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Preface to the Sixth Edition

Five years after the fifth edition came out, there is a need to include additional results
and to improve explanations of methods and algorithms further. Besides numerous
enhancements of small details, there are new subjects.

New in the sixth edition are, for example, methods for smoothing in Chap. 1 and
an introduction into basic aspects of efficiency. In Chap. 2, acceptance–rejection
methods for generating random numbers are explained, with application to the
ziggurat algorithm for calculating normal variates. Chapter 3 on Monte Carlo
methods now includes a subsection on positive solutions and an outline of the
antithetic variance reduction. Iterative approaches in Chap. 4 have become less
important, in favor of direct methods.

To support the important role tree methods play in practice, an entire new
appendix (Appendix D) is devoted to these methods. This appendix includes
trinomial methods, multidimensional trees, and implied trees for variable volatility.
Further, how to handle discrete dividends is explained.

And the text is enriched by more figures. To facilitate understanding, many of the
figures have been recalculated to become colored. Additional formalized exercises
are included, and numerous hints at informal exercises are spread throughout the
text.

On the technical side, the entire book has been transferred from plainTeX to
LaTeX. This has offered plenty of occasions to work the book over thoroughly.
Additional colored figures can be found in the collection Topics for Computational
Finance (shortly Topics fCF) on the Internet platform www.compfin.de.

Köln, Germany Rüdiger U. Seydel
April 2017
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Preface to the Fifth Edition

Financial engineering and numerical computation are genuinely different disci-
plines. But in finance, many computational methods are used and have become
indispensable. This book explains how computational methods work in financial
engineering. The main focus is on computational methods; financial engineering
is the application. In this context, the numerical methods are tools, the tools for
computational finance.

Faced with the vast and rapidly growing field of financial engineering, we need
to choose a subarea to avoid overloading the textbook. We choose the attractive
field of option pricing, a core task of financial engineering and risk analysis. The
broad field of option pricing is both ambitious and diverse enough to call for a wide
range of computational tools. Confining ourselves to option pricing enables a more
coherent textbook and avoids being distracted away from computational issues. We
trust that the focus on option-related methods is representative of, or least helpful
for, the entire field of computational finance.

The book starts with an introductory Chap. 1, which collects financial and
stochastic background. The remaining parts of the book are devoted to compu-
tational methods. Organizing computational methods, roughly speaking, leads to
distinguish stochastic and deterministic approaches. By “stochastic methods,” we
mean computations based on random numbers, such as Monte Carlo simulation.
Chapters 2 and 3 are devoted to such methods. In contrast, “deterministic methods”
are frequently based on solving partial differential equations. This is discussed
in Chaps. 4, 5, and 6. In the computer, finally, everything is deterministic. The
distinction between “stochastic” and “deterministic” is mainly to motivate and
derive different approaches.

All of the computational methods must be adapted to the underlying model of
a financial market. Here, we meet different kinds of stochastic processes, from
geometric Brownian motion to Lévy processes. Based on the chosen process, an
option model is selected. The classical choice is the Black–Scholes model for vanilla
options with one underlying asset. This benchmark market model is “complete”
in that all claims can be replicated. Established by Black, Merton, Scholes, and
others, this model is the main application of methods explained in Chaps. 2–6.

vii



viii Preface to the Fifth Edition

Chapter 7 goes beyond and addresses more general models. Allowing for jump
processes, transaction costs, multiasset underlyings, or more complicated payoffs
leads to incomplete markets. Computational methods for incomplete markets are
briefly discussed in Chap. 7.

This book has been published in several editions. The first German edition (2000)
was mainly absorbed by the Black–Scholes equation. Later editions (first English
edition 2002) were carefully opened to more general models and a wider selection
of methods. The book has grown with the development of the field. Faced with a
large variety of possible computational tools, this book attempts to balance the need
for a sufficient number of powerful algorithms with the limitations of a textbook.
The balance has been gradually shifting over the years and editions. Numerous
investigations in our research group have influenced the choice of covered topics.
We have implemented and tested many dozens of algorithms and gained insight and
experience. A significant part of this knowledge has entered the book.

Readership

This book is written from the perspective of an applied mathematician. The level of
mathematics is tailored to advanced undergraduate science and engineering majors.
Apart from this basic knowledge, the book is self-contained and can be used for
a course on the subject. The intended readership is interdisciplinary and includes
professionals in financial engineering, mathematicians, and scientists of many other
fields.

An expository style may attract a readership ranging from students to practi-
tioners. Methods are introduced as tools for immediate application. Formulated and
summarized as algorithms, a straightforward implementation in computer programs
should be possible. In this way, the reader may learn by computational experiment.
Learning by calculating will be a possible way to explore several aspects of the
financial world. In some parts, this book provides an algorithmic introduction to
computational finance. To keep the text readable for a wide audience, some aspects
of proofs and derivations are exported to exercises at which hints are frequently
given.

New in the Fifth Edition

The revisions to this fifth edition are much more extensive than those of previous
editions. Compared to the fourth edition, the page count has increased by about
100 pages. The main addition is Chap. 7, which is devoted to incomplete markets.
It begins with an introduction to nonlinear Black–Scholes-type partial differential
equations, as they arise from considering transaction costs or ranges for a stochastic
volatility. Numerical approaches require instruments that converge to viscosity



Preface to the Fifth Edition ix

solutions. These solutions are introduced in an appendix. The role of monotonicity
of numerical schemes is outlined. Lévy processes, with a focus on Merton’s
jump diffusion and a numerical approach to the resulting partial integrodifferential
equation, are then addressed. The chapter ends with an exposition on how the
Fourier transform can be applied to option pricing. To complete the introduction
of more general models and methods, the Dupire equation is outlined in a new
appendix.

In addition to the new Chap. 7, several larger extensions and new sections have
been written for this edition. The calculation of Greeks is described in more detail,
including the method of adjoints for a sensitivity analysis (new Sect. 3.7). Penalty
methods are introduced and applied to a two-factor model in the new Sect. 6.7. More
material is presented in the field of analytical methods; in particular, Kim’s integral
representation and its computation have been added to Chap. 4. Tentative guidelines
on how to compare different algorithms and judge efficiency are given in the new
Sect. 4.9. The chapter on finite elements has been extended with a discussion of
two-asset options.

Apart from additional material listed above, the entire book has been thoroughly
revised. The clarity of the expository parts has been improved; all sections have
been tested in the classroom. Numerous amendments, further figures, exercises, and
many references have been added. For example, the principal component analysis
and its applications are included, and the role of different boundary conditions is
outlined in more detail.

How to Use This Textbook

Exercises are stated at the end of each chapter. They range from easy routine tasks
to laborious projects. In addition to these explicitly formulated exercises, plenty
of “hidden” exercises are spread throughout the book, with comments such as
“the reader may check.” Of course, the reader is encouraged to fill in those small
intermediate steps that are excluded from the text.

This book explains the basic ideas of several approaches, presenting more
material than is accomplishable in one semester. The following guidelines have
proved successful in teaching:

First Course:

Chapter 1 without Sect. 1.6.2
Chapter 2
Chapter 3 without Sect. 3.7
Chapter 4, with one analytic method out of Sect. 4.8

and without Sect. 4.9
Chapter 6, or parts of it
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Second Course:

The remaining parts, in particular
Chapter 5 and Chap. 7

Depending on the detail of explanation, the first course could be for undergraduate
students. The second course may attract graduate students.

Extensions in the Internet

There is an accompanying Internet page:

www.compfin.de

This is intended to serve the needs of the computational finance community and
provides complementary material to this book. In particular, the collection Topics
for Computational Finance, which is under construction, presents several of our
findings or figures that would go beyond the limited scope of a textbook. In its final
state, Topics is anticipated as a companion source to the Tools.

www.compfin.de
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CFL Courant–Friedrichs–Lewy (see Sect. 6.5.1)
Dow Dow Jones Industrial Average
FE Finite element
FFT Fast Fourier transform
FTBS Forward time backward space (see Sect. 6.5.1)
FTCS Forward time centered space (see Sect. 6.4.2)
GBM Geometric Brownian motion (see (1.47))
LCP Linear complementarity problem
MC Monte Carlo
ODE Ordinary differential equation
OTC Over the counter
OU Ornstein–Uhlenbeck
PDE Partial differential equation
PIDE Partial integro-differential equation
PSOR Projected successive overrelaxation
QMC Quasi-Monte Carlo
SDE Stochastic differential equation
SOR Successive overrelaxation
TVD Total variation diminishing
i.i.d. Independent and identically distributed
inf Infimum, largest lower bound of a set of numbers
sup Supremum, least upper bound of a set of numbers
supp.f / Support of a function f : fx 2 D W f .x/ ¤ 0g
t.h.o. Terms of higher order
w.r.t. With respect to
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Chapter 1
Modeling Tools for Financial Options

1.1 Options

What do we mean by option? An option is the right (but not the obligation) to
buy or sell one unit of a risky asset at a prespecified fixed price within a specified
period. An option is a financial instrument that allows—amongst other things—
to make a bet on rising or falling values of an underlying asset. The underlying
asset typically is a stock, or a parcel of shares of a company. Other examples of
underlyings include stock indices (as the Dow Jones Industrial Average), currencies,
or commodities. Since the value of an option depends on the value of the underlying
asset, options and other related financial instruments are called derivatives (�!
Appendix A.2). An option is a contract between two parties about trading the asset
at a certain future time. One party is the writer, often a bank, who fixes the terms of
the option contract and sells the option. The other party is the holder, who purchases
the option, paying the market price, which is called premium. How to calculate a
fair value of the premium is a central theme of this book. The holder of the option
must decide what to do with the rights the option contract grants. The decision will
depend on the market situation, and on the type of option. There are numerous
different types of options, which are not all of interest to this book. In Chap. 1
we concentrate on standard options, also known as vanilla options. This Sect. 1.1
introduces important terms.

Options have a limited life time. The maturity date T fixes the time horizon. At
this date the rights of the holder expire, and for later times (t > T) the option is
worthless. There are two basic types of option: The call option gives the holder the
right to buy the underlying for an agreed price K by the date T. The put option
gives the holder the right to sell the underlying for the price K by the date T. The
previously agreed price K of the contract is called strike or exercise price.1 It is

1The price K as well as other prices are meant as the price of one unit of an asset, say, in $.
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2 1 Modeling Tools for Financial Options

important to note that the holder is not obligated to exercise—that is, to buy or sell
the underlying according to the terms of the contract. The holder may wish to close
his position by selling the option. In summary, at time t the holder of the option can
choose to

• sell the option at its current market price on some options exchange (at t < T),
• retain the option and do nothing,
• exercise the option (t � T), or
• let the option expire worthless (t � T).

In contrast, the writer of the option has the obligation to deliver or buy the
underlying for the strike price K, in case the holder chooses to exercise. The
risk situation of the writer differs strongly from that of the holder. The writer
receives the premium when he issues the option and somebody buys it. This up-front
premium payment compensates for the writer’s potential liabilities in the future. The
asymmetry between writing and owning options is evident. This book mostly takes
the standpoint of the holder (long position in the option).

Not every option can be exercised at any time t � T. For European options,
exercise is only permitted at expiration T. American options can be exercised at
any time up to and including the expiration date. For options the labels American or
European have no geographical meaning; both types are traded in each continent.
Options on stocks are mostly American style.

The value of the option will be denoted by V . The value V depends on the price
per share of the underlying, which is denoted S. This letter S symbolizes stocks,
which are the most prominent examples of underlying assets. The variation of the
asset price S with time t is expressed by St or S.t/. The value of the option also
depends on the remaining time to expiry T � t. That is, V depends on time t. The
dependence of V on S and t is written V.S; t/. As we shall see later, it is not easy
to define and to calculate the fair value V of an option for t < T. But it is an easy
task to determine the terminal value of V at expiration time t D T. In what follows,
we shall discuss this topic, and start with European options as seen with the eyes of
the holder.

1.1.1 The Payoff Function

At time t D T, the holder of a European call option will check the current price
S D ST of the underlying asset. The holder has two alternatives to acquire the
underlying asset: either buying the asset on the spot market (costs S), or buying
the asset by exercising the call option (costs K). For a rational investor, the decision
is easy: the costs are to be minimal. The holder will exercise the call if and only
if S > K. For then the holder can immediately sell the asset for the spot price S
and makes a gain of S � K per share. In this situation the value of the option is
V D S�K. (This reasoning ignores transaction costs.) In case S < K the holder will
not exercise, since then the asset can be purchased on the market for the cheaper
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S

V

K

Fig. 1.1 Intrinsic value V.S; T/ of a call with exercise price K (payoff function)

price S. In this case the option is worthless, V D 0. In summary, the value V.S;T/
of a call option at expiration date T is given by

V.ST ;T/ WD
�
0 in case ST � K (option expires worthless)
ST � K in case ST > K (option is exercised):

Hence

V.ST ;T/ D max f ST � K; 0 g :

Considered for all possible prices St, maxfSt � K; 0g is a function of St, in general
for 0 � t � T.2 This payoff function is shown in Fig. 1.1. Using the notation f C WD
maxf f ; 0g, this payoff can be written in the compact form .St � K/C. Accordingly,
the value V.ST ;T/ of a call at maturity date T is

V.ST ;T/ D .ST � K/C : (1.1)

For a European put, exercising only makes sense in case S < K. The payoff
V.S;T/ of a put at expiration time T is

V.ST ;T/ WD
�

K � ST in case ST < K (option is exercised)
0 in case ST � K (option is worthless).

Hence

V.ST ;T/ D max fK � ST ; 0 g ;

2In this chapter, the payoff evaluated at t only depends on the current value St. Payoffs that depend
on the entire path St for all 0 � t � T occur for exotic options, see Chap. 6.
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Fig. 1.2 Intrinsic value
V.S; T/ of a put with exercise
price K (payoff function)

S

V

K

K

Fig. 1.3 Profit diagram of
a put

K

S

V

K

or

V.ST ;T/ D .K � ST/
C ; (1.2)

compare Fig. 1.2.
We shall denote both payoff functions in (1.1) and (1.2) by �.S/,

�.S/ WD
(
.S � K/C in case of a call,

.K � S/C in case of a put.
(1.3)

The curves in the payoff diagrams of Figs. 1.1 and 1.2 show the option values
from the perspective of the holder. The profit is not shown. For an illustration of the
profit, the initial costs for buying the option at t D t0 must be subtracted. The initial
costs basically consist of the premium and the transaction costs. Since both are paid
upfront, they are multiplied by er.T�t0/ to take account of the time value; r is the
continuously compounded interest rate. Subtracting the costs leads to shifting down
the curves in Figs. 1.1 and 1.2. The resulting profit diagram shows a negative profit
for some range of S-values, which of course means a loss (see Fig. 1.3).

The payoff function for an American call is .St � K/C and for an American put
.K� St/

C for any t � T. The Figs. 1.1 and 1.2 as well as the Eqs. (1.1), (1.2) remain
valid for American type options.
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The payoff diagrams of Figs. 1.1 and 1.2 and the corresponding profit diagrams
show that a potential loss for the purchaser of an option (long position) is limited
by the initial costs, no matter how bad things get. The situation for the writer (short
position) is reverse. For him the payoff curves of Figs. 1.1 and 1.2 as well as the
profit curves must be reflected on the S-axis. The writer’s profit or loss is the reverse
of that of the holder. Multiplying the payoff of a call in Fig. 1.1 by .�1/ illustrates
the potentially unlimited risk of a short call. Hence the writer of a call must carefully
design a strategy to compensate for his risks. We will come back to this issue in
Sect. 1.5.

1.1.2 A Priori Bounds

No matter what the terms of a specific option are and no matter how the market
behaves, the values V of the options satisfy certain bounds. These bounds are known
a priori. For example, the value V.S; t/ of an American option can never fall below
the payoff, for all S and all t. These bounds follow from the no-arbitrage principle
(�! Appendices A.2 and A.3).

To illustrate the strength of no-arbitrage arguments, we assume for an American
put that its value VAm

P is below the payoff. V < 0 contradicts the definition of the
option. Hence V � 0, and S and V would be in the triangle seen in Fig. 1.2. That
is, S < K and 0 � V < K � S. This scenario would allow an arbitrage strategy
as follows: Borrow the cash amount of SC V , and buy both the underlying and the
put. Then immediately exercise the put, selling the underlying for the strike price K.
The profit of this arbitrage strategy is K � S � V > 0. This is in conflict with the
no-arbitrage principle. Hence the assumption that the value of an American put is
below the payoff must be wrong. We conclude for the put

VAm
P .S; t/ � .K � S/C for all S; t :

Similarly, for the call

VAm
C .S; t/ � .S � K/C for all S; t :

(The meaning of the notations VAm
C , VAm

P , VEur
C , VEur

P is evident.)
Other bounds are listed in Appendix E.1. For example, a European put on an asset

that pays no dividends until T may also take values below the payoff, but is always
above the lower bound Ke�r.T�t/�S. The value of an American option should never
be smaller than that of a European option because the American type includes the
European type exercise at t D T and in addition early exercise for t < T. That is

VAm � VEur
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as long as all other terms of the contract are identical. In summary, with the notation
� of (1.3), the inequality

VAm.S; t/ � max fVEur.S; t/; �.S/ g (1.4)

holds for American options. For European options, when no dividends are paid until
T, the values of put and call are related by the put-call parity

SC VEur
P � VEur

C D Ke�r.T�t/ ;

which can be shown by applying arguments of arbitrage (�! Exercise 1.1).

1.1.3 Options in the Market

The features of the options imply that an investor purchases puts when the price
of the underlying is expected to fall, and buys calls when the prices are about to
rise. This mechanism inspires speculators. An important application of options is
hedging (�! Appendix A.2).

The value of V.S; t/ also depends on other factors. Dependence on the strike K
and the maturity T is evident. Market parameters affecting the price are the interest
rate r, the volatility � of the price St, and dividends in case of a dividend-paying
asset. The interest rate r is the risk-free rate, which applies to zero bonds or to
other investments that are considered free of risks (�! Appendices A.1 and A.2).
The important volatility parameter � can be defined as standard deviation of the
fluctuations in St, for scaling divided by the square root of the observed time period.
The larger the fluctuations, represented by large values of � , the harder is to predict
a future value of the asset. Hence the volatility may serve as a measure of risk. The
dependence of V on � is highly sensitive. On occasion we write V.S; tI T;K; r; �/
when the focus is on the dependence of V on market parameters.

Time is measured in years. The units of r and �2 are per year. Writing � D 0:2

means a volatility of 20%, and r D 0:05 represents an interest rate of 5%. Table 1.1

Table 1.1 List of important
variables

t Current time, 0 � t � T

T Expiration time, maturity

r Interest rate, return (r � 0 assumed)

S; S.t/; St Current price of underlying asset

� Annual volatility of S

K Strike price, exercise price per share

V.S; t/ Value of option

�.S/ Payoff of a standard option

ı Dividend rate
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summarizes the key notations of option pricing. The notation is standard except for
the strike price K, which is sometimes denoted X, or E.

The time period of interest is t0 � t � T. One might think of t0 denoting the date
when the option is issued and t as a symbol for “today.” But this book mostly sets
t0 D 0 in the role of “today,” without loss of generality. Then the interval 0 � t � T
represents the remaining life time of the option. The price St is a stochastic process,
compare Sect. 1.6. In real markets, the interest rate r and the volatility � vary with
time. To keep the models and the analysis simple, we mostly assume r and � to be
constant on 0 � t � T. Further we suppose that all variables are arbitrarily divisible
and consequently can vary continuously—that is, all variables vary in the set R of
real numbers.

1.1.4 The Geometry of Options

As mentioned, our aim is to calculate V.S; t/ for fixed values of K;T; r; � . The
values V.S; t/ can be interpreted as a surface over the subset

S > 0 ; 0 � t � T

of the .S; t/-plane. Figure 1.4 illustrates the character of such a surface for the case
of an American put. For the illustration assume T D 1. The figure depicts six curves
obtained by cutting the option surface with the planes t D 0; 0:2; : : : ; 1:0. For t D T
the payoff function .K � S/C of Fig. 1.2 is clearly visible.

Shifting this payoff curve parallel for all 0 � t < T creates another surface,
which consists of the two planar pieces V D 0 (for S � K) and V D K � S (for

1

2

payoff

V

S

t

0

T

K

K

C

C

Fig. 1.4 Value V.S; t/ of an American put (schematically)
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S < K). By (1.4), this payoff surface .K�S/C is a lower bound to the option surface,
V.S; t/ � .K � S/C. Figure 1.4 shows two curves C1 and C2 on the option surface.
The curve C1 is the early-exercise curve, because on the planar part with V.S; t/ D
K � S holding the option is not optimal. (This will be explained in Sect. 4.5.) The
curve C2 has a technical meaning explained below. Within the area limited by these
two curves C1;C2, the option surface is clearly above the payoff surface, V.S; t/ >
.K�S/C. Outside that area, both surfaces coincide. This is strict “above” C1, where
V.S; t/ D K � S, and holds approximately for S beyond C2, where V.S; t/ 	 0 or
V.S; t/ < " for a small value of " > 0. The location of C1 and C2 is not known,
these curves are calculated along with the calculation of V.S; t/. Of special interest
is V.S; 0/, the value of the option “today.” This curve is seen in Fig. 1.4 for t D 0 as
the front edge of the option surface. This front curve may be seen as smoothing the
corner in the payoff function. The schematic illustration of Fig. 1.4 is completed by
a concrete example of a calculated put surface in Fig. 1.5. An approximation of the
curve C1 is shown.

The above was explained for an American put. For other options the bounds are
different (�! Appendix E.1). As mentioned before, a European put takes values
above the lower bound Ke�r.T�t/ � S, compare Fig. 1.6 and Exercise 1.1b.

In summary, this Sect. 1.1 has introduced an option with the following features: it
depends on one underlying, and its payoff is .K�S/C or .S�K/C, with S evaluated
at the current time instant. This is the standard option called vanilla option. All
other options are called exotic. To clarify the distinction between vanilla options
and exotic options, we hint at ways how an option can be “exotic.” For example, an
option may depend on a basket of several underlying assets, or the payoff may be
different, or the option may be path-dependent in that V no longer depends solely
on the current .St; t/ but on the entire path St for 0 � t � T. To give an example
of the latter, we mention an Asian option, where the payoff depends on the average

7
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1

0
4 6 8 10 12 14 16 18 20 0

0.2
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1

t

S

Fig. 1.5 Value V.S; t/ of an American put with r D 0:06, � D 0:30, K D 10, T D 1
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Fig. 1.6 Value V.S; 0/ of a European put (in red) for t D 0 and 0 � S � 20. Parameters are
T D 1, K D 10, r D 0:06, � D 0:3. The payoff �.S/ D V.S; T/ is drawn with a blue line. For
small values of S the value V approaches its lower bound, here 9:4� S

value of the asset for all times until expiry. Or for a barrier option the value also
depends on whether the price St hits a prescribed barrier during its life time. We
come back to exotic options later in the book.

1.2 Model of the Financial Market

Ultimately it is the market that decides on the value of an option. Above, we have
been anticipating “surfaces” V.S; t/, pretending a value V for any S; t. In the reality
of markets, prices Vmar of options are only known for a selection of discrete values of
the underlying’s prices, times, or parameters. Geometrically, the available data form
only relatively few points on the anticipated “surfaces” V . If we try to calculate
a reasonable value of the option, we need a mathematical model of the market.
Mathematical models can serve as approximations and idealizations of the complex
reality of the financial world. The most prominent example of a model is the model
named after the pioneers Black, Merton and Scholes. Their approaches have been
both successful and widely accepted. This Sect. 1.2 introduces some key elements of
market models. Based on a chosen mathematical model, the value and the potential
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of an option is assessed. This includes both the calculation of V.S; t/, and an analysis
of how sensitive V reacts on changes in S; t, or on variations in the parameters. Of
course, the results are subject to the uncertainty of the model.

It is attractive to define the option surfaces V.S; t/ on the half strip S > 0,
0 � t � T as solutions of suitable equations. Then calculating V amounts to solving
the equations on the domain “half strip.” In fact, a series of assumptions allows to
characterize value functions V.S; t/ as solutions of certain partial differential equa-
tions or partial differential inequalities. The model of Black, Merton and Scholes is
represented by the famous Black–Scholes equation, which was suggested in 1973.

Definition 1.1 (Black–Scholes Equation)

@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV D 0 (1.5)

Equation (1.5) is a partial differential equation (PDE) for the value function V.S; t/
of options. This equation may serve as symbol of the classic market model. But
what are the assumptions leading to the Black–Scholes equation?

Assumptions 1.2 (Black–Merton–Scholes Model of the Market)

(a) There are no arbitrage opportunities.
(b) The market is frictionless.

This means that there are no transaction costs (fees or taxes), the interest
rates for borrowing and lending money are equal, all parties have immediate
access to any information, and all securities and credits are available at any
time and in any size.3 Consequently, all variables are perfectly divisible—that
is, can take any real number. Further, individual trading will not influence
the price.

(c) The asset price follows a geometric Brownian motion.
(This stochastic motion will be discussed in Sects. 1.6–1.8.)

(d) r and � are constant for 0 � t � T. No dividends are paid in that time period.
The option is European.

These are the assumptions that lead to the Black–Scholes equation (1.5). The
assumptions are rather strong, in particular, the volatility � being constant. In
contrast to the complications of real markets, the Black–Scholes model is a simple
model, but most helpful. Some of the assumptions can be weakened. We come to
more complex models later in the text. For brevity, we call the restricted model
represented by Assumptions 1.2 Black–Scholes model, because Merton has also
extended it to include jumps, which are ruled out by (c). A derivation of the Black–
Scholes partial differential equation (1.5) is given in Appendix A.4. Admitting all
real numbers t within the interval 0 � t � T leads to characterize the model as
continuous-time model. In view of allowing also arbitrary values of S > 0, V > 0,
we speak of a continuous model.

3In particular, this holds for trading the underlying.



1.2 Model of the Financial Market 11

A value function V.S; t/ is not fully defined by merely requesting that it
solves (1.5) for all S and t out of the domain “half strip.” In addition to solving this
PDE, the function V.S; t/must satisfy a terminal condition. The terminal condition
for t D T is

V.S;T/ D �.S/ ;
where � denotes the payoff function (1.3), depending on the type of option. This
terminal condition is no artificial requirement. It is a prime statement and naturally
represents the definition of an option. In theory, (1.5) with V.S;T/ D �.S/ is a
Cauchy problem and completes one possibility of defining a value function V.S; t/.

For computational purposes, the full half strip with S > 0 is typically truncated,
say, to Smin � S � Smax. Then boundary conditions for Smin and Smax are needed in
addition. Sometimes they are given by the financial terms of the option, for example,
for barrier options. But often boundary conditions are secondary and artificial, and
not immediately provided by the financial construction. Rather, boundary conditions
are required to make a solution of the partial differential equation meaningful.
In Chap. 4 we will come back to the Black–Scholes equation and to boundary
conditions.

For (1.5) an analytic solution is known (Eqs. (1.7)–(1.10), and Appendix A.4).
Note that the partial differential equation (1.5) is linear in the value function V .4

The partial differential equation is no longer linear when Assumptions 1.2(b) are
relaxed. For example, for considering trading intervals�t and transaction costs as k
per unit, one could add the nonlinear term

�
r
2

	

k�S2p
�t

ˇ̌
ˇ̌@2V
@S2

ˇ̌
ˇ̌

to (1.5), see [376], and Sect. 7.1. Also finite liquidity (feedback of trading to the
price of the underlying) leads to nonlinear terms in the PDE. In the general case,
closed-form solutions do not exist, and a solution is calculated numerically, espe-
cially for American options. For the American-style option a further nonlinearity
stems from the early-exercise feature (�! Chap. 4). For solving (1.5) numerically,
a variant with dimensionless variables can be used (�! Exercise 1.4).

Of course, the calculated value V of an option depends on the chosen market
model. Writing V.S; tI T;K; r; �/ suggests a focus on the Black–Scholes equation.
This could be made definite by writing VBS, for example. Other market models may
involve more parameters. Then, in general, the corresponding value of the value
function V is different from VBS. Since we mostly stick to the market model of
Assumptions 1.2, we drop the superscript. All our prices V are model prices, not
market prices. For the relation between our model prices V and market prices Vmar,
see Sect. 1.10.

4The function V is not linear in S or t. Also the payoff is nonlinear; the vanilla functions �.S/ D
.K � S/C and �.S/ D .S � K/C are convex.
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Based on the chosen mathematical model, a sensitivity analysis is possible. We
ask, for example, how does the price V change to a value VCdV , when the price S of
the underlying changes to SCdS? Similarly, what is the effect of a change d� in the
parameter �? When the value function V.S; tI : : : / is smooth, the Taylor expansion

dS D @V

@S
dSC @V

@t
dtC @V

@�
d� C @V

@r
drC 1

2

@2V

@S2
.dS/2 C : : : : (1.6)

suggest an answer. The proper partial derivative of V is an amplification factor. For
small enough dt it provides a first-order guess on how sensitive V may react to
changes in the corresponding variable or parameter. In the finance context, these
partial derivatives of V are called “greeks.” For example, “delta” is the name for

� WD @V

@S
:

The second-order derivative “gamma” @2V
@S2

is important too, and is included in the
list of first-order terms in (1.6) by reasons that will become clear in Sects. 1.6
and 1.8. Several of these sensitivity parameters or hedge parameters need to be
approximated as well.

At this point, a word on the notation is appropriate. The symbol S for the asset
price is used in different roles: First it comes without subscript in the role of an
independent real variable S > 0 on which the value function V.S; t/ depends,
say as solution of the partial differential equation (1.5). Second it is used as St

with subscript t to emphasize its random character as stochastic process. When the
subscript t is omitted, the current role of S becomes clear from the context.

1.3 Numerical Methods

Applying numerical methods is indispensable in all fields of technology, including
financial engineering. Often this is not apparent. In particular, this holds in case
analytic formulas are available. The most important formula in our context is the
Black–Scholes formula. Essentially, the standard normal cumulative distribution
function F (with density f , compare Exercise 1.5 or Appendix E.2) is evaluated
for the following arguments:

d1 W D
log S

K C
�

r � ı C �2

2

�
.T � t/

�
p

T � t
; (1.7)

d2 W D d1 � �
p

T � t D
log S

K C
�

r � ı � �2

2

�
.T � t/

�
p

T � t
: (1.8)
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With these definitions of d1 and d2, the values VC.S; t/ and VP.S; t/ of a European
call and put are given by

VC.S; t/ D Se�ı.T�t/F.d1/� Ke�r.T�t/F.d2/ ; (1.9)

VP.S; t/ D �Se�ı.T�t/F.�d1/C Ke�r.T�t/F.d2/ : (1.10)

1.3.1 Algorithms

For the above Black–Scholes formula, the important role of numerical algorithms
is often not noticed. The closed-form expressions (1.7)–(1.10) might suggest that
no numerical procedure is needed. But such expressions may include evaluating
the logarithm or the computation of the distribution function F of the normal
distribution. Such elementary tasks are performed using sophisticated numerical
algorithms. In pocket calculators one merely presses a button without being aware of
the numerics. The robustness of those elementary numerical methods is so reliable
and the efficiency so high that underlying algorithms almost appear not to exist.
But even for apparently simple tasks the methods are quite demanding (�! Exer-
cise 1.5). The methods must be carefully designed because inadequate strategies
might produce inaccurate results (�! Exercise 1.6). Dangerous subtractions tend
to be overlooked. For example, for options deep out of the money, the value V 	 0
is obtained by subtraction of two numbers basically of the same size. Then accuracy
is lost; an evaluation of the Black–Scholes formula suffers from cancellation.5

Spoiled by generally available black-box software and graphics packages we
take the support and the success of numerical workhorses for granted. We make
use of the numerical tools with great respect but without further comments, and
we just assume an education in elementary numerical methods. An introduction to
important methods and hints on the literature are given in Appendix C.1.

Since financial markets undergo apparently stochastic fluctuations, stochastic
approaches provide natural tools to simulate prices. These methods are based on
formulating and simulating stochastic differential equations. This leads to Monte
Carlo methods (�! Chap. 3). In computers, related simulations of options are
performed in a deterministic manner. It will be decisive how to simulate randomness
(�! Chap. 2). Chapters 2 and 3 are devoted to tools for simulation. These methods
can be applied easily even in case the Assumptions 1.2 are not satisfied.

More efficient methods will be preferred provided their use can be justified by
the validity of the underlying models. For example it may be advisable to solve the
partial differential equations of the Black–Scholes type. Then one has to choose
among several methods. The most elementary ones are finite-difference methods
(�! Chap. 4). A somewhat higher flexibility concerning error control is possible

5But for out-of-the-money options the Black–Scholes model is not recommended anyhow.
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with finite-element methods (�! Chap. 5). The numerical treatment of exotic
options requires a more careful consideration of stability issues (�! Chap. 6).
Methods based on differential equations will be described in the larger part of this
book. And beyond Black and Scholes, even more tools are needed (�! Chap. 7).

1.3.2 Discretization

The mathematical formulation benefits from the assumption that all variables take
values in the continuumR. This idealization is practical since it avoids initial restric-
tions of technical nature, and it gives us freedom to impose artificial discretizations
convenient for the numerical methods. The hypothesis of a continuum applies to the
.S; t/-domain of the half strip 0 � t � T, S > 0, and to the differential equations.
In contrast to the hypothesis of a continuum, the financial reality is rather discrete:
Neither the price S nor the trading times t can take any real value. The artificial
discretization introduced by numerical methods is at least twofold:

1.) The .S; t/-domain is replaced by a grid of a finite number of .S; t/-points, as
illustrated in Fig. 1.7.

2.) Differential equations are adapted to the grid and replaced by a finite number of
algebraic equations.

The restriction of the differential equations to the grid causes discretization
errors. The errors depend on the coarseness of the grid. In Fig. 1.7, the distance

Δ t

S

t

T

0 0

T

t

S

Fig. 1.7 Grid points in the .S; t/-domain
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between two consecutive t-values of the grid is denoted �t.6 So the errors will
depend on �t and on �S. It is one of the aims of numerical algorithms to
control the errors. The left-hand figure in Fig. 1.7 shows a simple rectangular grid,
whereas the right-hand figure shows a tree-type grid as used in Sect. 1.4. The type
of the grid matches the kind of underlying equations. The values of V.S; t/ are
primarily approximated at the grid points. Intermediate values can be obtained by
interpolation.

The continuous model is an idealization of the discrete reality. But the numerical
discretization does not reproduce the original discretization. For example, it would
be a rare coincidence when �t represents a day. The derivations that go along with
the twofold transition

discrete �! continuous �! discrete

do not compensate.
Another kind of discretization is that computers replace the real numbers by a

finite number of rational numbers, namely, the floating-point numbers. The resulting
rounding error will not be relevant for much of our analysis, except for investigations
of stability.

1.3.3 Efficiency

The various methods are discussed in terms of accuracy and speed. Ultimately
the methods must give quick and accurate answers to real-time problems posed
in financial markets. Efficiency and reliability are key demands. Internally the
numerical methods must deal with diverse problems such as convergence order or
stability. So the numerical analyst is concerned in error estimates and error bounds.
Technical criteria such as complexity or storage requirements are relevant for the
implementation.

But it is not easy to judge efficiency. We sketch how to approach the problem.
Denote the grid size by h (�t in Fig. 1.7). Then the number of grid points in one
discretized variable is of the order O. 1h /. For n such variables (n D 2 in Fig. 1.7)
one has O.h�n/ grid points, and we expect costs

costs D ˛h�n :

The performance is characterized by the achieved error, for example,

error D ˇhp ;

6The symbol �t denotes a small increment in t (analogously �S; �W). In case � would be a
number, the product with u would be denoted � � u or u�.
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with constants ˛; ˇ, and an order p of the error. Eliminating the grid size h gives

costs � error�n=p :

This is a potential law. Testing algorithms, measuring costs and errors, and entering
the results in a double-logarithmic form allows to compare the efficiency of various
algorithms. This will be done in Sect. 4.9. For the task of evaluating F, this can be
found in Topic 10 of the Topics for Compuational Finance (Topics fCF). Notice that
in general every accuracy level has a different answer to the question, which method
is most efficient.

1.4 The Binomial Method

The major part of the book is devoted to continuous models and their discretizations.
With much less effort a discrete approach provides us with a short way to establish a
first algorithm for calculating options. The resulting binomial method is robust and
widely applicable.

In practice one is often interested in the one value V.S0; 0/ of an option at
the current spot price S0. Then it can be unnecessarily costly to calculate the
surface V.S; t/ for the entire domain to extract the required information V.S0; 0/.
The relatively small task of calculating V.S0; 0/ can be comfortably solved using
the binomial method. This method is based on a tree-type grid applying appropriate
binary rules at each grid point. The grid is not predefined but is constructed by the
method. For illustration see the right-hand side in Fig. 1.7, and Fig. 1.10.

1.4.1 A Discrete Model

We begin with discretizing the continuous time t, replacing t by equidistant time
instances ti. Let us use the notations

M: number of time steps
�t WD T

M
ti WD i 
�t, i D 0; : : : ;M :

Si WD S.ti/

So far the domain of the .S; t/ half strip is semidiscretized in that it is replaced by
parallel straight lines with distance �t apart, leading to a discrete-time model. The
next step of discretization replaces the continuous values Si along the parallel t D ti
by discrete values Sj;i, for all i and appropriate j. For a better understanding of the
S-discretization compare Fig. 1.8. This figure shows a mesh of the grid, namely, the
transition from t to tC�t, or from ti to tiC1.
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Fig. 1.8 The principle setup of the binomial method

Assumptions 1.3 (Binomial Method) Assume (Bi1), (Bi2), and (Bi3).

(Bi1)
The price S over each period of time�t can only have two possible outcomes:
An initial value S either evolves “up” to Su, or “down” to Sd, with 0 < d < u.

(Bi2)
The probability of an up movement is p, P.up/ D p.

The factor u is the factor of an upward movement, and d is the factor of a downward
movement. The rules (Bi1) and (Bi2) represent the framework of a binomial process.
Such a process behaves like tossing a biased coin where the outcome “head” (up)
occurs with probability p. At this stage of the modeling, the values of the three
parameters u; d and p are undetermined. They are fixed in a way such that the
model is consistent with the continuous model in case �t ! 0. This aim leads to
further assumptions. The basic idea of the approach is to equate the expectation and
the variance of the discrete model with the corresponding values of the continuous
model. This amounts to require

(Bi3)
Expectation and variance of S refer to their continuous counterparts, evalu-
ated for the risk-free interest rate r.

This assumption (Bi3) leads to equations for the parameters u; d; p. The resulting
probability P of (Bi2) does not reflect the expectations of an individual in the
market. Rather P is an artificial risk-neutral probability that matches (Bi3).7 The
expectation E below in (1.11) refers to this probability; this is sometimes written

7To distinguish this specific “money market measure” P from other probabilities, one gives it a
specific notation. In later sections we shall use the symbol Q.
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EP. (We shall return to the assumptions (Bi1), (Bi2), and (Bi3) in the subsequent
Sect. 1.5.) Let us further assume that no dividend is paid within the time period
of interest. This assumption simplifies the derivation of the method and can be
removed later.

1.4.2 Derivation of Equations

Recall the definition of the expectation for the discrete case, Appendix B.1,
Eq. (B.13), and conclude

E.SiC1/ D pSiuC .1 � p/Sid :

Here Si is an arbitrary value, which develops randomly to SiC1, when ti proceeds to
tiC1, following the assumptions (Bi1) and (Bi2). In this sense, E is a conditional
expectation. As will be seen in Sect. 1.7.2, the expectation of the continuous
model is

E.SiC1/ D Si er�t : (1.11)

Equating gives

er�t D puC .1 � p/d : (1.12)

This is the first of three equations required to fix u; d; p. Solved for the risk-neutral
probability p we obtain

p D er�t � d

u � d
: (1.13)

To be a valid model of probability, 0 � p � 1 must hold. Leaving aside degenerate
cases, we require 0 < p < 1. This is equivalent to

d < er�t < u : (1.14)

These inequalities relate the upward and downward movements of the asset price to
the riskless interest rate r. The inequalities (1.14) are no new assumptions but follow
from the no-arbitrage principle.

Next we equate variances. Via the variance the volatility � enters the model.
From the continuous model we apply the relation

E.S2iC1/ D S2i e.2rC�2/�t : (1.15)
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For the relations (1.11) and (1.15) we refer to Sect. 1.8 (�! Exercise 1.22).
Recall that the variance satisfies Var.S/ D E.S2/ � .E.S//2 (�! Appendix B.1).
Equations (1.11) and (1.15) combine to

Var.SiC1/ D S2i e2r�t.e�
2�t � 1/ :

On the other hand the discrete model satisfies

Var.SiC1/ D E.S2iC1/� .E.SiC1//2

D p.Siu/
2 C .1 � p/.Sid/

2 � S2i . puC .1 � p/d/2 :

Equating variances of the continuous and the discrete model, and applying (1.12)
leads to

e2r�t.e�
2�t � 1/ D pu2 C .1 � p/d2 � .er�t/2

e2r�tC�2�t D pu2 C .1 � p/d2 : (1.16)

The Eqs. (1.12), (1.16) constitute two relations for the three unknowns u; d; p. We
are free to impose an arbitrary third equation, and choose

u 
 d D 
 (1.17)

for a suitably chosen value of 
 . One example is the plausible assumption 
 D 1,
or ud D 1, which reflects a symmetry between upward and downward movement
of the asset price. Later, we shall use (1.17) with a specifically designed 
 . With the
third equation (1.17), the parameters u; d and p are fixed. First we discuss the classic
choice 
 D 1. Then the parameters depend on r; � and �t. So does the grid, which
is analyzed next (Fig. 1.9).

The above rules are applied to each grid line i D 0; : : : ;M, starting at t0 D 0

with the specific value S D S0. Attaching meshes of the kind depicted in Fig. 1.8
for subsequent values of ti builds a tree with node values Su jdk and j C k D i.

Fig. 1.9 Sequence of several
meshes (schematically)

Su2SudSd2

SuSd

S
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In this way, specific discrete values Sj;i of Si and the nodes of the tree are defined.
Since the same constant factors u and d underlie all meshes and since Sud D Sdu
holds, after the time period 2�t the asset price can only take three values rather
than four: The tree is recombining. It does not matter which of the two possible
paths we take to reach Sud. This property extends to more than two time periods.
Consequently the binomial process defined by Assumptions 1.3 is path independent.
Accordingly at expiration time T D M�t the price S can take only the .M C 1/
discrete values Sj;M WD Su jdM�j, j D 0; 1; : : : ;M. The number of nodes in the tree
grows quadratically in M. (Why?)

The symmetry of the choice ud D 1 becomes apparent in that after two time steps
the asset value S repeats. (Compare also Fig. 1.10.) For ud D 1, the central line of
the tree grows vertically. The vertical arrangement is advantageous for matching
a tree to barriers. But to smooth the convergence, it may be advisable to bend the
tree such that its central line ends up at the strike. (We return to such improvements
below.) In a .t; S/-plane the tree can be interpreted as a grid of exponential-like
curves. The binomial approach defined by (Bi1) with the proportionality between
Si and SiC1 reflects exponential growth or decay of S. Since the tree extends from
S0dM to S0uM , all grid points have the desirable property S > 0, but for large M the
tree becomes unrealistically wide.
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Fig. 1.10 Tree in the .S; t/-plane for M D 32 (data of Example 1.6)



1.4 The Binomial Method 21

1.4.3 Solution of the Equations

Using the abbreviation ˛ WD er�t we obtain by elimination (which the reader may
check in more generality in Exercise 1.7b) the quadratic equation

0 D u2 � u.
˛�1 C ˛e�
2�t„ ƒ‚ …

DW2ˇ
/C 
 ;

with solutions u D ˇ˙pˇ2 � 
 . By virtue of ud D 
 and Vieta’s Theorem, d is the
solution with the minus sign. In summary, the three parameters u; d; p are given by

ˇ W D 1
2
.
e�r�t C e.rC�2/�t/

u D ˇ Cpˇ2 � 

d D 
=u D ˇ �pˇ2 � 

p D er�t � d

u � d
:

(1.18)

A consequence of this approach is that up to terms of higher order the relation
u D e�

p
�t holds (�! Exercise 1.8). Therefore the extension of the tree in S-

direction matches the volatility of the asset. So the tree is scaled well and will cover
a relevant range of S-values.

1.4.4 A Basic Algorithm

Next we transform the binomial method into an algorithm.

1.4.4.1 Forward Phase: Initializing the Tree

Now the factors u and d can be considered as known, and the node values of S for
each ti until tM D T can be calculated. The current spot price S D S0 for t0 D 0 is
the root of the tree.

(To adapt the matrix-like notation to the two-dimensional grid of the tree, this
initial price will be also denoted S0;0.) Each initial price S0 leads to another tree of
node values Sj;i.

For i D 1; 2; : : : ;M calculate W
Sj;i WD S0u

jdi�j; j D 0; 1; : : : ; i

Now the grid points .Sj;i; ti/ are fixed, on which approximations to the option values
Vj;i WD V.Sj;i; ti/ are to be calculated.
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1.4.4.2 Calculating the Option Value, Valuation on the Tree

For tM and vanilla options, the payoff V.S; tM/ is known from (1.1), (1.2). The payoff
is valid for each S, including Sj;M D Su jdM�j; j D 0; : : : ;M. This defines the
values Vj;M:

Call: V.S.tM/; tM/ D max fS.tM/� K; 0g, hence:

Vj;M WD .Sj;M � K/C (1.19)

Put: V.S.tM/; tM/ D max fK � S.tM/; 0g, hence:

Vj;M WD .K � Sj;M/
C (1.20)

The backward phase recursively calculates for tM�1; tM�2; : : : the option values
V for all ti, starting from Vj;M . The recursion is based on Assumption 1.3, (Bi3).
Repeating the equation that corresponds to (1.12) with double index leads to

Sj;ie
r�t D pSj;iuC .1 � p/Sj;id ;

and

Sj;ier�t D pSjC1;iC1 C .1 � p/Sj;iC1 :

As will be explained in Sect. 1.5, we relate the Assumption 1.3, (Bi3), of risk
neutrality to V ,

Vi D e�r�t E.ViC1/ :

In double-index notation the resulting recursion is

Vj;i D e�r�t
�

pVjC1;iC1 C .1 � p/Vj;iC1
�
: (1.21)

So far, this recursion for Vj;i is merely an analogy, which might be seen as a further
assumption. But the following Sect. 1.5 will give a justification for (1.21), which
turns out to be a consequence of the no-arbitrage principle and the risk-neutral
valuation.

For European options, (1.21) is a recursion for i D M � 1; : : : ; 0, starting
from (1.20), and terminating with V0;0. (For an illustration see Fig. 1.11.) The
obtained value V0;0 is an approximation to the value V.S0; 0/ of the continuous
model, which results in the limit M ! 1 (�t ! 0). The accuracy of the approx-
imation V0;0 depends on M. This is reflected by writing V.M/

0 (�! Exercise 1.9).

The basic idea of the approach implies that the limit of V.M/
0 for M ! 1 is the

Black–Scholes value V.S0; 0/ (�! Exercises 1.10, 1.27, and Appendix D.1).
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Fig. 1.11 In .S; t;V/-space: tree in the .S; t/-plane (black +) with .S; t;V/-points (green triangles)
for M D 32 (data as in Fig. 1.5)

For American options, the above recursion must be modified by adding a test
whether early exercise is to be preferred. To this end the value of (1.21) is compared
with the value of the payoff�.S/. In this context, the value (1.21) is the continuation
value, denoted Vcont

j;i . And at any time ti the holder optimizes the position and decides
which of the two choices

f exercise; continue to hold g

is preferable.8 So the holder chooses the maximum

max f�.Sj;i/; Vcont
j;i g :

This amounts to the dynamic programming principle: The optimality of the decision
policy must be optimal also for any remaining time period. In summary, the

8Of course, the holder may wish to sell the option.
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dynamic-programming procedure, based on the Eqs. (1.20) for i rather than M,
combined with (1.21), reads as follows:

Vcont
j;i WD e�r�t 
 . pVjC1;iC1 C .1 � p/Vj;iC1/

Vj;i D max
n
.Sj;i � K/C; Vcont

j;i

o
for a call ;

Vj;i D max
n
.K � Sj;i/

C; Vcont
j;i

o
for a put :

(1.22)

The resulting algorithm is

Algorithm 1.4 (Binomial Method, Basic Version)

input:
r, � , S D S0, T, K, choice of put or call,

European or American, M.
Set the parameter 
 , for example, according to (1.23).

calculate:
�t WD T=M, u, d, p from (1.18)
S0;0 WD S0
Sj;M D S0;0u jdM�j, j D 0; 1; : : : ;M
(for American options, also Sj;i D S0;0u jdi�j

for 0 < i < M, j D 0; 1; : : : ; i)
valuation:

Vj;M from (1.20)
Vj;i for i < M from (1.21) for European options,

and from (1.22) for American options.
output:

V0;0 is the approximation V.M/
0 to V.S0; 0/.

Imagine that we color those nodes of the tree where early exercise is chosen. At
these points the holding of the option is stopped. Accordingly, these points mark
a part of the .S; t/-strip called the stopping region. The complementary part is the
continuation region; we come back to this issue in Sect. 4.5.

1.4.5 Improving the Convergence

The convergence order of the binomial method should be one. Then, ideally,
extrapolation would make sense (�! Exercise 1.11). But with 
 D 1 in (1.17), the
basic version of Algorithm 1.4 suffers from the fact that the payoff is not smooth at
the strike K. The tree with 
 D 1 is rigid, not depending on the location of the strike
K. This affects the accuracy at nodes near the kink .S; t;V/ D .K;T; 0/. For S0 ¤ K
the accuracy of the .
 D 1/-version of Algorithm 1.4 depends on how the strike K
is grasped by the tree and its grid points. The error depending on M may oscillate,
which is mainly caused by the erratic way how the point .S; t/ D .K;T/ takes its
place among the nodes Sj;M .
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Table 1.2 Results of
Example 1.5; for 
 see
Exercise 1.7

M V.M/.5; 0/ V.M/.5; 0/ With

for ud D 1 for ud D 
 order

8 4:42507 4:43542

16 4:42925 4:43325 0:833

32 4:429855 4:431933 0:923

64 4:429923 4:431218 0:963

128 4:430047 4:430846 0:982

256 4:430390 4:430657 0:991

2048 4:430451 4:430489 0:999

Black–Scholes 4:43046477621

This flaw of the .
 D 1/-version can be cured in an easy way. Following an idea
of [244], the tree can be bent such that for i D M the medium grid point falls on
the strike value K, no matter what (even) value of M is chosen. To this end, choose
in (1.17) 
 as


 WD exp

�
2

M
log

K

S0

�
(1.23)

(�! Exercise 1.7). Corresponding values of u and d, given by (1.18), smooth
the error significantly. We call the tree defined by (1.23) and (1.18) the tilted
tree. With (1.23) all parameters depend on K. Also, the tilted-tree method leads
to approximations V varying smoothly with S0. The Algorithm 1.4 with (1.23) is
straightforward to implement. With the tilted-tree version and an even value of M=2,
extrapolation

V.M;extr/ WD 2V.M/ � V.M=2/ (1.24)

does make sense. For further means of smoothing, see Appendix D.1 and
Exercise 1.12.

Example 1.5 (European Put) Choose K D 10; S D S0 D 5; r D 0:06; � D
0:3; T D 1:

Table 1.2 lists approximations V.M/ to V.5; 0/, both for ud D 1 and for ud D 


with 
 from (1.23). The two main columns of Table 1.2 are graphed in the two
illustrations of Fig. 1.12. The convergence towards the Black–Scholes value V.5; 0/
is visible; the latter was calculated by evaluating the analytic solution (1.7)–(1.10).9

(In this book the number of printed decimals illustrates at best the attainable
accuracy and does not reflect economic practice.)

9Recall that for European-style vanilla options an analytic solution exists, and Algorithm 1.4 is not
needed. Hence, applying Algorithm 1.4 to Example 1.5 is only to create an ideal setting for the
purpose of investigating accuracy and convergence.
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Fig. 1.12 Example 1.5: European-style option. Approximations V.M/ over �t D 1=M. Top figure:
the basic Algorithm 1.4 with ud D 1, linear convergence is hardly visible; bottom figure: the
improved algorithm of the tilted tree with ud D 
 and 
 from (1.23), linear convergence is
clearly visible

The convergence rate of Algorithm 1.4 is visible in the results of Table 1.2, and
in Fig. 1.12. The rate is linear, O.�t/ D O.M�1/. For S0 ¤ K and ud D 1 this rate
is corrupted and hard to observe. The reader may wish to investigate more closely
how the error of the basic version with ud D 1 decays with M (�! Exercise 1.9).
It turns out that for the .
 D 1/-version of the binomial method the convergence in
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M is not monotonic. It will not be recommendable to extrapolate these V.M/-data to
the limit M!1, at least not the data of Table 1.2 (ud D 1).

But the linear convergence rate can be seen well from the much better results
obtained for the tilted tree ud D 
 with 
 from (1.23). The linear rate is reflected
by the plots V.M/ over M�1, where the values of V.M/ lie close to a straight line,
which in this figure represents the linear error decay. Here extrapolation works well
(illustrations in Fig. 1.13). The convergence rate can also be calculated from the data
(�! Exercise 1.11). This can be seen from Table 1.2 in a perfect way.

In case the function V.S; 0/ is to be approximated for several S out of an interval
of S-values, other methods should be applied. Figure 1.6 shows related results
obtained by using the methods of Chap. 4.

Example 1.6 (American Put) Choose K D 50; S D 50; r D 0:1; � D 0:4; T D
0:41666 : : : ( 5

12
for 5 months).

Here the pricing is at the money, so 
 D 1. Figure 1.10 shows the tree for
M D 32. The corresponding approximation to V0 is V.32/ D 4:2719, calculated with
Algorithm 1.4; almost three digits are correct. With M D 2048 and extrapolation we
obtain 4.2842. At the early-exercise curve the surface V.S; t/ is not C2-smooth. As a
consequence the convergence order is not as close to q D 1 as in Example 1.5. Note
again that the function V.S; 0/ can be approximated with the methods of Chap. 4,
compare Fig. 4.11.

1.4.6 Sensitivities

The sensitivity parameters at .S; t/ D .S0;0; 0/

delta D @V

@S
; gamma D @2V

@S2
; theta D @V

@t
; (1.25)

can be approximated by difference quotients. The variations of V with S and t are
expressed by the tree, and therefore information on derivatives can be obtained as
by-product. For example, V1;1�V0;1

S1;1�S0;1
serves as a rough approximation for delta. But

this quotient is evaluated at t1 D �t rather than at t D 0. And a corresponding
approximation of gamma requires three node values, which are available for t2.
These approximations are available at zero cost, but the accuracy may be poor.

To improve the accuracy, the difference quotients should be evaluated at the root
node .S; t/ D .S0;0; 0/. This can be accomplished with a nice idea [297]. The tree
can be extended by starting it with a root at t�2 WD �2�t rather than at t D 0,
with S-value S�1;�2 WD S0;0=
 . The extended tree of M C 2 slices follows the rules
of Assumptions 1.3 and embeds the core tree. Now, j D �1; : : : ; i C 1. In this
way, two additional lines of nodes are created, one at each side of the core tree. In
particular, this creates two additional nodes at t D 0, with S-values S�1;0 and S1;0,
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Fig. 1.13 Example 1.5: European-style option. Extrapolated approximations of the tilted tree
showing quadratic convergence. Top figure: extrapolated values V.M;extr/ over �t D 1=M, based
on two approximations with M and M=2, M=2 even, V.M;extr/ WD 2V.M/ � V.M=2/; bottom figure:
V.M;extr/ over �t2
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and corresponding V-values V�1;0 and V1;0. Figure 1.9 may serve as illustration,
when Sud stands for S0;0. The approximations are

delta W V1;0 � V�1;0
S1;0 � S�1;0

gamma W
V1;0�V0;0
S1;0�S0;0

� V0;0�V�1;0

S0;0�S�1;0

.S1;0 � S�1;0/=2

theta W V0;0 � V�1;�2
2�t

(for example, when ud D 1/

The costs of calculating these difference quotients can be neglected, because
essentially the tree is not recalculated. Compared with the overall costs of O.M2/,
the costs of the 2MC5 additional nodes of the improved version are relatively small
as long as M is large. Algorithm 1.4 needs to be adapted (�! Exercise 1.13).

Since the above sensitivities with respect to S and t are revealed by one calculated
tree, they can be considered as bargain greeks. In contrast, the sensitivities with
respect to the parameters � and r are more costly to approximate; these are the
expensive greeks because the entire tree must be recalculated. For example, to set
up a difference quotient for the greek vegaD @V

@�
requires to recalculate the tree for a

parameter value �1 close to � . If the corresponding value of the option obtained by
the �1-tree is denoted V1, then we have a difference-quotient approximation

vega 	 V � V1
� � �1 :

For an improved accuracy at higher costs, one applies a symmetric difference
quotient, for which the tree is recalculated on the other side, for �2 WD 2� � �1.

1.4.7 Extensions

The paying of dividends can be incorporated into the binomial algorithm. For a
continuous dividend flow with constant rate ı, replace r in (1.18) by r� ı, but not in
the discounting in (1.21), (1.22). In case a discrete dividend D is paid at time instant
tD, the price of the asset drops by the same amount D. In practice, the input asset
price S0 is adjusted to QS0, by subtracting the current value of dividend payments. In
the simplest case, with a single dividend payment at time tD in 0 < tD < T and
constant rate r, start the algorithm from

QS0 WD S0 �De�rtD :

See also Appendix D.2 (�! Exercise 1.14)
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An extension of the binomial model is the trinomial model. Here each mesh
offers three outcomes, with probabilities p1; p2; p3 and p1 C p2 C p3 D 1. The
reader may wish to derive the trinomial method (�! Exercise 1.15). For further
hints, see Notes and Comments at the end of Chap. 1, and Appendix D.3.

1.5 Risk-Neutral Valuation

In the previous Sect. 1.4 we have used the Assumptions 1.3 to derive an algorithm
for valuation of options. This Sect. 1.5 discusses the assumptions again, leading to
a different interpretation.

The situation of a path-independent binomial process with the two factors u
and d continues to be the basis of the argumentation. The scenario is illustrated in
Fig. 1.14. Here the time period is the time to expiration T, which replaces �t in the
local mesh of Fig. 1.8. Accordingly, this global model is called one-period model.
The one-period model with only two possible values of ST has two clearly defined
values of the payoff, namely, V.d/ (corresponds to ST D S0d) and V.u/ (corresponds
to ST D S0u). In contrast to the Assumptions 1.3 we neither assume the risk-neutral
world (Bi3) nor the corresponding probability P.up/ D p from (Bi2). Instead we
derive the probability using the no-arbitrage argument. In this section the factors u
and d are assumed to be given.

Let us construct a portfolio of an investor with a short position in one option and
a long position consisting of � shares of an asset, where the asset is the underlying
of the option. The portfolio manager must choose the number � of shares such
that the portfolio is riskless. That is, a hedging strategy is needed. To discuss the
hedging properly assume that no funds are added or withdrawn.

By ˘t we denote the wealth of this portfolio at time t. Initially the value is

˘0 D S0 
� � V0 ; (1.26)

Fig. 1.14 One-period
binomial model
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where the value V0 of the written option is not yet determined. At the end of the
period the value VT either takes the value V.u/ or the value V.d/. So the value of the
portfolio˘T at the end of the life of the option is either

˘.u/ D S0u 
� � V.u/

or

˘.d/ D S0d 
� � V.d/ :

In the no-arbitrage world, � is chosen such that the value ˘T is riskless. Then all
uncertainty is removed and ˘.u/ D ˘.d/ must hold. This is equivalent to

.S0u � S0d/ 
� D V.u/ � V.d/ ;

which defines the strategy

� D V.u/ � V.d/

S0.u � d/
: (1.27)

With this value of � the portfolio with initial value ˘0 evolves to the final value
˘T D ˘.u/ D ˘.d/, regardless of whether the stock price moves up or down.
Consequently the portfolio is riskless.

If we rule out early exercise, the final value ˘T is reached with certainty. The
value ˘T must be compared to the alternative risk-free investment of an amount of
money that equals the initial wealth ˘0, which after the time period T reaches the
value erT˘0. Both the assumptions ˘0erT < ˘T and ˘0erT > ˘T would allow a
strategy of earning a risk-free profit. This is in contrast to the assumed arbitrage-
free world. Hence both ˘0erT � ˘T and ˘0erT � ˘T and equality must hold.10

Accordingly the initial value ˘0 of the portfolio equals the discounted final value
˘T , discounted at the interest rate r,

˘0 D e�rT˘T :

This means

S0 
� � V0 D e�rT.S0u 
� � V.u// ;

10For an American option it is not certain that ˘T can be reached because the holder may choose
early exercise. In this situation we have only the inequality ˘0erT � ˘T .
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which upon substituting (1.27) leads to the value V0 of the option:

V0 D S0 
� � e�rT.S0u�� V.u//

D e�rT f� 
 ŒS0erT � S0u�C V.u/g

D e�rT

u � d
f.V.u/ � V.d//.erT � u/C V.u/.u� d/g

D e�rT

u � d
fV.u/.erT � d/C V.d/.u � erT/g

D e�rT fV.u/ e
rT � d

u � d
C V.d/ u � erT

u � d
g

D e�rT fV.u/qC V.d/ 
 .1 � q/g

with

q WD erT � d

u � d
: (1.28)

We have shown that with q from (1.28) the value of the option is given by

V0 D e�rTfV.u/qC V.d/ 
 .1 � q/g : (1.29)

The expression for q in (1.28) is identical to the formula for p in (1.13), which was
derived in the previous section. Again we have

0 < q < 1 ” d < erT < u :

Presuming these bounds for u and d, q can be interpreted as a probability Q.
Then qV.u/ C .1 � q/V.d/ is the expected value of the payoff with respect to this
probability (1.28),

EQ.VT/ D qV.u/ C .1 � q/V.d/ :

Now (1.29) can be written

V0 D e�rTEQ.VT/ : (1.30)

That is, the value of the option is obtained by discounting the expected payoff
[with respect to q from (1.28)] at the risk-free interest rate r. An analogous
calculation shows

EQ.ST/ D qS0uC .1 � q/S0d D S0e
rT :
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The probabilities p of Sect. 1.4 and q from (1.28) are defined by identical
formulas (with T corresponding to �t). Hence p D q, and EP D EQ. But
the underlying arguments are different. Recall that in Sect. 1.4 we showed the
implication

E.ST/ D S0erT H) p D P.up/ D erT � d

u � d
;

whereas in this section we arrive at the implication

p D P.up/ D erT � d

u � d
H) E.ST/ D S0erT :

So both statements must be equivalent. Setting the probability of the up movement
equal to p is equivalent to assuming that the expected return on the asset equals the
risk-free rate. This can be rewritten as

e�rTEP.ST/ D S0 : (1.31)

The important property expressed by Eq. (1.31) is that of a martingale: The random
variable e�rTST of the left-hand side has the tendency to remain at the same level.
That is why a martingale is also called “fair game.” A martingale displays no
trend, where the trend is measured with respect to EP. In the martingale property
of (1.31) the discounting at the risk-free interest rate r exactly matches the risk-
neutral probability P of (1.13)/(1.28). The specific probability for which (1.31)
holds is also called martingale measure.
Summary of results for the one-period model: Under the Assumptions 1.2 of the
market model, the choice � of (1.27) eliminates the random-dependence of the
payoff and makes the portfolio riskless. There is a specific probability Q (P in
Sect. 1.4) with Q.up/ D q, q from (1.27), such that the value V0 satisfies (1.30), and
S0 the analogous property (1.31). These properties involve the risk-neutral interest
rate r. That is, the option is valued in a risk-neutral world, and the corresponding
Assumption 1.3 (Bi3) is meaningful.

In the real-world economy, growth rates in general are different from r, and
individual subjective probabilities differ from our Q. But the assumption of a risk-
neutral world leads to a fair valuation of options. The obtained value V0 can be seen
as a rational price. In this sense the resulting value V0 applies to the real world.
The risk-neutral valuation can be seen as a technical tool. The assumption of risk
neutrality is just required to define and calculate a rational price or fair value of V0.
For this specific purpose we do not need actual growth rates of prices, and individual
probabilities are not relevant. But note that we do not really assume that financial
markets are actually free of risk.

The general principle outlined for the one-period model is also valid for the
multiperiod binomial model and for the continuous model of Black and Scholes
(�! Exercise 1.10).
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The� of (1.27) is the hedge parameter delta, which eliminates the risk exposure
of our portfolio caused by the written option. In multiperiod models and continuous
models � must be adapted dynamically. The expression (1.27) can be seen as a
discretized version of the continuous-case definition of delta,

� D �.S; t/ D @V.S; t/

@S
:

1.6 Stochastic Processes

Brownian motion originally meant the erratic motion of a particle (pollen) on
the surface of a fluid, caused by tiny impulses of molecules. Wiener suggested
a mathematical model for this motion, the Wiener process. But earlier Bachelier
had applied Brownian motion to model the motion of stock prices, which instantly
respond to the numerous upcoming information similar as pollen react to the impacts
of molecules (Fig. 1.15). To model such behavior, we use stochastic processes.

A stochastic process is a family of random variables Xt, which are defined for
a set of parameters t (�! Appendix B.1). Here we consider the continuous-time
situation. That is, t 2 R varies continuously in a time interval I, which typically
represents 0 � t � T. A more complete notation for a stochastic process is
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Fig. 1.15 The Dow at 500 trading days from September 8, 1997 through August 31, 1999
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fXt; t 2 Ig, or .Xt/0�t�T . Let the chance “play,” then the resulting function Xt is
called realization or path of the stochastic process.

Special properties of stochastic processes have lead to the following names:

• Gaussian process: All finite-dimensional distributions .Xt1 ; : : : ;Xtk/ are Gaus-
sian. Hence specifically Xt is distributed normally for all t.

• Markov process: Only the present value of Xt is relevant for its future motion.
That is, the past history is fully reflected in the present value.11

An example of a process that is both Gaussian and Markov, is the Wiener process.
The Wiener process is an important building block for models of financial markets,
and is the main theme of this section.

1.6.1 Wiener Process

Definition 1.7 (Wiener Process, Standard BrownianMotion) A Wiener process
(or standard Brownian motion; notation Wt or W) is a stochastic process for t � 0
with the properties

(a) W0 D 0 .
(b) Wt � N .0; t/ for all t � 0 .

That is, for each t the random variable Wt is distributed normally, with mean
E.Wt/ D 0 and variance Var.Wt/ D E.W2

t / D t .
(c) All increments �Wt WD WtC�t � Wt on non overlapping time intervals are

independent.
That is, the displacements Wt2 � Wt1 and Wt4 � Wt3 are independent for all
0 � t1 < t2 � t3 < t4.

(d) Wt varies continuously with t .

Generally for 0 � s < t the property Wt �Ws � N .0; t � s/ holds, in particular

E.Wt �Ws/ D 0 ; (1.32)

Var.Wt �Ws/ D E..Wt �Ws/
2/ D t � s : (1.33)

These relations can be derived from Definition 1.7 (�! Exercise 1.16). The
relation (1.33) is also known as

E..�Wt/
2/ D �t ; (1.34)

11This assumption together with the assumption of an immediate reaction of the market to arriving
information are called hypothesis of the efficient market [44].
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where �Wt WD Wt � Wt��t . The independence of the increments according to
Definition 1.7(c) implies for tjC1 > tj the independence of Wtj and .WtjC1

� Wtj/,
but not of WtjC1

and .WtjC1
�Wtj/. Wiener processes are examples of martingales—

there is no drift. This process is an integral element of more involved models. For
example, Xt WD ˛ C �tCWt is a general Brownian motion with drift �.

Discrete-Time Model
Let �t > 0 be a constant time increment. For the discrete instances tj WD j�t the
value Wt can be written as a sum of increments�Wk,

Wj�t D
jX

kD1

�
Wk�t �W.k�1/�t

�
„ ƒ‚ …

DW�Wk

:

By the properties of the Wiener process, the �Wk are independent and normally
distributed with Var.�Wk/ D �t. Increments �W with such a distribution can be
calculated from standard normally distributed random numbers Z. The implication

Z � N .0; 1/ H) Z 
 p�t � N .0;�t/

leads to the discrete model of a Wiener process, with

�Wk D Z
p
�t for Z � N .0; 1/ for each k : (1.35)

We summarize the numerical simulation of a Wiener process as follows:

Algorithm 1.8 (Simulation of a Wiener Process)

Start: t0 D 0, W0 D 0 ; choose�t .
loop for j D 1; 2; : : ::

tj D tj�1 C�t
draw Z � N .0; 1/
Wj D Wj�1 C Z

p
�t .

The drawing of Z—that is, the calculation of Z � N .0; 1/—will be explained in
Chap. 2. The values Wj are realizations of Wt at the discrete points tj. The Fig. 1.16
shows a realization of a Wiener process; 5000 calculated points .tj;Wj/ are joined
by linear interpolation.

Almost all realizations of Wiener processes are nowhere differentiable. This
becomes intuitively clear when the difference quotient

�Wt

�t
D WtC�t �Wt

�t
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Fig. 1.16 Realization of a Wiener process, with �t D 0:0002

is considered. Because of relation (1.33) the standard deviation of the numerator isp
�t. Hence for�t! 0 the normal distribution of the difference quotient disperses

and no convergence can be expected.

1.6.2 Stochastic Integral

For motivation, let us suppose that the price development of an asset is described by
a Wiener process Wt. Let b.t/ be the number of units of the asset held in a portfolio
at time t. We start with the simplifying assumption that trading is only possible at
discrete time instances tj, which define a partition of the interval 0 � t � T. Then
the trading strategy b is piecewise constant,

b.t/ D b.tj�1/ for tj�1 � t < tj
and 0 D t0 < t1 < : : : < tN D T :

(1.36)

Such a function b.t/ is called step function. The trading gain for the subinterval
tj�1 � t < tj is given by b.tj�1/.Wtj �Wtj�1 /, and

NX
jD1

b.tj�1/.Wtj �Wtj�1 / (1.37)
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represents the trading gain over the time period 0 � t � T. The trading gain
(possibly < 0) is determined by the strategy b.t/ and the price process Wt.

We now drop the assumption of fixed trading times tj and allow b to be arbitrary
continuous functions. This leads to the question whether (1.37) has a limit when
with N ! 1 the size of all subintervals tends to 0. If Wt would be of bounded
variation than the limit exists and is called Riemann–Stieltjes integral

Z T

0

b.t/ dWt :

In our situation this integral generally does not exist because almost all Wiener
processes are not of bounded variation. That is, the first variation of Wt, which is
the limit of

NX
jD1
jWtj �Wtj�1 j ;

is unbounded even in case the lengths of the subintervals vanish for N !1.
Although this statement is not of primary concern for the theme of this book,12

we digress for a discussion because it introduces the important rule .dWt/
2 D dt.

For an arbitrary partition of the interval Œ0;T� into N subintervals the inequality

NX
jD1
jWtj �Wtj�1 j2 � max

j
.jWtj �Wtj�1 j/

NX
jD1
jWtj �Wtj�1 j (1.38)

holds. The left-hand sum in (1.38) is the second variation and the right-hand sum
the first variation of W for a given partition into subintervals. The expectation of the
left-hand sum can be calculated using (1.33),

NX
jD1

E.Wtj �Wtj�1 /
2 D

NX
jD1
.tj � tj�1/ D tN � t0 D T :

But even convergence in the mean holds:

Lemma 1.9 (Second Variation: Convergence in the Mean) Let t0 D t.N/0 <

t.N/1 < : : : < t.N/N D T be a sequence of partitions of the interval t0 � t � T
with

ıN WD max
j
.t.N/j � t.N/j�1/ : (1.39)

12The less mathematically oriented reader may like to skip the rest of this subsection.
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Then (dropping the .N/)

l:i:m:
ıN!0

NX
jD1
.Wtj �Wtj�1 /

2 D T � t0 : (1.40)

Proof The statement (1.40) means convergence in the mean (�!Appendix B.1).
Because of

P
�tj D T � t0 we must show

E

0
@X

j

..�Wj/
2 ��tj/

1
A
2

! 0 for ıN ! 0

for�tj WD tj� tj�1 and�Wj WD Wtj �Wtj�1 . Carrying out the multiplications and
taking the mean gives

2
X

j

.�tj/
2

(�! Exercise 1.17). This can be bounded by 2.T � t0/ıN , which completes
the proof.

With �Wt D Wt �Wt��t, part of the derivation can be summarized to

E..�Wt/
2 ��t/ D 0 ; Var..�Wt/

2 ��t/ D 2.�t/2 :

Symbolically, this probabilistic property of the Wiener process is written

.dWt/
2 D dt : (1.41)

It will be needed in subsequent sections.
Now we know enough about the convergence of the left-hand sum of (1.38) and

turn to the right-hand side of this inequality. The continuity of Wt implies

max
j
jWtj �Wtj�1 j ! 0 for ıN ! 0 :

Convergence in the mean applied to (1.38) shows that the vanishing of this factor
must be compensated by an unbounded growth of the other factor, to make (1.40)
happen. So

NX
jD1
jWtj �Wtj�1 j ! 1 for ıN ! 0 :

In summary, Wiener processes are not of bounded variation, and the integration with
respect to Wt can not be defined as an elementary limit of (1.37).
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The aim is to construct a stochastic integral

Z t

t0

f .s/ dWs

for general stochastic integrands f .t/. For our purposes it suffices to briefly sketch
the Itô integral, which is the prototype of a stochastic integral.

For a partition of the interval t0 � s � t into n parts with step function bn

from (1.36), an integral can be defined via the sum (1.37),

Z t

t0

bn.s/ dWs WD
nX

jD1
bn.tj�1/.Wtj �Wtj�1 / : (1.42)

This is the Itô integral over a step function bn. In case the bn.tj�1/ are random
variables, the bn are called simple processes. Then the Itô integral is again defined
by (1.42). Stochastically integrable functions f can be obtained as limits of simple
processes bn in the sense

E
h Z t

t0

. f .s/ � bn.s//
2 ds

i
! 0 for ın ! 0 : (1.43)

Convergence in terms of integrals
R

ds carries over to integrals
R

dWt. This is
achieved by applying Cauchy convergence E

R
.bn � bm/

2ds! 0 and the isometry

E
h	 Z t

t0

b.s/ dWs


2 i
D E

h Z t

t0

b.s/2 ds
i
:

Hence the integrals
R

bn.s/dWs form a Cauchy sequence with respect to convergence
in the mean. Accordingly the Itô integral of f is defined as

Z t

t0

f .s/ dWs WD l:i:m:ın!0

Z t

t0

bn.s/ dWs ;

for simple processes bn defined by (1.43). The value of the integral is independent of
the choice of the bn in (1.43). The Itô integral as function in t is a stochastic process
with the martingale property.

If an integrand a.x; t/ depends on a stochastic process Xt, the function f is given
by f .t/ D a.Xt; t/. For the simplest case of a constant integrand a.Xt; t/ D a0 the Itô
integral can be reduced via (1.42) to

Z t

t0

dWs D Wt �Wt0 :
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For the “first” nontrivial Itô integral consider Xt D Wt and a.Wt; t/ D Wt. Its
solution will be presented in Sect. 3.2.

Wiener processes are the driving machines for diffusion models (next section).
There are other stochastic processes that can be used for modeling financial markets.
For several models jump processes are considered. We turn to jump processes in
Sect. 1.9.

1.7 Diffusion Models

Many fundamental models of financial markets use Wiener processes as driving
process. These are the diffusion models discussed in this section. We discuss
the main representative geometric Brownian motion, and explain the risk-neutral
valuation in this context. Then we turn to more general processes, such as mean
reversion.

1.7.1 Itô Process

Phenomena in nature, technology and economy are often modeled by means of
deterministic differential equations Px D d

dt x D a.x; t/. This kind of modeling
neglects stochastic fluctuations and is not appropriate for stock prices. If processes
x are to include Wiener processes as special case, the derivative d

dt x is meaningless.
To circumvent non-differentiability, integral equations are used to define a general
class of stochastic processes. Randomness is inserted additively,

x.t/ D x0 C
Z t

t0

a.x.s/; s/ ds C randomness ;

with an Itô integral with respect to the Wiener process Wt. The first integral in the
resulting integral equation is an ordinary (Lebesgue- or Riemann-) integral. The
final integral equation is symbolically written as a “stochastic differential equation”
(SDE) and named after Itô.

Definition 1.10 (Itô Stochastic Differential Equation) An Itô stochastic differ-
ential equation is

dXt D a.Xt; t/ dtC b.Xt; t/ dWt I (1.44)

this together with Xt0 D X0 is a symbolic short form of the integral equation

Xt D Xt0 C
Z t

t0

a.Xs; s/ dsC
Z t

t0

b.Xs; s/ dWs : (1.45)
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The terms in (1.44)/(1.45) are named as follows:

• a.Xt; t/: drift term or drift coefficient
• b.Xt; t/: diffusion coefficient

The integral equation (1.45) defines a large class of stochastic processes Xt;
solutions Xt of (1.44) are called Itô process, or stochastic diffusion. In our context,
X0 can be assumed as a deterministic constant, namely, the observed initial state
“today.”

As intended, the Wiener process is a special case of an Itô process, because from
Xt D Wt the trivial SDE dXt D dWt follows, hence the drift vanishes, a D 0, and
b D 1. For b � 0 the SDE is deterministic.

An experimental approach may help to develop an intuitive understanding of Itô
processes. The simplest numerical method combines the discretized version of the
Itô SDE

�Xt D a.Xt; t/�t C b.Xt; t/�Wt (1.46)

with the Algorithm 1.8 for approximating a Wiener process, using the same �t for
both discretizations. The result is

Algorithm 1.11 (Euler Discretization of an SDE) Approximations yj to Xtj are
calculated by

Start: t0, y0 D X0 ; choose�t .
loop j D 0; 1; 2; : : ::

tjC1 D tj C�t
�W D Z

p
�t with Z � N .0; 1/

yjC1 D yj C a. yj; tj/�tC b. yj; tj/�W :

In the simplest setting, the step length �t is chosen equidistant, �t D T=M
for a suitable integer M. Of course the accuracy of the approximation depends
on the choice of �t (�! Chap. 3). In case the functions a and b are easy to
evaluate, the greatest effort may be to calculate random numbers Z � N .0; 1/
(�! Sect. 2.3). Solutions to the SDE or to its discretized version for a given
realization of the Wiener process are called trajectories or paths. By simulation of
the SDE we understand the calculation of one or more trajectories. For the purpose
of visualization, the discrete data are mostly joined by straight lines.

Example 1.12 dXt D 0:05Xt dtC 0:3Xt dWt

Without the diffusion term the exact solution would be Xt D X0e0:05t. For X0 D
50, t0 D 0 and a time increment�t D 1=250 the Fig. 1.17 depicts a trajectory Xt of
the SDE for 0 � t � 1. For another realization of a Wiener process Wt the solution
looks different. This is demonstrated for a similar SDE in Fig. 1.18.
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Fig. 1.17 Numerically approximated trajectory Xt of Example 1.12 with a D 0:05Xt , b D 0:3Xt ,
�t D 1=250, X0 D 50
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Fig. 1.18 Ten paths of SDE (1.47) with S0 D 50, � D 0:1 and � D 0:2; plot of S against t
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1.7.2 Geometric Brownian Motion

Next we discuss one of the most important continuous models for the motion of
asset prices, which will be denoted St. This standard model for S > 0 assumes that
the relative change (return) dS=S of a security in the time interval dt is composed of
a deterministic drift � dt plus stochastic fluctuations in the form �dWt:

Model 1.13 (Geometric Brownian Motion, GBM) Any solution St of the SDE

dSt D �St dtC �St dWt (1.47)

is called geometric Brownian motion, GBM.
This SDE (1.47) is linear in Xt D St, and a.St; t/ D �St is the drift rate with
the expected rate of return �, b.St; t/ D �St, � is the volatility. (Compare
Example 1.12 and Fig. 1.17.) The geometric Brownian motion of (1.47) is the
reference model on which, for example, the Black–Scholes model is based. To
match Assumptions 1.2 assume that � and � are constant.

A theoretical solution of (1.47) will be given in (1.71). The deterministic part
of (1.47) is the ordinary differential equation

PS D �S

with solution St D S0e�.t�t0/. For the linear SDE of (1.47) the expectation E.St/

solves PS D �S. Hence

S0e�.t�t0/ D E.St j St0 D S0/

is the expectation of the stochastic process and � is the expected continuously
compounded return earned by an investor per year, conditional on starting at S0.
The rate of return � is also called growth rate. The function S0e�.t�t0/ can be seen
as a core about which the process fluctuates. Accordingly the simulated values S1 of
the ten trajectories in Fig. 1.18 group around the value 50 
 e0:1 	 55:26.

Let us test empirically how the values S1 distribute about their expected value.
To this end calculate, for example, 10,000 trajectories and count how many of the
terminal values S1 fall into the subintervals k5 � S < .k C 1/5, for k D 0; 1; 2 : : :.
Figure 1.19 shows the resulting histogram. Apparently the distribution is skewed.
We revisit this distribution in the next section.

A discrete version of (1.47) is

�S

S
D ��tC �Z

p
�t ; (1.48)

known from Algorithm 1.11. This approximation is valid as long as �t is small and
S > 0 (�! Exercise 1.18). The relative return reflected by the ratio �S

S is called



1.7 Diffusion Models 45

1000

900

800

700

600

500

400

300

200

100

0
0 20 40 60 80 100 120 140

Fig. 1.19 Histogram of 10,000 calculated values S1 corresponding to (1.47), with S0 D 50,
� D 0:1, � D 0:2

one-period simple return, where we interpret�t as one period. According to (1.48)
this return satisfies

�S

S
� N .��t; �2�t/ : (1.49)

The distribution of the simple return matches actual market data in a crude
approximation, see for instance Fig. 1.23. This allows to calculate estimates of
historical values of the volatility � .13 Of course this assumes the market data to
be correctly described by GBM. We will return to this in Sect. 1.8.

1.7.3 Risk-Neutral Valuation

We digress for the length of this subsection and again turn to the topic of a risk-
neutral valuation, now for the continuous-time setting. In Sect. 1.5 we have shown

V0 D e�rTEQ.VT/

13For the implied volatility see Exercise 1.19.
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for the one-period model. Formally, the same holds true for the market model based
on GBM. But now the understanding of the risk-neutral probability Q is more
involved. This subsection sketches the framework for GBM.

Let us rewrite GBM from (1.47) to get

dSt D rSt dtC .� � r/St dtC �St dWt

D rSt dtC �St

�
� � r

�
dtC dWt

�
;

(1.50)

where Wt is Wiener process under the probability measure P. In the reality of the
market, an investor expects � > r as compensation for the risk that is higher for
stocks than for bonds. In this sense, the quotient 
 of the excess return � � r to the
risk � ,


 WD � � r

�
; (1.51)

is called market price of risk. With this variable 
 , (1.50) is written

dSt D rSt dtC �St Œ
 dtC dWt� : (1.52)

For 
 ¤ 0 the drifted Brownian motion W

t defined by

dW

t D 
 dtC dWt (1.53)

is no Wiener process under P. But under certain assumptions on 
 there is another
probability measureQ such that the process W


t is a (standard) Wiener process under
Q.14 Equation (1.52) becomes

dSt D rSt dtC �St dW

t : (1.54)

Comparing this SDE to (1.47), notice that the growth rate � is replaced by the risk-
free rate r. Together, the transition consists of

�! r

P! Q

W ! W


which is called risk-neutral valuation principle for GBM. To simulate (1.54)
under Q, just apply the standard Algorithm 1.8 for the Wiener process W


t . Then
the rate r in (1.54) and W


t correspond to the “risk-neutral measure” Q.

14Girsanov’s theorem, see Appendix B.2. Q and P are equivalent.
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What is the reason for adjusting the probability measure P! Q? The advantage
of the risk-neutral measure Q is that the r-discounted process e�rtSt is a martingale
under Q,

d.e�rtSt/ D �e�rtSt dW

t :

The fundamental theorem of asset pricing states that a market model is free
of arbitrage if and only if there exists a probability measure Q such that the
discounted asset prices are martingales with respect to Q [170]. Hence the property
of e�rtSt having no drift is an essential ingredient of a no-arbitrage market and
a prerequisite to modeling options. For a thorough discussion of the continuous
model, martingale theory is used. (Some more background and explanation is
provided by Appendix B.3.) Let us summarize the situation in a remark:

Remark 1.14 (Risk-Neutral Valuation Principle) For modeling options with
underlying GBM, the original probability is adjusted to the risk-neutral probability
Q. To simulate the process under Q, the return rate � is replaced by the risk-free
interest rate r, and W


t is approximated as Wiener process.

1.7.4 Mean Reversion

The assumptions of a constant interest rate r and a constant volatility � are quite
restrictive. To overcome this simplification, SDEs for processes rt and �t have been
constructed that control rt or �t stochastically. One class of models is based on
the SDE

drt D ˛.R � rt/ dtC � rrˇt dWt ; ˛ > 0 ; (1.55)

again with driving force Wt as Wiener process.15 The drift term in (1.55) is positive
for rt < R and negative for rt > R, which causes a pull to R. This effect is called
mean reversion. A frequency parameter ˛ influences the strength of the reversion.
The parameter R, which may depend on t, corresponds to a long-run mean of the
interest rate over time. SDE (1.55) defines a general class of models, including
several interesting special cases known under special names:

• ˇ D 0, R D 0 : Ornstein–Uhlenbeck process (OU)
• ˇ D 0, R > 0 : Vasicek model
• ˇ D 1

2
, R > 0 : Cox–Ingersoll–Ross process (CIR)

Hull and White have extended the Vasicek model by incorporating time depen-
dence in the parameters. The CIR model [86] is also called square-root process.

15Notation: ˇ is exponent, � r is the volatility of rt .
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Fig. 1.20 Simulation rt of the Cox–Ingersoll–Ross model (1.55) with ˇ D 0:5 for R D 0:05,
˛ D 1, � r D 0:1, r0 D 0:15, �t D 0:01

An illustration of the mean reversion is provided by Fig. 1.20. In a transient phase
(until t 	 1 in the run documented in the figure) the relatively large deterministic
term dominates, and the range r 	 R is reached quickly. Thereafter the stochastic
term dominates, and r dances about the mean value R. Figure 1.20 shows this
for a Cox–Ingersoll–Ross model. For a discussion of related models we refer to
[191, 234, 237]. The calibration of the models (that is, the adaption of the parameters
to the data) is a formidable task (�! Sect. 1.10).

The SDE (1.55) is of a different kind as the GBM in (1.47). Coupling the SDE
for rt to that for St leads to a system of two SDEs. Even larger systems are obtained
when further SDEs are coupled to define a stochastic process Rt or to calculate
stochastic volatilities. Related examples are given by Examples 1.15 and 1.16 below.
In particular for modeling options, stochastic volatilities have shown great potential.

1.7.5 Vector-Valued Stochastic Differential Equations

The Itô equation (1.44) is formulated as scalar equation; accordingly the SDE (1.47)
represents a one-factor model. The general multifactor version can be written in
the same notation. Then Xt D .X.1/t ; : : : ;X.n/t /, and a.Xt; t/ are n-dimensional
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vectors. In the general situation, the Wiener process can be m-dimensional, with
components W.1/

t ; : : : ;W.m/
t . Then b.Xt; t/ is an .n � m/-matrix, with elements bik.

The interpretation of the SDE systems is componentwise. The scalar stochastic
integrals are sums of m stochastic integrals,

X.i/t D X.i/0 C
Z t

0

ai.Xs; s/ dsC
mX

kD1

Z t

0

bik.Xs; s/ dW.k/
s ; (1.56)

for i D 1; : : : ; n, and t0 D 0 for convenience. Or in the symbolic SDE notation, this
system reads

dXt D a.Xt; t/ dtC b.Xt; t/ dWt ; (1.57)

where b dW is a multiplication matrix times vector. When we take the components
of the vector dW as uncorrelated,

E.dW.k/dW. j// D
(
0 for k 6D j

dt for k D j ;
(1.58)

then possible correlations between the components of dX must be carried by b.16

Example 1.15 (Mean-Reverting Volatility Tandem) We consider a three-factor
model [186] with asset price St, instantaneous spot volatility �t and an averaged
volatility �t serving as mean-reverting parameter:

dS D �S dW.1/

d� D �.� � �/dtC ˛� dW.2/

d� D ˇ.� � �/dt

Here and sometimes later on, we suppress the subscript t, which is possible when
the role of the variables as stochastic processes is clear from the context. The rate
of return � of S is zero; dW.1/ and dW.2/ may be correlated; ˛ and ˇ are two
parameters. As seen from the SDE, the stochastic volatility � follows the mean
volatility � and is simultaneously perturbed by a Wiener process. Both � and �
provide mutual mean reversion, and stick together. Accordingly the two SDEs for
� and � may be seen as a tandem controlling the dynamics of the volatility. We
recommend numerical tests. For motivation see Fig. 1.21.

Example 1.16 (Heston’s Model) Heston [178] uses an Ornstein–Uhlenbeck pro-
cess to model a stochastic volatility �t. Then the variance vt WD �2t follows a

16We come back to this issue in Sects. 2.3.4 and 3.5.5, and in Exercise 3.17.
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Fig. 1.21 Example 1.15, ˛ D 0:3, ˇ D 10, �0 D �0 D 0:2, realization of the volatility tandem
�t, �t (dashed) for 0 � t � 1, �t D 0:004

Cox–Ingersoll–Ross process (1.55). (�! Exercise 1.20) The system of Heston’s
model is

dSt D �St dtCpvt St dW.1/
t

dvt D �. � vt/ dtC �vpvt dW.2/
t

(1.59)

with two correlated Wiener processes W.1/
t ;W.2/

t and suitable parameters�, �,  , �v,
�. Here �v denotes a “volatility” of vt and � is the correlation between W.1/

t ;W.2/
t .

Hidden parameters are the initial values S0; v0, if not available. Hence five or more
parameters need to calibrated. The frequently used model of Heston establishes a
correlation between price and volatility.

Computational Matters
Stochastic differential equations are simulated in the context of Monte Carlo
methods. Thereby, the SDE is integrated N times, with N large (N D 10; 000

or much larger). Then the weight of any single trajectory is almost negligible.
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Expectation and variance are calculated over the N trajectories. Generally this costs
an enormous amount of computing time. The required instruments are:

• Generating N .0; 1/-distributed random numbers (�! Chap. 2)
• Integration methods for SDEs (�! Chap. 3)

Applying Algorithm 1.11 to St from (1.47) or to the squared volatility vt from (1.59)
should produce positive values. For this matter, see Sect. 3.3.1.

1.8 Itô Lemma and Applications

Itô’s lemma is most fundamental for stochastic processes. It may help, for example,
to derive solutions of SDEs (�! Exercise 1.21). Suppose a “chain” of two functions
Xt and g.Xt; t/. When a differential equation for Xt is given, what is the differential
equation for g.Xt; t/?

1.8.1 Itô Lemma

Itô’s lemma is the stochastic counterpart of the chain rule for deterministic functions
x.t/ and y.t/ WD g.x.t/; t/, which is

d

dt
g.x.t/; t/ D @g

@x

 dx

dt
C @g

@t
;

and can be written

dx D a.x.t/; t/ dt ) dg D
	
@g

@x
aC @g

@t



dt :

Here we state the one-dimensional version of the Itô lemma; for the multidimen-
sional version see the Appendix B.2.

Lemma 1.17 (Itô) Suppose Xt follows an Itô process (1.44),

dXt D a.Xt; t/dtC b.Xt; t/dWt ;

and let g.x; t/ be a C2;1-smooth function (continuous @g
@x ;

@2g
@x2
; @g

@t ). Then Yt WD
g.Xt; t/ follows an Itô process with the same Wiener process Wt:

dYt D
	
@g

@x
aC @g

@t
C 1

2

@2g

@x2
b2



dtC @g

@x
b dWt (1.60)
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where the derivatives of g as well as the coefficient functions a and b in general
depend on the arguments .Xt; t/.

For a proof we refer to [12, 291, 307, 345]. Here we confine ourselves to the
basic idea: When t varies by �t, then X by�X D a 
�tC b 
�W and Y by

�Y D g.X C�X; tC�t/ � g.X; t/ :

The Taylor expansion of �Y begins with the linear part @g
@x�X C @g

@t�t, in which

�X D a�tC b�W is substituted. The additional term with the derivative @2g
@x2

is
new and is introduced via the O.�X2/-term of the Taylor expansion,

1

2

@2g

@x2
.�X/2 D 1

2

@2g

@x2
b2.�W/2 C t.h.o.

Because of (1.41), .�W/2 	 �t, the leading term is also of the order O.�t/ and
belongs to the linear terms. Taking correct limits (similar as in Lemma 1.9) one
obtains the integral equation represented by (1.60).

1.8.2 Consequences for Geometric Brownian Motion

Suppose the stock price follows a geometric Brownian motion, hence Xt D St;

a D �St; b D �St, for constant �, � . The value Vt of an option depends on St,
Vt D V.St; t/. Assuming a C2-smooth value function V depending on S and t, we
apply Itô’s lemma. For V.S; t/ in the place of g.x; t/ the result is

dVt D
	
@V

@S
�St C @V

@t
C 1

2

@2V

@S2
�2S2t



dtC @V

@S
�St dWt : (1.61)

This SDE is used to derive the Black–Scholes equation, see Appendix A.4.
As second application of Itô’s lemma consider the log transformation Yt D

log.St/ for S > 0, viz g.x; t/ WD log.x/, for St solving GBM with constant �; � .
Itô’s lemma leads to the linear SDE

dYt D d log St D .� � 1
2
�2/ dtC �dWt : (1.62)

In view of (1.44) the solution is straightforward:

Yt D Yt0 C .� � 1
2
�2/

Z t

t0

dsC �
Z t

t0

dWs

D Yt0 C .� � 1
2
�2/.t � t0/C �.Wt �Wt0 /

(1.63)
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From the properties of the Wiener process Wt we conclude that Yt is distributed
normally. To write down the density function Of .Yt/, the mean O� WD E.Yt/ and the
variance O� are needed. For this linear SDE (1.62) the expectation E.Yt/ satisfies the
deterministic part

d

dt
E.Yt/ D �� �

2

2
:

The solution of Py D � � �2

2
with initial condition y.t0/ D y0 is

y.t/ D y0 C .� � �
2

2
/.t � t0/ :

In other words, the expectation of the Itô process Yt is

O� WD E.log St/ D log S0 C .�� �
2

2
/.t � t0/ :

Analogously, we see from the differential equation for E.Y2t / (or from the analytic
solution of the SDE for Yt) that the variance of Yt is �2.t � t0/. In view of (1.62)
the simple SDE for Yt implies that the stochastic fluctuation of Yt is that of �Wt,
namely, O�2 WD �2.t � t0/. So, from (B.9) with O� and O� , the density of Yt is

bf .Yt/ WD 1

�
p
2	.t � t0/

exp

8̂<
:̂�

�
Yt � y0 �

�
� � �2

2

�
.t � t0/

�2
2�2.t � t0/

9>=
>; :

Back transformation using Y D log.S/ and considering dY D 1
S dS andbf .Y/dY D

1
S
bf .log S/dS D f .S/dS yields the density of St > 0:

fGBM.S; t � t0I S0; �; �/ WD
1

S�
p
2	.t � t0/

exp

8̂
<
:̂�

�
log.S=S0/�

�
� � �2

2

�
.t � t0/

�2
2�2.t � t0/

9>=
>;

(1.64)

This is the density of the lognormal distribution, conditional on St0 D S0. It
describes the probability of a transition

.S0; t0/ �! .S; t/

under the basic assumption that the stock price St follows a geometric Brownian
motion (1.47). The distribution is skewed, see Fig. 1.22. Now the skewed behavior
coming out of the experiment reported in Fig. 1.19 is clear. Notice that the
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Fig. 1.22 Density (1.64) over S for � D 0:1; � D 0:2; S0 D 50; t0 D 0 and t D 0:5 (dotted
green curve with steep gradient), t D 1 (solid red curve), t D 2 (dashed green) and t D 5 (dotted
blue with flat gradient)

parameters in Figs. 1.19 and 1.22 match. Figure 1.19 is an approximation of the
solid curve in Fig. 1.22.

In summary, the assumption of GBM amounts to

St D S0 exp.Yt/ ; (1.65)

where the log-price Yt is a Brownian motion with drift, Yt D .� � 1
2
�2/tC �Wt.

Having derived the density (1.64), we now can prove Eq. (1.15), with � D r
according to Remark 1.14 (�! Exercise 1.22). For vector-valued SDEs an appro-
priate version of the Itô lemma is (B.17).

1.8.3 Integral Representation

An important application of a known density function is that it allows for an integral
representation of European options. This will be revisited in Sect. 3.5.1, where we
show for a European put under GBM

V.S0; 0/ D e�rT
Z 1

0

.K � ST/
C fGBM.ST ;TI S0; r; �/ dST : (1.66)
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Note the risk-free interest rate r as argument in the density. This reflects that the
integral is the conditional expectation of the payoff � under the assumed risk-
neutral measure,

EQ D
Z 1

0

�.ST/ 
 density dST :

The integral representation for European-style options

V.S0; 0/ D e�rTEQ.V.ST ;T/ j St starting from .S0; 0// : (1.67)

holds for arbitrary payoff functions and density functions of a general class of
valuation models.

1.8.4 Bermudan Options

The integral representation (1.66)/(1.67) for European options can be applied to
approximate American options. To this end, discretize the time interval 0 � t � T
into an equidistant grid of time instances ti, similar as done for the binomial method
of Sect. 1.4:

�t WD T

M
; ti WD i �t .i D 0; : : : ;M/ :

This defines lines in the .S; t/-domain, and cuts it into M slices. An option that
restricts early exercise to specified discrete dates during its life is called a Bermudan
option. The above slicing defines an artificial Bermudan option, constructed for the
purpose of approximating the corresponding American option.

Let VBer.M/ denote the value of the Bermudan option in the above setting of M
slices of equal size. Clearly,

VEur � VBer.M/ � VAm for all M;

because of the additional exercise possibilities of an otherwise identical option.
Note that the Bermudan options serve as lower bounds for the American option,
and VEur D VBer.1/. One can show

lim
M!1 VBer.M/ D VAm :

Hence, for suitable M the value VBer.M/ can be used as approximation to VAm.
Let us consider the time slice ti � t � tiC1 for any i. For the valuation of the

option’s value at ti, the “inner payoff” is V.S; tiC1/ along the line t D tiC1. Since a
Bermudan option can not be exercised for ti < t < tiC1, its continuation value for
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ti is given by the integral representation of a European option. This continuation
value is

Vcont.x; ti/ D e�r.tiC1�ti/
Z 1

�1
V.�; tiC1/ f .�; tiC1 � tiI x; : : :/ d� (1.68)

for arbitrary x. Here a value S at line t D ti is represented by x, and the price at tiC1
by �. The dots stand for the parameters of the risk-neutral valuation of the chosen
model, and f is its density conditional on Sti D x. For an n-factor model, the domain
of integration is Rn.

Since the Bermudan option can be exercised at ti, its value is again given by the
dynamic programming principle,

V.x; ti/ D max f�.x/; Vcont.x; ti/ g ; (1.69)

where � denotes the payoff. Equations (1.68)/(1.69) define a backward recursive
algorithm for i D M � 1; : : : ; 0. It starts from the given payoff at T, which provides
V.S; tM/. That is, only for the first time level i D M � 1, the option is “vanilla,”
whereas for i < M � 1 the inner payoffs are given by (1.69).

In the algorithm, the evaluation of the integral in (1.68) is done by numerical
quadrature (�! Appendix C.1), and the continuation value functions Vcont are
approximated by interpolating functions C.x/ based on m nodes in x-space [309].
In the simplest case of a one-factor model (n D 1), the nodes may represent
equidistantly chosen Sj .1 � j � m/. The inner payoffs are denoted gi, and the
Bermudan option is to be evaluated at .x; 0/ WD .S; 0/.
Algorithm 1.18 (Bermudan Option)

Set m nodes x1; : : : ; xm 2 Rn .
gM.x/ WD V.x; tM/ D V.x;T/ D �.x/.
Calculate recursively backwards (i D M � 1; : : : ; 0):
(1) input: giC1

loop (j D 1; : : : ;m): calculate by quadrature

qj WD e�r.tiC1�ti/
Z

giC1.�/ f .�; tiC1 � tiI xj; : : :/ d�

output: q1; : : : ; qm

(2) interpolate .x1; q1/; : : : ; .xm; qm/ .
output: C.x/

(3) gi.x/ WD max f�.x/; C.x/g .

The final g0.x/ is the approximation of VBer.M/.x; 0/, which in turn approximates
VAm.x; 0/. The integral (1.68) is taken over a suitably truncated interval �min � � �
�max. The method works also for general non-GBM models, as long as they are not
path-dependent. The order of convergence in �t is linear. If necessary, the nodes
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Fig. 1.23 Histogram (compare Exercise 1.23): frequency of daily log returns Ri;i�1 of the Dow in
the time period 1901–1999

xj can be re-adjusted after each i; extrapolation is possible. For example, when two
values VBer.M/.x; 0/, VBer.2M/.x; 0/ are available, an improved approximation is

NV D 2VBer.2M/.x; 0/� VBer.M/.x; 0/ :

For details see [309].

1.8.5 Empirical Tests

It is inspiring to test the idealized Model 1.13 of a geometric Brownian motion
against actual empirical data. Suppose the time series S1; : : : ; SM represents con-
secutive quotations of a stock price. To test the data, histograms of the returns are
helpful (�! Fig. 1.23). The transformation y D log.S/ is most practical. It leads to
the notion of the log return, defined by17

Ri;i�1 WD log
Si

Si�1
: (1.70)

17Since Si D Si�1 exp.Ri;i�1/, the log return is also called continuously compounded return in the
ith time interval [365].
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Let�t be the equally spaced sampling time interval between the quotations Si�1 and
Si, measured in years. Then (1.64) leads to

Ri;i�1 � N ..� � �
2

2
/�t ; �2�t/ :

Comparing with (1.49) we realize that the variances of the simple return and of the
log return are identical. The sample variance �2�t of the data allows to calculate
estimates of the historical volatility � (�! Exercise 1.23). But the shape of actual
market histograms is usually not in good agreement with the well-known bell shape
of the Gaussian density. The symmetry may be perturbed, and in particular the
tails of the data are not well modeled by the hypothesis of a geometric Brownian
motion: The exponential decay expressed by (1.64) amounts to thin tails. This
underestimates extreme events and hence hardly matches the reality of stock prices.

We conclude this section by listing the analytic solution of the basic linear
constant-coefficient SDE (1.47)

dSt D �St dtC �St dWt

of GBM. From (1.63) or (1.65), the process

St WD S0 exp

		
�� �

2

2



tC �Wt



(1.71)

solves the linear constant-coefficient SDE (1.47). Equation (1.71) generalizes to the
case of nonconstant coefficients (�! Exercise 1.24). As a consequence we note that
St > 0 for all t, provided S0 > 0.

1.9 Jump Models

The geometric Brownian motion Model 1.13 has continuous paths St. As noted
before, the continuity is at variance with those rapid asset price movements that
can be considered almost instantaneous. Such rapid changes can be modeled as
jumps. This section introduces a basic building block of a jump process, namely,
the Poisson process. Related simulations (like that of Fig. 1.24) may look more
authentic than continuous paths. But one has to pay a price: With a jump process
the risk of an option in general can not be hedged away to zero. And calibration
becomes more involved.

1.9.1 Poisson Process

To define a Poisson process, denote the time instances for which a jump arrives �j,
with

�1 < �2 < �3 < : : :
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Fig. 1.24 Example 1.21: sample path St of (1.74); jump report in Table 1.3

Let the number of jumps be counted by the counting variable Jt, where

�j D infft � 0 ; Jt D jg :
A Bernoulli experiment describes the probability that a jump occurs. For this local
discussion and an arbitrary time instant t, consider n subintervals of length�t WD t

n
and allow for only two outcomes, jump yes or no, with the probabilities

P.Jt � Jt��t D 1/ D ��t
P.Jt � Jt��t D 0/ D 1 � ��t

(1.72)

for some � such that 0 < ��t < 1. The parameter � is referred to as the intensity of
this jump process. Consequently k jumps in 0 � � � t have the probability

P.Jt � J0 D k/ D
	

n
k



.��t/k.1 � ��t/n�k ;

where the trials in each subinterval are considered independent. A little reasoning
reveals that for n!1 this probability converges to

.�t/k

kŠ
e��t;
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which is known as the Poisson distribution with parameter � > 0 (�!
Appendix B.1). This leads to the Poisson process.

Definition 1.19 (Poisson Process) The stochastic process fJt ; t � 0g is called
Poisson process if the following conditions hold:

(a) J0 D 0 .
(b) Jt � Js are integer-valued for 0 � s < t <1 and

P.Jt � Js D k/ D �k.t � s/k

kŠ
e��.t�s/ for k D 0; 1; 2 : : :

(c) The increments Jt2 � Jt1 and Jt4 � Jt3 are independent
for all 0 � t1 < t2 < t3 < t4.

Several properties hold as consequence of this definition:

Properties 1.20 (Poisson Process)

(d) Jt is right-continuous and nondecreasing.
(e) The times between successive jumps are independent and exponentially dis-

tributed with parameter �. Thus,

P.�jC1 � �j > ��/ D e���� for each�� :

( f) Jt is a Markov process.
(g) E.Jt/ D �t , Var.Jt/ D �t .

1.9.2 Simulating Jumps

Following the above introduction of Poisson processes, there are two possibilities
to calculate jump instances �j such that the above probabilities are met. First, the
Eq. (1.72) may be used together with uniform deviates (�! Chap. 2). In this way a
�t-discretization of a t-grid can be easily exploited by drawing a random number to
decide whether a jump occurs in a subinterval. The other alternative is to calculate
exponentially distributed random numbers h1; h2; : : : (�! Sect. 2.2.2) to simulate
the intervals�� between consecutive jump instances, and set

�jC1 WD �j C hj :

The expectation of the hj is 1
�

.
The unit amplitudes of the jumps of the Poisson counting process Jt are not

relevant for the purpose of establishing a market model. The jump sizes of the price
of a financial asset should be considered random. This requires—in addition to the
arrival times �j—another random variable.
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Let the random variable St jump at �j, and denote �C the (infinitesimal) instant
immediately after the jump, and �� the moment before. Then the absolute size of
the jump is

�S D S�C � S�� ;

which we model as a proportional jump,

S�C D qS�� with q > 0 : (1.73)

So, �S D qS�� � S�� D .q � 1/S�� . The jump sizes equal q � 1 times the current
asset price. Accordingly, this model of a jump process depends on a random variable
qt and is written

dSt D .qt � 1/St� dJt ; where Jt is a Poisson process.

We assume that q�1 ; q�2 ; : : : are i.i.d. The resulting process with the two involved
processes Jt, qt is called compound Poisson process.

1.9.3 Jump Diffusion

Next we superimpose the jump process to stochastic diffusion, here to GBM. The
combined geometric Brownian and compound Poisson process is given by

dSt D St� . � dtC � dWt C .qt � 1/ dJt / : (1.74)

Here � is the same as for the GBM, hence conditional on no jump. Such a combined
model represented by (1.74) is called jump-diffusion process. It involves three
different stochastic driving processes, namely, Wt, Jt, and qt. We assume that J; q;W
are independent of one another. Figure 1.24 shows a simulation of the SDE (1.74).

An analytic solution of (1.74) can be calculated on each of the jump-free
subintervals �j < t < �jC1 where the SDE is just the GBM diffusion dS D
S.�dt C �dW/. For example, in the first subinterval until �1, the solution is given
by (1.71). At �1 a jump of the size

.�S/1 WD .q�1 � 1/S��
1

occurs, and thereafter the solution continues with

St D S0 
 exp

		
� � �

2

2



tC �Wt



C .q�1 � 1/S��

1
;
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until �2. The interchange of continuous parts and jumps proceeds in this way, all
jumps are added. So the SDE can be written as

St D S0 C
Z t

0

Ss.�dsC �dWs/C
JtX

jD1
S��

j
.q�j � 1/ ; (1.75)

or

St D S0 exp

		
.� � �

2

2



tC �Wt






JtY
jD1

qj :

This is the model based on Merton’s paper [270]. The Eq. (1.75) can be rewritten
in the log-framework, with Yt WD log St. The log-jump sizes according to model
(1.73) are

.�Y/� W D Y�C � Y�� D log.qS��/� log S��

D log q� :

Following (1.71), the model can be written

Yt D Y0 C
	
� � �

2

2



tC �Wt C

JtX
jD1
.�Y/�j (1.76)

—that is the sum of a drift term, a Brownian motion, and a jump process. The
summation term

P
.�Y/ in (1.76) is the compound process. Merton assumes

normally distributed�Y, which amounts to lognormal q. In summary we emphasize
again that the jump-diffusion process has three driving processes, namely, W; J,
and q. As in the GBM case, see (1.65)/(1.71), the price process is of the form
St D S0 exp.Yt/.

Example 1.21 (Jump Diffusion) Here we assume an interest rate r D 0:06, and
a process St following (1.74) with diffusion volatility � D 0:3. For a hypothetical
crash modeling, let us assume Poisson jumps with an intensity rate � D 0:2, which
means that on the average one jump occurs every 5 years. Following Merton’s
model, we take log.q/ � N .�J; �

2
J /, and choose �J D �0:3 and �J D 0:4. To

get random numbers with distribution � N .�J; �
2
J /, we calculate random numbers

Z � N .0; 1/ (Chap. 2), and set log q D �JZ C �J. The chosen value of �J

corresponds to a mean q D exp.�J/ D 0:7408, which amounts to an average 26%
drop in S� at a jump instant � . For the integration of (1.74), a growth rate is chosen
such that risk neutrality is achieved. As will be explained in Sect. 7.3, the martingale
property is satisfied with

� D r � � .expŒ�J C 1
2
�2J � � 1/ ;
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Table 1.3 Jumps in Fig. 1.24 � log.q/ q Jump

0:99 �0:642 0:526 47% down

4:76 0:0495 1:05 5% up

5:72 �0:534 0:586 41% down

which for our numbers gives the growth rate 0.0995. This rate � is larger than r,
and—roughly speaking—compensates for the tendency that in case �J < 0 down
jumps are more likely than up jumps. Now we are ready to solve (1.74) numerically.
Figure 1.24 shows one calculated trajectory. We see three jumps, with data in
Table 1.3. In this particular simulation, there are two heavy down jumps within
the time interval 0 � t � 10, which are clearly visible in Fig. 1.24.

The task of valuing options leads to a partial integro-differential equation (A.20),
shown in Appendix A.4, and in Sect. 7.3.

The above jump-diffusion process is not the only jump process used in finance.
There are also processes with an infinite number of jumps in finite time intervals.
To model such processes, building blocks are provided by a more general class of
jump processes, namely, the Lévy processes. Simply speaking, think of relaxing
the properties (b), (d) of Definition 1.7 of the Wiener process such that non-normal
distributions and jumps are permitted. Consult Sect. 7.3 for some basics on Lévy
processes.

1.10 Calibration

Which model should be chosen for a particular application?
This is a truly fundamental question. The question involves two views, namely, a

qualitative and a quantitative aspect.
When one speaks of a “model,” the focus is on its quality. This refers to

the structure and the type of equation. Important ingredients of a model are, for
example, a diffusion term, a jump feature, a specific nonlinearity, or whether the
volatility is considered as a constant or a stochastic process. Ideally, the model
and its equations represent economical laws. On the other hand, the quantitative
aspect of the model consists in the choice of specific numbers for the coefficients or
parameters of the model. “Modeling” refers to the setup of a chosen equation, and
“calibration” is the process of matching the parameters of the chosen model to the
data that represent reality.

The distinction between modeling and calibration is not always obvious. For
example, consider the class of mean-reversion models represented by (1.55). There
is the exponent ˇ in the factor rˇt . This exponent ˇ can be regarded either as
parameter, or as a structural element of the model. The three cases

ˇ D 0 W the factor is unity, rˇ D 1 ; it “disappears,”
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ˇ D 1 W the factor is linear, it represents a proportionality,

ˇ D 1=2 W the factor
p

r is a specific nonlinearity,

point at the qualitative aspect of this specific parameter. Typically, modeling sets
forth some argument why a certain parameter is preset in a specific way, and not
subjected to calibration. Modeling places emphasis on capturing market behavior
rather than the peculiarities of a given data set.

Let us denote N parameters to be calibrated by c1; : : : ; cN . Examples are the
volatility � in GBM (1.47), or ˛;R for the mean-reversion term in (1.55), or the jump
intensity � of a jump-diffusion process. For the mean-reverting volatility tandem of
Example 1.15, the vector to be calibrated consists of five parameters,

c D .˛; ˇ; �; �0; �0/ :

Here � is the correlation between the two Wiener processes W.1/;W.2/, and �0; �0
are the initial values for the processes �t; �t. For the volatility tandem it makes sense
to assume �0 D �0, which cuts down the calibration dimension N from five to four.
The initial stock price S0 is known. The interest rates r that match a maturity T are
obtained, for example, from EURIBOR, and are not object of the calibration. Any
attempt to cut down the calibration dimension N is welcome because the costs of
calibration are significant.

Suppose an initial guess of the calibration vector c. Then the calibration
procedure is based on the three steps

(1) simulate the model—that is, solve it numerically,
(2) compare the calculated results with the market data—that is, calculate the

defect, and
(3) adapt c such that the model better matches the data—that is, the defect should

decrease.

These three steps are repeated iteratively. How to perform step (3) is not obvious;
there is no unique way how to decrease the defect. A standard approach is to
minimize the defect in a least-squares fashion.

In our context of calibrating models for finance, data of vanilla options are
available as follows: The price S of the underlying is known as well as market prices
Vmar for several strikes K and maturities T. Let the option prices Vmar be observed
for M pairs .T1;K1/; : : : ; .TM;KM/. That is, the available data are

S; .Tk;Kk;V
mar
k / ; k D 1; : : : ;M :

For definiteness of the calibration require sufficiently many data in the sense M � N.
Raw data may be subjected to a smoothing process [154].

First, a model is specified. Then, in step (1), the chosen model is evaluated
for each of the M data .S;Tk;Kk/, which gives model prices V.S; 0I Tk;KkI c/.
In general, this valuation process is expensive. An excellent approach for the
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simultaneous valuation of a large number of European options is the FFT method
of Carr and Madan [68], see Sect. 7.4. In step (2), the result of the valuation is
compared to the market prices. There will be a defect. Therefore, in step (3), an
iteration is set up to improve the current fit c. The least-squares approach is to
minimize the sum of the squares of all defects, over all c,

min
c

MX
kD1
.Vmar

k � V.S; 0ITk;KkI c//2 : (1.77)

The sum in (1.77) is a function of c and can be visualized as a surface over the
parameter c-space. It can be modified by weighting the terms appropriately. Finally,
the calibration results in a minimizing c (�! Appendix C.4). In view of the data
error, it hardly makes sense to calculate the minimizing parameter vector c with high
accuracy.

A simple example is provided by the implied volatility, see Exercise 1.19. Here
N D 1, M D 1, c WD � , and it is possible to make the defect vanish—the minimum
in (1.77) becomes zero. But in general the minimum of (1.77) will be a positive
value. It is tempting to regard this value as a measure of the defect of the chosen
model. But this would be misleading; we come back to this below.

As a numerical example, we calibrate two models on the same data set of
standard European calls on the DAX index observed in the time period January 2002
through September 2005. For this example, the calibration of Heston’s model (1.59)
results in the five parameters

� D 1:63 ;  D 0:0934 ; �v D 0:473 ; v0 D 0:0821 ; � D �0:8021 ;

with� D r for the risk-neutrality. This parameter set matches the criterion 2� � �v

which guarantees v > 0. The same data are applied to calibrate the Black–Scholes
model: The data are matched by GBM with the constant � D 0:239 (from [122]).
This is comparable to the calibration of the Heston model with its

p
v0 	 0:28.

So far, we have not come close to an answer to the initial question on the “best”
choice of an appropriate model. An attempt to decide on the quality of a model might
be to compare the defects. For instance, compare the values of the sums in (1.77).
In the above experiment, Heston’s model has the smaller defect; the defect of the
Black–Scholes model is five times as large.

One might think that one model is better than another one, when the defect
is smaller. But this is a wrong conclusion! Admitting a large enough number of
parameters enables to reach a seemingly best fit with a small defect. The danger with
a large number of parameters is overfitting. Overfitting can be detected as follows:
Divide the data into halves, fit the model on the one half (in-sample fit), and then test
the quality of the fit on the other half of the data ( out-of-sample fit). In case the out-
of-sample fit matches the data much worse than the in-sample fit, we have a strong
clue on overfitting. Then any predictive power of the model may be lost. A vanishing
defect might be seen as hint of the model being useless. Overfitting is related to the
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stability of parameters. If the parameters c change drastically when exchanging one
data set by a similar data set, then the model is considered unstable. In order to
obtain information on the parameter uncertainty, the defect must be analyzed more
closely around the calculated best fit c. The defect function (1.77) can exhibit a large
flat region. Then significantly different values of c yield a similar error. In this sense,
a calibration problem can be ill-posed [173].

There is another test of the quality of a model, namely, how well hedging works.
A hedging strategy based on the model is compared to the reality of the data.
Empirical tests and comparisons in [94, 122] suggest that in the context of option
pricing, a stochastic volatility may be a more basic ingredient of a good model
than jump processes are. In terms of stability, out-of-sample fitting, and hedging
of options, Heston’s model (Example 1.16) is recommendable—these conclusions
have been based on the prices of European options on the DAX 2002–2005. In terms
of hedging capabilities, the classic Black–Scholes model is competitive.

To summarize, it is obvious that calibration is a formidable task, in particular
if several parameters are to be fitted. The attainable level of calibration quality
depends on the chosen model. In case the structure of the equation is not designed
properly, an attempt to improve parameters may be futile. For a given model, it
might well happen that a perfect calibration is never found. It is unlikely that some
model eventually might emerge as generally “most recommendable.” Calibration
does not remove the risk of having chosen the wrong model. With our focus on
computational tools, it does make sense to consider the Black–Scholes model as a
benchmark. It captures a significant part of the essence of option markets.

1.11 Notes and Comments

On Sect. 1.1

This section presents a brief introduction to standard options. For more compre-
hensive studies of financial derivatives we refer, for example, to [88, 191, 376].
Mathematical detail can be found in [123, 217, 237, 282, 339, 345]. Other books
on financial markets include [97, 120, 146, 268]. (All hints on the literature are
examples; an extensive overview on the many good books in this rapidly developing
field is hardly possible.)

On Sect. 1.2

Black, Merton and Scholes developed their approaches concurrently, with basic
papers in 1973 ([41], [269]; compare also [271]). Merton and Scholes were awarded
the Nobel Prize in economics in 1997. (Black had died in 1995.) One of the results
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of these authors is the so-called Black–Scholes equation (1.5) with its analytic
solution formulas (1.7)–(1.10). For reference on discrete-time models, consult
[132, 302]. Transaction costs and market illiquidity or feedback effects are discussed
in Sect. 7.1.

On Sect. 1.3

References on specific numerical methods are given where appropriate. As compu-
tational finance is concerned, most quotations refer to research papers. Other general
text books discussing computational issues include [2, 181, 376]; further hints can
be found in [321]. For the calculation of the sample variance (Exercise 1.6) see
[72, 183].

On Sect. 1.4

Binomial or trinomial methods are sometimes found under the heading tree methods
or lattice methods. Basic versions of the binomial method were introduced in 1979
by [87]18 and [313]. Cox et al. [87] suggested

Qu WD e�
p
�t; Qd WD e��p

�t; Qp WD 1

2

 
1C r � 1

2
�2

�

p
�t

!
; (1.78)

where Qp is a first-order approximation to the p of (1.13). (The reader may check; for
Qu, Qd see Exercise 1.8.) The influential paper by Cox, Ross and Rubinstein has coined
the name CRR for their approach. Hull and White [192] pointed out that (1.18) is
slightly more correct than the CRR choice. Rendleman and Bartter [313] suggested
the choice p D 1

2
, which leads to values of u and d (�! Exercise 1.26). Of course,

another set of parameters u; d; p leads to a different approximation. Example 1.6,
which is from [191], and M D 100 yields V D 4:28041 with the parameter
set (1.18), and V D 4:27806 with u; d from (1.78). But for M ! 1 convergence
is maintained in either case. The dynamic programming principle is due to [33]: Of
each optimal path, any piece (subpath) must be optimal too. In the literature, the
result of the dynamic programming procedure is often listed under the name Snell
envelope.

Table 1.2 might suggest that it is easy to obtain high accuracy with binomial
methods. This is not the case; flaws were observed in particular close to the early-
exercise curve [83]. As illustrated by Fig. 1.10, the described standard version

18William Sharpe has been credited for suggesting the advantages of the discrete-time approach.
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wastes many nodes Sj;i close to zero and far away from the strike region even for
small M.

For advanced binomial methods and for speeding up convergence, consult also
[51, 224, 243, 244, 359]. Figlewski and Gao [129] inserts a patch of higher resolution
close to .S; t/ D .K;T/ into the trinomial tree. The resulting adaptive mesh model
exhibits higher accuracy. In order to maintain accuracy for barrier options one takes
care that layers coincide with the barrier, see for instance [96]. For a detailed account
of the binomial method see also [88]. By correcting the terminal probabilities, which
come out of the binomial distribution (�! Exercise 1.10), it is possible to adjust
the tree to actual market data [322], see also the implied tree of [100], outlined in
Appendix D.5 or [337]. Honoré and Poulsen [189] explains how to implement the
binomial method in spreadsheets. Many applications of binomial trees are found
in [251].

On Sect. 1.5

When we expect� to be positive, then we should assume the option is a call. But the
argumentation is the same for a put, then � < 0. As shown in Sect. 1.5, a valuation
of options based on a hedging strategy is equivalent to the risk-neutral valuation
described in Sect. 1.4. Another equivalent valuation is obtained by a replication
portfolio. This basically amounts to including the risk-free investment, to which
the hedged portfolio of Sect. 1.5 was compared, into the portfolio. To this end, the
replication portfolio includes a bond with the initial value B0 WD �.� 
 S0 � V0/ D
�˘0 and interest rate r. The portfolio consists of the bond and� shares of the asset.
At the end of the period T the final value of the portfolio is� 
 STC erT.V0�� 
 S0/.
The hedge parameter� and V0 are determined such that the value of the portfolio is
VT , independent of the price evolution. By adjusting B0 and� in the right proportion
we are able to replicate the option position. This strategy is self-financing: No
initial net investment is required. The result of the self-financing strategy with the
replicating portfolio is the same as what was derived in Sect. 1.5. The reader may
like to check this. For the continuous-time case, see Appendix A.4.

Frequently discounting is done with the factor .1C r 
 �t/�1. This r would not
be a continuously compounding interest rate. Our e�r�t or e�rT is consistent with
the approach of Black, Merton and Scholes. For references on risk-neutral valuation
we mention [191, 234, 282], and [340].

On Sect. 1.6

Introductions into stochastic processes and further hints on advanced literature
can be found in [12, 37, 108, 139, 225, 314, 328, 339, 340]. In the literature,
the terms Wiener process and Brownian motion are often used as synonyms, and the
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modifier “standard” is used to specialize on the drift-free case. Here we follow the
convention as in Definition 1.7, where the term Wiener process is mostly reserved
for the “standard” scalar drift-free Brownian motion. The definition of a Wiener
process depends on the underlying probability measure P, which enters through the
definition of independence, and by its distribution being Gaussian, see (B.1). For
more hints on martingales, see Appendix B.2. Algorithm 1.8 is also called “Gaussian
random walk.”

For a proof of the nondifferentiability of Wiener processes, see [193]. In contrast
to the results for Wiener processes, differentiable functions Wt satisfy for ıN ! 0

X
jWtj �Wtj�1 j �!

Z
jW 0

sj ds ;
X

.Wtj �Wtj�1 /
2 �! 0 :

The Itô integral and the alternative Stratonovich integral are explained in [12, 78,
108, 216, 225, 274, 291, 314, 333, 340]. The class of Itô-stochastically integrable
functions is characterized by the properties f .t/ is Ft-adapted and E

R
f .s/2ds <1.

We assume that all integrals occurring in the text exist. The integrator Wt needs
not be a Wiener process. The stochastic integral can be extended to semimartin-
gales [193].

On Sect. 1.7

The Algorithm 1.11 is sometimes named after Euler and Maruyama.
A general linear SDE is of the form

dXt D .a1.t/Xt C a2.t// dtC .b1.t/Xt C b2.t// dWt :

The expectation E.Xt/ of a solution process Xt of a linear SDE satisfies the
differential equation

d

dt
E.Xt/ D a1E.Xt/C a2 ;

and for E.X2t / we have

d

dt
E.X2t / D .2a1 C b21/E.X

2
t /C 2.a2 C b1b2/E.Xt/C b22 :

This is obtained by taking the expectation of the SDEs for Xt and X2t , the latter one
derived by Itô’s lemma [225, 274]. Combining both differential equations allows
to calculate the variance. Kloeden and Platen [225] gives a list of SDEs that are
analytically solvable or reducible.
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A process (1.47) with variable �.t/; �.t/ is called generalized GBM [340]. For
CIR of Example 1.16, provided r0 > 0, R > 0, and a strong enough upward drift in
the sense

˛R � 1

2
�2r ;

the solution of (1.55) satisfies rt > 0 for all t; this criterion is attributed to Feller.
For a PDE, the Feller condition is replaced by a boundary condition at r D 0 [117].
Based on the CIR system and a dependent variable u.S; v; t/ a two-dimensional PDE
is presented in [178], see Example 5.8.

The model of a geometric Brownian motion of Eq. (1.47) is the classic model
describing the dynamics of stock prices. It goes back to Samuelson (1965;
Nobel Prize in economics in 1970). Already in 1900 Bachelier had suggested
to model stock prices with Brownian motion. Bachelier used the arithmetic
version, which can be characterized by replacing the left-hand side of (1.47) by
the absolute change dS. This amounts to the process of the drifting Brownian
motion St D S0 C �t C �Wt . Here even the theoretical stock price can become
negative. Main advantages of the geometric Brownian motion are its exponential
growth or decay, the success of the approaches of Black, Merton and Scholes,
which is based on that motion, and the existence of moments (as the expectation).
For positive S, the form (1.47) of GBM is not as restrictive as it might seem, see
Exercise 1.24. A variable volatility �.S; t/ is called local volatility. Such a volatility
can be used to make the Black–Scholes model compatible with observed market
prices [112] (�! Appendix A.6).

On Sect. 1.8

The Itô lemma is also called Doeblin-Itô formula, after the early manuscript
[107] was disclosed. The transformation that leads to the density fGBM in (1.64)
will be stated formally in Sect. 2.2. The Algorithm 1.18 was suggested by [309],
including the use of radial basis functions, a tricky control of truncation errors, and
a convergence analysis. The approximation quality of American options is quite
satisfactory even for small values of M.

In view of their continuity, GBM processes are not appropriate to model jumps,
which are characteristic for the evolution of stock prices. Jumps lead to relatively
heavy tails in the distribution of empirical returns (see Fig. 1.23).19 As already
mentioned, the tails of the lognormal distribution are too thin. Other distribu-
tions match empirical data better. One example is the Pareto distribution, which

19The thickness is measured by the kurtosis E..X ��/4/=�4. The normal distribution has kurtosis
3. So the excess kurtosis is the difference to 3. Frequently, data of returns are characterized by large
values of excess kurtosis.



1.12 Exercises 71

has tails behaving like x�˛ for large x and a constant ˛ > 0. A correct modeling
of the tails is an integral basis for value at risk (VaR) calculations. For the risk
aspect consult [14, 25, 109, 121], and the survey [113]. For distributions that match
empirical data see [43, 49, 114, 254, 339]. Estimates of future values of the volatility
are obtained by (G)ARCH methods, which work with different weights of the
returns [138, 191, 325, 339, 365]. Promising are models of behavioral finance that
consider the market as dynamical system [38, 39, 60, 76, 106, 249, 258, 344]. These
systems experience the nonlinear phenomena bifurcation and chaos, which require
again numerical methods. Such methods exist, and are explained elsewhere [336].

On Sect. 1.9

Section 1.9 concentrates on Merton’s jump-diffusion process. For building Lévy
models we refer to [84, 328], and Sect. 7.3.

On Sect. 1.10

The CIR-based Heston model can be extended to jump-diffusion. This can be
applied to both processes St and vt in (1.59), which defines a general class of models
with 10 parameters [111]. But applying jumps only for St , one obtains the same
quality with eight parameters [30]. Also the Ornstein-Uhlenbeck-based Schöbel–
Zhu model is recommendable [329]. Another FFT based valuation approach is
[125]. Artificial smoothing of the least-squares function (1.77) allows to apply
gradient-based methods. This is discussed in [209]. For hedging issues and practical
aspects, consult [207].

1.12 Exercises

1.1 (Put-Call Parity)
Consider a portfolio consisting of three positions related to the same asset, namely,
one share (price S), one European put (value VP), plus a short position of one
European call (value VC). Put and call have the same expiration date T, and no
dividends are paid.

(a) Assume a no-arbitrage market without transaction costs. Show

SC VP � VC D Ke�r.T�t/

for all t, where K is the strike and r the risk-free interest rate.
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Fig. 1.25 Four payoffs, value
over S; see Exercise 1.3

K2

K2K1

(a)

K1 K2

K1 K2

(d)

(b)

(c)

KK1

(b) Use this put-call parity to realize

VC.S; t/ � S � Ke�r.T�t/ ;

VP.S; t/ � Ke�r.T�t/ � S :

1.2 (Bounds and Arbitrage)
Using arbitrage arguments, show the following bounds for the values VC of vanilla
call options:

(a) 0 � VC

(b) .S � K/C � VAm
C � S

1.3 (Portfolios)
Figure 1.25 sketches some payoffs over S: (a) bull spread, (b) bear spread, (c)
strangle, (d) butterfly spread. For each of these payoffs, construct portfolios out of
two or three vanilla options (same expiry, same underlying) such that the portfolio
meets the payoff.

1.4 (Transforming the Black–Scholes Equation)
Show that the Black–Scholes equation (1.5)

@V

@t
C �2

2
S2
@2V

@S2
C rS

@V

@S
� rV D 0

for V.S; t/ with constant � and r is equivalent to the equation

@y

@�
D @2y

@x2

for y.x; �/. For proving this, you may proceed as follows:
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(a) Use the transformation S D Kex and a suitable transformation t $ � to show
that (1.5) is equivalent to

� PV C V 00 C ˛V 0 C ˇV D 0
with PV D @V

@�
, V 0 D @V

@x , ˛; ˇ depending on r and � .
(b) The next step is to apply a transformation of the type

V D K exp.
xC ı�/ y.x; �/

for suitable 
; ı.
(c) Transform the terminal condition of the Black–Scholes equation accordingly.

1.5 (Standard Normal Distribution Function)
Establish an algorithm to calculate

F.x/ D 1p
2	

Z x

�1
exp.� t2

2
/ dt :

(a) Construct an algorithm to calculate the error function

erf.x/ WD 2p
	

Z x

0

exp.�t2/ dt ;

and use erf.x/ to calculate F.x/. Use composite trapezoidal sums (�!
Appendix C.1) to calculate approximations Fn.x/.

(b) Apply the approximation formula of Appendix E.2 to calculate an approxima-
tion QF.x/, and set up a computer program.

(c) Full accuracy for comparison can be obtained by the generic code derf. For
a series of values x evaluate the errors of the above algorithms. Enter the
computing times and the errors of QF and Fn for several n into a diagram similar
as Fig. 4.19.

1.6 (Calculating the Sample Variance)
An estimate of the variance of M numbers x1; : : : ; xM is

s2M WD
1

M � 1
MX

iD1
.xi � Nx/2; with Nx WD 1

M

MX
iD1

xi :

The alternative formula

s2M D
1

M � 1

0
@ MX

iD1
x2i �

1

M

 
MX

iD1
xi

!21
A (˘)
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can be evaluated with only one loop i D 1; : : : ;M, but should be avoided because
of the danger of cancellation. The following single-loop algorithm is recommended
instead of (˘):

˛1 WD x1; ˇ1 WD 0
for i D 2; : : : ;M:

˛i WD ˛i�1 C xi�˛i�1
i

ˇi WD ˇi�1 C .i�1/.xi�˛i�1/
2

i

(a) Show Nx D ˛M ; s2M D ˇM
M�1 .

(b) For the ith update in the algorithm carry out a rounding error analysis. What is
your judgment on the algorithm?

1.7 (Anchoring the Binomial Grid at K)
The equation ud D 
 (1.17) anchors the tree. One may anchor the grid by requiring
(for even M)

S0u
M=2dM=2 D K :

(a) Give a geometrical interpretation.
(b) Derive from Eqs. (1.12), (1.16) and ud D 
 for some constant 
 the relation

u D ˇ C
p
ˇ2 � 
 for ˇ WD 1

2
.
e�r�t C e.rC�2/�t/ :

(c) Show that the solution is given by

ud D 
 WD exp

�
2

M
log

K

S0

�
:

(d) Show d < er�t < u .

1.8 (Price Evolution of the Binomial Method)
For ˇ from (1.18) with 
 D 1, and u D ˇCpˇ2 � 1 analyze possible cancellation,
and show

u D exp
�
�
p
�t
�
C O

�p
.�t/3

�
:

1.9 (Implementing a Binomial Method)
Design and implement an algorithm for calculating the value V.M/ of a European or
American option. Use the basic version of Algorithm 1.4.

INPUT: r (interest rate), � (volatility), T (time to expiration in years), K (strike
price), S (price of asset), and the choices put or call, and European or American,
and an (initial) M.

Control the mesh size �t D T=M adaptively. A crude strategy would be, for
example, to calculate V for M D 8 and M D 16 and in case of a significant change
in V use M D 32 and possibly M D 64.
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Test examples:

(a) put, European, r D 0:06, � D 0:3, T D 1, K D 10, S D 5
(b) put, American, S D 9, otherwise as in (a)
(c) call, otherwise as in (a)
(d) The mesh size control must be done carefully and has little relevance to error

control. To make this evident, calculate for the test numbers a) a sequence of
V.M/ values, say for M D 100; 101; 102; : : : ; 150, and plot the error jV.M/ �
4:430465j.

1.10 (Limiting Case of the Binomial Model)
Consider a European Call in the binomial model of Sect. 1.4. Suppose the calculated
value is V.M/

0 . In the limit M ! 1 the sequence V.M/
0 converges to the value

VC.S0; 0/ of the continuous Black–Scholes model given by (1.7)–(1.10) (�!
Appendix A.4). To prove this, proceed as follows:

(a) Let jK be the smallest index j with SjM � K. Find an argument why

MX
jDjK

 
M

j

!
p j .1 � p/M�j .S0u

jdM�j � K/

is the expectation E.VT/ of the payoff. (For an illustration see Fig. 1.26.)
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Fig. 1.26 Binomial tree in the .S; t/-plane and payoff (in blue) of a put; .S; t/-node points for
M D 8, K D S0 D 10. The binomial density of the risk-free probability is shown in red dashed
line, scaled with factor 10. (Illustration for Exercise 1.10)
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(b) The value of the option is obtained by discounting, V.M/
0 D e�rTE.VT/. Show

V.M/
0 D S0BM;Qp. jK/� e�rTKBM;p. jK/ :

Here BM;p. j/ is defined by the binomial distribution (�! Appendix B.1), and
Qp WD pue�r�t.

(c) For large M the binomial distribution is approximated by the normal distribution
with distribution F.x/. Show that V.M/

0 is approximated by

S0F

 
M Qp � ˛p
M Qp.1 � Qp/

!
� e�rTKF

 
Mp � ˛p
Mp.1� p/

!
;

where

˛ WD � log S0
K CM log d

log u � log d
:

(d) Substitute the p; u; d by their expressions from (1.18) with 
 D 1 to show

Mp � ˛p
Mp.1� p/

�! log S0
K C .r � �2

2
/T

�
p

T

for M ! 1. Hint: Use Exercise 1.8: Up to terms of high order the
approximations u D e�

p
�t, d D e��p

�t hold. (In an analogous way the other
argument of F can be analyzed.)

1.11 (Extrapolation)
Assume a (differential) equation, and let �� 2 R represent its exact solution.
For a discretization, � denotes the grid size of the corresponding numerical
approximation scheme, and �.�/ the approximating solution. Further assume the
error model

�.�/� �� D c�q;

with c; q 2 R. The exponent q is the order of the approximation scheme. Suppose
that for two grid sizes �1, �2 with

�2 D 1

2
�1

approximations �1 WD �.�1/, �2 WD �.�2/ are calculated.
Assignment:

(a) For the case of a known �� (or �� approximated with very high accuracy)
establish a formula for the order q out of ��; �1; �2.
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(b) For a known order q show that

�� D 1

2q � 1.2
q�2 � �1/ :

In general, the error model holds only approximately. Hence this formula for �� is
only an approximation of the exact �� (“extrapolation”).

1.12 (Smoothing a Function)
Assume a function � , for example the payoff of a vanilla call �.S/ WD .S � K/C.
� can be approximated by the smoother � ,

�.S/ WD 1

2�

Z �

��
�.S � y/ dy ;

for a suitable chosen small � > 0.

(a) Calculate � analytically for the payoff of a vanilla call, and a digital call.
(b) Set up an algorithm to calculate � numerically for a given function � . Use

trapezoidal quadrature and program it on a computer; plot � .

1.13 (Greeks)
The Algorithm 1.4 with the anchoring of Exercise 1.7 is to be modified as follows:

Extend the tree by starting at �2�t as discussed in Sect. 1.4.6, and calculate
approximations for the greeks delta and gamma by using difference quotients.

Use Example 1.5 to compare these approximations with those from the analytic
values from Appendix A.4. Implement this in a computer program.

1.14 (Dividend Payment and the Binomial Method)
A dividend yield ı can be calculated by annualizing a known dividend payment D
per year by setting ı D D=S. For a binomial tree, the effects of paying either

(a) a fixed amount D or
(b) a proportional amount ıS

are different.
Assume a dividend payment at time tD < T and a node of the tree at t� D tD.

For a share value of S at t��1 discuss the tree evolution at t�C1 with focus on
recombination, comparing the two scenarios (a) and (b).

1.15 (Trinomial Method)
Extend the classical binomial model to a trinomial model as follows: Allow for three
prices SiC1 of the underlying at tiC1, namely,

uSi with probability p1 ;

mSi with probability p2 ;

dSi with probability p3 :
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For the six parameters u;m; d; p1; p2; p3 six equations are needed. Clearly, the
probabilities must be nonnegative, and p1 C p2 C p3 D 1 must hold.

(a) Set up the two equations that equate expectation and variance with the corre-
sponding values of the continuous model (similar as for the binomial model).

(b) The tree should be recombining. Cast this requirement into an equation.
(c) For the special choice of equal probabilities derive the parameters.

Hint: For

˛ WD er�t ; ˇ WD e�
2�t ; � WD ˛

4
.3C ˇ/

show

m D ˛

2
.3 � ˇ/ ; u D �C

p
�2 � m2 :

(d) Analyze possible cancellation in evaluating the expression
p
�2 � m2, and

remove the cancellation.
(e) How many arithmetic operations are needed for the trinomial method with

�t D T=M (without the calculation of u;m; d/ ?

1.16 In Definition 1.7 the requirement (a) W0 D 0 is dispensable. Then the
requirement (b) reads

Wt �W0 � N .0; t/ :

Use these relations to deduce (1.32)/(1.33).
Hint: .Wt �Ws/

2 D .Wt �W0/
2 C .Ws �W0/

2 � 2.Wt �W0/.Ws �W0/

1.17

(a) Suppose that a random variable Xt satisfies Xt � N .0; �2/. Use (B.4) to show

E.X4t / D 3�4 :

(b) Apply (a) to show the assertion in Lemma 1.9,

E

0
@X

j

..�Wj/
2 ��tj/

1
A
2

D 2
X

j

.�tj/
2 :

1.18 (Negative Prices)
Assume Z � N .0; 1/, S > 0, � > 0, and a step .t; S/ ! .t C �t; S C �S/ of the
discretized GBM

�S

S
D ��tC �Z

p
�t :
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What is the probability that the resulting price SC�S is negative? Discuss the result
in view of Algorithm 1.11.

1.19 (Implied Volatility)
For European options we take the valuation formula of Black and Scholes of the
type V D v.S; �;K; r; �/, where � denotes the time to maturity, � WD T � t. For the
definition of the function v see the Eqs. (1.9) and (1.10), or Appendix A.4. If actual
market data Vmar of the price are known, then one of the parameters considered
known so far can be viewed as unknown and fixed via the implicit equation

Vmar � v.S; �;K; r; �/ D 0 : (1.79)

In this calibration approach the unknown parameter is calculated iteratively as
solution of Eq. (1.79). Consider � to be in the role of the unknown parameter.
The volatility � determined in this way is called implied volatility and is zero of
f .�/ WD Vmar � v.S; �;K; r; �/.

Assignment:

(a) Implement the evaluation of VC and VP according to (1.9)/(1.10).
(b) Design, implement and test an algorithm to calculate the implied volatility of

a call. Use Newton’s method to construct a sequence xk ! � . The derivative
f 0.xk/ can be approximated by the difference quotient

f .xk/ � f .xk�1/
xk � xk�1

:

For the resulting secant iteration invent a stopping criterion that requires
smallness of both j f .xk/j and jxk � xk�1j.

(c) Calculate the implied volatilities for the data

T � t D 0:211 ; S0 D 5290:36 ; r D 0:0328

and the pairs K;V from Table 1.4 (for more data see www.compfin.de). For each
calculated value of � enter the point .K; �/ into a figure, joining the points with
straight lines. (You will notice a convex shape of the curve. This shape has lead
to call this phenomenon volatility smile.)

1.20 (Ornstein–Uhlenbeck Process)
An Ornstein–Uhlenbeck process is defined as solution of the SDE

dXt D �˛Xt dtC 
 dWt ; ˛ > 0

Table 1.4 Calls on the DAX
on Jan 4th 1999

K 6000 6200 6300 6350 6400 6600 6800

V 80.2 47.1 35.9 31.3 27.7 16.6 11.4

www.compfin.de
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for a Wiener process W.

(a) Show

Xt D e�˛t

	
X0 C 


Z t

0

e˛s dWs



:

(b) Suppose a volatility �t is an Ornstein–Uhlenbeck process. Show that the
variance vt WD �2t follows a Cox–Ingersoll–Ross process, namely,

dvt D �. � vt/ dtC �vpvt dWt :

1.21 (Analytic Solution of Special SDEs)
Apply Itô’s lemma to show

(a) Xt D exp
�
�Wt � 1

2
�2t
�

solves dXt D �Xt dWt

(b) Xt D exp .2Wt � t/ solves dXt D Xt dtC 2Xt dWt

Hint: Use suitable functions g with Yt D g.Xt; t/. In (a) start with Xt D Wt and
g.x; t/ D exp.�x � 1

2
�2t/.

1.22 (Moments of the Lognormal Distribution)
For the density function f .SI t � t0; S0/ from (1.64) show

(a)
R1
0

Sf .SI t � t0; S0/ dS D S0e�.t�t0/

(b)
R1
0

S2f .SI t � t0; S0/ dS D S20e
.�2C2�/.t�t0/

Hint: Set y D log.S=S0/ and transform the argument of the exponential function to
a squared term.

In case you still have strength afterwards, calculate the value of S for which f is
maximal.

1.23 (Return of the Underlying)
Let a time series S1; : : : ; SM of a stock price be given (for example data in the domain
www.compfin.de). The simple return

ORi;j WD Si � Sj

Sj
;

an index number of the success of the underlying, lacks the desirable property of
additivity

RM;1 D
MX

iD2
Ri;i�1 : (1.80)

www.compfin.de
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The log return

Ri;j WD log Si � log Sj

has better properties.

(a) Show Ri;i�1 	 ORi;i�1, and
(b) Ri;j satisfies (1.80).
(c) For empirical data calculate the Ri;i�1 and set up histograms. Calculate sample

mean and sample variance.
(d) Suppose S is distributed lognormally. How can a value of the volatility be

obtained from an estimate of the variance?
(e) The mean of the 26866 log returns of the time period of 98.66 years of Fig. 1.23

is 0.000199 and the standard deviation is 0.01069. Calculate an estimate of the
historical volatility � .

1.24 (Positive Itô Process)
Let Xt be a positive one-dimensional Itô process for t � 0.

Show that there exist functions ˛ and ˇ such that

dXt D Xt.˛t dtC ˇt dWt/

and

Xt D X0 exp

�Z t

0

.˛s � 1
2
ˇ2s / dsC

Z t

0

ˇs dWs

�
:

1.25 (General Black–Scholes Equation)
Assume a portfolio

˘t D ˛tSt C ˇtBt

consisting of ˛t units of a stock St and ˇt units of a bond Bt, which obey

dSt D �.St; t/ dtC �.St; t/ dWt ;

dBt D r.t/Bt dt :

The functions �, � , and r are assumed to be known, and � > 0. Further assume the
portfolio is self-financing in the sense

d˘t D ˛t dSt C ˇt dBt ;

and replicating such that ˘T equals the payoff of a European option. (Then ˘t

equals the price of the option for all t.) Derive the Black–Scholes equation for this
scenario, assuming˘t D g.St; t/ with g sufficiently often differentiable.
Hint: coefficient matching of two versions of d˘t .
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1.26 (Binomial Method with p D 0:5)
Use the Eqs. (1.12), (1.16) and p D 1=2 to show

u D er�t .1C
p

e�2�t � 1/ ;
d D er�t .1 �

p
e�2�t � 1/ :

1.27 (Closeness to the Black–Scholes Equation)
Let eV be a smooth function satisfying the continuous version of the binomial
recursion formula

eV.S; t ��t/ D e�r�t
�

peV.uS; t/C .1 � p/eV.dS; t/
�
;

for u; d; p as defined in (1.18), with 
 D 1. Apply the Taylor expansion of eV about
.S; t/ to show that this recursion is close to the Black–Scholes equation up to terms
of order O.�t/.
Hint: Show

p.u� 1/� .1 � p/.1� d/ D er�t � 1 D r�tC O.�t2/ ;

p.u� 1/2 C .1 � p/.1 � d/2 D �2 �tC O.�t2/ :

(based on reference [234], Sec.5.1.5)



Chapter 2
Generating Random Numbers with Specified
Distributions

Simulation and valuation of finance instruments require numbers with specified
distributions. For example, in Sect. 1.6 we have used numbers Z drawn from a
standard normal distribution, Z � N .0; 1/. If possible the numbers should be
random. But the generation of “random numbers” by digital computers, after all,
is done in a deterministic and entirely predictable way. If this point is to be stressed,
one uses the term pseudo-random.1

Computer-generated random numbers mimic the properties of true random
numbers as much as possible. This is discussed for uniformly distributed random
numbers in Sect. 2.1. Suitable transformations or rejection methods generate sam-
ples from other distributions, in particular, normally distributed numbers (Sects. 2.2
and 2.3). Section 2.3 includes the vector case, where normally distributed numbers
are calculated with prescribed correlation.

Another approach is to dispense with randomness and to generate quasi-random
numbers, which aim at avoiding one disadvantage of random numbers, namely, the
potential lack of equidistributedness. The resulting low-discrepancy numbers will
be discussed in Sect. 2.5. These numbers are used for the deterministic Monte Carlo
integration (Sect. 2.4).

Definition 2.1 (Sample from a Distribution) A sequence of numbers is called a
sample from F if the numbers are independent realizations of a random variable with
distribution function F.
If F is the uniform distribution over the interval Œ0; 1�, then we call the samples
from F uniform deviates (variates), notation � U Œ0; 1�. If F is the standard normal
distribution then we call the samples from F standard normal deviates (variates);
as notation we use � N .0; 1/. The basis of random-number generation is to draw
uniform deviates.

1Since in our context the predictable origin is clear we omit the modifier “pseudo,” and hereafter
use the term “random number.” Similarly we talk about randomness of these numbers when we
mean apparent randomness.

© Springer-Verlag London Ltd. 2017
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2.1 Uniform Deviates

A standard approach to calculate uniform deviates is provided by linear congruential
generators. We concentrate on algorithms that are easy to implement and ready for
experiments.

2.1.1 Linear Congruential Generators

Choose integers M; a; b, with a; b < M, a ¤ 0. For an integer N0 a sequence of
integers Ni is defined by

Algorithm 2.2 (Linear Congruential Generator)

Choose N0 .
For i D 1; 2; : : : calculate

Ni D .aNi�1 C b/ mod M : (2.1)

The modulo congruence N D Y mod M between two numbers N and Y is an
equivalence relation [147]. The initial integer N0 is called the seed. Numbers
Ui 2 Œ0; 1/ are defined by

Ui D Ni=M ; (2.2)

and will be taken as uniform deviates. Whether the numbers Ui or Ni are suitable
will depend on the choice of M; a; b and will be discussed next.

Properties 2.3 (Periodicity)

(a) Ni 2 f0; 1; : : : ;M � 1g
(b) The Ni are periodic with period � M.

(Because there are not M C 1 different Ni. So two in fN0; : : : ;NMg must be
equal, Ni D NiCp with p � M.)

Obviously, some peculiarities must be excluded. For example, N D 0 must be ruled
out in case b D 0, because otherwise Ni D 0 would repeat. In case a D 1 the
generator settles down to Nn D .N0 C nb/ mod M. This sequence is predictable too
easily. Various other properties and requirements are discussed in the literature, in
particular in [226]. In case the period is M, the numbers Ui are distributed “evenly”
when exactly M numbers are needed. Then each grid point on a mesh on [0,1] with
mesh size 1

M is occupied once.
After these observations we start searching for good choices of M; a; b. There

are numerous possible choices with bad properties. For serious computations we
recommend to rely on suggestions of the literature. Press et al. [306] presents a
table of “quick and dirty” generators, for example, M D 244;944, a D 1597,
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b D 51;749. Criteria are needed to decide which of the many possible generators
are recommendable.

2.1.2 Quality of Generators

What are good random numbers? A practical answer is the requirement that the
numbers should meet “all” aims, or rather pass as many tests as possible. The
requirements on good number generators can roughly be divided into three groups.

The first requirement is that of a large period. In view of Property 2.3 the number
M must be as large as possible, because a small set of numbers makes the outcome
easier to predict—a contrast to randomness. This leads to select M close to the
largest integer machine number. But a period p close to M is only achieved if a and
b are chosen properly. Criteria for relations among M; p; a; b have been derived by
number-theoretic arguments. This is outlined in [226, 317]. For 32-bit computers, a
common choice has been M D 231 � 1, a D 16807, b D 0.

A second group of requirements are statistical tests that check whether the
numbers are distributed as intended. The simplest of such tests evaluates the sample
mean O� and the sample variance Os2 (B.11) of the calculated random variates, and
compares to the desired values of � and �2. (Recall � D 1=2 and �2 D 1=12 for the
uniform distribution.) Another simple test is to check correlations. For example, it
would not be desirable if small numbers are likely to be followed by small numbers.

A slightly more involved test checks how well the probability distribution is
approximated. This works for general distributions (�! Exercise 2.1). Here we
briefly summarize an approach for uniform deviates. Calculate j samples from a
random number generator, and investigate how the samples distribute on the unit
interval. To this end, divide the unit interval into subintervals of equal length �U,
and denote by jk the number of samples that fall into the kth subinterval

k�U � U < .kC 1/�U :

Then jk=j should be close the desired probability, which for this setup is �U. Hence
a plot of the quotients

jk
j�U

for all k

against k�U should be a good approximation of 1Œ0;1�, the density of the uniform
distribution. This procedure is just the simplest test; for more ambitious tests,
consult [226].

The third group of tests is to check how well the random numbers distribute
in higher-dimensional spaces. This issue of the lattice structure is discussed next.
We derive a priori analytical results on where the random numbers produced by
Algorithm 2.2 are distributed.
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2.1.3 Random Vectors and Lattice Structure

Random numbers Ni can be arranged in m-tuples .Ni;NiC1; : : : ;NiCm�1/ for i � 1.
Then the tuples or the corresponding points .Ui; : : : ;UiCm�1/ 2 Œ0; 1/m are analyzed
with respect to correlation and distribution. The sequences defined by the generator
of Algorithm 2.2 lie on .m � 1/-dimensional hyperplanes. This statement is trivial
since it holds for the M parallel planes through U D i=M, i D 0; : : : ;M � 1
(any of the m components). But if all points fall on only a small number of
parallel hyperplanes (with large empty gaps in between), then the generator would
be impractical in many applications. Next we analyze the generator whether such
unfavorable planes exist, restricting ourselves to the case m D 2.

For m D 2 the hyperplanes in .Ui�1;Ui/-space are straight lines, and are defined
by z0Ui�1 C z1Ui D �, with parameters z0; z1; �. The modulus operation (2.1) can
be written

Ni D .aNi�1 C b/ mod M

D aNi�1 C b � kM for kM � aNi�1 C b < .kC 1/M ;

k an integer, k D k.i/. A side calculation for arbitrary z0; z1 shows

z0Ni�1 C z1Ni D z0Ni�1 C z1.aNi�1 C b � kM/

D Ni�1.z0 C az1/C z1b � z1kM

D M 
 fNi�1
z0 C az1

M
� z1k„ ƒ‚ …

DWc

g C z1b :

We divide by M and obtain the equation of a straight line in the .Ui�1;Ui/-plane,
namely,

z0Ui�1 C z1Ui D cC z1bM�1 : (2.3)

The points calculated by Algorithm 2.2 lie on these straight lines. To eliminate the
seed we take i > 1. For each tuple .z0; z1/, the Eq. (2.3) defines a family of parallel
straight lines, one for each number out of the finite set of c’s. The question is whether
there exists a tuple .z0; z1/ such that only few of the straight lines cut the square
Œ0; 1/2. In this case wide areas of the square would be free of random points, which
violates the requirement of a “uniform” distribution of the points. The minimum
number of parallel straight lines (hyperplanes) cutting the square, or equivalently
the maximum distance between them, characterizes the worst case and serves as
measure of the equidistributedness. Now we analyze the number of straight lines,
searching for the worst case.
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For analyzing the number of planes, the cardinality of the c matters. To find the
worst case, restrict to integers .z0; z1/ satisfying

z0 C az1 D 0 mod M : (2.4)

Then the parameter c is integer. By solving (2.3) for c D z0Ui�1 C z1Ui � z1bM�1
and applying 0 � U < 1we obtain the maximal interval Ic such that for each integer
c 2 Ic its straight line cuts or touches the square Œ0; 1/2. Count how many such c’s
exist, and there is the information we need. For some constellations of a;M; z0 and
z1 it may be possible that the points .Ui�1;Ui/ lie on very few of these straight lines!

Example 2.4 (Academic Generator) We discuss the generator

Ni D 2Ni�1 mod 11

that is, the parameters are a D 2; b D 0; M D 11. The choice z0 D �2; z1 D 1 is
one tuple satisfying (2.4), and the resulting family (2.3) of straight lines

�2Ui�1 C Ui D c

in the .Ui�1;Ui/-plane is to be discussed. For U 2 Œ0; 1/ the inequality �2 < c < 1
results. In view of (2.4) c is integer and so only the two integers c D �1 and c D 0
remain. The two corresponding straight lines cut the interior of Œ0; 1/2. As Fig. 2.1
illustrates, the points generated by the algorithm form a lattice. All points on the
lattice lie on these two straight lines. The figure lets us discover also other parallel
straight lines such that all points are caught (for other tuples z0; z1). The practical
question is: What is the largest gap? (�! Exercise 2.2)

Example 2.5 Ni D .1229Ni�1 C 1/ mod 2048
The requirement of Eq. (2.4)

z0 C 1229z1
2048

integer

is satisfied by z0 D �1; z1 D 5, because

�1C 1229 
 5 D 6144 D 3 
 2048 :

For c from (2.3) and Ui 2 Œ0; 1/ we have

�1 � 5

2048
< c < 5 � 5

2048
:
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Fig. 2.1 The points .Ui�1;Ui/ of Example 2.4

Hence c 2 f�1; 0; 1; 2; 3; 4g, and all points .Ui�1;Ui/ in Œ0; 1/2 lie on only six
straight lines, see Fig. 2.2. On the “lowest” straight line .c D �1/ there is only
one point. The distance between straight lines measured along the vertical Ui–axis
is 1

z1
D 1

5
. Obviously, the .Ui�1;Ui/-points are by far not equidistributed on the

square, although the positions Ui appear uniformly distributed on the line.2

Higher-dimensional vectors .m > 2) are analyzed analogously. The generator
called RANDU

Ni D aNi�1 mod M ; with a D 216 C 3; M D 231

may serve as example. For m D 2 experiments show that the points .Ui�1;Ui/ are
nicely equidistributed. But equidistribution for m D 2 does not imply equidistribu-
tion for larger m. Testing RANDU for m D 3 reveals a severe defect: Its random
points in the cube Œ0; 1/3 fall on only 15 planes (�! Exercise 2.3 and Topic 14 in
the Topics fCF).

In Example 2.4 we asked what the maximum gap between the parallel straight
lines is. In other words, we have searched for stripes of maximum size in which

2The term “equidistributed” will be quantified in Sect. 2.5.1.
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Fig. 2.2 The points .Ui�1;Ui/ of Example 2.5

no point .Ui�1;Ui/ falls. Alternatively one can directly analyze the lattice formed
by consecutive points. For illustration consider again Fig. 2.1. We follow the points
starting with . 1

11
; 2
11
/. By vectorwise adding an appropriate multiple of .1; a/ D

.1; 2/ the next two points are obtained. Proceeding in this way one has to take care
that upon leaving the unit square each component with value� 1must be reduced to
Œ0; 1/ to observe mod M. The reader may verify this with Example 2.4 and numerate
the points of the lattice in Fig. 2.1 in the correct sequence. In this way the lattice
can be defined. This process of defining the lattice can be generalized to higher
dimensions m > 2. (�! Exercise 2.4) One aims at a good distribution of the points
.Ui; : : : ;UiCm�1/ for as many m are possible.

A disadvantage of the linear congruential generators of Algorithm 2.2 is the
boundedness of the period by M and hence by the word length of the computer.
The situation can be improved by shuffling the random numbers in a random way.
For practical purposes, the period gets close enough to infinity. (The reader may test
this on Example 2.5.) For practical advice we refer to [306].
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2.1.4 Fibonacci Generators

The original Fibonacci recursion motivates trying the formula

NiC1 WD .Ni C Ni�1/ mod M :

It turns out that this first attempt of a three-term recursion is not suitable for
generating random numbers (�! Exercise 2.5). The modified approach

NiC1 WD .Ni�� � Ni��/ mod M (2.5)

for suitable integers �; � is called lagged Fibonacci generator. For many choices
of �; � the approach (2.5) leads to acceptable generators. Kahaner et al. [210]
recommends

Example 2.6 (Lagged Fibonacci Generator)

Ui W D Ui�17 �Ui�5 ;

in case Ui < 0 set Ui WD Ui C 1:0 :

The recursion of Example 2.6 immediately produces floating-point numbers Ui 2
Œ0; 1/. This generator requires a prologue in which 17 initial U’s are generated by
means of another method. The core of the algorithm is

Algorithm 2.7 (Loop of a Fibonacci Generator)

Repeat:
� D U.i/�U. j/ ,
if .� < 0/, set � D � C 1 ,
U.i/ D � ,
i D i � 1 ,
j D j � 1 ,
if i D 0, set i D 17 ,
if j D 0, set j D 17 .

Initialization: Set i D 17; j D 5, and calculate U1; : : : ;U17 with a congruential
generator, for instance with M D 714; 025; a D 1366; b D 150;889. Set the seed
N0 equal to your favorite dream number, possibly inspired by the system clock of
your computer.

Figure 2.3 depicts 10; 000 random points calculated by means of Algorithm 2.7.
Visual inspection suggests that the points are not arranged in some apparent
structure. The points appear to be sufficiently random. But the generator provided
by Example 2.6 is not sophisticated enough for ambitious applications; its pseudo-
random numbers are somewhat correlated.

Section 2.1 has introduced some basic aspects of generating uniformly
distributed random numbers. Professional algorithms also apply bit operations in
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Fig. 2.3 Ten thousand (pseudo-)random points .Ui�1;Ui/, calculated with Algorithm 2.7

the computer. A generator of uniform deviates that can be highly recommended
is a Mersenne twister [264]. Its period is truly remarkable, and the points
.Ui; : : : ;UiCm�1/ are well distributed until high values of the dimension m.

2.2 Extending to Random Variables from Other
Distributions

Frequently, normal variates are needed. Their generation is based on uniform
deviates. The simplest strategy is to calculate

X WD
12X

iD1
Ui � 6; for Ui � U Œ0; 1� :
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X has expectation 0 and variance 1. The central limit theorem (�! Appendix B)
assures that X is approximately distributed normally (�! Exercise 2.6). But this
crude attempt is not satisfying. Better methods calculate nonuniformly distributed
random variables, for example, by a suitable transformation out of a uniformly
distributed random variable [103]. But the most obvious approach inverts the
distribution function.

2.2.1 Inversion

The following theorem is the basis for inversion methods.

Theorem 2.8 (Inversion) Suppose U � U Œ0; 1� and F be a continuous strictly
increasing distribution function. Then F�1.U/ is a sample from F.

Proof Let P denote the underlying probability.
U � U Œ0; 1� means P.U � �/ D � for 0 � � � 1.

Consequently

P.F�1.U/ � x/ D P.U � F.x// D F.x/ :

Application
Following Theorem 2.8, the inversion method3 generates uniform deviates u �
U Œ0; 1� and sets x D F�1.u/ (�! Exercises 2.7, 2.8, 2.9). There are some examples
where the inverse is available analytically. For example, the distribution of the
exponential distribution with parameter � (below in Example 2.10) is F.x/ D
1� e��x, and its inverse is F�1.u/ D � 1

�
log.1� u/. To judge the inversion method

we consider the normal distribution as the most important example. Neither for its
distribution function F nor for its inverse F�1 there is a closed-form expression (�!
Exercise 1.5). So numerical methods are used. We discuss two approaches.

Numerical inversion means to calculate iteratively a solution x of the equation
F.x/ D u for prescribed u. In particular for the normal distribution, this iteration
requires tricky termination criteria, in particular when x is large. Then we are in the
situation u 	 1, where tiny changes in u lead to large changes in x (Fig. 2.4). An
approximation of the solution x of F.x/� u D 0 can be calculated with bisection, or
Newton’s method, or the secant method (�! Appendix C.1).

Alternatively the inversion x D F�1.u/ can be approximated by a suitably
constructed function G.u/ with

G.u/ 	 F�1.u/ :

3Also called inversion sampling.
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u

Fig. 2.4 Normal distribution; small changes in u can lead to large changes in x

Then only x D G.u/ needs to be evaluated. Constructing such an approximation
formula G, it is important to realize that F�1.u/ has “vertical” tangents at u D
1 (horizontal in Fig. 2.4). The pole behavior must be reproduced correctly by
an approximating function G. This suggests to use rational approximation (�!
Appendix C.1). For the Gaussian distribution one incorporates the point symmetry
with respect to .u; x/ D . 1

2
; 0/, and the pole at u D 1 (and hence at u D 0) in

the ansatz for G (�! Exercise 2.10). Rational approximation of F�1.u/ with a
sufficiently large number of terms leads to high accuracy [278]. The formulas are
given in Appendix E.2.

2.2.2 Transformation in R1

Another class of methods uses transformations between random variables. We start
the discussion with the scalar case. If we have a random variable X with known
density and distribution, what can we say about the density and distribution of a
transformed h.X/?

Theorem 2.9 (Transformation in Scalar Case) Suppose X is a random variable
with density f .x/ and distribution F.x/. Further assume h W S �! B with S;B � R,
where S is the support4 of f .x/, and let h be strictly monotonic.

(a) Then Y WD h.X/ is a random variable. Its distribution FY is

FY. y/ D F.h�1. y// in case h0 > 0 ;

FY. y/ D 1 � F.h�1. y// in case h0 < 0 :

4f is zero outside S. (In this section, S is no asset price.) Use Theorem 2.9 to check the derivation
of fGBM out of Of in Sect. 1.8.2.
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(b) If h�1 is absolutely continuous then for almost all y the density of h.X/ is

f .h�1. y//

ˇ̌
ˇ̌ dh�1. y/

dy

ˇ̌
ˇ̌ : (2.6)

Proof

(a) For h0 > 0 we have P.h.X/ � y/ D P.X � h�1. y// D F.h�1. y// :
(b) For absolutely continuous h�1 the density of Y D h.X/ is equal to the deriva-

tive of the distribution function almost everywhere. Evaluating the derivative
dF.h�1. y//

dy with the chain rule implies the assertion. The absolute value in (2.6) is
necessary such that a positive density comes out in case h0 < 0. (See for instance
[131, Sect. 2.4 C].)

2.2.2.1 Application

Being able to calculate uniform deviates, we start from X � U Œ0; 1� with the density
f of the uniform distribution,

f .x/ D 1 for 0 � x � 1; otherwise f D 0 :

Here the support S is the unit interval. What we need are random numbers Y
matching a prespecified target density g. y/. It remains to find a transformation h
such that the density in (2.6) is identical to g. y/,

1 

ˇ̌
ˇ̌ dh�1. y/

dy

ˇ̌
ˇ̌ D g. y/ :

Then only evaluate h.X/.

Example 2.10 (Exponential Distribution) The exponential distribution with
parameter � > 0 has the density

g. y/ D
�
�e��y for y � 0
0 for y < 0 :

Here the range B consists of the nonnegative real numbers. The aim is to generate
an exponentially distributed random variable Y out of a U Œ0; 1�-distributed random
variable X. To this end define the monotone transformation from the unit interval
S D Œ0; 1� into B by the decreasing function

y D h.x/ WD � 1
�

log x
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with the inverse function h�1. y/ D e��y for y � 0. For this h verify

f .h�1. y//

ˇ̌̌
ˇ dh�1. y/

dy

ˇ̌̌
ˇ D 1 


ˇ̌
.��/e��y

ˇ̌ D �e��y D g. y/

as density of h.X/. Hence h.X/ is distributed exponentially as long as X � U Œ0; 1�.
Application:

In case U1;U2; : : : are nonzero uniform deviates, the numbers h.Ui/

� 1
�

log.U1/; � 1
�

log.U2/; : : :

are distributed exponentially. This result is similar to that of the inversion. For an
application see Exercise 2.11.

2.2.2.2 Attempt to Generate a Normal Distribution

Starting from the uniform distribution . f D 1/ a transformation y D h.x/ is
searched such that its density equals that of the standard normal distribution,

1 

ˇ̌
ˇ̌ dh�1. y/

dy

ˇ̌
ˇ̌ D 1p

2	
exp

	
�1
2

y2


:

This is a differential equation for h�1 without analytic solution. As we will
see, a transformation can be applied successfully in R2. To this end we need a
generalization of the scalar transformation of Theorem 2.9 into Rn.

2.2.3 Transformations in Rn

The generalization of Theorem 2.9 to the vector case is

Theorem 2.11 (Transformation in Vector Case) Suppose X is a random variable
in Rn with density f .x/ > 0 on the support S. The transformation h W S! B; S;B �
Rn is assumed to be invertible and the inverse be continuously differentiable on B.
Y WD h.X/ is the transformed random variable. Then Y has the density

f .h�1. y//

ˇ̌
ˇ̌ @.x1; : : : ; xn/

@. y1; : : : ; yn/

ˇ̌
ˇ̌ ; y 2 B ; (2.7)

where x D h�1. y/ and @.x1;:::;xn/

@. y1;:::;yn/
is the determinant of the Jacobian matrix of all

first-order derivatives of h�1. y/.
(Theorem 4.2 in [103])
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2.2.4 Acceptance-Rejection Method

An acceptance-rejection method5 is based on the following facts: Let f be a density
function on the support S � R andAf the area between the x-axis and the graph of f .
Assume two random variables U and X independent of each other with U � U Œ0; 1�
and X distributed with density f . Then the points

.x; y/ WD .X; U 
 f .X//

are distributed uniformly on Af . And vice versa, the x-coordinates of uniformly
distributed points onAf are f -distributed. This is illustrated in Fig. 2.5 for the normal
distribution. If one cuts off a piece of the area Af , then the remaining points are still
distributed uniformly. This is exploited by rejection methods.

The aim is to calculate f -distributed random numbers; the density f is the target
distribution. Let g be another density on S, and assume for a constant c � 1

f .x/ � c g.x/ for all x 2 S :

0.4
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0
-4 -3 -2 -1 0 1 2 3 4

Fig. 2.5 Fifty thousand points .X; Uf .X//, with X � N .0; 1/, U � U Œ0; 1�. The normal density f
of X is visible as envelope

5Shortly: rejection method, or rejection sampling.
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The function cg is major to f , and the set Af is subset of the area Acg underneath
the graph of cg. A rejection algorithm assumes that g-distributed x-samples can
be calculated easily. Then the points .x; ucg.x// are distributed uniformly on Acg.
Cutting off the part of Acg above Af means to reject points with ucg.x/ > f .x/.
The x-coordinates of the remaining points with ucg.x/ � f .x/ are accepted and are
distributed as desired.

Algorithm 2.12 (Rejection Method)

Repeat:
x WD random number distributed with density g ,
u WD random number � U Œ0; 1� independent of x ,

until u c g.x/ � f .x/ .
return: x

As an application of the rejection method consider the Laplace density g.x/ WD
1
2

exp.�jxj/ and the standard normal density f , see Exercises 2.9 and 2.12.6

2.3 Normally Distributed Random Variables

In this section the focus is on generating normal variates. Fist we describe the
fundamental approach of Box and Muller, which applies the transformation method
in R2 to generate Gaussian random numbers.7

2.3.1 Method of Box and Muller

To apply Theorem 2.11 we start with the unit square S WD Œ0; 1�2 and the
density (2.7) of the bivariate uniform distribution. The transformation is

y1 D p�2 log x1 cos 2	x2 DW h1.x1; x2/
y2 D p�2 log x1 sin 2	x2 DW h2.x1; x2/ ; (2.8)

h.x/ is defined on Œ0; 1�2 with values in R2. Its inverse function h�1 is given by

x1 D exp

�
�1
2
. y21 C y22/

�

x2 D 1

2	
arctan

y2
y1

6Colored in Topic 3 of the Topics fCF.
7Inversion is one of several valid alternatives. See also the Notes on this section.
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where we take the main branch of arctan. The determinant of the Jacobian matrix is

@.x1; x2/

@. y1; y2/
D det

 
@x1
@y1

@x1
@y2

@x2
@y1

@x2
@y2

!
D

D 1

2	
exp

�
�1
2
. y21 C y22/

� 0B@�y1
1

1C y22
y21

1

y1
� y2

1

1C y22
y21

y2
y21

1
CA

D � 1

2	
exp

�
�1
2
. y21 C y22/

�
:

This shows that
ˇ̌̌
@.x1;x2/
@. y1;y2/

ˇ̌̌
is the density (2.7) of the bivariate standard normal

distribution. Since this density is the product of the two one-dimensional densities,

ˇ̌
ˇ̌ @.x1; x2/
@. y1; y2/

ˇ̌
ˇ̌ D

�
1p
2	

exp

	
�1
2

y21


�


�

1p
2	

exp

	
�1
2

y22


�
;

the two components of the vector y are independent. So, when the components of
the vector X are � U Œ0; 1�, the vector h.X/ consists of two independent standard
normal variates. Let us summarize the application of this transformation:

Algorithm 2.13 (Box–Muller)

Generate U1 � U Œ0; 1� and U2 � U Œ0; 1� .
 WD 2	U2 ; � WD p�2 log U1 :

Z1 WD � cos  is a normal variate (as well as Z2 WD � sin ).

The variables U1, U2 stand for the components of X. Each application of the
algorithm provides two standard normal variates. Note that a line structure in Œ0; 1�2

as in Example 2.5 is mapped to curves in the .Z1;Z2/-plane. This underlines the
importance of excluding an evident line structure.

2.3.2 Variant of Marsaglia

The variant of Marsaglia prepares the input in Algorithm 2.13 such that trigono-
metric functions are avoided. For U � U Œ0; 1� we have V WD 2U � 1 � U Œ�1; 1�.
(Temporarily we misuse also the financial variable V for local purposes.) Two values
V1;V2 calculated in this way define a point in the .V1;V2/-plane. Only points within
the unit disk D are accepted:

D WD f .V1;V2/ j V2
1 C V2

2 < 1 g I accept only .V1;V2/ 2 D :
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Fig. 2.6 Transformations of
the Box–Muller–Marsaglia
approach, schematically

h

U1 , U2
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y1 , y2

x1 , x2

In case of rejection both values V1;V2 must be rejected. As a result, the surviving
.V1;V2/ are uniformly distributed on D with density f .V1;V2/ D 1

	
for .V1;V2/ 2

D. A transformation from the disk D into the unit square S WD Œ0; 1�2 is defined by

	
x1
x2



D
	

V2
1 C V2

2
1
2	

arg..V1;V2//



:

That is, the Cartesian coordinates V1;V2 on D are mapped to the squared radius
and the normalized angle.8 For illustration, see Fig. 2.6. These “polar coordinates”
.x1; x2/ are uniformly distributed on S (�! Exercise 2.13).

Application
For input in (2.8) use V2

1 C V2
2 as x1 and 1

2	
arctan V2

V1
as x2. With these variables the

relations

cos 2	x2 D V1q
V2
1 C V2

2

; sin 2	x2 D V2q
V2
1 C V2

2

;

hold, which means that it is no longer necessary to evaluate trigonometric func-
tions. The resulting algorithm of Marsaglia has modified the Box–Muller method
by constructing input values x1, x2 in a clever way.

Algorithm 2.14 (Polar Method)

Repeat:
generate U1;U2 � U Œ0; 1� ;
calculate V1 WD 2U1 � 1 , V2 WD 2U2 � 1

until w WD V2
1 C V2

2 < 1 .
Z1 WD V1

p�2 log.w/=w
Z2 WD V2

p�2 log.w/=w
are both standard normal variates.

8arg..V1;V2// D arctan.V2=V1/ with the proper branch.
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Fig. 2.7 Ten thousand numbers � N .0; 1/ (values entered horizontally and separated vertically
with distance 10�4)

The probability that w < 1 holds is given by the ratio of the areas, 	=4 D 0:785 : : :
Hence in about 21% of all U Œ0; 1� drawings the .V1;V2/-tuple is rejected because of
w � 1. Nevertheless the savings of the trigonometric evaluations makes Marsaglia’s
polar method more efficient than the Box–Muller method. Figure 2.7 illustrates
normally distributed random numbers (�! Exercise 2.14).

2.3.3 Ziggurat

A most efficient algorithm for the generation of normal deviates is the ziggurat
algorithm, which is a rejection method. The setup consists of a kind of horizontal
histogram, which covers the area underneath the graph of a monotonically decreas-
ing f . Figure 2.8, which will explained below, may give an impression of the setup.9

Here f is the standard normal density f .x/ D 1p
2	

exp .� 1
2
x2/. Because of the

symmetry of f it suffices to take x � 0; a random sign (each with probability 1
2
)

must be attached in the end.
The histogram-like area consists of N horizontal and parallel segments each of

equal area A. We label them by i, with i D 0 for the bottom layer and i D N � 1 for
the top layer. The top N � 1 segments are rectangles, whereas the lowest segment
(i D 0) is limited by the infinite tail of f . The lengths of the segments are defined by
f , as illustrated in Figs. 2.8 and 2.9. The upper edges of the segments define a major
function z with z.x/ � f .x/ for x � 0. The major z corresponds to cg in Sect. 2.2.4.

The curve of f .x/, decreasing for x > 0, enters and leaves the layers, which
defines the length xi of the rectangle, as shown in Fig. 2.9. For a chosen value of
N, the requirement of equal area A of all segments leads to a system of equations

9The shape explains the use of the name ziggurat, which was a terraced pyramid in the ancient
world.
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Fig. 2.8 Ziggurat with N D 8 layers, for 0 � x � 4. The heavy-line zigzag (in red) on the right
and above the graph of the normal density f (in green) is the major z with z.x/ � f .x/, which
represents the right-hand bound of the horizontal ziggurat boxes. For N D 8 the area of each
ziggurat segment is 0.070283. The zigzag in blue that is below f bounds the area, in which the
creation of a normally distributed sample essentially only costs one generation of U � U Œ0; 1�

xixi+1
x

f(x)

y

yi

Fig. 2.9 Configuration of the ith layer of the ziggurat, 0 < i < N � 1, for x � 0

that defines A and the coordinates .xi; yi/ of the vertices of the rectangles, where
yi WD f .xi/. The coordinates .xi; yi/ and the value of A are precomputed and stored
in a look-up table (�! Exercise 2.15). Figure 2.9 illustrates the ith layer (0 < i <
N� 1). The resulting box consists of two sub-boxes, divided by the coordinate xiC1.
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The rejection method needs points .�; �/ uniformly distributed over the area Az

underneath the graph of z and above the positive x-axis. In principle, these points are
tested for their location relative to f . With the above setup, the check for acceptance
or rejection is extremely efficient, because mostly � is not needed explicitly. Since
each of the N segments has the same area A, it suffices to draw one of them. Draw the
layer i randomly with equal probability 1=N. Let us first discuss the cases i > 0. In
rectangle i the next task would be to sample a point .�; �/, which must be distributed
uniformly. Its x-component is given by � WD U1xi, where U1 � U Œ0; 1�. In case
� � xiC1 the point falls in the left-hand part of the rectangle underneath the graph of
f , and is accepted. In this case no y-component � is needed! (This does not happen
for i D N � 1, where xN D 0.) Only in the other case, for � > xi, an � is required
and f must be evaluated to further test for � � f .�/. This is provided by generating
a U2 � U Œ0; 1� and � WD yi C U2. yiC1 � yi/. Acceptance for � � f .�/.

The efficiency of the method originates from the fact that the y-component � will
be required only in a small portion of samples. In Fig. 2.8 we have chosen N D 8

for ease of demonstration. But even for this small value of N the subarea in which
no � and no f .�/ are needed, covers 72:8% of the area underneath z. And when
the number N of layers is large, say N D 256, the rectangles are narrow, and for
0 < i < N � 1 the right-hand portions of the rectangles will be much smaller than
the left-hand portions. The latter cover the bulk of the area underneath f or z, and
there the test for acceptance costs almost nothing: The generated value of U1 can be
compared directly to precomputed ratios xiC1=xi. In case of acceptance, the output is
�, and—with attached random sign—the desired number is distributed � N .0; 1/.
In case of rejection the next i is drawn.

Only the situation of the bottom layer i D 0 is more complex. This bottom
segment is divided into a rectangle with area x1y1, and the infinite tail with x > x1
and area A � x1y1. For i D 0, the probability of a uniformly sampled point to fall
into the rectangle is x1y1=A. So the above simple test can be modified to comparing
� WD U1A=y1 to x1. Accept in case � � x1. Only in the case � > x1 the ziggurat
algorithm requires a fallback routine, which resorts to more conventional methods.
But this fallback routine for i D 0 effects only a tiny part of the overall costs. Even
for the small value N D 8 of Fig. 2.8, the fallback routine is required only in 2% of
all samples. For the tricky implementation of the ziggurat algorithm see [261].

2.3.4 Correlated Random Variables

The above algorithms provide independent normal deviates. In many applications
random variables are required that depend on each other in a prescribed way. Let us
first recall the general n-dimensional density function.
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Multivariate normal distribution (notations):

X D .X1; : : : ;Xn/; � D EX D .EX1; : : : ;EXn/

The covariance matrix (B.8) of X is denoted˙ , and has elements

˙ij D .CovX/ij WD E
�
.Xi � �i/.Xj � �j/

�
; �2i D ˙ii ;

for i; j D 1; : : : ; n. Using this notation, the correlation coefficients are

�ij WD ˙ij

�i�j
.) �ii D 1/ ; (2.9)

which set up the correlation matrix. The correlation matrix is a scaled version of˙ .
The density function f .x1; : : : ; xn/ corresponding to N .�;˙/ is

f .x/ D 1

.2	/n=2
1

.det˙/1=2
exp

�
�1
2
.x � �/tr˙�1.x � �/

�
: (2.10)

By theory, a covariance matrix (or correlation matrix)˙ is symmetric, and positive
semidefinite. If in practice a matrix Q̇ is corrupted by insufficient data, a close
matrix ˙ can be calculated with the features of a covariance matrix [184, 200]. In
case det˙ ¤ 0 the matrix ˙ is positive definite, which we assume now.

Below we shall need a factorization of ˙ into ˙ D AAtr. From numeri-
cal mathematics we know that for symmetric positive definite matrices ˙ the
Cholesky decomposition ˙ D LLtr exists, with a lower triangular matrix L (�!
Appendix C.1). There are numerous factorizations ˙ D AAtr other than Cholesky.
A more involved factorization of ˙ is the principal component analysis, which is
based on eigenvectors (�! Exercise 2.16).

2.3.4.1 Transformation

Suppose Z � N .0; I/ and x D Az, A 2 Rn�n, where z is a realization of Z, 0 is the
zero vector, and I the identity matrix. We apply Theorem 2.11 with X D h.Z/ WD
AZ. Accordingly, the density of X is

f .A�1x/ j det.A�1/j D 1

.2	/n=2
exp

�
�1
2
.A�1x/tr.A�1x/

�
1

j det.A/j

D 1

.2	/n=2
1

j det.A/j exp

�
�1
2

xtr.AAtr/�1x
�
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for arbitrary nonsingular matrices A. To complete the transformation,10 we need a
matrix A such that ˙ D AAtr. Then j det Aj D .det˙/1=2, and the densities with
the respect to x and z are converted correctly. In view of the general density f .x/
recalled in (2.10), AZ is normally distributed with AZ � N .0;AAtr/, and hence the
factorization˙ D AAtr implies

AZ � N .0;˙/ :

Finally, translation with vector � implies

�C AZ � N .�;˙/ : (2.11)

2.3.4.2 Application

Suppose we need a normal variate X � N .�;˙/ for given mean vector �
and covariance matrix ˙ . This is most conveniently based on the Cholesky
decomposition of ˙ . Accordingly, the desired random variable can be calculated
with the following algorithm:

Algorithm 2.15 (Correlated Normal Random Variables)

Calculate A via the Cholesky decomposition AAtr D ˙ .
Calculate Z � N .0; I/ componentwise

by Zi � N .0; 1/ for i D 1; : : : ; n ;
for instance, with Marsaglia’s polar algorithm.

�C AZ has the desired distribution � N .�;˙/ :
Special case n D 2: In this case, in view of (2.9), only one correlation number is
involved, namely, � WD �12 D �21, and the covariance matrix must be of the form

˙ D
	
�21 ��1�2
��1�2 �22



: (2.12)

In this two-dimensional situation it makes sense to carry out the Cholesky decom-
position analytically (�! Exercise 2.17). Figure 2.10 illustrates a highly correlated
two-dimensional situation, with � D 0:85. An example based on (2.12) is (3.35).

10Check this by applying Theorem 2.11.
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Fig. 2.10 Simulation of a correlated vector process with two components, and � D 0:05, �1 D
0:3, �2 D 0:2, � D 0:85, �t D 1=250

2.4 Monte Carlo Integration

A classic application of random numbers is Monte Carlo integration. The discussion
in this section will serve as background for Quasi Monte Carlo, a topic of the
following Sect. 2.5.

Let us begin with the one-dimensional situation. Assume a probability distribu-
tion with density f . Then the expectation of a function g is

E.g/ D
1Z

�1
g.x/f .x/ dx ;

compare (B.4). For a definite integral on an interval D D Œa; b�, we use the uniform
distribution with density

f D 1

b � a

 1D D 1

�1.D/ 
 1D ;



106 2 Generating Random Numbers with Specified Distributions

where �1.D/ denotes the length of the interval D and 1D the identity on D. This
leads to

E.g/ D 1

�1.D/

bZ
a

g.x/ dx ;

or

bZ
a

g.x/ dx D �1.D/ 
 E.g/ ;

the basis of Monte Carlo integration. It remains to approximate E.g/. For inde-
pendent samples xk � U Œa; b�, k D 1; 2; : : :, apply the law of large numbers (�!
Appendix B.1) to establish the estimator

1

N

NX
kD1

g.xk/

as approximation to E.g/. The approximation improves as the number of trials N
goes to infinity; the error is characterized by the central limit theorem.

This principle of Monte Carlo integration extends to the higher-dimensional case.
Let D � Rm be a domain on which the integral

Z
D

g.x/ dx

is to be calculated. For example, on the hypercubeD D Œ0; 1�m. Such integrals occur
in finance, for example, when mortgage-backed securities (CMO, collateralized
mortgage obligations) are valuated [64]. The classic or stochastic Monte Carlo
integration draws random samples x1; : : : ; xN 2 D which should be independent
and uniformly distributed. Then

N WD �m.D/ 1
N

NX
kD1

g.xk/ (2.13)

is an approximation of the integral. Here �m WD �m.D/ is the volume of D (or the
m-dimensional Lebesgue measure [286]). We assume �m to be finite. From the law
of large numbers follows convergence of N to �mE.g/ D

R
D g.x/ dx for N ! 1.

The variance of the error

ıN WD
Z
D

g.x/ dx � N
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Table 2.1 Comparison of different convergence rates to zero

N 1p
N

q
log log N

N
log N

N
.log N/2

N
.log N/3

N

101 0:31622777 0:28879620 0:23025851 0:53018981 1:22080716

102 0:10000000 0:12357911 0:04605170 0:21207592 0:97664572

103 0:03162278 0:04396186 0:00690776 0:04771708 0:32961793

104 0:01000000 0:01490076 0:00092103 0:00848304 0:07813166

105 0:00316228 0:00494315 0:00011513 0:00132547 0:01526009

106 0:00100000 0:00162043 0:00001382 0:00019087 0:00263694

107 0:00031623 0:00052725 0:00000161 0:00002598 0:00041874

108 0:00010000 0:00017069 0:00000018 0:00000339 0:00006251

109 0:00003162 0:00005506 0:00000002 0:00000043 0:00000890

satisfies

Var.ıN/ D E.ı2N/ � .E.ıN//
2 D �2.g/

N
.�m/

2 ; (2.14)

with the variance of g

�2.g/ WD 1

�m

Z
D

g.x/2 dx � 1

�2m

	Z
D

g.x/ dx


2
: (2.15)

Hence the standard deviation of the error ıN tends to 0 with the order O.N�1=2/.
This result follows from the central limit theorem or from other arguments (�!
Exercise 2.18). The deficiency of the order O.N�1=2/ is the slow convergence (�!
Exercise 2.19 and the second column in Table 2.1). To reach an absolute error of
the order ", Eq. (2.14) tells that the sample size is N D O."�2/. To improve the
accuracy by a factor of 10, the costs (that is the number of trials, N) increase
by a factor of 100. Another disadvantage is the lack of a genuine error bound.
The probabilistic error of (2.14) does not rule out the risk that the result may be
completely wrong. The �2.g/ in (2.15) is not known and must be approximated.
Monte Carlo integration responds sensitively to changes of the initial state of the
used random-number generator. This may be explained by the potential clustering
of random points.

In many applications the above deficiencies are balanced by two good features
of Monte Carlo integration: A first advantage is that the order O.N�1=2/ of the error
holds independently of the dimension m. Another good feature is that the integrands
g need not be smooth, square integrability suffices (g 2 L2, see Appendix C.3).

So far we have described the basic version of Monte Carlo integration, stressing
the slow decline of the probabilistic error with growing N. The variance of the error
ı can also be diminished by decreasing the numerator in (2.14). This variance of the
problem can be reduced by suitable methods. (We will come back to this issue in
Sect. 3.5.4.)
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We conclude the excursion into the stochastic Monte Carlo integration with the
variant for those cases in which �m.D/ is hard to calculate. For D � Œ0; 1�m and
x1; : : : ; xN � U Œ0; 1�m use

Z
D

f .x/ dx 	 1

N

NX
kD1

xk2D

f .xk/ : (2.16)

For the integral (1.66) with density fGBM, see Sect. 3.5.

2.5 Sequences of Numbers with Low Discrepancy

One difficulty with random numbers is that they may fail to distribute uniformly.
Here, “uniform” is not meant in the stochastic sense of a distribution � U Œ0; 1�,
but has the meaning of an equidistributedness that avoids extreme clustering or
holes. The aim is to generate numbers for which the deviation from uniformity is
minimal. This deviation is called “discrepancy.” Another objective is to obtain good
convergence for some important applications.

2.5.1 Discrepancy

The bad convergence behavior of the stochastic Monte Carlo integration is not
inevitable. For example, for m D 1 and D D Œ0; 1� an equidistant x-grid with mesh
size 1=N leads to a formula (2.13) that resembles the trapezoidal sum [(C.2) in
Appendix C.1]. For smooth g, the order of the error is at least O.N�1/. (Why?)
But such a grid-based evaluation procedure is somewhat inflexible because the
grid must be prescribed in advance and the number N that matches the desired
accuracy is unknown beforehand. In contrast, the free placing of sample points
with Monte Carlo integration can be performed until some termination criterion
is met. It would be desirable to find a compromise in placing sample points such
that the fineness advances but clustering is avoided. The sample points should fill
the integration domain D as uniformly as possible. To this end we require a measure
of the equidistributedness.11

For m � 1 let Q � Œ0; 1�m be an arbitrary axially parallel m-dimensional box
(hyperrectangle) in the unit cube Œ0; 1�m of Rm. That is, Q is a product of m intervals.
Suppose a set of points x1; : : : ; xN 2 Œ0; 1�m. The decisive idea behind discrepancy
is that for an evenly distributed point set, the fraction of the points lying within the
box Q should correspond to the volume of the box (see Fig. 2.11). Let # denote the

11The deterministic term “equidistributed” is not to be confused with the probabilistic “uniformly
distributed”.
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Fig. 2.11 On the idea of discrepancy, here for m D 2

number of points, then the goal is

# of xi 2 Q

# of all points in Œ0; 1�m
	 vol.Q/

vol.Œ0; 1�m/

for as many boxes Q as possible. This leads to the following definition:

Definition 2.16 (Discrepancy) The discrepancy of the point set fx1; : : : ; xNg �
Œ0; 1�m is

DN WD sup
Q

ˇ̌̌
ˇ # of xi 2 Q

N
� vol.Q/

ˇ̌̌
ˇ :

Obviously, Figs. 2.1 and 2.2 allow to construct relatively large rectangles Q such
that no points land on Q. Then DN will not become small for increasing N. The
more evenly the points of a sequence are distributed, the closer the discrepancy DN

is to zero. The criterion

lim
N!1 DN D 0

will characterize equidistributed points. Here DN refers to the first N points of a
sequence of points .xi/; i � 1.
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Analogously the variant D�
N (star discrepancy) is obtained when the set of boxes

is restricted to those Q�, for which one corner is the origin:

Q� D
mY

iD1
Œ0; yi/

where y 2 Rm denotes the corner diagonally opposite the origin. The discrepancies
DN and D�

N satisfy [�! Exercise 2.20(b)]

D�
N � DN � 2mD�

N :

The discrepancy allows to find a deterministic bound on the error ıN of Monte
Carlo integration,

jıN j � V.g/D�
N I (2.17)

here V.g/ is the variation12 of the function g with V.g/ < 1, and the domain
of integration is D D Œ0; 1�m [280, 286, 363]. This result is known as Theorem of
Koksma and Hlawka. The bound in (2.17) underlines the importance to find numbers
x1; : : : ; xN with small value of the discrepancy DN . After all, a set of N randomly
chosen points satisfies

E.DN/ D O

 r
log log N

N

!
:

This is in accordance with the probabilistic O.N�1=2/ law. The order of magnitude
of these numbers is shown in Table 2.1 (third column).

Definition 2.17 (Low-Discrepancy Point Sequence) A sequence of points or
numbers x1; x2; : : : ; xN ; : : : 2 Œ0; 1�m is called low-discrepancy sequence if

DN � Cm
.log N/m

N
(2.18)

for a constant Cm independent of N.
Deterministic sequences of numbers satisfying (2.18) are also called quasi-

random numbers, although they are fully deterministic. Table 2.1 reports on
the orders of magnitude. Since log.N/ grows only modestly, a low discrepancy
essentially means DN 	 O.N�1/ as long as the dimension m is small. The Eq. (2.18)

12As in Sect. 1.6.2.
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expresses some dependence on the dimension m, contrary to Monte Carlo methods.
But the dependence on m in (2.18) is less stringent than with classic MC quadrature.

2.5.2 Examples of Low-Discrepancy Sequences

In the one-dimensional case .m D 1/ the point set

xi D 2i� 1
2N

; i D 1; : : : ;N (2.19)

has the value D�
N D 1

2N ; this value can not be improved [�! Exercise 2.20(c)]. The
monotone sequence (2.19) can be applied only when a reasonable N is known and
fixed; for N !1 the xi would be newly placed and an integrand g evaluated again.
Since N is large, it is essential that the previously calculated results can be used when
N is growing. This means that the points x1; x2; : : :must be placed “dynamically” so
that they are preserved and the fineness improves when N grows. This is achieved
by the sequence

1

2
;
1

4
;
3

4
;
1

8
;
5

8
;
3

8
;
7

8
;
1

16
; : : :

This sequence is known as van der Corput sequence. To motivate such a dynamical
placing of points imagine that you are searching for some item in the interval Œ0; 1�
(or in the cube Œ0; 1�m). The searching must be fast and successful, and is terminated
as soon as the object is found. This defines N dynamically by the process.

The formula that defines the van der Corput sequence can be formulated as
algorithm. Let us study an example, say, x6 D 3

8
. The index i D 6 is written as

binary number

6 D .110/2 DW .d2 d1 d0/2 with di 2 f0; 1g :

Then reverse the binary digits and put the radix point in front of the sequence:

.: d0 d1 d2/2 D d0
2
C d1
22
C d3
23
D 1

22
C 1

23
D 3

8

If this is done for all indices i D 1; 2; 3; : : : the van der Corput sequence x1; x2; x3; : : :
results. These numbers can be defined with the following function:

Definition 2.18 (Radical-Inverse Function) For i D 1; 2; : : : let j be given by the
expansion in base b (integer � 2)

i D
jX

kD0
dkbk ;
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with digits dk 2 f0; 1; : : : ; b � 1g, which depend on b; i. Then the radical-inverse
function is defined by

�b.i/ WD
jX

kD0
dkb�k�1 :

The function �b.i/ is the digit-reversed fraction of i. This mapping can be seen
as reflecting with respect to the radix point. To each index i a rational number
�b.i/ in the interval 0 < x < 1 is assigned. Every time the number of digits
j increases by one, the mesh becomes finer by a factor 1=b. This means that the
algorithm fills all mesh points on the sequence of meshes with increasing fineness
(�! Exercise 2.21). Van der Corput’s sequence is obtained by

xi WD �2.i/ :

The radical-inverse function can be applied to construct points xi in the m-
dimensional cube Œ0; 1�m. A simple construction is the Halton sequence.

Definition 2.19 (Halton Sequence) Let p1; : : : ; pm be pairwise prime integers.
The Halton sequence is defined as the sequence of vectors

xi WD
�
�p1 .i/; : : : ; �pm.i/

�
; i D 1; 2; : : :

Usually one takes p1; : : : ; pm as the first m prime numbers. Figure 2.12 shows for
m D 2 and p1 D 2; p2 D 3 the first 10; 000Halton points. Compared to the pseudo-
random points of Fig. 2.3, the Halton points are distributed more evenly.

Halton sequences xi of Definition 2.19 are easily constructed, but fail to be
equidistributed when the dimension m is high, see [155], Sect. 5.2. Then correlations
between the radical-inverse functions for different dimensions are observed. This
problem can be cured with a simple modification of the Halton sequence, namely,
by using only every lth Halton number [227]. The leap l is a prime different from
all bases p1; : : : ; pm. The result is the “Halton sequence leaped”

xk WD
�
�p1 .lk/; : : : ; �pm.lk/

�
; k D 1; 2; : : : (2.20)

This modification has shown good performance for dimensions at least up to m D
400. As reported in [227], l D 409 is one example of a good leap value.

Other sequences with low discrepancy have been constructed. These include the
sequences developed by Sobol, Faure and Niederreiter, see [280, 286, 306]. All these
sequences satisfy

D�
N � Cm

.log N/m

N
CO

	
.log N/m�1

N



:
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Fig. 2.12 Ten thousand Halton points from Definition 2.19, with p1 D 2, p2 D 3

Table 2.1 shows how fast the relevant terms .log N/m=N tend to zero. If m is large,
extremely large values of the denominator N are needed before the terms become
small. But it is assumed that the bounds are unrealistically large and overestimate
the real error.

Quasi Monte Carlo (QMC) methods approximate the integrals with the
arithmetic mean N of (2.13), but use low-discrepancy numbers xi instead of
random numbers. QMC is a deterministic method. Practical experience with low-
discrepancy sequences are better than might be expected from the bounds known so
far. This also holds for the bound (2.17) by Koksma and Hlawka; apparently a large
class of functions g satisfy jıN j � V.g/D�

N , see [343].
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2.6 Notes and Comments

On Sect. 2.1

The linear congruential method is sometimes called Lehmer generator. Easily acces-
sible and popular generators are RAN1 and RAN2 from [306]. Further references
on linear congruential generators include [239, 259, 286, 317]. Example 2.4 is from
[130], and Example 2.5 from [317]. Nonlinear congruential generators are of the
form

Ni D f .Ni�1/ mod M :

Hints on the algorithmic implementation are found in [147]. Generally it is advisable
to run the generator in integer arithmetic in order to avoid rounding errors that may
spoil the period, see [241]. There are multiplicative Fibonacci generators of the form

NiC1 WD Ni��Ni�� mod M :

For Fibonacci generators we refer to [54]. The version of (2.5) is a subtractive
generator. Additive versions (with a plus sign instead of the minus sign) are used
as well [147, 226]. The codes in [306] are recommendable. For simple statistical
tests with illustrations see [181].

Hints on parallelization are given in [262]. For example, parallel Fibonacci
generators are obtained by different initializing sequences. Marsaglia’s KISS-
generator (keep it simple stupid) combines different methods and reaches long
periods. Programs of professional random number generators (RNG) can be found
in the internet. Note that computer systems and software packages often provide
built-in random number generators. But often these generators are not clearly
specified, and should be handled with care.

On Sects. 2.2 and 2.3

The inversion result of Theorem 2.8 can be formulated placing less or no restrictions
on F, see [317, p. 59], [103, p. 28], or [238, p. 270]. The generalized inverse of an
arbitrary distribution function F is the quantile function

Q.u/ WD inf
x2Rf x j F.x/ � u g ;

also denoted F�1.u/.
For the rejection method, 1c is the proportion of samples distributed from g that

are accepted. Hence c should be as small as possible with c � maxx
f .x/
g.x/ . Several
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algorithms are based on the rejection method [103, 130]; for a detailed overview
with many references see [103].

The Box–Muller approach was suggested in [45]. Marsaglia’s modification was
published in a report quoted in [260]. Fast algorithms aside from the ziggurat
include the Wallace algorithm [372], which works with a pool of random numbers
and suitable transformations. Platform-dependent implementation details place
emphasis on the one or the other advantage. A survey on Gaussian random number
generators is [355]. For simulating Lévy processes, see [84]. For singular symmetric
positive semidefinite matrices˙ (xtr˙x � 0 for all x), the Cholesky decomposition
can be cured, see [157], or [155].

On Sect. 2.4

The bounds on errors of the Monte Carlo integration refer to arbitrary functions g;
for smooth functions better bounds can be expected. In the one-dimensional case
the variation is defined as the supremum of

P
j jg.tj/ � g.tj�1/j over all partitions,

see Sect. 1.6.2. This definition can be generalized to higher-dimensional cases. A
thorough discussion is [285, 286].

An advanced application of Monte Carlo integration uses one or more methods
of reduction of variance, which allows to improve the accuracy in many cases [130,
167, 234, 238, 286, 306, 324]. For example, the integration domain can be split into
subsets (stratified sampling) [316]. Another technique is used when for a control
variate v with v 	 g the exact integral is known. Then g is replaced by .g� v/C v
and Monte Carlo integration is applied to g � v. Another alternative, the method of
antithetic variates, will be described in Sect. 3.5.4 together with the control-variate
technique.

On Sect. 2.5

Besides the supremum discrepancy of Definition 2.16 the L2-analogy of an integral
version is used. Hints on speed and preliminary comparison are found in [280].
For application on high-dimensional integrals see [296]. For large values of the
dimension m, the bound (2.18) takes large values, which might suggest to discard its
use. But the notion of an effective dimension and practical results give a favorable
picture at least for CMO applications of order m D 360 [64]. The error bound of
Koksma and Hlawka (2.17) is not necessarily recommendable for practical use, see
the discussion in [343]. The analogy of the equidistant lattice in (2.19) in higher-

dimensional space has unfavorable values of the discrepancy, DN D O
�

1
mpN

�
. For

m > 2 this is worse than Monte Carlo, compare [317]. Monte Carlo does not take
advantage of smoothness of integrands. In the case of smooth integrands, sparse-grid
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approaches are highly competitive. These refined quadrature methods meliorate the
curse of the dimension, see [148, 149, 312].

Van der Corput sequences can be based also on other bases. Halton’s paper is
[166]. Computer programs that generate low-discrepancy numbers are available.
For example, Sobol numbers are calculated in [306] and Sobol- and Faure numbers
in the computer program FINDER [296] and in [354]. At the current state of the
art it is open which point set has the smallest discrepancy in the m-dimensional
cube. There are generalized Niederreiter sequences, which include Sobol- and Faure
sequences as special cases [354]. In several applications deterministic Monte Carlo
seems to be superior to stochastic Monte Carlo [295]. A comparison based on
finance applications has shown good performance of Sobol numbers; in [206] Sobol
numbers are outperformed by Halton sequences leaped (2.20). Niederreiter and
Jau-Shyong Shiue [287] and Chap. 5 in [155] provide more discussion and many
references.

Besides volume integration, Monte Carlo is needed to integrate over possibly
high-dimensional probability distributions. Drawing samples from the required
distribution can be done by running a cleverly constructed Markov chain. This kind
of method is called Markov Chain Monte Carlo (MCMC). That is, a chain of random
variables X0;X1;X2; : : : is constructed where for given Xj the next state XjC1 does
not depend on the history of the chain X0;X1;X2; : : : ;Xj�1. By suitable construction
criteria, convergence to any chosen target distribution is obtained. For MCMC we
refer to the literature, for example to [32, 153, 164, 238, 365].

2.7 Exercises

2.1 (Testing a Distribution)
Let X be a random variate with density f and let a1 < a2 < : : : < al define a partition
of the support of f into subintervals, including the unbounded intervals x < a1 and
x > al. Recall from (B.1), (B.2) that the probability of a realization of X falling into
ak � x < akC1 is given by

pk WD
akC1Z

ak

f .x/ dx ; k D 1; 2; : : : ; l � 1 ;

which can be approximated by .akC1 � ak/f
�

akCakC1

2

�
. Perform a sample of j

realizations x1; : : : ; xj of a random number generator, and denote jk the number of
samples falling into ak � x < akC1. For normal variates with density f from (B.9)
design an algorithm that performs a simple statistical test of the quality of the
x1; : : : ; xj.
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Hints: See Sect. 2.1 for the special case of uniform variates. Argue for what
choices of a1 and al the probabilities p0 and pl may be neglected. Think about a
reasonable relation between l and j.

2.2 (Academic Number Generator)
Consider the random number generator Ni D 2Ni�1 mod 11. For .Ni�1;Ni/ 2
f0; 1; : : : ; 10g2 and integer tuples with z0 C 2z1 D 0 mod 11 the equation

z0Ni�1 C z1Ni D 0 mod 11

defines families of parallel straight lines, on which all points .Ni�1;Ni/ lie. These
straight lines are to be analyzed. For which of the families of parallel straight lines
are the gaps maximal?

2.3 (Deficient Random Number Generator)
For some time the generator

Ni D aNi�1 mod M; with a D 216 C 3; M D 231

was in wide use. Show for the sequence Ui WD Ni=M

UiC2 � 6UiC1 C 9Ui is integer.

What does this imply for the distribution of the triples .Ui;UiC1;UiC2/ in the unit
cube?

2.4 (Lattice of the Linear Congruential Generator)

(a) Show by induction over j

NiCj � Nj D aj.Ni � N0/ mod M

(b) Show for integer z0; z1; : : : ; zm�1
0
BBB@

Ni

NiC1
:::

NiCm�1

1
CCCA �

0
BBB@

N0
N1
:::

Nm�1

1
CCCA D .Ni � N0/

0
BBB@

1

a
:::

am�1

1
CCCACM

0
BBB@

z0
z1
:::

zm�1

1
CCCA

D

0
BBB@

1 0 
 
 
 0
a M 
 
 
 0
:::

:::
: : :

:::

am�1 0 
 
 
 M

1
CCCA

0
BBB@

z0
z1
:::

zm�1

1
CCCA
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2.5 (Quality of Fibonacci-Generated Numbers)
Analyze and visualize the planes in the unit cube, on which all points fall that are
generated by the Fibonacci recursion

UiC1 WD .Ui C Ui�1/ mod 1 :

2.6 (Coarse Approximation of Normal Deviates)
Let U1;U2; : : : be independent random numbers� U Œ0; 1�, and

Xk WD
kC11X
iDk

Ui � 6 :

Calculate mean and variance of the Xk.

2.7 (Cauchy-Distributed Random Numbers)
A Cauchy-distributed random variable has the density function

fc.x/ WD c

	

1

c2 C x2
:

Show that its distribution function Fc and its inverse F�1
c are

Fc.x/ D 1

	
arctan

x

c
C 1

2
; F�1

c . y/ D c tan.	. y � 1
2
// :

How can this be used to generate Cauchy-distributed random numbers out of
uniform deviates?

2.8 (Inversion)
Use the inversion method and uniformly distributed U � U Œ0; 1� to calculate a
stochastic variable X with distribution

F.x/ D 1 � e�2x.x�a/ ; x � a :

2.9 (Laplace Distribution)
The density function of the Laplace distribution is

g.x/ WD 1

2
exp.�jxj/ :

(a) Derive the distribution function

G.x/ WD
Z x

�1
g.s/ ds

and its inverse.
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(b) Formulate an algorithm that calculates random variates from the G-distribution,
applying the inversion method and using U � U Œ0; 1� as input.

2.10 (Inverting the Normal Distribution)
Suppose F.x/ is the standard normal distribution function. Construct a rough
approximation G.u/ to F�1.u/ for 0:5 � u < 1 as follows:

(a) Construct a rational function G.u/ (�! Appendix C.1) with correct asymp-
totic behavior, point symmetry with respect to .u; x/ D .0:5; 0/, using only one
parameter.

(b) Fix the parameter by interpolating a given point .x1;F.x1//.
(c) What is a simple criterion for the error of the approximation?

2.11 (Time-ChangedWiener Process)
For a time-changing function �.t/ set �j WD �. j�t/ for some time increment�t.

(a) Argue why Algorithm 1.8 changes to Wj D Wj�1 C Z
p
�j � �j�1 (last line).

(b) Let �j be the exponentially distributed jump instances of a Poisson experiment,
see Sect. 1.9 and Property 1.20(e). How should the jump intensity � be chosen
such that the expectation of the�� is�t? Implement and test the algorithm, and
visualize the results. Experiment with several values of the jump intensity �.

2.12 (Rejection)
Two density functions g and f are given by

f .x/ W D 1p
2	

exp.�x2

2
/ (Gaussian density)

g.x/ W D 1

2
exp.�jxj/ (Laplace density)

Establish the smallest c such that cg.x/ � f .x/ for all x 2 R. Apply the rejection
method to generate normally distributed x; use Exercise 2.9.

2.13 (Uniform Distribution)
For the uniformly distributed random variables .V1; V2/ on the unit disk consider
the transformation

	
X1
X2



D
	

V2
1 C V2

2
1
2	

arg..V1;V2//




where arg..V1;V2// denotes the corresponding angle. Show that .X1; X2/ is dis-
tributed uniformly.
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2.14 (Programming Assignment: Normal Deviates)

(a) Write a computer program that implements the Fibonacci generator

Ui W D Ui�17 � Ui�5
Ui W D Ui C 1 in case Ui < 0

in the form of Algorithm 2.7.
Tests: Visual inspection of 10; 000 points in the unit square.

(b) Write a computer program that implements Marsaglia’s Polar Algorithm
(Algorithm 2.14). Use the uniform deviates from a).

Tests:

1.) For a sample of 5000 points calculate estimates of mean and variance.
2.) For the discretized SDE

�x D 0:1�tC Z
p
�t; Z � N .0; 1/

calculate some trajectories for 0 � t � 1; �t D 0:01; x0 D 0.

2.15 (Ziggurat)
Let f be the normal density function, and .xi; yi/ for i D 1; : : : ;N�1 the coordinates
of the vertices of the ziggurat, as indicated in Fig. 2.8, and yi WD f .xi/. (Compare
Sect. 2.3.3.) Label the segments i D 0; : : : ;N�1 from bottom to top; for i > 0 these
are rectangular boxes. All segments have equal area A, which is to be determined
iteratively.

(a) Assume for a moment the parameter A to be given. Set up an equation that
defines xN�1 implicitly as function xN�1 D ˛.A/.

(b) Set up an equation that defines x1 implicitly, again depending on A. Then set up
a recursion that defines x2; : : : ; xN�1 based on the value x1. After numerically
solving these implicit equations one obtains another version for xN�1, which can
be regarded as a function xN�1 D ˇ.A/. Of course both values must be the same,
˛.A/ D ˇ.A/. This equation can be solved iteratively for A, say, by bisection.

(c) For N D 8 formulate an algorithm that calculates A. What is a reasonable initial
guess for A? Note that neither ˛ nor ˇ are given explicitly; they can be evaluated
numerically.

2.16 (Spectral Decomposition of a Covariance Matrix)
For symmetric positive definite n � n matrices ˙ there exists a set of orthonormal
eigenvectors v.1/; : : : ; v.n/ and eigenvalues �1 � 
 
 
 � �n > 0 such that

˙v. j/ D �jv
. j/; j D 1; : : : ; n :
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Arrange the n eigenvector columns into the n � n matrix B WD .v.1/; : : : ; v.n//,
and the eigenvalues into the diagonal matrices � WD diag.�1; : : : ; �n/ and �

1
2 WD

diag.
p
�1; : : : ;

p
�n/.

(a) Show˙B D B�.
(b) Show that

A WD B�
1
2

factorizes˙ in the sense ˙ D AAtr .
(c) Show

AZ D
nX

jD1

q
�j Zj v

. j/ :

(d) And the reversal of Sect. 2.3.4 holds: For a random vector X � N .0;˙/
the transformed random vector A�1X has uncorrelated components: Show
Cov.A�1X/ D I and Cov.B�1X/ D �.

(e) For the 2 � 2 matrix

˙ D
	
5 1

1 10




calculate the Cholesky decomposition and B�
1
2 .

Hint: The above is the essence of the principal component analysis. Here ˙
represents a covariance matrix or a correlation matrix. (For an example see
Fig. 2.13.) The matrix B and the eigenvalues in � reveal the structure of the data.
B defines a linear transformation of the data to a rectangular coordinate system,
and the eigenvalues �j measure the corresponding variances. In case �kC1  �k for
some index k, the sum in (c) can be truncated after the kth term in order to reduce the
dimension. The computation of B and � (and hence A) is costly, but a dominating
�1 allows for a simple approximation of v.1/ by the power method.

2.17 (Correlated Distributions)
Suppose we need a two-dimensional random variable .X1;X2/ that must be dis-
tributed normally with mean 0, and given variances �21 ; �

2
2 and prespecified

correlation �. How is X1;X2 obtained out of Z1;Z2 � N .0; 1/?
2.18 (Error of the Monte Carlo Integration)
The domain for integration is D D Œ0; 1�m. For

N WD 1

N

NX
iD1

g.xi/ ; E.g/ WD
Z

g dx ; v WD g � E.g/ ; ıN WD
Z

g dx� N
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Fig. 2.13 Prices of the DAX assets Allianz (S1), BMW (S2), and HeidelbergCement; 500 trading
days from Nov 5, 2005 (in red); eigenvalues of the covariance matrix are 400.8, 25.8, 2.73;
eigenvectors centered at the mean point and scaled by

p
� are shown, and the plane (in green)

spanned by v.1/; v.2/

and the variance �2.g/ from (2.15) show

(a) E.v/ D 0
(b) �2.v/ D �2.g/
(c) �2.ıN/ D E.ı2N/ D 1

N2

R
.
P
v.xi//

2 dx D 1
N �

2.g/
Hint on (c): When the random points xi are i.i.d. (independent identical dis-
tributed), then also g.xi/ and v.xi/ are i.i.d. A consequence is

R
v.xi/v.xj/ dx D

0 for i 6D j.

2.19 (Experiment on Monte Carlo Integration)
To approximate the integral

Z 1

0

g.x/ dx

calculate a Monte Carlo sum

1

N

NX
iD1

g.xi/
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for g.x/ D 5x4 and, for example, N D 100; 000 random numbers xi � U Œ0; 1�.
The absolute error behaves like cN�1=2. Compare the approximation with the exact
integral for several N and seeds to obtain an estimate of c.

2.20 (Bounds on the Discrepancy)
(Compare Definition 2.16) Show

(a) 0 � DN � 1,
(b) D�

N � DN � 2mD�
N (show this at least for m � 2),

(c) D�
N � 1

2N for m D 1.

2.21 (Algorithm for the Radical-Inverse Function)
Use the idea

i D �dkbk�1 C : : :C d1
�

bC d0

to formulate an algorithm that obtains d0; d1; : : : ; dk by repeated division by b.
Reformulate �b.i/ from Definition 2.18 into the form �b.i/ D z=bjC1 such that
the result is represented as rational number. The numerator z should be calculated
in the same loop that establishes the digits d0; : : : ; dk.



Chapter 3
Monte Carlo Simulation with Stochastic
Differential Equations

Sections 1.5 and 1.7.3 have introduced the principle of risk-neutral valuation for
European options, which can be summarized by

V.S0; 0/ D e�rTEQ.V.ST ;T/ j St starting from .S0; 0/ / ;

where EQ represents the expectation under a risk-neutral measure, and V.ST ;T/ is
given by the payoff �.ST/. For the Black–Scholes model, this expectation is an
integral as in (1.66). This suggests two approaches to calculate the value function
V: Either approximate the integral by quadrature methods, or apply Monte Carlo.
This chapter is devoted to Monte Carlo methods and their role in pricing options.

To give a brief sketch of Monte Carlo (MC) methods in the option context,
compare the illustration in Fig. 3.1. Monte Carlo methods calculate the expectation
by simulating the underlying stochastic differential equation (SDE) repeatedly. In
Fig. 3.1, five paths St are calculated for 0 � t � T in the risk-neutral fashion,
each starting from S0. Then for each resulting ST the payoff is calculated, here for a
European put. The figure rather hides the bulk of the work: In reality, thousands of
paths are calculated. It remains the comparably cheap final task of calculating the
mean of the payoffs as approximation of EQ. This is the essence of MC. The Monte
Carlo approach works for general models, for example, for pricing exotic options.

This chapter on MC is based on the ability to calculate paths—that is, to integrate
SDEs numerically. Therefore a significant part of the chapter is devoted to this topic.
Again Xt denotes a stochastic process and a solution of an SDE (1.44),

dXt D a.Xt; t/ dtC b.Xt; t/ dWt for 0 � t � T ;

where the driving process Wt is a Wiener process. We assume a t-grid with 0 D
t0 < t1 < : : : < tM D T. For convenience, the step length �t D tjC1 � tj is taken
equidistant. As is common usage in numerical analysis, we also use the h-notation,
h WD �t. For �t D h D T=M the index j runs from 0 to M � 1. The solution of a

© Springer-Verlag London Ltd. 2017
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DOI 10.1007/978-1-4471-7338-0_3
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Fig. 3.1 Illustration of the Monte Carlo approach for a European put, with K D 50, S0 D 50,
T D 1, � D 0:2, r D 0; five simulated paths St in the .S; t/-plane (in red) with payoff (dark blue);
vertical axis: the value function V. The front curve V.S; 0/ is shown

discrete version of the SDE is denoted yj. That is, yj should be an approximation to
Xtj , or yt an approximation to Xt. Weaker requirements will be discussed below. The
initial value for t D 0 is assumed a given constant,

y0 D X0 :

For example, from Algorithm 1.11 we know the Euler discretization

yjC1 D yj C a.yj; tj/�tC b.yj; tj/�Wj ; tj D j�t ;

�Wj D WtjC1
�Wtj D Z

p
�t with Z � N .0; 1/ : (3.1)

Since an approximation yT also depends on the chosen step length h, we also write
yh

T . From numerical methods for deterministic ODEs we know that for b � 0 the
discretization error of Euler’s method is O.h/,

XT � yh
T D O.h/ :

As we shall see, this will not generally hold for b ¤ 0. Algorithm 1.11 [repeated
in Eq. (3.1)] is an explicit method in that in every step j ! j C 1 the values of the
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functions a and b are evaluated at the previous approximation .yj; tj/. Evaluating b at
the left-hand mesh point .yj; tj/ is consistent with the Itô integral and the Itô process.

Chapter 2 has explained how Z � N .0; 1/ can be calculated, so all elements
of Algorithm 1.11 are known, and we are equipped with a method to numerically
integrate SDEs (�! Exercise 3.1). In this chapter we learn about other methods,
and discuss the accuracy of numerical solutions of SDEs. This will be explained in
Sects. 3.1 through 3.3, following [225]. Readers content with Euler’s method (3.1)
may like to skip these sections.

After a brief exposition on constructing bridges (Sect. 3.4), we turn to the main
theme, namely, Monte Carlo methods for pricing options. The basic principle
is outlined for European options (in Sect. 3.5). For American options parametric
methods and regression methods are introduced in Sect. 3.6. The final Sect. 3.7
discusses the calculation of sensitivities.

3.1 Approximation Error

To study the accuracy of numerical approximations of paths, we choose as example
the linear SDE

dXt D ˛Xt dtC ˇXt dWt ; initial value X0 for t D 0 ;

with constant coefficients ˛; ˇ. For this GBM equation we derived in Sect. 1.8 the
analytic solution

Xt D X0 exp

		
˛ � 1

2
ˇ2



tC ˇWt



: (3.2)

Given a realization of the Wiener process Wt we obtain as solution a trajectory
(sample path) Xt. For another realization of the Wiener process the same theoretical
solution (3.2) takes other values. If a Wiener process Wt is given, we call a solution
Xt of the SDE a strong solution. In this sense the solution (3.2) is a strong solution.
If one is free to select a Wiener process, then a solution of the SDE is called weak
solution. For a weak solution .Xt;Wt/, only the distribution of Xt is of interest, not
its individual path.

Assuming an identical sample path of a Wiener process Wt for the SDE and for a
numerical approximation yh

t , a pathwise comparison of the trajectories Xt with yh
t is

possible for all tj. For example, for tM D T the absolute error of a strong solution for
a given Wiener process is jXT�yh

T j. For another path of the Wiener process the error
is somewhat different. We average the error over “all” sample paths of the Wiener
process:

Definition 3.1 (Absolute Error) For a strong solution Xt of the SDE with
approximation yh

t the absolute error at T is �.h/ WD E.jXT � yh
T j/.
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Table 3.1 Example 3.2, table of the O�.h/
O�.h/ h D 0:01 h D 0:005 h D 0:002 h D 0:001 h D 0:0005

Series 1 (with seed1/ 0.2825 0.183 0.143 0.089 0.070

Series 2 (with seed2/ 0.2618 0.195 0.126 0.069 0.062

Series 3 (with seed3/ 0.2835 0.176 0.116 0.096 0.065

In practice the set of all sample paths of a Wiener process is represented by N
different simulations.

Example 3.2 (Euler Method) For the GBM with X0 D 50; ˛ D 0:06; ˇ D
0:3; T D 1 investigate experimentally how the absolute error of the Euler
method (3.1) depends on h. Starting with a first choice of h we calculate N D 50

simulations and for each realization the values of XT and yT—that is XT;k; yT;k for
k D 1; : : : ;N. Again: to obtain pairs of comparable trajectories, also the theoretical
solution (3.2) is fed with the same Wiener process used in (3.1). Then we calculate
the estimateb� of the absolute error �,

b�.h/ WD 1

N

NX
kD1
jXT;k � yh

T;kj :

Such an experiment was performed for five values of h. In this way the first series
of results were obtained (first line in Table 3.1). Such a series of experiments
was repeated twice, using other seeds. As Table 3.1 shows, b�.h/ decreases with
decreasing h, but slower than one would expect from the behavior of the Euler
method applied to deterministic differential equations. The order can be determined
by fitting the values of the table. We bypass this little exercise, and test the order
O.h1=2/ right away. To this end, divide eachb�.h/ of Table 3.1 by the corresponding
h1=2. This shows that the order O.h1=2/ is correct, because each entry of the table
essentially leads to the same constant value, here 2:8. Apparently this example
satisfiesb�.h/ 	 2:8 h1=2. For another example we would expect a different constant.

These results obtained for the estimates b� are assumed to be valid for �. This
leads to postulate

�.h/ � c h1=2 D O.h1=2/ :

The order of convergence is worse than the order O.h/, which Euler’s method (3.1)
achieves for deterministic differential equations .b � 0/. But in view of (1.41),
.dW/2 D h, the order O.h1=2/ is no surprise. This order holds true for SDEs whose
coefficient functions a and b satisfy a couple of conditions: They must satisfy a
Lipschitz condition, and grow at most linearly [225]. These assumptions are fulfilled
for the GBM of Example 3.2.
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Definition 3.3 (Strong Convergence) yh
T converges strongly to XT with order 
 >

0, if �.h/ D E.jXT � yh
T j/ D O.h
/.

yh
T converges strongly, if

lim
h!0

E.jXT � yh
T j/ D 0 :

Hence the Euler method applied to SDEs satisfying the above conditions
converges strongly with order 1=2. Note that convergence refers to fixed finite
intervals, here for a fixed value T.

Strongly convergent methods are appropriate when the trajectory itself is of inter-
est. This was the case for Figs. 1.17 and 1.18. Often the pointwise approximation of
Xt is not our real aim but only an intermediate result in the effort to calculate a
moment. For example, many applications in finance need to approximate E.XT/. A
first conclusion from this situation is that of all calculated yi only the last is required,
namely, yT . A second conclusion is that for the expectation a single sample value
of yT is of little interest. The same holds true if the ultimate interest is Var.XT/

rather than XT . In this situation the primary interest is not strong convergence with
the demanding requirement yT 	 XT and even less yt 	 Xt for t < T. Instead the
concern is the weaker requirement to approximate moments or other functionals of
XT . Then the aim is to achieve E.yT/ 	 E.XT/, or E.jyT jq/ 	 E.jXT jq/, or more
general E.g.yT// 	 E.g.XT// for an appropriate function g. Recall our interest in
E.�.ST// for a payoff function � .

Definition 3.4 (Weak Convergence) yh
T converges weakly to XT with respect to

g with order ˇ > 0, if E.g.XT// � E.g.yh
T// D O.hˇ/.

yh
T converges weakly to XT with order ˇ, if this holds for all polynomials g.

The Euler scheme is weakly O.h1/ convergent provided the coefficient functions
a and b are four times continuously differentiable [225, Chap. 14]. For the special
polynomial g.x/ D x, (B.4) implies convergence of the mean E.x/. For g.x/ D x2

the relation Var.X/ D E.X2/ � .E.X//2 implies convergence of the variance (the
reader may check). Proceeding in this way implies weak convergence with respect
to all moments.

Since the properties of integration on which expectation is based lead to

jE.X/� E.Y/j D jE.X � Y/j � E.jX � Yj/ ;

we confirm that strong convergence implies weak convergence with respect to
g.x/ D x.

When weakly convergent methods are evaluated, the outcomes XT and yT need
not be based on the same stochastic process, only their probability distributions must
be close. This allows for a simplification of Euler’s method. The increments�W can
be replaced by other random variables b�W that have similar moment properties,
with at least the same expectation and variance.�Wj can be replaced by the simple

approximation b�Wj D ˙
p
�t, where each sign occurs with probability 1=2. The
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first moments match; in particular, expectation and variance of b�W and�W are the
same:

E.b�W/ D 0 ; E.b�W2/ D �t :

In case the replacing random variables b�Wj are easier to evaluate, costs can be
saved significantly (�! Exercise 3.2). The simplified Euler method is again weakly
convergent with order 1 [276].

3.2 Stochastic Taylor Expansion

The derivation of algorithms for the integration of SDEs is based on stochastic
Taylor expansions. To facilitate the understanding of stochastic Taylor expansions
we confine ourselves to the scalar and autonomous1 case, and first introduce the
terminology by means of the deterministic case. That is, we begin with d

dt Xt D
a.Xt/. The chain rule for arbitrary f 2 C1.R/ is

d

dt
f .Xt/ D a.Xt/

@

@x
f .Xt/ DW Lf .Xt/ :

With the linear operator L this rule in integral form is

f .Xt/ D f .Xt0 /C
Z t

t0

Lf .Xs/ ds : (3.3)

The rule (3.3) is resubstituted for the integrand Qf .Xs/ WD Lf .Xs/, which requires at
least f 2 C2, and gives the term in braces:

f .Xt/ D f .Xt0 /C
Z t

t0

�
Qf .Xt0 /C

Z s

t0

LQf .Xz/ dz

�
ds

D f .Xt0 /C Qf .Xt0 /

Z t

t0

dsC
Z t

t0

Z s

t0

LQf .Xz/ dz ds

D f .Xt0 /C Lf .Xt0 /.t � t0/C
Z t

t0

Z s

t0

L2f .Xz/ dz ds

1An autonomous differential equation does not explicitly depend on the independent variable, here
a.Xt/ rather than a.Xt ; t/. The standard GBM Model 1.13 of the stock market is autonomous for
constant � and � .
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This version of the Taylor expansion consists of two terms and the remainder as a
double integral. To get the next term of the second-order derivative, apply (3.3) for
L2f .Xz/, and split off the term

L2f .Xt0 /

Z t

t0

Z s

t0

dz ds D L2f .Xt0 /
1

2
.t � t0/

2

from the remainder double integral. At this stage, the remainder is a triple integral.
Repeating the procedure produces the Taylor formula in integral form. Each further
step requires more differentiability of f .

Now we devote our attention to stochastic diffusion and investigate the Itô-Taylor
expansion of the autonomous scalar SDE

dXt D a.Xt/ dtC b.Xt/ dWt :

Itô’s Lemma for g.x; t/ WD f .x/ is

df .Xt/ D
˚

a
@

@x
f .Xt/C 1

2
b2
@2

@x2
f .Xt/„ ƒ‚ …

DWL0f .Xt/

�
dtC b

@

@x
f .Xt/„ ƒ‚ …

DWL1f .Xt/

dWt ;

or in integral form

f .Xt/ D f .Xt0 /C
Z t

t0

L0f .Xs/ dsC
Z t

t0

L1f .Xs/ dWs : (3.4)

This SDE will be applied for different choices of f . Specifically for f .x/ � x the
SDE (3.4) recovers the original SDE

Xt D Xt0 C
Z t

t0

a.Xs/ dsC
Z t

t0

b.Xs/ dWs : (3.5)

First apply (3.4) to f D a and to f D b. The resulting versions of (3.4) are substituted
in (3.5) leading to

Xt D Xt0 C
Z t

t0

�
a.Xt0/C

Z s

t0

L0a.Xz/ dzC
Z s

t0

L1a.Xz/ dWz

�
ds

C
Z t

t0

�
b.Xt0/C

Z s

t0

L0b.Xz/ dzC
Z s

t0

L1b.Xz/ dWz

�
dWs :
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Summarizing the four double integrals into one remainder expression R, we have

Xt D Xt0 C a.Xt0/

Z t

t0

dsC b.Xt0/

Z t

t0

dWs C R ; (3.6)

with

R D
Z t

t0

Z s

t0

L0a.Xz/ dz dsC
Z t

t0

Z s

t0

L1a.Xz/ dWz ds

C
Z t

t0

Z s

t0

L0b.Xz/ dz dWs C
Z t

t0

Z s

t0

L1b.Xz/ dWz dWs :

(3.7)

The integrands are

L0a D aa0 C 1
2
b2a00 ; L1a D ba0 ;

L0b D ab0 C 1
2
b2b00 ; L1b D bb0 :

(3.8)

This is the first part of the stochastic Taylor expansion. It can be extended by
terms of higher order. The order of the terms is limited by the number of repeated
integrations. In view of (1.41), dW2 D dt, we expect the last of the integrals in (3.7)
to be of first order only (and show this below). To obtain higher-order terms, the
integrands in (3.7) are replaced using (3.4) with appropriately chosen f , analogously
as above. To organize the procedure, a formalization of the integrals is advisable. For
example, double integrals

I.0;0/ W D
Z t

t0

Z s

t0

dz ds ; I.1;0/ WD
Z t

t0

Z s

t0

dWz ds ;

I.0;1/ W D
Z t

t0

Z s

t0

dz dWs ; I.1;1/ WD
Z t

t0

Z s

t0

dWz dWs

(3.9)

arise as factors. The first of these integrals I.0;0/ is deterministic, of second order and
elementary to integrate. The integrals I.1;0/; I.0;1/; I.1;1/ are stochastic variables.2 We
shall return to I.0;0/, I.0;1/ and I.1;0/ in Sect. 3.3.3, and illustrate the procedure by the
integral of f D L1b, which leads to the double integral of lowest order I.1;1/.

With f D L1b, the non-integral term of (3.4) allows to split off another “ground
integral” with constant integrand,

R D L1b.Xt0 /

Z t

t0

Z s

t0

dWz dWs C QR D L1b.Xt0/I.1;1/ C QR ;

2In this notation, 0 stands for a deterministic integration and 1 for a stochastic integration. A general
treatment of the Itô-Taylor expansion with an appropriate formalism is found in [225].
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with the remaining integrals collected in QR, including triple integrals. In view of (3.8)
and (3.6) this result can be summarized as

Xt D Xt0 C a.Xt0 /

Z t

t0

dsC b.Xt0/

Z t

t0

dWs

C b.Xt0 /b
0.Xt0 /

Z t

t0

Z s

t0

dWz dWs C QR :
(3.10)

The aim is to formulate numerical algorithms out of the equations derived by the
stochastic Taylor expansion. To this end the integrals must be evaluated. For (3.10)
we need a solution of the double integral I.1;1/. Itô’s Lemma for Xt D Wt with a D 0,
b D 1 and y D g.x/ WD x2 leads to the equation

d.W2
t / D dtC 2Wt dWt :

Consequently,

I.1;1/ D
Z t

t0

Z s

t0

dWz dWs D
Z t

t0

.Ws �Wt0 / dWs

D
Z t

t0

Ws dWs �Wt0

Z t

t0

dWs

D
Z t

t0

1

2


d.W2

s / � ds
� �Wt0 .Wt �Wt0 /

D 1

2
.W2

t �W2
t0
/� 1

2
.t � t0/� 2

2
Wt0 .Wt �Wt0 /

D 1

2
.Wt �Wt0 /

2 � 1
2
.t � t0/ D 1

2
.�Wt/

2 � 1
2
�t :

Specifically for t0 D 0 this is the equation

Z t

0

Z s

0

dWz dWs D
Z t

0

Ws dWs D 1

2
W2

t �
1

2
t : (3.11)

Another derivation of (3.11) uses

n�1X
jD0

Wtj.WtjC1
�Wtj/ D

1

2
W2

t �
1

2

n�1X
jD0
.WtjC1

�Wtj/
2

for t D tn and t0 D 0, and takes the limit in the mean on both sides (�!
Exercise 3.3). Since by (1.41) the double integral (3.11) is of order�t, it completes
the list of first-order terms in (3.10). Further terms in QR are of higher order.
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The two integrals I.0;1/ and I.1;0/ depend on each other via the equation

Z t

t0

Z s

t0

dz dWs C
Z t

t0

Z s

t0

dWz ds D
Z t

t0

dWs

Z t

t0

ds (3.12)

(�! Exercise 3.4). This suggests that the two double integrals I.0;1/ and I.1;0/ are of
order .�t/3=2. We will return to these integrals in the following section.

3.3 Examples of Numerical Methods

Now we apply the stochastic Taylor expansion to construct numerical methods for
SDEs. First we check how Euler’s method (3.1) evolves. Evaluating the integrals
in (3.6) and substituting

t0 ! tj; t! tjC1 D tj C�t

leads to

XtjC1
D Xtj C a.Xtj/�tC b.Xtj/�Wj C R :

After neglecting the remainder R the Euler scheme of (3.1) results, here for
autonomous SDEs.

To obtain higher-order methods, further terms of the stochastic Taylor expansions
are added. We may expect a “repair” of the half-order O.

p
�t/ of the absolute

error by including the lowest-order double integral of (3.10), which is calculated
in (3.11). The resulting correction term, after multiplying with bb0, is added to the
Euler scheme. Discarding the remainder eR, an algorithm results, which is due to
[275].

Algorithm 3.5 (Milstein)

start: t0 D 0; y0 D X0; �t D T=M .
loop j D 0; 1; 2; : : : ;M � 1 W

tjC1 D tj C�t .
Calculate the values a.yj/; b.yj/; b0.yj/,
�W D Z

p
�t with Z � N .0; 1/, and

yjC1 D yj C a�tC b�W C 1

2
bb0 
 ..�W/2 ��t/.

This integration method by Milstein is strongly convergent with order one (�!
Exercise 3.5). Adding the correction term has raised the strong convergence order
of Euler’s method to 1.

This holds for general SDEs with b0 ¤ 0. In the specific case b0 D 0, the result
anticipates a small error of the Euler method. This suggests an attempt to transform
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the SDE of Xt via a suitable function g and Yt WD g.Xt/ into an SDE for Yt such that
its diffusion coefficient is a constant (�! Exercise 3.6). Then applying the Euler
method to Yt, and transforming back, leads to a reasonable approximation of Xt.
In the specific case of GBM and the log-transformation, the Euler method applied
to (1.62) does not suffer from discretization error. (Why?)

3.3.1 Positivity

As mentioned before, positive solutions are characteristic for many SDEs in finance,
which should be preserved by numerical approximations. In this context the log
transformation Yt WD log.Xt/ can be helpful again. Applying the Euler method to the
SDE of Yt and subsequent back-transformation Xt D exp.Yt/ ensures the positivity
of Xt.

We discuss other means to establish positivity for the CIR process, a building
block of the Heston model:

dXt D �. � Xt/ dtC �
p

Xt dWt (3.13)

with �; ; � > 0; X0 D x0 > 0. Positivity of the theoretical solution Xt for all t is
established by the Feller condition (see the Notes on Sect. 1.7), which guarantees a
strong enough growth rate.3 The Euler scheme

yjC1 D yj C �. � yj/�tC �pyj�Wj

with y0 WD x0, works as long as yj � 0. But there is a positive probability that yjC1
is negative. Simple remedies replace

p
y by

pjyj or by
p

yC. Then the scheme is
defined for all y 2 R. Implicit Euler methods can be applied as well, for example,
the drift-implicit scheme

yjC1 D yj C a.yjC1/�tC b.yj/�Wj : (3.14)

If this scheme is applied to the SDE (3.13) of the square root process
p

Xt, then
a quadratic equation for yjC1 results with a unique positive solution [5], see also
Exercise 3.7.

3In view of strong convergence criteria, we remark in passing that b.X/ D �
p

X does not satisfy a
global Lipschitz condition.
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3.3.2 Runge–Kutta Methods

A disadvantage of the Taylor-expansion methods is the use of the derivatives
a0; b0; : : : Analogously as with deterministic differential equations there is the alter-
native of Runge–Kutta–type methods, which only evaluate a or b for appropriate
arguments, and not their derivatives.

As an example consider the factor bb0 of Algorithm 3.5, and see how to replace
it by an approximation. Starting from

b.yC�y/� b.y/ D b0.y/�yC O..�y/2/

and using �y D a�tC b�W we deduce in view of (1.41) that

b.yC�y/� b.y/ D b0.y/.a�tC b�W/C O.�t/

D b0.y/b.y/�W CO.�t/ :

Applying (1.41) again, we substitute �W D p�t and arrive at an O.
p
�t/-

approximation of the product bb0, namely,

1p
�t

�
bŒ yj C a.yj/�tC b.yj/

p
�t�� b.yj/

�
:

This expression substituted in the Milstein scheme of Algorithm 3.5 results in the
variant

by W D yj C a�tC b
p
�t

yjC1 D yj C a�tC b�W C 1

2
p
�t
.�W2 ��t/Œb.by/ � b.yj/� ;

(3.15)

which is a Runge–Kutta method, and also converges strongly with order one.
Versions of these schemes for nonautonomous SDEs read analogously.

3.3.3 Taylor Scheme with Weak Second-Order Convergence

A second-order method can be achieved easily and efficiently by extrapolation.
But we postpone extrapolation in order to learn how to apply the stochastic Taylor
expansion in deriving a method of weak second order.

To this end, investigate the method that results when in the remainder term (3.7)
the ground integrals of all double integrals are split off. This is done by apply-
ing (3.4) for f D L0a; f D L1a; f D L0b; f D L1b . Then the new remainder QR
consists of triple integrals. For f D L1b this analysis was carried out at the end of
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Sect. 3.2. With (3.8) and (3.11) the correction term

bb0 1
2

�
.�W/2 ��t

�

has resulted, leading to the strong convergence order one of the Milstein scheme.
For f D L0a the integral is deterministic and the term

	
aa0 C 1

2
b2a00



1

2
�t2

an immediate consequence. For f D L1a and f D L0b the integrals are again
stochastic, namely,

I.1;0/ D
Z t

t0

Z s

t0

dWz ds D
Z t

t0

.Ws �Wt0 / ds ;

I.0;1/ D
Z t

t0

Z s

t0

dz dWs D
Z t

t0

.s � t0/ dWs :

Summarizing all terms into (3.6)/(3.7), the preliminary numerical scheme to obtain
a weak approximation is

yjC1 D yj C a�tC b�W C 1
2
bb0 �.�W/2 ��t

�
C 1

2

�
aa0 C 1

2
b2a00��t2 C ba0I.1;0/ C

�
ab0 C 1

2
b2b00� I.0;1/ :

(3.16)

It remains to approximate the two stochastic integrals I.0;1/ and I.1;0/. Setting�Y WD
I.1;0/ we have in view of (3.12)

I.0;1/ D �W�t ��Y :

At this state the two stochastic double integrals I.0;1/ and I.1;0/ are expressed in terms
of only one random variable�Y, in addition to the variable�W used before. Since
for weak convergence only the correct leading moments are needed, all occurring
random variables (here�W and�Y) can be replaced by other random variables with
matching moments. The normally distributed random variable �Y has expectation,
variance and covariance

E.�Y/ D 0 ; E.�Y2/ D 1

3
.�t/3; E.�Y�W/ D 1

2
.�t/2 (3.17)
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(�! Exercise 3.8). Such a random variable can be realized by two independent
normally distributed variates Z1 and Z2,

�Y D 1
2
.�t/3=2

�
Z1 C 1p

3
Z2
�

with Zi � N .0; 1/; i D 1; 2
(3.18)

(�! Exercise 3.9). With this realization of �Y approximations of both I.0;1/ and
I.1;0/ are available, and substituted into (3.16).

Next the random variable �W can be replaced by other variates for which the
moments match. Choosing e�W trivalued such that the two values ˙p3�t occur
with probability 1=6, and the value 0 with probability 2=3, then the random variable
e�Y WD 1

2
�t e�W has the moments in (3.17) up to terms of order O.�t3/ (�!

Exercise 3.10). As a consequence, the simplification of (3.16)

yjC1 D yj C a�tC be�W C 1
2
bb0

�
.e�W/2 ��t

�
C 1

2

�
aa0 C 1

2
b2a00��t2 C 1

2

�
a0bC ab0 C 1

2
b2b00�

e�W�t
(3.19)

is second-order weakly convergent.
Instead of discussing efficient ways to evaluate (3.19), we leave this second-order

approach in favor of a simple extrapolation alternative: Evaluating yh
t and y2h

t with
Euler’s method (3.1), then the extrapolation

2E.g.yh
T// � E.g.y2h

T // (3.20)

furnishes a weakly second-order method, which is simple and efficient.

3.3.4 Higher–Dimensional Cases

In higher-dimensional cases there are additional mixed terms. We distinguish two
kinds of “higher–dimensional”:

(1) y 2 Rn; a; b 2 Rn. Then, for instance, replace bb0 by @b
@y b, where @b

@y is the
Jacobian matrix of all first-order partial derivatives.

(2) For multiple Wiener processes the situation is more complicated, because then
simple explicit integrals as in (3.11) do not exist. Only the Euler scheme
remains simple: for m Wiener processes the Euler scheme is

yjC1 D yj C a�tC b.1/�W.1/ C : : :C b.m/�W.m/ :



3.4 Intermediate Values 139

3.3.5 Jump Diffusion

Jump diffusion can be simulated analogously as pure diffusion. Thereby the jump
times are not included in the equidistant grid of the j�t. An alternative is to simulate
the jump times �1; �2; : : : separately, and superimpose them on the�t-size grid. Then
the jumps can be carried out correctly. With such jump-adapted schemes higher
accuracy can be obtained [62], see also [182].

3.4 Intermediate Values

Integration methods as discussed in the previous section calculate approximations yj

only at the grid points tj. This leaves the question how to obtain intermediate values,
namely, approximations y.t/ for t ¤ tj. For deterministic ODEs we in general have
smooth solutions, which suggests to construct an interpolation curve joining the
calculated points .yj; tj/. The deterministic nature guarantees that the interpolation
is reasonably close to the exact solution, at least for small steps �t.

A smooth interpolation is at variance with the stochastic nature of solutions
of SDEs. When �t is small, it may be sufficient to match the “appearance” of a
stochastic process. For example, a linear interpolation is easy to be carried out. Such
an interpolating continuous polygon was used for the Figs. 1.17 and 1.18. Another
easily executable alternative would be to construct an interpolating step function
with step length �t. Such an argumentation is concerned only with the graphical
aspects of filling, and does not pay attention to the law given by an underlying SDE.

The situation is different when the gaps between two calculated yj and yjC1 are
large. Then the points that are supposed to fill the gaps should satisfy the underlying
SDE. A Brownian bridge is a proper means to fill the gaps in Brownian motion. For
illustration assume a Wiener process Wt is simulated. A stochastic process Xt is to
be constructed that starts at t0 with the value X0 D 0, and ends at t D T again at
the value 0. The function Xt WD Wt � t

T WT does the job (�! Exercise 3.11). More
general, suppose the values y0 (for t D 0) and yT (for t D T) are to be connected.
Then the Brownian bridge conditional on W is defined by

Bt D y0
�
1 � t

T

�
C yT

t

T
C
n
Wt � t

T
WT

o
: (3.21)

The first two terms represent a straight-line connection between y0 and yT represent-
ing the trend, whereas the term Wt � t

T WT describes the stochastic fluctuation.
Or, more general than (3.21) and Exercise 3.11,

Bt WD .tiC1 � t/yj C .t � tj/yjC1
tjC1 � tj

C
s
.tjC1 � t/.t � tj/

tjC1 � tj
Z (3.22)
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for Z � N .0; 1/ realizes the Brownian bridge at t, tj < t < tjC1, which connects the
points .yj; tj/ and .yjC1; tjC1/.

Bridges such as the Brownian bridge have important applications. For example,
suppose that for a stochastic process St a large step has been taken from S0 to some
value ST . The question may be, what is the largest value of St in the gap 0 < t < T?
Or, does St reach a certain barrier B? Of course, answers can be expected only with
a certain probability. A crude method to tackle the problem would be to calculate
a dense chain of Stj in the gap with a small step size �t. This is a costly way to
get the information. As an alternative, one can evaluate the relevant probabilities
of the behavior of bridges directly, without explicitly constructing intermediate
points. In this way, larger steps are possible, and costs are reduced. There are several
alternative ways to calculate intermediate values, in particular in the multifactor case
[155]. For example, the principal component analysis can be applied to approximate
the bridge. Here the covariance matrix is taken from the vector .W.t0/; : : : ;W.tm//,
where tm D T.

3.5 Monte Carlo Simulation

As pointed out in Sect. 2.4 in the context of calculating integrals, Monte Carlo
is attractive in high-dimensional spaces or for nonsmooth integrands. The same
characterization holds when Monte Carlo is applied to the valuation of options.
For sake of clarity we describe the MC approach for European vanilla options in
context with the one-dimensional Black–Scholes model. But bear in mind that MC
is broadly applicable, which will be demonstrated by means of an exotic option at
the end of this section.

From Sect. 1.7.2 we take the one-factor model of a geometric Brownian motion
of the asset price St,

dS

S
D � dtC � dW :

Here � is the expected growth rate. When options are to be priced we assume a
risk-neutral world and replace � accordingly (by r, or by r� ı in case of a dividend
yield ı, compare Sect. 1.7.3 and Remark 1.14). Recall the lognormal distribution of
GBM, with density function (1.64).

The Monte Carlo simulation of options can be seen in two ways: either
dynamically as a process of simulating numerous paths of prices St with subsequent
appropriate valuation (as suggested by Fig. 3.1), or as the formal MC approximation
of integrals. For the latter view we briefly recall the integral representation of options
in Sect. 3.5.1. Both views are equivalent; the simulation aspect can be seen as
financial interpretation and implementation of the MC procedure for integrals.
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3.5.1 Integral Representation

In the one-period model of Sect. 1.5 the valuation of an option was summarized
in (1.30) as the discounted value of a probable payoff,

V0 D e�rTEQ.VT/ :

For the binomial model we prove for European options in Exercise 1.10 that this
method produces

V.M/
0 D e�rTE.VT/ ;

where E reflects expectation with respect to the risk-free probability of the binomial
method. And for the continuous-time Black–Scholes model, the result in (1.10)
or (A.17) for a put is

V0 D e�rT ŒK F.�d2/� e.r�ı/TS F.�d1/ � ; (3.23)

similarly for a call. Since F is an integral (�! Appendix E.2), Eq. (3.23) is a first
version of an integral representation. Its origin is either the analytic solution of the
Black–Scholes PDE, or the representation

V0 D e�rT

1Z
0

.K � ST/
C fGBM.ST ;TI S0; r; �/ dST : (3.24)

Here fGBM.ST ;TI S0; �; �/ is the density (1.64) of the lognormal distribution, with
� D r, or � replaced by r � ı to match a continuous dividend yield ı. It is not
difficult to prove that (3.23) and (3.24) are equivalent (�! Exercise 3.12 for ı D 0).
We summarize the integral representation as

V.S0; 0/ D e�rTEQ .V.ST ;T/ j S0 / : (3.25)

The risk-neutral expectation EQ is explained in Sect. 1.5. All these expectations are
conditional on paths starting at t D 0 with the value S0.

We note in passing that an integral representation offers another way to
approximate V0, namely, by means of numerical quadrature methods (see
Appendix C.1), rather than applying MC. Of course, in this one-dimensional
situation, the approximation of the closed-form solution (3.23) is more efficient.
But in higher-dimensional spaces integrals corresponding to (3.24) can be become
attractive for computational purposes. Note that the integrand is smooth because
the zero branch of the put’s payoff .K � ST/

C needs not be integrated; in (3.24) the
integration is cut to the interval 0 � ST � K. Any numerical quadrature method can
be applied, such as sparse-grid quadrature [148, 309, 312]. But in what follows, we
stay with Monte Carlo approximations.
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3.5.2 Basic Version for European Options

The simulation aspect of Monte Carlo has been described before, see Fig. 3.1. The
procedure consists in calculating a large number N of trajectories of the SDE, always
starting from S0, and then average over the payoff values �..ST/k/ of the samples
.ST/k, k D 1; : : : ;N, in order to obtain information on the probable behavior of the
process. This is identical to the formal MC method for approximating an integral
as (3.24), see Sect. 2.4. The equivalence with the simulation aspect is characterized
by the convergence

1

N

NX
kD1

�..ST/k/ �!
Z 1

�1
�.ST/ fGBM.ST/ dST D E.�.ST//

for N ! 1. For GBM, the values ST are distributed lognormally. The probability
distribution of the samples .ST/k must match the density of the chosen model, here
fGBM. For the Black–Scholes model, these samples are provided by integrating the
correct SDE of GBM (1.47) under the risk-neutral measure. Finally, the result is
discounted at the risk-free rate r to obtain the value for t D 0.

After having chosen the three items model, current initial value S0, and payoff
function � , the Monte Carlo method works as follows:

Algorithm 3.6 (Monte-Carlo Simulation of European Options)

(1) For k D 1; : : : ;N W Choose a seed and integrate the SDE of the underlying
model for 0 � t � T under the risk-neutral measure. (for example, dS D
rS dtC �S dW )
Let the final result be .ST/k.

(2) By evaluating the payoff function � one obtains the values

.V.ST ;T//k WD �..ST/k/; k D 1; : : : ;N:

(3) An estimate of the risk-neutral expectation is

bE.V.ST ;T// WD 1

N

NX
kD1
.V.ST ;T//k :

(4) The discounted variable

bV WD e�rT bE.V.ST ;T//

is a random variable with E.bV/ D V.S0; 0/, provided the estimate is unbiased.

In case the underlying receives a continuous dividend yield ı, replace the r in
step (1) by r � ı. (not in step (4)!) The resulting bV is the desired approximationbV 	 V.S0; 0/. In this simple form, the Monte Carlo simulation can only be applied
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to European options where the exercise date is fixed. Only the value V.S0; 0/
is approximated, and the lack of other information on V.S; t/ does not allow to
check whether the early-exercise constraint of an American option is violated. For
American options a greater effort in simulation is necessary, see Sect. 3.6. The
convergence behavior corresponds to that discussed for Monte Carlo integration, see
Sect. 2.4. In practice the number N must be chosen large, for example, N D 10; 000.
This explains why Monte Carlo simulation in general is expensive. For standard
European options with univariate underlying that satisfies the Assumptions 1.3,
the alternative of evaluating the Black–Scholes formula is by far cheaper. But in
principle both approaches provide the same result, where we neglect that accuracies
and costs are different.

For multivariate options the MC algorithm works analogously, see the example in
Sect. 3.5.5. But the integration of a system of n SDEs in general has costs depending
on n. So the costs of MC depend on n. In practice, this can affect the error. In case
the budget in computing time is limited, which is standard for realtime calculations,
a limit on the budget will limit the number N of paths, and in turn, the error. If one
path costs � seconds, and the budget for N paths is b seconds, then (2.14) states that
the attainable error is of the order

p
�=
p

b. In this sense, � D O.n/ does influence
the error.

Note that the above Algorithm 3.6 is a crude version of Monte Carlo simulation,
which needs to be refined. In practical applications, methods of variance reduction
are applied, see Sect. 3.5.4.

Example 3.7 (European Put) Consider a European put with parameters S0 D
5; K D 10; r D 0:06; � D 0:3; T D 1. For the linear SDE dS D rS dt C �S dW
with constant coefficients the theoretical solution is known, see Eq. (1.71). For the
chosen parameters we have

S1 D 5 exp.0:015C 0:3W1/ ;

which requires “the” value of the Wiener process at t D 1. Related values W1 can
be obtained from (1.35) with �t D T as W1 D Z

p
T , Z � N .0; 1/. The normal

variates Z were generated by Algorithm 2.14, based on the input of the generator
of Algorithm 2.7. For this illustration we do not take advantage of the analytic
solution formula, because MC is not limited to GBM with constant coefficients.
Also, we do not take advantage of a log-transformation, as suggested in Sect. 3.3.1.
To demonstrate the general procedure we integrate the SDE numerically with step
length �t < T, in order to calculate an approximation to S1. Thereby we tolerate a
systematic error due to discretization. Any of the methods derived in Sect. 3.3 can
be applied. For simplicity we use Euler’s method. Since the chosen value of r is
small, the discretization error of the drift term is small compared to the standard
deviation of W1. As a consequence, the accuracy of the integration for small values
of �t is hardly better than for larger values of the step size. Artificially we choose
�t D 0:02 for the time step. Hence each trajectory requires to calculate 50 normal
variates � N .0; 1/. Figure 3.2 shows the values bV 	 V.S0; 0/ for 10 sequences
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Fig. 3.2 Ten sequences of Monte Carlo simulations on Example 3.7, each with a maximum of
10,000 paths. Horizontal axis: N, vertical axis: mean valuebV (suffers from bias, see Sect. 3.5.3)

of simulations, each with a maximum of N D 10; 000 trajectories, calculated with
Algorithm 3.6. Each sequence has started with a different seed for the calculation of
the random numbers.

The Example 3.7 is a European put with the same parameters as Example 1.5.
This allows to compare the results of the simulation with the more accurate results
from Table 1.2, where we have obtained V.5; 0/ 	 4:43. The simulations reported
in Fig. 3.2 have difficulties to come close to this value. Since Fig. 3.2 depicts all
intermediate results for sample sizes N < 10; 000, the convergence behavior of
Monte Carlo can be observed. For this example and N < 2000 the accuracy is bad;
for N 	 6000 it reaches acceptable values, and hardly improves for 6000 < N �
10; 000. Note that the “convergence” is not monotone, and one of the simulations
delivers a frustratingly inaccurate result.4 (�! Exercise 3.13)

4Again we emphasize that this simulation is a first attempt far from being sophisticated. In
particular, the crude experimental setup suffers from a discretization error. Better MC results will
be obtained below (Fig. 3.4).
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Implementation of the Monte Carlo Method
As mentioned above, in case the underlying model is GBM, the analytic solution

St D S0 exp
˚
.r � 1

2
�2/tC �Wt

�

can be applied. For options that are not path-dependent this requires only one
random number for each path, for generating WT and ST . For more general models
without analytic solution formula, one must resort to numerical integration [say,
with Euler’s method (3.1)]. Then Monte Carlo consists of two loops: the outer loop
of sampling .k D 1; : : : ;N/, and the inner loop of the integration . j D 1; : : : ;M/,
where �t D T

M is the step size of integration (tj D j�t). For GBM models, the
analytic formula can be applied in a piecewise fashion,

StjC1
D Stj exp

˚
.r � 1

2
�2/�tC � �W

�

for all j, with �W D p�t Z , Z � N .0; 1/.

3.5.3 Accuracy

When in Algorithm 3.6 no theoretical solution ST is available, the Monte Carlo
method must be based on an approximation OST . In particular, OST stands for one of
the approximations yh

T of Sect. 3.3. This causes an error

� WD e�rT OE.�.OST//� e�rTE.�.ST//

in the algorithm, neglecting rounding errors. Up to the discounting factor, which is
close to 1, the error � can be represented as the sum of two errors,

� erT D 1
N

PN
kD1 �..OST/k/ � E.�.ST//

D . 1N PN
kD1�..OST/k/� E.�.OST//„ ƒ‚ …

DW�1
/C .E.�.OST// � E.�.ST//„ ƒ‚ …

DW�2
/ : (3.26)

The first error �1 is the statistical error. The second error �2 is the weak discretization
error, which is known to us from Definition 3.4. In the MC context, this error is
called bias. First we discuss the statistical error �1.

3.5.3.1 Statistical Error

Denote by O� and Os2 the estimates of mean and variance of a discrete sample, (B.11)
in Appendix B.1, and � D E. O�/. For the MC Algorithm 3.6 xk WD e�rT�..ST/k/,
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k D 1; : : : ;N, or alternatively related to the approximations OST , so O� D OV and
� WD V.S0; 0/. The simulations are independent. According to the central limit
theorem (�! Appendix B.1), the approximation O� is N .�; �2/-distributed,

P
	
O� � � � a

�p
N



D F.a/ ;

for any a, with standard normal cumulative distribution function F. In practice
�2 is replaced by its approximation Os2. Confidence intervals can be applied and a
probabilistic error control incorporated.

The error behaves as Osp
N

. To reduce this statistical error, either reduce the

numerator � or Os (variance reduction), or enlarge the denominator
p

N. The latter
means to increase the number N of simulations, and is costly. As in Sect. 2.4, to
gain one additional correct decimal, the error must be reduced by a factor � WD 1

10
,

which amounts to raise the costs by a factor of ��2 D 100. For variance reduction
see Sect. 3.5.4.

3.5.3.2 Bias

In (3.26), E.�.ST// is the true value, and �.OST/ an estimate. The quality of the
approximation �.OST/ in relation to the true value can be characterized by the bias.

Definition 3.8 (Bias) Let x be a true value to be estimated, and Ox be an estimate
of x. Then the bias is defined by

bias.Ox/ WD E.Ox/ � x :

Unbiased Ox means bias.Ox/ D 0. By Definition 3.8, the error �2 in (3.26) is the bias
of �.OS/. We illustrate Definition 3.8 by two further examples:

(1) For a lookback option the valuation depends on

x WD E
	

max
0�t�T

St



:

The discretely sampled

Ox WD max
0�j�M

Stj

is an approximation based on a finite number M of Stj -values. The estimator Ox
almost surely underestimates the true value x, E.Ox/ < x, hence the bias of Ox is
nonzero. Such examples typically occur when the option is path-dependent—
that is, its value depends on St for possibly all t � T.
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(2) Euler’s method (3.1) suffers from bias. For GBM (1.47) the Euler step

StC�t D St .1C ��tC � �W/

is biased, whereas the analytic step

StC�t D St expŒ.� � 1
2
�2/�tC � �W�

is unbiased. The bias from Euler steps producing OST explains the inaccurate
result in Fig. 3.2. Using the unbiased analytic solution produces better results;
compare Figs. 3.2 and 3.3 for results with and without bias.

Fortunately, when sufficient computing time is available, the bias of the above
examples can be made arbitrarily small by taking sufficiently large values of M.
That is, asymptotically, for infinite costs, the results will be unbiased. There is a
tradeoff between making the variance small (N ! 1), and making the bias small
(M!1, �t! 0). The mean square error

MSE.Ox/ WD EŒ.Ox � x/2� (3.27)
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 3.3 Five series of unbiased Monte Carlo simulations on Example 3.7, using the analytic
solution of the SDE (compare to Fig. 3.2)
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measures both errors: A straightforward calculation (which the reader may check)
shows

MSE.Ox/ D .E.Ox/� x/2 C EŒ.Ox � E.Ox//2�
D .bias.Ox//2 C Var.Ox/ : (3.28)

The final aim is to make MSE small, and the investigator must balance the effort in
controlling the bias or the sampling error.

We outline this for a Monte Carlo approximation that makes use of a numerical
integration scheme such as Euler’s method. For brevity, write again h for the step
�t, and Ox WD yh

T for the result of a weakly convergent discretization scheme, see
Definition 3.4. Assume the bias of the discretization is of the order ˇ,

bias.Ox/ D ˛1hˇ ; ˛1 a constant:

Since the variance of Monte Carlo is of the order N�1 [N the sample size,
see (2.14)], (3.28) leads to model the mean square error as

MSE D ˛21h2ˇ C ˛2

N

for some constant ˛2. This error model allows to analyze the tradeoff (N ! 1 or
h ! 0) more closely (�! Exercise 3.14). It turns out that for optimally chosen
h;N, the error

p
MSE behaves like

p
MSE � C� ˇ

1C2ˇ

where C denotes the costs of the approximation. Applying Euler’s method .ˇ D 1)
gives the exponent �1=3, clearly worse than the exponent �1=2 of an unbiased
Monte Carlo. This result emphasizes the importance of high-order schemes (ˇ > 1)
for high demands of accuracy.

3.5.4 Variance Reduction

To improve the accuracy of simulation and thus the efficiency, it is essential to apply
methods of variance reduction. We explain the methods of the antithetic variates and
the control variate. In many cases these methods decrease the variance.

3.5.4.1 Antithetic Variates

If a random variable satisfies Z � N .0; 1/, then also �Z � N .0; 1/. Let bV denote
the approximation obtained by Monte Carlo simulation. With little extra effort
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during the original Monte Carlo simulation we can run in parallel a side calculation
which uses �Z instead of Z. For each original path this creates a “partner” path,
which looks like a mirror image of the original. The partner paths also define a
Monte Carlo simulation of the option, called the antithetic variate, here denoted by
V�. The average

VAV WD 1

2

�bV C V�
�

(3.29)

(AV for antithetic variate) is a new approximation, which in many cases is more
accurate than bV . SincebV and VAV are random variables we can only aim at

Var.VAV/ < Var.bV/ :
In view of the properties of variance and covariance [Eq. (B.7)],

Var.VAV/ D 1
4
Var.bV C V�/

D 1
4
Var.bV/C 1

4
Var.V�/C 1

2
Cov.bV;V�/ :

(3.30)

From

jCov.X;Y/j � 1

2
ŒVar.X/C Var.Y/�

[follows from (B.7)] we deduce

Var.VAV/ � 1

2
.Var.bV/C Var.V�// :

By construction, Var.bV/ D Var.V�/ should hold. Hence Var.VAV/ � Var.bV/.
This shows that in the worst case only the efficiency is slightly deteriorated by
the additional calculation of V�. The favorable situation is when the covariance
is negative. Then (3.30) shows that the variance of VAV can become significantly
smaller than that ofbV .

In our context, the anti-symmetric construction of the mirror paths inspires some
confidence that the results are negatively correlated, Cov. OV;V�/ < 0. This holds
true in case the dependence of the output V on the input Z is monotonic. Then
the negative correlation between Z and �Z is carried over to the corresponding V-
values. For example, for GBM the solution (1.71)

ST D S0 exp

�	
r � �

2

2



T C �pT Z

�
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(for t0 D 0) is monotonic in Z, but this does not necessarily hold for any arbitrary
payoff �.ST/.5 But when Cov. OV;V�/ < 0, then the effect is

Var.VAV/ <
1

2
Var. OV/ ;

and VAV is a better approximation than bV . This approach at most doubles the costs.
In comparison, an error reduction of this size by merely increasing N requires at
least fourfold costs.

3.5.4.2 Application to GBM

Let the index k in Vk number an MC simulation of a GBM, k D 1; : : : ;N. For a
payoff � monotonic in Z draw Zk � N .0; 1/ and calculate the pairs OVk;V�

k and the
antithetic variate VAV;k as follows:

OVk D �
�

S0 exp
n
.r � �2

2
/T C �pT Zk

o�

V�
k D �

�
S0 exp

n
.r � �2

2
/T � �pT Zk

o�
VAV;k D 1

2
. OVk C V�

k /

(3.31)

For each k, OVk and V�
k are dependent, but the independence of Zk for k D 1; : : : ;N

makes the VAV;k independent, and MC is applied: The mean of the VAV;k, discounted
with the factor e�rT , approximates V . Variance reduction by antithetic variates may
not be too effective, but is implemented easily.

In Fig. 3.4 we simulate Example 3.7 again, now with antithetic variates. With
this example and the chosen random number generator6 the variance reaches small
values already for small N. Compared to Fig. 3.2 the convergence is somewhat
smoother. The accuracy the experiment shown in Fig. 3.2 reaches with N D 6000

is achieved already with N D 2000 in Fig. 3.4. But in the end, the error has not
become really small. The main reason for the remaining significant error in the
experiment reported by Fig. 3.4 is the bias due to the discretization error of the
Euler scheme. To remove this source of error, we repeat the above experiments with
the analytic solution of (1.71). The result is shown in Fig. 3.5 for MC with antithetic
variates. Figure 3.5 better reflects the convergence behavior and the potential of
Monte Carlo simulation. By the way, applying Milstein’s scheme of Algorithm 3.5
does not improve the picture: No qualitative change is visible if we replace the
Euler-generated simulations by their Milstein counterparts. This is explained by
the fact that the weak convergence order of Milstein’s method equals that of the

5It does hold for the standard put and call with monotonic � , but not for a butterfly option.
6The simple generator of Algorithm 2.7.
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Fig. 3.4 Ten series of antithetic simulations on Example 3.7, using Euler steps (biased)
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Fig. 3.5 Five series of unbiased Monte Carlo simulations on Example 3.7, unbiased using the
analytic solution of the SDE and antithetic variates (3.29) (compare to Fig. 3.4)
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Euler method. Recall that Example 3.7 is chosen merely for illustration; here other
methods are more efficient than Monte Carlo approaches.

3.5.4.3 Control Variates

Again V denotes the exact value of the option and bV a Monte Carlo approximation.
For error control, we calculate in parallel another option, which is closely related
to the original option, and for which we know the exact value V�. Let the Monte
Carlo approximation of V� be denoted bV�, so V� D E.bV�/. The variate bV� serves
as control variate with which we wish to “control” the error. The additional effort
to calculate the control variate bV� is small in case the simulations of the asset S
are identical for both options. This situation arises, for example, when S0; � and �
are identical and only the payoff differs. When the two options are similar enough
one may expect a strong positive correlation between them. So we expect relatively
large values of Cov.V;V�/ or Cov.bV;bV�/, close to its upper bound,

Cov.bV;bV�/ 	 1

2
Var.bV/C 1

2
Var.bV�/ :

This leads us to define “closeness” between the options as sufficiently large
covariance in the sense

Cov.bV;bV�/ >
1

2
Var.bV�/ : (3.32)

The method is motivated by the assumption that the unknown error V � bV has the
same order of magnitude as the known error V��bV�. The bold anticipation V�bV 	
V� �bV� leads to try

VCV WD bV C .V� �bV�/ (3.33)

as another approximation (CV for control variate). We see from (B.6) (with ˇ D
V�/ and (B.7) that

Var.VCV/ D Var.bV �bV�/ D Var.bV/C Var.bV�/� 2Cov.bV;bV�/ :

If (3.32) holds, then Var.VCV/ < Var.bV/. In this sense Var.VCV/ is a better
approximation thanbV .

To improve the approach, allow for a general linear relation between V �bV and
V� �bV�. This leads to define

V˛
CV WD bV C ˛.V� �bV�/ ; (3.34)



3.5 Monte Carlo Simulation 153

instead of (3.33). The parameter ˛ is chosen such that the variance Var.V˛
CV/ is

minimal (�! Exercise 3.15). In [219] the control variate OV� in (3.33) itself is
constructed by using MC on the same model, based on the same discretization
scheme (Euler) but different step size. Further improvements have lead to multilevel
Monte Carlo [151].

3.5.5 Application to an Exotic Option

As mentioned before, the error of Monte Carlo methods basically does not vary
with the number of underlyings. As an example we choose a two-factor binary put
to illustrate that MC can be applied as easily as in a one-factor situation.

Assume that two underlying assets S1.t/; S2.t/ obey a two-dimensional GBM,

dS1 D S1 .�1 dtC �1 dW.1//

dS2 D S2 .�2 dtC �2 .� dW.1/ Cp1 � �2 dW.2/// :
(3.35)

This makes use of Exercise 2.17: W.1/ and W.2/ are two uncorrelated Wiener
processes, and the way they interact in (3.35) establishes a correlation � between
S1 and S2. The analytic solution of (3.35) is given by

S1.T/ D S1.0/ exp
�
.�1 � 1

2
�21 /T C �1W.1/.T/

�
S2.T/ D S2.0/ exp

�
.�2 � 1

2
�22 /T C �2.�W.1/.T/Cp1 � �2 W.2/.T//

�
;

(3.36)
which generalizes (1.71).

Example 3.9 (2D European Binary Put) A two-asset cash-or-nothing put pays
the fixed cash amount c in case

S1.T/ < K1 and S2.T/ < K2 :

We choose the parameters T D 1, K1 D K2 D 5, �1 D 0:2, �2 D 0:3, � D 0:3,
c D 1, r D 0:1; no dividends, so the “costs of carry” are taken as �1 D �2 D r. For
t D 0 the value V.S1; S2; 0/ is to be evaluated at S1.0/ D S2.0/ D 5.
Figure 3.6 illustrates both the payoff of this exotic option and the Monte Carlo
approach. The top figure depicts the box characterizing the payoff. Further, two
paths starting at S1.0/ D S2.0/ D 5 are drawn. For t D T, one of the paths
ends inside the box; accordingly the payoff value there is V D c D 1. The
other path terminates “outside the strike,” the payoff value is zero. Since we
have the analytic solution (3.36), no paths need to be calculated. Rather, terminal
points .S1.T/; S2.T// are evaluated by (3.36). The lower figure in Fig. 3.6 shows
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Fig. 3.6 Example 3.9, binary option on two assets. Horizontal: .S1; S2/-plane, vertical: V.S1; S2/;
top: two paths starting at S1 D S2 D 5 with their payoff values; bottom: N D 1000 terminal points
with their payoff values

1000 points calculated in this way. Taking the mean value and discounting as in
Algorithm 3.6, yields approximations to V.5; 5; 0/. With N D 105 simulations we
obtain

V.5; 5; 0/ 	 0:174 ;
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Fig. 3.7 Example 3.9: surface V.S1; S2; 0/ calculated by Algorithm 1.18. With kind permission of
Sebastian Quecke

using random numbers based on the simple generator of Algorithm 2.7. The accu-
racy is almost three digits.7 Using Euler’s method rather than the analytic solution,
Example 3.9 offers nice possibilities to conduct empirical studies in controlling
either the bias or the sample error. We conclude Example 3.9 with Fig. 3.7, which
depicts the entire surface V.S1; S2; 0/, calculated with Algorithm 1.18 [309].

3.5.6 Test with Halton Points

To complete this introduction into MC methods, we test the Monte Carlo simulation
in a fully deterministic variant. To this end we insert the quasi-random two-
dimensional Halton points into the polar Algorithm 2.14 and use the resulting quasi
normal deviates to calculate solutions of the SDE. In this way, for Example 3.7
an acceptable accuracy is reached already with about 2000 paths, much better than
what is shown in the experiments reported by Figs. 3.2 or 3.3.

7This example has an analytic solution based on bivariate distribution functions, see [172].
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Fig. 3.8 Quasi Monte Carlo applied to Example 3.7

A closer investigation reveals that quasi normal deviates based on Box-Muller-
Marsaglia (Algorithm 2.14) with two-dimensional Halton points lose the equidis-
tributedness; the low discrepancy is not preserved. Apparently the quasi-random
method does not simulate independence [147]. This sets the stage for the slightly
faster inversion method [278] (�! Appendix E.2), based on one-dimensional low-
discrepancy sequences. Figure 3.8 shows the result. The scaling of the figure is the
same as before.

3.6 Monte Carlo Methods for American Options

The integral representation (3.25) can be generalized to American options. Similar
as for European options, Monte Carlo applied to American options requires
simulating paths St of the underlying model. Again, for ease of exposition, we
think of the prototype example of the univariate Black–Scholes model where we
integrate dSt D rSt dtC �St dWt for t � 0. Whereas for European options it is clear
to integrate until expiration, t D T, the American option requires to continuously
investigate whether early exercise is advisable.
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3.6.1 Stopping Time

For motivation, think of a price limit ˇ of an asset, such that a stop-buy order is to
be carried out at level ˇ. This decision is prompted by the event that St reaches ˇ
for some “stopping time.” Or, for the life of an American option, the decisive event
is “early exercise,” which amounts to a “stop” in holding the option. Such decisions
are based on a specified event, triggered, for example, by reaching a threshold value.
A rational decision follows a stopping rule that defines the stopping time, denoted � .

Since a stopping time � depends on the underlying process St, it is a stochastic
process. Imagine we travel along the path of a specific realization of a stochastic
process St and look up at the event that defines � . In this way we get a realization of
the random variable � ; for each path obtain another value of � . If the event specified
by the stopping rule does not happen, then set � WD 1. To mimic reality, one must
take care that for any t the decision (on early exercise, for example) is only based
on the information that is known up to the present moment. This situation suggests
defining a stopping time to be not anticipating. A stopping time is not allowed to
glimpse into the future. This characterization leads to an informal definition of � :

Definition 3.10 (Stopping Time I) For any time t there must be certainty whether
the event has happened—that is, whether � � t or � > t.

A formal definition with the means of stochastics uses the concept of a filtration.
A stochastic process St builds a natural filtration Ft, which is interpreted as a
model of the information available at time t (�! Appendix B.2). Accordingly, for
a stopping time � we require f� � tg 2 Ft for all t � 0, where the set f� � tg
represents all decisions until time t. That is:

Definition 3.11 (Stopping Time II) A stopping time � with respect to a filtration
Ft is a random variable that is Ft-measurable for all t � 0.

Example 3.12 (Hitting Time) For a value ˇ > S0, which fixes a level of S, define
� WD inf f t > 0 j St � ˇ g ; and � WD 1 if such a t does not exist.
This example, illustrated in Fig. 3.9, fulfills the requirements of a stopping time.
Setting � amounts to set a flag as soon as St reaches ˇ, and by checking the flag one

Fig. 3.9 Hitting time: the
strategy of Example 3.12 to
define a stopping time �

S
0

T

0

S

τ

β

t
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Fig. 3.10 The optimal
stopping time � of a vanilla
put. The heavy curve is the
early-exercise curve, and the
zigzag symbolizes a path St
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S K

τ

t

can verify at any time whether the event has happened.8 This defines the stopping
rule, “stop when St has reached ˇ.”

Two further examples should make the concept of a stopping time clearer.

(1) The example

t� WD moment when St reaches its maximum over 0 � t � T

is no stopping time, because for each t < T it can not be decided whether t� � t
or t� > t; it is not possible to decide whether to stop.

(2) For American-style options, define

� WD min f t � T j .t; St/ 2 stopping area g :

This example is similar to Example 3.12. The stopping time is defined by the
moment when a path St hits the early-exercise curve, which is the boundary of
the stopping region.9

This sets the stage for American options. Of all possible stopping times, the
stopping at the early-exercise curve is optimal (illustrated in Fig. 3.10). Optimal
stopping gives the American option its optimal value. From a practical point of
view, the stopping at the early-exercise curve can not be established as simply as in
Example 3.12, because the curve is not known initially.

The holder of an American option is free to decide when to stop, and hence picks
the � that maximizes the payoff. Or seen from the market view: Since one does
not know when the holder of the option will exercise, its price reflects the worst
possible case. This amounts to the following characterization of the value V.S; 0/ of

8For a more formal proof see [193, p. 42], or [340, p. 341].
9The early exercise curve will be the topic of Sect. 4.5. We briefly touched this in end of Sect. 1.4.4.
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an American option:

V.S; 0/ D sup
0���T

EQ . e�r� �.S� / j S0 D S / ;

where � is a stopping time and � is the payoff.
(3.37)

Thereby � is stopping time with respect to the natural filtration of St. This
result (3.37) is a special case for t D 0 of the general formula for V.S; t/, which
is proved in [35]. Clearly, (3.37) includes the case of a European option for � WD T,
in which case taking the supremum is not effective.

3.6.2 Parametric Methods

A practical realization of (3.37) leads to calculating lower bounds V low.S; 0/ and
upper bounds Vup.S; 0/ such that

V low.S; 0/ � V.S; 0/ � Vup.S; 0/ : (3.38)

Since by (3.37) V.S; 0/ is given by taking the supremum over all stopping times,
a lower bound is obtained by taking a specific stopping rule. To illustrate the idea,
choose the stopping rule of Example 3.12 with a level ˇ, see Fig. 3.9. If we denote
for each calculated path the resulting stopping time by Q� D Q�.ˇ/, a lower bound to
V.S; 0/ is given by

V low.ˇ/.S; 0/ WD EQ . e�rQ� �.SQ� / j S0 D S / : (3.39)

This value depends on the parameter ˇ, which is indicated by writing V low.ˇ/. The
bound is calculated by Monte Carlo simulation over a sample of N paths, where
the paths are stopped according to the chosen stopping rule. Procedure and costs of
such a simulation for one value of ˇ are analogous as in Algorithm 3.6. Repeating
the experiment for another value of ˇ may produce a better (larger) value V low.ˇ/.

It is difficult to get a tolerable accuracy when working with only a single
parameter ˇ. The situation can be slightly improved by choosing a finishing curve
different from the line in Fig. 3.9. For example, think of a curve that approximates
the early-exercise curve, as in Fig. 3.10. A simple but nicely working approximation
uses a parabola in the .S; t/-domain with horizontal tangent at t D T. Hitting
this curve defines a stopping time. Again this crude approach requires only one
parameter ˇ (�! Exercise 3.16). A result of this approach is illustrated in Fig. 3.11.

There are many examples how to obtain better lower bounds. For instance, the
early-exercise curve can be approximated by pieces of curves or pieces of straight
lines, which are defined by several parameters; ˇ then symbolizes a vector of
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Fig. 3.11 Monte Carlo approximations V low.ˇ/.S; 0/ (+) for several values of ˇ and S D 9

(Exercise 3.16, random numbers calculated with the generator from [264]). The approximations
are not close to the exact value V.S; 0/, which is represented by the dashed line. A systematic
error remains because a parabola cannot approximate the early-exercise curve well. Here the
approximating parabola cuts the S-axis close to ˇ D 7

parameters. The idea is to optimize in the chosen parameter space, trusting that

sup
ˇ

V low.ˇ/ 	 V:

As illustrated by Fig. 3.11, the corresponding surface to be maximized over ˇ is
not smooth. Accordingly, an optimization in the parameter space is costly, see
Appendix C.4. Recall that each evaluation of V low.ˇ/ for one ˇ is expensive.

What kind of parametric approximation, and what choice of the parameters can
be considered “good” when V.S; t/ is still unknown? To this end, upper bounds Vup

can be constructed, and one attempts to push the difference Vup�V low close to zero
in order to improve the approximation provided by (3.38).10 An upper bound can
be obtained, for example, when one peers into the future. As a simple example, the
entire path St for 0 � t � T can be simulated, and the option is “exercised” in

10Since the bounds are approximated by stochastic methods, it might happen that the true value
V.S; 0/ is not inside the calculated interval (3.38).
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Fig. 3.12 No stopping time;
maximizing the payoff of a
given path
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is maximal. This is illustrated in Fig. 3.12. Pushing the lower bounds V low.ˇ/ towards
upper bounds amounts to search in the ˇ-parameter space for a better combination of
ˇ-values. As a by-product of approximating V.S; 0/, the corresponding parameters
ˇ provide an approximation of the early-exercise curve.

The above is just a crude strategy how Monte Carlo can be applied to approximate
American options. In particular, the described simple approach to obtain upper
bounds is not satisfactory. Consult [9] for a systematic way of constructing
reasonable upper bounds. Typically, the upper bounds are more costly than the lower
ones. Bounds are also provided by the stochastic grids of [59].

3.6.3 Regression Methods

One basic idea of regression methods is to approximate the American-style option
by a Bermudan option. A Bermudan option restricts early exercise to specified
discrete dates during its life. As in Sect. 1.8.4, the time instances with the right to
exercise are created artificially by a finite set of discrete time instances tj :

�t WD T

M
; tj WD j�t . j D 0; : : : ;M/ ;

see the illustration of Fig. 3.13. The situation resembles the time discretization of
the binomial method of Sect. 1.4. In that semidiscretized setting the value of the
dynamic programming procedure of Eq. (1.22) generalizes to

Vj.S/ D max f�.S/ ; Vcont
j .S/ g ;
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Fig. 3.13 Setting for a Bermudan option with one underlying; schematic illustration with five
trajectories S1.t/; : : : ; S5.t/ and M D 5 exercise times tj with Sj;k WD Sk.tj/; data as in Fig. 3.1;
horizontal axis: S, vertical axis: t. The points .Sj;k; tj/ are marked

where the continuation value or holding value Vcont
j is defined by the conditional

expectation

Vcont
j .S/ WD e�r�t EQ .VjC1.SjC1/ j Sj D S / :

[For the binomial tree, this is Eq. (1.21).] EQ is calculated as before under the
assumption of risk neutrality.

In the context of a Bermudan option, we define the continuation value

Cj.x/ WD e�r�t EQ .V.StjC1
; tjC1/ j Stj D x / : (3.40)

Here x is a vector with as many components as the number of underlyings.
The function Cj.x/ needs to be approximated. If we can do it, then the general
recursion is:

Algorithm 3.13 (Dynamic Programming)

Set VM.x/ � �.x/ .
For j D M � 1; : : : ; 1 construct Cj.x/ for x > 0 and evaluate

Vj.x/ WD V.x; tj/ D max
˚
�.x/; Cj.x/

�
for grid points x .

V0 WD V.S0; 0/ D max f�.S0/; C0.S0/g
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Fig. 3.14 Fictive illustration of the regression for N D 6, scalar case (x 2 R). The circles indicate
the mapping Sj;k ! VjC1;k for k D 1; : : : ;N. Indicated by dashed lines and little squares, the
discounting and the tuples .Sj;k; e�r�tVjC1;k/ are indicated, which are the data for the computation
of the function OCj.x/ by regression

To calculate an approximation OCj.x/ for Cj.x/, data are generated by running N
simulations. All simulating paths are calculated starting from S0, according to the
underlying risk-neutral model. In this way, paths S1.t/; : : : ; SN.t/ are created for
0 � t � T (N D 5 in Fig. 3.13). At the discrete tj values, this establishes stochastic
grid points Sj;k WD Sk.tj/ and assigns .Sj;k; tj/ to .SjC1;k; tjC1/ for k D 1; : : : ;N and
all i. Dropping the index k, this amounts to the transition Sj �! SjC1. On SjC1
a valuation VjC1 is calculated by the recursion. Hence N tuples .Sj; e�r�tVjC1/ are
provided for each j. These tuples match (3.40) and form the data basis on which
.x;C.x// is approximated by a suitable minimization method such as least squares,
see also Fig. 3.14.11 This sets up the basic principle of regression methods.

Algorithm 3.14 (Regression I)

(a) Simulate N paths S1.t/; : : : ; SN.t/. Calculate and store the values

Sj;k WD Sk.tj/ ; j D 1; : : : ;M; k D 1; : : : ;N :

(b) For j D M set VM;k WD �.SM;k/ for all k.

11For least squares see Appendix C.4.
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(c) For j D M � 1; : : : ; 1:
Approximate Cj.x/ using suitable basis functions �0; : : : ; �L (monomials, for

example)

Cj.x/ 	
LX

lD0
al�l.x/ DW OCj.x/

by least squares over the N points

.xk; yk/ WD .Sj;k; e�r�tVjC1;k/ ; k D 1; : : : ;N;

and set

Vj;k WD max
n
�.Sj;k/; OCj.Sj;k/

o
:

(d) OC0 WD e�r�t 1
N .V1;1 C : : :C V1;N/ ; V0 D max

n
�.S0/; OC0

o
.

Again, step (a) is illustrated by Fig. 3.13, and the regression step (c) is explained
by Fig. 3.14. The coefficients a0; : : : ; aL of the approximation OC result from a
minimization. Step (d) is needed because (c) does not work for j D 0 since all
S0;k D S0. Since in the multifactor case the S and the x are vectors, the minimization
in the algorithm can become costly. Note that for convergence both N and L must
be increased.

The above basic version of regression can be improved in several ways. Longstaff
and Schwartz [247] has introduced a special version of the regression, incorporating
as a subalgorithm the calculation of the stopping time of each path. Working with
individual stopping times enables to set up an interleaving mechanism over the time
levels for comparing cash flows. The central step in (c) changes to

Vj;k WD
(
�.Sj;k/ for �.Sj;k/ � OCj.Sj;k/ ;

VjC1;k for �.Sj;k/ < OCj.Sj;k/ :
(3.41)

This requires to adapt steps (b), (c), (d). Points out-of-the-money do not enter the
regression. To save storage, intermediate values can be filled in by using a bridging
technique. Following [205], a significant speed-up is possible when working with a
cash-flow vector g, and an integer stopping time vector � (the integer factors k of
�k D k�t). The resulting algorithm is:
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Fig. 3.15 Regression; illustration for a put with r D 0, M D 2, K D 10

Algorithm 3.15 (Regression II)

(a) Simulate N paths as in Algorithm 3.14.
(b) Set gk WD �.SM;k/; �k D M for k D 1; : : : ;N.
(c) For j D M � 1; : : : ; 1:

For the subset of in-the-money-points

.xk; yk/ WD .Sj;k; e�r.�k�j/�tgk/ ;

approximate Cj.x/ by OCj.x/ ,
and for those k with �.Sj;k/ � OCj.Sj;k/: update

gk WD �.Sj;k/; �k WD j :

(d) OC0 WD 1

N

NX
kD1

e�r�k�tgk ; V0 WD maxf�.S0/; OC0g :

Figure 3.15 shows a simple artificial setting as an attempt to illustrate the
regression method, with strike K D 10, and M D 2, N D 5. For j D 1, four of
the paths are in the money. Their continuation values VjC1;k are denoted a, b, c, d in
Fig. 3.15. The heavy line is the regression OC, here a straight line because it is based
only on the two regressors �0 D 1, �1 D x. The maximum maxf�; OCg is easy to
check: for the points a and b the payoff is larger than OC.S/.
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Recently, many refined Monte Carlo methods for the calculation of American
options have been suggested. For an overview on related approaches, consult
Chap. 8 in [155]. At current state, the robust regression of [206] appears to be a
most efficient approach; it has priced options on baskets of up to 30 underlying
assets. One basic ingredient of this method is to neglect outliers, with the effect of a
remarkable reduction of the bias.

3.7 Sensitivity

A great computational challenge is to estimate how the price V changes when
parameters or initial states change, see Sect. 1.4.6. A sensitivity analysis based on
approximating partial derivatives amounts to calculating greeks, and can be used
for calibration. Recall that for tree methods and for finite-difference methods there
are easy ways to establish approximations to the greeks delta, gamma, and theta,
without the need for any recalculations. For Monte Carlo methods, this task is more
costly. When results are required for slightly changed parameter values, to set up
difference quotients, it may be necessary to rerun Monte Carlo.

As an example we comment on approximating deltaD @V
@S . A simple approach is

to apply two runs of Monte Carlo simulation, one for S0 and one for a close value
S0 ��S. Then an approximation of delta is obtained by the difference quotient

V.S0/� V.S0 ��S/

�S
: (3.42)

The increment �S must be chosen carefully and not too small, because (B.6) in
Appendix B.1 tells us that the variance of (3.42) for arbitrary numerator scales
with .�S/�2. So it is important to investigate how the numerator depends on �S.
Simulating the two terms V.S0/ and V.S0 � �S/ using common random numbers
improves the situation. Computing time can be saved by working with series of
precalculated random numbers. The crude approach symbolized by (3.42) does not
require additional programming, but the costs are prohibitive for multiasset options.

With some more sophistication, the effort can be reduced. For example, options
are often priced for different maturities. When Monte Carlo is combined with a
bridging technique, several such options can be priced effectively in a single run
[316]. A general reference on estimating sensitivities is Chap. 7 in [155].

There are alternatives improving accuracy and saving computing time. For exam-
ple, Malliavin calculus allows to shift the differencing to the density function, which
leads via a kind of integration by parts to a different integral to be approximated by
Monte Carlo. For references on this technique consult [137].

Another method that speeds up a sensitivity analysis significantly is the adjoint
method developed by [152], which is described next.
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3.7.1 Pathwise Sensitivities

Sensitivities can be approximated in a pathwise fashion. Similar as in (1.56)
consider a system of autonomous SDEs

dXt D a.Xt/ dtC b.Xt/ dWt (3.43)

where Xt 2 Rn, and Wt 2 Rm is a vector of independent Wiener processes. That
is, a.X/ is an n-vector, and b.X/ is .n � m/-matrix with elements bi� and takes care
of possible correlations (�! Exercise 3.17). For a standard discretization with M
steps assume again t0 D 0, T D �t 
M, tj WD j�t, j D 0; : : : ;M, and let �.X.T//
denote the discounted payoff. The Euler discretization of (3.43) is

y.tjC1/ D y.tj/C a.y.tj//�tC b.y.tj//Z.tj/
p
�t : (3.44)

We consider one calculated path Xt, 0 � t � T, represented by y.tj/, 0 � j � M,
and keep its random vectors Z.tj/ available. The aim is to estimate the sensitivity
vector

s.0/tr WD @�.X.T//

@X.0/

(taken as a row vector). By the chain rule,

s.0/tr D @�.X.T//

@X.T/

@X.T/

@X.0/
: (3.45)

The first factor is easily available. The endeavor is to approximate the matrix @X.T/
@X.0/ .

To this end, we use the dynamics as created by the Euler method (3.44), and
calculate the approximation

@y.T/

@y.0/
:

As outlined in [155, Sect. 7.2], we differentiate the ith component of the Euler
formula (3.44) with respect to yk.t0/, which gives

@yi.tjC1/
@yk.t0/

D @yi.tj/

@yk.t0/
C

nX
lD1

@ai.y.tj//

@yl.tj/

@yl.tj/

@yk.t0/
�t

C @

@yk.t0/

mX
�D1

bi�.y.tj//Z�.tj/
p
�t
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for all i; k D 1; : : : ; n. The last term is

mX
�D1

nX
lD1

@bi�.y.tj//

@yl.tj/

@yl.tj/

@yk.t0/
Z�.tj/

p
�t :

With

�ik. j/ WD @yi.tj/

@yk.t0/

this is written

�ik. jC 1/ D �ik. j/ C
nX

lD1

@ai.y.tj//

@yl.tj/
�lk. j/�t

C
mX
�D1

nX
lD1

@bi�.y.tj//

@yl.tj/
�lk. j/Z�.tj/

p
�t :

(3.46)

The recursion (3.46) can be written in matrix notation. To this end, we use the
definition (as in [152]) of the entries of .n � n/-matrices D. j/

Dik. j/ WD ıik C @ai.y.tj//

@yk.tj/
�tC

mX
�D1

@bi�.y.tj//

@yk.tj/
Z�.tj/

p
�t : (3.47)

(Here ıik D 1 for k D i; and D 0 for k ¤ i, is the Kronecker symbol and no
dividend yield.) The resulting recursion for the .n�n/-matrices�. j/ with elements
�ik. j/ is

�. jC 1/ D D. j/�. j/; j D 0; : : : ;M � 1; �.0/ D I : (3.48)

This summarizes the evolution of the path in a forward fashion. After M matrix
products the final matrix�.M/ is the estimate @y.T/

@y.0/ for @X.T/
@X.0/ . Then an approximation

Ns.0/tr of the sensitivity vector s.0/tr is obtained via the product (3.45).

3.7.2 Adjoint Method

A backward view is possible too. To see this, rewrite the above as

Ns.0/tr W D @�.y.T//

@y.T/

@y.T/

@y.0/
D @�.y.T//

@y.T/
�.M/

D @�.y.T//

@y.T/
D.M � 1/ 
 
 
 
 
 D.0/
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The observation of [152] is that Ns.0/ can be calculated with a backward recursion,
which operates n-vectors rather than .n � n/-matrices. We start with the row vector

Ns.M/tr WD @�.y.T//

@y.T/

and obtain

.Ns.M � 1//tr D @�

@y.T/
D.M � 1/ ;

or

Ns.M � 1/ D .D.M � 1//tr Ns.M/ :

The next row vector is

.Ns.M � 2//tr D @�

@y.T/
D.M � 1/D.M � 2/ D .Ns.M � 1//trD.M � 2/;

or

Ns.M � 2/ D .D.M � 2//tr Ns.M � 1/ ;

and so on, which results in the recursion

Ns. j/ D .D. j//tr Ns. jC 1/; j D M � 1; : : : ; 0; Ns.M/ D
	
@�

@y.T/


tr

: (3.49)

This backward recursion updates the n components of the vector s for every j,
whereas the forward recursion (3.48) updates the n2 entries of � in each step.
Hence the forward recursion (3.48) involves a factor of n more arithmetic operations
than the backward recursion. Consequently, the backward recursion should be
significantly faster for n > 1. But there is one drawback of the potentially fast
backward recursion: Its implementation requires to store the entire path of the y-
vectors with their Z-vectors in order to have the D-matrices available. For very
small step sizes �t (M large) this deteriorates the speed somewhat. And switching
to another payoff � requires to recalculate the backward recursion, whereas the
forward recursion can use the previous �.M/ again. Observing these two features,
the backward recursion (3.49) (“adjoint method”) can be highly advantageous. The
above method approximates pathwise deltas. In a similar way, sensitivities with
respect to parameters can be calculated, see [152].
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Example 3.16 (Heston-Hull-White Model) Extending Heston’s model (1.59) by
an SDE for the interest rate rt leads to the system

dSt D rtSt dtCpvt St d QW.1/
t

dvt D �. � vt/ dtC �2pvt d QW.2/
t

drt D ˛.R.t/ � rt/ dtC �3 d QW.3/
t

(3.50)

The function R in the mean-reversion term for rt can be chosen as to match the
current term structure [163], here chosen as constant for simplicity:

R � 0:06; ˛ D 0:1; � D 3;  D 0:12;
�2 D 0:04; �3 D 0:01; T D 1; K D 100:

The mean reversion level  D 0:12 corresponds to a volatility of about 35%. The
Brownian motions QW.1/

t ; QW.2/
t ; QW.3/

t are assumed (partly) correlated:

�12 D 0:6; �13 D �23 D 0 ;

hence QW.3/
t is not correlated with QW.1/

t ; QW.2/
t . Accordingly, the Cholesky decompo-

sition (Sect. 2.3.4) has a block structure, and Exercise 2.17 can be applied. To cast
it into the framework of (1.56)/(1.57), observe n D 3,

X WD
0
@S
v

r

1
A ; a.X/ D

0
@ X1X3
�. � X2/
˛.R � X3/

1
A

and

b.X/ dWt D

0
B@

X1
p

X2 0 0

�2
p

X2 �12 �2
p

X2
q
1� �212 0

0 0 �3

1
CA
0
B@

dW.1/
t

dW.2/
t

dW.3/
t

1
CA

with independent Wiener processes W.i/. In the discretization the Wiener process
can be taken as

p
�t Z1.t/;

p
�t Z2.t/;

p
�t Z3.t/

with Zi � N .0; 1/.p�t b.X/Z is a vector, an its partial derivatives enter (3.47).
For a concrete example, we price a European call. Since the interest rate is

variable, we discount each trajectory with its proper rate. Hence, the discounted
payoff is

exp

	
�
Z T

0

rt dt



.ST � K/C :
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We choose the starting point

S0 D 95; v0 D ; r0 D R ;

and approximate the discounting integral by the trapezoidal sum (C.2). Experiments
resulted in V.S0; v0; r0; 0/ 	 13:1 . The reader is encouraged to set up the matrix
D. j/ and test the adjoint method.

3.8 Notes and Comments

On Sects. 3.1 and 3.2

Under suitable assumptions it is possible to prove existence and uniqueness for
strong solutions, see [225]. Usually the discretization error dominates other sources
of error. We have neglected the sampling error (the difference betweenb� and �),
imperfections in the random number generator, and rounding errors. Typically these
errors are likely to be less significant. Sect. 3.2 follows Sect. 5.1 of [225].

On Sect. 3.3

[225] discusses many methods for the approximation of paths of SDEs, and proves
their convergence. An introduction is given in [301]. Possible orders of strongly
converging schemes are integer multiples of 1

2
whereas the orders of weakly

converging methods are whole numbers. A weak scheme of order ˇ needs all the
multiple integrals of up and including ˇ. Simple adaptions of deterministic schemes
do not converge for SDEs. For the integration of random ODEs we refer to [160].
Maple routines for SDEs can be found in [93], and MATLAB routines in [180].

Linear stability is concerned with the long-time behavior of solutions of the test
equation dXt D ˛Xt dt C ˇXt dWt, where ˛ is a complex number with negative
real part. This situation does not appear relevant for applications in finance. The
numerical stability in the case of a negative real part of ˛ depends on the step size
h and the relation among the three parameters ˛; ˇ; h. For this topic and further
references we refer to [180, 301, 327].

On Sect. 3.4

For Brownian bridges see, for instance, [155, 216, 225, 279, 291, 314, 340]. Other
bridges than Brownian bridges are possible. For a Gamma process and a Gaussian
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bridge this is shown in [315, 316]. For the effectiveness of Monte Carlo integration
improved with bridging techniques, see [64]. The probability that a Brownian bridge
passes a given barrier is found in [216], see also [155]. The maximum of a Wiener
process tied down to W0 D 0, W1 D a on 0 � t � 1 has the distribution F.x/ of
Exercise 2.8. And the time instant at which the maximum is attained is distributed
with the distribution function

F.x/ D 2

	
arcsin.

p
x/ for 0 � x � 1 :

Another alternative to fill large gaps is to apply fractal interpolation [256].

On Sect. 3.5

Monte Carlo simulation is of great importance for general models where no
specific assumptions (as those of Black, Merton and Scholes) have led to efficient
approaches. For example, in case the interest rate r cannot be regarded as constant
but is modeled by some SDE [such as Eq. (1.55)], then a system of SDEs must be
integrated. Examples of stochastic volatility are provided by Example 1.15, or by the
Heston model (1.59). In such cases, a Monte Carlo simulation can be the method of
choice. Then the Algorithm 3.6 is adapted appropriately. Monte Carlo methods are
especially attractive for multifactor models with high dimension.

In the literature the basic idea of the approach summarized by Eq. (3.24) is ana-
lyzed using martingale theory, compare the references in Chap. 1 and Appendix B.2.
An early paper suggesting MC for the pricing of options is [46]. The calculation
of risk indices such as value at risk is an important application of Monte Carlo
methods, see the notes on Sect. 1.8. The equivalence of the Monte Carlo simulation
[representation (3.23)/(3.24)] with the solution of the Black–Scholes equation is
guaranteed by the theorem of Feynman and Kac [40, 216, 283, 291, 311, 340, 353].
Much effort is involved in estimating the bias [373]. Joshi [207] discusses how to
apply MC to path-dependent options and greeks. For professional application, our
brief introduction will not suffice. Consult, in particular, the standard reference on
MC in finance [155].

Monte Carlo simulations can be parallelized in a trivial way: The single simula-
tions can be distributed among the processors in a straightforward fashion because
they are independent of each other. If m processors are available, the speed reduces
by a factor of 1=m. But the streams of random numbers in each processor must
be independent. For related generators see [262]. In doubtful and sensitive cases
Monte Carlo simulation should be repeated with other random-number generators,
and with low-discrepancy numbers [200].

For a discussion of variance reduction and examples, consult Chap. 4 in [155].
For the variance-reduction method of importance sampling, see also [284]. Different
variance-reduction techniques can be combined with each other. In particular, a
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change of drift helps driving the underlying assets into “important” regions. An
optimal drift is possible that reduces the variance significantly. Arouna [13] suggests
a truncated version of the Robbins-Monro algorithm, and [206] reduces the number
of insignificant paths for his robust regression with a deterministic method.

The demands for accuracy of Monte Carlo simulation should be kept on a
modest level. In many cases an error of 0.1% (or even 1%) must suffice. Recall
that it does not make sense to decrease the Monte Carlo sampling error significantly
below the error of the time discretization of the underlying SDE (and vice versa).
When the amount of available random numbers is too small or its quality poor, then
no improvement of the error can be expected. The methods of variance reduction
can save a significant amount of costs [47, 301, 331]. The efficiency of Monte
Carlo simulations can be enhanced by suitably combining several discretizations
with different levels of coarseness [151].

On Sect. 3.6

For Monte Carlo simulation on American options see also [47, 58, 143, 155, 234,
247, 319]. Note that for multivariate options of the American style the costs are
increasing with the dimension of x more significantly than for European options.
For parametric methods, the parameter vector ˇ defines surfaces rather than curves.
And for regression methods, the calculation of C or OC is costly and does depend on
the number of underlyings (dimension of x). A nice experiment with a parametric
method is given in [181]. Significant savings are possible when the dimension is
reduced by a principal component analysis (�! Exercise 2.16).

A first version of regression was introduced by [360], where the continuation
value was approximated based on subsets of paths. This bundling technique was
modified in [70] by an improved regression. As [360] points out, a single set of paths
of an underlying asset can be generated and then used repeatedly to value many
different derivatives. Lack of independence makes it difficult to prove convergence,
or to set up confidence intervals. For these aspects, see [115], and [9] and the
references therein.

3.9 Exercises

3.1 (Implementing Euler’s Method)
Implement Algorithm 1.11. Start with a test version for one scalar SDE, then
develop a version for a system of SDEs. Test examples:

(a) Perform the experiment of Fig. 1.18.
(b) Integrate the system of Example 1.15 for ˛ D 0:3, ˇ D 10 and the initial values

S0 D 50, �0 D 0:2, �0 D 0:2 for 0 � t � 1.

Plot the calculated trajectories.
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3.2 (Binary Random Variate) Let ˛; ˇ; p with 0 < p < 1 be given numbers.
Design an algorithm that outputs ˛ with probability p and ˇ with probability 1 � p.

3.3 (Itô Integral in Eq. (3.11)) Let the interval 0 � s � t be partitioned into
n subintervals, 0 D t0 < t1 < : : : < tn D t. For a Wiener process Wt assume
Wt0 D 0.

(a) Show
n�1X
jD0

Wtj

�
WtjC1

�Wtj

� D 1

2
W2

t �
1

2

n�1X
jD0

�
WtjC1

�Wtj

�2
(b) Use Lemma 1.17 to deduce Eq. (3.11).

3.4 (Integration by Parts for Itô Integrals)

(a) Show

Z t

t0

s dWs D tWt � t0Wt0 �
Z t

t0

Ws ds

Hint: Start with the Wiener process Xt D Wt and apply the Itô Lemma with the
transformation y D g.x; t/ WD tx.

(b) Denote�Y WD R t
t0

R s
t0

dWz ds and �t WD t � t0. Show by using (a) that

Z t

t0

Z s

t0

dz dWs D �W�t ��Y :

3.5 (Error of the Milstein Scheme)
To which formula does the Milstein scheme reduce for linear SDEs? Perform the
experiment outlined in Example 3.2 using the Milstein scheme of Algorithm 3.5.
Set up a table similar as in Table 3.1 to show

b".h/ 	 h

for Example 3.2.

3.6 (Transforming the CIR Equation)
For the CIR equation

dvt D �. � vt/ dtC �vpvt dWt

with constant �; ; �v find a transformation g such that the coefficient Qb in the SDE
of yt WD g.vt/,

dyt D Qa.yt/ dtC Qb.yt/ dWt ;

is a constant.
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3.7 (Drift-Implicit Scheme for CIR)
Show for the CIR-model in (3.13) that for Yt WD pXt the SDE

dY D 4� � �2
8

1

Y
dt � �

2
Y dtC �

2
dW

results. For this SDE analyze one step of the drift-implicit scheme

yjC1 D yj C a.yjC1/�tC b.yj/�Wj

and derive a quadratic equation for yjC1. For which values of the parameters �; �; 
does the quadratic equation have a positive solution yjC1?

3.8 (Moments of Itô Integrals for Weak Solutions)

(a) Use the Itô isometry

E

"	Z b

a
f .t; !/ dWt


2#
D
Z b

a
E

f 2.t; !/

�
dt

to show its generalization

E ŒI.f /I.g/� D
Z b

a
EŒfg� dt ; where I.f / D

Z b

a
f .t; !/ dWt :

Hint: 4fg D .f C g/2 � .f � g/2.
(b) For�Y WD R t

t0

R s
t0

dWz ds the moments are

EŒ�Y� D 0; EŒ�Y2� D �t3

3
; EŒ�Y�W� D �t2

2
and EŒ�Y�W2� D 0:

Show this by using (a) and E
hR b

a f .t; !/ dWt

i
D 0.

3.9 (Simulation of I.1;0/)
By transformation of two independent standard normally distributed random vari-
ables Zi � N .0; 1/, i D 1; 2, two new random variables are obtained by

b�W WD Z1
p
�t; b�Y WD 1

2
.�t/3=2

	
Z1 C 1p

3
Z2



:

Show that b�W andb�Y have the moments of (3.17).

3.10 (Auxiliary Variables)
In addition to (3.17) further moments are

E.�W/ D E.�W3/ D E.�W5/ D 0; E.�W2/ D �t; E.�W4/ D 3�t2:
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Assume a new random variable e�W satisfying

P
�
e�W D ˙p3�t

�
D 1

6
; P

�
e�W D 0

�
D 2

3

and the additional random variable

e�Y WD 1

2
e�W�t :

Show that the random variables e�W ande�Y have up to terms of order O.�t3/ the
same moments as �W and �Y.

3.11 (Brownian Bridge)
For a Wiener process Wt consider

Xt WD Wt � t

T
WT for 0 � t � T :

Calculate Var.Xt/ and show that

r
t
�
1 � t

T

�
Z with Z � N .0; 1/

is a realization of Xt.

3.12 (Black–Scholes Formula)
For the value V.St; t/ of a European put with time to maturity � WD T � t prove that

e�r�

1Z
0

.K � ST/
C 1

ST�
p
2	�

exp

(
� Œln.ST=St/� .r � �2

2
/��2

2�2�

)
dST

D e�r�KF.�d2/� StF.�d1/ ;

where d1 and d2 are defined in (A.13)/(A.14).
Hints: The left-hand side collects the terms of (3.23). Use .K � ST/

C D 0 for
ST > K, and get two integrals.

3.13 (Monte Carlo for European Options)
Implement a Monte Carlo method for single-asset European options, based on the
Black–Scholes model. Perform experiments with various values of N and a random
number generator of your choice. Compare results obtained by using the analytic
solution formula for St with results obtained by using Euler’s discretization. For (c)
B is the barrier such that the option expires worthless when St � B for some t.
Input: S0, number of simulations (trajectories) N, payoff function�.S/, risk-neutral
interest rate r, volatility � , time to maturity T, strike K.
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Payoffs:

(a) vanilla put, with �.S/ D .K � S/C, S0 D 5, K D 10, r D 0:06, � D 0:3,
T D 1.

(b) binary call, with �.S/ D 1S>K , S0 D K D � D T D 0:5, r D 0:1
(c) up-and-out barrier: call with S0 D 5, K D 6, r D 0:05, � D 0:3, T D 1, B D 8.

Hint: Correct values are: (a) 4.43046 (b) 0.46220 [309] (c) 0.0983 [181]

3.14 (Error of Biased Monte Carlo)
Assume

MSE D �.h;N/ WD ˛21h2ˇ C ˛2

N

as error model of a Monte Carlo simulation with sample size N, based on a
discretization of an SDE with stepsize h, where ˛1; ˛2 are two constants.

(a) Argue why for some constant ˛3

C.h;N/ WD ˛3N

h

is a reasonable model for the costs of the MC simulation.
(b) Minimize �.h;N/ with respect to h;N subject to the side condition

˛3N=h D C

for given budget C.
(c) Show that for the optimal h;N

p
MSE D ˛4C� ˇ

1C2ˇ :

3.15 (Control Variates)
LetbV;bV� be two random variables, and V� WD E.bV�/. For a free parameter ˛ define
the controlled variable

V˛
CV WD bV C ˛.V� �bV�/ :

(a) Show

Var.V˛
CV/ D Var.bV/C ˛2Var.bV�/� 2˛Cov.bV;bV�/ :

(b) Determine the parameter ˛0 for which Var.V˛
CV/ is minimal.

(c) The optimal ratio of the variance of the controlled variable to that of the
uncontrolled variable is q0 WD Var.V˛0

CV/=VarbV . How does q0 depend on the



178 3 Monte Carlo Simulation with Stochastic Differential Equations

correlation �bV;bV� between bV and bV�? What is q0 for � D 0:95, � D 0:8 and
� D 0:5?

3.16 (Project: Monte Carlo Experiment)
Construct as hitting curve a parabola with horizontal tangent at .S; t/ D .K;T/,
similar as in Fig. 3.10. The parabola is defined by the intersection of its left branch
with the S-axis, .S; t/ D .ˇ; 0/. Choose an American put with K D 10, T D 1,
r D 0:06, � D 0:3, and S0 D 9 and simulate for several values of ˇ the GBM
dS D rS dtC �S dW several thousand times, and calculate the hitting time for each
trajectory. Estimate a lower bound to V.S0; 0/ using (3.37). Decide whether an exact
calculation of the hitting point makes sense. (Run experiments comparing such a
strategy to implementing the hitting time restricted to the discrete time grid.) Think
about how to implement upper bounds.

3.17 (SDE in Standard Form)
Let us denote (1.56) as “standard form” of a system of SDEs, with uncorrelated
Wiener processes W.1/

t ; : : : ;W.m/
t . What is the vector a and the matrix b for

(a) the example of Eq. (3.35),
(b) the Heston model of Eq. (1.59).

For the Heston model, first transform the unknown v0 to the right-hand side by
scaling Qvt WD vt=v0.



Chapter 4
Standard Methods for Standard Options

Now we enter the part of the book that is devoted to the numerical solution of
equations of the Black–Scholes type. In this chapter, we discuss “standard” options
in the sense as introduced in Sect. 1.1 and assume the scenario characterized by
the Assumptions 1.2. In case of European vanilla options the value function V.S; t/
solves the Black–Scholes equation (1.5). It is not really our aim to solve this partial
differential equation for vanilla payoff because it possesses an analytic solution
(�! Appendix A.4). Ultimately our intention is to solve more general equations
and inequalities. In particular, American options will be calculated numerically. But
also European options without vanilla payoff are of interest; we encounter them for
Bermudan options in Sect. 1.8.4, and for Asian options in Sect. 6.3.4. The goal is
not only to calculate single values V.S0; 0/—for this purpose tree methods can be
applied—but also to approximate the curve V.S; 0/, or even the surface defined by
the value function V.S; t/ on the half strip S > 0, 0 � t � T. Based on the surface of
the value function, we collect information on early exercise and on the greeks (1.25),
for example, on delta hedging by observing the derivative @V

@S .
American options obey inequalities of the type of the Black–Scholes equa-

tion (1.5). To allow for early exercise, the Assumptions 1.2 must be weakened.
As a further generalization, the payment of dividends must be taken into account;
otherwise early exercise does not make sense for American calls.

The main part of this chapter outlines a PDE approach based on finite differences.
We begin with unrealistically simplified boundary conditions in order to keep the
explanation of the discretization schemes transparent. Later sections will discuss
appropriate boundary conditions, which turn out to be tricky in the case of American
options. At the end of this chapter we will be able to implement a finite-difference
algorithm for standard American (and European) options. Note that this approach
assumes constant coefficients of the Black-Scholes equation. If we work carefully,
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the resulting finite-difference computer program will yield correct approximations.
But the finite-difference approach is not necessarily the most efficient one. Hints on
other methods will be given at the end of this chapter. For nonstandard options we
refer to Chap. 6.

The classic finite-difference methods will be explained in some detail because
they are the most elementary approaches to approximate differential equations. As
a side-effect, this chapter serves as introduction to several fundamental concepts of
numerical mathematics. A trained reader may like to skip Sects. 4.2 and 4.3. The
aim of this chapter is to introduce concepts, as well as a characterization of the free
boundary (early-exercise curve), and of linear complementarity.

In addition to the finite-difference approach, “standard methods” include analytic
methods, which to a significant part are based on nonnumerical analysis. The
Sect. 4.8 will give an introduction to several such methods, including interpolation,
a method of lines, and a method that solves an integral equation.

The broad field of available methods for pricing standard options calls for
comparisons to judge on the relative merits of different approaches. Although such
an endeavor goes beyond the scope of a text book, we offer some guidelines in
Sect. 4.9.

4.1 Preparations

We allow for dividends paid with a continuous yield of constant level, because
numerically this is a trivial extension from the case of no dividend. In case of a
discrete dividend with, for example, one payment per year, a first remedy would be
to convert the dividend to a continuous yield (�! Exercise 4.1).1

A continuous flow of dividends is modeled by a decrease of S in each time
interval dt by the amount

ıS dt ;

with a constant ı � 0. This continuous dividend model can be easily built into the
Black–Scholes framework. The standard model of a geometric Brownian motion
represented by the SDE (1.47) is generalized to

dS

S
D .� � ı/ dtC � dW ;

1But the corresponding solutions V.S; t/ and their early-exercise structure will be different. The
Notes and Comments summarize how to correctly compensate for a discrete dividend payment.
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with � D r according to Remark 1.14. This is the basis for this chapter. The
corresponding Black–Scholes equation for the value function V.S; t/ is

@V

@t
C �2

2
S2
@2V

@S2
C .r � ı/S@V

@S
� rV D 0 : (4.1)

For constant r; �; ı, this equation is equivalent to the equation

@y

@�
D @2y

@x2
(4.2)

for y.x; �/ with 0 � � , x 2 R. The equivalence is proved by means of the
transformations

S D Kex; t D T � 2�
�2
; q WD 2r

�2
; qı WD 2.r�ı/

�2
;

V.S; t/ D V
�
Kex;T � 2�

�2

� DW v.x; �/ and

v.x; �/ DW K exp
˚� 1

2
.qı � 1/x �

�
1
4
.qı � 1/2 C q

�
�
�

y.x; �/ :

(4.3)

For the case of no dividend payments .ı D 0/ the derivation was carried out earlier
(�! Exercise 1.4). For Black–Scholes-type equations with variable �.S; t/, see
Appendix A.6.

The transformation S D Kex is motivated by the observation that the Black–
Scholes equation in the version (4.1) has variable coefficients Sj with powers
matching the order of the derivative with respect to S. That is, the relevant terms
in (4.1) are of the type

Sj @
jV

@Sj
; for j D 0; 1; 2 :

The transformed version in Eq. (4.2) has constant coefficients (D 1), which makes
implementing numerical algorithms easier.

In view of the time transformation in (4.3) the expiration time t D T is
determined in the “new” time by � D 0, and t D 0 is transformed to �max WD 1

2
�2T.

Up to the scaling by 1
2
�2 the new time variable � represents the remaining life time

of the option. And the original domain of the half strip S > 0, 0 � t � T belonging
to (4.1) becomes the strip

�1 < x <1; 0 � � � 1

2
�2T ; (4.4)

on which we are going to approximate a solution y.x; �/ to (4.2). After that
calculation we again apply the transformations of (4.3) to derive out of y.x; �/ the
value of the option V.S; t/ in the original variables.
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Under the transformations (4.3) the terminal conditions (1.1) and (1.2) become
initial conditions for y.x; 0/. A vanilla call, for example, satisfies

V.S;T/ D maxfS � K; 0g D K 
maxfex � 1; 0g :

From (4.3) we find

V.S;T/ D K exp
n
� x

2
.qı � 1/

o
y.x; 0/ ;

and thus

y.x; 0/ D exp
n x

2
.qı � 1/

o
maxfex � 1; 0g

D
�

exp
˚

x
2
.qı � 1/

�
.ex � 1/ for x > 0

0 for x � 0 :

Using

exp
n x

2
.qı � 1/

o
.ex � 1/ D exp

n x

2
.qı C 1/

o
� exp

n x

2
.qı � 1/

o

the initial conditions y.x; 0/ for vanilla options in the new variables read

call: y.x; 0/ D max
˚
e

x
2 .qıC1/ � e

x
2 .qı�1/; 0

�
; (4.5)

put: y.x; 0/ D max
˚
e

x
2 .qı�1/ � e

x
2 .qıC1/; 0

�
: (4.6)

Insofar the PDE (4.2) on the strip (4.4) with initial condition (4.5) or (4.6) defines
an initial-value problem. In Sect. 4.4 we shall discuss possible boundary conditions
needed when the boundaries x! �1 and x!C1 are truncated.

The Eq. (4.2) is of the type of a parabolic partial differential equation and is the
simplest diffusion or heat-conducting equation. Both Eqs. (4.1) and (4.2) are linear
in the dependent variables V or y. The differential equation (4.2) is also written
y� D yxx or Py D y00. The diffusion term is yxx.

In principle, the methods of this chapter can be applied directly to (4.1). But
the equations and algorithms are easier to derive for the algebraically equivalent
version (4.2). Note that numerically the two equations are not equivalent. A direct
application of this chapter’s methods to version (4.1) can cause severe difficulties.
This will be discussed in Chap. 6. These difficulties will not occur for Eq. (4.2),
which is well-suited for standard options with constant coefficients. The Eq. (4.2) is
integrated in forward time—that is, for increasing � starting from � D 0. This fact
is important for stability investigations. For increasing � the version (4.2) makes
sense; this is equivalent to the well-posedness of (4.1) for decreasing t.
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4.2 Foundations of Finite-Difference Methods

This section describes the basic ideas of finite differences as they are applied to the
PDE (4.2).

4.2.1 Difference Approximation

Each two times continuously differentiable function f satisfies

f 0.x/ D f .xC h/� f .x/

h
� h

2
f 00.�/ ;

where � is an intermediate number between x and xCh. The accurate position of � is
usually unknown. Such expressions are derived by Taylor expansions. We discretize
x 2 R by introducing a one-dimensional grid of discrete points xi with

: : : < xi�1 < xi < xiC1 < : : :

For example, choose an equidistant grid with mesh size h WD xiC1 � xi. The x is
discretized, but the function values fi WD f .xi/ are not discrete, fi 2 R. For f 2 C2
the derivative f 00 is bounded, and the term � h

2
f 00.�/ can be conveniently written as

O.h/. This leads to the practical notation

f 0.xi/ D fiC1 � fi
h

CO.h/ : (4.7)

Analogous expressions hold for the partial derivatives of y.x; �/, which includes a
discretization in � . This suggests to replace the neutral notation h by either �x or
�� , respectively. The fraction in (4.7) is the difference quotient that approximates
the differential quotient f 0.xi/; the O.hp/-term is the error. The one-sided (i.e.
nonsymmetric) difference quotient (4.7) is of the order p D 1. Error orders of p D 2
are obtained by central differences

f 0.xi/ D fiC1 � fi�1
2h

C O.h2/ .for f 2 C3/ ; (4.8)

f 00.xi/ D fiC1 � 2fi C fi�1
h2

C O.h2/ .for f 2 C4/ ; (4.9)

or by one-sided differences that involve more terms, such as

f 0.xi/ D �fiC2 C 4fiC1 � 3fi
2h

C O.h2/ .for f 2 C3/ : (4.10)



184 4 Standard Methods for Standard Options

Rearranging terms and indices of (4.10) provides the approximation formula

fi 	 4

3
fi�1 � 1

3
fi�2 C 2

3
hf 0.xi/ : (4.11)

The latter difference quotient is an example of a backward differentiation formula
(BDF). Equidistant grids are advantageous in that algorithms are straightforward to
implement, and error terms are easily derived by Taylor’s expansion. This chapter
works with equidistant grids.

4.2.2 The Grid

Either the x-axis, or the �-axis, or both can be discretized. If only one of the
two independent variables x or � is discretized, one obtains a semidiscretization
consisting of parallel lines. This is used in Exercise 4.3 and in Sect. 4.8.3. Here we
perform a full discretization leading to a two-dimensional grid. A solution of the
discretized problem will be different from the solution y of the initial-value problem
on the strip (4.4). To emphasize the difference, we denote a solution of a discretized
version w.

Let �� and �x be the mesh sizes of the discretizations of � and x. The step
in � is �� WD �max=�max for �max D 1

2
�2T and a suitable integer �max. Selecting

the x-discretization is more complicated. The infinite interval �1 < x < 1
must be replaced by a finite interval xmin � x � xmax, thereby the strip (4.4)
changes to a rectangular domain for .x; �/. This truncation or localization will
have an impact on the solutions w. The finite end values a D xmin < 0 and
b D xmax > 0 must be chosen2 such that for the corresponding Smin D Kea and
Smax D Keb and the interval Smin � S � Smax a sufficient quality of approximation
is obtained, in the sense w 	 y. In addition, the interval xmin � x � xmax must
include the range of financial interest, namely, the x-values of S0 and K. This
requires

xmin < min

�
0; log

S0
K

�
; max

�
0; log

S0
K

�
< xmax :

For simplicity, just think of xmin D �3 and xmax D 3. The local-
ization will also need boundary conditions, which will be discussed in
Sect. 4.4.

2Too large values of jaj or b can lead to underflow or overflow when evaluating the exponential
function.
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Fig. 4.1 Detail and notations
of the grid
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For a suitable integer m the step length in x is defined by �x WD .b � a/=m.
Additional notations for the grid are

�� WD � 
�� for � D 0; 1; : : : ; �max

xi WD aC i�x for i D 0; 1; : : : ;m
yi;� WD y.xi; ��/;

wi;� approximation to yi;� .

This defines a two-dimensional uniform grid as illustrated in Fig. 4.1. Note that the
equidistant grid in this chapter is defined in terms of x and � , and not for S and
t. Transforming the .x; �/-grid via the transformation in (4.3) back to the .S; t/-
plane, leads to a nonuniform grid with unequal distances of the grid lines S D Si D
Kexi : The grid is increasingly dense close to Smin. (This is not advantageous for the
accuracy of the approximations of V.S; t/. We will come back to this in Sect. 5.2.)
Figure 4.1 illustrates only a small part of the entire grid in the .x; �/-strip. The grid
lines x D xi and � D �� can be indicated by their indices (Fig. 4.2).

The points where the grid lines � D �� and x D xi intersect, are called nodes.
In contrast to the theoretical solution y.x; �/, which is defined on a continuum, the
wi;� are defined only for the nodes. The error wi;� � yi;� depends on the choice of
the discretization parameters �max, m, xmin, xmax. A priori we do not know which
choice of the parameters matches a prespecified error tolerance. An example of the
order of magnitude of these parameters is given by xmin D �5, xmax D 5, or smaller,
and �max D 100; m D 100. Such a choice of xmin; xmax has shown to be reasonable
for a wide range of r; �-values and accuracies. Then the actual error is essentially
controlled via the numbers �max and m of grid lines.
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4.2.3 Explicit Method

Substituting the expressions from (4.7)/(4.10)

@yi;�

@�
WD @y.xi; ��/

@�
D yi;�C1 � yi;�

��
C O.��/

@2yi;�

@x2
D yiC1;� � 2yi;� C yi�1;�

�x2
C O.�x2/

into (4.2) and discarding the O-error terms leads to the difference equation

wi;�C1 � wi;�

��
D wiC1;� � 2wi;� C wi�1;�

�x2

for the approximation w. Solved for wi;�C1 this is

wi;�C1 D wi;� C ��

�x2
.wiC1;� � 2wi;� C wi�1;�/ :

With the abbreviation

� WD ��

�x2

the result is written compactly

wi;�C1 D �wi�1;� C .1� 2�/wi;� C �wiC1;� : (4.12)

Figure 4.2 accentuates the nodes that are connected by this formula. Such a
graphical scheme illustrating the structure of the equation, is called stencil (or
molecule).

The Eq. (4.12) and the Fig. 4.2 suggest an evaluation organized by time levels.
All nodes with the same index � form the �th time level. For a fixed � the values
wi;�C1 of the time level � C 1 are calculated for all i. Then we advance to the next
time level, � ! � C 1. The formula (4.12) is an explicit expression for each of the
wi;�C1; the values w at level �C 1 are not coupled. Since (4.12) provides an explicit
formula for all wi;�C1 .i D 0; 1; : : : ;m/, this method is called explicit method or
forward-difference method.
Start: For � D 0 the values of wi;0 are given by the initial conditions

wi;0 D y.xi; 0/ for y from (4.5)/(4.6); 0 � i � m:

Thereafter we proceed from � D 0 to � D 1, and so on. The w0;� and wm;�

for 1 � � � �max are fixed by boundary conditions. For the next few pages, to
simplify matters, we artificially set w0;� D wm;� D 0 for all �. The correct boundary
conditions are deferred to Sect. 4.4.
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For the following analysis it is useful to collect all values w of the time level �
into a vector,

w.�/ WD .w1;� ; : : : ;wm�1;�/tr :

The next step towards a vector notation of the explicit method is to introduce the
constant .m � 1/ � .m � 1/ tridiagonal matrix

A WD Aexpl WD

0
BBBBBBB@

1 � 2� � 0 
 
 
 0

� 1 � 2� : : : : : : :::

0
: : :

: : :
: : : 0

:::
: : :

: : :
: : : �

0 
 
 
 0 � 1 � 2�

1
CCCCCCCA
: (4.13)

Now the explicit method in matrix-vector notation reads

w.�C1/ D Aw.�/ for � D 0; 1; 2; : : : (4.14)

The formulation with the matrix A of (4.13) and the iteration (4.14) is needed only
for theoretical investigations. An actual computer program would rather use the
version (4.12). In the vector notation of (4.14), the inner-loop index i does not occur
explicitly.

To illustrate the behavior of the explicit method, we perform an experiment
with an artificial example, where initial conditions and boundary conditions are not
related to finance.

Example 4.1 (Instability) The PDE is y� D yxx , initial condition y.x; 0/ D
sin	x , x0 D 0, xm D 1, and boundary conditions y.0; �/ D y.1; �/ D 0 (that
is, w0;� D wm;� D 0).

The aim is to calculate an approximation w for one .x; �/, for example, for x D
0:2, � D 0:5. The exact solution is y.x; �/ D e�	2� sin	x, such that y.0:2; 0:5/ D
0:004227 : : :.

We carry out two calculations with the same �x D 0:1 (hence 0:2 D x2), and
two different�� :

(a) �� D 0:0005 H) � D 0:05 ;
0:5 D �1000, w2;1000

:D 0:00435
(b) �� D 0:01 H) � D 1,

0:5 D �50, w2;50
:D �1:5 � 108 (the actual numbers depend on the computer)

It turns out that the choice of �� in (a) has led to a reasonable approximation,
whereas the choice in (b) has caused a disaster. Here we have a stability problem!



188 4 Standard Methods for Standard Options

4.2.4 Stability

Let us perform an error analysis of an iteration w.�C1/ D Aw.�/ C d.�/. The
iteration (4.14) is a special case, with matrix Aexpl, and the vector d.�/ vanishes
for our preliminary boundary conditions w0;� D wm;� D 0. In general we use
the same notation w for the theoretical definition of w and for the values of w
obtained by numerical calculations in a computer. Since we now discuss rounding
errors, we must distinguish between the two meanings. Let w.�/ denote the vectors
theoretically defined by the iteration. Hence, by definition, the w.�/ are free of
rounding errors. But in computational reality, rounding errors are inevitable. We
denote the computer-calculated vector by w.�/ and the error vectors by

e.�/ WD w.�/ � w.�/ ;

for � � 0. The w-result can be written

w.�C1/ D Aw.�/ C d.�/ C r.�C1/ ;

where the vectors r.�C1/ represent the rounding errors that occur during the
calculation of Aw.�/ C d.�/. Let us concentrate on the effect of the rounding errors
that occur for an arbitrary �, say for ��. We ask for the propagation of this error for
increasing � > ��. Without loss of generality we set �� D 0, and for simplicity take
r.�/ D 0 for � > 1. That is, we investigate the effect the initial rounding error e.0/

has on the iteration. The initial error e.0/ represents the rounding error during the
evaluation of the initial condition (4.5)/(4.6), when w.0/ is calculated. According to
this scenario, w.�C1/ D Aw.�/ C d.�/ for � > 1. The relation

Ae.�/ D Aw.�/ � Aw.�/ D w.�C1/ � w.�C1/ D e.�C1/

between consecutive errors is applied repeatedly and results in

e.�/ D A�e.0/ : (4.15)

For the method to be stable, previous errors must be damped. This leads to require
A�e.0/ ! 0 for � ! 1. Elementwise this means lim�!1f.A�/ijg D 0 for � ! 1
and for any pair of indices .i; j/. The following lemma provides a criterion for this
requirement.

Lemma 4.2

�.A/ < 1 ” A�z! 0 for all z and � !1
” lim

�!1f.A
�/i;jg D 0
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Here �.A/ is the spectral radius of A,

�.A/ WD max
k
j�A

k j ;

where �A
1 ; : : : ; �

A
m�1 denote the eigenvalues of A, labeled with index k. The proof

can be found in text books on numerical analysis, for example, in [198]. As a
consequence of Lemma 4.2 we require for stable behavior that j�A

k j < 1 for all
eigenvalues, here for k D 1; : : : ;m � 1. To check the criterion of Lemma 4.2, the
eigenvalues �A

k of A are needed. The matrix A can be written

A D I � � 


0
BBBB@

2 �1 0

�1 : : : : : :
: : :

: : : �1
0 �1 2

1
CCCCA

„ ƒ‚ …
DWG

:

It remains to investigate the eigenvalues �A or �G of the tridiagonal matrices A or
G.3

Lemma 4.3 Let

G D

0
BBBB@

˛ ˇ 0



: : :

: : :

: : :
: : : ˇ

0 
 ˛

1
CCCCA

be an N2-matrix. The eigenvalues �G
k are

�G
k D ˛ C 2ˇ

r



ˇ
cos

k	

N C 1 ; k D 1; : : : ;N :

Proof The eigenvectors v.k/ of G are

v.k/ D
 r




ˇ
sin

k	

N C 1;
	r




ˇ


2
sin

2k	

N C 1; : : : ;
	r




ˇ


N

sin
Nk	

N C 1

!tr

:

Substitute this into Gv D �Gv. ut

3The zeros in the corner of the matrix G symbolize the triangular zero structure of (4.13).
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To apply Lemma 4.3 to A or to G observe N D m�1, and for G ˛ D 2, ˇ D 
 D �1.
Accordingly, the eigenvalues �G and the eigenvalues �A are

�G
k D 2 � 2 cos

k	

m
D 4 sin2

	
k	

2m



;

�A
k D 1 � ��G D 1 � 4� sin2

k	

2m
:

Now we can state the stability requirement j�A
k j < 1 as

ˇ̌
ˇ̌1 � 4� sin2

k	

2m

ˇ̌
ˇ̌ < 1; k D 1; : : : ;m � 1 :

This implies the two inequalities � > 0 and

�1 < 1 � 4� sin2
k	

2m
; rewritten as

1

2
> � sin2

k	

2m
:

The largest sin-term is sin .m�1/	
2m ; for increasing m this term grows monotonically

approaching 1. In summary we have shown for (4.13)/(4.14)

For 0 < � � 1

2
the explicit method w.�C1/ D Aw.�/ is stable.

In view of � D ��=�x2 this stability criterion amounts to bounding the �� step
size,

0 < �� � �x2

2
: (4.16)

This explains what happened with Example 4.1. The values of � in the two cases of
this example are

(a) � D 0:05 � 1

2
;

(b) � D 1 >
1

2
:

In case (b) the chosen�� and hence � were too large, which led to an amplification
of rounding errors resulting eventually in the “explosion” of the w-values.

The explicit method is stable only as long as (4.16) is satisfied. As a consequence,
the parameters m and �max of the grid resolution can not be chosen independent of
each other. If the demands for accuracy are high, the step size �x will be small,
which in view of (4.16) bounds�� quadratically. This situation suggests searching
for a method that is unconditionally stable.
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4.2.5 An Implicit Method

Introducing the explicit method in Sect. 4.2.3, we have approximated the time
derivative with a forward difference, “forward” as seen from the �th time level.
Now we try the backward difference in

@yi;�

@�
D yi;� � yi;��1

��
C O.��/ ;

which yields the alternative to (4.12)

� �wiC1;� C .1C 2�/wi;� � �wi�1;� D wi;��1 : (4.17)

The Eq. (4.17) relates the time level � to the time level � � 1. For the transition
from � � 1 to � only the value wi;��1 on the right-hand side of (4.17) is known,
whereas on the left-hand side of the equation three unknown values of w wait to be
computed. Equation (4.17) couples three unknowns. The corresponding stencil is
shown in Fig. 4.3. There is no simple explicit formula with which the unknowns can
be obtained one after the other. Rather a system must be considered, all equations
simultaneously. A vector notation reveals the structure of (4.17): With the matrix

A WD Aimpl WD

0
BBBB@

1C 2� �� 0

�� : : :
: : :

: : :
: : : ��

0 �� 1C 2�

1
CCCCA (4.18)

the vector w.�/ is implicitly defined as solution of the system of linear equations
Aw.�/ D w.��1/. To have a consistent numbering, rewrite this as

Aw.�C1/ D w.�/ for � D 0; : : : ; �max � 1 : (4.19)

Fig. 4.3 Stencil of the
backward-difference method
(4.17)
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(Again we set w0;� D wm;� D 0.) For each time level � such a system of equations
must be solved. This method is sometimes called implicit method. But to distinguish
it from other implicit methods, we call it fully implicit, or backward-difference
method, or more accurately backward time centered space scheme (BTCS). The
method is unconditionally stable for all�� > 0. This is shown analogously as in the
explicit case (�! Exercise 4.2). The costs of this implicit method are low, because
the matrix A is constant and tridiagonal. Initially, for � D 0, the LR-decomposition
(�! Appendix C.1) is calculated once. Then the costs for each � are only of the
order O.m/.

4.3 Crank–Nicolson Method

For the methods of the previous section the discretizations of @y
@�

are of the order

O.��/. It seems preferable to use a method where the time discretization of @y
@�

has
the better order O.��2/, and the stability is unconditional. Let us again consider
Eq. (4.2), the equivalent to the Black–Scholes equation,

@y

@�
D @2y

@x2
:

Crank and Nicolson suggested to average the forward- and the backward difference
method. For easy reference, we collect the underlying approaches from the above:
forward for �:

wi;�C1 � wi;�

��
D wiC1;� � 2wi;� C wi�1;�

�x2

backward for � C 1:

wi;�C1 � wi;�

��
D wiC1;�C1 � 2wi;�C1 C wi�1;�C1

�x2

Addition yields

wi;�C1 � wi;�

��
D 1

2�x2
.wiC1;� � 2wi;� C wi�1;� C wiC1;�C1 � 2wi;�C1 C wi�1;�C1/

(4.20)

The Eq. (4.20) involves in each of the time levels � and � C 1 three values of w
(Fig. 4.4). This is the basis of an efficient method. Its features are summarized in
Theorem 4.4.
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Fig. 4.4 Stencil of the
Crank–Nicolson method
(4.20)

i+1ii−1
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Theorem 4.4 (Crank–Nicolson)

1.) For y 2 C4 the order of the method is O.��2/C O.�x2/.
2.) For each � a linear system of a simple tridiagonal structure must be solved.
3.) Stability holds for all �� > 0.

Proof

1.) order: A practical notation for the symmetric difference quotient of second order
for yxx is

ıxxwi;� WD wiC1;� � 2wi;� C wi�1;�
�x2

: (4.21)

Apply the operator ıxx to the exact solution y. Then by Taylor expansion for
y 2 C4 one shows

ıxxyi;� D @2

@x2
yi;� C �x2

12

@4

@x4
yi;� C O.�x4/ :

The local discretization error � describes how well the exact solution y of (4.2)
satisfies the difference scheme,

� WD yi;�C1 � yi;�

��
� 1
2
.ıxxyi;� C ıxxyi;�C1/ :

Applying the operator ıxx of (4.21) to the expansion of yi;�C1 at �� and observing
y� D yxx leads to

� D O.��2/C O.�x2/ :

(�! Exercise 4.4)
2.) system of equations: With � WD ��

�x2
the Eq. (4.20) is rewritten

��
2

wi�1;�C1 C .1C �/wi;�C1 � �
2
wiC1;�C1

D �
2
wi�1;� C .1 � �/wi;� C �

2
wiC1;� :

(4.22)

The values of the new time level � C 1 are implicitly given by the system of
Eqs. (4.22). For the simplest boundary conditions w0;� D wm;� D 0 Eq. (4.22) is
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a system of m � 1 equations. With matrices

A W D ACN WD

0
BBBB@

1C � ��
2

0

��
2

: : :
: : :

: : :
: : : ��

2

0 ��
2
1C �

1
CCCCA ;

B W D BCN WD

0
BBBB@

1 � � �
2

0

�
2

: : :
: : :

: : :
: : : �

2

0 �
2
1 � �

1
CCCCA

(4.23)

the system (4.22) is rewritten

Aw.�C1/ D Bw.�/ : (4.24)

The eigenvalues of A are real and lie between 1 and 1 C 2� (follows from the
Theorem of Gerschgorin, see Appendix C.1). This rules out a zero eigenvalue,
and so A must be nonsingular and the solution w.�C1/ of (4.24) is uniquely
defined.

3.) stability: Both matrices A and B can be rewritten in terms of a constant
tridiagonal matrix,

A D I C �

2
G; G WD

0
BBBB@

2 �1 0

�1 : : : : : :
: : :

: : : �1
0 �1 2

1
CCCCA ; B D I � �

2
G :

Now the Eq. (4.24) reads

.2I C �G„ ƒ‚ …
DWC

/w.�C1/ D .2I � �G/w.�/

D .4I � 2I � �G/w.�/

D .4I � C/w.�/ ;

which leads to the formally explicit iteration

w.�C1/ D .4C�1 � I/w.�/ : (4.25)
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The eigenvalues �C
k of C for k D 1; : : : ;m � 1 are known from Sect. 4.2.4,

�C
k D 2C ��G

k D 2C �.2 � 2 cos
k	

m
/ D 2C 4� sin2

k	

2m
:

In view of (4.25) we require for a stable method that for all k

ˇ̌
ˇ̌ 4
�C

k

� 1
ˇ̌
ˇ̌ < 1 :

This is guaranteed because of �C
k > 2. Consequently, the Crank–Nicolson

method (4.20)/(4.23)/(4.24) is unconditionally stable for all � > 0 .�� > 0/.

Although correct boundary conditions are still lacking, it makes sense to
formulate the basic version of the Crank–Nicolson algorithm for the PDE (4.2).

Algorithm 4.5 (Crank-Nicolson)

Start: Choose m; �max; calculate�x; ��
w.0/i D y.xi; 0/ with y from (4.5) or (4.6), 0 � i � m .
Calculate the LR-decomposition of A .

loop: for � D 0; 1; : : : ; �max � 1:
Calculate c WD Bw.�/ (preliminary).
Solve Ax D c using e.g. the LR-decomposition—

that is, solve Lz D Bw.�/ and Rx D z .
w.�C1/ WD x

The LR-decomposition is the symbol for the solution of the system of linear
equations. Later we shall see when to replace it by the RL-decomposition. Obviously
the matrices A and B are not stored in the computer. Next we show how the vector c
in Algorithm 4.5 is modified to realize correct boundary conditions.

4.4 Boundary Conditions

On the unbounded domain �1 < x < 1 the initial-value problem y� D yxx

with initial condition (4.5)/(4.6) and � � 0 is well-posed. But the truncation to
the interval xmin � x � xmax changes the type of the problem. To make the PDE-
problem well-posed in the finite-domain case, boundary conditions must be imposed
artificially. They are not stated in the option’s contract, and are not needed by Monte
Carlo or tree methods. Boundary conditions are the price one has to pay when PDE-
based approaches are applied. Since boundary conditions are often approximations
of the reality, the “localized solution” on the finite domain xmin � x � xmax

in general is different from the solution of the pure initial-value problem. For
simplicity, we neglect this difference, and denote the localized solution again by y.
We need to formulate boundary conditions such that the localized solution is close
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to the solution of the original problem. The choice of boundary conditions is not
unique.

In the variety of possible boundary conditions there are two kinds so important
and so frequent that they have names. For Dirichlet conditions, a value is assigned to
y, whereas a Neumann condition assigns a value to the derivative dy=dx. For a call,
for example, y.xmin/ D 0 is Dirichlet, and @y.xmax/

@x D 1 is Neumann. More generally,
with xb standing for xmin or xmax,

y.xb; t/ D ˛.t/

for some function ˛.t/ is an example of a Dirichlet condition. A discretized version
is w0;� D ˛.��/. That is, our preliminary boundary conditions w0;� D wm;� D 0

have been of Dirichlet type. And a Neumann condition would be

@y.xb; t/

@x
D ˇ.t/

for some function ˇ.t/. On our grid, a second-order approximation (4.8) for this
Neumann condition is

w1;� � w�1;� D ˇ.��/ 2�x ;

which uses a fictive grid point x�1 outside the interval. The required information on
w�1;� is provided by a discretized version of the PDE. Alternatively, the one-sided
second-order difference quotient (4.10) can be applied. As a result, one or more
entries of the matrix A would change, which makes a finite-difference realization
of a Neumann condition a bit cumbersome. Dirichlet conditions are easier to cope
with. Let us try to analyze the value function V.S; t/ for S D 0 and S!1 in order
to derive Dirichlet conditions for Smin and Smax, and for

y.x; �/ for x D xmin and xmax and all � ; or

w0;� and wm;� for � D 1; : : : ; �max ;

all consistent with the Black-Scholes model.
Accordingly, we assume GBM paths satisfying (1.47). Then an initial value S0 D

0 causes St D 0 for all t, and S0 ! 1 implies that St is arbitrarily large, at least
larger than the strike K. The boundary conditions for the expiration time t D T are
obviously given by the payoff � . This gives rise to the simplest cases of boundary
conditions for t < T: As motivated by Figs. 1.1 and 1.2 and Eqs. (1.1), (1.2), the
value VC of a call and the value VP of a put must satisfy

VC.S; t/ D 0 for S D 0; and

VP.S; t/ ! 0 for S!1 (4.26)
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also for all t < T. This follows, for example, from the integral representation (3.25),
because discounting does not affect the value 0 of the payoff. Hence the value VC for
S D 0 can be predicted safely, as well as VP for S.0/ ! 1. These arguments hold
for European as well as for American options, with or without dividend payments.

The boundary conditions on each of the “other sides” of S, where V ¤ 0, are
more difficult. We postpone the boundary conditions for American options to the
next section, and investigate European options in this section.

From (4.26) and the put-call parity (�! Exercise 1.1) we deduce the additional
boundary conditions for European options. The result is

VC.S; t/ D S � Ke�r.T�t/ for S!1
VP.S; t/ D Ke�r.T�t/ � S for S! 0

(4.27)

(without dividend payment, ı D 0). The lower bounds for European options (�!
Appendix E.1) are attained at the boundaries. In (4.27) for S 	 0 we do not discard
the term S, because the realization of the transformation (4.3) requires Smin > 0,
see Sect. 4.2.2.4 Boundary conditions analogous as in (4.27) hold for the case of a
continuous flow of dividend payments (ı > 0). We skip the derivation, which can
be based on transformation (4.3) and the additional transformation S D Seı.T�t/

(�! Exercise 4.5). In summary, the asymptotic boundary conditions for European
options in the .x; �/-world are as follows:

Boundary Conditions 4.6 (European Options)

y.x; �/ D r1.x; �/ for x! �1 ;

y.x; �/ D r2.x; �/ for x!1 ; with

call: r1.x; �/ WD 0 ;
r2.x; �/ WD exp

�
1
2
.qı C 1/xC 1

4
.qı C 1/2�

�
;

put: r1.x; �/ WD exp
�
1
2
.qı � 1/xC 1

4
.qı � 1/2�

�
;

r2.x; �/ WD 0 :

(4.28)

Truncation What can we state about Smin and Smax? We need boundary conditions
for the finite interval

a WD xmin � x � xmax DW b :

The probability that ST < K when S0 D Smin can be estimated by the transition
density (1.64). By the same argument the probability is known that ST > K
when S0 D Smax. Both probabilities are large as long as Smin is small and Smax

large enough. This situation suggests to apply the boundary conditions (4.26)
and (4.27) also to the left-hand boundary Smin and to the right-hand boundary Smax.

4For S D 0 the PDE is no longer parabolic.
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Although (4.28) is valid only for x ! �1 and x ! 1, we apply the dominant
terms r1.x; �/ and r2.x; �/ to approximate boundary conditions at x D a and x D b.
This leads to the boundary conditions

w0;� D r1.a; ��/

wm;� D r2.b; ��/

for all �.
These approximations are explicit formulas and easy to implement. To this end

return to the Crank–Nicolson equation (4.22), in which some of the terms on both
sides of the equations are known by the boundary conditions. For the equation with
i D 1 these are terms

from the left-hand side: � �
2

w0;�C1 D ��
2

r1.a; ��C1/ ;

from the right-hand side:
�

2
w0;� D �

2
r1.a; ��/ ;

and for i D m � 1

from the left-hand side: � �
2

wm;�C1 D ��
2

r2.b; ��C1/ ;

from the right-hand side:
�

2
wm;� D �

2
r2.b; ��/ :

These known boundary values are collected on the right-hand side of system (4.22).
So we finally arrive at

Aw.�C1/ D Bw.�/ C d.�/

d.�/ W D �
2



0
BBBBB@

r1.a; ��C1/C r1.a; ��/
0
:::

0

r2.b; ��C1/C r2.b; ��/

1
CCCCCA

(4.29)

The preliminary version (4.24) is included as special case, with d.�/ D 0. The
statement in Algorithm 4.5 that defines c is modified to the statement

Calculate c WD Bw.�/ C d.�/ :

The methods of Sect. 4.2 can be adapted by analogous formulas. The matrix A is not
changed, and the stability is not affected by adding the vector d, which is constant
with respect to w.
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4.5 Early-Exercise Structure

In Sects. 4.1 through 4.3 we have considered tools for the Black–Scholes differential
equation—that is, we have investigated European options. Now we turn our
attention to American options. Recall that the value of an American option can
never be smaller than the value of a European option,

VAm � VEur:

In addition, an American option has at least the value of the payoff � . So we have
elementary lower bounds for the value of American options, but—as we shall see—
additional numerical problems to cope with.

4.5.1 Early-Exercise Curve

A European option can have a value that is smaller than the payoff (compare, for
example, Fig. 1.6). This can not happen with American options. Recall the arbitrage
strategy: if for instance an American put would have a value VAm

P < .K � S/C,
one would simultaneously purchase the asset and the put, and exercise immediately.
An analogous arbitrage argument implies that for an American call the situation
VAm

C < .S � K/C can not prevail. Therefore the inequalities

VAm
P .S; t/ � .K � S/C for all .S; t/

VAm
C .S; t/ � .S � K/C for all .S; t/

(4.30)

hold. For a put this is illustrated schematically in Fig. 4.5. The inequalities for V
make the problem of calculating an American option nonlinear.

For American options we have stated in (4.26) the boundary conditions that
prescribe V D 0. The boundary conditions at each of the other “ends” of the S-
axis are still needed. In view of the inequalities (4.30) it is clear that the missing
boundary conditions will be of a different kind than those for European options,

Fig. 4.5 V.S; t/ for a put and
a t < T, schematically

S
0

V

K

K

possible European option for t<T

possible American option for t<T

Sf(t)

payoff function
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which are listed in (4.27). Let us investigate the situation of an American put,
which is illustrated in Fig. 4.5. First discuss the left-end part of the curve VP.S; t/,
for small S > 0, and some t < T. Without the possibility of early exercise the
inequality VAm

P .S; t/ D VEur
P .S; t/ < K � S holds for r > 0 and sufficiently small S.

But in view of (4.30) the American put should satisfy VAm
P .S; t/ � K� S at least for

small S. To understand what happens for “medium” values of S, imagine to approach
from the right-hand side, where VAm

P .S; t/ > .K�S/C. Continuity and monotony of
VP suggest that the curve VAm

P .S; t/ merges into the straight line K � S of the payoff
at some value Sf in the interval 0 < Sf < K, see Fig. 4.5. This contact point Sf is
defined by

VAm
P .S; t/ > .K � S/C for S > Sf.t/;

VAm
P .S; t/ D K � S for S � Sf.t/ :

(4.31)

Convexity of V.S; :/ guarantees that there is only one contact point Sf for each t. For
S < Sf the value VAm

P equals the straight line of the payoff and nothing needs to be
calculated. For each t, the curve VAm

P .S; t/ reaches its left boundary at Sf.t/.
The above situation holds for any t < T, and the contact point Sf varies with t,

Sf D Sf.t/. For all 0 � t < T, the contact points Sf.t/ form a curve in the .S; t/-half
strip. This curve Sf is the boundary separating the area with V > payoff from the
area with V D payoff. The curve Sf of a put is illustrated in the left-hand diagram
of Fig. 4.6. A priori the location of the boundary Sf is unknown, the curve is “free.”
This explains why the problem of calculating VAm

P .S; t/ for S > Sf.t/ is called free
boundary problem.

For American calls the situation is similar, except that the contact only occurs
for dividend-paying assets, ı 6D 0. This is seen from

VAm
C � VEur

C � S � Ke�r.T�t/ > S � K

continuecontinue

T

S

stop

t

T

S

call

stop

t

Sf(T) Sf(T)

put

SfSf

Fig. 4.6 Continuation region (shaded) and stopping region for American options: put (left) and
call (right)
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for ı D 0, r > 0, t < T, compare Exercise 1.1. VAm
C > S � K for ı D 0 implies

that early-exercise does not pay. American and European calls on assets that pay no
dividends are identical, VAm

C D VEur
C . A typical curve VAm

C .S; t/ for ı 6D 0 contacting
the payoff is shown in Fig. 4.9. And the free boundary Sf qualitatively looks like the
right-hand diagram of Fig. 4.6.

The notation Sf.t/ for the free boundary is motivated by the process of solving
PDEs. But the primary meaning of the curve Sf is economical. The free boundary Sf

is the early-exercise curve. The time instance ts when a price process St reaches the
early-exercise curve is the optimal stopping time, compare also the illustration of
Fig. 3.10. Let us explain this for the case of a put; for a call with dividend payment
the argument is similar.

For a put, in case S > Sf, early-exercise causes an immediate loss, because (4.31)
implies the exercise balance �VCK � S < 0. Receiving the strike price K does not
compensate the loss of S and V . Accordingly, the rational holder of the option does
not exercise when S > Sf. This explains why the area S > Sf is called continuation
region5 (shaded in Fig. 4.6).

On the other side of the boundary curve Sf, characterized by V D K � S, each
change of S is compensated by a corresponding move of V . Here the only way to
create a profit is to exercise and invest the proceeds K at the risk-free rate r for the
remaining time period T � t. The resulting profit will be

Ker.T�t/ � K ;

which relies on r > 0. (For r D 0 American and European put are identical.) To
maximize the profit, the holder of the option will maximize T � t, and accordingly
exercises as soon as V � K � S is reached. Hence, the boundary curve Sf is the
early-exercise curve. And the area S � Sf is called stopping region.6

Now that the curve Sf is recognized as having such a distinguished importance as
early-exercise curve, we should make sure that the properties of Sf are as suggested
by Figs. 4.6 and 4.7. In fact, the curves Sf.t/ are continuously differentiable in t,
and monotone not decreasing/not increasing as illustrated. For more details see
Appendix A.5. Here we confine ourselves to the bounds given by the limit t ! T
.t < T/:

put: lim
t!T�

Sf.t/ D
�

K for 0 � ı � r
r
ı
K for r < ı

(4.32)

call: lim
t!T�

Sf.t/ D max.K;
r

ı
K/ for ı > 0 (4.33)

5Of course, the holder may wish to sell the option.
6The final balance for a put after exercising is Ker.T�t/. The reader is encouraged to show that
holding is less profitable (Seı.T�t/ < Ker.T�t/), at least for small r.T �t/. When a discrete dividend
is paid, the stopping region is not necessarily connected (�! Exercise 4.1b).
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Fig. 4.7 Early-exercise curves of an American put in .S; t/-planes, r D 0:06, � D 0:3, K D 10,
and dividend rates ı D 0:08 (top), ı D 0:04 (bottom); raw data of a finite-difference calculation
without interpolation or smoothing
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Fig. 4.8 .S; t/-plane, calculated curves of a put matching Figs. 1.4 and 1.5. C1 is the curve Sf. The
three curves C2 have the meaning V < 10�k for k D 3; 5; 7

These bounds express a qualitatively different behavior of the early-exercise curve
in the two situations 0 < ı < r and ı > r. This is illustrated in Fig. 4.7 for a
put. For the chosen numbers, for all ı � 0:06 the limit of (4.32) is the strike K
(lower diagram). Compare to Figs. 1.4 and 1.5 to get a feeling for the geometrical
importance of the curve as contact line where two surfaces merge. For large values
of S the surface V.S; t/ approaches 0 in a way illustrated by Fig. 4.8.

4.5.2 Free-Boundary Problem

Again we start with a put. For the European option, the left-end boundary condition
is formulated for S D 0. For the American option, the left-end boundary is given
along the curve Sf (Fig. 4.5). In order to calculate the free boundary Sf.t/ one needs
an additional condition. To this end consider the right-hand slope @V

@S with which
VAm

P .S; t/ touches at Sf.t/ the straight line K � S, which has the constant slope �1.
By geometrical reasons we can rule out the case @V.Sf.t/;t/

@S < �1 for VAm
P , because

otherwise (4.30) and (4.31) would be violated. Using arbitrage arguments, the case
@V.Sf.t/;t/

@S > �1 can be ruled out as well (�! Exercise 4.6). It remains the condition
@VAm

P .Sf.t/; t/=@S D �1. That is, V.S; t/ touches the payoff function tangentially.
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This tangency condition is commonly called the high-contact condition, or smooth
pasting. For the case of an option without maturity (perpetual option, T D 1) the
tangential touching can be calculated analytically (�! Exercise 4.7). In summary,
two boundary conditions must hold at the contact point Sf.t/:

VAm
P .Sf.t/; t/ D K � Sf.t/

@VAm
P .Sf.t/; t/

@S
D �1

(4.34)

As before, the right-end boundary condition VP.S; t/ ! 0 must be observed for
S!1.

For American calls analogous boundary conditions can be formulated. For a call
in case ı > 0, r > 0 the free boundary conditions

VAm
C .Sf.t/; t/ D Sf.t/ � K

@VAm
C .Sf.t/; t/

@S
D 1

(4.35)

must hold along the right-end boundary for Sf.t/ > K. The left-end boundary
condition at S D 0 remains unchanged. Figure 4.9 shows the situation of an
American call on a dividend-paying asset. The high contact on the payoff is visible.

Fig. 4.9 Value V.S; 0/ of an American call (in green) with K D 10, r D 0:25, � D 0:6, T D 1

and dividend flow ı D 0:2. The corresponding curve of a European call in red; the payoff in blue.
A special calculated value is V.K; 0/ D 2:18728
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We note in passing that the transformation � WD S=Sf.t/, y.�; t/ WD V.S; t/ allows
to set up a Black–Scholes-type PDE on a rectangle. In this way, the unknown front
Sf.t/ is fixed at � D 1, and is given implicitly by an ordinary differential equation
as part of a nonlinear PDE (�! Exercise 4.8). Such a front-fixing approach is
numerically relevant; see the Notes on Sect. 4.7.

4.5.3 Black–Scholes Inequality

The Black–Scholes equation (4.1) is valid on the continuation region (shaded areas
in Fig. 4.6). For the numerical approach of the following Sect. 4.6 the computational
domain will be the entire half strip S > 0; 0 � t � T, including the stopping areas.7

This will allow locating the early-exercise curve Sf. The approach requires to adapt
the Black–Scholes equation in some way to the stopping areas.

To this end, define the Black–Scholes operator as

LBS.V/ WD 1

2
�2S2

@2V

@S2
C .r � ı/S@V

@S
� rV :

With this notation the Black–Scholes equation reads

@V

@t
C LBS.V/ D 0 :

What happens with this operator on the stopping regions? To this end substitute the
payoff function � into @V

@t C LBS.V/. In the case of a put, for S � Sf, V � � and

V D K � S ;
@V

@t
D 0 ; @V

@S
D �1 ; @

2V

@S2
D 0 :

Hence

@V

@t
C LBS.V/ D �.r � ı/S � r.K � S/ D ıS � rK :

Equation (4.32) implies the bound ıS < rK, which leads to conclude

@V

@t
C LBS.V/ < 0 :

7Up to localization.
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That is, the Black–Scholes equation changes to an inequality on the stopping region.
The same inequality holds for the call. (The reader may carry out the analysis for
the case of a call.)

In summary, on the entire half strip 0 < S < 1; 0 < t < T, American options
must satisfy an inequality of the Black–Scholes type,

@V

@t
C 1

2
�2S2

@2V

@S2
C .r � ı/S@V

@S
� rV � 0 : (4.36)

Both inequalities (4.30) and (4.36) hold for all .S; t/. In case the strict inequality
“>” holds in (4.30), equality holds in (4.36). The contact boundary Sf divides the
half strip into the stopping region and the continuation region, each with appropriate
version of V:

put: VAm
P D K � S for S � Sf .stop/

VAm
P solves (4.1) for S > Sf .hold/

call: VAm
C D S � K for S � Sf .stop/

VAm
C solves (4.1) for S < Sf .hold/

This shows that the Black–Scholes equation (4.1) must be solved also for American
options, however, with special arrangements because of the free boundary. We have
to look for methods that simultaneously calculate V along with the unknown Sf.

Notice that @V
@S is continuous when S crosses Sf, but @

2V
@S2

and @V
@t are not continuous.

It must be expected that this lack of smoothness along the early-exercise curve Sf

affects the accuracy of numerical approximations.

4.5.4 Penalty Formulation

In this subsection we outline an approach that allows for a unified treatment of
stopping region and continuation region. The inequality (4.36) can be written as an
equality by introducing a penalty term p.V/ � 0, and requesting

@V

@t
C LBS.V/C p.V/ D 0 : (4.37)

The penalty term p should be zero for the continuation region, and should be positive
for the stopping area. When calculating an approximation V , the distance to Sf is
not known, but the distance V � � of V to the payoff � is available and serves as
decisive building block of a penalty term. There are several possibilities to construct
a penalty p. One classic approach will be described in Sect. 7.2. Another way to set
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up a penalty can be accomplished by a term such as

p.V/ WD �

V � � for a small � > 0 : (4.38)

Let V� denote a solution of the penalty equation (4.37) with penalty function (4.38).
Two extreme cases characterize the effect of the penalty term for .S; t/ in the
continuation area and in the stopping area:

• V� ��  � implies p 	 0. Then essentially the Black–Scholes equation results,
and V� approximates the BS-solution.

• 0 < V� � � � � implies both V� 	 � and a large value of p. The latter means
that the BS-part of (4.37) is dominated by p; the BS equation is switched off.

The corresponding branches of the solution V� may be called the “continuation
branch” ( p 	 0) and the “stopping branch” (V� 	 � ). Obviously these two
branches approximate the true solution V of the Black–Scholes problem. The
intermediate range V� � � 	 O.�/ characterizes a boundary layer between the
continuation branch and the stopping branch. In this layer around the early-exercise
curve Sf the solution V� can be seen as a connection between the BS surface and the
payoff plane.8

Notice that p and the resulting PDE are nonlinear in V , which complicates
the numerical solution. The penalty formulation is advantageous especially in
cases where an analysis of the early-exercise curve is difficult. See Sect. 6.7 for
an exposition of the penalty approach in the two-dimensional situation. For the
standard options of this chapter, we pursue another method, which effectively allows
to preserve linearity.

4.5.5 Obstacle Problem

A brief digression into obstacle problems will motivate the procedure. We assume
an “obstacle” g.x/, say with g.x/ > 0 for a subinterval of �1 < x < 1, g 2 C2,
g00 � 0 and g.�1/ < 0; g.1/ < 0, compare Fig. 4.10. Across the obstacle a function
u with minimal length is stretched like a rubber thread. Between x D ˛ and x D ˇ

the curve u clings to the boundary of the obstacle. For ˛ and ˇ we encounter high-
contact conditions u.˛/ D g.˛/, u0.˛/ D g0.˛/, and u.ˇ/ D g.ˇ/, u0.ˇ/ D g0.ˇ/.
Initially, the two values x D ˛ and x D ˇ are unknown. This obstacle problem is a
simple free-boundary problem.

The aim is to reformulate the obstacle problem such that the free boundary
conditions do not show up explicitly. This may promise computational advantages.
The function u shown in Fig. 4.10 is characterized by the requirements u � g,

8This is illustrated in Topic 9 of the Topics fCF.
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g(x)

α β
x

u(x)

1−1

Fig. 4.10 Function u.x/ across an obstacle g.x/

u.�1/ D u.1/ D 0, u 2 C1, and by: There is ˛; ˇ such that

for � 1 < x < ˛ W u00 D 0 .u > g/

for ˛ < x < ˇ W u D g .u00 D g00 � 0/
for ˇ < x < 1 W u00 D 0 .u > g/ :

The characterization of the two outer intervals is identical. This manifests a
complementarity in the sense

if u � g > 0 ; then u00 D 0 I
if u� g D 0 ; then u00 � 0 :

In retrospect it is clear that American options are complementary in an analogous
way:

if V � � > 0; then Black–Scholes equation
@V

@t
C LBS.V/ D 0 I

if V � � D 0; then Black–Scholes inequality
@V

@t
C LBS.V/ � 0 :

This analogy motivates searching for a solution of the obstacle problem. The
obstacle problem can be reformulated as

find a function u such that

u00.u � g/ D 0 ; �u00 � 0 ; u � g � 0 ;
u.�1/ D u.1/ D 0 ; u 2 C1Œ�1; 1� :

(4.39)

The key line (4.39) is a linear complementarity problem (LCP). This formulation
does not mention the free boundary conditions at x D ˛ and x D ˇ explicitly.
This will be advantageous because ˛ and ˇ are unknown. After a solution to (4.39)
is calculated, the values ˛ and ˇ are read off from the solution. To this end we
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construct a numerical solution procedure for the complementarity version (4.39) of
the obstacle problem.

Discretization of the Obstacle Problem
A finite-difference approximation for u00 on the grid xi D �1C i�x, with �x D 2

m ,
gi WD g.xi/ leads to

.wi�1 � 2wi C wiC1/.wi � gi/ D 0;
�wi�1 C 2wi � wiC1 � 0; wi � gi

for 0 < i < m and w0 D wm D 0. The wi are approximations to u.xi/. In view of
the signs of the factors in the first line in this discretization scheme it can be written
using a scalar product. To see this, define a vector notation using

G WD

0
BBBB@

2 �1 0

�1 : : : : : :
: : :

: : : �1
0 �1 2

1
CCCCA and w WD

0
B@

w1
:::

wm�1

1
CA ; g WD

0
B@

g1
:::

gm�1

1
CA :

Then the discretized complementarity problem is rewritten in the form

.w � g/trGw D 0 ; Gw � 0 ; w � g : (4.40)

To calculate a solution of (4.40) one solves Gw D 0 under the side condition w �
g. This will be explained in Sect. 4.6.4. In Sect. 5.3 we will return to the obstacle
problem with a version as variational problem.

4.5.6 Linear Complementarity for American Put Options

In analogy to the simple obstacle problem described above we now derive a linear
complementarity problem for American options. Here we confine ourselves to
American puts without dividends (ı D 0); the general case will be listed in Sect. 4.6.
The transformations (4.3) lead to

@y

@�
D @2y

@x2
as long as VAm

P > .K � S/C :
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Also the side condition (4.30) is transformed: The relation

VAm
P .S; t/ � .K � S/C D K maxf 1� ex; 0 g

leads to the inequality

y.x; �/ � expf1
2
.q � 1/xC 1

4
.qC 1/2�gmaxf1 � ex; 0g

D expf1
4
.qC 1/2�gmaxf.1 � ex/e

1
2 .q�1/x; 0g

D expf1
4
.qC 1/2�gmaxfe 1

2 .q�1/x � e
1
2 .qC1/x; 0g

D W g.x; �/ :

This function g allows to write the initial condition (4.5)/(4.6) as y.x; 0/ D g.x; 0/.
In summary, we require y� D yxx as well as

y.x; 0/ D g.x; 0/ and y.x; �/ � g.x; �/ ;

and, in addition, boundary conditions, and y 2 C1 with respect to x. For x!1 the
function g vanishes, g.x; �/ D 0, so the boundary condition y.x; �/! 0 for x!1
can be written

y.x; �/ D g.x; �/ for x!1 :

The same holds for x ! �1 (�! Exercise 4.9). In the localizing practice, the
boundary conditions are formulated for xmin and xmax. Collecting all expressions,
the American put is formulated as linear complementarity problem:

	
@y

@�
� @

2y

@x2



.y � g/ D 0 ;

@y

@�
� @

2y

@x2
� 0 ; y � g � 0 ;

y.x; 0/ D g.x; 0/; y.xmin; �/ D g.xmin; �/ ;

y.xmax; �/ D g.xmax; �/ ; y 2 C1 with respect to x :

The exercise boundary is automatically captured by this formulation. An analogous
formulation holds for the American call. Both of the formulations are comprised by
Problem 4.7 below.
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4.6 Computation of American Options

In the previous sections we have derived a linear complimentarity problem for
both put and call of an American-style option. We summarize the results into
Problem 4.7. This assumes for a put r > 0, and for a call ı > 0; otherwise the
American option is not distinct from the European counterpart.

Problem 4.7 (Linear Complementarity Problem)

Notations of (4.3), including

q D 2r

�2
; qı D 2.r � ı/

�2
;

put W g.x; �/ WD expf�
4
..qı � 1/2 C 4q/gmaxfe x

2 .qı�1/ � e
x
2 .qıC1/; 0 g

call W g.x; �/ WD expf�
4
..qı � 1/2 C 4q/gmaxfe x

2 .qıC1/ � e
x
2 .qı�1/; 0 g

	
@y

@�
� @

2y

@x2



.y � g/ D 0

@y

@�
� @

2y

@x2
� 0 ; y � g � 0

xmin � x � xmax ; 0 � � � 1

2
�2T

y.x; 0/ D g.x; 0/

y.xmin; �/ D g.xmin; �/ ; y.xmax; �/ D g.xmax; �/

As outlined in Sect. 4.5, the free boundary problem of American options is described
in Problem 4.7 such that the free boundary condition does not show up explicitly.
We now enter the discussion of how to solve Problem 4.7 numerically.

4.6.1 Discretization with Finite Differences

We use the same grid as in Sect. 4.2.2, with wi;� denoting an approximation to
y.xi; ��/, and gi;� WD g.xi; ��/ for 0 � i � m, 0 � � � �max. The backward
difference, the explicit, and the Crank–Nicolson method can be combined into one
formula,

wi;�C1 � wi;�

��
D 

wiC1;�C1 � 2wi;�C1 C wi�1;�C1
�x2

C

.1 � /wiC1;� � 2wi;� C wi�1;�
�x2

;
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with the choices  D 0 (explicit),  D 1
2

(Crank–Nicolson),  D 1 (backward-
difference method). This family of numerical schemes parameterized by  is often
called -method.

The differential inequality @y
@�
� @2y

@x2
� 0 becomes the discrete version

wi;�C1 � �.wiC1;�C1 � 2wi;�C1 C wi�1;�C1/
� wi;� � �.1 � /.wiC1;� � 2wi;� C wi�1;�/ � 0 ;

(4.41)

again with the abbreviation � WD ��
�x2

. With the notations

bi;� WD wi;� C �.1 � /.wiC1;� � 2wi;� C wi�1;�/ ; i D 2; : : : ;m � 2
b1;� and bm�1;� incorporate the boundary conditions

b.�/ WD .b1;� ; : : : ; bm�1;�/tr

w.�/ WD .w1;� ; : : : ;wm�1;�/tr

g.�/ WD .g1;� ; : : : ; gm�1;�/tr

and

A WD

0
BBBBB@

1C 2� �� 0

�� : : :
: : :

: : :
: : :

: : :

0
: : :

: : :

1
CCCCCA
2 R.m�1/�.m�1/ (4.42)

(4.41) is rewritten in vector form as

Aw.�C1/ � b.�/ for all � :

Such inequalities for vectors are understood componentwise. The inequality y�g �
0 leads to

w.�/ � g.�/ ;

and
�
@y
@�
� @2y

@x2

�
.y � g/ D 0 becomes

�
Aw.�C1/ � b.�/

�tr �
w.�C1/ � g.�C1/� D 0 :

The initial and boundary conditions are

wi;0 D gi;0 ; i D 1; : : : ;m � 1 ; .w.0/ D g.0// I
w0;� D g0;� ; wm;� D gm;� ; � � 1 :
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Boundary conditions are realized in the vectors b.�/ as follows:

b2;� ; : : : ; bm�2;� as defined above,

b1;� D w1;� C �.1 � /.w2;� � 2w1;� C g0;�/C �g0;�C1
bm�1;� D wm�1;� C �.1 � /.gm;� � 2wm�1;� C wm�2;�/C �gm;�C1

(4.43)

We summarize the discrete version of the Problem 4.7 into an Algorithm:

Algorithm 4.8 (Computation of American Options)

For � D 0; 1; : : : ; �max � 1 W
Calculate the vectors g WD g.�C1/;

b WD b.�/ from .4.42/; .4.43/:

Calculate the vector w as solution of the problem

Aw � b � 0 ; w � g ; .Aw � b/tr.w � g/ D 0 : (4.44)

w.�C1/ WD w

This completes the chosen finite-difference discretization.
The remaining problem is to solve the complementarity problem in matrix-vector

form (4.44). In principle, how to solve (4.44) is a new topic independent of the
discretization background. But accuracy and efficiency will depend on the context
of selected methods. We pause for a moment to become aware how broad the range
of possible finite-difference methods is.

There are possible sources of inaccuracies. The payoff is not smooth. And recall
from Sect. 4.5.3 that V.S; t/ is not C2-smooth over the free boundary Sf. Second-
order convergence of the basic Crank–Nicolson scheme must be expected to be
deteriorated. The effect caused by lacking smoothness depends on the choice of
several items, namely, the

(1) kind of transformation/PDE [from no transformation over a mere � WD T � t to
the transformation (4.3)],

(2) kind of discretization (from backward-difference over Crank–Nicolson to more
refined schemes like BDF2),

(3) method of solution for (4.44).

The latter can be a direct elimination method, or an iteratively working indirect
method. Large systems as they occur in PDE context are frequently solved
iteratively, in particular in high-dimensional spaces. Such approaches sometimes
benefit from smoothing properties. Both an iterative procedure (following [376])
and a direct approach (following [52]) will be discussed below. It turns out that
in the one-dimensional scenario of this chapter (one underlying asset), the direct
approach is faster.
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4.6.2 Reformulation and Analysis of the LCP

In each time level � in Algorithm 4.8, a linear complementarity problem (4.44) must
be solved. This is the bulk of work in Algorithm 4.8. Before entering a numerical
solution, we analyze the LCP. Since this subsection is general numerical analysis
independent of the finance framework, we momentarily use vectors x; y; r freely in
other context.9 For the analysis transform problem (4.44) from the w-world into an
x-world with

x WD w � g ;

y WD Aw � b :
(4.45)

Then it is easy to see (the reader may check) that the task of calculating a solution
w for (4.44) is equivalent to the following problem:

Problem 4.9 (Cryer) Compute vectors x and y such that for Ob WD b � Ag

Ax � y D Ob ; x � 0 ; y � 0 ; xtry D 0 : (4.46)

First we make sure that the above problem has a unique solution. To this end one
shows the equivalence of Problem 4.9 with a minimization problem.

Lemma 4.10 Problem 4.9 is equivalent to the minimization problem

min
x�0 G.x/; with G.x/ WD 1

2
.xtrAx/ � Obtrx ; (4.47)

where G is strictly convex.

Proof The derivatives of G are Gx D Ax � Ob and Gxx D A. Lemma 4.3 implies that
A has positive eigenvalues. Hence the Hessian matrix Gxx is symmetric and positive
definite. So G is strictly convex, and has a unique minimum on each convex set in
Rn, for example on x � 0. The Theorem of Karush, Kuhn and Tucker minimizes
G under Hi.x/ � 0, i D 1; : : : ;m. According to this theorem,10 a vector x0 to be a
minimum is equivalent to the existence of a Lagrange multiplier y � 0 with

grad G.x0/C
	
@H.x0/

@x


tr

y D 0 ; ytrH.x0/ D 0 :

9Notation: In this Sect. 4.6.2, x does not have the meaning of transformation (4.3), and r not that
of an interest rate, and y is no PDE solution. Here, x; y 2 Rm�1.
10For the KKT (Karush-Kuhn-Tucker or Kuhn-Tucker) theory we refer to [348, 350]. In our
context, m � 1.
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The set x � 0 leads to define H.x/ WD �x. Hence the KKT condition is Ax � Ob C
.�I/try D 0, ytrx D 0, and we have reached Eq. (4.46). ut

4.6.3 Iterative Procedure for the LCP

An iterative procedure can be derived from the minimization problem stated in
Lemma 4.10. This algorithm is based on the SOR11 method [92]. Note that (4.44) is
not in the easy form of equation Ax D b discussed in Appendix C.2; a modification
of the standard SOR will be necessary. The iteration of the SOR method for
Ax D Ob D b � Ag is written componentwise (�! Exercise 4.10) as iteration for
the correction vector x.k/ � x.k�1/:

r.k/i WD Obi �
i�1X
jD1

aijx
.k/
j � aiix

.k�1/
i �

nX
jDiC1

aijx
.k�1/
j ; (4.48)

x.k/i D x.k�1/
i C !R

r.k/i

aii
: (4.49)

Here k denotes the number of the iteration, n D m�1, and aij is element of the matrix
A. In the cases i D 1, i D m � 1 one of the sums in (4.48) is empty. The relaxation
parameter !R is a factor chosen in a way that should improve the convergence of
the iteration. The “projected” SOR method for solving (4.46) starts from a vector
x.0/ � 0 and is identical to the SOR method up to a modification on (4.49) serving
for x.k/i � 0.

Algorithm 4.11 (PSOR, Projected SOR for Problem 4.9)

outer loop W k D 1; 2; : : :
inner loop W i D 1; : : : ;m � 1

r.k/i as in (4.48) ;

x.k/i D max

(
0; x.k�1/

i C !R
r.k/i

aii

)
;

y.k/i D �r.k/i C aii

�
x.k/i � x.k�1/

i

�
:

11Successive overrelaxation, SOR. For an introduction to classic iterative methods for the solution
of systems of linear equations Ax D b we refer to Appendix C.2.
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This algorithm solves Ax D Ob for Ob D b � Ag iteratively by componentwise
considering x.k/ � 0. The vector y or the components y.k/i converging to yi, are
not used explicitly for the algorithm. But since y � 0 is shown (Aw � b), the vector
y plays an important role in the proof of convergence. Transformed back into the
w-world of problem (4.44) by means of (4.45), the Algorithm 4.11 solves (4.44).

A proof of the convergence of Algorithm 4.11 is based on Lemma 4.10. One
shows that the sequence defined in Algorithm 4.11 minimizes G. The main steps of
the argumentation are sketched as follows:

For 0 < !R < 2 the sequence G.x.k// is decreasing monotonically;
Show x.kC1/ � x.k/ ! 0 for k!1;
The limit exists because x.k/ moves in a compact set fx j G.x/ � G.x.0//g;
The vector r from (4.48) converges toward �y;
Assuming r � 0 and rtrx ¤ 0 leads to a contradiction to x.kC1/ � x.k/ ! 0. (For
the proof see [92].)

4.6.4 Direct Method for the LCP

Another formulation has shown to be a basis for a direct solution by elimination:

Problem 4.12 (Cryer’s Problem Restated)

Solve Aw D b componentwise such that
the side condition w � g is obeyed.

An implementation must be done carefully such that the boundary conditions and all
the LCP requirements in (4.46) are met. The structure of Problem 4.12 is different
from the system Aw D b without side condition [201].

Recall that a direct method to solve a system Aw D b of linear equations
establishes in a first phase an equivalent system QAw D Qb with a triangular matrix
QA (here bidiagonal since A is tridiagonal). After QA; Qb are calculated, the second
phase (the solution of QAw D Qb) is established in a single loop. For an upper (right)
triangular matrix QA the fist phase is a forward loop, and the subsequent second phase
is backward. This is the familiar form of Gauss elimination, which in this context
may be called “forward-backward method.”

Less familiar is the opposite procedure: In order to establish QA as lower triangular
matrix, the first phase creates zeroes above the diagonal, and hence is done in the
backward fashion. The second phase then solves QAw D Qb in a forward loop. This
is the backward-forward version of Gauss elimination. In our context of solving
Problem 4.12 both versions are not equivalent; renumbering the equations and
variables does not help. This is caused by the side condition w � g, which adds
a nonlinearity, with different conditions on w1 and wm.

When in the second phase in the ith step of the solution loop Qwi is a component
of the solution of QAw D Qb, then wi WD maxf Qwi; gig might appear the correct value.
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But w depends on the orientation of the loop, backward or forward. Only one
direction works. An implementation must make sure that the characteristic order
of the underlying option is preserved. For a put this means:

We denote if the index of the node Si, which is closest to the contact point.12 The
index if marks the location of the free boundary. More precisely,

wi D gi for 1 � i � if, and
wi > gi for if < i � m .

This structure is characteristic for a put, but the index if is unknown. For a put the
start is w1 D g1, and the wi WD maxf Qwi; gig-loop must be forward. Accordingly, for
a put, QA must be a lower triangular matrix, and hence the backward-forward variant
of Gauss elimination is applied. This amounts to an RL-decomposition of A (�!
Appendix C.1). The lower triangle QA WD L is established, and the vector Qb obtained
by solving RQb D b.

Algorithm 4.13 (American Put)

first phase:
Calculate the RL-decomposition of A.
Then set QA D L and calculate Qb from RQb D b (backward loop).

second phase: forward loop for growing i:
Start with i D 1. Calculate the next component of QAw D Qb; denote it Qwi.
Set wi WD maxf Qwi; gig .

This procedure was suggested by Brennan and Schwartz [52]. Since the matrix A
from (4.42) is tridiagonal, the costs are low. In this way, a direct method for solving
Problem 4.12 is established, which is as efficient as solving a standard system
of linear equations. (�! Exercise 4.11) The elegant approach of Algorithm 4.13
allows to treat the nonlinear problem of valuing an American option as if it were
linear.

For a call wi D gi holds for large indices i, and the elimination phase runs in a
backward loop. This requires the traditional upper triangular matrix QA as calculated
by the LR-decomposition (�! Exercise 4.12). For both put and call there is only
one index if separating the components with wi D gi from those with wi > gi.

4.6.5 An Algorithm for Calculating American Options

We return to the original meaning of the variables x; y; r, as used for instance
in (4.2), (4.3). It remains to substitute a proper algorithm for solving (4.44) in
Algorithm 4.8. From the analysis of Sect. 4.6.2, we either apply the iterative
Algorithm 4.11 (�! Exercise 4.13), or implement the fast direct method of

12The S-interval must be large enough, S1 < Sf.
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Algorithm 4.13. The resulting algorithm is formulated in Algorithm 4.14 with
an LCP-solving module. The implementation of the direct version is left to the
reader (�! Exercise 4.11). Recall gi;� WD g.xi; ��/ (0 � i � m) and g.�/ WD
.g1;� ; : : : ; gm�1;�/tr. Figure 4.11 depicts a result of Algorithm 4.14 for Example 1.6.
Here we obtain the contact point with value Sf.0/ D 36:16 (with m D �max D 1600).
Figure 4.13 shows the American put that corresponds to the call in Fig. 4.9.

Algorithm 4.14 (Prototype Core Algorithm)

Set up the function g.x; �/ listed in Problem 4.7.

Choose  . D 1=2 for Crank–Nicolson/:

For PSOR: choose 1 � !R < 2 (for example, !R D 1/;
fix an error bound " (for example, " D 10�5/:

Fix the discretization by choosing xmin; xmax; m; �max

(for example, xmin D �5; xmax D 5 or 3; �max D m D 100/:
Calculate �x WD .xmax � xmin/=m;

�� WD 1

2
�2T=�max ;

xi WD xmin C i�x for i D 0; : : : ;m :
Initialize the iteration vector w with

g.0/ D .g.x1; 0/; : : : ; g.xm�1; 0//:

Calculate � WD ��=�x2 and ˛ WD �:
(Now all elements of matrix A from (4.42) are defined.)

� � loop W for � D 0; 1; : : : ; �max � 1 W
�� WD ���
bi WD wi C �.1 � /.wiC1 � 2wi C wi�1/ for 2 � i � m � 2
b1 WD w1 C �.1� /.w2 � 2w1 C g0;�/C ˛g0;�C1
bm�1 WD wm�1 C �.1 � /.gm;� � 2wm�1 C wm�2/C ˛gm;�C1
Module: Calculate the LCP solution w of Problem 4.12;

preferably by direct elimination as Algorithm 4.13, Exercise 4.11, or

alternatively by implementing an iterative method as Algorithm 4.11:

w.�C1/ D w :



4.6 Computation of American Options 219

Fig. 4.11 Example 1.6: American put, K D 50, r D 0:1, � D 0:4, T D 5
12

. V.S; 0/ (green curve)
and payoff V.S; T/ (blue). Special calculated value: V.K; 0/ D 4:2842

4.6.5.1 Valuing Options

For completeness we mention that it is possible to calculate European options
with Algorithm 4.14 after simple modifications, which recover standard methods
for solving Aw D b (without w � g). If in addition the boundary conditions are
adapted, then the computer program resulting from Algorithm 4.14 can be applied
to European options. Of course, applying the analytic solution formula (A.15)
or (A.17) should be most economical, when the entire surface V.S; t/ is not required.
But for the purpose of testing Algorithm 4.14 it is recommendable to compare its
results to something “known.”

Back to American options, we complete the analysis, summarizing how a
concrete financial task is solved with the core Algorithm 4.14, which is formulated
in artificial variables such as xi; gi;� ;wi and not in financial variables. This requires
an interface between the real world and the core algorithm. The interface is provided
by the transformations in (4.3). This important ingredient must be included for
completeness. Let us formulate the required transition between the real world and
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the numerical machinery of Algorithm 4.14 as another algorithm:

Algorithm 4.15 (American Options)

Input: strike K; time to expiration T; spot price S0; r; ı; � :

Perform the core Algorithm 4.14.

(The �-loop ends at �end D 1

2
�2T:/

For i D 1; : : : ;m � 1 W
wi approximates y.xi;

1

2
�2T/;

Si D K expfxig

V.Si; 0/ D Kwi expf�xi

2
.qı � 1/g expf��end.

1

4
.qı � 1/2 C q/g

Test for early exercise: Approximate Sf.0/ and compare to S0 :

For the direct method, an approximation for Sf.0/ is readily available via Sif . An
indirect method checks the closeness of V to the payoff:

Choose a small "� > 0; for example, "� D K 
 10�5:

if WD maxf i j jV.Si; 0/C Si � Kj < "� g for a put,

if WD minf i j jK � Si C V.Si; 0/j < "� g for a call.

Criterion S0 < Sif indicates the stopping region for a put; for a call, this indication
is S0 > Sif .

Algorithm 4.15 evaluates the data at the final time level �end, which corresponds
to t D 0. The computed information for the intermediate time levels can be
evaluated analogously. In this way, the locations of Sif can be put together to form
an approximation of the free-boundary or stopping-time curve Sf.t/. But note that
this approximation will be a crude step function. It requires some effort to calculate
the curve Sf.t/ with reasonable accuracy, see the illustration of curve c1 in Fig. 4.8
(�! Exercise 4.14).

4.6.5.2 Modifications

The above Algorithm 4.14 (along with Algorithm 4.15) is the prototype of a finite-
difference algorithm. Improvements are possible. For example, the equidistant time
step �� can be given up in favor of a variable time stepping. A few very small
time steps initially will help to quickly damp the influence of the nonsmooth payoff.
The effect of the kink of the payoff at the strike K is illustrated by Fig. 4.12. The
turmoil at the corner is seen, but also the relatively rapid smoothing within a few
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Fig. 4.12 Finite differences, Crank–Nicolson; American put with r D 0:06, � D 0:3, T D 1,
K D 10; M D 1000, xmin D �2, xmax D 2, �x D 1=250, �t D 1=1000, payoff (in blue) and
V.S; t�/ for t� D 1� ��t, � D 1; : : : ; 10

time steps. Figure 4.12 shows explicitly the dependence of V on S; implicit in the
figure is the dependence on t with corresponding oscillations. The effect of the
lack of smoothness is heavier in case the payoff is discontinuous (binary option).
In such a context it is advisable to start with a few fully implicit backward time
steps . D 1/ before switching to Crank–Nicolson . D 1=2/. Such a procedure is
called Rannacher stepping, see [305, 310], and the Notes on Sect. 4.3. After one run
of the algorithm it is advisable to refine the initial grid to have a possibility to control
the error. This simple strategy will be discussed in some more detail in Sect. 4.7.

Practical experience with boundary conditions (4.27) suggests working with
Smin D 0:05 and Smax D 5K. For the transformation (4.3) S D Kex this amounts to
xmin D �3� log K, xmax D 1:6. This is to be modified for other transformations, see
for instance the choice in Fig. 7.4.

4.6.5.3 Sensitivities

The greeks delta, gamma, theta are easily obtained by difference quotients. These
approximations are formed by the V-values that were calculated on the finite-
difference grid. For vega and rho, a recalculation is necessary, see Sect. 1.4.6.
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In general, the comparably expensive solving of appropriate PDEs will not be
necessary (�! Exercise 4.16).

4.7 On the Accuracy

Necessarily, each result obtained with the means of this chapter is subjected to errors
in several ways. The most important errors have been mentioned earlier; in this
section we collect them. Let us emphasize again that in general the existence of
errors must be accepted, but not their magnitude. By investing sufficient effort, many
of the errors can be kept at a tolerable level.

(a) modeling error
The assumptions defining the underlying financial model are restrictive. The
Assumptions 1.2, for example, will not exactly match the reality of a financial
market. Similarly this holds for other models. And the parameters of the models
(such as volatility �) are unknown and must be estimated. Hence the equations
of the model are only crude approximations of “reality.”

(b) discretization errors
Under the heading “discretization error” we summarize several errors that are
introduced when the continuous PDE is replaced by a set of approximating
equations defined on a grid. An essential portion of the discretization error
is the difference between differential quotients and difference quotients. For
example, a Crank–Nicolson discretization error is of the order O.�2/, if � is
a measure of the grid size, and if the solution function is sufficiently smooth.
Other discretization errors include the localization error caused by truncating
the infinite interval �1 < x < 1 to a finite interval, or the implementation
of the boundary conditions, or a quantification error when the strike .x D 0/ is
not part of the grid. In passing we recommend that the strike be one of the grid
points, xk D 0 for one k.

(c) error from solving the linear equation
An iterative solution of the linear systems of equation Aw D b means that the
error approaches 0 when k ! 1, where k counts the number of iterations. By
practical reasons the iteration must be terminated at a finite kmax such that the
effort is bounded. Hence an error remains from the linear equations. The error
tends to be neglectable for direct elimination methods.

(d) rounding error
The finite number of digits l of the mantissa is the reason for rounding errors.

In general, one has no accurate information on the size of these errors. Typically,
the modeling errors are much larger than the discretization errors. In practice,
in view of the uncertainties of modeling, it would be questionable to strive for
an extremely small discretization error. For a stable method, the rounding errors
are the least problem. The numerical analyst, as a rule, has limited potential in
manipulating the modeling error. So the numerical analyst concentrates on the other
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errors, especially on discretization errors. To this end we may use the qualitative
assertion of Theorem 4.4. But such an a priori result is only a basic step toward our
ultimate goal formulated in Problem 4.16.

4.7.1 Elementary Error Control

Here we neglect modeling errors and try to solve the a posteriori error problem:

Problem 4.16 (Principle of an Error Control) Let the exact result of a solution of
the continuous equations be denoted ��. The approximation � calculated by a given
algorithm depends on a representative grid size �, on kmax, on the word length l of
the computer, and maybe on several additional parameters, symbolically written

� D �.�; kmax; l/ :

Choose �; kmax; l such that the absolute error of � does not exceed a prescribed
error tolerance �,

j� � ��j < � :

This problem is difficult to solve, because we implicitly assume an efficient
approximation avoiding an overkill with extremely small values of� or large values
of kmax or l. Time counts in real-time application. So we try to avoid unnecessary
effort of achieving a tiny error j����j � �. The exact size of the error is unknown.
But its order of magnitude can be estimated as follows.

Let us assume the method is of order p. We simplify this statement to

�.�/� �� D 
�p : (4.50)

Here 
 is a priori unknown. By calculating two approximations, say for grid sizes
�1 and�2, the constant 
 can be calculated. To this end subtract the two calculated
approximations �1 and �2,

�1 WD �.�1/ D 
�p
1 C ��

�2 WD �.�2/ D 
�p
2 C ��

to obtain


 D �1 � �2
�

p
1 ��p

2

:
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A simple choice of the grid size �2 for the second approximation is the refinement
�2 D 1

2
�1. This leads to




	
�1

2


p

D �1 � �2
2p � 1 : (4.51)

Especially for p D 2 the relation


�2
1 D

4

3
.�1 � �2/

results. In view of the scenario (4.50) the absolute error of the approximation �1 is
given by

4

3
j�1 � �2j

and the error of �2 by (4.51).
The above procedure does not guarantee that the error � is bounded by �. This

flaw is explained by the simplification in (4.50), and by neglecting the other type
of errors of the above list (b)–(c). Here we have assumed 
 constant, which in
reality depends on the parameters of the model, for example, on the volatility � .
But testing the above rule of thumb (4.50)/(4.51) on European options shows that it
works reasonably well. Here we compare the finite-difference results to the analytic
solution formulas (A.15)/(A.17), the numerical errors of which are comparatively
negligible. The procedure works similar well for American options, although then
the function V.S; t/ is not C2-smooth at Sf.t/. (The effect of the lack in smoothness
is similar as in Fig. 4.12.) In practical applications of Crank–Nicolson’s method one
can observe quite well that doubling of m and �max decreases the absolute error
approximately by a factor of four. To obtain a minimum of information on the error,
the core Algorithm 4.14 should be applied at least for two grids following the lines
outlined above. The information on the error can be used to match the grid size �
to the desired accuracy.

Let us illustrate the above considerations with an example, compare Figs. 4.13
and 4.14, and Table 4.1. For an American put and xmax D �xmin D 5 we
calculate several approximations, and test Eq. (4.50) in the form �.�/ D ��C 
�2.
We illustrate the approximations as points in the .�2; �/-plane. The better the
assumption (4.50) is satisfied, the closer the calculated points lie on a straight line.
Figure 4.14 suggests that this error-control model can be expected to work well.

In order to check the error quality of a computer program on standard American
options, one may check the put-call symmetry relation (A.23). For example, for the
parameters of Fig. 4.13/Table 4.1, the corresponding call with S D K and switched
parameters r D 0:2, ı D 0:25 is calculated, and the results match very well: For
the finest discretization in Table 4.1, about 8 digits match with the value of the
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Fig. 4.13 Value V.S; 0/ of an American put (in green) with K D 10, r D 0:25, � D 0:6, T D
1 and dividend flow ı D 0:2. For special values see Table 4.1. The corresponding curve of a
European option in red, the payoff in blue

Fig. 4.14 Approximations V depending on �2, with � D .xmax � xmin/=m D 1=�max; results of
Fig. 4.13 and Table 4.1
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Table 4.1 Results reported
in Fig. 4.13

m D �max V.10; 0/

50 1:8562637

100 1:8752110

200 1:8800368

400 1:8812676

800 1:8815842

1600 1:8816652

corresponding call. But this is only a necessary criterion for accuracy; the number of
matching digits of (A.23) does not relate to the number of correct digits of V.S; 0/.

4.7.2 Extrapolation

The obviously reasonable error model sketched above suggests applying (4.50) to
obtain an improved approximation � at practically zero cost. Such a procedure is
called extrapolation (�! Exercise 1.11). In a graphical illustration � over �2 as
in Fig. 4.14, extrapolation amounts to construct a straight line through two of the
calculated points. The value of the straight line for �2 D 0 gives the extrapolated
value from

�� 	 4�2 � �1
3

: (4.52)

In our example, this procedure allows to estimate the correct value to be close to
1.8817. Combining, for example, two approximations of rather low quality, namely,
m D 50 with m D 100, gives already an extrapolated approximation of 1:8815. And
based on the two best approximations of Table 4.1, the extrapolated approximation
is 1:881690.13

Typically, the extrapolation formula provided by (4.52) is significantly more
accurate than �2. But we have no further information on the accuracy of �2 from the
calculated �1; �2. Calculating a third approximation �3 reveals more information.
For example, a higher-order extrapolation can be constructed (�! Exercise 4.15).
Figure 4.15 reports on the accuracies.

The convergence rate in Theorem 4.4 was derived under the assumptions of a
structured equidistant grid and a C4-smooth solution. Practical experiments with
nonuniform grids and nonsmooth data suggest that the convergence rate may still
behave reasonably. But the finite-difference discretization error is not the whole
story. The more flexible finite-element approaches in Chap. 5 will shed light on
convergence under more general conditions.

13With m D 20000, our best result was 1.8816935.
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Fig. 4.15 Finite-difference methods, log of absolute error in V.K; 0/ over log.m/, where m D
�max, and the basis of the logarithm is 10. Solid line: plain algorithm, results in Table 4.1; dashed
line: extrapolation (4.52) based on two approximations; dotted line: higher-order extrapolation of
Exercise 4.15. Note that the axes in Fig. 4.15 are completely different from those of Fig. 4.14

4.8 Analytic Methods

Numerical methods typically are designed such that they achieve convergence. So,
in principle, every accuracy can be reached, only limited by the available computer
time and by hardware restrictions. In several cases this high potential of numerical
methods is not needed. Rather, some analytic formula may be sufficient that delivers
medium accuracy at low cost. Such “analytic methods” have been developed. Often
their accuracy is reasonable as compared to the underlying modeling error. The
limited accuracy goes along with a nice feature that is characteristic for analytic
methods: their costs are clear, and known in advance.

In reality there is hardly a clear-cut between numerical and analytic methods.
On the one hand, numerical methods require analysis for their derivation. And
on the other hand, analytic methods involve numerical algorithms. These may be
elementary evaluations of functions like the logarithm or the square root as in the
Black–Scholes formula, or may consist of a sub-algorithm like Newton’s iteration
for zero finding.14 There is hardly a purely analytic method.

14The latter situation might cause some uncertainty on the costs.
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The finite-difference approach, which approximates the surface V.S; t/, requires
intermediate values for 0 < t < T for the purpose of approximating V.S; 0/. In the
financial practice one is basically interested in values for t D 0, intermediate values
are rarely asked for. So the only temporal input parameter is the time to maturity
T � t (or T in case the current time is set to zero, t D 0). Recall that also in the
Black–Scholes formula, time only enters in the form T � t (�! Appendix A.4). So
it makes sense to write the formula in terms of the time to maturity � ,

� WD T � t :

Setting QV.S; �/ WD V.S;T � �/ D V.S; t/ leads to a PDE for QV . We drop the
tilde (throughout Sect. 4.8), and arrive at a compact version of the Black–Scholes
formulas (A.15) or (A.17),

d1.S; � IK; r; �/ WD 1

�
p
�

n
log S

K C
�

rC �2

2

�
�
o
;

d2.S; � IK; r; �/ WD 1

�
p
�

n
log S

K C
�

r � �2

2

�
�
o
D d1 � �p� ;

VEur
P .S; � IK; r; �/ D �SF.�d1/C Ke�r�F.�d2/ ;

VEur
C .S; � IK; r; �/ D SF.d1/ � Ke�r�F.d2/ :

(4.53)

(dividend-free case). F denotes the cumulative standard normal distribution func-
tion. For dividend-free vanilla options we only need an approximation formula for
the American put VAm

P ; the other cases are covered by the Black–Scholes formula.
This Section introduces four analytic methods. The first two (Sects. 4.8.1

and 4.8.2) are described in detail such that the implementation of the algorithms is
an easy matter. Of the method of lines (in Sect. 4.8.3) only basic ideas are set forth.
More detail is presented on the integral representation (Sect. 4.8.4). We assume
r > 0.

4.8.1 Approximation Based on Interpolation

If a lower bound V low and an upper bound Vup on the American put are available,

V low � VAm
P � Vup ;

then the idea is to construct an ˛ aiming at

VAm
P D ˛Vup C .1 � ˛/V low :

This is the approach of [204]. The parameter ˛, 0 � ˛ � 1, defines an interpolation
between V low and Vup. Since VAm

P depends on the market data S; �;K; r; � , the single
parameter ˛ and the above interpolation can not be expected to provide an exact
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value of VAm
P . (An exact value would mean that an exact formula for VAm

P would
exist.) Rather a formula for ˛ is developed as a function of S; �;K; r; � such that the
interpolation formula

˛Vup C .1 � ˛/V low (4.54)

provides a good approximation for a wide range of market data. The smaller the gap
between V low and Vup , the better is the approximation.

An immediate candidate for the lower bound V low is the value VEur
P provided by

the Black–Scholes formula,

VEur
P .S; � IK/ � VAm

P .S; � IK/ :

From (4.27) the left-hand boundary condition of a European put with strike QK is
QKe�r� for all � and all QK. Clearly, for QK D Ker� and S D 0,

VAm
P .0; � IK/ D VEur

P .0; � IKer� / ;

since both sides equal the payoff value K. From the properties of the American put
we know @V

@S � �1 and @2V
@S2
� 0 . Hence we conclude that

VAm
P .S; � IK/ � VEur

P .S; � IKer� /

at least for small S. In fact, this inequality holds for all S > 0, which can be shown
with Jensen’s inequality, see Appendix B.1. In summary, the upper bound is

Vup WD VEur
P .S; � IKer� / ;

see Fig. 4.16. The resulting approximation formula is

V WD ˛VEur
P .S; � IKer� /C .1 � ˛/VEur

P .S; � IK/ : (4.55)

The parameter ˛ depends on S; �;K; r; � , so does V . Actually, the Black–Scholes
formula (4.53) suggests that ˛ and V only depend on the three dimensionless
parameters

S=K (“moneyness”) ; r� ; and �2� :

The approximation must be constructed such that the lower bound .K � S/C of the
payoff is obeyed. As we will see, all depends on the free boundary Sf, which must
be approximated as well.

Johnson [204] sets up a model for ˛ with two free parameters a0; a1, which were
determined by carrying out a regression analysis based on computed values of VAm

P .



230 4 Standard Methods for Standard Options

Fig. 4.16 Bounds on an American put V.S; tI K/ for t D 0 as function of S, with K D 10,
r D 0:06, � D 0:3, � D 1. Medium curve (in green): American put; lower curve (red): European
put VEur.S; 0I K/; upper curve (red): European put VEur.S; 0I QK/, with QK D Ker�

The result is

˛ WD
	

r�

a0r� C a1


ˇ
; where ˇ WD ln.S=Sf/

ln.K=Sf/
;

a0 D 3:9649 ; a1 D 0:032325 :
(4.56)

The ansatz for ˛ is designed such that for S D K (and hence ˇ D 1) upper and
lower bound behavior and calculated option values can be matched with reasonable
accuracy with only two parameters a0; a1. The S-dependent ˇ is introduced to
improve the approximation for S < K and S > K. Obviously, S D Sf ) ˇ D
0 ) ˛ D 1, which captures the upper bound. And for the lower bound, ˛ D 0 is
reached for S ! 1, and for r� D 0. (The reader may discuss (4.56) to check the
assertions.)

The model for ˛ of Eq. (4.56) involves the unknown free-boundary curve Sf. To
approximate Sf, observe the extreme cases

Sf D K for � D 0 ;
Sf D K

2r

�2 C 2r
for T !1 :
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(For the latter case consult Exercise 4.7 and Appendix A.5.) This motivates to set
the approximation Sf for Sf as

Sf WD K

	
2r

�2 C 2r




; (4.57)

for a suitably modeled exponent 
 . To match the extreme cases, 
 should vanish for
� D 0, and 
 	 1 for large values of � . [204] suggests


 WD �2�

b0�2� C b1
;

b0 D 1:04083 ; b1 D 0:00963 :
(4.58)

The constants b0 and b1 were again obtained by a regression analysis.
The analytic expressions of (4.57), (4.58) provide an approximation Sf of Sf, and

then by (4.56), (4.55) an approximation V of VAm
P for S > Sf, based on the Black–

Scholes formulas (4.53) for VEur
P .

Algorithm 4.17 (Interpolation)

For given S; �;K; r; � evaluate 
; Sf; ˇ based on Sf and ˛ :

Evaluate the Black–Scholes formula for VEur
P

for the arguments in (4.55).

Then V from (4.55) is an approximation to VAm
P for S > Sf :

This purely analytic method is fast and simple. Numerical experiments show that the
approximation quality of Sf is poor. But for S not too close to Sf the approximation
quality of V is quite good. The error is small for r� � 0:125, which is satisfied for
average values of the risk-free rate r and time to maturity � . For larger values of r� ,
when the gap between lower and upper bound widens, the approximation works less
well. An extension to options on dividend-paying assets is given in [42].

4.8.2 Quadratic Approximation

Next we describe an analytic method due to [252]. Recall that in the continuation
region both VAm

P and VEur
P obey the Black–Scholes equation. Since this equation is

linear, also the difference

p.S; �/ WD VAm
P .S; �/� VEur

P .S; �/ (4.59)
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satisfies the Black–Scholes equation. The relation VAm � VEur suggests to interpret
the difference p as early-exercise premium. Since both VAm

P and VEur
P have the same

payoff, the terminal condition for � D 0 is zero, p.S; 0/ D 0. The closeness of
p.S; �/ to zero should scale roughly by

H.�/ WD 1 � e�r� : (4.60)

This motivates introducing a scaled version f of p,

p.S; �/ DW H.�/ f .S;H.�// (4.61)

For the analysis we repeat the Black–Scholes equation, here for p.S; �/, where sub-
scripts denote partial differentiation, and q WD 2r

�2
:

� q

r
p� C S2pSS C qSpS � qp D 0 (4.62)

Substituting (4.61) and

pS D HfS ; pSS D HfSS ; p� D H� f C HfHH�

and using

1

r
H� D 1 �H

yields after a short calculation (the reader may check) the modified version of the
Black–Scholes equation

S2fSS C qSfS � q

H
f

1C H.1� H/

fH
f

� D 0 : (4.63)

H and q are nonzero for r > 0. Note that (4.63) is the “full” equation, nothing is
simplified yet. No partial derivative with respect to t shows up, but instead the partial
derivative fH .

At this point, following [252], we introduce a simplifying approximation. The
factor H.H � 1/ for the H varying in the range 0 � H < 1 is a quadratic term
with maximum value of 1=4, and close to zero for � 	 0 and for large values of � ,
compare (4.60). This suggests that the term

H.1 �H/
fH
f

(4.64)
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may be small compared to 1, and to neglect it in (4.63). (This motivates the name
“quadratic approximation.”) The resulting equation

S2fSS C qSfS � q

H
f D 0 (4.65)

is an ordinary differential equation with analytic solution, parameterized by H. An
analysis similar as in Exercise 4.7 leads to the solution

f .S/ D ˛S� ; where � WD �1
2

(
.q � 1/C

r
.q � 1/2 C 4q

H

)
; (4.66)

for a parameter ˛. Combining (4.59), (4.61) and (4.66) we deduce for S > Sf the
approximation V

VAm
P .S; �/ 	 V.S; �/ WD VEur

P .S; �/C ˛H.�/S� : (4.67)

The parameter ˛ must be such that V reaches the payoff at Sf,

VEur
P .Sf; �/C ˛HS�f D K � Sf : (4.68)

Here Sf is parameterized by H via (4.60), and therefore depends on � . To fix the
two unknowns Sf and ˛ let us warm up the high-contact condition. This requires the
partial derivative of V with respect to S. The main part is

@VEur
P .S; �/

@S
D F.d1/ � 1

where F is the cumulative normal distribution function, and d1 (and below d2) are the
expressions defined by (4.53). d1 and d2 depend on all relevant market parameters;
we emphasize the dependence on S by writing d1.S/. This gives the high-contact
condition

@V.Sf; �/

@S
D F.d1.Sf//� 1C ˛�HS��1

f D �1 ;

and immediately ˛ in terms of Sf:

˛ D �F.d1.Sf//

�HS��1
f

: (4.69)

Substituting into (4.68) yields one equation for the remaining unknown Sf,

VEur
P .Sf; �/ � F.d1.Sf//

1

�
Sf D K � Sf ;
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which in view of the put-call parity (A.16) and F.�d/ D 1 � F.d/ reads

SfF.d1/� Ke�r�F.d2/� Sf C Ke�r� � F.d1/
Sf

�
� K C Sf D 0 :

This can be summarized to

Sf F.d1.Sf//

1 � 1

�

�C Ke�r�

1 � F.d2.Sf//

� � K D 0 : (4.70)

Since d1 and d2 vary with Sf, (4.70) is an implicit equation for Sf and must be solved
iteratively. In this way a sequence of approximations S1; S2; : : : to Sf is constructed.
We summarize

Algorithm 4.18 (Quadratic Approximation)

For given S; �;K; r; � evaluate q D 2r

�2
; H D 1 � e�r� and � from (4.66).

Solve (4.70) iteratively for Sf :

(This involves a sub-algorithm, from which F.d1.Sf// should be saved.)

Evaluate VEur
P .S; �/ using the Black–Scholes formula (4.53).

V WD VEur
P .S; �/� 1

�
SfF.d1.Sf//

	
S

Sf


�
(4.71)

is the approximation for S > Sf ;

and V D K � S for S � Sf :

Note that � < 0, and � depends on � via H.�/. The time-consuming part of the
quadratic-approximation method consists of the numerical root finding procedure.
But here a moderate accuracy suffices, since a very small error in Sf does not affect
the error in NV . (�! Exercises 4.17 and 4.18)

4.8.3 Analytic Method of Lines

In solving PDEs numerically, the method of lines is a well-known approach. It
is based on a semidiscretization, where the domain (here the .S; �/ half strip) is
replaced by a set of lines parallel to the S-axis, each defined by a constant value
of � . To this end, the interval 0 � � � T is discretized into �max sub-intervals by
�� WD ��� ,�� WD T=�max, � D 1; : : : ; �max�1. To deserve the attribute “analytic,”
we assume �max to be small, say, work with three lines. We write the Black–Scholes
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equation as in Sect. 4.5.3,

� @V.S; �/

@�
C LBS.V.S; �// D 0 ; (4.72)

where the negative sign compensates for the transition from t to � , and replace the
partial derivative @V=@� by the difference quotient

V.S; �/� V.S; � ���/
��

:

This gives a semidiscretized version of (4.72), namely, the ordinary differential
equation

w.S; � ���/� w.S; �/C�� LBS.w.S; �// D 0 ;

which holds for S > Sf. Here we use the notation w rather than V to indicate that
a discretization error is involved. This semidiscretized version is applied for each
of the parallel lines, � D �� , � D 1; : : : ; �max � 1. Figure 4.17 may motivate the
procedure. For each line � D �� , the function w.S; ���1/ is known from the previous
line, starting from the known payoff for � D 0. The equation to be solved for each
line �� is

1

2
�� �2S2

@2w

@S2
C�� rS

@w

@S
� .1C�� r/w D �w.
; ���1/ : (4.73)

Fig. 4.17 Method of lines, situation as in Fig. 1.5. The early-exercise curve is indicated
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ν ν−1 ν−2
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τS (       )
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τ

Fig. 4.18 Method of lines, situation along line �� : A: solution is given by payoff; B: inhomoge-
neous term of differential equation given by payoff; C: inhomogeneous term given by �w.:; ���1/

This is a second-order ordinary differential equation for w.S; ��/, with boundary
conditions for Sf.��/ and S ! 1. The solution is obtained analytically, similar as
in Exercise 4.7. Hence there is no discretization error in S-direction. The right-hand
function �w.S; ���1/ is known, and is an inhomogeneous term of the ODE.

The resulting analytic method of lines is carried out in [66]. The above describes
the basic idea. A complication arises from the early-exercise curve, which separates
each of the parallel lines into two parts. Since for the previous line ���1 the
separation point lies more “on the right” (recall that for a put the curve Sf.�/

is monotonically decreasing for growing �), the inhomogeneous term w.
; ���1/
consists of two parts as well, but separated differently (see Fig. 4.18). Accordingly,
neglecting for the moment the input of previous lines ���2; ���3; : : :, the analytic
solution of (4.73) for the line �� consists of three parts, defined on the three intervals

A: 0 < S < Sf.��/ ;

B: Sf.��/ � S < Sf.���1/ ;

C: Sf.���1/ � S :

On the left-hand interval A, w equals the payoff; nothing needs to be calculated.
For the middle interval B the inhomogeneous term �w.:; ���1/ is given by the
payoff. Since the analytic solution involves two integration constants, and since the
inhomogeneous terms differ on the intervals B and C, we encounter together with
the unknown Sf.��/ five unknown parameters. One of the integration constants is
zero because of the boundary condition for S!1, similar as in Exercise 4.7. The
unknown separation point Sf.��/ is again fixed by the high-contact conditions (4.34).
Two remaining conditions are given by the requirement that both w and dw

dS are
continuous at the matching point Sf.���1/. This fixes all variables for the line �� .

Over all lines, �max type-B intervals are involved, and the only remaining type-C
interval is that for S � Sf.�0/ D K. The resulting formulas are somewhat complex,
for details see [66]. The method is used along with extrapolation. To this end, carry
out the method three times, with �max D 1; 2; 3, and denote the results V1;V2;V3.
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Then the three-point extrapolation formula

V WD 1

2
. 9V3 � 8V2 C V1 / (4.74)

gives rather accurate results.
The method of lines can be carried out numerically [273]. For lines parallel to

the t-axis, see Exercise 4.3 and Fig. 4.21.

4.8.4 Integral-Equation Method

Recall for European put options the integral representation (1.66)

VEur
P .S; �/ D e�r�

Z 1

0

.K � ST/
C fGBM.ST ; � I S; r � ı; �/ dST ;

where � WD T � t denotes the remaining time to expiration, and fGBM is the density
function from (1.64). Solving this integral one arrives at the Black–Scholes formula.
We repeat from (4.53) the two functions (here with constant dividend yield rate
ı � 0),

d1.S; � IK/ WD
log S

K C
�

r � ı C �2

2

�
�

�
p
�

; d2.S; � IK/ WD d1 � �
p
� ; (4.75)

for � > 0. With d1, d2 evaluated at S; �;K, recall

VEur
P .S; �/ D �Se�ı�F.�d1/C Ke�r�F.�d2/ ;

where F denotes the standard normal cumulative distribution. (See also
Appendix A.4.) Further recall from (4.59) the early-exercise premium p, with

VAm
P .S; �/ D VEur

P .S; �/C p.S; �/ :

As suggested by [222] and others, the premium function p can be represented as
an integral over functions depending on the free boundary Sf. The result is

VAm
P .S; �/ D VEur

P .S; �/C
C
Z �

0

Œ rKe�r�F.�d2.S; �I Sf.� � �///
�ıSe�ı�F.�d1.S; �I Sf.� � �/// � d� :

(4.76)
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The integral is identical to

Z �

0

Œ rKe�r.���/F.�d2.S; � � �I Sf.�///

�ıSe�ı.���/F.�d1.S; � � �I Sf.�/// � d� :
(4.77)

4.8.4.1 Integral Equation for Sf

Substitute V.Sf.�/; �/ D K � Sf.�/ into (4.76) and obtain

K � Sf.�/ D � Sf.�/ e�ı� F.�d1.Sf.�/; � IK//
C Ke�r� F.�d2.Sf.�/; � IK//
C
Z �

0

Œ rKe�r� F.�d2.Sf.�/; �I Sf.� � �///
�ıSf.�/ e�ı� F.�d1.Sf.�/; �I Sf.� � �/// � d� :

(4.78)

This constitutes an integral equation for the free-boundary function (early-exercise
curve) Sf.�/ of an American put.

4.8.4.2 Numerical Solution of the Integral Equation

We denote the integrand in (4.78) by g.Sf.�/; Sf.� � �/; �/ (�! Exercise 4.19). So
the integral equation reads

K � Sf.�/ D VEur
P .Sf.�/; �/C

Z �

0

g.Sf.�/; Sf.� � �/; �/ d� :

Let the �-interval be subdivided by discrete �� into M subintervals, with �0 D 0,
�M D � , and with equidistant steps �� D �=M, and �� D ��� . The numerical
treatment resembles that for ODE initial-value problems. Basically the integral is
approximated by a composite trapezoidal sum (C.2). Note from Appendix A.5 that
Sf.�/ for � ! 0C is known,

Sf0 WD lim
�!0C

Sf.�/ D minfK; r

ı
Kg :

We use the notation Sf� WD Sf.��/. Specifically for �1, the integral and (4.78) can be
approximated by the trapezoidal rule

K � Sf1 D VEur
P .Sf1; �1/C ��

2
Œg.Sf1; Sf1; �0/C g.Sf1; Sf0; �1/� ; (4.79)
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which is solved iteratively for its only unknown Sf1 by any root-finding procedure.
After Sf1 is calculated to sufficient accuracy, the next equation is

K � Sf2 D VEur
P .Sf2; �2/

C ��

2
Œg.Sf2; Sf2; �0/C 2g.Sf2; Sf1; �1/C g.Sf2; Sf0; �2/� ;

which is solved for Sf2. In this way, the composite trapezoidal sum builds up until
we reach the final iteration for SfM . So, recursively for k D 2; : : : ;M solve

K � Sfk D VEur
P .Sfk; �k/C

C��
2

"
g.Sfk; Sfk; �0/C 2

k�1X
�D1

g.Sfk; Sf.k��/; ��/C g.Sfk; Sf0; �k/

#
(4.80)

for Sfk. This recursion is run for � D T to obtain values for t D 0.
The iterative solution of the above nonlinear equations [as (4.79), (4.80)] can be

done, for example, by the secant method (C.5). The error control of the integral-
equation method represented by (4.80) involves the discretization error of the
trapezoidal sum as well as the error remaining when the secant iteration is stopped.
Recall that the secant method requires two reasonable initial guesses. Alternatively,
we recommend the highly robust bisection method. There is ample opportunity to
test various strategies (�! Exercise 4.20).

4.8.4.3 Evaluation of the Premium

Now, the free boundary Sf is approximated by the chain of points

.�0; Sf0/; .�1; Sf1/; : : : ; .�M; SfM/ :

Based on this approximation, the evaluation of (4.76) is a simple task. Apply the
analogous trapezoidal sum with the same discretization to approximate V.S; �/ for
� D �M:

V.S; �/ 	 VEur
P .S; �/C

C��
2
Œg.S; SfM; 0/C 2

M�1X
�D1

g.S; Sf.M��/; ��/C g.S; Sf0; �/� :
(4.81)

The evaluation of (4.81) does not need any further iteration and is much cheaper
than the preceding recursion (4.80).
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4.8.4.4 Calculation of the Greeks

The same holds true for evaluating greeks. After calculating the partial derivatives
of (4.76), one obtains corresponding formulas for the greeks. For example, delta is
given by the formula

�Am
P D �e�ı� F.�d1/ �

Z �

0

g�P d�

for a function g�P defined below. The calculation works as simply as in (4.81); the
free boundary Sf is not calculated again. And similarly, other greeks are obtained,
both for put and call. The resulting formulas are given in [190]. With the version
of (4.77), and d1 evaluated at the arguments .S; � � �; Sf.�//,

g�P D ıe�ı.���/ F.�d1.S; � � �; Sf.�///C e�d21=2p
2	

e�ı.���/ rK � ıSf.�/

�Sf.�/
p
� � � :

For these arguments and � ! � , jd1j is getting infinite, and

g�P D
(
0 for S > Sf ;

ı for S < Sf :

4.8.5 Other Methods

The early-exercise curve Sf.�/ can be approximated by pieces of exponential
functions

B exp.b�/ for �1 � � � �2 ;

for parameters B; b and suitable intervals for � . Substituting this expression for
Sf.�/ into d1 and d2 in (4.76) leads to the observation that the integrals can be
evaluated analytically in terms of the distribution function F. The parameters B; b
are determined such that the high-contact boundary-condition condition is satisfied.
Depending on the number of pieces of exponential functions, a good approximation
of (4.76) is obtained. This is the method of [208]. The accuracy of the highly
efficient three-piece approximation corresponds to that of the integral-equation
method with about M D 100 subintervals.

[56] establishes LUBA, an analytic method for American calls. The derivation
is beyond the scope of this textbook, but is worth at least a brief sketch because
of its striking computational power. The method starts from a capped call, which
is basically a vanilla European call, with the exception that for t < T the
option is exercised at the first time t such that St reaches the cap. The price
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of the capped call can be replicated with two barrier options. Their analytical
formulas constitute a lower bound LB on the option. This in turn, via the integral
representation (4.76) lends to an upper bound UB. Then LB and UB are interpolated
with a regression ansatz comparable to the interpolation of Sect. 4.8.1. The resulting
specific approximation of [56] is called LUBA, which stands for lower upper bound
approximation.

4.9 Criteria for Comparisons

In this chapter, we have learned about the basic structure of finite-difference
methods, and we have studied several analytic approaches. How do these methods
compare? As we shall see, this question is difficult to answer. There are several
criteria to judge the performance of a computational method. The criteria include
reliability, range of applicability, amount of information provided by the method,
and speed, and error. Speed and error are relatively easy to compare, and we shall
concentrate on these two criteria.

For the computational arena, we need to define a set of test examples, based on
which we have to calculate a benchmark in high accuracy. Results of any chosen
method will be compared to the benchmark. To measure the deviation, a suitable
error must be defined. This Sect. 4.9 roughly sketches the steps of a comparison.

4.9.1 Set of Test Examples

We concentrate on the valuation of plain-vanilla options. This restriction to vanillas
has the advantage that all kind of numerical methods are applicable and can be
compared. And we confine ourselves to the valuation of American put options. The
parameters K; S;T; �; r; ı are chosen

• K D 100
• S 2 f90; 100; 110; 150g
• T 2 f0:5; 1; 2g
• � 2 f0:1; 0:3; 0:5g
• r 2 f0:05; 0:1g for ı D 0; r 2 f0:15; 0:2g for ı D 0:1
Altogether these are 72 combinations with dividend rate ı D 0 and as many for
ı D 0:1. But for � D 0:1, in 12 of these cases, either

V.S; 0/ 	 0 or V.S; 0/ D payoff
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occurs. In these cases, a relative error is meaningless, or nothing is to be calculated.
Hence we remove theses 12 cases .� D 0:1; S D 90; S D 150/. The remaining 60
parameter combinations were organized into two files.15

For each set of parameters we calculated V.S; 0/ with rather high accuracy (7–8
decimal digits). To this end, we applied as reference method an extrapolation based
on finite-difference approximations, as suggested in Sect. 4.7.2. The obtained values
complete the benchmark files. Any method can be compared to the benchmark as
long as its relative error is not smaller than 10�6.

4.9.2 Measure of the Error

To measure performances, we calculate the root mean square relative error

RMS WD
vuut 1

60

60X
iD1

	
Vi � Vi

Vi


2
: (4.82)

Here Vi denotes the “accurate” benchmark value of the ith parameter combination,
and Vi denotes the value calculated with the method whose performance is to be
measured.

4.9.3 Arena of Competing Methods

We have chosen the following prototypical methods:

B-M: binomial method with M time steps, Algorithm 1.4,
M D 12; 25; 50; : : : ; 1600;

FD-BS-M: finite differences Brennan–Schwartz, Algorithm 4.15,
with M WD m D �max, M D 200; 400; : : : ; 6400;

J: Johnson’s interpolation, Algorithm 4.17;
Q: quadratic approximation, Algorithm 4.18;
I-M: integral-equation method with M subintervals, Sect. 4.8.4,

M D 50; 100; : : : ; 3200;
FD-BS-ex: version of FD-BS with two solutions with M and M=2

and extrapolation.

Keep in mind that the above methods provide different amount of information; in
some sense we compare apples with oranges. The integer M represents a fineness of

15The files BENCHMARK00 for ı D 0 and BENCHMARK01 for ı D 0:1 can be found on www.
compfin.de.

www.compfin.de
www.compfin.de
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Fig. 4.19 Computing times and RMS errors of several methods, see the text. Points mark
calculated RMS errors; corresponding points are connected by lines

discretization, which is consecutively doubled for clarity of exposition. Computing
times in Fig. 4.19 report the time in seconds needed to valuate all of the 60 options
for ı D 0; overhead is subtracted.16 The log scaling in Fig. 4.19 is most practical
(�! Exercise 4.21). For the versions with shortest computing time (J), the time is
hardly measurable, which is indicated by a bar of likely computing times.

In Fig. 4.19, the accuracy orders of the various methods can not be seen
directly. The convergence rate would become apparent in case the absolute error is
depicted over the grid size. Such a figure reveals the first-order convergence of the
binomial method and the integral-equation method, and essentially a second-order
convergence of the finite-difference method.

16All of the above methods were implemented in FORTRAN (F90 compiler) and run on a DS20
processor.
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4.9.4 Preliminary Results

In the sense of Pareto optimization, smaller values in Fig. 4.19 are preferred to
larger ones. Entries in the lower left part of the figure refer to methods with
higher efficiency. The Pareto frontier in this figure is largely dominated by the
binomial method (B). This holds at least for medium demands for accuracy. Both
the analytic methods (J) and (Q) do not need the evaluation of the the Black–
Scholes formula and hence p, log, exp in full accuracy. So their evaluation can
be accelerated. Hence, for low accuracy, Johnson’s interpolation method (J) and the
quadratic approximation (Q) are competitive. This is not clear from the figure, where
unnecessary accuracy of the underlying Black–Scholes formula falsely suggests that
the quadratic approximation (Q) is dominated by the binomial method. For high
demands for accuracy, the finite-difference method is competitive. The basic version
of the binomial method dominates the basic version of the integral-equation method
(I). The aspect of convergence applies to FD, B, I, but not to the fixed accuracy of
Q, J. This may be seen as distinction between a numerical method and an analytic
method.

4.9.5 Outlook

The above observations should not be considered as definite recommendations. It
is important to realize that the conclusions refer to speed and RMS error only.
Several aspects are neglected and lacking. For example, the finite-difference method
calculates the surface of the value function V.S; t/, and provides more information
than the binomial method. Or, the integral-equation method allows to calculate
the greeks more effectively, and approximates the early-exercise curve very well
(B does not). The above has selected one representative method of important
classes of methods. These basic versions are implemented and compared. There are
more efficient methods not shown in Fig. 4.19. For example, LUBA has shown to
dominate the methods with comparable accuracy. Neither the highly efficient front-
fixing methods are shown, nor the improvement [175] of the integral method, nor
the fast approximation by exponential pieces. Improvements differ in the degree of
speedup. Further, storage requirements are not taken into account. Implementation
details do matter! And applied to a specific type of exotic option, the prototype
methods chosen for Fig. 4.19 may behave and compare differently. Monte Carlo
methods are not included at all, because their merits are beyond vanilla options. So
the conclusions of this section aim at basic principles. They are tentative, and not
comprehensive. We do not answer the question, what might be the “best” method
for a particular application. For early comparisons, see [4, 56, 57, 211]. More recent
developments have not been compared.
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4.10 Notes and Comments

On Sect. 4.1

General references on numerical PDEs include [80, 281, 341, 356, 369]. A special
solution of (4.2) is

y.x; �/ D 1

2
p
	�

exp

	
� x2

4�



:

For small values of � , the transformation (4.3) may take bad values in the argument
of the exponential function because qı can be too large. The result will be an
overflow. In such a situation, the transformation

� WD 1
2
�2.T � t/

x WD log
�

S
K

�C �r � ı � �2

2

�
.T � t/

y.x; �/ WD e�rtV.S; t/

can be used as alternative [28]. Again (4.2) results, but initial conditions and
boundary conditions must be adapted appropriately (see also Appendix A.6). The
equations also hold for options on foreign currencies. Then ı represents the foreign
interest rate. As will be seen in Sect. 6.4, the quantities q and qı are basically the
Péclet number. It turns out that large values of the Péclet number are a general source
of difficulties. For other transformations see [381]. Well-posed means the existence
of a unique solution that depends continuously on the data.

For the valuation of American options in case of discrete dividend payments
there is a big difference between call and put. A call is exercised immediately prior
to the dividend date, provided some analytically known criteria are satisfied [234].
In contrast, a put must be calculated numerically. By arbitrage reasons, the stock
price jumps at the ex-dividend date tD,

S
tCD
D St�D � D ;

where D is the net amount paid at tD. The price Vt of the put does not jump along the
path St because the option’s holder has no benefit from the payment. This continuity
of V.St; t/ can be written

V.S; t�D/ D V.S �D; tCD / ;

which amounts to a jump in the value function V.S; t/ at tD.17 For a numerical
implementation, place a node t� at tD, interrupt the integration of the PDE at tD, and

17For tree methods, dividends are discussed in Appendix D.2.
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apply interpolation to evaluate V at Si � D in case this is not a node. Then the PDE
is applied again. For a method-of-lines approach see [273]. Exercise 4.1b provides
some insight into the early-exercise structure. For tD < t < T the early-exercise
curve is that of a non-dividend paying stock [27, 292].

On Sect. 4.2

We follow the notation wi;� for the approximation at the node .xi; ��/, to stress the
surface character of the solution y over a two-dimensional domain. In the literature
a frequent notation is w�i , which emphasizes the different character of the space
variable (here x) and the time variable (here �). Our vectors w.�/ with components
w.�/i come close to this convention.

Finite differences work for nonuniform meshes as well. Then formally the
discretization errors are of first order only. But under mild assumptions on a slowly
varying mesh, second-order accuracy can be obtained [257].

Summarizing the Black–Scholes equation to

@V

@t
C LBS.V/ D 0 (4.83)

where LBS represents the other terms of the equation, see Sect. 4.5.3, motivates an
interpretation of the finite-difference schemes in the light of numerical ODEs. There
the forward approach is known as explicit Euler method and the backward approach
as implicit Euler method. The explicit scheme corresponds to the trinomial-tree
method mentioned in Sect. 1.4 [191].

On Sect. 4.3

Crank and Nicolson suggested their approach in 1947 [91]. Theorem 4.4 discusses
three main principles of numerical analysis, namely, order of convergence, stability,
and efficiency. A Crank–Nicolson variant has been developed that is consistent with
the volatility smile, which reflects the dependence of the volatility on the strike [10].

In view of the representation (4.20) the Crank–Nicolson approach corresponds
to the ODE trapezoidal rule. Following these lines suggests to apply other ODE
approaches, some of which lead to methods that relate more than two time
levels. In particular, the backward difference formula BDF (4.11) is of interest,
which evaluates L at one time level only. Using formula (4.11) for the time
discretization, a three-term recursion involving w.�C1/, w.�/, w.��1/ replaces the two-
term recursion (4.24) (�! Exercise 4.3). But multistep methods such as BDF may
suffer from the lack of smoothness at the exercise boundary. This effect is mollified
when the inequality is tackled by a penalty term. But even then it is interesting
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to consider other alternatives with better stability properties than Crank–Nicolson.
Crank–Nicolson is A-stable, several other methods are L-stable, which better damp
out high-frequency oscillation, see [71, 194, 221]. For numerical ODEs we refer to
[165, 236]. From the ODE analysis circumstances are known where the implicit
Euler method behaves superior to the trapezoidal rule. The latter method may
show a slowly damped oscillating error. Accordingly, in several PDE situations the
fully implicit method of Sect. 4.2.5 behaves better than the Crank–Nicolson method
[310, 386].

On Sect. 4.4

The boundary condition VC.0; t/ D 0 in (4.26) can be shown independently of
any underlying model [269]. If European options are evaluated via the analytic
formulas (A.15)–(A.17), the boundary conditions in (4.28) are of no practical
interest. When boundary conditions are not clear, it sometimes helps to set VSS D 0
(or yxx D 0), which amounts to assume linear behavior. See [353] for a discussion,
and for the effect of boundary conditions on accuracy and stability. For bounds
on the error caused by truncating the infinite x- or S-interval, see [214]. Boundary
conditions for a term structure equation are discussed in [117].

On Sect. 4.5

For a proof of the Black–Scholes inequality, see [237, p. 111]. The obstacle problem
in this chapter is described following [376]. Also the smooth pasting argument of
Exercise 4.6 is based on that work. For other arguments concerning smooth pasting
see [277], and [234], where you find a discussion of Sf.t/, and of the behavior of this
curve for t ! T. There are several different possibilities to implement boundary
conditions at xmin, xmax, see [353, p. 122]. The accuracy can be improved with
artificial boundary conditions [169]. For direct methods, see also [99, 194]. Front-
fixing goes back to Landau 1950, see [90]. For front-fixing applications to finance,
consult, for example, [188, 288, 381], and the comments on Sect. 4.7.

The general definition of a linear complementarity problem is

AB D 0 ; A � 0 ; B � 0 ;

where A and B are abbreviations of more complex expressions. This can be also
written

min.A;B/ D 0 :

A general reference on free boundaries and on linear complementarity is [119].
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Fig. 4.20 .S; t/-plane. Approximations of an early-exercise curve of an American put (T D 1,
� D 0:3, K D 10); green: raw data out of an finite-difference approximation, red: asymptotic
behavior for t 	 T. The asymptotic curve is valid only close to the strike K, much smaller than
shown here

Figure 4.20 shows a detail of approximations to an early-exercise curve. The
finite-difference calculated points are connected by straight lines. The figure also
shows a local approximation valid close to maturity: For t < T and t ! T, the
asymptotic behavior of Sf can be approximated by, for example,

Sf.t/ � K
�
1 � �

p
.t � T/ log.T � t/

�

for an American put without dividends [22, 282]. For other asymptotic formulas,
see [74, 75, 158]. Recall from the notes on Sect. 4.1 that discrete dividend payments
change the early-exercise curve [273]; see also Appendix D.2.

For a proof of the high-contact condition or smooth-pasting principle see [277],
p.114. For a discussion of the smoothness of the free boundary Sf see [282] and the
references therein.
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On Sect. 4.6

By choosing the  in (4.41) one fixes at which position along the time axis the
second-order spatial derivatives are focused. With

 D 1

2
� 1

12

�x2

��

a scheme results that is fourth-order accurate in x-direction. The application on
American options requires careful compensation of the discontinuities [265]. One
possibility of a variable��-time stepping is to set the nodes

�� WD �max
�2

�2max

;

suggested by [188].
Based on the experience of this author, an optimal choice of the relaxation

parameter!R for the iterative variant in Algorithm 4.14 can not be given. The simple
strategy !R D 1 appears recommendable. The method of Brennan and Schwartz has
been analyzed in [201]. The formulation of Problem 4.12 reminds of the dynamic
programming principle of (1.69).

On Sect. 4.7

Since the accuracy of the results is not easily guaranteed, it does seem advisable
to hesitate before exposing wealth to a chance of loss or damage. After having
implemented a finite-difference algorithm it may be recommendable to compare
the results with those obtained by means of other algorithms.18 The lacking
smoothness of solutions near .S; t/ 	 .K;T/ due to the nonsmooth payoff can
be largely improved by solving for the difference function VAm

P .S; �/ � VEur
P .S; �/,

see also Sect. 4.8.2. The lacking smoothness along the early-exercise curve can be
diminished by using a front-fixing approach, which can be applied to the above
difference. But one mast pay a price. Note that the nonlinearity has entered the
front-fixing equation (4.86) (�! Exercise 4.8). The success of the front-fixing
approach depends on whether the corresponding root-finding iteration finds a
solution. Further, in our experience the lack of smoothness is only hidden and might
lead to instabilities, such as oscillations in the early-exercise curve. A transformation
such as log.S=Sf/ does not lead to constant coefficients because one of the factors
depends on the early-exercise curve. The alternative front-fixing approach of [188]

18As already mentioned in Sect. 4.7, the risk of having chosen an inappropriate model is mostly
larger than the risk of inaccurate digits.
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first applies the transformation S D Kex; � D T � t. Then the infinite .x; �/-strip is
truncated to a finite domain by the function a.�/ WD xf.�/ � L for large enough jLj
(L > 0 for a put, L < 0 for a call), where xf.�/ WD log.Sf.T � �/=K/ denotes the
transformed early-exercise curve. The final boundary-value problem localized on a
rectangle is obtained by transforming the independent variable x to z WD x � a.�/
(for a put). Front-fixing approaches have shown to be highly efficient.

The question how accurate different methods are has become a major concern
in recent research; see for instance [83]. Clearly one compares a finite-difference
European option with the analytic formulas (A.15)/(A.17). The latter are to be
preferred, except the surface V.S; t/ is the ultimate object. The correctness of codes
can be checked by testing the validity of symmetry relations (A.23).

Greeks such as deltaD @V
@S can be calculated accurately by solving specific PDEs

that are derived from the Black–Scholes equation by differentiating. But delta can
be approximated easily based on the a calculated approximation of V . To this end,
calculate an interpolating Lagrange polynomial L.S/ on the line t D 0 based on
three to five neighboring nodes (Appendix C.1), and take the derivative L0.S/.

We have introduced finite differences mainly in view of calculating standard
American options. For exotic options PDEs occur, the solutions of which depend
on three or more independent variables [21, 353, 376]; see also Chap. 6.

On Sect. 4.8

There are many analytic methods. For example, a binomial tree with a fixed
number of nodes can be considered as analytic method. Classic approaches include
[63, 150]. Seydel [338] suggests to analyze the attainable accuracy beforehand,
depending on the parameters of options, for example, for the interpolation method.
The quadratic approximation method has been extended to the more general
situation of commodity options, where the cost of carry is involved [26], and
a more ambitious initial guess is constructed. Integral representations are based
on an inhomogeneous differential equation as that in Sect. 4.5.3. Kim’s integral
representation (4.76) can be derived via Mellin’s transformation [294], or via
Duhamel’s principle [234], see also [202]. A condition number is derived by [174].
For implementations and improvements, see [175, 211]. The exponential function
has been used for approximating the early-exercise curve already in [292]. There
are other approaches with integral equations. From the Black–Scholes equation and
the high-contact condition we recommend to derive

@VP.Sf.t/; t/

@t
D 0 :

This equation enables an effective construction of the the early-exercise curve [74,
75].
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On Other Methods

Here we give a few hints on methods neither belonging to this chapter on finite
differences, nor to Chaps. 5 or 6. General hints can be found in [321], in particular
with the references of [57]. Closely related to linear complementarity problems
are minimization methods. An efficient realization by means of methods of linear
optimization is suggested in [98]. The uniform grid can only be the first step toward
more flexible approaches, such as the finite elements to be introduced in Chap. 5.
For grid stretching and coordinate transformations see [197, 240]. Spectral methods
have shown to be highly efficient, consult [381]. For penalty methods we refer
to [133, 288], and to Sect. 6.7. Another possibility to enhance the power of finite
differences is the multigrid approach; for general expositions see [161, 364]; for
application to finance see [81, 293]. An irregular grid based on Sobol points is
suggested in [36].

4.11 Exercises

4.1 (Discrete Dividend Payment)
Assume that a stock pays one dividend D at ex-dividend date tD, with 0 < tD < T.

(a) Calculate a corresponding continuous dividend rate ı under the assumptions

PS D �ıS ; S.T/ D S.0/�D > 0 :

(b) Define for an American put with strike K

Qt WD tD � 1
r

log

	
D

K
C 1



:

Assume r > 0; D > 0, and a time instant t in Qt < t < tD. Argue that instead of
exercising early it is reasonable to wait for the dividend.
Note: For Qt > 0, depending on S, early exercise may be reasonable for 0 � t < Qt.

4.2 (Stability of the Fully Implicit Method)
The backward-difference method is defined via the solution of the Eq. (4.18)/(4.19).
Prove the stability.
Hint: Use the results of Sect. 4.2.4 and w.�/ D A�1w.��1/.

4.3 (Semidiscretization, Method of Lines)
For a semidiscretization of the Black–Scholes equation (1.5) consider the semidis-
cretized domain

0 � t � T ; S D Si WD i�S ; �S WD Smax

m
; i D 0; 1; : : : ;m
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Fig. 4.21 V over .S; t/; method of lines for a binary call option, compare Exercise 4.3 (K D
10; T D 1; r D 0:06; ı D 0; � D 0:3). With kind permission of Miriam Weingarten

for suitable values of Smax > K and m. On this set of lines parallel to the t-axis define
for � WD T � t and 1 � i � m � 1 functions wi.�/ as approximation to V.Si; �/.

(a) Using the standard second-order difference schemes of Sect. 4.2.1, derive the
ODE system Pw D Bw that up to boundary conditions approximates (1.5). Here
w is the vector .w1; : : : ;wm�1/tr and Pw denotes differentiation w.r.t. � . Show
that B is a tridiagonal matrix, and calculate its coefficients.

(b) For a European option assume Dirichlet boundary conditions for w0.�/ and
wm.�/ and set up a vector c such that

Pw D BwC c (4.84)

realizes the ODE system with correct boundary conditions, and with initial
conditions taken from the payoff.

(c) Use the BDF formula (4.11) of Sect. 4.2.1, and implement this scheme for the
initial-value problem with (4.84) and a European call option. (See Fig. 4.21 for
an illustration.)

4.4 (Crank–Nicolson Order)
Let the function y.x; �/ solve the equation

y� D yxx
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and be sufficiently smooth. With the difference quotient

ıxxwi;� WD wiC1;� � 2wi;� C wi�1;�
�x2

the local discretization error � of the Crank–Nicolson method is defined

� WD yi;�C1 � yi;�

��
� 1
2
.ıxxyi;� C ıxxyi;�C1/ :

Show

� D O.��2/C O.�x2/ :

4.5 (Boundary Conditions of a European Call)
Show that under the transformation (4.3)

Se�ı.T�t/ � Ke�r.T�t/ D
exp

n x

2
.qı C 1/C �

4
.qı C 1/2

o
� exp

n x

2
.qı � 1/C �

4
.qı � 1/2

o

holds, and prove (4.28).
Hints: Either transform the Black–Scholes equation (4.1) with

S WD NS exp.ı.T � t//

into a dividend-free version to obtain the dividend version of (4.27), or apply the
dividend version (A.16) of the put-call parity.

4.6 (Smooth Pasting of the American Put)
Suppose a portfolio consists of an American put and the corresponding underlying.
Hence the value of the portfolio is˘ WD VAm

P CS, where S satisfies the SDE (1.47).
Sf is the value for which we have high contact, compare (4.31).

(a) Show that

d˘ D

8̂
<
:̂
0 for S < Sf	
@VAm

P

@S
C 1



�S dW C O.dt/ for S > Sf :

(b) Use this to argue

@VAm
P

@S
.Sf.t/; t/ D �1 :
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Hint: Use dS > 0) dW > 0 for small dt. Assume @V
@S > �1 and construct an

arbitrage strategy for dS > 0.

4.7 (Perpetual Put Option)
For T !1 it is sufficient to analyze the ODE

�2

2
S2

d2V

dS2
C .r � ı/S dV

dS
� rV D 0 :

Consider an American put contacting the payoff .K � S/C at S D ˛ < K. Show:

(a) Upon substituting the boundary condition for S!1 one obtains

V.S/ D c

	
S

K


�2
; (4.85)

where �2 D 1
2

�
1 � qı �

p
.qı � 1/2 C 4q

�
, q D 2r

�2
, qı D 2.r�ı/

�2
and c is

a positive constant. Fix c by using the left-hand boundary V.˛/ D K � ˛.
Hint: Apply the transformation S D Kex. (The other root �1 drops out.)

(b) V is decreasing and convex.

For S < ˛ the option is exercised; then its intrinsic value is K � S. For S > ˛ the
option is not exercised and has a value V.S/ > K � S. The holder of the option
decides when to exercise. This means, the holder makes a decision on the contact
S D ˛ such that the value of the option becomes maximal [269].

(c) Show: V 0.˛0/ D �1, if ˛0 maximizes the value of the option.

4.8 (Front-Fixing for American Options)
Apply the transformation

� WD S

Sf.t/
; y.�; t/ WD V.S; t/

to the Black–Scholes equation (4.1).

(a) Show

@y

@t
C �2

2
�2
@2y

@�2
C .r � ı/ � 1

Sf

dSf

dt

�
�
@y

@�
� ry D 0 : (4.86)

(b) Set up the domain for .�; t/ and formulate the boundary conditions for an
American call. (Assume ı > 0.)

(c) (Project) Set up a finite-difference scheme to solve boundary-value problem
derived above. The curve Sf.t/ is implicitly defined by the PDE (4.86), with
final value Sf.T/ D max.K; r

ı
K/.
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4.9 (Boundary Conditions of American Options)
Show that the boundary conditions of American options satisfy

lim
x!˙1 y.x; �/ D lim

x!˙1 g.x; �/ ;

where g is defined in Problem 4.7.

4.10 (Gauss–Seidel Method as Special Case of SOR)
Let the n � n matrix A D .aij/ be partitioned additively into A D D � L � U, with
D diagonal matrix, L strict lower triangular matrix, U strict upper triangular matrix,
x 2 Rn, b 2 Rn. The Gauss–Seidel method is defined by

.D � L/x.k/ D Ux.k�1/ C b

for k D 1; 2; : : :. Show that with

r.k/i WD bi �
i�1X
jD1

aijx
.k/
j �

nX
jDi

aijx
.k�1/
j

and for !R D 1 the relation

x.k/i D x.k�1/
i C !R

r.k/i

aii

holds. For general 1 < !R < 2 this defines the SOR (successive overrelaxation)
method.

4.11 (Brennan–Schwartz Algorithm)
Let A be a tridiagonal matrix as in (C.6), and b and g vectors. The system of
equations Aw D b is to be solved such that the side condition w � g is obeyed
componentwise. Assume for the case of a put wi D gi for 1 � i � if and wi > gi for
if < i � n, where if is unknown.

(a) Formulate an algorithm similar as Algorithm C.3 that solves Aw D b in the
backward/forward approach. In the final forward loop, for each i the calculated
candidate Qwi is tested for wi � gi: Set wi WD maxf Qwi; gig .

(b) Apply the algorithm to the case of a put with A; b; g from Sect. 4.6.1. For
the case of a call adapt the forward/backward Algorithm C.3. Incorporate this
approach into Algorithm 4.14.

4.12 (American Call)
Formulate the analogue of Algorithm 4.13 for the case of a call.

4.13
Implement Algorithms 4.14 and 4.15.
Test example: Example 1.6 and others.
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4.14 (Approximating the Free Boundary)
Assume that after a finite-difference calculation of an American put three approxi-
mate values V.Si; t/ are available, for a value of t and i D k; k C 1; k C 2. Assume
further an index k such that these three .S;V/-pairs are close to the free boundary
Sf.t/, and inside the continuation region.

(a) Derive an approximation NSf to Sf.t/ based on the available data.
(b) Discuss the error O.NSf � Sf/.

Hints: The derivative @V
@S at Sf is �1. For (b) assume an equidistant spacing of the Si.

4.15 (Extrapolation of Higher Order)
Similar as in Sect. 4.7 assume an error model

�� D �.�/� 
1�2 � 
2�3

and three calculated values

�1 WD �.�/ ; �2 WD �
	
�

2



; �3 WD �

	
�

4



:

Show that

�� D 1

21
.�1 � 12�2 C 32�3/ :

4.16 (PDE for the Greek Delta)
Derive a PDE-boundary-value problem for the greek delta � WD @V

@S in case of a
plain-vanilla put.
Hint: Differentiate the Black-Scholes equation, its terminal condition, and its
boundary conditions with respect to S.

4.17

(a) Derive (4.63).
(b) Derive (4.70).

4.18 (Analytic Method for the American Put)
(Project) Implement both the Algorithm 4.17 and Algorithm 4.18. For
Algorithm 4.18 choose as initial guess the average of the strike and the lower
bound (A.21). A secant method (C.5) is a good choice for the iteration. Think of
how to combine Algorithms 4.17 and 4.18 into a hybrid algorithm.

4.19 Consider the functions d1 and d2 of (4.75). For the three cases S < Sf.�/,
S D Sf.�/, S > Sf.�/, calculate the limit for � ! 0C of

rKe�r� F.�d2.S; �I Sf.� � �/// � ıSf.�/ e�ı� F.�d1.S; �I Sf.� � �/// :
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4.20
Implement Kim’s integral-equation method (Sect. 4.8.4).

4.21 (Complexity)
With n underlyings and time t an option problem comprises n C 1 independent
variables. Assume that we discretize each of the nC 1 axes with M grid points, then
MnC1 nodes are involved. Hence the complexity C of the n-factor model is

C WD O.MnC1/ ;

which amounts to an exponential growth with the dimension, nicknamed curse of
dimension. Depending on the chosen method, the error E is of the order M�`,

E WD O

	
1

M`



:

Argue

log C D �nC 1
`

log EC 


for a method-dependent constant 
 .



Chapter 5
Finite-Element Methods

The finite-difference approach with equidistant grids is easy to understand and
straightforward to implement. Resulting uniform rectangular grids are comfortable,
but in many applications not flexible enough. Steep gradients of the solution require
a finer grid locally such that the difference quotients provide good approximations
of the differentials. On the other hand, a flat gradient may be well modeled on a
coarse grid. Arranging such a flexibility of the grid with finite-difference methods
is possible but cumbersome.

An alternative type of methods for solving PDEs that does provide high flexibility
is the class of finite-element methods (FEM). A “finite element” designates a
mathematical topic such as an interval and thereupon defined a piece of function.
There are alternative names such as variational methods, or weighted residuals,
or Ritz–Galerkin methods. These names hint at underlying principles that serve
to derive suitable equations. As these different names suggest, there are several
different approaches leading to finite elements. The methods are closely related.

The flexibility of finite-element methods is not only favorable to approximate
functions, but also to approximate domains of computation that are not rectangular.
This is important for multifactor options. For the one-dimensional situation of
standard options, the possible improvement of a finite-element method over the
standard methods of the previous chapter is not significant. With the focus on
standard options, Chap. 5 may be skipped on first reading. But options with several
underlyings may lead to domains of computation that are more “fancy.”

For example, a two-asset basket with portfolio value ˛1S1 C ˛2S2 in the case of
a call option leads to a payoff of type �.S1; S2/ D .˛1S1 C ˛2S2 � K/C. If such an
option is endowed with barriers, then it is reasonable to set up barriers such that the
payoff takes a constant value. For the two-asset basket, this amounts to barrier lines
˛1S1 C ˛2S2 Dconstant. This naturally leads to trapezoidal shapes of domains. For
a special case with two knock-out barriers the payoff and the domain are illustrated
by Fig. 5.1. This example will be considered in Sect. 5.4, see the domain in Fig. 5.5.
In more complicated examples, the domain may be elliptic (�! Exercise 5.1). In
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1
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S

Fig. 5.1 Payoff �.S1; S2/ of a call on a two-asset basket, with knock-out barrier (Example 5.6)

such situations of non-rectangular domains, finite elements are ideally applicable
and highly recommendable.

Faced with the huge field of finite-element methods, in this chapter we confine
ourselves to a step-by-step exposition towards the solution of two-asset options.
We start with an overview on basic approaches and ideas (in Sect. 5.1). Then, in
Sect. 5.2, we describe the approximation with the simplest finite elements, namely,
piecewise straight-line segments, and apply this to a stationary model problem.
These approaches will be applied to the time-dependent situation of pricing standard
options, in Sect. 5.3. This sets the stage to the main application of FEM in financial
engineering, options on two or more assets. Section 5.4 will present an application
to an exotic option with two underlyings. Here we derive a weak form of the
PDE, and discuss boundary conditions. Finally, in Sect. 5.5, we will introduce
to error estimates. Methods more subtle than just the Taylor expansion of the
discretization error are required to show that quadratic convergence is possible
with unstructured grids and nonsmooth solutions. To keep the exposition of an
error analysis short, we concentrate on the one-dimensional situation. But the ideas
extend to multidimensional scenarios.

5.1 Weighted Residuals

Many of the principles on which finite-element methods are based, can be inter-
preted as weighted residuals. What does this mean? This heading points at ways
in which a discretization can be set up, and how an approximation can be defined.
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x

Fig. 5.2 Discretization of a continuum

x

(a)
w

x

(b)
w

Fig. 5.3 Two kinds of approximations (one-dimensional situation)

There lies a duality in a discretization. This is illustrated by means of Fig. 5.2, which
shows a partition of an x-axis. This discretization is either represented by

(a) discrete grid points xi, or by
(b) a set of subintervals.

The two ways to see a discretization lead to different approaches of constructing
an approximation w. Let us illustrate this with the one-dimensional situation of
Fig. 5.3. An approximation w based on finite differences is built on the grid points
and primarily consists of discrete points (Fig. 5.3a). In contrast, finite elements are
founded on subdomains (intervals in Fig. 5.3b) with piecewise functions, which are
defined by suitable criteria and constitute a global approximation w. In a narrower
sense, a finite element is a pair consisting of one piece of subdomain and the
corresponding function defined thereupon, mostly a polynomial. Figure 5.3 reflects
the respective basic approaches; in a second step the isolated points of a finite-
difference calculation can well be extended to continuous piecewise functions by
means of interpolation (�! Appendix C.1).

A two-dimensional domain can be partitioned into triangles, for example, where
w is again represented by piecewise polynomials. Figure 5.4 depicts the simplest
such situation, namely, a triangle in an .x; y/-plane, and a piece of a linear function
defined thereupon. Figure 5.5 below will provide an example how triangles easily
fill a seemingly “irregular” domain.

As will be shown next, the approaches of finite-element methods use integrals.
If done properly, integrals require less smoothness. This often matches applications
better and adds to the flexibility of finite-element methods. The integrals can be
derived in a natural way from minimum principles, or are constructed artificially.
Finite elements based on polynomials make the calculation of the integrals easy.
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y

w

x

Fig. 5.4 A simple finite element in two dimensions, based on a triangle

21

1

2
S2=y

S1=x

Fig. 5.5 A simple regular finite-element discretization of a domain D into triangles Dk (see
Example 5.6)

5.1.1 The Principle of Weighted Residuals

To explain the principle of weighted residuals we discuss the formally simple case
of the differential equation

Lu D f : (5.1)

Here L symbolizes a linear differential operator. Important examples are

Lu W D �u00 for u.x/; or (5.2)

Lu W D �uxx � uyy for u.x; y/ : (5.3)
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The right-hand side f is a problem-dependent function. Solutions u of the differential
equation (5.1) are studied on a domain D � Rn, with n D 1 in (5.2) and n D 2

in (5.3). The piecewise approach starts with a partition of the domain into a finite
number m of subdomains Dk,

D D
m[

kD1
Dk : (5.4)

All boundaries of D should be included, and approximations to u are calculated on
the closure of D. The partition is assumed disjoint up to the boundaries of Dk, so
Dı

j \ Dı
k D ; for j ¤ k. In the one-dimensional case .n D 1/, for example, the

Dk are subintervals of a whole interval D. In the two-dimensional case, (5.4) may
describe a partition into triangles, as illustrated in Fig. 5.5.

The ansatz for approximations w to a solution u is a basis representation with N
basis functions 'i,

w WD
NX

iD1
ci 'i : (5.5)

The functions 'i are also called trial functions. In the case of one independent
variable x the ci 2 R are constant coefficients, and the 'i are functions of x.
Typically, N is chosen and '1; : : : ; 'N are prescribed. Depending on this choice, the
free parameters c1; : : : ; cN are to be determined such that w 	 u. The ansatz (5.5)
was suggested by Ritz in 1908.

We have m subdomains and N basis functions. In the one-dimensional situation
(n D 1), nodes and subintervals interlace, and m and N essentially can be identified.
For n D 1 the two numbers m and N differ by at most one, depending on whether
the solution is known or unknown at the end points of the interval D. In the latter
case it is convenient to have the summation index in (5.5) run as i D 0; : : : ;m. For
dimensions n > 1 the number m of subdomains (e.g. triangles in case n D 2) in
general is different from the number N of basis functions (nodes1). For example, in
Fig. 5.5 we have 75 triangles and 51 nodes; 26 of the nodes are interior nodes and
25 are placed along the boundary. That is, 1 � k � 75. The number N refers to the
number of nodes for which a value of u is to be approximated.

One strategy to determine the coefficients ci is based on the residual function

R.w/ WD Lw � f : (5.6)

We look for a w such that the residual R becomes “small.” Since the 'i are considered
prescribed, in view of (5.5) N conditions or equations must be established to define

1Basis functions can be constructed such that there is one for each node. Then N represents also
the number of nodes.
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and calculate the unknown c1; : : : ; cN . To this end we weight the residual R by
introducing N weighting functions (test functions)  1; : : : ;  N and require

Z
D

R.w/  j dD D 0 for j D 1; : : : ;N : (5.7)

This amounts to the requirement that the residual be orthogonal to the set of
weighting functions  j. The “dD” in (5.7) symbolizes the integration that matches
D � Rn, as dx for n D 1. For ease of notation, we frequently drop dx as well
as the D at the n-dimensional integral. For the model problem (5.1) the system of
Eqs. (5.7) consists of the N equations

Z
D

Lw j D
Z
D

f  j . j D 1; : : : ;N/ (5.8)

for the N unknowns c1; : : : ; cN , which define w. Often the equations in (5.8) are
written using a formulation with inner products,

.Lw;  j/ D . f ;  j/ ;

defined as the corresponding integrals in (5.8). For linear L the ansatz (5.5) implies

Z
Lw j D

Z  X
i

ciL'i

!
 j D

X
i

ci

Z
L'i j„ ƒ‚ …

DWaij

:

The integrals aij constitute a matrix A. The rj WD
R

f j set up the elements of a
vector r and the coefficients cj a vector c D .c1; : : : ; cN/

tr. In vector notation the
system of equations is rewritten as

Ac D r : (5.9)

This outlines the general principle, but leaves open the questions how to handle
boundary conditions and how to select basis functions 'i and weighting functions
 j. The freedom to choose trial functions 'i and test functions j allows to construct
several different methods. For the time being suppose that these functions have
sufficient potential to be differentiated or integrated. We will enter a discussion of
relevant function spaces in Sect. 5.5.

5.1.2 Examples of Weighting Functions

We postpone the choice of basis functions 'i and begin with listing important
examples of how to select weighting functions  :
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1.) Galerkin’s choice:
Choose  j WD 'j for all j. Then aij D

R
L'i'j .

2.) Collocation:
Choose  j WD ı.x � xj/. Here ı denotes Dirac’s delta function, which in R1

satisfies
R

f ı.x � xj/ dx D f .xj/. As a consequence,
Z

Lw j D Lw.xj/ ;

Z
f j D f .xj/ :

That is, a system of equations Lw.xj/ D f .xj/ results, which amounts to
evaluating the differential equation at selected points xj.

3.) Least squares:
Choose

 j WD @R

@cj
:

This choice of test functions deserves its name least-squares, because to
minimize

R
.R.c1; : : : ; cN//

2 the necessary criterion is the vanishing of the
gradient, so

Z
D

R
@R

@cj
D 0 for all j :

5.1.3 Examples of Basis Functions

The construction of suitable basis functions 'i observes the underlying partition into
subdomains Dk. Our concern will be to meet two aims: resulting methods must be
accurate, and their implementation should become efficient.

The efficiency can be focused on the sparsity of matrices. In particular, if the
matrix A of the linear equations is sparse, then the system can be solved efficiently
even when it is large. In order to achieve sparsity we require that 'i � 0 on most
of the subdomains Dk. Figure 5.6 illustrates an example for the one-dimensional

xi xmxi+1xi−1x2x1x0

1

0
x

.....

ϕi

.....

Fig. 5.6 “Hat function”: simple choice of finite elements
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case n D 1. This hat function of Fig. 5.6 is the simplest example related to finite
elements. It is piecewise linear, and each function 'i has a support consisting of
only two subintervals, 'i.x/ ¤ 0 for x 2 support. A consequence is

Z
D
'i'j D 0 for ji � jj > 1 ; (5.10)

as well as an analogous relation for
R
' 0

i'
0
j . We will discuss hat functions in the

following Sect. 5.2. Basis functions more advanced than the canonical hat functions
are constructed using piecewise polynomials of higher degree. In this way, basis
functions can be obtained with C1- or C2-smoothness (�! Exercise 5.2). Recall
from interpolation (�! Appendix C.1) that polynomials of degree three can lead to
C2-smooth splines.

5.1.4 Smoothness

We have left open how close an approximation w of (5.5)/(5.9) is to the solution
u of (5.1). Clearly, R.u/ D 0 and u satisfies (5.7). But w in general does not
solve (5.1). The differential equation (5.1) is a stronger requirement than the integral
relations (5.7).

The accuracy depends on the smoothness of the basis functions. Depending on
the chosen method, different kinds of smoothness are relevant. Let us illustrate this
matter on the model problem (5.2),

Lu D �u00; with u; ';  2 f u j u.0/ D u.1/ D 0 g :

Integration by parts formally implies

Z 1

0

' 00 D �
Z 1

0

' 0 0 D
Z 1

0

' 00 ;

because the boundary conditions u.0/ D u.1/ D 0 let the nonintegral terms
vanish. These three versions of the integral can be distinguished by the smoothness
requirements on ' and  , and by the question whether the integrals exist. One will
choose the integral version that corresponds to the underlying method, and to the
smoothness of the solution. For example, for Galerkin’s approach the elements aij

of A consist of the integrals

�
Z 1

0

' 0
i'

0
j :

We will return to the topics of accuracy, convergence, and function spaces in
Sect. 5.5 (with Appendix C.3).
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5.2 Ritz–Galerkin Method with One-Dimensional Hat
Functions

As mentioned before, any required flexibility is provided by finite-element methods.
This holds to a larger extent in higher-dimensional spaces. In this section, for
simplicity, we stick to the one-dimensional situation, x 2 R. The dependence on
the time variable t will be postponed to Sect. 5.3.

Assume a partition of the x-domain by a set of increasing mesh points x0; : : : ; xm.
A nonuniform spacing is advisable in several instances in order to improve the
accuracy. For example, close to the strike, a denser grid is appropriate to mollify the
lack of smoothness of a payoff. In contrast, to model infinity, one rarefies the nodes
for larger x and shifts the final node xm to a large value. One strategy is to select a
spacing such that locally (up to additional scaling and shifts) sinh.xi/ D �i, where �i

are chosen equidistantly. A dense spacing is also advisable for barrier options close
to the barrier, where the gradient of option prices is high.

5.2.1 Hat Functions

The prototype of a finite-element method makes use of the hat functions, which we
define formally (compare Figs. 5.6 and 5.7).

Definition 5.1 (Hat Functions) For 1 � i � m � 1 set 'i.x/ WD 0 on all
subintervals except two:

'i.x/ W D x � xi�1
xi � xi�1

for xi�1 � x < xi ;

'i.x/ W D xiC1 � x

xiC1 � xi
for xi � x < xiC1 ;

xi xm

1

0
x1

xi−1 xi+1

x
.....

x2
.....

x0

ϕ
0

x0 x1 x2 xm−1 xm

1

0
x

.....

ϕm

Fig. 5.7 Special “hat functions” '0 and 'm
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and boundary functions '0, 'm nonzero on just one subinterval:

'0.x/ WD x1 � x

x1 � x0
for x0 � x < x1 ;

'm.x/ WD x � xm�1
xm � xm�1

for xm�1 � x � xm :

For each node xi there is one hat function. These m C 1 hat functions satisfy the
following properties.

Properties 5.2 (Hat Functions) The following properties (a)–(e) hold:

(a) The '0; : : : ; 'm form a basis of the space of polygons

f g 2 C0Œx0; xm� j g straight line on Dk WD Œxk; xkC1� ;

for all k D 0; : : : ;m � 1 g :

That is to say, for each polygon v on the union of D0; : : : ;Dm�1 there are unique
coefficients c0; : : : ; cm such that

v D
mX

iD0
ci'i :

(b) On any Dk only 'k and 'kC1 ¤ 0 are nonzero. Hence

'i'j D 0 for ji� jj > 1 ;

which explains (5.10).
(c) A simple approximation of the integral

R xm

x0
f'j dx can be calculated as follows:

Substitute f by the interpolating polygon

fp WD
mX

iD0
fi'i , where fi WD f .xi/ ;

and obtain for each j the approximating integral

Ij WD
Z xm

x0

fp'j dx D
Z xm

x0

mX
iD0

fi'i'j dx D
mX

iD0
fi

Z xm

x0

'i'j dx

„ ƒ‚ …
DWbij

:
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The bij constitute a symmetric matrix B and the fi a vector Nf . If we arrange all
integrals Ij .0 � j � m) into a vector, then all integrals can be written in a
compact way in vector notation as

BNf :

This will approximate the vector r in (5.9).
(d) The “large” .mC 1/2–matrix B WD .bij/ can be set up Dk-elementwise by .2 �

2/-matrices (discussed below in Sect. 5.2.2). The .2 � 2/-matrices are those
integrals that integrate only over a single subdomain Dk. For each Dk in our
one-dimensional setting exactly the four integrals

R
'i'jdx for i; j 2 fk; k C 1g

are nonzero. They can be arranged into a .2 � 2/-matrix

Z xkC1

xk

	
'2k 'k'kC1

'kC1'k '2kC1



dx :

(The integral over a matrix is understood elementwise.) These are the integrals
on Dk, where the integrand is a product of the factors

xkC1 � x

xkC1 � xk
and

x � xk

xkC1 � xk
:

The four numbers

1

.xkC1 � xk/2

Z xkC1

xk

	
.xkC1 � x/2 .xkC1 � x/.x � xk/

.x � xk/.xkC1 � x/ .x � xk/
2



dx

result. With hk WD xkC1 � xk integration yields the element-mass matrix (�!
Exercise 5.3)

1

6
hk

	
2 1

1 2



:

(e) Analogously, integrating ' 0
i'

0
j yields

Z xkC1

xk

	
' 02

k ' 0
k'

0
kC1

' 0
kC1' 0

k ' 02
kC1



dx

D 1

h2k

Z xkC1

xk

	
.�1/2 .�1/1
1.�1/ 12



dx D 1

hk

	
1 �1
�1 1



:

These matrices are called element-stiffness matrices. They are used to set up the
matrix A.
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5.2.2 Assembling

The next step is to assemble the matrices A and B. It might be tempting to organize
this task as follows: run a double loop on all basis indices i; j (N node indices) and
check for each .i; j/ on which Dk the integral

Z
Dk

'i'j

is nonzero. Such a procedure of performing a double loop has the complexity of
O.N2m/. This is cumbersome as compared to the alternative of running a single
loop on the subdomain index k and benefit from all relevant integrals on Dk, which
are precalculated above (Fig. 5.8).

To this end, split the integrals

Z xm

x0

D
m�1X
kD0

Z
Dk

to construct the .mC1/� .mC1/-matrices A D .aij/ and B D .bij/ additively out of
the small element matrices. For the case of the one-dimensional hat functions with

k

D1

D2

j

i

D0

Fig. 5.8 Assembling in the one-dimensional setting
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subintervals

Dk D f x j xk � x � xkC1 g
the element matrices are .2� 2/, see above. In this case only those integrals of ' 0

i'
0
j

and 'i'j are nonzero, for which i; j 2 Ik, where

i; j 2 Ik WD fk; kC 1g : (5.11)

Ik is the set of indices of those products of basis functions that are nonzero on
Dk. The assembling algorithm performs a loop over the subdomain index k D
0; 1; : : : ;m�1 and distributes the .2�2/-element matrices additively to the positions
i; j 2 Ik. Before the assembling is started, the matrices A and B must be initialized
with zeros. For k D 0; : : : ;m � 1 one obtains for A the .mC 1/2-matrix

A D

0
BBBBBBB@

1
h0

� 1
h0

� 1
h0

1
h0
C 1

h1
� 1

h1
� 1

h1
1
h1
C 1

h2
� 1

h2

� 1
h2

: : :
: : :

: : :

1
CCCCCCCA
: (5.12)

The matrix B is assembled in an analogous way. In the one-dimensional situation
the matrices are tridiagonal. For an equidistant grid with h D hk the matrix A
specializes to

A D 1

h

0
BBBBBBBBB@

1 �1 0

�1 2 �1
�1 2

: : :

: : :
: : :

: : :

: : : 2 �1
0 �1 1

1
CCCCCCCCCA

(5.13)

and B to

B D h

6

0
BBBBBBBBB@

2 1 0

1 4 1

1 4
: : :

: : :
: : :

: : :

: : : 4 1

0 1 2

1
CCCCCCCCCA
: (5.14)
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5.2.3 A Simple Application

In order to demonstrate the procedure, let us consider the simple time-independent
(“stationary”) model boundary-value problem

Lu WD �u00 D f with u.x0/ D u.xm/ D 0 : (5.15)

Substituting w WDPm
iD0 ci'i into the differential equation, in view of (5.8), leads to

mX
iD0

ci

Z xm

x0

L'i 'j dx D
Z xm

x0

f'j dx :

This is the result of the Ritz–Galerkin approach. Next we apply integration by
parts on the left-hand side, and invoke Property 5.2(c) on the right-hand side. The
resulting system of equations is

mX
iD0

ci

Z xm

x0

' 0
i'

0
j dx

„ ƒ‚ …
aij

D
mX

iD0
fi

Z xm

x0

'i'j dx

„ ƒ‚ …
bij

; j D 0; 1; : : : ;m : (5.16)

This system is preliminary because the homogeneous boundary conditions u.x0/ D
u.xm/ D 0 are not yet taken into account.

At this state, the preliminary system of Eqs. (5.16) can be written as

Ac D BNf : (5.17)

It is easy to see that the matrix A from (5.13) is singular, because

A.1; 1; : : : ; 1/tr D 0 :

The singularity reflects the fact that the system (5.17) does not have a unique
solution. This is consistent with the differential equation �u00 D f .x/: If u.x/
is solution, then also u.x/ C ˛ for arbitrary ˛. Unique solvability is attained by
satisfying the boundary conditions; a solution u of �u00 D f must be fixed by at
least one essential boundary condition. For our example (5.15) we know in view
of u.x0/ D u.xm/ D 0 the coefficients c0 D cm D 0. This information can be
inserted into the system of equations in such a way that the matrix A changes to a
nonsingular matrix without losing symmetry. To this end, cancel the first and the
last of the nC 1 equations in (5.17), and make use of c0 D cm D 0. Now the inner
part of size .m � 1/ � .m � 1/ of A remains. The matrix B is .m � 1/ � .m C 1/.
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Finally, for the special case of an equidistant grid, the system of equations is

0
BBBBBBB@

2 �1 0

�1 2
: : :

: : :
: : :

: : :

: : : 2 �1
0 �1 2

1
CCCCCCCA

0
BBBBB@

c1
c2
:::

cm�2
cm�1

1
CCCCCA
D

h2

6

0
BBBBB@

1 4 1 0

1 4 1
: : :

: : :
: : :

1 4 1

0 1 4 1

1
CCCCCA

0
BBBBB@

Nf0
Nf1
:::
Nfm�1
Nfm

1
CCCCCA
:

(5.18)

In (5.18) we have used an equidistant grid for sake of a lucid exposition. Our
main focus is the nonequidistant version, which is also implemented easily. In case
nonhomogeneous boundary conditions are prescribed, appropriate values of c0 or cm

are predefined. The importance of finite-element methods in structural engineering
has lead to call the global matrix A the stiffness matrix, and B is called the mass
matrix.

5.3 Application to Standard Options

Finite elements are especially advantageous in higher-dimensional spaces (several
underlyings). But it also works for the one-dimensional case of standard options.
This is the theme of this section. In contrast to the previous section, time must be
included.

5.3.1 European Options

We know that the valuation of single-asset European options with vanilla payoff
makes use of the Black–Scholes formula. But for the sake of exposition, and for
non-vanilla payoff, let us briefly sketch a finite-element approach. Here we apply
the FEM approach to the transformed version y� D yxx of the Black–Scholes
equation with constant parameters. In view of the general basis representation
in (5.5) one may think of starting from w DPwi'i.x; �/ with constant coefficients
wi. This would require two-dimensional basis functions. (We shall come back to
such functions in Sect. 5.4.) To make use of one-dimensional hat functions, apply a
separation ansatz in the form

P
wi.�/'i.x/ with functions wi.�/. As a consequence
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of this simple approach, the same x-grid is applied for all � , which results in a
rectangular grid in the .x; �/-plane. Dirichlet boundary conditions

y.xmin; �/ D ˛.�/; y.xmax; �/ D ˇ.�/

mean that in view of the shape of '0; 'm (Definition 5.1, Fig. 5.7) the values w0 D ˛
or wm D ˇ would be known. It is practical to separate known terms and restrict the
sum to the terms with unknown weights wi. This can be managed by introducing
a special function 'b that compensates for Dirichlet boundary conditions on y. The
function 'b.x; �/ is no basis function, and is constructed in advance. For example,

'b.x; �/ WD .ˇ.�/� ˛.�// x � xmin

xmax � xmin
C ˛.�/

does the job for the above boundary conditions. So 'b can be considered to be
known, and the sum

P
wi'i does not reflect any nonzero Dirichlet boundary

conditions on y. Then the final ansatz is

X
i

wi.�/'i.x/C 'b.x; �/ ; (5.19)

and the index i counts those nodes xi for which no boundary conditions of the above
type are prescribed, 1 � i � m � 1 in case two Dirichlet boundary conditions
are given. The basis functions '1; : : : ; 'N are chosen to be the hat functions, which
incorporate the discretization of the x-axis. Hence, N D m�1, and x0 corresponds to
xmin, and xm to xmax. The functions w1; : : : ;wm�1 are unknown, and w0 D wm D 0.

Calculating derivatives of (5.19) and substituting into y� D yxx leads to the Ritz–
Galerkin approach

xmZ
x0

"
m�1X
iD1
Pwi'i C P'b

#
'j dx D

xmZ
x0

"
m�1X
iD1

wi'
00
i C ' 00

b

#
'j dx

for j D 1; : : : ;m � 1. The overdot represents differentiation with respect to � , and
the prime with respect to x. Arranging the terms that involve derivatives of 'b into
vectors a.�/, b.�/,

a.�/ WD

0
B@
R
' 00

b .x; �/ '1.x/ dx
:::R

' 00
b .x; �/ 'm�1.x/ dx

1
CA ; b.�/ WD

0
B@
R P'b.x; �/ '1.x/ dx

:::R P'b.x; �/ 'm�1.x/ dx

1
CA ;

and using the matrices A;B as in (5.13)/(5.14), we arrive after integration by parts at

B PwC b D �Aw � a : (5.20)
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Note that for the specific 'b from above ' 00
b D 0 and a D 0. For vanilla

options, ˛ and ˇ can be drawn from (4.28), and b can be set up analytically; a
and b can be considered as known. This completes the semidiscretization. Time
� is still continuous, and (5.20) defines the unknown vector function w.�/ WD
.w1.�/; : : : ;wm�1.�//tr as solution of a system of ordinary differential equations.
This is a method of lines approach. The lines are defined by x D xi for 1 � i � m�1,
and the approximations along the lines are given by wi.�/.

Initial conditions for � D 0 are derived from (5.19). Assume the initial condition
from the payoff as y.x; 0/ D 
.x/, then

XN

iD1wi.0/'i.x/C 'b.x; 0/ D 
.x/ :

For vanilla payoff, 
 is given by (4.5)/(4.6). Specifically for x D xj the sum reduces
to wj.0/ 
 1, leading to

wj.0/ D 
.xj/ � 'b.xj; 0/ :

To complete the discretization, time � must be discretized. Standard software
for ODEs can be applied to (5.20), in particular, codes for stiff systems. For
discretizing with difference quotients consult Sect. 4.2.1. For example, apply the
ODE trapezoidal rule as in (4.20) for the discretization of Pw in (5.20). We leave the
derivation of the resulting Crank–Nicolson type discretization as an exercise to the
reader. With the usual notation of the vector w.�/ approximating w.��/, the result
can be written

.BC ��
2

A/w.�C1/ D .B � ��
2

A/w.�/

���
2
.a.�/ C a.�C1/ C b.�/ C b.�C1// :

(5.21)

The structure of (5.21) strongly resembles the finite-difference approach (4.24).
This similarity suggests that the order is the same, because for the finite-element A’s
and B’s we have (compare (5.13)/(5.14))

A D O

	
1

�x



; B D O.�x/ :

The separation of the variables x and � in (5.19) allows to investigate the orders of
the discretizations separately. In �� , the order O.��2/ of the Crank–Nicolson type
approach (5.21) is clear from the ODE trapezoidal rule. It remains to derive the order
of convergence with respect to the discretization in x. Because of the separation
of variables it is sufficient to derive the convergence for a one-dimensional model
problem. This will be done in Sect. 5.5.
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5.3.2 Variational Form of the Obstacle Problem

To warm up for the discussion of the American option case, let us return to the
simple obstacle problem of Sect. 4.5.5 with the obstacle function g.x/, or g.x; �/.
This problem can be formulated as a variational inequality. The function u solving
the obstacle problem can be characterized by comparing it to functions v out of a
set K of competing functions

K WD f v 2 C0Œ�1; 1� j v.�1/ D v.1/ D 0 ;
v.x/ � g.x/ for � 1 � x � 1; v piecewise 2 C1 g :

The requirements on u imply u 2 K. For v 2 K we have v � g � 0 and in view of
�u00 � 0 also �u00.v � g/ � 0. Hence for all v 2 K the inequality

Z 1

�1
�u00.v � g/ dx � 0

must hold. By the LCP formulation (4.39) the integral

Z 1

�1
�u00.u � g/ dx D 0

vanishes. Subtracting yields

Z 1

�1
�u00.v � u/ dx � 0 for any v 2 K :

The obstacle function g does not occur explicitly in this formulation; the obstacle is
implicitly defined in K. Integration by parts leads to

Œ�u0.v � u/„ ƒ‚ …
D0

�1�1 C
Z 1

�1
u0.v � u/0 dx � 0 :

The integral-free term vanishes because of u.�1/ D v.�1/; u.1/ D v.1/. In
summary, we have derived the statement:

If u solves the obstacle problem (4.39), thenZ 1

�1
u0.v � u/0 dx � 0 for all v 2 K : (5.22)

Since v varies in the set K of competing functions, an inequality such as in (5.22)
is called variational inequality. The characterization of u by (5.22) can be used
to construct an approximation w: Instead of u, find a w 2 K such that the
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inequality (5.22) is satisfied for all v 2 K,

1Z
�1

w0.v � w/0 dx � 0 for all v 2 K :

The characterization (5.22) is related to a minimum problem, because the integral
vanishes for v D u.

5.3.3 Variational Form of an American Option

Analogously as the simple obstacle problem also the problem of calculating
American options can be formulated as variational problem, compare Problem 4.7.
The class of competing functions must be redefined as

K WD f v 2 C0Œxmin; xmax� j @v
@x piecewise C0 ;

v.x; �/ � g.x; �/ for all x; � ; v.x; 0/ D g.x; 0/ ;

v.xmax; �/ D g.xmax; �/; v.xmin; �/ D g.xmin; �/ g :
(5.23)

For the following, v 2 K for the K from (5.23). Let y denote the exact solution of
Problem 4.7. As solution of the partial differential inequality, y is C2-smooth on the
continuation region, and y 2 K. From

v � g;
@y

@�
� @

2y

@x2
� 0

we deduce

Z xmax

xmin

	
@y

@�
� @

2y

@x2



.v � g/ dx � 0 :

Invoking the complementarity

Z xmax

xmin

	
@y

@�
� @

2y

@x2



. y � g/ dx D 0

and subtraction gives

Z xmax

xmin

	
@y

@�
� @

2y

@x2



.v � y/ dx � 0 :
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Integration by parts leads to the inequality

Z xmax

xmin

	
@y

@�
.v � y/C @y

@x

	
@v

@x
� @y

@x




dx � @y

@x
.v � y/

ˇ̌̌
ˇ̌
xmax

xmin

� 0 :

The nonintegral term vanishes, because at the boundary for xmin, xmax, in view of
v D g, y D g, the equality v D y holds. The final result is

I. yI v/ WD
Z xmax

xmin

	
@y

@�

 .v � y/C @y

@x

	
@v

@x
� @y

@x




dx � 0 for all v 2 K :

(5.24)

The exact y is characterized by the fact that the inequality (5.24) holds for all
comparison functions v 2 K. For the special choice v D y the integral takes its
minimal value,

min
v2K I. yI v/ D I. yI y/ D 0 :

A more general question is, whether the inequality (5.24) holds for aby 2 K that is
not C2-smooth on the continuation region.2 The aim is:

Problem 5.3 (Weak Version) Construct aby 2 K such that I.byI v/ � 0 for all
v 2 K.
This formulation of our problem is called weak version, because it does not useby 2
C2. Solutionsby of Problem 5.3, which are globally continuous but only piecewise
2 C1, are called weak solutions. The original partial differential equation requires
y 2 C2 and hence more smoothness. Such C2-solutions are called strong solutions
or classical solutions (�! Sect. 5.5).

5.3.4 Implementation of Finite Elements

A discretized version of the weak problem is obtained by replacing the space K
by a finite-dimensional subspace bK, which is spanned by a finite number of basis
functions. That is, we search for aby 2 bK such that

I.byIbv/ � 0 for allbv 2 bK ;
where I. yI v/ is defined in (5.24). This sets the arena for finite element methods.

2For the Black–Scholes y.x; �/ or V.S; t/ the weaker y 2 C2;1 suffices. Recall that the American
option is widely C2-smooth, except across the early-exercise curve.
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As a first step to approximately solve the minimum problem, assume as in
Sect. 5.3.1 separation approximations forby andbv in the similar forms

by DX
i

wi.�/'i.x/ ;

bv DX
i

vi.�/'i.x/ :
(5.25)

Summation is over a finite number of terms, which representsby; bv 2 bK. The reduced
smoothness of these expressions match the requirements of K from (5.23); time
dependence is incorporated in the coefficient functions wi and vi. Since the basis
functions 'i represent the xi-grid, we again perform a semidiscretization. Plugging
the ansatz (5.25) into I.byIbv/ from (5.24) gives

Z 8<
:
 X

i

dwi

d�
'i

!0
@X

j

.vj � wj/'j

1
AC

 X
i

wi'
0
i

!0
@X

j

.vj � wj/'
0
j

1
A
9=
; dx

D
X

i

X
j

dwi

d�
.vj � wj/

Z
'i'j dxC

X
i

X
j

wi.vj � wj/

Z
' 0

i'
0
j dx � 0 :

Translated into vector notation for the coefficient functions wi.�/, vi.�/, this is
equivalent to

	
dw

d�


tr

B.v � w/C wtrA.v � w/ � 0

or3

.v � w/tr
	

B
dw

d�
C Aw



� 0 :

This is the (semi-)discretized weak version of I.byIbv/ � 0. The matrices A and B
are defined via the assembling described above; for equidistant steps the special
versions in (5.13), (5.14) arise.

As a second step, the time � is discretized as well. To this end let us define the
vectors

w.�/ WD w.��/; v.�/ WD v.��/ :

3Notation: Now v is the vector of the coefficient functions.
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Upon substituting, and -averaging the Aw term as in Sect. 4.6.1, we arrive at the
inequalities

�
v.�C1/ � w.�C1/�tr

	
B
1

��
.w.�C1/ � w.�//C Aw.�C1/ C .1 � /Aw.�/



� 0
(5.26)

for all �. For  D 1=2 this is a Crank–Nicolson-type method. Rearranging (5.26)
leads to

�
v.�C1/ � w.�C1/�tr �

.BC�� A/w.�C1/ C .��.1 � /A � B/w.�/
� � 0 :

With the abbreviations

r W D .B ���.1 � /A/w.�/ ;

C W D BC�� A ;
(5.27)

the inequality can be rewritten as

�
v.�C1/ � w.�C1/�tr �

Cw.�C1/ � r
� � 0 : (5.28)

This is the fully discretized version of I.byI v/ � 0.

5.3.4.1 Side Conditions

To match the requirements of K, the inequalitiesby � g and bv � g must hold.
by.x; �/ � g.x; �/ amounts to

X
wi.�/'i.x/ � g.x; �/ :

For hat functions 'i (with 'i.xi/ D 1 and 'i.xj/ D 0 for j ¤ i) and x D xj this
implies wj.�/ � g.xj; �/. With � D �� we have

w.�/ � g.�/I analogously v.�/ � g.�/ :

For each time level � we must find a solution that satisfies both the inequality (5.26)–
(5.28) and the side condition

w.�C1/ � g.�C1/ for all v.�C1/ � g.�C1/ :
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In summary, the algorithm is

Algorithm 5.4 (Finite Elements for American Standard Options)

Choose  . D 1=2/: Calculate w.0/; and C from (5.27):

For � D 1; : : : ; �max W
Calculate r D .B ���.1 � /A/w.��1/ and g D g.�/ :

Construct a w such that for all v � g

.v � w/tr.Cw � r/ � 0; w � g:

Set w.�/ WD w :

This algorithm generates a discretized solution of the weak Problem 5.3: The vectors
w defineby 2 bK via (5.25);bv is not needed explicitly. Let us emphasize again the
main step (FE), which is the kernel of this algorithm and the main labor: Construct
w such that

.FE/ for all v � g

.v � w/tr.Cw � r/ � 0 ; w � g :
(5.29)

This task (FE) can be reformulated into a task we already solved in Sect. 4.6. To this
end recall the finite-difference equation (4.44), replacing A by C, and b by r. There
the following holds for w:

.FD/ Cw � r � 0 ; w � g ;

.Cw � r/tr.w � g/ D 0 : (5.30)

Theorem 5.5 (Equivalence) The solution of the problem (FE) is equivalent to the
solution of problem (FD).

Proof

a) .FD/ H) .FE/:
Let w solve (FD), so w � g, and

.v � w/tr.Cw � r/ D .v � g/tr .Cw � r/„ ƒ‚ …
�0

� .w� g/tr.Cw � r/„ ƒ‚ …
D0

hence .v � w/tr.Cw � r/ � 0 for all v � g .
b) .FE/ H) .FD/:

Let w solve (FE), so w � g, and

vtr.Cw � r/ � wtr.Cw � r/ for all v � g :
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Suppose the kth component of Cw � r is negative, and make vk arbitrarily large.
Then the left-hand side becomes arbitrarily small, which is a contradiction. So
Cw � r � 0. Now

w � g H) .w� g/tr.Cw � r/ � 0 :
Set in (FE) v D g, then .w� g/tr.Cw� r/ � 0. Therefore .w� g/tr.Cw� r/ D 0.

5.3.4.2 Implementation

As a consequence of this equivalence, the solution of the finite-element problem
(FE) can be calculated with the methods we applied to solve problem (FD) in
Sect. 4.6. Following the exposition in Sect. 4.6.2, the kernel of the finite-element
Algorithm 5.4 can be written as follows

(FE0) Solve Cw D r componentwise such that

the side condition w � g is obeyed.

The vector v is not calculated. Boundary conditions on w are set up in the same
way as discussed in Sect. 4.4 and summarized in Algorithm 4.14. Consequently,
the finite-element algorithm parallels Algorithm 4.14 closely in the special case of
an equidistant x-grid; there is no need to repeat this algorithm (�! Exercise 5.4).
In the general nonequidistant case, the off-diagonal and the diagonal elements of
the tridiagonal matrix C vary with i. Then the formulation of the SOR-loop gets
more involved. The details of the implementation are technical and omitted. The
Algorithm 4.15 is the same in the finite-element case.

The computational results match those of Chap. 4 and are not repeated. The costs
of the presented simple version of a finite-element approach are slightly lower than
that of the finite-difference approach, because we can take advantage of an optimal
spacing of the mesh points xi. For arguments discussing the closeness ofby to y, we
refer to Sect. 5.5.

5.4 Two-Asset Options

In Sect. 3.5.5 we discussed an option based on two assets with prices S1; S2. There
we applied Monte Carlo to simulate the GBM model, see Example 3.9. For the
mathematical model we have chosen the Black–Scholes market. The corresponding
PDE for the value function V.S1; S2; t/ is

@V

@t
C 1

2
�21S21

@2V

@S21
C .r � ı1/S1 @V

@S1
� rV

C 1
2
�22S22

@2V

@S22
C .r � ı2/S2 @V

@S2
C ��1�2S1S2 @2V

@S1@S2
D 0 ;

(5.31)
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with dividend rates ı1, ı2. (For the general case see Sect. 6.2.) Notice that for
S2 D 0 the familiar one-dimensional Black–Scholes equation results. The model is
completed by a payoff function �.S1; S2/ and the terminal condition V.S1; S2;T/ D
�.S1; S2/. The computational domain D is two-dimensional,D � R2 (disregarding
time t).

Example 5.6 (European Call on a Basket with Double Barrier) We consider
a call on a two-asset basket with two knock-out barriers. The payoff of this exotic
European-style option is

�.S1; S2/ D .S1 C S2 � K/C ;

up to the barriers (see Fig. 5.1). In the underlying basket the two assets are of equal
weight. The two knock-out barriers are given by B1 and B2, down-and-out at B1,
and up-and-out at B2. That is, the option ceases to exist when S1 C S2 � B1, or
when S1 C S2 � B2; in both cases V D 0. In this example, the computational
domain D is easy to define: The value function is zero outside the barriers. Hence
the domain is bounded by the two lines S1C S2 D B1 and S1C S2 D B2. This shape
of D naturally suggests to tile the domain into a grid of triangular elements Dk. One
possible triangulation is shown in Fig. 5.5, where a structured regular subdivision is
applied. For this example we choose the parameters

K D 1 ; T D 1 ; �1 D �2 D 0:25 ; � D 0:7 ; r D 0:05 ;
ı1 D ı2 D 0 ; B1 D 1 ; B2 D 2 :

The values V for S1 ! 0 and S2 ! 0 are known by the one-dimensional Black–
Scholes equation; just set either S1 D 0 or S2 D 0 in (5.31). These values of single-
asset double-barrier options for B1 � S � B2 can be evaluated by a closed-form
formula, see [172]. We shall come back to this example below.

5.4.1 Analytical Preparations

It is convenient to solve the Black–Scholes equation in divergence form. To this
end, use standard PDE variables x WD S1, y WD S2 for the independent variables, and
u.x; y; t/ for the dependent variable, and derive the vector PDE for u

� r 
 .D.x; y/ru/C b.x; y/trruC ru D ut : (5.32)

This makes use of the formal “nabla” vector r WD . @
@x ;

@
@y /

tr, and

D.x; y/ WD 1
2

	
�21 x2 ��1�2xy

��1�2xy �22 y2



;

b.x; y/ WD �
	
.r � ı1 � �21 � ��1�2=2/ x
.r � ı2 � �22 � ��1�2=2/ y



:

(5.33)
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ru is the gradient of u, and the dot-product notation

r 
 U D @U1

@x
C @U2

@y

for a vector function U denotes the divergence; the 
 corresponds to the scalar
product, similar as tr for vectors. The reader is invited to check the equivalence
with (5.31) (�! Exercise 5.5). The advantage of version (5.32) over (5.31) lies in a
simple treatment of the second-order derivatives; they can be removed, and a weak
version can be derived. This will become apparent below.

5.4.2 Weighted Residuals

The partial differential equation (5.32) can be represented by R.u; x; y; t/ D 0, where

R.u; x; y; t/ WD � r 
 .D.x; y/ru.x; y; t//C b.x; y/trru.x; y; t/

C ru.x; y; t/ � @u.x; y; t/

@t

denotes the residual. As in Sect. 5.1, the residual is used to set up an integral
equation. To this end, introduce weighting functions v, multiply the residual of the
PDE with v.x; y; t/ and request

Z
D

R.u; x; y; t/ v dx dy D 0 : (5.34)

This integral over the computational domain D � R2 is a double integral. It depends
on t, and should vanish for all 0 � t � T and arbitrary v. We consider u to be
a solution in case (5.34) holds for “all” v. This is a weak version of the PDE and
requires less regularity of its “weak” solutions u. Aspects of accuracy are postponed
to Sect. 5.5.

To exploit the potential of the integral version (5.34), we transform the second-
order derivatives to first order, comparable to integration by parts. The leading
integral over the second-order term is

Z
D
�r 
 .Dru/ v dx dy :

The reader may check for the vector U WD vDru the formula for the divergence
r 
 U, namely,

r 
 .vDru/ D .rv/trDruC vr 
 Dru ;
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and hence

�
Z
D
v r 
 .Dru/ dx dy D

Z
D
.rv/trDru dx dy �

Z
D
r 
 .vDru/ dx dy :

Next we quote the divergence theorem, here for the two-dimensional situation:

Z
D
r 
 U dx dy D

Z
@D

Utrn ds ; (5.35)

where @D denotes the boundary of D, and n is the outward unit normal vector on
@D. (n is perpendicular to the curve @D and points away from D.) The parameter s
measures the arclength along the boundary @D.4 We apply the divergence theorem
to the specific vector U WD vDru, and arrive at the result for the second-order term

�
Z
D
vr 
 .Dru/ dx dy D

Z
D
.rv/trDru dx dy �

Z
@D
.vDru/trn ds :

In (5.32)/(5.33) the matrix D is symmetric, D D Dtr. For symmetric D the integrand
in the boundary integral is v.ru/trDn. After the above transformations of the leading
integral, we rewrite (5.34) into

Z
D

�
.rv/trDruC vbtrruC ruv � @u

@t
v

�
dx dy �

Z
@D
v.ru/trDn ds D 0 :

(5.36)

Recall that both u and v as well as ru and rv depend on x; y; t, and the integrals
on t. This is the weak version of the PDE (5.32).

Next discretize the time 0 � t � T as in Chap. 4, say, with equidistant steps �t.
For the simplest implicit approach, the derivative with respect to time t is resolved
by the first-order difference quotient,

@u.x; y; t/

@t
	 u.x; y; tC�t/� u.x; y; t/

�t
:

For backward running time t,

upre WD u.x; y; tC�t/

is known at time t from the calculation of the previous time level. The analogue of
the fully implicit time-stepping method is then to solve (5.36) at time level t for @u

@t

4Recall from calculus the definition
R

C f .x; y/ds D R b
a f .g.�/; h.�// ds

d� d� where .g.�/; h.�// for
a � � � b is a parameterization of a planar curve C; � is the curve parameter. The value of this
line integral is independent of the orientation of the curve C and independent of the particular
parameterization.
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replaced by

1

�t
.upre � u/ ;

starting at t D T � �t with the payoff, upre D � . With this approximation, the
function u in (5.36) approximates the value function V at time level t. Alternatively,
a second-order time-discretization can be applied, similar as in Sect. 4.3. For the
required regularity of the functions u and v, consult Sect. 5.5.

5.4.3 Boundary

Boundary conditions enter via the boundary integral around the boundary @D. In
practice, the computational domain D is defined by specifying @D. To this end,
express the curve @D as the union of a finite number of non-overlapping piecewise
smooth boundary curves @D1; @D2; : : :. Each of these curves must be parameterized
as in

@D1 WD f .g1.�/; h1.�// j a1 � � � b1 g :

In this way, an orientation is given by starting the curve at the parameter value
� D a1 and ending at � D b1. By specifying parameter intervals as a1 � � � b1
and parametric functions as g1; h1, the entire boundary is defined. The convention
is that the orientation is done such that the domain D is on the left-hand side, as we
run through the parameterizations for increasing parameter values �.

Now the curve @D is defined and we address the boundary integral along that
curve. It is split into a sum of integrals according to the piecewise smooth curves
@D1; @D2; : : :. For example, the boundary of the domain in Fig. 5.5 consists of four
such parts (�! Exercise 5.6).

The product-type integrand f .x; y/ WD v.ru/trDn suggests to place emphasis on
two specific kinds of boundary condition, namely,

• v is prescribed (Dirichlet boundary conditions),
• .ru/trDn is prescribed (Neumann boundary conditions).

The boundary differential operator .ru/trDn D ntrDru can be considered as a
generalized directional derivative since @u

@n D ntrru. Mixed boundary conditions are
possible as well. If we cast the components of the vector ntrD into a vector .˛1; ˛2/,
then all type of boundary conditions can be written in the form

˛1.x; y/
@u

@x
C ˛2.x; y/@u

@y
D ˛0.x; y/ uC ˇ.x; y/
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with proper functions ˛0 and ˇ. Then

v .˛0.x; y/ uC ˇ.x; y//

is substituted into the boundary integral, which is approximated numerically using
the edges of the triangulation of D.

Fortunately, boundary conditions are frequently of simple form. In particular one
encounters the two types

• u D 0 (or v D 0), which is of Dirichlet type with ˛1 D ˛2 D ˇ D 0 and ˛0 ¤ 0.
• .ru/trDn D 0, which is of Neumann type with ˛0 D ˇ D 0 and nonzero vector
.˛1; ˛2/.

The boundary @D may consist, for example, of two parts @DD and @DN with @D D
@DD [ @DN, @DD \ @DN D ;, and Dirichlet conditions on @DD and Neumann
conditions on @DN. Clearly, boundary integrals vanish for the special cases v D 0

or .ru/trDn D 0. Neumann conditions are advantageous in that they need not be
specified for weak formulations. This entails an advantage of FEM over discretizing
the PDEs by finite differences. In the latter case, all boundary conditions must be
implemented. For FEM it suffices to implement Dirichlet conditions. Defining the
right boundary conditions can be demanding. Aside to be financially meaningful,
another aim is the problem to be well-posed—that is, it defines a unique solution.
To some extent, defining proper boundary conditions is an art.

Example 5.7 (European Binary Put as in Example 3.9) In Chap. 3 the Exam-
ple 3.9 of a binary put was simulated with Monte Carlo, and no boundary or
boundary conditions were needed. Here we prepare the example to be solved by
FEM. Again, x WD S1, y WD S2. As in Chap. 4, the domain 0 < x <1, 0 < y <1
must be truncated to finite size. A simple choice of a computational domain is a
rectangle

D D f .x; y/ j 0 � x � xmax; 0 � y � ymax g

with xmax; ymax large enough such that zero boundary conditions u D 0 can be
chosen as approximation for x D xmax or y D ymax. The rectangle is bounded by
four straight lines, which can be parameterized, for example, by

@D1 WD f x D �; y D 0 j 0 � � � xmax g ;
@D2 WD f x D xmax; y D � j 0 � � � ymax g ;
@D3 WD f x D xmax � �; y D ymax j 0 � � � xmax g ;
@D4 WD f x D 0; y D ymax � � j 0 � � � ymax g :

Now @D D @D1 [ @D2 [ @D3 [ @D4, and the parameterized curve has the domain
on the left.
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Dirichlet conditions are imposed for @D2 and @D3, where we have chosen to
approximate boundary values by requesting u D 0. For y D 0 the boundary
conditions can be chosen as the values of the one-dimensional European binary
put. An analytic formula for the one-dimensional case of a European binary put is

VEur
binP.S; t/ WD c e�r.T�t/ F

	
� log.S=K/C .r � �2=2/.T � t/

�
p

T � t



;

for a face value c, with standard normal distribution F [172]. For y D 0we set S D x.
The same formula can be applied for the boundary with x D 0; then S D y. In this
way, on @D1 and @D4 the boundary conditions are of Dirichlet type with u D VEur

binP.
With this choice of boundary conditions, @DD D @D and @DN D ;. But there is
a simpler choice: As [300] points out, this Dirichlet condition is implicitly defined
by the PDE, because the one-dimensional PDE is embedded in (5.31) for S1 D 0 or
S2 D 0. So no boundary condition needs to be specified along @D1 and @D4. This
amounts to zero Neumann conditions. Both the Dirichlet version and the Neumann
version work. The latter has the advantage of avoiding the effort of evaluating VEur

binP.
The implementation of the weak form in (5.36) is straightforward when, for

example, the package FreeFem++ is applied. Thereby a figure similar as Fig. 3.7
is produced easily.

5.4.4 Involved Matrices

The accuracy of FEM depends on how the grid is chosen. Algorithms for mesh
generation and mesh adaption are needed, but these are demanding topics. It is
cumbersome to implement a two-dimensional FEM yourself. For first results, one
may work with a fixed structured grid. But in general it is advisable and comfortable
to apply a FEM package to solve (5.36). Here we merely focus on how the two-
dimensional analogue of the hat functions enters.

For the Ritz–Galerkin approach we apply the basis representation

w.x; y; t/ D
X

i

wi.t/ 'i.x; y/ (5.37)

as approximation for u, and set v D 'j. This ansatz separates time � and “space”
.x; y/. The functions 'i are defined on D.

For basis functions, we choose the two-dimensional hat functions, which per-
fectly match triangular elements. The situation is shown schematically in Fig. 5.9.
There the central node l is node of several adjacent triangles, which constitute the
support (shaded) on which 'l is built by planar pieces. This approach defines a
tent-like hat function 'l, which is zero “outside.” By linear combination of such
basis functions, piecewise planar surfaces above the computational domain are
constructed. Locally, for one triangle, this may look like the element in Fig. 5.4.
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Fig. 5.9 Two-dimensional hat function 'l.x; y/ (zero outside the shaded area)

Notice that rw DPwir'i. The weak form of (5.36) leads to
Z
D
.r'j/

trD
X

wir'i C

'j

�
btr.
X

wir'i/C r
X

wi'i �
X @wi

@t
'i

�
dx dy

�
Z
@D
'j.
X

wir'i/
trDn ds D 0 ;

for all j. This is a system of ODEs

X
i

wi

Z
D


.r'j/

trDr'i C 'jb
trr'i C 'jr'i

�
dx dy

�
X

i

@wi

@t

Z
D
'i'j dx dy �

X
i

wi

Z
@D
'j.r'i/

trDn ds D 0 :
(5.38)

As an exercise, the reader should rewrite this ODE system in matrix-vector notation.
In summary, FEM needs the integrals over the domain D

Z
.r'j/

tr Dr'i (“diffusion terms”) ;

Z
'jb

trr'i (“convection terms”) ;

Z

'j'i (“reaction terms”) ;

where 
 is chosen appropriately, and in addition boundary integrals along @D.
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Fig. 5.10 Rough approximation of the value function V.S1; S2; 0/ of a basket double-barrier call
option, Example 5.6. With kind permission of Anna Kvetnaia

For each number k of a triangle, there are three vertices of the triangle, with
node numbers i; j; l in Fig. 5.9. Hence the table I of index sets that assigns nodes to
triangles includes the entry

Ik WD fi; j; lg :

Only for the three node numbers i; j; l 2 Ik the local integrals on Dk are nonzero.
They can be arranged into 3 � 3 element matrices. For the derivation of the
integrals, it makes sense to use a local numbering 1k; 2k; 3k for the nodes of Dk. For
each global matrix, the assembling loop over k distributes up to 27 local integrals
calculated on Dk, nine integrals of each of the above three types.5

Back to Example 5.6, we solve (5.36) with FEM. Figure 5.10 shows a FEM
solution with 192 triangles. Figure 5.11 illustrates a mesh structure for higher
resolution obtained with FreeFem++. In the two-dimensional case, because of
higher costs, we typically confine ourselves to an accuracy lower than in the one-
dimensional situation. Based on our results we state

V.1:25; 0:25; 0/ 	 0:2949 :

5Basic ingredients for the calculation of the local integrals on an arbitrary triangle Dk are the
relations in Exercise 5.7. See also Exercises 5.8 and 5.9.
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Fig. 5.11 Finer approximation of the value function V.S1; S2; 0/ of a basket double-barrier call
option, Example 5.6

Example 5.8 (Heston’s PDE) In Example 1.16 Heston’s model was introduced,
where v denotes a stochastic volatility. The corresponding PDE from [178] is

@V

@t
C 1

2
vS2

@2V

@S2
C 1

2
�2v v

@2V

@v2
C ��vvS

@2V

@S@v

C rS
@V

@S
C Œ�. � v/ � �v�@V

@v
� rV D 0 ;

(5.39)

with parameters as in (1.59), and � standing for the market price of volatility risk.
Here we are interested in solutions V.S; v; t/ on part of a two-dimensional .S; v/-
plane. The PDE (5.39) can be cast into version (5.32). As an exercise, the reader
is encouraged to derive D and b, and with the payoff of a call and an own choice
of parameters, to think about suitable boundary conditions, and to do experiments
with (5.39). Note that for a call a reasonable requirement for maximum values of the
volatility v is V D S. When in addition the interest rate r is replaced by a stochastic
variable, the PDE is based on a three-dimensional domain [163].

5.5 Error Estimates

The similarity of the finite-element equation (5.21) with the finite-difference
equation (4.24) suggests that the errors may be of the same order. In fact, numerical
experiments confirm that the finite-element approach with the linear basis functions
from Definition 5.1 produces errors decaying quadratically with the mesh size.
Applying the finite-element Algorithm 5.4 and entering the calculated data into a
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diagram as Fig. 4.14, confirms the quadratic order experimentally. The proof of this
order of the error is more difficult for finite-element methods because weak solutions
assume less smoothness. For standard options, the separation of variables in (5.19)
also separates the discussion of the order, and an analysis of the one-dimensional
situation suffices. This section explains some basic ideas of how to derive error
estimates. We begin with reconsidering some of the related topics that have been
introduced in previous sections.

5.5.1 Strong and Weak Solutions

Our exposition will be based on the model problem (5.15). That is, the simple
second-order differential equation

� u00 D f .x/ for ˛ < x < ˇ (5.40)

with given f , and homogeneous Dirichlet-boundary conditions

u.˛/ D u.ˇ/ D 0 (5.41)

will serve as illustration. The differential equation is of the form Lu D f ,
compare (5.2). The domain D � Rn on which functions u are defined specializes
for n D 1 to the open and bounded interval D D f x 2 R1 j ˛ < x < ˇ g.
For continuous f , solutions of the differential equation (5.40) satisfy u 2 C2.D/.
In order to have operative boundary conditions, solutions u must be continuous on
D including its boundary, which is denoted @D. Therefore we require u 2 C0.D/
where D WD D [ @D. In summary, classical solutions of second-order differential
equations require

u 2 C2.D/\ C0.D/ : (5.42)

The function space C2.D/ \ C0.D/ must be reduced further to comply with the
boundary conditions.

For weak solutions the function space is larger (�! Appendix C.3). For
functions u and v we define the inner product

.u; v/ WD
Z
D

uv dx : (5.43)

Strong solutions u of Lu D f satisfy also

.Lu; v/ D . f ; v/ for all v : (5.44)
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Specifically for the model problem (5.40)/(5.41) integration by parts leads to

.Lu; v/ D �
Z ˇ

˛

u00v dx D �u0v
ˇ̌̌ˇ
˛
C
Z ˇ

˛

u0v0 dx :

The nonintegral term on the right-hand side of the equation vanishes in case also v
satisfies the homogeneous boundary conditions (5.41). The remaining integral is a
bilinear form, which we abbreviate

b.u; v/ WD
Z ˇ

˛

u0v0 dx : (5.45)

Bilinear forms as b.u; v/ from (5.45) are linear in each of the two arguments u and
v. For example, b.u1C u2; v/ D b.u1; v/C b.u2; v/ holds. The bilinear form (5.45)
is symmetric, b.u; v/ D b.v; u/. For several classes of more general differential
equations analogous bilinear forms are obtained. Formally, (5.44) can be rewritten as

b.u; v/ D . f ; v/ ; (5.46)

where we assume that v satisfies the homogeneous boundary conditions (5.41).
The Eq. (5.46) has been derived out of the differential equation, for the solutions

of which we have assumed smoothness in the sense of (5.42). Many “solutions”
of practical importance do not satisfy (5.42) and, accordingly, are not smooth. In
several applications, u or derivatives of u have discontinuities. For instance consider
the obstacle problem of Sect. 4.5.5: The second derivative u00 of the solution fails to
be continuous at ˛ and ˇ. Therefore u … C2.�1; 1/ no matter how smooth the data
function is, compare Fig. 4.10. As mentioned earlier, integral relations require less
smoothness.

In the derivation of (5.46) the integral version has resulted as a consequence
of the primary differential equation. This is contrary to wide areas of applied
mathematics, where an integral relation is based on first principles, and the
differential equation is derived in a second step. For example, in the calculus of
variations a minimization problem may be described by an integral performance
measure, and the differential equation is a necessary criterion [350]. This situation
suggests considering the integral relation as an equation of its own right rather than
as offspring of a differential equation. This leads to the question, what is the maximal
function space such that (5.46) with (5.43), (5.45) is meaningful? That means to ask,
for which functions u and v do the integrals exist? For a more detailed background
we refer to Appendix C.3. For the introductory exposition of this section it may
suffice to sketch the maximal function space briefly. The suitable function space
is denoted H1, the version equipped with the boundary conditions is denoted H1

0.
This Sobolev space consists of those functions that are continuous on D and that are
piecewise differentiable and satisfy the boundary conditions (5.41). This function
space corresponds to the class of functions K in (5.23). By means of the Sobolev
spaceH1

0 a weak solution of Lu D f is defined, where L is a second-order differential
operator and b the corresponding bilinear form.
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Definition 5.9 (Weak Solution) u 2 H1
0 is called weak solution [of Lu D f ], if

b.u; v/ D . f ; v/ holds for all v 2 H1
0 .

This definition implicitly expresses the task: find a u 2 H1
0 such that b.u; v/ D

. f ; v/ for all v 2 H1
0. This problem is called variational problem. The model

problem (5.40)/(5.41) serves as example for Lu D f ; the corresponding bilinear
form b.u; v/ is defined in (5.45) and . f ; v/ in (5.43). For the integrals (5.43)
to exist, we in addition require f to be square integrable . f 2 L2, compare
Appendix C.3). Then . f ; v/ exists because of the Schwarzian inequality (C.16).
In a similar way, weak solutions are introduced for more general problems; the
formulation of Definition 5.9 applies.

5.5.2 Approximation on Finite-Dimensional Subspaces

For a practical computation of a weak solution the infinite-dimensional space H1
0

is replaced by a finite-dimensional subspace. Such finite-dimensional subspaces
are spanned by basis functions 'i. Simple examples are the hat functions of
Sect. 5.2. Reminding of the important role splines play as basis functions, the finite-
dimensional subspaces are denotedS, and are called finite-element spaces. As stated
in Property 5.2(a), the hat functions '0; : : : ; 'm span the space of polygons. Recall
that each such polygon v can be represented as linear combination

v D
mX

iD0
ci'i :

The coefficients ci are uniquely determined by the values of v at the nodes, ci D
v.xi/. We call hat functions “linear elements” because they consist of piecewise
straight lines. Apart from linear elements, for example, also quadratic or cubic
elements are used, which are piecewise polynomials of second or third degree
[79, 335, 382]. The attainable accuracy is different for basis functions consisting
of higher-degree polynomials.

Since by definition the functions of the Sobolev space H1
0 fulfill the homoge-

neous boundary conditions, each subspace does so as well. Again the subscript 0
indicates the realization of the homogeneous boundary conditions (5.41).6 A finite-
dimensional subspace of H1

0 is defined by

S0 WD
(
v D

mX
iD0

ci'i j 'i 2 H1
0

)
: (5.47)

6In this subsection the meaning of the index 0 is twofold: It is the index of the “first” hat function,
and serves as symbol of the homogeneous boundary conditions (5.41).
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Properties of S0 are determined by the basis functions 'i. As mentioned earlier,
basis functions with small supports give rise to sparse matrices. The partition (5.4)
of D is implicitly included in the definition S0 because this information is contained
in the definition of the 'i. For our purposes the hat functions suffice. The larger
m is, the better S0 approximates the space H1

0, since a finer discretization (smaller
Dk) allows to approximate the functions from H1

0 better by polygons. We denote
the largest diameter of the Dk by h, and ask for convergence. That is, we study the
behavior of the error for h! 0 (basically m!1).

In analogy to the variational problem expressed in connection with Defini-
tion 5.9, a discrete weak solution w is defined by replacing the space H1

0 by a
finite-dimensional subspace S0:
Problem 5.10 (Discrete Weak Solution) Find a w 2 S0 such that b.w; v/ D
. f ; v/ for all v 2 S0.
The quality of the approximation relies on the discretization fineness h of S0, which
is occasionally emphasized by writing wh.

5.5.3 Quadratic Convergence

Having defined a weak solution u and a discrete approximation w, we turn to the
error u�w. To measure the distance between functions in H1

0 we use the norm k k1
(�! Appendix C.3). That is, our first aim is to construct a bound on ku � wk1. Let
us suppose that the bilinear form is continuous and H1-elliptic:

Assumptions 5.11 (ContinuousH1-Elliptic Bilinear Form)

(a) There is a 
1 > 0 such that jb.u; v/j � 
1kuk1kvk1 for all u; v 2 H1 .
(b) There is a 
2 > 0 such that b.v; v/ � 
2kvk21 for all v 2 H1 .

The assumption (a) is the continuity, and the property in (b) is called H1-ellipticity.
Under the Assumptions 5.11, the problem to find a weak solution following
Definition 5.9, possesses exactly one solution u 2 H1

0; the same holds true for
Problem 5.10. This is guaranteed by the Theorem of Lax–Milgram [53, 79]. In view
of S0 � H1

0,

b.u; v/ D . f ; v/ for all v 2 S0 :

Subtracting b.w; v/ D . f ; v/ and invoking the bilinearity implies

b.w� u; v/ D 0 for all v 2 S0 : (5.48)

The property of (5.48) is called error-projection property. The Assumptions 5.11
and the error projection are the basic ingredients to obtain a bound on the error
ku � wk1:
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Lemma 5.12 (Céa) Suppose the Assumptions 5.11 are satisfied. Then

ku � wk1 � 
1


2
inf
v2S0
ku � vk1 : (5.49)

Proof v 2 S0 implies Qv WD w � v 2 S0. Applying (5.48) for Qv yields

b.w� u;w� v/ D 0 for all v 2 S0 :

Therefore

b.w� u;w� u/ D b.w� u;w� u/� b.w� u;w� v/
D b.w� u; v � u/ :

Applying the assumptions shows


2kw � uk21 � jb.w� u;w � u/j D jb.w� u; v � u/j
� 
1kw � uk1kv � uk1 ;

from which

kw � uk1 � 
1


2
kv � uk1

follows. Since this holds for all v 2 S0, the assertion of the lemma is proven.
Let us check whether the Assumptions 5.11 are fulfilled by the model prob-

lem (5.40)/(5.41). For (a) this follows from the Schwarzian inequality (C.16) with
the norms

kuk1 D
 Z ˇ

˛

.u2 C u02/ dx

!1=2
; kuk0 D

 Z ˇ

˛

u2 dx

!1=2
;

because

 Z ˇ

˛

u0v0 dx

!2
�
 Z ˇ

˛

u02 dx

! Z ˇ

˛

v02 dx

!
� kuk21 kvk21 :

The Assumption 5.11(b) can be derived from the inequality of the Poincaré-type

Z ˇ

˛

v2 dx � .ˇ � ˛/2
Z ˇ

˛

v02 dx ;
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h
S

H 1

w

u

C 2

Fig. 5.12 Approximation spaces

which in turn is proven with the Schwarzian inequality (�! Exercise 5.10). AddingR
v02 dx on both sides leads to

kvk21 � Œ.ˇ � ˛/2 C 1� b.v; v/ ;

from which the constant 
2 of Assumption 5.11(b) results. Hence Céa’s lemma
applies to the model problem.

The next question is, how small the infimum in (5.49) may be. This is equivalent
to the question, how close the subspace S0 can approximate the space H1

0 (�!
Fig. 5.12). We will show that for hat functions and S0 from (5.47) the infimum is
of the order O.h/. Again h denotes the maximum mesh size, and the notation wh

reminds us that the discrete solution depends on the grid with a spacing symbolized
by h. To apply Céa’s lemma, we need an upper bound for the infimum of ku � vk1.
Such a bound is found easily by a specific choice of v, which is taken as an arbitrary
interpolating polygon uI. Then by (5.49)

ku � whk1 � 
1


2
inf
v2S0
ku � vk1 � 
1


2
ku � uIk1 : (5.50)

It remains to bound the error of interpolating polygons. This bound is provided by
the following lemma, which is formulated for C2-smooth functions u:

Lemma 5.13 (Error of an Interpolating Polygon) For u 2 C2 let uI be an arbi-
trary interpolating polygon and h the maximal distance between two consecutive
nodes. Then

(a) max
x
ju.x/ � uI.x/j � h2

8
max ju00.x/j ,

(b) max
x
ju0.x/� u0

I.x/j � h max ju00.x/j .
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We leave the proof to the reader (�! Exercise 5.11). Lemma 5.13 asserts

ku � uIk1 D O.h/ ;

which together with (5.50) implies the claimed error statement

ku � whk1 D O.h/ : (5.51)

Recall that this assertion is based on a continuous and H1-elliptic bilinear form and
on hat functions 'i. The O.h/-order in (5.51) is dominated by the unfavorable O.h/-
order of the first-order derivative in Lemma 5.13(b). This low order is at variance
with the actually observed O.h2/-order attained by the approximation wh itself (not
its derivative). In fact, the square order holds. The final result is

ku � whk0 � Ch2kuk2 (5.52)

for a constant C. This result is proven with the following lemma, which is based on
a tricky idea due to Nitsche.

Lemma 5.14 (Nitsche) Assume b is a symmetric bilinear form satisfying Assump-
tions 5.11, and u and w are defined as above. Then

ku � wk1 � Kh1k fk0 implies ku � wk0 � Ch2k fk0 :

Proof Consider the auxiliary problem Lz D Qf WD u � w, with weak version

b.z; Qv/ D . Qf ; Qv/0 for all Qv 2 H1
0 ;

which defines z. Choose specifically Qv D u � w D Qf . Then

b.z; u � w/ D .u � w; u � w/0 D ku � wk20 :

Invoking the error-projection property (5.48) we note

0 D b.u � w; v/ D b.v; u � w/ for all v 2 S0 :

Subtracting this, yields

b.z� v; u � w/ D ku � wk20 for all v 2 S0 :

We apply the continuity of b,

ku � wk20 � 
1kz � vk1 ku � wk1 for all v 2 S0 ;
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and choose specifically v as the finite-element approximation of z. Then

ku � wk20 � 
1K1h1k Qfk0 
 K2h1k fk0 D Ch2ku � wk0 k fk0 ;

from which the assertion follows.
This error of the order h2 can be observed for the examples of Sect. 5.4, but not

easily. The error is somewhat hidden among the other errors, namely, localization
error, interpolation error, and the error of the time discretization.

The derivations of this section have been focused on the model prob-
lem (5.40)/(5.41) with a second-order differential equation and one independent
variable x .n D 1/, and have been based on linear elements. Most of the assertions
can be generalized to higher-order differential equations, to higher-dimensional
domains .n > 1/, and to nonlinear elements. For example, in case the elements in
S are polynomials of degree k, and the differential equation is of order 2l, S � Hl,
and the corresponding bilinear form on Hl satisfies the Assumptions 5.11 with norm
k kl, then the inequality

ku � whkl � ChkC1�lkukkC1

holds. This general statement includes for k D 1; l D 1 the special case of
Eq. (5.52) discussed above. For the analysis of the general case, we refer to [79, 162].
This includes boundary conditions more general than the homogeneous Dirichlet
conditions of (5.41).

5.6 Notes and Comments

On Sect. 5.1

As an alternative to piecewise defined finite elements one may use polynomials
'j that are defined globally on D, and that are pairwise orthogonal. Then the
orthogonality is the reason for the vanishing of many integrals. Such type of methods
are called spectral methods. Since the 'i are globally smooth on D, spectral methods
can produce high accuracies. In other context, spectral methods were applied in
[142]. For historical remarks on Ritz–Galerkin type methods, see [145].

Specifically designed basis functions can be generated by some low-dimensional
approximation, comparable to PCA in finite dimensions (�! Exercise 2.16).
Functions are suitable that represent preferred patterns of the solution. Then the
number N of modes 'i can be small. Such methods are described under the heading
principal orthogonal decomposition (POD), or Karhunen–Loève expansion.
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On Sect. 5.2

In the early stages of their development, finite-element methods have been applied
intensively in structural engineering. In this field, stiffness matrix and mass matrix
have a physical meaning leading to these names [382].

On Sect. 5.3

The approximation
P

wi.�/'i.x/ for Oy is a one-dimensional finite-element
approach. The geometry of the grid and the accuracy resemble the finite-difference
approach. A two-dimensional approach as in

X
wi'i.x; �/

with two-dimensional hat functions and constant wi is more involved and more
flexible. Sections 5.3.2–5.3.4 widely follow [376].

On Sect. 5.4

For the calculation of the local integrals on an arbitrary triangle Dk consult the
special FEM literature, such as [335]. In general an irregular triangulation better
exploits the potential adaptivity of FEM. In particular, close to the barriers a fine
mesh is required for high accuracy [304]. Since the gradient of u varies with time,
a dynamic mesh refinement might be advisable, provided accuracy or stability do
not deteriorate. For American options, boundary conditions V D � along the
boundary are recommendable. For an illustration of assembling, see Topic 12 of
the Topics fCF.

On Sect. 5.5

The assumption u 2 C2 in Lemma 5.13 can be weakened to u00 2 L2 [351]. For
domainsD 2 R2 the claim of Lemma 5.13 holds analogously; then the second-order
derivative u00 is replaced by the Hessian matrix of the second-order derivatives of u.
This can be applied to mesh adaption, where one attempts to place nodes such that
the Hessian is equilibrated across the mesh. The finite-dimensional function space
S0 in (5.47) is assumed to be subspace of H1

0. Elements with this property are called
conforming elements. A more accurate notation for S0 of (5.47) is S10 . In the general
case, conforming elements are characterized by S l � Hl. In the representation of
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v in Eq. (5.47) we avoid discussing the technical issue of how to organize different
types of boundary conditions.

There are also smooth basis functions ', for example, cubic Hermite polynomi-
als. For sufficiently smooth solutions, such basis functions produce higher accuracy
than hat functions do. For the accuracy of finite-element methods consult, for
example, [2, 19, 53, 79, 162, 351].

On Other Methods

Finite-element methods are frequently used for approximating exotic options, in par-
ticular in multidimensional situations. For different types of options special methods
have been developed. For applications, computational results and accuracies see
also [2, 361, 362]. Front-fixing has been applied with finite elements in [188].
The accuracy aspect is also treated in [144]. Ritz–Galerkin methods are used with
wavelet functions in [185, 263]; the latter paper is specifically devoted to stochastic
volatility. A penalty approach with FEM is discussed in [230], where rectangular
subdomains are furnished with basis functions as product of one-dimensional hat
functions of the type '.x; y/ D 'i.x/'j. y/.

5.7 Exercises

5.1 (Elliptical Probability Curves)
Suppose the situation of two asset prices S1.t/ and S2.t/ for t > 0 governed by
GBM (3.35), with initial price point .S1.0/; S2.0//. Barriers of a barrier option can
be aligned such that the probability of .S1.t/; S2.t// reaching the barrier has the same
constant value. Define Y1 WD log S1, Y2 WD log S2.

(a) Show that the curve of constant probability in the . Y1;Y2/-plane has an elliptical
shape.

(b) Let the covariance matrix be

˙ D
	
�21 ��1�2
��1�2 �22



:

Calculate its eigenvalues and eigenvectors.
(c) Sketch representative ellipses in a .Y1;Y2/-plane. How do they depend on �?

5.2 (Cubic B-Spline)
Suppose an equidistant partition of an interval be given with mesh size h D xkC1�xk.
Cubic B-splines have a support of four subintervals. In each subinterval the spline
is a piece of polynomial of degree three. Apart from special boundary splines, the
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cubic B-splines 'i are determined by the requirements

'i.xi/ D 1

'i.x/ � 0 for x < xi�2
'i.x/ � 0 for x > xiC2
' 2 C2.�1;1/ :

To construct these 'i proceed as follows:

(a) Construct a spline S.x/ that satisfies the above requirements for the special
nodes

Qxk WD �2C k for k D 0; 1; : : : ; 4 :

(b) Find a transformation Ti.x/, such that 'i D S.Ti.x// satisfies the requirements
for the original nodes.

(c) For which i; j does 'i'j D 0 hold?

5.3 (Finite-Element Matrices)
For the hat functions ' from Sect. 5.2 calculate for arbitrary subinterval Dk all
nonzero integrals of the form

Z
'i'j dx;

Z
' 0

i'j dx;
Z
' 0

i'
0
j dx

and represent them as local 2 � 2 matrices.

5.4 (Calculating Options with Finite Elements)
Design an algorithm for the pricing of standard options by means of finite elements.
To this end proceed as outlined in Sect. 5.3. Start with a simple version using an
equidistant discretization step �x. If this is working properly change the algorithm
to a version with nonequidistant x-grid. Distribute the nodes xi closer around x D 0.
Always place a node at the strike.

5.5 (Black-Scholes Equation in Divergence-Free Form)

(a) Prove the equivalence of (5.31) and (5.32), where D and b are given by (5.33).
Specialize this to the one-dimensional case of the Black–Scholes equation.

(b) Show

btrruC ru D r 
 .bu/C 
u

and determine 
 for the two-dimensional case, and for the Black–Scholes
equation.
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(c) With the transformation

x WD log.
S1
K1
/; y WD log.

S2
K2
/

and writing u.x; y; t/ for V leads to the PDE

ut C 1

2
�21 uxx C .r � ı1 � 1

2
�21 /ux � ru

C 1

2
�22 uyy C .r � ı2 � 1

2
�22 /uy C ��1�2uxy D 0 :

What are the matrix D and the vector b such that we arrive at (5.32)?

5.6 (Outward Normals)
The boundary @D of the trapezoidal domain D in Fig. 5.5 consists of four straight
lines. What are the four unit outward vectors n orthogonal to @D? Give a parameter
representation of the boundary.

5.7 (Gradient on a Triangle)
Consider hat functions ' on a triangular element Dk with vertex nodes numbers
Ik D fi; j; lg, and the local plane on Dk represented by

w.x; y/ D wi'i.x; y/C wj'j.x; y/C wl'l.x; y/ :

(a) In the three-dimensional .x; y;w/-space let the plane w.x; y/ D c1 C c2 x C
c3 y interpolate the three points .xi; yi; wi/, i D 1; 2; 3 (local node numbering).
That is,

0
@1 x1 y1
1 x2 y2
1 x3 y3

1
A
0
@c1

c2
c3

1
A D

0
@w1

w2
w3

1
A ;

shortly Ac D w. Establish a formula for the gradient rw D .c2; c3/tr, showing
that there is a .2 � 3/-matrix Gk such that

rw D Gkw :

Hint: Use Cramer’s rule; jFkj is the area of the triangle, where

Fk WD 1

2
det.A/ :
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(b) Show

.r'i j r'j j r'l/ D Gk :

(c) Show

Z
Dk

r' tr
i r'j dx dy D r' tr

i r'j jFkj ;

and all nine integrals of the element stiffness matrix are obtained by

jFkjGtr
k Gk :

5.8 (Assembling)
Consider the domain D WD f.x; y/ j x � 0; y � 0; 1 � x C y � 2g tiled by 12
triangles Dk, where triangles and vertices are numbered as in Fig. 5.13.

(a) Set up the index set I with entries Ik D fik; jk; lkg, which assigns node numbers
to the kth triangle, for 1 � k � 12.

(b) Formulate the assembling algorithm that builds up the global stiffness matrix
out of the element stiffness matrices

0
B@

s.k/11 s.k/12 s.k/13
s.k/21 s.k/22 s.k/23
s.k/31 s.k/32 s.k/33

1
CA

for a general index set I and 1 � k � m.

Fig. 5.13 Specific
triangulation and numbering,
see Exercise 5.8

8

11

124

10

S2=y

S1=x

12

9

6

7

5

3

12

11
10 8

79
6 4

5 3

2 1
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(c) The example of Fig. 5.13 leads to a banded stiffness matrix. What is the
bandwidth?

5.9 (Variable Volatility (Project))
For variable volatility �.S; t/ and constant K;T; r; ı , PDEs of the type

@y

@�
� 1
2
O�2.x; �/

	
@2y

@x2
� 1
4

y



D 0

are to be solved, with � D T � t and transformations S $ x, V $ y from the
Black–Scholes model given by (A.25), (A.26); consult Appendix A.6.

(a) For an American put, apply these transformations to derive from V.S; t/ �
.K � S/C an inequality y.x; �/ � g.x; �/.

(b) Carry out the finite-element formulation for the linear complementarity problem
analogously as in Sect. 5.3.4.

(c) Integrals will include local integrals

Z
�2.x; �/'i'j dx ;

Z
�2.x; �/' 0

i'j dx :

Apply Simpson’s quadrature rule

Z b

a
f .x/dx 	 b� a

6

�
f .a/C 4f

	
aC b

2



C f .b/

�

to approximate the above local integrals.
(d) Set up a finite-element code, and test it with the artificial function [128]

�.S/ WD 0:3 � 0:2

log.S=K/2 C 1 :

5.10 Assume a function v.�/ with ˛ � � � ˇ and v.˛/ D 0.

(a) Show

.v.�//2 � .� � ˛/
Z �

˛

.v0.x//2 dx :

Hint: Recall v.�/ D R �
˛
v0.x/ dx, and apply the Schwarzian inequality (C.16).

(b) Use (a) to show

Z ˇ

˛

.v.�//2 d� � 1

2
.ˇ � ˛/2

Z ˇ

˛

.v0.x//2 dx :

5.11 Prove Lemma 5.13, and for u 2 C2 the assertion ku � whk1 D O.h/.



Chapter 6
Pricing of Exotic Options

Chapter 4 discussed the pricing of vanilla options (standard options) by means
of finite differences. The methods were based on the simple partial differential
equation (4.2),

@y

@�
D @2y

@x2
;

which was obtained from the Black–Scholes equation (4.1) for V.S; t/ via the
transformations (4.3). These transformations exploit the simple structure of the
Black–Scholes operator and rely on the assumption of constant coefficients.

Exotic options lead to partial differential equations that are not of the simple
structure of the basic Black–Scholes equation (4.1). In the general case, the trans-
formations (4.3) are no longer useful and the PDEs must be solved directly. Thereby
numerical instabilities or spurious solutions may occur that do not play any role for
the methods of Chap. 4. To cope with the “new” difficulties, Chap. 6 introduces ideas
and tools not needed in Chap. 4. Exotic options often involve higher-dimensional
problems. This significantly adds to the complexity. An exhaustive discussion of the
wide field of exotic options is beyond the scope of this book. The aim of this chapter
will not be to formulate algorithms, but to give an outlook on several relevant aspects
of computation, and on phenomena of stability. In this chapter, we still stick to the
GBM model and move within the Black–Scholes world; for more general models
see Chap. 7.

Sections 6.1 and 6.2 give a brief overview on important types of exotic options.
Section 6.3 introduces approaches for path-dependent options, with the focus
on Asian options. Then numerical aspects of convection-diffusion problems are
discussed (in Sect. 6.4), and upwind schemes are analyzed (in Sect. 6.5). After these
preparations, Sect. 6.6 arrives at a state of the art high-resolution method. Finally,
Sect. 6.7 addresses penalty methods, with application to two-asset options.

© Springer-Verlag London Ltd. 2017
R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-7338-0_6
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6.1 Exotic Options

So far, this book has mainly concentrated on standard options. These are the
American or European call or put options with vanilla payoff functions (1.1) or (1.2)
as discussed in Sect. 1.1, based on a single underlying asset. The options traded on
official exchanges are mainly standard options; there are market prices quoted in
relevant newspapers.

All nonstandard options are called exotic options. That is, at least one of the
features of a standard option is violated. One of the main possible differences
between standard and exotic options lies in the payoff; examples are given in this
section. Another extension from standard to exotic is an increase in the dimension,
from single-factor to multifactor options; this will be discussed in Sect. 6.2. For
exotic options, the distinctions between put and call, and between European and
American options remain valid.

Financial institutions have been imaginative in designing exotic options to meet
the needs of clients. Many of the products have a highly complex structure. Exotic
options are traded outside the exchanges (OTC), and often they are illiquid and no
market prices are available. Then exotic options must be priced based on models. In
general, their parameters are taken from the results obtained when standard options
with comparable terms are calibrated to market prices. The simplest models extend
the Black–Scholes model, which is summarized by Assumptions 1.2.

Next we list some important types of exotic options. For more explanation we
refer to [191, 375].

Binary Option Binary options (or digital options) have a discontinuous payoff. For
example, a binary put has the payoff

�.S/ WD c 

(
1 if S < K

0 if S � K

for a fixed amount c. See Fig. 4.21 for an illustration of a binary call, and Sect. 3.5.5
for a two-dimensional example.

Chooser Option After a specified period of time the holder of a chooser option can
choose whether the option is a call or a put. The value of a chooser option at this
time is

maxfVC;VPg :

Compound Option Compound options are options on options. Depending on
whether the options are put or call, there are four main types of compound options.
For example, the option may be a call on a call.
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6.1.1 Path-Dependent Options

Options with payoff depending not only on the current value ST but also on the path
of St for previous times t < T are called path dependent. Important path-dependent
options are the barrier option, the lookback option, and the Asian option.

Barrier Option For a barrier option the payoff is contingent on the underlying
asset’s price St reaching a certain threshold value B, which is called barrier. Barrier
options can be classified depending on whether St reaches B from above (down)
or from below (up). Another feature of a barrier option is whether it ceases to
exist when B is reached (knock out), or conversely comes into existence (knock in).
Obviously, for a down option, S0 > B and for an up option S0 < B. Depending on
whether the barrier option is a put or a call, several different types are possible. For
example, the payoff of a European down-and-out call is

VT D
(
.ST � K/C in case St > B for all t ;

0 in case St � B for some t :

In the Black–Merton–Scholes framework, the value of the option before the barrier
has been triggered still satisfies the Black–Scholes equation. The details of the
barrier feature come in through the specification of boundary conditions [375]. An
example of an up-and-out call is illustrated in Fig. 7.3, and a two-asset double barrier
is discussed in Example 5.6.

Lookback Option The payoff of a lookback option depends on the maximum or
minimum value the asset price St reaches during the life of the option. For example,
the payoff of a lookback option is

max
t

St � ST :

Average Option/Asian Option The payoff from an Asian option depends on the
average price of the underlying asset. This will be discussed in more detail in
Sect. 6.3.

The exotic options of the above short list gain in complexity when they are
multifactor options.

6.1.2 Pricing of Exotic Options

Several types of exotic options can be reduced to the Black–Scholes equation. In
these cases the methods of Chap. 4 or Chap. 5 are adequate. In particular, barrier
options under GBM are close to the standard options. For a knock-out option with
barrier B, a boundary condition will be V.B; t/ D 0, which is part of (4.28). Since
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their numerical treatment is widely analogous, we will not touch barrier options
specifically.

For a number of options of the European type the Black–Scholes evaluation
formula (A.13)–(A.17) can be applied. For related reductions of exotic options we
refer to [191, 234, 376]. Approximations are possible with binomial methods or
with Monte Carlo simulation. The Algorithm 3.6 applies, only the calculation of the
payoff (step 2) must be adapted to the exotic option.

6.2 Options Depending on Several Assets

The options listed in Sect. 6.1 depend on one underlying asset. Options depending
on several assets are discussed next. Two large groups of multifactor options are the
rainbow options and the baskets. The subdivision into the groups is by their payoff.
Assume n underlying assets with prices S1; : : : ; Sn. Different from the notation
prevailing in previous chapters, the index refers to the number of the asset. Recall
again that two examples of exotic options with two underlyings occurred earlier in
this text: Example 3.9 of a binary put, and Sect. 5.4 with a basket-barrier call.

Rainbow options compare the value of individual assets [342]. Examples of
payoffs include

max .S1; : : : ; Sn/ “n-color better-of option,”

min .S1; S2/ “two-color worse-of option,”

.S2 � S1/C “outperformance option,”

.min .S1 � K; : : : ; Sn � K//C “min call option,”

.S2 � S1 � K/C “spread call.”

Weights are possible too, for instance, in .c1S2�c2S1/C. The outperformance option
is also called spread option. Figure 6.1 (top) illustrates the payoff of a min put,
and Fig. 6.2 (bottom) the payoff of a max call. A basket is an option with payoff
depending on a portfolio of assets. An example is the payoff of a basket call,

 
nX

iD1
ciSi � K

!C
;

where the weights ci are given by the portfolio. To gain a better feeling for such kind
of options, it is recommendable to sketch the above payoffs for n D 2.

For the pricing of multifactor options the instruments introduced in the previous
chapters apply. This holds for the four large classes of methods discussed before,
namely, PDE methods, tree methods, evaluation of integrals by quadrature, and
Monte Carlo methods. Each class subdivides into further methods.
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Fig. 6.1 Rainbow option of a put on the minimum of two assets; top: payoff �.S1; S2/ D .1 �
min.S1; S2//C; bottom: V.S1; S2; 0/ approximated by a binomial method, level curves for slices
with constant values of S1 , S2, V
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Fig. 6.2 Max call, with payoff �.S1; S2/ D .max.S1; S2/ � K/C; parameters: K D T D 1,
�1 D �2 D r D 0:1, �1 D 0:2, �2 D 0:3, � D 0, ı1 D ı2 D 0; top: .S1; S2/-plane with the grid
of the tree for the payoff, t D T, with M D 20; bottom: the payoff �.S1; S2/ above the tree

The dimension n is crucial for the choice of an appropriate method. For large
values of n, in particular PDE methods suffer from the curse of dimension (�!
Exercise 4.21). At present state it is not possible to decide, above which threshold
level of n standard discretizations are too expensive.
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PDE methods require relevant PDEs and boundary conditions. Often a Black–
Merton–Scholes scenario is assumed. To extend the one-factor model, an appro-
priate generalization of geometric Brownian motion is needed. We begin with the
two-factor model, with the prices S1 and S2 of the two assets. Then the assumption
of a constant-coefficient GBM is expressed as

dS1 D �1S1 dtC �1S1 dW.1/ ;

dS2 D �2S2 dtC �2S2 dW.2/ ;

E. dW.1/ dW.2// D � dt ;

(6.1)

where � is the correlation between the two assets, �1 � � � 1. Note that the third
equation in (6.1) is equivalent to Cov. dW.1/; dW.2// D � dt, because E. dW.1// D
E. dW.2// D 0. The correlation � is given by the covariance of the returns dS

S , since

Cov
	

dS1
S1
;

dS2
S2



D E.�1 dW.1/�2 dW.2// D ��1�2 dt : (6.2)

Compared to the more general system (1.57), the version (6.1) with correlated
Wiener processes has pulled out the scaling by the volatilities �1; �2. Then,
following Sect. 2.3.4 and Exercise 2.17, the correlated Wiener processes can be
decoupled by Cholesky decomposition of the correlation matrix

	
1 �

� 1



:

This leads to

dW.1/ D dZ1 ;

dW.2/ D � dZ1 C
p
1 � �2 dZ2 ;

(6.3)

where Z1 and Z2 are independent standard normally distributed processes. This was
already used in (3.35). The resulting two-dimensional Black–Scholes equation was
applied in Sect. 5.4, see Eq. (5.31). This is derived by the two-dimensional version of
the Itô-Lemma (�! Appendix B.2) and by a no-arbitrage argument. The resulting
PDE (5.31) has independent variables .S1; S2; t/. Usually, the time variable is not
counted when the dimension is discussed. In this sense, the PDE (5.31) is two-
dimensional, whereas the classic Black–Scholes PDE (1.5) is considered as one-
dimensional.

The general n-factor model is analogous. The appropriate GBM model is a
straightforward generalization of (6.1),

dSi D .�i � ıi/Si dtC �iSi dW.i/ ; i D 1; : : : ; n ;
E.dW.i/dW. j// D �ij dt ; i; j D 1; : : : ; n ; (6.4)
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where �ij is the correlation between asset i and asset j, and ıi denotes a dividend
flow rate paid by the ith asset. For a simulation of such a stochastic vector process
see Sect. 2.3.4. The Black–Scholes-type PDE of the model (6.4) is

@V

@t
C 1

2

nX
i;jD1

�ij�i�jSiSj
@2V

@Si@Sj
C

nX
iD1
.r � ıi/Si

@V

@Si
� rV D 0 : (6.5)

The derivation uses the general Itô formula (B.17), with m D 1 (�! Exercise 6.1).
Boundary conditions depend on the specific type of option. For example in the

“two-dimensional” situation in .S1; S2; t/-space, one boundary can be defined by the
plane S1 D 0 and the other by the plane S2 D 0. It may be appropriate to apply
the Black–Scholes vanilla formulas (A.13)–(A.17) along these planes, or to define
one-dimensional sub-PDEs only for the purpose to calculate the values of V.S1; 0; t/
and V.0; S2; t/ along the boundary planes.

After the PDE with boundary conditions is set up, solutions are approximated by
numerical methods. Standard discretizations are straightforward and work for small
n. As a rule of thumb, for n D 2 and n D 3, such elementary PDE approaches
are competitive to Monte Carlo. For large n, sparse-grid technology or multigrid
are better choices, see the references in Sect. 3.5.1 and at the end of Chap. 4.
Generally in a multidimensional situation, finite elements are recommendable. But
FE methods suffer from the curse of dimension too. Irregular grids have been
applied successfully [36].

For tree methods, the binomial method can be generalized canonically [48] (�!
Exercise 6.2). But already for n D 2 the recombining standard tree with M time
levels requires 1

3
M3 C O.M2/ nodes, and for n D 3 the number of nodes is of the

order O.M4/. Tree methods also suffer from the curse of dimension. But obviously
not all of the nodes of the canonical binomial approach are needed. The ultimate
aim is to approximate the lognormal distribution, and this can be done with fewer
nodes. Nodes in Rn should be constructed in such a way that the number of nodes
grows comparably slower than the quality of the approximation of the distribution
function. An example of a two-dimensional approach is presented in [251]. General-
izing the trinomial approach to higher dimensions is not recommendable because of
storage requirements, but other geometrical structures as icosahedral volumes can
be applied. For different tree approaches, see [266]. For a convergence analysis of
tree methods, and for an extension to Lévy processes, consult [136, 255]. A tree
approach that makes use of decoupling (similar as in Sect. 2.3.4) has shown to be
favorable in multidimensional cases [228].

An advantage of tree methods and of Monte Carlo methods is that no boundary
conditions are needed. The essential advantage of MC methods is that they are
much less affected by high dimensions, see the notes on Sect. 3.6. A correlation
is achieved by dW D LdZ, where LLtr is the Cholesky decomposition of the �-
matrix. An example of a five-dimensional American-style option is calculated in
[59, 247], and one with dimension 30 in [206]. It is most inspiring to perform Monte
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Carlo experiments on exotic options. For European-style options, this amounts to a
straightforward application of Sect. 3.5 (�! Exercise 6.3).

6.3 Asian Options

The price of an Asian option1 depends on the average price of the underlying and
hence on the history of St. We choose this type of option to discuss some strategies
of how to handle path-dependent options. Let us first define different types of Asian
options via their payoff.

6.3.1 The Payoff

There are several ways how an average of past values of St can be formed. If the
price St is observed at discrete time instances ti, say equidistantly with time interval
h WD T=n, one obtains a times series St1 , St2 ; : : : ; Stn . An obvious choice of average
is the arithmetic mean

1

n

nX
iD1

Sti D
1

T
h

nX
iD1

Sti :

If we imagine the observation as continuously sampled in the time period 0 � t � T;
the above mean corresponds to the integral

bS WD 1

T

Z T

0

St dt : (6.6)

The arithmetic average is used mostly. Sometimes the geometric average is applied,
which can be expressed as

 
nY

iD1
Sti

!1=n

D exp

 
1

n
log

nY
iD1

Sti

!
D exp

 
1

n

nX
iD1

log Sti

!
:

Hence the continuously sampled geometric average of the price St is the integral

bSg WD exp

	
1

T

Z T

0

log St dt



:

1Again, the name has no geographical relevance.
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The averages bS and bSg are formulated for the time period 0 � t � T, which
corresponds to a European option. To allow for early exercise at time t < T, bS
andbSg are modified appropriately, for instance to

bS WD 1

t

Z t

0

S d :

With an average value bS like the arithmetic average of (6.6) the payoff of Asian
options can be written conveniently:

Definition 6.1 (Asian Option) With an average bS of the price evolution St the
payoff functions of Asian options are defined as

.bS � K/C average price call,

.K �bS/C average price put,

.ST �bS/C average strike call,

.bS � ST/
C average strike put.

The price options are also called rate options, or fixed strike options; the strike
options are also called floating strike options. Compared to the vanilla payoffs
of (1.1) and (1.2), for an Asian price option the averagebS replaces S whereas for
the Asian strike optionbS replaces K. The payoffs of Definition 6.1 form surfaces
above the quadrant S > 0,bS > 0. The reader may visualize these payoff surfaces.

6.3.2 Modeling in the Black–Scholes Framework

The above averages can be expressed by means of the integral

At WD
Z t

0

f .S ; / d ; (6.7)

where the function f .S; t/ depends on the type of chosen average. In particular
f .S; t/ D S corresponds to the continuous arithmetic average (6.6), up to scaling
by the length of interval. For Asian options the price V is a function of S;A and
t, which we write V.S;A; t/. To derive a partial differential equation for V using a
generalization of Itô’s Lemma we require a differential equation for A. This is given
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by (6.7). Compare with (1.44) to see2

dA D aA.t/ dtC bA dWt ;

with aA.t/ WD f .St; t/ ; bA WD 0 :

For St the standard GBM of (1.47) is assumed. By the multidimensional ver-
sion (B.17) of Itô’s Lemma adapted to Yt WD V.St;At; t/, the two terms in (1.60)
or (1.61) that involve bA as factors to @V

@A ;
@2V
@A2

vanish. Accordingly,

dVt D
	
@V

@t
C �S

@V

@S
C 1

2
�2S2

@2V

@S2
C f .S; t/

@V

@A



dtC �S

@V

@S
dWt :

The derivation of the Black–Scholes-type PDE goes analogously as outlined in
Appendix A.4 for standard options and results in

@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
C f .S; t/

@V

@A
� rV D 0 : (6.8)

Compared to the original vanilla version (1.5), only one term in (6.8) is new, namely,

f .S; t/
@V

@A
:

As we will see below, the lack of a second-order derivative with respect to
A can cause numerical difficulties. The transformations (4.3) cannot be applied
advantageously to (6.8). As an alternative to the definition of At in (6.7), one can
scale by t. This leads to a different “new term” [�! Exercise 6.4(e)].

6.3.3 Reduction to a One-Dimensional Equation

Solutions of (6.8) are defined on the domain

S > 0 ; A > 0 ; 0 � t � T

of the .S;A; t/-space. The extra A-dimension leads to significantly higher costs
when (6.8) is solved numerically. This is the general situation. But in some cases
it is possible to reduce the dimension. Let us discuss an example, concentrating on
the case f .S; t/ D S of the arithmetic average.

2The ordinary integral At is random but has zero quadratic variation [340].
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We consider a European arithmetic average strike (floating strike) call with
payoff

	
ST � 1

T
AT


C
D ST

	
1 � 1

TST

Z T

0

S d


C
:

An auxiliary variable Rt is defined by

Rt WD 1

St

Z t

0

S d ;

and the payoff is rewritten

ST

	
1 � 1

T
RT


C
D ST 
 function.RT ;T/ : (6.9)

This motivates trying a separation of the solution in the form

V.S;A; t/ D S 
 H.R; t/ (6.10)

for some function H.R; t/. In this role, R is an independent variable. From (6.9) the
payoff follows:

H.RT ;T/ D .1 � 1
T RT/

C : (6.11)

Substituting the separation ansatz (6.10) into the PDE (6.8) leads to a PDE for H,

@H

@t
C 1

2
�2R2

@2H

@R2
C .1 � rR/

@H

@R
D 0 (6.12)

[�! Exercise 6.4(c)]. To solve this PDE, boundary conditions are required. Their
choice in general is not unique. The following considerations from [376] suggest
boundary conditions.

A right-hand boundary condition for R ! 1 follows from the payoff (6.11),
which implies H.RT ;T/ D 0 for RT ! 1. The integral At D StRt is bounded,
hence S! 0 for R!1. For S! 0 a European call option is not exercised, which
suggests to prescribe the boundary condition

H.R; t/ D 0 for R!1 and all t : (6.13)

At the left-hand boundary R D 0 we encounter more difficulties. Note that the
integral Rt satisfies the SDE

dRt D .1C .�2 � �/Rt/ dt � �Rt dWt
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[�! Exercise 6.4(d)]. Even if R0 D 0 holds, this SDE shows that dR0 D dt and Rt

will not stay at 0. So there is no reason to expect RT D 0, and the value of the payoff
cannot be predicted. Another kind of boundary condition is required.

To this end, we start from the PDE (6.12), which for R! 0 is equivalent to

@H

@t
C 1

2
�2R2

@2H

@R2
C @H

@R
D 0 :

Assuming that H is bounded, one can prove that the term

R2
@2H

@R2

vanishes for R! 0. The resulting boundary condition is

@H

@t
C @H

@R
D 0 for R! 0 : (6.14)

The vanishing of the second-order derivative term is shown by contradiction:
Assuming a nonzero value of R2 @

2H
@R2

leads to

@2H

@R2
D O

	
1

R2



;

which can be integrated twice to

H D O.log R/C c1RC c2 :

This contradicts the boundedness of H for R! 0.
For a numerical realization of the boundary condition (6.14) in the finite-

difference framework of Chap. 4, we may use the second-order formula

@H

@R

ˇ̌
ˇ
0;�
D �3H0;� C 4H1;� � H2;�

2�R
CO.�R2/ : (6.15)

The indices have the same meaning as in Chap. 4. In summary, the boundary-value
problem of PDEs is

@H

@t
C 1

2
�2R2

@2H

@R2
C .1 � rR/

@H

@R
D 0 ;

H.RT ;T/ D
�
1 � RT

T

�C
;

H D 0 for R!1 ;

@H

@t
C @H

@R
D 0 for R D 0 :

(6.16)

Solving this problem numerically for 0 � t � T, R � 0, gives H.R; t/, and via (6.10)
the required values of V .
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6.3.4 Discrete Monitoring

Instead of defining a continuous averaging as in (6.6), a realistic scenario is to
assume that the average is monitored only at discrete time instances

t1; t2; : : : ; tM :

These time instances are not to be confused with the grid times of the numerical
discretization. The discretely sampled arithmetic average at tk is given by

Atk WD
1

k

kX
iD1

Sti ; k D 1; : : : ;M : (6.17)

A new average is updated from the previous one by

Atk D Atk�1 C
1

k
.Stk � Atk�1 /

or

Atk�1 D Atk C
1

k � 1.Atk � Stk/ :

The latter of these update formulas is relevant to us, because we integrate backwards
in time. The discretely sampled At is constant between consecutive sampling times,
and A jumps at tk with the step

1

k � 1.Atk � Stk/ :

For each k this jump can be written

A�.S/ D AC.S/C 1

k � 1.A
C.S/� S/; where S D Stk : (6.18)

A� and AC denote the values of A immediately before and immediately after
sampling at tk. The no-arbitrage principle implies continuity of V at the sampling
instances tk in the sense of continuity of V.St;At; t/ for any realization of a random
walk. In our setting, this continuity is written

V.S;AC; tk/ D V.S;A�; tk/ : (6.19)

But for a fixed .S;A/ the Eqs. (6.18)/(6.19) define a jump of V at tk.
The numerical application of the jump condition (6.18)/(6.19) is as follows:

The A-axis is discretized into discrete values Aj, j D 1; : : : ; J. For each time
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period between two consecutive sampling instances, say for tkC1 ! tk, the
option’s value is independent of A because in our discretized setting At is piecewise
constant; accordingly @V

@A D 0 in (6.8). Based on this semidiscretization, J one-
dimensional Black–Scholes equations are integrated separately and independently
for the short time interval from tkC1 to tk, one BS-equation for each j. Each of
the one-dimensional Black–Scholes problems has its own “terminal” condition to
start from. For each Aj, the “first” terminal condition for tM D T is taken from
the payoff surface. Proceeding backwards in time, at each sampling time tk the J
parallel one-dimensional Black–Scholes problems are halted because new terminal
conditions must be derived from the jump condition (6.18)/(6.19). The new values
for V.S;Aj; tk/ that serve as terminal values (starting values for the backward
integration) for the next time period tk ! tk�1, are defined by the jump condition.
Since Aj C 1

k�1 .Aj � S/ in general does not agree with one of the node values Aj,
interpolation is applied. Hence the starting function for the next BS-step for A D Aj

can be written

V interpol.S; AC 1

k � 1.A � S/; tk/ :

Only at these sampling times tk the J standard one-dimensional Black–Scholes
problems are coupled; the coupling is provided by the interpolation. In this way,
a sequence of surfaces V.S;A; tk/ is approximated for tM D T; : : : ; t1 D 0 in a line-
wise fashion. Figures 6.3 and 6.4 show3 the payoff and three surfaces calculated for
an Asian European fixed strike put. As this illustration indicates, there is a kind of
rotation of this surface as t varies from T to 0.

6.4 Numerical Aspects

A direct numerical approach to the PDE (6.8) for functions V.S;A; t/ depending
on three independent variables requires more effort than in the V.S; t/-case. For
example, a finite-difference approach uses a three-dimensional grid. And a separa-
tion ansatz as in Sect. 5.3 applies with two-dimensional basis functions. Although
much of the required technology is widely analogous to the approaches discussed
in Chaps. 4 and 5, a thorough numerical treatment of higher-dimensional PDEs
is beyond the scope of this book. Here we confine ourselves to PDEs with two
independent variables, as in (6.12).

3After interpolation; MATLAB graphics; similar [385].
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Fig. 6.3 Asian European fixed strike put, K D 100, T D 0:2, r D 0:05, � D 0:25. The top figure
shows the payoff V.S;A; t/ for t D T D 0:2; the bottom figure shows the solution surface V.S;A; t/
for t D 0:14. For the solution surfaces t D 0:06, and t D 0 see Fig. 6.4. With kind permission of
Sebastian Göbel
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Fig. 6.4 Figure 6.3 continued, with solution surfaces V.S;A; t/ for t D 0:06 (top), and t D 0

(bottom)
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6.4.1 Convection-Diffusion Problems

Before entering a discussion on how to solve a PDE like (6.12) numerically without
using transformations like (4.3), we perform an experiment with our familiar Black–
Scholes equation (1.5). In contrast to the procedure of Chap. 4 we directly apply
finite-difference quotients to (1.5). Here we use the second-order differences of
Sect. 4.2.1 for a European call, and compare the numerical approximation with the
exact solution (A.13)–(A.17). Figure 6.5 shows the result for V.S; 0/. The lower part
of the figure depicts an oscillating error, which seems to be small. But differentiating
magnifies oscillations. This is clearly visible in Fig. 6.6, where the important hedge
variable deltaD @V

@S is depicted. The wiggles are even worse for the second-order
derivative gamma. These oscillations are financially unrealistic and are not tolerable,
and we have to find its causes. The oscillations are spurious in that they are produced
by the numerical scheme and are not solutions of the differential equation. The
spurious oscillations do not exist for the transformed version y� D yxx, which is
illustrated by Fig. 6.7.

In order to understand possible reasons why spurious oscillations may occur, we
invoke elementary fluid dynamics, where so-called convection-diffusion equations
play an important role. For such equations, the second-order term is responsible

Fig. 6.5 European call, K D 13, r D 0:15, � D 0:01, T D 1. Crank–Nicolson approximation
V.S; 0/ with �t D 0:01, �S D 0:1 and centered difference scheme for @V

@S (in red). Comparison
with the exact Black–Scholes values (green)
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Fig. 6.6 DeltaD @V
@S , otherwise the same data as in Fig. 6.5

for diffusion and the first-order term for convection. The ratio of convection to
diffusion (their coefficients, scaled by a characteristic length) is the Péclet number,
a dimensionless parameter characterizing the convection-diffusion problem. It
turns out that the Péclet number is relevant for the understanding of underlying
phenomena. Let us see what the Péclet numbers are for several PDEs discussed so
far in the text.

As a first example we take the original Black–Scholes equation (1.5), with

diffusion term:
1

2
�2S2

@2V

@S2

convection term: rS
@V

@S

length scale: �S

When the coefficients—not the derivatives—enter the Péclet number, and �S is
taken as characteristic length, the number is

rS
1
2
�2S2

�S D 2r

�2
�S

S
:
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Fig. 6.7 European put, K D 10, r D 0:06, � D 0:30, T D 1. Approximation deltaD @V
@S .S; 0/

based on y� D yxx with m D 40 (in red). Comparison with the exact Black–Scholes values (in
green)

Since this dimensionless parameter involves the mesh size �S it is also called mesh
Péclet number.4 Experimental evidence indicates that the higher the Péclet number,
the higher the danger that the numerical solution exhibits oscillations.

Next we examine other PDEs for their Péclet numbers: The PDE y� D yxx has
no convection term, hence its Péclet number is zero. Asian options described by the
PDE (6.8) have a cumbersome situation: With respect to A there is no diffusion
term (i.e., no second-order derivative), hence its Péclet number is 1! For the
original Black–Scholes equation the Péclet number basically amounts to r=�2. It
may become large when a small volatility � is not compensated by a small riskless
interest rate r. And for the reduced PDE (6.12), the Péclet number is

�R.1 � rR/
1
2
�2R2

;

here a small � can not be compensated by a small r.

4In case of a continuous dividend flow ı, replace r by r � ı.
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These investigations of the Péclet numbers do not yet explain why spurious
oscillations occur, but should open our eyes to the relation between convection and
diffusion in the different PDEs. Let us discuss causes of the oscillations by means of
a model problem. The model problem is the pure initial-value problem for a scalar
function u defined on t � 0, x 2 R,

@u

@t
C a

@u

@x
D b

@2u

@x2
; u.x; 0/ D u0.x/ : (6.20)

We assume b � 0. This sign of b does not contradict the signs in (6.12) since
there we have a terminal condition for t D T, whereas (6.20) prescribes an initial
condition for t D 0. The Eq. (6.20) is meant to be integrated in forward time with
discretization step size �t > 0. So the Eq. (6.20) is a model problem representing
a large class of convection-diffusion problems, to which the Eq. (6.12) belongs.
For the Black–Scholes equation, the simple transformation S D Kex, t D T � � ,
which works even for variable coefficients r; � , produces (6.20) except for a further
term �ru on the right-hand side (compare Exercise 1.4). And for constant r; � the
transformed equation y� D yxx is a member of the class (6.20), although it lacks
convection. Discussing the stability properties of the model problem (6.20) will
help us understanding how discretizations of (1.5) or (6.12) behave. For the analysis
assume an equidistant grid on the x-range, with grid size�x > 0 and nodes xj D j�x
for integers j. And for sake of simplicity, assume a and b are constants.

6.4.2 Von Neumann Stability Analysis

First we apply to (6.20) the standard second-order centered space difference
schemes in x-direction together with a forward time step, leading to

wj;�C1 � wj;�

�t
C a

wjC1;� � wj�1;�
2�x

D bıxxwj;� (6.21)

with ıxxwj;� defined as in (4.21). This scheme is called Forward Time Centered Space
(FTCS). “Forward time” reflects the explicit (forward) Euler step, and “centered
space” refers to our well-established second-order difference quotients. Instead of
performing an eigenvalue-based stability analysis as in Chap. 4, we now apply the
von Neumann stability analysis. This method expresses the approximations wj;� of
the �th time level by a sum of eigenmodes or Fourier modes,

wj;� D
X

k

c.�/k eik�j�x ; (6.22)
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where i denotes the imaginary unit, and k� are the wave numbers with fundamental
wave number5 � WD 2	=L. A set of coefficients c.�/k in (6.22) exists for each time
level t� , it is the basis of the discrete Fourier transform (C.7), which takes numbers
wj into coefficients ck, and back. Substituting the expression (6.22) into the FTCS-
difference scheme (6.21) leads to a corresponding sum for wj;�C1 with coefficients

c.�C1/
k (�! Exercise 6.5). The linearity of the scheme (6.21) allows to find a relation

c.�C1/
k D Gkc.�/k ;

where Gk is the growth factor of the mode with wave number k. In case jGkj � 1
holds, it is guaranteed that the modes eikx in (6.22) are not amplified, which means
the method is stable. This parallels Lemma 4.2 without the need of calculating
eigenvalues.

Applying the von Neumann stability analysis to (6.21) leads to

Gk D 1 � 2�C
�



2
C �� e�ik��x C �� � 


2

�
eik��x ;

where we use the abbreviations


 WD a�t

�x
; � WD b�t

�x2
; ˇ WD a�x

b
: (6.23)

Here 
 D ˇ� is the famous Courant number, and ˇ is the mesh Péclet number. For
a finite value of the latter, assume b > 0. Using ei˛ D cos˛ C i sin˛ and

s WD sin
k��x

2
; cos k��x D 1 � 2s2 ; sin k��x D 2s

p
1 � s2 ;

we arrive at

Gk D 1 � 2�C 2� cos k��x � iˇ� sin k��x (6.24)

and

jGkj2 D .1 � 4�s2/2 C 4ˇ2�2s2.1 � s2/ :

The last expression for jGkj2 is a polynomial on 0 � s2 � 1. A straightforward
discussion of this polynomial reveals that jGkj � 1 for

0 � � � 1
2
; �ˇ2 � 2 : (6.25)

5L stands for the wave length or the length of the interval. In case of a partition into n steps of size
�x, ��x D 2	=n. Without loss of generality, we may set L D 2	 , so � D 1 for the following
analysis. It will be sufficient to study the propagation of eikx.
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The inequality 0 � � � 1
2

brings back the stability criterion of Sect. 4.2.4. And the
inequality �ˇ2 � 2 is an additional restriction to the parameters � and ˇ. Because
of

�ˇ2 D a2�t

b

this restriction depends on the discretization steps �t, �x, and on the convection
parameter a and the diffusion parameter b as defined in (6.23). The restriction due
to the convection becomes apparent when we, for example, choose � D 1

2
for a

maximal time step �t. Then jˇj � 2 is a bound imposed on the mesh Péclet
number, which restricts �x to �x � 2b=jaj. A violation of this bound might be
an explanation why the difference schemes of (6.21) applied to the Black–Scholes
equation (1.5) exhibit faulty oscillations.6 The bounds on jˇj and �x are not active
for problems without convection .a D 0/. Note that the bounds give a severe
restriction on problems with small values of the diffusion constant b. For b! 0 (no
diffusion) and a ¤ 0 we encounter the consequence�t! 0, and the scheme (6.21)
can not be applied at all. Although the constant-coefficient model problem (6.20)
is not the same as the Black–Scholes equation (1.5) or the Eq. (6.12), the above
analysis reflects the core of the difficulties. We emphasize that small values of
the volatility represent small diffusion. So other methods than the standard finite-
difference approach (6.21) are needed.

6.5 Upwind Schemes and Other Methods

The instability analyzed for the model combination (6.20)/(6.21) occurs when the
mesh Péclet number is high and because the symmetric and centered difference
quotient is applied to the first-order derivative. Next we discuss the extreme case of
an infinite Péclet number of the model problem, namely, b D 0. The resulting PDE
is the prototypical equation

@u

@t
C a

@u

@x
D 0 : (6.26)

6.5.1 Upwind Scheme

The standard FTCS approach for (6.26) does not lead to a stable scheme. The
PDE (6.26) has solutions in the form of traveling waves,

u.x; t/ D W.x � at/ ;

6In fact, the situation is more subtle. We postpone an outline of how dispersion is responsible for
the oscillations to Sect. 6.5.2.
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where W.�/ D u0.�/ in case initial conditions u.x; 0/ D u0.x/ are incorporated.
For a > 0, the profile W.�/ drifts in positive x-direction: the “wind blows to the
right.” Seen from a grid point . j; �/, the neighboring node . j�1; �/ lies upwind and
. jC 1; �/ lies downwind. Here the j indicates the node xj and � the time instant t� .
Information flows from upstream to downstream nodes. Accordingly, the first-order
difference scheme

wj;�C1 � wj;�

�t
C a

wj;� � wj�1;�
�x

D 0 (6.27)

is called upwind discretization .a > 0/. The scheme (6.27) is also called Forward
Time Backward Space (FTBS) scheme.

Applying the von Neumann stability analysis to the scheme (6.27) leads to
growth factors given by

Gk WD 1 � 
 C 
e�ik��x : (6.28)

Here 
 D a�t
�x is the Courant number from (6.23). As in Sect. 6.4.2, the stability

requirement jGkj � 1 should hold such that the coefficients c.�/k remain bounded for
all k and � !1. It is easy to see that


 � 1 ) jGkj � 1 :

(The reader may sketch the complex G-plane to realize the situation.) The condition
j
 j � 1 is called the Courant–Friedrichs–Lewy (CFL) condition. The above
analysis shows that this condition is sufficient to ensure stability of the upwind-
scheme (6.27) applied to the PDE (6.26) with prescribed initial conditions.

In case a < 0, the scheme in (6.27) is no longer an upwind scheme. The upwind
scheme for a < 0 is

wj;�C1 � wj;�

�t
C a

wjC1;� � wj;�

�x
D 0 : (6.29)

The von Neumann stability analysis leads to the restriction j
 j � 1, or �jˇj � 1

if expressed in terms of the mesh Péclet number, see (6.23). This again emphasizes
the importance of small Péclet numbers.

We note in passing that the FTCS scheme for ut C aux D 0, which is unstable,
can be cured by replacing wj;� by the average of its two neighbors. The resulting
scheme

wj;�C1 D 1
2
.wjC1;� C wj�1;�/ � 1

2

.wjC1;� � wj�1;�/ (6.30)

is called Lax–Friedrichs scheme. It is stable if and only if the CFL condition
is satisfied. A simple calculation shows that the Lax–Friedrichs scheme (6.30)
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can be rewritten in the form

wj;�C1 � wj;�

�t
D �a

wjC1;� � wj�1;�
2�x

C 1

2�t

�
wjC1;� � 2wj;� C wj�1;�

�
: (6.31)

This is a FTCS scheme with the additional term

.�x/2

2�t
ıxxwj;� ;

representing the PDE

ut C aux D �uxx with � D �x2=2�t :

That is, the stabilization is accomplished by adding artificial diffusion �uxx. The
scheme (6.31) is said to have numerical dissipation.

We return to the model problem (6.20) with b > 0. For the discretization of
the a @u

@x term we now apply the appropriate upwind scheme from (6.27) or (6.29),
depending on the sign of the convection constant a. This noncentered first-order
difference scheme can be written

wj;�C1 D wj;� � 
 1�sign.a/
2

�
wjC1;� � wj;�

�
� 
 1Csign.a/

2

�
wj;� � wj�1;�

�
C �.wjC1;� � 2wj;� C wj�1;�/

(6.32)

with parameters 
; � as defined in (6.23). For a > 0 the growth factors are

Gk D 1 � �.2C ˇ/.1 � cos k��x/ � i�ˇ sin k��x :

The analysis follows the lines of Sect. 6.4 and leads to the single stability criterion

� � 1

2C jˇj : (6.33)

This inequality is valid for both signs of a (�! Exercise 6.6). For � � ˇ the
inequality (6.33) is less restrictive than (6.25). For example, a hypothetical value of
� D 1

50
leads to the bound jˇj � 10 for the FTCS scheme (6.21) and to the bound

jˇj � 48 for the upwind scheme (6.32).
The Figs. 6.8 and 6.9 show the Black–Scholes solution and an approximation

obtained by using the upwind scheme as in (6.32). No oscillations are visible.
But the low order of the approximation can be seen from the moderate gradient,
which does not reflect the steep gradient of the reality. The spurious wiggles
have disappeared but the steep profile is heavily smeared. So the upwind scheme
discussed above is a motivation to look for better methods (in Sect. 6.6).
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Fig. 6.8 European call, K D 13, r D 0:15, � D 0:01, T D 1. Approximation V.S; 0/ (in red),
calculated with upwind scheme for @V

@S and �t D 0:01, �S D 0:1. Comparison with the exact
Black–Scholes values (green)

6.5.2 Dispersion

The spurious wiggles are attributed to dispersion. Dispersion is not due to rounding
errors. Rather, dispersion is the phenomenon of different modes traveling at different
speeds. We explain dispersion for the simple PDE ut C aux D 0. Consider for t D 0
an initial profile u represented by a sum of Fourier modes, as in (6.22). Because of
the linearity of the PDE it is sufficient to study how the kth mode eikx is conveyed for
t > 0. The differential equation utCaux D 0 conveys the mode without deformation,
because eikŒx�at� is a solution. For an observer who travels with speed a along the
x-axis, the mode appears “frozen.”

This does not hold for the numerical scheme. Here the amplitude and the phase
of the kth mode may change. That is, the special initial profile of the Fourier mode

eikx D 1 
 eikŒx�0�

deforms to

c.t/ 
 eikŒx�d.t/� ;
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Fig. 6.9 DeltaD @V
@S .S; 0/, same data as in Fig. 6.8

where c.t/ is the amplitude and d.t/ the phase (up to the traveler distance at). Their
values must be compared to those of the exact solution.

To be specific, we study the upwind scheme for ut C aux D 0 (a > 0/,

w.x; tC�t/ � w.x; t/

�t
C a

w.x; t/ � w.x ��x; t/

�x
D 0 :

Let w.x; t/ denote the exact solution of this difference equation for specified values
of �x; �t. Apply Taylor’s expansion to derive the equivalent differential equation

wt C awx D �wxx C �wxxx C O.�2/ ;

with the coefficients

� WD a

2
.�x � a�t/ D a

2
�x.1 � 
/ ;

� WD a

6
.��x2 C 3a�t�x� 2a2�t2/ D a

6
�x2.1� 
/.2
 � 1/

depending on �x; �t. (Recall 
 D a�t=�x.) A solution can be obtained for
the truncated PDE wt C awx D �wxx C �wxxx. Substituting w D ei.!tCkx/ with
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undetermined frequency ! gives i! D ��k2 � ik.a � �k2/ and thus

w D expf��k2tg 
 expfikŒx � t.�k2 C a/�g

as solution of the truncated PDE. This defines amplitudes c.t/ and phase shifts d.t/,

ck.t/ D expf��k2tg ;
dk.t/ D �k2t :

The w D ck.t/eikŒx�at�dk.t/� represents the solution of the upwind scheme. It is
compared to the exact solution u D eikŒx�at� of the model problem, for which all
modes propagate with the same speed a and without decay of the amplitude. The
phase shift dk in w due to a nonzero � becomes more relevant if the wave number
k gets larger. That is, modes with different wave numbers drift across the finite-
difference grid at different rates. Consequently, an initial signal represented by a
sum of modes, changes its shape as it travels. The different propagation speeds of
different modes eikx give rise to oscillations. This phenomenon is called dispersion.
(Note that in our scenario of the simple model problem with upwind scheme, for

 D 1 and 
 D 1

2
we have � D 0 and dispersion vanishes.)

A value of jc.t/j < 1 amounts to dissipation. If a high phase shift is compensated
by heavy dissipation (c 	 0), then the dispersion is damped and may be hardly
noticeable. Generally, for reasonable damping require � to be large compared to �.

For several numerical schemes, related values of � and � have been investigated.
For the influence of dispersion or dissipation see, for example, [308, 350, 353, 356].
Dispersion is to be expected for numerical schemes that operate on those versions of
the Black–Scholes equation that have a convection term. This holds in particular for
the -methods as described in Sect. 4.6.1, and for the upwind scheme. In contrast,
numerical schemes for the convection-free version y� D yxx do not suffer from
dispersion since a D 0.

6.6 High-Resolution Methods

The naive FTCS approach of the scheme (6.21) is only first-order in t-direction
and suffers from severe stability restrictions. There are second-order approaches
with better properties. A large class of schemes has been developed for so-called
conservation laws, which in the one-dimensional situation are written

@u

@t
C @

@x
f .u/ D 0 : (6.34)
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The function f .u/ represents the flux in the Eq. (6.34), which originally was tailored
to applications in fluid dynamics. We introduce the method of Lax and Wendroff for
the flux-conservative equation (6.34). Then we present basic ideas of high-resolution
methods.

6.6.1 Lax–Wendroff Method

The Lax–Wendroff scheme is based on

uj;�C1 D uj;� C�t
@uj;�

@t
C O.�t2/ D uj;� ��t

@f .uj;� /

@x
C O.�t2/ :

This expression makes use of (6.34) and replaces time derivatives by space
derivatives. For suitably adapted indices the basic scheme is applied three times
on a staggered grid. The staggered grid (see Fig. 6.10) uses half steps of lengths
1
2
�x and 1

2
�t and intermediate node numbers j � 1

2
, jC 1

2
, � C 1

2
. The main step is

the second-order centered step (CTCS) with the center in the node . j; �C 1
2
/ (square

in Fig. 6.10). This main step needs the flux function f evaluated at approximations
w obtained for the two intermediate nodes

�
j˙ 1

2
; � C 1

2

�
, which are marked by

crosses in Fig. 6.10. These two intermediate values are provided by the Lax–
Friedrichs steps (6.30).

Algorithm 6.2 (Lax–Wendroff)

wjC 1
2 ;�C 1

2
WD 1

2
.wj;� C wjC1;�/� �t

2�x

�
f .wjC1;�/� f .wj;� /

�
wj� 1

2 ;�C 1
2
WD 1

2
.wj�1;� C wj;� /� �t

2�x

�
f .wj;� /� f .wj�1;�/

�
wj;�C1 WD wj;� � �t

�x

�
f .wjC 1

2 ;�C 1
2
/� f .wj� 1

2 ;�C 1
2
/
� (6.35)

Δx

ν

j−1 j j+1

Δ  

ν+1

t

Fig. 6.10 .x; t/-plane: staggered grid for the Lax–Wendroff scheme
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The half-step values wjC 1
2 ;�C 1

2
and wj� 1

2 ;�C 1
2

are provisional and discarded after
wj;�C1 is calculated. A stability analysis for the special case f .u/ D au in Eq. (6.34)
[that is, of Eq. (6.26)] leads to the CFL condition as before. The Lax–Wendroff
step is centered and of second order in both x and t. This explicit method fits
well discontinuities and steep fronts as the Black–Scholes delta-profile in Figs. 6.6
and 6.9. But there are still spurious wiggles in the vicinity of steep gradients. The
Lax–Wendroff scheme produces oscillations near sharp fronts. We need to find a
way to damp out the oscillations.

6.6.2 Total Variation Diminishing

Since utC aux convects an initial profile W.x/ with velocity a, a monotonicity of W
will be preserved for all t > 0. So it makes sense to require also a numerical scheme
to be monotonicity preserving. That is,

wj;0 � wjC1;0 for all j ) wj;� � wjC1;� for all j; � � 1 ;
wj;0 � wjC1;0 for all j ) wj;� � wjC1;� for all j; � � 1 :

A stronger requirement is that oscillations be diminished. To this end we define the
total variation of the approximation vector w.�/ at the �th time level as

TV.w.�// WD
X

j

jwjC1;� � wj;� j : (6.36)

The aim is to construct a method that is total variation diminishing (TVD),

TV.w.�C1// � TV.w.�// for all � :

Before we come to a criterion for TVD, note that the schemes discussed in this
section are explicit and of the form

wj;�C1 D
X

l

dl wjCl;� : (6.37)

For example, the upwind scheme (6.27) for a > 0

wj;�C1 D .1 � 
/wj;� C 
wj�1;�

has two coefficients in (6.37), d�1 D 
 and d0 D 1 � 
 . The coefficients dl decide
whether the scheme (6.37) is monotonicity preserving or TVD.
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Lemma 6.3 (Monotonicity and TVD)

(a) The scheme (6.37) is monotonicity preserving if and only if dl � 0
for all dl.

(b) The scheme (6.37) is total variation diminishing (TVD) if and only if

dl � 0 for all dl ; and
X

l

dl � 1 :

The proof of (a) is left to the reader; for proving (b) the reader may find help in [374],
see also [232]. As a consequence of Lemma 6.3 note that TVD implies monotonicity
preservation.

The criterion of Lemma 6.3 is straightforward to check. For example, we now can
be certain about the upwind scheme’s monotonicity preservation shown in Figs. 6.8
and 6.9. The Lax–Wendroff scheme satisfies dl � 0 for all l only in the exceptional
case 
 D 1. For practical purposes, in view of nonconstant coefficients a, the Lax–
Wendroff scheme is not TVD. For f .u/ D au, the upwind scheme (6.27) and the
Lax–Friedrichs scheme (6.30) are TVD for j
 j � 1 (�! Exercise 6.7).

6.6.3 Numerical Dissipation

For clarity we continue to discuss the matters for the linear scalar equation (6.26),

ut C aux D 0 ; for a > 0 :

For this equation it is easy to substitute the two provisional half-step values of
the Lax–Wendroff algorithm into the equation for wj;�C1. Then a straightforward
calculation shows that the Lax–Wendroff scheme can be obtained by adding a
diffusion term to the upwind scheme (6.27). To show this, make use of the difference
operator

ı�
x wj;� WD wj;� � wj�1;� (6.38)

and rewrite the upwind scheme as

wj;�C1 D wj;� � 
ı�
x wj;� ; 
 D a�t

�x
:

The reader may check that the Lax–Wendroff scheme is obtained by adding the term

� ı�
x f 12
.1� 
/.wjC1;� � wj;� /g (6.39)
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to the upwind scheme. So the Lax–Wendroff scheme is rewritten

wj;�C1 D wj;� � 
ı�
x wj;� � ı�

x f 12
.1� 
/.wjC1;� � wj;�/g :

That is, the Lax–Wendroff scheme is the first-order upwind scheme plus the
term (6.39), which is

� 1
2

.1� 
/.wjC1;� � 2wj;� C wj�1;�/ :

Hence the added term is—similar as for the Lax–Friedrichs scheme (6.31)—the
discretized analogue of the artificial diffusion

� 1
2
a�t.�x � a�t/uxx :

Adding this artificial dissipation term (6.39) to the upwind scheme makes the
scheme a second-order method.

The aim is to find a scheme that will give us neither the wiggles of the Lax–
Wendroff scheme nor the smearing and low accuracy of the upwind scheme. On
the other hand, we wish to benefit both from the second-order accuracy of the Lax–
Wendroff scheme and from the smoothing capabilities of the upwind scheme. A core
idea is not to add the same amount of dissipation everywhere along the x-axis, but
to add artificial dissipation in the right amount where it is needed. This flexibility
is achieved by a proper factor on the diffusion (6.39). The resulting hybrid scheme
will be of Lax–Wendroff type when the gradient is flat, and will be upwind-like at
strong gradients of the solution. The decision on how much dissipation to add will
be based on the solution.

In order to meet the goals, high-resolution methods control the artificial dissipa-
tion by introducing a limiter `j;� such that

wj;�C1 D wj;� � 
ı�
x wj;� � ı�

x f `j;�
1
2

.1� 
/.wjC1;� � wj;� /g : (6.40)

Obviously this hybrid scheme specializes to the upwind scheme for `j;� D 0 and is
identical to the Lax–Wendroff scheme for `j;� D 1. Accordingly, `j;� D 0 should be
chosen for strong gradients in the solution profile and `j;� D 1 for smooth sections.
To check the smoothness of the solution one defines the smoothness parameter

qj;� WD wj;� � wj�1;�
wjC1;� � wj;�

: (6.41)

The limiter `j;� will be a function of qj;� . We now drop the indices j; �. For q 	 1

the solution will be considered smooth, so we require the function ` D `.q/ to
satisfy `.1/ D 1 to reproduce the Lax–Wendroff scheme. Several strategies have
been suggested to choose the limiter function `.q/ such that the scheme (6.40) is
total variation diminishing. For a thorough discussion of this matter we refer to
[232, 352, 357]. One example of a limiter function is the van Leer limiter, which is
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defined by

`.q/ D
(
0 ; q � 0 ;
2q
1Cq ; q > 0 :

(6.42)

The above principles of high-resolution methods have been applied successfully
to financial engineering. The transfer of ideas from the simple model problem (6.26)
to the Black–Scholes world is quite involved. The methods are TVD for the Black–
Scholes equation, which is in nonconservative form. Further, the methods can
be applied to nonuniform grids, and to implicit methods. The application of the
Crank–Nicolson approach can be recommended. Equations (6.41), (6.42) introduce
a nonlinearity in w.�C1/. Hence nonlinear equations are solved for each time step �;
Newton’s method is applied to calculate the approximation w.�C1/ [383].

6.7 Penalty Method for American Options

As we have seen in Chap. 4, the PDE description of an American-style option leads
to a linear complementarity problem (LCP), which was restated in Problem 4.12
as an equation under an inequality as side condition. Such problems can be solved
numerically by imposing a penalty in case the inequality is violated. For motivation
see Sect. 4.5.4, and study the simple setting of Exercise 6.8. Penalty methods have
been applied repeatedly for the pricing of American options, see for instance [133,
230, 288]. Here we describe the approach of [289].

6.7.1 LCP Formulation

Similar as in Sect. 4.5.3 we denote the n-dimensional Black–Scholes operator
of (6.5)

LBS.V/ WD 1

2

nX
i; jD1

�ij �i�jSiSj
@2V

@Si@Sj
C

nX
iD1
.r � ıi/Si

@V

@Si
� rV (6.43)

and the payoff by �.S1; : : : ; Sn/. For example, for a basket put,

�.S1; : : : ; Sn/ D
 

K �
nX

iD1
ciSi

!C
;
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with non-negative weights c1; : : : ; cn. The LCP is

.V � �/
	
@V

@t
C LBS.V/



D 0 ;

@V

@t
C LBS.V/ � 0 ;

V � � :

(6.44)

In addition, with vector notation S WD .S1; : : : ; Sn/, the terminal condition V.S;T/ D
�.S/ must hold, and boundary conditions. Since the domain is Si > 0 for i D
1; : : : ; n, there are n bounding planes given by Si D 0. For each i let

Di WD f .S1; : : : ; Si�1; 0; SiC1; : : : ; Sn/ j Sj > 0 for j ¤ i g

denote the domain of the associated .n � 1/-dimensional American option problem
with the same terms, and Gi.S; t/ for S 2 Di be its solution. Then the boundary
conditions for the bounding planes Si D 0 are defined by

V.S; t/ D Gi.S; t/ for S 2 Di (6.45)

for all i D 1; : : : ; n. Note that these boundary conditions amount to the recursive
solution of all lower-dimensional American option problems. This is an enormous
amount of work for larger n, and limits the approach to small values of the
dimension. The final item to be specified are the boundary conditions for Si ! 1.
For the case of a put,

lim
Si!1 V.S; t/ D 0 for all i :

The above equations define the LCP for an n-asset American option under the
Black–Scholes model.

6.7.2 Penalty Formulation

In the following, we stay with the American put with a basket payoff. For a penalty
approach, replace the LCP formulation (6.44) by

@V�;C

@t
C LBS.V

�;C/C � C

V�;C C � � q
D 0

with q WD K �
nX

iD1
ciSi :

(6.46)
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q is the basic part of the basket’s payoff. We call the solution of the penalty
formulation (6.46) V�;C; it is supposed to approximate V . Clearly, the value function
V and its approximation V�;C should both satisfy V � q. The parameter � in the
penalty term

p WD � C

V�;C C � � q
(6.47)

must be chosen small with 0 < � � 1. The parameter C > 0 is a tune factor to be
fixed later. For V�;C  q, the penalty term is of the order �, and (6.46) approximates
the Black–Scholes equation. As V�;C approaches the payoff, V�;C 	 q, the penalty
term p approaches the value C > 0, and

@V�;C

@t
C LBS.V

�;C/ 	 �C < 0 :

This reflects the complementarity of American options. Note that the Eq. (6.46) is
nonlinear in V .7

6.7.3 Discretization of the Two-Factor Model

For the discretization of the American-style basket put we restrict ourselves to the
case n D 2. Then the lower-dimensional American put problems are the plain-
vanilla cases discussed in Chap. 4, and the corresponding standard value functions
G1.S2; t/ for S1 D 0 and G2.S1; t/ for S2 D 0 can be considered “known” or
delegated to a subalgorithm. The functions G1 and G2 are defined by the Black–
Scholes equation/inequality, and by their payoff and volatility:

G1.S2; t/ with payoff .K � c2S2/
C; volatility �2 ;

G2.S1; t/ with payoff .K � c1S1/
C; volatility �1 :

Here we apply a standard finite-difference scheme, widely analogous as in
Chap. 4. The nonlinearity of the PDE (6.46) prevents a transformation such as (4.3).
Hence the discretization is applied to (6.46) directly. For ease of notation, we use
the variables

x WD S1; y WD S2 ;

7Actually, the LCP (6.44) is nonlinear as well, which is not correctly reflected by the name “LCP”.
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and � for �12. Then the penalty problem (6.46) for V�;C.x; y; t/ is restated as (the
superscript �;C of V�;C is dropped)

@V

@t
C 1

2
�21 x2

@2V

@x2
C 1

2
�22 y2

@2V

@y2
C ��1�2xy

@2V

@x@y

C.r � ı1/x@V

@x
C .r � ı2/y@V

@y
� rV C � C

V C � � q
D 0

(6.48)

with terminal and boundary conditions. For a put with basket payoff these are:

q.x; y/ WD K � c1x � c2y

�.x; y/ WD .q.x; y//C
V�;C.x; y;T/ D �.x; y/
V�;C.x; 0; t/ D G2.x; t/

V�;C.0; y; t/ D G1.y; t/

lim
x!1 V�;C.x; y; t/ D lim

y!1 V�;C.x; y; t/ D 0 ;

for 0 � t � T; x � 0; y � 0. An equidistant grid on the truncated domain

0 � x � xmax ; 0 � y � ymax ; 0 � t � T

is defined by imax; jmax and �max subintervals,

�x WD xmax

imax
; xi WD i�x; i D 0; : : : ; imax ;

�y WD ymax

jmax
; yj WD j�y; j D 0; : : : ; jmax ;

�t WD T

�max
; t� WD ��t; � D �max; : : : ; 0 :

Furthermore, we use the notations

qi; j WD q.xi; yj/ ;

w�i; j approximation to V�;C.xi; yj; t�/ :

To simplify the exposition, we choose imax D jmax; xmax D ymax and use the notation
h WD �x D �y. The difference quotients are defined in Chap. 4, except for the
mixed second-order derivative, which is discretized by the second-order term

ıxyw�i; j WD
1

2h2
.w�iC1; jC1 � w�iC1; j � w�i; jC1 C 2w�i; j � w�i�1; j � w�i; j�1 C w�i�1; j�1/:
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By stability reasons (�! Sects. 6.4 and 6.5) the first-order derivatives with respect
to x and y are discretized by upwind schemes. For ı1 � r, ı2 � r; the upwind
schemes are

ıxw�i; j WD
w�iC1; j � w�i; j

h
;

ıyw�i; j WD
w�i; jC1 � w�i; j

h
;

since the integration is backward in time.8 Substituting all difference quotients
into (6.48) is routine.

As in Chap. 4, we may choose among explicit or implicit schemes. The difference
quotient

ıtw
�
i; j WD

w�C1
i; j � w�i; j
�t

for the time derivative @V
@t leads to an explicit scheme when the difference quotients

with respect to x; y are evaluated at level � C 1, and leads to an implicit scheme
when the evaluation is at level �. In the latter case, since we integrate backwards in
time, w�C1 is considered as calculated and the w� are to be calculated next. For the
explicit scheme, stability requirements lead to severe restrictions on the step size
�t, and to a slow algorithm; it will not be discussed further.

But for the implicit scheme, the nonlinear penalty term (6.47) makes a difference.
In case we plug in w�i; j for V�;C , the equation to be solved at time level t� is
nonlinear and requires an iterative solution. To speed up a Newton iteration, good
initial guesses must be made available. These are given by the previous time level,
provided the time steps�t are small. Such a restriction on�t due to the nonlinearity
may make the method expensive. But there is an alternative. When w�C1

i; j is used for
V�;C in the penalty term, then the nonlinearity at time level t� is known, and for each
� only a linear system needs to be solved. This procedure is called semi-implicit or
linear-implicit. The alternative of a fully nonlinear equation [with w�i; j in (6.47)] is
referred to as fully implicit.

The semi-implicit scheme now reads

w�C1
i; j � w�i; j
�t

C 1

2
�21 x2i ıxxw

�
i; j C

1

2
�22 y2j ıyyw

�
i; j C ��1�2xiyj ıxyw

�
i; j

C.r � ı1/xi ıxw�i; j C .r � ı2/yj ıyw�i; j � rw�i; j C
� C

w�C1
i; j C � � qi; j

D 0

8For ı1 > r or ı2 > r the “other” quotient is upwind.



344 6 Pricing of Exotic Options

for � D �max � 1; : : : ; 0; and w�max
i; j D �.xi; yj/: We leave it to the reader to plug in

the difference quotients, to organize the equation, and to introduce a matrix-vector
notation for the equation to be solved at time level t� . The matrix is sparse, banded,
and block-tridiagonal, which calls for specific linear-equation solvers [326].

In [289] the convergence of the explicit, the semi-implicit, and the fully implicit
schemes were analyzed for the uncorrelated case � D 0. In numerical experiments it
turns out that the semi-implicit variant is recommendable in terms of accuracy and
costs. In case

C � rK ; �t � �

rK
(6.49)

holds, the semi-implicit method satisfies the required inequality

w�i; j � �.xi; yj/

for all �, see [289]. This restricts the step size �t to a relatively small value. Hence,
one will not choose a too small value of � and do without high demands on the
accuracy of V�;C: For example, one chooses � D 0:01 or � D 0:001: But for the
fully implicit method the step size �t must be restricted too in order to maintain
the convergence of the Newton method. And the mild bound on �t in (6.49) does
not depend on h (as would do the bound of the explicit method). Our experiments
indicate an O.�/ error of V�;C:

6.8 Notes and Comments

On Sect. 6.1

For barrier options we refer, for example, to [15, 304, 346, 385, 386]. Monte Carlo
for path-dependent options is discussed in [207]. Dai and Lyuu [96] suggests a
tree method with an initial trinomial step tuned so that the following tree has
layers coinciding with the barrier. For lookback options we mention [95, 135, 218].
Haug [172] is a rich source of analytical formula for option pricing.

On Sect. 6.2

To see how the multidimensional volatilities of the model enter into a lumped
volatility, consult [340]. Other multidimensional PDEs arise when stochastic volatil-
ities are modeled with SDEs, see [20, 163, 185, 293, 384], or Example 5.8. A list
of exotic options with various payoffs is presented in Sect. 19.2 of [102]. Also the
n-dimensional PDEs can be transformed to simpler forms. For n D 2 and n D 3 this
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is shown in [197]. For the n-dimensional Black–Scholes problem, see [2, 65, 234].
An ADI method is applied to American options on two stocks in [370]. Refined
ADI methods work with non-equidistant grids [163]. Consult also the efficient
operator splitting method [195], which decouples the treatment of the early-exercise
constraint and the solution of the linear system. Further higher-dimensional PDEs
related to finance can be found in [353].

On Sect. 6.3

PDEs in the context of Asian options were introduced in [196, 220, 320]. A
reduction as in (6.12) from V.S;A; t/ to H.R; t/ is called similarity reduction. The
derivation of the boundary-value problem (6.16) follows [376]. For the discrete
sampling discussed in Sect. 6.3.4 see [376, 385]. The strategies introduced for Asian
options work similarly for other path-dependent options. An overview on methods
for Asian options, and a semianalytical method are found in [379].

On Sect. 6.4

The von Neumann stability analysis is tailored to linear schemes and pure initial-
value problems. It does not rigorously treat effects caused by boundary conditions.
In this sense it provides a necessary stability condition for boundary-value problems.
For a rigorous treatment of stability see [356, 357]. The stability analysis based
on eigenvalues of iteration matrices as used in Chap. 4 is an alternative to the von
Neumann analysis.

Spurious oscillations are special solutions of the difference equations and do not
correspond to solutions of the differential equation. The spurious oscillations are
not related to rounding errors. This may be studied analytically for the simple ODE
model boundary-value problem au0 D bu00, which is the steady state of (6.20), along
with boundary conditions u.0/ D 0, u.1/ D 1. Here for mesh Péclet numbers
a�x

b > 2 the analytical solution of the discrete centered-space analog is oscillatory,
whereas the solution u.x/ of the differential equation is monotone, see [281]. The
model problem is extensively studied in [281, 298]. The mesh Péclet number is also
called “algebraic Reynold’s number of the mesh.”

On Sect. 6.5

It is recommendable to derive the equivalent differential equation in Sect. 6.5.2.
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On Sect. 6.6

The Lax–Wendroff method is an example of a finite-volume method. Another
second-order scheme for (6.26) is the leapfrog scheme ı2t w C aı2x w D 0, which
involves three time levels. The discussion of monotonicity is based on investigations
of Godunov, see [232, 374]. The Lax–Wendroff scheme for (6.26) and 
 � 0 can
also be written

w�C1
j D w�j � 1

2

.w�jC1 � w�j�1/C 1

2

2.w�jC1 � 2w�j C w�j�1/ :

(This version adopts the frequent notation w�j for our wj;� .) Here the diffusion term
has a slightly different factor than (6.39). The numerical dissipation term is also
called artificial viscosity. In [374, p. 348], the Lax–Wendroff scheme is embedded
in a family of schemes. A special choice of the family parameter yields a third-order
scheme. The TVD criterion can be extended to implicit schemes and to schemes that
involve more than two time levels. For the general analysis of numerical schemes
for conservation laws (6.34) we refer to [232].

On Sect. 6.7

In [289] the linear systems were solved iteratively with the bi-conjugate gradient
method Bi-CGSTAB [326, 366]. Choosing �t small provides good initial guesses
for the next time level, which accelerates the iteration. Hence the limitation�t � �

rK
is not too severe in practice. In our experiments, the penalty method did not
achieve better results than a simple binomial-tree method. For the convergence
of penalty methods consult [133]. A penalty method with a smooth penalty has
been implemented with finite elements in [230]. The weak formulation (compare
Sect. 5.4) works with the relatively simple choice of boundary conditions V D �

along the boundary. Exercise 6.8 follows [288].

On Other Methods

Computational methods for exotic options are under rapid development. The
universal binomial method can be adapted to exotic options [203, 224]. Tavella and
Randall [353] gives an overview on a class of PDE solvers. For barrier options see
[144, 385, 386]. For two-factor barrier options and their finite-element solution, see
[304]. PDEs for lookback options are given in [21]. Using Monte Carlo for path-
dependent options, considerable efficiency gains are possible with bridge techniques
[315, 316]. For Lévy process models, see, for example, [7, 84]. We recommend to
consult, for example, the issues of the Journal of Computational Finance.
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6.9 Exercises

6.1 (Towards the Black–Scholes Equation )

(a) For the model equation (6.4) set up the vector a and the matrix b for the general
vector notation (1.57).

(b) Let LLtr be the Cholesky decomposition of the �-matrix, and Qb WD bL. Show

trace.QbQbtrVSS/ D
nX

i;jD1
�ij�i�jSiSj

@2V

@Si@Sj
:

(c) Show

dV D
"
@V

@t
C

nX
iD1
.�i � ıi/Si

@V

@Si
C 1

2

nX
i;jD1

�ij�i�jSiSj
@2V

@Si@Sj

#
dt

C
nX

iD1
�iSi

@V

@Si
dW.i/ :

6.2 (Tree for Two Assets)
A two-asset extension of the binomial tree with .x; y/-coordinates representing the
assets, and time-coordinate t, is assumed to develop as follows: Each node with
position .x; y/ may develop for t ! t C �t with equal probabilities 0:25 to one of
the four positions

.xu; yA/; .xu; yB/; .xd; yC/; .xd; yD/ ; (6.50)

for constants u; d;A;B;C;D.

(a) Show that the tree is recombining for AD D BC.
Hint: Sketch the possible values in a .x; y/-plane.

Following [323], a tree is defined for interest rate r, asset volatilities �1; �2,
correlation �, and dividend yield rates ı1; ı2, by

�i WD r � ıi � �2i =2 for i D 1; 2
u WD exp.�1�tC �1

p
�t/

d WD exp.�1�t � �1
p
�t/

A WD exp.�2�tC �2
p
�t Œ�C

p
1� �2�/

B WD exp.�2�tC �2
p
�t Œ� �

p
1 � �2�/

C WD exp.�2�t � �2
p
�t Œ� �

p
1 � �2�/

D WD exp.�2�t � �2
p
�t Œ�C

p
1 � �2�/ :
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For initial prices x0 WD S01, y0 WD S02, and time level t� WD ��t, the S1-components
of the grid according to (6.50) distribute in the same way as for the one-dimensional
tree,

x�i WD S01u
id��i for i D 0; : : : ; � :

(b) Verify that the choice of A;B;C;D sets up a recombining tree.
(c) Show that the second (S2-)components belonging to x�i are

y�i; j WD S02 exp.�2��t/ exp
�
�2
p
�t
h
�.2i� �/C

p
1 � �2.2j� �/

i�

for j D 0; : : : ; �.
Hint: For � ! � C 1, u corresponds to i! iC 1, and d corresponds to i! i.

(d) Show that the first two moments of the continuous and the discrete model
match: Verify that for the log-variables �Y1 WD log u or log d, and �Y2 WD
log A, log B, log C, or log D the five equations

E.�Yi/ D �i�t ; Var.�Yi/ D �2i �t ; Cov.�Y1;�Y2/ D ��1�2�t

hold [for i D 1; 2 and the four probabilities 1
4

associated to (6.50)].
(e) Set up a computer program that implements this binomial method. Analogously

as in Sect. 1.4 work in a backward recursion for � D M; : : : ; 0. For each time
level t� set up the .x; y/-grid with the above rules and �t D T=M. For tM D T
fix V by the payoff � , and use for � < M

Vcont
i; j D exp.�r�t/

1

4
.V�C1

i; j C V�C1
iC1; j C V�C1

i; jC1 C V�C1
iC1; jC1/ :

Test example: max call with �.S1; S2/ D .max.S1; S2/� K/C, S01 D S02 D K D
T D 1, r D 0:1, �1 D 0:2, �2 D 0:3, � D 0:25, ı1 D 0:05, ı2 D 0:3. For
M D 2000 an approximation of the American-style option is 0.130302, and for
the European style 0.120036.

6.3 (Project: Monte Carlo Valuation of Exotic Options)
Perform Monte Carlo valuations of barrier options, basket options, and Asian
options, each European style.

6.4 (PDEs for Arithmetic Asian Options)

(a) Use the higher-dimensional Itô-formula (�! Appendix B.2) to show that the
value function V.S;A; t/ of an Asian option satisfies

dV D
	
@V

@t
C S

@V

@A
C �S

@V

@S
C 1

2
�2S2

@2V

@S2



dtC �S

@V

@S
dW ;

where S is the price of the asset and A its average.
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(b) Construct a suitable riskless portfolio and derive the Black–Scholes equation

@V

@t
C S

@V

@A
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV D 0 :

(c) Use the transformation V.S;A; t/ D eV.S;R; t/ D SH.R; t/, with R D A
S and

transform the Black–Scholes equation (6.8) to

@H

@t
C 1

2
�2R2

@2H

@R2
C .1� rR/

@H

@R
D 0 :

(d) From

RtC dt D Rt C dRt ; dSt D �St dtC �St dWt

derive the SDE

dRt D .1C .�2 � �/Rt/ dt � �Rt dWt :

(e) For

At WD 1

t

tZ
0

S d

show dA D 1
t .S � A/ dt and derive the PDE

@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
C 1

t
.S � A/

@V

@A
� rV D 0 :

6.5 (Neumann Stability Analysis)
Assume a difference scheme in the form (6.37)

w.�C1/
j D

X
l

dl w.�/jCl

and make use of the Fourier transform (6.22)

w.�/j D
n�1X
kD0

c.�/k eik�j�x for � D 2	

n�x
:
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(a) What are the coefficients dl for the FTCS method (6.21)?
(b) Prove linear independence

n�1X
kD0

˛k expŒi
2	

n
kj� D 0 H) ˛k D 0 for all k

Hint: FFT equivalence (C.7).
(c) Show

c.�C1/
k D c.�/k

X
l

dl eik�l�x :

6.6 (Upwind Scheme)
Apply von Neumann’s stability analysis to

@u

@t
C a

@u

@x
D b

@2u

@x2
; a > 0; b > 0

using the upwind scheme for the left-hand side and the centered second-order
difference quotient for the right-hand side.

6.7 (TVD of a Model Problem)
Analyze whether the upwind scheme (6.27), the Lax–Friedrichs scheme (6.30) and
the Lax–Wendroff scheme (6.35) applied to the scalar partial differential equation

ut C aux D 0 ; a > 0; t � 0; x 2 R

satisfy the TVD property.
Hint: Apply Lemma 6.3.

6.8 (Initial-Value Problem with Penalty Term)
Consider the ODE initial-value problem

u0 D �u ; u.0/ D 2

with the additional constraint

u.t/ � 1 :
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(a) Give an analytical solution.
(b) Discuss for a value of � with 0 < � � 1 the initial-value problem

v0 D �v C �

v � 1 � � ; v.0/ D 2 :

Hint: Do some numerical experiments.
(c) Show that the solution v.t/ of the initial-value problem in (b) satisfies

1 � v � 2 ; v0 � 0 ; v00 � 0 ;

for t � 0.



Chapter 7
Beyond Black and Scholes

The Black–Scholes (BS) model for the value V.S; t/ of a vanilla option is based on
some assumptions on the market. In particular, the BS model assumes the price St of
the asset on which the option is written, follows a geometric Brownian motion with
a constant volatility � . Further, transaction costs are neglected, and trading of the
underlying is supposed to have no influence on the price St. As has been discussed
extensively, the value function V.S; t/ for standard options (“plain vanilla”) of the
European type, satisfies the Black–Scholes equation (1.5),

@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV D 0 : (7.1)

Solutions of this linear equation are subject to the terminal condition V.S;T/ D
�.S/, where � defines the payoff.

The BS-model is the core example of a complete market. In these idealized
markets, the risk exposure to variations in the underlying can be hedged away.
The corresponding risk strategy is unique. Hence vanilla options modeled by
Assumptions 1.2 have a unique price, given by the costs of the replication strategy
(�! Appendix A.4). Essentially, Chaps. 4 through 6 have applied numerical
methods to complete markets.

For the more realistic incomplete markets, there are no perfect hedges, and a risk
remains. Each hedging strategy leads to a specific model with its own price [84].
The hedger compensates the remaining risk in incomplete markets by charging an
additional risk premium. Hence the value function or expected value is not the price
for which the option is sold. Depending on the way how the comfortable assumption
of completeness of the BS-market is lost, different models are set up, calling for
different numerical approaches. This Chap. 7 is devoted to computational tools for
incomplete markets.

© Springer-Verlag London Ltd. 2017
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Relaxing several of the assumptions of the Black–Scholes market, nonlinear
extensions of the BS equation can be derived. These “nonlinear Black–Scholes type
equations” are of the form

@V

@t
C 1

2

�
O�.S; t; @

2V

@S2
/

�2
S2
@2V

@S2
C rS

@V

@S
� rV D 0 : (7.2)

In this class of models, the volatility O� is a function that may incorporate several
types of nonlinearity. The standard PDE (7.1) is included for O� � � . In Sect. 7.1
we describe three scenarios leading to three different functions O� of the volatility.
A nonlinear PDE as (7.2) requires special numerical treatment, which will be the
focus of Sect. 7.2.

Another stream of research beyond Black and Scholes is devoted to jump
processes (Sect. 7.3). One of the numerical approaches is based on partial integro-
differential equations (PIDE). Some highly efficient methods apply the Fourier
transform; a basic approach will be discussed in Sect. 7.4.

7.1 Nonlinearities in Models for Financial Options

In this section we briefly discuss three sources of nonlinearity of O� in (7.2). We
start with transaction costs based on Leland’s approach [245], and touch the more
sophisticated model of Barles and Soner [24]. Then we turn to specifying ranges of
volatility. Finally we address feedback by market illiquidity.

7.1.1 Leland’s Model of Transaction Costs

Basic for the Black–Scholes model is the idea of rebalancing the portfolio contin-
uously. But in financial reality this continuous trading would cause arbitrarily high
trading costs. Keeping transaction costs low forces to abandon the optimal Black–
Scholes hedging. But without the ideal BS hedging, the model suffers from hedging
errors. To compromise, the hedger searches a balance between keeping both the
transaction costs low and the hedging errors low.

Suppose that instead of rebalancing continuously, trading is only possible at
discrete time instances with time step �t apart (�t fixed and finite). We assume
a transaction cost rate proportional to the trading volume �S:

trading � assets costs the amount cj�jS

for some cost parameter c.
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Here we sketch a heuristic derivation of a model due to [187, 245]. The discussion
of this model parallels that for the Black–Scholes model, now adapted to the discrete
scenario.1 The stochastic changes of the asset with price S and of a riskless bond
with price B are

�S D �S�tC �S�W ;

�B D rB�t :

The portfolio with value ˘ is taken in the form

˘ D ˛SC ˇB ;

with ˛ units of the asset and ˇ units of the bond. Suppose the portfolio is self-
financing in the sense S�˛CB�ˇ D 0, which is sufficient for�˘ D ˛�SCˇ�B.
Further assume that trading is such that the portfolio ˘ replicates the value of the
option.

By definition, � D �˛. After one time interval, � D �˛ assets are traded, with
transaction costs cSj�˛j. The change in the value of the portfolio is

�˘ D ˛�SC ˇ�B � cSj�˛j
D .˛�SC ˇrB/�tC ˛�S�W � cSj�˛j : (7.3)

Let V be the value function of the option. Itô’s lemma adapted to the discrete
scenario gives

�V D @V

@S
�SC

	
@V

@t
C �2

2
S2
@2V

@S2



�t :

By the no-arbitrage principle�V D �˘ holds for the replicating and self-financing
portfolio. And coefficient matching will give further information. But first let us
approximate the �˛-term.

From BS theory we expect ˛ 	 @V
@S . So � D �˛ will be approximated by

@V.SC�S; tC�t/

@S
� @V.S; t/

@S

D @2V.S; t/

@S2
�SC @2V.S; t/

@S @t
�tC t:h:o: ;

1All other BS-assumptions remain untouched [234]. The following analysis uses or modifies
Appendix A.4 with (A.3), (A.5), (A.10). Here � means the increment, and not the greek @V

@S .
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invoking Taylor’s expansion. After substituting�S we realize that the term of lowest
order is

�S
@2V.S; t/

@S2
�W :

In summary, by (7.3) the transaction costs in �˘ can be approximated by

�cSj�˛j D �c�S2
ˇ̌
ˇ@2V.S; t/

@S2

ˇ̌
ˇ j�Wj C t:h:o: ;

which is path-dependent. Leland [245] boldly suggested to approximate j�Wj 	
E.j�Wj/. Exercise 7.1 tells

E.j�Wj/ D p�t

r
2

	
:

In this way, the trading cost term �cS j�˛j is approximated by the deterministic
expression

� c�S2
ˇ̌
ˇ@2V.S; t/

@S2

ˇ̌
ˇ p�t

r
2

	
: (7.4)

This may be seen as further assumption, motivated by the above arguing. The
approximation (7.4) of the transaction costs and its artificial parameter

p
2=	 	 0:8

reflect the lack of a unique price in incomplete markets.
With this somewhat artificial approximation (7.4) of the trading costs �cSj�˛j,

coefficient matching of �V D �˘ leads to match the remaining stochastic terms,

˛�S�W D �S
@V

@S
�W ;

or ˛ D @V
@S , which is the famous “delta hedging,” consistent with the modeling of

�˛ above. The remaining terms are deterministic. Use ˇB C S @V
@S D ˘ D V to

obtain
	
�S
@V

@S
C rV � rS

@V

@S



�t � cSj�˛j

D
	
@V

@t
C �2

2
S2
@2V

@S2
C �S

@V

@S



�t :

(7.5)

The�-terms cancel out. Equation (7.5) with transaction costs replaced by (7.4) leads
to the variant of the Black–Scholes equation. With the coefficient


 WD
r
2

	

	
2c

�
p
�t



(7.6)
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the resulting equation is

@V

@t
C 1

2
�2S2

@2V

@S2
C 1

2
�2S2


ˇ̌̌@2V
@S2

ˇ̌̌
C rS

@V

@S
� rV D 0 : (7.7)

Formally, this becomes the standard Black–Scholes equation with a modified
volatility

O�2.� / WD �2Œ1C 
 sign.� /� ; (7.8)

with � WD @2V
@S2

. For convex payoff, sign.� / D 1. This amounts to augment the
volatility to a constant O� > � (Leland’s scenario). In this case the PDE (7.7) is
again linear. But note that for instance for barrier options, � does change sign, and
the PDE is nonlinear and of the general type of Eq. (7.2). For c D 0 (no transaction
costs) (7.7) specializes to the BS-equation. To have a well-posed PDE, �t must be
such that 
 < 1. In particular,�t! 0 does not make sense.

7.1.2 The Barles and Soner Model of Transaction Costs

Barles and Soner [24] assume a price process dSt D St.� dtC� dWt/, with constant
volatility � , 0 � t � T, and model transactions using the following variables:

˛t shares of the asset with price St,
ˇt shares of the bond,
Lt cumulative transfer form cash to stock, nondecreasing, L.0/ D 0,
Mt cumulative transfer from stock to cash, nondecreasing, M.0/ D 0.

Consequently,

˛t D ˛0 C Lt �Mt ;

ˇt D ˇ0 �
Z t

0

S� 
 .1C c/ dL� C
Z t

0

S� 
 .1 � c/ dM� C
Z t

0

rˇ� d� :

That is, in both the cases buying and selling of stocks, transaction costs
R

S�c are
charged to ˇ, where c again denotes proportional transaction costs. The further
derivation of [24] is based on a utility function. The final result is

@V

@t
C 1

2
�2S2

@2V

@S2


�
1C f

	
er.T�t/a2S2

@2V

@S2


�
C rS

@V

@S
� rV D 0 ; (7.9)
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Fig. 7.1 V.S; T � t/: difference between the solution of the Black–Scholes equation (7.1) and the
solution of (7.9); K D 100; r D 0:1; � D 0:2; a D 0:02; T D 1. With kind permission of Pascal
Heider

where a is a parameter representing proportional transaction costs and risk aversion.
The function f is the unique solution of the ODE

df .x/

dx
D f .x/C 1
2
p

xf .x/ � x
with f .0/ D 0 :

The resulting function f is singular at x D 0 (�! Exercise 7.2). Figure 7.1 shows the
difference between the BS-solution and the solution of the corresponding nonlinear
model (7.9).

7.1.3 Specifying a Range of Volatility

The two above models of transaction costs come up with a nonlinear volatility
function O�.� /. Usually this function is not known, and is subject to speculation
(modeling). It will be easier to specify a range of volatility, assuming that O� lies
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within an interval or band

0 < �min � � � �max < 1 :

This is the uncertain-volatility model of [16, 17, 250].
The derivation starts as above, leading to (7.5) with c D 0. (Here transaction

costs are not considered.) Formally, the result is the Black–Scholes equation (BSE),
except that � is no constant, but is considered as a stochastic variable �.t/:

@V

@t
C 1

2
�.t/2S2

@2V

@S2
C rS

@V

@S
� rV D 0 :

This is a PDE with stochastic control parameter �.t/. There is an ambitious theory
for such controlled diffusion processes, see the monograph [233]. To avoid the use
of this methodology, we adopt a simplified arguing, similar as in [375].

Using an argumentation of Black and Scholes, we construct a portfolio of one
option (value V), and hedge it with �˛ units of the underlying asset,

˘ D V � ˛S :

Assuming a change in the value of this portfolio in the form�˘ D �V � ˛�S, we
have as above

�˘ D @V

@S
�SC

	
@V

@t
C �2

2
S2
@2V

@S2



�t � ˛�S :

The choice ˛ D @V
@S eliminates the risk represented by the�W-terms. This results in

�˘ D
	
@V

@t
C �2

2
S2
@2V

@S2



�t : (7.10)

Note that the return �˘ of the portfolio still depends on the unknown stochastic
�.t/, we write �˘.�/.

Now we define artificially two specific functions �C.t/ and ��.t/ chosen such
that the return�˘.�/ increases by the maximum amount, or by the least amount:

• �C.t/ chosen such that �˘.�C/ is a maximum,
• ��.t/ chosen such that �˘.��/ is a minimum.

These returns reflect the best case and the worst case as seen by the holder. For
every function �.t/ the no-arbitrage principle holds. Hence both cases �C.t/ and
��.t/ result in a return�˘ D r˘�t. This can be summarized as

�C maximizes max
�min����max

�˘.�/ D r˘�t ;

�� minimizes min
�min����max

�˘.�/ D r˘�t :
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In view of the expression (7.10) for �˘.�/, the two artificial functions �C; ��
enter via the term

�2
@2V

@S2
:

For �˘ to become a maximum or minimum, �C (or ��) will equal �min or �max,
depending on the sign of � D @2V

@S2
. To become a maximum, set

�C.� / WD
(
�max if � � 0 ;
�min if � < 0 :

(7.11)

And to become a minimum, set

��.� / WD
(
�max if � < 0 ;

�min if � � 0 : (7.12)

Equations (7.11) and (7.12) define two specific control functions � , which after
substitution into the PDE �˘.�/ D r˘�t yields two nonlinear PDEs

@V

@t
C 1

2
O�.� /2S2 @

2V

@S2
C rS

@V

@S
� rV D 0 ; (7.13)

with O� D �C and O� D �� from (7.11)/(7.12). Let us denote the corresponding
solutions VC and V�. Since �C yields the maximum return, we expect V � VC,
and similarly, V� � V . This provides the range V� � V � VC for the option price.

In the special case of vanilla options, the convexity of V.S; :/ implies � � 0

and hence �C D �max and �� D �min; the nonlinearity is not effective then. The
monotonicity of V with respect to � is clear for vanilla options, but is not valid,
for example, for barrier options. And convexity of V.S; :/ is lost for barrier options,
butterfly spreads, digital options, and many other options [303]. The great potential
of the uncertain-volatility model is illustrated by Fig. 7.2. For the example of a
butterfly option, and an uncertainty interval 0:15 � � � 0:25 we show the band
V� � V � VC, with two Black–Scholes curves therein. The payoff of a butterfly
spread is illustrated schematically in Fig. 1.25d, see also Exercise 7.3. The functions
V�;VC were calculated with the methods to be explained in Sect. 7.2. For barrier
options, the success of the method is doubtful because of the high sensitivity w.r.t.
� close to the barrier. Then the bandwidth may be so large that it is not of practical
use. Such an example is shown in Fig. 7.3.
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Fig. 7.2 V.S; 0/ of a European butterfly spread, uncertain-volatility model of Avellaneda et al.,
Sect. 7.1.3; with K D 100; K1 D 85; K2 D 115; r D 0:13; �min D 0:15; �max D 0:25; ı D
0:03; T D 0:27. Four curves are shown: the bounding functions VC (orange curve) and V� (green
curve), and V of the standard Black–Scholes model with constant volatilities � D 0:15 (the steeper
curve, in blue) and � D 0:25 (the lower profile, in violet)

7.1.4 Market Illiquidity

As pointed out by [140, 141, 330], the assumption that a big investor can trade
large amounts of an asset without affecting its price, is not realistic. There will
be a feedback, and the assumption of an infinite market liquidity may fail. Frey
and Stremme [141], Schönbucher and Wilmott [330] introduce a market liquidity
parameter �, with 0 � � � 1, and derive the nonlinear PDE

@V

@t
C 1

2

�2S2

.1 � �@2V
@S2
/2

@2V

@S2
C rS

@V

@S
� rV D 0 : (7.14)

Here we do not discuss further details. Note that this model is also of the form of
Eq. (7.2).
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Fig. 7.3 V.S; 0/ of a European up-and-out barrier call, uncertain-volatility model of Avellaneda
et al., Sect. 7.1.3; with barrier B D 115, and K D 100; r D 0:1; �min D 0:1; �max D 0:3; ı D
0; T D 0:2. In addition to the two bounding curves VC (orange) and V� (green) three V curves
are shown of the standard Black–Scholes model with constant volatilities � D 0:1 (blue) and
� D 0:2; 0:3

7.2 Numerical Solution of Nonlinear Black–Scholes
Equations

All the nonlinear PDEs of Sect. 7.1 fall under the general type of equation

@V

@t
C 1

2
O�2.S; t; @

2V

@S2
/S2
@2V

@S2
C .r � ı/S@V

@S
� rV D 0 ; (7.15)

which we are going to solve next. In this form, Eq. (7.15) represents the value of
a European-style option. There is no analytical solution known for (7.15), so a
numerical approach is needed also in the European case.

For an American-style option, a penalization can be applied, and an additional
nonlinear term appears in (7.15). A penalty approach (e.g., [119, 133]) is to add the
penalty Op max.� � V; 0/, where � denotes the payoff, and the penalty parameter Op
is chosen large, say, Op D 106. The resulting PDE is

@V

@t
C 1
2
O�2.S; t; @

2V

@S2
/S2
@2V

@S2
C.r�ı/S@V

@S
�rVC Op max.� �V; 0/ D 0 : (7.16)
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In the continuation region, for V � � , the penalty term is zero, and (7.15) results.
For Op!1, think of dividing the equation by Op to be convinced that V sticks close to
� . In Chap. 4, we could preserve the linear equation by the elegant complementarity
approach. In (7.16) the PDE is nonlinear by the volatility function O� , and thus the
nonlinear penalty term does not cause further harm.

7.2.1 Transformation

The transformation (4.3) of Chap. 4 is not valid here, because the volatility O� is no
longer constant. But assuming constant r; ı, the independent variables S; t can be
transformed similarly. The transformation from variables S; t;V to x; �; u is

x WD log
S

K
; � WD 1

2
�20 
 .T � t/ ; u.x; �/ WD e�x V.S; t/

K
: (7.17)

�0 is a scaling parameter. As a result of the transformation, VS D uCux and SVSS D
ux C uxx. Here we use the notations VS;VSS; u� ; ux; uxx for partial derivatives. And
(7.15) becomes

� u� C Q�2.x; �; ux; uxx/.ux C uxx/C 2.r � ı/
�20

ux � 2ı
�20

u D 0 (7.18)

with

Q� WD 1

�0
O�
	

S; t;
@2V

@S2



D 1

�0
O�
	

Kex; T � 2�
�20
;

e�x

K
.ux C uxx/



: (7.19)

(Transform (7.16) in Exercise 7.4.) For example, for Leland’s model,

Q�2 D 1C 
 sign.ux C uxx/ :

For all of the models of Sect. 7.1 the nonlinearity is of the type

Q�2.x; �; s/ 
 s with s WD ux C uxx ; (7.20)

with Q� from (7.19).
The payoffs � of the options are transformed as well. Let u� denote the

transformed payoff. For the payoff of a vanilla put,

V.S;T/ D Kexu.x; 0/ D .K � S/C D K.1 � ex/C

and hence

u.x; 0/ D u�.x/ WD .e�x � 1/C :
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Similarly, for a vanilla call,

u.x; 0/ D u�.x/ WD .1 � e�x/C :

This is similar for exotic options (�! Exercise 7.3).
Finally, boundary conditions are chosen (as in Sect. 4.4) and transformed. For

example, applying (4.27) for a vanilla call of the European type,

u.xmax; �/ D e�xmax

K
V.Smax; t/

D e�xmax

K
.Smaxe�ı.T�t/ � Ke�r.T�t//

D e�ı.T�t/ � exp.�r.T � t/ � xmax/

D exp.�� 2ı
�20
/ � exp.�� 2r

�20
� xmax/ ;

u.xmin; �/ D 0 :

For a vanilla put and Smin 	 0 one may choose

u.xmin; �/ D 1

K
e�xminKe�r.T�t/ D exp.�� 2r

�20
� xmin/ ;

u.xmax; �/ D 0 :

For vanilla American-style options with penalty formulation (7.16), the nonzero
boundary conditions are just that u is in contact with the payoff,

u.xmin/ D u�.xmin/ D e�xmin � 1 for a put, and

u.xmax/ D u�.xmax/ D 1� e�xmax for a call:

7.2.2 Discretization

Finite differences in a standard fashion as in Chap. 4, with the same grid, lead
to nonlinear equations for the vector w.�/ of approximate values at time level
�� D ���1 C �� . The equidistant x-spacing with mesh size �x consists of m
subintervals, see Sect. 4.2.2. As before, the components w0 and wm are defined by
boundary conditions. The finite differences include

ıxwi;� WD wiC1;� � wi�1;�
2�x

;

ıxxwi;� WD wiC1;� � 2wi;� C wi�1;�
�x2

;
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where �x2 is understood as .�x/2. For the discretization replace s of (7.20) by Ns
with

Nsi;� WD .ıx C ıxx/wi;� D wiC1;� � wi�1;�
2�x

C wiC1;� � 2wi;� C wi�1;�
�x2

:

Substituting into the PDEs is the next step. Here we confine ourselves to the
European case (7.15); the discretization of (7.16) is analogous and left to the reader.
Define

Li;� W D Q�2.xi; ��; ıxwi;� ; ıxxwi;� /.ıxwi;� C ıxxwi;� /

C2.r � ı/
�20

ıxwi;� � 2ı
�20

wi;�

to arrive at the -approach

�wi;�C1 C wi;�

��
C Li;�C1 C .1 � /Li;� D 0 : (7.21)

Recall that this includes Crank–Nicolson for  D 1
2
, and for  D 1 the fully implicit

Euler (BDF). The Q� of the above examples is represented by the discretization
Q�.xi; ��; Nsi;�/ with

Nsi;� D wi�1;�
	
� 1

2�x
C 1

�x2



� 2

�x2
wi;� C wiC1;�

	
1

2�x
C 1

�x2




D ˛ wi�1;� � 2

�x2
wi;� C ˇ wiC1;� ;

(7.22)

where we denote

˛ WD � 1

2�x
C 1

�x2
; ˇ WD 1

2�x
C 1

�x2
; (7.23)

and reuse the notation Q� for the three-argument version. Now the discretized version
of the operator Li;� is

Li;� D Q�2.xi; ��; Nsi;� /Nsi;� C r � ı
�20�x

.wiC1;� � wi�1;�/� 2ı
�20

wi;� (7.24)

and the -method reads

� wi;�C1 C wi;� C ��Li;�C1 C .1 � /��Li;� D 0 : (7.25)

With the vector notation w.�/ as in Chap. 4 and a vector function F this is written

F.w.�C1/;w.�// D 0 :
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For the fully implicit BDF method . D 1/, the ith equation of the vector equation
F D 0 reads

Fi D � w.�C1/
i C w.�/i

C ��
�
Q�2.xi; ��C1; ˛w.�C1/

i�1 � 2

�x2
w.�C1/

i C ˇw.�C1/
iC1 /


.˛w.�C1/
i�1 � 2

�x2
w.�C1/

i C ˇw.�C1/
iC1 /

� r � ı
�20�x

w.�C1/
i�1 �

2ı

�20
w.�C1/

i C r � ı
�20�x

w.�C1/
iC1

�
D 0 :

(7.26)

For i D 0 and i D m, boundary conditions enter. Their basic structure is

F.�/0 WD u.xmin; ��/ � w.�/0 ;

F.�/m WD u.xmax; ��/� w.�/m :
(7.27)

In the -method (7.25) boundary conditions enter in the form F.�C1/ C .1 �
/F.�/. The nonlinear equation F.w.�C1/;w.�// D 0 with components defined by
(7.26)/(7.27) represents a discretization of (7.15). It is solved iteratively by Newton’s
method.

7.2.3 Convergence of the Discrete Equations

The above numerical scheme is of the form

F.��;�x; �; i;wi;� ; Qw/ D 0

where Qw stands for the vector of all wk;l. For such a scheme convergence to the
unique viscosity solution (�! Appendix C.5) can be proved, provided F satisfies
three conditions [23], namely,

• stability,
• consistency, and
• monotonicity.

Not for the numerical scheme but for the equation an additional property must be
assumed, namely, the strong uniqueness. For the uniqueness we refer to the special
literature [89].

The proof that for a particular numerical scheme all of these three criteria are
satisfied, can be quite involved [176, 177, 303]. Checking stability and consistency
is rather standard, and has been widely discussed in previous chapters. Here we
concentrate on the monotonicity of the scheme, which is a new aspect as compared
to the investigations for the linear equation in Chap. 4.
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Definition 7.1 (Monotone Scheme) A discretization F.w.�C1/;w.�// is monotone
if for all i D 0; : : : ;m

.a/ Fi.w
.�C1/ C �.�C1/; w.�/ C �.�// � Fi.w

.�C1/;w.�// for all

�.�C1/ WD .0; : : : ; 0; �.�C1/
i�1 ; 0; �

.�C1/
iC1 ; 0; : : : ; 0/ � 0 and

�.�/ WD .0; : : : ; 0; �.�/i�1; �
.�/
i ; �

.�/
iC1; 0; : : : ; 0/ � 0 ;

and

.b/ Fi.w
.�C1/ C �.�C1/; w.�// � Fi.w

.�C1/;w.�// for all

�.�C1/ WD .0; : : : ; 0; �.�C1/
i ; 0; : : : ; 0/ � 0 :

Translated into the fully implicit scheme (7.26)/(7.27), the condition (a) of
monotonicity reads

Fi.w
.�C1/
i ; w.�C1/

i�1 C �1; w.�C1/
iC1 C �2; w.�/i C �3/ �

Fi.w
.�C1/
i ; w.�C1/

i�1 ; w.�C1/
iC1 ; w.�/i /

for scalar �1; �2; �3; �. Because of transitivity, it suffices to show separately

.a1/ Fi.w
.�C1/
i ; w.�C1/

i�1 C �; w.�C1/
iC1 ; w.�/i / � Fi.w

.�C1/
i ;w.�C1/

i�1 ;w.�C1/
iC1 ;w.�/i /

.a2/ Fi.w
.�C1/
i ; w.�C1/

i�1 ; w.�C1/
iC1 C �; w.�/i / � Fi.w

.�C1/
i ;w.�C1/

i�1 ;w.�C1/
iC1 ;w.�/i /

.a3/ Fi.w
.�C1/
i ; w.�C1/

i�1 ; w.�C1/
iC1 ; w.�/i C �/ � Fi.w

.�C1/
i ;w.�C1/

i�1 ;w.�C1/
iC1 ;w.�/i /

for (a) to hold, and for (b)

Fi.w
.�C1/
i C �; w.�C1/

i�1 ; w.�C1/
iC1 ; w.�/i / � Fi.w

.�C1/
i ; w.�C1/

i�1 ; w.�C1/
iC1 ; w.�/i / :

Next we check under which conditions the scheme (7.26)/(7.27) is monotone.
Heider [176] has shown that the scheme converges whenever the nonlinear term
Q�2.x; �; s/s satisfies conditions (i)–(iii) of the following Theorem 7.2:

Theorem 7.2 (Convergence) Assume Q�2.x; �; ux; uxx/ in the form Q�2.x; �; s/, with
s D ux C uxx from (7.20), and

(i) Q�2.x; �; s/s is continuous and monotone increasing in s,
(ii) there exists a constant cC > 0 such that for all s and � > 0

Q�2.x; �; sC �/ 
 .sC �/ � Q�2.x; �; s/ 
 sC cC� ; and
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(iii) �x is small enough such that

cC
2 ��x

�x
� 2.r � ı/

�20
� 0 and cC

2C�x

�x
C 2.r � ı/

�20
� 0 :

Then the fully implicit BDF scheme (7.26)/(7.27) converges to the viscosity solution
of (7.15).

Proof Here we confine ourselves to the proof of monotonicity. As noted above, we
can proceed componentwise and check (a1), (a2), (a3), and (b) separately. We begin
with 0 < i < m.

To show (a1), perturb w.�C1/
i�1 ! w.�C1/

i�1 C � for � > 0. Then Nsi;� ! Nsi;�C˛�, and

Fi.w
.�C1/
i ; w.�C1/

i�1 C �; w.�C1/
iC1 ; w.�/i / D

�w.�C1/
i C w.�/i C��

�
Q�2.xi; ��C1; Nsi;� C ˛�/.Nsi;� C ˛�/

� r � ı
�20�x

.w.�C1/
i�1 C �/ �

2ı

�20
w.�C1/

i C r � ı
�20�x

w.�C1/
iC1

�

� �w.�C1/
i C w.�/i C��

�
Q�2.xi; ��C1; Nsi;� /Nsi;� C cC�˛

� r � ı
�20�x

w.�C1/
i�1 �

2ı

�20
w.�C1/

i C r � ı
�20�x

w.�C1/
iC1 �

r � ı
�20�x

�

�
;

where the inequality is due to (ii). Compare with Fi in (7.26)/(7.27) and realize two
extra terms. By (iii), with ˛ from (7.23), they are

cC�˛ � r � ı
�20�x

� D �

2�x

�
cC
2 ��x

�x
� 2.r � ı/

�20

�
� 0 :

So we have shown (a1), the first of the four criteria of monotonicity.
To show (a2), perturb w.�C1/

iC1 ! w.�C1/
iC1 C �: Then Nsi;� ! Nsi;� C �ˇ and the

perturbed Fi is

�w.�C1/
i C w.�/i C��

�
Q�2.xi; ��C1; Nsi;� C ˇ�/.Nsi;� C ˇ�/

� r � ı
�20�x

w.�C1/
i�1 �

2ı

�20
w.�C1/

i C r � ı
�20�x

w.�C1/
iC1 C �

r � ı
�20�x

�
:

Again we obtain a lower bound by (ii), and arrive at the sum of two extra terms

cC�ˇ C � r � ı
�20�x

;
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which is � 0 by (iii). So the perturbed Fi is larger or equal the unperturbed Fi, and
(a2) is satisfied.

The assertion (a3) is clearly satisfied since the perturbation w.�/i ! w.�/i C � only
affects the term outside the brackets.

To show (b), perturb w.�C1/
i ! w.�C1/

i C �. Then Nsi;� ! Nsi;� � 2�
�x2

, and Fi is
perturbed to

�w.�C1/
i � � C w.�/i C��

�
Q�2.xi; ��C1; Nsi;� � � 2

�x2
/.Nsi;� � � 2

�x2
/

� r � ı
�20�x

w.�C1/
i�1 �

2ı

�20
w.�C1/

i � 2ı
�20
� C r � ı

�20�x
w.�C1/

iC1
�
:

By the monotonicity (i) and by � > 0; ı � 0, the above is smaller or equal to the
unperturbed Fi—that is, (b) holds true.

Finally, monotonicity must be checked for F0 and Fm. For  D 1, F0 depends
on w.�C1/

0 and Fm depends on w.�C1/
m . Hence only (b) needs to be checked, which is

clearly satisfied.
This ends the proof that the conditions (i), (ii), (iii) imply monotonicity of the

fully implicit scheme.

Example 7.3 (Leland’s Model) Let us inspect whether the criteria (i), (ii), (iii)
of Theorem 7.2 are satisfied for Leland’s model of transaction costs. For (i) we
require j
 j < 1. With some simple manipulations, one shows that (ii) is satisfied
with cC D 1 � 
 . And for (iii) to hold, the grid size �x must be small enough (�!
Exercise 7.5). Specifically, for zero dividend rate ı D 0, the -method is

�w.�C1/
i C w.�/i C�� 
  Œ Q�2.Ns.�C1/

i /Ns.�C1/
i C 2r

�20
ıxw.�C1/

i �

C��.1 � / Œ Q�2.Ns.�/i /Ns.�/i C
2r

�20
ıxw.�/i � D 0 :

Sufficient conditions for the Crank–Nicolson scheme ( D 1=2) to converge
include (i), (ii), (iii), and in addition (iv) and (v):
(iv) There exists a constant c� > 0 such that for all � > 0 and s

Q�2.x; �; s� �/.s � �/ � Q�2.x; �; s/s � c�� ;

(v)

�� � �x2

c�
�20

�20 C�x ı
;

see [176, 177]. Condition (iv) holds for Leland’s model with c� D 1 C 
 , and for
the uncertain-volatility model with c� D �2max. Conditions (iii) and (iv) amount to
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stability bounds. We emphasize that in the case of nonlinear models, unconditional
stability does not hold!

The above has discussed convergence towards the viscosity solution. An applica-
tion of the uncertain-volatility model to a butterfly is shown in Fig. 7.2. Another
illustration is the barrier option in Fig. 7.3. When in case of an American-style
option a penalty approach is applied, further assumptions are needed to assert
convergence to the solution for Op!1, even though one keeps Op fixed.

7.3 Option Valuation Under Jump Processes

In this section, we sketch some instruments of Lévy processes as background to the
application of partial integro-differential equations. The focus is on one important
example, namely Merton’s jump diffusion, and on strategies for a numerical
valuation of options under such processes. This is no introduction to Lévy processes;
for expositions on Lévy processes consult, for instance, [84, 328, 339].

For a Lévy process Xt, all increments XtC�t � Xt are stochastically independent.
Further, they are stationary, which means that all increments have the distribution of
Xt. Instead of requiring continuity, Lévy processes must be “càdlàg”2: For all t, the
process Xt is right-continuous (Xt D XtC), and the left limit Xt� exists. Important
examples of Lévy processes are the Wiener process (Sect. 1.6.1), and the Poisson
process (Sect. 1.9).

7.3.1 Characteristic Functions

A classification of Lévy processes Xt is based on the Fourier transformation3

�Xt.�/ WD E.exp.i�Xt// : (7.28)

The function �Xt singles out characteristic properties of a random variable Xt.
�Xt is called characteristic function of Xt, and  Xt .�/ [shorter:  .�/] defined by
exp.t .�// D �Xt.�/ is the characteristic exponent. It suffices to take t D 1, since
the distribution of X1 characterizes the process. The characteristic exponent  .�/
satisfies the Lévy–Khinchin representation

 .�/ D i
� � 1
2
�2�2 C

1Z
�1

�
exp.i�x/� 1 � i�x 1fjxj�1g

�
�.dx/ : (7.29)

2French for “continu à droite avec limites à gauche”.
3For the Fourier transform, see Sect. 7.4.



7.3 Option Valuation Under Jump Processes 371

The three terms in this representation characterize different aspects of Xt. 
 2 R

corresponds to a deterministic trend, �2 to the variance of a diffusion (Brownian-
motion) part of Xt, and � is a measure on R characterizing the activity of jumps
�Xt WD Xt � Xt� ,

�.A/ WD E Œ#ft 2 Œ0; 1� j �Xt ¤ 0; �Xt 2 Ag� :

The Lévy measure �.A/ counts the (expected) number of jumps of “size” within A
per unit time [84]. �.A/ is not a probability measure. For the Lévy measure �, requireR
R

min.x2; 1/ �.dx/ <1 and �.f0g/ D 0. In the integrand of (7.29), the subtracted
term i�x 1fjxj�1g causes the integrand to be of the order O.jxj2/ for x ! 0. This
compensation along with the constraints on � implies existence of the integral. For
many important Lévy processes, �.dx/ has a convenient representation

�.dx/ D fL.x/ dx (7.30)

with a Lévy density fL. The three items 
; �2; � (“characteristic triplet”) characterize
a Lévy process in a unique way.

Example 7.4 (Compound Poisson Process) For a Poisson process Jt with jump
intensity �, a compound Poisson process is

Xt WD
JtX

jD1
�X�j ;

where the jump sizes �X�j are assumed i.i.d. with distribution density f , and
independent of the Poisson process J. The characteristic function �Xt.�/ of the
compound Poisson process (cP) is

E.expŒi�Xt// D expŒ�t .��X.�/ � 1/�
D exp

�
t
Z
R

.ei�x � 1/�.dx/

�
(7.31)

with Lévy measure �.dx/ D �f .x/ dx. The first of the equations in (7.31) uses rules
of the conditional expectation [84], whereas the second just applies (7.28) with
the definition (B.4) of the expectation, including

R
R
�.dx/ D �. The characteristic

exponent  cP is the integral in (7.31), 
 D � D 0.
As in (1.65), financial models typically arise in exponential form. For such

exponential Lévy processes there is a useful criterion for the martingale property,
and hence for risk-neutral valuation:

Lemma 7.5 (Martingale Criterion) Let Xt be a Lévy process. eXt is a martingale
if and only if  X.�i/ D 0 and E.eXt/ <1.
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Proof We extend � to complex numbers, and note that

E.eXt / D E.e�iiXt / D �Xt.�i/ D et .�i/ :

Then by independence and stationarity,

E.eXt jFs/� eXs D E.eXt�s/� eX0 D e.t�s/ .�i/ � 1 :

(�! Exercise 7.6) ut
In finance applications, with an asset price St for t � 0, the absence of arbitrage
implies that the discounted e�rtSt is a martingale with respect to a risk-neutral
measure. This suggests to represent St in the form St D S0 exp.rt C Xt/. Then the
discounted St is the situation to which the Lemma 7.5 applies.

Example 7.6 (Brownian Motion with Drift) A Lévy process Xt is Brownian
motion if and only if � � 0 (no jump). For ease of comparison with (1.71) and
(1.76) we take the drift 
 in the form 
 D � � 1

2
�2. For the Brownian motion with

drift (Bwd) Xt WD 
 t C �Wt we use a result from probability4 and conclude for the
characteristic exponent

 Bwd.�/ D i.� � 1
2
�2/� � 1

2
�2�2 :

Clearly,  Bwd.�i/ D �: Hence by Lemma 7.5 eX
t is martingale for � D 0. Hence

the discounted

S0e�rt exp.rtC Xt/ D S0e�rt expŒ.r � 1
2
�2/tC �Wt�

is martingale. This recovers the well-known riskless drift rate r for a numerical
simulation of GBM in the Black-Scholes model.

Example 7.7 (Merton’ s Jump Diffusion) We now combine Examples 7.4
and 7.6. As a special case of Example 7.4 we choose as in Sect. 1.9 the jump sizes
�Y in the log process Yt WD log St to be normally distributed, �Y � N .�J; �

2
J /

(log q in Sect. 1.9). Furnished with a drifted Brownian motion, this is Merton’s
jump-diffusion model (1.74) with jump intensity � and 
 D � � 1

2
�2. The Lévy

density of the compound Poisson process is � times the density of the normal
distribution,

fL.x/ D fcP.x/ WD � 1

�J

p
2	

exp

�
� .x � �J/

2

2�2J

�
: (7.32)

4E.ei�X/ D exp.i�
 � �2�2=2/ holds for X � N .
; �2/, see [199, p. 108].
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Since the two processes are independent, and by the exponential structure in (7.28),
the two characteristic exponents add:

 .�/ D  Bwd.�/C  cP.�/

D i
� � 1
2
�2�2 C

Z
R

.ei�x � 1/�.dx/

and

 .�i/ D 
 C 1

2
�2 C

Z
R

.ex � 1/�.dx/ :

Similar as in Exercise 1.22 we calculate the integral

Z 1

�1
.ex � 1/fcP.x/ dx D �

	
exp

�
i�J� � 1

2
�2J �

2

�
� 1



:

Hence, to see whether St D exp.Yt/ is a martingale, check  .�i/ D 
 C 1
2
�2 C

�.expŒ�J C 1
2
�2J � � 1/. By Lemma 7.5, a martingale can be obtained by choosing a

drift with


 D ��
2

2
� �

	
exp

�
�J C 1

2
�2J

�
� 1



:

This makes S0e�rt exp.rtC 
 tC �WtCPJt
jD1 log qj/ a martingale. When applied to

simulation of SDEs under the risk-neutral measure for Monte Carlo, this risk-neutral
valuation amounts to the drift rate in Example 1.21. That is, the SDE is

dS

S
D .r � �.expŒ�J C 1

2
�2J � � 1// dtC � dWt :

In case of a dividend yield with rate ı, the term ıdt is subtracted on the right-hand
side, similar as in Sect. 3.5.

For other models, a risk-neutral growth rate can be obtained in an analogous way.
A table of risk-neutral drift rates is given in [332, p. 80]. For a jump diffusion, jumps
are comparably “rare,” there is only a finite number of them in any time interval.
Apart from Merton’s model another jump-diffusion model is Kou’s model, which
works with an asymmetric double exponential distribution of jump sizes [229].

There are Lévy processes of infinite activity: Then in every time interval an
infinite number of jumps occurs. Examples include the VG-process (Variance
Gamma) [253], the NIG-process (Normal Inverse Gaussian), the hyperbolic process
[114] and the CGMY process [67]. Specifically for VG and NIG, see also [155].
Time deformation plays an important role for constructing Lévy processes. For
example, with a Wiener process Wt and a Gamma process Gt as subordinator
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replacing time, VG can be represented as

St D S0e
rtCXt with Xt D Gt C �WGt :

This includes GBM with the standard time Gt D t and parameter  D ��2=2.
Such a subordinating process Gt can be regarded as “business time,” which runs
faster than the calendar time when the trading volume is high, and slower otherwise.
Then, for a Wiener process Wt, a class of Lévy processes is defined by WGt . With
a t-grid as in Algorithm 1.8, a time-changed process can be generated as Wj D
Wj�1 C Z

p
Gj�t � G. j�1/�t (�! Exercise 2.11).

7.3.2 Option Valuation with PIDEs

Assume European options based on a price process St D S0 exp.rtCXt/, where Xt is
a Lévy process such that eXt is a martingale, with Lévy measure �, and the integralR

jyj�1 e2y�.dy/ exists. Then the value function V.S; t/ satisfies

@V.S; t/

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV

C
Z
R

�
V.Sey; t/ � V.S; t/ � .ey � 1/S@V.S; t/

@S

�
�.dy/ D 0

(7.33)

A proof can be found in [84, pp. 385–387].

Definition 7.8 (PIDE) An equation of the above type (7.33) is called partial
integro-differential equation (PIDE).
The integral term in (7.33) complicates the numerical solution since it is a nonlocal
term accumulating information on all �1 < y < 1, in contrast to the local
character of the partial derivatives. For general Lévy processes, the three terms under
the integral can not be separated, otherwise the integral may fail to converge. It can
be separated in the case of Merton’s jump-diffusion model, because this process is
of finite activity, � D �.R/ <1.

In what follows, we discuss Merton’s jump-diffusion process, with lognormal
distribution for q D ey. The integral in (7.33) can be split into three terms with three
integrals

Z
R

V.Sey; t/�.dy/� V.S; t/
Z
R

�.dy/� S
@V.S; t/

@S

Z
R

.ey � 1/�.dy/ :

In view of �.dy/ D �f . y/dy, factors � show up. f is the normal density, and the
integrals become expectations. Then the first integral can be written �E.V.Sey; t//,
and the second integral is �. The third integral E.ey � 1/ does not depend on V and
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can be calculated beforehand since the distribution for q D ey is stipulated.5 The
lognormal density for q is

fq.x/ D 1p
2	 �J 
 x

exp

�
� .log x � �J/

2

2�2J

�
1fx>0g

and we recover the constant of Example 7.7:

c W D
Z 1

0

.x � 1/fq.x/ dx

D
Z 1

�1
.ey � 1/f . y/ dy D exp

�
�J C 1

2
�2J

�
� 1 :

With the precalculated number c, the resulting Eq. (7.33) can be ordered into

@V

@t
C 1

2
�2S2

@2V

@S2
C .r � �c/S

@V

@S
� .�C r/V C �E.V.qS; t// D 0 : (7.34)

The last term is an integral taken over the unknown solution function V.S; t/. So the
resulting equation is a PIDE, a special case of (7.33). Note that the product �c is
the drift compensation in Example 7.7. The standard Black–Scholes PDE (7.1) is
included for � D 0. A simplified derivation of (7.34) can be found in Appendix A.4.
For further discussions, see for example [84, 270, 365, 375].

7.3.3 Transformation of the PIDE

We approach the PIDE (7.34) with the transformation

� WD T � t ; x WD log S ; u.x; �/ WD V.ex;T � �/ ; (7.35)

which appears moderate as compared to (4.3). Substituting accordingly

ux D @V

@S
S ; uxx D ux C S2

@2V

@S2

into (7.34) leads to

�u� C 1
2
�2.uxx � ux/C .r � �c/ux � .�C r/uC �E.V.qex;T � �// D 0 ;

5The parameters are not the same as those in (1.64).
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which is organized into

u� � 1
2
�2uxx � .r � �c � 1

2
�2/ux C .�C �/u � �E.V.qex;T � �// D 0 :

After the above transformation S D ex we next transform the jump-size variable
q D ey. Ignoring the factor �, the integral term changes to

E.V.qex;T � �// D E.V.exCy;T � �// D E.u.xC y; �//

D
Z
R

u.xC y; �/f . y/ dy D
Z
R

u.z; �/f .z � x/ dz ;
(7.36)

where we have applied the substitution z WD x C y. The function f for Merton’s
jump-diffusion model is the density of y D log q � N .�J; �

2
J /. In summary, the

PIDE of Merton’s jump-diffusion model is

Problem 7.9 (Merton’s Jump-Diffusion PIDE)

u� � 1
2
�2uxx � .r � �c � 1

2
�2/ux C .�C r/u

� �
Z
R

u.z; �/f .z � x/ dz D 0 ;

with f . y/ D 1p
2	�J

exp

�
� . y � �J/

2

2�2J

�

and c D expŒ�J C 1
2
�2J � � 1 :

(7.37)

This is the problem to be solved numerically.

7.3.4 Numerical Approximation

For an approximation of the integral (7.36) we truncate the domain to a finite interval
xmin � x � xmax. In view of the meaning of the integral, this truncation amounts to
disregard large jumps. This might be seen as a weakness of the approach, but jumps
that large are highly improbable. The simplest discretization approach is to use an
equidistant x-grid with

�x WD xmax � xmin

m
; xi WD xmin C i�x ; i D 0; : : : ;m ;

for a suitable integer m. As in Chap. 4, the time-stepping nodes are �� , and the
approximations of u.xi; ��/ are denoted by wi;� . The integral in (7.37) is evaluated
at each node .x; �/ D .xi; ��/. That is, for each i; �, the numbers

Z
R

u.z; ��/f .z � xi/ dz 	
Z xmax

xmin

u.z; ��/f .z� xi/ dz
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are to be approximated. Applying the composite trapezoidal sum (C.2) with

fi;l WD f .xl � xi/ D f ..l� i/�x/ ;

the approximation of the integral for each i; � is

�x

�
w0;� fi;0
2
C

m�1X
lD1

wl;� fi;l C wm;� fi;m
2

�
: (7.38)

The numbers fi;l are elements of a Toeplitz matrix.6 That is, the entries take only
2m C 1 different numbers. Due to the exponential structure of f , the elements in
the northeast and southwest corners of the fi;l-matrix go to zero. In this sense, this
Toeplitz matrix has a “banded” structure. In summary, for each i; � the integral is
approximated by a scalar product of the row vector

�x

	
fi;0
2
; fi;1 ; : : : ; fi;m�1 ;

fi;m
2




times the vector w.�/. In (7.38) the first term w0;� and the last term wm;� (where
boundary conditions enter) must be treated separately in case we deal with the short
vector .w1; : : : ;wm�1/ as in Sect. 4.2.3. Now assemble all the rows into an .mC1/2-
matrix C. Then for all i within time level �, the integrals are represented by the
product

Cw.�/ :

Neglecting the fact that many of its elements are close to zero, the matrix C is
dense, which reflects the nonlocal character of the integral. This is in contrast to
the local character of standard finite differences with its tridiagonal matrices. The
transformation (7.35) is different from (4.3), but tridiagonal matrices can be derived
from (7.37) in a similar way as done in Chap. 4. The dense matrix C adds to the
tridiagonal matrices, which makes the solution of linear systems with full matrices
in each time step � ! �C1more expensive. In an attempt to save costs, splitting has
been suggested. This means to evaluate the integral at the previous line (�). In this
way, the multiplication Cw only shows up in the right-hand side of the known terms.
The tridiagonality of the left-hand side matrices is maintained, and the method still
converges. Up to boundary conditions, this splitting can be represented by an Euler-
type implicit scheme

w.�C1/ � w.�/

��
D Gw.�C1/ C �Cw.�/ ; (7.39)

6The entries of a Toeplitz matrix are constant along each diagonal.
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Fig. 7.4 V.S; 0/ of a European put option, solution of Problem 7.9; parameters as in Example 1.21:
K D 10, r D 0:06, � D 0:3, T D 1, with Merton’s jump diffusion, �J D �0:3, �J D 0:4, and
three values of jump intensity �: 0 (lower curve in red, no jump), 0.1 (green curve), and 0.2 (top
curve, in blue); xmin D �3, xmax D log.K/ C 1:6 D 3:9. The chosen value of �J D �0:3
corresponds to q D exp.�J/ D 0:74, or a 26% fall in the asset price

where the matrix G represents the local information of the differentials. Neither G
nor C are symmetric. We leave it to the reader to set up the system of equations (�!
Exercise 7.7).7 The matrices G and C are used for the analysis, no matrix is needed
for the algorithm. For an illustration how a larger intensity � increases the value of
an option see Fig. 7.4.

Since the splitting can deteriorate the accuracy, a fixed point iteration has been
suggested [105]. The integral term E.V/ with its truncation and discretization
challenges the control of the involved errors. For example, [85] gives an estimate
of the error induced by truncating the integral, as well as a convergence proof for
finite differences applied to general Lévy models. Codes for American options based
on a penalty formulation or on an LCP formulation can be easily modified and
extended by an integral term. The techniques of Chap. 4 or Chap. 5 can be applied.
Application of FFT increases the efficiency [105]. Typically, each Lévy process calls

7The number of arithmetic operations can be cut down by neglecting elements close to zero. To
this end, in (7.39) simply replace the matrix C by a banded matrix C, whose elements cil are those
of C except outside a band defined by �BL � l � i � BR for suitably chosen positive integers
BL;BR < m, where the elements are set to zero.
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for a separate algorithm. A Monte Carlo approach is [272]. For Merton’s model
and European options, an analytic solution is given [270], which allows to test
corresponding algorithms.

7.4 Application of the Fourier Transform

The Fourier transform F of a real function f is defined by8

F Œ f .u/� WD
Z 1

yD�1
eiuyf . y/ dy : (7.40)

This requires integrability of f . The inverse Fourier transformation is

F�1Œg.x/� D 1

2	

Z 1

uD�1
e�ixug.u/ du : (7.41)

A sufficiently well-behaved f is recovered by the inversion,

f D F�1F f :

We perform this process of transform and inverse transform for a function c.k/ to
be defined below. The application of the Fourier transform in our context and the
outline of three steps of the subsequent analysis is symbolized as follows:

(1)
c.k/ ı �! � g.u/ D integral

# (2)
c.k/ ı  � � g.u/ D formula

(3)

Step (1) is the forward Fourier transform (7.40) of a function c.k/. The result is an
integral expression g.u/. In our context this integral can be solved analytically (step
(2)), which produces a formula for g.u/. The inverse transformation (7.41) in step
(3) is approximated numerically by the Fast Fourier Transformation (FFT), based
on (C.7). The detour (1)–(3) is worth the effort, because the FFT calculation of c.k/
is faster to evaluate than the original c.k/.

8There are different conventions for the Fourier transform; for background, see special literature,
for example [371]. To get used to it try Exercise 7.8.
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Recall the characteristic function (7.28) � of a Lévy process Xt. These functions
are the Fourier transform of the density function of X,

�Xt.u/ WD E.exp.iuXt// D
Z 1

�1
eiuXfdensityX dx D F Œ fdensityX� : (7.42)

The characteristic functions � of many processes X are known and available as
analytical expressions, for example, in [84, 235, 332].

In the following, we investigate a European call with vanilla payoff �.S/ D
.S � K/C with an arbitrary underlying Lévy process St. The integral representation
of the call’s value under the risk-neutral measure Q is

V.St; tI K/ D e�r.T�t/EQŒ�.ST/ j St�

D e�r.T�t/
Z 1

ST DK
.ST � K/ fdensity.ST/ dST ;

where f is the density of ST of the Lévy process starting at t with the value St.
Transform

ST D es; K D ek; dST D esds I (7.43)

note that k 2 R. Then

V.St; tI K/ D e�r.T�t/
Z 1

k
.es � ek/Of .s/ ds ;

where Of .s/ D esf .es/ is the density of logS, similar as in Sect. 1.8.2. Following [68],
in order to make the function integrable, we scale the integral with a factor exp.˛k/
(a constant):

c.k/ WD e˛ke�r.T�t/
Z 1

k
.es � ek/Of .s/ ds D e˛kV.St; tI K/ (7.44)

and denote F Œc.u/� its Fourier transform. We leave the choice of the scaling
parameter ˛ open until later.

As outlined above, when F Œc� is calculated, then the call’s value V.S; t/ is
recovered from the inverse Fourier transformation,

V.St; tI ek/ D
	
1

2	

Z 1

�1
e�iuxF Œc.u/� du




 e�˛k ;

which can be approximated efficiently by the Fast Fourier Transform (FFT). This
outlines the program of the three steps (1), (2), (3), and now we turn to its realization.
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The Fourier transform of c.k/ is

F Œc.u/� D
Z 1

kD�1
eiukc.k/ dk

D
Z 1

�1
eiuke˛ke�r.T�t/

Z 1

sDk
.es � ek/Of .s/ ds dk

D e�r.T�t/
Z 1

kD�1

Z 1

sDk
e.iuC˛/k.es � ek/Of .s/ ds dk

D e�r.T�t/
Z 1

sD�1

Z s

kD�1
e.iuC˛/k.es � ek/Of .s/ dk ds ;

where the last equation holds since

f k � s <1 j �1 < k <1g D f�1 < k � s j �1 < s <1g :

This leads to

F Œc.u/� D e�r.T�t/
Z 1

�1
Of .s/

Z s

�1
Œe.iuC˛/kCs � e.iuC˛C1/k� dk ds

D e�r.T�t/
Z 1

�1
Of .s/

�
ese.iuC˛/k

iuC ˛ � e.iuC˛C1/k

iuC ˛ C 1
�s

kD�1
ds :

(7.45)

To have the integral exist, we require the factor e˛k to vanish for k ! �1, which
leads to choose ˛ > 0. That is, the factor exp.˛k/ amounts to a damping of the
integral. The bracketed term in (7.45) is

.iuC ˛ C 1/es.iuC˛C1/ � .iuC ˛/es.iuC˛C1/

iu.2˛ C 1/C ˛.˛ C 1/� u2
;

and we come up with

F Œc.u/� D e�r.T�t/

iu.2˛ C 1/C ˛.˛ C 1/� u2

Z 1

�1
Of .s/eis.u�.˛C1/i/ ds :

We denote the integral therein �.u�.˛C1/i/, because it is the characteristic function
of the density Of . For � an analytic expression is known. Hence

F Œc.u/� D e�r.T�t/ �.u� .˛ C 1/i/
˛2 C ˛ � u2 C iu.2˛C 1/ DW g.u/ (7.46)

can be considered to be a known function g, and step (2) is completed. For the final
choice of the parameter ˛ > 0 further request g.u/ D F Œc.u/� to be integrable as
well. Since the integration is along real values of u one has to take care that the
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denominator has only imaginary roots in u. The choice of ˛ is discussed in the
literature [68, 235]. Usually ˛ D 3 works well.

The inverse Fourier transformation evaluates

e�˛k 1

2	

Z 1

�1
e�ikug.u/ du :

The integral is real, and hence its integrand is real too. Think of g from (7.46) being
split into real part and imaginary part, g.u/ D g1.u/C ig2.u/. Then i.cos.ku/g2.u/�
sin.ku/g1.u// D 0, and we conclude that g1.u/ is an even function, and g2.u/ is an
odd function. Hence the integrand

cos.ku/g1.u/C sin.ku/g2.u/

is even, and the value of the call is

V.St; tI ek/ D e�˛k

	

Z 1

0

e�ikug.u/ du : (7.47)

Next, the semi-infinite integration interval is truncated to a finite length A.
Thereby, for most Lévy models the truncation error can be made arbitrarily small
because the characteristic function � decays exponentially fast at infinity.9 With the
restriction to the integration interval 0 � u � A and M � 1 subintervals with equal
length�u, the discrete grid points are

uj WD j�u D j
A

M � 1 ; j D 0; : : : ;M � 1 :

Choosing the trapezoidal sum (C.2) for the quadrature, the approximation is

Z 1

0

e�ikug.u/ du 	 A

M � 1
M�1X
jD0

ˇj g.uj/ e�ikuj (7.48)

with weights ˇ0 D ˇM�1 D 1
2

and ˇj D 1 for 1 � j � M � 2. The trapezoidal sum
goes along with a sampling error of the order O.�u2/.

So far, the log-strike k D log K is not specified. The aim is to exploit the potential
of FFT, which calculates sums of the type

M�1X
jD0

aj e�i�j 2	M (7.49)

9This does not hold for the VG process, see [84, 235].
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for complex numbers a0; : : : ; aM�1, one sum for each �. This amounts to calculate a
vector of M such sums, for � D 0; : : : ;M�1. Applying FFT we gain the possibility
to calculate the above for M strikes simultaneously. Let us calculate the call values
for the log-strike values

k� WD �bC�k 
 � ; � D 0; : : : ;M � 1 ; (7.50)

for suitable values of b and �k, which define the k-range and the strike spacing of
interest. Substituting these values k� into the above sum (7.48) produces

A

M � 1
M�1X
jD0

ˇj g.uj/ exp

�
�i.�bC�k �/j

A

M � 1
�
:

The argument of the exponential function is

ibj
A

M � 1 � i�j�k
A

M � 1 :

To apply FFT aiming at (7.49), steps �k and �u D A
M�1 must be chosen such that

�k
A

M � 1 D �k�u D 2	

M
: (7.51)

Then the sum in (7.48) is

A

M � 1
M�1X
jD0

ˇjg.uj/ exp

�
ibj

A

M � 1
�

e�i�j 2	M ;

which is the standard FFT applied to (7.49) for the complex numbers

aj WD Aˇjg.uj/ exp

�
ibj

A

M � 1
�
; i D 0; : : : ;M � 1 : (7.52)

This completes the calculation of a bunch of European call values: The integral
in (7.47) is approximated by the FFT sum (7.49) with coefficients (7.52). For the
highly efficient calculation of the FFT sums (7.49) consult standard literature on
numerical analysis (such as [306]), and related software packages.

The above method amounts to a fast algorithm in case option prices are to be
calculated on a grid of many strikes, all options with the same maturity T. The log-
strike grid of the values k� is defined by (7.50) with the parameters b and�k, which
in turn are based on A;M. By (7.51),

�k D 2	

A

M � 1
M

:
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And to cover log strikes in the at-the-moment range around k D 0, one aims at

b D .M � 1/�k

2
:

Efficiency of FFT is maximal for M a power of 2. The Eq. (7.51) is a limitation that
requests a careful design of parameters M and A.

In this section, we have explained the basic FFT approach of Carr and Madan
[68]. The Fast Fourier Transform can be applied also for early-exercise options
[248]. A novel transform is based on Fourier-cosine expansions [125], which is also
applied to barrier options [126]. The resulting algorithms converge exponentially
fast. In summary, FFT-based methods have shown a rich potential, in particular for
option pricing under Lévy models.

7.5 Notes and Comments

On Sect. 7.1

For a critical account of Leland’s approach see [380]. The nonlinear version (7.6)–
(7.8) is due to [187]. A piecewise linear treatment is suggested in [77]. The paper
[18] discusses Eq. (7.7), suggesting a modification for the case 
 � 1, where O�2
would be negative for � < 0. For bounds on V in case of “misspecified” volatility,
see [118]. For related work, consult also [116, 156, 159].

Apart from the one-factor case, ranges for parameters play a role also in
multiasset cases. For example, consider two assets with prices S1; S2, and assume
a correlation in the range �1 � �min � � � �max � 1. In the Black–Scholes
equation (6.5), the term

��1�2S1S2
@2V

@S1@S2

occurs. Depending on the sign of the cross derivative @2V
@S1@S2

, � is chosen either as
�min or �max in order to characterize a “worst-case,” see [362].

To complete the introduction into more general models we outline the Dupire
equation in Appendix A.6.

On Sect. 7.2

For reference and examples consult [134, 176, 177]. The assumption of a constant
cC in Theorem 7.2 is not always satisfied easily. For example, in the Barles and
Soner model of Sect. 7.1.2 and a payoff with jump discontinuity (as digital option),
cC D cC.�x/ D O.�x2/, which affects the assumptions of Theorem 7.2, and has
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strong implications on stability. Apart from nonsmooth payoffs, also the PDE itself
typically is not smooth. For American options, the penalty term in (7.16) causes a
lack of smoothness. Also the volatility function Q� may be nonsmooth. This happens,
for example, in Leland’s model when VSS changes sign. Newton’s method then
works with a generalized derivative. The higher the degree of “non-smoothness,”
the worse the convergence rate of CN. The BDF method (7.26)/(7.27) is highly
recommended. An a priori check of convergence criteria is advisable.

On Sect. 7.3

The definition of Lévy processes includes stochastic continuity. A table of Lévy
densities fL is found in [332, p. 154]. The Lévy-Khinchin representation (7.29) is a
scalar setting; [69] develops analytic expressions for the characteristic function of
time-changed Lévy process in a general vector setting. In this framework, Heston’s
stochastic-volatility model can be represented as time-changed Brownian motion.

For time-changed Lévy processes, consult [11, 67, 69, 84]. Time-changed Lévy
processes have been successfully applied to match empirical data. For processes
with density function (Merton, VG, NIG), Algorithm 1.18 can be applied [309].
Lévy-process models have been extended by incorporating stochastic volatilities
[67, 212]. A subordinator �.t/ can be constructed as integral of a square-root
process.

Pham [299] investigates properties of American options. Heston presents the
characteristic function for his model in [178]. His model extended by jump diffusion
[30] can be cast into the above framework: In this case a two-dimensional PDE is
considered. For computational approaches see [6–8, 55, 85, 104, 105, 263].

On Sect. 7.4

Choosing the weights wj of Simpson’s sums instead of trapezoidal sums, the
integrations get more accurate. An application to VG is found in [68]. Modifications
and extensions of the above basic approach are described and reviewed in [235]. For
references on transform methods in option pricing, see [126].

7.6 Exercises

7.1 Let �W be the increment of a Wiener process, see Sect. 1.6.1. Show

E.j�Wj/ D p�t

r
2

	
:
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7.2 (Barles–Soner Model)
The differential equation of Barles and Soner is

df .x/

dx
D f .x/C 1
2
p

xf .x/ � x
with f .0/ D 0 :

(a) By numerical computations, analyze the solution for �2 � x � 2.
(b) Construct an approximating function Of .x/ in a piecewise fashion.

7.3 (Payoffs of Spreads)
We consider portfolios of two or more options of the same type with the same
underlying stock. K1, K2, K are strikes with K1 < K2.

(a) A butterfly spread is a portfolio with

– one long call with strike K1,
– one long call with strike K2,
– two short calls with strike K D K2�K1

2
.

The payoff is

�.S/ D

8̂
ˆ̂̂<
ˆ̂̂̂:

0 for S � K1

S � K1 for K1 < S � K

K2 � S for K < S � K2

0 for K2 � S :

(b) A bull spread is a portfolio with

– one long call with strike K1,
– one short call with strike K2,

The payoff is

�.S/ D

8̂̂
<
ˆ̂:
0 for S � K1

S � K1 K1 < S � K2

K2 � K1 K2 < S :

For both spreads (a) and (b) explain and sketch the payoff. Apply the transformation
(7.17) (Exercise 7.4) to derive the transformed payoff u�.x/. For (b), apply the
transformation with K2.

7.4 (Transformation of Nonlinear Black–Scholes Models)
According Sect. 7.2, consider the following nonlinear PDE

Vt C 1

2
�2.t; S;VSS/S

2VSS C .r � ı/SVS � rV C Op max.� � V; 0/ D 0 ;
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where �2.t; S;VSS/ depends on the particular model; r is the risk-free interest rate
and ı is the continuous dividend yield. Apply the transformation (7.17)

x D log.S=K/; � D �20 .T � t/=2; u.x; �/ D e�xV.S; t/=K;

with K > 0 and a model-dependent parameter �0, and derive a PDE for u.

7.5 (Convergence of the Fully Implicit Method)
Two out of the three criteria for monotony in Theorem 7.2 are (i) and (ii). For

(a) Leland’s model of transaction costs, with parameter 
 , and
(b) the model of uncertain volatility with �min � � � �max,

show that (i) and (ii) are satisfied. What are the constants cC? For (b), �� of (7.12)
suffices.

7.6 For a Lévy process Xt adapted to a filtration Ft show

E.eXt jFs/ � eXs D E.eXt�s/� eX0 :

7.7 (Project: Implementing a PIDE)
Set up a computer program to solve Merton’s jump diffusion (7.37) numerically. To
this end, concentrate on European-style vanilla options. Set up boundary conditions
using (4.27), and apply a BDF implicit scheme. Think of how to choose xmin, xmax

in relation to the strike K.
Hint: For testing the core part of the program, set the jump intensity � D 0 and
compare to the Black–Scholes value.

7.8 (Fourier Transform)
Consider the Fourier transform

F Œ f .u/� WD
Z 1

�1
eiuyf . y/ dy :

For the example f . y/ WD e�ajyj and complex a show that

Z A

�A
eiuyf . y/ dy

converges for A!1 and Re.a/ > 0.



Appendix A
Financial Derivatives

A.1 Investment and Risk

Basic markets in which money is invested trade in particular with

• equities (stocks),
• bonds, and
• commodities.

Front pages of The Financial Times or The Wall Street Journal open with charts
informing about the trading in these key markets. Such charts summarize a myriad
of buys and sales, and of individual gains and losses. The assets bought in the
markets are held in the portfolios of investors.

An easy way to buy or sell an asset is a spot contract, which is an agreement
on the price, assuming delivery on the same date. Typical examples are furnished
by the trading of stocks on an exchange, where the spot price is paid the same day.
On the spot markets, gain or loss, or risks are clearly visible. The spot contracts are
contrasted with those contracts that agree today (t D 0/ to sell or buy an asset for a
certain price at a certain future time (t D T). Historically, the first objects traded in
this way have been commodities, such as agricultural products, metals, or oil. For
example, a farmer may wish to sell in advance the crop expected for the coming
season. Such trading has been extended to stocks, currencies and other financial
instruments. Today there is a virtually unlimited variety of contracts on objects and
their future state, from credit risks to weather prediction.

The future price of the underlying asset is usually unknown, it may move up
or down in an unexpected way. For example, scarcity of a product will result in
higher prices. Or the prices of stocks may decline sharply. But the contract must
fix a price today, for an exchange of asset and payment that will happen in weeks
or months. At maturity, the spot price usually differs from the agreed price of the
contract. The difference between spot price and contract price can be significant.
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Hence contracts into the future are risky. Financial risk of assets is defined as the
degree of uncertainty of their return.

No investment is really free of risks. But some bonds can come close to the
idealization of being riskless. If the issuer of a bond has top ratings, then the return
of a bond at maturity can be considered safe, and its value is known today with
certainty. Such a bond is regarded as “riskless asset.” The rate earned on a riskless
asset is the risk-free interest rate. To avoid the complication of re-investing coupons,
zero-coupon bonds are considered. The interest rate, denoted r, depends on the time
to maturity T. The interest rate r is the continuously compounded interest which
makes an initial investment S0 grow to S0erT . We assume the interest rate r to be
nonnegative. Often r > 0 will be taken constant throughout the time period 0 �
t � T. A candidate for r is the LIBOR.1 Examples of bonds in real bond markets
that come close to our idealized risk-free bond are issued by governments of AAA
rated countries. See [191] for further introduction, and consult for instance The Wall
Street Journal for market diaries.

All other assets are risky, with equities being the most prominent examples.
Hedging is possible to protect against financial loss. Many hedging instruments
have been developed. Since these financial instruments depend on the particular
asset that is to be hedged, they are called derivatives. Main types of derivatives
are futures, forwards, options, and swaps. They are explained below in some more
detail. Tailoring and pricing derivatives is the core of financial engineering. Hedging
with derivatives is the way to bound financial risks and to protect investments.

A.2 Financial Derivatives

Derivatives are instruments to assist and regulate agreements on transactions of the
future. Derivatives can be traded on specialized exchanges.

Futures and forwards are agreements between two parties to buy or sell an asset
at a certain time in the future for a certain delivery price. Both parties make a binding
commitment, there is nothing to choose at a later time. For forwards no premiums
are required and no money changes hands until maturity. A basic difference between
futures and forwards is that futures contracts are traded on exchanges and are more
formalized, whereas forwards are traded in the over-the-counter market (OTC). Also
the OTC market usually involves financial institutions. Large exchanges on which
futures contracts are traded are the Chicago Board of Trade (CBOT), the Chicago
Mercantile Exchange (CME), and the Eurex.

Options are rights to buy or sell underlying assets for an exercise price (strike),
which is fixed by the terms of the option contract. That is, the purchaser of the
option is not obligated to buy or sell the asset. This decision will be based on the
payoff, which is contingent on the underlying asset’s behavior. The buying or selling

1London Interbank Offered Rate.
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of the underlying asset by exercising the option at a future date (t D T) must be
distinguished from the purchase of the option (at t D 0, say), for which a premium
is paid. After the Chicago Board of Options Exchange (CBOE) opened in 1973, the
volume of the trading with options has grown dramatically.

Swaps are contracts regulating an exchange of cash flows at different future
times. A common type of swap is the interest-rate swap, in which two parties
exchange interest payments periodically, typically fixed-rate payments for floating-
rate payments. Counterparty A agrees to pay to counterparty B a fixed interest rate
on some notional principal, and in return party B agrees to pay party A interest at
a floating rate on the same notional principal. The principal itself is not exchanged.
Each of the parties borrows the money at his market. The interest payment is
received from the counterparty and paid to the lending bank. Since the interest
payments are in the same currency, the counterparties only exchange the interest
differences. The swap rate is the fixed-interest rate fixed such that the deal (initially)
has no value to either party (“par swap”). For a currency swap, the two parties
exchange cash flows in different currencies.

An important application of derivatives is hedging. Hedging means to eliminate
or limit risks. For example, consider an investor who owns shares and wants
protection against a possible decline of the price below a value K in the next three
months. The investor could buy put options on this stock with strike K and with a
maturity that matches his three months time horizon. Since the investor can exercise
his puts when the share price falls below K, it is guaranteed that the stock can be
sold at least for the price K during the life time of the option. With this strategy the
value of the stock is protected. The premium paid when purchasing the put option
plays the role of an insurance premium. Hedging is intrinsic for calls. The writer of
a call must hedge his position to avoid being hit by rising asset prices. Generally
speaking, options and other derivatives facilitate the transfer of financial risks.

What kind of principle is so powerful to serve as basis for a fair valuation of
derivatives? The concept is arbitrage, or rather the assumption that arbitrage is not
possible in an idealized market. Arbitrage means the existence of a portfolio, which
requires no investment initially, and which with guarantee makes no loss but very
likely a gain at maturity. Or shorter: arbitrage is a self-financing trading strategy
with zero initial value and positive terminal value.

If an arbitrage profit becomes known, arbitrageurs will take advantage and try to
lock in.2 This makes the arbitrage profits shrink. In an idealized market, information
spreads rapidly and arbitrage opportunities become apparent. So arbitrage cannot
last for long. Hence, in efficient markets at most very small arbitrage opportunities
are observed in practice. For the modeling of financial markets this leads to postulate
the no-arbitrage principle: One assumes an idealized market such that arbitrage is
ruled out. Arguments based on the no-arbitrage principle resemble indirect proofs in
mathematics: Suppose a certain financial situation. If this assumed scenario enables

2This assumes that investors prefer more to less, the basis for a rational pricing theory [269].
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constructing an arbitrage opportunity, then there is a conflict to the no-arbitrage
principle. Consequently, the assumed scenario is considered impossible.

For valuing derivatives one compares the return of the risky financial investment
with the return of an investment that is free of risk. For the comparison, one
calculates the gain the same initial capital would yield when invested in riskless
bonds. To compare properly, one chooses a bond with time horizon T matching
the terms of the derivative that is to be priced. Then, by the no-arbitrage principle,
the risky investment should have the same price as the equivalent risk-free strategy.
The construction and choice of derivatives to optimize portfolios and protect against
extreme price movements is the essence of financial engineering.

The pricing of options is an ambitious task and requires sophisticated algorithms.
Since this book is devoted to computational tools, mainly concentrating on options,
the features of options are part of the text (Sect. 1.1 for standard options, and
Sect. 6.1 for exotic options). This text will not enter further the discussion of
forwards, futures, and swaps, with one exception: We choose the forward as an
example (below) to illustrate the concept of arbitrage. For a detailed discussion of
futures, forwards and swaps we refer to the literature, for instance to [31, 191, 251,
282, 339, 375].

A.3 Forwards and the No-Arbitrage Principle

As stated above, a forward is a contract between two parties to buy or sell an asset to
be delivered at a certain time T in the future for a certain delivery price F. The time
the parties agree on the forward contract (fixing T and F) is set to t0 D 0. Since no
premiums and no money change hands until maturity, the initial value of a forward
is zero.

The party with the long position agrees to buy the underlying asset; the other
party assumes the short position and agrees to sell the asset.

For the subsequent explanations St denotes the price of the asset at time t in the
time interval 0 � t � T. To fix ideas, we assume just one interest rate r for both
borrowing or lending risk-free money over the time period 0 � t � T. By the
definition of the forward, at time of maturity T the party with the long position pays
F to get the asset, which is then worth ST .

Arbitrage Arguments
As will be shown next, the no-arbitrage principle enforces the forward price to be

F D S0 erT : (A.1)

Thereby it is assumed that the asset does not produce any income (dividends) and
does not cost anything until t D T.

Let us see how the no-arbitrage principle is invoked. We ask what the fair price
F of a forward is at time t D 0, when the terms of a forward are settled. Then the
spot price of the asset is S0.
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Assume first F > S0erT . Then an arbitrage strategy exists as follows: At t D 0

borrow S0 at the interest rate r, buy the asset, and enter into a forward contract to
sell the asset for the price F at t D T. When the time instant T has arrived, the
arbitrageur completes the strategy by selling the asset .CF/ and by repaying the
loan .�S0erT/. The result is a riskless profit of F � S0erT > 0. This contradicts
the no-arbitrage principle, so F � S0erT � 0 must hold.
Suppose next the complementary situation F < S0erT . In this case an investor
who owns the asset3 would sell it, invest the proceeds at interest rate r for the
time period T, and enter a forward contract to buy the asset at t D T. In the
end there would be a riskless profit of S0erT � F > 0. The conflict with the
no-arbitrage principle implies S0erT � F � 0.
Combining the two inequalities � and � proves the equality. [S0er1T � F �
S0er2T in case of different rates 0 � r1 � r2 for lending or borrowing]

One of the many applications of forwards is to hedge risks caused by foreign
exchange.

Example (Hedging Against Exchange Rate Moves)
A U.S. corporation will receive one million euro in 3 months (on December 25),
and wants to hedge against exchange rate moves. The corporation contacts a bank
(“today” on September 25) to ask for the forward foreign exchange quotes. The
3-month forward exchange rate is that $1.1428 will buy one euro, says the bank.4

Why this? For completeness, on that day the spot rate is $1.1457. If the corporation
and the bank enter into the corresponding forward contract on September 25,
the corporation is obligated to sell one million euro to the bank for $1,142,800
on December 25. The bank then has a long forward contract on euro, and the
corporation is in the short position.
Let us summarize the terms of the forward:

asset: one million euro
asset price St: the value of the asset in US $ (S0 D $1; 145; 700)
maturity T= 1/4 (three months)
delivery price F: $1,142,800 (forward price)

To understand the forward price in the above example, we need to generalize the
basic forward price S0erT to a situation where the asset produces income. In the
foreign-exchange example, the asset earns the foreign interest rate, which we denote
ı. To agree on a forward contract, Fe�rT D S0e�ıT , so

F D S0e
.r�ı/T : (A.2)

3Otherwise: short sale, selling a security the seller does not own.
4September 25, 2003.
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(See [191].) On the date of the example the 3-month interest rate in the U.S. was
r D 1%, and in the euro world ı D 2%. So

S0e
.r�ı/T D 1145700e�0:0114 D 1142800

which explains the 3-month forward exchange rate of the example.

A.4 The Black–Scholes Equation

The Classic Equation
This appendix applies Itô’s lemma to derive the Black–Scholes equation out of
Assumptions 1.2. The basic assumption of a geometric Brownian motion of the
stock price amounts to

dSt D �St dtC �St dWt (A.3)

with constant � and � . Consider a portfolio consisting at time t of ˛t shares of the
asset with value St, and of ˇt shares of the bond with value Bt. The bond is assumed
riskless with

dBt D rBt dt : (A.4)

At time t the wealth process of the portfolio is

˘t WD ˛tSt C ˇtBt : (A.5)

The portfolio is supposed to hedge a European option with value Vt, and payoff VT

at maturity T. So we aim at constructing ˛t and ˇt such that the portfolio replicates
the payoff,

˘T D VT D payoff : (A.6)

The European option cannot be traded before maturity; neither any investment is
required in 0 < t < T for holding the option nor is there any payout stream. To
compare the values of Vt and ˘t, and to apply arbitrage arguments, the portfolio
should have an equivalent property. Suppose the portfolio is “closed” for 0 < t < T
in the sense that no money is injected into or removed from the portfolio. This
amounts to the self-financing property

d˘t D ˛t dSt C ˇt dBt : (A.7)

That is, changes in the value of ˘t are due only to changes in the prices S or B.
Equation (A.7) is equivalent to S d˛t C B dˇt D 0 , indicating that the quantities of
stocks and bonds are continuously rebalanced—certainly an idealization.
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Now the no-arbitrage principle is invoked. Replication (A.6) and self-financing
(A.7) imply

˘t D Vt for all t in 0 � t � T ; (A.8)

because both investments have the same payout stream. So the replicating and self-
financing portfolio is equivalent to the risky option. The portfolio duplicates the risk
of the option. How this fixes dynamically the quantities ˛t and ˇt of stocks and
bonds is described next.

Assuming a sufficiently smooth value function ˘t D V.S; t/, we infer from Itô’s
lemma (Sect. 1.8)

d˘ D
	
�S
@V

@S
C @V

@t
C 1

2
�2S2

@2V

@S2



dtC �S

@V

@S
dW : (A.9)

On the other hand, substitute (A.3) and (A.4) into (A.7) and obtain another version
of d˘ , namely,

d˘ D .˛�SC ˇrB/ dtC ˛�S dW : (A.10)

Because of uniqueness, the coefficients of both versions must match. Comparing the
dW coefficients for � ¤ 0 leads to the hedging strategy

˛t D @V.St; t/

@S
: (A.11)

Matching the dt coefficients gives a relation forˇ, in which the stochastic ˛�S terms
drop out. The ˇB term is replaced via (A.5) and (A.8), which amounts to

S
@V

@S
C ˇB D V :

This results in the renowned Black–Scholes equation (1.5),

@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV D 0 : (A.12)

The terminal condition is given by (A.6).
Choosing in (A.11) the delta hedge �.S; t/ WD ˛ D @V

@S provides a dynamic
strategy to eliminate the risk that lies in stochastic fluctuations and in the unknown
drift� of the underlying asset. The corresponding number of units of the underlying
asset makes the portfolio (A.5) riskless. Hence the delta � D @V

@S plays a crucial
role for a perfect hedging of portfolios. Of course, this delta hedging works under
the stringent assumption that the market is correctly described by the model defined
by Assumptions 1.2. But note that a continuous rebalancing of the portfolio is not
realistic in practice. Real markets are incomplete and perfect hedges do not exist.
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Delta hedging only neutralizes the prime risk of direct exposure to the underlying.
Other risks, such as volatility risk and model risk, remain.

Having a model at hand as the Black–Scholes equation, it can be used inversely
to calculate a probability distribution that matches underlying market prices (�!
Exercise 1.19). This calibrates the model’s crucial market parameter � . Then,
in turn, the hedging variable is calculated from the model. Symbolically, this
application of the methods can be summarized by

Vmar �! � �! � :

The methods of option valuation are intrinsic to this process. (In reality, hedging
must be done in discrete time.)

In the above sense of eliminating risk, the modeling of V is risk neutral. Note
that in the derivation of the Black–Scholes equation the standard understanding
of constant coefficients �; �; r was actually not used. In fact the Black–Scholes
equation holds also for time-varying deterministic functions �.t/; �.t/; r.t/ (�!
Exercise 1.25). For reference see, for example, [31, 110, 193, 345]. As will be shown
below, there is a simple analytic formula for � in case of European options in the
Black–Scholes model.

The Solution and the Greeks
The Black–Scholes equation has a closed-form solution. For a European call with
vanilla payoff and continuous dividend yield ı as in (4.1) (in Sect. 4.1) the formulas
are

d1 W D
log S

K C
�

r � ı C �2

2

�
.T � t/

�
p

T � t
; (A.13)

d2 W D d1 � �
p

T � t D
log S

K C
�

r � ı � �2

2

�
.T � t/

�
p

T � t
; (A.14)

VC.S; t/ D Se�ı.T�t/F.d1/ � Ke�r.T�t/F.d2/ : (A.15)

Here F denotes the standard normal cumulative distribution (with density f , compare
Exercise 1.5 or Appendix E.2). The value VP.S; t/ of a put is obtained by applying
the put-call parity on (A.15), see Exercise 1.1. For a continuous dividend yield ı as
in (4.1) the put-call parity of European options is

VP D VC � Se�ı.T�t/ C Ke�r.T�t/ (A.16)

from which

VP.S; t/ D �Se�ı.T�t/F.�d1/C Ke�r.T�t/F.�d2/ (A.17)
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follows. For options deep out of the money, when V 	 0, an evaluation of the
Black–Scholes formula suffers from cancellation. But for out-of-the-money options
the Black–Scholes model is not recommended anyhow.

The Black-Scholes formulas (A.15) and (A.17) can be applied to European
options also for discrete dividend payments. To this end, the stock price is reduced
by the present value of all dividends during the life of the option [191, 282]. For
example, assume one dividend is paid with known ex-dividend date tD .0 < tD < T/
and known amount D. Then evaluate the Black–Scholes formula at .QS; t/ with

QS WD S � De�r.tD�t/

instead of S, and with ı D 0.
For nonconstant but known deterministic coefficient functions �.t/; r.t/, ı.t/, the

closed-form solution is modified by introducing integral mean values [234, 291, 375,
378]. For example, replace the term r.T � t/ by the more general term

R T
t r.s/ ds,

and replace

�
p

T � t �!
0
@

TZ
t

�2.s/ ds

1
A
1=2

:

Differentiating the Black–Scholes formula gives delta, � D @V
@S , as

� D e�ı.T�t/ F.d1/ for a European call,

� D e�ı.T�t/ .F.d1/ � 1/ for a European put.
(A.18)

The delta� of (A.11) is the most prominent example of the “greeks.” Also other
derivatives of V are denoted by greek sounding names:

gamma D @2V

@S2
; theta D @V

@t
; vega D @V

@�
; rho D @V

@r
:

As pointed out by [375], vega and rho, the derivatives with respect to parameters
must be handled with care. In case of the Black–Scholes model, analytic expressions
can be obtained by differentiating (A.15)/(A.17). For example,

gamma D e�ı.T�t/ f .d1/

�S
p

T � t
;

both for European put and call. For other greeks see, for instance, [172]. The
essential parts of a derivation of the Black–Scholes formula (A.15) or (A.17) can
be collected from this book; see for instance Exercise 1.10 or Exercise 3.12.
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Hedging a Portfolio in Case of a Jump-Diffusion Process
Next consider a jump-diffusion process as described in Sect. 1.9, summarized by
Eq. (1.74). The portfolio is the same as above, see (A.5), and we invoke the
same assumptions such as replication and self-financing. Itô’s lemma is applied
in a piecewise fashion on the time intervals between jumps. Accordingly (A.9) is
modified by adding the jumps in V with jumps sizes

�V WD V.S�C ; �/ � V.S�� ; �/

for all jump instances �j. Consequently the term �V dJ is added to (A.9). On
the other hand, (1.74) leads to add the term ˛.q � 1/S dJ to (A.10). Comparing
coefficients of the dW terms in both expressions of˘ suggests the hedging strategy
(A.11), namely, ˛ D @V

@S , and allows to shorten both versions of ˘ by subtracting
equal terms. This is a piecewise argumentation for hedging the diffusion, not the
jumps [375]. Let us denote the resulting values of the reduced portfolios by Q̆ .
Then (A.9) leads to

d Q̆ D
	
@V

@t
C 1

2
�2S2

@2V

@S2



dtC .V.qS; t/� V.S; t// dJ

and (A.10) becomes

d Q̆ D
	

rV � rS
@V

@S



dtC @V

@S
.q � 1/S dJ

(The reader may check.)
Different from the analysis leading to the Black–Scholes equation, d Q̆ is not

deterministic and it does not make sense to equate both versions. The risk can not
be perfectly hedged away to zero in the case of jump-diffusion processes. That is,
the market is not complete, and the equivalent martingale measure is not unique.
Following [270], we apply the expectation operator over the random variable q to
both versions of Q̆ . Denote this expectation E, with

E.X/ D
Z 1

�1
xfq.x/ dx (A.19)

in case qt has a density fq that obeys q > 0. The expectations of both versions of
E. Q̆ / can be equated. The result is

0 D
	
@V

@t
C 1

2
�2S2

@2V

@S2
C rS

@V

@S
� rV



dt

C E
	
ŒV.qS; t/� V.S; t/� .q � 1/S@V

@S
� dJ



:
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Since all stochastic terms are assumed independent, the second part of the equa-
tion is

EŒ: : :�E.dJ/ :

Using from (1.72)

E.dJ/ D � dt

and the abbreviation

c WD E.q � 1/

this second part of the equation becomes

fE.V.qS; t//� V.S; t/ � cS
@V

@S
g � dt :

The integral c D E.q � 1/ does not depend on V . This number c can be calculated
via (A.19) as soon as a distribution for q is stipulated. For instance, one may assume
a lognormal distribution, with relevant parameters fitted from marked data.5 With
the precalculated number c, the resulting differential equation can be ordered into

@V

@t
C 1

2
�2S2

@2V

@S2
C .r � �c/S

@V

@S
� .�C r/V C �E.V.qS; t// D 0 : (A.20)

Note that the last term is an integral taken over the unknown solution function
V.S; t/. So the resulting equation is a partial integro-differential equation (PIDE).
See Sect. 7.3 for a numerical solution.

A.5 Early-Exercise Curve

This appendix briefly discusses properties of the early-exercise curve Sf of standard
American put and call options described by the Black–Scholes model, compare
Sect. 4.5.1. Note that this excludes discrete dividend payments. Then the following
holds for the

Put

(1) Sf.t/ is continuously differentiable for 0 � t < T.
(2) Sf.t/ is nondecreasing.

5The parameters are not the same as those in (1.64).
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(3) A lower bound is

Sf.t/ >
�2
�2�1K ; where

�2 D 1
�2

�
�
�

r � ı � �2

2

�
�
r�

r � ı � �2

2

�2 C 2�2r
�
:

(A.21)

(4) An upper bound for t < T is given by (4.32),

Sf.t/ < Sf.T/ WD lim
t!T
t<T

Sf.t/ D min
�

K;
r

ı
K
�
D
�

K for 0 � ı � r ;
r
ı
K for r < ı :

For proofs of (1) see [234, 282]. For the smoothness of the value function V.S; t/
on the continuation region, see [282]. Monotonicity of V.S; t/ with respect to time
implies (2), as shown for instance in [234].

The monotonicity of Sf leads to conclude that a lower bound is obtained by T !
1. This limiting case is the perpetual option, compare Exercise 4.7. Specifically
for ı D 0, �2 simplifies, and the lower bound is K q

1Cq , where q WD 2r
�2

. For an
illustration of a long horizon T D 40 see Fig. A.1. Simple calculus shows that �2 is
the same as the �2 in Exercise 4.7.
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Fig. A.1 Approximation of the early-exercise curve of an American put with K D 10, T D 40,
r D 0:06, � D 0:3, ı D 0, which leads to �2 D � 4

3
and a lower bound of 4

7
K (output of a

finite-difference calculation, not smoothed)
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Here we give a proof of property (4). First note Sf � K. The range Sf < S < K is
part of the continuation region, where the Black–Scholes equation holds. Observe
that

@V.S;T/

@t
� 0

because otherwise for t close to T a contradiction to V � payoff results. How does
this sign comply with the relation between r and ı ? For t D T the value VAm

P equals
the payoff, VAm

P .S;T/ D K � S for S < K. Substitute this into the Black–Scholes
equation gives6

@V

@t
C 0 � .r � ı/S � rV D 0 ;

or

@V.S;T/

@t
D rK � ıS :

Hence, for t D T and Sf < S < K,

rK � ıS � 0

must hold.
First discuss the case ı > r, or r

ı
K < K. Then either Sf.T/ D r

ı
K (the assertion), or

there is one of the two open intervals (i) Sf.T/ < r
ı
K, (ii) r

ı
K < Sf.T/:

(i) There is S such that Sf.T/ < S < r
ı
K. Then

@V.S;T/

@t
D rK � ıS > 0 ;

which contradicts @V.S;T/
@t � 0.

(ii) There is S such that r
ı
K < S < Sf.T/. For each such S there is a small dt

such that .S;T � dt/ is in the stopping region (see Fig. 4.6). From rK < ıS and
rKdt < ıSdt conclude

K.erdt � 1/ < S.eıdt � 1/ :

That is, dividend over the period dt earns more than interest on K, and early
exercise is not optimal. This contradicts the meaning of S < Sf.T/.

6Recall the context: V means VAm
P .
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Finally we discuss the case ı � r. By the definition of Sf, Sf.T/ > K cannot happen.
Assume Sf.T/ < K. Then for Sf.T/ < S < K and t D T

dV

dt„ƒ‚…
�0

D rK � ıS„ ƒ‚ …
>0

leads to a contradiction. So Sf.T/ D K for ı � r. Both assertions are summarized to

lim
t!T
t<T

Sf.t/ D min
�

K;
r

ı
K
�
:

We conclude with listing the properties of an American
Call with ı > 0:

(1) Sf.t/ is continuously differentiable for 0 � t < T.
(2) Sf.t/ is nonincreasing.
(3) An upper bound is

Sf.t/ <
�1
�1�1K ; where

�1 D 1
�2

�
�
�

r � ı � �2

2

�
C
r�

r � ı � �2

2

�2 C 2�2r
�
:

(A.22)

(4) A lower bound for t < T is given by (4.33),

Sf.t/ > max
�

K;
r

ı
K
�
:

Derivations are analogous as in the case of the American put. We note from
properties (4) two extreme cases for t! T:

put W r! 0 ) Sf ! 0

call W ı ! 0) Sf !1 :

The second assertion is another clue that for a call early exercise will never be
optimal when no dividends are paid .ı D 0/. Likewise, an American put is identical
to the European counterpart in case r D 0.

By the way, the symmetry of the above properties is reflected by

Sf, call.tI r; ı/ Sf, put.tI ı; r/ D K2 ;

VAm
C .S;T � tIK; r; ı/ D VAm

P .K;T � tI S; ı; r/ : (A.23)

This put-call symmetry is derived in [101, 267]. Note that the put-call symmetry
is derived under the assumptions of the Black–Scholes model, whereas the put-call
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parity for European options is independent of the underlying model. For discrete
dividend payments, Sf needs not be continuous [273, 368].

A.6 Equations with Volatility Function

An extension of the Black–Scholes equation allows for variable coefficients,

@V

@t
C �.S; t/2

2
S2
@2V

@S2
C .r.S; t/� ı.S; t//S@V

@S
� r.S; t/V D 0 ; (A.24)

see, for example, [2, 10, 28]. This assumes r; ı; � to be deterministic functions.
For the special case of constant coefficients, the transformation (4.3) leads to the
(backward) heat equation (4.2), see also Exercise 1.4. For variable coefficients this
transformation can not be applied.

Variable Volatility
In many applications, r and ı can be assumed constant, and only � is taken as
function �.S; t/, for example, in local volatility problems. In such a situation, the
transformation of the independent variables

x WD log.S=K/� .r � ı/t ;
OV.x; t/ WD V.S; t/ ; O�.x; t/ WD �.S; t/ (A.25)

leads to

@ OV
@t
C 1

2
O�2
 
@2 OV
@x2
� @ OV
@x

!
� r OV D 0 :

(The reader is encouraged to show this as an exercise.) This version still has

a convection term @ OV
@x , which may be the source of dispersion. With a further

transformation, the scaling OV.x; t/$ y.x; t/ via

OV.x; t/ D K exp
� x

2
C rt

�
y.x; t/ ; (A.26)

which is an important ingredient of Exercise 1.4, we arrive at

@y

@t
C 1

2
O�2.x; t/

	
@2y

@x2
� 1
4

y



D 0 :

Consult [197] for these transformations, the lack of dispersion of related numerical
schemes, and for the higher-dimensional case. Of course, for the backward situation
of the Black–Scholes scenario, in addition the time is reversed by � WD T � t in
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order to obtain the well-posed problem

@y

@�
� 1
2
O�2.x; �/

	
@2y

@x2
� 1
4

y



D 0 : (A.27)

Dupire’s Equation
In practice, an important question is how to choose the local volatility function
�.S; t/ such that the corresponding model (A.27) yields results consistent with the
market. In particular, one attempts to match the volatility smile, which amounts to a
somewhat convex shape of the values of implied volatility over the strike K.

Recall that the value function depends on

V.S; tI K;TI r; �; ı/:

For Black and Scholes, K and T are fixed, and V.S; t/ is calculated for independent
variables S; t. Dupire [112] switches the role of these variables: He keeps S; t fixed
and calculates V.:; :I K;T/ for independent variables K;T.

Dupire’s local volatility model is built as follows: For a general diffusion
process dS D a.S; t/ dt C b.S; t/ dW, consider a European call with the integral
representation

V.S0; t0I K;T/ D e�r.T�t0/
Z 1

�1
.ST � K/C p .ST ;TI S0; t0/ dST

D e�r.T�t0/
Z 1

K
.ST � K/ p.ST ;TI S0; t0/ dST :

(A.28)

Here p.ST ;TI S0; t0/ is the probability density of a transition forward from .S0; t0/ to
.ST ;T/. A special case is (1.64)/(1.66), where fGBM characterizes the transition with
respect to GBM with a D rS; b D �S. For general a.S; t/; b.S; t/, the transition
probability p solves a partial differential equation, namely, the famous Fokker–
Planck Equation

@p

@T
� 1
2

@2

@S2T
Œb.ST ;T/

2 
 p.ST ;TI S0; t0/�C @

@ST
Œa.ST ;T/ 
 p.ST ;TI S0; t0/� D 0

(A.29)

with initial conditions for T D t0:

p.ST ;T D t0I S0; t0/ D ı.ST � S0/ D Dirac’s delta function.

To deduce an equation for V depending on K;T, the partial derivatives

@V

@T
;
@V

@K
;
@2V

@K2
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of (A.28) are calculated, which yields expressions with partial derivatives of p. The
Fokker–Planck equation (A.29) substitutes @p

@T . Specifically, for a Black–Scholes
type process with

a.S; t/ D .r � ı/S
b.S; t/ D �.S; t/S

(A.30)

(ı again the dividend rate), one arrives at

@V

@T
D 1

2
�.K;T/2K2 @

2V

@K2
� .r � ı/K @V

@K
� ıV : (A.31)

This is the Dupire PDE. Compare it with the Black–Scholes equation, and notice
the different sign of the diffusion term (the second-order derivative) of the Dupire
equation, which reflects its forward character. The .K;T/-domain for Dupire is T �
t; K > 0, and V.S; tI K;T D t/ D .S � K/C for a call is an initial condition.
Formally this is (1.3), but here K is the independent variable and S is the constant.
If a model for the local volatility function � is postulated, then European options of
all strikes K and maturities T can be calculated in a single “sweep” by solving the
forward equation (A.31). Transformations analogous to (A.25), (A.26) again lead to
(A.27), with � replaced by T.

Also the inverse problem is of interest. One can show that the numerator and
the denominator of the radicand below in (A.32) are nonnegative. Hence the Dupire
equation can be solved for �.K;T/;

�.K;T/ D
vuut2

@V
@T C .r � ı/K @V

@K C ıV
K2 @2V

@K2

: (A.32)

Upon calibrating the formula (A.32), one must regard its sensitivity to noise in the
data, in particular, for small denominators. For example, using the moving least
squares algorithm of [154], the derivatives

a1 WD @V

@T
; a2 WD @V

@K
; a3 WD @2V

@K2

can be extracted from market data, as well as a0 WD V; all depending on .S; tI K;T/.
This gives an approximation

N�.K;T/ D
p
2.a1 C .r � ı/Ka2 C ıa0/=.a3K2/

of the volatility function (A.32). After the approximation N� is calibrated based
on vanilla data, it can be used to price nonvanilla instruments. There are further
approximations for �.K;T/, consult [102, 128, 375]. A reference on the Fokker–
Planck equation is [318].



Appendix B
Stochastic Tools

B.1 Essentials of Stochastics

This appendix lists some basic instruments and notations of probability theory and
statistics. For further foundations we refer to the literature, for example, [37, 127,
131, 199, 274, 340].

Let ˝ be a sample space. In our context ˝ is mostly uncountable, for example,
˝ D R. A subset of ˝ is an event and an element ! 2 ˝ is a sample point.
The sample space˝ represents all possible scenarios. Classes of subsets of˝ must
satisfy certain requirements to be useful for probability. One assumes that such a
class F of events is a �-algebra or a �-field.1 That is, ˝ 2 F , and F is closed
under the formation of complements and countable unions. In our finance scenario,
F represents the space of events that are observable in a market. If t denotes time,
all information available until t can be regarded as a �-algebra Ft. Then it is natural
to assume a filtration—that is, Ft � Fs for t < s.

The sets in F are also called measurable sets. A measure on these sets is the
probability measure P, a real-valued function taking values in the interval Œ0; 1�,
with the three axioms

P.A/ � 0 for all events A 2 F ; P.˝/ D 1 ;

P

 1[
iD1

Ai

!
D

1X
iD1

P.Ai/ for any sequence of disjoint Ai 2 F :

The triplet .˝;F ;P/ is called a probability space. An assertion is said to hold
almost everywhere (P–a.e.) if it is wrong with probability 0.

1This notation with � is not related with volatility.
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A real-valued function X on ˝ is called random variable if the sets

fX � x g WD f! 2 ˝ j X.!/ � x g D X�1..�1; x�/

are measurable for all x 2 R. That is, fX � xg 2 F . This book does not explicitly
indicate the dependence on the sample space ˝ . We write X instead of X.!/, or Xt

or X.t/ instead of Xt.!/ when the random variable depends on a parameter t.
For x 2 R a distribution function F.x/ of X is defined by the probability P that

X � x,

F.x/ WD P.X � x/ : (B.1)

Distributions are nondecreasing, right-continuous, and satisfy the limits

lim
x!�1 F.x/ D 0 and lim

x!C1 F.x/ D 1 :

Every absolutely continuous distribution F has a derivative almost everywhere,
which is called density function. For all x 2 R a density function f has the
properties f .x/ � 0 and

F.x/ D
xZ

�1
f .t/ dt : (B.2)

To stress the dependence on X, the distribution is also written FX and the density fX .
If X has a density f then the kth moment is defined as

E.Xk/ WD
1Z

�1
xkf .x/ dx D

1Z
�1

xk dF.x/ ; (B.3)

provided the integrals exist. The most important moment of a distribution is the
expected value or mean

� WD E.X/ WD
Z 1

�1
xf .x/ dx : (B.4)

The variance is defined as the second central moment

�2 WD Var.X/ WD E..X � �/2/ D
Z 1

�1
.x � �/2f .x/ dx : (B.5)

A consequence is

�2 D E.X2/� �2 :
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The expectation depends on the underlying probability measure P, which is
sometimes emphasized by writing EP. Here and in the sequel we assume that the
integrals exist. The square root � D p

Var.X/ is the standard deviation of X. For
˛; ˇ 2 R and two random variables X, Y on the same probability space, expectation
and variance satisfy

E.˛X C ˇY/ D ˛E.X/C ˇE.Y/ ;
Var.˛X C ˇ/ D Var.˛X/ D ˛2Var.X/ : (B.6)

The covariance of two random variables X and Y is

Cov.X;Y/ WD E ..X � E.X//.Y � E.Y/// D E.XY/ � E.X/E.Y/ ;

from which

Var.X ˙ Y/ D Var.X/C Var.Y/˙ 2Cov.X;Y/ (B.7)

follows. More general, the covariance between the components of a vector X is the
matrix

Cov.X/ D EŒ.X � E.X//.X � E.X//tr� D E.XXtr/� E.X/E.X/tr ; (B.8)

where the expectation E is applied to each component. The diagonal carries the
variances of the components of X. Back to the scalar world: Two random variables
X and Y are called independent if

P.X � x;Y � y/ D P.X � x/P.Y � y/ :

Independent variables are uncorrelated. For independent random variables X and Y
the equations

E.XY/ D E.X/E.Y/ ;

Var.X C Y/ D Var.X/C Var.Y/

are valid; analogous assertions hold for more than two independent random
variables. For convex functions �, Jensen’s inequality holds:

�.E.X// � E.�.X// :

Normal Distribution (Gaussian Distribution) The density of the normal distri-
bution is

f .x/ D 1

�
p
2	

exp

	
� .x � �/

2

2�2



: (B.9)
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X � N .�; �2/means: X is normally distributed with expectation� and variance �2.
An implication is Z D X��

�
� N .0; 1/, which is the standard normal distribution,

or X D �Z C � � N .�; �2/: The values of the corresponding distribution
function F.x/ can be approximated by analytic expressions (�! Appendix E.2)
or numerically (�! Exercise 1.5). For multidimensional Gaussian, see Sect. 2.3.4.

Uniform distribution over an interval a � x � b: The density is

f .x/ D 1

b � a
for a � x � b I f D 0 elsewhere. (B.10)

This uniform distribution has expected value 1
2
.aC b/ and variance 1

12
.b � a/2. If

the uniform distribution is considered over a higher-dimensional domainD, then the
value of the density is is the inverse of the volume of D,

f D 1

vol.D/ 
 1D :

For example, on a unit disc we have the value f D 1=	 .

Estimates of mean and variance of a normally distributed random variable X from
a sample of M realizations x1; : : : ; xM are given by

O� W D 1

M

MX
kD1

xk ;

Os2 W D 1

M � 1
MX

kD1
.xk � O�/2 :

(B.11)

These expressions of the sample mean O� and the sample variancebs2 satisfy E. O�/ D
� and E.Os2/ D �2. That is, O� and Os2 are unbiased estimates. For the computation
see Exercise 1.6, or [306]. The covariance (B.8) is calculated analogously.

Central Limit Theorem Suppose X1;X2; : : : are independent and identically dis-
tributed (i.i.d.) random variables, and � WD E.Xi/, Sn WDPn

iD1 Xi, �2 D E.Xi��/2.
Then for each a

lim
n!1P

	
Sn � n�

�
p

n
� a



D 1p

2	

Z a

�1
e�z2=2 dz .D F.a// : (B.12)

As a consequence, the probability that O� hits—for large enough n—the interval

� � a
�p

n
� O� � �C a

�p
n

is F.a/�F.�a/ D 2F.a/� 1. For example, a D 1:96 leads to a probability of 0:95.
That is, the 95% confidence interval has a (half) width of about 2�=

p
n.
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The weak law of large numbers states that for all � > 0

lim
n!1P

	ˇ̌ˇ̌Sn

n
� �

ˇ̌
ˇ̌ > �



D 0 ;

and the strong law says P. lim
n!1

Sn
n D �/ D 1.

For a discrete probability space the sample space˝ is countable. The expectation
and the variance of a discrete random variable X with realizations xi are given by

� D E.X/ DP!2˝ X.!/P.!/ DPi xi P.X D xi/ ;

�2 DPi.xi � �/2 P.X D xi/ :
(B.13)

Occasionally, the underlying probability measure P is mentioned in the notation.
For example, a Bernoulli experiment2 with ˝ D f!1; !2g and P.!1/ D p has
expectation

EP.X/ D pX.!1/C .1� p/X.!2/ :

The probability that for n Bernoulli trials the event !1 occurs exactly k times, is

P.X D k/ D bn;p.k/ WD
 

n

k

!
pk.1 � p/n�k for 0 � k � n : (B.14)

The binomial coefficient defined as

	
n
k



D nŠ

.n � k/Š kŠ

states in how many ways k elements can be chosen out of a population of size n.

For the binomial distribution bn;p.k/ the mean is � D np, and the variance �2 D
np.1� p/. The probability that event !1 occurs at least M times is

P.X � M/ D Bn;p.M/ WD
nX

kDM

	
n
k



pk.1 � p/n�k : (B.15)

This follows from the axioms of the probability measure.

2Repeated independent trials, where only two possible outcomes are possible for each trial, such
as tossing a coin.



412 B Stochastic Tools

For the Poisson distribution the probability that an event occurs exactly k times
within a specified (time) interval is given by

P.X D k/ D ak

kŠ
e�a for k D 0; 1; 2; : : : (B.16)

and a constant a > 0. Its mean and variance are both a.

Convergence in the Mean A sequence Xn is said to converge in the (square) mean
to X, if E.X2n/ <1, E.X2/ <1 and if

lim
n!1E..X � Xn/

2/ D 0 :

A notation for convergence in the mean is

l.i.m.n!1Xn D X :

B.2 More Advanced Topics

General Itô Formula
Let dXt D a.:/dt C b.:/dWt, where Xt is n-dimensional, a.:/ too, and b.:/ .n �
m/matrix and Wt m-dimensional, with uncorrelated components, see (1.58). Let g
be twice continuously differentiable, defined for .X; t/with values in R. Then g.X; t/
is an Itô process with

dg D
�
@g

@t
C gtr

x aC 1

2
trace .btrgxxb/

�
dtC gtr

x b dWt : (B.17)

gx is the gradient vector of the first-order partial derivatives with respect to x, and
gxx is the matrix of the second-order derivatives, all evaluated at .X; t/. The matrix
btrgxxb is m � m. (Recall that the trace of a matrix is the sum of the diagonal
elements.)

Equation (B.17) is derived via Taylor expansion. The linear terms gtr
x dX are

straightforward. The quadratic terms are

1

2
dXtrgxx dX ;

from which the order dt terms remain

1

2
.b dW/trgxxb dW D 1

2
dWtrbtrgxxb dW DW 1

2
dWtrA dW :
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These remaining terms are

1

2
trace .A/ dt :

A matrix manipulation shows that the elements of btrgxxb are

nX
iD1

nX
jD1

gxixjbilbjk for l; k D 1; : : : ;m :

This is different from bbtrgxx, but the traces are equal:

trace .btrgxxb/ D trace .bbtrgxx/ D
X

i;j

@2g

@xi@xj

mX
kD1

bikbjk

„ ƒ‚ …
DWcij

:

Consult also [291].

Exercise Let X be vector and Y scalar, where dX D a1 dt C b1 dW, dY D a2 dt C
b2 dW, and consider g.X;Y/ WD XY. Show

d.XY/ D Y dX C X dY C dX dY

D .Xa2 C Ya1 C b1b2/ dtC .Xb2 C Yb1/ dW :
(B.18)

Application

dS D rS dtC �S d OW ) d.e�rtS/ D e�rt�S d OW (B.19)

for any Wiener process OW.

Filtration of a Stochastic Process
The filtration of a Brownian motion is defined as

FW
t WD �fWs j 0 � s � tg : (B.20)

Here �f:g denotes the smallest �-algebra containing the sets put in braces. FW
t is

a model of the information available at time t, since it includes every event based
on the history of Ws, 0 � s � t. The null sets N are included in the sense Ft WD
�.FW

t [ N / (“augmented”). In the same way, the natural filtration of a general
stochastic process X is built.

Conditional Expectation
We recall conditional expectation because it is needed for martingales. Let G be a
sub �-algebra of F . E.X j G/ is defined to be the (unique) G-measurable random
variable Y with the property

E.XZ/ D E.YZ/
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for all G-measurable Z (such that E.XZ/ <1). This is the conditional expectation
of X given G. Or, following [108], an equivalent definition is via

Z
A
E.Y j G/ dP D

Z
A

Y dP for all A 2 G :

In case E.X j Y/, set G D �.Y/. For properties of conditional expectation consult,
for example, [274, 340].

Martingales
Assume the standard scenario .˝;F ;Ft;P/ with a filtration Ft � F .

Definition Ft-Martingale Mt with respect to P is a process, which is “adapted”
(that is, Ft-measurable), E.jMtj/ <1, and

E.Mt j Fs/ D Ms .P-a.s./ for all t; s with s � t : (B.21)

The martingale property means that at time instant s with given information set Fs

all variations of Mt for t > s are unpredictable; Ms is the best forecast. The SDE of
a martingale has no drift term.

Examples

• any Wiener process Wt ,
• W2

t � t for any Wiener process Wt ,
• exp.�Wt � 1

2
�2t/ for any � 2 R and any Wiener process Wt ,

• Jt � �t for any Poisson process Jt with intensity �.

For martingales, consult for instance [108, 283, 291, 307, 339, 340]. For an adapted
process 
 define a process Z
t by

Z
t WD exp

	
�1
2

Z t

0


2s ds�
Z t

0


s dWs



: (B.22)

Since Z0 D 1, the integral equation

log Zt D log Z0 � 1
2

tZ
0


2s ds �
tZ

0


s dWs

follows, which is the SDE

d.log Zt/ D .0 � 1
2

2t / dt � 
t dWt :

This is the Itô SDE for log Zt when Z solves the drift-free dZt D �Zt
t dWt, Z0 D 1.
In summary, Zt is the unique Itô process such that dZt D �Zt
t dWt, Z0 D 1. Let Z


be a martingale. From the martingale properties, E.Z
T / D E.Z
0 / D 1. Hence the
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Radon-Nikodym framework assures that an equivalent probability measure Q.
/
can be defined by

dQ.
/
dP

D Z
T or Q.A/ WD
Z

A
Z
T dP : (B.23)

Girsanov’s Theorem Suppose a process 
 is such that Z
 is a martingale. Then

W

t WD Wt C

Z t

0


s ds (B.24)

is a Wiener process and martingale under Q.
/.

B.3 State-Price Process

Normalizing
A fundamental result of Harrison and Pliska [170] states that the existence of
a martingale implies an arbitrage-free market. This motivates searching for a
martingale. Since martingales have no drift term, we attempt to construct SDEs
without drift.

Let Xt be a vector of asset prices, and bt the corresponding vector of a trading
strategy. Then the scalar product btr

t Xt represents the wealth of the portfolio. The
trading strategy is self-financing when d.btrX/ D btrdX.

Definition A scalar positive Itô process Yt with the property that the product YtXt

has zero drift is called state-price process or pricing kernel or deflator for Xt.
The importance of state-price processes is highlighted by the following theorem.

Theorem Assume that for Xt a state-price process Yt exists, b is self-financing, and
YbtrX is bounded below. Then

(a) YbtrX is a martingale, and
(b) the market does not admit self-financing arbitrage strategies.

Sketch of Proof (see [290], p.148)

(a) Y is a state-price process, hence there exists � such that d.YtXt/ D � dWt (zero
drift). By Itô’s lemma,

d.YbtrX/ D Y d.btrX/C dYbtrX C dY d.btrX/ :
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Equation (B.18) and the self-financing property imply

d.YbtrX/ D Ybtr dX C dYbtrX C dYbtr dX

D btrŒY dX C dYX C dY dX�

D btr d.XY/ D btr� dW DW O� dW ;

hence zero drift of YbtrX.
It remains to show that YbtrX is a martingale.
Because of the boundedness, QZ WD YbtrX � c is a positive scalar Itô process for
some c, with zero drift. For every such process there is a Q
 such that QZ has the
form

QZt D QZ0Z Q

t :

Hence YbtrX D QZ C c has the same properties as Z Q
 , namely, it is a
supermartingale. The final step is to show E.Zt/ Dconstant. Now Q is defined
via (B.23). (The last arguments are from martingale theory.)

(b) Assume arbitrage in the sense

btr
0X0 D 0 ; P.btr

t Xt � 0/ D 1 ;
P.btr

t Xt > 0/ > 0 for some fixed t :

For that t:

btrX > 0 ) YbtrX > 0 :

Now EQ.YbtrX/ > 0 is intuitive. This amounts to

EQ.YbtrX j F0/ > 0 :

Because YbtrX is a martingale, Y0btr
0X0 > 0 follows. This contradicts btr

0X0 D 0,
so the market is free of arbitrage.

Existence of a State-Price Process
In order to discuss the existence of a state-price process we investigate the drift term
of the product YtXt. To this end take X as satisfying the vector SDE

dX D �X dtC �X dW :

The coefficient functions �X and �X may vary with X. If no confusion arises, we
drop the superscript X. Recall (�! Exercise 1.24) that each scalar positive Itô
process must satisfy

dY D Y˛ dtC Yˇ dW



B.3 State-Price Process 417

for some ˛ and ˇ, where ˇ and W can be vectors (ˇ a one-row matrix). Without
loss of generality, take the SDE for Y in the form

dY D �rY dt � Y
 dW : (B.25)

(We leave the choice of the one-row matrix 
 still open.) Itô’s lemma (B.17) allows
to calculate the drift of YX. By (B.18) the result is the vector

Y.� � rX � �
 tr/ :

Hence Y is a state-price process for X if and only if

�X � rX D �X
 tr (B.26)

holds. This is a system of n equations for the m components of 
 .

Special Case Geometric Brownian Motion For scalar X D S and W, �X D �S,
�X D �S, (B.26) reduces to

� � r D �
 :

Given �; � ¤ 0; r, the Eq. (B.26) determines 
 . (As explained in Sect. 1.7.3, 
 is
called the market price of risk.)
Discussion whether (B.26) admits a (unique) solution:

Case I: unique solution 
 , and hence a unique state-price process.
Case II: multiple solutions: no arbitrage, but there are contingent claims that
cannot be hedged.
Case III: no solution: The market admits arbitrage.

A market is said to be complete, if there is a unique martingale measure (Case I).
This is equivalent to the statement that any contingent claim can be replicated with a
self-financing portfolio of traded assets. Otherwise the market is called incomplete.
As seen in Appendix A.4, the Black–Scholes market is complete, its price is unique.
Models with jump processes are incomplete.

A solution of (B.26) for full rank of the matrix � is given by


� WD .� � rX/tr.�� tr/�1� ;

which satisfies minimal length 
�
�tr � 

 tr for any other solution 
 of (B.26), see
[290]. Note that (B.26) provides zero drift of YX but is not sufficient for YX to be
a martingale. But it is “almost” a martingale; a small additional condition suffices.
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Those trading strategies b are said to be admissible if YbtrX is a martingale.3 There
is ample literature on these topics; we just name [31, 84, 110, 282, 290, 314].

Application: Derivative Pricing Formula for European Options
Let Xt be a vector price process, and b a self-financing trading strategy such that
a European claim C is replicated. That is, for Vt D btr

t Xt the payoff is reached:
VT D btr

TXT D C. (Compare Appendix A.4 for this argument.) We conclude from
the above Theorem and from (B.21)

Ytb
tr
t Xt D EQ.YTbtr

TXT j Ft/ ;

or

Vt D 1

Yt
EQ.YTC j Ft/ :

Specifically for the Black–Scholes model with C D �.ST/, the relation EQ.YTC j
F0/ D EQ.YTC/ holds, see [237, p. 69], or [193, p. 136]. Hence the value of
European options is

V0 D 1

Y0
EQ.YTC/ :

This result is basic for Monte Carlo simulation, compare Sect. 3.5.1. Yt represents a
discounting process, for example, e�rt. (Other discounting processes are possible, as
long as they are tradable. They are called numeraires.) For a variable interest rate rs,

Vt D EQ.exp.�
Z T

t
rs ds/C j Ft/ :

In the special case r and 
 constant, Zt D exp.� 1
2

2t � 
Wt/ and

V.t/

ert
D EQ

	
C

erT
j Ft



;

from which

V.t/ D e�r.T�t/EQ.C j Ft/

follows.

3Sufficient is that YbtrX be bounded below, such that it can not become arbitrarily negative. This
rules out the “doubling strategy.” For our purpose, we may consider the criterion as technical.
Glasserman [155] on p. 551: “It is common in applied work to assume that” a solution to an SDE
with no drift term is a martingale.



Appendix C
Numerical Methods

C.1 Basic Numerical Tools

This appendix briefly describes numerical methods used in this text. For additional
information and detailed discussion we refer to the literature, for example to [157,
168, 306, 308, 334, 347].

Condition
Suppose a function f .x/ is to be evaluated. When a small change �x in x produces
a large change �f in f , we call the evaluation of f an ill-conditioned problem. This
characterization expressing low opinion is justified in case the changes represent
errors. Taylor expansion

f .xC�x/ D f .x/C f 0.x/�xC 1

2Š
f 00.x/�x2 C O.�x3/

leads to

�f D df .x/

dx
�xC O.�x2/ :

Hence the derivative df .x/
dx is the amplification factor of �x, also called the absolute

condition number. Accuracy in the sense of correct digits is measured by the relative
errors

�x WD �x

x
; �f WD �f

f
:
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From the above we obtain the amplification factor in the relative changes, with

�f 	 df .x/

dx

x

f
�x :

In terms of error analysis, small condition numbers are desirable. But there are
applications where a large value is welcome.

Example C.1 (Leverage) Let V.S/ denote the price of an option with underlying
S. The number

l WD @V

@S

S

V
; with �V 	 l 
 �S

measures how much a rise of �S percent in S is amplified to a rise of �V percent in
V . (Here a large value of the factor l will not be judged as “ill.”) In our context, this
relative condition number l is called leverage. Notice that “Delta” D @V

@S is a factor
in the leverage.

Interpolation
Suppose n C 1 pairs of numbers .xi; yi/; i D 0; 1; : : : ; n are given, xi ordered by
magnitude, with xi 6D xj for i 6D j. These points in the .x; y/-plane are to be connected
by a curve. An interpolating function ˚.x/ satisfies

˚.xi/ D yi for i D 0; 1; : : : ; n :

Depending on the choice of the class of functions ˚ we distinguish different types
of interpolation. A prominent example is furnished by polynomials,

˚.x/ D Pn.x/ D a0 C a1xC : : :C anxn I

the degree n matches the number nC 1 of points. The evaluation of a polynomial is
done by the nested multiplication given by

Pn.x/ D .: : : ..anxC an�1/xC an�2/xC : : :C a1/xC a0 ;

which is also called Horner’s method. An approach of polynomial interpolation is
based on the Lagrange polynomials

Lk.x/ WD
nY

iD0
i¤k

x � xi

xk � xi
;

for k D 0; : : : ; n. By construction, the Lk.x/ are of degree n, and Lk.xk/ D 1,
Lk.xi/ D 0 for i ¤ k. Clearly, the polynomial

P.x/ WD L0.x/y0 C : : :C Ln.x/yn
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interpolates P.xi/ D yi for i D 0; : : : ; n. To calculate P.x/ for a given x, use Neville’s
algorithm.

In case many points are given, the interpolation with one polynomial is generally
not advisable since the high degree goes along with strong oscillations. A piecewise
approach is preferred where low-degree polynomials are defined locally on one or
more subintervals xi � x � xiC1 such that globally certain smoothness requirements
are met. The simplest example is obtained when the points .xi; yi/ are joined by
straight-line segments in the order x0 < x1 < : : : < xn. The resulting polygon
is globally continuous and linear over each subinterval. For the error of polygon
approximation of a function we refer to Lemma 5.13. A C2-smooth interpolation is
given by the cubic spline using locally defined third-degree polynomials

Si.x/ WD ai C bi.x � xi/C ci.x � xi/
2 C di.x � xi/

3 for xi � x < xiC1

that interpolate the points and are C2-smooth at the nodes xi.
Interpolation is applied for graphical illustration, numerical integration, and

for solving differential equations. Generally interpolation is used to approximate
functions.

Rational Approximation
Rational approximation is based on

˚.x/ D a0 C a1xC : : :C anxn

b0 C b1xC : : :C bmxm
: (C.1)

Rational functions are advantageous in that they can approximate functions with
poles. If the function that is to be approximated has a pole at x D �, then � must be
zero of the denominator of ˚ .

Quadrature
Approximating the definite integral

Z b

a
f .x/ dx

is a classic problem of numerical analysis. Simple approaches replace the integral by

Z b

a
Pm.x/ dx ;

where the polynomial Pm approximates the function f . The resulting formulas are
called quadrature formulas. For example, an equidistant partition of the interval
Œa; b� into m subintervals defines nodes xi and support points .xi; f .xi//, i D 0; : : : ;m
for interpolation. After integrating the resulting polynomial Pm.x/, the Newton-
Cotes formulas result. The simplest case m D 1 defines the trapezoidal rule. We
note in passing that the trapezoidal rule is also applied to differential equations
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Py D f .t; y/. Derived from their equivalent integral equation, the discretized step

y.tC h/ D y.t/C h

2
Œ f .t; y.t//C f .tC h; y.tC h//�

results.
For quadrature, a partition of the interval can be used favorably. Applying the

trapezoidal rule in each of n subintervals of length

h WD b � a

n

leads to the composite formula of the composite trapezoidal sum

T.h/ WD h

�
f .a/

2
C f .aC h/C : : :C f .b � h/C f .b/

2

�
: (C.2)

The error of T.h/ satisfies a quadratic expansion

T.h/ D
Z b

a
f .x/ dxC c1h

2 C c2h
4 C : : : ;

with a number of terms depending on the differentiability of f , and with constants
c1; c2; : : : independent of h. This asymptotic expansion is fundamental for the high
accuracy that can be achieved by extrapolation. Extrapolation evaluates T.h/ for
a few h, for example, obtained by h0, h1 D h0

2
, hi D hi�1

2
. Based on the values

Ti WD T.hi/, an interpolating polynomial QT.h2/ is calculated with eT.0/ serving as
approximation to the exact value T.0/ of the integral.

For f 2 C2Œa; b�, the error behavior reflected by the above expansion can be
simplified to

ˇ̌
ˇ̌̌
ˇT.h/ �

bZ
a

f .x/ dx

ˇ̌
ˇ̌̌
ˇ � c h2 ;

with a constant c, which depends on f 00. That is, written with the Landau symbol O:

The error is of the order O.h2/ :

Zeros of Functions
The aim is to calculate a zero x� of a function f .x/. An approximation is constructed
in an iterative manner. Starting from some suitable initial guess x0 a sequence
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x1; x2; : : : is calculated such that the sequence converges to x�. The approach is
represented by Newton’s method, which calculates the iterates by

xkC1 D xk � f .xk/

f 0.xk/

for k D 0; 1; 2; : : : In the vector case a system of linear equations needs to be solved
in each step,

Df .xk/.xkC1 � xk/ D �f .xk/ ; (C.3)

where Df denotes the Jacobian matrix of all first-order partial derivatives.

Example C.2 (Yield toMaturity) Suppose a 3-year bond with a principal of $100
that pays a 6% coupon annually. Further assume zero rates of 5.8% for the first year,
6.3% for a 2-year investment, and 6.4% for the 3-year maturity. Then the present
value (sum of all discounted future cashflows) is

6 e�0:058 C 6 e�0:063�2 C 106 e�0:064�3 D 98:434

The yield to maturity (YTM) is the percentage rate of return y of the bond, when
it is bought for the present value and is held to maturity. The YTM for the above
example is the zero y of the cubic equation

0 D 98:434� 6 e�y � 6 e�2y � 106 e�3y

which is 0.06384, or 6.384%, obtained with one iteration of Newton’s method (C.3),
when started with 0.06 .

Convergence
There are modifications and alternatives to Newton’s method. Different methods are
distinguished by their convergence speed. Note that convergence is not guaranteed
for any arbitrary choice of x0. In the scalar case, bisection is a safe but slowly
converging method. Newton’s method for sufficiently regular problems shows fast
convergence locally. That is, the error decays quadratically in a neighborhood of x�,

kxkC1 � x�k � Ckxk � x�kp for p D 2

for some constant C. This holds for an arbitrary vector norm kxk such as

kxk2 WD
	P

i
x2i


1=2
(Euclidian norm)

kxk1 WD max
i
jxij (maximum norm);

(C.4)

i D 1; : : : ; n for x 2 Rn.
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The derivative f 0.xk/ can be approximated by difference quotients. If the differ-
ence quotient is based on f .xk/ and f .xk�1/, in the scalar case, the secant method

xkC1 D xk � xk � xk�1
f .xk/ � f .xk�1/

f .xk/ (C.5)

results. It requires two initial guesses x0 and x1 to start the iteration. The secant
method is generally faster than Newton’s method if the speed is measured with
respect to costs in evaluating f .x/ or f 0.x/.

Gerschgorin’s Theorem
A criterion for localizing the eigenvalues of a matrix A with elements aij; i; j D
1; : : : ; n is given by Gerschgorin’s theorem: Each eigenvalue lies in the union of the
discs

Dj WD f z complex and jz� ajjj �
nX

kD1
k¤j

jajkj g

. j D 1; : : : ; n/. The centers of the discs Dj are the diagonal elements of A, and the
radii are given by the off-diagonal row sums (absolute values).

Triangular Decomposition
Let L denote a lower-triangular matrix (where the elements lij satisfy lij D 0 for
i < j) and R an upper-triangular matrix (with elements rij D 0 for i > j), and the
diagonal elements of L satisfy l11 D : : : D lnn D 1. Matrices A; L; R are supposed
to be of size n � n and vectors x; b; : : : have n components. Frequently, numerical
methods must solve systems of linear equations

Ax D b :

A well-known direct method to solve this system is Gaussian elimination. First, in
a “forward”-phase, an equivalent system

Rx Dbb
is calculated. Then, in a “backward”-phase starting with the last component xn, all
components of x are calculated one by one in the order xn; xn�1; : : : ; x1. Gaussian
elimination requires 2

3
n3CO.n2/ arithmetic operations for full matrices A. With this

count of O.n3/, Gaussian elimination must be considered as an expensive endeavor,
and is prohibitive for large values of n. (For alternatives, see iterative methods below
in Appendix C.2.) The forward phase of Gaussian elimination is equivalent to an LR-
decomposition. This means the factorization of the matrix A into the product of two
triangular matrices L;R in the form

PA D LR :
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Here P is a permutation matrix arranging for an exchange of rows that corresponds
to the pivoting of the Gaussian algorithm. The LR-decomposition exists for all
nonsingular A. After the LR-decomposition is calculated, only two equations with
triangular matrices need to be solved,

Ly D Pb and Rx D y :

Tridiagonal Matrices
For tridiagonal matrices the LR-decomposition specializes to an algorithm that
requires only O.n/ operations, which is inexpensive. Since several of the matrices
in this book are tridiagonal, we include the algorithm. Let the tridiagonal system
Ax D b be in the form

0
BBBBB@

˛1 ˇ1 0


2 ˛2 ˇ2
: : :

: : :
: : :


n�1 ˛n�1 ˇn�1
0 
n ˛n

1
CCCCCA

0
BBBBB@

x1
x2
:::

xn�1
xn

1
CCCCCA
D

0
BBBBB@

b1
b2
:::

bn�1
bn

1
CCCCCA
: (C.6)

Starting the Gaussian elimination with the first row to produce zeros in the
subdiagonal during a forward loop, the algorithm is as follows:

Algorithm C.3 (Equation with Tridiagonal System)

Ǫ1 WD ˛1; Ob1 WD b1
(forward loop) for i D 2; : : : ; n:

Ǫ i D ˛i � ˇi�1

i

Ǫ i�1 ;
Obi D bi � Obi�1


i

Ǫ i�1
xn WD

Obn

Ǫn
(backward loop) for i D n � 1; : : : ; 1:

xi D 1

Ǫ i .
Obi � ˇixiC1/

Here the “new” elements of the equivalent triangular system are indicated with
a “hat;” the necessary checks for nonsingularity ( Ǫ i�1 ¤ 0) are omitted. The
Algorithm C.3 needs about 8n operations. If one would start Gaussian elimination
from the last row and produces zeros in the superdiagonal, an RL-decomposition
results. The reader may wish to formulate the related backward/forward algorithm
as an exercise.

Cholesky Decomposition
A real matrix A is called symmetric if Atr D A, and is called positive definite, if
xtrAx > 0 for all x ¤ 0. For symmetric positive definite matrices there is exactly one
lower-triangular matrix L with positive diagonal elements such that

A D LLtr :
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Here the diagonal elements of L are not normalized. For a computer program of
Cholesky decomposition see [306].

Power Method
Assume an .n � n/-matrix A with eigenvalues �j satisfying

j�1j > j�2j � 
 
 
 � j�nj:

Then �1 is called dominant eigenvalue. Its eigenvector v (i.e., Av D �1v and v ¤ 0/
can be approximated iteratively by the power method: Start from any initial vector
x.0/ ¤ 0 and iterate for k D 0; 1; 2; : : :

x.kC1/ WD z

kzk ; where z WD Ax.k/

for any vector norm k k. The vectors x.k/ converge towards v for k ! 1, and the
quotients x.kC1/

j =x.k/j for any index j such that x.k/j ¤ 0 converge to �1. A general
method for calculating all eigenvalues of a matrix is the QR-algorithm.

Fast Fourier Transform
A powerful tool is the Fast Fourier Transform (FFT). It transforms two strings of
complex numbers onto each other,

g0; : : : ; gn�1  ! c0; : : : ; cn�1 :

Typically n is large. FFT is based on the equivalence

c� D 1

n

n�1X
jD0

gje
�i�j 2	n ” gj D

n�1X
�D0

c�e
i�j 2	n (C.7)

for �; j D 0; 1; : : : ; n � 1, and the imaginary unit i. The FFT algorithm succeeds in
O.n log n/ operations, see [306].

C.2 Iterative Methods for Ax D b

The system of linear equations Ax D b in Rn can be written

Mx D .M � A/xC b ;

where M is a suitable matrix. For nonsingular M the system Ax D b is equivalent to
the fixed-point equation

x D .I �M�1A/xCM�1b ;
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which leads to the iteration

x.kC1/ D .I �M�1A„ ƒ‚ …
DWB

/x.k/ CM�1b : (C.8)

The computation of x.kC1/ is done by solving the system of equations Mx.kC1/ D
.M � A/x.k/ C b. Subtracting the fixed-point equation and applying Lemma 4.2
shows

convergence ” �.B/ < 1 I

�.B/ is the spectral radius of matrix B. For this convergence criterion there is a
sufficient criterion that is easy to check. Natural matrix norms satisfy kBk � �.B/.
Hence kBk < 1 implies convergence. Let bij denote the elements of B. Application
to the matrix norms

kBk1 D max
i

nX
jD1
jbijj ;

kBk1 D max
j

nX
iD1
jbijj ;

produces sufficient convergence criteria: The iteration converges if

nX
jD1
jbijj < 1 for 1 � i � n

or if

nX
iD1
jbijj < 1 for 1 � j � n :

By obvious reasons these criteria are called row sum criterion and column sum
criterion. A preconditioner matrix M is constructed such that rapid convergence of
(C.8) is achieved. Further, the structure of M must be simple so that the linear system
is easily solved for x.kC1/.

Simple examples are obtained by additive splitting of A into the form A D D �
L �U, with

D diagonal matrix,
L strict lower-triangular matrix,
U strict upper-triangular matrix.
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Jacobi’s Method
Choosing M WD D implies M � A D LC U and establishes the iteration

Dx.kC1/ D .LC U/x.k/ C b :

By the above convergence criteria a strict diagonal dominance of A is sufficient for
the convergence of Jacobi’s method.

Gauss–Seidel Method
Here the choice is M WD D � L. This leads via M � A D U to the iteration

.D � L/x.kC1/ D Ux.k/ C b :

SOR (Successive Overrelaxation)
The SOR method can be seen as a modification of the Gauss–Seidel method, where
a relaxation parameter !R is introduced and chosen in a way that speeds up the
convergence:

M WD 1

!R
D � L H) M � A D

	
1

!R
� 1



DC U

	
1

!R
D � L



x.kC1/ D

		
1

!R
� 1



DC U



x.k/ C b

The SOR-method can be written as follows:

BR W D
	
1

!R
D � L


�1 		
1

!R
� 1



DC U




x.kC1/ D BRx.k/ C
	
1

!R
D � L


�1
b

The Gauss–Seidel method is obtained as special case for !R D 1.

Choosing !R

The difference vectors d.kC1/ WD x.kC1/ � x.k/ satisfy

d.kC1/ D BRd.k/ : (C.9)

This is the power method for eigenvalue problems. Hence the d.k/ converge to the
eigenvector of the dominant eigenvalue �.BR/. Consequently, if (C.9) converges
then

d.kC1/ D BRd.k/ 	 �.BR/d
.k/ ;
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and j�.BR/j 	 kd.kC1/k
kd.k/k for arbitrary vector norms. There is a class of matrices A with

�.BGS/ D .�.BJ//
2 ; BJ WD D�1.LC U/

!opt D 2

1Cp1 � �.BJ/2
;

see [347, 367]. Here BJ denotes the iteration matrix of the Jacobi method and BGS

that of the Gauss–Seidel method. For matrices A of that kind a few iterations with
!R D 1 suffice to estimate the value �.BGS/, which in turn gives an approximation
to !opt. With our experience with Cryer’s projected SOR applied to the valuation of
options (Sect. 4.6.3) the simple strategy !R D 1 is frequently recommendable.

This appendix has merely introduced classic iterative solvers, which are station-
ary in the sense that the preconditioner matrix M does not vary with k. For an
overview on advanced nonstationary iterative methods see [29, 326].

C.3 Function Spaces

Let real-valued functions u; v;w be defined on D � Rn. We assume that D is a
domain. That is, D is open, bounded and connected. The space of continuous func-
tions is denoted C0.D/ or C.D/. The functions in Ck.D/ are k times continuously
differentiable: All partial derivatives up to order k exist and are continuous on D.
The sets Ck.D/ are examples of function spaces. Functions in Ck. ND/ have in addition
bounded and uniformly continuous derivatives and consequently can be extended
to ND.

Apart from being distinguished by differentiability, functions are also character-
ized by their integrability. The proper type of integral is the Lebesgue integral. The
space of square-integrable functions is

L2.D/ WD
�
v j

Z
D
v2 dx <1

�
: (C.10)

For example, v.x/ D x�1=4 2 L2.0; 1/ but v.x/ D x�1=2 … L2.0; 1/. More general,
for p > 0 the Lp-spaces are defined by

Lp.D/ WD
�
v j
Z
D
jv.x/jp dx <1

�
:

For p � 1 these spaces have several important properties [3]. For example,

kvkp WD
	Z

D
jv.x/jp dx


1=p

(C.11)

is a norm.
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In order to establish the existence of integrals such as

Z b

a
uv dx;

Z b

a
u0v0 dx

we might be tempted to use a simple approach, defining a function space

H1.a; b/ WD ˚ u 2 L2.a; b/ j u0 2 L2.a; b/ � ; (C.12)

with D D .a; b/. But a classic derivative u0 may not exist for u 2 L2 or needs not be
square integrable. What is needed is a weaker notion of derivative.

Weak Derivatives
In Ck-spaces classic derivatives are defined in the usual way. For L2-spaces weak
derivatives are defined. For motivation let us review standard integration by parts

Z b

a
uv0 dx D �

Z b

a
u0v dx ; (C.13)

which is correct for all u; v 2 C1.a; b/ with v.a/ D v.b/ D 0. For u … C1
the Eq. (C.13) can be used to define a weak derivative u0 provided smoothness is
transferred to v. For this purpose define

C1
0 .D/ WD f v 2 C1.D/ j supp.v/ is a compact subset of D g :

v 2 C1
0 .D/ implies v D 0 at the boundary of D. For D � Rn one uses the multi-

index notation

˛ WD .˛1; : : : ; ˛n/; ˛i 2 IN [ f0g
with

j˛j WD
nX

iD1
˛i :

Then the partial derivative of order j˛j is defined as

D˛v WD @j˛j

@x˛11 : : : @x˛n
n
v.x1; : : : ; xn/ :

If a w 2 L2 exists with
Z
D

uD˛v dx D .�1/j˛j
Z
D

wv dx for all v 2 C1
0 .D/ ;

the weak derivative of u with multi-index ˛ is defined by D˛u WD w.
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Sobolev Spaces
The definition (C.12) is meaningful if u0 is considered as weak derivative in the
above sense. More general, one defines the Sobolev spaces

Hk.D/ WD ˚ v 2 L2.D/ j D˛v 2 L2.D/ for j˛j � k
�
: (C.14)

The index 0 specifies the subspace of H1 that consists of those functions that vanish
at the boundary of D. For example,

H1
0.a; b/ WD

˚
v 2 H1.a; b/ j v.a/ D v.b/ D 0 � :

The Sobolev spaces Hk are equipped with the norm

kvkk WD
0
@X

j˛j�k

Z
D
jD˛vj2 dx

1
A
1=2

; (C.15)

which is the sum of L2-norms of (C.11). For the special case discussed in Chap. 5
with k D 1, n D 1, D D .a; b/, the norm is

kvk1 WD
	Z b

a
.v2 C .v0/2/ dx


1=2
:

Embedding theorems state which function spaces are subsets of other function
spaces. In this way, elements of Sobolev spaces can be characterized and distin-
guished with respect to smoothness and integrability. For instance, the space H1

includes those functions that are globally continuous on all of D and its boundary
and are piecewise C1-functions.

Hilbert Spaces
The function spaces L2 andHk have numerous properties. Here we just mention that
both spaces are Hilbert spaces. Hilbert spaces have an inner product . ; / such that
the space is complete with respect to the norm kvk WD p.v; v/. In complete spaces
every Cauchy sequence converges. In Hilbert spaces the Schwarzian inequality

j.u; v/j � kuk kvk (C.16)

holds. Examples of Hilbert spaces and their inner products are

L2.D/ with .u; v/0 WD
Z
D

u.x/v.x/ dx ;

Hk.D/ with .u; v/k WD
X
j˛j�k

.D˛u;D˛v/0 :

For further discussion of function spaces we refer, for instance, to [3, 162, 215, 377].
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C.4 Minimization

Minimization methods are developed for a wide range of applications, including
optimization under constraints or optimal control problems. Here we confine
ourselves to a few introductory remarks on unconstrained minimization, setting
the stage to solve a calibration problem. For general literature on minimiza-
tion/optimization and parameter estimation refer, for example, to [306]. For the
special application, curve fitting by least squares, see below.

In what follows, x is a vector in Rn, and x� a specific vector that minimizes a
scalar function g locally,

g.x�/ � g.x/ for all x in a neighborhood of x� :

A more ambitious task is to find a global minimum on the entire x-space. The vector
x may represent n parameters of a model (c in Sect. 1.10), and g may stand for
the least-squares function used for calibration, see (1.77). Since the methods of
this appendix neglect possible constraints such as x � 0, we need to check x� for
feasibility after its calculation. For simplicity assume that at least one minimum
exists.

A standard assumption of minimization methods is smoothness of g. Then,
locally, the directional derivative in any direction x � x� is nonnegative,

.grad g.x�//tr.x � x�/ � 0 :

In order to set up an iterative process to approach a minimum, one may look into
the direction �grad.g.x// of steepest descent of g. This seems to be a convincing
idea, but the steepest-descent method often requires a large number of iterations. A
faster approach is obtained by invoking Newton’s method. Recall that a necessary
criterion for a minimum is the vanishing of all first-order partial derivatives,

grad g.x�/ D 0 :

This suggests to apply a Newton-type method to search for a zero of

f .x/ WD grad g.x/ :

Then a sequence of iterates x1; x2; : : : is defined by (C.3),

H.xk/.xkC1 � xk/ D �grad g.xk/ ; (C.17)
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where H.x/ D Df .x/ denotes the Hesse matrix of all second-order partial derivatives
of g,

H.x/ D

0
BB@

@2g
@x1@x1


 
 
 @2g
@x1@xn

:::
:::

@2g
@xn@x1


 
 
 @2g
@xn@xn

1
CCA :

The method defined by (C.17) is also called Gauss-Newton method. Locally, the
convergence is fast, namely, of second order.

The evaluation of the Hessian H.x/ is cumbersome, in particular in finance,
where g is not given explicitly and is approximated numerically. Therefore one
resorts to cheaper approximations QH.x/ of the Hessian. Such matrices QH are
obtained by updates. The resulting method is then called quasi-Newton. One such
approximation method is named BFGS,1 see for example [61]. This Newton-type
method of approximating x� iteratively is a local method. The quality of the initial
guess x0 decides on how fast the convergence is, and to which local minimum
the iteration goes. A combination of a steepest-descent method with a locally fast
Newton-type method is provided by the Levenberg-Marquardt method, see [306].

When g is not smooth enough, or when differentiability is doubtful, or when g has
many local minima, simulated annealing can be applied. This method works with
random numbers searching the entire x-space. For references on simulated annealing
see, for instance, [124, 223].

Frequently, a two-phase hybrid approach is applied. In a first phase the compara-
bly slow simulated annealing is applied to single out globally candidates for minima.
In the second phase these rough approximations are then used as initial vectors for
the locally (fast) converging Newton-type method.

Another class of minimization methods is provided by genetic algorithms, where
the minimum is approximated by constructing an evolution process. For applications
to finance, see [34, 73].

Least Squares
Assume a set of N points

.xk; yk/ ; k D 1; : : : ;N; xk 2 R; yk 2 R :

The aim is to construct a smooth curve C.x/ passing “nicely” through the cloud of
points. This is the problem of data fitting, or curve fitting, and can be solved by
simple linear algebra. Interpolation would not be the right answer when N is large.
Rather one restricts the shape of C to be of a special kind. With nC1 free parameters

1After Broyden, Fletcher, Goldfarb, Shanno.
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a0; : : : ; an and as many basis functions �0; : : : ; �n we build C,

C.x/ WD
nX

lD0
al�l.x/ :

In general, n� N. The simplest example is a polynomial,

C.x/ D a0 C a1xC : : :C anxn :

The basic strategy (“least squares”) is to determine the parameters ai such that the
sum of squared differences between C and the data

NX
kD1
.C.xk/� yk/

2

gets minimal. Since the a’s enter linearly in C, there is an .N�n/-matrix A such that

A

0
B@

a0
:::

an

1
CA D

0
B@

C.x1/
:::

C.xN/

1
CA ;

and kAa � yk22 is minimal. Here we arrange the a’s into a vector a, and the y’s into
a vector y, and use the norm from (C.4). The solution a of the least squares problem
is that of the system of linear equations

AtrAa D Atry ;

and can be calculated via an orthogonal decomposition of A. Least squares is also
called regression, or best fit.

C.5 Viscosity Solutions

For nonlinear problems, topics such as convergence are quite involved, in partic-
ular for nonsmooth solutions. We saw already for vanilla American options that
solutions are not twice continuously differentiable. The nonlinearity of American-
style options is a mild one, and rather straightforward numerical algorithms work
(Chap. 4). But in general, nonlinear problems need not even have a unique solution.
For motivation, let us look at the nonlinear PDE

@u

@t
C
ˇ̌̌
ˇ@u

@x

ˇ̌̌
ˇ D 0 for �1 < x <1; t > 0
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with initial condition u.x; 0/ D jxj, from [21]. This initial-value problem has two
solutions,

u1.x; t/ D jxj � t , and

u2.x; t/ D .jxj � t/C :

Setting up a numerical scheme, the concern is to which of the two solutions the
method will converge. (If it converges at all.)

This situation has lead to define a specific kind of weak solution, namely, the
viscosity solution. For the above example, it can be shown that u2 is the unique
viscosity solution. Numerical methods can be set up that converge to a viscosity
solution.

Assume (as in [21, 89]) a PDE that can be written as

H.x; u.x/;Du.x/;D2u.x// D 0 ;

where u is a scalar function, Du and D2u correspond to first and second-order
derivatives, and H is continuous. The notion of a viscosity solution requires the
PDE to be proper, in the sense

H.x; u; p;A/ � H.x; v; p;A/ for u � v (sign convention), and

H.x; u; p;A/ � H.x; u; p;B/ for A � B (“degenerate elliptic”) :

If we allow x 2 D � Rn, n > 1, then Du represents the gradient and D2u the Hesse
matrix. The ellipticity means that H is nonincreasing in its second-order derivative
matrix argument, which for scalar q D A can also be written

H.x; u; p; qC �/ � H.x; u; p; q/ for all � � 0 :

The first step towards the concept of a viscosity solution is to show that a classical
(smooth) solution u can be characterized in an “unusual way” by comparing it to
smooth test functions '.

Theorem C.4 Assume the PDE can be written H.x; u;Du;D2u/ D 0, x 2 D, with
continuous and proper H. Then for u 2 C2.D/ the following is equivalent: u is
(smooth) solution if and only if both criteria (a) and (b) hold:

(a) All ' 2 C2.D/ with local minimum of u � ' at x0 satisfy

H.x0; u.x0/;D'.x0/;D
2'.x0// � 0 :

(b) All ' 2 C2.D/ with local maximum of u � ' at x0 satisfy

H.x0; u.x0/;D'.x0/;D2'.x0// � 0 :



436 C Numerical Methods

Note that the above criteria (a) and (b) do not require the existence of first and
second-order derivatives of u. Only u 2 C0 is used [for u.x0/ D '.x0/]. This
situation suggests to define a weak solution u as follows.

Definition C.5 (Continuous Viscosity Solution) Let H be continuous and
proper. Any continuous u (u 2 C0.D/) is called continuous viscosity solution
of H.x; u;Du;D2u/ D 0 if and only if (a) and (b) are satisfied.

Example C.6 (Black–Scholes Equation) The Black–Scholes equation can be rep-
resented as above by an equation H D 0. To this end, set x WD .S; �/, u.x/ WD
V.S; �/, p WD Du D .VS;V� /tr, A WD D2u, and realize

H.x; u; p;A/ W D ptr

	�rx1
1



� 1
2
�2x21

	
1

0


tr

A

	
1

0



C ru

D V� � 1
2
�2S2VSS � rSVS C rV :

The sign convention holds for r � 0. For convenience rewrite H as
H.V;VS;V� ;VSS/. To check the ellipticity note that

H.u; y; z; qC �/ D z � 1
2
�2S2.qC �/ � rSyC ru

D H.u; y; z; q/� � 1
2
�2S2 � H.u; y; z; q/

holds for all � � 0 [134]. Hence H is proper.
Let V be a solution of H.V;VS;V� ;VSS/ D 0, and ' 2 C2;1 be any test function

with

V � ' � 0 and '.S0; �0/ D V.S0; �0/ for some .S0; �0/:

That is, at the point .S0; �0/ there is a local maximum of f .S; �/ WD V.S; �/�'.S; �/.
In case also V 2 C2;1, then the gradient vanishes,

@V.S0; �0/

@S
D @'.S0; �0/

@S
;

@V.S0; �0/

@�
D @'.S0; �0/

@�
;

and the Hessian is negative semidefinite, which specifically implies fSS � 0, hence

@2V.S0; �0/

@S2
� @2'.S0; �0/

@S2
:
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For H this implies

H.V.S0; �0/; 'S.S0; �0/; '� .S0; �0/; 'SS.S0; �0// �
H.V.S0; �0/; 'S.S0; �0/; '� .S0; �0/;VSS.S0; �0// D 0 ;

and criterion (b) holds. The analysis for (a) V�' � 0 is analogous. Hence a classical
solution V of the Black–Scholes equation is also a (continuous) viscosity solution.



Appendix D
Extended Tree Methods

Section 1.4 has introduced the basic version of of a binomial tree method for
pricing options. This Appendix D discusses additional aspects of tree methods, such
as convergence, discrete dividend payments, trinomial trees, and multidimensional
trees.

D.1 Convergence to the Black–Scholes Formula

The standard binomial tree of Sect. 1.4 provides an approximation V.M/
0

V.M/
0 .S0/ D e�rT

MX
jD0

 
M

j

!
p j.1 � p/M�j �.S0/ (D.1)

to the value V0 WD V.S0; 0/ of the continuous Black–Scholes model, where �
denotes the payoff of a European-style vanilla option. In a practical realization,
for number of time levels M ! 1, one observes convergence V.M/

0 ! V0
with rates between O. 1p

M
/ and O. 1M /. The convergence is not monotonic. The

slow rate O. 1p
M
/ results from the central limit theorem, see Appendix B.1.1 The

O. 1M / convergence of the tilted tree of [244] was proved for European options,
for American options see [242]. Notice that for the classical choice ud D 1 the
parameters u; d; p of (1.18) are independent of S0. Then the closed-form V.M/

0 .S0/ of

(D.1) is not smooth in S0. For the tilted tree with the 
 -strategy (1.23), V.M/
0 .S0/ is

smooth in S0.2

1The proof is outlined in Exercise 1.10.
2This is illustrated in Topic 8 of Topics fCF.
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Closeness to the Black–Scholes Equation
The above has discussed the convergence of V.M/

0 to the value V.S; 0/ of standard
options. Other issues are the convergence for other payoffs, or the convergence
of derivatives of V . Smoothness of the payoff and of the approximations are key
problems. This appendix will only concentrate on a few aspects. We start with a
result that the binomial scheme is close to the Black–Scholes equation.

A need to improve the smoothness can be motivated by studying an ideal setting:
Assume QV to be a function 2 C4 satisfying the continuous version of the binomial
formula (1.21)

QV.S; t ��t/ D e�r�t
�

p QV.uS; t/C .1 � p/ QV.dS; t/
�
;

for any .S; t/. After some routine calculations one obtains

0 D � QV.S; t ��t/C e�r�t
�

p QV.uS; t/C .1 � p/ QV.dS; t/
�

D
"
@ QV
@t
C rS

@ QV
@S
C 1

2
�2S2

@2 QV
@S2
� r QV

#
�tC O.�t2/ ;

see Exercise 1.27. Dividing by �t shows that the term in brackets vanishes up to
terms order O.�t/. This shows that the binomial formula is close to the Black–
Scholes equation, up to terms of order O.�t/ (see [234]).

[179] proves O.�t/ convergence of V.M/ for payoffs � 2 C2, building on results
known from the theory of PDEs. But the C2-smoothness assumption is not satisfied
at the boundary t D T for vanilla calls or puts. For American-style options there is
a second source of trouble: V is not smooth at the early-exercise curve. In summary,
along the boundaries more effort is required to achieve better convergence.

Possibilities to Smooth the Payoff
As outlined in Sect. 1.4.5, a lack of smoothness may cause faulty oscillations. That
is, the approximations V.M/

0 for V.S0; 0/ show a wave-like behavior as the fineness M
increases. Section 1.4.5 has recommended the tilted tree as a main vehicle to cope
with the kink in the payoff, and to improve the convergence. In the following we
describe two other approaches to smooth the effects of a non-smooth payoff � .

1. Heston and Zhou [179] applies a smoothing approach of [231]. To this end, a
payoff � is approximated by a smoother version � ,

�.S/ WD 1

2�

Z �

��
�.S � y/ dy ; (D.2)

for a choice of a small � > 0. At least for vanilla payoffs and binary options, �
can be calculated analytically. For the vanilla option, � 2 C1, and for a binary
option, � 2 C0 (�! Exercise 1.12).
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2. Above the last line of the tree, for t > tM�1, an American option is always
European-style, because for our discrete model exercising is only possible at
the discrete times ti. For many payoffs, there are analytic formulas for the
European-style option [172]. Therefore the analytic formula holds on the strip
tM�1 < t < T, and can be applied to obtain the continuation values at tM�1. At
tM�1, the analytic formula does not have the singularity. In this way, a singularity
of the payoff (at the strike K or elsewhere) is bypassed, and the continuation
values at tM�1 are given by a smooth function. This remedy, suggested by
[56], needs to be applied only for a few nodes about the singularity (about 10
for medium values of M), because farer away from the singularity (K) these
continuation values are almost identical with the payoff. The main part of the
binomial method then starts at tM�1.

The 
 -strategy of (1.23) can be combined with the second strategy of applying
the BS-formula; but the additional improvement is small. For barrier options, the
second strategy may be the best choice when the “symmetry” of the classic ud D 1
tree is advantageous for incorporating the barrier.

As a result of smoothing, dependable O.�t/-convergence of V.M/
0 can be

observed for vanilla options. Then, from a practical point of view, the conver-
gence of V.M/

0 is close enough to O. 1M / to justify extrapolation (1.24). Then the
convergence of V.M;extr/ will be close to second-order O.�t2/. The additional V.M=2/-
approximation increases the costs only by about 25% .

For related literature, see also [305]. The aim “place a node at the strike” is
handled in a somewhat more general way in [359], where any index can be chosen,
not necessarily the M=2 middle node.

D.2 Discrete Dividend Payment

Assume the underlying asset pays a discrete dividend. If an amount D is paid at the
discrete time tD with 0 < tD < T, then by arbitrage there is a drop in the price S of
the asset, which is basically3 of that size:

S
tCD
D St�D �D : (D.3)

In contrast, for European options, the value Vt of an option on that asset remains
continuous along St also at tD, which for the value function amounts to

V.St�D ; t
�
D / D V.S

tCD
; tCD / :

3Because of taxes and fees, the jump is by the netto amount. So take as D the actual drop.
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Fig. D.1 The gap in V, here for an American put. Left-hand curve: V.S; tCD /, right-hand curve:
V.S; t�D /. Parameters: K D 50, T D 5=12, r D 0:1, � D 0:4, D D 2:06, TD D 2:9166667

(parameters as in [191])

This holds for any path St, hence

V.S; t�D/ D V.S � D; tCD / : (D.4)

The notation in (D.4) represents the left-sided and right-sided limits, as

V.S; t�D / WD lim
t!t�; t<t�

V.S; t/ :

Passing tD backwards from t > tD to t < tD, Eq. (D.4) represents a “horizontal” shift
by D of the profile V.S; tCD / in S-direction, which amounts to a jump condition for
V.S; t/ at tD. The surface V.S; t/ is discontinuous at tD. In Fig. D.1, the gap formed
by the two limiting functions is shown for an American put, the horizontal shift (by
D) is visible.4

Problem with Recombination
Let us consider the situation where D is a fixed amount independent of S. For
the single dividend case, because of (D.3), the standard binomial tree is not

4To visualize the surface V.S; t/ and the gap, see Topic 5 in the Topics fCF.
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recombining. To see this, assume for ease of demonstration tD D t2. In case no
dividend is paid, for the t2-line the three S-node values would be d2S, udS, u2S.
The drop in asset price caused by the dividend payment D shifts these three node
values to

d2S � D; udS� D; u2S � D :

Consequently, at the t3-line, the tree splits to the values

d.d2S � D/; u.d2S �D/; d.udS �D/; u.udS� D/; d.u2S �D/; u.u2S �D/ :

Obviously, since u ¤ d, and D is a constant value, these are six different nodes as
compared to the four nodes in the no-dividend case. For the t4-line, there are nine
nodes rather than five without dividend. Clearly, this standard S-tree is no longer
recombining, and the number of nodes increases more rapidly.

Exercise Let Ni denote the number of nodes of the standard binomial S-tree at ti,
and let tk be the ex-dividend date. Show NkCi D .iC 1/.kC 1/ for i > 0.

Numerical Approach for Binomial Trees
At time t with 0 < t < tD, the present value of the dividend is

QDt WD D e�r.tD�t/1Œ0;tD � : (D.5)

There may be several discrete dividend payments D1; : : : ;Dn paid at dates t1 < t2 <
: : : < tn with 0 < t1, tn < T. Then the present value QDt of all dividend payments is
defined accordingly. For example, for t < t1,

QDt D D1e�r.t1�t/ C : : :CDne�r.tn�t/ ;

and QDt D 0 for t > tn. Since the portion QDt of the asset price St is riskless, the
complementary part

QSt WD St � QDt (D.6)

is the risky part. For illustration see Fig. D.2.
For ease of presentation, we stick to the case of a single dividend payment in the

time interval, so QSt D St � De�r.tD�t/ for t < tD. For the Black–Scholes model, the
GBM for QSt is described by

dQS
QS D r dtC Q� dWt ;
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Fig. D.2 The price St of a fictive underlying with dividend payment of D D 10 at tD D 0:7 (upper
curve) ; bottom curve: QDt of (D.5) , “middle” curve: QSt of (D.7)

with Q� assumed constant, and we assume Q� D � .5

The key observation is that

QSt D
(

St for tD < t � T

St � De�r.tD�t/ for 0 � t < tD
(D.7)

is continuous across tD, because of (D.3). Hence the corresponding QS-tree is a
standard recombining tree. It is common for European options to evaluate the
Black–Scholes formula with the asset price QS0 (the asset price reduced by the present
value of the dividends). This is the value initiating the QS-tree (Fig. D.3). S-values can
be obtained out of the QS-values via (D.7).

5The volatility Q� of QS needs not be the same as that followed by the whole asset price. In general,
Q� is slightly larger than � , which might be realized by scaling � with the artificial rule-of-thumb
factor S

S�De�rtD : The scaling is not necessary in case � is the implied volatility, then Q� D �

[191, 234]. Certainly, the assumption has an effect on the calculated price V.
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Fig. D.3 .S; t/-plane; tree for a dividend-paying underlying; data see Example D.2. C signs mark
the S-tree; � signs mark the QS-tree. The shift of the algorithm goes from � to C. QS0 D 45:1526

Algorithm D.1 (S-Tree for the Single-Dividend Case) (fixed dividend payment
D at tD with k defined by tk�1 � tD < tk)

QS0 WD S0 �De�rtD ;

Sj;i WD QS0ujdi�j C De�r.tD�ti/ for j D 0; 1; : : : ; i and 0 < i < k ;

Sj;i WD QS0ujdi�j for j D 0; 1; : : : ; i and i � k :

The modified S-tree obtained this way is recombining, because the QS-tree is, but not
continuous. The valuation of the tree is the same as for the standard dividend-free
tree; implementation is easy.6 The case with several discrete dividend payments is
set up analogously. For American-style options, the comparison of the continuation
value with the payoff needs to be incorporated. In Algorithm D.1, the QS-tree shows
only implicitly. The algorithm was derived for QS and transformed back to S. The
early-exercise check for an American option must be based on S.

6Program and test Algorithm D.1. For m D 4, plot the S-tree. For illustrations, see Topic 1 and
Topic 5 of Topics fCF.
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Example D.2 (Dividend Payment) We choose T D 0:5, S0 D 50, K D 55,
r D 0:1, � D 0:4, a discretization with M D 10 time steps, and a discrete dividend
payment of D D 5 at time tD D 0:31. The S-tree is shown in the .S; t/-plane of
Fig. D.3. The horizontal line (dashed) marks tD D 0:31. Above that line, for t >
tD, the S-nodes are identical to those of the QS-tree originating at QS0 (marked at the
bottom). The “lower” part of that QS-tree is indicated by� signs. Below the horizontal
dashed line, for t < tD, the S-nodes “+” are the shifted ones, obtained by (D.7) out
of the QS-tree with a shift approximately of the size CD.

Proportional Dividend
There is another discrete dividend arrangement, namely, a proportional dividend,
D D QqS for a given rate Qq. As a result, for q WD 1 � Qq,

S
tCD
D St�D � QqSt�D D .1 � Qq/St�D D qSt�D :

Then, illustrated similarly as above (assuming for simplicity tD D t2), the S-shifts at
the t2-line are not by a constant value. Rather the outcome is

qd2S; qudS; qu2S :

It is easy to check that there are only four nodes at the t3-line. The tree of a discrete
proportional dividend is recombining. (Check this by means of an appropriate
illustration.)

American-Style Options
For the early exercising of a call, see [234], or [191]; for a call no specific numerical
method is needed. The situation is more cumbersome for an American put. An
analytical result on the early-exercise structure is Exercise 4.1b. For American-style
puts the stopping region needs not be connected. At the ex-dividend date tD, the
early-exercise curve declines sharply to S D 0, cutting and bounding the part of the
stopping region with t � tD. For t > tD the early-exercise curve is identical to that
of the no-dividend situation. For the time period

maxf0; Qtg � t < tD with Qt WD tD � 1
r

log

	
D

K
C 1




it is optimal to wait for the dividend and hold the option. In case Qt > 0, another
part of the stopping region exists for 0 � t � Qt, where early exercise is optimal.7 In
contrast, for a proportional dividend D D QqS there is a lower part of the stopping
area extending to tD, where the limiting early-exercise curve tends to .S; t/ D .0; tD/
with the slope

lim
t!tD; t<tD

S0
f.t/ D �

r

Qq :

7This is illustrated in Topic 1 of Topics fCF, see also Topic 5.
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D.3 Trinomial Trees

Starting from a price Si at ti, the binomial tree allows for two states SiC1 at tiC1,
namely, uSi and dSi. Trinomial trees allow for three states

uSi ; mSi ; dSi ;

with corresponding probabilities p1, p2, p3. That is, six unknown parameters need
to be fixed, and six requirements are needed. Two of them are clear: Of course,
p1 C p2 C p3 D 1 makes one of the equations. Another equation should enforce the
recombining property, which amounts to the requirement m2 D ud.

Before we come to examples, let us study the structure of a trinomial tree, and
discuss what accuracies we may expect. Certainly this will depend on the density
of the tree. As may be visualized by means of a sketch, there are 2iC 1 nodes for
ti. In particular, the payoff at t D T is scanned at 2M C 1 node values S in case
the time interval is divided into M subintervals. In comparison, for a binomial tree,
this density of nodes at T is reached with the double number of discrete ti-values.
So, naively, we might expect trinomial methods to reach a comparable accuracy in
a more efficient way, since it needs fewer steps.

For a comparison, let us sum up the number of required arithmetic operations.
We can neglect the overhead, which calculates parameters such as u or p in the
beginning. For both binomial and trinomial trees, the number of operations is
proportional to the number of nodes. A little reasoning leads to Table D.1. For a
comparable resolution of the payoff, set M D 2 QM for an equal number of nodes
at t D T, and come up with 5 QM2 operations for the trinomial tree and 6 QM2 for
the binomial tree. But empirical comparisons lead to the conclusion that smoothed
binomial trees are significantly more efficient than trinomial trees! The above
reasoning with placing emphasis on the number of steps is misleading because
it neglects the fact that the binomial tree benefits from a smaller error due to the
smaller �t-step size.

But what then is the advantage of a trinomial method? The larger number of
parameters adds to the flexibility of the trinomial tree. For example, it can be well
aligned to barriers, even to double barriers.

Examples of Trinomial Trees
Possible sets of parameters must obey pi � 0 (for i D 1; 2; 3), which leads to a
limitation of the step size �t. One choice of parameters assumes equal probabilities

Table D.1 Comparison binomial/trinomial tree method

Number of Number of operations Total number

Type of tree ti-lines Number of nodes per node of operations

Binomial M 1
2
M2 C 3

2
M C 1 3 	 3

2
M2

Trinomial QM QM2 C 2 QM C 1 5 	 5 QM2
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[358], see Exercise 1.15. Another approach starts from u D e�
p
��t with a free tune

factor �. One such example, taken from [191], is

u D e�
p
3�t ; d D 1

u ; m D 1 ;
p1 D

q
�t
12�2

�
r � �2

2

�
C 1

6
;

p2 D 2
3
;

p3 D �
q

�t
12�2

�
r � �2

2

�
C 1

6
:

(D.8)

D.4 Multidimensional Trees

This subsection assumes an option on two underlying assets. The notation needs to
be changed: S1.t/, S2.t/ are the prices of the two assets. And, to avoid overloaded
indices, let us also use the notation x WD S1, y WD S2. Hence the price vectors
.S1.t/; S2.t// for 0 � t � T are points in .x; y/-planes, one for each t. Accordingly,
the nodes of the tree will be distributed in the three-dimensional .x; y; t/-space.8

Let t� denote the discrete t-values, with � D 1; : : : ;M and�t D T=M, t� D ��t.
With index � denoting the time level, the .x; y/-coordinates on the �th time level
will be denoted x� and y� . Further assume a constant risk-free interest rate r, asset
volatility parameters �1; �2, correlation �, and dividend yield rates ı1; ı2.

Similarly as for the basic tree, we have free choices to construct a multidimen-
sional tree. Depending on the construction, there are four, five, or more outcomes
out of each node. Here we discuss a tree with four states and preset probabilities,
namely, the binomial-pyramid tree suggested by Rubinstein [323]. Four outcomes,
each with a probability and two components, amount to 12 parameters. Choosing
equal probabilities p D 1

4
, and admitting only two x-values, cuts the number

of parameters down to six. That is, each node with position .x; y/ develops for
t! tC�t to one of the four positions

.xu; yA/; .xu; yB/; .xd; yC/; .xd; yD/ ; (D.9)

for six parameters u; d;A;B;C;D (see Fig. D.4). Hence the x-coordinates of the tree
are recombining as in the one-dimensional situation. The factors A;B;C;D control
the y-coordinates. For t1, let us arrange the y-factors as in an .x; y/-plane,

C A
D B

8Therefore such a tree for a two-color rainbow option is also called “three dimensional.” Consult
Topic 7 in case more insight is needed to visualize this setting.
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Fig. D.4 In the .x; y; t/-space: four factors A;B;C;D for the new y-coordinate in the t�C1-time
level

The left-hand factors correspond to d
x, and the right-hand factors to u
x for an initial
price x of S1. At t2, each of these four nodes splits again, namely, to y-coordinates

CC CA AC AA
CD CB AD AB
DC DA BC BA
DD DB BD BB

To be recombining, only nine nodes may survive for t2, so the “middle” nodes must
coincide. This is trivial for the four nodes on the “boundary” of these scheme (CA D
AC : : :/. Only the center point needs special care: We require AD D BC for the tree
to be recombining.

Analogously as for the single-asset binomial tree let us assume for the bivariate
case a joint lognormal distribution, see (6.1). As in Sect. 1.8.2, set Y1 WD log S1 D
log x and Y2 WD log S2 D log y. By (6.3),

dY1 D d.log x/ D .r � ı1 � 1
2
�21 / dtC �1d1 ;

dY2 D d.log y/ D .r � ı2 � 1
2
�22 / dtC �2.d1 �C d2

p
1 � �2/ ; (D.10)
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where 1; 2 are independent normal variates, and the correlation � is taken care of.
The continuous model (D.10) incorporates possible dividend yield rates ı1; ı2. For
the setup of a tree, we discretize (D.10). Replacing the symbol d by the symbol �
leads to

�Y1 D log x�C1 � log x� D �1�tC �1�1
�Y2 D log y�C1 � log y� D �2�tC �2.�1 �C�2

p
1 � �2/ (D.11)

with

�i WD r � ıi � �2i =2 for i D 1; 2 :
Next we replace the�-variables by the simpler˙p�t with equal probabilities for
both signs,

�Y1 D �1�t˙ �1
p
�t

�Y2 D �2�t˙ �2�
p
�t˙ �2

p
1 � �2p�t

(D.12)

This is the discrete problem.9 The variables �Y1 and �Y2 of the discrete problem
(D.12) satisfy the five additional equations coming from the requirement that the
first and second moments of the discrete and the continuous problem must match.
To verify this, check that for (D.12) the five equations

E.�Yi/ D �i�t ; Var.�Yi/ D �2i �t ; Cov.�Y1;�Y2/ D ��1�2�t

hold for i D 1; 2 and the four probabilities 1
4

associated to (D.9) (�! Exercise 6.2).
The factors u; d;A;B;C;D can be read off from (D.12). For example,

x�C1 D x� exp.�Y1/ D x�u or D x�d ;

which provides u and d, depending on the sign in (D.12). Analogously, exp.�Y2/
gives the factors A,B,C,D, depending on the signs. Investigating possible combina-
tions of signs in view of the requirement AD D BC shows that A and D must be
those versions of �Y2 where both signs are equal. The resulting tree is defined by

u WD exp.�1�tC �1
p
�t/

d WD exp.�1�t � �1
p
�t/

A WD exp.�2�tC �2
p
�t Œ�Cp1� �2�/

B WD exp.�2�tC �2
p
�t Œ� �p1 � �2�/

C WD exp.�2�t � �2
p
�t Œ� �p1 � �2�/

D WD exp.�2�t � �2
p
�t Œ�Cp1 � �2�/ :

(D.13)

9It is not the same as in (D.11), but we use the same notation�Y.
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With these factors, AD D BC holds and the tree is recombining, and the first
moments match those of the continuous problem.

For initial prices x0 WD S01 WD S1.0/, y0 WD S02 WD S2.0/, and time level t� , the
S1-components of the grid according to (D.9) distribute in the same way as for the
one-dimensional tree,

x�i WD S01u
id��i for i D 0; : : : ; � : (D.14)

As the reader may check in Exercise 6.2, the second (S2)-components belonging to
x�i are

y�i;j WD S02 exp.�2��t/ exp
�
�2
p
�t
h
�.2i� �/C

p
1 � �2.2j� �/

i�
(D.15)

for j D 0; : : : ; �.
In the t3-time level, the tree has 16 nodes. Generally, in the t�-time level, there

are .� C 1/2 nodes. This makes altogether

1

6
.M C 1/.M C 2/.2M C 3/

nodes of the entire three-dimensional tree, a complexity of O.M3/.
The valuation of the tree is standard, with

Vcont
i;j D exp.�r�t/ 1

4
.V�C1

i;j C V�C1
iC1;j C V�C1

i;jC1 C V�C1
iC1;jC1/ : (D.16)

For an example see Exercise 6.2 and the illustrations of Fig. 6.2.
In principle, this approach extends to multifactor options with n > 2 underlying

assets. But costs of the order O.MnC1/ restrict the fineness M and thus the accuracy.
For high values of n this may call for other methods.

A “five-jump model” (version with five possible outcomes in each mesh) is [213],
setting for example ui D e�i

p
�i�t for suitable parameters �i, i D 1; 2, and then

deriving probabilities. A four-jump model is suggested in [48]. According to [213],
five-jump models appear to have a smoother convergence.

D.5 Implied Trees for Variable Volatility

The Black–Scholes model assumes a constant volatility � . But in market data of
traded options, one observes the volatility smile, a non-constant dependence of � on
the strike K and on the time for maturity T. Inserting a local volatility �.S; t/ into
the Black–Scholes approach improves its pricing ability. (�! Appendix A.6)

Such an additional flexibility of the Black–Scholes approach can be adapted
also by tree methods. Here we outline the implied tree of Derman and Kani [100].
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Fig. D.5 The first nodes
[labeled . j; i/] of a general
binomial grid, with
probabilities pj;i and variable
S-positions of the nodes;
initial part of the tree

1,10,1

1,2 2,22,0

p
0,1

p
1,1
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0,0
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t1

t

S0,0
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Implied trees are calibrated to market prices of options. Note the contrast to the
standard tree, which is calibrated to the underlying process St independently of the
option. We are back in the one-dimensional situation, with index i counting the time
levels, and j labels the nodes on the level i.

Variable Grid
To allow for more generality, each mesh has its own local probability (Fig. D.5). For
any node with position . j; i/ we ask what the probability is that this node is reached.
For each possible path that connects the root node .0; 0/ to the . j; i/-node, the
transition probability of this path is the product of the involved local probabilities.
And the probability that the node is hit is the sum of the probabilities of all possible
paths that lead to . j; i/. Up to a discounting factor, this probability to hit a node . j; i/
is defined by numbers �j;i,10

�j;i is the sum of the products of all riskless-discounted transition probabilities,
with summation over all paths leading from the root .0; 0/ to the node . j; i/.

For example,

�1;2 D e�r2�t Œ p0;1.1 � p0;0/C .1 � p1;1/p0;0� ;

compare Fig. D.5. Clearly there is a forward recursion for these �j;i. Fixing �0;0 WD
1,

�0;1 D e�r�t �0;0.1 � p0;0/; �1;1 D e�r�t �0;0 p0;0

holds. We distinguish interior nodes of the tree, to which two entries exist, and
boundary nodes, which have one entry only.

10The numbers �j;i are also called Arrow–Debreu prices.
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Recursion for the �j;iC1 along level tiC1:

�0;iC1 D e�r�t �0;i .1 � p0;i/ ;

�jC1;iC1 D e�r�t Œ�j;i pj;i C �jC1;i .1 � pjC1;i/� for 0 � j � i� 1 ;
�iC1;iC1 D e�r�t �i;i pi;i :

(D.17)

In the special case of the standard tree of Sect. 1.4, with pj;i D p for all j; i, the
Bernoulli experiment results in the probabilities bM;p. j/ from (B.14), which describe
the probability that the node . j;M/ is hit. Since the �j;i distribute the discounting
over the time slices, the relation

�j;M D e�rT

 
M

j

!
p j.1 � p/M�j

with the binomial probability p holds. In this special case with constant p, as well
as in the general case with arbitrary probabilities pj;i, the final probability to hit
the node . j;M/ is erT�j;M . In any case, the expectation (D.1) of a European vanilla
option with payoff � can be written

V.S0;0; 0/ D
MX

jD0
�j;M �.Sj;M/ : (D.18)

Fixing the Probability
The method of Derman and Kani sets up reasonable probabilities pj;i and positions
.Sj;i; ti/ of the nodes . j; i/. Thereby, the S-coordinates of the grid are designed such
that the tree matches market data.

Assumptions D.3 “Market prices” of European-style vanilla options can be
obtained for any strike K and any maturity T, for put and call.
In reality, market values V.S0; 0I K;T/ are available only for a scarce set of
pairs .K;T/. But there are algorithms that apply interpolation and smoothing to
construct intermediate values of V for almost any .K;T/, see [128, 154]. So the
Assumption D.3 is not as restrictive as it might seem. But it requires cumbersome
preparatory work. Since this basic prerequisite is not explained in this text, we shall
confine ourselves to key ideas.

Suppose all nodes are placed and all probabilities are fixed for the time level ti.
That is, the 2iC 2 numbers

S0;i; S1;i; : : : ; Si;i ;

�0;i; �1;i; : : : ; �i;i
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are available. For the next time level tiC1 the 2iC 4 numbers

S0;iC1; S1;iC1; : : : ; SiC1;iC1 ;

�0;iC1; �1;iC1; : : : ; �iC1;iC1

are to be calculated. This requires 2iC3 equations, because the recursion (D.17) for
the �j;i requires only iC 1 probabilities

p0;i; : : : ; pi;i :

iC 1 of the equations are easily set up, requesting as usual that the expectation over
the time step �t matches that of the continuous model. Similar as in Sect. 1.4, this
requirement is written

pj;i SjC1;iC1 C .1 � pj;i/ Sj;iC1 D Sj;i e.r�ı/�t (D.19)

for 0 � j � i. This sets up i C 1 equations for the probabilities pj;i, which in turn
fix the values �j;iC1 via the recursion (D.17), provided the S-values along tiC1 are
fixed. It remains to set up i C 2 equations for the free grid coordinates Sj;iC1 for
0 � j � iC 1.

At this stage, the market data enter. According to Assumptions D.3, (approxi-
mate) vanilla put and call prices can be made available for arbitrary “strikes” and
“maturities.” Consider tiC1 as an auxiliary maturity and choose the i C 1 auxiliary
strikes S0;i; : : : ; Si;i. So market values

Cj;i WD Vmarket
call .S0;0; 0I Sj;i; tiC1/

Pj;i WD Vmarket
put .S0;0; 0I Sj;i; tiC1/

(D.20)

are known for 0 � j � i. In (D.20), there are only iC 1 independent option values,
because European-style put and call options are related through the put-call parity.

Recursion Based on Call Data
Next we discuss how the market call values Cj;i enter. For the strike Sj;i, we apply
(D.18), where M is replaced by iC 1. Then, by (D.20), the grid values Sk;iC1 are to
be chosen such that

Cj;i D
iC1X
kD0

�k;iC1�.Sk;iC1/ D
iC1X
kD0

�k;iC1.Sk;iC1 � Sj;i/
C :

Assuming an ordered grid in the sense of Sj;iC1 < Sj;i < SjC1;iC1, this requirement
can be written

Cj;i D
iC1X

kDjC1
�k;iC1.Sk;iC1 � Sj;i/ :
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Substituting the recursion (D.17), after some formula manipulations, leads to a
recursion between two neighboring (unknown) S-node values along the line tiC1,

SjC1;iC1 D f .Sj;iC1/ ; (D.21)

for a rather involved function f . Equation (D.21) fixes a new node SjC1;iC1 after the
previous node Sj;iC1 was set. Then the probabilities are given by (D.19) and (D.17).
The recursion (D.21) is started in the middle of the line tiC1, which can be fixed by
centering at the S0;0 of the classical tree (Sect. 1.4).

For the other half of the S-Values along line tiC1 a similar recursion is obtained
from put values Pj;i, according to (D.20). For details see the original paper [100],
or the explanation in [337]. In practice, both the approach to establish the bold
Assumptions D.3 and an ordered generation of S-nodes are tricky. In the end, the
local volatilities are obtained by

�j;i D
r

pj;i.1 � pj;i/

�t
log

SjC1;iC1
Sj;i

: (D.22)



Appendix E
Complementary Material

This appendix lists useful formula without further explanation. Many formulas can
be found in [172].

E.1 Bounds for Options

The following bounds for vanilla options can be derived based on arbitrage
arguments, see [88, 191, 196, 234, 269]. If neither the subscript C nor P is listed,
the inequality holds for both put and call. If neither the Eur nor the Am is listed, the
inequality holds for both American and European options. We always assume r > 0
(Fig. E.1).

(a) Bounds valid for both American and European options, no matter whether
dividends are paid or not:

0 � VC.St; t/ � St

0 � VP.St; t/ � K

VEur.St; t/ � VAm.St; t/

St � K � VAm
C .St; t/

K � St � VAm
P .St; t/

VEur
P .St; t/ � Ke�r.T�t/

© Springer-Verlag London Ltd. 2017
R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-7338-0
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Fig. E.1 Bounding curves
for the value of vanilla put
and call options
.r > 0; ı D 0/; for both put
and call a European value
function is plotted, with
r > 0, ı D 0

V

call

K S

V

put

K

K S

Lower bounds incorporating a continuous dividend yield ı (set ı D 0 in case
there is no dividend yield): The above relations and the put-call parity (A.16)
imply

St e�ı.T�t/ � Ke�r.T�t/ � VC.St; t/

Ke�r.T�t/ � St e�ı.T�t/ � VP.St; t/

The zero of the lower bound is Ke.ı�r/.T�t/.
(b) For bounds on the early-exercise boundary, see Appendix A.5.
(c) Monotonicity of the value function:

Monotonicity with respect to S:

VC.S1; t/ < VC.S2; t/ for S1 < S2 ;

VP.S1; t/ > VP.S2; t/ for S1 < S2 ;

which implies

@VC

@S
> 0 ;

@VP

@S
< 0 :
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Monotonicity of American options with respect to time:

VAm
C .S; t1/ � VAm

C .S; t2/ for t1 < t2 ;

VAm
P .S; t1/ � VAm

P .S; t2/ for t1 < t2 ;

which implies

@VAm

@t
� 0 :

Options are convex with respect to K and with respect to S. This holds for the
standard Black–Merton–Scholes model; for other models relations are more
complicated [118].
To express monotonicity with respect to the strike K or to the time to expiration
T, we indicate dependencies by writing V.S; tIT;K/, and only quote the
parameter that is changed.

VAm. : IT1/ � VAm. : IT2/ for T1 < T2

VC. : IK1/ � VC. : IK2/ for K1 < K2

VP. : IK1/ � VP. : IK2/ for K1 < K2

V. : I �1/ � V. : I �2/ for �1 < �2

The first of these inequalities implies that the value of a perpetual option (T !
1) is an upper bound to the value of an American option.

(d) Put-call relation for American options:

Ke�r.T�t/ C VAm
C .S; t/ � SC VAm

P .S; t/ :

This holds no matter whether dividends are paid or not. If the asset pays no
dividends, then also the upper bound

SC VAm
P .S; t/� VAm

C .S; t/ � K

holds.
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E.2 Approximation Formula

Distribution Function of the Standard Normal Distribution

f .x/ W D 1p
2	

exp

	
�x2

2




F.x/ W D
xZ

�1
f .t/ dt

The calculation of F can be based on the error function, see Exercise 1.5. Applying
quadrature is not the most efficient way to approximate the integral. For full
double-precision accuracy, there are generic codes available (as the function derf
in FORTRAN). For such high accuracy—according to our findings—it is also
recommendable to approximate F by a spline.

Frequently lower accuracy suffices. Related approximations of the error function
can be found in [171], which is a rich source of approximation formulas for all kind
of functions and different requirements of precision. Here we present an algorithm
from [1, formula (26.2.17)], which does not make use of the error function.

Let us define

z WD 1

1C 0:2316419x

and the coefficients

a1 D 0:319381530 a4 D �1:821255978
a2 D �0:356563782 a5 D 1:330274429

a3 D 1:781477937 :

Then

F.x/ D 1 � f .x/
�
a1zC a2z

2 C a3z
3 C a4z

4 C a5z
5
�C ".x/ ;

for 0 � x <1 with an absolute error " bounded by

j".x/j < 7:5 � 10�8 :

Hence we have the approximating formula

F.x/ 	 1 � f .x/z....a5zC a4/zC a3/zC a2/zC a1/ ;

which requires 17 arithmetic operations and the evaluation of the exponential
function to obtain an accuracy of about seven decimals. For x < 0 apply F.x/ D
1 � F.�x/. To save time, the evaluation of the exponential function should not use
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the generic double-precision code since this would be too much effort for a final
seven-digit accuracy. An alternative can be found in [171]. A seven-digit version for
F that does not need the exponential function, is formula (26.2.119) in [1].

Inversion Formula
A FORTRAN code for the inversion of the normal distribution can be found in

http://lib.stat.cmu.edu/apstat/111.
(Many other codes relevant for statistical computation can be obtained via the
.../apstat page.) Here we report the formula of [278] to approximate the
inverse function of the standard normal distribution

F.x/ WD 1p
2	

xZ
�1

exp

	
� t2

2



dt :

That is, we calculate x D G.u/ such that G.u/ 	 F�1.u/. The interval 0 < u < 1 is
truncated to 10�12 � u � 1 � 10�12. Symmetry with respect to .x; u/ D .0; 0:5/ is
exploited. The interval is subdivided into two relevant parts, namely,

0:08 < u < 0:92 and 0:92 � u � 1� 10�12 :

The part 10�12 � u � 0:08 is obtained by symmetry. For each of the two
subintervals an appropriate approximation is given. In the middle part of the interval
a rational approximation in the form

.u � 0:5/

3P
jD0

aj.u � 0:5/2j

1C
3P

jD0
bj.u � 0:5/2j

is used, whereas the tails are approximated by a polynomial in log.� log r/, where
10�12 � r � 0:08.

Algorithm E.1 (Inversion of the Standard Normal Distribution)

input: u, drawn from U.0; 1/
y WD u � 0:5
in case jyj < 0:42:

r WD y2

x WD y
..a3rC a2/rC a1/rC a0

...b3rC b2/rC b1/rC b0/rC 1
in case jyj � 0:42:

r WD u , in case y > 0 set r WD 1 � u
r WD log.� log r/
x WD c0 C r.c1 C r.c2 C r.c3 C r.c4 C r.c5 C r.c6 C r.c7 C rc8///////
in case y < 0 set x WD �x

output: x

http://lib.stat.cmu.edu/apstat/111
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The coefficients of the above algorithm are given by1

a0 D 2:50662823884;
a1 D �18:61500062529;
a2 D 41:39119773534;
a3 D �25:44106049637
b0 D �8:47351093090;
b1 D 23:08336743743;
b2 D �21:06224101826;
b3 D 3:13082909833
c0 D 0:3374754822726147;
c1 D 0:9761690190917186;
c2 D 0:1607979714918209;
c3 D 0:0276438810333863;
c4 D 0:0038405729373609;
c5 D 0:0003951896511919;
c6 D 0:0000321767881768;
c7 D 0:0000002888167364;
c8 D 0:0000003960315187
The rational approximation formula for jyj < 0:42 (that is, 0:08 < u < 0:92) is
reported to have a largest absolute error of 3 
 10�9.

E.3 Software

A dedicated computer person will program the mathematics such that the resulting
codes run with utmost possible speed. Such a person will probably use compilers
like C, C++, or FORTRAN to create production codes, where the speed counts. But
there are packages available that make programming, implementing, testing, and
graphics more comfortable. For example, MATLAB offers a platform for scientific
computation and numerical experiments, and includes a Financial Derivatives
Toolbox.2

Several programs related to finance have been published. For MATLAB codes
see [50, 181], for MATHEMATICA codes see [349], and C++ programs are in [2,
246]. For elementary computations, spreadsheets are also used. Programs in various
levels can also found, for example, in [172, 191]. Pseudo codes for several types of
options can be found in [82].

1These digits are listed in [278].
2Figures 3.7, 5.10, 6.3, 6.4, 7.1 are based on MATLAB graphics. The other figures in this book
were prepared using xfig and gnuplot.



E.3 Software 463

For partial differential equations, the finite-element program PDE2D is avail-
able via the University of Texas, El Paso. See also the finite-element programs
referred to in [2], such as FreeFem++. The PREMIA project offers codes via
www-rocq.inria.fr/mathfi. For further hints and test algorithms see the platform
www.compfin.de .

www-rocq.inria.fr/mathfi
www.compfin.de


References

1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. With Formulas, Graphs,
and Mathematical Tables. Dover, New York (1968)

2. Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing. SIAM, Philadelphia
(2005)

3. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
4. AitSahlia, F., Carr, P.: American options: a comparison of numerical methods. In: Rogers,

L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 67–87. Cambridge University
Press, Cambridge (1997)

5. Alfonsi, A.: On the discretization schemes for the CIR (and Besselsquared) processes. Monte
Carlo Methods Appl. 11, 355–384 (2005)

6. Almendral, A., Oosterlee, C.W.: Numerical valuation of options with jumps in the underlying.
Appl. Numer. Math. 53, 1–18 (2005)

7. Almendral, A., Oosterlee, C.W.: Highly accurate evaluation of European and American
options under the Variance Gamma process. J. Comput. Finance 10(1), 21–42 (2006)

8. Andersen, L., Andreasen, J.: Jump diffusion process: volatility smile fitting and numerical
methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)

9. Andersen, L., Broadie, M.: Primal-dual simulation algorithm for pricing multidimensional
American options. Manag. Sci. 50, 1222–1234 (2004)

10. Andersen, L.B.G., Brotherton-Ratcliffe, R.: The equity option volatility smile: an implicit
finite-difference approach. J. Comput. Finance 1(2), 5–38 (1997/1998)

11. Ané, T., Geman, H.: Order flow, transaction clock, and normality of asset returns. J. Finance
55, 2259–2284 (2000)

12. Arnold, L.: Stochastic Differential Equations (Theory and Applications). Wiley, New York
(1974)

13. Arouna, B.: Robbins-Monro algorithms and variance reduction in finance. J. Comput. Finance
7(2), 35–61 (2003)

14. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9,
203–228 (1999)

15. Avellaneda, M.: Quantitative Modeling of Derivative Securities. From Theory to Practice.
Chapman & Hall, Boca Raton (2000)

16. Avellaneda, M., Levy, A., Parás, A.: Pricing and hedging derivative securities in markets with
uncertain volatilities. Appl. Math. Finance 2, 73–88 (1995)

17. Avellaneda, M., Parás, A.: Dynamic hedging portfolios for derivative securities in the
presence of large transaction costs. Appl. Math. Finance 1, 165–194 (1994)

© Springer-Verlag London Ltd. 2017
R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-7338-0

465



466 References

18. Avellaneda, M., Parás, A.: Managing the volatility risk of derivative securities: the Lagrangian
volatility model. Appl. Math. Finance 3, 21–53 (1996)

19. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Oxford Science,
Oxford (2001)

20. Ball, C.A., Roma, A.: Stochastic volatility option pricing. J. Financ. Quant. Anal. 29, 589–607
(1994)

21. Barles, G.: Convergence of numerical schemes for degenerate parabolic equations arising in
finance theory. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 2–21.
Cambridge University Press, Cambridge (1997)

22. Barles, G., Burdeau, J., Romano, M., Samsœn, N.: Critical stock prices near expiration. Math.
Finance 5, 77–95 (1995)

23. Barles, G., Daher, Ch., Romano, M.: Convergence of numerical schemes for parabolic
equations arising in finance theory. Math. Models Methods Appl. Sci. 5, 125–143 (1995)

24. Barles, G., Soner, H.M.: Option pricing with transaction costs and a nonlinear Black-Scholes
equation. Finance Stochast. 2, 369–397 (1998)

25. Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Finance Stochast. 2,
41–68 (1997)

26. Barone-Adesi, G., Whaley, R.E.: Efficient analytic approximation of American option values.
J. Finance 42, 301–320 (1987)

27. Barone-Adesi, G., Whaley, R.E.: On the valuation of American put options on dividend-
paying stocks. Adv. Futures Options Res. 3, 1–13 (1988)

28. Barraquand, J., Pudet, T.: Pricing of American path-dependent contingent claims. Math.
Finance 6, 17–51 (1996)

29. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods. SIAM, Philadelphia (1994)

30. Bates, D.: Jumps and stochastic volatility: the exchange rate processes implicit in
Deutschmark options. Rev. Financ. Stud. 9, 69–107 (1996)

31. Baxter, M., Rennie, A.: Financial Calculus. An Introduction to Derivative Pricing. Cambridge
University Press, Cambridge (1996)

32. Behrends, E.: Introduction to Markov Chains. Vieweg, Braunschweig (2000)
33. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
34. Ben Hamida, S., Cont, R.: Recovering volatility from option prices by evolutionary optimiza-

tion. J. Comput. Finance 8(4), 43–76 (2005)
35. Bensoussan, A.: On the theory of option pricing. Acta Appl. Math. 2, 139–158 (1984)
36. Berridge, S.J., Schumacher, J.M.: Pricing high-dimensional American options using local

consistency conditions. In: Appleby, J.A.D., et al. (eds.) Numerical Methods for Finance.
Chapman & Hall, Boca Raton (2008)

37. Billingsley, P.: Probability and Measure. Wiley, New York (1979)
38. Bischi, G.I., Sushko, I. (eds.): Dynamic Modelling in Economics & Finance. Special Issue of

Chaos, Solitons and Fractals 29(3) (2006)
39. Bischi, G.I., Valori, V.: Nonlinear effects in a discrete-time dynamic model of a stock market.

Chaos Solitons Fractals 11, 2103–2121 (2000)
40. Björk, T.: Arbitrage Theory in Continuous Time. Oxford University Press, Oxford (1998)
41. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81,

637–659 (1973)
42. Blomeyer, E.C.: An analytic approximation for the American put price for options with

dividends. J. Financ. Quant. Anal. 21, 229–233 (1986)
43. Bouchaud, J.-P., Potters, M.: Theory of Financial Risks. From Statistical Physics to Risk

Management. Cambridge University Press, Cambridge (2000)
44. Bouleau, N.: Martingales et Marchés Financiers. Edition Odile Jacob, Paris (1998)
45. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math.

Stat. 29, 610–611 (1958)
46. Boyle, P.P.: Options: a Monte Carlo approach. J. Financ. Econ. 4, 323–338 (1977)



References 467

47. Boyle, P., Broadie, M., Glasserman, P.: Monte Carlo methods for security pricing. J. Econ.
Dyn. Control 21, 1267–1321 (1997)

48. Boyle, P.P., Evnine, J., Gibbs, S.: Numerical evaluation of multivariate contingent claims.
Rev. Financ. Stud. 2, 241–250 (1989)

49. Brachet, M.-E., Taflin, E., Tcheou, J.M.: Scaling transformation and probability distributions
for time series. Chaos Solitons Fractals 11, 2343–2348 (2000)

50. Brandimarte, P.: Numerical Methods in Finance and Economics. A MATLAB-Based Intro-
duction. Wiley, Hoboken (2006)

51. Breen, R.: The accelerated binomial option pricing model. J. Financ. Quant. Anal. 26, 153–
164 (1991)

52. Brennan, M.J., Schwartz, E.S.: The valuation of American put options. J. Finance 32, 449–
462 (1977)

53. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn.
Springer, New York (2002)

54. Brent, R.P.: On the periods of generalized Fibonacci recurrences. Math. Comput. 63, 389–401
(1994)

55. Briani, M., La Chioma, C., Natalini, R.: Convergence of numerical schemes for viscosity
solutions to integro-differential degenerate parabolic problems arising in financial theory.
Numer. Math. 98, 607–646 (2004)

56. Broadie, M., Detemple, J.: American option valuation: new bounds, approximations, and a
comparison of existing methods. Rev. Financ. Stud. 9, 1211–1250 (1996)

57. Broadie, M., Detemple, J.: Recent advances in numerical methods for pricing derivative
securities. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 43–66.
Cambridge University Press, Cambridge (1997)

58. Broadie, M., Glasserman, P.: Pricing American-style securities using simulation. J. Econ.
Dyn. Control 21, 1323–1352 (1997)

59. Broadie, M., Glasserman, P.: A stochastic mesh method for pricing high-dimensional
American options. J. Comput. Finance 7(4), 35–72 (2004)

60. Brock, W.A., Hommes, C.H.: Heterogeneous beliefs and routes to chaos in a simple asset
pricing model. J. Econ. Dyn. Control 22, 1235–1274 (1998)

61. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms 1. General
considerations. IMA J. Appl. Math. 6, 76–90 (1970)

62. Bruti-Liberati, N., Platen, E.: On weak predictor-corrector schemes for jump-diffusion
processes in finance. Research Paper, University of Sydney (2006)

63. Bunch, D.S., Johnson, H.: A simple and numerically efficient valuation method for American
puts using a modified Geske-Johnson approach. J. Finance 47, 809–816 (1992)

64. Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgaged-backed securities using
Brownian bridges to reduce effective dimension. J. Comput. Finance 1(1), 27–46 (1997)

65. Carmona, R., Durrleman, V.: Generalizing the Black–Scholes formula to multivariate contin-
gent claims. J. Comput. Finance 9(2), 43–67 (2005)

66. Carr, P., Faguet, D.: Fast accurate valuation of American options. Working paper, Cornell
University (1995)

67. Carr, P., Geman, H., Madan, D.B., Yor, M.: Stochastic volatility for Lévy processes. Math.
Finance 13, 345–382 (2003)

68. Carr, P., Madan, D.B.: Option valuation using the fast Fourier transform. J. Comput. Finance
2(4), 61–73 (1999)

69. Carr, P., Wu, L.: Time-changed Lévy processes and option pricing. J. Financ. Econ. 71, 113–
141 (2004)

70. Carriere, J.F.: Valuation of the early-exercise price for options using simulations and
nonparametric regression. Insur. Math. Econ. 19, 19–30 (1996)

71. Cash, J.R.: Two new finite difference schemes for parabolic equations. SIAM J. Numer. Anal.
21, 433–446 (1984)

72. Chan, T.F., Golub, G.H., LeVeque, R.J.: Algorithms for computing the sample variance:
analysis and recommendations. Am. Stat. 37, 242–247 (1983)



468 References

73. Chen, S.-H. (ed.): Genetic Algorithms and Genetic Programming in Computational Finance.
Kluwer, Boston (2002)

74. Chen, X., Chadam, J.: Analytical and numerical approximations for the early exercise
boundary for American put options. Dyn. Continuous Discrete Impulsive Syst. A 10, 649–
660 (2003)

75. Chen, X., Chadam, J.: A mathematical analysis of the optimal exercise boundary for
American put options. SIAM J. Math. Anal. 38, 1613–1641 (2007)

76. Chiarella, C., Dieci, R., Gardini, L.: Speculative behaviour and complex asset price dynamics.
In: Bischi, G.I. (ed.) Proceedings Urbino 2000 (2000)

77. Choi, H.I., Heath, D., Ku, H.: Valuation and hedging of options with general payoff under
transaction costs. J. Kor. Math. Soc. 41, 513–533 (2004)

78. Chung, K.L., Williams, R.J.: Introduction to Stochastic Integration. Birkhäuser, Boston
(1983)

79. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.)
Handbook of Numerical Analysis, Vol. II. Elsevier/North-Holland, Amsterdam (1991)

80. Ciarlet, P., Lions, J.L.: Finite Difference Methods (Part 1) Solution of Equations in Rn. North-
Holland/Elsevier, Amsterdam (1990)

81. Clarke, N., Parrot, A.K.: Multigrid for American option pricing with stochastic volatility.
Appl. Math. Finance 6, 177–179 (1999)

82. Clewlow, L., Strickland, C.: Implementing Derivative Models. Wiley, Chichester (1998)
83. Coleman, T.F., Li, Y., Verma, Y.: A Newton method for American option pricing. J. Comput.

Finance 5(3), 51–78 (2002)
84. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall, Boca Raton

(2004)
85. Cont, R., Voltchkova, E.: Finite difference methods for option pricing in jump-diffusion and

exponential Lévy models. SIAM J. Numer. Anal. 43, 1596–1626 (2005)
86. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates.

Econometrica 53, 385–407 (1985)
87. Cox, J.C., Ross, S., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7,

229–263 (1979)
88. Cox, J.C., Rubinstein, M.: Options Markets. Prentice Hall, Englewood Cliffs (1985)
89. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial

differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)
90. Crank, J.: Free and Moving Boundary Problems. Clarendon Press, Oxford (1984)
91. Crank, J.C., Nicolson, P.: A practical method for numerical evaluation of solutions of partial

differential equations of the heat-conductive type. Proc. Camb. Philos. Soc. 43, 50–67 (1947)
92. Cryer, C.: The solution of a quadratic programming problem using systematic overrelaxation.

SIAM J. Control 9, 385–392 (1971)
93. Cyganowski, S., Kloeden, P., Ombach, J.: From Elementary Probability to Stochastic

Differential Equations with MAPLE. Springer, Heidelberg (2001)
94. Dahlbokum, A.: Empirical performance of option pricing models based on time-changed

Lévy processes. Available at SSRN: http://ssrn.com/abstract=1675321 (2010)
95. Dai, M.: A closed-form solution for perpetual American floating strike lookback options. J.

Comput. Finance 4(2), 63–68 (2000)
96. Dai, T.-S., Lyuu, Y.-D.: The bino-trinomial tree: a simple model for efficient and accurate

option pricing. J. Deriv. 17, 7–24 (2010)
97. Dana, R.-A., Jeanblanc, M.: Financial Markets in Continuous Time. Springer, Berlin (2003)
98. Dempster, M.A.H., Hutton, J.P.: Pricing American stock options by linear programming.

Math. Finance 9, 229–254 (1999)
99. Dempster, M.A.H., Hutton, J.P., Richards, D.G.: LP valuation of exotic American options

exploiting structure. J. Comput. Finance 2(1), 61–84 (1998)
100. Derman, E., Kani, I.: Riding on a smile. Risk 7, 32–39 (1994)
101. Detemple, J.: American options: symmetry properties. In: Jouini, E., et al. (eds.) Option

Pricing, Interest Rates and Risk Management. Cambridge University Press, Cambridge (2001)

http://ssrn.com/abstract=1675321


References 469

102. Deutsch, H.-P.: Derivatives and Internal Models. Palgrave, Houndmills (2002)
103. Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)
104. d’Halluin, Y., Forsyth, P.A., Labahn, G.: A semi-Lagrangian approach for American Asian

options under jump diffusion. SIAM J. Sci. Comput. 27, 315–345 (2005)
105. d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims

under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)
106. Dieci, R., Bischi, G.-I., Gardini, L.: From bi-stability to chaotic oscillations in a macroeco-

nomic model. Chaos Solitons Fractals 12, 805–822 (2001)
107. Doeblin, W.: Sur l’équation de Kolmogorov (1940)
108. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)
109. Dowd, K.: Beyond Value at Risk: The New Science of Risk Management. Wiley, Chichester

(1998)
110. Duffie, D.: Dynamic Asset Pricing Theory, 2nd edn. Princeton University Press, Princeton

(1996)
111. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-

diffusions. Econometrica 68, 1343–1376 (2000)
112. Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)
113. Eberlein, E., Frey, R., Kalkbrener, M., Overbeck, L.: Mathematics in financial risk manage-

ment. Jahresber. DMV 109, 165–193 (2007)
114. Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1, 281–299 (1995)
115. Egloff, D.: Monte Carlo algorithms for optimal stopping and statistical learning. Ann. Appl.

Probab. 15, 1396–1432 (2005)
116. Ehrhardt, M. (ed.): Nonlinear Models in Mathematical Finance. New Research Trends in

Option Pricing. Nova Science, Hauppauge (2008)
117. Ekström, E., Lötstedt, P., Tysk, J.: Boundary values and finite difference methods for the

single factor term structure equation. Appl. Math. Finance 16, 253–259 (2009)
118. El Karoui, N., Jeanblanc-Picqué, M., Shreve, S.E.: Robustness of the Black and Scholes

formula. Math. Finance 8, 93–126 (1998)
119. Elliott, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Prob-

lems. Pitman, Boston (1982)
120. Elliott, R.J., Kopp, P.E.: Mathematics of Financial Markets. Springer, New York (1999)
121. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin

(1997)
122. Ender, M.: Model risk in option pricing. www.risknet.de/risknet-elibrary/kategorien/market-

risk (2008)
123. Epps, T.W.: Pricing Derivative Securities. World Scientific, Singapore (2000)
124. Faigle, U., Schrader, R.: On the Convergence of Stationary Distributions in Simulated

Annealing Algorithms. Inf. Process. Lett. 27, 189–194 (1988)
125. Fang, F., Oosterlee, C.W.: A novel option pricing method based on Fourier-cosine series

expansions. SIAM J. Sci. Comput. 31, 826–848 (2008)
126. Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by fourier-cosine

series expansions. Numer. Math. 114, 27–62 (2009)
127. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York

(1950)
128. Fengler, M.R.: Semiparametric Modeling of Implied Volatility. Springer, Berlin (2005)
129. Figlewski, S., Gao, B.: The adaptive mesh model: a new approach to efficient option pricing.

J. Financ. Econ. 53, 313–351 (1999)
130. Fishman, G.S.: Monte Carlo. Concepts, Algorithms, and Applications. Springer, New York

(1996)
131. Fisz, M.: Probability Theory and Mathematical Statistics. Wiley, New York (1963)
132. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction to Discrete Time. de Gruyter,

Berlin (2002)
133. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a

penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002)

www.risknet.de/risknet-elibrary/kategorien/market-risk
www.risknet.de/risknet-elibrary/kategorien/market-risk


470 References

134. Forsyth, P.A., Vetzal, K.R.: Numerical methods for nonlinear PDEs in finance. In: Duan,
J.-C., Härdle, W.K., Gentle, J.E. (eds.) Handbook of Computational Finance, pp. 503–528.
Springer, Berlin (2012)

135. Forsyth, P.A., Vetzal, K.R., Zvan, R.: A finite element approach to the pricing of discrete
lookbacks with stochastic volatility. Appl. Math. Finance 6, 87–106 (1999)

136. Forsyth, P.A., Vetzal, K.R., Zvan, R.: Convergence of numerical methods for valuing path-
dependent options using interpolation. Rev. Deriv. Res. 5, 273–314 (2002)

137. Fournié, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L., Touzi, N.: An application of Malliavin
calculus to Monte Carlo methods in finance. Finance Stochast. 3, 391–412 (1999)

138. Franke, J., Härdle, W., Hafner, C.M.: Statistics of Financial Markets. Springer, Berlin (2004)
139. Freedman, D.: Brownian Motion and Diffusion. Holden Day, San Francisco (1971)
140. Frey, R., Patie, P.: Risk management for derivatives in illiquid markets: a simulation-study. In:

Sandmann, K., Schönbucher, P. (eds.) Advances in Finance and Stochastics. Springer, Berlin
(2002)

141. Frey, R., Stremme, A.: Market volatility and feedback effects from dynamic hedging. Math.
Finance 7, 351–374 (1997)

142. Frutos, J. de: A spectral method for bonds. Comput. Oper. Res. 35, 64–75 (2008)
143. Fu, M.C., et al.: Pricing American options: a comparison of Monte Carlo simulation

approaches. J. Comput. Finance 4(3), 39–88 (2001)
144. Fusai, G., Sanfelici, S., Tagliani, A.: Practical problems in the numerical solution of PDEs in

finance. Rend. Studi Econ. Quant. 2001, 105–132 (2002)
145. Gander, M.J., Wanner, G.: From Euler, Ritz, and Galerkin to modern computing. SIAM Rev.

54, 627–666 (2012)
146. Geman, H., et al., eds.: Mathematical Finance. Bachelier Congress 2000. Springer, Berlin

(2002)
147. Gentle, J.E.: Random Number Generation and Monte Carlo Methods. Springer, New York

(1998)
148. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18,

209–232 (1998)
149. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71, 65–

87 (2003)
150. Geske, R., Johnson, H.E.: The American put option valued analytically. J. Finance 39, 1511–

1524 (1984)
151. Giles, M.: Variance reduction through multilevel Monte Carlo path calculations. In: Appleby,

J.A.D., et al. (eds.) Numerical Methods for Finance. Chapman & Hall, Boca Raton (2008)
152. Giles, M., Glasserman, P.: Smoking adjoints: fast Monte Carlo methods. Risk 19, 88–92

(2006)
153. Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.): Markov Chain Monte Carlo in Practice.

Chapman & Hall, Boca Raton (1996)
154. Glaser, J., Heider, P.: Arbitrage-free approximation of call price surfaces and input data risk.

Quant. Finance 12, 61–73 (2012). doi:10.1080/14697688.2010.514005
155. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)
156. Glover, K.J., Duck, P.W., Newton, D.P.: On nonlinear models of markets with finite liquidity:

some cautionary notes. SIAM J. Appl. Math. 70, 3252–3271 (2010)
157. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University

Press, Baltimore (1996)
158. Goodman, J., Ostrov, D.N.: On the early exercise boundary of the American put option. SIAM

J. Appl. Math. 62, 1823–1835 (2002)
159. Grandits, P.: Frequent hedging under transaction costs and a nonlinear Fokker-Planck PDE.

SIAM J. Appl. Math. 62, 541–562 (2001)
160. Grüne, L., Kloeden, P.E.: Pathwise approximation of random ODEs. BIT 41, 710–721 (2001)
161. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)
162. Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment. Springer

Series in Computational Mathematics, vol. 18. Berlin, Springer (1992)



References 471

163. Haentjens, T., in ’t Hout, K.: ADI finite difference discretization of the Heston-Hull-White
PDE. In: Simos, T.E., et al. (eds.) Numerical Analysis and Applied Mathematics. AIP
Conference Proceedings, vol. 1281, pp. 1995–1999 (2010)

164. Häggström, O.: Finite Markov Chains and Algorithmic Applications. Cambridge University
Press, Cambridge (2002)

165. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer, Berlin (1993)

166. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

167. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen, London (1964)
168. Hämmerlin, G., Hoffmann, K.-H.: Numerical Mathematics. Springer, Berlin (1991)
169. Han, H., Wu, X.: A fast numerical method for the Black–Scholes equation of American

options. SIAM J. Numer. Anal. 41, 2081–2095 (2003)
170. Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous

trading. Stoch. Process. Appl. 11, 215–260 (1981)
171. Hart, J.F.: Computer Approximations. Wiley, New York (1968)
172. Haug, E.G.: The Complete Guide to Option Pricing Formulas, 2nd edn. 2007. McGraw-Hill,

New York (1998)
173. He, C., Kennedy, J.S., Coleman, T., Forsyth, P.A., Li, Y., Vetzal, K.: Calibration and hedging

under jump diffusion. Rev. Deriv. Res. 9, 1–35 (2006)
174. Heider, P.: A condition number for the integral representation of American options. J. Comput.

Finance 11(2), 95–103 (2007/08)
175. Heider, P.: A second-order Nyström-type discretization for the early-exercise curve of

American put options. Int. J. Comput. Math. 86, 982–991 (2009)
176. Heider, P.: Numerical methods for non-linear Black–Scholes equations. Appl. Math. Finance

17, 59–81 (2010)
177. Heider, P., Schaeling, D.: Numerical methods for American options in nonlinear Black–

Scholes models. Preprint, Universität Köln (2010)
178. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications

to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)
179. Heston, S., Zhou, G.: On the rate of convergence of discrete-time contingent claims. Math.

Finance 10, 53–75 (2000)
180. Higham, D.J.: An algorithmic introduction to numerical solution of stochastic differential

equations. SIAM Rev. 43, 525–546 (2001)
181. Higham, D.J.: An Introduction to Financial Option Valuation. Cambridge University Press,

Cambridge (2004)
182. Higham, D.J., Kloeden, P.E.: Numerical methods for nonlinear stochastic differential equa-

tions with jumps. Numer. Math. 101, 101–119 (2005)
183. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)
184. Higham, N.J.: Computing the nearest correlation matrix — a problem from finance. IMA J.

Numer. Anal. 22, 329–343 (2002)
185. Hilber, N., Matache, A.-M., Schwab, C.: Sparse wavelet methods for option pricing under

stochastic volatility. J. Comput. Finance 8(4), 1–42 (2005)
186. Hofmann, N., Platen, E., Schweizer, M.: Option pricing under incompleteness and stochastic

volatility. Math. Finance 2, 153–187 (1992)
187. Hoggard, T., Whalley, A.E., Wilmott, P.: Hedging option portfolios in the presence of

transaction costs. Adv. Futur. Options Res. 7, 21–35 (1994)
188. Holmes, A.D., Yang, H.: A front-fixing finite element method for the valuation of American

options. SIAM J. Sci. Comput. 30, 2158–2180 (2008)
189. Honoré, P., Poulsen, R.: Option pricing with EXCEL. In: Nielsen, S. (ed.): Programming

Languages and Systems in Computational Economics and Finance, pp. 369–402. Kluwer,
Amsterdam (2002)

190. Huang, J.-Z., Subrahmanyam, M.G., Yu, G.G.: Pricing and hedging American options: a
recursive integration method. Rev. Financ. Stud. 9, 227–300 (1996)



472 References

191. Hull, J.C.: Options, Futures, and Other Derivatives, 4th edn. Prentice Hall, Upper Saddle
River (2000)

192. Hull, J., White, A.: The use of the control variate technique in option pricing. J. Financ. Quant.
Anal. 23, 237–251 (1988)

193. Hunt, P.J., Kennedy, J.E.: Financial Derivatives in Theory and Practice. Wiley, Chichester
(2000)

194. Ikonen, S., Toivanen, J.: Pricing American options using LU decomposition. Appl. Math. Sci.
1, 2529–2551 (2007)

195. Ikonen, S., Toivanen, J.: Operator splitting methods for pricing American options under
stochastic volatility. Numer. Math. 113, 299–324 (2009)

196. Ingersoll, J.E.: Theory of Financial Decision Making. Rowmann and Littlefield, Savage
(1987)

197. Int-Veen, R.: Avoiding numerical dispersion in option valuation. Report Universität Köln
2002; Comput. Vis. Sci. 10, 185–195 (2007)

198. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)
199. Jacod, J., Protter, P.: Probability Essentials, 2nd edn. Springer, Berlin (2003)
200. Jäckel, P.: Monte Carlo Methods in Finance. Wiley, Chichester (2002)
201. Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American

options. Acta Appl. Math. 21, 263–289 (1990)
202. Jamshidian, F.: An analysis of American options. Rev. Futur. Mark. 11, 72–80 (1992)
203. Jiang, L., Dai, M.: Convergence of binomial tree method for European/American path-

dependent options. SIAM J. Numer. Anal. 42, 1094–1109 (2004)
204. Johnson, H.E.: An analytic approximation for the American put price. J. Financ. Quant. Anal.

18, 141–148 (1983)
205. Jonen, C.: An efficient implementation of a least-squares Monte Carlo method for valuing

American-style options. Int. J. Comput. Math. 86, 1024–1039 (2009)
206. Jonen, C.: Efficient Pricing of High-Dimensional American-Style Derivatives: A Robust

Regression Monte Carlo method. PhD dissertation, Universität Köln (2011). http://kups.ub.
uni-koeln.de/4442

207. Joshi, M.S.: The Concepts and Practice of Mathematical Finance. Cambridge University
Press, Cambridge (2003)

208. Ju, N.: Pricing an American option by approximating its early exercise boundary as a
multipiece exponential function. Rev. Financ. Stud. 11, 627–646 (1998)

209. Kaebe, C., Maruhn, J.H., Sachs, E.W.: Adjoint-based Monte Carlo calibration of financial
market models. Finance Stochast. 13, 351–379 (2009)

210. Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software. Prentice Hall Series in
Computational Mathematics. Prentice Hall, Englewood Cliffs (1989)

211. Kallast, S., Kivinukk, A.: Pricing and hedging American options using approximations by
Kim integral equations. Eur. Finance Rev. 7, 361–383 (2003)

212. Kallsen, J.: A didactic note on affine stochastic volatility models. In: Kabanov, Y., et al. (eds.)
From Stochastic Calculus to Mathematical Finance. Springer, Berlin (2006)

213. Kamrad, B., Ritchken, P.: Multinomial approximating models for options with k state
variables. Manag. Sci. 37, 1640–1652 (1991)

214. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM
J. Numer. Anal. 38, 1357–1368 (2000)

215. Kantorovich, L.W., Akilov, G.P.: Functional Analysis in Normed Spaces. Pergamon Press,
Elmsford (1964)

216. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer
Graduate Texts. Springer, New York (1991)

217. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)
218. Kat, H.M.: Pricing Lookback options using binomial trees: an evaluation. J. Financ. Eng. 4,

375–397 (1995)
219. Kebaier, A.: Statistical Romberg extrapolation: a new variance reduction method and

applications to option pricing. Ann. Appl. Probab. 15, 2681–2705 (2005)

http: //kups.ub.uni-koeln.de/4442
http: //kups.ub.uni-koeln.de/4442


References 473

220. Kemna, A.G.Z., Vorst, A.C.F.: A pricing method for options based on average asset values. J.
Bank. Finance 14, 113–129 (1990)

221. Khaliq, A.Q.M., Voss, D.A., Yousuf, M.: Pricing exotic options with L-stable Padé schemes.
J. Bank. Finance 31, 3438–3461 (2007)

222. Kim, J.: The analytic valuation of American options. Rev. Financ. Stud. 3, 547–572 (1990)
223. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science

220, 671–680 (1983)
224. Klassen, T.R.: Simple, fast and flexible pricing of Asian options. J. Comput. Finance 4(3),

89–124 (2001)
225. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer,

Berlin (1992)
226. Knuth, D.: The Art of Computer Programming, vol. 2. Addison-Wesley, Reading (1995)
227. Kocis, L., Whiten, W.J.: Computational investigations of low-discrepancy sequences. ACM

Trans. Math. Softw. 23, 266–294 (1997)
228. Korn, R., Müller, S.: The decoupling approach to binomial pricing of multi-asset options. J.

Comput. Finance 12(3), 1–30 (2009)
229. Kou, S.G.: A jump diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)
230. Kovalov, P., Linetsky, V., Marcozzi, M.: Pricing multi-asset American options: a finite element

method-of-lines with smooth penalty. J. Sci. Comput. 33, 209–237 (2007)
231. Kreiss, H.O., Thomée, V., Widlund, O.: Smoothing of initial data and rates of convergence

for parabolic difference equations. Commun. Pure Appl. Math. 23, 241–259 (1970)
232. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley, Chichester (1997)
233. Krylov, N.V.: Controlled Diffusion Processes. Springer, Heidelberg (1980)
234. Kwok, Y.K.: Mathematical Models of Financial Derivatives. Springer, Singapore (1998)
235. Kwok, Y.K., Leung, K.S., Wong, H.Y.: Efficient options pricing using the Fast Fourier

Transform. In: Duan, J.-C., Härdle, W.K., Gentle, J.E. (eds.) Handbook of Computational
Finance, pp. 579–604. Springer, Berlin (2012)

236. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. The Initial Value
Problem. Wiley, Chichester (1991)

237. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chap-
man & Hall, London (1996)

238. Lange, K.: Numerical Analysis for Statisticians. Springer, New York (1999)
239. L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice

structure. Math. Comput. 68, 249–260 (1999)
240. Leentvaar, C.C.W., Oosterlee, C.W.: On coordinate transformation and grid stretching for

sparse grid pricing of basket options. J. Comput. Math. 222, 193–209 (2008)
241. Lehn, J.: Random number generators. GAMM-Mitteilungen 25, 35–45 (2002)
242. Leisen, D.P.J.: Pricing the American put option: a detailed convergence analyis for binomial

models. J. Econ. Dyn. Control 22, 1419–1444 (1998)
243. Leisen, D.P.J.: The random-time binomial model. J. Econ. Dyn. Control 23, 1355–1386

(1999)
244. Leisen, D.P.J., Reimer, M.: Binomial models for option valuation – examining and improving

convergence. Appl. Math. Finance 3, 319–346 (1996)
245. Leland, H.E.: Option pricing and replication with transaction costs. J. Finance 40, 1283–1301

(1985)
246. Levy, G.: Computational finance using C and C#. Elsevier, Amsterdam (2008)
247. Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple least-

squares approach. Rev. Financ. Stud. 14, 113–147 (2001)
248. Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W.: A fast and accurate FFT-based method for

pricing early-exercise options under Lévy processes. SIAM J. Sci. Comput. 30, 1678–1705
(2008)

249. Lux, T.: The socio-economic dynamics of speculative markets: interacting agents, chaos, and
the fat tails of return distributions. J. Econ. Behav. Organ. 33, 143–165 (1998)



474 References

250. Lyons, T.J.: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance
2, 117–133 (1995)

251. Lyuu, Y.-D.: Financial Engineering and Computation. Principles, Mathematics, Algorithms.
Cambridge University Press, Cambridge (2002)

252. MacMillan, L.W.: Analytic approximation for the American put option. Adv. Futur. Opt. Res.
1, 119–139 (1986)

253. Madan, D.B., Seneta, E.: The variance-gamma (V.G.) model for share market returns. J. Bus.
63, 511–524 (1990)

254. Mainardi, R., Roberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time
finance II: the waiting-time distribution. Physica A 287, 468–481 (2000)

255. Maller, R.A., Solomon, D.H., Szimayer, A.: A multinomial approximation for American
option prices in Lévy process models. Math. Finance 16, 613–633 (2006)

256. Mandelbrot, B.B.: A multifractal walk down Wall Street. Sci. Am. 280, 70–73 (1999)
257. Manteuffel, T.A., White, A.B., Jr.: The numerical solution of second-order boundary value

problems on nonuniform meshes. Math. Comput. 47, 511–535 (1986)
258. Marchesi, M., Cinotti, S., Focardi, S., Raberto, M.: Development and testing of an artificial

stock market. In: Bischi, G.I. (ed.) Proceedings Urbino 2000 (2000)
259. Marsaglia, G.: Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. USA 61,

23–28 (1968)
260. Marsaglia, G., Bray, T.A.: A convenient method for generating normal variables. SIAM Rev.

6, 260–264 (1964)
261. Marsaglia, G., Tsang, W.W.: The ziggurat method for generating random variables. J. Stat.

Softw. 5(8), 1–7 (2000)
262. Mascagni, M.: Parallel pseudorandom number generation. SIAM News 32, 5 (1999)
263. Matache, A.-M., von Petersdorff, T., Schwab, C.: Fast deterministic pricing of options on

Lévy driven assets. Report 2002–11, Seminar for Applied Mathematics, ETH Zürich (2002)
264. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed

uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8, 3–30
(1998)

265. Mayo, A.: Fourth order accurate implicit finite difference method for evaluating American
options. In: Proceedings of Computational Finance, London (2000)

266. McCarthy, L.A., Webber, N.J.: Pricing in three-factor models using icosahedral lattices. J.
Comput. Finance 5(2), 1–33 (2001/02)

267. McDonald, R.L., Schroder, M.D.: A parity result for American options. J. Comput. Finance
1(3), 5–13 (1998)

268. Mel’nikov, A.V., Volkov, S.N., Nechaev, M.L.: Mathematics of Financial Obligations.
American Mathematical Society, Providence (2002)

269. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4, 141–183 (1973)
270. Merton, R.: Option pricing when underlying stock returns are discontinous. J. Financ. Econ.

3, 125–144 (1976)
271. Merton, R.C.: Continuous-Time Finance. Blackwell, Cambridge (1990)
272. Metwally, S.A.K., Atiya, A.: Using Brownian bridge for fast simulation of jump-diffusion

processes and barrier options. J. Derv. 10, 43–54 (2002)
273. Meyer, G.H.: Numerical Investigation of early exercise in American puts with discrete

dividends. J. Comput. Finance 5(2), 37–53 (2002)
274. Mikosch, T.: Elementary Stochastic Calculus, with Finance in View. World Scientific,

Singapore (1998)
275. Mil’shtein, G.N.: Approximate integration of stochastic differential equations. Theory Probab.

Appl. 19, 557–562 (1974)
276. Milshtein, G.N.: A method of second-order accuracy integration of stochastic differential

equations. Theory Probab. Appl. 23, 396–401 (1978)
277. van Moerbeke, P.: On optimal stopping and free boundary problems. Rocky Mt. J. Math. 4,

539–578 (1974)
278. Moro, B.: The full Monte. Risk 8, 57–58 (1995)



References 475

279. Morokoff, W.J.: Generating quasi-random paths for stochastic processes. SIAM Rev. 40, 765–
788 (1998)

280. Morokoff, W.J., Caflisch, R.E.: Quasi-random sequences and their discrepancies. SIAM J.
Sci. Comput. 15, 1251–1279 (1994)

281. Morton, K.W.: Numerical Solution of Convection-Diffusion Problems. Chapman & Hall,
London (1996)

282. Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling, 2nd edn. 2005.
Springer, Berlin (1997)

283. Neftci, S.N.: An Introduction to the Mathematics of Financial Derivatives. Academic Press,
San Diego (1996)

284. Newton, N.J.: Continuous-time Monte Carlo methods and variance reduction. In: Rogers,
L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 22–42. Cambridge University
Press, Cambridge (1997)

285. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math.
Soc. 84, 957–1041 (1978)

286. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for
Industrial and Applied Mathematics, Philadelphia (1992)

287. Niederreiter, H., Jau-Shyong Shiue, P. (eds.): Monte Carlo and Quasi-Monte Carlo methods
in scientific computing. In: Proceedings of a Conference at the University of Nevada, Las
Vegas, Nevada, USA, 1994. Springer, New York (1995)

288. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical
solution of American option problems. J. Comput. Finance 5(4), 69–97 (2002)

289. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty methods for the numerical solution of
American multi-asset option problems. J. Comput. Appl. Math. 222, 3–16 (2008)

290. Nielsen, L.T.: Pricing and Hedging of Derivative Securities. Oxford University Press, Oxford
(1999)

291. Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)
292. Omberg, E.: The valuation of American put options with exponential exercise policies. Adv.

Futur. Opt. Res. 2, 117–142 (1987)
293. Oosterlee, C.W.: On multigrid for linear complementarity problems with application to

American-style options. Electron. Trans. Numer. Anal. 15, 165–185 (2003)
294. Panini, R., Srivastav, R.P.: Option pricing with Mellin transforms. Math. Comput. Model. 40,

43–56 (2004)
295. Papageorgiou, A., Traub, J.F.: New results on deterministic pricing of financial derivatives.

Columbia University Report CUCS-028-96 (1996)
296. Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portf. Manag. 22, 113–120

(1995)
297. Pelsser, A., Vorst, T.: The binomial model and the Greeks. J. Deriv. 1, 45–49 (1994)
298. Peyret, R., Taylor, T.D.: Computational Methods for Fluid Flow. Springer, New York (1983)
299. Pham, H.: Optimal stopping, free boundary, and American option in a jump-diffusion model.

Appl. Math. Optim. 35, 145–164 (1997)
300. Pironneau, O., Hecht, F.: Mesh adaption for the Black & Scholes equations. East-West J.

Numer. Math. 8, 25–35 (2000)
301. Platen, E.: An introduction to numerical methods for stochastic differential equations. Acta

Numer. 8, 197–246 (1999)
302. Pliska, S.R.: Introduction to Mathematical Finance. Discrete Time Models. Blackwell,

Malden (1997)
303. Pooley, D.M., Forsyth, P.A., Vetzal, K.R.: Numerical convergence properties of option pricing

PDEs with uncertain volatility. IMA J. Numer. Anal. 23, 241–267 (2003)
304. Pooley, D.M., Forsyth, P.A., Vetzal, K., Simpson, R.B.: Unstructured meshing for two asset

barrier options. Appl. Math. Finance 7, 33–60 (2000)
305. Pooley, D.M., Vetzal, K.R., Forsyth, P.A.: Convergence remedies for non-smooth payoffs in

option pricing. J. Comput. Finance 6(4), 25–40 (2003)



476 References

306. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FOR-
TRAN. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge
(1992)

307. Protter, P.E.: Stochastic Integration and Differential Equations. Springer, Berlin (2004)
308. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New York (2000)
309. Quecke, S.: Efficient numerical methods for pricing American options under Lévy models.

PhD-dissertation, Universität Köln (2007). http://kups.ub.uni-koeln.de/2018
310. Rannacher, R.: Finite element solution of diffusion problems with irregular data. Numer.

Math. 43, 309–327 (1984)
311. Rebonato, R.: Interest-Rate Option Models: Understanding, Analysing and Using Models for

Exotic Interest-Rate Options. Wiley, Chichester (1996)
312. Reisinger, C.: Numerische Methoden für hochdimensionale parabolische Gleichungen am

Beispiel von Optionspreisaufgaben. PhD Thesis, Universität Heidelberg (2004)
313. Rendleman, R.J., Bartter, B.J.: Two-state option pricing. J. Finance 34, 1093–1110 (1979)
314. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991)
315. Ribeiro, C., Webber, N.: A Monte Carlo method for the normal inverse Gaussian option

valuation model using an inverse Gaussian bridge. Working paper, City University, London
(2002)

316. Ribeiro, C., Webber, N.: Valuing path dependent options in the variance-gamma model by
Monte Carlo with a gamma bridge. J. Comput. Finance 7(2), 81–100 (2003/04)

317. Ripley, B.D.: Stochastic Simulation. Wiley Series in Probability and Mathematical Statistics.
Wiley, New York (1987)

318. Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1989)
319. Rogers, L.C.G.: Monte Carlo valuation of American options. Math. Finance 12, 271–286

(2002)
320. Rogers, L.C.G., Shi, Z.: The value of an Asian option. J. Appl. Probab. 32, 1077–1088 (1995)
321. Rogers, L.C.G., Talay, D. (eds.): Numerical Methods in Finance. Cambridge University Press,

Cambridge (1997)
322. Rubinstein, M.: Implied binomial trees. J. Finance 69, 771–818 (1994)
323. Rubinstein, M.: Return to oz. Risk 7(11), 67–71 (1994)
324. Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1981)
325. Ruppert, D.: Statistics and Finance. An Introduction. Springer, New York (2004)
326. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
327. Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential

equations. SIAM J. Numer. Anal. 33, 2254–2267 (1996)
328. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University

Press, Cambridge (1999)
329. Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein-Uhlenbeck process: an extension.

Eur. Finance Rev. 3(1), 23–46 (1999)
330. Schönbucher, P.J., Wilmott, P.: The feedback effect of hedging in illiquid markets. SIAM J.

Applied Mathematics 61, 232–272 (2000)
331. Schoenmakers, J.G.M., Heemink, A.W.: Fast Valuation of Financial Derivatives. J. Comput.

Finance 1, 47–62 (1997)
332. Schoutens, W.: Lévy Processes in Finance. Wiley, Chichester (2003)
333. Schuss, Z.: Theory and Applications of Stochastic Differential Equations. Wiley Series in

Probability and Mathematical Statistics. Wiley, New York (1980)
334. Schwarz, H.R.: Numerical Analysis. Wiley, Chichester (1989)
335. Schwarz, H.R.: Methode der finiten Elemente. Teubner, Stuttgart (1991)
336. Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Springer Interdisciplinary

Applied Mathematics, vol. 5. Springer, New York (2010)
337. Seydel, R.U.: Lattice approach and implied trees. In: Duan, J.-C., Härdle, W.K., Gentle, J.E.

(eds.) Handbook of Computational Finance, pp. 551–577. Springer, Berlin (2012)
338. Seydel, R.U.: Risk and computation. In: Glau, K., Scherer, M., Zagst, R. (eds.) Innovations in

Quantitative Risk Management, pp. 305–316. Springer, Heidelberg (2015)

http://kups.ub.uni-koeln.de/2018


References 477

339. Shiryaev, A.N.: Essentials of Stochastic Finance. Facts, Models, Theory. World Scientific,
Singapore (1999)

340. Shreve, S.E.: Stochastic Calculus for Finance II. Continuous-Time Models. Springer, New
York (2004)

341. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods,
2nd edn. Clarendon Press, Oxford (1978)

342. Smithson, C.: Multifactor options. Risk 10(5), 43–45 (1997)
343. Spanier, J., Maize, E.H.: Quasi-random methods for estimating integrals using relatively small

samples. SIAM Rev. 36, 18–44 (1994)
344. Stauffer, D.: Percolation models of financial market dynamics. Adv. Complex Syst. 4, 19–27

(2001)
345. Steele, J.M.: Stochastic Calculus and Financial Applications. Springer, New York (2001)
346. Steiner, M., Wallmeier, M., Hafner, R.: Baumverfahren zur Bewertung diskreter Knock-Out-

Optionen. OR Spektrum 21, 147–181 (1999)
347. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1996)
348. Stoer, J., Witzgall, C.: Convexity and Optimization in Finite Dimensions I. Springer, Berlin

(1970)
349. Stojanovic, S.: Computational Financial Mathematics Using MATHEMATICA. Birkhäuser,

Boston (2003)
350. Strang, G.: Computational Science and Engineering. Wellesley, Cambridge (2007)
351. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood

Cliffs (1973)
352. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws.

SIAM J. Numer. Anal. 21, 995–1011 (1984)
353. Tavella, D., Randall, C.: Pricing Financial Instruments. The Finite Difference Method. Wiley,

New York (2000)
354. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer, Dordrecht (1995)
355. Thomas, D.B., Luk, W., Leong, P.H.W., Villasenor, J.D.: Gaussian random number genera-

tors. ACM Comput. Surv. 39(4), Article 11 (2007)
356. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer,

New York (1995)
357. Thomas, J.W.: Numerical Partial Differential Equations. Conservation Laws and Elliptic

Equations. Springer, New York (1999)
358. Tian, Y.: A modified lattice approach to option pricing. J. Futur. Mark. 13, 563–577 (1993)
359. Tian, Y.: A flexible binomial option pricing model. J. Futur. Mark. 19, 817–843 (1999)
360. Tilley, J.A.: Valuing American options in a path simulation model. Trans. Soc. Actuar. 45,

83–104 (1993)
361. Topper, J.: Finite element modeling of exotic options. In: OR Proceedings 1999, pp. 336–341

(2000)
362. Topper, J.: Financial Engineering with Finite Elements. Wiley, New York (2005)
363. Traub, J.F., Wozniakowski, H.: The Monte Carlo algorithm with a pseudo-random generator.

Math. Comput. 58, 323–339 (1992)
364. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001)
365. Tsay, R.S.: Analysis of Financial Time Series. Wiley, New York (2002)
366. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)
367. Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)
368. Vellekoop, M.H., Nieuwenhuis, J.W.: Efficient pricing of derivatives on assets with discrete

dividends. Appl. Math. Finance 13, 265–284 (2006)
369. Vichnevetsky, R.: Computer Methods for Partial Differential Equations. Volume I. Prentice-

Hall, Englewood Cliffs (1981)
370. Villeneuve, S., Zanette, A.: Parabolic ADI methods for pricing American options on two

stocks. Math. Oper. Res. 27, 121–149 (2002)
371. Vretblad, A.: Fourier Analysis and Its Applications. Springer, New York (2003)



478 References

372. Wallace, C.S.: Fast pseudorandom numbers for normal and exponential variates. ACM Trans.
Math. Softw. 22(1), 119–127 (1996)

373. Wang, X., Phillips, P.C.B., Yu, J.: Bias in estimating multivariate and univariate diffusion. J.
Econ. 161, 228–245 (2011)

374. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)
375. Wilmott, P.: Derivatives. Wiley, Chichester (1998)
376. Wilmott, P., Dewynne, J., Howison, S.: Option Pricing. Mathematical Models and Computa-

tion. Oxford Financial Press, Oxford (1996)
377. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)
378. Zagst, R.: Interest-Rate Management. Springer, Berlin (2002)
379. Zhang, J.E.: A semi-analytical method for pricing and hedging continuously sampled

arithmetic average rate options. J. Comput. Finance 5(1), 59–79 (2001)
380. Zhao, Y., Ziemba, W.T.: Hedging errors with Leland’s option model in the presence of

transaction costs. Finance Res. Lett. 4, 49–58 (2007)
381. Zhu, Y.-I., Wu, X., Chern, I.-L.: Derivative Securities and Difference Methods. Springer, New

York (2004)
382. Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. McGraw-Hill,

London (1977)
383. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for PDE models of Asian

options. J. Comput. Finance 1(2), 39–78 (1997/98)
384. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic

volatility. J. Comput. Appl. Math. 91, 199–218 (1998)
385. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Discrete Asian barrier options. J. Comput. Finance 3(1),

41–67 (1999)
386. Zvan, R., Vetzal, K.R., Forsyth, P.A.: PDE methods for pricing barrier options. J. Econ. Dyn.

Control 24, 1563–1590 (2000)



Index

acceptance-rejection method. see rejection
method

accuracy, 15, 22, 145, 213, 222–227, 267, 460
adjoint method, 168
algorithms, 13

American option, 213, 218, 220
American option by FEM, 281
American put, 217
assembling, 271
Bermudan option, 56
binomial method, 24
Box–Muller method, 98
correlated normal variates, 104
dynamic programming, 162
Euler method, 42
Fibonacci generator, 90
interpolation, 231
inversion of normal distribution, 461
Lax–Friedrichs method, 335
Milstein integration, 134
polar method, 99
quadratic approximation, 234
radical inverse function, 123
regression, 163, 165
rejection method, 97
tree under dividend payment, 445
tridiagonal system, 425
Wiener process, 36

amplitude, 332
analytic method, 180, 227–241, 250, 256
analytic solution, 58, 61, 80, 179, 219, 233,

379, 441
antithetic variates, 148–150
arbitrage argument, 5, 203, 391–394, 415
arbitrage strategy, 199, 254

arclength, 285
assembling, 270–271, 279, 290, 304
autonomous, 130
Avellaneda, 361, 362

Bachelier, 34, 70
backward difference, 191, 192, 211
backward difference formula (BDF), 184, 246,

252, 365, 368
bandwidth, 305
Barles–Soner model, 357–358, 384, 386
basis function, 164, 263–266, 273, 274, 278,

279, 288, 294, 295, 299, 301
basis representation, 263, 288
benchmark, 241
Bernoulli experiment, 59, 411, 453
bias, 145–148, 155, 172, 177
bilinear form, 293, 295, 298, 299
binomial distribution, 68, 76, 411, 453
binomial method, 16–30, 67, 74, 75, 77, 82,

161, 242, 244, 314, 346, 348, 439,
441, 447

Black, 9, 66, 70, 172
Black–Scholes equation, 10, 11, 52, 67, 72, 81,

82, 179–181, 205, 208, 232, 302,
309, 321, 324, 347, 353, 394–396,
405, 436, 440

Black–Scholes formula, 12, 143, 176, 227,
229, 244, 396, 441, 444

Black–Scholes inequality, 205–208, 247
Black–Scholes model, 44, 65, 66, 125, 140,

282, 340, 355, 402, 417
bond, 68, 355, 390, 392, 394, 423

© Springer-Verlag London Ltd. 2017
R.U. Seydel, Tools for Computational Finance, Universitext,
DOI 10.1007/978-1-4471-7338-0

479



480 Index

boundary condition, 11, 179, 182, 184,
195–199, 204, 210, 213, 216, 219,
222, 247, 254, 264, 272, 273, 282,
286, 287, 292–294, 309, 313, 314,
318, 319, 340, 364, 366

boundary integral, 286, 287, 289
boundary-value problem, 272, 319, 345
bounds on options, 5, 8, 9, 72, 159–161, 199,

228–230, 241, 457–459
Box–Muller method, 97–100, 115
Brennan–Schwartz method, 217, 242, 249, 255
bridge, 140, 166, 171, 346
Brownian bridge, 139, 172, 176
Brownian motion, 10, 34, 35, 69, 372, 413
business time, 374

calibration, 63–66, 308, 405, 432, 452
cancellation, 13, 74, 78
Carr–Madan method, 65, 379–384
Cauchy distribution, 118
Cea lemma, 296, 297
central limit theorem, 92, 106, 107, 146, 410,

439
CGMY process, 373
chain rule, 51, 94, 130, 167
characteristic exponent, 370
characteristic function, 370, 371, 380, 382, 385
characteristic triplet, 371
Cholesky decomposition, 103, 104, 115, 121,

170, 313, 347, 425
classical solution, 278, 292
clustering, 107, 108
collocation, 265
comparison of methods, 241–244
competing function, 276, 277
complementarity, 180, 208–218, 247, 251, 305,

340, 341, 363
complete market, 353, 398, 417
complexity, 15, 257
composite trapezoidal sum, 422
compound Poisson process, 61, 371
condition, 419
condition number, 250
conditional expectation, 413
conforming element, 300
congruential generator, 84–90, 114, 117
conservation law, 334, 346
consistency, 366
contact point, 200, 204, 217, 218
continuation region, 24, 200, 201, 205, 206,

256, 278, 363, 400, 401
continuation value, 23, 56, 162, 441
continuity, 295, 436

control variate, 115, 152–153, 177
convection, 325, 327, 329, 334, 403
convection term, 289
convergence, 22, 26–27, 68, 75, 107, 128, 129,

142–144, 164, 216, 226, 227, 243,
246, 295, 344, 366, 367, 370, 423,
426, 427, 435, 439–441

convergence in the mean, 38, 40, 133, 412
convex, 200, 214, 254, 357, 360, 404, 409
correlation, 49, 50, 85, 90, 102–105, 112, 121,

149, 152, 153, 178, 313, 314, 450
Courant number, 328, 330
Courant–Friedrichs–Lewy condition (CFL),

330, 336
covariance, 137, 149, 152, 313, 409
covariance matrix, 103, 104, 120, 140, 301
Cox–Ingersoll–Ross process (CIR), 47, 50, 70,

71, 80, 135, 174
Cox–Ross–Rubinstein model, 67
Cramer rule, 303
Crank–Nicolson method, 192–195, 198, 211,

221, 222, 224, 246, 247, 252, 275,
280, 339, 365, 369

Cryer, 214, 216
curse of dimension, 116, 257, 312, 314
curve fitting, 433

DAX, 66, 122
decomposition of a matrix, 192, 195, 217, 424,

434
delta, 12, 27, 34, 77, 166, 179, 240, 256, 324,

333, 356, 395, 397, 420
density, 53–55, 58, 70, 75, 80, 93–96, 98, 100,

102, 103, 108, 116, 119, 141, 142,
197, 237, 371, 372, 375, 380, 385,
408

derivative, financial, 1, 390
Derman–Kani tree, 451–455
difference equation, 186
difference quotient, 27, 77, 79, 166, 183, 222,

235, 253, 259, 324, 327, 350, 424
diffusion, 42, 182, 325, 327, 329, 337, 404, 405
diffusion model, 41
diffusion term, 289
dimension, 49, 107, 111, 115, 116, 138, 141,

143, 172, 173, 257, 263, 299, 308,
312

Dirac delta function, 265, 404
Dirichlet condition, 196, 274, 286–288, 292
discounting, 33, 47, 68, 141, 142, 372, 418
discrepancy, 108–113, 115, 116, 123, 156
discrete dividend, 245, 248, 251, 397, 403,

441–446



Index 481

discrete weak solution, 295
discretization, 14, 16, 36, 209, 211–213, 260,

275, 320, 365, 376
discretization error, 14, 222, 223, 235, 246
dispersion, 332–334, 403
dissipation, 331, 334, 338
distribution, 13, 35, 44, 45, 53, 60, 68, 70, 73,

76, 83, 85, 92, 93, 96, 118, 127, 129,
142, 172, 233, 370, 408–412, 460

divergence, 284, 285
divergence form, 283
divergence free, 302
dividend, 10, 29, 77, 140–142, 179, 180, 197,

200, 204, 241, 245, 251, 253, 373,
396, 401, 402, 441–446, 450

domain, 10, 11, 14, 181, 205, 259, 261, 263,
283, 284, 286, 287, 291, 299, 300,
342

Dow Jones Industrial Average, 1, 34
drift, 42, 44, 62, 415, 416
drift-implicit scheme, 175
drifted Brownian motion, 36, 46, 372
Dupire equation, 404–405
dynamic programming, 23, 56, 67, 161, 249
dynamical system, 71

early exercise, 5, 23, 24, 143, 157, 161, 179,
199–206, 251, 316

early-exercise curve, 8, 67, 158, 159, 161,
180, 201–207, 220, 230, 235, 236,
238, 240, 244, 246, 248–250, 278,
399–404, 440, 446

early-exercise premium, 232, 237, 239
efficiency, 15, 213, 223, 265
eigenmode, 327
eigenvalue, 121, 189, 190, 194, 214, 301, 327,

328, 345, 424, 426, 428
eigenvector, 121, 189, 301, 426, 428
element matrix, 269, 270, 302, 304
elliptic domain, 259
ellipticity, 295, 435
empirical data, 57
equidistributed, 88, 108–112, 156
error control, 15, 152, 185, 223–224, 239
error dependence on dimension, 143, 173
error estimates, 291–299
error function, 73, 460
error of approximation, 127
error projection, 295, 298
error propagation, 188
Euler discretization, 126, 128, 130, 134, 135,

138, 143, 147, 148, 167, 173, 246,
247, 365, 377

EURIBOR, 64
excess return, 46
exercise an option, 1–8, 56, 240
exercise price. see strike
expectation, 17, 55, 69, 78, 125, 129, 137, 371,

398, 408–412, 454
expiration, 1. see maturity
explicit method, 126, 186–192, 198, 211, 343
exponential distribution, 60, 92, 94, 119
exponential function, 184, 240, 245, 250, 460
extrapolation, 25, 27, 76, 136, 138, 226, 227,

236, 242, 256, 422, 441

factorization, 103, 104, 424
fast Fourier transformation (FFT), 65, 350,

379–384, 426
Faure, 112, 116
feedback, 361
Feller condition, 70, 135
Feynman–Kac theorem, 172
Fibonacci generator, 90, 114, 118, 120
filtration, 157, 407, 413
finite element, 259, 261
finite-difference method, 179, 183–209,

211–213, 220, 244, 259, 261, 321,
341

finite-element method, 226, 259–305, 314
finite-element space, 294
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Gaussian distribution. see normal distribution
Gaussian process, 35
geometric Brownian motion (GBM), 44, 47,

52, 53, 57, 58, 61, 70, 127, 130, 135,
140, 145, 150, 153, 180, 196, 301,
307, 313, 317, 353, 394, 417

Gerschgorin theorem, 194, 424
Girsanov theorem, 415
Godunov, 346
gradient, 284, 303, 331, 336, 338, 432, 435,

436
greek, 12, 29, 77, 166, 179, 221, 240, 244, 250,

397
grid, 14, 16, 24, 74, 163, 183–185, 209, 221,

222, 251, 259–261, 274, 321, 335,
342, 376, 452

Halton sequence, 112, 113, 116, 155
Harrison–Pliska theorem, 415
hat function, 265–271, 273, 274, 288, 289, 294,

297
heavy tail, 70
hedging, 6, 12, 68, 179, 324, 353, 354, 356,

390, 391, 395
Hermite polynomial, 301
Hesse matrix, 214, 300, 433, 435, 436
Heston model, 49, 65, 66, 71, 135, 170, 172,

178, 291, 385
high contact, 204, 233, 236, 240, 248
Hilbert space, 431
histogram, 44, 57, 81, 100
hitting point, 178
hitting time, 157
holding value, 162
hyperbolic process, 373

icosahedral volume, 314
implicit method, 135, 192, 246, 247, 251, 285,

343, 368, 377, 387
implied tree, 68
implied volatility, 65, 79, 404, 444
importance sampling, 172
incomplete market, 353, 395, 417
independent, 409
initial condition, 182, 275, 405
inner product, 264, 292, 431
instability, 187, 307
integrable, 294, 431
integral equation, 41, 180, 238, 284
integral representation, 54, 140, 141, 197, 228,

237, 250, 380, 404

integral-equation method, 237–240, 242, 244,
257

integration by parts, 174, 266, 272, 274, 278,
284, 293

interest rate, 17, 31, 33, 172, 390, 393
interest rate r, 6
interpolation, 15, 56, 139, 172, 180, 228–231,

241, 246, 250, 261, 266, 268, 297,
321, 420, 453

inversion method, 92, 114, 118, 156
inversion of normal distribution, 119, 461
iterative method, 423, 426, 432
Ito integral, 40, 69, 174, 175
Ito lemma, 51–54, 69, 70, 80, 131, 133, 313,

316, 355, 395, 412, 417
Ito process, 51, 81
Ito stochastic differential equation, 41
Ito–Taylor expansion, 131

Jacobi method, 428
Jacobian matrix, 95, 98, 138, 423
Jensen inequality, 229, 409
Johnson interpolation, 228, 242, 244
jump, 10, 245, 320, 442
jump diffusion, 61, 62, 71, 139, 370, 372, 374,

376, 378, 385, 398–399
jump process, 58–63, 370–379

Karhunen–Loeve expansion, 299
Karush–Kuhn–Tucker theorem, 214
Kim method, 237, 250, 257
KISS generator, 114
Koksma–Hlawka theorem, 110, 115
Kou model, 373
Kronecker symbol, 168

lack of smoothness, 206, 213, 221, 224, 246,
249, 267, 293, 440

Lagrange polynomial, 420
Laplace density, 97
Laplace distribution, 118
lattice method, 67
lattice structure, 85–89, 117
law of large numbers, 411
Lax–Friedrichs discretization, 330, 335, 337,

338
Lax–Milgram theorem, 295
Lax–Wendroff method, 335–338, 346
leapfrog, 346
least squares, 64, 163, 164, 265, 433
Lebesgue integral, 429



Index 483

Leland model, 354–357, 363, 369, 384, 385,
387

leverage, 420
Levy process, 63, 71, 115, 370–378, 384, 385,

387
Levy–Khinchin representation, 370
limiter, 338
linear congruential generator. see congruential

generator
Lipschitz condition, 128
local volatility, 404, 451–455
localization, 184, 195, 210, 222, 299
log return, 57
log transformation, 52, 135, 372
lognormal distribution, 53, 70, 80, 81, 140,

141, 314, 374, 399, 449
long position, 2, 5, 392
low discrepancy, 108–113
LUBA, 240, 244

market, 6, 9, 10, 64, 391
market data, 79, 228, 405, 452–454
market liquidity, 361
market price of risk, 46, 417
market price of volatility risk, 291
Markov chain, 116
Markov process, 35, 60
Marsaglia, 98, 115
martingale, 33, 47, 62, 371–374, 414, 415
mass matrix, 269, 273
maturity, 2, 6, 64, 181, 228, 390
maturity T, 1
mean reversion, 47, 49, 63, 170
mean square error, 147, 242
measurable, 407
Mersenne twister, 91
Merton, 9, 62, 66, 70, 71, 172, 370, 372, 373,

376
mesh refinement, 300
mesh size, 183, 184
method of lines, 180, 234–237, 246, 251, 275
Milstein algorithm, 134, 136, 150, 174
minimization, 65, 214, 215, 251, 265, 293,

432–434
minimum principle, 261, 277
mode, 327, 332, 334
model, 9–12, 63–66, 142, 222, 308
model problem

�u00 D f , 272, 292
ut C aux D 0, 329, 332, 350
ut C aux D buxx, 327

model risk, 222, 249, 396
modeling error, 222, 227

modulo, 84
molecule, 186
moment, 80, 129, 137, 138, 175, 348, 408, 450
moneyness, 229
monotonicity, 336, 337, 366–369, 400, 458
Monte Carlo integration, 105–108, 110, 115,

121, 122, 143
Monte Carlo method, 125, 140–166, 176–178,

195, 244, 310, 314
multifactor model, 48, 140, 164, 172, 259, 308,

448, 451
multigrid, 251, 314
multivariate distribution, 103

Neumann condition, 196, 286–288
Neumann stability, 327–330, 345, 349, 350
Newton method, 79, 92, 227, 339, 343, 344,

366, 385, 423, 432
Niederreiter, 112, 116
Nitsche lemma, 298
no-arbitrage principle, 5, 22, 30, 47, 72, 320,

355, 359, 391, 392, 395
Nobel prize, 66, 70
node, 185, 186, 249, 263, 314, 347, 447–449,

451–453
node spacing, 267
nonlinearity, 11, 63, 199, 207, 216, 217, 249,

339, 341, 343, 354–366, 434
norm, 295, 296, 423, 427, 429, 431, 434
normal distribution, 13, 35–37, 73, 76, 83, 92,

96, 97, 103, 104, 146, 228, 237, 288,
313, 372, 396, 409, 460

normal inverse Gaussian process (NIG), 373
normal variate, 83, 97, 143
numerical dissipation, 331, 338

obstacle problem, 207–209, 247, 276, 293
one-period model, 30
option, 1, 390

American, 2, 4, 5, 7, 8, 23, 55, 143,
156–166, 173, 179, 199, 228, 241,
277, 339, 340, 399, 441, 442

Asian, 8, 309, 315–321, 326, 348
average, 309, 315, 316
barrier, 9, 11, 68, 140, 241, 259, 267, 301,

309, 344, 346, 357, 360, 370, 384,
441

basket, 259, 283, 290, 310, 339, 340, 342
bear spread, 72
Bermudan, 55–57, 161, 162
binary, 153, 221, 287, 308, 440
bounds, 5, 8, 9, 72



484 Index

bull spread, 72, 386
butterfly spread, 72, 360, 370, 386
call, 1, 200, 204
capped call, 240
chooser, 308
compound, 308
digital, 308, 360
double barrier, 283, 290
European, 2, 22, 54, 55, 66, 71, 81, 125,

140, 144, 197, 199, 219, 273, 283,
380, 396, 418, 439

exotic, 8, 125, 153, 250, 260, 283, 301,
307–321, 344, 346

geometry, 7
knock out, 309
knock-out barrier, 259, 283
lookback, 146, 309
max call, 312
min call, 310
multivariate, 143, 173, 259, 308, 310, 451
outperformance, 310
path-dependent, 8
perpetual, 254, 400
put, 1, 200, 202, 217, 228, 241, 254
rainbow, 310, 311
spread, 310, 386
strangle, 72
surface, 7
two assets, 153, 259, 260, 282, 311, 313,

346, 448
vanilla, 1, 56, 64, 72, 77, 140, 179, 182,

241, 273, 353, 439
order of approximation, 16, 76, 107, 128–130,

134, 136, 138, 148, 150, 183, 192,
193, 223, 226, 243, 246, 252, 275,
291, 298, 299, 336, 338, 422, 441

ordinary differential equation (ODE), 233, 235,
246, 252, 254, 275

Ornstein–Uhlenbeck process, 47, 49, 71, 79
orthogonal, 299
oscillation, 324–326, 329, 331, 334, 336
overfitting, 65
overflow, 245

parabolic PDE, 182
parallelization, 172
parameterization, 285–287
Pareto distribution, 70
Pareto optimization, 244
partial differential equation (PDE), 10, 11, 13,

179–182, 256, 282, 283, 310, 314,
348, 434

partial integro-differential equation (PIDE),
63, 374–379, 399

partition, 261, 263, 267
path, 35, 125
path dependence, 20, 172, 309, 344
payoff, 3–8, 55, 56, 129, 142, 196, 199, 200,

206, 213, 220, 308–311, 315–319,
341, 386, 440

payoff � , 4
Peclet number, 245, 325–330, 345
penalty method, 206–207, 251, 301, 339–344,

346, 350, 362, 378
performance, 241
phase, 332
piecewise approach, 261, 263, 266, 276, 286,

288, 293, 294, 299, 431
Poincare inequality, 296
Poisson distribution, 60, 412
Poisson process, 58–62, 370, 414
polar method, 99, 104, 120
polygon, 268, 294, 297, 421
polynomial, 261, 266, 294, 299, 301, 420–422,

434, 461
portfolio, 30, 68, 71, 72, 310, 354, 355, 359,

386, 391, 394
positive solution, 135
potential law, 16
power method, 426, 428
premium, 1
principal component, 103, 121, 140, 173
principal orthogonal decomposition, 299
probability, 17, 18, 30, 32, 33, 46–47, 53, 59,

78, 79, 92, 102, 116, 129, 140, 142,
197, 301, 347, 372, 407, 452, 453

projected SOR (PSOR), 215
pseudo random, 83
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volatility smile, 79, 246, 404, 451

Wallace algorithm, 115
wave number, 328, 334
weak approximation, 137
weak convergence, 129, 138, 150
weak derivative, 430
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