the lifetimes of devices
subject to elevated stress levels xi follow the Weibull distri-

bution with the scale parameter βi = exp
(∑J

j=0 sjxij
)
and

the same shape parameter, η0 = η1 = · · · = ηI = η, the
reliability of the Weibull distribution is

RW(t, ηi,β) = exp
(

−
(
t

βi

)η)

= exp

⎛

⎝−
⎛

⎝tη exp

⎛

⎝−
J∑

j=0

ηsjxij

⎞

⎠

⎞

⎠

⎞

⎠ , t > 0.

The Weibull distribution with the constant parameter is sat-
isfied with the proportion hazards assumption, and then the
baseline reliability and the coefficients of stress factors are
given by

ξi = exp
(−τ

η

i exp(−ηs0)
)
, i = 1, 2, . . . , I,

and
hj = −ηsj, j = 1, 2, . . . , J.

52.4 Likelihood Inference

Likelihood inference on one-shot device testing data under
several popular distributions in reliability studies has exten-
sively been studied [6–9]. This section provides EM frame-
works to find the maximum likelihood estimates (MLEs) of
parameters of interest. Besides, several confidence intervals
for the corresponding parameters are presented in this sec-
tion. Some statistical issues on model mis-specification and
model selection are also discussed. CSALT plans for one-
shot devices are finally considered.

52.4.1 EM Algorithm

In one-shot device testing, no actual lifetime can be observed.
Due to these highly censored data, EM algorithms were
developed for estimating the model parameters under the
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aforementioned distributions. The EM algorithm [30] is an
efficient and powerful technique for finding the MLEs of
the model parameters in case of the presence of missing
data. Thus, the EM technique is extensively employed in
various fields. The EM algorithm simply involves two steps
in each iteration: (1) expectation (E)-step: approximating the
missing data and (2) maximization (M)-step: maximizing the
corresponding likelihood function.

Suppose the lifetime follows a distribution with the pdf
f (t; θ). In the EM algorithm, we first consider the log-
likelihood function based on the complete data as follows:

�c(θ) =
I∑

i=1

Ki∑

k=1

ln(f (tik; θ)).

In the m-th iteration, the objective then is to update the
estimate θ that maximizes the function

Q(θ , θ (m)) = Eθ (m)[�c(θ)|z]

based on the current estimate θ (m). The current estimate θ (m)

is replaced with the updated estimate θ (m+1) in the M-step,
and then the conditional expectation Q(θ , θ (m+1)) can be
obtained based on the updated estimate θ (m+1) in the E-step.
These two steps are repeated until convergence is achieved
to a desired level of accuracy. It can be seen that we actually
solve the incomplete data problem by first approximating the
missing data and then using the approximated values to find
the estimate of the parameter vector as the solution for the
complete data problem.

However, for the maximization problem, a closed-form
solution cannot be found. The EM algorithm based on the
one-step Newton-Raphson method needs to be employed for
this purpose. It requires the second-order derivatives of the
log-likelihood function with respect to the model parameters.
For the present situation, let us define

I =
[

∂Q(θ , θ (m))

∂θ

]

θ=θ (m)

and

J = −
[

∂2Q(θ , θ (m))

∂θ∂θ ′

]

θ=θ (m)

.

Then, we have the updated estimates as

θ (m+1) = J−1I + θ (m).

In many cases, the primary interest may be on some life-
time characteristics, such as the mean lifetime and the relia-
bility under normal operating conditions, which are functions

of the model parameters. Hence, one can plug in the MLEs
of the model parameters into the corresponding functions and
obtain readily the MLEs of the parameters of interest.

Let’s look at the example of exponential distributions. The
log-likelihood function based on the complete data is given
by

�c =
I∑

i=1

⎛

⎝Ki
J∑

j=0

ejxij

⎞

⎠−
I∑

i=1

⎛

⎝
(

Ki∑

k=1

tik

)
exp

⎛

⎝
J∑

j=0

ejxij

⎞

⎠

⎞

⎠ ,

and the conditional expectation is

Q(θE, θ
(m)
E ) =

I∑

i=1

⎛

⎝Ki
J∑

j=0

ejxij

⎞

⎠−
I∑

i=1

⎛

⎝Kit∗i exp

⎛

⎝
J∑

j=0

ejxij

⎞

⎠

⎞

⎠ .

The first and second derivatives with respect to the model
parameters to maximize the quantity Q(θE, θ

(m)
E ) are then

obtained as

∂Q(θE, θ
(m)
E )

∂ej
=

I∑

i=1

Kixij

−
I∑

i=1

⎛

⎝Kixijt∗i exp

⎛

⎝
J∑

j=0

ejxij

⎞

⎠

⎞

⎠ , j = 0, 1, ..., J,

and

∂2Q(θE, θ
(m)
E )

∂ep∂eq
= −

I∑

i=1

⎛

⎝Kixipxiqt∗i exp

⎛

⎝
J∑

j=0

ejxij

⎞

⎠

⎞

⎠ ,

p, q = 0, 1, ..., J.

Furthermore, the required conditional expectation in the
E-step is straightforward:

t∗i = E(tik|z, θ (m)
E ) = 1

λ
(m)
i

+τi

(
1 − ni

Ki(1 − exp(−λ
(m)
i τi)

)
,

where λ
(m)
i = exp

(∑J
j=0 e

(m)
j xij

)
.

Furthermore, when the MLEs of the model parameters
θ̂E = (ê0, ê1, . . . , êJ) are determined, we immediately
have the MLEs of the mean lifetime and the reliability
at a mission time t under normal operating conditions
x0 = (x01, x02, . . . , x0J), as

μ̂E = λ̂−1
0 = exp

⎛

⎝−
J∑

j=0

êjx0j

⎞

⎠ ,
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and

̂RE(t) = exp(−λ̂0t) = exp

⎛

⎝− exp

⎛

⎝
J∑

j=0

êjx0j

⎞

⎠ t

⎞

⎠ ,

respectively.

52.4.2 Confidence Intervals

Asymptotic Confidence Intervals
To construct confidence intervals for parameters of interest,
asymptotic confidence intervals are commonly used when
sample sizes are sufficiently large. This requires the asymp-
totic variance-covariance matrix of the MLEs of the model
parameters. Under the EM framework, the missing informa-
tion principle, discussed by Louis [28], is often employed for
obtaining the observed information matrix of the MLEs of
the model parameters. Balakrishnan and Ling [8] observed
that, in case of the lifetimes being all censored, the observed
information matrix obtained by the use of the missing in-
formation principle is equivalent to that obtained from the
observed likelihood function. In one-shot device testing data,
the observed information matrix of the MLEs is the negative
of the second-order derivatives of the observed log-likelihood
function with respect to the model parameters, i.e.,

Iobs = −
[
∂2 ln(L(θ; z))

∂θ∂θ ′

]

θ=θ̂

.

The asymptotic variance-covariance matrix of the MLEs of
the model parameters is then the inverse of the observed
information matrix, i.e.,

V̂θ = I−1
obs.

In addition, the asymptotic variance of the MLE of a function
of the model parameters, namely, the mean lifetime and the
reliability, can be obtained by the delta method that requires
the first-order derivatives of the corresponding function with
respect to the model parameters. For example, the asymptotic
variance of the MLE of a parameter of interest, φ, is

V̂φ = P′V̂θP,

where P = ∂φ/∂θ is a vector of the first-order derivatives of
φ with respect to θ .

Subsequently, the estimated standard error ŝe(φ̂) =
√
V̂φ

is readily obtained. Consequently, the 100(1 − δ)% asymp-
totic confidence interval for φ is given by

(
φ̂ − z δ

2
ŝe(φ̂), φ̂ + z δ

2
ŝe(φ̂)

)
,

where zδ is the 100(1−δ)-th percentile of the standard normal
distribution. Truncation on the bounds of the confidence
intervals for the reliability and the mean lifetime of the
devicesmay be needed, since the reliability has to lie between
0 and 1 and the mean lifetime has to be positive.

Jackknifed Confidence Intervals
The Jackknife method is a systematic re-sampling technique,
omitting one observation at a time from the original sample,
and can also be employed for constructing confidence inter-
vals. In the case of one-shot device testing data, it is efficient
to implement the Jackknife method because the calculation
would not take too much time through the Jackknife tech-
nique.

Following the Jackknife method presented in [18], sup-
pose the MLE φ̂ is obtained from the original data. For
i = 1, 2, ..., I, a device failed at τi is deleted from the data,
and so both ni and Ki are reduced by 1. Then, the MLE of φ

based on the reduced data is obtained, and denoted by φ̂
(−i)
F .

Similarly, for the cases when a device tested successfully at
τi is deleted from the original data, the MLE of φ based on
the reduced data (by reducing only Ki by 1) is also obtained
and denoted by φ̂

(−i)
S . From this set of estimates, the bias of

the MLE is given by

bias(φ̂)=− n− 1

n

I∑

i=1

(
ni(φ̂ − φ̂

(−i)
F ) + (Ki − ni)(φ̂ − φ̂

(−i)
S )

)
,

where n = ∑I
i=1 Ki. Hence, the Jackknife estimator of φ is

simply

φ̂JK = φ̂ − bias(φ̂) = nφ̂ − (n− 1) ¯̂
φ,

where ¯̂
φ = ∑I

i=1

(
niφ̂

(−i)
F + (Ki − ni)φ̂

(−i)
S

)
/n. In addition,

its standard deviation can be calculated as

ŝeJK(φ̂) =
√√√√n− 1

n

I∑

i=1

{
ni
(
φ̂

(−i)
F − ¯̂

φ
)2 + (Ki − ni)

(
φ̂

(−i)
S − ¯̂

φ
)2}

.

Hence, given the bias-corrected estimate φ̂JK, the 100(1 −
δ)% Jackknifed confidence interval for φ is then given by

(
φ̂JK − z δ

2
ŝeJK(φ̂), θ̂JK + z δ

2
ŝeJK(φ̂)

)
.

As before, the Jackknifed confidence intervals for the mean
lifetime and the reliability under normal operating conditions
could be outside the range of their supports when the sample
size is small. Therefore, we may have to do corrections on
the confidence intervals, if necessary.
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Parametric Bootstrap Confidence Intervals
Parametric bootstrap technique is an alternative to gener-
ate a set of estimates to construct confidence intervals for
parameters of interest. By repeatedly performing bootstrap
simulations, the corresponding distribution of the estimates
can be approximated. The confidence intervals can then be
constructed based on the empirical distribution of the esti-
mates. The confidence intervals for a parameter of interest,
φ, can be constructed by the parametric bootstrap method as
follows:

1. Determine the MLE, θ̂ , from the original data.
2. Obtain bootstrap samples {n∗

i , i = 1, 2, ..., I} based on θ̂

and {τi, Ki, xi, i = 1, 2, . . . , I}
3. Determine the MLE of φ based on {n∗

i , i = 1, 2, ..., I},
denoted by φ̂b

BT

4. Repeat steps 2 and 3 B times to obtain the MLEs φ̂b
BT , b =

1, 2, ..., B
5. Sort the MLEs φ̂b

BT in an ascending order, denoted by
φ̂

[b]
BT , b = 1, 2, ..., B

Then, the 100(1 − δ)% parametric bootstrap confidence
interval for φ is given by

(
φ̂[ δ

2 (B+1)], φ̂[(1− δ
2 )(B+1)]

)
.

Here, the bootstrap confidence intervals do not require any
correction.

Approximate Confidence Intervals
Hoyle [21] discussed various transformations for developing
suitable confidence intervals in case of estimates with skewed
distributions. When the sample size is small, the MLEs of
the mean lifetime and the reliability may not possess normal
distributions, and consequently the confidence intervals con-
structed directly by the asymptotic method may not maintain
the nominal level of confidence. Here, we adopt the logit

transformation [43] and have f̂ = ln
(
R̂(t)/(1 − R̂(t))

)
to be

asymptotically normally distributed with the corresponding
standard deviation, determined by the delta method, as

ŝe(f̂ ) = ŝe(R̂(t))

R̂(t)(1 − R̂(t))
,

where ŝe(R̂(t)) is the estimated standard error of R̂(t). From
the 100(1 − δ)% confidence interval for f given by

(
f̂ − z δ

2
ŝe(f̂ ), f̂ + z δ

2
ŝe(f̂ )

)
,

we can immediately obtain an approximate 100(1 − δ)%
confidence interval for the reliability R(t) to be

(
R̂(t)

R̂(t) + (1 − R̂(t))S
,

R̂(t)

R̂(t) + (1 − R̂(t))S−1

)
,

where S = exp
(
z δ

2
ŝe(f̂ )

)
.

In a similar manner, the transformation approach can
also be used to construct confidence intervals for the mean
lifetime, which avoids having a negative lower bound for
the mean lifetime. In this approach, we assume that ln(μ̂) is
asymptotically normally distributed with the corresponding
standard deviation as ŝe(ln(μ̂)) = ŝe(μ̂)/μ̂, where ŝe(μ̂) is
the estimated standard error of μ̂. This approach results in an
approximate 100(1 − δ)% confidence interval for the mean
lifetime μ as

(
μ̂ exp

(
− z δ

2
ŝe(μ̂)

μ̂

)
, μ̂ exp

(
z δ

2
ŝe(μ̂)

μ̂

))
.

It should be noted that the computational work for the es-
timated standard deviations of the reliability and the mean
lifetime have been discussed earlier in Sect. 52.4.2.

52.4.3 Model Mis-Specification Analysis

Model-based methods have become a key part of reliability
analysis. The gamma andWeibull distributions are quite sim-
ilar as they can effectively model lifetimes with increasing,
decreasing, and constant hazard rates. Besides, both these
models include the exponential distributions as a special case.
For these reasons, both these distributions are commonly
used in reliability literature to model lifetime data. When the
distribution is correctly chosen to fit one-shot device data,
the MLEs possess less bias and smaller root mean square
errors. In addition, the confidence intervals for parameters of
interest are satisfactory in most cases. However, one has to be
cautious about the improper fitting of distributions to data. In
this regard, much attention has also been paid to model mis-
specification analysis. This section examines the effects of
model mis-specification on point estimation and likelihood
inference.

Now, let us suppose the lifetimes of one-shot devices
follow the gamma distributions but are wrongly assumed
to have come from the Weibull distributions. Let θ∗

W be
the quasi-MLE (QMLE) of the model parameters under the
gamma distributions, given by (see [46])

θ∗
W = argmin

θW
(− ln(L(θW))).

To evaluate the effect of model mis-specification, let us
denote the bias of the estimator of the parameter of in-
terest φW under normal operating conditions x0 under the
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Weibull distributions by BG(φ̂W), which is equivalent to the
parameter, φG, under the true gamma distributions. It can be
expressed as

BG(φ̂W) = E[φ̂W(θ∗
W)] − φG(θG).

Then, the relative bias is given by

κG = BG(φ̂W)

φG(θG)
.

Similarly, suppose the lifetimes of one-shot devices follow
the Weibull distributions but are wrongly assumed to have
come from the gamma distributions. Then, let θ∗

G be the
QMLE of the model parameter under the Weibull distribu-
tions given by

θ∗
G = argmin

θG
(− ln(L(θG))).

LetBW(φ̂G) denote the bias of the estimator of the parame-
ter of interest φG under normal operating conditions x0 under
the gamma distributions, which is equivalent to the parameter
φW under the true Weibull distributions. It can be expressed
as

BW(φ̂G) = E[φ̂G(θ∗
G)] − φW(θW).

Then, the relative bias is given by

κW = BW(φ̂G)

φW(θW)
.

The model mis-specification issue on the likelihood infer-
ence was also investigated, when the distribution is wrongly
specified. To measure the effect of model mis-specification,
let CPG(φ̂W) denote the coverage probability of the approxi-
mate confidence interval for a particular parameter of interest
φW under theWeibull distributions, which is equivalent to φG
under the true gamma distributions. It can be expressed as

CPG(φ̂W) = Pr (φG ∈ (LW,UW)) ,

where LW and UW are the lower and upper bounds of the ap-
proximate confidence interval for φW, respectively. Similarly,
let CPW(φ̂G) denote the coverage probability of the approxi-
mate confidence interval for a particular parameter of interest
φG under the gamma distributions, which is equivalent to φW
under the true Weibull distributions. It can be expressed as

CPW(φ̂G) = Pr (φW ∈ (LG,UG)) ,

where LG and UG are the lower and upper bounds of the
approximate confidence interval for φG, respectively.

The numerical computations in [24] presented the relative
bias of the estimators of the mean lifetime and the reliability
for various settings and revealed that the estimation of the cdf
for each test group is satisfactory even when the underlying
distribution is mis-specified. The consequence of model mis-
specification on point estimation is not serious when the
normal operating conditions x0 are close to the elevated stress
levels {xi, i = 1, 2, . . . , I}. However, due to the linkage
between stress levels and lifetimes, the estimation of the
mean lifetime and the reliability under x0 becomes imprecise,
especially when the elevated stress levels are away from
normal operating conditions. This observation suggests that
having elevated stress levels near the normal operating condi-
tions would minimize the effect of model mis-specification.

Furthermore, the performance of the approximate 95%
confidence intervals for the mean lifetime and the reliability
was examined. It was observed that the coverage probabilities
under the true distributions maintain the nominal level. Also,
these results showed that the model mis-specification is not
serious only when the gamma distributions are mis-specified
as the Weibull distributions in the case of small sample sizes.
In general, the confidence intervals produce deflated cov-
erage probabilities. Again, the consequence of model mis-
specification on the likelihood inference is seen to be serious
when the elevated stress levels are away from normal oper-
ating conditions, especially in the case of large sample sizes.

52.4.4 Model Selection

Due to the importance of system safety, it is of great interest
in detecting if there is model mis-specification in the fitted
model. Balakirshnan and Chimitova [4] compared several
test statistics for testing the goodness-of-fit of assumed mod-
els: (1) a chi-square type statistic based on the difference
between the empirical and expected numbers of failures
at each inspection time, (2) Kolmogorov and (3) Cramer-
von Mises-Smirnov type statistics based on the difference
between the nonparametric MLE (NPMLE) of the lifetime
distribution obtained from one-shot device testing data and
the distribution specified under the null hypothesis, and (4)
White type statistic comparing two estimators of the Fisher
information.

Let Ri be the i-th residual for i = 1, 2, . . . , I. We define
n = ∑I

i=1 Ki, Ŝ0(t; θ) as the baseline reliability function,
Ŝn(t) as the NPMLE of the baseline reliability function,
n∗
i = Ki(1− Ŝn(Ri)) as the empirical number of failures, and
n̂i = Ki(1 − Ŝ0(Ri; θ̂ )) as the expected number of failures.

The chi-square type statistic can be written as follows:

χ2
n =

I∑

i=1

(n∗
i − n̂i)2

n̂i
.
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It is clear that the values of the statistic strongly depend on
the location of inspection times relative to the corresponding
conditional distribution under test. It may happen that the
value of the statistic will be small for some inappropriate
distribution only because inspection times are located mainly
in the right tail of the distribution. To avoid this problem,
the weighted chi-square type statistic was introduced in the
following form:

vχ2
n =

I∑

i=1

vij(n∗
i − n̂i)2

n̂i
,

where

vij = S0(Ri; θ̂ )(1 − S0(Ri; θ̂ ))
∑I

i=1 S0(Ri; θ̂ )
.

The Kolmogorov type statistic is defined as

Dn = sup
0<t<∞

∣∣∣Ŝn(t) − S0(t; θ̂n)

∣∣∣ .

The Cramer-von Mises-Smirnov type statistic is of the
following form:

W2
n =

∫ ∞

0

(
Ŝn(t) − S0(t; θ̂n)

)2
dS0(t; θ̂n).

TheWhite type statistic is based on the comparison of two
estimators of the Fisher information matrix:

An(θ̂n) = − 1

n

I∑

i=1

[
ni

∂2 ln(1 − S0(Ri; θ̂n))

∂λ2

+ (Ki − ni)
∂2 ln(S0(Ri; θ̂n))

∂λ2

]
,

and

Bn(θ̂n) = 1

n

I∑

i=1

ni

(
∂ ln(1 − S0(Ri; θ̂n))

∂λ

)

(
∂ ln(1 − S0(Ri; θ̂n))

∂λ

)′

+ 1

n

I∑

i=1

(Ki − ni)

(
∂ ln(S0(Ri; θ̂n))

∂λ

)

(
∂ ln(S0(Ri; θ̂n))

∂λ

)′
,

where λ is the vector of parameters of the baseline reliability
function S0. The statistic is then defined as

Vn = | detAn(θ̂n) − detBn(θ̂n)|
detBn(θ̂n)

.

In addition, Ling and Balakrishnan [24] proposed two
measures as specification tests for this purpose and then
evaluated their performance. Akaike information criterion
(AIC) (see [1, 2]) is commonly used to measure the relative
quality of fits achieved by probability models for a given set
of data. Let AICG and AICW denote the AIC values under the
gamma and the Weibull distributions, respectively. For each
probability distribution, there are J + 1 model parameters to
be estimated for each of scale and shape parameters, and so
AICG and AICW statistics are given by

AICG = 2(2J + 2) − 2 ln(L(θ̂G)) and

AICW = 2(2J + 2) − 2 ln(L(θ̂W)).

When the assumed distribution does not fit the data, the
logarithm of the likelihood value becomes small, and conse-
quently the preferred model is the one with the smallest AIC
value, and this is used for the purpose of model selection.
Since the same number of parameters are in both gamma
and Weibull distributions, the comparison of AIC values is
exactly the same as the comparison of the log-likelihood
values and also exactly the same as by the Bayesian infor-
mation criterion (BIC). So, we can consider a specification
test statistic as

DAIC = AICG − AICW = 2(ln(L(θ̂W)) − ln(L(θ̂G))).

The gamma distributions are preferred whenDAIC < 0,while
the Weibull distributions are preferred when DAIC > 0.

Balakrishnan and Ling [8, 9] proposed a distance-based
test statistic, which simply quantifies the distance between
the observed and expected numbers of failures at each test
group. Let MG and MW denote the values of the test statistic
under the gamma and the Weibull distributions, respectively,
which are given by

MG = max
i

|ni−KiF̂G(τi)| and MW = max
i

|ni−KiF̂W(τi)|.

So, when the assumed distribution does not fit the data well,
we expect to observe a large value of the test statistic. We can
then consider a specification test statistic as

DM = MG −MW .

We can conclude that the gamma distributions are the pre-
ferred one when DM < 0, while the Weibull distributions
become the preferred one if DM > 0.
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We further define (L,U) = (LG,UG) when DM < 0 and
(L,U) = (LW,UW) when DM > 0. When the specification
test statisticDM is implemented,the coverage probabilities of

the approximate confidence intervals for φG and φW can be
expressed as

CPG(φG) = Pr(φG ∈ (L,U), DM < 0) + Pr(φG ∈ (L,U), DM > 0)

= Pr(φG ∈ (L,U)|DM < 0)PG(DM < 0) + Pr(φG ∈ (L,U)|DM > 0)PG(DM > 0),

and

CPW(φW) = Pr(φW ∈ (L,U), DM < 0) + Pr(φW ∈ (L,U), DM > 0)

= Pr(φW ∈ (L,U)|DM < 0)PW(DM < 0) + Pr(φW ∈ (L,U)|DM > 0)PW(DM > 0),

wherePG(DM < 0) represents the probability that the gamma
distributions correctly selected and PW(DM > 0) represents
the probability that the Weibull distributions are correctly
selected by the use of a specification test. Both PG(DM <

0) and PW(DM > 0) can be considered as the power of
detection of mis-specified distributions by the specification
test statistic. It is worth mentioning that the statistic DM may
be replaced by another specification statistic DAIC.

A simulation study was carried out for evaluating the
power of detection of model mis-specification for the AIC
and the distance-based test statistic M for different settings.
The obtained results revealed that the distance-based test
statistic is slightly better than the AIC for detecting mis-
specified distributions when the gamma distributions are
the true one, while the AIC performs much better when the
Weibull distributions are the true one. In practice, the true
probability distributions are unknown; for this reason, the
AIC is recommended as a specification test. Furthermore,
the performance of the approximate 95% approximate
confidence intervals for the mean lifetime and the reliability,
with andwithout the use of a specification test, was evaluated.
It was observed that, even when the coverage probabilities for
mis-specified distributions are low in the case of large sample
sizes, with the use of a specification test, the mis-specified
distributions are unlikely to be selected as seen from the
corresponding power values. Consequently, the coverage
probabilities can be improved considerably and brought close
to the nominal level, with the use of a model specification
test.

On the other hand, likelihood ratio tests under generalized
gamma distributions are useful for discriminating among
those models. Firstly, we consider the likelihood ratio test
for testing the null hypothesis H0 : vj = 0, j = 0, 1, 2, . . . , J
(gamma distributions) against the alternative hypothesis H1 :
v’s are not all equal to 0 (generalized gamma distributions).
Under H0, the log-likelihood ratio test statistic is

LRTG = −2(ln(L(θ̂G; z)) − ln(L(θ̂GG; z))).

Similarly, we consider the likelihood ratio test for testing
the null hypothesis H0 : uj = 0, j = 0, 1, 2, . . . , J (Weibull
distributions) against the alternative hypothesis H1 : u’s are
not all equal to 0 (generalized gamma distributions). Under
H0, the log-likelihood ratio test statistic is

LRTW = −2(ln(L(θ̂W; z)) − ln(L(θ̂GG; z))).

The above null hypotheses are less likely to be true as
the corresponding test statistic is large. Moreover, these
test statistics are always positive and have an approximate
chi-square distribution with degrees of freedom equal to
J + 1 when the sample size is sufficiently large [47].
Therefore, we can compute the p-value to determine whether
the gamma/Weibull distributions are appropriate to fit the
observed data. For instance, if a p-value is less than 0.05,
the corresponding distributions are not suggested to fit
the data.

The performance of the likelihood ratio tests for choosing
an appropriate model between the gamma and Weibull dis-
tributions to fit the observed data was determined in terms
of percentages of rejection under the null hypothesis. The
results showed that the likelihood ratio tests can successfully
determine that Weibull distributions are inappropriate for
fitting the data for all the considered sample sizes when the
gamma distributions are the true one. Conversely, when the
Weibull distributions are the correct one, the likelihood ratio
tests performed satisfactory only when the sample size is
sufficiently large. In conclusion, the Akaike information cri-
terion and the distance-based test statistic and the likelihood
ratio tests encountered the same challenge in one-shot device
testing data.
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52.4.5 Test of Proportional Hazard Rates

In the preceding section, the proportional hazards models
have only the proportional hazards assumption and allow
hazard rate to change in a nonparametric way. Here, a test for
proportional hazards assumption based on one-shot device
testing data is presented. Let us consider the distance-based
test statistic [8, 9, 25]:

M = max
i

∣∣ni − n̂i
∣∣ ,

where n̂i = KiF̂PH(τi) is the expected number of failures in
the i-th test group under the proportional hazardsmodels. The
test statistic simply assesses the fit of the assumed models to
the observed data, and so we would observe a large value of
M when the assumed models are not good fit to the data.

Let Li = �n̂i −M� and Ui = �n̂i +M	. Under the propor-
tional hazards models, we have ni ∼ Binomial(Ki, F̂PH(τi)),
and so, the corresponding exact p-value is given by

p-value = 1 −
I∏

i=1

Pr(Li ≤ ni ≤ Ui).

From the above expression, we can readily validate the pro-
portional hazards assumption when the p-value is sufficiently
large, i.e., p-value >0.05 or 0.1, say.

52.4.6 Designs of CSALTs

Suppose that, in the i-th test group, Ki items are subject to
J types of stress factors with higher-than-usual stress levels
and inspected at νi equally-spaced time points. Specifically,
Ki,v items are drawn and inspected at a specific time τi,v,with∑νi

v=1 Ki,v = Ki.Then, ni,v failure items are collected from the
inspection. Let us now assume that the lifetimes of devices in
the i-th test group follow the Weibull distributions with scale
parameter βi and shape parameter ηi, wherein the scale and
shape parameters are both related to the stress levels xi =
(xi1, xi2, . . . , xiJ) through the log-linear link functions.

To design CSALTs for one-shot devices, Balakrishnan and
Ling [10] considered the optimization problem of determin-
ing the inspection frequency, the number of inspections at
each condition, and the allocation of the devices by minimiz-
ing theasymptotic variance of the MLE of the reliability at a

mission time under normal operating conditions, subject to a
specified budget and a termination time.

Suppose the budget for conducting CSALTs for one-
shot devices, the operation cost in the i-th test group, the
cost of devices (including the purchase of and testing cost),
and the termination time are Cbudget, Coper,i, Citem, and τter,
respectively. Given a test plan, ζ , that involves the inspec-
tion frequency, f, the number of inspections in the i-th test
group, νi ≥ 2, and the allocation of devices, Ki,v, for i =
1, 2, . . . , I, v = 1, 2, . . . , vi, it is assumed that the total cost of
implementing the test plan is

TC(ζ ) = Citem

I∑

i=1

νi∑

v=1

Ki,v +
I∑

i=1

Coper,iνif,

and
max
i
vif ≤ τter.

Balakrishnan and Ling [10] presented a procedure of deter-
mining CSALT plans for one-shot devices.

52.5 MinimumDensity Power Divergence
Estimation

Balakrishnan et al. [14, 15] developed a new family of esti-
mators, the minimum density power divergence estimators
(MDPDEs), for one-shot device testing data under the ex-
ponential and gamma distributions. They revealed that some
MDPDEs have a better behavior than the MLE in relation to
robustness.

52.5.1 MinimumDensity Power Divergence
Estimators

Consider the theoretical probability vector

p(θ) = [F(τ1; θ), 1 − F(τ1; θ), · · · , F(τI; θ), 1 − F(τI; θ)]′ ,

and the observed probability vector

p̂ =
[
n1
K1
,
K1 − n1
K1

, · · · , nI
KI
,
KI − nI
KI

]′
.

The Kullback-Leibler divergence between the probability
vectors is given by

dKL(p(θ), p̂) = 1

I

I∑

i=1

(
ni
Ki

ln
(

ni
KiF(τi; θ)

)
+ Ki − ni

Ki
ln
(

Ki − ni
Ki(1 − F(τi; θ))

))

= 1

I
(s− ln(L(θ; z)))
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with s being a constant not dependent on θ . Hence, the MLE
of θ can also be defined as

θ̂ = arg min
θ
dKL(p(θ), p̂).

Suppose yik ∼ Bernoulli(πi(θ)), where πi(θ) = F(τi; θ).

The MDPDEs with turning parameter ω ≥ 0 is given by

θ̂ω = arg min
θ
V(yik,ω),

where

V(yik,ω) = (πi(θ))ω+1 + (1 − πi(θ))ω+1

−
(
1 + 1

ω

)
((πi(θ))yik(1 − πi(θ))1−yik)ω.

Here, the term π
yik
i (θ)(1 − πi(θ))1−yik plays the role of the

density in our context. The divergence measure to be mini-
mized can be simplified as

1

I

I∑

i=1

Ki∑

k=1

V(yik,ω) =
I∑

i=1

(πi(θ))ω+1 + (1 − πi(θ))ω+1

−
I∑

i=1

(
1 + 1

ω

)((
ni
Ki

)
(πi(θ))ω +

(
Ki − ni
Ki

)
(1 − πi(θ))ω

)
.

From the above expression, there is an alternative for θ̂ω, in
which only a divergence measure between two probabilities
is involved. Given two probability vectors p(θ) and p̂, the

density power divergence (DPD) measure between p(θ) and
p̂, with tuning parameter ω, is given by

dω(p(θ), p̂) =
I∑

i=1

(πi(θ))ω+1 + (1 − πi(θ))ω+1

−
I∑

i=1

(
1 + 1

ω

)((
ni
Ki

)
(πi(θ))ω +

(
Ki − ni
Ki

)
(1 − πi(θ))ω

)

+
I∑

i=1

(
1

ω

)((
ni
Ki

)ω+1

+
(
Ki − ni
Ki

)ω+1
)

.

We observe that the last term (ni/Ki)
ω+1 + ((Ki − ni)/

Ki)ω+1 does not have any role in the minimization of
dw(p̂, p(θ)), and the MDPDEs can alternatively be defined as

θ̂ω = arg min
θ
dω(p̂, p(θ)).

For ω = 0, we have

dω=0(p̂, p(θ)) = lim
ω→0+

(p̂, p(θ)) = dKL(p̂, p(θ)).

This result implies that the MDPDEs contains the MLE as a
particular case.

52.5.2 Wald-Type Tests

Balakrishnan et al. [14, 15] also presented Wald-type test
statistics for testing different hypotheses concerning the pa-
rameter θ .Consider the composite null hypotheses of the type

m(θ) = 0r, and M(θ) = ∂m(θ)′

∂θ

with rankM(θ) = r. The Wald-type test statistic is

Wn(θ̂ω) = nm(θ̂ω)′
(
M(θ̂ω)′Σ(θ̂ω)m(θ̂ω)

)−1
m(θ̂ω),

Onemay refer to [14,15] for the computation ofΣ(θ̂ω) under
the exponential and gamma distributions. Subsequently, at
δ significance level, we decide to reject the null hypothesis
when

Wn(θ̂ω) > χ2
r,δ.

Besides, let

�ω(θ1, θ2) = m(θ1)
′ (M(θ2)

′Σω(θ2)m(θ2)
)−1

m(θ1),
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and

σWn,ω(θ∗) = ∂�ω(θ , θ∗)
∂θ ′

∣∣∣∣
θ=θ∗

Σω(θ∗)
∂�ω(θ , θ∗)

∂θ

∣∣∣∣
θ=θ∗

.

We can give an approximation of the power function of
the Wald-type test statistic in θ∗ to be

πWn(θ
∗) = Pr

(
Wn(θ̂ω) > χ2

r,δ

)

= 1 − Φn

(
1

σWn,ω(θ∗)

(
χ2
r,δ√
n

− √
n�ω(θ̂ω, θ

∗)

))
,

where Φn(x) tending uniformly to the standard normal distri-
bution Φ(x).

They observed that the robustness of the MDPDE seems
to increase with increasing ω; their efficiency in case of pure
data decreases slightly. Same happens with the Wald-type
tests. A moderate value of ω is expected to provide the best
trade-off for possibly contaminated data, but a data-driven
choice of ω would be more convenient. A useful procedure
for the data-based selection of ω was proposed by Warwick
and Jones [45].

52.6 One-Shot Devices with Multiple
Failure Modes

Modern devices are generally composed of multiple com-
ponents, and it is common for devices to fail because of
one of these components being failed. For instance, fire
extinguishers contain liquid carbon dioxide, valves, safety
fuses, and airbags contain crash sensors, inflators, and com-
pressed gas. If the failed components can be found after
tests, multivariate distributions can then be used to model the
lifetime distribution of each type of components as well as
the lifetime distribution of the devices.

52.6.1 Competing Risks Models for
Independent Failure Models

Balakrishnan et al. [11–13] analyzed one-shot device testing
data under competing risks models with the exponential and
theWeibull distributions. CSALTs with I test groups for one-
shot devices with M failure modes are set up as follows:

For i = 1, 2, . . . , I, in the i-th test group,

1. Ki devices are subject to elevated stress levels xi.
2. These devices are only inspected at time τi.

3. The number of devices with the m-th failure mode is
denoted by nmi, for m = 1, 2, · · · , M.

Let us now assume that there are only two failure modes
and denote the random variable for the time to the m-th
failure mode by Tmik, for m = 1, 2, i = 1, 2, · · · , I, and
k = 1, 2, · · · , Ki, respectively. In this work, it is assumed
that Tmik are independent of each other and that at most one
failure mode can be observed in each device. Furthermore,
Δik is defined to be the indicator for the k-th device under
in the i-th test group. If the device functions, we will set
Δik = 0. However, if the device does not function, we will
identify (by careful inspection) the specific failure mode. If
the m-th failure mode is observed, we will denote this event
by Δik = m, for m = 1, 2. Mathematically, the indicator Δik

is then defined as

Δik =
⎧
⎨

⎩

0 if min(T1ik, T2ik) > τi
1 if T1ik < min(T2ik, τi)
2 if T2ik < min(T1ik, τi)

and then δik will be used for the realization of Δik. Further-
more, we denote p0i, p1i, and p2i for the reliability, the prob-
ability of observing the 1st failure mode, and the probability
of observing the 2nd failure mode, respectively. Then, the
likelihood function is given by

L(θ; z) =
I∏

i=1

2∏

m=0

(pmi(θ))nmi ,

where n0i = Ki − n1i − n2i.
Balakrishnan et al. [11, 13] developed EM algorithms to

find the MLEs of the model parameters, the mean lifetime,
and the reliability under normal operating conditions. In
addition, they measured the goodness-of-fit of the assumed
model using a distance-based test statistic of the form

U = max
i

(|n0i − n̂0i|, |n1i − n̂1i|, |n2i − n̂2i|),

where n̂mi is the expected numbers of nmi based on the
assumed model for m = 0, 1, 2, i = 1, 2, . . . , I. The statis-
tic U quantifies the distance between the fitted model and
the observed data. If the assumed model does not fit the
data, the distance will be large. If the assumed model is
true, {n̂mi, m = 0, 1, 2, i = 1, 2, . . . , I}, then follow the
multinomial distribution with probabilities close to {pmi, m =
0, 1, 2, i = 1, 2, . . . , I}). Consequently, the exact p-value of
the test statistic U can be found as follows:

p-value = 1 −
I∏

i

⎛

⎝
bu2i∑

n2i=bl2i

bu1i(n2i)∑

n1i=bl1i(n2i)

Ki!
n0i!n1i!n2i! p̂

n0i
0i p̂

n1i
1i p̂

n2i
2i

⎞

⎠ ,

where bl1i(n2i) = max(0, �n̂1i − U�, �n̂1i + n̂2i − U� − n2i),
bu1i(n2i) = min(Ki − n2i, �n̂1i + U	, �n̂1i + n̂2i + U	 − n2i),
bl2i = max(0, �n̂2i − U�) and bu2i = min(Ki, �n̂2i − U	) for
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i = 1, 2, · · · , I. If the exact p-value is smaller than the desired
level, say, 0.05 or 0.1, thenwemay conclude that the assumed
model does not fit the data well.

52.6.2 Copula Models for Correlated Failure
Models

Subsequently, Ling et al. [26] considered two Archimedean
copula models—the Gumbel-Hougaard copula and Frank
copula—for analyzing one-shot device data with two corre-
lated failure modes, to relax the independence assumption
between two failure modes. The concept of copulas was first
introduced by Sklar [40]. Copula models have been widely
used to capture the dependence between random variables.

Consider one-shot devices with only two failure modes
under CSALTs with I higher-than-normal stress levels, each
of which is subject to an accelerating factor, and with ν

inspection times. For i = 1, 2, . . . , I, v = 1, 2, . . . , ν, Ki,v
devices are placed at stress level xi and inspected at inspection
time τv. The numbers of devices without failures (ni,v,0),with
only the 1st failure mode (ni,v,1), and with only the 2nd failure
mode (ni,v,2) are recorded. The one-shot device testing data
collected at stress level xi and at inspection time τv can thus
be summarized below in Table 52.2.

For notational convenience, z = {xi, τj, Ki,v, ni,v,0, ni,v,1,
ni,v,2, i = 1, 2, . . . , I, v = 1, 2, . . . , ν} is denoted for the
observed data. It is worth noting that both failure modes 1
and 2 may be observed at the inspection time and the number
of devices with both failure modes is denoted as ni,v,12,where
Ki,v = ni,v,0 + ni,v,1 + ni,v,2 + ni,v,12, for i = 1, 2, . . . , I, v =
1, 2, . . . , ν.Moreover, the total number of devices with failure
mode m is denoted as Ni,v,m = ni,v,m + ni,v,12, for m = 1, 2.
In one-shot device testing data with two failure modes, let
Ti,m denote the time to the m-th failure mode at stress level
xi, where i = 1, 2, . . . , I, m = 1, 2. Suppose that Ti,m has a
distribution with the marginal probability distribution Fi,m(t).

Gumbel-Hougaard copula that can characterize the pos-
itive dependence among random variables is one popular
copula model with a range of applications. It is further
assumed that the correlation between times to two failure
modes changes over the stress levels, and under the Gumbel-

Table 52.2 Contingency table showing one-shot device testing data
with two failure modes

Stress level xi, Inspection time τv

Failure mode 2 Failure mode 1 Total

Presence Absence

Presence ni,v,12 ni,v,2 Ni,v,2
Absence ni,v,1 ni,v,0 Ki,v − Ni,v,2
Total Ni,v,1 Ki,v − Ni,v,1 Ki,v

Hougaard copula, ln(αi−1) relates to stress level xi in a linear
form, namely,

yi = ln(αi − 1) = a0 + a1xi, i = 1, 2, . . . , I.

Then, the joint cdf of Ti,1 and Ti,2 under the Gumbel-
Hougaard copula can be written as

Cαi(t1, t2) = P(Ti,1 ≤ t1, Ti,2 ≤ t2)

= exp
(
− [(− logFi,1(t1))αi + (− logFi,2(t2))αi

]1/αi
)
.

It is worth noting that Kendall’s tau, defined as the proba-
bility of concordance minus the probability of discordance
of two random variables, is a measure of the degree of
correspondence between two random variables. Kendall’s
tau under the Gumbel-Hougaard copula can be expressed in
terms of the dependence parameter as follows:

Λi = 1 − 1

αi
.

The Frank copula is another popular copula model be-
cause these copulas allow to model positive and negative
dependence among random variables. Here, the dependence
parameter is assumed to relate to stress level xi in a linear
form, namely,

yi = αi = a0 + a1xi, i = 1, 2, . . . , I.

Then, the joint cdf of Ti,1 and Ti,2 under the Frank copula is
thus given by

Cαi(t1, t2) = P(Ti,1 ≤ t1, Ti,2 ≤ t2)

= − 1

αi
ln

(
1 +

(
exp(−αiFi,1(t1)) − 1

) (
exp(−αiFi,2(t2)) − 1

)

(exp(−αi) − 1)

)
.

In addition, the Kendall’s tau can also be approximated by
the dependence parameter as follows: Λi ≈ 1 − 4

αi

(
1 − π2

6αi

)
.
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The likelihood function of θ = (a0, a1) is then given by

L(θ; z) =
I∑

i=1

ν∑

v=1

ni,v,12 ln(Cθ (i, v)) + ni,v,1 ln
(
F̂i,1(τv) − Cθ (i, v)

)

+ ni,v,2 ln
(
F̂i,2(τv) − Cθ (i, v)

)
+ ni,v,0 ln

(
1 − F̂i,1(τv) − F̂i,2(τv) + Cθ (i, v)

)
,

where Cθ (i, v) = Cαi(θ)(τv, τv) and F̂i,m(τv) = Ni,v,m/Ki,v.
It is observed that F̂i,s(τv) = Cθ (i, v) when F̂i,m(τv) = 1

for s �= m, which leads to the term ln(F̂i,s(τv) − Cθ (i, v))
in the log-likelihood function being undefined. To overcome
this challenge, the replacement of 1 by Ki,v(0.99(1/Ki,v)) on
F̂i,m(τv) is made as an adjustment. Similarly, for the Gumbel-
Hougaard copula, Cθ (i, v) is undefined when F̂i,m(τv) = 0,
and thus the replacement of 0 by Ki,v(1 − 0.99(1/Ki,v)) on
F̂i,m(τv) is also made as an adjustment. In short, an appro-
priate adjustment is required when either (i) Ni,v,m = 0 or (ii)
Ni,v,m = Ki,v, for m = 1, 2, i = 1, 2, . . . , I, v = 1, 2, . . . , ν.

Ling et al. [26] showed that one-shot devices with inde-
pendent failure modes have shorter (longer) lifetimes than
those with highly and positively (negatively) correlated fail-
ure modes. The Archimedean copula family contains a large
variety of copulas that represent different dependence struc-
tures. Interested readers may refer to [34].

52.7 Step-Stress Accelerated Life Tests

Compared with CSALTs, in which each device is subject
to only one pre-specific stress level, SSALTs wherein stress
levels increase step-by-step over time [29] would require
less samples and be more efficient and less costly to collect
lifetime data. Thus, SSALTs have attracted great attention in
literature. Ling [23] and Ling and Hu [27] studied simple
SSALTs, which contain only two stress levels, under the
exponential and the Weibull distributions.

Consider simple SSALTs wherein the stress levels
changed only once from the test. Suppose that 0 < τ1 <

τ2, 0 < K1 < n, and x1 < x2 and that all n devices are
exposed to the same initial stress level x1. K1 devices are
selected to be tested at a pre-specified inspection time τ1,
the number of failures n1 are recorded. Then, the stress level
increased to x2. All the remaining K2 = n − K1 devices
are to be tested at another pre-specified inspection time
τ2, and the number of failures n2 are recorded. The one-
shot device testing data thus observed can be summarized
below in Table 52.3. Given one-shot device testing data,
z = {τi, Ki, ni, xi, i = 1, 2}. In one-shot device testing
data under simple SSALTs, the likelihood function is then
given by

Table 52.3 One-shot device testing data under simple SSALTs

Stage Inspection
time

# of tested
devices

# of failures Stress level

1 τ1 K1 n1 x1
2 τ2 K2 n2 x2

L(θ; z) =
2∏

i=1

(1 − R(τi; θ))ni(R(τi; θ))Ki−ni .

52.7.1 Exponential Models

Let T denote the lifetime of devices that follows the exponen-
tial distributions. Under the cumulative exposure model [35,
36], the cumulative hazard function, the reliability function,
and the pdf are given by

H(t) =
{

α1t, 0 < t ≤ τ1
α1τ1 + α2(t − τ1), t > τ1

,

R(t) = exp(−H(t))

=
{

exp(−α1t), 0 < t ≤ τ1
exp(−(α1τ1 + α2(t − τ1))), t > τ1

,

and

f (t) = −R′(t)

=
{

α1 exp(−α1t), 0 < t ≤ τ1
α2 exp(−(α1τ1 + α2(t − τ1))), t > τ1

,

where α1 > 0 and α2 > 0 are the rate parameters at
stages 1 and 2, respectively. We further assume that the rate
parameters are related to the stress level in a log-linear form
as

αi = exp (a0 + a1xi) .

Here, we denote θE = {a0, a1} as the model parameters to
be estimated. Ling [23] developed an EM algorithm to find
the MLEs of the model parameters. Furthermore, the mean
lifetime under the normal operating condition x0 is given by
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μE = α−1
0 = exp (−a0 − a1x0) .

In addition, let π = K1/n, Ai = R(τi)
−1 + (1 − R(τi))

−1

and Xik = ∂R(τi)/∂ak, rkk = A2X2
2k, r10 = A2X21X20, skk =

A1X2
1k − A2X2

2k, s10 = A1X11X10 − A2X21X20. The estimated
standard error of the mean lifetime under the normal operat-
ing condition is

ŝe(μ̂E) = (r11 − 2r10x0 + r00x20) + (s11 − 2s10x0 + s00x20)π

nα2
0(r00s11 + r11s00 − 2r10s10)π(1 − π)

.

It is noting that â0 and â1 are the MLEs of the model
parameters of a0 and a1, it follows that θ̂ ∼ N2(θ , Vθ ), where

θ =
(
a0
a1

)
and Vθ =

(
σ 2
0 σ0σ1ρ

σ0σ1ρ σ 2
1

)
.

Then, it can be easily seen that the logarithm of the esti-
mated mean lifetime under the normal operating condition,
log(μ̂E) = â0 + â1x0, is asymptotically normal distributed.

52.7.2 Weibull Models

Subsequently, Ling and Hu [27] extended this work to
the Weibull distributions with constant shape parameter
and varying scale parameter. Again, under the cumulative
exposure model, the cumulative hazard function and the
reliability function are derived as

H(t) =
⎧
⎨

⎩

(
t

α1

)a2
, 0 < t ≤ τ1(

τ1
α1

+ t−τ1
α2

)a2
, t > τ1

,

and

R(t) = exp(−H(t)) =
⎧
⎨

⎩
exp

(
−
(

t
α1

)a2)
, 0 < t ≤ τ1

exp
(
−
(

τ1
α1

+ t−τ1
α2

)a2)
, t > τ1

,

where α1 > 0 and α2 > 0 are the scale parameters at
the first and second stages, respectively, and a0 > 0 is the
common shape parameter. It is further assumed that the scale
parameters relate to stress levels in a log-linear link function,
i.e.,

αi = exp (a0 + a1xi) .

Then, the reliability at a mission time t under the normal
operating condition x0 can be expressed as

R0(t) = exp
(

−
(
t

α0

)a2)

= exp (− exp(−a2(a0 + a1x0 − log(t)))) .

For notational convenience, we define θW = {a0, a1, a2} as
the model parameters to be estimated.

However, in this setting, the determinant of the 3 × 3 ex-
pected Fisher information matrix equals zero, implying that
the matrix is singular and the inverse of the matrix does not
exist. As a result, the asymptotic variance-covariance matrix
of the MLEs of the model parameters cannot be obtained.
Here, the matrix is singular because the model parameters
a = {a0, a1, a2} are not identifiable under the data structure
presented in Table 52.3. SSALTs with more than two stress
levels under Weibull distributions will be investigated.

52.7.3 Designs of Simple SSALTs

Ling [23] and Ling and Hu [27] presented procedures to
decide the sample size and the inspection times for simple
SSALTs, given the model parameters, the standard error, the
stress levels, and the normal operating condition.

Consider simple SSALTs for one-shot devices under the
exponential distributions; Ling [23] considered the optimal
designs that minimize the standard error of the mean lifetime.
The optimal proportion of devices inspected at τ1 is

πE = arg min
0<π<1

ŝe(μ̂E) =
⎛

⎝1 +
√
A1(X11 − X10x0)2

A2(X21 − X20x0)2

⎞

⎠
−1

.

Subsequently, Ling and Hu [27] considered simple
SSALTs for one-shot devices under the Weibull distributions
with constant shape parameter. Since the asymptotic
variance-covariance matrix of the MLEs of the model
parameters cannot be obtained, two scenarios were
discussed: (1) a known shape parameter a2 and (2) a known
parameter about stress level a1.

If a2 is known, then the optimal proportion of devices
inspected at τ1 is

πW1 =
(
1 +

(
X11

X21

)√
A1

A2

)−1

.

It is worth noting that the percentage involves X21, which
relies on (x1, τ1, τ2), but is independent of the mission time t.

On the other hand, when the mean lifetimes, E[Ti] <

E[Tj], at two standardized stress levels, 0 < xj < xi <

1, can be suggested by experts or obtained from previous
similar studies, the parameter can also be obtained. Let Tm
be the lifetime having the Weibull distributions with shape
parameter a2 and scale parameter αm = exp(a0 + a1xm),
where m = {i, j}. The mean lifetime is therefore given by
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E[Tm] = αmΓ

(
1 + 1

a2

)
,

where Γ (·) is the gamma function. It follows that

log
(
E[Ti]
E[Tj]

)
= log

(
αi

αj

)
= a1(xi − xj).

Hence, the parameter about stress level can be expressed as

a1 = log(E[Ti]) − log(E[Tj])
xi − xj

.

It is therefore reasonable to fix a1 as a known parameter.
Hence, the optimal proportion of devices inspected at τ1 is

πW2 =
(
1 +

(
a2X12 + d2X10

a2X22 + d2X20

)√
A1

A2

)−1

,

where d2 = log(t) − a0.
In this setup, the proportion is not independent of the mis-

sion time t. Also, it is revealed that the asymptotic standard
deviation is minimized when either πW2 = 1 or πW2 = 0.
It thus suggested increasing the stress level once and all the
devices are tested at the termination time. It is worth noting
that stress levels affect the inspection times but have no effect
on sample size. Most importantly, in this setup where the
parameter about stress level a1 is known, the sample size
is relatively small, and the simulated standard deviation is
relatively robust, compared to the preceding scenario where
the shape parameter is known. It suggested that fixing the
parameter about stress level is more preferable than fixing
the shape parameter.
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Abstract

The Procrustes regression model provides a statistical
framework to assess the errors in image registration (in
arbitrary dimensions) from “landmark” data. The same
mathematics can be used to determine the errors in cal-
culated motions of rigid bodies in Euclidean space.

Perhaps the scientifically most compelling example of
rigid body motion is tectonic plates. Tectonic plates, to a
first approximation, move as rigid bodies on the surface
of the Earth. The estimation of the past configuration of
the tectonic plates, and the errors in these reconstructions,
is integral to the understanding of the past history of the
Earth. Because tectonic plates are restricted to the surface
of the Earth, the Procrustes regression model does not ap-
ply and the relevant model is called spherical regression.

The Procrustes and spherical regression models are
mathematically simple and, because of this simplicity,
beautiful theorems about the properties of their estimates
can be proven. The previous chapter (Chang T, Image
registration, rigid bodies, and unknown coordinate
systems. In: Pham H (ed) Springer handbook of
engineering statistics, Springer-Verlag, London, pp. 571–
590, 2006) discusses many of these results. Using the
spherical regression model, interesting insights into the
properties of tectonic plate reconstructions are discussed
in (Chang, J Geophys Res 92(B7):6319–6329, 1987;
Chang, Int Stat Rev 61:299–316, 1993). We will not
replicate these results here. Rather the focus of this chapter
is the underlyingmathematics used to establish the results.
These problems are intrinsically geometric and the proper
use of geometry is important to their understanding. We
will explain these points.

This chapter is motivated by a request from a
geophysics friend to explain, in as elementary fashion as
feasible, the mathematics behind his work. This chapter
will not replicate the formal proofs that appear elsewhere
(see, for example, Chang, Ann Stat 14(3):907–924, 1986,
Rivest, Ann Stat 17(1):307–317, 1989, or Chang and Ko,

© Springer-Verlag London Ltd., part of Springer Nature 2023
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https://doi.org/10.1007/978-1-4471-7503-2_53

1059

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-7503-2_53&domain=pdf
mailto:Tcc8v@virginia.edu


1060 T. Chang

Ann Stat 23(5):1823–1847, 1995). This chapter is aimed
at the scientist whowants to understand on a heuristic level
why the results are true, without reading mathematically
complete proofs!

The type of data that is actually used to estimate plate
reconstructions (experimentally determined “marinemag-
netic anomaly lineation” locations) is not of the form that
is modeled in the spherical regression model. We discuss
in Sect. 53.6 the type of data that is actually collected
and how to analyze it using the mathematical principles
we will discuss here. For the nongeophysicist, this section
can be used as an example of the use of the mathematical
principles of this chapter in a different and complex data
setting.

Furthermore, although the rigid plate hypothesis is
a simplification, one must first understand what types
of reconstruction errors are consistent with rigid plates
before deciding if the errors one is observing are in fact
evidence of nonrigidity. Section 53.6 discusses somework
of this type.

Essentially, this chapter is a case study in the use
of tangent space approximations and some elementary
ideas from differential geometry. Other authors have
used similar geometrical approaches. For example,
Rivest (J Biomech 38:1604–1611, 2005) and Oualkacha
and Rivest (Biometrika 99:585–598, 2012) developed
statistical methods for human motion studies derived
from sensors placed on the human body as it moves.
Chang and Rivest (Ann Stat 29(3):784–814, 2001)
extended to Stiefel manifolds the work outlined here
and in (Chang T, Image registration, rigid bodies, and
unknown coordinate systems. In: Pham H (ed) Springer
handbook of engineering statistics, Springer-Verlag,
London, pp. 571–590, 2006) and used the results to
reanalyze a data set on vector cardiograms. Patrangenaru
has numerous papers (e.g., Mardia and Patrangenaru
(Ann Stat 33(4):1666–1699, 2005)) developing statistical
methods for comparing images when projective, rather
than rigid, transformations are allowed. Indeed, the
author believes that the engineering disciplines have
multiple problems of a geometric nature and hopes that
the approaches used here can be helpful in studying them.

This chapter has been written so that it can be read
independently of the preceding chapter (Chang T, Image
registration, rigid bodies, and unknown coordinate sys-
tems. In: Pham H (ed) Springer handbook of engineering
statistics, Springer-Verlag, London, pp. 571–590, 2006).

Keywords

Procrustes regression · Spherical regression · Rigid body
motion · Tectonic plate reconstruction · Geometric
statistics · Tangent space approximation · Quaternions ·
Cayley-Klein parameters

53.1 The Spherical Regression
and Procrustes Models

We will use Rk to denote k-dimensional Euclidean space. A
vector x ∈ Rk will be thought of as a k × 1 column vector.
In particular, xTy is the dot product of x and y (using matrix
notation) and the length ‖x‖ of x is

√
xTx.

Thus, the unit sphere, of dimension k − 1, in Rk will be

Sk−1 = �k = {
x ∈ Rk|‖x‖2 = xTx = 1

}
.

(The notation Sk−1 emphasizes the dimension of the sphere,
whereas the notation �k emphasizes that each point in �k is
represented as a k-component vector.)

Although the spherical regression model, and its resulting
theorems, can be developed in arbitrary dimensions k, k = 3
is the case of usual interest so that S2 represents the Earth.

The spherical regression model posits fixed points u1, u2,
. . . , un ∈ Sk−1, homologous (“my nose is your nose”) random,
and independent points v1, v2, . . . , vn ∈ Sk−1, so that

vi = Aui + error. (53.1)

A represents a k× kmatrix that satisfies the orthogonality
condition

ATA = Ik = AAT, (53.2)

where Ik represents the k × k identity matrix. This condition
insures that each point Aui ∈ Sk−1. It also insures a rigidity
condition that

∥∥Aui − Auj
∥∥ = ∥∥ui − uj

∥∥ . (53.3)

Here the rigidity condition is described in terms of Euclidean
space distance, but that is equivalent to a rigidity condition
in great circle distance for points that lie on the sphere. The
collection of such matrices A is denoted O(k) and referred to
as the orthogonal matrices.

In the tectonic plate context, the ui are present day land-
mark points on one plate, vi are homologous landmark points
on the opposing plate, and AT reconstructs the past position
of the V-plate to the U-plate in a coordinate system fixed to
the U-plate.

Usually it is impossible for a rigid body to be “pushed
through the center of the Earth” and so there is an additional
orientation preserving condition that the determinant of A
be 1. The collection of such matrices is denoted SO(k) and
referred to as the special orthogonal matrices. In particular,
SO(3) consists of the 3 × 3 rotation matrices. Each rotation
in SO(3) is defined by an axis, which can be an arbitrary unit
vector in S2, and an angle of rotation.
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The Procrustes regression model (without scale change)
posits fixed points u1, u2, . . . , un ∈ Rk and random points
v1, v2, . . . , vn ∈ Rk, so that each vi has a multivariate
normal distribution with mean vector Au + b and variance
covariance matrix σ 2Ik. A, as before, represents a rotation
matrix, and b a translation vector. This model might apply,
for example, if the u1, u2, . . . , un and v1, v2, . . . , vn are
homologous landmarks on two images, and the determination
of A and b is commonly referred to as image registration.

For reasons of convenience in Sect. 53.5.1, we reparame-
terize the Procrustes model by letting α = Au+b. Then each
vi has mean vector A(ui − u) + α.

Speaking with unnecessary precision, the “error” in (53.1)
is so that the density of each v is, with respect to surface
measure on Sk−1, proportional to eκvTAu. This is the “Fisher-
von Mises” distribution F(Au, κ). κ is the concentration
parameter and Au the modal vector.

More heuristically, we can write v in its normal and
tangential components

v = (
vTAu

)
Au+ (

v− (
vTAu

)
Au

)
. (53.4)

The tangential component v− (vTAu)Au is perpendicular to
Au and hence is tangent to Sk−1 at Au. We will use (Au)⊥ to
denote the collection of vectors perpendicular to Au. If the
error is small, which occurs for large κ , (vTAu)Au will be
close toAu and the tangential component v− (vTAu)Auwill
be closely approximated by a rotationally symmetric k − 1
dimensional multivariate normal distributionN(0, κ−1I) with
mean vector 0 and variance covariance matrix κ−1I. Here I
represents an identity matrix in (Au)⊥. Mathematically, it can
be written as a k × k matrix as I = Ik − (Au)(Au)T.

It is essential in what follows to understand that we are
thinking of the hopefully small (that is large κ) error in v from
its “true” valueAu as a small vector (close to 0) in the tangent
space (Au)⊥. Tangent space approximation is the essential
mathematical tool being used in spherical regression theory.
Thus, in what follows, we will let ε = v − (vTAu)Au and
rewrite (53.4) as

v =
√
1 − εTεAu+ ε ≈ Au+ ε (53.5)

where the error vector ε is normally distributed, in the tangent
space (Au)⊥, with variance covariance matrix κ−1I. If κ

is large, then εTε is small compared to ε and hence the
approximation in (53.5). Indeed ε has order κ−1/2 (denoted

Op

(
κ− 1

2

)
– the subscript p stands for probability), whereas

εTε is Op(κ−1) so that as κ −→ ∞, it is asymptotically
negligible.

We note that the errors in magnetic anomaly lineation data
are small compared to the radius of the Earth, so large κ

approximation is appropriate.

53.2 Least Squares Estimation

In the spherical regression model, the least squares estimate
Â of A minimizes the objective function

ρ2 (A) =
∑

‖vi − Aui‖2 (53.6)

and, in general, the Lp estimate minimizes ρp(A) = ∑ ‖vi −
Aui‖p. The least squares estimate is computationally easier,
and indeed, there is an explicit formula for it in terms of the
singular value decomposition of the 3 × 3 matrix

∑
uivTi ,

see for example [1]. That being said, the L1 estimate can
be used if outliers are a potential issue, although numerical
minimization is required.

In the Procrustes regression model, the least squares esti-
mate Â of A and α̂ of α minimize the objective function

ρ2 (A,α) =
∑

‖vi − A (ui − u) − α‖2 (53.7)

Section 53.5 derives some asymptotic distributions of
these least squares estimators. The first edition of this chapter
[1] has more general results that include, for example, Lp
estimators.

53.2.1 A Simple Example Derivation

Before deriving in Sect. 53.5, the distribution of Â (for the
spherical regression problem) or for Â and α̂ (for unscaled
Procrustes regression), consider the following simpler prob-
lem of location estimation. Suppose v1, v2, . . . , vn ∈ Sk−1

are independently distributed F(μ, κ) where μ ∈ Sk−1 is the
modal (location) vector and κ is large. We want to figure out
the distribution of the estimate μ̂ that minimizes

ρ2 (μ) =
∑

‖vi − μ‖2. (53.8)

Write, in a manner similar to (53.5),

vi ≈ μ + εi (53.9)

μ̂ ≈ μ + u (53.10)

where εi, u ∈ μ⊥, that is, they are tangent to Sk−1 at μ. Using
the approximations (53.9) and (53.10), (53.8) becomes

ρ2
(
μ̂
) ≈

∑
‖μ + εi − (μ + u)‖2 =

∑
‖εi − u‖2

(53.11)



1062 T. Chang

and u minimizes (53.11). Since each εi is approximately
distributed N(0, κ−1I), u = n−1 ∑ εi, and is approximately
distributed N(0, (nκ)−1I). Note that these distributional
statements occur in the tangent space to Sk−1at μ, so that
I = Ik − μμT. Also note that we are actually computing the
distribution of the deviation u of μ̂ from μ. Using standard
statistical reasoning, this latter distribution is sufficient
for both hypothesis tests and confidence regions on the
parameter μ.

And, again, these are large κ asymptotic approximations.
Technically they hold, in the limit, as κ −→ ∞.

We also note that an explicit solution for μ̂ is μ̂ =∑
vi/

∥∥∑ vi
∥∥ although this explicit solution is not used in

the above.

53.3 Differential Manifolds

In the derivation of Sect. 53.2.1, Sk−1 appears in two roles: It
is both the data space, containing the data points v1, v2, . . . ,
vn, and the parameter space, containing the parameter μ to
be estimated. In both contexts, tangent space approximations
are used: Using (53.9), the εi lies in the tangent space to the
data space and in (53.10), u lies in the tangent space of the
parameter space.

In the spherical regression model, Sk−1 is the data
space, but SO(k) is the parameter space. In the Procrustes
model, Rk is the data space and the parameter space is
SO(k) × Rk = {(A, b)}, where A represents a rotation
matrix and b a translation vector. Thus, besides tangent
space approximation to Sk−1, we need to understand
how to make tangent space approximations to SO(k).
Tangent space approximations to SO(k) × Rk are a simple
extension.

In addition, using (53.5) and reintroducing subscripts into
it, each εi lies in the tangent space (Aui)⊥. So, we will need,
for the data space at least, multiple tangent space approxima-
tions, one for each data point vi. This latest complication is
intrinsic to regression problems.

Each element A ∈ SO(k) is a k × k matrix and has k2

elements so we can easily represent SO(k) ⊆ Rk
2
. In the

mathematical lingo, Sk−1 and SO(k) are “embedded mani-
folds” inRk andRk

2
, respectively. Differential geometry is the

mathematical discipline that studies manifolds and the notion
of tangent space is one of that discipline’s most fundamental
constructs. Because our manifolds are naturally embedded
in ambient Euclidean spaces, we can introduce the ideas we
needwithout using the usual mathematical definitions in their
most general and precise formulation.

In fact, in the history of differential geometry, the most
important non-Euclidean geometry is the sphere S2. The sum
of the angles in a spherical triangle (that is a triangle bounded
by three great circle segments) always exceeds 180◦ and
parallel lines do not exist. More relevantly, for our purposes,
the sphere cannot be represented as a planar map without

tearing it somewhere. But small patches of the sphere can
be represented using a map and we do so every day. In other
words, the fact that the sphere closes in on itself is a global
feature; locally we can think of it as a two dimensional plane
with two cardinal directions (EW and NS).

A manifold of dimension p is, roughly speaking, a topo-
logical object that can locally be represented as a region of
Rp.

For example, a polar projection centered at u ∈ Sk−1 maps
h ∈ u⊥

h → cos(‖h‖)u+ sin(‖h‖) ‖h‖−1h (53.12)

and this represents Sk−1 locally at u ∈ Sk−1 as the Euclidean
space u⊥ ≈ Rk−1. (Note that for spaces, the symbol “≈” in
u⊥ ≈ Rk−1 is meant to convey that u⊥ is a version of Eu-
clidean (k − 1)-dimensional space Rk−1, whereas for points,
as in the Equations (53.5), (53.9), (53.10), and (53.11), it
denotes approximation.) We say that Sk−1 is a (k − 1)-
dimensional manifold, and it is embedded in Rk.

Thematrix exponential function takes the skew symmetric
k × k matrices

Skew(k) = {
H|H + HT = 0

}

onto SO(k). It is defined by

exp (H) =
∑∞

r=0

Hr

r! (53.13)

where H is a k × k skew symmetric matrix. Notice that
Skew(k) ≈ Rk(k−1)/2.

For k = 3, and the 3-vector t = �t1 t2 t3�T, let

�(t) = exp

⎛

⎝

⎡

⎣
0 −t3 t2
t3 0 −t1

− t2 t1 0

⎤

⎦

⎞

⎠ = expM (t) (53.14)

whereM(t) is defined by equation (53.14).
It can be shown that for the 3-vector t, �(t) represents

right hand rule rotation of ‖t‖ radians around the axis ‖t‖−1t.
Thus, if t is a small vector, �(t) will be a small rotation,
that is, one close to I3. Also note that if u is of unit length
�(2πu) = I3, so that �, and more generally exp(H), cannot
globally represent SO(k) as Skew(k).

Nevertheless we can use (53.13) to define a man-
ifold structure for SO(k). For each A ∈ SO(k), let
ASkew(k) = {AH|H ∈ Skew(k)} ≈ Rk(k−1)/2.

AH → A exp (H) (53.15)

represents the special orthogonal matrices close to A as a
portion of ASkew(k)≈ Rk(k−1)/2. Thus, we can say that SO(k)
is a k(k − 1)/2-dimensional manifold, and it is embedded
in Rk

2
.
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53.4 Tangent Space Approximations

Let M be a p-dimensional manifold embedded in some
ambient Euclidean space RN . If c(t) is a curve in M, that is,
a function R1→ M, it is a fortiori a curve in RN . Thus, we
can take derivatives c′(t) and c′(t) will be a vector in RN . The
vector c′(0) is said to be a tangent vector to M at c(0) ∈ M.
For a specific point u ∈ M, the tangent space to M is the
collection of all c′(0) for curves with c(0) = u.

For example, if c(t) is a curve in Sk−1 ⊆ Rk, we have for
all t

c(t)Tc(t) = 1. (53.16)

Differentiating (53.16) yields

0 = c′(t)Tc(t) + c(t)Tc′(t) = 2c′(t)Tc(t). (53.17)

Specializing (53.17), to t = 0, we see that c′(0) ∈ c(0)⊥.
Conversely for u ∈ Sk−1 and h ∈ u⊥

c(t) = cos (t ‖h‖)u+ sin (t ‖h‖) ‖h‖−1h

is a curve in Sk−1 with c(0) = u and c′(0) = h.
In other words, the tangent space to Sk−1 at u is exactly

u⊥.
Similarly, if c(t) is a curve in SO(k), and using (53.2)

c(t)Tc(t) = Ik.

Hence,

0 = c(0)Tc′(0) + c′(0)Tc(0). (53.18)

Let A = c(0) and H = ATc′(0). Rewriting (53.18)

0 = H + HT

or H ∈ Skew(k) and c′(0) = AH ∈ ASkew(k). Conversely,
if H ∈ Skew(k), (53.15) implies that c(t) = A exp (tH) is a
curve in SO(k) with c(0) = A and c′(0) = AH.

In other words, the tangent space to SO(k) at A ∈ SO(k) is
exactly the collection of k× kmatrices of the formASkew(k).

53.4.1 The Lesson from Taylor Series

In (53.9) and (53.10), deviations in vi and μ̂ from their “true”
(without error) valueμ are expressed using tangent vectors εi
and u. The remainder of the proof focuses on the distributions
of these tangent vectors.

The linear term of Taylor series

f (x) = f (x0) + f ′(x0) (x− x0) + Remainder

best approximates f (x) − f (x0), that is, the remainder is
small, when x is close to x0. This means that when we can
guarantee that vi and μ̂ are close to μ, we should focus on
their deviations fromμ, as measured by εi and u and not upon
vi and μ̂ directly.

Indeed, in neglecting terms of order ‖εi‖2 and ‖u‖2 when
passing from ‖vi − μ‖ in (53.11) to ‖εi − u‖ in (53.6), we
have applied Taylor linearization in both the data space and
the parameter space. This is justifiable because as κ −→ ∞,
vi −→ μ and μ̂ −→ μ, so that, in the limit, ‖εi‖2 and ‖u‖2
are asymptotically trivial.

In the plate tectonic context, the errors in tectonic plate
data are on the order of 10 km and hence trivial relative
to the radius of the Earth. This justifies a “local flat Earth
approximation,” that is, Taylor linearization is justified in the
data space.

Taylor linearization in the parameter space requires show-
ing that μ̂ → μ. This large κ consistency is usually very easy
to establish unless the underlying statistical model has been
badly specified.

Although statistical theory is rife with asymptotic approxi-
mations, most of them are large sample approximations; they
are valid in the limit as the sample size n → ∞. In this case,
one only has consistency in the parameter space, and Taylor
linearization in the data space is not available (one generally
uses Central Limit type theorems instead). For this reason, the
large sample results for spherical regression (see for example
[4]) are not as clean as the corresponding large κ results (as
in Rivest [5]).

53.4.2 TheMapMaker’s Dilemma and Its
Lessons

The approximations in (53.9) and (53.10) are essentially
maps of tangent vectors εi and u at μ into points vi and μ̂

on Sk−1.
An important property of non-Euclidean manifolds, such

as Sk−1 and SO(k), is that any representation (map) of them as
portion of Euclidean space distorts distances at least to some
degree. Thus, any map of any portion of the Earth distorts
distances somewhere. For example, the standard Mercator
projection of the Earth is highly distorting in polar regions.
Thus, when making a map of a region on the Earth, a map
maker must choose a projection that makes the distortions as
small as possible in the region of primary interest. So amap of
Antarctica is not made using a standard Mercator projection,
but rather using a polar projection (53.12) centered at the
South pole.

A body is rigid when its internal distances are preserved as
it moves. Thus, the problem of rigid body motion (or moving
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coordinate systems) intrinsically involves distances, and any
maps we use of Sk−1 should, as best possible, preserve
distances. Because vi and μ̂ are close to μ, we are called
to use a polar projection of μ⊥ onto Sk−1, that is, a polar
projection centered at μ.

The polar projection (53.12) centered at u ∈ Sk−1 takes
h ∈ u⊥ to

h → cos (‖h‖) u+ sin (‖h‖) ‖h‖−1h = u+ h+ O
(‖h‖2)

so that using (53.9) and (53.10) are asymptotically equivalent
to using a polar projection centered at μ.

It can be shown that the map (53.15) of the tangent space
ASkew(k) to SO(k) at A ∈ SO(k) has similar distance prop-
erties as polar projection on Sk−1. (This requires somewhat
more understanding of the geometry of SO(k), but for k= 3, a
more elementary explanation can be given, see the Appendix
sections “Quaternion Representation of SO(3)” and “Com-
bining Two Rotations Using Quaternionic Representation”.)

[3, 11] contain a striking example in k= 3 of the mess that
can be made if statistical approaches are designed without
proper use of geometry. In these chapters, the same basic
Taylor linearization tool was used in both themessy and clean
results. The difference between the messy and clean results
is that the clean results (Eq. (53.35) below) were derived
by linearizing SO(3) using tangent space approximation and
equation (53.15), whereas the messy results used a different
commonly used mapping (axis latitude, axis longitude, angle
of rotation) of SO(3). This example is developed further in
the Appendix.

Note that the map (53.15) relies on the group nature of
SO(k). In the terminology of statistical group models, using
(53.15) yields “invariant” results and [11] also explains the
importance of invariant inference in the geophysical context.

53.5 Asymptotic Analysis for Procrustes
and Spherical Regressions in k = 3
Dimensions

In this section, we illustrate the use of Taylor linearization for
least squares estimation in both the spherical regression and
Procrustes models. The results we derive are special cases of
those given in Theorem 31.4.4 (for Procrustes models) and
Sect. 31.4.9 (for spherical regression models) of [1].

Use of Taylor linearization requires proof of consistency,
that is that in the limit, the parameter estimates approach
their true values. Consistency insures that in the limit, the
nonlinear terms will be negligible relative to the linear terms.
For the Procrustes model, we need that Â → A and α̂ → α.
We will perform our asymptotics as the sample size n→ ∞.
Although we will not prove consistency, it can be shown that

Â and α̂ are consistent except for the unreasonable geometry
that u1, u2, . . . , un are all multiples of a single vector.

As discussed in Sect. 53.4.1, large sample asymptotics
essentially linearizes the parameter space. For spherical re-
gression, we will use large κ asymptotics to linearize both
the data and the parameter space. Large sample asymptotics
are available for spherical regressions (see [1]), but both their
derivations and statements are more difficult (see [4]).

The parameter space for spherical regression on Sk−1 is
SO(k). For Procrustes regression on Rk, it is SO(k) × Rk.
SO(k) has dimension k(k − 1)/2 so to simplify matters we
will restrict ourselves to the special case k = 3. This case is
also the one of greatest physical interest.

53.5.1 Large Sample Asymptotics for
the Procrustes RegressionModel in R3

In the example proof of Sect. 53.2.1, both the data space and
the sample space were linearized using equations (53.9) and
(53.10). For Procrustes regression, the data space is already
linear and satisfies the model

vi = A (ui − u) + α + εi (53.19)

Let
(
Â, α̂

)
minimize (53.7) and write

Â = A expH ≈ A (I + H) and α̂ = α + hα (53.20)

where in (53.20) the asymptotically trivial terms of order H2

and higher have been ignored
Equations (53.19) and (53.20) play an analogous role in

the derivation of this section that (53.9) and (53.10) played in
the derivation of Sect. 53.2.1: They are the expression of the

deviations of the data vi and the parameter estimates
(
Â, α̂

)

from their “true” values A (ui − u) + α and (A,α). The data
space Rk is its own tangent space and we are thinking of εi as
a tangent vector to Rk atA (ui − u)+α. (AH, hα) is a tangent
vector to the parameter space SO(k) × Rk at (A,α).

The distribution of H will be in k(k − 1)/2 dimensions
and the entries of H are naturally double subscripted. This
makes the derivation somewhat hard to follow, although its
fundamental idea is almost as simple as the derivation in Sect.
53.2.1. To alleviate this problem partially, we will specialize
to the case of physical interest k = 3.

Thus, as in equation (53.14), we write H in the form
H = exp M(h) and Â = A�(h) where h = [

h1 h2 h3
]T

is
a 3 × 1 column vector. We seek the asymptotic distribution
of (h,hα).

Recall that Âminimizes the objective function ρ2(A,α) of
equation (53.7). Substituting (53.19) and (53.20) into (53.7),
we arrive at
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ρ2

(
Â, α̂

)
≈
∑

‖A (ui − u) + α + εi

−A (I + H) (ui − u) − α − hα‖2

=
∑

‖εi − AH (ui − u) − hα‖2

=
∑∥∥ATεi − H (ui − u) − AThα

∥∥2

(53.21)

where the last equality follows from equations (53.2) and
(53.3). Equation (53.21) plays the same role in the instant
derivation as equation (53.11) plays in the derivation of Sect.
53.2.1.

Routine calculations showHt= M(h)t= − M(t)h= − t
× h, for any vector t, where t × h denotes the vector cross
product. Let yi = ATεi. Since εi is distributed N(0, σ 2I3) and
using (53.2), yi is also distributed N(0, σ 2I3). In other words,
if the 3n × 1 vector y is obtained by stacking y1, y2, . . . , yn,
it satisfies the assumptions of the regression model

y = Xβ + ε.

ε is distributed N(0, σ 2I3n).
HereX is the 3n× 6matrix obtained by stacking vertically

the 3 × 6 matrices Xi = ⌈−M (ui − u) AT
⌉
, i = 1, . . . , n.

β is a 6 × 1 vector whose “true” value is 0. The right hand
side of (53.21) is the sum squares to be minimized by this
regression. The minimum occurs at β̂ = (h,hα), where Â =
A�(h) and α̂ = α + hα .

Now

XTX=
⌈∑

M(ui − u)TM (ui − u) −∑
M(ui − u)TAT

− A
∑

M (ui − u) nAAT

⌉
.

For any vector t, routine algebra shows M(t)TM(t) = ‖t‖2
I3 − ttT and

∑
M (ui − u) = M

(∑
(ui − u)

) = 0. Let � =
n−1∑ (ui − u) (ui − u)T. Furthermore,

∑ ‖ui − u‖2 =∑
Tr
(
(ui − u)T (ui − u)

) = ∑
Tr
(
(ui − u) (ui − u)T

) =
nTr (�)Then

XTX = n

⌈
Tr (�) I3 − � 0

0 I3

⌉
.

Since β̂ has covariance matrix σ 2(XTX)−1, we have

• h and hα are asymptotically independent.
• h is asymptotically distributed N(0, n−1σ 2(Tr(�)I3

− �)−1).
• hα is asymptotically normal N(0, n−1σ 2I3).

Section 31.4.6 of [1] has a numerical example using these
results for a test on A.

53.5.2 Large κ Asymptotic Analysis for
the Spherical RegressionModel on S2

Large κ asymptotics for the spherical regression model were
introduced by Rivest [5] and we follow his approach. Write
as in (53.5)

vi ≈ Aui + εi (53.22)

where εi ∈ (Aui)⊥ and as κ −→ ∞, the distribution of εi ap-
proaches N(0, κ−1(Ik − (Aui)(Aui)T)). The vector Aui is an
eigenvector of the matrix Ik − (Aui)(Aui)T with eigenvalue
0. All vectors in (Aui)⊥ are eigenvectors of Ik − (Aui)(Aui)T

with eigenvalue 1. Thus, we have made explicit that each εi
is constrained to lie to the tangent space (Aui)⊥. Let

Â = A expH ≈ A (I + H) . (53.23)

Again, restricting to k = 3, write Â = A�(h) where h =[
h1 h2 h3

]T
is a 3× 1 column vector.We seek the asymptotic

distribution of h.
Substituting (53.22) and (53.23) into the objective func-

tion ρ2(A) of equation (53.6), we arrive at

ρ2

(
Â
)

≈
∑

‖Aui + εi − A (I + H) ui‖2

=
∑∥∥ATεi − Hui

∥∥2 =
∑∥∥ATεi + M (ui) h

∥∥2.

(53.24)

Note that ATεi and −M(ui)h = −ui × h are three
component vectors, but both lie in ui⊥ ≈ R2. To use standard
regression theory, we will reexpress them in terms of a basis
of ui⊥. Formally, for each i, pick unit length vectors vi, wi
so that ui, vi, wi form a right hand rule orthonormal basis. In
other words, Ui = [ui vi wi] ∈ SO(3) and

uiTui = viTvi = wiTwi = 1 (53.25)

uiTvi = viTwi = wiTui = 0 (53.26)

uiuiT + viviT + wiwiT = I3. (53.27)

(53.25) and (53.26) follow fromUi
TUi = I3 and (53.27) from

UiUi
T = I3.

Let Vi be the 3 × 2 matrix whose columns are vi and
wi and let ε̃i = Vi

TATεi. ε̃i is a 2-dimensional vector and
its variance covariance matrix of ε̃i is (for large κ)

κ−1Vi
TAT

(
I3 − (Aui) (Aui)T

)
AVi = κ−1I2.
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We have made generous use here of equations (53.25) and
(53.26). Furthermore, (53.24) becomes

ρ2

(
Â
)

≈
∑∥∥ε̃i + Vi

TM (ui) h
∥∥2.

Let Xi be the 2 × 3 matrix with rows wiT and –viT. It is well
known that for three vectors uT(v × w) = wT(u × v) – this is
called the “scalar triple product.” Therefore,

−Vi
TM (ui)h =

⌈ −viT (ui × h)
− wi

T (ui × h)

⌉
=
⌈ −hT (vi × ui)

− hT (wi × ui)

⌉

=
⌈

hTwi

− hTvi

⌉
= Xih.

and

ρ2

(
Â
)

≈
∑

‖ε̃i − Xih‖2 =
∑∥∥yi − Xih

∥∥2 (53.28)

where yi = ε̃i, a 2 × 1 vector.
yi is distributed bivariate normal N(Xi0, κ−1I2). In other

words, yi satisfies the assumptions of the regression model

yi = Xiβ + εi

εi i.i.d.N
(
0, κ−1I2

)

where the “true” value ofβ is 0. The right hand side of (53.28)
is the sum squares to be minimized by this regression, where
Â = A�(h) and the minimum occurs at β̂ = h.

Let the 2n × 3 matrix X be obtained by stacking X1, X2,
. . . , Xn on top of each other. Then, using (53.27)

XTX =
∑(

wiwiT + viviT
) = n (I3 − �)

where � = n−1 ∑
uiuiT. Standard regression theory then

indicates that the (asymptotic) distribution of h is thus
N(β, σ 2(XTX)−1) or, in this case, N(0, (nκ(I3 − �))−1).

In summary, for example, to test H0 : A = A0, calculate
the Â that minimizes (53.6). Find h so that AT

0 Â = �(h)
and compare nκ̂hT (I3 − �) h to a 3F3, 2n−3 distribution, that
is, nκ̂hT (I3 − �) h/3 is compared to an F-distribution with
3 and 2n− 3 degrees of freedom. Alternatively, a confidence

region for A is
{
Â�(h) |nκ̂hT (I3 − �)h < 3F3,2n−3,α

}
.

Note that in our approximating regression, from (53.28),

ρ2

(
Â
)
plays the role of the error sum squares. So we can use

the estimate κ̂−1 = ρ2

(
Â
)

/ (2n− 3).

Finally we note that if � = λ1e1e1T + λ2e2e2T + λ3e3e3T

is an eigendecomposition of �, then λ1 + λ2 + λ2 = Tr(�)=
Tr(n−1 ∑ uiuiT) = n−1 ∑ Tr(uiuiT) = n−1 ∑ Tr(uiTui) = 1,
using (53.25), and hence the eigenvalues of I3 − � are
λ2 + λ3, λ1 + λ3, λ1 + λ2. Thus,

( I3 − �)−1 = (λ2 + λ3)
−1e1e1T + (λ1 + λ3)

−1e2e2T

+ (λ1 + λ2)
−1e3e3T.

Theorem 31.4.4 and the results of Sect. 31.4.9 of [1] are
expressed using this identity.

Ordering the eigenvalues and eigenvectors so that
λ1 ≥ λ2 ≥ λ3, e1 will be the center of the ui, and e3 will
be perpendicular the great circle that best fits the ui. Then
h will have the greatest variability in the direction e1 and
the least in the direction e3. In the plate tectonic context,
using heuristic reasoning, Stock and Molnar (see [12, 13])
predicted this behavior.

53.6 The Reconstruction of Tectonic Plate
Motions fromMagnetic Anomaly
Lineations

Mathematically, the approach used in the derivations in Sects.
53.2.1, 53.5.1, and 53.5.2 was to use (first order) Taylor series
approximations together with appropriately chosen tangent
space approximations. The result was an approximating re-
gression problem which is then analyzed using elementary
least squares (regression) results. However, in Sect. 53.5.2,
each vi has its own basepoint Aui for a tangent space ap-
proximation, and the resulting regression problem took place
in multiple tangent spaces. Some matrix manipulation was
necessary to “unify the basepoints” before applying stan-
dard regression results. This matrix manipulation, although
tedious, is routine and masks the actually simple nature of
the arguments in Sect. 53.5.2.

The spherical regression model assumes an idealized form
of the data that, in fact, does not exist in plate tectonics. We
discuss in this section the reconstruction of tectonic plate
motions using experimentallymeasured locations on “marine
magnetic anomaly lineations.” As we shall see the statistical
justification for the proposed methodology closely follows
the general outline of the previous paragraph. This discussion
is based upon [14].

Marine magnetic anomaly lineation data is used to es-
timate the relative motion of two plates that are diverging
at a mid-oceanic ridge. Molten lava is extruded at or near
the ridge axis and hardens essentially immediately after
extrusion. The new crustal material moves away from the
ridge, carried by the plates, as if on diverging conveyer belts.
If we could identify on each plate the material that was
extruded at the same time, we would have two isochrons,
one on each side of the ridge. The two paired isochrons
would be congruent, each having the shape of the ridge at
the common time of their extrusion. Since the two isochrons
are congruent, there is a rotation A so that if u is a point on
the U-plate isochron, then Au would be (in the absence of
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error) the homologous point on the V-plate isochron. Thus,
if we could identify homologous pairs (ui, vi), they could be
used in a spherical regression to estimate A and statistically
assess the errors in the estimate. ÂT is said to reconstruct the
past (at the common time of extrusion) position of the V-plate
to the U-plate in a coordinate system fixed in the U-plate.

A very helpful figure due to Muller et al. [15] is
available at https://commons.wikimedia.org/wiki/File:Age_
of_oceanic_lithosphere.jpg.

It shows the mid-Atlantic ridge (solid black line) between
South America and Africa. Regions of crustal material of the
same color were extruded from the ridge in the same time
interval and have the shape of the ridge at the common time
of their extrusion. They occur in matching congruent pairs,
one on each side of the ridge.

Careful examination of the shape of themid-Atlantic ridge
in Muller et al. [15] shows that it has a rather piecewise
linear shape. The dominant direction of the segments of
this piecewise linear shape is roughly parallel to the ridge.
However, there are cross segments that are due to “fracture
zones.” On the sea floor bottom, fracture zones look like
valleys and can be detected by bathymetric measurement.

Figure 53.1 is a stylized diagram of a mid-oceanic ridge
(solid black line) with two pairs of matching isochrons, dated
10 and 20 million years before present (mybp), one isochron
of each pair on each side of the ridge. Two isochrons of the
same age are congruent. However, the shape of the ridge
does change with time, so isochrons of different ages are
not necessarily congruent. A hypothetical homologous pair
(u1, v1) is also shown.

The cooling solid rock acquires a direction of magnetiza-
tion that is determined by the location of the north magnetic
pole at the time of cooling below the “blocking tempera-

U plate

u1

20 mybp 20 mybp10 mybp 10 mybpRidge

v1

V plate

Fig. 53.1 Stylized diagram of a mid-oceanic ridge with two pairs of
matching isochrons

ture of magnetization.” At specific times in the past, the
“magnetic anomalies,” the north magnetic pole shifted to the
geographic south. For example, the A6 anomaly occurred
approximately 20 million years ago. Research vessels can
measure the sea floor’smagnetic field as they cross the ocean.
After subtracting the effects of the dominant magnetization
(of the current magnetic field), a skilled geophysicist can
determine when the vessel crossed the isochron of a specific
magnetic anomaly. Thus, the data consists of identified loca-
tions of crossings of the magnetic anomaly lineation.

A research vessel is unlikely to collect crossing locations
of opposing isochrons in homologous pairs. Thus, the spher-
ical regression model does not apply.

53.6.1 The Hellinger Criterion to Fit Estimate
a Reconstruction

Hellinger [16] proposed an approach for estimating A. In the
Hellinger framework, the isochrons aremodeled as piecewise
great circle segments. Let η1, η2, . . . , ηs denote the normal
vectors to the great circle segments on the U-side isochron.
Then Aη1, Aη2, . . . , Aηs are the normal vectors to the great
circle segments on the V-side isochron. Let uij, i = 1, . . . , s,
j = 1, . . . , mi denote the estimated crossings of the U-side
isochron; here i indexes the isochron segment. Let vik, i = 1,
. . . , s, k = 1, . . . , ni denote the estimated crossings on the
V-side isochron. The crossings on the U-side are not paired
with those on the V-side so mi and ni are generally different.
See Fig. 53.2.

The isochron crossings can be identified with differing
levels of precision. Each magnetic anomaly has a character-
istic squiggle that should be reflected in the magnetic record
of the ship’s trajectory. The Hellinger methodology allows
the scientist to assign uncertainty constants κ ij and κ̃ik to each
estimated crossing, based upon, for example, the difficulty of
identifying the different characteristic squiggles. In essence,
subject to an overall unknown “fudge factor” κ , (κκ ij)−1/2

represents the standard deviation of the error of uij in the
direction ηi. κ̃ik has a similar interpretation.

Hellinger proposed to simultaneously estimate A and the
ηi by minimizing the objective function

r
(
A, η1, η2, . . . , ηs

) =
∑

i,j
κij
(
uTijηi

)2 +
∑

i,k
κ̃ik
(
vTikAηi

)2
.

(53.29)

Notice that (53.29) is a weighted sum of the square distances
from the identified crossings to the corresponding isochron
segments.

https://commons.wikimedia.org/wiki/File:Age_of_oceanic_lithosphere.jpg
https://commons.wikimedia.org/wiki/File:Age_of_oceanic_lithosphere.jpg
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u11

v32

U side V side

A�1

A�3

�1

�2

�3

Fig. 53.2 U-side andV-side isochrons with present day ridge (darkest).
Section normal vectors η1, η2, η3, Aη1, Aη2, Aη3. Ship trajectory
(lightest line), crossings u11 (U-side segment 1), v32 (V-side segment 3)

53.6.2 Statistical Analysis of the Hellinger
Estimate

We will use Taylor linearization together with tangent space
approximations to SO(3) and to S2 at each uij, vik to build an
approximating regression for which (53.29) is asymptotically
equivalent to the regression’s sum of squares.

The errors in this type of data are quite small, around 10
km, so large κ approximations are fully appropriate. Thus, we
use separate local “flat Earth” approximations at each data
point uij, vik. The total reach of the isochrons is quite exten-
sive, so using a global flat Earth mapping (such as latitude
and longitude) would introduce substantial distortion.

We assume that uij, vik are measurements of “true” lo-
cations αij, α̃ik with αij

Tηi = 0, α̃ik
TAηi = 0. Choose unit

vectors β ij, β̃ ik so that αij, β ij, ηi and α̃ik, β̃ ik,Aηi form right-
hand-rule-oriented orthonormal coordinate systems of R3.
Let λij, λ̃ik be fixed “tangential” error constants.

In the data space write the tangential approximations

uij =
(
uijTαij

)
αij + εij ≈ αij + εij,

vik = (
vikTα̃ik

)
α̃ik + ε̃ik ≈ α̃ik + ε̃ik

(53.30)

where εij
Tαij = 0, ε̃ik

Tα̃ik = 0. We assume that as
κ −→ ∞, the vectors εij ∈ αij

⊥ have bivariate normal
distributions with mean 0 and variance covariance matrices
(κκ ij)−1ηiηi

T + (κλij)−1β ijβ ij
T. In essence, αij

⊥ is spanned
by ηi and β ij and we are assuming that the component of εij

in the direction ηi has variance (κκ ij)−1 and its component in
the direction β ij has variance (κλij)−1. Similar assumptions
are made about the distribution of the ε̃ik ∈ α̃ik

⊥.
The parameters in this problem are A ∈ SO(3) and the

ηi ∈ S2. Tangentially approximate their estimates by

η̂i ≈ ηi + ξ i, Â = A�(h) ≈ A (I + H) (53.31)

where ξ i ∈ ηi
⊥, H is 3 × 3 skew symmetric whose compo-

nents make up the 3-vector h using the conventions of the
previous section or equation (53.14). We seek the distribu-
tion of h. Substituting (53.30) and (53.31), using ηi

Tαij =
0, ηi

TATα̃ik = 0, and ignoring lower order terms

r
(
Â, η̂1, η̂2, . . . , η̂s

)
≈ ∑

i,jκij
(
αij

Tξ i + εij
Tηi

)2

+ ∑
i,kκ̃ik

(
α̃ik

TAξ i + α̃ik
TAHηi + ε̃ik

TAηi
)2 (53.32)

Furthermore,

α̃ik
TAHηi =

(
ATα̃ik

)T
Hηi = hT

(
ηi ×

(
ATα̃ik

))

= hT
(
ATβ̃ ik

) = (
ATβ̃ ik

)T
h

By assumption yij = εij
Tηi and ỹik = ε̃ik

TAηi are distributed
(univariate) N(0, (κκ ij)−1) and N

(
0, (κκ̃ik)

−1
)
, respectively.

Thus (53.32) is the error sum squares of the weighted
regression model

yij = −αij
Tξ i + εij

ỹik = −α̃ik
TAξ i −

(
ATβ̃ ik

)T
h+ ε̃ik.

Referring to the standard form of the regression model

y = Xβ + ε,

design matrix X has
∑

(mi + ni) rows, one for each crossing
point. The vector β has 3 + 2s entries, 3 for h and 2 for each
ξ i. It is actually an error vector so its “true” value is 0. The
assigned uncertainties κij, κ̃ik are the diagonal entries of the
weight matrix W.

In fact there is no y vector and no fitted values of β.
But we can estimate its covariance matrix κ−1(XTWX)−1

by estimating κ−1 from r
(
Â, η̂1, η̂2, . . . , η̂s

)
that plays the

role of the regression residual sum squares, and XTWX from
the data. That, together with the estimates Â, η̂i obtained by
minimizing (53.29), is sufficient for statistical procedures.

At this point it is easier to write a program to implement
the procedure than to explain in detail what is actually done.
[17] describes a package of programs for plate reconstruc-
tions.
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India

Africa

Australia

Antarctica

Fig. 53.3 Stylized diagram of Indian Ocean triple junction, after Royer
& Chang [18]. Stippled region is area of possible (slow) convergence
between Australia and India

53.6.3 Additional Work Using Hellinger
Estimates

Examining Muller et al. [15], one can see a triple junction of
three diverging plate boundaries in the Indian Ocean. A styl-
ized picture of the geometry of the triple junction (between
Africa, Antarctica, and Australia) is shown in Fig. 53.3. The
regression model of the previous section can be extended to
analyze triple junctions.

In addition, if two plates do not share a diverging bound-
ary, one can calculate their relative motion by combining
rotations to a third plate with divergent boundaries to both
plates: If A takes the U-plate to the V-plate and B takes
the U-plate to the W-plate, then C = BAT takes the V-plate
to the W-plate and one can estimate, again through Taylor
linearization, the errors in Ĉ = B̂ÂT from those of its
constituent estimated rotations.

In particular, let Â = A�(hA) , B̂ = B�(hB) and write
Ĉ = C�(hC). Then

Ĉ = B̂ÂT = B�(hB) (A�(hA))T

≈ B (I3 + M (hB)) (I3 + M (−hA))AT

= B (I3 + M (hB))AT (I3 + M (−AhA))

= BAT (I3 + M (AhB)) (I3 + M (−AhA))

≈ C
(
I3 + M

(
A
(
hB − hA

)) )

(53.33)

Therefore,

hC ≈ A (hB − hA) . (53.34)

Since hA, hB are both trivariate normal with mean 0 and are
independent (since it is physically impossible for the same
crossing to be on both boundaries), it suffices to estimate

Ĉov (hC) = Â
(
Ĉov (hA) + Ĉov (hB)

)
ÂT (53.35)

Statistical error analysis is needed to discern if small mis-
fits in plate reconstructions are genuine or due to “statistical
error.” Using these techniques, [18] determined that the Indo-
Australian plate is actually two component plates with a
relatively small converging internal movement. It is relevant
to note that an area of increased seismic activity and seafloor
undulations indicate where the boundary between India and
Australia should be if the two component plates do not move
rigidly together.

The rotation of India to Australia was estimated by com-
bining the estimated rotations Â of Africa (U-plate) to India
(V-plate) and B̂ of Africa to Australia (W-plate). The latter
was constrained by the Indian Ocean triple junction. See
again Fig. 53.3.

Now letting Ĉ = B̂ÂT, one solves Ĉ = �(hC)

for hC. Using (53.35) to estimate Cov(hC). [18] found
that hCT

[
Ĉov (hC)

]−1
hC is significant compared to a χ2

3
distribution and concluded that C is not the identity, or
equivalently, A �= B.

Since then the Indo-Australian plate has been modeled as
a composite plate with 4 component plates (Indian, Capri-
corn, Australian, and Macquarie), see for example DeMets,
Gordon, and Royer [19]. In essence they propose modeling
nonrigidities in a plate by using a collection of small com-
ponent plates that move slowly relatively to each other and
slower than the overall motion of the ambient larger plate.
The same approach, and the software in [17], was used.

Once one is able to produce good approximating regres-
sions, one can create spherical regression analogs of existing
linear regression tools. For example, a straight forward use
of weighted linear regression requires that all uncertainty
constants κij, κ̃ik be assigned with a common fudge factor
κ . However, different fudge factors might be preferred, es-
pecially when working with multiple plate boundaries. This
is essentially a spherical regression version of the classical
Behrens-Fisher problem. Kirkwood [20] applied the solution
of Johansen [21] for the analogous problem in the linear
regression setting to solve the problem of multiple κ’s.

The Hellinger model assumes that the lineations are
composed of great circle segments. As data becomes more
numerous, this approximation can be called into question.
Some preliminary work by H. Hendriks, R. Yang, and Chang
assumed that the deviations of these segments from a great
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circle can be modeled as a Brownian bridge. This work
is incomplete, but the author believes that curved segment
model is a problem that should soon be addressed.

53.7 Summary

In geometric statistical problems, the parameter is often a
manifold. When employing Taylor series methods to study
the asymptotic behavior of parameter estimates, it is nec-
essary to map (reparameterize) the manifold into Euclidean
space. Rather than reparameterizing the manifold globally, it
is often better to use a local parameterization from a tangent
space approximation.

When the data is also non-Euclidean, a data transforma-
tion of the data space to globally turn it into Euclidean space
is usually inappropriate. Rather, when the errors in the data
are small relative to the curvature of the data space, “local
flat Earth” approximations are appropriate and, in this case,
tangent space approximations to the data space are called
for. With “local flat Earth” approximation, an approximating
linear regression can often be found and the problem can be
studied using standard regression methodology.

This chapter has described the underlying mathematical
constructs and applied this process to four problems of in-
creasing complexity.
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Appendix

In this section, we outline the derivation of the formula for
the errors in the estimate Ĉ = B̂ÂT of a combined rotation
C = BAT using the commonly used parameterization (axis
latitude, axis longitude, angle of rotation), or (λ, θ , ρ), of
a rotation matrix in SO(3). In other words, we derive the
analogue to (53.35) using (λ, θ , ρ) and restrict ourselves to
the case k = 3.

This parameterization is geometrically unnatural. We will
see that, as mentioned in Sect. 53.4.2, ignoring the geometry
of SO(3) leads to a far messier version of (53.35).

Quaternion Representation of SO(3)

To work in the parameters (λ, θ , ρ) of a rotation, it is easier
to use the quaternion representation of a rotation rather than
its matrix representation.

The quaternions are a four dimensional extension of the
real numbers in the same sense that the complex numbers are
a two-dimensional extension of the reals. In particular, the
quaternions are Q = {q = q0 + q1i + q2j + q3k | q0, q1, q2,
q3 ∈ R1}. i, j, and k are special quaternions that play a similar
role in Q to the role of i in the complex numbers.

Multiplication in Q is defined by the rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,

ki = −ik = j.
(53.36)

Q satisfies all the usual rules of algebra except that, as
apparent in (53.36), multiplication is not commutative.

If q = q0 + q1i + q2j + q3k ∈ Q, its “conjugate” is q =
q0 − q1i − q2j − q3k. Thus, the unit sphere S3 ⊂ R4 can be
represented as the set of “unit length quaternions,” that is,
those quaternions q = q0 + q1i + q2j + q3k that satisfy

qq = qq = q20 + q21 + q22 + q23 = 1.

Indeed it is easily checked that the Euclidean R4 dot product
between quaternions q1 and q2 is

(
q1q2 + q2q1

)
/2. Note also

that q1q2 = q2q1.
So if a rotation A has axis latitude, axis longitude, and

angle of rotation (λ, θ , ρ), its quaternion representation is

q = cos
ρ

2
+ sin

ρ

2
(sin λ cos θ i+ sin λ sin θ j+ cos λk) .

(53.37)

The “pure quaternions” can be identified as R3 ≈
{x̃ = x1i+ x2j+ x3k}. In this way, we see that sin(λ)
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cos (θ )i + sin (λ) sin (θ )j + cos (λ)k is the pure quaternion
representation of the axis of A.

In general, if x ∈ R3 is represented as a 3 × 1 vector, then
we will denote its representation as a pure quaternion by x̃. It
can easily be verified that the pure quaternion representation
of Ax is qx̃q.

It is clear that q is a unit length quaternion and that q and
−q represent the same rotation. Mathematically we say that
SO(3) is “doubly covered” by S3.

This double covering of SO(3) by S3 is a disguised
form of the long known “Cayley-Klein” parameters. For
q = q0 + q1i + q2j + q3k, let

H (q) =
[
q0 − q3i −q2 − q1i
q2 − q1i q0 + q3i

]
. (53.38)

It is easily checked that det(H(q))= 1 and thatH (q)H (q)
T =

I2. The collection of 2 × 2 complex matrices A that satisfy

det(A) = 1 and AA
T = I2 is called the “special unitary”

group, denoted by SU(2) and (53.38) identifies S3 with
SU(2). Thus, H(q) → A defines a double covering of SO(3)
by SU(2). For a more classical description of the Cayley-
Klein parameters, see, for example, Goldstein [22].

Combining Two Rotations Using Quaternionic
Representation

The tangent vectors to S3 at 1, considered as a unit length
quaternion and hence an element of S3, are the pure quater-
nions. Hence, the tangent vectors at q ∈ S3 have the form qx̃
where x̃ is pure quaternion. Hence, we write

qÂ ≈ qA + qAx̃A (53.39)

where x̃A is pure quaternion.
If C = BAT, then qC = qBqA. Thus,

qC + qCx̃C ≈ qĈ = qB̂qÂ ≈ (
qB + qBx̃B

) (
qA − x̃AqA

)

≈ qBqA + qBx̃BqA − qBx̃AqA

x̃C ≈ qC
(
qBx̃BqA − qBx̃AqA

) = qA (x̃B − x̃A) qA. (53.40)

(53.40) is the quaternionic version of (53.34). Indeed, by
carefully following all the identifications in section “Quater-
nion Representation of SO(3)”, it can be shown that if we also
write Â = A�(hA), then the 3-vector representation of x̃A is
xA = hA/2, and hence (53.40) would follow from (53.34).

Combining Two Rotations Using Axis Latitude,
Longitude, and Angle of Rotation

We now compute the change of variables from
[
λ̂ − λ θ̂ − θ ρ̂ − ρ

]T
to x. We will apply the Taylor

approximations sin
(

ρ̂

2

)
≈ sin

(
ρ

2

) + cos
(

ρ

2

) (
ρ̂ − ρ

)
/2

and cos
(

ρ̂

2

)
≈ cos

(
ρ

2

) − sin
(

ρ

2

) (
ρ̂ − ρ

)
/2 and similar

approximations for λ, θ in (53.37) to arrive at

q̂ ≈ q− sin ρ

2
(ρ̂−ρ)

2

+ cos ρ

2
(ρ̂−ρ)

2 (sin λ cos θ i+ sin λ sin θ j+ cos λk)

+ sin ρ

2 cos λ
(
λ̂ − λ

)
(cos θ i+ sin θ j)

+ sin ρ

2 sin λ (− sin θ i+ cos θ j)
(
θ̂ − θ

)

− sin ρ

2 sin λ
(
λ̂ − λ

)
k.

So

q̂− q ≈

⎡

⎢⎢
⎣

sin ρ
2 (cos λ cos θ i+ cos λ sin θ j− sin λk)

sin ρ
2 (− sin λ sin θ i+ sin λ cos θ j)

− 1
2 sin ρ

2 + 1
2 cos ρ

2 (sin λ cos θ i+ sin λ sin θ j+ cos λk)

⎤

⎥⎥
⎦

T

⎡

⎢⎢
⎣

λ̂ − λ

θ̂ − θ

ρ̂ − ρ

⎤

⎥⎥
⎦

and, after substituting (53.37) and substantial simplification,

x̃ = q
(
q̂− q

) ≈
⎡

⎣
F11i+ F21j+ F31k
F12i+ F22j+ F32k
F13i+ F23j+ F33k

⎤

⎦

T⎡

⎣
λ̂ − λ

θ̂ − θ

ρ̂ − ρ

⎤

⎦

(53.41)

where

F11 = sin
ρ

2

(
cos

ρ

2
cos λ cos θ + sin

ρ

2
sin θ

)

F21 = sin
ρ

2

(
cos

ρ

2
cos λ sin θ − sin

ρ

2
cos θ

)

F31 = − sin
ρ

2
cos

ρ

2
sin λ

F12 = − sin
ρ

2
sin λ

(
cos

ρ

2
sin θ − sin

ρ

2
cos λ cos θ

)

F22 = sin
ρ

2
sin λ cos θ

(
cos

ρ

2
+ sin

ρ

2
cos λ

)
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F32 = −
(
sin

ρ

2
sin λ

)2

F13 = 1

2
sin λ cos θ

F23 = 1

2
sin λ sin θ

F33 = 1

2
cos λ. (53.42)

Rewriting (53.41) in real vector-matrix form

x = F (λ, θ , ρ)

⎡

⎣
λ̂ − λ

θ̂ − θ

ρ̂ − ρ

⎤

⎦

where F(λ, θ , ρ) is the 3 × 3 matrix with real entries Fij.
Recall that the pure quaternion representation of Ax is

qx̃q. Thus, using (53.40)

xC ≈ A (xB − xA)

F (λC, θC, ρC)

⎡

⎣
λ̂C − λC
θ̂C − θC
ρ̂C − ρC

⎤

⎦ ≈ A

⎛

⎝F (λB, θB, ρB)

⎡

⎣
λ̂B − λB
θ̂B − θB
ρ̂B − ρB

⎤

⎦

− F (λA, θA, ρA)

⎡

⎣
λ̂A − λA
θ̂A − θA
ρ̂A − ρA

⎤

⎦

⎞

⎠ .

It follows that

Ĉov

⎛

⎝

⎡

⎣
λ̂C − λC
θ̂C − θC
ρ̂C − ρC

⎤

⎦

⎞

⎠ = GĈov

⎛

⎝

⎡

⎣
λ̂B − λB
θ̂B − θB
ρ̂B − ρB

⎤

⎦

⎞

⎠GT

+ HĈov

⎛

⎝

⎡

⎣
λ̂A − λA
θ̂A − θA
ρ̂A − ρA

⎤

⎦

⎞

⎠HT (53.43)

where

G = F
(
λ̂C, θ̂C, ρ̂C

)−1
Â F

(
λ̂B, θ̂B, ρ̂B

)

H = F
(
λ̂C, θ̂C, ρ̂C

)−1
Â F

(
λ̂A, θ̂A, ρ̂A

)
(53.44)

(53.42)–(53.44) constitute the analogy to (53.35) when the
matrix exponential parameterization (53.23) of SO(3) is re-
placed by axis latitude, longitude, and angle of rotation.

TheMapMaker’s Dilemma (Revisited)

As discussed near equation (53.5), and similar approxima-
tions (53.9) and (53.10), when using ε ∈ (Au)⊥ to represent
the deviation v ∈ S2 from its “true value” Au ∈ S2, we
are essentially using a polar projection, centered at Au,
R2 ≈ (Au)⊥ → S2. Any map from R2 → S2 is distorting
somewhere, but when v is close to Au, the distortions in this
polar projection will be small.

A parameterization of S2 by two parameters is essentially a
map R2 → S2. The commonly used map (latitude, longitude)
is highly distorting near the north and south poles and hence
would not be appropriate to represent v when Au has a
latitude much different from 0◦.

Thinking temporarily of the unit quaternions S3 instead of
SO(3), equation (53.39) represents a point qÂ ∈ S3, that is,
close to qA ∈ S3 by a tangent vector qAx̃A ∈ q⊥

A . Essentially
we are mapping S3 using a polar projection centered at
qA. Hopefully qÂ will be close to qA and the distortions
introduced by the polar projection will be small. Indeed these
distortions are asymptotically trivial.

Because of the close relationship of S3 to SO(3), the same
observations apply to using hA to represent Â as in Â =
A�(hA).

The map R3 → SO(3) using axis latitude, longitude,
and angle of rotation also introduces distortions and these
distortions can certainly exist in the area of interest, that is,
rotations close to A. (53.42)–(53.44) are considerably more
complicated than (53.35) and this is due to the unfortunate
matrices F(λ, θ , ρ) whose sole functions are to correct the
distortions introduced by an inappropriate parameterization
of SO(3).
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Abstract

Human behavior models, especially the choice models,
have been developed and widely used in both research
and practice for decades. They help explain human be-
haviors by modeling the choices made by each individ-
ual. Successful applications of these models require good
understandings of the properties and the assumptions of
the models. This chapter summarizes some commonly
used discrete choice models in engineering area. Differ-
ent assumptions toward the mechanism of choice-making
behaviors lead to different types of choice models. We

X. Zhu · S. Huang (�)
University of Washington, Seattle, WA, USA
e-mail: zhux2012@uw.edu; shuaih@uw.edu

start from the random utility maximization (RUM) theory
and present its basic usage in binary and multinomial
choice scenarios. We also present the random regret mini-
mization (RRM) theory and relative advantage maximiza-
tion (RAM) theory. Some extensions of the RUM are also
presented, including the nested logit model that allows
dependencies among alternatives and mixed logit model
that considers the individual heterogeneity. We illustrate
the usage and interpretation of these models through a
numeric case study.

Keywords

Discrete choice models · Random utility maximization
(RUM) · Random regret minimization (RRM) · Relative
advantage maximization (RAM)

54.1 Introduction

Human behavior modeling has drawn increasing attention
for its potential in various realms such as economics, mar-
keting, and engineering. A better understanding on indi-
vidual preferences and human choice-making behavior may
lead to more satisfactory, targeted, and efficient services.
Because of this, researchers have never stopped trying to
develop models to explain and predict human behavior in
different circumstances in the last decades [21, 33, 34]. In
this chapter, we focus on the choice-making behaviors that
predominate many kinds of human behaviors according to
Glasser’s choice theory psychology [22]. Many models have
been developed and implemented to model choice-making
behaviors with different assumptions. One of themost widely
accepted models, the discrete choice modeling, is used to
describe and predict the probability of selecting a choice from
a finite choice set in a probabilistic fashion, based on the
Random Utility Maximization (RUM) principle [28]. RUM
model requires a preference order over all choices of the finite
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alternative set, which means that an axiom of “transitivity”
should be satisfied. This means, for example, if alternative
A is weakly preferred to alternative B, and B to C, then
A is weakly preferred to C. If the preference order fails to
meet the requirement of “transitivity,” the utility function in
RUM model may not exist, and the choice behavior cannot
be formulated following the RUM principle [32].

This specification to represent the utility of an alternative
is usually called “context-independent” in studies, assuming
that the utility of an alternative is invariant no matter whether
other alternatives are present or not [4, 8]. However, this
may not be the case when individuals are making choices.
Imagine that Susan is considering going for a walk around a
lake which is about 2 miles away from her home. She may
prefer driving to the lake comparing with taking public transit
there. When the two alternatives are taking public transit and
biking, she may choose to take the public transit. However,
when she is asked to either drive or bike, she would choose
to bike. These kinds of non-transitive, circular orderings are
pretty common in reality, which means that the traditional
RUM model may not be applicable here [32].

Therefore, “context-dependent” models, such as RAM
and RRM model where the transitivity on an alternative set
may not be bounded, arise. The basic idea of RAM, the
relative advantage maximization model, is to add the relative
advantage of an alternative into its utility function as a
context-dependent component to be maximized [26,44]. The
main hypothesis of RRM, the random regret minimization
model, is that people are seeking to minimize the negative
emotions when making decisions [14, 16, 26]. One may also
regard the context-dependent specification as that people are
not absolutely rational but with bounded rationality. This
is because that people are bounded by the time and other
resources required for their utilization in the face of the
urgency and importance of the particular choice problem at
hand. Several studies have shown the success of these models
in applications.

The purpose of this chapter is to review the important
models and techniques that can be used to model and predict
user’s choice-making behaviors. For example, with these
models, personalized travel choice recommendation systems
can promote alternatives that are more likely to be accepted
by an individual, helping him/her make plans for travel or
triggering desired travel behavioral changes. We will also
summarize properties and limitations of each model. This
chapter is organized as follows: we start from traditional
discrete choice model with RUM specification, including
binary logit model, multinomial logit model, nested logit
model, and mixed logit model. Then the RRM model is pre-
sented, followed by the RAMmodel. After that, we present a
numerical study, in which we apply three models to a single
dataset and illustrate how they compare with each other.
Toward the end of the chapter, we will also discuss some

other models, such as machine learning methods, the hidden
Markov model, and Bayesian statistics that have been useful
in recommendation systems.

54.2 The Problem of Discrete Choice
Modeling

Transportation is also an area inwhich discrete choicemodels
are commonly used, since many travel-related choices such
as travel mode and destination are discrete, qualitative, and
finite [11, 39].

For discrete choice model, there are several requirements
for the choice set [39]:

1. The choice set must be a finite set, which means there
should be a finite number of alternatives.

2. The choice set includes all possible alternatives the system
can offer to a user, and the user will choose an alternative
from the set.

3. The alternatives in the choice set should be mutually
exclusive, and the user chooses only one alternative from
the set.

Discrete choice model considers that an individual’s
choice behavior among a finite set of alternatives is
influenced by a number of factors, including some
socioeconomic and sociodemographic characteristics of the
individual, the attributes of the alternatives in the choice set,
and the external environments. These factors, together with
a set of parameters quantifying the effects of these factors,
collectively contribute to the utility that the individual obtains
from choosing an alternative.

However, it is practically impossible to include all factors
that could impact an individual’s choice in the utility func-
tion, since they are probably only partially observed, and it
is unlikely that we could measure every factor perfectly and
accurately. To count for these unobserved and immeasurable
effects, the discrete choice model incorporates stochastic
specifications, i.e., random utility terms. Possible causes of
the randomness in user behaviors include the unobserved fac-
tors of the choices, the preference variation over people (het-
erogeneity), and correlation among choices in choice sets.

A systematic characterization and notations of the discrete
choice problem are presented in Table 54.1. Given the depth
of this problem, a range of models have been developed. For
example, it is common that the utility function in discrete
choice model is expressed in a linear form [9, 39]:

Uij = xijβ i + εij = Vij + εij (54.1)

where xij is a vector of all factors from different categories
(as mentioned above) of alternative j for individual i, β ij is a
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Table 54.1 Table of notations

Notation Meanings

i Individual i

j, k Alternative j, alternative k

m mth attribute of an alternative

J Total number of alternatives in a choice set

Uij Utility of alternative j for individual i

xij Vector of attributes of alternative j for individual i

β i Vector of parameters/preferences of individual i
corresponding to all attributes

ε Random term drawn from a certain distribution

Vij Systematic utility of alternative j for individual i

Pij Probability for individual i choosing alternative j

y0 The choice made to alternative 0 in a binary choice. If
y0 = 1, the individual accept alternative 0; if not,
y0 = 0

�V01 Difference between V0 and V1
x1,0 Vector of attribute differences between x1 and x0
G(·), G(β|θ) A certain type of distribution, with θ as a set of

parameters that could describe the distribution

Notations used in the chapter

vector of parameters that quantify the effects of these factors,
and εij is the random utility term. Here, Vij is the systematic
utility, and εij is the random utility. In what follows, we will
introduce a range of models, including the RUM, RAM, and
RRM models.

54.3 RandomUtility Maximization (RUM)
Theory

According to the random utility maximization (RUM)model,
individual i chooses the alternative j over all other alterna-
tives because that choice provides the highest utility/benefits
she/he could obtain, reflecting a rational behaviorof the indi-

vidual. In other words, the probability for him/her to select
alternative j over alternative k from a set J is [11, 39]:

Pij ≡ P(Individual i choosing alternative j)

= P(Uij ≥ Uik) ∀j �= k ∈ (1, 2, . . . , J). (54.2)

This is the overall framework, and in what follows we
introduce two specific models that expand on this premise.

54.3.1 Binomial Choice Model

Binomial choice model is for circumstances when there are
only two alternatives (denoted as alternative 0 and 1). The
logit model and probit model are two common examples
of binomial choice model. The two models have different
assumptions on the random term in Eq. 54.1.

Logit model assumes that the random term εj in Eq. 54.1
is an i.i.d. (independent and identically distributed) extreme
value that follows a Gumbel distribution [39]. Suppose that
the utilities of the two alternatives are U0 and U1, respec-
tively. By substituting Eq. 54.1 into Eq. 54.2, we could have
the following equation:

P0 = P(U0 ≥ U1)

= P(V0 + ε0 ≥ V1 + ε1)

= P(V0 − V1 ≥ ε1 − ε0).

(54.3)

Since the logit model assumes that the ε0 ∼ Gumbel(a0, b)
and ε1 ∼ Gumbel(a1, b), their difference ε1 − ε0 ∼
Logistic(a1 −a0, b) follows a logistic distribution [39]. From
Eq. 54.3 we could see that the probability for an individual
to choose alternative 0 depends only on the difference in
utilities between the two alternatives, not on the absolute
level of utilities. Thus, we further derive that

P0 = P(V0 − V1 ≥ ε1 − ε0)

= P(�V01 ≥ ε) (Let V0 − V1 = �V01, and ε1 − ε0 = ε)

= P(ε ≤ �V01)

= logit−1(�V01)

(54.4)

Different from the logic model, the probit model assumes
that the random term εj in Eq. 54.1 follows a standard normal
distribution. The two curves shown in Fig. 54.1 represent the
two cumulative distribution functions of the two types of the
random utility term.

It can be seen that using the Gumbel distribution for
the errors (and hence the logistic distribution for the error

differences) is nearly the same as assuming that the errors
are independently normal [39]. The difference is that the
two tails of the Gumbel distribution are slightly fatter than
those of a normal distribution, which means that the Gumbel
distribution allows more aberrant behaviors than the normal
one. However, the difference is usually indistinguishable
empirically [39].
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With logistic model specification, the probability for an
individual to choose alternative 0 is

P0 =P(y0 = 1)= exp(V0)

exp(V0)+ exp(V1)
= 1

1+ exp(V1 − V0)
(54.5)

In the above equation, V0 = β0x0 and V1 = β1x1 are the
constant parts of the utilities of the two alternatives. From
the equation we could have another property of the discrete
choice model: the sum of the probability of all alternatives
will equal 1, i.e., P(y0 = 1) + P(y1 = 1) = 1.

To interpret the estimates of the model, we need to talk
about the concept of odds. This term is used to describe the
probability of an event (or the probability of a nonevent). For
the binary choice model, the odds are

Oddsy0=1 = P(y0 = 1)

P(y0 = 0)
= P(y0 = 1)

1 − P(y0 = 1)

= exp(V1 − V0) = exp(x1,0β) (54.6)

where x1,0 is the vector of attribute differences between x1
and x0. Take log on both sides; the equation could further be
written as

ln(Oddsy0=1) = x1,0β (54.7)

We could see the coefficients in a simple logistic model in
terms of the log odds. For example, the coefficient βa in β

implies that a one-unit change in xa in x1,0 results in a βa-unit
change in the log of the odds.

The estimation of the binomial logit model uses the maxi-
mum likelihood estimation (MLE), with which the estimated
parameters for β have the greatest likelihood/probability to
obtain the observed choices.

We use an example to illustrate the estimation method.
Assuming that we have M observed binary choice behaviors
(y1, x1), (y2, x2), …, (yM, xM) for an individual, we would like
to predict his/her choice-making behavior with a binary logit
model. For each observation m, assume that P(ym = 1) =

exp(xmβ)

1+exp(xmβ)
, and P(ym = 0) = 1 − exp(xmβ)

1+exp(xmβ)
. The likelihood

function could be formulated as

L(y|x; β) =
∏

m∈M+

exp(xmβ)

1 + exp(xmβ)

∏

m∈M−

[
1 − exp(xmβ)

1 + exp(xmβ)

]

(54.8)

where M+ refers to the observations for which ym = 1 and
M− to the observations for which ym = 0.

The log likelihood function for the example is

ln L(y|x; β) =
M∑

m=1

{
ym ln

exp(xmβ)

1 + exp(xmβ)
+ (1 − ym)

[
1 − ln

exp(xmβ)

1 + exp(xmβ)

]}

=
M∑

m=1

{ym[xmβ − ln(1 + exp(xmβ))] − (1 − ym) ln(1 + exp(xmβ))}
(54.9)

The MLE of β maximizes the log likelihood function of
Eq. 54.9.

54.3.2 Multinomial Logit Model

When there are J alternatives (J > 2) in the choice set, the
multinomial logit model (MNL) casts the problem as a set of
J − 1 independent binomial choice problems. A “reference”
alternative is assigned before the regression such that other
J − 1 alternatives can compare against it, one at a time.
The same applies to the binomial logit model, as one of the

alternative is “reference” and the other is comparing against
it. In MNL, any one of the alternative in the choice set could
be set as the reference. However, if a reference alternative
is decided, it may not be changed in the whole modeling
process. Notice that though different reference alternative
may return different estimates of the parameter vector β, it
is shown that the models are mathematically equivalent.

Similar to binary choice model, the choice probability for
individual i to choose alternative k is formulated as

Pk = P(yk = 1) = exp(Vk)∑
j∈(1,2,...,J) exp(Vj)

(54.10)
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For a multinomial logit model, a set of parameters will be
estimated for each alternative j comparing with the reference
alternative. The interpretation of the parameters estimated is
the same as the interpretation of the parameters in a binary
logit model, where the two alternatives are the alternative j
and the reference.

54.4 The Random Regret Minimization
(RRM)Model

Random regret minimization (RRM) model differs from
RUM model in terms of the decision-making principle.
Rather than assuming that an individual is choosing the
alternative that could provide the highest utility/benefit, the
main hypothesis in RRM model is that the individual will
choose the alternative such that the “emotion of regret”
associated with the choice is minimized [13–16]. The
“emotion of regret” refers to the negative emotion of loss
brought by the non-chosen alternatives. This might happen
when some attributes of the chosen alternative are worse
than those of the non-chosen alternatives. For example,
Susan may choose to drive to the lake finally. Though she
believes that driving is the best choice among the three
alternatives she is considering (drive, take public transit,
bike), she still has a feeling of loss when considering that
the cost of biking is much lower than driving or biking
is healthier for herself. The “emotion of regret” is related
to the advantages of the non-chosen alternatives. Here,
an alternative has “advantage” on an attribute means that,
regardless of other attributes, the attribute of this alternative is
more attractive comparing with the same attribute of another
alternative.

Different from an RUM model where transitivity is re-
quired for the utility of all the alternatives, here the “regret”
of an alternative in an RRM model makes references to the
values of the same attribute of other alternatives presented
for comparison. This means that “regret” is not a concept
with transitivity (remember that the concept of “utility” in
the RUM model has transitivity) and can be different when
the presented alternatives change.

The RRMmodel can be used to analyze and model a wide
variety of choice behaviors. For example, in transportation,
it has been applied to departure time choices, route choices,
mode-destination choices, etc. Though RUMmodel may also
work in these scenarios, RRM model may be able to handle
some other problems that could not be explained by RUM
model. A well-known example is the “compromise effect”
that could be observed in human decision-making process:
individuals tend to choose an alternative that is moderately
good on all factors, avoiding extreme alternatives (includ-
ing both extremely good or extremely poor) [13, 25]. This
seemingly irrational behavior could not be well captured by

RUMmodels but could be reasonably interpreted by an RRM
model.

Since the two types of model hold different assumptions
toward the underlying mechanism of choice-making behav-
ior, they provide valuable perspectives and implications. Be-
cause of this, RRM model may serve as a supplement to
individual choice behavior modeling toolbox.

54.4.1 RRMModel Specification

According to [12], it is hypothesized that the regret associated
with alternative k, due to a comparison with a competing
alternative j based on a particular attribute m, equals zero in
case alternative k scores equal or better than j on attribute m.
Otherwise, the regret associated with the attribute compari-
son is a nondecreasing function of the difference in attribute
value.

For example, assume that individual i is facing a choice
among alternatives j, k, and l. The attributes related to the
choice-making process is xm and xn: j = {xmj, xnj}, k =
{xmk, xnk}, l = {xml, xnl}. Each alternative is associated with
a measure of random regret RRj, RRk, and RRl. When in-
dividual i is making choices, he/she minimizes this ran-
dom regret, which means that he/she chooses the choice
argv minv=j,k,l{RRv}.

The classical RRM model proposed by Chorus et al. is
given by the following equation [12, 14, 16]:

RRki =
∑

j�=k

∑

m

ln(1 + exp(βm[xjmi − xkmi])) + εki (54.11)

where i represents individual i,m represents themth attribute,
and j represents an competing alternative j.

Equation 54.11 shows that for individual i, when he/she
considers selecting alternative k, the “regret” is the sum of
all binary regrets associated with the binary comparisons
between alternative k and its competitor alternatives j (j �= k).
For each binary comparison, the binary regrets are the sum of
the differences between all attributesm of an alternative j and
the alternative k.

The authors who propose RRM model also show that
[13]:

1. The marginal regret converges to βm when xjm − xkm
becomes sufficiently large. The overall regret is increasing
with the increasing number of attributes on which alterna-
tive k is outperformed, as well as with the increasing num-
ber of alternatives by which alternative k is outperformed
and the increasing importance of the attribute βm.

2. The marginal regret with respect to attribute m when
considering alternative k approaches zero when xjm −
xkm < 0, i.e., when the chosen alternative k outperforms
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the competing alternative j (j �= k). Hence, the RRM
model postulates that when a decision-maker considers
alternative k as compared to alternative j he or she expe-
riences (almost) no regret with regard to attribute m when
in alternative k the m’s attribute performs considerably
better. This is consistent with our intuition that regrets
may arise only when alternative k is outperformed by the
competing alternative j on attribute m.

The random error term εki in Eq. 54.11 is assumed to be
i.i.d. type I extreme value similar to RUM model. By letting
the variance of the Gumbel distribution be π2/6, the error
term could be “integrated out,” and the system regret (no
random term) is

Rki =
∑

j�=k

∑

m

ln(1 + exp(βm[xjmi − xkmi])) (54.12)

Referring to [13, 14, 16], since minimization of random
regret is equivalent to maximization of minus random regret,
and given the symmetrical nature of the i.i.d. errors, the
choice probabilities can be taken on the well-known MNL
form. Thus, with Eq. 54.12, the choice probability associated
with alternative k equals

Pki = exp(−Rki)∑
j,j=1,2,...,J(−Rji) (54.13)

Similar to RUM model, the parameters of RRM model
can also be estimated with its likelihood function, given its
properties of the smoothness, differentiability, and globally
concaveness. A book on RRM and related tutorials can be
found in [13], and some sample codes can also be found in
[40].

54.4.2 Some Variants of RRM

Some variants of the RRM model have also been developed,
such as the μRRM and PRRM models. These models can be
supplements of the classical RRM model [8, 41].

The μRRM model is a generalization of the classical
RRMmodel. Since the size of the estimated taste parameters
(βs) may significantly impact the extent to which losses
(regrets) loom larger than equivalent gains (rejoices), the
μRRM model accommodates for different shapes of the
attribute level regret functions by adding a scale parameter
μ to adjust the size of the estimated taste parameters:

RRμRRM
k =

∑

j�=k

∑

m

ln
(
1 + exp

(
βm

μ
[xjm − xkm]

))
+ εk

− εki ∼ i.i.d. EV(0,μ) (54.14)

Notice that the scale parameter μ is also to be estimated.
When μ is estimated to be 1, then the μRRM becomes the
classical RRM. When μ is close to zero, the PRRM model
is obtained, which postulates the strongest regret minimiza-
tion behavior which is possible within the RRM modeling
paradigm [8,41].

54.5 The Relative AdvantageMaximization
(RAM)Model

Relative advantage maximization model, abbreviated as
“RAM” model, is another context-dependent model that
could be used to describe and predict user choice behaviors
and is able to explain the “compromise effect” [26]. Similar
to RRM model, RAM model also compares each attribute
of the chosen alternative with the same attribute of the
competing alternatives.

In RAM model, the “disadvantage” of an individual i’s
choosing alternative k over a competing alternative j with
respect to attribute m is equivalent to the concept of “regret”
in RRM model. Thus, denoted by Dmkji, the disadvantage is
formulated in the same form as the RRM model:

Dmkji = ln(1 + exp[βm(xmji − xmki)]) (54.15)

The key difference between RAMmodel and RRMmodel
is that RAM model takes both the “disadvantage” and “ad-
vantage” of an alternative into account. The “disadvantage”
and “advantage” are assumed to be symmetric in RAMmodel
[26]. This means that the advantage for an individual i to
choose alternative k over jwith respect to attributem (denoted
asAmkji) equals the corresponding disadvantage for individual
i to choose alternative j over k with respect to the same
attribute m:

Amkji = Dmjki = ln(1 + exp[βm(xmji − xmki)]) (54.16)

Notice that the subscripts of Amkji and Dmjki in Eq. 54.16 is
different. The disadvantageDmkji for an individual i to choose
alternative k over j with respect to attribute m corresponding
to Amkji can be written as Dmkji = ln(1 + exp[βm(xmki −
xmji)]). Please notice the difference between this equation and
Eq. 54.16.

Also, Eq. 54.16 is only for a single attribute m. We could
add up all the attributes, and the total advantage and disad-
vantage for individual i to choose alternative k over j over all
attributes are as follows [8]:

Akji =
∑

m

Amkji

Dkji =
∑

m

Dmkji

(54.17)
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RAM model defines the term “relative advantage” (RA)
of alternative k over competing alternative j as a ratio of k’s
advantage (over j) over the sum of advantages and disadvan-
tages (over j). Mathematically, the relative advantage of the
individual i to choose alternative k over j is:

RAkji = Akji
Akji + Dkji

(54.18)

RAM model also integrates the definition of the system-
atic utility in MNL together with its concept of relative
advantage, such that both context-independent preferences
and context-dependent preferences play roles in the model.
The systematic utility for individual i to choose an alterna-
tive k could then be written as a linear combination of the
systematic utility term in MNL and the relative advantage
term defined in previous:

VRAM
ki = βm +

∑

m

βmxmki +
∑

j�=k
RAkji (54.19)

Here xmki is the context-independent attribute m for indi-
vidual i to choose an alternative k.

54.6 Extensions toMore Complicated
Choice Sets

In this section, we mention a few models that illustrate some
interesting ideas to tackle complicated choice sets, i.e., when
the assumptions about the choice set presented in Sect. 54.2
are not met. The discrete choice models we have discussed
so far could address many choice behavior problems in ap-
plications. However, some limitations exist. For instance, the
model may fail to workwhen alternatives are not independent
from each other. One assumption for RUM models is that
there is no correlation in unobserved factors over alternatives,
which is known as the “independence of irrelevant alterna-
tives” (IIA) property. In other words, IIA assumption says
that when individuals are making choices among a set of
alternatives, the probabilities for them to choose A over B
should not be impacted by whether another alternative C is
present or not [2,5,29]. It could be easily noticed that this lack
of correlation among alternatives are not always be realistic.
Thus, some models, such as nested logit model which allow
correlation over alternatives in a certain way, were developed.
Another problem is that the standard logit model’s “taste”
coefficients, i.e., β’s, are fixed, which means the β’s are the
same for everyone. To allow each individual to have different
β, mixed logit model, which assumes that the β is a random
variable following a certain distribution, was developed. In
what follows, we discuss two models, the nested logit model,
and the mixed logit model, where both are extensions of the
RUM model.

54.6.1 Nested Logit Model

Nested logit model is used to deal with choice problems
where there are nonzero correlations across alternatives, i.e.,
the IIA is violated [42]. In other words, nested logit model
is based on the idea that some alternatives may be joined in
several groups (called nests). The error terms may present
some correlation in the same nest, whereas error terms of
different nests are still uncorrelated. In this way, nested logit
model allows for nonzero correlation between unobserved
components of choices within a nest and maintains zero
correlation across nests.

After a nested logit model groups together alternatives that
are similar into a nest, each nest with multiple alternatives
in turn is considered as a new composite alternative, which
competes with the rest of alternatives (other alternatives that
are not in the nests and other nests) available to the individual.
Notice that for a nested logit model, there can be several nests
in a choice set, and each alternative can be in no more than
one nest.

Whether to use nested logit model and how to group
alternatives if necessarymay require an IIA test. For example,
the IIA test in R software tests the probability ratio of any
two alternatives, seeing whether the results obtained on the
estimation with all the alternatives and only on a subset of the
alternatives are consistent. Illustrating this in a mathematical
way: assume that there are N alternatives in a choice set C.
C ′ is subset of C, which only includes two alternatives j and
k. The IIA test in R is to see whether P(y=k,k∈C)

P(y=j,j∈C)
equals to

P(y=k,k∈C′)
P(y=j,j∈C′) .
Let’s use an example to explain the specification of the

nested logit model, as shown in Fig. 54.2: there are three
alternatives available at the beginning, car, light rail, and bus.
If there is no other conditions and we simply use MNL, we
may have a conclusion that each of the alternatives has the
same probability to be chosen (33.3%). However, this may

PT

Car Bus
Light
rail

Fig. 54.2 Nested alternative
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not be the case as the bus and light rail are both public transit
(PT) and can be correlated. Nested logit model groups these
two alternatives into a composite alternative PT, and then the
available alternatives become Car and PT.

With nests identified, nested logit model estimates the
probabilities of each alternative hierarchically:

1. Lower level: estimate a multinomial logit model for the
alternatives in each nest.

2. Higher level: estimate a multinomial logit model consist-
ing of all composite alternatives and alternatives which are
non-nested.

To use a composite alternative to represent all the alter-
natives in the nest when building the higher level MNL,
the utility of the composite alternative needs to include two
components: (1) the expected maximum utility (EMU) of
the lower level alternatives in the nest and (2) the vector of
attributes which are common to all members of the nest. The
probability that an alternative in a nest is chosen is com-
puted as the product of the marginal probability of choosing
the composite alternative and the conditional probability of
choosing the alternative among all alternatives in the nest.

In the example shown in Fig. 54.2, bus and light rail are
nested and a composite alternative PT is generated. Then the
lower level, the PT nest, would be modeled by a binary logit
model:

P(ybus = 1|PT) = exp(Wbus)

exp(Wrail) + exp(Wbus)

P(yrail = 1|PT) = 1 − P(ybus = 1)

(54.20)

where the utilitiesWbus andWrail contain only those attributes
which are not the same to both alternatives.

The higher level would bemodeled by another binary logit
model:

P(yj = 1) = exp(Vj)

exp(Vcar) + exp(VPT)
j ∈ (car, PT)

(54.21)

In Eq. 54.21, the utility Vcar contains all the attributes of
the car alternative. The utility VPT , as we stated before, have
two components:

VPT = βEMUWEMU + βPTxPT (54.22)

Here WEMU is the expected maximum utility (EMU) of the
alternatives in the nest of PT, WEMU = ln[exp(Wbus) +
exp(Wmetro)], xPT is the vector of attributes that are taken out
to estimate the binary logit model at the lower level binary
model in the nest, and βEMU and βPT are parameters to be
estimated.

54.6.2 Mixed Logit Model

Different from previous models where the parameters β in
the utility function are all constant values (though the utility
function has a random term ε), the mixed logit model allows
parameters β become random variables obeying a certain
distribution:

Uij =
∑

k

βikxk + εj

βk ∼ G(β|θ)

(54.23)

Here, G(·) represents the density function of a certain type
of distribution, with θ as a set of parameters that could
describe the distribution. With this specification, the model
aims to model the heterogeneity due to personal preferences.
Because that each β in the utilitymodel is a distribution rather
than a constant value, the calculations of the utility of each
alternatives and the probability become integral processes.
That means that the choice probability of alternative j (j =
1, 2, . . . , J) being chosen is

P(yj = 1) =
∫

exp(Vj(β))
∑J

k=1 exp(Vk(β))
G(β|θ)dβ (54.24)

It could be noticed that the standard logit model is a special
case of the mixed logit model: if the distribution G(β|θ)

is only defined at a fixed value a, i.e., G(β|θ) = 1 when
β = a and G(β|θ) = 0 when β �= a, the choice probability
in Eq. 54.24 then becomes the one used in the logit model.
Actually, it has been proved [30] that a mixed logit model
can approximate to any degree of accuracy any true random
utility model of discrete choice, given an appropriate speci-
fication of the variables and the distribution of coefficients.

The distribution G(β|θ) can also be discrete. Assume that
β could take M distinct values, b1, b2, . . . , bM . The proba-
bility for β to be value bm, m ∈ (1, 2, . . . , M) is P(β =
bm) = pm. In this case, the choice probability for individual i
to choose alternative j is

P(yj = 1) =
M∑

m=1

pm
exp(Vj(bm))

∑J
k=1 exp(Vk(bm))

(54.25)

One possible challenge for researchers is that there is a
need to specify a certain type of distribution for each β if
he/she plan to use a mixed logit model. Normal distribution
is widely used in applications. The lognormal distribution is
proved to be useful when a parameter is known to have the
same sign for every individual according to domain knowl-
edge. Uniform and triangle distributions have the advantage
of being bounded on both sides, thus avoiding having too
large parameters and causing unexpected problems. A more
comprehensive summary could be found in [39].
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Table 54.2 The first row of the original dataset

1007 1469 3123 594 60 26 0 309 2546 0 0959 5877 1991 10068 0 1
ID FSG.1 FSO.1 FSG.2 FSO.2 FSG.3 FSG.4 FSG.5FSO.3 FSO.4 FSO.5TT.2 TT.3 TT.4 TT.5 CHOICETT.1

1

54.7 Numerical Study

In this section, we use an example data to show how the
three models, multinomial logit model, mixed logit model,
and RRM, could be used. We implement the models in R
3.6.2.

54.7.1 General Description

The dataset we use in this section is a revealed preference
(RP) dataset about shopping location choices, with 1503
shopping choices from 1074 individuals among five different
alternatives. Each alternative has three attributes: “floor space
groceries” (FSG), “floor space other” (FSO), and “travel
time” (TT) indicating the availability of the shopping location
for an individual. More details of the dataset could be found
in [3].

The original dataset has 1503 rows, with each row repre-
senting a specific choice scenario and the choice made by the
individual. We first convert the raw data into a new dataset
whose format may be used in discrete choice models. For
example, the first row of the original dataset is

In Table 54.2, attribute “ID” is the id of an individual;
“FSG.1,” “FSO.1,” and “TT.1” are the three attributes of al-
ternative 1. There are 5 alternatives, so there are 15 attributes
in total. The last column “CHOICE” is the choice made by
the individual.

First, we need to convert each row of the original dataset
into a format as following:

We could see that the single record in Table 54.3 is
converted into five rows, each representing an “true/false”
binary choice for an alternative. After conversion, the original
dataset with 1503 rows and 17 variables becomes a new
dataset with 7515 rows and 7 attributes.

MNL
We apply a multinomial logit model (MNL) first to the
dataset using the “mlogit” package in R with the following
utility functions [19, 38]. Here the parameters apply to all
alternatives (i.e., we do not include alternative-specific pa-
rameters for each variable):

Uji = βFSGFSGji + βFSOFSOji + βTTTTji + εji (54.26)

Table 54.3 The converted dataset

1007

1007

1007

1007

1007

TRUE

FALSE

FALSE

FALSE

FALSE

1469

60

309

959

1991

1

2

3

4

5

3123

26

2546

5877

10068

594

0

0

0

0

1

1

1

1

1

ID CHOICE alt FSG FSO TT chid

Table 54.4 MNL model results

Estimate Std. Error z-value Pr(> |z|)
FSG 1.0595e-04 1.5040e-05 6.6889 2.248e-11∗∗∗

FSO 1.1036e-05 2.2175e-06 4.9767 6.467e-07∗∗∗

TT −4.4843e-04 5.0021e-05 −8.9648 <2.2e-16∗∗∗

LL: −2305.2
∗∗∗ Significant level of 0.05

The result of the multinomial logit model is shown in
Table 54.4.

From Table 54.4 we could see that all the estimates are
significant at 0.05 level. It is expected that the estimates
for FSG and FSO are positive, and the estimate for TT is
negative.

There are also various model structures for MNL. For
example, we could estimate alternative-specific parameters
(i.e., βs are different with different alternatives), add
alternative-specific constants, or combine several alternatives
together in the utility function. There are also different
command that could be used other than “mlogit” in R.
Readers who are interested in more details of the package
may refer to its user manual.

Mixed Logit Model
With the same format of utility functions, in mixed logit
model, we assume that the distribution patterns of the three
attributes are all normal:

Uji = βFSGFSGji + βFSOFSOji + βTTTTji + εji

βFSG ∼ N(bFSG, sd
2
FSG)

βFSO ∼ N(bFSO, sd
2
FSO)

βTT ∼ N(bTT , sd
2
TT)

(54.27)
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In the results shown in Table 54.5, the estimates of the
three variables are βFSG, βFSO, and βTT in the utility func-
tions. Meanwhile, they are also bFSG, bFSO, and bTT that are
parameters of the normal distribution. sd.FSG, sd.FSO, and
sd.TT are the three parameters of the standard deviations of
the three distributions, respectively. As we could see, all the
estimates are statistically significant at 0.05 level.

The results of the mixed logit model also include informa-
tion about the random coefficients as shown in Table 54.6,
including the ranges (min, mean, and max) and the quantiles
(1st quantile, median, 3rd quantile) of the distributions.

RRM
In random regret minimization (RRM) model, instead of
using utility functions to describe alternatives, we use regret
functions:

Rji =
∑

k �=j

∑

m

ln(1 + exp(βm[xkmi − xjmi]))

j, k ∈ (1, 2, 3, 4, 5)

m ∈ (FSG, FSO, TT)

(54.28)

We use the “Apollo” package [40] written by Sander van
Cranenburgh to implement the RRM model. We could see
from Table 54.7 that except for the classical estimate, stan-
dard error, t-ratio (against 0), and p-value, there are several
other columns showing the information of robust covariance
estimators. Since the robust covariance estimators can tackle
potential outliers in the dataset, they could be used to estimate
the covariance of the real datasets or to perform outlier
detection and discard/downweight some observations in the
dataset. More information regarding the “Apollo” package
and result interpretation could be seen in [24].

Table 54.5 Mixed logit model results

Estimate Std. Error z-value Pr(> |z|)
FSG 1.0595e-04 1.4740e-05 7.1883 6.561e-13∗∗∗

FSO 1.1036e-05 2.1087e-06 5.2334 1.664e-07∗∗∗

TT -4.4843e-04 4.1971e-05 -10.6842 <2.2e-16∗∗∗

sd.FSG 1.0000e-01 1.9338e-05 5171.1155 <2.2e-16∗∗∗

sd.FSO 1.0000e-01 1.7770e-05 5627.3124 <2.2e-16∗∗∗

sd.TT 1.0000e-01 6.5868e-05 1518.1946 <2.2e-16∗∗∗

LL: -7189.3
∗∗∗ Significant level of 0.05

Results Comparison
Since the models do not have the same format, we do not
compare the estimated βs. Instead, we summarize the log-
likelihood (LL), AIC, BIC, and computational time for the
three models.

From Table 54.8 we could see that the log-likelihoods
(LL), AICs [1], and BICs [35] of MNL and RRM are
close to each other, while RRM shows a little bit superior
performance. AIC (Akaike information criterion) and BIC
(Bayesian information criterion) are two estimators that
deal with the trade-off between the goodness-of-fit and the
simplicity of a model. Thus, they are commonly used for
model selection. The formulation of AIC is

AIC = 2k − 2 log(L̂) (54.29)

where k represents the number of parameters to be estimated
by the model and L̂ is the maximum value of the likelihood
function of the model.

The formulation of BIC is a bit different from AIC:

BIC = log(n)k − 2 log(L̂) (54.30)

where n represents the number of data points/observations/
sample size.

From the comparison we could also see that mixed logit
model may not be appropriate for this dataset. If we take a
look at the standard deviation of the normal distribution of
each variable, we could notice that the standard deviations are
very large comparing with the estimates. This indicates that
there is considerable heterogeneity among the individuals,
or we did not choose a good distribution type to model the
variability of the parameters among individuals.

54.8 Discussion

54.8.1 Limitations and Challenges

Various choice models have been proposed and applied in
methodological studies and real-world applications. Though
in this chapter we briefly discuss several commonly used
models, there are variants of the models that are also promis-
ing, and there will be more emerging in the future to help
understand, predict, and model user behavior. However, with
all these models and successful implementations, there are
still many questions unanswered.

Table 54.6 Mixed logit model:
random coefficients

Min. 1st Qu. Median Mean 3rd Qu. Max.

FSG -Inf −0.06734302 1.059525e-04 1.059525e-04 0.06755493 Inf

FSO -Inf −0.06743794 1.103579e-05 1.103579e-05 0.06746001 Inf

TT -Inf −0.06789741 −4.484313e-04 −4.484313e-04 0.06700054 Inf
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Table 54.7 RRM

Robust Robust Robust

Estimate Std.err. t.ratio p-value std.err. t.ratio p-value

FSG 0.0680 0.0100 6.77 0.000 0.0170 3.99 0.000

FSO 0.0029 0.0011 2.79 0.005 0.0017 1.76 0.079

TT −0.0155 0.0019 −8.35 0.000 0.0031 −4.99 0.000

LL −2300.92

Significant level of 0.05

Table 54.8 Comparison of the three models

Model LL AIC BIC Time (s)

MNL −2305.2 4616.494 4632.439 0

Mixed logit model −7189.3 14390.63 14400.58 23

RRM −2300.92 4607.841 4623.786 4

For the first, though current models with different as-
sumptions provide various possible interpretations to choice
behavior and show optimistic prediction results in existing
studies, we are still not clear what circumstances are suitable
for what models or which model is more accurate than
other models, in a certain area of application. Moreover, to
understand each model better, there might be more metrics
that could be used to evaluate the performance of the models
other than goodness-of-fit and prediction accuracy. We are
still far away from the truth or the underlying mechanism of
human choice behavior.

For the second, while most researchers have realized
the importance of context dependency, there is still a lack
of understanding of the influence of various types of the
dependencies across space and over time. Since RRM and
RAM were developed only recently (in relative sense), it is
reasonable to expect more studies that will be focusing on
related topics in the future.

As smart, personal devices are becoming essential items
in our daily life, developments of user choice model face
new challenges. A huge amount of products are bringing
out individual services, in which individual preference learn-
ing and personal choice model are becoming important in
implementations. However, data from an individual is often
limited, both in sample size and in quality. Moreover, as the
smart devices make it possible for the model to be updated
in real time, the computational time of the individual choice
model is required to be as short as possible to enable online
applications. A more complicated learning and updating sys-
tem should be designed for real-world implementation of the
choice models.

Besides the models we discussed, there are also other
methods that could be used to model choice behaviors, such
as Hidden Markov Model, Bayesian network, or other dy-
namic models to estimate the state-dependent choice [6,
43, 45]. Strategies in machine learning also found useful

applications. For example, decision tree in artificial intelli-
gence has been used to explore the underlying rules of trav-
elers’ switching decisions [37]. Recommendation systems
that are frequently applied in e-commerce platforms may not
be considered as choice models; the idea beneath may be
inspirational especially when proposing personalized option
menu for a user to choose [36].

54.8.2 Irrational Behavior

In previous models we assumed that individuals are rational
or at least bounded-rational. This may not always be the case.
Research in social science, psychology, and behaviors have
proved that individuals have some irrational behaviors [7].
Take two famous protocols as examples:

1. Heuristic choice protocols hold that individual’s choice
mechanism relies on relatively little information and rule-
of-thumb thinking. For example, when choosing between
two alternatives, one recognized and the other not, an
individual tends to choose the recognized one.

2. Social network choice protocol, which means that an
individual is making choices who is not only subject
to the considerations by himself/herself but also heavily
impacted by other individuals who have close connection
with him/her.

From these two protocols, we could see that individu-
als are often irrational. This provides another direction of
individual choice model development, and some research
have been putting efforts into it, e.g., [10]. For example,
models with neural network architectures may help con-
nect the irrational behavior with interpretable constraints
and evolutionary rules [20], new assumptions to traditional
normative models may provide better explanation to the
mental activities when individuals are doing forced-choice
tasks [31], and a new travel behavior model based on dual
process may also reflect the seemingly irrational behaviors
of drivers [18].
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Abstract

Voting is an ancient method for a group such as a meeting
or an electorate to make a collective decision or express an
opinion after some discussions, deliberations, or election
campaigns. Participants who give an option or choose a
candidate are called voters; therefore, a simplest voting
system consists certain number of qualified voters and

H. Zhang (�)
Department of Industrial & System Engineering, Rutgers University –
New Brunswick, Piscataway, NJ, USA
e-mail: hz275@rutgers.edu; hz275@scarletmail.rutgers.edu

candidates. The most common application in weighted
voting systems is, for example, the US Electoral College,
where the number of electoral votes for each state is based
upon its population. This chapter states the modeling of
thresholdweighted voting systems and the dynamic analy-
sis of two terms including indecisive effect and known/un-
known inputs. The system reliability models presented in
the chapter are based on the assumptions that the system
operates as two types of input values (0, 1) and three
types of output values (0, 1, x) with three types of errors,
and the components are unequally weighted and subject
to three failure-modes (stuck-at-0, stuck-at-1, stuck-at-x).
For anyweighted voting system, a decision rule is required
although different rules may result different system per-
formance in terms of the system reliability. For instance,
the current decision rule of US Electoral College is who
wins the election obtaining at least 270 electoral votes,
which results four former US presidents won the elections
with less national populate votes than their opponents in
history.

In general, the weighted voting system (WVS) consists
of n units assigned with individual weights, each of which
provides a binary decision (0 or 1) or abstains (x) from
voting. A generic decision rule can be defined as the
system output is 1 if the cumulative weight of all 1-opting
units is at least a prespecified threshold τ of the cumulative
weight of all nonabstaining units. If the indecisive effect is
considered, weights of abstaining units can be added in the
decision rule such as the system output is 1 if the cumu-
lative weight of all 1-opting units is at least a prespecified
threshold τ of the sum of all nonabstaining units and
prespecified indecisive parameter θ of all abstaining units.
The system fails if the generated output is not equal to its
original input. Recent research results indicate that, under
specified assumptions, multiple approaches can be used to
quantify the reliability of the weighted voting system. This
chapter demonstrates the development of decision rules
and the evolution of approaches of generating reliability
function. Some related works are addressed to provide a
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full picture of WVS, and some future works are proposed
to attract attentions.

Keywords

Reliability · Decision rule · Weighted voting ·
Decision-making · Modeling

55.1 Introduction

Weighted voting system (WVS) is one of the modern tools
used in decision-making by assigning different powers to
voters. A weighted voting system is characterized by three
basic parts – voters, weights, and the voting rule. The voters
can be considered as a group of n individuals, systems, or
components (v1, v2, . . . , vn) that each one can generate an
independent decision. Each voter’s weight wi is the power
of its individual decision counts. The rule is the minimum
requirement of votes to make the final decision. Weighted
voting is a comprehensive way of decision-making, and it
has many significant applications in a wide range of systems
including communication systems [1], financial systems [2],
election systems [3], and medical systems [4]. Thus, more
specific aspects and assumptions are naturally generated,
which will be discussed briefly in the end of this chapter.

Two important aspects of voters include single voter’s re-
liability and failure modes. Each voter plays an independent
role in providing its own output, and its reliability is a value to
quantify the probability of making correct output. Therewith,
the fact of imperfect voter results in failure rate; however,
different failure modes may result from wrong or absent out-
put and input patterns. System design is then distinguished;
therefore, system optimization is affected. Levitin [5] ana-
lyzed the optimization of systems consisting of voting units
with limited availability and presented two ways to improve
system reliability, where a method of taking information
about units’ availability into procedure for system optimiza-
tion was approached. Pham andMalon [6] studied reliability
optimal design of systems with competing failure modes.
They achieved optimal parameterizations to provide maxi-
mum system reliability and minimum system cost. Pham [7]
then studied reliability for dynamic configurations of systems
with three failure modes. He presented the comparisons of
reliability modeling function and optimal parameterization
from two failure modes to three failure modes.

Unequal weights in multiunit systems are more frequently
considered in many cases. The weight of each voter rep-
resents its decision counts in the whole system, especially
assigning strategy is more careful when indecisive effect
is considered. In classic models, weights of voters with no
decision do not count; however, inmodernmodels, indecisive

weights are considered and become obstacles of decision-
making. Those obstacles can either be pros or cons, and
there are typical adjustments in favor of goals from differ-
ent cases. In 1976, Lucas [8] studied the relations between
voting powers and weights, and he pointed out that not all
inequalities could be canceled out by weighted voting and
power was not trivial from one’s strength as measured by the
number of votes; therefore, his results motivated independent
research on weights. Levitin [9] designed an asymmetric
WVS in which each voting unit had two weights, where
the weight was applied if the unit’s decision was 0 and the
second weight was applied if the unit’s decision was 1. The
idea of the asymmetry of unit weights allows the designer to
take advantage of the knowledge of statistical asymmetry of
voting units. Aziz, Paterson, and Leech [10] designed a WVS
with a desirable distribution of power, where they presented
an algorithm to compute an integer weight vector for target
Banzhaf power indices.

TheVoting rule is the fundamental law for aWVS tomake
the final decision. In classical models, electoral college, the
voting rule is nothing but a threshold value. In modern mod-
els, voting rule consists of weights and parameters, human
organizations; decision criterion is usually more complicated
as many factors are involved in the final decision. Nord-
mann and Pham [11] built a dynamic system by considering
weights along with threshold in the decision rule, where
applicable assumptions were raised in case studies. Levitin
[12] focused on threshold optimization; in such a procedure,
he studied themethod of finding threshold values tominimize
the system cost. In 2014, Posner and Sykes [13] showed that
all major voting systems were controversial in different ways
which was resulted from the difficulty of designing a voting
system that both allowed efficient decisions and protected the
legitimate interests of voters. And they provided a new type
of voting system, quadratic voting, which could resolve these
problems theoretically but was unlikely to be implemented
any time soon.

This chapter presents recent results onmodeling reliability
of voting systems consisting of n unequally weighted compo-
nents with three failure modes in human organizations. The
early work is initially studied by Nordmann and Pham in
[11, 14] where the fundamental framework was constructed,
and application gaps were also raised. Later, the modern re-
search studied by Xie and Pham [15] improved methodology
that a general recursive reliability function was presented.
Recently, Zhang and Pham [16] have presented a weighted
indecisive-voting system considering indecisive effect. The
results illustrate ignored insights into system behavior in
terms of parameterizations and reliability sensitivity in terms
of input patterns. This chapter summaries these results and
points out the motivation of some extended research on
controlled voting when lacking prior information of inputs.



55 Weighted Voting Systems 1091

55

55.2 Weighted Threshold Voting System

Consider weighted voting systemsmodel studied in [15]. The
model descriptions and assumptions are given as follows.
Specifically, we use human organization (HO) systems as
a general illustrative example to represent the applied tech-
niques of the generalized WVS.

55.2.1 Model Assumptions

• WVS is a decision-making system where a final decision
is made based on any given input, e. g., proposal in HO
system, denoted by 1 (good) or 0 (bad).

• There are n voters in the WVS.
• All voters are statistically independent and nonidentical.
• Each voter makes a subdecision, and the final decision 1

(accept), 0 (reject), or x (no decision) is based on n sub-
decisions.

• For any voter vi, an independent weight wi is assigned.
• For any voter vi, its probability of making correct subde-

cision is pi,00 (reject bad proposal) and pi,11 (accept good
proposal).

• Each voter has probability of making wrong decision
subject to three types of errors.
1. Type 1: Accept the one should be rejected, pi,01.
2. Type 2: Reject the one should be accepted, pi,10.
3. Type 3: No decision on the one should be rejected, pi,0x;

no decision on the one should be accepted, pi,1x.
• A decision rule is designed with a predefined value of

threshold, τ , incorporating all subdecisions to generate the
final decision.

55.2.2 Decision Rule

To illustrate how such systems fit into the framework of
general models, Xie and Pham [15] described the problem
in an HO system. Assume the proposal is the input of either
acceptable and unacceptable and the information is implicitly
contained in the material that each voter is going to review.
Thus, via the disguised form, each voter gets an input either 1
(acceptable) or 0 (unacceptable). All voters are provided with
the same input that depends on the actual proposal where a
decision is to be made, and therefore produces a subdecision
that is 1 (accept), 0 (reject), or x (indecisive). Ideally, the
output from each voter should equal to its input; however,
under the fact of imperfect voters, each voter is subject to
errors described above.

Consider a weighted threshold voting system of n voters
with the weight wi for voter i, where I1 is the index set of
all voters with favorable outcomes for the system input, Ix is

the index set of all voters without any individual decision,
and τ ∈ (0, 1] is the threshold value. The system collects
all subdecisions from all voters and generates a joint system
output based on the following decision rule [11, 14, 17]. The
system output is “1” (acceptable) if and only if,

∑

i∈I1
wi ≥ τ

∑

i/∈Ix
wi (55.1)

and it is “0” otherwise.
Thismodel is a dynamic thresholdweighted voting system

subject to two failure modes as it does not consider weights
for voters with no decision. Failure mode 1 means that the
system accepts an input ought to be rejected, and failuremode
2 means that the system rejects an input ought to be accepted.
Thus, the reliability of the system, Rsys, is that probability of
the system making a correct decision for any given input.

Rsys = Pr {the system makes the correct decision}

Nordmann and Pham [11, 14] proposed this decision rule
by developing a mathematical model with two restrictions
on the scale of weights and the value of threshold, which
resulted from the immense combinatorial complexity and
thus cannot be applied directly to many real systems due
to the complexity of computations. Simply, two restrictions
on the generality of parameters in their model are the key
obstacles from practical usage. Therefore, to formulate the
model, an advanced methodology is induced. Later, Levitin
[17] used this decision rule to estimate WVS reliability with
universal generating function technique. Although his algo-
rithm improved the calculation procedure, its functionality
was still limited due to the intrinsic shortcomings of the
algorithm until Xie and Pham [15].

55.2.3 Model Formulation

Xie and Pham [15] applied a simple recursive formula to cal-
culate the reliability of the weighted voting systems without
restrictions on both weights and threshold values. Define a
random variable Zi where i = 1, 2, . . . , n as

Zi =
⎧
⎨

⎩

1 − τ if i ∈ I1
0 if i ∈ Ix
−τ if i ∈ I0

(55.2)

By rewriting Eq. (55.1), the system output is “1” if and only
if,

∑

i∈I1
wi − τ

∑

i/∈Ix
wi ≥ 0 (55.3)
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To simplify Eq. (55.3) for clear interpretation, replace (55.2)
into the second sum; it can be disaggregated and rearranged
as follows,

∑

i∈I1
(1 − τ)wi −

∑

i∈I0
τwi ≥ 0 ⇐⇒

n∑

i=1

wiZi ≥ 0

(55.4)

Thus, each voter i contributes a positive value (1 − τ )wi
if it votes acceptance, and a negative value −τwi if it votes
rejection toward to the final WVS score, where I1, I0, and
Ix represent the index sets of voters with the corresponding
decisions. Further, they define two probability functions.

Qn(s) = Pr
(∑n

i=1
wiZi ≥ s | P = 1

)

Q̃n(s) = Pr
(∑n

i=1
wiZi < s | P = 0

)

Then, the probability of the system output S = 1 given the
input P = 1 is,

Qn(0) = Pr
(∑n

i=1
wiZi ≥ 0 | P = 1

)
= Pr (S = 1 | P = 1)

And the probability of the system output S= 0 given the input
P = 0 is,

Q̃n(0) = Pr
(∑n

i=1
wiZi < 0 | P = 0

)
= Pr (S = 0 | P = 0)

Therefore, the reliability of such a weighted threshold voting
system with n voters is,

Rsys = Qn(0) Pr (P = 1) + Q̃n(0) Pr (P = 0) (55.5)

where Qn(s) and Q̃n(s) can be written in terms of recursive
functions as follows:

For n ≥ 1,

Q1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if s ≤ −τw1

p1,11 + p1,1x if − τw1 < s ≤ 0
p1,11 if 0 < s ≤ (1 − τ)w1

0 if s > (1 − τ)w1

Q̃1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if s ≤ −τw1

p1,00 if − τw1 < s ≤ 0
p1,00 + p1,0x if 0 < s ≤ (1 − τ)w1

1 if s > (1 − τ)w1

For n ≥ 2,

Qn(s) = Qn−1
(
s−n

)
pn,11 + Qn−1(s)pn,1x + Qn−1

(
s+n

)
pn,10

Q̃n(s) = Q̃n−1
(
s−n

)
pn,11 + Q̃n−1(s)pn,1x + Q̃n−1

(
s+n

)
pn,10

where s−n = s − (1 − τ)wn and s+n = s + τwn. Given
Pr(P = 1) + Pr(P = 0) = 1, Eq. (55.5) indicates that

the reliability value Rsys has the range
[
Rmin
sys , R

max
sys

]
, where

Rmin
sys = min{Qn(0), Q̃n(0)} and Rmax

sys = max{Qn(0), Q̃n(0)}.
The following numeric examples are illustrated to show how
the system works.

55.2.4 Numeric Examples of System Reliability

Example 55.1 Suppose Pr(P = 1) = Pr(P = 0) = 0.5.
Consider the following three extreme cases:

(a) The output of the system is 1.
(b) The output of the system is 0.
(c) The output of the system is either 0 or 1 with equal

probability.

For simplicity and without loss of generality, it is
assumed that there is only one voter in the system,
n = 1. In this case, the probability that the system
output of 0 or 1 is 0.5(p1,00 + p1,10) or 0.5(p1,11 + p1,01),
respectively. And therefore, the system reliability is
Rsys = 0.5(p1,00 + p1,1x + p1,11).

In case (a), the system output is 1, which requires
0.5(p1,11 + p1,01) = 1. It implies that p1,11 = p1,01 = 1 and
other p1,νν ′ should be 0, which leads the system reliability
of case (a) is Rsys = 0.5. And the similar situation can be
applied on case (b); thus, the system reliability of case (b) is
also Rsys = 0.5. Note that the reliability of a system is defined
as the probability of making a correct decision. If the input
is either 0 or 1 with probability 0.5 of each, then the system
will have an equal chance to make the right decision in either
case (a) or (b), although the probability for case (a) or (b)
happens at different time.

In case (c), the output of the system is either 0 or 1 with
equal probability, so it implies that 0.5(p1,00 + p1,10) = 0.5
(p1,11 + p1,01) = 0.5. Thus, p1,00 = 1 − p1,01 = p1,11 = 1 −
p1,10 and p1,0x = p1,1x = 0, and the system reliability is
Rsys = p1,00 = 1 − p1,01 = p1,11 = 1 − p1,10, which
may not necessary be 0.5. And Rsys = 0.5 only if
p1,00 = p1,01 = p1,11 = p1,10 = 0.5.

Example 55.2 Suppose we have n = 4 voters in the HO
system described above and the probability matrix of their
judgement errors alongwith weights is distributed as follows.
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p1,10 = 0.17, p1,1x = 0.14, p1,01 = 0.15, p1,0x = 0.10.

p2,10 = 0.14, p2,1x = 0.10, p2,01 = 0.11, p2,0x = 0.14

p3,10 = 0.11, p3,1x = 0.12, p3,01 = 0.16, p3,0x = 0.12

p4,10 = 0.15, p4,1x = 0.12, p4,01 = 0.10, p4,0x = 0.15

w1 = 2.0, w2 = 1.0, w3 = 1.5, w4 = 1.0

Given a low threshold value τ = 0.2,

Rsys (τ = 0.2) =
{
0.9915 if Pr(P = 1) = 1
0.6567 if Pr(P = 0) = 1

Given a medium threshold value τ = 0.5,

Rsys (τ = 0.5) =
{
0.9214 if Pr(P = 1) = 1
0.9178 if Pr(P = 0) = 1

Given a high threshold value τ = 0.8,

Rsys (τ = 0.8) =
{
0.6549 if Pr(P = 1) = 1
0.9918 if Pr(P = 0) = 1

To quantify the system performance, reliability is calcu-
lated under different cases of τ . System has inverse reacts
under two extreme values of threshold when τ = {0.2,0.8}
under different types of inputs. However, the medium value
of threshold τ = 0.5 results a reliable system with equal
performance under both types of inputs.

55.3 Reliability Analysis

55.3.1 Reliability Approximation

For practical reason, Xie and Pham [15] studied an approach
of reliability approximation although C code is programed to
calculate the reliability automatically if all necessary values
are initialized, which aims to provide a quick check of the
system reliability if the exact computation is not required.

The possible combinations of votes in a weighted voting
system are defined in Eq. (55.1) on which the size of the
sample space of the random variable Yn = ∑n

i=1wiZi is 3
n.

Thus, without any further assumptions on both wi and qi, any
algorithm for computing the system reliability involves up
to 3n terms, which will result computation difficulties. To
solve this problem, they proposed an accurate large-sample
approximation formula for evaluating the system reliability
Rsys. The formula is developed based on the saddle point

approximation technique by Barnforff-Nielsen and Cox [18],
and it works well for small size of samples. The computations
of the proposed approach are straightforward for simple
linear equations while techniques are needed for nonlinear
equations when locating the saddle points. For any size n,
the approximation values of Rsys can be calculated instantly
in route.

Define a similar notation Z∗
i = Zi + τ , where Zi is

defined in Eq. (55.2). Given the input P = 1, the logarithm
of the conditional moment generating function,

∑n
i=1wiZ

∗
i , is

defined as

Kn(u) =
∑n

i=1
log

(
p1,11e

uwi + p1,1xe
uτwi + p1,10

)

Then, the solution point u = ûn, which solves the first
derivative of K′

n(u) = τ
∑n

i=1wi, is called a saddle point.
Similarly, given the system input P = 0, the conditional
moment generating function of

∑n
i=1wiZ

∗
i is denoted as,

K̃n(u) =
∑n

i=1
log

(
p1,01e

uwi + p1,0xe
uτwi + p1,00

)

By solving the first derivative equation K̃′
n(u) = τ

∑n
i=1wi,

the saddle point ũn is located.
Now let ên = ûn ∗ [

K′′
n

(
ûn

)]0.5
and f̂n = sign

(
ûn

) ∗ |√
2
[
ûnK′

n

(
ûn

) − Kn
(
ûn

)]0.5 |, and ẽn = ũn ∗ [K̃′′
n (ũn)]0.5

and f̃n = sign (ũn) ∗ | √
2[ũnK̃′

n (ũn) − K̃n (ũn)]0.5|. Suppose
existing small positive constants ε, δ1, δ2 > 0 and a large
positive number M < ∞, such that ε < wi < M and δ1 < 1 −
p1,νν ′ < 1 − δ2 for any ν �= ν

′
. Therefore, the approximation

results for Qn(0) and Q̃n(0) can be represented as follows.

Qn(0) = Pr
(∑n

i=1
wiZi ≥ 0 | P = 1

)
= 1 − ψ

(
ên

)

+ φ
(
ên

) [
1

ên
− 1

f̂n
+ O

(
n−1.5

)]

Q̃n(0) = Pr
(∑n

i=1
wiZi < 0 | P = 0

)
= ψ

(
ên

) − φ
(
ên

)

[
1

ên
− 1

f̂n
+ O

(
n−1.5

)]

where ψ and φ are the cumulative distribution function and
the density function of a standard normal random variable,
respectively, and the notation big O(n−1.5) represents the
remaining terms in the parenthesis which tend to 0 at a certain
speed equal or faster than n−1.5 as n → ∞.

The error terms are at the rate of O(n−1.5), and the Rsys

is at most at the order of O(n−1.5). When n is large, these
approximations are extremely accurate.
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55.3.2 Numeric Examples of System Reliability
Approximation

Example 55.3 Table 55.1 illustrates the reliabilities calcu-
lated for aweighted voting systemwith n= 5,10,15,20,25,40,
100, and 300 voters. The parameters of the error probabilities
are randomly resampled from the base set of 4 voters in
Example 55.2. The second column is the calculated values
of Qn(0) using the recursive formulas in subsection of Model
Formulation, and the third column lists the approximation
values of Qn(0) calculated using the recursive formulas in
subsection of Reliability Approximation. The values in the
fourth column are the calculated differences between the
values in the second and third columns. The fifth, sixth, and
seventh columns show the corresponding values related to
Q̃n(0), respectively. And the last three columns are values
related to the system reliability Rsys given Pr(P = 1) = 0.7,
where more favorable inputs are chosen in the illustrated
examples.
C code takes less than a minute to finish each calculation

up to n = 20. When n = 25, it takes about 3 hours to finish
calculating the exact values of Rsys; thus, they did not try it
when n > 25. The accuracy increases as n grows bigger as
expected, especially when n ≥ 20.

From the calculations of differences between exact and
approximated values, one can see that the approximation
approach is a relatively good way to identify the system
performance even if when the size is small. As expected,
as n approaches to a big value, the approximation of the
system reliability has no difference from the exact value. And
this methodology is strongly recommended under certain
constraints of budget controls or time-consuming issues in
some policy-related systems.

55.3.3 Time-Dependent Reliability Function

To this end, no time limitation is set up for reliability evalua-
tion; however, to make the model more applicable in practice,
the requirement of a limited time for decision-making is
appropriate. Along with voters’ expertise, limited time will

affect the results of their decisions. Xie and Pham [15]
assumed time-dependent functions on reliability and error
rate for each voter; pi,νν ′(t) is a function of time t, where t
is the time up to a decision for any voter. That is, voters must
make the decision before time t and theWVSwill produce an
output based on subdecisions from all voters. And this design
can be extended to more general cases with some additional
clarifications on model assumptions.

They considered a typical pattern which is proper in real
cases, where the error probabilities pi,νν ′(t) for any ν �= ν

′
are

decreasing functions of t. That is, any voter is less reliable
at the beginning as time is limited; however, the probability
of all voters making wrong decisions would decrease after a
certain time. If sufficient time is allowed, the probability of
wrong decisions would reduce to aminimal level. Figure 55.1
illustrates an example of time-dependent functions for four
different failure rates. The error probability decreases slowly
from the maximum value and reaches to the minimum value
after a certain period. The curves in Fig. 55.1 are from the
following formula. For t > 0 where ν �= ν

′
, ν = 0, 1, and

ν
′ = 0, 1, x.

pi,νν ′(t) = pmin
i,νν ′ + (

1 + e−bi,νν′ ) (
pmax
i,νν ′ − pmin

i,νν ′
)

e−ai,νν′ t+bi,νν′

1 + e−ai,νν′ t+bi,νν′

(55.6)

where ai,νν ′ > 0 decides the pace of pi,νν ′(t) reduces as t
increases, and bi,νν ′ > 0 decides the location of the curve,
and two constants 0 < pmin

i,νν ′ < pmax
i,νν ′ < 1 for ν �= ν

′
are lower

and upper bounds for pi,νν ′(t) for the entire domain. When
pmin
i,νν ′ = 0 and pmax

i,νν ′ = ebi,νν′ /
(
1 + ebi,νν′ ), formula (55.6)

becomes to the standard logistic function for sigmoid curves
so that value of pi,νν ′ is between lower and upper bounds for
all t > 0, and pi,νν ′(0) = pmax

i,νν ′ .
The reliability of the threshold voting systems can be

quantified under the time-dependent situation by defining
Qn,t(s) and Q̃n,t(s) similarly as Qn(s) and Q̃n(s). Under such
assumptions, Qn,t(0) and Q̃n,t(0) are nondecreasing which
leads the time-dependent system reliability Rsys(t) be nonde-
creasing of t. An example gives an intuitive vision of how it
works on WVS.

Table 55.1 Comparison of exact and approximate system reliability

Qn(0) Q̃n(0) Rsys
n Exact Approx Diff Exact Approx Diff Exact Approx Diff

5 0.9566 0.9733 −0.0167 0.9686 0.9497 0.0189 0.9602 0.9662 −0.0060

10 0.9919 0.9953 −0.0034 0.9966 0.9944 0.0022 0.9930 0.9945 −0.0015

15 0.9983 0.9990 −0.0007 0.9993 0.9989 0.0004 0.9986 0.9990 −0.0004

20 0.9997 0.9998 −0.0001 0.9999 0.9998 0.0001 0.9997 0.9998 −0.0001

25 0.9999 0.9999 0 0.9999 0.9999 0 0.9999 0.9999 0

40 – 0.9999 – – 0.9999 – – 0.9999 –

100 – 0.9999 – – 1 – – 0.9999 –

300 – 1 – – 1 – – 1 –
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Fig. 55.1 Time-dependent functions of four failure rates

Example 55.4 Suppose a system has n = 3 voters. Assume
their failure rates as functions of time t can be modeled in the
form of (55.6), and the parameters are as follows,

Voter 1 :
(
pmin
1,10, p

max
1,10

)
= (0.02, 0.20) , a1,10 = 0.30, b1,10 = 5.0

(
pmin
1,1x, p

max
1,1x

)
= (0.01, 0.15) , a1,1x = 0.15, b1,1x = 3.0

(
pmin
1,01, p

max
1,01

)
= (0.02, 0.30) , a1,01 = 0.20, b1,01 = 4.0

(
pmin
1,0x, p

max
1,0x

)
= (0.01, 0.20) , a1,0x = 0.15, b1,0x = 4.0

w1 = 2.0

Voter 2 :
(
pmin
2,10, p

max
2,10

)
= (0.00, 0.20) , a2,10 = 0.30, b2,10 = 4.5

(
pmin
2,1x, p

max
2,1x

)
= (0.01, 0.15) , a2,1x = 0.15, b2,1x = 2.3

(
pmin
2,01, p

max
2,01

)
= (0.01, 0.23) , a2,01 = 0.20, b2,01 = 4.5

(
pmin
2,0x, p

max
2,0x

)
= (0.00, 0.18) , a2,0x = 0.15, b2,0x = 5.0

w2 = 1.0

Voter 3 :
(
pmin
3,10, p

max
3,10

)
= (0.01, 0.20) , a3,10 = 0.25, b3,10 = 4.0

(
pmin
3,1x, p

max
3,1x

)
= (0.01, 0.10) , a3,1x = 0.20, b3,1x = 2.0

(
pmin
3,01, p

max
3,01

)
= (0.00, 0.10) , a3,01 = 0.15, b3,01 = 4.5

(
pmin
3,0x, p

max
3,0x

)
= (0.01, 0.20) , a3,0x = 0.20, b3,0x = 4.0

w3 = 1.5

For three different options of threshold value τ = 0.3, 0.5,
and 0.7, the time-dependent reliabilities Rsys(t) at time t are
calculated. Figure 55.2 shows six time-dependent reliability
curves against time t. For simplicity, only two types of curves
are provided. One curve is the reliability of input P = 0, and
the other one is of input P = 1, respectively.

• In the first subplot with τ = 0.3, the system reliability Rsys

when P= 1 is always larger than P= 0, and its maximum
value when P = 1 is clearly larger than P = 0.



1096 H. Zhang

0

0.5

0.6

0.7

0.8

0.9

1.0

t = 0.3 t = 0.5 t = 0.7

20 40
Time t

R
el

ia
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1.0

R
el

ia
bi

lit
y

0.5

0.6

0.7

0.8

0.9

1.0

R
el

ia
bi

lit
y

60 0 20 40
Time t

60 0 20 40
Time t

60

Input P = 0
Input P = 1

Input P = 0
Input P = 1

Input P = 0
Input P = 1

Fig. 55.2 Time-dependent system reliability at time t under different τ

• In the second subplot with τ = 0.5, the system reliability
Rsys when P = 1 is most likely larger than when P = 0,
and they both converge to 0.9992.

• In the third subplot with τ = 0.7, the system reliability
Rsys when P = 1 is always smaller than P = 0, and its
maximum value when P = 0 is clearly larger than P = 1.

The system performance reacts differently at different val-
ues of τ . Smaller value results better performance given input
P = 1, and larger value results higher reliable performance
given input P = 0. To make the consistent system regardless
of input patterns, medium value of τ is an option.

55.3.4 Optimal Stopping Time at Minimal Cost

It is impractical to process the system output for unlimited
time; therefore, one of the primary goals is the budget control
to make the model applicable. Xie and Pham [15] assumed
that the error probabilities of each voter decrease as the time
the voter spends on decision-making increases, which means
that the system reliability is an increasing function of t. If t is
limited, the system may not be reliable enough to guarantee
the confidence for the decision. Thus, the motivation is to
take the minimal time to generate an output with respect to
higher reliability.

Linear Time-Dependent Cost Function
The goal is to determine the optimal stopping time to min-
imize the total cost by sacrificing limited amount of system

reliability. Define RL as a prespecified least reliability value
that the system is required to be achieved. Consider a simple
linear time-dependent cost function,

LC(t) = c1 (1 − Rt) + c2t such that Rt ≥ RL (55.7)

where c1 is the cost associated with wrong decision and c2 is
the cost of unit time spent on decision process by all voters.
In this case, both c1 and c2 are constants; however, they
could also be time t dependent function as more complicated
requirements may be considered in practice.

Denote T = argmin{0<t<∞,Rt≥RL}LC(t) and T is the op-
timal stopping time that minimizes the cost LC(t) subject
to the constraint Rt ≥ RL in limited time t. Then, define
t0 = inf {t > 0|Rt ≥ RL} and t0 is the minimum time to
reach the prespecified value RL. As Rt is a continuous and
nondecreasing function of t, there exists an optimal time
T ∈ [

t0, t0 + c1c
−1
2 (1 − RL)

]
.

To obtain the numerical value of the optimal time T inside
the interval

[
t0, t0 + c1c

−1
2 (1 − RL)

]
, one effective approach

is to find the roots of the equation.

[
d

dt
LC(t)

]∣∣∣∣
t=T

= 0 ⇐⇒
[
d

dt
Rt

]∣∣∣∣
t=T

= c2
c1

By solving it recursively from the Newton-Raphson algo-
rithm, starting with an initial value T(0) ∈ [

t0, t0 + c1c
−1
2

(1 − RL)], one can calculate the equation. For k = 1, 2, . . . ,
m.
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Fig. 55.3 Liner cost function at time t under different τ

T(k) = T(k−1) +
{[

d

dt
Rt

]∣∣∣∣
t=T(k−1)

− c2
c1

} [
d

dt
Rt

]∣∣∣∣
t=T(k−1)

(55.8)

As the algorithm is numerically convergent, we normally can
get a root, T∗ , for Eq. (55.8). If T∗ ∈ [

t0, t0 + c1c
−1
2 (1 − RL)

]

and C(T∗) < C(t0), we obtain T = T∗ , otherwise, T = t0.

Example 55.5 Continuous with Example 55.4. Suppose
c1 = 90 and c2 = 3. Figure 55.3 plots the cost functions
LC(t) against t for the six cases illustrated in Fig. 55.2.

Assume the least reliability value required is RL = 0.95.

• In the case of τ = 0.3, the minimum time to achieve RL is
t0 = 41 if the input P = 0 and t0 = 17 if the input P = 1.

• In the case of τ = 0.5, the minimum time to achieve RL is
t0 = 35 if the input P = 0 and t0 = 26 if the input P = 1.

• In the case of τ = 0.7, the minimum time to achieve RL is
t0 = 24 if the input P = 0 and t0 = 37 if the input P = 1.

Thus, according to the optimal time T ∈ [
t0, t0 + c1c

−1
2

(1 − RL)],

• If τ = 0.3, T ∈ [41, 42.5] if the input P = 0 and
T ∈ [17, 18.5] if the input P = 1.

• If τ = 0.5, T ∈ [35, 36.5] if the input P = 0 and
T ∈ [26, 27.5] if the input P = 1.

• If τ = 0.7, T ∈ [24, 25.5] if the input P = 0 and
T ∈ [37, 38.5] if the input P = 1.

By checking the monotonicity of the optimal time interval for
all six cases, the optimal time T is,

• If τ = 0.3, T = 41 if the input P = 0 and T = 17 if the
input P = 1.

• If τ = 0.5, T = 35 if the input P = 0 and T = 26 if the
input P = 1.

• If τ = 0.7, T = 24 if the input P = 0 and T = 37 if the
input P = 1.

In other words, for instance, given τ = 0.5, the system cost
LC(t) will be minimal while still achieving system reliability
at least RL = 0.95 at the time T = 35 if the input P = 0 and
at the time T = 26 if the input P = 1.

Higher-Order Time-Dependent Cost Function
Linear time-dependent cost function provides a simple typ-
ical case; beside time cost and punishment from wrong
decision, there could be more cost such as labor cost and
capital cost that depends on specific requirements. On the
other hand, higher-order time-dependent cost function may
also be applied on some situations when different costs are
considered unequally weighted.

Consider a quadric time-dependent cost function with
nonlinear cost on unit time,

HC(t) = c3 (1 − Rt) + c4t
2 such that Rt ≥ RL (55.9)

where c3 is the cost associated with wrong decision and c4 is
the cost of square of unit time by all voters. In this case, extra
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time spent during the process of decision-making is more
expensive to boost the cost out of the budget.

Similarly, define T = argmin{0<t<∞,Rt≥RL}HC(t) be
the optimal stopping time that minimizes the cost HC(t)
subject to the constraint Rt ≥ RL in limited time t. Then,
t0 = inf {Rt ≥ RL| t > 0} is the minimum time to reach
the prespecified value RL. As Rt is a continuous and
nondecreasing function of t, one can find an optimal time

T ∈
[√

t0,
√
t0 + c3c

−1
4 (1 − RL)

]
.

To obtain the optimal time T inside the interval[√
t0,

√
t0 + c3c

−1
4 (1 − RL)

]
, the same approach yields the

following equation.

[
d

dt2
HC(t)

]∣∣∣∣
t=T

= 0 ⇐⇒
[

d

dt2
Rt

]∣∣∣∣
t=T

= 2c4
c3

Applying Newton-Raphson algorithm with an initial value

T(0) ∈
[√

t0,
√
t0 + c3c

−1
4 (1 − RL)

]
, one can calculate the

equation. For k = 1, 2, . . . , m.

T(k) = T(k−1) +
{[

d

dt2
Rt

]∣∣∣∣
t=T(k−1)

− 2c4
c3

} [
d

dt2
Rt

]∣∣∣∣
t=T(k−1)

Then, ifT∗ ∈
[√

t0,
√
t0 + c3c

−1
4 (1 − RL)

]
andC(T∗ ) <C(t0),

we obtain T = T∗ , otherwise T = t0.

Example 55.6 Continuous with Example 55.5. To better
depict the difference from linear case, assume c3 = 90 and
c4 = 3 equivalent to c1 and c2. Figure 55.4 plots the cost
functions HC(t) against t for the six cases illustrated in
Fig. 55.2. And the comparison can be illustrated clearly from
Fig. 55.3.

Assume the least reliability value required is RL = 0.95;
as the time-dependent reliability function preserves, one can
obtain the identical minimum time to achieve RL for input
P = 0 and P = 1, respectively.

• In the case of τ = 0.3, the minimum time to achieve RL is
t0 = 41 if the input P = 0 and t0 = 17 if the input P = 1.

• In the case of τ = 0.5, the minimum time to achieve RL is
t0 = 35 if the input P = 0 and t0 = 26 if the input P = 1.

• In the case of τ = 0.7, the minimum time to achieve RL is
t0 = 24 if the input P = 0 and t0 = 37 if the input P = 1.

Thus, according to the optimal time T ∈ [
√
t0,√

t0 + c3c
−1
4 (1 − RL)

]
,

• If τ = 0.3, T ∈ [6.40, 6.52] if the input P = 0 and
T ∈ [4.12, 4.30] if the input P = 1.

• If τ = 0.5, T ∈ [5.92, 6.04] if the input P = 0 and
T ∈ [5.09, 5.24] if the input P = 1.

• If τ = 0.7, T ∈ [4.90, 5.05] if the input P = 0 and
T ∈ [6.08, 6.21] if the input P = 1.

By checking the monotonicity of the optimal time interval for
all six cases, the optimal time T is,

• If τ = 0.3, T = 6.40 if the input P= 0 and T = 4.12 if the
input P = 1.

• If τ = 0.5, T = 5.92 if the input P= 0 and T = 5.09 if the
input P = 1.

• If τ = 0.7, T = 4.90 if the input P= 0 and T = 6.08 if the
input P = 1.

As expected, cost of unit time in quadric formula reaches
to a high level much faster than linear formula. It is much
harder to keep the system reliable at this case since there
is much less time in the process of decision-making. From
the comparison of Examples 55.5 and 55.6, one can tell the
budget control substantially influences decision-making.

55.4 Weighted Threshold Indecisive Voting
System

Although the situation of no decision of any voter has been
noticed in the basic model assumptions, the weighted voting
system introduced in Sect. 55.3 uses a classic decision rule
without considering indecisive effect, that is, weights of vot-
ers who have no decision do not get involved in calculations.
This will likely cause bias even in some simple situations.
For example, suppose an HO system with 10 voters makes
the decision on a proposal. Eight voters have no decision,
and the other two have decisions with one acceptance and
one rejection. If the one-vote acceptance has higher weights
than the one-vote rejection, the final decision is acceptance
according to the classic decision rule. However, this may not
be true as the summation of weights for 8 voters with no
decision may be much larger, and the proper decision might
be either rejection or reevaluation.
Zhang and Pham [16] studied a generalized weighted

indecisive voting n-units system using a new decision rule
considering indecisive effect, where the classic decision rule
becomes the special case of the indecisive decision rule.
They are trying to scale the effects of indecisiveness to the
entire system performance in terms of system reliability. The
numeric examples do the comparison between two decision
rules and illustrate the sensitivities of the model.
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Fig. 55.4 Quadric cost function at time t under different τ

55.4.1 Model Assumptions

The basic model assumptions are the same as ones defined
in Sect. 55.3 except for the last one, the law of the decision
rule. In this section, a decision rule is designed with two
prespecified parameters of threshold and indecision (τ , θ )
incorporating all subdecisions to generate the final decision.
The additional indecision parameter, θ , is introduced in the
decision rule as indecisive effect is considered. Note that θ

has domain different than τ as θ can be zero, which makes
the indecisive decision rule be the classic one described in
Sect. 55.3.

55.4.2 Indecisive Decision Rule

The weights of indecisive voters are treated as obstacles of
decision-making because no decision is likely to be consid-
ered a negative decision. Given any input, a decision should
bemade as acceptance if the input is favorable and vice versa.
In such a case, no decision is more likely a nonfavorable deci-
sion, which may result a wrong final decision or reevaluation.
Thus, given the input is 1 (favorable), the system output is 1
if and only if the follow equation is satisfied.

∑

i∈I1
wi ≥ τ

⎛

⎝
∑

i/∈Ix
wi + θ

∑

i∈Ix
wi

⎞

⎠ (55.9)

Total weights of each voter who votes 1 in the left-hand
side need to exceed partial of the total weights where the
indecisive weights are drained out accordingly. A parameter
θ used to distinguish no decision from wrong decision is
applied on the indecisive weights in the right-hand side. Note
θ can be zero, which results the decision rule to be the classic
one in Sect. 55.3.

55.4.3 Indecisive Model Formulation

To formulate the indecisive model, Zhang and Pham [16]
regenerate the recursive function to avoid imposing restric-
tions [11, 14]. They used the same technic to define a random
variable Xi where i = 1, 2, . . . , n where indecisive index is
newly introduced.

Xi =
⎧
⎨

⎩

1 − τ if i ∈ I1
−τ if i ∈ Ix
−τθ if i ∈ I0

(55.10)

Rewriting Eq. (55.10), the system output is 1 (favorable) if
and only if,

∑

i∈I1
wi − τ

∑

i/∈Ix
wi − τθ

∑

i∈Ix
wi ≥ 0 (55.11)

Simplifying (55.11) for a clear vision, the second sum can be
disaggregated and then rearranged.
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∑

i∈I1
(1 − τ)wi −

∑

i∈I0
τwi −

∑

i∈Ix
τθwi ≥ 0

⇐⇒
∑n

i=1
wiXi ≥ 0

(55.12)

Equation (55.12) clearly interprets contribution values of
three types of individual decision, where the positive value
(1 − τ )wi of voter i accumulates if it votes acceptance, the
negative value−τwi of voter i summed up if it votes rejection,
and the negative value −τθwi of voter i is added together
if it abstains. Then, two similar probability functions can be
induced as follows.

Qn(s) = Pr
(∑n

i=1
wiXi ≥ s | P = 1

)

Q̃n(s) = Pr
(∑n

i=1
wiXi < s | P = 0

)

Initializing variable s= 0, one obtains conditional probability
functions,

Qn(0) = Pr
(∑n

i=1
wiXi ≥ 0 | P = 1

)
= Pr (S = 1 | P = 1)

Q̃n(0) = Pr
(∑n

i=1
wiXi < 0 | P = 0

)
= Pr (S = 0 | P = 0)

Hence, the reliability of the weighted threshold indecisive
voting system with n voters is,

Rsys = Qn(0) Pr(P = 1) + Q̃n(0) Pr(P = 0)

where Qn(s) and Q̃n(s) can be written in terms of recursive
functions, and the restricted domains are different from the
classic ones illustrated in Sect. 55.3. Simply, an indecisive
parameter θ is considered showing as follows,

For n ≥ 1,

Q1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if s ≤ −τw1

p1,11 + p1,1x if −τw1 < s ≤ −τθw1

p1,11 if −τθw1 < s ≤ (1 − τ)w1

0 if s > (1 − τ)w1

Q̃1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if s ≤ −τw1

p1,00 if − τw1 < s ≤ −τθw1

p1,00 + p1,0x if − τθw1 < s ≤ (1 − τ)w1

1 if s > (1 − τ)w1

For n ≥ 2

Qn(s) = Qn−1
(
s1n

)
pn,11 + Qn−1

(
sxn

)
pn,1x + Qn−1

(
s0n

)
pn,10

Q̃n(s) = Q̃n−1
(
s1n

)
pn,11 + Q̃n−1

(
sxn

)
pn,1x + Q̃n−1

(
s0n

)
pn,10

where s1n = s − (1 − τ)wn, sxn = s + τwn, and s0n = s +
τθwn. One more parameter from indecisive effect recursively
makes the equations more complicated as the n goes up.
Two examples are provided varying values for one parameter
while another one is fixed, and it aims to provide a brief
knowledge of an across relation between two parameters and
a simple comparison between two decision rules.

55.4.4 Numerical Example of Indecisive
System Reliability

Example 55.7 Consider a grant institution votes to fund
good proposals and suppose the voting group has n = 4
members and probabilities of their judgment errors with
assigned weights are given the same as in Example 55.2. Fix
the indecisive parameter θ = 0; the calculations from three
values of τ = {0.1, 0.5, 0.9} are tabled, where weights are
normalized. Note that θ = 0 makes the indecisive decision
rule identical in Sect. 55.3. This example shows how single
parameter τ is affecting the system reliability.

In Table 55.2, system reliability under five different prior
distributions of inputs P are calculated. Two extreme cases
of threshold τ in third and fifth rows indicate inverse results,
where the system is more reliable of favorable proposals
when τ is extremely small and vice versa when τ is extremely
high. From the calculations, the system guarantees the quality
of proposals in the way that bad proposals are easily rejected,
and good proposals seem to be accepted competitively.
Figure 55.5 intuitively summaries the trend of performance
in terms of system reliability.

The system reaches a steady state regardless of the quality
of proposals when τ = 0.5. The initialization of τ really
depends on how much knowledge of the input is obtained.
This example recalls the classic decision by setting θ = 0
and extends the calculations by illustrating twomore extreme
cases of τ .

Example 55.8 (Extended Example 55.7) Calculations of
three fixed values of τ = {0.1, 0.5, 0.9} while the values of
θ vary. This example shows how cross effect influences the
system reliability from both parameters.

• A higher value of θ downgrades Rsys given favorable
proposals; however, it increases Rsys given nonfavorable
proposals. Given τ , one can see larger variations ofRsys for

Table 55.2 System reliability with θ = 0

Pr(P = 1) 1.0 0.8 0.5 0.2 0.0

τ Rsys with θ = 0

τ = 0.1 0.9956 0.9108 0.7836 0.6564 0.5717

τ = 0.5 0.9214 0.9207 0.9196 0.9186 0.9178

τ = 0.9 0.5400 0.6311 0.7678 0.9045 0.9956
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favorable proposals than nonfavorable ones with respect
to θ .

• In practice, high penalties for indecisive decisions result
in more competitive situations for favorable proposals. In
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Fig. 55.5 Illustration of system performance in Table 2

themeanwhile, this can easily prevent the acceptance from
nonfavorable proposals since indecisive votes are likely
treated as nonacceptable votes.

It turns out that indecisive effect is sensitive in types of
inputs. Figure 55.6 visualizes Table 55.3 by showing the trend
of performance via different initializations of θ in terms of
system reliability under different distributions of inputs.

• Higher probabilities of favorable proposals result in larger
Rsys with smaller τ when θ is fixed, and with smaller
θ if τ is fixed. The situation overturns with unfavorable
proposals. Somehow, it indicates the sensitivity of the
prior distribution of inputs.

• Both high values of τ when θ is fixed and high values of
θ when τ is fixed make favorable proposals competitively
acceptable and nonfavorable ones easily rejected. Thus,
initializations of both parameters affect the system perfor-
mance, and one has the independent theory to optimize the
system associated with prespecified assumptions.

• Overall, the system is stable under τ = 0.5 whenever
θ changes, which provides a naive option when prior
information of input is limited.
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Fig. 55.6 Illustration of system performance in Table 55.3
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Table 55.3 System reliability with τ = {0.1, 0.5, 0.9}
Pr(P = 1) 1.0 0.8 0.5 0.2 0.0

θ Rsys with τ = 0.1

θ = 0.0 0.9956 0.9108 0.7836 0.6564 0.5717

θ = 0.2 0.9954 0.9107 0.7836 0.6566 0.5719

θ = 0.4 0.9954 0.9107 0.7836 0.6566 0.5719

θ = 0.8 0.9954 0.9107 0.7836 0.6566 0.5719

θ Rsys with τ = 0.5

θ = 0.0 0.9214 0.9207 0.9196 0.9186 0.9178

θ = 0.2 0.9011 0.9078 0.9178 0.9279 0.9346

θ = 0.4 0.8876 0.8977 0.9130 0.9282 0.9383

θ = 0.8 0.8298 0.8537 0.8894 0.9251 0.9489

θ Rsys with τ = 0.9

θ = 0.0 0.5400 0.6311 0.7678 0.9045 0.9956

θ = 0.2 0.4279 0.5421 0.7134 0.8846 0.9988

θ = 0.4 0.3820 0.5054 0.6905 0.8756 0.9990

θ = 0.8 0.2948 0.4358 0.6473 0.8587 0.9997

• Nonzero θ downgrades the overall system performance. It
is straightforward when threshold τ is large by comparing
values of intersection of x-axis representing input P.

In real applications, the threshold value is very substantial
in deterministic optimization of the system performance.
Given the size of the voters and the error probabilities of each
voter with respect to each type of individual decision, cross
effects from both parameters θ and τ bring complications
in decision-making along with uncertain types of inputs. As
discussed in Sect. 55.3, cost function is time-dependent; to
have a better understanding of prior information of inputs,
certain effort is required. However, a budget constraint would
then change the optimization process as extra restrictions
relocate the local optimal.

55.4.5 Sensitivity Analysis onWVS

Two major reasons drive the test of different combinations of
(τ , θ ) along with different qualities of voters. First, system
reliability is used to quantify system reactions under certain
policies and constraints including maximal system reliabil-
ity or minimal budget cost, therefore, resulting in location
detections of parameterization. Moreover, the decision pro-
cess becomes less optimistic when the prior information is
limited, which again relates to the assumptions of budget
constraints. What is interesting is the mutual interactions
between them andmakes them become a closed loop. To loop
out of the circle, sensitivity analysis may help to locate the
equilibrium.
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Fig. 55.7 Sensitivity on failure rate

Intrinsic Sensitivity
Example 55.9
(Sensitivity on Failure Rate of Voters) Recall Example 55.2
as a control case. Zhang and Pham [16] showed the 10%
decrease/increase of all types of errors of each voter has
limited influence on system reliability, which outstands the
advantage of the model design. In this example, 50% de-
crease/increase of failure rate of each voter is applied on their
model. Figure 55.7 plots the change of system reliability at
θ = {0.0, 0.4, 0.8} with τ = 0.5 while other variables are
fixed. Table 55.4 compares two cases.

Different from 10% change of failure rate [16], 50%
change of failure rate has significant distinctions in drop and
raise failure rates.

• First, 50% drop/raise of pi,νν ′ (reliable/less reliable voters)
results a 5–15%/5–10% increase/decrease in system reli-
ability among all three cases.

• Moreover, the variation of system reliability in drop case
is much bigger than in the raise case, which is different
from 10% change of failure rate.

• The raise case has more advantages in real applications.
Much less reliable voters result limited downgrade in
system performance. And variations of the system reli-
ability are small enough among three combinations of
parameterizations.



55 Weighted Voting Systems 1103

55

Table 55.4 Reliability of different pi,νν′ with (τ , θ ) = (0.5, 0.0)

Rsys

Pr(P= 1) Control
10%
Drop pi,νν′

10%
Raise pi,νν′

Change
in %

0.0 0.9178 0.9339 0.9000 1.75 / −1.94

0.4 0.9193 0.9351 0.9017 1.72 / −1.91

0.8 0.9207 0.9363 0.9033 1.69 / −1.89

1.0 0.9214 0.9369 0.9041 1.68 / −1.88

Rsys

Pr(P= 1) Control
50%
drop pi,νν′

50%
raise pi,νν′

Change
in %

0.0 0.9178 0.9838 0.8571 7.19 / −6.61

0.4 0.9193 0.9835 0.8540 6.98 / −7.10

0.8 0.9207 0.9831 0.8508 6.78 / −7.59

1.0 0.9214 0.9829 0.8492 6.67 / −7.84

Table 55.4 exhibits the calculated numbers for both 10%
and 50% cases with (τ , θ ) = (0.5, 0), which shows 5 times
difference in voters’ qualities results less than 5 times differ-
ence in system reliability. This may indicate the advantage of
the system design.

Example 55.10
(Sensitivity on τ ) Recall Example 55.2 as a control case.
This example focuses on how τ affects the system by fixing
all other variables and parameters. Five different values of
τ = {0.1, 0.3, 0.5,0.7,0.9} are applied in calculations. Fig-
ure 55.8 plots three cases given θ = {0.0, 0.4, 0.8}. First
subplots of Fig. 55.8 represent the classic decision rule as
indecisiveness is excluded with θ = 0.

• When τ < 0.5, system reliability Rsys has an increasing
trend as the system is reliable given favorable proposals.
When τ > 0.5, system reliability Rsys has a decreasing
trend as the system is less reliable given favorable pro-
posals.

• τ = 0.5 makes the system reach to a steady state given any
inputs if indecisiveness is not considered (θ = 0); how-
ever, this is not the case when indecisiveness is applied
in decision rule as one can see in the second and third
subplots of Fig. 55.8.

• Indecisiveness makes the systemmore sensitive in choices
of threshold τ . The overall system performance is reliable
as min

P
Rsys > 0.5 independent from the choices of τ in

the first subplot of Fig. 55.8, but the system become less
stable with large value of τ when θ �= 0.

Example 55.10
(Sensitivity on θ ) Recall Example 55.2 as a control case.
This example focuses on how θ affects the system by fixing
all other variables and parameters. Five different values

of θ = {0.1, 0.3, 0.5,0.7,0.9} are applied in calculations.
Figure 55.9 plots three cases given τ = {0.1, 0.5, 0.9}. In
this example, θ = 0 is omitted as it studies θ influence. One
can see the domination of τ as it determines how system
is affected in terms of Rsys, although θ indeed has internal
effects.

• When τ = 0.1, all 5 lines representing different options
of θ overlap together. θ has no influence at all. As the
threshold is small, it makes indecisiveness small enough
to lose power to play in the role. In fact, this also proves
small threshold is less practical.

• As τ gets bigger, θ is brought back to the game. From
both second and third subplots of Fig. 55.9, larger θ makes
the system less reliable if τ is fixed. However, θ causes
larger variations when τ is large; therewith, θ is sensitive
on condition of τ .

• When τ = 0.5, system is stable even with the missing
information of inputs. Although the system is less sen-
sitive on θ , it can still be a secondary factor in model
modifications as τ is the dominant factor in decision rule.

Extrinsic Sensitivity
The indecisive effect can be applied when people have diffi-
culties in making decisions. If more time t can be spent to col-
lect more information, it may be helpful to make decisions. In
fact, this is meaningful in social activities. Zhang and Pham
[16] have done some jobs on this problem. Three extreme
conditions are considered unless any specific motivation is
specified. Without loss of generality, more information is
assumed to decrease the probability of no decision pi,νx
where ν = {0, 1} for voter i and x ∈ ν

′
. However, one does

not know if extra information contributes either positively
or negatively. Therefore, it would be wise to assume that
decreasing values have three different flows.
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Fig. 55.8 Sensitivity on τ

• Flow 1: Decreasing values p̃i,νx from indecisive prob-
abilities all contribute to probability of making correct
decision, that is, pi,00 = pi,00+ p̃i,0x and pi,11 = pi,11+ p̃i,1x.

• Flow 2: Decreasing values p̃i,νx from indecisive probabili-
ties all contribute to probability ofmakingwrong decision,
that is, pi,01 = pi,01 + p̃i,0x and pi,10 = pi,10 + p̃i,1x.

• Flow 3: Decreasing values p̃i,νx from indecisive proba-
bilities contribute to probability of making correct and
wrong decision with equal probability, that is, pi,00 =
pi,00 + 0.5p̃i,0x and pi,01 = pi,01 + 0.5p̃i,0x if input P = 0,
and pi,10 = pi,10 + 0.5p̃i,1x and pi,11 = pi,11 + 0.5p̃i,1x if
input P = 1.

Example 55.11
(Sensitivity on time T) After certain effort made by time
T, voters’ probability of indecision drops to half of the
original level, p̃i,νx = 0.5pi,νx, where pi,νx is from Example
55.2 as a control experiment. To minimize the side effect
from initialization of two parameters, τ = 0.5 is applied.
Figure 55.10 depicts Rsys for all three flows under three cases
of θ = {0.1, 0.5, 0.9}.

• The solid black curve on each subplot represents the
control experiment for all three cases. Flow 1 and flow 2
represent two extreme conditions which define the upper
and lower bounds for the black curve.

• The lower bound, flow 2, is the worst condition that
indicates the waste of the effort as system becomes less
reliable. In fact, this is less likely to happen.

• The ideal condition of flow 1 indicates certain effort is
worthy as system reliability improves quite a bit, and flow
3 is showing some credits of the effort from the third
subplots.

• This example indeed gives confidence on effort of lower-
ing indecisive effect, and applying some risk management
will likely control the direction above flow 3 and reach to
flow 1 as possible.

One can also consider this problem associated with cost
control as the discussion in Sect. 55.3. In this example, a
constant function after time T is studied. However, one can
still apply a time-dependent function if restrictions only allow
t < T spent on effort as it is more practical in real applications.
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Fig. 55.9 Sensitivity on θ

55.5 Other RelatedWorks

55.5.1 Model-Related Studies

Based on the framework of weighted voting systems, some
key components of WVS are studied. And those ideas and
techniques are critical and creative to reach the goal of
optimizations under various practical requirements.
Levitin [19] showed the additional reliability improvement

achieved by grouping units in voting subsystems and tally-
ing the weighted votes of such subsystems to make a final
decision. He aimed to answer the question that if there was a
way to makeWVSmore reliable without affecting the failure
rate of individual voter, which could be achieved by grouping
voters into several separate voting subsystems sharing the
same decision rule. Each category was considered as a new
united voter with new weights generated from each element
of the category until final decision was made; therefore,
the threshold value τ needed to be further determined into
a group of threshold values with respect to each group. A
specific algorithm was suggested that obtains the optimal
element grouping as well as weights within each group, and
its evaluation process was based on universal generating tech-
niques. He concluded that unit grouping is most beneficial

when some units had very similar probabilities of making
correct decisions to certain type of inputs.
Long et al. [20] studied the system reliability optimization

of WVS with continuous states inputs, where they derived
the analytical expression. For the reliability of the entire
system under certain distribution assumptions. They pointed
out the limitation of many existing models with inputs having
very small state spaces. Furthermore, the number of different
combinations of generated output rose dramatically with
increased input stats. Therewith, they provided an example
to describe the configuration of a WVS consisting of n inde-
pendent voters with continuous states input. To evaluate the
effectiveness and accuracy of the model, they applied Monte
Carlo Simulations to reach the randomization requirement
to quantify the model. Some optimization problems with
cost constraints were formulated based on continuous inputs,
where they concluded that different types of voters resulted
different allocations under various cost constraints.
Foroughi and Aouni [21] applied data envelopment anal-

ysis to show the drawbacks of the assignment of weights in
the existing model and create an approach for determining
a common set of weights of voters in a WVS. Weights
obtained from inefficient voters and their sensitivity to the
votes from the worst voters were major shortcomings needed
to be overcome. They built a new model using only the
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Fig. 55.10 Sensitivity on T

information about efficient voter and prevented selection of
zero weights. Moreover, to enlarge the discrimination power
and minimize the possibility of having multiple optimal
solutions, some additional objective functions were used.
Examples of a new generated two-objective function model
are utilized as a combination of the newmodel they built with
the existing model. They addressed some fundamental but
significant works on weights of a WVS, which is crucial to
quantify the system performance. More research needs to be
done on determination of weights of voters, one of the key
components of a WVS.

55.5.2 Application-Related Studies

Besides traditional applications of WVS on target detection,
communication systems, and pattern recognition, WVS can
be applied on more advanced modern applications as the
characteristics of WVS are well established so far. Case stud-
ies such as works mentioned below are indicating accuracy
and effectiveness of weighted voting systems.
Sun and Han [22] proposed a dynamic weighted voting

based on knowledge discovery on multiple classifier systems
to improve its performance. Principal components analy-
sis was used for the feature extraction and decorrelation

to reduce the pattern dimensions. Then, the model of the
new classifier fusion was built by introducing the algorithm
step by step, and experimental results indicate the system
performance of the classification can be improved; therefore,
the proposedmethod in image classification is effective. They
concluded two attractive characteristics including operation
of base classifiers and auto-generation of mass function
induced from interclass in different feature spaces. In such
a way, weights assigned to each output of the base classifier
were able to estimate by the separability of the training
sample sets in relevant feature spaces, and all weights were
able to be calculated by a modified heuristic fusion function
and assigned randomly to each classifier varying with its
output from mass functions.
Levitin [23] studied aWVS of units with nonsimultaneous

outputs delivery, where the decision time of the entire system
was dependent on the distribution of unit weights and on the
value of threshold in decision rule. Decision-making on a
WVS in practice usually had constraint of limited time; there-
with, ameasurement of its performancewas considered as the
expected system decision time. He formulated the problem
of the optimal system equivalent to locate voters’ weights
and threshold that maximize the system reliability while pro-
viding the expected decision time less than a predetermined
value. The algorithm based on universal generating function
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for evaluating WVS reliability and expected decision time
illustrated the existence of the trade-off between the system
reliability and its rapidity.
Liu and Zhang [24] built a WVS model with two different

kinds of unreliable links including type I of two states with
reliable connection and complete failure and type II of three
states with reliable connection, error, and failure. Outputs
of voting units might not be properly transferred to a sink
unit because of the unreliability of links between voting units
and sink units. Wireless sensor network was applied in their
model design and formulation. By illustrating examples, they
studied the influence of a specified link’s reliability and some
system variables on reliability optimization on aWVS.Under
type I links, the system was more reliable with the increase
of link quality or the number of units. If type II links were
applied, the effect from the change on the mean value of unit
reliability was reduced with the increasing number of voting
units. This work focused on a potential component of WVS
that could be significant but easily ignored.

55.6 Conclusion and Future Research

In this chapter, the framework of weighted voting system
with nonidentical voters subject to three types of failure rate
is presented. For the weighted threshold voting system, three
key components including voters,weights, and decision rules
are introduced. Two decision rules are considered. One is a
classic decision rule without indecisive effect, and the other
one is an extended decision rule considering indecisive effect.
System reliability is used to quantify the system performance
of a WVS, and some approximation techniques are applied
under certain purposes. Numeric examples are illustrated to
better understand how WVS evaluate the whole process of
decision-making. Sensitivity analysis is presented via differ-
ent optimization problems with certain constraints. Last but
not least, many related works that cannot be fully explained
are also mentioned to give a brief but full picture of current
results of WVS.

The results of indecisive effect along with recursive evalu-
ation functions presented in this chapter are a recent research.
Although sensitivity analysis shows its potential of widely
usage in practice, some new problems are also induced such
as the new indecisive parameter in decision rule and the types
of inputs. Therefore, some extensions from current research
may be treated as future research works.

• The optimization of system decisions with respect to
decision rule under different assumptions on failure rate
of each voter is mentioned by Sah [25], and it turns out
that the size of voters is strongly related. As the modern
decision rule introduced in this chapter is much more

complicated, it requires more research on optimization
study from the size of voters.

• The indecisive parameter is usually dynamic rather than
static in an HO system; the true distributed indecisive
parameter will maintain the system performance in a
high level. In the meanwhile, the accurate distribution of
indecisive parameter has significant influence on model
optimization. More research is needed to address those
problems.

• Inputs are assumed to be known and played an extremely
important role in computation process in this chapter.
However, this does not conclude all cases. In real, a WVS
is required to generate the decision based on unknown
input, and the problem of how to design the WVS given
unknown inputs to keep the system function as reliable
remains unsolved; a control system may be a key to
be combined in WVS. Also, the state of inputs is an-
other question to investigate, for example, the correlation
between indecisive effect and continuous/discrete inputs
remains unknown. Certain works need to be done for these
meaningful problems.
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Abstract

This chapter deals with statistical problems involving im-
age registration from landmark data, either in Euclidean
2-space R2 or 3-space R3. In this problem, we have two
images of the same object (such as satellite images taken at
different times) or an image of a prototypical object and an
actual object. It is desired to find the rotation, translation,
and possibly scale change, which will best align the two
images. Whereas many problems of this type are two-
dimensional, it should be noted that medical imaging is
often three dimensional.

After discussing several estimation techniques and
their calculation, we discuss the relative efficiency of
the various estimators. These results are important in
choosing an optimal estimator. The relationship of the
geometry of the landmarks to the statistical properties of
the estimators is discussed. Finally we discuss diagnostics
to determine which landmarks are most influential on the
estimated registration. If the registration is unsatisfactory,
these diagnostics can be used to determine which data
points are most responsible and should be reexamined.

Keywords

Image registration · Influence function · Coordinate
measuring machine · Multivariate normal distribution ·
Asymptotic relative efficiency
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56.1 Unknown Coordinate Systems
and Their Estimation

This chapter deals with statistical problems involving image
registration from landmark data, either in Euclidean 2-space
R2 or 3-space R3. In this problem, we have two images of the
same object (such as satellite images taken at different times)
or an image of a prototypical object and an actual object. It
is desired to find the rotation, translation, and possibly scale
change, which will best align the two images. Whereas many
problems of this type are two dimensional, it should be noted
that medical imaging is often three-dimensional.

The samemathematics can be used to determine the errors
in calculated motions of rigid bodies in Euclidean space, or
in the determination of unknown Euclidean coordinates. The
latter might occur, for example, if locations are measured
relative to a moving object (“body coordinates”) and it is
desired to reconcile these locations with respect to a fixed
coordinate system (“space coordinates”).

This chapter focuses on image registrations. However,
scientifically the most compelling example of rigid body
motion is tectonic plates. To a first approximation, tectonic
plates move as a rigid boy on the unit sphere �3 in R3. For
this reason, we will also give results for�3 and the unit circle
�2. A separate chapter [8] in the present volume will focus
primarily on tectonic plate reconstructions.

The chapter has six major sections.
After introducing some mathematical preliminaries, we

introduce the concept of M-estimators, a generalization of
least squares estimation. In least squares estimation, the
registration that minimizes the sum of squares of the lengths
of the deviations is chosen; in M estimation, the sum of
squares of the lengths of the deviations is replaced by some
other objective function. An important case is L1 estimation,
which minimizes the sum of the lengths of the deviations; L1
estimation is often used when the possibility of outliers in the
data is suspected.

The second section of this chapter deals with the calcula-
tion of least squares estimates. Then, in the third section, we
introduce an iterative modification of the least squares algo-
rithm to calculate otherM-estimates. Note that minimization
usually involves some form of differentiation and hence this
section starts with a short introduction to the geometry of the
group of rotations and differentiation in the rotation group.
Many statistical techniques are based upon approximation by
derivatives, and hence, a little understanding of geometry is
necessary to understand the later statistical sections.

The fourth section discusses the statistical properties of
M-estimates. A great deal of emphasis is placed upon the
relationship between the geometric configuration of the land-
marks and the statistical errors in the image registration. It
is shown that these statistical errors are determined, up to a
constant, by the geometry of the landmarks. The constant of

proportionality depends upon the objective function and the
distribution of the errors in the data.

General statistical theory indicates that, if the data error
distribution is (isotropic) multivariate normal, least squares
estimation is optimal. An important result of this section
is that, even in this case when least squares estimation is
theoretically the most efficient, the use of L1 estimation can
guard against outliers with a very modest cost in efficiency.
Here optimality and efficiency refer to the expected size of
the statistical errors. In practice, data is often long-tailed
and L1 estimation yields smaller statistical errors than least
squares estimation. This will be the case with the three-
dimensional image registration example given here.

In the fifth section, we discuss diagnostics that can be used
to determine which data points are most influential upon the
registration. Thus, if the registration is unsatisfactory, these
diagnostics can be used to determine which data points are
most responsible and should be reexamined.

Finally, Chang and Rivest [1] discuss location and regres-
sion estimation in statistical group models and shows how
some of the phenomenon discussed here can be shown to
occur in a more general context. We discuss some of these
results in a sixth section.

56.1.1 Problems of Unknown Coordinate
Systems

Wahba [2] posed the following question. Suppose we have
the directions of certain stars with respect to the unknown
coordinate system of a satellite. How can we estimate the
orientation of the satellite? Let A be the unknown 3 × 3
matrix whose rows represent the axes of the satellite’s co-
ordinate system with respect to a fixed and known (Earth)
coordinate system. Furthermore, let ui be the directions of
the stars with respect to the known coordinate systems, where
each ui is written as a three-dimensional column vector with
unit length. Similarly let vi be the directions of the stars with
respect to the satellite’s coordinate system. Then

vi = Aui + error. (56.1)

In essence the question was to estimate A. Wahba gave the
least squares solution.
Chapman et al. [3] posed the same question in the follow-

ing form. Suppose we have an object defined by a computer-
aided design (CAD) program and a prototype is measured
using a coordinate measuring machine (CMM). The orienta-
tions of lines on the object can be defined by unit vectors par-
allel to the lines and the orientations of planes can be defined
by unit vectors normal to the planes. So we have unit vectors
ui defined by the CAD program and the corresponding unit
vectors vi as measured by the CMM. If A is the coordinate
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system of the CMM relative to the CAD program, then (56.1)
holds.
Chapman et al. again used a least squares estimate Â

of A. The main question of interest, that is, the geometric
integrity of the prototype, was then answered by analyzing
the residuals of vi from Âui.

Since the ui and vi are of unit length, these two problems
involve spherical data.

56.1.2 Image Registration

If we enlarge the inquiry to Euclidean space data, we arrive at
the widely used image registration problem. Suppose ui ∈ Rp
represent the locations of some landmarks in one image, and
vi ∈ Rp the locations of corresponding landmarks in a second
image of the same object. The usual applications occur with
p = 2, 3. Under certain conditions, it might be reasonable to
suppose that

vi = Bui + b+ error (56.2)

for an unknown p × p matrix B and an unknown p-
dimensional column vector b. The matrix B represents a
coordinate change and the vector b represents a translation
of coordinates. The image registration problem is to estimate
B and b.

The model (56.2) also arises in a slightly different context.
Suppose we have landmarks ui on a prototypical face. For
example, the ui might represent the locations of the nose,
the two eyes, the base of the chin, etc. For the purpose of
automated processing of a large number of facial images
of different subjects, we might want to bring each facial
image into alignment with the prototypical image using a
transformation of the form (56.2) where the vi represents the
same locations (nose, two eyes, base of chin, etc.) on the
subject facial image.

In the absence of measurement error, one does not expect
the landmarks on two faces to be related using a transforma-
tion of the form

vi = Bui + b. (56.3)

The reader might be puzzled why a transformation of this
form is under consideration. Statistical error, however, is not
limited tomeasurement error. Statistical error incorporates all
effects not included in the systematic portion of the model. In
building a model of the form (56.2), we hope to separate out
themost important relationship (56.3) between the landmarks
ui on one object and the corresponding landmarks vi on the
other object; the rest is placed in the statistical error.

Unlike the Wahba problem, the unknown (B, b) of the im-
age registration problem, or the unknown A in the Chapman

et al. problem, may not be of primary interest. Rather, they
must be estimated as a preliminary step to more interesting
problems. We will discuss herein the properties of various
methods of estimating these unknowns. These properties
will hopefully help the interested reader to choose a good
estimation technique which will hopefully yield better results
after this preliminary step is completed.

56.1.3 The Orthogonal and Special
Orthogonal Matrices

Consider, for example, the dataset in Table 56.1 from Chang
andKo [4], whichwewill analyze repeatedly in what follows.
This dataset consists of the digitized locations of 12 pairs of
landmarks on the left and right hands of one of the authors.
This is a p= 3 three-dimensional image registration problem.
We might decide that, apart from the statistical error term,
the shape of the two hands is the same; that is, the distance
between two points on one hand is the same as the distance
between the corresponding two points on the other hand.

This distance preserving condition translates mathemat-
ically to the equation BTB = Ip, the p × p-dimensional
identity matrix. We outline a derivation of this well-known
mathematical fact for the primary purpose of introducing the
reader to the mathematical style of the remainder of this
chapter. The distance between two p-dimensional column
vectors v1 and v2 is

‖v2 − v1‖ =
√

(v2 − v1)T (v2 − v1), (56.4)

where the operations on the right-hand side of (56.4) are
matrix multiplication and transposition. If the vi and ui are
related by (56.3),

Table 56.1 12 digitized locations on the left and right hand

Left hand ui Right hand vi
A 5.17 11.30 16.18 5.91 11.16 16.55

B 7.40 12.36 17.50 8.63 10.62 18.33

C 8.56 12.59 17.87 10.09 10.60 18.64

D 9.75 13.62 17.01 10.89 10.95 17.90

E 11.46 14.55 12.96 12.97 10.13 13.88

F 7.10 13.12 12.56 8.79 11.21 13.17

G 8.85 13.82 12.60 10.70 11.10 13.42

H 6.77 13.07 10.32 8.47 11.09 11.35

I 6.26 11.62 13.34 7.28 12.52 14.04

J 6.83 12.00 13.83 8.05 12.42 14.56

K 7.94 12.29 13.84 9.07 12.39 14.86

L 8.68 12.71 13.67 10.15 12.17 14.44

A top of little finger, B top of ring finger, C top of middle finger, D
top of forefinger, E top of thumb, F gap between thumb and forefinger,
G center of palm, H base of palm, I little finger knuckle, J ring finger
knuckle, K middle finger knuckle, L forefinger knuckle



1112 T. Chang

(
vj − vi

)T (
vj − vi

) = [
B
(
uj − ui

)]T [
B
(
uj − ui

)]

= (
uj − ui

)T
BTB

(
uj − ui

)

Thus, if ||vj − vi|| = ||uj − ui|| for all i and j, and if the ui do
not all lie in a (p − 1)-dimensional hyperplane of Rp,

Ip = BTB = BBT. (56.5)

Note that the first equality of (56.5) implies that B−1 =
BT and hence the second equality follows. Matrices which
satisfy condition (56.5) are said to be orthogonal .

On the other hand, we might want to hypothesize that the
two hands (again apart from statistical error) have the same
shape except that one hand might be larger than the other. In
this case, we are hypothesizing

B = γA (56.6)

where A is orthogonal and γ is a positive real number.
In the Wahba and Chapman et al. problems, the rows of A

are known to be an orthonormal basis of R3. Since the (i, j)
entry of AAT is the dot product of the i-th and j-th rows of
A, it follows that A is orthogonal. However, more is known.
Since the unknown coordinate system is known to be right-
handed,

ATA = Ip, det (A) = 1, (56.7)

where det(A) is the determinant of the matrix A. Such matri-
ces are said to be special orthogonal.

In the hands data of Table 56.1, if we use the model (56.2)
with condition (56.6), then A will not be special orthogonal.
This is because the left and right hands have different orienta-
tions. However, it is common in image registration problems
to assume that condition (56.6) is true with A assumed to be
special orthogonal.

Following standard mathematical notation, we will use
O(p) to denote the p × p orthogonal matrices [i.e., the set
of all matrices which satisfy (56.5)] and SO(p) to denote the
subset of O(p) of special orthogonal matrices [i.e., the set of
all matrices which satisfy (56.7)].

56.1.4 The Procrustes and Spherical
RegressionModels

In this chapter, we will be concerned with statistical methods
which apply to the model (56.2) for Euclidean space data
ui, vi ∈ Rp, for arbitrary p, where B satisfies the condition
(56.5) with B constrained to be either orthogonal or special
orthogonal. Following Goodall [5], we will call this model
the Procrustes model.

We will also consider models of the form (56.1), where
the p-vectors ui and vi are constrained to be of unit length,
that is

ui, vi ∈ �p = Sp−1 = {
x ∈ Rp|xTx = 1

}

and A is constrained to be either orthogonal or special or-
thogonal. Following Chang [6], we will call this model the
spherical regression model.

The statistical methodology for these two models can
easily be described in parallel. In general, we will focus on
the Procrustes model, while giving the modifications that
apply to the spherical regression model.

56.1.5 Least Squares, L1, andM Estimation

In Sect. 56.2, we will derive the least squares estimate of A,
γ , b for the Procrustes model. This estimate minimizes

ρ2 (A, γ , b) =
∑
i

‖vi − γAui − b‖2 (56.8)

overall A in either O(p) or SO(p), constants γ > 0, and p-
vectors b ∈ Rp. For the spherical regression model, the least
squares estimate minimizes

ρ2 (A) =
∑
i

‖vi − Aui‖2 (56.9)

= 2n− 2
∑
i

vTi Aui (56.10)

overall A in either O(p) or SO(p). For the second equality in
(56.9), we have used that if 1 = vTv = uTu, then

‖v− Au‖2 = (v− Au)T (v− Au)

= vTv− vTAu− (Au)Tv+ uTATAu

= 2 − 2vTAu.

Least squares estimates have the advantage that an explicit
closed-form solution for them is available. They have the
disadvantage that they are very sensitive to outliers, that is,
points (ui, vi) for which the error term in (56.2) is unusually
large. In the image registration problem, an outlier can arise
in several contexts. It can be the result of a measurement
error, or it can be the result of a misidentified landmark.
Perhaps the image is not very clear, or the landmark (e.g.,
“point of the nose”) cannot be very precisely determined,
or the landmark is obscured (by clouds or shrubs, etc.). Or
perhaps there are places in the image where the image is not
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really rigid, that is, the ideal match (56.3) does not apply very
well. It is easy to conceive of a myriad of situations which
might give rise to outliers.
L1 estimators are often used to ameliorate the effects of

outliers. These estimators minimize

ρ1 (A, γ , b) =
∑
i

‖vi − γAui − b‖ , (56.11)

for the Procrustes model, or the sum of the distances along
the surface of the sphere

ρ1 (A) =
∑
i

arccos
(
vTi Aui

)
(56.12)

for the spherical regression model. Unfortunately, an explicit
closed-form solution for the L1 estimate is not available and it
must be calculated by numerical minimization. We will offer
a few suggestions on approaches for numerical minimization
in Sect. 56.3.5.

The least squares and L1 estimators are special cases of
the so-called M estimators. These estimators minimize an
objective function of the form

ρ (A, γ , b) =
∑
i

ρ0 (si) , (56.13)

where

si = ‖vi − γAui − b‖

and ρ0 is some increasing function. Intermediate between the
least squares and L1 estimate is theHuber estimate for which

ρ0(s) =
{

(s/b)2 s < b
s/b s ≥ b

for some preset constant b. Or we canWindsorize the estimate

ρ0(s) =
{

(s/b)2 s < b
1 s ≥ b

.

In the linear regression context, these and other objective
functions are discussed in Huber [7].

For the spherical regression model, an M-estimator mini-
mizes an objective function of the form

ρ(A) =
∑
i

ρ0 (ti) , (56.14)

where

ti = vTi Aui.

Notice that as v moves away from A u towards the antipodal
point − A u, t = vTA u decreases from 1 to −1. Thus, for
the spherical case, ρ0(t) is chosen to be a decreasing function
of t.

In Sect. 56.4wewill discuss the statistical properties ofM-
estimates.Wewill see how the geometry of the data translates
into the error structure of the estimate. In the image regis-
tration problem, this information can be used, for example,
to help select landmarks. General statistical theory indicates
that under certain conditions (“normal distribution”) the least
squares solution is optimal. However, if we were to use a L1
estimate to guard against outliers, we would suffer a penalty
of 13% for image registrations in two dimensions and only
8% for image registrations in three dimensions, even when
least squares is theoretically optimal. We will make more
precise in Sect. 56.4 how this penalty is defined. The impor-
tant point to realize is that, especially for three-dimensional
image registrations, L1 estimators offer important protections
against outliers in the data at verymodest cost in the statistical
efficiency of the estimator.

In Sect. 56.5, we will discuss diagnostics for the Pro-
crustes and spherical regression models. If the image regis-
tration is not satisfactory, this section will give tools to de-
termine which of the landmarks is causing the unsatisfactory
registration. It will follow, for example, that landmarks that
greatly influence A will have negligible influence on γ and
vice versa.

56.2 Least Squares Estimation

56.2.1 Group Properties ofO(p) and SO(p)

It is important to note that O(p) and SO(p) are groups in the
mathematical sense. That is, if A, B ∈ O(p), then

(AB)T (AB) = BTATAB = BTIpB = Ip

since bothA andB satisfy (56.5). Thus,AB∈O(p). Similarly
if A ∈ O(p), then (56.5) implies that A−1 = AT ∈ O(p).
This implies that O(p) is a group. Furthermore, if det(A) =
det(B) = 1, then det(AB) = det(A)det(B) = 1 and det(A−1)
= 1/det(A) = 1. In summary, we have

If A, B ∈ O(p), then AB ∈ O(p)
and A−1 = AT ∈ O(p)
If A, B ∈ SO(p), then AB ∈ SO(p)
and A−1 = AT ∈ SO(p).

(56.15)

Notice also that, if A satisfies (56.5), then 1 = det
(ATA)= [det(A)]2 so that det(A) = 1, −1.
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56.2.2 Singular Value Decomposition

Given a p × q matrix X its singular value decomposition is

X = O1�OT
2 (56.16)

where O1 ∈ O(p), O2 ∈ O(q) and � is p × q. If p ≤ q, � has
block form

� = [
diag

(
λ1, · · · , λp

)
0(p,q−p)

]

Here diag(λ1, · · · , λp) is a diagonal matrix with entries λ1 ≥
· · · ≥ λp and 0(p,q−p) is a p × (q − p) matrix with all zeros.
If q ≤ p

� =
(

diag
(
λ1, · · · , λq

)
0(p−q,q)

)
.

Most mathematical software packages now include the
singular value decomposition. However, it can be computed
using a package which only computes eigen-decompositions
of symmetric matrices. Suppose temporarily p ≤ q. Since
XXT is a symmetric nonnegative definite matrix, its eigen-
decomposition has the form

XXT = O1�1O1
T

where O1 ∈ O(p) and �1 = diag(λ2
1,· · · , λ2

p) with λ1 ≥ · · ·
≥ λp ≥ 0. The columns of O1 are the eigenvectors of XXT

and λ2
1, · · · , λ2

p are the corresponding eigenvalues. Suppose

λp > 0 and let Õ2 = XTO1�
−1/2
1 . Õ2 is q × p, but

Õ
T
2 Õ2 = �

− 1
2

1 O1
TXXTO1�

− 1
2

1

= �
− 1

2
1 O1

TO1�1O1
TO1�

− 1
2

1

= �
− 1

2
1 �1�

− 1
2

1 = Ip,

so that the columns of Õ2 are orthonormal. Furthermore

O1�
1/2
1 Õ

T
2 = O1�

1/2
1 �

−1/2
1 OT

1X = X.

Filling �
1/2
1 with q − p columns of zeros, and completing

the columns of Õ2 to an orthonormal basis of Rq yields the
decomposition (56.16).

Extensions to the cases when λp = 0 or when q ≤ p will
not be difficult for the careful reader.

56.2.3 Least Squares Estimation in the
Procrustes Model

The least squares estimation of the Procrustes model (56.2)
has long been known (see, for example, Goodall [5]). Let

u = n−1∑
iui, where n is the number of pairs (ui, vi) and

let v be similarly defined. Define the p × p matrix X by

X =
∑
i

(ui − u) (vi − v)T.

Then

ρ2(A, γ , b) =
∑
i

‖vi − γAui − b‖2

=
∑
i

∥∥∥vi − v− γA (ui − u)

− [b− (v− γAu)]
∥∥2

=
∑
i

‖vi − v‖2

− γ
∑
i

(ui − u)TAT (vi − v)

− γ
∑
i

(vi − v)TA (ui − u)

+ γ 2
∑
i

‖ui − u‖2

+ n‖b− (v− γAu)‖2.

All the other cross-product terms sum to zero. Now

∑
i

(vi − v)TA (ui − u)

= ∑
i
Tr

[
(vi − v)TA (ui − u)

]

= ∑
i
Tr

[
A (ui − u) (vi − v)T

] = Tr (AX)

and

∑
i

(ui − u)TAT (vi − v)

= ∑
i

(vi − v)TA (ui − u) = Tr (AX) .

Therefore

ρ2 (A, γ , b) =
∑
i

‖vi − v‖2 − 2γTr (AX)

+ γ 2
∑
i

‖ui − u‖2

+ n‖b− (v− γAu)‖2.

(56.17)

Substituting (56.16),

Tr (AX) = Tr
(
AO1�OT

2

) = Tr
(
OT

2AO1�
)

=
∑
i

λieii,
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where eii are the diagonal entries of OT
2AO1 ∈ O(p). Now

|eii| ≤ 1 and hence Tr(AX) is maximized when eii = 1 or,
equivalently, when OT

2AO1 = Ip. This implies A = O2OT
1 .

Thus, if
(
Â, γ̂ , b̂

)
minimizes (56.17),

Â = O2OT
1 ,

γ̂ = (∑
i ‖ui − u‖2)−1

Tr
(
ÂX

)

= (∑
i ‖ui − u‖2)−1 ∑

i λi,

b̂ = v− γ̂ Âū. (56.18)

If A is constrained to lie in SO(p), we use a modified
singular value decomposition. Let X = Õ1�̃Õ2 be the
(usual) singular value decomposition of X and let

E = diag(1, · · · , 1, −1) (56.19)

be the identity matrix with its last entry changed to −1. Let
O1 = Õ1Eδ1 where δ1 = 0 if Õ1 ∈ SO(p) and δ1 = 1
otherwise.

Similarly define δ2 and O2. Finally write � = �̃Eδ1+δ2 .
Then (56.16) is valid with O1, O2 ∈ SO(p) and λ1 ≥ · · · ≥
λp−1 ≥ |λp|.

This is the modified singular value decomposition.
The least squares estimates, subject to the constraint Â ∈

SO(p), is still given by (56.18) when a modified singular
value decomposition is used for X.

56.2.4 Example: Least Squares Estimates for
the Hands Data

Consider, for example, the hands data in Table 56.1. For this
data

u =
⎡
⎢⎣

7.8975

12.7542

14.3067

⎤
⎥⎦ , v =

⎡
⎢⎣

9.2500

11.3633

15.0950

⎤
⎥⎦ ,

X =
⎛
⎜⎝

⎡
⎢⎣

5.17

11.30

16.18

⎤
⎥⎦ − u

⎞
⎟⎠

⎛
⎜⎝

⎡
⎢⎣

5.91

11.16

16.55

⎤
⎥⎦ − v

⎞
⎟⎠

T

+ · · · +
⎛
⎜⎝

⎡
⎢⎣

8.68

12.71

13.67

⎤
⎥⎦ − u

⎞
⎟⎠

⎛
⎜⎝

⎡
⎢⎣
10.15

12.17

14.44

⎤
⎥⎦ − v

⎞
⎟⎠

T

=
⎡
⎢⎣

34.0963 −6.9083 3.5769

17.3778 −4.9028 −5.6605

− 2.3940 −5.7387 57.8598

⎤
⎥⎦ .

The singular value decomposition X = O1�O2
T is given

by

O1 =
⎡
⎢⎣

0.0465 −0.8896 −0.4544

− 0.1012 −0.4567 0.8838

0.9938 −0.0048 0.1112

⎤
⎥⎦

O2 =
⎡
⎢⎣

−0.0436 −0.9764 −0.2114

− 0.0944 0.2147 −0.9721

0.9946 −0.0224 −0.1015

⎤
⎥⎦

� = diag (58.5564 39.1810 1.8855)

Hence (56.18) yields

Â =
⎡
⎢⎣
0.9627 0.2635 −0.0621

0.2463 −0.9477 −0.2030

0.1123 −0.1801 0.9722

⎤
⎥⎦

γ̂ = 0.9925

b̂ = [−0.7488 24.3115 2.6196
]T

. (56.20)

Notice that det
(
Â
)

= −1, so Â /∈ SO(3). We expect

this result since, as previously remarked, the left and right
hands have different orientations. The value of γ̂ is somewhat
puzzling since the subject is right-handed and one would
expect; therefore, γ > 1. Although, as we will see in Sect.
56.4, the difference between γ̂ and 1 is not significant, a
better estimate would have been achieved if the L1 objective
function (56.11) were numerically minimized instead. In this
case γ̂ = 1.0086. Our analysis will show that the hands
dataset has an outlier and we see here an example of the
superior resistance of L1 estimates to outliers.

56.2.5 Least Squares Estimation in the
Spherical RegressionModel

Least squares estimation for the spherical regression model
is similar to least squares estimation in the Procrustes model.
Let X = ∑

iuiv
T
i and define O1, O2 ∈ O(p) using a singular

value decomposition of X. Then Â = O2OT
1 . If, on the other

hand, it is desired to contrain Â to SO(p), one defines O1,
O2 ∈ SO(p) using a modified singular value decomposition
and, again, Â = O2OT

1 .

56.3 ParameterizingO(p) and SO(p)

To develop the statistical properties of Â, it is necessary to
rewrite O(p) and SO(p) into a smaller number of parameters.
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56.3.1 SO(p) for p= 2

For p = 2,

SO(2) =
{
�2(h) =

(
cos(h) − sin(h)
sin(h) cos(h)

)
|h ∈ R1

}
.

(56.21)

Physically �2(h) represents a rotation of R2 by an angle of h
radians. Since �2(h) = �2(h + 2π ), SO(2) is geometrically
a circle.

Since each element of SO(2) has four entries, it is tempting
to think of SO(2) as four-dimensional. However, as (56.21)
makes clear, SO(2) can be described by one parameter h∈R1.
Thus, SO(2) is really one-dimensional. Suppose we were
constrained to live on a circle �2 (instead of the sphere
�3). At each point on �2 we can only travel to our left
or to our right, and, if our travels were limited, it would
appear as if we only had one-dimensional travel. Mathemati-
cians describe this situation by saying that SO(2) is a one-
dimensional manifold. Manifolds, and their importance to
geometric statistical problems, are further discussed in the
accompanying chapter [8].

Notice also �2(0) = I2 and that, if h is small, then �2(h)
is close to I2. Thus, if h is small, �2(h)x is close to x for
all x ∈ R2. As we shall see, this simple observation is key to
understanding our approach to the statistical properties of Â.

56.3.2 SO(p) for p= 3

SO(3) can be described as the collection of all rotations in R3.
That is,

SO(3) = {
�3 (h) |h ∈ R3

}
(56.22)

where�3(h) is right-hand rule rotation of ‖h‖ radians around
the axis ‖h‖−1h. Writing θ = ‖h‖ and ξ = ‖h‖−1h, so that
ξ is a unit-length three-dimensional vector, it can be shown
that

�3 (h) = �3 (θξ) = cos (θ) I3 + sin (θ)M3 (ξ)

+ (1 − cos (θ)) ξξT
(56.23)

Where

M3 (ξ) = M3

⎛
⎝

ξ1
ξ2
ξ3

⎞
⎠ =

⎛
⎝

0 −ξ3 ξ2
ξ3 0 −ξ1

− ξ2 ξ1 0

⎞
⎠ .

Thus, although each A ∈ SO(3) has nine entries, SO(3) is
actually a three-dimensional manifold.

Again we notice that �3(0) = I3 and that if ‖h‖ is small
then �3(h)x is close to x for all x ∈ R3.

For future use, we note that if C ∈ SO(3), then the axis ξ

of the rotation represented by C satisfies C ξ = ξ . Thus, ξ

is the eigenvector associated to the eigenvalue 1 of C. By
re-representing C in an orthonormal basis which includes
ξ , one can show that the angle of rotation θ of the rotation
represented by C satisfies 1 + 2cos(θ ) = Tr(C). Thus, if ξ

and θ are calculated in this way, �3(θ ξ ) = C.

56.3.3 SO(p) andO(p), for General p,
and theMatrix Exponential Map

For general p, let H be a p × p skew-symmetric matrix;
that is

HT = −H.

We define the matrix exponential map by

exp(H) =
k=∞∑
k=0

Hk

k! .

It can be shown that the skew-symmetry condition implies
that exp(H)[exp(H)]T = Ip and indeed

SO(p) = {exp (H) |H is skew symmetric} (56.24)

A skew-symmetric matrix must have zeros on its main diag-
onal and its entries below the main diagonal are determined
by its entries above the main diagonal. Thus, the skew-
symmetric p × p matrices have p(p − 1)/2 independent
entries, and hence, SO(p) is a manifold of dimension p(p −
1)/2.

Let 0 be a p × p matrix of zeros. Then

exp (0) = Ip. (56.25)

Thus, if the entries of H are small (in absolute value), then
exp(H) will be close to the identity matrix.

For p = 3, it can be shown, by using (56.23), that
�3(h) = exp [M3(h)] for h ∈ R3. Similarly we define for
h ∈ R1 the skew-symmetric matrix

M2(h) =
(
0 −h
h 0

)

and it follows that �2(h) = exp [M2(h)]. Thus, (56.21) and
(56.22) are indeed special cases of (56.24).
O(p) has two connected components; one is SO(p) and the

other is

SO(p)E = {AE|A ∈ SO(p)} ,
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where E has been previously defined in (56.19). Notice that
E is a reflection of Rp through the (p − 1)-dimensional hy-
perplane perpendicular to the last coordinate vector. Indeed
all reflections of Rp are in O(p).

56.3.4 Distribution and Calculation
ofM-Estimates

So, heuristically speaking, suppose we have estimates(
Â, γ̂ , b̂

)
which minimize an objective function of the form

(56.13). What values of the unknown parameters (A, γ , b)
shouldwe consider as reasonable given the data? The obvious
answer, which is fully consistent with the usual practices of
statistics, is those (A, γ , b) which do not excessively degrade

the fit of the best-fit parameters
(
Â, γ̂ , b̂

)
; that is, those (A,

γ , b) for which

ρ (A, γ , b) − ρ
(
Â, γ̂ , b̂

)
=

∑
i

[
ρ0 (‖vi − γAui − b‖)

−ρ0

(∥∥∥vi − γ̂ Âui − b̂
∥∥∥
)]

is not too large.
Recall that, for p = 3, if h is small, then �3(h)ui will be

close to ui. This suggests writing

Â = A�3

(
ĥ
)
, (56.26)

where ĥ ∈ R3. Then Aui = Â�3

(
−ĥ

)
ui will be close to

Âui when ĥ is small. Rather than focus on the distribution
of Â, we will focus on the distribution of the deviation of Â
from A as measured by the (hopefully) small vector ĥ.

Similarly, for p = 2, we will write

Â = A�2

(
ĥ
)
, (56.27)

where ĥ ∈ R1. For general p, one writes

Â = A exp
(
Ĥ
)
, (56.28)

where Ĥ is p × p skew-symmetric.
The most elementary procedures in statistics are based

upon the fact

If X1, · · · , Xn are independent and each Xi is distributedN(μ,
σ 2), then X is distributed N(μ, σ 2/n).

An equivalent result is

If X1,· · · , Xn are independent and each Xi is distributed N(μ,
σ 2), then X − μ is distributed N(0, σ 2/n).

In the latter form, we have an estimator (in this case X) and
the distribution of the deviation ĥ = X − μ of the estimator
from the unknown parameter μ. This is sufficient for both
confidence intervals and hypothesis testing and is analogous
to what we propose to do in Sect. 56.4.

Similarly, in what follows, we will focus on the distri-
butions of ĥ, ĥ or Ĥ (depending upon whether p = 2, 3, or
general) instead of directly giving the distributions of Â. The
reasons for doing so are rooted in the geometry of SO(p) and
are explained in greater detail in Sects. 53.3 and 53.4 of the
accompanying chapter [8].

56.3.5 Numerical Calculation ofM-Estimates
for the Procrustes Model

We use here the geometric insights into SO(p) to propose a
method of minimizing the objective function (56.13) for the
Procrustes model. The simplifications necessary to minimize
the objective function (56.14) for the spherical regression
model should be reasonably clear.

In what follows, it will be convenient to rewrite the Pro-
crustes model

vi = γAui + b+ error

in the equivalent form

vi = γA (ui − ū) + β + error, (56.29)

where β = γAu+ b.
Let ψ(s) = ρ ′

0(s). Differentiating (56.13) with respect to

γ and β, we get that the M-estimates
(
Â,γ̂ , β̂

)
must satisfy

0 =
∑

i
ψ (si) s

−1
i

[
vi − γ̂ Â (ui − u) − β̂

]T
Â (ui − u)

(56.30)

0 =
∑

i
ψ (si) s

−1
i

[
vi − γ̂ Â (ui − u) − β̂

]T
(56.31)

where si =
∥∥∥vi − γ̂ Â (ui − u) − β̂

∥∥∥.
To differentiate (56.13) with respect to A, we note that, if

H is any skew-symmetric matrix, and using (56.25),

0 = d

dt

∣∣∣∣
t=0

{∑
i

ρ0

(∥∥∥vi − γ̂ Â exp (tH) (ui − u) − β̂

∥∥∥
)}

= −γ̂
∑

i
ψ (si) s

−1
i

[
vi − γ̂ Â (ui − u) − β̂

]T
ÂH (ui − u)

= −γ̂Tr
(
X̃ÂH

)
,
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where

X̃ =
∑

i
ψ (si) s

−1
i (ui − u)

[
vi − γ̂ Â (ui − u) − β̂

]T
.

Since H is any skew-symmetric matrix, X̃Â is symmetric.
Equivalently if

X =
∑

i
ψ (si) s

−1
i (ui − u)

(
vi − β̂

)T
(56.32)

then XÂ is symmetric.
Equations (56.32), (56.30), and (56.31) lead to the fol-

lowing iterative minimization algorithm. Start with the least
squares solution given in Sect. 56.2.3 and use these estimates
to calculate si. Using these si and the current guess for Â,
solve (56.30) and (56.31) to update the guesses for γ̂ and
β̂. Now writing X = O1� OT

2 for the singular value decom-
position of X, the next guess for Â is O2OT

1 . This yields
a minimum in O(p). If minimization in SO(p) is desired, a
modified singular value decomposition is used for X instead.

Having updated the guesses for
(
Â, γ̂ , β̂

)
, we now iterate.

For example, consider the hands data of Table 56.1. We
calculate the L1 estimate for which ψ(s) = 1. Starting with
the least squares estimates in (56.20), we convert b̂ to

β̂ = γ̂ Âu+ b̂ = (
9.2500 11.3633 15.0950

)T
(56.33)

We use these least squares estimate as an initial guess; a
single iteration of the minimization algorithm yields the
updated guess

Â =
⎛
⎜⎝
0.9569 0.2823 −0.0690

0.2614 −0.9399 −0.2199

0.1269 −0.1924 0.9731

⎞
⎟⎠ ,

γ̂ = 1.0015,

β̂ = (
9.2835 11.4092 15.0851

)T
.

Convergence is achieved after around a dozen iterations. We
arrive at the L1 estimates

Â =
⎛
⎜⎝
0.9418 0.3274 −0.0760

0.3045 −0.9268 −0.2200

0.1425 −0.1840 0.9725

⎞
⎟⎠ ,

γ̂ = 1.0086, (56.34)

β̂ = (
9.2850 11.4255 15.0883

)T
.

56.4 Statistical Properties ofM-Estimates

56.4.1 The� Matrix and the Geometry
of the ui

Let � be the p × p matrix

� = n−1
∑
i

(ui − u) (ui − u)T

� is nonnegative definite symmetric and hence its eigenval-
ues are real and its eigenvectors form an orthonormal basis of
Rp. We can use this eigen-decomposition of � to summarize
the geometry of the point ui. More specifically, let λ1 ≥
· · · ≥ λp ≥ 0 be the eigenvalues of � with corresponding
eigenvectors e1,· · · , ep. Then e1 points in the direction of the
greatest variation in the ui, and ep in the direction of the least
variation.

56.4.2 Example:� for the Hands Data

For example, for the data of Table 56.1,

u =
⎛
⎝

7.8975
12.7542
14.3067

⎞
⎠

� = 1
12

⎧⎪⎨
⎪⎩

⎡
⎣
⎛
⎝

5.17
11.30
16.18

⎞
⎠ − u

⎤
⎦
⎡
⎣
⎛
⎝

5.17
11.30
16.18

⎞
⎠ − u

⎤
⎦

T

+ · · · +
⎡
⎣
⎛
⎝

8.68
12.71
13.67

⎞
⎠ − u

⎤
⎦
⎡
⎣
⎛
⎝

8.68
12.71
13.67

⎞
⎠ − u

⎤
⎦

T
⎫⎪⎬
⎪⎭

=
⎛
⎝
2.6249 1.2525 0.1424
1.2525 0.8095 −0.5552
0.1424 −0.5552 4.9306

⎞
⎠

λ1 = 5.004, λ2 = 3.255, λ3 = 0.1054,

e1 =
⎛
⎝

−0.0115
− 0.1346
0.9908

⎞
⎠ , e2 =

⎛
⎝

−0.8942
− 0.4420
− 0.0704

⎞
⎠ ,

e3 =
⎛
⎝

−0.4474
0.8869
0.1152

⎞
⎠

Examining the data of Table 56.1, one sees that u is
close to point G, the center of the left palm. Examining
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the displacement of G to C, top of the middle finger, it is
evident that left hand was close to vertically oriented. This is
the direction e1. Examining the displacement of G to E, the
top of the thumb, it appears that the left thumb was pointed
in roughly the direction of the x-axis. This is the direction
of − e2. Thus, the left hand was roughly parallel to the x–z
plane. The normal vector to the plane of the left hand is thus
approximately parallel to the y-axis. This is the direction of
e3. Notice that λ3 is much smaller than λ1 or λ2, indicating
that the thickness of the hand is much smaller than its length
or breadth.

56.4.3 Statistical Assumptions for
the Procrustes Model

Before giving the statistical properties of
(
Â, γ̂ , b̂

)
, it is

necessary to make explicit the statistical assumptions of the
Procrustes model (56.2). These assumptions are:

• u1, · · · , un ∈ Rp are fixed (nonrandom) vectors.
• v1, · · · , vn ∈ Rp are independent random vectors.
• The distribution of vi is of the form f0(si), where si = ||vi

− γA ui − b||. Here (A, γ , b) are unknown, A ∈ SO(p) or
O(p), γ is a positive real constant, and b ∈ Rp.

The most obvious example of a suitable distribution f0 is

f0(s) = (
2πσ 2

)−p/2
e− s2

2σ2 (56.35)

for a fixed constant σ 2. In what follows, we will not need to
know the value of σ 2. In fact, we will not even need to know
the form of f0, only that the distribution of vi depends only
upon its distance si from γAui + b.

The distribution (56.35) is a multivariate normal distri-
bution with mean vector γAui + b and covariance matrix
σ 2Ip. Equivalently, the p components of vi are independent
and each has variance σ 2. If the components of vi were to
have different variances, then the distribution of vi would not
satisfy the Procrustes model assumptions.

In essence we assume that vi is isotropically (i.e., that all
directions are the same) distributed around its mean vector.

56.4.4 Theorem (Distribution of
(
Â, γ̂, b̂

)
for

the Procrustes Model)

Suppose
(
Â, γ̂ , b̂

)
minimize an objective function of the

form (56.13). Let β = γAu+ b and β̂ = γ̂ Âu+ b̂. Then

• Â, γ̂ , and β̂ are independent.
• β̂ is distributed multivariate normal with mean β and

covariance matrix k
n Ip.

• If p = 2, write Â = A�2

(
ĥ
)
, for ĥ ∈ R1. Then ĥ is

normally distributed with mean 0 and variance k
nTr(�)

.

• If p = 3, write Â = A�3

(
ĥ
)
, for ĥ ∈ R3. Let � =

λ1e1eT1 + λ2e2eT2 + λ3e3eT3 be the spectral decomposition
of �. Then ĥ is distributed trivariate normal with mean 0
and covariance matrix

k
n

[
(λ2 + λ3)

−1e1eT1 + (λ3 + λ1)
−1e2eT2
+(λ1 + λ2)

−1e3eT3
]
.

• For general p, write Â = A exp
(
Ĥ
)
, where Ĥ is p

× p skew-symmetric. Then Ĥ has a multivariate normal

density proportional to exp
[
− n

2kTr
(
Ĥ�Ĥ

)]
.

• γ̂ is normally distributed with mean γ and variance k
nTr(�)

.

These results are asymptotic, that is, they are large-sample
approximate distributions.

The constant k is defined to be

k = pE
[
ψ(s)2

]

E2 [ψ ′(s) + (p− 1) ψ(s)s−1]
, (56.36)

where ψ(s) = ρ ′
0(s). Thus, k can be estimated from the

sample by

k̂ = np
∑

iψ(si)
2

{∑
i

[
ψ ′ (si) + (p− 1) ψ (si) s

−1
i

]}2 , (56.37)

where si =
∥∥∥vi − γ̂ Âui − b̂

∥∥∥.
Theorem 56.4.4 is proven in Chang and Ko [4]. (In [4],

s is defined to be s =
∥∥∥v− γ̂ Âu− b̂

∥∥∥
2
and this causes

the formulas (56.36) and (56.37) to be written somewhat
differently there.)

56.4.5 Example: A Test of γ = 1

For the hands data, the least squares estimates were given
in Example 56.2.4. Table 56.2 gives the calculation of the
si. Substituting p = 3, ρ0(s) = s2, ψ(s) = 2s into (56.37),
k̂ = (3n)−1 ∑

is
2
i = 0.0860.

To test if the two hands are the same size, we test γ = 1.
Using Example 56.4.2, Tr(�) = 8.365. Hence, the variance
of γ̂ is 0.000860 and its standard error is 0.0293. Since γ̂ =
0.9925, we see that γ̂ is not significantly different from 1.
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Table 56.2 Calculation of residual lengths for data from Table 56.1

Predicted v̂i Residual si
γ̂ Âui + b̂ vi − v̂i

∥∥vi − v̂i
∥∥

A 6.148 11.687 16.868 −0.238 −0.527 −0.318 0.660

B 8.475 10.969 18.207 0.155 −0.349 0.123 0.401

C 9.620 10.962 18.654 0.470 −0.362 −0.014 0.593

D 11.080 10.457 17.769 −0.190 0.493 0.131 0.544

E 13.206 10.816 13.865 −0.236 −0.686 0.015 0.726

F 8.691 11.176 13.247 0.099 0.034 −0.077 0.129

G 10.544 10.938 13.355 0.156 0.162 0.065 0.234

H 8.501 11.594 11.046 −0.031 −0.504 0.304 0.589

I 7.449 12.225 14.178 −0.169 0.295 −0.138 0.367

J 8.062 11.908 14.649 −0.012 0.512 −0.089 0.520

K 9.198 11.904 14.730 −0.128 0.486 0.130 0.519

L 10.026 11.724 14.573 0.125 0.446 −0.133 0.481

The L1 estimate of γ is 1.0086. To calculate the standard
error of this estimate, we use ρ0(s) = s and ψ(s) = 1. Hence,

for the L1 estimate, (56.37) yields k̂ = 0.75
(
n−1∑

is
−1
i

)−2
.

After recomputing the si using L1 estimates of (A, γ , b), we
obtain k̂ = 0.023. Thus, the L1 estimate of γ has a standard
error of 0.0150 and this estimate is also not significantly
different from 1.

Apparently, the two hands have the same size.
General statistical theory implies that if the vi were really

normally distributed, the least squares estimates would be the
most efficient. In other words, least squares estimates should
have the smallest standard errors. Evidently this is not true
for the hands data and it appears that this data is not, in fact,
normally distributed.

56.4.6 Example: A Test on A

As discussed in Sect. 56.4.2, the eigenvector e3 of � is
perpendicular to the plane of the left palm. It might be of
interest to test if the two hands have the same orientation;
that is, after reflecting the left hand in the plane perpendicular
to e3, do the fingers and thumb of the two hands point in
the same directions. We formulate this hypothesis as H0 :
A = Re3 where Re3 is the matrix of the reflection in plane
perpendicular to e3.

Re3 = I3 − 2e3eT3

=
⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠ − 2

⎛
⎜⎝

−0.4474

0.8869

0.1152

⎞
⎟⎠

⎛
⎜⎝

−0.4474

0.8869

0.1152

⎞
⎟⎠

T

=
⎛
⎜⎝

0.5996 0.7936 0.1031

0.7936 −0.5731 −0.2044

0.1031 −0.2044 0.9734

⎞
⎟⎠ ,

ĥ is defined by

�3

(
ĥ
)

= RT
e3Â

=
⎛
⎝

0.7843 −0.6127 −0.0976
0.5999 0.7890 −0.1327
0.1583 0.0455 0.9863

⎞
⎠ ,

(56.38)

where Â was calculated in Sect. 56.2.4.
To solve for ĥ, we use the results at the end of Sect.

56.3.2. The matrix of (56.38) has an eigenvector of ξ =(
0.1395 −0.2003 0.9494

)T
corresponding to the eigenvalue

of 1. Its angle of rotation is given by

θ = arccos
[
0.5Tr

(
RT
e3Â

)
− 0.5

]
= 0.6764.

Thus, ĥ = θξ = (
0.0944 −0.1355 0.6422

)T
.

By Theorem 56.4.4, if H0 is true, ĥ is trivariate normally
distributed with mean 0 and covariance matrix

k

n

[
(λ2 + λ3)

−1e1eT1 + (λ3 + λ1)
−1e2eT2 + (λ1 + λ2)

−1e3eT3
]
.

The constant k was estimated in Sect. 56.4.5 and the λi and ei
were calculated in Sect. 56.4.2. Using these calculations, the
covariance matrix of ĥ is estimated to be

Ĉov
(
ĥ
)

=
⎛
⎝

0.001296 0.0002134 0.00001923
0.0002134 0.0009951 −0.0001520
0.00001923 −0.0001520 0.002112

⎞
⎠

Under the null hypothesis

χ2 = ĥ
T
Ĉov

(
ĥ
)−1

ĥ = 213
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has an approximate χ2 distribution with three degrees of
freedom.

We emphatically conclude that, after reflecting the left
hand, the orientations of the two hands are not the same.

56.4.7 Asymptotic Relative Efficiency of Least
Squares and L1 Estimates

Examining Theorem 56.4.4, we see that the covariance of

the M-estimate
(
Â, γ̂ , b̂

)
is determined, up to a constant k,

by the geometry of the ui, as summarized by the matrix �.
Only the constant k, see (56.36), depends upon the probability
distribution of the vi and the objective function (56.13) that(
Â, γ̂ , b̂

)
minimize. Furthermore, a sample estimate of k, see

(56.37) is available which does not require knowledge of the
distribution of the vi.

Let k(f0, L2) denote the constant k as defined in (56.36)
when the underlying density is of the form f0 and least squares
(L2) estimation is used, and k(f0, L1) the corresponding value
when L1 estimation is used. The ratio ARE(L1, L2; f0) =
k(f0, L2)/k(f0, L1) is called the asymptotic relative efficiency
of the L1 to the least squares estimators at the density f0.

We see that

ARE (L1, L2; f0) = Variance of least squares estimator

Variance of L1 estimator
,

(56.39)

where we recognize that both variances are matrices, but the
two variance matrices are multiples of each other.

If f0 is a p-dimensional normal density (56.35), it can be
shown from (56.36) that

ARE
(
L1, L2;Np

) = 2�2 [(p+ 1) /2]
p�2 (p/2)

. (56.40)

We have used Np in (56.40) to denote the p-dimensional
normal density function.

The � function in (56.40) has the properties

�(1) = 1 �(0.5) = √
π

�(q+ 1) = q�(q).

Thus, when p = 2, 3

ARE (L1, L2; N2) = π
4 = 0.785,

ARE (L1, L2; N3) = 8
3π = 0.849.

(56.41)

ARE(L1, L2; Np) increases to 1 as p →∞.
When the underlying distribution is normal, statistical the-

ory indicates that least squares procedures are optimal, that

is, they have the smallest variance. Using (56.39) and (56.41),
we see that for p = 3, even when the data is normal, the use
of L1 methods results in only an 8% penalty in standard error.
And L1 methods offer superior resistance to outliers.

Indeed, as we saw in Example 56.4.5, the standard error
of the L1 estimator was smaller than the standard error of the
least squares estimator. Evidently the hands dataset is long-
tailed, that is, it has more outliers than would be expected
with normal data.

56.4.8 The Geometry of the Landmarks
and the Errors in Â

In this section, we will constrain our discussion to the case
p = 3.

Suppose we write the estimate Â in the form

Â = A�3

(
ĥ
)

. (56.42)

�3

(
ĥ
)
is a (hopefully) small rotation which expresses the

deviation of the estimate Â from the true value A.

Recall that �3

(
ĥ
)
is a rotation of

∥∥∥ĥ
∥∥∥ radians around the

axis
∥∥∥ĥ

∥∥∥
−1
ĥ.

In particular �3

(
ĥ
)−1 = �3

(
−ĥ

)
and

A = Â�3

(
−ĥ

)
.

According to Theorem 56.4.4, the covariance matrix of ĥ
has the form

Cov
(
ĥ
)

= k
n

[
(λ2 + λ3)

−1e1eT1 + (λ3 + λ1)
−1e2eT2

+ (λ1 + λ2)
−1e3eT3

]
,

(56.43)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of� with correspond-
ing eigenvectors e1, e2, e3. Since ĥ is normally distributed

χ2 = ĥ
T
[
Cov

(
ĥ
)−1

]
ĥ

is distributed χ2 with three degrees of freedom.
Thus, a confidence region for A is of the form

{
Â�3

(
−ĥ

)∣∣∣ ĥT
[
Cov

(
ĥ
)−1

]
ĥ < χ2

3,α

}
, (56.44)

where χ2
3,α is the appropriate critical point of a χ2

3 distribu-
tion.
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Let θ =
∥∥∥ĥ

∥∥∥ and ξ = −
∥∥∥ĥ

∥∥∥
−1
ĥ so that ĥ = −θξ .

Thus, �3

(
ĥ
)
is a rotation of θ radians around the axis ξ .

Substituting (56.43) into the confidence region (56.44),
we can re-express this confidence region as

{
Â �3 (θξ) | θ2 n

k

[
(λ2 + λ3)

(
ξTe1

)2 + (λ3 + λ1)
(
ξTe2

)2

+ (λ1 + λ2)
(
ξTe3

)2]
< χ2

3,α

}
.

(56.45)

Now

λ2 + λ3 ≤ λ3 + λ1 ≤ λ1 + λ2.

Thus, the confidence region (56.45) constrains θ the most
(i.e., the limits on θ are the smallest) when ξ points in the
direction e3. It bounds θ the least when ξ points in the
direction e1.

Recall also that e1 is the direction of the greatest variation
in the ui and e3 the direction of the least variation.

For the hands data of Table 56.1, e1 points in the direction
of the length of the left hand and e3 in the normal direction
to the palm.

Thus, the angle θ of the small rotation �3(θ ξ ) is the most
constrained when its axis ξ points in the direction of the least
variation in the ui. θ is least constrained when ξ points in the
direction of the greatest variation of the ui.

For the hands data, if ĥ is in the direction of e1, the length
of the hand, it represents a small rotation at the elbow with
the wrist held rigid. The variance of the deviation rotation ĥ
in the direction e1 is (λ2 + λ3)−1 = 0.298. If ĥ points in the
direction of e2, the width of the hand, it represents a forwards
and backwards rotation at the wrist; the variance of ĥ in this
direction is (λ3 + λ1)−1 = 0.196. Finally if ĥ points in the
direction of e3, the normal vector to the hand, it represents
a somewhat awkward sideways rotation at the wrist (this
rotation is represented in Fig. 56.1b; the variance of ĥ in this
direction is (λ1 + λ2)−1 = 0.121. If the variability of the
component of ĥ in the direction of a rotation at the elbow is
unacceptably large, we could increase λ3, in effect to create,
if possible, landmarks which effectively thicken the palm.

A heuristic derivation of this result is due to Stock and
Molnar [9, 10]. It appeared in the geophysical literature and
is considered a major development in our understanding of
the uncertainties in tectonic plate reconstructions. We will
present their argument below, suitablymodified for the image
registration context.

It is convenient to rewrite themodel, as in Theorem 56.4.4,
in the form (56.29). If we substitute A = Â�3 (θξ), we see
that A first perturbs the ui − u by the small rotation �3(θ ξ )
and then applies the best fitting orthogonal matrix Â.

Ca) b)

E

�

�

d(C,e3)

d(E,e1)

e1

e2

C

E

Fig. 56.1 (a) A hand with axes e1, e2; axis e3 points out of paper.
X marks the center point u. The distances d(C, e3) and d(E, e1) are
the lengths of the indicated line segments. (b) The effect of a rotation
of angle θ around the axis e3. The point C moves a distance of
approximately d(C, e3)θ . Under a rotation of θ around e1 (not shown),
the point E moves a distance of approximately d(E, e1)θ . Notice that
d(E, e1) < d(C, e3), and, indeed, the landmarks ui tend to be closer to e1
than to e3. It follows that a rotation of θ around e3 will move the figure
more than a rotation of θ around e1

Let d(ui, ξ ) be the distance of the landmark ui to the
line through the center point u and in the direction of the
axis ξ . Refer to Fig. 56.1. Since the landmarks vary most in
the direction e1 and least in the direction e3, the distances
d(ui, e3) will tend to be biggest and the distances d(ui, e1)
smallest.

A point x will move a distance of approximately d(x, ξ )θ
under a rotation of angle θ around the axis ξ . It follows that
a rotation of angle θ will most move the landmarks ui if the
axis is e3. It will move the landmarks ui least if the axis is
e1. In other words, for a fixed θ , the small rotation �3(θ ξ )
will most degrade the best fit, provided by Â, if ξ = e3; it will
least degrade the best fit if ξ = e1.

An orthogonal transformation A = Â�3 (θξ) is consid-
ered a possible transformation if it does not degrade the best
fit by toomuch. It follows that θ is most constrained if ξ = e3,
the direction of the least variation in the landmarks ui, and is
least constrained if ξ = e1, the direction of greatest variation
in the landmarks ui.

Suppose instead we were to write the estimate Â in the
form

Â = �3

(
ĥv
)
A,

A = �3

(
−ĥv

)
Â.

(56.46)

Then (56.43) is replaced by
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Cov
(
ĥv
)

= k

n

[
(λ2 + λ3)

−1 (Ae1) (Ae1)T

+ (λ3 + λ1)
−1 (Ae2) (Ae2)T

+(λ1 + λ2)
−1 (Ae3) (Ae3)T

]
.

The same reasoning then expresses the errors of ĥv, and
hence of Â, in terms of the geometry of the landmarks vi. In
other words, for the hands data, using the definition (56.46)
expresses the errors of Â in terms of the orientation of the
right hand.

56.4.9 Statistical Properties ofM-Estimates for
Spherical Regressions

The statistical assumptions of the spherical regression model
(56.1) are:

• u1,· · · , un ∈ �p are fixed (nonrandom) vectors.
• v1,· · · , vn ∈ �p are independent random vectors.
• The distribution of vi is of the form f0(ti) where ti = viTA
ui. Here A ∈ SO(p) or O(p) is unknown.

A commonly used distribution for spherical data x ∈ �p

is the distribution whose density (with respect to surface
measure, or uniform measure, on �p) is

f (x; θ) = c (κ) exp
(
κxTθ

)
. (56.47)

This distribution has two parameters: a positive real con-
stant κ which is commonly called the concentration param-
eter and θ ∈ �p. It is easily seen that f (x) is maximized over
x ∈ �p at θ and hence θ is usually referred to as the modal
vector; c(κ) is a normalizing constant.

If κ = 0, (56.47) is a uniform density on �p. On the other
hand as κ →∞, the density (56.47) approaches that of a
multivariate normal distribution in p − 1 dimensions with a
covariance matrix of κ−1Ip−1. Thus, intuitively we can think
of κ as σ−2, that is, think of κ as the inverse variance. As
κ →∞, (56.47) approaches a singular multivariate normal
distribution supported on the (p − 1)-dimensional subspace
θ⊥ ⊂ Rp. As a singular multivariate, normal distribution in
Rp its covariance matrix is κ−1(Ip − θθT).

For the circle �1, (56.47) is due to von Mises. For general
�p, it is due (independently) to Fisher and to Langevin. More
properties of the Fisher–von Mises–Langevin distribution
can be found inWatson [11] or in Fisher et al. [12].

The distribution of an M-estimator Â which minimizes
an objective function of the form (56.14) is similar to the
distribution given in Theorem 56.4.4:

• If p = 2, write Â = A�2

(
ĥ
)
, for ĥ ∈ R1. Then ĥ is

normally distributed with mean 0 and variance k
n .

• If p= 3, write Â = A�3

(
ĥ
)
, for ĥ ∈ R3. Let � = λ1e1eT1

+ λ2e2eT2 + λ3e3eT3 be the spectral decomposition of �.
Then ĥ is distributed trivariate normal with mean 0 and
covariance matrix

k

n

[
(λ2 + λ3)

−1e1eT1 + (λ3 + λ1)
−1e2eT2

+(λ1 + λ2)
−1e3eT3

]
.

• For general p, write Â = A exp
(
Ĥ
)
, where Ĥ is p

× p skew-symmetric. Then Ĥ has a multivariate normal

density proportional to exp
[
− n

2kTr
(
Ĥ

T
�Ĥ

)]
.

Let ψ(t) = −ρ ′
0(t). (The sign of ψ has been chosen to

make ψ(t) nonnegative, since ρ0 is a decreasing function
of t.) The constant k and its sample estimate k̂ are given by

k = (p−1)E[ψ(t)2(1−t2)]
E2[(p−1)ψ(t)t−ψ ′(t)(1−t2)] ,

k̂ = n(p−1)
∑

iψ(ti)
2(1−t2i ){∑

i[(p−1)ψ(ti)ti−ψ ′(ti)(1−t2i )]
}2 .

(56.48)

For the spherical case, the matrix � = ∑
iuiu

T
i . Its

dominant eigenvector e1 points in the direction of the center
of the ui. The e2 is the vector perpendicular to e1 so that
the two-dimensional plane spanned by e1 and e2 (and the
origin) best fits the ui. This continues until e1,· · · , ep−1 is the
(p − 1)-dimensional hyperplane, among the collection of all
(p− 1)-dimensional hyperplanes that bests fits the data. This
latter hyperplane is, of course, the hyperplane perpendicular
to ep. Except for this slight reinterpretation of the geometric
meaning of the ei, our previous comments about the relation-
ship of the uncertainties in ĥ to the geometry of the u-points,
as summarized by the eigen-decomposition of �, remain
valid. Indeed the original Stock andMolnar insights about the
uncertainties of tectonic plate reconstructions were actually
in the spherical data context.

Thus, as before, the uncertainties in Â are determined up
to the constant k by the geometry of the u-points. Only the
constant k depends upon the underlying data distribution f0 or
upon the objective function ρ. We can define the asymptotic
relative efficiency as in Sect. 56.4.7 without change. Its
interpretation (56.39) also remains valid.

Equation (56.48) implies that we can, as before, define the
asymptotic efficiency of the L1 estimator relative to the least
squares estimator, at the density f0, as ARE(L1, L2; f0)= k(f0,
L2)/k(f0, L1). The interpretation (56.39) remains valid. The
constants k(f0, L2) and k(f0, L1) come from (56.48) using the
underlying density f0 under consideration and ρ0(t) = 2 −
2t [refer to (56.9)], ψ(t) = 2, for the least squares case, or

ρ0(t)= arccos(t),ψ(t) = (
1 − t2

) 1
2 , for the L1 case. If f0 is the

Fisher–von Mises–Langevin density (56.47) on �p (which
we will denote by Fκ ,p in the following)
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Fig. 56.2 Asymptotic efficiency of L1 estimators relative to least
squares estimators for Fisher–von Mises–Langevin distributions on �p
as a function of κ for (a) p = 2 and (b) p = 3. Horizontal lines are
asymptotic limits as κ →∞.

ARE
(
L1, L2; Fκ ,p

)

=
[∫ 1

−1e
κt(1−t2)(p−2)/2

dt
]2

[∫ 1
−1e

κt(1−t2)(p−1)/2
dt
] 1[∫ 1

−1e
κt(1−t2)(p−3)/2

dt
] .

(56.49)

As κ → ∞, the limit of (56.49) is

limκ→∞ ARE
(
L1, L2; Fκ ,p

)

= 2�2(p/2)
(p−1)�2[(p−1)/2] .

(56.50)

Comparing (56.40) with (56.50), we see that (56.50) is the
same as (56.40) with p replaced by p− 1. This is as expected
because, as noted above, for large κ the Fisher–von Mises–
Langevin distribution approaches a (p− 1)-dimensional mul-
tivariate normal distribution. Figure 56.2 gives a graph of
ARE(L1, L2; Fκ ,p) for p = 2, 3.

In particular for p = 3, ARE(L1, L2; Fκ ,3) → π /4. For
the Fisher–von-Mises–Langevin distribution, least squares
methods are optimal. Nevertheless, in standard error terms,
the penalty for using L1 methods is at most 13%.

56.5 Diagnostics

We discuss in this section influence function diagnostics for
the Procrustes model. Suppose the registration provided by

the estimates
(
Â, γ̂ , b̂

)
is unsatisfactory. These diagnostics

will determine which points are influential for the estimated
orthogonal matrix Â, which points are influential for the
estimated scale change γ̂ , and which are influential for the
estimated translation b̂.

56.5.1 Influence Diagnostics in Simple Linear
Regression

As background discussion, we consider first the simple linear
regression model

yi = α + βxi + error, (56.51)

where xi, yi ∈ R1. For simplicity, we will assume
∑

ixi = 0.
This can be accomplished by a centering transformation
similar to that used in (56.29).

For the model (56.51), the least squares estimates are

α̂ = y,

β̂ =
(∑

i
x2i

)−1 (∑
i
xiyi

)
.

(56.52)

Suppose we delete the i-th observation (xi, yi) and recom-
pute the estimates (56.52). The resulting estimates would be
[see Cook andWeisberg [13], (Sect. 3.4.6)]

α̂(i) = α̂ − (1 − vii)
−1 ei

n ,

β̂(i) = β̂ − (1 − vii)
−1 xiei∑

k x
2
k

, (56.53)

where

ei = yi − α̂ − β̂xi

is the residual, and

vii = 1

n
+ x2i∑

k x
2
k

is the i-th diagonal entry of the so-called hatmatrix. It can be
shown that

0 ≤ vii ≤ 1,∑
i
vii = 2. (56.54)

If |xi| is big, 1 − vii can be close to zero, although because
of (56.54), if n is large, this will usually not be the case.
Ignoring the factor of (1 − vii)−1, it follows from (56.53)
that deletion of (xi, yi) will be influential for α̂ when the
magnitude of the residual |ei| is big. Deletion of (xi, yi) will
be influential for β̂ when both |xi| and |ei| are big. Points with
large values of |xi| [typically, due to (56.54), | xi | > 4

n ] are
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called high-leverage points, whereas points with large values
of |ei| are called outliers. (Recall we have centered the data
so that x = 0.)

Thus, influence on α̂ and on β̂ is different. Outliers are
influential for α̂, whereas influence for β̂ is a combination
of being an outlier and having high leverage. For the model
(56.51) with the least squares estimators, the influence func-
tion works out to be

IF [α̂; (xi, yi)] = yi − α − βxi
n

, (56.55)

IF
[
β̂; (xi, yi)

]
= xi (yi − α − βxi)∑

k x
2
k

, (56.56)

where α and β are the “true” population values in the model
(56.51). We will not give a formal definition of the influence
function here, but refer the reader to Cook and Weisberg
[13] for a more comprehensive discussion of the influence
function in the regression model.

It should be noted that to actually calculate (56.55) and
(56.56) from a sample, it is necessary to estimate α and β.
Thus, even though in the left-hand sides of (56.55) and
(56.56), α̂ and β̂ are least squares estimates, we should
substitute in the right-hand sides of (56.55) and (56.56) better
estimates, if available, of α and β. There is no contradiction
in using L1 estimates to estimate the influence function of the
least squares estimators.

56.5.2 Influence Diagnostics for the Procrustes
Model

Chang andKo [4] calculated the standardized influence func-
tions (SIF) for M-estimates (56.13) in the Procrustes model
(56.29). (The influence functions of the estimates Â and β̂

are vectors; the standardization calculates their square length
in some metric.) Using their notation

∥∥∥SIF
[
β̂; (ui, vi)

]∥∥∥
2 = kIψ(si)

2, (56.57)

where si = ‖vi − γA (ui − u) − β‖ and ψ(s) = ρ ′
0(s).

Therefore

• The influence of (ui, vi) on the estimate β̂ of the translation
parameter depends only upon the length si of the residual.

This behavior is similar to that of simple linear regression
(56.55). The constant kI is given by

kI = pE
[
g′(s)2

]

E2 [ψ ′(s) + (p− 1) ψ(s)s−1]
,

where g(s) = logf0(s) and f0(s) is defined in Sect. 56.4.3.

For the scale parameter γ , let � = n−1∑
i (ui − u)

(ui − u)T. Then

∥∥∥SIF
[
γ̂ ; (ui, vi)

]∥∥∥
2 = kIψ(si)

2

Tr (�)

[
wT
i A (ui − u)

]2
.

(56.58)

Here

wi = [vi − γA (ui − u) − β] /si.

Notice that vi − γA (ui − u) − β is the residual of the i-th
data point and si is its length. Thus, wi is a unit-length vector
in the direction of the i-th data point residual. We conclude

• For a given length si of residual, a point (ui, vi) will be
influential for the estimate γ̂ of the scale parameter if ui
is far from the center u of the data and if its residual is
parallel to A (ui − u).

For simplicity, we restrict the formulas of influence on the
estimate of the orthogonal matrixA to the cases p= 2, 3. For
p = 2,

∥∥∥SIF
[
Â; (ui, vi)

]∥∥∥
2 = kIψ(si)

2

Tr(�)

∥∥wi × [A(ui − u)]
∥∥2

(56.59)

The product on the right-hand side of (56.59) is the vector
“cross” product. Therefore

• For p = 2, for a given length si of residual, a point (ui,
vi) will be influential for the estimate Â of the orthogonal
matrix if ui is far from the center u of the data and if its
residual is perpendicular to A (ui − u). Thus, points that
are influential for Â will not be influential for γ̂ , and vice
versa. Indeed

∥∥∥SIF
[
γ̂ ; (ui, vi)

]∥∥∥
2 +

∥∥∥SIF
[
Â; (ui, vi)

]∥∥∥
2

= kIψ(si)
2

Tr(�)
‖ui − u‖2.

For p = 3, let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of � and
let e1, e2, e3 be the corresponding eigenvectors. Write

wi ×
(
A

ui − u
‖ui − u‖

)
= x1Ae1 + x2Ae2 + x3Ae3.

Then

∥∥∥SIF
[
Â; (ui, vi)

]∥∥∥
2 = kIψ(si)

2‖ui − u‖2
(

x21
λ2 + λ3

+ x22
λ3 + λ1

+ x23
λ1 + λ2

)
(56.60)
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It follows

• For p = 3, for a given length si of residual and distance
‖ui − u‖ of ui from the center of the data, a point (ui,
vi) will be maximally influential for the estimate Â of the
orthogonal matrix if both ui − u is perpendicular to the
dominant eigenvector e1 of � and the residual

wi = ±A
(

ui − u
‖ui − u‖ × e1

)
.

• The influence of (ui, vi) on Â will be zero if

wi = ±Â
(

ui − u
‖ui − u‖

)
.

• The maximum influence of the data on the estimate Â of
the orthogonal matrix can beminimized for fixed Tr(�) by
making λ1 = λ2 = λ3. Thus, the optimal choice of land-
marks would make the landmarks spherically symmetric
around the center point u.

56.5.3 Example: Influence for the Hands Data

For the Procrustes model (56.29) and the hands data, we
compare here the influence statistics for the least squares es-

timates
(
Â2, γ̂2, β̂2

)
[given in (56.20) and (56.33)] to those

for the L1 estimates
(
Â1, γ̂1, β̂1

)
[in (56.34)]. These estimates

correspond to ψ2(s) = s and ψ1(s) = 1, respectively. In the
right-hand sides of (56.57), (56.58), and (56.60), we substi-
tuted vi − γ̂1Â1 (ui − u)− β̂1 to calculate the influence func-
tions for both the L1 and least squares estimates. Similarly
the wi were calculated using the L1 estimates. Furthermore,
when (56.57), (56.58), and (56.60) were calculated for the
i-th observation (ui, vi), ui was not used to calculate �.

Using (56.57),

∥∥∥SIF
[
β̂2; (ui, vi)

]∥∥∥
2 ∝ s2i ,∥∥∥SIF

[
β̂1; (ui, vi)

]∥∥∥
2 ∝ 1,

so that E (top of thumb), followed by H (base of palm), are
the most influential for β̂2. All points are equally influential
for β̂1.

In what followswewill be interested in determiningwhich
data points are most influential for which estimates. In other
words, we will be interested in the relative values of ||SIF||2.
Thus, for each estimator, we renormalized the values of
||SIF||2 so that their sum (over the 12 data points) equals
1. The results, together with the values of si, are shown in
Fig. 56.3.

We have from (56.58) and (56.60)

∥∥∥SIF
[
γ̂2; (ui, vi)

]∥∥∥
2 ∝ s2i

[
wT
i A (ui − u)

]2
,

∥∥∥SIF
[
γ̂1; (ui, vi)

]∥∥∥
2 ∝ [

wT
i A (ui − u)

]2
,

∥∥∥SIF
[
Â2; (ui, vi)

]∥∥∥
2 ∝ s2i ‖(ui − u)‖2

(
x21

λ2+λ3
+ x22

λ3+λ1
+ x23

λ1+λ2

)
,

∥∥∥∥SIF
[
Â1; (ui, vi)

]∥∥∥
2 ∝

∥∥∥ (ui − u)

∥∥∥∥
2

(
x21

λ2+λ3
+ x22

λ3+λ1
+ x23

λ1+λ2

)
,

wi ×
[
Â1

ui−u
‖ui−u‖

]
= x1Â1e1 + x2Â1e2 + x3Â1e3.

Examining Fig. 56.3, we see that point E is by far the most
influential point for Â. Its relative influence however can
be somewhat diminished by using L1 estimates. The value
of ‖uE − u‖ is also the largest of the ‖ui − u‖. It turns out
that uE − u makes an angle of 13◦ with e2 and that the unit
length wE makes an angle of 12◦ with Â1e3. Thus, x1 will be
relatively big and x2, x3 relatively small. This accounts for the
strong influence of point E on both estimates of A. Notice
that sE and ‖uE − u‖ are sufficiently big that, despite the
directions of wE and Â1 (uE − u), E is still fairly influential
for γ̂2. However, its influence on γ̂1, which does not depend
upon sE, is quite small.

The point H (base of the palm) is the most influential point
for γ̂ . H is perhaps the least well-defined point so that it is
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Fig. 56.3 Relative influence of hands data points on least squares
(upper case) and L1 estimates (lower case) of γ and A
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not surprising that its residual length sH is relatively big. It
also defines the length of the hand, so that its influence on
γ̂ is not surprising. Indeed if H were completely deleted, γ̂2
would change from 0.9925 to 1.0110 and γ̂1 changes from
1.0086 to 1.0262.

One might think that C (top of the middle finger) would
also be influential for γ̂ . In a coordinate system of the
eigenvectors of �,

uH − u = [−3.98 1.15 0.33]T

uC − u = [3.55 − 0.77 − 0.03]T

so that uH − u ≈ − (uC − u). It is useful here to remember
that e1 is approximately in the direction of the length of the
left hand. Furthermore, sC and sH are reasonably close.

However, Fig. 56.3 indicates that C has negligible influ-
ence on both estimates of γ . Indeed if C were completely
deleted, γ̂2 would only change from 0.9925 to 0.9895 and
γ̂1 change from 1.0086 to 1.0047. These changes are much
smaller than those caused by the deletion of H.

The difference is that Â1 (uC − u) makes an angle of
88◦ with wC. In other words, Â1 (uC − u) and wC are very
close to perpendicular. (Perhaps the close to perpendicularity
of the residual at C to Â1 (uC − u) is to be expected. The
uncertainty in locating C is roughly tangential to the middle
finger tip.) Hence, the influence of C on γ̂ is negligible.

On the other hand, Â1 (uH − u) makes an angle of 124◦
with wH. This accounts for the greater influence of H.

Thus, if the registration between the two hands is unsatis-
factory in either the translation or rotation parameters, point E
should be inspected. If it is unsatisfactory in the scale change,
point H should be checked.

56.6 Location Problems
and the Relationship to Regression
Problems

Chang and Rivest [1] discuss the relationship between lo-
cation and regression problems in a more general context.
Their paper explains certain phenomenon that arises in the
regression type problems explored in this chapter.

56.6.1 Location Problems Associated
with Spherical and Procrustes
Regressions

Ko and Chang [14] derive the large sample distribution of
M-estimates for location problems on the sphere �p. They
assume

• v1, · · · , vn ∈ �p are independent random vectors.
• The distribution of vi is of the form f0(ti) where ti = vTi θ

for some (unknown) θ ∈ �p.

The relationship of these assumptions to those of the
spherical regression model given in Sect. 56.4.9 is clear.

A M-estimate θ̂ for θ minimizes an objection function of
the form ρ(θ) = ∑

iρ0(ti). Write θ̂ in the form

θ̂ = cos (‖h‖) θ + sin (‖h‖) ‖h‖−1h (56.61)

where h ∈ θ⊥, the vectors in Rp orthogonal to θ . We note
that θ⊥ consists of the vectors tangent to �p at θ and that the
accompanying chapter [8] develops more completely the use
of tangent space approximations in geometric statistics. It is
also explained there that (56.61) is the spherical analog to the
use of �2, �3 and the exponential map in SO(p).

[14] establishes that the large sample distribution of h
is multivariate normal with mean 0 and covariance matrix
k
n

(
Ip − θθT) where k and its estimate k̂ are given in (56.48).

Thus, all the previous comments about asymptotic relative
efficiencies in the spherical regression model also hold for
spherical location models. We note that, unlike the standard
linear model, the spherical location model is not a special
case of the spherical regression model.

The analogous location problem for Procrustes regression
is

• v1, · · · , vn ∈ Rp are independent random vectors.
• The distribution of vi is of the form f0(si), where si = || vi

− b ||. Here b ∈ Rp is unknown.

The estimate b̂ minimizes the objective function
ρ(b) = ∑

iρ0(si). Standard M-estimation theory (see
for example Huber [7]) establishes that the asymptotic
distribution of b̂− b is multivariate normal with mean 0 and
covariance matrix k

n Ip. Here k and its estimate are given by
equations (56.36) and (56.37). Hence, the previous comments
about relative efficiency in the Procrustes regression model
also hold for these location models.

56.6.2 Location and Regression Problems
in Statistical GroupModels

As discussed in Sect. 56.2.1 G = SO(p) is a group in the
mathematical sense. (For the sake of simplicity, we will not
discuss O(p).) The sphere X = �p is aG-space. That is, there
is a map G × X → X and one usually denotes by g · x the
image of (g, x) ∈ G× X under this map. In the case of SO(p)
and �p, this map is

A · x = Ax. (56.62)
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Here the left hand side of (56.62) is to be interpreted, analo-
gously to g · x, using standard G-space notation and the right
hand side of (56.62) is interpreted as matrix multiplication.
G-spaces require compatibility with the group operations

(g1 ∗ g2) · x = g1 · (g2 · x)

1 · x = x.

Here “∗” is the group multiplication and “1” is its identity
element.

�p has a G-invariant inner product 〈x, y〉 = 〈g · x, g · y〉. In
particular

〈x, y〉 = xTy = (Ax)T (Ay) = 〈A · x,A · y〉 .

Notice also that under the location model in Sect. 56.6.1, the
distribution of vi depends only upon 〈vi, θ〉 = vTi θ .
G = {(A, γ , b)} is also a group and X = Rp a G-space.

However, Euclidean dot product is not G-invariant and, for
this reason, we will use G = {(A, b)}. This group is called
the special Euclidean motions and denoted by SE(p). Now
Euclidean dot product is G-invariant; the location model in
Section 56.6.1 depends only upon this inner product.

Given a G-space X and a G-invariant inner product 〈x, y〉,
suppose

• y1, · · · , yn ∈ X are independent random vectors.
• The distribution of yi is of the form f0(ti), where ti = 〈yi, θ〉

for some unknown θ ∈ X.

This is a location problem.
The associated regression model assumes

• x1, · · · , xn ∈ X are fixed (nonrandom) vectors.
• y1, · · · , yn ∈ X are independent random vectors.
• The distribution of yi is of the form f0(ti), where
ti = 〈yi, g · xi〉 for some unknown g ∈ G.

Consider M-estimates θ̂ in the location problem and ĝ in
the regression problem that minimize an objective function of
the form

∑
iρ0(ti). Chang and Rivest [1] show how the large

sample distribution of ĝ in the regression problem can be
calculated from the distribution of its sibling θ̂ in the location
problem. These results depend heavily on the tangent space
approximations discussed in the accompanying chapter [8].
In particular, if a certain tangent space representation is
irreducible (in the mathematical group representation sense),
and appropriate Euclidean parameterizations of G and X are
used

• The asymptotic covariance of ĝ breaks up as a product of
a constant that depends only upon ρ0 and f0 and a matrix
that depends only upon x1, · · · , xn.

• The asymptotic relative efficiencies between the location
and regression models will be equal.

Thus, Chang and Rivest [1] explain some of the relation-
ships between the Procrustes and spherical regressionmodels
and the corresponding location problems discussed in Sec-
tion 56.6.1.
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Aalen version of Cox model, 130
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life-stress models, 1029–1031
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statistical analysis, 1031–1035
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Acceptable quality level (AQL), 223
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Acceptance sampling, 221
Accumulated creep strain, 1010
Activation function, 630, 804, 913
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Adaptive preventive maintenance, 531
Adaptive-weight Genetic Algorithm (AWGA), 640
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Association, 938–941
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Attention deficit hyperactive disorder (ADHD) dataset, 827
Attribute control chart, 266
Attribute data, 262
Atypical observations, 605
Auto-regressive moving average (ARMA) model, 366
Autocorrelation, 114, 776

coefficient, 858
Automatic process control (APC), 203–204
Automatically controlled processes, 204–205
Availability, 425, 458
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B
Backpropagation, 630, 805, 866
Bagging, 631, 871
Ball grid array (BGA), 1005
Banded matrix estimation, 890
Bandwidth, 70
Banking risk, 989
Baseline cumulative hazard function, 1043
Baseline distribution, 45, 50, 51
Baseline hazard function, 832
Baseline reliability, 1043
Basquin law, 969
Bat-neural network multi-agent system, 983
Batch means estimator, 776
Bathtub curve, 417
Bath-tub failure rate, 55
Bayes estimates, 712, 767
Bayes factor, 585, 784–786, 788
Bayes posterior, 582
Bayes’ rule, 4, 764
Bayes’ theorem, 764–766
Bayesian analysis, 712–713, 781
Bayesian approach, 37, 530
Bayesian computation, 772–779
Bayesian cross validation, 783–784
Bayesian discrepant posterior phenomenon, 790
Bayesian estimator, 580
Bayesian hierarchical model, 771
Bayesian inference, 532

posterior propriety, conditions for, 925
posterior propriety, remedies for, 925
prior and posterior distributions, 924

Bayesian information criterion (BIC), 51, 52, 71, 628, 786, 892,
1048, 1084

Bayesian interval estimation, 769
Bayesian linear modelling, 770
Bayesian linear regression, 769–770
Bayesian marginalization paradox, 789
Bayesian method, 967, 1037
Bayesian methodology, 789
Bayesian models

averaging, 786
Bayesian computation, 772–779
Bayesian interval estimation, 769
Bayesian regression, 769–772
comparison, 929
conditional probability, 764
conjugate prior, 766
different fields of research, 787–789
empirical Bayes, 767–768
hierarchical Bayes, 767
model comparison, 782–787
monitoring convergence, 780–782
Monte-Hall problem, 765
multinomial distribution and Dirichlet prior, 766
point estimation, 768
reference prior, 766–767
types of prior, 765–766

Bayesian modeling, 211
Bayesian posterior, 970
Bayesian p-value, 781
Bayesian regression, 769–772
Bayesian shrinkage, 623
Bayesian smoothing, 787
Bayesian test planning, 106
Bayesian update, 530–533

Bayesian, fiducial, and frequentist (BFF), 580
Behavioral analysis, 987–988

agents, 996
Behavioral perspective, 988
Beliefs, obligations, intentions, and desires (BOID) architecture, 992
Belt structure, 241
Bernoulli distribution, 771
Bernoulli variable, 593
Bernstein inequality, 856
Bessel function, 146
Best linear equivariant estimators (BLEEs), 162
Best linear unbiased estimators (BLUEs), 710, 729
Best linear unbiased prediction (BLUP), 72, 78
Best permutation algorithm (BPA), 892
Beta-binomial model, 781
Beta-Birnbaum-Saunders distribution, 44
Beta-BS distribution, 51
Beta density, 19
Beta distribution, 11–12, 20, 484, 485
Beta exponential (BE) distribution, 394
Beta function, 43
Beta-G family, 43–44
Beta-log-logistic distribution, 44
β-mixing, 856, 858

coefficient is dimension-dependent, 859
condition, 856

Beta-Weibull distribution, 44
Bi-dependence, 130
Bias, 323
Bicriteria MXF/MCF model, 650–651
Bicriteria network design (BND), 650, 651
Bicriteria transportation model with fuzzy coefficients, 663
Big data, 789
Bike-sharing data, 69–73, 77–79, 82, 83
Bin-packing model, 644–645
Binomial choice model, 1077–1078
Binomial distribution, 11–12, 781
Binomial model extension based on total cost function

industrial application, 290–292
service level optimization, 289–290
simulative model, 290–291

Biostatisticians, 932
Birnbaum-Saunders (BS) distribution, 88
Bivariate generalized linear failure rate (BVGLF) distribution, 746
Bivariate exponential distribution, 189
Bivariate exponentiated Rayleigh (BVER) distribution, 746
Bivariate exponentiated Weibull (BVEW) distribution, 746
Bivariate gamma distribution, 271
Bivariate Gaussian random vector, 860
Bivariate GE-geometric distribution, 758–759
Bivariate generalized exponential (BVGE) distribution, 746
Bivariate Kumaraswamy distribution, 742
Bivariate normal correlation, 586–587
Bivariate normal distribution, 589
Bivariate PHM-geometric distribution, 756–758
Bivariate proportional reversed hazard distribution, 746
Bivariate replacement policy, 544
Bivariate Weibull-geometric distribution, 755–756
Black Belts, 241
Black-box testing strategy, 437
Block replacement, 191
Blockwise coordinate descent algorithm, 827
Blood glucose monitoring data, 379
Bonferroni correction, 623
Bootstrap, 108, 114, 836–839, 841, 940

confidence intervals, 60, 712, 1046
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Borel measurable function, 688
Bottom-up mechanism, 991
Boundary element method (BEM), 974
Bounds

linear upper, 683
proximal upper, 683
quadratic upper, 683

Box-Cox transformation, 271
Boxplot, 594
Breast cancer data analysis, 841

data processing and description, 841
fitting survival random forest, 841, 842

Brier score, 838, 839, 844
Brown-Proschan model, 516
Budget, 1050
Bug detection phenomenon, 471
Burn-in period, 55
Business planning system, 811
Buy-and-Hold strategy, 998

C
Calibration factor, 482
Canadian weather station data, 68
CANDECOMP/PARAFAC decomposition, 819
Canonical correlation, 95
Canonical maximum likelihood (CML), 940
Canonical representation, 933
Capacitated plant location problem (cPLP), 668
Capture-recapture survey, 787
Cartesian product, 501
Catastrophic failure, 497, 499
Categorical variable, 594
Categorization scheme, 276
Cauchy distribution, 22
Cauchy probability density, 22
Cauchy-Schwarz Inequality, 6
Cayley-Klein parameters, 1071
c chart, 262, 265
cDNA, 632
Censored data, 25, 316, 327
Censoring, 107, 421, 832

hybrid, 422
interval, 422
progressive, 422
proportions, 323
random, 423
type I, 421
type II, 421

Censoring unbiased transformations (CUTs), 844
Central limit theorem (CLT), 15, 365, 773, 776, 970
Central moments, 48
Centralized network design, 648, 649
Chain sampling, 222

and deferred sentencing, 227
Chain-deferred (ChDP) plan, 228
Champions, 241
Change-point based control chart, 368, 369, 379
Change point detection (CPD), 362
Characteristic function, 88–90, 95
Characteristic life, 1014
Chebyshev’s inequality, 903
Checked with caution, 858
Chernoff inequality, 903
Chi-square automatic interaction detection (CHAID), 802
Chi-square distribution, 586

Chi-square test, 30
Chi-square type statistic, 1047
Chi-squared, 595
Chip design, 1010
Choice-making behavior, 1075
Cholesky factor matrices, 889, 890, 892–894, 897
Cholesky-based matrix estimation, 888
Cholesky-based precision matrix estimation, 895
ChSP-1 plan, 223, 233
ChSP-4 plan, 223
ChSP-4A plan, 223
C-index, 838, 839, 842
Circuit pack assemblies (CPA), 308
Clarke subdifferential, 677, 678
Classic decision rule, 1098
Classic multivariate statistical methods, 932
Classical inference, 746–752
Classification, 804

trees, 622, 630
Classification and regression tree (CART), 596, 802, 870
Clayton copula, 938, 941
Climate and environmental change, 949, 961
Climate data, on Minneapolis, USA, 377
Cluster analysis, 807–809
Clustering, 625

analysis, 627–628
classification, 622
distance, 625–626
methods, 626–627

Codelets, 995
Coefficient of determination, 78
Coefficient of thermal expansion (CTE), 1005, 1007
Coefficient of variation (CV), 212, 334
Coffin-Manson equation, 1006
Coffin-Manson model, 1008, 1030
Cognitive agents, 984, 991–996
Cognitive architecture

cognitive agent characteristics, 991
definition, 989
emergent architecture, 991
examples of, 990
hybrid architecture, 991
symbolic architecture, 990–991

Cognitive cycle, 996
Cognitive distortions, 988
Cognitive technologies, 982
Cohen’s progressive censoring, with fixed censoring times, 165
Coherent risk measures, 955
Coherent systems, 7, 8, 704, 706, 710, 712, 713, 729
Cold-standby system, 142
Combination warranty (CMW), 187
Combinatorial optimization problems, 642–646
Combined arrays, 207–208
Common cause, 361

failure, 62
Competing risks, 516–517
Competing risks models, for independent failure models, 1052–1053
Competitive to the copula methodology, 130
Complex systems, 419, 420

application to, 404
repairable reliability, 404

3-Component, 713
Component events, 115
Compound Poisson process, 503–505
Concave bases (C-splines), 113
Concentration inequalities, 903–904
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Concordance function, 934
Concordance measures, 934
Conditional distribution, 6
Conditional expectation, 689
Conditional probability, 4, 138, 139, 764, 765
Conditional reliability, 9, 14
Conditional single sampling (CSS) plan, 229
Condition-based maintenance, 496, 522
Conference matrix, 305–308, 310
Confidence, 807

bands, 73, 79, 83
curve, 576
density, 576

Confidence distribution (CD), 576, 589
asymptotic CD, 576
CD-based inference, 578–579, 585–587
CD random variables, 586
definition, 575
fusion learning, 580
multivariate CDs, 580
upper and lower CDs, 577–578

Confidence intervals (CIs), 27, 28, 102, 111, 576, 578, 579, 704,
729, 970

bootstrap CIs, 712
missing information principle, 711–712
observed Fisher information matrix, 711
reliability prediction, 489–490
β-RFE model, 489
γ -RFE model, 488–489

Confidence limits, 33
Confidentiality, 458
Confounding factors, 822
Conjugate prior, 532, 766, 772
Connection weights, 629
Consistency, 23, 132, 134
Consistent Akaike Information Criterion (CAIC), 51, 52
Constant failure rate, 141
Constant-stress ALTs (CSALTs), 1040, 1043, 1050, 1052

multiple stress, 1036
plan design, 1036
single stress, 1035

Context dependency, 1085
Context-dependent model, 1080
Contingency, 63
Contingency table, 597
Continuous-time predictive maintenance modeling

dynamic maintenance policy, framework of, 526–532
dynamic policy, 538–540
gradual deterioration and predictive maintenance, 523–526
long-term assessment, decision variables based on, 535–538
maintenance and inspection decision rules, 525–526, 533–534
maintenance cost, 535
stochastic processes, 523–525
unknown degradation parameters and update, 532–533

Control charts, 333
Convergence

finite, 680
of sample auto-covariance matrices, 862

Convex analysis, 676
Convex minorants, 682
Convexity

strong, 677
Convolutional neural network (CNN), 805, 874, 907
Cook’s distance, 614
Cook’s statistic, 609, 611, 614, 616, 617
Coordinate measuring machine, 1110

c-optimality, 121
t Copula, 936
Copula(s), 736, 933, 944

Archimedean copulas, 937–939
elliptical copulas, 935–937
method, 516–517
models, for correlated failure models, 1053–1054

Correct model selection rate, 324
Correlated failure modes, 1053
Correlation, 594

coefficients, 135
matrix, 94

Cost functions, 475, 476, 478
higher order time-dependent, 1097–1098
linear time-dependent, 1096–1097

Cost of poor quality (COPQ), 241
Cost rate, 535
Cougaar, 992
Counting processes, 145
Coupling, 850
Covariance function, 69–71
Covariance matrix, 607, 612, 770, 856, 888, 896, 967, 977

estimation, 889–890
Covariance stationary, 146
Covariate-adjusted tensor classification in high dimensions,

825–827
Covariation matrix, 951
Coverage, 577, 578, 582, 583, 586, 589

probability, 1047
Covering number, 907, 912–916
Cox model, 833
Cox proportional hazards regression model, 922, 924–927
Cramer-von Mises-Smirnov type statistic, 1048
Cramer-von-Mises test, 362, 363, 369–373, 380
Cramér–Rao inequality, 23
Crash tests, 598
Credible set, 769
Creep strain, 1007

density-based model, 1007
Critical region, 36
Critical-to-quality (CTQ), 243–244
Cross-covariance, 78
Cross-validation (CV), 70, 596, 783–784, 883
Croston’s method, 277
Cumulative baseline hazard function, 923
Cumulative count of conforming (CCC) chart, 263

CCC-r chart, 264
CUSUM control chart, 263
EWMA control chart, 263
geometric distribution, 263

Cumulative damage models, 969–971
Cumulative distribution function (CDF), 4, 15, 43–46, 51, 54, 88–90,

107, 115, 118, 264, 423, 424, 705, 706, 709, 933, 935, 936,
940, 1093

Cumulative exposure model, 109, 1054
Cumulative failure rate, 55
Cumulative hazard function (CHF), 832, 837
Cumulative number of failures, 108
Cumulative number of faults, 492
Cumulative quantity control (CQC) chart, 269–270
Cumulative results criterion (CRC), 222, 224
Cumulative shock damage, 512
Cumulative-sum (CUSUM)

approach, 232
chain sampling and, 232–233
control chart CCC, 263
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structure, 271
ZIP distribution, 267

Curvic coupling, reliability and life prediction
probabilistic LCF life prediction, 975–977
stress and strain states, 974–976
time-dependent reliability, 977

CUSUM chart, 201, 362, 366, 367, 379
CUSUM control chart

accuracy error, 352
average run length, 337
average time to signal, 337
in-control state, 353
extensive overview of, 334
FIR strategy, 354
Fredholm integral equation method, 339
implementation of, 337
Markov chain, 338
measurement error, 333, 344
methods to calculate, 338
monitoring simple linear profiles, 334
one-sided control chart, 340
optimal control chart coefficients, 345
out-of-control state, 354
performance of, 333, 341
precision error ratio, 352
sequence works, 336
sintering process, 344
SPC literature, 336, 357
standard-deviation, 338
statistics, 336
two one-sided, 340
upward, 342

Cut vector, 8

D
Damage probability, 12
Damage tolerance, 966, 971–974
Daniell-Kolmogorov consistency theorem, 132
D approach, 323
Data, 709

analysis, 752–753
regularization, 951, 954
science, 216
subanalytic, 681
warehouse, 800

Database, 798
Data freeze date (DFD), 107
Data mining, 797, 817

activity monitoring, 810–811
applications, 798
artificial neural networks and convolutional neural networks,

804–806
classification problems, 806
flow chart, 799
implementation of, 814
improvements, manufacturing, 798
linear and additive methods, 801–802
Mahalanobis–Taguchi System, 811
manufacturing process modeling, 811–812
object detection, 813
prerequisites for, 798
process, 800
public health surveillance, 813
research and applications, 810–813
software, 809–810

success of, 813
supervised learning, 801–806
support vector machines, 805–806
trees and related methods, 802–804
unsupervised learning, 806–809

DC components, 678
DC criticality, 678, 679
DC decomposition, 678, 684

successive, 696
DC duality transportation, 680
DC program, 681
DC programming and DCA

deterministic, 676–684
stochastic, 687–696

DCA, 677, 679
and convergence properties, 680–681
developments and open problems, 682
online stochastic, 688–696
standard convex/nonconvex programming approaches, 682–684
with subanalytic data, 681–682

dChip programs, 625
Debugging process, 469
Decision making approach, 957–961
Decision rule, 525, 535, 1098
Decision support systems, 981
Decision tree, 603

method, 870
Decision variables, 535
Decision-making, 987, 1094
Deep convolutional neural network (DCNN), 449
Deep feedforward neural network (DFNN), 449
Deep learning, 868, 983, 984

agents, 996
approaches, 813

Deep neural networks (DNNs), 902, 907–910, 912, 913, 916
Deep text analysis, 984
Default risk, 989
Defect identification process, 459
Defect prevention, 438
Defects per million opportunities (DPMO), 240, 243, 254
Deferred-dependent plans, 230
Define, Measure, Analyze, Design and Verify (DMADV), 246–248
Define, Measure, Analyze, Improve and Control (DMAIC), 242

opportunities, 256–257
process, 242–244
six sigma road map, 247
tools to support the process, 244–247

Degenerate, 857
Degradation analysis, 942–943
Degradation data analysis

background and data, 112, 113
model for covariates, 114
model for degradation paths and parameter estimation, 113, 114
reliability prediction, 114, 115

Degradation modeling, 56, 522
Degradation path, 114
Degradation process, 532
Degradation rate, 112
Degrees of freedom, 594
Delta method, 1045
Demand spare parts

aircraft, 280–284
binomial model extension based on total cost function, 289–292
forecast problem of, 276–279
forecasting methods applicable to, 280–281
models based on bionomial distribution, 286–289
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Demand spare parts (cont.)
operational management of, 301–302
packaging machines, 287–289
Poisson models, 284–286
standard vs. custom-made components, 295, 302
Weibull extension, 292–294

Dense design, 69
Density-based clustering (DBSCAN), 808
Density-based spatial clustering of applications with noise

(DBSCAN), 877
Density function, 70, 1093

of log normal distribution, 417
Density power divergence (DPD) measure, 1051
Dependence adjusted norm (DAN), 854, 855
Dependence parameter, 1053
Dependent-deferred sentencing, 222
Dependent deferred state (DDS) plan, 228
Dependent random matrices, 856
Dependent vulnerabilities, 460
Depth-first search (DFS), 649
Descriptive statistics, 1009
Descriptive theory, 987
Design engineer, 1015
Design failure modes and effects analysis (DFMEA), 250
Design for Six Sigma (DFSS), 244, 246–247
Design of Experiments (DOE), 243, 245–246
Desirability, 209
Deterioration, 522, 523, 525, 527, 531, 535
Deterministic DC programming and DCA, 676–677

basic results, 678–682
preliminaries, 677–678
standard convex/nonconvex programming approaches, 682–684

Deterministic forests, 631
Deterministic model, 966
Deviance information criterion (DIC), 782, 926, 927, 929
Diagonal matrix, 913
Dimension folding, 821
Dimension reduction, 821

techniques, 878
Dirichlet distribution, 766
Dirichlet prior, 766
Discounted warranty cost (DWC), 191, 193
Discrepant posterior phenomenon (DPP), 790
Discrete choice modeling, 1076–1077

RAM, 1080–1081
RRM, 1079–1080
RUM, 1077–1079

Discrete continuous processes, 500
Discrete distribution, 13
Discrete Fourier transformation, 111
Discretization theorem, 907
Discriminant analysis, 84
Discriminate, 1042
Discriminative classification model, 868
Dispersion matrix, 935
Distance-based test statistic, 1048, 1052
Distribution centers, 63
Distribution estimator, 576
Distribution of the remaining life (DRL), 110
Distributional change, 362
Divisive hierarchical methods, 626
Divisive method, 877
DNA, 622
Domino effect, 63
D-optimal design, 208
D-optimality, 121, 124

DSD-augmented designs (ADSDs), 306
d-stationarity, 679
Dual objectives, 121, 123
Dudley’s theorem, 907
Durbin-Watson test, 377, 379
Dynamic covariates, 106, 109, 111–116, 125
Dynamic decision-making, 540
Dynamic maintenance, 522
Dynamic maintenance policy, 526–527

grouping and opportunistic maintenance, 527–530
uncertainty in degradation models, 530–532

Dynamic policy, 532–540
Dynamic system, 1090

E
Earth sciences, 959
Economic approach, 284
Economic dependency, 527
Economic design method, 265
Effective sample size, 776, 780
Effort-dependent vulnerability discovery model, 461
Eigenanalysis, 616
Eigenfunctions, 69, 71
Eigenvalues, 856
Elastic net, 876

penalty, 821
Electroencephalography (EEG), 817
Electronic packaging

accelerated life testing, 1008–1009
background and research motivation, 1005–1007
cause of failure, 1007
fatigue life prediction, 1008
finite element method, 1007
issues, 1004
modeling and verification, 1010–1015
parameter uncertainity, 1009
probabilistic design and reliability, 1009–1010

Electronic product, 1019
Elliptical copulas, 935–937
EM algorithm, 1043–1045, 1054
Emergent architecture, 991
Emotion(s), 988

of regret, 1079
Empirical analysis

data, 466
paramater estimation and goodness of fit criteria, 465
validation result of generalized coverage dependent, 468–469
validation results of user dependent and effort dependent VDMs,

466–468
Empirical Bayes, 767–768
Empirical Bayesian method, 624
Empirical distribution, 624
Empirical likelihood, 59
Empirical loss, 676
Empirical Rademacher complexity, 904
Empirical risk minimizer (ERM), 901
Engineering based reliability test (ERT), 1025
Entropy, 631
Envelope, 822, 825

tensor response regression, 821–823
Environmental condition, 1004, 1005
Environmental factor, 491
Environmental risk analysis, 960
Equicontinuity, 692

uniform, 692
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Equivalent business days (EBD), 811
Ergodic process, 138, 143
Erratic demand, 276
Error, 435
Estimated standard error, 1045
Estimations, 530
Euclidean norm, 858
Euler-Mascheroni constant, 710
Evaluation function, 998
Evolutionary algorithms (EAs), 636
Evolutionary programming (EP), 636
Evolutionary strategy, 983
Evolution strategy (ES), 636
EWMA chart-type charts, charts based on change point detection

(CPD), 362
Exact, 586

maximum likelihood, 939
penalty, 682

Excess risk, 902, 904
Exchange rate risk, 989
Exhaustive search algorithms for, 803
Expectation, conditional, 689
Expectation maximization (EM) algorithm, 89, 90, 95, 97–102, 684,

704, 705, 748–752, 759, 773, 790
Expected acceptance rate, 777
Expected average run length (EARL), 335, 341
Expected cycle length, 508–509
Expected discounted warranty cost (EDWC), 190
Expected loss, 676
Expected maximum utility, 1082
Expected profit, 193
Expected value prediction method, 320
Expected warranty cost (EWC), 190
Explanatory methods, 279
Exponential distribution, 14, 34, 138, 269–270, 417, 737, 1028, 1041,

1044, 1051, 1054, 1055
Exponential family, 820
Exponential models, 423, 1041, 1054–1055
Exponential random variable, 150
Exponential smoothing, 277
Exponentially weighted moving average (EWMA) chart, 201, 263,

367, 379
ZIP distribution, 267

Exponentially weighted moving average (EWMA) control
chart, 334

Exponentiated distributions, 47
Exponentiated Log distribution, 44
Expression profiles, 627
Extreme-value distribution, 21
Eyring model, 1030, 1041

F
Face detection, 813
Factor analysis methods, 812
Factorization pattern, 130
Fail-safe, 965
Failure, 522

censoring, 1027
defect data, 272
definition, 435
intensity, 482
mechanism, 190
mode, 242, 1052
process, 148
time, 110, 270, 940, 944

Failure-detection rate, 487
Failure modes and effects analysis (FMEA), 243–245
Failure rate, 10, 55, 544, 546, 565, 968, 1017

exponential distribution, 417
function, 416

False-alarm probability, 262–264, 270
False discovery rate, 623
False negative (FN), 896
False positive (FP), 896
False selection loss (FSL), 896
Fast algorithm for classification trees, 803
Fast gradient sign method (FGSM), 910, 911
Fast initial response (FIR) strategy, 335, 354
Fatigue, 1007

failure, 1007
life, 1004, 1008
test, 117, 122

Fatou’s lemma, 688
Fault

debugging, 471
definition, 435
detection phenomenon, 470
diagnosis, 206
seeding and input domain based models, 433

Fault count (FC) models, 431
Fault-detection rate, 482
F distribution, 17
Features, 629
Feedback control scheme, 203
Feedforward neural network, 874
Fiducial distribution, 575
Fiducial factor, 585
Fiducial inference, 581–585
Field condition, 1005
Field environments, 485
Field operations, 486
Financial decisions, 981

behavioural analysis, 987–988
fundamental analysis, 984–986
risk, 988–989
technical analysis, 986–989

Financial markets, 996
Financial risk, 989
Finite convergence, 680
Finite element method (FEM), 974, 1007
Fintech, 982, 983
First-order D-efficiency, 308
First-order derivatives, 707
First passage time, 523
Fishbone diagram, 245
Fisher information, 58

in hybrid censoring schemes, 169
Fisher information matrix, 27, 89, 98, 100, 489, 735, 752, 753, 939,

1048
Fisher-von Mises distribution, 1061
Fisher–von Mises–Langevin distribution, 1123
Fitting distributions, 51
Fitting OLR models, 594–595
Fixed, 858
Flat earth approximations, 1068
Flexibility, 439
Flexible job-shop scheduling problem (FJSP), 654–656
Flexible regression models, 806
Flow-shop sequencing model, 652–653
Foldover designs (FODs), 306
Forecast-based monitoring methods, 202, 204
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Forecasting methods, 279
characterization, 279–280
classification of, 278
explanatory methods, 279
judgmental method, 279
monitoring methods, 279
quantitative methods, 279
related to spare parts demand, 280–281
technological methods, 279

FOREX, 997
Forward adaptive banding, 891–892
Fourier transform, 856
Fourier transform infrared (FTIR), 112
Fréchet-Hoeffding bounds, 934
Fréchet subdifferential, 677
Fraction of variance explained (FVE), 71, 77
Fractional factorial designs (FFDs), 305
Frank copula, 938, 1053
Fredholm integral equation, 338
Free repair warranty (FRPW), 187
Free replacement warranty (FRW), 187
Frobenius norm, 820, 908
Fubini theorem, 697
Full-service warranty (FSW), 187
Function-on-function regression, 82
Functional classification, 84
Functional data analysis (FDA), 68, 69, 82–84

FLR, 77–79
FPCA, 69–73
software packages, 84

Functional dependence measure, 851, 853–855
Functional dependence setting, 853
Functional linear regression (FLR), 69

estimation of regression function and R2, 78
implementation details, 79
model for, 77–78
prediction and confidence bands, 78–79

Functional linear regression model, 77
Functional principal components analysis (FPCA), 69

implementation details, 73, 73
mean function, eigenvalues and eigenfunctions, 70–71
model for, 69–70
PC scores, 71, 72
prediction of trajectories and confidence bands, 72–73

Functional regression, 78
Fundamental analysis, 984–986
Fundamental analysis agents, 996
Fusion learning, 575, 580
Fuzzy logic controller (FLC), 638

G
Game theory, 64
Gamma distribution, 18, 418, 484, 492, 1042, 1047, 1051
Gamma function, 1010
Gamma-G family, 45
Gamma models, 1042
Gamma priors, 767
Gamma process, 524–525
Gauge R&R, 243, 245
Gauss-Newton, 89
Gaussian conjugate model, 790
Gaussian distribution, 903, 973
Gaussian likelihood, 970, 971
Gaussian probability distribution, 967
Gaussian random variable, 904

Gaussian random vector, 860
Gaussian sequences, 859
Gaussian variable, 966, 967
GE-geometric (GEG) distribution, 758
Gelfand-Dey estimator, 786
Gelman-Rubin diagnostic, 780–781
Gene filtration, 622
General additive model, 113
General framework of systems health monitoring and

management, 216
Generalization bound, 902
Generalization error, 902, 907, 908, 910, 911
Generalized additive model (GAM), 802
Generalized coverage-dependent model, 463
Generalized distributions, 51
Generalized exponential distribution, 737
Generalized fiducial distribution (GFD), 581–583

for discrete distributions, 584
in irregular models, 583
model selection, 584
nonparametric fiducial inference with right censored data, 583–585
nonparametric GFD based inference, 587
probability measure, 581

Generalized fiducial inference, 576
Generalized gamma distributions, 1042, 1049
Generalized gamma models, 1042–1043
Generalized inference approach, 586
Generalized likelihood ratio test, 202
Generalized linear model (GLM), 210, 771–772, 802, 820, 821
Generalized Poisson distribution, 268, 269
Generalized statistical distributions

beta-G family, 43–44
fitting distributions, 51
gamma-G family, 45
Kumaraswamy-G family, 44–45
linear representations, 46–47
Marshall and Olkin-G family, 46
mathematical properties, 47–49
real data illustrations, 51–52
T-X family, 49–50

Generalized weighted indecisive voting, 1098
Generally weighted moving average (GWMA) technique, 335
General path models, 106
General probability space, 850
Generating function, 49
Generative adversarial networks (GANs), 912
Generative classification model, 868
Generative models, 912
Genetic algorithms (GAs), 636

adaptive, 638
basic, 636–637
combinatorial optimization problems, 642–646
FLC, 638
general structure, 637
hybrid, 637–638
with learning, 641
location and allocation problems, 667–671
logistic network problems, 662–667
multiobjective optimization problems, 639–641
network design problems, 646–651
reliability design problem, 659–662
scheduling problem, 652–659

Genetic programming (GP), 636
Genomic data, 631
Geo-referred filter, 954
Geo-space, 952



Index 1137

Geometrically α-mixing, 858
Geometrically φ-mixing, 857
Geometrically decaying τ -mixing, 857
Geometrically stable, 90
Geometric distribution, 13, 263
Geometric ergodicity, 776
Geometric random variable, 88
Geometric skew normal (GSN) distribution, 88–94
Geometric statistical problems, 1070
Germline mutations, 630
Geweke diagnostic, 780
Gibbs algorithm, 773
Gibbs sampler, 775, 778–779
Gini index, 834
Global workspace, 997
Godambe information matrix, 940
Goel and Okumoto imperfect debugging model, 430
Goel-Okumoto Non-homogeneous Poisson process

model, 432
Goldmann model, 1008
Goldstein–Levitin–Polyak projection algorithm, 683
Goodness of fit, 30, 450, 784
Google chrome, 466
Google flu trend (GFT), 813
Gradient boosting algorithm, 872
Gradient vector, 98
Graphical Evaluation and Review Technique (GERT), 223
Graphical Lasso (Glasso) model, 888
Graphical user interfaces (GUIs), 435
Grassmann manifolds, 823
Green belts, 241
Grouping strategy, 528
Groups of outliers, 610

eigenvectors of influence and sensitivity matrix,
611–613

initial clean set, methods based on, 610–611
Growth curves, 68
Growth function, 905
�–Gumbel, 45
Gumbel copula, 938
Gumbel distribution, 45, 1077, 1080
Gumbel-Hougaard copula, 1053, 1054
GZIP-CUSUM chart, 269

H
Hadamard matrix, 306, 308
Hadamard-matrix based MLFODs, 306
Harris recurrent, 535
Hastings ratio, 777, 778
Hausdorff space, 687
Hawkins’s approximation, 338
Hazard function, 10, 832, 833, 838, 843, 844

gamma distribution, 418
Hazard rate function (HRF), 44, 46, 416
Hazard rates, 1041, 1042
Heavy tailed, 88–90, 94, 95
Helicopter’s main rotor blade, 27
Hellinger criterion, 1067
Hessian matrices, 773
Heterogeneity, 531
Heterogenous MTRP, 116
Heuristic choice protocols, 1085
Heuristic distortions, 988
Hierarchical Bayes, 767

estimate, 788

Hierarchical Bayesian linear regression, 770
Hierarchical clustering, 628, 808, 877
Hierarchical functional data, 83
Hierarchical linear modelling, 770
High dimension, 858

dataset, 818
statistical theory, 851

Higher moments, 90
Highest posterior density (HPD), 769, 926
High leverage observations, 612
Highly accelerated life test (HALT), 1026
Hilbert space, 69, 953
Hilbert-Schmidt norm, 861
Hoeffding decomposition, 858
Hoeffding’s inequality, 860, 904
Holder inequality, 6, 689
Holt Winter’s models, 277
Hotelling’s T2 statistic, 206, 940
Housing Boston data, 616–617
Huber estimate, 1113
Human behavior modeling, 1075
Hybrid architecture, 991
Hybrid genetic algorithms, 637–638
Hybridization, 622
Hyper-parameters, 532, 712
Hypergeometric distribution, 13
Hyperparameter, 768, 788
Hypothesis testing, 578, 579

I
IBM binomial and Poisson models, 432
Image registration, 1061, 1111

diagnostics, 1124–1127
least squares estimation, 1113–1115
location problems and regression problems, 1127–1128
orthogonal and orthogonal matrices, 1111–1112
Procrustes and spherical regression models, 1112
statistical properties ofM-estimates, 1118, 1121

Imitators, 461
Imperfect maintenance, 544, 546
Imperfect repair, 187, 544
Importance function, 774
Importance sampling, 774

estimator, 785–786
Improper prior, 765, 766
Impurity, 631
Imputation, 599–601
In-control process measurement, 361
Incident, 435
Incomplete gamma function, 45, 49
Incomplete moment, 48
Indecisive, 1091
Indecisiveness, 1103
2-Independence, 135
Independence of irrelevant alternatives (IIA), 1081
Independence sampler, 778
Independent, 7, 820

failure models, 1052–1053
increments, 145
random variables, 150

Independent and identically distributed (i.i.d.) processes, 201
Indifference price, 192
Individual preference learning, 1085
Individual preferences, 1075
Indo-Australian plate, 1069
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Industrial data mining, 810
Inequality, 850, 852, 856, 915
Infant mortality, 55

period, 417
Inference functions for margins (IFM), 939
Inferential statistics, 251
Infinite-dimensional, 68
Infinitely divisible, 90
Inflation risk, 989
Influence function, 1124, 1125
Influence matrix, 606, 611, 612, 616
Influential observations, 606, 608–609
Influential subsets, 606
Information extraction, 984
Information matrix, 1045, 1055
Information retrieval, 984
Informative prior, 790, 925
Innovators, 461
Input, 1092
Inspection planning, 525
Instantaneous fault-detection rate, 447
Integral equation/inequality, 130
Integrity, 458
Intensity function, 116, 149
Interaction, 594
Interactive Adaptive-weight Genetic Algorithm (i-AWGA), 641
Interest rate risk, 989
Intermittent demand, 276, 277
International Software Testing Qualification Board

(ISTQB), 435
Interval availability, 143
Interval censoring, 57
Interval estimation, 33
Interval parameter, 33
Inverse-Gaussian process, 525
Investors’ behaviour, 987
Irrational behavior, 1085
Irreducible, 777
φ-Irreducible Markov chain, 775
ISO 9001 standard, 426
Iterative algorithm, 821, 823
Iterative dichotomize 3, 870
Iterative methods, 97
Iterative shrinkage-thresholding algorithm, 684
i-th equivalence class, 502

J
Jackknifed confidence intervals, 1045
Jacobian determinant, 517
Jacobian function, 582
Jacobian matrix, 967
Jeffrey’s prior, 766, 767
Jeffreys-type prior, 924–926, 928

based on the first risk set, 928
Jensen’s inequality, 6
Job-shop scheduling model, 653–654
Joh Weibull (JW) model, 458
Joiners as dependence functions, 130
Joint cumulative distribution function (JCDF), 737
Joint Electron Device Engineering Council (JEDEC), 1007
Joint monitoring, 271
Joint posterior distribution, 712
Joint probability density function (JPDF), 737
Joint survival function, 738, 754
Judgmental methods, 279

K
Kalman amplification, 955
Kaplan-Meier curves, 587
Kaplan-Meier estimator, 59–60, 832, 834, 836, 837, 839, 842
Karhunen-Loève theorem, 70, 71, 78
k–dependence, 131
Kendall’s tau, 934, 935, 938, 1053
Keras, 883
Kernel copulas, 956, 957
Kernel density estimator (KDE), 970
Kernel function, 70, 806
Kernel principal component analysis (KPCA), 951, 954, 961
Khatri-Rao product, 818, 821
k-independent, 131
KJ method, 248–249
k-means, 622, 808, 809

clustering, 877
Knapsack problem, 643
K-nearest neighbours, 868
k-NN classifier, 806
Knowledge discovery in databases, 797

data preparation, 800
databases and data warehousing, 799–800
handling data, 799–800
process, 798

Kolmogorov type statistic, 1048
Kolmogorov-Smirnov test, 31, 369
K-out-of-n structure, 420
k out of n system, 7, 61
Kronecker product, 818
Kullback-Leibler divergence, 1050
Kullback-Leibler information, 941
Kullback-Leibler loss, 893
Kumaraswamy-G family, 44–45
Kurtosis coefficient, 5
k-variate survival function, 130
Kw-exponential, 45
Kw-Weibull, 45

L
Lack-of-fit criterion, 801
Lag-one autocovaraince matrices, 861
Lag-one vector autoregressive model, 861
Lagrangian dual-objective function, 806
Laplace approximation, 772–773, 785
Laplace method, 968
Laplace transform, 140, 144, 151, 484, 938
Large-sample property on approximating A, 862
Large-sum problem, 685
Largest extreme value distribution, 418
Lasso penalty, 891

function, 615
Latent variable models, 912
Lead-free solder, 1007
Learning, 990, 991
Learning intelligent distribution agent (LIDA), 994
Learning theory

for deep learning, 907–909
for robust adversarial learning, 909–911

Least median of squares (LMS), 614
Least squares (LS) criterion, 607
Least squares estimation, 32, 107, 861

group properties, 1113
for hands data, 1115
parameterization, 1115–1118
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in Procrustes model, 1114–1115
singular value decomposition, 1114
spherical regression model, 1115

Least squares linear regression, 875
Leave-one-out cross validation (LOO-CV), 782, 783
LED packaging process, 268
Ledoux-Talagrand contraction inequality, 905
Left-censoring, 57, 1040
Lepage test, 372
Leverage, 607, 609, 610, 612, 614
Liander, 879
Life distribution, 1019

exponential distribution, 1028
lognormal distribution, 1028
Weibull distribution, 1028

Life prediction, 1008
Life-stress models

exponential model, 1029
power model, 1030

Life testing, 706
Lifetime data, 55, 56, 58, 106–108, 119, 122
LightGBM, 883
Likelihood, 108

function, 26, 27, 486, 593, 923, 1041
principle, 764

Likelihood inference, 1043
confidence intervals, 711–712, 1045–1046
designs of CSALTs, 1050
direct maximization of observed likelihood, 706–709
EM algorithm, 1043–1045
initial values to algorithm, 710–711
model mis-specification analysis, 1046–1047
model selection, 1047–1049
St-EM algorithm, 709–710
test of proportional hazard rates, 1050

Likelihood ratio (LR) method, 58–59
Likelihood ratio test (LRT), 98, 1049
Lindley’s approximation, 712
Linear and additive methods, 801–802
Linear combination, 47
Linear damage rule, 970
Linear discriminant analysis (LDA), 629, 802, 825, 826, 869, 887, 895
Linear function, 943
Linearized models, 969
Linear mixed effect model, 110, 114
Linear model, 822
Linear process, 852, 855
Linear regression, 32, 594, 975

model, 769
Linear representations, 46–47
Linear subspace, 822
Linear transportation model, 662–663
Linear upper bounds, 683
Link(s), 1107

function, 771
Lipschitz constant, 908, 911
Lipschitz continuous functions, 855
1-Lipschitz functions, 851
Lipschitz function, 916
Liquidity risk, 989
Littlewood-Verrall Bayesian model, 431
Load-share system, 62
Local c-optimality design, 120
Local linear, 70
Local minimizer, 679
Local polynomial, 69, 70, 78, 84

Location–allocation problem (LAP), 667–668
capacitated plant location model, 668
with multi-facility service, 670–671
obstacle location–allocation model, 669–670

Location-scale changes, 374
Location-scale distribution, 316
Location-shift SGSN (LS-SGSN) distribution

maximum likelihood estimators, 97–98
model description, 95–97
simulation results, 100
testing of hypothesis, 98

Logarithm of the conditional moment, 1093
Log-BS (LBS) distribution, 89
Log-concave property, 388, 393
Log-F prior, 929
Logistic distribution, 418
Logistic function, 1094
Logistic-G family, 50
Logistic network problems, 662–667
Logistic regression, 771, 801, 820, 870, 911–912
Logistic regression tree (LRT), 596–598
Logistic vulnerability discovery model, 458
Logistics systems, 63
Logit, 593, 1046

model, 1077, 1081
Log-likelihood, 684, 1084

function, 97, 99, 707, 751, 821, 1078
ratio test, 728

Log-location-scale, 107
distribution, 118

Loglog distribution, 20, 27
Log-logistic distribution, 418
Lognormal, 107

density, 16
distribution, 16, 147, 1028

Log odds, 1078
Log partial likelihood function, 923, 926
Log-rank test, 834–835, 843
Łojasiewicz exponent, 681
Łojasiewicz subgradient inequality, 681
Long-range dependence, 852
Long-run, 535

cost rate, 528, 537, 538
Long-term, 529

trend, 114
Longitudinal data, 82
Loss

empirical, 676
expected, 676
function, 784, 913

Low turnaround index (LTI) parts, 284
Low-cycle fatigue (LCF), 975–977
Lower and upper CDs, 577, 578
Lower bound on β(σ(X0), σ(Xm)), 860
Lower triangular matrix, 888
Lower-bound truncated exponential distribution, 15
Lumpy demand, 276

M
Machine learning, 596, 641, 983, 984

AdaBoost, 872
algorithms based on applications, 868
approaches, 813
artificial neural network, 874
bagging, 871
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Machine learning (cont.)
bias-variance trade-off, 868
CART, 870
classification algorithm, 868
deep learning, 868
elastic net, 876
goals, 866
gradient boosting algorithm, 872
gradient boosting machine, 873
history, 866
importance of, 866–867
K-nearest neighbours, 869
LASSO, 875
least squares linear regression, 875
linear discriminant analysis, 869
logistic regression, 870
Naïve Bayes algorithm, 870
parametric vs. non-parametric learning, 867
quadratic discriminant analysis, 870
random forest, 871–872
reinforcement learning, 867
ridge regression, 875
semi-supervised learning, 867
supervised learning, 867
support vector machines, 869
support vector regression, 876
unsupervised learning, 867
XGBoost, 873

Magnetic resonance image (MRI), 817
Magnitude-events, 271
Mahalanobis–Taguchi System, 811
Maintainability, 425
Maintenance, 521

cost, 535
engineering, 543, 544
groupings, 530
model, 517, 735
modeling, 522
planning, 522
policy, 496
strategies, 188

Maintenance cost analysis, 512
calculation, 512
expected cycle length, 513

Majorization-minimization (MM), 682
Malenad Tiger Landscape, 788
Mann-Whitney test, 372
Manson–Coffin law, 969
Manson–Coffin low-cycle fatigue life model, 969
Manson-Coffin model, 976
Manufacturers, 186
Manufacturing process control, 812
Manufacturing process modeling, 811–812
MAPLE, 472, 476
Mapping function, 501
Marginal α-mixing coefficient, 860
Marginal distribution, 768, 932, 939
Marginal factor, 132
Marginal fiducial distribution, 584
Marginal generalized fiducial probability of model, 585
Marginal likelihood, 784, 785

Gelfand-Dey estimator, 786
Marginal posterior density, 770
Marginal probability, 764

measure, 857
Marginal regret, 1079

Marginalization paradox, 789
Marginally consistent, 937
Marine magnetic anomaly lineations, 1066
Market behaviour, 986
Markov chain, 535, 685, 775, 776, 778, 780, 851, 861

approach, 225, 338
method, 338
and stationarity, 775–777

Markov chain Monte Carlo (MCMC), 116, 122, 764, 774–779,
783–785, 789, 790, 926, 967

Markov model, 496
Markov modeling, 141, 144
Markov process, 138, 424, 858

characteristics, 138
mean time failures, 142–144
types based on reliability/availability, 138

Markov property, 775
Markov’s inequality, 903
Markovian approach, 191
Marshall and Olkin-G family, 46
Marshall-Olkin bivariate exponential (MOBE) distribution, 734,

740–742, 747, 757
Marshall-Olkin bivariate Weibull distribution, 742
Martingale theory, 689
Masking, 606, 610, 612, 616
Massart’s finite lemma, 906
Master Black Belts, 241
Mathematical induction, 132
Mathematical maintenance cost, 496
Mathematical properties, 47–49
Mathematical software packages, 1114
Matlab, 70, 73, 79, 810
Matrix exponential map, 1116
Matrix normal distribution, 819
Maximization approach, 739–740
Maximum a posteriori, 773, 790
Maximum likelihood (ML), 594, 939, 940, 943

estimates, 23–25, 51, 52, 58, 98, 99, 101, 102, 119, 120, 486–487,
704, 705, 707, 709–713, 729, 735, 748, 751–753, 768, 820,
822–824, 826, 924, 1031, 1032, 1035, 1043–1046, 1054,
1055, 1078

predictor, 316
Maximum partial likelihood estimates (MPLEs), 923, 924
Maximum-flow model, 647–648
McDiarmid’s inequality, 904
Mean deviations, 48, 49
Mean function, 69, 70, 77
Mean life, 1014
Mean lifetime, 1046
Mean past life (MPL), 396
Mean residual life (MRL), 11, 55, 396
Mean squared prediction error (MSPE), 783
Mean square error (MSE), 100, 101, 323, 596, 713, 714, 718, 868
Mean time before failure (MTBF), 284, 289
Mean time between failure (MTBF), 142–144, 968
Mean time between software failures (MTBF), 447
Mean time to failure (MTTF), 9–10, 55, 1010
Mean time to repair (MTTR), 425
Mean-value function, 146, 481, 484, 487–488
τ -Measure of dependence, 850
Measure of dependence, 849–851
Measurement errors (ME), 70, 77, 82, 83, 335, 605, 607

model, 345
Measurement system analysis (MSA), 243, 245
Mechanics, 1009

analysis, 1004
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Median, 5, 48
Median of absolute deviation (MAD), 613
Memory organizations, 991
Memoryless property, 13, 14
Mesh, 1012
M-estimates, 613

asymptotic relative efficiency, 1121
distribution and calculation of, 1117
distribution of Procrustes model, 1119
hands data, 1118
	 matix and geometry, 1118
Procrustes model, 1117
statistical assumptions for Procrustes model, 1119
statistical assumptions of spherical regression, 1123–1124
statistical properties of, 1118–1121

Meta-analysis, 580
of microarray, 632

Method of least squares, 32
Method of moments, 25
Metric dimension, 907
Metric entropy, 907
Metric space, 906
Metropolis algorithm, 777
Metropolis ratio, 777
Metropolis-Hastings algorithm, 773, 775, 777–779
Metropolis-Hastings (MH) sampling, 968
Metropolis-within-Gibbs, 116
Microarray data, 622

four-level analysis of, 622
fourth-level analysis, 632
second-level analysis of, 623–625
third-level analysis, 625–632

Mills seeding model, 433
Minimal cut, 8
Minimal path, 7
Minimal repair, 187–189, 544, 546
Minimization approach, 737–739
Minimizer, local, 679
Minimum cut sets, 62
Minimum density power divergence estimators (MDPDEs),

1050–1052
Minimum mean squared error, 202
Minimum path sets, 62
Minimum spanning tree model, 643–644
Minimum variance unbiased estimator, 23
Minimum-cost-flow model, 648
Minorants, convex, 682
Minorization, affine, 680
Misclassification, 628
Missing data, 599
Missing information principle, 705, 711–712
Mixed EWMA-CUSUM chart, 271
Mixed logit model, 1081–1084
Mixed sampling plans, 233
Mixed-level foldover designs (MLFODs), 306, 308
Mixed-type and multi-modality data, 216
τ -Mixing condition, 852, 853
Mixing conditions, 849, 858
Mixture representation, 938
MO-NH distribution, 46
Mode, 5
Mode-m matricization, 818, 823
Mode-m matrix product, 818
Model comparison, 782–787
Model integration, 952–955
Model mis-specification analysis, 1046–1047

Model robustness and sensitivity analysis, 781
Modifications of the desirability function, 212
Modifications of traditional methods, 201
Modified chain sampling plan (MChSP-1), 225–226
Modified Cholesky decomposition (MCD), 888, 897

adaptive banding, 890–892
for banded matrix estimation, 890
for covariance matrix estimation, 889–890
for linear discriminant analysis, 895
ordering issue, 892–893
for portfolio optimization, 894–895
for precision matrix estimation, 888–889
varying covariance matrix estimation, in multivariate time series,

893–894
Modified ensemble transform Kalman filter (ETKF) modification

method, 954
Modified replacement, 559–562
Modified Sarhan-Balakrishnan bivariate distribution, 754–755
Molten lava, 1066
Moment(s), 47–48

generating function, 49
inequalities, 5–6

Moment-based estimators, 824, 826
Monitoring batch means, 203
Monitoring convergence, 780–782
Monitoring information, 539
Monitoring magnitude, 271
Monitoring methods, 279
Monotone likelihood

Cox proportional hazards regression model, 924
piecewise constant hazard regression model, 924

Monotone partial likelihood, 923
Monotonic decreasing bases (I-splines), 113
Monotonic function, 903
Monotonicity, 1097
Monte Carlo approximation, 774
Monte Carlo-based method, 968
Monte Carlo (MC) estimators, 785, 972–974, 977, 978
Monte Carlo sample size, 774
Monte Carlo sampling, 585, 773–774
Monte Carlo simulation, 110, 115, 323
Monte Carlo standard error (MCSE), 774
Monte-Hall problem, 765
Mood test, 372
mRNA, 628
m-th order auto-covariance matrix, 862
Multi-agent financial decision support system, 996–997
Multi-agent system, 983
Multi-component, 527
Multi-criteria decisions, 981
Multi-level, 83
Multi-level trend renewal process (MTRP), 106, 115–117, 125
Multi-source data, 950
Multi-stage logistics model, 664–665
Multicollinearity, 595
Multidimensional mixed sampling plans (MDMSP), 233
Multidimensional multivariate distribution, 955–957
Multidimensional OLAP (MOLAP), 800
Multilevel/hierarchical functional data, 68
Multinomial distribution, 766
Multinomial logit model (MNL), 1078, 1083
Multiobjective genetic algorithm (MoGA), 639
Multiobjective optimization problems, 639–641
Multiobjective transportation, 663
Multiple additive regression tree (MART), 803
Multiple components, 1052
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Multiple linear regression, 89, 99
Multiple outliers, 606
Multiprocessor scheduling model, 656–657
Multisource data, 950–952
Multistage process planning (MPP) model, 649–650
Multistage variation propagation, 812
Multivariate adaptive regression splines (MARS), 803
Multivariate analysis, 616
Multivariate ASN (MASN) distribution, 94
Multivariate CDs, 580
Multivariate characteristics, 205–206
Multivariate chart using real-time contrast, 206
Multivariate cumulative sum (MCUSUM), 940
Multivariate CUSUM chart, 206
Multivariate data, 932
Multivariate defect modeling, 812
Multivariate EWMA chart, 206
Multivariate exponentially weighted moving average

(MEWMA), 940
Multivariate FPCA, 84
Multivariate geometric skew normal (MGSN) distribution,

94–95
Multivariate normal, 88, 94, 95

distribution, 110, 1119, 1123, 1124
Multivariate process control, 940–942
Multivariate quadratic loss, 211
Multivariate response envelope model, 821–822
Multivariate response regression, 821
Multivariate T2 chart, 206
Musa execution time model, 432
Musa-Okumoto logarithmic Poisson execution time

model, 433
Mutually independent, 7

N
Nagaev-type inequality, 854

for linear processes, 852
National vulnerability database (NVD), 478
Natural language processing, 984, 994
Naïve Bayes algorithm, 870
Near-zero-defect manufacturing, 266
Nearest neighbor (NN), 806
Negative binomial distribution, 264
Negative log-likelihood function, 822
Negatively skewed, 90
Nelder–Mead algorithm, 515, 515
Nelson model, 433
Nelson-Aalen estimator, 832, 836, 842, 844
Nelson-Aalen formula, 836
Nested logit model, 1081–1082
Nests, 1081
Network architecture, 805
Network reliability design, 661
Neural function, 630
Neuroimaging studies, 817
Newton-Raphson, 89, 97

algorithm, 1098
method, 709
procedure, 162

Ng-Kundu-Chan model, 155
No fault found (NFF) problem, 214
Node(s), 994

impurity, 631
Nonconvex analysis, 676
Non-destructive testing (NDT), 971

Nondominated Sorting Genetic Algorithm II (NSGA II), 640
Nonhomogeneous Poisson process (NHPP), 106, 148, 432, 459,

481, 544
models, 447
software reliability models, 482–483

Noninformative prior, 765, 766, 970
Non-linear optimization, 89
Non-normal multivariate distributions, 932
Nonoverlapping batch means, 203
Non-parametric empirical Bayes, 768
Nonparametric fiducial inference, 583–585
Non-parametric learning, 868
Nonparametric maximum likelihood estimator, 62, 1047
Non-parametric methods, 955
Nonparametric regression modeling, 802
Nonparametric regularization, 950
Nonparametric risk analysis, 956
Nonparametric smoothing, 69
Non-parametric SPC, 362, 369, 379
Nonparametric tolerance limits, 35
Nonrepairable degraded systems

numerical example, 502–506
three competing process, 500–502
two competing process, 497–499

Non-symbolic structure, 993
Non-zero correlations, 1081
Norenewable warranties, 186
Normal cone, 679
Normal copula, 935
�–normal distribution, 45
Normal distribution, 15–16, 90, 99, 490
Normal parameters, 33
Normalized, 73, 77

criteria distance, 492, 493
Norris-Landzberg (N-L) formula, 1006
Numerical integration, 71, 772
Numerical simulation, 1004

O
Object detection, 813
Observations and measurements, 950, 951
Observed Fisher information matrix, 711, 729
Occupancy probability, 787
Odd log-logistic-G, 50
Odds, 1078
O-function, 50
One dimensional Lebesgue measure, 739
One-by-one inspection process, 265
One-dimensional joiner, 132
One-shot device, 1039

CSALTs and models, 1040–1043
likelihood inference, 1043–1050
with multiple failure modes, 1052–1054
SSALTs, 1054–1056
testing data, 1041

One-step Newton-Raphson method, 1044
Online analytical processing (OLAP), 800
Online stochastic DCA, 688–696
Open-source software (OSS), 443

development paradigm of, 445
reliability of, 444–446
stochastic differential equation modeling, 448

Operating characteristic (OC) curve, 222
Operational coverage, 463
Operational effort functions, 464
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Operational patch time release policies, 468
assumptions, 468
for faults and vulnerabilities, 473
software with warranty, 469
vulnerable software systems, 476–479

Opportunistic scheme, 517
Optimal classifier, 826
Optimal proportion, 1055
Optimal stopping, 1096
Optimal warranty policy, 192
Optimization, 386, 823, 1102

model description, 397
model dormulation, 397
of multivariate loss functions, 211
problem parameters of subsystems, 400

Optimum design, 106, 119
Oracle VM Virtual box, 466
Order statistics, 6
Ordering-averaged method (OAM), 892–893
Ordering of variables, 888, 892, 894, 897
Ordinary least squares (OLS) estimator, 822, 823
Ordinary logistic regression (OLR), 593–595
Ordinary moments, 48
Ordinary renewal process, 147
Organization of memory, 991
Orlicz ψ2 norm, 862
Orthogonal matrix, 1060, 1112
Orthogonality, 78
Orthonormal, 71
Out-of-control, 362
Outlier(s), 605, 608–609

detection, 83
groups of outliers, 610–613
large data sets, 614–615
robust regression, 613–614
single outlier, 608–610

Output, 1092
Over-dispersion, 268
Overfitting, 875, 902
Overlapping batch means, 203

P
Package life, 1017
Packaging machines, cigarettes production, 287–289
Pairwise dependent, 135
Palmgren–Miner rule, 970
Parallel configuration, 139, 140
Parallel repairable system, 141
Parallel–series systems, 188
Parallel structure, 419
Parallel system, 7, 61, 137, 316, 544
Parameter, 712

uncertainity, 1009
variation, 1005

Parameter estimation, 23–25
confidence intervals, 488–490
maximum likelihood estimation, 486–487
mean-value function, 487–488
software reliability, 488

Parametric and semi-parametric models, for survival data, 832–833
Parametric bootstrap confidence intervals, 1046
Parametric empirical Bayes, 768
Parametric function, 712
Parametric learning, 867
Pareto distribution, 20

Pareto solution, 639
Paris’ equation, 972
Paris’ model, 972
Parsimonious representation, 822
Partial independence, 130
Partial least squares (PLS), 824, 825
Partial likelihood function, 923
Particle swarm optimization (PSO), 636
Pascal distribution, 13
Patch release time, 459
Path vector, 7
PBGA 316, 1011
PC scores, 71, 72
Pearson correlation coefficient, 1015
Pearson’s linear correlation coefficient, 935
Peck’s model, 1031
Penalization, 929
Penalized partial likelihood function, 929
Penalty

exact, 682
function, 821

Percentile residual life, 55
Perceptron, 866

learning, 874
Perfect dependence, 934
Perfect repair, 187
Performance, 522

criteria, 492
degradation, 942
evaluation function, 998
measure independent of adjustment, 209
measures, 209
of models, 1085

Performance analysis
of Poisson and binomial models, 299
of statistical methods, 296

Periodic inspection planning, 525
Periodic replacement, 543, 544, 546–547, 552–560, 562, 564–565
Permutation test, 623
Personal choice model, 1085
Personal preferences, 1082
Perturbation plot, 71
Pham distribution, 20
PHM-geometric (PHMG) distribution, 756
Piecewise constant hazard regression model, 922, 924, 928
Pixel data-driven approach based on software GUI, 448–450
Plackett-Burman design, 306
Plastic ball grid array (PBGA) array, 1011
Point availability, 143
Point estimation, 23, 578

univariate case, 768
Poisson distribution, 12–13, 145, 262, 265, 771
Poisson model

stock level conditioned to minimal availability method, 284–285
stock level conditioned to minimum total cost, 285–286

Poisson process, 145, 269
Poisson regression, 771
Poka-Yoke (mistake-proofing), 244
Polar projection, 1072
Polish space, 850
Political risk, 988
Polyhedral DC program, 681
Polymer composites fatigue testing, 122–125
Population model, 825
Portfolio optimization, 887, 894–895
Positive definite, 888
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Positive FDR (pFDR), 624
Positively skewed, 90
Positivity condition, 778
Posterior covariance, 770
Posterior covariance matrix, 788
Posterior distribution, 533, 765, 766, 768
Posterior mean, 769
Posterior mode, 769
Posterior model probabilities, 786
Posterior predictive checking, 781–782
Posterior predictive density, 770, 781
Posterior predictive loss, 784
Posterior predictive risk, 784
Posterior probability, 624
Posterior propriety

Cox proportional hazards regression model, 925
piecewise constant hazard regression model, 925
remedies for, 925

Potentially diverges with n, 854
Power law function, 461
Power model, 1030
Power normal, 88
Power supplies, 144
p-quantile, 533
Precision matrix, 887, 889, 897

estimation, 888–889
Prediction, 73, 316, 317, 328

likelihood functions, 317
maintenance, 528
maintenance modeling, 540
problems, 163
residuals, 607, 610, 611, 614

Prediction interval (PI), 108, 111
Predictive-ratio risk, 492
Predisposition effect, 987
Preventive maintenance, 187, 496, 516, 531
Preventive threshold, 526
Principal Analysis by Conditional Estimation (PACE), 70, 72, 82
Principal components, 70

algorithms, 952
analysis, 622, 877, 887

Principal differential analysis, 84
Printed circuit board (PCB), 242, 798
Prior and posterior distributions

Cox proportional hazards regression model, 924
piecewise constant hazard regression model, 924

Prior density, 772
Prior distribution, 530, 765, 767–769, 771, 785, 789, 1100
Priority-based genetic algorithm (priGA), 658
Pro-rata warranty (PRW), 187
Probabilistic inference, 966
Probabilistic model-based clustering (PMC), 626, 628
Probabilistic modeling, 966–967

probabilistic parameter estimation – inverse problem,
967–968

probabilistic prediction – forward problem, 968
Probabilistic parameter estimation, 967–968
Probabilistic rational model (PRM), 622
Probability, 1092

density, 784
distribution, 966
limit, 262, 266, 271, 272
mass function, 158
plotting, 57
ratio, 1081
weighted moments, 47

Probability and moment inequalities, dependence, 851–852
sample sum for random matrices with dn ≥ 1, 856–857
sample sum for random vectors with dn ≥ 1, 854–856
sample sum for scalars with dn = 1, 852–854
U- and V-statistics, 857–858

Probability density function (PDF), 4, 7, 15, 43–45, 51, 87, 88, 90–92,
94–96, 107, 110, 118, 484, 705, 933, 936, 967–970, 1041

for weibull distribution, 418
Probability of detection (POD), 971
Probability of failure (POF), 968, 970, 971, 973, 977
Probit model, 1077
Probit regression, 771
Process capability analysis, 245
Process capability indices (PCI), 243
Process control, 787, 788, 932, 940–942
Process distribution, 362
Process of learning, 982
Process prediction, 204
Process/product capability index (Cp), 245
Procrustes model, 1112
Procrustes regression model

large sample asymptotics, 1064–1065
and spherical regression, 1060–1061

Product failures, 187, 190
Production process, 222
Product reliability, 190
Profile likelihood function, 924
Profile monitoring, 207
Prognostics and health management, 213–214
Progressive censoring methods, 153

accelerated life testing, 171
ageing properties, 160
coherent systems to progressively type II censored order

statistics, 164
competing risk modelling, 170
conditional density function, 166
counting process approach, 163
dispersive order, 160
experimental design, 164
inference, 161
joint probability mass function, 166
joint progressive Type-II censoring, 174
lifetime performance index, 171
likelihood inference, 162
log-concavity and unimodality properties, 158
MLE under progressive Type-II censoring, 167
multivariate stochastic order, 159
point estimation, 161
prediction problems, 163
progressive hybrid censoring, 168
progressive type-I censoring, 165, 167
progressive type-II censoring, 168
reliability based on progressively type-II censored data, 170
reliability sampling plans, 171
simple step-stress testing, 172
stage life testing model, 172
standard models of, 171
statistical intervals, 163
statistical tests, 164
stress-strength models, 170
stress-strength reliability, 170
type-I and type-II, 154
versions of, 154

Progressive censoring signature (PC-signature), 165
Progressive hybrid censoring, 155
Progressive type-II censoring, 154
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Projection matrix, 825
Proportional hazard class, 735–736
Proportional hazards assumption, 1050
Proportional hazards models, 1043, 1050
Proportional-integral-derivative, 202
Proportional reversed hazard class, 736
Prostate-specific antigen (PSA), 923
Proximal point algorithm, 683
Proximal upper bounds, 683
PRRM, 1080
Pruning, 363, 370

data, 371
Pseudo log-likelihood, 97, 99
Pseudo-observations, 940
Pseudometric space, 907
Psychological behavior, 983
Public health surveillance, 813
Pugh concept, 249–250
p-value, 362, 577, 596
Python, 809

Q
QR decomposition, 770
Quadrant reduced model, 1012
Quadratic discriminant analysis, 870
Quadratic upper bounds, 683
Quadric time-dependent cost function, 1097
Quadstone, 809
Quality engineering, 255
Quality function deployment (QFD), 243, 244, 249
Quantile, 54

estimator, 970
function, 57
values, 955

Quantile–quantile plot, 625
Quantitative methods, 279
Quantitative reliability, 1009
Quasi-MLE (QMLE), 1046, 1047
Quasi-Newton method, 685
Quasi-renewal process, 147–148, 188, 192
Quaternions, 1070–1071
Quick switching sampling (QSS) system, 229
Quick, unbiased and efficient statistical tree (QUEST), 809

R
Rademacher complexity, 902, 904–905, 909–911, 916
Radial basis function (RBF), 806
Radon measure, 687
Ramamoorthy and Bastani model, 433
Random coefficient(s), 60, 1084

degradation path, 497
Random effects, 110
Random environment, 491
Random field environment, 483–484, 486, 488
Random forest, 631, 871

theoretical properties, 844–845
Random forests, for right-censored survival data

ensemble of trees with randomness, 836–837
ensemble prediction, 837
evaluation criteria for survival models, 838–839
out-of-bag error, 839
tuning parameters, 837–838

Randomized logistic degradation path, 497
Random number generator, 789
Random oscillation, 112

Random regret minimization (RRM), 1076, 1077, 1079–1080, 1084
Random replacement, 545
Random utility maximization (RUM), 1075–1079
Random variable, 49, 1099
Random walk Metropolis algorithm, 777
Random warranty cost, 193
Rare event, 973
Rate of return, 998
Ratio of maximized likelihood (RRML) approach, 316, 322
Rayleigh distribution, 20
Rayleigh probability density, 20
Reactive agents, 992
Read-write errors, 268
Real data analysis

LS-SGSN model, 101–102
SGSN regression model, 102

Reciprocal importance sampling estimator, 786
Recognition and reward systems, 242
Recurrence formula, 131
Recurrence transition, 130
Recurrent event data analysis, 115

background and data, 115–116
MTRP model and parameter estimation, 116
prediction for component events, 117

Recurrent neural network (RNN), 874
Recursive function, 1092
Recursive partitioning, 603
Recursive reliability function, 1090
Redundant replacement, 544, 562

policies, 562–565
Reference alternative, 1078
Reference prior, 766–767
References on dynamic robust design, 212
Regeneration times, 535
Regenerative process, 535
Regionalization of climate change models, 952, 953
Regression, 767

analysis, 1017
coefficients, 888, 889
function, 78

Regression model, 824, 825
residuals and leverage in, 607–608

Regret, 1079
functions, 1084

Regularization, 875
Regularized estimator, 820, 821
Regularized incomplete beta function, 390
Reinforcement learning, 867
Rejection probability, 777
Rejection sampling, 774
Relational database system, 799
Relational OLAP, 800
Relative advantage, 1081
Relative advantage maximization (RAM), 1076, 1077, 1080–1081
Relative bias, 1047
Relative efficiency, 713
Relative error (RE), 974
Relative humidity (RH), 112
Relative precision, 122
Reliability, 9, 53, 141, 142, 213, 544, 789, 966, 968–969, 1046,

1091, 1092
analysis, 388, 922
analysis methods, 443
approximation, 1093–1094
availability, 425
characteristics, 393–397
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Reliability (cont.)
characteristics of software, 445
component, 404
damage tolerance model, 971–974
decline in, 404
definitions of, 445
engineering, 1010, 1015
function, 129, 498, 586
improvement, 392
maintainability, 425
modeling, 190
optimization, 660–661
performance, 188
prediction, 108, 110–111, 114, 489–490
quality management, 443
repairable complex systems, 404
repairable system, 424
safe-life model, 969–971
software, 446
studies, 44
system, 404
theory, 789
time dependent functions, 1094

Reliability design problem, 659–662
network reliability design, 661
redundant unit and alternatives, 661
reliability optimization, genetic algorithm for, 660–661
tree-based network design, 661–662

Remaining life, 107, 111
Remaining useful life (RUL), 523, 532–533

distribution, 533
Renewable warranty, 186
Renewal, 536

density, 148
distribution, 116
function, 146
process, 106, 146–147
theory, 535

Rényi entropy of order, 396
Repairable degraded systems

inspection-based maintenance, three competing process, 511–516
inspection maintenace policy, 505–506
maintenance cost modeling, 506–509
numerical example, 509–511
optimization of the maintenance cost rate policy, 509

Repairable products, 187, 190
Repairable system, 404

importance and sensitivity analysis on, 405–411
reliability, 424

Repair-cost-limit warranty (RCLW), 188
Repair-number-limit warranty (RNLW), 188
Repair-time-limit warranty (RTLW), 188
Repetitive group sampling (RGS) plan, 227
Replacement first, 544, 547–549, 552–558, 560, 561, 563–564
Replacement last, 544, 548–549, 552–555, 557–561, 563–565
Replacement middle, 544, 561
Replacement overtime, 544–547, 549–552, 554–557

first, 549–550, 554–556
last, 550–552, 555–557

Representation of the knowledge, 990
Re-sampling, 1045
Rescorla exponential model, 458, 468
Residual, 596

covariance matrix, 607
deviance, 594
sum of squares, 100, 594

Resource-constrained project scheduling model, 656
Resource-constrained project scheduling problem (rcPSP), 650
Response surface method (RSM), 243, 250–251
Response surface models (RSM), 210
Response variable, 769
Responsibility, 439
Revealed preference, 1083
Reversed hazard function, 736
Reversed hazard rate, 55
Reverse logistics model, 666–667
Reversible, 775, 777
Reversible jump Markov chain Monte Carlo (RJMCMC), 779
Ridge regression, 875
r-independence, 135
Right censored, 57

data and survival analysis, 831–833
Right-censoring, 1040
Risk of interchangeability, 989
Risk of redemption on demand, 989
Risk of reinvesting, 989
Risk set, 111
Risk-neutral manufacturer, 191
Robust adversarial learning, 909–911
Robust design, 200

applications of, 213
dynamic, 212–213
multiple responses, 211–212
single responses, 207–211

Robust estimation, 606, 610, 613
Robust regression, 606, 613–614
Robust reliability design, 64
Robustness, 912
Rolling-horizon, 527
Root mean square error (RMSE), 450
Root-n consistent, 82
R package copula, 944
μRRM, 1080
R-square, 78
RTREE, 631

S
Saddle point approximation technique, 1093
Safe-life, 965, 969–971
Salford Systems, 809
Sample auto-covariance matrices, 855
Sample moments, 25
Sample validation, 783
Sarhan-Balakrishnan bivariate distribution, 753–754
Satellite model, 959
Sauer-Shelah lemma, 906
Scalar-on-function regression, 82
Scale density, 766
Scheduling problem, 652–659
Schick and Wolverton (SW) model, 430
Score statistic, 783
Screening-optimizing continuum, 305
Search algorithm, 892
Seasonal pattern, 112, 114
Seasonal regression model, 283
Second-order D-efficiency, 308
Selection theorem, 688
Self-adaptive, 526
Self-organization maps (SOM), 626, 809
Self-validation, 439
Semantic network, 997
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Semantic network processing system (SNePS), 994
Semicontinuity property, 691
Semimartingale convergence theorem, 695
Semi-regenerative, 536

process, 535
Semi-supervised learning, 867, 878
Sensitive observations, 606
Sensitivity, 1101

matrix, 605, 606, 612–614, 616, 617
Peña’s statistics, 614

Sensitivity analysis
extrinsic sensitivity, 1103
importance and, 404, 408
intrinsic sensitivity, 1102

Separable covariance, 818, 823
Sequential Bayesian design (SBD), 106, 117, 119, 120
Sequential probability ratio test (SPRT), 263
Sequential sampling, 36
Sequential test planning

dual objectives, 121–125
of accelerated life tests, 117–120

Serial correlation and effective sample size, 780
Series system, 7, 61, 419
Service level optimization, 289–290
Set-covering model, 644
Shallow analysis, 984
Shannon entropy, 396
Shape-restricted splines, 113
Shared load parallel system, 141, 142
Sharpe ratio, 998
Shewhart chart, 262, 362–366, 379
Shewhart control, 201

chart, 334
Shewhart GZIP chart, 269
Shifted Jeffreys-type prior, 928
Shock model, 734
Shopping location choices, 1083
Short-range dependence, 852
Short-term, 529

horizon, 527
Shortest-path model, 646–647
Siegmund’s approximation, 338
Signal compression, 84
Signal processing, 817
Significance analysis of microarrays (SAM), 624–625
Significance tests, 594
Significantly differentially expressed genes, 623
Simple assembly line balancing (sALB), 658, 659
Simple step-stress model, 705–706
Simulation study, 713, 714, 718
Simultaneous confidence band, 83
Simultaneous shifts, 267
Single nucleotide polymorphism, 622
Single outlier, 608–610
Single patch model, 475
Singular distribution, 742
Singular value decomposition, 819, 1114
Six Sigma

Academy, 241
description, 240
Executive, 241
failures, 242
implementation, 241–242
training and belt structure, 241–242

Skew normal, 87
Skew-symmetric matrix, 1116

Skewness, 594
coefficient, 5

Skip-lot sampling plans, 230
Sklar’s theorem, 933
Slice model, 1012, 1013
Slice sampler, 779
Slow moving demand, 276
Smallest extreme value distribution, 418
Smart meters, 879
Soccer model, 734
Social network choice protocol, 1085
Socio-environmental security, 950, 951, 958
Soft failure, 114
Software buyers growth function, 461
Software data mining (DM), 798
Software failure, 445, 481

data, 492
Software fault, 445
Software fault-detection/failure-occurrence phenomena, 444
Software life cycle models, 439
Software reliability

correctness of, 428
definition, 426
growth models, 443
vs. hardware reliability, 427
measurement of, 428
taxonomy of, 428

Software reliability models, 29–30, 429, 430, 481, 483, 488
calibration model, 482
NHPP, 482–483
RFE models, 484–486
time between failure models, 430

Software requirements analysis, 438
Software testing, 146, 428, 435, 481, 483, 486

definition, 435
optimal time for, 437
process, 436
psychology of, 436

Software validation, 438
after change, 439
benefits, 440
as part of system design, 438
plan, 439
principles of, 438
process, 439

Software verification and validation, 437
Sparse design, 69
Sparse functional data, 69
Sparsity, 888–891, 896, 897
Spatial visual system (SVS), 993
Spearman correlation, 626
Spearman’s rho, 934
Special cause, 361

charts, 202
Special orthogonal matrix, 1112
Spherical regression

differential manifiold, 1062
large κ asymptotics, 1065–1066
least squares estimation, 1061
model, 1112
and Procrustes model, 1060–1061
tangent space approximation, 1063

Spline-based approaches, 69, 70
Standard accuracy, 912
Standard age replacement, 545
Standard deviation (SD), 5, 98, 102, 894
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Standard Dudley’s entropy integral, 915, 917
Standard error (SE), 729, 895–897, 923, 925
Standardized influence functions (SIF), 1125
Standardized sensitivity vector, 614
Standardized time series, 203
Standard normal, 88, 90, 98

distribution, 15, 16
State, operator and result (SOAR), 993
Stationary, 775, 777

distribution, 780
law, 536, 537
measure, 535
probability distribution, 536
process, 114

Stationary Gaussian vector autoregressive model, 859
Statistical applications, 861–862
Statistical based reliability test (SRT), 1025
Statistical error analysis, 1069
Statistical inference, 939–940
Statistical learning, 901–902

deep learning, learning theory for, 907–909
logistic regression, generalization bounds for, 911–912
robust adversarial learning, learning theory for,

909–911
uniform convergence, 903–907

Statistical Package of Social Sciences (SPSS) tool, 465, 478, 809
Statistical process control, 200, 232, 244, 246, 256, 257, 266, 271,

333, 361, 810
for autocorrelated processes, 201–203
automatically controlled processes, 204
vs. automatic process control, 203
charts, 204
efficiency vs. robustness, 205
GLRT-based multivariate methods, 202
for i.i.d. processes, 200–201
for multivariate characteristics, 205–206
for profile monitoring, 207

Statistical property, 1019
Statistical quality control, 788
Steady state availability, 143, 144
Step-stress ALTs (SSALTs), 1040, 1054–1056
Step-stress model, 704–706
Stirling polynomials, 47
Stochastic approximation, 687
Stochastic composite function, 686
Stochastic DC programming and DCA, 687–696
Stochastic dependence, 62–63

structure, 130
Stochastic expectation-maximization (St-EM) algorithm, 704, 705,

709–710
Stochastic model-based algorithms, 686
Stochastic optimization, 685–687
Stochastic processes, 69, 137, 145, 522–525
Stochastic simulation, 774
Stochastic subgradient method, 685
Stock exchange market risk, 988
Strain, 1012
Strehler-Mildvan model, 516
Strength Pareto Evolutionary Algorithm 2 (SPEA2), 640
Stress, 117, 1012

levels, 124
model, 734

Stress intensity factor (SIF), 972
Stress-life, 969
Stress-strength models, 170
Strong convexity, 677

Strong criticality, 679
Strong law of large numbers, 776
Structure function, 7
Structured query language (SQL), 799
Studentized residual, 607
Student’s t distribution, 17
Student’s T-test, 622
Subanalytic data, 681–682
Subgradient, 677
Subjective prior information, 789
Subsystem events, 115
Successive convex approximation (SCA), 682, 683
Successive DC decomposition, 696
Sufficient dimension reduction, 821
Supervised learning, 801, 867, 901
Supply chain, 64
Supply chain management (SCM), 664–666
Supply chain network (SCN), 664
Support function, 679
Support vector machines (SVM), 629, 805–806, 869, 902
Support vector regression, 876
Supremum log-rank test, 834–835, 844
Surface uncertainty

probabilistic LCF life prediction, 975–977
stress and strain states of Curvic couplings, 974–976

Survival analysis, 44, 50, 787, 836–838, 842
and right-censored data, 831–833

Survival copula, 944
Survival estimation, 832
Survival forests

bias and corrections of, 842–844
Survival function (SF), 705, 706, 832, 833, 836–838, 841, 842, 844,

845, 944
Survival signature

interval of, 404
limitations of, 403
methodology, 404
structure function and, 404

Swamping, 606
Symbolic architectures, 990–991
Symbolic structure, 993
Symmetric GSN (SGSN) regression model, 98–100

real data analysis, 102
simulation results, 101

System maintenance, 512
System mean time to failure, 144
System regret, 1080
System reliability, 61–64, 144, 385–387, 390, 419
System state space, 501
Systems health monitoring and management (SHMM),

214–216

T
Taguchi, G., 811
Taguchi robust design methods, 811
Taguchi’s dynamic robust design, 212
Taguchi’s product arrays, 207–208
Taguchi’s signal-to-noise ratios, 209
Tail dependence, 934
Tangent space approximation, 1061–1064
Taylor linearization, 1063, 1064, 1068
Taylor series prediction method, 320
T-chart, 269
T2 control chart, 941
t-distributed Stochastic neighbor embedding (t-SNE), 878
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Technical analysis, 986
agents, 996
indicators, 987

Technological methods, 279
Tectonic plate reconstruction, 1066–1067

Hellinger criterion, 1067
statistical analysis of Hellinger estimate, 1068

Telecommunication(s), 811
software, 486

Temperature cycling test, 1007
Temperature-humidity model, 1031
Temperature ramps, 1014
Tensor classification, 825
Tensor data, 823

analysis, 818
Tensor discriminant analysis (TDA), 826
Tensor envelope partial least squares regression, 824–825
Tensor generalized linear model, 820–821
Tensor normal, 826

distribution, 819–820, 826
Tensor PLS algorithm, 824
Tensor predictor, 825
Tensor response linear model, 822
Tensor response regression, 820, 823, 824
Test

Case, 435
definition, 435
of independence, 597
planning, 106, 1050

Testing environment, 484
Testing life cycle, 436
Testing of hypotheses, 98
Text analysis agents, 996, 998
Text exploration, 984
The Houses of Quality (HOQ), 249
Theory of inventive problem solving (TRIZ), 249
Three competing processes

inspection-based maintenance fo repairable degraded systems,
511–516

inspection–maintenance policy, 511, 512
maintenance cost analysis, 512–513
nonrepairable degraded systems, 500–502
numerical examples, 514–516
optimization of cost rate, 514

Three Sigma program, 240
Three-Sigma limits, 262, 270
Threshold, 109

voting system, 1091
Tightened-normal-tightened sampling, 222
Time and effort, 439
Time-between-events, 262, 269–271
Time censoring, 1027
Time horizon, 279
Time series analysis, 861
Time to event data analysis

background and data, 109
model for covariates, 110
model for time to event data and parameter

estimation, 109
reliability prediction, 110–111

Tire reliability study, 925–927
Tolerance design, 213, 305
Top-down learning, 991
Total probability, 4
Total quality management (TQM), 240, 242
Total time on test (TTT), 713, 718

Traditional reliability analysis
background and data, 107
reliability prediction, 108
time to event models and parameter estimation, 107–108

Transient analysis, 974, 975
Transition kernel, 775
Transition probability, 139
Traveling-salesman model, 645–646
Tread and belt separation (TBS), 925, 926
Tree-based models, 833–834

splitting mechanism, 834–836
tree prediction, 836

Tree-based network design, 661–662
Tree coefficient, 803
Tree estimator, 837
Tree prediction, 836
Trees and forests, 622
Trend-renewal process (TRP), 106
Tri-variate distribution, 131
Triangular arrays, 695
Triangular-array setting, 851
Triangular distribution, 22
Trivariate reduction method, 812
Trivariate replacement policy, 544
Tucker decomposition, 818
Two-attribute warranty, 189
Two competing processes, nonrepairable degraded systems

model description, 497
numerical example, 499
reliability evaluation, 498

Two-degradation-process, 500
Two-dimensional Lebesgue measure, 739
Two-dimensional warranty, 191
Two-level repairable system, 115
Two-parameter exponential distribution, 585–586
Two patch model, 476
Two-stage transportation problem (tsTP), 664
T-X family, 49–50
Type I censoring, 25
Type I error, 623
Type-II censoring, 25, 704, 706

U
Ultraviolet (UV) radiation, 112
Unbiased estimator, 23
Uncertainty, 531, 675, 966
Under-dispersion, 268
Uniform convergence, 82, 902, 903

concentration inequalities, 903–904
covering number, 906–907
growth function and VC dimension, 905–906
Rademacher complexity, 904–905

Uniform distribution, 15
Uniform equicontinuity, 692
Uniform prior, 765
Unique vulnerabilities, 460
Universal representation of bivariate, 130
Unreplicated experiment analysis, 210
Unstructured data, 982
Unsupervised learning, 806–809, 867

clustering analysis, 876
DBSCAN, 877
dimension reduction techniques, 877–878
hierarchical clustering, 877
K-means clustering, 877
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Unsupervised learning (cont.)
principal components analysis, 877
semi-supervised learning, 878

Upper and lower CDs, 577–578
Upper-bound truncated exponential distribution, 15
Upper control limit (UCL), 251
Use-rate data, 109
Used as good as new, 14
Useful life period, 417
User-dependent vulnerability discovery model, 460–461
U-statistics, 845, 857
Utility, 1076
Utilization index, 288

V
Validation, 425

coverage, 439
of software, 438

Value at risk (VaR), 193
Variable importance, 837, 838, 840–843
Variable sample size (VSSI) CV control chart, 335
Variable selection, 820, 839–841
Variable-selection-based multivariate chart, 206
Variance–covariance matrix, 488
Variance matrix, 27
Variance reduction method, 687
Variation, 240
Variational auto-encoders (VAEs), 912
Variational Bayesian methods (VBM), 790
Vector components, 952
Vehicle routing procedures, 63
Verification, 425, 1010

of software, 438
Verification and validation activities (V&V), 425, 437
Vibration acceleration models, 1031
Virkler’s fatigue testing data, 973
Visual features, 805
Vitali convergence theorem, 693
Voice of customer (VOC), 248
Voltage acceleration models, 1030
Volterra equation, 537
Voters, 1090
Voting rule, 1090
V-statistics, 857, 858
Vtub-shaped failure rate, 22
Vtub-shaped fault-detection rate, 482
Vtub-shaped function, 492
Vulnerability discovery models

effort-dependent, 461–462
generalized coverage-dependent model, 463–464
non-homogenous Poison process, 459
notations, 458
user-dependent, 460

W
Wald-type test(s), 1051–1052

statistics, 1051
Warm standby system, 386
Warranty, 185

claim, 188, 190
cost, 188, 189, 191
cycle, 186, 190
length, 192
management, 192
period, 188, 190, 192
service, 190

Warranty policies
classification, 186–189
evaluation of, 189–193

Warranty-maintenance, 188
Warranty-management, 186
Watanabe-Akaike information criterion (WAIC), 929

See alsoWidely applicable information criterion (WAIC)
�–W distribution, 51, 52
Weak dependence case, 853
Weak dependence measures, 850, 851
Wearout period, 417
�–Weibull density function, 45
Weibull distribution, 18, 45, 46, 55, 57, 107, 110, 117, 270, 292, 418,

704, 706, 728, 737, 1028, 1041, 1047–1049, 1052, 1055
modified model extension, 292–293
simulation, 293–294

Weibull models, 424, 1041–1042, 1055
Weibull probability density, 18
Weight(s), 1090
Weight mapping crossover (WMX), 650, 651
Weighted batch mean (WBM) method, 203
Weighted Marshall-Olkin bivariate exponential distribution, 742
Weighted threshold indecisive voting system

indecisive decision rule, 1099
indecisive model formulation, 1099
model assumptions, 1099
numerical example, 1100–1102
sensitivity analysis, 1102–1104

Weighted threshold voting system
decision rule, 1091
in detection, communication and recognition, 1106
examples of system reliability, 1092–1093
future research, 1107
model assumptions, 1091
model formulation, 1091–1092
reliability analysis, 1093

White-box testing, 437
White type statistic, 1048
Whöler curve, 56
Widely applicable information criterion (WAIC), 782
Wiener process, 524
Wilcoxon rank sum test, 622
Wilcoxon rank test, 577
Wireless sensor network, 1107
Working memory, 993

X
XGBoost, 873
XLMiner, 809

Y
Yield modeling, 812
Young inequality, 692
Yule-Walker formula, 861

Z
Zellner’s g-prior, 925
Zero-defect process, 262, 266, 271
Zero-inflated models, 269
Zero-inflated Poisson (ZIP) distribution, 266

CUSUM chart for, 267
EWMA chart for, 267–268
Shewhart chart for, 266–267

Zero-inflation Poisson model, 266
Zero-truncated Poisson distribution, 267
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