
Chapter 7
Beyond Black and Scholes

The Black–Scholes (BS) model for the value V.S; t/ of a vanilla option is based on
some assumptions on the market. In particular, the BS model assumes the price St of
the asset on which the option is written, follows a geometric Brownian motion with
a constant volatility � . Further, transaction costs are neglected, and trading of the
underlying is supposed to have no influence on the price St. As has been discussed
extensively, the value function V.S; t/ for standard options (“plain vanilla”) of the
European type, satisfies the Black–Scholes equation (1.5),
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Solutions of this linear equation are subject to the terminal condition V.S;T/ D
�.S/, where � defines the payoff.

The BS-model is the core example of a complete market. In these idealized
markets, the risk exposure to variations in the underlying can be hedged away.
The corresponding risk strategy is unique. Hence vanilla options modeled by
Assumptions 1.2 have a unique price, given by the costs of the replication strategy
(�! Appendix A.4). Essentially, Chaps. 4 through 6 have applied numerical
methods to complete markets.

For the more realistic incomplete markets, there are no perfect hedges, and a risk
remains. Each hedging strategy leads to a specific model with its own price [84].
The hedger compensates the remaining risk in incomplete markets by charging an
additional risk premium. Hence the value function or expected value is not the price
for which the option is sold. Depending on the way how the comfortable assumption
of completeness of the BS-market is lost, different models are set up, calling for
different numerical approaches. This Chap. 7 is devoted to computational tools for
incomplete markets.
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354 7 Beyond Black and Scholes

Relaxing several of the assumptions of the Black–Scholes market, nonlinear
extensions of the BS equation can be derived. These “nonlinear Black–Scholes type
equations” are of the form
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In this class of models, the volatility O� is a function that may incorporate several
types of nonlinearity. The standard PDE (7.1) is included for O� � � . In Sect. 7.1
we describe three scenarios leading to three different functions O� of the volatility.
A nonlinear PDE as (7.2) requires special numerical treatment, which will be the
focus of Sect. 7.2.

Another stream of research beyond Black and Scholes is devoted to jump
processes (Sect. 7.3). One of the numerical approaches is based on partial integro-
differential equations (PIDE). Some highly efficient methods apply the Fourier
transform; a basic approach will be discussed in Sect. 7.4.

7.1 Nonlinearities in Models for Financial Options

In this section we briefly discuss three sources of nonlinearity of O� in (7.2). We
start with transaction costs based on Leland’s approach [245], and touch the more
sophisticated model of Barles and Soner [24]. Then we turn to specifying ranges of
volatility. Finally we address feedback by market illiquidity.

7.1.1 Leland’s Model of Transaction Costs

Basic for the Black–Scholes model is the idea of rebalancing the portfolio contin-
uously. But in financial reality this continuous trading would cause arbitrarily high
trading costs. Keeping transaction costs low forces to abandon the optimal Black–
Scholes hedging. But without the ideal BS hedging, the model suffers from hedging
errors. To compromise, the hedger searches a balance between keeping both the
transaction costs low and the hedging errors low.

Suppose that instead of rebalancing continuously, trading is only possible at
discrete time instances with time step �t apart (�t fixed and finite). We assume
a transaction cost rate proportional to the trading volume �S:

trading � assets costs the amount cj�jS

for some cost parameter c.



7.1 Nonlinearities in Models for Financial Options 355

Here we sketch a heuristic derivation of a model due to [187, 245]. The discussion
of this model parallels that for the Black–Scholes model, now adapted to the discrete
scenario.1 The stochastic changes of the asset with price S and of a riskless bond
with price B are

�S D �S�tC �S�W ;

�B D rB�t :

The portfolio with value ˘ is taken in the form

˘ D ˛SC ˇB ;

with ˛ units of the asset and ˇ units of the bond. Suppose the portfolio is self-
financing in the sense S�˛CB�ˇ D 0, which is sufficient for�˘ D ˛�SCˇ�B.
Further assume that trading is such that the portfolio ˘ replicates the value of the
option.

By definition, � D �˛. After one time interval, � D �˛ assets are traded, with
transaction costs cSj�˛j. The change in the value of the portfolio is

�˘ D ˛�SC ˇ�B � cSj�˛j
D .˛�SC ˇrB/�tC ˛�S�W � cSj�˛j : (7.3)

Let V be the value function of the option. Itô’s lemma adapted to the discrete
scenario gives
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By the no-arbitrage principle�V D �˘ holds for the replicating and self-financing
portfolio. And coefficient matching will give further information. But first let us
approximate the �˛-term.

From BS theory we expect ˛ � @V
@S . So � D �˛ will be approximated by
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1All other BS-assumptions remain untouched [234]. The following analysis uses or modifies
Appendix A.4 with (A.3), (A.5), (A.10). Here � means the increment, and not the greek @V

@S .
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invoking Taylor’s expansion. After substituting�S we realize that the term of lowest
order is

�S
@2V.S; t/

@S2
�W :

In summary, by (7.3) the transaction costs in �˘ can be approximated by

�cSj�˛j D �c�S2
ˇ̌
ˇ@2V.S; t/

@S2

ˇ̌
ˇ j�Wj C t:h:o: ;

which is path-dependent. Leland [245] boldly suggested to approximate j�Wj �
E.j�Wj/. Exercise 7.1 tells

E.j�Wj/ D p�t

r
2

�
:

In this way, the trading cost term �cS j�˛j is approximated by the deterministic
expression
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This may be seen as further assumption, motivated by the above arguing. The
approximation (7.4) of the transaction costs and its artificial parameter

p
2=� � 0:8

reflect the lack of a unique price in incomplete markets.
With this somewhat artificial approximation (7.4) of the trading costs �cSj�˛j,

coefficient matching of �V D �˘ leads to match the remaining stochastic terms,

˛�S�W D �S
@V
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or ˛ D @V
@S , which is the famous “delta hedging,” consistent with the modeling of

�˛ above. The remaining terms are deterministic. Use ˇB C S @V
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(7.5)

The�-terms cancel out. Equation (7.5) with transaction costs replaced by (7.4) leads
to the variant of the Black–Scholes equation. With the coefficient
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r
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the resulting equation is
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Formally, this becomes the standard Black–Scholes equation with a modified
volatility

O�2.	 / WD �2Œ1C � sign.	 /
 ; (7.8)

with 	 WD @2V
@S2

. For convex payoff, sign.	 / D 1. This amounts to augment the
volatility to a constant O� > � (Leland’s scenario). In this case the PDE (7.7) is
again linear. But note that for instance for barrier options, 	 does change sign, and
the PDE is nonlinear and of the general type of Eq. (7.2). For c D 0 (no transaction
costs) (7.7) specializes to the BS-equation. To have a well-posed PDE, �t must be
such that � < 1. In particular,�t! 0 does not make sense.

7.1.2 The Barles and Soner Model of Transaction Costs

Barles and Soner [24] assume a price process dSt D St.� dtC� dWt/, with constant
volatility � , 0 � t � T, and model transactions using the following variables:

˛t shares of the asset with price St,
ˇt shares of the bond,
Lt cumulative transfer form cash to stock, nondecreasing, L.0/ D 0,
Mt cumulative transfer from stock to cash, nondecreasing, M.0/ D 0.

Consequently,

˛t D ˛0 C Lt �Mt ;

ˇt D ˇ0 �
Z t

0

S� � .1C c/ dL� C
Z t

0

S� � .1 � c/ dM� C
Z t

0

rˇ� d� :

That is, in both the cases buying and selling of stocks, transaction costs
R

S�c are
charged to ˇ, where c again denotes proportional transaction costs. The further
derivation of [24] is based on a utility function. The final result is
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Fig. 7.1 V.S; T � t/: difference between the solution of the Black–Scholes equation (7.1) and the
solution of (7.9); K D 100; r D 0:1; � D 0:2; a D 0:02; T D 1. With kind permission of Pascal
Heider

where a is a parameter representing proportional transaction costs and risk aversion.
The function f is the unique solution of the ODE

df .x/

dx
D f .x/C 1
2
p

xf .x/ � x
with f .0/ D 0 :

The resulting function f is singular at x D 0 (�! Exercise 7.2). Figure 7.1 shows the
difference between the BS-solution and the solution of the corresponding nonlinear
model (7.9).

7.1.3 Specifying a Range of Volatility

The two above models of transaction costs come up with a nonlinear volatility
function O�.	 /. Usually this function is not known, and is subject to speculation
(modeling). It will be easier to specify a range of volatility, assuming that O� lies
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within an interval or band

0 < �min � � � �max < 1 :

This is the uncertain-volatility model of [16, 17, 250].
The derivation starts as above, leading to (7.5) with c D 0. (Here transaction

costs are not considered.) Formally, the result is the Black–Scholes equation (BSE),
except that � is no constant, but is considered as a stochastic variable �.t/:
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This is a PDE with stochastic control parameter �.t/. There is an ambitious theory
for such controlled diffusion processes, see the monograph [233]. To avoid the use
of this methodology, we adopt a simplified arguing, similar as in [375].

Using an argumentation of Black and Scholes, we construct a portfolio of one
option (value V), and hedge it with �˛ units of the underlying asset,

˘ D V � ˛S :

Assuming a change in the value of this portfolio in the form�˘ D �V � ˛�S, we
have as above
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The choice ˛ D @V
@S eliminates the risk represented by the�W-terms. This results in
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Note that the return �˘ of the portfolio still depends on the unknown stochastic
�.t/, we write �˘.�/.

Now we define artificially two specific functions �C.t/ and ��.t/ chosen such
that the return�˘.�/ increases by the maximum amount, or by the least amount:

• �C.t/ chosen such that �˘.�C/ is a maximum,
• ��.t/ chosen such that �˘.��/ is a minimum.

These returns reflect the best case and the worst case as seen by the holder. For
every function �.t/ the no-arbitrage principle holds. Hence both cases �C.t/ and
��.t/ result in a return�˘ D r˘�t. This can be summarized as

�C maximizes max
�min����max

�˘.�/ D r˘�t ;

�� minimizes min
�min����max

�˘.�/ D r˘�t :
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In view of the expression (7.10) for �˘.�/, the two artificial functions �C; ��
enter via the term

�2
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For �˘ to become a maximum or minimum, �C (or ��) will equal �min or �max,
depending on the sign of 	 D @2V

@S2
. To become a maximum, set

�C.	 / WD
(
�max if 	 � 0 ;
�min if 	 < 0 :

(7.11)

And to become a minimum, set

��.	 / WD
(
�max if 	 < 0 ;

�min if 	 � 0 : (7.12)

Equations (7.11) and (7.12) define two specific control functions � , which after
substitution into the PDE �˘.�/ D r˘�t yields two nonlinear PDEs
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with O� D �C and O� D �� from (7.11)/(7.12). Let us denote the corresponding
solutions VC and V�. Since �C yields the maximum return, we expect V � VC,
and similarly, V� � V . This provides the range V� � V � VC for the option price.

In the special case of vanilla options, the convexity of V.S; :/ implies 	 � 0

and hence �C D �max and �� D �min; the nonlinearity is not effective then. The
monotonicity of V with respect to � is clear for vanilla options, but is not valid,
for example, for barrier options. And convexity of V.S; :/ is lost for barrier options,
butterfly spreads, digital options, and many other options [303]. The great potential
of the uncertain-volatility model is illustrated by Fig. 7.2. For the example of a
butterfly option, and an uncertainty interval 0:15 � � � 0:25 we show the band
V� � V � VC, with two Black–Scholes curves therein. The payoff of a butterfly
spread is illustrated schematically in Fig. 1.25d, see also Exercise 7.3. The functions
V�;VC were calculated with the methods to be explained in Sect. 7.2. For barrier
options, the success of the method is doubtful because of the high sensitivity w.r.t.
� close to the barrier. Then the bandwidth may be so large that it is not of practical
use. Such an example is shown in Fig. 7.3.
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Fig. 7.2 V.S; 0/ of a European butterfly spread, uncertain-volatility model of Avellaneda et al.,
Sect. 7.1.3; with K D 100; K1 D 85; K2 D 115; r D 0:13; �min D 0:15; �max D 0:25; ı D
0:03; T D 0:27. Four curves are shown: the bounding functions VC (orange curve) and V� (green
curve), and V of the standard Black–Scholes model with constant volatilities � D 0:15 (the steeper
curve, in blue) and � D 0:25 (the lower profile, in violet)

7.1.4 Market Illiquidity

As pointed out by [140, 141, 330], the assumption that a big investor can trade
large amounts of an asset without affecting its price, is not realistic. There will
be a feedback, and the assumption of an infinite market liquidity may fail. Frey
and Stremme [141], Schönbucher and Wilmott [330] introduce a market liquidity
parameter �, with 0 � � � 1, and derive the nonlinear PDE
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Here we do not discuss further details. Note that this model is also of the form of
Eq. (7.2).
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Fig. 7.3 V.S; 0/ of a European up-and-out barrier call, uncertain-volatility model of Avellaneda
et al., Sect. 7.1.3; with barrier B D 115, and K D 100; r D 0:1; �min D 0:1; �max D 0:3; ı D
0; T D 0:2. In addition to the two bounding curves VC (orange) and V� (green) three V curves
are shown of the standard Black–Scholes model with constant volatilities � D 0:1 (blue) and
� D 0:2; 0:3

7.2 Numerical Solution of Nonlinear Black–Scholes
Equations

All the nonlinear PDEs of Sect. 7.1 fall under the general type of equation
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which we are going to solve next. In this form, Eq. (7.15) represents the value of
a European-style option. There is no analytical solution known for (7.15), so a
numerical approach is needed also in the European case.

For an American-style option, a penalization can be applied, and an additional
nonlinear term appears in (7.15). A penalty approach (e.g., [119, 133]) is to add the
penalty Op max.� � V; 0/, where � denotes the payoff, and the penalty parameter Op
is chosen large, say, Op D 106. The resulting PDE is
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In the continuation region, for V � � , the penalty term is zero, and (7.15) results.
For Op!1, think of dividing the equation by Op to be convinced that V sticks close to
� . In Chap. 4, we could preserve the linear equation by the elegant complementarity
approach. In (7.16) the PDE is nonlinear by the volatility function O� , and thus the
nonlinear penalty term does not cause further harm.

7.2.1 Transformation

The transformation (4.3) of Chap. 4 is not valid here, because the volatility O� is no
longer constant. But assuming constant r; ı, the independent variables S; t can be
transformed similarly. The transformation from variables S; t;V to x; �; u is

x WD log
S

K
; � WD 1

2
�20 � .T � t/ ; u.x; �/ WD e�x V.S; t/

K
: (7.17)

�0 is a scaling parameter. As a result of the transformation, VS D uCux and SVSS D
ux C uxx. Here we use the notations VS;VSS; u� ; ux; uxx for partial derivatives. And
(7.15) becomes

� u� C Q�2.x; �; ux; uxx/.ux C uxx/C 2.r � ı/
�20

ux � 2ı
�20

u D 0 (7.18)
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K
.ux C uxx/

�
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(Transform (7.16) in Exercise 7.4.) For example, for Leland’s model,

Q�2 D 1C � sign.ux C uxx/ :

For all of the models of Sect. 7.1 the nonlinearity is of the type

Q�2.x; �; s/ � s with s WD ux C uxx ; (7.20)

with Q� from (7.19).
The payoffs � of the options are transformed as well. Let u� denote the

transformed payoff. For the payoff of a vanilla put,

V.S;T/ D Kexu.x; 0/ D .K � S/C D K.1 � ex/C

and hence

u.x; 0/ D u�.x/ WD .e�x � 1/C :



364 7 Beyond Black and Scholes

Similarly, for a vanilla call,

u.x; 0/ D u�.x/ WD .1 � e�x/C :

This is similar for exotic options (�! Exercise 7.3).
Finally, boundary conditions are chosen (as in Sect. 4.4) and transformed. For

example, applying (4.27) for a vanilla call of the European type,

u.xmax; �/ D e�xmax

K
V.Smax; t/

D e�xmax

K
.Smaxe�ı.T�t/ � Ke�r.T�t//

D e�ı.T�t/ � exp.�r.T � t/ � xmax/

D exp.�� 2ı
�20
/ � exp.�� 2r

�20
� xmax/ ;

u.xmin; �/ D 0 :

For a vanilla put and Smin � 0 one may choose

u.xmin; �/ D 1

K
e�xminKe�r.T�t/ D exp.�� 2r

�20
� xmin/ ;

u.xmax; �/ D 0 :

For vanilla American-style options with penalty formulation (7.16), the nonzero
boundary conditions are just that u is in contact with the payoff,

u.xmin/ D u�.xmin/ D e�xmin � 1 for a put, and

u.xmax/ D u�.xmax/ D 1� e�xmax for a call:

7.2.2 Discretization

Finite differences in a standard fashion as in Chap. 4, with the same grid, lead
to nonlinear equations for the vector w.�/ of approximate values at time level
�� D ���1 C �� . The equidistant x-spacing with mesh size �x consists of m
subintervals, see Sect. 4.2.2. As before, the components w0 and wm are defined by
boundary conditions. The finite differences include

ıxwi;� WD wiC1;� � wi�1;�
2�x

;

ıxxwi;� WD wiC1;� � 2wi;� C wi�1;�
�x2

;
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where �x2 is understood as .�x/2. For the discretization replace s of (7.20) by Ns
with

Nsi;� WD .ıx C ıxx/wi;� D wiC1;� � wi�1;�
2�x

C wiC1;� � 2wi;� C wi�1;�
�x2

:

Substituting into the PDEs is the next step. Here we confine ourselves to the
European case (7.15); the discretization of (7.16) is analogous and left to the reader.
Define

Li;� W D Q�2.xi; ��; ıxwi;� ; ıxxwi;� /.ıxwi;� C ıxxwi;� /

C2.r � ı/
�20

ıxwi;� � 2ı
�20

wi;�

to arrive at the 
-approach

�wi;�C1 C wi;�

��
C 
Li;�C1 C .1 � 
/Li;� D 0 : (7.21)

Recall that this includes Crank–Nicolson for 
 D 1
2
, and for 
 D 1 the fully implicit

Euler (BDF). The Q� of the above examples is represented by the discretization
Q�.xi; ��; Nsi;�/ with

Nsi;� D wi�1;�
�
� 1

2�x
C 1

�x2

�
� 2

�x2
wi;� C wiC1;�

�
1

2�x
C 1

�x2

�

D ˛ wi�1;� � 2

�x2
wi;� C ˇ wiC1;� ;

(7.22)

where we denote

˛ WD � 1

2�x
C 1

�x2
; ˇ WD 1

2�x
C 1

�x2
; (7.23)

and reuse the notation Q� for the three-argument version. Now the discretized version
of the operator Li;� is

Li;� D Q�2.xi; ��; Nsi;� /Nsi;� C r � ı
�20�x

.wiC1;� � wi�1;�/� 2ı
�20

wi;� (7.24)

and the 
-method reads

� wi;�C1 C wi;� C 
��Li;�C1 C .1 � 
/��Li;� D 0 : (7.25)

With the vector notation w.�/ as in Chap. 4 and a vector function F this is written

F.w.�C1/;w.�// D 0 :
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For the fully implicit BDF method .
 D 1/, the ith equation of the vector equation
F D 0 reads

Fi D � w.�C1/
i C w.�/i

C ��
�
Q�2.xi; ��C1; ˛w.�C1/

i�1 � 2

�x2
w.�C1/

i C ˇw.�C1/
iC1 /�

.˛w.�C1/
i�1 � 2

�x2
w.�C1/

i C ˇw.�C1/
iC1 /

� r � ı
�20�x

w.�C1/
i�1 �

2ı

�20
w.�C1/

i C r � ı
�20�x

w.�C1/
iC1

�
D 0 :

(7.26)

For i D 0 and i D m, boundary conditions enter. Their basic structure is

F.�/0 WD u.xmin; ��/ � w.�/0 ;

F.�/m WD u.xmax; ��/� w.�/m :
(7.27)

In the 
-method (7.25) boundary conditions enter in the form 
F.�C1/ C .1 �

/F.�/. The nonlinear equation F.w.�C1/;w.�// D 0 with components defined by
(7.26)/(7.27) represents a discretization of (7.15). It is solved iteratively by Newton’s
method.

7.2.3 Convergence of the Discrete Equations

The above numerical scheme is of the form

F.��;�x; �; i;wi;� ; Qw/ D 0

where Qw stands for the vector of all wk;l. For such a scheme convergence to the
unique viscosity solution (�! Appendix C.5) can be proved, provided F satisfies
three conditions [23], namely,

• stability,
• consistency, and
• monotonicity.

Not for the numerical scheme but for the equation an additional property must be
assumed, namely, the strong uniqueness. For the uniqueness we refer to the special
literature [89].

The proof that for a particular numerical scheme all of these three criteria are
satisfied, can be quite involved [176, 177, 303]. Checking stability and consistency
is rather standard, and has been widely discussed in previous chapters. Here we
concentrate on the monotonicity of the scheme, which is a new aspect as compared
to the investigations for the linear equation in Chap. 4.
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Definition 7.1 (Monotone Scheme) A discretization F.w.�C1/;w.�// is monotone
if for all i D 0; : : : ;m

.a/ Fi.w
.�C1/ C �.�C1/; w.�/ C �.�// � Fi.w

.�C1/;w.�// for all

�.�C1/ WD .0; : : : ; 0; �.�C1/
i�1 ; 0; �

.�C1/
iC1 ; 0; : : : ; 0/ � 0 and

�.�/ WD .0; : : : ; 0; �.�/i�1; �
.�/
i ; �

.�/
iC1; 0; : : : ; 0/ � 0 ;

and

.b/ Fi.w
.�C1/ C �.�C1/; w.�// � Fi.w

.�C1/;w.�// for all

�.�C1/ WD .0; : : : ; 0; �.�C1/
i ; 0; : : : ; 0/ � 0 :

Translated into the fully implicit scheme (7.26)/(7.27), the condition (a) of
monotonicity reads

Fi.w
.�C1/
i ; w.�C1/

i�1 C �1; w.�C1/
iC1 C �2; w.�/i C �3/ �

Fi.w
.�C1/
i ; w.�C1/

i�1 ; w.�C1/
iC1 ; w.�/i /

for scalar �1; �2; �3; �. Because of transitivity, it suffices to show separately

.a1/ Fi.w
.�C1/
i ; w.�C1/

i�1 C �; w.�C1/
iC1 ; w.�/i / � Fi.w

.�C1/
i ;w.�C1/

i�1 ;w.�C1/
iC1 ;w.�/i /

.a2/ Fi.w
.�C1/
i ; w.�C1/

i�1 ; w.�C1/
iC1 C �; w.�/i / � Fi.w

.�C1/
i ;w.�C1/

i�1 ;w.�C1/
iC1 ;w.�/i /

.a3/ Fi.w
.�C1/
i ; w.�C1/

i�1 ; w.�C1/
iC1 ; w.�/i C �/ � Fi.w

.�C1/
i ;w.�C1/

i�1 ;w.�C1/
iC1 ;w.�/i /

for (a) to hold, and for (b)

Fi.w
.�C1/
i C �; w.�C1/

i�1 ; w.�C1/
iC1 ; w.�/i / � Fi.w

.�C1/
i ; w.�C1/

i�1 ; w.�C1/
iC1 ; w.�/i / :

Next we check under which conditions the scheme (7.26)/(7.27) is monotone.
Heider [176] has shown that the scheme converges whenever the nonlinear term
Q�2.x; �; s/s satisfies conditions (i)–(iii) of the following Theorem 7.2:

Theorem 7.2 (Convergence) Assume Q�2.x; �; ux; uxx/ in the form Q�2.x; �; s/, with
s D ux C uxx from (7.20), and

(i) Q�2.x; �; s/s is continuous and monotone increasing in s,
(ii) there exists a constant cC > 0 such that for all s and � > 0

Q�2.x; �; sC �/ � .sC �/ � Q�2.x; �; s/ � sC cC� ; and
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(iii) �x is small enough such that

cC
2 ��x

�x
� 2.r � ı/

�20
� 0 and cC

2C�x

�x
C 2.r � ı/

�20
� 0 :

Then the fully implicit BDF scheme (7.26)/(7.27) converges to the viscosity solution
of (7.15).

Proof Here we confine ourselves to the proof of monotonicity. As noted above, we
can proceed componentwise and check (a1), (a2), (a3), and (b) separately. We begin
with 0 < i < m.

To show (a1), perturb w.�C1/
i�1 ! w.�C1/

i�1 C � for � > 0. Then Nsi;� ! Nsi;�C˛�, and

Fi.w
.�C1/
i ; w.�C1/

i�1 C �; w.�C1/
iC1 ; w.�/i / D

�w.�C1/
i C w.�/i C��

�
Q�2.xi; ��C1; Nsi;� C ˛�/.Nsi;� C ˛�/

� r � ı
�20�x

.w.�C1/
i�1 C �/ �

2ı

�20
w.�C1/

i C r � ı
�20�x

w.�C1/
iC1

�

� �w.�C1/
i C w.�/i C��

�
Q�2.xi; ��C1; Nsi;� /Nsi;� C cC�˛

� r � ı
�20�x

w.�C1/
i�1 �

2ı

�20
w.�C1/

i C r � ı
�20�x

w.�C1/
iC1 �

r � ı
�20�x

�

�
;

where the inequality is due to (ii). Compare with Fi in (7.26)/(7.27) and realize two
extra terms. By (iii), with ˛ from (7.23), they are

cC�˛ � r � ı
�20�x

� D �

2�x

�
cC
2 ��x

�x
� 2.r � ı/

�20

�
� 0 :

So we have shown (a1), the first of the four criteria of monotonicity.
To show (a2), perturb w.�C1/

iC1 ! w.�C1/
iC1 C �: Then Nsi;� ! Nsi;� C �ˇ and the

perturbed Fi is

�w.�C1/
i C w.�/i C��

�
Q�2.xi; ��C1; Nsi;� C ˇ�/.Nsi;� C ˇ�/

� r � ı
�20�x

w.�C1/
i�1 �

2ı

�20
w.�C1/

i C r � ı
�20�x

w.�C1/
iC1 C �

r � ı
�20�x

�
:

Again we obtain a lower bound by (ii), and arrive at the sum of two extra terms

cC�ˇ C � r � ı
�20�x

;
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which is � 0 by (iii). So the perturbed Fi is larger or equal the unperturbed Fi, and
(a2) is satisfied.

The assertion (a3) is clearly satisfied since the perturbation w.�/i ! w.�/i C � only
affects the term outside the brackets.

To show (b), perturb w.�C1/
i ! w.�C1/

i C �. Then Nsi;� ! Nsi;� � 2�
�x2

, and Fi is
perturbed to

�w.�C1/
i � � C w.�/i C��

�
Q�2.xi; ��C1; Nsi;� � � 2

�x2
/.Nsi;� � � 2

�x2
/

� r � ı
�20�x

w.�C1/
i�1 �

2ı

�20
w.�C1/

i � 2ı
�20
� C r � ı

�20�x
w.�C1/

iC1
�
:

By the monotonicity (i) and by � > 0; ı � 0, the above is smaller or equal to the
unperturbed Fi—that is, (b) holds true.

Finally, monotonicity must be checked for F0 and Fm. For 
 D 1, F0 depends
on w.�C1/

0 and Fm depends on w.�C1/
m . Hence only (b) needs to be checked, which is

clearly satisfied.
This ends the proof that the conditions (i), (ii), (iii) imply monotonicity of the

fully implicit scheme.

Example 7.3 (Leland’s Model) Let us inspect whether the criteria (i), (ii), (iii)
of Theorem 7.2 are satisfied for Leland’s model of transaction costs. For (i) we
require j� j < 1. With some simple manipulations, one shows that (ii) is satisfied
with cC D 1 � � . And for (iii) to hold, the grid size �x must be small enough (�!
Exercise 7.5). Specifically, for zero dividend rate ı D 0, the 
-method is

�w.�C1/
i C w.�/i C�� � 
 Œ Q�2.Ns.�C1/

i /Ns.�C1/
i C 2r

�20
ıxw.�C1/

i 


C��.1 � 
/ Œ Q�2.Ns.�/i /Ns.�/i C
2r

�20
ıxw.�/i 
 D 0 :

Sufficient conditions for the Crank–Nicolson scheme (
 D 1=2) to converge
include (i), (ii), (iii), and in addition (iv) and (v):
(iv) There exists a constant c� > 0 such that for all � > 0 and s

Q�2.x; �; s� �/.s � �/ � Q�2.x; �; s/s � c�� ;

(v)

�� � �x2

c�
�20

�20 C�x ı
;

see [176, 177]. Condition (iv) holds for Leland’s model with c� D 1 C � , and for
the uncertain-volatility model with c� D �2max. Conditions (iii) and (iv) amount to
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stability bounds. We emphasize that in the case of nonlinear models, unconditional
stability does not hold!

The above has discussed convergence towards the viscosity solution. An applica-
tion of the uncertain-volatility model to a butterfly is shown in Fig. 7.2. Another
illustration is the barrier option in Fig. 7.3. When in case of an American-style
option a penalty approach is applied, further assumptions are needed to assert
convergence to the solution for Op!1, even though one keeps Op fixed.

7.3 Option Valuation Under Jump Processes

In this section, we sketch some instruments of Lévy processes as background to the
application of partial integro-differential equations. The focus is on one important
example, namely Merton’s jump diffusion, and on strategies for a numerical
valuation of options under such processes. This is no introduction to Lévy processes;
for expositions on Lévy processes consult, for instance, [84, 328, 339].

For a Lévy process Xt, all increments XtC�t � Xt are stochastically independent.
Further, they are stationary, which means that all increments have the distribution of
Xt. Instead of requiring continuity, Lévy processes must be “càdlàg”2: For all t, the
process Xt is right-continuous (Xt D XtC), and the left limit Xt� exists. Important
examples of Lévy processes are the Wiener process (Sect. 1.6.1), and the Poisson
process (Sect. 1.9).

7.3.1 Characteristic Functions

A classification of Lévy processes Xt is based on the Fourier transformation3

�Xt.�/ WD E.exp.i�Xt// : (7.28)

The function �Xt singles out characteristic properties of a random variable Xt.
�Xt is called characteristic function of Xt, and  Xt .�/ [shorter:  .�/] defined by
exp.t .�// D �Xt.�/ is the characteristic exponent. It suffices to take t D 1, since
the distribution of X1 characterizes the process. The characteristic exponent  .�/
satisfies the Lévy–Khinchin representation

 .�/ D i�� � 1
2
�2�2 C

1Z
�1

�
exp.i�x/� 1 � i�x 1fjxj�1g

�
�.dx/ : (7.29)

2French for “continu à droite avec limites à gauche”.
3For the Fourier transform, see Sect. 7.4.
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The three terms in this representation characterize different aspects of Xt. � 2 R

corresponds to a deterministic trend, �2 to the variance of a diffusion (Brownian-
motion) part of Xt, and � is a measure on R characterizing the activity of jumps
�Xt WD Xt � Xt� ,

�.A/ WD E Œ#ft 2 Œ0; 1
 j �Xt ¤ 0; �Xt 2 Ag
 :

The Lévy measure �.A/ counts the (expected) number of jumps of “size” within A
per unit time [84]. �.A/ is not a probability measure. For the Lévy measure �, requireR
R

min.x2; 1/ �.dx/ <1 and �.f0g/ D 0. In the integrand of (7.29), the subtracted
term i�x 1fjxj�1g causes the integrand to be of the order O.jxj2/ for x ! 0. This
compensation along with the constraints on � implies existence of the integral. For
many important Lévy processes, �.dx/ has a convenient representation

�.dx/ D fL.x/ dx (7.30)

with a Lévy density fL. The three items �; �2; � (“characteristic triplet”) characterize
a Lévy process in a unique way.

Example 7.4 (Compound Poisson Process) For a Poisson process Jt with jump
intensity �, a compound Poisson process is

Xt WD
JtX

jD1
�X�j ;

where the jump sizes �X�j are assumed i.i.d. with distribution density f , and
independent of the Poisson process J. The characteristic function �Xt.�/ of the
compound Poisson process (cP) is

E.expŒi�Xt// D expŒ�t .��X.�/ � 1/

D exp

�
t
Z
R

.ei�x � 1/�.dx/

�
(7.31)

with Lévy measure �.dx/ D �f .x/ dx. The first of the equations in (7.31) uses rules
of the conditional expectation [84], whereas the second just applies (7.28) with
the definition (B.4) of the expectation, including

R
R
�.dx/ D �. The characteristic

exponent  cP is the integral in (7.31), � D � D 0.
As in (1.65), financial models typically arise in exponential form. For such

exponential Lévy processes there is a useful criterion for the martingale property,
and hence for risk-neutral valuation:

Lemma 7.5 (Martingale Criterion) Let Xt be a Lévy process. eXt is a martingale
if and only if  X.�i/ D 0 and E.eXt/ <1.
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Proof We extend � to complex numbers, and note that

E.eXt / D E.e�iiXt / D �Xt.�i/ D et .�i/ :

Then by independence and stationarity,

E.eXt jFs/� eXs D E.eXt�s/� eX0 D e.t�s/ .�i/ � 1 :

(�! Exercise 7.6) ut
In finance applications, with an asset price St for t � 0, the absence of arbitrage
implies that the discounted e�rtSt is a martingale with respect to a risk-neutral
measure. This suggests to represent St in the form St D S0 exp.rt C Xt/. Then the
discounted St is the situation to which the Lemma 7.5 applies.

Example 7.6 (Brownian Motion with Drift) A Lévy process Xt is Brownian
motion if and only if � � 0 (no jump). For ease of comparison with (1.71) and
(1.76) we take the drift � in the form � D � � 1

2
�2. For the Brownian motion with

drift (Bwd) Xt WD � t C �Wt we use a result from probability4 and conclude for the
characteristic exponent

 Bwd.�/ D i.� � 1
2
�2/� � 1

2
�2�2 :

Clearly,  Bwd.�i/ D �: Hence by Lemma 7.5 eX
t is martingale for � D 0. Hence

the discounted

S0e�rt exp.rtC Xt/ D S0e�rt expŒ.r � 1
2
�2/tC �Wt


is martingale. This recovers the well-known riskless drift rate r for a numerical
simulation of GBM in the Black-Scholes model.

Example 7.7 (Merton’ s Jump Diffusion) We now combine Examples 7.4
and 7.6. As a special case of Example 7.4 we choose as in Sect. 1.9 the jump sizes
�Y in the log process Yt WD log St to be normally distributed, �Y � N .�J; �

2
J /

(log q in Sect. 1.9). Furnished with a drifted Brownian motion, this is Merton’s
jump-diffusion model (1.74) with jump intensity � and � D � � 1

2
�2. The Lévy

density of the compound Poisson process is � times the density of the normal
distribution,

fL.x/ D fcP.x/ WD � 1

�J

p
2�

exp

�
� .x � �J/

2

2�2J

�
: (7.32)

4E.ei�X/ D exp.i�� � �2�2=2/ holds for X � N .�; �2/, see [199, p. 108].
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Since the two processes are independent, and by the exponential structure in (7.28),
the two characteristic exponents add:

 .�/ D  Bwd.�/C  cP.�/

D i�� � 1
2
�2�2 C

Z
R

.ei�x � 1/�.dx/

and

 .�i/ D � C 1

2
�2 C

Z
R

.ex � 1/�.dx/ :

Similar as in Exercise 1.22 we calculate the integral

Z 1

�1
.ex � 1/fcP.x/ dx D �

�
exp

�
i�J� � 1

2
�2J �

2

�
� 1

�
:

Hence, to see whether St D exp.Yt/ is a martingale, check  .�i/ D � C 1
2
�2 C

�.expŒ�J C 1
2
�2J 
 � 1/. By Lemma 7.5, a martingale can be obtained by choosing a

drift with

� D ��
2

2
� �

�
exp

�
�J C 1

2
�2J

�
� 1

�
:

This makes S0e�rt exp.rtC � tC �WtCPJt
jD1 log qj/ a martingale. When applied to

simulation of SDEs under the risk-neutral measure for Monte Carlo, this risk-neutral
valuation amounts to the drift rate in Example 1.21. That is, the SDE is

dS

S
D .r � �.expŒ�J C 1

2
�2J 
 � 1// dtC � dWt :

In case of a dividend yield with rate ı, the term ıdt is subtracted on the right-hand
side, similar as in Sect. 3.5.

For other models, a risk-neutral growth rate can be obtained in an analogous way.
A table of risk-neutral drift rates is given in [332, p. 80]. For a jump diffusion, jumps
are comparably “rare,” there is only a finite number of them in any time interval.
Apart from Merton’s model another jump-diffusion model is Kou’s model, which
works with an asymmetric double exponential distribution of jump sizes [229].

There are Lévy processes of infinite activity: Then in every time interval an
infinite number of jumps occurs. Examples include the VG-process (Variance
Gamma) [253], the NIG-process (Normal Inverse Gaussian), the hyperbolic process
[114] and the CGMY process [67]. Specifically for VG and NIG, see also [155].
Time deformation plays an important role for constructing Lévy processes. For
example, with a Wiener process Wt and a Gamma process Gt as subordinator
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replacing time, VG can be represented as

St D S0e
rtCXt with Xt D 
Gt C �WGt :

This includes GBM with the standard time Gt D t and parameter 
 D ��2=2.
Such a subordinating process Gt can be regarded as “business time,” which runs
faster than the calendar time when the trading volume is high, and slower otherwise.
Then, for a Wiener process Wt, a class of Lévy processes is defined by WGt . With
a t-grid as in Algorithm 1.8, a time-changed process can be generated as Wj D
Wj�1 C Z

p
Gj�t � G. j�1/�t (�! Exercise 2.11).

7.3.2 Option Valuation with PIDEs

Assume European options based on a price process St D S0 exp.rtCXt/, where Xt is
a Lévy process such that eXt is a martingale, with Lévy measure �, and the integralR

jyj�1 e2y�.dy/ exists. Then the value function V.S; t/ satisfies

@V.S; t/

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV

C
Z
R

�
V.Sey; t/ � V.S; t/ � .ey � 1/S@V.S; t/

@S

�
�.dy/ D 0

(7.33)

A proof can be found in [84, pp. 385–387].

Definition 7.8 (PIDE) An equation of the above type (7.33) is called partial
integro-differential equation (PIDE).
The integral term in (7.33) complicates the numerical solution since it is a nonlocal
term accumulating information on all �1 < y < 1, in contrast to the local
character of the partial derivatives. For general Lévy processes, the three terms under
the integral can not be separated, otherwise the integral may fail to converge. It can
be separated in the case of Merton’s jump-diffusion model, because this process is
of finite activity, � D �.R/ <1.

In what follows, we discuss Merton’s jump-diffusion process, with lognormal
distribution for q D ey. The integral in (7.33) can be split into three terms with three
integrals

Z
R

V.Sey; t/�.dy/� V.S; t/
Z
R

�.dy/� S
@V.S; t/

@S

Z
R

.ey � 1/�.dy/ :

In view of �.dy/ D �f . y/dy, factors � show up. f is the normal density, and the
integrals become expectations. Then the first integral can be written �E.V.Sey; t//,
and the second integral is �. The third integral E.ey � 1/ does not depend on V and
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can be calculated beforehand since the distribution for q D ey is stipulated.5 The
lognormal density for q is

fq.x/ D 1p
2� �J � x

exp

�
� .log x � �J/

2

2�2J

	
1fx>0g

and we recover the constant of Example 7.7:

c W D
Z 1

0

.x � 1/fq.x/ dx

D
Z 1

�1
.ey � 1/f . y/ dy D exp

�
�J C 1

2
�2J

�
� 1 :

With the precalculated number c, the resulting Eq. (7.33) can be ordered into

@V

@t
C 1

2
�2S2

@2V

@S2
C .r � �c/S

@V

@S
� .�C r/V C �E.V.qS; t// D 0 : (7.34)

The last term is an integral taken over the unknown solution function V.S; t/. So the
resulting equation is a PIDE, a special case of (7.33). Note that the product �c is
the drift compensation in Example 7.7. The standard Black–Scholes PDE (7.1) is
included for � D 0. A simplified derivation of (7.34) can be found in Appendix A.4.
For further discussions, see for example [84, 270, 365, 375].

7.3.3 Transformation of the PIDE

We approach the PIDE (7.34) with the transformation

� WD T � t ; x WD log S ; u.x; �/ WD V.ex;T � �/ ; (7.35)

which appears moderate as compared to (4.3). Substituting accordingly

ux D @V

@S
S ; uxx D ux C S2

@2V

@S2

into (7.34) leads to

�u� C 1
2
�2.uxx � ux/C .r � �c/ux � .�C r/uC �E.V.qex;T � �// D 0 ;

5The parameters are not the same as those in (1.64).
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which is organized into

u� � 1
2
�2uxx � .r � �c � 1

2
�2/ux C .�C �/u � �E.V.qex;T � �// D 0 :

After the above transformation S D ex we next transform the jump-size variable
q D ey. Ignoring the factor �, the integral term changes to

E.V.qex;T � �// D E.V.exCy;T � �// D E.u.xC y; �//

D
Z
R

u.xC y; �/f . y/ dy D
Z
R

u.z; �/f .z � x/ dz ;
(7.36)

where we have applied the substitution z WD x C y. The function f for Merton’s
jump-diffusion model is the density of y D log q � N .�J; �

2
J /. In summary, the

PIDE of Merton’s jump-diffusion model is

Problem 7.9 (Merton’s Jump-Diffusion PIDE)

u� � 1
2
�2uxx � .r � �c � 1

2
�2/ux C .�C r/u

� �
Z
R

u.z; �/f .z � x/ dz D 0 ;

with f . y/ D 1p
2��J

exp

�
� . y � �J/

2

2�2J

�

and c D expŒ�J C 1
2
�2J 
 � 1 :

(7.37)

This is the problem to be solved numerically.

7.3.4 Numerical Approximation

For an approximation of the integral (7.36) we truncate the domain to a finite interval
xmin � x � xmax. In view of the meaning of the integral, this truncation amounts to
disregard large jumps. This might be seen as a weakness of the approach, but jumps
that large are highly improbable. The simplest discretization approach is to use an
equidistant x-grid with

�x WD xmax � xmin

m
; xi WD xmin C i�x ; i D 0; : : : ;m ;

for a suitable integer m. As in Chap. 4, the time-stepping nodes are �� , and the
approximations of u.xi; ��/ are denoted by wi;� . The integral in (7.37) is evaluated
at each node .x; �/ D .xi; ��/. That is, for each i; �, the numbers

Z
R

u.z; ��/f .z � xi/ dz �
Z xmax

xmin

u.z; ��/f .z� xi/ dz
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are to be approximated. Applying the composite trapezoidal sum (C.2) with

fi;l WD f .xl � xi/ D f ..l� i/�x/ ;

the approximation of the integral for each i; � is

�x

�
w0;� fi;0
2
C

m�1X
lD1

wl;� fi;l C wm;� fi;m
2

�
: (7.38)

The numbers fi;l are elements of a Toeplitz matrix.6 That is, the entries take only
2m C 1 different numbers. Due to the exponential structure of f , the elements in
the northeast and southwest corners of the fi;l-matrix go to zero. In this sense, this
Toeplitz matrix has a “banded” structure. In summary, for each i; � the integral is
approximated by a scalar product of the row vector

�x

�
fi;0
2
; fi;1 ; : : : ; fi;m�1 ;

fi;m
2

�

times the vector w.�/. In (7.38) the first term w0;� and the last term wm;� (where
boundary conditions enter) must be treated separately in case we deal with the short
vector .w1; : : : ;wm�1/ as in Sect. 4.2.3. Now assemble all the rows into an .mC1/2-
matrix C. Then for all i within time level �, the integrals are represented by the
product

Cw.�/ :

Neglecting the fact that many of its elements are close to zero, the matrix C is
dense, which reflects the nonlocal character of the integral. This is in contrast to
the local character of standard finite differences with its tridiagonal matrices. The
transformation (7.35) is different from (4.3), but tridiagonal matrices can be derived
from (7.37) in a similar way as done in Chap. 4. The dense matrix C adds to the
tridiagonal matrices, which makes the solution of linear systems with full matrices
in each time step � ! �C1more expensive. In an attempt to save costs, splitting has
been suggested. This means to evaluate the integral at the previous line (�). In this
way, the multiplication Cw only shows up in the right-hand side of the known terms.
The tridiagonality of the left-hand side matrices is maintained, and the method still
converges. Up to boundary conditions, this splitting can be represented by an Euler-
type implicit scheme

w.�C1/ � w.�/

��
D Gw.�C1/ C �Cw.�/ ; (7.39)

6The entries of a Toeplitz matrix are constant along each diagonal.
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Fig. 7.4 V.S; 0/ of a European put option, solution of Problem 7.9; parameters as in Example 1.21:
K D 10, r D 0:06, � D 0:3, T D 1, with Merton’s jump diffusion, �J D �0:3, �J D 0:4, and
three values of jump intensity �: 0 (lower curve in red, no jump), 0.1 (green curve), and 0.2 (top
curve, in blue); xmin D �3, xmax D log.K/ C 1:6 D 3:9. The chosen value of �J D �0:3
corresponds to q D exp.�J/ D 0:74, or a 26% fall in the asset price

where the matrix G represents the local information of the differentials. Neither G
nor C are symmetric. We leave it to the reader to set up the system of equations (�!
Exercise 7.7).7 The matrices G and C are used for the analysis, no matrix is needed
for the algorithm. For an illustration how a larger intensity � increases the value of
an option see Fig. 7.4.

Since the splitting can deteriorate the accuracy, a fixed point iteration has been
suggested [105]. The integral term E.V/ with its truncation and discretization
challenges the control of the involved errors. For example, [85] gives an estimate
of the error induced by truncating the integral, as well as a convergence proof for
finite differences applied to general Lévy models. Codes for American options based
on a penalty formulation or on an LCP formulation can be easily modified and
extended by an integral term. The techniques of Chap. 4 or Chap. 5 can be applied.
Application of FFT increases the efficiency [105]. Typically, each Lévy process calls

7The number of arithmetic operations can be cut down by neglecting elements close to zero. To
this end, in (7.39) simply replace the matrix C by a banded matrix C, whose elements cil are those
of C except outside a band defined by �BL � l � i � BR for suitably chosen positive integers
BL;BR < m, where the elements are set to zero.
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for a separate algorithm. A Monte Carlo approach is [272]. For Merton’s model
and European options, an analytic solution is given [270], which allows to test
corresponding algorithms.

7.4 Application of the Fourier Transform

The Fourier transform F of a real function f is defined by8

F Œ f .u/
 WD
Z 1

yD�1
eiuyf . y/ dy : (7.40)

This requires integrability of f . The inverse Fourier transformation is

F�1Œg.x/
 D 1

2�

Z 1

uD�1
e�ixug.u/ du : (7.41)

A sufficiently well-behaved f is recovered by the inversion,

f D F�1F f :

We perform this process of transform and inverse transform for a function c.k/ to
be defined below. The application of the Fourier transform in our context and the
outline of three steps of the subsequent analysis is symbolized as follows:

(1)
c.k/ ı �! 	 g.u/ D integral

# (2)
c.k/ ı  � 	 g.u/ D formula

(3)

Step (1) is the forward Fourier transform (7.40) of a function c.k/. The result is an
integral expression g.u/. In our context this integral can be solved analytically (step
(2)), which produces a formula for g.u/. The inverse transformation (7.41) in step
(3) is approximated numerically by the Fast Fourier Transformation (FFT), based
on (C.7). The detour (1)–(3) is worth the effort, because the FFT calculation of c.k/
is faster to evaluate than the original c.k/.

8There are different conventions for the Fourier transform; for background, see special literature,
for example [371]. To get used to it try Exercise 7.8.
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Recall the characteristic function (7.28) � of a Lévy process Xt. These functions
are the Fourier transform of the density function of X,

�Xt.u/ WD E.exp.iuXt// D
Z 1

�1
eiuXfdensityX dx D F Œ fdensityX
 : (7.42)

The characteristic functions � of many processes X are known and available as
analytical expressions, for example, in [84, 235, 332].

In the following, we investigate a European call with vanilla payoff �.S/ D
.S � K/C with an arbitrary underlying Lévy process St. The integral representation
of the call’s value under the risk-neutral measure Q is

V.St; tI K/ D e�r.T�t/EQŒ�.ST/ j St


D e�r.T�t/
Z 1

ST DK
.ST � K/ fdensity.ST/ dST ;

where f is the density of ST of the Lévy process starting at t with the value St.
Transform

ST D es; K D ek; dST D esds I (7.43)

note that k 2 R. Then

V.St; tI K/ D e�r.T�t/
Z 1

k
.es � ek/Of .s/ ds ;

where Of .s/ D esf .es/ is the density of logS, similar as in Sect. 1.8.2. Following [68],
in order to make the function integrable, we scale the integral with a factor exp.˛k/
(a constant):

c.k/ WD e˛ke�r.T�t/
Z 1

k
.es � ek/Of .s/ ds D e˛kV.St; tI K/ (7.44)

and denote F Œc.u/
 its Fourier transform. We leave the choice of the scaling
parameter ˛ open until later.

As outlined above, when F Œc
 is calculated, then the call’s value V.S; t/ is
recovered from the inverse Fourier transformation,

V.St; tI ek/ D
�
1

2�

Z 1

�1
e�iuxF Œc.u/
 du

�
� e�˛k ;

which can be approximated efficiently by the Fast Fourier Transform (FFT). This
outlines the program of the three steps (1), (2), (3), and now we turn to its realization.
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The Fourier transform of c.k/ is

F Œc.u/
 D
Z 1

kD�1
eiukc.k/ dk

D
Z 1

�1
eiuke˛ke�r.T�t/

Z 1

sDk
.es � ek/Of .s/ ds dk

D e�r.T�t/
Z 1

kD�1

Z 1

sDk
e.iuC˛/k.es � ek/Of .s/ ds dk

D e�r.T�t/
Z 1

sD�1

Z s

kD�1
e.iuC˛/k.es � ek/Of .s/ dk ds ;

where the last equation holds since

f k � s <1 j �1 < k <1g D f�1 < k � s j �1 < s <1g :

This leads to

F Œc.u/
 D e�r.T�t/
Z 1

�1
Of .s/

Z s

�1
Œe.iuC˛/kCs � e.iuC˛C1/k
 dk ds

D e�r.T�t/
Z 1

�1
Of .s/

�
ese.iuC˛/k

iuC ˛ � e.iuC˛C1/k

iuC ˛ C 1
�s

kD�1
ds :

(7.45)

To have the integral exist, we require the factor e˛k to vanish for k ! �1, which
leads to choose ˛ > 0. That is, the factor exp.˛k/ amounts to a damping of the
integral. The bracketed term in (7.45) is

.iuC ˛ C 1/es.iuC˛C1/ � .iuC ˛/es.iuC˛C1/

iu.2˛ C 1/C ˛.˛ C 1/� u2
;

and we come up with

F Œc.u/
 D e�r.T�t/

iu.2˛ C 1/C ˛.˛ C 1/� u2

Z 1

�1
Of .s/eis.u�.˛C1/i/ ds :

We denote the integral therein �.u�.˛C1/i/, because it is the characteristic function
of the density Of . For � an analytic expression is known. Hence

F Œc.u/
 D e�r.T�t/ �.u� .˛ C 1/i/
˛2 C ˛ � u2 C iu.2˛C 1/ DW g.u/ (7.46)

can be considered to be a known function g, and step (2) is completed. For the final
choice of the parameter ˛ > 0 further request g.u/ D F Œc.u/
 to be integrable as
well. Since the integration is along real values of u one has to take care that the
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denominator has only imaginary roots in u. The choice of ˛ is discussed in the
literature [68, 235]. Usually ˛ D 3 works well.

The inverse Fourier transformation evaluates

e�˛k 1

2�

Z 1

�1
e�ikug.u/ du :

The integral is real, and hence its integrand is real too. Think of g from (7.46) being
split into real part and imaginary part, g.u/ D g1.u/C ig2.u/. Then i.cos.ku/g2.u/�
sin.ku/g1.u// D 0, and we conclude that g1.u/ is an even function, and g2.u/ is an
odd function. Hence the integrand

cos.ku/g1.u/C sin.ku/g2.u/

is even, and the value of the call is

V.St; tI ek/ D e�˛k

�

Z 1

0

e�ikug.u/ du : (7.47)

Next, the semi-infinite integration interval is truncated to a finite length A.
Thereby, for most Lévy models the truncation error can be made arbitrarily small
because the characteristic function � decays exponentially fast at infinity.9 With the
restriction to the integration interval 0 � u � A and M � 1 subintervals with equal
length�u, the discrete grid points are

uj WD j�u D j
A

M � 1 ; j D 0; : : : ;M � 1 :

Choosing the trapezoidal sum (C.2) for the quadrature, the approximation is

Z 1

0

e�ikug.u/ du � A

M � 1
M�1X
jD0

ˇj g.uj/ e�ikuj (7.48)

with weights ˇ0 D ˇM�1 D 1
2

and ˇj D 1 for 1 � j � M � 2. The trapezoidal sum
goes along with a sampling error of the order O.�u2/.

So far, the log-strike k D log K is not specified. The aim is to exploit the potential
of FFT, which calculates sums of the type

M�1X
jD0

aj e�i�j 2�M (7.49)

9This does not hold for the VG process, see [84, 235].
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for complex numbers a0; : : : ; aM�1, one sum for each �. This amounts to calculate a
vector of M such sums, for � D 0; : : : ;M�1. Applying FFT we gain the possibility
to calculate the above for M strikes simultaneously. Let us calculate the call values
for the log-strike values

k� WD �bC�k � � ; � D 0; : : : ;M � 1 ; (7.50)

for suitable values of b and �k, which define the k-range and the strike spacing of
interest. Substituting these values k� into the above sum (7.48) produces

A

M � 1
M�1X
jD0

ˇj g.uj/ exp

�
�i.�bC�k �/j

A

M � 1
�
:

The argument of the exponential function is

ibj
A

M � 1 � i�j�k
A

M � 1 :

To apply FFT aiming at (7.49), steps �k and �u D A
M�1 must be chosen such that

�k
A

M � 1 D �k�u D 2�

M
: (7.51)

Then the sum in (7.48) is

A

M � 1
M�1X
jD0

ˇjg.uj/ exp

�
ibj

A

M � 1
�

e�i�j 2�M ;

which is the standard FFT applied to (7.49) for the complex numbers

aj WD Aˇjg.uj/ exp

�
ibj

A

M � 1
�
; i D 0; : : : ;M � 1 : (7.52)

This completes the calculation of a bunch of European call values: The integral
in (7.47) is approximated by the FFT sum (7.49) with coefficients (7.52). For the
highly efficient calculation of the FFT sums (7.49) consult standard literature on
numerical analysis (such as [306]), and related software packages.

The above method amounts to a fast algorithm in case option prices are to be
calculated on a grid of many strikes, all options with the same maturity T. The log-
strike grid of the values k� is defined by (7.50) with the parameters b and�k, which
in turn are based on A;M. By (7.51),

�k D 2�

A

M � 1
M

:
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And to cover log strikes in the at-the-moment range around k D 0, one aims at

b D .M � 1/�k

2
:

Efficiency of FFT is maximal for M a power of 2. The Eq. (7.51) is a limitation that
requests a careful design of parameters M and A.

In this section, we have explained the basic FFT approach of Carr and Madan
[68]. The Fast Fourier Transform can be applied also for early-exercise options
[248]. A novel transform is based on Fourier-cosine expansions [125], which is also
applied to barrier options [126]. The resulting algorithms converge exponentially
fast. In summary, FFT-based methods have shown a rich potential, in particular for
option pricing under Lévy models.

7.5 Notes and Comments

On Sect. 7.1

For a critical account of Leland’s approach see [380]. The nonlinear version (7.6)–
(7.8) is due to [187]. A piecewise linear treatment is suggested in [77]. The paper
[18] discusses Eq. (7.7), suggesting a modification for the case � � 1, where O�2
would be negative for 	 < 0. For bounds on V in case of “misspecified” volatility,
see [118]. For related work, consult also [116, 156, 159].

Apart from the one-factor case, ranges for parameters play a role also in
multiasset cases. For example, consider two assets with prices S1; S2, and assume
a correlation in the range �1 � �min � � � �max � 1. In the Black–Scholes
equation (6.5), the term

��1�2S1S2
@2V

@S1@S2

occurs. Depending on the sign of the cross derivative @2V
@S1@S2

, � is chosen either as
�min or �max in order to characterize a “worst-case,” see [362].

To complete the introduction into more general models we outline the Dupire
equation in Appendix A.6.

On Sect. 7.2

For reference and examples consult [134, 176, 177]. The assumption of a constant
cC in Theorem 7.2 is not always satisfied easily. For example, in the Barles and
Soner model of Sect. 7.1.2 and a payoff with jump discontinuity (as digital option),
cC D cC.�x/ D O.�x2/, which affects the assumptions of Theorem 7.2, and has
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strong implications on stability. Apart from nonsmooth payoffs, also the PDE itself
typically is not smooth. For American options, the penalty term in (7.16) causes a
lack of smoothness. Also the volatility function Q� may be nonsmooth. This happens,
for example, in Leland’s model when VSS changes sign. Newton’s method then
works with a generalized derivative. The higher the degree of “non-smoothness,”
the worse the convergence rate of CN. The BDF method (7.26)/(7.27) is highly
recommended. An a priori check of convergence criteria is advisable.

On Sect. 7.3

The definition of Lévy processes includes stochastic continuity. A table of Lévy
densities fL is found in [332, p. 154]. The Lévy-Khinchin representation (7.29) is a
scalar setting; [69] develops analytic expressions for the characteristic function of
time-changed Lévy process in a general vector setting. In this framework, Heston’s
stochastic-volatility model can be represented as time-changed Brownian motion.

For time-changed Lévy processes, consult [11, 67, 69, 84]. Time-changed Lévy
processes have been successfully applied to match empirical data. For processes
with density function (Merton, VG, NIG), Algorithm 1.18 can be applied [309].
Lévy-process models have been extended by incorporating stochastic volatilities
[67, 212]. A subordinator �.t/ can be constructed as integral of a square-root
process.

Pham [299] investigates properties of American options. Heston presents the
characteristic function for his model in [178]. His model extended by jump diffusion
[30] can be cast into the above framework: In this case a two-dimensional PDE is
considered. For computational approaches see [6–8, 55, 85, 104, 105, 263].

On Sect. 7.4

Choosing the weights wj of Simpson’s sums instead of trapezoidal sums, the
integrations get more accurate. An application to VG is found in [68]. Modifications
and extensions of the above basic approach are described and reviewed in [235]. For
references on transform methods in option pricing, see [126].

7.6 Exercises

7.1 Let �W be the increment of a Wiener process, see Sect. 1.6.1. Show

E.j�Wj/ D p�t

r
2

�
:
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7.2 (Barles–Soner Model)
The differential equation of Barles and Soner is

df .x/

dx
D f .x/C 1
2
p

xf .x/ � x
with f .0/ D 0 :

(a) By numerical computations, analyze the solution for �2 � x � 2.
(b) Construct an approximating function Of .x/ in a piecewise fashion.

7.3 (Payoffs of Spreads)
We consider portfolios of two or more options of the same type with the same
underlying stock. K1, K2, K are strikes with K1 < K2.

(a) A butterfly spread is a portfolio with

– one long call with strike K1,
– one long call with strike K2,
– two short calls with strike K D K2�K1

2
.

The payoff is

�.S/ D

8̂
ˆ̂̂<
ˆ̂̂̂:

0 for S � K1

S � K1 for K1 < S � K

K2 � S for K < S � K2

0 for K2 � S :

(b) A bull spread is a portfolio with

– one long call with strike K1,
– one short call with strike K2,

The payoff is

�.S/ D

8̂̂
<
ˆ̂:
0 for S � K1

S � K1 K1 < S � K2

K2 � K1 K2 < S :

For both spreads (a) and (b) explain and sketch the payoff. Apply the transformation
(7.17) (Exercise 7.4) to derive the transformed payoff u�.x/. For (b), apply the
transformation with K2.

7.4 (Transformation of Nonlinear Black–Scholes Models)
According Sect. 7.2, consider the following nonlinear PDE

Vt C 1

2
�2.t; S;VSS/S

2VSS C .r � ı/SVS � rV C Op max.� � V; 0/ D 0 ;
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where �2.t; S;VSS/ depends on the particular model; r is the risk-free interest rate
and ı is the continuous dividend yield. Apply the transformation (7.17)

x D log.S=K/; � D �20 .T � t/=2; u.x; �/ D e�xV.S; t/=K;

with K > 0 and a model-dependent parameter �0, and derive a PDE for u.

7.5 (Convergence of the Fully Implicit Method)
Two out of the three criteria for monotony in Theorem 7.2 are (i) and (ii). For

(a) Leland’s model of transaction costs, with parameter � , and
(b) the model of uncertain volatility with �min � � � �max,

show that (i) and (ii) are satisfied. What are the constants cC? For (b), �� of (7.12)
suffices.

7.6 For a Lévy process Xt adapted to a filtration Ft show

E.eXt jFs/ � eXs D E.eXt�s/� eX0 :

7.7 (Project: Implementing a PIDE)
Set up a computer program to solve Merton’s jump diffusion (7.37) numerically. To
this end, concentrate on European-style vanilla options. Set up boundary conditions
using (4.27), and apply a BDF implicit scheme. Think of how to choose xmin, xmax

in relation to the strike K.
Hint: For testing the core part of the program, set the jump intensity � D 0 and
compare to the Black–Scholes value.

7.8 (Fourier Transform)
Consider the Fourier transform

F Œ f .u/
 WD
Z 1

�1
eiuyf . y/ dy :

For the example f . y/ WD e�ajyj and complex a show that

Z A

�A
eiuyf . y/ dy

converges for A!1 and Re.a/ > 0.
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