
11 Spectrum of compact operators

We begin with some general results on the spectrum of continuous operators
(11.1–11.5), where we always assume that X is a Banach space over C (!),
i.e. IK = C, and that T ∈ L (X) (for the real case see 11.14). The main topic
of this chapter is the Riesz-Schauder theory on the spectrum of compact
operators (theorem 11.9).

11.1 Spectrum. We define the resolvent set of T by

�(T ) :=
{
λ ∈ C ; N (λId − T ) = {0} and R(λId − T ) = X

}
and the spectrum of T by

σ(T ) := C \ �(T ) .

The spectrum can be decomposed into the point spectrum

σp(T ) :=
{
λ ∈ σ(T ) ; N (λId − T ) �= {0}

}
,

the continuous spectrum

σc(T ) :=
{
λ ∈ σ(T ) ; N (λId − T ) = {0} and

R(λId − T ) �= X, but R(λId− T ) = X
}

and the residual spectrum

σr(T ) :=
{
λ ∈ σ(T ) ; N (λId − T ) = {0} and R(λId− T ) �= X

}
.

11.2 Remarks.

(1) It holds that λ ∈ �(T ) if and only if λId − T : X → X is bijective. The
inverse mapping theorem 7.8 yields that this is equivalent to the existence of

R(λ;T ) := (λId − T )−1 ∈ L (X) .

The inverse R(λ;T ) is called the resolvent of T in λ and as a function of λ
is called the resolvent function.

(2) λ ∈ σp(T ) is equivalent to:

There exists an x �= 0 with Tx = λx.
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374 11 Spectrum of compact operators

λ is then called an eigenvalue and x an eigenvector of T . If X is a function
space, then x is also called an eigenfunction. The subspace N (λId − T )
is the eigenspace of T corresponding to the eigenvalue λ. The eigenspace
is a T -invariant subspace. (A subspace Y ⊂ X is called T -invariant if
T (Y ) ⊂ Y .)

11.3 Theorem. The resolvent set �(T ) is open and the resolvent function
λ �→ R(λ;T ) is a complex analytic map from �(T ) to L (X). It holds that

‖R(λ;T )‖−1 ≤ dist(λ, σ(T )) for λ ∈ �(T ) .

Remark: A map F : D → Y , with D ⊂ C open and Y a Banach space, is
called complex analytic if for every λ0 ∈ D there exists a ball Br0(λ0) ⊂ D
such that F (λ) for λ ∈ Br0(λ0) can be written as a power series in λ − λ0

with coefficients in Y . Complex analytic maps are holomorphic (see A10.1).

Proof. Let λ ∈ �(T ). Then we have for μ ∈ C that

(λ − μ)Id − T = (λId − T )
(
Id − μR(λ;T )

)︸ ︷︷ ︸
=: S(μ)

.

It follows from 5.7 that S(μ) is invertible if

|μ| · ‖R(λ;T )‖ < 1 ,

and then λ− μ ∈ �(T ), with

R(λ − μ;T ) = S(μ)−1R(λ;T ) =

∞∑
k=0

μkR(λ;T )k+1 .

Setting d := ‖R(λ;T )‖−1
yields that Bd(λ) ⊂ �(T ), i.e. dist(λ, σ(T )) ≥ d.

��

11.4 Theorem. The spectrum σ(T ) is compact and nonempty (if X �= {0}),
with

sup
λ∈σ(T )

|λ| = lim
m→∞

‖Tm‖
1
m ≤ ‖T ‖ .

This value is called the spectral radius of T .

Proof. Let λ �= 0. We have from 5.7 that Id − T
λ is invertible if

∥∥ T
λ

∥∥ < 1,
i.e. if |λ| > ‖T ‖, and then

R(λ;T ) =
1

λ

(
Id − T

λ

)−1

=

∞∑
k=0

T k

λk+1
.

This shows that
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r := sup
λ∈σ(T )

|λ| ≤ ‖T ‖ .

Since
λmId − Tm = (λId − T )pm(T ) = pm(T )(λId − T )

with

pm(T ) :=
m−1∑
i=0

λm−1−iT i ,

we conclude that

λ ∈ σ(T ) =⇒ λm ∈ σ(Tm)

=⇒ |λm | ≤ ‖Tm‖ (recall the bound established above)

=⇒ |λ| ≤ ‖Tm‖
1
m .

This proves that

r ≤ lim inf
m→∞

‖Tm‖
1
m .

Next we show that
r ≥ lim sup

m→∞
‖Tm‖

1
m .

We recall from 11.3 that R(·;T ) is a complex analytic map in C \ Br(0) (if
σ(T ) is empty, in C). Hence, by Cauchy’s integral theorem (see A10.1),

1

2πi

∫
∂Bs(0)

λjR(λ;T ) dλ

is independent of s for j ≥ 0 and s > r. However, if we choose s > ‖T ‖, then
we obtain with the help of the representation of R(λ;T ) at the beginning of
the proof that this integral is equal to

=
1

2πi

∫
∂Bs(0)

∞∑
k=0

λj−k−1T k dλ =
1

2π

∞∑
k=0

sj−k
(∫ 2π

0

eiθ(j−k) dθ
)
T k

=

∞∑
k=0

sj−kδj,kT
k = T j .

Hence, for j ≥ 0 and s > r,

∥∥T j
∥∥ =

1

2π

∥∥∥∥∥
∫
∂Bs(0)

λjR(λ;T ) dλ

∥∥∥∥∥ ≤ sj+1 sup
|λ|=s

‖R(λ;T )‖ .

Consequently we obtain for s > r and every subsequence j → ∞ that

∥∥T j
∥∥ 1

j ≤ s ·
(
s sup
|λ|=s

‖R(λ;T )‖
) 1

j

−→ s or 0 ,
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and hence

lim sup
j→∞

∥∥T j
∥∥ 1

j ≤ s .

As this holds for all s > r, we obtain the desired result on the spectral radius.
In addition, if σ(T ) was empty, we would obtain for j = 0 and as s ↘ 0 that

‖Id‖ ≤ s · sup
|λ|≤1

‖R(λ;T )‖ −→ 0 ,

i.e. Id = 0, and so X = {0}. ��

11.5 Remarks.

(1) If dimX < ∞, then σ(T ) = σp(T ).

(2) If dimX = ∞ and T ∈ K (X), then 0 ∈ σ(T ). But in general 0 is not
an eigenvalue.

Proof (1). If λ ∈ σ(T ), then λId− T is not bijective, and so, as dimX < ∞,
it is also not injective, i.e. λ ∈ σp(T ). ��

Proof (2). Let T ∈ K (X) and assume that 0 ∈ �(T ). Then (see 11.2(1))
T−1 ∈ L (X), and (see 10.3) so Id = T−1T ∈ K (X), which on recalling 4.10
implies that X is finite-dimensional.

Example without eigenvalue 0: The operator T : C0([0, 1]) → C1([0, 1]) in
5.6(3) is injective. As an operator in L

(
C0([0, 1])

)
it is a compact operator

in K
(
C0([0, 1])

)
, by theorem 10.6. ��

In the following we are interested in the point spectrum σp(T ) of an
operator T ∈ L (X), i.e. we consider the eigenvalue problem corresponding
to T : For a given y ∈ X we look for all solutions λ ∈ IK and x ∈ X to

Tx − λx = y .

If λ ∈ �(T ), then there exists a uniquely determined solution x to this equa-
tion. If λ ∈ σp(T ), then the solution, if one exists, is not unique, i.e. on
setting Aλ := λId − T we see that adding an element from N (Aλ) to a so-
lution yields another solution (for T ∈ K (X) see also 11.11). On the other
hand, the condition y ∈ R(Aλ) needs to be satisfied for a solution to the
eigenvalue problem to exist at all. An important class of operators Aλ are
those operators for which both the number of degrees of freedom for the
solution x and the number of side conditions on y are finite:

11.6 Fredholm operators. A map A ∈ L (X;Y ) is called a Fredholm
operator if:

(1) dimN (A) < ∞,

(2) R(A) is closed,

(3) codimR(A) < ∞.
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The index of a Fredholm operator is defined by

ind(A) := dimN (A) − codimR(A) .

Remark: The codimension of the image of A being finite means that Y =
R(A) ⊕ Y0 for a finite-dimensional subspace Y0 ⊂ Y . Then codimR(A) :=
dimY0 is independent of the choice of Y0: indeed, if Y1 ⊂ Y is a subspace
with R(A) ∩ Y1 = {0}, then Y1 is finite-dimensional with dimY1 ≤ dimY0,
with equality if and only if Y = R(A) ⊕ Y1.

Proof. We have from (2) and 4.9, respectively, that Z := R(A) and Y0 are
closed subspaces. Now let P ∈ P(Y ) be the projection onto Y0 with Z =
N (P ), as in 9.15. Then

S := P |
Y1

: Y1 → Y0 is linear and injective,

because if y ∈ Y1 with P (y) = 0, then y ∈ Z ∩ Y1 = {0}. As Y0 is finite-
dimensional, it follows that Y1 is also finite-dimensional, with dimY1 ≤
dimY0.

If Y = Z ⊕ Y1, then it follows as above (interchange Y0 and Y1) that
dimY0 ≤ dimY1, and so dimY1 = dimY0. Conversely, if this holds, then S
is bijective. For x ∈ Y we then have that y := S−1Px ∈ Y1 with Py =
SS−1Px = Px, and so x − y ∈ N (P ) = Z, which proves that Y = Z ⊕ Y1.

��

11.7 Example. Let X = W 1,2(Ω) and Y = W 1,2(Ω)′. Then A : W 1,2(Ω) →
W 1,2(Ω)′, defined by

〈v , Au〉W 1,2 :=

∫
Ω

∑
i,j

∂iv · aij∂ju dLn for u, v ∈ W 1,2(Ω) ,

is a weak elliptic differential operator with Neumann boundary conditions.
(We consider the homogeneous case in 6.5(2) with hi = 0 and b = 0.) We
have from 8.18(2) (where the symmetry aij = aji was assumed) that:

The null space N (A) consists of the constant functions, and therefore
dimN (A) = 1. The image of A is R(A) = {F ∈ Y ; 〈1 , F 〉W 1,2 = 0}, and
so it is closed, with codimR(A) = 1. It holds that

Y = R(A) ⊕ span{F0} , where 〈v , F0〉W 1,2 :=

∫
Ω

v dLn .

Hence A is a Fredholm operator with index 0.

Observe: For the homogeneous Dirichlet problem (see 10.14(2)) the operator
A : W 1,2

0 (Ω) → W 1,2
0 (Ω)′ is an isomorphism.

A large class of Fredholm operators with Y = X is given by compact
perturbations of the identity (see also 12.8):
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11.8 Theorem. Let T ∈ K (X). Then A := Id − T is a Fredholm operator
with index 0. We prove this in several steps:

(1) dimN (A) < ∞,

(2) R(A) is closed,

(3) N (A) = {0} =⇒ R(A) = X,

(4) codimR(A) ≤ dimN (A),

(5) dimN (A) ≤ codimR(A).

Proof (1). On noting that Ax = 0 is equivalent to x = Tx, we have that
B1(0)∩ N (A) ⊂ T

(
B1(0)

)
, i.e. the unit ball in N (A) is precompact, and so

4.10 yields that N (A) is finite-dimensional. ��

Proof (2). Let x ∈ R(A) and let Axn → x as n → ∞. We may assume
without loss of generality that

‖xn‖ ≤ 2 dn with dn := dist(xn,N (A)),

because otherwise we choose an ∈ N (A) with ‖xn − an‖ ≤ 2 dist(xn,N (A))
and then proceed with x̃n := xn − an, where

dist(x̃n,N (A)) = dist(xn,N (A)) .

First we assume that dn → ∞ for a subsequence n → ∞. Setting

yn :=
xn

dn
it holds that Ayn =

Axn

dn
→ 0

as n → ∞. Noting that the yn are bounded and recalling that T is compact
yields that there exists a subsequence such that Tyn → y as n → ∞. It
follows that

yn = Ayn + Tyn → y ,

and so, by the continuity of A,

Ay = lim
n→∞

Ayn = 0 .

Hence y ∈ N (A), which implies that

‖yn − y‖ ≥ dist(yn,N (A)) = dist
(xn

dn
,N (A)

)
=

dist(xn,N (A))

dn
= 1 ,

a contradiction. This shows that the dn are bounded, and so are the xn. For
a subsequence we then have that Txn → z as n → ∞, and so

x ←− Axn = A(Axn + Txn) −→ A(x+ z) ,

which means that x ∈ R(A). ��
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Proof (3). Assume that there exists an x ∈ X \ R(A). Then

Anx ∈ R(An) \ R(An+1) for all n ≥ 0,

because otherwise Anx = An+1y for some y, then An(x−Ay) = 0, and from
N (A) = {0} it then would follow (inductively) that x−Ay = 0, i.e x ∈ R(A),
a contradiction. In addition R(An+1) is closed, on noting that

An+1 = (Id − T )n+1 = Id +

n+1∑
k=1

(
n+ 1

k

)
(−T )k︸ ︷︷ ︸

∈ K (X) on recalling 10.3

,

and so (2) yields that R(An+1) is closed. Hence there exists an an+1 ∈
R(An+1) with

0 < ‖Anx − an+1‖ ≤ 2 dist
(
Anx,R(An+1)

)
.

Now consider

xn :=
Anx − an+1

‖Anx − an+1‖
∈ R(An) .

We have that
dist

(
xn,R(An+1)

)
≥ 1

2 , (11-4)

because for y ∈ R(An+1)

‖xn − y‖ =
‖Anx − (an+1 + ‖Anx − an+1‖y)‖

‖Anx − an+1‖

≥
dist

(
Anx,R(An+1)

)
‖Anx − an+1‖

≥ 1

2
.

For m > n, we have Axn + xm − Axm ∈ R(An+1), and hence (11-4) implies
that

‖Txn − Txm‖ = ‖xn − (Axn + xm − Axm)‖ ≥ 1

2
.

Hence (Txn)n∈IN contains no convergent subsequence, even though (xn)n∈IN

is a bounded sequence. This is a contradiction to the compactness of T . ��

Proof (4). By (1), the number n := dimN (A) is finite. Let {x1, . . . , xn}
be an arbitrary basis of N (A). If we assume that the claimed inequality
is false, then there exist linearly independent vectors y1, . . . , yn, such that
span{y1, . . . , yn}⊕R(A) is a proper subspace of X. Moreover, 9.16(1) yields
the existence of x′

1, . . . , x
′
n ∈ X ′ with

〈xl , x
′
k〉 = δk,l for k, l = 1, . . . , n.

Setting
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T̃ x := Tx+

n∑
k=1

〈x , x′
k〉 yk

then defines an operator T̃ ∈ K (X), indeed, T is compact and T̃ − T has

a finite-dimensional image. In addition, N (Ã) = {0}, where Ã := Id − T̃ ,

because Ãx = 0 implies, on recalling the choice of the yk, that Ax = 0 and
〈x , x′

k〉 = 0 for k = 1, . . . , n. Therefore x ∈ N (A), and hence there exists a
representation

x =

n∑
k=1

αkxk , and so 0 = 〈x , x′
l〉 =

n∑
k=1

αk 〈xk , x
′
l〉 = αl

for l = 1, . . . , n, which yields that x = 0. On applying (3) to the operator Ã,

it follows that R(Ã) = X. On noting that Ãxl = −yl for l = 1, . . . , n and
that

Ã
(
x −

n∑
l=1

〈x , x′
l〉xl

)
= Ax for all x ∈ X ,

we conclude that X = R(Ã) ⊂ span{y1, . . . , yn} ⊕ R(A), a contradiction to
the above property. ��

Proof (5). We have from (4) that m := codimR(A) ≤ n := dimN (A).
First we reduce the claim to the casem = 0. To this end, choose x1, . . . , xn

and x′
1, . . . , x

′
n as in the proof of (4) and y1, . . . , ym with

X = span{y1, . . . , ym} ⊕ R(A) .

As in the proof of (4), the operator

x �−→ T̃ x := Tx+

m∑
k=1

〈x , x′
k〉 yk

is compact and Ã := Id− T̃ is surjective with N (Ã) = span{xi ; m < i ≤ n}.
We need to show that N (Ã) = {0}. Hence the claim is reduced to the case
m = 0.

In the case m = 0 it holds that R(A) = X. We assume that there exists
an x1 ∈ N (A)\{0}. The surjectivity of A then yields that we can inductively
choose xk ∈ X, k ≥ 2, with Axk = xk−1. Then xk ∈ N (Ak) \ N (Ak−1). It
follows from the theorem on the almost orthogonal element that there exists
a zk ∈ N (Ak) with ‖zk‖ = 1 and dist

(
zk,N (Ak−1)

)
≥ 1

2 . For l < k this
implies that Azk + zl − Azl ∈ N (Ak−1), and so the choice of zk yields that

‖Tzk − Tzl‖ = ‖zk − (Azk + zl − Azl)‖ ≥ 1
2 .
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This shows that {Tzk ; k ∈ IN} contains no convergent subsequence. This is a
contradiction to the sequence {zk ; k ∈ IN} being bounded and the operator
T being compact.

A second possible proof for m = 0 is as follows: We start with a decom-
position X = X̃ ⊕ N (A) with a closed subspace X̃ (this follows from (1)

and 9.16(2) for Y = {0}). Then A : X̃ → X is bijective, and so 7.8 yields

that Ã := (A|
X̃
)−1 : X → X̃ is continuous. Now consider Ã as an element

in L (X). Then T̃ := Id − Ã ∈ K (X), because if {xk ; k ∈ IN} is bounded

in X, then so is {Ãxk ; k ∈ IN}, and hence there exists a subsequence with

TÃxk → x as k → ∞. On the other hand,

TÃxk = (Id − A)Ãxk = Ãxk − xk = −T̃ xk .

Now (3) implies that R(Ã) = X, i.e. N (A) = {0}.
A further possible proof of (5) will be given in 12.7. ��

The fundamental theorem of this chapter is the

11.9 Spectral theorem for compact operators (Riesz-Schauder). For
every operator T ∈ K (X) it holds that:

(1) The set σ(T ) \ {0} consists of countably (finitely or infinitely) many
eigenvalues with 0 as the only possible cluster point. So if σ(T ) contains
infinitely many elements, then σ(T ) = σp(T )∪{0}, hence 0 is a cluster point
of σ(T ).

(2) For λ ∈ σ(T ) \ {0}

1 ≤ nλ := max
{
n ∈ IN ; N

(
(λId − T )n−1

)
�= N

(
(λId− T )n

) }
< ∞ .

The number nλ ∈ IN is called the order (or index) of λ and dimN (λId−T )
is called the multiplicity of λ.

(3) Riesz decomposition. For λ ∈ σ(T ) \ {0}

X = N
(
(λId − T )nλ

)
⊕ R

(
(λId − T )nλ

)
.

Both subspaces are closed and T -invariant, and the characteristic sub-
space N

(
(λId − T )nλ

)
is finite-dimensional.

(4) For λ ∈ σ(T ) \ {0} it holds that σ(T |
R((λId−T )nλ )) = σ(T ) \ {λ} .

(5) If Eλ for λ ∈ σ(T ) \ {0} denotes the projection onto N
(
(λId − T )nλ

)
corresponding to the decomposition in (3), then

EλEμ = δλ,μEλ for λ, μ ∈ σ(T ) \ {0}.

Proof (1). Let 0 �= λ /∈ σp(T ). Then N (Id− T
λ ) = {0}, and so R(Id− T

λ ) = X
(recall 11.8(3)), i.e. λ ∈ �(T ). This shows that
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σ(T ) \ {0} ⊂ σp(T ) .

If σ(T ) \ {0} is not finite, then we choose λn ∈ σ(T ) \ {0}, n ∈ IN, pairwise
distinct and eigenvectors en �= 0 to λn and define

Xn := span{e1, . . . , en} .

The eigenvectors ek, k = 1, . . . , n, are linearly independent, because if there
exists (this is an inductive proof) 1 < k ≤ n with

ek =

k−1∑
i=1

αiei

with already linearly independent vectors e1, . . . , ek−1, then it follows that

0 = Tek − λkek =

k−1∑
i=1

αi(Tei − λkei) =

k−1∑
i=1

αi (λi − λk)︸ ︷︷ ︸
�= 0

ei ,

and so αi = 0 for i = 1, . . . , k − 1, i.e. ek = 0, a contradiction. This shows
that Xn−1 is a proper subspace of Xn. Hence the theorem on the almost
orthogonal element (see 4.5) yields the existence of an xn ∈ Xn with

‖xn‖ = 1 and dist(xn, Xn−1) ≥ 1
2 . (11-5)

On noting that xn = αnen+x̃n with certain αn ∈ C and x̃n ∈ Xn−1, it follows
from the T -invariance of the subspaceXn−1 that Txn−λnxn = T x̃n−λnx̃n ∈
Xn−1, and so it holds for m < n that

1

λn
(Txn − λnxn) − 1

λm
Txm ∈ Xn−1 .

Hence it follows from (11-5) that∥∥∥∥T (xn

λn

)
− T

(xm

λm

)∥∥∥∥ =

∥∥∥∥xn +
1

λn
(Txn − λnxn) − 1

λm
Txm

∥∥∥∥ ≥ 1

2
.

This shows that the sequence
(
T
(
xn

λn

))
n∈IN

has no cluster point. As T is com-

pact, this implies that
(

xn

λn

)
n∈IN

contains no bounded subsequences, which

yields that
1

|λn | =
∥∥∥∥ xn

λn

∥∥∥∥ −→ ∞ as n → ∞,

i.e. λn → 0 as n → ∞. Hence we have shown that 0 is the only cluster point
of σ(T ) \ {0}. In particular, it then holds that σ(T ) \Br(0) is finite for every
r > 0, and so σ(T ) \ {0} is countable. ��
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Proof (2). Let A := λId − T . Then N (An−1) ⊂ N (An) for all n. First we
assume that:

N (An−1) is a proper subset of N (An) for all n ≥ 1.

Similarly to the proof of (1), and on recalling the theorem on the almost
orthogonal element, we choose an xn ∈ N (An) with

‖xn‖ = 1 and dist
(
xn,N (An−1)

)
≥ 1

2 . (11-6)

Then it follows for m < n that

Axn + λxm − Axm ∈ N (An−1) ,

and so with (11-6) that

‖Txn − Txm‖ = ‖λxn − (Axn + λxm − Axm)‖ ≥ |λ|
2

> 0 .

On the other hand, {xn ; n ∈ IN} is a bounded sequence. This contradicts the
compactness of T . Hence we can find an n ∈ IN with N (An−1) = N (An).
This implies for m > n that

x ∈ N (Am) =⇒ Am−nx ∈ N (An) = N (An−1)

=⇒ An−1+m−nx = 0

=⇒ x ∈ N (Am−1) ,

and so N (Am) = N (Am−1), and it follows inductively that N (Am) =
N (An) for allm ≥ n. Hence we have shown that nλ < ∞. Since N (A) �= {0}
it holds that nλ ≥ 1. ��

Proof (3). Let A := λId− T as before. Then

N (Anλ) ⊕ R(Anλ) ⊂ X ,

because if x ∈ N (Anλ)∩R(Anλ), then Anλx = 0 and x = Anλy for a y ∈ X.
Then A2nλy = 0, and so y ∈ N (A2nλ) = N (Anλ) and hence x = Anλy = 0.
Now Anλ can be written as

Anλ = λnλId +

nλ∑
k=1

(
nλ

k

)
λnλ−k(−T )k︸ ︷︷ ︸

∈ K (X) by 10.3

.
(11-7)

Hence codimR(Anλ) ≤ dimN (Anλ) < ∞ (recall 11.8(4) and 11.8(1)),
which yields that

X = N (Anλ) ⊕ R(Anλ) .

As T commutes with A, i.e. TA = AT , T also commutes with Anλ , and so
both subspaces are T -invariant. ��
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Proof (4). We denote by Tλ the restriction of T to R(Anλ), where Anλ has
been computed in (11-7). Then Tλ ∈ K

(
R(Anλ)

)
, where R(Anλ) is a closed

subspace (recall 11.8(2)), and so a Banach space. Here we have used the fact
that T and Anλ commute. Moreover, we have that

N (λId − Tλ) = N (A) ∩ R(Anλ) = {0} ,

and hence R(λId − Tλ) = R(Anλ) (apply 11.8(3) to Tλ), which shows that
λ ∈ �(Tλ). It remains to show that

σ(Tλ) \ {λ} = σ(T ) \ {λ} .

Let μ ∈ C \ {λ}. We recall from above that N (Anλ) is invariant under
μId − T . Moreover, μId − T is injective on this subspace. To see this, note
that x ∈ N (μId − T ) implies that (λ − μ)x = Ax. If in addition Amx = 0
for some m ≥ 1, it follows that

(λ − μ)Am−1x = Am−1((λ − μ)x) = Amx = 0 ,

and since λ �= μ this means that Am−1x = 0. Inductively (for decreasing m)
this yields that x = A0x = 0. Hence we have shown that

N (μId − T ) ∩ N (Am) = {0} for all m ≥ 1.

Setting m = nλ yields the injectivity of μId−T on N (Anλ). As this space is
finite-dimensional, we have that μId−T is also bijective on N (Anλ). But this
means that μ ∈ �(T ) if and only if μ ∈ �(Tλ). This shows that by removing the
(finite-dimensional) characteristic subspace corresponding to the eigenvalue
λ we obtain a remaining operator Tλ for which σ(Tλ) = σ(T ) \ {λ}. ��

Proof (5). Let λ, μ ∈ σ(T )\{0} be distinct, and let Aλ := λId−T and Aμ :=
μId−T . Now every x ∈ N (A

nμ
μ ), corresponding to the Riesz decomposition of

X into N (Anλ

λ )⊕R(Anλ

λ ), has a representation x = z+y. As both subspaces
are invariant under T , and hence also under Aμ, it follows that

0 = Anμ
μ x = Anμ

μ z︸ ︷︷ ︸
∈N (A

nλ
λ

)

+ Anμ
μ y︸ ︷︷ ︸

∈R(A
nλ
λ

)

and so 0 = A
nμ
μ z. On recalling from the above proof that Aμ is bijective

on N (Anλ

λ ), and hence also A
nμ
μ , it follows that z = 0, i.e. x ∈ R(Anλ

λ ).
Therefore we have shown that

N (Anμ
μ ) ⊂ R(Anλ

λ ) ,

in other words
R(Eμ) ⊂ N (Eλ) ,

and hence EλEμ = 0. ��
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11.10 Corollary. If T ∈ K (X) and λ ∈ σ(T ) \ {0}, then the resolvent
function μ �→ R(μ;T ) has an (isolated) pole of order nλ in λ, i.e. the
function μ �→ (μ − λ)nλR(μ;T ) can be complex analytically extended to the
point λ, and the value at the point λ is different from the null operator.

Proof. Consider the decomposition

X = N
(
(λId − T )nλ

)︸ ︷︷ ︸
=R(Eλ)

⊕R
(
(λId − T )nλ

)︸ ︷︷ ︸
=N (Eλ)

and the restrictions

T0 := T to R(Eλ), T1 := T to N (Eλ).

Since λ is an isolated point of σ(T ), there exists an r > 0 with Br(λ) \ {λ} ⊂
�(T ). Then Br(λ)\{λ} ⊂ �(T0) and we have from 11.9(4) that Br(λ) ⊂ �(T1),
and it holds for 0 < |μ| < r that

R(λ+ μ;T ) = R(λ+ μ;T0)Eλ +R(λ+ μ;T1)(Id − Eλ) .

It follows from 11.3 that R(λ+·;T1) is complex analytic in Br(0), and so it
remains to show that R(λ+·;T0) has a pole of order nλ in 0. Consider

S(μ) :=

nλ∑
k=1

μ−k(T0 − λId)k−1 for μ �= 0.

It holds that

S(μ)
(
(λ+ μ)Id − T0

)
=

nλ∑
k=1

μ1−k(T0 − λId)k−1 −
nλ∑
k=1

μ−k(T0 − λId)k

= Id− μ−nλ(T0 − λId)nλ = Id

and similarly
(
(λ+ μ)Id − T0

)
S(μ) = Id, i.e. R(λ+ μ;T0) = S(μ). ��

The assertion σ(T ) \ {0} ⊂ σp(T ) in 11.9(1) can also be formulated as
follows:

11.11 Fredholm alternative. If T ∈ K (X) and λ �= 0, then it holds that:

Either the equation Tx − λx = y is uniquely solvable for every y ∈ X,

or the equation Tx − λx = 0 has nontrivial solutions.

Note: See also theorem 12.8.

11.12 Finite-dimensional case. LetX be a finite-dimensional vector space
over C and let T : X → X be linear. Then there exist pairwise distinct
λ1, . . . , λm ∈ C, where 1 ≤ m ≤ dimX, such that

σ(T ) = σp(T ) = {λ1, . . . , λm} ,

and orders nλj
with the properties in 11.9(2) – 11.9(5), so that

X = N
(
(λ1Id − T )nλ1

)
⊕ · · · ⊕ N

(
(λmId− T )nλm

)
.
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Proof. We equip X with an arbitrary norm. Then T ∈ K (X) (see 10.2(3)),
and similarly Tμ := T −μId for μ ∈ C. Now apply 11.9 to e.g. T0 and T1. ��

11.13 Jordan normal form. Let T ∈ K (X) and let λ ∈ σp(T ) be as in
11.9 or 11.12, respectively. Set A := λId− T . Then:

(1) For n = 1, . . . , nλ there exist subspaces En with N (An−1) ⊕ En ⊂
N (An) such that

N
(
Anλ

)
=

nλ⊕
k=1

Nk , where Nk :=

k−1⊕
l=0

Al(Ek) .

(2) The subspaces Nk, k = 1, . . . , nλ, are T -invariant and the dimensions
dk := dimAl(Ek) are independent of l ∈ {0, . . . , k − 1}.
(3) If {ek,j ; j = 1, . . . , dk} are bases of Ek, then

{Alek,j ; 0 ≤ l < k ≤ nj , 1 ≤ j ≤ dk}

is a basis of N (Anλ) and with

x =
∑
k,j,l

αk,j,l A
lek,j and y =

∑
k,j,l

βk,j,l A
lek,j

it holds that Tx = y is equivalent to⎡⎢⎢⎢⎣
βk,j,0

...

...
βk,j,k−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
λ −1 0

0
. . .

. . .
. . .

. . . −1
0 λ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

αk,j,0

...

...
αk,j,k−1

⎤⎥⎥⎥⎦ ,

i.e. the matrix representing T with respect to this basis has a Jordan normal
form.

Proof. If E is a subspace with N (An−1) ⊕ E ⊂ N (An), then

N (An−l−1) ⊕ Al(E) ⊂ N (An−l) for 0 ≤ l < n,

and Al is injective on E. To see this, note that if x ∈ E with Alx = 0, then
also An−1x = 0 because l ≤ n − 1, and so x ∈ N (An−1) ∩ E = {0}. Based
on this observation we inductively choose En for n = nλ, . . . , 1 such that

N (An) = N (An−1) ⊕
nλ−n⊕
l=0

Al(En+l) .

This yields the desired results. ��



11 Spectrum of compact operators 387

11.14 Real case. If X is a Banach space over IR and if T ∈ K (X), then
the spectral theorem can be applied to their complexification, i.e. let

X̃ := X × X

and for x = (x1, x2) ∈ X̃, α = a+ ib with a, b ∈ IR, let

αx := (ax1 − bx2, ax2 + bx1) , x := (x1,−x2) .

With the above X̃ becomes a vector space over C. On setting

‖x‖X̃ := sup
θ′∈IR

(
‖cos(θ′)x1 − sin(θ′)x2‖2X + ‖sin(θ′)x1 + cos(θ′)x2‖2X

) 1
2

it holds that
∥∥eiθx∥∥

X̃
= ‖x‖X̃ for x ∈ X̃ and θ ∈ IR, and equipped with this

norm X̃ becomes a Banach space over C. Then

T̃ x := (Tx1, Tx2)

defines the corresponding operator T̃ ∈ K (X̃), so that theorem 11.9 can now
be applied.

Now if λ ∈ σp(T̃ ) with eigenvector e, then

T̃ e = T̃ e = λe = λ e ,

and so λ ∈ σp(T̃ ) with eigenvector e. If λ ∈ IR, then the vectors ek,j in
11.13(3) can be chosen to satisfy ek,j = ek,j . If λ /∈ IR and ek,j as in 11.13(3),
then the vectors ek,j have the properties in 11.13(3) with respect to λ.

Remark: In the case when X is a Hilbert space, the above norm satisfies

‖x‖X̃ =
(
‖x1‖2X + ‖x2‖2X

) 1
2

.
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