6 Linear functionals

In this chapter we deal with the representations of dual spaces, i.e. we will
state canonical isomorphisms between the most important dual spaces and
already known spaces. We will use this to solve boundary value problems for
partial differential equations.

The most important case is that of a Hilbert space, for which the dual
space is isomorphic to the space itself (theorem 6.1). As a consequence, we
obtain the Lax-Milgram theorem (see 6.2), with the help of which elliptic
boundary value problems can be solved (see 6.4 — 6.9).

In the second part, we state representations of the dual spaces of L () for
p < 0o (see 6.12) and of C°(S) (see 6.23). The proof of 6.23 will employ the
Hahn-Banach theorem (see 6.14 — 6.15). This theorem states that continuous
linear maps f : Y — IK can be extended from a subspace Y C X to the
full space X such that the norm of the map is maintained, which is one
of the general principles of functional analysis. A constructive proof of the
Hahn-Banach theorem for separable spaces X will be given in 9.2.

Lax-Milgram’s theorem

We start with an existence theory, which is based on the following result.

6.1 Riesz representation theorem. If X is a Hilbert space, then

J(@)(y) = (y,x)y forz,yeX

defines an isometric conjugate linear isomorphism J : X — X'.

Notation: In the remainder of this book we will also denote this isomorphism
by Ry : X — X'.

Definition: Here a map J is called conjugate linear if for all z,y € X and
a € K it holds that J(azx + y) = aJ(z) + J(y). In the case IK = IR this
reduces to J being linear.

Proof. By the Cauchy-Schwarz inequality,

[J@) W) <llzlx - llvlly

ie. J(z) € X' with || J(z)| x» < ||z|lx. On noting that |.J(z)(x)| = ||z, we
see that ||J(x)|| v, > ||z||x. Hence J is isometric, and in particular injective.
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Now the crucial step is to show that J is surjective. Let 0 # zj, € X’
and let P be the orthogonal projection from 4.3 onto the closed null space
A (2(). Choose e € X with x(,(e) = 1 and define

xo :=e— Pe, hence also z((7o) = 1,

and in particular o # 0. Now it follows from 4.3 (see 4.4(2)) that

(y,z0)x =0 forally e A (xg). (6-3)
For all z € X,
x =z — x((x)xo +2((T)T0
—_————
e (zh)

which together with (6-3) yields that

(@, 20)x = (#(2)zo, w0)x = zp(x)20]”,

zh(x) = x,% =J Az x).
o ( ol )X (||500|| )@

An application of the Riesz representation theorem is the

and hence

6.2 Lax-Milgram theorem. Let X be a Hilbert space over IK and let
a: X x X — IK be sesquilinear. Assume that there exist constants ¢y and Cy
with 0 < ¢y < Cy < oo such that for all xz,y € X

(1) |a(z,y)| < Collzllxllyllx (Continuity),
(2) Rea(z,z) > collz|5% (Coercivity).

Then there exists a unique map A : X — X with
a(y,z) = (y, Az)y forall z,y € X.

In addition, A € Z(X) is an invertible operator with

JAI<Co and [|A7}] <~
€o

Proof. For every z € X it follows from (1) that the function a(, z) lies in X’
and satisfies

la(2) [ x < Collz | x -

Hence, by the Riesz representation theorem 6.1, there exists a unique element
A(x) € X such that
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{z; zf(x) = —1}

Fig. 6.1. Proof of the Riesz representation theorem

a(y,z) = (y, A(z))y forallye X
and moreover
[A@)] x = lla(2) | x, < Collz | x -

Since a and the scalar product are conjugate linear in the second argument,
it follows that A is linear. Hence A € .Z(X) with ||A|| < Cy. Moreover,

collz)% < Re a(z,z) = Re(z, A2))x < 2] 5 - [ Az,
and so
collzlly < JA(z)||y forall z € X, (6-4)

which implies that .4 (A) = {0}. In addition, it follows that the image space
Z(A) is closed, on noting that for zy,z € X

A(zk) -y ask — oo
= ox —millx < Sl Ak —2)|lx  (recall (6-4))
= %HA(xk) —A(z))||y =0 ask,l— o0
— ap—x ask—vooforanxe X
= A(xp) — A(x) (as A is continuous)
= y=AzcZ(A).
It remains to show that Z(A) = X. If Z(A) # X, then, on recalling that

Z(A) is a closed subspace, the projection theorem 4.3 yields that there exists
an zg € X \ Z(A) such that (recall 4.4(2))

(y, w0)x =0 forall y € Z(A)

(choose an Ty € X \ Z(A) and set z¢ := To — PZo, where P is the orthogonal
projection onto #Z(A)). This yields, on setting y = A(xg), that
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0 =Re (A(zo), z0) y = Re(zo, A(z0)) y = Re a(zg, z0) > co||a:0||§( >0,

a contradiction. Hence we have shown that A is bijective. It follows from
(6-4) that [[A~1]| < L. O

6.3 Consequences.
(1) Let A be the operator from 6.2 and let Rx be the isometry from theo-
rem 6.1. For a given ' € X’ the unique solution of

aly,z) =2'(y) forallye X (6-5)

is then z = A’lR;(l:z:’.

(2) The solution in (1) has the stability property

1
el < =2l (6-6)
0

Interpretation: 1If we consider two “right-hand sides” 2} and 2% and the
corresponding solutions z; and x5 in (1), then it follows from (6-6), due to
the linearity of the problem (z; — x5 is the solution to z} — %), that

|21 = 22l < 2} = 2hlx -
Hence the error in the solutions can be estimated by the error in the data.
This justifies the term stability.

(3) Formulated for the operator A, the Lax-Milgram theorem reads as fol-
lows: Let X be a Hilbert space and let A € £ (X) be coercive, i.e. there
exists a constant ¢y > 0 such that

Re(z, Az) > co||a:|\§( for all z € X.
Then A is invertible, with ||A~!|| < i
(4) If a in 6.2 is a scalar product, then the solution z in statement (1) is, in
addition, the uniquely determined absolute minimum of the functional

E(y) := 3a(y,y) — Rea'(y).
Proof (1) and (2). By the definition of A and Rx, for all z,y € X
a(yaz) = (yv Ax)X = (RxAI)(y),

and Rx A : X — X' is bijective. If v = (Rx A)~'2/, then it follows from (6-4)
that

collzllx < [lAzx = [|[Bx''|| c = ll2'llx -
O

Proof (3). The product a(y,x) := (y, Az) satisfies the properties in 6.2
with Cy = || A||. Moreover, A is the operator corresponding to a from 6.2. O
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Proof (4). Let y € X. Then

E(y) — BE(z) = 5 (a(y,y) — a(z,z)) — Rea/(y — x)
%(a(y, y) — a(x, :c)) —Rea(y — z,x)
= 3(a(y,y) — aly, =) — a(z,y) + a(z, v))
= Saly—z,y—=) > Sy —=llx

O

The Lax-Milgram theorem has applications for integral operators (see
E6.3) and for differential operators, which will be discussed in the following.
First we consider the classical case in spaces of continuous functions.

6.4 Elliptic boundary value problems. Let 2 C IR"™ be open and
bounded and let IK = IR. We want to find functions u € C?({2) satisfying the
differential equation

n

—Z@i(ZaU@ju—i—hi) +bu+f=0 1in{2. (6_7)

i=1 j=1

Here a;j, h; € C1(£2) fori,j =1,...,nand f,b € C°(£2) are given real-valued
functions, and we assume that there exists a ¢y > 0 such that for all x € (2,

> aij(2)&8 > col¢F for all € € R™ (6-8)
ij=1

We then say that the matrix (a;;(x)), ; is uniformly elliptic in x. (For every
¢ > 0, the set of points £ € IR", for which Zi,j a;;(x)&€; = ¢, is an ellipsoid.)
Let us emphasize here that the matrix (a;;(z)), ; need not be symmetric.

It turns out that, under certain assumptions, there exists a unique func-
tion u solving (6-7), which in addition satisfies suitable boundary conditions
on 0f2. The two most frequently occurring boundary conditions in mathe-

matical physics are:

(1) Dirichlet boundary condition. Let g € C°(912) be given. Find a
function u € C?(2)NC°(§2) which solves the following Dirichlet boundary
value problem:

u satisfies (6-7) in 2, u =g on 9f2.

(2) Neumann boundary condition. We assume that 2 has a C''-boundary,
i.e. that the boundary 0f2 can be locally represented as the graph of a C'-

function in an appropriately chosen coordinate system (as in A8.2). In ad-

dition, we assume that a;;,h; € C°(£2). Let g € C°(92) be given. Find a

function u € C?(2)NC*(£2) which solves the following Neumann boundary

value problem:
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n

u satisfies (6-7) in 2, — Z v; (i a;;05u + hl) =g on 0f2.

i=1 j=1

Here v = (v;),_ is the outer normal to J12.

Remark: For the boundary value problem (1) to be at all solvable, there
must exist some function up € C%(£2) N C°(N2) with ug = g on A2. Then
the boundary value problem can be transformed to one for @ := u — ug, by
replacing g with g := 0, h; with hi = h; —1—2 ai;05up, and f with f = f+bug.
Analogously, for (2) there must exist a function ug € C?(2) N C1(N2) with
-y v (E aijOjup + h;) = g on 912. Then the boundary value problem can
be transformed to one for u := u — ug, by replacing g with g := 0, h; with
h; = 0, and f with f =f=>,0 (Z a;;05up + h; ) + bug. We then call the
boundary conditions homogeneous.

We now give an equivalent definition of the boundary value problem with
the help of test functions (this gives a connection to distributions, which were
treated at the end of section 5).

In the Dirichlet case, if we multiply the differential equation (6-7) by
functions ¢ € C§°(£2), then we obtain after integration by parts that

/Q (2; @-C(; aij0ju + hi) + ¢(bu + f)) dL™ =0. (6-9)

Conversely, if this integral identity is satisfied for all ( € C§°(£2), then we
obtain, on reversing the integration by parts, that

/deL":O with w::—zai(Zaijaju—&—hi)—|—bu+f.
Q ; Z

If we assume that w(zg) # 0 for some ¢ € {2, then we can choose an gy > 0
with w > 0 or w < 0 in B, (x0) C £2, and then a nontrivial ¢ € C§° (B, (z0))
with ¢ > 0, in order to obtain a contradiction. Hence it follows that w = 0
in {2 (this also follows directly from 4.22), i.e. the differential equation (6-7)
holds in f2.

Similarly, in the Neumann case, if we multiply the differential equation
(6-7) by functions ¢ € C°°({2), on assuming that a;;, h; € C1(£2), we obtain
after integration by parts that

/Q (Z &C(Z a;;0;u + hi) + ¢ (bu + f)) dL™ + CgdH™ 1 =0.
i j

a0
(6-10)
Conversely, if this holds for all ( € C°°({2), then as before we obtain the
differential equation in 2 (here it is sufficient to consider ¢ € C§°(£2)), and
then it holds for ¢ € C°°(£2) that
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/&Q deanl =0 with w:= Zl/i (; al-jaju + hl) +g9.

2

Similarly to the argumentation above, it now follows that the Neumann
boundary condition is satisfied.

The basic idea for the solution of these boundary value problems with
the help of Hilbert space methods is to interpret the integral terms in (6-9)
and (6-10) as an L2-bilinear form, and enlarge the spaces for test functions
and solutions accordingly. As the test function appears with ¢ and 9;(, the
appropriate test space for (6-9) is the closure of C§°(2) in the space W12((2),
i.e. the space W, %(£2) (see 3.29). Since functions in Wy ?(£2), when (2 has a
C'-boundary, have in a weak sense boundary values 0 (see A8.10), W *(£2) is
also the appropriate enlarged solution space. For (6-10) the appropriate test
space is the closure of C*°(£2) in the space W2(2), i.e. for sets £2 with a C''-
boundary the space W12(2) itself (see A8.7), which is also the appropriately
enlarged solution space.

For the resulting weak formulations of the problem it is no longer nec-
essary to assume that the data a;;, hs, b, f of the problem are continuous
functions in {2. However, it is necessary to make assumptions on their inte-
grability, for instance as formulated in the following;:

6.5 Weak boundary value problems. With IK = IR it is assumed in the
following that 2 C IR™ is open and bounded, that a;; € L>(2) satisfy the
ellipticity condition (6-8) for almost all € (2, and that b € L*°(§2) and
hi, f € L?(£2). The weak formulation of the boundary value problem in 6.4
is defined as follows (where we consider only the case g = 0):

(1) We call u: 2 — IR a weak solution of the Dirichlet problem if
ue Wy?(2) and
/Q (; &‘C(; a;j0ju + hi> + ¢(bu + f)) dL” =0
for all ¢ € W,(£2).

Here, as remarked above, if £2 has a C'-boundary, then the condition u €
Wg 2(Q) in a weak sense contains the homogeneous boundary conditions, and
it is irrelevant whether ¢ varies in the space VVO1 ’2((2), or only in the space
C§o(92).

(2) We call u: 2 - R a weak solution of the Neumann problem if

u € WhH(£2) and
/n(z; &‘C(zj: a;;05u + hi) + C(bu + f)) dL" = 0

for all ¢ € WH2(2).
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Here, as explained above, if {2 has a C'-boundary, then the integral term in
a weak sense contains the homogeneous boundary conditions (for g = 0 in
6.4(2) the boundary integral in (6-10) vanishes), and it is irrelevant whether
¢ varies in the space W2(£2), or only in the space C°°(2).

We will now prove the existence of solutions to these weak boundary value
problems.

6.6 Existence theorem for the Neumann problem. Let the assump-
tions in 6.5 hold and let by > 0 with b(x) > by for almost all z € (2. Then
there exists a unique solution v € W%(£2) for the Neumann problem in
6.5(2). Moreover,

lullyre < C(IRN e + 11 £1l)

with a constant C' that is independent of h and f.
Proof. For u,v € Wh2(£2) we define

a(u,v) == Z/Qaiu-aij(?jv dr™ —&—/wavdL”. (6-11)
%]

(We mention that in general a does not need to be a scalar product, for (aij)ij
can be asymmetric.) Then a is bilinear, with

Ja(u, 0)] <D llaijll o 1Bt 210501 2 + 1Bl e 1l 2101 o
i
< Ollullyrzlloliyre  with C:= Y llaill e + 1b] g -
i

In addition, it follows from the assumptions on a;; and b that
a(u,u) > co/ |Vu|* dL” —|—bo/ lu|*dL" > - ||u||?,V12
2 0

with ¢ := min(cg, by). Hence a satisfies the assumptions of the Lax-Milgram
theorem 6.2 on the Hilbert space W12(£2). We want to find a u € WhH2($2)
such that

a(v,u) = F(v) for all v € Wh2(92),

where

F(v) = — /Q<Z A0 - i + vf) dr” . (6-12)

It follows from 6.3(1) that there exists a unique such u if F' belongs to the
dual space of W12(£2). But this is the case, since F is linear, with

[F@) <l IVolle + 1 Fll2llolle < (hllge + 1 11z2) lollwe -

In addition, the solution u can be estimated by the data, since, by 6.3(2),
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1 1
el < SIFN< = (Rl + 15050 -
O

The Dirichlet problem can also be solved in the case b = 0. Here we need
the following

6.7 Poincaré inequality. If {2 C IR" is open and bounded, then there exists
a constant Cy (which depends on 2), such that

/‘u|2dL”§C'0/|Vu|2dL” foralluGWoLQ(Q)'
o Q

Note: See also 8.16 and E10.10.

Proof. On noting that both sides of the inequality depend continuously on u
in the W1 2norm, and on recalling the definition of W&’z(()), it is sufficient
to prove the estimate for functions u € C§°({2). In the case n = 1, let
2 C [a,b] C IR. Then the Holder inequality yields for a < x < b, on setting
u=01in IR\ {2, that

2
Ju(@)* = Ju(z) - u(a)]” =

/a " Ouly) dy

g(x—a)/m\(')wu(y)\2dy§(b—a)/ |0su(y)|* dy -

Integration over z gives
b b
/ it < (b—a)Q/ |Opul? AL (6-13)
a a

In the case n > 1, let 2 C [a,b] x IR"™*. Then we obtain (6-13) by inte-
grating over z. Integration over the remaining n — 1 coordinates then yields
the desired result. (Hence the Poincaré inequality also holds for infinite slab
domains.) O

6.8 Existence theorem for the Dirichlet problem. Let the assumptions
in 6.5 hold and let b > 0. Then there exists a unique weak solution u €
W, 2(£2) for the Dirichlet problem in 6.5(1). Moreover,

lullyrre < (IRl gz + 1f1l2)
with a constant C' that is independent of h and f.

Proof. Consider the bilinear form a in (6-11), now on the Hilbert space
W 2(£2). As in the proof of 6.6,
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la(u,v)| < Cllullyrzllv|ly..

and the assumptions on the coefficients yield that
au,u) > co/ |Vu|® dL™ = ¢ HVuH%z for u € Wy?(£2).
Q

Then it follows, with the constant Cy from 6.7, that

Co+1
2 2 2 2 0
lullwre = lullze + 1 Vullze < (Co+ D[ Vul[f, < ———

< a(u,u),

and so a(u,u) > ¢ ||u||?,V12 with ¢ = ¢g - (Co + 1)~!. Hence a satisfies the
assumptions of the Lax-Milgram theorem 6.2 on the Hilbert space W, *(£2).
The functional F in (6-12), restricted to the space W, *(£2), then lies in its
dual space. Hence, by 6.3(1), there exists a unique u € WOI’Q(Q) with

a(v,u) = F(v) for all v € W, *(£2).
The estimate follows again from 6.3(2) (see the proof 6.6). O

6.9 Remark (Regularity of the solution). Based on the existence proofs
in 6.6 and 6.8 for weak solutions of the boundary value problem, it is possible
to show a posteriori that a weak solution is indeed a classical solution of the
boundary value problem in the sense of 6.4, provided the data a;;, hi, b,
f and 02 satisfy certain regularity conditions (by the regularity theory for
partial differential equations, see e.g. [GilbargTrudinger]). If we assume, for
instance, that a;; € C™'(£2), h; € W™TL2(Q2) and f € W™?(2) with
m > 0, then it follows that u € W, "-"*?(2) (see Friedrichs’ theorem A12.2).
If in addition 942 is locally given by graphs of C™*1:!functions, then one can
correspondingly show that u € W™+22((2) (see A12.3). These two theorems
constitute the L2-regularity theory. This compares with the LP-theory, which
is based on the Calderén-Zygmund inequality in 10.20, and the Schauder
theory, which on the basis of the Holder-Korn-Lichtenstein inequality in 10.19
gives regularity results in Holder spaces.

Radon-Nikodym’s theorem

After we have shown in 6.1 that the dual space of a Hilbert space is canoni-
cally isomorphic to the Hilbert space itself, we now want to consider specific
Banach spaces, LP (i) and C°(S), and characterize their dual spaces. (a list of
dual spaces can be found in [DunfordSchwartz: IV 15, S. 374-379]). First we
state a characterization of L?(u)’, for which we will need the Radon-Nikodym
theorem 6.11.
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6.10 Definition (Variational measure). Let B be a ring over a set S (see
A3.1) and let A : B — IK™ be additive. For E € B define

k
[A|(E) := sup { Z IN(E;)| ; k€ N, E; € B pairwise disjoint, F; C E } .
i=1

It holds that |A| : B — [0, 00] is additive. We also call |A| the variational
measure for \. In addition, in the case where B contains the set S, we call

A ]lar == [AI(5)

var

the total variation of X\. The measure ) is called a bounded measure if
| A ] yar < 00-

Proof. We prove the additivity of |A|. If By, By € B are disjoint, then it is
easy to see that
IA[(B1) + |A|(B2) < [A|[(B1U By).

Moreover, for € > 0 choose disjoint F; € B, i =1,...,k, with F; C By U By,
such that

k k
IM(B1UBy) —e < Y |AE:)| =D [AME; N B1) + A(E; N By)|
=1 =1

< AI(B1) + [A[(Bz) -
O

6.11 Radon-Nikodym theorem. Let (5, B, 1) be a o-finite measure space
and let
v:B—=IK be g-additive with |||, < oo.

var

In addition, let v be absolutely continuous with respect to pu, i.e. for all
EeB
wE)y=0 = v(E)=0.

Then there exists a unique function f € L*(u) such that

V(E):/fdu for all £ € B.
E

Remark: The function f is called the Radon-Nikodym derivative of v
with respect to u, and is also denoted by g—z.

Proof. Let f1,fo € L*(u) be two such representing functions and let f :=
fi—fo.Let E:={xz€S; f(x)ee>4§}}, where e € IK\ {0} and § > 0. Then
(recall 5.11)
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0= ([ ndu= [ pran)ec= [ focan=oum),

and so u(E) = 0 for all e, 4, which implies that f; = fo p-almost everywhere.
This proves the uniqueness.

In order to prove the existence, we may assume that v is real-valued
(otherwise consider the real and imaginary part separately). It follows from
the Hahn decomposition (see A6.2) that we may further assume that v is
nonnegative. Then (S, B, u+ v) is also a measure space, since for N € B and
EcCS

(u+v)(N)=0, ECN

= wu(N)=0, ECN = Ee€B, u(E)=0.
Now v induces a measure space (S, E, v) with B C l?, where the sets from
B are unions of sets from B with v-null sets. Since v < 1+ v, it holds that

L'(u+ v) is contained in L'(v). On recalling that v(S) < oo, it follows from
the Holder inequality that L?(v) C L(v). Hence if g € L?(u + v), then

] /S 9| < VB gl < VoS gl e -

As L?(n + v) is a Hilbert space, the Riesz representation theorem 6.1 then
implies that there exists an h € L?(u + v) such that, for all g € L?(u +v),

/gdv= (9 M) p2(usn) = / ghd(p+v),
s s
ie.
/ g(1—h)dv = / ghdu  for all g € L*(u+v). (6-14)
5 5
We now show that

0<h<1l (p+v)-almost everywhere.

On setting g = X{n<oyns,,, where {h < 0} := {z € S; h(z) <0} and S, is
as in 3.9(4), it follows from (6-14) that

Og/ (1—h)d1/:/ hdp < —ep({h < —e}nNS,) .
{h<0}NS,, {h<0}NSm
This implies that u ({h < —e} N S,,) = 0 for all ¢ > 0 and all m, and hence

also p ({h < 0}) = 0. Since v is absolutely continuous with respect to p, it
follows that also v ({h < 0}) = 0. Similarly, it follows from (6-14) that, when

9= X{h21}ﬁ5ma

02/ (1—h)du=/ hdu > p({h > 130 S) |
(h>1}NS,m {(h>1}NS,m
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and so p({h > 1}) = 0, which by assumption yields that v ({h > 1}) = 0.
This shows that 0 < h < 1 almost everywhere with respect to pu + v. In
particular, it follows that for £ € B with u(E) < co we can in (6-14) choose

1-nk
1-h

g XE:(kZlhi)XEeLw(wru),
=0

which yields that

h
/E(lfhk)dy:/Em(lfhk)d,u.

On noting that p1+v-almost everywhere 0 < (1—h*)Xg / Xp € LY (u+v) as
k /oo, we conclude from the monotone convergence theorem that %X B €

L'(u) and
h
V(E)—/Emd,u,

ie. ﬁ is the desired function. The fact that ﬂ—h € L'(u) follows again from
the monotone convergence theorem, upon setting £ = |J i<m S;, taking the
limit m — oo, and recalling that v(S) < co. (A purely measure theoretical

proof of the Radon-Nikodym theorem can be found in e.g. [Halmos].) O
6.12 Theorem (Dual space of LP for p < oo). Let (5, B, 1) be a measure
space and let 1 < p < oo (the dual exponent p’ is given by % + 1% =1,

if p =1 then p’ = c0). In the case p = 1, we assume in addition that pu is
o-finite. For f € LP (u) let

J(f)(9) = / gfdp  forall g € LP(u).

s
Then J : LP (1) — LP(p)’ is a conjugate linear isometric isomorphism.

Special case: In the Hilbert space case p = 2 = p/, the isometry J coincides
with the isometry in 6.1.

Proof. Tt follows from the Holder inequality that J is well defined and that
[T (zoyr < || fllpwr- Clearly, J is conjugate linear. Moreover, .J is injective,

since J(f) = 0 implies in the case p > 1 with g := |f|?~2f € LP(u) that
0=(Nle) = [ 17 au.

and so that f = 0 in L?'(11). In the case p = 1 set g = X, f € L' () with S,,,
as in 3.9(4) and obtain that f = 0 almost everywhere in S,,. Letting m — oo
we conclude that f =0 in L>®(u).

Now let F' € LP(u). We need to show that there exists an f € LP (u)

with
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F=J(f) and | fllp» < ||F||(Lp)/-
First we consider the special case p(S) < oco. Then
v(E) =F(Xg) forEeB

satisfies the assumptions of the Radon-Nikodym theorem. To see this, note
that for disjoint sets E1, ..., By, in B with v(E;) # 0 it holds that

m m

)| = ov(E; wi J-'ziy(Ei)
;\V(Ez)\ ; wv(E;)  with oy : D]

m
E 0 XE,
i=1

1Pl (S mED)" S UF 1oy - (S)F
=1

(6-15)

= F(Y_0is,) < Il gy -
i=1 L

ie. ||y

var

< oo. In addition, for £ = J;cy £s with E; € B, E; C E;y

1 .
[v(E) = v(E)| = |F(Xp\g,)| < | Fll oy (BN E)? =0 asi— oo,

i.e. v is o-additive. By the way, v is absolutely continuous w.r.t. u, since for
p-null sets E we have Xg = 0 in LP(u), and therefore v(E) = F(Xg) = 0.

Hence, by the Radon-Nikodym theorem 6.11, there exists a function f €
L' (i) with

F(XE):/XE?du for all E € B.
S

It follows that
F(g) = /ngdu (6-16)

for all functions g € L*(u), because such functions can be uniformly ap-
proximated by finite linear combinations of characteristic functions X with
measurable E C S (see the note in 3.26(1)). Now for m € IN and 1 < ¢ < o0
we choose in particular

g:XAm|f\q_2f, where A, :=={x € S; 0<|f(x)| <m},

and obtain from (6-16) that

/

In the case p > 1, setting ¢ = p’ (so that p(¢ — 1) = p’), yields after cancel-
lation that

1
—1 D
717 = F(6) < 1Py gl = 1Py ([ 171707 )

m

1

(f 11 an)” <Pl
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On letting m — oo, it follows from the monotone convergence theorem that
fe L? (p) and [|f][ < [[F|[(1sy - In the case p = 1, choose ¢ € IN and
obtain inductively that

[ < 1Py [ £ < 1Py A,

m m

i.e.
1

(1717 d) " < 1Py - A
Am

Then, on letting ¢ — oo, it follows from E3.4 (for the function X4  f) that

m

|fI < [Fll(zs) almost everywhere in A, which implies that |[f -~ <

||FH(LP)"

On noting that the functions g, for which (6-16) originally held, are dense
in LP(u), it now follows from the Holder inequality that (6-16) holds for all
g € LP(u), and so F' = J(f), which is what we wanted to show.

We now consider the case of a general measure space, and define B =
{A e B; u(A) < cc}. For A € B let

pa(E) == p(ANE), Falg):=F(Xag).

Then 114(S) < oo with pa(S\ A) =0, and F € LP(ua)’, with || Fallzs) <
[ ]| (0 - Hence it follows from what we have shown so far that there exists

a unique f4 € LP (j14) with

Fa(g) = /ngjdpA for all g € LP(ua) (6-17)

and || fallp»r = [[Fall(zs)- On defining fa(x) := 0 for 2 € S\ A, we have that

fa € LP' (11). As in the proof of the injectivity of .J, it follows that fa, = fa,
p-almost everywhere in AjNAs for Ay, Ay € B. Hence, |fa, | < |fa,| p-almost
everywhere if A; C As, and then

[ falle < 1 fazllpe = ||FA2H(Lp)/ < ”F”(LP)’ < 0.
It follows that there exist B,, € B with B,, C By,41 for m € IN, such that

178 o — s 7= sup || fall L asm — o0
AeB

If p = 1, then the B,, can be chosen such that S,, C B,,, where the S, are
as in 3.9(4). Then

B = U B, f(z):=

{ fB,, (z) forz e By, meN,
meN

0 for x € S\ B,
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(for p > 1 by the monotone convergence theorem) defines an f € LP (1) with

£l = 5= sup | £all o = sup | Fall oy < I1F 1oy -
AeB AeB

Now
fa = f almost everywhere in A, if A € B with A C B,

since in A N B, it holds almost everywhere that f = fg, = fanp,, = fa.
We claim that

fa = 0 almost everywhere in S, if A € B with AN B = .

In the case p = 1, this trivially follows from B = S. In the case p > 1, on
noting that AN B,, = 0, it follows that

/ ’ ’ / / ’
|faus,, [" = 1fal” +|fB,. ", andso s* >|falll,, + /5,7, -

Letting m — oo yields that s? > || fa Hi’p/ + s, and hence our claim.
Now let g € LP(pu) with g = 0 almost everywhere in S\ A for an A € B.
Then, by (6-17),

F(g):FA(g):/ng?duA:Agf?du.

Since, as shown above, f4 = fa\p =0in A\ B and fa = fanp = f in ANB,
this is in turn equal to

/Ant?d“ = /Ag?dﬂ = /ng — J(f)(g)-

On noting that such functions g are dense in LP(u) (approximating g, for
example, by X4, g, n € N, with 4, := {2z € S; |g(z)| > 1}), it follows that
F(g) = J(f)(g) for all g € LP(p). 0

With the help of the result in theorem 6.12, we can establish a distribu-
tional characterization of LP-functions:

6.13 Corollary. Let {2 C IR"™ be open and let 1 < p < oo. Then it holds for
functions f : 2 — IK that

f € Li,.(£2) and there exists a C' with
e L’(2) =
ferr(@) [ crav
Q

The constant C' on the right-hand side satisfies || f{| ;o) < C.

Notation: Here L (§2) is the space of locally integrable functions in £2, de-

fined in 5.13(2). Moreover, 1 < p’ < oo is the dual exponent, i.e. %—&— i =1.

< Cl[¢ll o (g for all ¢ € C5°(£2).

Note: For a generalization of the result to Sobolev functions, see E6.7.
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Proof =-. The Holder inequality yields that
/ ¢fdL”
[0

Proof <. The estimate yields that on C§°(§2) equipped with the L¥' -norm,

< Mcllee @) - 1 llzo ) -

O

F(O) = /Q Cf L

is linear and continuous. In the case p > 1, we have that C5°(£2) is dense
in L¥' (£2) (this follows from 4.15(3) as p/ < c0), and so F can be uniquely
extended to L (£2), as a functional F' € L? (2)' (see E5.3). Hence it follows
from 6.12 that there exists an f € LP(£2) with

F(g) :/ gfdL"  for all g € L¥'(02).
2

Since

/ CfdL® :/ CfdL™  for all ¢ € C3°(£2),
Q Q
f= falmost everywhere in {2 (see 4.22). In the case p = 1, set

fl@) .
g@) =4 [f@yp TH@D#0

0, otherwise.

Let D CC {2 and let (¢.).., be a standard Dirac sequence. Then (. :=
¢ x (Xpg) € C§°(£2) for sufficiently small € > 0, and

‘ /Q C.f L

Letting ¢ — 0, we obtain from Lebesgue’s convergence theorem (as (. — Xpg
almost everywhere for a subsequence £ — 0) that

[isar=| [ gpaur

where the constant C' is independent of D. Hence f € L1(£2). O

< Ollée]l e <€

Sca

Hahn-Banach’s theorem

For the characterization of C°(S)" we will use the fact that functionals on
C°(S) can be extended norm-preservingly to B(S) (see the proof 6.23). The
existence of such extensions in more general situations is guaranteed by the
following two theorems.
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6.14 Hahn-Banach theorem. Let X be an IR-vector space and let the
following hold:

(1) p: X —» R is sublinear, i.e. for all z,y € X and o € R,
p(x+y) <p(@)+ply) and plaz)=ap(z) for a > 0.

(2) f:Y — IR is linear with a subspace Y C X.
(3) f(z) <p(zx) forzeY.

Then there exists a linear map F': X — IR such that
F(z)=f(z)forx €Y and F(z)<p(x) forz € X.
Proof. We consider the class of all extensions of f, that is,
M = {(Z,g) ; Z subspace, Y C Z C X,
g:Z%IRlinear,g:fonY,ggponZ}.

Consider an arbitrary (Z,g) € M with Z # X and a 29 € X \ Z. We want
to extend g at least to
Zy :=span(Z U{zp}) = Z ®spanf{zp} .
We attempt the ansatz
go(z + azp) :=¢g(2) +ca for z € Z and o € R.

Here c still needs to be suitably chosen, so that (Zy, gg) € M. Clearly, g is
linear on Zy. Moreover, go = g = f on Y. It remains to show that

g(z) +ca < p(z+az) forzeZand a € R.

Since g < p on Z, this is satisfied for @« = 0. For o > 0 the inequality is
equivalent to

¢ < (pz+ az0) — 9(2)) =p(2 + 20) —9(%)

Q=

and for e < 0 to
c>L(p(z+azx)—gz) =g9(-2) —p(—2 — 20) .

Hence we need to find a number ¢ such that

sup (9(2) —p(z = 20)) < ¢ < f (p(z +20) = 9(2)) -
z€Z z€

This is possible, because for z, 2z’ € Z we have

9(z') +9(2) = g(' +2) <p(z' +2)
=p(z' — 20+ 2+ 20) <p(z' — 20) +p(z + 20)

and hence
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9(#") = p(z" — 20) < p(z + 20) — 9(2) -

We now hope that this extension procedure yields an (X, F) € M. To this
end, we make use of

Zorn’s lemma: Let (M, <) be a nonempty partially ordered set (i.e. if
m1 < mg and my < mg, then my < mg, and m < m for all m € M) such that
every totally ordered subset N (i.e. for all ny,ns € A it holds that ny < ng
or ny < ny) has an upper bound (i.e. there exists an m € M with n < m
for all n € N). Then M contains a maximal element (i.e. there exists an
mo € M such that for all m € M it holds that mg < m = m < my).

In our case, an order is defined by
(Z1,91) < (Z2,92) == Z1 C Zyand g2 = g1 on Z;.

We need to verify the assumptions of Zorn’s lemma. Let N' C M be totally
ordered and define

z. = |J 2,
(Z,9)eN
g«(z) :=g(x), ifzeZand (Zyg)eN.
We need to show that (Z,,g.) € M. Now Y C Z, C X, and g, is a well
defined function, because
r€Z\NZy, (Z1,01) EN, (Za,92) €N
= (Z1,01) < (Z2,92) or (Z2,92) < (Z1,91) (total order of NV)
= Z1 C Zyand go = g1 on Z; (in the first case)
= go(x) =gi1(x) (asxz € Zy).
The properties g« = f on Y and g. < p on Z, carry over. The linearity of Z,
and g, can be seen as follows:
r,y € Z,, a €R
= There exist (Z;,9:) € N, (Zy,9y) € N withz € Z, and y € Z,
= (Zs,92) < (Zyagy) or (Zyagy) < (Zs,9x)
= 1,y € Z¢ with £ =y in the first and { = « in the second case,
hence also x + ay € Z¢ C Z, and
gx(z + ay) = ge(z + ay) = ge(z) + age(y) = g«(z) + ag.(y) -
Hence it follows from Zorn’s lemma that M has a maximal element (Z, g). If

we assume that Z # X, then the extension procedure from the beginning of
the proof yields a (Zy, go) € M with

(Z,9) < (Zo,90) and Zy# Z,
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which contradicts the maximality of (Z, g). O
The Hahn-Banach theorem has the following version for linear functionals.

6.15 Hahn-Banach theorem (for linear functionals). Let X be a
normed IK-vector space and Y be a subspace (with the norm of X !). Then
for ¢y’ € Y’ there exists an ' € X’ with

=y onY and 2’| =¥y
Proof for IK = IR. Choose
p@) =1y ly llally forx € X
in 6.14, so that for y € Y
v' W) < 1Y Iy lylly = 19y lyllx = p(y) -
Then, by 6.14, there exists a linear map 2’ : X — IR with
2=y onY and 2’ <pon X.
The second property implies that
+a'(x) = 2'(£2) < p(Ez) = [V |y Izl x ,

ie. 2’ € X" with [[2'|| v, < ||¥|ly, and the first property implies that

1y ly = Sup. 1y ()| = Sup. 2" ()] < [12"[| x -
Yy € Yy €
lyllx <1 lyllx <1

O

Proof for IK = C. Consider X and Y as normed IR-vector spaces X and
YR (i.e. scalar multiplication is defined only for real numbers, but the norms
remain the same). Let X and Yp; be the corresponding dual spaces. For
y' € Y’ it then holds that

yée = Rey/ € Y]lgu with ||y;eHY]§{ S Hy/HY’

and

Y'(z) = Rey'(z) +ilmy'(z) = y,o(x) — iyl (iz)
It follows from the real case treated above that there exists an extension z,
of yf, to Xm with |27, = |4/ |y - Define

2 (z) =2l (z) — izl (iz) .

Then 2/ =y on Y, and 2’ : X — C is C-linear, because 2’ is IR-linear and
for x € X we have that
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— i (—ial (i) + 2l(2)) = e/ (2)
Now let € X. Then 2'(z) € € can be written as 2'(z) = rel with § € R
and r > 0. Therefore,
|2’ (z)| = r = Re(e %2/ (x)) = Rex'(e )
— (%) < lalell, ol
and we recall that ||:1c;e||X]/R = Hyﬁellyﬁ% < |||y, This shows that ' € X’

with ||’ v, < [|¥/|ly,. As 2’ is an extension of 3, it must also hold that
12l = 19 ly- O

As an application, we show that points in a normed space can be separated
from subspaces with the help of linear functionals (see the generalization of
suspaces to closed convex sets in 8.12). This separation property is often used
in order to show that a given subspace is dense in the ambient space X.

6.16 Theorem. Let Y be a closed subspace of the normed space X and let
zo ¢ Y. Then there exists an 2’ € X’ with

¥ =0o0nY, |||y =1, a'(xg)=dist(zo,Y).
Remark: Then there also exists an 2/ € X’ with

1

!/ — 0 Y / , = ,
. on Y, la'llx dist(z0,Y)

z'(zo) =1.

Proof. On
Yo :=span (Y U {xo}) =Y & span{zg}
define
Wy + awo) = a - dist(zy,Y) fory €Y and a € K.

Then y; : Yy — K is linear and yj, = 0 on Y. We want to show that y; € Yj
with ||y} ||Y0, =1, as 6.15 then yields the desired result.
Let y € Y and a # 0. Then

dist(zg,Y) <

and so

y0(y + axo)| < |of

—Y
To — O‘HX = [lazo + Yl x s

and hence yo € Yy with Hy6||YO, < 1. The closedness of Y yields that
dist(zo,Y) > 0, and so for € > 0 we can choose a y. € Y such that
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[0 = yellx < (1 +e)dist(zo,Y).

Then
y(l)(xo - ys) = diSt(xo, Y) > %ﬂ”xo — Ye ”X )
which, since z¢ — y. # 0, implies that ||y} HYO’ > ﬁ —lase\,0. O

6.17 Corollaries. Let X be a normed space and let zg € X. Then:
(1) If zy # 0, then there exists an xf, € X’ with
[zl =1 and  ap(zo) = [lzolly -

(2) If 2’'(z0) =0 for all 2’ € X', then zy = 0.
(3) Setting Tz’ := a'(x) for 2’ € X’ defines an element T of Z(X";IK) =
(X')’, the bidual space (see 8.2), with || T'|| = ||zo|| x-

Proof. (1) is the result in 6.16 with ¥ = {0}, and (2) follows from (1).
In (3) we have that |T2'| < ||2| v [|zo| x, and if 2o # 0 it holds that
|Tzh| = ||zoll x with 2 as in (1). Hence | T|| = ||zo]| x- O

6.18 Remark. The result 6.16 may also be interpreted as a generalization
of the projection theorem for Hilbert spaces in the linear case. To see this,
assume that X is a Hilbert space and define

LL‘I(LL‘) R LU()—P{,EO
A\ lwo — Pxoll )

where P is the orthogonal projection onto Y from 4.3. It follows from 4.4(2)
that 2 = 0 on Y and hence

2’ (o) = 2'(xo — Pxo) = ||w0 — Pxol x

and moreover |2'(x)| < ||| y. Hence 2" has all the properties in 6.16.

Riesz-Radon’s theorem

As we have seen in 6.12 the dual space of the function space LP(u), if 1 <
p < 00, is isomorphic to a space that is again a function space. We will now
show that the dual space of C°(S) is isomorphic to a space of measures. To
this end, we need the following definitions (the notations are the same as in
[DunfordSchwartz : TV 2]).

6.19 Definition (Borel sets). Let X be a topological space. The set of
Borel sets is defined as the smallest o-algebra that contains the closed sub-
sets of X (or, equivalently, the open subsets of X).
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6.20 Spaces of additive measures. Let S C IR" be equipped with the
relative topology of IR™ (see 2.11). Let By be the smallest Boolean algebra
that contains the closed (or, equivalently, open) subsets of S, and let B; be
the set of Borel sets of S, i.e. the smallest o-algebra containing By. Then

ba(S;IK™) == {A: By — K™ ; X is additive and || A[|,,,
ca(S;IK™) :={X: By — IK™; X\ is o-additive and || A]]

< oo},
< oo}

var

are IK-vector spaces and, equipped with the total variation as the norm, also
Banach spaces. In the definition, ba stands for “bounded additive” and ca
stands for “countably additive”. As usual, we set ba(S) := ba(S;IK) and
ca(S) := ca(S; K).

Proof. We prove the completeness. Let (A),.n be a Cauchy sequence in
ba(S;IK™). Then it holds for E € By that

[IM(E) = M(E)| <IN — Aillyar = 0 as k1 — o0,
and so there exists
AME) = l1_1>11010 M(E)  for E € By
and the additivity carries over to A. In addition,

||/\ - /\k”var var

Shmlnf”)\l—/\k” — 0 as k — oo.
=00

Analogously, for Cauchy sequences in ca(S;IK™) there exists a limit A on By .
If E; € By with E; D Ejyy and (), Bs = 0, then for | > k and as [ — oo

var

ME) |« IM(E)| < [M(B)| + A=Al
——— —_——

—0asi1— o —0asl >k — o
for every k

i.e. A\ is o-additive. O

6.21 Spaces of regular measures. Let S C IR", By, and B be as in 6.20.
A measure A in ba(S;IK™) or ca(S;IK™) is called regular if for all E € By
or E € B, respectively,

inf { M(U\K); KCECU, K is closed in S
andUisopeninS} =0.

Here |A| is the variational measure from 6.10 and in S we consider the relative
topology from 2.11, i.e. a set U C S is called open in S if it is of the form
U =S5NYV for an open set V C IR", and a set K C S is called closed in S if
S\ K is open in S. We define
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rba(S; IK™) := {\X € ba(S;IK™); A is regular},
rea(S;IK™) :={\ € ca(S;IK™); X is regular}.

These sets are IK-vector spaces and, equipped with the total variation as the
norm, also Banach spaces. In the definition, rba stands for “regular bounded
additive” and rca stands for “regular countably additive”. As usual, we set
rba(S) := rba(S; K) and rca(S) := rea(S; K).

Proof. For the completeness we need to show that for regular measures Ay it

follows from A\ — A in ba(S;IK™) as k — oo that A is also regular. To prove

this we note that for K C £ C U, as in the definition of regularity,
INUNEK) < AU\ K) + A= Al oy -

The first term on the right-hand side can be made arbitrarily small for every
k, by choosing U and K appropriately. a

In the following we need the fact that for regular measures p : By —
[0, 001, continuous functions are integrable, i.e. that they lie in L'(u). The
proof of this result is the construction of the Riemann integral, which for our
purposes we give here for vector-valued measures A : By — IK™.

6.22 Integral of continuous functions (Riemann integral). Let By be
as in 6.20. In addition, assume that A : By — IK™ is additive with ||A]| ., <
oo. For step functions

k
f:ZXEiOzi, kGH\I,aiEK,EiEBo,

i=1

it holds that i
/ fd\:= Zai/\(Ei)
S i=1

is independent of the representation of f. Moreover, we have that (choose E;
in the representation of f disjoint)

’/fdA‘ <1 F s - A e
S

Every continuous and bounded function f : S — IK can be approximated by
such step functions in the supremum norm. To see this, cover the bounded
set f(S) with open sets U;, i = 1,...,l, with diameter < % Then one can
construct another cover by (cf. the proof of A3.19(2))

Vi=U\|JU; fori=1,...1,

j<i
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where now the sets V; are pairwise disjoint. In addition,
Bi=f' Vi) = U\ U Uy € B
j<i

On choosing «; € V;, if V; is nonempty, it follows that

!
> ke, —f
i=1

which proves the desired approximation property.
Now, if (fx),en 1S @ sequence of step functions that converges uniformly
to f, then it follows that

<

)

E

sup

[ ear= [ R < 1A= Al DAl 0 a5 81 = .
S S

Hence there exists
/fd/\ = lim / frdA,
and the limit is independent of the choice of approximating sequence (f);cn-

6.23 Riesz-Radon theorem (Dual space of C°). Let S C IR"” be com-
pact. Then

0 = [ fav
defines a linear isometric isomorphism
J :rea(S) — C°(S).

Here rca(S) is the space defined in 6.21 and the integral for continuous func-
tions is defined as in 6.22.

Proof. For v € rca(S) and f € C°(S) it follows from the definition of the
Riemann integral that

T = ‘/Sfdv

and hence J is continuous. Moreover, J is isometric. To see this, note that
for v € rea(S) and e > 0 there exists a partitioning of S into Borel sets E;,
1=1,...,m, with

< llsup - 11 var »

1Vl S €D 0B
=1

As v is regular, there exist compact sets K; C E; with [v|(E; \ K;) < =
Then B;(K;) are disjoint sets for sufficiently small § > 0, and
|I/|(S N B(;(Kl) \Kl) —0 asd 0,

which follows once again from the regularity of v. On defining
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fi(x) == max(1 — idist(z, K;),0)

and

v(K;) .

, i v(K;) #0,
op = V(K]
0, otherwise,

it holds, if ¢ is sufficiently small, that

d_ofi| <1

=1 sup

and

J(V)(;Uifi) ;Ui/sfidy
§<|V(Kz)| + o /SmBJ( ok fi dl/)

Z I—Z\VI SN Bs(Ki) \ Ki)

> |[vllvar — 26 = Z w[(SNBs(Ki) \ K;)
i=1

on letting § N\, 0 and then € 0.

— v

var

Now the crucial step is to show that for F € C°(S)’ there exists a v € rca(S)
with J(v) = F. It follows from the Hahn-Banach theorem that F' can be
extended norm-preservingly to F' € B(S)" (B(S) is the space defined in 3.1).
Define

ME):=F(Xg) for ECS.

Then A is additive and [|A[|,, < || F| 5(s)» which follows as in (6-15). There-

var —
fore, by the definition of the Riemann integral,

:/Sfd)\

for all f € CY(S). Hence we want to find a v € rca(S) such that

/fdy:/fdA for all f € CY(S).
S S

The proof that such a v exists is given in Appendix A6 (see A6.6). O

With the help of the result in theorem 6.23, we can provide a distributional
characterization of regular measures.
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6.24 Corollary. Let 2 C IR™ be open and bounded, let C' > 0 and let
T:CH(2) =K be linear with |T(¢)| < C- [[Cllgyp for all ¢ € Cy(92).
Then there exists a unique A € rca(2) with
var =sup { |T(Q)| s €€ C0(2), I¢lly, =11} <C,
= /di/\ for all ¢ € C§(£2).

Al

Remark: Tt is sufficient to assume that

Te'(Q) with |T(C)]<C-||C]... forall ¢ € C(02).

sup

That is because T can then be uniquely extended to a linear map on C§(£2),
which satisfies the above estimate (approximate functions in CJ(§2) by means
of convolutions).

Proof. Consider the open sets
mzf{xeﬂ dist(z, 012) }

For m > myg, with mg sufficiently large, £2,, is nonempty and S,, := £2,, C
2,41 is compact. For m > myq choose 1, € C5°(£2,,) with 0 < n,,, <1 and
Nm = 1 on S;,,—1. Then

Tin(9) :=T(nmg)  for g € C(Si)
defines a T,,, € C°(S,,) with
1Tl < Cr = sup{|T(Q)]; ¢ € C3(2), lI¢llg, =1} < C.

Hence it follows from 6.23 that there exist uniquely determined v, € rca(Sy,)
with ||vm ], < Cr and

var —

Tole) = [ gdvn forg e CO(S,).

m

For ¢ € C§(£2,,) and [ > m it holds that n,¢ = ¢ (here we set ( = 0 outside
of £2,,), and so

/ Cdyy= | (dyy =T(m¢) =T(C)
Sm Si

independently of [. We claim that

v(E) is independent of [ > m for Borel sets E C Sy,—1. (6-18)
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Indeed, let K C S,,—1 be compact. Then (5(x) := max(l — %dist(ac, K), 0) for
small § > 0 defines a (5 € CJ(§2,,). Since v; is a regular measure, |v|(Bs(K)\
K) N\, 0 as 0 \, 0, and hence

/Q;dul—>ul(K) as 0 \, 0,
Sm

i.e. (6-18) holds for compact sets in Sy,—1. The regularity of v; then implies
that (6-18) holds for all Borel sets. For Borel sets E with E C {2 we have
that E C Sy, for some m € IN, and it follows from (6-18) that

ANE) :=y(E) forl,meN with EC Sy, | >m+2

is well defined. For ¢ € CJ({2) it holds that supp(¢) C £2,,, for some m € IN
and

T(<>=/Sm<dA

independently of m.

We need to show that A can be extended to a A € rca(2). If E;, i =
1,...,k, are pairwise disjoint with E; C £2, then, as above, there exists an m
with F; C S, fori=1,...,k and

k k
S IME) =D [vms2(B)] < [Vimtall e < O

i=1 i=1
In addition, for every Borel set E C {2 the limit

AME) = lim ME N Sy) (6-19)

m—o0

exists. To see this, let B, := ENSy, \ Sm—1 for m > mg and E,,, := ENSp,,.
Then

ENSn= CJ Ei, MENSy)= iA(Ei)

and, as shown above,
m

ST ME)| < Cr.

’i:mg
Hence (6-19) defines an extension of A to the Borel sets of 2. Then it easily
follows that A € rca(f2) with || A|l,,, < Cr. From the representation of 7" it
then easily follows that Cr < || A]] O

var”

As an application of theorem 6.23 (and in particular of 6.24), we con-
sider the space BV ({2). This space plays an important role in the functional
analysis treatment of certain geometric differential equations, because it re-
places the space WP (§2) for p = 1, which is not reflexive (see 8.11(4)). The
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functions in BV ({2) have the advantage that their weak derivatives (see 6.25,
below) can be interpreted as elements of a dual space. For existence proofs
in reflexive spaces one employs theorem 8.10, however in the space BV ({2)
one can apply theorem 8.5.

6.25 Functions of bounded variation. Let 2 C IR" be open and
bounded. Consider pairs (f,A) with f € L'(£2) and A € rca(2;IK") such
that the following rule of integration by parts holds:

/ 9i¢ - fdL" +/ ¢d\; =0 forall ( € C5°(92) (6-20)
0 0
for i = 1,...,n. This is equivalent to

fort=1,...,n.
Notation: The A;-integral is defined in 6.22, while the distributions [f] and
[A\;] are defined in 5.15.

In the spirit of the analogous definition in Sobolev spaces, we call 9; f := \;
the weak derivative of f. We have that:

(1) The set
BV(£2):= { f € L' (1) ; there exists a A € rca(2;K"),
such that (6-20) holds }

of functions of bounded variation is a IK-vector space, and it becomes a
Banach space with the norm

1By oy = 1 iy + A var -
(2) WH1(Q) c BV (£2) with a continuous inclusion.
(3) Wh(£2) is a proper subset of BV (£2).
Proof (2). For f € W1(02) the corresponding measure \ € rca(2;K") is
given by
AE) ;:/ VFdL" .
E

Moreover, [[Ally,, < IV fllpiq)- .

Proof (3). The fact that the space BV (£2) is larger than W11(£2) follows
from the existence of measures that have no representation as a function. For
instance, for 2 =1 — 1,1[ C IR the Heaviside function

1 for z >0,
o=

0 for x <0,



192 6 Linear functionals

lies in BV (1 — 1,1[) with

/11 ¢ Lt = —¢(0) = —/11 ¢ddo,

i.e. the weak derivative is the Dirac measure Jy at the point 0, and so
[f]"=[6] in Z'(£2).
This example can be generalized to an arbitrary (2. a

The following theorem yields an equivalent definition of the space BV ({2),
which is formulated with the help of the distribution [f] € 2'(2) for
f € LY(92) (see 5.15). An additional possible definition in the case n = 1
is presented in E6.9.

6.26 Theorem. Let 2 C IR" be open and bounded, and for f € L*(£2) let

;g € C5°(92;IK™) with

||f||grad = sup{ ‘/QfdivgdL”
lg(z)| < 1forz e Q} € [0,00] .

Here the divergence of a vector field is defined by
divo := Z@ivi for v € C1(2;TK™).
i=1

Then
BV(2)={feL'(2); [Ifllyaa < }

and for f € BV(£2) with Vf:=(9;f);_, _, € rca(2;KK"),
[ Fllgraa = IV llvar-

Proof. For g € CY(2;IK™) let

gedri=>" [ gk, 5o that ’/g-dA’§ llaup 1M e
/Q >, ; 16]laup - A

which follows by approximating g with step functions as in 6.22.
For f € BV(2) with \; := 9;f as in 6.25 and ¢ as in the above definition
of [| f|lgraq it then holds that

’/ fdiv gdL™
(9]

and so || f]|

= ‘/ ?' d)" S ||>‘||var7
2

;/Qgi dA;

grad < || >‘||va.r'
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Now let f € L'(£2) with || f|| ;0 < 00 and put

Ty(C) = —/QfaiCdL" = —/Qfdiv (Ce;)dL™  for ¢ € C°(R2).

By the definition of [ f||,,,q it holds that |T;(C)| < |[Cllsp * [|f llgraa- This
estimate shows that T; can be uniquely extended onto C§({2). Hence, by
6.24, there exists a A\; € rca((2) with

EK%:ﬂfdM for ¢ € C(9).

This shows that f € BV(§2) with 9;f = A;. On setting A := (X\;),—; _, it
then holds for g € C§°(£2;IK") that

[oe =Y [ man=> 1@ -~ [ sav@ar.
2 =178 i=1 2

and so
\/Qg- dx\ <N lanp 1 g

Similarly to the proof of the isometry property in 6.23, this implies the in-

E6 Exercises
E6.1 Dual norm on IR". Let ||| be a norm on IR", i.e. we consider the

normed space (IR", [|]]).

(1) Show that

n
J(z)(y) = Zyixi for z,y € R"™
i=1

defines a linear map J : (R", ||+]|) — (R™, ||-]])’
(2) Show that

le]l" =l J ()] for = € R"
defines a norm on IR"™ (we call it the dual norm to ||-||).
(3) J: ("™, [-]") — (R",[+])" is an isometric isomorphism.
(4) For 1 < p < oo, find the dual norm to the p-norm in 2.5.
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E6.2 Dual space of the cross product. Let X; and X5 be normed spaces
and

JX{ XXé—) (Xl XXQ)/,
J((2,25)) (1, 22)) = @1 + zhao .

Show that J is an isometric isomorphism if the norms in X; x X5 and X| x X}
are defined as in E4.12(1) with respect to |+| and |+|', respectively.

Remark: Here |+ is the dual norm to |+| from E6.1(2).

Show that this dual norm is also a monotone norm on IR?.

E6.3 Integral equation. Let K € L?(£2 x §2) and let f € L?(£2), where
2 C R" is Lebesgue measurable. For A € IR consider the integral equation

K(z,y)u(y)dy = Mu(x) + f(x) for almost all x € £2.
2

Show that for A > || K| 12 (5y ) there exists a unique solution u € L2(02).

Solution. It follows from 5.12 that
(T)a) = [ Koy dy

defines an operator T' € £ (L*(£2)) with || T[] 4120y < K || 12(0x ) Then
also A := Ald — T € Z(L*(£2)) and for u € L*(£2)
Re (u, Au), = M|ul3> — Re (u, Tu),»
2 2
= Mullze = 1T o120y - 1ullze
> (A= 1Kl an e ) lullZe
N — e ———
=:cp>0

It follows from the Lax-Milgram theorem (see the equivalent result 6.3(3))
that A is invertible, and so u := A~1(—f) is the solution of the integral
equation. 0O

E6.4 Examples of elements from C°([0,1])’. Show that the following
maps T are linear and continuous on CY([0,1]) and calculate their norm.

(1) T:C°([0,11) — C°([0,11), for a given g € CY([0,1]) defined by
(Tf)(z) :=g(x) - f(z).

(2) T : C°[0,1]1) — K, with ; € R and pairwise distinct z; € [0,1],
t=1,...,m, defined by

Tf:=>" aif(xi).
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(3) T:C°([0,1]1) — IK, with points z; and coefficients c; as in (2), defined
by
Tf = Jy J@)do = S aaf (i)
Solution (1). On noting that [(Tf)(2)| < [|gllqupll fllsup: We have that T is

: : 2 .
continuous, with [ 7' < [[glls,,- As [|T9]lgp, = ngHsup = ||gl5,p» it holds
that [T > [|g]| O

sup”

Solution (2). Since
ITFI <2 el 1 f Nl »

T is continuous, with | 7| < Y7, |a;|. As the z; are pairwise distinct,
there exists a continuous function f with |f| < 1 and f(z;) = sign(«;) for
i =1,...,m. Then

ITf] =320 leal, andso [T = 352, |ail.

Solution (3). Since

TF < (1S 1)l

T is continuous, with ||T]| <14 Y ", |a;|. Now for small § > 0, chosen so
that 6 < %|xl — ;| for all ¢ # j, consider the continuous function
(1— L_5":7'|)sign(—ozi) + 7‘3”_5'”"‘ if z € I;5 for an 1,
fzx) = ,
1 otherwise,

where I;5 := [x; — 0, z; + 0] are disjoint intervals. Then || ||, =1 and

T = | fo (f@) = Dydz + 1+ 27 o)
= |20 (Joaamn, (/@) = D dz) + 14+ 57 o)
> —dmé+ 1+ 30", |ail,

which shows that || T > 1+ >0, |a;].
Result: This means that no such quadrature formula can approximate the
integral over [0,1] for all (!) continuous functions. O

V

E6.5 Dual space of C™(I). Let I C IR be a closed interval and let z¢ € I.
Then, for m > 1,

JEV() =3 & (o) + / 07 dy
i=1 I

defines an isomorphism J : IK"™ x rea(I) — C™(I)".



196 6 Linear functionals

Solution. It holds that
7O (max 161+ 17 o) 1oy

and hence J is continuous with [|J|| < 1 if on IK™ x rca(I) we introduce the
norm
HEn) = max (6] + [Vl

yeeey MMV

and if the C™-norm is defined as in 3.6. Now for every function f € C™(I)
we have

m—1 1

F@) =3 L 9D (o) — wo) +

i ﬁ/ () —y)mtdy.
i=0

This can be shown by induction on m. First, note that for m = 1 this is
the fundamental theorem of calculus. The following identity then proves the
formula inductively:

| rmwe—pray= [ )" dy
S ARy f<m+1><y><x )" dy.

Hence, for every F € C™(I)" we have

m—1

Ff = f9(x)Fp; + FT ™,
=0

where

|
7! o

Fori=0,...,m — 1 it follows inductively that

m—1—1¢

Ta) () — / @y,
(Tg)*" (x) mog(y) R
since the integrand vanishes at the upper limit x. In particular,

") = [ gy, andso (20 ™) = g(a).

zo
Hence we have the estimate |79 cm iy < C - lglco(yy and it follows that
T € £(C°(I);C™(I)), which implies that FT € C°(I). By theorem 6.23,
there exists a v € rca(I) with ||v]|,,, = [|FT|| and

var
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FTg= /gdz/ for g € CO(I).
I

Setting & := Fp;_1 for i = 1,...,m, we have that
F=J(v)

and

em@py + ITIIFI

This shows that J is surjective. If in addition we can show that J is injective,
then this estimate yields that the inverse J~! is also continuous. If J(&,v) =
0, then it holds for i = 1,...,m that

I vl < (_max_ipi]
1=0,...,m—1

0=J(¢ v)pi-1 =&

and for all g € CY(I) that

0=J(&nTg= [gdv,
I
which yields v = 0, thanks to theorem 6.23. Hence J is injective. a

Remark: If
Ji(€)(z) =z 0§
is the isometry J; : IK"™ — (IK™)’ from 6.1 and

1)) = [ gav

I
is the isometry Jo : rca(I) — C°(I)’ from 6.23, then it follows from E6.2 that

Jo(&v)(z,9) = J1(§)(2) + J2(v)(g)
defines an isomorphism Jy : IK™ x rca(I) — (IK™ x C°(I))’. Moreover,

S = ((F9@0)) g, ey » F™)
defines a continuous linear map from C™(I) to K™ x CY(I). With these
definitions
J=58J,

where S’ is the adjoint map of S (see 5.5(8)). Hence J being an isomorphism
is equivalent to the isomorphy of S’ and, by theorem 12.5, equivalent to the
isomorphy of S.
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E6.6 Dual space of cg and c. Let

co:={xzel*(R); limaz; =0},

11— 00

{z € >®(R) ; it exists lim 2; } .

1—> 00

Cc

The sets ¢y and ¢, equipped with the ¢>°(IR)-norm, are Banach spaces. Char-
acterize the dual spaces ¢} and ¢’

Solution. For every y € £*(IR), setting
J(y)(z) =322 yiwy forz€co
defines a J(y) € ¢ with ||[J(y)| < ||y||,:, because
[T () ()| < sup; |2] - 32720 [yil = [z g [yl -
If we define for n € IN

sign(y;)  for i <n,
xT; = .
0 for i > n,

then || (z;) =1 and

i€1NH1€°°
Jw)(@) = Xicn vl = llyllp s - oo,

Hence J : (}(IR) — ¢} is isometric. Now let F' € ¢{. Since for all x € ¢y we
have that

x =Y. xie; in the (*-norm,
it follows that
F(‘T") = Zzoil xiF€i7

and so F' = J(y), where y; := Fe;, provided that y € ¢(!(IR). But this is
indeed the case, since

Sicn il = F(Sicpsign(ui) ei) < I+ | 2ic,signto) e,

This shows that J is an isomorphism. Then the dual space ¢’ can be charac-
terized as follows:

_=1IF].

K2

Sz = (lim z;,21 —
— 00 1

im x;,ro —
1 — 00

im x;,...)
—r 00
defines an S € Z(c¢;cp), and S is in fact an isomorphism, with

S7le = (vo+ 21,23 + 71,24 +21,...).

Therefore
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defines an isomorphism J : /1 (IR) — ¢’ O

E6.7 Characterization of Sobolev functions. Let 2 C IR" be open. For
m € NU{0} and 1 < p < oo (if m = 0 then also for p = 1) it holds for
functions f : 2 — IR that

f € Li,.(£2) and there exists a constant C' with
< Cll¢l Lo (o)
for all |s| <m and all ¢ € C§°(£2).

fewmr() <«— ’/ fo°¢cdL”
2

Here p’ is the dual exponent to p.
Note: For this characterization in the case m = 0, see 6.13. In case m > 0
we have to assume p > 1, see the space BV ({2) and 6.26.

Solution =.

| orcanr <10 F Loy 1€l gy -

:‘/Qan-gdL”

Solution <. It follows from 6.13 that f € LP(£2). For 0 < |s| < m let
F5(C) ::/ fos¢dL™  for ¢ € C3°(92).
2

The estimate [Fy(Q)[ < C[¢|l 1w () says, since p' < oo, that F, can be

extended to a functional on LP (£2). Then it follows from 6.12, again since
p’ < o0, that there exists a function f, € LP({2) with

Fy(g) :/ g fodL"  for g € LV ().
2
Therefore,
/ fos¢du = / f<CdL™  for ¢ € C§°(92),
2 2
which yields that f € W™P(§2) (with 8°f = (—1)I*I f,). 0

E6.8 Positive functionals on Cg. Let 2 C IR"™ be open and let F :
CY(2;IR) — R be a linear map with

f>0in2 = F(f)>0.

Then there exists a nonnegative locally bounded regular o-additive measure
w on the Borel sets of (2 (i is then also called a Radon measure) such that

F(f) :/Qfdu for all f € CJ(2;TR).
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Solution. Here IK = IR. Let D C {2 be open and bounded with
d:= ldist(D,@.Q) >0.

In addition, let S := B4(D). Choose a cut-off function n € CJ(2) (see 4.19)
with

0<n<1, n=1on D, n=0 outside of B4(D),

e.g.
n(z) = max(0,1 — Ldist(z, D)).
For nonnegative functions f € CO(S) we then have that nf € C{(£2), with

0<nf<nsupf,
S

and so
0 < F(nf) SF(n)-SIS{pf-

Then it follows for all f € C°(S), on setting f* := max(f,0) and f~ :=
max(—f,0), that

|[Fmf)| = [F(nf*) = Fnf)|
< (Sgpﬁ +sup f)FM) < | fllogs) - Fn).-

Hence f +— F(nf) is a continuous functional on C°(S), and 6.23 yields the
existence of a p € rca(S) with

F(nf) :/fdu for all f € C°(S).
s
For f € CJ(D) it holds that nf = f, and hence

= / fdp  forall f e CY(D).
s
We need to show that p > 0. As p is regular, it is sufficient to show that
w(K) > 0 for compact sets K C D. Now, define
Ne(x) := max(0,1 — Ldist(z, K)),

so we have 1. € CJ(D) for sufficiently small . Since 1 > 7. \, X pointwise
as € \( 0, we obtain that

OSF(ne):/gnedU—)N(K)~

A similar argument shows that g = p in D, if i is the measure in rca(S ) for a
D as above with D C D. Exhausting {2 with countably many (not necessarily
connected) domains D then yields the desired result. O
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As an alternative to the space BV ({2) in 6.25 we define the following:

E6.9 Functions of bounded variation. In the one-dimensional case we
define for S := [a,b] C IR

BV(S):= {f:[a,b] =K | flgy = |f(a)| +var(f,S) <oo },

where the variation of f on [a,b] is defined by

m

var(f, [a, b)) = sup { 3" |f(@) = f(ai-1)] ;

i=1

m € IN, a=a0<a1<...<am:b}.

Show that for f € BV(S) it holds that:
(1) Fora<uz <zy <3<,
var(f, [x1,23]) = var(f, [z1, 22]) + var(f, [zo, 23]) .
(2) The following limits exist
fi(z) :==limoo f(x +¢) fora <z <b,
fo(z) =lim~p f(x —¢) fora<az<b.

(3) Every function in BV(S) has at most countably many discontinuity
points.

Solution (1). The “<” part in the identity follows from adding x5 to the
interval partitionings of [xq,x3]. O

Solution (2). Noting that
[f@)| < [f@)]+|f(z) = f@)] < | fllzv

yields that f is bounded. Hence for # < b there exists a sequence (k;);cq
with k; \, x for ¢ — oo, such that

¢:= lim f(r;)

1—00
exists. Now it follows from (1) that for all m
2211 Var(f, [K/i-‘rla Kl]) = Var(f7 [Km-‘rla Hl]) < ||fH§‘// < 00,
and hence

Yooy var(f, [Kigp1, k1) < 1fllz < oo,
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which implies that var(f, [k;1+1,%:]) — 0 as i — co. Hence also

sup [ f(y) —¢]
Kit1 <Y<k
<17s) €1+ s 15~ J(w)]
Rit+1SYSKq

<|f(ki) =& +var(f, [Kiy1, k1) = 0 asi— oo,
which shows that & = f (z). O

Solution (3). If a < 1 < ... < x,, < b are discontinuity points of f, for
which | f4(x;) — f—(x;)| > 6, then it holds for small € — 0 that

var(f,8) > > | f(zi+e) — f(xi —€)|
= oy [ f (i) = f- ()| = md,

and so m < 0| f|| 5y- On choosing a null sequence for 4, it follows that the
discontinuity points of f are countable. O

Riemann-Stieltjes integral: Let S = [a,b] C IR and f € BV(S). Con-
sider for g € C°(S) and for partitionings a = sg < 51 < ... < s, = b the

sum
n

Zg(si)(f(si) - f(8i71)) :

i=1
If (tj)j:1 ., is a finer partitioning of S, say tr, = s; with k;_; < k;, then,
on setting d, := max; |s; — si—1|,

D950 (f(si) = fsim1)) =D a(ty) (f(ty) = f(t5-1))

i=1 j=1

n
i=1j

< sup g(ar) —g(x2)|- (Ifllgy — 0 asds — 0.

|z —x2|<ds

ki
Yo (9lsa) = a(t) (F(t5) = f(tj-1))
ki—1+1

Hence the Riemann-Stieltjes integral
Jaar= Jim 3 a0 (750 = S50

exists for f € BV(S) and g € C°(S).

E6.10 Representation of the Riemann-Stieltjes integral. Suppose
that f € BV(S). Then the following holds for the above defined integral.
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(1) There exists a A € rca(S) with

/gdf:/gd/\ for all g € C°(S).
s s

(2) The measure A in (1) satisfies for a <z < b
A [a,z]) = il{‘rg) (f(z+e)— fla)).
Solution (1). The map
Ty(g) = /Sgdf
satisfies
| [L9at] < lollen 1715

It follows that T € C°(S)" and hence theorem 6.23 yields the existence of a
A € rca(S) such that

/gd)\:Tf(g):/gdf for all g € C°(S9)
s s

and [\l = 7%l cogs - 0

Solution (2). For a < xy < b and sufficiently small ¢ > 0, consider the
continuous function

1 for x < xg + e,
ge(x) =4 1 - == formwg+e < <wo+ 28,
0 for xg + 2¢ < .

Then by the o-additivity of |\
/ gsd)\:)\([a,xo—ke])—>)\([a,x0]) ase —0
[a,z0+e
and the definition of the Riemann integral gives

/ggd)\—/\([a,l‘o-FE]) < |)\‘([$0+E,.’L‘0+2<€]) —0
S

for a sequence ¢ — 0, since || A||,,, < 0o. Moreover, by the definition of the

Riemann-Stieltjes integral,

| adf=fare - @
[a,:co-‘rs]

var

which converges to lim.\ o (f(:ro +e)— f(a)), and

[ geas = (1(an+2) = 1(@) | < var(s, T + 2.0+ 2:1) — 0
S

as € — 0. O
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Consider the functions

1 for |z| <e, 1 for z =0,
felx) = { . fz) = { :

0 otherwise, 0 otherwise.

Then f. — f pointwise as € — 0 and f # 0 in E‘//([ —1,17). Also,

var(f, [ —1,1]1) =2, but / gdf =0 forall g€ C°([ —1,11).
[-1,1]

In fact, with respect to the L'-measure we have f. — 0 almost everywhere
as ¢ — 0. As a consequence one considers function spaces

BV,.(la,b]) {feBV([a b1); f(x) = fy(x) for a < x < b,
) =f-) },
(a) = f+(a),

(x) (

=f_ x)fora<x§b},

~

BVi.(la,01) == { f € BV([a,b]); f
f

which consist of right-continuous and left-continuous functions, respectively.
Both spaces are bijective (isomorphic) to BV (1a,b[) in 6.25.

xT

E6.11 Normalized BV functions. With S := [a,b] C IR and the nota-
tions as in E6.9, let
NBV(S):= {f e BV(S); f(z)= fi(z)fora <z <b,
f(a) =0and f(b) = f_(b) }

be the space of normalized functions of bounded variation, equipped
with the norm of BV (S). Show that

(JA)(z) :== A(la,2]) fora<z<b
defines an isometric isomorphism
J:{X €rca(la,bl); AM{a}) =0, A({b}) =0} - NBV([a,b]).

Solution. The o-additivity of A yields that f := JA is right-continuous. Since
A({a}) = 0 it follows that f(a) = 0, and since A({b}) = 0 the o-additivity
gives that f(z) — f(b) as .

Moreover, for every partitioning a = ag < a1 < ... < @, = b,

Z|f az az 1 |_Z|/\ ]a’ 1, @i )’<H)\”Var’

i=1

Le. Hf”ET/ < ||>‘||var'
In addition, J is injective. In order to prove surjectivity, we use the pre-
vious exercise, which for a given f € NBV ([a,b]) yields a A € rca([a,b]),
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for which [|Al],,, < var(f, [a,0]) = [/ f]/53- It follows from E6.10(2) that

var —

JA = f, since for a <x <b
(JA)(@) = Alla, 21) = lim (f(z+¢) = fa)) = flx)

and also (JA)(b) = A([a,b]) = lim. o A([a,b—e]) = f(b). O

A6 Results from measure theory

The purpose of this appendix is to complete the proof of the representation
theorem 6.23 (see A6.6). The necessary construction of regular measures can
be found in A6.3.

Subsequently, we also present versions of Luzin’s theorem (see A6.7) and
Fubini’s theorem (see A6.10).

In the following two results, S is an arbitrary set.

A6.1 Jordan decomposition. Let 5 be a ring of subsets of the set S and
let A: B — IR be additive and bounded. Then

A= 3AF ), AT = (A=)
are additive, bounded and nonnegative on B. It holds that
A=AT A7, [Al=AT+ 27,
and, in addition,

M(E) = MMA d N (F)=-— inf
(B)= swp AA) and A (B)=-— mf

A(A).

Proof. On recalling 6.10, we only need to show that the last identity holds
for AT,
If AC E, then |A|(A) > |A(A4)], and so

NF(B) 2 X7 (4) 2 L(IMA) + A(4)) = A(A).

Now for a given € > 0 choose disjoint sets F1, ..., F,, with E; C E and
IA(B) <e+ Y [ME)]|.
i=1

On setting E,,41 := E\ U]~ E;, we have

m+1

ANE) = Z AE;),

and so
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1 c 1 m+41
N (E) = LOME) + ME) < &+ L3 (IME)] + AED)
i=1
=S+ 3 am) =5+ )( B)<S+ sw NA).
it A(E;)>0 i: A\(Ei)>0 A€B: ACE

a

A6.2 Hahn decomposition. Let B be a o-ring on the set S and let v :
B — IR be o-additive and bounded. Then there exists an ET € B such that

v(ENET)>0 and v(E\E')<0 foral E¢€B.

Proof. We assume that there exists an E € B with v(E) > 0 (otherwise
choose ET :={)). We now want to find an E* € B such that

v(ET) = so :=supgegV(E). (A6-1)

Such an E satisfies the desired result. To see this, assume that v(E\E™) > 0
for some E € B. Then

v(EYUE)=v(E")+v(E\E") > v(ET) =50,

which contradicts the definition of sq. Similarly, if »(E N ET) < 0 for some
E € B, then

v(EY\E)=v(ET) —v(ENEY) > v(ET) =50,

which again contradicts the definition of sg.
For the construction of ET, define for &k € IN

Mp:={EeB; v(E)>(1-1)so }
with the partial order
Ey<Ey, = (EDFE,andv(E) <v(E:))or Ey=E;.
Let N' C My, be totally ordered and let

s:= sup v(E).
EeN

Then there exist E; € N, i € IN, with
v(E;) <v(Eit1) s asi—00. (A6-2)

As N is totally ordered, it follows that E; < E;y 1 or E;y1 < E;. If E; < B
then (A6—2) implies E; D Ei+1, and if Ei+1 < E; it implies E; = Ei+1~
Therefore the sets F; are decreasing and
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Ey:= () Ei€ My, v(Ey) = lim v(E;)=s.
71— 00
i€IN

The found set Ey € M, is an upper bound of A/. This follows from the fact
that if £ € N with Fy < E, then E C Ey and v(F) > v(Ep), or E = Ej,
where the former case contradicts the definition of s, since v(E) > v(Ey) = s,
therefore £ = Ej.

Hence, by Zorn’s lemma (see the proof of 6.14), there exists a maximal
element M,j € M. It satisfies

v(M;F) > (1— %)so,
and in addition it holds for all A € B that
AcCc M = v(A)>o0. (A6-3)

To see this, assume that v(A) < 0. Then v(M,” \ 4) > v(M,!), and so
M7\ A € My, with M;t \ A > M;". Then the maximality of M," yields that
M,:r VA< M,:r, a contradiction.

Then the property (A6-3) also holds with M," replaced by the sets

+ . +
Ef = M},
i<k

because if A € B, A C E/f, then A; :== AN MjJr \U
partition of A, and hence

+ +
1',<jMi C Mj form a

k

v(A) =Y v(4;) > 0.

j=1
In particular,
V(E,j) > I/(M]:r) > (1 — %)30.

Hence
+ . + : +\ . + .
ET = U Ef eB with v(E")= kll)ngo v(EY) =50
kEN
Therefore ET satisfies (A6-1). O

In the following, let S C IR™ be a closed set and let By, 1 for S be defined
as in 6.20. Furthermore, let ba(S) etc. be the spaces defined in 6.20 and 6.21.
A6.3 Lemma. Let A € ba(S) be nonnegative and let
w(E):= sup inf  ANU) for E € By.
A:AcrE U:ACU
A closed U open

Then p € rba(S) and

/fdu:/fd)\ for all f € C°(S).
S S
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Proof. (All occurring sets are in By.) p is nonnegative and monotone,
i.e. By C Ey implies that p(Ey) < pu(E2). For closed sets A

A)= inf A{U), andso FE)= sup A
HA) U:ACU @) wE) A;Ach( ) (A6-4)
U open A closed

for all E. Define
M:={BeBy; wWlE)=pn(ENB)+u(E\B) forall E € By} .

We want to show that M = By. Obviously, #,S € M and from B € M it
follows that S\ B € M. If A, B € M, then it follows that for all E € By
W(EN(ANB) +u(B\ (AN B))
= u(EN (AN B) +u((E\ (AN B)) N B) +u((E\ (AN B)) \ B)
—— —
=(ENB)NA =(ENB)\A —E\B
=u(ENB)+u(E\ B) = u(E),

and so AN B € M. Hence M is a Boolean algebra. It remains to show that
M contains the closed sets. If A;, A are closed and disjoint, then there
exist open disjoint sets U; with A; C U;. Then it holds for every open set
U>D Al @] A2 that

AMU) > AUN (U UU)) =AXUNUL) + AU NUs) > p(Ar) + p(Asz),
and combining with (A6-4) yields that
(A1 U Ag) > p(Ar) + pu(Asz) .

Now let B be closed and let E be arbitrary. Then if Ay C ENB, As C E\B
are closed sets,

j(AD) T 1(A2) < u(Ay U Ag) < p(E)
and so (A6-4) implies that
p(ENB)+pu(E\ B) < u(E).

On the other hand, if A C E is closed and Uy, Us are open with AN B C Uy
and A\ U; C Uy, then A C Uy UUs, and hence

AU1) + A(Uz) > MUy UUs) > u(A).
Taking the infimum over all Uz, and noting that A\ U is closed, we obtain
AUL) + p(A\Ur) = p(A).-
Since A\ U; is a closed subset of E '\ B, it follows that
A(UL) + p(E\ B) = u(A).
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Now noting that A N B is closed, and taking the infimum over all U;, we
obtain

WANB) + (B \ B) > ju(A),

and so, since AN B is a closed subset of EN B,
W(ENB) + u(E\ B) = u(A).

On taking the supremum over all A, it finally follows that
(BN B)+ u(E\ B) > u(E).

This shows that B € M, and hence M = By.
It follows that u is additive on M, for if F, E5 € M are disjoint, then it
holds for all E that

wW(E) =p(ENE)+u(E\ E),
and for £ = F; U Ey we obtain that
p(Er U E2) = p(Er) + p(E2) .

Moreover, u is regular, because for E and € > 0 there exist closed sets A; C E
and As C S\ E with

w(E) < pu(A) +e and u(S\ E) < pu(Ay) +¢.
Then A; C E C S\ Ay and, on recalling that |u| = pu, it follows that
(S A2)\ Ay) < 22

It remains to show that the integral identity holds. Without loss of generality
let 0 < f < 1. For n € IN define

E={t<f<H}eBy fori=0,...,n

For a given € > 0 choose A; C E; closed with p(E; \ 4;) < e. Since the A;
are disjoint and f is continuous, there exist disjoint open sets U; with

A;cU; and inff>2—¢.
U; n

As p(A;) < A(U;), it follows that
i+1 1
< g E)<— g
/sfdlu g : nt "

< @+na+zg>\(m
1(S)

n
~———

—+0asn — oo

IN

+n5+5)\ /fd)\

—>Oass—>0
for any n



210 6 Linear functionals

Replacing f by 1 — f yields, on noting that p(S) = A(S), that

—/Sfdu:/s(l—f)dué/s( — [)dA=A(S /fdA

and hence the desired result. |

A6.4 Corollary. For A € ba(S) there exists a v € rba(S) such that

/fdA:/fdu for all f € CY(S).
S S

Proof. Since we can split A into a real and an imaginary part, we may assume
without loss of generality that X is real-valued. Let A = AT — A~ be the Jordan
decomposition of X and let u* be the measures from A6.3 corresponding to
M. Set v := pt — pu~. It obviously holds that |v| < ut + u~, and so the
regularity of % implies that v is regular. O

A6.5 Lemma (Alexandrov). If S C IR" is compact, then
verba(S) = v iso-additive (on By !).

Proof (Compare A3.3). Let E; € By, ¢ € IN, be disjoint and let £ :=|J, E; €
By. As v is regular, we can choose for € > 0 a closed set A with A C E and
|v|(E\ A) < € and open sets U; with E; C U; and |v|(U; \ E;) < €27% On
noting that (U;),.y is a cover of A with A being compact, we see that

AcC UUZ- for an m,
i=1

and hence, since |v| is nonnegative and additive (see 6.10), that

lV|(E) <e+|v|(A <5+Z|V\ <5+522 +Z|V\

In addition, for all m

m m

wI(B) > [v|(J B:) =D IvI(E),

i=1 i=1

which proves that
lv|(E Z lv[(E

Similarly, for all m

i Ei) =D IvI(B:) — 0 asm — oc.

i>m i>m
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We conclude that

O

A6.6 Lemma. Let S C R" be compact. For A € ba(S) there exists a v €
rea(S) with

/fduz/fd)\ for all f € CY(9).
s s

Proof. We may assume without loss of generality that A is real-valued and
nonnegative (see the proof of A6.4). Let u € rba(S) be the measure corre-
sponding to A as in A6.3. It follows from lemma A6.5 that p is o-additive
on By. Then by A3.15 there exists an extension of (By, 1) to (B, i) with a
o-algebra B and a o-additive measure i on B. As B; is the smallest o-algebra
that contains By, it follows that B; C B. Hence [i is o-additive on Bj.

We now show that [ is also regular. To this end, let

M :={FE € By; For e > 0 there exist sets A and U with
ACECU, Aclosed, U open, a(U\ A) <e}.

Clearly M is an algebra, and since p is an extension of u, it holds that
By € M. Then it follows that M = By, if we can show that

Eie Mforie Nwith E; C B,y =— FE:= UE,»EM.
1€IN

To this end, choose a closed set A; with A; C E; and an open set U; with
E; C U; such that ji(U; \ A;) < e27% Then

and

U\ J ) <poNJu) e o\ U 4).

The first term is smaller than ¢, if we choose m sufficiently large, and the
second term is

<a(|JWiNa) <> pUi\ A) <e.

i<m i<m

The integral identity follows as in the proof of A6.3. O
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We present the following result on measurable functions. Here S can be
replaced with any compact topological space.

A6.7 Luzin’s theorem. Let S C IR" be compact, p € rca(S) be nonnega-
tive, and Y be a Banach space. Then every u-measurable function f : S =Y
is p-almost continuous, i.e. for every p-measurable set E and every € > 0
there exists a compact set K C E with pu(E \ K) < ¢ such that f|K is a
continuous function on K.

Proof. First we recall that for every y-measurable set E there exist an E€B;
and a p-null set N with E\ N = E\ N (see A3.14(2)). Moreover, for every
p-null set N and every € > 0 there exists an N, € By with N C N, and
p(Ne) < € (see A3.4). As i is regular, there exist a compact set K C F and
an open set U D E with ,u(U \ K) < ¢, as well as an open set V' > N, with
(V) < 2. Then K := K\ V C E is compact and U := U UV D E is open
with p(U \ K) < 3e.

There exists a p-null set N such that f(S\ N) is separable (see 3.11(2)).
Choose a countable dense subset {y;; j € IN} of f(S\ N). For every i it
holds that the sets B1(y;), j € IN, form a cover of f(5\ V), and hence also

Bij :=B1 (yJ) \ Uk<] L (k) -
This implies that

Eijj=Enf*Bj)\N forjeN

form a disjoint partitioning of E\ N into p-measurable sets. It follows from the
remark at the beginning of the proof that there exist compact sets K;; C Ej;
with pu(Eij \ K;j) < 2777971 Consequently, u(E\ U, Kij) < €271, and
hence there exists a j; with

wE\ K;) <e27%,  where K,;:= Uj<;, 5ij -

K; is a compact subset of E'\ N, and by construction it is the disjoint union
of the compact sets K;; for j < j;. Hence
gi(z) :==y; forxe Ky (if K;; #0)
defines a g; € CO(K;;Y) with
1

SWHM)*ﬂ@M§g~
reK;

Set K := (), K;. Then the functions giIK € C%K;Y), and on K they con-
verge uniformly to f as i — oo, which yields that f|K € C°%K;Y). In
addition, K is a compact subset of F/ and

WE\K) <Y pE\K;) <ce.
i€IN
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We add now a functional analysis formulation of Fubini’s theorem, where
we restrict ourselves to the case of bounded regular measures.

A6.8 Product measure. Let S' ¢ IR™ be compact, | = 1,2, and let
(S', B', ') be measure spaces. Let B' contain the Borel sets of S! and let
pt € rea(Sh). Define

B! x B%:={E' x E?; E' € B! and E? € B2},
(ut x p?)(Er x E?) := pt(EY) - p?(E?)  for E' x E? € B! x B2.
Denote by B° the Boolean algebra induced by B' x B2. Then B consists

of finite disjoint unions of sets in B! x B2, and pu! x p? can be canonically
extended to an additive measure on B°.

Proposition: p' x p? is o-subadditive on B°, so that all the properties in A3.1
are satisfied.

Proof of proposition. Let E, E; € BY, i € N, with E C Uien Ei- We have to
show that for p := u' x p? it holds that

n(E) < Z/’L(E’L)
i€IN
By the definitions of B° and u, we may assume that
E;=E! x E? € B* x B2.
As the p! are regular, it follows that for € > 0 there exist open sets U} € B!
with (see the beginning of the proof in A6.7)
ElcU! and pl(U'\EY)<e2.
Then

u(U x U?)

7

< (B} x EY) + p((UF\ E}) x UP) + p(B x (U2 \ EY))
< (B} x B7) + pt (U \ B (S%) + u' (S (UF \ EF)
< (B} x E?) +C27%  with O := p'(S") + p*(S?).

Similarly, there exists a compact set K € B® with
KCFE and u(E)<uK)+e.

(E is the disjoint union of elements in B x B2, and each of these subsets can
be approximated in measure by compact subsets to an arbitrary accuracy. K
is then the disjoint union of Cartesian products of compact sets.) Since the
sets U! x UL form a cover of the set K, there exists an m with

m
Kcl|Ju!xu?,

i=1
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and hence
pu(E) < p(K) +e <Y uUf x UP) + Z (B} x E?) + (C + 1)e.

O

Therefore the Lebesgue integral for (S' x S2, BY u! x p?) can be con-
structed as in Appendix A3. In particular, there exists a measure extension
to a measure space (S x 5%, B, u! x p?). We now characterize the Lebesgue
space LP(u! x p?;Y) with the help of iterated integration. But first we con-
sider the following special case:

A6.9 Lemma. If N is a p! x p2-null set, then for p!-almost all 2; € S*
{2 € 5%; (z1,22) € N}
is a p2-null set.

Proof. Tt follows from the definition of null sets in A3.4 that for € > 0 there
exist sets E! € B, i € IN, | = 1,2 with

Nc|JE xE? and Y u(B! xE?)<e
1€IN SN

where p := ' x 2. Consider the functions

Gen (1) (22) = ZXEI xl)XEz(xg)

i<n
For all 71 we have that g.,,(21) € L'(1?) satisfying the following equation
Gen(a1) = / Gen(w1) dp® = X1 (w1)p*(E7) .
i<n
The function Ge,, € L'(u!) with
/ Gendp' =)y (BN p?(E}) <e.
i<n

On noting that

ng(xl) fG xl ZXEl .131 EQ)

i€IN

asn 0o, it follows from the monotone convergence theorem (see A3.12(3))
that G. € L'(p') with
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/ G, dyl = lim Gen d,u1 <e.
st St

n—oo

But this means that G. — 0 in L*(u') as e — 0. Hence there exists a
subsequence ¢ — 0 such that G.(z1) — 0 for pl-almost all x; € S1. In the
following we consider such x;. On noting that for small € and as n * co we
have that

[ genla) @i = Genln) 7 Getn) < o0

and
gen(@1)(22) 7 ge(@1)(22) 1= Z X1 (xl)XEf (2),
i€IN
it follows once again from the monotone convergence theorem that the func-
tion g.(z1) € L(pu?) satisfies

/ gs(xl) d,LL2 = Gs(xl) .
S2

Therefore, g.(x1) — 0 in L'(u?), and so there exists a subsequence ¢ — 0
(depending on z1!) with g.(x1)(x2) — 0 for p2-almost all 2o € S2. But noting
that g.(x1)(w2) > Xy (21, 22) implies that Xy (z1,22) = 0 for p2-almost all
To € 52, O

A6.10 Fubini’s theorem. Let Y be a Banach space and let 1 < p < oo.
Consider the product measure in A6.8. Then

(Jf)(@1)(2) := f (21, 22)
defines a linear isometric isomorphism
J o LP(uh % 2 Y) — LP(p's LP(u?;Y)) -

In particular, for f € LP(u! x u?;Y) there exists
F(xy) = / f(x1,29) dp®(w2)  for p'-almost all z; € S*
SQ
and F € LP(u!;Y) with

F(x1)dp!(z1) = / fxy,mo)d(pt x p?)(z1,20) .

St S1xS2

A symmetry argument then yields that

L ([ e ate) dte = [ ([ s nte) ae).

SQ Sl
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Proof. Let f € LP(u' x p?;Y) (we suppress in the following proof the ar-
gument Y). Since p < oo, it follows from the construction of the Lebesgue
integral (see the proof of 3.26(1)) that f can be approximated by step func-
tions

fr = ZXE7QZ with E; € B® and a; €Y,

where n, E; and «; depend on k. The definition of B° then yields that f; can
also be represented as

n
fi= Z XESXEfo‘U with Ezl € Bl, IEJ2 S 62, a;; €Y
4,5=1

with a new n, where both the E} and the EJ2 are disjoint. Then for all z;

(J fx)(x1) Z XEl xl)XEzoz” € LP(u )
,j=1

and Jfy € LP(ut; LP(p?)), with

p
[ el it = D) |5 R
= = L7 (22)
= 30 wEDEED gl = [ 1l
=1 S1xS2

where 1 := ' x p?. Similarly, we observe that

/ (T fi) (1) dp?
S2

as a function of x; lies in L'(p') and satisfies

/51 (/Sz(Jfk)(fﬂl)dMQ) dpt(zy) = /SIXS2 frdu.

These properties, which we have derived for fj, are of course also valid for
the step functions fr — f;. Therefore,

[k = T fill Lo, L (p —ka leLp(M)—H) as k,l — oo.
By completeness of LP(u'; LP(MQ)), there exists an F such that
Jfe = F in LP(u'; LP(14?)) as k — oo.

Hence there exists a subsequence such that for u!'-almost all x;
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Jfi(x1) — F(x1)  in LP(p?).

On the other hand, since f;, — f in LP(u), p = pu' x p?, there exists a
subsequence such that

fe(x1,2) = f(x1,22)  for p-almost all (z1, ).
It follows from A6.9 that then for p!-almost all 2y
fr(z1,22) — f(x1,22) for p2-almost all 5.
On recalling that fi(z1,22) = Jfi(21)(2z2), we then obtain that
F(x1) = f(wy,+)  in LP(4?)

for pl-almost all z1, i.e. F' = Jf. In addition, it follows from the above that

”Jf”Lp(#l;LP(H?)) = ”f”Lp(M)'

This shows that J is well defined and isometric. Consequently the image of J
is closed. Hence, in order to show the surjectivity, it is sufficient to show that
the image is dense. Every element in LP(u!; LP(1?)) can be approximated by
linear combinations of functions Xz1g with E' € B! and g € LP(u?), and
similarly g can be approximated by linear combinations of Xgza with E? € 32
and o € Y. But functions F(x1)(xs) = Xpi(21)X gz (22)a in LP(ub; LP(u?))
clearly lie in the image of .J.

In order to prove the integral formula, we exploit the fact that the integral
with respect to p? is a linear continuous map from L (u?) to Y. If f € L'(u),
then Jf € L' (u'; LY (p?)), and hence (see theorem 5.11)

Ty Jf(x1) dp?
S2

is a function in L' (p!). On noting that in addition J fx, — Jf in L' (ut; LY (p?))
as k — oo, if the f;, are chosen as above, we obtain with the help of 5.11 that
as k — oo

/Sl( . Jf(ffl)d,u?) dMl(xl):/S2( . deﬂl) dMQ
— o </51 Jfr d,u1> d/i2 — /S1 ([92 Jfk(fﬁ)d,uQ) dﬂl(xl)

- / fidp— fdu.
S1xS2 S1xS2
0

A6.11 Remark on the case p = oo. With the above assumptions, let
feL>®(ut xp?Y). Then f € Li(u' x p?;Y) for every 1 < g < oo, so that
the result shown in A6.10 yields that
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Jfe [\ LU Lip*Y)).
1<g<©
Moreover, it follows easily from E3.4 and A6.9 that
”fHLOO(plx;ﬂ) = ||g||L°C(p,1)v

where g(21) := || f (21, *) | Lo (u2) = [ (TF) (@) oo 2y

However, in general Jf is not (!) an element of L>(u'; L>®(u?;Y)), as
can be seen from the example p' = p? = L'L[0,1]1, Y = IR, f = Xg,
E :={(z1,22); z1 < x2}. In this case the function

X1 — X[acl,l] S LOO(IUZ;Y)

is not p'-measurable.
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