
6 Linear functionals

In this chapter we deal with the representations of dual spaces, i.e. we will
state canonical isomorphisms between the most important dual spaces and
already known spaces. We will use this to solve boundary value problems for
partial differential equations.

The most important case is that of a Hilbert space, for which the dual
space is isomorphic to the space itself (theorem 6.1). As a consequence, we
obtain the Lax-Milgram theorem (see 6.2), with the help of which elliptic
boundary value problems can be solved (see 6.4 – 6.9).

In the second part, we state representations of the dual spaces of Lp(μ) for
p < ∞ (see 6.12) and of C0(S) (see 6.23). The proof of 6.23 will employ the
Hahn-Banach theorem (see 6.14 – 6.15). This theorem states that continuous
linear maps f : Y → IK can be extended from a subspace Y ⊂ X to the
full space X such that the norm of the map is maintained, which is one
of the general principles of functional analysis. A constructive proof of the
Hahn-Banach theorem for separable spaces X will be given in 9.2.

Lax-Milgram’s theorem

We start with an existence theory, which is based on the following result.

6.1 Riesz representation theorem. If X is a Hilbert space, then

J(x)(y) := (y , x)X for x, y ∈ X

defines an isometric conjugate linear isomorphism J : X → X ′.

Notation: In the remainder of this book we will also denote this isomorphism
by RX : X → X ′.

Definition: Here a map J is called conjugate linear if for all x, y ∈ X and
α ∈ IK it holds that J(αx + y) = αJ(x) + J(y). In the case IK = IR this
reduces to J being linear.

Proof. By the Cauchy-Schwarz inequality,

|J(x)(y)| ≤ ‖x‖X · ‖y‖Y ,

i.e. J(x) ∈ X ′ with ‖J(x)‖X′ ≤ ‖x‖X . On noting that |J(x)(x)| = ‖x‖2X , we
see that ‖J(x)‖X′ ≥ ‖x‖X . Hence J is isometric, and in particular injective.
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164 6 Linear functionals

Now the crucial step is to show that J is surjective. Let 0 �= x′
0 ∈ X ′

and let P be the orthogonal projection from 4.3 onto the closed null space
N (x′

0). Choose e ∈ X with x′
0(e) = 1 and define

x0 := e− Pe, hence also x′
0(x0) = 1,

and in particular x0 �= 0. Now it follows from 4.3 (see 4.4(2)) that

(y , x0)X = 0 for all y ∈ N (x′
0). (6-3)

For all x ∈ X,

x = x− x′
0(x)x0︸ ︷︷ ︸

∈N (x′
0)

+x′
0(x)x0 ,

which together with (6-3) yields that

(x , x0)X = (x′
0(x)x0 , x0)X = x′

0(x)‖x0‖2 ,

and hence

x′
0(x) =

(
x ,

x0

‖x0‖2

)
X

= J
( x0

‖x0‖2
)
(x) .

��

An application of the Riesz representation theorem is the

6.2 Lax-Milgram theorem. Let X be a Hilbert space over IK and let
a : X×X → IK be sesquilinear. Assume that there exist constants c0 and C0

with 0 < c0 ≤ C0 < ∞ such that for all x, y ∈ X

(1) |a(x, y)| ≤ C0‖x‖X‖y‖X (Continuity),

(2) Rea(x, x) ≥ c0‖x‖2X (Coercivity).

Then there exists a unique map A : X → X with

a(y, x) = (y , Ax)X for all x, y ∈ X.

In addition, A ∈ L (X) is an invertible operator with

‖A‖ ≤ C0 and
∥∥A−1

∥∥ ≤ 1

c0
.

Proof. For every x ∈ X it follows from (1) that the function a(·, x) lies in X ′

and satisfies
‖a(·, x)‖X′ ≤ C0‖x‖X .

Hence, by the Riesz representation theorem 6.1, there exists a unique element
A(x) ∈ X such that
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{x ; x′
0(x) = −1}

N (x′
0) = {x ; x′

0(x) = 0}

{x ; x′
0(x) = +1}

e

Pe

x0

0

Fig. 6.1. Proof of the Riesz representation theorem

a(y, x) = (y , A(x))X for all y ∈ X

and moreover
‖A(x)‖X = ‖a(·, x)‖X′ ≤ C0‖x‖X .

Since a and the scalar product are conjugate linear in the second argument,
it follows that A is linear. Hence A ∈ L (X) with ‖A‖ ≤ C0. Moreover,

c0‖x‖2X ≤ Re a(x, x) = Re (x , A(x))X ≤ ‖x‖X · ‖Ax‖X ,

and so
c0‖x‖X ≤ ‖A(x)‖X for all x ∈ X, (6-4)

which implies that N (A) = {0}. In addition, it follows that the image space
R(A) is closed, on noting that for xk, x ∈ X

A(xk) → y as k → ∞
=⇒ ‖xk − xl‖X ≤ 1

c0
‖A(xk − xl)‖X (recall (6-4))

= 1
c0
‖A(xk)−A(xl)‖X → 0 as k, l → ∞

=⇒ xk → x as k → ∞ for an x ∈ X

=⇒ A(xk) → A(x) (as A is continuous)

=⇒ y = Ax ∈ R(A) .

It remains to show that R(A) = X. If R(A) �= X, then, on recalling that
R(A) is a closed subspace, the projection theorem 4.3 yields that there exists
an x0 ∈ X \ R(A) such that (recall 4.4(2))

(y , x0)X = 0 for all y ∈ R(A)

(choose an x̃0 ∈ X \R(A) and set x0 := x̃0−P x̃0, where P is the orthogonal
projection onto R(A)). This yields, on setting y = A(x0), that



166 6 Linear functionals

0 = Re (A(x0) , x0)X = Re (x0 , A(x0))X = Re a(x0, x0) ≥ c0‖x0‖2X > 0 ,

a contradiction. Hence we have shown that A is bijective. It follows from
(6-4) that

∥∥A−1
∥∥ ≤ 1

c0
. ��

6.3 Consequences.

(1) Let A be the operator from 6.2 and let RX be the isometry from theo-
rem 6.1. For a given x′ ∈ X ′, the unique solution of

a(y, x) = x′(y) for all y ∈ X (6-5)

is then x := A−1R−1
X x′.

(2) The solution in (1) has the stability property

‖x‖X ≤ 1

c0
‖x′‖X′ . (6-6)

Interpretation: If we consider two “right-hand sides” x′
1 and x′

2 and the
corresponding solutions x1 and x2 in (1), then it follows from (6-6), due to
the linearity of the problem (x1 − x2 is the solution to x′

1 − x′
2), that

‖x1 − x2‖X ≤ 1
c0
‖x′

1 − x′
2‖X′ .

Hence the error in the solutions can be estimated by the error in the data.
This justifies the term stability.

(3) Formulated for the operator A, the Lax-Milgram theorem reads as fol-
lows: Let X be a Hilbert space and let A ∈ L (X) be coercive, i.e. there
exists a constant c0 > 0 such that

Re (x , Ax)X ≥ c0‖x‖2X for all x ∈ X.

Then A is invertible, with
∥∥A−1

∥∥ ≤ 1
c0
.

(4) If a in 6.2 is a scalar product, then the solution x in statement (1) is, in
addition, the uniquely determined absolute minimum of the functional

E(y) := 1
2a(y, y)− Rex′(y) .

Proof (1) and (2). By the definition of A and RX , for all x, y ∈ X

a(y, x) = (y , Ax)X = (RXAx)(y) ,

and RXA : X → X ′ is bijective. If x = (RXA)−1x′, then it follows from (6-4)
that

c0‖x‖X ≤ ‖Ax‖X =
∥∥R−1

X x′∥∥
X

= ‖x′‖X′ .
��

Proof (3). The product a(y, x) := (y , Ax)X satisfies the properties in 6.2
with C0 = ‖A‖. Moreover, A is the operator corresponding to a from 6.2. ��
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Proof (4). Let y ∈ X. Then

E(y)− E(x) = 1
2

(
a(y, y)− a(x, x)

)
− Rex′(y − x)

= 1
2

(
a(y, y)− a(x, x)

)
− Rea(y − x, x)

= 1
2

(
a(y, y)− a(y, x)− a(x, y) + a(x, x)

)
= 1

2a(y − x, y − x) ≥ c0
2 ‖y − x‖2X .

��

The Lax-Milgram theorem has applications for integral operators (see
E6.3) and for differential operators, which will be discussed in the following.
First we consider the classical case in spaces of continuous functions.

6.4 Elliptic boundary value problems. Let Ω ⊂ IRn be open and
bounded and let IK = IR. We want to find functions u ∈ C2(Ω) satisfying the
differential equation

−
n∑

i=1

∂i

( n∑
j=1

aij∂ju+ hi

)
+ bu+ f = 0 in Ω . (6-7)

Here aij , hi ∈ C1(Ω) for i, j = 1, . . . , n and f, b ∈ C0(Ω) are given real-valued
functions, and we assume that there exists a c0 > 0 such that for all x ∈ Ω,

n∑
i,j=1

aij(x)ξiξj ≥ c0|ξ |2 for all ξ ∈ IRn. (6-8)

We then say that the matrix (aij(x))i,j is uniformly elliptic in x. (For every

c > 0, the set of points ξ ∈ IRn, for which
∑

i,j aij(x)ξiξj = c, is an ellipsoid.)
Let us emphasize here that the matrix (aij(x))i,j need not be symmetric.

It turns out that, under certain assumptions, there exists a unique func-
tion u solving (6-7), which in addition satisfies suitable boundary conditions
on ∂Ω. The two most frequently occurring boundary conditions in mathe-
matical physics are:

(1) Dirichlet boundary condition. Let g ∈ C0(∂Ω) be given. Find a
function u ∈ C2(Ω)∩C0(Ω) which solves the following Dirichlet boundary
value problem:

u satisfies (6-7) in Ω , u = g on ∂Ω.

(2) Neumann boundary condition. We assume thatΩ has a C1-boundary,
i.e. that the boundary ∂Ω can be locally represented as the graph of a C1-
function in an appropriately chosen coordinate system (as in A8.2). In ad-
dition, we assume that aij , hi ∈ C0(Ω). Let g ∈ C0(∂Ω) be given. Find a
function u ∈ C2(Ω)∩C1(Ω) which solves the followingNeumann boundary
value problem:
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u satisfies (6-7) in Ω , −
n∑

i=1

νi

( n∑
j=1

aij∂ju+ hi

)
= g on ∂Ω.

Here ν = (νi)i=1,...,n is the outer normal to ∂Ω.

Remark: For the boundary value problem (1) to be at all solvable, there
must exist some function u0 ∈ C2(Ω) ∩ C0(Ω) with u0 = g on ∂Ω. Then
the boundary value problem can be transformed to one for ũ := u − u0, by
replacing g with g̃ := 0, hi with h̃i := hi+

∑
j aij∂ju0, and f with f̃ := f+bu0.

Analogously, for (2) there must exist a function u0 ∈ C2(Ω) ∩ C1(Ω) with
−
∑

i νi
(∑

j aij∂ju0 +hi

)
= g on ∂Ω. Then the boundary value problem can

be transformed to one for ũ := u − u0, by replacing g with g̃ := 0, hi with
h̃i := 0, and f with f̃ := f −

∑
i ∂i
(∑

j aij∂ju0 + hi

)
+ bu0. We then call the

boundary conditions homogeneous.

We now give an equivalent definition of the boundary value problem with
the help of test functions (this gives a connection to distributions, which were
treated at the end of section 5).

In the Dirichlet case, if we multiply the differential equation (6-7) by
functions ζ ∈ C∞

0 (Ω), then we obtain after integration by parts that∫
Ω

(∑
i

∂iζ
(∑

j

aij∂ju+ hi

)
+ ζ(bu+ f)

)
dLn = 0 . (6-9)

Conversely, if this integral identity is satisfied for all ζ ∈ C∞
0 (Ω), then we

obtain, on reversing the integration by parts, that∫
Ω

ζw dLn = 0 with w := −
∑
i

∂i

(∑
j

aij∂ju+ hi

)
+ bu+ f .

If we assume that w(x0) �= 0 for some x0 ∈ Ω, then we can choose an ε0 > 0
with w > 0 or w < 0 in Bε0(x0) ⊂ Ω, and then a nontrivial ζ ∈ C∞

0

(
Bε0(x0)

)
with ζ ≥ 0, in order to obtain a contradiction. Hence it follows that w = 0
in Ω (this also follows directly from 4.22), i.e. the differential equation (6-7)
holds in Ω.

Similarly, in the Neumann case, if we multiply the differential equation
(6-7) by functions ζ ∈ C∞(Ω), on assuming that aij , hi ∈ C1(Ω), we obtain
after integration by parts that∫

Ω

(∑
i

∂iζ
(∑

j

aij∂ju+ hi

)
+ ζ(bu+ f)

)
dLn +

∫
∂Ω

ζg dHn−1 = 0 .

(6-10)
Conversely, if this holds for all ζ ∈ C∞(Ω), then as before we obtain the
differential equation in Ω (here it is sufficient to consider ζ ∈ C∞

0 (Ω)), and
then it holds for ζ ∈ C∞(Ω) that
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∂Ω

ζw dHn−1 = 0 with w :=
∑
i

νi

(∑
j

aij∂ju+ hi

)
+ g.

Similarly to the argumentation above, it now follows that the Neumann
boundary condition is satisfied.

The basic idea for the solution of these boundary value problems with
the help of Hilbert space methods is to interpret the integral terms in (6-9)
and (6-10) as an L2-bilinear form, and enlarge the spaces for test functions
and solutions accordingly. As the test function appears with ζ and ∂iζ, the
appropriate test space for (6-9) is the closure of C∞

0 (Ω) in the spaceW 1,2(Ω),
i.e. the space W 1,2

0 (Ω) (see 3.29). Since functions in W 1,2
0 (Ω), when Ω has a

C1-boundary, have in a weak sense boundary values 0 (see A8.10), W 1,2
0 (Ω) is

also the appropriate enlarged solution space. For (6-10) the appropriate test
space is the closure of C∞(Ω) in the space W 1,2(Ω), i.e. for sets Ω with a C1-
boundary the space W 1,2(Ω) itself (see A8.7), which is also the appropriately
enlarged solution space.

For the resulting weak formulations of the problem it is no longer nec-
essary to assume that the data aij , hi, b, f of the problem are continuous
functions in Ω. However, it is necessary to make assumptions on their inte-
grability, for instance as formulated in the following:

6.5 Weak boundary value problems. With IK = IR it is assumed in the
following that Ω ⊂ IRn is open and bounded, that aij ∈ L∞(Ω) satisfy the
ellipticity condition (6-8) for almost all x ∈ Ω, and that b ∈ L∞(Ω) and
hi, f ∈ L2(Ω). The weak formulation of the boundary value problem in 6.4
is defined as follows (where we consider only the case g = 0):

(1) We call u : Ω → IR a weak solution of the Dirichlet problem if

u ∈ W 1,2
0 (Ω) and∫

Ω

(∑
i

∂iζ
(∑

j

aij∂ju+ hi

)
+ ζ(bu+ f)

)
dLn = 0

for all ζ ∈ W 1,2
0 (Ω).

Here, as remarked above, if Ω has a C1-boundary, then the condition u ∈
W 1,2

0 (Ω) in a weak sense contains the homogeneous boundary conditions, and
it is irrelevant whether ζ varies in the space W 1,2

0 (Ω), or only in the space
C∞

0 (Ω).

(2) We call u : Ω → IR a weak solution of the Neumann problem if

u ∈ W 1,2(Ω) and∫
Ω

(∑
i

∂iζ
(∑

j

aij∂ju+ hi

)
+ ζ(bu+ f)

)
dLn = 0

for all ζ ∈ W 1,2(Ω).
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Here, as explained above, if Ω has a C1-boundary, then the integral term in
a weak sense contains the homogeneous boundary conditions (for g = 0 in
6.4(2) the boundary integral in (6-10) vanishes), and it is irrelevant whether
ζ varies in the space W 1,2(Ω), or only in the space C∞(Ω).

We will now prove the existence of solutions to these weak boundary value
problems.

6.6 Existence theorem for the Neumann problem. Let the assump-
tions in 6.5 hold and let b0 > 0 with b(x) ≥ b0 for almost all x ∈ Ω. Then
there exists a unique solution u ∈ W 1,2(Ω) for the Neumann problem in
6.5(2). Moreover,

‖u‖W 1,2 ≤ C
(
‖h‖L2 + ‖f ‖L2

)
,

with a constant C that is independent of h and f .

Proof. For u, v ∈ W 1,2(Ω) we define

a(u, v) :=
∑
i,j

∫
Ω

∂iu · aij∂jv dLn +

∫
Ω

u · bv dLn . (6-11)

(We mention that in general a does not need to be a scalar product, for (aij)ij
can be asymmetric.) Then a is bilinear, with

|a(u, v)| ≤
∑
i,j

‖aij‖L∞‖∂iu‖L2‖∂jv‖L2 + ‖b‖L∞‖u‖L2‖v‖L2

≤ C‖u‖W 1,2‖v‖W 1,2 with C :=
∑
i,j

‖aij‖L∞ + ‖b‖L∞ .

In addition, it follows from the assumptions on aij and b that

a(u, u) ≥ c0

∫
Ω

|∇u|2 dLn + b0

∫
Ω

|u|2 dLn ≥ c · ‖u‖2W 1,2

with c := min(c0, b0). Hence a satisfies the assumptions of the Lax-Milgram
theorem 6.2 on the Hilbert space W 1,2(Ω). We want to find a u ∈ W 1,2(Ω)
such that

a(v, u) = F (v) for all v ∈ W 1,2(Ω),

where

F (v) := −
∫
Ω

(∑
i

∂iv · hi + vf
)
dLn . (6-12)

It follows from 6.3(1) that there exists a unique such u if F belongs to the
dual space of W 1,2(Ω). But this is the case, since F is linear, with

|F (v)| ≤ ‖h‖L2‖∇v‖L2 + ‖f ‖L2‖v‖L2 ≤ (‖h‖L2 + ‖f ‖L2) ‖v‖W 1,2 .

In addition, the solution u can be estimated by the data, since, by 6.3(2),
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‖u‖W 1,2 ≤ 1

c
‖F ‖ ≤ 1

c
(‖h‖L2 + ‖f ‖L2) .

��

The Dirichlet problem can also be solved in the case b = 0. Here we need
the following

6.7 Poincaré inequality. If Ω ⊂ IRn is open and bounded, then there exists
a constant C0 (which depends on Ω), such that∫

Ω

|u|2 dLn ≤ C0

∫
Ω

|∇u|2 dLn for all u ∈ W 1,2
0 (Ω).

Note: See also 8.16 and E10.10.

Proof. On noting that both sides of the inequality depend continuously on u
in the W 1,2-norm, and on recalling the definition of W 1,2

0 (Ω), it is sufficient
to prove the estimate for functions u ∈ C∞

0 (Ω). In the case n = 1, let
Ω ⊂ [a, b] ⊂ IR. Then the Hölder inequality yields for a ≤ x ≤ b, on setting
u = 0 in IR \Ω, that

|u(x)|2 = |u(x)− u(a)|2 =

∣∣∣∣∫ x

a

∂xu(y) dy

∣∣∣∣2
≤ (x− a)

∫ x

a

|∂xu(y)|2 dy ≤ (b− a)

∫ b

a

|∂xu(y)|2 dy .

Integration over x gives∫ b

a

|u|2 dL1 ≤ (b− a)2
∫ b

a

|∂xu|2 dL1 . (6-13)

In the case n > 1, let Ω ⊂ [a, b] × IRn−1. Then we obtain (6-13) by inte-
grating over x1. Integration over the remaining n− 1 coordinates then yields
the desired result. (Hence the Poincaré inequality also holds for infinite slab
domains.) ��

6.8 Existence theorem for the Dirichlet problem. Let the assumptions
in 6.5 hold and let b ≥ 0. Then there exists a unique weak solution u ∈
W 1,2

0 (Ω) for the Dirichlet problem in 6.5(1). Moreover,

‖u‖W 1,2 ≤ C
(
‖h‖L2 + ‖f ‖L2

)
with a constant C that is independent of h and f .

Proof. Consider the bilinear form a in (6-11), now on the Hilbert space
W 1,2

0 (Ω). As in the proof of 6.6,
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|a(u, v)| ≤ C‖u‖W 1,2‖v‖W 1,2

and the assumptions on the coefficients yield that

a(u, u) ≥ c0

∫
Ω

|∇u|2 dLn = c0 ‖∇u‖2L2 for u ∈ W 1,2
0 (Ω) .

Then it follows, with the constant C0 from 6.7, that

‖u‖2W 1,2 = ‖u‖2L2 + ‖∇u‖2L2 ≤ (C0 + 1)‖∇u‖2L2 ≤ C0 + 1

c0
a(u, u) ,

and so a(u, u) ≥ c ‖u‖2W 1,2 with c = c0 · (C0 + 1)−1. Hence a satisfies the

assumptions of the Lax-Milgram theorem 6.2 on the Hilbert space W 1,2
0 (Ω).

The functional F in (6-12), restricted to the space W 1,2
0 (Ω), then lies in its

dual space. Hence, by 6.3(1), there exists a unique u ∈ W 1,2
0 (Ω) with

a(v, u) = F (v) for all v ∈ W 1,2
0 (Ω) .

The estimate follows again from 6.3(2) (see the proof 6.6). ��

6.9 Remark (Regularity of the solution). Based on the existence proofs
in 6.6 and 6.8 for weak solutions of the boundary value problem, it is possible
to show a posteriori that a weak solution is indeed a classical solution of the
boundary value problem in the sense of 6.4, provided the data aij , hi, b,
f and ∂Ω satisfy certain regularity conditions (by the regularity theory for
partial differential equations, see e.g. [GilbargTrudinger]). If we assume, for
instance, that aij ∈ Cm,1(Ω), hi ∈ Wm+1,2(Ω) and f ∈ Wm,2(Ω) with

m ≥ 0, then it follows that u ∈ Wm+2,2
loc (Ω) (see Friedrichs’ theorem A12.2).

If in addition ∂Ω is locally given by graphs of Cm+1,1-functions, then one can
correspondingly show that u ∈ Wm+2,2(Ω) (see A12.3). These two theorems
constitute the L2-regularity theory. This compares with the Lp-theory, which
is based on the Calderón-Zygmund inequality in 10.20, and the Schauder
theory, which on the basis of the Hölder-Korn-Lichtenstein inequality in 10.19
gives regularity results in Hölder spaces.

Radon-Nikodým’s theorem

After we have shown in 6.1 that the dual space of a Hilbert space is canoni-
cally isomorphic to the Hilbert space itself, we now want to consider specific
Banach spaces, Lp(μ) and C0(S), and characterize their dual spaces. (a list of
dual spaces can be found in [DunfordSchwartz : IV 15, S. 374-379]). First we
state a characterization of Lp(μ)′, for which we will need the Radon-Nikodým
theorem 6.11.
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6.10 Definition (Variational measure). Let B be a ring over a set S (see
A3.1) and let λ : B → IKm be additive. For E ∈ B define

|λ|(E) := sup
{ k∑

i=1

|λ(Ei)| ; k ∈ IN, Ei ∈ B pairwise disjoint, Ei ⊂ E
}
.

It holds that |λ| : B → [0,∞] is additive. We also call |λ| the variational
measure for λ. In addition, in the case where B contains the set S, we call

‖λ‖var := |λ|(S)

the total variation of λ. The measure λ is called a bounded measure if
‖λ‖var < ∞.

Proof. We prove the additivity of |λ|. If B1, B2 ∈ B are disjoint, then it is
easy to see that

|λ|(B1) + |λ|(B2) ≤ |λ|(B1 ∪B2) .

Moreover, for ε > 0 choose disjoint Ei ∈ B, i = 1, . . . , k, with Ei ⊂ B1 ∪B2,
such that

|λ|(B1 ∪B2)− ε ≤
k∑

i=1

|λ(Ei)| =
k∑

i=1

|λ(Ei ∩B1) + λ(Ei ∩B2)|

≤ |λ|(B1) + |λ|(B2) .

��

6.11 Radon-Nikodým theorem. Let (S,B, μ) be a σ-finite measure space
and let

ν : B → IK be σ-additive with ‖ν‖var < ∞.

In addition, let ν be absolutely continuous with respect to μ, i.e. for all
E ∈ B

μ(E) = 0 =⇒ ν(E) = 0 .

Then there exists a unique function f ∈ L1(μ) such that

ν(E) =

∫
E

f dμ for all E ∈ B.

Remark: The function f is called the Radon-Nikodým derivative of ν
with respect to μ, and is also denoted by dν

dμ .

Proof. Let f1, f2 ∈ L1(μ) be two such representing functions and let f :=
f1− f2. Let E := {x ∈ S ; f(x)• e ≥ δ}}, where e ∈ IK\{0} and δ > 0. Then
(recall 5.11)
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0 =
(∫

E

f1 dμ−
∫
E

f2 dμ
)
• e =

∫
E

f • edμ ≥ δμ(E) ,

and so μ(E) = 0 for all e, δ, which implies that f1 = f2 μ-almost everywhere.
This proves the uniqueness.

In order to prove the existence, we may assume that ν is real-valued
(otherwise consider the real and imaginary part separately). It follows from
the Hahn decomposition (see A6.2) that we may further assume that ν is
nonnegative. Then (S,B, μ+ ν) is also a measure space, since for N ∈ B and
E ⊂ S

(μ+ ν)(N) = 0, E ⊂ N

=⇒ μ(N) = 0, E ⊂ N =⇒ E ∈ B, μ(E) = 0 .

Now ν induces a measure space (S, B̂, ν) with B ⊂ B̂, where the sets from

B̂ are unions of sets from B with ν-null sets. Since ν ≤ μ + ν, it holds that
L1(μ+ ν) is contained in L1(ν). On recalling that ν(S) < ∞, it follows from
the Hölder inequality that L2(ν) ⊂ L1(ν). Hence if g ∈ L2(μ+ ν), then∣∣∣∣∫

S

g dν

∣∣∣∣ ≤√ν(S)‖g‖L2(ν) ≤
√
ν(S)‖g‖L2(μ+ν) .

As L2(μ + ν) is a Hilbert space, the Riesz representation theorem 6.1 then
implies that there exists an h ∈ L2(μ+ ν) such that, for all g ∈ L2(μ+ ν),∫

S

g dν = (g , h)L2(μ+ν) =

∫
S

gh d(μ+ ν) ,

i.e. ∫
S

g(1− h) dν =

∫
S

gh dμ for all g ∈ L2(μ+ ν). (6-14)

We now show that

0 ≤ h < 1 (μ+ ν)-almost everywhere.

On setting g = X{h<0}∩Sm
, where {h < 0} := {x ∈ S ; h(x) < 0} and Sm is

as in 3.9(4), it follows from (6-14) that

0 ≤
∫
{h<0}∩Sm

(1− h) dν =

∫
{h<0}∩Sm

h dμ ≤ −εμ ({h < −ε} ∩ Sm) .

This implies that μ ({h < −ε} ∩ Sm) = 0 for all ε > 0 and all m, and hence
also μ ({h < 0}) = 0. Since ν is absolutely continuous with respect to μ, it
follows that also ν ({h < 0}) = 0. Similarly, it follows from (6-14) that, when
g = X{h≥1}∩Sm

,

0 ≥
∫
{h≥1}∩Sm

(1− h) dν =

∫
{h≥1}∩Sm

h dμ ≥ μ ({h ≥ 1} ∩ Sm) ,
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and so μ ({h ≥ 1}) = 0, which by assumption yields that ν ({h ≥ 1}) = 0.
This shows that 0 ≤ h < 1 almost everywhere with respect to μ + ν. In
particular, it follows that for E ∈ B with μ(E) < ∞ we can in (6-14) choose

g =
1− hk

1− h
XE =

(k−1∑
i=0

hi
)
XE ∈ L∞(μ+ ν) ,

which yields that ∫
E

(1− hk) dν =

∫
E

h

1− h
(1− hk) dμ .

On noting that μ+ν-almost everywhere 0 ≤ (1−hk)XE ↗ XE ∈ L1(μ+ν) as
k ↗ ∞, we conclude from the monotone convergence theorem that h

1−hXE ∈
L1(μ) and

ν(E) =

∫
E

h

1− h
dμ ,

i.e. h
1−h is the desired function. The fact that h

1−h ∈ L1(μ) follows again from
the monotone convergence theorem, upon setting E =

⋃
j≤m Sj , taking the

limit m → ∞, and recalling that ν(S) < ∞. (A purely measure theoretical
proof of the Radon-Nikodým theorem can be found in e.g. [Halmos].) ��

6.12 Theorem (Dual space of Lp for p < ∞). Let (S,B, μ) be a measure
space and let 1 ≤ p < ∞ (the dual exponent p′ is given by 1

p + 1
p′ = 1,

if p = 1 then p′ = ∞). In the case p = 1, we assume in addition that μ is
σ-finite. For f ∈ Lp′

(μ) let

J(f)(g) :=

∫
S

gf dμ for all g ∈ Lp(μ) .

Then J : Lp′

(μ) → Lp(μ)′ is a conjugate linear isometric isomorphism.

Special case: In the Hilbert space case p = 2 = p′, the isometry J coincides
with the isometry in 6.1.

Proof. It follows from the Hölder inequality that J is well defined and that
‖J(f)‖(Lp)′ ≤ ‖f ‖Lp′ . Clearly, J is conjugate linear. Moreover, J is injective,

since J(f) = 0 implies in the case p > 1 with g := |f |p′−2f ∈ Lp(μ) that

0 = J(f)(g) =

∫
S

|f |p
′

dμ ,

and so that f = 0 in Lp′

(μ). In the case p = 1 set g = XSm
f ∈ L1(μ) with Sm

as in 3.9(4) and obtain that f = 0 almost everywhere in Sm. Letting m → ∞
we conclude that f = 0 in L∞(μ).

Now let F ∈ Lp(μ)′. We need to show that there exists an f ∈ Lp′

(μ)
with
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F = J(f) and ‖f ‖Lp′ ≤ ‖F ‖(Lp)′ .

First we consider the special case μ(S) < ∞. Then

ν(E) := F (XE) for E ∈ B

satisfies the assumptions of the Radon-Nikodým theorem. To see this, note
that for disjoint sets E1, . . . , Em in B with ν(Ei) �= 0 it holds that

m∑
i=1

|ν(Ei)| =
m∑
i=1

σiν(Ei) with σi :=
ν(Ei)

|ν(Ei)|

= F
( m∑
i=1

σiXEi

)
≤ ‖F ‖(Lp)′ ·

∥∥∥∥∥
m∑
i=1

σiXEi

∥∥∥∥∥
Lp

= ‖F ‖(Lp)′ ·
( m∑
i=1

μ(Ei)
) 1

p ≤ ‖F ‖(Lp)′ · μ(S)
1
p ,

(6-15)

i.e. ‖ν‖var < ∞. In addition, for E =
⋃

i∈IN Ei with Ei ∈ B, Ei ⊂ Ei+1

|ν(E)− ν(Ei)| =
∣∣F (XE\Ei

)
∣∣ ≤ ‖F ‖(Lp)′μ(E \ Ei)

1
p → 0 as i → ∞,

i.e. ν is σ-additive. By the way, ν is absolutely continuous w.r.t. μ, since for
μ-null sets E we have XE = 0 in Lp(μ), and therefore ν(E) = F (XE) = 0.

Hence, by the Radon-Nikodým theorem 6.11, there exists a function f ∈
L1(μ) with

F (XE) =

∫
S

XEf dμ for all E ∈ B.

It follows that

F (g) =

∫
S

gf dμ (6-16)

for all functions g ∈ L∞(μ), because such functions can be uniformly ap-
proximated by finite linear combinations of characteristic functions XE with
measurable E ⊂ S (see the note in 3.26(1)). Now for m ∈ IN and 1 ≤ q < ∞
we choose in particular

g = XAm
|f |q−2f , where Am := {x ∈ S ; 0 < |f(x)| ≤ m},

and obtain from (6-16) that∫
Am

|f |q dμ = F (g) ≤ ‖F ‖(Lp)′‖g‖Lp = ‖F ‖(Lp)′

(∫
Am

|f |p(q−1)
dμ
) 1

p

.

In the case p > 1, setting q = p′ (so that p(q − 1) = p′), yields after cancel-
lation that (∫

Am

|f |p
′

dμ
) 1

p′ ≤ ‖F ‖(Lp)′ .
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On letting m → ∞, it follows from the monotone convergence theorem that
f ∈ Lp′

(μ) and ‖f ‖Lp′ ≤ ‖F ‖(Lp)′ . In the case p = 1, choose q ∈ IN and
obtain inductively that∫

Am

|f |q dμ ≤ ‖F ‖(Lp)′

∫
Am

|f |q−1
dμ ≤ ‖F ‖q(Lp)′ · μ(Am) ,

i.e. (∫
Am

|f |q dμ
) 1

q ≤ ‖F ‖(Lp)′ · μ(Am)
1
q .

Then, on letting q → ∞, it follows from E3.4 (for the function XAm
f) that

|f | ≤ ‖F ‖(Lp)′ almost everywhere in Am, which implies that ‖f ‖L∞ ≤
‖F ‖(Lp)′ .

On noting that the functions g, for which (6-16) originally held, are dense
in Lp(μ), it now follows from the Hölder inequality that (6-16) holds for all
g ∈ Lp(μ), and so F = J(f), which is what we wanted to show.

We now consider the case of a general measure space, and define B̃ :=
{A ∈ B ; μ(A) < ∞}. For A ∈ B̃ let

μA(E) := μ(A ∩ E), FA(g) := F (XAg) .

Then μA(S) < ∞ with μA(S \A) = 0, and FA ∈ Lp(μA)
′, with ‖FA‖(Lp)′ ≤

‖F ‖(Lp)′ . Hence it follows from what we have shown so far that there exists

a unique fA ∈ Lp′

(μA) with

FA(g) =

∫
S

gfA dμA for all g ∈ Lp(μA) (6-17)

and ‖fA‖Lp′ = ‖FA‖(Lp)′ . On defining fA(x) := 0 for x ∈ S \A, we have that
fA ∈ Lp′

(μ). As in the proof of the injectivity of J , it follows that fA1
= fA2

μ-almost everywhere in A1∩A2 for A1, A2 ∈ B̃. Hence, |fA1
| ≤ |fA2

| μ-almost
everywhere if A1 ⊂ A2, and then

‖fA1
‖Lp′ ≤ ‖fA2

‖Lp′ = ‖FA2
‖(Lp)′ ≤ ‖F ‖(Lp)′ < ∞ .

It follows that there exist Bm ∈ B̃ with Bm ⊂ Bm+1 for m ∈ IN, such that

‖fBm
‖Lp′ −→ s := sup

A∈B̃
‖fA‖Lp′ as m → ∞.

If p = 1, then the Bm can be chosen such that Sm ⊂ Bm, where the Sm are
as in 3.9(4). Then

B :=
⋃

m∈IN

Bm , f(x) :=

{
fBm

(x) for x ∈ Bm, m ∈ IN,

0 for x ∈ S \B,
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(for p > 1 by the monotone convergence theorem) defines an f ∈ Lp′

(μ) with

‖f ‖Lp′ = s = sup
A∈B̃

‖fA‖Lp′ = sup
A∈B̃

‖FA‖(Lp)′ ≤ ‖F ‖(Lp)′ .

Now
fA = f almost everywhere in A, if A ∈ B with A ⊂ B,

since in A ∩ Bm it holds almost everywhere that f = fBm
= fA∩Bm

= fA.
We claim that

fA = 0 almost everywhere in S, if A ∈ B with A ∩B = ∅.

In the case p = 1, this trivially follows from B = S. In the case p > 1, on
noting that A ∩Bm = ∅, it follows that

|fA∪Bm
|p

′

= |fA |p
′

+ |fBm
|p

′

, and so sp
′ ≥ ‖fA‖p

′

Lp′ + ‖fBm
‖p

′

Lp′ .

Letting m → ∞ yields that sp
′ ≥ ‖fA‖p

′

Lp′ + sp
′

, and hence our claim.
Now let g ∈ Lp(μ) with g = 0 almost everywhere in S \ A for an A ∈ B.

Then, by (6-17),

F (g) = FA(g) =

∫
S

gfA dμA =

∫
A

gfA dμ .

Since, as shown above, fA = fA\B = 0 in A\B and fA = fA∩B = f in A∩B,
this is in turn equal to∫

A∩B

gf dμ =

∫
A

gf dμ =

∫
S

gf dμ = J(f)(g) .

On noting that such functions g are dense in Lp(μ) (approximating g, for
example, by XAn

g, n ∈ IN, with An := {x ∈ S ; |g(x)| ≥ 1
n}), it follows that

F (g) = J(f)(g) for all g ∈ Lp(μ). ��

With the help of the result in theorem 6.12, we can establish a distribu-
tional characterization of Lp-functions:

6.13 Corollary. Let Ω ⊂ IRn be open and let 1 ≤ p ≤ ∞. Then it holds for
functions f : Ω → IK that

f ∈ Lp(Ω) ⇐⇒

⎧⎪⎨⎪⎩
f ∈ L1

loc(Ω) and there exists a C with∣∣∣∣∫
Ω

ζf dLn

∣∣∣∣ ≤ C‖ζ‖Lp′ (Ω) for all ζ ∈ C∞
0 (Ω).

The constant C on the right-hand side satisfies ‖f ‖Lp(Ω) ≤ C.

Notation: Here L1
loc(Ω) is the space of locally integrable functions in Ω, de-

fined in 5.13(2). Moreover, 1 ≤ p′ ≤ ∞ is the dual exponent, i.e. 1
p +

1
p′ = 1.

Note: For a generalization of the result to Sobolev functions, see E6.7.
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Proof ⇒. The Hölder inequality yields that∣∣∣∣∫
Ω

ζf dLn

∣∣∣∣ ≤ ‖ζ‖Lp′ (Ω) · ‖f ‖Lp(Ω) .

��

Proof ⇐. The estimate yields that on C∞
0 (Ω) equipped with the Lp′

-norm,

F (ζ) :=

∫
Ω

ζf dLn

is linear and continuous. In the case p > 1, we have that C∞
0 (Ω) is dense

in Lp′

(Ω) (this follows from 4.15(3) as p′ < ∞), and so F can be uniquely
extended to Lp′

(Ω), as a functional F ∈ Lp′

(Ω)′ (see E5.3). Hence it follows

from 6.12 that there exists an f̃ ∈ Lp(Ω) with

F (g) =

∫
Ω

gf̃ dLn for all g ∈ Lp′

(Ω).

Since ∫
Ω

ζf dLn =

∫
Ω

ζf̃ dLn for all ζ ∈ C∞
0 (Ω),

f = f̃ almost everywhere in Ω (see 4.22). In the case p = 1, set

g(x) :=

⎧⎪⎨⎪⎩
f(x)

|f(x)| , if f(x) �= 0,

0, otherwise.

Let D ⊂⊂ Ω and let (ϕε)ε>0 be a standard Dirac sequence. Then ζε :=

ϕε ∗
(
XDg
)
∈ C∞

0 (Ω) for sufficiently small ε > 0, and∣∣∣∣∫
Ω

ζεf dLn

∣∣∣∣ ≤ C‖ζε‖L∞ ≤ C .

Letting ε → 0, we obtain from Lebesgue’s convergence theorem (as ζε → XDg
almost everywhere for a subsequence ε → 0) that∫

D

|f | dLn =

∣∣∣∣∫
D

gf dLn

∣∣∣∣ ≤ C ,

where the constant C is independent of D. Hence f ∈ L1(Ω). ��

Hahn-Banach’s theorem

For the characterization of C0(S)′ we will use the fact that functionals on
C0(S) can be extended norm-preservingly to B(S) (see the proof 6.23). The
existence of such extensions in more general situations is guaranteed by the
following two theorems.
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6.14 Hahn-Banach theorem. Let X be an IR-vector space and let the
following hold:

(1) p : X → IR is sublinear, i.e. for all x, y ∈ X and α ∈ IR,

p(x+ y) ≤ p(x) + p(y) and p(αx) = αp(x) for α ≥ 0.

(2) f : Y → IR is linear with a subspace Y ⊂ X.

(3) f(x) ≤ p(x) for x ∈ Y .

Then there exists a linear map F : X → IR such that

F (x) = f(x) for x ∈ Y and F (x) ≤ p(x) for x ∈ X.

Proof. We consider the class of all extensions of f , that is,

M :=
{
(Z, g) ; Z subspace, Y ⊂ Z ⊂ X,

g : Z → IR linear, g = f on Y , g ≤ p on Z
}
.

Consider an arbitrary (Z, g) ∈ M with Z �= X and a z0 ∈ X \ Z. We want
to extend g at least to

Z0 := span(Z ∪ {z0}) = Z ⊕ span{z0} .

We attempt the ansatz

g0(z + αz0) := g(z) + cα for z ∈ Z and α ∈ IR.

Here c still needs to be suitably chosen, so that (Z0, g0) ∈ M. Clearly, g0 is
linear on Z0. Moreover, g0 = g = f on Y . It remains to show that

g(z) + cα ≤ p(z + αz0) for z ∈ Z and α ∈ IR.

Since g ≤ p on Z, this is satisfied for α = 0. For α > 0 the inequality is
equivalent to

c ≤ 1
α

(
p(z + αz0)− g(z)

)
= p
(
z
α + z0

)
− g
(
z
α

)
and for α < 0 to

c ≥ 1
α

(
p(z + αz0)− g(z)

)
= g
(
− z

α

)
− p
(
− z

α − z0
)
.

Hence we need to find a number c such that

sup
z∈Z

(g(z)− p(z − z0)) ≤ c ≤ inf
z∈Z

(p(z + z0)− g(z)) .

This is possible, because for z, z′ ∈ Z we have

g(z′) + g(z) = g(z′ + z) ≤ p(z′ + z)

= p(z′ − z0 + z + z0) ≤ p(z′ − z0) + p(z + z0) ,

and hence
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g(z′)− p(z′ − z0) ≤ p(z + z0)− g(z) .

We now hope that this extension procedure yields an (X,F ) ∈ M. To this
end, we make use of

Zorn’s lemma: Let (M,≤) be a nonempty partially ordered set (i.e. if
m1 ≤ m2 and m2 ≤ m3, then m1 ≤ m3, and m ≤ m for all m ∈ M) such that
every totally ordered subset N (i.e. for all n1, n2 ∈ N it holds that n1 ≤ n2

or n2 ≤ n1) has an upper bound (i.e. there exists an m ∈ M with n ≤ m
for all n ∈ N ). Then M contains a maximal element (i.e. there exists an
m0 ∈ M such that for all m ∈ M it holds that m0 ≤ m =⇒ m ≤ m0).

In our case, an order is defined by

(Z1, g1) ≤ (Z2, g2) :⇐⇒ Z1 ⊂ Z2 and g2 = g1 on Z1.

We need to verify the assumptions of Zorn’s lemma. Let N ⊂ M be totally
ordered and define

Z∗ :=
⋃

(Z,g)∈N
Z ,

g∗(x) := g(x) , if x ∈ Z and (Z, g) ∈ N .

We need to show that (Z∗, g∗) ∈ M. Now Y ⊂ Z∗ ⊂ X, and g∗ is a well
defined function, because

x ∈ Z1 ∩ Z2 , (Z1, g1) ∈ N , (Z2, g2) ∈ N
=⇒ (Z1, g1) ≤ (Z2, g2) or (Z2, g2) ≤ (Z1, g1) (total order of N )

=⇒ Z1 ⊂ Z2 and g2 = g1 on Z1 (in the first case)

=⇒ g2(x) = g1(x) (as x ∈ Z1) .

The properties g∗ = f on Y and g∗ ≤ p on Z∗ carry over. The linearity of Z∗
and g∗ can be seen as follows:

x, y ∈ Z∗ , α ∈ IR

=⇒ There exist (Zx, gx) ∈ N , (Zy, gy) ∈ N with x ∈ Zx and y ∈ Zy

=⇒ (Zx, gx) ≤ (Zy, gy) or (Zy, gy) ≤ (Zx, gx)

=⇒ x, y ∈ Zξ with ξ = y in the first and ξ = x in the second case,

hence also x+ αy ∈ Zξ ⊂ Z∗ and

g∗(x+ αy) = gξ(x+ αy) = gξ(x) + αgξ(y) = g∗(x) + αg∗(y) .

Hence it follows from Zorn’s lemma that M has a maximal element (Z, g). If
we assume that Z �= X, then the extension procedure from the beginning of
the proof yields a (Z0, g0) ∈ M with

(Z, g) ≤ (Z0, g0) and Z0 �= Z ,
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which contradicts the maximality of (Z, g). ��

The Hahn-Banach theorem has the following version for linear functionals.

6.15 Hahn-Banach theorem (for linear functionals). Let X be a
normed IK-vector space and Y be a subspace (with the norm of X !). Then
for y′ ∈ Y ′ there exists an x′ ∈ X ′ with

x′ = y′ on Y and ‖x′‖X′ = ‖y′‖Y ′ .

Proof for IK = IR. Choose

p(x) := ‖y′‖Y ′‖x‖X for x ∈ X

in 6.14, so that for y ∈ Y

y′(y) ≤ ‖y′‖Y ′‖y‖Y = ‖y′‖Y ′‖y‖X = p(y) .

Then, by 6.14, there exists a linear map x′ : X → IR with

x′ = y′ on Y and x′ ≤ p on X.

The second property implies that

±x′(x) = x′(±x) ≤ p(±x) = ‖y′‖Y ′‖x‖X ,

i.e. x′ ∈ X ′ with ‖x′‖X′ ≤ ‖y′‖Y ′ , and the first property implies that

‖y′‖Y ′ = sup
y ∈ Y

‖y‖X ≤ 1

|y′(y)| = sup
y ∈ Y

‖y‖X ≤ 1

|x′(y)| ≤ ‖x′‖X′ .

��

Proof for IK = C. Consider X and Y as normed IR-vector spaces XIR and
YIR (i.e. scalar multiplication is defined only for real numbers, but the norms
remain the same). Let X ′

IR and Y ′
IR be the corresponding dual spaces. For

y′ ∈ Y ′ it then holds that

y′re := Rey′ ∈ Y ′
IR with ‖y′re‖Y ′

IR
≤ ‖y′‖Y ′

and
y′(x) = Rey′(x) + iImy′(x) = y′re(x)− iy′re(ix) .

It follows from the real case treated above that there exists an extension x′
re

of y′re to XIR with ‖x′
re‖X′

IR
= ‖y′re‖Y ′

IR
. Define

x′(x) := x′
re(x)− ix′

re(ix) .

Then x′ = y′ on Y , and x′ : X → C is C-linear, because x′ is IR-linear and
for x ∈ X we have that
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x′(ix) = x′
re(ix)− ix′

re(−x) = x′
re(ix) + ix′

re(x)

= i (−ix′
re(ix) + x′

re(x)) = ix′(x) .

Now let x ∈ X. Then x′(x) ∈ C can be written as x′(x) = reiθ with θ ∈ IR
and r ≥ 0. Therefore,

|x′(x)| = r = Re
(
e−iθx′(x)

)
= Rex′(e−iθx)

= x′
re(e

−iθx) ≤ ‖x′
re‖X′

IR
‖x‖X′ ,

and we recall that ‖x′
re‖X′

IR
= ‖y′re‖Y ′

IR
≤ ‖y′‖Y ′ . This shows that x′ ∈ X ′

with ‖x′‖X′ ≤ ‖y′‖Y ′ . As x′ is an extension of y′, it must also hold that
‖x′‖X′ ≥ ‖y′‖Y ′ . ��

As an application, we show that points in a normed space can be separated
from subspaces with the help of linear functionals (see the generalization of
suspaces to closed convex sets in 8.12). This separation property is often used
in order to show that a given subspace is dense in the ambient space X.

6.16 Theorem. Let Y be a closed subspace of the normed space X and let
x0 /∈ Y . Then there exists an x′ ∈ X ′ with

x′ = 0 on Y , ‖x′‖X′ = 1 , x′(x0) = dist(x0, Y ) .

Remark: Then there also exists an x′ ∈ X ′ with

x′ = 0 on Y , ‖x′‖X′ =
1

dist(x0, Y )
, x′(x0) = 1 .

Proof. On

Y0 := span (Y ∪ {x0}) = Y ⊕ span{x0}

define

y′0(y + αx0) := α · dist(x0, Y ) for y ∈ Y and α ∈ IK.

Then y′0 : Y0 → IK is linear and y′0 = 0 on Y . We want to show that y′0 ∈ Y ′
0

with ‖y′0‖Y ′
0
= 1, as 6.15 then yields the desired result.

Let y ∈ Y and α �= 0. Then

dist(x0, Y ) ≤
∥∥∥∥x0 −

−y

α

∥∥∥∥
X

,

and so

|y′0(y + αx0)| ≤ |α|
∥∥∥∥x0 −

−y

α

∥∥∥∥
X

= ‖αx0 + y‖X ,

and hence y0 ∈ Y ′
0 with ‖y′0‖Y ′

0
≤ 1. The closedness of Y yields that

dist(x0, Y ) > 0, and so for ε > 0 we can choose a yε ∈ Y such that
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‖x0 − yε‖X ≤ (1 + ε)dist(x0, Y ) .

Then

y′0(x0 − yε) = dist(x0, Y ) ≥ 1
1+ε‖x0 − yε‖X ,

which, since x0 − yε �= 0, implies that ‖y′0‖Y ′
0
≥ 1

1+ε → 1 as ε ↘ 0. ��

6.17 Corollaries. Let X be a normed space and let x0 ∈ X. Then:

(1) If x0 �= 0, then there exists an x′
0 ∈ X ′ with

‖x′
0‖X′ = 1 and x′

0(x0) = ‖x0‖X .

(2) If x′(x0) = 0 for all x′ ∈ X ′, then x0 = 0.

(3) Setting Tx′ := x′(x0) for x′ ∈ X ′ defines an element T of L (X ′; IK) =
(X ′)′, the bidual space (see 8.2), with ‖T ‖ = ‖x0‖X .

Proof. (1) is the result in 6.16 with Y = {0}, and (2) follows from (1).
In (3) we have that |Tx′ | ≤ ‖x′‖X′‖x0‖X , and if x0 �= 0 it holds that
|Tx′

0 | = ‖x0‖X with x′
0 as in (1). Hence ‖T ‖ = ‖x0‖X . ��

6.18 Remark. The result 6.16 may also be interpreted as a generalization
of the projection theorem for Hilbert spaces in the linear case. To see this,
assume that X is a Hilbert space and define

x′(x) :=

(
x ,

x0 − Px0

‖x0 − Px0‖

)
X

,

where P is the orthogonal projection onto Y from 4.3. It follows from 4.4(2)
that x′ = 0 on Y and hence

x′(x0) = x′(x0 − Px0) = ‖x0 − Px0‖X ,

and moreover |x′(x)| ≤ ‖x‖X . Hence x′ has all the properties in 6.16.

Riesz-Radon’s theorem

As we have seen in 6.12 the dual space of the function space Lp(μ), if 1 ≤
p < ∞, is isomorphic to a space that is again a function space. We will now
show that the dual space of C0(S) is isomorphic to a space of measures. To
this end, we need the following definitions (the notations are the same as in
[DunfordSchwartz : IV 2]).

6.19 Definition (Borel sets). Let X be a topological space. The set of
Borel sets is defined as the smallest σ-algebra that contains the closed sub-
sets of X (or, equivalently, the open subsets of X).
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6.20 Spaces of additive measures. Let S ⊂ IRn be equipped with the
relative topology of IRn (see 2.11). Let B0 be the smallest Boolean algebra
that contains the closed (or, equivalently, open) subsets of S, and let B1 be
the set of Borel sets of S, i.e. the smallest σ-algebra containing B0. Then

ba(S; IKm) := {λ : B0 → IKm ; λ is additive and ‖λ‖var < ∞} ,
ca(S; IKm) := {λ : B1 → IKm ; λ is σ-additive and ‖λ‖var < ∞}

are IK-vector spaces and, equipped with the total variation as the norm, also
Banach spaces. In the definition, ba stands for “bounded additive” and ca
stands for “countably additive”. As usual, we set ba(S) := ba(S; IK) and
ca(S) := ca(S; IK).

Proof. We prove the completeness. Let (λk)k∈IN be a Cauchy sequence in
ba(S; IKm). Then it holds for E ∈ B0 that

|λl(E)− λk(E)| ≤ ‖λl − λk‖var → 0 as k, l → ∞,

and so there exists

λ(E) := lim
l→∞

λl(E) for E ∈ B0

and the additivity carries over to λ. In addition,

‖λ− λk‖var ≤ lim inf
l→∞

‖λl − λk‖var −→ 0 as k → ∞.

Analogously, for Cauchy sequences in ca(S; IKm) there exists a limit λ on B1.
If Ei ∈ B1 with Ei ⊃ Ei+1 and

⋂
i∈IN Ei = ∅, then for l ≥ k and as l → ∞

|λ(Ei)| ←− |λl(Ei)| ≤ |λk(Ei)|︸ ︷︷ ︸
→ 0 as i → ∞
for every k

+ ‖λl − λk‖var︸ ︷︷ ︸
→ 0 as l ≥ k → ∞

,

i.e. λ is σ-additive. ��

6.21 Spaces of regular measures. Let S ⊂ IRn, B0, and B1 be as in 6.20.
A measure λ in ba(S; IKm) or ca(S; IKm) is called regular if for all E ∈ B0

or E ∈ B1, respectively,

inf
{
|λ|(U \K) ; K ⊂ E ⊂ U, K is closed in S

and U is open in S
}

= 0 .

Here |λ| is the variational measure from 6.10 and in S we consider the relative
topology from 2.11, i.e. a set U ⊂ S is called open in S if it is of the form
U = S ∩ V for an open set V ⊂ IRn, and a set K ⊂ S is called closed in S if
S \K is open in S. We define
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rba(S; IKm) := {λ ∈ ba(S; IKm) ; λ is regular} ,
rca(S; IKm) := {λ ∈ ca(S; IKm) ; λ is regular} .

These sets are IK-vector spaces and, equipped with the total variation as the
norm, also Banach spaces. In the definition, rba stands for “regular bounded
additive” and rca stands for “regular countably additive”. As usual, we set
rba(S) := rba(S; IK) and rca(S) := rca(S; IK).

Proof. For the completeness we need to show that for regular measures λk it
follows from λk → λ in ba(S; IKm) as k → ∞ that λ is also regular. To prove
this we note that for K ⊂ E ⊂ U , as in the definition of regularity,

|λ|(U \K) ≤ |λk|(U \K) + ‖λ− λk‖var .

The first term on the right-hand side can be made arbitrarily small for every
k, by choosing U and K appropriately. ��

In the following we need the fact that for regular measures μ : B1 →
[0,∞], continuous functions are integrable, i.e. that they lie in L1(μ). The
proof of this result is the construction of the Riemann integral, which for our
purposes we give here for vector-valued measures λ : B0 → IKm.

6.22 Integral of continuous functions (Riemann integral). Let B0 be
as in 6.20. In addition, assume that λ : B0 → IKm is additive with ‖λ‖var <
∞. For step functions

f =
k∑

i=1

XEi
αi , k ∈ IN , αi ∈ IK , Ei ∈ B0 ,

it holds that ∫
S

f dλ :=

k∑
i=1

αiλ(Ei)

is independent of the representation of f . Moreover, we have that (choose Ei

in the representation of f disjoint)∣∣∣∣∫
S

f dλ

∣∣∣∣ ≤ ‖f ‖sup · ‖λ‖var .

Every continuous and bounded function f : S → IK can be approximated by
such step functions in the supremum norm. To see this, cover the bounded
set f(S) with open sets Ui, i = 1, . . . , l, with diameter ≤ 1

k . Then one can
construct another cover by (cf. the proof of A3.19(2))

Vi := Ui \
⋃
j<i

Uj for i = 1, . . . , l,
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where now the sets Vi are pairwise disjoint. In addition,

Ei := f−1(Vi) = f−1(Ui) \
⋃
j<i

f−1(Uj) ∈ B0 .

On choosing αi ∈ Vi, if Vi is nonempty, it follows that∥∥∥∥∥
l∑

i=1

αiXEi
− f

∥∥∥∥∥
sup

≤ 1

k
,

which proves the desired approximation property.
Now, if (fk)k∈IN is a sequence of step functions that converges uniformly

to f , then it follows that∣∣∣∣∫
S

fk dλ−
∫
S

fl dλ

∣∣∣∣ ≤ ‖fk − fl‖sup · ‖λ‖var −→ 0 as k, l → ∞.

Hence there exists ∫
S

f dλ := lim
k→∞

∫
S

fk dλ ,

and the limit is independent of the choice of approximating sequence (fk)k∈IN.

6.23 Riesz-Radon theorem (Dual space of C0). Let S ⊂ IRn be com-
pact. Then

J(ν)(f) :=

∫
S

f dν

defines a linear isometric isomorphism

J : rca(S) → C0(S)
′
.

Here rca(S) is the space defined in 6.21 and the integral for continuous func-
tions is defined as in 6.22.

Proof. For ν ∈ rca(S) and f ∈ C0(S) it follows from the definition of the
Riemann integral that

|J(ν)(f)| =
∣∣∣∣∫

S

f dν

∣∣∣∣ ≤ ‖f ‖sup · ‖ν‖var ,

and hence J is continuous. Moreover, J is isometric. To see this, note that
for ν ∈ rca(S) and ε > 0 there exists a partitioning of S into Borel sets Ei,
i = 1, . . . ,m, with

‖ν‖var ≤ ε+

m∑
i=1

|ν(Ei)| .

As ν is regular, there exist compact sets Ki ⊂ Ei with |ν|(Ei \ Ki) ≤ ε
m .

Then Bδ(Ki) are disjoint sets for sufficiently small δ > 0, and

|ν|
(
S ∩ Bδ(Ki) \Ki

)
→ 0 as δ ↘ 0,

which follows once again from the regularity of ν. On defining
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fi(x) := max
(
1− 1

δdist(x,Ki), 0
)

and

σi :=

⎧⎪⎨⎪⎩
ν(Ki)

|ν(Ki)|
, if ν(Ki) �= 0,

0, otherwise,

it holds, if δ is sufficiently small, that∥∥∥∥∥
m∑
i=1

σifi

∥∥∥∥∥
sup

≤ 1

and ∣∣∣∣∣J(ν)(
m∑
i=1

σifi

)∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

σi

∫
S

fi dν

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

(
|ν(Ki)|+ σi

∫
S∩Bδ(Ki)\Ki

fi dν
)∣∣∣∣∣

≥
m∑
i=1

|ν(Ki)| −
m∑
i=1

|ν| (S ∩ Bδ(Ki) \Ki)

≥ ‖ν‖var − 2ε−
m∑
i=1

|ν| (S ∩ Bδ(Ki) \Ki)

−→ ‖ν‖var on letting δ ↘ 0 and then ε ↘ 0.

Now the crucial step is to show that for F ∈ C0(S)
′
there exists a ν ∈ rca(S)

with J(ν) = F . It follows from the Hahn-Banach theorem that F can be
extended norm-preservingly to F ∈ B(S)′ (B(S) is the space defined in 3.1).
Define

λ(E) := F (XE) for E ⊂ S.

Then λ is additive and ‖λ‖var ≤ ‖F ‖B(S)′ , which follows as in (6-15). There-
fore, by the definition of the Riemann integral,

F (f) =

∫
S

f dλ

for all f ∈ C0(S). Hence we want to find a ν ∈ rca(S) such that∫
S

f dν =

∫
S

f dλ for all f ∈ C0(S).

The proof that such a ν exists is given in Appendix A6 (see A6.6). ��

With the help of the result in theorem 6.23, we can provide a distributional
characterization of regular measures.
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6.24 Corollary. Let Ω ⊂ IRn be open and bounded, let C ≥ 0 and let

T : C0
0 (Ω) → IK be linear with |T (ζ)| ≤ C · ‖ζ‖sup for all ζ ∈ C0

0 (Ω) .

Then there exists a unique λ ∈ rca(Ω) with

‖λ‖var = sup
{
|T (ζ)| ; ζ ∈ C0

0 (Ω), ‖ζ‖sup = 1
}

≤ C ,

T (ζ) =

∫
Ω

ζ dλ for all ζ ∈ C0
0 (Ω) .

Remark: It is sufficient to assume that

T ∈ D ′(Ω) with |T (ζ)| ≤ C · ‖ζ‖sup for all ζ ∈ C∞
0 (Ω) .

That is because T can then be uniquely extended to a linear map on C0
0 (Ω),

which satisfies the above estimate (approximate functions in C0
0 (Ω) by means

of convolutions).

Proof. Consider the open sets

Ωm :=
{
x ∈ Ω ; dist(x, ∂Ω) > 1

m

}
.

For m ≥ m0, with m0 sufficiently large, Ωm is nonempty and Sm := Ωm ⊂
Ωm+1 is compact. For m > m0 choose ηm ∈ C∞

0 (Ωm) with 0 ≤ ηm ≤ 1 and
ηm = 1 on Sm−1. Then

Tm(g) := T (ηmg) for g ∈ C0(Sm)

defines a Tm ∈ C0(Sm)′ with

‖Tm‖ ≤ CT := sup{|T (ζ)| ; ζ ∈ C0
0 (Ω), ‖ζ‖sup = 1} ≤ C .

Hence it follows from 6.23 that there exist uniquely determined νm ∈ rca(Sm)
with ‖νm‖var ≤ CT and

Tm(g) =

∫
Sm

g dνm for g ∈ C0(Sm).

For ζ ∈ C0
0 (Ωm) and l > m it holds that ηlζ = ζ (here we set ζ = 0 outside

of Ωm), and so ∫
Sm

ζ dνl =

∫
Sl

ζ dνl = T (ηlζ) = T (ζ)

independently of l. We claim that

νl(E) is independent of l > m for Borel sets E ⊂ Sm−1. (6-18)
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Indeed, let K ⊂ Sm−1 be compact. Then ζδ(x) := max
(
1− 1

δdist(x,K), 0
)
for

small δ > 0 defines a ζδ ∈ C0
0 (Ωm). Since νl is a regular measure, |νl|(Bδ(K)\

K) ↘ 0 as δ ↘ 0, and hence∫
Sm

ζδ dνl −→ νl(K) as δ ↘ 0,

i.e. (6-18) holds for compact sets in Sm−1. The regularity of νl then implies
that (6-18) holds for all Borel sets. For Borel sets E with E ⊂ Ω we have
that E ⊂ Sm for some m ∈ IN, and it follows from (6-18) that

λ(E) := νl(E) for l,m ∈ IN with E ⊂ Sm, l ≥ m+ 2

is well defined. For ζ ∈ C0
0 (Ω) it holds that supp(ζ) ⊂ Ωm for some m ∈ IN

and

T (ζ) =

∫
Sm

ζ dλ

independently of m.
We need to show that λ can be extended to a λ ∈ rca(Ω). If Ei, i =

1, . . . , k, are pairwise disjoint with Ei ⊂ Ω, then, as above, there exists an m
with Ei ⊂ Sm for i = 1, . . . , k and

k∑
i=1

|λ(Ei)| =
k∑

i=1

|νm+2(Ei)| ≤ ‖νm+2‖var ≤ CT .

In addition, for every Borel set E ⊂ Ω the limit

λ(E) := lim
m→∞

λ(E ∩ Sm) (6-19)

exists. To see this, let Em := E∩Sm\Sm−1 for m > m0 and Em0
:= E∩Sm0

.
Then

E ∩ Sm =

m⋃
i=m0

Ei , λ(E ∩ Sm) =

m∑
i=m0

λ(Ei)

and, as shown above,
m∑

i=m0

|λ(Ei)| ≤ CT .

Hence (6-19) defines an extension of λ to the Borel sets of Ω. Then it easily
follows that λ ∈ rca(Ω) with ‖λ‖var ≤ CT . From the representation of T it
then easily follows that CT ≤ ‖λ‖var. ��

As an application of theorem 6.23 (and in particular of 6.24), we con-
sider the space BV (Ω). This space plays an important role in the functional
analysis treatment of certain geometric differential equations, because it re-
places the space W 1,p(Ω) for p = 1, which is not reflexive (see 8.11(4)). The
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functions in BV (Ω) have the advantage that their weak derivatives (see 6.25,
below) can be interpreted as elements of a dual space. For existence proofs
in reflexive spaces one employs theorem 8.10, however in the space BV (Ω)
one can apply theorem 8.5.

6.25 Functions of bounded variation. Let Ω ⊂ IRn be open and
bounded. Consider pairs (f, λ) with f ∈ L1(Ω) and λ ∈ rca(Ω; IKn) such
that the following rule of integration by parts holds:∫

Ω

∂iζ · f dLn +

∫
Ω

ζ dλi = 0 for all ζ ∈ C∞
0 (Ω) (6-20)

for i = 1, . . . , n. This is equivalent to

∂i[f ] = [λi] in D
′(Ω)

for i = 1, . . . , n.

Notation: The λi-integral is defined in 6.22, while the distributions [f ] and
[λi] are defined in 5.15.

In the spirit of the analogous definition in Sobolev spaces, we call ∂if := λi

the weak derivative of f . We have that:

(1) The set

BV (Ω) :=
{
f ∈ L1(Ω) ; there exists a λ ∈ rca(Ω; IKn),

such that (6-20) holds
}

of functions of bounded variation is a IK-vector space, and it becomes a
Banach space with the norm

‖f ‖BV (Ω) := ‖f ‖L1(Ω) + ‖λ‖var .

(2) W 1,1(Ω) ⊂ BV (Ω) with a continuous inclusion.

(3) W 1,1(Ω) is a proper subset of BV (Ω).

Proof (2). For f ∈ W 1,1(Ω) the corresponding measure λ ∈ rca(Ω; IKn) is
given by

λ(E) :=

∫
E

∇f dLn .

Moreover, ‖λ‖var ≤ ‖∇f ‖L1(Ω). ��

Proof (3). The fact that the space BV (Ω) is larger than W 1,1(Ω) follows
from the existence of measures that have no representation as a function. For
instance, for Ω = ]− 1, 1[ ⊂ IR the Heaviside function

f(x) :=

{
1 for x > 0,

0 for x < 0,
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lies in BV (]− 1, 1[) with∫ 1

−1

ζ ′f dL1 = −ζ(0) = −
∫ 1

−1

ζ dδ0 ,

i.e. the weak derivative is the Dirac measure δ0 at the point 0, and so

[f ]′ = [δ0] in D ′(Ω).

This example can be generalized to an arbitrary Ω. ��

The following theorem yields an equivalent definition of the space BV (Ω),
which is formulated with the help of the distribution [f ] ∈ D ′(Ω) for
f ∈ L1(Ω) (see 5.15). An additional possible definition in the case n = 1
is presented in E6.9.

6.26 Theorem. Let Ω ⊂ IRn be open and bounded, and for f ∈ L1(Ω) let

‖f ‖grad := sup
{ ∣∣∣∣∫

Ω

f div g dLn

∣∣∣∣ ; g ∈ C∞
0 (Ω; IKn) with

|g(x)| ≤ 1 for x ∈ Ω
}

∈ [0,∞] .

Here the divergence of a vector field is defined by

div v :=

n∑
i=1

∂ivi for v ∈ C1(Ω; IKn).

Then
BV (Ω) =

{
f ∈ L1(Ω) ; ‖f ‖grad < ∞

}
and for f ∈ BV (Ω) with ∇f := (∂if)i=1,...,n ∈ rca(Ω; IKn),

‖f ‖grad = ‖∇f ‖var.

Proof. For g ∈ C0
0 (Ω; IKn) let∫

Ω

g • dλ :=

n∑
i=1

∫
Ω

gi dλi , so that

∣∣∣∣∫
Ω

g • dλ

∣∣∣∣ ≤ ‖g‖sup · ‖λ‖var ,

which follows by approximating g with step functions as in 6.22.
For f ∈ BV (Ω) with λi := ∂if as in 6.25 and g as in the above definition

of ‖f ‖grad it then holds that∣∣∣∣∫
Ω

f div g dLn

∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

∫
Ω

gi dλi

∣∣∣∣∣ =
∣∣∣∣∫

Ω

g • dλ

∣∣∣∣ ≤ ‖λ‖var ,

and so ‖f ‖grad ≤ ‖λ‖var.
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Now let f ∈ L1(Ω) with ‖f ‖grad < ∞ and put

Ti(ζ) := −
∫
Ω

f∂iζ dL
n = −

∫
Ω

fdiv (ζei) dL
n for ζ ∈ C∞

0 (Ω).

By the definition of ‖f ‖grad it holds that |Ti(ζ)| ≤ ‖ζ‖sup · ‖f ‖grad. This
estimate shows that Ti can be uniquely extended onto C0

0 (Ω). Hence, by
6.24, there exists a λi ∈ rca(Ω) with

Ti(ζ) =

∫
Ω

ζ dλi for ζ ∈ C0
0 (Ω).

This shows that f ∈ BV (Ω) with ∂if = λi. On setting λ := (λi)i=1,...,n it
then holds for g ∈ C∞

0 (Ω; IKn) that∫
Ω

g • dλ =
n∑

i=1

∫
Ω

gi dλi =
n∑

i=1

Ti(gi) = −
∫
Ω

f div (g) dLn ,

and so ∣∣∣∣∫
Ω

g • dλ

∣∣∣∣ ≤ ‖g‖sup · ‖f ‖grad .

Similarly to the proof of the isometry property in 6.23, this implies the in-
equality ‖λ‖var ≤ ‖f ‖grad. ��

E6 Exercises

E6.1 Dual norm on IRn. Let ‖·‖ be a norm on IRn, i.e. we consider the
normed space (IRn, ‖·‖).
(1) Show that

J(x)(y) :=
n∑

i=1

yixi for x, y ∈ IRn

defines a linear map J : (IRn, ‖·‖) → (IRn, ‖·‖)′.
(2) Show that

‖x‖′ := ‖J(x)‖ for x ∈ IRn

defines a norm on IRn (we call it the dual norm to ‖·‖).
(3) J : (IRn, ‖·‖′) → (IRn, ‖·‖)′ is an isometric isomorphism.

(4) For 1 ≤ p ≤ ∞, find the dual norm to the p-norm in 2.5.
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E6.2 Dual space of the cross product. Let X1 and X2 be normed spaces
and

J : X ′
1 ×X ′

2 → (X1 ×X2)
′ ,

J
(
(x′

1, x
′
2)
)(
(x1, x2)

)
:= x′

1x1 + x′
2x2 .

Show that J is an isometric isomorphism if the norms in X1×X2 and X ′
1×X ′

2

are defined as in E4.12(1) with respect to |·| and |·|′, respectively.
Remark: Here |·|′ is the dual norm to |·| from E6.1(2).
Show that this dual norm is also a monotone norm on IR2.

E6.3 Integral equation. Let K ∈ L2(Ω × Ω) and let f ∈ L2(Ω), where
Ω ⊂ IRn is Lebesgue measurable. For λ ∈ IR consider the integral equation∫

Ω

K(x, y)u(y) dy = λu(x) + f(x) for almost all x ∈ Ω.

Show that for λ > ‖K‖L2(Ω×Ω) there exists a unique solution u ∈ L2(Ω).

Solution. It follows from 5.12 that

(Tu)(x) :=

∫
Ω

K(x, y)u(y) dy

defines an operator T ∈ L
(
L2(Ω)

)
with ‖T ‖

L (L2(Ω)) ≤ ‖K‖L2(Ω×Ω). Then

also A := λId− T ∈ L
(
L2(Ω)

)
and for u ∈ L2(Ω)

Re (u , Au)L2 = λ‖u‖2L2 − Re (u , Tu)L2

≥ λ‖u‖2L2 − ‖T ‖
L (L2(Ω)) · ‖u‖

2
L2

≥
(
λ− ‖K‖L2(Ω×Ω)︸ ︷︷ ︸

=:c0>0

)
‖u‖2L2 .

It follows from the Lax-Milgram theorem (see the equivalent result 6.3(3))
that A is invertible, and so u := A−1(−f) is the solution of the integral
equation. ��

E6.4 Examples of elements from C0([0, 1])′. Show that the following
maps T are linear and continuous on C0([0, 1]) and calculate their norm.

(1) T : C0([0, 1]) → C0([0, 1]), for a given g ∈ C0([0, 1]) defined by

(Tf)(x) := g(x) · f(x) .

(2) T : C0([0, 1]) → IK, with αi ∈ IR and pairwise distinct xi ∈ [0, 1],
i = 1, . . . ,m, defined by

Tf :=
∑m

i=1 αif(xi) .
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(3) T : C0([0, 1]) → IK, with points xi and coefficients αi as in (2), defined
by

Tf :=
∫ 1
0
f(x) dx−

∑m
i=1 αif(xi) .

Solution (1). On noting that |(Tf)(x)| ≤ ‖g‖sup‖f ‖sup, we have that T is

continuous, with ‖T ‖ ≤ ‖g‖sup. As ‖Tg‖sup =
∥∥g2∥∥

sup
= ‖g‖2sup, it holds

that ‖T ‖ ≥ ‖g‖sup. ��

Solution (2). Since

|Tf | ≤
∑m

i=1 |αi | · ‖f ‖sup ,

T is continuous, with ‖T ‖ ≤
∑m

i=1 |αi |. As the xi are pairwise distinct,
there exists a continuous function f with |f | ≤ 1 and f(xi) = sign(αi) for
i = 1, . . . ,m. Then

|Tf | =
∑m

i=1 |αi | , and so ‖T ‖ ≥
∑m

i=1 |αi | .
��

Solution (3). Since

|Tf | ≤
(
1 +
∑m

i=1 |αi |
)
‖f ‖sup ,

T is continuous, with ‖T ‖ ≤ 1 +
∑m

i=1 |αi |. Now for small δ > 0, chosen so
that δ < 1

2 |xi − xj | for all i �= j, consider the continuous function

f(x) :=

{
(1− |x−xi |

δ )sign(−αi) +
|x−xi |

δ if x ∈ Iiδ for an i,

1 otherwise,

where Iiδ := [xi − δ, xi + δ] are disjoint intervals. Then ‖f ‖sup = 1 and

|Tf | =
∣∣∣∫ 10 (f(x)− 1) dx+ 1 +

∑m
i=1 |αi |

∣∣∣
=
∣∣∣∑m

i=1

(∫
[0,1]∩Iiδ

(f(x)− 1) dx
)
+ 1 +

∑m
i=1 |αi |

∣∣∣
≥ −4mδ + 1 +

∑m
i=1 |αi | ,

which shows that ‖T ‖ ≥ 1 +
∑m

i=1 |αi |.
Result: This means that no such quadrature formula can approximate the
integral over [0, 1] for all (!) continuous functions. ��

E6.5 Dual space of Cm(I). Let I ⊂ IR be a closed interval and let x0 ∈ I.
Then, for m ≥ 1,

J(ξ, ν)(f) :=

m∑
i=1

ξif
(i−1)(x0) +

∫
I

f (m) dν

defines an isomorphism J : IKm × rca(I) → Cm(I)′.
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Solution. It holds that

|J(ξ, ν)(f)| ≤
(

max
i=1,...,m

|ξi |+ ‖ν‖var
)
‖f ‖Cm(I) ,

and hence J is continuous with ‖J ‖ ≤ 1 if on IKm × rca(I) we introduce the
norm

‖(ξ, ν)‖ := max
i=1,...,m

|ξi |+ ‖ν‖var

and if the Cm-norm is defined as in 3.6. Now for every function f ∈ Cm(I)
we have

f(x) =

m−1∑
i=0

1

i !
f (i)(x0)(x− x0)

i +
1

(m− 1)!

∫ x

x0

f (m)(y)(x− y)m−1 dy .

This can be shown by induction on m. First, note that for m = 1 this is
the fundamental theorem of calculus. The following identity then proves the
formula inductively:∫ x

x0

f (m)(y)(x− y)m−1 dy = − 1

m

∫ x

x0

f (m)(y)
d

dy
(x− y)m dy

=
1

m
f (m)(x0)(x− x0)

m +
1

m

∫ x

x0

f (m+1)(y)(x− y)m dy .

Hence, for every F ∈ Cm(I)′ we have

Ff =

m−1∑
i=0

f (i)(x0)Fpi + FTf (m) ,

where

pi(x) :=
(x− x0)

i

i !
and Tg(x) :=

∫ x

x0

g(y)
(x− y)m−1

(m− 1)!
dy .

For i = 0, . . . ,m− 1 it follows inductively that

(Tg)(i)(x) =

∫ x

x0

g(y)
(x− y)m−1−i

(m− 1− i)!
dy ,

since the integrand vanishes at the upper limit x. In particular,

(Tg)(m−1)(x) =

∫ x

x0

g(y) dy , and so (Tg)(m)(x) = g(x) .

Hence we have the estimate ‖Tg‖Cm(I) ≤ C · ‖g‖C0(I) and it follows that

T ∈ L (C0(I);Cm(I)), which implies that FT ∈ C0(I)′. By theorem 6.23,
there exists a ν ∈ rca(I) with ‖ν‖var = ‖FT ‖ and
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FTg =

∫
I

g dν for g ∈ C0(I).

Setting ξi := Fpi−1 for i = 1, . . . ,m, we have that

F = J(ξ, ν)

and
‖(ξ, ν)‖ ≤

(
max

i=0,...,m−1
‖pi‖Cm(I) + ‖T ‖

)
‖F ‖ .

This shows that J is surjective. If in addition we can show that J is injective,
then this estimate yields that the inverse J−1 is also continuous. If J(ξ, ν) =
0, then it holds for i = 1, . . . ,m that

0 = J(ξ, ν)pi−1 = ξi

and for all g ∈ C0(I) that

0 = J(ξ, ν)Tg =

∫
I

g dν ,

which yields ν = 0, thanks to theorem 6.23. Hence J is injective. ��

Remark: If

J1(ξ)(z) := z • ξ

is the isometry J1 : IKm → (IKm)′ from 6.1 and

J2(ν)(g) :=

∫
I

g dν

is the isometry J2 : rca(I) → C0(I)′ from 6.23, then it follows from E6.2 that

J0(ξ, ν)(z, g) := J1(ξ)(z) + J2(ν)(g)

defines an isomorphism J0 : IKm × rca(I) → (IKm × C0(I))′. Moreover,

S(f) :=
((

f (i)(x0)
)
i=0,...,m−1

, f (m)
)

defines a continuous linear map from Cm(I) to IKm × C0(I). With these
definitions

J = S′J0 ,

where S′ is the adjoint map of S (see 5.5(8)). Hence J being an isomorphism
is equivalent to the isomorphy of S′ and, by theorem 12.5, equivalent to the
isomorphy of S.
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E6.6 Dual space of c0 and c. Let

c0 :=
{
x ∈ �∞(IR) ; lim

i→∞
xi = 0

}
,

c :=
{
x ∈ �∞(IR) ; it exists lim

i→∞
xi

}
.

The sets c0 and c, equipped with the �∞(IR)-norm, are Banach spaces. Char-
acterize the dual spaces c′0 and c′.

Solution. For every y ∈ �1(IR), setting

J(y)(x) :=
∑∞

i=1 yixi for x ∈ c0

defines a J(y) ∈ c′0 with ‖J(y)‖ ≤ ‖y‖�1 , because

|J(y)(x)| ≤ supi |xi | ·
∑∞

i=1 |yi | = ‖x‖�∞‖y‖�1 .

If we define for n ∈ IN

xi :=

{
sign(yi) for i ≤ n,

0 for i > n,

then
∥∥(xi)i∈IN

∥∥
�∞

= 1 and

J(y)(x) =
∑

i≤n |yi | → ‖y‖�1 as n → ∞.

Hence J : �1(IR) → c′0 is isometric. Now let F ∈ c′0. Since for all x ∈ c0 we
have that

x =
∑∞

i=1 xiei in the �∞-norm,

it follows that

F (x) =
∑∞

i=1 xiFei ,

and so F = J(y), where yi := Fei, provided that y ∈ �1(IR). But this is
indeed the case, since∑

i≤n |yi | = F
(∑

i≤n sign(yi) ei

)
≤ ‖F ‖ ·

∥∥∥∑i≤n sign(yi) ei

∥∥∥
�∞

= ‖F ‖ .

This shows that J is an isomorphism. Then the dual space c′ can be charac-
terized as follows:

Sx := ( lim
i→∞

xi, x1 − lim
i→∞

xi, x2 − lim
i→∞

xi, . . .)

defines an S ∈ L (c; c0), and S is in fact an isomorphism, with

S−1x = (x2 + x1, x3 + x1, x4 + x1, . . .) .

Therefore

J̃(y) := J(y)S
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defines an isomorphism J̃ : �1(IR) → c′. ��

E6.7 Characterization of Sobolev functions. Let Ω ⊂ IRn be open. For
m ∈ IN ∪ {0} and 1 < p ≤ ∞ (if m = 0 then also for p = 1) it holds for
functions f : Ω → IR that

f ∈ Wm,p(Ω) ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f ∈ L1

loc(Ω) and there exists a constant C with∣∣∣∣∫
Ω

f∂sζ dLn

∣∣∣∣ ≤ C‖ζ‖Lp′ (Ω)

for all |s| ≤ m and all ζ ∈ C∞
0 (Ω) .

Here p′ is the dual exponent to p.

Note: For this characterization in the case m = 0, see 6.13. In case m > 0
we have to assume p > 1, see the space BV (Ω) and 6.26.

Solution ⇒.∣∣∣∣∫
Ω

f∂sζ dLn

∣∣∣∣ = ∣∣∣∣∫
Ω

∂sf · ζ dLn

∣∣∣∣ ≤ ‖∂sf ‖Lp(Ω)‖ζ‖Lp′ (Ω) .

��

Solution ⇐. It follows from 6.13 that f ∈ Lp(Ω). For 0 < |s| ≤ m let

Fs(ζ) :=

∫
Ω

f∂sζ dLn for ζ ∈ C∞
0 (Ω).

The estimate |Fs(ζ)| ≤ C‖ζ‖Lp′ (Ω) says, since p′ < ∞, that Fs can be

extended to a functional on Lp′

(Ω). Then it follows from 6.12, again since
p′ < ∞, that there exists a function fs ∈ Lp(Ω) with

Fs(g) =

∫
Ω

g · fs dLn for g ∈ Lp′

(Ω).

Therefore, ∫
Ω

f∂sζ dLn =

∫
Ω

fsζ dL
n for ζ ∈ C∞

0 (Ω),

which yields that f ∈ Wm,p(Ω) (with ∂sf = (−1)|s|fs). ��

E6.8 Positive functionals on C0

0
. Let Ω ⊂ IRn be open and let F :

C0
0 (Ω; IR) → IR be a linear map with

f ≥ 0 in Ω =⇒ F (f) ≥ 0 .

Then there exists a nonnegative locally bounded regular σ-additive measure
μ on the Borel sets of Ω (μ is then also called a Radon measure) such that

F (f) =

∫
Ω

f dμ for all f ∈ C0
0 (Ω; IR).
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Solution. Here IK = IR. Let D ⊂ Ω be open and bounded with

d := 1
2dist(D, ∂Ω) > 0 .

In addition, let S := Bd(D). Choose a cut-off function η ∈ C0
0 (Ω) (see 4.19)

with

0 ≤ η ≤ 1, η = 1 on D, η = 0 outside of Bd(D) ,

e.g.

η(x) = max(0, 1− 1
ddist(x,D)) .

For nonnegative functions f ∈ C0(S) we then have that ηf ∈ C0
0 (Ω), with

0 ≤ ηf ≤ η sup
S

f ,

and so
0 ≤ F (ηf) ≤ F (η) · sup

S
f .

Then it follows for all f ∈ C0(S), on setting f+ := max(f, 0) and f− :=
max(−f, 0), that

|F (ηf)| =
∣∣F (ηf+)− F (ηf−)

∣∣
≤ (sup

S
f+ + sup

S
f−)F (η) ≤ ‖f ‖C0(S) · F (η) .

Hence f �→ F (ηf) is a continuous functional on C0(S), and 6.23 yields the
existence of a μ ∈ rca(S) with

F (ηf) =

∫
S

f dμ for all f ∈ C0(S).

For f ∈ C0
0 (D) it holds that ηf = f , and hence

F (f) =

∫
S

f dμ for all f ∈ C0
0 (D).

We need to show that μ ≥ 0. As μ is regular, it is sufficient to show that
μ(K) ≥ 0 for compact sets K ⊂ D. Now, define

ηε(x) := max
(
0, 1− 1

εdist(x,K)
)
,

so we have ηε ∈ C0
0 (D) for sufficiently small ε. Since 1 ≥ ηε ↘ XK pointwise

as ε ↘ 0, we obtain that

0 ≤ F (ηε) =

∫
S

ηε dμ −→ μ(K) .

A similar argument shows that μ̃ = μ in D, if μ̃ is the measure in rca(S̃) for a

D̃ as above with D ⊂ D̃. Exhausting Ω with countably many (not necessarily
connected) domains D then yields the desired result. ��
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As an alternative to the space BV (Ω) in 6.25 we define the following:

E6.9 Functions of bounded variation. In the one-dimensional case we
define for S := [a, b] ⊂ IR

B̃V (S) :=
{
f : [a, b] → IK ; ‖f ‖

B̃V
:= |f(a)|+ var(f, S) < ∞

}
,

where the variation of f on [a, b] is defined by

var(f, [a, b]) := sup
{ m∑

i=1

|f(ai)− f(ai−1)| ;

m ∈ IN, a = a0 < a1 < . . . < am = b
}
.

Show that for f ∈ B̃V (S) it holds that:

(1) For a ≤ x1 < x2 < x3 ≤ b,

var(f, [x1, x3]) = var(f, [x1, x2]) + var(f, [x2, x3]) .

(2) The following limits exist

f+(x) := limε↘0 f(x+ ε) for a ≤ x < b,

f−(x) := limε↘0 f(x− ε) for a < x ≤ b.

(3) Every function in B̃V (S) has at most countably many discontinuity
points.

Solution (1). The “≤” part in the identity follows from adding x2 to the
interval partitionings of [x1, x3]. ��

Solution (2). Noting that

|f(x)| ≤ |f(a)|+ |f(x)− f(a)| ≤ ‖f ‖
B̃V

yields that f is bounded. Hence for x < b there exists a sequence (κi)i∈IN

with κi ↘ x for i → ∞, such that

ξ := lim
i→∞

f(κi)

exists. Now it follows from (1) that for all m∑m
i=1 var(f, [κi+1, κi]) = var(f, [κm+1, κ1]) ≤ ‖f ‖

B̃V
< ∞ ,

and hence ∑∞
i=1 var(f, [κi+1, κi]) ≤ ‖f ‖

B̃V
< ∞ ,
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which implies that var(f, [κi+1, κi]) → 0 as i → ∞. Hence also

sup
κi+1≤y≤κi

|f(y)− ξ |

≤ |f(κi)− ξ |+ sup
κi+1≤y≤κi

|f(y)− f(κi)|

≤ |f(κi)− ξ |+ var(f, [κi+1, κi]) → 0 as i → ∞,

which shows that ξ = f+(x). ��

Solution (3). If a < x1 < . . . < xm < b are discontinuity points of f , for
which |f+(xi)− f−(xi)| ≥ δ, then it holds for small ε → 0 that

var(f, S) ≥
∑m

i=1 |f(xi + ε)− f(xi − ε)|
→
∑m

i=1 |f+(xi)− f−(xi)| ≥ mδ ,

and so m ≤ δ−1‖f ‖
B̃V

. On choosing a null sequence for δ, it follows that the
discontinuity points of f are countable. ��

Riemann-Stieltjes integral: Let S = [a, b] ⊂ IR and f ∈ B̃V (S). Con-
sider for g ∈ C0(S) and for partitionings a = s0 < s1 < . . . < sn = b the
sum

n∑
i=1

g(si)
(
f(si)− f(si−1)

)
.

If (tj)j=1,...,m is a finer partitioning of S, say tki
= si with ki−1 < ki, then,

on setting δs := maxi |si − si−1 |,∣∣∣∣∣∣
n∑

i=1

g(si)
(
f(si)− f(si−1)

)
−

m∑
j=1

g(tj)
(
f(tj)− f(tj−1)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

ki∑
j=ki−1+1

(
g(si)− g(tj)

)(
f(tj)− f(tj−1)

)∣∣∣∣∣∣
≤ sup

|x1−x2 |≤δs

|g(x1)− g(x2)| · ‖f ‖B̃V
−→ 0 as δs → 0.

Hence the Riemann-Stieltjes integral∫
S

g df := lim
δs→0

n∑
i=1

g(si)
(
f(si)− f(si−1)

)
exists for f ∈ B̃V (S) and g ∈ C0(S).

E6.10 Representation of the Riemann-Stieltjes integral. Suppose
that f ∈ B̃V (S). Then the following holds for the above defined integral.
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(1) There exists a λ ∈ rca(S) with∫
S

g df =

∫
S

g dλ for all g ∈ C0(S) .

(2) The measure λ in (1) satisfies for a ≤ x < b

λ([a, x]) = lim
ε↘0

(
f(x+ ε)− f(a)

)
.

Solution (1). The map

Tf (g) :=

∫
S

g df

satisfies ∣∣∣∣∫
S

g df

∣∣∣∣ ≤ ‖g‖C0 · ‖f ‖B̃V
.

It follows that Tf ∈ C0(S)′ and hence theorem 6.23 yields the existence of a
λ ∈ rca(S) such that∫

S

g dλ = Tf (g) =

∫
S

g df for all g ∈ C0(S)

and ‖λ‖var = ‖Tf ‖C0(S)′ . ��

Solution (2). For a < x0 < b and sufficiently small ε > 0, consider the
continuous function

gε(x) :=

⎧⎪⎨⎪⎩
1 for x ≤ x0 + ε,

1− x−x0−ε
ε for x0 + ε ≤ x ≤ x0 + 2ε,

0 for x0 + 2ε ≤ x.

Then by the σ-additivity of |λ|∫
[a,x0+ε]

gε dλ = λ
(
[a, x0 + ε]

)
−→ λ

(
[a, x0]

)
as ε → 0

and the definition of the Riemann integral gives∣∣∣∣∫
S

gε dλ− λ
(
[a, x0 + ε]

)∣∣∣∣ ≤ |λ|
(
[x0 + ε, x0 + 2ε]

)
−→ 0

for a sequence ε → 0, since ‖λ‖var < ∞. Moreover, by the definition of the
Riemann-Stieltjes integral,∫

[a,x0+ε]

gε df = f(x0 + ε)− f(a)

which converges to limε↘0

(
f(x0 + ε)− f(a)

)
, and∣∣∣∣∫

S

gε df −
(
f(x0 + ε)− f(a)

)∣∣∣∣ ≤ var(f, [x0 + ε, x0 + 2ε]) −→ 0

as ε → 0. ��



204 6 Linear functionals

Consider the functions

fε(x) :=

{
1 for |x| ≤ ε,

0 otherwise,
f(x) :=

{
1 for x = 0,

0 otherwise.

Then fε → f pointwise as ε → 0 and f �= 0 in B̃V ([− 1, 1]). Also,

var(f, [− 1, 1]) = 2, but

∫
[−1,1]

g df = 0 for all g ∈ C0([− 1, 1]).

In fact, with respect to the L1-measure we have fε → 0 almost everywhere
as ε → 0. As a consequence one considers function spaces

BVrc([a, b]) :=
{
f ∈ B̃V ([a, b]) ; f(x) = f+(x) for a ≤ x < b,

f(b) = f−(b)
}
,

BVlc([a, b]) :=
{
f ∈ B̃V ([a, b]) ; f(a) = f+(a) ,

f(x) = f−(x) for a < x ≤ b
}
,

which consist of right-continuous and left-continuous functions, respectively.
Both spaces are bijective (isomorphic) to BV (]a, b[) in 6.25.

E6.11 Normalized BV functions. With S := [a, b] ⊂ IR and the nota-
tions as in E6.9, let

NBV (S) :=
{
f ∈ B̃V (S) ; f(x) = f+(x) for a ≤ x < b,

f(a) = 0 and f(b) = f−(b)
}

be the space of normalized functions of bounded variation, equipped
with the norm of B̃V (S). Show that

(Jλ)(x) := λ
(
[a, x]

)
for a ≤ x ≤ b

defines an isometric isomorphism

J : {λ ∈ rca([a, b]) ; λ({a}) = 0, λ({b}) = 0} → NBV ([a, b]) .

Solution. The σ-additivity of λ yields that f := Jλ is right-continuous. Since
λ({a}) = 0 it follows that f(a) = 0, and since λ({b}) = 0 the σ-additivity
gives that f(x) → f(b) as x ↗ b.

Moreover, for every partitioning a = a0 < a1 < . . . < am = b,

m∑
i=1

|f(ai)− f(ai−1)| =
m∑
i=1

∣∣λ(]ai−1, ai]
)∣∣ ≤ ‖λ‖var ,

i.e. ‖f ‖
B̃V

≤ ‖λ‖var.
In addition, J is injective. In order to prove surjectivity, we use the pre-

vious exercise, which for a given f ∈ NBV ([a, b]) yields a λ ∈ rca([a, b]),
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for which ‖λ‖var ≤ var(f, [a, b]) = ‖f ‖
B̃V

. It follows from E6.10(2) that
Jλ = f , since for a ≤ x < b

(Jλ)(x) = λ([a, x]) = lim
ε↘0

(
f(x+ ε)− f(a)

)
= f(x)

and also (Jλ)(b) = λ([a, b]) = limε↘0 λ([a, b− ε]) = f(b). ��

A6 Results from measure theory

The purpose of this appendix is to complete the proof of the representation
theorem 6.23 (see A6.6). The necessary construction of regular measures can
be found in A6.3.

Subsequently, we also present versions of Luzin’s theorem (see A6.7) and
Fubini’s theorem (see A6.10).

In the following two results, S is an arbitrary set.

A6.1 Jordan decomposition. Let B be a ring of subsets of the set S and
let λ : B → IR be additive and bounded. Then

λ+ := 1
2 (|λ|+ λ) , λ− := 1

2 (|λ| − λ)

are additive, bounded and nonnegative on B. It holds that

λ = λ+ − λ− , |λ| = λ+ + λ− ,

and, in addition,

λ+(E) = sup
A∈B :A⊂E

λ(A) and λ−(E) = − inf
A∈B :A⊂E

λ(A) .

Proof. On recalling 6.10, we only need to show that the last identity holds
for λ+.

If A ⊂ E, then |λ|(A) ≥ |λ(A)|, and so

λ+(E) ≥ λ+(A) ≥ 1
2

(
|λ(A)|+ λ(A)

)
≥ λ(A) .

Now for a given ε > 0 choose disjoint sets E1, . . . , Em with Ei ⊂ E and

|λ|(E) ≤ ε+

m∑
i=1

|λ(Ei)| .

On setting Em+1 := E \
⋃m

i=1 Ei, we have

λ(E) =

m+1∑
i=1

λ(Ei) ,

and so
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λ+(E) =
1

2

(
|λ|(E) + λ(E)

)
≤ ε

2
+

1

2

m+1∑
i=1

(
|λ(Ei)|+ λ(Ei)

)
=

ε

2
+
∑

i :λ(Ei)>0

λ(Ei) =
ε

2
+ λ
( ⋃

i :λ(Ei)>0

Ei

)
≤ ε

2
+ sup

A∈B :A⊂E
λ(A) .

��

A6.2 Hahn decomposition. Let B be a σ-ring on the set S and let ν :
B → IR be σ-additive and bounded. Then there exists an E+ ∈ B such that

ν(E ∩ E+) ≥ 0 and ν(E \ E+) ≤ 0 for all E ∈ B .

Proof. We assume that there exists an E ∈ B with ν(E) > 0 (otherwise
choose E+ := ∅). We now want to find an E+ ∈ B such that

ν(E+) = s0 := supE∈B ν(E) . (A6-1)

Such an E+ satisfies the desired result. To see this, assume that ν(E\E+) > 0
for some E ∈ B. Then

ν(E+ ∪ E) = ν(E+) + ν(E \ E+) > ν(E+) = s0 ,

which contradicts the definition of s0. Similarly, if ν(E ∩ E+) < 0 for some
E ∈ B, then

ν(E+ \ E) = ν(E+)− ν(E ∩ E+) > ν(E+) = s0 ,

which again contradicts the definition of s0.
For the construction of E+, define for k ∈ IN

Mk :=
{
E ∈ B ; ν(E) ≥

(
1− 1

k

)
s0
}

with the partial order

E1 ≤ E2 :⇐⇒
(
E1 ⊃ E2 and ν(E1) < ν(E2)

)
or E1 = E2 .

Let N ⊂ Mk be totally ordered and let

s := sup
E∈N

ν(E) .

Then there exist Ei ∈ N , i ∈ IN, with

ν(Ei) ≤ ν(Ei+1) → s as i → ∞ . (A6-2)

As N is totally ordered, it follows that Ei ≤ Ei+1 or Ei+1 ≤ Ei. If Ei ≤ Ei+1

then (A6-2) implies Ei ⊃ Ei+1, and if Ei+1 ≤ Ei it implies Ei = Ei+1.
Therefore the sets Ei are decreasing and
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E0 :=
⋂
i∈IN

Ei ∈ Mk , ν(E0) = lim
i→∞

ν(Ei) = s .

The found set E0 ∈ Mk is an upper bound of N . This follows from the fact
that if E ∈ N with E0 ≤ E, then E ⊂ E0 and ν(E) > ν(E0), or E = E0,
where the former case contradicts the definition of s, since ν(E) > ν(E0) = s,
therefore E = E0.

Hence, by Zorn’s lemma (see the proof of 6.14), there exists a maximal
element M+

k ∈ Mk. It satisfies

ν(M+
k ) ≥

(
1− 1

k

)
s0 ,

and in addition it holds for all A ∈ B that

A ⊂ M+
k =⇒ ν(A) ≥ 0 . (A6-3)

To see this, assume that ν(A) < 0. Then ν(M+
k \ A) > ν(M+

k ), and so
M+

k \A ∈ Mk with M+
k \A ≥ M+

k . Then the maximality of M+
k yields that

M+
k \A ≤ M+

k , a contradiction.
Then the property (A6-3) also holds with M+

k replaced by the sets

E+
k :=

⋃
j≤k

M+
j ,

because if A ∈ B, A ⊂ E+
k , then Aj := A ∩ M+

j \
⋃

i<j M
+
i ⊂ M+

j form a
partition of A, and hence

ν(A) =

k∑
j=1

ν(Aj) ≥ 0 .

In particular,

ν(E+
k ) ≥ ν(M+

k ) ≥
(
1− 1

k

)
s0 .

Hence

E+ :=
⋃
k∈IN

E+
k ∈ B with ν(E+) = lim

k→∞
ν(E+

k ) = s0 .

Therefore E+ satisfies (A6-1). ��
In the following, let S ⊂ IRn be a closed set and let B0, B1 for S be defined

as in 6.20. Furthermore, let ba(S) etc. be the spaces defined in 6.20 and 6.21.

A6.3 Lemma. Let λ ∈ ba(S) be nonnegative and let

μ(E) := sup
A : A ⊂ E
A closed

inf
U : A ⊂ U
U open

λ(U) for E ∈ B0.

Then μ ∈ rba(S) and∫
S

f dμ =

∫
S

f dλ for all f ∈ C0(S).
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Proof. (All occurring sets are in B0.) μ is nonnegative and monotone,
i.e. E1 ⊂ E2 implies that μ(E1) ≤ μ(E2). For closed sets A

μ(A) = inf
U : A ⊂ U
U open

λ(U) , and so μ(E) = sup
A : A ⊂ E
A closed

μ(A)
(A6-4)

for all E. Define

M := {B ∈ B0 ; μ(E) = μ(E ∩B) + μ(E \B) for all E ∈ B0} .

We want to show that M = B0. Obviously, ∅, S ∈ M and from B ∈ M it
follows that S \B ∈ M. If A,B ∈ M, then it follows that for all E ∈ B0

μ
(
E ∩ (A ∩B)

)
+ μ
(
E \ (A ∩B)

)
= μ
(
E ∩ (A ∩B)︸ ︷︷ ︸
=(E∩B)∩A

)
+ μ
(
(E \ (A ∩B)) ∩B︸ ︷︷ ︸

=(E∩B)\A

)
+ μ
(
(E \ (A ∩B)) \B︸ ︷︷ ︸

=E\B

)
= μ(E ∩B) + μ(E \B) = μ(E) ,

and so A ∩B ∈ M. Hence M is a Boolean algebra. It remains to show that
M contains the closed sets. If A1, A2 are closed and disjoint, then there
exist open disjoint sets Ui with Ai ⊂ Ui. Then it holds for every open set
U ⊃ A1 ∪A2 that

λ(U) ≥ λ
(
U ∩ (U1 ∪ U2)

)
= λ(U ∩ U1) + λ(U ∩ U2) ≥ μ(A1) + μ(A2) ,

and combining with (A6-4) yields that

μ(A1 ∪A2) ≥ μ(A1) + μ(A2) .

Now let B be closed and let E be arbitrary. Then if A1 ⊂ E ∩B, A2 ⊂ E \B
are closed sets,

μ(A1) + μ(A2) ≤ μ(A1 ∪A2) ≤ μ(E) ,

and so (A6-4) implies that

μ(E ∩B) + μ(E \B) ≤ μ(E) .

On the other hand, if A ⊂ E is closed and U1, U2 are open with A∩B ⊂ U1

and A \ U1 ⊂ U2, then A ⊂ U1 ∪ U2, and hence

λ(U1) + λ(U2) ≥ λ(U1 ∪ U2) ≥ μ(A) .

Taking the infimum over all U2, and noting that A \ U1 is closed, we obtain

λ(U1) + μ(A \ U1) ≥ μ(A) .

Since A \ U1 is a closed subset of E \B, it follows that

λ(U1) + μ(E \B) ≥ μ(A) .
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Now noting that A ∩ B is closed, and taking the infimum over all U1, we
obtain

μ(A ∩B) + μ(E \B) ≥ μ(A) ,

and so, since A ∩B is a closed subset of E ∩B,

μ(E ∩B) + μ(E \B) ≥ μ(A) .

On taking the supremum over all A, it finally follows that

μ(E ∩B) + μ(E \B) ≥ μ(E) .

This shows that B ∈ M, and hence M = B0.
It follows that μ is additive on M, for if E1, E2 ∈ M are disjoint, then it

holds for all E that

μ(E) = μ(E ∩ E1) + μ(E \ E1) ,

and for E = E1 ∪ E2 we obtain that

μ(E1 ∪ E2) = μ(E1) + μ(E2) .

Moreover, μ is regular, because for E and ε > 0 there exist closed sets A1 ⊂ E
and A2 ⊂ S \ E with

μ(E) ≤ μ(A1) + ε and μ(S \ E) ≤ μ(A2) + ε .

Then A1 ⊂ E ⊂ S \A2 and, on recalling that |μ| = μ, it follows that

|μ|
(
(S \A2) \A1

)
≤ 2ε .

It remains to show that the integral identity holds. Without loss of generality
let 0 ≤ f ≤ 1. For n ∈ IN define

Ei :=
{

i
n ≤ f < i+1

n

}
∈ B0 for i = 0, . . . , n.

For a given ε > 0 choose Ai ⊂ Ei closed with μ(Ei \ Ai) ≤ ε. Since the Ai

are disjoint and f is continuous, there exist disjoint open sets Ui with

Ai ⊂ Ui and inf
Ui

f ≥ i

n
− ε .

As μ(Ai) ≤ λ(Ui), it follows that∫
S

f dμ ≤
∑
i

i+ 1

n
μ(Ei) ≤

1

n
μ(S) +

∑
i

i

n
μ(Ei)

≤ μ(S)

n
+ nε+

∑
i

i

n
λ(Ui)

≤ μ(S)

n︸ ︷︷ ︸
→ 0 as n → ∞

+ nε+ ελ(S)︸ ︷︷ ︸
→ 0 as ε → 0

for any n

+

∫
S

f dλ .
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Replacing f by 1− f yields, on noting that μ(S) = λ(S), that

μ(S)−
∫
S

f dμ =

∫
S

(1− f) dμ ≤
∫
S

(1− f) dλ = λ(S)−
∫
S

f dλ ,

and hence the desired result. ��

A6.4 Corollary. For λ ∈ ba(S) there exists a ν ∈ rba(S) such that∫
S

f dλ =

∫
S

f dν for all f ∈ C0(S).

Proof. Since we can split λ into a real and an imaginary part, we may assume
without loss of generality that λ is real-valued. Let λ = λ+−λ− be the Jordan
decomposition of λ and let μ± be the measures from A6.3 corresponding to
λ±. Set ν := μ+ − μ−. It obviously holds that |ν | ≤ μ+ + μ−, and so the
regularity of μ± implies that ν is regular. ��

A6.5 Lemma (Alexandrov). If S ⊂ IRn is compact, then

ν ∈ rba(S) =⇒ ν is σ-additive (on B0 !).

Proof (Compare A3.3). Let Ei ∈ B0, i ∈ IN, be disjoint and let E :=
⋃

i Ei ∈
B0. As ν is regular, we can choose for ε > 0 a closed set A with A ⊂ E and
|ν |(E \ A) ≤ ε and open sets Ui with Ei ⊂ Ui and |ν |(Ui \ Ei) ≤ ε2−i. On
noting that (Ui)i∈IN is a cover of A with A being compact, we see that

A ⊂
m⋃
i=1

Ui for an m,

and hence, since |ν | is nonnegative and additive (see 6.10), that

|ν |(E) ≤ ε+ |ν |(A) ≤ ε+
m∑
i=1

|ν |(Ui) ≤ ε+ ε
∞∑
i=1

2−i +
∞∑
i=1

|ν |(Ei) .

In addition, for all m

|ν |(E) ≥ |ν |
( m⋃
i=1

Ei

)
=

m∑
i=1

|ν |(Ei) ,

which proves that

|ν |(E) =
∞∑
i=1

|ν |(Ei) .

Similarly, for all m

|ν |
( ⋃
i>m

Ei

)
=
∑
i>m

|ν |(Ei) −→ 0 as m → ∞.
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We conclude that∣∣∣∣∣ν(E)−
m∑
i=1

ν(Ei)

∣∣∣∣∣ =
∣∣∣∣∣∣ν(E \

⋃
i≤m

Ei

)∣∣∣∣∣∣
=

∣∣∣∣∣ν( ⋃
i>m

Ei

)∣∣∣∣∣ ≤ |ν |
( ⋃
i>m

Ei

)
−→ 0 as m → ∞.

��

A6.6 Lemma. Let S ⊂ IRn be compact. For λ ∈ ba(S) there exists a ν ∈
rca(S) with ∫

S

f dν =

∫
S

f dλ for all f ∈ C0(S).

Proof. We may assume without loss of generality that λ is real-valued and
nonnegative (see the proof of A6.4). Let μ ∈ rba(S) be the measure corre-
sponding to λ as in A6.3. It follows from lemma A6.5 that μ is σ-additive
on B0. Then by A3.15 there exists an extension of (B0, μ) to (B, μ̄) with a
σ-algebra B and a σ-additive measure μ̄ on B. As B1 is the smallest σ-algebra
that contains B0, it follows that B1 ⊂ B. Hence μ̄ is σ-additive on B1.

We now show that μ̄ is also regular. To this end, let

M := {E ∈ B1 ; For ε > 0 there exist sets A and U with

A ⊂ E ⊂ U, A closed, U open, μ̄(U \A) ≤ ε} .

Clearly M is an algebra, and since μ̄ is an extension of μ, it holds that
B0 ⊂ M. Then it follows that M = B1, if we can show that

Ei ∈ M for i ∈ IN with Ei ⊂ Ei+1 =⇒ E :=
⋃
i∈IN

Ei ∈ M .

To this end, choose a closed set Ai with Ai ⊂ Ei and an open set Ui with
Ei ⊂ Ui such that μ̄(Ui \Ai) ≤ ε2−i. Then⋃

i≤m

Ai ⊂ E ⊂
⋃
i∈IN

Ui =: U

and
μ̄
(
U \
⋃
i≤m

Ai

)
≤ μ̄
(
U \
⋃
i≤m

Ui

)
+ μ̄
( ⋃
i≤m

Ui \
⋃
i≤m

Ai

)
.

The first term is smaller than ε, if we choose m sufficiently large, and the
second term is

≤ μ̄
( ⋃
i≤m

(Ui \Ai)
)
≤
∑
i≤m

μ̄(Ui \Ai) ≤ ε .

The integral identity follows as in the proof of A6.3. ��
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We present the following result on measurable functions. Here S can be
replaced with any compact topological space.

A6.7 Luzin’s theorem. Let S ⊂ IRn be compact, μ ∈ rca(S) be nonnega-
tive, and Y be a Banach space. Then every μ-measurable function f : S → Y
is μ-almost continuous, i.e. for every μ-measurable set E and every ε > 0
there exists a compact set K ⊂ E with μ(E \ K) ≤ ε such that f|K is a
continuous function on K.

Proof. First we recall that for every μ-measurable set E there exist an Ẽ ∈ B1

and a μ-null set N with E \N = Ẽ \N (see A3.14(2)). Moreover, for every
μ-null set N and every ε > 0 there exists an Nε ∈ B1 with N ⊂ Nε and
μ(Nε) ≤ ε (see A3.4). As μ is regular, there exist a compact set K̃ ⊂ Ẽ and

an open set Ũ ⊃ Ẽ with μ(Ũ \ K̃) ≤ ε, as well as an open set V ⊃ Nε with

μ(V ) ≤ 2ε. Then K := K̃ \ V ⊂ E is compact and U := Ũ ∪ V ⊃ E is open
with μ(U \K) ≤ 3ε.

There exists a μ-null set N such that f(S \N) is separable (see 3.11(2)).
Choose a countable dense subset {yj ; j ∈ IN} of f(S \ N). For every i it
holds that the sets B 1

i
(yj), j ∈ IN, form a cover of f(S \N), and hence also

Bij := B 1
i
(yj) \

⋃
k<j B 1

i
(yk) .

This implies that

Eij := E ∩ f−1(Bij) \N for j ∈ IN

form a disjoint partitioning of E\N into μ-measurable sets. It follows from the
remark at the beginning of the proof that there exist compact sets Kij ⊂ Eij

with μ(Eij \ Kij) ≤ ε2−i−j−1. Consequently, μ
(
E \
⋃

j Kij

)
≤ ε2−i−1, and

hence there exists a ji with

μ(E \Ki) ≤ ε2−i , where Ki :=
⋃

j≤ji
Kij .

Ki is a compact subset of E \N , and by construction it is the disjoint union
of the compact sets Kij for j ≤ ji. Hence

gi(x) := yj for x ∈ Kij (if Kij �= ∅)

defines a gi ∈ C0(Ki;Y ) with

sup
x∈Ki

‖gi(x)− f(x)‖Y ≤ 1

i
.

Set K :=
⋂

i Ki. Then the functions gi|K ∈ C0(K;Y ), and on K they con-

verge uniformly to f as i → ∞, which yields that f|K ∈ C0(K;Y ). In
addition, K is a compact subset of E and

μ(E \K) ≤
∑
i∈IN

μ(E \Ki) ≤ ε .

��
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We add now a functional analysis formulation of Fubini’s theorem, where
we restrict ourselves to the case of bounded regular measures.

A6.8 Product measure. Let Sl ⊂ IRnl be compact, l = 1, 2, and let
(Sl,Bl, μl) be measure spaces. Let Bl contain the Borel sets of Sl and let
μl ∈ rca(Sl). Define

B1 × B2 := {E1 × E2 ; E1 ∈ B1 and E2 ∈ B2} ,
(μ1 × μ2)(E1 × E2) := μ1(E1) · μ2(E2) for E1 × E2 ∈ B1 × B2 .

Denote by B0 the Boolean algebra induced by B1 × B2. Then B0 consists
of finite disjoint unions of sets in B1 × B2, and μ1 × μ2 can be canonically
extended to an additive measure on B0.

Proposition: μ1×μ2 is σ-subadditive on B0, so that all the properties in A3.1
are satisfied.

Proof of proposition. Let E,Ei ∈ B0, i ∈ IN, with E ⊂
⋃

i∈IN Ei. We have to
show that for μ := μ1 × μ2 it holds that

μ(E) ≤
∑
i∈IN

μ(Ei) .

By the definitions of B0 and μ, we may assume that

Ei = E1
i × E2

i ∈ B1 × B2 .

As the μl are regular, it follows that for ε > 0 there exist open sets U l
i ∈ Bl

with (see the beginning of the proof in A6.7)

El
i ⊂ U l

i and μl(U l
i \ El

i) ≤ ε2−i .

Then

μ(U1
i × U2

i ) ≤ μ(E1
i × E2

i ) + μ
(
(U1

i \ E1
i )× U2

i

)
+ μ
(
E1

i × (U2
i \ E2

i )
)

≤ μ(E1
i × E2

i ) + μ1(U1
i \ E1

i )μ
2(S2) + μ1(S1)μ2(U2

i \ E2
i )

≤ μ(E1
i × E2

i ) + C2−iε with C := μ1(S1) + μ2(S2) .

Similarly, there exists a compact set K ∈ B0 with

K ⊂ E and μ(E) ≤ μ(K) + ε .

(E is the disjoint union of elements in B1×B2, and each of these subsets can
be approximated in measure by compact subsets to an arbitrary accuracy. K
is then the disjoint union of Cartesian products of compact sets.) Since the
sets U l

1 × U l
2 form a cover of the set K, there exists an m with

K ⊂
m⋃
i=1

U1
i × U2

i ,
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and hence

μ(E) ≤ μ(K) + ε ≤
m∑
i=1

μ(U1
i × U2

i ) + ε ≤
m∑
i=1

μ(E1
i × E2

i ) + (C + 1)ε .

��

Therefore the Lebesgue integral for (S1 × S2,B0, μ1 × μ2) can be con-
structed as in Appendix A3. In particular, there exists a measure extension
to a measure space (S1 × S2,B, μ1 × μ2). We now characterize the Lebesgue
space Lp(μ1 × μ2;Y ) with the help of iterated integration. But first we con-
sider the following special case:

A6.9 Lemma. If N is a μ1 × μ2-null set, then for μ1-almost all x1 ∈ S1

{x2 ∈ S2 ; (x1, x2) ∈ N}

is a μ2-null set.

Proof. It follows from the definition of null sets in A3.4 that for ε > 0 there
exist sets El

i ∈ Bl, i ∈ IN, l = 1, 2 with

N ⊂
⋃
i∈IN

E1
i × E2

i and
∑
i∈IN

μ(E1
i × E2

i ) ≤ ε ,

where μ := μ1 × μ2. Consider the functions

gεn(x1)(x2) :=
∑
i≤n

XE1
i
(x1)XE2

i
(x2) .

For all x1 we have that gεn(x1) ∈ L1(μ2) satisfying the following equation

Gεn(x1) :=

∫
S2

gεn(x1) dμ
2 =
∑
i≤n

XE1
i
(x1)μ

2(E2
i ) .

The function Gεn ∈ L1(μ1) with∫
S1

Gεn dμ
1 =
∑
i≤n

μ1(E1
i )μ

2(E2
i ) ≤ ε .

On noting that

Gεn(x1) ↗ Gε(x1) :=
∑
i∈IN

XE1
i
(x1)μ

2(E2
i )

as n ↗ ∞, it follows from the monotone convergence theorem (see A3.12(3))
that Gε ∈ L1(μ1) with
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S1

Gε dμ
1 = lim

n→∞

∫
S1

Gεn dμ
1 ≤ ε .

But this means that Gε → 0 in L1(μ1) as ε → 0. Hence there exists a
subsequence ε → 0 such that Gε(x1) → 0 for μ1-almost all x1 ∈ S1. In the
following we consider such x1. On noting that for small ε and as n ↗ ∞ we
have that ∫

S2

gεn(x1) dμ
2 = Gεn(x1) ↗ Gε(x1) < ∞

and
gεn(x1)(x2) ↗ gε(x1)(x2) :=

∑
i∈IN

XE1
i
(x1)XE2

i
(x2) ,

it follows once again from the monotone convergence theorem that the func-
tion gε(x1) ∈ L1(μ2) satisfies∫

S2

gε(x1) dμ
2 = Gε(x1) .

Therefore, gε(x1) → 0 in L1(μ2), and so there exists a subsequence ε → 0
(depending on x1!) with gε(x1)(x2) → 0 for μ2-almost all x2 ∈ S2. But noting
that gε(x1)(x2) ≥ XN (x1, x2) implies that XN (x1, x2) = 0 for μ2-almost all
x2 ∈ S2. ��

A6.10 Fubini’s theorem. Let Y be a Banach space and let 1 ≤ p < ∞.
Consider the product measure in A6.8. Then

(Jf)(x1)(x2) := f(x1, x2)

defines a linear isometric isomorphism

J : Lp(μ1 × μ2;Y ) −→ Lp(μ1;Lp(μ2;Y )) .

In particular, for f ∈ Lp(μ1 × μ2;Y ) there exists

F (x1) :=

∫
S2

f(x1, x2) dμ
2(x2) for μ1-almost all x1 ∈ S1

and F ∈ Lp(μ1;Y ) with∫
S1

F (x1) dμ
1(x1) =

∫
S1×S2

f(x1, x2) d(μ
1 × μ2)(x1, x2) .

A symmetry argument then yields that∫
S1

(∫
S2

f(x1, x2) dμ
2(x2)

)
dμ1(x1) =

∫
S2

(∫
S1

f(x1, x2) dμ
1(x1)

)
dμ2(x2) .
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Proof. Let f ∈ Lp(μ1 × μ2;Y ) (we suppress in the following proof the ar-
gument Y ). Since p < ∞, it follows from the construction of the Lebesgue
integral (see the proof of 3.26(1)) that f can be approximated by step func-
tions

fk =
n∑

i=1

XEi
αi with Ei ∈ B0 and αi ∈ Y,

where n, Ei and αi depend on k. The definition of B0 then yields that fk can
also be represented as

fk =

n∑
i,j=1

XE1
i ×E2

j
αij with E1

i ∈ B1, E2
j ∈ B2, αij ∈ Y

with a new n, where both the E1
i and the E2

j are disjoint. Then for all x1

(Jfk)(x1) =

n∑
i,j=1

XE1
i
(x1)XE2

j
αij ∈ Lp(μ2) ,

and Jfk ∈ Lp(μ1;Lp(μ2)), with

∫
S1

‖Jfk‖pLp(μ2) dμ
1 =

n∑
i=1

μ1(E1
i )

∥∥∥∥∥∥
n∑

j=1

XE2
j
αij

∥∥∥∥∥∥
p

Lp(μ2)

=

n∑
i,j=1

μ1(E1
i )μ

2(E2
j )‖αij‖pY =

∫
S1×S2

‖fk‖pY dμ ,

where μ := μ1 × μ2. Similarly, we observe that∫
S2

(Jfk)(x1) dμ
2

as a function of x1 lies in L1(μ1) and satisfies∫
S1

(∫
S2

(Jfk)(x1) dμ
2
)
dμ1(x1) =

∫
S1×S2

fk dμ .

These properties, which we have derived for fk, are of course also valid for
the step functions fk − fl. Therefore,

‖Jfk − Jfl‖Lp(μ1;Lp(μ2)) = ‖fk − fl‖Lp(μ) → 0 as k, l → ∞.

By completeness of Lp(μ1;Lp(μ2)), there exists an F such that

Jfk → F in Lp(μ1;Lp(μ2)) as k → ∞.

Hence there exists a subsequence such that for μ1-almost all x1
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Jfk(x1) → F (x1) in Lp(μ2).

On the other hand, since fk → f in Lp(μ), μ = μ1 × μ2, there exists a
subsequence such that

fk(x1, x2) → f(x1, x2) for μ-almost all (x1, x2).

It follows from A6.9 that then for μ1-almost all x1

fk(x1, x2) → f(x1, x2) for μ2-almost all x2.

On recalling that fk(x1, x2) = Jfk(x1)(x2), we then obtain that

F (x1) = f(x1,·) in Lp(μ2)

for μ1-almost all x1, i.e. F = Jf . In addition, it follows from the above that

‖Jf ‖Lp(μ1;Lp(μ2)) = ‖f ‖Lp(μ) .

This shows that J is well defined and isometric. Consequently the image of J
is closed. Hence, in order to show the surjectivity, it is sufficient to show that
the image is dense. Every element in Lp(μ1;Lp(μ2)) can be approximated by
linear combinations of functions XE1g with E1 ∈ B1 and g ∈ Lp(μ2), and
similarly g can be approximated by linear combinations of XE2α with E2 ∈ B2

and α ∈ Y . But functions F (x1)(x2) = XE1(x1)XE2(x2)α in Lp(μ1;Lp(μ2))
clearly lie in the image of J .

In order to prove the integral formula, we exploit the fact that the integral
with respect to μ2 is a linear continuous map from L1(μ2) to Y . If f ∈ L1(μ),
then Jf ∈ L1(μ1;L1(μ2)), and hence (see theorem 5.11)

x1 �−→
∫
S2

Jf(x1) dμ
2

is a function in L1(μ1). On noting that in addition Jfk → Jf in L1(μ1;L1(μ2))
as k → ∞, if the fk are chosen as above, we obtain with the help of 5.11 that
as k → ∞∫

S1

(∫
S2

Jf(x1) dμ
2
)
dμ1(x1) =

∫
S2

(∫
S1

Jf dμ1
)
dμ2

←−
∫
S2

(∫
S1

Jfk dμ
1
)
dμ2 =

∫
S1

(∫
S2

Jfk(x1) dμ
2
)
dμ1(x1)

=

∫
S1×S2

fk dμ −→
∫
S1×S2

f dμ .

��

A6.11 Remark on the case p = ∞. With the above assumptions, let
f ∈ L∞(μ1 × μ2;Y ). Then f ∈ Lq(μ1 × μ2;Y ) for every 1 ≤ q < ∞, so that
the result shown in A6.10 yields that
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Jf ∈
⋂

1≤q<∞
Lq(μ1;Lq(μ2;Y )) .

Moreover, it follows easily from E3.4 and A6.9 that

‖f ‖L∞(μ1×μ2) = ‖g‖L∞(μ1) ,

where g(x1) := ‖f(x1,·)‖L∞(μ2) = ‖(Jf)(x1)‖L∞(μ2).

However, in general Jf is not (!) an element of L∞(μ1;L∞(μ2;Y )), as
can be seen from the example μ1 = μ2 = L1�[0, 1], Y = IR, f = XE ,
E := {(x1, x2) ; x1 < x2}. In this case the function

x1 �→ X[x1,1]
∈ L∞(μ2;Y )

is not μ1-measurable.
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