
8 Weak convergence

In many cases the concept of convergence with respect to the norm turns out
to be too restrictive. That is why in this chapter we will introduce a weaker
notion of convergence which will enable us to solve minimum problems under
far weaker assumptions.

In 4.3 we proved the projection theorem in Hilbert spaces and noted
subsequently that the same result cannot be expected to hold in general
Banach spaces. The difficulty lies in finding a convergent subsequence within
a given minimal sequence, something that is in general not possible with
respect to the norm convergence, as balls in infinite-dimensional spaces are
not precompact (see 4.10). However, we will see (in 8.10) that closed balls
are sequentially compact with respect to weak convergence, at least for the
class of reflexive spaces (see 8.8). Here we lose the continuity of the norm, but
we nonetheless retain its lower semicontinuity (see 8.3(4)). This property will
play a crucial role in the proofs of the existence results 8.15 and 8.17. Hence
the class of reflexive spaces, which lies between the class of Hilbert spaces and
the class of general Banach spaces, plays a significant role in applications.

In this chapter all the spaces are assumed to be complete, except in 8.12-
8.14. In the following, we will always use the notation 〈x , x′〉X := x′(x) for
x ∈ X and x′ ∈ X ′ from 7.4. We will also write 〈x , x′〉 := 〈x , x′〉X . This
simple notation is used in the case when only one Banach space X is involved.

8.1 Definition (weak convergence). Let X be a Banach space.

(1) A sequence (xk)k∈IN in X converges weakly to x ∈ X (we write xk → x
weakly in X as k → ∞, or xk ⇀ x as k → ∞) if for all x′ ∈ X ′

〈xk , x
′〉X → 〈x , x′〉X as k → ∞.

(2) A sequence (x′
k)k∈IN in X ′ converges weakly∗ to x′ ∈ X ′ (we write

x′
k → x′ weakly∗ in X ′ as k → ∞, or x′

k
∗
⇀ x′ as k → ∞) if for all x ∈ X

〈x , x′
k〉X → 〈x , x′〉X as k → ∞.

(3) Analogously to (1) and (2) we define weak and weak∗ Cauchy sequences.

(4) A set M ⊂ X (X ′) is called weakly sequentially compact (weakly∗

sequentially compact) if every sequence in M contains a weakly (weakly∗)
convergent subsequence whose weak (weak∗) limit lies in M .
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228 8 Weak convergence

Warning: It is possible to define a corresponding weak (weak∗) topology (see
8.7). However, if X is not separable, this topology does not have a countable
basis of neighbourhoods. It follows that “covering compact” and “sequentially
compact” are not equivalent properties (see the example 8.7(4)).

Note: As a complement to weak convergence, convergence with respect to a
norm, i.e. norm convergence, will also be referred to as strong convergence.
This reduces confusion.

The weak convergence may be interpreted as weak∗ convergence in the
bidual space:

8.2 Embedding into the bidual space.

(1) Defining

〈x′ , JXx〉X′ := 〈x , x′〉X for x ∈ X, x′ ∈ X ′

yields an isometric map JX ∈ L (X;X ′′). Here

X ′′ := (X ′)′ = L (X ′; IK)

is the bidual space of X.

(2) Let xk, x ∈ X for k ∈ IN. Then:

xk → x weakly

in X as k → ∞
⇐⇒

JXxk → JXx weakly∗

in X ′′ as k → ∞.

(3) Let x′
k, x

′ ∈ X ′ for k ∈ IN. Then:

x′
k → x′ weakly

in X ′ as k → ∞
=⇒

x′
k → x′ weakly∗

in X ′ as k → ∞.

Proof (1). See 6.17(3). ��

Proof (2). For x′ ∈ X ′ we have that 〈xk , x
′〉X = 〈x′ , JXxk〉X′ and

〈x , x′〉X = 〈x′ , JXx〉X′ . ��

Proof (3). Because 〈x , x′
k〉X = 〈x′

k , JXx〉X′ for all x ∈ X. ��

8.3 Remarks.

(1) It follows from 6.17(2) that the weak limit of a sequence is unique. For
the weak∗ limit this holds trivially.

(2) Strong convergence (i.e. norm convergence) of a sequence implies weak
convergence and weak∗ convergence.

(3) If x′
k → x′ weakly∗ in X ′ as k → ∞, then

‖x′‖X′ ≤ lim inf
k→∞

‖x′
k‖X′ .
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(4) If xk → x weakly in X as k → ∞, then

‖x‖X ≤ lim inf
k→∞

‖xk‖X .

(5) Weakly convergent sequences and weakly∗ convergent sequences are
bounded.

(6) Let xk → x (strongly) in X and x′
k → x′ weakly∗ in X ′ as k → ∞. Then

〈xk , x
′
k〉X → 〈x , x′〉X as k → ∞. (8-1)

The same holds if xk → x weakly in X and x′
k → x′ (strongly) in X ′.

Remark: Assertion (4) means that the norm is lower semicontinuous with
respect to the weak convergence of sequences (see also E8.5). Assertion (6)
is often used when considering convergence in function spaces.

Proof (3). For all x ∈ X we have that as k → ∞
|〈x , x′〉X | ←−

∣∣〈x , x′
k〉X
∣∣ ≤ ‖x′

k‖X′ · ‖x‖X ,

which implies that

|〈x , x′〉X | ≤ lim inf
k→∞

‖x′
k‖X′ · ‖x‖X .

Therefore, by the definition of the X ′-norm,

‖x′‖X′ = sup
‖x‖X≤1

|〈x , x′〉X | ≤ lim inf
k→∞

‖x′
k‖X′ .

��

Proof (4). Analogously to the proof of (3) it holds for all x′ ∈ X ′ that

|〈x , x′〉X | ≤ ‖x′‖X′ · lim inf
k→∞

‖xk‖X .

If x �= 0, we can choose x′ with ‖x′‖X′ = 1 and 〈x , x′〉X = ‖x‖X (see
6.17(1)) to obtain the desired result. For x = 0 the result holds trivially. ��

Proof (5). If x′
k → x′ weakly∗ in X ′, then

sup
k∈IN

|〈x , x′
k〉X | < ∞ for all x ∈ X,

and so it follows from the Banach-Steinhaus theorem (see 7.3) that

sup
k∈IN

‖x′
k‖X′ < ∞ .

If xk → x weakly in X, then JXxk → JXx weakly∗ in X ′′ (with JX as in
8.2), and so it follows from the above that JXxk is bounded in X ′′, and hence
also xk in X. ��



230 8 Weak convergence

Proof (6). The first claim follows on noting that

|〈x , x′〉X − 〈xk , x
′
k〉X | ≤ |〈x , x′ − x′

k〉X | + |〈xk − x , x′
k〉X |

≤ |〈x , x′ − x′
k〉X |︸ ︷︷ ︸

→0 as k→∞

+ ‖x − xk‖X︸ ︷︷ ︸
→0 as k→∞

· ‖x′
k‖X′︸ ︷︷ ︸

bounded in k

,

since, by (5), the sequence (x′
k)k∈IN is bounded in X ′. The second claim

follows analogously. ��
We now give some characterizations of weak convergence in function

spaces.

8.4 Examples.

(1) Let 1 ≤ p < ∞ with 1
p +

1
p′ = 1 (where in the case p = 1 we assume that

the measure space is σ-finite). Then for fk, f ∈ Lp(μ)

fk → f weakly in Lp(μ) as k → ∞

⇐⇒
∫
S

fkg dμ −→
∫
S

fg dμ as k → ∞ for all g ∈ Lp′

(μ).

(2) Let S ⊂ IRn be compact. Then for fk, f ∈ C0(S) (see also E8.4)

fk → f weakly in C0(S) as k → ∞

⇐⇒
∫
S

fk dλ −→
∫
S

f dλ as k → ∞ for all λ ∈ rca(S).

(3) Let Ω ⊂ IRn be open, let m ∈ IN and let 1 ≤ p ≤ ∞. Then for uk, u ∈
Wm,p(Ω)

uk → u weakly in Wm,p(Ω) as k → ∞
⇐⇒ ∂suk → ∂su weakly in Lp(Ω) as k → ∞ for all |s| ≤ m.

The same result holds for the subspace Wm,p
0 (Ω).

Proof (1) and (2). Follow directly from Theorem 6.12 and Theorem 6.23,
respectively. ��
Proof (3). Let X = Wm,p(Ω) or X = Wm,p

0 (Ω). Then

(Jv)(x) := (∂sv(x))|s|≤m ∈ IKM for v ∈ X and almost all x ∈ Ω

defines a linear map J : X → Lp(Ω; IKM ), where M :=
(
n+m
n

)
is the number

of multi-indices s with |s| ≤ m. In addition, ‖Jv‖Lp(Ω;IKM ) can be bounded

from above and from below by ‖v‖Wm,p(Ω), and so the completeness of X

yields that the subspace Y := J(X) ⊂ Lp(Ω; IKM ) is closed. Therefore, J is a
bijective continuous linear map between X and Y = J(X) with a continuous
inverse J−1 ∈ L (Y ;X).

If uk → u weakly in X as k → ∞ and R ∈ Lp(Ω; IKM )′, then T := RJ ∈
X ′ and
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R(Juk) = T (uk) −→ T (u) = R(Ju) as k → ∞,

that is, Juk → Ju weakly in Lp(Ω; IKM ). On the other hand, if this is true
and T ∈ X ′, then R̄ := TJ−1 ∈ Y ′. Applying the Hahn-Banach theorem 6.15
we obtain an extension R ∈ Lp(Ω; IKM )′ of R̄ and therefore

T (uk) = R̄(Juk) = R(Juk) −→ R(Ju) = R̄(Ju) = T (u) as k → ∞,

that is, uk → u weakly in X. Finally, with vsk := ∂suk and vs := ∂su, it is
clear that

(vsk)|s|≤m −→ (vs)|s|≤m weakly in Lp(Ω; IKM ) as k → ∞
⇐⇒
for all |s| ≤ m :

(
vsk → vs weakly in Lp(Ω; IK) as k → ∞

)
,

a property that is true in general. ��
Weak convergence can be interpreted as a generalization of conver-

gence of all coordinates or coordinatewise convergence, as we know it for
finite-dimensional spaces. As an analogy of this we replace in the infinite-
dimensional case the “coordinates of a point” x ∈ X by the values 〈x , x′〉 for
x′ ∈ X ′. This is the idea behind the proof of the following theorem, which is
the main functional analysis result of this chapter.

8.5 Theorem. Let X be separable. Then the closed unit ball B1(0) in X ′ is
weakly∗ sequentially compact.

Remark: This then also holds for every other closed ball BR(x) in X ′.

Proof. Let {xn ; n ∈ IN} be dense in X. If (x′
k)k∈IN is a sequence in X ′

with ‖x′
k‖ ≤ 1, then (〈xn , x

′
k〉)k∈IN are bounded sequences in IK. Applying

a diagonalization procedure we produce a subsequence k → ∞ such that for
all n

lim
k→∞

〈xn , x
′
k〉 exists in IK.

Hence we have that for all y ∈ Y := span{xn ; n ∈ IN} the limit

x′(y) := lim
k→∞

〈y , x′
k〉 exists in IK,

and x′ : Y → IK is linear. It follows from

|x′(y)| = lim
k→∞

|〈y , x′
k〉| ≤ ‖y‖

that x′ is uniformly continuous on Y and so it can be uniquely extended to
a continuous linear map x′ on Y = X (see E5.3). Therefore, x′ ∈ X ′ with
‖x′‖ ≤ 1, and for all x ∈ X and y ∈ Y

|〈x , x′ − x′
k〉| ≤ |〈x − y , x′ − x′

k〉| + |〈y , x′ − x′
k〉|

≤ 2 ‖x − y‖+ |〈y , x′ − x′
k〉| .

The second term, for every y, converges to zero as k → ∞, while the first
term can be made arbitrarily small because Y = X. ��
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8.6 Examples.

(1) If X = L1(μ) is separable, then we obtain from 6.12 (see proof below)
the following result: If (fk)k∈IN is bounded in L∞(μ), then there exists a
subsequence (fki

)i∈IN and an f ∈ L∞(μ) such that∫
S

fki
g dμ −→

∫
S

fg dμ as i → ∞ for all g ∈ L1(μ).

Note: L1(μ) is separable, for example, if S ⊂ IRn is Lebesgue measurable
and μ is the Lebesgue measure, or if S ⊂ IRn is compact and μ ∈ rca(S).

(2) If X = C0(S) with S ⊂ IRn being compact, then 4.18(3) and 6.23 yield
the following result: If (μk)k∈IN is bounded in rca(S), then there exist a
subsequence (μki

)i∈IN and a measure μ ∈ rca(S) such that∫
S

g dμki
−→
∫
S

g dμ as i → ∞ for all g ∈ C0(S).

Proof (1) Note. If μ is the Lebesgue measure on S ⊂ IRn, then L1(μ) is
separable (see 4.18(4)). This also holds for μ ∈ rca(S), when S ⊂ IRn is
compact, because every function in L1(μ) can be approximated in the L1-
norm by step functions, and, as μ is regular, every μ-measurable set can be
approximated in measure by relatively open sets (with respect to S). But
every open set is a countable union of semi-open cuboids, with each cuboid
having its center on the lattice 2−i · ZZn and side length 21−i for an i ∈ IN.

��
Proof (1). Let L1(μ) be separable. On recalling that functions in L1(μ) can
be approximated by step functions, it follows from 4.17(2) that there exists
a subset {gi ; i ∈ IN} of step functions which is dense in L1(μ), e.g.

gi :=

mi∑
j=1

αijXEij
with μ(Eij) < ∞ .

Let
S̃ :=

⋃
i,j

Eij and μ̃(E) := μ(E ∩ S̃) for E ∈ B .

Then μ̃ is σ-finite, and so 6.12 can be applied to L1(μ̃). This yields the desired
result, because

f ∈ L1(μ) =⇒ f = 0 μ-almost everywhere in S \ S̃ .

To see the above, observe that there exists a sequence (ik)k∈IN in IN such
that ‖f − gik ‖L1(μ) → 0 as k → ∞, and so∫

S\S̃
|f | dμ =

∫
S\S̃

|f − gik | dμ ≤ ‖f − gik ‖L1(μ) −→ 0 as k → ∞ ,

which implies that f = 0 almost everywhere in S \ S̃. ��
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8.7 Weak topology. The following results serve to illustrate the concept of
weak sequential compactness. They will not be used in the remainder of this
book.

(1) Weak topology. Let X be a Banach space. For triples (n, z′, ε) with
n ∈ IN, z′ = (z′k)k=1,...,n, z

′
1, . . . , z

′
n ∈ X ′ and ε > 0 define

Un,z′,ε :=
{
x ∈ X ; |〈x , z′k〉| < ε for k = 1, . . . , n

}
,

and

Tw :=
{
A ⊂ X ; x ∈ A =⇒ x+ Un,z′,ε ⊂ A for some Un,z′,ε

}
.

Then X equipped with Tw (called the weak topology) is a locally convex
topological vector space (as in 5.21), and Tw is the weakest topology for which
all x′ ∈ X ′ are continuous maps x′ : X → IK with respect to Tw.

(2) Weak∗ topology. Let X be a Banach space. For triples (n, z, ε) with
n ∈ IN, z = (zk)k=1,...,n, z1, . . . , zn ∈ X and ε > 0 define

Un,z,ε :=
{
x′ ∈ X ′ ; |〈zk , x′〉| < ε for k = 1, . . . , n

}
,

and

T ′
w :=

{
A ⊂ X ′ ; x′ ∈ A =⇒ x′ + Un,z,ε ⊂ A for some Un,z,ε

}
.

Then X ′ equipped with T ′
w (called the weak∗ topology) is a locally convex

topological vector space (as in 5.21).
Moreover, it holds that: If T ′′

w is the weak∗ topology on (X ′)′ and if JX is as
in 8.2(1), then Tw = {J−1

X (A) ; A ∈ T ′′
w }.

(3) Alaoglu’s theorem. Let X be a Banach space. Then B1(0) ⊂ X ′ (the
closed unit ball with respect to the norm on X ′) is covering compact with
respect to the weak∗ topology on X ′.

On the proof: We omit the proof. The result can be shown with the help of
Tychonoff’s theorem (according to A. N. Tikhonov), see e.g. [Conway].

(4) Counterexample to compactness theorems. Theorem 8.5 does not
hold without the separability of X, that is: In general “weak∗ sequential
compactness” and “cover compactness with respect to the weak∗ topology”
need to be distinguished.

Example: Let X = L∞(]0, 1[) and for ε > 0 define

Tεf :=
1

ε

∫ ε

0

f(x) dx for f ∈ L∞(]0, 1[) .

Then Tε ∈ L∞(]0, 1[)′ with ‖Tε‖ = 1, and the following holds: There ex-
ists no null sequence (εk)k∈IN such that (Tεk)k∈IN is weakly∗ convergent in
L∞(]0, 1[)′.

Proof (4) Example. Assume that (Tεk)k∈IN is weakly∗ convergent. By choos-
ing a subsequence (which is then also weakly∗ convergent and which we again
denote by (Tεk)k∈IN), we can assume that
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1 > εk+1

εk
→ 0 as k → ∞.

Now consider the function f ∈ L∞(]0, 1[) defined by

f(x) := (−1)j for εj+1 < x < εj and j ∈ IN.

Then

Tεkf =
1

εk

(
(εk − εk+1)(−1)k +

∫ εk+1

0

f(x) dx
)
,

and so ∣∣Tεkf − (−1)k
∣∣ ≤ 1

εk

(
εk+1 +

∫ εk+1

0

|f(x)| dx
)

≤ 2εk+1

εk
−→ 0

as k → ∞. This shows that the sequence (Tεkf)k∈IN has the two cluster points
±1. Hence (Tεk)k∈IN cannot be weakly∗ convergent. ��

Reflexive spaces

In the following we consider the class of reflexive spaces. A reflexive spaceX is
characterized by the fact that the bidual space X ′′ is isometrically isomorphic
to the space X itself, however not (!) with respect to an arbitrary isometry,
but precisely with respect to the isometry JX defined in 8.2(1). The class of
reflexive spaces contains all Hilbert spaces (see 8.11(1)).

8.8 Reflexivity. Let X be a Banach space and let JX be the isometry from
8.2(1). Then we call

X reflexive :⇐⇒ JX is surjective .

We have the following results:

(1) If X is reflexive, then weak∗ and weak sequence convergence in X ′ coin-
cide.

(2) If X is reflexive, then every closed subspace of X is reflexive.

(3) If T : X → Y is an isomorphism, then

X reflexive ⇐⇒ Y reflexive .

(4) It holds that

X reflexive ⇐⇒ X ′ reflexive .

Proof (2). Let Y ⊂ X be a closed subspace. Given a y′′ ∈ Y ′′, let

〈x′ , x′′〉X′ :=
〈
x′|

Y
, y′′
〉
Y ′ for x′ ∈ X ′.

Then x′′ ∈ X ′′. Let x := J−1
X x′′. Now for all x′ ∈ X ′ with x′ = 0 on Y we

have that
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〈x , x′〉X = 〈x′ , x′′〉X′ =
〈
x′|Y , y′′

〉
Y ′ = 0 ,

which, on recalling 6.16, implies that x ∈ Y . Now let y′ ∈ Y ′, and let x′ ∈ X ′

denote an extension of y′ as in the Hahn-Banach theorem (see 6.15). Then
we conclude that

〈x , y′〉Y = 〈x , x′〉X =
〈
x′|

Y
, y′′
〉
Y ′ = 〈y′ , y′′〉Y ′ ,

i.e. y′′ = JY x. This shows that JY is surjective. ��

Proof (3). The claim is symmetric in X and Y , and so it is sufficient to
consider the case where X is reflexive. We need to show the reflexivity of Y .
Let y′′ ∈ Y ′′. Then

〈x′ , x′′〉X′ :=
〈
x′◦T−1 , y′′

〉
Y ′ for x′ ∈ X ′

defines an x′′ ∈ X ′′, and for y′ ∈ Y ′ (setting x′ := y′◦T )

〈y′ , y′′〉Y ′ = 〈y′◦T , x′′〉X′ =
〈
J−1
X x′′ , y′◦T

〉
X

=
〈
TJ−1

X x′′ , y′
〉
Y

,

and so y′′ = JY TJ
−1
X x′′. ��

Proof (4)⇒. If x′′′ ∈ X ′′′ then x′′′◦JX ∈ X ′, and it holds for all x′′ ∈ X ′′

that
〈x′′ , x′′′〉X′′ =

〈
J−1
X x′′ , x′′′◦JX

〉
X

= 〈x′′′◦JX , x′′〉X′ ,

i.e. x′′′ = JX′(x′′′◦JX). ��

Proof (4)⇐. Employing the established implication “⇒” for the Banach
space X ′ yields that X ′′ is reflexive. As JX is isometric, JX(X) is a closed
subspace of X ′′, which according to (2) is also reflexive. Hence (3) implies
that X is reflexive. ��

The proof of theorem 8.10 below employs the following:

8.9 Lemma. For every Banach space X,

X ′ separable =⇒ X separable .

Observe: The converse is false, as shown by the very important example
X = L1(μ) (see 6.12 and 4.18(4)).

Proof. Let {x′
n ; n ∈ IN} be dense in X ′. Choose xn ∈ X with

|〈xn , x
′
n〉X | ≥ 1

2‖x′
n‖ and ‖xn‖ = 1

and define Y := clos (span{xn ; n ∈ IN}). Now if x′ ∈ X ′ with x′ = 0 on Y ,
then for all n

‖x′ − x′
n‖ ≥ |〈xn , x

′ − x′
n〉X | = |〈xn , x

′
n〉X |

≥ 1
2‖x′

n‖ ≥ 1
2 (‖x′‖ − ‖x′

n − x′‖)
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and so
‖x′‖ ≤ 3 inf

n
‖x′ − x′

n‖ = 0 ,

since {x′
n ; n ∈ IN} is a dense subset. Hence it follows from 6.16 that Y = X.

��

We now prove the main theorem for reflexive spaces.

8.10 Theorem. Let X be a reflexive Banach space. Then the closed unit
ball B1(0) ⊂ X is weakly sequentially compact.

Remark: This then also holds for every other closed ball BR(x).

Proof. Let (xk)k∈IN be a sequence in B1(0) ⊂ X and set

Y := span{xk ; k ∈ IN} .

Then Y is reflexive (see 8.8(2)) and, by definition, separable. It follows that
Y ′′ = JY Y is separable, and hence so is Y ′ (see 8.9). That means that we
can apply 8.5 to the space Y ′ and to the sequence (JY xk)k∈IN in Y ′′. In
particular, there exists a y′′ ∈ Y ′′ such that for a subsequence k → ∞

〈y′ , JY xk〉Y ′ → 〈y′ , y′′〉Y ′ for all y′ ∈ Y ′.

Setting x := J−1
Y y′′ ∈ Y , it follows that

〈xk , y
′〉Y = 〈y′ , JY xk〉Y ′ −→ 〈y′ , y′′〉Y ′ = 〈x , y′〉Y as k → ∞

for all y′ ∈ Y ′. Since for x′ ∈ X ′ the map x′|Y lies in Y ′, it follows that also
〈xk , x

′〉X → 〈x , x′〉X as k → ∞, and so xk → x weakly in X as k → ∞. ��

8.11 Examples of reflexive spaces. Here are several consequences of the-
orem 8.10.

(1) Every Hilbert space X is reflexive. Together with the Riesz representa-
tion theorem 6.1 we obtain: If (xk)k∈IN is a bounded sequence in X, then
there exists a subsequence (xki

)i∈IN and an x ∈ X such that

(y , xki
)X → (y , x)X as i → ∞ for all y ∈ X.

(2) Lp(μ) for 1 < p < ∞ is reflexive. It follows from 6.12 that: If (fk)k∈IN is
a bounded sequence in Lp(μ), then there exists a subsequence (fki

)i∈IN and
an f ∈ Lp(μ) such that∫

S

gfki
dμ −→

∫
S

gf dμ as i → ∞ for all g ∈ Lp′

(μ).
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(3) Wm,p(Ω) for 1 < p < ∞ is reflexive. It holds that: If (fk)k∈IN is a
bounded sequence in Wm,p(Ω), then there exist a subsequence (fki

)i∈IN and
an f ∈ Wm,p(Ω) such that for all |s| ≤ m∫

Ω

g∂sfki
dLn −→

∫
Ω

g∂sf dLn as i → ∞ for all g ∈ Lp′

(Ω).

(4) L1(μ) and L∞(μ) (with the measure μ being σ-finite) are not reflexive
if the underlying σ-algebra B contains infinitely many disjoint sets with po-
sitive measure, i.e. if and only if L1(μ) and L∞(μ), respectively, are infinite-
dimensional.

(5) C0(S) and rca(S) are not reflexive if S ⊂ IRn is compact and contains
more than finitely many points, i.e. if and only if C0(S) and rca(S), respec-
tively, are infinite-dimensional.

Proof (1). Let RX : X → X ′ be the (conjugate linear) isomorphism from the
Riesz representation theorem. Then for x′′ ∈ X ′′ letting

〈y , x′〉X := 〈RXy , x′′〉X′ for y ∈ X

defines an x′ ∈ X ′. Set x := R−1
X x′. Then for all y ∈ X

〈RXy , x′′〉X′ = 〈y , RXx〉X = (y , x)X = 〈x , RXy〉X ,

i.e. x′′ = JXx, which shows that JX is surjective.

Remark: Hence in the real case, i.e. IK = IR, it holds that J−1
X = R−1

X R′
X ,

with R′
X : X ′′ → X ′ denoting the adjoint map (see 5.5(8)) of RX . ��

Proof (2). The isometries

Jp : Lp(μ) → Lp′

(μ)′ and Jp′ : Lp′

(μ) → Lp(μ)′

from 6.12 satisfy

〈f , Jp′g〉Lp(μ) = 〈g , Jpf〉Lp′ (μ) for all f ∈ Lp(μ), g ∈ Lp′

(μ).

For f ′′ ∈ Lp(μ)′′ letting

〈g , g′〉Lp′ (μ) := 〈Jp′g , f ′′〉Lp(μ)′ for g ∈ Lp′

(μ)

defines a g′ ∈ Lp′

(μ)′. Set f := J−1
p g′. Then for all g ∈ Lp′

(μ)

〈g , g′〉Lp′ (μ) = 〈g , Jpf〉Lp′ (μ) = 〈f , Jp′g〉Lp(μ) =
〈
Jp′g , JLp(μ)f

〉
Lp(μ)′

,

where JLp(μ) : Lp(μ) → Lp(μ)′′ denotes the embedding from 8.2. Conse-
quently,

〈Jp′g , f ′′〉Lp(μ)′ =
〈
Jp′g , JLp(μ)f

〉
Lp(μ)′

for all g ∈ Lp′

(μ).
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As Jp′ is surjective, it follows that f ′′ = JLp(μ)f , which proves the reflexivity
of Lp(μ).

Remark: Hence in the real case, i.e. IK = IR, it holds that J−1
Lp(μ) = J−1

p J ′
p′ ,

with J ′
p′ : Lp(μ)′′ → Lp′

(μ)′ denoting the adjoint map (see 5.5(8)) of Jp′ .
��

Proof (3). Let J : Wm,p(Ω) → Lp(Ω; IKM ) be defined as in the proof
of 8.4(3). Then combining (2) and 8.8(2) yields that the closed subspace
J
(
Wm,p(Ω)

)
is reflexive (the proof of (2) is the same for functions with val-

ues in IKM ). The claim now follows from 8.8(3). ��

Proof (4). On noting 8.8(4), 6.12 for p = 1 and 8.8(3), it is sufficient to
show this for L1(μ). Let F ∈ L∞(μ)′. If J∞ : L∞(μ) → L1(μ)′ denotes the
isomorphism from 6.12, then setting

〈f ′ , G〉L1(μ)′ :=
〈
J−1
∞ f ′ , F

〉
L∞(μ)

for f ′ ∈ L1(μ)′

defines a G ∈ L1(μ)′′. If G = JL1(μ)f for an f ∈ L1(μ), with JL1(μ) denoting
the embedding from 8.2, then it holds for all g ∈ L∞(μ) that

〈g , F 〉L∞(μ) = 〈J∞g , G〉L1(μ)′ =
〈
J∞g , JL1(μ)f

〉
L1(μ)′

= 〈f , J∞g〉L1(μ) =
∫
S
fg dμ ,

that is,
〈g , F 〉L∞(μ) =

∫
S
gf dμ for all g ∈ L∞(μ). (8-2)

Under the assumption that L1(μ) is infinite-dimensional, we now construct
an F which does not satisfy this property. To this end, let Ek ∈ B be such
that

Ek ⊂ Ek+1, μ(Ek) < μ(Ek+1) and E :=
⋃

k∈IN Ek .

Consider the subspace

Y := clos
( {

g ∈ L∞(μ) ; g = 0 on S \ Ek for some k
} )

⊂ L∞(μ) .

Then XE /∈ Y , and so 6.16 implies that there exists an F ∈ L∞(μ)′ with
F = 0 on Y and F (XE) = 1. Hence,

F (XEk
) = 0 and F (XE) = 1 ,

but for every f ∈ L1(μ) we have that∫
S
XEk

f dμ −→
∫
S
XEf dμ .

Therefore, F cannot have the representation (8-2). ��
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Proof (5). Let C0(S) be reflexive. Then analogously to the proof of (4), and
on using 6.23, there exists for every functional F ∈ rca(S)′ an f ∈ C0(S)
with

〈ν , F 〉rca(S) =
∫
S
f dν for all ν ∈ rca(S) . (8-3)

If S is not finite, then there exist points xk ∈ S for k ∈ IN with xk → x ∈ S
as k → ∞ and with xk �= x for all k. Consider the Dirac measures δxk

and
δx and set Y := {ν ∈ rca(S) ; ν({x}) = 0}. It holds that Y ⊂ rca(S) is a
closed subspace with δxk

∈ Y and δx /∈ Y . It follows from 6.16 that there
exists an F ∈ rca(S)′ with F (δxk

) = 0 for all k and F (δx) = 1. But for every
f ∈ C0(S) we have that∫

S
f dδxk

= f(xk) −→ f(x) =
∫
S
f dδx .

Hence F cannot have the representation (8-3). ��

Minkowski’s functional

In 4.3 we solved the minimal distance problem for closed convex sets in Hilbert
spaces, and we saw in E4.3 that in general this is not possible in Banach
spaces. We will now show that in reflexive spaces the distance to such sets
is attained (see 8.15). This is based on the fact that convex side constraints
for elements of an arbitrary Banach space remain valid for limits of weakly
convergent sequences, see theorem 8.13. For closed balls this theorem can be
obtained directly from 8.3(4), and for general closed convex sets it follows
from the following

M

x0

{x ; Re 〈x , x′〉} > α

{x ; Re 〈x , x′〉} ≤ α

Fig. 8.1. Separation theorem
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8.12 Separation theorem. Let X be a normed space, let M ⊂ X be
nonempty, closed and convex, and let x0 ∈ X \ M . Then there exist an
x′ ∈ X ′ and an α ∈ IR with

Re 〈x , x′〉 ≤ α for x ∈ M and Re 〈x0 , x
′〉 > α .

Remark: It follows that x′ �= 0, and hence {x ∈ X ; Re 〈x , x′〉 = α} is a
hyperplane.

Proof. First we consider the case IK = IR. We may assume with no loss of
generality that

0 ∈ M̊ .

Justification: Choose an x̃ ∈ M and consider x̃0 := x0 − x̃ and M̃ :=
Br(M − x̃) with 0 < r < dist(x0,M). Then if the theorem is established for

M̃ and x̃0 with x′ and α̃, it follows that the theorem holds for M and x0

with x′ and α := α̃+ 〈x̃ , x′〉. Consider the Minkowski functional

p(x) := inf
{
r > 0 ;

x

r
∈ M

}
for x ∈ X.

Since 0 ∈ M̊ , it follows that 0 ≤ p(x) < ∞ for all x ∈ X. Moreover,

p ≤ 1 on M , p(x0) > 1 , p(0) = 0 .

In addition, we have for x, y ∈ X that

p(ax) = ap(x) for a ≥ 0 ,

p(x+ y) ≤ p(x) + p(y) ,

i.e. p is sublinear. To see this, note that for α > 0

x

r
∈ M ⇐⇒ αx

αr
∈ M ,

and that the convexity of M implies that

x

r
∈ M,

y

s
∈ M =⇒ x+ y

r + s
=

r

r + s

x

r
+

s

r + s

y

s
∈ M .

Now let f : span{x0} → IR be defined by

f(ax0) := ap(x0) for a ∈ IR.

Then
f(ax0) = p(ax0) for a ≥ 0 ,

f(ax0) ≤ 0 ≤ p(ax0) for a ≤ 0 .

It follows from the Hahn-Banach theorem (see 6.14), applied to the subspace
span{x0}, that there exists a linear extension F of f with F ≤ p on X. Hence
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F ≤ p ≤ 1 on M, F (x0) = f(x0) = p(x0) > 1 .

On recalling that B�(0) ⊂ M for some � > 0, we note that

x ∈ X =⇒ x
1
�‖x‖

∈ M =⇒ p(x) ≤ 1

�
‖x‖ =⇒ F (x) ≤ 1

�
‖x‖ .

Similarly, −F (x) = F (−x) ≤ 1
�‖x‖, which implies that F ∈ X ′. Hence we

have shown the desired result for x′ := F and α = 1.
In the case IK = C consider X as an IR-vector space XIR and obtain an

FIR ∈ X ′
IR with the desired properties. Then, as in the proof of 6.15, proceed

to the function F (x) := FIR(x) − iFIR(ix). ��

8.13 Theorem. Let X be a normed space and let M ⊂ X be closed and
convex. Then M is weakly sequentially closed, i.e. if xk, x ∈ X for k ∈ IN,
then

xk → x weakly in X as k → ∞,

xk ∈ M for k ∈ IN
=⇒ x ∈ M .

Proof. If x /∈ M , then by the separation theorem 8.12 there exist an x′ ∈ X ′

and an α ∈ IR such that

Re 〈y , x′〉 ≤ α for y ∈ M and Re 〈x , x′〉 > α.

Now we have that Re 〈xk , x
′〉 ≤ α, and the weak convergence to x yields

that also Re 〈x , x′〉 ≤ α, a contradiction. ��

The following two results are consequences of this theorem.

8.14 Mazur’s lemma. Let (xk)k∈IN be a sequence in a normed space X
that converges weakly to x. Then x ∈ clos (conv {xk ; k ∈ IN}).

Proof. M := conv {xk ; k ∈ IN} is a convex set, and hence so is M . Now
apply theorem 8.13. ��

8.15 Theorem. Let X be a reflexive Banach space and let M ⊂ X be
nonempty, closed and convex. Then for x0 ∈ X there exists an x ∈ M with

‖x − x0‖ = dist(x0,M) .

Proof. Let (xk)k∈IN be a minimal sequence, i.e.

xk ∈ M and ‖xk − x0‖ → dist(x0,M) as k → ∞.

Then (xk)k∈IN is a bounded sequence, and so it follows from 8.10 that there
exists a subsequence k → ∞ such that xk → x weakly in X as k → ∞.
Hence 8.13 yields x ∈ M . On noting that also xk − x0 → x − x0 weakly
in X, it follows from the lower semicontinuity of the norm (see 8.3(4)) that
‖x − x0‖ = dist(x0,M). ��
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Variational methods

Closed convex sets play an important role in existence proofs for elliptic
partial differential equations. We now provide applications of theorem 8.13
on closed convex sets to variational problems with side constraints (see 8.17–
8.18), where a generalization of the Poincaré inequality 6.7 is needed (see
8.16). The results on partial differential equations will rely on Sobolev spaces,
and the theorems required for these spaces will be derived in Appendix A8.
Moreover, we always consider open sets Ω ⊂ IRn which are connected.

Remark: An open set Ω ⊂ IRn is connected if and only if it is path con-
nected, i.e. if for every two points x0, x1 ∈ Ω there exists a (continuous) path
in Ω from x0 to x1, i.e. a continuous map γ : [0, 1] → Ω with γ(0) = x0

and γ(1) = x1. In the following we will always only make use of this property
(see e.g. 10.4). In a general topological space X a subset A ⊂ X is said to be
connected if A is not the union of two disjoint, nonempty and relatively in
A open sets.

8.16 Generalized Poincaré inequality. Let Ω ⊂ IRn be open, bounded
and connected with Lipschitz boundary ∂Ω (see definition A8.2). Moreover,
let 1 < p < ∞ and let M ⊂ W 1,p(Ω) be nonempty, closed and convex. Then
the following are equivalent for every u0 ∈ M :

(1) There exists a constant C0 < ∞ such that for all ξ ∈ IR,

u0 + ξ ∈ M =⇒ |ξ | ≤ C0 .

(2) There exists a constant C < ∞ with

‖u‖Lp(Ω) ≤ C ·
(
‖∇u‖Lp(Ω) + 1

)
for all u ∈ M .

Note: If M , in addition, is a cone with apex 0, i.e. if

u ∈ M, r ≥ 0 =⇒ ru ∈ M ,

then the inequality in (2) can be replaced with

‖u‖Lp(Ω) ≤ C · ‖∇u‖Lp(Ω) for all u ∈ M .

Proof Note. Replace u in (2) with ru and let r ↗ ∞. ��

Proof (2)⇒(1). Let ξ ∈ IR with u := u0 + ξ ∈ M . Then ∇u = ∇u0, and
hence the inequality in (2) for u implies that

C · (‖∇u0‖Lp + 1) ≥ ‖u0 + ξ‖Lp ≥ |ξ | · ‖1‖Lp − ‖u0‖Lp .

This yields the desired result with a C0 that depends on C and u0. ��

Proof (1)⇒(2). Without loss of generality we may assume that u0 = 0. To

see this, note that if the desired inequality holds for ũ ∈ M̃ := M − u0 with
a constant C̃, then it follows for u := ũ+ u0 that
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‖u‖Lp ≤ ‖ũ‖Lp + ‖u0‖Lp ≤ C̃ ·
(
‖∇u‖Lp + ‖∇u0‖Lp + 1

)
+ ‖u0‖Lp .

Now let u0 = 0 and assume that the conclusion is false. Then there exist
uk ∈ M , k ∈ IN, with

‖∇uk‖Lp + 1 ≤ 1

k
‖uk‖Lp . (8-4)

In particular, ‖uk‖Lp → ∞, and so for every given R > 0 (for k sufficiently
large)

δk :=
R

‖uk‖Lp

−→ 0 as k → ∞.

Hence we have that 0 < δk ≤ 1 for k sufficiently large, and combining the
fact that 0 ∈ M and the convexity of M then yields that vk := δkuk ∈ M .
Further,

‖vk‖Lp = δk‖uk‖Lp = R ,

and the inequality (8-4) yields that

‖∇vk‖Lp + δk ≤ 1

k
‖vk‖Lp =

R

k
−→ 0 as k → ∞.

Thus, the vk are bounded in W 1,p(Ω). Then 8.11(3) implies that there exist
a subsequence, again denoted by (vk)k∈IN, and a v ∈ W 1,p(Ω), such that
vk → v weakly in W 1,p(Ω) as k → ∞, and so v ∈ M on recalling 8.13.
In particular, ∇vk → ∇v weakly in Lp(Ω) (see 8.4(3)). However, the above
inequality yields that ∇vk → 0 strongly in Lp(Ω), and hence ∇v = 0. As
Ω is connected, it follows that v is (almost everywhere) a constant function
(see E8.9). This means that v = ξ almost everywhere in Ω for some ξ ∈ IR,
and the assumptions yield that |ξ | ≤ C0. On the other hand, by Rellich’s
embedding theorem (see A8.4), the weak convergence in W 1,p(Ω) implies
that vk → v strongly in Lp(Ω), and so

R = ‖vk‖Lp −→ ‖v‖Lp = |ξ | · ‖1‖Lp ≤ C0‖1‖Lp .

This yields a contradiction, on initially choosing R sufficiently large. ��

In the above result we have considered domains Ω ⊂ IRn with a local Lip-
schitz boundary ∂Ω. It turns out that the class of such “Lipschitz domains”
is mathematically very robust (see, for example, the trace theorem A8.6 or
the embedding theorem 10.9, which for Lipschitz domains holds in Sobolev
spaces of arbitrary order). And it is the class of domains that is appropriate
for applications, as the boundary can have edges and corners (e.g. cubes are
allowed, and more general domains with piecewise smooth boundaries, where
the pieces meet at nondegenerate angles). We now consider Sobolev functions
on Lipschitz domains and solve the
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8.17 Elliptic minimum problem. Let Ω ⊂ IRn be open, bounded and
connected with Lipschitz boundary (see A8.2). Let IK = IR. Then

E(u) :=

∫
Ω

(1
2

n∑
i,j=1

∂iu · aij∂ju+ fu
)
dLn for u ∈ W 1,2(Ω)

defines a map E : W 1,2(Ω) → IR, where we assume that f ∈ L2(Ω) and
aij ∈ L∞(Ω). In addition, we assume that (aij)i,j=1,...,n is elliptic (as in

(6-8)), i.e. that there exists a positive constant c0 such that for all x ∈ Ω

n∑
i,j=1

aij(x)ξiξj ≥ c0|ξ |2 for all ξ ∈ IRn. (8-5)

Without loss of generality we may assume symmetry, i.e. that

aij = aji for i, j = 1, . . . , n. (8-6)

(Otherwise replace aij with ãij := 1
2 (aij + aji).) Then for every nonempty,

closed and convex subset M ⊂ W 1,2(Ω) with the property in 8.16 (the prop-
erty (8-10), below, is stronger) it holds that:

(1) E has an absolute minimum u on M , i.e. there exists a u ∈ M such
that

E(u) ≤ E(v) for all v ∈ M. (8-7)

(2) The absolute minima u of E on M are precisely the solutions of the
following variational inequality of E on M :∫

Ω

( n∑
i,j=1

∂i(u − v) · aij∂ju+ (u − v)f
)
dLn ≤ 0 for all v ∈ M. (8-8)

(3) If M is a closed affine subspace, that is, if M = u0+M0 for some u0 ∈ M
and a closed subspace M0 ⊂ W 1,2(Ω), then the variational inequality (8-8)
for u ∈ M is equivalent to∫

Ω

( n∑
i,j=1

∂iv · aij∂ju+ vf
)
dLn = 0 for all v ∈ M0. (8-9)

(4) If M satisfies

v ∈ M, ξ ∈ IR, v + ξ ∈ M =⇒ ξ = 0 , (8-10)

then there exists a unique absolute minimum and a unique solution of the
variational inequality of E on M .
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Proof (1). We begin by showing that there exist positive constants c and C
such that

E(u) ≥ c

∫
Ω

|∇u|2 dLn − C for all u ∈ M. (8-11)

On noting the elementary Young’s inequality

a · b ≤ δa2 + 1
4δ b

2 for a, b ≥ 0 and δ > 0, (8-12)

it follows from the ellipticity in (8-5) that

E(u) ≥ c0

∫
Ω

|∇u|2 dLn − ‖f ‖L2‖u‖L2

≥ c0‖∇u‖2L2 − δ‖u‖2L2 − 1

4δ
‖f ‖2L2 .

Letting C1 denote the constant from the Poincaré inequality 8.16(2),

‖u‖2L2 ≤ 2C2
1‖∇u‖2L2 + 2 ,

and so
E(u) ≥ (c0 − 2C2

1δ)‖∇u‖2L2 − C(δ, f) ,

where C(δ, f) is a quantity depending on δ and f . On choosing δ sufficiently
small, we obtain (8-11) with c = c0

2 .
It follows from (8-11) that E(u) ≥ −C for all u ∈ M , i.e. E is bounded

from below on M . Now choose a minimal sequence (uk)k∈IN in M , i.e.

E(uk) −→ d := inf
v∈M

E(v) > −∞ as k → ∞.

By (8-11), the sequence (∇uk)k∈IN is bounded in L2(Ω). Together with the
Poincaré inequality 8.16(2) we obtain that (uk)k∈IN is a bounded sequence in
W 1,2(Ω). It follows from 8.11(3) that there exists a u ∈ W 1,2(Ω) such that
uk → u weakly in W 1,2(Ω) for a subsequence k → ∞. Since M is closed and
convex, it follows from theorem 8.13 that u ∈ M . Moreover, it follows from
8.4(3) that the weak convergence implies that∫

Ω

f(uk − u) dLn −→ 0 and
n∑

i,j=1

∫
Ω

aij∂iu∂j(uk − u) dLn −→ 0 .

Hence we have that

E(uk) = E(u+ uk − u)

= E(u) +

n∑
i,j=1

∫
Ω

aij∂iu∂j(uk − u) dLn +

∫
Ω

f(uk − u) dLn

︸ ︷︷ ︸
→ 0 as k → ∞

+

∫
Ω

1

2

n∑
i,j=1

aij∂i(uk − u)∂j(uk − u)︸ ︷︷ ︸
≥ 0

dLn ,
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which yields that E(u) ≤ lim infk→∞ E(uk) = d. On the other hand, u ∈ M
implies that E(u) ≥ infv∈M E(v) = d, and so E(u) = d. ��

Proof (2). If u is an absolute minimum and if v ∈ M , then, since M is convex,
(1 − ε)u+ εv ∈ M for 0 < ε ≤ 1, and so

E(u) ≤ E
(
(1 − ε)u+ εv

)
= E
(
u+ ε(v − u)

)
= E(u)+ε

∫
Ω

( n∑
i,j=1

∂i(v − u)aij∂ju+ (v − u)f
)
dLn

+
ε2

2

∫
Ω

n∑
i,j=1

∂i(v − u)aij∂j(v − u)︸ ︷︷ ︸
≥0

dLn .

(8-13)

Subtracting E(u), dividing by ε and letting ε ↘ 0 then yields the desired
variational inequality.

Conversely, if u ∈ M then the identity in (8-13) (with ε = 1) yields for
all v ∈ M that

E(v) ≥ E(u) +

∫
Ω

( n∑
i,j=1

∂i(v − u)aij∂ju+ (v − u)f
)
dLn .

Now if u is a solution of the variational inequality, then the above integral is
nonnegative. Hence u is an absolute minimum of E on M . ��

Proof (3). In (8-8) choose v = u ± ṽ with ṽ ∈ M0 (cf. the proof of 4.4(1)).
��

Proof (4). If u1 and u2 are two solutions of the variational inequality, then
choose v = u2 in the variational inequality for u1 and v = u1 in the variational
inequality for u2 to obtain∫

Ω

( n∑
i,j=1

∂i(u1 − u2) · aij∂ju1 + (u1 − u2)f
)
dLn ≤ 0 ,

∫
Ω

( n∑
i,j=1

∂i(u2 − u1) · aij∂ju2 + (u2 − u1)f
)
dLn ≤ 0 .

Adding these two inequalities yields that

0 ≥
∫
Ω

n∑
i,j=1

∂i(u1 − u2) · aij∂j(u1 − u2) dL
n ≥ c0

∫
Ω

|∇(u1 − u2)|2 dLn ,

and so ∇(u1 − u2) = 0 in L2(Ω). As in the proof of 8.16 it now follows
for some ξ ∈ IR that u1 − u2 = ξ ∈ IR almost everywhere in Ω, with the
assumptions implying that ξ = 0. ��
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We remark that the techniques used in the proof for the minimum problem
in 8.17 carry over to nonquadratic functionals. We now give some important
examples of the set M for this minimum problem. Here all of the occurring
boundary values are defined with the help of the trace theorem A8.6.

8.18 Examples of minimum problems.

(1) Let

M :=
{
v ∈ W 1,2(Ω) ; v = 0 Hn−1-almost everywhere on ∂Ω

}
.

Then it holds: There exists a unique absolute minimum u in 8.17. It satis-
fies (8-9) with M0 = M . Hence u is the weak solution of the homogeneous
Dirichlet problem in 6.5(1) (for hi = 0, b = 0).

Note: It holds that M = W 1,2
0 (Ω). Hence this is a special case of theorem

6.8, which was shown there for general open and bounded sets Ω ⊂ IRn.

(2) Let

M :=
{
v ∈ W 1,2(Ω) ;

∫
Ω
v dLn = 0

}
.

In addition, we assume that
∫
Ω
f dLn = 0. Then it holds: There exists a

unique absolute minimum u in 8.17. It satisfies the equality (8-9) for all
v ∈ W 1,2(Ω). Hence u is a weak solution of the homogeneous Neumann
problem in 6.5(2) (for hi = 0, b = 0). The solution to this problem is unique
up to an additive constant.

Observe: This result differs from theorem 6.6, as there the Neumann problem
was solved for b > 0.

(3) Let u0, ψ ∈ W 1,2(Ω) be given and let u0(x) ≥ ψ(x) for almost all x ∈ Ω.
Define

M :=
{
v ∈ W 1,2(Ω) ; v = u0 Hn−1-almost everywhere on ∂Ω,

v ≥ ψ Ln-almost everywhere in Ω
}
.

The corresponding minimum problem is called an obstacle problem. Then
it holds: There exists a unique solution u to the obstacle problem. It satisfies
the variational inequality (8-8).

Special case: For the case n = 1, see also E8.8.

(4) Let Lebesgue measurable sets E1, E2 ⊂ Ω with Ln(E1) > 0 and
Ln(E2) > 0, and ψ1, ψ2 ∈ W 1,2(Ω) with ψ1 ≤ ψ2 almost everywhere in
Ω be given. Define

M :=
{
v ∈ W 1,2(Ω) ; v ≥ ψ1 Ln-almost everywhere in E1,

v ≤ ψ2 Ln-almost everywhere in E2

}
.

The corresponding minimum problem is called a double obstacle problem.
Then it holds: There exists a solution u to this obstacle problem and it
satisfies the variational inequality (8-8).

Remark: The solution need not be unique.
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(5) Let u0 ∈ W 1,2(Ω) and let Γ ⊂ ∂Ω be a closed subset with measure
Hn−1(Γ ) > 0. Define

M :=
{
v ∈ W 1,2(Ω) ; v = u0 Hn−1-almost everywhere on Γ

}
.

Then it holds: There exists a unique absolute minimum u ∈ M in 8.17. It
satisfies (8-9) with

M0 = {v ∈ W 1,2(Ω) ; v = 0 Hn−1-almost everywhere on Γ} .
Definition: Then u ∈ W 1,2(Ω) is called a weak solution of the mixed
boundary value problem

−
∑n

i,j=1 ∂i(aij∂ju) + f = 0 in Ω,

u = u0 on Γ,∑n
i,j=1 νiaij∂ju = 0 on ∂Ω \ Γ,

where ν is the outer normal to Ω defined in A8.5(3). The weak solution in
W 1,2(Ω) to this boundary value problem is unique.

Proof (1). The continuity of the trace operator yields that M ⊂ W 1,2(Ω)
is a closed subspace (with S as in A8.6 it holds that M = N (S)). Clearly
M is nonempty and satisfies (8-10) (from v ∈ M and v + ξ ∈ M it follows
for the traces that v = 0 and v + ξ = 0 almost everywhere on ∂Ω, and so
ξ = 0). Now 8.17 yields the existence of a unique solution u, which satisfies
(8-9) with M0 = M . ��

Proof (2). M is a subspace and contains 0 as the only constant function. In
addition, M is closed (the embedding from W 1,2(Ω) into L1(Ω) is continu-
ous and the side constraint is continuous on L1(Ω)). Hence M satisfies the
property (8-10), and so 8.17 yields the existence of a unique solution u, which
satisfies (8-9) with M0 = M .

For arbitrary v ∈ W 1,2(Ω) it holds that ṽ := v − m(v) ∈ M , where

m(g) := −
∫
Ω

g dLn :=
1

Ln(Ω)

∫
Ω

g dLn for g ∈ L1(Ω) (8-14)

denotes the mean of g on Ω.
On recalling that m(f) = 0, we obtain that (8-9) holds for constant

functions, and hence it also holds for v = ṽ +m(v), as claimed.
Now if ũ ∈ M is another function that satisfies (8-9) for all v ∈ W 1,2(Ω),

then ∫
Ω

n∑
i,j=1

∂iv · aij∂j(u − ũ) dLn = 0 for all v ∈ W 1,2(Ω).

Set v = u − ũ. Then

0 =

∫
Ω

n∑
i,j=1

∂i(u − ũ) · aij∂j(u − ũ) dLn ≥ c0

∫
Ω

|∇(u − ũ)|2 dLn.
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Hence we have that ∇(u− ũ) = 0 almost everywhere in Ω. As Ω is connected,
it follows that there exists a ξ ∈ IR such that ũ = u + ξ almost everywhere
in Ω. ��

Proof (3). M is convex and u0 ∈ M . We show that M is closed. Let (uk)k∈IN

be a sequence in M that converges in W 1,2(Ω) to a u ∈ W 1,2(Ω). Then it
follows from the trace theorem A8.6 that uk → u in L2(∂Ω). On noting that
uk = u0 in L2(∂Ω), we also have that u = u0 in L2(∂Ω). In addition, uk → u
in L2(Ω). Hence there exists a subsequence k → ∞ such that uk → u almost
everywhere in Ω. Now uk ≥ ψ almost everywhere implies that u ≥ ψ.

Moreover, (8-10) holds. Indeed, it follows from v ∈ M and ṽ := v+ξ ∈ M
that ξ = ṽ − v = 0 almost everywhere on ∂Ω, and so ξ = 0. By 8.17, there
exists a unique solution to the variational inequality. ��

Proof (4). We have that M is convex and that ψ1, ψ2 ∈ M . The closedness
of M follows as in the proof of (3). In addition, 8.16(1) is satisfied, e.g. with
u0 = ψ1. To see this, note that if v := ψ1 + ξ ∈ M with ξ ∈ IR, then ξ ≥ 0,
since Ln(E1) > 0. Similarly, we have that ξ ≤ ψ2 − ψ1 on E2, and so it
follows from Ln(E2) > 0 (on applying either the Hölder inequality (see 3.18)
or Jensen’s inequality (see E4.10)) that

ξ ≤ −
∫
E2

|ψ2 − ψ1 | dLn ≤
(
−
∫
E2

|ψ2 − ψ1 |2 dLn

) 1
2

= (Ln(E2))
− 1

2 ‖ψ2 − ψ1‖L2(E2)
< ∞ .

By 8.17, there exists a solution to the minimum problem.

On the uniqueness: In general, there exist several solutions. For example,
if ψ1 = −1, ψ2 = +1, f = 0, then every constant function u = ξ with
ξ ∈ [ − 1, 1] is a solution. This would no longer be the case if, in addition,
Dirichlet data were prescribed on ∂Ω (e.g. as in (3)). ��

Proof (5). M is convex and u0 ∈ M . The closedness of M follows as in the
proof of (3), on restricting the pointwise argument to the subset Γ ⊂ ∂Ω. The
same holds for the proof of (8-10), where now we use that Hn−1(Γ ) > 0. Then
8.17 yields the existence of a unique solution. On noting that M0 := M − u0

is a subspace, we conclude that (8-9) holds. ��

E8 Exercises

Throughout these exercises we let IK = IR.

E8.1 Weak limit in Lp(μ). Let μ be a σ-finite measure and let fj , f ∈
Lp(μ) with 1 ≤ p ≤ ∞. Then it holds: If fj → f weakly in Lp(μ) and fj → f̃

μ-almost everywhere as j → ∞, then f̃ = f μ-almost everywhere.
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Solution. Let Sm be as in 3.9(4). It follows from Egorov’s theorem A3.18 that
for ε > 0 there exists a measurable set Eε ⊂ Sm such that μ(Sm \ Eε) ≤ ε

and fj → f̃ uniformly on Eε as j → ∞. Given ζ ∈ L∞(μ), the map

g �−→
∫
Eε

ζg dμ

defines a continuous linear functional on Lp(μ) (for p < ∞ this follows from
μ(Eε) < ∞ and the Hölder inequality), i.e. an element of Lp(μ)′. Hence we
have that ∫

Eε

ζ(fj − f) dμ −→ 0 as j → ∞.

Since fj → f̃ uniformly on Eε,∫
Eε

ζ(f̃ − f) dμ = 0 for all ζ ∈ L∞(μ).

Now set ζ(x) = ψ
(
f̃(x) − f(x)

)
, where

ψ(z) :=

⎧⎨⎩
z

|z | for z �= 0,

0 for z = 0.

Then ζ(f̃ − f) = |f̃ − f |, and hence we obtain that f̃ = f almost everywhere
on Eε. Letting ε ↘ 0 and m ↗ ∞ yields the desired result. ��

E8.2 Weak limit of a product. Let μ be a σ-finite measure and let 1 <
p < ∞. Moreover, let fj → f in Lp(μ) as j → ∞, let (gj)j∈IN be bounded in

Lp′

(μ) and let gj → g almost everywhere. Then

gjfj −→ gf weakly in L1(μ) as j → ∞.

In particular, ∫
S

gjfj dμ −→
∫
S

gf dμ as j → ∞.

Solution. Otherwise it follows from theorem 6.12 that there exists a ζ ∈
L∞(μ) such that for a subsequence j → ∞ and a δ > 0 we have that∣∣∣∣∫

S

gjfjζ dμ −
∫
S

gfζ dμ

∣∣∣∣ ≥ δ for all j. (E8-1)

On recalling from 8.11(2) that Lp′

(μ) is reflexive for 1 < p′ < ∞, it follows
from theorem 8.10 that there exists a g̃ ∈ Lp′

(μ) such that for a further
subsequence gj → g̃ weakly in Lp′

(μ) as j → ∞. Now E8.1 yields that g̃ = g,

and hence gj → g weakly in Lp′

(μ). Moreover, fjζ → fζ converges (strongly)
in Lp(μ) as j → ∞. In this situation we can apply 8.3(6):
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If J : Lp(μ) →
(
Lp′

(μ)
)′

denotes the isomorphism from 6.12, then

J(fjζ) → J(fζ) converges (strongly) in
(
Lp′

(μ)
)′

and hence the second re-
sult in 8.3(6) yields that 〈gj , J(fjζ)〉Lp′ → 〈g , J(fζ)〉Lp′ , in contradiction
to (E8-1). ��

E8.3 Weak limit of a product. Let μ(S) < ∞ and let 1 < p ≤ ∞. Assume
that fj → f converges weakly in Lp(μ) as j → ∞. In addition, let gj : S → IR
be measurable and uniformly bounded, and let gj → g almost everywhere as
j → ∞. Then

gjfj −→ gf weakly in L1(μ) as j → ∞.

Solution. Since |gj − g |p
′

are uniformly bounded and μ(S) < ∞, it follows
for a constant C that

|gj − g |p
′

≤ C ∈ L1(μ).

Since these functions converge almost everywhere to 0, it follows from

Lebesgue’s convergence theorem 3.25 that |gj − g |p
′

→ 0 in L1(μ), and hence

ζgj → ζg (strongly) in Lp′

(μ) as j → ∞ for all ζ ∈ L∞(μ). Moreover, the
assumptions state that fj → f weakly in Lp(μ). In this situation we can
apply the first result in 8.3(6) (analogously to the solution of E8.2). ��

E8.4 Weak convergence in C0. Let S ⊂ IRn be compact and let fj , f ∈
C0(S). Then

fj −→ f weakly in C0(S)

as j → ∞
⇐⇒

sup
x∈S

sup
j∈IN

|fj(x)| < ∞ and

fj(x) −→ f(x) as j → ∞
for all x ∈ S.

Remark: It holds that supx∈S supj∈IN |fj(x)| = supj∈IN supx∈S |fj(x)|.

Solution ⇒. By 8.3(5), the sequence (fj)j∈IN is bounded in C0(S). Moreover,
it follows from 6.23 that the weak convergence is equivalent to∫

S

fj dν −→
∫
S

f dν as j → ∞ (E8-2)

for all ν ∈ rca(S). Now choose ν = δx for x ∈ S, where δx denotes the Dirac
measure at the point x. ��

Solution ⇐. We have to show (E8-2). Let μ ∈ rca(S) be nonnegative. It
follows from Egorov’s theorem A3.18 that for ε > 0 there exists a measurable
set Eε ⊂ S with μ(S \Eε) ≤ ε such that fj → f uniformly on Eε as j → ∞.
On recalling that the functions fj are uniformly bounded, say |fj | ≤ C, we
have that
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S

(fj − f) dμ

∣∣∣∣ ≤ μ(Eε) sup
x∈Eε

|fj(x) − f(x)|︸ ︷︷ ︸
→ 0 as j → ∞

for every ε

+C · μ(S \ Eε)︸ ︷︷ ︸
→ 0 as ε → 0

.

This yields (E8-2) for μ.

Note: The desired result also holds for arbitrary measures in rca(S; IR), as
they can be decomposed into their real and imaginary parts, and these further
into their positive and negative parts (the nonnegative and nonpositive parts,
see the Hahn decomposition A6.2). ��

E8.5 Strong convergence in Hilbert spaces. Let X be a Hilbert space.
Then it holds for every sequence (xk)k∈IN in X that:

xk −→ x (strongly) in X

as k → ∞
⇐⇒

xk −→ x weakly in X and

‖xk‖X −→ ‖x‖X as k → ∞.

Solution ⇐. We have that

‖xk‖2X = ‖x‖2X + 2Re (xk − x , x)X + ‖xk − x‖2X .

It follows from the Riesz representation theorem that (xk − x , x)X → 0 as
k → ∞, and so the convergence ‖xk‖X → ‖x‖X yields the desired result.

��

E8.6 Strong convergence in Lp spaces. Prove that the equivalence in
E8.5 also holds for the Banach space X = Lp(μ) with 1 < p < ∞.

Solution ⇐. Let fk, f ∈ Lp(μ) be such that fk → f weakly in Lp(μ) as
k → ∞, which on recalling theorem 6.12 means that∫

S

fkg dμ −→
∫
S

fg dμ for all g ∈ Lp′

(μ) ,

and such that ‖fk‖Lp → ‖f ‖Lp as k → ∞. We employ the elementary
inequality

|b|p ≥ |a|p + p · (b − a) •
(
|a|p−2

a
)
+ c ·
(
|b| + |a|

)p−2|b − a|2 (E8-3)

for a, b ∈ IRm, a �= 0, with a constant c > 0 depending on m and p (proof see
below).

Set a = f(x), if f(x) �= 0, and b = fk(x). With g(x) := |f(x)|p−2
f(x) (we

consider the real case), if f(x) �= 0, and g(x) := 0 otherwise, it follows that∫
S

|fk |p dμ ≥
∫
S

|f |p dμ+ p · Re
(∫

S

(fk − f)g dμ
)
+ c · δk (E8-4)

with
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δk :=

∫
Sk

(
|fk | + |f |

)p−2|fk − f |2 dμ ,

where Sk := {x ∈ S ; |fk(x)| + |f(x)| > 0}. On noting that g ∈ Lp′

(μ), it
follows from the assumptions that the second term on the right-hand side of
(E8-4) converges to 0, and that the left-hand side converges to the first term
on the right-hand side. We conclude that δk → 0 as k → ∞. For p ≥ 2 this
yields the desired result, since

δk ≥
∫
S

|fk − f |p dμ .

For 1 < p < 2 and ε > 0 let

Eε,k :=
{
x ∈ Sk ; |fk(x) − f(x)| ≥ ε(|fk(x)| + |f(x)|)

}
.

Then

|fk − f |p ≤
{
εp−2(|fk | + |f |)p−2|fk − f |2 on Eε,k ,

εp(|fk | + |f |)p ≤ 2p−1εp(|fk |p + |f |p) on Sk \ Eε,k ,

whence∫
S

|fk − f |p dμ =

∫
Sk

|fk − f |p dμ

≤ 2p−1εp
∫
Sk\Eε,k

(|fk |p + |f |p) dμ+ εp−2

∫
Eε,k

(|fk | + |f |)p−2|fk − f |2 dμ

≤ 2p−1εp (‖fk‖pLp + ‖f ‖pLp)︸ ︷︷ ︸
bounded in k

+ εp−2δk

for all ε and k, which yields the desired result.
For the proof of (E8-3) let as := (1− s)a+ sb. As (E8-3) depends contin-

uously on b, we may assume that as �= 0 for 0 ≤ s ≤ 1. Then

|a1 |p − |a0 |p = p

∫ 1

0

|as |p−2
as • (a1 − a0) ds ,

and hence

|a1 |p − |a0 |p − p|a0 |p−2
a0 • (a1 − a0)

= p (a1 − a0) •
∫ 1

0

∫ s

0

d

dt

(
|at |p−2

at
)
dtds

= p

∫ 1

0

∫ s

0

|at |p−2

(
|a1 − a0 |2 + (p − 2)

(
(a1 − a0) • at

|at |

)2)
dtds

≥ p
(
1 + min(p − 2, 0)

)
· ψ(a0, a1) · |a1 − a0 |2 ,



254 8 Weak convergence

with

ψ(a0, a1) :=

∫ 1

0

∫ s

0

|at |p−2
dt ds .

Observe that ψ(a0, a1) =
(
|a0 | + |a1 |

)p−2
ψ(b0, b1) with bl :=

(
|a0 | +

|a1 |
)−1

al for l = 0, 1. Hence we need to show that

inf{ψ(b0, b1) ; |b0 | + |b1 | = 1} > 0 .

For 1 < p ≤ 2 we have that ψ(b0, b1) ≥ 1
2 , because |(1 − t)b0 + tb1 | ≤ 1, and

for p > 2 the value ψ(b0, b1) can converge to 0 only if b0 → 0 and b1 → 0.
��

E8.7 Weak convergence of oscillating functions. Let I ⊂ IR be an
open, bounded interval and let 1 < p < ∞.

(1) If g ∈ L∞(IR) is a periodic function with period κ > 0, i.e. g(x+κ) =
g(x) for almost all x, and if

1

κ

∫ κ

0

g(x) dx = λ ,

then the functions fn(x) := g(nx) converge weakly in Lp(I) to λ as n → ∞.

(2) Let α, β ∈ IR, 0 < θ < 1, and

fn(x) :=

{
α for k < nx < k + θ, k ∈ ZZ,

β for k + θ < nx < k + 1, k ∈ ZZ.

Then the functions fn converge weakly in Lp(I) to the constant function
θα+ (1 − θ)β as n → ∞.

(3) Find functions fn, f, gn, g ∈ L∞(I) such that fn → f , gn → g weakly in
Lp(I) as n → ∞, but such that fngn does not converge weakly to fg.

Solution (1). Without loss of generality let λ = 0 (otherwise replace g with
g − λ). Then the assumptions on g yield that

h(x) :=

∫ x

0

g(y) dy

defines a continuous function that is bounded on all of IR. If [a, b] ⊂ I, then∫ b

a

fn(x) dx =
1

n
(h(nb) − h(na)) −→ 0 as n → ∞.

Consequently, ∫
I

fn(x)ζ(x) dx −→ 0 as n → ∞

for all step functions ζ. As these step functions are dense in Lp′

(I), and as
the functions fn are bounded in Lp(I), we obtain the same result also for all
ζ ∈ Lp′

(I) (see E5.4). ��
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Solution (2). This follows from (1), on noting that∫ 1

0

f1(x) dx = θα+ (1 − θ)β .

��

Solution (3). Let fn be as in (2) and define gn correspondingly for the values

α̃, β̃ ∈ IR and the same value θ. Then (2) yields the following weak conver-
gence results in Lp(I):

fn −→ θα+ (1 − θ)β ,

gn −→ θα̃+ (1 − θ)β̃ ,

fngn −→ θαα̃+ (1 − θ)ββ̃ .

Now the equation

θαα̃+ (1− θ)ββ̃ = (θα+ (1 − θ)β)
(
θα̃+ (1 − θ)β̃

)
is equivalent to (α − β)(α̃ − β̃) = 0, and so for α �= β and α̃ �= β̃ we obtain
the desired example. ��

E8.8 Variational inequality. Find the solution u ∈ W 1,2(Ω) of the obsta-
cle problem in 8.18(3) for n = 1, Ω = ] − 1, 1[ ⊂ IR, u0 ≥ 0, ψ = 0, f = 1
and a = 1.

Solution. (On recalling E3.6, we use the fact that for n = 1 functions in
W 1,2(Ω) can be identified with functions in C0(Ω).) Let

M =
{
v ∈ W 1,2(Ω) ; v ≥ 0 almost everywhere in Ω,

v(±1) = u± := u0(±1)
}
.

Then u ∈ M ∩ C0([− 1, 1]) and∫ 1

−1

(
(u − v)′u′ + (u − v)

)
dL1 ≤ 0 for all v ∈ M .

First we consider an interval ]a, b[ in which u > 0. If ζ ∈ C∞
0 (]a, b[), then

u ≥ c in supp ζ for a c > 0, and hence u + εζ ∈ M for small |ε|. It follows
that

0 =

∫ b

a

(ζ ′u′ + ζ) dL1 =

∫ b

a

ζ ′v′ dL1 ,

where v(x) := u(x) − 1
2x

2. This implies (see E8.9) that v is linear in ]a, b[,
and hence there exist d0, d1 ∈ IR such that

u(x) =
x2

2
+ d1x+ d0 for a < x < b.
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On choosing ]a, b[ ⊂ {u > 0} maximally, i.e. u(a) = 0, if a > −1, and
u(b) = 0, if b < 1, the obtained characterization of u implies that we have to
distinguish the following cases:

a = −1 , b = 1 , and so u > 0 in ]− 1, 1[ ,

a > −1 , b = 1 , and so u > 0 in ]a, 1] with u(a) = 0,

a = −1 , b < 1 , and so u > 0 in [− 1, b[ with u(b) = 0.

Hence overall we obtain the following two cases for u:

−1 x− x+ 1

u0(−1)

u0(1)

Fig. 8.2. Solution of the obstacle problem

(1) u > 0 in ]− 1, 1[ ,

(2) There exist −1 ≤ x− ≤ x+ ≤ 1 such that u(x) = 0 for x− ≤ x ≤ x+ and
u(x) > 0 otherwise.

In the case (1) the values d0 and d1 are determined by the boundary condi-
tions, and we obtain

u(x) = 1
2

(
x2 − 1 + (u+ − u−)x+ u+ + u−

)
and the necessary condition

|u+ − u− | ≥ 2 or u+ + u− > 1 + 1
4 (u+ − u−)

2 . (E8-5)

Correspondingly, in the case (2) we obtain for certain s± ≥ 0 that

u(x) = 1
2 (x − x+)

2 + s+(x − x+)

for x ≥ x+ with (1 − x+)s+ = u+ − 1
2 (1 − x+)

2 ≥ 0 ,

u(x) = 1
2 (x− − x)2 + s−(x− − x)

for x ≤ x− with (1 + x−)s− = u− − 1
2 (1 + x−)

2 ≥ 0 .



E8 Exercises 257

The uniqueness of the solution means that x± are uniquely determined by u±.
Hence we further investigate the variational inequality. For ζ ∈ C∞

0

(
]−1, 1[

)
with ζ ≥ 0 it holds that u + ζ ∈ M , and so the variational inequality yields
that

0 ≤
∫ 1

−1

(ζ ′u′ + ζ) dL1

=

∫ 1

x+

ζ ′(x)(x − x+ + s+) dx+

∫ x−

−1

ζ ′(x)(x − x− − s−) dx+

∫ 1

−1

ζ dL1

= −ζ(x+)s+ − ζ(x−)s− +

∫ x+

x−

ζ dL1 .

If x+ < 1 set ζ(x) := max(0, 1 − 1
δ |x − x+ |) and obtain as δ → 0 that

s+ ≤ 0. Together with the above inequality for s+ we obtain that s+ = 0,
and similarly for s− = 0. Therefore,

u(x) =

⎧⎪⎨⎪⎩
1
2 (x− − x)2 for x ≤ x−,

0 for x− ≤ x ≤ x+,
1
2 (x − x+)

2 for x ≥ x+,

where

u+ − 1
2 (1 − x+)

2 = 0 and u− − 1
2 (1 + x−)

2 = 0 .

Apart from (u−, u+) = (0, 2) or (2, 0), this case is complementary to the case
(E8-5). ��

E8.9 A fundamental lemma. Let Ω ⊂ IRn be open and connected, and
suppose that u ∈ L1

loc(Ω) satisfies∫
Ω

u · ∂iζ dLn = 0 for ζ ∈ C∞
0 (Ω) and i = 1, . . . , n.

Then u is (almost everywhere) a constant function.

Solution. Let B be a ball with B ⊂ Ω and let (ϕε)ε>0 be a standard Dirac
sequence. On setting ϕ̃ε(y) := ϕε(−y) we have that ζ ∗ ϕ̃ε ∈ C∞

0 (Ω) for
ζ ∈ C∞

0 (B) and ε < dist(B, ∂Ω), and so

−
∫
Ω

∂i(u ∗ ϕε) ζ dL
n =

∫
Ω

(u ∗ ϕε) ∂iζ dL
n =

∫
Ω

u ∂i(ζ ∗ ϕ̃ε) dL
n = 0 .

Hence ∇(u ∗ ϕε) = 0 in B, which yields that u ∗ ϕε is constant in B. On
recalling that u ∗ ϕε → u in L1(B) as ε → 0, it follows that u is also a
constant almost everywhere in B. As Ω is path connected (see remark above
8.16), this constant does not depend on B. ��



258 8 Weak convergence

A8 Properties of Sobolev functions

Here we will derive properties of functions in Wm,p(Ω), where we treat
bounded sets Ω with Lipschitz boundary ∂Ω (see definition A8.2). This class
of domains, on one hand, allows a functional analytically uniform presenta-
tion of the theory of Sobolev spaces, and on the other hand, this class is of
major importance in applications, because it contains domains with edges
and corners, as they occur in flow domains and also in workpieces.

In applications to boundary value problems on such domains, e.g. on
cuboids, often different boundary conditions are prescribed on different sides
of the domain (see the mixed boundary value problem in 8.18(5)). For the
weak formulation of these boundary value problems we need to prove that
functions in W 1,p(Ω) have weak boundary values on ∂Ω (see A8.6). Then
we show (see A8.10) that W 1,p

0 (Ω) consists precisely of those functions in
W 1,p(Ω) that have weak boundary values 0. This belatedly justifies the weak
formulation of the homogeneous Dirichlet problem in 6.5.

We begin with Rellich’s embedding theorem A8.1 for Wm,p
0 (Ω) and A8.4

for Wm,p(Ω).

A8.1 Rellich’s embedding theorem. Let Ω ⊂ IRn be open and bounded,
let 1 ≤ p < ∞ and let m ≥ 1. If uk ∈ Wm,p

0 (Ω) for k ∈ IN and if u ∈
Wm−1,p

0 (Ω), then

(uk)k∈IN bounded in Wm,p
0 (Ω),

uk → u weakly in Wm−1,p
0 (Ω)

as k → ∞
=⇒

uk → u (strongly) in Wm−1,p
0 (Ω)

as k → ∞ .

Remark: On recalling 8.3(5), it follows if uk, u ∈ Wm,p
0 (Ω) for k ∈ IN that

uk → u weakly in Wm,p
0 (Ω)

as k → ∞
=⇒

uk → u (strongly) in Wm−1,p
0 (Ω)

as k → ∞ .

Proof. Let m = 1. Hence uk are bounded in W 1,p
0 (Ω) and converge weakly in

Lp(Ω) towards u. (For m > 1 apply the proof below for |s| ≤ m− 1 to ∂suk

in place of uk. It holds that ∂suk are bounded in W 1,p
0 (Ω) and, by 8.4(3),

they converge weakly in Lp(Ω) to ∂su.)
Extend uk, u to IRn \ Ω by 0. Then, by assumption, uk ∈ W 1,p(IRn)

(see 3.29), with support in Ω, and moreover uk are bounded in W 1,p(IRn)
converging by 8.4(1) weakly in Lp(IRn) towards u.

Now if (ϕε)ε>0 is a standard Dirac sequence, then ϕε ∗uk ∈ C∞
0 (IRn) and

for every ε > 0

ϕε ∗ uk → ϕε ∗ u as k → ∞ in Lp(IRn) . (A8-1)

To see this, consider for x ∈ IRn the functionals Ψε(x) ∈ Lp(IRn)′ defined by
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〈v , Ψε(x)〉Lp :=

∫
IRn

v(y)ϕε(x − y) dy for v ∈ Lp(IRn).

If xk → x converges as k → ∞, then ϕε(xk − ·) → ϕε(x − ·) converges
uniformly on IRn for ε > 0, hence Ψε(xk) → Ψε(x) converges in Lp(IRn)′.
Since, by assumption, uk → u weakly in Lp(IRn), we obtain, see the second
result in 8.3(6),

(ϕε ∗ uk)(xk) = 〈uk , Ψε(xk)〉Lp −→ 〈u , Ψε(x)〉Lp = (ϕε ∗ u)(x) .

This shows that ϕε ∗ uk → ϕε ∗ u locally uniformly on IRn. As ϕε ∗ uk and
ϕε ∗ u vanish outside the bounded set Bε(Ω), we obtain the result (A8-1).
Moreover,

‖v − ϕε ∗ v‖Lp ≤ ε‖∇v‖Lp (A8-2)

for all v ∈ W 1,p(IRn) with compact support. For the proof of (A8-2) observe
that the left- and right-hand sides depend continuously on v with respect to
the W 1,p-norm. Hence on approximating v (e.g. by convolution as in 4.23),
it is sufficient to show (A8-2) for v ∈ C∞

0 (IRn). Then

(v − ϕε ∗ v)(x) =

∫
IRn

ϕε(y)
(
v(x) − v(x − y)

)
dy

=

∫
IRn

ϕε(y)
(∫ 1

0

∇v(x − sy)·y ds) dy ,
and so it follows from 4.13(1) that

‖v − ϕε ∗ v‖Lp ≤ sup
h∈suppϕε

∥∥∥∥∫ 1

0

∇v(·− sh)·h ds∥∥∥∥
Lp

≤ ε sup
|h|≤ε

∫ 1

0

‖∇v(·− sh)‖Lp ds = ε‖∇v‖Lp .

Combining (A8-1) and (A8-2) yields that

‖u − uk‖Lp ≤ ‖u − ϕε ∗ u‖Lp + ‖ϕε ∗ u − ϕε ∗ uk‖Lp︸ ︷︷ ︸
→ 0 as k → ∞

for every ε

+ε‖∇uk‖Lp .

Noting that ∇uk are bounded in Lp(IRn) and recalling from 4.15(2) that
ϕε ∗ u → u in Lp(IRn) as ε → 0, we obtain the desired result. ��

A8.2 Lipschitz boundary. Let Ω ⊂ IRn be open and bounded. We say
that Ω has a Lipschitz boundary if ∂Ω can be covered by finitely many
open sets U1, . . . , U l such that ∂Ω ∩ U j for j = 1, . . . , l is the graph of a
Lipschitz continuous function with Ω ∩ U j in each case lying on one side
of this graph. This means the following: There exists an l ∈ IN and for
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U j

Ω

∂Ω

Fig. 8.3. Cover of the boundary

j = 1, . . . , l there exist a Euclidean coordinate system ej1, . . . , e
j
n in IRn, a

reference point yj ∈ IRn−1, numbers rj > 0 and hj > 0 and a Lipschitz
continuous function gj : IRn−1 → IR, such that with the notation

xj
,n := (xj

1, . . . , x
j
n−1), where x =

n∑
i=1

xj
ie

j
i ,

it holds that

U j =
{
x ∈ IRn ;

∣∣xj
,n − yj

∣∣ < rj and
∣∣xj

n − gj(xj
,n)
∣∣ < hj

}
,

and for x ∈ U j

xj
n = gj(xj

,n) =⇒ x ∈ ∂Ω ,

0 < xj
n − gj(xj

,n) < hj =⇒ x ∈ Ω ,

0 > xj
n − gj(xj

,n) > −hj =⇒ x /∈ Ω

(A8-3)

(hence U j ∩ Ω = Qj , see Fig. 8.4), and

∂Ω ⊂
l⋃

j=1

U j .

Furthermore, we may then add another open set U0 with U0 ⊂ Ω such that
U0, . . . , U l cover all of Ω.
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ejn

span{ej1, . . . , e
j
n−1}

Ω

∂Ω

Qj
hj

hj

rj rj

Fig. 8.4. Local boundary neighbourhood

A8.3 Localization. Let Ω be as in A8.2. We prove results for Sobolev
functions by localizing these functions with respect to the open cover U j ,
j = 0, . . . , l in A8.2. We choose a partition of unity η0, . . . , ηl on Ω with
respect to this cover (see 4.20), i.e. ηj ∈ C∞(IRn) with compact support
supp (ηj) ⊂ U j (this means ηj ∈ C∞

0 (U j)) and

0 ≤ ηj ≤ 1 in IRn and

l∑
j=0

ηj = 1 on Ω .

Now if u ∈ Wm,p(Ω), then

u =

l∑
j=0

ηju in Ω .

In particular, η0u ∈ Wm,p(Ω) with compact support in Ω and for j = 1, . . . , l
we have that ηju ∈ Wm,p(Ωj), where

Ωj := {x ∈ IRn ; 0 < xj
n − gj(xj

,n)} ,

with (ηju)(x) = 0 if
∣∣xj

,n − yj
∣∣ ≥ rj or xj

n − gj(xj
,n) ≥ hj .

A8.4 Rellich’s embedding theorem. Let Ω ⊂ IRn be open and bounded
with Lipschitz boundary, let 1 ≤ p < ∞ and let m ≥ 1. If uk ∈ Wm,p(Ω) for
k ∈ IN and if u ∈ Wm−1,p(Ω), then

(uk)k∈IN bounded in Wm,p(Ω)

uk → u weakly in Wm−1,p(Ω)

as k → ∞
=⇒

uk → u (strongly) in Wm−1,p(Ω)

as k → ∞ .
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Remark: On recalling 8.3(5), it follows if uk, u ∈ Wm,p(Ω) for k ∈ IN that

uk → u weakly in Wm,p(Ω)

as k → ∞
=⇒

uk → u (strongly) in Wm−1,p(Ω)

as k → ∞ .

Proof. Similarly to A8.1, it is sufficient to prove the theorem for m = 1. With
the notations as in A8.3, we have that the assumptions are also satisfied by
uj
k := ηjuk and uj := ηju, and we need to show that uj

k → uj in Lp(Ω) as
k → ∞. For j = 0 this follows from A8.1.

For j ≥ 1 this follows on replicating the proof of A8.1. The proofs of (A8-1)
and (A8-2) carry over (for the proof of (A8-2) use 4.24 for the approximation)
if we replace the integration domain IRn with Ωj . Here we have to make sure
that in the convolution

(ϕε ∗ v)(x) =

∫
IRn

ϕε(x − y)v(y) dy for v ∈ W 1,p(Ωj)

the function y �→ ϕε(x − y) has compact support in Ωj for x ∈ Ωj . By the
definition of Ωj this means that

xj
n > gj(xj

,n) , ϕε(x − y) �= 0 =⇒ yjn > gj(yj,n) .

If λ denotes the Lipschitz constant of gj , then the above holds if

ϕε(z) �= 0 =⇒ zjn < −λ
∣∣zj,n ∣∣ ,

i.e. we need to choose the function ϕ, on which the Dirac sequence (ϕε)ε>0

is based, so that

ϕ ∈ C∞
0

(
{z ∈ B1(0) ; zjn < −λ

∣∣zj,n ∣∣}) ,
which is satisfied, for example, for ϕ ∈ C∞

0

(
Bδ

(
− 1

2e
j
n

))
with 0 < δ < 1

2 (1 +
λ)−1. This choice has the property that for x ∈ Ωj and ϕε(x − y) �= 0 the
segment connecting x and y lies in Ωj .

Remark: Another possibility (for m = 1) is to extend the functions uj
k, u

j to
functions in W 1,p(IRn) with compact support (see the proof of A8.12), and
then apply A8.1. ��

The corresponding result for p = ∞ plays a special role, because for
domains Ω with Lipschitz boundary it holds that Wm,∞(Ω) = Cm−1,1(Ω)
(see theorem 10.5(2)). The assertion of Rellich’s embedding theorem for p =
∞ then follows from the Arzelà-Ascoli theorem. The argument for m = 1 is
as follows: Every sequence bounded in C0,1(Ω) contains a subsequence that
converges in C0(Ω). But as every cluster point has to coincide with the weak
limit, the whole sequence converges strongly in C0(Ω).

Now we want to show that Sobolev functions in W 1,p(Ω) in a weak sense
have boundary values in Lp(∂Ω). To this end, we first define spaces of func-
tions that are integrable on ∂Ω.
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A8.5 Boundary integral. Let Ω be open and bounded with Lipschitz
boundary and let Y be a Banach space.

(1) We call f : ∂Ω → Y measurable and integrable, respectively, if with the
notations as in A8.3 it holds for j = 1, . . . , l that the functions

y �−→ (ηjf)
(n−1∑

i=1

yie
j
i + gj(y)ejn

)
for y ∈ IRn−1 with

∣∣y − yj
∣∣ < rj

are measurable and integrable, respectively, with respect to the (n − 1)-
dimensional Lebesgue measure. The boundary integral of f on ∂Ω is then
defined by ∫

∂Ω

f dHn−1 :=

l∑
j=1

∫
∂Ω

ηjf dHn−1 ,

where we define, if supph ⊂ U j ,∫
∂Ω

h dHn−1 :=

∫
IRn−1

h
(n−1∑

i=1

yie
j
i + gj(y)ejn

)√
1 + |∇gj(y)|2 dLn−1(y) .

Here ∇gj ∈ L∞
loc(IR

n−1; IRn−1), since theorem 10.5(2) implies that the Lip-

schitz continuous function gj : IRn−1 → IR lies in W 1,∞
loc (IRn−1). Hence the

last integral represents a generalization of the surface integral on smooth hy-
persurfaces as introduced in 3.10(4). Claim: This definition of the integral is
independent of the local partition and independent of the representation of
the boundary.

(2) For 1 ≤ p ≤ ∞, let

Lp(∂Ω;Y ) :=
{
f : ∂Ω → Y ; f is measurable and ‖f ‖Lp(∂Ω) < ∞

}
,

where for 1 ≤ p < ∞

‖f ‖Lp(∂Ω) :=
(∫

∂Ω

|f |p dHn−1
) 1

p

, and ‖f ‖L∞(∂Ω) := ess sup
∂Ω

|f |

with the ess sup-norm defined analogously to 3.15. Then Lp(∂Ω;Y ) with this
norm is a Banach space for 1 ≤ p ≤ ∞, and for p < ∞ the set

{
f|∂Ω ; f ∈

C∞(IRn;Y )
}

is dense in Lp(∂Ω;Y ).

(3) We define the outer normal to Ω at the point x ∈ ∂Ω as

νΩ(x) :=
(
1 +
∣∣∇gj(y)

∣∣2)− 1
2

(n−1∑
i=1

∂ig
j(y)eji − ejn

)
for x =

n−1∑
i=1

yie
j
i + gj(y)ejn ∈ U j with

∣∣y − yj
∣∣ < rj .
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It holds that νΩ is measurable on ∂Ω with |νΩ | = 1, and hence νΩ ∈
L∞(∂Ω; IRn). The definition of νΩ is independent of the local representa-
tion of the boundary. With the above representation of x, the normal νΩ(x)
is perpendicular to the tangent vectors

τk(x) := ∂yk

(n−1∑
i=1

yie
j
i + gj(y)ejn

)
= ejk + ∂kg

j(y)ejn for 1 ≤ k ≤ n − 1.

In addition, νΩ(x) points outward, i.e. x+ ενΩ(x) /∈ Ω for ε > 0 sufficiently
small, if g is differentiable in y.

Proof (1). In a small open set U ⊂ IRn we consider two different represen-
tations of ∂Ω as defined in A8.2, i.e. we consider two coordinate systems
e1, . . . , en and ẽ1, . . . , ẽn, two Lipschitz continuous functions g : IRn−1 → IR
and g̃ : IRn−1 → IR and two bounded open sets V, Ṽ ⊂ IRn−1, such that with
Γ := ∂Ω ∩ U{ n−1∑

i=1

yiei + g(y)en ; y ∈ V
}

=
{ n−1∑

i=1

ỹiẽi + g̃(ỹ)ẽn ; ỹ ∈ Ṽ
}

= Γ .

On setting

ψ(y) :=

n−1∑
i=1

yiei + g(y)en for y ∈ IRn−1,

and similarly for ψ̃, we need to show that for every function f : Γ → IR with
supp f ⊂ U it holds that:

f ◦ψ integrable ⇐⇒ f ◦ψ̃ integrable

and∫
V

f
(
ψ(y)
)√

1 + |∇g(y)|2 dy =

∫
Ṽ

f
(
ψ̃(ỹ)
)√

1 + |∇g̃(ỹ)|2 dỹ . (A8-4)

Consider the transformation τ := ψ̃−1◦ψ, hence y �→ ỹ = τ(y). Since∣∣y1 − y2
∣∣ ≤ ∣∣ψ(y1) − ψ(y2)

∣∣ ≤√1 + Lip(g)2
∣∣y1 − y2

∣∣ ,
ψ : V → Γ is a Lipschitz continuous map with a Lipschitz continuous inverse
ψ−1 : Γ → V , and the same holds for ψ̃. This implies that τ : V → Ṽ is bijec-
tive and that τ and τ−1 are Lipschitz continuous. Hence f ◦ψ is measurable
if and only if f ◦ψ̃ is measurable (use 4.27).

In order to prove the integral identity, we first consider the case where
f ∈ C0

0 (U) and g ∈ C1(V ). Then also g̃ is continuously differentiable. To see
this, note that the differentiability of g, and therefore ψ, is equivalent to

ψ(y) − ψ(y0) − Pψ(y0)(ψ(y) − ψ(y0)) = O(|ψ(y) − ψ(y0)|)
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as y → y0. Hereby Px0
is the orthogonal projection on the tangent space of

Γ in x0 := ψ(y0). Now, we have ψ(y) = ψ̃(ỹ) if ỹ = τ(y), and since τ is
continuous, it follows that y → y0 implies ỹ → ỹ0. Hence

ψ̃(ỹ) − ψ̃(ỹ0) − Px0
(ψ̃(ỹ) − ψ̃(ỹ0)) = O(|ψ̃(ỹ) − ψ̃(ỹ0)|)

as ỹ → ỹ0. But this is equivalent to the differentiability of ψ̃ and thus also g̃.
Also the differentiability of τ and τ−1 is shown. It follows from the (classical)
change-of-variables theorem for C1-transformations that for every function
f̃ ∈ C0

0 (Ṽ ) ∫
Ṽ

f̃ dLn−1 =

∫
V

f̃ ◦τ |detDτ | dLn−1 .

Let f̃(ỹ) := f
(
ψ̃(ỹ)
)√

1 + |∇g̃(ỹ)|2. Then we need to show that√
1 + |∇g̃◦τ |2 |detDτ | =

√
1 + |∇g |2 .

But since (Dψ̃)◦τ Dτ = Dψ, this reduces to a purely algebraic result for
determinants. Hence in this case the integral identity (A8-4) is proved.

If g is only Lipschitz continuous and f : Γ → R with f ∈ C0
0 (U), we shall

approximate g by continuously differentiable functions. Let supp f ◦ψ ⊂ V0

with an open connected subset V0 satisfying V0 ⊂ V . With τ = (τ1, . . . , τn−1)
we have for y ∈ V that

n−1∑
j=1

τj(y)ẽj + g̃
(
τ(y)
)
ẽn =

n−1∑
i=1

yiei + g(y)en . (A8-5)

In the case that ẽn �= en, an (n− 2)-dimensional subspace of IRn is given by
span{e1, . . . , en−1} ∩ span{ẽ1, . . . , ẽn−1}. As Ln−1 is invariant under ortho-
gonal transformations, we may assume that ẽi = ei for 1 < i < n, hence
span{e1, en} = span{ẽ1, ẽn}. (If ẽn = en there is nothing to show due to the
invariance.) Then

τj(y) = yj for 1 < j ≤ n − 1 ,

τ1(y) = y1ẽ1·e1 + g(y) ẽ1·en ,
g̃
(
τ(y)
)
= y1ẽn·e1 + g(y) ẽn·en . (A8-6)

Now let gε := ϕε ∗ g for a standard Dirac sequence (ϕε)ε>0 and define con-
tinuously differentiable functions τε = (τε1, . . . , τεn−1) and ψε by

τεj(y) := yj for 1 < j ≤ n− 1 ,

τε1(y) := y1ẽ1·e1 + gε(y)ẽ1·en ,
ψε(y) :=

n−1∑
i=1

yiei + gε(y)en .

(A8-7)
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We want to show that τε is a diffeomorphism. We have shown that τ−1 is
Lipschitz continuous, wich implies that there exists a constant c > 0 such
that for y ∈ V0 and h > 0 sufficiently small ({e1, . . . , en−1} is the canonical
basis of IRn−1)

c ≤ 1
h |τ(y + he1) − τ(y)| = 1

h |τ1(y + he1) − τ1(y)|
=
∣∣ẽ1·e1 + 1

h

(
g(y + he1) − g(y)

)
ẽ1·en ∣∣ .

The term inside the modulus has to have a fixed sign σ ∈ {±1} which by the
continuity of g is independent of y. It follows that

c ≤ σẽ1·e1 + 1

h

(
g(y + he1) − g(y)

)
· σẽ1·en .

Since gε = ϕε ∗ g is a convolution of g, it follows that this convex inequality
also holds for gε, that is, for ε small,

c ≤ σẽ1·e1 + 1

h

(
gε(y + he1) − gε(y)

)
· σẽ1·en ,

hence also
c ≤ σẽ1·e1 + ∂1gε(y) · σẽ1·en .

Then it follows for y ∈ V0

σ detDτε(y) = σ∂1τε1(y) = σẽ1·e1 + ∂1gε(y) · σẽ1·en ≥ c . (A8-8)

This implies that τε is a diffeomorphism because τε is defined as in (A8-7).
Hence τ−1

ε exists and therefore, with ỹ = τε(y),

g̃ε
(
τε(y)
)
:= y1ẽn·e1 + gε(y)ẽn·en = ẽn·ψε(y) ,

ψ̃ε(ỹ) :=

n−1∑
j=1

ỹj ẽj + gε(ỹ)ẽn = ψε(y) ,
(A8-9)

defines continuously differentiable functions g̃ε and ψ̃ε.
Now we can show that the integral identity holds. If we define the function

fε := f ◦ψ̃◦ψ̃−1
ε on the C1-surface Γε := ψε(V0) we see that for ε → 0∫

Ṽ

f
(
ψ̃(ỹ)
)√

1 + |∇g̃(ỹ)|2 dỹ ←−
∫
Ṽ

f
(
ψ̃(ỹ)
)︸ ︷︷ ︸

=fε(ψ̃ε(ỹ))

√
1 + |∇g̃ε(ỹ)|2 dỹ

=

∫
V

fε
(
ψε(y)

)︸ ︷︷ ︸
=f(ψ̃◦τε(y))

√
1 + |∇gε(y)|2 dy −→

∫
V

f
(
ψ̃◦τ(y)

)︸ ︷︷ ︸
=f(ψ(y))

√
1 + |∇g(y)|2 dy .

Indeed, the equality is an equation on Γε and follows from the above step for
the C1-case. The first convergence follows from the fact that ∇g̃ε → ∇g̃ with
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respect to the Lp-norm for every p < ∞. In fact, the definition (A8-9) of g̃ε
implies

(Dτε)
T (∇g̃ε)◦τε = (Dψε)

T ẽn

and by computing the derivative of Dτε using (A8-7) and (A8-8) we obtain
that ∇g̃ε is bounded in L∞. Since gε is bounded in C0 it follows from the
Arzela-Ascoli theorem that for a subsequence ε → 0 the uniform limit gε → ĝ
exists. Hence by the definition of gε

ĝ(τ(y)) ← g̃ε(τε(y)) = ẽn·ψε(y) → ẽn·ψ(y) = g̃(τ(y))

for ε → 0, that is, ĝ = g̃. This proves the convergence of the gradients of g̃ε for
a subsequence. The second convergence follow from the uniform convergence
τε → τ and from the convergence ∇gε → ∇g with respect to the Lp-norm
for every p < ∞. Hence the integral identity (A8-4) holds.

Finally, let f be arbitrary. Since f̂ := f◦ψ has compact support in V , we
can approximate f̂ in L1(V ) by functions f̂i ∈ C∞

0 (V ) as i → ∞. Then we

can apply the results above to the functions fi := f̂i◦ψ−1, i.e.,∫
V

fi◦ψ(y)
√

1 + |∇g(y)|2 dy =

∫
Ṽ

fi◦ψ̃(ỹ)
√
1 + |∇g̃(ỹ)|2 dỹ .

Moreover, we have that∫
Ṽ

∣∣∣fi◦ψ̃(ỹ) − fj◦ψ̃(ỹ)
∣∣∣√1 + |∇g̃(ỹ)|2 dỹ

=

∫
V

|fi◦ψ(y) − fj◦ψ(y)|
√
1 + |∇g(y)|2 dy

≤ C
∥∥∥f̂i − f̂j

∥∥∥
L1(V )

−→ 0 as i, j → ∞.

Hence the functions fi ◦ ψ̃ converge as i → ∞ to a limit in L1(Ṽ ). But as

f̂i(y) → f̂(y) for almost all y ∈ V for a subsequence i → ∞, it follows that

also fi◦ψ̃(ỹ) → f ◦ψ̃(ỹ) for almost all ỹ ∈ Ṽ , because τ maps null sets into

null sets (see 4.27). This implies that the above limit in L1(Ṽ ) must be the
function f ◦ψ. Hence we obtain the desired integral formula in the general
case as well. ��

Proof (2). On choosing f = XE in (1) for Borel sets E ⊂ ∂Ω, we obtain that

E �−→ μ(E) :=

∫
∂Ω

XE dHn−1

is the (n − 1)-dimensional Hausdorff measure on ∂Ω (also denoted by
Hn−1�∂Ω). Then Lp(∂Ω) coincides with the space Lp(μ) for μ = Hn−1�∂Ω
from Chapter 3. ��
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Proof (3). In the proof (1) consider the approximation gε of g. On noting that

(Dψ̃ε)◦τε Dτε = Dψε, it follows that (Dψ̃)◦τ Dτ = Dψ almost everywhere,
and so

(Dψ)T = (Dτ)T (Dψ̃)T ◦τ almost everywhere. (A8-10)

We have that ν = νΩ , with respect to g, is uniquely defined by

(Dψ)T ν = 0 , |ν | = 1 , ν·en < 0 .

Similarly, ν̃ is uniquely defined with respect to g̃. It follows from (A8-10) and
(A8-3) that ν̃◦τ = ν almost everywhere. ��

A8.6 Trace theorem. Let Ω ⊂ IRn be open and bounded with Lipschitz
boundary and let 1 ≤ p ≤ ∞. Then there exists a unique continuous linear
map

S : W 1,p(Ω) −→ Lp(∂Ω) (trace operator)

such that
Su = u|∂Ω for u ∈ W 1,p(Ω) ∩ C0(Ω).

We call Su the trace or the weak boundary values of u on ∂Ω.

Notation: In general we write u(x) in place of (Su)(x) for x ∈ ∂Ω.

Proof. In the case p = ∞ it follows from theorem 10.5 that W 1,∞(Ω) is
embedded in C0,1(Ω), and so the claim holds trivially. Now let p < ∞ and
u ∈ W 1,p(Ω). With the notations as in A8.3, we have that v := ηju ∈
W 1,p(Ωj) and for some δ > 0 it holds that

v(x) = 0 for
∣∣xj

,n − yj
∣∣ ≥ rj − δ and for xj

n − gj(xj
,n) ≥ hj − δ .

For 0 < s < hj we define the functions vs : IR
n−1 → IR via

vs(y) := v(y, gj(y) + s) , where (y, h) :=

n−1∑
i=1

yie
j
i + hejn .

Being a Lipschitz transformation, (y, h) �→ (y, gj(y) + h) maps measurable
functions into measurable functions (recall 4.27), and so it follows from Fu-
bini’s theorem that the vs are measurable functions for almost all s. In addi-
tion, vs = 0 for s ≥ hj − δ. Now the essential observation is that for almost
all s1, s2 > 0 and then for almost all y ∈ IRn−1 we have

vs2(y) − vs1(y) = v(y, gj(y) + s2) − v(y, gj(y) + s1)

=

∫ gj(y)+s2

gj(y)+s1

∂ejnv(y, h) dh .
(A8-11)

In order to prove this, we approximate v by functions wk ∈ W 1,p(Ωj) ∩
C∞(Ωj) using theorem 4.24. The identity (A8-11) holds for wk, and setting
D := Brj

(
yj
)
we have that
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0

∫
D

∣∣v(y, gj(y) + s
)
− wk

(
y, gj(y) + s

)∣∣ dy ds
=

∫
Ωj

|v − wk | dLn −→ 0

as k → ∞, and∫ hj

0

∫
D

∫ gj(y)+s

gj(y)

∣∣∣∂ejnv(y, h) − ∂ejnwk(y, h)
∣∣∣ dh dy ds

≤ hj

∫
Ωj

∣∣∣∂ejn(v − wk)
∣∣∣ dLn −→ 0

as k → ∞. Hence the integrands converge for a subsequence k → ∞ for
almost all (y, s). This proves (A8-11). Then the Hölder inequality implies for
s1 < s2 that∫

D

|vs2 − vs1 |
p
dLn−1 ≤

∫
D

|s2 − s1 |p−1
∫ gj(y)+s2

gj(y)+s1

∣∣∣∂ejnv(y, h)∣∣∣p dh dy
≤ |s2 − s1 |p−1

∫
Dj(s1,s2)

|∇v |p dLn

with Dj(s1, s2) := {x ∈ Ωj ; s1 < xj
n − gj(xj

,n) < s2}, and hence

‖vs2 − vs1 ‖Lp(D) ≤ |s2 − s1 |1−
1
p ‖∇v‖Lp(Dj(s1,s2))

. (A8-12)

Since the norm on the right-hand side converges to 0 as s1, s2 → 0, the
functions vs form a Cauchy sequence in Lp(IRn−1) as s → 0, and hence

vs → v0 in Lp(IRn−1) as s → 0

for some v0 ∈ Lp(IRn−1). Now let

Sjv(y, gj(y)) := v0(y) . (A8-13)

That is, the weak boundary values are defined as the limit of the function
values on hypersurfaces which are a translation of ∂Ω. It follows from A8.5
that Sjv ∈ Lp(∂Ω) with the bound

∥∥Sjv
∥∥
Lp(∂Ω)

≤ Cj‖v0‖Lp(D). Then on

choosing a fixed sj with hj − δ < sj < hj , so that we then have vsj = 0, we
obtain from (A8-12), by setting [s1, s2] = [s, sj], that∥∥Sjv

∥∥
Lp(∂Ω)

≤ Cj‖v0‖Lp(D) = Cj‖vsj − v0‖Lp(D)

= Cj lim
s↘0

‖vsj − vs‖Lp(D) ≤ Cj · (sj)1− 1
p ‖∇v‖Lp(Ωj) .

In addition, ‖∇v‖Lp(Ωj) ≤ C(ηj) · ‖u‖W 1,p(Ωj). For u ∈ W 1,p(Ω) we now
define
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Su :=
l∑

j=1

Sj(ηju) . (A8-14)

In particular, we have that Su = u|∂Ω if u is continuous on Ω. This proves the
existence of S. The uniqueness of S follows by establishing that W 1,p(Ω) ∩
C0(Ω) is dense in W 1,p(Ω), which will be done in A8.7. ��

A8.7 Lemma. Let Ω ⊂ IRn be open and bounded with Lipschitz boundary
and let 1 ≤ p < ∞ and m ≥ 0. Then{

u|Ω ; u ∈ C∞
0 (IRn)

}
is dense in Wm,p(Ω).

Proof. Following A8.3, we partition u as

u =
l∑

j=0

ηju .

For the part η0u choose a standard Dirac sequence (ϕε)ε>0. Since η0 ∈
C∞

0 (Ω), it follows that ϕε ∗ (η0u) ∈ C∞
0 (Ω) for ε sufficiently small, and

hence ϕε ∗ (η0u) → η0u in Wm,p(Ω) as ε → 0. For j ≥ 1 let Ωj and ej1, . . . , e
j
n

be as in A8.3. For δ > 0 define

vδ(x) := (ηju)(x+ δejn) for x ∈ Ωj
δ ,

Ωj
δ :=

{
x ∈ IRn ;

∣∣xj
,n − yj

∣∣ < rj and − δ < xj
n − gj(xj

,n) < hj
}
.

Then vδ,ε := ϕε ∗
(
XΩj

δ
vδ
)
∈ C∞

0 (IRn) and, on recalling 4.23, it holds on Ω

that vδ,ε = ϕε∗vδ ∈ Wm,p(Ω) for ε sufficiently small (so that
(
1+Lip(gj)

)
·ε <

δ) with
ϕε ∗ vδ → ηju in Wm,p(Ω),

when first ε ↘ 0 and then δ ↘ 0. This shows that ηju can be approximated
in the Wm,p(Ω)-norm by functions in C∞

0 (IRn), and hence overall also u. ��

We now prove some frequently used results on weak boundary values,
beginning with integration by parts for Sobolev functions.

A8.8 Weak Gauß’s theorem (Weak divergence theorem). Let Ω ⊂
IRn be open and bounded with Lipschitz boundary.

(1) If u ∈ W 1,1(Ω), then for i = 1, . . . , n∫
Ω

∂iu dL
n =

∫
∂Ω

uνi dH
n−1 ,

where ν is the outer normal to ∂Ω as defined in A8.5.
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(2) Let 1 ≤ p ≤ ∞. If u ∈ W 1,p(Ω) and v ∈ W 1,p′

(Ω) with 1
p + 1

p′ = 1, then
for i = 1, . . . , n ∫

Ω

(u∂iv + v∂iu) dL
n =

∫
∂Ω

uvνi dH
n−1 .

Proof (2). It follows from 4.25 that uv ∈ W 1,1(Ω) with ∂i(uv) = u∂iv+v∂iu.
On recalling A8.7, for 1 < p < ∞ we approximate u and v by functions in
C∞(IRn) and obtain (with S denoting the operator from A8.6) that

S(uv) = S(u) · S(v) in L1(∂Ω) . (A8-15)

For p = 1 we have that p′ = ∞, and so after modification on a null set, v is in
C0,1(Ω) (see theorem 10.5). Hence the boundary values of v are well defined
and are attained continuously. Now (A8-15) follows from the proof of A8.6.
Thus, (2) is reduced to (1). ��

Proof (1). On recalling A8.7 and A8.6, we may assume that u ∈ C∞
0 (IRn).

Following A8.3, we partition u into ηju, j = 0, . . . , l. For η0u ∈ C∞
0 (Ω)

the boundary integral vanishes and the formula follows from integration by
parts in the i-th coordinate direction. For j ≥ 1 the function ηju is defined
on the local set Ωj . Hence on applying an orthogonal transformation to the
canonical Euclidean coordinate system, we need to prove the desired result
for functions u ∈ C∞

0 (IRn) and the domain

Ω =
{
(y, h) ∈ IRn ; h > g(y)

}
with a Lipschitz continuous function g : IRn−1 → IR. By A8.5(3), the normal
ν is then defined by

ν(y, g(y)) :=
(∇g(y),−1)√
1 + |∇g(y)|2

for y ∈ IRn−1.

Hence we need to show that∫
Ω

∇u(x) dx =

∫
IRn−1

(uν)
(
y, g(y)

)√
1 + |∇g(y)|2 dy

=

∫
IRn−1

u(y, g(y))(∇g(y),−1) dy .

(A8-16)

When g is continuously differentiable, this is the classical Gauß’s theorem,
which can be shown for instance as follows: Let v(y, s) := u

(
y, g(y) + s

)
.

Then

∂nv(y, s) = ∂nu
(
y, g(y) + s

)
,

∂iv(y, s) = ∂iu
(
y, g(y) + s

)
+ ∂ig(y)∂nu

(
y, g(y) + s

)
for i < n,

and hence
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Ω

∇u(x) dx =

∫
IRn−1

∫ ∞

0

∇u
(
y, g(y) + s

)
ds dy

=

∫
IRn−1

∫ ∞

0

(
∇v − ∂nv · (∇g, 0)

)
(y, s) ds dy

=

n−1∑
i=1

(∫ ∞

0

(∫
IRn−1

∂iv(y, s) dy
)
ds

)
ei

−
∫
IRn−1

(∫ ∞

0

∂nv(y, s) ds
)(

∇g(y),−1
)
dy .

Integration by parts with respect to yi yields for i < n, since the support of
v(·, s) is compact, that ∫

IRn−1

∂iv(y, s) ds = 0 ,

and integration by parts with respect to s gives∫ ∞

0

∂nv(y, s) ds = −v(y, 0) = −u
(
y, g(y)

)
.

Now we use convolution to approximate the Lipschitz continuous function g
by continuously differentiable functions gk. Letting Ωk := {(y, h) ∈ IRn ; h >
gk(y)} we have that XΩk

→ XΩ as k → ∞ in L1(IRn) ∩ BR(0) for every R
and u(·, gk) → u(·, g) uniformly, because gk → g locally uniformly, and also
(recall 4.15)

∇gk → ∇g in Lp(BR(0)) for every p < ∞ and every R.

Hence in (A8-16) we can pass to the limit for gk. This yields the desired
result. ��

The following result is a generalization of E3.7 to the n-dimensional case.

A8.9 Lemma. Let g : IRn−1 → IR be Lipschitz continuous, let

Ω± := {(y, h) ∈ IRn ; ±(h − g(y)) > 0} ,

and let u : IRn → IR with u|Ω+
∈ W 1,1(Ω+) and u|Ω−

∈ W 1,1(Ω−). Then,

on denoting by S± the trace operators with respect to the domains Ω± from
A8.6,

u ∈ W 1,1(IRn) ⇐⇒ S+

(
u|

Ω+

)
= S−

(
u|

Ω−

)
.

Corollary: Concerning the removability of singularities in Sobolev spaces we
have the following result: If N ⊂ IRn−1 is a closed Lebesgue null set and
A := {(y, g(y)) ; y ∈ N} with g as above, then for every open set Ω ⊂ IRn

u ∈ W 1,1(Ω \A) ⇐⇒ u ∈ W 1,1(Ω) .
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Proof ⇒. Setting us(y) := u(y, g(y)+s) for s ∈ IR, it holds that (see (A8-12)
with p = 1)∫

IRn−1

|uε − u−ε | dLn−1 ≤
∫
IRn−1

∫ g(y)+ε

g(y)−ε

|∇u(y, h)| dh dy −→ 0

as ε ↘ 0, and so S+

(
u|Ω+

)
= S−

(
u|Ω−

)
by the definition of the trace

operator in (A8-13). ��
Proof ⇐. Define u+ = u|Ω+

and u− = u|Ω−
. Let ν± denote the outer normal

to Ω±. Then it follows from A8.8(2) for ζ ∈ C∞
0 (IRn) that∫

IRn

(u∇ζ + ζ∇u) dLn =

∫
Ω+

(u∇ζ + ζ∇u) dLn +

∫
Ω−

(u∇ζ + ζ∇u) dLn

=

∫
∂Ω+

ζS+(u+)ν+ dHn−1 +

∫
∂Ω−

ζS−(u−)ν− dHn−1

=

∫
graph(g)

ζ · (S+(u+)ν+ + S−(u−)ν−︸ ︷︷ ︸
=0

) dHn−1 = 0 ,

because ν− = −ν+ and S+(u+) = S−(u−). ��
We now show that functions in W 1,p

0 (Ω) have weak boundary values 0.

A8.10 Lemma. Let Ω ⊂ IRn be open and bounded with Lipschitz boundary
and let 1 ≤ p < ∞. Let S be the trace operator from A8.6. Then

W 1,p
0 (Ω) = {u ∈ W 1,p(Ω) ; Su = 0} .

Proof ⊂. Every function u ∈ W 1,p
0 (Ω) can be approximated by C∞

0 (Ω)-
functions ui as i → ∞. The properties of the trace operator then imply that
0 = Sui → Su in Lp(∂Ω). ��
Proof ⊃. Let u ∈ W 1,p(Ω) with Su = 0. Choosing ηj as in A8.3, it follows
(see (A8-15)) that S(ηju) = ηjS(u) = 0 on ∂Ω for j = 1, . . . , l. Now define
for j = 1, . . . , l

vj(x) :=

{
(ηju)(x) for x ∈ Ωj ,

0 otherwise.

Then A8.9 implies that vj ∈ W 1,p(IRn), and hence for δ > 0 also vjδ ∈
W 1,p(IRn), where

vjδ(x) := vj(x − δejn) ,

and vjδ → vj in W 1,p(IRn) as δ → 0. Consequently,

uδ := η0u+

l∑
j=1

vjδ −→ u in W 1,p(Ω) as δ → 0.

Since uδ has compact support in Ω, it can be approximated in W 1,p(Ω) with
the help of convolution by functions in C∞

0 (Ω). ��
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A8.11 Remark. Results for Sobolev functions on domains with Lipschitz
boundary can also be proved by locally straightening the boundary. In the
local situation at the boundary, i.e. Ω = Ω+ with the notations as in A8.9,
this means that we consider

Ω̃ := {(y, h) ∈ IRn ; h > 0} ,
ũ(y, h) := u

(
y, g(y) + h

)
for (y, h) ∈ Ω̃ .

It holds that: If 1 ≤ p ≤ ∞ and u ∈ W 1,p(Ω), then ũ ∈ W 1,p(Ω̃) with the
chain rule

∂nũ(y, h) = ∂nu
(
u, g(y) + h

)
,

∂iũ(y, h) = ∂iu
(
y, g(y) + h

)
+ ∂ig(y)∂nu

(
y, g(y) + h

) (A8-17)

for i < n.

Proof. Let τ(y, h) :=
(
y, g(y)+h

)
. For v ∈ Lp(Ω) with p < ∞ it follows from

Fubini’s theorem that v◦τ ∈ Lp(Ω̃), with∫
Ω

|v |p dLn =

∫
IRn−1

∫ ∞

g(y)

|v(y, h)|p dh dy

=

∫
IRn−1

∫ ∞

0

∣∣v(y, g(y) + h)
∣∣p dh dy =

∫
Ω̃

|v◦τ |p dLn .

(A8-18)

Hence we have that ‖v‖Lp(Ω) = ‖v◦τ ‖Lp(Ω̃) for 1 ≤ p ≤ ∞. This shows

that the right-hand sides in (A8-17) lie in Lp(Ω̃), and so (A8-17) (by the

definition of the weak derivatives) only needs to be shown locally in Ω̃ for
the case p = 1.

We approximate g by gε := ϕε∗g with a standard Dirac sequence (ϕε)ε>0.

On setting τε(y, h) :=
(
y, gε(y) + h

)
, let

ũε := u◦τε on Ω̃ε := τ−1
ε (Ω) .

By 4.26, we have ũε ∈ W 1,1(Ω̃ε) and the chain rule (A8-17) holds for ũε. We
note that gε → g locally uniformly as ε → 0 and ∇gε → ∇g in Lq

loc(IR
n−1)

for every q < ∞, and so ∇gε → ∇g almost everywhere for a subsequence
ε → 0. Moreover, the ∇gε are bounded in L∞

loc(IR
n−1). If we can show that

for v ∈ L1
loc(Ω) and for every D ⊂⊂ Ω

v◦τε → v◦τ as ε → 0 in L1
(
τ−1(D)

)
, (A8-19)

then this implies the convergence of u◦τε and (∂iu)◦τε, and we can pass to
the limit in the chain rule (A8-17).

Now it follows from (A8-18) that (A8-19) is equivalent to

v◦τε◦τ−1 → v as ε → 0 in L1(D) . (A8-20)



A8 Properties of Sobolev functions 275

Here, we approximate v in the L1-norm by continuous functions vk. These
functions satisfy (A8-20) and therefore we have (cf. the proof of 4.15(1))∥∥v◦τε◦τ−1 − v

∥∥
L1(D)

≤
∥∥v◦τε◦τ−1 − vk◦τε◦τ−1

∥∥
L1(D)

+
∥∥vk◦τε◦τ−1 − vk

∥∥
L1(D)

+ ‖vk − v‖L1(D)

≤ (C(τε◦τ−1) + 1)‖vk − v‖L1(D) +
∥∥vk◦τε◦τ−1 − vk

∥∥
L1(D)

,

where C(τε◦τ−1) converges to 1 as ε → 0. Thus (A8-20) also holds for v. ��

A further consequence of A8.9 is:

A8.12 Extension theorem. Let Ω ⊂ IRn be open and bounded with Lips-
chitz boundary and let 1 ≤ p ≤ ∞. Then, for δ > 0, there exists an extension
operator

E : W 1,p(Ω) −→ W 1,p
0

(
Bδ(Ω)

)
,

i.e. E is linear, continuous, and such that (Eu)|Ω = u for all u ∈ W 1,p(Ω).

Proof. We treat E similarly to the operator S in (A8-14). Hence it is sufficient
to consider the local situation near the boundary (cf. the proof of A8.8(1)).
Let Ω = Ω+ with Ω± as in A8.9. Choose a cut-off function η ∈ C∞(IRn)
with η = 1 in B δ

2
(Ω) and η = 0 in IRn \Bδ(Ω). Then, define Eu := ηũ with

ũ(y, h) :=

{
u(y, h) for h > g(y),

u
(
y, 2g(y) − h

)
for h < g(y).

(For p = ∞ it follows from theorem 10.5 that this defines a C0,1-extension of
u.) For p < ∞ it follows similarly to the proof of A8.11 that ũ ∈ W 1,p(Ω−),
with

‖ũ‖Lp(Ω−) = ‖u‖Lp(Ω+) ,

‖∇ũ‖Lp(Ω−) ≤
(
2 + Lip(g)

)
‖∇u‖Lp(Ω+) .

Consequently, Eu ∈ W 1,p(Ω−) with

‖Eu‖W 1,p(Ω−) ≤ C‖u‖W 1,p(Ω+) .

Then by the definition of the trace operator in (A8-13) it holds that for a
sequence ε ↘ 0 and for almost all y

S−(Eu)
(
y, g(y)

)
←− Eu

(
y, g(y) − ε

)
= u
(
y, g(y) + ε

)
−→ S+(u)

(
y, g(y)

)
Now A8.9 yields that Eu ∈ W 1,p(IRn). ��
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The following theorem implies that sets of the form

M := {u ∈ W 1,2(Ω) ; ϕ(u) = g on ∂Ω} (A8-21)

are weakly sequentially closed in W 1,2(Ω), if ϕ : IR → IR is continuous and
g : ∂Ω → IR is measurable.

A8.13 Embedding theorem onto the boundary. If Ω ⊂ IRn is open and
bounded with Lipschitz boundary, then for 1 ≤ p < ∞ and uk, u ∈ W 1,p(Ω)
it holds that:

uk → u weakly in W 1,p(Ω)

as k → ∞
=⇒

uk → u (strongly) in Lp(∂Ω)

as k → ∞ .

Proof. Without loss of generality let u = 0. If η ∈ C∞(IRn), then also ηuk →
0 weakly in W 1,p(Ω), and so it follows from A8.3 and A8.1 that we only need
to consider the local situation on the boundary. Hence let Ω = Ω+ as in
A8.9 and let the supports of uk, u be contained in a bounded set of IRn. On
recalling (A8-12), the functions uks(y) := uk(y, g(y) + s) satisfy for almost
all ε, s with 0 < ε < s the bound∫

IRn−1

|uks − ukε |p dLn−1 ≤ |s − ε|p−1
∫
Eε,s

|∇uk |p dLn ,

where Eε,s := {(y, h) ∈ IRn ; ε < h − g(y) < s}. Let δ > 0. Then for almost
all s with 0 < ε ≤ s ≤ δ, on setting C = 2p−1 (see (3-13)), we have that∫

IRn−1

|ukε |p dLn−1 ≤ C

∫
IRn−1

|uks |p dLn−1 + Cδp−1

∫
E0,δ

|∇uk |p dLn .

On letting ε → 0, we have that ukε → uk0 in Lp(IRn−1), where uk0 are the
weak boundary values of uk. Then integrating this inequality over s ∈ [

δ
2 , δ]

and dividing by δ
2 yields that∫

IRn−1

|uk0 |p dLn−1 ≤ 2C

δ

∫
E δ

2
,δ

|uk |p dLn + Cδp−1

∫
E0,δ

|∇uk |p dLn .

It follows from Rellich’s embedding theorem A8.4 that the first term on the
right-hand side converges to 0 for every δ. If p > 1 then the second term
converges to 0 as δ → 0, since the functions ∇uk are bounded in Lp(Ω+).
In the case p = 1 it follows from the following theorem that the integral in
the second term converges to 0 uniformly in k as δ → 0, because the ∇uk

converge weakly to 0 in L1(Ω+; IR
n) and because they have supports in a

bounded set. This yields the desired result. ��
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A8.14 Weak sequential compactness in L1(μ). Let (S,B, μ) be a mea-
sure space and let M ⊂ L1(μ; IRm). Then every sequence in M contains a
subsequence that converges weakly in L1(μ; IRm) if and only if

(1) M is bounded in L1(μ; IRm).

(2) It holds that

sup
f∈M

∫
E

|f | dμ −→ 0 as μ(E) → 0 .

(3) There exist sets Sk ∈ B, for k ∈ IN, with μ(Sk) < ∞, such that

sup
f∈M

∫
S\Sk

|f | dμ −→ 0 as k → ∞ .

Remark: If μ(S) < ∞, condition (3) is not necessary, choose Sk = S.

Proof ⇒. (1) follows via an indirect argument from 8.3(5).
Assume that (2) is false. Hence there exist a c > 0 and measurable sets

En as well as fn ∈ M for n ∈ IN such that

μ(En) → 0 as n → ∞ and

∫
En

|fn | dμ ≥ c for all n .

From this it follows that there exist Ẽn ∈ B with μ(Ẽn) → 0 as n → ∞ and∣∣∣∣∫
Ẽn

fn dμ

∣∣∣∣ ≥ c

2m
. (A8-22)

To see this, let A±
j := {x ∈ S ; ±fn(x)·ej > 0} for j = 1, . . . ,m. Then

∫
En

|fn | dμ ≤
m∑
j=1

(∫
En∩A+

j

|fn·ej | dμ+

∫
En∩A−

j

|fn·ej | dμ
)

=
m∑
j=1

(∣∣∣∣∣
∫
En∩A+

j

fn·ej dμ
∣∣∣∣∣+
∣∣∣∣∣
∫
En∩A−

j

fn·ej dμ
∣∣∣∣∣
)

,

which means that for some j (which depends on n) we have that∣∣∣∣∣
∫
En∩A+

j

fn·ej dμ
∣∣∣∣∣ ≥ c

2m
or

∣∣∣∣∣
∫
En∩A−

j

fn·ej dμ
∣∣∣∣∣ ≥ c

2m
.

Let Ẽn := En ∩A+
j in the first case, and Ẽn := En ∩A−

j in the second case.
Then

c

2m
≤
∣∣∣∣∫

Ẽn

fn·ej dμ∣∣∣∣ = ∣∣∣∣ej·∫
Ẽn

fn dμ

∣∣∣∣ ≤ ∣∣∣∣∫
Ẽn

fn dμ

∣∣∣∣ ,
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and μ(Ẽn) ≤ μ(En) → 0 as n → ∞. This proves (A8-22). It follows from the
assumption on M that there exists a subsequence n → ∞ (there is no extra
notation for the subsequence) such that for all μ-measurable E the limit

lim
n→∞

λn(E) exists, with λn(E) :=

∫
E

fn dμ . (A8-23)

Since for every n we have λn(E) → 0 as μn(E) → 0, the following theorem

A8.15 yields a contradiction to
∣∣∣λn(Ẽn)

∣∣∣ ≥ c
2m .

Now assume that (3) is false, i.e. there exists a c > 0 such that for all
E ∈ B with μ(E) < ∞∫

S\E
|f | dμ ≥ c for an f ∈ M . (A8-24)

Moreover, for all f ∈ L1(μ; IRm) and ε > 0,∫
S\E

|f | dμ ≤ ε for an E ∈ B with μ(E) < ∞ , (A8-25)

because there exists a step function g with ‖f − g‖L1 ≤ ε, and then E :=
{x ∈ S ; g(x) �= 0} has finite measure.

On combining (A8-25) and (A8-24) we inductively choose fn ∈ M and
En ∈ B with μ(En) < ∞ and En ⊂ En+1 such that∫

S\En+1

|fn | dμ ≤ 1

n
and

∫
S\En+1

|fn+1 | dμ ≥ c .

Then it holds for n ≥ 2
c that∫

En+1\En

|fn | dμ =

∫
S\En

|fn | dμ −
∫
S\En+1

|fn | dμ ≥ c

2
.

Next, as in the proof of (A8-22), there exist measurable sets Ẽn ⊂ En+1 \En

such that ∣∣∣∣∫
Ẽn

fn dμ

∣∣∣∣ ≥ c

4m
,

and for a subsequence n → ∞ the corresponding λn satisfy the above property
(A8-23). We now consider the measure space (S̃, B̃, μ̃) with

S̃ :=
⋃
n∈IN

En , B̃ := {E ∩ S̃ ; E ∈ B} ,

μ̃(E) :=
∑
j∈IN

2−j μ(E ∩ Ej \ Ej−1)

1 + μ(Ej \ Ej−1)
,

where E0 := ∅. Since μ̃(E) → 0 implies μ(E ∩ Ej \ Ej−1) → 0 for all j, and

since, for fixed n, for E ⊂ S̃ \ Ej it holds that
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|λn(E)| ≤
∫
S̃\Ej

|fn | dμ −→ 0 as j → ∞ ,

we obtain that |λn(E)| → 0 for E ∈ B̃ with μ̃(E) → 0 for fixed n. Combining
the following theorem A8.15 applied to the measure μ̃ and the facts that∣∣∣λn(Ẽn)

∣∣∣ ≥ c

4m
and μ̃(Ẽn) ≤ 2−n → 0 as n → ∞,

we arrive at a contradiction. ��

Proof ⇐ for regular measures. Let S ⊂ IRn be compact and let μ be a non-
negative measure in rca(S). We may assume that m = 1. For every sequence
(fn)n∈IN in M it follows from (1) and A3.17(2) that

λn(E) :=

∫
E

fn dμ

defines a bounded sequence (λn)n∈IN in rca(S). By 8.6(2), there exists a
λ ∈ rca(S) such that for a subsequence n → ∞,∫

S

g dλn →
∫
S

g dλ for all g ∈ C0(S) . (A8-26)

If E is a μ-null set, then, on recalling that μ is regular, for ε > 0 there exists
a relatively in S open set U with E ⊂ U and μ(U) ≤ ε. Moreover, as λ is
regular, there exist finitely many disjoint closed sets Kj ⊂ U such that

|λ|(U) ≤ ε+
∑
j

|λ(Kj)| .

For δ > 0 choose gj ∈ C0(S) with XKj
≤ gj ≤ XBδ(Kj). Then it follows that

|λ|(U) ≤ ε+
∑
j

|λ|
(
Bδ(Kj) \Kj

)
+
∑
j

∣∣∣∣∫
S

gj dλ

∣∣∣∣
and∑

j

∣∣∣∣∫
S

gj dλ

∣∣∣∣ ←−
∑
j

∣∣∣∣∫
S

gj dλn

∣∣∣∣ (as n → ∞)

=
∑
j

∣∣∣∣∫
S

gjfn dμ

∣∣∣∣ ≤ ∫
S

(∑
j

gj

)
|fn | dμ ≤

∫
U

|fn | dμ ,

where we observe that the last inequality holds for δ sufficiently small, because
then the sets Bδ(Kj) are disjoint subsets of U . Letting δ ↘ 0 and noting
assumption (2) we get
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|λ|(U) ≤ ε+ sup
f∈M

∫
U

|f | dμ −→ 0 as ε → 0.

This shows that E is also a |λ|-null set. Hence we can apply the Radon-
Nikodým theorem 6.11 and obtain that there exists an f ∈ L1(μ) with

λ(E) =

∫
E

f dμ

for all μ-measurable sets E. It follows from (A8-26) that∫
S

gfn dμ −→
∫
S

gf dμ as n → ∞ (A8-27)

for all g ∈ C0(S). On recalling 6.12, we need to show that this also holds for
all g ∈ L∞(μ). First let g = XE with a μ-measurable set E. For ε > 0 choose
K closed and U relatively open in S such that K ⊂ E ⊂ U with μ(U \K) ≤ ε
and g̃ ∈ C0(S) with XK ≤ g̃ ≤ XU . Then∣∣∣∣∫

E

fn dμ −
∫
E

f dμ

∣∣∣∣ ≤ ∣∣∣∣∫
S

g̃(fn − f) dμ

∣∣∣∣+ sup
n′

∫
U\K

(
|fn′ | + |f |

)
dμ ,

where, thanks to (2), the second term converges to 0 as ε → 0. Since the first
term converges to 0 as n → ∞ by (A8-27), we obtain∫

E

fn dμ −→
∫
E

f dμ as n → ∞.

Recalling that the characteristic functions span a dense subspace of L∞(μ)
then yields that (A8-27) also holds for all g ∈ L∞(μ). ��

Proof ⇐ for bounded measures. The idea is to use a separable analogue of
C0(S) in the above proof. As before, let m = 1. Let (fn)n∈IN be a sequence
in M , and let

gn =

kn∑
j=1

αnjXEnj
with μ(Enj) < ∞

be step functions with ‖fn − gn‖L1 ≤ 1
n . On noting that for every n0 ∈ IN it

holds that ∫
E

|gn | dμ ≤ max
i≤n0

∫
E

|gi | dμ+
1

n0
+ sup

f∈M

∫
E

|f | dμ ,

we have that {gn ; n ∈ IN} also satisfies the assumption (2), and it is sufficient
to show that (gn)n∈IN contains a weakly convergent subsequence.

Now the algebra B0 induced by the set {Enj ; j ≤ kn , n ∈ IN} is count-
able. Hence it follows from (1) that with the help of a diagonalization pro-
cedure we obtain a subsequence such that (without special notation for the
subsequence)
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λ(E) := lim
n→∞

∫
E

gn dμ

exists for all E ∈ B0. It holds that λ is additive on B0. Let B1 be the smallest
σ-algebra that contains B0 and all μ-null sets, and define μ1 := μ�B1. Then
(S,B1, μ1) is a finite measure space. Since μ1(S) < ∞, we can show that λ
admits a σ-additive extension to B1. To see this, let (Ek)k∈IN be a shrinking
sequence of sets in B1 for which the above limit exists, and let

E :=
⋂
k∈IN

Ek .

Then ∣∣∣∣∫
E

(gn − gl) dμ

∣∣∣∣ ≤ ∣∣∣∣∫
Ek

(gn − gl) dμ

∣∣∣∣︸ ︷︷ ︸
→ 0 as n, l → ∞

for any k

+2 sup
j

∫
Ek\E

|gj | dμ︸ ︷︷ ︸
→ 0 as k → ∞,

recall (2)

,

which shows that the above limit defines λ on all of B1. On noting that, in
addition,

|λ(Ek \ E)| = lim
n→∞

∣∣∣∣∣
∫
Ek\E

gn dμ

∣∣∣∣∣ ≤ sup
n

∫
Ek\E

|gn | dμ −→ 0 as k → ∞,

we see that λ is even σ-additive on B1 and that λ(E) = 0 if μ(E) = 0. Hence
it follows from the Radon-Nikodým theorem that there exists an f ∈ L1(μ1)
with

λ(E) =

∫
E

f dμ1 for all E ∈ B1.

As the characteristic functions span a dense subspace of L∞(μ1), this means,
on recalling 6.12, that gn → f weakly in L1(μ1). Now L1(μ1) ⊂ L1(μ) implies
that gn → f weakly also in L1(μ). ��

Proof ⇐ the general case. As before, let m = 1. Let (fn)n∈IN be a sequence
in M and let Sk for k ∈ IN be the sets from (3), which we can choose such
that Sk ⊂ Sk+1. We apply the result just shown to the sets

Mk := {XSk
f ; f ∈ M}

(with the measure μ being restricted to Sk). Hence a diagonalization proce-
dure yields a subsequence n → ∞ and hk ∈ L1(μ) with hk = 0 on S \ Sk,
such that∫

Sk

fn g dμ −→
∫
Sk

hk g dμ as n → ∞ for all g ∈ L∞(μ) .

Then hk+1 = hk almost everywhere on Sk, and on setting S̃ :=
⋃

k∈IN Sk we
have that
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h(x) :=

{
hk(x) for x ∈ Sk, k ∈ IN,

0 for x ∈ S \ S̃,
defines a μ-measurable function. Now it holds for k < l and for all g ∈ L∞(μ)
that as n → ∞∣∣∣∣∫

S

(hl − hk)g dμ

∣∣∣∣ = ∣∣∣∣∫
Sl

hl XS\Sk
g dμ

∣∣∣∣
←−
∣∣∣∣∫

Sl

fn XS\Sk
g dμ

∣∣∣∣ ≤ δk‖g‖L∞ ,

where

δk := sup
f∈M

∫
S\Sk

|f | dμ .

It follows that ‖hl − hk‖L1 ≤ δk → 0 as k → ∞, on recalling (3). Hence
h ∈ L1(μ) and for g ∈ L∞(μ)∫

S̃

(h − fn) g dμ ≤ ‖g‖L∞ ·
(∫

S̃\Sk

|h| dμ+ δk︸ ︷︷ ︸
→ 0 as k → ∞

)
+

∣∣∣∣∫
Sk

(hk − fn) g dμ

∣∣∣∣︸ ︷︷ ︸
→ 0 as n → ∞

for any k

.

This shows that fn → h weakly in L1(μ) as n → ∞. To see this, note that if

μ̃ is the measure μ restricted to S̃, then μ̃ is σ-finite and

Jf(x) :=

{
f(x) for x ∈ S̃,

0 for x ∈ S \ S̃,

defines an embedding J : L1(μ̃) → L1(μ). Hence for F ∈ L1(μ)′ we have

that F̃ := F ◦J ∈ L1(μ̃)′, which by 6.12 can be represented by means of
g ∈ L∞(μ̃). Consequently,

F (h − fn) = F̃ (h − fn) =

∫
S̃

(h − fn)g dμ −→ 0 as n → ∞ .

��

A8.15 Theorem (Vitali-Hahn-Saks). Let (S,B, μ) be a measure space
and let λn : B → IK be σ-additive for n ∈ IN. Suppose that

∀ n ∈ IN :
(

|λn(E)| → 0 as μ(E) → 0
)
,

and that the limit

lim
n→∞

λn(E) ∈ IK exists for all E ∈ B.

Then
sup
n∈IN

|λn(E)| → 0 as μ(E) → 0.
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Proof. The set
M := {E ∈ B ; μ(E) < ∞} ,

equipped with the distance

d(E1, E2) :=

∫
S

|XE1
− XE2

| dμ ,

is a complete metric space if the equivalence relation

E1 = E2 in M :⇐⇒ XE1
= XE2

μ-almost everywhere

is used in M. The completeness follows from the fact that the limit of charac-
teristic functions in L1(μ) is again a characteristic function (this follows from
A3.11). The assumptions yield that the λn are continuous on M. Indeed,
d(Ek, E) → 0 as k → ∞ implies that μ(Ek \E) → 0 and μ(E \Ek) → 0, and
so

|λn(Ek) − λn(E)| = |λn(Ek \ E) − λn(E \ Ek)|
≤ |λn(Ek \ E)| + |λn(E \ Ek)| → 0 .

Hence for ε > 0 and k ∈ IN the sets

Aε
k :=

{
E ∈ M ; |λk(E) − λj(E)| ≤ ε for all j ≥ k

}
are closed subsets in M and the assumptions of the theorem imply that⋃

k∈IN

Aε
k = M

for all ε > 0. It follows from the Baire category theorem 7.1 that at least one
Aε

k has a nonempty interior, i.e. there exist kε ∈ IN, Aε ∈ M, δε > 0 with

d(E,Aε) ≤ δε =⇒ |λkε
(E) − λj(E)| ≤ ε for all j ≥ kε.

Now for E ∈ M arbitrary and E1 := Aε ∪ E, E2 := Aε \ E

E = E1 \ E2 , d(E1, Aε) ≤ μ(E) , d(E2, Aε) ≤ μ(E) .

If μ(E) ≤ δε it then follows for j ≥ kε that

|λj(E)| ≤ |λkε
(E)| + |(λkε

(E1) − λj(E1)) − (λkε
(E2) − λj(E2))|

≤ |λkε
(E)| + 2 ε ,

and so
sup
j∈IN

|λj(E)| ≤ 2 ε+ max
j≤kε

|λj(E)|︸ ︷︷ ︸
→ 0 as μ(E) → 0
for any ε > 0.

This proves the desired result. ��
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