
5 Linear operators

In this chapter, X, Y , Z, etc. usually denote normed IK-vector spaces. We
consider linear maps T from X to Y , where, following the notation for ma-
trices, we usually write Tx instead of T (x), and similarly ST instead of S◦T
for linear maps T : X → Y and S : Y → Z. In functional analysis, only the
continuous linear maps are of importance (see E9.2), which are those linear
maps for which T (x) can be estimated by x:

5.1 Lemma. If T : X → Y is linear and x0 ∈ X, then the following are
equivalent:

(1) T is continuous.

(2) T is continuous at x0.

(3) sup‖x‖X≤1 ‖Tx‖Y < ∞.

(4) There exists a constant C with ‖Tx‖Y ≤ C‖x‖X for all x ∈ X.

Property 5.1(4) written with quantifiers reads

∃ C ≥ 0 :
(
∀ x ∈ X : ‖Tx‖Y ≤ C‖x‖X

)
Proof (2)⇒(3). There exists an ε > 0 such that T

(
Bε(x0)

)
⊂ B1(T (x0)).

Let x ∈ B1(0). Then x0 + εx ∈ Bε(x0), and hence

T (x0) + εT (x) = T (x0 + εx) ∈ B1(T (x0)) ,

which implies that T (x) ∈ B 1
ε
(0). ��

Proof (3)⇒(4). Let C be the supremum in (3). Then for x �= 0

‖T (x)‖Y = ‖x‖X ·
∥∥∥∥T( x

‖x‖X

)∥∥∥∥
Y

≤ ‖x‖X · C .

��

Proof (4)⇒(1). For x, x1 ∈ X we have that

‖T (x)− T (x1)‖Y = ‖T (x− x1)‖Y ≤ C‖x− x1‖X −→ 0 as x → x1 ,

i.e. T is continuous at x1. This is true for all x1. ��
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142 5 Linear operators

5.2 Linear operators. We define

L (X;Y ) :=
{
T : X → Y ; T is linear and continuous

}
.

We call maps in L (X;Y ) linear operators. This is true in general for topo-
logical vector spaces X and Y (see 5.23). In the literature, if they are normed
spaces, elements of L (X;Y ) are often also called bounded operators. If
X and Y are normed spaces, on recalling 5.1(3), we define for every linear
operator T ∈ L (X;Y ) the operator norm of T by

‖T ‖
L (X;Y ) := sup

‖x‖X≤1

‖Tx‖Y < ∞ . (5-5)

In the following, we often use the abbreviation ‖T ‖ for ‖T ‖
L (X;Y ). It follows

from the proof of 5.1 that ‖T ‖
L (X;Y ) is the smallest number satisfying

‖Tx‖Y ≤ ‖T ‖
L (X;Y )‖x‖X for all x ∈ X . (5-6)

We set L (X) := L (X;X) and denote the identity on X by Id (or by I ).
Clearly, Id ∈ L (X).

5.3 Theorem. Let X, Y , and Z be normed spaces.

(1) L (X;Y ) equipped with ‖·‖L (X;Y ) in (5-5) is a normed space.

(2) L (X;Y ) is a Banach space if Y is a Banach space.

(3) If T ∈ L (X;Y ) and S ∈ L (Y ;Z), then ST ∈ L (X;Z) and

‖ST ‖
L (X;Z) ≤ ‖S‖

L (Y ;Z) · ‖T ‖
L (X;Y ) .

(4) L (X) is a Banach algebra if X is a Banach space. Here the product in
L (X) is given by the composition of operators.

Proof (1). For T1, T2 ∈ L (X;Y ) and x ∈ X

‖(T1 + T2)x‖Y ≤ ‖T1x‖Y + ‖T2x‖Y ≤
(
‖T1‖+ ‖T2‖

)
‖x‖X .

Hence T1 + T2 ∈ L (X;Y ) with ‖T1 + T2‖ ≤ ‖T1‖ + ‖T2‖, i.e. the operator
norm satisfies the triangle inequality. ��

Proof (2). If (Tk)k∈IN is a Cauchy sequence in L (X;Y ), then for x ∈ X,
since ‖Tkx− Tlx‖Y ≤ ‖Tk − Tl‖ · ‖x‖X , the sequence (Tkx)k∈IN is a Cauchy
sequence in Y . As Y is complete, we have that

Tx := lim
k→∞

Tkx in Y

exists pointwise, and it follows easily that T : X → Y is linear. It then follows
that

‖(T − Tj)x‖Y = lim
k→∞

‖(Tk − Tj)x‖Y ≤ lim inf
k→∞

‖Tk − Tj‖ · ‖x‖X ,
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and so T − Tj ∈ L (X;Y ), by 5.1(4), and

‖T − Tj‖L (X;Y ) ≤ lim inf
k→∞

‖Tk − Tj‖L (X;Y ) −→ as j → ∞

(cf. the proof of completeness of C0(S;Y ) in 3.2). ��

Proof (3). On noting that

‖S(Tx)‖Z ≤ ‖S‖ · ‖Tx‖Y ≤ ‖S‖ · ‖T ‖ · ‖x‖X ,

we have that ST ∈ L (X;Z) with ‖ST ‖ ≤ ‖S‖ · ‖T ‖. ��

Proof (4). Follows from (3) and (2). ��

5.4 Remarks.

(1) If X is finite-dimensional, then every linear map T : X → Y is continu-
ous, i.e. in L (X;Y ). For noncontinuous linear maps, see E9.2.

(2) Every T ∈ L (X;Y ) is Lipschitz continuous, since

‖T (x)− T (y)‖Y ≤ ‖T ‖ · ‖x− y‖X .

If follows that for R > 0 and M > 0

A :=
{
T |

BR(0)
; T ∈ L (X;Y ), ‖T ‖

L (X;Y ) ≤ M
}

is a bounded and equicontinuous subset of C0
(
BR(0);Y

)
. However, the

Arzelà-Ascoli theorem is not valid in this context. Observe that A as a subset
of C0

(
BR(0);Y

)
is not (!) precompact, unlessX and Y are finite-dimensional.

Only then are the domain and the image set of these continuous functions
precompact, which played an essential role in the proof of 4.12.

(3) Linear operators occur as Fréchet derivatives of nonlinear maps F : X →
Y . We define T ∈ L (X;Y ) to be the Fréchet derivative of F at x ∈ X, if

F (y)− F (x)− T (y − x)

‖y − x‖X
−→ 0 in Y as y → x in X with y �= x.

This is the linear approximation property of the mapping y �→ F (y) near x,
given by the mapping y �→ F (x) + T (y − x). Using quantifiers this definition
reads

∀ ε > 0 : ∃ δ > 0 : ∀ y ∈ X :

‖y − x‖X ≤ δ =⇒ ‖F (y)− F (x)− T (y − x)‖Y ≤ ε · ‖y − x‖X .

Proof (1). If n is the dimension of X and {e1, . . . , en} is a basis of X, then
for x =

∑n
i=1 xiei ∈ X

‖Tx‖Y ≤
n∑

i=1

|xi |‖Tei‖Y ≤
(

n∑
i=1

‖Tei‖Y

)
· max
i=1,...,n

|xi | .
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If we take, for instance,
‖x‖ := max

i=1,...,n
|xi |

as the norm in X (recall lemma 4.8), then, by 5.1, the inequality proves the
continuity of T with

‖T ‖
L (X;Y ) ≤

n∑
i=1

‖Tei‖Y .

��

We now give a list of special linear operators and some notation. The
detailed study of the properties of each class of linear operators will be the
subject of the following chapters.

5.5 Definitions.

(1) The space X ′ := L (X; IK) is the dual space to X. The elements of
X ′ are also called linear functionals. This is true for general topological
vector spaces. If X a normed space, then the norm from (5-5) for T ∈ X ′ is

‖T ‖X′ := sup
‖x‖X≤1

|Tx| . (5-7)

(2) The set of compact (linear) operators from X to Y is defined by

K (X;Y ) :=
{
T ∈ L (X;Y ) ; T (B1(0)) is compact

}
.

If Y is complete, then we can replace “T (B1(0)) is compact” in the definition
by “T (B1(0)) is precompact” (see 4.7(5)).

(3) A linear map P : X → X is called a (linear) projection if P 2 = P .
We denote the set of continuous (linear) projections by

P(X) :=
{
P ∈ L (X) ; P 2 = P

}
.

(4) For T ∈ L (X;Y ) we denote by

N (T )
(
or ker(T )

)
:= {x ∈ X ; Tx = 0}

the null space (or kernel) of T . The continuity of T immediately yields that
N (T ) is a closed subspace. The range (or image) of T is defined by

R(T )
(
or im(T )

)
:= {Tx ∈ Y ; x ∈ X} .

The subspace R(T ) in general is not closed (see the example 5.6(3)). We will
often denote the image of a linear map also as T (X) = R(T ).

(5) T ∈ L (X;Y ) is called a (linear continuous) embedding of X into Y
if T is injective, i.e. if N (T ) = {0}.
Observe: In general, the term embedding is used only for very special maps
T , see for example the embedding theorems in Chapter 10.
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(6) LetX and Y be complete spaces. If T ∈ L (X;Y ) is bijective, then T−1 ∈
L (Y ;X) (see the inverse mapping theorem 7.8, which plays an essential role
in functional analysis). Then T is called an invertible (linear) operator,
or a (linear continuous) isomorphism.

(7) T ∈ L (X;Y ) is called an isometry (see the definition in 2.24) if

‖Tx‖Y = ‖x‖X for all x ∈ X.

(8) If T ∈ L (X;Y ), then

(T ′y′)(x) := y′(Tx) for y′ ∈ Y ′, x ∈ X

defines a linear map T ′ : Y ′ → X ′, the adjoint map of T . We also call T ′

the adjoint operator of T , because T ′ ∈ L (Y ′, X ′).

Proof (8). For x ∈ X and y′ ∈ Y ′,

|(T ′y′)(x)| = |y′(Tx)| ≤ ‖y′‖Y ′‖Tx‖Y ≤ ‖y′‖Y ′ · ‖T ‖ · ‖x‖X ,

so that, by (5-7),

‖T ′y′‖X′ ≤ ‖y′‖Y ′ · ‖T ‖ ,

hence, by (5-5), T ′ ∈ L (Y ′, X ′) with ‖T ′‖ ≤ ‖T ‖ (see also 12.1, where we
will show that ‖T ′‖ = ‖T ‖). ��

Dual spaces will be investigated in Chapter 6. In particular, we will char-
acterize the dual spaces of C0(S) and Lp(μ), i.e. we will introduce measure
and function spaces, respectively, that are isomorphic to these dual spaces.
Continuous linear projections will be considered in Chapter 9. In Chapter 10,
we will present the most important types of compact operators, and Chap-
ter 11 will be devoted to the spectral theorem for compact operators. Results
on adjoint maps can be found in Chapter 12.

We now give some examples of linear operators.

5.6 Examples.

(1) Let S ⊂ IRn be compact and let (S,B, μ) be a measure space with
μ(S) < ∞, and such that B contains the Borel sets of S. Then C0(S) ⊂ L1(μ)
and

Tμf :=

∫
S

f dμ for f ∈ C0(S)

defines a functional Tμ ∈ C0(S)′ (see 6.22 and theorem 6.23). For example,
if μ = δx is the Dirac measure for x ∈ S, then Tδxf = f(x).

(2) Examples of operators in L
(
C0(S)

)
, S ⊂ IRn compact, are the multi-

plication operators

(Tgf)(x) := f(x)g(x) for f ∈ C0(S) ,

for a fixed g ∈ C0(S).



146 5 Linear operators

(3) An example of an operator T ∈ L
(
C0(S) ;C1(S)

)
with S = [0, 1] is

(Tf)(x) :=

∫ x

0

f(ξ) dξ for f ∈ C0(S).

One may also consider T as an operator in L
(
C0(S)

)
. Then R(T ) is not

closed in C0(S), since R(T ) = {g ∈ C1(S) ; g(0) = 0} is a proper subset of
the closure R(T ) = {g ∈ C0(S) ; g(0) = 0}. Similarly, T can be defined as
an operator in L

(
L1(S)

)
. Then R(T ) = {g ∈ W 1,1(]0, 1[) ; g(0) = 0} (see

E3.6), which is a proper dense subset of R(T ) = L1(S).

(4) Let 1 ≤ p ≤ ∞ and let 1
p + 1

p′ = 1. Then for g ∈ Lp′

(μ) the Hölder
inequality yields that

Tgf :=

∫
S

fg dμ for f ∈ Lp(μ)

defines a functional Tg ∈ Lp(μ)′ (see theorem 6.12).

(5) If p, p′ are as in (4) and gs ∈ Lp′

(Ω) for |s| ≤ m with g = (gs)|s|≤m,
then

Tgf :=
∑

|s|≤m

∫
Ω

∂sf · gs dLn for f ∈ Wm,p(Ω)

defines a functional Tg ∈ Wm,p(Ω)
′
.

(6) Let p be as in (4) and let (ϕk)k∈IN be a Dirac sequence. Then 4.13(2)
yields that

Tkf(x) :=

∫
IRn

ϕk(x− y)f(y) dy = (ϕk ∗ f)(x)

defines an operator Tk ∈ L
(
Lp(IRn)

)
with ‖Tk‖ ≤ 1. It follows from 4.15(2)

that, if p < ∞,

(Tk − Id)f → 0 in Lp(IRn) as k → ∞

for every f ∈ Lp(IRn). However, Tk does not converge in the operator norm
(see E5.6).

We now prove some fundamental properties of linear operators.

5.7 Neumann series. Let X be a Banach space and let T ∈ L (X) with

lim sup
m→∞

‖Tm‖
1
m < 1

(in particular, this is satisfied if ‖T ‖ < 1). Then Id − T is bijective and
(Id− T )−1 ∈ L (X) with

(Id− T )−1 =

∞∑
n=0

Tn in L (X).
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Proof. For k ∈ IN let Sk :=
∑k

n=0 T
n. Choose m ∈ IN and θ < 1 with

‖Tn‖ ≤ θn for n ≥ m. Then for m ≤ k < l

‖Sl − Sk‖ =

∥∥∥∥∥
l∑

n=k+1

Tn

∥∥∥∥∥ ≤
l∑

n=k+1

‖Tn‖ ≤
∞∑

n=k+1

θn −→ 0 as k → ∞.

Since L (X) is complete, there exists the limit

S := lim
k→∞

Sk in L (X) .

It follows that as k → ∞

(Id− T )S ←− (Id− T )Sk

=
k∑

n=0

(Tn − Tn+1) = Id− T k+1 −→ Id in L (X) ,

because for k ≥ m we have that
∥∥T k+1

∥∥ ≤ θk+1 → 0 as k → ∞. Similarly,
one can show that S(Id− T ) = Id. Hence S is the inverse of Id− T . ��

As a consequence, we obtain that in the space of linear operators, pertur-
bations of invertible operators are again invertible.

5.8 Theorem on invertible operators. Let X, Y be Banach spaces. Then
the set of invertible operators in L (X;Y ) is an open subset. More precisely:
If X �= {0} and Y �= {0}, then for T, S ∈ L (X;Y ) we have that

T invertible,

‖S − T ‖ <
∥∥T−1

∥∥−1

}
=⇒ S invertible.

Proof. Let R := T − S. Then S = T (Id − T−1R) = (Id − RT−1)T , where∥∥T−1R
∥∥ ≤

∥∥T−1
∥∥ ·‖R‖ < 1, and similarly

∥∥RT−1
∥∥ < 1. Applying 5.7 yields

the desired result. ��

5.9 Analytic functions of operators. Let

f(z) :=

∞∑
n=0

anz
n

be a power series in IK with radius of convergence � > 0. Let X be a Banach
space over IK. If T ∈ L (X), then

lim sup
m→∞

‖Tm‖
1
m < � =⇒ f(T ) :=

∞∑
n=0

anT
n exists in L (X) .
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Proof. There exists an r with 0 < r < � and an n ∈ IN with ‖Tm‖ ≤ rm for
m ≥ n. For n ≤ m ≤ k it then holds that∥∥∥∥∥

k∑
i=m

aiT
i

∥∥∥∥∥ ≤
k∑

i=m

|ai |
∥∥T i

∥∥ ≤
∞∑

i=m

|ai |ri −→ 0 as m → ∞

thanks to the assumption on the power series. ��
5.10 Examples. Let X be a Banach space.

(1) Exponential function. For all T ∈ L (X) we define

exp(T )
(
or eT

)
:=

∞∑
n=0

1

n!
Tn ∈ L (X) .

For T, S ∈ L (X)

S T = T S =⇒ eT+S = eT eS .

(2) Evolution equation. For T ∈ L (X) the function A(s) := esT for
s ∈ IR defines an A ∈ C∞(

IR ; L (X)
)
with

d

ds
A(s) = T A(s) = A(s) T .

(3) Logarithm. For T ∈ L (X) with ‖Id− T ‖ < 1 we define

log(T ) := −
∞∑

n=1

1

n
(Id− T )n ∈ L (X) .

(4) For T ∈ L (X) with ‖T ‖ < 1 the function A(s) := log(Id− sT ) for
|s| < 1 defines an A ∈ C∞(]− 1, 1[ ; L (X)) with

d

ds
A(s) = −T (Id− sT )−1 = −(Id− sT )−1 T

and exp(A(s)) = Id− sT .

The following theorem shows that linear operators commute with the
integral (and hence it is a linear version of Jensen’s inequality in E4.9).

5.11 Theorem. Let (S,B, μ) be a measure space and let Y and Z be Banach
spaces. If f ∈ L1(μ ;Y ) and T ∈ L (Y ;Z), then T ◦f ∈ L1(μ ;Z) and

T

(∫
S

f dμ

)
=

∫
S

T ◦f dμ .

Explanation: Setting IY f :=
∫
S
f dμ defines IY ∈ L

(
L1(μ;Y );Y

)
, and

similarly IZ . In addition, let T̃ be the operator corresponding to T lifted to
functions, i.e. (T̃ f)(x) := T (f(x)) defines T̃ ∈ L (L1(μ;Y );L1(μ;Z)). The
theorem then says that
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T IY = IZ T̃ ,

i.e. in this sense, the integral commutes with linear operators.

Proof. Approximate f in L1(μ;Y ) with step functions

fk =

nk∑
i=1

XEki
αki with αki ∈ Y and μ(Eki) < ∞,

with Eki, i = 1, . . . , nk, being pairwise disjoint. Then as k → ∞

T

(∫
S

f dμ

)
←− T

(∫
S

fk dμ

)
= T

(∑
i

μ(Eki)αki

)

=
∑
i

μ(Eki)Tαki =

∫
S

T ◦fk dμ .

Since∫
S

‖T ◦fk − T ◦fl‖Z dμ ≤ ‖T ‖
∫
S

‖fk − fl‖Y dμ −→ 0 as k, l → ∞,

we have that (T ◦fk)k∈IN is a Cauchy sequence in L1(μ;Z). It follows that
there exists a g ∈ L1(μ;Z) such that

T ◦fk −→ g in L1(μ;Z)

as k → ∞, and hence also∫
S

T ◦fk dμ −→
∫
S

g dμ .

For a subsequence k → ∞ it holds that T ◦fk → g almost everywhere in
S, and for a further subsequence k → ∞ we have that fk → f and hence
also T ◦fk → T ◦f almost everywhere in S. Consequently, g = T ◦f almost
everywhere. ��

The linear operators between function spaces that are most important in
applications are differential and integral operators.

5.12 Hilbert-Schmidt integral operators. Let Ω1 ⊂ IRn1 , Ω2 ⊂ IRn2 be
Lebesgue measurable, 1 < p < ∞ and 1 < q < ∞, and let K : Ω1 ×Ω2 → IK
be Lebesgue measurable with

‖K‖ :=

(∫
Ω1

(∫
Ω2

|K(x, y)|p
′

dy
) q

p′

dx

) 1
q

< ∞ , (5-8)

where 1
p + 1

p′ = 1. Then
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(Tf)(x) :=

∫
Ω2

K(x, y)f(y) dy

defines an operator T ∈ L
(
Lp(Ω2; IK) ;Lq(Ω1; IK)

)
with ‖T ‖ ≤ ‖K‖. We

call K the integral kernel of the operator T .

Remark: In 10.15 we will show that T is a compact operator.

Proof. We first assume that all of the following integrals exist. Then using
the Hölder inequality we have that∫

Ω1

|Tf(x)|q dx =

∫
Ω1

∣∣∣∣∫
Ω2

K(x, y)f(y) dy

∣∣∣∣q dx
≤

∫
Ω1

∣∣∣∣∫
Ω2

|K(x, y)|p
′

dy

∣∣∣∣
q
p′

·
(∫

Ω2

|f(y)|p dy
) q

p
dx = ‖K‖q · ‖f ‖qLp(Ω2)

,

which yields the desired result. The existence of the integrals can now be
justified retrospectively, similarly to the proof of 4.13(1), and it follows in
particular that Tf ∈ Lq(Ω1). Here we note that the assumption (5-8) states
that K(x,·) ∈ Lp′

(Ω2) for almost all x ∈ Ω1, and that the function x �→
‖K(x,·)‖Lp′ (Ω2)

lies in Lq(Ω1). ��

Now we introduce the set of locally integrable functions.

5.13 Definition. Let Ω ⊂ IRn be open.

(1) We let D ⊂⊂ Ω be a shorthand notation for a set D ⊂ IRn which is
precompact with D ⊂ Ω.

Remark: One also says that D is a relatively precompact subset of Ω,
which means that the closure of D is compact in the relative topology of Ω.

(2) For 1 ≤ p ≤ ∞, let

Lp
loc(Ω) :=

{
f : Ω → IK ; f|D ∈ Lp(D) for all D ⊂⊂ Ω

}
,

the vector space of locally in Ω p-integrable functions.

(3) Equipped with the Fréchet metric

�(f) :=
∑
i∈IN

2−i
‖f ‖Lp(Ki)

1 + ‖f ‖Lp(Ki)

for f ∈ Lp
loc(Ω)

this is a complete metric space. Here (Ki)i∈IN is a sequence of compact sets,
which is an exhaustion of Ω (see (3-2)).

(4) Analogously we define Wm,p
loc (Ω), i.e.

Wm,p
loc (Ω) := {f : Ω → IK ; f|D ∈ Wm,p(D) for all open sets D ⊂⊂ Ω} .
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With this we state the following.

5.14 Linear differential operators. Let Ω ⊂ IRn be open and assume
as : Ω → IK for multi-indices s with |s| ≤ m. Then

(Tf)(x) :=
∑

|s|≤m

as(x)∂
sf(x)

defines an operator

(1) T ∈ L
(
Cm(Ω);C0(Ω)

)
, if as ∈ C0(Ω) for |s| ≤ m.

Remark: T ∈ L
(
Cm(Ω);C0(Ω)

)
, if all as ∈ C0(Ω) and Ω is bounded.

(2) T ∈ L
(
Cm,α(Ω) ;C0,α(Ω)

)
with 0 < α ≤ 1 provided as ∈ C0,α(Ω) for

|s| ≤ m.

Remark: T ∈ L
(
Cm,α(Ω) ;C0,α(Ω)

)
, if as ∈ C0,α(Ω) and Ω is bounded.

(3) T ∈ L
(
Wm,p

loc (Ω); Lp
loc(Ω)

)
with 1 ≤ p ≤ ∞, provided as ∈ L∞

loc(Ω) for
|s| ≤ m.

Remark: T ∈ L
(
Wm,p(Ω); Lp(Ω)

)
, if as ∈ L∞(Ω).

In each case we call T a linear differential operator of order m, and we
call as for |s| ≤ m the coefficients of the differential operator.

Distributions

We now want to consider the functionals in 5.6 in a more general setting.
To this end, we restrict the functionals to the common vector space C∞

0 (Ω)
(here set S := Ω in 5.6). Hence we consider functions and measures only in
Ω, i.e. as in 5.14 without boundary conditions. This leads to the following

5.15 Notation. Let Ω ⊂ IRn be open.

(1) Let (Ω,B, μ) be a measure space such that B contains the Borel sets of
Ω and such that μ is finite on compact subsets. Then

[μ](ζ) (or TΩ(μ)(ζ)) :=

∫
Ω

ζ dμ for ζ ∈ C∞
0 (Ω)

defines a linear map [μ]
(
or TΩ(μ)

)
: C∞

0 (Ω) → IK.

Remark: With the notation in 5.6(1) we have that [μ] = TΩ(μ) = Tμ|C∞
0 (Ω)

.

Note: The integral in this definition is the Riemann integral (see 6.22). Hence
for the measures considered here one has C0

0 (Ω) ⊂ L1(μ).

(2) Let f ∈ L1
loc(Ω). Then

[f ](ζ) (or TΩ(f)(ζ)) :=

∫
Ω

ζ · f dLn for ζ ∈ C∞
0 (Ω)
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defines a linear map [f ]
(
or TΩ(f)

)
: C∞

0 (Ω) → IK.

Observe: This is a special case of (1), on setting μ(E) :=
∫
E
f dLn for

Lebesgue measurable sets E ⊂⊂ Ω (see the definition 5.13(1)).

Remark: With the notation in 5.6(4) one has [f ] = TΩ(f) = Tf |C∞
0 (Ω)

.

5.16 Lemma. Let Ω ⊂ IRn be open and consider the map in 5.15(2)

f �→ [f ] = TΩ(f) from L1
loc(Ω) to {T : C∞

0 (Ω) → IK ; T linear}.

(1) This map is linear and injective.

(2) The function f can be reconstructed from [f ] = TΩ(f).

(3) The definition of the weak derivatives ∂sf of a function f ∈ Wm,1
loc (Ω) in

(3-17) can now be written as

(−1)|s|[f ](∂sζ) = [∂sf ](ζ) for ζ ∈ C∞
0 (Ω), |s| ≤ m. (5-9)

Proof (1). This follows from 4.22 (applied to sets D ⊂⊂ Ω, or note that the
fundamental lemma holds in L1

loc(Ω)). ��

Proof (2). To see this, choose ζε = ϕε ∗ XE with E ⊂⊂ Ω as in the proof of
4.22. Then [f ](ζε) →

∫
E
f dLn as ε → 0. Now choose E = Bε(x) with x ∈ Ω

and obtain for (a subsequence) ε → 0 that

(ϕε ∗ f)(x) = Ln
(
Bε(x)

)−1 ∫
Bε(x)

f dLn → f(x)

for Ln-almost all x. Here we have used 4.15(2). ��

This means that knowledge of all the values [f ](ζ) with ζ ∈ C∞
0 (Ω)

provides full information on the function f almost everywhere in Ω. Hence we
also call C∞

0 (Ω) the space of test functions. We transfer this to linear maps
T : C∞

0 (Ω) → IK, where the main property is motivated by the structure of
the identity (5-9).

5.17 Distributions. Let Ω ⊂ IRn be open and let T : C∞
0 (Ω) → IK be

linear.

(1) For all multi-indices s, the distributional derivative ∂sT is the linear
map ∂sT : C∞

0 (Ω) → IK defined by

(∂sT )(ζ) := (−1)|s|T (∂sζ) for ζ ∈ C∞
0 (Ω) . (5-10)

(2) We call the linear map T a distribution on Ω, and use the notation

T ∈ D ′(Ω) ,
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if for all open sets D ⊂⊂ Ω there exist a constant CD and a kD ∈ IN ∪ {0}
such that

|T (ζ)| ≤ CD‖ζ‖CkD (D) for all ζ ∈ C∞
0 (Ω) with supp(ζ) ⊂ D. (5-11)

If k = kD can be chosen independently of D, then k (if chosen minimally) is
called the order of T .

(3) If T is a distribution, then so is ∂sT for all multi-indices s. If T is a
distribution of order k, then ∂sT is a distribution of order k + |s|.

Proof (3). We have |(∂sT )(ζ)| ≤ CD‖∂sζ‖CkD (D) ≤ CD‖ζ‖CkD+|s|(D). ��

5.18 Examples.

(1) For f ∈ Wm,p(Ω) and |s| ≤ m

∂s[f ] = [∂sf ] in D ′(Ω). (5-12)

Hence the definition ofWm,p(Ω) can also be formulated as follows: A function
f ∈ Lp(Ω) is in Wm,p(Ω) if all its distributional derivatives up to order m
can be identified with functions in Lp(Ω).

(2) For f ∈ L1
loc(Ω) and ζ ∈ C∞

0 (D) with D ⊂⊂ Ω

[f ](ζ) =

∫
Ω

ζ · f dLn with |[f ](ζ)| ≤ ‖f ‖L1(D) · ‖ζ‖C0(D) .

It follows that [f ] ∈ D ′(Ω) and is of order 0.

(3) For μ is as in 5.15(1) and for ζ ∈ C∞
0 (D) with D ⊂⊂ Ω

[μ](ζ) =

∫
Ω

ζ dμ with |[μ](ζ)| ≤ μ(D)‖ζ‖C0(D) .

It follows that [μ] ∈ D ′(Ω) and is of order 0.

(4) As an example, let Ω = IR and, given c−, c+ ∈ IR, let

f(x) :=

{
c+ for x > 0,

c− for x < 0.

By (2), [f ] is a distribution of order 0. With the definitions in 5.17(1) and
5.15 it follows that

[f ]′(ζ) = −[f ](ζ ′) =
(
c+ − c−

)
ζ(0) =

(
c+ − c−

)
[δ0](ζ) ,

where δ0 is the Dirac measure at the point 0. Hence [f ]′ is also a distribution
of order 0. In addition,

[f ]′′(ζ) = −[f ]′(ζ ′) = −
(
c+ − c−

)
ζ ′(0) .

Hence [f ]′′ is a distribution of order 1, if c− �= c+.
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(5) Let (ϕk)k∈IN be a general Dirac sequence and let δ0 be the Dirac measure
at 0 ∈ IRn. Then it holds as k → ∞ that

[ϕk](ζ) −→ [δ0](ζ) for all ζ ∈ C∞
0 (IRn) ,

i.e. [ϕk] converges to [δ0] as k → ∞ pointwise as a linear map. The name
Dirac sequence originates from this property.

(6) As a further example, let f(x) := log |x| for x ∈ IRn \ {0}. Then f ∈
L1
loc(IR

n), and so, by (2), [f ] is a distribution of order 0 on IRn. For 1 ≤ i ≤ n

(∂i[f ])(ζ) =

⎧⎪⎪⎨⎪⎪⎩
∫
IRn

ζ(x)
xi

|x|2
dx for n ≥ 2,

lim
ε↘0

∫
IR\[−ε,ε]

ζ(x)
1

x
dx for n = 1.

In order to prove this, verify with the help of Gauß’s theorem that as ε ↘ 0

(∂i[f ])(ζ) = −[f ](∂iζ) ←− −
∫
IRn\Bε(0)

∂iζ · f dLn

=

∫
IRn\Bε(0)

ζ∂if dLn +

∫
∂Bε(0)

νiζf dHn−1 ,

where νi(x) =
xi

|x| is the i-th component of the outer normal to the set Bε(0)

(see A8.5(3) for the general situation). It can be seen that the second integral

converges to zero as ε ↘ 0. In the case n ≥ 2 the function x �→ xi|x|−2

is in L1
loc(IR

n), but not for n = 1. Hence for n ≥ 2 it holds that ∂i[f ] is a
distribution of order 0, while for n = 1 it can be shown that it is a distribution
of order 1.

The essential estimate (5-11) is used in order to approximate distributions
with C∞-functions by means of convolutions.

5.19 Approximation of distributions. Let Ω ⊂ IRn and let T ∈ D ′(Ω).
For ϕ ∈ C∞

0 (Br(0)) and x ∈ Ω with Br(x) ⊂ Ω,

(ϕ ∗ T )(x) := T (ϕ(x−·)) (5-13)

is well defined, since ϕ(x−·) ∈ C∞
0 (Ω). Moreover, it holds that:

(1) For T = [f ] with f ∈ L1
loc(Ω) it follows that

(ϕ ∗ [f ])(x) = (ϕ ∗ f)(x) if Br(x) ⊂ Ω .

(2) If D ⊂⊂ Ω with Br(D) ⊂ Ω, then ϕ ∗ T ∈ C∞(D), with derivatives
∂s(ϕ ∗ T ) = (∂sϕ) ∗ T .
(3) Let D ⊂⊂ Ω and let (ϕε)ε>0 be a standard Dirac sequence. For small ε
we have that ϕε ∗ T ∈ C∞(D) and for all ζ ∈ C∞

0 (D)
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[ϕε ∗ T ](ζ) −→ T (ζ) as ε → 0.

Proof (1). It holds that

(ϕ ∗ [f ])(x) = [f ](ϕ(x−·)) =
∫
Ω

ϕ(x− y)f(y) dy = (ϕ ∗ f)(x) ,

since supp(ϕ(x−·)) ⊂ Ω (formally set f = 0 in the exterior of Ω). ��

Proof (2). Let kD be chosen for T and D as in (5-11). On introducing the
difference quotients ∂h

i ψ(x) :=
1
h (ψ(x+hei)−ψ(x)), the linearity of T yields

that

∂h
i (ϕ ∗ T )(x) = T

(
∂h
i ϕ(x−·)) .

We have that ∂h
i ϕ(x −·) → ∂iϕ(x −·) in CkD (D) as h → 0, and hence it

follows from (5-11) that

T (∂h
i ϕ(x−·)) −→ T (∂iϕ(x−·)) = (

(∂iϕ) ∗ T
)
(x) .

This shows that the partial derivative ∂i(ϕ ∗ T )(x) =
(
(∂iϕ) ∗ T

)
(x) exists.

The desired result for higher derivatives now follows by induction on the
order of the derivative. ��

Proof (3). We have that

[ϕε ∗ T ](ζ) =
∫
Ω

ζ(x) (ϕε ∗ T )(x)︸ ︷︷ ︸
= T

(
ϕε(x−·))

dx .

Now it holds that (the proof is given below)∫
Ω

ζ(x)T
(
ϕε(x−·)) dx = T

(∫
Ω

ζ(x)ϕε(x−·) dx
)

. (5-14)

The argument of T on the right-hand side is ζε(·), if ζε := ϕ−
ε ∗ ζ with

ϕ−
ε (y) := ϕε(−y). Since ζε → ζ in CkD (D) as ε → 0, it follows that T (ζε) →

T (ζ), if kD for T and D is chosen as in (5-11), and so we have shown that

[ϕε ∗ T ](ζ) = T (ζε) −→ T (ζ) as ε → 0.

The identity (5-14) is closely related to theorem 5.11 and the proof is analo-
gous: Approximate ζ uniformly by step functions ζj with a common compact
support in D. Then (5-14) holds for ζj because of the linearity of T . The
left-hand side converges as j → ∞, since T (ϕε(x −·)) is continuous, recall
(2). The right-hand side converges using the same argument as above, since
ϕ−
ε ∗ ζj → ϕ−

ε ∗ ζ in CkD (D). ��
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For functional analysis purposes, the following result is of importance:
The vector space C∞

0 (Ω) can be equipped with a topology T in such a way
that T is a distribution if and only if T lies in the corresponding dual space,
i.e. if T : C∞

0 (Ω) → IK is linear and continuous with respect to the topology
T . We denote C∞

0 (Ω), equipped with the topology T , by D(Ω) (see 5.21).
The dual space D(Ω)′ is then the same as D ′(Ω) (see 5.23).

5.20 Topology on C∞

0
(Ω). Let Ω ⊂ IRn be open. Define

p(ζ) :=
∞∑
k=0

2−k
‖ζ‖Ck(D)

1 + ‖ζ‖Ck(D)

for ζ ∈ C∞
0 (Ω) with supp(ζ) ⊂ D ⊂⊂ Ω ,

where the right-hand side is independent of the choice of D. Choose an open
cover (Dj)j∈IN of Ω with sets Dj ⊂⊂ Dj+1 ⊂ Ω for all j ∈ IN. For every

sequence ε = (εj)j∈IN with εj > 0 for j ∈ IN define

Uε := conv
( ⋃
j∈IN

{
ζ ∈ C∞

0 (Ω) ; supp(ζ) ⊂ Dj and p(ζ) < εj
})

.

Finally, define

T :=
{
U ⊂ C∞

0 (Ω) ; for ζ ∈ U there exists an ε with ζ + Uε ⊂ U
}
.

Then:

(1) p is a Fréchet metric with p(rζ) ≤ rp(ζ) for r ≥ 1.

(2) For all ε it holds that Uε ∈ T .

(3) T is a topology. Hence the sets Uε form a neighbourhood basis (see the
definition (4-17)) of 0 with respect to T .

(4) T is independent of the choice of cover (Dj)j∈IN.

We remark that T is stronger than the topology induced by p. This follows
from the fact that the p-ball B�(0) ⊂ C∞

0 (Ω) is a neighbourhood in the T -
topology, namely, B�(0) = Uε with ε = (εj)j∈IN and εj = �.

Proof (2). Let ζ ∈ Uε. Consider a finite convex combination

ζ =
∑k0

k=1 αkζk ∈ Uε with k0 ∈ IN, αk > 0,
∑k0

k=1 αk = 1 , (5-15)

where ζk ∈ C∞
0 (Djk) with p(ζk) < εjk . Choose 0 < θ < 1 such that p(ζk) <

θεjk for all k = 1, . . . , k0, and set δ = (δj)j∈IN with δj := (1− θ)εj . We claim
that ζ + Uδ ⊂ Uε. To see this, let

η =
∑l0

l=1 βlηl ∈ Uδ with l0 ∈ IN, βl > 0,
∑l0

l=1 βl = 1 ,

where ηl ∈ C∞
0 (Dml

) with p(ηl) < δml
. Then, on noting (1),

p
(
1
θ ζk

)
≤ 1

θp(ζk) < εjk and p
(

1
1−θηl

)
≤ 1

1−θp(ηl) < εml
,
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i.e. 1
θ ζk and 1

1−θηl are elements of Uε. Hence the convexity of Uε yields that

ζ + η = θ
∑k0

k=1 αk · 1
θ ζk + (1− θ)

∑l0
l=1 βl · 1

1−θηl ∈ Uε .

This shows that Uε ∈ T . ��

Proof (3). We need to show that U1∩U2 ∈ T , if U1, U2 ∈ T . But this follows
from Uε ⊂ Uε1 ∩ Uε2 , where εj := min(ε1j , ε

2
j ) for j ∈ IN. ��

Proof (4). Let
(
D̃j

)
j∈IN

be another cover and let Ũε̃ with ε̃ = (ε̃j)j∈IN be

a set defined as above, now with respect to this cover. Since Dj is compact

with Dj ⊂ Ω, for each j ∈ IN there exists an mj ∈ IN with Dj ⊂ D̃mj
.

Setting εj := ε̃mj
for j ∈ IN and ε = (εj)j∈IN then yields that Uε ⊂ Ũε̃. ��

5.21 The space D(Ω). We denote the vector space C∞
0 (Ω), equipped with

the topology T from 5.20, by D(Ω). Then D(Ω) is a locally convex topo-
logical vector space, i.e. it holds that:

(1) D(Ω) with T is a Hausdorff space.

(2) D(Ω) is a vector space and addition and scalar multiplication are con-
tinuous (as maps from D(Ω)×D(Ω) to D(Ω) and from IK×D(Ω) to D(Ω),
respectively).

(3) For ζ ∈ U with U ∈ T there exists a convex set V ∈ T with ζ ∈ V ⊂ U .

Proof (3). By their definition, the sets Uε in 5.20 are convex. ��

Proof (2). We claim for every Uε that Uδ +Uδ ⊂ Uε, where δ = (δj)j∈IN with

δj :=
1
2εj , which implies the continuity of the addition. For the proof let

ζl ∈ C∞
0

(
Djl

)
with p

(
ζl
)
< δjl for l = 1, 2.

We have that ζ1+ ζ2 = 1
2 (2ζ1+2ζ2) with p(2ζl) ≤ 2p(ζl) ≤ 2δjl = εjl , and so

ζ1+ζ2 ∈ Uε, as Uε is convex. Then the same also holds for arbitrary elements
ζ1, ζ2 ∈ Uδ.

In order to show the continuity of the scalar multiplication at the point
(α0, ζ0) ∈ IK× D(Ω), let Uε be given. Let ζ0 ∈ C∞

0 (Dj0) and write

αζ − α0ζ0 =
1

2

(
2(α− α0)ζ0 + 2α(ζ − ζ0)

)
.

Let |α− α0 | < γ ≤ 1
2 and let ζ − ζ0 ∈ C∞

0 (Dj) with p(ζ − ζ0) < δj , where γ,
δj need to be chosen. Now it holds that ‖2γζ0‖Ck(Dj0

) → 0 as γ → 0 for all

k ∈ IN, and so it follows (as in 2.23(2)) that

p
(
2(α− α0)ζ0

)
≤ p(2γζ0) → 0 as γ → 0.

If we now choose γ ≤ 1
2 with p(2γζ0) < εj0 , then 2(α − α0)ζ0 ∈ Uε. In

addition, since |2α| ≤ 2(|α0 |+ γ) ≤ 2|α0 |+ 1,
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p
(
2α(ζ − ζ0)

)
≤ (1 + 2|α0 |)p(ζ − ζ0) < εj ,

if we set δj := (1 + 2|α0 |)−1εj . This implies that also 2α(ζ − ζ0) ∈ Uε, and
hence αζ ∈ α0ζ0 + Uε. Then the same also follows for all ζ ∈ ζ0 + Uδ, where
δ := (δj)j∈IN. ��

Proof (1). Let ζ1, ζ2 ∈ D(Ω) with ζ1 �= ζ2 and ζ := ζ1 − ζ2. We claim that(
ζ1 + Uε

)
∩
(
ζ2 + Uε

)
= ∅ ,

if ε = (�)j∈IN and � > 0 is sufficiently small. Indeed, if η1, η2 ∈ Uε with

ζ1 + η1 = ζ2 + η2, then also −η1 ∈ Uε, and so

ζ = ζ1 − ζ2 = (−η1) + η2 ∈ Uε + Uε ⊂ U2ε ,

on recalling the proof of (2). Now write ζ as a convex combination as in
(5-15), so that

‖ζk‖C0

1 + ‖ζk‖C0

≤ p(ζk) < 2� .

This implies, if � < 1
2 , that

0 �= ‖ζ‖C0 ≤
∑k0

k=1 αk‖ζk‖C0 ≤ maxk=1,...,k0
‖ζk‖C0 < 2�

1−2� ,

which is not possible, if � depending on ζ was chosen sufficiently small. ��

5.22 Lemma. For every sequence (ζm)m∈IN in D(Ω) it holds that:

ζm → 0 as m → ∞ in D(Ω)

if and only if

(1) There exists an open D ⊂⊂ Ω such that ζm ∈ C∞
0 (D) for all m.

(2) For all D ⊂⊂ Ω and all k ∈ IN it holds that ‖ζm‖Ck(D) → 0 as m → ∞.

Proof ⇐. On noting that D is compact and D ⊂ Ω, the cover in 5.20 contains
a Dj such that D ⊂ Dj . Then for a given ε it follows from (2) (as in 2.23(2))
that p(ζm) < εj for large m, and so ζm ∈ Uε. ��

Proof ⇒. If we assume that (1) is not satisfied, then there exist an open cover
(Dj)j∈IN of Ω with Dj ⊂⊂ Ω and Dj−1 ⊂ Dj , as well as xj ∈ Dj \Dj−1 and

a subsequence mj → ∞, such that ζmj
(xj) �= 0. Then

U :=
{
ζ ∈ D(Ω) ;

∑
j∈IN

2∣∣ζmj
(xj)

∣∣‖ζ‖C0(Dj\Dj−1)
≤ 1

}
is a convex subset of D(Ω). On noting that for all j{

ζ ∈ C∞
0 (Dj) ; p(ζ) < εj

}
⊂ U , where εj :=

(
1 +

∑
i≤j

2

|ζmi
(xi)|

)−1

,
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we have that Uε ⊂ U , if ε = (εj)j∈IN and Uε is defined with respect to the

cover (Dj)j∈IN. The definition of the topology and the fact that ζm → 0 in

D(Ω) as m → ∞ yield that ζm ∈ Uε for large m. But it follows from the
construction of U that the ζmj

do not lie in U , a contradiction. This shows
(1).

Now for k ∈ IN and δ > 0 choose ε = (εj)j∈IN with 2kεj =
(
1 + 1

δ

)−1
> 0

for all j, which yields that

Uε ⊂
{
ζ ∈ C∞

0 (Ω) ; ‖ζ‖Ck ≤ δ
}
.

For large m we have that ζm ∈ Uε, and so ‖ζm‖Ck ≤ δ. This shows (2). ��

5.23 The dual space of D(Ω). Consider (see 5.5(1)) the dual space

D(Ω)′ = {T : D(Ω) → IK ; T is linear and continuous}

of D(Ω). Then (with the notation in 5.17(2))

D(Ω)′ = D ′(Ω) .

Proof ⊂. Let T ∈ D(Ω)′. If T /∈ D ′(Ω), then there exist a D ⊂⊂ Ω and
ζm ∈ C∞

0 (D) with

1 = |Tζm | > m‖ζm‖Cm(D) for m ∈ IN.

For all k ∈ IN it then follows that ‖ζm‖Ck(D) → 0 as m → ∞, and so 5.22

yields ζm → 0 as m → ∞ in D(Ω). Now the continuity of T implies that
Tζm → 0 as m → ∞, which is a contradiction. ��

Proof ⊃. Let T ∈ D ′(Ω), let (Dj)j∈IN be the exhaustion from 5.20 and let

|Tζ | ≤ Cj‖ζ‖Ckj (Dj)
for ζ ∈ C∞

0 (Dj).

For δ > 0 let ε = (εj)j∈IN be defined by εj := 2−kj δ
Cj+δ . Then

ζ ∈ C∞
0 (Dj) with p(ζ) < εj =⇒ |Tζ | ≤ Cj‖ζ‖Ckj (Dj)

≤ δ .

As T is linear, it follows that |Tζ | ≤ δ for all ζ ∈ Uε (with Uε as in 5.20).
This proves the continuity of T . ��
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E5 Exercises

E5.1 Commutator. Let X be a nontrivial normed vector space and let
P,Q : X → X be linear maps with PQ − QP = Id. Then P and Q cannot
both be continuous. (This relation, which appears in quantum mechanics, is
called the Heisenberg relation.)

Solution. It follows inductively for n ∈ IN that

PQn −QnP = nQn−1 , (E5-1)

on noting that for such n we have that

PQn+1 −Qn+1P = (PQn −QnP )︸ ︷︷ ︸
=nQn−1

Q+Qn (PQ−QP )︸ ︷︷ ︸
=1Q0=Id

= nQn−1Q+Qn = (n+ 1)Qn .

Assuming that P,Q ∈ L (X), it follows from (E5-1) that

n
∥∥Qn−1

∥∥ ≤ 2‖P ‖ · ‖Qn‖ ≤ 2‖P ‖ · ‖Q‖ ·
∥∥Qn−1

∥∥ ,
and hence Qn−1 = 0 for large n, that is, for n > 2‖P ‖ · ‖Q‖. It follows
inductively from (E5-1) that Qn−m = 0 for m = 1, . . . , n, i.e. Id = Q0 = 0, a
contradiction if X �= {0}. ��

E5.2 Nonexistence of the inverse. For noncomplete normed spaces, the
inverse in 5.7 in general does not exist.

Solution. We give a counterexample. Let Y := �2(IR) and let

X :=
{
x = (xi)i∈IN ∈ IRIN ; only finitely many xi �= 0

}
⊂ �2(IR) = Y ,

i.e. X is equipped with the Y -norm. Let ε > 0. For the shift operator

(Tx)i :=

{
0 for i = 1,

εxi−1 for i > 1,

it holds that T ∈ L (Y ) and ‖T ‖ = ε. Hence for ε < 1 we can apply 5.7 for
Y and T , and obtain, for instance, that

(Id− T )−1e1 =

∞∑
n=0

Tne1 =
(
εi−1

)
i∈IN

/∈ X .

On the other hand, Tx ∈ X for x ∈ X. Hence 5.7 is not valid for X and T |X
(X is not complete and X = Y ). ��

E5.3 Unique extension of linear maps. Let Z ⊂ X be a dense subspace
and let T ∈ L (Z;Y ). Then there exists a unique continuous extension T̃ of

T to X. Moreover, T̃ ∈ L (X;Y ).
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Solution. T is uniformly continuous on Z (in fact Lipschitz continuous with
Lipschitz constant ‖T ‖). Hence, on recalling E4.18,

T̃ x := lim
z∈Z : z→x

Tz for x ∈ X

defines a unique continuous extension of T to X. In addition, the linearity of
T carries over to T̃ . ��

E5.4 Limit of linear maps. Let (Tk)k∈IN be a bounded sequence in
L (X;Y ) and let D ⊂ X be dense. If there exists

limk→∞ Tkx for x ∈ D, (E5-2)

then there exists
Tx := lim

k→∞
Tkx for all x ∈ X

and T ∈ L (X;Y ).

Solution. Let ‖Tk‖ ≤ C < ∞ for all k and let Z := span(D). Then it follows
from (E5-2) that

Tz := lim
k→∞

Tkz

exists for all z ∈ Z, and that T is linear on Z. Since

‖Tz‖ = lim
k→∞

‖Tkz‖ ≤ C‖z‖ ,

it holds that T ∈ L (Z;Y ). Let T̃ ∈ L (X;Y ) be the unique extension of T
to X from E5.3. Then it holds for all x ∈ X and z ∈ Z that∥∥∥T̃ x− Tkx

∥∥∥ ≤
∥∥∥T̃ z − Tkz

∥∥∥+
(∥∥∥T̃ ∥∥∥+ C

)
‖x− z‖

−→
(∥∥∥T̃ ∥∥∥+ C

)
‖x− z‖ as k → ∞.

As Z = X, we can choose ‖x− z‖ arbitrarily small. This shows that

T̃ x = lim
k→∞

Tkx for all x ∈ X.

��

E5.5 Pointwise convergence of operators. Let T, Tk ∈ L (X;Y ), k ∈ IN,
with ‖Tk‖ ≤ C < ∞ and let D ⊂ X be dense. If for all x ∈ D

Tkx −→ Tx as k → ∞,

then this also holds for all x ∈ X.

Solution. See the second part of the solution of E5.4. ��
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E5.6 Convergence of operators. Let Tk be defined as in 5.6(6) with 1 ≤
p < ∞. Does it hold that Tk −→ Id as k → ∞ in the space L

(
Lp(IRn)

)
?

Solution. No! As an example, let n = 1 and ϕk = ψεk with εk → 0 as
k → ∞, where ψε(x) := 1

2ε for |x| < ε and ψε(x) := 0 for |x| > ε. Then
consider Tkϕk = ψεk ∗ ψεk . Direct calculations yield that

ψε ∗ ψε(x) = max
(
0,

1

2
ε(1− |x|

2ε
)
)
,

‖ψε‖Lp = (2ε)
1
p
−1 ,

‖ψε ∗ ψε − ψε‖Lp = (1 + p)−
1
p · (4ε) 1

p
−1 .

Consequently,

‖Tk − Id‖ ≥ ‖Tkψεk − ψεk ‖Lp

‖ψεk ‖Lp

=
1

2

(1 + p

2

)− 1
p

> 0 .

��
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