11 Spectrum of compact operators

We begin with some general results on the spectrum of continuous operators $(11.1-11.5)$, where we always assume that X is a Banach space over \mathbb{C} (!), i.e. IK = \mathbb{C} , and that $T \in \mathscr{L}(X)$ (for the real case see 11.14). The main topic of this chapter is the Riesz-Schauder theory on the spectrum of compact operators (theorem 11.9).

11.1 Spectrum. We define the **resolvent set** of T by

$$
\varrho(T) := \{ \lambda \in \mathbb{C} \; ; \; \mathcal{N}(\lambda \mathrm{Id} - T) = \{0\} \; \text{ and } \; \mathcal{R}(\lambda \mathrm{Id} - T) = X \; \}
$$

and the **spectrum** of T by

$$
\sigma(T) := \mathbb{C} \setminus \varrho(T).
$$

The spectrum can be decomposed into the **point spectrum**

$$
\sigma_p(T) := \{ \lambda \in \sigma(T) ; \ \mathcal{N}(\lambda \mathrm{Id} - T) \neq \{0\} \} ,
$$

the **continuous spectrum**

$$
\sigma_c(T) := \{ \lambda \in \sigma(T) ; \ \mathcal{N}(\lambda \mathrm{Id} - T) = \{0\} \text{ and}
$$

$$
\mathcal{R}(\lambda \mathrm{Id} - T) \neq X, \text{ but } \overline{\mathcal{R}(\lambda \mathrm{Id} - T)} = X \}
$$

and the **residual spectrum**

$$
\sigma_r(T) := \left\{ \lambda \in \sigma(T) \; ; \; \mathcal{N}(\lambda \mathrm{Id} - T) = \{0\} \; \text{ and } \; \overline{\mathcal{R}(\lambda \mathrm{Id} - T)} \neq X \; \right\} \, .
$$

11.2 Remarks.

(1) It holds that $\lambda \in \varrho(T)$ if and only if $\lambda \mathrm{Id} - T : X \to X$ is bijective. The inverse mapping theorem 7.8 yields that this is equivalent to the existence of

$$
R(\lambda;T) := (\lambda \mathrm{Id} - T)^{-1} \in \mathscr{L}(X).
$$

The inverse $R(\lambda;T)$ is called the *resolvent* of T in λ and as a function of λ is called the **resolvent function**.

(2) $\lambda \in \sigma_p(T)$ is equivalent to:

There exists an
$$
x \neq 0
$$
 with $Tx = \lambda x$.

© Springer-Verlag London 2016

H.W. Alt, *Linear Functional Analysis*, Universitext, DOI 10.1007/978-1-4471-7280-2_ 11

 λ is then called an *eigenvalue* and x an *eigenvector* of T. If X is a function space, then x is also called an *eigenfunction*. The subspace $\mathcal{N}(\lambda \mathrm{Id} - T)$ is the **eigenspace** of T corresponding to the eigenvalue λ . The eigenspace is a T-invariant subspace. (A subspace $Y \subset X$ is called **T**-invariant if $T(Y) \subset Y.$

11.3 Theorem. The resolvent set $\rho(T)$ is open and the resolvent function $\lambda \mapsto R(\lambda;T)$ is a complex analytic map from $\rho(T)$ to $\mathscr{L}(X)$. It holds that

$$
||R(\lambda;T)||^{-1} \leq \text{dist}(\lambda, \sigma(T)) \quad \text{for } \lambda \in \varrho(T).
$$

Remark: A map $F: D \to Y$, with $D \subset \mathbb{C}$ open and Y a Banach space, is called *complex analytic* if for every $\lambda_0 \in D$ there exists a ball $B_{r_0}(\lambda_0) \subset D$ such that $F(\lambda)$ for $\lambda \in B_{r_0}(\lambda_0)$ can be written as a power series in $\lambda - \lambda_0$ with coefficients in Y . Complex analytic maps are holomorphic (see A10.1).

Proof. Let $\lambda \in \rho(T)$. Then we have for $\mu \in \mathbb{C}$ that

$$
(\lambda - \mu)\mathrm{Id} - T = (\lambda \mathrm{Id} - T) \underbrace{(\mathrm{Id} - \mu R(\lambda; T))}_{=: S(\mu)}.
$$

It follows from 5.7 that $S(\mu)$ is invertible if

$$
|\mu|\cdot||R(\lambda;T)|| < 1\,,
$$

and then $\lambda - \mu \in \varrho(T)$, with

$$
R(\lambda - \mu; T) = S(\mu)^{-1} R(\lambda; T) = \sum_{k=0}^{\infty} \mu^k R(\lambda; T)^{k+1}.
$$

Setting $d := ||R(\lambda;T)||^{-1}$ yields that $B_d(\lambda) \subset \varrho(T)$, i.e. dist $(\lambda, \sigma(T)) \geq d$. \Box

11.4 Theorem. The spectrum $\sigma(T)$ is compact and nonempty (if $X \neq \{0\}$), with

$$
\sup_{\lambda \in \sigma(T)} |\lambda| = \lim_{m \to \infty} ||T^m||^{\frac{1}{m}} \le ||T||.
$$

This value is called the **spectral radius** of T.

Proof. Let $\lambda \neq 0$. We have from 5.7 that Id $-\frac{T}{\lambda}$ is invertible if $\left\|\frac{T}{\lambda}\right\| < 1$, i.e. if $|\lambda| > ||T||$, and then

$$
R(\lambda;T) = \frac{1}{\lambda} \Big(\text{Id} - \frac{T}{\lambda} \Big)^{-1} = \sum_{k=0}^{\infty} \frac{T^k}{\lambda^{k+1}}.
$$

This shows that

$$
r := \sup_{\lambda \in \sigma(T)} |\lambda| \leq ||T||.
$$

Since

$$
\lambda^m \text{Id} - T^m = (\lambda \text{Id} - T) p_m(T) = p_m(T) (\lambda \text{Id} - T)
$$

with

$$
p_m(T) := \sum_{i=0}^{m-1} \lambda^{m-1-i} T^i \,,
$$

we conclude that

$$
\lambda \in \sigma(T) \implies \lambda^m \in \sigma(T^m)
$$

\n
$$
\implies |\lambda^m| \le ||T^m|| \quad \text{(recall the bound established above)}
$$

\n
$$
\implies |\lambda| \le ||T^m||^{\frac{1}{m}}.
$$

This proves that

$$
r \leq \liminf_{m \to \infty} ||T^m||^{\frac{1}{m}}.
$$

Next we show that

$$
r \geq \limsup_{m \to \infty} ||T^m||^{\frac{1}{m}}.
$$

We recall from 11.3 that $R(\cdot; T)$ is a complex analytic map in $\mathbb{C} \setminus \overline{B_r(0)}$ (if $\sigma(T)$ is empty, in C). Hence, by Cauchy's integral theorem (see A10.1),

$$
\frac{1}{2\pi i} \int_{\partial B_s(0)} \lambda^j R(\lambda;T) d\lambda
$$

is independent of s for $j \geq 0$ and $s > r$. However, if we choose $s > ||T||$, then we obtain with the help of the representation of $R(\lambda;T)$ at the beginning of the proof that this integral is equal to

$$
= \frac{1}{2\pi i} \int_{\partial B_s(0)} \sum_{k=0}^{\infty} \lambda^{j-k-1} T^k d\lambda = \frac{1}{2\pi} \sum_{k=0}^{\infty} s^{j-k} \left(\int_0^{2\pi} e^{i\theta(j-k)} d\theta \right) T^k
$$

$$
= \sum_{k=0}^{\infty} s^{j-k} \delta_{j,k} T^k = T^j.
$$

Hence, for $j \geq 0$ and $s > r$,

$$
||T^j|| = \frac{1}{2\pi} \left||\int_{\partial B_s(0)} \lambda^j R(\lambda;T) d\lambda \right|| \leq s^{j+1} \sup_{|\lambda|=s} ||R(\lambda;T)||.
$$

Consequently we obtain for $s>r$ and every subsequence $j \to \infty$ that

$$
||T^j||^{\frac{1}{j}} \leq s \cdot \left(s \sup_{|\lambda|=s} ||R(\lambda;T)||\right)^{\frac{1}{j}} \longrightarrow s \text{ or } 0,
$$

and hence

$$
\limsup_{j \to \infty} \|T^j\|^{\frac{1}{j}} \le s.
$$

As this holds for all $s>r$, we obtain the desired result on the spectral radius. In addition, if $\sigma(T)$ was empty, we would obtain for $j = 0$ and as $s \searrow 0$ that

$$
\|\mathrm{Id}\| \le s \cdot \sup_{|\lambda| \le 1} \|R(\lambda;T)\| \longrightarrow 0,
$$

i.e. Id = 0, and so $X = \{0\}$.

11.5 Remarks.

(1) If dim $X < \infty$, then $\sigma(T) = \sigma_p(T)$.

(2) If dim $X = \infty$ and $T \in \mathcal{K}(X)$, then $0 \in \sigma(T)$. But in general 0 is not an eigenvalue.

Proof (1). If $\lambda \in \sigma(T)$, then $\lambda \mathrm{Id} - T$ is not bijective, and so, as dim $X < \infty$, it is also not injective i.e. $\lambda \in \sigma(T)$ it is also not injective, i.e. $\lambda \in \sigma_p(T)$.

Proof (2). Let $T \in \mathcal{K}(X)$ and assume that $0 \in \varrho(T)$. Then (see 11.2(1)) $T^{-1} \in \mathscr{L}(X)$, and (see 10.3) so Id = $T^{-1}T \in \mathscr{K}(X)$, which on recalling 4.10 implies that X is finite-dimensional.

Example without eigenvalue 0: The operator $T: C^0([0,1]) \to C^1([0,1])$ in 5.6(3) is injective. As an operator in $\mathscr{L}(C^0([0,1]))$ it is a compact operator in $\mathscr{K}(C^0([0,1]))$, by theorem 10.6.

In the following we are interested in the point spectrum $\sigma_p(T)$ of an operator $T \in \mathcal{L}(X)$, i.e. we consider the *eigenvalue problem* corresponding to T: For a given $y \in X$ we look for all solutions $\lambda \in K$ and $x \in X$ to

$$
Tx - \lambda x = y.
$$

If $\lambda \in \varrho(T)$, then there exists a uniquely determined solution x to this equation. If $\lambda \in \sigma_n(T)$, then the solution, if one exists, is not unique, i.e. on setting $A_{\lambda} := \lambda \text{Id} - T$ we see that adding an element from $\mathcal{N}(A_{\lambda})$ to a solution yields another solution (for $T \in \mathcal{K}(X)$ see also 11.11). On the other hand, the condition $y \in \mathcal{R}(A_\lambda)$ needs to be satisfied for a solution to the eigenvalue problem to exist at all. An important class of operators A_{λ} are those operators for which both the number of degrees of freedom for the solution x and the number of side conditions on y are finite:

11.6 Fredholm operators. A map $A \in \mathcal{L}(X;Y)$ is called a **Fredholm operator** if:

- (1) dim $\mathcal{N}(A) < \infty$,
- (2) $\mathcal{R}(A)$ is closed,
- **(3)** codim $\mathcal{R}(A) < \infty$.

The **index** of a Fredholm operator is defined by

$$
ind(A) := dim \mathcal{N}(A) - codim \mathcal{R}(A).
$$

Remark: The *codimension* of the image of A being finite means that $Y =$ $\mathscr{R}(A) \oplus Y_0$ for a finite-dimensional subspace $Y_0 \subset Y$. Then codim $\mathscr{R}(A) :=$ $\dim Y_0$ is independent of the choice of Y_0 : indeed, if $Y_1 \subset Y$ is a subspace with $\mathcal{R}(A) \cap Y_1 = \{0\}$, then Y_1 is finite-dimensional with dim $Y_1 \le \dim Y_0$, with equality if and only if $Y = \mathcal{R}(A) \oplus Y_1$.

Proof. We have from (2) and 4.9, respectively, that $Z := \mathcal{R}(A)$ and Y_0 are closed subspaces. Now let $P \in \mathcal{P}(Y)$ be the projection onto Y_0 with $Z =$ $\mathcal{N}(P)$, as in 9.15. Then

 $S := P|_{Y_1} : Y_1 \to Y_0$ is linear and injective,

because if $y \in Y_1$ with $P(y) = 0$, then $y \in Z \cap Y_1 = \{0\}$. As Y_0 is finitedimensional, it follows that Y_1 is also finite-dimensional, with dim $Y_1 \leq$ $\dim Y_0$.

If $Y = Z \oplus Y_1$, then it follows as above (interchange Y_0 and Y_1) that $\dim Y_0 \leq \dim Y_1$, and so $\dim Y_1 = \dim Y_0$. Conversely, if this holds, then S is bijective. For $x \in Y$ we then have that $y := S^{-1}Px \in Y_1$ with $Py =$ $SS^{-1}Px = Px$, and so $x - y \in \mathcal{N}(P) = Z$, which proves that $Y = Z \oplus Y_1$. \Box

11.7 Example. Let $X = W^{1,2}(\Omega)$ and $Y = W^{1,2}(\Omega)'$. Then $A: W^{1,2}(\Omega) \to$ $W^{1,2}(\Omega)'$, defined by

$$
\langle v \, , \, Au \rangle_{W^{1,2}} := \int_{\Omega} \sum_{i,j} \partial_i v \cdot a_{ij} \partial_j u \, dL^n \quad \text{ for } u, v \in W^{1,2}(\Omega),
$$

is a weak elliptic differential operator with Neumann boundary conditions. (We consider the homogeneous case in 6.5(2) with $h_i = 0$ and $b = 0$.) We have from 8.18(2) (where the symmetry $a_{ij} = a_{ji}$ was assumed) that:

The null space $\mathcal{N}(A)$ consists of the constant functions, and therefore $\dim \mathcal{N}(A) = 1$. The image of A is $\mathcal{R}(A) = \{F \in Y; \langle 1, F \rangle_{W^{1,2}} = 0\}$, and so it is closed, with codim $\mathcal{R}(A) = 1$. It holds that

$$
Y = \mathscr{R}(A) \oplus \text{span}\{F_0\}, \quad \text{where} \quad \langle v, F_0 \rangle_{W^{1,2}} := \int_{\Omega} v \, dL^n.
$$

Hence A is a Fredholm operator with index 0.

Observe: For the homogeneous Dirichlet problem (see $10.14(2)$) the operator $A: W_0^{1,2}(\Omega) \to W_0^{1,2}(\Omega)'$ is an isomorphism.

A large class of Fredholm operators with $Y = X$ is given by compact perturbations of the identity (see also 12.8):

11.8 Theorem. Let $T \in \mathcal{K}(X)$. Then $A := \text{Id} - T$ is a Fredholm operator with index 0. We prove this in several steps:

- (1) dim $\mathcal{N}(A) < \infty$,
- (2) $\mathcal{R}(A)$ is closed,
- **(3)** $\mathcal{N}(A) = \{0\} \implies \mathcal{R}(A) = X$,
- (4) codim $\mathcal{R}(A) \leq \dim \mathcal{N}(A)$,
- **(5)** dim $\mathcal{N}(A) \leq \operatorname{codim} \mathcal{R}(A)$.

Proof (1). On noting that $Ax = 0$ is equivalent to $x = Tx$, we have that $B_1(0) \cap \mathcal{N}(A) \subset T(B_1(0)),$ i.e. the unit ball in $\mathcal{N}(A)$ is precompact, and so 4.10 yields that $\mathcal{N}(A)$ is finite-dimensional.

Proof (2). Let $x \in \mathcal{R}(A)$ and let $Ax_n \to x$ as $n \to \infty$. We may assume without loss of generality that

$$
||x_n|| \le 2 d_n
$$
 with $d_n := \text{dist}(x_n, \mathcal{N}(A)),$

because otherwise we choose $a_n \in \mathcal{N}(A)$ with $||x_n - a_n|| \leq 2 \text{ dist}(x_n, \mathcal{N}(A))$ and then proceed with $\tilde{x}_n := x_n - a_n$, where

$$
dist(\widetilde{x}_n, \mathcal{N}(A)) = dist(x_n, \mathcal{N}(A)).
$$

First we assume that $d_n \to \infty$ for a subsequence $n \to \infty$. Setting

$$
y_n := \frac{x_n}{d_n}
$$
 it holds that $Ay_n = \frac{Ax_n}{d_n} \to 0$

as $n \to \infty$. Noting that the y_n are bounded and recalling that T is compact yields that there exists a subsequence such that $Ty_n \to y$ as $n \to \infty$. It follows that

$$
y_n = Ay_n + Ty_n \to y,
$$

and so, by the continuity of A,

$$
Ay = \lim_{n \to \infty} Ay_n = 0.
$$

Hence $y \in \mathcal{N}(A)$, which implies that

$$
||y_n - y|| \ge \text{dist}(y_n, \mathcal{N}(A)) = \text{dist}\left(\frac{x_n}{d_n}, \mathcal{N}(A)\right) = \frac{\text{dist}(x_n, \mathcal{N}(A))}{d_n} = 1,
$$

a contradiction. This shows that the d_n are bounded, and so are the x_n . For a subsequence we then have that $Tx_n \to z$ as $n \to \infty$, and so

$$
x \longleftarrow Ax_n = A(Ax_n + Tx_n) \longrightarrow A(x + z),
$$

which means that $x \in \mathcal{R}(A)$.

Proof (3). Assume that there exists an $x \in X \setminus \mathcal{R}(A)$. Then

$$
A^n x \in \mathcal{R}(A^n) \setminus \mathcal{R}(A^{n+1}) \quad \text{ for all } n \ge 0,
$$

because otherwise $A^n x = A^{n+1}y$ for some y, then $A^n(x - Ay) = 0$, and from $\mathcal{N}(A) = \{0\}$ it then would follow (inductively) that $x - Ay = 0$, i.e $x \in \mathcal{R}(A)$, a contradiction. In addition $\mathcal{R}(A^{n+1})$ is closed, on noting that

$$
A^{n+1} = (\text{Id} - T)^{n+1} = \text{Id} + \sum_{k=1}^{n+1} {n+1 \choose k} (-T)^k ,
$$

$$
\in \mathcal{K}(X) \text{ on recalling } 10.3
$$

and so (2) yields that $\mathcal{R}(A^{n+1})$ is closed. Hence there exists an $a_{n+1} \in$ $\mathscr{R}(A^{n+1})$ with

$$
0 < ||A^n x - a_{n+1}|| \leq 2 \operatorname{dist}(A^n x, \mathcal{R}(A^{n+1})).
$$

Now consider

$$
x_n := \frac{A^n x - a_{n+1}}{\|A^n x - a_{n+1}\|} \in \mathcal{R}(A^n).
$$

We have that

$$
dist(x_n, \mathcal{R}(A^{n+1})) \ge \frac{1}{2}, \qquad (11-4)
$$

because for $y \in \mathcal{R}(A^{n+1})$

$$
||x_n - y|| = \frac{||A^n x - (a_{n+1} + ||A^n x - a_{n+1}||y)||}{||A^n x - a_{n+1}||}
$$

\n
$$
\geq \frac{\text{dist}(A^n x, \mathcal{R}(A^{n+1}))}{||A^n x - a_{n+1}||} \geq \frac{1}{2}.
$$

For $m > n$, we have $Ax_n + x_m - Ax_m \in \mathcal{R}(A^{n+1})$, and hence (11-4) implies that

$$
||Tx_n - Tx_m|| = ||x_n - (Ax_n + x_m - Ax_m)|| \ge \frac{1}{2}.
$$

Hence $(Tx_n)_{n\in\mathbb{N}}$ contains no convergent subsequence, even though $(x_n)_{n\in\mathbb{N}}$ is a bounded sequence. This is a contradiction to the compactness of T. \Box is a bounded sequence. This is a contradiction to the compactness of T.

Proof (4). By (1), the number $n := \dim \mathcal{N}(A)$ is finite. Let $\{x_1, \ldots, x_n\}$ be an arbitrary basis of $\mathcal{N}(A)$. If we assume that the claimed inequality is false, then there exist linearly independent vectors y_1, \ldots, y_n , such that span $\{y_1,\ldots,y_n\} \oplus \mathcal{R}(A)$ is a proper subspace of X. Moreover, 9.16(1) yields the existence of $x'_1, \ldots, x'_n \in X'$ with

$$
\langle x_l, x_k' \rangle = \delta_{k,l} \quad \text{ for } k, l = 1, \dots, n.
$$

Setting

380 11 Spectrum of compact operators

$$
\widetilde{T}x := Tx + \sum_{k=1}^{n} \langle x, x_k' \rangle y_k
$$

then defines an operator $\widetilde{T} \in \mathscr{K}(X)$, indeed, T is compact and $\widetilde{T} - T$ has a finite-dimensional image. In addition, $\mathcal{N}(\widetilde{A}) = \{0\}$, where $\widetilde{A} := Id - \widetilde{T}$, because $\widetilde{A}x = 0$ implies, on recalling the choice of the y_k , that $Ax = 0$ and $\langle x, x'_k \rangle = 0$ for $k = 1, ..., n$. Therefore $x \in \mathcal{N}(A)$, and hence there exists a representation

$$
x = \sum_{k=1}^{n} \alpha_k x_k
$$
, and so $0 = \langle x, x'_l \rangle = \sum_{k=1}^{n} \alpha_k \langle x_k, x'_l \rangle = \alpha_l$

for $l = 1, \ldots, n$, which yields that $x = 0$. On applying (3) to the operator A, it follows that $\mathscr{R}(\widetilde{A}) = X$. On noting that $\widetilde{A}x_l = -y_l$ for $l = 1, \ldots, n$ and that

$$
\widetilde{A}\Big(x - \sum_{l=1}^{n} \langle x, x'_l \rangle x_l\Big) = Ax \quad \text{for all } x \in X,
$$

we conclude that $X = \mathscr{R}(\widetilde{A}) \subset \text{span}\{y_1, \ldots, y_n\} \oplus \mathscr{R}(A)$, a contradiction to the above property. the above property.

Proof (5). We have from (4) that $m := \text{codim } \mathcal{R}(A) \leq n := \dim \mathcal{N}(A)$.

First we reduce the claim to the case $m = 0$. To this end, choose x_1, \ldots, x_n and x'_1, \ldots, x'_n as in the proof of (4) and y_1, \ldots, y_m with

$$
X=\mathrm{span}\{y_1,\ldots,y_m\}\oplus\mathscr{R}(A).
$$

As in the proof of (4), the operator

$$
x \longmapsto \widetilde{T}x := Tx + \sum_{k=1}^{m} \langle x, x_k' \rangle y_k
$$

is compact and $\widetilde{A} := \text{Id} - \widetilde{T}$ is surjective with $\mathcal{N}(\widetilde{A}) = \text{span}\{x_i; m < i \leq n\}.$ We need to show that $\mathcal{N}(\tilde{A}) = \{0\}$. Hence the claim is reduced to the case $m = 0$.

In the case $m = 0$ it holds that $\mathcal{R}(A) = X$. We assume that there exists an $x_1 \in \mathcal{N}(A) \setminus \{0\}$. The surjectivity of A then yields that we can inductively choose $x_k \in X$, $k \geq 2$, with $Ax_k = x_{k-1}$. Then $x_k \in \mathcal{N}(A^k) \setminus \mathcal{N}(A^{k-1})$. It follows from the theorem on the almost orthogonal element that there exists a $z_k \in \mathcal{N}(A^k)$ with $||z_k|| = 1$ and $dist(z_k, \mathcal{N}(A^{k-1})) \geq \frac{1}{2}$. For $l \leq k$ this implies that $Az_k + z_l - Az_l \in \mathcal{N}(A^{k-1})$, and so the choice of z_k yields that

$$
||Tz_k - Tz_l|| = ||z_k - (Az_k + z_l - Az_l)|| \ge \frac{1}{2}.
$$

This shows that ${Tz_k; k \in \mathbb{N}}$ contains no convergent subsequence. This is a contradiction to the sequence $\{z_k; k \in \mathbb{N}\}\$ being bounded and the operator T being compact.

A second possible proof for $m = 0$ is as follows: We start with a decomposition $X = X \oplus \mathcal{N}(A)$ with a closed subspace X (this follows from (1) and 9.16(2) for $Y = \{0\}$. Then $A : \tilde{X} \to X$ is bijective, and so 7.8 yields that $\hat{A} := (A|\tilde{X})^{-1} : X \to \tilde{X}$ is continuous. Now consider \tilde{A} as an element in $\mathscr{L}(X)$. Then $\widetilde{T} := \text{Id} - \widetilde{A} \in \mathscr{K}(X)$, because if $\{x_k; k \in \mathbb{N}\}\$ is bounded in X, then so is $\{\widetilde{A}x_k; k \in \mathbb{N}\}\$, and hence there exists a subsequence with $T\tilde{A}x_k \to x$ as $k \to \infty$. On the other hand,

$$
T\widetilde{A}x_k = (\text{Id} - A)\widetilde{A}x_k = \widetilde{A}x_k - x_k = -\widetilde{T}x_k.
$$

Now (3) implies that $\mathcal{R}(\widetilde{A}) = X$, i.e. $\mathcal{N}(A) = \{0\}.$

A further possible proof of (5) will be given in 12.7. \square

The fundamental theorem of this chapter is the

11.9 Spectral theorem for compact operators (Riesz-Schauder). For every operator $T \in \mathcal{K}(X)$ it holds that:

(1) The set $\sigma(T) \setminus \{0\}$ consists of countably (finitely or infinitely) many eigenvalues with 0 as the only possible cluster point. So if $\sigma(T)$ contains infinitely many elements, then $\overline{\sigma(T)} = \sigma_p(T) \cup \{0\}$, hence 0 is a cluster point of $\sigma(T)$.

(2) For $\lambda \in \sigma(T) \setminus \{0\}$

$$
1 \leq n_{\lambda} := \max\left\{ n \in \mathbb{N} \; ; \; \mathcal{N}\left((\lambda \mathrm{Id} - T)^{n-1} \right) \neq \mathcal{N}\left((\lambda \mathrm{Id} - T)^{n} \right) \; \right\} < \infty.
$$

The number $n_{\lambda} \in \mathbb{N}$ is called the *order* (or *index*) of λ and dim $\mathcal{N}(\lambda \mathrm{Id} - T)$ is called the **multiplicity** of λ .

(3) Riesz decomposition. For $\lambda \in \sigma(T) \setminus \{0\}$

$$
X = \mathcal{N}((\lambda \mathrm{Id} - T)^{n_{\lambda}}) \oplus \mathscr{R}((\lambda \mathrm{Id} - T)^{n_{\lambda}}).
$$

Both subspaces are closed and T-invariant, and the **characteristic subspace** $\mathcal{N}((\lambda \mathrm{Id} - T)^{n_{\lambda}})$ is finite-dimensional.

(4) For $\lambda \in \sigma(T) \setminus \{0\}$ it holds that $\sigma(T|_{\mathscr{R}((\lambda \mathrm{Id}-T)^n \lambda)}) = \sigma(T) \setminus \{\lambda\}.$

(5) If E_λ for $\lambda \in \sigma(T) \setminus \{0\}$ denotes the projection onto $\mathcal{N}((\lambda \mathrm{Id} - T)^{n_\lambda})$ corresponding to the decomposition in (3), then

$$
E_{\lambda}E_{\mu}=\delta_{\lambda,\mu}E_{\lambda} \quad \text{ for } \lambda,\mu \in \sigma(T) \setminus \{0\}.
$$

Proof (1). Let $0 \neq \lambda \notin \sigma_p(T)$. Then $\mathcal{N}(\text{Id} - \frac{T}{\lambda}) = \{0\}$, and so $\mathcal{R}(\text{Id} - \frac{T}{\lambda}) = X$ $(\text{recall } 11.8(3)),$ i.e. $\lambda \in \varrho(T)$. This shows that

$$
\sigma(T)\setminus\{0\}\subset\sigma_p(T)\,.
$$

If $\sigma(T) \setminus \{0\}$ is not finite, then we choose $\lambda_n \in \sigma(T) \setminus \{0\}$, $n \in \mathbb{N}$, pairwise distinct and eigenvectors $e_n \neq 0$ to λ_n and define

$$
X_n := \operatorname{span}\{e_1, \ldots, e_n\}.
$$

The eigenvectors e_k , $k = 1, \ldots, n$, are linearly independent, because if there exists (this is an inductive proof) $1 < k \leq n$ with

$$
e_k = \sum_{i=1}^{k-1} \alpha_i e_i
$$

with already linearly independent vectors e_1, \ldots, e_{k-1} , then it follows that

$$
0 = Te_k - \lambda_k e_k = \sum_{i=1}^{k-1} \alpha_i (Te_i - \lambda_k e_i) = \sum_{i=1}^{k-1} \alpha_i \underbrace{(\lambda_i - \lambda_k)}_{\neq 0} e_i,
$$

and so $\alpha_i = 0$ for $i = 1, \ldots, k - 1$, i.e. $e_k = 0$, a contradiction. This shows that X_{n-1} is a proper subspace of X_n . Hence the theorem on the almost orthogonal element (see 4.5) yields the existence of an $x_n \in X_n$ with

$$
||x_n|| = 1
$$
 and $dist(x_n, X_{n-1}) \ge \frac{1}{2}$. (11-5)

On noting that $x_n = \alpha_n e_n + \tilde{x}_n$ with certain $\alpha_n \in \mathbb{C}$ and $\tilde{x}_n \in X_{n-1}$, it follows from the T-invariance of the subspace X_{n-1} that $Tx_n - \lambda_n x_n = T\tilde{x}_n - \lambda_n \tilde{x}_n \in$ X_{n-1} , and so it holds for $m < n$ that

$$
\frac{1}{\lambda_n}(Tx_n - \lambda_n x_n) - \frac{1}{\lambda_m}Tx_m \in X_{n-1}.
$$

Hence it follows from (11-5) that

$$
\left\|T\left(\frac{x_n}{\lambda_n}\right) - T\left(\frac{x_m}{\lambda_m}\right)\right\| = \left\|x_n + \frac{1}{\lambda_n}(Tx_n - \lambda_n x_n) - \frac{1}{\lambda_m}Tx_m\right\| \ge \frac{1}{2}.
$$

This shows that the sequence $\left(T\left(\frac{x_n}{\lambda_n}\right)\right)$ $n \in \mathbb{N}$ has no cluster point. As T is compact, this implies that $\left(\frac{x_n}{\lambda_n}\right)$ $n \in \mathbb{N}$ contains no bounded subsequences, which yields that

$$
\frac{1}{|\lambda_n|} = \left\| \frac{x_n}{\lambda_n} \right\| \longrightarrow \infty \quad \text{as } n \to \infty,
$$

i.e. $\lambda_n \to 0$ as $n \to \infty$. Hence we have shown that 0 is the only cluster point of $\sigma(T) \setminus \{0\}$. In particular, it then holds that $\sigma(T) \setminus B_r(0)$ is finite for every $r > 0$, and so $\sigma(T) \setminus \{0\}$ is countable. $r > 0$, and so $\sigma(T) \setminus \{0\}$ is countable.

Proof (2). Let $A := \lambda \text{Id} - T$. Then $\mathcal{N}(A^{n-1}) \subset \mathcal{N}(A^n)$ for all n. First we assume that:

$$
\mathcal{N}(A^{n-1})
$$
 is a proper subset of $\mathcal{N}(A^n)$ for all $n \ge 1$.

Similarly to the proof of (1), and on recalling the theorem on the almost orthogonal element, we choose an $x_n \in \mathcal{N}(A^n)$ with

$$
||x_n|| = 1
$$
 and $dist(x_n, \mathcal{N}(A^{n-1})) \ge \frac{1}{2}$. (11-6)

Then it follows for $m < n$ that

$$
Ax_n + \lambda x_m - Ax_m \in \mathcal{N}(A^{n-1}),
$$

and so with (11-6) that

$$
||Tx_n - Tx_m|| = ||\lambda x_n - (Ax_n + \lambda x_m - Ax_m)|| \ge \frac{|\lambda|}{2} > 0.
$$

On the other hand, $\{x_n; n \in \mathbb{N}\}\$ is a bounded sequence. This contradicts the compactness of T. Hence we can find an $n \in \mathbb{N}$ with $\mathcal{N}(A^{n-1}) = \mathcal{N}(A^n)$. This implies for $m>n$ that

$$
x \in \mathcal{N}(A^m) \quad \Longrightarrow \quad A^{m-n}x \in \mathcal{N}(A^n) = \mathcal{N}(A^{n-1})
$$

$$
\Longrightarrow \quad A^{n-1+m-n}x = 0
$$

$$
\Longrightarrow \quad x \in \mathcal{N}(A^{m-1}),
$$

and so $\mathcal{N}(A^m) = \mathcal{N}(A^{m-1})$, and it follows inductively that $\mathcal{N}(A^m) =$ $\mathcal{N}(A^n)$ for all $m \geq n$. Hence we have shown that $n_{\lambda} < \infty$. Since $\mathcal{N}(A) \neq \{0\}$
it holds that $n_{\lambda} > 1$ it holds that $n_{\lambda} \geq 1$.

Proof (3). Let $A := \lambda \text{Id} - T$ as before. Then

$$
\mathscr{N}(A^{n_{\lambda}}) \oplus \mathscr{R}(A^{n_{\lambda}}) \subset X ,
$$

because if $x \in \mathcal{N}(A^{n_{\lambda}}) \cap \mathcal{R}(A^{n_{\lambda}})$, then $A^{n_{\lambda}} x = 0$ and $x = A^{n_{\lambda}} y$ for a $y \in X$. Then $A^{2n_{\lambda}}y = 0$, and so $y \in \mathcal{N}(A^{2n_{\lambda}}) = \mathcal{N}(A^{n_{\lambda}})$ and hence $x = A^{n_{\lambda}}y = 0$. Now A^{n_λ} can be written as

$$
A^{n_{\lambda}} = \lambda^{n_{\lambda}} \text{Id} + \underbrace{\sum_{k=1}^{n_{\lambda}} \binom{n_{\lambda}}{k} \lambda^{n_{\lambda} - k} (-T)^{k}}_{\in \mathcal{K}(X) \text{ by } 10.3} .
$$
 (11-7)

Hence codim $\mathcal{R}(A^{n_{\lambda}}) \leq \dim \mathcal{N}(A^{n_{\lambda}}) < \infty$ (recall 11.8(4) and 11.8(1)), which yields that

$$
X=\mathscr{N}(A^{n_{\lambda}})\oplus \mathscr{R}(A^{n_{\lambda}}).
$$

As T commutes with A, i.e. $TA = AT$, T also commutes with $A^{n_{\lambda}}$, and so both subspaces are T-invariant.

Proof (4). We denote by T_{λ} the restriction of T to $\mathcal{R}(A^{n_{\lambda}})$, where $A^{n_{\lambda}}$ has been computed in (11-7). Then $T_{\lambda} \in \mathcal{K}(\mathcal{R}(A^{n_{\lambda}}))$, where $\mathcal{R}(A^{n_{\lambda}})$ is a closed subspace (recall $11.8(2)$), and so a Banach space. Here we have used the fact that T and $A^{n_{\lambda}}$ commute. Moreover, we have that

$$
\mathcal{N}(\lambda \mathrm{Id} - T_{\lambda}) = \mathcal{N}(A) \cap \mathcal{R}(A^{n_{\lambda}}) = \{0\},\,
$$

and hence $\mathcal{R}(\lambda \mathrm{Id} - T_\lambda) = \mathcal{R}(A^{n_\lambda})$ (apply 11.8(3) to T_λ), which shows that $\lambda \in \rho(T_\lambda)$. It remains to show that

$$
\sigma(T_{\lambda})\setminus\{\lambda\}=\sigma(T)\setminus\{\lambda\}.
$$

Let $\mu \in \mathbb{C} \setminus \{\lambda\}$. We recall from above that $\mathcal{N}(A^{n_{\lambda}})$ is invariant under $\mu \text{Id} - T$. Moreover, $\mu \text{Id} - T$ is injective on this subspace. To see this, note that $x \in \mathcal{N}(\mu \mathrm{Id} - T)$ implies that $(\lambda - \mu)x = Ax$. If in addition $A^m x = 0$ for some $m \geq 1$, it follows that

$$
(\lambda - \mu)A^{m-1}x = A^{m-1}((\lambda - \mu)x) = A^m x = 0,
$$

and since $\lambda \neq \mu$ this means that $A^{m-1}x = 0$. Inductively (for decreasing m) this yields that $x = A^0 x = 0$. Hence we have shown that

$$
\mathcal{N}(\mu \mathrm{Id} - T) \cap \mathcal{N}(A^m) = \{0\} \quad \text{ for all } m \ge 1.
$$

Setting $m = n_\lambda$ yields the injectivity of $\mu \mathrm{Id} - T$ on $\mathcal{N}(A^{n_\lambda})$. As this space is finite-dimensional, we have that $\mu \mathrm{Id}-T$ is also bijective on $\mathcal{N}(A^{n_{\lambda}})$. But this means that $\mu \in \varrho(T)$ if and only if $\mu \in \varrho(T_\lambda)$. This shows that by removing the (finite-dimensional) characteristic subspace corresponding to the eigenvalue λ we obtain a remaining operator T_{λ} for which $\sigma(T_{\lambda}) = \sigma(T) \setminus {\lambda}.$

Proof (5). Let $\lambda, \mu \in \sigma(T) \setminus \{0\}$ be distinct, and let $A_{\lambda} := \lambda \text{Id} - T$ and $A_{\mu} :=$ μ Id−T. Now every $x \in \mathcal{N}(A_{\mu}^{n_{\mu}})$, corresponding to the Riesz decomposition of X into $\mathcal{N}(A_{\lambda}^{n_{\lambda}})\oplus \mathcal{R}(A_{\lambda}^{n_{\lambda}})$, has a representation $x=z+y$. As both subspaces are invariant under T, and hence also under A_{μ} , it follows that

$$
0 = A_{\mu}^{n_{\mu}} x = \underbrace{A_{\mu}^{n_{\mu}} z}_{\in \mathcal{N}(A_{\lambda}^{n_{\lambda}})} + \underbrace{A_{\mu}^{n_{\mu}} y}_{\in \mathcal{R}(A_{\lambda}^{n_{\lambda}})}
$$

and so $0 = A_{\mu}^{n_{\mu}} z$. On recalling from the above proof that A_{μ} is bijective on $\mathcal{N}(A_{\lambda}^{n_{\lambda}})$, and hence also $A_{\mu}^{n_{\mu}}$, it follows that $z = 0$, i.e. $x \in \mathcal{R}(A_{\lambda}^{n_{\lambda}})$. Therefore we have shown that

$$
\mathscr{N}(A_{\mu}^{n_{\mu}})\subset \mathscr{R}(A_{\lambda}^{n_{\lambda}})\,,
$$

in other words

$$
\mathscr{R}(E_{\mu})\subset \mathscr{N}(E_{\lambda}),
$$

and hence $E_{\lambda}E_{\mu}=0.$

11.10 Corollary. If $T \in \mathcal{K}(X)$ and $\lambda \in \sigma(T) \setminus \{0\}$, then the resolvent function $\mu \mapsto R(\mu;T)$ has an *(isolated)* pole of order n_{λ} in λ , i.e. the function $\mu \mapsto (\mu - \lambda)^{n_{\lambda}} R(\mu; T)$ can be complex analytically extended to the point λ , and the value at the point λ is different from the null operator.

Proof. Consider the decomposition

$$
X = \underbrace{\mathcal{N}((\lambda \mathrm{Id} - T)^{n_{\lambda}})}_{=\mathscr{R}(E_{\lambda})} \oplus \underbrace{\mathscr{R}((\lambda \mathrm{Id} - T)^{n_{\lambda}})}_{=\mathcal{N}(E_{\lambda})}
$$

and the restrictions

$$
T_0 := T
$$
 to $\mathcal{R}(E_\lambda)$, $T_1 := T$ to $\mathcal{N}(E_\lambda)$.

Since λ is an isolated point of $\sigma(T)$, there exists an $r > 0$ with $B_r(\lambda) \setminus {\lambda} \subset$ $\rho(T)$. Then $B_r(\lambda)\setminus\{\lambda\}\subset\rho(T_0)$ and we have from 11.9(4) that $B_r(\lambda)\subset\rho(T_1)$, and it holds for $0 < |\mu| < r$ that

$$
R(\lambda + \mu; T) = R(\lambda + \mu; T_0)E_\lambda + R(\lambda + \mu; T_1)(\text{Id} - E_\lambda).
$$

It follows from 11.3 that $R(\lambda + \cdot; T_1)$ is complex analytic in $B_r(0)$, and so it remains to show that $R(\lambda + \cdot; T_0)$ has a pole of order n_λ in 0. Consider

$$
S(\mu) := \sum_{k=1}^{n_{\lambda}} \mu^{-k} (T_0 - \lambda \text{Id})^{k-1} \quad \text{for } \mu \neq 0.
$$

It holds that

$$
S(\mu)((\lambda + \mu)\mathrm{Id} - T_0) = \sum_{k=1}^{n_{\lambda}} \mu^{1-k} (T_0 - \lambda \mathrm{Id})^{k-1} - \sum_{k=1}^{n_{\lambda}} \mu^{-k} (T_0 - \lambda \mathrm{Id})^k
$$

= Id - \mu^{-n_{\lambda}} (T_0 - \lambda \mathrm{Id})^{n_{\lambda}} = \mathrm{Id}

and similarly $((\lambda + \mu)\text{Id} - T_0)S(\mu) = \text{Id}$, i.e. $R(\lambda + \mu; T_0) = S(\mu)$.

The assertion $\sigma(T) \setminus \{0\} \subset \sigma_p(T)$ in 11.9(1) can also be formulated as follows:

11.11 Fredholm alternative. If $T \in \mathcal{K}(X)$ and $\lambda \neq 0$, then it holds that:

Either the equation $Tx - \lambda x = y$ is uniquely solvable for every $y \in X$,

or the equation $Tx - \lambda x = 0$ has nontrivial solutions.

Note: See also theorem 12.8.

11.12 Finite-dimensional case. Let X be a finite-dimensional vector space over C and let $T : X \to X$ be linear. Then there exist pairwise distinct $\lambda_1,\ldots,\lambda_m\in\mathbb{C}$, where $1\leq m\leq \dim X$, such that

$$
\sigma(T) = \sigma_p(T) = \{\lambda_1, \ldots, \lambda_m\},\,
$$

and orders n_{λ_i} with the properties in $11.9(2) - 11.9(5)$, so that

$$
X = \mathcal{N}((\lambda_1 \mathrm{Id} - T)^{n_{\lambda_1}}) \oplus \cdots \oplus \mathcal{N}((\lambda_m \mathrm{Id} - T)^{n_{\lambda_m}}).
$$

Proof. We equip X with an arbitrary norm. Then $T \in \mathcal{K}(X)$ (see 10.2(3)), and similarly $T_{\mu} := T - \mu \text{Id}$ for $\mu \in \mathbb{C}$. Now apply 11.9 to e.g. T_0 and T_1 . \Box

11.13 Jordan normal form. Let $T \in \mathcal{K}(X)$ and let $\lambda \in \sigma_p(T)$ be as in 11.9 or 11.12, respectively. Set $A := \lambda \text{Id} - T$. Then:

(1) For $n = 1, ..., n_\lambda$ there exist subspaces E_n with $\mathcal{N}(A^{n-1}) \oplus E_n \subset$ $\mathcal{N}(A^n)$ such that

$$
\mathcal{N}(A^{n_{\lambda}}) = \bigoplus_{k=1}^{n_{\lambda}} N_k , \quad \text{where} \quad N_k := \bigoplus_{l=0}^{k-1} A^l(E_k) .
$$

(2) The subspaces N_k , $k = 1, \ldots, n_\lambda$, are T-invariant and the dimensions $d_k := \dim A^l(E_k)$ are independent of $l \in \{0, \ldots, k-1\}.$ **(3)** If $\{e_{k,j}; j = 1, ..., d_k\}$ are bases of E_k , then

$$
\{A^{l}e_{k,j}\,;\ 0 \le l < k \le n_j,\ 1 \le j \le d_k\}
$$

is a basis of $\mathcal{N}(A^{n_{\lambda}})$ and with

$$
x = \sum_{k,j,l} \alpha_{k,j,l} A^l e_{k,j}
$$
 and $y = \sum_{k,j,l} \beta_{k,j,l} A^l e_{k,j}$

it holds that $Tx = y$ is equivalent to

$$
\begin{bmatrix}\n\beta_{k,j,0} \\
\vdots \\
\vdots \\
\beta_{k,j,k-1}\n\end{bmatrix} = \begin{bmatrix}\n\lambda & -1 & 0 \\
0 & \ddots & \ddots \\
& \ddots & -1 \\
0 & \lambda\n\end{bmatrix} \begin{bmatrix}\n\alpha_{k,j,0} \\
\vdots \\
\alpha_{k,j,k-1}\n\end{bmatrix},
$$

i.e. the matrix representing T with respect to this basis has a **Jordan normal form**.

Proof. If E is a subspace with $\mathcal{N}(A^{n-1}) \oplus E \subset \mathcal{N}(A^n)$, then

$$
\mathcal{N}(A^{n-l-1}) \oplus A^l(E) \subset \mathcal{N}(A^{n-l}) \quad \text{ for } 0 \le l < n,
$$

and A^l is injective on E. To see this, note that if $x \in E$ with $A^l x = 0$, then also $A^{n-1}x = 0$ because $l \leq n-1$, and so $x \in \mathcal{N}(A^{n-1}) \cap E = \{0\}$. Based on this observation we inductively choose E_n for $n = n_{\lambda}, \ldots, 1$ such that

$$
\mathcal{N}(A^n) = \mathcal{N}(A^{n-1}) \oplus \bigoplus_{l=0}^{n_{\lambda}-n} A^l(E_{n+l}).
$$

This yields the desired results.

11.14 Real case. If X is a Banach space over R and if $T \in \mathcal{K}(X)$, then the spectral theorem can be applied to their **complexification**, i.e. let

$$
\widetilde{X} := X \times X
$$

and for $x = (x_1, x_2) \in \widetilde{X}$, $\alpha = a + ib$ with $a, b \in \mathbb{R}$, let

$$
\alpha x := (ax_1 - bx_2, ax_2 + bx_1), \quad \overline{x} := (x_1, -x_2).
$$

With the above \widetilde{X} becomes a vector space over $\mathbb C$. On setting

$$
||x||_{\tilde{X}} := \sup_{\theta' \in \mathbb{R}} \left(\left\| \cos(\theta') x_1 - \sin(\theta') x_2 \right\|_{X}^2 + \left\| \sin(\theta') x_1 + \cos(\theta') x_2 \right\|_{X}^2 \right)^{\frac{1}{2}}
$$

it holds that $\left\|e^{i\theta}x\right\|_{\widetilde{X}} = \|x\|_{\widetilde{X}}$ for $x \in \widetilde{X}$ and $\theta \in \mathbb{R}$, and equipped with this norm \widetilde{X} becomes a Banach space over $\mathbb C$. Then

$$
\overline{T}x:=(Tx_1,Tx_2)
$$

defines the corresponding operator $\widetilde{T} \in \mathscr{K}(\widetilde{X})$, so that theorem 11.9 can now be applied.

Now if $\lambda \in \sigma_n(\widetilde{T})$ with eigenvector e, then

$$
\widetilde{T}\overline{e} = \overline{\widetilde{T}e} = \overline{\lambda e} = \overline{\lambda}\,\overline{e}\,,
$$

and so $\overline{\lambda} \in \sigma_p(\tilde{T})$ with eigenvector \overline{e} . If $\lambda \in \mathbb{R}$, then the vectors $e_{k,j}$ in 11.13(3) can be chosen to satisfy $\overline{e_{k,j}} = e_{k,j}$. If $\lambda \notin \mathbb{R}$ and $e_{k,j}$ as in 11.13(3), then the vectors $\overline{e_{k,j}}$ have the properties in 11.13(3) with respect to $\overline{\lambda}$. *Remark:* In the case when X is a Hilbert space, the above norm satisfies

$$
||x||_{\widetilde{X}} = \left(||x_1||_X^2 + ||x_2||_X^2\right)^{\frac{1}{2}}.
$$