
10 Compact operators

In this chapter we consider the properties of compact linear operators between
Banach spaces. The space K (X;Y ) of (linear) compact operators from X to
Y was already defined in 5.5(2). Because here we are always concerned with
linear operators, for convenience we simply speak of compact operators.

All the spaces in this chapter are assumed to be Banach spaces. We begin
with a discussion of the elementary properties of compact operators and then
give the most important examples of such operators. These include compact
embeddings between function spaces and compact integral operators.

10.1 Compact operators. Let X and Y be Banach spaces over IK. Then
a linear map T : X → Y is called a compact (linear) operator if one of
the following equivalent properties is satisfied:

(1) T (B1(0)) ⊂ Y is compact (see the definition 5.5(2)).

(2) T (B1(0)) ⊂ Y is precompact.

(3) M ⊂ X is bounded =⇒ T (M) ⊂ Y is precompact.

(4) For every bounded sequence (xn)n∈IN in X, the sequence (Txn)n∈IN con-
tains a subsequence that is convergent in Y .

It follows from (2) that T (B1(0)) is bounded (see 4.7(2)), and so T ∈
L (X;Y ), by 5.1. Hence it holds for the set defined in 5.5(2) that

K (X;Y ) := {T : X → Y ; T is a compact linear operator}
= {T ∈ L (X;Y ) ; T satisfies (4)} .

Moreover, let K (X) := K (X;X).

Note: The fact that compact maps (with the property (1)) are continuous
only holds for linear maps. General nonlinear maps which satisfy (1) need
not be continuous.

Proof (1)⇔(2). This follows from 4.7(5), as Y is complete. ��

Proof (2)⇔(3). The linearity of T implies that for every R > 0 statement (2)
is equivalent to the precompactness of T

(
BR(0)

)
. Because every bounded set

M is contained in a ball BR(0), it then follows that the smaller set T (M) is
also precompact. ��
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320 10 Compact operators

Proof (1)⇒(4). If xn ∈ X for n ∈ IN with ‖xn‖X < R, then 1
RTxn = T ( 1

Rxn)
are elements of the compact, and hence (by 4.6) also sequentially compact,
set T (B1(0)). ��

Proof (4)⇒(1). Let yn ∈ T
(
B1(0)

)
for n ∈ IN. Then there exist xn ∈ B1(0)

with ‖yn − Txn‖Y ≤ 1
n . It follows from (4) that there exists a y ∈ Y such

that Txn → y for a subsequence n → ∞, and hence also yn → y. This shows

that T
(
B1(0)

)
is sequentially compact, and so, by 4.6, is also compact. ��

We now prove some basic results.

10.2 Lemma.

(1) If X is a reflexive space, then it holds for every linear map T : X → Y
that

T ∈ K (X;Y ) ⇐⇒ T is completely continuous, i.e.

if xn → x converges weakly in X as n → ∞, then Txn → Tx converges
strongly in Y .

(2) K (X;Y ) is a closed subspace of L (X;Y ).

(3) If T ∈ L (X;Y ) with dimR(T ) < ∞, then T ∈ K (X;Y ).

(4) If Y is a Hilbert space and T ∈ L (X;Y ), then

T ∈ K (X;Y ) ⇐⇒
there exist Tn ∈ L (X;Y ) with dimR(Tn) < ∞,

such that ‖T − Tn‖ → 0 as n → ∞ .

(5) For projections P ∈ P(X) it holds that

P ∈ K (X) ⇐⇒ dimR(P ) < ∞ .

Proof (1)⇒. (In the proof of this implication the reflexivity of X is not
needed.) Let xn → x weakly as n → ∞. By 8.3(5), the sequence (xn)n∈IN is
bounded, and so 10.1(4) yields the existence of a y ∈ Y such that Txn → y
strongly in Y for a subsequence n → ∞. For y′ ∈ Y ′ the map z �→ 〈Tz , y′〉
defines an element in X ′. Therefore,

〈Txn , y
′〉 → 〈Tx , y′〉 as n → ∞ .

This yields that Txn → Tx weakly in Y . As strong convergence implies weak
convergence, one must have y = Tx. Hence Txn → Tx converges strongly
for a subsequence n → ∞. On noting that all of the above argumentation
can be applied to every subsequence of (xn)n∈IN, it follows that the whole (!)
sequence (Txn)n∈IN has only one cluster point Tx, i.e. it converges strongly
to Tx. ��

Proof (1)⇐. Being completely continuous implies that T is continuous, and
so T ∈ L (X;Y ). Moreover, it follows from theorem 8.10 that bounded se-
quences in reflexive spaces contain weakly convergent subsequences. ��
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Proof (2). In order to see that K (X;Y ) is a subspace, let T1, T2 ∈ K (X;Y ),
let α ∈ IK and let (xn)n∈IN be a bounded sequence in X. Then there
exists a subsequence (T1xnk

)k∈IN that is convergent in Y . Similarly, we

may then choose a convergent subsequence
(
T2xnkl

)
l∈IN

. This implies that(
(αT1 + T2)(xnkl

)
)
l∈IN

converges in Y , which shows that αT1+T2 ∈ K (X;Y ).

To prove that K (X;Y ) is closed, assume that Tn ∈ K (X;Y ) converges
in L (X;Y ) as n → ∞ to T ∈ L (X;Y ). For ε > 0 first choose nε with
‖T − Tnε

‖ ≤ ε and then (recall 10.1(2)) balls Bε(yi), i = 1, . . . ,mε, such
that

Tnε
(B1(0)) ⊂

mε⋃
i=1

Bε(yi) , which implies: T (B1(0)) ⊂
mε⋃
i=1

B2ε(yi) .

Hence T (B1(0)) is precompact, and so T is compact. ��

Proof (3). We have that Z := R(T ) ⊂ Y is finite-dimensional, and so it
follows from 4.9 that with the Y -norm it is a Banach space. On setting
R := ‖T ‖ we have that

T
(
B1(0)

)
⊂ KR := {y ∈ Z ; ‖y‖Y ≤ R} ⊂ Z .

By 4.10, we have that KR ⊂ Z is compact, and hence combining 4.7(5) and
4.7(1) yields that T (B1(0)) is compact. ��

Proof (4)⇐. We have from (3) that Tn ∈ K (X;Y ). Then (2) yields that
T ∈ K (X;Y ). ��

Proof (4)⇒. Let ε > 0. It follows from 10.1(2) that we can choose balls
Bε(yi), i = 1, . . . ,mε, with

T
(
B1(0)

)
⊂

mε⋃
i=1

Bε(yi) .

Set Yε := span{y1, . . . , ymε
} and let Pε denote the orthogonal projection onto

Yε. Then we have from 9.18 that Id − Pε is also an orthogonal projection
(equivalence of 9.18(1) and 9.18(2)), with ‖Id − Pε‖ ≤ 1 (equivalence of
9.18(1) and 9.18(4)). Now Tε := PεT maps to Yε, and for x ∈ B1(0) it holds
that Tx ∈ Bε(yi) for some i and that

(T − Tε)(x) = (Id − Pε)Tx = (Id − Pε)(Tx − yi),

and hence ‖(T − Tε)(x)‖Y ≤ ε. ��

Proof (5)⇐. Follows from (3). ��
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Proof (5)⇒. It holds that B1(0) ∩ R(P ) ⊂ P
(
B1(0)

)
is precompact, and so

it follows from 4.10 that R(P ) is finite-dimensional. ��

In applications compact operators often occur as a composition of a con-
tinuous map and an embedding which is compact (we prove this in 10.3).
The compact part of such a composition is often a canonical embedding.
That is, if X, Y are Banach spaces and if X as a vector space is contained
in Y , then we ask whether the map Id : X → Y is injective, continuous
and compact, respectively. We will answer this question completely for the
function spaces Ck,α(Ω) and Wm,p(Ω) (see 10.6 – 10.13) and we call the
corresponding theorems embedding theorems.

10.3 Lemma. For T1 ∈ L (X;Y ) and T2 ∈ L (Y ;Z) it holds that:

T1 or T2 is compact =⇒ T2T1 is compact.

Proof. Let (xn)n∈IN be a bounded sequence in X. As T1 is continuous, the
sequence (T1xn)n∈IN is bounded in Y . If T2 is compact, it follows that there
exists a convergent subsequence (T2T1xnk

)k∈IN. If T1 is compact, there exists
a convergent subsequence (T1xnk

)k∈IN, and the continuity of T2 then yields
that also (T2T1xnk

)k∈IN converges. ��

Embedding theorems

The embedding theorem 10.6 for Hölder spaces depends on the Arzelà-Ascoli
theorem and the first result in theorem 10.5. For the latter we need the
following

10.4 Lemma. Let Ω ⊂ IRn be open and bounded with Lipschitz boundary.
If Ω, in addition, is path connected (see the remark preceding 8.16), then for
any two points x0, x1 ∈ Ω there exists a smooth curve γ in Ω which connects
x0 and x1 and whose length L(γ) can be bounded by |x1 − x0 |, i.e. there
exists a γ ∈ C∞([0, 1];Ω) with γ(0) = x0, γ(1) = x1, such that, with a
constant CΩ depending only on Ω,

L(γ) :=

∫ 1

0

|γ′(t)| dt ≤ sup
0≤t≤1

|γ′(t)| ≤ CΩ · |x1 − x0 | .

Proof. It is sufficient to find a γ ∈ C0,1([0, 1];Ω) with γ(0) = x0, γ(1) = x1

and with Lipschitz constant Lip(γ) ≤ C · |x1 − x0 |. To see this, observe
that we can then let γ(t) := x0 for t < 0 and γ(t) := x1 for t > 1 and
set γε := ϕε ∗ γ, with a standard Dirac sequence (ϕε)ε>0. On noting that
‖γ′

ε‖sup ≤ Lip(γε) ≤ Lip(γ), it follows that for ε > 0 sufficiently small γε has
all the desired properties on [ − ε, 1 + ε], and hence we only need to map
[0, 1] affine linearly to [− ε, 1 + ε].
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We consider a cover
(
U j

)
j=1,...,k

of ∂Ω as in A8.2 and choose points zj ∈
U j∩Ω. Then we choose an open set D with D ⊂ Ω, such that z1, . . . , zk ∈ D,
and such that Ω is covered by D,U1, . . . , Uk. Moreover, we cover D with
finitely many balls U j := B�

(
zj
)
⊂ Ω with j = k + 1, . . . , l.

For general points x0 and x1 we can then define a γ as a composition
of subpaths, such that for these subpaths only the following three cases can
occur. Altogether, the number of subpaths is bounded by the given cover.

If x0, x1 ∈ U j for some j > k, then define γ(t) := (1 − t)x0 + tx1.
If x0, x1 ∈ U j for some j ≤ k, then define

γ(t) := τ
(
(1 − t)τ−1(x0) + tτ−1(x1)

)
,

where with the notations from A8.2 we set

τ(y) :=

n−1∑
i=1

yie
j
i +

(
yn + gj(y,n)

)
ejn .

This defines a Lipschitz continuous path γ in Ω from x0 to x1 with

Lip(γ) ≤ Lip(τ) ·
∣∣τ−1(x1) − τ−1(x0)

∣∣ ≤ Lip(τ) · Lip(τ−1) · |x1 − x0 |.

τ

Ω

∂Ω

x0 x1

U j

τ−1(U j)

τ−1(x0) τ−1(x1)

Fig. 10.1. Construction of curves close to the boundary

As a third case, let x0 and x1 be such that for no j ∈ {1, . . . , l} they lie in
the same set U j of the above cover of Ω. Then there exists a constant c > 0,
which depends only on the cover, such that

|x0 − x1 | ≥ c .

This follows from the fact that for every j and for points x ∈ Ω ∩ U j that
are sufficiently close to ∂U j it must hold that x ∈ Uk for some k �= j.
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We thus have to connect x0 and x1 by a curve with a bounded Lipschitz
constant. We make use of the fact that Ω is connected, and so path connected.
Hence for j, k ∈ {1, . . . , l} there exists a γj,k ∈ C1([0, 1];Ω) with γj,k(0) = zj

and γj,k(1) = zk. Now let x0 ∈ U j0 and x1 ∈ U j1 with j0 �= j1. First
we connect x0 with zj0 inside U j0 (as in the first two cases above) with a
path such that the Lipschitz constant can be bounded by C ·

∣∣zj0 − x0

∣∣ ≤
C · diamU j0 . Then we connect zj0 with zj1 by γj0,j1 , and finally zj1 with
x1 inside U j1 . A reparametrization of the concatenated paths to the interval
[0, 1] then yields the desired result. ��
10.5 Theorem. Let Ω ⊂ IRn be open and bounded with Lipschitz boundary.
Then it holds for k ≥ 0 that:

(1) The embedding
Id : Ck+1(Ω) → Ck,1(Ω)

is well defined and continuous.

(2) The embedding

Id : Ck,1(Ω) → W k+1,∞(Ω)

is well defined and an isomorphism, in the sense that for u ∈ W k+1,∞(Ω)
there exists a unique ũ ∈ Ck,1(Ω) such that ũ = u almost everywhere in Ω
(i.e. ũ = u in W k+1,∞(Ω)).

Proof. As Ω has a Lipschitz boundary, it consists of finitely many connected
components, which all lie at positive distance from one another. Hence we
may assume without loss of generality that Ω is connected. For two points
x0, x1 ∈ Ω let γ be as in 10.4. Then for v ∈ C1(Ω), with the notations as in
10.4, we have that

|v(x1) − v(x0)| =
∣∣∣∣∫ 1

0

(v◦γ)′(t) dt
∣∣∣∣ ≤

∫ 1

0

|∇v(γ(t))| · |γ′(t)| dt

≤ sup
0≤t≤1

|∇v(γ(t))| · L(γ) ≤ CΩ · |x1 − x0 | · sup
0≤t≤1

|∇v(γ(t))| .
(10-6)

This will be used in the following parts of the proof. ��
Proof (1). For u ∈ Ck+1(Ω) consider derivatives v := ∂su ∈ C1(Ω) with
|s| = k. It follows from (10-6) that the Lipschitz constant of v can be bounded
by the C1-norm of v. The fact that this holds for all s of order k yields that
‖u‖Ck,1(Ω) ≤ C · ‖u‖Ck+1(Ω) with a constant C. ��

Proof (2) well definedness. First let k = 0. Let u ∈ C0,1(Ω). If ei denotes the
i-th unit vector, and if ζ ∈ C∞

0 (Ω), then as h → 0,∣∣∣∣∫
Ω

u(x)∂iζ(x) dx

∣∣∣∣ ←−
∣∣∣∣∫

Ω

u(x)
ζ(x+ hei) − ζ(x)

h
dx

∣∣∣∣
=

∣∣∣∣∫
Ω

u(x − hei) − u(x)

h
ζ(x) dx

∣∣∣∣ ≤ Lip(u)

∫
Ω

|ζ(x)| dx .
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This implies (see E6.7) that u ∈ W 1,∞(Ω) with ‖∂iu‖L∞ ≤ Lip(u) for i =
1, . . . , n. For k > 0 apply this result to the derivatives ∂su with |s| = k. ��

Proof (2) surjectivity. First let k = 0. Let u ∈ W 1,∞(Ω). Consider uε :=
ϕε ∗ (XΩu) for a standard Dirac sequence (ϕε)ε>0. Then it follows from (10-
6) (with the notations as there) that

|uε(x1) − uε(x0)| ≤ CΩ · |x1 − x0 | · sup
0≤t≤1

|∇uε(γ(t))| ,

and, if ε is sufficiently small, for all x = γ(t) with 0 ≤ t ≤ 1 we have that

|∇uε(x)| = |∇(ϕε ∗ u)(x)| = |(ϕε ∗ ∇u)(x)| ≤ ‖∇u‖L∞(Ω) .

This implies
|uε(x1) − uε(x0)|

|x1 − x0 |
≤ CΩ · ‖∇u‖L∞(Ω) . (10-7)

Recalling from 4.15(2) that uε → u in Lp(Ω) for every p < ∞, there exists
a subsequence ε → 0 such that uε → u almost everywhere in Ω. Hence it
follows from (10-7) that for almost all x0, x1 ∈ Ω (say, x0, x1 ∈ Ω \N),

|u(x1) − u(x0)|
|x1 − x0 |

≤ CΩ · ‖∇u‖L∞(Ω) , (10-8)

i.e. u is Lipschitz continuous outside of the null set N . Since Ω \ N = Ω, it
follows from E4.18 that we can modify u on this null set so that u ∈ C0,1(Ω).
(After this modification u remains the same (!) element in L∞(Ω).) Since
then ‖u‖C0 = ‖u‖L∞ , we have shown that ‖u‖C0,1 ≤ C · ‖u‖W 1,∞ .

If u ∈ W k+1,∞(Ω) with k > 0, then we can apply the above to the weak
derivatives vs := ∂su for |s| ≤ k. In particular, upon modification on a null
set we have that vs ∈ C0,1(Ω) with the above estimate in (10-8),

Lip(vs, Ω) ≤ CΩ · ‖∇vs‖L∞(Ω) ≤ CΩ · ‖u‖Wk+1,∞(Ω) ,

since for the weak derivatives with |s| ≤ k it holds that ∂ivs = ∂i∂
su =

∂s+eiu ∈ L∞(Ω). Hence we obtain the desired result. ��

10.6 Embedding theorem in Hölder spaces. Let Ω ⊂ IRn be open and
bounded and let k1, k2 ≥ 0 and 0 ≤ α1, α2 ≤ 1, with

k1 + α1 > k2 + α2 .

In the case k1 > 0 we assume in addition that Ω has a Lipschitz boundary
(see also E10.1). Then the embedding

Id : Ck1,α1(Ω) → Ck2,α2(Ω)

is compact. Here Ck,0(Ω) := Ck(Ω) for k ≥ 0.

Remark: For k1 = k2 = 0 the set Ω can be replaced with an arbitrary
compact set S ⊂ IRn.
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Proof. Let (ui)i∈IN be a bounded sequence in Ck1,α1(Ω). We need to show

that a subsequence converges in Ck2,α2(Ω).
First let k2 = k1 = 0, and so 0 ≤ α2 < α1 ≤ 1. By the Arzelà-Ascoli

theorem, there exist a u ∈ C0(Ω) and a subsequence i → ∞ such that ui

converges to u uniformly on Ω. Consider only this subsequence and x, y ∈ Ω
with x �= y. For |y − x| ≤ δ it then holds that

|(u − ui)(y) − (u − ui)(x)|
|y − x|α2

= lim
j→∞

|(uj − ui)(y) − (uj − ui)(x)|
|y − x|α2

≤ δα1−α2 sup
j

‖uj − ui‖C0,α1
≤ 2δα1−α2 sup

j
‖uj‖C0,α1

,

while for |y − x| ≥ δ we have that

|(u − ui)(y) − (u − ui)(x)|
|y − x|α2

≤ 2 δ−α2‖u − ui‖C0 .

Overall, there is a constant C such that

sup
x, y ∈ Ω
x �= y

|(u − ui)(y) − (u − ui)(x)|
|y − x|α2

≤ C δα1−α2︸ ︷︷ ︸
→ 0 as δ → 0

+2 δ−α2 ‖u − ui‖C0︸ ︷︷ ︸
→ 0 as i → ∞

,

i.e. the Hölder constant for the exponent α2 of u−ui converges to 0 as i → ∞.
Now we consider the case k2 = k1 ≥ 1, and so once again 0 ≤ α2 < α1 ≤ 1.

Then (∂sui)i∈IN for |s| < k1 are bounded sequences in C1(Ω), and hence, by

10.5(1), also in C0,1(Ω), and for |s| = k1 they are bounded sequences in
C0,α1(Ω). Applying the result shown above for the sequence (∂sui)i∈IN in

C0,α1(Ω) we can choose successively for s with |s| ≤ k1 subsequences so
that they converge in C0,α2(Ω). Finally, one obtains a subsequence (which
we again denote by (ui)i∈IN) which converges for all (!) s with |s| ≤ k1

∂sui → vs as i → ∞ in C0,α2(Ω)

with certain functions vs ∈ C0,α2(Ω). In particular, we obtain that (ui)i∈IN is

a Cauchy sequence in Ck1(Ω). As this space is complete we necessarily have
that u := v0 ∈ Ck1(Ω) with ∂su = vs, i.e. ui converges to u in Ck1,α2(Ω).

Finally, let k1 > k2. By the results shown above, in the case α2 < 1 the
embedding from Ck2,1(Ω) to Ck2,α2(Ω) is compact, and in the case α1 > 0
the embedding from Ck1,α1(Ω) to Ck1(Ω) is compact. In addition, we have
from 10.5(1) that the embedding from Ck1(Ω) to Ck1−1,1(Ω) is continuous.
Hence it remains to consider the map from Ck1−1,1(Ω) to Ck2,1(Ω), which in
the case k1 = k2 + 1 is the identity. In this case we have that 1 + α1 > α2,
and so α2 < 1 or α1 > 0, which means that the desired result follows from
10.3.

In the case k1 > k2 +1 (e.g. when α1 = 0 and α2 = 1) it follows from the
above result that the map from Ck1−1,1(Ω) to Ck1−1(Ω) is compact. Since
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k1−1 ≥ k2+1, the map from Ck1−1(Ω) to Ck2+1(Ω) is obviously continuous
and the map from Ck2+1(Ω) to Ck2,1(Ω) is continuous thanks to 10.5(1).
The desired result now follows on using 10.3. ��

We now want to prove embedding theorems for Sobolev spaces. To this
end, we consider on B1(0) ⊂ IRn the function x �→ |x|� with real � and in-
vestigate to which Sobolev space Wm,p

(
B1(0)

)
, respectively, to which Hölder

space Ck,α
(
B1(0)

)
it belongs. The answer will motivate the formulation of

the embedding theorems 10.9 and 10.13.

10.7 Sobolev number. Let f�(x) := |x|� for x ∈ IRn \ {0}, where � ∈ IR.
Then it holds that:

(1) f� is real analytic on IRn\{0} and for m ≥ 0 there exist positive numbers
cm, Cm, which depend also on n and �, such that

cm

∣∣∣∣( �

m

)∣∣∣∣ · |x|�−m ≤
∑

|s|=m

|∂sf�(x)| ≤ Cm|x|�−m
.

(2) For k ≥ 0 and 0 < α ≤ 1 it holds in the case � /∈ IN ∪ {0} that:

f� ∈ Ck,α
(
B1(0)

)
⇐⇒ � ≥ k + α .

(3) For m ≥ 0 and 1 ≤ p < ∞ it holds in the case � /∈ IN ∪ {0} that:

f� ∈ Wm,p
(
B1(0)

)
⇐⇒ � > m − n

p
.

Remark: If we consider the exponent � as a measure of the regularity of
the function f�, then it is natural to associate the following characteristic
number (which we also call the Sobolev number or regularity number)
with the Hölder spaces and Sobolev spaces (where Ck,0(Ω) := Ck(Ω)):

k + α for Ck,α(Ω) if k ≥ 0, 0 ≤ α ≤ 1,

m − n

p
for Wm,p(Ω) if m ≥ 0, 1 ≤ p ≤ ∞.

(10-9)

The fact that this Sobolev number does indeed characterize the regularity
of the functions in these spaces is a consequence of the following embedding
theorems.

Proof (1). The lower bound holds because on setting ex := x
|x| we have that

±
(
�

m

)
|x|�−m

=
±1

m!
∂m
exf�(x) = ±

∑
|s|=m

∂sf�(x)

s!
esx ≤

∑
|s|=m

|∂sf�(x)|
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(with cm = 1), and the upper bound follows from the fact that for all s

∂sf�(x) = ps(x)|x|�−2|s| (10-10)

with homogeneous polynomials ps of degree |s| or ps = 0. This follows by
induction on s, on noting that

∂i∂
sf�(x) =

(
|x|2∂ips(x) + (� − 2|s|)xips(x)

)
· |x|�−2(|s|+1)

,

which yields the recurrence formula

ps+ei
(x) := |x|2∂ips(x) + (� − 2|s|)xips(x) . (10-11)

��

Proof (2). If � ≥ k + α, then (1) yields that |∂sf�(x)| → 0 as |x| → 0 for

|s| ≤ k, because � > k. Hence f� ∈ Ck
(
B1(0)

)
. If |s| = k, then it holds for

0 < |x0 | ≤ |x1 | ≤ 1 in the case |x1 − x0 | ≥ 1
2 |x1 | that

|∂sf�(x1) − ∂sf�(x0)| ≤ Ck ·
(
|x0 |�−k

+ |x1 |�−k)
≤ 21+�−kCk · |x1 − x0 |�−k ≤ 21+2(�−k)Ck · |x1 − x0 |α .

In the case |x1 − x0 | ≤ 1
2 |x1 | let xt := (1 − t)x0 + tx1 for 0 ≤ t ≤ 1. Then

|xt | ≥ |x1 | − |x1 − x0 | ≥ |x1 − x0 | and so

|∂sf�(x1) − ∂sf�(x0)| ≤
∫ 1

0

|∇∂sf�(xt)| dt · |x1 − x0 |

≤ Ck+1

∫ 1

0

|xt |�−k−1
dt · |x1 − x0 |

≤ Ck+1

∫ 1

0

|xt |α−1
dt · |x1 − x0 | ≤ Ck+1|x1 − x0 |α .

Therefore, f� ∈ Ck,α
(
B1(0)

)
. Conversely, if this holds then (1) yields for

0 < |x| ≤ 1 that

∞ > ‖f�‖Ck ≥ c(n, k)
∑
|s|=k

|∂sf�(x)| ≥ c(n, k) · ck ·
∣∣∣∣(�

k

)∣∣∣∣ · |x|�−k
,

and so � > k, because � /∈ IN ∪ {0}. As before this means that (1) implies
that ∂sf�(x) → 0 as |x| → 0 for all |s| ≤ k. Hence it follows from (1) that
for 0 < |x| ≤ 1

∞ > ‖f�‖Ck,α ≥ c(n, k)
∑
|s|=k

|∂sf�(x)|
|x|α ≥ c(n, k) · ck

∣∣∣∣(�

k

)∣∣∣∣ · |x|�−k−α
,

and so � ≥ k + α. ��
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Proof (3). Let � /∈ IN ∪ {0}. It follows from (1) that∥∥Dlf�
∥∥p
Lp(B1(0)\{0}) for l ≥ 0 and 1 ≤ p < ∞

is bounded from above and below by∫
B1(0)

|x|p(�−l)
dx = C(n)

∫ 1

0

rn−1+p(�−l) dr .

Hence, f� ∈ Wm,p(B1(0) \ {0}) if and only if the integral on the right-hand
side is finite for all 0 ≤ l ≤ m. This holds if and only if n+p(�−m) > 0. The
fact that this then yields f� ∈ Wm,p

(
B1(0)

)
follows upon observing that for

|s| < m and ζ ∈ C∞
0

(
B1(0)

)
with 0 < ε < 1∫

B1(0)\Bε(0)

∂iζ∂
sf� dL

n

= −
∫
∂Bε(0)

νiζ∂
sf� dH

n−1 −
∫
B1(0)\Bε(0)

ζ∂s+eif� dL
n ,

where, by (1), the first integral on the right-hand side can be bounded by

C(n)‖ζ‖sup · εn−1+�−|s| → 0 as ε → 0 ,

since

n − 1 + �− |s| ≥ n+ � − m > n
(
1 − 1

p

)
≥ 0 .

��

The Sobolev embedding theorem 10.9 rests on the following theorem and
for the compactness result makes use of Rellich’s embedding theorem (see
A8.1 and A8.4).

10.8 Theorem (Sobolev). Let 1 ≤ p, q < ∞ with

1 − n

p
= −n

q
. (10-12)

Let u ∈ W 1,1
loc (IR

n) with u ∈ Ls(IRn) for an s ∈ [1,∞[ and with ∇u ∈
Lp(IRn; IKn). Then u ∈ Lq(IRn), with

‖u‖Lq(IRn) ≤ q · n − 1

n
‖∇u‖Lp(IRn) . (10-13)

In particular: The assumptions on u are satisfied for u ∈ W 1,p(IRn).

Remark: Since q < ∞ we must have p < n, and so n ≥ 2. For the case q = ∞
see E10.7. For n = 1 it holds that ‖u‖L∞(IR) ≤ ‖∇u‖L1(IR) for u as in the

assumptions of the theorem (see also E3.6).
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Proof. It is sufficient to establish the desired result for functions u ∈ Ls(IRn)∩
C∞(IRn). To see this take u as in the assertion and set uε := ϕε∗u ∈ C∞(IRn)
for a standard Dirac sequence (ϕε)ε>0. Then uε → u in Ls(IRn) and ∇uε =
ϕε ∗ ∇u → ∇u in Lp(IRn; IKn). If the claim has been shown for smooth
functions, then for ε, δ > 0 we have

‖uε‖Lq ≤ q · n − 1

n
‖∇uε‖Lp ,

‖uε − uδ‖Lq ≤ q · n − 1

n
‖∇(uε − uδ)‖Lp .

Hence the uε as ε ↘ 0 form a Cauchy sequence in Lq(IRn), which yields that
uε → ũ in Lq(IRn) as ε ↘ 0 for some ũ ∈ Lq(IRn). It follows that

‖ũ‖Lq ≤ q · n − 1

n
‖∇u‖Lp .

Combining the above Ls-convergence and the Lq-convergence yields the ex-
istence of a subsequence εk ↘ 0 such that uεk → u and uεk → ũ as k → ∞
almost everywhere in IRn. Consequently, ũ = u almost everywhere in IRn and
we obtain the desired result.

Now let u ∈ Ls(IRn)∩C∞(IRn). In all of the following we will only make
use of the fact that u ∈ Ls(IRn) ∩ C1(IRn). First we consider the case

p = 1, and so q =
n

n − 1
(recall that n ≥ 2).

For i ∈ {1, . . . , n} it follows from Fubini’s theorem that ξ �→ u(x′, ξ) for
almost all x1, . . . , xi−1, xi+1, . . . , xn ∈ IR is an element of Ls(IR), where we
use the notation

(x′, ξ) := (x1, . . . , xi−1, ξ, xi+1, . . . , xn) .

Hence we have that u(x′, zk) → 0 for a sequence zk → ∞ as k → ∞. It
follows for xi ∈ IR and sufficiently large k that

|u(x)| ≤
∫ zk

xi

|∂iu(x′, ξ)| dξ + |u(x′, zk)| ,

and so

|u(x)| ≤
∫
IR

|∂iu(x′, ξ)| dξ .

For ease of exposition we will write this from now on in the compact notation

|u(x)| ≤
∫
IR

|∂iu| dξi .

(Observe that the above already proves the remark for the case n = 1.) Upon
multiplying these n inequalities we obtain that
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|u(x)|
n

n−1 ≤
n∏

i=1

(∫
IR

|∂iu| dξi
) 1

n−1
.

Integration over x1 yields∫
IR

|u|
n

n−1 dξ1 ≤
(∫

IR

|∂1u| dξ1
) 1

n−1 ·
∫
IR

n∏
i=2

(∫
IR

|∂iu| dξi
) 1

n−1
dξ1

and applying the generalized Hölder inequality we obtain that this is

≤
(∫

IR

|∂1u| dξ1
) 1

n−1 ·
n∏

i=2

(∫
IR2

|∂iu| d(ξ1, ξi)
) 1

n−1
.

Now we integrate over x2 and obtain in the case n = 2 the desired result. In
the case n ≥ 3 it follows once again with the help of the Hölder inequality
that ∫

IR

∫
IR

|u|
n

n−1 dξ1 dξ2

≤
(∫

IR2

|∂2u| d(ξ1, ξ2)
) 1

n−1

·
∫
IR

(∫
IR

|∂1u| dξ1
) 1

n−1
n∏

i=3

(∫
IR2

|∂iu| d(ξ1, ξi)
) 1

n−1
dξ2

≤
(∫

IR2

|∂2u| d(ξ1, ξ2)
) 1

n−1

·
(∫

IR2

|∂1u| d(ξ1, ξ2)
) 1

n−1 ·
n∏

i=3

(∫
IR3

|∂iu| d(ξ1, ξ2, ξi)
) 1

n−1
.

Continuing this procedure inductively we obtain for j = 1, . . . , n that∫
IRj

|u|
n

n−1 d(ξ1, . . . , ξj)

≤
j∏

i=1

(∫
IRj

|∂iu| d(ξ1, . . . , ξj)
) 1

n−1

·
n∏

i=j+1

(∫
IRj+1

|∂iu| d(ξ1, . . . , ξj , ξi)
) 1

n−1
,

and hence for j = n that∫
IRn

|u|
n

n−1 dLn ≤
n∏

i=1

(∫
IRn

|∂iu| dLn
) 1

n−1 ≤
(∫

IRn

|∇u| dLn
) n

n−1
,
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i.e. the desired result

‖u‖
L

n
n−1 (IRn)

≤ ‖∇u‖L1(IRn) . (10-14)

For p > 1 we want to apply this result to v = |u| q(n−1)
n , where on letting p′

denote the dual exponent to p it holds that

n − 1

n
− 1

p′
= − 1

n
+

1

p
=

1

q
, and so

q(n − 1)

n
= 1 +

q

p′
> 1 .

In order to avoid unnecessary difficulties, we consider for ε > 0 the functions

vε(x) := ψε(|u(x)|)
q(n−1)

n ,

where ψε : [0,∞[ → [0,∞[ is continuously differentiable, with

ψε(z) ≤ z , ψ′
ε(z) ≤ 1 , ψε(z) ↗ z as ε ↘ 0 .

As u ∈ C1(IRn), we also have that vε ∈ C1(IRn), with

|∇vε | ≤ q(n−1)
n wε · |∇u| , where wε := ψε

(
|u|

) q
p′ .

For � > 1 we choose in particular

ψε(z) :=
(
ε� +

(
z

1+εz

)�) 1
� − ε ,

which means that there exists a constant Cε depending on ε such that

ψε(z) ≤ Cε · min(1, z�) .

It follows that

wε ∈ Lp′

(IRn) and vε ∈ L1(IRn), if � q
n − 1

n
≥ s .

The Hölder inequality then yields that ∇vε ∈ L1(IRn; IRn). It follows from
inequality (10-14) that vε ∈ L

n
n−1 (IRn), i.e. ψε

(
|u|

)
∈ Lq(IRn), with

(∫
IRn

ψε(|u|)q dLn
)n−1

n
=

(∫
IRn

v
n

n−1
ε dLn

)n−1
n ≤

∫
IRn

|∇vε | dLn

≤ q(n − 1)

n

∫
IRn

wε · |∇u| dLn

≤ q(n − 1)

n

(∫
IRn

ψε(|u|)q dLn
) 1

p′

‖∇u‖Lp ,

and hence (∫
IRn

ψε(|u|)q dLn
) 1

q ≤ q(n − 1)

n
‖∇u‖Lp .

Letting ε ↘ 0 we obtain the desired result from the monotone convergence
theorem. ��
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10.9 Embedding theorem in Sobolev spaces. Let Ω ⊂ IRn be open and
bounded with Lipschitz boundary. Further, let m1 ≥ 0, m2 ≥ 0 be integers,
and let 1 ≤ p1 < ∞ and 1 ≤ p2 < ∞. Then the following holds:

(1) If

m1 − n

p1
≥ m2 − n

p2
, and m1 ≥ m2 , (10-15)

then the embedding

Id : Wm1,p1(Ω) → Wm2,p2(Ω)

exists and is continuous. Here W 0,p(Ω) = Lp(Ω). The following estimate
holds: There exists a constant C, which depends on n, Ω, m1, p1, m2, p2,
such that for u ∈ Wm1,p1(Ω)

‖u‖Wm2,p2 (Ω) ≤ C‖u‖Wm1,p1 (Ω) . (10-16)

(2) If

m1 − n

p1
> m2 − n

p2
, and m1 > m2 ,

then the embedding

Id : Wm1,p1(Ω) → Wm2,p2(Ω)

exists and is continuous and compact.

(3) For arbitrary open, bounded sets Ω ⊂ IRn assertions (1) and (2) hold
with the spaces Wmi,pi(Ω) replaced by Wmi,pi

0 (Ω). Here W 0,p
0 (Ω) = Lp(Ω).

Proof (1). We also prove the corresponding result in (3), i.e. we letΩ ⊂ IRn be
open and bounded. Form1 = m2 the claim follows from the Hölder inequality.
For m1 = m2 + 1 we have that

1 − n

p1
≥ − n

p2
.

Let u ∈ Wm1,p1

0 (Ω). For |s| ≤ m2 it holds that v := ∂su ∈ W 1,p1

0 (Ω). As
Ω is bounded, it follows from the Hölder inequality that then v is also an
element of W 1,p

0 (Ω) for 1 ≤ p ≤ p1. Extending v by 0 on IRn \ Ω yields that
v ∈ W 1,p(IRn) (see 3.29). If n = 1, choose p = 1 and obtain from the remark
in 10.8 that with � := Ln(Ω)

‖v‖Lp2 (Ω) ≤ �
1
p2 ‖v‖L∞(IR) ≤ �

1
p2 ‖∇v‖L1(IR) = �

1
p2 ‖∇v‖L1(Ω)

and in the case p1 > 1, with p′1 denoting the dual exponent to p1, that

‖∇v‖L1(Ω) ≤ �
1
p′1 ‖∇v‖Lp1 (Ω) .
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If n ≥ 2, choose 1 ≤ p ≤ p1 < ∞ and 1 ≤ p2 ≤ q < ∞ with

1 − n

p1
≥ 1− n

p
= −n

q
≥ − n

p2
,

e.g. q = max
(

n
n−1 , p2

)
, and obtain from 10.8 that v ∈ Lp2(Ω), with

‖v‖Lp2 (Ω) ≤ �
1
p2

− 1
q ‖v‖Lq(IRn) ≤ �

1
p2

− 1
q · qn− 1

n
‖∇v‖Lp(IRn)

and

‖∇v‖Lp(IRn) = ‖∇v‖Lp(Ω) ≤ �
1
p − 1

p1 ‖∇v‖Lp1 (Ω) .

If Ω has a Lipschitz boundary, and if u ∈ Wm1,p1(Ω), then we have that v :=
∂su ∈ W 1,p1(Ω) for |s| ≤ m2. Then let ṽ := E(v), where E : W 1,p1(Ω) →
W 1,p1

0 (Ω̃) with Ω̃ = B1(Ω) is the extension operator from A8.12. Similarly
to the above we then obtain the bound

‖ṽ‖Lp2 (Ω̃) ≤ C̃ · ‖∇ṽ‖Lp1 (Ω̃) ,

and hence, since ṽ = v on Ω,

‖v‖Lp2 (Ω) ≤ ‖ṽ‖Lp2 (Ω̃) ≤ C̃ · ‖ṽ‖W 1,p1 (Ω̃) ≤ C̃ · ‖E‖ · ‖v‖W 1,p1 (Ω) .

Now we consider the case m1 = m2 + k with k ≥ 2. Then let m̃i := m2 + i
for i = 0, . . . , k. Choose 1 ≤ p̃i < ∞ with p̃0 = p2 and p̃k = p1, such that

m̃i −
n

p̃i
≥ m̃i−1 − n

p̃i−1
for i = 1, . . . , k, (10-17)

e.g. p̃i for 1 ≤ i < k with 1
p̃i

= min
(
1, 1

n + 1
p̃i−1

)
. Now apply the above proof

successively for i = k, . . . , 1. ��
Proof (2). Once again we also prove the corresponding result in (3). For
m1 = m2 + 1 choose p2 < p < ∞ with

1− n

p1
≥ −n

p
> − n

p2
.

Let (uk)k∈IN be a bounded sequence in Wm1,p1(Ω) (for (3) in Wm1,p1

0 (Ω)).
For |s| ≤ m2 it then holds that vk := ∂suk are bounded in W 1,p1(Ω) (or
W 1,p1

0 (Ω)). By (1), the sequence (vk)k∈IN is bounded in Lp(Ω). Since Lp(Ω)
is reflexive, theorem 8.10 yields the existence of a subsequence (vki

)i∈IN, which
can be chosen as the same subsequence for all |s| ≤ m2, that converges weakly
in Lp(Ω) to v ∈ Lp(Ω). As Ω is bounded, vki

→ v converges weakly in L1(Ω)
as i → ∞ and (vki

)i∈IN is bounded in W 1,1(Ω) (or W 1,1
0 (Ω)). Hence it follows

from Rellich’s embedding theorem (A8.1 and A8.4) that vki
→ v strongly in

L1(Ω). Noting that 1 ≤ p2 < p then yields the strong convergence also in
Lp2(Ω) (see E10.11).

For m1 = m2 + k with k ≥ 2 we again choose m̃i, p̃i as in the proof of
(1), where now (10-17) needs to be a strict inequality for an i0 ∈ {1, . . . , k}.
Then for i0 we can apply the above proof, and for i �= i0 the result (1). ��
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Now we consider the embedding of Sobolev spaces into Hölder spaces.
The proof of theorem 10.13 rests on two results: a bound on the supremum
norm and a bound on the Hölder constant.

10.10 Theorem. Let Ω ⊂ IRn be open and bounded and let 1 < p < ∞,
with

1− n

p
> 0 (and so p > n ≥ 1) .

For every function u ∈ W 1,p
0 (Ω) it then holds that u ∈ L∞(Ω) with

‖u‖L∞(Ω) ≤ C(n, p, diamΩ)‖∇u‖Lp(Ω) .

Proof. Analogously to the proof of 10.8, it is sufficient to establish the desired
result for functions u ∈ C∞

0 (Ω). Further, let R := diamΩ, so that Ω ⊂
BR(x0) for all x0 ∈ Ω. Then it holds for all ξ ∈ ∂B1(0) that

|u(x0)| =
∣∣∣∣∣
∫ R

0

d

dr

(
u(x0 + rξ)

)
dr

∣∣∣∣∣ ≤
∫ R

0

|∇u(x0 + rξ)| dr .

Integrating this inequality over ξ with respect to the surface measure Hn−1

and denoting the surface area of the unit sphere by σn := Hn−1(∂B1(0)) we
get

σn|u(x0)| ≤
∫ R

0

∫
∂B1(0)

|∇u(x0 + rξ)| dHn−1(ξ) dr .

A transformation to Euclidean coordinates shows that the right-hand side is

=

∫
BR(x0)

|∇u(x)|
|x − x0 |n−1 dx ,

and the Hölder inequality yields that this can be bounded by

≤
(∫

BR(x0)

dx

|x − x0 |p
′(n−1)

) 1
p′ · ‖∇u‖Lp(Ω) .

The first factor is independent of x0 and finite if p′(n− 1) < n, i.e. if p′ < n′

(where n′ is the dual exponent to n), which is equivalent to p > n. But this
was part of the assumption. ��
10.11 Theorem (Morrey). Let Ω ⊂ IRn be open, let 0 < α ≤ 1 and let
u ∈ W 1,1

0 (Ω) satisfy ∫
Br(x0)∩Ω

|∇u| dLn ≤ M · rn−1+α
(10-18)

for all x0 ∈ Ω and r > 0. Then for almost all x1, x2 ∈ Ω,

|u(x1) − u(x2)|
|x1 − x2 |α

≤ C(n, α) · M . (10-19)

Note: A p-version of the result is given in 10.12(1).
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Proof. We may assume that u ∈ W 1,1(IRn), because u can be extended by
0 on IRn \ Ω to yield a function in W 1,1(IRn) (see 3.29). Then for every ball
Br(x0) with x0 ∈ IRn we have that∫

Br(x0)

|∇u| dLn ≤ M(2r)n−1+α , (10-20)

on noting that in the case Br(x0) ∩ Ω = ∅ this is trivially true, and that
otherwise there exists an x1 ∈ Br(x0) ∩ Ω and then Br(x0) ⊂ B2r(x1), and
for this latter ball we can apply (10-18).

We begin by proving the bound on the Hölder constant for the case where
u is a C1-function. Given two points x1, x2 ∈ IRn, let

x0 :=
1

2
(x1 + x2) and � :=

1

2
|x2 − x1 | .

Denoting the volume of the n-dimensional unit ball by κn, we have that

κn�
n|u(x1) − u(x2)| =

∫
B�(x0)

|u(x1) − u(x2)| dx

≤
∫
B�(x0)

|u(x1) − u(x)| dx+

∫
B�(x0)

|u(x2) − u(x)| dx .
(10-21)

Because of symmetry we only need to bound the first integral. Now it holds
for x ∈ B�(x0) that

|u(x) − u(x1)| =
∣∣∣∣∫ 1

0

d

dt

(
u(x1 + t(x − x1))

)
dt

∣∣∣∣
≤ |x − x1 |

∫ 1

0

|∇u(x1 + t(x − x1))| dt .

Since |x − x1 | ≤ 2�, integration over x yields∫
B�(x0)

|u(x) − u(x1)| dx ≤ 2�

∫ 1

0

∫
B�(x0)

|∇u(x1 + t(x − x1))| dx dt .

With the transformation of variables y(x) := x1 + t(x − x1) this is

= 2�

∫ 1

0

t−n

∫
Bt�(x1+t(x0−x1))

|∇u(y)| dy dt

≤ 2�

∫ 1

0

t−nM(2t�)n−1+α dt =
M

α
(2�)n+α ,

where we used (10-20). Hence it follows from (10-21) that

|u(x1) − u(x2)| ≤
2n+1M

ακn
(2�)α =

2n+1M

ακn
|x1 − x2 |α . (10-22)
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For an arbitrary u ∈ W 1,1(IRn) one can consider the convolution with a
standard Dirac sequence (ϕε)ε>0. Then the functions uε := ϕε ∗ u are in
C∞(IRn) and satisfy (10-20). Indeed,

∇uε(x) =

∫
IRn

ϕε(y)∇u(x − y) dy

and so, using (10-20) for u, we have∫
Br(x0)

|∇uε(x)| dx ≤
∫
IRn

(∫
Br(x0)

|∇u(x − y)| dx
)
ϕε(y) dy

=

∫
IRn

(∫
Br(x0−y)

|∇u(x)| dx
)
ϕε(y) dy

≤ M(2r)n−1+α

∫
IRn

ϕε(y) dy = M(2r)n−1+α .

Hence we obtain (10-22) for uε, and noting that uε → u almost everywhere
for a subsequence as ε → 0 then yields the desired result. ��

10.12 Remarks. The inequality (10-19) states that u is Hölder continuous
outside of a null set N . But then the function u restricted to Ω \ N can
be uniquely extended to a C0,α-function on Ω. Hence the given function
u ∈ W 1,1

0 (Ω) has a unique Hölder continuous representative. Moreover, it
holds that:

(1) Theorem 10.11 can also be applied in the general case where u ∈ W 1,p
0 (Ω)

with 1 ≤ p < ∞. If u then satisfies for 0 < α ≤ 1 the inequality

‖∇u‖Lp(Br(x0)∩Ω) ≤ M · r
n
p − 1 + α (10-23)

for all x0 ∈ Ω and r > 0, then the conclusion of 10.11 holds true.

(2) If u ∈ W 1,p
0 (Ω) with 1 − n

p > 0, then (1) holds with α := 1 − n
p .

(3) Theorem 10.11 also holds for Ω = IRn and u ∈ W 1,1
loc (IR

n).

Proof (1). The Hölder inequality yields that∫
Br(x0)∩Ω

|∇u| dLn ≤ C(n)r
n
p′

(∫
Br(x0)∩Ω

|∇u|p dLn
) 1

p ≤ C(n)Mrn−1+α.

��

10.13 Embedding theorem of Sobolev spaces into Hölder spaces.
Let Ω ⊂ IRn be open and bounded with Lipschitz boundary. Moreover, let
m ≥ 1 be an integer and let 1 ≤ p < ∞. In addition, let k ≥ 0 be an integer
and let 0 ≤ α ≤ 1. Then the following holds:
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(1) If

m − n

p
= k + α and 0 < α < 1 (and so α �= 0, 1), (10-24)

then the embedding

Id : Wm,p(Ω) → Ck,α(Ω)

exists and is continuous. In particular, for u ∈ Wm,p(Ω) there exists a unique
continuous function that agrees almost everywhere with u (and which we
again denote by u) such that

‖u‖Ck,α(Ω) ≤ C(Ω,n,m, p, k, α)‖u‖Wm,p(Ω) . (10-25)

(2) If

m − n

p
> k + α ,

then the embedding
Id : Wm,p(Ω) → Ck,α(Ω)

exists and is continuous and compact. Here Ck,0(Ω) := Ck(Ω) for k ≥ 0.

(3) For arbitrary open, bounded sets Ω ⊂ IRn assertions (1) and (2) hold
with the space Wm,p(Ω) replaced by Wm,p

0 (Ω).

Proof (1). We also prove the corresponding result in (3). We may assume
that k = 0. Otherwise apply the following argument to all functions ∂su ∈
Wm−k,p(Ω) (or Wm−k,p

0 (Ω)) for |s| ≤ k, on noting that m − k ≥ 1.
Next we reduce the proof to the case m = 1. If m > 1, we may choose

1 ≤ q < ∞ such that

α − 1 = −n

q
, and so m− n

p
= α = 1− n

q
.

It then follows from 10.9(1) that the embedding from Wm,p(Ω) into W 1,q(Ω)
is continuous (use 10.9(3) for the embedding from Wm,p

0 (Ω) into W 1,q
0 (Ω)).

Thus we have to consider only functions in W 1,q(Ω) (or W 1,q
0 (Ω)).

Hence we consider only the case where in the statement of the theorem
k = 0 and m = 1, i.e.

1− n

p
= α .

For the case in (3), the desired result follows upon combining theorem 10.10
and theorem 10.11 (see 10.12(2)). Otherwise we consider the continuous ex-
tension operator E : W 1,p(Ω) → W 1,p

0

(
B1(Ω)

)
from A8.12 and then apply

the theorems 10.10 and 10.11 to the functions Eu. ��
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Proof (2). We also prove the corresponding result in (3). Choose m̃ ≤ m and

1 < p̃ < ∞, as well as k̃ ≥ 0 and 0 < α̃ < 1, such that

m − n

p
≥ m̃ − n

p̃
= k̃ + α̃ > k + α ,

where we can set m̃ = m and p̃ = p if n
p is not an integer. Then, by 10.9(1)

and (1), the embeddings from Wm,p(Ω) into W m̃,p̃(Ω) and from W m̃,p̃(Ω)

into C k̃,α̃(Ω) are continuous, respectively (for (3) we argue correspondingly

with 10.9(3)). Finally, by 10.6, the embedding from C k̃,α̃(Ω) into Ck,α(Ω) is
compact. ��

Laplace operator

We now present a typical application of the embedding theorems for the
Laplace operator. This is essential for the treatment of the corresponding
eigenvalue problem (see 12.16).

10.14 Inverse Laplace operator. We consider the homogeneous Dirichlet
problem from 6.5(1) with the assumptions stated there and with

hi = 0 , b ≥ 0 .

For u ∈ W 1,2
0 (Ω) and f ∈ L2(Ω) let A(u) and J(f) be the functionals in

W 1,2
0 (Ω)′ defined by

〈v , A(u)〉W 1,2
0

:=

∫
Ω

( n∑
i,j=1

∂iv · aij∂ju+ vbu
)
dLn ,

〈v , J(f)〉W 1,2
0

:=

∫
Ω

vf dLn

for v ∈ W 1,2
0 (Ω). Then it holds that:

(1) J : L2(Ω) → W 1,2
0 (Ω)′ is continuous and injective.

(2) A : W 1,2
0 (Ω) → W 1,2

0 (Ω)′ is an isomorphism. We call A the weak dif-
ferential operator corresponding to the boundary value problem 6.5(1).
For aij = δi,j and b = 0 this is the weak Laplace operator with respect to
homogeneous Dirichlet boundary conditions.

(3) A−1J : L2(Ω) → L2(Ω) is compact.

(4) A−1J : W 1,2
0 (Ω) → W 1,2

0 (Ω) is compact, and for domains Ω with Lip-
schitz boundary the operator A−1J : W 1,2(Ω) → W 1,2

0 (Ω) is also compact.

(5) JA−1 : W 1,2
0 (Ω)′ → W 1,2

0 (Ω)′ is compact.
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Proof (1),(2). We have that 〈v , Au〉 = a(v, u), where a is defined as in (6-
11). The fact that J and A are well defined and continuous follows as in the
proof of 6.6. It follows from 4.22 that J is injective. A is injective thanks
of the coercivity of a, as shown in the proof of 6.8. Recalling 6.3(1) with
X := W 1,2

0 (Ω) yields that for u′ ∈ X ′ there exists a unique u ∈ X such that

〈v , Au〉 = a(v, u) = 〈v , u′〉 for all v ∈ X,

where ‖u‖X can be bounded by ‖u′‖X′ . ��

Proof (3). We recall from (1) and (2) that J : L2(Ω) → W 1,2
0 (Ω)′ and

A−1 : W 1,2
0 (Ω)′ → W 1,2

0 (Ω), respectively, are continuous. The embedding
Id : W 1,2

0 (Ω) → L2(Ω) is compact, by 10.1(4) and A8.1. The desired result
then follows from 10.3.

Remark: If Ω has a Lipschitz boundary, then it follows from 10.9 that
Id : W 1,2(Ω) → L2(Ω) is also compact. ��

Proof (4),(5). We can argue with the above maps in the order Id, J , A−1

and A−1, Id, J , respectively. ��

Integral operators

As a second class of compact maps we now investigate some integral opera-
tors. Such operators occur, for example, when boundary value problems are
reformulated as integral equations with the help of a Green’s function (see
10.18). First we prove the compactness of Hilbert-Schmidt operators and of
integral operators with a weakly singular kernel.

10.15 Hilbert-Schmidt integral operator. We have defined in 5.12 an
integral operator T : Lp(Ω2) → Lq(Ω1), which we claim is compact.

Proof. We recall from 5.12 that T is continuous with ‖T ‖ ≤ ‖K‖. In order to
prove the compactness of T we extend K by 0 outside Ω1×Ω2, i.e. K(x, y) :=
0 if x /∈ Ω1 or y /∈ Ω2. Then it follows for h ∈ IRn1 and f ∈ Lp(Ω2) with
‖f ‖Lp(Ω2)

≤ 1, in the same way as in the proof of 5.12, that∫
IRn1

|Tf(x+ h) − Tf(x)|q dx

≤
∫
IRn1

(∫
IRn2

|K(x+ h, y) − K(x, y)|p
′

dy
) q

p′

dx

(10-26)

and∫
IRn1\BR(0)

|Tf(x)|q dx ≤
∫
IRn1\BR(0)

(∫
IRn2

|K(x, y)|p
′

dy
) q

p′

dx . (10-27)
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The right-hand side in (10-27) converges to 0 as R → ∞, since ‖K‖ <
∞. If, in addition, the right-hand side in (10-26) converges to 0 as h → 0,
then the compactness of T follows from the Riesz compactness criterion in
theorem 4.16. To show this let Kh(x, y) := K(x+ h, y). We need to consider∥∥Kh − K

∥∥, where here the norm of the kernel is defined by integrating over
all of IRn1 × IRn2 . We begin by approximating K by bounded kernels with
compact support

KR(x, y) :=

{
K(x, y) if |x| ≤ R, |y | ≤ R, |K(x, y)| ≤ R,

0 otherwise.

Then, on setting ER :=
{
(x, y) ∈ IRn1 × IRn2 ; K(x, y) �= KR(x, y)

}
, we

have that ∣∣Kh − K
∣∣ ≤

∣∣(KR)
h − KR

∣∣+ ∣∣(XER
K)h

∣∣+ |XER
K | ,

which yields that∥∥Kh − K
∥∥ ≤ C

(∥∥(KR)
h − KR

∥∥+ ‖XER
K‖

)
.

Noting that ER′ ⊂ ER for R′ > R and that
⋂

R>0 ER is a null set we see that
the second term on the right-hand side converges to 0 as R → ∞ (analogously
to (10-27) consider the monotone convergence of (1−XER

)|K|). Since KR is
bounded with compact support, the first term in the case q

p′ ≥ 1 obeys the
inequality∥∥(KR)

h − KR

∥∥q ≤ C(R,
q

p′
)

∫
IRn1

∫
IRn2

∣∣(KR)
h − KR

∣∣p′

(x, y) dy dx ,

while in the case r := p′

q > 1 the Hölder inequality with exponent r gives

∥∥(KR)
h − KR

∥∥p′

=

(∫
IRn1

(∫
IRn2

∣∣(KR)
h − KR

∣∣p′

(x, y) dy
) 1

r

dx

)r

≤ C(R, r)

∫
IRn1

∫
IRn2

∣∣(KR)
h − KR

∣∣p′

(x, y) dy dx .

Now we use the fact that (KR)
h → KR in Lp′

(IRn1 × IRn2) as h → 0, recall
4.15(1).

In the Hilbert space case p = 2, q = 2 the compactness can also be shown
as follows: Choose an orthonormal basis (en)n∈IN of L2(Ω2) (see 9.8). Then,
by the completeness relation 9.7(5),

‖K‖2 =

∫
Ω1

∥∥∥K(x,·)
∥∥∥2
L2(Ω2)

dx =

∫
Ω1

∑
n∈IN

∣∣∣∣(K(x,·) , en
)
L2(Ω2)

∣∣∣∣2 dx
=

∫
Ω1

∑
n∈IN

|Ten(x)|2 dx =
∑
n∈IN

‖Ten‖2L2(Ω1)
.
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We define the continuous projections Pn by

Pnf :=

n∑
k=1

(f , ek)L2(Ω2)
ek .

Then using 9.7(3) and the continuity of T , we see that

‖Tf − TPnf ‖L2(Ω1)
=

∥∥∥∥∥T
(∑

k>n

(f , ek)L2(Ω2)
ek

)∥∥∥∥∥
L2(Ω1)

=

∥∥∥∥∥∑
k>n

(f , ek)L2(Ω2)
Tek

∥∥∥∥∥
L2(Ω1)

≤
∑
k>n

∣∣∣(f , ek)L2(Ω2)

∣∣∣ ‖Tek‖L2(Ω1)
.

On applying the Cauchy-Schwarz inequality in �2(IR) we find that this is

≤
(∑
k>n

∣∣∣(f , ek)L2(Ω2)

∣∣∣2) 1
2

︸ ︷︷ ︸
≤‖f ‖L2(Ω2)

·
(∑
k>n

‖Tek‖2L2(Ω1)

) 1
2

︸ ︷︷ ︸
→ 0 as n → ∞

.

Hence, TPn → T in L
(
L2(Ω2) ;L

2(Ω1)
)
as n → ∞. Since R(Pn), and hence

also R(TPn) = T
(
R(Pn)

)
, are finite-dimensional, it follows from 10.2(4) that

T ∈ K
(
L2(Ω2) ;L

2(Ω1)
)
. ��

We now discuss operators with weakly singular integral kernels,
i.e. kernel functions (x, y) �→ K(x, y) that for x fixed are locally integrable in
y.

10.16 Schur integral operators. Let Ω ⊂ IRn be open and bounded (!).
Let K : (Ω ×Ω) \D → IK be continuous, where D := {(x, x) ; x ∈ Ω} is the
diagonal of Ω × Ω. Assume that

|K(x, y)| ≤ C

|x − y |α with α < n.

Then it holds that:

(1) The definition

(Tf)(x) :=

∫
Ω

K(x, y)f(y) dy

yields a map T ∈ K
(
C0(Ω)

)
.

(2) The composition of operators of Schur type is again a Schur operator.
In particular, the iterated operators Tm are integral operators of the above
type, with exponent
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αm =

⎧⎪⎨⎪⎩
n − m(n − α) if 1 ≤ m < n

n−α ,

ε for every ε > 0, if m = n
n−α ,

0 if m > n
n−α .

(3) If 1 ≤ p < ∞ with α < n
p′ , then T is a Hilbert-Schmidt operator on

Lp(Ω) and T ∈ K
(
Lp(Ω) ;C0(Ω)

)
.

Proof (1) and (3). We can always ensure that α < n
p′ , on choosing p suf-

ficiently large. Moreover, the boundedness of Ω yields that the embedding
from C0(Ω) into Lp(Ω) is continuous for all p. Hence it follows from 10.3
that we only need to show the compactness of T : Lp(Ω) → C0(Ω). We have
that Tf(x) exists for all x and

|Tf(x)| ≤ C ·
(∫

Ω

dy

|x − y |αp′

) 1
p′ ‖f ‖Lp(Ω) .

Since αp′ < n and Ω is bounded, the integral on the right-hand side is
bounded uniformly in x. Hence the functions Tf with ‖f ‖Lp(Ω) ≤ 1 are uni-
formly bounded. It follows from the Arzelà-Ascoli theorem that it is sufficient
to show that they are also equicontinuous, since then 10.1(2) is satisfied. It
holds that

|Tf(x1) − Tf(x2)| ≤ ‖f ‖Lp(Ω) ·
(∫

Ω

|K(x1, y) − K(x2, y)|p
′

dy
) 1

p′

and the integral on the right-hand side can be bounded for every δ > 0 by

≤
∫
Ω\Bδ(x1)

|K(x1, y) − K(x2, y)|p
′

dy

+ C ·
∫
Bδ(x1)

( 1

|y − x1 |αp
′ +

1

|y − x2 |αp
′

)
dy .

For |x1 − x2 | ≤ δ
2 the first term is

≤ C sup
{
|K(x1, y) − K(x2, y)|p

′

; (x1, y), (x2, y) /∈ B δ
4
(D)

}
−→ 0 as |x1 − x2 | → 0 and for every δ ,

thanks to the continuity of K away from the diagonal D, and the second
term is

≤ C

∫
B2δ(0)

dy

|y |αp′ ≤ Cδn−αp′ −→ 0 as δ → 0.

Here we assume the usual convention on constants, which states that
constants that occur in a chain of inequalities may all be denoted by C, even
though the constant will in general change after each step. In addition, this
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convention states that large positive constants are denoted by C, while small
positive constants are denoted by c.

The bound above proves the equicontinuity of the functions Tf with
‖f ‖Lp(Ω) ≤ 1, and hence we have shown that T ∈ K

(
Lp(Ω) ;C0(Ω)

)
. ��

Proof (2). Now let T1, T2 be two such integral operators with kernels K1, K2

and exponents α1 < n and α2 < n. By Fubini’s theorem, for f ∈ C0(Ω) we
have that

T1T2f(x) =

∫
Ω

K1(x, z)
(∫

Ω

K2(z, y)f(y) dy
)
dz

=

∫
Ω

(∫
Ω

K1(x, z)K2(z, y) dz︸ ︷︷ ︸
=: K(x, y)

)
f(y) dy ,

if we can show that for each fixed x the function

y �−→ K̃(x, y) :=

∫
Ω

|K1(x, z)K2(z, y)| dz

is in L1(Ω). To this end, we show that for x �= y (with the usual convention
on constants)

|K(x, y)| ≤ K̃(x, y) ≤ C

∫
Ω

dz

|z − x|α1 |z − y |α2

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C

|x − y |α1+α2−n if α1 + α2 > n,

CRlog
R

|x − y| ≤ CR,ε

|x − y |ε if α1 + α2 = n

for large R and every ε > 0,

C if α1 + α2 < n,

where in the last case K is bounded. In order to prove these bounds, we
replace z by x+y

2 − |x − y |z and set

e :=
x − y

2|x − y | , Ωx,y := {z ∈ IRn ;
x+ y

2
− |x − y |z ∈ Ω} .

Then∫
Ω

dz

|z − x|α1 |z − y |α2
= |x − y |n−α1−α2

∫
Ωx,y

dz

|z + e|α1 |z − e|α2 (10-28)

and
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1

|z + e|α1 |z − e|α2
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2α1 |z − e|−α2 for |z − e| ≤ 1

2
,

2α2 |z + e|−α1 for |z + e| ≤ 1

2
,

(|z | − 1

2
)−α1−α2 for |z | ≥ 1,

2α1+α2 otherwise.

(10-29)

We distinguish between the three stated cases.
For α1 + α2 > n it follows that∫

Ωx,y

dz

|z + e|α1 |z − e|α2
≤

∫
IRn

dz

|z + e|α1 |z − e|α2
. (10-30)

Since α1 < n, α2 < n and α1 + α2 > n, the integral on the right-hand side
exists and its value is independent of e and depends only on n, α1, α2. To
see this, let e1, e2 ∈ ∂B 1

2
(0) and choose a linear orthogonal transformation

which maps e1 to e2. It follows from the transformation (change-of-variables)
theorem that the integrals for e1 and e2 are equal. This proves that the last
integral in (10-30) depends only on n, α1, α2.

For α1 + α2 = n we choose a radius R with Ω ⊂ BR
2
(0). Then it follows

that |z − x|−α1 ≤ CR,ε|z − x|−α1−ε
for z, x ∈ Ω for every fixed ε > 0. Hence

for ε sufficiently small we can apply the first case to α1 + ε and α2. This is
the second estimate. It follows that Ω ⊂ BR

(
x+y
2

)
for x, y ∈ Ω, hence (10-28)

implies ∫
Ω

dz

|z − x|α1 |z − y |α2
≤

∫
B R

|x−y|
(0)

dz

|z + e|α1 |z − e|α2

≤ CR ·
(
1 +

∫
B R

|x−y|
(0)\B1(0)

dz

|z |α1+α2

)
≤ CR ·

(
1 + log

R

|x − y |
)
,

hence the desired first estimate.
For the case α1 +α2 < n we decompose the integral over Ω into integrals

over Bδ(x), Bδ(y) andΩ\
(
Bδ(x)∪Bδ(y)

)
, where δ := 3

4 |x − y |. On noting that

in the latter set it holds that |z − x| ≥ c
∣∣z − x+y

2

∣∣ and |z − y | ≥ c
∣∣z − x+y

2

∣∣
with a small constant c, we obtain that∫

Ω

dz

|z − x|α1 |z − y |α2
≤ C δ−α2

∫
Bδ(x)

dz

|z − x|α1

+ C δ−α1

∫
Bδ(y)

dz

|z − y |α2
+ C

∫
Ω

dz∣∣z − x+y
2

∣∣α1+α2

≤ C · (δn−α1−α2 + 1) .
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This ends the three cases.
It remains to show that K is continuous outside of the diagonal D. For

(x2, y2) → (x1, y1) with x1 �= y1 we have that

|K(x2, y2) − K(x1, y1)|

≤ C

∫
Ω

|K1(x2, z) − K1(x1, z)|
|z − y2 |α2

dz + C

∫
Ω

|K2(z, y2) − K2(z, y1)|
|z − x1 |α1

dz .

We decompose the first integral (the second integral can be bounded cor-
respondingly) into the parts over Ω \ Bδ(x1) and Bδ(x1). The former part
is

≤ C sup
|z−x1 |≥δ

|K1(x2, z) − K1(x1, z)|︸ ︷︷ ︸
→ 0 as x2 → x1 for every δ

·
∫
Ω

dz

|z − y2 |α2︸ ︷︷ ︸
bounded in y2

.

Since |z − y2 | ≥ 1
2 |x1 − y1 | > 0 for z ∈ Bδ(x1) if y2 is close to y1 �= x1 and if

δ is sufficiently small, the second part is

≤ C

|x1 − y1 |α2

∫
Bδ(x1)

( 1

|z − x2 |α1
+

1

|z − x1 |α1

)
dz︸ ︷︷ ︸

≤ Cδn−α1 → 0 as δ → 0

.

In the case α1 + α2 < n it holds that K(x2, y2) → K(x1, y1) even if x1 = y1,
because the part of the integral over Ω \ Bδ(x1) converges to 0 as before,
while the integral over Bδ(x1) is

≤ C

∫
Bδ(x1)

( 1

|z − x2 |α1
+

1

|z − x1 |α1

) dz

|z − y2 |α2

−→ C

∫
Bδ(x1)

2 dz

|z − x1 |α1+α2
as x2 → x1, y2 → y1 = x1

≤ C δn−α1−α2 −→ 0 as δ → 0.

This proves the result on the composition of T1 with T2. ��

The fundamental solution

For integral kernels K as in 10.16 with α = n the induced T is no longer
compact, and even the existence of the operator T is no longer guaranteed.
That is because the function y �→ |x − y |−n

is no longer integrable in a neigh-
bourhood of x. However, such kernels play an essential role in the potential
theoretic approach to partial differential equations, as we will see in 10.18.

10.17 Fundamental solution of the Laplace operator. For x ∈ IRn\{0}
let
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F (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

σn(n− 2)
|x|2−n

for n ≥ 3,

1

2π
log

1

|x| for n = 2,

−1

2
|x| for n = 1,

where σn denotes the surface area of ∂B1(0) ⊂ IRn (σ3 = 4π, σ2 = 2π,
σ1 = 2, σn = nκn, with κn the volume of B1(0) ⊂ IRn).

(1) It holds that F ∈ C∞(
IRn \ {0}

)
and

∂iF (x) = − 1

σn

xi

|x|n , ∂ijF (x) = − 1

σn|x|n
(
δi,j − n

xi

|x|
xj

|x|

)
, ΔF = 0 .

(2) It holds that F ∈ W 1,1
loc (IR

n) and with the notations as in 5.15 we have
that

−Δ[F ] = −
n∑

i=1

∂i[∂iF ] = [δ0] in D
′(IRn).

Note: F is the fundamental solution for −Δ.

(3) If f : IRn → IR is measurable and bounded with compact support, then

u(x) :=

∫
IRn

F (x − y)f(y) dy = (F ∗ f)(x)

defines a u ∈ C1(IRn) which satisfies

−Δ[u] = −
n∑

i=1

∂i[∂iu] = [f ] in D
′(IRn),

i.e. u is a weak solution of the differential equation −Δu = f in IRn.

Proof (1). By direct calculation. ��

Proof (2). We have that F ∈ W 1,1
(
BR(0) \ {0}

)
for R > 0. Similarly to the

end of the proof of 10.7(3) (or on recalling the corollary in A8.9) it then
follows that F ∈ W 1,1

(
BR(0)

)
, where outside of the null set {0} the weak

derivatives coincide with the classical ones. Hence, ∂i[F ] = [∂iF ], which yields
for ζ ∈ C∞

0

(
BR(0)

)
that as ε ↘ 0∫

IRn

(−Δζ)F dLn =

∫
IRn

∇ζ • ∇F dLn ←−
∫
IRn\Bε(0)

∇ζ • ∇F dLn

= −
∫
∂Bε(0)

ζνBε(0) • ∇F dHn−1 =
1

σn

∫
∂B1(0)

ζ(εy) dHn−1(y) −→ ζ(0) ,

since ΔF = 0 in IRn \ {0}. ��
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Proof (3). Applying 10.16(3) for the kernel (x, y) �→ F (x − y) shows that
u ∈ C0(IRn). For ζ ∈ C∞

0 (IRn) it follows, since F ∈ W 1,1
loc (IR

n), that∫
IRn

(
∂iζu+ ζvi

)
dLn = 0 with vi(x) :=

∫
IRn

∂iF (x − y)f(y) dy .

(10-31)
By 10.16(3) it follows that vi ∈ C0(IRn), whence u ∈ C1(IRn), with ∂iu = vi.
Moreover, it follows from (2) that∫

IRn

(−Δζ(x))u(x) dx =

∫
IRn

(∫
IRn

(−Δζ(x+ y))F (x) dx
)
f(y) dy

=

∫
IRn

(
−Δ[F ]

(
ζ(·+ y)

))
f(y) dy =

∫
IRn

ζ(y)f(y) dy .

��

10.18 Singular integral operators. For motivational purposes we con-
tinue the considerations in 10.17. We approximate ∂iu = vi in (10-31) for
ε > 0 by

vεi (x) :=

∫
IRn\Bε(x)

∂iF (x − y)f(y) dy .

If f ∈ C0
0 (IR

n), then vεi ∈ C1(IRn), with

∂jv
ε
i (x) =

∫
IRn\Bε(x)

∂jiF (x − y)f(y) dy − wε
ji(x) , where

wε
ji(x) :=

∫
∂Bε(x)

νBε(x)(y)·ej∂iF (x − y)f(y) dHn−1(y)

=
1

σn

∫
∂B1(0)

yjyi f(x+ εy) dHn−1(y) .

We note that as ε ↘ 0

wε
ji(x) −→ 1

σn
·
∫
∂B1(0)

yjyi dH
n−1(y) · f(x) = 1

n
δi,jf(x) . (10-32)

Hence, if we want to show that u in 10.17(3) belongs to the space C2(IRn),
then we have to investigate whether the limit(

Tjif
)
(x) := lim

ε↘0

∫
IRn\Bε(x)

∂jiF (x − y) f(y) dy

exists, and whether Tji is well defined as a continuous operator on appropriate
function spaces. On recalling the identity for the second derivatives ∂jiF (x−
y) of the fundamental solution from 10.17(1), we note that the above kernel
(x, y) �→ K(x, y) := ∂jiF (x− y) is a singular integral kernel, i.e. a kernel
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as in 10.16 but with α = n. However, we recall from 10.17(1) that this kernel
has the particular form

K(x, y) =
ω( x−y

|x−y| )

|x − y |n with ω(ξ) := − 1

σn
(δj,i − nξjξi) for |ξ | = 1,

where the mean value of ω : ∂B1(0) → IR vanishes (see (10-32)), i.e.∫
∂B1(0)

ω(ξ) dHn−1(ξ) = 0 . (10-33)

Now we consider arbitrary kernels K of the above type with the property
(10-33) and prove that for certain functions f the limit

(Tf)(x) := lim
ε↘0

∫
IRn\Bε(x)

K(x, y)f(y) dy

exists. This limit is also referred to as the Cauchy principal value of∫
IRn K(x, y)f(y) dy at the point x (observe that y �→ K(x, y)f(y) in general
is not integrable!). Classes of functions on which T can still be shown to be a
continuous operator include Cα-spaces (see 10.19) and Lp-spaces (see 10.20).
In both cases T is not (!) a compact operator. For ease of presentation we
also define

ω(x) := ω
( x

|x|

)
for x ∈ IRn \ {0}. (10-34)

10.19 Hölder-Korn-Lichtenstein inequality. Let ω : IRn \{0} → IR be a
Lipschitz continuous function on ∂B1(0) which satisfies (10-33) and (10-34).
Then for 0 < α < 1 and f ∈ C0,α(BR(0)) with f = 0 on ∂BR(0) the limit

(Tf)(x) := lim
ε↘0

∫
BR(0)\Bε(x)

ω(x − y)

|x − y |n f(y) dy

exists pointwise for x ∈ IRn, and for all R̃ > 0 it holds that

‖Tf ‖
C0,α(B

R̃
(0))

≤ C(n,R, α) · ‖ω‖C0,1(∂B1(0))
· ‖f ‖

C0,α(BR(0))
.

Proof. We extend f by 0 on IRn \BR(0). As the mean value of ω is equal to
0, for |x| ≤ 2R we have∫

BR(0)\Bε(x)

ω(x − y)

|x − y |n f(y) dy =

∫
B3R(x)\Bε(x)

ω(x − y)

|x − y |n
(
f(y) − f(x)

)
dy ,

because a transformation to polar coordinates yields that∫
B3R(x)\Bε(x)

ω(x − y)

|x − y |n dy =

∫ 3R

ε

rn−1

∫
∂B1(0)

ω(ξ)

rn
dHn−1(ξ) dr = 0 .
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Noting that with a constant C depending on ω it holds that∣∣∣∣ω(x − y)

|x − y |n
(
f(y) − f(x)

)∣∣∣∣ ≤ C · |x − y |α−n‖f ‖C0,α ,

we see that the integrand is integrable over B3R(x), and hence

Tf(x) =

∫
B3R(x)

ω(x − y)

|x − y |n
(
f(y) − f(x)

)
dy

and

|Tf(x)| ≤ C

∫
B3R(0)

|y |α−n
dy · ‖f ‖C0,α = C(ω, n,R, α)‖f ‖C0,α .

For |x| ≥ 2R,

|Tf(x)| ≤ C ‖f ‖C0

∫
BR(0)

dy

|x − y |n ≤ C(ω, n,R)

(|x| − R)n
‖f ‖C0 .

Similarly, for x1, x2 ∈ IRn and � ≥ R+max(|x1 |, |x2 |),

Tf(x1) − Tf(x2)

=

∫
B�(x1)

ω(x1 − y)

|x1 − y |n
(
f(y) − f(x1)

)
dy

−
∫
B�(x2)

ω(x2 − y)

|x2 − y |n
(
f(y) − f(x2)

)
dy

=

∫
B�(x1)

(ω(x1 − y)

|x1 − y |n
(
f(y) − f(x1)

)
− ω(x2 − y)

|x2 − y |n
(
f(y) − f(x2)

))
dy

+

∫
IRn

ω(x2 − y)

|x2 − y |n
(
f(y) − f(x2)

)(
XB�(x1)(y) − XB�(x2)(y)

)
dy .

The second integral can be bounded by

≤ C ‖f ‖C0

∫
IRn

∣∣XB�(0)(y) − XB�(x2−x1)(y)
∣∣ dy

|y |n

= C ‖f ‖C0

∫
IRn

∣∣∣XB1(0)(ỹ) − XB1( 1
�
(x2−x1))(ỹ)

∣∣∣ dỹ

|ỹ |n

(with the variable transformation y = �ỹ), which converges to 0 for every x1

and x2 as � → ∞. Setting δ := |x2 − x1 |, the first integral from above can
be bounded on B2δ(x1) by (we employ the usual convention on constants)

≤ C ‖f ‖C0,α ·
∫
B2δ(x1)

(
|y − x1 |α−n

+ |y − x2 |α−n)
dy

≤ C ‖f ‖C0,α ·
∫
B3δ(0)

|y |α−n
dy ≤ C ‖f ‖C0,α · δα .
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On the remaining domain B�(x1) \ B2δ(x1) we write the integrand as

ω(x1 − y)

|x1 − y |n
(
f(x2) − f(x1)

)
+
(ω(x1 − y)

|x1 − y |n − ω(x2 − y)

|x2 − y |n
)(

f(y) − f(x2)
)
.

Recalling that the mean value of ω is equal to 0 yields that the integral of
the first term vanishes. The Lipschitz continuity of ω implies that

|ω(x1 − y) − ω(x2 − y)| ≤ C

∣∣∣∣ x1 − y

|x1 − y | − x2 − y

|x2 − y |

∣∣∣∣
= C

||x2 − y |(x1 − y) − |x1 − y |(x2 − y)|
|x1 − y | |x2 − y | ≤ C

|x1 − x2 |
|x2 − y | ,

and we have∣∣∣∣ 1

|x1 − y |n − 1

|x2 − y |n
∣∣∣∣

≤ |x1 − x2 |
|x1 − y |n |x2 − y |n

n−1∑
i=0

|x1 − y |i |x2 − y |n−1−i

≤ n|x1 − x2 |
( 1

|x2 − y | |x1 − y |n +
1

|x1 − y | |x2 − y |n
)
.

Together this gives∣∣∣∣ω(x1 − y)

|x1 − y |n − ω(x2 − y)

|x2 − y |n
∣∣∣∣

≤ C · |x1 − x2 |
( 1

|x2 − y | |x1 − y |n +
1

|x1 − y | |x2 − y |n
)
.

On noting that 1
2 |x1 − y | ≤ |x2 − y | ≤ 2|x1 − y | for |y − x1 | ≥ 2δ, it follows

that the remaining integral over B�(x1) \ B2δ(x1) is bounded uniformly in �
by

≤ C ‖f ‖C0,α · δ
∫
IRn\B2δ(x1)

|x1 − y |α−n−1
dy

≤ C ‖f ‖C0,α · δ
∫ ∞

2δ

rα−2 dr ≤ C ‖f ‖C0,α · δα .

��

10.20 Calderón-Zygmund inequality. Let ω : IRn \ {0} → IR on ∂B1(0)
be measurable with respect to the measure Hn−1 and bounded and such that
it satisfies (10-33) and (10-34). Then for f ∈ Lp(IRn) with 1 < p < ∞ and
0 < ε ≤ 1 the integral

(Tεf)(x) :=

∫
IRn\Bε(x)

ω(x − y)

|x − y |n f(y) dy
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exists for almost all x ∈ IRn. This defines operators Tε ∈ L
(
Lp(IRn)

)
and

for f ∈ Lp(IRn) there exists

Tf := lim
ε↘0

Tεf in Lp(IRn) with

‖Tf ‖Lp(IRn) ≤ C(n, p) · ‖ω‖L∞(∂B1(0))
· ‖f ‖Lp(IRn) .

Proof. See Appendix A10. ��

Remark: For n = 1 we have that ω(−1) = −ω(+1), hence up to a multi-
plicative constant ω(1) = 1 and ω(−1) = −1. Then

(Tf)(x) = lim
ε↘0

∫
IR\]x−ε,x+ε[

f(y)

x − y
dy

is called the Hilbert transform of f .

E10 Exercises

E10.1 Counterexample to embedding theorems. Show that theorem
10.6 in the case k1 > 0 does not (!) hold for arbitrary open bounded sets
Ω ⊂ IRn.

Solution. A characteristic counterexample is the following: Let e ∈ IRn with
|e| = 1 and set

Ω :=
⋃
k∈IN

Brk(xk) with xk =
1

k
e, rk =

1

4k2
,

so that the closed balls Brk(xk) are pairwise disjoint. Now if (ak)k∈IN is a
sequence that converges in IR to a, then

u(x) :=

{
ak for |x − xk | ≤ rk, k ∈ IN,

a for x = 0,

defines a u ∈ C0(Ω). Since ∇u = 0 in Ω it follows that also u ∈ C1(Ω) (see
definition 3.6). Note that for 0 < α ≤ 1

sup
x∈Ω, x �=0

|u(x) − u(0)|
|x|α ≥ sup

k

((k
2

)α

|ak − a|
)
,

and ak = a + (1 + log k)−1 yields that u lies in none of the spaces C0,α(Ω).
Hence the embedding in 10.6 for (k1, α1) = (1, 0) and (k2, α2) = (0, α) does
not even exist for the above Ω. ��
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E10.2 Ehrling’s lemma. Let X, Y , Z be Banach spaces. Assume K ∈
K (X;Y ) and let T ∈ L (Y ;Z) be injective. Then for every ε > 0 there
exists a Cε < ∞, such that for all x ∈ X

‖Kx‖Y ≤ ε ‖x‖X + Cε ‖TKx‖Z .

Solution. Otherwise for an ε > 0 there exist points x̃n ∈ X with

‖Kx̃n‖Y > ε ‖x̃n‖X + n ‖TKx̃n‖Z .

Then xn := x̃n

‖x̃n‖X
are bounded in X and

‖Kxn‖Y > ε+ n ‖TKxn‖Z . (E10-1)

Since K is compact, there exists a subsequence (which we again denote by
(xn)n∈IN) such that Kxn → y ∈ Y as n → ∞, and so

‖Ty‖Z ←− ‖TKxn‖Z ≤ 1

n
‖Kxn‖Y −→ 0 .

As T is injective, it follows that y = 0 and hence ‖Kxn‖Y → 0, which
contradicts (E10-1). ��
E10.3 Application of Ehrling’s lemma. Let Ω ⊂ IRn be open and
bounded, let 1 < p < ∞ and let m ≥ 2. Show that:

(1) For every ε > 0 there exists a constant Cε such that for all u ∈ Wm,p
0 (Ω)

‖u‖Wm−1,p
0 (Ω) ≤ ε‖u‖Wm,p

0 (Ω) + Cε‖u‖Lp(Ω) .

(2) An equivalent norm on Wm,p
0 (Ω) is given by

‖u‖ := ‖Dmu‖Lp(Ω) + ‖u‖Lp(Ω) .

Solution (1). This follows from Ehrling’s lemma, on noting that the embed-
ding from Wm,p

0 (Ω) into Wm−1,p
0 (Ω) is compact (either on recalling 8.11(3),

8.10, Rellich’s embedding theorem A8.1 and 10.1(4), or on recalling Sobolev’s
embedding theorem 10.9). ��
Solution (2). We have from (1) that

‖u‖Wm−1,p ≤ ε‖u‖Wm,p + Cε‖u‖Lp

≤ ε‖Dmu‖Lp + ε‖u‖Wm−1,p + Cε‖u‖Lp ,

which for ε ≤ 1
2 yields the bound

‖u‖Wm−1,p ≤ 2ε‖Dmu‖Lp + 2Cε‖u‖Lp .

Consequently,

‖u‖ ≤ ‖u‖Wm,p ≤ max(1 + 2ε, 2Cε) · ‖u‖ .

��
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E10.4 On Ehrling’s lemma. Let Ω = BR(0) ⊂ IRn. Show that: For ε > 0
there exists a constant Cε such that for all u ∈ C2(Ω)

‖∇u‖C0(Ω) ≤ ε
∥∥D2u

∥∥
C0(Ω)

+ Cε ‖u‖C0(Ω) ,

and obtain an explicit bound for the constant Cε.

Solution. First let R = 1 and ε ≤ 1. For x0 ∈ Ω with ∇u(x0) �= 0 we choose
y0, y1 ∈ Ω ∩ Bε(x0) such that y1 − y0 points in the direction of ∇u(x0) and
|y1 − y0 | ≥ ε

2 .

Remark: This is possible because Ω = B1(0). If Bε(x0) ⊂ Ω, then we can

choose y0 = x0 and y1 = x0 + ε ∇u(x0)
|∇u(x0)| .

Then, setting yt := (1 − t)y0 + ty1, it holds that

u(y1) − u(y0) =

∫ 1

0

∇u(yt) · (y1 − y0) dt

= ∇u(x0) · (y1 − y0)

+

∫ 1

0

∫ 1

0

n∑
i,j=1

∂iju
(
(1− s)x0 + syt

)
(yt − x0)i(y1 − y0)j ds dt

and
∇u(x0) · (y1 − y0) = |∇u(x0)| |y1 − y0 | .

It follows that

|∇u(x0)| ≤
∥∥D2u

∥∥
C0(Ω)

· sup
0≤t≤1

|yt − x0 | +
|u(y1) − u(y0)|

|y1 − y0 |

≤ ε
∥∥D2u

∥∥
C0(Ω)

+
4

ε
‖u‖C0(Ω) ,

and hence the desired bound with Cε =
4
ε . (For ε ≥ 1 the claim follows with

Cε = 4.) If R is arbitrary, then define

v(x) := u( x
R ) .

The established bound for v

‖∇v‖
C0(B1(0))

≤ ε
∥∥D2v

∥∥
C0(B1(0))

+
4

min(ε, 1)
‖v‖

C0(B1(0))

transforms to

‖∇u‖
C0(BR(0))

≤ ε

R

∥∥D2u
∥∥
C0(BR(0))

+
4R

min(ε, 1)
‖u‖

C0(BR(0))
.

Now replace ε by Rε and set Cε = 4
(
min(ε, 1

R )
)−1

. ��
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E10.5 An a priori estimate. Let u ∈ C2([0, 1]) be a solution of the linear
differential equation

au′′ + bu′ + du = 0 in ]0, 1[ ,

where a, b, d ∈ C0([0, 1]) and a ≥ c0 with a positive constant c0. Then there
exists a constant C, which depends only on the coefficients, such that

‖u‖C2 ≤ C · ‖u‖C0 .

Solution. The differential equation implies that

c0‖u′′‖C0 ≤ C
(
‖u′‖C0 + ‖u‖C0

)
with C := ‖b‖C0 + ‖d‖C0 ,

and so
c0
(
‖u′′‖C0 + ‖u′‖C0

)
≤ (C + c0)

(
‖u′‖C0 + ‖u‖C0

)
.

It follows from E10.4 that this can be bounded by

≤ (C + c0)ε‖u′′‖C0 + (C + c0) · (Cε + 1)‖u‖C0 .

On choosing ε with (C + c0)ε =
c0
2 , we obtain, with a new constant C, that

‖u′′‖C0 + ‖u′‖C0 ≤ C‖u‖C0 .

��

E10.6 Equivalent norm. Let Ω ⊂ IRn be open and bounded with Lipschitz
boundary and let m ≥ 2. Then an equivalent norm on Cm(Ω) is given by

‖u‖ := ‖Dmu‖C0(Ω) + ‖u‖C0(Ω) .

E10.7 Counterexample to embedding theorems. Let Ω be as in theo-
rem 10.9 and let

1− n
p = 0 .

Then W 1,p(Ω) is not (!) embedded in L∞(Ω), except in the case n = 1.

Note: In theorem 10.9 the case m1 = m2 + 1, p2 = ∞ is not allowed, while
theorem 10.8 does not permit q = ∞.

Solution. The case n = 1 (we then have p = 1) was solved in E3.6. For n ≥ 2
a counterexample is

u(x) := log |log |x|| for 0 < |x| < 1
2 .

Let Ω := B 1
2
(0). Then u ∈ Ls(Ω) for 1 ≤ s < ∞, but u is not bounded.

Moreover, u ∈ W 1,n(Ω \ {0}), because u ∈ C∞(Ω \ {0}), with
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Ω

|∇u|n dLn =

∫
Ω

dx(
|x||log |x||

)n = C(n)

∫ 1
2

0

dr

r|log r|n

= C̃(n)

[
1

|log r|n−1

]r= 1
2

r=0

< ∞ .

It follows that u ∈ W 1,n(Ω), similarly to the end of the proof of 10.7(3) (or
alternatively by using the corollary in A8.9). ��

E10.8 Sobolev spaces on IRn. For m ≥ 1 and 1 ≤ p < ∞,

Wm,p(IRn) = Wm,p
0 (IRn) .

Proof. Recalling that C∞(IRn)∩Wm,p(IRn) is dense in Wm,p(IRn) (see 4.24),
it is sufficient to approximate functions u ∈ C∞(IRn) ∩ Wm,p(IRn) in the
Wm,p-norm by functions in C∞

0 (IRn). To this end, choose a function η ∈
C∞(IRn) with

η(x) =

{
1 for |x| ≤ 1,

0 for |x| ≥ 2

(see 4.19), and define ηR(x) := η
(
x
R

)
. Then for all multi-indices s with |s| ≤

m,

∂s(u − ηRu) = (1 − ηR)∂
su −

∑
0 ≤ r ≤ s

r �= s

(
s

r

)
(∂s−rηR)∂

ru .

Noting that 1 − ηR = 0 on BR(0) and that |∂s−rηR | ≤ C R−|s−r| in IRn

yields that

‖∂s(u − ηRu)‖Lp(IRn)

≤ ‖∂su‖Lp(IRn\BR(0))
+ C

∑
0 ≤ r ≤ s

r �= s

R−|s−r|‖∂ru‖Lp(IRn) ,

which converges to 0 as R → ∞. ��

E10.9 Embedding theorem. Let m1,m2 ≥ 0 and 1 ≤ p1, p2 < ∞ with

m1 − n

p1
= m2 − n

p2
, where m1 ≥ m2 .

Then the embedding Id : Wm1,p1(IRn) → Wm2,p2(IRn) exists and is continu-
ous.

Observe: In theorem 10.9 this result was shown for bounded open sets
Ω ⊂ IRn with Lipschitz boundary. (Theorem 10.9 also holds for an inequal-
ity between the Sobolev numbers.) Here we prove the theorem for Ω = IRn,
where it is essential that the two Sobolev numbers are equal, which is also
the case in theorem 10.8.
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Solution. For m1 = m2 the result is trivial. For m1 = m2 + 1 let u ∈
Wm1,p1(IRn). Then ∂su is in W 1,p1(IRn) for all multi-indices s with |s| ≤
m1 − 1 = m2. Sobolev’s theorem 10.8 then yields that ∂su ∈ Lp2(IRn) with

‖∂su‖Lp2 (IRn) ≤ C(p2, n)‖∇∂su‖Lp1 (IRn) ≤ C(p2, n)‖u‖Wm1,p1 (Ω) .

For m1 = m2 + k with k ≥ 2 define m̃i and p̃i for i = 0, . . . , k by

m̃i := m2 + i , m̃i −
n

p̃i
= m2 − n

p2
, i.e.

1

p̃i
=

i

n
+

1

p2
.

Then p̃0 = p2 and p̃i is monotonically decreasing in i with p̃k = p1, and hence
1 ≤ p̃i < ∞ for i = 0, . . . , k. The desired result now follows from successive
applications of theorem 10.8. ��

E10.10 Poincaré inequalities. Let 1 ≤ p, q < ∞ with 1− n
p = −n

q and let

u ∈ W 1,p(IRn). Then

‖u‖Lr(IRn) ≤ C(n, p)Ln({u �= 0}) 1
r
− 1

q · ‖∇u‖Lp(IRn)

for 1 ≤ r < q, and

‖u‖Lp(IRn) ≤ C(n, p)Ln({u �= 0}) 1
n · ‖∇u‖Lp(IRn) .

Solution. If {u �= 0} := {x ∈ IRn ; u(x) �= 0} has finite Lebesgue measure
then it follows from the Hölder inequality for 1 ≤ r < q that∫

IRn

|u|r dLn =

∫
IRn

X{u�=0} · |u|r dLn ≤ Ln({u �= 0})1− r
q

(∫
IRn

|u|q dLn
) r

q

,

and so 10.8 yields the first inequality. Setting r = p, and noting that 1
p − 1

q =
1
n , we obtain the second inequality. ��

E10.11 Convergence in Lp-spaces. Let 1 ≤ p0 < p1 < ∞, and suppose
uk ∈ Lp0(μ)∩Lp1(μ) for k ∈ IN and u ∈ Lp0(μ). Then it holds for p0 ≤ p < p1
that

{uk ; k ∈ IN} bounded in Lp1(μ),

uk → u strongly in Lp0(μ)

as k → ∞
=⇒

uk, u ∈ Lp(μ),

uk → u strongly in Lp(μ)

as k → ∞.

Solution. We have for all ε > 0 the elementary inequality

ap ≤ ε ap1 + Cεa
p0 for all a ≥ 0,

where Cε is a constant depending on ε, p, p1, p0. It follows that
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Ω

|uk − ul |p dμ ≤ ε

∫
Ω

|uk − ul |p1 dμ︸ ︷︷ ︸
bounded in k, l

+Cε

∫
Ω

|uk − ul |p0 dμ︸ ︷︷ ︸
→ 0 as k, l → ∞

,

which implies that {uk ; k ∈ IN} is a Cauchy sequence in Lp(μ) as well. Hence
there exists a ũ ∈ Lp(μ) with uk → ũ in Lp(μ). It follows for a subsequence
k → ∞ that uk → u and uk → ũ μ-almost everywhere, and so u = ũ in
Lp(μ). ��

E10.12 Compact sets in c0. Let c0 be the space of null sequences,
equipped with the supremum norm ‖·‖sup.
(1) Show that M ⊂ c0 is precompact if and only if M is bounded and for
every ε > 0 there exists an index nε such that |xn | ≤ ε for all n ≥ nε and all
x ∈ M .

(2) Let F : c0 → c0 be defined by F (x) = {x3
i ; i ∈ IN}. Prove that F (B1(0))

is not precompact, but DF (x)(B1(0)) is for every x ∈ c0.

E10.13 Nuclear operators. LetX, Y be Banach spaces and let T : X → Y
be nuclear, i.e. there exist λk ∈ IK, x′

k ∈ X ′, yk ∈ Y for k ∈ IN with

∞∑
k=1

|λk | < ∞ , ‖x′
k‖X′ = 1 , ‖yk‖Y = 1 ,

such that

Tx =
∞∑
k=1

λk 〈x , x′
k〉X yk for all x ∈ X.

Then T is compact.

Solution. The operators

Tnx :=
n∑

k=1

λk 〈x , x′
k〉X yk

are compact on recalling 10.2(3). Moreover,

‖(T − Tn)x‖ ≤
( ∞∑
k=n+1

|λk |
)
‖x‖ ,

and so Tn → T in L (X;Y ). Hence 10.2(2) yields that T is compact. ��

E10.14 Compact operator without eigenvalues. Setting

Tx :=

∞∑
k=1

xk

k + 1
ek+1 for x = (xk)k∈IN

defines an operator T : �2(C) → �2(C). Show that T is compact, but that T
has no eigenvalues (see 11.2(2)).
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Solution. Noting that

T
(
B1(0)

)
⊂

{
x ∈ �2(C) ; |xi | ≤ 1

i for all i
}

and recalling E4.13, we have that T is compact. If we assume that λ ∈ C is
an eigenvalue, then Tx = λx for an x �= 0. If λ = 0, then Tx = 0, and so
x = 0, a contradiction. If λ �= 0, it follows that x1 = 0 and xk+1 = 1

λ(k+1)xk

for k ≥ 1, and so again x = 0, a contradiction. ��

E10.15 Bound on the dimension of eigenspaces. Let Ω ⊂ IRn, let
K ∈ L2(Ω × Ω; C) and let T ∈ L

(
L2(Ω; C)

)
be the Hilbert-Schmidt integral

operator defined by

(Tf)(x) :=

∫
Ω

K(x, y)f(y) dy .

Show that
dimN (Id − T ) ≤ ‖K‖2L2(Ω×Ω) .

Solution. By 10.15, T ∈ K
(
L2(Ω; C)

)
. This implies, on noting that (Id −

T )(x) = 0 is equivalent to x = Tx ∈ R(T ), that N (Id − T ) ∩ B1(0) ⊂
T
(
B1(0)

)
is precompact, and hence, by 4.10, that N (Id − T ) is finite-

dimensional. Choose an orthonormal system f1, . . . , fn in N (Id− T ), where
n := dimN (Id − T ). Then

n =

n∑
i=1

‖fi‖2L2(Ω) =

n∑
i=1

‖Tfi‖2L2(Ω) =

∫
Ω

n∑
i=1

∣∣∣∣∫
Ω

K(x, y)fi(y) dy

∣∣∣∣2 dx .
Setting Kx(y) := K(x, y) and using Bessel’s inequality 9.6 we obtain that

n =

∫
Ω

n∑
i=1

(Kx , fi)
2
L2(Ω) dx ≤

∫
Ω

‖Kx‖2L2(Ω) dx = ‖K‖2L2(Ω×Ω) .

��

E10.16 Norm of Hilbert-Schmidt operators. Under the same assump-
tions as in E10.15 show that

‖T ‖ = ‖K‖L2(Ω×Ω) ⇐⇒
There exist K1,K2 ∈ L2(Ω) with

K(x, y) = K1(x)K2(y) for almost all x, y ∈ Ω.

Remark: In this case T is a nuclear operator as in E10.13, with only a single
term in the sum.

Solution ⇒. Let K �= 0. The assumption yields that for ε > 0 there exist
functions fε ∈ L2(Ω) with ‖fε‖L2(Ω) = 1 such that
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(1 − ε)‖K‖2L2(Ω×Ω) ≤ ‖Tfε‖2L2(Ω)

=

∫
Ω

(∫
Ω

K(z, x)fε(x) dx
)(∫

Ω

K(z, y) fε(y) dy
)
dz

=

∫
Ω

∫
Ω

fε(x)fε(y)
(∫

Ω

K(z, x)K(z, y) dz
)
dx dy

≤
(∫

Ω

∫
Ω

|fε(x)|2|fε(y)|2 dx dy︸ ︷︷ ︸
= 1

) 1
2

·
(∫

Ω

∫
Ω

∣∣∣∣∫
Ω

K(z, x)K(z, y) dz

∣∣∣∣2 dx dy) 1
2

.

Letting ε → 0 we obtain the inequality∫
Ω

∫
Ω

|K(x, y)|2 dx dy ≤
(∫

Ω

∫
Ω

∣∣∣∣∫
Ω

K(z, x)K(z, y) dz

∣∣∣∣2 dx dy) 1
2

.

(E10-2)
Moreover, the Cauchy-Schwarz inequality yields that for almost all x, y ∈ Ω
we have that∣∣∣∣∫

Ω

K(z, x)K(z, y) dz

∣∣∣∣2 ≤
∫
Ω

|K(z, x)|2 dz ·
∫
Ω

|K(z, y)|2 dz . (E10-3)

Integrating over x and y, we obtain the opposite inequality (E10-2). This
implies that in fact equality holds in (E10-2), and therefore for almost all
(x, y) ∈ Ω × Ω also equality holds in (E10-3). On recalling the remark in
2.3(3), the functions Kx(z) := K(z, x) and Ky(z) := K(z, y) are linearly
dependent in L2(Ω) for almost all (x, y) ∈ Ω ×Ω. In other words (see A6.9),
there exists a null set N0 ⊂ Ω such that for all x ∈ Ω \ N0 it holds that:
for almost all y ∈ Ω the functions Kx and Ky are linearly dependent. Since
we assumed that K �= 0 in L2(Ω × Ω), we can choose x0 ∈ Ω \ N0 such
that Kx0

�= 0 in L2(Ω). Then there exists a null set N ⊂ Ω such that for
y ∈ Ω \ N the function Ky is a multiple of Kx0

, i.e. there exists a function
α : Ω \ N → C such that for y ∈ Ω \ N

K(z, y) = α(y)K(z, x0) for almost all z ∈ Ω.

Setting K1(z) := K(z, x0) and K2(y) := α(y), it follows that

K(z, y) = K1(z)K2(y) for almost all (z, y) ∈ Ω × Ω.

Fubini’s theorem then yields that K1,K2 ∈ L2(Ω). ��
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A10 Calderón-Zygmund inequality

We present a proof of the Lp-estimate in 10.20. To this end, we begin with
the following

A10.1 Definition. Let D ⊂ C be open and let f : D → Y be (real) contin-
uously differentiable, where Y is a Banach space over C. Then we define

∂zf :=
1

2
(∂xf + i ∂yf) and ∂zf :=

1

2
(∂xf − i ∂yf) ,

where we denote complex numbers by z = x+ iy, x, y ∈ IR.

D

x = (y, g(y))

∂D = graph g

ν(x)

iν(x)

1

g′(y)

Fig. 10.2. Outer normal and oriented tangent in C

Now let D ⊂ C be open and bounded with Lipschitz boundary (see A8.2).
For functions f ∈ C0(D;Y ) we define the oriented boundary integral∫

∂D

f(z) dz := i

∫
∂D

ν(x)f(x) dH1(x) ,

where ν : ∂D → C is the outer normal to D (see A8.5(3) and Fig. 10.2) and
ν(x)f(x) denotes the complex product of ν(x) and f(x). Then Cauchy’s
integral theorem states that for f ∈ C1(D;Y )∫

∂D

f(z) dz = 2i

∫
D

∂zf(z) dL
2(z) .

In the special case where ∂zf = 0 in D, the function f is called holomorphic
in D.

Proof. Let y′ ∈ Y ′ and set g(z) := 〈f(z) , y′〉Y . Then (see 5.11)
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∂D

f(z) dz , y′
〉

Y

=

∫
∂D

g(z) dz = i

∫
∂D

(Re g)ν dH1 −
∫
∂D

(Im g)ν dH1 .

It follows from Gauß’s theorem (see A8.8) that this is

=

∫
D

(
i∇(Re g) − ∇(Im g)

)
dL2

=

∫
D

(
i(∂x + i∂y)

g + g

2
− (∂x + i∂y)

g − g

2i

)
dL2

= 2i

∫
D

∂zg dL
2 =

〈
2i

∫
D

∂zf dL2 , y′
〉

Y

.

��

First we consider the case n = 1 in Theorem 10.20.

A10.2 Theorem. If f ∈ C∞
0 (IR) and 1 < p < ∞, then

T1f(x) :=

∫
IR\B1(x)

f(s)

x − s
ds

defines a function T1f in Lp(IR) and there exists a constant C(p) such that
for all f

‖T1f ‖Lp(IR) ≤ C(p)‖f ‖Lp(IR) .

Therefore 10.20 holds in the case n = 1.

Proof. As f ∈ C0
0 (IR) we have that |T1f(x)| ≤ C

|x| for large x, and so T1f ∈
Lp(IR). In addition, the representation

T1f(x) =

∫
IR\B1(0)

f(x − s)

s
ds

shows that T1f ∈ C0(IR). For the proof of the bound we may assume without
loss of generality that f ≥ 0, otherwise consider max(f, 0) and max(−f, 0).
We extend T1f to the upper half-plane

D := {z ∈ C ; Im z > 0} .

To this end we define

ϕ(z) :=
1

z

(
log(1 + z)− log(1− z)

)
for z ∈ D,

where
log(z) := log(|z |) + i arg(z) for z ∈ C \ ]− ∞, 0] ,

arg
(
reiθ

)
:= θ for r > 0, |θ | < π.

Consider the function
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F (z) :=

∫
IR

ϕ(z − s)f(s) ds for z ∈ D.

Let x �= 0,±1 and y ↘ 0. Then

Reϕ(x+ iy) −→ 1

x

(
log |1 + x| − log |1− x|

)
=: ψ(x) ≥ 0 ,

and, examining how 1 ± (x + iy) approaches the positive and negative real
axis, respectively,

Imϕ(x+ iy) −→

⎧⎨⎩
π

x
if |x| > 1,

0 if |x| < 1.

On noting in addition that |ϕ(x+ iy)| ≤ C · log |x ± 1| for |x ± 1| ≤ 1
2 , and

that otherwise ϕ is a bounded function, it follows from Lebesgue’s conver-
gence theorem that

F (x+ iy) → (ψ ∗ f)(x) + iπT1f(x) as y ↘ 0,

locally uniformly in x, i.e. Im(F ) is a continuous extension of πT1f to D.
Since ψ ∈ L1(IR) (observe that 0 ≤ ψ(x) ≤ C

x2 for large |x|), it holds that
ψ ∗ f ∈ Lp(IR) with the convolution estimate

‖ψ ∗ f ‖Lp(IR) ≤ ‖ψ‖L1(IR) · ‖f ‖Lp(IR) .

In addition we have that ReF (z) ≥ 0 for all z ∈ D, because for z = x+ iy

Reϕ(z) =
1

|z |2
(
x(log |1 + z | − log |1− z |) + y(arg(1 + z)− arg(1− z))

)
is nonnegative, and f is assumed to be nonnegative. Hence z �→ F (z)p is a
well-defined function that is continuous in D, where

zp := eplog z for z ∈ C \ ]− ∞, 0].

As ϕ is holomorphic in D, and hence so is F , and then also F p, it follows
from Cauchy’s integral theorem for R > 0 that

0 =

∫
∂(D∩BR(0))

F (z)p dz =

∫ R

−R

F (x)p dx+

∫
D∩∂BR(0)

F (z)p dz .

Since f has compact support, we have that |F (z)| ≤ C log |z |
|z | for large |z |,

and so as R → ∞∣∣∣∣∣
∫
D∩∂BR(0)

F (z)p dz

∣∣∣∣∣ ≤ CR
( logR

R

)p

−→ 0 .
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This shows that ∫
IR

F (x)p dx = 0 .

Writing F (x) = F1(x) + iF2(x), it follows from the identity

F (x)p −
(
iF2(x)

)p
= p

∫ 1

0

(
tF1(x) + iF2(x)

)p−1
dt · F1(x)

that ∣∣∣∣∫
IR

(
iF2(x)

)p
dx

∣∣∣∣ ≤ C(p)

∫
IR

(
|F1(x)|p−1

+ |F2(x)|p−1)|F1(x)| dx .

From the generalized Young’s inequality it follows for 0 < δ ≤ 1 that this is

≤ δ

∫
IR

|F2(x)|p dx+
C(p)

δp−1

∫
IR

|F1(x)|p dx .

Since Re(iF2(x))
p = cos(pπ

2 )|F2(x)|p, we have∣∣∣cos(pπ
2
)
∣∣∣ ∫

IR

|F2(x)|p dx =

∣∣∣∣Re ∫
IR

(iF2(x))
p dx

∣∣∣∣
≤

∣∣∣∣∫
IR

(iF2(x))
p dx

∣∣∣∣ ≤ δ

∫
IR

|F2(x)|p dx+
C(p)

δp−1

∫
IR

|F1(x)|p dx .

In the case cos(pπ
2 ) �= 0, on choosing δ = 1

2

∣∣cos(pπ
2 )

∣∣, it then follows (em-
ploying the usual convention on constants) that∫

IR

|F2 |p dL1 ≤ C(p)

∫
IR

|F1 |p dL1 = C(p)‖ψ ∗ f ‖pLp(IR) ≤ C(p)‖f ‖pLp(IR) .

This is the desired result when cos(pπ
2 ) �= 0, which for example is satisfied

for 1 < p ≤ 2. For 2 ≤ p < ∞ the claim follows with a duality argument. In
particular, it then holds that 1 < p′ ≤ 2, and so for all g ∈ C0

0 (IR) we have
that ∣∣∣∣∫

IR

gT1f dL1

∣∣∣∣ = ∣∣∣∣∫
IR

fT1g dL
1

∣∣∣∣
≤ ‖f ‖Lp(IR)‖T1g‖Lp′ (IR) ≤ C(p′)‖f ‖Lp(IR)‖g‖Lp′ (IR) ,

which together with 6.13 implies that

‖T1f ‖Lp(IR) ≤ C(p′)‖f ‖Lp(IR) .

��

In conjunction with the following lemma, we obtain 10.20 in the case
n = 1.
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A10.3 Lemma. The result in 10.20 holds true if there exists a constant
C(n, p) such that

‖T1f ‖Lp(IRn) ≤ C(n, p)‖f ‖Lp(IRn) for all f ∈ C∞
0 (IRn) .

Remark: For f ∈ C∞
0 (IRn) it holds that T1f ∈ L∞(IRn). Moreover |T1f(x)| ≤

C‖f ‖sup · |x|−n
for large |x|, and so T1f ∈ Lp(IRn).

Proof. Let f ∈ Lp(IRn) and fk ∈ C∞
0 (IRn) with ‖f − fk‖Lp → 0 as k → ∞.

It follows from the Hölder inequality that for x ∈ IRn

|T1f(x) − T1fk(x)| ≤ C ·
∫
IRn\B1(x)

|f(y) − fk(y)|
|x − y |n dy

≤ C · ‖f − fk‖Lp

(∫
IRn\B1(0)

dy

|y |np′

) 1
p′ −→ 0 as k → ∞,

and, in addition, if C0 denotes the constant C(n, p) from the assumptions,
that

‖T1fk − T1fl‖Lp = ‖T1(fk − fl)‖Lp ≤ C0‖fk − fl‖Lp −→ 0 as k, l → ∞.

Hence (T1fk)k∈IN is a Cauchy sequence in Lp(IRn) with limit T1f , and so the
assumed Lp-estimate also holds for f , i.e.

‖T1f ‖Lp ≤ C0‖f ‖Lp .

Now let ε > 0 and set fε(y) := f(εy). Then

Tεf(x) =

∫
IRn\Bε(x)

ω(x − y)

|x − y |n f(y) dy

=

∫
IRn\B1( x

ε )

ω(xε − y)∣∣ x
ε − y

∣∣n fε(y) dy = T1fε(
x

ε
) .

This yields that Tεf ∈ Lp(IRn), with

‖Tεf ‖Lp =
(∫

IRn

∣∣∣T1fε
(x
ε

)∣∣∣p dx) 1
p

=
(
εn

∫
IRn

|T1fε(x)|p dx
) 1

p

≤ C0

(
εn

∫
IRn

|fε(x)|p dx
) 1

p

= C0‖f ‖Lp .

It follows for 0 < ε1 < ε2 that

‖Tε1f − Tε2f ‖Lp

≤ ‖Tε1(f − fk)‖Lp + ‖Tε2(f − fk)‖Lp + ‖Tε1fk − Tε2fk‖Lp

≤ 2C0‖f − fk‖Lp︸ ︷︷ ︸
→ 0 as k → ∞

+‖Tε1fk − Tε2fk‖Lp .
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Since the mean of ω vanishes, for all x

|Tε1fk(x) − Tε2fk(x)|

=

∣∣∣∣∣
∫
Bε2

(x)\Bε1
(x)

ω(x − y)

|x − y |n fk(y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bε2

(x)\Bε1
(x)

ω(x − y)

|x − y |n
(
fk(y) − fk(x)

)
dy

∣∣∣∣∣
≤ C ·

∫
Bε2

(x)\Bε1
(x)

dy

|x − y |n−1 · ‖∇fk‖sup

≤ C(n)ε2‖∇fk‖sup .

Since in addition Tε1fk(x) = Tε2fk(x) for x ∈ IRn \ Bε2(supp fk), we obtain
for every k that

‖Tε1fk − Tε2fk‖Lp

≤ C(n)ε2‖∇fk‖supLn
(
Bε2(supp fk)

) 1
p −→ 0 as ε2 → 0.

This proves that the functions Tεf for ε → 0 form a Cauchy sequence in
Lp(IRn). Hence it also holds that∥∥∥∥ limε↘0

Tεf

∥∥∥∥
Lp

≤ C0‖f ‖Lp .

��

A10.4 Theorem. Theorem 10.20 also holds in the case n > 1.

Proof. We need to prove a bound for T1 similarly to A10.3. Since we can
decompose ω as

ω(ξ) =
ω(ξ) + ω(−ξ)

2
+

ω(ξ) − ω(−ξ)

2
,

it is sufficient to consider separately the two cases: ω is an even function,
i.e. ω(−ξ) = ω(ξ), or an odd function, i.e. ω(−ξ) = −ω(ξ).

We begin with the case when ω is odd. (Observe that odd kernels always
satisfy the vanishing mean value property (10-33).) For f ∈ C∞

0 (Ω) it then
holds, upon using polar coordinates, that

T1f(x) =

∫
IRn\B1(0)

ω(y)

|y |n f(x − y) dy

=

∫
∂B1(0)

ω(ξ)

∫ ∞

1

f(x − rξ)

r
dr dHn−1(ξ) .

As ω is odd, this is
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=
1

2

∫
∂B1(0)

ω(ξ)

∫ ∞

1

f(x − rξ) − f(x+ rξ)

r
dr dHn−1(ξ)

=
1

2

∫
∂B1(0)

ω(ξ)

(∫
{|t|≥1}

f(x − tξ)

t
dt

)
dHn−1(ξ) ,

and so the Hölder inequality yields that

|T1f(x)|p ≤ 2−p

(∫
∂B1(0)

|ω(ξ)|
1
p′

+ 1
p

∣∣∣∣∣
∫
{|t|≥1}

f(x − tξ)

t
dt

∣∣∣∣∣ dHn−1(ξ)

)p

≤ 2−p‖ω‖
p

p′

L1(∂B1(0))

∫
∂B1(0)

|ω(ξ)|
∣∣∣∣∣
∫
{|t|≥1}

f(x − tξ)

t
dt

∣∣∣∣∣
p

dHn−1(ξ) .

For every ξ ∈ ∂B1(0) we decompose the space IRn as

IRn = Zξ ⊥ span{ξ} .

For z ∈ Zξ it then follows from A10.2 that

Φξ(z) :=

∫
IR

∣∣∣∣∣
∫
{|t|≥1}

f(z + (s − t)ξ)

t
dt

∣∣∣∣∣
p

ds ≤ C(p)

∫
IR

|f(z + sξ)|p ds ,

and so, setting Mω := ‖ω‖L1(∂B1(0))
, that∫

IRn

|T1f(x)|p dx

≤ 2−pMp−1
ω

∫
∂B1(0)

|ω(ξ)|
(∫

Zξ

Φξ(z) dL
n−1(z)

)
dHn−1(ξ)

≤ C(p)Mp−1
ω

∫
∂B1(0)

|ω(ξ)|
∫
Zξ

∫
IR

|f(z + sξ)|p ds dLn−1(z) dHn−1(ξ) .

This shows that

‖T1f ‖Lp ≤ C(p)‖ω‖L1(∂B1(0))
· ‖f ‖Lp ,

which proves 10.20 for odd ω. Observe that the proof did not use the bound-
edness of ω: it suffices to assume that ω is integrable over ∂B1(0).

We now assume that ω is even and reduce this case to the odd case. To
this end we define the convolution operator

Sεg(x) :=

∫
IRn\Bε(x)

g(y)
x − y

|x − y |n+1 dy and Sg(x) := lim
ε↘0

Sεg(x) .

As the vector-valued integral kernel of Sε is odd, what was shown above
implies that for g ∈ Lq(IRn) with 1 < q < ∞,
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Sεg −→ Sg in Lq(IRn; IRn)

with ‖Sεg‖Lq ≤ C(n, q)‖g‖Lq .
(A10-1)

We begin by establishing that there exists a c0 > 0 such that

n∑
i=1

SiεSiεg −→ −c0g in Lq(IRn) for g ∈ C∞
0 (IRn), (A10-2)

where Siε denotes the i-th coordinate of the operator Sε. We will use this
property to bound T1f in a first step in terms of ST1f . In the last part of
the proof we then show that ST1 is also a singular integral operator with an
odd kernel.

In order to prove (A10-2) we write

n∑
i=1

SiεSiεg(x) =

∫
IRn

(∫
IRn\Bε(x)\Bε(y)

(x − z) · (z − y)

|x − z |n+1|z − y |n+1 dz

)
g(y) dy .

With the change of variables z = −z′ + x+y
2 this becomes

= −
∫
IRn

ϕε

(x − y

2

)
g(y) dy ,

where

ϕε(x) :=

∫
{|z±x|≥ε}

(z + x) · (z − x)

|z + x|n+1|z − x|n+1 dz .

With the change of variables z = εz′ we obtain that ϕε(x) = ε−nϕ1

(
x
ε

)
.

Hence assertion (A10-2) follows from 4.15(2), if we show that ϕ1 is a non-
negative integrable function. If D ⊂ IRn is open and invariant under the

reflection in ∂B|x|(0), i.e.
|x|2
|z |2 z ∈ D for z ∈ D, then the change of variables

z = |x|2
|z′ |2 z

′ yields, on noting that

dz =
( |x|
|z′ |

)2n

dz′ and |z ± x| = |x|
|z′ | |z

′ ± x| ,

that ∫
D

|z |2 − |x|2

|z + x|n+1|z − x|n+1 dz =

∫
D

|x|2 − |z′ |2

|z′ + x|n+1|z′ − x|n+1 dz′ ,

i.e. this integral vanishes. Applying this result to the domainD = {z ; |z ± x| >
1, |z′ ± x| > 1}, we obtain that

ϕ1(x) =

∫
E

|z |2 − |x|2

|z + x|n+1|z − x|n+1 dz
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with E :=
{
|z ± x| ≥ 1

}
∩
({

|z + x| ≤ |z |
|x|

}
∪
{
|z − x| ≤ |z |

|x|
})

, and so

|z | ≥ |x| for z ∈ E, which implies that ϕ1 ≥ 0. Clearly ϕ1 is continuous on
IRn \ {0}, and for |x| ≤ 1

2

ϕ1(x) ≤ C

∫
{|z |≥ 1

2}

dz

|z |2n
< ∞ ,

while for |x| ≥ 2

ϕ1(x) ≤
∫
E

dz

|z + x|n|z − x|n .

We partition E into {z ∈ E ; z • x ≥ 0} and {z ∈ E ; z • x ≤ 0}. For z in
the first set it holds that |z + x| ≥ |x| and with z′ := z − x we have that

1 ≤ |z′ | ≤ |x|
|x|−1 . An analogous result holds for the second set. Overall we

obtain that

ϕ1(x) ≤ 2

|x|n
∫
{1≤|z′ |≤ |x|

|x|−1
}

dz′

|z′ |n ≤ C

|x|n+1 .

The last inequality follows from the fact that we integrate over an annular
region of width 1

|x|−1 . This shows that ϕ1 is integrable and the result (A10-2)

is shown.
Now let f ∈ C∞

0 (IRn) as before. It follows from (A10-2) and the Lp-bound
for Sε that for ζ ∈ C∞

0 (IRn) and as ε ↘ 0

c0

∣∣∣∣∫
IRn

ζT1f dLn

∣∣∣∣ ←−
∣∣∣∣∣
∫
IRn

( n∑
i=1

SiεSiεζ
)
T1f dLn

∣∣∣∣∣
=

∣∣∣∣∣
∫
IRn

n∑
i=1

Siεζ · SiεT1f dLn

∣∣∣∣∣ ≤ ‖Sεζ‖Lp′ ‖SεT1f ‖Lp ,

with
‖Sεζ‖Lp′ ≤ C(n, p′)‖ζ‖Lp′ .

As T1f ∈ Lp(IRn) (see the remark in A10.3), it holds in addition that

‖SεT1f ‖Lp −→ ‖ST1f ‖Lp as ε ↘ 0.

Hence, on recalling 6.13, we obtain the bound

‖T1f ‖Lp ≤ C(n, p)‖ST1f ‖Lp .

Now we show that ST1, too, is essentially a singular integral operator with
an odd kernel. It holds that

SεT1f(x) =

∫
IRn

(∫
{|z−x|≥ε, |z−y|≥1}

x − z

|x − z |n+1

ω(z − y)

|z − y |n dz

)
f(y) dy

=

∫
IRn

Φε(x − y)f(y) dy ,
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where

Φε(x) :=

∫
{|z−x|≥ε , |z |≥1}

x − z

|x − z |n+1

ω(z)

|z |n dz .

Since

Φε(x) = Sεh(x) with h(z) := XIRn\B1(0)(z)
ω(z)

|z |n ,

and since h ∈ Lq(IRn) for every 1 < q < ∞ (not for q = 1 !), it follows from
the previously shown convergence in (A10-1) that

Φε = Sεh → Sh =: Φ in Lq(IRn; IRn) ,

with ‖Φ‖Lq ≤ C(n, q)‖h‖Lq .

Here we have that

‖h‖Lq =

(∫ ∞

1

rn−1−nq

∫
∂B1(0)

|ω(ξ)|q dHn−1(ξ) dr

) 1
q

= c1(n, q)‖ω‖Lq(∂B1(0))
,

with

c�(n, q) :=

(∫ ∞

�

r−1−n(q−1) dr

) 1
q

.

In addition,

ST1f(x) =

∫
IRn

Φ(x − y)f(y) dy .

Similarly to Φε, for every δ > 0

ψδ(x) :=

∫
{δ≤|z |≤1}

x − z

|x − z |n+1

ω(z)

|z |n dz

defines a function ψδ ∈ Lp(IRn; IRn). Moreover, the limit

ψ(x) := lim
δ↘0

ψδ(x) =

∫
{|z |≤1}

x − z

|x − z |n+1

ω(z)

|z |n dz

exists pointwise for x �= 0. In order to prove this, choose for � > 0 an
η ∈ C∞

0 (B�(0)) with η = 1 in B �
2
(0) and decompose ψδ(x) for |x| > � as

induced by the decomposition

x − z

|x − z |n+1 = η(z)
x − z

|x − z |n+1 +
(
1 − η(z)

) x − z

|x − z |n+1 .

The first term is a Lipschitz continuous (in fact smooth) function of z. Hence
the corresponding integral converges as δ ↘ 0 (see the first part of the proof of
the Hölder-Korn-Lichtenstein inequality 10.19). The integral over the second
term is independent of δ for δ < �

2 .
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On employing the change of variables z = |x|z′ we now see that there
exists a measurable function ω0 : ∂B1(0) → IRn such that

Φ(x) + ψ(x) =
ω0(x)

|x|n , (A10-3)

where ω0(x) := ω0

(
x
|x|

)
and

ω0(ξ) :=

∫
IRn

ξ − z

|ξ − z |n+1

ω(z)

|z |n dz for almost all ξ ∈ ∂B1(0) .

As ω is an even function, ω0 must be odd. Moreover, for |x| ≥ 2 and |z | ≤ 1
(cf. the proof of 10.19)∣∣∣∣∣ x − z

|x − z |n+1 − x

|x|n+1

∣∣∣∣∣ ≤ C|z |
( 1

|z − x||x|n +
1

|x| |z − x|n
)

≤ C|z |
|x|n+1 ,

which in view of the mean value property of ω implies that

|ψ(x)| =
∣∣∣∣∣
∫
{|z |≤1}

( x − z

|x − z |n+1 − x

|x|n+1

)ω(z)
|z |n dz

∣∣∣∣∣
≤ C

|x|n+1

∫
{|z |≤1}

|ω(z)|
|z |n−1 dz ≤ C

|x|n+1 ‖ω‖L1(∂B1(0))
.

Hence ψ ∈ Lq(IRn \ B2(0) ; IR
n) for 1 ≤ q < ∞ (here the case q = 1 is

included (!)), with

‖ψ‖Lq(IRn\B2(0))
≤ C(n, q)‖ω‖L1(∂B1(0))

.

Therefore, on recalling (A10-3), we obtain for 1 < q < ∞ that

c2(n, q)‖ω0‖Lq(∂B1(0))
=

∥∥∥∥ ω0

|·|n
∥∥∥∥
Lq(IRn\B2(0))

≤ ‖Φ‖Lq(IRn) + ‖ψ‖Lq(IRn\B2(0))

≤ C(n, q)
(
c1(n, q)‖ω‖Lq(∂B1(0))

+ ‖ω‖L1(∂B1(0))

)
,

and so
‖ω0‖L1(∂B1(0))

≤ C(n)‖ω‖L∞(∂B1(0))
< ∞ .

Hence the previously shown Lp-bound for kernels induced by odd ω can be
applied to the kernel induced by ω0. We note from (A10-3) that

Φ(x) = XIRn\B2(0)(x)
ω0(x)

|x|n − Φ̃(x) ,

where
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Φ̃(x) := XIRn\B2(0)(x)ψ(x) − XB2(0)(x)Φ(x) ,

and we note that for every 1 < q < ∞∥∥∥Φ̃∥∥∥
L1(IRn)

≤ ‖ψ‖L1(IRn\B2(0))
+ C(n, q)‖Φ‖Lq(IRn) < ∞ .

We obtain using the Lp-bound for the kernel induced by ω0 and the convo-
lution estimate that

‖ST1f ‖Lp(IRn)

≤
(∫

IRn

∣∣∣∣∣
∫
{|y|≥2}

ω0(x − y)

|x − y |n f(y) dy

∣∣∣∣∣
p

dx

) 1
p

+
∥∥∥Φ̃ ∗ f

∥∥∥
Lp(IRn)

≤
(
C(p)‖ω0‖L1(∂B1(0))

+
∥∥∥Φ̃∥∥∥

L1(IRn)

)
‖f ‖Lp(IRn) .

This proves 10.20 also for even kernels. ��
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