10 Compact operators

In this chapter we consider the properties of compact linear operators between
Banach spaces. The space # (X;Y) of (linear) compact operators from X to
Y was already defined in 5.5(2). Because here we are always concerned with
linear operators, for convenience we simply speak of compact operators.

All the spaces in this chapter are assumed to be Banach spaces. We begin
with a discussion of the elementary properties of compact operators and then
give the most important examples of such operators. These include compact
embeddings between function spaces and compact integral operators.

10.1 Compact operators. Let X and Y be Banach spaces over IK. Then
a linear map 7' : X — Y is called a compact (linear) operator if one of
the following equivalent properties is satisfied:

(1) T(B1(0)) C Y is compact (see the definition 5.5(2)).

(2) T(B1(0)) C Y is precompact.

(3) M C X is bounded = T(M)CY is precompact.

(4) For every bounded sequence (z,,),,cp in X, the sequence (T'x,),, oy con-
tains a subsequence that is convergent in Y.

It follows from (2) that T(B1(0)) is bounded (see 4.7(2)), and so T €
Z(X;Y), by 5.1. Hence it holds for the set defined in 5.5(2) that

H(X;Y):={T:X —Y; Tis acompact linear operator}
={T € L(X;Y); T satisfies (4)}.

Moreover, let #(X) := 2 (X; X).

Note: The fact that compact maps (with the property (1)) are continuous
only holds for linear maps. General nonlinear maps which satisfy (1) need
not be continuous.

Proof (1)<(2). This follows from 4.7(5), as Y is complete. O

Proof (2)<(3). The linearity of T implies that for every R > 0 statement (2)
is equivalent to the precompactness of T(B R(O)). Because every bounded set
M is contained in a ball Br(0), it then follows that the smaller set T'(M) is
also precompact. ]
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320 10 Compact operators

Proof (1)=(4). If , € X forn € N with ||z, ||y < R, then £Tx, = T(§an)
are elements of the compact, and hence (by 4.6) also sequentially compact,
set T'(B1(0)). O

Proof (4)=(1). Let y,, € T(B1(0)) for n € IN. Then there exist ,, € B1(0)
with ||y, — T2, |ly < 1.1t follows from (4) that there exists a y € Y such
that Tz,, — y for a subsequence n — oo, and hence also y, — y. This shows

that T(Bl(O)) is sequentially compact, and so, by 4.6, is also compact. O
We now prove some basic results.

10.2 Lemma.

(1) If X is a reflexive space, then it holds for every linear map T': X — Y
that

TeX(X;Y) <= Tiscompletely continuous, i.e.
if ¢, — x converges weakly in X as n — oo, then Tz, — Tx converges
strongly in Y.
(2) #(X;Y) is a closed subspace of Z(X;Y).
(3) ITe Z(X;Y) with dimZ(T) < oo, then T € #(X;Y).
(4) fY is a Hilbert space and T' € .Z(X;Y), then

there exist T, € Z(X;Y) with dim Z(T,,) < oo,

TeX(X;Y) —
such that ||T — T, || = 0 as n — co.

(5) For projections P € Z(X) it holds that
Pex(X) +<— dmZ(P)<o.

Proof (1)=. (In the proof of this implication the reflexivity of X is not
needed.) Let z,, — 2 weakly as n — oo. By 8.3(5), the sequence (), o is
bounded, and so 10.1(4) yields the existence of a y € Y such that Tz,, — y
strongly in Y for a subsequence n — oo. For ¢/ € Y’ the map z — (Tz, ¢/)
defines an element in X’. Therefore,

(Txyp,y)— (Tx,y')y asn— o0.

This yields that Tx, — T'x weakly in Y. As strong convergence implies weak
convergence, one must have y = Tx. Hence Tx,, — Tx converges strongly
for a subsequence n — oo. On noting that all of the above argumentation
can be applied to every subsequence of (2,,),, o, it follows that the whole (!)
sequence (T'z,,), o has only one cluster point T'z, i.e. it converges strongly
to Tz. O

Proof (1)<. Being completely continuous implies that T is continuous, and
so T € Z(X;Y). Moreover, it follows from theorem 8.10 that bounded se-
quences in reflexive spaces contain weakly convergent subsequences. O
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Proof (2). In order to see that # (X;Y") is a subspace, let T1,T> € . (X;Y),
let o € IK and let (), n be a bounded sequence in X. Then there
exists a subsequence (T2, ), that is convergent in Y. Similarly, we

may then choose a convergent subsequence (Tgxnkl>lem. This implies that

((aT1 +13)(an,, ))l o converges in Y, which shows that aT1+T5 € #(X;Y).
€

To prove that 7 (X;Y) is closed, assume that T,, € #(X;Y) converges
in Z(X;Y)asn — oo toT € Z(X;Y). For ¢ > 0 first choose n. with
T —T,.|| < e and then (recall 10.1(2)) balls B.(y;), ¢ = 1,...,me, such
that

T,.(B1(0)) C | JBe(yi), which implies: T(By(0)) C ) Baz(vi) -
=1 =1

Hence T'(B1(0)) is precompact, and so T is compact. O

Proof (3). We have that Z := Z(T) C Y is finite-dimensional, and so it
follows from 4.9 that with the Y-norm it is a Banach space. On setting
R :=||T|| we have that

T(B1(0)) CKr:={y€ Z; |yly <R} C Z.

By 4.10, we have that Kr C Z is compact, and hence combining 4.7(5) and
4.7(1) yields that T'(B1(0)) is compact. O

Proof (4)<. We have from (3) that T,, € J(X;Y). Then (2) yields that
TeX(X;Y). O

Proof (4)=. Let ¢ > 0. It follows from 10.1(2) that we can choose balls
Be(y:), i =1,...,m., with

T(B1(0)) UBE(%) .

Set Yz := span{yi, ..., Ym. } and let P. denote the orthogonal projection onto
Y.. Then we have from 9.18 that Id — P. is also an orthogonal projection
(equivalence of 9.18(1) and 9.18(2)), with ||Id — P.|| < 1 (equivalence of
9.18(1) and 9.18(4)). Now T} := P.T maps to Yz, and for « € B1(0) it holds
that Ta € B.(y;) for some 4 and that

(T-T)(x)=1d— P.)Tz = (Id — P.)(Tx — y;),
and hence ||(T' —T.)(x)|ly <e. O

Proof (5)<. Follows from (3). O
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Proof (5)=. It holds that By(0) N Z(P) C P(B(0)) is precompact, and so
it follows from 4.10 that Z(P) is finite-dimensional. O

In applications compact operators often occur as a composition of a con-
tinuous map and an embedding which is compact (we prove this in 10.3).
The compact part of such a composition is often a canonical embedding.
That is, if X, Y are Banach spaces and if X as a vector space is contained
in Y, then we ask whether the map Id : X — Y is injective, continuous
and compact, respectively. We will answer this question completely for the
function spaces C*%(2) and W™P(£2) (see 10.6 — 10.13) and we call the
corresponding theorems embedding theorems.

10.3 Lemma. For 71 € Z(X;Y) and T, € Z(Y; Z) it holds that:
Ty or Ty is compact = TyT} is compact.

Proof. Let (xy,),cn be a bounded sequence in X. As T} is continuous, the
sequence (T12y,),, o is bounded in Y. If T3 is compact, it follows that there
exists a convergent subsequence (T57T1xy,) kN If T is compact, there exists
a convergent subsequence (117, ), e, and the continuity of 7 then yields
that also (127117, ),y cOnverges. O

Embedding theorems

The embedding theorem 10.6 for Holder spaces depends on the Arzela-Ascoli
theorem and the first result in theorem 10.5. For the latter we need the
following

10.4 Lemma. Let {2 C IR"™ be open and bounded with Lipschitz boundary.
If 2, in addition, is path connected (see the remark preceding 8.16), then for
any two points xg, x1 € {2 there exists a smooth curve v in {2 which connects
xo and x; and whose length L(v) can be bounded by |z1 — x¢], i.e. there
exists a vy € C°°([0,11;2) with v(0) = x¢, v(1) = z1, such that, with a
constant Cy, depending only on 2,

1
L) = [ W (Oldt < swp O] < Ca- oy~ ).
0 0<t<1

Proof. 1t is sufficient to find a v € C%1([0,11; ) with v(0) = zq, ¥(1) = 24
and with Lipschitz constant Lip(y) < C - |21 — zo|. To see this, observe
that we can then let v(¢) := xo for t < 0 and v(¢) := zy for t > 1 and
set - := e * 7, with a standard Dirac sequence (¢.).,. On noting that
|72 sup < Lip(7e) < Lip(y), it follows that for € > 0 sufficiently small ~. has
all the desired properties on [ —e,1 + €], and hence we only need to map
[0,1] affine linearly to [ —e,1 4+ £].
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We consider a cover (U j)j—l
=1,..

U7N§2. Then we choose an open set D with D C 2, such that 2%, ..., 2% € D,
and such that (2 is covered by D,U?',..., U*. Moreover, we cover D with
finitely many balls U7 := Bg(zj) CRwithj=k+1,...,L

For general points xg and x; we can then define a v as a composition
of subpaths, such that for these subpaths only the following three cases can
occur. Altogether, the number of subpaths is bounded by the given cover.

If 29,21 € U’ for some j > k, then define v(¢) := (1 — t)zg + ta1.

If zg,z1 € U7 for some j < k, then define

of 012 as in A8.2 and choose points 27 €

Y(t) == 7((1 = )7 (o) + t7~ H(z1))

where with the notations from A8.2 we set

n—1

() =Y _viel + (yn + ¢ (yn))el, -
i=1

This defines a Lipschitz continuous path « in {2 from zg to z; with

Lip(y) < Lip(r) - [77" (21) = 7~ (wo) | < Lip(7) - Lip(r~") - |21 — wol.

xo T1

g —
00 l/

Fig. 10.1. Construction of curves close to the boundary

As a third case, let z9 and x1 be such that for no j € {1,...,l} they lie in
the same set U7 of the above cover of (2. Then there exists a constant ¢ > 0,
which depends only on the cover, such that

|zg — 21| > .

This follows from the fact that for every j and for points x € 2 N U’ that
are sufficiently close to U’ it must hold that = € U* for some k # j.
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We thus have to connect xy and x; by a curve with a bounded Lipschitz
constant. We make use of the fact that (2 is connected, and so path connected.
Hence for j,k € {1,...,1} there exists a v; x, € C'([0,1]; £2) with ;4 (0) = 27
and 7;,(1) = z*. Now let 9 € U’ and x; € U’ with jo # ji. First
we connect xg with 270 inside U7 (as in the first two cases above) with a
path such that the Lipschitz constant can be bounded by C - |zj° — x0| <
C - diamU’°. Then we connect 2/° with 27t by ~v;, ;,, and finally 2z/* with
x1 inside U7t. A reparametrization of the concatenated paths to the interval
[0,1] then yields the desired result. O

10.5 Theorem. Let 2 C IR" be open and bounded with Lipschitz boundary.
Then it holds for k£ > 0 that:

(1) The embedding - o
Id: C*(R) — CcH1 ()

is well defined and continuous.
(2) The embedding

Id : O () - Whtheo()

is well defined and an isomorphism, in the sense that for u € Whtleo((2)
there exists a unique u € C*1(£2) such that @ = u almost everywhere in 2
(i.e. @ =u in WktLeo(0Q)).

Proof. As {2 has a Lipschitz boundary, it consists of finitely many connected
components, which all lie at positive distance from one another. Hence we
may assume without loss of generality that (2 is connected. For two points
T, 11 € 2 let v be as in 10.4. Then for v € C*(£2), with the notations as in
10.4, we have that

fo(an) —vxo|—‘/ von)'(t) dt /|w ol
< sup |Vo(y(t))|- L(y) < Cq - |21 — 20 - Sup |Vu(y(t))] -

0<t<1
This will be used in the following parts of the proof. a

Proof (1). For u € C**1(£2) consider derivatives v := 9%u € C*(§2) with
|s| = k. It follows from (10-6) that the Lipschitz constant of v can be bounded
by the C'-norm of v. The fact that this holds for all s of order k yields that
lullora (@ < C - [ullgrir g with a constant C. O

Proof (2) well definedness. First let k = 0. Let u € C%1(02). If e; denotes the
i-th unit vector, and if ¢ € C§°({2), then as h — 0,

‘/ 2)0:C(x dxH‘/ ‘Hhez) @) 4

(e~ he:) — u(a)
- | [ M @) da

< Lip(u / [¢(z)|de .
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This implies (see E6.7) that w € W°(£2) with [|d;u|; . < Lip(u) for i =
1,...,n. For k > 0 apply this result to the derivatives 0*u with |s| =k. O

Proof (2) surjectivity. First let k = 0. Let u € W1 (§2). Consider u. :=
e * (Xqu) for a standard Dirac sequence (p.) Then it follows from (10-
6) (with the notations as there) that

e>0"
luc (1) — ue(wo)| < Co - lx1 — xo| - sup [Vuc(y(1))],
0<t<1
and, if ¢ is sufficiently small, for all x = () with 0 <¢ <1 we have that
|Vue(2)| = |V(pe x u)(@)| = [(pe * Vu)(@)] < [[Vul| poo ) -

This implies
e (71) — ue (o)
|21 — 2o

< Co - [[Vullpeo (g - (10-7)

Recalling from 4.15(2) that v, — w in LP({2) for every p < oo, there exists
a subsequence € — 0 such that u. — w almost everywhere in (2. Hence it
follows from (10-7) that for almost all xg,z1 € 2 (say, xg,z1 € 2\ N),

[u(z1) — u(zo)|

< Co -Vl o s 10-8
|.131—.130‘ =~ Lo || HL (2) ( )

i.e. u is Lipschitz continuous outside of the null set N. Since 2\ N = 2, it
follows from E4.18 that we can modify u on this null set so that u € C%1(2).
(After this modification u remains the same (!) element in L*({2).) Since
then ||ul|po = ||ul| o, we have shown that ||u||qon < C - ||ulljyie-

If u € WhtLo(£2) with k > 0, then we can apply the above to the weak
derivatives vs := 0%u for |s| < k. In particular, upon modification on a null
set we have that v, € C%1(£2) with the above estimate in (10-8),

Lip(vs, 2) < Co - | Vsl e () < Co - [l pisre () »

since for the weak derivatives with |s| < k it holds that O;us = 9;0°u =
95teiy € L (). Hence we obtain the desired result. O

10.6 Embedding theorem in Hélder spaces. Let 2 C IR" be open and
bounded and let ki, ko > 0 and 0 < aq, s < 1, with

ki +ap > ko +as.

In the case k1 > 0 we assume in addition that (2 has a Lipschitz boundary
(see also E10.1). Then the embedding

Id: CM1(2) — CF222 ()

is compact. Here C*0(0) := C*(2) for k > 0.
Remark: For k; = ky = 0 the set 2 can be replaced with an arbitrary
compact set S C IR"™.
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Proof. Let (u;);c be a bounded sequence in C*:21(2). We need to show
that a subsequence converges in C*2:%2 ().

First let ko = k1 = 0, and so 0 < as < a3 < 1. By the Arzela-Ascoli
theorem, there exist a u € C%(£2) and a subsequence i — oo such that u;
converges to u uniformly on £2. Consider only this subsequence and z,y € {2
with & # y. For |y — x| < 4 it then holds that

[(w—u)(y) = (w—w)(@)| _ (= w)(y) = (45 — w)(@)]
ly — x|* oo ly — x|*

< 872 sup [[ug — uill go,ay < 20%7 2 sup [|u; [l co.a 5
j J

while for |y — x| > ¢ we have that

[ (u = i) (y) = (u = ui)(2)]

ly — x|

<207 |u —uil| o -

Overall, there is a constant C' such that

[(u—ui)(y) = (u—w)(@)|

sup

O S €0 4207 il
’ 2 o S———
mzy;fy —0asd—0 s 0asi— oo

i.e. the Holder constant for the exponent as of u—u; converges to 0 as i — oo.

Now we consider the case ks = k1 > 1, and so once again 0 < as < a1 < 1.
Then (0%u;);cpy for |s| < ki are bounded sequences in C'(£2), and hence, by
10.5(1), also in C%1(£2), and for |s| = k; they are bounded sequences in
C%1(£2). Applying the result shown above for the sequence (9%u;);cqy in
C%1(§2) we can choose successively for s with |s| < k; subsequences so
that they converge in C%2(§2). Finally, one obtains a subsequence (which
we again denote by (u;);cpy) Which converges for all (!) s with [s| < k;

O%u; — vs  asi— oo in C%2(0)

with certain functions v, € C%°2(2). In particular, we obtain that (u;) el 18
a Cauchy sequence in C*1(§2). As this space is complete we necessarily have
that u := vy € C*1(£2) with 0°u = v,, i.e. u; converges to u in C*1-*2(§2).

Finally, let k1 > ko. By the results shown above, in the case as < 1 the
embedding from C*2:1(£2) to C*2:92(2) is compact, and in the case a; > 0
the embedding from C*1:21(02) to C*1(£2) is compact. In addition, we have
from 10.5(1) that the embedding from C*1(2) to C*1=%1(2) is continuous.
Hence it remains to consider the map from C*1=11(§2) to C*2:1(2), which in
the case k1 = ko 4+ 1 is the identity. In this case we have that 1+ a; > as,
and so as < 1 or oy > 0, which means that the desired result follows from
10.3.

In the case k1 > ko + 1 (e.g. when ay = 0 and ap = 1) it follows from the
above result that the map from C*1~1L1(2) to C*1=1(§2) is compact. Since
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ki —1> ky+1, the map from C*'~1(£2) to C**1(£2) is obviously continuous

and the map from Ck2+1(0) to CF21(§2) is continuous thanks to 10.5(1).
The desired result now follows on using 10.3. O

We now want to prove embedding theorems for Sobolev spaces. To this
end, we consider on B1(0) C IR" the function x + |z|? with real ¢ and in-
vestigate to which Sobolev space WP (Bl(O)), respectively, to which Holder

space C*(B1(0)) it belongs. The answer will motivate the formulation of
the embedding theorems 10.9 and 10.13.

10.7 Sobolev number. Let f,(z) := |z|? for z € R" \ {0}, where ¢ € R.
Then it holds that:

(1) f,isreal analytic on IR™\ {0} and for m > 0 there exist positive numbers
Cm, Cm, which depend also on n and p, such that

Cm’( )’ - Z 10° fo(@)] < Crnla]*™™.

(2) For k>0 and 0 < @ <1 it holds in the case o ¢ INU {0} that:

fo €CF*(B1(0)) <= o>k+a.

(3) For m >0 and 1 < p < oo it holds in the case ¢ ¢ INU {0} that:
fo € W™P(B1(0)) <= o>m-— %

Remark: If we consider the exponent g as a measure of the regularity of
the function f,, then it is natural to associate the following characteristic
number (which we also call the Sobolev number or regularity number)
with the Holder spaces and Sobolev spaces (where C*0(82) := C*(02)):

k+a for CP*(2) ifk>0 0<a<l,

10-
mfE for W™P(2) ifm>0,1<p<oo. (10-9)
p

The fact that this Sobolev number does indeed characterize the regularity
of the functions in these spaces is a consequence of the following embedding
theorems.

Proof (1). The lower bound holds because on setting e, := @—‘ we have that

—m :I:l 0° Q o R
£( 2 lalm = o -+ @) oy < 5 107y

|s|=m
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(with ¢, = 1), and the upper bound follows from the fact that for all s

0° f,(x) = ps(a)| |2 (10-10)

with homogeneous polynomials ps of degree |s| or ps = 0. This follows by
induction on s, on noting that

0,0° fo(w) = (|2 *0ps(w) + (0 = 2l s)aips (@) - ||,
which yields the recurrence formula
Ps+e; (LL') = |x‘26ips($) + (Q - 2|S|)"E2ps(1‘> . (10'11)
O

Proof (2). If o > k + «, then (1) yields that [0°f,(z)| — 0 as |x| — 0 for
|s| <k, because ¢ > k. Hence f, € C*(B1(0)). If |s| = k, then it holds for
0 < |zo| < |21]| <1 in the case |21 — x| > 3|z1| that

0% fo(w1) — 0 folwo)| < O+ (|20]®" +]21]27")

< 21+gfkok . |£C1 _ m0|g—k’ < 21+2(gfk)ck . |£C1 - m0|04

In the case |z1 — 29| < %|l’1| let x; := (1 — t)axg + tag for 0 < ¢ < 1. Then
|z| > |z1| — |21 — ®o| > |21 — 20| and so

1
10° £ (1) — 9 fol0)] < / V0° fy(xe)|dt - |21 — o
0
1
SCkJrl/ |.’Et‘gik71 dt-|x1—x0\
0
! 1
< Ck+1/ |z |*7 7 dt - |21 — @o| < Cryr|or — 20|”
0

Therefore, f, € C**(B1(0)). Conversely, if this holds then (1) yields for
0 < |z| <1 that

00 > || follgx > c(n, k) Z [0° fo(z)] > c(n, k) - cx - ‘ <l§) ‘ : |x|gik,

|s|=k

and so ¢ > k, because p ¢ INU {0}. As before this means that (1) implies
that 9°f,(z) — 0 as || — 0 for all |s| < k. Hence it follows from (1) that

for 0 < |z| <1
0 . o—k—«
()] talee.

and so o > k + «. O

50 > | full e > cln k) 3 ‘af@ s cnk) e

|s|=Fk
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Proof (3). Let o ¢ INU{0}. It follows from (1) that
l P
HD fQHLP(Bl(O)\{o}) fori>0and 1 <p< o

is bounded from above and below by

1
/ |x|p(9—l) do = C(n)/ Tn—1+p(9—l) dr .
B1(0) 0

Hence, f, € W™P(B1(0) \ {0}) if and only if the integral on the right-hand
side is finite for all 0 < < m. This holds if and only if n+p(9 —m) > 0. The
fact that this then yields f, € W™?(B1(0)) follows upon observing that for
|s| <m and ¢ € C§°(B1(0)) with 0 < e < 1

/ 0:CO° f, dL"
B1(0)\BL(0)

_ / Vi€ f, dHP — / oo f,dLn,
9B(0)

B1(0)\B£(0)

where, by (1), the first integral on the right-hand side can be bounded by
CM)[[Cllsup cenTiremlsl 0 ase — 0,

since 1
n—l+4+o—|s|>2n+o-m>n(l—=)>0.
p

O

The Sobolev embedding theorem 10.9 rests on the following theorem and
for the compactness result makes use of Rellich’s embedding theorem (see
A8.1 and A8.4).

10.8 Theorem (Sobolev). Let 1 < p, ¢ < co with

n n
I——=——. (10-12)
P q

Let w € W2 (R") with u € L*(R") for an s € [1,00[ and with Vu €
LP(R™;IK™). Then u € LI(IR"), with

n—1
<q-

||u||LQ(R”) n Hvu”Lp(IRn) . (10—13)

In particular: The assumptions on u are satisfied for u € WHP(IR").
Remark: Since ¢ < oo we must have p < n, and so n > 2. For the case ¢ = oo
see E10.7. For n = 1 it holds that [[u[[je ) < [[Vullp1 ) for v as in the
assumptions of the theorem (see also E3.6).
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Proof. Tt is sufficient to establish the desired result for functions u € L¥(IR™)N
C*(IR™). To see this take u as in the assertion and set u. := p.xu € C*°(IR")
for a standard Dirac sequence (¢¢),- . Then u. — u in L*(IR") and Vu. =
we * Vu — Vu in LP(IR™;IK™). If the claim has been shown for smooth
functions, then for ¢,6 > 0 we have

n—1
n ”quHLPa

n

luellpe < q-

-1
lue = usllpe < @ — =1V (ue = us)lp.-

Hence the u. as € N\, 0 form a Cauchy sequence in L9(IR"), which yields that
ue — u in LIY(IR™) as € \, 0 for some @ € LI(IR™). It follows that

n

~ -1
lallpe < @ ——IIVulL,.

Combining the above L®-convergence and the L9-convergence yields the ex-
istence of a subsequence €5 ~\, 0 such that u., — v and u., — w as k — oo
almost everywhere in IR". Consequently, w = u almost everywhere in IR™ and
we obtain the desired result.

Now let w € L*(IR") N C*°(IR"). In all of the following we will only make
use of the fact that u € L*(IR") N C*(IR™). First we consider the case

p=1, and so g = Ll (recall that n > 2).
n

For i € {1,...,n} it follows from Fubini’s theorem that & — wu(z’,§) for
almost all 1,...,2;-1,%i11,...,2Z, € IR is an element of L*(IR), where we
use the notation

(x/,g) = (I17"'3’ri—17£7mi+1a"'axn)'

Hence we have that u(z’,z;) — 0 for a sequence z, — oo as k — oo. It
follows for z; € IR and sufficiently large k that

u@) < [ 10’ d + [ula' 1)

i

and so

u(@) < [ [’ ] de.
R
For ease of exposition we will write this from now on in the compact notation
u(e)| < [ |0l dg;.
R

(Observe that the above already proves the remark for the case n = 1.) Upon
multiplying these n inequalities we obtain that
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n n %
b n
2w <J[ ([ 10:ulds)
i=1 VIR
Integration over x; yields

/IR‘U|ﬁdf1§ (,/1R|alu|d£1)nll/IRz_ﬁ2</IRaZu|dfl)n11d§1

and applying the generalized Holder inequality we obtain that this is

< (/IR|81u|d§1)"£l-i_ﬁQ(/]RQ|8iu|d(§17§i))H

Now we integrate over xo and obtain in the case n = 2 the desired result. In
the case n > 3 it follows once again with the help of the Holder inequality

that
[ el g ag,
R JIR
< ([ lowulate, &)™
RZ
1 n _1
: ol de)) " TI( [ | 1owlatere))™ " ag
([ 1owulas) 1([,, 1owlat6.6) ™" ae
1
< ([ lowulate, &)™
R2
1 n _1
([ owlaee) ™ TI( [ 10uldte )™
([, 1owlaer.e) I1([,, 1owla.&6)
Continuing this procedure inductively we obtain for j = 1,...,n that

/]Rv |u|%d(£l7-..,fj)
ﬁ(/ [ Diuld( 51,...,@))7111

n 1

1 (/]RM|8iu|d<£1,...7£j,§i>)ﬁ,

i=j+1
and hence for j = n that

n

/}Rn|u|% dL”ﬁf{l(/]RnWiudL”)nll < (An|vu|dL”)”*1



332 10 Compact operators

i.e. the desired result

el s gy < 1Vl g3 g (10-14)

For p > 1 we want to apply this result to v = |u] Q(nn_m, where on letting p’
denote the dual exponent to p it holds that
n—1 1 1 1 1 qg(n—1) q

-—=—-——+-=-, andso — =1+ >1.
n p n.p g n p

In order to avoid unnecessary difficulties, we consider for € > 0 the functions

g(n—1)

ve(@) = e(u(z)]) n
where ¥, : [0,00[ = [0,00[ is continuously differentiable, with

ws(Z)SZ’ ¢2(Z)§1a wi(z)/zase\lo'
As u € C1(IR™), we also have that v, € C1(IR"), with

a
[V | < @ w, - |Vu|,  where w. = 9. (|u])?" .

For o > 1 we choose in particular

ve(2) = (04 () )" -

which means that there exists a constant C. depending on ¢ such that

Ye(z) < C¢ - min(1, 29) .

It follows that
’ - 1
w, € LP (R") and v, € LY(R™), if qu >s.
n

The Hélder inequality then yields that Vo, € L*(IR™;IR"). It follows from
inequality (10-14) that v, € L7-1 (R"), i.e. Yo (Jul) € LY(IR"), with

n—1

n—1 _n_ n—1
([ we(upra) :(/ b tar) g/ V.| dL”
]RTL n n
-1
g%/ we - | Vu|dL"

“ﬂ;”(/ﬁ wg<|u|)qu")”1'||Vu||m7

IN

and hence .

(), ey an) <

Letting € ~\, 0 we obtain the desired result from the monotone convergence
theorem. O

g(n—1)
n ||Vu||Lp .
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10.9 Embedding theorem in Sobolev spaces. Let {2 C IR" be open and
bounded with Lipschitz boundary. Further, let m; > 0, my > 0 be integers,
and let 1 < p; < oo and 1 < py < 0o. Then the following holds:

(1) It

n n
mp——>mg— —, and my; >ma, (10-15)
h P2

then the embedding
Id : WmePL(()) — W™m2:P2((2)

exists and is continuous. Here W9P(£2) = LP(§2). The following estimate
holds: There exists a constant C, which depends on n, {2, my, p1, msa, po,
such that for u € W™P1({2)

ltllgms gy < Cltllyms oy - (10-16)
(2) It
n n
mp —— >MmMg — —, and mi > mso,
p1 p2

then the embedding
Id : W™moPH(Q) — W™M2:P2(())

exists and is continuous and compact.

(3) For arbitrary open, bounded sets {2 C IR™ assertions (1) and (2) hold
with the spaces W™ () replaced by WP (£2). Here WP (2) = LP(£2).

Proof (1). We also prove the corresponding result in (3), i.e. we let £2 C IR™ be
open and bounded. For m; = m the claim follows from the Holder inequality.
For m1 = mg + 1 we have that

1——>——.

n
D1 P2

Let u € WP (2). For |s| < my it holds that v := d%u € W, (2). As
2 is bounded, it follows from the Holder inequality that then v is also an
element of Wol’p(Q) for 1 < p < py. Extending v by 0 on IR™ \ {2 yields that
v € WHP(IR™) (see 3.29). If n = 1, choose p = 1 and obtain from the remark
in 10.8 that with g := L"({2)

1 1 1
vl ey < 072 0l peemy < 072 [[VU L1y = 072 [ VU]l 11 (0

and in the case p; > 1, with p} denoting the dual exponent to p;, that

1
VUl < eIVl (q)-
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If n>2, choose 1 <p<p <ocand 1< py, <qg< oo with
j_Poqn__n_ . n
b1 p q b2

e.g. q= max(%,pg), and obtain from 10.8 that v € LP2(2), with

b

1 _ 1 1
||v||LP2(_Q) < pP2 quHLQ(]Rn) < P2

L n-1
q.q—|V
q " | 'U||Lp(1R)

and
1

1_ 1
Vol pomny = VOl 1oy S 0P PLIVYU| 1oy () -

If {2 has a Lipschitz boundary, and if w € W™P1((2), then we have that v :=
0%u € WHPi(0) for |s| < my. Then let v := E(v), where E : WhP1(Q) —

WL (2) with 2 = By(£2) is the extension operator from A8.12. Similarly
to the above we then obtain the bound

”ﬁ”Lm(ﬁ) <C- ||V5||LP1(§) )
and hence, since v = v on {2,
HUHLIQ(Q) < ||5||Lp2(§) <C- ||5||W1,p1(§) <C-|E|- ”U”lem(()) :

Now we consider the case m; = my + k with k& > 2. Then let m; := mqy + 14
for i =0,...,k. Choose 1 < p; < co with pg = po and P = p1, such that

ﬁli_g 277%'—1 - ~n fori:17"'7ka (10'17)

bi Pi-1
e.g. p; for 1 <i < k with 1% = min(l, % + 5—1_1) Now apply the above proof
successively for i =k, ..., 1. O

Proof (2). Once again we also prove the corresponding result in (3). For
m1 = mso + 1 choose ps < p < oo with

n n n
l—— > >——.

h p 2]

Let (ug),en be a bounded sequence in WPt (£2) (for (3) in W™ "' (£2)).
For |s| < mgy it then holds that vy := 9%uy are bounded in WhP1(£2) (or
WyP1(£2)). By (1), the sequence (Vk) e 18 bounded in LP(§2). Since LP({2)
is reflexive, theorem 8.10 yields the existence of a subsequence (v, ), Which
can be chosen as the same subsequence for all |s| < my, that converges weakly
in LP(£2) tov € LP(£2). As 2 is bounded, vy, — v converges weakly in L!(§2)
as i — 0o and (vy,);cpy is bounded in W (£2) (or W (£2)). Hence it follows
from Rellich’s embedding theorem (A8.1 and A8.4) that v, — v strongly in
L'(02). Noting that 1 < py < p then yields the strong convergence also in
LP2(2) (see E10.11).

For my; = my + k with k£ > 2 we again choose m;, p; as in the proof of
(1), where now (10-17) needs to be a strict inequality for an ig € {1,...,k}.
Then for iy we can apply the above proof, and for i # iy the result (1). O
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Now we consider the embedding of Sobolev spaces into Holder spaces.
The proof of theorem 10.13 rests on two results: a bound on the supremum
norm and a bound on the Hélder constant.

10.10 Theorem. Let 2 C IR"™ be open and bounded and let 1 < p < oo,
with n
1——>0 (andsop>n>1).
p

For every function u € W, *(£2) it then holds that u € L>(§2) with
[ull oo (@) < C(n,p, diam 2) [ Vul| 1 ) -

Proof. Analogously to the proof of 10.8, it is sufficient to establish the desired
result for functions v € C§°(§2). Further, let R := diam {2, so that 2 C
Br(xo) for all o € £2. Then it holds for all £ € 9B1(0) that

R g R
/0 E(u(xo—i—rg))dr S/O [Vu(zg + r&)|dr.

|u(zo)| =

Integrating this inequality over & with respect to the surface measure H" !
and denoting the surface area of the unit sphere by o, := H*~}(9B1(0)) we
get

R
onlu(zo)| < /0 /8B [Vt +70) AL (€) dr .

A transformation to Euclidean coordinates shows that the right-hand side is

:/ 7|Vu(ac7)1\71 dx,
Br(zo) |7 — %o

and the Holder inequality yields that this can be bounded by
([ ) v
- Br(zo) |-T — X0 |p’(n71) b

The first factor is independent of x¢ and finite if p'(n — 1) < n, i.e. if p" <n’
(where n' is the dual exponent to n), which is equivalent to p > n. But this
was part of the assumption. O

10.11 Theorem (Morrey). Let 2 C IR" be open, let 0 < a < 1 and let
u € Wy () satisfy
/ |Vu|dL" < M - pn— it (10-18)
BT(on)ﬁQ

for all zg € 2 and r > 0. Then for almost all x{,zs € §2,

|u(z1) — u(z2)|
|21 — o]

<C(n,a) M. (10-19)

Note: A p-version of the result is given in 10.12(1).
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Proof. We may assume that u € WH1(IR"), because u can be extended by
0 on R™ \ 2 to yield a function in WH1(IR™) (see 3.29). Then for every ball
B, (zo) with 2y € IR" we have that

/ Vu|dL™ < M(2r)n- 1t (10-20)
BT(I())

on noting that in the case B,.(z¢) N 2 = ( this is trivially true, and that
otherwise there exists an x1 € B, (z9) N §2 and then B, (xg) C Ba,(21), and
for this latter ball we can apply (10-18).

We begin by proving the bound on the Holder constant for the case where
w is a C'-function. Given two points z1,z2 € IR™, let

1 1
T = 5(1'1 +x9) and p:= §|x2 —11].

Denoting the volume of the n-dimensional unit ball by x,,, we have that

Kno"u(z1) —u(w2)| = /Bg(mo) () —u(wa)] do (10-21)

) ‘/]3g(950) [u(z1) = ()| dz +/ |u(z2) — u(x)|de.

Bg(mo)

Because of symmetry we only need to bound the first integral. Now it holds
for x € B, (o) that

1
/o %(u(xl +t(x — xl))) dt

[u(z) = u(z1)| =

1
< |x—x1|/ |Vu(zy +t(x —x1))|dt.
0

Since |z — x1| < 20, integration over z yields

1
/ |u(x)—u(a?1)|dx§2g/ / |Vu(zy + t(x —21))|dedt.
By(zo) 0 JBg(x0)

With the transformation of variables y(x) := 1 + t(x — 21) this is

1
:2g/ t*”/ [Vu(y)|dy dt
0 Beo(z1+t(zo—21))

! —-n n—1l4+« M n+ao
<20 | t7"M(2to) dt = —(20)"",
0

where we used (10-20). Hence it follows from (10-21) that

2n+1M 2n+1M
(20)% =

u(ry) — u(x <
[uis) — ()| < = -

|.’E1 —.’E2|a . (10—22)
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For an arbitrary v € W11 (IR") one can consider the convolution with a
standard Dirac sequence (gog)s>0. Then the functions u. := . * u are in
C>(IR") and satisfy (10-20). Indeed,

Vue(o) = [ oulo)Vule -~ ) dy

and so, using (10-20) for u, we have

/Br(%) |Vue(2)|dz < / . </B,,(m0) [Vu(z — y)dx> v (y) dy

< M(Zr)”_l"'o‘/ we(y)dy = M(2r)"_1+a .

n

Hence we obtain (10-22) for u., and noting that u. — u almost everywhere
for a subsequence as € — 0 then yields the desired result. O

10.12 Remarks. The inequality (10-19) states that « is Holder continuous
outside of a null set N. But then the function u restricted to 2\ N can
be uniquely extended to a C%“-function on 2. Hence the given function
u € WO1 ’1(!2) has a unique Holder continuous representative. Moreover, it

holds that:

(1) Theorem 10.11 can also be applied in the general case where u € W, *(£2)
with 1 < p < oo. If u then satisfies for 0 < o < 1 the inequality

2-1+a
||Vu||LP(B7,(x0)nQ) <M-rp (10—23)

for all g € 2 and r > 0, then the conclusion of 10.11 holds true.
(2) If w € WyP(82) with 1 — 2 >0, then (1) holds with a := 1 — 2.

(3) Theorem 10.11 also holds for 2 = IR™ and u € W,\! (IR™).

loc

Proof (1). The Hélder inequality yields that

n 1
/ |Vu|dL™ < C(n)r?’ (/ \vu|den) P < C(n) Myt
BT(:EQ)OQ Br,v(alo)ﬂﬂ
O

10.13 Embedding theorem of Sobolev spaces into Holder spaces.
Let 2 C IR"™ be open and bounded with Lipschitz boundary. Moreover, let
m > 1 be an integer and let 1 < p < co. In addition, let £ > 0 be an integer
and let 0 < a < 1. Then the following holds:
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(1) If
me:kJra and 0<a<1(andso a#0,1), (10-24)
p

then the embedding
Id : W™P(02) — CF (1)

exists and is continuous. In particular, for v € WP ({2) there exists a unique
continuous function that agrees almost everywhere with « (and which we
again denote by u) such that

||u||Ck'~a(ﬁ) S C(Q,n,m,p, k7a>||u||wmp(9) . (10—25)

(2) i
n
m——>k+a,
p

then the embedding -
Id: W™P(0) — C*()

exists and is continuous and compact. Here C*9(£2) := C*(02) for k > 0.

(3) For arbitrary open, bounded sets {2 C IR" assertions (1) and (2) hold
with the space W™P?(£2) replaced by W (2).

Proof (1). We also prove the corresponding result in (3). We may assume
that £ = 0. Otherwise apply the following argument to all functions 9°u €
Wm=kp(Q) (or W' "P(£2)) for |s| < k, on noting that m — k > 1.

Next we reduce the proof to the case m = 1. If m > 1, we may choose
1 < g < oo such that

n n
a—1l=——, andso m——=a=1-——.
q p q

It then follows from 10.9(1) that the embedding from WP (£2) into W14(§2)
is continuous (use 10.9(3) for the embedding from Wom’p(QR into W,4(£2)).
Thus we have to consider only functions in W4(£2) (or W,4(42)).
Hence we consider only the case where in the statement of the theorem

k=0and m =1, ie.

n

1-—- = «a.

p
For the case in (3), the desired result follows upon combining theorem 10.10
and theorem 10.11 (see 10.12(2)). Otherwise we consider the continuous ex-
tension operator E : WhP(02) — W, P (B1(£2)) from A8.12 and then apply
the theorems 10.10 and 10.11 to the functions Fu. O
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Proof (2). We also prove the corresponding result in (3). Choose m < m and
l1<p<oo,as well as k>0 and 0 < & < 1, such that

m-">m-2=k+a>k+a,
p b
where we can set m =m and p = p if 7 is not an integer. Then, by 10.9(1)
and (1), the embeddings from W™P(£2) into W™P({2) and from W™P((2)
into C%*a(ﬁ) are continuous, respectively (for (3) we argue correspondingly
with 10.9(3)). Finally, by 10.6, the embedding from C’Eva(ﬁ) into C*(£2) is
compact. O

Laplace operator

We now present a typical application of the embedding theorems for the
Laplace operator. This is essential for the treatment of the corresponding
eigenvalue problem (see 12.16).

10.14 Inverse Laplace operator. We consider the homogeneous Dirichlet
problem from 6.5(1) with the assumptions stated there and with

hi=0, b>0.

For u € W)2(£2) and f € L2(£2) let A(u) and J(f) be the functionals in
Wy 2(£2) defined by

(v, A(w)) e ;:/ (Zn: aw.aijajumbu) ",
2

ij=1

(v, J(f))W(}z ::/ vf dL”

i)

for v € Wy (). Then it holds that:

(1) J: L*(2) — W, () is continuous and injective.

(2) A: W (02) = W, ?(2) is an isomorphism. We call A the weak dif-
ferential operator corresponding to the boundary value problem 6.5(1).
For a;; = 6; ; and b = 0O this is the weak Laplace operator with respect to
homogeneous Dirichlet boundary conditions.

(3) A71J: L3(2) — L*(£2) is compact.
(4) A~'J : Wy(02) — Wy 2(£2) is compact, and for domains £2 with Lip-
schitz boundary the operator A~'J : W1H2(£2) — W, ?(2) is also compact.

(5) JA™L: Wy P(R) — Wy > (£2)" is compact.
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Proof (1),(2). We have that (v, Au) = a(v,u), where a is defined as in (6-
11). The fact that J and A are well defined and continuous follows as in the
proof of 6.6. It follows from 4.22 that J is injective. A is injective thanks
of the coercivity of a, as shown in the proof of 6.8. Recalling 6.3(1) with
X := W, 7*(£2) yields that for u' € X’ there exists a unique u € X such that

(v, Au) = a(v,u) = (v, ') forallve X,
where ||ul|y can be bounded by ||u[| .. 0

Proof (3). We recall from (1) and (2) that J : L2(£2) — Wy*(22) and
AL W) — WyP(R2), respectively, are continuous. The embedding
Id : Wy () — L*(£2) is compact, by 10.1(4) and A8.1. The desired result
then follows from 10.3.

Remark: If (2 has a Lipschitz boundary, then it follows from 10.9 that
Id: Wh2(02) — L*(2) is also compact. 0

Proof (4),(5). We can argue with the above maps in the order Id, J, A~!
and A~!, Id, J, respectively. 0

Integral operators

As a second class of compact maps we now investigate some integral opera-
tors. Such operators occur, for example, when boundary value problems are
reformulated as integral equations with the help of a Green’s function (see
10.18). First we prove the compactness of Hilbert-Schmidt operators and of
integral operators with a weakly singular kernel.

10.15 Hilbert-Schmidt integral operator. We have defined in 5.12 an
integral operator T : LP({25) — L9({21), which we claim is compact.

Proof. We recall from 5.12 that T is continuous with ||T]] < || K||. In order to
prove the compactness of T' we extend K by 0 outside (21 X {25, i.e. K(x,y) :=
0if x ¢ (2, or y ¢ (2. Then it follows for h € IR™ and f € LP({2;) with
[fll 2002,y <1, in the same way as in the proof of 5.12, that

[ 1rs ) =15 da
e . (10-26)

S/ (/ IK(erh,y)*K(x,y)lp'dy)pd:v
R"1 “JIR"2

and

a
7

/ 7@ < [ ([ 1Kl ay)” de. (o27)
R"1\B#(0) R"1\BR(0) \/R">
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The right-hand side in (10-27) converges to 0 as R — oo, since ||K| <
oo. If; in addition, the right-hand side in (10-26) converges to 0 as h — 0,
then the compactness of T' follows from the Riesz compactness criterion in
theorem 4.16. To show this let K" (z,y) := K(z + h,y). We need to consider
| K" — K||, where here the norm of the kernel is defined by integrating over
all of IR™ x IR"™. We begin by approximating K by bounded kernels with
compact support

Kn(e.y) — K(z,y) if[z[| <R, [y| <R, |[K(z,y)| <R,
= 0 otherwise.

Then, on setting Er := { (z,y) € R™ xR™ ; K(z,y) # Kr(z,y) }, we
have that

K" = K|

IN

|(KR)" — Kg| + [(Xe, K)"| + | Xp, K|,
which yields that
|K" — K| < C(|(Kr)" — Kr|| + | XE . K]]) -

Noting that Er: C Eg for R’ > R and that ()., Er is a null set we see that
the second term on the right-hand side converges to 0 as R — oo (analogously
to (10-27) consider the monotone convergence of (1 — Xg,)|K|). Since K is
bounded with compact support, the first term in the case % > 1 obeys the

inequality

|(Kgp)" — Kr|" < (R, L /

/ |(Kr)" — Kg|" (2,y) dyda,
R JR"2

while in the case r := %/ > 1 the Holder inequality with exponent r gives

H(KR)h—KRHp/Z(/}Rnl(/anZ’(KR) KR’ (z,y) dy)'dx)r
SC(R,T)/IRM /IRW|(KR)h—KR|pl(x,y)dydx.

Now we use the fact that (Kz)" — Kg in L (R™ x IR™) as h — 0, recall
4.15(1).

In the Hilbert space case p = 2, ¢ = 2 the compactness can also be shown
as follows: Choose an orthonormal basis (ey), e of L?(£22) (see 9.8). Then,
by the completeness relation 9.7(5),

K% = HK /
1K) / @], 4 Z o) o
~ [ S ire@Pde = 3 1Tl

0 nelN nelN

2
dx




342 10 Compact operators

We define the continuous projections P, by
n
Pnf = Z (fa ek)L2(.Q2) €k -
k=1

Then using 9.7(3) and the continuity of T, we see that

r (Z (/s er)ra) ek)

k>n

ITf —=TPafllp20,) =

L2(1)

Z (fv ek)Lz(Qz) Tey,

k>n

||T€k||L2(91) :

< Z '(fv €k)L>(02,)

L2(£2;) k>n

On applying the Cauchy-Schwarz inequality in £2(IR) we find that this is

2. 1 1

2 2 2

< (O] e | ) (o ITer )
k>n k>n

SHfHLQ(Qz) —+0asn— o0

Hence, TP, — T in £ (L?(2); L*>(£21)) as n — oc. Since Z(P,), and hence
also Z(TP,) = T (Z%(P,)), are finite-dimensional, it follows from 10.2(4) that
T e L%/(LQ(QQ),LQ(Ql)) O

We now discuss operators with weakly singular integral kernels,
i.e. kernel functions (z,y) — K(x,y) that for z fixed are locally integrable in

Y.

10.16 Schur integral operators. Let {2 C IR" be open and bounded (!).
Let K : (£2 x £2)\ D — K be continuous, where D := {(z,z); = € {2} is the
diagonal of 2 x {2. Assume that

C
| K (z,y) I with a < n.

| <
lz—y
Then it holds that:
(1) The definition
T = [ K ) dy
yields a map T € ¢ (C°(12)).
(2) The composition of operators of Schur type is again a Schur operator.

In particular, the iterated operators T™ are integral operators of the above
type, with exponent
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n—mn-—a) fl<m<

na’

— n
Qm =14 € for every € > 0, if m = ",

: n
0 lfm>m

(3) If 1 < p < oo with a < 7, then T is a Hilbert-Schmidt operator on
LP(£2) and T € ¢ (LP(£2);C°(£2)).

Proof (1) and (3). We can always ensure that a < 7, on choosing p suf-

ficiently large. Moreover, the boundedness of {2 yields that the embedding
from C°(£2) into LP(§2) is continuous for all p. Hence it follows from 10.3
that we only need to show the compactness of T : LP(§2) — C°(£2). We have
that Tf(x) exists for all  and

1< (f, ) Wl

Since ap’ < n and 2 is bounded, the integral on the right-hand side is
bounded uniformly in z. Hence the functions T f with || f{|, o) < 1 are uni-
formly bounded. It follows from the Arzela-Ascoli theorem that it is sufficient
to show that they are also equicontinuous, since then 10.1(2) is satisfied. Tt
holds that

1
P

7f@) = TG < 1 ler - ([ 1K G@r9) = Kzl ay)”

and the integral on the right-hand side can be bounded for every § > 0 by

< / K (21,9) — K (z2,9)" dy
2\Bs(x1)

1 1
+C ( Oép, + a}ﬂ)dy.
Bs(z1) MY — 21| ly — 2]

For |21 — 22| < § the first term is

< Csup {|K(z1,y) = K(z2,9)" : (21,9), (22,9) ¢ Bs(D) }
— 0 as|x; — x2| — 0 and for every 4,

thanks to the continuity of K away from the diagonal D, and the second

term is

dy
Bas0) |y[*"
Here we assume the usual convention on constants, which states that
constants that occur in a chain of inequalities may all be denoted by C, even
though the constant will in general change after each step. In addition, this

<C <C5"" —50 asd — 0.
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convention states that large positive constants are denoted by C', while small
positive constants are denoted by c.

The bound above proves the equicontinuity of the functions 7T'f with
1 f1l sy < 1, and hence we have shown that T' € A (LP(2);C°(02)). O

Proof (2). Now let T1, To be two such integral operators with kernels K7, Ko

and exponents a; < n and az < n. By Fubini’s theorem, for f € C°(£2) we
have that

(@) = [ Kiw2)( [ Kateon) ) dy) a

= [ (] e oKt ) )y,

= K(z,y)

if we can show that for each fixed z the function
v Ra) = [ Kol 9)Kale)|dz
I7)

is in L1(§2). To this end, we show that for x # y (with the usual convention
on constants)

~ dz
K <K <C
K] <Ky <0 [
C .
| —y| T if on +az >n,
C
< 4§ Cgrlog < R’EE foag+ay=n
|z =yl = [z -yl
for large R and every € > 0,
C if a1 + s < n,

where in the last case K is bounded. In order to prove these bounds, we

replace z by £X¥ — |2 — y|z and set

r+y
2

r—y

ei=—-—  £,,:={zeR";
2|z —y| v =1

— |z —ylz e 2}.

Then

dz _ n—al—ag/ dz
/_Q |Z_x|a1|z_y|oz2 - |.13 Z/| o Z+€|al|z—e‘a2 (10—28)
d

z,y

ar
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. 1
2%z —e|™ ™ for|z—e|§§,
_ 1
1 292|z £ | ™ for |z +e| < =,
| + |a1| |a2 — ‘ | | |_ 2 (10_29)
z+elz—e 1
(21— 5)™  for 2|21,
Qa1taz otherwise.

We distinguish between the three stated cases.
For oy + ag > n it follows that

/ dz </ dz 10-30
oo v el e —e™ = Jun et ez — e (10-30)

z,y

Since a; < n, as < n and a1 + as > n, the integral on the right-hand side
exists and its value is independent of e and depends only on n, a1, as. To
see this, let e;,e0 € OB 1 (0) and choose a linear orthogonal transformation
which maps e; to es. It follows from the transformation (change-of-variables)
theorem that the integrals for e; and ey are equal. This proves that the last
integral in (10-30) depends only on n, a1, ao.

For a; + o = n we choose a radius R with 2 C Bg(O). Then it follows
that |z — z|” %" < Crelz —z| ™7 F for 2,2 € 2 for every fixed £ > 0. Hence
for e sufficiently small we can apply the first case to a; + € and as. This is
the second estimate. It follows that 2 C BR(%) for x,y € £2, hence (10-28)
implies

/ dz </ dz
R R E i S EE R
z—y

dz
<Cr- 1+/ Tratas
( B p (0\By0) |2 )

[z—y]
)

SCR-(l—i-loglgv_y|

hence the desired first estimate.

For the case a; + s < n we decompose the integral over {2 into integrals
over Bs(z), Bs(y) and 2\ (Bs(x)UBs(y)), where § := 3|z — y|. On noting that
in the latter set it holds that [z — x| > ¢|z — Zf¥| and |z — y| > ¢|z — zty
with a small constant ¢, we obtain that

dz dz
"
olz—z|"z -yl B(z) |2 — 7|

+C«5—a1/ L{)@‘FO/ L&M
By(y) |2 — ¥l 0 |z — 2y

<O ("0 ).
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This ends the three cases.
It remains to show that K is continuous outside of the diagonal D. For
(z2,y2) = (x1,y1) with 21 # y1 we have that

| K (x2,y2) K(xl,y1)|

<C’/ | K (22, 2) — K1(21, 2) d +C’/ | K2 (2, 92) K21(Zay1)‘ ds
|Z—Z/2| |z — 21|

We decompose the first integral (the second integral can be bounded cor-
respondingly) into the parts over {2\ Bs(z1) and Bs(z1). The former part
is
dz
<C sup [Ki(z2,2) — Ki(21,2)|" [ 7—— @ -
|z—x1[>6 0 |Z_y2|
—_——

— 0 as 2 — x1 for every § bounded in y2

Since |z — ya| > %|(E1 —y1| > 0 for z € Bs(xq) if yo is close to y1 # 21 and if
¢ is sufficiently small, the second part is

C 1 1
Siaz/ ( + al)dz.
|z1 — 1] Bs(z1) |Z_952| |2 — @1

<C"Tl - 0asd—0

In the case a; + ag < n it holds that K(xq,y2) — K(x1,y1) even if a1 =y,
because the part of the integral over {2\ Bs(x1) converges to 0 as before,
while the integral over Bs(z1) is

1 1 dz
SC ( aq + Ot1> a2
By(zy) M2 — T2 |2 =217/ |2 — ya
2dz
—C ——————————  as Ty — T1,Yo — Y1 =T

Bs(z1) |Z — 1 |O£1+Oé2

<C§MTMT2 — 0 asd —0.

This proves the result on the composition of T} with T5. O

The fundamental solution

For integral kernels K as in 10.16 with o = n the induced T is no longer
compact, and even the existence of the operator 7' is no longer guaranteed.
That is because the function y — |z — y|~ " is no longer integrable in a neigh-
bourhood of x. However, such kernels play an essential role in the potential
theoretic approach to partial differential equations, as we will see in 10.18.

10.17 Fundamental solution of the Laplace operator. For z € IR"\{0}
let
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1 2—n
||

_— f >3
=) orn > 3,
1 1
F(z) =< —log — forn =2,
2 7 |z
1
—§|x| forn =1,

where o0, denotes the surface area of 9B1(0) C R" (o5 = 4w, 02 = 2m,
o1 =2, 0, = Nk, with K, the volume of By (0) C R").

(1) It holds that F € C>(IR™ \ {0}) and

1 x 1 T Ts
VFlr) = —— o 8F (@) =~ (8 —n L
Ok (z) o OuP ) =~ (G =

on T onl|x

),AF:O.

(2) Tt holds that F € W,>!(IR") and with the notations as in 5.15 we have
that

SAF] ==Y 000 =[] in 7R,

Note: F'is the fundamental solution for —A.
(3) If f: IR"™ — IR is measurable and bounded with compact support, then

uw)i= [ Flo=)fw)dy = (F e

defines a v € C'(IR") which satisfies
—Alu] ==) 0ilow] =[f] in 2'(R"),
i=1

i.e. u is a weak solution of the differential equation —Au = f in IR".
Proof (1). By direct calculation. O

Proof (2). We have that F € W!(Bg(0) \ {0}) for R > 0. Similarly to the
end of the proof of 10.7(3) (or on recalling the corollary in A8.9) it then
follows that F € W11 (Bg(0)), where outside of the null set {0} the weak
derivatives coincide with the classical ones. Hence, 9;[F] = [0, F|, which yields

for ¢ € C§°(BR(0)) that as e \, 0

(/ (CAQOFdL" = [ V(e VFAL® «— V(e VF AL
n R" R™\B.(0)
_ 1 e
_ / (vp 0@ VEAH = L ¢(ey) dH™ () — ((0),
OB(0) On JHB4(0)

since AF =0 in R" \ {0}. O
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Proof (3). Applying 10.16(3) for the kernel (z,y) — F(z — y) shows that
u e CO(IR™). For ¢ € C5°(IR™) it follows, since F' € W,"!(IR™), that

loc

/ (DiCu+ Cv;) dL" =0 with v(x) :== OiF(x—y)f(y)dy.

:[R/’VL
(10-31)
By 10.16(3) it follows that v; € CY(IR™), whence u € C*(IR"), with d;u = v;.
Moreover, it follows from (2) that

[ ca@u@an= [ ([ A+ )P )@

_ / (FAIFICE+ ) fwdy = | cw)f)dy.

¢
Rn
O

10.18 Singular integral operators. For motivational purposes we con-
tinue the considerations in 10.17. We approximate d;u = v; in (10-31) for
€ >0 by

vi(z) == / F(x —y)f(y) dy.
R™\B(z)
If f € CJ(IR™), then v5 € C*(IR™), with

B;05(z) = / 0;:F(x — y)f(y) dy — wSi(z), where
R"\Ba(w)

w'y(z) = / V(o) (4) 2@, F (= — y) f(y) dH" (1)
OB.(x)
1

— yiyi flz +ey) dH" " (y).
On JoB,(0)

We note that as € \ 0

wii(z) — L / yjyi dH" " (y) - f(z) = L dijf(x). (10-32)
9B4(0) n

On

Hence, if we want to show that « in 10.17(3) belongs to the space C?(IR"),
then we have to investigate whether the limit

(T3if) (@) o= lim 0jiF(x = y) f(y) dy
€ R™\B(z)

exists, and whether Tj; is well defined as a continuous operator on appropriate
function spaces. On recalling the identity for the second derivatives 9j; F'(z —
y) of the fundamental solution from 10.17(1), we note that the above kernel
(z,y) — K(z,y) = 0;;F(x —y) is a singular integral kernel, i.c. a kernel
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as in 10.16 but with oo = n. However, we recall from 10.17(1) that this kernel
has the particular form

Wiy 1
K(z,y) = EE with — w(§) := —a((%ﬂ' —ng;&;) for [§] =1,

where the mean value of w : 9B1(0) — IR vanishes (see (10-32)), i.e.

/ w(€) dH"1 () = 0. (10-33)
8B1(0)

Now we consider arbitrary kernels K of the above type with the property
(10-33) and prove that for certain functions f the limit

:= lim d
e =tm [ K@i

exists. This limit is also referred to as the Cauchy principal value of
fmn K(z,y)f(y)dy at the point x (observe that y — K (z,y)f(y) in general
is not integrable!). Classes of functions on which 7' can still be shown to be a
continuous operator include C'*-spaces (see 10.19) and LP-spaces (see 10.20).
In both cases T is not (!) a compact operator. For ease of presentation we
also define

x
w(z) = w(m) for z € R™ \ {0}. (10-34)
10.19 Holder-Korn-Lichtenstein inequality. Let w : R"\ {0} — IR be a
Lipschitz continuous function on 9B;(0) which satisfies (10-33) and (10-34).
Then for 0 < a < 1 and f € C%*(Bg(0)) with f = 0 on 9Bg(0) the limit

(Tf)(x) = lim e =y) g

wf(y) dy
NGO JBR(0)\B(z) |z —y|

exists pointwise for z € IR", and for all R > 0 it holds that

||Tf||co,a(m) <C(n,R,a)- Hw”coyl(aBl(o)) : ||f|‘co,u(m) :

Proof. We extend f by 0 on IR" \ Bg(0). As the mean value of w is equal to
0, for |z| < 2R we have

/ Mﬂy)dyZ/ M(f(y)—f(x)) dy,
Br(0)\Bu() |Z — Y Bsn(x)\Bu(z) 1T = Y|

because a transformation to polar coordinates yields that

B 3R
/ wl@=y) 4, _ / 7’"_1/ “(f) dH" L&) dr = 0.
Ban(x)\Bd(z) 1T — Yl e aBy(0) T
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Noting that with a constant C' depending on w it holds that

w(r —y)
|z —y|"

() - f(x))‘ <O o=y Fllgon -

we see that the integrand is integrable over Bzgr(z), and hence
wlx—vy
rrw) = [ D (1) - ge) dy

and

Tf(x)] <C " dy - (| fll o = Clw,n, R @)l fll oo -

B3r(0)

For |z| > 2R,

d C(w,n, R
Tf(z)] < Cllfllco/B o |xfyy\" = (|g(c| ’—}%)7)1

Similarly, for 21,29 € R™ and ¢ > R + max(|z1], |z2]),
Tf(z1) = Tf(z2)
= [ BN ) - s dy

o) 21—yl

- /B 2 =Y) () ) dy

Saz) 122 =yl

- /B( )(M(f(y)—f(xl)) M(f(y)—f(xg))) dy

21— y|” ea —y[”

1 llco -

+/ T2 =0 ()~ £(02)) (Koo () — X)) .
R

n |ze —yl"
The second integral can be bounded by
dy
yl"

dy
—C / ‘X @) =Xy ‘N—n
||f||co . B(O)@) Bl(g(gc2 ml))(@ 7]

<Clleo | 120(0) = o gosr 0]

(with the variable transformation y = p¥), which converges to 0 for every z;
and zo as 9 — o0o. Setting 0 := |a2 — 21|, the first integral from above can
be bounded on Bas(z1) by (we employ the usual convention on constants)

S O Hf”cf).,a / (|y 7x1|06*n + |y o x2|a7n) dy
Bos(z1

< O|lf lon / " dy < Ol f lgn - 5

B3s(0)
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On the remaining domain B,(z1) \ Bas(z1) we write the integrand as

B ) fe) + (G - S U - fe).

n no n
|z1 — y| |21~y |z2 — y|

Recalling that the mean value of w is equal to 0 yields that the integral of
the first term vanishes. The Lipschitz continuity of w implies that

w(zy —y) —w(z2 —y)| <C

Tm—y  ra—y ‘
o1 —y|  |z2 — Y

_ ollz2 —yl(z1 —y) — |21 — yl(z2 — y)| < olz = 2] 7
|21 — y||z2 — Y| |x2 — Y
and we have
1 1 ’
lzr —y[* |z —y["
n—1

|z — 22 i n—1-i
=~ |$ — |n|x — |nZ|x1_y| ‘,’Eg—y‘
1—Y 2 Yl 3

1 1
§n|x1—x2\( 7+ n)
|v2 —y||z1 — Yl |71 —y||z2 — y|

Together this gives

Wiz —y) W(xz—y)’
e~y Jaz—yl"

1 1
SO'|I1*I2|( -+ n)
[z2 —yllzr —yl” |21 —yllz2 —yl

On noting that |zy — y| < |za — y| < 2|2y — y| for [y — 21| > 26, it follows
that the remaining integral over B,(z1) \ Bas(z1) is bounded uniformly in o
by
< Cllflon -0 oy —y[*" T dy
IR™\Bas(w1)
o0
<Clfllgn 8 [ 1% dr <€l flona 5%
26
O

10.20 Calderén-Zygmund inequality. Let w : IR" \ {0} — IR on 9B4(0)
be measurable with respect to the measure H”~! and bounded and such that
it satisfies (10-33) and (10-34). Then for f € LP(IR™) with 1 < p < oo and
0 < & <1 the integral

@@= [ D@ =Y) by ay

n
R™\B(x) |z —y|
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exists for almost all z € IR™. This defines operators T. € £ (LP(IR")) and
for f € LP(IR™) there exists

Tf:=lmT.f in LP(R") with
eN0
||TfHLp(]Rn) < C(n,p)- Hw||L°°(6B1(O)) : ||f||Lp(]Rn) :
Proof. See Appendix A10. ad

Remark: For n = 1 we have that w(—1) = —w(+1), hence up to a multi-
plicative constant w(1) =1 and w(—1) = —1. Then

. f(y)
T = lim —d
( f) (33) NOJR\]z—cate[ T~ Y Y

is called the Hilbert transform of f.

E10 Exercises

E10.1 Counterexample to embedding theorems. Show that theorem
10.6 in the case k1 > 0 does not (!) hold for arbitrary open bounded sets
2 CcR".

Solution. A characteristic counterexample is the following: Let e € IR™ with
le] =1 and set

. 1 1
2= U By, (zr) with o) = Ee, TR = nEh
kEN

so that the closed balls B,, (73) are pairwise disjoint. Now if (ag),c is a
sequence that converges in IR to a, then

ap  for | — x| <1, k€N,
u(x) ==

a for x =0,

defines a u € C°(£2). Since Vu = 0 in (2 it follows that also u € C1(£2) (see
definition 3.6). Note that for 0 < a <1

sup M > Szp((ﬁ)aﬁlk - a|) )

2€0R, x#£0 |x|0¢ 2

and a; = a + (1 + logk)~! yields that u lies in none of the spaces C%%(2).
Hence the embedding in 10.6 for (ki, 1) = (1,0) and (k2,a2) = (0, a) does
not even exist for the above (2. O
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E10.2 Ehrling’s lemma. Let X, Y, Z be Banach spaces. Assume K €
H(X;Y) and let T € Z(Y;Z) be injective. Then for every ¢ > 0 there
exists a C. < 0o, such that for all x € X

[Kzlly <elz|y + C [TKz| ;-
Solution. Otherwise for an € > 0 there exist points z,, € X with
[KZnlly >ellTnllx +nlTKZn |z -

Then z,, := ﬁ are bounded in X and
nilx

|Kzynl|ly >e+n||TKzy|, - (E10-1)
Since K is compact, there exists a subsequence (which we again denote by

(1), en) such that Kz,, — y € Y as n — oo, and so

1
ITyllz +— ITKznlz < I K@nlly — 0.

As T is injective, it follows that y = 0 and hence ||Kx,|y, — 0, which
contradicts (E10-1). O

E10.3 Application of Ehrling’s lemma. Let 2 C IR" be open and
bounded, let 1 < p < oo and let m > 2. Show that:

(1) For every £ > 0 there exists a constant C. such that for all u € W™ (£2)

lully-1r (@) < ellullyme gy + Cellull Lo (q) -

(2) An equivalent norm on W;""(£2) is given by
[l = 11D ul| o) + el Lo () -

Solution (1). This follows from Ehrling’s lemma, on noting that the embed-
ding from W{™P(£2) into W~ "P(£2) is compact (either on recalling 8.11(3),
8.10, Rellich’s embedding theorem A8.1 and 10.1(4), or on recalling Sobolev’s
embedding theorem 10.9). O

Solution (2). We have from (1) that

lullm-rp < ellullyms + Cellull L
<el| D"ully +ellullym-1p + Cellull L,

which for ¢ < % yields the bound
lullwm-1o < 2e[| D™ ull Ly + 2C: ||ullp -
Consequently,

Jull < llullym, <max(l+2e,2C) - [Ju].
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E10.4 On Ehrling’s lemma. Let 2 = Br(0) C IR". Show that: For e > 0
there exists a constant C. such that for all u € C?({2)

IVullcog < e[| D%l o) + Ce lullcogm
and obtain an explicit bound for the constant C..

Solution. First let R =1 and € < 1. For ¢ € {2 with Vu(xg) # 0 we choose
Yo, Y1 € 2N B.(zg) such that y; — yo points in the direction of Vu(xg) and
|1 — Yol = §

Remark: This is possible because 2 = B1(0). If B.(x¢) C {2, then we can
Vu(zo)

choose yg = ¢ and y; = zg + EVuzo)]"
Then, setting y; := (1 — t)yo + ty1, it holds that

1

()~ ulu) = [ Fulwn) - (o o)

0
= Vu(zo) - (1/1 — o)
/ / Z Diju((1 = s)zo + 5y:) (yr — x0)i(yr — yo); dsdt
1,j=1
and
Vu(xo) - (y1 — yo) = |Vu(zo)||ly1 — yol.

It follows that

lu(y1) — u(yo)|

Vu(zo)| < [[D*u| porgy - sUP —Tol
Vo) < [[Dull ooy - sup loe = ol + =1 —

4
< <0l oy + 2ulloniay

and hence the desired bound with C, = %. (For € > 1 the claim follows with
C. =4.) If R is arbitrary, then define

v(x) == u(E).

The established bound for v

4
2 -
Vol co @3y < el D UHCO(BI(O)) + min(e, 1) o]l o @20y)

transforms to

€ || m2 4R
IVl o mmoy EHD uHCO(BR((])) + min(e, 1) lellco @) -

Now replace € by Re and set C. = 4 (min(e, %))_1. O
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E10.5 An a priori estimate. Let u € C?([0,1]) be a solution of the linear
differential equation

au” +bu' +du=0 in]0,1[,

where a,b,d € C°([0,1]) and a > ¢y with a positive constant cq. Then there
exists a constant C, which depends only on the coefficients, such that

lullg> < C - llullgo -
Solution. The differential equation implies that
collu”llco < C(l[u'llco + llullco) — with C:= [[bllco + lldllco ,

and so
co(lu" lco + 14" o) < (C+ o) (1w lco + [[ull o) -

It follows from E10.4 that this can be bounded by
< (C+coelu||co + (C+co) - (Ce + 1)lullco -
On choosing ¢ with (C +cg)e = 4, we obtain, with a new constant C', that
"l co + l[ullco < Cllullgo -
O

E10.6 Equivalent norm. Let {2 C IR" be open and bounded with Lipschitz
boundary and let m > 2. Then an equivalent norm on C™({2) is given by
[ull = [I1D™ullcogm) + llullcom) -

E10.7 Counterexample to embedding theorems. Let {2 be as in theo-
rem 10.9 and let

Then WHP(£2) is not (!) embedded in L>(£2), except in the case n = 1.
Note: In theorem 10.9 the case m; = mg + 1, ps = oo is not allowed, while
theorem 10.8 does not permit ¢ = co.

Solution. The case n =1 (we then have p = 1) was solved in E3.6. For n > 2
a counterexample is

u(z) :=log|log |z|| for 0 <|z| < 3.

Let §2 := B%(O). Then v € L*(2) for 1 < s < oo, but u is not bounded.
Moreover, u € W (02\ {0}), because u € C*°(£2\ {0}), with
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/|Vu\ dL"—/ dz (j(n)/an
(J[log |z[[)" o rllogr|

1 ]T_é
—_— < 0.

=C(n) —
[log 7| —o

It follows that u € W1 (42), similarly to the end of the proof of 10.7(3) (or
alternatively by using the corollary in A8.9). o

E10.8 Sobolev spaces on IR™. For m > 1 and 1 < p < oo,
W™P(R™) = WP (IR").

Proof. Recalling that C*°(IR")NW"™P(IR"™) is dense in W™P(IR") (see 4.24),
it is sufficient to approximate functions v € C*°(IR") N W P(IR") in the
W™P-norm by functions in C§°(IR"). To this end, choose a function n €
C>(IR™) with

n(z) =

1 for |z| <1,
0 for|z|>2

(see 4.19), and define np(x) := (4% ). Then for all multi-indices s with |s| <
m,

s
9% (u — _ o S, S—T1 "
=) = == 3 ()@ o
0<r<s
r#s
Noting that 1 — nr = 0 on Bx(0) and that |0° "ng| < C R~I*=7l in R™
yields that

10°(u = nru) || Lo (mn)
< ||8SUHLP(]R"\BR(O)) +C Z RilSir‘”aru”Lp(]Rn) )

0<r<s
r#s

which converges to 0 as R — co. O

E10.9 Embedding theorem. Let mq,ms > 0 and 1 < py, ps < oo with

n n
mp; — — =mgo — —, where my > ms.
P b2

Then the embedding Id : W™:P1(IR"™) — W™2:P2(IR") exists and is continu-
ous.

Observe: In theorem 10.9 this result was shown for bounded open sets
2 C IR™ with Lipschitz boundary. (Theorem 10.9 also holds for an inequal-
ity between the Sobolev numbers.) Here we prove the theorem for 2 = IR",
where it is essential that the two Sobolev numbers are equal, which is also
the case in theorem 10.8.
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Solution. For m1 = moy the result is trivial. For mq; = mo + 1 let u €
WmPL(R™). Then 9%u is in WHP1(IR™) for all multi-indices s with |s| <
my — 1 = mgy. Sobolev’s theorem 10.8 then yields that 0%u € LP2(IR"™) with

10°u] Loa (mny < C(P2, M)IVO*ull Loy gy < Clp2, n)l[wllyymy o () -
For my; = mo + k with k > 2 define m; and p; for i =0,...,k by

~ . - n n . 1 7 1
m;:=mo+1t, Mp—=—=mMyg— —, lLe.—=—+—.
pi b2 pi n P2
Then py = p2 and p; is monotonically decreasing in ¢ with py = p1, and hence
1 <p; <oofori=0,...,k The desired result now follows from successive
applications of theorem 10.8. |

E10.10 Poincaré inequalities. Let 1 < p,q < oo with 1 —% = —% and let
u € WHP(IR™). Then

1
P

lullpr ey < ClpIL™ ({u # 014 - [Vl oy

for 1 <r < g, and
" 1
lull g ey < COLPIL ({u £ 01 F - [V oo -

Solution. If {u # 0} := {&# € R"; u(x) # 0} has finite Lebesgue measure
then it follows from the Hélder inequality for 1 < r < ¢ that

[t aur = [ gy Jal a1 0 ()

and so 10.8 yields the first inequality. Setting » = p, and noting that % — é =
1

> we obtain the second inequality. O
E10.11 Convergence in LP-spaces. Let 1 < py < p; < 00, and suppose
ug € LPo(u)NLP(p) for k € IN and w € LP° (). Then it holds for pg < p < py

that

{ug; k € IN} bounded in LP*(y), ug,u € LP(p),
up — u strongly in LPo(u) = up — u strongly in LP(u)
as k — oo as k — oo.

Solution. We have for all € > 0 the elementary inequality
a? <ead’' + Cca?  for all a > 0,

where C; is a constant depending on €, p, p1, po. It follows that
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/|uk7ul|pd,u§5/|uk7ul|pldu+CE/\uk7u1|p0d,u,
Q Q Q

bounded in k,1 —0as k,l — oo

which implies that {uy; k& € IN} is a Cauchy sequence in L (1) as well. Hence
there exists a & € LP(u) with u, — @ in LP(u). It follows for a subsequence
k — oo that up — w and up — u p-almost everywhere, and so v = u in
LP(p). 0

E10.12 Compact sets in cg. Let ¢y be the space of null sequences,
equipped with the supremum norm |||/, -
(1) Show that M C ¢ is precompact if and only if M is bounded and for
every ¢ > 0 there exists an index n. such that |z,,| < e for all n > n. and all

x e M.
(2) Let F : ¢y — co be defined by F(x) = {z3; i € IN}. Prove that F(B1(0))
is not precompact, but DF(z)(B1(0)) is for every x € ¢o.

E10.13 Nuclear operators. Let X, Y be Banach spacesandlet T : X — Y
be nuclear, i.e. there exist A\, € IK, 2} € X', y, € Y for k € IN with

o0
Dol <oo, ekl =1, lwly =1,
k=1

such that -
Tx = Z)\k (,x))xyp forallzeX.
k=1
Then T is compact.
Solution. The operators

n

Tyx = Z)\k (x, 20) x Yk
k=1

are compact on recalling 10.2(3). Moreover,

oo

T =Tzl < (3 wl)llzll,
k=n+1
and so T, —» T in Z(X;Y). Hence 10.2(2) yields that T is compact. O

E10.14 Compact operator without eigenvalues. Setting
=z
k
Tz := ,;_1 s for z = (x1)pen

defines an operator T : £2(C) — ¢%(C). Show that T is compact, but that T
has no eigenvalues (see 11.2(2)).
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Solution. Noting that
T(B1(0)) € {z € 3(C); |a;| < 1 foralli}

and recalling E4.13, we have that T' is compact. If we assume that A € C is
an eigenvalue, then Tz = Az for an = # 0. If A = 0, then Tz = 0, and so
x = 0, a contradiction. If A # 0, it follows that z; = 0 and x4+ = ﬁxh
for k£ > 1, and so again « = 0, a contradiction. O

E10.15 Bound on the dimension of eigenspaces. Let 2 C IR", let
K € L?(2 x 2;C) and let T € £ (L?(£2; €)) be the Hilbert-Schmidt integral
operator defined by

(Tf)(x) = /Q K () (y) dy.

Show that 9
dim A (Id = T) < [|K |20 0) -

Solution. By 10.15, T € ¢ (L*(£2;C)). This implies, on noting that (Id —
T)(x) = 0 is equivalent to z = Tax € Z(T), that A4 (Id — T) N B1(0) C
T(B1(0)) is precompact, and hence, by 4.10, that .4 (Id — T) is finite-
dimensional. Choose an orthonormal system f1,..., f, in A4 (Id — T, where
n = dim A (Id — T'). Then

2 2
n= S Uil = ST E ey = [ >
i=1 i=1 2 =1

2
dx.

/Q K(z,y)fi(y) dy

Setting K, (y) := K(z,y) and using Bessel’s inequality 9.6 we obtain that

n
n= [ Y e iy 4o < [ 1Kl do = 1K o
=1

O

E10.16 Norm of Hilbert-Schmidt operators. Under the same assump-
tions as in E10.15 show that
There exist K1, Ko € L?(£2) with

T| =K
171 = 1K 22 K(x,y) = K1(x)K2(y) for almost all z,y € 2.

Remark: In this case T is a nuclear operator as in E10.13, with only a single
term in the sum.

Solution =. Let K # 0. The assumption yields that for € > 0 there exist
functions f. € L*(2) with || fe|| 2oy = 1 such that
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2 2
(1- 5)HK||L2(Q><_Q) < ||TszL2(Q)

:/ /K(z,l’)fs(x)dx /dey) &
/ Jo@)f(y) /K” K(z,y)dz) dudy

/rz /Q |f€(m)|2|fs(y)|2d$dy)%

/ K(z,2)K(z,y)dz
2lJo

IN

1
dx dy) °

Letting € — 0 we obtain the inequality

? 3
dx dy> .
(E10-2)
Moreover, the Cauchy-Schwarz inequality yields that for almost all z,y € 2
we have that

/sz (z,y)d

Integrating over z and y, we obtain the opposite inequality (E10-2). This
implies that in fact equality holds in (E10-2), and therefore for almost all
(z,y) € 2 x {2 also equality holds in (E10-3). On recalling the remark in
2.3(3), the functions K,(z) := K(z,z) and K,(z) := K(z,y) are linearly
dependent in L?(2) for almost all (x,y) € £2 x £2. In other words (see A6.9),
there exists a null set Ng C {2 such that for all x € 2\ Ny it holds that:
for almost all y € {2 the functions K, and K, are linearly dependent. Since
we assumed that K # 0 in L?(§2 x £2), we can choose o € 2\ Ny such
that K,, # 0 in L?(£2). Then there exists a null set N C §2 such that for
y € 2\ N the function K, is a multiple of K, i.e. there exists a function
a: 2\ N — C such that for y € 2\ N

| [ x@oPaa< () || KeoREd
J02 J2 )02

/|sz|dz/|sz|dz (E10-3)

K(z,y) = a(y)K(z,z9) for almost all z € (2.
Setting K1(z) := K(z,z0) and Ka(y) := a(y), it follows that
K(z,y) = K1(2)K2(y) for almost all (z,y) € 2 x §2.

Fubini’s theorem then yields that K, Ko € L?(£2). 0
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A10 Calderon-Zygmund inequality

We present a proof of the LP-estimate in 10.20. To this end, we begin with
the following

A10.1 Definition. Let D C € be open and let f: D — Y be (real) contin-
uously differentiable, where Y is a Banach space over €. Then we define

O=f = %(8zf+if)yf) and 0,f = %(@ffi@yf),

where we denote complex numbers by z =z + iy, z,y € R.

Fig. 10.2. Outer normal and oriented tangent in C

Now let D C C be open and bounded with Lipschitz boundary (see A8.2).
For functions f € C°(D;Y) we define the oriented boundary integral

f(z)dz:= i/aD v(x)f(x)dH (x),

oD

where v : 9D — C is the outer normal to D (see A8.5(3) and Fig. 10.2) and
v(x)f(z) denotes the complex product of v(z) and f(x). Then Cauchy’s
integral theorem states that for f € C*(D;Y)

/aD F(z)dz = 21/D D= f(2) dL2(2)

In the special case where dzf = 0 in D, the function f is called holomorphic
in D.

Proof. Let y' € Y/ and set g(z) := (f(2), y')y. Then (see 5.11)
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< o (2)dz, y/>y = /BD g(z)dz = i/aD(Reg)udH1 — /aD(Img)del'

It follows from Gauf’s theorem (see A8.8) that this is

= /D(iV(Re 9) — V(Img)) dL?

_ : AN 093G 2
_/D(l(aﬁlay) @i L)

:21/ 8;gdL2:<21/ 8;de2,3/> .
D D Y

First we consider the case n = 1 in Theorem 10.20.

A10.2 Theorem. If f € C§°(IR) and 1 < p < oo, then

_ f(s)
T f(x) := ~/IR\B1(93) P ds

defines a function 77 f in LP(IR) and there exists a constant C(p) such that
for all f

||T1f||Lp(1R) = C(p)Hf”LP(]R)'
Therefore 10.20 holds in the case n = 1.

Proof. As f € CJ(IR) we have that |1 f(z)| < % for large x, and so T\ f €
LP(IR). In addition, the representation

[ fa-s,
Ty f(x) —/]R\BI(O) p d

shows that 71 f € C°(IR). For the proof of the bound we may assume without
loss of generality that f > 0, otherwise consider max(f,0) and max(—f,0).
We extend T} f to the upper half-plane

D:={z€C; Imz > 0}.
To this end we define
1
¢(2) == = (log(1+2) —log(1 —2)) for z € D,
z

where
log(z) :=1log(]z]) + iarg(z) for z€ C\]1 — 00,01,
arg(re?) :=0 forr >0, 0] <.

Consider the function
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F(z):= / o(z—38)f(s)ds for z € D.
R
Let x # 0,41 and y \, 0. Then

1
Rep(z +1iy) — ;(10g|1+x|—log\1—x|) =:(z) >0,

and, examining how 1 & (z + iy) approaches the positive and negative real
axis, respectively,

7r
Ime(x +iy) — < =
0

On noting in addition that [¢(z +iy)| < C - log|z £ 1] for [z £ 1| < 1, and
that otherwise ¢ is a bounded function, it follows from Lebesgue’s conver-
gence theorem that

F(x+iy) = (¢ f)(x) +inTif(z)  asy N0,

locally uniformly in z, i.e. Im(F') is a continuous extension of 777 f to D.
Since ¢ € L'(IR) (observe that 0 < ¢(z) < & for large |z|), it holds that
¢+ f € LP(IR) with the convolution estimate

[ = f”Lp(]R) < ||¢||L1(IR) ’ ”f”Lp([R) :
In addition we have that Re F'(z) > 0 for all z € D, because for z = x + iy

Rep(z) = |Z1|2(x(log|1 +z| —log|1 — z|) + y(arg(l + z) — arg(1 — z)))

is nonnegative, and f is assumed to be nonnegative. Hence z — F(2)P is a
well-defined function that is continuous in D, where
2P = ePlo8%  for z € €\ ] — 00,0].

As ¢ is holomorphic in D, and hence so is F', and then also F?, it follows
from Cauchy’s integral theorem for R > 0 that

R
O:/ F(z)pdz:/ F(x)pdx—F/ F(2)?dz.
S(DNBR(0)) _R DNOBR(0)

Since f has compact support, we have that |F(z)| < C’% for large |z|,
and so as R — oo

/ F(z)Pdz
DNOBR(0)

< CR(IOgR)p —

R
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This shows that

/]RF(sc)pda::().

Writing F'(z) = Fi(z) + iF»(z), it follows from the identity

F(z)P — (in(x))p = p/o (tFl(x) + iFQ(l‘))p_l dt - Fy(x)
that
‘/ (iFQ(x))pd:r
R

From the generalized Young’s inequality it follows for 0 < § < 1 that this is

§6/IR|F2(36)|pdx+§;(i)/]RF1(x)|pdm.

< C(p) /[R (IFy (@)~ + | Fa(a) P~) | Fy () da

Since Re(iFy(x))? = cos(p% )| F2(x)|", we have

osw)| [ 1Pt as=|re [ (Fao)r as

< ‘/}R(iFg(x))pdx §6/]R|F2(x)|pdx+§;(i)/]R|F1(x)Pda:.

, it then follows (em-

In the case cos(p}) # 0, on choosing § = %|cos(p%)
ploying the usual convention on constants) that

(BPdL < Cp) [ (R AL = CO)IY« I < CONFIEm,
R R

This is the desired result when cos(p%) # 0, which for example is satisfied
for 1 < p < 2. For 2 < p < oo the claim follows with a duality argument. In
particular, it then holds that 1 < p’ < 2, and so for all g € CJ(IR) we have

that
' [ g =‘ | rmiga
R R

< e @y 1 7291 oy < CENS N Loy 191 Lo () -
which together with 6.13 implies that

||T1f||LP(]R) < C(p/)HfHLP(IR) :
O

In conjunction with the following lemma, we obtain 10.20 in the case
n=1.
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A10.3 Lemma. The result in 10.20 holds true if there exists a constant
C(n,p) such that

1T fllpo ey < Cu) [ f oy for all fe Cg°(IR™).

Remark: For f € C§°(IR") it holds that Ty f € L*°(IR"). Moreover | T} f(z)| <
Ol fllgup - [z ™" for large |z|, and so T1 f € LP(IR™).

Proof. Let f € LP(IR") and f € C§°(IR™) with || f — fxll;» = 0 as k — oo.
It follows from the Holder inequality that for x € IR"

) = R0l
R™\By(z) |7 =Y
dy \w
<O Rlu(f )T 0 ko

T1f(2) — Tifu(z)| < C-

and, in addition, if Cjy denotes the constant C(n,p) from the assumptions,
that

1T fe = Tafill o = 1T (fk = f) o < Collfe = fillpp — 0 as k1 — oo

Hence (T f),cny is a Cauchy sequence in LP(IR") with limit T3 f, and so the
assumed LP-estimate also holds for f, i.e.

1Tyl e < Coll fll s -
Now let ¢ > 0 and set f.(y) := f(ey). Then

. wlz )
L= [ W
)

ol - -
= < nJe dy =T1f(—).
/W\Bl(m — = TA)

m\&

This yields that 7. f € LP(IR"), with

- TP NE [ p i \7
17505 = ([ 1D ar)” = (0 [ Tisita) P aa)
<o [ @I ds)" =Call £l
]R”VL
It follows for 0 < &1 < &9 that

||T51f_T€2fHLP
SN (f = f)llpe + 1T (F = f)ll o + 1Ty fro — Teo il 1o
< 2CYO”JC - fk“LP +||T61fk - TE2fk||LP .

—_——

— 0as k — o0
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Since the mean of w vanishes, for all

|T€1fk(‘r) - T€2fk<x)|

w(r —y)
/}352@)\351 |$— |n fk( )

w(r —

W@ ZY) )~ Fule) dy

B.,(2)\Be,(2) |z — y|
dy

<c / -
B.,(2)\Be,(2) [T — Y|

< C(n)52|| ka ||sup :

Since in addition T, fx(x) = Ty, fr(x) for z € R™ \ B, (supp f), we obtain
for every k that

||T51f/€ —Tey fr ||LP
< C’(n)ngka||SupL"(B,52 (supp fr))” — 0  as ey — 0.

This proves that the functions T.f for € — 0 form a Cauchy sequence in
LP(IR™). Hence it also holds that

< Coll fllze-

Lp

lim 7,
lim, =f

A10.4 Theorem. Theorem 10.20 also holds in the case n > 1.

Proof. We need to prove a bound for 7 similarly to A10.3. Since we can
decompose w as

_ @@ +w(=) | wl§) —w(=¢)
w(g) = LT DU

it is sufficient to consider separately the two cases: w is an even function,
ie. w(—&) = w(&), or an odd function, i.e. w(—¢) = —w(§).

We begin with the case when w is odd. (Observe that odd kernels always
satisfy the vanishing mean value property (10-33).) For f € C§°({2) it then
holds, upon using polar coordinates, that

_ w(y) .,
i = [ SRy

/8]31 / fla=rd d dH"71(¢).

As w is odd, this is
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_ ! w Pl — flatrh) o et
= 2/@}31(0) (5)/1 . dr dH"(€)

_1! w flz —16) n—1
B 2/331@) N </{t>1} t dt) e,

and so the Holder inequality yields that

§ i fa—te) | )
T1f(z)|P <277 </¢981(0) lw(&)[ /{|t21} — dt|dH (5))
p
5 —t n—
< 277wl 21 om0y /8B1(0) |w(&)] /{Itlzl} wdt dH" 7 (g).

For every £ € 9B1(0) we decompose the space IR" as
R" = Z; L span{(}.

For z € Z¢ it then follows from A10.2 that

B fet+s-0g |
@5(2’) = /IR /{t>1} —t dt

and so, setting M,, := [|w|| ;1 (gp,(0)), that

ds < c(p)/]R F(= 4 s6)1" ds,

[ mis@ras

—prsp—1 n—1 n—1
<P /831(0)@(@(/2 RCL <z>) a1 (€)
< Clp)Mz /8 NG / /R [ F(z 4 $€)7 ds AL (2) A" (€).
This shows that

IT1f e < C@INwllnromyoy) 11 Le s

which proves 10.20 for odd w. Observe that the proof did not use the bound-
edness of w: it suffices to assume that w is integrable over 9B (0).

We now assume that w is even and reduce this case to the odd case. To
this end we define the convolution operator

X — .
S@) = [ g)—"Hrdy and Syla) = lim S.g(a).
R™\B(a) |7 —y| =

As the vector-valued integral kernel of S, is odd, what was shown above
implies that for g € L2(IR™) with 1 < ¢ < oo,
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Seg — Sg in LI(IR™; IR"™)

. (A10-1)
with  [[Segll e < C(n,q)llgll L -
We begin by establishing that there exists a ¢y > 0 such that
Z SieSicg — —cog in LY(IR"™) for g € C§°(IR"™), (A10-2)

=1

where S;. denotes the i-th coordinate of the operator S.. We will use this
property to bound T; f in a first step in terms of STi f. In the last part of
the proof we then show that ST; is also a singular integral operator with an
odd kernel.

In order to prove (A10-2) we write

Z; Siefheg () = / " </]R."'\B€(m) g yzlﬂ dz) sy

1
\Buy) |7 — 2"z —y]

With the change of variables z = —2" + % this becomes

= */ n%(x;y)g(y)dy,

where

o (z) ::/{ (z42)- (2 —x) &

lotaizet |2+ | Tz —a"T T

With the change of variables z = £z’ we obtain that ¢.(z) = e "¢ (%).
Hence assertion (A10-2) follows from 4.15(2), if we show that ¢ is a non-
negative integrable function. If D C IR" is open and invariant under the

reflection in 0B),(0), i.e. %z € D for z € D, then the change of variables
z = I‘:{'; 2" yields, on noting that
2n
dz = (|ac/|) dz’ and |z+z|= ||x/||z’ + x|,
z z
that
2 — =/ _ 2> = |2 /

i.e. this integral vanishes. Applying this result to the domain D = {z; |z £ z| >
1, |2/ £ x| > 1}, we obtain that

ESE

P, dz

p1(z) =

- E|Z+x| n+1

|z — x|
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with E = {|z£z| > 1} n ({|]z+ 2| < %} U{lz—z| < %}), and so
|z] > |x]| for z € E, which implies that ¢ > 0. Clearly ¢, is continuous on
IR™ \ {0}, and for |z| < 1

dz

‘Pl(x) <C n
{12124} 2|

< o0,

while for |z| > 2

d
@1($)§/%~
e lz+"z -z

We partition F into {z € F; zex >0} and {z € E'; zez < 0}. For z in
the first set it holds that |z + x| > |z| and with 2’ := z — 2 we have that
1< 2] < \I‘T—ll-
obtain that

An analogous result holds for the second set. Overall we

/
801(1') S in‘/ dlzn S €+1 .
2" Ju<< ey 1217 7 |

[z]

The last inequality follows from the fact that we integrate over an annular
region of width Iav\%l This shows that ¢ is integrable and the result (A10-2)
is shown.

Now let f € C§°(IR") as before. It follows from (A10-2) and the LP-bound

for S that for ¢ € Cg°(IR™) and as e \, 0

Jensafe | [ (Esescc)risar
/ ’ i Szec : SiETlden
"i=1

o ¢

< HSECHLMHSETIJCHLP )

with
1Sl o < Clna P o -
As Ty f € LP(IR"™) (see the remark in A10.3), it holds in addition that

1S f e — ISTLf Nl s & N\0.

Hence, on recalling 6.13, we obtain the bound

1T f Nl e < C(n,p)[STLS | o -

Now we show that ST, too, is essentially a singular integral operator with
an odd kernel. It holds that

s, _ x—z w(z—y)d d
Ty f(x) / (/{Z_MZ& B e e P z | fly)dy

[ oe-wiswa,
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x—z w(z)
b = n
(@) /{ 2| 1z

|z—z|>e, |2]>1} |2 — 2|

where

Since
w(2)

‘Zl’ﬂ )

D (x) = Sch(x)  with  h(2) := Arn\By0)(2)

and since h € LI(IR") for every 1 < g < oo (not for ¢ = 11), it follows from
the previously shown convergence in (A10-1) that

&, =S.h— Sh=® inLYR";R"),
with [ @, < C(n, q)[[h]| L. -

Here we have that

— > n—1—ngqg q n—1 ‘
1l (A , &A&®k4@dﬂ @wv>

=ci(n, Q)HWHLQ(E)Bl(O))’

with

0 q
co(n,q) = </ pimnla—l) dr)
o

STf(w) = [ 8w ) () dy.

Similarly to @, for every § > 0

Ys(x) ::/{ J:—iﬂcif;) dz

s5<|z|<1} |7 — 2|

In addition,

defines a function ¢s € LP(IR™;IR"™). Moreover, the limit

) x—z w(z)
P(x) = lim ¥s(x :/ — g dz
D= L ey To— a7 ]

exists pointwise for x # 0. In order to prove this, choose for ¢ > 0 an
n € C5°(By(0)) with n = 1 in Be(0) and decompose ¢5(z) for [z| > o as
induced by the decomposition

T—2z T—z

T = ”(Z)m + (1 =n(2))

r—z

n+1 °

|z — z| |z — z|

The first term is a Lipschitz continuous (in fact smooth) function of z. Hence
the corresponding integral converges as 0 \, 0 (see the first part of the proof of
the Holder-Korn-Lichtenstein inequality 10.19). The integral over the second
term is independent of ¢ for § < £.
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On employing the change of variables z = |z|z’ we now see that there
exists a measurable function wq : 9B1(0) — IR™ such that

P(x) +P(x) = —7 (A10-3)

where wy(z) = wo(i‘) and

|z

wo(&) == /}Rn KS;FLHT;? dz  for almost all £ € 9B1(0).

As w is an even function, wy must be odd. Moreover, for |z| > 2 and |z| < 1
(cf. the proof of 10.19)

r—z xT
n+1 - n+1

1 1 Clz|
)< n+1"?

§C|z|<

+
|z — 2] |z —zllz["  |zl|z —2|"

|| B

which in view of the mean value property of w implies that

x—z x )w(z)
— = dz
/{|z|31}<|x—2|”+1 |z ]

- |x|n+1 (21<1} |Z|n—1 - |x|n+1 L' (0B4(0)) -

()| =

Hence ¢ € LI(IR™ \ B2(0);IR") for 1 < ¢ < oo (here the case ¢ = 1 is
included (!)), with

191 e @mm\Ba0)) < € D)Wl 108,400y -

Therefore, on recalling (A10-3), we obtain for 1 < ¢ < co that

CQ(H,Q)HWOHLq(aBI(o)) =

wo
I

La(IR™\By(0))
<2l pamny + 1Y Lagrm\Bao))
< C(n,q)(c1(m Dllwll pagopyo)) + 1wl oBy0))) -
and so
||W0HL1(aBI(o)) < C(n)||w||L°°(8B1(O)) < 00.

Hence the previously shown LP-bound for kernels induced by odd w can be
applied to the kernel induced by wy. We note from (A10-3) that

D(x) = XRrn\By0)(T)

where
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P(z) = XRrn\By0) (7)1 () — Xy0) (7)D(2),

and we note that for every 1 < ¢ < oo

||

L (B <Nl L wmBaoy) + C 0 DN Pl parny < 00

We obtain using the LP-bound for the kernel induced by wy and the convo-
lution estimate that

ST Lo

< (/ / ol =) )

wiz2y |z =yl
< (C(p)”wOHLl(aBl(o)) + H@’

Lr(IR")

dx>p+‘)5*f’

I ) sy

This proves 10.20 also for even kernels. a
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