
1 Introduction

Functional analysis deals with the structure of function spaces and the proper-
ties of continuous mappings between these spaces. Linear functional analysis,
in particular, is confined to the analysis of linear mappings of this kind. Its
development was based on the fundamental observation that the topological
concepts of the Euclidean space IRn can be generalized to function spaces as
well. To this end, functions are interpreted as points in a given space (see the
cover page, where a part of the orthonormal system in 9.9 is shown). Given
a set S, we consider the set of all maps f : S → IR. Denoting this set by
F (S; IR) means that any point f ∈ F (S; IR) defines a mapping x �→ f(x)
that assigns to each element x ∈ S a unique f(x) ∈ IR. Then the set F (S; IR)
becomes a vector space if we define for all f1, f2, f ∈ F (S; IR) and α ∈ IR

(f1 + f2)(x) := f1(x) + f2(x) , (αf)(x) := αf(x) for x ∈ S .

With the help of characteristic examples we now investigate similarities and
differences between the Euclidean space IRn and some function spaces. The
function spaces will be covered in more detail later on in the book.

First we consider the space C0(S) (see 3.2) of continuous functions f :
S → IR, where S is a bounded, closed set in IRn. The supremum norm on
C0(S) is defined by

‖f ‖C0 := sup{|f(x)| ; x ∈ S} for f ∈ C0(S) .

It satisfies the same norm axioms (see 2.4) as the Euclidean norm on IRn,

‖x‖IRn :=
( n∑
i=1

x2
i

) 1
2

for x = (xi)i=1,...,n = (x1, . . . , xn) ∈ IRn .

One difference between the two spaces is that C0(S), in contrast to IRn, is
an infinite-dimensional space, when S contains infinitely many points. This
can be seen as follows. Let xi ∈ S for i ∈ IN be pairwise distinct. Then for
each n ∈ IN we can find functions ϕn,i ∈ C0(S) for i = 1, . . . , n, such that
ϕn,i(xj) = δi,j for i, j = 1, . . . , n. Here

δi,j :=

{
1 for i = j,

0 otherwise
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2 1 Introduction

denotes the Kronecker symbol. Now if αi ∈ IR for i = 1, . . . , n are such
that

f :=

n∑
i=1

αiϕn,i = 0 in C0(S) ,

then it follows that 0 = f(xj) = αj for j = 1, . . . , n. Hence ϕn,1, . . . , ϕn,n

are linearly independent and, since n ∈ IN was chosen arbitrarily, the di-
mension of C0(S) cannot be finite. This changes the properties of the space
significantly. For instance, while in IRn all bounded closed sets are compact
(see the Heine-Borel theorem 4.7(7)), this is not the case in C0(S) (see the
Arzelà-Ascoli theorem 4.12).

Also, the scalar product in IRn,

(x , y)IRn :=

n∑
i=1

xiyi for x = (xi)i=1,...,n , y = (yi)i=1,...,n ∈ IRn ,

has an analogue for function spaces; indeed, define (cf. 3.16(3))

(f , g)L2 :=

∫
S

f(x)g(x) dx for f, g ∈ C0(S) .

The corresponding norm ‖f ‖L2 :=
√
(f , f)L2 is bounded from above by the

supremum norm, that is, there exists a constant C < ∞ such that

‖f ‖L2 ≤ C‖f ‖C0 for all f ∈ C0(S)

(this follows from 3.18, if C denotes the square root of the Lebesgue measure
of S). In general, a similar bound from below cannot be derived. To see this,
consider the interval S = [ − 1, 1] ⊂ IR and for 0 < ε < 1 the functions

fε defined by fε(x) := max
(
0, 1

ε

(
1 − |x|

ε

)) 1
2 , for which ‖fε‖C0 = ε−

1
2 , but

‖fε‖L2 = 1. That means that the C0-norm and the L2-norm on C0(S) are
not equivalent to each other (see 2.15); the C0-norm is stronger than the L2-
norm. That is, the space C0(S), equipped with the L2-norm, is not complete.
For example, the functions gk for k ∈ IN, gk(x) := (1 − x)k for x ≥ 0,
gk(x) := 1 for x ≤ 0, form a Cauchy sequence with respect to the L2-norm,
but there exists no function g ∈ C0(S) such that ‖gk − g‖L2 → 0 as k → ∞.

In a situation like this we can apply a general principle in mathematics:
completion (see 2.24). Similarly to defining the real numbers IR as the comple-
tion of the rational numbers Q, we can complete the space C0(S) with respect
to the L2-norm. Thus we obtain the complete space L2(S) of all square in-
tegrable, Lebesgue measurable functions on S (see 3.15 and 4.15(3)). In this
space fundamental assertions hold, such as Lebesgue’s convergence theorem
(see 3.25).

We encounter a similar situation in a further generalization from the finite-
dimensional case to the infinite-dimensional one. For the finite-dimensional
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case, let E : S → IR be a continuous function defined on a bounded closed
set S ⊂ IRn. We now look for a minimum of this function over S. The
compactness of S and the continuity of E yield that such a minimum exists:
E has an absolute minimum on S, that is, there exists an x0 ∈ S such that

E(x0) = inf
x∈S

E(x) .

The same holds true if we only assume that S is closed and if in addition we
require that E(x) → ∞ for x ∈ S as ‖x‖IRn → ∞.

As an infinite-dimensional analogue we consider the following Dirichlet
boundary value problem on an open, bounded set Ω ⊂ IRn. The given datum
is a continuous function u0 defined on the boundary ∂Ω of Ω, i.e. u0 ∈
C0(∂Ω), and we want to find a continuous function u : Ω → IR that is twice
continuously differentiable in Ω, such that

Δu(x) :=
n∑

i=1

∂2

∂x2
i

u(x) = 0 for x ∈ Ω,

u(x) = u0(x) for x ∈ ∂Ω.

In applications, u is, for example, a stationary temperature distribution or
the potential of a charge-free electric field. One approach to find a solution
is to consider the corresponding energy functional (here identical to the
Dirichlet integral)

E(u) :=
1

2

∫
Ω

|∇u(x)|2 dx ,

where ∇u(x) :=
(

∂
∂x1

u(x), . . . , ∂
∂xn

u(x)
)
. Here we use the term functional,

because E acts on functions, that is, E is a function defined on functions. In
order to guarantee that E(u) < ∞, we initially define the domain of E to be

M :=
{
v ∈ C1(Ω) ; v = u0 on ∂Ω

}
, so E : M → IR ,

where we assume that M is nonempty. If we now assume that u ∈ M is an
absolute minimum of E on M , then E(u) ≤ E(u + εζ) for all ε ∈ IR and
all ζ ∈ C1(Ω) such that ζ = 0 in a neighbourhood of ∂Ω. On noting that
ε �→ E(u+εζ) is differentiable in ε (this function is quadratic in ε), it follows
that

0 =
d

dε
E(u+ εζ)|ε=0 =

∫
Ω

∇ζ(x) • ∇u(x) dx .

The fact that this identity holds for all functions ζ with the above mentioned
properties contains all the information needed in order to derive a differential
equation for u. That is why the functions ζ are also called test functions,
and u ∈ M is called a weak solution of the boundary value problem if the
integral identity holds for all test functions. Introducing this solution concept
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allows the treatment of partial differential equations by means of functional
analysis (see 6.5–6.8). We obtain the corresponding classical differential equa-
tion on assuming that u ∈ C2(Ω), as integration by parts then yields that

0 =

∫
Ω

∇ζ(x) • ∇u(x) dx = −
∫
Ω

ζ(x)Δu(x) dx

for all test functions ζ. This implies Δu = 0 in Ω (cf. 4.22), and hence u is a
solution of the original Dirichlet problem.

However, the existence of an absolute minimum u ∈ M for a functional
E : M → IR with M ⊂ C1(Ω) is not established as easily as in the finite-
dimensional case. For instance, if Ω = ]0, 1[,

M1 :=
{
u ∈ C1

(
[0, 1]

)
; u(0) = 0, u′(1) = 1

}
with ‖u‖C1 := ‖u‖C0 + ‖u′‖C0 and

E1(u) := ‖u′‖2C0 +

∫ 1

0

|u′(x)|2 dx ,

then M1 is closed in C1
(
[0, 1]

)
and E1 is continuous with respect to the

C1-norm. Moreover, E1(u) ≥ ‖u′‖2C0 → ∞ for u ∈ M1 as ‖u‖C1 → ∞, since
for u ∈ M1 and x ∈ [0, 1] we have

|u(x)| =
∣∣∣∣∫ x

0

u′(y) dy

∣∣∣∣ ≤ ‖u′‖C0 ,

and hence ‖u‖2C1 ≤ 4 ‖u′‖2C0 . Consequently, all the assumptions are satisfied
which lead in the above finite-dimensional case to the existence of an absolute
minimum.

But E1 does not have an absolute minimum on M1. To see this, note
that E1(u) ≥ ‖u′‖2C0 ≥ |u′(1)|2 = 1 for all u ∈ M1. This lower bound also
represents the infimum of E1 over M1, since the functions u�(x) :=

1
�x

� for
� > 1 satisfy

∥∥u′
�

∥∥2
C0 = 1 and

∫ 1

0

∣∣u′
�(x)

∣∣2 dx =
1

2�− 1
→ 0 as � → ∞.

Now, if u ∈ M1 was an absolute minimum, i.e. E1(u) = 1, then

‖u′‖2C0 = 1 and

∫ 1

0

|u′(x)|2 dx = 0 .

But the second equality implies u′ = 0, which contradicts the first equality.

In conclusion, we note that the main difficulty in proving the existence of
an absolute minimum lies in the fact that C1(Ω) is equipped with a supremum
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norm, while the functional E(u) = 1
2‖∇u‖2L2 corresponds to an integral norm,

which cannot be used to bound the C1-norm (similarly to our first example).
If, on the other hand, we equip C1(Ω) with the integral norm

‖u‖W 1,2 := ‖u‖L2 + ‖∇u‖L2 ,

then (similarly to the first example) the space is no longer complete. But
the completeness of the space under consideration is a crucial property in
all existence proofs. Hence at times it becomes necessary to seek solutions
to boundary value problems, or minima of functionals, in a larger class of
functions. For instance, on completing the space C1(Ω) with respect to the
above W 1,2-norm (see 3.27), and thus obtaining the Sobolev space W 1,2(Ω),
we can consider the functional E to be defined on W 1,2(Ω) rather than on
C1(Ω). In this new space, the above variational problem admits a solution
(see 8.17).

As a third example we consider the infinite-dimensional analogue of matri-
ces. The set of all sequences with only finitely many nonzero terms is defined
by

c∗ :=
{
x = (xk)k∈IN ; xk ∈ IR for k ∈ IN, and there exists an n ∈ IN,

such that xk = 0 for all k > n
}
.

A linear map T : c∗ → c∗ is characterized by the values Tij , the i-th coordi-
nate of T (ej). Here ej corresponds to the j-th unit vector of the Euclidean
space, that is, ej := (δj,k)k∈IN ∈ c∗. In other words

Tx =
∑
i∈IN

(∑
j∈IN

Tijxj

)
ei ,

where in each sum only finitely many terms are nonzero, with their number
depending on x. Hence T can be represented by a matrix (Tij)i,j∈IN with
infinitely many rows and columns.

For finite matrices, i.e. in the finite-dimensional case, a linear map T :
IRn → IRn is injective if and only if it is surjective. However, if we consider
the shift operator T : c∗ → c∗, defined by

T (x1, x2, x3, . . .) := (0, x1, x2, x3, . . .) ,

then T is injective, but not surjective. Nevertheless, later on we will see that
the above property of finite matrices carries over to certain maps, namely to
compact perturbations of the identity (see the Fredholm alternative 11.11).
Chapters 11 and 12 are devoted to the spectral theory of such operators.
There we will generalize results from linear algebra that provide normal forms
for finite-dimensional matrices. For instance, the Jordan normal form of ma-
trices corresponds to the spectral theorem for compact operators (see 11.9
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and 11.13), while the fact that every symmetric matrix is diagonalizable cor-
responds to the spectral theorem for compact normal operators (see 12.11 and
12.12). In function spaces such operators occur in the analysis of differential
and integral equations.

As a final example we consider a Sturm-Liouville problem. A solu-
tion to the Sturm-Liouville problem is given by a function u ∈ C2

(
[0, 1]

)
satisfying the differential equation

Tu := −(pu′)′ + qu = f

and, for instance, satisfying the boundary conditions

u(0) = 0 , u′(1) = 0 .

We assume that the right-hand side of the differential equation satisfies f ∈
C0

(
[0, 1]

)
, while for the coefficients we assume e.g. q ∈ C0

(
[0, 1]

)
and

p ∈ C1
(
[0, 1]

)
, with p being a strictly positive function, i.e. there exists a

number c > 0, such that p(x) ≥ c for all x ∈ [0, 1].
The Sturm-Liouville problem can be formulated as an integral equation.

Then one looks for a function u ∈ C0
(
[0, 1]

)
such that u = Kfu, where

(Kfu)(x) :=

∫ x

0

1

p(y)

∫ 1

y

(f − qu)(z) dz dy .

If u ∈ C0
(
[0, 1]

)
is a solution to this integral equation, i.e. u = Kfu,

then the integral representation and the assumptions on p, q, f yield that
u ∈ C2

(
[0, 1]

)
, and that both the differential equation and the boundary

conditions are satisfied.
It follows from the Banach fixed point theorem that the integral equa-

tion admits a unique solution. This is true whenever Kf is a contraction
mapping, i.e. if there exists a number θ < 1, such that

‖K0u‖ ≤ θ‖u‖ for all u ∈ C0
(
[0, 1]

)
,

where ‖·‖ denotes the supremum norm (it is also possible to use other, equiv-
alent norms, which can lead to improved contraction factors). For instance,
for p = 1 we have

|K0u(x)| =
∣∣∣∣∫ x

0

∫ 1

y

(qu)(z) dz dy

∣∣∣∣ = ∣∣∣∣∫ 1

0

(qu)(z)min(z, x) dz

∣∣∣∣
≤ ‖u‖

∫ 1

0

|zq(z)| dz ,

and hence the boundary value problem has a unique solution if

p = 1 and

∫ 1

0

z|q(z)| dz < 1 .
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However, this unduly restricts the class of admissible functions q. In order
to be able to treat more general q, we reformulate the problem and attempt
to solve an infinite-dimensional system of linear equations. To this end, let
{ei ; i ∈ IN} be a linearly independent set in the function space

V :=
{
v ∈ C2

(
[0, 1]

)
; v(0) = 0, v′(1) = 0

}
and define

aij :=

∫ 1

0

ei(x)(Tej)(x) dx and fi :=

∫ 1

0

ei(x)f(x) dx .

Using the formal ansatz u =
∑

j∈IN ujej it then follows from Tu = f that
formally ∑

j∈IN

aijuj = fi for all i ∈ IN .

If the ei form a Schauder basis (see 9.3) with respect to the L2-norm, then
this infinite-dimensional system of equations is even formally equivalent to
the differential equation. For, with an arbitrary function ζ =

∑
i∈IN αiei ∈ V

and since Tu =
∑

j∈IN ujTej , it follows from the system of equations that

0 =
∑
i∈IN

αi

(∑
j∈IN

aijuj − fi

)
=

∑
i∈IN

αi

(∫ 1

0

∑
j∈IN

ujei(x)(Tej)(x) dx−
∫ 1

0

ei(x)f(x) dx
)

=

∫ 1

0

(∑
i∈IN

αiei(x)
)(∑

j∈IN

uj(Tej)(x)− f(x)
)
dx

=

∫ 1

0

ζ(x)
(
(Tu)(x)− f(x)

)
dx ,

and hence (similarly to the Dirichlet problem above) that the differential
equation is fulfilled. Remember, that this conclusion was formal.

We now assume that we can choose for each i the ei as normalized eigen-
vector of T corresponding to the eigenvalue λi, i.e.

Tei = λiei ,

∫ 1

0

ei(x)
2 dx = 1 .

It follows for i, j ∈ IN that

(λi − λj)

∫ 1

0

ei(x)ej(x) dx

=

∫ 1

0

(Tei)(x)ej(x) dx−
∫ 1

0

ei(x)(Tej)(x) dx = 0 .
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For the last identity we have used the fact that T is a self-adjoint operator.
To see this, note that, for u, v ∈ V ,∫ 1

0

v(x)(Tu)(x) dx

= −
∫ 1

0

v(x)(pu′)′(x) dx+

∫ 1

0

q(x)v(x)u(x) dx

= −
[
v(x)p(x)u′(x)

]x=1

x=0︸ ︷︷ ︸
=0

+

∫ 1

0

(
p(x)v′(x)u′(x) + q(x)v(x)u(x)

)
dx

is symmetric in v and u. Hence for λi �= λj it follows that

aij =

∫ 1

0

ei(x)(Tej)(x) dx = λj

∫ 1

0

ei(x)ej(x) dx = 0 .

Moreover, setting N := {i ∈ IN ; λi = 0} and assuming that all eigenvalues
λi with i /∈ N are pairwise distinct, yields that

aij = λiδi,j for all i, j ∈ IN.

Hence the (formal) infinite-dimensional system of linear equations is reduced
to diagonal form and reads

λiui = fi for all i ∈ IN.

We obtain the solvability condition

fi = 0 for i ∈ N,

and, formally, the solution

u =
∑
i/∈N

1

λi

(∫ 1

0

ei(x)f(x) dx
)
ei +

∑
i∈N

αiei ,

where the αi, i ∈ N , can be chosen arbitrarily. Moreover we see that, ana-
logously to linear algebra, the number of linearly independent functions cor-
responding to the eigenvalue 0, i.e. the number of degrees of freedom for
the solution u, agrees with the number of side constraints for the datum f
(cf. 11.6 and 12.8).

Thus we have reduced the Sturm-Liouville problem to an eigenvalue prob-
lem for the operator T . Here we note that we employed arguments which are
analogous to matrix calculus, but which are merely formal for infinite ma-
trices. Of course, these need to be justified and this will be the subject of
Chapters 11 and 12.
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