
Chapter 5
Finite-Element Methods

The finite-difference approach with equidistant grids is easy to understand and
straightforward to implement. Resulting uniform rectangular grids are comfortable,
but in many applications not flexible enough. Steep gradients of the solution require
a finer grid locally such that the difference quotients provide good approximations
of the differentials. On the other hand, a flat gradient may be well modeled on a
coarse grid. Arranging such a flexibility of the grid with finite-difference methods
is possible but cumbersome.

An alternative type of methods for solving PDEs that does provide high flexibility
is the class of finite-element methods (FEM). A “finite element” designates a
mathematical topic such as an interval and thereupon defined a piece of function.
There are alternative names such as variational methods, or weighted residuals,
or Ritz–Galerkin methods. These names hint at underlying principles that serve
to derive suitable equations. As these different names suggest, there are several
different approaches leading to finite elements. The methods are closely related.

The flexibility of finite-element methods is not only favorable to approximate
functions, but also to approximate domains of computation that are not rectangular.
This is important for multifactor options. For the one-dimensional situation of
standard options, the possible improvement of a finite-element method over the
standard methods of the previous chapter is not significant. With the focus on
standard options, Chap. 5 may be skipped on first reading. But options with several
underlyings may lead to domains of computation that are more “fancy.”

For example, a two-asset basket with portfolio value ˛1S1 C ˛2S2 in the case of
a call option leads to a payoff of type �.S1; S2/ D .˛1S1 C ˛2S2 � K/C. If such an
option is endowed with barriers, then it is reasonable to set up barriers such that the
payoff takes a constant value. For the two-asset basket, this amounts to barrier lines
˛1S1 C ˛2S2 Dconstant. This naturally leads to trapezoidal shapes of domains. For
a special case with two knock-out barriers the payoff and the domain are illustrated
by Fig. 5.1. This example will be considered in Sect. 5.4, see the domain in Fig. 5.5.
In more complicated examples, the domain may be elliptic (�! Exercise 5.1). In
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Fig. 5.1 Payoff �.S1; S2/ of a call on a two-asset basket, with knock-out barrier (Example 5.6)

such situations of non-rectangular domains, finite elements are ideally applicable
and highly recommendable.

Faced with the huge field of finite-element methods, in this chapter we confine
ourselves to a step-by-step exposition towards the solution of two-asset options.
We start with an overview on basic approaches and ideas (in Sect. 5.1). Then, in
Sect. 5.2, we describe the approximation with the simplest finite elements, namely,
piecewise straight-line segments, and apply this to a stationary model problem.
These approacheswill be applied to the time-dependent situation of pricing standard
options, in Sect. 5.3. This sets the stage to the main application of FEM in financial
engineering, options on two or more assets. Section 5.4 will present an application
to an exotic option with two underlyings. Here we derive a weak form of the
PDE, and discuss boundary conditions. Finally, in Sect. 5.5, we will introduce
to error estimates. Methods more subtle than just the Taylor expansion of the
discretization error are required to show that quadratic convergence is possible
with unstructured grids and nonsmooth solutions. To keep the exposition of an
error analysis short, we concentrate on the one-dimensional situation. But the ideas
extend to multidimensional scenarios.

5.1 Weighted Residuals

Many of the principles on which finite-element methods are based, can be inter-
preted as weighted residuals. What does this mean? This heading points at ways
in which a discretization can be set up, and how an approximation can be defined.
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Fig. 5.3 Two kinds of approximations (one-dimensional situation)

There lies a duality in a discretization. This is illustrated by means of Fig. 5.2, which
shows a partition of an x-axis. This discretization is either represented by

(a) discrete grid points xi, or by
(b) a set of subintervals.

The two ways to see a discretization lead to different approaches of constructing
an approximation w. Let us illustrate this with the one-dimensional situation of
Fig. 5.3. An approximation w based on finite differences is built on the grid points
and primarily consists of discrete points (Fig. 5.3a). In contrast, finite elements are
founded on subdomains (intervals in Fig. 5.3b) with piecewise functions, which are
defined by suitable criteria and constitute a global approximation w. In a narrower
sense, a finite element is a pair consisting of one piece of subdomain and the
corresponding function defined thereupon, mostly a polynomial. Figure 5.3 reflects
the respective basic approaches; in a second step the isolated points of a finite-
difference calculation can well be extended to continuous piecewise functions by
means of interpolation (�! Appendix C.1).

A two-dimensional domain can be partitioned into triangles, for example, where
w is again represented by piecewise polynomials. Figure 5.4 depicts the simplest
such situation, namely, a triangle in an .x; y/-plane, and a piece of a linear function
defined thereupon. Figure 5.5 below will provide an example how triangles easily
fill a seemingly “irregular” domain.

As will be shown next, the approaches of finite-element methods use integrals.
If done properly, integrals require less smoothness. This often matches applications
better and adds to the flexibility of finite-element methods. The integrals can be
derived in a natural way from minimum principles, or are constructed artificially.
Finite elements based on polynomials make the calculation of the integrals easy.
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Fig. 5.4 A simple finite element in two dimensions, based on a triangle
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Fig. 5.5 A simple regular finite-element discretization of a domain D into triangles Dk (see
Example 5.6)

5.1.1 The Principle of Weighted Residuals

To explain the principle of weighted residuals we discuss the formally simple case
of the differential equation

Lu D f : (5.1)

Here L symbolizes a linear differential operator. Important examples are

Lu W D �u00 for u.x/; or (5.2)

Lu W D �uxx � uyy for u.x; y/ : (5.3)
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The right-hand side f is a problem-dependent function. Solutions u of the differential
equation (5.1) are studied on a domain D � Rn, with n D 1 in (5.2) and n D 2

in (5.3). The piecewise approach starts with a partition of the domain into a finite
number m of subdomainsDk,

D D
m[

kD1
Dk : (5.4)

All boundaries of D should be included, and approximations to u are calculated on
the closure of D. The partition is assumed disjoint up to the boundaries of Dk, so
Dı

j \ Dı
k D ; for j ¤ k. In the one-dimensional case .n D 1/, for example, the

Dk are subintervals of a whole interval D. In the two-dimensional case, (5.4) may
describe a partition into triangles, as illustrated in Fig. 5.5.

The ansatz for approximations w to a solution u is a basis representation with N
basis functions 'i,

w WD
NX

iD1
ci 'i : (5.5)

The functions 'i are also called trial functions. In the case of one independent
variable x the ci 2 R are constant coefficients, and the 'i are functions of x.
Typically, N is chosen and '1; : : : ; 'N are prescribed. Depending on this choice, the
free parameters c1; : : : ; cN are to be determined such that w � u. The ansatz (5.5)
was suggested by Ritz in 1908.

We have m subdomains and N basis functions. In the one-dimensional situation
(n D 1), nodes and subintervals interlace, and m and N essentially can be identified.
For n D 1 the two numbers m and N differ by at most one, depending on whether
the solution is known or unknown at the end points of the interval D. In the latter
case it is convenient to have the summation index in (5.5) run as i D 0; : : : ;m. For
dimensions n > 1 the number m of subdomains (e.g. triangles in case n D 2) in
general is different from the number N of basis functions (nodes1). For example, in
Fig. 5.5 we have 75 triangles and 51 nodes; 26 of the nodes are interior nodes and
25 are placed along the boundary. That is, 1 � k � 75. The number N refers to the
number of nodes for which a value of u is to be approximated.

One strategy to determine the coefficients ci is based on the residual function

R.w/ WD Lw � f : (5.6)

We look for a w such that the residualR becomes “small.” Since the 'i are considered
prescribed, in view of (5.5) N conditions or equations must be established to define

1Basis functions can be constructed such that there is one for each node. Then N represents also
the number of nodes.
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and calculate the unknown c1; : : : ; cN . To this end we weight the residual R by
introducing N weighting functions (test functions)  1; : : : ;  N and require

Z

D
R.w/  j dD D 0 for j D 1; : : : ;N : (5.7)

This amounts to the requirement that the residual be orthogonal to the set of
weighting functions  j. The “dD” in (5.7) symbolizes the integration that matches
D � Rn, as dx for n D 1. For ease of notation, we frequently drop dx as well
as the D at the n-dimensional integral. For the model problem (5.1) the system of
Eqs. (5.7) consists of the N equations

Z

D
Lw j D

Z

D
f  j . j D 1; : : : ;N/ (5.8)

for the N unknowns c1; : : : ; cN , which define w. Often the equations in (5.8) are
written using a formulation with inner products,

.Lw;  j/ D . f ;  j/ ;

defined as the corresponding integrals in (5.8). For linear L the ansatz (5.5) implies

Z
Lw j D

Z  
X

i

ciL'i

!
 j D

X

i

ci

Z
L'i j

„ ƒ‚ …
DWaij

:

The integrals aij constitute a matrix A. The rj WD R
f j set up the elements of a

vector r and the coefficients cj a vector c D .c1; : : : ; cN/
tr. In vector notation the

system of equations is rewritten as

Ac D r : (5.9)

This outlines the general principle, but leaves open the questions how to handle
boundary conditions and how to select basis functions 'i and weighting functions
 j. The freedom to choose trial functions 'i and test functions j allows to construct
several different methods. For the time being suppose that these functions have
sufficient potential to be differentiated or integrated. We will enter a discussion of
relevant function spaces in Sect. 5.5.

5.1.2 Examples of Weighting Functions

We postpone the choice of basis functions 'i and begin with listing important
examples of how to select weighting functions  :
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1.) Galerkin’s choice:
Choose  j WD 'j for all j. Then aij D R

L'i'j .
2.) Collocation:

Choose  j WD ı.x � xj/. Here ı denotes Dirac’s delta function, which in R1

satisfies
R

f ı.x � xj/ dx D f .xj/. As a consequence,
Z

Lw j D Lw.xj/ ;

Z
f j D f .xj/ :

That is, a system of equations Lw.xj/ D f .xj/ results, which amounts to
evaluating the differential equation at selected points xj.

3.) Least squares:
Choose

 j WD @R

@cj
:

This choice of test functions deserves its name least-squares, because to
minimize

R
.R.c1; : : : ; cN//

2 the necessary criterion is the vanishing of the
gradient, so

Z

D
R
@R

@cj
D 0 for all j :

5.1.3 Examples of Basis Functions

The construction of suitable basis functions 'i observes the underlying partition into
subdomains Dk. Our concern will be to meet two aims: resulting methods must be
accurate, and their implementation should become efficient.

The efficiency can be focused on the sparsity of matrices. In particular, if the
matrix A of the linear equations is sparse, then the system can be solved efficiently
even when it is large. In order to achieve sparsity we require that 'i � 0 on most
of the subdomains Dk. Figure 5.6 illustrates an example for the one-dimensional

xi xmxi+1xi−1x2x1x0

1

0
x

.....

ϕi

.....

Fig. 5.6 “Hat function”: simple choice of finite elements
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case n D 1. This hat function of Fig. 5.6 is the simplest example related to finite
elements. It is piecewise linear, and each function 'i has a support consisting of
only two subintervals, 'i.x/ ¤ 0 for x 2 support. A consequence is

Z

D
'i'j D 0 for ji � jj > 1 ; (5.10)

as well as an analogous relation for
R
' 0

i'
0
j . We will discuss hat functions in the

following Sect. 5.2. Basis functions more advanced than the canonical hat functions
are constructed using piecewise polynomials of higher degree. In this way, basis
functions can be obtained with C1- or C2-smoothness (�! Exercise 5.2). Recall
from interpolation (�! Appendix C.1) that polynomials of degree three can lead to
C2-smooth splines.

5.1.4 Smoothness

We have left open how close an approximation w of (5.5)/(5.9) is to the solution
u of (5.1). Clearly, R.u/ D 0 and u satisfies (5.7). But w in general does not
solve (5.1). The differential equation (5.1) is a stronger requirement than the integral
relations (5.7).

The accuracy depends on the smoothness of the basis functions. Depending on
the chosen method, different kinds of smoothness are relevant. Let us illustrate this
matter on the model problem (5.2),

Lu D �u00; with u; ';  2 f u j u.0/ D u.1/ D 0 g :

Integration by parts formally implies

Z 1

0

' 00 D �
Z 1

0

' 0 0 D
Z 1

0

' 00 ;

because the boundary conditions u.0/ D u.1/ D 0 let the nonintegral terms
vanish. These three versions of the integral can be distinguished by the smoothness
requirements on ' and  , and by the question whether the integrals exist. One will
choose the integral version that corresponds to the underlying method, and to the
smoothness of the solution. For example, for Galerkin’s approach the elements aij

of A consist of the integrals

�
Z 1

0

' 0
i'

0
j :

We will return to the topics of accuracy, convergence, and function spaces in
Sect. 5.5 (with Appendix C.3).
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5.2 Ritz–Galerkin Method with One-Dimensional Hat
Functions

As mentioned before, any required flexibility is provided by finite-element methods.
This holds to a larger extent in higher-dimensional spaces. In this section, for
simplicity, we stick to the one-dimensional situation, x 2 R. The dependence on
the time variable t will be postponed to Sect. 5.3.

Assume a partition of the x-domain by a set of increasing mesh points x0; : : : ; xm.
A nonuniform spacing is advisable in several instances in order to improve the
accuracy. For example, close to the strike, a denser grid is appropriate to mollify the
lack of smoothness of a payoff. In contrast, to model infinity, one rarefies the nodes
for larger x and shifts the final node xm to a large value. One strategy is to select a
spacing such that locally (up to additional scaling and shifts) sinh.xi/ D �i, where �i

are chosen equidistantly. A dense spacing is also advisable for barrier options close
to the barrier, where the gradient of option prices is high.

5.2.1 Hat Functions

The prototype of a finite-element method makes use of the hat functions, which we
define formally (compare Figs. 5.6 and 5.7).

Definition 5.1 (Hat Functions) For 1 � i � m � 1 set 'i.x/ WD 0 on all
subintervals except two:

'i.x/ W D x � xi�1
xi � xi�1

for xi�1 � x < xi ;

'i.x/ W D xiC1 � x

xiC1 � xi
for xi � x < xiC1 ;

xi xm

1

0
x1 xi−1 xi+1

x
.....

x2
.....

x0

ϕ
0

x0 x1 x2 xm−1 xm

1

0
x

.....

ϕm

Fig. 5.7 Special “hat functions” '0 and 'm



268 5 Finite-Element Methods

and boundary functions '0, 'm nonzero on just one subinterval:

'0.x/ WD x1 � x

x1 � x0
for x0 � x < x1 ;

'm.x/ WD x � xm�1
xm � xm�1

for xm�1 � x � xm :

For each node xi there is one hat function. These m C 1 hat functions satisfy the
following properties.

Properties 5.2 (Hat Functions) The following properties (a)–(e) hold:

(a) The '0; : : : ; 'm form a basis of the space of polygons

f g 2 C0Œx0; xm� j g straight line on Dk WD Œxk; xkC1� ;

for all k D 0; : : : ;m � 1 g :

That is to say, for each polygon v on the union ofD0; : : : ;Dm�1 there are unique
coefficients c0; : : : ; cm such that

v D
mX

iD0
ci'i :

(b) On any Dk only 'k and 'kC1 ¤ 0 are nonzero. Hence

'i'j D 0 for ji � jj > 1 ;

which explains (5.10).
(c) A simple approximation of the integral

R xm

x0
f'j dx can be calculated as follows:

Substitute f by the interpolating polygon

fp WD
mX

iD0
fi'i , where fi WD f .xi/ ;

and obtain for each j the approximating integral

Ij WD
Z xm

x0

fp'j dx D
Z xm

x0

mX

iD0
fi'i'j dx D

mX

iD0
fi

Z xm

x0

'i'j dx

„ ƒ‚ …
DWbij

:
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The bij constitute a symmetric matrix B and the fi a vector Nf . If we arrange all
integrals Ij .0 � j � m) into a vector, then all integrals can be written in a
compact way in vector notation as

BNf :

This will approximate the vector r in (5.9).
(d) The “large” .m C 1/2–matrix B WD .bij/ can be set up Dk-elementwise by .2 �

2/-matrices (discussed below in Sect. 5.2.2). The .2 � 2/-matrices are those
integrals that integrate only over a single subdomain Dk. For each Dk in our
one-dimensional setting exactly the four integrals

R
'i'jdx for i; j 2 fk; k C 1g

are nonzero. They can be arranged into a .2 � 2/-matrix

Z xkC1

xk

�
'2k 'k'kC1

'kC1'k '2kC1

�
dx :

(The integral over a matrix is understood elementwise.) These are the integrals
on Dk, where the integrand is a product of the factors

xkC1 � x

xkC1 � xk
and

x � xk

xkC1 � xk
:

The four numbers

1

.xkC1 � xk/2

Z xkC1

xk

�
.xkC1 � x/2 .xkC1 � x/.x � xk/

.x � xk/.xkC1 � x/ .x � xk/
2

�
dx

result. With hk WD xkC1 � xk integration yields the element-mass matrix (�!
Exercise 5.3)

1

6
hk

�
2 1

1 2

�
:

(e) Analogously, integrating ' 0
i'

0
j yields

Z xkC1

xk

�
' 02

k ' 0
k'

0
kC1

' 0
kC1' 0

k ' 02
kC1

�
dx

D 1

h2k

Z xkC1

xk

�
.�1/2 .�1/1
1.�1/ 12

�
dx D 1

hk

�
1 �1

�1 1

�
:

These matrices are called element-stiffness matrices. They are used to set up the
matrix A.
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5.2.2 Assembling

The next step is to assemble the matrices A and B. It might be tempting to organize
this task as follows: run a double loop on all basis indices i; j (N node indices) and
check for each .i; j/ on which Dk the integral

Z

Dk

'i'j

is nonzero. Such a procedure of performing a double loop has the complexity of
O.N2m/. This is cumbersome as compared to the alternative of running a single
loop on the subdomain index k and benefit from all relevant integrals on Dk, which
are precalculated above (Fig. 5.8).

To this end, split the integrals

Z xm

x0

D
m�1X

kD0

Z

Dk

to construct the .mC1/� .mC1/-matrices A D .aij/ and B D .bij/ additively out of
the small element matrices. For the case of the one-dimensional hat functions with

k

D1

D2

j

i

D0

Fig. 5.8 Assembling in the one-dimensional setting



5.2 Ritz–Galerkin Method with One-Dimensional Hat Functions 271

subintervals

Dk D f x j xk � x � xkC1 g
the element matrices are .2� 2/, see above. In this case only those integrals of ' 0

i'
0
j

and 'i'j are nonzero, for which i; j 2 Ik, where

i; j 2 Ik WD fk; k C 1g : (5.11)

Ik is the set of indices of those products of basis functions that are nonzero on
Dk. The assembling algorithm performs a loop over the subdomain index k D
0; 1; : : : ;m�1 and distributes the .2�2/-elementmatrices additively to the positions
i; j 2 Ik. Before the assembling is started, the matrices A and B must be initialized
with zeros. For k D 0; : : : ;m � 1 one obtains for A the .m C 1/2-matrix

A D

0
BBBBBBB@

1
h0

� 1
h0

� 1
h0

1
h0

C 1
h1

� 1
h1

� 1
h1

1
h1

C 1
h2

� 1
h2

� 1
h2

: : :
: : :

: : :

1
CCCCCCCA

: (5.12)

The matrix B is assembled in an analogous way. In the one-dimensional situation
the matrices are tridiagonal. For an equidistant grid with h D hk the matrix A
specializes to

A D 1

h

0

BBBBBBBBB@

1 �1 0

�1 2 �1
�1 2

: : :

: : :
: : :

: : :

: : : 2 �1
0 �1 1

1

CCCCCCCCCA

(5.13)

and B to

B D h

6

0
BBBBBBBBB@

2 1 0

1 4 1

1 4
: : :

: : :
: : :

: : :

: : : 4 1

0 1 2

1
CCCCCCCCCA

: (5.14)
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5.2.3 A Simple Application

In order to demonstrate the procedure, let us consider the simple time-independent
(“stationary”) model boundary-value problem

Lu WD �u00 D f with u.x0/ D u.xm/ D 0 : (5.15)

Substituting w WD Pm
iD0 ci'i into the differential equation, in view of (5.8), leads to

mX

iD0
ci

Z xm

x0

L'i 'j dx D
Z xm

x0

f'j dx :

This is the result of the Ritz–Galerkin approach. Next we apply integration by
parts on the left-hand side, and invoke Property 5.2(c) on the right-hand side. The
resulting system of equations is

mX

iD0
ci

Z xm

x0

' 0
i'

0
j dx

„ ƒ‚ …
aij

D
mX

iD0
fi

Z xm

x0

'i'j dx

„ ƒ‚ …
bij

; j D 0; 1; : : : ;m : (5.16)

This system is preliminary because the homogeneous boundary conditions u.x0/ D
u.xm/ D 0 are not yet taken into account.

At this state, the preliminary system of Eqs. (5.16) can be written as

Ac D BNf : (5.17)

It is easy to see that the matrix A from (5.13) is singular, because

A.1; 1; : : : ; 1/tr D 0 :

The singularity reflects the fact that the system (5.17) does not have a unique
solution. This is consistent with the differential equation �u00 D f .x/: If u.x/
is solution, then also u.x/ C ˛ for arbitrary ˛. Unique solvability is attained by
satisfying the boundary conditions; a solution u of �u00 D f must be fixed by at
least one essential boundary condition. For our example (5.15) we know in view
of u.x0/ D u.xm/ D 0 the coefficients c0 D cm D 0. This information can be
inserted into the system of equations in such a way that the matrix A changes to a
nonsingular matrix without losing symmetry. To this end, cancel the first and the
last of the n C 1 equations in (5.17), and make use of c0 D cm D 0. Now the inner
part of size .m � 1/ � .m � 1/ of A remains. The matrix B is .m � 1/ � .m C 1/.
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Finally, for the special case of an equidistant grid, the system of equations is

0
BBBBBBB@

2 �1 0

�1 2
: : :

: : :
: : :

: : :

: : : 2 �1
0 �1 2

1
CCCCCCCA

0
BBBBB@

c1
c2
:::

cm�2
cm�1

1
CCCCCA

D

h2

6

0

BBBBB@

1 4 1 0

1 4 1
: : :

: : :
: : :

1 4 1

0 1 4 1

1

CCCCCA

0

BBBBB@

Nf0
Nf1
:::

Nfm�1
Nfm

1

CCCCCA
:

(5.18)

In (5.18) we have used an equidistant grid for sake of a lucid exposition. Our
main focus is the nonequidistant version, which is also implemented easily. In case
nonhomogeneousboundary conditions are prescribed, appropriate values of c0 or cm

are predefined. The importance of finite-element methods in structural engineering
has lead to call the global matrix A the stiffness matrix, and B is called the mass
matrix.

5.3 Application to Standard Options

Finite elements are especially advantageous in higher-dimensional spaces (several
underlyings). But it also works for the one-dimensional case of standard options.
This is the theme of this section. In contrast to the previous section, time must be
included.

5.3.1 European Options

We know that the valuation of single-asset European options with vanilla payoff
makes use of the Black–Scholes formula. But for the sake of exposition, and for
non-vanilla payoff, let us briefly sketch a finite-element approach. Here we apply
the FEM approach to the transformed version y� D yxx of the Black–Scholes
equation with constant parameters. In view of the general basis representation
in (5.5) one may think of starting from w D P

wi'i.x; �/ with constant coefficients
wi. This would require two-dimensional basis functions. (We shall come back to
such functions in Sect. 5.4.) To make use of one-dimensional hat functions, apply a
separation ansatz in the form

P
wi.�/'i.x/ with functions wi.�/. As a consequence



274 5 Finite-Element Methods

of this simple approach, the same x-grid is applied for all � , which results in a
rectangular grid in the .x; �/-plane. Dirichlet boundary conditions

y.xmin; �/ D ˛.�/; y.xmax; �/ D ˇ.�/

mean that in view of the shape of '0; 'm (Definition 5.1, Fig. 5.7) the values w0 D ˛

or wm D ˇ would be known. It is practical to separate known terms and restrict the
sum to the terms with unknown weights wi. This can be managed by introducing
a special function 'b that compensates for Dirichlet boundary conditions on y. The
function 'b.x; �/ is no basis function, and is constructed in advance. For example,

'b.x; �/ WD .ˇ.�/� ˛.�//
x � xmin

xmax � xmin
C ˛.�/

does the job for the above boundary conditions. So 'b can be considered to be
known, and the sum

P
wi'i does not reflect any nonzero Dirichlet boundary

conditions on y. Then the final ansatz is

X

i

wi.�/'i.x/C 'b.x; �/ ; (5.19)

and the index i counts those nodes xi for which no boundary conditions of the above
type are prescribed, 1 � i � m � 1 in case two Dirichlet boundary conditions
are given. The basis functions '1; : : : ; 'N are chosen to be the hat functions, which
incorporate the discretization of the x-axis. Hence, N D m�1, and x0 corresponds to
xmin, and xm to xmax. The functions w1; : : : ;wm�1 are unknown, and w0 D wm D 0.

Calculating derivatives of (5.19) and substituting into y� D yxx leads to the Ritz–
Galerkin approach

xmZ

x0

"
m�1X

iD1
Pwi'i C P'b

#
'j dx D

xmZ

x0

"
m�1X

iD1
wi'

00
i C ' 00

b

#
'j dx

for j D 1; : : : ;m � 1. The overdot represents differentiation with respect to � , and
the prime with respect to x. Arranging the terms that involve derivatives of 'b into
vectors a.�/, b.�/,

a.�/ WD

0
B@

R
' 00
b .x; �/ '1.x/ dx

:::R
' 00
b .x; �/ 'm�1.x/ dx

1
CA ; b.�/ WD

0
B@

R P'b.x; �/ '1.x/ dx
:::R P'b.x; �/ 'm�1.x/ dx

1
CA ;

and using the matrices A;B as in (5.13)/(5.14), we arrive after integration by parts at

B Pw C b D �Aw � a : (5.20)
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Note that for the specific 'b from above ' 00
b D 0 and a D 0. For vanilla

options, ˛ and ˇ can be drawn from (4.28), and b can be set up analytically; a
and b can be considered as known. This completes the semidiscretization. Time
� is still continuous, and (5.20) defines the unknown vector function w.�/ WD
.w1.�/; : : : ;wm�1.�//tr as solution of a system of ordinary differential equations.
This is a method of lines approach. The lines are defined by x D xi for 1 � i � m�1,
and the approximations along the lines are given by wi.�/.

Initial conditions for � D 0 are derived from (5.19). Assume the initial condition
from the payoff as y.x; 0/ D �.x/, then

XN

iD1wi.0/'i.x/C 'b.x; 0/ D �.x/ :

For vanilla payoff, � is given by (4.5)/(4.6). Specifically for x D xj the sum reduces
to wj.0/ � 1, leading to

wj.0/ D �.xj/ � 'b.xj; 0/ :

To complete the discretization, time � must be discretized. Standard software
for ODEs can be applied to (5.20), in particular, codes for stiff systems. For
discretizing with difference quotients consult Sect. 4.2.1. For example, apply the
ODE trapezoidal rule as in (4.20) for the discretization of Pw in (5.20). We leave the
derivation of the resulting Crank–Nicolson type discretization as an exercise to the
reader. With the usual notation of the vector w.�/ approximating w.��/, the result
can be written

.B C ��
2

A/w.�C1/ D .B � ��
2

A/w.�/

���
2
.a.�/ C a.�C1/ C b.�/ C b.�C1// :

(5.21)

The structure of (5.21) strongly resembles the finite-difference approach (4.24).
This similarity suggests that the order is the same, because for the finite-element A’s
and B’s we have (compare (5.13)/(5.14))

A D O

�
1

�x

�
; B D O.�x/ :

The separation of the variables x and � in (5.19) allows to investigate the orders of
the discretizations separately. In �� , the order O.��2/ of the Crank–Nicolson type
approach (5.21) is clear from the ODE trapezoidal rule. It remains to derive the order
of convergence with respect to the discretization in x. Because of the separation
of variables it is sufficient to derive the convergence for a one-dimensional model
problem. This will be done in Sect. 5.5.
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5.3.2 Variational Form of the Obstacle Problem

To warm up for the discussion of the American option case, let us return to the
simple obstacle problem of Sect. 4.5.5 with the obstacle function g.x/, or g.x; �/.
This problem can be formulated as a variational inequality. The function u solving
the obstacle problem can be characterized by comparing it to functions v out of a
set K of competing functions

K WD f v 2 C0Œ�1; 1� j v.�1/ D v.1/ D 0 ;

v.x/ 	 g.x/ for � 1 � x � 1; v piecewise 2 C1 g :

The requirements on u imply u 2 K. For v 2 K we have v � g 	 0 and in view of
�u00 	 0 also �u00.v � g/ 	 0. Hence for all v 2 K the inequality

Z 1

�1
�u00.v � g/ dx 	 0

must hold. By the LCP formulation (4.39) the integral

Z 1

�1
�u00.u � g/ dx D 0

vanishes. Subtracting yields

Z 1

�1
�u00.v � u/ dx 	 0 for any v 2 K :

The obstacle function g does not occur explicitly in this formulation; the obstacle is
implicitly defined in K. Integration by parts leads to

Œ�u0.v � u/„ ƒ‚ …
D0

�1�1 C
Z 1

�1
u0.v � u/0 dx 	 0 :

The integral-free term vanishes because of u.�1/ D v.�1/; u.1/ D v.1/. In
summary, we have derived the statement:

If u solves the obstacle problem (4.39), thenZ 1

�1
u0.v � u/0 dx 	 0 for all v 2 K : (5.22)

Since v varies in the set K of competing functions, an inequality such as in (5.22)
is called variational inequality. The characterization of u by (5.22) can be used
to construct an approximation w: Instead of u, find a w 2 K such that the
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inequality (5.22) is satisfied for all v 2 K,

1Z

�1
w0.v � w/0 dx 	 0 for all v 2 K :

The characterization (5.22) is related to a minimum problem, because the integral
vanishes for v D u.

5.3.3 Variational Form of an American Option

Analogously as the simple obstacle problem also the problem of calculating
American options can be formulated as variational problem, compare Problem 4.7.
The class of competing functions must be redefined as

K WD f v 2 C0Œxmin; xmax� j @v
@x piecewise C0 ;

v.x; �/ 	 g.x; �/ for all x; � ; v.x; 0/ D g.x; 0/ ;

v.xmax; �/ D g.xmax; �/; v.xmin; �/ D g.xmin; �/ g :
(5.23)

For the following, v 2 K for the K from (5.23). Let y denote the exact solution of
Problem 4.7. As solution of the partial differential inequality, y is C2-smooth on the
continuation region, and y 2 K. From

v 	 g;
@y

@�
� @2y

@x2
	 0

we deduce

Z xmax

xmin

�
@y

@�
� @2y

@x2

�
.v � g/ dx 	 0 :

Invoking the complementarity

Z xmax

xmin

�
@y

@�
� @2y

@x2

�
. y � g/ dx D 0

and subtraction gives

Z xmax

xmin

�
@y

@�
� @2y

@x2

�
.v � y/ dx 	 0 :
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Integration by parts leads to the inequality

Z xmax

xmin

�
@y

@�
.v � y/C @y

@x

�
@v

@x
� @y

@x

��
dx � @y

@x
.v � y/

ˇ̌
ˇ̌
ˇ

xmax

xmin

	 0 :

The nonintegral term vanishes, because at the boundary for xmin, xmax, in view of
v D g, y D g, the equality v D y holds. The final result is

I. yI v/ WD
Z xmax

xmin

�
@y

@�
� .v � y/C @y

@x

�
@v

@x
� @y

@x

��
dx 	 0 for all v 2 K :

(5.24)

The exact y is characterized by the fact that the inequality (5.24) holds for all
comparison functions v 2 K. For the special choice v D y the integral takes its
minimal value,

min
v2K I. yI v/ D I. yI y/ D 0 :

A more general question is, whether the inequality (5.24) holds for aby 2 K that is
not C2-smooth on the continuation region.2 The aim is:

Problem 5.3 (Weak Version) Construct aby 2 K such that I.byI v/ 	 0 for all
v 2 K.
This formulation of our problem is called weak version, because it does not useby 2
C2. Solutionsby of Problem 5.3, which are globally continuous but only piecewise
2 C1, are called weak solutions. The original partial differential equation requires
y 2 C2 and hence more smoothness. Such C2-solutions are called strong solutions
or classical solutions (�! Sect. 5.5).

5.3.4 Implementation of Finite Elements

A discretized version of the weak problem is obtained by replacing the space K
by a finite-dimensional subspace bK, which is spanned by a finite number of basis
functions. That is, we search for aby 2 bK such that

I.byIbv/ 	 0 for allbv 2 bK ;

where I. yI v/ is defined in (5.24). This sets the arena for finite element methods.

2For the Black–Scholes y.x; �/ or V.S; t/ the weaker y 2 C2;1 suffices. Recall that the American
option is widely C2-smooth, except across the early-exercise curve.
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As a first step to approximately solve the minimum problem, assume as in
Sect. 5.3.1 separation approximations forby andbv in the similar forms

by D
X

i

wi.�/'i.x/ ;

bv D
X

i

vi.�/'i.x/ :
(5.25)

Summation is over a finite number of terms, which representsby; bv 2 bK. The reduced
smoothness of these expressions match the requirements of K from (5.23); time
dependence is incorporated in the coefficient functions wi and vi. Since the basis
functions 'i represent the xi-grid, we again perform a semidiscretization. Plugging
the ansatz (5.25) into I.byIbv/ from (5.24) gives

Z 8
<

:

 
X

i

dwi

d�
'i

!0

@
X

j

.vj � wj/'j

1

AC

 
X

i

wi'
0
i

!0

@
X

j

.vj � wj/'
0
j

1

A

9
=

; dx

D
X

i

X

j

dwi

d�
.vj � wj/

Z
'i'j dx C

X

i

X

j

wi.vj � wj/

Z
' 0

i'
0
j dx 	 0 :

Translated into vector notation for the coefficient functions wi.�/, vi.�/, this is
equivalent to

�
dw

d�

�tr

B.v � w/C wtrA.v � w/ 	 0

or3

.v � w/tr
�

B
dw

d�
C Aw

�
	 0 :

This is the (semi-)discretized weak version of I.byIbv/ 	 0. The matrices A and B
are defined via the assembling described above; for equidistant steps the special
versions in (5.13), (5.14) arise.

As a second step, the time � is discretized as well. To this end let us define the
vectors

w.�/ WD w.��/; v.�/ WD v.��/ :

3Notation: Now v is the vector of the coefficient functions.
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Upon substituting, and 	-averaging the Aw term as in Sect. 4.6.1, we arrive at the
inequalities

�
v.�C1/ � w.�C1/�tr

�
B
1

��
.w.�C1/ � w.�//C 	Aw.�C1/ C .1 � 	/Aw.�/

�
	 0

(5.26)

for all �. For 	 D 1=2 this is a Crank–Nicolson-type method. Rearranging (5.26)
leads to

�
v.�C1/ � w.�C1/�tr �

.B C�� 	A/w.�C1/ C .��.1 � 	/A � B/w.�/
� 	 0 :

With the abbreviations

r W D .B ���.1 � 	/A/w.�/ ;

C W D B C�� 	A ;
(5.27)

the inequality can be rewritten as

�
v.�C1/ � w.�C1/�tr �

Cw.�C1/ � r
� 	 0 : (5.28)

This is the fully discretized version of I.byI v/ 	 0.

5.3.4.1 Side Conditions

To match the requirements of K, the inequalitiesby 	 g and bv 	 g must hold.
by.x; �/ 	 g.x; �/ amounts to

X
wi.�/'i.x/ 	 g.x; �/ :

For hat functions 'i (with 'i.xi/ D 1 and 'i.xj/ D 0 for j ¤ i) and x D xj this
implies wj.�/ 	 g.xj; �/. With � D �� we have

w.�/ 	 g.�/I analogously v.�/ 	 g.�/ :

For each time level � wemust find a solution that satisfies both the inequality (5.26)–
(5.28) and the side condition

w.�C1/ 	 g.�C1/ for all v.�C1/ 	 g.�C1/ :
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In summary, the algorithm is

Algorithm 5.4 (Finite Elements for American Standard Options)

Choose 	 .	 D 1=2/: Calculate w.0/; and C from (5.27):

For � D 1; : : : ; �max W
Calculate r D .B ���.1 � 	/A/w.��1/ and g D g.�/ :

Construct a w such that for all v 	 g

.v � w/tr.Cw � r/ 	 0; w 	 g:

Set w.�/ WD w :

This algorithm generates a discretized solution of the weak Problem 5.3: The vectors
w defineby 2 bK via (5.25);bv is not needed explicitly. Let us emphasize again the
main step (FE), which is the kernel of this algorithm and the main labor: Construct
w such that

.FE/ for all v 	 g

.v � w/tr.Cw � r/ 	 0 ; w 	 g :
(5.29)

This task (FE) can be reformulated into a task we already solved in Sect. 4.6. To this
end recall the finite-difference equation (4.44), replacing A by C, and b by r. There
the following holds for w:

.FD/ Cw � r 	 0 ; w 	 g ;

.Cw � r/tr.w � g/ D 0 :
(5.30)

Theorem 5.5 (Equivalence) The solution of the problem (FE) is equivalent to the
solution of problem (FD).

Proof

a) .FD/ H) .FE/:
Let w solve (FD), so w 	 g, and

.v � w/tr.Cw � r/ D .v � g/tr .Cw � r/„ ƒ‚ …
�0

� .w � g/tr.Cw � r/„ ƒ‚ …
D0

hence .v � w/tr.Cw � r/ 	 0 for all v 	 g .
b) .FE/ H) .FD/:

Let w solve (FE), so w 	 g, and

vtr.Cw � r/ 	 wtr.Cw � r/ for all v 	 g :



282 5 Finite-Element Methods

Suppose the kth component of Cw � r is negative, and make vk arbitrarily large.
Then the left-hand side becomes arbitrarily small, which is a contradiction. So
Cw � r 	 0. Now

w 	 g H) .w � g/tr.Cw � r/ 	 0 :

Set in (FE) v D g, then .w � g/tr.Cw � r/ � 0. Therefore .w � g/tr.Cw � r/ D 0.

5.3.4.2 Implementation

As a consequence of this equivalence, the solution of the finite-element problem
(FE) can be calculated with the methods we applied to solve problem (FD) in
Sect. 4.6. Following the exposition in Sect. 4.6.2, the kernel of the finite-element
Algorithm 5.4 can be written as follows

(FE0) Solve Cw D r componentwise such that

the side condition w 	 g is obeyed.

The vector v is not calculated. Boundary conditions on w are set up in the same
way as discussed in Sect. 4.4 and summarized in Algorithm 4.14. Consequently,
the finite-element algorithm parallels Algorithm 4.14 closely in the special case of
an equidistant x-grid; there is no need to repeat this algorithm (�! Exercise 5.4).
In the general nonequidistant case, the off-diagonal and the diagonal elements of
the tridiagonal matrix C vary with i. Then the formulation of the SOR-loop gets
more involved. The details of the implementation are technical and omitted. The
Algorithm 4.15 is the same in the finite-element case.

The computational results match those of Chap. 4 and are not repeated. The costs
of the presented simple version of a finite-element approach are slightly lower than
that of the finite-difference approach, because we can take advantage of an optimal
spacing of the mesh points xi. For arguments discussing the closeness ofby to y, we
refer to Sect. 5.5.

5.4 Two-Asset Options

In Sect. 3.5.5 we discussed an option based on two assets with prices S1; S2. There
we applied Monte Carlo to simulate the GBM model, see Example 3.9. For the
mathematical model we have chosen the Black–Scholes market. The corresponding
PDE for the value function V.S1; S2; t/ is

@V

@t
C 1

2

21S21

@2V

@S21
C .r � ı1/S1

@V

@S1
� rV

C 1
2

22S22

@2V

@S22
C .r � ı2/S2

@V

@S2
C �
1
2S1S2

@2V

@S1@S2
D 0 ;

(5.31)
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with dividend rates ı1, ı2. (For the general case see Sect. 6.2.) Notice that for
S2 D 0 the familiar one-dimensional Black–Scholes equation results. The model is
completed by a payoff function �.S1; S2/ and the terminal condition V.S1; S2;T/ D
�.S1; S2/. The computational domainD is two-dimensional,D 
 R2 (disregarding
time t).

Example 5.6 (European Call on a Basket with Double Barrier) We consider
a call on a two-asset basket with two knock-out barriers. The payoff of this exotic
European-style option is

�.S1; S2/ D .S1 C S2 � K/C ;

up to the barriers (see Fig. 5.1). In the underlying basket the two assets are of equal
weight. The two knock-out barriers are given by B1 and B2, down-and-out at B1,
and up-and-out at B2. That is, the option ceases to exist when S1 C S2 � B1, or
when S1 C S2 	 B2; in both cases V D 0. In this example, the computational
domain D is easy to define: The value function is zero outside the barriers. Hence
the domain is bounded by the two lines S1 C S2 D B1 and S1 C S2 D B2. This shape
ofD naturally suggests to tile the domain into a grid of triangular elementsDk. One
possible triangulation is shown in Fig. 5.5, where a structured regular subdivision is
applied. For this example we choose the parameters

K D 1 ; T D 1 ; 
1 D 
2 D 0:25 ; � D 0:7 ; r D 0:05 ;

ı1 D ı2 D 0 ; B1 D 1 ; B2 D 2 :

The values V for S1 ! 0 and S2 ! 0 are known by the one-dimensional Black–
Scholes equation; just set either S1 D 0 or S2 D 0 in (5.31). These values of single-
asset double-barrier options for B1 � S � B2 can be evaluated by a closed-form
formula, see [172]. We shall come back to this example below.

5.4.1 Analytical Preparations

It is convenient to solve the Black–Scholes equation in divergence form. To this
end, use standard PDE variables x WD S1, y WD S2 for the independent variables, and
u.x; y; t/ for the dependent variable, and derive the vector PDE for u

� r � .D.x; y/ru/C b.x; y/trru C ru D ut : (5.32)

This makes use of the formal “nabla” vector r WD . @
@x ;

@
@y /

tr, and

D.x; y/ WD 1
2

�

21 x2 �
1
2xy

�
1
2xy 
22 y2

�
;

b.x; y/ WD �
�
.r � ı1 � 
21 � �
1
2=2/ x
.r � ı2 � 
22 � �
1
2=2/ y

�
:

(5.33)



284 5 Finite-Element Methods

ru is the gradient of u, and the dot-product notation

r � U D @U1

@x
C @U2

@y

for a vector function U denotes the divergence; the � corresponds to the scalar
product, similar as tr for vectors. The reader is invited to check the equivalence
with (5.31) (�! Exercise 5.5). The advantage of version (5.32) over (5.31) lies in a
simple treatment of the second-order derivatives; they can be removed, and a weak
version can be derived. This will become apparent below.

5.4.2 Weighted Residuals

The partial differential equation (5.32) can be represented by R.u; x; y; t/ D 0, where

R.u; x; y; t/ WD � r � .D.x; y/ru.x; y; t//C b.x; y/trru.x; y; t/

C ru.x; y; t/ � @u.x; y; t/

@t

denotes the residual. As in Sect. 5.1, the residual is used to set up an integral
equation. To this end, introduce weighting functions v, multiply the residual of the
PDE with v.x; y; t/ and request

Z

D
R.u; x; y; t/ v dx dy D 0 : (5.34)

This integral over the computational domainD 
 R2 is a double integral. It depends
on t, and should vanish for all 0 � t � T and arbitrary v. We consider u to be
a solution in case (5.34) holds for “all” v. This is a weak version of the PDE and
requires less regularity of its “weak” solutions u. Aspects of accuracy are postponed
to Sect. 5.5.

To exploit the potential of the integral version (5.34), we transform the second-
order derivatives to first order, comparable to integration by parts. The leading
integral over the second-order term is

Z

D
�r � .Dru/ v dx dy :

The reader may check for the vector U WD vDru the formula for the divergence
r � U, namely,

r � .vDru/ D .rv/trDru C vr � Dru ;
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and hence

�
Z

D
v r � .Dru/ dx dy D

Z

D
.rv/trDru dxdy �

Z

D
r � .vDru/ dx dy :

Next we quote the divergence theorem, here for the two-dimensional situation:

Z

D
r � U dx dy D

Z

@D
Utrn ds ; (5.35)

where @D denotes the boundary of D, and n is the outward unit normal vector on
@D. (n is perpendicular to the curve @D and points away from D.) The parameter s
measures the arclength along the boundary @D.4 We apply the divergence theorem
to the specific vector U WD vDru, and arrive at the result for the second-order term

�
Z

D
vr � .Dru/ dx dy D

Z

D
.rv/trDru dx dy �

Z

@D
.vDru/trn ds :

In (5.32)/(5.33) the matrix D is symmetric, D D Dtr. For symmetric D the integrand
in the boundary integral is v.ru/trDn. After the above transformations of the leading
integral, we rewrite (5.34) into

Z

D

�
.rv/trDru C vbtrru C ruv � @u

@t
v

�
dx dy �

Z

@D
v.ru/trDn ds D 0 :

(5.36)

Recall that both u and v as well as ru and rv depend on x; y; t, and the integrals
on t. This is the weak version of the PDE (5.32).

Next discretize the time 0 � t � T as in Chap. 4, say, with equidistant steps �t.
For the simplest implicit approach, the derivative with respect to time t is resolved
by the first-order difference quotient,

@u.x; y; t/

@t
� u.x; y; t C�t/� u.x; y; t/

�t
:

For backward running time t,

upre WD u.x; y; t C�t/

is known at time t from the calculation of the previous time level. The analogue of
the fully implicit time-stepping method is then to solve (5.36) at time level t for @u

@t

4Recall from calculus the definition
R

C f .x; y/ds D R b
a f .g.�/; h.�// ds

d� d� where .g.�/; h.�// for
a � � � b is a parameterization of a planar curve C; � is the curve parameter. The value of this
line integral is independent of the orientation of the curve C and independent of the particular
parameterization.
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replaced by

1

�t
.upre � u/ ;

starting at t D T � �t with the payoff, upre D � . With this approximation, the
function u in (5.36) approximates the value function V at time level t. Alternatively,
a second-order time-discretization can be applied, similar as in Sect. 4.3. For the
required regularity of the functions u and v, consult Sect. 5.5.

5.4.3 Boundary

Boundary conditions enter via the boundary integral around the boundary @D. In
practice, the computational domain D is defined by specifying @D. To this end,
express the curve @D as the union of a finite number of non-overlapping piecewise
smooth boundary curves @D1; @D2; : : :. Each of these curves must be parameterized
as in

@D1 WD f .g1.�/; h1.�// j a1 � � � b1 g :

In this way, an orientation is given by starting the curve at the parameter value
� D a1 and ending at � D b1. By specifying parameter intervals as a1 � � � b1
and parametric functions as g1; h1, the entire boundary is defined. The convention
is that the orientation is done such that the domain D is on the left-hand side, as we
run through the parameterizations for increasing parameter values �.

Now the curve @D is defined and we address the boundary integral along that
curve. It is split into a sum of integrals according to the piecewise smooth curves
@D1; @D2; : : :. For example, the boundary of the domain in Fig. 5.5 consists of four
such parts (�! Exercise 5.6).

The product-type integrand f .x; y/ WD v.ru/trDn suggests to place emphasis on
two specific kinds of boundary condition, namely,

• v is prescribed (Dirichlet boundary conditions),
• .ru/trDn is prescribed (Neumann boundary conditions).

The boundary differential operator .ru/trDn D ntrDru can be considered as a
generalized directional derivative since @u

@n D ntrru. Mixed boundary conditions are
possible as well. If we cast the components of the vector ntrD into a vector .˛1; ˛2/,
then all type of boundary conditions can be written in the form

˛1.x; y/
@u

@x
C ˛2.x; y/

@u

@y
D ˛0.x; y/ u C ˇ.x; y/
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with proper functions ˛0 and ˇ. Then

v .˛0.x; y/ u C ˇ.x; y//

is substituted into the boundary integral, which is approximated numerically using
the edges of the triangulation of D.

Fortunately, boundary conditions are frequently of simple form. In particular one
encounters the two types

• u D 0 (or v D 0), which is of Dirichlet type with ˛1 D ˛2 D ˇ D 0 and ˛0 ¤ 0.
• .ru/trDn D 0, which is of Neumann type with ˛0 D ˇ D 0 and nonzero vector
.˛1; ˛2/.

The boundary @D may consist, for example, of two parts @DD and @DN with @D D
@DD [ @DN, @DD \ @DN D ;, and Dirichlet conditions on @DD and Neumann
conditions on @DN. Clearly, boundary integrals vanish for the special cases v D 0

or .ru/trDn D 0. Neumann conditions are advantageous in that they need not be
specified for weak formulations. This entails an advantage of FEM over discretizing
the PDEs by finite differences. In the latter case, all boundary conditions must be
implemented. For FEM it suffices to implement Dirichlet conditions. Defining the
right boundary conditions can be demanding. Aside to be financially meaningful,
another aim is the problem to be well-posed—that is, it defines a unique solution.
To some extent, defining proper boundary conditions is an art.

Example 5.7 (European Binary Put as in Example 3.9) In Chap. 3 the Exam-
ple 3.9 of a binary put was simulated with Monte Carlo, and no boundary or
boundary conditions were needed. Here we prepare the example to be solved by
FEM. Again, x WD S1, y WD S2. As in Chap. 4, the domain 0 < x < 1, 0 < y < 1
must be truncated to finite size. A simple choice of a computational domain is a
rectangle

D D f .x; y/ j 0 � x � xmax; 0 � y � ymax g

with xmax; ymax large enough such that zero boundary conditions u D 0 can be
chosen as approximation for x D xmax or y D ymax. The rectangle is bounded by
four straight lines, which can be parameterized, for example, by

@D1 WD f x D �; y D 0 j 0 � � � xmax g ;
@D2 WD f x D xmax; y D � j 0 � � � ymax g ;
@D3 WD f x D xmax � �; y D ymax j 0 � � � xmax g ;
@D4 WD f x D 0; y D ymax � � j 0 � � � ymax g :

Now @D D @D1 [ @D2 [ @D3 [ @D4, and the parameterized curve has the domain
on the left.
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Dirichlet conditions are imposed for @D2 and @D3, where we have chosen to
approximate boundary values by requesting u D 0. For y D 0 the boundary
conditions can be chosen as the values of the one-dimensional European binary
put. An analytic formula for the one-dimensional case of a European binary put is

VEur
binP.S; t/ WD c e�r.T�t/ F

�
� log.S=K/C .r � 
2=2/.T � t/



p

T � t

�
;

for a face value c, with standard normal distribution F [172]. For y D 0we set S D x.
The same formula can be applied for the boundary with x D 0; then S D y. In this
way, on @D1 and @D4 the boundary conditions are of Dirichlet type with u D VEur

binP.
With this choice of boundary conditions, @DD D @D and @DN D ;. But there is
a simpler choice: As [300] points out, this Dirichlet condition is implicitly defined
by the PDE, because the one-dimensional PDE is embedded in (5.31) for S1 D 0 or
S2 D 0. So no boundary condition needs to be specified along @D1 and @D4. This
amounts to zero Neumann conditions. Both the Dirichlet version and the Neumann
version work. The latter has the advantage of avoiding the effort of evaluating VEur

binP.
The implementation of the weak form in (5.36) is straightforward when, for

example, the package FreeFem++ is applied. Thereby a figure similar as Fig. 3.7
is produced easily.

5.4.4 Involved Matrices

The accuracy of FEM depends on how the grid is chosen. Algorithms for mesh
generation and mesh adaption are needed, but these are demanding topics. It is
cumbersome to implement a two-dimensional FEM yourself. For first results, one
may work with a fixed structured grid. But in general it is advisable and comfortable
to apply a FEM package to solve (5.36). Here we merely focus on how the two-
dimensional analogue of the hat functions enters.

For the Ritz–Galerkin approach we apply the basis representation

w.x; y; t/ D
X

i

wi.t/ 'i.x; y/ (5.37)

as approximation for u, and set v D 'j. This ansatz separates time � and “space”
.x; y/. The functions 'i are defined on D.

For basis functions, we choose the two-dimensional hat functions, which per-
fectly match triangular elements. The situation is shown schematically in Fig. 5.9.
There the central node l is node of several adjacent triangles, which constitute the
support (shaded) on which 'l is built by planar pieces. This approach defines a
tent-like hat function 'l, which is zero “outside.” By linear combination of such
basis functions, piecewise planar surfaces above the computational domain are
constructed. Locally, for one triangle, this may look like the element in Fig. 5.4.
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Fig. 5.9 Two-dimensional hat function 'l.x; y/ (zero outside the shaded area)

Notice that rw D P
wir'i. The weak form of (5.36) leads to

Z

D
.r'j/

trD
X

wir'i C

'j

�
btr.
X

wir'i/C r
X

wi'i �
X @wi

@t
'i

�
dx dy

�
Z

@D
'j.
X

wir'i/
trDn ds D 0 ;

for all j. This is a system of ODEs

X

i

wi

Z

D

�
.r'j/

trDr'i C 'jb
trr'i C 'jr'i

	
dx dy

�
X

i

@wi

@t

Z

D
'i'j dx dy �

X

i

wi

Z

@D
'j.r'i/

trDn ds D 0 :
(5.38)

As an exercise, the reader should rewrite this ODE system in matrix-vector notation.
In summary, FEM needs the integrals over the domain D

Z
.r'j/

tr D r'i (“diffusion terms”) ;

Z
'jb

trr'i (“convection terms”) ;

Z
�'j'i (“reaction terms”) ;

where � is chosen appropriately, and in addition boundary integrals along @D.
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Fig. 5.10 Rough approximation of the value function V.S1; S2; 0/ of a basket double-barrier call
option, Example 5.6. With kind permission of Anna Kvetnaia

For each number k of a triangle, there are three vertices of the triangle, with
node numbers i; j; l in Fig. 5.9. Hence the table I of index sets that assigns nodes to
triangles includes the entry

Ik WD fi; j; lg :

Only for the three node numbers i; j; l 2 Ik the local integrals on Dk are nonzero.
They can be arranged into 3 � 3 element matrices. For the derivation of the
integrals, it makes sense to use a local numbering 1k; 2k; 3k for the nodes of Dk. For
each global matrix, the assembling loop over k distributes up to 27 local integrals
calculated on Dk, nine integrals of each of the above three types.5

Back to Example 5.6, we solve (5.36) with FEM. Figure 5.10 shows a FEM
solution with 192 triangles. Figure 5.11 illustrates a mesh structure for higher
resolution obtained with FreeFem++. In the two-dimensional case, because of
higher costs, we typically confine ourselves to an accuracy lower than in the one-
dimensional situation. Based on our results we state

V.1:25; 0:25; 0/ � 0:2949 :

5Basic ingredients for the calculation of the local integrals on an arbitrary triangle Dk are the
relations in Exercise 5.7. See also Exercises 5.8 and 5.9.
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Fig. 5.11 Finer approximation of the value function V.S1; S2; 0/ of a basket double-barrier call
option, Example 5.6

Example 5.8 (Heston’s PDE) In Example 1.16 Heston’s model was introduced,
where v denotes a stochastic volatility. The corresponding PDE from [178] is

@V

@t
C 1

2
vS2

@2V

@S2
C 1

2

2v v

@2V

@v2
C �
vvS

@2V

@S@v

C rS
@V

@S
C Œ.	 � v/ � �v�@V

@v
� rV D 0 ;

(5.39)

with parameters as in (1.59), and � standing for the market price of volatility risk.
Here we are interested in solutions V.S; v; t/ on part of a two-dimensional .S; v/-
plane. The PDE (5.39) can be cast into version (5.32). As an exercise, the reader
is encouraged to derive D and b, and with the payoff of a call and an own choice
of parameters, to think about suitable boundary conditions, and to do experiments
with (5.39). Note that for a call a reasonable requirement for maximum values of the
volatility v is V D S. When in addition the interest rate r is replaced by a stochastic
variable, the PDE is based on a three-dimensional domain [163].

5.5 Error Estimates

The similarity of the finite-element equation (5.21) with the finite-difference
equation (4.24) suggests that the errors may be of the same order. In fact, numerical
experiments confirm that the finite-element approach with the linear basis functions
from Definition 5.1 produces errors decaying quadratically with the mesh size.
Applying the finite-element Algorithm 5.4 and entering the calculated data into a
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diagram as Fig. 4.14, confirms the quadratic order experimentally. The proof of this
order of the error is more difficult for finite-elementmethods becauseweak solutions
assume less smoothness. For standard options, the separation of variables in (5.19)
also separates the discussion of the order, and an analysis of the one-dimensional
situation suffices. This section explains some basic ideas of how to derive error
estimates. We begin with reconsidering some of the related topics that have been
introduced in previous sections.

5.5.1 Strong and Weak Solutions

Our exposition will be based on the model problem (5.15). That is, the simple
second-order differential equation

� u00 D f .x/ for ˛ < x < ˇ (5.40)

with given f , and homogeneous Dirichlet-boundary conditions

u.˛/ D u.ˇ/ D 0 (5.41)

will serve as illustration. The differential equation is of the form Lu D f ,
compare (5.2). The domain D � Rn on which functions u are defined specializes
for n D 1 to the open and bounded interval D D f x 2 R1 j ˛ < x < ˇ g.
For continuous f , solutions of the differential equation (5.40) satisfy u 2 C2.D/.
In order to have operative boundary conditions, solutions u must be continuous on
D including its boundary, which is denoted @D. Therefore we require u 2 C0.D/
where D WD D [ @D. In summary, classical solutions of second-order differential
equations require

u 2 C2.D/\ C0.D/ : (5.42)

The function space C2.D/ \ C0.D/ must be reduced further to comply with the
boundary conditions.

For weak solutions the function space is larger (�! Appendix C.3). For
functions u and v we define the inner product

.u; v/ WD
Z

D
uv dx : (5.43)

Strong solutions u of Lu D f satisfy also

.Lu; v/ D . f ; v/ for all v : (5.44)
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Specifically for the model problem (5.40)/(5.41) integration by parts leads to

.Lu; v/ D �
Z ˇ

˛

u00v dx D �u0v
ˇ̌
ˇ
ˇ

˛
C
Z ˇ

˛

u0v0 dx :

The nonintegral term on the right-hand side of the equation vanishes in case also v
satisfies the homogeneous boundary conditions (5.41). The remaining integral is a
bilinear form, which we abbreviate

b.u; v/ WD
Z ˇ

˛

u0v0 dx : (5.45)

Bilinear forms as b.u; v/ from (5.45) are linear in each of the two arguments u and
v. For example, b.u1 C u2; v/ D b.u1; v/C b.u2; v/ holds. The bilinear form (5.45)
is symmetric, b.u; v/ D b.v; u/. For several classes of more general differential
equations analogous bilinear forms are obtained. Formally, (5.44) can be rewritten as

b.u; v/ D . f ; v/ ; (5.46)

where we assume that v satisfies the homogeneous boundary conditions (5.41).
The Eq. (5.46) has been derived out of the differential equation, for the solutions

of which we have assumed smoothness in the sense of (5.42). Many “solutions”
of practical importance do not satisfy (5.42) and, accordingly, are not smooth. In
several applications, u or derivatives of u have discontinuities. For instance consider
the obstacle problem of Sect. 4.5.5: The second derivative u00 of the solution fails to
be continuous at ˛ and ˇ. Therefore u … C2.�1; 1/ no matter how smooth the data
function is, compare Fig. 4.10. As mentioned earlier, integral relations require less
smoothness.

In the derivation of (5.46) the integral version has resulted as a consequence
of the primary differential equation. This is contrary to wide areas of applied
mathematics, where an integral relation is based on first principles, and the
differential equation is derived in a second step. For example, in the calculus of
variations a minimization problem may be described by an integral performance
measure, and the differential equation is a necessary criterion [350]. This situation
suggests considering the integral relation as an equation of its own right rather than
as offspring of a differential equation. This leads to the question,what is the maximal
function space such that (5.46) with (5.43), (5.45) is meaningful? That means to ask,
for which functions u and v do the integrals exist? For a more detailed background
we refer to Appendix C.3. For the introductory exposition of this section it may
suffice to sketch the maximal function space briefly. The suitable function space
is denoted H1, the version equipped with the boundary conditions is denoted H1

0.
This Sobolev space consists of those functions that are continuous onD and that are
piecewise differentiable and satisfy the boundary conditions (5.41). This function
space corresponds to the class of functions K in (5.23). By means of the Sobolev
spaceH1

0 a weak solution of Lu D f is defined, where L is a second-order differential
operator and b the corresponding bilinear form.
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Definition 5.9 (Weak Solution) u 2 H1
0 is called weak solution [of Lu D f ], if

b.u; v/ D . f ; v/ holds for all v 2 H1
0 .

This definition implicitly expresses the task: find a u 2 H1
0 such that b.u; v/ D

. f ; v/ for all v 2 H1
0. This problem is called variational problem. The model

problem (5.40)/(5.41) serves as example for Lu D f ; the corresponding bilinear
form b.u; v/ is defined in (5.45) and . f ; v/ in (5.43). For the integrals (5.43)
to exist, we in addition require f to be square integrable . f 2 L2, compare
Appendix C.3). Then . f ; v/ exists because of the Schwarzian inequality (C.16).
In a similar way, weak solutions are introduced for more general problems; the
formulation of Definition 5.9 applies.

5.5.2 Approximation on Finite-Dimensional Subspaces

For a practical computation of a weak solution the infinite-dimensional space H1
0

is replaced by a finite-dimensional subspace. Such finite-dimensional subspaces
are spanned by basis functions 'i. Simple examples are the hat functions of
Sect. 5.2. Reminding of the important role splines play as basis functions, the finite-
dimensional subspaces are denotedS, and are called finite-element spaces. As stated
in Property 5.2(a), the hat functions '0; : : : ; 'm span the space of polygons. Recall
that each such polygon v can be represented as linear combination

v D
mX

iD0
ci'i :

The coefficients ci are uniquely determined by the values of v at the nodes, ci D
v.xi/. We call hat functions “linear elements” because they consist of piecewise
straight lines. Apart from linear elements, for example, also quadratic or cubic
elements are used, which are piecewise polynomials of second or third degree
[79, 335, 382]. The attainable accuracy is different for basis functions consisting
of higher-degree polynomials.

Since by definition the functions of the Sobolev space H1
0 fulfill the homoge-

neous boundary conditions, each subspace does so as well. Again the subscript 0
indicates the realization of the homogeneous boundary conditions (5.41).6 A finite-
dimensional subspace ofH1

0 is defined by

S0 WD
(
v D

mX

iD0
ci'i j 'i 2 H1

0

)
: (5.47)

6In this subsection the meaning of the index 0 is twofold: It is the index of the “first” hat function,
and serves as symbol of the homogeneous boundary conditions (5.41).
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Properties of S0 are determined by the basis functions 'i. As mentioned earlier,
basis functions with small supports give rise to sparse matrices. The partition (5.4)
ofD is implicitly included in the definition S0 because this information is contained
in the definition of the 'i. For our purposes the hat functions suffice. The larger
m is, the better S0 approximates the space H1

0, since a finer discretization (smaller
Dk) allows to approximate the functions from H1

0 better by polygons. We denote
the largest diameter of the Dk by h, and ask for convergence. That is, we study the
behavior of the error for h ! 0 (basically m ! 1).

In analogy to the variational problem expressed in connection with Defini-
tion 5.9, a discrete weak solution w is defined by replacing the space H1

0 by a
finite-dimensional subspace S0:
Problem 5.10 (Discrete Weak Solution) Find a w 2 S0 such that b.w; v/ D
. f ; v/ for all v 2 S0.
The quality of the approximation relies on the discretization fineness h of S0, which
is occasionally emphasized by writing wh.

5.5.3 Quadratic Convergence

Having defined a weak solution u and a discrete approximation w, we turn to the
error u � w. To measure the distance between functions inH1

0 we use the norm k k1
(�! Appendix C.3). That is, our first aim is to construct a bound on ku � wk1. Let
us suppose that the bilinear form is continuous andH1-elliptic:

Assumptions 5.11 (Continuous H1-Elliptic Bilinear Form)

(a) There is a �1 > 0 such that jb.u; v/j � �1kuk1kvk1 for all u; v 2 H1 .
(b) There is a �2 > 0 such that b.v; v/ 	 �2kvk21 for all v 2 H1 .

The assumption (a) is the continuity, and the property in (b) is calledH1-ellipticity.
Under the Assumptions 5.11, the problem to find a weak solution following
Definition 5.9, possesses exactly one solution u 2 H1

0; the same holds true for
Problem 5.10. This is guaranteed by the Theorem of Lax–Milgram [53, 79]. In view
of S0 � H1

0,

b.u; v/ D . f ; v/ for all v 2 S0 :

Subtracting b.w; v/ D . f ; v/ and invoking the bilinearity implies

b.w � u; v/ D 0 for all v 2 S0 : (5.48)

The property of (5.48) is called error-projection property. The Assumptions 5.11
and the error projection are the basic ingredients to obtain a bound on the error
ku � wk1:
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Lemma 5.12 (Céa) Suppose the Assumptions 5.11 are satisfied. Then

ku � wk1 � �1

�2
inf
v2S0

ku � vk1 : (5.49)

Proof v 2 S0 implies Qv WD w � v 2 S0. Applying (5.48) for Qv yields

b.w � u;w � v/ D 0 for all v 2 S0 :

Therefore

b.w � u;w � u/ D b.w � u;w � u/� b.w � u;w � v/

D b.w � u; v � u/ :

Applying the assumptions shows

�2kw � uk21 � jb.w � u;w � u/j D jb.w � u; v � u/j
� �1kw � uk1kv � uk1 ;

from which

kw � uk1 � �1

�2
kv � uk1

follows. Since this holds for all v 2 S0, the assertion of the lemma is proven.
Let us check whether the Assumptions 5.11 are fulfilled by the model prob-

lem (5.40)/(5.41). For (a) this follows from the Schwarzian inequality (C.16) with
the norms

kuk1 D
 Z ˇ

˛

.u2 C u02/ dx

!1=2
; kuk0 D

 Z ˇ

˛

u2 dx

!1=2
;

because

 Z ˇ

˛

u0v0 dx

!2
�
 Z ˇ

˛

u02 dx

! Z ˇ

˛

v02 dx

!
� kuk21 kvk21 :

The Assumption 5.11(b) can be derived from the inequality of the Poincaré-type

Z ˇ

˛

v2 dx � .ˇ � ˛/2
Z ˇ

˛

v02 dx ;
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Fig. 5.12 Approximation spaces

which in turn is proven with the Schwarzian inequality (�! Exercise 5.10). AddingR
v02 dx on both sides leads to

kvk21 � Œ.ˇ � ˛/2 C 1� b.v; v/ ;

from which the constant �2 of Assumption 5.11(b) results. Hence Céa’s lemma
applies to the model problem.

The next question is, how small the infimum in (5.49) may be. This is equivalent
to the question, how close the subspace S0 can approximate the space H1

0 (�!
Fig. 5.12). We will show that for hat functions and S0 from (5.47) the infimum is
of the order O.h/. Again h denotes the maximum mesh size, and the notation wh

reminds us that the discrete solution depends on the grid with a spacing symbolized
by h. To apply Céa’s lemma, we need an upper bound for the infimum of ku � vk1.
Such a bound is found easily by a specific choice of v, which is taken as an arbitrary
interpolating polygon uI. Then by (5.49)

ku � whk1 � �1

�2
inf
v2S0

ku � vk1 � �1

�2
ku � uIk1 : (5.50)

It remains to bound the error of interpolating polygons. This bound is provided by
the following lemma, which is formulated for C2-smooth functions u:

Lemma 5.13 (Error of an Interpolating Polygon) For u 2 C2 let uI be an arbi-
trary interpolating polygon and h the maximal distance between two consecutive
nodes. Then

(a) max
x

ju.x/ � uI.x/j � h2

8
max ju00.x/j ,

(b) max
x

ju0.x/� u0
I.x/j � hmax ju00.x/j .
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We leave the proof to the reader (�! Exercise 5.11). Lemma 5.13 asserts

ku � uIk1 D O.h/ ;

which together with (5.50) implies the claimed error statement

ku � whk1 D O.h/ : (5.51)

Recall that this assertion is based on a continuous andH1-elliptic bilinear form and
on hat functions 'i. The O.h/-order in (5.51) is dominated by the unfavorable O.h/-
order of the first-order derivative in Lemma 5.13(b). This low order is at variance
with the actually observed O.h2/-order attained by the approximation wh itself (not
its derivative). In fact, the square order holds. The final result is

ku � whk0 � Ch2kuk2 (5.52)

for a constant C. This result is proven with the following lemma, which is based on
a tricky idea due to Nitsche.

Lemma 5.14 (Nitsche) Assume b is a symmetric bilinear form satisfying Assump-
tions 5.11, and u and w are defined as above. Then

ku � wk1 � Kh1k f k0 implies ku � wk0 � Ch2k f k0 :

Proof Consider the auxiliary problem Lz D Qf WD u � w, with weak version

b.z; Qv/ D . Qf ; Qv/0 for all Qv 2 H1
0 ;

which defines z. Choose specifically Qv D u � w D Qf . Then

b.z; u � w/ D .u � w; u � w/0 D ku � wk20 :

Invoking the error-projection property (5.48) we note

0 D b.u � w; v/ D b.v; u � w/ for all v 2 S0 :

Subtracting this, yields

b.z � v; u � w/ D ku � wk20 for all v 2 S0 :

We apply the continuity of b,

ku � wk20 � �1kz � vk1 ku � wk1 for all v 2 S0 ;
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and choose specifically v as the finite-element approximation of z. Then

ku � wk20 � �1K1h
1k Qf k0 � K2h

1k f k0 D Ch2ku � wk0 k f k0 ;

from which the assertion follows.
This error of the order h2 can be observed for the examples of Sect. 5.4, but not

easily. The error is somewhat hidden among the other errors, namely, localization
error, interpolation error, and the error of the time discretization.

The derivations of this section have been focused on the model prob-
lem (5.40)/(5.41) with a second-order differential equation and one independent
variable x .n D 1/, and have been based on linear elements. Most of the assertions
can be generalized to higher-order differential equations, to higher-dimensional
domains .n > 1/, and to nonlinear elements. For example, in case the elements in
S are polynomials of degree k, and the differential equation is of order 2l, S � Hl,
and the corresponding bilinear form onHl satisfies the Assumptions 5.11 with norm
k kl, then the inequality

ku � whkl � ChkC1�lkukkC1

holds. This general statement includes for k D 1; l D 1 the special case of
Eq. (5.52) discussed above. For the analysis of the general case, we refer to [79, 162].
This includes boundary conditions more general than the homogeneous Dirichlet
conditions of (5.41).

5.6 Notes and Comments

On Sect. 5.1

As an alternative to piecewise defined finite elements one may use polynomials
'j that are defined globally on D, and that are pairwise orthogonal. Then the
orthogonality is the reason for the vanishing of many integrals. Such type of methods
are called spectral methods. Since the 'i are globally smooth onD, spectral methods
can produce high accuracies. In other context, spectral methods were applied in
[142]. For historical remarks on Ritz–Galerkin type methods, see [145].

Specifically designed basis functions can be generated by some low-dimensional
approximation, comparable to PCA in finite dimensions (�! Exercise 2.16).
Functions are suitable that represent preferred patterns of the solution. Then the
number N of modes 'i can be small. Such methods are described under the heading
principal orthogonal decomposition (POD), or Karhunen–Loève expansion.
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On Sect. 5.2

In the early stages of their development, finite-element methods have been applied
intensively in structural engineering. In this field, stiffness matrix and mass matrix
have a physical meaning leading to these names [382].

On Sect. 5.3

The approximation
P

wi.�/'i.x/ for Oy is a one-dimensional finite-element
approach. The geometry of the grid and the accuracy resemble the finite-difference
approach. A two-dimensional approach as in

X
wi'i.x; �/

with two-dimensional hat functions and constant wi is more involved and more
flexible. Sections 5.3.2–5.3.4 widely follow [376].

On Sect. 5.4

For the calculation of the local integrals on an arbitrary triangle Dk consult the
special FEM literature, such as [335]. In general an irregular triangulation better
exploits the potential adaptivity of FEM. In particular, close to the barriers a fine
mesh is required for high accuracy [304]. Since the gradient of u varies with time,
a dynamic mesh refinement might be advisable, provided accuracy or stability do
not deteriorate. For American options, boundary conditions V D � along the
boundary are recommendable. For an illustration of assembling, see Topic 12 of
the Topics fCF.

On Sect. 5.5

The assumption u 2 C2 in Lemma 5.13 can be weakened to u00 2 L2 [351]. For
domainsD 2 R2 the claim of Lemma 5.13 holds analogously; then the second-order
derivative u00 is replaced by the Hessian matrix of the second-order derivatives of u.
This can be applied to mesh adaption, where one attempts to place nodes such that
the Hessian is equilibrated across the mesh. The finite-dimensional function space
S0 in (5.47) is assumed to be subspace ofH1

0. Elements with this property are called
conforming elements. A more accurate notation for S0 of (5.47) is S10 . In the general
case, conforming elements are characterized by S l � Hl. In the representation of
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v in Eq. (5.47) we avoid discussing the technical issue of how to organize different
types of boundary conditions.

There are also smooth basis functions ', for example, cubic Hermite polynomi-
als. For sufficiently smooth solutions, such basis functions produce higher accuracy
than hat functions do. For the accuracy of finite-element methods consult, for
example, [2, 19, 53, 79, 162, 351].

On Other Methods

Finite-elementmethods are frequently used for approximating exotic options, in par-
ticular in multidimensional situations. For different types of options special methods
have been developed. For applications, computational results and accuracies see
also [2, 361, 362]. Front-fixing has been applied with finite elements in [188].
The accuracy aspect is also treated in [144]. Ritz–Galerkin methods are used with
wavelet functions in [185, 263]; the latter paper is specifically devoted to stochastic
volatility. A penalty approach with FEM is discussed in [230], where rectangular
subdomains are furnished with basis functions as product of one-dimensional hat
functions of the type '.x; y/ D 'i.x/'j. y/.

5.7 Exercises

5.1 (Elliptical Probability Curves)
Suppose the situation of two asset prices S1.t/ and S2.t/ for t > 0 governed by
GBM (3.35), with initial price point .S1.0/; S2.0//. Barriers of a barrier option can
be aligned such that the probability of .S1.t/; S2.t// reaching the barrier has the same
constant value. Define Y1 WD log S1, Y2 WD log S2.

(a) Show that the curve of constant probability in the . Y1;Y2/-plane has an elliptical
shape.

(b) Let the covariance matrix be

˙ D
�

21 �
1
2
�
1
2 
22

�
:

Calculate its eigenvalues and eigenvectors.
(c) Sketch representative ellipses in a .Y1;Y2/-plane. How do they depend on �?

5.2 (Cubic B-Spline)
Suppose an equidistant partition of an interval be givenwith mesh size h D xkC1�xk.
Cubic B-splines have a support of four subintervals. In each subinterval the spline
is a piece of polynomial of degree three. Apart from special boundary splines, the
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cubic B-splines 'i are determined by the requirements

'i.xi/ D 1

'i.x/ � 0 for x < xi�2
'i.x/ � 0 for x > xiC2
' 2 C2.�1;1/ :

To construct these 'i proceed as follows:

(a) Construct a spline S.x/ that satisfies the above requirements for the special
nodes

Qxk WD �2C k for k D 0; 1; : : : ; 4 :

(b) Find a transformation Ti.x/, such that 'i D S.Ti.x// satisfies the requirements
for the original nodes.

(c) For which i; j does 'i'j D 0 hold?

5.3 (Finite-Element Matrices)
For the hat functions ' from Sect. 5.2 calculate for arbitrary subinterval Dk all
nonzero integrals of the form

Z
'i'j dx;

Z
' 0

i'j dx;
Z
' 0

i'
0
j dx

and represent them as local 2 � 2 matrices.

5.4 (Calculating Options with Finite Elements)
Design an algorithm for the pricing of standard options by means of finite elements.
To this end proceed as outlined in Sect. 5.3. Start with a simple version using an
equidistant discretization step �x. If this is working properly change the algorithm
to a version with nonequidistant x-grid. Distribute the nodes xi closer around x D 0.
Always place a node at the strike.

5.5 (Black-Scholes Equation in Divergence-Free Form)

(a) Prove the equivalence of (5.31) and (5.32), where D and b are given by (5.33).
Specialize this to the one-dimensional case of the Black–Scholes equation.

(b) Show

btrru C ru D r � .bu/C �u

and determine � for the two-dimensional case, and for the Black–Scholes
equation.
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(c) With the transformation

x WD log.
S1
K1
/; y WD log.

S2
K2
/

and writing u.x; y; t/ for V leads to the PDE

ut C 1

2

21 uxx C .r � ı1 � 1

2

21 /ux � ru

C 1

2

22 uyy C .r � ı2 � 1

2

22 /uy C �
1
2uxy D 0 :

What are the matrix D and the vector b such that we arrive at (5.32)?

5.6 (Outward Normals)
The boundary @D of the trapezoidal domain D in Fig. 5.5 consists of four straight
lines. What are the four unit outward vectors n orthogonal to @D? Give a parameter
representation of the boundary.

5.7 (Gradient on a Triangle)
Consider hat functions ' on a triangular element Dk with vertex nodes numbers
Ik D fi; j; lg, and the local plane on Dk represented by

w.x; y/ D wi'i.x; y/C wj'j.x; y/C wl'l.x; y/ :

(a) In the three-dimensional .x; y;w/-space let the plane w.x; y/ D c1 C c2 x C
c3 y interpolate the three points .xi; yi; wi/, i D 1; 2; 3 (local node numbering).
That is,

0

@
1 x1 y1
1 x2 y2
1 x3 y3

1

A

0

@
c1
c2
c3

1

A D
0

@
w1
w2
w3

1

A ;

shortly Ac D w. Establish a formula for the gradient rw D .c2; c3/tr, showing
that there is a .2 � 3/-matrix Gk such that

rw D Gkw :

Hint: Use Cramer’s rule; jFkj is the area of the triangle, where

Fk WD 1

2
det.A/ :
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(b) Show

.r'i j r'j j r'l/ D Gk :

(c) Show

Z

Dk

r' tr
i r'j dx dy D r' tr

i r'j jFkj ;

and all nine integrals of the element stiffness matrix are obtained by

jFkjGtr
k Gk :

5.8 (Assembling)
Consider the domain D WD f.x; y/ j x 	 0; y 	 0; 1 � x C y � 2g tiled by 12
triangles Dk, where triangles and vertices are numbered as in Fig. 5.13.

(a) Set up the index set I with entries Ik D fik; jk; lkg, which assigns node numbers
to the kth triangle, for 1 � k � 12.

(b) Formulate the assembling algorithm that builds up the global stiffness matrix
out of the element stiffness matrices

0

B@
s.k/11 s.k/12 s.k/13
s.k/21 s.k/22 s.k/23
s.k/31 s.k/32 s.k/33

1

CA

for a general index set I and 1 � k � m.

Fig. 5.13 Specific
triangulation and numbering,
see Exercise 5.8

8

11

124

10

S2=y

S1=x

12

9

6

7

5

3

12

11
10 8

79
6 4

5 3

2 1
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(c) The example of Fig. 5.13 leads to a banded stiffness matrix. What is the
bandwidth?

5.9 (Variable Volatility (Project))
For variable volatility 
.S; t/ and constant K;T; r; ı , PDEs of the type

@y

@�
� 1

2
O
2.x; �/

�
@2y

@x2
� 1

4
y

�
D 0

are to be solved, with � D T � t and transformations S $ x, V $ y from the
Black–Scholes model given by (A.25), (A.26); consult Appendix A.6.

(a) For an American put, apply these transformations to derive from V.S; t/ 	
.K � S/C an inequality y.x; �/ 	 g.x; �/.

(b) Carry out the finite-element formulation for the linear complementarity problem
analogously as in Sect. 5.3.4.

(c) Integrals will include local integrals

Z

2.x; �/'i'j dx ;

Z

2.x; �/' 0

i'j dx :

Apply Simpson’s quadrature rule

Z b

a
f .x/dx � b � a

6

�
f .a/C 4f

�
a C b

2

�
C f .b/

�

to approximate the above local integrals.
(d) Set up a finite-element code, and test it with the artificial function [128]


.S/ WD 0:3 � 0:2

log.S=K/2 C 1
:

5.10 Assume a function v.�/ with ˛ � � � ˇ and v.˛/ D 0.

(a) Show

.v.�//2 � .� � ˛/
Z �

˛

.v0.x//2 dx :

Hint: Recall v.�/ D R �
˛
v0.x/ dx, and apply the Schwarzian inequality (C.16).

(b) Use (a) to show

Z ˇ

˛

.v.�//2 d� � 1

2
.ˇ � ˛/2

Z ˇ

˛

.v0.x//2 dx :

5.11 Prove Lemma 5.13, and for u 2 C2 the assertion ku � whk1 D O.h/.
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