5 Linear operators

In this chapter, X, Y, Z, etc. usually denote normed IK-vector spaces. We
consider linear maps T from X to Y, where, following the notation for ma-
trices, we usually write Tz instead of T'(z), and similarly ST instead of SoT
for linear maps T : X — Y and S : Y — Z. In functional analysis, only the
continuous linear maps are of importance (see £9.2), which are those linear
maps for which T'(z) can be estimated by x:

5.1 Lemma. If T : X — Y is linear and g € X, then the following are
equivalent:

(1) T is continuous.

(2) T is continuous at x.

(3) supj <1 |Tz|ly <oo.

(4) There exists a constant C with |Tz|, < C||z| y for all z € X.

Property 5.1(4) written with quantifiers reads
3C>0: (VzeX : |Tz|y <Clz|y)

Proof (2)=(3). There exists an ¢ > 0 such that T(Bg(xo)> C Bi(T(x)).
Let z € B1(0). Then xg + ex € B.(x0), and hence

T(zo) +eT(x) =T (xo + cx) € B1(T(20)) ,
which implies that T'(x) € B1(0). O

Proof (3)=(4). Let C be the supremum in (3). Then for z # 0

IT@ly = el | (75| < el -
x/ lly
O
Proof (4)=(1). For x,x; € X we have that
IT(2) = T(z)lly = |T(z —z)lly <Clle —z1]x — 0 asz— w1,
i.e. T is continuous at z1. This is true for all z;. O
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142 5 Linear operators
5.2 Linear operators. We define
ZL(X;Y):={T:X —Y; T is linear and continuous } .

We call maps in Z(X;Y) linear operators. This is true in general for topo-
logical vector spaces X and Y (see 5.23). In the literature, if they are normed
spaces, elements of Z(X;Y’) are often also called bounded operators. If
X and Y are normed spaces, on recalling 5.1(3), we define for every linear
operator T' € Z(X;Y) the operator norm of T by

1T 2xv) = | sup [ Tz|ly < oo. (5-5)

|zl x <1

In the following, we often use the abbreviation || T'[| for || T'[| & .y It follows
from the proof of 5.1 that [|T'|| & y.y is the smallest number satisfying

ITzlly <ITllgxanlzlyx  foralzeX. (5-6)

We set Z(X) := Z(X;X) and denote the identity on X by Id (or by I).
Clearly, Id € .Z(X).

5.3 Theorem. Let X, Y, and Z be normed spaces.

(1) Z(X;Y) equipped with [|+[| &(y,y in (5-5) is a normed space.

(2) Z(X;Y) is a Banach space if Y is a Banach space.

B) UTe Z(X;Y)and S € Z(Y;Z), then ST € £ (X;Z) and
HST”y(x;z) < ||SH$(Y;Z) ’ ||T||$(X;Y) :

(4) Z(X) is a Banach algebra if X is a Banach space. Here the product in
Z(X) is given by the composition of operators.

Proof (1). For T1,T, € Z(X;Y) and z € X
Ty + To)zlly < | Tazlly + [ Tozlly < (173l + [ T2l) 2] x -

Hence Ty + T € Z(X;Y) with ||Th + To|| < || T1]| + || T2, i-e. the operator
norm satisfies the triangle inequality. O

Proof (2). If (Tk),en is a Cauchy sequence in Z(X;Y), then for z € X,
since ||Tpx — Tyz|ly < ||Th — 11| - || 2] i, the sequence (Thx),py is a Cauchy
sequence in Y. As Y is complete, we have that

Tr:= lim Tpx inY

k—o0

exists pointwise, and it follows easily that 7' : X — Y is linear. It then follows
that

I(T = Ty)ally = lim ||[(Tk — Ty)ally < lminf | Ty — T3] - 2]
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andso T —T; € Z(X;Y), by 5.1(4), and
||T*Tj‘|g(x;y) Slikrgi(ngTk*Tj”g(x;y) —  asj = o0
(cf. the proof of completeness of CY(S;Y) in 3.2). O

Proof (3). On noting that
ISTz)llz < WS- ITzlly < ISI-1T1- 2l

we have that ST € Z(X; Z) with ||ST| < |S] - 1T O
Proof (4). Follows from (3) and (2). O
5.4 Remarks.

(1) If X is finite-dimensional, then every linear map T : X — Y is continu-
ous, i.e. in Z(X;Y). For noncontinuous linear maps, see E9.2.

(2) Every T € Z(X;Y) is Lipschitz continuous, since

1T () =Ty <7 |z —yllx-
If follows that for R > 0 and M >0
A= {ﬂm% TeZ(X:Y), |Tlgxy) <M}

is a bounded and equicontinuous subset of C° (BR(O); Y). However, the
Arzela-Ascoli theorem is not valid in this context. Observe that A as a subset
of C° (B r(0); Y) is not (!) precompact, unless X and Y are finite-dimensional.
Only then are the domain and the image set of these continuous functions
precompact, which played an essential role in the proof of 4.12.

(3) Linear operators occur as Fréchet derivatives of nonlinear maps F' : X —
Y. We define T' € .Z(X;Y) to be the Fréchet derivative of F at x € X, if

F(y) = F(z) —T(y — =)

ly — x| x

—0 inYasy—xin X with y # z.

This is the linear approximation property of the mapping y — F(y) near x,
given by the mapping y — F(z) + T'(y — x). Using quantifiers this definition
reads

Ve>0:36§>0:Vye X :

ly—zllx <6 = [Fly) —Fl@) -Ty—=)lly <e-lly—=zlx.

Proof (1). If n is the dimension of X and {ej,...,e,} is a basis of X, then
forz =30 we €X

n n
IT2lly < 3 lwillTeilly < (Z ||Tei||y> - max i
1=

i=1
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If we take, for instance,
2] :== max [z
1=1,...,n

as the norm in X (recall lemma 4.8), then, by 5.1, the inequality proves the
continuity of T with

||TH,s,ﬂ(X;Y) < Z [Teilly -
i=1

O

We now give a list of special linear operators and some notation. The
detailed study of the properties of each class of linear operators will be the
subject of the following chapters.

5.5 Definitions.

(1) The space X' := Z(X;K) is the dual space to X. The elements of
X' are also called linear functionals. This is true for general topological
vector spaces. If X a normed space, then the norm from (5-5) for T € X’ is

Ty, = sup |Tx|.
Tl = sup_ [Tal (5-7)

(2) The set of compact (linear) operators from X to Y is defined by
H(X;Y):={T e L(X;Y); T(B(0)) is compact } .
If Y is complete, then we can replace “T'(B;(0)) is compact” in the definition
by “T'(B1(0)) is precompact” (see 4.7(5)).
(3) A linear map P : X — X is called a (linear) projection if P? = P.
We denote the set of continuous (linear) projections by
P(X)={PeZLX); PP=P}.

(4) For T € Z(X;Y) we denote by

N (T) (orker(T)) :={zxeX; Tz=0}

the null space (or kernel) of T. The continuity of T' immediately yields that
A (T) is a closed subspace. The range (or image) of T is defined by

Z(T) (orim(T)) ={TzeY;zecX}.

The subspace Z(T') in general is not closed (see the example 5.6(3)). We will
often denote the image of a linear map also as T(X) = Z(T).

(5) T € Z(X;Y) is called a (linear continuous) embedding of X into Y
if T is injective, i.e. if 4(T) = {0}.

Observe: In general, the term embedding is used only for very special maps
T, see for example the embedding theorems in Chapter 10.
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(6) Let X and Y be complete spaces. If T € Z(X;Y) is bijective, then T~ €
Z(Y; X) (see the inverse mapping theorem 7.8, which plays an essential role
in functional analysis). Then T is called an invertible (linear) operator,
or a (linear continuous) isomorphism.

(7) T € Z(X,;Y) is called an isometry (see the definition in 2.24) if
|Tx|ly = [|z]x forall z e X.
(8) If T € Z(X;Y), then
(T'y)(z):=y'(Tx) fory €Y', zeX

defines a linear map 77 : Y/ — X', the adjoint map of T. We also call T’
the adjoint operator of T, because T" € Z(Y', X').

Proof (8). For x € X and ¢/ € Y/,

(T"y") (@) = |y (T=)| < 1Y Iy [ITzlly < 1Y NIy - 1T N2l x
so that, by (5-7),

1T N < 19" lly - I

hence, by (5-5), T € Z(Y', X') with ||T"|| < ||T'|| (see also 12.1, where we
will show that || 77| = || T])). O

Dual spaces will be investigated in Chapter 6. In particular, we will char-
acterize the dual spaces of C°(S) and LP(u), i.e. we will introduce measure
and function spaces, respectively, that are isomorphic to these dual spaces.
Continuous linear projections will be considered in Chapter 9. In Chapter 10,
we will present the most important types of compact operators, and Chap-
ter 11 will be devoted to the spectral theorem for compact operators. Results
on adjoint maps can be found in Chapter 12.

We now give some examples of linear operators.

5.6 Examples.

(1) Let S c IR™ be compact and let (S,B,u) be a measure space with
u(S) < oo, and such that B contains the Borel sets of S. Then C°(S) C L ()
and

T.f ::/Sfdu for f € C°(9)

defines a functional T}, € CY(S)’ (see 6.22 and theorem 6.23). For example,
if 4 = ¢ is the Dirac measure for z € S, then T5_f = f(x).

(2) Examples of operators in .2 (C°(S5)), S C R" compact, are the multi-
plication operators

(Tyf)(@) = f(x)g(z) for f € C(S),
for a fixed g € C°(S).
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(3) An example of an operator T € £ (C°(S); C*(S)) with S = [0,1] is

(Tf)(a /f §)de  for f € CO(S).

One may also consider 7' as an operator in £ (C%(S)). Then £(T) is not
closed in C°(9), since Z(T) = {g € C'(5); g(0) = 0} is a proper subset of
the closure Z(T) = {g € C°(S); ¢(0) = 0}. Similarly, T’ can be defined as
an operator in £ (L*(S)). Then Z(T) = {g € W*'(10,10); g(0) = 0} (see
E3.6), which is a proper dense subset of Z(T') = L'(S).

(4) Let 1 < p < oo and let %Jr 1% = 1. Then for g € L (1) the Holder
inequality yields that

7,0 [ faan tor f€ 220

defines a functional T, € L” (1) (see theorem 6.12).

(5) If p, p' are as in (4) and ¢° € L¥' () for |s| < m with g = (9°)|51<m>
then
Tyf = / O°f-g°dL™  for f € W™P(£2)
[s|<m
defines a functional T, € W™P(2)".

(6) Let p be as in (4) and let (@), be a Dirac sequence. Then 4.13(2)
yields that

Tf(e) = [ oo~ )i dy = (o )
defines an operator Ty, € £ (LP(IR")) with || T;|| < 1. It follows from 4.15(2)
that, if p < oo,
(Tpy —Id)f -0 in LP(IR") as k — o0

for every f € LP(IR"). However, T}, does not converge in the operator norm
(see E5.6).

We now prove some fundamental properties of linear operators.

5.7 Neumann series. Let X be a Banach space and let T' € £ (X) with

lim sup ||Tm||% <1

m—r oo

(in particular, this is satisfied if [|T']] < 1). Then Id — T is bijective and
(Id—T)"' € Z(X) with

(Id—T)~ ZT” in 2(X).
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Proof. For k € IN let S} := Zﬁ:o T". Choose m € IN and 6 < 1 with
|IT"| < 6™ for n > m. Then for m <k <

l
2. T

n=k+1

l

Z 1T < i " — 0 as k — oo.

n=k+1 n=k+1

181 — Skll =

Since .Z(X) is complete, there exists the limit
S:= lim Sy in Z(X).
k—o0
It follows that as k — oo

(Id—T)S +— (Id—T)Sk

k
Z 7Y =1d-TF' — Id  in Z(X),

because for k > m we have that HT'“‘H H < A1 - 0 as k — oo. Similarly,
one can show that S(Id — T') = Id. Hence S is the inverse of Id — T'. O

As a consequence, we obtain that in the space of linear operators, pertur-
bations of invertible operators are again invertible.

5.8 Theorem on invertible operators. Let X, Y be Banach spaces. Then
the set of invertible operators in £ (X;Y") is an open subset. More precisely:
If X # {0} and Y # {0}, then for T, S € Z(X;Y) we have that

T invertible,

o _1} = S invertible.
I§ =Tl < |7~

Proof. Let R:=T — S. Then S = T(Id — T7'R) = (Id — RT~!)T, where
|T7'R|| < ||77Y|-IIR|| < 1, and similarly || RT~!|| < 1. Applying 5.7 yields
the desired result. a

5.9 Analytic functions of operators. Let

o
= E apz"
n=0

be a power series in IK with radius of convergence ¢ > 0. Let X be a Banach
space over IK. If T € Z(X), then

limsupHTmH# <p = f(T):= ZanT" exists in .Z(X).

m—r o0
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Proof. There exists an r with 0 < r < g and an n € IN with |77 < r™ for
m > n. For n < m < k it then holds that

k
E (Il'TZ
i=m

thanks to the assumption on the power series. a

k 0o
< Z |ai|HTi|| < Z la;|r® — 0 as m — oo

5.10 Examples. Let X be a Banach space.
(1) Exponential function. For all T € Z(X) we define

exp(T) (or e" Z T" € Z2(X).

For T,S € Z(X)
ST=TS = eltS=¢Te5,

(2) Evolution equation. For T € £(X) the function A(s) := e*T for
s € R defines an A € C*(R; £ (X)) with

%A(s) =T A(s) = A(s) T.

(3) Logarithm. For T € .Z(X) with ||Id — T'|| < 1 we define

%Id T e 2(X).

Mg

log(T

n=1

(4) For T € Z(X) with ||T'|] < 1 the function A(s) := log(Id — sT') for
|s| <1 definesan A e C>(1 —1,1[; Z(X)) with
d
ds
and exp(A(s)) =1Id — sT.
The following theorem shows that linear operators commute with the

integral (and hence it is a linear version of Jensen’s inequality in E4.9).

5.11 Theorem. Let (5, B, i) be a measure space and let Y and Z be Banach
spaces. If f € L' (pu;Y) and T € Z(Y; Z), then Tof € L*(u; Z) and

T(/Sfdu> :/STofdu.

Explanation: Setting Iy f = fsfdu defines Iy € X(LI(M;Y);Y), and
similarly Iz. In addition, let T be the operator corresponding to 7' lifted to
functions, i.e. (Tf)(z) := T(f(x)) defines T € L(L'(1;Y); L' (1; Z)). The
theorem then says that

—A(8)=-T(Id—sT) ' = —(Id—sT)" ' T
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TIy=I;T,
i.e. in this sense, the integral commutes with linear operators.
Proof. Approximate f in L(u;Y) with step functions
ng
fr = Z Xp,, o with ag; € Y and p(Ey;) < oo,
i=1

with Ey;, ¢ = 1,...,ng, being pairwise disjoint. Then as k£ — oo

T< /S fdu) <—T( /S i du) =T<2iju(Eki)aki)
= Eyi)Tag, = | Tofrdu.
;M( i) T o, /S fedp
Since
[ ITef=Tofll, an < ITI [ 1~ flydu—0 as ki oo
S S

we have that (T fi), o is @ Cauchy sequence in L*(y; Z). It follows that
there exists a g € L'(u; Z) such that

Tofy — gin L*(u; Z)

as k — oo, and hence also

/Tofkdu—>/gdu.
s s

For a subsequence k — oo it holds that To fy — ¢ almost everywhere in
S, and for a further subsequence k — oo we have that fr — f and hence
also T'o f, — Tof almost everywhere in S. Consequently, g = T'o f almost
everywhere. a

The linear operators between function spaces that are most important in
applications are differential and integral operators.

5.12 Hilbert-Schmidt integral operators. Let 2; C IR™, 2, C IR™ be
Lebesgue measurable, 1 < p < oo and 1 < ¢ < oo, and let K : {1 x {2 — K
be Lebesgue measurable with

1
M':<AKLJmmwﬂ@yan<m, -9

1 1
where 5 + = 1. Then
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(Tf)(z) = ; K(z,y)f(y) dy
2
defines an operator T € £ (LP(§22;IK); L(£21;K)) with [T < [[K|. We
call K the integral kernel of the operator 7'
Remark: In 10.15 we will show that T is a compact operator.

Proof. We first assume that all of the following integrals exist. Then using
the Holder inequality we have that

Z;ITf@ﬁde:=/;

q
’ [)/
<[] K@ a)” ([ 15w a)” de= 1K1 11,
2 25 25

which yields the desired result. The existence of the integrals can now be
justified retrospectively, similarly to the proof of 4.13(1), and it follows in
particular that Tf € L(f2;). Here we note that the assumption (5-8) states
that K (z,+) € LP (£2) for almost all € (2, and that the function z
[ K (2, )| 1o (2, Lies in LI(£21). O

q

K(z,y)f(y)dy| dz

£22
q

Now we introduce the set of locally integrable functions.

5.13 Definition. Let {2 C IR" be open.

(1) We let D CC £2 be a shorthand notation for a set D C IR™ which is
precompact with D C £2.

Remark: One also says that D is a relatively precompact subset of (2,
which means that the closure of D is compact in the relative topology of 2.

(2) For 1 <p < o0, let

LP

loc

2)={f:2-K; f|,eLP(D)forall Dcc 2},

the vector space of locally in §2 p-integrable functions.
(3) Equipped with the Fréchet metric

- Il e
22 i ” ”L (K) for fGLIOC(Q)
2 T o

this is a complete metric space. Here (K;), 1 is a sequence of compact sets,
which is an exhaustion of 2 (see (3-2)).

(4) Analogously we define W7"7(12), i.e.

WP () == {f: 2 - K; f|, € W™P(D) for all open sets D CC £2}.

loc
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With this we state the following.

5.14 Linear differential operators. Let {2 C IR" be open and assume
as : 2 — K for multi-indices s with |s| < m. Then

(Tf)(x):= Y as(2)0"f(z)

[s]<m

defines an operator

(1) T € 2(C™(2);C°(R)), if a5 € C°(£2) for |s| < m.

Remark: T € £(C™(£2);C°(£2)), if all a; € C°(£2) and {2 is bounded.

(2) T € Z(C™*(02);C%*(£2)) with 0 < a < 1 provided a, € C**(2) for
[s] <m.

Remark: T € £(C™(2);C%*(2)), if a; € C**(2) and 2 is bounded.

|(3|) T € L(WpP(02); LY (£2)) with 1 < p < oo, provided a, € LS (£2) for
< m.

Remark: T € L (W™P(2); LP(2)), if a, € L>=(12).

In each case we call T' a linear differential operator of order m, and we
call a; for |s| < m the coefficients of the differential operator.

Distributions

We now want to consider the functionals in 5.6 in a more general setting.
To this end, we restrict the functionals to the common vector space C§°(2)
(here set S := 2 in 5.6). Hence we consider functions and measures only in
2, i.e. as in 5.14 without boundary conditions. This leads to the following

5.15 Notation. Let 2 C IR" be open.

(1) Let (£2,B, 1) be a measure space such that B contains the Borel sets of
(2 and such that p is finite on compact subsets. Then

1(O) (or Ta()(©) = /Q Cdu for ¢ € C5(2)

defines a linear map | (or Tao(p ) ) — K.
Remark: With the notatlon in 5.6(1) we have that [p] = To(p) = TM|ng(Q).

Note: The integral in this definition is the Riemann integral (see 6.22). Hence

for the measures considered here one has C{(£2) C L*(p).
(2) Let f € L (£2). Then

1O (or Ta(HQ) = /Q C-FdL for ¢ € CF(Q)
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defines a linear map [f] (or To(f)) : C5°(2) — K.

Observe: This is a special case of (1), on setting u(E) := [, fdL" for
Lebesgue measurable sets E CC {2 (see the definition 5.13(1)).

Remark: With the notation in 5.6(4) one has [f] = To(f) = T?'Cg"(())'

5.16 Lemma. Let {2 C IR" be open and consider the map in 5.15(2)
f = 1f] = Ta(f) from L () to {T: C5°(2) — IK; T linear}.

(1) This map is linear and injective.
(2) The function f can be reconstructed from [f] = T (f).
(3) The definition of the weak derivatives 0° f of a function f € W{;ﬁ;l(f}) in

(3-17) can now be written as
(=DFIA0°Q) = [9°£1(¢)  for ¢ € C5°(2), |s] < m. (5-9)

Proof (1). This follows from 4.22 (applied to sets D CC {2, or note that the
fundamental lemma holds in L (£2)). 0

Proof (2). To see this, choose (. = ¢ * X with E CC {2 as in the proof of
4.22. Then [f](¢.) = [ fdL™ as € = 0. Now choose E = B.(z) with z € 2
and obtain for (a subsequence) € — 0 that
—1
(e % F)(@) = L (Be(@) ™ fo gy AL — f(2)

for L™-almost all z. Here we have used 4.15(2). a

This means that knowledge of all the values [f](¢) with ¢ € C§°(£2)
provides full information on the function f almost everywhere in {2. Hence we
also call C§°(£2) the space of test functions. We transfer this to linear maps

T : C§°(§2) — IK, where the main property is motivated by the structure of
the identity (5-9).

5.17 Distributions. Let 2 C IR" be open and let T : C§°(§2) — K be
linear.

(1) For all multi-indices s, the distributional derivative 9°T is the linear
map 0°T : C§°(2) — K defined by

(O°T)(¢) := (=DI*IT(@°¢)  for ¢ € C5°(12). (5-10)

(2) We call the linear map T' a distribution on {2, and use the notation

Te '),
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if for all open sets D CC {2 there exist a constant Cp and a kp € INU {0}
such that

IT(O)] < Coll¢llernmy forall ¢ € C5°(£2) with supp(¢) € D.  (5-11)

If k = kp can be chosen independently of D, then k (if chosen minimally) is
called the order of T

(3) If T is a distribution, then so is 9°T for all multi-indices s. If T is a
distribution of order k, then 0°T is a distribution of order k + |s|.

Proof (3). We have [(0°T)(¢)| < Cpl|9*Cllckn By < ColCllcrpria1my- O
5.18 Examples.
(1) For f e W™P(£2) and |s|] <m

O*[f]=[0°f] in2'(02). (5-12)

Hence the definition of W™ ({2) can also be formulated as follows: A function
f € LP(£2) is in W™P((2) if all its distributional derivatives up to order m
can be identified with functions in LP({2).

(2) For f e L () and ¢ € C§°(D) with D cC 2

loc

10 = [ ¢ fav with A1 1) 1loncy-

It follows that [f] € 2/(£2) and is of order 0.
(3) For p is as in 5.15(1) and for ¢ € C§°(D) with D CC {2

[M](C)Z/QCdM with [} (O] < (D)<l oy -

It follows that [u] € 2'(£2) and is of order 0.
(4) As an example, let 2 =R and, given c_,cy € IR, let

fa) = {c+ for x > 0,

c_ for x < 0.

By (2), [f] is a distribution of order 0. With the definitions in 5.17(1) and
5.15 it follows that

L1(¢) = =LA1(¢) = (e4 — = )¢(0) = (e — =) B0l (C)

where d¢ is the Dirac measure at the point 0. Hence [f]" is also a distribution
of order 0. In addition,

L") = =[f1(¢") = = (s — =)< (0).

Hence [f]” is a distribution of order 1, if ¢ # c;.
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(5) Let (¢r) e be a general Dirac sequence and let 6o be the Dirac measure
at 0 € IR". Then it holds as k — oo that

[Pr)(C) — [0l (¢)  for all ¢ € C5°(IR™),

i.e. [¢r] converges to [dg] as k — oo pointwise as a linear map. The name
Dirac sequence originates from this property.

(6) As a further example, let f(x) := log|x| for x € IR" \ {0}. Then f €
Li (IR"™), and so, by (2), [f] is a distribution of order 0 on R". For 1 <i <n

(JL‘)LZQ dz forn > 2,

@i =4
lim ((x)—dx forn=1.
6\0 R\ [75,6] X

In order to prove this, verify with the help of Gaufl’s theorem that as € \, 0

GO = —[flO:) — - /}R g BT

- / Co.f dL” + / V¢ dHY
R™\B.(0) 0B.(0)

where v;(x) = & is the i-th component of the outer normal to the set B.(0)

x
(see A8.5(3) for| t‘he general situation). It can be seen that the second integral
converges to zero as € N\, 0. In the case n > 2 the function z — xi|x|_2
is in LL _(IR™), but not for n = 1. Hence for n > 2 it holds that 8;[f] is a
distribution of order 0, while for n = 1 it can be shown that it is a distribution

of order 1.

The essential estimate (5-11) is used in order to approximate distributions
with C'*°-functions by means of convolutions.

5.19 Approximation of distributions. Let 2 C R" and let T € 2'(12).
For ¢ € C§°(B,(0)) and = € 2 with B,.(x) C {2,

(pxT)(z) :=T(p(z —+)) (5-13)
is well defined, since p(x —+) € C§°(£2). Moreover, it holds that:
(1) For T = [f] with f € L. (£2) it follows that

loc
(px[fN(@) = (g flz) if B.(z) C 2.
(2) If D cc 2 with B,(D) C {2, then ¢ xT € C°°(D), with derivatives
*(pxT) = (0°p) xT.
(3) Let D CC 2 and let (¢.),., be a standard Dirac sequence. For small &
we have that ¢, * T € C*°(D) and for all ( € C§°(D)
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e T)(Q) — T(C)  ase—0.
Proof (1). It holds that

(o + (@) = f(plz ) = /Q (@ — ) f () dy = (o * f)(a),

since supp(¢(x —+)) C 2 (formally set f = 0 in the exterior of (2). O

Proof (2). Let kp be chosen for T and D as in (5-11). On introducing the
difference quotients 8 (z) := +(¢(x + he;) —1(z)), the linearity of T yields
that

O (p=T)(x) =T (9 ez —+)) -

We have that 0%¢p(x —+) — 9;p(z —+) in C*P (D) as h — 0, and hence it
follows from (5-11) that

T ¢(x —+) — T(dip(x —+)) = ((Bip) * T) ().

This shows that the partial derivative 0;(p = T')(z) = ((8;¢) * T)(z) exists.
The desired result for higher derivatives now follows by induction on the
order of the derivative. O

Proof (3). We have that

[pe x T](C /C @E*T)() dx.
:T(Qos(l'_ ))

Now it holds that (the proof is given below)

[ c@route =) ae =1 ( [ cwronto - ac) (5-14)

The argument of 7' on the right-hand side is (.(+), if (¢ = 7 * ¢ with
0= (y) := p:(—y). Since (. — ¢ in C*» (D) as ¢ — 0, it follows that T'(¢.) —
T(¢), if kp for T and D is chosen as in (5-11), and so we have shown that

[pe *T)(C) =T((:) — T(¢) ase—0.

The identity (5-14) is closely related to theorem 5.11 and the proof is analo-
gous: Approximate ¢ uniformly by step functions (; with a common compact
support in D. Then (5-14) holds for (; because of the linearity of T The
left-hand side converges as j — oo, since T(¢-(z — +)) is continuous, recall
(2). The right-hand side converges using the same argument as above, since

pZ * ¢ = #Cin Ckr (D). m|
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For functional analysis purposes, the following result is of importance:
The vector space C§°(£2) can be equipped with a topology T in such a way
that T is a distribution if and only if 7" lies in the corresponding dual space,
ie if T: C§°(£2) — IK is linear and continuous with respect to the topology
T. We denote C§°(12), equipped with the topology T, by 2(£2) (see 5.21).
The dual space Z(§2)’ is then the same as 27(2) (see 5.23).

5.20 Topology on C§°(2). Let £2 C IR™ be open. Define

o

Cllexm
p(¢) :== ZQ"“M for ¢ € C{°(£2) with supp(¢) C D CC {2,
2 T Clon )

where the right-hand side is independent of the choice of D. Choose an open
cover (Dj),cp of 2 with sets D; CC Djy1 C §2 for all j € IN. For every
sequence € = (&) ;o With €; > 0 for j € IN define

U. := conv ( U {¢ e 5 (2); supp(¢) C D; and p(¢) < ¢; }) .
jEN

Finally, define
T = {U CC(2) ; for ( € U there exists an ¢ with (+U. C U } .

Then:

(1) pis a Fréchet metric with p(r¢) < rp(¢) for r > 1.
(2) For all € it holds that U, € T.

(3) T is a topology. Hence the sets U, form a neighbourhood basis (see the

definition (4-17)) of 0 with respect to T.
(4) T is independent of the choice of cover (D;); -

We remark that 7 is stronger than the topology induced by p. This follows
from the fact that the p-ball B,(0) C C§°({2) is a neighbourhood in the 7-
topology, namely, B,(0) = U, with € = (sj)jE]N and €; = o.

Proof (2). Let ¢ € Ue. Consider a finite convex combination
(=0 apCr €Us with kg € IN, o >0, S8 oy =1, (5-15)

where ¢, € C§°(D;,) with p(x) < €j,. Choose 0 < 6 < 1 such that p(¢x) <
Ocj, for all k=1,... ko, and set 6 = (6;),p with J; := (1 —6)e;. We claim
that ( + Us C U.. To see this, let

n= Ziozl Bim € Us  withlp € IN, 3 >0, Zfozl Br=1,
where n; € C§°(Dyy,,) with p(m;) < dp,. Then, on noting (1),

p(5¢k) < p(C) <ej,  and  p(i5m) < T5p(m) < em,
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ie. %Ck and ﬁm are elements of U.. Hence the convexity of U, yields that

CHn=034" ok 3G+ 1—0) S, B gm € Ue.
k=1 ] =1 1-0
This shows that U, € T. O

Proof (3). We need to show that U'NU? € T, if U',U? € T. But this follows
from U, C U NU,2, where € := min(ejl-,zs?) for j € IN. O

Proof (4). Let (Dj)jE]N be another cover and let Uz with € = (;),. be
a set defined as above, now with respect to this cover. Since D; is compact
with D; C £2, for each j € IN there exists an m; € IN with D; C Dy

Setting €; := &, for j € N and ¢ = (5j)j€]N then yields that U, C Us. O

5.21 The space 2(§2). We denote the vector space C§°(§2), equipped with
the topology T from 5.20, by 2(2). Then 2(12) is a locally convexr topo-
logical vector space, i.e. it holds that:
(1) 2(2) with T is a Hausdorff space.

(2) 2(£2) is a vector space and addition and scalar multiplication are con-
tinuous (as maps from 2(£2) x 2(£2) to Z(§2) and from IK x Z(£2) to Z(12),
respectively).

(8) For ¢ € U with U € T there exists a convex set V € T with ( € V C U.
Proof (3). By their definition, the sets U, in 5.20 are convex. O

Proof (2). We claim for every U, that Us + Us C U, where § = ((5j)j€]N with
0, = %sj, which implies the continuity of the addition. For the proof let

G ey (Djz) with p((l) < 0j, for 1 =1,2.

We have that (1 + (2 = £(2¢ +2¢2) with p(2¢;) < 2p(¢) < 265, = €5, and so
(1+ ¢ € Ug, as U, is convex. Then the same also holds for arbitrary elements
C1,G2 € Us.

In order to show the continuity of the scalar multiplication at the point
(a0, o) € IK x 2(£2), let U, be given. Let (o € C§°(Dj,) and write

ag — aplp = %(2(@ — ap)Co + 2a(¢ — o)) -

Let |o — ag| < v < 5 and let ¢ — (o € C§°(D;) with p(¢ — (o) < d;, where 7,
d; need to be chosen. Now it holds that ||2v(y ||ck'(ﬁj0) — 0 as vy — 0 for all
k € IN, and so it follows (as in 2.23(2)) that

p(2(a — ag)éo) < p(27¢0) =0 asy — 0.

If we now choose v < % with p(2v¢o) < €j,, then 2(ov — a)¢o € Ue. In
addition, since |2a| < 2(Jag| +7) < 2|ag] + 1,



158 5 Linear operators

p(2a(¢ = o)) < (1 +2[an)p(¢ — o) <5,

if we set 0; := (14 2|ag|)~'e;. This implies that also 2a(¢ — o) € U., and
hence a( € agy + U.. Then the same also follows for all ¢ € (o + Us, where
(S = (5])3611\1 o

Proof (1). Let ¢1,¢? € 2(2) with ¢! # (2 and ¢ := ¢! — (2. We claim that
'+ U)N(C+U.) =0,

if e = (g)jelN and o > 0 is sufficiently small. Indeed, if n',n? € U. with
¢t +nt = (% + 7?2, then also —n' € U., and so

(=C"-C=(n")+n€U.+U. CUs,

on recalling the proof of (2). Now write ( as a convex combination as in
(5-15), so that
1Skl o
1+ [[¢kll o

This implies, if 0 < %, that

< p(Cr) < 20.

0# [Clleo < SRy akliGilloo < maxie, g Ik llco < 125
which is not possible, if ¢ depending on ¢ was chosen sufficiently small. O
5.22 Lemma. For every sequence ((m),,c in Z(2) it holds that:
¢m— 0 asm —ooin 2(02)
if and only if
(1) There exists an open D CC {2 such that (,, € C§°(D) for all m.
(2) Forall D CC £ and all k € IN it holds that || ||cx () — 0 as m — oo,

Proof <. On noting that D is compact and D C {2, the cover in 5.20 contains
a Dj such that D C D;. Then for a given ¢ it follows from (2) (as in 2.23(2))
that p(¢,,) < ¢; for large m, and so (,, € U.. O

Proof =. If we assume that (1) is not satisfied, then there exist an open cover
(Dj)jEIN of 2 with Dj CC {2 and Dj—l C l)j7 as well as T € D]’ \Dj—l and
a subsequence m; — 0o, such that (,, (xj) # 0. Then

{CG‘@ Z ‘Cm ||CHCO(D \D,_ 1)71}

JEIN

is a convex subset of Z((2). On noting that for all j

2 —1
{CeCq(D;); p(Q) <ej } CU, where 53'7(1+Zm) ’

i<j
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we have that U. C U, if € = (g;),c and Uc is defined with respect to the
cover (Dj)jE]N. The definition of the topology and the fact that ¢, — 0 in

2(82) as m — oo yield that (,, € U. for large m. But it follows from the
construction of U that the (,; do not lie in U, a contradiction. This shows
(1).

Now for k € IN and § > 0 choose € = (Ej)je]N with 2%g; = (1 + %)_1 >0
for all j, which yields that

Ue C{CeCFE); lIClor <6}
For large m we have that ¢, € Us, and so || Gy ||or < 0. This shows (2). O
5.23 The dual space of Z(£2). Consider (see 5.5(1)) the dual space
2(82) ={T: 2(2) - K; T is linear and continuous}
of 2(£2). Then (with the notation in 5.17(2))
2(02) =2'(N2).

Proof C. Let T € 2(2). f T ¢ 2'(12), then there exist a D CC {2 and
Cm € C§°(D) with

For all k € IN it then follows that |[Cn||or ) — 0 as m — oo, and so 5.22
yields ¢, — 0 as m — oo in 2(£2). Now the continuity of T implies that
T(mn — 0 as m — oo, which is a contradiction. a

Proof >. Let T' € 9'(£2), let (D;) ;. be the exhaustion from 5.20 and let

T¢| < Cj”CHc’fj(;j) for ¢ € Cg°(D;).

For § > 0 let € = (£;) .y be defined by ¢; := 27ki c_f—i-é' Then

As T is linear, it follows that |T¢(| < § for all ¢ € U, (with U, as in 5.20).
This proves the continuity of 7. O
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E5 Exercises

E5.1 Commutator. Let X be a nontrivial normed vector space and let
P,Q : X — X be linear maps with PQ — QP = Id. Then P and @) cannot
both be continuous. (This relation, which appears in quantum mechanics, is
called the Heisenberg relation.)

Solution. It follows inductively for n € IN that
PQ" —Q"P =nQ" ", (E5-1)

on noting that for such n we have that

P - Q" P = (PQ" - Q"P)Q + Q" (PQ — QP)

—_——— —_———
=nQn"~1! =1Q%=Id
=nQ"'Q+ Q" =(n+1)Q".

Assuming that P, Q € £(X), it follows from (E5-1) that

nf|Q | <21 Pl - Q) < 21P)- Qi [l

and hence Q™! = 0 for large n, that is, for n > 2||P| - ||Q]. It follows
inductively from (E5-1) that Q""" =0form=1,...,n,ie. I[d=Q" =0, a
contradiction if X # {0}. O

E5.2 Nonexistence of the inverse. For noncomplete normed spaces, the
inverse in 5.7 in general does not exist.

Solution. We give a counterexample. Let Y := /2(IR) and let
X = {x = (Z4);en € RYN ; only finitely many z; # 0 } clR)=Y,
i.e. X is equipped with the Y-norm. Let € > 0. For the shift operator
0 fori =1,
(Tx); == )
€x;_1 fori>1,

it holds that T'€ Z(Y) and ||T|| = €. Hence for € < 1 we can apply 5.7 for
Y and T, and obtain, for instance, that

(Id —T) e, = ZT”el = (siil)iem ¢ X.
n=0
On the other hand, Tx € X for x € X. Hence 5.7 is not valid for X and T|X

(X is not complete and X =Y). O

E5.3 Unique extension of linear maps. Let Z C X be a dense subspace
and let T € Z(Z;Y). Then there exists a unique continuous extension 7" of
T to X. Moreover, T' € Z(X;Y).
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Solution. T is uniformly continuous on Z (in fact Lipschitz continuous with
Lipschitz constant ||T'||). Hence, on recalling E4.18,

Tx:= lim Tz forzeX

z2€Z : z—x

defines a unique continuous extension of 7" to X. In addition, the linearity of
T carries over to T'. O

E5.4 Limit of linear maps. Let (7}),.n be a bounded sequence in
Z(X;Y) and let D C X be dense. If there exists

limy oo Txx  for x € D, (E5-2)

then there exists
Tr:= lim Tyx forall z e X

k—o00

and T € Z(X;Y).

Solution. Let || Tx|| < C < oo for all k and let Z := span(D). Then it follows
from (E5-2) that

Tz:= lim Tz
k—o0

exists for all z € Z, and that T is linear on Z. Since
ITz]] = lim [[Tyz]] < Cll=|l,
—> 00

it holds that T € Z(Z;Y). Let T € £(X;Y) be the unique extension of T
to X from E5.3. Then it holds for all x € X and z € Z that

Hf:c - Tka < Hfz - Tsz + (HTH +O) |z — ||
— (Hf” + )|z —z|| ask— oo,
As Z = X, we can choose ||z — z|| arbitrarily small. This shows that

Tz = lim Tpx forallz e X.

k—oc0

O

E5.5 Pointwise convergence of operators. Let T, T, € Z(X;Y), k € N,
with ||T%]| < C < oo and let D C X be dense. If for all x € D

Thx — Tx as k — oo,

then this also holds for all z € X.

Solution. See the second part of the solution of E5.4. O
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E5.6 Convergence of operators. Let T, be defined as in 5.6(6) with 1 <
p < 00. Does it hold that T, —s Id as k — oo in the space £ (LP(IR")) ?

Solution. No! As an example, let n = 1 and ¢ = 9., with ¢, — 0 as
k — oo, where ¢ (z) := 5 for |z| < € and ¢.(z) := 0 for |z| > e. Then
consider T} = ¢, * 1, . Direct calculations yield that
1
Ve x Y. (x) = max((), 55( — —)) ,
1
el = (26) 777,
1 1
||¢a * e _¢E||LP = (1 +p) P (45);) h.

Consequently,

T, — 1/1 3
HTk_IdH Z H kwﬁk wEkHLP :7< +p) >0.
e Ml o 2\ 2
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