11 Spectrum of compact operators

We begin with some general results on the spectrum of continuous operators
(11.1-11.5), where we always assume that X is a Banach space over C (!),
ie. IK = C, and that T € .Z(X) (for the real case see 11.14). The main topic
of this chapter is the Riesz-Schauder theory on the spectrum of compact
operators (theorem 11.9).

11.1 Spectrum. We define the resolvent set of T' by
oT):={rxeC; #(ANId—T) ={0} and Z(\Nd—-T)=X }
and the spectrum of T by

o(T) = C\ o(T).
The spectrum can be decomposed into the point spectrum
o,(T) = { A€ a(T); H(Nd=T) #{0} } ,

the continuous spectrum

0c(T):= {Xe€o(T); A (Nd—T)={0} and

ZANAd—T)#X, but ZN\d—-T7)=X }

and the residual spectrum

or(T) == {X€a(T); #(Nd—T)={0} and Z\d-T)# X } .
11.2 Remarks.

(1) It holds that A € o(T) if and only if AXId — T : X — X is bijective. The
inverse mapping theorem 7.8 yields that this is equivalent to the existence of

RNT) = (Ald—T)~! € Z(X).

The inverse R(\;T') is called the resolvent of T in A and as a function of A
is called the resolvent function.

(2) X €0,(T) is equivalent to:
There exists an x # 0 with Tz = Az.
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A is then called an eigenvalue and x an eigenvector of T'. If X is a function
space, then z is also called an eigenfunction. The subspace A4 (Ald — T')
is the eigenspace of T corresponding to the eigenvalue A. The eigenspace
is a T-invariant subspace. (A subspace Y C X is called T-invariant if
TY)CY.)

11.3 Theorem. The resolvent set o(7T) is open and the resolvent function
A — R(\;T) is a complex analytic map from o(7T) to £ (X). It holds that

IR T)|| " < dist(\, o(T))  for A€ o(T).

Remark: A map F: D — Y, with D C C open and Y a Banach space, is
called complex analytic if for every \g € D there exists a ball B,,(Ag) C D
such that F'(A) for A € B, (A\g) can be written as a power series in A — A\g
with coefficients in Y. Complex analytic maps are holomorphic (see A10.1).

Proof. Let A € o(T). Then we have for p € C that

(A= p)Id —T = (\Id — T) (Id — uR(A; T)) .
| —
=: S(u)

It follows from 5.7 that S(u) is invertible if
lul - IR T < 1,
and then A — p € o(T'), with
oo
RO\ = T) = S(u) " "RGT) = D " ROGT)H
k=0

Setting d := |R(A\;T)|| ™" yields that Bg(A) C o(T), ie. dist(A, o(T)) > d.
(]

11.4 Theorem. The spectrum o(T') is compact and nonempty (if X # {0}),
with .
sup [A[ = Tim |7 [ < [T
Ao (T) m— oo

This value is called the spectral radius of T.

Proof. Let A # 0. We have from 5.7 that Id — % is invertible if H %H < 1,
ie. if [A] > ||T||, and then

RONT) = %(Id o

This shows that
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r= sup A <7
Aeo(T)

Since
NI = T™ = (Ad = T)py (T) = p(T)(Ad — T)

with )
T) — Z )\m—l—iTi,
i=0
we conclude that
Aeo(T) = N"eo(T™)
= |A™"| < ||T™] (recall the bound established above)
1
= [l ST
This proves that
1
r <liminf [|T™]™ .
m— 00
Next we show that

r > limsup HT’”H% .
m—o0

We recall from 11.3 that R(+T) is a complex analytic map in C \ B,(0) (if
o(T) is empty, in C). Hence, by Cauchy’s integral theorem (see A10.1),

1 )
— N R\ T)dA
2mi OB4(0)

is independent of s for j > 0 and s > r. However, if we choose s > ||T||, then
we obtain with the help of the representation of R(X\;T") at the beginning of
the proof that this integral is equal to

oo 27
s i0(j-k)
2771/83 ZAJ KLk g W};Jsﬂ k(/o =1 g ) T+

S(O) k=0

= o TR =T
Hence, for j > 0 and s > r,

1771 = 5 < s sup |[ROST)]]-

[Al=s

/ MR\ T)dA
8B4(0)

Consequently we obtain for s > r and every subsequence j — oo that

1
J

HTJH% <s- (s sup ||R()\;T)||> —sor0,
| A |=s
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and hence )
lim sup HTjH7 <s.
Jj—o00

As this holds for all s > r, we obtain the desired result on the spectral radius.
In addition, if o(7T") was empty, we would obtain for j = 0 and as s \, 0 that

d|f < s sup [R(NT)[| — 0,
IA<1

i.e. Id =0, and so X = {0}. O
11.5 Remarks.

(1) If dim X < oo, then o(T) = 0, (T).
(2) T dimX = oo and T € #(X), then 0 € o(T). But in general 0 is not
an eigenvalue.

Proof (1). If X € o(T), then AId — T is not bijective, and so, as dim X < oo,
it is also not injective, i.e. A € o, (T). O

Proof (2). Let T € 2 (X) and assume that 0 € o(T). Then (see 11.2(1))
T—' e Z(X), and (see 10.3) so Id = T~'T € # (X), which on recalling 4.10
implies that X is finite-dimensional.

Example without eigenvalue 0: The operator T : C°([0,1]) — C*([0,1]) in
5.6(3) is injective. As an operator in £ (C°([0,1])) it is a compact operator
in 22 (C°([0,11)), by theorem 10.6. O

In the following we are interested in the point spectrum o,(T) of an
operator T' € Z(X), i.e. we consider the eigenvalue problem corresponding
to T': For a given y € X we look for all solutions A € IK and « € X to

Tr—)x=y.

If A € o(T), then there exists a uniquely determined solution x to this equa-
tion. If A € 0,(T), then the solution, if one exists, is not unique, i.e. on
setting Ay := AId — T we see that adding an element from .4 (Ay) to a so-
lution yields another solution (for T' € # (X) see also 11.11). On the other
hand, the condition y € Z(A,\) needs to be satisfied for a solution to the
eigenvalue problem to exist at all. An important class of operators A are
those operators for which both the number of degrees of freedom for the
solution x and the number of side conditions on y are finite:

11.6 Fredholm operators. A map A € £(X;Y) is called a Fredholm
operator if:

(1) dim A (A4) < oo,

(2) Z(A) is closed,

(3) codimZ(A) < .
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The index of a Fredholm operator is defined by
ind(A) := dim A (A) — codim Z(A) .

Remark: The codimension of the image of A being finite means that ¥ =
H(A) @Y, for a finite-dimensional subspace Yy C Y. Then codim Z(A) :=
dim Y} is independent of the choice of Yj: indeed, if Y7 C Y is a subspace
with Z(A) NY; = {0}, then Y7 is finite-dimensional with dimY¥; < dimYj,
with equality if and only if Y = Z(A4) @ ;.

Proof. We have from (2) and 4.9, respectively, that Z := Z(A) and Yj are
closed subspaces. Now let P € Z(Y) be the projection onto Yy with Z =
A (P), as in 9.15. Then

S = P|Y1 1 Y7 — Y is linear and injective,

because if y € Y7 with P(y) = 0, then y € ZNY; = {0}. As Y is finite-
dimensional, it follows that Y; is also finite-dimensional, with dimY; <
dlm Y().

If Y = Z &Y, then it follows as above (interchange Y, and Y7) that
dimYy < dimYj, and so dimY; = dimYj. Conversely, if this holds, then S
is bijective. For x € Y we then have that y := S™!'Px € Y; with Py =
SS™1Px = Pz, and so x —y € A (P) = Z, which proves that Y = Z @ Y;.

O

11.7 Example. Let X = W2(2) and Y = W2(2). Then A : W12(02) —
Wh2(£2), defined by

(v, Au)yyr2 = / E O - a;;0judL™  for u,v € WH2(0),
0
i

is a weak elliptic differential operator with Neumann boundary conditions.
(We consider the homogeneous case in 6.5(2) with h; = 0 and b = 0.) We
have from 8.18(2) (where the symmetry a;; = a;; was assumed) that:

The null space .4 (A) consists of the constant functions, and therefore
dim .4 (A) = 1. The image of Ais Z(A) ={F €Y ; (1, F)y1. = 0}, and
so it is closed, with codim Z(A) = 1. It holds that

Y = Z#(A) ®span{Fp}, where (v, Fy)pz = / vdL™.
7

Hence A is a Fredholm operator with index 0.
Observe: For the homogeneous Dirichlet problem (see 10.14(2)) the operator
A Wol’Q(Q) — Wol’Q(_Q)’ is an isomorphism.

A large class of Fredholm operators with Y = X is given by compact
perturbations of the identity (see also 12.8):
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11.8 Theorem. Let T € #(X). Then A :=Id — T is a Fredholm operator
with index 0. We prove this in several steps:

(1) dim .4 (A4) < o0,

(2) 2(A) is closed,

3) #(4) ={0} = Z(4)=X,

(4) codimZ(A) < dim .4 (A),

(5) dim A (A) < codim Z(A).

Proof (1). On noting that Az = 0 is equivalent to © = Tz, we have that

B1(0) N A (A) C T(B1(0)), i.e. the unit ball in .4 (A) is precompact, and so
4.10 yields that .47 (A) is finite-dimensional. O

Proof (2). Let v € #(A) and let Az, — = as n — oco. We may assume
without loss of generality that

lzn|| <2d, with d,, := dist(z,, 4 (A)),

because otherwise we choose a,, € A (A) with ||z, — an || < 2 dist(zy,, A (A))
and then proceed with ,, := x,, — a,, where

dist(Zy,, A (A)) = dist(zp, A (A)).
First we assume that d,, — oo for a subsequence n — co. Setting

Az,
Yn = In it holds that Ay, = di -0

as n — oo. Noting that the y, are bounded and recalling that T is compact
yields that there exists a subsequence such that Ty, — y as n — oo. It
follows that

Yn :Ayn+Tyn —Y,

and so, by the continuity of A,
Ay = lim Ay, =0.
n—oo
Hence y € .4 (A), which implies that

19 =yl = dist(ya, A (4)) = dist (2, 4(4)) = dist(an, A(A)) _ |

dn a dn

a contradiction. This shows that the d,, are bounded, and so are the x,,. For
a subsequence we then have that Tx,, — z as n — oo, and so

x +— Az, = A(Az, + Tx,) — Az + 2),

which means that = € Z(A). O
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Proof (3). Assume that there exists an x € X \ Z(A). Then
A"y € B(A™)\ Z(A™TY)  for all n >0,
because otherwise A"z = A"*ly for some y, then A" (x — Ay) = 0, and from

A (A) = {0} it then would follow (inductively) that z—Ay = 0, i.e x € Z(A),
a contradiction. In addition Z(A™*!) is closed, on noting that

n+1
An+1: Id—Tn+1:Id n+1 _Tk:
(1d —T) +> (0, )EDr

k=1

€ #(X) on recalling 10.3

and so (2) yields that Z(A"*!) is closed. Hence there exists an a,.; €
Z(A™T1) with

0 < [|A"s — apy1|| < 2 dist(A%z, Z(A™T)).

Now consider

Ar — apyq
Xy = ——————— € Z(A").
A" — ani]]
We have that
dist (z,, Z(A™ 1)) > 1, (11-4)

because for y € Z(A™+1)

|A™x — (apt1 + || A" — ans1|ly) ||
| A"z — ap 1]
dist(A"a?,%(An"'l)) < 1

lzn =yl =

n A"z — a1l -2

For m > n, we have Az, + ., — Az, € Z(A"™'), and hence (11-4) implies
that

HT-rn - Txm” = ||xn - (Axn +Tm — Axm)“ >

N | =

Hence (T'z,,),,cp contains no convergent subsequence, even though (), i
is a bounded sequence. This is a contradiction to the compactness of T. O

Proof (4). By (1), the number n := dim.4(A) is finite. Let {z1,...,2,}
be an arbitrary basis of A (A). If we assume that the claimed inequality
is false, then there exist linearly independent vectors w1, ..., ¥y,, such that
span{y1,...,yn} ® Z(A) is a proper subspace of X. Moreover, 9.16(1) yields
the existence of z1,...,z), € X' with

<Z‘l,$;€>=5k7l fork:,lzl,...,n.

Setting
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Tx = Ta:JrZ(:r, x5 Yk
k=1

then defines an operator T e A (X), indeed, T is compact and T — T has
a finite-dimensional image. In addition, .4 (A) = {0}, where A := Id — T,
because Az = 0 implies, on recalling the choice of the yj, that Ax = 0 and
(x,x})=0for k=1,...,n. Therefore z € .4 (A), and hence there exists a
representation

n

n
x:Zakx;m and so Oz(x,xf}zZak(xk,xg):al
k=1 k=1

for I =1,...,n, which yields that z = 0. On applying (3) to the operator ﬁ,

it follows that Z(A) = X. On noting that Ax; = —y; for I = 1,...,n and
that

A(I—Xn:(x, x;>a:l) =Az forallz e X,
=1

we conclude that X = Z(A) C span{yi,...,yn} & #Z(A), a contradiction to

the above property. a
Proof (5). We have from (4) that m := codim Z(A) < n := dim A4 (A4).

First we reduce the claim to the case m = 0. To this end, choose x1,...,z,
and 2f,...,z, as in the proof of (4) and y1, ...y, with

X =spanf{y1,...,Ym} B Z(A).

As in the proof of (4), the operator

x>—>fx::Tx+Z<x,x;€>yk
k=1

is compact and A := Id—T is surjective with 4 (A) = span{z;; m < i < n}.
We need to show that .4 (A) = {0}. Hence the claim is reduced to the case
m = 0.

In the case m = 0 it holds that Z(A) = X. We assume that there exists
an 1 € A (A)\{0}. The surjectivity of A then yields that we can inductively
choose =3, € X, k > 2, with Azj, = x,_1. Then a2 € A (AF)\ A (A1), Tt
follows from the theorem on the almost orthogonal element that there exists
a z, € N (A¥) with ||z|| = 1 and dist(z, 4 (A1) > 1. For I < k this
implies that Az, + 2; — Az € A4 (A*~1), and so the choice of z;, yields that

||TZ}C _TZlH = sz — (Azk + 2 — Azl)|| > %
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This shows that {T'z;; k € IN} contains no convergent subsequence. This is a
contradiction to the sequence {z;; k € IN} being bounded and the operator
T being compact.

A second possible proof for m = 0 is as follows: We start with a decom-
position X = X & A4 (A) with a closed subspace X (this follows from (1)
and 9.16(2) for Y = {0}). Then A : X — X is bijective, and so 7.8 yields
that A = (A|)~()_1 : X — X is continuous. Now consider A as an element
in Z(X). Then T :=1d — A € J#(X), because if {z1; k € IN} is bounded
in X, then so is {Axk ; k € IN}, and hence there exists a subsequence with
Tgxk — x as k — oco. On the other hand,

Tz"lv{,C]C = (Id — A)ANIEk = g.’tk — X = —Tvxk .

Now (3) implies that Z(A) = X, i.e. A (A) = {0}.
A further possible proof of (5) will be given in 12.7. O

The fundamental theorem of this chapter is the

11.9 Spectral theorem for compact operators (Riesz-Schauder). For
every operator T € J#(X) it holds that:

(1) The set o(T) \ {0} consists of countably (finitely or infinitely) many
eigenvalues with 0 as the only possible cluster point. So if ¢(7") contains
infinitely many elements, then o(T") = 0,(T") U{0}, hence 0 is a cluster point
of o(T).

(2) For A e o(T) \ {0}

1<ny:=max{ne€IN; A ((Ald—T)""") # A4 ((AId—T)") } <oo.

The number ny € IN is called the order (or index) of A and dim A" (A\Id—T)
is called the multiplicity of .

(3) Riesz decomposition. For A € o(T) \ {0}
X = JV((AId — T)"*) &) %’(()\Id — T)’“) .
Both subspaces are closed and T-invariant, and the characteristic sub-
space A ((AId — T)™*) is finite-dimensional.
(4) For A € o(T') \ {0} it holds that o(T a(td—rymny) = (1) \ {A}.

(5) If Ey for A € o(T) \ {0} denotes the projection onto A4 ((AId — T')™*)
corresponding to the decomposition in (3), then

EAE# = 5>\7HE)\ for \,n € O’(T) \ {0}

Proof (1). Let 0 # A ¢ 0,(T). Then A" (Id— %) = {0}, and so Z(Id— %) = X
(recall 11.8(3)), i.e. A € o(T"). This shows that
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a(T)\ {0} C op(T).

If o(T) \ {0} is not finite, then we choose A, € o(T) \ {0}, n € IN, pairwise
distinct and eigenvectors e, # 0 to A, and define

X, :=span{ey,...,e,}.

The eigenvectors e, k = 1,...,n, are linearly independent, because if there
exists (this is an inductive proof) 1 < k < n with

k—1
Cr = E Q€4
i=1

with already linearly independent vectors eq,...,ex_1, then it follows that
k—1 k—1
0="Te), — \per = Z ai(Te; — Ape;) = Z a; (N — k) e,
— — N——
=1 =1
£0
and so a; =0 fori=1,...,k—1, i.e. e, = 0, a contradiction. This shows

that X,,_1 is a proper subspace of X,,. Hence the theorem on the almost
orthogonal element (see 4.5) yields the existence of an z,, € X,, with

Hxﬂ” =1 and diSt(x7an—1) > % (11—5)

On noting that z,, = a, e, +, with certain a,, € C and z,, € X,,_1, it follows
from the T-invariance of the subspace X,,_1 that Tz,,— \px, =TT, — A\, T, €
X,_1, and so it holds for m < n that

1 1
)\—(Tacn — A\np) — )\—Tmm c X1

n m

Hence it follows from (11-5) that

1 1
Tn+ —(Txp — Antpn) — —Tp H >

Ty T || 1
|762) -2 | = on+ T2 5

An

This shows that the sequence (T( = )) has no cluster point. As T is com-
nelN

pact, this implies that (i—") contains no bounded subsequences, which
ne

yields that

In
| ATL | >\7L

i,e. A, = 0 as n — oo. Hence we have shown that 0 is the only cluster point

of o(T) \ {0}. In particular, it then holds that o(7T) \ B,(0) is finite for every

r >0, and so o(T) \ {0} is countable. O

—> 00 asn — oo,
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Proof (2). Let A := Ald — T. Then A4 (A""1) C A (A") for all n. First we
assume that:

N (A"~1) is a proper subset of A4 (A™) for all n > 1.

Similarly to the proof of (1), and on recalling the theorem on the almost
orthogonal element, we choose an z,, € A4 (A™) with

|zn] =1 and dist(z,, /(A""1)) > 1. (11-6)
Then it follows for m < n that
Az + Aty — Ay € N (A"

and so with (11-6) that
Al
| Tzn — Txm| = | Aen — (Azy, + Az, — Az || > 5 > 0.

On the other hand, {z,; n € IN} is a bounded sequence. This contradicts the
compactness of T. Hence we can find an n € IN with A4/ (A""1) = A47(A").
This implies for m > n that
rEN(AT) = A"z c N (A") =4 (A"TY)
— ATy —
= xcN(A™T),
and so A (A™) = A (A™1), and it follows inductively that A4 (A™) =

A (A™) for all m > n. Hence we have shown that ny < co. Since A4 (A) # {0}
it holds that ny > 1. O

Proof (3). Let A := Ad — T as before. Then
N(A™) @ Z(A™) C X,

because if x € A (A" )NAZ(A™), then Az =0and z = A"y foray € X.
Then A*"y =0, and so y € A (A?") = A (A™) and hence z = A"y = 0.
Now A™ can be written as

A" — )\nAId—f— Z (7;;\))\77,)\—16(_1—1)]6 )

k=1 (11-7)

€ #(X) by 10.3

Hence codimZ(A™) < dim.A(A™) < oo (recall 11.8(4) and 11.8(1)),
which yields that

X=N(A")DR(A™).
As T commutes with A, i.e. TA = AT, T also commutes with A™, and so
both subspaces are T-invariant. a
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Proof (4). We denote by Ty the restriction of T to Z(A™), where A™ has
been computed in (11-7). Then Ty € ¢ (Z(A™)), where Z(A™) is a closed
subspace (recall 11.8(2)), and so a Banach space. Here we have used the fact
that T and A™ commute. Moreover, we have that

N (NI —Ty) = A (A) N 2(A™) = {0},

and hence Z(A\ld — T)) = Z(A™) (apply 11.8(3) to T)), which shows that
A € o(Ty). It remains to show that

o(T)\{A} = a(T)\ {A}.

Let p € €\ {\}. We recall from above that .4(A™) is invariant under
uld — T'. Moreover, uld — T is injective on this subspace. To see this, note
that x € A (pld — T) implies that (A — p)a = Az. If in addition A"z = 0
for some m > 1, it follows that

A =A™ e = A" H (A = p)z) = A"z =0,

and since \ # u this means that A™ 'z = 0. Inductively (for decreasing m)
this yields that z = A% = 0. Hence we have shown that

N (pId =T)Nn A (A™) = {0} for all m > 1.

Setting m = n) yields the injectivity of uId —T on A (A™). As this space is
finite-dimensional, we have that pId—T is also bijective on A" (A™ ). But this
means that p € o(T) if and only if o € (7). This shows that by removing the
(finite-dimensional) characteristic subspace corresponding to the eigenvalue
A we obtain a remaining operator Ty for which o(T)) = o(T) \ {\}. O

Proof (5). Let A, u € o(T)\ {0} be distinct, and let Ay := AId—T and A,, :=
pld—T. Now every = € A (A"), corresponding to the Riesz decomposition of
X into A (A\N) @ Z(AY), has a representation z = z+y. As both subspaces
are invariant under 7', and hence also under A,,, it follows that

0= AZ"'x = AZ“Z + AZ“’y
N~ S—~—
EN(AVN)  €R(AV)

and so 0 = Aj"z. On recalling from the above proof that A, is bijective
on A (A}*), and hence also A", it follows that z = 0, i.e. z € Z(A}).
Therefore we have shown that
N (Apr) C Z(AY),
in other words
H(Eu) C N (Ex),
and hence E\E,, = 0. O
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11.10 Corollary. If T € J#(X) and A € o(T) \ {0}, then the resolvent
function g — R(u;T) has an (isolated) pole of order ny in A, ie. the
function g — (p — A\)™ R(u; T) can be complex analytically extended to the
point A, and the value at the point A is different from the null operator.

Proof. Consider the decomposition
X = JV((AId — T)"A) @%’((Ald — T)"*)

=%(Ex) =N (Ex)

and the restrictions
To:=T toR(Ey), Ti=T toN(Ey).
Since A is an isolated point of o(T'), there exists an r > 0 with B,.(A\) \ {\} C
o(T). Then B, (A)\{A\} C 0(T) and we have from 11.9(4) that B,.(\) C o(Th),
and it holds for 0 < |p| < r that
RN+ T) = R(A+ 1 To) Ex + R(A + p;T1)(1d — Ey) .

It follows from 11.3 that R(A+«;T1) is complex analytic in B,.(0), and so it
remains to show that R(A + +;7Tp) has a pole of order ny in 0. Consider

n
S(p) = Zﬂ_k(To — Md)*t for p # 0.
k=1
It holds that
S(p) (A + p)1d = To) Zul H(To — M) Zﬂ (Ty — AId)*
k=1

—1d — =" (Tp — AId)™ = Id
and similarly ((A+ p)Id — Ty)S(p) = Id, i.e. R(A + p1;Tp) = S(w). O
The assertion o(T) \ {0} C 0,(T) in 11.9(1) can also be formulated as

follows:

11.11 Fredholm alternative. If T' € ¢ (X) and A # 0, then it holds that:
FEither the equation Tz — Az = y is uniquely solvable for every y € X,
or the equation Tx — Ax = 0 has nontrivial solutions.

Note: See also theorem 12.8.

11.12 Finite-dimensional case. Let X be a finite-dimensional vector space
over C and let T : X — X be linear. Then there exist pairwise distinct
Ay ee oy Am € €, where 1 < m < dim X, such that

U(T) = UP(T) = {/\17 CER AM}a
and orders ny; with the properties in 11.9(2) — 11.9(5), so that
X=A#((MId=T)"1) @ & AN ((Apld = T)"m).



386 11 Spectrum of compact operators

Proof. We equip X with an arbitrary norm. Then T € JZ(X) (see 10.2(3)),
and similarly 7}, := T — pld for u € C. Now apply 11.9 to e.g. Tp and T7. O

11.13 Jordan normal form. Let T' € ¢ (X) and let A € 0,(T) be as in
11.9 or 11.12, respectively. Set A := Ald — T". Then:

(1) For n = 1,...,n, there exist subspaces E, with A4 (A" )& E, C
A (A™) such that

nx k)—l
JV(A"*) = @Nk ,  where N := @Al(Ek) )
k=1 1=0
(2) The subspaces N, k = 1,...,ny, are T-invariant and the dimensions

dy, := dim A'(E}) are independent of [ € {0,...,k — 1}.
(8) If {ex,;; j=1,...,di} are bases of Ej, then

{Aler;; 0<I<k<n;, 1<j<di}
is a basis of A (A™) and with
T = Z Qi Alek_j and y= Z B, j.1 Alek,j
kgl kgl
it holds that Tx = y is equivalent to
Br,j.0 A —1 0 O 5.0
. 0 .

: -1 :
5k,j,k—1 0 A QL 5 k—1

i.e. the matrix representing T with respect to this basis has a Jordan normal
form.

Proof. If E is a subspace with 4 (A" 1) @& E C A (A"), then
N (A o AYE) c /(AT for0< 1 <n,

and A! is injective on E. To see this, note that if z € E with A’z = 0, then
also A" 'z = 0 because [ <n —1, and so z € A (A""')N E = {0}. Based

on this observation we inductively choose E,, for n = ny,...,1 such that
nyx—n
N (A = N (A & @) A (Enp)-
1=0

This yields the desired results. ad
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11.14 Real case. If X is a Banach space over IR and if T € #(X), then
the spectral theorem can be applied to their complexification, i.e. let

X =XxX
and for = (z1,29) € )N(, o =a+ib with a,b € IR, let
ar = (axy — bxe,axe + br1), T:= (x1,—22).

With the above X becomes a vector space over €. On setting

Nl

izl i= sup (llcos(®)r — sin(@)az |5 + sin(8')a1 + cos(8')as 1% )
0'elR

it holds that Hewa)? = ||z] g for z € X and 6 € R, and equipped with this

norm X becomes a Banach space over C. Then
Tz := (T, Txs)

defines the corresponding operator Tex ()Z' ), so that theorem 11.9 can now
be applied. B
Now if A € 0,(T) with eigenvector e, then

Te=Te=Xe=Ae,
and so A € 0,(T) with eigenvector e. If A € IR, then the vectors ey ; in
11.13(3) can be chosen to satisfy € ; = ex ;. If A ¢ IR and ey, ; as in 11.13(3),
then the vectors e ; have the properties in 11.13(3) with respect to A.
Remark: In the case when X is a Hilbert space, the above norm satisfies

1

2 2\2
lollg = (ol + laal%) ™
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