8 Weak convergence

In many cases the concept of convergence with respect to the norm turns out
to be too restrictive. That is why in this chapter we will introduce a weaker
notion of convergence which will enable us to solve minimum problems under
far weaker assumptions.

In 4.3 we proved the projection theorem in Hilbert spaces and noted
subsequently that the same result cannot be expected to hold in general
Banach spaces. The difficulty lies in finding a convergent subsequence within
a given minimal sequence, something that is in general not possible with
respect to the norm convergence, as balls in infinite-dimensional spaces are
not precompact (see 4.10). However, we will see (in 8.10) that closed balls
are sequentially compact with respect to weak convergence, at least for the
class of reflexive spaces (see 8.8). Here we lose the continuity of the norm, but
we nonetheless retain its lower semicontinuity (see 8.3(4)). This property will
play a crucial role in the proofs of the existence results 8.15 and 8.17. Hence
the class of reflexive spaces, which lies between the class of Hilbert spaces and
the class of general Banach spaces, plays a significant role in applications.

In this chapter all the spaces are assumed to be complete, except in 8.12-
8.14. In the following, we will always use the notation (z, 2’) y := 2/(z) for
z € X and 2’ € X' from 7.4. We will also write (z, 2’) := (z, 2’) ;. This
simple notation is used in the case when only one Banach space X is involved.

8.1 Definition (weak convergence). Let X be a Banach space.

(1) A sequence (z1),cpy in X converges weakly to x € X (we write zp —
weakly in X as k — oo, or xp — x as k — oo) if for all 2’ € X’

(X, 2')y = (x,2")y ask— oo.
(2) A sequence (7},), . in X' converges weakly* to 2’ € X' (we write
z), — z’ weakly* in X’ as k — oo, or o}, — 2’ as k — o0) if for all z € X
(,2))y = (x,2')x ask— oo

(3) Analogously to (1) and (2) we define weak and weak* Cauchy sequences.

(4) A set M C X (X') is called weakly sequentially compact (weakly*
sequentially compact) if every sequence in M contains a weakly (weakly*)
convergent subsequence whose weak (weak™) limit lies in M.

© Springer-Verlag London 2016 227
H.W. Alt, Linear Functional Analysis, Universitext,
DOI 10.1007/978-1-4471-7280-2_8
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Warning: It is possible to define a corresponding weak (weak*) topology (see
8.7). However, if X is not separable, this topology does not have a countable
basis of neighbourhoods. It follows that “covering compact” and “sequentially
compact” are not equivalent properties (see the example 8.7(4)).

Note: As a complement to weak convergence, convergence with respect to a
norm, i.e. norm convergence, will also be referred to as strong convergence.
This reduces confusion.

The weak convergence may be interpreted as weak™ convergence in the
bidual space:

8.2 Embedding into the bidual space.
(1) Defining
(@, IJxx)y = (x,2)y forzeX, 2’eX’
yields an isometric map Jyx € Z(X; X"). Here
X" :=(X") =2(X;K)

is the bidual space of X.
(2) Let zy,z € X for k € IN. Then:

), — x weakly Jxxp = Jxx weakly™

in X as k — oo in X" as k — oo.

(3) Let a},,2" € X' for k € IN. Then:

x}, — «’ weakly x), — ¢’ weakly*

in X" as k — o0 in X’ as k — oo.
Proof (1). See 6.17(3). O
Proof (2). For 2/ € X’ we have that (z,2')y = (2, Jxx)y and
(x, ")y = (&', Ixx) - O
Proof (3). Because (x, x}) = (2}, Jxx)y, forall z € X. O

8.3 Remarks.
(1) It follows from 6.17(2) that the weak limit of a sequence is unique. For
the weak® limit this holds trivially.

(2) Strong convergence (i.e. norm convergence) of a sequence implies weak
convergence and weak® convergence.

(8) If 2}, — 2’ weakly® in X’ as k — oo, then

o/l < liminf ||,
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(4) If z, — x weakly in X as k — oo, then

< lim inf .
2]l < lminf [l |

(5) Weakly convergent sequences and weakly* convergent sequences are
bounded.

(6) Let xp — « (strongly) in X and z) — 2’ weakly™ in X’ as k — oco. Then
(T, ) = (@, 2)y  as k — oo (8-1)

The same holds if 2, — = weakly in X and zj, — 2’ (strongly) in X".

Remark: Assertion (4) means that the norm is lower semicontinuous with
respect to the weak convergence of sequences (see also E8.5). Assertion (6)
is often used when considering convergence in function spaces.

Proof (3). For all x € X we have that as k — oo

[z, a) x| — o, @) x| < gl -y,

which implies that
! < liminf ||z}, || v - .
(@, 2) x| pnin 2kl x - el x

Therefore, by the definition of the X’-norm,

Il = sup [(z, @) | < liminf ||z} [| . .
lzllx<1 -
O
Proof (4). Analogously to the proof of (3) it holds for all 2’ € X’ that
! < |IZ'|| v, - liminf .
[ )] < 2L, - imint e
If z # 0, we can choose 2’ with ||2'|, = 1 and (z, ')y = ||z|  (see

6.17(1)) to obtain the desired result. For 2 = 0 the result holds trivially. O
Proof (5). If ), — a’ weakly™ in X', then

sup [{(z, 2},) x| < oo forall z € X,
keN

and so it follows from the Banach-Steinhaus theorem (see 7.3) that
sup |4 < oo
keN

If z, — = weakly in X, then Jyxz, — Jxx weakly* in X" (with Jx as in
8.2), and so it follows from the above that Jxxy is bounded in X", and hence
also z; in X. O
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Proof (6). The first claim follows on noting that

[z, @) x = (or, wi) x| < [, 2" —ap) s [+ [(or — 2, ) x|

<o, o' —w)x [+ e -l oy s
——

—0 as k—oo —0 aS k—oo bounded in k

since, by (5), the sequence (z), . is bounded in X'. The second claim
follows analogously. a

We now give some characterizations of weak convergence in function
spaces.

8.4 Examples.
(1) Let 1 < p < oo with %—l— i =1 (where in the case p = 1 we assume that
the measure space is o-finite). Then for fi, f € LP(u)

fe = f  weakly in LP(u) as k — o0

= / frgdpy — / fgdu  ask — oo forall g € L”/(,u).
s s

(2) Let S € R" be compact. Then for f, f € C°(S) (see also E8.4)
fr — f weakly in C°(S) as k — oo

= /fkd)\—>/fd)\ as k — oo for all \ € rca(S).
s s

(3) Let 2 C IR™ be open, let m € IN and let 1 < p < co. Then for ug,u €
wmp(§2)

up —u  weakly in W™P(2) as k — oo

<  O%up — 0%u weakly in LP(£2) as k — oo for all |s| < m.

The same result holds for the subspace Wy™""(£2).

Proof (1) and (2). Follow directly from Theorem 6.12 and Theorem 6.23,
respectively. a

Proof (3). Let X = W™P?(£2) or X = W;""(£2). Then
(Jv)(z) := (0°v(@)) 5 )<m € KM  for v € X and almost all z € 2

defines a linear map J : X — LP(£2;IK™), where M := ("*™) is the number
of multi-indices s with [s| < m. In addition, [|Jvl|}, g, can be bounded
from above and from below by [|v|lyym (). and so the completeness of X

yields that the subspace Y := J(X) C L?(2;IKM) is closed. Therefore, .J is a
bijective continuous linear map between X and Y = J(X) with a continuous
inverse J~! € Z(Y; X).

If up — u weakly in X as k — oo and R € LP(£2;IKM)’ then T := RJ €
X’ and
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R(Ju) =T(ur) — T(u) = R(Ju) as k — oo,

that is, Jup — Ju weakly in LP(£2; IK™). On the other hand, if this is true
andT € X', then R:=TJ ' €Y’ Applying the Hahn-Banach theorem 6.15
we obtain an extension R € LP(£2;IKM)" of R and therefore

T(ux) = R(Jug) = R(Jup) — R(Ju) = R(Ju) =T(u) ask — oo,

that is, ur, — uw weakly in X. Finally, with v} := 0%u) and v* := 0%u, it is
clear that

(VR)|sj<m — (V%)< Weakly in LP(2;IKM) as k — oo
<~
for all |s| <m : (v — v® weakly in LP(£2;IK) as k — o0 ) ,
a property that is true in general. a

Weak convergence can be interpreted as a generalization of conver-
gence of all coordinates or coordinatewise convergence, as we know it for
finite-dimensional spaces. As an analogy of this we replace in the infinite-
dimensional case the “coordinates of a point” « € X by the values (x, 2) for
x' € X'. This is the idea behind the proof of the following theorem, which is
the main functional analysis result of this chapter.

8.5 Theorem. Let X be separable. Then the closed unit ball B1(0) in X" is
weakly* sequentially compact.
Remark: This then also holds for every other closed ball Br(z) in X’.

Proof. Let {z, ; n € IN} be dense in X. If (2},), . is a sequence in X’
with ||z} || < 1, then ((z,,, 2},)),cp ave bounded sequences in IK. Applying
a diagonalization procedure we produce a subsequence k — oo such that for
all n

lim (z,,z)) existsin K.

k—o00
Hence we have that for all y € Y := span{z,,; n € IN} the limit
2'(y) == lim (y, z},) exists in KK,
k—o0
and 2/ : Y — IK is linear. It follows from

[#/(y)| = lim |(y, 23] < ly]

that 2’ is uniformly continuous on Y and so it can be uniquely extended to
a continuous linear map 2’ on Y = X (see E5.3). Therefore, 2/ € X’ with
|2/ <1,and forallz € X and y € YV
[z, 2" —ap) | < Wz —y, o’ —z) |+ [{y, 2 — 23]
<2z =yl + Ky, o' —a3)]

The second term, for every y, converges to zero as k — oo, while the first
term can be made arbitrarily small because ¥ = X. a
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8.6 Examples.
(1) If X = L'(u) is separable, then we obtain from 6.12 (see proof below)

the following result: If (fx),cp is bounded in L®(u), then there exists a
subsequence (fx,);cpy and an f € L>(u) such that

/fk,jdu—>/f§du as i — oo for all g € L (p).
5 s

Note: L'(p) is separable, for example, if S C IR" is Lebesgue measurable
and p is the Lebesgue measure, or if S C IR™ is compact and p € rca(S).
(2) If X = C9(S) with S C IR" being compact, then 4.18(3) and 6.23 yield
the following result: If (ux),cp is bounded in rca(S), then there exist a
subsequence (fix,);c and a measure p € rca(S) such that

/gduki —>/ng as i — oo for all g € C°(S).
s s

Proof (1) Note. If p is the Lebesgue measure on S C IR"™, then L!(u) is
separable (see 4.18(4)). This also holds for p € rca(S), when S C IR" is
compact, because every function in L'(x) can be approximated in the L!-
norm by step functions, and, as p is regular, every u-measurable set can be
approximated in measure by relatively open sets (with respect to S). But
every open set is a countable union of semi-open cuboids, with each cuboid
having its center on the lattice 27% - Z™ and side length 2!~% for an i € IN.

O

Proof (1). Let L'(u) be separable. On recalling that functions in L*(u) can
be approximated by step functions, it follows from 4.17(2) that there exists
a subset {g;; i € IN} of step functions which is dense in L'(u), e.g.

m;
g; 1= ZainEU with M(Eij) < 0.
j=1

Let
S = UEij and  [i(E):=pu(ENS) for E€B.
.3

Then [i is o-finite, and so 6.12 can be applied to L' (z). This yields the desired
result, because
felL'(y) = f=0 p-almost everywhere in S\ 5.

To see the above, observe that there exists a sequence (ix),p in IN such
that || f — gi, [ 11(,) — 0 as k — oo, and so

/~‘f‘d/‘:/~|f_gik|d:ug”f_gik”Ll(u)—)O aSk—>OO7
S\S S\S

which implies that f = 0 almost everywhere in S \ S. O
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8.7 Weak topology. The following results serve to illustrate the concept of
weak sequential compactness. They will not be used in the remainder of this
book.

(1) Weak topology. Let X be a Banach space. For triples (n,z’,¢) with

nelN, 2 = (z,),_y . 212, € X and € > 0 define

Un,zr e = {xEX; |<x,z§€>\<£-:f01rk:17...,n}7
and
Tw i= {ACX; re€A= x+ U, CAforsomeU,, . }

Then X equipped with 7, (called the weak topology) is a locally convex
topological vector space (as in 5.21), and Ty, is the weakest topology for which
all ' € X’ are continuous maps ' : X — IK with respect to 7T,,.

(2) Weak* topology. Let X be a Banach space. For triples (n,z,¢) with
nelN, z=(2k),_, 21,...,2n € X and € > 0 define

yeeey?
Unse = {2/ € X'5 (. )| <cfork=1....n},
and
7;/);: {ACX/; $/€A:>$/+Un,z,5CAf0rsome Un,z,s } .

Then X' equipped with 7. (called the weak* topology) is a locally convex
topological vector space (as in 5.21).

Moreover, it holds that: If 7" is the weak* topology on (X') and if Jx is as
in 8.2(1), then T, = {Jx'(A); A€ T/}

(3) Alaoglu’s theorem. Let X be a Banach space. Then By(0) C X’ (the
closed unit ball with respect to the norm on X’) is covering compact with
respect to the weak* topology on X'.

On the proof: We omit the proof. The result can be shown with the help of
Tychonoff’s theorem (according to A. N. Tikhonov), see e.g. [Conway].

(4) Counterexample to compactness theorems. Theorem 8.5 does not
hold without the separability of X, that is: In general “weak® sequential
compactness” and “cover compactness with respect to the weak* topology”
need to be distinguished.

Ezample: Let X = L*°(10,1[) and for € > 0 define

T.f :i/osf(x)dm for f € L*(10,10).

Then T, € L*°(10,1[) with ||T.|| = 1, and the following holds: There ex-
ists no null sequence (ex); oy such that (7.,), .y is weakly™ convergent in
L>(0,10)".

Proof (4) Ezample. Assume that (7%, ), o is weakly* convergent. By choos-
ing a subsequence (which is then also weakly* convergent and which we again
denote by (7%, ),cn), We can assume that
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1> 50 ask— oo
Now consider the function f € L>(10,1[) defined by
f(z):=(-1)7 forejs1 <z <ejandjeN.

Then . _—
T.f = (@ —au)0 + [ f@)),

k

and so

1 Skt 2
Tt = (0 < —(an+ [ If@]de) < 2o
€k 0 Ek

as k — oo. This shows that the sequence (7%, f), o has the two cluster points
+1. Hence (T%,),c cannot be weakly* convergent. O

Reflexive spaces

In the following we consider the class of reflexive spaces. A reflexive space X is
characterized by the fact that the bidual space X" is isometrically isomorphic
to the space X itself, however not (!) with respect to an arbitrary isometry,
but precisely with respect to the isometry Jx defined in 8.2(1). The class of
reflexive spaces contains all Hilbert spaces (see 8.11(1)).

8.8 Reflexivity. Let X be a Banach space and let Jx be the isometry from
8.2(1). Then we call

X reflexive <= Jx is surjective .

We have the following results:

(1) If X is reflexive, then weak* and weak sequence convergence in X' coin-
cide.

(2) If X is reflexive, then every closed subspace of X is reflexive.
(3) If T: X — Y is an isomorphism, then

X reflexive <= Y reflexive .

(4) It holds that

X reflexive <= X' reflexive .

Proof (2). Let Y C X be a closed subspace. Given a 3/ € Y| let
(@', 2") = <m’|y, y”)Y, for 2’ € X'.

Then 2" € X”. Let x := Jj(lx”. Now for all 2’ € X’ with 2’ =0 on Y we
have that
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<.’E, xl>X = <ZE'/, ‘T//>X/ = <xl|y 9 y”>y/ = 07
which, on recalling 6.16, implies that x € Y. Now let ' € Y/, and let 2’ € X’
denote an extension of 4’ as in the Hahn-Banach theorem (see 6.15). Then
we conclude that
(@, )y = (@, 2" x =@y, ")y =W ")y

i.e. y” = Jyx. This shows that Jy is surjective. O

Proof (3). The claim is symmetric in X and Y, and so it is sufficient to
consider the case where X is reflexive. We need to show the reflexivity of Y.
Let y” € Y”. Then

(@, 2"y = (20T, y"),, fora'e X’
defines an 2”7 € X" and for 3y’ € Y’ (setting 2’/ := y'oT)
<y/7y//> <yOT 3;‘) —<J 1 N,y/OT> <TJ 1 // />Y,
and so ¢y’ = JyTJy L, O

Proof (4)=. If 2’ € X" then 2/’ oJx € X', and it holds for all 2/ € X"
that

< 1 /// J 1 // " J /// J

r ,T X”_< :EOX>X OJx, T >X’>

Le. 2" = Jx/(2'"oJx). O
Proof (4)<. Employing the established implication “=” for the Banach
space X' yields that X" is reflexive. As Jx is isometric, Jx(X) is a closed

subspace of X", which according to (2) is also reflexive. Hence (3) implies
that X is reflexive. O

The proof of theorem 8.10 below employs the following:

8.9 Lemma. For every Banach space X,
X' separable = X separable .

Observe: The converse is false, as shown by the very important example
X = LY(u) (see 6.12 and 4.18(4)).

Proof. Let {z},; n € IN} be dense in X’. Choose x,, € X with

(2, 23) x| = 5llan |l and [zl =1
and define Y := clos (span{z,,; n € IN}). Now if 2/ € X’ with 2’ =0 on Y,
then for all n
2 =@ | 2 [(wn s @ = 20) x| = [(2n s 27) x|
> sllanll = sl = 2, — 2'[)
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and so
[2|| < 3inf || —af,|| = 0,

since {«],; n € IN} is a dense subset. Hence it follows from 6.16 that ¥ = X.
O

We now prove the main theorem for reflexive spaces.
8.10 Theorem. Let X be a reflexive Banach space. Then the closed unit

ball B1(0) C X is weakly sequentially compact.
Remark: This then also holds for every other closed ball Bg(z).

Proof. Let (xx),cn be a sequence in By (0) C X and set

Y :=span{x; k € IN}.

Then Y is reflexive (see 8.8(2)) and, by definition, separable. It follows that
Y"” = JyY is separable, and hence so is Y’ (see 8.9). That means that we
can apply 8.5 to the space Y’ and to the sequence (Jyzp),c in Y. In
particular, there exists a y” € Y such that for a subsequence k — oo

W, Jyzr)y — ', y")y, forally €Y’
Setting z := Jy 'y” € Y, it follows that
<xka y/>Y = <y,7 JYIk->Y/ — <y,7 y//>Y’ = <‘T7 y/>Y as k — oo

for all ' € Y. Since for ' € X’ the map Jc’|Y lies in Y, it follows that also
(g, 2')y = (x, 2') y as k — 00, and so x, — x weakly in X as k — co. O

8.11 Examples of reflexive spaces. Here are several consequences of the-
orem 8.10.

(1) Every Hilbert space X is reflexive. Together with the Riesz representa-
tion theorem 6.1 we obtain: If (x1), . is a bounded sequence in X, then
there exists a subsequence (zy,); . and an 2 € X such that

(Y, zr)x = (y,2)y asi—ooforallyelX.

(2) LP(p) for 1 < p < oo is reflexive. It follows from 6.12 that: If (f),cp s
a bounded sequence in LP(y), then there exists a subsequence (fx,);cy and
an f € LP(u) such that

/gfk,:du—>/gfdu as i — oo for all g € L (p).
S S
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(3) WmP(£2) for 1 < p < oo is reflexive. It holds that: If (fz),cpy is @
bounded sequence in W"P({2), then there exist a subsequence (f,);cn and
an f € W™P({2) such that for all |s| <m

/ g0° f, AL — / g’ fdL" asi—ooforall ge Lp'(Q).
Q o)

(4) L'(p) and L*°(p) (with the measure pu being o-finite) are not reflexive
if the underlying o-algebra B contains infinitely many disjoint sets with po-
sitive measure, i.e. if and only if L*(u) and L (u), respectively, are infinite-
dimensional.

(5) C°(S) and rca(S) are not reflexive if S C IR™ is compact and contains
more than finitely many points, i.e. if and only if C°(S) and rca(S), respec-
tively, are infinite-dimensional.

Proof (1). Let Rx : X — X’ be the (conjugate linear) isomorphism from the
Riesz representation theorem. Then for 2/ € X" letting

(y,2")y ==(Rxy, 2")y, foryeX
defines an 2’ € X'. Set x := R;(lx’. Then for all y € X

<RXy7 x”>X/ = <ya RX$>X = (ya m)){ = <$, RXy>X )

i.e. " = Jxx, which shows that Jx is surjective.
Remark: Hence in the real case, i.e. IK = IR, it holds that J;(l = R;(lR’X,
with R : X” — X’ denoting the adjoint map (see 5.5(8)) of Rx. O

Proof (2). The isometries
Jp i LP(p) = LP'(n) and  Jp : L¥ () = LP(u)’
from 6.12 satisfy
(s T @) Loy = (9> Tpf) ey forall f € LP(u), g € L¥ ().
For f"” € LP(u)" letting
(9,9 1oy = 95 [ oy for g € L ()

defines a ¢’ € LP (). Set f := J, 'y’ Then for all g € L (1)

<ga g/>L”'(u) = <gv J;Df>Lp/(#) = <fa ']p/g>LP(,u) = <Jp’g7 JLT’(;A)f>Lp(#)M

where Jpp(,) @ LP(p) — LP(u)” denotes the embedding from 8.2. Conse-
quently,

<Jp’97 f//>LP(H)/ = <Jp’9, JLP(u)f>Lp(H)/ for all g € Lp,(/v‘)-
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As Jy is surjective, it follows that f” = Jp»(,) f, which proves the reflexivity
of LP(u).

Remark: Hence in the real case, i.e. IK = IR, it holds that J;pl(u) = Jp’lJI’)l,

with J), « LP(u)" — LP ()" denoting the adjoint map (see 5.5(8)) of J.
O

Proof (3). Let J : W™P(2) — LP(02;IKM) be defined as in the proof
of 8.4(3). Then combining (2) and 8.8(2) yields that the closed subspace
J(W™P(£2)) is reflexive (the proof of (2) is the same for functions with val-

ues in IKM). The claim now follows from 8.8(3). O

Proof (4). On noting 8.8(4), 6.12 for p = 1 and 8.8(3), it is sufficient to
show this for L!(u). Let F € L>®(u)'. If Joo : L>®(u) — L*(n)" denotes the
isomorphism from 6.12, then setting

<f/a G>L1(M)/ = <JO_01f/a F>L<>o(u) fOf f/ € Ll(:u)/

defines a G € LY (p)". If G = Jpig f for an f € L'(u), with Jr1(u) denoting
the embedding from 8.2, then it holds for all g € L>(u) that

<g7 F>L°°(y,) = <Joog7 G>L1(,u.)’ = <Joog7 JLl(l‘)f>L1(p,)’
= <.fa ‘]OOg>L1(H) = fS fgd/,é,

that is, B
(9, F)poogy = Jg9fdu  for all g € L=(p). (8-2)

Under the assumption that L!(x) is infinite-dimensional, we now construct
an F which does not satisfy this property. To this end, let E} € B be such
that

E; C Ek+1, ,U(Ek) < /,L(Ek+1) and F = Uke]N Ey.
Consider the subspace
Y :=clos({ge€L>*(); g=0on S\ Ej for some k } ) C L>=(u).

Then Xr ¢ Y, and so 6.16 implies that there exists an F' € L (p)" with
F=0onY and F(Xg) = 1. Hence,

F(Xg,)=0 and F(Xg)=1,
but for every f € L*(u) we have that

Therefore, F' cannot have the representation (8-2). O
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Proof (5). Let C°(S) be reflexive. Then analogously to the proof of (4), and
on using 6.23, there exists for every functional F' € rca(S)" an f € C°(9)
with

WV, F)oasy) = Jg v forall v € rea(S). (8-3)

If S is not finite, then there exist points x; € S for k € IN with xp, -z € S
as k — oo and with z;, # « for all k. Consider the Dirac measures 6, and
0, and set Y := {v € rca(S); v({z}) = 0}. It holds that ¥ C rca(S) is a
closed subspace with 0., € Y and §, ¢ Y. It follows from 6.16 that there
exists an F' € rca(S) with F(d,,) = 0 for all k and F(d,) = 1. But for every
f € C°(S) we have that

Hence F' cannot have the representation (8-3). O

Minkowski’s functional

In 4.3 we solved the minimal distance problem for closed convex sets in Hilbert
spaces, and we saw in E4.3 that in general this is not possible in Banach
spaces. We will now show that in reflexive spaces the distance to such sets
is attained (see 8.15). This is based on the fact that convex side constraints
for elements of an arbitrary Banach space remain valid for limits of weakly
convergent sequences, see theorem 8.13. For closed balls this theorem can be
obtained directly from 8.3(4), and for general closed convex sets it follows
from the following

{z; Re(z, 2")} >«

{z; Re(z,z)} <«

Fig. 8.1. Separation theorem
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8.12 Separation theorem. Let X be a normed space, let M C X be
nonempty, closed and convex, and let g € X \ M. Then there exist an
7’ € X' and an a € IR with

Re(zx, 2y <aforx e M and Re(zo,z) > a.

Remark: Tt follows that 2’ # 0, and hence {x € X ; Re(z, 2') = a} is a
hyperplane.

Proof. First we consider the case IK = IR. We may assume with no loss of
generality that

0e M.

Justification: Choose an £ € M and consider zy := zo — Z and M =
B, (M — %) with 0 < r < dist(z, M). Then if the theorem is established for

M and To with 2’ and a, it follows that the theorem holds for M and z
with 2’ and o := a + (¥, 2').  Consider the Minkowski functional

p(x)::inf{r>0;§€M} for x € X.
r

Since 0 € M, it follows that 0 < p(z) < oo for all # € X. Moreover,
p<lonM, p(xo)>1, p0)=0.
In addition, we have for x,y € X that
plax) = ap(xz) fora >0,
p(z+y) < px) +ply),
i.e. p is sublinear. To see this, note that for a > 0
TevM = e,
T ar
and that the convexity of M implies that

T+y r oz S

_ z Yem.
r+s r4+sr r+ss

Now let f : span{zg} — IR be defined by

X
Tem, e =
T S

flaxg) == ap(xo) for a € R.
Then
f(azo) = plazgp) for a >0,
flazg) <0 < plaxy) fora<0.

It follows from the Hahn-Banach theorem (see 6.14), applied to the subspace
span{x(}, that there exists a linear extension F of f with F' < p on X. Hence
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F<p<lonM, F(xg)= f(zo)=p(zo)>1.

On recalling that B,(0) C M for some p > 0, we note that

reX = ﬁ eM = p(z) < %Hx” — F(2) < %qu.
0
Similarly, —F(x) = F(—z) < %Hm”, which implies that F' € X’. Hence we
have shown the desired result for / := F and o = 1.
In the case IK = C consider X as an IR-vector space X and obtain an
Fr € X[z with the desired properties. Then, as in the proof of 6.15, proceed
to the function F(x) := Fr(z) — iFRr(iz). O

8.13 Theorem. Let X be a normed space and let M C X be closed and
convex. Then M is weakly sequentially closed, i.e. if z;,xz € X for k € IN,
then

xr — x weakly in X as k — oo,
rp € M for ke IN

re M.

Proof. If x ¢ M, then by the separation theorem 8.12 there exist an 2’ € X’
and an « € IR such that

Re(y, 2’y < afory € M and Re (x, ') > a.

Now we have that Re (xy, 2') < «, and the weak convergence to x yields
that also Re (x, 2’} < a, a contradiction. O

The following two results are consequences of this theorem.

8.14 Mazur’s lemma. Let (), be a sequence in a normed space X
that converges weakly to z. Then x € clos (conv {z; k € IN}).

Proof. M := conv {z} ; k € IN} is a convex set, and hence so is M. Now
apply theorem 8.13. a

8.15 Theorem. Let X be a reflexive Banach space and let M C X be
nonempty, closed and convex. Then for xy € X there exists an x € M with

|z — 20| = dist(zo, M) .
Proof. Let (zx),cy be a minimal sequence, i.e.
xp € M and ||ap — x| — dist(xo, M) as k — oo.

Then () ,cpy is a bounded sequence, and so it follows from 8.10 that there
exists a subsequence k& — oo such that z; — x weakly in X as k — oc.
Hence 8.13 yields x € M. On noting that also z — zg — = — zg weakly
in X, it follows from the lower semicontinuity of the norm (see 8.3(4)) that
|z — x| = dist(xo, M). O



242 8 Weak convergence

Variational methods

Closed convex sets play an important role in existence proofs for elliptic
partial differential equations. We now provide applications of theorem 8.13
on closed convex sets to variational problems with side constraints (see 8.17—
8.18), where a generalization of the Poincaré inequality 6.7 is needed (see
8.16). The results on partial differential equations will rely on Sobolev spaces,
and the theorems required for these spaces will be derived in Appendix AS.
Moreover, we always consider open sets 2 C IR which are connected.

Remark: An open set {2 C IR" is connected if and only if it is path con-
nected, i.e. if for every two points g, x1 € {2 there exists a (continuous) path
in 2 from zy to x1, i.e. a continuous map ~ : [0,1] — 2 with v(0) = zg
and v(1) = 1. In the following we will always only make use of this property
(see e.g. 10.4). In a general topological space X a subset A C X is said to be
connected if A is not the union of two disjoint, nonempty and relatively in
A open sets.

8.16 Generalized Poincaré inequality. Let 2 C IR" be open, bounded
and connected with Lipschitz boundary 942 (see definition A8.2). Moreover,
let 1 < p < oo and let M C WHP(£2) be nonempty, closed and convex. Then
the following are equivalent for every ug € M:

(1) There exists a constant Cy < oo such that for all £ € IR,
u+&eM = [{[<Co.
(2) There exists a constant C' < oo with
ullpeoy < C - (IVull o +1)  forallue M.
Note: If M, in addition, is a cone with apex 0, i.e. if
weM, r>0 = ruebM,
then the inequality in (2) can be replaced with
lull ooy < C - [IVullpoo) forallue M.

Proof Note. Replace v in (2) with ru and let » 7 oc. O

Proof (2)=(1). Let £ € R with u := up + & € M. Then Vu = Vug, and
hence the inequality in (2) for v implies that

C-([Vuollpe +1) = lluo +&llpe = [€]- 12l 1o — lluoll s -
This yields the desired result with a Cy that depends on C' and wuy. O

Proof (1)=(2). Without loss of generality we may assume that ug = 0. To

see this, note that if the desired inequality holds for u € M := M — gy with
a constant C, then it follows for u := u + ug that
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lullpe < Nalle + lluollpe < C- (IVullgy + 1 Vuoll e +1) + lluoll Lo

Now let ug = 0 and assume that the conclusion is false. Then there exist
ur € M, k € IN, with

1
IVurllpe +1 < Flluellzs - (8-4)

In particular, ||ug||,, — oo, and so for every given R > 0 (for k sufficiently
large)
R
0p = — —0 ask— .
H Uk || Lp

Hence we have that 0 < §; < 1 for k sufficiently large, and combining the
fact that 0 € M and the convexity of M then yields that vy := dpur € M.
Further,

okl o = OkllunllLr = R,

and the inequality (8-4) yields that

190l 405 < el = & —50 as k= oo

Thus, the v; are bounded in WP(£2). Then 8.11(3) implies that there exist
a subsequence, again denoted by (vk),cpn, and a v € WLP(£2), such that
vp — v weakly in W1P(§2) as k — oo, and so v € M on recalling 8.13.
In particular, Vv, — Vv weakly in LP(£2) (see 8.4(3)). However, the above
inequality yields that Vv — 0 strongly in LP({2), and hence Vv = 0. As
{2 is connected, it follows that v is (almost everywhere) a constant function
(see E8.9). This means that v = £ almost everywhere in {2 for some ¢ € R,
and the assumptions yield that [£| < Cpy. On the other hand, by Rellich’s
embedding theorem (see A8.4), the weak convergence in W1P(§2) implies
that vy, — v strongly in LP({2), and so

R= vl — vllge =11 111 < Coll1| gy -
This yields a contradiction, on initially choosing R sufficiently large. a

In the above result we have considered domains {2 C IR™ with a local Lip-
schitz boundary 0f2. It turns out that the class of such “Lipschitz domains”
is mathematically very robust (see, for example, the trace theorem A8.6 or
the embedding theorem 10.9, which for Lipschitz domains holds in Sobolev
spaces of arbitrary order). And it is the class of domains that is appropriate
for applications, as the boundary can have edges and corners (e.g. cubes are
allowed, and more general domains with piecewise smooth boundaries, where
the pieces meet at nondegenerate angles). We now consider Sobolev functions
on Lipschitz domains and solve the
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8.17 Elliptic minimum problem. Let 2 C IR"™ be open, bounded and
connected with Lipschitz boundary (see A8.2). Let IK = IR. Then

1 n
E(u) = /Q(5 Z diu - a;;0ju + fu) dL"  for u € WhH2(0)
=

defines a map E : W12(2) — IR, where we assume that f € L?(£2) and
aij € L>(£2). In addition, we assume that (a;;), ;_, , is elliptic (as in
(6-8)), i.e. that there exists a positive constant ¢y such that for all z € 2

n

3 ai(2)68; > col€* forall ¢ € R (8-5)

1,j=1
Without loss of generality we may assume symmetry, i.e. that
A5 = Qjq for i,j = 1,...,’[1. (8-6)

(Otherwise replace a;; with @;; := %(a;; + a;;).) Then for every nonempty,
closed and convex subset M C W12(§2) with the property in 8.16 (the prop-
erty (8-10), below, is stronger) it holds that:

(1) E has an absolute minimum v on M, i.e. there exists a u € M such
that
E(u) < E(v) forallve M. (8-7)

(2) The absolute minima u of E on M are precisely the solutions of the
following variational inequality of E on M:

/Q(i 0i(u— ) - a;;0;u + (u— v)f) dL" <0 forallve M. (8-8)

ij=1

(3) If M is a closed affine subspace, that is, if M = ug+ My for some ug € M
and a closed subspace My C W12(2), then the variational inequality (8-8)
for u € M is equivalent to

/ (Z 0;v - a;;0ju + vf) dL” =0 for all v € M. (8-9)
I?)

ij=1
(4) If M satisfies

veM, EeER, v+€{eM = £=0, (8-10)

then there exists a unique absolute minimum and a unique solution of the
variational inequality of E on M.
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Proof (1). We begin by showing that there exist positive constants ¢ and C
such that

B(u) > c/ |Vul*dL" — O for all u € M. (8-11)
On noting the elementary (llfoung ’s inequality

a- b<5a—|—1b2 for a,b> 0 and ¢§ > 0, (8-12)
it follows from the ellipticity in (8-5) that

E(u) ZCO/Q\VuFdL”— £ 1o lull 2

1
> col| Vull7z = Sllullze — = f1I7: -
40
Letting C denote the constant from the Poincaré inequality 8.16(2),
lulz2 < 20| Vul7s +2,
and so
E(u) > (co = 200)|[Vullz2 — C(, f).
where C(6, f) is a quantity depending on ¢ and f. On choosing ¢ sufficiently
small, we obtain (8-11) with ¢ = <.

It follows from (8-11) that E(u) > —C for all w € M, i.e. E' is bounded
from below on M. Now choose a minimal sequence (ux), . in M, i.e.
E(uy) — d = in{{E(v) > —o00 as k — oo.

veE

By (8-11), the sequence (V) is bounded in L?(£2). Together with the
Poincaré inequality 8.16(2) we obtain that (ug), .y is a bounded sequence in
W12(02). It follows from 8.11(3) that there exists a u € W2(2) such that
uy, — u weakly in W12(£2) for a subsequence k — oo. Since M is closed and
convex, it follows from theorem 8.13 that v € M. Moreover, it follows from
8.4(3) that the weak convergence implies that

f(u;€ —u)dL” — 0 and Z / a;;0;u0;(up —u)dL™ — 0.
7,7=1
Hence we have that
E(ug) = E(u+ up — u)

= E(u +Z/a1]3u8 up — u) dL™ 4+ /fuk—u )dL"

3,j=1

—0as k — oo

/ Z a;;0; )9 (up —w) dL™,
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which yields that E(u) < liminfx_, o E(ug) = d. On the other hand, u € M
implies that F(u) > inf,cp E(v) = d, and so E(u) = d. O

Proof (2). If w is an absolute minimum and if v € M, then, since M is convex,
(I1-e)ut+eve M for0<e<1,andso

E(w) <E((1-eu+ev) =E(u+e(v—u))

=E(u /(28 amaqu(vfu)f)dL”

1]1

7/ Za v — w)ayd; (v — u) dL"

7,7=1

(8-13)

>0

Subtracting E(u), dividing by ¢ and letting e N\, 0 then yields the desired
variational inequality.

Conversely, if v € M then the identity in (8-13) (with € = 1) yields for
all v € M that

B(v) > /(Za awaw(vw)f)dm.

i,j=1

Now if u is a solution of the variational inequality, then the above integral is
nonnegative. Hence u is an absolute minimum of £ on M. a

Proof (3). In (8-8) choose v = u £ v with v € My (cf. the proof of 4.4(1)).
O

Proof (4). If uy and ug are two solutions of the variational inequality, then
choose v = us in the variational inequality for u; and v = u; in the variational
inequality for us to obtain

/Q( Z 81'(’(11 — UQ) . aij(?jul + (u1 — Ug)f) dL™ < 0,

=1
/ (Z 0;(ug — ul) - a;;05u2 + (UQ — ul)f) dL™ <0.
2% =1

Adding these two inequalities yields that

O>/ Za (w1 —u2) - a;;0;(u1 — ug) dL" >Co/ [V( ul—uz)| dL”,

i,7=1

and so V(u; — uz) = 0 in L*(£2). As in the proof of 8.16 it now follows
for some £ € IR that u; — ugy = £ € IR almost everywhere in {2, with the
assumptions implying that & = 0. a
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We remark that the techniques used in the proof for the minimum problem
in 8.17 carry over to nonquadratic functionals. We now give some important
examples of the set M for this minimum problem. Here all of the occurring
boundary values are defined with the help of the trace theorem AS8.6.

8.18 Examples of minimum problems.
(1) Let
M := {v € Wt2(2) ; v =0 H" l-almost everywhere on 912 } .

Then it holds: There exists a unique absolute minimum w« in 8.17. It satis-
fies (8-9) with My = M. Hence u is the weak solution of the homogeneous
Dirichlet problem in 6.5(1) (for h; =0, b =0).
Note: It holds that M = WOI’Q(.Q). Hence this is a special case of theorem
6.8, which was shown there for general open and bounded sets 2 C IR".
(2) Let

M:={veW"2(2); [,vdL" =0} .

In addition, we assume that [, fdL™ = 0. Then it holds: There exists a
unique absolute minimum w in 8.17. It satisfies the equality (8-9) for all
v € WH2(£2). Hence u is a weak solution of the homogeneous Neumann
problem in 6.5(2) (for h; = 0, b = 0). The solution to this problem is unique
up to an additive constant.

Observe: This result differs from theorem 6.6, as there the Neumann problem
was solved for b > 0.

(3) Let ug,v» € WH2(£2) be given and let ug(x) > 1 (z) for almost all = € (2.
Define

M= {veW"(2) ; v=uy H" '-almost everywhere on 912,
v > 1 L™-almost everywhere in {2 } .

The corresponding minimum problem is called an obstacle problem. Then
it holds: There exists a unique solution u to the obstacle problem. It satisfies
the variational inequality (8-8).

Special case: For the case n = 1, see also ES8.8.

(4) Let Lebesgue measurable sets Fy,E; C {2 with L"(E;) > 0 and
L"(Ey) > 0, and 1,9 € WH2(2) with 1 < b, almost everywhere in
{2 be given. Define

M:= {ve Wh2(02) ; v >4 L almost everywhere in F,

v < 1y L™-almost everywhere in Fs } .

The corresponding minimum problem is called a double obstacle problem.
Then it holds: There exists a solution u to this obstacle problem and it
satisfies the variational inequality (8-8).

Remark: The solution need not be unique.
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(5) Let ug € Wh2(£2) and let I' C 912 be a closed subset with measure
H"~Y(I") > 0. Define

= {veW"2(2) ; v=ug H" '-almost everywhere on I" } .

Then it holds: There exists a unique absolute minimum « € M in 8.17. It
satisfies (8-9) with

My = {ve WH2(2); v =0 H" -almost everywhere on I'}.

Definition: Then u € W12(£2) is called a weak solution of the mized
boundary value problem

—ZTL<_ 8i(aij8ju) +f=0 in £,

i,j=1
u=1uy onl,
S viai0ju =0 on 02\ T,

3,j=1

where v is the outer normal to (2 defined in A8.5(3). The weak solution in
Wh2(£2) to this boundary value problem is unique.

Proof (1). The continuity of the trace operator yields that M C W2(£2)
is a closed subspace (with S as in A8.6 it holds that M = .4#°(S)). Clearly
M is nonempty and satisfies (8-10) (from v € M and v + £ € M it follows
for the traces that v = 0 and v + £ = 0 almost everywhere on 02, and so
& =10). Now 8.17 yields the existence of a unique solution u, which satisfies
(8-9) with My = M. O

Proof (2). M is a subspace and contains 0 as the only constant function. In
addition, M is closed (the embedding from W2(£2) into L'(£2) is continu-
ous and the side constraint is continuous on L'(£2)). Hence M satisfies the
property (8-10), and so 8.17 yields the existence of a unique solution u, which
satisfies (8-9) with My = M.

For arbitrary v € W2(§2) it holds that ¥ := v — m(v) € M, where

no.__ 1 n or 1 5
m(g) .:fﬂgdL = L”(Q)/diL for g € L (02) (8-14)

denotes the mean of g on (2.

On recalling that m(f) = 0, we obtain that (8-9) holds for constant
functions, and hence it also holds for v = v + m(v), as claimed.

Now if & € M is another function that satisfies (8-9) for all v € W2(2),
then

/Zau aij0;(u—w)dL™ =0 for all v € W"?(02).
1,j=1

Set v = u — u. Then

o—/ Za ~ai;0;(u —ﬂ)danco/Q|V(u—ﬂ)|2dL".

1,j=1
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Hence we have that V(u—1u) = 0 almost everywhere in 2. As (2 is connected,
it follows that there exists a £ € IR such that w = u + £ almost everywhere
in 2. ad

Proof (3). M is convex and ug € M. We show that M is closed. Let (uy), o
be a sequence in M that converges in W12(£2) to a u € W12(£2). Then it
follows from the trace theorem A8.6 that uy — u in L?(9£2). On noting that
uy, = up in L?(92), we also have that u = ug in L?(9£2). In addition, up — u
in L2(§2). Hence there exists a subsequence k — oo such that uj — u almost
everywhere in §2. Now uy > 1) almost everywhere implies that u > 1.
Moreover, (8-10) holds. Indeed, it follows from v € M and v :=v+& € M
that £ = v — v = 0 almost everywhere on 92, and so £ = 0. By 8.17, there
exists a unique solution to the variational inequality. O

Proof (4). We have that M is convex and that 1,19 € M. The closedness
of M follows as in the proof of (3). In addition, 8.16(1) is satisfied, e.g. with
ug = 1. To see this, note that if v ;= + & € M with £ € IR, then £ > 0,
since L™(F;) > 0. Similarly, we have that £ < 9 — ¢; on FEs, and so it
follows from L"™(F53) > 0 (on applying either the Hélder inequality (see 3.18)
or Jensen’s inequality (see E4.10)) that

§S][E2 o — | dL" < (7{3 |w2—w1|2dL")2
= (L"(B2) "2 92 — ¥1 2y < 00

By 8.17, there exists a solution to the minimum problem.
On the uniqueness: In general, there exist several solutions. For example,

if Y1 = —1, ¥y = +1, f = 0, then every constant function v = ¢ with
& € [ —1,1] is a solution. This would no longer be the case if, in addition,
Dirichlet data were prescribed on 92 (e.g. as in (3)). O

Proof (5). M is convex and ug € M. The closedness of M follows as in the
proof of (3), on restricting the pointwise argument to the subset I' C 912. The
same holds for the proof of (8-10), where now we use that H*~!(I") > 0. Then
8.17 yields the existence of a unique solution. On noting that My := M — ug
is a subspace, we conclude that (8-9) holds. O

E8 Exercises

Throughout these exercises we let IK = IR.

E8.1 Weak limit in LP(u). Let p be a o-finite measure and let f;, f €
LP(p) with 1 < p < oco. Then it holds: If f; — f weakly in LP(u) and f; — f
p-almost everywhere as j — oo, then f = f u-almost everywhere.
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Solution. Let Sy, be as in 3.9(4). It follows from Egorov’s theorem A3.18 that
for € > 0 there exists a measurable set E. C S,, such that u(S,, \ E;) < ¢
and f; — f uniformly on E, as j — oco. Given ¢ € L* (), the map

g %/ Cgdp
Es

defines a continuous linear functional on LP(u) (for p < oo this follows from
w(E:) < oo and the Holder inequality), i.e. an element of LP(u). Hence we
have that

| h-nan—o asjiow

Since f; — funiformly on E,

/EC(f—f)du:O for all ¢ € L>(p).

Now set ((z) = w(f(m) — f(x)), where

—  for z #£0,
W(z) =< 2]
0 for z = 0.

Then C(f— f) = |f— f|, and hence we obtain that f: f almost everywhere
on E.. Letting £ N\, 0 and m " oo yields the desired result. a

E8.2 Weak limit of a product. Let i be a o-finite measure and let 1 <
p < co. Moreover, let f; — fin LP(u) as j — oo, let (95) ey be bounded in

LP (1) and let g; — g almost everywhere. Then
gifi — gf weakly in L*(p) as j — oo.
In particular,

/ngfjd,u—>/sgfd,u as j — oo.

Solution. Otherwise it follows from theorem 6.12 that there exists a ( €
L () such that for a subsequence j — oo and a 6 > 0 we have that

]/wmm/ﬁmﬁzémmw. (Es-1)
S S

On recalling from 8.11(2) that L (x) is reflexive for 1 < p/ < oo, it follows
from theorem 8.10 that there exists a § € L (u) such that for a further
subsequence g; — g weakly in L (1) as j — oco. Now E8.1 yields that g = g,
and hence g; — g weakly in Lp,(u). Moreover, f;( — f( converges (strongly)
in LP(u) as j — oo. In this situation we can apply 8.3(6):
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It J: LP(pn) — (Lp/(,u))/ denotes the isomorphism from 6.12, then

J(fj¢) = J(f¢) converges (strongly) in (Lp/ (,u))/ and hence the second re-
sult in 8.3(6) yields that (g;, J(f;€));»» — (9, J(fQ)) ., in contradiction
to (E8-1). O

E8.3 Weak limit of a product. Let p(S) < oo and let 1 < p < co. Assume
that f; — f converges weakly in LP(p) as j — oco. In addition, let g; : § = R
be measurable and uniformly bounded, and let g; — g almost everywhere as
j — 00. Then

g;fi — gf weakly in L*(u1) as j — oo.

Solution. Since |g; — g|pl are uniformly bounded and p(S) < oo, it follows
for a constant C' that

lg; —g|" <C e L' (p).

Since these functions converge almost everywhere to 0, it follows from
Lebesgue’s convergence theorem 3.25 that |g; — g|” — 0in L' (), and hence

Cg; — Cg (strongly) in LP () as j — oo for all ¢ € L>°(u). Moreover, the
assumptions state that f; — f weakly in LP(u). In this situation we can
apply the first result in 8.3(6) (analogously to the solution of E8.2). O

E8.4 Weak convergence in C°. Let S C IR" be compact and let f;, f €
C°(S). Then

sup sup | f;(x)| < oo and

f; — f weakly in C°(S) z€S jEN
as j — 0o = fi(@) — f(x) as j — o0
for all z € S.

Remark: It holds that sup,cgsup,en | fj(2)] = sup,en sup,es | fi ()]

Solution =-. By 8.3(5), the sequence (f;);py is bounded in C°(S). Moreover,
it follows from 6.23 that the weak convergence is equivalent to

/fjdV—>/de as j — oo (E8-2)
s s

for all v € rca(S). Now choose v = §, for € S, where 0, denotes the Dirac
measure at the point x. O

Solution <. We have to show (E8-2). Let u € rca(S) be nonnegative. It
follows from Egorov’s theorem A3.18 that for € > 0 there exists a measurable
set B, C S with p(S '\ E.) < € such that f; — f uniformly on E, as j — oo.
On recalling that the functions f; are uniformly bounded, say |f;| < C, we
have that
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[t = D] < B s 1150) - @ +C- i) B
S zcb, ——

—0ase—0

— 0 as j — oo
for every e

This yields (E8-2) for pu.

Note: The desired result also holds for arbitrary measures in rca(S;R), as
they can be decomposed into their real and imaginary parts, and these further
into their positive and negative parts (the nonnegative and nonpositive parts,
see the Hahn decomposition A6.2). O

E8.5 Strong convergence in Hilbert spaces. Let X be a Hilbert space.
Then it holds for every sequence (zy),cp in X that:

xp — x (strongly) in X 1, — o weakly in X and

A
as k — oo lzrllx — x|y as k — oo.
Solution <. We have that
2 2 2
lzxlx = lzllx +2Re (zx — 2, 2)x + lor — 2 .

It follows from the Riesz representation theorem that (zx —x, ), — 0 as
k — oo, and so the convergence |||y — ||| yields the desired result.
O

E8.6 Strong convergence in LP spaces. Prove that the equivalence in
E8.5 also holds for the Banach space X = LP(u) with 1 < p < 0.

Solution <. Let fi,f € LP(u) be such that fr — f weakly in LP(u) as
k — oo, which on recalling theorem 6.12 means that

/ Frgdp — / fodu forall g e I¥ (),
S S

and such that || fi|,» — [[fll,» as E — co. We employ the elementary
inequality

b7 > Ja’ +p- (b—a) e (la"*a) +c- (b +|a])""[p—af*  (E8-3)

for a,b € R™,a # 0, with a constant ¢ > 0 depending on m and p (proof see
below).

Set a = f(x), if f(x) # 0, and b = fi(z). With g(z) == | f(z)[""*f(z) (we
consider the real case), if f(z) # 0, and g(x) := 0 otherwise, it follows that

/Slfklpduz/Slflpdqup-Re(/S(fk—f)gdu)+c-5k (E8-4)

with
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—2
5 ::/S (fel + L) 21 fe = P s,
k

where Sy, == {z € S; |fr(x)| + |f(z)| > 0}. On noting that g € L¥ (u), it
follows from the assumptions that the second term on the right-hand side of
(E8-4) converges to 0, and that the left-hand side converges to the first term
on the right-hand side. We conclude that 6 — 0 as k — oo. For p > 2 this
yields the desired result, since

e [ 15— 7 d
s
For1 <p<2ande>0let

Eep={xeSk; |fule) = f(@)| > (| fulx)| + | f(2)]) } -
Then

e P < {5p_2(|fk|+|f|)p_2fk—f|2 on Eey,
T (el + IFD)P < 2P| fuP + | f)F)  on Si\ e,

whence

/Slfk—ﬂ dMZ/Sklfk—fl du
szp*ep/ <|fk|p+|f|f’>du+ep*2/ (fil + 1D i — £ dp
Sk\Ec i

Es,k

< 2PV (|| frollhs + 1 FI1T0) + €720k
bounded in k

for all € and k, which yields the desired result.
For the proof of (E8-3) let a; := (1 — s)a + sb. As (E8-3) depends contin-
uously on b, we may assume that as # 0 for 0 < s < 1. Then

1
ar” = laol” =p [ la."a. o (@1 - ao)ds,
0
and hence

lay |p - \a0|p - P\a0|p72a0 e (a1 — ap)

1 s
=p (a1 — ao) 0/ / £(|at|p72at) dtds

1 S 2
o [ [l - ol 02 (01 - ao) 0 24) e
o Jo la|

> p (1 +m1n(p - 270)) : w(aOaal) ' |a’1 - a0|27
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Y(ag, a1) : //|a P~ dtds.

Observe that v (ag,a1) = (Jag| + |a1\) w(bo,bl) with b = (Jao| +
|ay |)_1al for I = 0, 1. Hence we need to show that

inf{e(bo,b1); |bo|+ |b1| =1} > 0.
For 1 < p < 2 we have that v(bg,b;) > %, because |(1 — #)bg + tby| < 1, and

- 2’
for p > 2 the value ¥ (bg,b1) can converge to 0 only if by — 0 and b; — 0.

O

with

E8.7 Weak convergence of oscillating functions. Let I C IR be an
open, bounded interval and let 1 < p < oo.

(1) If g € L*(IR) is a periodic function with period k > 0, i.e. g(x+K) =
g(z) for almost all z, and if

then the functions f,(z) := g(nz) converge weakly in LP(I) to A as n — oo.

(2) Let o, 8 €R,0< 6 <1, and

() a fork<nx<k+06, kelZ,
" B fork+0<nx<k+1, keZ.

Then the functions f,, converge weakly in LP(I) to the constant function
O+ (1 —0)5 as n — o.

(3) Find functions f,, f, gn,g € L>(I) such that f, — f, g, — ¢ weakly in
L?(I) as n — oo, but such that f,g, does not converge weakly to fg.

Solution (1). Without loss of generality let A = 0 (otherwise replace g with
g — A). Then the assumptions on g yield that

h(x) = /;g(y) dy

defines a continuous function that is bounded on all of IR. If [a,b] C I, then

/ fulz % (h(nb) — h(na)) — 0 as n — oc.

Consequently,

fa(@)((z)de — 0 asn — oo
I
for all step functions (. As these step functions are dense in e (I), and as
the functions f,, are bounded in LP(I), we obtain the same result also for all
¢ e LP(I) (see E5.4). O
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Solution (2). This follows from (1), on noting that

/0 filx)de =0a+ (1-0)5.
O

Solution (3). Let f, be as in (2) and define g,, correspondingly for the values
a, € R and the same value 6. Then (2) yields the following weak conver-
gence results in LP(I):

fn —)9&+(1*9)ﬂ,

gn — 0a+(1-0)3,

frngn — Qo+ (1 — 9)65.
Now the equation
fad + (1 - 0)8B = (ba + (1 - 0)B) (9a + (1 — 0)p)

is equivalent to (o — 3)(a — B) =0, and so for o # 8 and a # E we obtain
the desired example. a

E8.8 Variational inequality. Find the solution u € W2(£2) of the obsta-
cle problem in 8.18(3) forn =1, 2 =1 -1 1[CR,u >0, =0, f=1
and a = 1.

Solution. (On recalling E3.6, we use the fact that for n = 1 functions in
WL2(02) can be identified with functions in C9(£2).) Let
M= {ve Wh2(£2) ; v > 0 almost everywhere in £2,
v(£1) = ug = ug(£1) }.

Then uw € M NCY([—1,11) and

1
/ (u—=v)u'+ (u—v))dL' <0 forallve M.
~1
First we consider an interval la,b[ in which v > 0. If { € C§°(Ja,bl), then
u > ¢ in supp( for a ¢ > 0, and hence u + ¢ € M for small |g]. It follows
that

b b
0= / (W +¢Q)dL' = / ¢v'dL',
where v(z) := u(x) — $2?. This implies (see E8.9) that v is linear in Ja, b,
and hence there exist dy,d; € IR such that
2

u(x):%+d1x+d0 fora <z <b.
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On choosing Ja,b[ C {u > 0} maximally, i.e. u(a) = 0, if a > —1, and
u(b) =0, if b < 1, the obtained characterization of u implies that we have to

distinguish the following cases:

a=-1,b=1, andsou>0in] —1,1[,
a>-1,b=1, andsowu>0inla,1] with u(a) =0,
a=-1,b<1, andsou>0in [ —1,b[ with u(b) =0.

Hence overall we obtain the following two cases for u:

UQ(_l)

U()(*l)

| I I
-1 T_ T4 1

Fig. 8.2. Solution of the obstacle problem

(1) u>0in] —1,1[,

2) There exist —1 < z_ <z, <1 such that u(z) =0 for x_ <z <z, and
+ +

u(z) > 0 otherwise.

In the case (1) the values dy and d; are determined by the boundary condi-
tions, and we obtain

u(z) =5 (2? — 14 (uy —u_)z+up +u_)

and the necessary condition
luy —u_|>2 or uptu->1+t(up —u)?, (E8-5)
Correspondingly, in the case (2) we obtain for certain s+ > 0 that

u(@) = 1o - 24)% + 54(0 — 2)
for z > 2y with (1 —24)sp =uy — 3(1—24)? >0,
u(z) = $(z- — ) +s_(z_ —x)

for z <a_ with (1+2_)s_ =u_ —+(1+2.)>>0.
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The uniqueness of the solution means that x4 are uniquely determined by w.
Hence we further investigate the variational inequality. For ( € C§° (] -1,1 [)
with ¢ > 0 it holds that v 4+ ( € M, and so the variational inequality yields
that

1
o< [ @urgat
—1
1 T_ 1
:/ C’(m)(m—x++s+)dx+[1 C’(m)(x—x_—s_)dx+[1§dL1

— (s = (s + [ gart,

xr

If 2, < 1 set ((z) := max(0,1 — |z — z,|) and obtain as § — 0 that
s+ < 0. Together with the above inequality for s; we obtain that s; = 0,
and similarly for s_ = 0. Therefore,

Yo —a)

2 forxz<az_,

u(z) = forx_ <ax <wxy,

0
@ —az4)?  forxz>wy,
where

up —31(1-24)?=0 and w_—3(1+2_)2=0.

Apart from (u—,u4) = (0,2) or (2,0), this case is complementary to the case
(E8-5). O

E8.9 A fundamental lemma. Let 2 C IR" be open and connected, and
suppose that u € L{ _(12) satisfies

loc
/u~8iCdL":0 for (e C3°(2) and i =1,...,n.
Q

Then u is (almost everywhere) a constant function.

Solution. Let B be a ball with B C §2 and let (¢.).., be a standard Dirac
sequence. On setting @.(y) := p-(—y) we have that ¢ x g € C§°(£2) for
¢ € C§°(B) and ¢ < dist(B, 942), and so

—/ Oi(u* @) CdL" = / (u* @c) 0;¢dAL™ :/ w0;(C*@.)dL" =0.

Q Q Q

Hence V(u % ¢-) = 0 in B, which yields that u x ¢. is constant in B. On
recalling that u * ¢. — w in L'(B) as ¢ — 0, it follows that u is also a
constant almost everywhere in B. As 2 is path connected (see remark above
8.16), this constant does not depend on B. O
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A8 Properties of Sobolev functions

Here we will derive properties of functions in W P({2), where we treat
bounded sets {2 with Lipschitz boundary 042 (see definition A8.2). This class
of domains, on one hand, allows a functional analytically uniform presenta-
tion of the theory of Sobolev spaces, and on the other hand, this class is of
major importance in applications, because it contains domains with edges
and corners, as they occur in flow domains and also in workpieces.

In applications to boundary value problems on such domains, e.g. on
cuboids, often different boundary conditions are prescribed on different sides
of the domain (see the mixed boundary value problem in 8.18(5)). For the
weak formulation of these boundary value problems we need to prove that
functions in W1P(£2) have weak boundary values on 92 (see A8.6). Then
we show (see A8.10) that W, P(£2) consists precisely of those functions in
WLP(£2) that have weak boundary values 0. This belatedly justifies the weak
formulation of the homogeneous Dirichlet problem in 6.5.

We begin with Rellich’s embedding theorem A8.1 for Wy (£2) and A8.4
for WP ((2).

A8.1 Rellich’s embedding theorem. Let 2 C IR" be open and bounded,
let 1 < p < oo andlet m > 1. If up, € WP (2) for k € IN and if u €
WP (£2), then

(ur)pen bounded in WP (£2),
uj, — u weakly in W'~ 1P ()

as k — oo

wy, — u (strongly) in W™ 1P (£2)

as k — 0.

Remark: On recalling 8.3(5), it follows if uy, u € WP (£2) for k € IN that

up, — u weakly in Wg™"(£2) . W—u (strongly) in Wy~ "P(02)

as k — oo as k — oo.

Proof. Let m = 1. Hence uy, are bounded in VVO1 P(£2) and converge weakly in
LP?(£2) towards u. (For m > 1 apply the proof below for |s| < m — 1 to d%uy
in place of uy. It holds that d*uy are bounded in Wy”(£2) and, by 8.4(3),
they converge weakly in LP(2) to 0°u.)

Extend ug,u to R™ \ £ by 0. Then, by assumption, up € WHP(IR™)
(see 3.29), with support in {2, and moreover uy, are bounded in W1HP(IR™)
converging by 8.4(1) weakly in LP(IR™) towards u.

Now if (¢¢),~ is a standard Dirac sequence, then ¢, xu;, € C§°(IR") and
for every € > 0

Ve x U — pexu  as k — oo in LP(IR™). (A8-1)

To see this, consider for € IR™ the functionals ¥, (z) € LP(IR")" defined by
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0 V= [ oWple-)dy for v e LR,

If 2, — x converges as k — oo, then ¢.(xr —+) — @-(x — +) converges
uniformly on IR" for € > 0, hence ¥.(xx) — W.(x) converges in LP(IR")".
Since, by assumption, u; — u weakly in LP(IR"), we obtain, see the second
result in 8.3(6),

(906 * uk)(l'k) = <ukv !pﬁ(xk)>LP — <ua Lpe(x»Lp = (‘ps * u)(x)

This shows that p. * up — @. * u locally uniformly on IR"™. As . * u; and
e * u vanish outside the bounded set B.({2), we obtain the result (A8-1).
Moreover,

o = e x vl <el| VoL, (A8-2)

for all v € WHP(IR™) with compact support. For the proof of (A8-2) observe
that the left- and right-hand sides depend continuously on v with respect to
the W1P-norm. Hence on approximating v (e.g. by convolution as in 4.23),
it is sufficient to show (A8-2) for v € C§°(IR"). Then

0= eex ) = [ o) (o) — oo — ) dy

= / pe(y) (/01 Vo(z — Sy)°yd5) dy,

and so it follows from 4.13(1) that

1

V(s — sh)ehds
0

”U_‘PE*UHLP < sup
h€supp ¢

Lr

1
<csup [Vt sh) |, ds = Vo,
[h|<e JO

Combining (A8-1) and (A8-2) yields that

lu = urll e < llu— e ullp, + llpe*u—@erupllp, +ell Vurll, -

— 0as k — oo
for every e

Noting that Vuy are bounded in LP(IR™) and recalling from 4.15(2) that
ve xu — u in LP(IR") as € — 0, we obtain the desired result. O

A8.2 Lipschitz boundary. Let 2 C IR" be open and bounded. We say
that (2 has a Lipschitz boundary if 02 can be covered by finitely many
open sets U',... Ul such that 02 N U’ for j = 1,...,1 is the graph of a
Lipschitz continuous function with 2 N U7 in each case lying on one side
of this graph. This means the following: There exists an | € IN and for
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992

= i

Fig. 8.3. Cover of the boundary

7 = 1,...,1 there exist a Euclidean coordinate system e{, ...,el in R", a
reference point 3’ € R"™ !, numbers 7 > 0 and A/ > 0 and a Lipschitz
continuous function ¢/ : IR"~! — IR, such that with the notation

n

Joe— (d J — JJ

vl = (x1,...,2)_1), wherex = E xle],
i=1

it holds that
U’ = {xE]R" ; xfn—yj| < 17 and ’xﬁl—gj(xjn)‘ < W } ,
and for x € UJ

xd :gj(:rfn) = x €02,
0<al — gj(xf,L) <h = zc0, (A8-3)
O>xfl—gj(xfn)>—hj = x¢
(hence U’ N 2 = @7, see Fig. 8.4), and
!
onclJul.

Jj=1

Furthermore, we may then add another open set U 0 with U0 C 2 such that
U°,....U" cover all of 0.
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J
en

span{e{7 e efl_l}

Fig. 8.4. Local boundary neighbourhood

AR8.3 Localization. Let {2 be as in A8.2. We prove results for Sobolev
functions by localizing these functions with respect to the open cover U7,
j =0,...,1 in A8.2. We choose a partition of unity 1°,...,n' on 2 with
respect to this cover (see 4.20), i.e. 7/ € C°°(IR") with compact support
supp (/) C U7 (this means 7/ € C§°(U7)) and

l
0<7’ <1inIR" and anzlonﬁ.
j=0

Now if uw € W™P(2), then

l
u = anu in 2.
j=0
In particular, n% € W™P({2) with compact support in §2 and for j = 1,...,1
we have that n/u € W™P(£7), where
2 ={reR"; 0<al —gj(xfn)},

with (pfu)(z) = 0 if |29, — 7| > 17 or af — g(279,) > hi.
AB8.4 Rellich’s embedding theorem. Let 2 C IR" be open and bounded
with Lipschitz boundary, let 1 < p < oo and let m > 1. If u, € W™P((2) for
k € IN and if u € W™~ 1P((2), then

(ur) ey bounded in WP (§2)

ugp — u weakly in W™1P((2)

as k — oo

up — u (strongly) in W™ 1P(£2)

as k — 0.
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Remark: On recalling 8.3(5), it follows if ug,uw € W™P(£2) for k € IN that
u — u weakly in WP (2) up, — u (strongly) in W™~1P((2)
=

as k — o0 as k — o0.

Proof. Similarly to A8.1, it is sufficient to prove the theorem for m = 1. With
the notations as in A8.3, we have that the assumptions are also satisfied by
uy := nPuy, and v/ := nJu, and we need to show that uj — u/ in LP(£2) as
k — oo. For j = 0 this follows from AS8.1.

For j > 1 this follows on replicating the proof of A8.1. The proofs of (A8-1)
and (A8-2) carry over (for the proof of (A8-2) use 4.24 for the approximation)
if we replace the integration domain IR"™ with £27. Here we have to make sure
that in the convolution

(e % v)(z) = / pe(z— yo(y)dy  for v e WhP(29)

n

the function y — ¢.(z — y) has compact support in 27 for x € 7. By the
definition of 27 this means that

o) > g (ah), pele—y) A0 =y > (Yh).
If \ denotes the Lipschitz constant of ¢7, then the above holds if
0e(2)#£0 = < —)\]z’jn|,

i.e. we need to choose the function ¢, on which the Dirac sequence (¢.)
is based, so that

e>0

9 e CF({z€B(0); 2] < —)\|2Jnf}) ,

which is satisfied, for example, for ¢ € C§°(Bs(—3€2)) with 0 < § < 2(1+
A)~L. This choice has the property that for x € 7 and ¢.(z — y) # 0 the
segment connecting = and y lies in £27.

Remark: Another possibility (for m = 1) is to extend the functions ui, uw to
functions in W1P(IR™) with compact support (see the proof of A8.12), and
then apply AS8.1. O

The corresponding result for p = oo plays a special role, because for
domains 2 with Lipschitz boundary it holds that W () = C™~11()
(see theorem 10.5(2)). The assertion of Rellich’s embedding theorem for p =
oo then follows from the Arzela-Ascoli theorem. The argument for m = 1 is
as follows: Every sequence bounded in C%!(§2) contains a subsequence that
converges in C°(§2). But as every cluster point has to coincide with the weak
limit, the whole sequence converges strongly in C°(2).

Now we want to show that Sobolev functions in WP(£2) in a weak sense
have boundary values in LP(9(2). To this end, we first define spaces of func-
tions that are integrable on 9f2.
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A8.5 Boundary integral. Let {2 be open and bounded with Lipschitz
boundary and let Y be a Banach space.

(1) We call f: 92 — Y measurable and integrable, respectively, if with the
notations as in A8.3 it holds for j = 1,...,[ that the functions

n—1
y— (7 f) (Z yiel + gj(y)e{L> for y € R"™" with |y — ¢/ | < r/
i=1

are measurable and integrable, respectively, with respect to the (n — 1)-
dimensional Lebesgue measure. The boundary integral of f on 92 is then
defined by

l
fda "t = Z/ 0’ fda" L
j=1799

where we define, if supph C U7,

n—1
hdnt :=/]R (Do wel + g W)l )1+ Vi) AL ().
. =1

Here Vg/ € LS (R"';IR" ), since theorem 10.5(2) implies that the Lip-
schitz continuous function g7 : R™™! — TR lies in Wli’coo(]Rnfl). Hence the
last integral represents a generalization of the surface integral on smooth hy-
persurfaces as introduced in 3.10(4). Claim: This definition of the integral is
independent of the local partition and independent of the representation of

the boundary.
(2) For 1 <p < o0, let

o1

o082

LPO2Y) == { f: 002 =Y ; fis measurable and || f|| o (p0) < 00 }
where for 1 < p < oo
1
£ lomy = ([ 1£Pm )7 and £ o = ess supl
o0 a0
with the ess sup-norm defined analogously to 3.15. Then LP(9£2;Y") with this
norm is a Banach space for 1 < p < oo, and for p < oo the set {f|89 ; f €

C*>(IR™;Y) } is dense in LP(042;Y).
(3) We define the outer normal to {2 at the point x € 912 as

n—1
vo(z) == (1+|V¢(y) ’2)_§ (Z 0ig’ (y)el — eﬁ;)

for x = Zyieg—i—gj(y)efl € U’ with ‘y—yj’ <.
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It holds that vy is measurable on 9f2 with |vgo| = 1, and hence v, €
L>(0£2;IR™). The definition of vy, is independent of the local representa-
tion of the boundary. With the above representation of x, the normal v (x)
is perpendicular to the tangent vectors

n—1
() = Oy (Y wiel + 9 (W)el,) = eh + g (w)ef,  for 1<k <n—1.
=1

In addition, vg(z) points outward, i.e. x 4+ evg(z) ¢ 2 for € > 0 sufficiently
small, if ¢ is differentiable in y.

Proof (1). In a small open set U C IR"™ we consider two different represen-
tations of 02 as defined in A8.2, i.e. we consider two coordinate systems
€1,...,en and €i,..., ey, two Lipschitz continuous functions g : R" ! 5 R
and § : R"' — IR and two bounded open sets V,V  IR"™!, such that with
I':=00nNnU

n—1

{nzfyieﬂrg(y)en; yGV} = {Zﬂia—i—ﬁ(@'éﬂ; Je 17} =T.

i=1 i=1

On setting

n—1
P(y) = Z yiei + g(y)e, fory € R™1,
=1

and similarly for {/Z we need to show that for every function f : I' — IR with
supp f C U it holds that:

fot integrable <«— f ozz integrable

and

/V F@)Y1+ Vo) 2dy = /V FE@W1+IVI@)[Pdg.  (As-4)

Consider the transformation 7 := 1’/}107’/1, hence y — ¥ = 7(y). Since

ly' =% < [v(") —v(®)| < 1+ Lip(9)?|y" — |,

YV — I'is a Lipschitz continuous map with a Lipschitz continuous inverse
3! : I' = V, and the same holds for 1. This implies that 7 : V' — V is bijec-
tive and that 7 and 771 are Lipschitz continuous. Hence fot) is measurable
if and only if fo is measurable (use 4.27).

In order to prove the integral identity, we first consider the case where
feCYU) and g € CH(V). Then also g is continuously differentiable. To see
this, note that the differentiability of g, and therefore v, is equivalent to

() =¥ (o) = Pyye) (¥ (y) — ¢ (yo)) = o([¢(y) — 1 (yo)l)
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as y — yo. Hereby P, is the orthogonal projection on the tangent space of
I' in 2y := ¥(yo). Now, we have ¢(y) = ¥(y) if § = 7(y), and since 7 is
continuous, it follows that y — yo implies ¥ — yo. Hence

$(G) = (@) = Py (¥(7) = ¥(H0)) = 0(19(5) — (o))

as y — yo. But this is equivalent to the differentiability of z’/; and thus also g.
Also the differentiability of 7 and 7~ ! is shown. It follows from the (classical)
change-of-variables theorem for C!-transformations that for every function

feddv)
/~de11—1 :/ for |det Dr|dL" L.
% %

Let f(7) = f(iZ(gD) 1+ |V§(7)]>. Then we need to show that

1+|Vgor|® |det Dr| = \/1+|Vg|*.

But since (D’lZ)OT D7 = D1, this reduces to a purely algebraic result for
determinants. Hence in this case the integral identity (A8-4) is proved.

If g is only Lipschitz continuous and f : I' — R with f € C§(U), we shall
approximate g by continuously differentiable functions. Let supp fov C Vy
with an open connected subset Vg satisfying Vo € V. With 7 = (71,...,7n_1)
we have for y € V' that

Z e] + g Z Yi€;i + g (A8-5)

In the case that ¢, # e, an (n — 2)-dimensional subspace of IR" is given by
span{ey,...,en,_1} Nspan{é,...,€,_1}. As L"~! is invariant under ortho-
gonal transformations, we may assume that e; = e; for 1 < i < n, hence
span{ey, e, } = span{ey, e, }. (If €, = e, there is nothing to show due to the
invariance.) Then

Ti(y)=y; forl<j<n-—1,
Ti(y) = y1€10e1 +g(y) €106y, (A8-6)
G(r(y)) = yieneer + g(y) Enoen .
Now let g. := @, * g for a standard Dirac sequence (¢.),., and define con-
tinuously differentiable functions 7. = (7¢1, ..., Ten—1) and ¥ by

Tei(y) =y; forl<j<n-—1,

To1(y) == y1€10er + ge(y)eree, ,

n—1

= Z yiei + 9= (y)en
i=1

(A8-7)
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We want to show that 7. is a diffeomorphism. We have shown that 7! is
Lipschitz continuous, wich implies that there exists a constant ¢ > 0 such
that for y € Vy and h > 0 sufficiently small ({ej,...,e,_1} is the canonical
basis of IR"_l)

< +l7(y +her) = 7(y)| = #1mi(y + her) — 71(y)|
= |e1°61 + +(9(y + her) — g(y)) €roen| .

The term inside the modulus has to have a fixed sign o € {+1} which by the
continuity of ¢ is independent of y. It follows that

~ 1 -
c<oejee; + E(g(y + hey) — g(y)) -oeree,, .

Since g. = ¢, * g is a convolution of g, it follows that this convex inequality
also holds for g., that is, for ¢ small,

- 1 ~
c<oereer + E(ge(y + he1) — ge(y)) - o€1een,

hence also
c<oejeer + 019:(y) - o€y 0e, .

Then it follows for y € Vj
odetD7.(y) = 00171 (y) = o€r1ee1 + 019:(y) - o€10€,, > C. (A8-8)

This implies that 7. is a diffeomorphism because 7. is defined as in (A8-7).
Hence 7! exists and therefore, with § = 7.(y),

e (Te(y)) = y1€neer + gs(y)gn'en = €n°¢s(y) )

5= S0 + 0@ = Y(0).

Jj=1

(A8-9)

defines continuously differentiable functions g. and 126
Now we can show that the integral identity holds. If we define the function
foi= fod;oqj; L on the Cl-surface I'. :=1.(Vy) we see that for ¢ — 0

/V @)1+ V5@ dyH/ @) 1+ 1Ve.@) P dj

ffa(waﬂ)
— [ (. 14 |Vg.(y) P d o 1+ |Vg(y) [’ dy.
/Vf(z/) W) 1+ Ve.w)| y—>/vf(w () \/1+ V()P dy
=f(Pore(y)) =f(¥ )

Indeed, the equality is an equation on I'. and follows from the above step for
the C''-case. The first convergence follows from the fact that Vg. — Vg with
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respect to the LP-norm for every p < co. In fact, the definition (A8-9) of g.
implies

(DTE)T(VEE)OTE = (Dws)Tgn
and by computing the derivative of D7, using (A8-7) and (A8-8) we obtain
that Vg. is bounded in L. Since g. is bounded in C? it follows from the
Arzela-Ascoli theorem that for a subsequence ¢ — 0 the uniform limit g. — g
exists. Hence by the definition of g.

9(1(y)  g=(1=(y)) = eneve(y) — enetp(y) = g(7(y))

for e — 0, that is, g = ¢. This proves the convergence of the gradients of g. for
a subsequence. The second convergence follow from the uniform convergence
Te — 7 and from the convergence Vg. — Vg with respect to the LP-norm
for every p < co. Hence the integral identity (A8-4) holds.

Finally, let f be arbitrary. Since f:: fov has compact support in V, we
can approximate f in L'(V) by functions f; € C§°(V) as i — oo. Then we

~

can apply the results above to the functions f; :== f;oy™ !, i.e.,

[ v 1+ Vo) ay = [ fev@y/1+ Vi@ i
Moreover, we have that
|20 = 0|1+ 193G) P
= [ 100 = Fovm)/1+ 19000 dy
F- |

— 0 asi,j — o0.

< C]
LY(V)

Hence the functions fiocz converge as ¢ — 00 to a limit in Ll(V). But as
ﬁ(y) — f(y) for almost all y € V' for a subsequence i — oo, it follows that
also fio{/;(ﬂ) — fmZ@) for almost all iy € ‘7, because 7 maps null sets into
null sets (see 4.27). This implies that the above limit in L'(V) must be the
function fo1. Hence we obtain the desired integral formula in the general

case as well. O

Proof (2). On choosing f = Xg in (1) for Borel sets E C 042, we obtain that

Ev+— p(E) = XpdH" !
o0

is the (n — 1)-dimensional Hausdorff measure on 0f2 (also denoted by
H"~1_092). Then LP(0£2) coincides with the space LP(u) for u = H" 1902
from Chapter 3. a
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Proof (3). In the proof (1) consider the approximation g of g. On noting that
(D )ot. D1 = D1y, it follows that (Di)or DT = Dt almost everywhere,
and so

(Dy)T = (D)7 (D)Tor  almost everywhere. (A8-10)
We have that v = v, with respect to g, is uniquely defined by
(DY)Tv =0, [v| =1, vee, <0.

Similarly, ¥ is uniquely defined with respect to g. It follows from (A8-10) and
(A8-3) that vor = v almost everywhere. O

AB8.6 Trace theorem. Let 2 C IR" be open and bounded with Lipschitz
boundary and let 1 < p < co. Then there exists a unique continuous linear
map

S:WYP(2) — LP(092) (trace operator)

such that o
Su=ul,, forueW"?(2)nC’R).

We call Su the trace or the weak boundary values of u on 02.
Notation: In general we write u(x) in place of (Su)(z) for z € 912.

Proof. In the case p = oo it follows from theorem 10.5 that W1°°(£2) is
embedded in C%1(£2), and so the claim holds trivially. Now let p < co and
u € WHP(£2). With the notations as in A8.3, we have that v := nlu €
WLP(£27) and for some & > 0 it holds that

v(z) =0 for ‘a:jnfyj| > 9 — § and for xflfgj(zfn) >hi—§.

For 0 < s < h; we define the functions vy : R" !> R via

n—1

Us(y) = U(ya gj (y) + S) ) where (y7 h) = Z Z/zez + he"zl .
i=1

Being a Lipschitz transformation, (y,h) — (y,¢’(y) + h) maps measurable
functions into measurable functions (recall 4.27), and so it follows from Fu-
bini’s theorem that the v, are measurable functions for almost all s. In addi-
tion, vy = 0 for s > h?/ — 6. Now the essential observation is that for almost
all s1,s5 > 0 and then for almost all y € R"™! we have

Vs, () — vs, () = v(Y, 9" (y) + 52) — v(y, ¢’ () + 1)
B /gj(y>+S2 (A8-11)

9, v(y,h)dh.

n

I (y)+s1

In order to prove this, we approximate v by functions w;, € WHP(£7) N
C°°(§29) using theorem 4.24. The identity (A8-11) holds for wy,, and setting
D :=B,, (yj) we have that
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h7
/ /!vyg y) +s) —wi(y, ¢’ (y) + s) | dy ds
:/ |v —wg|dL" — 0

27

as k — oo, and

/h”//g (y)+s

97 (y)

<hl /
07

as k — oo. Hence the integrands converge for a subsequence k& — oo for
almost all (y, s). This proves (A8-11). Then the Hélder inequality implies for
s1 < S9 that

. g7 (y)+s2
/\vsﬂsl\pdm*s/ 52— 57 /
D D 97 (y)+s1

< |52 —51|P—1/ VP dL
Dj(5'1792)

9,5 v(y,h) — 9,5 wi(y,h)| dhdyds

861'1(1) fwk)’dL” — 0

aeglv(y,h)‘p dh dy

with D7(sy,s0) :={x € 27 s1 <], — g7 (2),) < s2}, and hence

1—1
Vs, — sy HLp(D) Sls2—si| 7 |‘vv||LP(Dj(51752)) . (A8-12)

Since the norm on the right-hand side converges to 0 as s1,s9 — 0, the
functions v, form a Cauchy sequence in LP(IR™ ') as s — 0, and hence

vy = vy in LP(R™ ) as s — 0
for some vy € LP(IR"™'). Now let

Siv(y, ¢ (y)) == vo(y) . (A8-13)

That is, the weak boundary values are defined as the limit of the function
values on hypersurfaces which are a translation of 092. Tt follows from A8.5
that S7v € LP(9§2) with the bound ||SJUHLP(8()) < Cjllvollzo(py- Then on

choosing a fixed s/ with h/ — 6§ < s/ < h7, so that we then have v,; = 0, we
obtain from (A8-12), by setting [sy, s2] = [s,s7], that

HSjUHLp(ag) < CjHUOHLp(D) = Cj””sﬂ' - UOHLp(D)

. inl—2L1
=G 1{% [vss — 113||L,,(D) <Cj-(s?) HVUHLP(Qj) :

In addition, [|Vv| 1,0 < C(n?) - 1wl (g5)- For u € WP () we now
define
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l
Su:=Y "5 (nu). (A8-14)
j=1

In particular, we have that Su = “lan if u is continuous on £2. This proves the
existence of S. The uniqueness of S follows by establishing that Whe(2)N
C°(02) is dense in WP(£2), which will be done in A8.7. O

A8.7 Lemma. Let 2 C IR" be open and bounded with Lipschitz boundary
and let 1 < p < oo and m > 0. Then

{u|Q ; ue CP(IR™) } s dense in W™P(42).

Proof. Following A8.3, we partition u as

For the part n’u choose a standard Dirac sequence (¢c)esg- Since n’ €
Cse(42), it follows that ¢, x (n%) € C§°(82) for e sufficiently small, and
hence ¢, * (n°u) — n%u in W™P(2) ase — 0. For j > 1let (2 and e], ..., el
be as in A8.3. For 6 > 0 define

vs () := (nu)(z + d¢l)) forz € Qg,

0= {zeR"; |27, — ¢/ <7/ and 75<x%fgj(x{n) <h }.

Then vse := e * (ngv(;) € Cg°(IR™) and, on recalling 4.23, it holds on {2

that vs. = @.xvs € W™P(12) for € sufficiently small (so that (1+Lip(g7))-e <
0) with .
pexvs = u in WP(82),

when first £ \, 0 and then § \, 0. This shows that 1/« can be approximated
in the W™P(§2)-norm by functions in C§°(IR"), and hence overall also u. O

We now prove some frequently used results on weak boundary values,
beginning with integration by parts for Sobolev functions.

AB8.8 Weak Gauf’s theorem (Weak divergence theorem). Let 2 C
IR" be open and bounded with Lipschitz boundary.

(1) Ifue Whi(02), then fori=1,...,n

/@udL":/ wy; dH L,
Q 20

where v is the outer normal to 9f2 as defined in A8.5.
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(2) Let 1 <p < oo. If u e WhP(£2) and v € W' (2) with %+ ﬁ =1, then
fori=1,...,n

/ (ud;v + voju) dL" = / wov; dH L
2 o

Proof (2). It follows from 4.25 that uv € WH1(2) with 9;(uv) = ud;v +vd;u.
On recalling A8.7, for 1 < p < oo we approximate u and v by functions in
C*(IR™) and obtain (with S denoting the operator from A8.6) that

S(uv) = S(u) - S(v) in LY(0£0). (A8-15)

For p = 1 we have that p’ = oo, and so after modification on a null set, v is in
C%1(0) (see theorem 10.5). Hence the boundary values of v are well defined
and are attained continuously. Now (A8-15) follows from the proof of A8.6.
Thus, (2) is reduced to (1). O

Proof (1). On recalling A8.7 and A8.6, we may assume that v € C§°(IR").
Following A8.3, we partition u into n/u, j = 0,...,l. For n% € C§°(£2)
the boundary integral vanishes and the formula follows from integration by
parts in the i-th coordinate direction. For j > 1 the function n’/u is defined
on the local set £27. Hence on applying an orthogonal transformation to the
canonical Euclidean coordinate system, we need to prove the desired result
for functions v € C§°(IR™) and the domain

Q2= {(y,h) eR"; h>g(y) }

with a Lipschitz continuous function g : IR" ™' — IR. By A8.5(3), the normal
v is then defined by

(Vg(y), —1)
1+ |Vg(y)[®

v(y,9(y)) = for y € R"".

Hence we need to show that

[ vut@de= [ @)ln.ow)/1+ Vo)l ay

(A8-16)
- /IRn—l u(y’ g(y))(v.g(y)7 _1) dy .

When g is continuously differentiable, this is the classical Gauf}’s theorem,
which can be shown for instance as follows: Let v(y,s) = u(y,g(y) + s).
Then

Onv(y, s) = Opu(y. g(y) +3),

dpu(y.s) = Ou(y, g(y) + ) + 0ig(y)Onuly,g(y) +s) fori<n,

and hence
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/ Vu(z)dz = / Vu(y, g(y) + s) dsdy
2 RrR»=1Jo

/ R
/]R"ﬂ /0 (Vo —08,v-(Vg,0))(y,s)dsdy

— (/Ooo (/IR_ dr(y, s) dy) ds) e

1=

- /IRH (/000 Onv(y, 5) ds) (Vy(y), —1)dy.

Integration by parts with respect to y; yields for i < n, since the support of
v(s, 8) is compact, that

/ Oiv(y,s)ds =0,
R»—1

and integration by parts with respect to s gives

/0 " Duoly, s)ds = —v(y,0) = —u(y, 9(y)) -

Now we use convolution to approximate the Lipschitz continuous function g
by continuously differentiable functions gi. Letting 2 := {(y,h) € R"; h >
gr(y)} we have that X, — Xg as k — oo in LY*(IR™) N Bg(0) for every R
and u(s, gr) — u(s, g) uniformly, because g — ¢ locally uniformly, and also
(recall 4.15)

Vg — Vg in LP(Br(0)) for every p < co and every R.

Hence in (A8-16) we can pass to the limit for gg. This yields the desired
result. a

The following result is a generalization of E3.7 to the n-dimensional case.
A8.9 Lemma. Let g : IR""! — IR be Lipschitz continuous, let
2y :=A{(y.h) e R"; £(h—g(y)) >0},

and let v : R" — IR with u|9+ € Wh(2;) and u|, € Wh1(£2_). Then,
on denoting by S the trace operators with respect to the domains {21 from
A8.6,

ue WHR") <= S+(u|9+) =S_(ul, ).

Corollary: Concerning the removability of singularities in Sobolev spaces we
have the following result: If N ¢ IR""! is a closed Lebesgue null set and
A:={(y,9(y)); y € N} with g as above, then for every open set 2 C R"

ueWH(R2\A) —= uweWwh(n).



A8 Properties of Sobolev functions 273

Proof =. Setting us(y) := u(y, g(y) +s) for s € IR, it holds that (see (A8-12)
with p =1)

9(y)+e
/ |ue —u_|dL"? g/ / |Vu(y, h)|dhdy — 0
R Rt Jg(y)—e

as € N\, 0, and so S (u|9+) = S5_ (u|97) by the definition of the trace
operator in (A8-13). O

Proof <. Define u; = u|Q+ and u_ = u|Q_. Let v+ denote the outer normal
to £24. Then it follows from A8.8(2) for ¢ € C§°(IR™) that

/ (WVC + (V) L7 = / (V¢ + (V) dL™ + / (W + (V) dL™
n 2 2

= ¢Sy (uy)vy dH™ ! 4 ¢S_(u_)y_du"*
0024 00

= / ¢ (Sy(up)ve +S_(u_)v_)dH" ' =0,
graph(g) ~

because v_ = —vy and Sy (uy) = S_(u_). O
We now show that functions in WO1 P(£2) have weak boundary values 0.

A8.10 Lemma. Let {2 C IR" be open and bounded with Lipschitz boundary
and let 1 < p < co. Let S be the trace operator from A8.6. Then

WyP(02) = {ue W'P(2); Su=0}.
Proof C. Every function u € Wy*(£2) can be approximated by C§°(£2)-

functions u; as ¢ — oo. The properties of the trace operator then imply that
0 = Su; — Su in LP(012). O
Proof O. Let u € WHP(2) with Su = 0. Choosing 7’ as in A8.3, it follows
(see (A8-15)) that S(n'u) = n?S(u) = 0 on 912 for j = 1,...,l. Now define
forj=1,...,1

vj(z) ==

(nu)(x)  for x € 27,
0 otherwise.

Then A8.9 implies that v; € WHP(IR"), and hence for § > 0 also vj5 €
WLP(IR™), where }

vjs(x) 1= v;(z — dej,)
and vjs — vj in WHP(IR") as § — 0. Consequently,

1

us = n'u + Zvj5 —u  in W'P(02) as § — 0.
j=1

Since us has compact support in {2, it can be approximated in W1?(£2) with
the help of convolution by functions in C§°(2). O



274 8 Weak convergence

A8.11 Remark. Results for Sobolev functions on domains with Lipschitz
boundary can also be proved by locally straightening the boundary. In the
local situation at the boundary, i.e. 2 = 2, with the notations as in A8.9,
this means that we consider

= {(y,h) e R"; h >0},
ﬂ(y,h) :u(y g(y) +h) for (y,h) € 2.

It holds that: If 1 < p < oo and u € WP(£2), then & € WP(£2) with the
chain rule

Oy, h) = Onu(u, g(y) +h),
dit(y, h) = diu(y, g(y) + h) + 9ig(y)Onu(y, g(y) + h)

for ¢ < n.

(A8-17)

Proof. Let 7(y, h) := (y,g(y) +h). For v € LP(£2) with p < oo it follows from
Fubini’s theorem that vor € LP(£2), with

/|v\PdL”:/ / [o(y, B)P” dhdy

R"~! Jg(y)
/ / y) +h)|” dhdy—/ |[vor|PdL™.
R*—1 0

Hence we have that [[v|;, o) = ||’UO7'||LP(§) for 1 < p < oo. This shows
that the right-hand sides in (A8-17) lie in LP(£2), and so (A8-17) (by the
definition of the weak derivatives) only needs to be shown locally in (2 for

the case p = 1.
We approximate g by g. := ¢ *g with a standard Dirac sequence (¢¢)

On setting 7-(y, h) := (y,g8 (y) + h), let

(A8-18)

e>0"

U :=uot. on 2 :=71(0).

By 4.26, we have @i, € W11(£2,) and the chain rule (A8-17) holds for .. We
note that g. — ¢ locally uniformly as ¢ — 0 and Vg. — Vg in LIOC(IR"%)
for every ¢ < oo, and so Vg. — Vg almost everywhere for a subsequence
¢ — 0. Moreover, the Vg. are bounded in L2 (IR™™'). If we can show that
for v € L _(£2) and for every D CC 2

vor, —vor ase — 0in L' (r71(D)), (A8-19)

then this implies the convergence of uor. and (0;u)o7., and we can pass to
the limit in the chain rule (A8-17).
Now it follows from (A8-18) that (A8-19) is equivalent to

vor.or 1 —wwv ase—0in LY(D). (A8-20)
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Here, we approximate v in the L'-norm by continuous functions vj. These
functions satisfy (A8-20) and therefore we have (cf. the proof of 4.15(1))

Hvorsorf < Hvorem'*l — VROT,OT

1 1
*'UHLl(D) ||L1(D)
+||Uk:OTEOT_1 - kaLI(D) + ok — U”LI(D)

< (Clreom™ ) + 1) ||vg — v||L1(D) + Hvkorgwfl - Uk||L1(D) )

where C(7.0771) converges to 1 as € — 0. Thus (A8-20) also holds for v. O
A further consequence of A8.9 is:

AR8.12 Extension theorem. Let {2 C IR™ be open and bounded with Lips-
chitz boundary and let 1 < p < co. Then, for § > 0, there exists an extension
operator

E:WhP(02) — WP (Bs(12)),

i.e. F is linear, continuous, and such that (Eu) |Q = for all u € WLP($2).

Proof. We treat F similarly to the operator S in (A8-14). Hence it is sufficient
to consider the local situation near the boundary (cf. the proof of A8.8(1)).
Let 2 = 24 with 24 as in A8.9. Choose a cut-off function n € C*°(IR"™)
withn=11in Bg(ﬂ) and n = 0 in IR™ \ Bs(¢2). Then, define Fu := nu with

- u(y, h) for b > g(y),
u(y, h) =
u(y,29(y) —h)  for h < g(y).
(For p = oo it follows from theorem 10.5 that this defines a C%!-extension of
u.) For p < 0o it follows similarly to the proof of A8.11 that w € WP (£2_),
with
||ﬁ||Lp(Q,) = |‘UHLP(Q+)7
IVl ooy < (2+Lip(g) [IVulloq,) -
Consequently, Eu € WHP(2_) with

||Eu||W1=P(Q_) < CH“||W1,p(Q+) .

Then by the definition of the trace operator in (A8-13) it holds that for a
sequence € N\, 0 and for almost all y

S_(Bu)(y,9(y)) «— Eu(y,9(y) —¢)
= u(y,g(y) + 5) — St (u) (yag(y))

Now A8.9 yields that Eu € W1P(IR™). O
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The following theorem implies that sets of the form
M = {uc W"(2); ¢(u) = g on 952} (A8-21)

are weakly sequentially closed in W12($2), if ¢ : IR — IR is continuous and
g : 02 — R is measurable.

A8.13 Embedding theorem onto the boundary. If 2 C IR" is open and
bounded with Lipschitz boundary, then for 1 < p < oo and u,u € WP(2)
it holds that:

ug — u weakly in WP (£2) up, — u (strongly) in LP(042)
=

as k — oo as k — 0.

Proof. Without loss of generality let u = 0. If n € C*°(IR"), then also nu; —
0 weakly in WP (£2), and so it follows from A8.3 and A8.1 that we only need
to consider the local situation on the boundary. Hence let 2 = (2, as in
AR.9 and let the supports of uy, u be contained in a bounded set of IR". On
recalling (A8-12), the functions wugs(y) := uk(y, g(y) + s) satisfy for almost
all e,s with 0 < € < s the bound

[ fwe-wepar < js—ep [ vaa,

Rn—l Ea,s

where E. s := {(y,h) € R"; ¢ < h —g(y) < s}. Let § > 0. Then for almost
all s with 0 < e < s <4, on setting C' = 2P~! (see (3-13)), we have that

/ e P AL < C / P AL + G571 / Vg [P AL
IRn—l IRn—l EO,S

On letting € — 0, we have that ug. — uygp in LP(IR"_l), where uyg are the
weak boundary values of ug. Then integrating this inequality over s € [g, 0]
and dividing by g yields that

, 2C
/ |uk0 |p dLn_1 S —_— |’U,k |p dL™ + C§p_1 / |Vu;€ |p drL™.
IRn—l 5 E s E0,6

[N

It follows from Rellich’s embedding theorem A8.4 that the first term on the
right-hand side converges to 0 for every 6. If p > 1 then the second term
converges to 0 as 0 — 0, since the functions Vuy, are bounded in LP(£2;).
In the case p = 1 it follows from the following theorem that the integral in
the second term converges to 0 uniformly in k£ as § — 0, because the Vuy
converge weakly to 0 in L!'(§2,;IR") and because they have supports in a
bounded set. This yields the desired result. O



A8 Properties of Sobolev functions 277

A8.14 Weak sequential compactness in L*(u). Let (S, B, 1) be a mea-
sure space and let M C L'(u;IR™). Then every sequence in M contains a
subsequence that converges weakly in L!(u; IR™) if and only if

(1) M is bounded in L' (y; IR™).
(2) It holds that

sup/|f\d,u*>0 as u(E) — 0.
fem JE

(3) There exist sets Sy € B, for k € IN, with u(Sk) < oo, such that

sup |fldp — 0 ask — 0.
feM Js\s;

Remark: If u(S) < oo, condition (3) is not necessary, choose S = S.

Proof =. (1) follows via an indirect argument from 8.3(5).
Assume that (2) is false. Hence there exist a ¢ > 0 and measurable sets
FE, as well as f, € M for n € IN such that

w(E,) = 0asn— oo and / [frnldp > cfor all n.
Ey

From this it follows that there exist £, € B with ,u(En) — 0 asn — oo and

/E fn d,u,' > 2— (A8-22)

To see this, let A;-t ={xeS; £f,(x)ee; >0} for j =1,...,m. Then

m

/Enlfnld Z(/ beeglans [

=1 n j
[ ueesa| ¢
E, ﬂA

i: ( /EnﬁA,- Jueesdn

which means that for some j (which depends on n) we have that

[ e [ faeesan
E.NAT E.NAS

Let En =F,N A;' in the first case, and En =F,N Aj_ in the second case.

Then
CS‘/ fn’ejdu‘: ej‘/ fndﬂ‘g‘/ fnd,u’7
m En B, En

|fn'ej|du>

)

S €
—  or
- 2m
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and ((E,) < pu(E,) — 0 as n — co. This proves (A8-22). It follows from the
assumption on M that there exists a subsequence n — co (there is no extra
notation for the subsequence) such that for all y-measurable E the limit

n— oo

lim A, (E) exists, with A, (F) ::/ fndp. (A8-23)
E

Since for every n we have A\, (E) — 0 as u,(E) — 0, the following theorem

MalBn)| 2 55
Now assume that (3) is false, i.e. there exists a ¢ > 0 such that for all

E € B with u(F) < o0

A8.15 yields a contradiction to

/ |fldp >c¢ foran fe M. (A8-24)
S\E
Moreover, for all f € L'(u;IR™) and € > 0,

/ [fldu <e for an E € B with u(E) < oo, (A8-25)
S\E

because there exists a step function g with || f — g[/;: < €, and then E :=
{z € S; g(x) # 0} has finite measure.

On combining (A8-25) and (A8-24) we inductively choose f, € M and
E, € B with u(E,) < oo and E,, C E,,4+1 such that

1
/ | fuldp < —  and / | frns1ldp > c.
S\En+1 n S\En+1

Then it holds for n > % that

C
/ Ifnldu:/ Ifnldu*/ Fuldu= &
Ent1\En S\En S\Ent1

Next, as in the proof of (A8-22), there exist measurable sets E, C E,i1\E,

such that
‘ / In du‘ >
B, 4m

and for a subsequence n — oo the corresponding A, satisfy the above property
(A8-23). We now consider the measure space (S, B, 1) with

S = U E,, E::{Eﬂg; E € B},
nelN

w(ENE; \E;_
ﬁ(E) ::ZQ—JM( n J\ J 1)7
o 1B\ E)
where Ej := 0. Since i(E) — 0 implies u(E N E; \ Ej—1) — 0 for all j, and
since, for fixed n, for E C S\ Ej it holds that
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|)\,1(E)|§/~ |fnldp — 0  as j — oo,
3\E,

we obtain that | A, (E)| — 0 for E € B with [i(E) — 0 for fixed n. Combining
the following theorem A8.15 applied to the measure zi and the facts that

An(Ep)

> % and w(E,) <27" = 0asn— oo,
4m

we arrive at a contradiction. O

Proof < for reqular measures. Let S C IR" be compact and let x be a non-
negative measure in rca(S). We may assume that m = 1. For every sequence
(fn)pen in M it follows from (1) and A3.17(2) that

MnlE) = /E fodi

defines a bounded sequence (\,), . in rca(S). By 8.6(2), there exists a
A € rca(S) such that for a subsequence n — oo,

/ gdh, — / gd\  forall g e CY(S). (A8-26)
S S

If F is a p-null set, then, on recalling that u is regular, for € > 0 there exists
a relatively in S open set U with E C U and pu(U) < e. Moreover, as A is
regular, there exist finitely many disjoint closed sets K; C U such that

AIU) < €+Z|/\(Kj)\-

For 6 > 0 choose g; € C°(S) with Xk, < gj < Xyk,)- Then it follows that

foos

AIU) < e+ DA (Bs(55) \ K5) + 3

and j J
Lot x| o
=§jj‘égjfndu]</g(§jjgj)fndu</U|fn|du,

where we observe that the last inequality holds for § sufficiently small, because
then the sets Bs(kK;) are disjoint subsets of U. Letting 6 \, 0 and noting
assumption (2) we get

(as n — o0)
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A(U) <e+ sup/ [fldy — 0 ase—0.
feM Ju

This shows that F is also a |A|-null set. Hence we can apply the Radon-
Nikodym theorem 6.11 and obtain that there exists an f € L'(u) with

:/Efdu

for all u-measurable sets E. It follows from (A8-26) that

/gfnduﬂ/gfdu as n — 0o (A8-27)
S S

for all g € C9(S). On recalling 6.12, we need to show that this also holds for
all g € L>®(u). First let ¢ = X with a y-measurable set E. For € > 0 choose
K closed and U relatively open in S such that K € F C U with u(U\K) <e¢
and g € CY(S) with Xx < g < Xy. Then

‘/ fudp - /fdu‘ ‘/ du’+sup/\ (ol +1£1) s,

where, thanks to (2), the second term converges to 0 as € — 0. Since the first
term converges to 0 as n — oo by (A8-27), we obtain

/fnd,u—>/fdu as n — oo.
E E

Recalling that the characteristic functions span a dense subspace of L™ ()
then yields that (A8-27) also holds for all g € L (). O

Proof < for bounded measures. The idea is to use a separable analogue of
C°(S) in the above proof. As before, let m = 1. Let (fn),cn be a sequence
in M, and let

= ZaanEnj with p(E,;) < oo

be step functions with || f, — gn || < 2 ~. On noting that for every ng € IN it
holds that

/\gnldu<maX/|glldu+fo+sup/Ifldu,

feMm

we have that {g,; n € IN} also satisfies the assumption (2), and it is sufficient
to show that (g,), . contains a weakly convergent subsequence.

Now the algebra By induced by the set {E,,;; j <k, , n € IN} is count-
able. Hence it follows from (1) that with the help of a diagonalization pro-
cedure we obtain a subsequence such that (without special notation for the
subsequence)
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AME):= lim [ g,du
E

exists for all E € By. It holds that \ is additive on By. Let By be the smallest
o-algebra that contains By and all g-null sets, and define pq := pl_B;. Then
(S, By, 1) is a finite measure space. Since uq(S) < oo, we can show that A
admits a o-additive extension to B;. To see this, let (Ex), . be a shrinking
sequence of sets in B; for which the above limit exists, and let

E = ﬂ Ey.
keIN

Then

/E(gn —gz)du‘ <

/<gn—gl>du]+2sup/ P
Ey J Ek\E

—0asn,l - oo — 0 as k — oo,
for any k recall (2)

which shows that the above limit defines A on all of B;. On noting that, in

addition,
/ gn dp
Ex\E

we see that X is even o-additive on By and that A(E) = 0 if u(E) = 0. Hence
it follows from the Radon-Nikodym theorem that there exists an f € L' (1)
with

[AM(Ex \ E)| = lim

n—oo

<su n|duy — 0  as k — oo,
p n| Al
Ex\E

n

AME) :/ fduy forall E € By.
E

As the characteristic functions span a dense subspace of L (u1), this means,
on recalling 6.12, that g, — f weakly in L' (7). Now L*(uq1) C L' (u) implies
that g, — f weakly also in L!(u). 0

Proof <= the general case. As before, let m = 1. Let (fy), oy be a sequence
in M and let Sy, for k& € IN be the sets from (3), which we can choose such
that Sy C Sk+1. We apply the result just shown to the sets

My, :=A{Xs, f; fe M}

(with the measure u being restricted to Sy ). Hence a diagonalization proce-
dure yields a subsequence n — oo and hy € L*(p) with hy = 0 on S\ S,
such that

f,,gdu—)/ hygdu asn — oo for all g € L™(u).

Then hyy1 = hy almost everywhere on Sk, and on setting S = Uren Sk we
have that
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hi(x)  for x € Sy, k€ IN,
h(zx) := ~
0 forx € S\ S,

defines a p-measurable function. Now it holds for k& < [ and for all g € L™ (u)
that as n — oo

/(hz—hk)gdu’ = ‘/ ths\skgdu’
S Si

— \/S fn,»cS\skgdu' < ullgll o
1

where

O) := sup | fldp.
feM S\Sk

It follows that ||h; — hill;: < 0 — 0 as k — oo, on recalling (3). Hence
h € L*(u) and for g € L™ ()

S g < gl ([ inlaus o) +

S

/Sk(hk —fn)gdu’ :

—0as k — oo —+0asn — oo
for any k
This shows that f,, — h weakly in L'(u1) as n — oo. To see this, note that if
i is the measure p restricted to S, then g is o-finite and

flz) forzelb,

(@) ::{0 forz € 5\ S,

defines an embedding J : L*() — L'(u). Hence for F' € L'(u)" we have
that F' := FoJ € L'(u)’, which by 6.12 can be represented by means of
g € L™ (). Consequently,

F(h— f.) = F(h — f,) =/

S

(h— fn)gdy — 0 asn— co.

O

A8.15 Theorem (Vitali-Hahn-Saks). Let (S, B, 1) be a measure space
and let A\, : B — IK be o-additive for n € IN. Suppose that

¥YneNN : (|)\n(E)|%Oas,u(E)HO>,
and that the limit
lim A, (F) € K exists for all E € B.

n— oo

Then
sup [\ (E)| = 0 as u(F) — 0.
nelN
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Proof. The set
M:={FE € B; u(E) < x},

equipped with the distance
d(ElvEQ) = / |XE1 - XEz | du,
s

is a complete metric space if the equivalence relation
Ey=FEin M < Xg = Xg, p-almost everywhere

is used in M. The completeness follows from the fact that the limit of charac-
teristic functions in L!(p) is again a characteristic function (this follows from
A3.11). The assumptions yield that the )\, are continuous on M. Indeed,
d(Ey, E) — 0 as k — oo implies that u(Ex \ E) — 0 and u(E\ E) — 0, and
SO

AnlBr) = An(B)| = Aa(Ei \ E) = An(E\ Ey)|

< An(ER \ E)|[ + [An(E\ Eg)| — 0.
Hence for € > 0 and k£ € IN the sets
si={EeM; [M\(E)-)N(BE)| <cforall j >k}
are closed subsets in M and the assumptions of the theorem imply that
U Ai =M
kEN

for all € > 0. It follows from the Baire category theorem 7.1 that at least one
AZ, has a nonempty interior, i.e. there exist k. € IN, A. € M, . > 0 with

d(E,A) <. = | M (E)—X\(BE)| <eforallj> k..
Now for E € M arbitrary and Ey :== A, UE, By := A, \ E
E=E\Ey, d(E,A)<u(E), d(E,A) < u(E).
If u(E) < 4. it then follows for j > k. that
(A (B)] < [ Ak (B)] + [ Ak (B1) = A(E1)) — (Mk. (B2) — Aj(E2))|
< [ (B)| + 26,

and so
sup [N\ (E)| <2e+ max|\;i(E)|
jeEIN J<ke
(G —
—0as u(E) — 0
for any € > 0.

This proves the desired result. a
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