
Chapter 2
Generating Random Numbers with Specified
Distributions

Simulation and valuation of finance instruments require numbers with specified
distributions. For example, in Sect. 1.6 we have used numbers Z drawn from a
standard normal distribution, Z � N .0; 1/. If possible the numbers should be
random. But the generation of “random numbers” by digital computers, after all,
is done in a deterministic and entirely predictable way. If this point is to be stressed,
one uses the term pseudo-random.1

Computer-generated random numbers mimic the properties of true random
numbers as much as possible. This is discussed for uniformly distributed random
numbers in Sect. 2.1. Suitable transformations or rejection methods generate sam-
ples from other distributions, in particular, normally distributed numbers (Sects. 2.2
and 2.3). Section 2.3 includes the vector case, where normally distributed numbers
are calculated with prescribed correlation.

Another approach is to dispense with randomness and to generate quasi-random
numbers, which aim at avoiding one disadvantage of random numbers, namely, the
potential lack of equidistributedness. The resulting low-discrepancy numbers will
be discussed in Sect. 2.5. These numbers are used for the deterministic Monte Carlo
integration (Sect. 2.4).

Definition 2.1 (Sample from a Distribution) A sequence of numbers is called a
sample from F if the numbers are independent realizations of a random variable with
distribution function F.
If F is the uniform distribution over the interval Œ0; 1�, then we call the samples
from F uniform deviates (variates), notation � U Œ0; 1�. If F is the standard normal
distribution then we call the samples from F standard normal deviates (variates);
as notation we use � N .0; 1/. The basis of random-number generation is to draw
uniform deviates.

1Since in our context the predictable origin is clear we omit the modifier “pseudo,” and hereafter
use the term “random number.” Similarly we talk about randomness of these numbers when we
mean apparent randomness.
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84 2 Generating Random Numbers with Specified Distributions

2.1 Uniform Deviates

A standard approach to calculate uniform deviates is provided by linear congruential
generators. We concentrate on algorithms that are easy to implement and ready for
experiments.

2.1.1 Linear Congruential Generators

Choose integers M; a; b, with a; b < M, a ¤ 0. For an integer N0 a sequence of
integers Ni is defined by

Algorithm 2.2 (Linear Congruential Generator)

Choose N0 .
For i D 1; 2; : : : calculate

Ni D .aNi�1 C b/ mod M : (2.1)

The modulo congruence N D Y modM between two numbers N and Y is an
equivalence relation [147]. The initial integer N0 is called the seed. Numbers
Ui 2 Œ0; 1/ are defined by

Ui D Ni=M ; (2.2)

and will be taken as uniform deviates. Whether the numbers Ui or Ni are suitable
will depend on the choice ofM; a; b and will be discussed next.

Properties 2.3 (Periodicity)

(a) Ni 2 f0; 1; : : : ;M � 1g
(b) The Ni are periodic with period � M.

(Because there are not M C 1 different Ni. So two in fN0; : : : ;NMg must be
equal, Ni D NiCp with p � M.)

Obviously, some peculiarities must be excluded. For example, N D 0 must be ruled
out in case b D 0, because otherwise Ni D 0 would repeat. In case a D 1 the
generator settles down to Nn D .N0 C nb/ modM. This sequence is predictable too
easily. Various other properties and requirements are discussed in the literature, in
particular in [226]. In case the period isM, the numbers Ui are distributed “evenly”
when exactlyM numbers are needed. Then each grid point on a mesh on [0,1] with
mesh size 1

M is occupied once.
After these observations we start searching for good choices of M; a; b. There

are numerous possible choices with bad properties. For serious computations we
recommend to rely on suggestions of the literature. Press et al. [306] presents a
table of “quick and dirty” generators, for example, M D 244;944, a D 1597,
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b D 51;749. Criteria are needed to decide which of the many possible generators
are recommendable.

2.1.2 Quality of Generators

What are good random numbers? A practical answer is the requirement that the
numbers should meet “all” aims, or rather pass as many tests as possible. The
requirements on good number generators can roughly be divided into three groups.

The first requirement is that of a large period. In view of Property 2.3 the number
M must be as large as possible, because a small set of numbers makes the outcome
easier to predict—a contrast to randomness. This leads to select M close to the
largest integer machine number. But a period p close toM is only achieved if a and
b are chosen properly. Criteria for relations among M; p; a; b have been derived by
number-theoretic arguments. This is outlined in [226, 317]. For 32-bit computers, a
common choice has been M D 231 � 1, a D 16807, b D 0.

A second group of requirements are statistical tests that check whether the
numbers are distributed as intended. The simplest of such tests evaluates the sample
mean O� and the sample variance Os2 (B.11) of the calculated random variates, and
compares to the desired values of � and �2. (Recall � D 1=2 and �2 D 1=12 for the
uniform distribution.) Another simple test is to check correlations. For example, it
would not be desirable if small numbers are likely to be followed by small numbers.

A slightly more involved test checks how well the probability distribution is
approximated. This works for general distributions (�! Exercise 2.1). Here we
briefly summarize an approach for uniform deviates. Calculate j samples from a
random number generator, and investigate how the samples distribute on the unit
interval. To this end, divide the unit interval into subintervals of equal length �U,
and denote by jk the number of samples that fall into the kth subinterval

k�U � U < .k C 1/�U :

Then jk=j should be close the desired probability, which for this setup is �U. Hence
a plot of the quotients

jk
j�U

for all k

against k�U should be a good approximation of 1Œ0;1�, the density of the uniform
distribution. This procedure is just the simplest test; for more ambitious tests,
consult [226].

The third group of tests is to check how well the random numbers distribute
in higher-dimensional spaces. This issue of the lattice structure is discussed next.
We derive a priori analytical results on where the random numbers produced by
Algorithm 2.2 are distributed.
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2.1.3 Random Vectors and Lattice Structure

Random numbers Ni can be arranged in m-tuples .Ni;NiC1; : : : ;NiCm�1/ for i � 1.
Then the tuples or the corresponding points .Ui; : : : ;UiCm�1/ 2 Œ0; 1/m are analyzed
with respect to correlation and distribution. The sequences defined by the generator
of Algorithm 2.2 lie on .m � 1/-dimensional hyperplanes. This statement is trivial
since it holds for the M parallel planes through U D i=M, i D 0; : : : ;M � 1

(any of the m components). But if all points fall on only a small number of
parallel hyperplanes (with large empty gaps in between), then the generator would
be impractical in many applications. Next we analyze the generator whether such
unfavorable planes exist, restricting ourselves to the case m D 2.

For m D 2 the hyperplanes in .Ui�1;Ui/-space are straight lines, and are defined
by z0Ui�1 C z1Ui D �, with parameters z0; z1; �. The modulus operation (2.1) can
be written

Ni D .aNi�1 C b/ modM

D aNi�1 C b � kM for kM � aNi�1 C b < .k C 1/M ;

k an integer, k D k.i/. A side calculation for arbitrary z0; z1 shows

z0Ni�1 C z1Ni D z0Ni�1 C z1.aNi�1 C b � kM/

D Ni�1.z0 C az1/ C z1b � z1kM

D M � fNi�1

z0 C az1

M
� z1k

„ ƒ‚ …

DWc

g C z1b :

We divide by M and obtain the equation of a straight line in the .Ui�1;Ui/-plane,
namely,

z0Ui�1 C z1Ui D c C z1bM
�1 : (2.3)

The points calculated by Algorithm 2.2 lie on these straight lines. To eliminate the
seed we take i > 1. For each tuple .z0; z1/, the Eq. (2.3) defines a family of parallel
straight lines, one for each number out of the finite set of c’s. The question is whether
there exists a tuple .z0; z1/ such that only few of the straight lines cut the square
Œ0; 1/2. In this case wide areas of the square would be free of random points, which
violates the requirement of a “uniform” distribution of the points. The minimum
number of parallel straight lines (hyperplanes) cutting the square, or equivalently
the maximum distance between them, characterizes the worst case and serves as
measure of the equidistributedness. Now we analyze the number of straight lines,
searching for the worst case.
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For analyzing the number of planes, the cardinality of the c matters. To find the
worst case, restrict to integers .z0; z1/ satisfying

z0 C az1 D 0 modM : (2.4)

Then the parameter c is integer. By solving (2.3) for c D z0Ui�1 C z1Ui � z1bM�1

and applying 0 � U < 1 we obtain the maximal interval Ic such that for each integer
c 2 Ic its straight line cuts or touches the square Œ0; 1/2. Count how many such c’s
exist, and there is the information we need. For some constellations of a;M; z0 and
z1 it may be possible that the points .Ui�1;Ui/ lie on very few of these straight lines!

Example 2.4 (Academic Generator) We discuss the generator

Ni D 2Ni�1 mod 11

that is, the parameters are a D 2; b D 0; M D 11. The choice z0 D �2; z1 D 1 is
one tuple satisfying (2.4), and the resulting family (2.3) of straight lines

�2Ui�1 C Ui D c

in the .Ui�1;Ui/-plane is to be discussed. For U 2 Œ0; 1/ the inequality �2 < c < 1

results. In view of (2.4) c is integer and so only the two integers c D �1 and c D 0

remain. The two corresponding straight lines cut the interior of Œ0; 1/2. As Fig. 2.1
illustrates, the points generated by the algorithm form a lattice. All points on the
lattice lie on these two straight lines. The figure lets us discover also other parallel
straight lines such that all points are caught (for other tuples z0; z1). The practical
question is: What is the largest gap? (�! Exercise 2.2)

Example 2.5 Ni D .1229Ni�1 C 1/ mod 2048

The requirement of Eq. (2.4)

z0 C 1229z1

2048
integer

is satisfied by z0 D �1; z1 D 5, because

�1 C 1229 � 5 D 6144 D 3 � 2048 :

For c from (2.3) and Ui 2 Œ0; 1/ we have

�1 � 5

2048
< c < 5 � 5

2048
:



88 2 Generating Random Numbers with Specified Distributions
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Fig. 2.1 The points .Ui�1;Ui/ of Example 2.4

Hence c 2 f�1; 0; 1; 2; 3; 4g, and all points .Ui�1;Ui/ in Œ0; 1/2 lie on only six
straight lines, see Fig. 2.2. On the “lowest” straight line .c D �1/ there is only
one point. The distance between straight lines measured along the vertical Ui–axis
is 1

z1
D 1

5
. Obviously, the .Ui�1;Ui/-points are by far not equidistributed on the

square, although the positions Ui appear uniformly distributed on the line.2

Higher-dimensional vectors .m > 2) are analyzed analogously. The generator
called RANDU

Ni D aNi�1 modM ; with a D 216 C 3; M D 231

may serve as example. For m D 2 experiments show that the points .Ui�1;Ui/ are
nicely equidistributed. But equidistribution for m D 2 does not imply equidistribu-
tion for larger m. Testing RANDU for m D 3 reveals a severe defect: Its random
points in the cube Œ0; 1/3 fall on only 15 planes (�! Exercise 2.3 and Topic 14 in
the Topics fCF).

In Example 2.4 we asked what the maximum gap between the parallel straight
lines is. In other words, we have searched for stripes of maximum size in which

2The term “equidistributed” will be quantified in Sect. 2.5.1.
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Fig. 2.2 The points .Ui�1;Ui/ of Example 2.5

no point .Ui�1;Ui/ falls. Alternatively one can directly analyze the lattice formed
by consecutive points. For illustration consider again Fig. 2.1. We follow the points
starting with . 1

11
; 2

11
/. By vectorwise adding an appropriate multiple of .1; a/ D

.1; 2/ the next two points are obtained. Proceeding in this way one has to take care
that upon leaving the unit square each component with value� 1 must be reduced to
Œ0; 1/ to observe modM. The readermay verify this with Example 2.4 and numerate
the points of the lattice in Fig. 2.1 in the correct sequence. In this way the lattice
can be defined. This process of defining the lattice can be generalized to higher
dimensionsm > 2. (�! Exercise 2.4) One aims at a good distribution of the points
.Ui; : : : ;UiCm�1/ for as many m are possible.

A disadvantage of the linear congruential generators of Algorithm 2.2 is the
boundedness of the period by M and hence by the word length of the computer.
The situation can be improved by shuffling the random numbers in a random way.
For practical purposes, the period gets close enough to infinity. (The reader may test
this on Example 2.5.) For practical advice we refer to [306].
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2.1.4 Fibonacci Generators

The original Fibonacci recursion motivates trying the formula

NiC1 WD .Ni C Ni�1/ modM :

It turns out that this first attempt of a three-term recursion is not suitable for
generating random numbers (�! Exercise 2.5). The modified approach

NiC1 WD .Ni�� � Ni��/ modM (2.5)

for suitable integers �; � is called lagged Fibonacci generator. For many choices
of �; � the approach (2.5) leads to acceptable generators. Kahaner et al. [210]
recommends

Example 2.6 (Lagged Fibonacci Generator)

Ui W D Ui�17 � Ui�5 ;

in case Ui < 0 set Ui WD Ui C 1:0 :

The recursion of Example 2.6 immediately produces floating-point numbers Ui 2
Œ0; 1/. This generator requires a prologue in which 17 initial U’s are generated by
means of another method. The core of the algorithm is

Algorithm 2.7 (Loop of a Fibonacci Generator)

Repeat:
� D U.i/ � U. j/ ,
if .� < 0/, set � D � C 1 ,
U.i/ D � ,
i D i � 1 ,
j D j � 1 ,
if i D 0, set i D 17 ,
if j D 0, set j D 17 .

Initialization: Set i D 17; j D 5, and calculate U1; : : : ;U17 with a congruential
generator, for instance with M D 714; 025; a D 1366; b D 150;889. Set the seed
N0 equal to your favorite dream number, possibly inspired by the system clock of
your computer.

Figure 2.3 depicts 10; 000 random points calculated by means of Algorithm 2.7.
Visual inspection suggests that the points are not arranged in some apparent
structure. The points appear to be sufficiently random. But the generator provided
by Example 2.6 is not sophisticated enough for ambitious applications; its pseudo-
random numbers are somewhat correlated.

Section 2.1 has introduced some basic aspects of generating uniformly
distributed random numbers. Professional algorithms also apply bit operations in
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Fig. 2.3 Ten thousand (pseudo-)random points .Ui�1;Ui/, calculated with Algorithm 2.7

the computer. A generator of uniform deviates that can be highly recommended
is a Mersenne twister [264]. Its period is truly remarkable, and the points
.Ui; : : : ;UiCm�1/ are well distributed until high values of the dimension m.

2.2 Extending to Random Variables from Other
Distributions

Frequently, normal variates are needed. Their generation is based on uniform
deviates. The simplest strategy is to calculate

X WD
12
X

iD1

Ui � 6; for Ui � U Œ0; 1� :
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X has expectation 0 and variance 1. The central limit theorem (�! Appendix B)
assures that X is approximately distributed normally (�! Exercise 2.6). But this
crude attempt is not satisfying. Better methods calculate nonuniformly distributed
random variables, for example, by a suitable transformation out of a uniformly
distributed random variable [103]. But the most obvious approach inverts the
distribution function.

2.2.1 Inversion

The following theorem is the basis for inversion methods.

Theorem 2.8 (Inversion) Suppose U � U Œ0; 1� and F be a continuous strictly
increasing distribution function. Then F�1.U/ is a sample from F.

Proof Let P denote the underlying probability.
U � U Œ0; 1� means P.U � 	/ D 	 for 0 � 	 � 1.

Consequently

P.F�1.U/ � x/ D P.U � F.x// D F.x/ :

Application
Following Theorem 2.8, the inversion method3 generates uniform deviates u �
U Œ0; 1� and sets x D F�1.u/ (�! Exercises 2.7, 2.8, 2.9). There are some examples
where the inverse is available analytically. For example, the distribution of the
exponential distribution with parameter � (below in Example 2.10) is F.x/ D
1 � e��x, and its inverse is F�1.u/ D � 1

�
log.1 � u/. To judge the inversion method

we consider the normal distribution as the most important example. Neither for its
distribution function F nor for its inverseF�1 there is a closed-form expression (�!
Exercise 1.5). So numerical methods are used. We discuss two approaches.

Numerical inversion means to calculate iteratively a solution x of the equation
F.x/ D u for prescribed u. In particular for the normal distribution, this iteration
requires tricky termination criteria, in particular when x is large. Then we are in the
situation u � 1, where tiny changes in u lead to large changes in x (Fig. 2.4). An
approximation of the solution x of F.x/ � u D 0 can be calculated with bisection, or
Newton’s method, or the secant method (�! Appendix C.1).

Alternatively the inversion x D F�1.u/ can be approximated by a suitably
constructed function G.u/ with

G.u/ � F�1.u/ :

3Also called inversion sampling.
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u=F(x)
1/2

x

1

u

Fig. 2.4 Normal distribution; small changes in u can lead to large changes in x

Then only x D G.u/ needs to be evaluated. Constructing such an approximation
formula G, it is important to realize that F�1.u/ has “vertical” tangents at u D
1 (horizontal in Fig. 2.4). The pole behavior must be reproduced correctly by
an approximating function G. This suggests to use rational approximation (�!
Appendix C.1). For the Gaussian distribution one incorporates the point symmetry
with respect to .u; x/ D . 1

2
; 0/, and the pole at u D 1 (and hence at u D 0) in

the ansatz for G (�! Exercise 2.10). Rational approximation of F�1.u/ with a
sufficiently large number of terms leads to high accuracy [278]. The formulas are
given in Appendix E.2.

2.2.2 Transformation in R1

Another class of methods uses transformations between random variables. We start
the discussion with the scalar case. If we have a random variable X with known
density and distribution, what can we say about the density and distribution of a
transformed h.X/?

Theorem 2.9 (Transformation in Scalar Case) Suppose X is a random variable
with density f .x/ and distribution F.x/. Further assume h W S �! B with S;B � R,
where S is the support4 of f .x/, and let h be strictly monotonic.

(a) Then Y WD h.X/ is a random variable. Its distribution FY is

FY. y/ D F.h�1. y// in case h0 > 0 ;

FY. y/ D 1 � F.h�1. y// in case h0 < 0 :

4f is zero outside S. (In this section, S is no asset price.) Use Theorem 2.9 to check the derivation
of fGBM out of Of in Sect. 1.8.2.
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(b) If h�1 is absolutely continuous then for almost all y the density of h.X/ is

f .h�1. y//

ˇ

ˇ

ˇ

ˇ

dh�1. y/

dy

ˇ

ˇ

ˇ

ˇ
: (2.6)

Proof

(a) For h0 > 0 we have P.h.X/ � y/ D P.X � h�1. y// D F.h�1. y// :

(b) For absolutely continuous h�1 the density of Y D h.X/ is equal to the deriva-
tive of the distribution function almost everywhere. Evaluating the derivative
dF.h�1. y//

dy with the chain rule implies the assertion. The absolute value in (2.6) is
necessary such that a positive density comes out in case h0 < 0. (See for instance
[131, Sect. 2.4 C].)

2.2.2.1 Application

Being able to calculate uniform deviates, we start from X � U Œ0; 1� with the density
f of the uniform distribution,

f .x/ D 1 for 0 � x � 1; otherwise f D 0 :

Here the support S is the unit interval. What we need are random numbers Y
matching a prespecified target density g. y/. It remains to find a transformation h
such that the density in (2.6) is identical to g. y/,

1 �
ˇ

ˇ

ˇ

ˇ

dh�1. y/

dy

ˇ

ˇ

ˇ

ˇ
D g. y/ :

Then only evaluate h.X/.

Example 2.10 (Exponential Distribution) The exponential distribution with
parameter � > 0 has the density

g. y/ D
�

�e��y for y � 0

0 for y < 0 :

Here the range B consists of the nonnegative real numbers. The aim is to generate
an exponentially distributed random variable Y out of a U Œ0; 1�-distributed random
variable X. To this end define the monotone transformation from the unit interval
S D Œ0; 1� into B by the decreasing function

y D h.x/ WD � 1

�
log x
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with the inverse function h�1. y/ D e��y for y � 0. For this h verify

f .h�1. y//

ˇ

ˇ

ˇ

ˇ

dh�1. y/

dy

ˇ

ˇ

ˇ

ˇ
D 1 � ˇˇ.��/e��y

ˇ

ˇ D �e��y D g. y/

as density of h.X/. Hence h.X/ is distributed exponentially as long as X � U Œ0; 1�.
Application:

In case U1;U2; : : : are nonzero uniform deviates, the numbers h.Ui/

� 1

�
log.U1/; � 1

�
log.U2/; : : :

are distributed exponentially. This result is similar to that of the inversion. For an
application see Exercise 2.11.

2.2.2.2 Attempt to Generate a Normal Distribution

Starting from the uniform distribution . f D 1/ a transformation y D h.x/ is
searched such that its density equals that of the standard normal distribution,

1 �
ˇ

ˇ

ˇ

ˇ

dh�1. y/

dy

ˇ

ˇ

ˇ

ˇ
D 1p

2

exp

�

�1

2
y2

�

:

This is a differential equation for h�1 without analytic solution. As we will
see, a transformation can be applied successfully in R2. To this end we need a
generalization of the scalar transformation of Theorem 2.9 into Rn.

2.2.3 Transformations in Rn

The generalization of Theorem 2.9 to the vector case is

Theorem 2.11 (Transformation in Vector Case) Suppose X is a random variable
inRn with density f .x/ > 0 on the support S. The transformation h W S ! B; S;B �
Rn is assumed to be invertible and the inverse be continuously differentiable on B.
Y WD h.X/ is the transformed random variable. Then Y has the density

f .h�1. y//

ˇ

ˇ

ˇ

ˇ

@.x1; : : : ; xn/

@. y1; : : : ; yn/

ˇ

ˇ

ˇ

ˇ
; y 2 B ; (2.7)

where x D h�1. y/ and @.x1;:::;xn/

@. y1;:::;yn/
is the determinant of the Jacobian matrix of all

first-order derivatives of h�1. y/.
(Theorem 4.2 in [103])
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2.2.4 Acceptance-Rejection Method

An acceptance-rejection method5 is based on the following facts: Let f be a density
function on the support S 	 R andAf the area between the x-axis and the graph of f .
Assume two random variablesU and X independent of each other with U � U Œ0; 1�

and X distributed with density f . Then the points

.x; y/ WD .X; U � f .X//

are distributed uniformly on Af . And vice versa, the x-coordinates of uniformly
distributed points onAf are f -distributed. This is illustrated in Fig. 2.5 for the normal
distribution. If one cuts off a piece of the areaAf , then the remaining points are still
distributed uniformly. This is exploited by rejection methods.

The aim is to calculate f -distributed random numbers; the density f is the target
distribution. Let g be another density on S, and assume for a constant c � 1

f .x/ � c g.x/ for all x 2 S :

0.4

0.35

0.25

0.15

0.05

0.3

0.2

0.1

0
-4 -3 -2 -1 0 1 2 3 4

Fig. 2.5 Fifty thousand points .X; Uf .X//, with X � N .0; 1/, U � U Œ0; 1�. The normal density f
of X is visible as envelope

5Shortly: rejection method, or rejection sampling.
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The function cg is major to f , and the set Af is subset of the area Acg underneath
the graph of cg. A rejection algorithm assumes that g-distributed x-samples can
be calculated easily. Then the points .x; ucg.x// are distributed uniformly on Acg.
Cutting off the part of Acg above Af means to reject points with ucg.x/ > f .x/.
The x-coordinates of the remaining points with ucg.x/ � f .x/ are accepted and are
distributed as desired.

Algorithm 2.12 (Rejection Method)

Repeat:
x WD random number distributed with density g ,
u WD random number � U Œ0; 1� independent of x ,

until u c g.x/ � f .x/ .
return: x

As an application of the rejection method consider the Laplace density g.x/ WD
1
2
exp.�jxj/ and the standard normal density f , see Exercises 2.9 and 2.12.6

2.3 Normally Distributed Random Variables

In this section the focus is on generating normal variates. Fist we describe the
fundamental approach of Box and Muller, which applies the transformation method
in R2 to generate Gaussian random numbers.7

2.3.1 Method of Box and Muller

To apply Theorem 2.11 we start with the unit square S WD Œ0; 1�2 and the
density (2.7) of the bivariate uniform distribution. The transformation is

y1 D p�2 log x1 cos 2
x2 DW h1.x1; x2/

y2 D p�2 log x1 sin 2
x2 DW h2.x1; x2/ ;
(2.8)

h.x/ is defined on Œ0; 1�2 with values in R2. Its inverse function h�1 is given by

x1 D exp

�

�1

2
. y2

1 C y2
2/

�

x2 D 1

2

arctan

y2

y1

6Colored in Topic 3 of the Topics fCF.
7Inversion is one of several valid alternatives. See also the Notes on this section.
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where we take the main branch of arctan. The determinant of the Jacobian matrix is

@.x1; x2/

@. y1; y2/
D det

 

@x1

@y1

@x1

@y2
@x2

@y1

@x2

@y2

!

D

D 1

2

exp

�

�1

2
. y2

1 C y2
2/

�

0

B

@�y1

1

1 C y2
2

y2
1

1

y1

� y2

1

1 C y2
2

y2
1

y2

y2
1

1

C

A

D � 1

2

exp

�

�1

2
. y2

1 C y2
2/

�

:

This shows that
ˇ

ˇ

ˇ

@.x1;x2/

@. y1;y2/

ˇ

ˇ

ˇ is the density (2.7) of the bivariate standard normal

distribution. Since this density is the product of the two one-dimensional densities,

ˇ

ˇ

ˇ

ˇ

@.x1; x2/

@. y1; y2/

ˇ

ˇ

ˇ

ˇ
D
�

1p
2


exp

�

�1

2
y2

1

��

�
�

1p
2


exp

�

�1

2
y2

2

��

;

the two components of the vector y are independent. So, when the components of
the vector X are � U Œ0; 1�, the vector h.X/ consists of two independent standard
normal variates. Let us summarize the application of this transformation:

Algorithm 2.13 (Box–Muller)

Generate U1 � U Œ0; 1� and U2 � U Œ0; 1� .
� WD 2
U2 ; � WD p�2 logU1 :

Z1 WD � cos � is a normal variate (as well as Z2 WD � sin �).

The variables U1, U2 stand for the components of X. Each application of the
algorithm provides two standard normal variates. Note that a line structure in Œ0; 1�2

as in Example 2.5 is mapped to curves in the .Z1;Z2/-plane. This underlines the
importance of excluding an evident line structure.

2.3.2 Variant of Marsaglia

The variant of Marsaglia prepares the input in Algorithm 2.13 such that trigono-
metric functions are avoided. For U � U Œ0; 1� we have V WD 2U � 1 � U Œ�1; 1�.
(Temporarilywe misuse also the financial variable V for local purposes.) Two values
V1;V2 calculated in this way define a point in the .V1;V2/-plane. Only points within
the unit disk D are accepted:

D WD f .V1;V2/ j V2
1 C V2

2 < 1 g I accept only .V1;V2/ 2 D :
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Fig. 2.6 Transformations of
the Box–Muller–Marsaglia
approach, schematically

h

U1 , U2

V1 , V2

y1 , y2

x1 , x2

In case of rejection both values V1;V2 must be rejected. As a result, the surviving
.V1;V2/ are uniformly distributed on D with density f .V1;V2/ D 1



for .V1;V2/ 2

D. A transformation from the disk D into the unit square S WD Œ0; 1�2 is defined by

�

x1

x2

�

D
�

V2
1 C V2

2
1

2

arg..V1;V2//

�

:

That is, the Cartesian coordinates V1;V2 on D are mapped to the squared radius
and the normalized angle.8 For illustration, see Fig. 2.6. These “polar coordinates”
.x1; x2/ are uniformly distributed on S (�! Exercise 2.13).

Application
For input in (2.8) use V2

1 C V2
2 as x1 and 1

2

arctan V2

V1
as x2. With these variables the

relations

cos 2
x2 D V1
q

V2
1 C V2

2

; sin 2
x2 D V2
q

V2
1 C V2

2

;

hold, which means that it is no longer necessary to evaluate trigonometric func-
tions. The resulting algorithm of Marsaglia has modified the Box–Muller method
by constructing input values x1, x2 in a clever way.

Algorithm 2.14 (Polar Method)

Repeat:
generate U1;U2 � U Œ0; 1� ;
calculate V1 WD 2U1 � 1 , V2 WD 2U2 � 1

until w WD V2
1 C V2

2 < 1 .
Z1 WD V1

p�2 log.w/=w
Z2 WD V2

p�2 log.w/=w
are both standard normal variates.

8arg..V1;V2// D arctan.V2=V1/ with the proper branch.
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Fig. 2.7 Ten thousand numbers � N .0; 1/ (values entered horizontally and separated vertically
with distance 10�4)

The probability that w < 1 holds is given by the ratio of the areas, 
=4 D 0:785 : : :

Hence in about 21% of all U Œ0; 1� drawings the .V1;V2/-tuple is rejected because of
w � 1. Nevertheless the savings of the trigonometric evaluations makes Marsaglia’s
polar method more efficient than the Box–Muller method. Figure 2.7 illustrates
normally distributed random numbers (�! Exercise 2.14).

2.3.3 Ziggurat

A most efficient algorithm for the generation of normal deviates is the ziggurat
algorithm, which is a rejection method. The setup consists of a kind of horizontal
histogram, which covers the area underneath the graph of a monotonically decreas-
ing f . Figure 2.8, which will explained below, may give an impression of the setup.9

Here f is the standard normal density f .x/ D 1p
2


exp .� 1
2
x2/. Because of the

symmetry of f it suffices to take x � 0; a random sign (each with probability 1
2
)

must be attached in the end.
The histogram-like area consists of N horizontal and parallel segments each of

equal area A. We label them by i, with i D 0 for the bottom layer and i D N � 1 for
the top layer. The top N � 1 segments are rectangles, whereas the lowest segment
(i D 0) is limited by the infinite tail of f . The lengths of the segments are defined by
f , as illustrated in Figs. 2.8 and 2.9. The upper edges of the segments define a major
function z with z.x/ � f .x/ for x � 0. The major z corresponds to cg in Sect. 2.2.4.

The curve of f .x/, decreasing for x > 0, enters and leaves the layers, which
defines the length xi of the rectangle, as shown in Fig. 2.9. For a chosen value of
N, the requirement of equal area A of all segments leads to a system of equations

9The shape explains the use of the name ziggurat, which was a terraced pyramid in the ancient
world.
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Fig. 2.8 Ziggurat with N D 8 layers, for 0 � x � 4. The heavy-line zigzag (in red) on the right
and above the graph of the normal density f (in green) is the major z with z.x/ � f .x/, which
represents the right-hand bound of the horizontal ziggurat boxes. For N D 8 the area of each
ziggurat segment is 0.070283. The zigzag in blue that is below f bounds the area, in which the
creation of a normally distributed sample essentially only costs one generation of U � U Œ0; 1�

xixi+1
x

f(x)

y

yi

Fig. 2.9 Configuration of the ith layer of the ziggurat, 0 < i < N � 1, for x � 0

that defines A and the coordinates .xi; yi/ of the vertices of the rectangles, where
yi WD f .xi/. The coordinates .xi; yi/ and the value of A are precomputed and stored
in a look-up table (�! Exercise 2.15). Figure 2.9 illustrates the ith layer (0 < i <

N � 1). The resulting box consists of two sub-boxes, divided by the coordinate xiC1.
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The rejection method needs points .	; / uniformly distributed over the area Az

underneath the graph of z and above the positive x-axis. In principle, these points are
tested for their location relative to f . With the above setup, the check for acceptance
or rejection is extremely efficient, because mostly  is not needed explicitly. Since
each of theN segments has the same areaA, it suffices to draw one of them. Draw the
layer i randomly with equal probability 1=N. Let us first discuss the cases i > 0. In
rectangle i the next task would be to sample a point .	; /, which must be distributed
uniformly. Its x-component is given by 	 WD U1xi, where U1 � U Œ0; 1�. In case
	 � xiC1 the point falls in the left-hand part of the rectangle underneath the graph of
f , and is accepted. In this case no y-component  is needed! (This does not happen
for i D N � 1, where xN D 0.) Only in the other case, for 	 > xi, an  is required
and f must be evaluated to further test for  � f .	/. This is provided by generating
a U2 � U Œ0; 1� and  WD yi C U2. yiC1 � yi/. Acceptance for  � f .	/.

The efficiency of the method originates from the fact that the y-component  will
be required only in a small portion of samples. In Fig. 2.8 we have chosen N D 8

for ease of demonstration. But even for this small value of N the subarea in which
no  and no f .	/ are needed, covers 72:8% of the area underneath z. And when
the number N of layers is large, say N D 256, the rectangles are narrow, and for
0 < i < N � 1 the right-hand portions of the rectangles will be much smaller than
the left-hand portions. The latter cover the bulk of the area underneath f or z, and
there the test for acceptance costs almost nothing: The generated value of U1 can be
compared directly to precomputed ratios xiC1=xi. In case of acceptance, the output is
	, and—with attached random sign—the desired number is distributed � N .0; 1/.
In case of rejection the next i is drawn.

Only the situation of the bottom layer i D 0 is more complex. This bottom
segment is divided into a rectangle with area x1y1, and the infinite tail with x > x1

and area A � x1y1. For i D 0, the probability of a uniformly sampled point to fall
into the rectangle is x1y1=A. So the above simple test can be modified to comparing
	 WD U1A=y1 to x1. Accept in case 	 � x1. Only in the case 	 > x1 the ziggurat
algorithm requires a fallback routine, which resorts to more conventional methods.
But this fallback routine for i D 0 effects only a tiny part of the overall costs. Even
for the small value N D 8 of Fig. 2.8, the fallback routine is required only in 2% of
all samples. For the tricky implementation of the ziggurat algorithm see [261].

2.3.4 Correlated Random Variables

The above algorithms provide independent normal deviates. In many applications
random variables are required that depend on each other in a prescribed way. Let us
first recall the general n-dimensional density function.
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Multivariate normal distribution (notations):

X D .X1; : : : ;Xn/; � D EX D .EX1; : : : ;EXn/

The covariance matrix (B.8) of X is denoted ˙ , and has elements

˙ij D .CovX/ij WD E
�

.Xi � �i/.Xj � �j/
	

; �2
i D ˙ii ;

for i; j D 1; : : : ; n. Using this notation, the correlation coefficients are

�ij WD ˙ij

�i�j
.) �ii D 1/ ; (2.9)

which set up the correlation matrix. The correlation matrix is a scaled version of ˙ .
The density function f .x1; : : : ; xn/ corresponding toN .�; ˙/ is

f .x/ D 1

.2
/n=2

1

.det˙/1=2
exp

�

�1

2
.x � �/tr˙�1.x � �/

�

: (2.10)

By theory, a covariance matrix (or correlation matrix) ˙ is symmetric, and positive
semidefinite. If in practice a matrix Q̇ is corrupted by insufficient data, a close
matrix ˙ can be calculated with the features of a covariance matrix [184, 200]. In
case det˙ ¤ 0 the matrix ˙ is positive definite, which we assume now.

Below we shall need a factorization of ˙ into ˙ D AAtr. From numeri-
cal mathematics we know that for symmetric positive definite matrices ˙ the
Cholesky decomposition ˙ D LLtr exists, with a lower triangular matrix L (�!
Appendix C.1). There are numerous factorizations ˙ D AAtr other than Cholesky.
A more involved factorization of ˙ is the principal component analysis, which is
based on eigenvectors (�! Exercise 2.16).

2.3.4.1 Transformation

Suppose Z � N .0; I/ and x D Az, A 2 Rn�n, where z is a realization of Z, 0 is the
zero vector, and I the identity matrix. We apply Theorem 2.11 with X D h.Z/ WD
AZ. Accordingly, the density of X is

f .A�1x/ j det.A�1/j D 1

.2
/n=2
exp

�

�1

2
.A�1x/tr.A�1x/

�

1

j det.A/j

D 1

.2
/n=2

1

j det.A/j exp
�

�1

2
xtr.AAtr/�1x

�
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for arbitrary nonsingular matrices A. To complete the transformation,10 we need a
matrix A such that ˙ D AAtr. Then j detAj D .det˙/1=2, and the densities with
the respect to x and z are converted correctly. In view of the general density f .x/
recalled in (2.10), AZ is normally distributed with AZ � N .0;AAtr/, and hence the
factorization ˙ D AAtr implies

AZ � N .0; ˙/ :

Finally, translation with vector � implies

� C AZ � N .�; ˙/ : (2.11)

2.3.4.2 Application

Suppose we need a normal variate X � N .�; ˙/ for given mean vector �

and covariance matrix ˙ . This is most conveniently based on the Cholesky
decomposition of ˙ . Accordingly, the desired random variable can be calculated
with the following algorithm:

Algorithm 2.15 (Correlated Normal Random Variables)

Calculate A via the Cholesky decomposition AAtr D ˙ .
Calculate Z � N .0; I/ componentwise

by Zi � N .0; 1/ for i D 1; : : : ; n ;

for instance, with Marsaglia’s polar algorithm.
� C AZ has the desired distribution � N .�; ˙/ :

Special case n D 2: In this case, in view of (2.9), only one correlation number is
involved, namely, � WD �12 D �21, and the covariance matrix must be of the form

˙ D
�

�2
1 ��1�2

��1�2 �2
2

�

: (2.12)

In this two-dimensional situation it makes sense to carry out the Cholesky decom-
position analytically (�! Exercise 2.17). Figure 2.10 illustrates a highly correlated
two-dimensional situation, with � D 0:85. An example based on (2.12) is (3.35).

10Check this by applying Theorem 2.11.
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Fig. 2.10 Simulation of a correlated vector process with two components, and � D 0:05, �1 D
0:3, �2 D 0:2, � D 0:85, �t D 1=250

2.4 Monte Carlo Integration

A classic application of random numbers is Monte Carlo integration. The discussion
in this section will serve as background for Quasi Monte Carlo, a topic of the
following Sect. 2.5.

Let us begin with the one-dimensional situation. Assume a probability distribu-
tion with density f . Then the expectation of a function g is

E.g/ D
1
Z

�1
g.x/f .x/ dx ;

compare (B.4). For a definite integral on an intervalD D Œa; b�, we use the uniform
distribution with density

f D 1

b � a
� 1D D 1

�1.D/
� 1D ;
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where �1.D/ denotes the length of the interval D and 1D the identity on D. This
leads to

E.g/ D 1

�1.D/

b
Z

a

g.x/ dx ;

or

b
Z

a

g.x/ dx D �1.D/ � E.g/ ;

the basis of Monte Carlo integration. It remains to approximate E.g/. For inde-
pendent samples xk � U Œa; b�, k D 1; 2; : : :, apply the law of large numbers (�!
Appendix B.1) to establish the estimator

1

N

N
X

kD1

g.xk/

as approximation to E.g/. The approximation improves as the number of trials N
goes to infinity; the error is characterized by the central limit theorem.

This principle of Monte Carlo integration extends to the higher-dimensional case.
Let D 	 Rm be a domain on which the integral

Z

D
g.x/ dx

is to be calculated. For example, on the hypercubeD D Œ0; 1�m. Such integrals occur
in finance, for example, when mortgage-backed securities (CMO, collateralized
mortgage obligations) are valuated [64]. The classic or stochastic Monte Carlo
integration draws random samples x1; : : : ; xN 2 D which should be independent
and uniformly distributed. Then

�N WD �m.D/
1

N

N
X

kD1

g.xk/ (2.13)

is an approximation of the integral. Here �m WD �m.D/ is the volume of D (or the
m-dimensional Lebesgue measure [286]). We assume �m to be finite. From the law
of large numbers follows convergence of �N to �mE.g/ D R

D g.x/ dx for N ! 1.
The variance of the error

ıN WD
Z

D
g.x/ dx � �N
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Table 2.1 Comparison of different convergence rates to zero

N 1
p

N

q

log logN
N

logN
N

.logN/2

N
.logN/3

N

101 0:31622777 0:28879620 0:23025851 0:53018981 1:22080716

102 0:10000000 0:12357911 0:04605170 0:21207592 0:97664572

103 0:03162278 0:04396186 0:00690776 0:04771708 0:32961793

104 0:01000000 0:01490076 0:00092103 0:00848304 0:07813166

105 0:00316228 0:00494315 0:00011513 0:00132547 0:01526009

106 0:00100000 0:00162043 0:00001382 0:00019087 0:00263694

107 0:00031623 0:00052725 0:00000161 0:00002598 0:00041874

108 0:00010000 0:00017069 0:00000018 0:00000339 0:00006251

109 0:00003162 0:00005506 0:00000002 0:00000043 0:00000890

satisfies

Var.ıN/ D E.ı2
N/ � .E.ıN//2 D �2.g/

N
.�m/2 ; (2.14)

with the variance of g

�2.g/ WD 1

�m

Z

D
g.x/2 dx � 1

�2
m

�Z

D
g.x/ dx

�2

: (2.15)

Hence the standard deviation of the error ıN tends to 0 with the order O.N�1=2/.
This result follows from the central limit theorem or from other arguments (�!
Exercise 2.18). The deficiency of the order O.N�1=2/ is the slow convergence (�!
Exercise 2.19 and the second column in Table 2.1). To reach an absolute error of
the order ", Eq. (2.14) tells that the sample size is N D O."�2/. To improve the
accuracy by a factor of 10, the costs (that is the number of trials, N) increase
by a factor of 100. Another disadvantage is the lack of a genuine error bound.
The probabilistic error of (2.14) does not rule out the risk that the result may be
completely wrong. The �2.g/ in (2.15) is not known and must be approximated.
Monte Carlo integration responds sensitively to changes of the initial state of the
used random-number generator. This may be explained by the potential clustering
of random points.

In many applications the above deficiencies are balanced by two good features
of Monte Carlo integration: A first advantage is that the order O.N�1=2/ of the error
holds independently of the dimensionm. Another good feature is that the integrands
g need not be smooth, square integrability suffices (g 2 L2, see Appendix C.3).

So far we have described the basic version of Monte Carlo integration, stressing
the slow decline of the probabilistic error with growing N. The variance of the error
ı can also be diminished by decreasing the numerator in (2.14). This variance of the
problem can be reduced by suitable methods. (We will come back to this issue in
Sect. 3.5.4.)
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We conclude the excursion into the stochastic Monte Carlo integration with the
variant for those cases in which �m.D/ is hard to calculate. For D � Œ0; 1�m and
x1; : : : ; xN � U Œ0; 1�m use

Z

D
f .x/ dx � 1

N

N
X

kD1
xk2D

f .xk/ : (2.16)

For the integral (1.66) with density fGBM, see Sect. 3.5.

2.5 Sequences of Numbers with Low Discrepancy

One difficulty with random numbers is that they may fail to distribute uniformly.
Here, “uniform” is not meant in the stochastic sense of a distribution � U Œ0; 1�,
but has the meaning of an equidistributedness that avoids extreme clustering or
holes. The aim is to generate numbers for which the deviation from uniformity is
minimal. This deviation is called “discrepancy.” Another objective is to obtain good
convergence for some important applications.

2.5.1 Discrepancy

The bad convergence behavior of the stochastic Monte Carlo integration is not
inevitable. For example, for m D 1 and D D Œ0; 1� an equidistant x-grid with mesh
size 1=N leads to a formula (2.13) that resembles the trapezoidal sum [(C.2) in
Appendix C.1]. For smooth g, the order of the error is at least O.N�1/. (Why?)
But such a grid-based evaluation procedure is somewhat inflexible because the
grid must be prescribed in advance and the number N that matches the desired
accuracy is unknown beforehand. In contrast, the free placing of sample points
with Monte Carlo integration can be performed until some termination criterion
is met. It would be desirable to find a compromise in placing sample points such
that the fineness advances but clustering is avoided. The sample points should fill
the integration domainD as uniformly as possible. To this end we require a measure
of the equidistributedness.11

For m � 1 let Q � Œ0; 1�m be an arbitrary axially parallel m-dimensional box
(hyperrectangle) in the unit cube Œ0; 1�m ofRm. That is, Q is a product ofm intervals.
Suppose a set of points x1; : : : ; xN 2 Œ0; 1�m. The decisive idea behind discrepancy
is that for an evenly distributed point set, the fraction of the points lying within the
box Q should correspond to the volume of the box (see Fig. 2.11). Let # denote the

11The deterministic term “equidistributed” is not to be confused with the probabilistic “uniformly
distributed”.
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Fig. 2.11 On the idea of discrepancy, here for m D 2

number of points, then the goal is

# of xi 2 Q

# of all points in Œ0; 1�m
� vol.Q/

vol.Œ0; 1�m/

for as many boxes Q as possible. This leads to the following definition:

Definition 2.16 (Discrepancy) The discrepancy of the point set fx1; : : : ; xNg 	
Œ0; 1�m is

DN WD sup
Q

ˇ

ˇ

ˇ

ˇ

# of xi 2 Q

N
� vol.Q/

ˇ

ˇ

ˇ

ˇ
:

Obviously, Figs. 2.1 and 2.2 allow to construct relatively large rectangles Q such
that no points land on Q. Then DN will not become small for increasing N. The
more evenly the points of a sequence are distributed, the closer the discrepancy DN

is to zero. The criterion

lim
N!1DN D 0

will characterize equidistributed points. Here DN refers to the first N points of a
sequence of points .xi/; i � 1.
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Analogously the variant D�
N (star discrepancy) is obtained when the set of boxes

is restricted to those Q�, for which one corner is the origin:

Q� D
m
Y

iD1

Œ0; yi/

where y 2 Rm denotes the corner diagonally opposite the origin. The discrepancies
DN and D�

N satisfy [�! Exercise 2.20(b)]

D�
N � DN � 2mD�

N :

The discrepancy allows to find a deterministic bound on the error ıN of Monte
Carlo integration,

jıN j � V.g/D�
N I (2.17)

here V.g/ is the variation12 of the function g with V.g/ < 1, and the domain
of integration is D D Œ0; 1�m [280, 286, 363]. This result is known as Theorem of
Koksma and Hlawka. The bound in (2.17) underlines the importance to find numbers
x1; : : : ; xN with small value of the discrepancy DN . After all, a set of N randomly
chosen points satisfies

E.DN/ D O

 r

log logN

N

!

:

This is in accordance with the probabilistic O.N�1=2/ law. The order of magnitude
of these numbers is shown in Table 2.1 (third column).

Definition 2.17 (Low-Discrepancy Point Sequence) A sequence of points or
numbers x1; x2; : : : ; xN ; : : : 2 Œ0; 1�m is called low-discrepancy sequence if

DN � Cm
.logN/m

N
(2.18)

for a constant Cm independent of N.
Deterministic sequences of numbers satisfying (2.18) are also called quasi-

random numbers, although they are fully deterministic. Table 2.1 reports on
the orders of magnitude. Since log.N/ grows only modestly, a low discrepancy
essentially meansDN � O.N�1/ as long as the dimensionm is small. The Eq. (2.18)

12As in Sect. 1.6.2.
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expresses some dependence on the dimension m, contrary to Monte Carlo methods.
But the dependence onm in (2.18) is less stringent than with classic MC quadrature.

2.5.2 Examples of Low-Discrepancy Sequences

In the one-dimensional case .m D 1/ the point set

xi D 2i � 1

2N
; i D 1; : : : ;N (2.19)

has the value D�
N D 1

2N ; this value can not be improved [�! Exercise 2.20(c)]. The
monotone sequence (2.19) can be applied only when a reasonable N is known and
fixed; for N ! 1 the xi would be newly placed and an integrand g evaluated again.
SinceN is large, it is essential that the previously calculated results can be used when
N is growing. This means that the points x1; x2; : : : must be placed “dynamically” so
that they are preserved and the fineness improves when N grows. This is achieved
by the sequence

1

2
;

1

4
;

3

4
;

1

8
;

5

8
;

3

8
;

7

8
;

1

16
; : : :

This sequence is known as van der Corput sequence. To motivate such a dynamical
placing of points imagine that you are searching for some item in the interval Œ0; 1�

(or in the cube Œ0; 1�m). The searching must be fast and successful, and is terminated
as soon as the object is found. This defines N dynamically by the process.

The formula that defines the van der Corput sequence can be formulated as
algorithm. Let us study an example, say, x6 D 3

8
. The index i D 6 is written as

binary number

6 D .110/2 DW .d2 d1 d0/2 with di 2 f0; 1g :

Then reverse the binary digits and put the radix point in front of the sequence:

.: d0 d1 d2/2 D d0

2
C d1

22
C d3

23
D 1

22
C 1

23
D 3

8

If this is done for all indices i D 1; 2; 3; : : : the van der Corput sequence x1; x2; x3; : : :

results. These numbers can be defined with the following function:

Definition 2.18 (Radical-Inverse Function) For i D 1; 2; : : : let j be given by the
expansion in base b (integer � 2)

i D
j
X

kD0

dkb
k ;
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with digits dk 2 f0; 1; : : : ; b � 1g, which depend on b; i. Then the radical-inverse
function is defined by

�b.i/ WD
j
X

kD0

dkb
�k�1 :

The function �b.i/ is the digit-reversed fraction of i. This mapping can be seen
as reflecting with respect to the radix point. To each index i a rational number
�b.i/ in the interval 0 < x < 1 is assigned. Every time the number of digits
j increases by one, the mesh becomes finer by a factor 1=b. This means that the
algorithm fills all mesh points on the sequence of meshes with increasing fineness
(�! Exercise 2.21). Van der Corput’s sequence is obtained by

xi WD �2.i/ :

The radical-inverse function can be applied to construct points xi in the m-
dimensional cube Œ0; 1�m. A simple construction is the Halton sequence.

Definition 2.19 (Halton Sequence) Let p1; : : : ; pm be pairwise prime integers.
The Halton sequence is defined as the sequence of vectors

xi WD �

�p1 .i/; : : : ; �pm.i/
	

; i D 1; 2; : : :

Usually one takes p1; : : : ; pm as the first m prime numbers. Figure 2.12 shows for
m D 2 and p1 D 2; p2 D 3 the first 10; 000 Halton points. Compared to the pseudo-
random points of Fig. 2.3, the Halton points are distributed more evenly.

Halton sequences xi of Definition 2.19 are easily constructed, but fail to be
equidistributedwhen the dimensionm is high, see [155], Sect. 5.2. Then correlations
between the radical-inverse functions for different dimensions are observed. This
problem can be cured with a simple modification of the Halton sequence, namely,
by using only every lth Halton number [227]. The leap l is a prime different from
all bases p1; : : : ; pm. The result is the “Halton sequence leaped”

xk WD �

�p1 .lk/; : : : ; �pm.lk/
	

; k D 1; 2; : : : (2.20)

This modification has shown good performance for dimensions at least up to m D
400. As reported in [227], l D 409 is one example of a good leap value.

Other sequences with low discrepancy have been constructed. These include the
sequences developed by Sobol, Faure and Niederreiter, see [280, 286, 306]. All these
sequences satisfy

D�
N � Cm

.logN/m

N
C O

�

.logN/m�1

N

�

:
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Fig. 2.12 Ten thousand Halton points from Definition 2.19, with p1 D 2, p2 D 3

Table 2.1 shows how fast the relevant terms .logN/m=N tend to zero. If m is large,
extremely large values of the denominator N are needed before the terms become
small. But it is assumed that the bounds are unrealistically large and overestimate
the real error.

Quasi Monte Carlo (QMC) methods approximate the integrals with the
arithmetic mean �N of (2.13), but use low-discrepancy numbers xi instead of
random numbers. QMC is a deterministic method. Practical experience with low-
discrepancy sequences are better than might be expected from the bounds known so
far. This also holds for the bound (2.17) by Koksma and Hlawka; apparently a large
class of functions g satisfy jıN j 
 V.g/D�

N , see [343].
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2.6 Notes and Comments

On Sect. 2.1

The linear congruential method is sometimes called Lehmer generator. Easily acces-
sible and popular generators are RAN1 and RAN2 from [306]. Further references
on linear congruential generators include [239, 259, 286, 317]. Example 2.4 is from
[130], and Example 2.5 from [317]. Nonlinear congruential generators are of the
form

Ni D f .Ni�1/ modM :

Hints on the algorithmic implementation are found in [147]. Generally it is advisable
to run the generator in integer arithmetic in order to avoid rounding errors that may
spoil the period, see [241]. There are multiplicative Fibonacci generators of the form

NiC1 WD Ni��Ni�� modM :

For Fibonacci generators we refer to [54]. The version of (2.5) is a subtractive
generator. Additive versions (with a plus sign instead of the minus sign) are used
as well [147, 226]. The codes in [306] are recommendable. For simple statistical
tests with illustrations see [181].

Hints on parallelization are given in [262]. For example, parallel Fibonacci
generators are obtained by different initializing sequences. Marsaglia’s KISS-
generator (keep it simple stupid) combines different methods and reaches long
periods. Programs of professional random number generators (RNG) can be found
in the internet. Note that computer systems and software packages often provide
built-in random number generators. But often these generators are not clearly
specified, and should be handled with care.

On Sects. 2.2 and 2.3

The inversion result of Theorem 2.8 can be formulated placing less or no restrictions
on F, see [317, p. 59], [103, p. 28], or [238, p. 270]. The generalized inverse of an
arbitrary distribution function F is the quantile function

Q.u/ WD inf
x2Rf x j F.x/ � u g ;

also denoted F�1.u/.
For the rejection method, 1

c is the proportion of samples distributed from g that

are accepted. Hence c should be as small as possible with c � maxx
f .x/
g.x/ . Several
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algorithms are based on the rejection method [103, 130]; for a detailed overview
with many references see [103].

The Box–Muller approach was suggested in [45]. Marsaglia’s modification was
published in a report quoted in [260]. Fast algorithms aside from the ziggurat
include the Wallace algorithm [372], which works with a pool of random numbers
and suitable transformations. Platform-dependent implementation details place
emphasis on the one or the other advantage. A survey on Gaussian random number
generators is [355]. For simulating Lévy processes, see [84]. For singular symmetric
positive semidefinite matrices ˙ (xtr˙x � 0 for all x), the Cholesky decomposition
can be cured, see [157], or [155].

On Sect. 2.4

The bounds on errors of the Monte Carlo integration refer to arbitrary functions g;
for smooth functions better bounds can be expected. In the one-dimensional case
the variation is defined as the supremum of

P

j jg.tj/ � g.tj�1/j over all partitions,
see Sect. 1.6.2. This definition can be generalized to higher-dimensional cases. A
thorough discussion is [285, 286].

An advanced application of Monte Carlo integration uses one or more methods
of reduction of variance, which allows to improve the accuracy in many cases [130,
167, 234, 238, 286, 306, 324]. For example, the integration domain can be split into
subsets (stratified sampling) [316]. Another technique is used when for a control
variate v with v � g the exact integral is known. Then g is replaced by .g � v/ C v

and Monte Carlo integration is applied to g � v. Another alternative, the method of
antithetic variates, will be described in Sect. 3.5.4 together with the control-variate
technique.

On Sect. 2.5

Besides the supremum discrepancy of Definition 2.16 the L2-analogy of an integral
version is used. Hints on speed and preliminary comparison are found in [280].
For application on high-dimensional integrals see [296]. For large values of the
dimensionm, the bound (2.18) takes large values, which might suggest to discard its
use. But the notion of an effective dimension and practical results give a favorable
picture at least for CMO applications of order m D 360 [64]. The error bound of
Koksma and Hlawka (2.17) is not necessarily recommendable for practical use, see
the discussion in [343]. The analogy of the equidistant lattice in (2.19) in higher-

dimensional space has unfavorable values of the discrepancy, DN D O



1
mpN

�

. For

m > 2 this is worse than Monte Carlo, compare [317]. Monte Carlo does not take
advantage of smoothness of integrands. In the case of smooth integrands, sparse-grid
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approaches are highly competitive. These refined quadrature methods meliorate the
curse of the dimension, see [148, 149, 312].

Van der Corput sequences can be based also on other bases. Halton’s paper is
[166]. Computer programs that generate low-discrepancy numbers are available.
For example, Sobol numbers are calculated in [306] and Sobol- and Faure numbers
in the computer program FINDER [296] and in [354]. At the current state of the
art it is open which point set has the smallest discrepancy in the m-dimensional
cube. There are generalized Niederreiter sequences, which include Sobol- and Faure
sequences as special cases [354]. In several applications deterministic Monte Carlo
seems to be superior to stochastic Monte Carlo [295]. A comparison based on
finance applications has shown good performance of Sobol numbers; in [206] Sobol
numbers are outperformed by Halton sequences leaped (2.20). Niederreiter and
Jau-Shyong Shiue [287] and Chap. 5 in [155] provide more discussion and many
references.

Besides volume integration, Monte Carlo is needed to integrate over possibly
high-dimensional probability distributions. Drawing samples from the required
distribution can be done by running a cleverly constructed Markov chain. This kind
of method is calledMarkov ChainMonte Carlo (MCMC). That is, a chain of random
variables X0;X1;X2; : : : is constructed where for given Xj the next state XjC1 does
not depend on the history of the chain X0;X1;X2; : : : ;Xj�1. By suitable construction
criteria, convergence to any chosen target distribution is obtained. For MCMC we
refer to the literature, for example to [32, 153, 164, 238, 365].

2.7 Exercises

2.1 (Testing a Distribution)
Let X be a random variate with density f and let a1 < a2 < : : : < al define a partition
of the support of f into subintervals, including the unbounded intervals x < a1 and
x > al. Recall from (B.1), (B.2) that the probability of a realization of X falling into
ak � x < akC1 is given by

pk WD
akC1
Z

ak

f .x/ dx ; k D 1; 2; : : : ; l � 1 ;

which can be approximated by .akC1 � ak/f



akCakC1

2

�

. Perform a sample of j

realizations x1; : : : ; xj of a random number generator, and denote jk the number of
samples falling into ak � x < akC1. For normal variates with density f from (B.9)
design an algorithm that performs a simple statistical test of the quality of the
x1; : : : ; xj.
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Hints: See Sect. 2.1 for the special case of uniform variates. Argue for what
choices of a1 and al the probabilities p0 and pl may be neglected. Think about a
reasonable relation between l and j.

2.2 (Academic Number Generator)
Consider the random number generator Ni D 2Ni�1 mod 11. For .Ni�1;Ni/ 2
f0; 1; : : : ; 10g2 and integer tuples with z0 C 2z1 D 0 mod 11 the equation

z0Ni�1 C z1Ni D 0 mod 11

defines families of parallel straight lines, on which all points .Ni�1;Ni/ lie. These
straight lines are to be analyzed. For which of the families of parallel straight lines
are the gaps maximal?

2.3 (Deficient Random Number Generator)
For some time the generator

Ni D aNi�1 modM; with a D 216 C 3; M D 231

was in wide use. Show for the sequence Ui WD Ni=M

UiC2 � 6UiC1 C 9Ui is integer.

What does this imply for the distribution of the triples .Ui;UiC1;UiC2/ in the unit
cube?

2.4 (Lattice of the Linear Congruential Generator)

(a) Show by induction over j

NiCj � Nj D aj.Ni � N0/ modM

(b) Show for integer z0; z1; : : : ; zm�1

0

B

B

B

@

Ni

NiC1

:::

NiCm�1

1

C

C

C

A

�

0

B

B

B

@

N0

N1

:::

Nm�1

1

C

C

C

A

D .Ni � N0/

0

B

B

B

@

1

a
:::
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C

C

C

A

C M
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B

B

B
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:::
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1
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C

A

D

0

B
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:::
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2.5 (Quality of Fibonacci-Generated Numbers)
Analyze and visualize the planes in the unit cube, on which all points fall that are
generated by the Fibonacci recursion

UiC1 WD .Ui C Ui�1/ mod 1 :

2.6 (Coarse Approximation of Normal Deviates)
Let U1;U2; : : : be independent random numbers � U Œ0; 1�, and

Xk WD
kC11
X

iDk

Ui � 6 :

Calculate mean and variance of the Xk.

2.7 (Cauchy-Distributed Random Numbers)
A Cauchy-distributed random variable has the density function

fc.x/ WD c




1

c2 C x2
:

Show that its distribution function Fc and its inverse F�1
c are

Fc.x/ D 1



arctan

x

c
C 1

2
; F�1

c . y/ D c tan.
. y � 1

2
// :

How can this be used to generate Cauchy-distributed random numbers out of
uniform deviates?

2.8 (Inversion)
Use the inversion method and uniformly distributed U � U Œ0; 1� to calculate a
stochastic variable X with distribution

F.x/ D 1 � e�2x.x�a/ ; x � a :

2.9 (Laplace Distribution)
The density function of the Laplace distribution is

g.x/ WD 1

2
exp.�jxj/ :

(a) Derive the distribution function

G.x/ WD
Z x

�1
g.s/ ds

and its inverse.
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(b) Formulate an algorithm that calculates random variates from the G-distribution,
applying the inversion method and using U � U Œ0; 1� as input.

2.10 (Inverting the Normal Distribution)
Suppose F.x/ is the standard normal distribution function. Construct a rough
approximationG.u/ to F�1.u/ for 0:5 � u < 1 as follows:

(a) Construct a rational function G.u/ (�! Appendix C.1) with correct asymp-
totic behavior, point symmetry with respect to .u; x/ D .0:5; 0/, using only one
parameter.

(b) Fix the parameter by interpolating a given point .x1;F.x1//.
(c) What is a simple criterion for the error of the approximation?

2.11 (Time-ChangedWiener Process)
For a time-changing function �.t/ set �j WD �. j�t/ for some time increment �t.

(a) Argue why Algorithm 1.8 changes toWj D Wj�1 C Z
p

�j � �j�1 (last line).
(b) Let �j be the exponentially distributed jump instances of a Poisson experiment,

see Sect. 1.9 and Property 1.20(e). How should the jump intensity � be chosen
such that the expectation of the �� is �t? Implement and test the algorithm, and
visualize the results. Experiment with several values of the jump intensity �.

2.12 (Rejection)
Two density functions g and f are given by

f .x/ W D 1p
2


exp.�x2

2
/ (Gaussian density)

g.x/ W D 1

2
exp.�jxj/ (Laplace density)

Establish the smallest c such that cg.x/ � f .x/ for all x 2 R. Apply the rejection
method to generate normally distributed x; use Exercise 2.9.

2.13 (Uniform Distribution)
For the uniformly distributed random variables .V1; V2/ on the unit disk consider
the transformation

�

X1

X2

�

D
�

V2
1 C V2

2
1

2

arg..V1;V2//

�

where arg..V1;V2// denotes the corresponding angle. Show that .X1; X2/ is dis-
tributed uniformly.
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2.14 (Programming Assignment: Normal Deviates)

(a) Write a computer program that implements the Fibonacci generator

Ui W D Ui�17 � Ui�5

Ui W D Ui C 1 in case Ui < 0

in the form of Algorithm 2.7.
Tests: Visual inspection of 10; 000 points in the unit square.

(b) Write a computer program that implements Marsaglia’s Polar Algorithm
(Algorithm 2.14). Use the uniform deviates from a).

Tests:

1.) For a sample of 5000 points calculate estimates of mean and variance.
2.) For the discretized SDE

�x D 0:1�t C Z
p

�t; Z � N .0; 1/

calculate some trajectories for 0 � t � 1; �t D 0:01; x0 D 0.

2.15 (Ziggurat)
Let f be the normal density function, and .xi; yi/ for i D 1; : : : ;N�1 the coordinates
of the vertices of the ziggurat, as indicated in Fig. 2.8, and yi WD f .xi/. (Compare
Sect. 2.3.3.) Label the segments i D 0; : : : ;N�1 from bottom to top; for i > 0 these
are rectangular boxes. All segments have equal area A, which is to be determined
iteratively.

(a) Assume for a moment the parameter A to be given. Set up an equation that
defines xN�1 implicitly as function xN�1 D ˛.A/.

(b) Set up an equation that defines x1 implicitly, again depending on A. Then set up
a recursion that defines x2; : : : ; xN�1 based on the value x1. After numerically
solving these implicit equations one obtains another version for xN�1, which can
be regarded as a function xN�1 D ˇ.A/. Of course both values must be the same,
˛.A/ D ˇ.A/. This equation can be solved iteratively for A, say, by bisection.

(c) For N D 8 formulate an algorithm that calculates A. What is a reasonable initial
guess for A? Note that neither ˛ nor ˇ are given explicitly; they can be evaluated
numerically.

2.16 (Spectral Decomposition of a Covariance Matrix)
For symmetric positive definite n � n matrices ˙ there exists a set of orthonormal
eigenvectors v.1/; : : : ; v.n/ and eigenvalues �1 � � � � � �n > 0 such that

˙v. j/ D �jv
. j/; j D 1; : : : ; n :
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Arrange the n eigenvector columns into the n � n matrix B WD .v.1/; : : : ; v.n//,
and the eigenvalues into the diagonal matrices � WD diag.�1; : : : ; �n/ and �

1
2 WD

diag.
p

�1; : : : ;
p

�n/.

(a) Show ˙B D B�.
(b) Show that

A WD B�
1
2

factorizes ˙ in the sense ˙ D AAtr .
(c) Show

AZ D
n
X

jD1

q

�j Zj v
. j/ :

(d) And the reversal of Sect. 2.3.4 holds: For a random vector X � N .0; ˙/

the transformed random vector A�1X has uncorrelated components: Show
Cov.A�1X/ D I and Cov.B�1X/ D �.

(e) For the 2 � 2 matrix

˙ D
�

5 1

1 10

�

calculate the Cholesky decomposition and B�
1
2 .

Hint: The above is the essence of the principal component analysis. Here ˙

represents a covariance matrix or a correlation matrix. (For an example see
Fig. 2.13.) The matrix B and the eigenvalues in � reveal the structure of the data.
B defines a linear transformation of the data to a rectangular coordinate system,
and the eigenvalues �j measure the corresponding variances. In case �kC1 � �k for
some index k, the sum in (c) can be truncated after the kth term in order to reduce the
dimension. The computation of B and � (and hence A) is costly, but a dominating
�1 allows for a simple approximation of v.1/ by the power method.

2.17 (Correlated Distributions)
Suppose we need a two-dimensional random variable .X1;X2/ that must be dis-
tributed normally with mean 0, and given variances �2

1 ; �2
2 and prespecified

correlation �. How is X1;X2 obtained out of Z1;Z2 � N .0; 1/?

2.18 (Error of the Monte Carlo Integration)
The domain for integration is D D Œ0; 1�m. For

�N WD 1

N

N
X

iD1

g.xi/ ; E.g/ WD
Z

g dx ; v WD g � E.g/ ; ıN WD
Z

g dx � �N
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Fig. 2.13 Prices of the DAX assets Allianz (S1), BMW (S2), and HeidelbergCement; 500 trading
days from Nov 5, 2005 (in red); eigenvalues of the covariance matrix are 400.8, 25.8, 2.73;
eigenvectors centered at the mean point and scaled by

p
� are shown, and the plane (in green)

spanned by v.1/; v.2/

and the variance �2.g/ from (2.15) show

(a) E.v/ D 0

(b) �2.v/ D �2.g/

(c) �2.ıN/ D E.ı2
N/ D 1

N2

R

.
P

v.xi//2 dx D 1
N �2.g/

Hint on (c): When the random points xi are i.i.d. (independent identical dis-
tributed), then also g.xi/ and v.xi/ are i.i.d. A consequence is

R

v.xi/v.xj/ dx D
0 for i 6D j.

2.19 (Experiment on Monte Carlo Integration)
To approximate the integral

Z 1

0

g.x/ dx

calculate a Monte Carlo sum

1

N

N
X

iD1

g.xi/
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for g.x/ D 5x4 and, for example, N D 100; 000 random numbers xi � U Œ0; 1�.
The absolute error behaves like cN�1=2. Compare the approximation with the exact
integral for several N and seeds to obtain an estimate of c.

2.20 (Bounds on the Discrepancy)
(Compare Definition 2.16) Show

(a) 0 � DN � 1,
(b) D�

N � DN � 2mD�
N (show this at least for m � 2),

(c) D�
N � 1

2N for m D 1.

2.21 (Algorithm for the Radical-Inverse Function)
Use the idea

i D �

dkb
k�1 C : : : C d1

	

b C d0

to formulate an algorithm that obtains d0; d1; : : : ; dk by repeated division by b.
Reformulate �b.i/ from Definition 2.18 into the form �b.i/ D z=bjC1 such that
the result is represented as rational number. The numerator z should be calculated
in the same loop that establishes the digits d0; : : : ; dk.
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