
Chapter 4
Standard Methods for Standard Options

Now we enter the part of the book that is devoted to the numerical solution of
equations of the Black–Scholes type. In this chapter, we discuss “standard” options
in the sense as introduced in Sect. 1.1 and assume the scenario characterized by
the Assumptions 1.2. In case of European vanilla options the value function V.S; t/
solves the Black–Scholes equation (1.5). It is not really our aim to solve this partial
differential equation for vanilla payoff because it possesses an analytic solution
(�! Appendix A.4). Ultimately our intention is to solve more general equations
and inequalities. In particular, American options will be calculated numerically. But
also European options without vanilla payoff are of interest; we encounter them for
Bermudan options in Sect. 1.8.4, and for Asian options in Sect. 6.3.4. The goal is
not only to calculate single values V.S0; 0/—for this purpose tree methods can be
applied—but also to approximate the curve V.S; 0/, or even the surface defined by
the value function V.S; t/ on the half strip S > 0, 0 � t � T. Based on the surface of
the value function, we collect information on early exercise and on the greeks (1.25),
for example, on delta hedging by observing the derivative @V

@S .
American options obey inequalities of the type of the Black–Scholes equa-

tion (1.5). To allow for early exercise, the Assumptions 1.2 must be weakened.
As a further generalization, the payment of dividends must be taken into account;
otherwise early exercise does not make sense for American calls.

The main part of this chapter outlines a PDE approach based on finite differences.
We begin with unrealistically simplified boundary conditions in order to keep the
explanation of the discretization schemes transparent. Later sections will discuss
appropriate boundary conditions, which turn out to be tricky in the case of American
options. At the end of this chapter we will be able to implement a finite-difference
algorithm for standard American (and European) options. Note that this approach
assumes constant coefficients of the Black-Scholes equation. If we work carefully,
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180 4 Standard Methods for Standard Options

the resulting finite-difference computer program will yield correct approximations.
But the finite-difference approach is not necessarily the most efficient one. Hints on
other methods will be given at the end of this chapter. For nonstandard options we
refer to Chap. 6.

The classic finite-difference methods will be explained in some detail because
they are the most elementary approaches to approximate differential equations. As
a side-effect, this chapter serves as introduction to several fundamental concepts of
numerical mathematics. A trained reader may like to skip Sects. 4.2 and 4.3. The
aim of this chapter is to introduce concepts, as well as a characterization of the free
boundary (early-exercise curve), and of linear complementarity.

In addition to the finite-difference approach, “standard methods” include analytic
methods, which to a significant part are based on nonnumerical analysis. The
Sect. 4.8 will give an introduction to several such methods, including interpolation,
a method of lines, and a method that solves an integral equation.

The broad field of available methods for pricing standard options calls for
comparisons to judge on the relative merits of different approaches. Although such
an endeavor goes beyond the scope of a text book, we offer some guidelines in
Sect. 4.9.

4.1 Preparations

We allow for dividends paid with a continuous yield of constant level, because
numerically this is a trivial extension from the case of no dividend. In case of a
discrete dividend with, for example, one payment per year, a first remedy would be
to convert the dividend to a continuous yield (�! Exercise 4.1).1

A continuous flow of dividends is modeled by a decrease of S in each time
interval dt by the amount

ıS dt ;

with a constant ı � 0. This continuous dividend model can be easily built into the
Black–Scholes framework. The standard model of a geometric Brownian motion
represented by the SDE (1.47) is generalized to

dS

S
D .� � ı/ dt C � dW ;

1But the corresponding solutions V.S; t/ and their early-exercise structure will be different. The
Notes and Comments summarize how to correctly compensate for a discrete dividend payment.
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with � D r according to Remark 1.14. This is the basis for this chapter. The
corresponding Black–Scholes equation for the value function V.S; t/ is

@V

@t
C �2

2
S2 @2V

@S2
C .r � ı/S

@V

@S
� rV D 0 : (4.1)

For constant r; �; ı, this equation is equivalent to the equation

@y

@�
D @2y

@x2
(4.2)

for y.x; �/ with 0 � � , x 2 R. The equivalence is proved by means of the
transformations

S D Kex; t D T � 2�
�2 ; q WD 2r

�2 ; qı WD 2.r�ı/

�2 ;

V.S; t/ D V
�
Kex; T � 2�

�2

� DW v.x; �/ and

v.x; �/ DW K exp
˚� 1

2
.qı � 1/x � �

1
4
.qı � 1/2 C q

�
�
�

y.x; �/ :

(4.3)

For the case of no dividend payments .ı D 0/ the derivation was carried out earlier
(�! Exercise 1.4). For Black–Scholes-type equations with variable �.S; t/, see
Appendix A.6.

The transformation S D Kex is motivated by the observation that the Black–
Scholes equation in the version (4.1) has variable coefficients Sj with powers
matching the order of the derivative with respect to S. That is, the relevant terms
in (4.1) are of the type

Sj @
jV

@Sj
; for j D 0; 1; 2 :

The transformed version in Eq. (4.2) has constant coefficients (D 1), which makes
implementing numerical algorithms easier.

In view of the time transformation in (4.3) the expiration time t D T is
determined in the “new” time by � D 0, and t D 0 is transformed to �max WD 1

2
�2T.

Up to the scaling by 1
2
�2 the new time variable � represents the remaining life time

of the option. And the original domain of the half strip S > 0, 0 � t � T belonging
to (4.1) becomes the strip

� 1 < x < 1; 0 � � � 1

2
�2T ; (4.4)

on which we are going to approximate a solution y.x; �/ to (4.2). After that
calculation we again apply the transformations of (4.3) to derive out of y.x; �/ the
value of the option V.S; t/ in the original variables.
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Under the transformations (4.3) the terminal conditions (1.1) and (1.2) become
initial conditions for y.x; 0/. A vanilla call, for example, satisfies

V.S; T/ D maxfS � K; 0g D K � maxfex � 1; 0g :

From (4.3) we find

V.S; T/ D K exp
n
� x

2
.qı � 1/

o
y.x; 0/ ;

and thus

y.x; 0/ D exp
n x

2
.qı � 1/

o
maxfex � 1; 0g

D
�

exp
˚

x
2
.qı � 1/

�
.ex � 1/ for x > 0

0 for x � 0 :

Using

exp
n x

2
.qı � 1/

o
.ex � 1/ D exp

n x

2
.qı C 1/

o
� exp

n x

2
.qı � 1/

o

the initial conditions y.x; 0/ for vanilla options in the new variables read

call: y.x; 0/ D max
˚
e

x
2 .qıC1/ � e

x
2 .qı�1/; 0

�
; (4.5)

put: y.x; 0/ D max
˚
e

x
2 .qı�1/ � e

x
2 .qıC1/; 0

�
: (4.6)

Insofar the PDE (4.2) on the strip (4.4) with initial condition (4.5) or (4.6) defines
an initial-value problem. In Sect. 4.4 we shall discuss possible boundary conditions
needed when the boundaries x ! �1 and x ! C1 are truncated.

The Eq. (4.2) is of the type of a parabolic partial differential equation and is the
simplest diffusion or heat-conducting equation. Both Eqs. (4.1) and (4.2) are linear
in the dependent variables V or y. The differential equation (4.2) is also written
y� D yxx or Py D y00. The diffusion term is yxx.

In principle, the methods of this chapter can be applied directly to (4.1). But
the equations and algorithms are easier to derive for the algebraically equivalent
version (4.2). Note that numerically the two equations are not equivalent. A direct
application of this chapter’s methods to version (4.1) can cause severe difficulties.
This will be discussed in Chap. 6. These difficulties will not occur for Eq. (4.2),
which is well-suited for standard options with constant coefficients. The Eq. (4.2) is
integrated in forward time—that is, for increasing � starting from � D 0. This fact
is important for stability investigations. For increasing � the version (4.2) makes
sense; this is equivalent to the well-posedness of (4.1) for decreasing t.
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4.2 Foundations of Finite-Difference Methods

This section describes the basic ideas of finite differences as they are applied to the
PDE (4.2).

4.2.1 Difference Approximation

Each two times continuously differentiable function f satisfies

f 0.x/ D f .x C h/ � f .x/

h
� h

2
f 00.�/ ;

where � is an intermediate number between x and xCh. The accurate position of � is
usually unknown. Such expressions are derived by Taylor expansions. We discretize
x 2 R by introducing a one-dimensional grid of discrete points xi with

: : : < xi�1 < xi < xiC1 < : : :

For example, choose an equidistant grid with mesh size h WD xiC1 � xi. The x is
discretized, but the function values fi WD f .xi/ are not discrete, fi 2 R. For f 2 C2

the derivative f 00 is bounded, and the term � h
2
f 00.�/ can be conveniently written as

O.h/. This leads to the practical notation

f 0.xi/ D fiC1 � fi
h

C O.h/ : (4.7)

Analogous expressions hold for the partial derivatives of y.x; �/, which includes a
discretization in � . This suggests to replace the neutral notation h by either �x or
�� , respectively. The fraction in (4.7) is the difference quotient that approximates
the differential quotient f 0.xi/; the O.hp/-term is the error. The one-sided (i.e.
nonsymmetric) difference quotient (4.7) is of the order p D 1. Error orders of p D 2

are obtained by central differences

f 0.xi/ D fiC1 � fi�1

2h
C O.h2/ .for f 2 C3/ ; (4.8)

f 00.xi/ D fiC1 � 2fi C fi�1

h2
C O.h2/ .for f 2 C4/ ; (4.9)

or by one-sided differences that involve more terms, such as

f 0.xi/ D �fiC2 C 4fiC1 � 3fi
2h

C O.h2/ .for f 2 C3/ : (4.10)
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Rearranging terms and indices of (4.10) provides the approximation formula

fi � 4

3
fi�1 � 1

3
fi�2 C 2

3
hf 0.xi/ : (4.11)

The latter difference quotient is an example of a backward differentiation formula
(BDF). Equidistant grids are advantageous in that algorithms are straightforward to
implement, and error terms are easily derived by Taylor’s expansion. This chapter
works with equidistant grids.

4.2.2 The Grid

Either the x-axis, or the �-axis, or both can be discretized. If only one of the
two independent variables x or � is discretized, one obtains a semidiscretization
consisting of parallel lines. This is used in Exercise 4.3 and in Sect. 4.8.3. Here we
perform a full discretization leading to a two-dimensional grid. A solution of the
discretized problem will be different from the solution y of the initial-value problem
on the strip (4.4). To emphasize the difference, we denote a solution of a discretized
version w.

Let �� and �x be the mesh sizes of the discretizations of � and x. The step
in � is �� WD �max=�max for �max D 1

2
�2T and a suitable integer �max. Selecting

the x-discretization is more complicated. The infinite interval �1 < x < 1
must be replaced by a finite interval xmin � x � xmax, thereby the strip (4.4)
changes to a rectangular domain for .x; �/. This truncation or localization will
have an impact on the solutions w. The finite end values a D xmin < 0 and
b D xmax > 0 must be chosen2 such that for the corresponding Smin D Kea and
Smax D Keb and the interval Smin � S � Smax a sufficient quality of approximation
is obtained, in the sense w � y. In addition, the interval xmin � x � xmax must
include the range of financial interest, namely, the x-values of S0 and K. This
requires

xmin < min

�
0; log

S0

K

�
; max

�
0; log

S0

K

�
< xmax :

For simplicity, just think of xmin D �3 and xmax D 3. The local-
ization will also need boundary conditions, which will be discussed in
Sect. 4.4.

2Too large values of jaj or b can lead to underflow or overflow when evaluating the exponential
function.
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Fig. 4.1 Detail and notations
of the grid
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For a suitable integer m the step length in x is defined by �x WD .b � a/=m.
Additional notations for the grid are

�� WD � � �� for � D 0; 1; : : : ; �max

xi WD a C i�x for i D 0; 1; : : : ; m
yi;� WD y.xi; ��/;

wi;� approximation to yi;� .

This defines a two-dimensional uniform grid as illustrated in Fig. 4.1. Note that the
equidistant grid in this chapter is defined in terms of x and � , and not for S and
t. Transforming the .x; �/-grid via the transformation in (4.3) back to the .S; t/-
plane, leads to a nonuniform grid with unequal distances of the grid lines S D Si D
Kexi : The grid is increasingly dense close to Smin. (This is not advantageous for the
accuracy of the approximations of V.S; t/. We will come back to this in Sect. 5.2.)
Figure 4.1 illustrates only a small part of the entire grid in the .x; �/-strip. The grid
lines x D xi and � D �� can be indicated by their indices (Fig. 4.2).

The points where the grid lines � D �� and x D xi intersect, are called nodes.
In contrast to the theoretical solution y.x; �/, which is defined on a continuum, the
wi;� are defined only for the nodes. The error wi;� � yi;� depends on the choice of
the discretization parameters �max, m, xmin, xmax. A priori we do not know which
choice of the parameters matches a prespecified error tolerance. An example of the
order of magnitude of these parameters is given by xmin D �5, xmax D 5, or smaller,
and �max D 100; m D 100. Such a choice of xmin; xmax has shown to be reasonable
for a wide range of r; �-values and accuracies. Then the actual error is essentially
controlled via the numbers �max and m of grid lines.
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4.2.3 Explicit Method

Substituting the expressions from (4.7)/(4.10)

@yi;�

@�
WD @y.xi; ��/

@�
D yi;�C1 � yi;�

��
C O.��/

@2yi;�

@x2
D yiC1;� � 2yi;� C yi�1;�

�x2
C O.�x2/

into (4.2) and discarding the O-error terms leads to the difference equation

wi;�C1 � wi;�

��
D wiC1;� � 2wi;� C wi�1;�

�x2

for the approximation w. Solved for wi;�C1 this is

wi;�C1 D wi;� C ��

�x2
.wiC1;� � 2wi;� C wi�1;�/ :

With the abbreviation

	 WD ��

�x2

the result is written compactly

wi;�C1 D 	wi�1;� C .1 � 2	/wi;� C 	wiC1;� : (4.12)

Figure 4.2 accentuates the nodes that are connected by this formula. Such a
graphical scheme illustrating the structure of the equation, is called stencil (or
molecule).

The Eq. (4.12) and the Fig. 4.2 suggest an evaluation organized by time levels.
All nodes with the same index � form the �th time level. For a fixed � the values
wi;�C1 of the time level � C 1 are calculated for all i. Then we advance to the next
time level, � ! � C 1. The formula (4.12) is an explicit expression for each of the
wi;�C1; the values w at level � C 1 are not coupled. Since (4.12) provides an explicit
formula for all wi;�C1 .i D 0; 1; : : : ; m/, this method is called explicit method or
forward-difference method.
Start: For � D 0 the values of wi;0 are given by the initial conditions

wi;0 D y.xi; 0/ for y from (4.5)/(4.6); 0 � i � m:

Thereafter we proceed from � D 0 to � D 1, and so on. The w0;� and wm;�

for 1 � � � �max are fixed by boundary conditions. For the next few pages, to
simplify matters, we artificially set w0;� D wm;� D 0 for all �. The correct boundary
conditions are deferred to Sect. 4.4.
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For the following analysis it is useful to collect all values w of the time level �

into a vector,

w.�/ WD .w1;� ; : : : ; wm�1;�/tr :

The next step towards a vector notation of the explicit method is to introduce the
constant .m � 1/ � .m � 1/ tridiagonal matrix

A WD Aexpl WD

0

BB
B
B
B
BB
@

1 � 2	 	 0 � � � 0

	 1 � 2	
: : :

: : :
:::

0
: : :

: : :
: : : 0

:::
: : :

: : :
: : : 	

0 � � � 0 	 1 � 2	

1

CC
C
C
C
CC
A

: (4.13)

Now the explicit method in matrix-vector notation reads

w.�C1/ D Aw.�/ for � D 0; 1; 2; : : : (4.14)

The formulation with the matrix A of (4.13) and the iteration (4.14) is needed only
for theoretical investigations. An actual computer program would rather use the
version (4.12). In the vector notation of (4.14), the inner-loop index i does not occur
explicitly.

To illustrate the behavior of the explicit method, we perform an experiment
with an artificial example, where initial conditions and boundary conditions are not
related to finance.

Example 4.1 (Instability) The PDE is y� D yxx , initial condition y.x; 0/ D
sin 
x , x0 D 0, xm D 1, and boundary conditions y.0; �/ D y.1; �/ D 0 (that
is, w0;� D wm;� D 0).

The aim is to calculate an approximation w for one .x; �/, for example, for x D
0:2, � D 0:5. The exact solution is y.x; �/ D e�
2� sin 
x, such that y.0:2; 0:5/ D
0:004227 : : :.

We carry out two calculations with the same �x D 0:1 (hence 0:2 D x2), and
two different �� :

(a) �� D 0:0005 H) 	 D 0:05 ;

0:5 D �1000, w2;1000
:D 0:00435

(b) �� D 0:01 H) 	 D 1,
0:5 D �50, w2;50

:D �1:5 � 108 (the actual numbers depend on the computer)

It turns out that the choice of �� in (a) has led to a reasonable approximation,
whereas the choice in (b) has caused a disaster. Here we have a stability problem!
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4.2.4 Stability

Let us perform an error analysis of an iteration w.�C1/ D Aw.�/ C d.�/. The
iteration (4.14) is a special case, with matrix Aexpl, and the vector d.�/ vanishes
for our preliminary boundary conditions w0;� D wm;� D 0. In general we use
the same notation w for the theoretical definition of w and for the values of w
obtained by numerical calculations in a computer. Since we now discuss rounding
errors, we must distinguish between the two meanings. Let w.�/ denote the vectors
theoretically defined by the iteration. Hence, by definition, the w.�/ are free of
rounding errors. But in computational reality, rounding errors are inevitable. We
denote the computer-calculated vector by w.�/ and the error vectors by

e.�/ WD w.�/ � w.�/ ;

for � � 0. The w-result can be written

w.�C1/ D Aw.�/ C d.�/ C r.�C1/ ;

where the vectors r.�C1/ represent the rounding errors that occur during the
calculation of Aw.�/ C d.�/. Let us concentrate on the effect of the rounding errors
that occur for an arbitrary �, say for ��. We ask for the propagation of this error for
increasing � > ��. Without loss of generality we set �� D 0, and for simplicity take
r.�/ D 0 for � > 1. That is, we investigate the effect the initial rounding error e.0/

has on the iteration. The initial error e.0/ represents the rounding error during the
evaluation of the initial condition (4.5)/(4.6), when w.0/ is calculated. According to
this scenario, w.�C1/ D Aw.�/ C d.�/ for � > 1. The relation

Ae.�/ D Aw.�/ � Aw.�/ D w.�C1/ � w.�C1/ D e.�C1/

between consecutive errors is applied repeatedly and results in

e.�/ D A�e.0/ : (4.15)

For the method to be stable, previous errors must be damped. This leads to require
A�e.0/ ! 0 for � ! 1. Elementwise this means lim�!1f.A�/ijg D 0 for � ! 1
and for any pair of indices .i; j/. The following lemma provides a criterion for this
requirement.

Lemma 4.2

�.A/ < 1 ” A�z ! 0 for all z and � ! 1
” lim

�!1f.A�/i;jg D 0
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Here �.A/ is the spectral radius of A,

�.A/ WD max
k

j�A
k j ;

where �A
1 ; : : : ; �A

m�1 denote the eigenvalues of A, labeled with index k. The proof
can be found in text books on numerical analysis, for example, in [198]. As a
consequence of Lemma 4.2 we require for stable behavior that j�A

k j < 1 for all
eigenvalues, here for k D 1; : : : ; m � 1. To check the criterion of Lemma 4.2, the
eigenvalues �A

k of A are needed. The matrix A can be written

A D I � 	 �

0

BB
B
B
@

2 �1 0

�1
: : :

: : :

: : :
: : : �1

0 �1 2

1

CC
C
C
A

„ ƒ‚ …
DWG

:

It remains to investigate the eigenvalues �A or �G of the tridiagonal matrices A or
G.3

Lemma 4.3 Let

G D

0

B
B
B
B
@

˛ ˇ 0

�
: : :

: : :

: : :
: : : ˇ

0 � ˛

1

C
C
C
C
A

be an N2-matrix. The eigenvalues �G
k are

�G
k D ˛ C 2ˇ

r
�

ˇ
cos

k


N C 1
; k D 1; : : : ; N :

Proof The eigenvectors v.k/ of G are

v.k/ D
 r

�

ˇ
sin

k


N C 1
;

�r
�

ˇ

�2

sin
2k


N C 1
; : : : ;

�r
�

ˇ

�N

sin
Nk


N C 1

!tr

:

Substitute this into Gv D �Gv. ut

3The zeros in the corner of the matrix G symbolize the triangular zero structure of (4.13).
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To apply Lemma 4.3 to A or to G observe N D m�1, and for G ˛ D 2, ˇ D � D �1.
Accordingly, the eigenvalues �G and the eigenvalues �A are

�G
k D 2 � 2 cos

k


m
D 4 sin2

�
k


2m

�
;

�A
k D 1 � 	�G D 1 � 4	 sin2 k


2m
:

Now we can state the stability requirement j�A
k j < 1 as

ˇ
ˇ
ˇ
ˇ1 � 4	 sin2 k


2m

ˇ
ˇ
ˇ
ˇ < 1; k D 1; : : : ; m � 1 :

This implies the two inequalities 	 > 0 and

�1 < 1 � 4	 sin2 k


2m
; rewritten as

1

2
> 	 sin2 k


2m
:

The largest sin-term is sin .m�1/


2m ; for increasing m this term grows monotonically
approaching 1. In summary we have shown for (4.13)/(4.14)

For 0 < 	 � 1

2
the explicit method w.�C1/ D Aw.�/ is stable.

In view of 	 D ��=�x2 this stability criterion amounts to bounding the �� step
size,

0 < �� � �x2

2
: (4.16)

This explains what happened with Example 4.1. The values of 	 in the two cases of
this example are

(a) 	 D 0:05 � 1

2
;

(b) 	 D 1 >
1

2
:

In case (b) the chosen �� and hence 	 were too large, which led to an amplification
of rounding errors resulting eventually in the “explosion” of the w-values.

The explicit method is stable only as long as (4.16) is satisfied. As a consequence,
the parameters m and �max of the grid resolution can not be chosen independent of
each other. If the demands for accuracy are high, the step size �x will be small,
which in view of (4.16) bounds �� quadratically. This situation suggests searching
for a method that is unconditionally stable.
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4.2.5 An Implicit Method

Introducing the explicit method in Sect. 4.2.3, we have approximated the time
derivative with a forward difference, “forward” as seen from the �th time level.
Now we try the backward difference in

@yi;�

@�
D yi;� � yi;��1

��
C O.��/ ;

which yields the alternative to (4.12)

� 	wiC1;� C .1 C 2	/wi;� � 	wi�1;� D wi;��1 : (4.17)

The Eq. (4.17) relates the time level � to the time level � � 1. For the transition
from � � 1 to � only the value wi;��1 on the right-hand side of (4.17) is known,
whereas on the left-hand side of the equation three unknown values of w wait to be
computed. Equation (4.17) couples three unknowns. The corresponding stencil is
shown in Fig. 4.3. There is no simple explicit formula with which the unknowns can
be obtained one after the other. Rather a system must be considered, all equations
simultaneously. A vector notation reveals the structure of (4.17): With the matrix

A WD Aimpl WD

0

B
B
B
B
@

1 C 2	 �	 0

�	
: : :

: : :

: : :
: : : �	

0 �	 1 C 2	

1

C
C
C
C
A

(4.18)

the vector w.�/ is implicitly defined as solution of the system of linear equations
Aw.�/ D w.��1/. To have a consistent numbering, rewrite this as

Aw.�C1/ D w.�/ for � D 0; : : : ; �max � 1 : (4.19)

Fig. 4.3 Stencil of the
backward-difference method
(4.17)

i+1

ν+1

ν

ν−1

i−1 i
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(Again we set w0;� D wm;� D 0.) For each time level � such a system of equations
must be solved. This method is sometimes called implicit method. But to distinguish
it from other implicit methods, we call it fully implicit, or backward-difference
method, or more accurately backward time centered space scheme (BTCS). The
method is unconditionally stable for all �� > 0. This is shown analogously as in the
explicit case (�! Exercise 4.2). The costs of this implicit method are low, because
the matrix A is constant and tridiagonal. Initially, for � D 0, the LR-decomposition
(�! Appendix C.1) is calculated once. Then the costs for each � are only of the
order O.m/.

4.3 Crank–Nicolson Method

For the methods of the previous section the discretizations of @y
@�

are of the order

O.��/. It seems preferable to use a method where the time discretization of @y
@�

has
the better order O.��2/, and the stability is unconditional. Let us again consider
Eq. (4.2), the equivalent to the Black–Scholes equation,

@y

@�
D @2y

@x2
:

Crank and Nicolson suggested to average the forward- and the backward difference
method. For easy reference, we collect the underlying approaches from the above:
forward for �:

wi;�C1 � wi;�

��
D wiC1;� � 2wi;� C wi�1;�

�x2

backward for � C 1:

wi;�C1 � wi;�

��
D wiC1;�C1 � 2wi;�C1 C wi�1;�C1

�x2

Addition yields

wi;�C1 � wi;�

��
D 1

2�x2
.wiC1;� � 2wi;� C wi�1;� C wiC1;�C1 � 2wi;�C1 C wi�1;�C1/

(4.20)

The Eq. (4.20) involves in each of the time levels � and � C 1 three values of w
(Fig. 4.4). This is the basis of an efficient method. Its features are summarized in
Theorem 4.4.
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Fig. 4.4 Stencil of the
Crank–Nicolson method
(4.20)

i+1ii−1

ν

ν+1

Theorem 4.4 (Crank–Nicolson)

1.) For y 2 C4 the order of the method is O.��2/ C O.�x2/.
2.) For each � a linear system of a simple tridiagonal structure must be solved.
3.) Stability holds for all �� > 0.

Proof

1.) order: A practical notation for the symmetric difference quotient of second order
for yxx is

ıxxwi;� WD wiC1;� � 2wi;� C wi�1;�

�x2
: (4.21)

Apply the operator ıxx to the exact solution y. Then by Taylor expansion for
y 2 C4 one shows

ıxxyi;� D @2

@x2
yi;� C �x2

12

@4

@x4
yi;� C O.�x4/ :

The local discretization error  describes how well the exact solution y of (4.2)
satisfies the difference scheme,

 WD yi;�C1 � yi;�

��
� 1

2
.ıxxyi;� C ıxxyi;�C1/ :

Applying the operator ıxx of (4.21) to the expansion of yi;�C1 at �� and observing
y� D yxx leads to

 D O.��2/ C O.�x2/ :

(�! Exercise 4.4)
2.) system of equations: With 	 WD ��

�x2 the Eq. (4.20) is rewritten

� 	
2

wi�1;�C1 C .1 C 	/wi;�C1 � 	
2
wiC1;�C1

D 	
2
wi�1;� C .1 � 	/wi;� C 	

2
wiC1;� :

(4.22)

The values of the new time level � C 1 are implicitly given by the system of
Eqs. (4.22). For the simplest boundary conditions w0;� D wm;� D 0 Eq. (4.22) is
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a system of m � 1 equations. With matrices

A W D ACN WD

0

B
B
BB
@

1 C 	 � 	
2

0

� 	
2

: : :
: : :

: : :
: : : � 	

2

0 � 	
2

1 C 	

1

C
C
CC
A

;

B W D BCN WD

0

B
B
BB
@

1 � 	 	
2

0

	
2

: : :
: : :

: : :
: : : 	

2

0 	
2

1 � 	

1

C
C
CC
A

(4.23)

the system (4.22) is rewritten

Aw.�C1/ D Bw.�/ : (4.24)

The eigenvalues of A are real and lie between 1 and 1 C 2	 (follows from the
Theorem of Gerschgorin, see Appendix C.1). This rules out a zero eigenvalue,
and so A must be nonsingular and the solution w.�C1/ of (4.24) is uniquely
defined.

3.) stability: Both matrices A and B can be rewritten in terms of a constant
tridiagonal matrix,

A D I C 	

2
G; G WD

0

B
B
B
B
@

2 �1 0

�1
: : :

: : :

: : :
: : : �1

0 �1 2

1

C
C
C
C
A

; B D I � 	

2
G :

Now the Eq. (4.24) reads

.2I C 	G„ ƒ‚ …
DWC

/w.�C1/ D .2I � 	G/w.�/

D .4I � 2I � 	G/w.�/

D .4I � C/w.�/ ;

which leads to the formally explicit iteration

w.�C1/ D .4C�1 � I/w.�/ : (4.25)



4.4 Boundary Conditions 195

The eigenvalues �C
k of C for k D 1; : : : ; m � 1 are known from Sect. 4.2.4,

�C
k D 2 C 	�G

k D 2 C 	.2 � 2 cos
k


m
/ D 2 C 4	 sin2 k


2m
:

In view of (4.25) we require for a stable method that for all k

ˇ
ˇ
ˇ
ˇ

4

�C
k

� 1

ˇ
ˇ
ˇ
ˇ < 1 :

This is guaranteed because of �C
k > 2. Consequently, the Crank–Nicolson

method (4.20)/(4.23)/(4.24) is unconditionally stable for all 	 > 0 .�� > 0/.

Although correct boundary conditions are still lacking, it makes sense to
formulate the basic version of the Crank–Nicolson algorithm for the PDE (4.2).

Algorithm 4.5 (Crank-Nicolson)

Start: Choose m; �max; calculate �x; ��

w.0/
i D y.xi; 0/ with y from (4.5) or (4.6), 0 � i � m .

Calculate the LR-decomposition of A .
loop: for � D 0; 1; : : : ; �max � 1:

Calculate c WD Bw.�/ (preliminary).
Solve Ax D c using e.g. the LR-decomposition—

that is, solve Lz D Bw.�/ and Rx D z .
w.�C1/ WD x

The LR-decomposition is the symbol for the solution of the system of linear
equations. Later we shall see when to replace it by the RL-decomposition. Obviously
the matrices A and B are not stored in the computer. Next we show how the vector c
in Algorithm 4.5 is modified to realize correct boundary conditions.

4.4 Boundary Conditions

On the unbounded domain �1 < x < 1 the initial-value problem y� D yxx

with initial condition (4.5)/(4.6) and � � 0 is well-posed. But the truncation to
the interval xmin � x � xmax changes the type of the problem. To make the PDE-
problem well-posed in the finite-domain case, boundary conditions must be imposed
artificially. They are not stated in the option’s contract, and are not needed by Monte
Carlo or tree methods. Boundary conditions are the price one has to pay when PDE-
based approaches are applied. Since boundary conditions are often approximations
of the reality, the “localized solution” on the finite domain xmin � x � xmax

in general is different from the solution of the pure initial-value problem. For
simplicity, we neglect this difference, and denote the localized solution again by y.
We need to formulate boundary conditions such that the localized solution is close
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to the solution of the original problem. The choice of boundary conditions is not
unique.

In the variety of possible boundary conditions there are two kinds so important
and so frequent that they have names. For Dirichlet conditions, a value is assigned to
y, whereas a Neumann condition assigns a value to the derivative dy=dx. For a call,
for example, y.xmin/ D 0 is Dirichlet, and @y.xmax/

@x D 1 is Neumann. More generally,
with xb standing for xmin or xmax,

y.xb; t/ D ˛.t/

for some function ˛.t/ is an example of a Dirichlet condition. A discretized version
is w0;� D ˛.��/. That is, our preliminary boundary conditions w0;� D wm;� D 0

have been of Dirichlet type. And a Neumann condition would be

@y.xb; t/

@x
D ˇ.t/

for some function ˇ.t/. On our grid, a second-order approximation (4.8) for this
Neumann condition is

w1;� � w�1;� D ˇ.��/ 2�x ;

which uses a fictive grid point x�1 outside the interval. The required information on
w�1;� is provided by a discretized version of the PDE. Alternatively, the one-sided
second-order difference quotient (4.10) can be applied. As a result, one or more
entries of the matrix A would change, which makes a finite-difference realization
of a Neumann condition a bit cumbersome. Dirichlet conditions are easier to cope
with. Let us try to analyze the value function V.S; t/ for S D 0 and S ! 1 in order
to derive Dirichlet conditions for Smin and Smax, and for

y.x; �/ for x D xmin and xmax and all � ; or

w0;� and wm;� for � D 1; : : : ; �max ;

all consistent with the Black-Scholes model.
Accordingly, we assume GBM paths satisfying (1.47). Then an initial value S0 D

0 causes St D 0 for all t, and S0 ! 1 implies that St is arbitrarily large, at least
larger than the strike K. The boundary conditions for the expiration time t D T are
obviously given by the payoff � . This gives rise to the simplest cases of boundary
conditions for t < T: As motivated by Figs. 1.1 and 1.2 and Eqs. (1.1), (1.2), the
value VC of a call and the value VP of a put must satisfy

VC.S; t/ D 0 for S D 0; and

VP.S; t/ ! 0 for S ! 1 (4.26)
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also for all t < T. This follows, for example, from the integral representation (3.25),
because discounting does not affect the value 0 of the payoff. Hence the value VC for
S D 0 can be predicted safely, as well as VP for S.0/ ! 1. These arguments hold
for European as well as for American options, with or without dividend payments.

The boundary conditions on each of the “other sides” of S, where V ¤ 0, are
more difficult. We postpone the boundary conditions for American options to the
next section, and investigate European options in this section.

From (4.26) and the put-call parity (�! Exercise 1.1) we deduce the additional
boundary conditions for European options. The result is

VC.S; t/ D S � Ke�r.T�t/ for S ! 1
VP.S; t/ D Ke�r.T�t/ � S for S ! 0

(4.27)

(without dividend payment, ı D 0). The lower bounds for European options (�!
Appendix E.1) are attained at the boundaries. In (4.27) for S � 0 we do not discard
the term S, because the realization of the transformation (4.3) requires Smin > 0,
see Sect. 4.2.2.4 Boundary conditions analogous as in (4.27) hold for the case of a
continuous flow of dividend payments (ı > 0). We skip the derivation, which can
be based on transformation (4.3) and the additional transformation S D Seı.T�t/

(�! Exercise 4.5). In summary, the asymptotic boundary conditions for European
options in the .x; �/-world are as follows:

Boundary Conditions 4.6 (European Options)

y.x; �/ D r1.x; �/ for x ! �1 ;

y.x; �/ D r2.x; �/ for x ! 1 ; with

call: r1.x; �/ WD 0 ;

r2.x; �/ WD exp
�

1
2
.qı C 1/x C 1

4
.qı C 1/2�

�
;

put: r1.x; �/ WD exp
�

1
2
.qı � 1/x C 1

4
.qı � 1/2�

�
;

r2.x; �/ WD 0 :

(4.28)

Truncation What can we state about Smin and Smax? We need boundary conditions
for the finite interval

a WD xmin � x � xmax DW b :

The probability that ST < K when S0 D Smin can be estimated by the transition
density (1.64). By the same argument the probability is known that ST > K
when S0 D Smax. Both probabilities are large as long as Smin is small and Smax

large enough. This situation suggests to apply the boundary conditions (4.26)
and (4.27) also to the left-hand boundary Smin and to the right-hand boundary Smax.

4For S D 0 the PDE is no longer parabolic.



198 4 Standard Methods for Standard Options

Although (4.28) is valid only for x ! �1 and x ! 1, we apply the dominant
terms r1.x; �/ and r2.x; �/ to approximate boundary conditions at x D a and x D b.
This leads to the boundary conditions

w0;� D r1.a; ��/

wm;� D r2.b; ��/

for all �.
These approximations are explicit formulas and easy to implement. To this end

return to the Crank–Nicolson equation (4.22), in which some of the terms on both
sides of the equations are known by the boundary conditions. For the equation with
i D 1 these are terms

from the left-hand side: � 	

2
w0;�C1 D �	

2
r1.a; ��C1/ ;

from the right-hand side:
	

2
w0;� D 	

2
r1.a; ��/ ;

and for i D m � 1

from the left-hand side: � 	

2
wm;�C1 D �	

2
r2.b; ��C1/ ;

from the right-hand side:
	

2
wm;� D 	

2
r2.b; ��/ :

These known boundary values are collected on the right-hand side of system (4.22).
So we finally arrive at

Aw.�C1/ D Bw.�/ C d.�/

d.�/ W D 	
2

�

0

B
B
B
BB
@

r1.a; ��C1/ C r1.a; ��/

0
:::

0

r2.b; ��C1/ C r2.b; ��/

1

C
C
C
CC
A

(4.29)

The preliminary version (4.24) is included as special case, with d.�/ D 0. The
statement in Algorithm 4.5 that defines c is modified to the statement

Calculate c WD Bw.�/ C d.�/ :

The methods of Sect. 4.2 can be adapted by analogous formulas. The matrix A is not
changed, and the stability is not affected by adding the vector d, which is constant
with respect to w.
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4.5 Early-Exercise Structure

In Sects. 4.1 through 4.3 we have considered tools for the Black–Scholes differential
equation—that is, we have investigated European options. Now we turn our
attention to American options. Recall that the value of an American option can
never be smaller than the value of a European option,

VAm � VEur:

In addition, an American option has at least the value of the payoff � . So we have
elementary lower bounds for the value of American options, but—as we shall see—
additional numerical problems to cope with.

4.5.1 Early-Exercise Curve

A European option can have a value that is smaller than the payoff (compare, for
example, Fig. 1.6). This can not happen with American options. Recall the arbitrage
strategy: if for instance an American put would have a value VAm

P < .K � S/C,
one would simultaneously purchase the asset and the put, and exercise immediately.
An analogous arbitrage argument implies that for an American call the situation
VAm

C < .S � K/C can not prevail. Therefore the inequalities

VAm
P .S; t/ � .K � S/C for all .S; t/

VAm
C .S; t/ � .S � K/C for all .S; t/

(4.30)

hold. For a put this is illustrated schematically in Fig. 4.5. The inequalities for V
make the problem of calculating an American option nonlinear.

For American options we have stated in (4.26) the boundary conditions that
prescribe V D 0. The boundary conditions at each of the other “ends” of the S-
axis are still needed. In view of the inequalities (4.30) it is clear that the missing
boundary conditions will be of a different kind than those for European options,

Fig. 4.5 V.S; t/ for a put and
a t < T, schematically

S
0

V

K

K

possible European option for t<T

possible American option for t<T

Sf(t)

payoff function
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which are listed in (4.27). Let us investigate the situation of an American put,
which is illustrated in Fig. 4.5. First discuss the left-end part of the curve VP.S; t/,
for small S > 0, and some t < T. Without the possibility of early exercise the
inequality VAm

P .S; t/ D VEur
P .S; t/ < K � S holds for r > 0 and sufficiently small S.

But in view of (4.30) the American put should satisfy VAm
P .S; t/ 	 K � S at least for

small S. To understand what happens for “medium” values of S, imagine to approach
from the right-hand side, where VAm

P .S; t/ > .K � S/C. Continuity and monotony of
VP suggest that the curve VAm

P .S; t/ merges into the straight line K � S of the payoff
at some value Sf in the interval 0 < Sf < K, see Fig. 4.5. This contact point Sf is
defined by

VAm
P .S; t/ > .K � S/C for S > Sf.t/;

VAm
P .S; t/ D K � S for S � Sf.t/ :

(4.31)

Convexity of V.S; :/ guarantees that there is only one contact point Sf for each t. For
S < Sf the value VAm

P equals the straight line of the payoff and nothing needs to be
calculated. For each t, the curve VAm

P .S; t/ reaches its left boundary at Sf.t/.
The above situation holds for any t < T, and the contact point Sf varies with t,

Sf D Sf.t/. For all 0 � t < T, the contact points Sf.t/ form a curve in the .S; t/-half
strip. This curve Sf is the boundary separating the area with V > payoff from the
area with V D payoff. The curve Sf of a put is illustrated in the left-hand diagram
of Fig. 4.6. A priori the location of the boundary Sf is unknown, the curve is “free.”
This explains why the problem of calculating VAm

P .S; t/ for S > Sf.t/ is called free
boundary problem.

For American calls the situation is similar, except that the contact only occurs
for dividend-paying assets, ı 6D 0. This is seen from

VAm
C � VEur

C � S � Ke�r.T�t/ > S � K

continuecontinue

T

S

stop

t

T

S

call

stop

t

Sf(T) Sf(T)

put

SfSf

Fig. 4.6 Continuation region (shaded) and stopping region for American options: put (left) and
call (right)
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for ı D 0, r > 0, t < T, compare Exercise 1.1. VAm
C > S � K for ı D 0 implies

that early-exercise does not pay. American and European calls on assets that pay no
dividends are identical, VAm

C D VEur
C . A typical curve VAm

C .S; t/ for ı 6D 0 contacting
the payoff is shown in Fig. 4.9. And the free boundary Sf qualitatively looks like the
right-hand diagram of Fig. 4.6.

The notation Sf.t/ for the free boundary is motivated by the process of solving
PDEs. But the primary meaning of the curve Sf is economical. The free boundary Sf

is the early-exercise curve. The time instance ts when a price process St reaches the
early-exercise curve is the optimal stopping time, compare also the illustration of
Fig. 3.10. Let us explain this for the case of a put; for a call with dividend payment
the argument is similar.

For a put, in case S > Sf, early-exercise causes an immediate loss, because (4.31)
implies the exercise balance �V C K � S < 0. Receiving the strike price K does not
compensate the loss of S and V . Accordingly, the rational holder of the option does
not exercise when S > Sf. This explains why the area S > Sf is called continuation
region5 (shaded in Fig. 4.6).

On the other side of the boundary curve Sf, characterized by V D K � S, each
change of S is compensated by a corresponding move of V . Here the only way to
create a profit is to exercise and invest the proceeds K at the risk-free rate r for the
remaining time period T � t. The resulting profit will be

Ker.T�t/ � K ;

which relies on r > 0. (For r D 0 American and European put are identical.) To
maximize the profit, the holder of the option will maximize T � t, and accordingly
exercises as soon as V 	 K � S is reached. Hence, the boundary curve Sf is the
early-exercise curve. And the area S � Sf is called stopping region.6

Now that the curve Sf is recognized as having such a distinguished importance as
early-exercise curve, we should make sure that the properties of Sf are as suggested
by Figs. 4.6 and 4.7. In fact, the curves Sf.t/ are continuously differentiable in t,
and monotone not decreasing/not increasing as illustrated. For more details see
Appendix A.5. Here we confine ourselves to the bounds given by the limit t ! T
.t < T/:

put: lim
t!T�

Sf.t/ D
�

K for 0 � ı � r
r
ı
K for r < ı

(4.32)

call: lim
t!T�

Sf.t/ D max.K;
r

ı
K/ for ı > 0 (4.33)

5Of course, the holder may wish to sell the option.
6The final balance for a put after exercising is Ker.T�t/. The reader is encouraged to show that
holding is less profitable (Seı.T�t/ < Ker.T�t/), at least for small r.T �t/. When a discrete dividend
is paid, the stopping region is not necessarily connected (�! Exercise 4.1b).
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Fig. 4.7 Early-exercise curves of an American put in .S; t/-planes, r D 0:06, � D 0:3, K D 10,
and dividend rates ı D 0:08 (top), ı D 0:04 (bottom); raw data of a finite-difference calculation
without interpolation or smoothing
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Fig. 4.8 .S; t/-plane, calculated curves of a put matching Figs. 1.4 and 1.5. C1 is the curve Sf. The
three curves C2 have the meaning V < 10�k for k D 3; 5; 7

These bounds express a qualitatively different behavior of the early-exercise curve
in the two situations 0 < ı < r and ı > r. This is illustrated in Fig. 4.7 for a
put. For the chosen numbers, for all ı � 0:06 the limit of (4.32) is the strike K
(lower diagram). Compare to Figs. 1.4 and 1.5 to get a feeling for the geometrical
importance of the curve as contact line where two surfaces merge. For large values
of S the surface V.S; t/ approaches 0 in a way illustrated by Fig. 4.8.

4.5.2 Free-Boundary Problem

Again we start with a put. For the European option, the left-end boundary condition
is formulated for S D 0. For the American option, the left-end boundary is given
along the curve Sf (Fig. 4.5). In order to calculate the free boundary Sf.t/ one needs
an additional condition. To this end consider the right-hand slope @V

@S with which
VAm

P .S; t/ touches at Sf.t/ the straight line K � S, which has the constant slope �1.
By geometrical reasons we can rule out the case @V.Sf.t/;t/

@S < �1 for VAm
P , because

otherwise (4.30) and (4.31) would be violated. Using arbitrage arguments, the case
@V.Sf.t/;t/

@S > �1 can be ruled out as well (�! Exercise 4.6). It remains the condition
@VAm

P .Sf.t/; t/=@S D �1. That is, V.S; t/ touches the payoff function tangentially.
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This tangency condition is commonly called the high-contact condition, or smooth
pasting. For the case of an option without maturity (perpetual option, T D 1) the
tangential touching can be calculated analytically (�! Exercise 4.7). In summary,
two boundary conditions must hold at the contact point Sf.t/:

VAm
P .Sf.t/; t/ D K � Sf.t/

@VAm
P .Sf.t/; t/

@S
D �1

(4.34)

As before, the right-end boundary condition VP.S; t/ ! 0 must be observed for
S ! 1.

For American calls analogous boundary conditions can be formulated. For a call
in case ı > 0, r > 0 the free boundary conditions

VAm
C .Sf.t/; t/ D Sf.t/ � K

@VAm
C .Sf.t/; t/

@S
D 1

(4.35)

must hold along the right-end boundary for Sf.t/ > K. The left-end boundary
condition at S D 0 remains unchanged. Figure 4.9 shows the situation of an
American call on a dividend-paying asset. The high contact on the payoff is visible.

Fig. 4.9 Value V.S; 0/ of an American call (in green) with K D 10, r D 0:25, � D 0:6, T D 1

and dividend flow ı D 0:2. The corresponding curve of a European call in red; the payoff in blue.
A special calculated value is V.K; 0/ D 2:18728
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We note in passing that the transformation � WD S=Sf.t/, y.�; t/ WD V.S; t/ allows
to set up a Black–Scholes-type PDE on a rectangle. In this way, the unknown front
Sf.t/ is fixed at � D 1, and is given implicitly by an ordinary differential equation
as part of a nonlinear PDE (�! Exercise 4.8). Such a front-fixing approach is
numerically relevant; see the Notes on Sect. 4.7.

4.5.3 Black–Scholes Inequality

The Black–Scholes equation (4.1) is valid on the continuation region (shaded areas
in Fig. 4.6). For the numerical approach of the following Sect. 4.6 the computational
domain will be the entire half strip S > 0; 0 � t � T, including the stopping areas.7

This will allow locating the early-exercise curve Sf. The approach requires to adapt
the Black–Scholes equation in some way to the stopping areas.

To this end, define the Black–Scholes operator as

LBS.V/ WD 1

2
�2S2 @2V

@S2
C .r � ı/S

@V

@S
� rV :

With this notation the Black–Scholes equation reads

@V

@t
C LBS.V/ D 0 :

What happens with this operator on the stopping regions? To this end substitute the
payoff function � into @V

@t C LBS.V/. In the case of a put, for S � Sf, V 	 � and

V D K � S ;
@V

@t
D 0 ;

@V

@S
D �1 ;

@2V

@S2
D 0 :

Hence

@V

@t
C LBS.V/ D �.r � ı/S � r.K � S/ D ıS � rK :

Equation (4.32) implies the bound ıS < rK, which leads to conclude

@V

@t
C LBS.V/ < 0 :

7Up to localization.
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That is, the Black–Scholes equation changes to an inequality on the stopping region.
The same inequality holds for the call. (The reader may carry out the analysis for
the case of a call.)

In summary, on the entire half strip 0 < S < 1; 0 < t < T, American options
must satisfy an inequality of the Black–Scholes type,

@V

@t
C 1

2
�2S2 @2V

@S2
C .r � ı/S

@V

@S
� rV � 0 : (4.36)

Both inequalities (4.30) and (4.36) hold for all .S; t/. In case the strict inequality
“>” holds in (4.30), equality holds in (4.36). The contact boundary Sf divides the
half strip into the stopping region and the continuation region, each with appropriate
version of V:

put: VAm
P D K � S for S � Sf .stop/

VAm
P solves (4.1) for S > Sf .hold/

call: VAm
C D S � K for S � Sf .stop/

VAm
C solves (4.1) for S < Sf .hold/

This shows that the Black–Scholes equation (4.1) must be solved also for American
options, however, with special arrangements because of the free boundary. We have
to look for methods that simultaneously calculate V along with the unknown Sf.

Notice that @V
@S is continuous when S crosses Sf, but @2V

@S2 and @V
@t are not continuous.

It must be expected that this lack of smoothness along the early-exercise curve Sf

affects the accuracy of numerical approximations.

4.5.4 Penalty Formulation

In this subsection we outline an approach that allows for a unified treatment of
stopping region and continuation region. The inequality (4.36) can be written as an
equality by introducing a penalty term p.V/ � 0, and requesting

@V

@t
C LBS.V/ C p.V/ D 0 : (4.37)

The penalty term p should be zero for the continuation region, and should be positive
for the stopping area. When calculating an approximation V , the distance to Sf is
not known, but the distance V � � of V to the payoff � is available and serves as
decisive building block of a penalty term. There are several possibilities to construct
a penalty p. One classic approach will be described in Sect. 7.2. Another way to set
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up a penalty can be accomplished by a term such as

p.V/ WD 

V � �
for a small  > 0 : (4.38)

Let V denote a solution of the penalty equation (4.37) with penalty function (4.38).
Two extreme cases characterize the effect of the penalty term for .S; t/ in the
continuation area and in the stopping area:

• V � � 
  implies p � 0. Then essentially the Black–Scholes equation results,
and V approximates the BS-solution.

• 0 < V � � �  implies both V � � and a large value of p. The latter means
that the BS-part of (4.37) is dominated by p; the BS equation is switched off.

The corresponding branches of the solution V may be called the “continuation
branch” ( p � 0) and the “stopping branch” (V � � ). Obviously these two
branches approximate the true solution V of the Black–Scholes problem. The
intermediate range V � � � O./ characterizes a boundary layer between the
continuation branch and the stopping branch. In this layer around the early-exercise
curve Sf the solution V can be seen as a connection between the BS surface and the
payoff plane.8

Notice that p and the resulting PDE are nonlinear in V , which complicates
the numerical solution. The penalty formulation is advantageous especially in
cases where an analysis of the early-exercise curve is difficult. See Sect. 6.7 for
an exposition of the penalty approach in the two-dimensional situation. For the
standard options of this chapter, we pursue another method, which effectively allows
to preserve linearity.

4.5.5 Obstacle Problem

A brief digression into obstacle problems will motivate the procedure. We assume
an “obstacle” g.x/, say with g.x/ > 0 for a subinterval of �1 < x < 1, g 2 C2,
g00 � 0 and g.�1/ < 0; g.1/ < 0, compare Fig. 4.10. Across the obstacle a function
u with minimal length is stretched like a rubber thread. Between x D ˛ and x D ˇ

the curve u clings to the boundary of the obstacle. For ˛ and ˇ we encounter high-
contact conditions u.˛/ D g.˛/, u0.˛/ D g0.˛/, and u.ˇ/ D g.ˇ/, u0.ˇ/ D g0.ˇ/.
Initially, the two values x D ˛ and x D ˇ are unknown. This obstacle problem is a
simple free-boundary problem.

The aim is to reformulate the obstacle problem such that the free boundary
conditions do not show up explicitly. This may promise computational advantages.
The function u shown in Fig. 4.10 is characterized by the requirements u � g,

8This is illustrated in Topic 9 of the Topics fCF.
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g(x)

α β
x

u(x)

1−1

Fig. 4.10 Function u.x/ across an obstacle g.x/

u.�1/ D u.1/ D 0, u 2 C1, and by: There is ˛; ˇ such that

for � 1 < x < ˛ W u00 D 0 .u > g/

for ˛ < x < ˇ W u D g .u00 D g00 � 0/

for ˇ < x < 1 W u00 D 0 .u > g/ :

The characterization of the two outer intervals is identical. This manifests a
complementarity in the sense

if u � g > 0 ; then u00 D 0 I
if u � g D 0 ; then u00 � 0 :

In retrospect it is clear that American options are complementary in an analogous
way:

if V � � > 0; then Black–Scholes equation
@V

@t
C LBS.V/ D 0 I

if V � � D 0; then Black–Scholes inequality
@V

@t
C LBS.V/ � 0 :

This analogy motivates searching for a solution of the obstacle problem. The
obstacle problem can be reformulated as

find a function u such that

u00.u � g/ D 0 ; �u00 � 0 ; u � g � 0 ;

u.�1/ D u.1/ D 0 ; u 2 C1Œ�1; 1� :

(4.39)

The key line (4.39) is a linear complementarity problem (LCP). This formulation
does not mention the free boundary conditions at x D ˛ and x D ˇ explicitly.
This will be advantageous because ˛ and ˇ are unknown. After a solution to (4.39)
is calculated, the values ˛ and ˇ are read off from the solution. To this end we
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construct a numerical solution procedure for the complementarity version (4.39) of
the obstacle problem.

Discretization of the Obstacle Problem
A finite-difference approximation for u00 on the grid xi D �1 C i�x, with �x D 2

m ,
gi WD g.xi/ leads to

.wi�1 � 2wi C wiC1/.wi � gi/ D 0;

�wi�1 C 2wi � wiC1 � 0; wi � gi

for 0 < i < m and w0 D wm D 0. The wi are approximations to u.xi/. In view of
the signs of the factors in the first line in this discretization scheme it can be written
using a scalar product. To see this, define a vector notation using

G WD

0

B
BB
B
@

2 �1 0

�1
: : :

: : :

: : :
: : : �1

0 �1 2

1

C
CC
C
A

and w WD

0

B
@

w1

:::

wm�1

1

C
A ; g WD

0

B
@

g1

:::

gm�1

1

C
A :

Then the discretized complementarity problem is rewritten in the form

.w � g/trGw D 0 ; Gw � 0 ; w � g : (4.40)

To calculate a solution of (4.40) one solves Gw D 0 under the side condition w �
g. This will be explained in Sect. 4.6.4. In Sect. 5.3 we will return to the obstacle
problem with a version as variational problem.

4.5.6 Linear Complementarity for American Put Options

In analogy to the simple obstacle problem described above we now derive a linear
complementarity problem for American options. Here we confine ourselves to
American puts without dividends (ı D 0); the general case will be listed in Sect. 4.6.
The transformations (4.3) lead to

@y

@�
D @2y

@x2
as long as VAm

P > .K � S/C :



210 4 Standard Methods for Standard Options

Also the side condition (4.30) is transformed: The relation

VAm
P .S; t/ � .K � S/C D K maxf 1 � ex; 0 g

leads to the inequality

y.x; �/ � expf1

2
.q � 1/x C 1

4
.q C 1/2�g maxf1 � ex; 0g

D expf1

4
.q C 1/2�g maxf.1 � ex/e

1
2 .q�1/x; 0g

D expf1

4
.q C 1/2�g maxfe

1
2 .q�1/x � e

1
2 .qC1/x; 0g

D W g.x; �/ :

This function g allows to write the initial condition (4.5)/(4.6) as y.x; 0/ D g.x; 0/.
In summary, we require y� D yxx as well as

y.x; 0/ D g.x; 0/ and y.x; �/ � g.x; �/ ;

and, in addition, boundary conditions, and y 2 C1 with respect to x. For x ! 1 the
function g vanishes, g.x; �/ D 0, so the boundary condition y.x; �/ ! 0 for x ! 1
can be written

y.x; �/ D g.x; �/ for x ! 1 :

The same holds for x ! �1 (�! Exercise 4.9). In the localizing practice, the
boundary conditions are formulated for xmin and xmax. Collecting all expressions,
the American put is formulated as linear complementarity problem:

�
@y

@�
� @2y

@x2

�
.y � g/ D 0 ;

@y

@�
� @2y

@x2
� 0 ; y � g � 0 ;

y.x; 0/ D g.x; 0/; y.xmin; �/ D g.xmin; �/ ;

y.xmax; �/ D g.xmax; �/ ; y 2 C1 with respect to x :

The exercise boundary is automatically captured by this formulation. An analogous
formulation holds for the American call. Both of the formulations are comprised by
Problem 4.7 below.
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4.6 Computation of American Options

In the previous sections we have derived a linear complimentarity problem for
both put and call of an American-style option. We summarize the results into
Problem 4.7. This assumes for a put r > 0, and for a call ı > 0; otherwise the
American option is not distinct from the European counterpart.

Problem 4.7 (Linear Complementarity Problem)

Notations of (4.3), including

q D 2r

�2
; qı D 2.r � ı/

�2
;

put W g.x; �/ WD expf�

4
..qı � 1/2 C 4q/g maxfe

x
2 .qı�1/ � e

x
2 .qıC1/; 0 g

call W g.x; �/ WD expf�

4
..qı � 1/2 C 4q/g maxfe

x
2 .qıC1/ � e

x
2 .qı�1/; 0 g

�
@y

@�
� @2y

@x2

�
.y � g/ D 0

@y

@�
� @2y

@x2
� 0 ; y � g � 0

xmin � x � xmax ; 0 � � � 1

2
�2T

y.x; 0/ D g.x; 0/

y.xmin; �/ D g.xmin; �/ ; y.xmax; �/ D g.xmax; �/

As outlined in Sect. 4.5, the free boundary problem of American options is described
in Problem 4.7 such that the free boundary condition does not show up explicitly.
We now enter the discussion of how to solve Problem 4.7 numerically.

4.6.1 Discretization with Finite Differences

We use the same grid as in Sect. 4.2.2, with wi;� denoting an approximation to
y.xi; ��/, and gi;� WD g.xi; ��/ for 0 � i � m, 0 � � � �max. The backward
difference, the explicit, and the Crank–Nicolson method can be combined into one
formula,

wi;�C1 � wi;�

��
D �

wiC1;�C1 � 2wi;�C1 C wi�1;�C1

�x2
C

.1 � �/
wiC1;� � 2wi;� C wi�1;�

�x2
;
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with the choices � D 0 (explicit), � D 1
2

(Crank–Nicolson), � D 1 (backward-
difference method). This family of numerical schemes parameterized by � is often
called �-method.

The differential inequality @y
@�

� @2y
@x2 � 0 becomes the discrete version

wi;�C1 � 	�.wiC1;�C1 � 2wi;�C1 C wi�1;�C1/

� wi;� � 	.1 � �/.wiC1;� � 2wi;� C wi�1;�/ � 0 ;
(4.41)

again with the abbreviation 	 WD ��
�x2 . With the notations

bi;� WD wi;� C 	.1 � �/.wiC1;� � 2wi;� C wi�1;�/ ; i D 2; : : : ; m � 2

b1;� and bm�1;� incorporate the boundary conditions

b.�/ WD .b1;� ; : : : ; bm�1;�/tr

w.�/ WD .w1;� ; : : : ; wm�1;�/tr

g.�/ WD .g1;� ; : : : ; gm�1;�/tr

and

A WD

0

B
B
BB
B
@

1 C 2	� �	� 0

�	�
: : :

: : :

: : :
: : :

: : :

0
: : :

: : :

1

C
C
CC
C
A

2 R.m�1/�.m�1/ (4.42)

(4.41) is rewritten in vector form as

Aw.�C1/ � b.�/ for all � :

Such inequalities for vectors are understood componentwise. The inequality y�g �
0 leads to

w.�/ � g.�/ ;

and
	

@y
@�

� @2y
@x2



.y � g/ D 0 becomes

�
Aw.�C1/ � b.�/

�tr �
w.�C1/ � g.�C1/

� D 0 :

The initial and boundary conditions are

wi;0 D gi;0 ; i D 1; : : : ; m � 1 ; .w.0/ D g.0// I
w0;� D g0;� ; wm;� D gm;� ; � � 1 :
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Boundary conditions are realized in the vectors b.�/ as follows:

b2;� ; : : : ; bm�2;� as defined above,

b1;� D w1;� C 	.1 � �/.w2;� � 2w1;� C g0;�/ C 	�g0;�C1

bm�1;� D wm�1;� C 	.1 � �/.gm;� � 2wm�1;� C wm�2;�/ C 	�gm;�C1

(4.43)

We summarize the discrete version of the Problem 4.7 into an Algorithm:

Algorithm 4.8 (Computation of American Options)

For � D 0; 1; : : : ; �max � 1 W
Calculate the vectors g WD g.�C1/;

b WD b.�/ from .4.42/; .4.43/:

Calculate the vector w as solution of the problem

Aw � b � 0 ; w � g ; .Aw � b/tr.w � g/ D 0 : (4.44)

w.�C1/ WD w

This completes the chosen finite-difference discretization.
The remaining problem is to solve the complementarity problem in matrix-vector

form (4.44). In principle, how to solve (4.44) is a new topic independent of the
discretization background. But accuracy and efficiency will depend on the context
of selected methods. We pause for a moment to become aware how broad the range
of possible finite-difference methods is.

There are possible sources of inaccuracies. The payoff is not smooth. And recall
from Sect. 4.5.3 that V.S; t/ is not C2-smooth over the free boundary Sf. Second-
order convergence of the basic Crank–Nicolson scheme must be expected to be
deteriorated. The effect caused by lacking smoothness depends on the choice of
several items, namely, the

(1) kind of transformation/PDE [from no transformation over a mere � WD T � t to
the transformation (4.3)],

(2) kind of discretization (from backward-difference over Crank–Nicolson to more
refined schemes like BDF2),

(3) method of solution for (4.44).

The latter can be a direct elimination method, or an iteratively working indirect
method. Large systems as they occur in PDE context are frequently solved
iteratively, in particular in high-dimensional spaces. Such approaches sometimes
benefit from smoothing properties. Both an iterative procedure (following [376])
and a direct approach (following [52]) will be discussed below. It turns out that
in the one-dimensional scenario of this chapter (one underlying asset), the direct
approach is faster.
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4.6.2 Reformulation and Analysis of the LCP

In each time level � in Algorithm 4.8, a linear complementarity problem (4.44) must
be solved. This is the bulk of work in Algorithm 4.8. Before entering a numerical
solution, we analyze the LCP. Since this subsection is general numerical analysis
independent of the finance framework, we momentarily use vectors x; y; r freely in
other context.9 For the analysis transform problem (4.44) from the w-world into an
x-world with

x WD w � g ;

y WD Aw � b :
(4.45)

Then it is easy to see (the reader may check) that the task of calculating a solution
w for (4.44) is equivalent to the following problem:

Problem 4.9 (Cryer) Compute vectors x and y such that for Ob WD b � Ag

Ax � y D Ob ; x � 0 ; y � 0 ; xtry D 0 : (4.46)

First we make sure that the above problem has a unique solution. To this end one
shows the equivalence of Problem 4.9 with a minimization problem.

Lemma 4.10 Problem 4.9 is equivalent to the minimization problem

min
x�0

G.x/; with G.x/ WD 1

2
.xtrAx/ � Obtrx ; (4.47)

where G is strictly convex.

Proof The derivatives of G are Gx D Ax � Ob and Gxx D A. Lemma 4.3 implies that
A has positive eigenvalues. Hence the Hessian matrix Gxx is symmetric and positive
definite. So G is strictly convex, and has a unique minimum on each convex set in
Rn, for example on x � 0. The Theorem of Karush, Kuhn and Tucker minimizes
G under Hi.x/ � 0, i D 1; : : : ; m. According to this theorem,10 a vector x0 to be a
minimum is equivalent to the existence of a Lagrange multiplier y � 0 with

grad G.x0/ C
�

@H.x0/

@x

�tr

y D 0 ; ytrH.x0/ D 0 :

9Notation: In this Sect. 4.6.2, x does not have the meaning of transformation (4.3), and r not that
of an interest rate, and y is no PDE solution. Here, x; y 2 Rm�1.
10For the KKT (Karush-Kuhn-Tucker or Kuhn-Tucker) theory we refer to [348, 350]. In our
context, m � 1.
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The set x � 0 leads to define H.x/ WD �x. Hence the KKT condition is Ax � Ob C
.�I/try D 0, ytrx D 0, and we have reached Eq. (4.46). ut

4.6.3 Iterative Procedure for the LCP

An iterative procedure can be derived from the minimization problem stated in
Lemma 4.10. This algorithm is based on the SOR11 method [92]. Note that (4.44) is
not in the easy form of equation Ax D b discussed in Appendix C.2; a modification
of the standard SOR will be necessary. The iteration of the SOR method for
Ax D Ob D b � Ag is written componentwise (�! Exercise 4.10) as iteration for
the correction vector x.k/ � x.k�1/:

r.k/
i WD Obi �

i�1X

jD1

aijx
.k/
j � aiix

.k�1/
i �

nX

jDiC1

aijx
.k�1/
j ; (4.48)

x.k/
i D x.k�1/

i C !R
r.k/

i

aii
: (4.49)

Here k denotes the number of the iteration, n D m�1, and aij is element of the matrix
A. In the cases i D 1, i D m � 1 one of the sums in (4.48) is empty. The relaxation
parameter !R is a factor chosen in a way that should improve the convergence of
the iteration. The “projected” SOR method for solving (4.46) starts from a vector
x.0/ � 0 and is identical to the SOR method up to a modification on (4.49) serving
for x.k/

i � 0.

Algorithm 4.11 (PSOR, Projected SOR for Problem 4.9)

outer loop W k D 1; 2; : : :

inner loop W i D 1; : : : ; m � 1

r.k/
i as in (4.48) ;

x.k/
i D max

(

0; x.k�1/
i C !R

r.k/
i

aii

)

;

y.k/
i D �r.k/

i C aii

	
x.k/

i � x.k�1/
i



:

11Successive overrelaxation, SOR. For an introduction to classic iterative methods for the solution
of systems of linear equations Ax D b we refer to Appendix C.2.
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This algorithm solves Ax D Ob for Ob D b � Ag iteratively by componentwise
considering x.k/ � 0. The vector y or the components y.k/

i converging to yi, are
not used explicitly for the algorithm. But since y � 0 is shown (Aw � b), the vector
y plays an important role in the proof of convergence. Transformed back into the
w-world of problem (4.44) by means of (4.45), the Algorithm 4.11 solves (4.44).

A proof of the convergence of Algorithm 4.11 is based on Lemma 4.10. One
shows that the sequence defined in Algorithm 4.11 minimizes G. The main steps of
the argumentation are sketched as follows:

For 0 < !R < 2 the sequence G.x.k// is decreasing monotonically;
Show x.kC1/ � x.k/ ! 0 for k ! 1;
The limit exists because x.k/ moves in a compact set fx j G.x/ � G.x.0//g;
The vector r from (4.48) converges toward �y;
Assuming r � 0 and rtrx ¤ 0 leads to a contradiction to x.kC1/ � x.k/ ! 0. (For
the proof see [92].)

4.6.4 Direct Method for the LCP

Another formulation has shown to be a basis for a direct solution by elimination:

Problem 4.12 (Cryer’s Problem Restated)

Solve Aw D b componentwise such that
the side condition w � g is obeyed.

An implementation must be done carefully such that the boundary conditions and all
the LCP requirements in (4.46) are met. The structure of Problem 4.12 is different
from the system Aw D b without side condition [201].

Recall that a direct method to solve a system Aw D b of linear equations
establishes in a first phase an equivalent system QAw D Qb with a triangular matrix
QA (here bidiagonal since A is tridiagonal). After QA; Qb are calculated, the second
phase (the solution of QAw D Qb) is established in a single loop. For an upper (right)
triangular matrix QA the fist phase is a forward loop, and the subsequent second phase
is backward. This is the familiar form of Gauss elimination, which in this context
may be called “forward-backward method.”

Less familiar is the opposite procedure: In order to establish QA as lower triangular
matrix, the first phase creates zeroes above the diagonal, and hence is done in the
backward fashion. The second phase then solves QAw D Qb in a forward loop. This
is the backward-forward version of Gauss elimination. In our context of solving
Problem 4.12 both versions are not equivalent; renumbering the equations and
variables does not help. This is caused by the side condition w � g, which adds
a nonlinearity, with different conditions on w1 and wm.

When in the second phase in the ith step of the solution loop Qwi is a component
of the solution of QAw D Qb, then wi WD maxf Qwi; gig might appear the correct value.
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But w depends on the orientation of the loop, backward or forward. Only one
direction works. An implementation must make sure that the characteristic order
of the underlying option is preserved. For a put this means:

We denote if the index of the node Si, which is closest to the contact point.12 The
index if marks the location of the free boundary. More precisely,

wi D gi for 1 � i � if, and
wi > gi for if < i � m .

This structure is characteristic for a put, but the index if is unknown. For a put the
start is w1 D g1, and the wi WD maxf Qwi; gig-loop must be forward. Accordingly, for
a put, QA must be a lower triangular matrix, and hence the backward-forward variant
of Gauss elimination is applied. This amounts to an RL-decomposition of A (�!
Appendix C.1). The lower triangle QA WD L is established, and the vector Qb obtained
by solving RQb D b.

Algorithm 4.13 (American Put)

first phase:
Calculate the RL-decomposition of A.
Then set QA D L and calculate Qb from RQb D b (backward loop).

second phase: forward loop for growing i:
Start with i D 1. Calculate the next component of QAw D Qb; denote it Qwi.
Set wi WD maxf Qwi; gig .

This procedure was suggested by Brennan and Schwartz [52]. Since the matrix A
from (4.42) is tridiagonal, the costs are low. In this way, a direct method for solving
Problem 4.12 is established, which is as efficient as solving a standard system
of linear equations. (�! Exercise 4.11) The elegant approach of Algorithm 4.13
allows to treat the nonlinear problem of valuing an American option as if it were
linear.

For a call wi D gi holds for large indices i, and the elimination phase runs in a
backward loop. This requires the traditional upper triangular matrix QA as calculated
by the LR-decomposition (�! Exercise 4.12). For both put and call there is only
one index if separating the components with wi D gi from those with wi > gi.

4.6.5 An Algorithm for Calculating American Options

We return to the original meaning of the variables x; y; r, as used for instance
in (4.2), (4.3). It remains to substitute a proper algorithm for solving (4.44) in
Algorithm 4.8. From the analysis of Sect. 4.6.2, we either apply the iterative
Algorithm 4.11 (�! Exercise 4.13), or implement the fast direct method of

12The S-interval must be large enough, S1 < Sf.
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Algorithm 4.13. The resulting algorithm is formulated in Algorithm 4.14 with
an LCP-solving module. The implementation of the direct version is left to the
reader (�! Exercise 4.11). Recall gi;� WD g.xi; ��/ (0 � i � m) and g.�/ WD
.g1;� ; : : : ; gm�1;�/tr. Figure 4.11 depicts a result of Algorithm 4.14 for Example 1.6.
Here we obtain the contact point with value Sf.0/ D 36:16 (with m D �max D 1600).
Figure 4.13 shows the American put that corresponds to the call in Fig. 4.9.

Algorithm 4.14 (Prototype Core Algorithm)

Set up the function g.x; �/ listed in Problem 4.7.

Choose � .� D 1=2 for Crank–Nicolson/:

For PSOR: choose 1 � !R < 2 (for example, !R D 1/;

fix an error bound " (for example, " D 10�5/:

Fix the discretization by choosing xmin; xmax; m; �max

(for example, xmin D �5; xmax D 5 or 3; �max D m D 100/:

Calculate �x WD .xmax � xmin/=m;

�� WD 1

2
�2T=�max ;

xi WD xmin C i�x for i D 0; : : : ; m :

Initialize the iteration vector w with

g.0/ D .g.x1; 0/; : : : ; g.xm�1; 0//:

Calculate 	 WD ��=�x2 and ˛ WD 	�:

(Now all elements of matrix A from (4.42) are defined.)

� � loop W for � D 0; 1; : : : ; �max � 1 W
�� WD ���

bi WD wi C 	.1 � �/.wiC1 � 2wi C wi�1/ for 2 � i � m � 2

b1 WD w1 C 	.1 � �/.w2 � 2w1 C g0;�/ C ˛g0;�C1

bm�1 WD wm�1 C 	.1 � �/.gm;� � 2wm�1 C wm�2/ C ˛gm;�C1

Module: Calculate the LCP solution w of Problem 4.12;

preferably by direct elimination as Algorithm 4.13, Exercise 4.11, or

alternatively by implementing an iterative method as Algorithm 4.11:

w.�C1/ D w :
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Fig. 4.11 Example 1.6: American put, K D 50, r D 0:1, � D 0:4, T D 5
12

. V.S; 0/ (green curve)
and payoff V.S; T/ (blue). Special calculated value: V.K; 0/ D 4:2842

4.6.5.1 Valuing Options

For completeness we mention that it is possible to calculate European options
with Algorithm 4.14 after simple modifications, which recover standard methods
for solving Aw D b (without w � g). If in addition the boundary conditions are
adapted, then the computer program resulting from Algorithm 4.14 can be applied
to European options. Of course, applying the analytic solution formula (A.15)
or (A.17) should be most economical, when the entire surface V.S; t/ is not required.
But for the purpose of testing Algorithm 4.14 it is recommendable to compare its
results to something “known.”

Back to American options, we complete the analysis, summarizing how a
concrete financial task is solved with the core Algorithm 4.14, which is formulated
in artificial variables such as xi; gi;� ; wi and not in financial variables. This requires
an interface between the real world and the core algorithm. The interface is provided
by the transformations in (4.3). This important ingredient must be included for
completeness. Let us formulate the required transition between the real world and
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the numerical machinery of Algorithm 4.14 as another algorithm:

Algorithm 4.15 (American Options)

Input: strike K; time to expiration T; spot price S0; r; ı; � :

Perform the core Algorithm 4.14.

(The �-loop ends at �end D 1

2
�2T:/

For i D 1; : : : ; m � 1 W
wi approximates y.xi;

1

2
�2T/;

Si D K expfxig

V.Si; 0/ D Kwi expf�xi

2
.qı � 1/g expf��end.

1

4
.qı � 1/2 C q/g

Test for early exercise: Approximate Sf.0/ and compare to S0 :

For the direct method, an approximation for Sf.0/ is readily available via Sif . An
indirect method checks the closeness of V to the payoff:

Choose a small "� > 0; for example, "� D K � 10�5:

if WD maxf i j jV.Si; 0/ C Si � Kj < "� g for a put,

if WD minf i j jK � Si C V.Si; 0/j < "� g for a call.

Criterion S0 < Sif indicates the stopping region for a put; for a call, this indication
is S0 > Sif .

Algorithm 4.15 evaluates the data at the final time level �end, which corresponds
to t D 0. The computed information for the intermediate time levels can be
evaluated analogously. In this way, the locations of Sif can be put together to form
an approximation of the free-boundary or stopping-time curve Sf.t/. But note that
this approximation will be a crude step function. It requires some effort to calculate
the curve Sf.t/ with reasonable accuracy, see the illustration of curve c1 in Fig. 4.8
(�! Exercise 4.14).

4.6.5.2 Modifications

The above Algorithm 4.14 (along with Algorithm 4.15) is the prototype of a finite-
difference algorithm. Improvements are possible. For example, the equidistant time
step �� can be given up in favor of a variable time stepping. A few very small
time steps initially will help to quickly damp the influence of the nonsmooth payoff.
The effect of the kink of the payoff at the strike K is illustrated by Fig. 4.12. The
turmoil at the corner is seen, but also the relatively rapid smoothing within a few
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Fig. 4.12 Finite differences, Crank–Nicolson; American put with r D 0:06, � D 0:3, T D 1,
K D 10; M D 1000, xmin D �2, xmax D 2, �x D 1=250, �t D 1=1000, payoff (in blue) and
V.S; t�/ for t� D 1 � ��t, � D 1; : : : ; 10

time steps. Figure 4.12 shows explicitly the dependence of V on S; implicit in the
figure is the dependence on t with corresponding oscillations. The effect of the
lack of smoothness is heavier in case the payoff is discontinuous (binary option).
In such a context it is advisable to start with a few fully implicit backward time
steps .� D 1/ before switching to Crank–Nicolson .� D 1=2/. Such a procedure is
called Rannacher stepping, see [305, 310], and the Notes on Sect. 4.3. After one run
of the algorithm it is advisable to refine the initial grid to have a possibility to control
the error. This simple strategy will be discussed in some more detail in Sect. 4.7.

Practical experience with boundary conditions (4.27) suggests working with
Smin D 0:05 and Smax D 5K. For the transformation (4.3) S D Kex this amounts to
xmin D �3 � log K, xmax D 1:6. This is to be modified for other transformations, see
for instance the choice in Fig. 7.4.

4.6.5.3 Sensitivities

The greeks delta, gamma, theta are easily obtained by difference quotients. These
approximations are formed by the V-values that were calculated on the finite-
difference grid. For vega and rho, a recalculation is necessary, see Sect. 1.4.6.
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In general, the comparably expensive solving of appropriate PDEs will not be
necessary (�! Exercise 4.16).

4.7 On the Accuracy

Necessarily, each result obtained with the means of this chapter is subjected to errors
in several ways. The most important errors have been mentioned earlier; in this
section we collect them. Let us emphasize again that in general the existence of
errors must be accepted, but not their magnitude. By investing sufficient effort, many
of the errors can be kept at a tolerable level.

(a) modeling error
The assumptions defining the underlying financial model are restrictive. The
Assumptions 1.2, for example, will not exactly match the reality of a financial
market. Similarly this holds for other models. And the parameters of the models
(such as volatility �) are unknown and must be estimated. Hence the equations
of the model are only crude approximations of “reality.”

(b) discretization errors
Under the heading “discretization error” we summarize several errors that are
introduced when the continuous PDE is replaced by a set of approximating
equations defined on a grid. An essential portion of the discretization error
is the difference between differential quotients and difference quotients. For
example, a Crank–Nicolson discretization error is of the order O.�2/, if � is
a measure of the grid size, and if the solution function is sufficiently smooth.
Other discretization errors include the localization error caused by truncating
the infinite interval �1 < x < 1 to a finite interval, or the implementation
of the boundary conditions, or a quantification error when the strike .x D 0/ is
not part of the grid. In passing we recommend that the strike be one of the grid
points, xk D 0 for one k.

(c) error from solving the linear equation
An iterative solution of the linear systems of equation Aw D b means that the
error approaches 0 when k ! 1, where k counts the number of iterations. By
practical reasons the iteration must be terminated at a finite kmax such that the
effort is bounded. Hence an error remains from the linear equations. The error
tends to be neglectable for direct elimination methods.

(d) rounding error
The finite number of digits l of the mantissa is the reason for rounding errors.

In general, one has no accurate information on the size of these errors. Typically,
the modeling errors are much larger than the discretization errors. In practice,
in view of the uncertainties of modeling, it would be questionable to strive for
an extremely small discretization error. For a stable method, the rounding errors
are the least problem. The numerical analyst, as a rule, has limited potential in
manipulating the modeling error. So the numerical analyst concentrates on the other
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errors, especially on discretization errors. To this end we may use the qualitative
assertion of Theorem 4.4. But such an a priori result is only a basic step toward our
ultimate goal formulated in Problem 4.16.

4.7.1 Elementary Error Control

Here we neglect modeling errors and try to solve the a posteriori error problem:

Problem 4.16 (Principle of an Error Control) Let the exact result of a solution of
the continuous equations be denoted ��. The approximation � calculated by a given
algorithm depends on a representative grid size �, on kmax, on the word length l of
the computer, and maybe on several additional parameters, symbolically written

� D �.�; kmax; l/ :

Choose �; kmax; l such that the absolute error of � does not exceed a prescribed
error tolerance ,

j� � ��j <  :

This problem is difficult to solve, because we implicitly assume an efficient
approximation avoiding an overkill with extremely small values of � or large values
of kmax or l. Time counts in real-time application. So we try to avoid unnecessary
effort of achieving a tiny error j� � ��j � . The exact size of the error is unknown.
But its order of magnitude can be estimated as follows.

Let us assume the method is of order p. We simplify this statement to

�.�/ � �� D ��p : (4.50)

Here � is a priori unknown. By calculating two approximations, say for grid sizes
�1 and �2, the constant � can be calculated. To this end subtract the two calculated
approximations �1 and �2,

�1 WD �.�1/ D ��
p
1 C ��

�2 WD �.�2/ D ��
p
2 C ��

to obtain

� D �1 � �2

�
p
1 � �

p
2

:
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A simple choice of the grid size �2 for the second approximation is the refinement
�2 D 1

2
�1. This leads to

�

�
�1

2

�p

D �1 � �2

2p � 1
: (4.51)

Especially for p D 2 the relation

��2
1 D 4

3
.�1 � �2/

results. In view of the scenario (4.50) the absolute error of the approximation �1 is
given by

4

3
j�1 � �2j

and the error of �2 by (4.51).
The above procedure does not guarantee that the error � is bounded by . This

flaw is explained by the simplification in (4.50), and by neglecting the other type
of errors of the above list (b)–(c). Here we have assumed � constant, which in
reality depends on the parameters of the model, for example, on the volatility � .
But testing the above rule of thumb (4.50)/(4.51) on European options shows that it
works reasonably well. Here we compare the finite-difference results to the analytic
solution formulas (A.15)/(A.17), the numerical errors of which are comparatively
negligible. The procedure works similar well for American options, although then
the function V.S; t/ is not C2-smooth at Sf.t/. (The effect of the lack in smoothness
is similar as in Fig. 4.12.) In practical applications of Crank–Nicolson’s method one
can observe quite well that doubling of m and �max decreases the absolute error
approximately by a factor of four. To obtain a minimum of information on the error,
the core Algorithm 4.14 should be applied at least for two grids following the lines
outlined above. The information on the error can be used to match the grid size �

to the desired accuracy.
Let us illustrate the above considerations with an example, compare Figs. 4.13

and 4.14, and Table 4.1. For an American put and xmax D �xmin D 5 we
calculate several approximations, and test Eq. (4.50) in the form �.�/ D �� C ��2.
We illustrate the approximations as points in the .�2; �/-plane. The better the
assumption (4.50) is satisfied, the closer the calculated points lie on a straight line.
Figure 4.14 suggests that this error-control model can be expected to work well.

In order to check the error quality of a computer program on standard American
options, one may check the put-call symmetry relation (A.23). For example, for the
parameters of Fig. 4.13/Table 4.1, the corresponding call with S D K and switched
parameters r D 0:2, ı D 0:25 is calculated, and the results match very well: For
the finest discretization in Table 4.1, about 8 digits match with the value of the
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Fig. 4.13 Value V.S; 0/ of an American put (in green) with K D 10, r D 0:25, � D 0:6, T D
1 and dividend flow ı D 0:2. For special values see Table 4.1. The corresponding curve of a
European option in red, the payoff in blue

Fig. 4.14 Approximations V depending on �2, with � D .xmax � xmin/=m D 1=�max; results of
Fig. 4.13 and Table 4.1
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Table 4.1 Results reported
in Fig. 4.13

m D �max V.10; 0/

50 1:8562637

100 1:8752110

200 1:8800368

400 1:8812676

800 1:8815842

1600 1:8816652

corresponding call. But this is only a necessary criterion for accuracy; the number of
matching digits of (A.23) does not relate to the number of correct digits of V.S; 0/.

4.7.2 Extrapolation

The obviously reasonable error model sketched above suggests applying (4.50) to
obtain an improved approximation � at practically zero cost. Such a procedure is
called extrapolation (�! Exercise 1.11). In a graphical illustration � over �2 as
in Fig. 4.14, extrapolation amounts to construct a straight line through two of the
calculated points. The value of the straight line for �2 D 0 gives the extrapolated
value from

�� � 4�2 � �1

3
: (4.52)

In our example, this procedure allows to estimate the correct value to be close to
1.8817. Combining, for example, two approximations of rather low quality, namely,
m D 50 with m D 100, gives already an extrapolated approximation of 1:8815. And
based on the two best approximations of Table 4.1, the extrapolated approximation
is 1:881690.13

Typically, the extrapolation formula provided by (4.52) is significantly more
accurate than �2. But we have no further information on the accuracy of �2 from the
calculated �1; �2. Calculating a third approximation �3 reveals more information.
For example, a higher-order extrapolation can be constructed (�! Exercise 4.15).
Figure 4.15 reports on the accuracies.

The convergence rate in Theorem 4.4 was derived under the assumptions of a
structured equidistant grid and a C4-smooth solution. Practical experiments with
nonuniform grids and nonsmooth data suggest that the convergence rate may still
behave reasonably. But the finite-difference discretization error is not the whole
story. The more flexible finite-element approaches in Chap. 5 will shed light on
convergence under more general conditions.

13With m D 20000, our best result was 1.8816935.
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Fig. 4.15 Finite-difference methods, log of absolute error in V.K; 0/ over log.m/, where m D
�max, and the basis of the logarithm is 10. Solid line: plain algorithm, results in Table 4.1; dashed
line: extrapolation (4.52) based on two approximations; dotted line: higher-order extrapolation of
Exercise 4.15. Note that the axes in Fig. 4.15 are completely different from those of Fig. 4.14

4.8 Analytic Methods

Numerical methods typically are designed such that they achieve convergence. So,
in principle, every accuracy can be reached, only limited by the available computer
time and by hardware restrictions. In several cases this high potential of numerical
methods is not needed. Rather, some analytic formula may be sufficient that delivers
medium accuracy at low cost. Such “analytic methods” have been developed. Often
their accuracy is reasonable as compared to the underlying modeling error. The
limited accuracy goes along with a nice feature that is characteristic for analytic
methods: their costs are clear, and known in advance.

In reality there is hardly a clear-cut between numerical and analytic methods.
On the one hand, numerical methods require analysis for their derivation. And
on the other hand, analytic methods involve numerical algorithms. These may be
elementary evaluations of functions like the logarithm or the square root as in the
Black–Scholes formula, or may consist of a sub-algorithm like Newton’s iteration
for zero finding.14 There is hardly a purely analytic method.

14The latter situation might cause some uncertainty on the costs.
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The finite-difference approach, which approximates the surface V.S; t/, requires
intermediate values for 0 < t < T for the purpose of approximating V.S; 0/. In the
financial practice one is basically interested in values for t D 0, intermediate values
are rarely asked for. So the only temporal input parameter is the time to maturity
T � t (or T in case the current time is set to zero, t D 0). Recall that also in the
Black–Scholes formula, time only enters in the form T � t (�! Appendix A.4). So
it makes sense to write the formula in terms of the time to maturity � ,

� WD T � t :

Setting QV.S; �/ WD V.S; T � �/ D V.S; t/ leads to a PDE for QV . We drop the
tilde (throughout Sect. 4.8), and arrive at a compact version of the Black–Scholes
formulas (A.15) or (A.17),

d1.S; � I K; r; �/ WD 1

�
p

�

n
log S

K C
	

r C �2

2



�
o

;

d2.S; � I K; r; �/ WD 1

�
p

�

n
log S

K C
	

r � �2

2



�
o

D d1 � �
p

� ;

VEur
P .S; � I K; r; �/ D �SF.�d1/ C Ke�r� F.�d2/ ;

VEur
C .S; � I K; r; �/ D SF.d1/ � Ke�r� F.d2/ :

(4.53)

(dividend-free case). F denotes the cumulative standard normal distribution func-
tion. For dividend-free vanilla options we only need an approximation formula for
the American put VAm

P ; the other cases are covered by the Black–Scholes formula.
This Section introduces four analytic methods. The first two (Sects. 4.8.1

and 4.8.2) are described in detail such that the implementation of the algorithms is
an easy matter. Of the method of lines (in Sect. 4.8.3) only basic ideas are set forth.
More detail is presented on the integral representation (Sect. 4.8.4). We assume
r > 0.

4.8.1 Approximation Based on Interpolation

If a lower bound V low and an upper bound Vup on the American put are available,

V low � VAm
P � Vup ;

then the idea is to construct an ˛ aiming at

VAm
P D ˛Vup C .1 � ˛/V low :

This is the approach of [204]. The parameter ˛, 0 � ˛ � 1, defines an interpolation
between V low and Vup. Since VAm

P depends on the market data S; �; K; r; � , the single
parameter ˛ and the above interpolation can not be expected to provide an exact
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value of VAm
P . (An exact value would mean that an exact formula for VAm

P would
exist.) Rather a formula for ˛ is developed as a function of S; �; K; r; � such that the
interpolation formula

˛Vup C .1 � ˛/V low (4.54)

provides a good approximation for a wide range of market data. The smaller the gap
between V low and Vup , the better is the approximation.

An immediate candidate for the lower bound V low is the value VEur
P provided by

the Black–Scholes formula,

VEur
P .S; � I K/ � VAm

P .S; � I K/ :

From (4.27) the left-hand boundary condition of a European put with strike QK is
QKe�r� for all � and all QK. Clearly, for QK D Ker� and S D 0,

VAm
P .0; � I K/ D VEur

P .0; � I Ker� / ;

since both sides equal the payoff value K. From the properties of the American put
we know @V

@S � �1 and @2V
@S2 � 0 . Hence we conclude that

VAm
P .S; � I K/ � VEur

P .S; � I Ker� /

at least for small S. In fact, this inequality holds for all S > 0, which can be shown
with Jensen’s inequality, see Appendix B.1. In summary, the upper bound is

Vup WD VEur
P .S; � I Ker� / ;

see Fig. 4.16. The resulting approximation formula is

V WD ˛VEur
P .S; � I Ker� / C .1 � ˛/VEur

P .S; � I K/ : (4.55)

The parameter ˛ depends on S; �; K; r; � , so does V . Actually, the Black–Scholes
formula (4.53) suggests that ˛ and V only depend on the three dimensionless
parameters

S=K (“moneyness”) ; r� ; and �2� :

The approximation must be constructed such that the lower bound .K � S/C of the
payoff is obeyed. As we will see, all depends on the free boundary Sf, which must
be approximated as well.

Johnson [204] sets up a model for ˛ with two free parameters a0; a1, which were
determined by carrying out a regression analysis based on computed values of VAm

P .
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Fig. 4.16 Bounds on an American put V.S; tI K/ for t D 0 as function of S, with K D 10,
r D 0:06, � D 0:3, � D 1. Medium curve (in green): American put; lower curve (red): European
put VEur.S; 0I K/; upper curve (red): European put VEur.S; 0I QK/, with QK D Ker�

The result is

˛ WD
�

r�

a0r� C a1

�ˇ

; where ˇ WD ln.S=Sf/

ln.K=Sf/
;

a0 D 3:9649 ; a1 D 0:032325 :

(4.56)

The ansatz for ˛ is designed such that for S D K (and hence ˇ D 1) upper and
lower bound behavior and calculated option values can be matched with reasonable
accuracy with only two parameters a0; a1. The S-dependent ˇ is introduced to
improve the approximation for S < K and S > K. Obviously, S D Sf ) ˇ D
0 ) ˛ D 1, which captures the upper bound. And for the lower bound, ˛ D 0 is
reached for S ! 1, and for r� D 0. (The reader may discuss (4.56) to check the
assertions.)

The model for ˛ of Eq. (4.56) involves the unknown free-boundary curve Sf. To
approximate Sf, observe the extreme cases

Sf D K for � D 0 ;

Sf D K
2r

�2 C 2r
for T ! 1 :
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(For the latter case consult Exercise 4.7 and Appendix A.5.) This motivates to set
the approximation Sf for Sf as

Sf WD K

�
2r

�2 C 2r

��

; (4.57)

for a suitably modeled exponent � . To match the extreme cases, � should vanish for
� D 0, and � � 1 for large values of � . [204] suggests

� WD �2�

b0�2� C b1

;

b0 D 1:04083 ; b1 D 0:00963 :

(4.58)

The constants b0 and b1 were again obtained by a regression analysis.
The analytic expressions of (4.57), (4.58) provide an approximation Sf of Sf, and

then by (4.56), (4.55) an approximation V of VAm
P for S > Sf, based on the Black–

Scholes formulas (4.53) for VEur
P .

Algorithm 4.17 (Interpolation)

For given S; �; K; r; � evaluate �; Sf; ˇ based on Sf and ˛ :

Evaluate the Black–Scholes formula for VEur
P

for the arguments in (4.55).

Then V from (4.55) is an approximation to VAm
P for S > Sf :

This purely analytic method is fast and simple. Numerical experiments show that the
approximation quality of Sf is poor. But for S not too close to Sf the approximation
quality of V is quite good. The error is small for r� � 0:125, which is satisfied for
average values of the risk-free rate r and time to maturity � . For larger values of r� ,
when the gap between lower and upper bound widens, the approximation works less
well. An extension to options on dividend-paying assets is given in [42].

4.8.2 Quadratic Approximation

Next we describe an analytic method due to [252]. Recall that in the continuation
region both VAm

P and VEur
P obey the Black–Scholes equation. Since this equation is

linear, also the difference

p.S; �/ WD VAm
P .S; �/ � VEur

P .S; �/ (4.59)
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satisfies the Black–Scholes equation. The relation VAm � VEur suggests to interpret
the difference p as early-exercise premium. Since both VAm

P and VEur
P have the same

payoff, the terminal condition for � D 0 is zero, p.S; 0/ D 0. The closeness of
p.S; �/ to zero should scale roughly by

H.�/ WD 1 � e�r� : (4.60)

This motivates introducing a scaled version f of p,

p.S; �/ DW H.�/ f .S; H.�// (4.61)

For the analysis we repeat the Black–Scholes equation, here for p.S; �/, where sub-
scripts denote partial differentiation, and q WD 2r

�2 :

� q

r
p� C S2pSS C qSpS � qp D 0 (4.62)

Substituting (4.61) and

pS D HfS ; pSS D HfSS ; p� D H� f C HfHH�

and using

1

r
H� D 1 � H

yields after a short calculation (the reader may check) the modified version of the
Black–Scholes equation

S2fSS C qSfS � q

H
f
�
1 C H.1 � H/

fH
f

� D 0 : (4.63)

H and q are nonzero for r > 0. Note that (4.63) is the “full” equation, nothing is
simplified yet. No partial derivative with respect to t shows up, but instead the partial
derivative fH .

At this point, following [252], we introduce a simplifying approximation. The
factor H.H � 1/ for the H varying in the range 0 � H < 1 is a quadratic term
with maximum value of 1=4, and close to zero for � � 0 and for large values of � ,
compare (4.60). This suggests that the term

H.1 � H/
fH
f

(4.64)
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may be small compared to 1, and to neglect it in (4.63). (This motivates the name
“quadratic approximation.”) The resulting equation

S2fSS C qSfS � q

H
f D 0 (4.65)

is an ordinary differential equation with analytic solution, parameterized by H. An
analysis similar as in Exercise 4.7 leads to the solution

f .S/ D ˛S	 ; where 	 WD �1

2

(

.q � 1/ C
r

.q � 1/2 C 4q

H

)

; (4.66)

for a parameter ˛. Combining (4.59), (4.61) and (4.66) we deduce for S > Sf the
approximation V

VAm
P .S; �/ � V.S; �/ WD VEur

P .S; �/ C ˛H.�/S	 : (4.67)

The parameter ˛ must be such that V reaches the payoff at Sf,

VEur
P .Sf; �/ C ˛HS	

f D K � Sf : (4.68)

Here Sf is parameterized by H via (4.60), and therefore depends on � . To fix the
two unknowns Sf and ˛ let us warm up the high-contact condition. This requires the
partial derivative of V with respect to S. The main part is

@VEur
P .S; �/

@S
D F.d1/ � 1

where F is the cumulative normal distribution function, and d1 (and below d2) are the
expressions defined by (4.53). d1 and d2 depend on all relevant market parameters;
we emphasize the dependence on S by writing d1.S/. This gives the high-contact
condition

@V.Sf; �/

@S
D F.d1.Sf// � 1 C ˛	HS	�1

f D �1 ;

and immediately ˛ in terms of Sf:

˛ D �F.d1.Sf//

	HS	�1
f

: (4.69)

Substituting into (4.68) yields one equation for the remaining unknown Sf,

VEur
P .Sf; �/ � F.d1.Sf//

1

	
Sf D K � Sf ;
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which in view of the put-call parity (A.16) and F.�d/ D 1 � F.d/ reads

SfF.d1/ � Ke�r� F.d2/ � Sf C Ke�r� � F.d1/
Sf

	
� K C Sf D 0 :

This can be summarized to

Sf F.d1.Sf//
�
1 � 1

	

�C Ke�r�
�
1 � F.d2.Sf//

� � K D 0 : (4.70)

Since d1 and d2 vary with Sf, (4.70) is an implicit equation for Sf and must be solved
iteratively. In this way a sequence of approximations S1; S2; : : : to Sf is constructed.
We summarize

Algorithm 4.18 (Quadratic Approximation)

For given S; �; K; r; � evaluate q D 2r

�2
; H D 1 � e�r� and 	 from (4.66).

Solve (4.70) iteratively for Sf :

(This involves a sub-algorithm, from which F.d1.Sf// should be saved.)

Evaluate VEur
P .S; �/ using the Black–Scholes formula (4.53).

V WD VEur
P .S; �/ � 1

	
SfF.d1.Sf//

�
S

Sf

�	

(4.71)

is the approximation for S > Sf ;

and V D K � S for S � Sf :

Note that 	 < 0, and 	 depends on � via H.�/. The time-consuming part of the
quadratic-approximation method consists of the numerical root finding procedure.
But here a moderate accuracy suffices, since a very small error in Sf does not affect
the error in NV . (�! Exercises 4.17 and 4.18)

4.8.3 Analytic Method of Lines

In solving PDEs numerically, the method of lines is a well-known approach. It
is based on a semidiscretization, where the domain (here the .S; �/ half strip) is
replaced by a set of lines parallel to the S-axis, each defined by a constant value
of � . To this end, the interval 0 � � � T is discretized into �max sub-intervals by
�� WD ��� , �� WD T=�max, � D 1; : : : ; �max �1. To deserve the attribute “analytic,”
we assume �max to be small, say, work with three lines. We write the Black–Scholes
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equation as in Sect. 4.5.3,

� @V.S; �/

@�
C LBS.V.S; �// D 0 ; (4.72)

where the negative sign compensates for the transition from t to � , and replace the
partial derivative @V=@� by the difference quotient

V.S; �/ � V.S; � � ��/

��
:

This gives a semidiscretized version of (4.72), namely, the ordinary differential
equation

w.S; � � ��/ � w.S; �/ C �� LBS.w.S; �// D 0 ;

which holds for S > Sf. Here we use the notation w rather than V to indicate that
a discretization error is involved. This semidiscretized version is applied for each
of the parallel lines, � D �� , � D 1; : : : ; �max � 1. Figure 4.17 may motivate the
procedure. For each line � D �� , the function w.S; ���1/ is known from the previous
line, starting from the known payoff for � D 0. The equation to be solved for each
line �� is

1

2
�� �2S2 @2w

@S2
C �� rS

@w

@S
� .1 C �� r/w D �w.�; ���1/ : (4.73)

Fig. 4.17 Method of lines, situation as in Fig. 1.5. The early-exercise curve is indicated
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Fig. 4.18 Method of lines, situation along line �� : A: solution is given by payoff; B: inhomoge-
neous term of differential equation given by payoff; C: inhomogeneous term given by �w.:; ���1/

This is a second-order ordinary differential equation for w.S; ��/, with boundary
conditions for Sf.��/ and S ! 1. The solution is obtained analytically, similar as
in Exercise 4.7. Hence there is no discretization error in S-direction. The right-hand
function �w.S; ���1/ is known, and is an inhomogeneous term of the ODE.

The resulting analytic method of lines is carried out in [66]. The above describes
the basic idea. A complication arises from the early-exercise curve, which separates
each of the parallel lines into two parts. Since for the previous line ���1 the
separation point lies more “on the right” (recall that for a put the curve Sf.�/

is monotonically decreasing for growing �), the inhomogeneous term w.�; ���1/

consists of two parts as well, but separated differently (see Fig. 4.18). Accordingly,
neglecting for the moment the input of previous lines ���2; ���3; : : :, the analytic
solution of (4.73) for the line �� consists of three parts, defined on the three intervals

A: 0 < S < Sf.��/ ;

B: Sf.��/ � S < Sf.���1/ ;

C: Sf.���1/ � S :

On the left-hand interval A, w equals the payoff; nothing needs to be calculated.
For the middle interval B the inhomogeneous term �w.:; ���1/ is given by the
payoff. Since the analytic solution involves two integration constants, and since the
inhomogeneous terms differ on the intervals B and C, we encounter together with
the unknown Sf.��/ five unknown parameters. One of the integration constants is
zero because of the boundary condition for S ! 1, similar as in Exercise 4.7. The
unknown separation point Sf.��/ is again fixed by the high-contact conditions (4.34).
Two remaining conditions are given by the requirement that both w and dw

dS are
continuous at the matching point Sf.���1/. This fixes all variables for the line �� .

Over all lines, �max type-B intervals are involved, and the only remaining type-C
interval is that for S � Sf.�0/ D K. The resulting formulas are somewhat complex,
for details see [66]. The method is used along with extrapolation. To this end, carry
out the method three times, with �max D 1; 2; 3, and denote the results V1; V2; V3.
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Then the three-point extrapolation formula

V WD 1

2
. 9V3 � 8V2 C V1 / (4.74)

gives rather accurate results.
The method of lines can be carried out numerically [273]. For lines parallel to

the t-axis, see Exercise 4.3 and Fig. 4.21.

4.8.4 Integral-Equation Method

Recall for European put options the integral representation (1.66)

VEur
P .S; �/ D e�r�

Z 1

0

.K � ST/C fGBM.ST ; � I S; r � ı; �/ dST ;

where � WD T � t denotes the remaining time to expiration, and fGBM is the density
function from (1.64). Solving this integral one arrives at the Black–Scholes formula.
We repeat from (4.53) the two functions (here with constant dividend yield rate
ı � 0),

d1.S; � I K/ WD
log S

K C
	

r � ı C �2

2



�

�
p

�
; d2.S; � I K/ WD d1 � �

p
� ; (4.75)

for � > 0. With d1, d2 evaluated at S; �; K, recall

VEur
P .S; �/ D �Se�ı� F.�d1/ C Ke�r� F.�d2/ ;

where F denotes the standard normal cumulative distribution. (See also
Appendix A.4.) Further recall from (4.59) the early-exercise premium p, with

VAm
P .S; �/ D VEur

P .S; �/ C p.S; �/ :

As suggested by [222] and others, the premium function p can be represented as
an integral over functions depending on the free boundary Sf. The result is

VAm
P .S; �/ D VEur

P .S; �/C
C
Z �

0

Œ rKe�r�F.�d2.S; �I Sf.� � �///

�ıSe�ı�F.�d1.S; �I Sf.� � �/// � d� :

(4.76)
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The integral is identical to

Z �

0

Œ rKe�r.���/F.�d2.S; � � �I Sf.�///

�ıSe�ı.���/F.�d1.S; � � �I Sf.�/// � d� :

(4.77)

4.8.4.1 Integral Equation for Sf

Substitute V.Sf.�/; �/ D K � Sf.�/ into (4.76) and obtain

K � Sf.�/ D � Sf.�/ e�ı� F.�d1.Sf.�/; � I K//

C Ke�r� F.�d2.Sf.�/; � I K//

C
Z �

0

Œ rKe�r� F.�d2.Sf.�/; �I Sf.� � �///

�ıSf.�/ e�ı� F.�d1.Sf.�/; �I Sf.� � �/// � d� :

(4.78)

This constitutes an integral equation for the free-boundary function (early-exercise
curve) Sf.�/ of an American put.

4.8.4.2 Numerical Solution of the Integral Equation

We denote the integrand in (4.78) by g.Sf.�/; Sf.� � �/; �/ (�! Exercise 4.19). So
the integral equation reads

K � Sf.�/ D VEur
P .Sf.�/; �/ C

Z �

0

g.Sf.�/; Sf.� � �/; �/ d� :

Let the �-interval be subdivided by discrete �� into M subintervals, with �0 D 0,
�M D � , and with equidistant steps �� D �=M, and �� D ��� . The numerical
treatment resembles that for ODE initial-value problems. Basically the integral is
approximated by a composite trapezoidal sum (C.2). Note from Appendix A.5 that
Sf.�/ for � ! 0C is known,

Sf0 WD lim
�!0C

Sf.�/ D minfK;
r

ı
Kg :

We use the notation Sf� WD Sf.��/. Specifically for �1, the integral and (4.78) can be
approximated by the trapezoidal rule

K � Sf1 D VEur
P .Sf1; �1/ C ��

2
Œg.Sf1; Sf1; �0/ C g.Sf1; Sf0; �1/� ; (4.79)
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which is solved iteratively for its only unknown Sf1 by any root-finding procedure.
After Sf1 is calculated to sufficient accuracy, the next equation is

K � Sf2 D VEur
P .Sf2; �2/

C ��

2
Œg.Sf2; Sf2; �0/ C 2g.Sf2; Sf1; �1/ C g.Sf2; Sf0; �2/� ;

which is solved for Sf2. In this way, the composite trapezoidal sum builds up until
we reach the final iteration for SfM . So, recursively for k D 2; : : : ; M solve

K � Sfk D VEur
P .Sfk; �k/C

C��

2

"

g.Sfk; Sfk; �0/ C 2

k�1X

�D1

g.Sfk; Sf.k��/; ��/ C g.Sfk; Sf0; �k/

#
(4.80)

for Sfk. This recursion is run for � D T to obtain values for t D 0.
The iterative solution of the above nonlinear equations [as (4.79), (4.80)] can be

done, for example, by the secant method (C.5). The error control of the integral-
equation method represented by (4.80) involves the discretization error of the
trapezoidal sum as well as the error remaining when the secant iteration is stopped.
Recall that the secant method requires two reasonable initial guesses. Alternatively,
we recommend the highly robust bisection method. There is ample opportunity to
test various strategies (�! Exercise 4.20).

4.8.4.3 Evaluation of the Premium

Now, the free boundary Sf is approximated by the chain of points

.�0; Sf0/; .�1; Sf1/; : : : ; .�M; SfM/ :

Based on this approximation, the evaluation of (4.76) is a simple task. Apply the
analogous trapezoidal sum with the same discretization to approximate V.S; �/ for
� D �M:

V.S; �/ � VEur
P .S; �/ C

C��

2
Œg.S; SfM; 0/ C 2

M�1X

�D1

g.S; Sf.M��/; ��/ C g.S; Sf0; �/� :
(4.81)

The evaluation of (4.81) does not need any further iteration and is much cheaper
than the preceding recursion (4.80).
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4.8.4.4 Calculation of the Greeks

The same holds true for evaluating greeks. After calculating the partial derivatives
of (4.76), one obtains corresponding formulas for the greeks. For example, delta is
given by the formula

�Am
P D �e�ı� F.�d1/ �

Z �

0

g�
P d�

for a function g�
P defined below. The calculation works as simply as in (4.81); the

free boundary Sf is not calculated again. And similarly, other greeks are obtained,
both for put and call. The resulting formulas are given in [190]. With the version
of (4.77), and d1 evaluated at the arguments .S; � � �; Sf.�//,

g�
P D ıe�ı.���/ F.�d1.S; � � �; Sf.�/// C e�d2

1=2

p
2


e�ı.���/ rK � ıSf.�/

�Sf.�/
p

� � �
:

For these arguments and � ! � , jd1j is getting infinite, and

g�
P D

(
0 for S > Sf ;

ı for S < Sf :

4.8.5 Other Methods

The early-exercise curve Sf.�/ can be approximated by pieces of exponential
functions

B exp.b�/ for �1 � � � �2 ;

for parameters B; b and suitable intervals for � . Substituting this expression for
Sf.�/ into d1 and d2 in (4.76) leads to the observation that the integrals can be
evaluated analytically in terms of the distribution function F. The parameters B; b
are determined such that the high-contact boundary-condition condition is satisfied.
Depending on the number of pieces of exponential functions, a good approximation
of (4.76) is obtained. This is the method of [208]. The accuracy of the highly
efficient three-piece approximation corresponds to that of the integral-equation
method with about M D 100 subintervals.

[56] establishes LUBA, an analytic method for American calls. The derivation
is beyond the scope of this textbook, but is worth at least a brief sketch because
of its striking computational power. The method starts from a capped call, which
is basically a vanilla European call, with the exception that for t < T the
option is exercised at the first time t such that St reaches the cap. The price
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of the capped call can be replicated with two barrier options. Their analytical
formulas constitute a lower bound LB on the option. This in turn, via the integral
representation (4.76) lends to an upper bound UB. Then LB and UB are interpolated
with a regression ansatz comparable to the interpolation of Sect. 4.8.1. The resulting
specific approximation of [56] is called LUBA, which stands for lower upper bound
approximation.

4.9 Criteria for Comparisons

In this chapter, we have learned about the basic structure of finite-difference
methods, and we have studied several analytic approaches. How do these methods
compare? As we shall see, this question is difficult to answer. There are several
criteria to judge the performance of a computational method. The criteria include
reliability, range of applicability, amount of information provided by the method,
and speed, and error. Speed and error are relatively easy to compare, and we shall
concentrate on these two criteria.

For the computational arena, we need to define a set of test examples, based on
which we have to calculate a benchmark in high accuracy. Results of any chosen
method will be compared to the benchmark. To measure the deviation, a suitable
error must be defined. This Sect. 4.9 roughly sketches the steps of a comparison.

4.9.1 Set of Test Examples

We concentrate on the valuation of plain-vanilla options. This restriction to vanillas
has the advantage that all kind of numerical methods are applicable and can be
compared. And we confine ourselves to the valuation of American put options. The
parameters K; S; T; �; r; ı are chosen

• K D 100

• S 2 f90; 100; 110; 150g
• T 2 f0:5; 1; 2g
• � 2 f0:1; 0:3; 0:5g
• r 2 f0:05; 0:1g for ı D 0; r 2 f0:15; 0:2g for ı D 0:1

Altogether these are 72 combinations with dividend rate ı D 0 and as many for
ı D 0:1. But for � D 0:1, in 12 of these cases, either

V.S; 0/ � 0 or V.S; 0/ D payoff
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occurs. In these cases, a relative error is meaningless, or nothing is to be calculated.
Hence we remove theses 12 cases .� D 0:1; S D 90; S D 150/. The remaining 60
parameter combinations were organized into two files.15

For each set of parameters we calculated V.S; 0/ with rather high accuracy (7–8
decimal digits). To this end, we applied as reference method an extrapolation based
on finite-difference approximations, as suggested in Sect. 4.7.2. The obtained values
complete the benchmark files. Any method can be compared to the benchmark as
long as its relative error is not smaller than 10�6.

4.9.2 Measure of the Error

To measure performances, we calculate the root mean square relative error

RMS WD
vu
u
t 1

60

60X

iD1

�
Vi � Vi

Vi

�2

: (4.82)

Here Vi denotes the “accurate” benchmark value of the ith parameter combination,
and Vi denotes the value calculated with the method whose performance is to be
measured.

4.9.3 Arena of Competing Methods

We have chosen the following prototypical methods:

B-M: binomial method with M time steps, Algorithm 1.4,
M D 12; 25; 50; : : : ; 1600;

FD-BS-M: finite differences Brennan–Schwartz, Algorithm 4.15,
with M WD m D �max, M D 200; 400; : : : ; 6400;

J: Johnson’s interpolation, Algorithm 4.17;
Q: quadratic approximation, Algorithm 4.18;
I-M: integral-equation method with M subintervals, Sect. 4.8.4,

M D 50; 100; : : : ; 3200;
FD-BS-ex: version of FD-BS with two solutions with M and M=2

and extrapolation.

Keep in mind that the above methods provide different amount of information; in
some sense we compare apples with oranges. The integer M represents a fineness of

15The files BENCHMARK00 for ı D 0 and BENCHMARK01 for ı D 0:1 can be found on www.
compfin.de.

www.compfin.de
www.compfin.de


4.9 Criteria for Comparisons 243

Fig. 4.19 Computing times and RMS errors of several methods, see the text. Points mark
calculated RMS errors; corresponding points are connected by lines

discretization, which is consecutively doubled for clarity of exposition. Computing
times in Fig. 4.19 report the time in seconds needed to valuate all of the 60 options
for ı D 0; overhead is subtracted.16 The log scaling in Fig. 4.19 is most practical
(�! Exercise 4.21). For the versions with shortest computing time (J), the time is
hardly measurable, which is indicated by a bar of likely computing times.

In Fig. 4.19, the accuracy orders of the various methods can not be seen
directly. The convergence rate would become apparent in case the absolute error is
depicted over the grid size. Such a figure reveals the first-order convergence of the
binomial method and the integral-equation method, and essentially a second-order
convergence of the finite-difference method.

16All of the above methods were implemented in FORTRAN (F90 compiler) and run on a DS20
processor.
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4.9.4 Preliminary Results

In the sense of Pareto optimization, smaller values in Fig. 4.19 are preferred to
larger ones. Entries in the lower left part of the figure refer to methods with
higher efficiency. The Pareto frontier in this figure is largely dominated by the
binomial method (B). This holds at least for medium demands for accuracy. Both
the analytic methods (J) and (Q) do not need the evaluation of the the Black–
Scholes formula and hence p, log, exp in full accuracy. So their evaluation can
be accelerated. Hence, for low accuracy, Johnson’s interpolation method (J) and the
quadratic approximation (Q) are competitive. This is not clear from the figure, where
unnecessary accuracy of the underlying Black–Scholes formula falsely suggests that
the quadratic approximation (Q) is dominated by the binomial method. For high
demands for accuracy, the finite-difference method is competitive. The basic version
of the binomial method dominates the basic version of the integral-equation method
(I). The aspect of convergence applies to FD, B, I, but not to the fixed accuracy of
Q, J. This may be seen as distinction between a numerical method and an analytic
method.

4.9.5 Outlook

The above observations should not be considered as definite recommendations. It
is important to realize that the conclusions refer to speed and RMS error only.
Several aspects are neglected and lacking. For example, the finite-difference method
calculates the surface of the value function V.S; t/, and provides more information
than the binomial method. Or, the integral-equation method allows to calculate
the greeks more effectively, and approximates the early-exercise curve very well
(B does not). The above has selected one representative method of important
classes of methods. These basic versions are implemented and compared. There are
more efficient methods not shown in Fig. 4.19. For example, LUBA has shown to
dominate the methods with comparable accuracy. Neither the highly efficient front-
fixing methods are shown, nor the improvement [175] of the integral method, nor
the fast approximation by exponential pieces. Improvements differ in the degree of
speedup. Further, storage requirements are not taken into account. Implementation
details do matter! And applied to a specific type of exotic option, the prototype
methods chosen for Fig. 4.19 may behave and compare differently. Monte Carlo
methods are not included at all, because their merits are beyond vanilla options. So
the conclusions of this section aim at basic principles. They are tentative, and not
comprehensive. We do not answer the question, what might be the “best” method
for a particular application. For early comparisons, see [4, 56, 57, 211]. More recent
developments have not been compared.
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4.10 Notes and Comments

On Sect. 4.1

General references on numerical PDEs include [80, 281, 341, 356, 369]. A special
solution of (4.2) is

y.x; �/ D 1

2
p


�
exp

�
� x2

4�

�
:

For small values of � , the transformation (4.3) may take bad values in the argument
of the exponential function because qı can be too large. The result will be an
overflow. In such a situation, the transformation

� WD 1
2
�2.T � t/

x WD log
�

S
K

�C
	

r � ı � �2

2



.T � t/

y.x; �/ WD e�rtV.S; t/

can be used as alternative [28]. Again (4.2) results, but initial conditions and
boundary conditions must be adapted appropriately (see also Appendix A.6). The
equations also hold for options on foreign currencies. Then ı represents the foreign
interest rate. As will be seen in Sect. 6.4, the quantities q and qı are basically the
Péclet number. It turns out that large values of the Péclet number are a general source
of difficulties. For other transformations see [381]. Well-posed means the existence
of a unique solution that depends continuously on the data.

For the valuation of American options in case of discrete dividend payments
there is a big difference between call and put. A call is exercised immediately prior
to the dividend date, provided some analytically known criteria are satisfied [234].
In contrast, a put must be calculated numerically. By arbitrage reasons, the stock
price jumps at the ex-dividend date tD,

S
tCD

D St�D � D ;

where D is the net amount paid at tD. The price Vt of the put does not jump along the
path St because the option’s holder has no benefit from the payment. This continuity
of V.St; t/ can be written

V.S; t�D/ D V.S � D; tCD / ;

which amounts to a jump in the value function V.S; t/ at tD.17 For a numerical
implementation, place a node t� at tD, interrupt the integration of the PDE at tD, and

17For tree methods, dividends are discussed in Appendix D.2.
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apply interpolation to evaluate V at Si � D in case this is not a node. Then the PDE
is applied again. For a method-of-lines approach see [273]. Exercise 4.1b provides
some insight into the early-exercise structure. For tD < t < T the early-exercise
curve is that of a non-dividend paying stock [27, 292].

On Sect. 4.2

We follow the notation wi;� for the approximation at the node .xi; ��/, to stress the
surface character of the solution y over a two-dimensional domain. In the literature
a frequent notation is w�

i , which emphasizes the different character of the space
variable (here x) and the time variable (here �). Our vectors w.�/ with components
w.�/

i come close to this convention.
Finite differences work for nonuniform meshes as well. Then formally the

discretization errors are of first order only. But under mild assumptions on a slowly
varying mesh, second-order accuracy can be obtained [257].

Summarizing the Black–Scholes equation to

@V

@t
C LBS.V/ D 0 (4.83)

where LBS represents the other terms of the equation, see Sect. 4.5.3, motivates an
interpretation of the finite-difference schemes in the light of numerical ODEs. There
the forward approach is known as explicit Euler method and the backward approach
as implicit Euler method. The explicit scheme corresponds to the trinomial-tree
method mentioned in Sect. 1.4 [191].

On Sect. 4.3

Crank and Nicolson suggested their approach in 1947 [91]. Theorem 4.4 discusses
three main principles of numerical analysis, namely, order of convergence, stability,
and efficiency. A Crank–Nicolson variant has been developed that is consistent with
the volatility smile, which reflects the dependence of the volatility on the strike [10].

In view of the representation (4.20) the Crank–Nicolson approach corresponds
to the ODE trapezoidal rule. Following these lines suggests to apply other ODE
approaches, some of which lead to methods that relate more than two time
levels. In particular, the backward difference formula BDF (4.11) is of interest,
which evaluates L at one time level only. Using formula (4.11) for the time
discretization, a three-term recursion involving w.�C1/, w.�/, w.��1/ replaces the two-
term recursion (4.24) (�! Exercise 4.3). But multistep methods such as BDF may
suffer from the lack of smoothness at the exercise boundary. This effect is mollified
when the inequality is tackled by a penalty term. But even then it is interesting
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to consider other alternatives with better stability properties than Crank–Nicolson.
Crank–Nicolson is A-stable, several other methods are L-stable, which better damp
out high-frequency oscillation, see [71, 194, 221]. For numerical ODEs we refer to
[165, 236]. From the ODE analysis circumstances are known where the implicit
Euler method behaves superior to the trapezoidal rule. The latter method may
show a slowly damped oscillating error. Accordingly, in several PDE situations the
fully implicit method of Sect. 4.2.5 behaves better than the Crank–Nicolson method
[310, 386].

On Sect. 4.4

The boundary condition VC.0; t/ D 0 in (4.26) can be shown independently of
any underlying model [269]. If European options are evaluated via the analytic
formulas (A.15)–(A.17), the boundary conditions in (4.28) are of no practical
interest. When boundary conditions are not clear, it sometimes helps to set VSS D 0

(or yxx D 0), which amounts to assume linear behavior. See [353] for a discussion,
and for the effect of boundary conditions on accuracy and stability. For bounds
on the error caused by truncating the infinite x- or S-interval, see [214]. Boundary
conditions for a term structure equation are discussed in [117].

On Sect. 4.5

For a proof of the Black–Scholes inequality, see [237, p. 111]. The obstacle problem
in this chapter is described following [376]. Also the smooth pasting argument of
Exercise 4.6 is based on that work. For other arguments concerning smooth pasting
see [277], and [234], where you find a discussion of Sf.t/, and of the behavior of this
curve for t ! T. There are several different possibilities to implement boundary
conditions at xmin, xmax, see [353, p. 122]. The accuracy can be improved with
artificial boundary conditions [169]. For direct methods, see also [99, 194]. Front-
fixing goes back to Landau 1950, see [90]. For front-fixing applications to finance,
consult, for example, [188, 288, 381], and the comments on Sect. 4.7.

The general definition of a linear complementarity problem is

AB D 0 ; A � 0 ; B � 0 ;

where A and B are abbreviations of more complex expressions. This can be also
written

min.A;B/ D 0 :

A general reference on free boundaries and on linear complementarity is [119].
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Fig. 4.20 .S; t/-plane. Approximations of an early-exercise curve of an American put (T D 1,
� D 0:3, K D 10); green: raw data out of an finite-difference approximation, red: asymptotic
behavior for t � T. The asymptotic curve is valid only close to the strike K, much smaller than
shown here

Figure 4.20 shows a detail of approximations to an early-exercise curve. The
finite-difference calculated points are connected by straight lines. The figure also
shows a local approximation valid close to maturity: For t < T and t ! T, the
asymptotic behavior of Sf can be approximated by, for example,

Sf.t/ � K
	
1 � �

p
.t � T/ log.T � t/




for an American put without dividends [22, 282]. For other asymptotic formulas,
see [74, 75, 158]. Recall from the notes on Sect. 4.1 that discrete dividend payments
change the early-exercise curve [273]; see also Appendix D.2.

For a proof of the high-contact condition or smooth-pasting principle see [277],
p.114. For a discussion of the smoothness of the free boundary Sf see [282] and the
references therein.
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On Sect. 4.6

By choosing the � in (4.41) one fixes at which position along the time axis the
second-order spatial derivatives are focused. With

� D 1

2
� 1

12

�x2

��

a scheme results that is fourth-order accurate in x-direction. The application on
American options requires careful compensation of the discontinuities [265]. One
possibility of a variable ��-time stepping is to set the nodes

�� WD �max
�2

�2
max

;

suggested by [188].
Based on the experience of this author, an optimal choice of the relaxation

parameter !R for the iterative variant in Algorithm 4.14 can not be given. The simple
strategy !R D 1 appears recommendable. The method of Brennan and Schwartz has
been analyzed in [201]. The formulation of Problem 4.12 reminds of the dynamic
programming principle of (1.69).

On Sect. 4.7

Since the accuracy of the results is not easily guaranteed, it does seem advisable
to hesitate before exposing wealth to a chance of loss or damage. After having
implemented a finite-difference algorithm it may be recommendable to compare
the results with those obtained by means of other algorithms.18 The lacking
smoothness of solutions near .S; t/ � .K; T/ due to the nonsmooth payoff can
be largely improved by solving for the difference function VAm

P .S; �/ � VEur
P .S; �/,

see also Sect. 4.8.2. The lacking smoothness along the early-exercise curve can be
diminished by using a front-fixing approach, which can be applied to the above
difference. But one mast pay a price. Note that the nonlinearity has entered the
front-fixing equation (4.86) (�! Exercise 4.8). The success of the front-fixing
approach depends on whether the corresponding root-finding iteration finds a
solution. Further, in our experience the lack of smoothness is only hidden and might
lead to instabilities, such as oscillations in the early-exercise curve. A transformation
such as log.S=Sf/ does not lead to constant coefficients because one of the factors
depends on the early-exercise curve. The alternative front-fixing approach of [188]

18As already mentioned in Sect. 4.7, the risk of having chosen an inappropriate model is mostly
larger than the risk of inaccurate digits.



250 4 Standard Methods for Standard Options

first applies the transformation S D Kex; � D T � t. Then the infinite .x; �/-strip is
truncated to a finite domain by the function a.�/ WD xf.�/ � L for large enough jLj
(L > 0 for a put, L < 0 for a call), where xf.�/ WD log.Sf.T � �/=K/ denotes the
transformed early-exercise curve. The final boundary-value problem localized on a
rectangle is obtained by transforming the independent variable x to z WD x � a.�/

(for a put). Front-fixing approaches have shown to be highly efficient.
The question how accurate different methods are has become a major concern

in recent research; see for instance [83]. Clearly one compares a finite-difference
European option with the analytic formulas (A.15)/(A.17). The latter are to be
preferred, except the surface V.S; t/ is the ultimate object. The correctness of codes
can be checked by testing the validity of symmetry relations (A.23).

Greeks such as deltaD @V
@S can be calculated accurately by solving specific PDEs

that are derived from the Black–Scholes equation by differentiating. But delta can
be approximated easily based on the a calculated approximation of V . To this end,
calculate an interpolating Lagrange polynomial L.S/ on the line t D 0 based on
three to five neighboring nodes (Appendix C.1), and take the derivative L0.S/.

We have introduced finite differences mainly in view of calculating standard
American options. For exotic options PDEs occur, the solutions of which depend
on three or more independent variables [21, 353, 376]; see also Chap. 6.

On Sect. 4.8

There are many analytic methods. For example, a binomial tree with a fixed
number of nodes can be considered as analytic method. Classic approaches include
[63, 150]. Seydel [338] suggests to analyze the attainable accuracy beforehand,
depending on the parameters of options, for example, for the interpolation method.
The quadratic approximation method has been extended to the more general
situation of commodity options, where the cost of carry is involved [26], and
a more ambitious initial guess is constructed. Integral representations are based
on an inhomogeneous differential equation as that in Sect. 4.5.3. Kim’s integral
representation (4.76) can be derived via Mellin’s transformation [294], or via
Duhamel’s principle [234], see also [202]. A condition number is derived by [174].
For implementations and improvements, see [175, 211]. The exponential function
has been used for approximating the early-exercise curve already in [292]. There
are other approaches with integral equations. From the Black–Scholes equation and
the high-contact condition we recommend to derive

@VP.Sf.t/; t/

@t
D 0 :

This equation enables an effective construction of the the early-exercise curve [74,
75].
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On Other Methods

Here we give a few hints on methods neither belonging to this chapter on finite
differences, nor to Chaps. 5 or 6. General hints can be found in [321], in particular
with the references of [57]. Closely related to linear complementarity problems
are minimization methods. An efficient realization by means of methods of linear
optimization is suggested in [98]. The uniform grid can only be the first step toward
more flexible approaches, such as the finite elements to be introduced in Chap. 5.
For grid stretching and coordinate transformations see [197, 240]. Spectral methods
have shown to be highly efficient, consult [381]. For penalty methods we refer
to [133, 288], and to Sect. 6.7. Another possibility to enhance the power of finite
differences is the multigrid approach; for general expositions see [161, 364]; for
application to finance see [81, 293]. An irregular grid based on Sobol points is
suggested in [36].

4.11 Exercises

4.1 (Discrete Dividend Payment)
Assume that a stock pays one dividend D at ex-dividend date tD, with 0 < tD < T.

(a) Calculate a corresponding continuous dividend rate ı under the assumptions

PS D �ıS ; S.T/ D S.0/ � D > 0 :

(b) Define for an American put with strike K

Qt WD tD � 1

r
log

�
D

K
C 1

�
:

Assume r > 0; D > 0, and a time instant t in Qt < t < tD. Argue that instead of
exercising early it is reasonable to wait for the dividend.
Note: For Qt > 0, depending on S, early exercise may be reasonable for 0 � t < Qt.

4.2 (Stability of the Fully Implicit Method)
The backward-difference method is defined via the solution of the Eq. (4.18)/(4.19).
Prove the stability.
Hint: Use the results of Sect. 4.2.4 and w.�/ D A�1w.��1/.

4.3 (Semidiscretization, Method of Lines)
For a semidiscretization of the Black–Scholes equation (1.5) consider the semidis-
cretized domain

0 � t � T ; S D Si WD i�S ; �S WD Smax

m
; i D 0; 1; : : : ; m
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Fig. 4.21 V over .S; t/; method of lines for a binary call option, compare Exercise 4.3 (K D
10; T D 1; r D 0:06; ı D 0; � D 0:3). With kind permission of Miriam Weingarten

for suitable values of Smax > K and m. On this set of lines parallel to the t-axis define
for � WD T � t and 1 � i � m � 1 functions wi.�/ as approximation to V.Si; �/.

(a) Using the standard second-order difference schemes of Sect. 4.2.1, derive the
ODE system Pw D Bw that up to boundary conditions approximates (1.5). Here
w is the vector .w1; : : : ; wm�1/tr and Pw denotes differentiation w.r.t. � . Show
that B is a tridiagonal matrix, and calculate its coefficients.

(b) For a European option assume Dirichlet boundary conditions for w0.�/ and
wm.�/ and set up a vector c such that

Pw D Bw C c (4.84)

realizes the ODE system with correct boundary conditions, and with initial
conditions taken from the payoff.

(c) Use the BDF formula (4.11) of Sect. 4.2.1, and implement this scheme for the
initial-value problem with (4.84) and a European call option. (See Fig. 4.21 for
an illustration.)

4.4 (Crank–Nicolson Order)
Let the function y.x; �/ solve the equation

y� D yxx
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and be sufficiently smooth. With the difference quotient

ıxxwi;� WD wiC1;� � 2wi;� C wi�1;�

�x2

the local discretization error  of the Crank–Nicolson method is defined

 WD yi;�C1 � yi;�

��
� 1

2
.ıxxyi;� C ıxxyi;�C1/ :

Show

 D O.��2/ C O.�x2/ :

4.5 (Boundary Conditions of a European Call)
Show that under the transformation (4.3)

Se�ı.T�t/ � Ke�r.T�t/ D
exp

n x

2
.qı C 1/ C �

4
.qı C 1/2

o
� exp

n x

2
.qı � 1/ C �

4
.qı � 1/2

o

holds, and prove (4.28).
Hints: Either transform the Black–Scholes equation (4.1) with

S WD NS exp.ı.T � t//

into a dividend-free version to obtain the dividend version of (4.27), or apply the
dividend version (A.16) of the put-call parity.

4.6 (Smooth Pasting of the American Put)
Suppose a portfolio consists of an American put and the corresponding underlying.
Hence the value of the portfolio is ˘ WD VAm

P C S, where S satisfies the SDE (1.47).
Sf is the value for which we have high contact, compare (4.31).

(a) Show that

d˘ D

8
<̂

:̂

0 for S < Sf�
@VAm

P

@S
C 1

�
�S dW C O.dt/ for S > Sf :

(b) Use this to argue

@VAm
P

@S
.Sf.t/; t/ D �1 :
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Hint: Use dS > 0 ) dW > 0 for small dt. Assume @V
@S > �1 and construct an

arbitrage strategy for dS > 0.

4.7 (Perpetual Put Option)
For T ! 1 it is sufficient to analyze the ODE

�2

2
S2 d2V

dS2
C .r � ı/S

dV

dS
� rV D 0 :

Consider an American put contacting the payoff .K � S/C at S D ˛ < K. Show:

(a) Upon substituting the boundary condition for S ! 1 one obtains

V.S/ D c

�
S

K

�	2

; (4.85)

where 	2 D 1
2

	
1 � qı �p

.qı � 1/2 C 4q



, q D 2r
�2 , qı D 2.r�ı/

�2 and c is

a positive constant. Fix c by using the left-hand boundary V.˛/ D K � ˛.
Hint: Apply the transformation S D Kex. (The other root 	1 drops out.)

(b) V is decreasing and convex.

For S < ˛ the option is exercised; then its intrinsic value is K � S. For S > ˛ the
option is not exercised and has a value V.S/ > K � S. The holder of the option
decides when to exercise. This means, the holder makes a decision on the contact
S D ˛ such that the value of the option becomes maximal [269].

(c) Show: V 0.˛0/ D �1, if ˛0 maximizes the value of the option.

4.8 (Front-Fixing for American Options)
Apply the transformation

� WD S

Sf.t/
; y.�; t/ WD V.S; t/

to the Black–Scholes equation (4.1).

(a) Show

@y

@t
C �2

2
�2 @2y

@�2
C �

.r � ı/ � 1

Sf

dSf

dt

�
�

@y

@�
� ry D 0 : (4.86)

(b) Set up the domain for .�; t/ and formulate the boundary conditions for an
American call. (Assume ı > 0.)

(c) (Project) Set up a finite-difference scheme to solve boundary-value problem
derived above. The curve Sf.t/ is implicitly defined by the PDE (4.86), with
final value Sf.T/ D max.K; r

ı
K/.
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4.9 (Boundary Conditions of American Options)
Show that the boundary conditions of American options satisfy

lim
x!˙1 y.x; �/ D lim

x!˙1 g.x; �/ ;

where g is defined in Problem 4.7.

4.10 (Gauss–Seidel Method as Special Case of SOR)
Let the n � n matrix A D .aij/ be partitioned additively into A D D � L � U, with
D diagonal matrix, L strict lower triangular matrix, U strict upper triangular matrix,
x 2 Rn, b 2 Rn. The Gauss–Seidel method is defined by

.D � L/x.k/ D Ux.k�1/ C b

for k D 1; 2; : : :. Show that with

r.k/
i WD bi �

i�1X

jD1

aijx
.k/
j �

nX

jDi

aijx
.k�1/
j

and for !R D 1 the relation

x.k/
i D x.k�1/

i C !R
r.k/

i

aii

holds. For general 1 < !R < 2 this defines the SOR (successive overrelaxation)
method.

4.11 (Brennan–Schwartz Algorithm)
Let A be a tridiagonal matrix as in (C.6), and b and g vectors. The system of
equations Aw D b is to be solved such that the side condition w � g is obeyed
componentwise. Assume for the case of a put wi D gi for 1 � i � if and wi > gi for
if < i � n, where if is unknown.

(a) Formulate an algorithm similar as Algorithm C.3 that solves Aw D b in the
backward/forward approach. In the final forward loop, for each i the calculated
candidate Qwi is tested for wi � gi: Set wi WD maxf Qwi; gig .

(b) Apply the algorithm to the case of a put with A; b; g from Sect. 4.6.1. For
the case of a call adapt the forward/backward Algorithm C.3. Incorporate this
approach into Algorithm 4.14.

4.12 (American Call)
Formulate the analogue of Algorithm 4.13 for the case of a call.

4.13
Implement Algorithms 4.14 and 4.15.
Test example: Example 1.6 and others.
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4.14 (Approximating the Free Boundary)
Assume that after a finite-difference calculation of an American put three approxi-
mate values V.Si; t/ are available, for a value of t and i D k; k C 1; k C 2. Assume
further an index k such that these three .S; V/-pairs are close to the free boundary
Sf.t/, and inside the continuation region.

(a) Derive an approximation NSf to Sf.t/ based on the available data.
(b) Discuss the error O.NSf � Sf/.

Hints: The derivative @V
@S at Sf is �1. For (b) assume an equidistant spacing of the Si.

4.15 (Extrapolation of Higher Order)
Similar as in Sect. 4.7 assume an error model

�� D �.�/ � �1�
2 � �2�

3

and three calculated values

�1 WD �.�/ ; �2 WD �

�
�

2

�
; �3 WD �

�
�

4

�
:

Show that

�� D 1

21
.�1 � 12�2 C 32�3/ :

4.16 (PDE for the Greek Delta)
Derive a PDE-boundary-value problem for the greek delta � WD @V

@S in case of a
plain-vanilla put.
Hint: Differentiate the Black-Scholes equation, its terminal condition, and its
boundary conditions with respect to S.

4.17

(a) Derive (4.63).
(b) Derive (4.70).

4.18 (Analytic Method for the American Put)
(Project) Implement both the Algorithm 4.17 and Algorithm 4.18. For
Algorithm 4.18 choose as initial guess the average of the strike and the lower
bound (A.21). A secant method (C.5) is a good choice for the iteration. Think of
how to combine Algorithms 4.17 and 4.18 into a hybrid algorithm.

4.19 Consider the functions d1 and d2 of (4.75). For the three cases S < Sf.�/,
S D Sf.�/, S > Sf.�/, calculate the limit for � ! 0C of

rKe�r� F.�d2.S; �I Sf.� � �/// � ıSf.�/ e�ı� F.�d1.S; �I Sf.� � �/// :
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4.20
Implement Kim’s integral-equation method (Sect. 4.8.4).

4.21 (Complexity)
With n underlyings and time t an option problem comprises n C 1 independent
variables. Assume that we discretize each of the n C 1 axes with M grid points, then
MnC1 nodes are involved. Hence the complexity C of the n-factor model is

C WD O.MnC1/ ;

which amounts to an exponential growth with the dimension, nicknamed curse of
dimension. Depending on the chosen method, the error E is of the order M�`,

E WD O

�
1

M`

�
:

Argue

log C D �n C 1

`
log E C �

for a method-dependent constant � .


	4 Standard Methods for Standard Options
	4.1 Preparations
	4.2 Foundations of Finite-Difference Methods
	4.2.1 Difference Approximation
	4.2.2 The Grid
	4.2.3 Explicit Method
	4.2.4 Stability
	4.2.5 An Implicit Method

	4.3 Crank–Nicolson Method
	4.4 Boundary Conditions
	4.5 Early-Exercise Structure
	4.5.1 Early-Exercise Curve
	4.5.2 Free-Boundary Problem
	4.5.3 Black–Scholes Inequality
	4.5.4 Penalty Formulation
	4.5.5 Obstacle Problem
	4.5.6 Linear Complementarity for American Put Options

	4.6 Computation of American Options
	4.6.1 Discretization with Finite Differences
	4.6.2 Reformulation and Analysis of the LCP
	4.6.3 Iterative Procedure for the LCP
	4.6.4 Direct Method for the LCP
	4.6.5 An Algorithm for Calculating American Options
	4.6.5.1 Valuing Options
	4.6.5.2 Modifications
	4.6.5.3 Sensitivities


	4.7 On the Accuracy
	4.7.1 Elementary Error Control
	4.7.2 Extrapolation

	4.8 Analytic Methods
	4.8.1 Approximation Based on Interpolation
	4.8.2 Quadratic Approximation
	4.8.3 Analytic Method of Lines
	4.8.4 Integral-Equation Method
	4.8.4.1 Integral Equation for Sf
	4.8.4.2 Numerical Solution of the Integral Equation
	4.8.4.3 Evaluation of the Premium
	4.8.4.4 Calculation of the Greeks

	4.8.5 Other Methods

	4.9 Criteria for Comparisons
	4.9.1 Set of Test Examples
	4.9.2 Measure of the Error
	4.9.3 Arena of Competing Methods
	4.9.4 Preliminary Results
	4.9.5 Outlook

	4.10 Notes and Comments
	On Sect.4.1
	On Sect.4.2
	On Sect.4.3
	On Sect.4.4
	On Sect.4.5
	On Sect.4.6
	On Sect.4.7
	On Sect.4.8
	On Other Methods

	4.11 Exercises


