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Preface

The present book is the English translation of a previous German edition,
also published by Springer Verlag. The translation was carried out by Robert
Nürnberg, who also did a marvellous job at detecting errors and mistakes in
the original version. In addition, Andrei Iacob revised the English version.

The book originated in a series of lectures I gave for the first time at the
University of Bochum in 1980, and since then it has been repeatedly used in
many lectures by me and other mathematicians and during this time it has
changed accordingly. I provide the reader with an introduction to Functional
Analysis as a synthesis of Algebra, Topology, and Analysis, which is the
source for basic definitions which are important for differential equations.
The book includes a number of appendices in which special subjects are
presented in more detail. Therefore its content is rich enough for a lecturer
to find enough material to fill a course in functional analysis according to
his special interests. The text can also be used as an additional source for
lectures on partial differential equations or advanced numerical analysis.

It must be said that my strategy has been dictated by the desire to offer
the reader an easy and fast access to the main theorems of linear functional
analysis and, at the same time, to provide complete proofs. So there is a
separate appendix where the Lebesgue integral is introduced in a complete
functional analytic way, and an appendix whith details for Sobolev functions
which complete the proofs of the embedding theorems. Therefore the text is
self-contained and the reader will benefit from this fact.

Parallel to this edition, a revised German version has become available
(Lineare Funktionalanalysis, 6. Edition, Springer 2012) with the same math-
ematical content. This is made possible by a common source text. Therefore
one does not have to worry about the content in different versions. I am
happy that this book is now accessible to a wider community.

If you find any errors or misprints in the text, please point them out to
the author via email: “alt@ma.tum.de”. This will help to improve the text of
possible future editions.

I hope that this book is written in the good tradition of functional anal-
ysis and will serve its readers well. I thank Springer Verlag for making the
publication of this edition possible and for their kind support over many
years.

Technical University Munich, August 2015
H. W. Alt

 V
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1 Introduction

Functional analysis deals with the structure of function spaces and the proper-
ties of continuous mappings between these spaces. Linear functional analysis,
in particular, is confined to the analysis of linear mappings of this kind. Its
development was based on the fundamental observation that the topological
concepts of the Euclidean space IRn can be generalized to function spaces as
well. To this end, functions are interpreted as points in a given space (see the
cover page, where a part of the orthonormal system in 9.9 is shown). Given
a set S, we consider the set of all maps f : S → IR. Denoting this set by
F (S; IR) means that any point f ∈ F (S; IR) defines a mapping x �→ f(x)
that assigns to each element x ∈ S a unique f(x) ∈ IR. Then the set F (S; IR)
becomes a vector space if we define for all f1, f2, f ∈ F (S; IR) and α ∈ IR

(f1 + f2)(x) := f1(x) + f2(x) , (αf)(x) := αf(x) for x ∈ S .

With the help of characteristic examples we now investigate similarities and
differences between the Euclidean space IRn and some function spaces. The
function spaces will be covered in more detail later on in the book.

First we consider the space C0(S) (see 3.2) of continuous functions f :
S → IR, where S is a bounded, closed set in IRn. The supremum norm on
C0(S) is defined by

‖f ‖C0 := sup{|f(x)| ; x ∈ S} for f ∈ C0(S) .

It satisfies the same norm axioms (see 2.4) as the Euclidean norm on IRn,

‖x‖IRn :=
( n∑
i=1

x2
i

) 1
2

for x = (xi)i=1,...,n = (x1, . . . , xn) ∈ IRn .

One difference between the two spaces is that C0(S), in contrast to IRn, is
an infinite-dimensional space, when S contains infinitely many points. This
can be seen as follows. Let xi ∈ S for i ∈ IN be pairwise distinct. Then for
each n ∈ IN we can find functions ϕn,i ∈ C0(S) for i = 1, . . . , n, such that
ϕn,i(xj) = δi,j for i, j = 1, . . . , n. Here

δi,j :=

{
1 for i = j,

0 otherwise
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2 1 Introduction

denotes the Kronecker symbol. Now if αi ∈ IR for i = 1, . . . , n are such
that

f :=

n∑
i=1

αiϕn,i = 0 in C0(S) ,

then it follows that 0 = f(xj) = αj for j = 1, . . . , n. Hence ϕn,1, . . . , ϕn,n

are linearly independent and, since n ∈ IN was chosen arbitrarily, the di-
mension of C0(S) cannot be finite. This changes the properties of the space
significantly. For instance, while in IRn all bounded closed sets are compact
(see the Heine-Borel theorem 4.7(7)), this is not the case in C0(S) (see the
Arzelà-Ascoli theorem 4.12).

Also, the scalar product in IRn,

(x , y)IRn :=

n∑
i=1

xiyi for x = (xi)i=1,...,n , y = (yi)i=1,...,n ∈ IRn ,

has an analogue for function spaces; indeed, define (cf. 3.16(3))

(f , g)L2 :=

∫
S

f(x)g(x) dx for f, g ∈ C0(S) .

The corresponding norm ‖f ‖L2 :=
√
(f , f)L2 is bounded from above by the

supremum norm, that is, there exists a constant C < ∞ such that

‖f ‖L2 ≤ C‖f ‖C0 for all f ∈ C0(S)

(this follows from 3.18, if C denotes the square root of the Lebesgue measure
of S). In general, a similar bound from below cannot be derived. To see this,
consider the interval S = [ − 1, 1] ⊂ IR and for 0 < ε < 1 the functions

fε defined by fε(x) := max
(
0, 1

ε

(
1 − |x|

ε

)) 1
2 , for which ‖fε‖C0 = ε−

1
2 , but

‖fε‖L2 = 1. That means that the C0-norm and the L2-norm on C0(S) are
not equivalent to each other (see 2.15); the C0-norm is stronger than the L2-
norm. That is, the space C0(S), equipped with the L2-norm, is not complete.
For example, the functions gk for k ∈ IN, gk(x) := (1 − x)k for x ≥ 0,
gk(x) := 1 for x ≤ 0, form a Cauchy sequence with respect to the L2-norm,
but there exists no function g ∈ C0(S) such that ‖gk − g‖L2 → 0 as k → ∞.

In a situation like this we can apply a general principle in mathematics:
completion (see 2.24). Similarly to defining the real numbers IR as the comple-
tion of the rational numbers Q, we can complete the space C0(S) with respect
to the L2-norm. Thus we obtain the complete space L2(S) of all square in-
tegrable, Lebesgue measurable functions on S (see 3.15 and 4.15(3)). In this
space fundamental assertions hold, such as Lebesgue’s convergence theorem
(see 3.25).

We encounter a similar situation in a further generalization from the finite-
dimensional case to the infinite-dimensional one. For the finite-dimensional
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case, let E : S → IR be a continuous function defined on a bounded closed
set S ⊂ IRn. We now look for a minimum of this function over S. The
compactness of S and the continuity of E yield that such a minimum exists:
E has an absolute minimum on S, that is, there exists an x0 ∈ S such that

E(x0) = inf
x∈S

E(x) .

The same holds true if we only assume that S is closed and if in addition we
require that E(x) → ∞ for x ∈ S as ‖x‖IRn → ∞.

As an infinite-dimensional analogue we consider the following Dirichlet
boundary value problem on an open, bounded set Ω ⊂ IRn. The given datum
is a continuous function u0 defined on the boundary ∂Ω of Ω, i.e. u0 ∈
C0(∂Ω), and we want to find a continuous function u : Ω → IR that is twice
continuously differentiable in Ω, such that

Δu(x) :=
n∑

i=1

∂2

∂x2
i

u(x) = 0 for x ∈ Ω,

u(x) = u0(x) for x ∈ ∂Ω.

In applications, u is, for example, a stationary temperature distribution or
the potential of a charge-free electric field. One approach to find a solution
is to consider the corresponding energy functional (here identical to the
Dirichlet integral)

E(u) :=
1

2

∫
Ω

|∇u(x)|2 dx ,

where ∇u(x) :=
(

∂
∂x1

u(x), . . . , ∂
∂xn

u(x)
)
. Here we use the term functional,

because E acts on functions, that is, E is a function defined on functions. In
order to guarantee that E(u) < ∞, we initially define the domain of E to be

M :=
{
v ∈ C1(Ω) ; v = u0 on ∂Ω

}
, so E : M → IR ,

where we assume that M is nonempty. If we now assume that u ∈ M is an
absolute minimum of E on M , then E(u) ≤ E(u + εζ) for all ε ∈ IR and
all ζ ∈ C1(Ω) such that ζ = 0 in a neighbourhood of ∂Ω. On noting that
ε �→ E(u+εζ) is differentiable in ε (this function is quadratic in ε), it follows
that

0 =
d

dε
E(u+ εζ)|ε=0 =

∫
Ω

∇ζ(x) • ∇u(x) dx .

The fact that this identity holds for all functions ζ with the above mentioned
properties contains all the information needed in order to derive a differential
equation for u. That is why the functions ζ are also called test functions,
and u ∈ M is called a weak solution of the boundary value problem if the
integral identity holds for all test functions. Introducing this solution concept
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allows the treatment of partial differential equations by means of functional
analysis (see 6.5–6.8). We obtain the corresponding classical differential equa-
tion on assuming that u ∈ C2(Ω), as integration by parts then yields that

0 =

∫
Ω

∇ζ(x) • ∇u(x) dx = −
∫
Ω

ζ(x)Δu(x) dx

for all test functions ζ. This implies Δu = 0 in Ω (cf. 4.22), and hence u is a
solution of the original Dirichlet problem.

However, the existence of an absolute minimum u ∈ M for a functional
E : M → IR with M ⊂ C1(Ω) is not established as easily as in the finite-
dimensional case. For instance, if Ω = ]0, 1[,

M1 :=
{
u ∈ C1

(
[0, 1]

)
; u(0) = 0, u′(1) = 1

}
with ‖u‖C1 := ‖u‖C0 + ‖u′‖C0 and

E1(u) := ‖u′‖2C0 +

∫ 1

0

|u′(x)|2 dx ,

then M1 is closed in C1
(
[0, 1]

)
and E1 is continuous with respect to the

C1-norm. Moreover, E1(u) ≥ ‖u′‖2C0 → ∞ for u ∈ M1 as ‖u‖C1 → ∞, since
for u ∈ M1 and x ∈ [0, 1] we have

|u(x)| =
∣∣∣∣∫ x

0

u′(y) dy

∣∣∣∣ ≤ ‖u′‖C0 ,

and hence ‖u‖2C1 ≤ 4 ‖u′‖2C0 . Consequently, all the assumptions are satisfied
which lead in the above finite-dimensional case to the existence of an absolute
minimum.

But E1 does not have an absolute minimum on M1. To see this, note
that E1(u) ≥ ‖u′‖2C0 ≥ |u′(1)|2 = 1 for all u ∈ M1. This lower bound also
represents the infimum of E1 over M1, since the functions u�(x) :=

1
�x

� for
� > 1 satisfy

∥∥u′
�

∥∥2
C0 = 1 and

∫ 1

0

∣∣u′
�(x)
∣∣2 dx =

1

2� − 1
→ 0 as � → ∞.

Now, if u ∈ M1 was an absolute minimum, i.e. E1(u) = 1, then

‖u′‖2C0 = 1 and

∫ 1

0

|u′(x)|2 dx = 0 .

But the second equality implies u′ = 0, which contradicts the first equality.

In conclusion, we note that the main difficulty in proving the existence of
an absolute minimum lies in the fact that C1(Ω) is equipped with a supremum
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norm, while the functional E(u) = 1
2‖∇u‖2L2 corresponds to an integral norm,

which cannot be used to bound the C1-norm (similarly to our first example).
If, on the other hand, we equip C1(Ω) with the integral norm

‖u‖W 1,2 := ‖u‖L2 + ‖∇u‖L2 ,

then (similarly to the first example) the space is no longer complete. But
the completeness of the space under consideration is a crucial property in
all existence proofs. Hence at times it becomes necessary to seek solutions
to boundary value problems, or minima of functionals, in a larger class of
functions. For instance, on completing the space C1(Ω) with respect to the
above W 1,2-norm (see 3.27), and thus obtaining the Sobolev space W 1,2(Ω),
we can consider the functional E to be defined on W 1,2(Ω) rather than on
C1(Ω). In this new space, the above variational problem admits a solution
(see 8.17).

As a third example we consider the infinite-dimensional analogue of matri-
ces. The set of all sequences with only finitely many nonzero terms is defined
by

c∗ :=
{
x = (xk)k∈IN ; xk ∈ IR for k ∈ IN, and there exists an n ∈ IN,

such that xk = 0 for all k > n
}
.

A linear map T : c∗ → c∗ is characterized by the values Tij , the i-th coordi-
nate of T (ej). Here ej corresponds to the j-th unit vector of the Euclidean
space, that is, ej := (δj,k)k∈IN ∈ c∗. In other words

Tx =
∑
i∈IN

(∑
j∈IN

Tijxj

)
ei ,

where in each sum only finitely many terms are nonzero, with their number
depending on x. Hence T can be represented by a matrix (Tij)i,j∈IN with
infinitely many rows and columns.

For finite matrices, i.e. in the finite-dimensional case, a linear map T :
IRn → IRn is injective if and only if it is surjective. However, if we consider
the shift operator T : c∗ → c∗, defined by

T (x1, x2, x3, . . .) := (0, x1, x2, x3, . . .) ,

then T is injective, but not surjective. Nevertheless, later on we will see that
the above property of finite matrices carries over to certain maps, namely to
compact perturbations of the identity (see the Fredholm alternative 11.11).
Chapters 11 and 12 are devoted to the spectral theory of such operators.
There we will generalize results from linear algebra that provide normal forms
for finite-dimensional matrices. For instance, the Jordan normal form of ma-
trices corresponds to the spectral theorem for compact operators (see 11.9
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and 11.13), while the fact that every symmetric matrix is diagonalizable cor-
responds to the spectral theorem for compact normal operators (see 12.11 and
12.12). In function spaces such operators occur in the analysis of differential
and integral equations.

As a final example we consider a Sturm-Liouville problem. A solu-
tion to the Sturm-Liouville problem is given by a function u ∈ C2

(
[0, 1]

)
satisfying the differential equation

Tu := −(pu′)′ + qu = f

and, for instance, satisfying the boundary conditions

u(0) = 0 , u′(1) = 0 .

We assume that the right-hand side of the differential equation satisfies f ∈
C0
(
[0, 1]

)
, while for the coefficients we assume e.g. q ∈ C0

(
[0, 1]

)
and

p ∈ C1
(
[0, 1]

)
, with p being a strictly positive function, i.e. there exists a

number c > 0, such that p(x) ≥ c for all x ∈ [0, 1].
The Sturm-Liouville problem can be formulated as an integral equation.

Then one looks for a function u ∈ C0
(
[0, 1]

)
such that u = Kfu, where

(Kfu)(x) :=

∫ x

0

1

p(y)

∫ 1

y

(f − qu)(z) dz dy .

If u ∈ C0
(
[0, 1]

)
is a solution to this integral equation, i.e. u = Kfu,

then the integral representation and the assumptions on p, q, f yield that
u ∈ C2

(
[0, 1]

)
, and that both the differential equation and the boundary

conditions are satisfied.
It follows from the Banach fixed point theorem that the integral equa-

tion admits a unique solution. This is true whenever Kf is a contraction
mapping, i.e. if there exists a number θ < 1, such that

‖K0u‖ ≤ θ‖u‖ for all u ∈ C0
(
[0, 1]

)
,

where ‖·‖ denotes the supremum norm (it is also possible to use other, equiv-
alent norms, which can lead to improved contraction factors). For instance,
for p = 1 we have

|K0u(x)| =
∣∣∣∣∫ x

0

∫ 1

y

(qu)(z) dz dy

∣∣∣∣ = ∣∣∣∣∫ 1

0

(qu)(z)min(z, x) dz

∣∣∣∣
≤ ‖u‖

∫ 1

0

|zq(z)| dz ,

and hence the boundary value problem has a unique solution if

p = 1 and

∫ 1

0

z|q(z)| dz < 1 .
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However, this unduly restricts the class of admissible functions q. In order
to be able to treat more general q, we reformulate the problem and attempt
to solve an infinite-dimensional system of linear equations. To this end, let
{ei ; i ∈ IN} be a linearly independent set in the function space

V :=
{
v ∈ C2

(
[0, 1]

)
; v(0) = 0, v′(1) = 0

}
and define

aij :=

∫ 1

0

ei(x)(Tej)(x) dx and fi :=

∫ 1

0

ei(x)f(x) dx .

Using the formal ansatz u =
∑

j∈IN ujej it then follows from Tu = f that
formally ∑

j∈IN

aijuj = fi for all i ∈ IN .

If the ei form a Schauder basis (see 9.3) with respect to the L2-norm, then
this infinite-dimensional system of equations is even formally equivalent to
the differential equation. For, with an arbitrary function ζ =

∑
i∈IN αiei ∈ V

and since Tu =
∑

j∈IN ujTej , it follows from the system of equations that

0 =
∑
i∈IN

αi

(∑
j∈IN

aijuj − fi

)
=
∑
i∈IN

αi

(∫ 1

0

∑
j∈IN

ujei(x)(Tej)(x) dx −
∫ 1

0

ei(x)f(x) dx
)

=

∫ 1

0

(∑
i∈IN

αiei(x)
)(∑

j∈IN

uj(Tej)(x) − f(x)
)
dx

=

∫ 1

0

ζ(x)
(
(Tu)(x) − f(x)

)
dx ,

and hence (similarly to the Dirichlet problem above) that the differential
equation is fulfilled. Remember, that this conclusion was formal.

We now assume that we can choose for each i the ei as normalized eigen-
vector of T corresponding to the eigenvalue λi, i.e.

Tei = λiei ,

∫ 1

0

ei(x)
2 dx = 1 .

It follows for i, j ∈ IN that

(λi − λj)

∫ 1

0

ei(x)ej(x) dx

=

∫ 1

0

(Tei)(x)ej(x) dx −
∫ 1

0

ei(x)(Tej)(x) dx = 0 .
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For the last identity we have used the fact that T is a self-adjoint operator.
To see this, note that, for u, v ∈ V ,∫ 1

0

v(x)(Tu)(x) dx

= −
∫ 1

0

v(x)(pu′)′(x) dx+

∫ 1

0

q(x)v(x)u(x) dx

= −
[
v(x)p(x)u′(x)

]x=1

x=0︸ ︷︷ ︸
=0

+

∫ 1

0

(
p(x)v′(x)u′(x) + q(x)v(x)u(x)

)
dx

is symmetric in v and u. Hence for λi �= λj it follows that

aij =

∫ 1

0

ei(x)(Tej)(x) dx = λj

∫ 1

0

ei(x)ej(x) dx = 0 .

Moreover, setting N := {i ∈ IN ; λi = 0} and assuming that all eigenvalues
λi with i /∈ N are pairwise distinct, yields that

aij = λiδi,j for all i, j ∈ IN.

Hence the (formal) infinite-dimensional system of linear equations is reduced
to diagonal form and reads

λiui = fi for all i ∈ IN.

We obtain the solvability condition

fi = 0 for i ∈ N,

and, formally, the solution

u =
∑
i/∈N

1

λi

(∫ 1

0

ei(x)f(x) dx
)
ei +
∑
i∈N

αiei ,

where the αi, i ∈ N , can be chosen arbitrarily. Moreover we see that, ana-
logously to linear algebra, the number of linearly independent functions cor-
responding to the eigenvalue 0, i.e. the number of degrees of freedom for
the solution u, agrees with the number of side constraints for the datum f
(cf. 11.6 and 12.8).

Thus we have reduced the Sturm-Liouville problem to an eigenvalue prob-
lem for the operator T . Here we note that we employed arguments which are
analogous to matrix calculus, but which are merely formal for infinite ma-
trices. Of course, these need to be justified and this will be the subject of
Chapters 11 and 12.



2 Preliminaries

In this chapter we introduce a number of fundamental structures in general
spaces: topology, metric, norm, and scalar product. They are the natural
generalizations of the corresponding concepts in the Euclidean space IRn.

The most detailed structure is given by a scalar product in a IK-vector
space, where here and throughout we take either IK = IR, i.e. IK is the set
of real numbers, or IK = C, i.e. IK is the set of complex numbers. For
α ∈ IK we use the notation

|α| :=
√
αα with α :=

{
Reα − i Imα for IK = C,

α for IK = IR,

and if α ∈ C and for example

α > 0, we implicitly assume that α ∈ IR ⊂ C.

2.1 Scalar product. Let X be a IK-vector space. We call a map (x1, x2) �→
(x1 , x2)X from X × X to IK a sesquilinear form if for all α ∈ IK and for
all x, x1, x2, y, y1, y2 ∈ X one has

(S1) (αx , y)X = α (x , y)X ,
(x , αy)X = α (x , y)X ,

(S2) (x1 + x2 , y)X = (x1 , y)X + (x2 , y)X ,
(x , y1 + y2)X = (x , y1)X + (x , y2)X .

This means that (·1 , ·2)X is linear in the first argument and conjugate
linear in the second argument. Where no ambiguities arise, one can also write
(x1 , x2) in place of (x1 , x2)X . The sesquilinear form is called symmetric
(also called a Hermitian form) if for all x, y ∈ X one has

(S3) (x , y)X = (y , x)X (Symmetry).

A sesquilinear form is called positive semidefinite if for all x ∈ X

(S4’) (x , x)X ≥ 0 (and then (x , x)X ∈ R) (Positivity)

and positive definite if for all x ∈ X

(S4) (x , x)X ≥ 0 and in addition: (x , x)X = 0 ⇐⇒ x = 0 .

© Springer-Verlag London 2016 
H.W. Alt, Linear Functional Analysis, Universitext, 
DOI 10.1007/978-1-4471-7280-2_  
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For Hermitian forms (x , x)X = (x , x)X is real-valued, and for positive
semidefinite Hermitian forms it is always nonnegative, in which case we define

‖x‖X :=
√
(x , x)X .

A positive definite Hermitian form is also called a scalar product or inner
product, and then the pair (X, (·1 , ·2)X) is called a pre-Hilbert space. If
this scalar product in the vector space X is fixed, then we also say that X is
a pre-Hilbert space.

The following lemma contains the fundamental properties of a scalar prod-
uct.

2.2 Lemma. Let (x1, x2) �→ (x1 , x2)X from X × X to IK be a positive

semidefinite Hermitian form and ‖x‖ :=
√

(x , x)X for x ∈ X. Then it holds
for all x, y ∈ X and all α ∈ IK that

(1) ‖αx‖ = |α| · ‖x‖ (Homogeneity),

(2) |(x , y)X | ≤ ‖x‖ · ‖y‖ (Cauchy-Schwarz inequality),

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality),

(4) ‖x+ y‖2 + ‖x − y‖2 = 2
(
‖x‖2 + ‖y‖2

)
(Parallelogram law).

Proof (1). ‖αx‖2 = (αx , αx)X = α (x , αx)X = αα (x , x)X = |α|2‖x‖2. ��
Proof (2). Let x, y ∈ X. It holds for α, β ∈ IK \ {0} (we want to set α = ‖x‖
and β = ‖y‖) that

0 ≤
∥∥∥∥ xα − y

β

∥∥∥∥2 =
‖x‖2

|α|2
+

‖y‖2

|β |2
− 2Re

(
(x , y)X

αβ

)
, (2-1)

and hence for α > 0 and β > 0, upon multiplying the inequality by αβ > 0,
that

2Re (x , y)X ≤ β

α
‖x‖2 + α

β
‖y‖2 .

Setting α = ‖x‖+ ε, β = ‖y‖+ ε with ε > 0 yields that

2Re (x , y)X ≤ (‖y‖+ ε) · ‖x‖2

‖x‖ + ε
+ (‖x‖ + ε) · ‖y‖2

‖y‖ + ε

≤ (‖y‖+ ε) · ‖x‖ + (‖x‖ + ε) · ‖y‖ .

As this holds for all ε > 0, it follows that

Re (x , y)X ≤ ‖x‖ · ‖y‖ .

On replacing x with (x , y)Xx we obtain

|(x , y)X |2 ≤ |(x , y)X | · ‖x‖ · ‖y‖

and then cancelling in the case (x , y)X �= 0 gives the desired result. If
(x , y)X = 0, then the claim is trivial. ��
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Proof (3). On recalling (2) we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re (x , y)X

≤ ‖x‖2 + ‖y‖2 + 2‖x‖ · ‖y‖ = (‖x‖ + ‖y‖)2 .
��

Proof (4). The first identity in the proof of (3) was

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re (x , y)X .

Replacing y by −y yields, since (x , −y)X = − (x , y)X , that

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2Re (x , y)X . (2-2)

Adding the two identities gives the result. ��

2.3 Orthogonality. Let X be a pre-Hilbert space over IK and for x ∈ X let
‖x‖X :=

√
(x , x)X as in 2.1.

(1) Let x, y ∈ X. If (x , y)X = 0, we say that x and y are perpendicular,
or that they are orthogonal vectors. Then

‖x − y‖2X = ‖x‖2X + ‖y‖2X (Pythagoras’ theorem).

(2) If Y and Z are two subspaces (see 4.4(2)) of a vector space X, then the
sum

Y + Z := {y + z ∈ X ; y ∈ Y and z ∈ Z}
is again a subspace. The sum is called a direct sum, and we write Y ⊕Z =
Y + Z, if Y ∩ Z = {0}. If X is a pre-Hilbert space, then the subspaces are
called orthogonal if (y , z)X = 0 for all y ∈ Y and z ∈ Z. Clearly it then
holds that Y ∩ Z = {0} and we denote the subspace Y ⊕ Z also by Y ⊥ Z.
The orthogonal complement of a subspace Y is defined by

Y ⊥ := {x ∈ X ; (y , x)X = 0 for all y ∈ Y } (see also 9.17) .

It holds that Y ∩ Y ⊥ = {0}.
(3) For x, y ∈ X \ {0} the Cauchy-Schwarz inequality 2.2(2) then reads

|γ | ≤ 1 with γ :=

(
x

‖x‖X
,

y

‖y‖X

)
X

.

Here equality holds if and only if x and y are linearly dependent.

(4) If IK = IR, then in (3) there exists a unique

θ ∈ [0, π] such that γ = cos(θ).

We call θ the angle between x and y. It follows from (3) that x and y are
linearly dependent if and only if θ = 0 or θ = π, and they are orthogonal if
and only if θ = π

2 .
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Proof (1). The theorem of Pythagoras follows from (2-2). ��

Proof (2). This essentially contains only definitions. ��

Proof (3). If x and y are linearly dependent, it is obvious that |γ | = 1. If
|γ | = 1, then on setting α = ‖x‖X , β = γ‖y‖X , equation (2-1) becomes

0 ≤
∥∥∥∥ xα − y

β

∥∥∥∥2 = 2− 2Re

(
(x , y)X

‖x‖X · γ‖y‖X

)
= 0 ,

which implies
x

α
=

y

β
,

hence x and y are linearly dependent. ��

Proof (4). By (3), the vectors x and y are linearly dependent if and only if
1 = |γ | = |cos(θ)|, which means θ = 0 or θ = π. By (1), the vectors x and y
are orthogonal if and only if (x , y)X = 0, which means cos(θ) = 0, that is,
θ = π

2 . ��

The standard example is the n-dimensional Euclidean space IRn. The
Euclidean scalar product and the Euclidean norm (for clarity these will
be denoted by special symbols) are defined by

x • y :=

n∑
i=1

xiyi and |x| :=
√
x • x =

( n∑
i=1

x2
i

) 1
2

for x = (xi)i=1,...,n ∈ IRn, y = (yi)i=1,...,n ∈ IRn. In the complex space Cn we
define correspondingly

z • w :=
n∑

i=1

ziwi ∈ C and |z | :=
√
z • z =

( n∑
i=1

zizi

) 1
2 ∈ IR

for z = (zi)i=1,...,n ∈ Cn, w = (wi)i=1,...,n ∈ Cn. The infinite-dimensional
analogue of Euclidean space is the sequence space (see 2.23).

A fundamental step in the development of functional analysis was the
introduction of norms x �→ ‖x‖X that are not induced by a scalar product as
in 2.1, but are instead only characterized by the homogeneity and the triangle
inequality in 2.2.
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2.4 Norm. Let X be a IK-vector space. The pair (X, ‖·‖) is called a normed
space if ‖·‖ : X → IR satisfies the following conditions for x, y ∈ X and
α ∈ IK:

(N1) ‖x‖ ≥ 0 (Positivity),
and: ‖x‖ = 0 ⇐⇒ x = 0,

(N2) ‖αx‖ = |α| · ‖x‖ (Homogeneity),
(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality).

We then say that the map ‖·‖ : X → IR is a norm on X. If a norm ‖·‖X :
X → IR is fixed on the vector space X, then we also call X a normed space.

Note that the property
(
x = 0 =⇒ ‖x‖ = 0

)
in (N1) follows indepen-

dently from (N2) on setting α = 0 there. We call ‖·‖ a seminorm if we take
(N1) without the property

(
‖x‖ = 0 =⇒ x = 0

)
. It then follows from (N2)

and (N3) that the set Z := {z ∈ X ; ‖z‖ = 0} is a subspace of X, and hence

x ∼ y :⇐⇒ x − y ∈ Z

defines an equivalence relation “∼” on X. Now let X̃ be the set X together
with the equivalence relation

x = y in X̃ :⇐⇒ x ∼ y ⇐⇒ x − y ∈ Z.

Then all the vector space properties carry over from X to X̃, and (X̃, ‖·‖) is
a normed space (see remark). A common notation for the factor space or

quotient space X̃ is X/Z.

Remark: Let X be an arbitrary set, with “∼” an arbitrary equivalence
relation on X, and then let X̃ be the set X with this equivalence relation,
that is,

x = y in X̃ :⇐⇒ x ∼ y in X.

A map f : X̃ → S to another set S is said to be well defined if

x = y in X̃ =⇒ f(x) = f(y) in S. (2-3)

Hence, when defining a map on X̃, condition (2-3) always needs to be verified.

Similarly, given a map f : X → S, then this also defines a map from X̃
to S, if (2-3) is satisfied for f . Analogous results hold for maps defined on
e.g. X × X.

In the case of a seminorm as discussed above, it can be easily shown that
this is satisfied for the maps (x, y) �→ x+y from X×X to X and (α, x) �→ αx
from IK × X to X, as well as for the map x �→ ‖x‖ from X to IR.

In Section 3 we will introduce the most important norms in spaces of con-
tinuous and integrable functions. These norms are derived from the following
norms in IKn.



14 2 Preliminaries

2.5 Example. For 1 ≤ p ≤ ∞ the p-norm on IKn is defined by

|x|p :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

n∑
i=1

|xi |p
) 1

p

for 1 ≤ p < ∞ ,

max
i=1,...,n

|xi | for p = ∞ ,

where x = (xi)i=1,...,n ∈ IKn. For p = 2 the Euclidean norm of x is |x|2 =
|x|. Alternative notations for the maximum norm |x|∞ are |x|max and
|x|sup, while the sum norm |x|1 is also denoted by |x|sum.

x1

x2

p = 1

p = 2

p = 5

p = ∞

Fig. 2.1. Unit spheres for p-norms in IR2

Proof. All of the norm axioms are easily verified, apart from the triangle
inequality in the case 1 < p < ∞ for n ≥ 2. However, this follows from the
Hölder inequality (proof to follow)

|x • y| ≤ |x|p · |y |p′ (2-4)

for x = (x1, . . . , xn), y = (y1, . . . , yn), where p′ is the dual exponent to p,
i.e. it is defined by 1

p + 1
p′ = 1.

Note: This inequality is a special case of the general Hölder inequality in
3.18 for the counting measure on {1, . . . , n}. Here we give a different proof.

The inequality (2-4) can, for instance, be shown by induction, on em-
ploying the inequality for n = 2. To this end, let x′ := (x1, . . . , xn−1),
y′ := (y1, . . . , yn−1) and observe that
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|x • y | ≤ |x′ • y′ | + |xn | · |yn |
≤ |x′ |p · |y′ |p′ + |xn | · |yn | (induction hypothesis)

≤
∣∣∣(|x′ |p , |xn |)

∣∣∣
p
·
∣∣∣(|y′ |p′ , |yn |)

∣∣∣
p′

(inequality for n = 2)

= |x|p · |y |p′ .

The inequality for n = 2 follows immediately from the elementary inequality

a1b1 + a2b2 ≤ (ap1 + ap2)
1
p · (bp

′

1 + bp
′

2 )
1
p′ for a1, a2, b1, b2 ≥ 0 . (2-5)

This holds trivially if one of the numbers is equal to 0. Otherwise, dividing

by a1b1 and setting α := ap2a
−p
1 , β := bp

′

2 b−p′

1 yields the equivalent inequality

1 + α
1
p β

1
p′ ≤ (1 + α)

1
p · (1 + β)

1
p′ for α, β > 0 , (2-6)

which we will prove now. For fixed r := α
1
p · β

1
p′ we have that

α =
(
rβ

− 1
p′

)p
= rpβ

− p

p′ = rpβ1−p =: ψ(β) ,

since p
p′ = p − 1. Then the inequality reads

1 + r ≤ ϕ(β) := (1 + ψ(β))
1
p · (1 + β)

1
p′ ,

and the right-hand side is minimal, if ϕ′(β) = 0. Now

ϕ′(β) = ϕ(β) ·
(

ψ′(β)

p(1 + ψ(β))
+

1

p′(1 + β)

)
=

ϕ(β)

p′β
·
(

β

1 + β
− ψ(β)

1 + ψ(β)

)
,

since ψ′(β) = −ψ(β) · p−1
β . Hence ϕ′(β) = 0 means β = ψ(β), and so β = r,

α = r. This proves (2-6), and therefore the Hölder inequality (2-5) follows.

On letting zi := |xi + yi |p−1
, z = (z1, . . . , zn), we have that

|xi + yi |p ≤ |xi | zi + |yi | zi .

The Hölder inequality then implies, since p′ · (p − 1) = p, that

|x+ y |pp ≤ (|xi |)i=1,...,n • z + (|yi |)i=1,...,n • z
≤ |x|p · |z |p′ + |y |p · |z |p′ = (|x|p + |y |p) · |x+ y |p−1

p ,

which yields |x+ y |p ≤ |x|p + |y |p. ��

We now interpret the norm ‖x‖ of x as the distance of the point x from
the origin 0 and replace ‖x‖ with a value d(x, 0), where d : X × X → IR is
a map for which only the triangle inequality has to hold. This notion of a
distance can be defined in arbitrary sets.



16 2 Preliminaries

2.6 Metric. A metric space is a pair (X, d), where X is a set and

d : X × X → IR for all x, y, z ∈ X

has the following properties:

(M1) d(x, y) ≥ 0 (Positivity),
and: d(x, y) = 0 ⇐⇒ x = y,

(M2) d(x, y) = d(y, x) (Symmetry),
(M3) d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).

We then call d(x, y) the distance between the points x and y. The map
d : X×X → IR is called a metric on X. If a metric dX : X×X → IR is fixed
on the set X, then we also call X a metric space. If (X, d) is a metric space
and A ⊂ X, then (A, d) is also a metric space, with d restricted to A × A.

Without the property ( d(x, y) = 0 =⇒ x = y ) in (M1) we call d a
semimetric. Then the factor space of X with respect to d is given as
follows: The properties of the semimetric imply that

x ∼ y :⇐⇒ d(x, y) = 0

defines an equivalence relation “∼” on X. Now let X̃ be the set X equipped
with the equivalence relation

x = y in X̃ :⇐⇒ x ∼ y ⇐⇒ d(x, y) = 0.

Then (M3) implies that d is also well defined on X̃ × X̃, and that (X̃, d) is a
metric space (see the remark in 2.4).

2.7 Fréchet metric. In vector spaces X, metrics d are often defined by

d(x, y) = �(x − y) for x, y ∈ X ,

where � : X → IR satisfies the following properties for all x, y ∈ X:

(F1) �(x) ≥ 0 (Positivity),
and: �(x) = 0 ⇐⇒ x = 0,

(F2) �(x) = �(−x) (Symmetry),
(F3) �(x+ y) ≤ �(x) + �(y) (Triangle inequality).

A map � : X → IR satisfying (F1)–(F3) is called a Fréchet metric. Any
norm x �→ ‖x‖ on X is a Fréchet metric and hence defines the induced
metric d(x, y) := ‖x − y‖.

We begin with some elementary examples.

2.8 Examples of metrics.

(1) A bounded Fréchet metric on IKn that is not a norm is given by

�(x) :=
|x|

1 + |x| for x ∈ IKn .
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(2) Let −∞, +∞ be two distinct elements that do not belong to IR. One
can then define a metric on IR ∪ {±∞} by

d(x, y) := |g(x) − g(y)| for x, y ∈ IR ∪ {±∞},

where

g(x) :=

⎧⎪⎪⎨⎪⎪⎩
−1 for x = −∞,

x

1 + |x| for x ∈ IR,

+1 for x = +∞.

(3) Let ∞ be an element that does not belong to IRn. One can then define
a metric on IRn ∪ {∞} by

d(x, y) := |τstereo(x) − τstereo(y)| .

Here

τstereo : IRn ∪ {∞} −→
{
y ∈ IRn × IR = IRn+1 ;

∣∣y − (0, 1
2 )
∣∣ = 1

2

}
,

where the image is the ball BIRn+1

1
2

(
(0, 1

2 )
)
with respect to the Euclidean

metric, is defined by

τstereo(x) :=

⎧⎪⎨⎪⎩
(x, |x|2)
1 + |x|2

for x ∈ IRn,

(0, 1) for x = ∞.

Remark: The inverse τstereo
−1 is the stereographic projection, i.e. y =

τstereo(x) with
∣∣y − (0, 1

2 )
∣∣ = 1

2 and y �= (0, 1) is given by

(1 − a)(0, 1) + ay = (x, 0) for an a ∈ IR.

Proof (1). The function ϕ(s) := s
1+s for s ≥ 0 satisfies

ϕ(s) ≤ ϕ(s̃) for 0 ≤ s ≤ s̃,

ϕ(s1 + s2) =
s1

1 + s1 + s2
+

s2
1 + s1 + s2

≤ ϕ(s1) + ϕ(s2) for s1, s2 ≥ 0.

Apply the above for s = |x+ y | ≤ |x| + |y | = s̃, s1 = |x|, s2 = |y |. ��

Proof (2) and (3). Use that g, resp. τstereo, is injective and employ the triangle
inequality in IR, resp. IRn+1. ��

With the help of the distance between two points we now define the
distance between two sets. As a special case we obtain the definition of balls
with respect to a given metric.
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2.9 Balls and distance between sets. Let (X, d) be a metric space. For
two sets A1, A2 ⊂ X the distance between A1 and A2 is defined by

dist(A1, A2) := inf
{
d(x, y) ; x ∈ A1, y ∈ A2

}
,

where inf ∅ := ∞ (so that dist(A, ∅) = ∞). For x, y ∈ X it holds that
d(x, y) = dist({x}, {y}). For x ∈ X the distance from x to A ⊂ X is defined
by

dist(x,A) := dist({x}, A) = inf
{
d(x, y) ; y ∈ A

}
.

For r > 0 the r-neighbourhood of the set A is defined by

Br(A) :=
{
x ∈ X ; dist(x,A) < r

}
,

and Br(x) := Br({x}) is called the ball around x with radius r or, alter-
natively, the r-neighbourhood of the point x. We have

Br(x) =
{
y ∈ X ; d(y, x) < r

}
.

The diameter of a subset A ⊂ X is defined by

diam(A) := sup
{
d(x, y) ; x, y ∈ A

}
,

if A �= ∅, and diam(∅) := 0 (or make the convention that sup ∅ := 0). A set
A ⊂ X is called bounded if diam(A) < ∞.

A1

A2

dist(A1, A2)

r

Br(A1)

Br(A2)

Fig. 2.2. Metric definitions in IR2 with respect to x �→ |x|
2

The concept of a ball plays an important role in definitions and proofs for
metric spaces. It can be used, for instance, to introduce the following notion
of an “open subset” (see 2.10). In functional analysis the concept of open
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sets is applied to function spaces. Depending on the chosen distance the
notion of open sets is different, therefore one obtains different results for the
considered class of functions. In 3.2, 3.3 and 3.7 this applies to function spaces
with respect to supremum norms, in 3.15 to function spaces with respect to
integral norms, and in 3.13 to function spaces equipped with distances that
are induced by a measure.

2.10 Open and closed sets. Let (X, d) be a metric space. For A ⊂ X the
interior of A (notation: intrX (A) or intr (A) or Å) is defined by

intr (A) :=
{
x ∈ X ; Bε(x) ⊂ A for an ε > 0

}
⊂ A ,

and the closure of A (or the closed hull, notation: closX (A) or clos (A) or
A) is defined by

clos (A) :=
{
x ∈ X ; Bε(x) ∩ A �= ∅ for all ε > 0

}
⊃ A .

It holds that x ∈ clos (A) if and only if dist(x,A) = 0. Using quantifiers, the
above definitions can be written as

x ∈ intr (A) ⇐⇒ ∃ ε > 0 : Bε(x) \A = ∅ ,
x ∈ clos (A) ⇐⇒ ∀ ε > 0 : Bε(x) ∩ A �= ∅ ,

or
x ∈ intr (A) ⇐⇒ ∃ ε > 0 : ∀ y ∈ Bε(x) : y ∈ A ,

x ∈ clos (A) ⇐⇒ ∀ ε > 0 : ∃ y ∈ Bε(x) : y ∈ A .

A subset A ⊂ X is called open if intr (A) = A, and A ⊂ X is called closed
if clos (A) = A. The complement of a closed set is open and the complement
of an open set is closed. The boundary of A ⊂ X (notation: bdryX (A) or
bdry (A) or ∂A) is defined by

bdry (A) := clos (A) \ intr (A)

= clos (A) ∩ clos (X \ A) = bdry (X \ A)

and, being an intersection of closed sets, is a closed set. We have

X = intr (A) ∪ bdry (A) ∪ intr (X \ A) ,

where the union is disjoint.

We now consider on X only the class of open sets. This class is charac-
terized by the fact that arbitrary unions of open sets and finite intersections
of open sets are still open sets.

2.11 Topology. A topological space is a pair (X, T ), where X is a set and
T is a system of subsets of X (the elements of T are called open sets), with
the following properties:
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(T1) ∅ ∈ T , X ∈ T ,
(T2) T ′ ⊂ T =⇒

⋃
U∈T ′ U ∈ T ,

(T3) U1, U2 ∈ T =⇒ U1 ∩ U2 ∈ T .

A topological space is called a Hausdorff space if in addition the following
separation axiom is satisfied:

(T4) For x1, x2 ∈ X with x1 �= x2 there exist U1, U2 ∈ T
such that x1 ∈ U1, x2 ∈ U2, and U1 ∩ U2 = ∅, the same with quantifiers:
∀ x1, x2 ∈ X, x1 �= x2 : ∃ U1, U2 ∈ T : x1 ∈ U1, x2 ∈ U2, U1 ∩ U2 = ∅ .

A subset A ⊂ X is called closed with respect to T if X \A ∈ T , that is, with
respect to T , the complement of an open set is closed, and the complement
of a closed set is open. We define for A ⊂ X (note the remark in 2.12 below)

intr(X,T ) (A) :=
{
x ∈ X ; U ⊂ A for some U ∈ T with x ∈ U

}
⊂ A ,

clos(X,T ) (A) :=
{
x ∈ X ; U ∩ A �= ∅ for all U ∈ T with x ∈ U

}
⊃ A .

Alternative notations are intr (A) := intr(X,T ) (A) or Å := intr(X,T ) (A) and

clos (A) := clos(X,T ) (A) or A := clos(X,T ) (A). It holds that

A = intr(X,T ) (A) ⇐⇒ A ∈ T ,

A = clos(X,T ) (A) ⇐⇒ X \A ∈ T .

If A ⊂ X, then (A, TA) is a topological space with the relative topology

TA := {U ∩ A ; U ∈ T } .

The following is the standard construction of a topology and it shows that
for a metric space the definitions of interior and closure in 2.11 (with respect
to a topology) and in 2.10 (with respect to a metric) are the same.

2.12 Proposition. Let (X, d) be a metric space and, on recalling the defini-
tion of the interior of a set in 2.10 (we write intr(X,d) (A) instead of intrX (A)),
let

T := {A ⊂ X ; intr(X,d) (A) = A} .

Then (X, T ) is a topological space and, in particular, a Hausdorff space. We
call T the topology induced by the metric d.

Remark: For all subsets A ⊂ X it holds intr(X,d) (A) = intr(X,T ) (A) and
clos(X,d) (A) = clos(X,T ) (A).

Proof of the proposition. In order to show axiom (T3), let A1, A2 ∈ T and
x ∈ A1 ∩ A2. Then intr(X,d) (A1) = A1 and intr(X,d) (A2) = A2 with the
definition as in 2.10. Hence there exist ε1, ε2 > 0 such that Bε1(x) ⊂ A1 and
Bε2(x) ⊂ A2. Setting ε := min(ε1, ε2) > 0 yields Bε(x) ⊂ A1 ∩A2, and hence
A1 ∩ A2 ∈ T . For the proof of (T4) let x �= y. Then the triangle inequality
yields that
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Br(x) ∩ Br(y) = ∅ for r := 1
2d(x, y) > 0 ,

and Br(x) ,Br(y) ∈ T (see E2.2(2)). ��

2.13 Definition. Let (X, T ) be a topological space. A subset A ⊂ X is
called dense in X if clos (A) = X, and X is called separable if X contains
a countable dense subset. A subset A ⊂ X is called separable if the relative
topological space (A, TA) is separable. Hence, if (X, d) is a metric space, a
subset A ⊂ X is separable if the metric space (A, d) is separable.

2.14 Comparison of topologies. Let T1, T2 be two topologies on a set X.
We say that T2 is stronger (or finer) than T1, or equivalently that T1 is
weaker (or coarser) than T2, if

T1 ⊂ T2 .

Let d1, d2 be two metrics on X and T1, T2 the corresponding induced topolo-
gies (see 2.11). Then the metric d2 is said to be stronger (weaker) than d1 if
T2 is stronger (weaker) than T1. The metrics d1 and d2 are called equivalent,
if T1 = T2. Similarly, a norm is said to be stronger (weaker) than another
norm, and two norms are called equivalent if this holds for the induced
metrics, respectively.

2.15 Comparison of norms. Let ‖·‖1 and ‖·‖2 be two norms on a IK-vector
space X. Then

(1) ‖·‖2 is stronger than ‖·‖1 if and only if there exists a positive number
C such that

‖x‖1 ≤ C‖x‖2 for all x ∈ X .

(2) The two norms are equivalent if and only if there exist positive numbers
c and C such that

c‖x‖2 ≤ ‖x‖1 ≤ C‖x‖2 for all x ∈ X .

Proof (1). Let Bi
r(x) denote the balls and Ti the topologies with respect to

the norms ‖·‖i. Let T1 ⊂ T2. Since B1
1(0) ∈ T1 (see E2.2(2)), B1

1(0) is open
with respect to ‖·‖2 and, in particular, 0 lies in the interior (with respect to
‖·‖2) of B1

1(0), i.e.

B2
ε(0) ⊂ B1

1(0) for some ε > 0.

This means, for x ∈ X, x �= 0, that∥∥∥∥ εx

2‖x‖2

∥∥∥∥
2

=
ε

2
< ε , therefore

∥∥∥∥ εx

2‖x‖2

∥∥∥∥
1

< 1 ,

that is ‖x‖1 ≤ 2

ε
‖x‖2 .

Conversely, if the inequality in assertion (1) holds, then
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B2
r(x) ⊂ B1

Cr(x) for all x ∈ X and r > 0.

Let A ∈ T1. Then A = intrd1
(A) with respect to T1, and for x ∈ A there is

an ε > 0 such that

B1
ε(x) ⊂ A , therefore B2

ε
C
(x) ⊂ A .

This proves that A ∈ T2. ��

Proof (2). Apply (1) twice. ��

2.16 Examples.

(1) The p-norms on IKn defined in 2.5 are pairwise equivalent, since for
1 ≤ p < ∞

|x|∞ ≤ |x|p ≤ n
1
p |x|∞ .

(2) The Euclidean norm and the Fréchet metric in 2.8(1) induce the same
topology on IKn, since for y ∈ IKn

|y | ≤ 2�(y) if �(y) ≤ 1
2 , �(y) ≤ |y | .

Hence, Bmetric
r
2

(x) ⊂ Bnorm
r (x) ⊂ Bmetric

r (x) for 0 < r ≤ 1.

(3) For open sets U ⊂ IR ∪ {±∞} with respect to the metric in 2.8(2) it
holds that

x ∈ U ∩ IR ⇐⇒ ]x − ε, x+ ε[ ⊂ U for an ε > 0 ,

+∞ ∈ U ⇐⇒ ]
1
ε ,+∞] ⊂ U for an ε > 0 ,

−∞ ∈ U ⇐⇒ [− ∞,− 1
ε[ ⊂ U for an ε > 0 .

(4) For open sets U ⊂ IKn∪{∞} with respect to the metric in 2.8(3) it holds
that

x ∈ U ∩ IKn ⇐⇒ {y ∈ IKn ; |y − x| < ε} ⊂ U for an ε > 0 ,

∞ ∈ U ⇐⇒ {y ∈ IKn ; |y | > 1
ε} ⊂ U for an ε > 0 .

One of the most important concepts in analysis is the notion of a limit
and the resulting concept of continuity. Given a mapping f : X → Y between
Hausdorff spaces X and Y , then f is continuous at x0 ∈ X (see 2.17(4)
below) if

f(x0) = lim
x→x0

f(x) in Y.

This is the well-known notion of continuity in the analysis of Euclidean spaces.
We now generalize this concept as follows: Given sets S, X, Y and mappings
ϕ : S → X, f : S → Y , we consider two points x0 ∈ X, y0 ∈ Y and the
question is whether the function values f(s) are “close to” y0 if ϕ(s) is “close
to” x0. In metric spaces we can define the notion of closeness with the help
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of balls around x0 and y0, and similarly in topological spaces with the help
of open sets that contain x0 and y0, respectively.

Usually we have that S ⊂ X and ϕ(s) = s for s ∈ S. But often this is
not the case. A nontrivial example is given in A3.17 (there S is a system of
sets with f(E) := |ν(E)| and ϕ(E) := μ(E) for E ∈ S, hence X = IR and
Y = IR).

2.17 Convergence and continuity. Let S be a set, (X, TX) and (Y, TY )
Hausdorff spaces, and

ϕ : S → X, x0 ∈ X, f : S → Y, y0 ∈ Y.

We say that

f(s) converges to y0 in Y (with respect to TY )

as ϕ(s) goes to x0 in X (with respect to TX),

and use the notation

f(s) → y0 in Y as ϕ(s) → x0 in X ,

if the following holds for all U0 ⊂ X, V0 ⊂ Y :

x0 ∈ U0 ∈ TX ,

y0 ∈ V0 ∈ TY

=⇒
There exists a U ∈ TX such that x0 ∈ U ⊂ U0 ,

ϕ−1(U) �= ∅ and f
(
ϕ−1(U)

)
⊂ V0 .

The conclusion states that for a U ∈ TX with x0 ∈ U ⊂ U0 it holds that

s ∈ S, ϕ(s) ∈ U =⇒ f(s) ∈ V0 ,

and that ϕ(s) ∈ U for at least one s ∈ S. We have (see E2.4):

(1) Given x0, f , ϕ, there exists at most one such y0 ∈ Y . Hence we write

y0 = lim
ϕ(s)→x0

f(s) ,

and call y0 the limit of f(s) as ϕ(s) goes to x0.

(2) x0 ∈ clos (ϕ(S)) and y0 ∈ clos (f(S)).

(3) The most important special case is: S ⊂ X and ϕ(s) = s for s ∈ S.
Then, for points x0 ∈ clos (S) and y0 ∈ Y , the definition

f(x) → y0 in Y as x → x0 in X , i.e. y0 = lim
x→x0

f(x) ,

is equivalent to

V ∈ TY , y0 ∈ V =⇒
There exists a U ∈ TX such that x0 ∈ U

and f(U ∩ S) ⊂ V ,

in words: For every open set V containing y0 there exists an open set U
containing x0 such that f(U ∩ S) is contained in V .
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(4) If in (3) in addition x0 ∈ S, then it follows that y0 = f(x0), i.e.

f(x0) = lim
x→x0

f(x) .

In this case f is called continuous at the point x0.

(5) If S = X, then f : X → Y is called a continuous map if f is continuous
at all points x0 ∈ X. This is equivalent to

V ∈ TY =⇒ f−1(V ) ∈ TX ,

in words: The mapping f has the property that the inverse image of each
open set in Y is open in X.

2.18 Convergence in metric spaces. Let (X, dX) and (Y, dY ) be metric
spaces and let A ⊂ X and f : A → Y .

(1) Let x0 ∈ clos (A) and y0 ∈ Y . Then

f(x) → y0 in Y as x → x0 in X

if and only if:

For all ε > 0 there exists a δ > 0, such that

x ∈ A, dX(x, x0) < δ =⇒ dY
(
f(x), y0

)
< ε ,

i.e. if and only if

dY (f(x), y0) → 0 as dX(x, x0) → 0 (in IR).

Using quantifiers this property can be written as:

∀ ε > 0 : ∃ δ > 0 : ∀ x ∈ A : dX(x, x0) < δ =⇒ dY
(
f(x), y0

)
< ε .

(2) Let X = IKn∪{∞} (equipped with the metric in 2.8(3)) and let A ⊂ IKn

be unbounded. Then ∞ ∈ clos (A), and x → ∞ in IKn ∪ {∞} means that
|x| → +∞ in IR ∪ {±∞} (equipped with the metric in 2.8(2)). Let y ∈ Y .
Then

f(x) → y in Y as |x| → +∞
if and only if:

For all ε > 0 there exists a δ > 0, such that

x ∈ A, |x| > 1
δ =⇒ dY

(
f(x), y

)
< ε .

Using quantifiers this property can be written as:

∀ ε > 0 : ∃ δ > 0 : ∀ x ∈ A : |x| > 1
δ =⇒ dY

(
f(x), y

)
< ε .

(3) Let X = IR∪{±∞} (equipped with the metric in 2.8(2)) and let A = IN,
i.e. (yj)j∈IN with yj := f(j) is a sequence in Y . It then holds for y ∈ Y that

yj → y in Y as j → +∞
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if and only if:

For all ε > 0 there exists a k ∈ IN such that

j ∈ IN, j > k =⇒ dY (yj , y) < ε .

Using quantifiers this property can be written as:

∀ ε > 0 : ∃ k ∈ IN : ∀ j ∈ IN : j > k =⇒ dY (yj , y) < ε .

(4) In metric spaces convergence is equivalent to sequential convergence,
that is, the convergence in (1) holds if and only if for all sequences (xj)j∈IN
in A:

xj → x0 as j → ∞ =⇒ dY
(
f(xj), y0

)
→ 0 as j → ∞ . (2-7)

Proof (1). Use the fact that balls Bε(y0) belong to the topology TY induced
by dY and that

y0 ∈ V ∈ TY =⇒ Bε(y0) ⊂ V for an ε > 0 .

Likewise in X, every Bδ(x0) ∈ TX , and if x0 ∈ U ∈ TX , then Bδ(x0) ⊂ U for
some δ > 0. ��

Proof (2). Follows from (1), on noting that for 0 < δ′ < 1 for the ball Bδ′(∞)
with respect to the stereographic projection the following is true:

x ∈ Bδ′(∞) ⇐⇒ |x| >
√
δ′

−2 − 1 =: δ−1 .
��

Proof (3). Similarly to (2), by choosing 1
δ ≤ k < 1

δ + 1. ��

Proof (4). Assume that (1) holds and that xj → x0 in X as j → ∞. Then
given ε > 0, there exists a δ > 0 such that dY (f(x), y0) < ε for x ∈ A
with dX(x, x0) < δ. Then (3) yields the existence of a k ∈ IN such that
dX(xj , x0) < δ for j > k. Consequently dY (f(xj), y0) < ε. This proves the
claim in (4).

Conversely, assume that the convergence statement in (1) is not true.
Then we have to negate the assertion

∀ ε > 0 : ∃ δ > 0 : ∀ x ∈ A : dX(x, x0) < δ =⇒ dY
(
f(x), y0

)
< ε .

The negation is:

∃ ε > 0 : ∀ δ > 0 : ∃ x ∈ A : dX(x, x0) < δ and dY
(
f(x), y0

)
≥ ε .

Consequently there exist an ε > 0 and, for δj := 1
j , j ∈ IN, an xj ∈ A such

that

dX(xj , x0) < δj and dY
(
f(xj), y0

)
≥ ε.

In particular, xj → x0 in X as j → ∞, but dY (f(xj), y0) ≥ ε for all j ∈ IN.
This contradicts (2-7). ��
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2.19 Note. In 2.18(3) we identified sequences in Y with maps from IN to Y .
This can be generalized to arbitrary sets I and A. Here the notation (ai)i∈I ,
with ai ∈ A for i ∈ I, defines a map i �→ ai from I to A. The set of all of
these maps is denoted by AI and I is also called index set,

AI := {(ai)i∈I ; ∀ i ∈ I : ai ∈ A} .

In this book, I is usually a subset of IN. Examples are the sequence space
IKIN in 2.23 and the set XIN in 2.24. In addition one can identify IKn with
IK{1,...,n}. In general it is important to note that (ai)i∈I is well distinguished
from the subset {ai ∈ A ; i ∈ I} ⊂ A (relevant in e.g. 9.3).

The analysis of limits in metric spaces is often based on inequalities, which
we also call “estimates” or “bounds”; this is especially true in function spaces.
Usually performing the limit is not trivial and consists of a “nested limit”.

2.20 Note (Nested limits). We make the following remark on convergence
proofs. By a nested limit for sequences defined on IN we understand the
following. Let ai ≥ 0, bk,i ≥ 0, ck ≥ 0 for i, k ∈ IN with the property

ai ≤ bk,i︸ ︷︷ ︸
→ 0 as i → ∞
for a fixed k

+ ck︸ ︷︷ ︸
→ 0 as k → ∞

.

From this we deduce that (ai)i∈IN is a null sequence, i.e.

ai → 0 as i → ∞ .

To see this, assume that the inequality ai ≤ bk,i + ck holds for i, k ∈ IN, that
ck → 0 as k → ∞ and that for each k ∈ IN we have that bk,i → 0 as i → ∞.
For an arbitrary ε > 0 we can then choose a kε ∈ IN such that ckε

< ε.
Moreover, for this kε there exists an iε such that bkε,i < ε for all i > iε.
Hence we have that

ai ≤ bkε,i + ckε
< 2ε for all i > iε .

This proves that (ai)i∈IN is a null sequence.
This book contains many such limit considerations. A first example you

can find in the proof of 2.23(2). In these cases the detailed argumentation
will either be omitted, or dramatically shortened to something like:

First choose k large, then choose i large.

Also nested limits with more than two indices are used.

One of the most important concepts in metric spaces is the
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2.21 Completeness. Let (X, d) be a metric space.

(1) A sequence (xk)k∈IN in X is called a Cauchy sequence if

d(xk, xl) → 0 as (k, l) → (∞,∞).

One usually writes k, l → ∞ in place of (k, l) → (∞,∞).

Remark: Here convergence of (k, l) ∈ IN2 ⊂ (IR∪{±∞})2 is understood with
respect to the product metric d2(a, b) := d1(a1, b1)+d1(a2, b2) for a = (a1, a2)
and b = (b1, b2) in (IR ∪ {±∞})2, where d1 is the metric on IR ∪ {±∞} as
defined in 2.8(2).

(2) If (xk)k∈IN is a sequence in X, then a point x ∈ X is called a cluster
point of this sequence if there exists a subsequence (xki

)i∈IN (i.e. a sequence
(ki)i∈IN in IN with ki → ∞ as i → ∞) such that x = limi→∞ xki

.

Remark: The set of all cluster points of a sequence (xk)k∈IN in X is identical
to the closed set ⋂

m∈IN

closX ({xk ∈ X ; k ≥ m}) . (2-8)

(3) The metric space (X, d) is called complete if every Cauchy sequence in
X has a cluster point in X.

Remark: Because every Cauchy sequence can have at most one cluster point,
this means that every Cauchy sequence in X has a limit in X.

2.22 Banach spaces and Hilbert spaces.

(1) A normed IK-vector space X is called a Banach space if it is complete
with respect to the induced metric.

(2) A Banach space X is called a Banach algebra if it is an algebra satis-
fying

‖xy‖X ≤ ‖x‖X · ‖y‖X for all x, y ∈ X. (2-9)

Here X is an algebra if a product (x, y) �→ xy ∈ X is defined on X which
satisfies the associative law, the distributive law and α(xy) = (αx)y = x(αy)
for all α ∈ IK and all x, y ∈ X. The algebra is called commutative if xy = yx
for all x, y ∈ X.

(3) A pre-Hilbert space that is complete with respect to the induced metric
is called Hilbert space.

The basic example of a complete space is the space of real numbers IR,
where the axiom of completeness in IR is precisely the additional axiom com-
pared to the space of rational numbers Q. From the completeness of IR one
can then deduce (see E2.6) that IRn and Cn are complete (with respect to any
of the metrics introduced in 2.5 and 2.8). As the simplest infinite-dimensional
example we now consider
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2.23 Sequence spaces. We denote by IKIN the set of all sequences (defined
on IN) with values in IK:

IKIN :=
{
x = (xi)i∈IN ; xi ∈ IK for i ∈ IN

}
.

The canonical unit vectors in IKIN are given by

ei := (0, . . . , 0, 1

↑
, 0, . . .) for i ∈ IN.

i-th component

Then:

(1) The set IKIN becomes a metric space with the Fréchet metric

�(x) :=
∑
i∈IN

2−i |xi |
1 + |xi |

for x = (xi)i∈IN ∈ IKIN .

(2) Let xk =
(
xk
i

)
i∈IN

∈ IKIN and x = (xi)i∈IN ∈ IKIN. Then

�(xk − x) → 0 as k → ∞
⇐⇒ For every i : ( xk

i → xi as k → ∞ ) .

(3) The set IKIN equipped with this metric is complete.

(4) For x = (xi)i∈IN ∈ IKIN we define

‖x‖�p :=
(∑
i∈IN

|xi |p
) 1

p ∈ [0,∞] , if 1 ≤ p < ∞,

‖x‖�∞ := sup
i∈IN

|xi | ∈ [0,∞] ,

and consider for 1 ≤ p ≤ ∞ the set (for the case 0 < p < 1 see E4.11)

�p(IK) :=
{
x ∈ IKIN ; ‖x‖�p < ∞

}
.

Then the set �p(IK) with the norm x �→ ‖x‖�p is a Banach space.

(5) If p = 2, then �2(IK) becomes a Hilbert space with the scalar product

(x , y)�2 :=
∑
i∈IN

xi yi for x, y ∈ �2(IK) .

Proof (1). Let �0(s) :=
|s|

1+|s| for s ∈ IK. Then

�(x) =

∞∑
i=1

2−i�0(xi) ≤
∞∑
i=1

2−i = 1 ,

and hence �(x) is always finite. The triangle inequality for � follows as in
2.8(1). ��
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Proof (2). Let xk, x ∈ IKIN with �(xk−x) → 0 as k → ∞. Then �0(x
k
i −xi) ≤

2i�(xk − x) → 0 for all i, and hence
∣∣xk

i − xi

∣∣ → 0 as k → ∞. Conversely,
assuming that xk

i → xi as k → ∞ for all i yields that

�(xk − x) ≤
j∑

i=1

2−i�0(x
k
i − xi)︸ ︷︷ ︸

→ 0 as k → ∞ for any j

+ 2−j︸︷︷︸
→ 0 as j → ∞

.

Consequently, �(xk − x) → 0 as k → ∞. ��

Proof (3). If
(
xk
)
k∈IN

is a Cauchy sequence in IKIN, then, similarly to the

above, it follows that
(
xk
i

)
k∈IN

is a Cauchy sequence in IK for any i. Hence
there exist the limit

xi := lim
k→∞

xk
i in IK .

On setting x := (xi)i∈IN it follows from (2) that �(xk −x) → 0 as k → ∞. ��

Proof (4). This is a special case of the more general result in 3.16 for the
counting measure on IN. Here we give a separate proof.

Let x = (xi)i∈IN and y = (yi)i∈IN be in �p(IK) and for n ∈ IN define
xn := (x1, . . . , xn), y

n := (y1, . . . , yn). It follows from 2.5 that

|xn + yn |p ≤ |xn |p + |yn |p ≤ ‖x‖�p + ‖y‖�p < ∞ .

Letting n → ∞ this implies that x+ y ∈ �p(IK), with

‖x+ y‖�p ≤ ‖x‖�p + ‖y‖�p .

Hence �p(IK) is a normed space. In order to show completeness, let
(
xk
)
k∈IN

,

with xk =
(
xk
i

)
i∈IN

∈ �p(IK), be a Cauchy sequence in �p(IK). As
∣∣xk

i − xl
i

∣∣ ≤∥∥xk − xl
∥∥
�p

we have that
(
xk
i

)
k∈IN

are Cauchy sequences in IK, and hence

there exist xi := limk→∞ xk
i ∈ IK. This implies for n ∈ IN in the case p < ∞

that as l → ∞
n∑

i=1

∣∣xk
i − xi

∣∣p ←−
n∑

i=1

∣∣xk
i − xl

i

∣∣p ≤
∥∥xk − xl

∥∥p
�p
,

and so ( n∑
i=1

∣∣xk
i − xi

∣∣p) 1
p ≤ lim sup

l→∞

∥∥xk − xl
∥∥
�p

=: εk < ∞

for all n. Hence xk − x ∈ �p(IK), and consequently x ∈ �p(IK), and it holds
that

∥∥xk − x
∥∥
�p

≤ εk → 0 as k → ∞. In the case p = ∞ we can argue
analogously. ��

The set of real numbers IR may be defined as the completion of the rational
numbers Q. This procedure can be generalized to arbitrary metric spaces.
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2.24 Completion. Let (X, d) be a (not necessarily complete) metric space.
Consider the set XIN of all sequences in X and define

X̃ :=
{
x̃ = (xj)j∈IN ∈ XIN ; (xj)j∈IN is a Cauchy sequence in X

}
with the equivalence relation

(xj)j∈IN = (yj)j∈IN in X̃ :⇐⇒ (d(xj , yj))j∈IN is a null sequence.

Then (X̃, d̃) is a complete metric space, where d̃ is defined by

d̃
(
(xj)j∈IN , (yj)j∈IN

)
:= lim

j→∞
d(xj , yj) .

Moreover, the rule J(x) := (x)j∈IN defines an injective map J : X → X̃ which
is isometric, i.e.

d̃
(
J(x), J(y)

)
= d(x, y) for all x, y ∈ X .

For (xj)j∈IN ∈ X̃ it holds that d̃
(
(xj)j∈IN , J(xi)

)
→ 0 as i → ∞, and so

J(X) is dense in X̃.

Conclusion: The above shows that for any metric space (X, d) there exist a

complete metric space (X̃, d̃) and an injective isometric map J : X → X̃ such

that J(X) is dense in X̃. It is then natural to identify elements x ∈ X with

J(x) ∈ X̃.

Proof. For x̃ = (xi)i∈IN and ỹ = (yi)i∈IN in X̃ we have

|d(xj , yj) − d(xi, yi)| ≤ |d(xj , yj) − d(xi, yj)| + |d(xi, yj) − d(xi, yi)|
≤ d(xj , xi) + d(yj , yi) (triangle inequality)

→ 0 as i, j → ∞ ,

and hence there exists

d̃(x̃, ỹ) := lim
i→∞

d(xi, yi) .

Similarly, it follows for x̃1 = x̃2 in X̃ and ỹ1 = ỹ2 in X̃ that∣∣d(x2
i , y

2
i ) − d(x1

i , y
1
i )
∣∣→ 0 as i → ∞.

This shows that d̃ : X̃ × X̃ → IR is well defined (see the remark in 2.4).

Furthermore, it follows that d̃(x̃, ỹ) = 0 if x̃ = ỹ in X̃, and the triangle

inequality carries over from d to d̃. Hence d̃ is a metric on X̃.
In order to show completeness, let

(
xk
)
k∈IN

be a Cauchy sequence in X̃,

where xk =
(
xk
j

)
j∈IN

for k ∈ IN. Given k ∈ IN choose jk such that
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d(xk
i , x

k
j ) ≤ 1

k for i, j ≥ jk .

Then
d(xk

jk
, xl

jl
) ≤ d(xk

jk
, xk

j ) + d(xk
j , x

l
j) + d(xl

j , x
l
jl
)

≤ 1

k
+ d(xk

j , x
l
j) +

1

l
for j ≥ jk, jl

→ 1

k
+ d̃
(
xk, xl

)
+

1

l
as j → ∞

→ 0 as k, l → ∞.

(2-10)

Hence we have that x∞ :=
(
xl
jl

)
l∈IN

∈ X̃ and

d̃(xl, x∞) ← d(xl
k, x

∞
k ) as k → ∞

≤ d(xl
k, x

l
jl
) + d(xl

jl
, xk

jk
) ≤ 1

l
+ d(xl

jl
, xk

jk
) for k ≥ jl

→ 0 as k, l → ∞ (recall (2-10)).

The assertions on J are easily verified. ��

This means that every metric space that is not complete can be extended
to a complete space. Examples of completions are the space of Lebesgue
integrable functions in Appendix A3 and the Sobolev spaces in 3.27.

E2 Exercises

E2.1 Open and closed sets. If (X, T ) is a topological space, then it holds
for A ⊂ X that:

(1) X \ clos (A) = intr (X \ A).

(2) intr (A) is open, and clos (A) is closed.

(3) A ∈ T ⇐⇒ A = intr (A).

(4) X \A ∈ T ⇐⇒ A = clos (A).

Solution (1). From the negation of the definition of a closure in 2.11 it follows
for x ∈ X \ clos (A) that there exists an U ∈ T with x ∈ U and U ∩ A = ∅.
This means U ⊂ X \ A and U ∈ T with x ∈ U , and this is the definition of
a point x ∈ intr (X \A). ��

Solution (2). Let T ′ := {U ∈ T ; U ⊂ A, U ∩ intr (A) �= ∅}. On recalling the
definition of the interior of A we then have that

intr (A) ⊂ V :=
⋃

U∈T ′

U ∈ T .

Moreover, x ∈ U ∈ T ′ implies that U ∈ T and x ∈ U ⊂ A, and so x ∈
intr (A). Hence, intr (A) = V ∈ T . The second claim now follows from (1).

��
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Solution (3). If A ∈ T and x ∈ A, then x ∈ U := A with U ∈ T , and so
A ⊂ intr (A) ⊂ A. Conversely, A = intr (A) ∈ T by (2). ��

Solution (4). Follows from (3) on noting (1). ��

E2.2 Distance and neighbourhoods. Let (X, d) be a metric space and
A ⊂ X. Then:

(1) dist(·, A) is a Lipschitz continuous function with Lipschitz constant ≤ 1,
where equality holds if X \A is nonempty.

(2) The neighbourhoods Br(A) for r > 0 are open sets. In particular, all
balls Br(x) for x ∈ X and r > 0 are open.

(3) For r1, r2 > 0, one has Br1(Br2(A)) ⊂ Br1+r2(A), and equality holds if
X is a normed space.

Solution (1). Let x, y ∈ X. Given ε > 0 choose a ∈ A such that d(x, a) ≤
dist(x,A) + ε. On employing the triangle inequality it then follows that

dist(y,A) − dist(x,A) ≤ d(y, a) − d(x, a) + ε ≤ d(y, x) + ε .

A symmetry argument then yields that

|dist(y,A) − dist(x,A)| ≤ d(x, y) .

This corresponds to the definition of Lipschitz continuity in 3.7 with Lipschitz
constant ≤ 1. If x ∈ X \ A, then Bε(x) ∩ A = ∅ for an ε > 0, and hence
dist(x,A) is positive. Now choose for every ε > 0 a y ∈ A such that d(x, y) ≤
(1 + ε)dist(x,A). It follows that

|dist(y,A) − dist(x,A)| = dist(x,A) ≥ 1

1 + ε
d(x, y) ,

which shows that the Lipschitz constant is equal to 1. ��

Solution (2). Let x ∈ Br(A) and δ := r − dist(x,A) > 0. If y ∈ Bδ(x), then,
by (1),

dist(y,A) ≤ dist(x,A) + d(x, y) < dist(x,A) + δ = r ,

and so Bδ(x) ⊂ Br(A). ��

Solution (3). Let x ∈ Br1(Br2(A)), i.e. dist(x,Br2(A)) < r1. Then there
exists a y ∈ Br2(A) with d(x, y) < r1. It follows from (1) that

dist(x,A) ≤ dist(y,A) + d(x, y) < r2 + r1 .

Now let X be a normed space and x ∈ Br1+r2(A). Then there exists a y ∈ A
with ‖x − y‖ < r1 + r2. It follows for

z := (1 − s)x+ sy , s :=
r2

r1 + r2
,

that
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‖z − y‖ = (1 − s)‖x − y‖ < r1 and ‖x − z‖ = s‖x − y‖ < r2 ,

and so x ∈ Br2(Br1(A)). ��

E2.3 Construction of metrics. Let ψ : [0,∞[ → [0,∞[ be a continu-
ously differentiable strictly monotone function with ψ(0) = 0 and nonincreas-
ing derivative ψ′. Then

d is a metric on X =⇒ ψ◦d is a metric on X .

Example:

ψ(t) :=
t

1 + t
.

Solution. We have to verify the metric axioms in 2.6 for ψ ◦d. The axiom
(M1) is satisfied, since

ψ(d(x, y)) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y .

The axiom (M3) follows from

ψ(d(x, y)) ≤ ψ(d(x, z) + d(z, y)) = ψ(d(x, z)) +

∫ d(z,y)

0

ψ′(d(x, z) + t) dt

≤ ψ(d(x, z)) +

∫ d(z,y)

0

ψ′(t) dt = ψ(d(x, z)) + ψ(d(z, y)) .

��

E2.4 Convergence. Prove the assertions on convergence in 2.17.

Proof 2.17(1). Assume that f(s) → y1 and f(s) → y2 in Y as ϕ(s) → x0 with
y1 �= y2. As Y is a Hausdorff space, there exist y1 ∈ V1 ∈ TY and y2 ∈ V2 ∈ TY

such that V1 ∩ V2 = ∅. However, the definition of convergence yields that
there exists a U1 ∈ TX such that x0 ∈ U1 and f

(
ϕ−1(U1)

)
⊂ V1, and then

a U2 ∈ TX such that x0 ∈ U2 ⊂ U1, ϕ
−1(U2) �= ∅ and f

(
ϕ−1(U2)

)
⊂ V2. As

U2 ⊂ U1 it follows that f
(
ϕ−1(U2)

)
⊂ V2 ∩ V1 = ∅, and so ϕ−1(U2) = ∅,

which is a contradiction. ��

Proof 2.17(2). For x0 ∈ U0 ∈ TX the definition of convergence gives that
ϕ−1(U0) �= ∅, i.e. ϕ(S) ∩ U0 �= ∅, and so x0 ∈ clos (ϕ(S)). In addition it
follows from the definition of convergence that for y0 ∈ V0 ∈ TY there exists
an s ∈ S with f(s) ∈ V0, and so y0 ∈ clos (f(S)). ��

Proof 2.17(3). Choosing U0 = X and V0 = V yields convergence in 2.17(3).
Conversely, set V = V0. Then if x0 ∈ U ∈ TX with f(U ∩ S) ⊂ V as in

2.17(3), it holds for Ũ = U ∩ U0 that

Ũ ∩ S �= ∅ (since x0 ∈ clos (S)) and f(Ũ ∩ S) ⊂ V0 .
��
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Proof 2.17(4). Let y0 ∈ V ∈ TY and then U as in 2.17(3). It follows from
x0 ∈ U ∩ S that f(x0) ∈ V . As Y is a Hausdorff space, this implies that
f(x0) = y0. ��

Proof 2.17(5). Let f be continuous, and V ∈ TY with x0 ∈ f−1(V ). Since f
is continuous at x0, there exists a U ∈ TX such that x0 ∈ U and f(U) ⊂ V ,
i.e. x0 ∈ U ⊂ f−1(V ). Hence f−1(V ) ∈ TX . Conversely, let x0 ∈ X and
f(x0) ∈ V ∈ TY . Then x0 ∈ U := f−1(V ) ∈ TX , which proves the continuity
of f in x0. ��

E2.5 Examples of continuous maps.

(1) Let T1, T2 be two topologies on X. Then the identity Id : X → X,
defined by Id(x) := x, is a continuous map from (X, T2) to (X, T1) if and
only if T2 is stronger than T1.

(2) If (X, d) is a metric space, then d : X × X → IR is continuous.

(3) If (X, ‖·‖) is a normed space, then the norm is a continuous map from
X to IR.

(4) Let (·1 , ·2) be a scalar product on the IK-vector space X, let ‖·‖ be the
corresponding induced norm and consider the normed space (X, ‖·‖). Then
the scalar product is a continuous map from X × X to IK.

Solution (2). Use E2.2(1). ��

Solution (3). This follows from (2) and the definition of the induced metric
in 2.6. ��

Solution (4). Employ the Cauchy-Schwarz inequality 2.2(2). ��

E2.6 Completeness of Euclidean space. The set IKn is complete with
respect to all of the metrics given in 2.5 and 2.8.

Solution. First show the completeness with respect to the ∞-norm in 2.5: If(
xk
)
k∈IN

is a Cauchy sequence with respect to this norm, xk =
(
xk
i

)
i=1,...,n

,

then
∣∣xk

i − xl
i

∣∣ ≤ ∥∥xk − xl
∥∥
∞, and so

(
xk
i

)
k∈IN

are Cauchy sequences in IK,

which means that there exist xi = limk→∞ xk
i in IK (because IR and C are

complete, with the completeness of the latter following from that of IR2, which
is shown here). Hence

∣∣xk
i − xi

∣∣→ 0 as k → ∞ for every i ∈ {1, . . . , n}, which
implies that

∥∥xk − x
∥∥
∞ → 0 as k → ∞.

The completeness with respect to the other metrics then follows from the
results in 2.16. ��

E2.7 Incomplete function space. Let I := [a, b] ⊂ IR be an interval with
a < b, and for n ∈ IN let

Pn := {f : I → IR ; f is a polynomial of degree ≤ n} .
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Then P :=
⋃

n∈IN Pn equipped with

‖f ‖∞ := sup
x∈I

|f(x)| for f ∈ P

is a normed space that is not complete.

Solution. The norm axioms are easily verified. Setting

f(x) := ex =

∞∑
i=1

1

i!
xi , fn(x) :=

n∑
i=1

1

i!
xi

we have that
sup
x∈I

|fn(x) − f(x)| → 0 as n → ∞.

Hence (fn)n∈IN is a Cauchy sequence in P. If g = limn→∞ fn existed in P, it
would follow that |fn(x) − g(x)| ≤ ‖fn − g‖∞ → 0 as n → ∞ for all x ∈ I,
and so g = f /∈ P, which is a contradiction. ��

E2.8 On completeness. Let (X, d) be a metric space. Then:

(1) If (X, d) is complete and Y ⊂ X is closed, then (Y, d) is also a complete
metric space.

(2) If Y ⊂ X and (Y, d) is complete, then Y is closed in X (as a subset of
the metric space (X, d)).

Solution (1). If
(
xk
)
k∈IN

is a Cauchy sequence in Y , then it is also a Cauchy
sequence in X. The completeness of X yields that it has a limit x ∈ X. As
Y is closed it follows that x ∈ Y . ��

Solution (2). Let
(
xk
)
k∈IN

be a sequence in Y converging in X to x ∈ X.
Since Y is equipped with the metric d, it is a Cauchy sequence in Y . The
completeness of Y yields that it has a limit y ∈ Y . Now y must also be the
limit of the sequence in X, and so x = y ∈ Y . ��

E2.9 Hausdorff distance between sets. Let (X, d) be a metric space and

A := {A ⊂ X ; A is nonempty, bounded and closed} .

The Hausdorff distance between A1 ∈ A and A2 ∈ A is defined by

dH(A1, A2) := inf{ε > 0 ; A1 ⊂ Bε(A2) and A2 ⊂ Bε(A1)} .

Then dH is a metric on A, and for A,B ∈ A we have

dH(A,B) = max

(
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

)
= sup

x∈M
|dist(x,A) − dist(x,B)|

for any set M with A ∪ B ⊂ M ⊂ X.
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Solution. If dH(A1, A2) = 0, then

A1 ⊂
⋂
ε>0

Bε(A2) = A2 = A2 ,

and similarly A2 ⊂ A1. Moreover, dH is symmetric by definition. Given
A1, A2, A3 ∈ A and δ > 0, there exist numbers ε1 > 0, ε2 > 0 such that

ε1 ≤ dH(A1, A2) + δ, A1 ⊂ Bε1(A2) , A2 ⊂ Bε1(A1) ,

ε2 ≤ dH(A2, A3) + δ, A2 ⊂ Bε2(A3) , A3 ⊂ Bε2(A2) .

By E2.2(3),
A1 ⊂ Bε1(Bε2(A3)) ⊂ Bε1+ε2(A3) ,

A3 ⊂ Bε2(Bε1(A1)) ⊂ Bε1+ε2(A1) ,

and hence

dH(A1, A3) ≤ ε1 + ε2 ≤ dH(A1, A2) + dH(A2, A3) + 2δ .

This shows that dH defines a metric.
Now let A,B ∈ A, d := dH(A,B) and

dmax := max

(
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)

)
,

dsup := sup
x∈M

|dist(x,A) − dist(x,B)| .

Then dsup ≥ dmax, on noting that

dsup ≥ sup
x∈B

|dist(x,A) − 0| ,

and applying a symmetry argument. Moreover, dmax ≥ d, as for δ > 0 we
have that

B ⊂ Bdmax+δ(A) ,

and hence, by a symmetry argument, that dmax + δ ≥ d. Furthermore, d ≥
dmax, since B ⊂ Bε(A) and A ⊂ Bε(B) implies that

dist(b, A) < ε for b ∈ B and dist(a,B) < ε for a ∈ A ,

and so dmax ≤ ε. Finally, dmax ≥ dsup, because for x ∈ X and δ > 0, there
exists a b ∈ B such that

dist(x,B) ≥ d(x, b) − δ .

Thanks to E2.2(1),

dist(x,A) − dist(x,B) ≤ dist(x,A) − d(x, b) + δ ≤ dist(b, A) + δ ,

and hence, by a symmetry argument, dsup ≤ dmax + δ. ��
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In this chapter we introduce the most important function spaces occurring in
analysis. They are the spaces of continuous and differentiable functions, also
called classical function spaces (see 3.2–3.7), the spaces of integrable func-
tions, also called Lebesgue spaces (see 3.15–3.21), and the Sobolev spaces
(see 3.27–3.29). Sobolev spaces combine properties regarding differentiabil-
ity with those concerning integrability, and they play a fundamental role in
the treatment of differential equations. Although in this chapter we almost
exclusively consider functions with values in Banach spaces, for an under-
standing of the basic results it is sufficient to replace the Banach space Y
with a Euclidean space IRk. However, for more advanced topics, including
applications to parabolic differential equations, it will be crucial to consider
the case where Y is itself a function space.

3.1 Bounded functions. Let S be a set and let Y be a Banach space over
IK with norm y �→ |y |. We define the set of bounded functions (or bounded
maps) on S with values in Y by

B(S;Y ) :=
{
f : S → Y ; f(S) is a bounded subset of Y

}
.

This is a subset of the set F (S;Y ) of all functions from S to Y (see the
Introduction). On defining

(f1 + f2)(x) := f1(x) + f2(x) for x ∈ S,

(αf)(x) := αf(x) for x ∈ S
(3-1)

for functions f1, f2, f and α ∈ IK, the set B(S;Y ) becomes a IK-vector space,
and with the supremum norm

‖f ‖B(S)

(
or ‖f ‖sup

)
:= sup

x∈S
|f(x)|

a Banach space. We use the abbreviation B(S) for B(S; IK) and use similar
abbreviations for all the function spaces below.

Remark: Strictly speaking, the norm ‖f ‖B(S) would need to be written

‖f ‖B(S;Y ). But since then ‖f ‖B(S;Y ) = ‖|f |‖B(S;IR), we drop the image space
Y in the subscript for notational convenience, and we will proceed similarly
for all the remaining function spaces.
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Proof. In order to prove completeness, let (fk)k∈IN be a Cauchy sequence in
B(S;Y ). Then

|fk(x) − fl(x)| ≤ ‖fk − fl‖sup → 0 as k, l → ∞,

for all x ∈ S and hence (fk(x))k∈IN is a Cauchy sequence in Y . As Y is
complete, there exists

f(x) := lim
k→∞

fk(x) in Y.

It follows for x ∈ S that

|f(x) − fk(x)| = lim
l→∞

|fl(x) − fk(x)| ≤ lim inf
l→∞

‖fl − fk‖sup < ∞ .

That means f − fk ∈ B(S;Y ) and hence also f ∈ B(S;Y ), with

‖f − fk‖sup ≤ lim inf
l→∞

‖fl − fk‖sup → 0 as k → ∞ .

��

A special class of bounded functions are continuous functions on bounded
closed subsets of IRn.

3.2 Continuous functions on compact sets. If S ⊂ IRn is closed and
bounded and Y is a Banach space over IK with norm y �→ |y |, then

C0(S;Y )
(
or C(S;Y )

)
:=
{
f : S → Y ; f is continuous on S

}
is the set of continuous functions on S with values in Y . Then C0(S;Y )
is a closed subspace of B(S;Y ), and so if it is equipped with the supremum
norm

‖f ‖C0(S) := ‖f ‖B(S) = supx∈S |f(x)|

it becomes a Banach space. Where no confusion can arise, we will also write
‖f ‖C0 instead of ‖f ‖C0(S). It is easily seen that C0(S) := C0(S; IK) is a

commutative Banach algebra with the product (fg)(x) := f(x) · g(x) for
f, g ∈ C0(S) and x ∈ S.

Remark: The Heine-Borel theorem (see 4.7(7)) states that the closed and
bounded subsets of IRn that we consider here are precisely the compact sub-
sets of IRn. This property will play a crucial role in the following considera-
tions.

Note: The space C0(S;Y ) can be defined more generally for compact topo-
logical spaces S.
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Proof. Every f ∈ C0(S;Y ) is bounded, and so an element of B(S;Y ): Given
x ∈ S, since f is continuous at x, there exists a δx > 0 such that f

(
Bδx(x)

)
⊂

B1(f(x)). The balls Bδx(x) for x ∈ S form an open cover of S. Since S is
compact (see 4.7(7)), there exist finitely many points x1, . . . , xm ∈ S such
that

S ⊂
m⋃
i=1

Bδxi
(xi) , and so f(S) ⊂

m⋃
i=1

B1(f(xi)) ,

which is a bounded set in Y .
For f1, f2 ∈ C0(S;Y ) we have that f1 + f2 and αf1, for α ∈ IK, are con-

tinuous, and hence C0(S;Y ) is a subspace of B(S;Y ). Moreover, C0(S;Y ) is
closed in B(S;Y ): Let (fi)i∈IN be a Cauchy sequence in B(S;Y ) with func-
tions fi ∈ C0(S;Y ). The completeness of B(S;Y ) yields that the sequence
has a limit f ∈ B(S;Y ). For x, y ∈ S it then holds that

|f(y) − f(x)| ≤ |fi(y) − fi(x)|︸ ︷︷ ︸
→ 0 as y → x for any i

+2 · ‖f − fi‖B(S)︸ ︷︷ ︸
→ 0 as i → ∞

,

which shows that f ∈ C0(S;Y ). Hence C0(S;Y ) is closed and, equipped with
the B(S)-norm, complete (see E2.8(1)). ��

Proof Note. The boundedness of continuous functions f : S → Y can be seen
as follows: For x ∈ S we have that Ux := f−1

(
B1(f(x))

)
is an open set in S.

The compactness of S yields that S is covering compact (see 4.6(1)). Hence
the cover (Ux)x∈S has a finite subcover, i.e. there exist x1, . . . , xm ∈ S such
that S ⊂ ∪m

i=1Uxi
. This yields the boundedness of f(S) as before. ��

We now consider the space of continuous functions on general subsets of
IRn and we equip this space with a metric, similarly to the construction for
sequence spaces (see 2.23(1)).

3.3 Continuous functions. Let S ⊂ IRn, so that there exists an exhaus-
tion (Ki)i∈IN with bounded closed sets Ki ⊂ IRn (i.e. compact sets, see
4.7(7)) such that

S =
⋃

i∈IN Ki and ∅ �= Ki ⊂ Ki+1 ⊂ S for i ∈ IN ,

x ∈ S =⇒ Bδ(x) ∩ S ⊂ Ki for a δ > 0 and an i ∈ IN .
(3-2)

Moreover, let Y be a Banach space over IK and let

C0(S;Y ) :=
{
f : S → Y ; f is continuous on S

}
be the set of continuous functions on S with values in Y . Then it holds
that:

(1) C0(S;Y ) with the operations (3-1) is a IK-vector space.
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(2) Equipped with the Fréchet metric

�(f) :=
∑
i∈IN

2−i
‖f ‖C0(Ki)

1 + ‖f ‖C0(Ki)

for f ∈ C0(S;Y )

this is a complete metric space.

(3) The topology induced by this metric is independent of the choice of
exhaustion.

(4) If S ⊂ IRn is bounded and closed (i.e. compact), then this topology
coincides with that induced by the norm in 3.2.

Example: The property (3-2) is satisfied for open sets S ⊂ IRn and for closed
sets S ⊂ IRn (see E3.2).

Proof (2). The properties of a metric can be shown as in 2.23(1). If (fk)k∈IN

is a Cauchy sequence in C0(S;Y ), then ‖fk − fl‖C0(Ki)
→ 0 as k, l → ∞

for all i ∈ IN (see E3.1). Since, by 3.2, C0(Ki;Y ) is complete, there exist
functions gi ∈ C0(Ki;Y ) such that ‖fk − gi‖C0(Ki)

→ 0 as k → ∞, and in

particular fk(x) → gi(x) as k → ∞ for all x ∈ Ki. That means that gi1 = gi2
on Ki1 ∩Ki2 for all i1, i2 ∈ IN, and so there exists a function f : S → Y such
that f = gi on Ki for all i.

Now f is continuous, since for x ∈ S we have that S ∩ Bδ(x) ⊂ Ki for a
δ > 0 and an i ∈ IN. Then f = gi on S ∩ Bδ(x), and so f is continuous at x.
Finally, because ‖fk − f ‖C0(Ki)

→ 0 as k → ∞ for all i, it follows (see E3.1)

that �(fk − f) → 0 as k → ∞. ��

Proof (3). Let
(
K̃j

)
j∈IN

be another exhaustion with bounded closed sets and

let �̃ be the corresponding Fréchet metric. From the second property in (3-2)
for the sequence (Ki)i∈IN it follows that:

K ⊂ S compact =⇒ K ⊂ Ki for an i ∈ IN

(use (3-2) for x ∈ K and the covering compactness of K from 4.6(1)). For

j ∈ IN we have that K̃j ⊂ S is compact, and so there exists an ij ∈ IN such

that K̃j ⊂ Kij . By using induction on j, we can choose ij such that ij1 > ij2
for j1 > j2. Now let δ > 0 and �(f) < δ. Then for every l ∈ IN

�̃(f) ≤
∑
j>l

2−j +
∑
j≤l

2−j
‖f ‖C0(Kij

)

1 + ‖f ‖C0(Kij
)

≤ 2−l + cl · δ with cl := max
j≤l

2ij−j .

Given ε > 0, choose l such that 2−l ≤ ε
2 and then δ > 0 sufficiently small, so

that cl · δ < ε
2 , which implies that
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�(f) < δ =⇒ �̃(f) < ε.

This proves that the topology induced by � is stronger than the topology
induced by �̃. A symmetry argument yields the converse. ��

Proof (4). If S itself is bounded and closed, we can choose Ki = S for all
i ∈ IN, in which case

�(f) =
‖f ‖C0(S)

1 + ‖f ‖C0(S)

.

This metric is equivalent to the metric induced by the C0(S)-norm (as in
2.16(2)). ��

Observe that for open sets Ω ⊂ IRn, functions in C0(Ω) may grow arbi-

trarily towards the boundary of Ω, e.g. x �→ e
1
x is in C0

(
]0, 1[

)
. It is possible

to show that there exists no norm on C0(Ω) that induces the same topology
as the metric introduced in 3.3.

On the other hand, functions that vanish outside a compact subset of
Ω play an important role in functional analysis as so-called test functions
(see the account on distributions in 5.17 and beyond). With this in mind, we
introduce the following definition:

3.4 Support of a function. Let S ⊂ IRn and let Y be a Banach space. For
a map f : S → Y we call

supp(f) := clos ({x ∈ S ; f(x) �= 0}) ⊂ clos (S)

the support of f . For S ⊂ IRn as in 3.3 we then define

C0
0 (S;Y )

(
or C0

c (S;Y )
)

:=
{
f ∈ C0(S;Y ) ; supp(f) is a compact subset of S

}
.

Remark: If S ⊂ IRn is open, then for f ∈ C0
0 (S;Y ) there exists a neighbour-

hood of the boundary Bε(∂S), ε > 0, such that f = 0 in S ∩ Bε(∂S).

3.5 Differentiable functions. Let Ω ⊂ IRn be open and let Y be a Banach
space. We consider maps f : Ω → Y and start by introducing the usual nota-
tions for derivatives, where in the following e1, . . . , en denote the canonical
unit vectors in IRn. Let x ∈ Ω. If the limit

∂if(x)
(
or

∂

∂xi
f(x),

∂f

∂xi
(x)
)

:= lim
h→0

1

h

(
f(x+ hei) − f(x)

)
in Y

exists, then ∂if(x) is called the i-th partial derivative of f at the point x.
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The map f : Ω → Y is called continuously differentiable if all partial
derivatives ∂if , i = 1, . . . , n, exist at all points and if they are continuous
maps from Ω to Y . Then

Df(x)(v) :=

n∑
i=1

v·ei · ∂if(x) for v ∈ IRn

defines a linear map Df(x) : IRn → Y , the derivative of f at the point x.
Moreover, denoting the norm in Y by |·|, it holds that

f(y) = f(x) +Df(x)(y − x) + |y − x| · εx(y)
with εx(y) → 0 as y → x .

For v ∈ IRn we call ∂vf(x) := Df(x)(v) the directional derivative of f

in the direction of v at the point x.
For m ≥ 2 we call f : Ω → Y m times continuously differentiable if

all the iterated partial derivatives

∂i1∂i2 · · · ∂ikf with i1, . . . , ik ∈ {1, . . . , n}, k ≤ m,

exist and are continuous maps from Ω to Y . Then these iterated derivatives
do not depend on the order in which the individual partial derivatives are
applied. That is why higher order partial derivatives are indexed as follows:
We call s an n-dimensional multi-index of order k if

s = (s1, . . . , sn) ∈ ZZ
n with si ≥ 0 for i = 1, . . . , n ,

k = |s| := s1 + . . .+ sn ,

i.e. |s| = |s|1 corresponds to the sum norm in IRn. For multi-indices s we
then define partial derivatives of higher order by

∂sf(x) := ∂s1
1 · · · ∂sn

n f(x), where inductively

∂k
i f(x) := ∂i

(
∂k−1
i f
)
(x) for k > 0, ∂0

i f(x) := f(x).

The number |s| is the order of the partial derivative ∂sf . Further notations
for multi-indices are

r ≤ s :⇐⇒ ri ≤ si for i = 1, . . . , n ,(
s
r

)
:=
∏n

i=1

(
si
ri

)
(binomial coefficient),

s! :=
∏n

i=1 si! ,

xs :=
∏n

i=1 x
si
i for x ∈ IRn .

Additional notations for partial derivatives are

∇f(x) := (∂1f(x), . . . , ∂nf(x)) , Dlf(x) := (∂sf(x))|s|=l .
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We now consider spaces of differentiable functions.

3.6 Space of differentiable functions. LetΩ ⊂ IRn be open and bounded,
and let m ≥ 0 be an integer. Then we define

Cm(Ω;Y ) :=
{

f : Ω → Y ; f is m times continuously differentiable in Ω

and, for |s| ≤ m, ∂sf can be continuously extended to Ω
}
.

Assertion: The set Cm(Ω;Y ) is a vector space and with the norm

‖f ‖Cm(Ω) :=
∑

|s|≤m

‖∂sf ‖C0(Ω)

it becomes a Banach space.

Further definitions: Similarly to 3.3, for S ⊂ IRn as in 3.3 with compact
sets Ki = Ωi, Ωi open, we can define the complete metric space Cm(S;Y )
by using the norms of Cm(Ωi;Y ). For S = Ω ⊂ IRn open we can define,
similarly to 3.4, the set Cm

0 (Ω;Y ).

Proof. We now prove the completeness of Cm(Ω;Y ) for the case m = 1;
the general case then follows by induction on m. Let (fk)k∈IN be a Cauchy

sequence in C1(Ω;Y ). Then (fk)k∈IN and (∂ifk)k∈IN for i = 1, . . . , n are

Cauchy sequences in C0(Ω;Y ). Hence, on recalling 3.2, there exist f, gi ∈
C0(Ω;Y ) such that fk → f and ∂ifk → gi uniformly on Ω. For x ∈ Ω and y
close to x the fundamental theorem of calculus for Y -valued functions yields,
on defining xt := (1 − t)x+ ty for 0 ≤ t ≤ 1, that

fk(x1) − fk(x0) =

∫ 1

0

d

dt
fk(xt) dt =

∫ 1

0

(y − x)·∇fk(xt) dt ,

where (y − x)·∇fk(xt) =
∑n

i=1(y − x)i∂ifk(xt). It follows that

|fk(y) − fk(x) − (y − x)·∇fk(x)|

=

∣∣∣∣∫ 1

0

(y − x)·(∇fk(xt) − ∇fk(x)
)
dt

∣∣∣∣
≤
∫ 1

0

|∇fk(xt) − ∇fk(x)| dt · |y − x|

≤
(
2‖∇fk − g‖C0(Ω) + sup

0≤t≤1
|g(xt) − g(x)|

)
· |y − x| ,

where g := (g1, . . . , gn). On letting k → ∞ this yields that

|f(y) − f(x) − (y − x)·g(x)| ≤ sup
0≤t≤1

|g(xt) − g(x)|︸ ︷︷ ︸
→ 0 as y → x

·|y − x| .

That means that f is differentiable at x with ∇f(x) = g(x). Hence f ∈
C1(Ω;Y ) and in this space it holds that fk → f as k → ∞. ��
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Subspaces of continuous and differentiable functions can be obtained by
considering functions f with a given modulus of continuity σ, i.e.

|f(x) − f(y)| ≤ Cf · σ(|x − y |) for all x, y,

where σ : [0,∞[ → [0,∞[ is continuous and strictly monotonically in-
creasing with σ(0) = 0. The most important special case is σ(s) = sα with
0 < α ≤ 1:

3.7 Hölder continuous functions. Let S ⊂ IRn and let Y be a Banach
space with norm y �→ |y | as before. For 0 < α ≤ 1 and f : S → Y we call

Hölα(f, S) := sup
{ |f(x) − f(y)|

|x − y |α ; x, y ∈ S, x �= y
}

∈ [0,∞]

the Hölder constant of f on S to the exponent α, and in the special case
α = 1 we call Lip(f, S) := Höl1(f, S) the Lipschitz constant. If Ω ⊂ IRn is
open and bounded and m ≥ 0, then the corresponding Hölder spaces are
defined by

Cm,α(Ω;Y ) :=
{
f ∈ Cm(Ω;Y ) ; Hölα(∂

sf,Ω) < ∞ for |s| = m
}
.

These are Banach spaces with the norm

‖f ‖Cm,α(Ω) :=
∑

|s|≤m

‖∂sf ‖C0(Ω) +
∑

|s|=m

Hölα(∂
sf,Ω) .

Functions in C0,α(Ω;Y ) are calledHölder continuous on Ω, and Lipschitz
continuous in the special case α = 1.

Remark: The space C0,α(S;Y ) can be defined for any bounded closed set
S ⊂ IRn.

Remark: Similarly to 3.3 and 3.6 one can also define the metric spaces
Cm,α(Ω;Y ).

Proof. We now prove the completeness of the space C0,α(S;Y ), where S ⊂
IRn is bounded and closed. For Cm,α(S;Y ) with m ≥ 1 apply the argument
given below to the derivatives of order m in addition to the completeness of
the space Cm(S;Y ).

Let (fk)k∈IN be a Cauchy sequence in C0,α(S;Y ). Then it is also a Cauchy
sequence in C0(S;Y ), and due to the completeness of C0(S;Y ) there exists
an f ∈ C0(S;Y ) such that ‖f − fk‖C0(S) → 0 as k → ∞. Now it holds for
x, y ∈ S, x �= y, and as l → ∞ that

|(f − fk)(x) − (f − fk)(y)|
|x − y |α ←− |(fl − fk)(x) − (fl − fk)(y)|

|x − y |α

≤ Hölα(fl − fk, S) .

Hence,
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Hölα(f − fk, S) ≤ lim inf
l→∞

Hölα(fl − fk, S) → 0 as k → ∞ .

That means that f ∈ C0,α(S;Y ) and fk → f in C0,α(S;Y ) as k → ∞. ��

3.8 Infinitely differentiable functions. The vector space of infinitely
differentiable functions on an open set Ω ⊂ IRn with values in a Banach
space Y is defined by

C∞(Ω;Y ) :=
⋂

m∈IN

Cm(Ω;Y ) . (3-3)

Initially this defines C∞(Ω;Y ) only as a vector space.

Similarly to 3.4, one can also define Cm
0 (Ω;Y ) and C∞

0 (Ω;Y ). An example
of a function in C∞

0 (IRn; IR) is given in E3.3. One way to define a topology
for the space C∞

0 (Ω; IR) will be given in 5.20.

Measures and Integrals

In the second part of this chapter we will introduce spaces of measurable and
integrable functions. To this end, we will first give the definition of a general
measure and describe some examples of commonly used measures.

3.9 Measures. Let S be an arbitrary set and let B be a nonempty system
of subsets of S. If B is a Boolean ring or a Boolean algebra (see A3.1), then
B is called a σ-ring or a σ-algebra, respectively, if additionally

Ei ∈ B for i ∈ IN =⇒
⋃
i∈IN

Ei ∈ B .

We call (S,B, μ) a measure space, and then μ a measure on B, if the
following holds:

(1) B is a σ-algebra, which according to the above definition means that:

∅ ∈ B ,

E ∈ B =⇒ S \ E ∈ B ,

Ei ∈ B for i ∈ IN =⇒
⋃
i∈IN

Ei ∈ B .

(2) μ : B → [0,∞] with μ(∅) = 0 is σ-additive, i.e.

Ei ∈ B for i ∈ IN

pairwise disjoint
=⇒ μ

(⋃
i∈IN

Ei

)
=
∑
i∈IN

μ(Ei) .

(3) If N ∈ B with μ(N) = 0 and E ⊂ N , then E ∈ B.
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Condition (3) is called the completeness of the measure space. Sets N ∈ B
with μ(N) = 0 are called μ-null sets and we say that a statement holds
μ-almost everywhere if it holds outside of a μ-null set. Sets E ∈ B are
called μ-measurable.

A measure μ is called σ-finite measure and (S,B, μ) is called a σ-finite
measure space if in addition

(4) There exist Sm ∈ B, m ∈ IN, such that μ(Sm) < ∞ and
⋃

m∈IN Sm = S.

3.10 Examples of measures. Let B be a Boolean ring of subsets of S.

(1) For the discrete measure (or counting measure) μ on S = IN the
system B consists of all subsets of IN and let for E ⊂ IN

μ(E) ∈ {0} ∪ IN ∪ {∞} be the number of elements in E.

(2) For the Lebesgue measure let S = IRn and let B0 be the set of all finite
unions of disjoint, semi-open cuboids (see A3.3) in IRn and let

Ln

( n×
i=1

[ai, bi[

)
:=

n∏
i=1

(bi − ai) .

The set B0 is a Boolean algebra (not a σ-algebra) and Ln can be extended to
an additive function Ln : B0 → IR. Moreover, Ln is then also σ-additive on
B0 (see A3.3). Then an extension principle (see A3.15) yields that:

Lemma: There exists a smallest σ-finite measure space (IRn,B, μ) with B0 ⊂
B and μ = Ln on B0.
We call μ the Lebesgue measure on IRn and denote it by Ln := μ. The
system B of all Lebesgue measurable sets “consists of” Lebesgue null sets and
Borel sets, that is, for E ∈ B there exist Borel sets E1, E2 with E1 ⊂ E ⊂ E2

and Ln(E2 \E1) = 0. The system of all Borel sets is the smallest σ-algebra
that contains B0 (or, alternatively, all open sets or all closed sets), i.e. it is
given by ⋂

B0 ⊂ B̃,

B̃ σ-algebra

B̃ .

(3) For the Dirac measure let S be an arbitrary set, and let B be the
system of all subsets of S. For a given x ∈ S we define a measure δx by

δx(E) :=

{
1, if x ∈ E,

0, otherwise.
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(4) We consider the surface measure on a given hypersurface. Let S be a
smooth surface patch in IRn, n ≥ 1, which is parameterized over IRn−1, i.e.

S =
{
(y, g(y)) ∈ IRn ; y ∈ D

}
,

where D is an open bounded subset of IRn−1 and g ∈ C1(D; IR). Let B0 be
the Borel sets of S, and for any E ∈ B0 define

Ẽ :=
{
y ∈ D ; (y, g(y)) ∈ E

}
,

which again is a Borel set, and hence Ln−1-measurable, and define

Hn−1(E) :=

∫
Ẽ

√
1 + |∇g(y)|2 dLn−1(y) .

In this way E �→ Hn−1(E) becomes a measure (S,B,Hn−1) on the set S, which
is called the surface measure on S or the (n− 1)-dimensional Hausdorff
measure on S. In A8.5 we will generalize this definition to the case of Lip-
schitz continuous functions g. Similarly, one can introduce m-dimensional
Hausdorff measures Hm on m-dimensional surface patches. The Hausdorff
measure H0 is the counting measure. It is also possible to define the Haus-
dorff measure, without using a parameterization, on all Borel sets in IRn,
which yields a generalization of the above definition. This generalized mea-
sure is the basis of geometric measure theory (see e.g. [Simon]).

3.11 Measurable functions. Let (S,B, μ) be a measure space and (Y, d) a
metric space. A map f : S → Y is called μ-measurable if

(1) U ⊂ Y open =⇒ f−1(U) ∈ B.
(2) There exists a μ-null set N such that f(S \N) is separable.

Remark: If the space Y is itself separable (e.g. Y = IRn), then condition (2)
is trivially satisfied (use 4.18(1) and 4.17(2)).

3.12 Lemma. The following hold:

(1) If f1 : S → Y1 and f2 : S → Y2 are measurable, then also (f1, f2) : S →
Y1 × Y2 is measurable.

(2) If f : S → Y is measurable, Z is a Banach space, and ϕ : Y → Z is
continuous, then also ϕ◦f is measurable.

(3) If fj : S → Y is measurable for j ∈ IN and the limit f := limj→∞ fj
exists almost everywhere, then also f is measurable.

(4) If fj : S → IR are measurable, then also infj∈IN fj and also lim infj→∞ fj
are measurable, if they are finite almost everywhere. (On the null set, on
which the limits are −∞, we can define the function values arbitrarily.)

Proof (3). Let f(x) = limj→∞ fj(x) for x ∈ S \N with μ(N) = 0, such that
fj(S \ N) is separable for all j. If U ⊂ Y is open, let
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Ui := {y ∈ U ; B 1
i
(y) ⊂ U} .

Then the following statement is true

∀ x ∈ S \ N :
(
f(x) ∈ U ⇐⇒ ∃ i, k ∈ IN : ∀ j ≥ k : fj(x) ∈ Ui

)
,

that is, for x ∈ S \ N it holds that f(x) ∈ U if and only if there exist i, k
with fj(x) ∈ Ui for all j ≥ k, or in set notation,

f−1(U) \N =
⋃

i

⋃
k

⋂
j≥k f

−1
j (Ui) \N ∈ B .

In addition, f(S \N) ⊂
⋃

j fj(S \ N) is separable (see 4.17(1)). ��

Proof (4). Let g(x) := infj∈IN fj(x) > −∞ for x ∈ S \ N with μ(N) = 0.
Then for all a ∈ IR

g−1
(
[a,∞[

)
\ N =

⋂
j f

−1
j

(
[a,∞[

)
\N ∈ B ,

which implies that g is measurable. Similarly, we have that gk := infj≥k fj are
measurable, and hence, on noting (3), also lim infj→∞ fj = limk→∞ gk. ��

A further example of a metric space is the

3.13 Space of measurable functions. With the notation as in 3.11 let

M(μ;Y ) :=
{
f : S → Y ; f is μ-measurable

}
with the equivalence relation

f = g in M(μ;Y ) :⇐⇒ f = g μ-almost everywhere.

If μ(S) < ∞ then this space becomes a metric space with the metric

dμ(f, g) := inf{r ≥ 0 ; μ({d(f, g) > r}) ≤ r} ,

where we use the abbreviation

{d(f, g) > r} := {x ∈ S ; d(f(x), g(x)) > r} .

We say that a sequence (fk)k∈IN is convergent in measure μ to f if
dμ(fk, f) → 0 as k → ∞. This is equivalent to

μ({d(fk, f) > ε}) → 0 as k → ∞ (3-4)

for all ε > 0.

Proof. It follows from μ(S) < ∞ that dμ is a bounded function on M(μ;Y ).
If dμ(f, g) = 0, then

μ({d(f, g) > ε}) ≤ r for all 0 < r ≤ ε ,
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i.e. μ({d(f, g) > ε}) = 0 for ε > 0, and hence μ({d(f, g) > 0}) = 0, that is
f = g in M(μ;Y ), which proves axiom (M1) in 2.6. For f, g, h ∈ M(μ;Y )
and r > dμ(f, h), s > dμ(h, g) we have{

d(f, g) > r + s
}

⊂
{
d(f, h) + d(h, g) > r + s

}
⊂
{
d(f, h) > r

}
∪
{
d(h, g) > s

}
.

Consequently

μ({d(f, g) > r + s}) ≤ μ({d(f, h) > r}) + μ({d(h, g) > s})
≤ r + s ,

and so dμ(f, g) ≤ r + s, which proves the triangle inequality for dμ. ��

The following theorem holds.

3.14 Theorem. If Y is complete, then M(μ;Y ) with dμ is a complete metric
space.

Proof. Indeed, let (fk)k∈IN be a Cauchy sequence in M(μ;Y ). Then there
exists a monotone subsequence (ki)i∈IN with

μ
({

d(fl, fki
) > 2−i

})
≤ 2−i for l ≥ ki .

On setting

Ẽj :=
⋃
i≥j

{
d(fki+1

, fki
) > 2−i

}
we have that μ(Ẽj) ≤ 21−j and for x /∈ Ẽj and i2 ≥ i1 ≥ j it holds that

d
(
fki2

(x), fki1
(x)
)
≤
∑
i≥j

d
(
fki+1

(x), fki
(x)
)
≤ 21−j . (3-5)

With Em :=
⋃

j≥m Ẽj it follows that (fki
(x))i∈IN for x /∈ Em is a Cauchy

sequence in Y , and μ(Em) ≤ 22−m. Hence there exists

f(x) := lim
i→∞

fki
(x) in Y for x /∈ E :=

⋂
m∈IN

Em ,

where μ(E) = 0. On noting 3.12(3) this implies that f is a measurable func-
tion. Moreover, by (3-5),

d(f(x), fkm
(x)) ≤ 21−m for x /∈ Em,

and so
μ({d(f, fkm

) > 21−m}) ≤ μ(Em) ≤ 22−m .

This implies that dμ(f, fkm
) ≤ 22−m → 0 as m → ∞. Hence (fk)k∈IN has a

cluster point. ��
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We now introduce the standard spaces of integrable functions. They are
based on the definition of the Lebesgue integral (see Appendix A3).

3.15 Lebesgue spaces. Let (S,B, μ) be a measure space and let Y be a
Banach space over IK with norm y �→ |y |. For a real number p we define in
the case 1 ≤ p < ∞

Lp(μ;Y ) :=
{
f : S → Y ; f is μ-measurable and |f |p ∈ L(μ; IR)

}
and in the case p = ∞

L∞(μ;Y ) :=
{
f : S → Y ; f is μ-measurable and

μ-essentially bounded
}
,

in each case with the equivalence relation

f = g in Lp(μ;Y ) :⇐⇒ f = g μ-almost everywhere.

Here |f | denotes the function x �→ |f(x)|, which according to 3.12(2) is μ-
measurable. For p = ∞ we call f essentially bounded with respect to μ
if

sup
x∈S\N

|f(x)| < ∞ for a μ-null set N ∈ B.

Hence, for f ∈ Lp(μ;Y ) the quantities

‖f ‖Lp :=
(∫

S

|f |p dμ
) 1

p
for 1 ≤ p < ∞,

‖f ‖L∞ := inf
N :N⊂S, μ(N)=0

(
sup

x∈S\N
|f(x)|

)

are well defined and lie in [0,∞[. (For the case 0 < p < 1 see E4.11.)

3.16 Theorem. Under the assumptions in 3.15 the following hold:

(1) If 1 ≤ p ≤ ∞, then Lp(μ;Y ) with f �→ ‖f ‖Lp is a Banach space.

(2) If p = 1, then Lp(μ;Y ) coincides with the space of Lebesgue integrable
functions in Appendix A3, i.e. L1(μ;Y ) = L(μ;Y ).

(3) If p = 2 and if Y is a Hilbert space with scalar product (y1, y2) �→
(y1 , y2)Y (e.g. Y = IKl with the Euclidean scalar product (y1, y2) �→ y1 •y2),
then the space L2(μ;Y ) with

(f , g)L2 :=

∫
S

(f(x) , g(x))Y dμ(x) (3-6)

becomes a Hilbert space.
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(4) If p = ∞, then for f ∈ L∞(μ;Y ) there exists a μ-null set N ∈ B such
that

‖f ‖L∞ = sup
x∈S\N

|f(x)|
(
N depends on f (!)

)
. (3-7)

Moreover,
‖f ‖L∞ = ess sup

S
|f | ,

where the essential supremum for a μ-measurable essentially bounded
function g : S → IR is defined by

ess sup
S

g := inf
{

sup
x∈S\N

g(x) ; N ⊂ S with μ(N) = 0
}
.

Proof (1). (See 3.17–3.21). The Minkowski inequality 3.20, which is shown
with the help of the Hölder inequality 3.19, yields that Lp(μ;Y ) is a vector
space. The completeness for p = ∞ is shown in 3.17 and for p < ∞ in 3.21.

��

Proof (2). Follows from Bochner’s criterion in A3.19(1). ��

Proof (3). Let f, g ∈ L2(μ;Y ). Since |(f(x) , g(x))Y | ≤ |f(x)| · |g(x)| for
x ∈ S, it follows from the Hölder inequality 3.18 and the majorant criterion
A3.19(2) that (f , g)L2 is well defined. Clearly (f, g) �→ (f , g)L2 is sesquilin-

ear and (f , f)L2 = ‖f ‖2L2 . ��

Proof (4). The fact that countable unions of null sets are null sets immedi-
ately yields (3-7). ��

We now introduce some special notations. We write Lp(μ) in place of
Lp(μ; IK). Then f ∈ Lp(μ;Y ) implies that |f | ∈ Lp(μ).

If μ = Ln�E is the Lebesgue measure on a Lebesgue measurable set
E ⊂ IRn, i.e. μ(A) := Ln(E ∩ A), then we also write Lp(E;Y ) in place of
Lp(μ;Y ). In addition, in integrals we often replace dLn(x) by dx, where x
is the integration variable:∫

E

f(x) dx :=

∫
E

f(x) dLn(x) =

∫
IRn

XEf dLn .

We note that for the counting measure μ in 3.10(1) it holds that Lp(μ) =
�p(IK), which is easy to show.

Two important theorems that characterize the convergence of a sequence
in Lp(μ;Y ) are Lebesgue’s convergence theorem (see 3.25) and Vitali’s
convergence theorem (see 3.23). But first we address the completeness of
Lp(μ;Y ).

3.17 Lemma. L∞(μ;Y ) is complete.
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Proof. Let (fk)k∈IN be a Cauchy sequence in L∞(μ;Y ). Then there exist a
constant C and a μ-null set N such that for x ∈ S \N the following hold

|fk(x)| ≤ ‖fk‖L∞ ≤ C < ∞ for all k,

|fk(x) − fl(x)| ≤ ‖fk − fl‖L∞ → 0 as k, l → ∞.

Hence for x ∈ S there exists

f(x) :=

{
lim
k→∞

fk(x) in Y for x ∈ S \ N,

0 for x ∈ N.

The function f is measurable (see 3.12(3)) and bounded, and for x ∈ S \N

|f(x) − fk(x)| = lim
l→∞

|fl(x) − fk(x)| ≤ lim inf
l→∞

‖fl − fk‖L∞ ,

and hence

‖f − fk‖L∞ ≤ lim inf
l→∞

‖fl − fk‖L∞ −→ 0 as k → ∞.

��

3.18 Lemma (Hölder’s inequality). Let m ∈ IN and fi ∈ Lpi(μ) for
i = 1, . . . ,m with pi ∈ [1,∞], and let q ∈ [1,∞] such that

m∑
i=1

1

pi
=

1

q
. (3-8)

Then the product f1 · · · fm ∈ Lq(μ) and∥∥∥∥∥
m∏
i=1

fi

∥∥∥∥∥
Lq

≤
m∏
i=1

‖fi‖Lpi . (3-9)

Observe: Here we set 1
pi

= 0 if pi = ∞ and similarly 1
q = 0 if q = ∞.

Standard case: Let p, p′ ∈ [1,∞] such that 1
p +

1
p′ = 1. Then if f ∈ Lp(μ)

and g ∈ Lp′

(μ), it holds that f · g ∈ L1(μ) with

‖f · g‖L1 ≤ ‖f ‖Lp · ‖g‖Lp′ . (3-10)

Remark: When forming products of functions, for simplicity we considered
only scalar-valued functions, i.e. the case Y = IK. The Hölder inequality for
the standard case can be generalized to vector-valued functions, i.e. Y = IKl,
and then reads as
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‖f • g‖L1 ≤ ‖f ‖Lp · ‖g‖Lp′ for f ∈ Lp(μ; IKl), g ∈ Lp′

(μ; IKl).

We mention that the Hölder inequality also holds for functions with values in
certain Banach spaces Y , for example a Banach algebra Y or a Hilbert space
Y . It also generalizes to the case of multiple products.

Proof of the standard case. (This case corresponds to m = 2 and q = 1 in
the general case.) It holds that fg is measurable (by 3.12(1) and 3.12(2)).
For the limiting case p = 1 we have that p′ = ∞ and note that |(fg)(x)| ≤
‖g‖L∞ |f(x)| for almost all x. The majorant criterion (see A3.19(2)) then
yields that fg ∈ L1(μ). The limiting case p = ∞ follows due to symmetry.
Moreover, the claim holds trivially if ‖f ‖Lp = 0 or ‖g‖Lp′ = 0, since then
fg = 0 almost everywhere.

Hence let 1 < p < ∞ and let ‖f ‖Lp > 0 and ‖g‖Lp′ > 0. For a, b ≥ 0 we
have that

ab ≤ 1

p
ap +

1

p′
bp

′

(Young’s inequality). (3-11)

This elementary inequality can be shown as follows: For a > 0 and b > 0
take the logarithm on both sides and obtain, due to the concavity of the
logarithm, that

log(ab) = log a+ log b = 1
p log a

p + 1
p′ log b

p′ ≤ log
(

1
pa

p + 1
p′ b

p′
)
.

Now setting

a =
|f(x)|
‖f ‖Lp

and b =
|g(x)|
‖g‖Lp′

yields

|f(x)g(x)|
‖f ‖Lp‖g‖Lp′

≤ |f(x)|p

p‖f ‖pLp

+
|g(x)|p

′

p′‖g‖p′

Lp′

.

As the right-hand side is integrable with respect to x, it follows that fg ∈
L1(μ) on recalling the majorant criterion A3.19(2). Integration over x then
yields that∫

S
|fg | dμ

‖f ‖Lp‖g‖Lp′

≤ 1

p

∫
S
|f |p dμ

‖f ‖pLp

+
1

p′

∫
S
|g |p

′

dμ

‖g‖p′

Lp′

=
1

p
+

1

p′
= 1 .

��

Proof of the general case. Clearly, by (3-8), pi ∈ [q,∞]. If pi = q for some
i, then pj = ∞ for all j �= i. On the other hand, if pj = ∞ for some j, then∣∣∣∣∣

m∏
i=1

fi(x)

∣∣∣∣∣ ≤ ‖fj‖L∞ ·

∣∣∣∣∣∣
∏

i : i�=j

fi(x)

∣∣∣∣∣∣ and
∑
i : i�=j

1

pi
=

1

q
,
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that is, the claim is inductively reduced to m − 1 functions. Thus, let q <
pi < ∞ for i = 1, . . . ,m. We give two different proofs.
1st possibility. Use the generalized Young’s inequality

1

q

m∏
i=1

aqi ≤
m∑
i=1

1

pi
api

i for ai ≥ 0, i = 1, . . . ,m, (3-12)

for exponents as in (3-8). On rewriting p̃i :=
pi

q , this elementary inequality

follows, as in the proof of (3-11) (now for m terms), from the concavity of
the logarithm. Then continue analogously to the proof of the standard case.
2nd possibility. This proceeds by induction on m and uses the standard case.
We have

m−1∑
i=1

1

pi
=

1

q
− 1

pm
=:

1

r
with 1 < r < ∞ ,

and so the induction hypothesis yields for g := f1 · · · fm−1 that

‖g‖Lr ≤
m−1∏
i=1

‖fi‖Lpi .

Now apply the standard case for f̃ := |fm|q ∈ L
pm

q (μ) and g̃ := |g|q ∈ L
r
q (μ)

and obtain, since q
pm

+ q
r = 1, that∥∥∥∥∥

m∏
i=1

fi

∥∥∥∥∥
Lq

= ‖fmg‖Lq =
∥∥∥f̃ g̃∥∥∥ 1q

L1
≤
(∥∥∥f̃∥∥∥

L
pm
q

· ‖g̃‖
L

r
q

) 1
q

= ‖fm‖Lpm · ‖g‖Lr ≤
m∏
i=1

‖fi‖Lpi .

��

Proof of remark. Since |f(x) • g(x)| ≤ |f(x)| · |g(x)| due to the Cauchy-
Schwarz inequality in IRl, it follows from the scalar Hölder inequality that

‖f • g‖L1 ≤ ‖|f | · |g|‖L1 ≤ ‖|f |‖Lp · ‖|g|‖Lp′ = ‖f ‖Lp · ‖g‖Lp′ ,

where the integrability of f • g follows from that of |f | · |g|, thanks to the
majorant criterion A3.19(2).

In a Banach algebra Y the product, which we denote by (y1, y2) �→ y1y2,
is continuous. For the standard case it then follows, by 3.12(1) and 3.12(2),
that x �→ f(x)g(x) is measurable. In addition we have the pointwise inequality
|f(x)g(x)| ≤ |f(x)| · |g(x)|, where y �→ |y | denotes the norm in Y . This yields
the claim as in the scalar case. In an analogous fashion this carries over to
multiple products. ��
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The generalization of the majorant criterion A3.19(2) to Lp-spaces is given
by the following

3.19 Lemma (Majorant criterion). Let f : S → Y be a μ-measurable
function, 1 ≤ p < ∞ and g ∈ L1(μ; IR), g ≥ 0, with

|f |p ≤ g μ-almost everywhere.

Then f ∈ Lp(μ;Y ).

Proof. As |f |p is measurable on recalling 3.12(2), it follows from A3.19(2) that
|f |p ∈ L1(μ). As f is measurable, we have that f ∈ Lp(μ;Y ) by definition.

��

3.20 Lemma (Minkowski inequality). If f, g ∈ Lp(μ;Y ), then f + g ∈
Lp(μ;Y ) and

‖f + g‖Lp ≤ ‖f ‖Lp + ‖g‖Lp .

Proof. For p = 1 and p = ∞ this follows from the pointwise triangle inequal-
ity. Furthermore, we have the elementary inequality

|a+ b|p ≤ 2p−1(|a|p + |b|p) for a, b ∈ IR and 1 ≤ p < ∞ . (3-13)

Hence for 1 < p < ∞

|f + g|p ≤ (|f | + |g|)p ≤ 2p−1 (|f |p + |g|p)

pointwise and so f + g ∈ Lp(μ;Y ) on noting 3.19, where the measurability
of f + g follows from 3.12(1) and 3.12(2). A more convenient inequality is

|f + g|p ≤ |f | · |f + g|p−1 + |g| · |f + g|p−1 .

We have that |f |, |g|, |f + g| ∈ Lp(μ) and, with p′ as in 3.18, it then holds
that |f +g|p−1 ∈ Lp′

(μ) since p′(p−1) = p. Hence the Hölder inequality 3.18
implies that∫

S

|f + g |p dμ ≤
∫
S

|f | · |f + g|p−1 dμ+

∫
S

|g| · |f + g|p−1 dμ

≤ ‖f ‖Lp ·
∥∥|f + g|p−1

∥∥
Lp′ + ‖g‖Lp ·

∥∥|f + g|p−1
∥∥
Lp′

=
(
‖f ‖Lp + ‖g‖Lp

)
·
(∫

S

|f + g |p dμ
)1− 1

p
.

If
∫
S
|f + g |p dμ = 0, the claim holds trivially. Otherwise the desired result

follows from cancellation. ��

3.21 Fischer-Riesz theorem. Lp(μ;Y ) is complete for 1 ≤ p < ∞.
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Proof. Let (fk)k∈IN be a Cauchy sequence in Lp(μ;Y ). Since every Cauchy
sequence has at most one cluster point, it is sufficient to show convergence of
a subsequence. To this end we choose a monotone subsequence (ki)i∈IN such
that

‖fk − fl‖Lp ≤ 2−i for k, l ≥ ki.

In the following we denote the subsequence (fki
)i∈IN again by (fk)k∈IN, as

the remainder of the sequence is no longer needed. This convention for the
transition to subsequences will be used repeatedly in this book. It then holds
that ∑

k∈IN

‖fk+1 − fk‖Lp ≤
∑
k∈IN

2−k < ∞ .

Let

gl :=
l∑

k=1

|fk+1 − fk| . (3-14)

By Fatou’s lemma (see A3.20) and the Minkowski inequality∫
S

(
lim
l→∞

gpl
)
dμ ≤ lim inf

l→∞

∫
S

gpl dμ =
(
lim inf
l→∞

‖gl‖Lp

)p
≤
(∑

k∈IN

‖fk+1 − fk‖Lp

)p

< ∞ .

Therefore,
lim
l→∞

gl(x) < ∞ for μ-almost all x.

From the definition of gl in (3-14) it follows that (fk(x))k∈IN is a Cauchy
sequence in Y for μ-almost all x, hence the limit

f(x) := lim
k→∞

fk(x) in Y for μ-almost all x

exists. It follows from 3.12(3) that f is measurable and appealing once more
to Fatou’s lemma yields that∫

S

|f − fl |p dμ ≤ lim inf
k→∞

∫
S

|fk − fl |p dμ

=

(
lim inf
k→∞

‖fk − fl‖Lp

)p

−→ 0 as l → ∞ .

��

Essential for applications is the characterization of convergent sequences
in Lp(μ;Y ) via the pointwise convergence of the function values in Y . To
this end we first establish the proposition 3.22(1), which will be used fre-
quently in this book. For p = 1 Lebesgue’s convergence theorem A3.21 gives
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a convergence criterion for almost everywhere convergent sequences. Here we
will establish its generalization to Lp-spaces (see 3.25). This result is readily
reduced to the very general theorem 3.23 due to Vitali, or, alternatively, it
can be shown with the help of Fatou’s lemma similarly to the proof of A3.21.

3.22 Lemma. Let fk ∈ Lp(μ;Y ) for k ∈ IN with 1 ≤ p < ∞.

(1) If f ∈ Lp(μ;Y ), then:

‖f − fk‖Lp → 0

as k → ∞
=⇒

There exists a subsequence (ki)i∈IN , such that

fki
→ f as i → ∞ μ-almost everywhere.

(2) If (fk)k∈IN is a Cauchy sequence in Lp(μ;Y ) and f : S → Y , then:

fk → f as k → ∞
μ-almost everywhere

=⇒
f ∈ Lp(μ;Y ) and

‖f − fk‖Lp → 0 as k → ∞ .

Remark: For (1) see E3.5.

Proof (1). We have |f − fk|p → 0 in L1(μ;Y ). Now apply A3.11. ��

Proof (2). It follows from theorem 3.21 that there exists an f̃ ∈ Lp(μ;Y )

such that
∥∥∥f̃ − fk

∥∥∥
Lp

→ 0 as k → ∞. By (1), there exists a subsequence

(fki
)i∈IN, with fki

→ f̃ μ-almost everywhere. The assumption in (2) then

gives that f̃ = f μ-almost everywhere. ��

3.23 Vitali’s convergence theorem. Let fk ∈ Lp(μ;Y ) with 1 ≤ p < ∞,
and let fk → f μ-almost everywhere as k → ∞. Then the following are
equivalent:

(1) f ∈ Lp(μ;Y ) and ‖fk − f ‖Lp → 0 as k → ∞.

(2) It holds that

sup
k

∫
E

|fk |p dμ −→ 0 as μ(E) → 0,

and for any ε > 0 there exists a μ-measurable set Eε such that μ(Eε) < ∞
and

sup
k

∫
S\Eε

|fk |p dμ ≤ ε .

Proof (1)⇒(2). It follows from the Minkowski inequality 3.20 that

(∫
E

|fk |p dμ
) 1

p ≤
(∫

E

|f |p dμ
) 1

p
+
(∫

S

|fk − f |p dμ
) 1

p

︸ ︷︷ ︸
→ 0 as k → ∞

.
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Hence for γ > 0 there exists a kγ ∈ IN such that for k > kγ and all μ-
measurable sets E (∫

E

|fk |p dμ
) 1

p ≤
(∫

E

|f |p dμ
) 1

p
+ γ .

For every function g ∈ L1(μ; IR) with g ≥ 0 it follows from A3.17(2) that for
γ > 0 there exists a δ(g, γ) > 0 such that∫

E

g dμ ≤ γp for μ(E) ≤ δ(g, γ).

Employing this for g = |f |p and g = |fk|p for k ≤ kγ yields that

for all k ∈ IN:
(∫

E

|fk |p dμ
) 1

p ≤ 2γ ,

if μ(E) ≤ min(δ(|f |p, γ), δ(|f1|p, γ), . . . , δ(|fkγ
|p, γ)) .

This proves the first claim in (2).
The second claim follows correspondingly, upon substituting E in place

of S \ E in the above argument and using the fact that for every function
g ∈ L1(μ; IR) with g ≥ 0, for γ > 0 there exists a μ-measurable set A(g, γ)
with μ(A(g, γ)) < ∞ such that (see below)∫

S\A(g,γ)

g dμ ≤ γp . (3-15)

Then we obtain in much the same way as before that

for all k ∈ IN:
(∫

S\E
|fk |p dμ

) 1
p ≤ 2γ

for E := A(|f |p, γ) ∪ A(|f1|p, γ) ∪ . . . ∪ A(|fkγ
|p, γ) .

For the proof of (3-15) consider Aε := {g ≥ ε} := {x ∈ S ; g(x) ≥ ε}. Since∫
S

g dμ ≥
∫
Aε

g dμ ≥ εμ(Aε) ,

we have μ(Aε) < ∞. Moreover, Aε1 ⊂ Aε2 for ε1 > ε2 and

A :=
⋃
ε>0

Aε = {g > 0} .

It then follows from A3.17(2), by choosing a decreasing null sequence for ε,
that ∫

S\Aε

g dμ −→
∫
S\A

g dμ =

∫
{g=0}

g dμ = 0 .

��
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Proof (2)⇒(1). Let Eε be as in (2). Then Egorov’s theorem A3.18 yields
that fk → f as k → ∞ μ-uniformly on Eε, i.e. there exists an Aε ⊂ Eε with
μ(Eε \Aε) ≤ ε such that fk → f uniformly on Aε as k → ∞. It follows that∫

S

|fk − fl |p dμ ≤
∫
Aε

|fk − fl |p dμ+

∫
S\Aε

|fk − fl |p dμ

≤ μ(Aε) · ess sup
Aε

|fk − fl |p︸ ︷︷ ︸
→ 0 as k, l → ∞

for all ε

+ 2p−1 sup
m∈IN

∫
S\Eε

|fm |p dμ︸ ︷︷ ︸
≤ ε

+ 2p−1 sup
m∈IN

∫
Eε\Aε

|fm |p dμ︸ ︷︷ ︸
→ 0 as ε → 0

,

where the last term converges to 0 as ε → 0 by (2), since μ(Eε \Aε) ≤ ε → 0.
Therefore, (fk)k∈IN is a Cauchy sequence in Lp(μ;Y ). Since fk → f μ-almost
everywhere, the claim follows from 3.22(2). ��

As a consequence we obtain:

3.24 Corollary. Let 1 ≤ p < ∞. Then

fk → f in Lp(μ;Y ) as k → ∞ =⇒ |fk|p → |f |p in L1(μ) as k → ∞.

Proof (with Vitali’s convergence theorem). We first assume that fk → f μ-
almost everywhere. Now apply the conclusion from 3.23(1) to 3.23(2) for
fk, f ∈ Lp(μ;Y ), and then conversely apply the conclusion from 3.23(2) to
3.23(1) for gk := |fk|p, g := |f |p ∈ L1(μ; IR). This yields the claim. For
general fk, f we use an indirect proof. Assume that there exist an ε0 > 0
and a subsequence (|fki

|p)i∈IN such that ‖|fki
|p − |f |p‖L1 ≥ ε0 for i ∈ IN.

Since fki
→ f in Lp(μ;Y ) as i → ∞, it follows from 3.22(1) that there

exists a subsequence
(
fkim

)
m∈IN

such that fkim
→ f μ-almost everywhere as

m → ∞. Now applying the above conclusion to this subsequence leads to a
contradiction. ��

Proof (without Vitali’s convergence theorem). An alternative proof, which
does not use Vitali’s convergence theorem, is as follows: For p = 1 we imme-
diately obtain the desired result on noting that ||fk| − |f || ≤ |fk − f |. Hence
let p > 1. We employ an elementary inequality: For M > 1 let δM > 0 be the
unique number such that, for all a > 0,

(1 + a)p ≤ 1 +M · ap ⇐⇒ a ≥ δM .

(The existence of δM is easily established on noting that a �→ (1+M ·ap) 1
p is

a strictly convex function.) Clearly we have that δM ↘ 0 as M ↗ ∞. Hence
for y0, y1 ∈ Y with 0 < |y0 | ≤ |y1 | we have
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0 ≤ |y1 |p − |y0 |p ≤ |y0 |p
((

1 +
|y1 − y0 |

|y0 |

)p

− 1

)

≤

⎧⎪⎪⎨⎪⎪⎩
M · |y1 − y0 |p if

|y1 − y0 |
|y0 |

≥ δM ,

((1 + δM )p − 1)|y0 |p if
|y1 − y0 |

|y0 |
≤ δM .

This yields the following inequality:∫
S

||fk|p − |f |p | dμ

≤ M

∫
S

|fk − f |p dμ︸ ︷︷ ︸
→ 0 as k → ∞

+
(
(1 + δM )p − 1

) ∫
S

(
|f |p + |fk|p

)
dμ︸ ︷︷ ︸

bounded in k

.

This gives the desired result, on choosing M sufficiently large (so that δM
becomes small), and then k sufficiently large depending on M . ��

3.25 Lebesgue’s general convergence theorem. Let fk, f : S → Y be
μ-measurable, let gk → g in L1(μ; IR) as k → ∞ and let 1 ≤ p < ∞. Suppose
that

fk → f μ-almost everywhere as k → ∞,

|fk|p ≤ gk μ-almost everywhere for all k ∈ IN.

Then it follows that fk, f ∈ Lp(μ;Y ) and fk → f in Lp(μ;Y ) as k → ∞.

Proof (without Vitali’s convergence theorem). This is a generalization of the
proof of Lebesgue’s convergence theorem A3.21 (first presented in [Alt3]). We
begin with the case where gk → g μ-almost everywhere as k → ∞. Let

hk := 1
2 (gk + g) − 1

2p |fk − f |p .
The elementary inequality (3-13) implies that

hk ≥ 1
2 (gk + g) − 1

2 (|fk|p + |f |p) ≥ 0 μ-almost everywhere.

The assumptions yield that hk → g μ-almost everywhere and∫
S

hk dμ ≤
∫
S

1

2
(gk + g) dμ −→

∫
S

g dμ as k → ∞.

It follows from Fatou’s lemma that∫
S

g dμ ≤ lim inf
k→∞

∫
S

hk dμ

= lim
k→∞

∫
S

1

2
(gk + g) dμ︸ ︷︷ ︸

=
∫
S
g dμ

− 1

2p
lim sup
k→∞

∫
S

|fk − f |p dμ ,
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and hence we obtain the desired result

lim sup
k→∞

∫
S

|fk − f |p dμ = 0 .

For general gk, g we use an indirect proof, similarly to the proof of 3.24. To
this end, we first need to show that f ∈ Lp(μ;Y ). It follows from 3.22(1) that
there exists a subsequence

(
gkj

)
j∈IN

such that gkj
→ g μ-almost everywhere

as j → ∞. Since by assumption |fkj
|p ≤ gkj

μ-almost everywhere, we have
that |f |p ≤ g μ-almost everywhere. The majorant criterion 3.19 then implies
that f ∈ Lp(μ;Y ). Now assume that there exist an ε0 > 0 and a subsequence
(fki

)i∈IN such that ‖fki
− f ‖Lp ≥ ε0 for i ∈ IN. Since gki

→ g in L1(μ; IR) as

i → ∞, there exists a subsequence
(
gkim

)
m∈IN

such that gkim
→ g μ-almost

everywhere as m → ∞. Applying the above conclusion to this subsequence
leads to a contradiction. ��

Proof (with Vitali’s convergence theorem). We now provide an alternative
proof which uses Vitali’s convergence theorem. On noting the bounds on fk
we have that fk ∈ Lp(μ;Y ), recall 3.19. Again we begin by assuming that
gk → g μ-almost everywhere. It follows from Vitali’s convergence theorem
(implication 3.23(1)⇒3.23(2)) for the functions gk, g that

sup
k

∫
E

|fk |p dμ ≤ sup
k

∫
E

gk dμ −→ 0 as μ(E) → 0 ,

and similarly for the result corresponding to the second claim in 3.23(2). Con-
versely, applying Vitali’s convergence theorem (implication 3.23(2)⇒3.23(1))
now for the functions fk yields the desired result.

For general gk, g use an indirect proof as in the first proof above. ��

In proofs it is often convenient to approximate Lp functions by smooth
functions. The following result shows that for the Lebesgue measure this is
possible by using continuous functions.

3.26 Lemma. As before, let (S,B, μ) be a measure space and let f ∈
Lp(μ;Y ) with 1 ≤ p < ∞. Then:

(1) There exists a sequence (fk)k∈IN of step functions with steps in B such
that ‖f − fk‖Lp → 0 as k → ∞.

Note: If μ(S) < ∞ and Y = IKm, then this also holds for p = ∞.

(2) If S = IRn and μ is the Lebesgue measure, then there exists a sequence
(fk)k∈IN of functions fk ∈ C0

0 (IR
n;Y ) such that ‖f − fk‖Lp → 0 as k → ∞.

Observe: This does not hold for p = ∞, since the uniform limit of continuous
functions is again a continuous function.

Proof (1). Let ε > 0 and set Eε := {ε ≤ |f | ≤ 1
ε}. Then Eε ∈ B and∫

S

|f |p dμ ≥ εpμ(Eε) ,
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and so μ(Eε) < ∞. On noting that XEε
f is measurable and that |XEε

f | ≤
1
εXEε

∈ L1(μ; IR), it follows that XEε
f ∈ L1(μ;Y ), recall 3.19. The construc-

tion of the Lebesgue integral (see axiom (L5) in A3.16) yields the existence
of step functions gεk (with steps in B0) such that gεk → XEε

f in L1(μ;Y ) as
k → ∞. Then

fεk(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gεk(x) if x ∈ Eε and |gεk(x)| ≤

2

ε
,

2gεk(x)

ε|gεk(x)|
if x ∈ Eε and |gεk(x)| >

2

ε
,

0 if x ∈ S \ Eε,

defines step functions fεk (with steps in B), and for x ∈ Eε with |gεk(x)| > 2
ε

it holds that

|fεk(x) − f(x)| ≤ 3

ε
≤ 3(|gεk(x)| − |f(x)|) ≤ 3|gεk(x) − f(x)| .

Hence we also have that fεk → XEε
f in L1(μ;Y ) as k → ∞ and∫

S

|f − fεk |p dμ ≤
∫
S\Eε

|f |p dμ︸ ︷︷ ︸
→ 0 as ε → 0,
recall A3.17(2)

+
(3
ε

)p−1
∫
S

|XEε
f − fεk | dμ︸ ︷︷ ︸

→ 0 as k → ∞
for all ε

.

��

Proof (1) Note. Let R := ‖f ‖L∞ > 0. Now BR(0) ⊂ IKm is compact. Hence

for k ∈ IN there exists a partition of BR(0) into finitely many disjoint Borel
sets Aj , 1 ≤ j ≤ nk, such that diam(Aj) ≤ 1

k and Aj �= ∅. Choose aj ∈ Aj .
Then ∥∥∥∥∥∥f −

nk∑
j=1

Xf−1(Aj) aj

∥∥∥∥∥∥
L∞

≤ 1

k
.

��

Proof (2). It follows from (1) that f can be approximated in the Lp-norm
by step functions with steps in B. Hence the claim is reduced to the case
Y = IR and f = XE with E ∈ B and Ln(E) < ∞. But then f ∈ L1(IRn)
and, by definition of the Lebesgue integral (see axiom (L5) in A3.16), there
exist step functions gk which approximate f in the L1-norm. In addition,
fk := max

(
0,min(1, gk)

)
are also such step functions and it follows from

|f − fk|p ≤ |f − fk| ≤ |f − gk|

that fk → f in Lp(IRn). As fk has steps in B0, the claim is further reduced
to the case that f = XQ, where Q = [a, b[ with a, b ∈ IRn. But then fε → f
in Lp(IRn) as ε ↘ 0, if, for example,
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fε(x) :=

n∏
i=1

max
(
0,min

(
1,

gi(xi)

ε

))
,

gi(ξ) :=
bi − ai

2
−
∣∣∣∣ξ − bi + ai

2

∣∣∣∣ .
��

Sobolev spaces

In the Introduction it was illustrated that in the calculus of variations one
encounters norms with respect to which the initially chosen function spaces
are not complete. The reason is that in their definition a combination of
derivatives and integrals occur. For example, take the set X := C1(Ω) and
define the norm by

‖f ‖X :=

√∫
Ω

(
|f(x)|2 + |∇f(x)|2

)
dx .

We note that fε(x) :=

√
|x − x0 |2 + ε2, with x0 ∈ Ω, for ε ↘ 0 is a Cauchy

sequence with respect to this norm, but the function limε→0 fε(x) = |x − x0 |
does not belong to C1(Ω). Hence X is not a complete space with respect to
the norm f �→ ‖f ‖X .

The functional analysis approach to solve such variational problems con-
sists in the completion of X to a space X̃. This is in order to show the
existence of a “weak solution”, i.e. a solution in X̃ (see e.g. 6.5–6.8 and 8.16–

8.18). If X is as in the above example, then the completion X̃ will be the
completion of a classical function space with respect to a norm containing
integrals. The spaces obtained in this manner are called Sobolev spaces.

3.27 Sobolev spaces. Let m ≥ 0 be an integer and 1 ≤ p ≤ ∞. If Ω ⊂ IRn

is open, then let X̃ be the completion (see 2.24) of the normed vector space

X :=
{
f ∈ C∞(Ω) ; ‖f ‖X < ∞

}
with ‖f ‖X :=

∑
|s|≤m

‖∂sf ‖Lp(Ω) .

We now want to characterize X̃. If (fj)j∈IN ∈ X̃, then (∂sfj)j∈IN are Cauchy

sequences in Lp(Ω), and hence it follows from 3.17 and 3.21 that there exist
uniquely defined functions f (s) ∈ Lp(Ω) such that

∂sfj → f (s) in Lp(Ω) as j → ∞. (3-16)

The relation between the functions f (s) arises from the rule of integration by
parts for the functions fj , which yields that
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Ω

∂sζ · fj dLn = (−1)|s|
∫
Ω

ζ · ∂sfj dL
n for all ζ ∈ C∞

0 (Ω) .

Hence, since fj = ∂0fj → f (0) and ∂sfj → f (s) for j → ∞ (see (3-16)), using
the Hölder inequality we have that∫

Ω

∂sζ · f (0) dLn = (−1)|s|
∫
Ω

ζ · f (s) dLn for all ζ ∈ C∞
0 (Ω). (3-17)

Therefore, we define the following Sobolev space of order m ∈ IN with
exponent p, 1 ≤ p ≤ ∞, by

Wm,p(Ω) :=
{
f ∈ Lp(Ω) ; for |s| ≤ m there exist f (s) ∈ Lp(Ω)

such that f (0) = f and (3-17) hold
}

and equip this Sobolev space with the norm

‖f ‖Wm,p(Ω) :=
∑

|s|≤m

∥∥∥f (s)
∥∥∥
Lp(Ω)

.

We will show that for p < ∞ the space X̃ is completely characterized by
Wm,p(Ω).

But first a few remarks on this definition. Other commonly used notations
forWm,p(Ω) areHm,p(Ω),Hm

p (Ω), and for the special case p = 2 alsoHm(Ω)
for Hm,2(Ω). Sometimes these Sobolev spaces are defined as the completion
of functions in Cm(Ω) (i.e. Ω instead of Ω) for an open and bounded set Ω.
If Ω has a smooth boundary, then the two definitions coincide (see A8.7 in
connection with 3.28).

Given f , the functions f (s) in the above definition of Wm,p(Ω) are

uniquely defined. To see this let f̃ (s) have the same properties. Then∫
Ω

ζ
(
f̃ (s) − f (s)

)
dLn = 0 for all ζ ∈ C∞

0 (Ω) ,

and hence f̃ (s) = f (s) almost everywhere in Ω (this follows from 4.22, as the

Hölder inquality yields that g := f̃ (s) − f (s) ∈ Lp(Ω′) ⊂ L1(Ω′) for bounded
open sets Ω′ ⊂ Ω).

For smooth functions f ∈ Cm(Ω) with ∂sf ∈ Lp(Ω) for |s| ≤ m it follows
from the rule of integration by parts that f ∈ Wm,p(Ω), and in particular
f (s) = ∂sf . Therefore, for f ∈ Wm,p(Ω) we call

∂sf := f (s)

the weak derivatives of f .
We now return to the space X̃. Setting

J
(
(fk)k∈IN

)
:= lim

k→∞
fk (limit in Lp(Ω), see (3-16) for s = 0)

we define a linear map
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J : X̃ → Wm,p(Ω) ,

which, on recalling the equivalence relation in X̃ (see 2.24), is injective and,
by definition of theWm,p-norm, preserves the norm. To see the latter, observe
that ∥∥(fk)k∈IN

∥∥
X̃

= lim
k→∞

‖fk‖X = lim
k→∞

∑
|s|≤m

‖∂sfk‖Lp

=
∑

|s|≤m

‖∂sf ‖Lp = ‖f ‖Wm,p .

It remains to investigate whether J is surjective. But this can only hold for
p < ∞, as for p = ∞ the image J(X̃) = Wm,∞(Ω) ∩ Cm(Ω) is a proper
subspace of Wm,∞(Ω). For example, the function f(x) := |xn | belongs to
W 1,∞(Ω) (this follows similarly to E3.7, where the one-dimensional case is
considered). However, in the case 0 ∈ Ω this function does not belong to the
space C1(Ω). For p < ∞ the surjectivity of J is formulated in theorem 3.28
below.

The fact that J is surjective and norm preserving yields that Wm,p(Ω)

for p < ∞ is a Banach space, on noting that X̃ is complete. But this can
also be shown independently of this observation, and then also for p = ∞.
To this end, let (fk)k∈IN be a Cauchy sequence in Wm,p(Ω). Then (∂sfk)k∈IN

for |s| ≤ m are Cauchy sequences in Lp(Ω). By the Fischer-Riesz theorem
(theorem 3.21 in the case p < ∞ and lemma 3.17 in the case p = ∞), there
exist f (s) ∈ Lp(Ω) such that

∂sfk → f (s) in Lp(Ω) as k → ∞.

Moreover, as before the rule of integration by parts (3-17) carries over from
∂sfk to f (s), and hence f := f (0) ∈ Wm,p(Ω) with ∂sf = f (s) for |s| ≤ m.

3.28 Theorem. If f ∈ Wm,p(Ω) with 1 ≤ p < ∞, then there exist fj ∈
Wm,p(Ω) ∩ C∞(Ω) such that ‖f − fj‖Wm,p(Ω) → 0 as j → ∞.

Note: We will give the proof of this theorem in Chapter 4 (see 4.24). For the
proof we will need the approximation of functions by means of convolutions,
a fundamental technique in analysis that is not yet available to us.

We will see later on (see 10.13) that functions in Wm,p(Ω) can be identi-
fied with classical (continuous and continuously differentiable) functions, but
only if m and p are sufficiently large, or more precisely if m − n

p is greater
than zero. In the case n = 1, Sobolev functions always admit a continu-
ous representative (see the remark in E3.6). For n ≥ 2, Sobolev functions
are in general not continuous functions. Noncontinuous examples are given
in 10.7 and E10.7. What is the consequence? The motivation for introduc-
ing Sobolev spaces was to give solutions to differential equations. However,
in this way we obtain only weak solutions in the Sobolev space. Hence a
regularity theory is needed, which guarantees that the solutions of certain
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variational problems are smooth (continuous, differentiable, etc.) functions
(see e.g. Appendix A12). Moreover, many variational problems also include
side conditions, for instance in the form of boundary conditions. Hence these
boundary conditions need to be formulated in Sobolev spaces as well. In fact,
one can show that, in a weak sense, Sobolev functions have boundary val-
ues (see A8.6). Sobolev functions on Ω with weak boundary values 0 on the
boundary of Ω can also be described in a simpler way, that is, as the limit of
smooth functions with compact support in Ω (see also A8.10):

3.29 W
m,p
0

(Ω)-spaces. Let Ω ⊂ IRn be open, let m ≥ 0 be an integer and
1 ≤ p < ∞. Then the Sobolev space with zero boundary values of order
m with exponent p is defined by

Wm,p
0 (Ω) :=

{
f ∈ Wm,p(Ω) ; there exist fk ∈ C∞

0 (Ω) such that

‖f − fk‖Wm,p → 0 as k → ∞
}
.

Other commonly used notations are Hm,p
0 , H̊m,p, Hm

p0, W̊m,p. The above
defined space Wm,p

0 (Ω) is a closed subspace of Wm,p(Ω).

Remark: If Ω ⊂ Ω̃ and f ∈ Wm,p
0 (Ω), then the function defined by f̃ := f

in Ω and f̃ := 0 in Ω̃ \ Ω belongs to Wm,p
0 (Ω̃).

Proof of Remark. Let fk ∈ C∞
0 (Ω) be as in the definition. Then the analo-

gously extended functions f̃k belong to C∞
0 (Ω̃) ⊂ Wm,p(Ω̃) and converge in

the Wm,p-norm to f̃ . ��

The space W 1,2
0 (Ω) is used to solve a boundary value problem in 6.8.

E3 Exercises

E3.1 On uniform convergence. Let S ⊂ IRn be as in 3.3 and let Y be a
Banach space. Then the following are equivalent for f, fk ∈ C0(S;Y ), k ∈ IN:

(1) fk −→ f in C0(S;Y ) as k → ∞.

(2) ‖fk − f ‖C0(Km) −→ 0 as k → ∞ for all m ∈ IN.

(3) ‖fk − f ‖C0(K) −→ 0 as k → ∞ for all bounded and closed sets K ⊂ S.

E3.2 Exhaustion property. Which of the following sets S satisfies the
exhaustion property in 3.3 ?

(1) S ⊂ IRn closed.

(2) S ⊂ IRn open.

(3) S = S0 := {(x1, x2) ∈ IR2 ; x1 > 0, x2 ≥ 0}.
(4) S = S0 ∪ {(0, 0)} with S0 as in (3).

Solution (1). Let x0 ∈ S and choose Km := S ∩ Bm(x0). ��
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Solution (2). For δ > 0,

Sδ := {x ∈ IRn ; dist(x, IRn \ S) ≥ δ}

is closed. Choose Km := S 1
m

∩ Bm(0) for m sufficiently large. ��

Solution (3). Choose Km := {(x1, x2) ∈ IR2 ; 1
m ≤ x1 ≤ m, 0 ≤ x2 ≤ m}.

��

Solution (4). The property is not satisfied, since S ∩ Bδ(0) ⊂ K, K closed,
implies that K �⊂ S. ��

E3.3 A test function. Letting

f(x) :=

⎧⎪⎨⎪⎩ exp

(
− 1

1− |x|2

)
for |x| < 1,

0 otherwise,

defines a function f ∈ C∞
0 (IRn; IR).

E3.4 Lp-norm as p → ∞. Let (S,B, μ) be a bounded measure space,
i.e. μ(S) < ∞, and in addition nontrivial, i.e. μ(S) > 0. For μ-measurable
functions f : S → Y and 1 ≤ p < ∞ let

Φp(f) :=

⎧⎪⎨⎪⎩
(

1

μ(S)

∫
S

|f(x)|p dμ(x)
) 1

p
if f ∈ Lp(μ;Y ),

∞ otherwise.

Then p �→ Φp(f) is monotonically nondecreasing and for f ∈ L∞(μ;Y ) we
have that

‖f ‖L∞ = lim
p→∞

Φp(f) = lim
p→∞

‖f ‖Lp .

Solution. For 1 ≤ p < q with Φq(f) < ∞ let r := q
p and let r′ be the dual

exponent, i.e. 1
r + 1

r′ = 1. The Hölder inequality then yields that Φp(f) < ∞
and

Φp(f) =

(
1

μ(S)
‖1 · |f |p‖L1

) 1
p

≤
(

1

μ(S)
‖1‖Lr′ · ‖|f |p‖Lr

) 1
p
=

(
μ(S)

1
r′ − 1‖f ‖

q
r
Lq

) 1
p
= Φq(f) .

In addition, for f ∈ L∞(μ;Y ) we have∫
S

|f |p dμ ≤ μ(S)‖f ‖pL∞ , and so Φp(f) ≤ ‖f ‖L∞ .
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Moreover, for all κ > 0,∫
S

|f |p dμ ≥ μ
(
{|f | ≥ κ}

)
· κp ,

and hence

Φp(f) ≥
(
μ
(
{|f | ≥ κ}

)
μ(S)

) 1
p

· κ −→ κ

as p → ∞, if μ
(
{|f | ≥ κ}

)
> 0, which is satisfied for κ < ‖f ‖L∞ . This proves

the desired result. ��

E3.5 Subsequences. Show that in 3.22(1) choosing a subsequence is nec-
essary in general.

Solution. For l, k ∈ IN ∪ {0}, 0 ≤ k < 2l, let n := 2l + k and

fn := X[k2−l,(k+1)2−l] .

It then follows for every p ∈ [1,∞[ that fn → 0 in Lp([0, 1]) as n → ∞, but
for every x ∈ [0, 1] the sequence (fn(x))n∈IN has two distinct cluster points
0 and 1, i.e. the function sequence (fn)n∈IN does not converge at any given
point (and in particular it does not converge almost everywhere). However,
(f2l(x))l∈IN converges for all x ∈ [0, 1] (to 1 for x = 0 and to 0 for x > 0),
and hence the subsequence (f2l)l∈IN converges at all points (and in particular
it converges almost everywhere). ��

E3.6 Fundamental theorem of calculus. Let I ⊂ IR be an open interval.

(1) If f ∈ W 1,1(I), then for almost all x1, x2 ∈ I (with respect to the one-
dimensional Lebesgue measure)

f(x2) − f(x1) =

∫ x2

x1

f ′(x) dx .

(2) Conversely, if f, g ∈ L1(I) and

f(x2) − f(x1) =

∫ x2

x1

g(x) dx

for almost all x1, x2 ∈ I, then f ∈ W 1,1(I) with f ′ = g.

Remark: This is related to the concept of absolutely continuous func-
tions on I, defined by

AC(I) :=
{
ϕ ∈ C0(I) ; there exists a g ∈ L1(I) such that for x1, x2 ∈ I

ϕ(x2) − ϕ(x1) =

∫ x2

x1

g(x) dx
}
.
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Proposition (2) states that AC(I) ⊂ W 1,1(I). If f ∈ W 1,1(I) and x1 ∈ I is
fixed such that the identity in (1) holds for almost all x2 ∈ I, then f = ϕ
almost everywhere, where

ϕ(y) := f(x1) +

∫ y

x1

f ′(x) dx for y ∈ I.

As ϕ ∈ AC(I) ⊂ C0(I), we see that f agrees almost everywhere with a con-
tinuous function, or in other words, ϕ is the unique continuous representative
of f .

Solution (1). It follows from 3.28 that there exist fk ∈ W 1,1(I)∩C∞(I) such
that fk → f in W 1,1(I). It holds for all x1, x2 ∈ I that

fk(x2) − fk(x1) =

∫ x2

x1

fk
′(x) dx .

Since fk
′ → f ′ in L1(I), the right-hand side converges to the desired ex-

pression. Moreover, it follows from 3.22(1) that there exists a subsequence
(fki

)i∈IN such that fki
(x) → f(x) for almost all x ∈ I. ��

Solution (2). Let ζ ∈ C∞
0 (I). Choose x± ∈ I such that ζ(x) = 0 for all x

outside of [x−, x+] and such that the assumption holds for x1 = x− and
almost all x2. Then∫

I

f(x)ζ ′(x) dx =

∫ x+

x−

(f(x) − f(x−)) ζ
′(x) dx =

∫ x+

x−

∫ x

x−

g(y) ζ ′(x) dy dx

=

∫ x+

x−

(∫ x+

y

ζ ′(x) dx

)
g(y) dy = −

∫
I

ζ(y) g(y) dy .

��

E3.7 Left- and right-hand limit. Let I ⊂ IR be an open interval, x0 ∈ I
and f ∈ W 1,1

(
I \ {x0}

)
. Then there exist

f−(x0) := ess lim
x↗x0

f(x) and f+(x0) := ess lim
x↘x0

f(x) .

In addition,
f ∈ W 1,1

(
I
)

⇐⇒ f−(x0) = f+(x0) .

Note: For the multidimensional case see A8.9.

Definition: We call “ess lim” the essential limit. In general “ess lim” is
the limit for points outside an appropriately chosen null set. In the concrete
case above consider the continuous representative of f from the remark in
E3.6.
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Solution ⇒. For almost all x1, x2 ∈ I with x1, x2 > x0 or x1, x2 < x0 it
follows from E3.6 that

|f(x2) − f(x1)| =
∣∣∣∣∫ x2

x1

f ′(x) dx

∣∣∣∣ ≤ ∫ x2

x1

∣∣f ′(x)
∣∣ dx −→ 0 as x1, x2 → x0

(see A3.17(2)). Hence the limits f−(x0) and f+(x0) exist. If f ∈ W 1,1(I),
then it follows similarly for almost all x1, x2 ∈ I with x1 < x0 < x2 that

|f(x2) − f(x1)| ≤
∫ x2

x1

∣∣f ′(x)
∣∣ dx −→ 0 as x1, x2 → x0,

and so f−(x0) = f+(x0). ��

Solution ⇐. For almost all x1 < y1 < x0 < y2 < x2 in I it follows once again
from E3.6 that

(f(x2) − f(x1)) − (f(y2) − f(y1)) = f(y1) − f(x1) + f(x2) − f(y2)

=

∫ y1

x1

f ′(x) dx+

∫ x2

y2

f ′(x) dx =

∫ x2

x1

f ′(x) dx −
∫ y2

y1

f ′(x) dx .

The right-hand side converges to∫ x2

x1

f ′(x) dx

as y1, y2 → x0, while f(y2)−f(y1) → f+(x0)−f−(x0) = 0. Hence f ∈ W 1,1(I)
on recalling E3.6. ��

E3.8 Estimating the Hölder norm by the W 1,p-norm. Let 1 < p ≤ ∞,
α := 1 − 1

p and I := [a, b] ⊂ IR. Then there exists a constant C < ∞ such

that for all f ∈ C1(I) and all x0 ∈ I,

‖f ‖C0,α(I) ≤ |f(x0)| + C ·
∥∥f ′∥∥

Lp(I)
.

Note: See also theorem 10.13.

Solution. For a ≤ x1 < x2 ≤ b the Hölder inequality (with 1
p′ = 1 − 1

p = α)
yields

|f(x2) − f(x1)| =
∣∣∣∣∫ x2

x1

f ′(x) dx

∣∣∣∣ ≤ ∫ x2

x1

1 ·
∣∣f ′(x)

∣∣ dx
≤
(∫ x2

x1

1 dx
) 1

p′
(∫ x2

x1

∣∣f ′(x)
∣∣p dx) 1

p ≤ (x2 − x1)
α
∥∥f ′∥∥

Lp(I)
.

This implies that
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|f(x2)| ≤ |f(x1)| + (b − a)α
∥∥f ′∥∥

Lp(I)

and
|f(x2) − f(x1)|

|x2 − x1 |α
≤
∥∥f ′∥∥

Lp(I)
,

and hence the desired result with C = 1 + (b − a)α. ��

A3 Lebesgue’s integral

Here we give the construction of Lebesgue’s integral for σ-subadditive mea-
sures. In the context of functional analysis it appeared to be appropriate to
carry out this construction based on a completion principle. Moreover, it is
adequate for functional analysis to consider functions with values in Banach
spaces Y . Here Y = IR or Y = IRm are the standard cases, and for the un-
derstanding of the construction it suffices to consider for Y this Euclidean
case.

The construction of Lebesgue’s integral can be found in A3.1–A3.16.
These give rise to the fundamental properties of the space L(μ) of integrable
functions in A3.16, the so-called “axioms of Lebesgue’s theory”. From these
axioms we will deduce the most important properties of Lebesgue integrable
functions in A3.11–A3.21. In particular, in A3.15 we will show that the set of
characteristic functions in L(μ) provides a σ-additive extension of the original
measure.

A3.1 Assumptions. Let S be a set and let B0 be a nonempty system of
subsets of S that forms a (Boolean) ring, i.e.

E1, E2 ∈ B0 =⇒ E1 \ E2 ∈ B0 and E1 ∪ E2 ∈ B0 .

Then it also holds that ∅ ∈ B0 and E1∩E2 = E1 \(E1 \E2) ∈ B0. The system
of sets B0 is called a (Boolean) algebra if in addition S ∈ B0. Then B0 is
characterized by the properties

(1) ∅ ∈ B0,

(2) E ∈ B0 =⇒ S \ E ∈ B0 ,

(3) E1, E2 ∈ B0 =⇒ E1 ∪ E2 ∈ B0 and E1 ∩ E2 ∈ B0 .

In the following, let (S,B0, μ) be a pre-measure space, i.e. B0 is a Boolean
algebra of subsets of S and

(4) μ : B0 → [0,∞] with μ(∅) = 0

is an additive measure, i.e.

(5) E1, . . . , Em ∈ B0 pairwise disjoint =⇒ μ
(⋃m

i=1 Ei

)
=
∑m

i=1 μ(Ei) ,

and, in addition, σ-subadditive, i.e.
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(6) E,Ei ∈ B0 for i ∈ IN, E ⊂
⋃

i∈IN Ei =⇒ μ(E) ≤
∑

i∈IN μ(Ei) .

A3.2 Consequences. It follows from A3.1(4) and the additivity A3.1(5)
that μ is monotone on B0, i.e.

(1) E1, E2 ∈ B0, E1 ⊂ E2 =⇒ μ(E1) ≤ μ(E2) ,

and that μ is subadditive on B0, i.e.

(2) E,Ei ∈ B0, i = 1, . . . ,m, E ⊂
⋃m

i=1 Ei =⇒ μ(E) ≤
∑m

i=1 μ(Ei) .

Together with the σ-subadditivity A3.1(6) this yields that μ is σ-additive
on B0, i.e.

(3) If Ei ∈ B0 for i ∈ IN are pairwise disjoint, then⋃
i∈IN Ei ∈ B0 =⇒ μ

(⋃
i∈IN Ei

)
=
∑

i∈IN μ(Ei) .

Proof (1). It holds that μ(E2) = μ(E2 \ E1) + μ(E1) ≥ μ(E1). ��

Proof (2). Define inductively

A0 := ∅ and Ai := Ei \
⋃

j<i Aj for i = 1, . . . ,m.

Then the Ai are pairwise disjoint with E ⊂
⋃m

i=1 Ai. It follows from (1) and
A3.1(5) that

μ(E) ≤ μ (
⋃m

i=1 Ai) =
∑m

i=1 μ(Ai) ≤
∑m

i=1 μ(Ei) .
��

Proof (3). The inequality “≤” follows from A3.1(6). In addition, combining
(1) and A3.1(5) yields that

μ
(⋃

i∈IN Ei

)
≥ μ
(⋃m

i=1 Ei

)
=
∑m

i=1 μ(Ei) for all m.
��

A3.3 Example (Elementary Lebesgue measure). As an example let
S = IRn and let B0 consist of all finite unions of disjoint semi-open cuboids,
where semi-open cuboids are sets of the form

[a, b[ := {x ∈ IRn ; ai ≤ xi < bi for i = 1, . . . , n}

with −∞ ≤ ai < bi ≤ +∞. Let

μ
(
[a, b[

)
:=

n∏
i=1

(bi − ai) ,

with the value being ∞ if there is a bi = ∞ or an ai = −∞. Now, if a semi-
open cuboid E is the disjoint union of semi-open cuboids E1, . . . , Em, then
it is straightforward to show that
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μ(E) =

m∑
i=1

μ(Ei) .

Hence it is possible to uniquely extend μ additively to B0. It holds that μ is
σ-subadditive on B0, and so the assumptions in A3.1, in particular A3.1(6),
are satisfied.

Definition: We denote this measure by Ln := μ.

Proof of σ-subadditivity. Let E and Ei be semi-open cuboids as in A3.1(6).
Without loss of generality, let Ei = [ai, bi[ with ai, bi ∈ IRn, and let E ∈ B0

be given as a disjoint union

E =
⋃l

i=1 [α
i, βi[ with αi, βi ∈ IRn, αi

j < βi
j .

For small δ > 0 consider the set

Eδ :=
⋃l

i=1 [α
iδ, βiδ[ with αiδ

j := αi
j + δ < βiδ

j := βi
j − δ ,

which belongs to B0. As Eδ ⊂ E ⊂
⋃

i∈IN Ei, for ε > 0 the sets

]aiε, biε[ with aiεj := aij − ε(bij − aij) , biεj := bij + ε(bij − aij) ,

form an open cover of the closed bounded set Eδ. It follows that Eδ

(see 4.7(7) and 4.6) is already covered by finitely many open cuboids
]ai1ε, bi1ε[, . . . , ]aimε, bimε[. Consequently

μ(Eδ) ≤
m∑

k=1

μ
(
[aikε, bikε[

)
(recall A3.2(2))

=

m∑
k=1

(1 + 2ε)nμ(Eik) ≤ (1 + 2ε)n
∑
i∈IN

μ(Ei) .

Additivity and the definition of μ yield that, as δ → 0,

μ(Eδ) =

l∑
i=1

μ
(
[αiδ, βiδ

[
)
−→

l∑
i=1

μ
(
[αi, βi

[
)
= μ(E) .

On letting ε → 0 we obtain the desired result. ��

A3.4 Definition (Outer measure and null sets). Let μ be as in A3.1.

(1) The outer measure μ∗ corresponding to μ is defined by

μ∗(A) := inf
{∑

i∈IN

μ(Ei) ; A ⊂
⋃
i∈IN

Ei , Ei ∈ B0

}
for A ⊂ S. As it is possible to restrict this definition to disjoint sets Ei, we
have
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μ∗(A) = inf
{

lim
i→∞

μ(Ai) ; A ⊂
⋃
i∈IN

Ai , Ai ∈ B0 , Ai ⊂ Ai+1

}
.

It follows that μ∗ is σ-subadditive, and A3.1(6) yields that

μ = μ∗ on B0. (A3-1)

(2) We say that

N ⊂ S is a μ-null set :⇐⇒ μ∗(N) = 0 .

Any subset of a μ-null set is a μ-null set. Countable unions of μ-null sets are
μ-null sets. We say that a statement holds μ-almost everywhere if it holds
outside of a μ-null set.

Note: If (S,B0, μ) is a measure space (see 3.9), then N is a μ-null set if and
only if N ∈ B0 with μ(N) = 0.

Proof (1). It is μ ≥ μ∗ by the definition of the outer measure and A3.1(6)
implies that μ ≤ μ∗. ��

A3.5 Step functions. In the following let (S,B0, μ) be a pre-measure space
as in A3.1 and let Y be a Banach space with norm y �→ |y |. The set of step
functions with respect to (S,B0, μ) with values in Y is defined by

T (μ;Y ) :=
{
f : S → Y ; f(S) is finite,

f−1({y}) ∈ B0 for y ∈ Y ,

μ(f−1({y})) < ∞ for y �= 0
}

with the equivalence relation

f = g in T (μ;Y ) :⇐⇒ f = g μ-almost everywhere .

Since step functions have steps in B0, it follows that

f = g in T (μ;Y ) ⇐⇒ μ({x ∈ S ; f(x) �= g(x)}) = 0 .

It turns out that step functions are precisely those functions f : S → Y that
can be written as

f =

m∑
i=1

XEi
αi with m ∈ IN, αi ∈ Y, Ei ∈ B0, μ(Ei) < ∞ .

(Observe that this representation is not unique.) This implies that T (μ;Y )
is a vector space.

Definition: We denote by XE the characteristic function of the set E,
which is given by
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XE(x) :=

{
1 for x ∈ E,

0 for x /∈ E.

A3.6 Elementary integral. For f ∈ T (μ;Y ) we define the elementary
μ-integral of f over S by∫

S

f dμ :=
∑

y∈Y \{0}
μ(f−1({y})) y .

Then:

(1) It holds that∫
S

f dμ =
m∑
i=1

μ(Ei)αi , if f =
m∑
i=1

XEi
αi as in A3.5.

(2) The elementary integral is a linear map from T (μ;Y ) to Y .

(3) For every f ∈ T (μ;Y ), the function x �→ |f(x)| ∈ IR, denoted by |f |,
belongs to T (μ; IR) and ∣∣∣∣∫

S

f dμ

∣∣∣∣ ≤ ∫
S

|f | dμ .

(4) The set T (μ;Y ) with

‖f ‖T (μ) :=

∫
S

|f | dμ

is a normed space.

Construction of Lebesgue’s integral

The aim now is to describe the completion (see 2.24)

T̃ (μ;Y ) := ˜T (μ;Y ) of the normed space T (μ;Y ) ,

that is, to construct an isomorphism between T̃ (μ;Y ) and a function space. In

this way, the completion T̃ (μ;Y ), i.e. the set of Cauchy sequences in T (μ;Y ),
serves as a model for the set of functions that are Lebesgue integrable with
respect to μ. Before we start, let us introduce the following notations: For
f ∈ T (μ;Y ) and E ∈ B0 we have that XEf ∈ T (μ;Y ) and we define∫

E

f dμ :=

∫
S

XEf dμ .

If f ∈ T (μ; IR) and a ∈ IR, we set e.g.

{f > a} := {x ∈ S ; f(x) > a} ∈ B0 . (A3-2)

The crucial observations for the construction of Lebesgue’s integral are:
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A3.7 Lemma. Let (fk)k∈IN ∈ T̃ (μ;Y ). Then:

(1) There exist a μ-null set N and a subsequence (fki
)i∈IN such that there

exists
f(x) := lim

i→∞
fki

(x) in Y for all x ∈ S \ N .

(2) For the function f in (1)

(fk)k∈IN = 0 in T̃ (μ;Y ) ⇐⇒ f = 0 μ-almost everywhere.

Proof (1). Choose a subsequence (fki
)i∈IN such that ki < ki+1 for i ∈ IN and

‖fk − fl‖T (μ) =

∫
S

|fk − fl | dμ ≤ 2−i for k, l ≥ ki .

Let

gj :=

j∑
i=1

∣∣fki
− fki+1

∣∣ ∈ T (μ;Y ) .

As (gj)j∈IN is a monotonically increasing sequence of functions, there exists

g(x) := lim
j→∞

gj(x) ∈ [0,∞[ for all x ∈ S .

Now ∫
S

gj dμ =

j∑
i=1

∫
S

∣∣fki
− fki+1

∣∣ dμ ≤
∞∑
i=1

2−i = 1 .

For every ε > 0 we then have that Aj := {gj > 1
ε} ∈ B0, with

1 ≥
∫
S

gj dμ ≥ 1

ε
μ(Aj) .

In addition, Aj ⊂ Aj+1 and

N := {g = ∞} ⊂ {g > 1
ε} ⊂

⋃
j∈IN Aj .

It follows from A3.4 that

μ∗(N) ≤ lim
j→∞

μ(Aj) ≤ ε .

Hence N is a μ-null set and g(x) < ∞ for x ∈ S \N , and so (fki
(x))i∈IN is a

Cauchy sequence in Y for x ∈ S \N . ��

Proof (2)⇒. We assume without loss of generality (drop the sequence ele-
ments that do not belong to the subsequence in (1)) that

f(x) = lim
k→∞

fk(x) for x ∈ S \ N .
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We need to show that {f �= 0} \ N is a μ-null set. Since ‖fk‖T (μ) → 0 as

k → ∞, there exists a subsequence (fki
)i∈IN such that∫

S

|fki
| dμ ≤ 2−i .

For ε > 0 define

Nε,i := {|fki
| > ε} ∈ B0 , Nε := {|f | > ε} \N .

Then it holds for every i0 ∈ IN that

Nε ⊂
⋃

i>i0
Nε,i ,

and so

μ∗(Nε) ≤
∑
i>i0

μ(Nε,i)

≤
∑
i>i0

1

ε

∫
S

|fki
| dμ ≤ 1

ε
2−i0 −→ 0 as i0 → ∞ .

Hence Nε is a μ-null set for all ε > 0, which yields that {|f | > 0} \ N is a
μ-null set. ��

Proof (2)⇐. We need to show that ‖fk‖T (μ;Y ) → 0 for a subsequence k → ∞.

We may again assume that 0 = f(x) = limk→∞ fk(x) for x ∈ S\N . Moreover
we can assume (by choosing a subsequence) that∫

S

|fk − fk+1 | dμ ≤ 2−k .

We note that El := {fl �= 0} ∈ B0 with μ(El) < ∞, and hence it holds for
l < k and ε > 0 that∫

S

|fk | dμ ≤
∫
El

|fk | dμ+

∫
S\El

|fk | dμ

≤ εμ(El) +

∫
{|fk|>ε}

|fk | dμ+

∫
S\El

|fk − fl | dμ

≤ εμ(El)︸ ︷︷ ︸
→ 0 as ε → 0

for any l

+

∫
{|fk|>ε}

|fl | dμ+ 2

∫
S

|fk − fl | dμ︸ ︷︷ ︸
→ 0 as k, l → ∞

,

with the second term on the right-hand side being

≤ ‖fl‖supμ({|fk| > ε}) .

If we can show that for every ε > 0
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μ({|fk| > ε}) → 0 as k → ∞

(i.e. (fk)k∈IN is μ-measure convergent to 0, see (3-4)), then the desired result
follows. For the proof define for l ≥ k

Ek,l :=
{ l∑

i=k

|fi − fi+1| > ε
}

∈ B0 .

Then

εμ(Ek,l) ≤
∫
S

l∑
i=k

|fi − fi+1 | dμ ≤
l∑

i=k

2−i ≤ 2−k+1 ,

and in addition Ek,l ⊂ Ek,l+1 for l ≥ k. For points x ∈ S \ N \
⋃

l≥k Ek,l it
holds that

|fk(x)| ≤ |fl+1(x)|︸ ︷︷ ︸
→ 0 as l → ∞

+

l∑
i=k

|fi(x) − fi+1(x)|︸ ︷︷ ︸
≤ ε for all l

,

and so
{|fk| > ε} ⊂ N ∪

⋃
l≥k

Ek,l ,

which implies that

μ({|fk| > ε}) = μ∗({|fk| > ε}) ≤ μ∗(N) + μ∗
(⋃
l≥k

Ek,l

)
≤ lim

l→∞
μ(Ek,l) ≤ 1

ε
2−k+1 → 0 as k → ∞.

��

A3.8 Lebesgue integrable functions. Let T̃ (μ;Y ) be the completion of
T (μ;Y ) (see 2.24). Recalling lemma A3.7, we consider the set

L(μ;Y ) :=
{
f : S → Y ; there exists a sequence

(fk)k∈IN ∈ T̃ (μ;Y ) such that

f = limk→∞ fk μ-almost everywhere
} (A3-3)

with the equivalence relation

f = g in L(μ;Y ) :⇐⇒ f = g μ-almost everywhere.

In the following we also write L(μ) instead of L(μ; IK). Functions in L(μ;Y )
are called μ-integrable. Clearly, L(μ;Y ) is a vector space which contains
T (μ;Y ), where the equivalence relation in L(μ;Y ) restricted to T (μ;Y ) is
the same as in A3.5.

Proposition: Defining
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J
(
(fk)k∈IN

)
:= f with f as in (A3-3)

yields a vector space isomorphism between T̃ (μ;Y ) and L(μ;Y ).

Proof. It follows from A3.7 that for (fk)k∈IN ∈ T̃ (μ;Y ) there exists a unique f
in L(μ;Y ) such that for a subsequence (fki

)i∈IN it holds that f = limi→∞ fki

almost everywhere. To see this, let
(
fk̃i

)
i∈IN

be another subsequence and

f̃ = limi→∞ fk̃i
almost everywhere. Then

(
fki

− fk̃i

)
i∈IN

= 0 in T̃ (μ;Y ),

and so f − f̃ = 0 almost everywhere by A3.7(2), i.e. f = f̃ in L(μ;Y ). This
defines a map

J : T̃ (μ;Y ) → L(μ;Y ) ,

which is obviously linear. Moreover, it follows from A3.7(2) that it is injective
and the definition of L(μ;Y ) in (A3-3) yields that it is surjective. ��

A3.9 Lebesgue integral. Let f , (fk)k∈IN be as in the definition of L(μ;Y )
in (A3-3). Then it follows from A3.6(3) and A3.6(4) that∣∣∣∣∫

S

fk dμ −
∫
S

fl dμ

∣∣∣∣ ≤ ∫
S

|fk − fl | dμ −→ 0 as k, l → ∞ .

As Y is complete, there exists

lim
k→∞

∫
S

fk dμ in Y.

The integral of f with respect to the measure μ is defined by∫
S

f dμ
(
or

∫
S

f(x) dμ(x)
)
:= lim

k→∞

∫
S

fk dμ ,

which is independent of the choice of the sequence (fk)k∈IN in the definition
(A3-3) (this follows as in the proof of A3.8).

The space L(μ;Y ) together with the above defined integral has the follow-
ing properties (L1)–(L5), which we call the axioms of the Lebesgue integration
theory.

A3.10 Theorem (Axioms of the Lebesgue integral). For the integral
defined in A3.9 it holds that:

(L1) T (μ;Y ) ⊂ L(μ;Y ) and the integral is linear on L(μ;Y ), with∫
S

XEα dμ = μ(E)α for E ∈ B0 with μ(E) < ∞ and α ∈ Y .
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(L2) If f ∈ L(μ;Y ), then |f | ∈ L(μ; IR) and∣∣∣∣∫
S

f dμ

∣∣∣∣ ≤ ∫
S

|f | dμ .

(L3) For f ∈ L(μ;Y ) and ε > 0,∫
S

|f | dμ ≥ εμ∗({|f | > ε}) .

(L4) L(μ;Y ) is a Banach space with the norm

‖f ‖L(μ) :=

∫
S

|f | dμ .

(L5) T (μ;Y ) is dense in L(μ;Y ).

Proof (L1). If f ∈ T (μ;Y ), then J
(
(f)k∈IN

)
= f , where J is the isomorphism

from A3.8. In addition we note that the integral of f in A3.9 coincides with
the elementary integral in A3.6. ��

Proof (L2). If J
(
(fk)k∈IN

)
= f with (fk)k∈IN ∈ T̃ (μ;Y ), then it follows from

the triangle inequality in Y that∫
S

||fk| − |fl|| dμ ≤
∫
S

|fk − fl | dμ −→ 0 as k, l → ∞,

and hence (|fk|)k∈IN ∈ T̃ (μ; IR). Since there exists a subsequence (ki)i∈IN such
that fki

→ f μ-almost everywhere, we have that |fki
| → |f | μ-almost every-

where as i → ∞, and so J
(
(|fk|)k∈IN

)
= |f | (where here J is the isomorphism

associated with T (μ; IR)). Noting that∣∣∣∣∫
S

fk dμ

∣∣∣∣ ≤ ∫
S

|fk | dμ

yields the inequality in (L2). ��

Proof (L3). Let J
(
(fk)k∈IN

)
= f , that is, for a μ-null setN and a subsequence

k → ∞ (again denoted by (fk)k∈IN) we have that

fk(x) → f(x) for x ∈ S \N .

On choosing a further subsequence (and retaining the notation as above) we
can assume without loss of generality that∫

S

|fk+1 − fk | dμ ≤ 2−k .

Let x ∈ S \ N . For 0 < δ < ε we have that
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|f(x)| > ε =⇒ |fk(x)| > δ or |f(x) − fk(x)| > ε − δ .

In the latter case,

|f(x) − fk(x)| = lim
i→∞

|fi(x) − fk(x)|

≤
∑
i≥k

|fi+1(x) − fi(x)| ,

so that there exists an l > k, depending on x, such that∑
k≤i≤l

|fi+1(x) − fi(x)| > ε − δ .

Hence

{|f | > ε} ⊂ N ∪ {|fk| > δ} ∪
⋃
l≥k

{ ∑
k≤i≤l

|fi+1 − fi| > ε − δ
}
.

As the set in the rightmost union is monotonically increasing in l, it follows
from the definition of the outer measure that

μ∗({|f | > ε}) ≤ μ({|fk| > δ}) + lim
l→∞

μ
({ ∑

k≤i≤l

|fi+1 − fi| > ε − δ
})

≤ 1

δ

∫
S

|fk | dμ+
1

ε − δ

∑
k≤i≤l

∫
S

|fi+1 − fi | dμ

≤ 1

δ

∫
S

|fk | dμ+
1

ε − δ
21−k .

Recalling the proof of (L2) we have that∫
S

|f | dμ = lim
k→∞

∫
S

|fk | dμ ,

and so letting k → ∞ and then δ → ε we obtain the desired result. ��

Proof (L4) and (L5). If J
(
(fk)k∈IN

)
= f , then it follows from the proof of

(L2) that

‖f ‖L(μ) :=

∫
S

|f | dμ = lim
k→∞

∫
S

|fk | dμ =
∥∥(fk)k∈IN

∥∥
T̃ (μ;Y )

,

i.e. J is isometric. As T̃ (μ;Y ) is complete, it follows that L(μ;Y ) with the
above norm is a Banach space. If J

(
(fk)k∈IN

)
= f , then J

(
(fk − fj)k∈IN

)
=

f − fj for all j and

‖f − fj‖L(μ) = lim
k→∞

∫
S

|fk − fj | dμ −→ 0 as j → ∞,

i.e. every f ∈ L(μ;Y ) can be approximated in the L(μ;Y )-norm by step
functions. ��
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Extension of measures

This concludes the construction of the Lebesgue integral. We now derive the
most important properties of this integral. We note that to this end, we will
only (!) make use of the properties (L1)–(L5). This means: All the results of
Lebesgue’s integration theory can be derived from the properties (L1)–(L5),
and that is why these properties are called “axioms”.

A3.11 Lemma. If fk → f in L(μ;Y ) as k → ∞, then there exists a subse-
quence (ki)i∈IN such that fki

→ f μ-almost everywhere as i → ∞.

Proof. Choose a subsequence (ki)i∈IN with∫
S

|f − fki
| dμ ≤ 2−i .

For ε > 0 we have that

Nε :=
{
lim sup
i→∞

|f − fki
| > ε
}

⊂
⋃
i≥j

{|f − fki
| > ε}

for all j, and hence

μ∗(Nε) ≤
∑
i≥j

μ∗({|f − fki
| > ε}) ,

which, on recalling (L3), is

≤ 1

ε

∑
i≥j

∫
S

|f − fki
| dμ ≤ 1

ε
21−j −→ 0 as j → ∞.

This yields that Nε is a μ-null set, and consequently so is{
lim sup
i→∞

|f − fki
| > 0
}
.

��

A3.12 Conclusions.

(1) Monotonicity of the integral. For f, g ∈ L(μ; IR) it holds that:

g ≥ f μ-almost everywhere =⇒
∫
S

g dμ ≥
∫
S

f dμ .

(2) Convergence criterion. If (fk)k∈IN is a Cauchy sequence in L(μ;Y )
and fk → f μ-almost everywhere as k → ∞, then f ∈ L(μ;Y ) and
‖f − fk‖L(μ) → 0 as k → ∞.
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(3) Monotone convergence theorem. Let fk ∈ L(μ; IR) for k ∈ IN and
let f : S → IR. Moreover, let 0 ≤ fk ↗ f μ-almost everywhere as k → ∞
(that is, fk converges from below monotonically to f) and

lim sup
k→∞

∫
S

fk dμ < ∞ .

Then f ∈ L(μ; IR) and fk → f in L(μ; IR) as k → ∞.

Note: In particular, ∫
S

f dμ = lim
k→∞

∫
S

fk dμ .

Proof (1). By (L2),∫
S

g dμ −
∫
S

f dμ =

∫
S

|g − f | dμ ≥
∣∣∣∣∫

S

(g − f) dμ

∣∣∣∣ ≥ 0 .

��

Proof (2). We have from (L4) that L(μ;Y ) is complete, and hence there exists
a g ∈ L(μ;Y ) such that fk → g in L(μ;Y ) as k → ∞. It follows from A3.11
that there exists a subsequence (ki)i∈IN such that

fki
→ g μ-almost everywhere as i → ∞ .

Hence, f = g μ-almost everywhere, i.e. f = g ∈ L(μ;Y ). ��

Proof (3). It follows from (1) that the integrals of fk form a monotone se-
quence in IR, and the assumptions state that this sequence is bounded. Hence
there exists

lim
k→∞

∫
S

fk dμ .

It follows for l ≥ k that∫
S

|fl − fk | dμ =

∫
S

fl dμ −
∫
S

fk dμ −→ 0 as k, l → ∞.

Now the desired result follows from (2). ��

Proof (3) Note. It follows from (L2), which implies the continuity of the
integral with respect to the L(μ)-norm, that∣∣∣∣∫

S

f dμ −
∫
S

fk dμ

∣∣∣∣ ≤ ∫
S

|f − fk | dμ −→ 0 as k → ∞ ,

since fk → f in L(μ; IR). By the way this also follows from the convergence
of the integrals, since due to the fact that f ≥ fk we have

‖f − fk‖L(μ) =

∫
S

|f − fk| dμ =

∫
S

f dμ −
∫
S

fk dμ ,

which converges to 0 as k → ∞. Here we use the linearity of the integral. ��
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For the Lebesgue measure in A3.3 we have the following additional ap-
proximation property:

A3.13 Remark. For μ = Ln as in A3.3 it holds that: Every function in
L(μ;Y ) can be approximated by functions in C0

0 (IR
n;Y ).

Proof. Functions from C0
0 (IR

n;Y ) belong to L(μ;Y ), because they can be
uniformly approximated by step functions on semi-open cuboids (cf. the defi-
nition of the Riemann integral in 6.22). We know from (L5) that functions in
L(μ;Y ) can be approximated by step functions in T (μ;Y ), and hence it is suf-
ficient to consider functions XE for semi-open cuboids E = [a, b[, a, b ∈ IRn.
For ε > 0 let

Eε := {x ∈ IRn ; ai − ε ≤ xi < bi + ε for i = 1, . . . , n} ,
fε(x) := max

(
0 , 1− 1

εdist(x,E)
)
.

Then fε ∈ C0
0 (IR

n) and XE ≤ fε ≤ XEε
. It follows from A3.12(1) that∫

S

|fε − XE | dμ ≤
∫
S

(XEε
− XE) dμ = μ(Eε \ E) −→ 0

as ε → 0. ��

We started with a measure, see A3.1,

(S,B0, μ) , μ : B0 → [0,∞] σ-additive, B0 an algebra.

Next, we will construct a σ-additive extension

(S,B, μ̄) , μ̄ : B → [0,∞] σ-additive, B a σ-algebra.

Here extension means that

B0 ⊂ B , μ̄ = μ on B0 .

The construction is carried out by considering integrable sets based on the
Lebesgue integral.

A3.14 Integrable sets. Let B1 be the smallest σ-algebra (for the definition
see 3.9) that contains B0. It holds for μ-integrable sets E, i.e. sets E ⊂ S
with XE ∈ L(μ; IR), that:

(1) There exist Ek ∈ B0 such that XEk
→ XE in L(μ; IR) as k → ∞.

(2) There exists an E′ ∈ B1 such that XE = XE′ μ-almost everywhere.

(3) It is
∫
S
XE dμ = μ∗(E).

(4) For all A ∈ B1, it is XE∩A ∈ L(μ; IR).

Proof (1). It follows from (L5) that there exist fk ∈ T (μ; IR) with fk → XE

in L(μ; IR) as k → ∞. On defining

Ek := {fk > 1
2}
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we have that |XEk
−XE | ≤ 2|fk −XE |. Now A3.12(1) yields that XEk

→ XE

in L(μ; IR). ��

Proof (2). Let XEk
be functions with the property in (1), where on choosing

a subsequence we can assume that

‖XEk
− XE‖L(μ) ≤ 2−k, (A3-4)

which will be needed in the proof of (3) below. In addition, it follows from
A3.11 that there exists a μ-null set N such that for a further subsequence
k → ∞ (the assumption (A3-4) will then still hold)

XEk
(x) → XE(x) as k → ∞ for all x ∈ S \N.

This pointwise convergence implies in set notation that

E \N =
⋂
j

⋃
i≥j

(Ei \ N) = E′ \N , (A3-5)

where
E′ :=

⋂
j

⋃
i≥j

Ei ∈ B1 .

Hence, XE = XE′ μ-almost everywhere. ��

Proof (3). Let Ek, k ∈ IN, be as above (with the properties (A3-4) and (A3-
5)). It follows from (A3-5) for all j ∈ IN that

E \N ⊂
⋃
i≥j

Ei \ N ⊂ Ej ∪
⋃
i>j

(Ei \ Ei−1)

and hence
μ∗(E \ N) ≤ μ(Ej) +

∑
i>j

μ(Ei \ Ei−1)

=

∫
S

XEj
dμ+

∑
i>j

∫
S

XEi\Ei−1
dμ

≤
∫
S

XEj
dμ+

∑
i>j

(2−i + 2−(i−1))︸ ︷︷ ︸
= 3 · 2−j

,

where we have used∫
S

XEi\Ei−1
dμ ≤

∫
S

∣∣XEi
− XEi−1

∣∣ dμ
≤
∥∥XEi

− XE

∥∥
L(μ)

+
∥∥XEi−1

− XE

∥∥
L(μ)

and (A3-4). Consequently,
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μ∗(E) ≤ μ∗(E \N) + μ∗(N) = μ∗(E \N)

≤
∫
S

XEj
dμ+ 3 · 2−j −→

∫
S

XE dμ as j → ∞.
(A3-6)

In particular, the outer measure μ∗(E) is finite. Hence it follows from the
definition of the outer measure in A3.4 that for every ε > 0 there exist sets
Ai ∈ B0, i ∈ IN such that

E ⊂ A :=
⋃
i∈IN

Ai , Ai ⊂ Ai+1 , μ∗(E) + ε ≥ lim
i→∞

μ(Ai) .

On noting that XAi
(x) ↗ XA(x) as i → ∞ for all x ∈ S and that μ(Ai) is

bounded, it follows from the monotone convergence theorem A3.12(3) that
XA ∈ L(μ; IR) and

μ(Ai) =

∫
S

XAi
dμ ↗

∫
S

XA dμ as i → ∞ ,

and hence, by A3.12(1),

μ∗(E) + ε ≥
∫
S

XA dμ ≥
∫
S

XE dμ .

Letting ε → 0 and recalling (A3-6) yields the desired result. ��

Proof (4). Let

M :=
{
A ⊂ S ; XE∩A ∈ L(μ; IR)

}
.

It holds that B0 ⊂ M. To see this, let A ∈ B0 and let XEk
be as in (1). Then

|XEk∩A − XEl∩A | ≤ |XEk
− XEl

| ,

and hence, on recalling A3.12(1), (XEk∩A)k∈IN is a Cauchy sequence in
L(μ; IR). We have from A3.11 that XEk

→ XE μ-almost everywhere for a
subsequence k → ∞, and hence also XEk∩A → XE∩A μ-almost everywhere.
Now A3.12(2) implies that XE∩A ∈ L(μ; IR), i.e. A ∈ M. Moreover,

A1, A2 ∈ M =⇒ A1 ∩ A2 ∈ M .

To see this, let Eik ∈ B0 be the corresponding sets to E ∩ Ai from (1), i.e.
XEik

→ XE∩Ai
in L(μ; IR) as k → ∞. Then

|XE1k∩E2k
− XE1l∩E2l

| ≤ |XE1k
− XE1l

| + |XE2k
− XE2l

| ,

and hence (XE1k∩E2k
)k∈IN is a Cauchy sequence in L(μ; IR). It follows from

A3.11 that there exists a subsequence k → ∞ such that XEik
→ XE∩Ai

μ-
almost everywhere for i = 1, 2. Then we also have that XE1k∩E2k

→ XE∩A1∩A2

μ-almost everywhere. Hence it follows from A3.12(2) that XE∩A1∩A2
belongs

to L(μ; IR), i.e. A1 ∩ A2 ∈ M. In addition,



A3 Lebesgue’s integral 87

A ∈ M =⇒ S \A ∈ M ,

since XE ,XE∩A ∈ L(μ; IR) implies that

XE\A = XE − XE∩A ∈ L(μ; IR) .

Finally,

Ai ∈ M with Ai ⊂ Ai+1 for i ∈ IN =⇒ A :=
⋃
i∈IN

Ai ∈ M ,

because as i → ∞ we have that XE∩Ai
↗ XE∩A ≤ XE ∈ L(μ; IR), which, on

recalling A3.12(3), implies XE∩A ∈ L(μ; IR).
It follows from the above established properties of M that M is a σ-

algebra that contains B0. Hence B1 ⊂ M. ��

A3.15 Measure extension. Let (S,B0, μ) be a pre-measure space as in
A3.1 and let B1 be the σ-algebra induced by B0 from A3.14. Let

B :=
{
E ⊂ S ; XE = XE′ μ-almost everywhere for an E′ ∈ B1

}
and define μ̄ : B → [0,∞] by

μ̄(E) :=

⎧⎨⎩
∫
S

XE dμ if XE ∈ L(μ; IR),

∞ otherwise.

Then:

(1) XE ∈ L(μ; IR) =⇒ E ∈ B and μ̄(E) = μ∗(E).

(2) B is a σ-algebra and μ̄ : B → [0,∞] is σ-additive.

(3) N is a μ-null set (i.e. μ∗(N) = 0) ⇐⇒ N ∈ B with μ̄(N) = 0.

(4) μ̄ is an extension of μ from B0 to B and (S,B, μ̄) is a measure space.

Interpretation: This shows that there exists a measure extension (B, μ̄) of
(B0, μ) which is given by the outer measure μ∗ of μ. In the following we will
always write μ instead of μ̄.

Proof (1). Follows immediately from A3.14(2) and A3.14(3). ��

Proof (2). On noting that B1 is a σ-algebra and that countable unions of
μ-null sets are again μ-null sets (see A3.4), we have that B is a σ-algebra.

In order to show that μ̄ is additive, consider two disjoint sets E1, E2 ∈ B.
If μ̄(E1 ∪E2) < ∞, i.e. XE1∪E2

∈ L(μ; IR), choose E′
1, E

′
2 ∈ B1 for E1 and E2

as in the definition of B. Then XE′
1∪E′

2
= XE1∪E2

in L(μ; IR), and so E′
1 ∪E′

2

is an integrable set. Now A3.14(4) yields that E′
1 and E′

2 are integrable sets,
and hence so are E1 and E2. On noting that

XE1∪E2
= XE1

+ XE2
, (A3-7)
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the additivity of the integral yields that

μ̄(E1 ∪ E2) = μ̄(E1) + μ̄(E2) . (A3-8)

If, on the other hand, μ̄(E1 ∪E2) = ∞, then E1 ∪E2 is not an integrable set,
and so by (A3-7) the sets E1 and E2 cannot both be integrable, which again
implies (A3-8).

It remains to show that μ̄ is σ-additive on B. To this end, let Ei ∈ B,
i ∈ IN, be pairwise disjoint with E :=

⋃
i Ei ∈ B. We first consider the case

when all the sets Ei are integrable. The above established additivity of μ̄
yields for k ∈ IN that

Ck :=
∑
i≤k

μ̄(Ei) = μ̄(Ẽk) =

∫
S

XẼk
dμ with Ẽk :=

⋃
i≤k

Ei ,

and XẼk
↗ XE as k → ∞. If the Ck are bounded, then the monotone

convergence theorem A3.12(3) yields that XE ∈ L(μ; IR) and

μ̄(E) =

∫
S

XE dμ = lim
k→∞

∫
S

XẼk
dμ =

∑
i∈IN

μ̄(Ei) .

If Ck → ∞ as k → ∞, then it follows from Ẽk ⊂ E and the monotonicity of
the integral A3.12(1) that E is not integrable, and so

μ̄(E) = ∞ =
∑
i

μ̄(Ei) . (A3-9)

It remains to consider the case when one of the sets Ei is not integrable.
As before we obtain that then E cannot be integrable and so (A3-9) holds
trivially. ��

Proof (3). If N is a μ-null set, then XN = X∅ = 0 μ-almost everywhere, and
so XN = 0 in L(μ; IR), whence N ∈ B with μ̄(N) = 0. Conversely, if N ∈ B
with μ̄(N) = 0, then

‖XN ‖L(μ) =

∫
S

XN dμ = 0 ,

and hence the norm property (L4) yields that XN = 0 in L(μ; IR), i.e. XN = 0
μ-almost everywhere, which means that N is a μ-null set. ��

Proof (4). Let E ∈ B0. If μ̄(E) < ∞, then it follows from (L3) that

μ(E) = μ∗(E) ≤
∫
S

XE dμ = μ̄(E) < ∞ .

If μ(E) < ∞, then XE ∈ T (μ; IR), and hence μ̄(E) = μ(E), recall (L1). This
shows that μ̄ is an extension of μ. It follows from (2) that B is a σ-algebra
and that μ̄ is σ-additive.
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On recalling the definition of a measure space in 3.9, it remains to show
that (S,B, μ̄) is complete. But this follows from (3), since subsets of μ-null
sets are again μ-null sets. ��

Properties of Lebesgue’s integral

A3.16 Measurable functions (see 3.11). Let (S,B, μ) be a measure space.
A map f : S → Y is called μ-measurable if

(1) U ⊂ Y open =⇒ f−1(U) ∈ B.
(2) There exists a μ-null set N such that f(S \N) is separable.

In the following we want to show that integrable functions f : S → Y are
precisely those measurable functions for which |f | is integrable. This result
follows from A3.19 below, on setting g = |f | in A3.19(2).

A3.17 Lemma. Let f ∈ L(μ;Y ). Then the following is true:

(1) For E ∈ B it holds that XEf ∈ L(μ;Y ).

(2) Define

ν(E) :=

∫
E

f dμ :=

∫
S

XEf dμ ∈ Y for E ∈ B .

Then ν : B → Y is σ-additive and

|ν(E)| → 0 as μ(E) → 0. (A3-10)

Definition: In particular, if Y = IR and f = XA then

ν(E) =

∫
E

XA dμ = μ(A ∩ E) =: (μ�A)(E)

is the measure μ restricted to A.

Proof (1). By (L5), we can choose step functions fk ∈ T (μ;Y ) such that
fk → f in L(μ;Y ) as k → ∞. For a given E ∈ B, choose E′ ∈ B1 as
in A3.14(2). Then A3.14(4) yields that XE′fk ∈ L(μ;Y ), and hence also
XEfk ∈ L(μ;Y ). It follows from

|XEfk − XEfl | ≤ |fk − fl |

that (XEfk)k∈IN is a Cauchy sequence in L(μ;Y ). Moreover, it follows from
A3.11 that fk → f μ-almost everywhere for a subsequence k → ∞, and hence
also XEfk → XEf . Then A3.12(2) yields that XEf ∈ L(μ;Y ). ��
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Proof (2). The additivity of ν follows from the additivity of the integral. Now
let E =

⋃
i∈IN Ei with Ei ⊂ Ei+1. Then XEi

f → XEf pointwise as i → ∞.
Moreover, ∫

Ei

|f | dμ ≤
∫
E

|f | dμ < ∞

and the sequence of integrals is nondecreasing in i. Hence it holds for i < j
that ∫

S

∣∣XEj
f − XEi

f
∣∣ dμ =

∫
Ej\Ei

|f | dμ

=

∫
Ej

|f | dμ −
∫
Ei

|f | dμ −→ 0 as i, j → ∞,

i.e. (XEi
f)i∈IN is a Cauchy sequence in L(μ;Y ). It then follows from A3.12(2)

that XEi
f → XEf in L(μ;Y ) and hence also ν(Ei) → ν(E) as i → ∞. This

shows that ν is σ-additive. For the proof of (A3-10) choose step functions

fk =

nk∑
i=1

XEki
αki

such that ‖f − fk‖L(μ) → 0 as k → ∞, recall (L5). Then we have that

|ν(E)| ≤
∫
S

|f − fk | dμ+

∫
S

|fk | dμ

≤
∫
S

|f − fk | dμ︸ ︷︷ ︸
→ 0 as k → ∞

+

nk∑
i=1

|αki | μ(E ∩ Eki)︸ ︷︷ ︸
→ 0 as μ(E) → 0
for every k and i

.

��

A3.18 Egorov’s theorem. Let μ(S) < ∞ and let fj , f : S → Y be μ-
measurable. Then the following are equivalent:

(1) fj → f μ-almost everywhere as j → ∞.

(2) fj → f μ-uniformly, i.e. for ε > 0 there exists an Eε ∈ B such that
μ(S \ Eε) ≤ ε and

fj → f uniformly on Eε as j → ∞.

Proof (2)⇒(1). Let E :=
⋃

i∈IN E 1
i
. Then we have that μ(S \ E) = 0 and

fj(x) → f(x) for x ∈ E. ��

Proof (1)⇒(2). Let E ∈ B with μ(S \E) = 0 such that for all x ∈ E it holds
that: fj(x) → f(x) as j → ∞. Consider the sets

Ek,i :=
{
x ∈ E ; |fj(x) − f(x)| < 1

i for all j ≥ k
}

∈ B .
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On noting that, for every i,

E ⊂
⋃
k

Ek,i with Ek,i ⊂ Ek+1,i ,

we see that μ(E \Ek,i) → 0 as k → ∞. Hence, for a given ε > 0 there exists
for all i a ki such that

μ(E \ Eki,i) ≤ ε · 2−i .

Letting

Eε :=
⋂
i

Eki,i ,

we have μ(S \ Eε) ≤ ε and

supx∈Eε
|fj(x) − f(x)| < 1

i for all i and all j ≥ ki,

i.e. fj converges uniformly on Eε to f as j → ∞. ��

A3.19 Theorem.

(1) Bochner’s criterion. If f : S → Y , then

f ∈ L(μ;Y ) ⇐⇒ f is μ-measurable and |f | ∈ L(μ; IR) .

(2) Majorant criterion. If f : S → Y and g ∈ L(μ; IR), then

f is μ-measurable and

|f | ≤ g μ-almost everywhere
=⇒ f ∈ L(μ;Y ) .

Proof (1)⇒. It follows from (L5) that there exist fk ∈ T (μ;Y ) such that
‖f − fk‖L(μ) → 0 as k → ∞, and then A3.11 yields that fk → f almost
everywhere for a subsequence k → ∞. As the fk are measurable, the measur-
ability of f follows from 3.12(3). Moreover, since ||fk| − |fl|| ≤ |fk − fl | we
have that (|fk|)k∈IN is a Cauchy sequence in L(μ; IR). As in addition |fk| → |f |
almost everywhere (for the above subsequence), it follows that |f | ∈ L(μ; IR),
recall A3.12(2). ��

Proof (1)⇐. This is the special case g = |f | in (2). ��

Proof (2). We begin with the special case of a Euclidean image space
Y = IRm. For k ∈ IN choose a cover of ∂B1(0) ⊂ IRm consisting of dis-
joint nonempty Borel sets Ej , j = 1, . . . , jk, with diameter less than 1

k (use
4.7(7) and 4.6(3)). Choose αj ∈ Ej and a null set N such that |f(x)| ≤ g(x)
for x ∈ S \ N . Then, for i = 1, . . . , k and j = 1, . . . , jk, consider the disjoint
sets

Ei,j :=
{
x ∈ S \ N ; f(x) �= 0 ,

i − 1

k
<

|f(x)|
g(x)

≤ i

k
,

f(x)

|f(x)| ∈ Ej

}
.
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We have from the assumptions and (1), respectively, that f and g are mea-
surable, and so 3.12(2) yields that Ei,j ∈ B. Let

fk :=
∑
i,j

i − 1

k
XEi,j

gαj .

As g ∈ L(μ; IR) it holds (trivially) that gαj ∈ L(μ;Y ) and hence fk ∈ L(μ;Y ),
thanks to A3.17(1). For x ∈ Ei,j we have that

|fk(x) − f(x)| ≤
∣∣∣∣ i − 1

k
g(x)
(
αj − f(x)

|f(x)|

)∣∣∣∣
+

∣∣∣∣( i − 1

k
− |f(x)|

g(x)

)
g(x)

f(x)

|f(x)|

∣∣∣∣ ≤ g(x) · 1
k
+

1

k
· g(x) .

It follows that |fk − f | ≤ 2
kg almost everywhere. This yields that∫

S

|fk − fl | dμ ≤
∫
S

(2
k
+

2

l

)
g dμ −→ 0 as k, l → ∞.

On noting that fk → f almost everywhere, the desired result follows from
A3.12(2).

Now we consider the case of an arbitrary Banach space Y , where we can
assume that Y is separable. (Otherwise replace Y , on recalling 3.11, with
clos
(
span
(
f(S \N)

))
, where N is a null set such that f(S \N) is separable,

and then set f = 0 onN .) Now if {αj ; j ∈ IN} is a dense subset of ∂B1(0) ⊂ Y
(use 4.17(2)), then for every k ∈ IN

∂B1(0) ⊂
⋃
j∈IN

B 1
k
(αj) .

Then on letting

E1 := B 1
k
(α1) , Ej := B 1

k
(αj) \

⋃
1≤l<j

El for j > 1

we obtain a cover of ∂B1(0) consisting of disjoint Borel sets. (The same
construction can be used for the Borel sets in the special case.) Now define
the sets Ei,j as above and set

fk,l :=

k∑
i=1

l∑
j=1

i − 1

k
XEi,j

gαj , and Ai,l :=
⋃
j>l

Ei,j .

As Ai,l+1 ⊂ Ai,l and
⋂

l∈IN Ai,l = ∅, it holds for l1 < l2, recall A3.17, that

|fk,l2 − fk,l1 | ≤
k∑

i=1

XAi,l1
g −→ 0 in L(μ; IR) as l1 → ∞.



A3 Lebesgue’s integral 93

(Since l1 < l2, the property l1 → ∞ implies l2 → ∞.) Moreover, fk,l converges
as l → ∞ pointwise to

fk :=

k∑
i=1

∞∑
j=1

i − 1

k
XEi,j

gαj .

As fk,l ∈ L(μ;Y ), it follows from A3.12(2) that fk ∈ L(μ;Y ). The remainder
of the proof proceeds as before. ��

We now prove Fatou’s lemma and Lebesgue’s convergence theorem, which
will play a fundamental role in later proofs of results using Lebesgue spaces.

A3.20 Fatou’s lemma. Let fj ∈ L(μ; IR) with fj ≥ 0 almost everywhere
and

lim inf
j→∞

∫
S

fj dμ < ∞ .

Then lim infj→∞ fj ∈ L(μ; IR) and∫
S

lim inf
j→∞

fj dμ ≤ lim inf
j→∞

∫
S

fj dμ .

Proof. For k ∈ IN it holds that almost everywhere

0 ≤ gk := inf
i≥k

fi ≤ fj for every j ≥ k.

It follows from 3.12(4) that gk is measurable and hence, by A3.19(2), that gk
is integrable. Then A3.12(1) yields that∫

S

gk dμ ≤
∫
S

fj dμ for j ≥ k .

It follows that ∫
S

gk dμ ≤ lim inf
j→∞

∫
S

fj dμ < ∞ .

In addition, the gk are monotonically nondecreasing in k (almost everywhere)
and hence, by A3.12(1), the same holds true for their integrals. This yields
that these integrals converge, and so, for k < l,∫

S

|gk − gl | dμ =

∫
S

gl dμ −
∫
S

gk dμ −→ 0 as k, l → ∞,

i.e. (gk)k∈IN is a Cauchy sequence in L(μ; IR). On noting that pointwise

lim inf
j→∞

fj = lim
k→∞

gk ,

the desired result follows from A3.12(2). ��
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A3.21 Dominated convergence theorem (Lebesgue’s convergence
theorem). Let fj , f : S → Y be μ-measurable and let g ∈ L(μ; IR). If

|fj | ≤ g μ-almost everywhere for all j ∈ IN,

fj → f μ-almost everywhere as j → ∞,

then fj , f ∈ L(μ;Y ) and

fj → f in L(μ;Y ) as j → ∞.

Proof. It also holds that |f | ≤ g almost everywhere. Then the majorant
criterion A3.19(2) yields that fj , f ∈ L(μ;Y ). Define

gj := g − 1

2
|fj − f | .

It holds that gj ≥ 0 almost everywhere and (recall A3.12(1))∫
S

gj dμ ≤
∫
S

g dμ < ∞ .

On noting that limj→∞ gj = g almost everywhere, it follows from Fatou’s
lemma that∫

S

g dμ ≤ lim inf
j→∞

∫
S

gj dμ =

∫
S

g dμ − 1

2
lim sup
j→∞

∫
S

|fj − f | dμ ,

and hence

lim sup
j→∞

∫
S

|fj − f | dμ = 0 .

��

Two further essential theorems for the Lebesgue measure Ln in IRn are
Fubini’s theorem and the change-of-variables theorem for C1-diffeo-
morphisms. These theorems are an elementary part of analysis and will not
be presented here. However, their knowledge will be assumed from now on
in this book. A proof of Fubini’s theorem for regular measures is given in
Appendix A6.



4 Subsets of function spaces

In this chapter, we consider subsets of the function spaces introduced in
Chapter 3. Two fundamental properties of these subsets are convexity and
compactness, which in applications are important. We first consider convex
subsets (see 4.1–4.4), and in particular we prove the projection theorem in
Hilbert spaces. Then we investigate compact subsets of metric spaces (see
4.6–4.16) and give a complete characterization of compact sets in C0- and
Lp-spaces (see 4.12 and 4.16). These characterizations are frequently used in
applications, for example, to derive existence results for partial differential
equations.

Convex subsets

It should be noted that the following definition only uses the vector space
structure. Here we assume that the vector space is a IK-space.

4.1 Convex sets. Let X be a vector space over IK. For A ⊂ X the convex
hull of A is defined by

conv(A) :=
{ k∑

i=1

aixi ; k ∈ IN, xi ∈ A, ai ∈ IR, ai ≥ 0,

k∑
i=1

ai = 1
}
.

The set A is called convex if A = conv(A), which is equivalent to

x, y ∈ A, a ∈ IR, 0 < a < 1 =⇒ (1 − a)x+ ay ∈ A

(see the example on the left-hand side of Fig. 4.1). For every set A ⊂ X one
has that conv(A) is convex and is the smallest convex set that contains A.
Moreover, any intersection of convex sets is convex.

For examples of convex sets see E4.2.

4.2 Convex functions. If A ⊂ X is convex, then f : A → IR ∪ {+∞} is
called a convex function if

f
(
(1 − a)x+ ay

)
≤ (1 − a)f(x) + af(y)

for all x, y ∈ A and a ∈ IR with 0 ≤ a ≤ 1.
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(Here the right-hand side is set to +∞ whenever f(x) = +∞ or f(y) = +∞.)
Then, on setting f(x) := +∞ for x ∈ X \A, it holds that f : X → IR∪{+∞}
is convex. A function f : A → IR∪{−∞} is called concave if −f is a convex
function. If f : X → IR ∪ {+∞} is convex, then

{x ∈ X ; f(x) ∈ IR} is convex in X

and (see the right-hand side of Fig. 4.1)

B := {(x, ξ) ∈ X × IR ; ξ ≥ f(x)} is convex in X × IR .

Conversely, every convex set B ⊂ X × IR defines a convex function f : X →
IR ∪ {+∞} via

f(x) := inf
{
ξ ∈ IR ∪ {+∞} ; (x, ξ) ∈ B

}
,

provided that for every x, the set over which the infimum is taken is either
empty (the infimum is then defined to be +∞) or bounded from below.

A

conv(A)

B

X

IR

x y

graph(f)

Fig. 4.1. Convex sets

One of the best known variational problems is the following: Given a
point x ∈ X and a set A ⊂ X, find points y ∈ A such that the distance
y �→ ‖x− y‖X is minimal. We now prove that for closed convex sets A in a
Hilbert space X this variational problem admits a unique solution.

4.3 Projection theorem. Let X be a Hilbert space and let A ⊂ X be
nonempty, closed and convex. Then there exists a unique map P : X → A
such that

‖x − P (x)‖X = dist(x,A) = inf
y∈A

‖x − y‖X for all x ∈ X. (4-11)
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For x ∈ X an equivalent characterization of P (x) ∈ A is given by

Re (x − P (x) , a − P (x))X ≤ 0 for all a ∈ A. (4-12)

The map P : X → A is called the (orthogonal) projection from X to A.

Remark: We will use this theorem in 6.1 and in 9.17 and 9.18 for subspaces
A ⊂ X.

A

a

x

P (x)

α

By (4-12), α ≥ π
2

Fig. 4.2. Orthogonal projection

Proof. Throughout we write ‖·‖ in place of ‖·‖X . For x ∈ X, on recalling
the definition of the distance, there exists a sequence (ak)k∈IN in A such that

‖x − ak‖ −→ dist(x,A) =: d as k → ∞ .

Hence (ak)k∈IN is also called a minimal sequence. Now it follows from the
parallelogram law in 2.2(4) that

‖(x − ak) − (x − al)‖2 + ‖(x − ak) + (x − al)‖2

= 2
(
‖x − ak‖2 + ‖x − al‖2

)
,

and so

‖al − ak‖2 = 2
(
‖x − ak‖2 + ‖x − al‖2 − 2

∥∥x − 1
2

(
ak + al

)∥∥2) .
As 1

2 (ak + al) ∈ A due to the convexity of A, this can be estimated by

≤ 2
(
‖x − ak‖2 + ‖x − al‖2 − 2d2

)
−→ 0 as k, l → ∞. (4-13)

Hence (ak)k∈IN is a Cauchy sequence in X. Since X is complete and A is
closed, it follows that there exists



98 4 Subsets of function spaces

y := lim
k→∞

ak ∈ A

and the continuity of the norm yields that

‖x − y‖ = lim
k→∞

‖x − ak‖ = d .

If the same holds for ỹ ∈ A, then similarly to (4-13) it follows that

‖y − ỹ‖2 ≤ 2
(
‖x − y‖2 + ‖x − ỹ‖2 − 2d2

)
= 0 ,

i.e. y = ỹ, and hence P (x) := y is uniquely defined by (4-11).
Moreover, we have for a ∈ A and 0 ≤ ε ≤ 1, on noting that (1− ε)P (x)+

εa ∈ A,

‖x − P (x)‖2 = d2 ≤ ‖x − ((1 − ε)P (x) + εa)‖2

= ‖(x − P (x)) − ε(a − P (x))‖2

= ‖x − P (x)‖2 − 2εRe (x − P (x) , a − P (x))X + O(ε2) ,

which implies that

Re (x − P (x) , a − P (x))X ≤ 0 .

Conversely, if the above is satisfied, we conclude that

‖x − a‖2 = ‖x − P (x) + P (x) − a‖2

= ‖x − P (x)‖2 + 2Re (x − P (x) , P (x) − a)X + ‖P (x) − a‖2

≥ ‖x − P (x)‖2 .
��

4.4 Remark. In 4.3 one has the following:

(1) If A ⊂ X is nonempty, closed and an affine subspace, i.e.

x, y ∈ A, α ∈ IK =⇒ (1 − α)x+ αy ∈ A ,

then P is affine linear, i.e.

P ((1 − α)x+ αy) = (1 − α)P (x) + αP (y) for all x, y ∈ X, α ∈ IK .

Moreover, for any given a0 ∈ A the point P (x) ∈ A is characterized by

(x − P (x) , a − a0)X = 0 for all a ∈ A. (4-14)

(2) If A ⊂ X is nonempty, closed and a subspace, i.e.

x, y ∈ A, α, β ∈ IK =⇒ αx+ βy ∈ A ,

then P is linear and the point P (x) ∈ A is characterized by

x − P (x) ∈ A⊥ . (4-15)
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Proof (1). Let x ∈ X. For a ∈ A, α ∈ IK we have that ã := (1−α)P (x)+αa ∈
A with

(x − P (x) , ã − P (x))X = α (x − P (x) , a − P (x))X ,

and hence, by (4-12),

0 ≥ Re (x − P (x) , ã − P (x))X = Re
(
α (x − P (x) , a − P (x))X

)
for all α ∈ IK. This implies that

(x − P (x) , a − P (x))X = 0 for all a ∈ A . (4-16)

Subtracting the same equation with a0 in place of a then yields (4-14). Con-
versely, if P (x) ∈ A satisfies (4-14), then choosing a0 = P (x) yields (4-16)
and hence (4-12).

Now let x, y ∈ X and α ∈ IK. It follows from the characterization of
P (x), P (y) ∈ A in (4-14), on setting z := (1 − α)x+ αy, that(

z −
(
(1 − α)P (x) + αP (y)

)
, a − a0

)
X

= 0 for all a ∈ A.

Now the characterization of P (z) in (4-14) yields that (1−α)P (x)+αP (y) =
P (z), and hence P is affine linear. ��

Proof (2). Setting a0 = 0 in (4-14) yields x − P (x) ∈ A⊥, and hence the
characterization (4-15) of P (x). Moreover, for α ∈ IK we have that αx −
αP (x) ∈ A⊥. Now the characterization of P (αx) in (4-15) gives αP (x) =
P (αx), which together with (1) implies the linearity of P . Conversely, (4-15)
immediately yields (4-14). ��

In Banach spaces, the norm in general does not attain the infimum over
closed convex sets (see E4.3), but the infimum can be approximated to an
arbitrary accuracy. In the case of a subspace this allows us to prove the
following result.

4.5 Almost orthogonal element. LetX be a normed space and let Y ⊂ X
be a closed proper subspace. In addition, let 0 < θ < 1 (if X is a Hilbert
space, then θ = 1 is also allowed). Then there exists an xθ ∈ X such that

‖xθ‖X = 1 and θ ≤ dist(xθ, Y ) ≤ 1 .

Proof. We write ‖·‖ in place of ‖·‖X . Choose x ∈ X \ Y . Since Y is closed,
dist(x, Y ) > 0. Together with θ < 1 this yields that there exists a yθ ∈ Y
such that

0 < ‖x − yθ‖ ≤ 1

θ
dist(x, Y ) .

Let

xθ :=
x − yθ

‖x − yθ‖
.
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Then for all y ∈ Y

‖xθ − y‖ =
1

‖x − yθ‖
‖x − (yθ + ‖x − yθ‖y)‖ .

As yθ + ‖x − yθ‖y ∈ Y , this can be estimated by

≥ dist(x, Y )

‖x − yθ‖
≥ dist(x, Y )

1
θ · dist(x, Y )

= θ .

This shows that dist(xθ, Y ) ≥ θ. In addition, it follows immediately from
0 ∈ Y that dist(xθ, Y ) ≤ ‖xθ‖ = 1.

If X is a Hilbert space and θ = 1, then set y1 = P (x), where P is the
orthogonal projection onto Y from 4.3. ��

Compact subsets

A second class of subsets A ⊂ X for which the above variational problem is
solvable are compact subsets (see 4.11). Several possible notions of compact-
ness are defined in the following theorem. The most general definition is the
covering compactness, which can also be formulated in topological spaces. As
we will show, in metric spaces this notion is equivalent to sequential com-
pactness. This follows from the fact that then for each x ∈ X there exists
a countable neighbourhood basis, e.g.

(
B1/k(x)

)
k∈IN

. Here we call a system

(Ui)i∈I in a topological space (X, T ) a neighbourhood basis at the point
x ∈ X if

x ∈ Ui ∈ T for all i ∈ I ,

x ∈ U ∈ T =⇒ Ui ⊂ U for an i ∈ I .
(4-17)

One of the most important results in metric spaces is:

4.6 Compactness. For every subset A of a metric space (X, d) the following
are equivalent:

(1) A is covering compact, i.e.

Every open cover of A contains a finite subcover.

(2) A is sequentially compact, i.e.

Every sequence in A contains a convergent subsequence with limit in A.

(3) (A, d) is complete and A is precompact, i.e.

For every ε > 0 there exists a finite cover of A consisting of ε-balls.

Definition: We call a subset A ⊂ X of a metric space compact if A satisfies
one of these three equivalent properties.
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Proof (1)⇒(2). If the sequence (xk)k∈IN in A does not have a cluster point
in A, then for each y ∈ A there exists an ry > 0 such that

Ny := {k ∈ IN ; xk ∈ Bry (y) ∩ A}

is finite. As the balls
(
Bry (y)

)
y∈A

form an open cover of A, it follows from

(1) that there exist finitely many points y1, . . . , yn ∈ A such that

A ⊂
n⋃

i=1

Bryi
(yi) .

Since xk ∈ A for all k ∈ IN, it would follow that IN =
⋃n

i=1 Nyi
is finite, a

contradiction. ��

Proof (2)⇒(3). First we prove the completeness. It follows from (2) that any
Cauchy sequence in A has a cluster point in A. On the other hand, in general
any Cauchy sequence can have at most one cluster point. This implies that
the Cauchy sequence has a limit in A (see the remark in 2.21(3)). Hence
(A, d) is complete.

Now we prove the precompactness. If for an ε > 0 there exists no finite
ε-cover of A, then we can inductively find xk ∈ A such that

xk+1 ∈ A \
k⋃

i=1

Bε(xi) .

Then (xk)k∈IN has no cluster point, which contradicts (2). ��

Proof (3)⇒(1). Let (Ui)i∈I be an open cover of A, i.e. I is a set, Ui ⊂ X are
open for i ∈ I, and A ⊂

⋃
i∈I Ui. Let

B :=
{
B ⊂ A ; J ⊂ I, B ⊂

⋃
i∈J

Ui =⇒ J is infinite
}
.

We want to show that A /∈ B. It follows from the precompactness of A that:

B ∈ B and ε > 0 =⇒ There exists a cover A ⊂
nε⋃
i=1

Bε(xi)

=⇒ Bε(xi) ∩ B ∈ B for an i (depending on ε).

We now assume that A ∈ B. Then it follows inductively for k ∈ IN (set ε = 1
k )

that there exist points xk ∈ X and sets Bk with B1 := A and

Bk := B 1
k
(xk) ∩ Bk−1 ∈ B for k ≥ 2.

Choose yk ∈ Bk. Then for k ≤ l both yk and yl belong to B 1
k
(xk), and so

d(yk, yl) ≤ 2
k , which means that (yk)k∈IN is a Cauchy sequence in A. As A is

complete, there exists a y ∈ A such that
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εk := d(yk, y) → 0 as k → ∞.

On noting that y ∈ Ui0 for some i0, for k sufficiently large we have

Bk ⊂ B 1
k
(xk) ⊂ B 2

k
(yk) ⊂ B 2

k+εk
(y) ⊂ Ui0 ,

i.e. Bk /∈ B, which is a contradiction. ��

4.7 Remarks. Let (X, d) be a metric space. Then:

(1) Subsets of precompact sets are precompact.

(2) A ⊂ X precompact =⇒ A bounded.

(3) A ⊂ X precompact =⇒ A closed and precompact.

(4) A ⊂ X compact =⇒ A closed.

(5) If X is a complete metric space, then for A ⊂ X:

A precompact ⇐⇒ A compact.

(6) If X = IKn as a normed space:

A ⊂ IKn precompact ⇐⇒ A bounded.

(7) Heine-Borel theorem. If X = IKn as a normed space:

A ⊂ IKn compact ⇐⇒ A bounded and closed.

(8) If A,Ai ⊂ X and δi > 0 for i ∈ IN then:

A ⊂ Bδi(Ai) ,

Ai precompact for i ∈ IN ,

δi → 0 as i → ∞

⎫⎪⎬⎪⎭ =⇒ A precompact.

Proof (1) to (4). Use the statements in 4.6(3). ��

Proof (5)⇐. Follows from 4.6(3) and (1). ��

Proof (5)⇒. It follows from (3) and E2.8(1) that 4.6(3) is satisfied for A. ��

Proof (6)⇐. We prove this with respect to the Euclidean norm on IKn. Let
A ⊂ BR(0). For IK = IR it holds for all m ∈ IN

BR(0) ⊂
⋃

q ∈ ZZ
n

|q|∞ ≤ m

Bcn·ε(εq) where cn =
√
n , ε :=

R

m
.

(For IK = C the union has to be taken over q = q1 + iq2 with qk ∈ ZZ
n,

|qk |∞ ≤ m for k = 1, 2.) For the ∞-norm x �→ |x|∞ we can set cn = 1. It
follows from 4.8 that the claim is true for any norm on IKn. ��
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Proof (7)⇒. As IKn is complete, this follows from (4), 4.6(3) and (2). ��

Proof (7)⇐. As IKn is complete, this follows from (6) and 4.6(3). ��

Proof (8). Let ε > 0. Choose i ∈ IN with δi ≤ ε. As Ai is precompact, there
exist finitely many points x1, . . . , xm ∈ X such that

Ai ⊂
m⋃
j=1

Bε(xj) , and hence A ⊂ Bδi(Ai) ⊂
m⋃
j=1

B2ε(xj) .

��

4.8 Lemma. If X is a finite-dimensional IK-vector space, then all the norms
on X are pairwise equivalent.

Remark: Let n ∈ IN. Every n-dimensional IK-vector space X is linearly equi-
valent to IKn, i.e. there exists a linear and bijective map from X to IKn. If
X is a normed space, this map is continuous in both directions.

In the infinite-dimensional case lemma 4.8 does not hold (see the theorem
after E9.2).

Proof. Let n := dimX and let {e1, . . . , en} be a basis of X, i.e. every x ∈ X
has a unique representation

x =

n∑
i=1

xiei

(the coefficients xi depend linearly on x, that is, x �→ (x1, . . . , xn) is a linear,
and bijective, map from X to IKn). Then

‖x‖∞ := maxi=1,...,n |xi | (4-18)

defines a norm on X. Let x �→ ‖x‖ be an arbitrary additional norm. The
claim follows if we can show that these two norms can be bounded by each
other as in 2.15(2). Now

‖x‖ ≤
n∑

i=1

|xi | ‖ei‖ ≤
(

n∑
i=1

‖ei‖
)

· ‖x‖∞ .

On the other hand, if we assume that the corresponding converse bound does
not hold, then for each ε > 0 there exists an xε ∈ X such that ‖xε‖ <
ε‖xε‖∞, which means that xε �= 0 and so we can assume that ‖xε‖∞ = 1

(otherwise consider xε

‖xε‖∞
in place of xε). Therefore

‖xε‖ < ε and ‖xε‖∞ = 1 . (4-19)

Hence there exist an i0 and a countable subsequence ε → 0 such that
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i0

∣∣ = 1. (4-20)

Moreover, for every i the set {xε
i ; ε > 0} is bounded, and hence precompact

in IK (see 4.7(6)). That means that we can choose a further subsequence
ε → 0 such that, for i = 1, . . . , n,

xε
i → ξi as ε → 0 (4-21)

with certain numbers ξi ∈ IK. Let

x :=

n∑
i=1

ξiei .

Then it follows from (4-19) and (4-21) that

‖x‖ ≤ ‖xε‖ + ‖x − xε‖ ≤ ε+

(
n∑

i=1

‖ei‖
)

· max
i=1,...,n

|ξi − xε
i | −→ 0

as ε → 0. Hence, x = 0, i.e. ξi = 0 for i = 1, . . . , n. On the other hand, it
follows from (4-20) that |ξi0 | = 1, a contradiction. ��

As an example we have seen in the Introduction that the C0-norm and
the L2-norm are not equivalent on X = C0([ − 1, 1]). In particular, X is
not complete with respect to the latter norm (see also E7.3). For finite-
dimensional spaces we obtain the following conclusion from 4.8:

4.9 Lemma. Every finite-dimensional subspace of a normed space is com-
plete and hence a closed subspace.

Proof. Let X be a normed space with norm ‖·‖X . Let {e1, . . . , en} be a basis
of a subspace Y ⊂ X with dimY = n. It follows from 4.8 that ‖·‖X and
‖·‖∞, defined by

‖x‖∞ := max
i

|xi | , where x =
n∑

i=1

xiei,

are equivalent norms on Y . Therefore, if
(
xk
)
k∈IN

is a Cauchy sequence in Y
and

xk =

n∑
i=1

xk
i ei,

then for every i ∈ {1, . . . , n} the sequence
(
xk
i

)
k∈IN

is a Cauchy sequence in IK

and hence has a limit ξi ∈ IK. It follows that with respect to the ‖·‖∞-norm

xk =

n∑
i=1

xk
i ei −→

n∑
i=1

ξiei ∈ Y as i → ∞

and then, by 4.8, also with respect to ‖·‖X . Hence Y is complete. The closed-
ness of Y then follows from E2.8(2). ��



4 Subsets of function spaces 105

4.10 Theorem. For every normed space X it holds that:

B1(0) compact ⇐⇒ dimX < ∞ .

Remark: In the above we can replace the closed unit ball with an arbitrary
closed ball BR(x) ⊂ X. Consequently, the assertions 4.7(6) and 4.7(7) hold
in every finite-dimensional normed space, and they are independent of the
choice of norm.

Proof ⇒. It follows from 4.6(3) that there exists a cover B1(0) ⊂
⋃n

j=1 B 1
2
(yj).

Let Y := span{yj ; j = 1, . . . , n}. By 4.9, Y is closed in X. If we assume that
Y ⊂ X is a proper subspace, then 4.5 yields that for every 0 < θ < 1 there
exists an xθ ∈ X with ‖xθ‖X = 1 and dist(xθ, Y ) ≥ θ. In addition, there
exists a j such that xθ ∈ B 1

2
(yj), i.e.

dist(xθ, Y ) ≤ ‖xθ − yj‖X < 1
2 ,

which is a contradiction, as we can choose θ ≥ 1
2 . ��

Proof ⇐. We have that B1(0) ⊂ X is closed and, on noting 4.9, that X is
complete. Hence, by 4.7(5), we need to show that A := B1(0) is precompact.
The set B is bounded with respect to the X-norm, and 4.8 yields that it is
bounded with respect to the ∞-norm as defined in 4.8.

Thus we have to show that with respect to the ∞-norm the bounded set
B is precompact. Now B can be covered by finitely many balls of the form
(the balls are chosen with respect to the ∞-norm)

Bε(εzq) with zq =
∑n

j=1 qjej , q = (q1, . . . , qn) ∈ ZZ
n,

see the proof of 4.7(6) for IK = IR, and similar balls for IK = C. ��

For compact sets the variational problem from the beginning of this chap-
ter always has a solution:

4.11 Lemma. Let (X, d) be a metric space and let A ⊂ X be compact.
Then for x ∈ X there exists an a ∈ A such that

d(x, a) = dist(x,A) .

Remark: In general a is not unique, for instance for the |·|∞-norm in X = IR2

and A = {x ∈ IR2 ; |x|∞ ≤ 1}.

Proof. Choose a minimal sequence (ak)k∈IN in A, i.e. ak ∈ A such that
d(x, ak) → dist(x,A) as k → ∞. As A is compact, there exist a subsequence
(aki

)i∈IN and an a ∈ A such that aki
→ a as i → ∞, and so d(x, aki

) →
d(x, a). Hence d(x, a) = dist(x,A). ��
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Compact sets of function spaces

We have seen that in finite-dimensional vector spaces the compact subsets
are precisely the bounded closed sets. A characterization of compacts sets is
also possible in function spaces. We consider this for the standard spaces C0

and Lp in the case where the image space Y is finite-dimensional. As usual,
y �→ |y | denotes the norm of Y .

4.12 Arzelà-Ascoli theorem. Let S ⊂ IRn be compact and A ⊂ C0(S;Y ),
where Y is finite-dimensional. Then:

A is precompact ⇐⇒ A is bounded and equicontinuous.

The set A is called equicontinuous if

(1) sup
f∈A

sup
x∈S

|f(x)| < ∞ ,

(2) sup
f∈A

|f(x) − f(y)| −→ 0 for x, y ∈ S with |x − y | → 0 .

Example: Bounded setsA ⊂ C0,α(S; IKm) considered as subsets in C0(S; IKm)
are bounded and equicontinuous, and hence precompact sets A ⊂ C0(S; IKm)
(see also E4.15).

Remark: The following proof immediately carries over to compact metric
spaces (S, d), upon replacing |x − y | by d(x, y).

Warning: The theorem does not hold for C0(S;Y ), if Y is an infinite-
dimensional Banach space. Then an additional condition is needed, which
guarantees that for f ∈ A the image f(S) ⊂ Y is precompact (see also
remark 5.4(2)).

Proof ⇒. The precompactness of A yields that for ε > 0 there exists a cover
A ⊂
⋃nε

i=1 Bε(f
ε
i ). For f ∈ A it then holds that f ∈ Bε

(
fε
i0

)
for some i0, and

hence
‖f ‖sup ≤ ε+

∥∥fε
i0

∥∥
sup

≤ ε+ max
i=1,...,nε

‖fε
i ‖sup < ∞ ,

and similarly

|f(x) − f(y)| ≤ 2ε+ max
i=1,...,nε

|fε
i (x) − fε

i (y)| ,

where, since functions in C0(S;Y ) are uniformly continuous, the second term
becomes arbitrarily small on choosing |x − y | sufficiently small. This yields
the desired result. ��

Proof ⇐. We use the Heine-Borel theorem 4.7(7) and that Y is finite-
dimensional (see 4.8). Let

R := sup
f∈A

sup
x∈S

|f(x)| .
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For a given ε > 0, choose covers

BR(0) ⊂
k⋃

i=1

Bε(ξi) and S ⊂
l⋃

j=1

Bε(xj)

with ξi ∈ Y , i = 1, . . . , k and xj ∈ IRn, j = 1, . . . , l, where k and l depend on
ε. For mappings σ : {1, . . . , l} → {1, . . . , k} we define

Aσ :=
{
f ∈ A ;

∣∣f(xj) − ξσ(j)
∣∣ < ε for j = 1, . . . , l

}
.

For each σ such that Aσ is nonempty, choose an fσ ∈ Aσ.
Now for every function f ∈ A there exists a σ such that f ∈ Aσ. If x ∈ S,

then x ∈ Bε(xj) for some j, and so

|f(x) − fσ(x)| ≤ |f(x) − f(xj)| + |fσ(x) − fσ(xj)|
+
∣∣f(xj) − ξσ(j)

∣∣+ ∣∣fσ(xj) − ξσ(j)
∣∣

< 2 sup
|y−z |≤ε

sup
g∈A

|g(y) − g(z)| + 2ε =: rε ,

and hence ‖f − fσ‖sup ≤ rε. This shows that

A ⊂
⋃

σ :Aσ �=∅
B2rε(fσ) ,

where the number of balls over which the union is taken depends on ε. As A
is equicontinuous, we have that rε → 0 as ε → 0, which yields the precom-
pactness of A. ��

The characterization of compact sets in Lp-spaces (see 4.16) will be ob-
tained with the help of the Arzelà-Ascoli theorem. To this end, we approx-
imate Lp-functions with smooth functions by means of convolutions. In the
proofs we will make use of Fubini’s theorem, which we assume to be known
(see the remark at the end of Appendix A3).

4.13 Convolution. Let ϕ ∈ L1(IRn) and 1 ≤ p ≤ ∞. Let Y be a Banach
space.

(1) If f : IRn × IRn → Y is Lebesgue measurable, then

F (x) :=

∫
IRn

ϕ(x − y)f(x, y) dy =

∫
IRn

ϕ(y)f(x, x − y) dy (4-22)

defines a function F ∈ Lp(IRn;Y ) with

‖F ‖Lp ≤ ‖ϕ‖L1 · sup
h∈supp(ϕ)

‖f(·+ h,·)‖Lp , (4-23)

provided that the supremum on the right-hand side of this estimate exists
and is finite.

Notation: Here f(·+ h,·) denotes the function x �→ f(x+ h, x).
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(2) In the following let f(x, y) be independent of x, i.e. we consider a function
y �→ f(y) ∈ Y . Then if f ∈ Lp(IRn;Y ) the rule

(ϕ ∗ f)(x) :=

∫
IRn

ϕ(x − y)f(y) dy = F (x)

defines a function ϕ∗f ∈ Lp(IRn;Y ), the convolution of ϕ and f . The above
estimate then becomes the convolution estimate

‖ϕ ∗ f ‖Lp ≤ ‖ϕ‖L1 · ‖f ‖Lp . (4-24)

(3) It is supp(ϕ ∗ f) ⊂ clos ({x+ y ; x ∈ supp(ϕ) , y ∈ supp(f)}).
(4) If in addition ϕ ∈ C∞

0 (IRn), it follows that ϕ ∗ f ∈ C∞(IRn;Y ), and the
partial derivatives for multi-indices s are given by

∂s(ϕ ∗ f) = (∂sϕ) ∗ f .

(5) It is L1(IRn) = L1(IRn; IK) is a commutative Banach algebra with the
convolution as product.

Proof (1). We first assume that all of the following integrals exist. Then

|F (x)| ≤
∫
IRn

|ϕ(y)| · |f(x, x − y)| dy .

For p = ∞ the claim follows immediately on noting that ‖f(·,·− h)‖Lp =
‖f(·+ h,·)‖Lp . For p < ∞ we have that∫

IRn

|F (x)|p dx ≤
∫
IRn

(∫
IRn

|ϕ(y)| · |f(x, x − y)| dy
)p

dx .

Fubini’s theorem yields for p = 1 that this is

=

∫
IRn

|ϕ(y)|
(∫

IRn

|f(x, x − y)| dx
)
dy ,

which again yields the claim. Now let 1 < p < ∞ and 1
p + 1

p′ = 1. Then it
follows from the Hölder inequality and Fubini’s theorem that∫

IRn

|F (x)|p dx ≤
∫
IRn

(∫
IRn

|ϕ(y)|
1
p′ |ϕ(y)|

1
p |f(x, x − y)| dy

)p
dx

≤
∫
IRn

((∫
IRn

|ϕ(y)| dy
) p

p′
∫
IRn

|ϕ(y)||f(x, x − y)|p dy
)

dx

= ‖ϕ‖
p
p′

L1

∫
IRn

|ϕ(y)|
(∫

IRn

|f(x, x − y)|p dx
)
dy

≤ ‖ϕ‖
p
p′ + 1
L1 · sup

y∈supp(ϕ)

∫
IRn

|f(x, x − y)|p dx ,
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which, since p
p′ +1 = p, yields the desired result. The existence of the integrals

can now be justified retrospectively, which yields in particular that F (x) is
well defined by (4-22) for almost all x.

In detail: The assumptions yield that (x, y) �→ f(x, x−y) is Lebesgue mea-
surable on IRn × IRn, that the functions x �→ f(x, x − y) are in Lp(IRn;Y )
and that the supremum of the Lp-norms is finite. In the last inequality we
apply the majorant criterion and Tonelli’s theorem (a converse of Fubini’s
theorem), which yields that (x, y) �→ |ϕ(y)| · |f(x, x − y)|p is Lebesgue in-
tegrable on IRn × IRn. In the second inequality we apply for almost all x
the Hölder inequality, and so y �→ |ϕ(y)| · |f(x, x − y)| is for such x in
L1(IRn). Integration over x yields, on using the majorant criterion, that
x �→
∫
IRn |ϕ(y)| · |f(x, x − y)| dy is in Lp(IRn). Analogously, the first inequal-

ity then shows that y �→ ϕ(y) ·f(x, x−y) is for x as above in L1(IRn;Y ), and
so F (x) is well defined, and moreover x �→ F (x) belongs to Lp(IRn;Y ). ��

Proof (4). If ϕ ∈ C0
0 (IR

n), then ϕ(x−·)−ϕ(x0 −·) → 0 converges uniformly.
Moreover, if f ∈ Lp(IRn;Y ) it follows from Lebesgue’s convergence theorem
that

F (x) − F (x0) =

∫
IRn

(
ϕ(x − y) − ϕ(x0 − y)

)
f(y) dy −→ 0 as x → x0 .

If ϕ ∈ C1
0 (IR

n), it holds for unit vectors e ∈ IRn and real numbers h �= 0 that

1

h

(
F (x0 + he) − F (x0)

)
=

∫
IRn

1

h

(
ϕ(x0 + he − y) − ϕ(x0 − y)

)
f(y) dy .

Since 1
h

(
ϕ(x0+he−·)−ϕ(x0−·)) converges uniformly to ∂eϕ(x0−·) as h →

0, it follows once again from Lebesgue’s convergence theorem that ∂eF (x0)
exists and that

∂eF (x0) =

∫
IRn

∂eϕ(x0 − y)f(y) dy .

Hence we have shown that ∂e
(
ϕ∗f
)
(x) =

(
(∂eϕ)∗f

)
(x). The result for higher

derivatives then follows inductively. ��

Proof (5). The commutativity follows from (4-22). The inequality (2-9) is
the convolution estimate (4-24) for p = 1. Similarly to the proof above, the
associativity (f1∗f2)∗f3 = f1∗(f2 ∗f3) for f1, f2, f3 ∈ L1(IRn) can be proved
with Fubini’s theorem. ��

We will now show that ϕk ∗ f → f in Lp(IRn;Y ) as k → ∞, if ϕk are
nonnegative functions with integral 1 (i.e. they are probability densities)
with the property that the support of ϕk shrinks to {0} as k → ∞ (see also
5.18(5)).
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4.14 Dirac sequence.

(1) A sequence (ϕk)k∈IN in L1(IRn) is called a (general) Dirac sequence
if

ϕk ≥ 0,

∫
IRn

ϕk dL
n = 1,

∫
IRn\B�(0)

ϕk dL
n → 0 as k → ∞

for every � > 0. The last condition is, for instance, satisfied if supp(ϕk) ⊂
B�k

(0) with �k → 0 as k → ∞.

(2) Let ϕ ∈ L1(IRn) with

ϕ ≥ 0 and

∫
IRn

ϕdLn = 1 .

On defining for ε > 0

ϕε(x) := ε−nϕ
(x
ε

)
,

it holds for every � > 0 that∫
IRn

ϕε dL
n = 1 and

∫
IRn\B�(0)

ϕε dL
n → 0 as ε → 0.

This implies that for every null sequence (εk)k∈IN, the sequence (ϕεk)k∈IN

defines a general Dirac sequence in the sense of (1). Accordingly, we call the
family of functions (ϕε)ε>0 a Dirac sequence for ϕ.

(3) In applications one often chooses in (2) a function ϕ ∈ C∞
0

(
B1(0)

)
(ex-

tended to IRn by 0), so that supp(ϕε) ⊂ Bε(0). We then also call (ϕε)ε>0 a
standard Dirac sequence.

Notation: Here we observe that (ϕε)ε>0 is an abbreviation for (ϕε)ε∈]0,∞[

(see the note in 2.18), as we are dealing with the map ε �→ ϕε from ]0,∞[

to L1(IRn).

With the help of Dirac sequences, we can prove the following frequently
used approximation results for functions in Lp(IRn;Y ).

4.15 Theorem. Let 1 ≤ p < ∞.

(1) If f ∈ Lp(IRn;Y ), then

‖f(·+ h) − f ‖Lp(IRn) → 0 for h ∈ IRn with |h| → 0.

Here f(·+ h) denotes the function x �→ f(x+ h).

(2) If f ∈ Lp(IRn;Y ) and (ϕk)k∈IN is a Dirac sequence, then

ϕk ∗ f → f in Lp(IRn;Y ) as k → ∞.

(3) If Ω ⊂ IRn is open, then C∞
0 (Ω;Y ) is dense in Lp(Ω;Y ).
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Proof (1). By 3.26(2), we can choose fj ∈ C0
0 (IR

n;Y ) with ‖f − fj‖Lp → 0
as j → ∞. Then

‖f(·+ h) − f ‖Lp

≤ ‖f(·+ h) − fj(·+ h)‖Lp + ‖f − fj‖Lp + ‖fj(·+ h) − fj‖Lp

≤ 2‖f − fj‖Lp + Ln(supp(fj(·+ h) − fj))
1
p ‖fj(·+ h) − fj‖sup .

For every j the function fj is uniformly continuous, and so the second term
converges to zero as h → 0. The first term converges to zero as j → ∞. ��

−1 0 1

Function f

f

−1 0 1

Dirac sequence

(ϕk)k∈IN

ϕ1

ϕ2

ϕ4

−2 −1 0 1 2

Convolution ϕk ∗ f

ϕ1 ∗ f

ϕ2 ∗ f

ϕ4 ∗ f

Fig. 4.3. Convolution with a Dirac sequence

Proof (2). Since the integrals of the ϕk are normalized,(
ϕk ∗ f

)
(x) − f(x) =

(
ϕk ∗
(
f − f(x)

))
(x)

=

∫
IRn

ϕk(x − y)
(
f(y) − f(x)

)
dy .

If we decompose ϕk for δ > 0 into ϕkδ := XBδ(0) ·ϕk and ψkδ := XIRn\Bδ(0) ·ϕk,
then it follows from 4.13(1) that

‖ϕk ∗ f − f ‖Lp(IRn) ≤
(∫

IRn

ϕkδ dL
n
)

︸ ︷︷ ︸
≤1

· sup
|h|≤δ

‖f − f(·+ h)‖Lp(IRn)︸ ︷︷ ︸
→ 0 as δ → 0, recall (1)

+
(∫

IRn

ψkδ dL
n
)

︸ ︷︷ ︸
→ 0 as k → ∞

for every δ

· sup
h∈IRn

‖f − f(·+ h)‖Lp(IRn)︸ ︷︷ ︸
≤2‖f ‖Lp(IRn)

,

which proves (2). ��
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Proof (3). We extend f to IRn\Ω by 0. If we choose (ϕε)ε>0 to be a standard
Dirac sequence as in 4.14(3), then ϕε∗f ∈ C∞(IRn) by 4.13(4), but in general
they do not have a compact support in Ω. That is why we cut off f on sets
Dδ, which have a positive distance to ∂Ω and in addition are bounded: For
δ > 0 consider the sets

Ωδ := {x ∈ IRn ; Bδ(x) ⊂ Ω} ⊂ Ω , Dδ := Ωδ ∩ B 1
δ
(0) , (4-25)

and define

(Tε,δf)(x) :=

∫
Dδ

ϕε(x − y)f(y) dy =
(
ϕε ∗ (XDδ

f)
)
(x) for x ∈ IRn.

By 4.13(3) and 4.13(4),

Tε,δf ∈ C∞
0 (Bε(Dδ)) ⊂ C∞

0 (Ω)

for ε ≤ δ, as Bδ(Dδ) ⊂ Ω, and

(
Tε,δf − f

)
(x) =

∫
IRn

ϕε(x − y) (f(y) − f(x)) dy

−
∫
IRn

ϕε(x − y)XΩ\Dδ
(y)f(y) dy .

It follows from 4.13(1) that

‖Tε,δf − f ‖Lp(Ω) ≤ sup
|h|≤ε

‖f(·+ h) − f ‖Lp(IRn)︸ ︷︷ ︸
→ 0 as ε → 0, recall (1)

+ ‖f ‖Lp(Ω\Dδ)︸ ︷︷ ︸
→ 0 as δ → 0

,

which yields the desired result. ��

With the help of approximation by convolution, we will now prove a char-
acterization of precompact subsets in Lp(IRn), which is very effective in ap-
plications, and which was originally proved by M. Riesz [MRiesz]. A further
characterization, given by Fréchet and Kolmogorov, is the approximation of
precompact sets by finite-dimensional ones (see [DunfordSchwartz : IV 8.18]).

4.16 Theorem (M. Riesz). Let 1 ≤ p < ∞ and Y be finite-dimensional.
Then A ⊂ Lp(IRn;Y ) is precompact if and only if

(1) sup
f∈A

‖f ‖Lp(IRn) < ∞ ,

(2) sup
f∈A

‖f(·+ h) − f ‖Lp(IRn) −→ 0 for h ∈ IRn with |h| → 0 ,

(3) sup
f∈A

‖f ‖Lp(IRn\BR(0))
−→ 0 as R ↗ ∞ .

Remark: For the space Lp(S) with a measurable set S ⊂ IRn, see E4.21.
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Proof ⇒. By the definition of precompactness in 4.6(3), for ε > 0 there exists
a cover

A ⊂
nε⋃
i=1

Bε(g
ε
i ) with nε ∈ IN, gεi ∈ Lp(IRn;Y ) .

For f ∈ A we then have that f ∈ Bε

(
gεif

)
for some if . It holds that

‖f ‖Lp(IRn) ≤ ε+
∥∥∥gεif ∥∥∥Lp(IRn)

≤ ε+ max
i=1,...,nε

‖gεi ‖Lp(IRn) < ∞ ,

which implies (1). Similarly, it follows that

‖f(·+ h) − f ‖Lp(IRn) ≤ 2ε+ max
i=1,...,nε

‖gεi (·+ h) − gεi ‖Lp(IRn) ,

‖f ‖Lp(IRn\BR(0))
≤ ε+ max

i=1,...,nε

‖gεi ‖Lp(IRn\BR(0))
,

with the second terms becoming small if h gets small and R gets large, re-
spectively (see 4.15(1) and A3.17(2)). This proves (2) and (3). ��

Proof ⇐. Let (ϕε)ε>0 be a standard Dirac sequence and for small ε > 0 let
Rε > 0 be large. For f ∈ A we define

(Tεf)(x) :=

∫
BRε(0)

ϕε(x − y)f(y) dy =
(
ϕε ∗ (XBRε(0)

f)
)
(x) .

It follows from 4.13(2) that Tεf ∈ Lp(IRn;Y ). Moreover,

(Tεf − f) (x) =

∫
IRn

ϕε(x − y)XBRε(0)
(y) (f(y) − f(x)) dy

−
∫
IRn\BRε(x)

ϕε(y) dy · f(x) .

As ϕε = 0 outside of Bε(0), the second integral vanishes if Bε(0) ⊂ BRε
(x),

i.e. if |x| ≤ Rε − ε. Then it follows from 4.13(1) that

‖Tεf − f ‖Lp(IRn)

≤ sup
|h|≤ε

‖f − f(·+ h)‖Lp(IRn) + ‖f ‖Lp(IRn\BRε−ε(0))

≤ sup
|h|≤ε

sup
g∈A

‖g − g(·+ h)‖Lp(IRn) + sup
g∈A

‖g‖Lp(IRn\BRε−ε(0))

=: κε .

Combining (2) and (3) yields that κε → 0 as ε → 0, if Rε → ∞ as ε → 0.
Moreover, it follows from 4.13(3) and 4.13(4) that Tεf ∈ C∞

0 (BRε+ε(0) ;Y ).
Hence, by using (1) and a Hölder inequality, where 1

p + 1
p′ = 1, we obtain
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‖Tεf ‖sup ≤ ‖ϕε‖Lp′ (IRn)‖f ‖Lp(IRn) ≤ C(ε) ,

‖∇(Tεf)‖sup ≤ ‖∇ϕε‖Lp′ (IRn)‖f ‖Lp(IRn) ≤ C(ε) ,

with a constant C(ε) that is independent of f . Hence the functions Tεf for
f ∈ A are bounded in C0,1

(
BRε+ε(0);Y

)
. Since Y is finite-dimensional the

Arzelà-Ascoli theorem 4.12 implies that for δ > 0 there exist functions gi,
i = 1, . . . , n(ε, δ), in C0

(
BRε+ε(0);Y

)
, such that

Aε := {Tεf ; f ∈ A} ⊂
n(ε,δ)⋃
i=1

Bδ(gi) with respect to the C0-norm.

Since the Lp-norm on BRε+ε(0) can be estimated by the C0-norm, it follows
that

Aε ⊂
n(ε,δ)⋃
i=1

B�(gi) with respect to the Lp-norm,

where � = δ · ‖1‖Lp(BRε+ε(0))
. Regarding gi as elements in Lp(IRn;Y ), by

continuing gi outside of BRε+ε(0) by 0, we obtain that

A ⊂
n(ε,δ)⋃
i=1

B�+κε
(gi) with respect to the Lp-norm.

If, for every ε, we now choose δ sufficiently small, such that e.g. � ≤ ε, then
�+ κε → 0 as ε → 0, which implies the precompactness of A. ��

Dense subsets

In the following, we consider some important examples of dense and sepa-
rable subsets (see 2.13 for the definition) in function spaces. If A is a dense
subset of X, then every element of in X can be approximated to an arbitrary
accuracy by an element from A. For instance, we have seen in 4.15(3) that
Lp-functions can be approximated with respect to the Lebesgue measure by
C∞

0 -functions. In 4.24 we will show thatWm,p-functions can be approximated
by C∞-functions, where the crucial ingredient in the proof will be once again
the convolution of functions.

Separable spaces are spaces that contain a countable dense subset, i.e. a
dense subset that is countable. (These concepts were already defined in 2.13.)
Separable Banach spaces play a special role in applications, because in nu-
merical computations numbers and functions can only be represented by a
finite number of bits. And this number is limited by the actual equipment (see
also Chapter 9). In 4.18 we will list the most important separable function
spaces. But first some general results.

4.17 Separable sets. Let X be a metric space.
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(1) If Ai ⊂ X for i ∈ IN are separable, then so is
⋃

i∈IN Ai.

(2) If X is separable, then so is every subset of X.

(3) If X is a finite-dimensional IK-vector space, then X is separable.

(4) If X is a IK-vector space and E ⊂ X is separable, then so is

span(E) :=
{ k∑

i=1

αixi ; k ∈ IN, xi ∈ E, αi ∈ IK for i = 1, . . . , k
}
,

the linear hull of E.

Proof (2). Let {xk ; k ∈ IN} be dense in X and let A ⊂ X be nonempty. For
k, l ∈ IN there exists, by the definition of the distance, an ak,l ∈ A such that

dX(xk, ak,l) ≤ dist(xk, A) +
1

l
.

The denseness of the above sequence yields that for a ∈ A and ε > 0 there
exists an xkε

such that dX(a, xkε
) ≤ ε. Then

dX(a, akε,l) ≤ dX(a, xkε
) + dX(xkε

, akε,l) ≤ 2dX(xkε
, a) +

1

l
≤ 3ε

for sufficiently large l. This shows that {ak,l ; (k, l) ∈ IN2} is a dense subset
of A. The fact that the index set IN2 is countable then yields the desired
result. ��

Proof (4). Let A be a countable dense subset of E, i.e. A ⊂ E is countable
with E ⊂ A. Then{ k∑

i=1

αiai ; k ∈ IN, αi ∈ Q, ai ∈ A for i = 1, . . . , k
}

is a countable dense subset of span(E), where Q = Q in the case IK = IR,
and where Q = {α ∈ C ; Reα ∈ Q, Imα ∈ Q} in the case IK = C. ��

4.18 Examples of separable spaces.

(1) The set IRn is separable, and also Cn.

(2) For 1 ≤ p < ∞ the set �p(IK) is separable, but �∞(IK) is not.

(3) If S ⊂ IRn is closed and bounded, then C0(S) is separable.

(4) If S ⊂ IRn is Lebesgue measurable, then Lp(S) is separable for 1 ≤ p <
∞. If S is not a null set, then L∞(S) is not separable.

(5) If Ω ⊂ IRn is open, bounded and m ≥ 0, then Cm(Ω) is separable.

(6) If Ω ⊂ IRn is open, m ≥ 0 and 1 ≤ p < ∞, then Wm,p(Ω) is separable.

Remark: Assertions (2)–(6) remain valid if the image space IK is replaced
with a separable Banach space Y .
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Proof (1). Qn is countable and dense in IRn. ��

Proof (2). For p < ∞, with Q as in the proof of 4.17(4) and with ei as in
2.23, {∑k

i=1 αiei ; k ∈ IN, αi ∈ Q for 1 ≤ i ≤ k
}

is a countable dense subset of �p(IK).
For p = ∞ let

(
ak
)
k∈IN

be a sequence in B1(0) ⊂ �∞(IK) with ak =(
aki
)
i∈IN

and aki ∈ IR for all k, i ∈ IN. Let

bi :=

{
aii − 1 if aii ≥ 0,

aii + 1 if aii < 0.

Then b := (bi)i∈IN ∈ B1(0) and
∥∥b − ak

∥∥
�∞

≥
∣∣bk − akk

∣∣ = 1. This shows that

B1(0) is not separable, and 4.17(2) then yields that neither is �∞(IK). ��

Proof (3). If S ⊂ IRn is compact (by 4.7(7), bounded and closed), then C0(S)
is a Banach space with the supremum norm. For ε > 0 let

Qε(z) := {x ∈ IRn ; zi ≤ xi ≤ zi + ε for i = 1, . . . , n} for z ∈ εZZn ,

S ⊂ Sε :=
⋃

z∈Mε

Qε(z) with Mε := {z ∈ εZZn ; Qε(z) ∩ S �= ∅} .

Consider lattice points y ∈ Sε ∩ (εZZn) and choose xε,y ∈ S such that
|y − xε,y |∞ ≤ ε. For f ∈ C0(S) define fε(y) := f(xε,y) and extend fε by
multilinear interpolation, i.e.

fε(x) :=
∑

γ ∈ {0, 1}n

⎛⎝ ∏
j : γj=0

(1 − tj)
∏

j : γj=1

tj

⎞⎠ fε(z + εγ)

for x = z + ε
n∑

i=1

tiei ∈ Qε(z), z ∈ Mε .

This defines a function fε ∈ C0(S) with

‖fε − f ‖C0(S) ≤ sup{|f(x1) − f(x2)| ; x1, x2 ∈ S, |x1 − x2 |∞ ≤ 2ε} ,

which converges to 0 as ε → 0, because f is uniformly continuous on S. On
setting ε = 1

k , k ∈ IN, and on approximating in each case the finitely many
values fε(y) by rational numbers, we obtain the desired result. (Alternatively,
the result can be shown by using polynomials to approximate f , see 9.10.) ��

Proof (4). For p < ∞ first consider the case S = IRn. For f ∈ Lp(IRn) we
define its piecewise constant interpolation by
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fε(x) :=
∑

z∈εZZn

XQε(z)(x)αε,z , αε,z :=
1

εn

∫
Qε(z)

f(y) dy ,

where the Qε(z) are defined as in (3). The interpolant fε approximates f
since ∫

IRn

|fε(x) − f(x)|p dx =
∑
z

∫
Qε(z)

|αε,z − f(x)|p dx

=
∑
z

∫
Qε(z)

∣∣∣ 1
εn

∫
Qε(z)

(f(y) − f(x)) dy
∣∣∣p dx

=
∑
z

1

εn

∫
Qε(z)

∫
Qε(z)

|f(y) − f(x)|p dy dx

≤ sup
h:|h|≤ε

∫
IRn

|f(y + h) − f(y)|p dy = sup
h:|h|≤ε

‖f(·+ h) − f ‖pLp ,

which by 4.15(1) converges to zero as ε → 0. The desired result now follows
by choosing countably many ε > 0 and rational approximations of αε,z, sim-
ilarly to the proof of (3). For arbitrary S continue functions to IRn by 0 and
restrict the approximations to S. (An alternative proof can be based on ap-
proximating f with step functions using 3.26(1), and approximating the steps
by A3.14(1) with cuboids. This reduces the problem to the approximation of
finitely many real parameters. Another alternative proof approximates f by
continuous functions using 3.26(2), and then applies (3).)

For p = ∞, on recalling that Ln(S) > 0, there exist measurable disjoint
sets Sj ⊂ S, j ∈ IN, with Ln(Sj) > 0 such that S =

⋃
j∈IN Sj . Similarly to

the proof of (2), let (fk)k∈IN be a sequence in B1(0) ⊂ L∞(S). In addition,

let aki := ess sup
Si

fk, let bi as in the proof above, and define g ∈ L∞(S) by

g(x) := bj for x ∈ Sj and j ∈ IN. It follows that ‖g − fk‖L∞ ≥ 1. ��
Proof (5). For f ∈ Cm(Ω), define

T (f)(x) := (∂sf(x))|s|≤m .

Then T : Cm(Ω) → C0(Ω;Y ), where

Y := {(ys)|s|≤m ; ys ∈ IR for |s| ≤ m}

is a Euclidean space. It follows from (3) (see the above remark) that C0(Ω;Y )
is separable. Hence, on noting 4.17(2), T

(
Cm(Ω)

)
is separable. Combining

the fact that T is linear and that ‖T (f)‖C0 can be estimated from above and
from below by ‖f ‖Cm yields the separability of Cm(Ω). ��
Proof (6). As in (5), now with T : Wm,p(Ω) → Lp(Ω;Y ), on utilizing (4). ��

In order to approximate differentiable functions by C∞-functions we make
use of convolutions, and we need a tool which guarantees that functions can
be “partitioned” or “localized”.
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4.19 Cut-off function. Let Ω ⊂ IRn be open and let K ⊂ IRn be compact
with Bδ(K) ⊂ Ω, where δ > 0. Then there exists a cut-off function η ∈
C∞

0 (Ω) satisfying

0 ≤ η ≤ 1 , η = 1 on K , supp(η) ⊂ Bδ(K) ,

|∂sη| ≤ Cn,s · δ−|s| for all multi-indices s.

Here Cn,s are constants that depend only on n and s.

Proof. Let (ϕε)ε>0 be a standard Dirac sequence. Then η := ϕ δ
4
∗XB δ

2
(K) has

the desired properties. ��

4.20 Partition of unity. Let S ⊂ IRn be nonempty and N ⊂ IN.

(1) We call (Ui)i∈N an open cover of S if Ui are (nonempty) open sets with
S ⊂
⋃

i∈N Ui. (It is also possible to require that, in addition, Ui ∩ S �= ∅ for
i ∈ N).

(2) The cover is called locally finite if for any x ∈
⋃

i∈N Ui there exists a

ball Bε(x) such that {i ∈ N ; Ui ∩ Bε(x) �= ∅} is finite, i.e.

∀ x ∈
⋃
i∈N

Ui : ∃ ε > 0 :
(

{i ∈ N ; Ui ∩ Bε(x) �= ∅} is finite
)
.

(This condition is only relevant for nonfinite N .)

(3) We call (ηj)j∈N a partition of unity for S subject to a locally finite

open cover (Uj)j∈N of S if

ηj ∈ C∞
0 (Uj) , ηj ≥ 0 , and

∑
j∈N

ηj(x) = 1 for x ∈ S .

Here the sum locally contains only finitely many nonzero terms, where ηj is
defined to be 0 outside Uj . Hence instead of ηj ∈ C∞

0 (Uj) one can also say
ηj ∈ C∞(IRn) with compact support supp (ηj) ⊂ Uj .

Proposition: Let Ω ⊂ IRn be open and let

Kj ⊂ Uj ⊂ Uj ⊂ Ω for j ∈ IN, Kj and Uj compact,

such that (Uj)j∈IN is a locally finite open cover of Ω, with Kj ∩ Ki = ∅
for j �= i, i.e. the Kj are pairwise disjoint. Then there exists a partition of
unity (ηj)j∈IN for Ω subject to this cover with the additional property that

ηj(x) = 1 for x ∈ Kj .

Remark: In the assumptions of the proposition some, or all, of the compact
sets Kj may be empty.

Conclusion: Let K ⊂ IRn be compact and let (Uj)j=1,...,k be a finite open

cover of K. Then there exists a partition of unity (ηj)j=1,...,k for K subject
to this cover.
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∂Ω

∂Ui

∂U1

∂U2

∂U3

Fig. 4.4. Cover of an open set

Proof of the proposition. Firstly, we modify the sets Uj to

Vj := Uj \
⋃

i : i�=j

Ki =
⋂

i : i�=j

(Uj \ Ki) .

Then it clearly holds that

Kj ⊂ Vj ⊂ Uj , with Vj ∩ Ki = ∅ for i �= j.

Moreover, we claim that (Vj)j∈IN is also a locally finite open cover of Ω. In

order to show this, we make use of the compactness of Uj . As the original
cover is locally finite, {i ∈ IN ; Ui ∩Uj �= ∅} is finite. Hence also Ki ∩Uj �= ∅
holds only for finitely many i, say, at most for i = 1, . . . ,mj . Consequently,

Vj = Uj \
⋃

i : i≤mj ,i�=j

Ki

is nonempty and open. For x ∈ Ω it holds that x ∈ Uj for some j. Then we
have that either x ∈ Vj , or, by the definition of Vj , that x ∈ Ki ⊂ Vi for some
i �= j. This proves the covering property of the Vj .

Secondly, we define open sets Wj with

Kj ⊂ Wj ⊂ Wj ⊂ Vj

such that (Wj)j∈IN is still an open cover of Ω. To this end, we construct Wm,
by induction on m, satisfying⋃

j<m

Wj ∪
⋃
j≥m

Vj = Ω . (4-26)
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Letting m → ∞ this then yields the desired covering property, because the
cover (Vj)j∈IN is locally finite. Now let m ≥ 1 and assume that Wj for 1 ≤
j < m have already been constructed. Then

∂Vm ⊂
⋃
j<m

Wj ∪
⋃
j>m

Vj ,

where ∂Vm is compact and where the set in the right-hand side of the inclusion
is open. Hence there exists a δm > 0 such that

Bδm(∂Vm) ⊂
⋃
j<m

Wj ∪
⋃
j>m

Vj .

Let
Wm := Vm \ Bδm(∂Vm) .

It follows from Vm �= ∅ that Wm �= ∅ for δm sufficiently small. Also Km ⊂ Wm

if δm is sufficiently small. Therefore,

Vm ⊂ Wm ∪ Bδm(∂Vm) ⊂
⋃

j<m+1

Wj ∪
⋃

j≥m+1

Vj ,

which implies (4-26) withm replaced bym+1, and so concludes the induction.
Thirdly, we define the corresponding cut-off functions. Since Wj is a com-

pact subset of the open set Vj , it follows from 4.19 that there exists a function
η̃j ∈ C∞

0 (Vj) with 0 ≤ η̃j ≤ 1 and η̃j = 1 on Wj . The covering property of
the Wj then yields that∑

j∈IN

η̃j(x) > 0 for all x ∈ Ω,

where locally in Ω the sum contains only finitely many nonzero terms. Define

ηj(x) :=
η̃j(x)∑

j∈IN η̃j(x)
.

By construction the ηj have the desired properties. ��

Proof of the conclusion. We reduce this to the result derived above for the
case Ω = IRn, by extending the cover of K to a cover of IRn. Choose radii
0 < R0 < R1 < . . . with Ri → ∞ as i → ∞ such that K ⊂ BR0

(0). Define
Uk+1 := BR1

(0) \ K and Uk+i := BRi
(0) \ BRi−2

(0) for i ≥ 2. This yields
a locally finite open cover (Uj)j∈IN of IRn. Now apply the previously shown

result with Kj = ∅ for j ∈ IN and obtain a corresponding partition of unity
(ηj)j∈IN. By construction, ηj(x) = 0 for x ∈ K and j > k. This yields the
desired result. ��

4.21 Examples of partition of unity. The results in 4.20 can be applied
to the following situations:
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(1) Let xj ∈ IR with xj < xj+1 for j ∈ ZZ and let δj > 0 such that

∅ �= Kj := [xj + δj , xj+1 − δj] ⊂ Uj := ]xj , xj+1[ .

This yields a partition of unity as in Fig. 4.5.

graph(ηj)

xj xj+1

Fig. 4.5. A partition of unity in IR

(2) For a given ε > 0 consider the cover (B2ε(x))x∈εZZn of IRn, where the
balls are formed with respect to the ∞-norm. This is a uniform cover of the
whole space and it yields a partition of unity for IRn.

(3) Let Ω ⊂ IRn be open and bounded. Consider the cover (Ui)i∈IN of Ω,
where

Ui :=
{
x ∈ Ω ; δ

2 · 2−i < dist(x, ∂Ω) < 2δ · 2−i
}
, δ := diam(Ω) .

This yields a partition of unity (ηi)i∈IN for Ω with ηi ∈ C∞
0 (Ω). The cover is

of the type shown on the right-hand side of Fig. 4.4.

(4) Let Ω ⊂ IRn be open and bounded. For k ∈ IN and x ∈ 2−k
ZZ

n let
Uk,x := B21−k(x) with respect to the ∞-norm. Define inductively

Mk :=
{
x ∈ 2−k

ZZ
n ; Uk,x ⊂ Ω, x /∈ Ul,y for all y ∈ Ml with l < k

}
and consider the cover (Uk,x)x∈Mk,k∈IN of Ω. This again yields a partition of

unity (ηi)i∈IN for Ω with ηi ∈ C∞
0 (Ω). The cover is of the type shown on the

left-hand side of Fig. 4.4.

In a further application of convolution with a Dirac sequence, we will
now show in 4.24 that Sobolev functions can be approximated by smooth
functions. We defined these functions in 3.27 through the existence of weak
derivatives. The fact that these weak derivatives are uniquely defined follows
from the following
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4.22 Fundamental lemma of calculus of variations. Let Ω ⊂ IRn be
open and let Y be a Banach space. Then for g ∈ L1(Ω;Y ) the following are
equivalent:

(1)

∫
Ω

ζ g dLn = 0 for all ζ ∈ C∞
0 (Ω).

(2)

∫
E

g dLn = 0 for all measurable bounded sets E with E ⊂ Ω.

(3) g = 0 almost everywhere in Ω.

Proof (1)⇒(2). Let E be measurable and bounded with E ⊂ Ω. Consider
the functions

ζε(x) :=

∫
E

ϕε(x − y) dy = (ϕε ∗ XE)(x)

with a standard Dirac sequence (ϕε)ε>0. Combining 4.13(3) and 4.13(4) yields
that ζε ∈ C∞

0 (Ω) for sufficiently small ε > 0, and in addition 0 ≤ ζε ≤ 1. It
follows from 4.15(2) that ζε → XE in L1(IRn) and hence, on recalling 3.22(1),
there exists a subsequence ε → 0 such that ζε → XE almost everywhere in
IRn. Lebesgue’s convergence theorem then yields that ζεg → XEg in L1(Ω;Y )
and hence

0 =

∫
Ω

ζεg dL
n −→

∫
Ω

XEg dL
n =

∫
E

g dLn .

��

Proof (2)⇒(3). Let (ϕε)ε>0 be a Dirac sequence for

ϕ(x) := Ln
(
B1(0)

)−1XB1(0)(x) .

For x ∈ Ω and small ε,

gε(x) :=
(
ϕε ∗ XΩg

)
(x) =

1

Ln
(
Bε(0)

) ∫
Bε(x)

g dLn = 0 .

By 4.15(2), gε → g in L1(Ω;Y ) and then for a subsequence ε → 0 almost
everywhere in Ω. ��

4.23 Local approximation of Sobolev functions. Let Ω ⊂ IRn be open
and let f ∈ Wm,p(Ω) with 1 ≤ p < ∞. Choose a standard Dirac sequence
(ϕε)ε>0 and define

(Tεf)(x) :=

∫
Ω

ϕε(x − y)f(y) dy =
(
ϕε ∗ XΩf

)
(x) .

For open sets D ⊂ Ω with δ := dist(D, ∂Ω) > 0 it holds that

Tεf ∈ Wm,p(D) ∩ C∞(D) for ε < δ

and that Tεf → f in Wm,p(D) as ε → 0.
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Proof. It follows from 4.13(4) that Tεf ∈ C∞(IRn) and that for |s| ≤ m

∂s(Tεf)(x) =

∫
Ω

∂sϕε(x − y)f(y) dy = (−1)|s|
∫
Ω

∂s

∂ys
(
ϕε(x − y)

)
f(y) dy .

Now for x ∈ Ω with dist(x, ∂Ω) > ε the function y �→ ϕε(x−y) is in C∞
0 (Ω),

and hence, on recalling the definition of the Sobolev space, the right-hand
side is

=

∫
Ω

ϕε(x − y)∂sf(y) dy = Tε (∂
sf) (x) .

Hence it follows for every open set D ⊂ Ω with dist(D, ∂Ω) > 0, on choosing
ε < dist(D, ∂Ω), that Tεf ∈ Wm,p(D) with ∂s(Tεf)(x) = Tε (∂

sf) (x) for
|s| ≤ m. Consequently,

‖∂s(Tεf) − ∂sf ‖Lp(D) = ‖Tε(∂
sf) − ∂sf ‖Lp(D) −→ 0 as ε → 0

on recalling 4.15(2), i.e. Tεf → f in Wm,p(D). ��

We now prove the approximation property presented in 3.28.

4.24 Theorem. For 1 ≤ p < ∞ the space Wm,p(Ω) ∩ C∞(Ω) is dense in
Wm,p(Ω).

Proof. Let (Uk)k∈IN be a locally finite open cover of Ω (see 4.21(3), 4.21(4)),

such that Uk ⊂ Ω are compact. It follows from 4.20 that there exists a
corresponding partition of unity (ηk)k∈IN. Moreover, let ck > 0 (to be defined
below) and ε > 0. By 4.23, for f ∈ Wm,p(Ω) there exist fk,ε ∈ C∞(Uk) with

‖f − fk,ε‖Wm,p(Uk)
≤ εck .

Let
fε :=

∑
k∈IN

ηkfk,ε , so that fε − f =
∑
k∈IN

ηk(fk,ε − f) ,

where locally in Ω the sums contain only finitely many nonzero terms. For
each term in the sums we can compute the weak derivatives with the help of
the product rule, since for ζ ∈ C∞

0 (Ω)∫
Ω

ηk∂iζf dLn =

∫
Ω

(
∂i(ηkζ) − ζ∂iηk

)
f dLn = −

∫
Ω

(ηkζ∂if + ζ∂iηkf) dL
n .

Hence, ηkf ∈ W 1,p(Ω) with

∂i(ηkf) = ηk∂if + (∂iηk)f .

On repeating this calculation of the partial derivative, it follows inductively
that ηkf ∈ Wm,p(Ω) and that for |s| ≤ m the Leibniz rule holds:
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∂s(ηkf) =
∑

0≤r≤s

(
s

r

)
(∂s−rηk)∂

rf .

Clarification: The Leibniz rule (4-27), below, for smooth functions is well
known from analysis. Here we prove it for the product of a smooth function
and a Sobolev function. Later in 4.25 we will derive it for the product of
two Sobolev functions, where the proof will make use of the result we are
currently in the process of proving.

We obtain that

∂sfε − ∂sf =
∑

0≤r≤s

(
s

r

)∑
k

(∂s−rηk)(∂
rfk,ε − ∂rf) ,

and hence that

‖∂sfε − ∂sf ‖Lp(Ω) ≤ C
∑
k

‖ηk‖Cm(Ω)‖fk,ε − f ‖Wm,p(Uk)

≤ Cε
∑
k

ck‖ηk‖Cm(Ω) ≤ Cε ,

where the constants C depend only on m and n, if we choose ck at the

beginning of the proof for instance such that ck ≤ 2−k
(
‖ηk‖Cm(Ω) + 1

)−1
.
��

The approximability of Sobolev functions can be used to prove results
for these functions, such as the following generalization of the product rule
employed in the previous proof.

4.25 Product rule for Sobolev functions. Let Ω ⊂ IRn be open. Let
1 ≤ p ≤ ∞ with 1

p + 1
p′ = 1. If f ∈ Wm,p(Ω) and g ∈ Wm,p′

(Ω), then

f · g ∈ Wm,1(Ω) and the weak derivatives of f · g can be computed with the
product rule

∂s(fg) =
∑

0≤r≤s

(
s

r

)
(∂s−rf)∂rg (Leibniz rule). (4-27)

Proof. A symmetry argument yields that we may assume p < ∞. Then it
follows from 4.24 that there exist functions fk ∈ Wm,p(Ω) ∩ C∞(Ω) with
fk → f in Wm,p(Ω). Similarly to the proof of 4.24, for ζ ∈ C∞

0 (Ω) we have∫
Ω

∂iζfkg dL
n = −

∫
Ω

ζ(g∂ifk + fk∂ig) dL
n .

Using the Hölder inequality and letting k → ∞ we obtain∫
Ω

∂iζfg dL
n = −

∫
Ω

ζ(g∂if + f∂ig) dL
n ,

i.e. the desired result for m = 1. For m > 1 replace ζ inductively by its
derivatives. ��
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4.26 Chain rule for Sobolev functions. Let Ω, Ω̃ ⊂ IRn be open and let
τ : Ω̃ → Ω be a C1-diffeomorphism, i.e. τ is bijective with τ ∈ C1(Ω̃)
and τ−1 ∈ C1(Ω), with bounded derivative matrices Dτ and Dτ−1. If f ∈
W 1,p(Ω), 1 ≤ p ≤ ∞, then f ◦τ ∈ W 1,p(Ω̃) and the weak derivatives of f ◦τ
can be computed with the chain rule

∂i(f ◦τ) =
n∑

j=1

(∂jf)◦τ ∂iτj . (4-28)

Remark: A corresponding Wm,p-version also holds. However, the general
formula for the n-dimensional chain rule of arbitrary order is difficult to
write down concisely. In applications a recursive formula (see e.g. (10-11))
usually suffices.

Proof. For p < ∞ choose fk as in the previous proof. Then fk◦τ ∈ C1(Ω̃),
with

∂i(fk◦τ) =
n∑

j=1

(∂jfk)◦τ ∂iτj . (4-29)

The transformation theorem (for C1-functions) yields that∫
Ω

|∂jfk − ∂jfl |p dLn =

∫
Ω̃

|(∂jfk)◦τ − (∂jfl)◦τ |p| detDτ | dLn .

As | detDτ | is strictly positive, we obtain that ((∂jfk)◦τ)k∈IN is a Cauchy

sequence in Lp(Ω̃). Moreover, it follows from 3.22(1) that for a subsequence
∂jfk → ∂jf almost everywhere in Ω, and hence also (∂jfk)◦τ → (∂jf)◦τ
almost everywhere in Ω̃ (on noting lemma 4.27, below), since τ−1 : Ω̃ → IRn

is locally Lipschitz continuous. Hence we have that (∂jfk)◦τ → (∂jf)◦τ in

Lp(Ω̃). Similarly, it follows that fk◦τ → f ◦τ in Lp(Ω̃). On letting k → ∞,
the desired result follows from the chain rule (4-29). ��

4.27 Lemma. Let D ⊂ IRn be open and bounded and let τ ∈ C0,1(D; IRn).
For N ⊂ D:

Ln(N) = 0 =⇒ Ln
(
τ(N)

)
= 0 .

Proof. We claim (for the proof see below) that for ε > 0 there exists a cover(
Brj (xj)

)
j∈IN

of N with xj ∈ N , Brj (xj) ⊂ D, and∑
j∈IN

Ln
(
Brj (xj)

)
≤ ε . (4-30)

Then the τ
(
Brj (xj)∩N

)
form a cover of τ(N), and τ

(
Brj (xj)

)
⊂ Bl·rj (τ(xj)),

with l denoting the Lipschitz constant of τ . Hence
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Ln
(
τ(N)

)
≤
∑
j∈IN

Ln
(
Bl·rj (τ(xj))

)
=
∑
j∈IN

lnLn
(
Brj (xj)

)
≤ lnε .

For the proof of (4-30), first consider a cover of N with cuboids as in A3.4.
On appropriately partitioning these cuboids if necessary, we obtain a new
cover as in A3.4, now consisting of cuboids Qj , Qj ∩N �= ∅ for j ∈ IN, which
are close to being cubes, i.e.

Qj =

n×
i=1

[aji, bji] with 2 · min
i=1,...,n

(bji − aji) ≥ sj := max
i=1,...,n

(bji − aji) .

Choose xj ∈ Qj ∩ N . Then Qj ⊂ Brj (xj), where rj :=
√
n · sj , and

Ln
(
Brj (xj)

)
= κn · rnj ≤ κn(2

√
n)n · Ln(Qj)

with κn := Ln(B1(0)). ��

This lemma implies that a Lipschitz map τ transforms Ln-measurable sets
into Ln-measurable sets. As a consequence, if f is an Ln-measurable function,
then also f ◦τ is Ln-measurable.

E4 Exercises

E4.1 Subsets of C0 and L1. Let I := ]− 1, 1[. Find the interior and the
closed hull of

(1) A := {f ∈ C0(I) ; f > 0}.
(2) A := {f ∈ L1(I) ; f > 0 almost everywhere}.

Solution (1). For f ∈ A it holds that infI f > 0. This yields that Å = A.
Moreover,

A = {f ∈ C0(I) ; f ≥ 0} .
��

Solution (2). Similarly to (1), it follows that A = {f ∈ L1(I) ; f ≥
0 almost everywhere}. We now show that Å = ∅. For every f ∈ A there
exists an M > 0 such that the set {f ≤ M} := {x ∈ I ; f(x) ≤ M} has posi-
tive measure. For m ∈ IN we now partition I (except for finitely many points)
into the intervals Imi := ]

i−1
m , i

m[, i = 1, . . . ,m. Then {f ≤ M} ∩ Imi also
has positive measure for at least one i. For this i let I∗m := {f ≤ M} ∩ Imi.
On I∗m we have that f − 2MXI∗

m
≤ −M < 0, and so f − 2MXI∗

m
/∈ A. On

noting that
∥∥XI∗

m

∥∥
L1 ≤ 1

m , it holds that

f − 2MXI∗
m

−→ f in L1(I) as m → ∞ .

This shows that f /∈ Å. ��
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E4.2 Convex sets. Let X be a vector space over IK. Show that:

(1) Every affine subspace U ⊂ X is convex.

(2) If X �= {0} is a normed space, then for x ∈ X and r > 0 the balls Br(x)
and Br(x) are convex, but ∂Br(x) is not convex.

(3) If X is a Hilbert space and x ∈ X, then for r ≥ 0 and a ∈ IK the
strip {y ∈ X ; |(x , y)X − a| ≤ r}, and for a ∈ IR the affine half-space
{y ∈ X ; Re (x , y)X ≤ a}, are convex.

(4) If X = C0(S; IR) and g ∈ X, then {f ∈ X ; f(x) ≥ g(x) for x ∈ S} is
convex.

(5) If X = Lp(μ; IR) and g ∈ X, then {f ∈ X ; f ≥ g μ-almost everywhere}
is convex.

E4.3 Distance in a Banach space. In a Banach space, in general the
distance to a closed subspace is not attained.

Solution. The space X := {f ∈ C0([0, 1]) ; f(0) = 0} with the C0-norm

is a Banach space and Y := {f ∈ X ;
∫ 1
0
f(x) dx = 0} is a closed proper

subspace. We claim that

dist(f, Y ) =
∣∣∣∫ 10 f(x) dx

∣∣∣ for all f ∈ X. (E4-1)

To see this, note that for all g ∈ Y∣∣∣∫ 10 f(x) dx
∣∣∣ = ∣∣∣∫ 10 (f(x) − g(x)) dx

∣∣∣ ≤ ‖f − g‖C0 .

Moreover, hn(x) :=
(
1 + 1

n

)
x

1
n satisfies

∫ 1
0
hn(x) dx = 1, and so

gn := f −
(∫ 1

0
f(x) dx

)
hn ∈ Y

with

‖f − gn‖C0 =
∣∣∣∫ 10 f(x) dx

∣∣∣ · (1 + 1
n

)
→
∣∣∣∫ 10 f(x) dx

∣∣∣ as n → ∞ .

Hence we have shown (E4-1). In addition,∣∣∣∫ 10 h(x) dx
∣∣∣ < ‖h‖C0 for all h ∈ X \ {0} , (E4-2)

since h(0) = 0. Now let f ∈ X \ Y . If the distance to Y were attained by a
g0 ∈ Y , then it would follow that∣∣∣∫ 10 f(x) dx

∣∣∣ = dist(f, Y ) (recall (E4-1))

= ‖f − g0‖C0 >
∣∣∣∫ 10 (f(x) − g0(x)) dx

∣∣∣ (recall (E4-2))

=
∣∣∣∫ 10 f(x) dx

∣∣∣ ,
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a contradiction. ��

E4.4 Strictly convex spaces. Let X be a normed IK-vector space with
norm x �→ ‖x‖. Then the following are equivalent:

(1) X is strictly normed, i.e. for all x, y ∈ X

‖x+ y‖ = ‖x‖ + ‖y‖ =⇒ {x, y} is linearly dependent.

(2) B1(0) ⊂ X is strictly convex, i.e. for all x, y ∈ X

‖x‖ = ‖y‖ = 1, x �= y =⇒
∥∥ 1

2 (x+ y)
∥∥ < 1 .

(3) Every closed convex set K ⊂ X contains at most one element with
minimal norm, i.e.

xj ∈ K with ‖xj‖ = inf
x∈K

‖x‖ for j = 1, 2 =⇒ x1 = x2 .

Solution (1)⇒(2). Assume that
∥∥ 1

2 (x+ y)
∥∥ ≥ 1. Then

2 ≤ ‖x+ y‖ ≤ ‖x‖ + ‖y‖ = 2 ,

and so equality must hold. Hence it follows from (1) that there exist α, β ∈ IK
with (α, β) �= 0 and αx+ βy = 0. By symmetry, we may assume that β �= 0,
and hence upon scaling that β = 1. Then y = −αx, and so

2 = ‖x+ y‖ = |1 − α| · ‖x‖ = |α − 1| and 1 = ‖y‖ = |α| · ‖x‖ = |α| ,

which implies α = −1, i.e. y = x, a contradiction. ��

Solution (2)⇒(3). Let � := infx∈K ‖x‖. If � = 0, then x1 = 0, x2 = 0.
Hence let � > 0. We have that 1

2 (x1 + x2) ∈ K, and so
∥∥ 1

2 (x1 + x2)
∥∥ ≥ �.

Assuming that x1 �= x2, we could apply (2) for 1
�x1,

1
�x2 and would obtain

that
∥∥ 1

2 (x1 + x2)
∥∥ < �, a contradiction. ��

Solution (3)⇒(1). Let x, y ∈ X be linearly independent. Consider x̃ := 1
‖x‖x

and ỹ := 1
‖y‖y, together with the closed convex set

K := {(1 − s)x̃+ sỹ ; s ∈ [0, 1]} .

Put ϕ(s) := ‖(1 − s)x̃+ sỹ‖. Then ϕ : [0, 1] → IR is convex (follows from the
triangle inequality) and continuous. Since ϕ is continuous and nonnegative,
there exists an absolute minimum s0 of ϕ on [0, 1]. On noting that ϕ(0) =
ϕ(1) = 1, it follows from (3) that 0 < s0 < 1 and ϕ(s0) < 1. The convexity
of ϕ yields that ϕ(s) < 1 for all s ∈ ]0, 1[. Moreover,

1

2
(x+ y) = r

(
(1 − s)x̃+ sỹ

)
with

⎧⎪⎨⎪⎩
r :=

1

2
(‖x‖ + ‖y‖) ,

s :=
‖y‖
2r

∈ ]0, 1[ .
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This implies that

1 > ϕ(s) =

∥∥∥∥ 1

2r
(x+ y)

∥∥∥∥ and so ‖x+ y‖ < ‖x‖+ ‖y‖ .

This shows (1). ��

E4.5 Separation theorem in IRn. Let A,B ⊂ IRn be nonempty, closed
convex sets with A ∩ B = ∅. Then there exist x0, e ∈ IRn with |e| = 1 and

(a − x0)·e ≥ 0 for a ∈ A and (b − x0)·e ≤ 0 for b ∈ B .

Remark: For the infinite-dimensional case, see 8.12.

Solution. Let Ak := A ∩ Bk(0) and Bk := B ∩ Bk(0). Since Ak and Bk are
compact and disjoint, there exist ak ∈ Ak, bk ∈ Bk with

|ak − bk | = dist(Ak, Bk) > 0 .

As Ak and Bk are convex, it follows, similarly to the projection theorem 4.3,
that

(bk − ak)·(a − ak) ≤ 0 for a ∈ Ak ,

(ak − bk)·(b − bk) ≤ 0 for b ∈ Bk .

On setting

ek :=
ak − bk
|ak − bk |

, αk :=
ak + bk

2 ·ek
we obtain that

a·ek ≥ ak·ek ≥ αk for a ∈ Ak ,

b·ek ≤ bk·ek ≤ αk for b ∈ Bk .

As |ek | = 1, there exists an e ∈ IRn with |e| = 1 such that ek → e for a
subsequence k → ∞. Choosing arbitrary but fixed a0 ∈ A, b0 ∈ B, it follows
that a0 ∈ Ak, b0 ∈ Bk for k sufficiently large, and so

−|b0 | ≤ b0·ek ≤ αk ≤ a0·ek ≤ |a0 | .

Hence the αk are bounded and we can choose a subsequence such that αk →
α ∈ IR as k → ∞. On noting that a·ek ≥ αk for a ∈ Aj , if k ≥ j, it follows
that a·e ≥ α for a ∈ Aj , and hence also for all a ∈ A. Similarly, we obtain
that b·e ≤ α for all b ∈ B. Now choose x0 := αe. ��

E4.6 Convex functions. Let Ω ⊂ IRn be open and convex. Then every
convex function f : Ω → IR is locally Lipschitz continuous, i.e. f ∈ C0,1(S)
for all compact sets S ⊂ Ω.
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Solution. Let Br(x0) ⊂ Ω, where the balls are taken with respect to the sum
norm |·|1. Then

Br(x0) = convM , M := {x0 ± rei ; i = 1, . . . , n}

(this can be shown by induction on n). Hence every z ∈ Br(x0) can be
represented as

z =

m∑
i=1

λizi with m ∈ IN , zi ∈ M , λi ≥ 0 ,

m∑
i=1

λi = 1 .

The convexity of f implies that

f(z) ≤
m∑
i=1

λif(zi) ≤ C := max
ξ∈M

|f(ξ)| ,

i.e. f is bounded from above on Br(x0). Now let x ∈ B r
2
(x0) \ {x0}. Choose

α ≥ 1 such that z := x0 − α(x − x0) ∈ ∂Br(x0). Then

x0 =
1

1 + α
z +

α

1 + α
x ,

and so

f(x0) ≤ 1

1 + α
f(z) +

α

1 + α
f(x) ,

which implies

f(x) ≥ 1 + α

α
f(x0) − 1

α
f(z) ≥ −2|f(x0)| − C ,

i.e. f is also bounded from below on B r
2
(x0). For x, y ∈ B r

2
(x0), x �= y, we

now choose α ≥ 1 such that z := x+ α(y − x) ∈ ∂Br(x0). Then

y =
1

α
z +
(
1− 1

α

)
x ,

and so

f(y) ≤ 1

α
f(z) +

(
1− 1

α

)
f(x) ,

which, on recalling the above estimate, implies that

f(y) − f(x) ≤ 1

α
(f(z) − f(x)) ≤ 1

α
2 (C + |f(x0)|) .

In addition,
1

α
=

|y − x|1
|z − x|1

≤ 2

r
|y − x|1 .

Then a symmetry argument yields that
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|f(y) − f(x)| ≤ 4

r
(C + |f(x0)|) |y − x|1 .

Hence f is Lipschitz continuous on B r
2
(x0). Now cover compact subsets S ⊂ Ω

with appropriately chosen finitely many balls (for x ∈ S choose a ball B rx
4
(x)

with Brx(x) ⊂ Ω). Conclude that f ∈ C0,1(S). ��

E4.7 Characterization of convex functions. Let Ω ⊂ IRn be open and
convex. Then

(1) f ∈ C1(Ω; IR) is convex if and only if the Weierstraß E-function
satisfies

E(x, y) := f(y) − f(x) − ∇f(x)·(y − x) ≥ 0 for all x, y ∈ Ω .

(2) f ∈ C1(Ω; IR) is convex if and only if ∇f is monotone, i.e(
∇f(x) − ∇f(y)

)·(x − y) ≥ 0 for all x, y ∈ Ω .

(3) f ∈ C2(Ω; IR) is convex if and only if D2f is positive semidefinite, i.e.

n∑
i,j=1

∂ijf(x)ξiξj ≥ 0 for all ξ ∈ IRn, x ∈ Ω .

Solution (1) and (2). For x0, x1 ∈ Ω define

g(t) := f(xt) with xt := (1 − t)x0 + tx1 ∈ Ω for 0 ≤ t ≤ 1 .

Then we have that
g′(t) = ∇f(xt)·(x1 − x0) .

If f is convex, then so is g, since for 0 ≤ α ≤ 1

g
(
(1 − α)s+ αt

)
= f
(
(1 − α)xs + αxt

)
≤ (1 − α)f(xs) + αf(xt) .

In particular, for 0 < ε < 1 we have that

g(ε) ≤ (1 − ε)g(0) + εg(1) and so
g(ε) − g(0)

ε
≤ g(1) − g(0) .

On letting ε → 0 we obtain that g′(0) ≤ g(1) − g(0), i.e. E(x0, x1) ≥ 0.
If the Weierstraß function is nonnegative, it follows that

0 ≤ E(x0, x1) + E(x1, x0) =
(
∇f(x1) − ∇f(x0)

)·(x1 − x0) ,

i.e. ∇f is monotone. If ∇f is monotone, then so is g′, since for 0 ≤ s < t ≤ 1,

g′(t) − g′(s) =

(
∇f(xt) − ∇f(xs)

)·(xt − xs)

t− s
≥ 0 .

We obtain for 0 ≤ α ≤ 1 that
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(1 − α)
(
g(α) − g(0)

)
= (1 − α)

∫ α

0

g′(t) dt ≤ (1 − α)αg′(α)

≤ α

∫ 1

α

g′(t) dt = α
(
g(1) − g(α)

)
,

i.e.

g(α) ≤ (1 − α)g(0) + αg(1) or f(xα) ≤ (1− α)f(x0) + αf(x1) .

As this holds for all x0, x1, α, we have shown the convexity of f . ��
Solution (3). If f is convex, then it follows from (2) that for x ∈ Ω, ξ ∈ IRn

and ε > 0 sufficiently small

0 ≤ 1

ε
ξ·(∇f(x+ εξ) − ∇f(x)

)
−→ ξ·D2f(x)ξ as ε ↘ 0 .

Conversely, if D2f is positive semidefinite, then for x, y ∈ Ω(
∇f(y) − ∇f(x)

)·(x − y) =

∫ 1

0

(x − y)·D2f
(
(1 − t)x+ ty

)
(x − y) dt ≥ 0 .

Hence (2) yields that f is a convex function. ��

A

b

b

Fig. 4.6. Supporting lines in IR2

E4.8 Supporting planes. Let A ⊂ IRn be convex. Then for b ∈ ∂A there
exists an e ∈ IRn with |e| = 1 such that

(a − b)·e ≥ 0 for all a ∈ A .

Remark: We then call {x ∈ IRn ; (x − b)·e = 0} a supporting plane to
A at the point b. This supporting plane need not be uniquely determined.
It is unique in the case where A is the set above the graph of a convex C1-
function. The supporting plane inequality is then given by the nonnegativity
of the E-function in E4.7(1).

Hint: See also the separation theorem 8.12.
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Solution. There exist bk ∈ IRn \ A for k ∈ IN with bk → b as k → ∞. Fix k
and set B := {bk}. It follows from E4.5 that there exist points xk, ek ∈ IRn

with |ek | = 1 such that

(a − xk)·ek ≥ 0 for a ∈ A and (bk − xk)·ek ≤ 0 .

It follows that (a− bk)·ek ≥ 0 for a ∈ A. Now choose a subsequence k → ∞
with ek → e. ��

E4.9 Jensen’s inequality. Let Φ : IRm → IR be convex with Φ ≥ 0, and
let (S,B, μ) be a measure space with μ(S) = 1. Then for any f ∈ L1(μ; IRm)

Φ
(∫

S

f dμ
)

≤
∫
S

Φ◦f dμ .

Note: The right-hand side is to be set to +∞ if Φ◦f is not integrable.

Solution. By E4.6, Φ is Lipschitz continuous, and so Φ ◦ f is measurable.
Moreover, it holds for y0 ∈ IRm that (y0, Φ(y0)) ∈ ∂A, where A := {(y, ξ) ∈
IRm+1 ; ξ ≥ Φ(y)}. It follows from E4.8 that there exists an e = (e′, em+1) ∈
IRm+1 \ {0} with(

ξ − Φ(y0)
)
em+1 + (y − y0)·e′ ≥ 0 for all (y, ξ) ∈ A .

We may assume that em+1 = 1. (To see this, let y = y0 and ξ = Φ(y0) + 1,
which implies that em+1 ≥ 0. Assuming that em+1 = 0 yields that (y −
y0)·e′ = 0 for all y ∈ IRm, and so e′ = 0, which contradicts e �= 0.) It follows
that

Φ(y) ≥ Φ(y0) − (y − y0)·e′ for all y ∈ IRm .

In this inequality we let for x ∈ S

y := f(x) and y0 :=

∫
S

f dμ .

Then integrating over Sm := {x ∈ S ; |f(x)| ≤ m} we obtain∫
Sm

Φ◦f dμ ≥ μ(Sm)Φ(y0) −
(∫

Sm

f dμ − μ(Sm)y0

)·e′ −→ Φ(y0)

as m → ∞, whence

Φ
(∫

S

f dμ
)

≤ lim inf
m→∞

∫
Sm

Φ◦f dμ .

��

E4.10 Lp-inequalities. Let μ be as in E4.9, i.e. μ(S) = 1. For μ-measurable
functions f : S → Y apply E4.9 appropriately in order to obtain an inequality
for the integral of |f |p for 0 < p < 1 and 1 < p < ∞, respectively.
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Solution. For 0 < p < 1 apply E4.9 to Φ(z) := |z |
1
p . For f ∈ L1(μ;Y ) it then

holds that |f |p ∈ L1(μ), since μ(S) < ∞ and |f |p ≤ max(1, |f |). We obtain∫
S

|f |p dμ ≤
(∫

S

|f | dμ
)p

and so ‖f ‖Lp ≤ ‖f ‖L1 .

For 1 < p < ∞ apply E4.9 to Φ(z) := |z |p. For f ∈ Lp(μ;Y ) it then holds
that f ∈ L1(μ;Y ), on noting μ(S) < ∞ and the Hölder inequality. We obtain(∫

S

|f | dμ
)p

≤
∫
S

|f |p dμ and so ‖f ‖L1 ≤ ‖f ‖Lp .

��
E4.11 The space Lp for p < 1. Let 0 < p < 1. Then Lp(]0, 1[) equipped
with the Fréchet metric

�(f) :=

∫ 1

0

|f(x)|p dx

is a metric space. Show that:

(1) The convex hull of any ball Br(0) is the whole space.

(2) There exists no norm on Lp(]0, 1[) which induces the same topology as
the metric �.

Solution. Because (s+ t)p ≤ sp + tp for all s, t ≥ 0 the metric � is a Fréchet
metric. For f ∈ Lp(]0, 1[) we have that

x �→
∫ x

0

|f(x)|p dx

is continuous, and hence for n ∈ IN there exist numbers 0 = x0 < x1 < · · · <
xn−1 < xn = 1 such that∫ xi

0

|f(x)|p dx =
i

n

∫ 1

0

|f(x)|p dx .

It then follows that

f =
n∑

i=1

1

n
fi in Lp(]0, 1[) where fi := nf · X]xi−1,xi[

, (E4-3)

and ∫ 1

0

|fi(x)|p dx = np

∫ xi

xi−1

|f(x)|p dx = np−1

∫ 1

0

|f(x)|p dx < r

for n sufficiently large, hence (with respect to the metric) fi ∈ Bmetric
r (0).

Therefore f ∈ convBmetric
r (0), on noting (E4-3). This yields the desired result

(1).
In order to show (2), we assume that there exists a norm ‖·‖ that is

equivalent to �. Then the ball Bnorm
1 (0) must be open with respect to �, and

so
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Bmetric
r (0) ⊂ Bnorm

1 (0)

for an r > 0. Then it follows from (1) that

Lp
(
]0, 1[

)
= convBmetric

r (0) ⊂ convBnorm
1 (0) = Bnorm

1 (0) ,

a contradiction. ��

E4.12 Cross product of normed vector spaces. Let (X1, ‖·‖1) and
(X2, ‖·‖2) be normed IK-vector spaces. In addition, let |·| be a monotone
norm on IR2, i.e. for (a1, a2), (b1, b2) ∈ IR2

|a1 | ≤ |a2 |, |b1 | ≤ |b2 | =⇒ |(a1, a2)| ≤ |(b1, b2)| .

Show that:

(1) ‖(x1, x2)‖ := |(‖x1‖1, ‖x2‖2)| for x1 ∈ X1, x2 ∈ X2 defines a norm on
X1 × X2.

(2) All the norms on X1 ×X2 which are defined by a monotone norm on IR2

as in (1) are equivalent.

Solution. For (2) use 4.8 on IR2. ��

E4.13 Compact sets in �2. Determine whether the following subsets of
�2(IR) are bounded and/or compact.

E1 :=
{
x ∈ �2(IR) ; |xi | ≤ 1√

i
for all i

}
,

E2 :=
{
x ∈ �2(IR) ;

∑∞
i=1 x

2
i ≤ 1

}
,

E3 :=
{
x ∈ �2(IR) ; |xi | ≤ 1

i for all i
}

(Hilbert cube).

Solution. The set E1 is not bounded, and hence also not compact, because
for n ∈ IN we have that

xn :=
∑n

i=1
1√
i
ei ∈ E1 with ‖xn‖2�2 =

∑n
i=1

1
i −→ ∞ as n → ∞.

By definition, E2 = B1(0) is bounded, but it is not compact. To see this,
observe that (en)n∈IN is a sequence in E2, which, since ‖en − em‖�2 =

√
2

for n �= m, does not contain a convergent subsequence.
The set E3 is compact: If (xn)n∈IN is a sequence in E3, then for all i ∈ IN

the sequence (xn
i )n∈IN is bounded, since |xn

i | ≤ 1
i . On applying a diagonal-

ization procedure, we obtain a subsequence n → ∞, such that xn
i → xi as

n → ∞ for all i ∈ IN, with certain numbers xi. Then |xi | ≤ 1
i , and so

x := (xi)i∈IN ∈ E3 with

‖xn − x‖2�2 ≤
j∑

i=1

|xn
i − xi |2︸ ︷︷ ︸

→ 0 as n → ∞
for every j

+
∞∑

i=j+1

4

i2︸ ︷︷ ︸
→ 0 as j → ∞

,
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i.e. xn → x in �2(IR) as n → ∞. ��

E4.14 Bounded and compact sets in L1(]0, 1[). Determine whether
the following sets are bounded and precompact in L1

(
]0, 1[

)
, respectively:

E1 :=
{
f : ]0, 1[ → IR ; f(x) = x−α, 0 ≤ α < 1

}
,

E2 :=
{
f : ]0, 1[ → IR ; f(x) = x−α, −∞ < α ≤ 1− δ

}
where δ > 0 ,

E3 :=
{
f : ]0, 1[ → IR ; f(x) = sin(ωx), ω ∈ IR

}
.

Solution. The set E1 is not bounded, since∫ 1

0

x−α dx =

[
1

1 − α
x1−α

]x=1

x=0

=
1

1 − α
−→ ∞ as α ↗ 1. (E4-4)

The same calculation yields the boundedness of E2.
The precompactness of E2 can, for instance, be shown as follows: Let

fα(x) := x−α for −∞ < α ≤ 1 − δ. For every x we have that fα(x) depends
continuously on α, and 0 ≤ fα ≤ f1−δ. By Lebesgue’s convergence theorem
α �→ fα is a continuous map into L1

(
]0, 1[

)
. On defining f−∞ := 0, it follows

from (E4-4) that it is even continuous on [ − ∞, 1 − δ], which we consider
as a compact interval on the extended real line (see 2.8(2)). Hence the image
E2 ∪ {0} of this continuous map is also compact.

The set E3 is obviously bounded, but it is not precompact. To see this,
observe that, for h > 0 with 1

2h ∈ IN and ω = π
2h ,∫ 1

0

|sin(ω(x+ h)) − sin(ωx)| dx =

∫ 1

0

|cos(ωx) − sin(ωx)| dx

=
1

ω

∫ ω

0

|cos y − sin y | dy =
1

π

∫ π

0

|cos y − sin y | dy > 0 .

Hence condition 4.16(2) is violated. ��

E4.15 Comparison of Hölder spaces. Let S ⊂ IRn be a compact set and
let 0 < α < β ≤ 1. Then bounded sets in C0,β(S) are precompact in C0,α(S)
(a more general result is 10.9).

Solution. Let (fk)k∈IN be a bounded sequence in C0,β(S), with ‖fk‖C0,β ≤ R
for all k, say. Then {fk ; k ∈ IN} is bounded in C0(S) and equicontinuous. It
follows from the Arzelà-Ascoli theorem that there exists an f ∈ C0(S) such
that fk → f in C0(S) for a subsequence k → ∞. For x, y ∈ S it then holds
that

|(fk − f)(x) − (fk − f)(y)|
|x − y |α

for |x − y | ≥ δ can be estimated by

≤ 2δ−α‖fk − f ‖C0
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and for 0 < |x − y | < δ satisfies

= lim
l→∞

|(fk − fl)(x) − (fk − fl)(y)|
|x − y |α ≤ δβ−α‖fk − fl‖C0,β ≤ 2Rδβ−α .

Therefore,

‖fk − f ‖C0,α ≤ (1 + 2δ−α) ‖fk − f ‖C0︸ ︷︷ ︸
→ 0 for k → ∞

+2R δβ−α︸ ︷︷ ︸
→ 0 for δ → 0

,

and hence fk → f in C0,α(S) as k → ∞. ��

E4.16 Compactness with respect to the Hausdorff metric. Let A be
as in E2.9 with X = IRn and let R > 0. Then{

A ∈ A ; A ⊂ BR(0)
}

is compact in A.

Solution. Let (Am)m∈IN be a sequence in A with Am ⊂ B := BR(0). Then
the functions

fm(x) := dist(x,Am)

are bounded in C0,1(B) (see E2.2(1)). By the Arzelà-Ascoli theorem, there
exists an f ∈ C0(B) such that fm → f in C0(B) for a subsequence m → ∞.
Let

A := {x ∈ B ; f(x) = 0} .

Then A is closed and nonempty, since assuming A = ∅ would yield that
f is strictly positive on B, and hence also fm for m sufficiently large, a
contradiction.

In addition, we have that f(x) = dist(x,A). To see this, observe that for
a ∈ A it holds, as m → ∞,

f(x) = f(x) − f(a) ←− dist(x,Am) − dist(a,Am) ≤ |x − a|

by E2.2(1), and hence f(x) ≤ dist(x,A). If x ∈ B\A and r < dist(x,A), then
f is strictly positive on Br(x) ∩ B. Hence so is fm for m sufficiently large,
i.e. Br(x)∩B ∩Am = ∅, which, since Am ⊂ B, implies that Br(x)∩Am = ∅,
and so

r ≤ dist(x,Am) −→ f(x) .

This shows that f(x) ≥ dist(x,A). It follows from E2.9 (with M = B) that

dH(Am, A) = sup
x∈B

|dist(x,Am) − dist(x,A)|

= ‖fm − f ‖C0 −→ 0 as m → ∞.

��
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E4.17 Uniform continuity. If X is a compact metric space and Y is a
metric space, then every continuous function f : X → Y is uniformly
continuous, i.e.

dY
(
f(y), f(x)

)
−→ 0 for x, y ∈ X with dX(y, x) → 0 ,

which, using quantifiers, can be written as

∀ ε > 0 : ∃ δ > 0 : ∀ x, y ∈ X : dX(x, y) ≤ δ =⇒ dY
(
f(x), f(y)

)
≤ ε .

Solution. For ε > 0 and x ∈ X there exists a δx > 0 with

dY
(
f(y), f(x)

)
≤ ε for y ∈ B2δx(x) .

As (Bδx(x))x∈X is an open cover of X, there exists a finite collection of balls
Bδxi

(xi), i = 1, . . . ,mε, that cover the compact set X. Let

δ := min{δxi
; i = 1, . . . ,mε} .

For any two points y, z ∈ X with dX(y, z) ≤ δ it then holds that y ∈ Bδxi
(xi)

for an i, and so y, z ∈ B2δxi
(xi), which implies that

dY
(
f(y), f(z)

)
≤ dY

(
f(y), f(xi)

)
+ dY
(
f(z), f(xi)

)
≤ 2ε .

��

E4.18 Continuous extension. Let X be a metric space, let A ⊂ X be
dense and let Y be a complete metric space. Then every uniformly continuous
function f : A → Y admits a unique uniformly continuous extension f̃ : X →
Y .

Remark: For the linear case, see also E5.3.

Solution. Since f is uniformly continuous on A, it holds for x ∈ X that

dY
(
f(y1), f(y2)

)
−→ 0 for y1, y2 ∈ A with y1, y2 → x.

Since Y is complete, it follows that for x ∈ A = X there exists

f̃(x) := lim
y∈A, y→x

f(y) in Y ,

and f̃(x) = f(x) for x ∈ A. Then f̃ is also uniformly continuous. To see this,
observe that for points x1, x2 ∈ X with 0 < dX(x1, x2) ≤ δ there exist points

y1, y2 ∈ A such that dY
(
f̃(xi), f(yi)

)
≤ δ and dX(xi, yi) ≤ δ

2 , and hence
dX(y1, y2) ≤ 2δ. This implies that

dY
(
f̃(x1), f̃(x2)

)
≤ 2δ + dY

(
f(y1), f(y2)

)
≤ 2δ + sup

z1, z2 ∈ A
dX(z1, z2) ≤ 2δ

dY
(
f(z1), f(z2)

)
−→ 0

as δ → 0. ��
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E4.19 Dini’s theorem. Let X be a compact metric space. In addition, let
fk ∈ C0(X; IR) and let fk(x) ↘ 0 (monotonically!) as k → ∞ for all x ∈ X.
Then ‖fk‖C0 −→ 0 as k → ∞.

Solution. Otherwise there exist a subsequence k → ∞ and points xk ∈ X
such that fk(xk) ≥ ε > 0 for some ε > 0. As X is compact, it follows that
xk → x ∈ X for a subsequence k → ∞.

Choose m with fm(x) ≤ ε
4 . As fm is continuous, there exists a δ > 0 such

that fm(y) ≤ ε
2 for y ∈ X with d(y, x) ≤ δ.

We have for sufficiently large k that d(xk, x) ≤ δ and, if k ≥ m, it follows
that fk(xk) ≤ fm(xk) ≤ ε

2 , a contradiction. ��

E4.20 Nonapproximability in the space C0,α. Let 0 < α ≤ 1 and I ⊂ IR
be a nontrivial compact interval. Then C1(I) is not (!) dense in C0,α(I).

Solution. Without loss of generality, let I = [ − 1, 1]. The fundamental
theorem of calculus yields that C1(I) ⊂ C0,α(I). Let f(x) := |x|α. Then
f ∈ C0,α(I) and for g ∈ C1(I) and x ∈ I \ {0} we have that

‖f − g‖C0,α ≥ |(f − g)(x) − (f − g)(0)|
|x|α =

∣∣∣∣1− g(x) − g(0)

|x|α
∣∣∣∣

=

∣∣∣∣1− x

|x|α
∫ 1

0

g′(sx) ds

∣∣∣∣ .
For α < 1 this is

≥ 1 − ‖g′‖C0 · |x|1−α → 1 as x → 0 ,

and so ‖f − g‖C0,α ≥ 1. For α = 1 this converges

−→
{

|1− g′(0)| as x ↘ 0 ,

|1 + g′(0)| as x ↗ 0 .

This implies

‖f − g‖C0,1 ≥ max
(
|1− g′(0)|, |1 + g′(0)|

)
≥ 1 .

��

E4.21 Compact subsets of Lp. Let 1 ≤ p < ∞ and let S ⊂ IRn be
bounded and measurable. Then A ⊂ Lp(S) is precompact, if there exist
measurable sets Sk ⊂ IRn and numbers εk > 0 with

Sk ⊂ Sk+1 ⊂ S,
⋃
k∈IN

Sk = S, εk ↘ 0 as k → ∞,

such that the following conditions are satisfied:
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(1) It holds that

sup
f∈A

∫
S

|f(x)|p dx < ∞ .

(2) For every k ∈ IN it holds for h ∈ IRn that

sup
f∈A

∫
{x ; x,x+h∈Sk}

|f(x+ h) − f(x)|p dx −→ 0 as |h| → 0.

(3) It holds that

sup
f∈A

∫
S∩Bεk

(IRn\Sk)

|f(x)|p dx −→ 0 as k → ∞.

Note: The assertion remains valid, if S is unbounded but the Sk are bounded.

Solution. We extend functions f ∈ Lp(S) outside of S by 0 and obtain func-

tions f̃ ∈ Lp(IRn). In this way, the set A becomes a subset Ã ⊂ Lp(IRn).
If we assume that (2) holds with the integral over the whole of IRn for the

extended functions, then it follows immediately that Ã satisfies the properties
of the Riesz theorem 4.16, where we note that S is bounded. Hence Ã is then
a precompact subset of Lp(IRn). Since for f ∈ A and g ∈ Lp(IRn)

‖f − XS g‖Lp(S) ≤
∥∥∥f̃ − g

∥∥∥
Lp(IRn)

,

we conclude that then also A is a precompact subset of Lp(S).
Now consider (2) as given in the problem. Then∫
IRn

∣∣∣f̃(x+ h) − f̃(x)
∣∣∣p dx ≤

∫
{x ; x,x+h∈Sk}

|f(x+ h) − f(x)|p dx

+

∫
{x ; x/∈Sk}

∣∣∣f̃(x+ h) − f̃(x)
∣∣∣p dx+

∫
{x̃ ; x̃/∈Sk}

∣∣∣f̃(x̃) − f̃(x̃ − h)
∣∣∣p dx̃ .

The first integral is controlled by condition (2). The second integral for |h| <
εk can be estimated by

≤ 2p−1
(∫

Bεk
(IRn\Sk)

∣∣∣f̃(x)∣∣∣p dx+

∫
IRn\Sk

∣∣∣f̃(x)∣∣∣p dx)
≤ 2 · 2p−1

∫
Bεk

(IRn\Sk)

∣∣∣f̃(x)∣∣∣p dx ,
and hence it can be controlled by condition (3). The third integral can be
estimated in exactly the same way. Hence 4.16(2) holds for the integrals over
IRn, and so together with (1) the set A is a precompact subset of Lp(S).

Remark: Since S is bounded, condition 4.16(3) is not relevant. ��
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In this chapter, X, Y , Z, etc. usually denote normed IK-vector spaces. We
consider linear maps T from X to Y , where, following the notation for ma-
trices, we usually write Tx instead of T (x), and similarly ST instead of S◦T
for linear maps T : X → Y and S : Y → Z. In functional analysis, only the
continuous linear maps are of importance (see E9.2), which are those linear
maps for which T (x) can be estimated by x:

5.1 Lemma. If T : X → Y is linear and x0 ∈ X, then the following are
equivalent:

(1) T is continuous.

(2) T is continuous at x0.

(3) sup‖x‖X≤1 ‖Tx‖Y < ∞.

(4) There exists a constant C with ‖Tx‖Y ≤ C‖x‖X for all x ∈ X.

Property 5.1(4) written with quantifiers reads

∃ C ≥ 0 :
(

∀ x ∈ X : ‖Tx‖Y ≤ C‖x‖X
)

Proof (2)⇒(3). There exists an ε > 0 such that T
(
Bε(x0)

)
⊂ B1(T (x0)).

Let x ∈ B1(0). Then x0 + εx ∈ Bε(x0), and hence

T (x0) + εT (x) = T (x0 + εx) ∈ B1(T (x0)) ,

which implies that T (x) ∈ B 1
ε
(0). ��

Proof (3)⇒(4). Let C be the supremum in (3). Then for x �= 0

‖T (x)‖Y = ‖x‖X ·
∥∥∥∥T( x

‖x‖X

)∥∥∥∥
Y

≤ ‖x‖X · C .

��

Proof (4)⇒(1). For x, x1 ∈ X we have that

‖T (x) − T (x1)‖Y = ‖T (x − x1)‖Y ≤ C‖x − x1‖X −→ 0 as x → x1 ,

i.e. T is continuous at x1. This is true for all x1. ��
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5.2 Linear operators. We define

L (X;Y ) :=
{
T : X → Y ; T is linear and continuous

}
.

We call maps in L (X;Y ) linear operators. This is true in general for topo-
logical vector spaces X and Y (see 5.23). In the literature, if they are normed
spaces, elements of L (X;Y ) are often also called bounded operators. If
X and Y are normed spaces, on recalling 5.1(3), we define for every linear
operator T ∈ L (X;Y ) the operator norm of T by

‖T ‖
L (X;Y ) := sup

‖x‖X≤1

‖Tx‖Y < ∞ . (5-5)

In the following, we often use the abbreviation ‖T ‖ for ‖T ‖
L (X;Y ). It follows

from the proof of 5.1 that ‖T ‖
L (X;Y ) is the smallest number satisfying

‖Tx‖Y ≤ ‖T ‖
L (X;Y )‖x‖X for all x ∈ X . (5-6)

We set L (X) := L (X;X) and denote the identity on X by Id (or by I ).
Clearly, Id ∈ L (X).

5.3 Theorem. Let X, Y , and Z be normed spaces.

(1) L (X;Y ) equipped with ‖·‖L (X;Y ) in (5-5) is a normed space.

(2) L (X;Y ) is a Banach space if Y is a Banach space.

(3) If T ∈ L (X;Y ) and S ∈ L (Y ;Z), then ST ∈ L (X;Z) and

‖ST ‖
L (X;Z) ≤ ‖S‖

L (Y ;Z) · ‖T ‖
L (X;Y ) .

(4) L (X) is a Banach algebra if X is a Banach space. Here the product in
L (X) is given by the composition of operators.

Proof (1). For T1, T2 ∈ L (X;Y ) and x ∈ X

‖(T1 + T2)x‖Y ≤ ‖T1x‖Y + ‖T2x‖Y ≤
(
‖T1‖+ ‖T2‖

)
‖x‖X .

Hence T1 + T2 ∈ L (X;Y ) with ‖T1 + T2‖ ≤ ‖T1‖ + ‖T2‖, i.e. the operator
norm satisfies the triangle inequality. ��

Proof (2). If (Tk)k∈IN is a Cauchy sequence in L (X;Y ), then for x ∈ X,
since ‖Tkx − Tlx‖Y ≤ ‖Tk − Tl‖ · ‖x‖X , the sequence (Tkx)k∈IN is a Cauchy
sequence in Y . As Y is complete, we have that

Tx := lim
k→∞

Tkx in Y

exists pointwise, and it follows easily that T : X → Y is linear. It then follows
that

‖(T − Tj)x‖Y = lim
k→∞

‖(Tk − Tj)x‖Y ≤ lim inf
k→∞

‖Tk − Tj‖ · ‖x‖X ,
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and so T − Tj ∈ L (X;Y ), by 5.1(4), and

‖T − Tj‖L (X;Y ) ≤ lim inf
k→∞

‖Tk − Tj‖L (X;Y ) −→ as j → ∞

(cf. the proof of completeness of C0(S;Y ) in 3.2). ��

Proof (3). On noting that

‖S(Tx)‖Z ≤ ‖S‖ · ‖Tx‖Y ≤ ‖S‖ · ‖T ‖ · ‖x‖X ,

we have that ST ∈ L (X;Z) with ‖ST ‖ ≤ ‖S‖ · ‖T ‖. ��

Proof (4). Follows from (3) and (2). ��

5.4 Remarks.

(1) If X is finite-dimensional, then every linear map T : X → Y is continu-
ous, i.e. in L (X;Y ). For noncontinuous linear maps, see E9.2.

(2) Every T ∈ L (X;Y ) is Lipschitz continuous, since

‖T (x) − T (y)‖Y ≤ ‖T ‖ · ‖x − y‖X .

If follows that for R > 0 and M > 0

A :=
{
T |

BR(0)
; T ∈ L (X;Y ), ‖T ‖

L (X;Y ) ≤ M
}

is a bounded and equicontinuous subset of C0
(
BR(0);Y

)
. However, the

Arzelà-Ascoli theorem is not valid in this context. Observe that A as a subset
of C0

(
BR(0);Y

)
is not (!) precompact, unlessX and Y are finite-dimensional.

Only then are the domain and the image set of these continuous functions
precompact, which played an essential role in the proof of 4.12.

(3) Linear operators occur as Fréchet derivatives of nonlinear maps F : X →
Y . We define T ∈ L (X;Y ) to be the Fréchet derivative of F at x ∈ X, if

F (y)− F (x) − T (y − x)

‖y − x‖X
−→ 0 in Y as y → x in X with y �= x.

This is the linear approximation property of the mapping y �→ F (y) near x,
given by the mapping y �→ F (x) + T (y − x). Using quantifiers this definition
reads

∀ ε > 0 : ∃ δ > 0 : ∀ y ∈ X :

‖y − x‖X ≤ δ =⇒ ‖F (y) − F (x) − T (y − x)‖Y ≤ ε · ‖y − x‖X .

Proof (1). If n is the dimension of X and {e1, . . . , en} is a basis of X, then
for x =

∑n
i=1 xiei ∈ X

‖Tx‖Y ≤
n∑

i=1

|xi |‖Tei‖Y ≤
(

n∑
i=1

‖Tei‖Y

)
· max
i=1,...,n

|xi | .
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If we take, for instance,
‖x‖ := max

i=1,...,n
|xi |

as the norm in X (recall lemma 4.8), then, by 5.1, the inequality proves the
continuity of T with

‖T ‖
L (X;Y ) ≤

n∑
i=1

‖Tei‖Y .

��

We now give a list of special linear operators and some notation. The
detailed study of the properties of each class of linear operators will be the
subject of the following chapters.

5.5 Definitions.

(1) The space X ′ := L (X; IK) is the dual space to X. The elements of
X ′ are also called linear functionals. This is true for general topological
vector spaces. If X a normed space, then the norm from (5-5) for T ∈ X ′ is

‖T ‖X′ := sup
‖x‖X≤1

|Tx| . (5-7)

(2) The set of compact (linear) operators from X to Y is defined by

K (X;Y ) :=
{
T ∈ L (X;Y ) ; T (B1(0)) is compact

}
.

If Y is complete, then we can replace “T (B1(0)) is compact” in the definition
by “T (B1(0)) is precompact” (see 4.7(5)).

(3) A linear map P : X → X is called a (linear) projection if P 2 = P .
We denote the set of continuous (linear) projections by

P(X) :=
{
P ∈ L (X) ; P 2 = P

}
.

(4) For T ∈ L (X;Y ) we denote by

N (T )
(
or ker(T )

)
:= {x ∈ X ; Tx = 0}

the null space (or kernel) of T . The continuity of T immediately yields that
N (T ) is a closed subspace. The range (or image) of T is defined by

R(T )
(
or im(T )

)
:= {Tx ∈ Y ; x ∈ X} .

The subspace R(T ) in general is not closed (see the example 5.6(3)). We will
often denote the image of a linear map also as T (X) = R(T ).

(5) T ∈ L (X;Y ) is called a (linear continuous) embedding of X into Y
if T is injective, i.e. if N (T ) = {0}.
Observe: In general, the term embedding is used only for very special maps
T , see for example the embedding theorems in Chapter 10.
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(6) LetX and Y be complete spaces. If T ∈ L (X;Y ) is bijective, then T−1 ∈
L (Y ;X) (see the inverse mapping theorem 7.8, which plays an essential role
in functional analysis). Then T is called an invertible (linear) operator,
or a (linear continuous) isomorphism.

(7) T ∈ L (X;Y ) is called an isometry (see the definition in 2.24) if

‖Tx‖Y = ‖x‖X for all x ∈ X.

(8) If T ∈ L (X;Y ), then

(T ′y′)(x) := y′(Tx) for y′ ∈ Y ′, x ∈ X

defines a linear map T ′ : Y ′ → X ′, the adjoint map of T . We also call T ′

the adjoint operator of T , because T ′ ∈ L (Y ′, X ′).

Proof (8). For x ∈ X and y′ ∈ Y ′,

|(T ′y′)(x)| = |y′(Tx)| ≤ ‖y′‖Y ′‖Tx‖Y ≤ ‖y′‖Y ′ · ‖T ‖ · ‖x‖X ,

so that, by (5-7),

‖T ′y′‖X′ ≤ ‖y′‖Y ′ · ‖T ‖ ,

hence, by (5-5), T ′ ∈ L (Y ′, X ′) with ‖T ′‖ ≤ ‖T ‖ (see also 12.1, where we
will show that ‖T ′‖ = ‖T ‖). ��

Dual spaces will be investigated in Chapter 6. In particular, we will char-
acterize the dual spaces of C0(S) and Lp(μ), i.e. we will introduce measure
and function spaces, respectively, that are isomorphic to these dual spaces.
Continuous linear projections will be considered in Chapter 9. In Chapter 10,
we will present the most important types of compact operators, and Chap-
ter 11 will be devoted to the spectral theorem for compact operators. Results
on adjoint maps can be found in Chapter 12.

We now give some examples of linear operators.

5.6 Examples.

(1) Let S ⊂ IRn be compact and let (S,B, μ) be a measure space with
μ(S) < ∞, and such that B contains the Borel sets of S. Then C0(S) ⊂ L1(μ)
and

Tμf :=

∫
S

f dμ for f ∈ C0(S)

defines a functional Tμ ∈ C0(S)′ (see 6.22 and theorem 6.23). For example,
if μ = δx is the Dirac measure for x ∈ S, then Tδxf = f(x).

(2) Examples of operators in L
(
C0(S)

)
, S ⊂ IRn compact, are the multi-

plication operators

(Tgf)(x) := f(x)g(x) for f ∈ C0(S) ,

for a fixed g ∈ C0(S).
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(3) An example of an operator T ∈ L
(
C0(S) ;C1(S)

)
with S = [0, 1] is

(Tf)(x) :=

∫ x

0

f(ξ) dξ for f ∈ C0(S).

One may also consider T as an operator in L
(
C0(S)

)
. Then R(T ) is not

closed in C0(S), since R(T ) = {g ∈ C1(S) ; g(0) = 0} is a proper subset of
the closure R(T ) = {g ∈ C0(S) ; g(0) = 0}. Similarly, T can be defined as
an operator in L

(
L1(S)

)
. Then R(T ) = {g ∈ W 1,1(]0, 1[) ; g(0) = 0} (see

E3.6), which is a proper dense subset of R(T ) = L1(S).

(4) Let 1 ≤ p ≤ ∞ and let 1
p + 1

p′ = 1. Then for g ∈ Lp′

(μ) the Hölder
inequality yields that

Tgf :=

∫
S

fg dμ for f ∈ Lp(μ)

defines a functional Tg ∈ Lp(μ)′ (see theorem 6.12).

(5) If p, p′ are as in (4) and gs ∈ Lp′

(Ω) for |s| ≤ m with g = (gs)|s|≤m,
then

Tgf :=
∑

|s|≤m

∫
Ω

∂sf · gs dLn for f ∈ Wm,p(Ω)

defines a functional Tg ∈ Wm,p(Ω)
′
.

(6) Let p be as in (4) and let (ϕk)k∈IN be a Dirac sequence. Then 4.13(2)
yields that

Tkf(x) :=

∫
IRn

ϕk(x − y)f(y) dy = (ϕk ∗ f)(x)

defines an operator Tk ∈ L
(
Lp(IRn)

)
with ‖Tk‖ ≤ 1. It follows from 4.15(2)

that, if p < ∞,

(Tk − Id)f → 0 in Lp(IRn) as k → ∞

for every f ∈ Lp(IRn). However, Tk does not converge in the operator norm
(see E5.6).

We now prove some fundamental properties of linear operators.

5.7 Neumann series. Let X be a Banach space and let T ∈ L (X) with

lim sup
m→∞

‖Tm‖
1
m < 1

(in particular, this is satisfied if ‖T ‖ < 1). Then Id − T is bijective and
(Id − T )−1 ∈ L (X) with

(Id − T )−1 =

∞∑
n=0

Tn in L (X).
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Proof. For k ∈ IN let Sk :=
∑k

n=0 T
n. Choose m ∈ IN and θ < 1 with

‖Tn‖ ≤ θn for n ≥ m. Then for m ≤ k < l

‖Sl − Sk‖ =

∥∥∥∥∥
l∑

n=k+1

Tn

∥∥∥∥∥ ≤
l∑

n=k+1

‖Tn‖ ≤
∞∑

n=k+1

θn −→ 0 as k → ∞.

Since L (X) is complete, there exists the limit

S := lim
k→∞

Sk in L (X) .

It follows that as k → ∞

(Id − T )S ←− (Id − T )Sk

=
k∑

n=0

(Tn − Tn+1) = Id − T k+1 −→ Id in L (X) ,

because for k ≥ m we have that
∥∥T k+1

∥∥ ≤ θk+1 → 0 as k → ∞. Similarly,
one can show that S(Id − T ) = Id. Hence S is the inverse of Id − T . ��

As a consequence, we obtain that in the space of linear operators, pertur-
bations of invertible operators are again invertible.

5.8 Theorem on invertible operators. Let X, Y be Banach spaces. Then
the set of invertible operators in L (X;Y ) is an open subset. More precisely:
If X �= {0} and Y �= {0}, then for T, S ∈ L (X;Y ) we have that

T invertible,

‖S − T ‖ <
∥∥T−1

∥∥−1

}
=⇒ S invertible.

Proof. Let R := T − S. Then S = T (Id − T−1R) = (Id − RT−1)T , where∥∥T−1R
∥∥ ≤
∥∥T−1

∥∥ ·‖R‖ < 1, and similarly
∥∥RT−1

∥∥ < 1. Applying 5.7 yields
the desired result. ��

5.9 Analytic functions of operators. Let

f(z) :=

∞∑
n=0

anz
n

be a power series in IK with radius of convergence � > 0. Let X be a Banach
space over IK. If T ∈ L (X), then

lim sup
m→∞

‖Tm‖
1
m < � =⇒ f(T ) :=

∞∑
n=0

anT
n exists in L (X) .
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Proof. There exists an r with 0 < r < � and an n ∈ IN with ‖Tm‖ ≤ rm for
m ≥ n. For n ≤ m ≤ k it then holds that∥∥∥∥∥

k∑
i=m

aiT
i

∥∥∥∥∥ ≤
k∑

i=m

|ai |
∥∥T i
∥∥ ≤

∞∑
i=m

|ai |ri −→ 0 as m → ∞

thanks to the assumption on the power series. ��
5.10 Examples. Let X be a Banach space.

(1) Exponential function. For all T ∈ L (X) we define

exp(T )
(
or eT

)
:=

∞∑
n=0

1

n!
Tn ∈ L (X) .

For T, S ∈ L (X)

S T = T S =⇒ eT+S = eT eS .

(2) Evolution equation. For T ∈ L (X) the function A(s) := esT for
s ∈ IR defines an A ∈ C∞(IR ; L (X)

)
with

d

ds
A(s) = T A(s) = A(s) T .

(3) Logarithm. For T ∈ L (X) with ‖Id− T ‖ < 1 we define

log(T ) := −
∞∑

n=1

1

n
(Id − T )n ∈ L (X) .

(4) For T ∈ L (X) with ‖T ‖ < 1 the function A(s) := log(Id − sT ) for
|s| < 1 defines an A ∈ C∞(]− 1, 1[ ; L (X)) with

d

ds
A(s) = −T (Id − sT )−1 = −(Id − sT )−1 T

and exp(A(s)) = Id − sT .

The following theorem shows that linear operators commute with the
integral (and hence it is a linear version of Jensen’s inequality in E4.9).

5.11 Theorem. Let (S,B, μ) be a measure space and let Y and Z be Banach
spaces. If f ∈ L1(μ ;Y ) and T ∈ L (Y ;Z), then T ◦f ∈ L1(μ ;Z) and

T

(∫
S

f dμ

)
=

∫
S

T ◦f dμ .

Explanation: Setting IY f :=
∫
S
f dμ defines IY ∈ L

(
L1(μ;Y );Y

)
, and

similarly IZ . In addition, let T̃ be the operator corresponding to T lifted to
functions, i.e. (T̃ f)(x) := T (f(x)) defines T̃ ∈ L (L1(μ;Y );L1(μ;Z)). The
theorem then says that
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T IY = IZ T̃ ,

i.e. in this sense, the integral commutes with linear operators.

Proof. Approximate f in L1(μ;Y ) with step functions

fk =

nk∑
i=1

XEki
αki with αki ∈ Y and μ(Eki) < ∞,

with Eki, i = 1, . . . , nk, being pairwise disjoint. Then as k → ∞

T

(∫
S

f dμ

)
←− T

(∫
S

fk dμ

)
= T

(∑
i

μ(Eki)αki

)

=
∑
i

μ(Eki)Tαki =

∫
S

T ◦fk dμ .

Since∫
S

‖T ◦fk − T ◦fl‖Z dμ ≤ ‖T ‖
∫
S

‖fk − fl‖Y dμ −→ 0 as k, l → ∞,

we have that (T ◦fk)k∈IN is a Cauchy sequence in L1(μ;Z). It follows that
there exists a g ∈ L1(μ;Z) such that

T ◦fk −→ g in L1(μ;Z)

as k → ∞, and hence also∫
S

T ◦fk dμ −→
∫
S

g dμ .

For a subsequence k → ∞ it holds that T ◦fk → g almost everywhere in
S, and for a further subsequence k → ∞ we have that fk → f and hence
also T ◦fk → T ◦f almost everywhere in S. Consequently, g = T ◦f almost
everywhere. ��

The linear operators between function spaces that are most important in
applications are differential and integral operators.

5.12 Hilbert-Schmidt integral operators. Let Ω1 ⊂ IRn1 , Ω2 ⊂ IRn2 be
Lebesgue measurable, 1 < p < ∞ and 1 < q < ∞, and let K : Ω1 ×Ω2 → IK
be Lebesgue measurable with

‖K‖ :=

(∫
Ω1

(∫
Ω2

|K(x, y)|p
′

dy
) q

p′

dx

) 1
q

< ∞ , (5-8)

where 1
p + 1

p′ = 1. Then
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(Tf)(x) :=

∫
Ω2

K(x, y)f(y) dy

defines an operator T ∈ L
(
Lp(Ω2; IK) ;Lq(Ω1; IK)

)
with ‖T ‖ ≤ ‖K‖. We

call K the integral kernel of the operator T .

Remark: In 10.15 we will show that T is a compact operator.

Proof. We first assume that all of the following integrals exist. Then using
the Hölder inequality we have that∫

Ω1

|Tf(x)|q dx =

∫
Ω1

∣∣∣∣∫
Ω2

K(x, y)f(y) dy

∣∣∣∣q dx
≤
∫
Ω1

∣∣∣∣∫
Ω2

|K(x, y)|p
′

dy

∣∣∣∣
q
p′

·
(∫

Ω2

|f(y)|p dy
) q

p
dx = ‖K‖q · ‖f ‖qLp(Ω2)

,

which yields the desired result. The existence of the integrals can now be
justified retrospectively, similarly to the proof of 4.13(1), and it follows in
particular that Tf ∈ Lq(Ω1). Here we note that the assumption (5-8) states
that K(x,·) ∈ Lp′

(Ω2) for almost all x ∈ Ω1, and that the function x �→
‖K(x,·)‖Lp′ (Ω2)

lies in Lq(Ω1). ��

Now we introduce the set of locally integrable functions.

5.13 Definition. Let Ω ⊂ IRn be open.

(1) We let D ⊂⊂ Ω be a shorthand notation for a set D ⊂ IRn which is
precompact with D ⊂ Ω.

Remark: One also says that D is a relatively precompact subset of Ω,
which means that the closure of D is compact in the relative topology of Ω.

(2) For 1 ≤ p ≤ ∞, let

Lp
loc(Ω) :=

{
f : Ω → IK ; f|D ∈ Lp(D) for all D ⊂⊂ Ω

}
,

the vector space of locally in Ω p-integrable functions.

(3) Equipped with the Fréchet metric

�(f) :=
∑
i∈IN

2−i
‖f ‖Lp(Ki)

1 + ‖f ‖Lp(Ki)

for f ∈ Lp
loc(Ω)

this is a complete metric space. Here (Ki)i∈IN is a sequence of compact sets,
which is an exhaustion of Ω (see (3-2)).

(4) Analogously we define Wm,p
loc (Ω), i.e.

Wm,p
loc (Ω) := {f : Ω → IK ; f|D ∈ Wm,p(D) for all open sets D ⊂⊂ Ω} .
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With this we state the following.

5.14 Linear differential operators. Let Ω ⊂ IRn be open and assume
as : Ω → IK for multi-indices s with |s| ≤ m. Then

(Tf)(x) :=
∑

|s|≤m

as(x)∂
sf(x)

defines an operator

(1) T ∈ L
(
Cm(Ω);C0(Ω)

)
, if as ∈ C0(Ω) for |s| ≤ m.

Remark: T ∈ L
(
Cm(Ω);C0(Ω)

)
, if all as ∈ C0(Ω) and Ω is bounded.

(2) T ∈ L
(
Cm,α(Ω) ;C0,α(Ω)

)
with 0 < α ≤ 1 provided as ∈ C0,α(Ω) for

|s| ≤ m.

Remark: T ∈ L
(
Cm,α(Ω) ;C0,α(Ω)

)
, if as ∈ C0,α(Ω) and Ω is bounded.

(3) T ∈ L
(
Wm,p

loc (Ω); Lp
loc(Ω)

)
with 1 ≤ p ≤ ∞, provided as ∈ L∞

loc(Ω) for
|s| ≤ m.

Remark: T ∈ L
(
Wm,p(Ω); Lp(Ω)

)
, if as ∈ L∞(Ω).

In each case we call T a linear differential operator of order m, and we
call as for |s| ≤ m the coefficients of the differential operator.

Distributions

We now want to consider the functionals in 5.6 in a more general setting.
To this end, we restrict the functionals to the common vector space C∞

0 (Ω)
(here set S := Ω in 5.6). Hence we consider functions and measures only in
Ω, i.e. as in 5.14 without boundary conditions. This leads to the following

5.15 Notation. Let Ω ⊂ IRn be open.

(1) Let (Ω,B, μ) be a measure space such that B contains the Borel sets of
Ω and such that μ is finite on compact subsets. Then

[μ](ζ) (or TΩ(μ)(ζ)) :=

∫
Ω

ζ dμ for ζ ∈ C∞
0 (Ω)

defines a linear map [μ]
(
or TΩ(μ)

)
: C∞

0 (Ω) → IK.

Remark: With the notation in 5.6(1) we have that [μ] = TΩ(μ) = Tμ|C∞
0 (Ω)

.

Note: The integral in this definition is the Riemann integral (see 6.22). Hence
for the measures considered here one has C0

0 (Ω) ⊂ L1(μ).

(2) Let f ∈ L1
loc(Ω). Then

[f ](ζ) (or TΩ(f)(ζ)) :=

∫
Ω

ζ · f dLn for ζ ∈ C∞
0 (Ω)
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defines a linear map [f ]
(
or TΩ(f)

)
: C∞

0 (Ω) → IK.

Observe: This is a special case of (1), on setting μ(E) :=
∫
E
f dLn for

Lebesgue measurable sets E ⊂⊂ Ω (see the definition 5.13(1)).

Remark: With the notation in 5.6(4) one has [f ] = TΩ(f) = Tf |C∞
0 (Ω)

.

5.16 Lemma. Let Ω ⊂ IRn be open and consider the map in 5.15(2)

f �→ [f ] = TΩ(f) from L1
loc(Ω) to {T : C∞

0 (Ω) → IK ; T linear}.

(1) This map is linear and injective.

(2) The function f can be reconstructed from [f ] = TΩ(f).

(3) The definition of the weak derivatives ∂sf of a function f ∈ Wm,1
loc (Ω) in

(3-17) can now be written as

(−1)|s|[f ](∂sζ) = [∂sf ](ζ) for ζ ∈ C∞
0 (Ω), |s| ≤ m. (5-9)

Proof (1). This follows from 4.22 (applied to sets D ⊂⊂ Ω, or note that the
fundamental lemma holds in L1

loc(Ω)). ��

Proof (2). To see this, choose ζε = ϕε ∗ XE with E ⊂⊂ Ω as in the proof of
4.22. Then [f ](ζε) →

∫
E
f dLn as ε → 0. Now choose E = Bε(x) with x ∈ Ω

and obtain for (a subsequence) ε → 0 that

(ϕε ∗ f)(x) = Ln
(
Bε(x)

)−1 ∫
Bε(x)

f dLn → f(x)

for Ln-almost all x. Here we have used 4.15(2). ��

This means that knowledge of all the values [f ](ζ) with ζ ∈ C∞
0 (Ω)

provides full information on the function f almost everywhere in Ω. Hence we
also call C∞

0 (Ω) the space of test functions. We transfer this to linear maps
T : C∞

0 (Ω) → IK, where the main property is motivated by the structure of
the identity (5-9).

5.17 Distributions. Let Ω ⊂ IRn be open and let T : C∞
0 (Ω) → IK be

linear.

(1) For all multi-indices s, the distributional derivative ∂sT is the linear
map ∂sT : C∞

0 (Ω) → IK defined by

(∂sT )(ζ) := (−1)|s|T (∂sζ) for ζ ∈ C∞
0 (Ω) . (5-10)

(2) We call the linear map T a distribution on Ω, and use the notation

T ∈ D ′(Ω) ,



5 Linear operators 153

if for all open sets D ⊂⊂ Ω there exist a constant CD and a kD ∈ IN ∪ {0}
such that

|T (ζ)| ≤ CD‖ζ‖CkD (D) for all ζ ∈ C∞
0 (Ω) with supp(ζ) ⊂ D. (5-11)

If k = kD can be chosen independently of D, then k (if chosen minimally) is
called the order of T .

(3) If T is a distribution, then so is ∂sT for all multi-indices s. If T is a
distribution of order k, then ∂sT is a distribution of order k + |s|.

Proof (3). We have |(∂sT )(ζ)| ≤ CD‖∂sζ‖CkD (D) ≤ CD‖ζ‖CkD+|s|(D). ��

5.18 Examples.

(1) For f ∈ Wm,p(Ω) and |s| ≤ m

∂s[f ] = [∂sf ] in D ′(Ω). (5-12)

Hence the definition ofWm,p(Ω) can also be formulated as follows: A function
f ∈ Lp(Ω) is in Wm,p(Ω) if all its distributional derivatives up to order m
can be identified with functions in Lp(Ω).

(2) For f ∈ L1
loc(Ω) and ζ ∈ C∞

0 (D) with D ⊂⊂ Ω

[f ](ζ) =

∫
Ω

ζ · f dLn with |[f ](ζ)| ≤ ‖f ‖L1(D) · ‖ζ‖C0(D) .

It follows that [f ] ∈ D ′(Ω) and is of order 0.

(3) For μ is as in 5.15(1) and for ζ ∈ C∞
0 (D) with D ⊂⊂ Ω

[μ](ζ) =

∫
Ω

ζ dμ with |[μ](ζ)| ≤ μ(D)‖ζ‖C0(D) .

It follows that [μ] ∈ D ′(Ω) and is of order 0.

(4) As an example, let Ω = IR and, given c−, c+ ∈ IR, let

f(x) :=

{
c+ for x > 0,

c− for x < 0.

By (2), [f ] is a distribution of order 0. With the definitions in 5.17(1) and
5.15 it follows that

[f ]′(ζ) = −[f ](ζ ′) =
(
c+ − c−

)
ζ(0) =

(
c+ − c−

)
[δ0](ζ) ,

where δ0 is the Dirac measure at the point 0. Hence [f ]′ is also a distribution
of order 0. In addition,

[f ]′′(ζ) = −[f ]′(ζ ′) = −
(
c+ − c−

)
ζ ′(0) .

Hence [f ]′′ is a distribution of order 1, if c− �= c+.
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(5) Let (ϕk)k∈IN be a general Dirac sequence and let δ0 be the Dirac measure
at 0 ∈ IRn. Then it holds as k → ∞ that

[ϕk](ζ) −→ [δ0](ζ) for all ζ ∈ C∞
0 (IRn) ,

i.e. [ϕk] converges to [δ0] as k → ∞ pointwise as a linear map. The name
Dirac sequence originates from this property.

(6) As a further example, let f(x) := log |x| for x ∈ IRn \ {0}. Then f ∈
L1
loc(IR

n), and so, by (2), [f ] is a distribution of order 0 on IRn. For 1 ≤ i ≤ n

(∂i[f ])(ζ) =

⎧⎪⎪⎨⎪⎪⎩
∫
IRn

ζ(x)
xi

|x|2
dx for n ≥ 2,

lim
ε↘0

∫
IR\[−ε,ε]

ζ(x)
1

x
dx for n = 1.

In order to prove this, verify with the help of Gauß’s theorem that as ε ↘ 0

(∂i[f ])(ζ) = −[f ](∂iζ) ←− −
∫
IRn\Bε(0)

∂iζ · f dLn

=

∫
IRn\Bε(0)

ζ∂if dLn +

∫
∂Bε(0)

νiζf dHn−1 ,

where νi(x) =
xi

|x| is the i-th component of the outer normal to the set Bε(0)

(see A8.5(3) for the general situation). It can be seen that the second integral

converges to zero as ε ↘ 0. In the case n ≥ 2 the function x �→ xi|x|−2

is in L1
loc(IR

n), but not for n = 1. Hence for n ≥ 2 it holds that ∂i[f ] is a
distribution of order 0, while for n = 1 it can be shown that it is a distribution
of order 1.

The essential estimate (5-11) is used in order to approximate distributions
with C∞-functions by means of convolutions.

5.19 Approximation of distributions. Let Ω ⊂ IRn and let T ∈ D ′(Ω).
For ϕ ∈ C∞

0 (Br(0)) and x ∈ Ω with Br(x) ⊂ Ω,

(ϕ ∗ T )(x) := T (ϕ(x −·)) (5-13)

is well defined, since ϕ(x −·) ∈ C∞
0 (Ω). Moreover, it holds that:

(1) For T = [f ] with f ∈ L1
loc(Ω) it follows that

(ϕ ∗ [f ])(x) = (ϕ ∗ f)(x) if Br(x) ⊂ Ω .

(2) If D ⊂⊂ Ω with Br(D) ⊂ Ω, then ϕ ∗ T ∈ C∞(D), with derivatives
∂s(ϕ ∗ T ) = (∂sϕ) ∗ T .
(3) Let D ⊂⊂ Ω and let (ϕε)ε>0 be a standard Dirac sequence. For small ε
we have that ϕε ∗ T ∈ C∞(D) and for all ζ ∈ C∞

0 (D)
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[ϕε ∗ T ](ζ) −→ T (ζ) as ε → 0.

Proof (1). It holds that

(ϕ ∗ [f ])(x) = [f ](ϕ(x −·)) =
∫
Ω

ϕ(x − y)f(y) dy = (ϕ ∗ f)(x) ,

since supp(ϕ(x −·)) ⊂ Ω (formally set f = 0 in the exterior of Ω). ��

Proof (2). Let kD be chosen for T and D as in (5-11). On introducing the
difference quotients ∂h

i ψ(x) :=
1
h (ψ(x+hei)−ψ(x)), the linearity of T yields

that

∂h
i (ϕ ∗ T )(x) = T

(
∂h
i ϕ(x −·)) .

We have that ∂h
i ϕ(x −·) → ∂iϕ(x −·) in CkD (D) as h → 0, and hence it

follows from (5-11) that

T (∂h
i ϕ(x −·)) −→ T (∂iϕ(x −·)) = ((∂iϕ) ∗ T

)
(x) .

This shows that the partial derivative ∂i(ϕ ∗ T )(x) =
(
(∂iϕ) ∗ T

)
(x) exists.

The desired result for higher derivatives now follows by induction on the
order of the derivative. ��

Proof (3). We have that

[ϕε ∗ T ](ζ) =

∫
Ω

ζ(x) (ϕε ∗ T )(x)︸ ︷︷ ︸
= T
(
ϕε(x −·))

dx .

Now it holds that (the proof is given below)∫
Ω

ζ(x)T
(
ϕε(x −·)) dx = T

(∫
Ω

ζ(x)ϕε(x −·) dx
)

. (5-14)

The argument of T on the right-hand side is ζε(·), if ζε := ϕ−
ε ∗ ζ with

ϕ−
ε (y) := ϕε(−y). Since ζε → ζ in CkD (D) as ε → 0, it follows that T (ζε) →

T (ζ), if kD for T and D is chosen as in (5-11), and so we have shown that

[ϕε ∗ T ](ζ) = T (ζε) −→ T (ζ) as ε → 0.

The identity (5-14) is closely related to theorem 5.11 and the proof is analo-
gous: Approximate ζ uniformly by step functions ζj with a common compact
support in D. Then (5-14) holds for ζj because of the linearity of T . The
left-hand side converges as j → ∞, since T (ϕε(x −·)) is continuous, recall
(2). The right-hand side converges using the same argument as above, since
ϕ−
ε ∗ ζj → ϕ−

ε ∗ ζ in CkD (D). ��
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For functional analysis purposes, the following result is of importance:
The vector space C∞

0 (Ω) can be equipped with a topology T in such a way
that T is a distribution if and only if T lies in the corresponding dual space,
i.e. if T : C∞

0 (Ω) → IK is linear and continuous with respect to the topology
T . We denote C∞

0 (Ω), equipped with the topology T , by D(Ω) (see 5.21).
The dual space D(Ω)′ is then the same as D ′(Ω) (see 5.23).

5.20 Topology on C∞

0
(Ω). Let Ω ⊂ IRn be open. Define

p(ζ) :=
∞∑
k=0

2−k
‖ζ‖Ck(D)

1 + ‖ζ‖Ck(D)

for ζ ∈ C∞
0 (Ω) with supp(ζ) ⊂ D ⊂⊂ Ω ,

where the right-hand side is independent of the choice of D. Choose an open
cover (Dj)j∈IN of Ω with sets Dj ⊂⊂ Dj+1 ⊂ Ω for all j ∈ IN. For every

sequence ε = (εj)j∈IN with εj > 0 for j ∈ IN define

Uε := conv
( ⋃
j∈IN

{
ζ ∈ C∞

0 (Ω) ; supp(ζ) ⊂ Dj and p(ζ) < εj
})

.

Finally, define

T :=
{
U ⊂ C∞

0 (Ω) ; for ζ ∈ U there exists an ε with ζ + Uε ⊂ U
}
.

Then:

(1) p is a Fréchet metric with p(rζ) ≤ rp(ζ) for r ≥ 1.

(2) For all ε it holds that Uε ∈ T .

(3) T is a topology. Hence the sets Uε form a neighbourhood basis (see the
definition (4-17)) of 0 with respect to T .

(4) T is independent of the choice of cover (Dj)j∈IN.

We remark that T is stronger than the topology induced by p. This follows
from the fact that the p-ball B�(0) ⊂ C∞

0 (Ω) is a neighbourhood in the T -
topology, namely, B�(0) = Uε with ε = (εj)j∈IN and εj = �.

Proof (2). Let ζ ∈ Uε. Consider a finite convex combination

ζ =
∑k0

k=1 αkζk ∈ Uε with k0 ∈ IN, αk > 0,
∑k0

k=1 αk = 1 , (5-15)

where ζk ∈ C∞
0 (Djk) with p(ζk) < εjk . Choose 0 < θ < 1 such that p(ζk) <

θεjk for all k = 1, . . . , k0, and set δ = (δj)j∈IN with δj := (1− θ)εj . We claim
that ζ + Uδ ⊂ Uε. To see this, let

η =
∑l0

l=1 βlηl ∈ Uδ with l0 ∈ IN, βl > 0,
∑l0

l=1 βl = 1 ,

where ηl ∈ C∞
0 (Dml

) with p(ηl) < δml
. Then, on noting (1),

p
(
1
θ ζk
)
≤ 1

θp(ζk) < εjk and p
(

1
1−θηl

)
≤ 1

1−θp(ηl) < εml
,
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i.e. 1
θ ζk and 1

1−θηl are elements of Uε. Hence the convexity of Uε yields that

ζ + η = θ
∑k0

k=1 αk · 1
θ ζk + (1 − θ)

∑l0
l=1 βl · 1

1−θηl ∈ Uε .

This shows that Uε ∈ T . ��

Proof (3). We need to show that U1∩U2 ∈ T , if U1, U2 ∈ T . But this follows
from Uε ⊂ Uε1 ∩ Uε2 , where εj := min(ε1j , ε

2
j ) for j ∈ IN. ��

Proof (4). Let
(
D̃j

)
j∈IN

be another cover and let Ũε̃ with ε̃ = (ε̃j)j∈IN be

a set defined as above, now with respect to this cover. Since Dj is compact

with Dj ⊂ Ω, for each j ∈ IN there exists an mj ∈ IN with Dj ⊂ D̃mj
.

Setting εj := ε̃mj
for j ∈ IN and ε = (εj)j∈IN then yields that Uε ⊂ Ũε̃. ��

5.21 The space D(Ω). We denote the vector space C∞
0 (Ω), equipped with

the topology T from 5.20, by D(Ω). Then D(Ω) is a locally convex topo-
logical vector space, i.e. it holds that:

(1) D(Ω) with T is a Hausdorff space.

(2) D(Ω) is a vector space and addition and scalar multiplication are con-
tinuous (as maps from D(Ω)×D(Ω) to D(Ω) and from IK×D(Ω) to D(Ω),
respectively).

(3) For ζ ∈ U with U ∈ T there exists a convex set V ∈ T with ζ ∈ V ⊂ U .

Proof (3). By their definition, the sets Uε in 5.20 are convex. ��

Proof (2). We claim for every Uε that Uδ +Uδ ⊂ Uε, where δ = (δj)j∈IN with

δj :=
1
2εj , which implies the continuity of the addition. For the proof let

ζl ∈ C∞
0

(
Djl

)
with p

(
ζl
)
< δjl for l = 1, 2.

We have that ζ1+ ζ2 = 1
2 (2ζ1+2ζ2) with p(2ζl) ≤ 2p(ζl) ≤ 2δjl = εjl , and so

ζ1+ζ2 ∈ Uε, as Uε is convex. Then the same also holds for arbitrary elements
ζ1, ζ2 ∈ Uδ.

In order to show the continuity of the scalar multiplication at the point
(α0, ζ0) ∈ IK × D(Ω), let Uε be given. Let ζ0 ∈ C∞

0 (Dj0) and write

αζ − α0ζ0 =
1

2

(
2(α − α0)ζ0 + 2α(ζ − ζ0)

)
.

Let |α − α0 | < γ ≤ 1
2 and let ζ − ζ0 ∈ C∞

0 (Dj) with p(ζ − ζ0) < δj , where γ,
δj need to be chosen. Now it holds that ‖2γζ0‖Ck(Dj0

) → 0 as γ → 0 for all

k ∈ IN, and so it follows (as in 2.23(2)) that

p
(
2(α − α0)ζ0

)
≤ p(2γζ0) → 0 as γ → 0.

If we now choose γ ≤ 1
2 with p(2γζ0) < εj0 , then 2(α − α0)ζ0 ∈ Uε. In

addition, since |2α| ≤ 2(|α0 | + γ) ≤ 2|α0 | + 1,
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p
(
2α(ζ − ζ0)

)
≤ (1 + 2|α0 |)p(ζ − ζ0) < εj ,

if we set δj := (1 + 2|α0 |)−1εj . This implies that also 2α(ζ − ζ0) ∈ Uε, and
hence αζ ∈ α0ζ0 + Uε. Then the same also follows for all ζ ∈ ζ0 + Uδ, where
δ := (δj)j∈IN. ��

Proof (1). Let ζ1, ζ2 ∈ D(Ω) with ζ1 �= ζ2 and ζ := ζ1 − ζ2. We claim that(
ζ1 + Uε

)
∩
(
ζ2 + Uε

)
= ∅ ,

if ε = (�)j∈IN and � > 0 is sufficiently small. Indeed, if η1, η2 ∈ Uε with

ζ1 + η1 = ζ2 + η2, then also −η1 ∈ Uε, and so

ζ = ζ1 − ζ2 = (−η1) + η2 ∈ Uε + Uε ⊂ U2ε ,

on recalling the proof of (2). Now write ζ as a convex combination as in
(5-15), so that

‖ζk‖C0

1 + ‖ζk‖C0

≤ p(ζk) < 2� .

This implies, if � < 1
2 , that

0 �= ‖ζ‖C0 ≤
∑k0

k=1 αk‖ζk‖C0 ≤ maxk=1,...,k0
‖ζk‖C0 < 2�

1−2� ,

which is not possible, if � depending on ζ was chosen sufficiently small. ��

5.22 Lemma. For every sequence (ζm)m∈IN in D(Ω) it holds that:

ζm → 0 as m → ∞ in D(Ω)

if and only if

(1) There exists an open D ⊂⊂ Ω such that ζm ∈ C∞
0 (D) for all m.

(2) For all D ⊂⊂ Ω and all k ∈ IN it holds that ‖ζm‖Ck(D) → 0 as m → ∞.

Proof ⇐. On noting that D is compact and D ⊂ Ω, the cover in 5.20 contains
a Dj such that D ⊂ Dj . Then for a given ε it follows from (2) (as in 2.23(2))
that p(ζm) < εj for large m, and so ζm ∈ Uε. ��

Proof ⇒. If we assume that (1) is not satisfied, then there exist an open cover
(Dj)j∈IN of Ω with Dj ⊂⊂ Ω and Dj−1 ⊂ Dj , as well as xj ∈ Dj \Dj−1 and

a subsequence mj → ∞, such that ζmj
(xj) �= 0. Then

U :=
{
ζ ∈ D(Ω) ;

∑
j∈IN

2∣∣ζmj
(xj)
∣∣‖ζ‖C0(Dj\Dj−1)

≤ 1
}

is a convex subset of D(Ω). On noting that for all j{
ζ ∈ C∞

0 (Dj) ; p(ζ) < εj
}

⊂ U , where εj :=
(
1 +
∑
i≤j

2

|ζmi
(xi)|

)−1

,
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we have that Uε ⊂ U , if ε = (εj)j∈IN and Uε is defined with respect to the

cover (Dj)j∈IN. The definition of the topology and the fact that ζm → 0 in

D(Ω) as m → ∞ yield that ζm ∈ Uε for large m. But it follows from the
construction of U that the ζmj

do not lie in U , a contradiction. This shows
(1).

Now for k ∈ IN and δ > 0 choose ε = (εj)j∈IN with 2kεj =
(
1 + 1

δ

)−1
> 0

for all j, which yields that

Uε ⊂
{
ζ ∈ C∞

0 (Ω) ; ‖ζ‖Ck ≤ δ
}
.

For large m we have that ζm ∈ Uε, and so ‖ζm‖Ck ≤ δ. This shows (2). ��

5.23 The dual space of D(Ω). Consider (see 5.5(1)) the dual space

D(Ω)′ = {T : D(Ω) → IK ; T is linear and continuous}

of D(Ω). Then (with the notation in 5.17(2))

D(Ω)′ = D ′(Ω) .

Proof ⊂. Let T ∈ D(Ω)′. If T /∈ D ′(Ω), then there exist a D ⊂⊂ Ω and
ζm ∈ C∞

0 (D) with

1 = |Tζm | > m‖ζm‖Cm(D) for m ∈ IN.

For all k ∈ IN it then follows that ‖ζm‖Ck(D) → 0 as m → ∞, and so 5.22

yields ζm → 0 as m → ∞ in D(Ω). Now the continuity of T implies that
Tζm → 0 as m → ∞, which is a contradiction. ��

Proof ⊃. Let T ∈ D ′(Ω), let (Dj)j∈IN be the exhaustion from 5.20 and let

|Tζ | ≤ Cj‖ζ‖Ckj (Dj)
for ζ ∈ C∞

0 (Dj).

For δ > 0 let ε = (εj)j∈IN be defined by εj := 2−kj δ
Cj+δ . Then

ζ ∈ C∞
0 (Dj) with p(ζ) < εj =⇒ |Tζ | ≤ Cj‖ζ‖Ckj (Dj)

≤ δ .

As T is linear, it follows that |Tζ | ≤ δ for all ζ ∈ Uε (with Uε as in 5.20).
This proves the continuity of T . ��



160 5 Linear operators

E5 Exercises

E5.1 Commutator. Let X be a nontrivial normed vector space and let
P,Q : X → X be linear maps with PQ − QP = Id. Then P and Q cannot
both be continuous. (This relation, which appears in quantum mechanics, is
called the Heisenberg relation.)

Solution. It follows inductively for n ∈ IN that

PQn − QnP = nQn−1 , (E5-1)

on noting that for such n we have that

PQn+1 − Qn+1P = (PQn − QnP )︸ ︷︷ ︸
=nQn−1

Q+Qn (PQ − QP )︸ ︷︷ ︸
=1Q0=Id

= nQn−1Q+Qn = (n+ 1)Qn .

Assuming that P,Q ∈ L (X), it follows from (E5-1) that

n
∥∥Qn−1

∥∥ ≤ 2‖P ‖ · ‖Qn‖ ≤ 2‖P ‖ · ‖Q‖ ·
∥∥Qn−1

∥∥ ,
and hence Qn−1 = 0 for large n, that is, for n > 2‖P ‖ · ‖Q‖. It follows
inductively from (E5-1) that Qn−m = 0 for m = 1, . . . , n, i.e. Id = Q0 = 0, a
contradiction if X �= {0}. ��

E5.2 Nonexistence of the inverse. For noncomplete normed spaces, the
inverse in 5.7 in general does not exist.

Solution. We give a counterexample. Let Y := �2(IR) and let

X :=
{
x = (xi)i∈IN ∈ IRIN ; only finitely many xi �= 0

}
⊂ �2(IR) = Y ,

i.e. X is equipped with the Y -norm. Let ε > 0. For the shift operator

(Tx)i :=

{
0 for i = 1,

εxi−1 for i > 1,

it holds that T ∈ L (Y ) and ‖T ‖ = ε. Hence for ε < 1 we can apply 5.7 for
Y and T , and obtain, for instance, that

(Id − T )−1e1 =

∞∑
n=0

Tne1 =
(
εi−1
)
i∈IN

/∈ X .

On the other hand, Tx ∈ X for x ∈ X. Hence 5.7 is not valid for X and T |X
(X is not complete and X = Y ). ��

E5.3 Unique extension of linear maps. Let Z ⊂ X be a dense subspace
and let T ∈ L (Z;Y ). Then there exists a unique continuous extension T̃ of

T to X. Moreover, T̃ ∈ L (X;Y ).
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Solution. T is uniformly continuous on Z (in fact Lipschitz continuous with
Lipschitz constant ‖T ‖). Hence, on recalling E4.18,

T̃ x := lim
z∈Z : z→x

Tz for x ∈ X

defines a unique continuous extension of T to X. In addition, the linearity of
T carries over to T̃ . ��

E5.4 Limit of linear maps. Let (Tk)k∈IN be a bounded sequence in
L (X;Y ) and let D ⊂ X be dense. If there exists

limk→∞ Tkx for x ∈ D, (E5-2)

then there exists
Tx := lim

k→∞
Tkx for all x ∈ X

and T ∈ L (X;Y ).

Solution. Let ‖Tk‖ ≤ C < ∞ for all k and let Z := span(D). Then it follows
from (E5-2) that

Tz := lim
k→∞

Tkz

exists for all z ∈ Z, and that T is linear on Z. Since

‖Tz‖ = lim
k→∞

‖Tkz‖ ≤ C‖z‖ ,

it holds that T ∈ L (Z;Y ). Let T̃ ∈ L (X;Y ) be the unique extension of T
to X from E5.3. Then it holds for all x ∈ X and z ∈ Z that∥∥∥T̃ x − Tkx

∥∥∥ ≤
∥∥∥T̃ z − Tkz

∥∥∥+ (∥∥∥T̃ ∥∥∥+ C
)
‖x − z‖

−→
(∥∥∥T̃ ∥∥∥+ C

)
‖x − z‖ as k → ∞.

As Z = X, we can choose ‖x − z‖ arbitrarily small. This shows that

T̃ x = lim
k→∞

Tkx for all x ∈ X.

��

E5.5 Pointwise convergence of operators. Let T, Tk ∈ L (X;Y ), k ∈ IN,
with ‖Tk‖ ≤ C < ∞ and let D ⊂ X be dense. If for all x ∈ D

Tkx −→ Tx as k → ∞,

then this also holds for all x ∈ X.

Solution. See the second part of the solution of E5.4. ��
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E5.6 Convergence of operators. Let Tk be defined as in 5.6(6) with 1 ≤
p < ∞. Does it hold that Tk −→ Id as k → ∞ in the space L

(
Lp(IRn)

)
?

Solution. No! As an example, let n = 1 and ϕk = ψεk with εk → 0 as
k → ∞, where ψε(x) := 1

2ε for |x| < ε and ψε(x) := 0 for |x| > ε. Then
consider Tkϕk = ψεk ∗ ψεk . Direct calculations yield that

ψε ∗ ψε(x) = max
(
0,

1

2
ε(1 − |x|

2ε
)
)
,

‖ψε‖Lp = (2ε)
1
p
−1 ,

‖ψε ∗ ψε − ψε‖Lp = (1 + p)−
1
p · (4ε) 1

p
−1 .

Consequently,

‖Tk − Id‖ ≥ ‖Tkψεk − ψεk ‖Lp

‖ψεk ‖Lp

=
1

2

(1 + p

2

)− 1
p

> 0 .

��
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In this chapter we deal with the representations of dual spaces, i.e. we will
state canonical isomorphisms between the most important dual spaces and
already known spaces. We will use this to solve boundary value problems for
partial differential equations.

The most important case is that of a Hilbert space, for which the dual
space is isomorphic to the space itself (theorem 6.1). As a consequence, we
obtain the Lax-Milgram theorem (see 6.2), with the help of which elliptic
boundary value problems can be solved (see 6.4 – 6.9).

In the second part, we state representations of the dual spaces of Lp(μ) for
p < ∞ (see 6.12) and of C0(S) (see 6.23). The proof of 6.23 will employ the
Hahn-Banach theorem (see 6.14 – 6.15). This theorem states that continuous
linear maps f : Y → IK can be extended from a subspace Y ⊂ X to the
full space X such that the norm of the map is maintained, which is one
of the general principles of functional analysis. A constructive proof of the
Hahn-Banach theorem for separable spaces X will be given in 9.2.

Lax-Milgram’s theorem

We start with an existence theory, which is based on the following result.

6.1 Riesz representation theorem. If X is a Hilbert space, then

J(x)(y) := (y , x)X for x, y ∈ X

defines an isometric conjugate linear isomorphism J : X → X ′.

Notation: In the remainder of this book we will also denote this isomorphism
by RX : X → X ′.

Definition: Here a map J is called conjugate linear if for all x, y ∈ X and
α ∈ IK it holds that J(αx + y) = αJ(x) + J(y). In the case IK = IR this
reduces to J being linear.

Proof. By the Cauchy-Schwarz inequality,

|J(x)(y)| ≤ ‖x‖X · ‖y‖Y ,

i.e. J(x) ∈ X ′ with ‖J(x)‖X′ ≤ ‖x‖X . On noting that |J(x)(x)| = ‖x‖2X , we
see that ‖J(x)‖X′ ≥ ‖x‖X . Hence J is isometric, and in particular injective.
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Now the crucial step is to show that J is surjective. Let 0 �= x′
0 ∈ X ′

and let P be the orthogonal projection from 4.3 onto the closed null space
N (x′

0). Choose e ∈ X with x′
0(e) = 1 and define

x0 := e − Pe, hence also x′
0(x0) = 1,

and in particular x0 �= 0. Now it follows from 4.3 (see 4.4(2)) that

(y , x0)X = 0 for all y ∈ N (x′
0). (6-3)

For all x ∈ X,

x = x − x′
0(x)x0︸ ︷︷ ︸

∈N (x′
0)

+x′
0(x)x0 ,

which together with (6-3) yields that

(x , x0)X = (x′
0(x)x0 , x0)X = x′

0(x)‖x0‖2 ,

and hence

x′
0(x) =

(
x ,

x0

‖x0‖2

)
X

= J
( x0

‖x0‖2
)
(x) .

��

An application of the Riesz representation theorem is the

6.2 Lax-Milgram theorem. Let X be a Hilbert space over IK and let
a : X ×X → IK be sesquilinear. Assume that there exist constants c0 and C0

with 0 < c0 ≤ C0 < ∞ such that for all x, y ∈ X

(1) |a(x, y)| ≤ C0‖x‖X‖y‖X (Continuity),

(2) Rea(x, x) ≥ c0‖x‖2X (Coercivity).

Then there exists a unique map A : X → X with

a(y, x) = (y , Ax)X for all x, y ∈ X.

In addition, A ∈ L (X) is an invertible operator with

‖A‖ ≤ C0 and
∥∥A−1

∥∥ ≤ 1

c0
.

Proof. For every x ∈ X it follows from (1) that the function a(·, x) lies in X ′

and satisfies
‖a(·, x)‖X′ ≤ C0‖x‖X .

Hence, by the Riesz representation theorem 6.1, there exists a unique element
A(x) ∈ X such that
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{x ; x′
0(x) = −1}

N (x′
0) = {x ; x′

0(x) = 0}

{x ; x′
0(x) = +1}

e

Pe

x0

0

Fig. 6.1. Proof of the Riesz representation theorem

a(y, x) = (y , A(x))X for all y ∈ X

and moreover
‖A(x)‖X = ‖a(·, x)‖X′ ≤ C0‖x‖X .

Since a and the scalar product are conjugate linear in the second argument,
it follows that A is linear. Hence A ∈ L (X) with ‖A‖ ≤ C0. Moreover,

c0‖x‖2X ≤ Re a(x, x) = Re (x , A(x))X ≤ ‖x‖X · ‖Ax‖X ,

and so
c0‖x‖X ≤ ‖A(x)‖X for all x ∈ X, (6-4)

which implies that N (A) = {0}. In addition, it follows that the image space
R(A) is closed, on noting that for xk, x ∈ X

A(xk) → y as k → ∞
=⇒ ‖xk − xl‖X ≤ 1

c0
‖A(xk − xl)‖X (recall (6-4))

= 1
c0

‖A(xk) − A(xl)‖X → 0 as k, l → ∞
=⇒ xk → x as k → ∞ for an x ∈ X

=⇒ A(xk) → A(x) (as A is continuous)

=⇒ y = Ax ∈ R(A) .

It remains to show that R(A) = X. If R(A) �= X, then, on recalling that
R(A) is a closed subspace, the projection theorem 4.3 yields that there exists
an x0 ∈ X \ R(A) such that (recall 4.4(2))

(y , x0)X = 0 for all y ∈ R(A)

(choose an x̃0 ∈ X \R(A) and set x0 := x̃0 −P x̃0, where P is the orthogonal
projection onto R(A)). This yields, on setting y = A(x0), that
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0 = Re (A(x0) , x0)X = Re (x0 , A(x0))X = Re a(x0, x0) ≥ c0‖x0‖2X > 0 ,

a contradiction. Hence we have shown that A is bijective. It follows from
(6-4) that

∥∥A−1
∥∥ ≤ 1

c0
. ��

6.3 Consequences.

(1) Let A be the operator from 6.2 and let RX be the isometry from theo-
rem 6.1. For a given x′ ∈ X ′, the unique solution of

a(y, x) = x′(y) for all y ∈ X (6-5)

is then x := A−1R−1
X x′.

(2) The solution in (1) has the stability property

‖x‖X ≤ 1

c0
‖x′‖X′ . (6-6)

Interpretation: If we consider two “right-hand sides” x′
1 and x′

2 and the
corresponding solutions x1 and x2 in (1), then it follows from (6-6), due to
the linearity of the problem (x1 − x2 is the solution to x′

1 − x′
2), that

‖x1 − x2‖X ≤ 1
c0

‖x′
1 − x′

2‖X′ .

Hence the error in the solutions can be estimated by the error in the data.
This justifies the term stability.

(3) Formulated for the operator A, the Lax-Milgram theorem reads as fol-
lows: Let X be a Hilbert space and let A ∈ L (X) be coercive, i.e. there
exists a constant c0 > 0 such that

Re (x , Ax)X ≥ c0‖x‖2X for all x ∈ X.

Then A is invertible, with
∥∥A−1

∥∥ ≤ 1
c0
.

(4) If a in 6.2 is a scalar product, then the solution x in statement (1) is, in
addition, the uniquely determined absolute minimum of the functional

E(y) := 1
2a(y, y) − Rex′(y) .

Proof (1) and (2). By the definition of A and RX , for all x, y ∈ X

a(y, x) = (y , Ax)X = (RXAx)(y) ,

and RXA : X → X ′ is bijective. If x = (RXA)−1x′, then it follows from (6-4)
that

c0‖x‖X ≤ ‖Ax‖X =
∥∥R−1

X x′∥∥
X

= ‖x′‖X′ .
��

Proof (3). The product a(y, x) := (y , Ax)X satisfies the properties in 6.2
with C0 = ‖A‖. Moreover, A is the operator corresponding to a from 6.2. ��
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Proof (4). Let y ∈ X. Then

E(y) − E(x) = 1
2

(
a(y, y) − a(x, x)

)
− Rex′(y − x)

= 1
2

(
a(y, y) − a(x, x)

)
− Rea(y − x, x)

= 1
2

(
a(y, y) − a(y, x) − a(x, y) + a(x, x)

)
= 1

2a(y − x, y − x) ≥ c0
2 ‖y − x‖2X .

��

The Lax-Milgram theorem has applications for integral operators (see
E6.3) and for differential operators, which will be discussed in the following.
First we consider the classical case in spaces of continuous functions.

6.4 Elliptic boundary value problems. Let Ω ⊂ IRn be open and
bounded and let IK = IR. We want to find functions u ∈ C2(Ω) satisfying the
differential equation

−
n∑

i=1

∂i

( n∑
j=1

aij∂ju+ hi

)
+ bu+ f = 0 in Ω . (6-7)

Here aij , hi ∈ C1(Ω) for i, j = 1, . . . , n and f, b ∈ C0(Ω) are given real-valued
functions, and we assume that there exists a c0 > 0 such that for all x ∈ Ω,

n∑
i,j=1

aij(x)ξiξj ≥ c0|ξ |2 for all ξ ∈ IRn. (6-8)

We then say that the matrix (aij(x))i,j is uniformly elliptic in x. (For every

c > 0, the set of points ξ ∈ IRn, for which
∑

i,j aij(x)ξiξj = c, is an ellipsoid.)
Let us emphasize here that the matrix (aij(x))i,j need not be symmetric.

It turns out that, under certain assumptions, there exists a unique func-
tion u solving (6-7), which in addition satisfies suitable boundary conditions
on ∂Ω. The two most frequently occurring boundary conditions in mathe-
matical physics are:

(1) Dirichlet boundary condition. Let g ∈ C0(∂Ω) be given. Find a
function u ∈ C2(Ω)∩C0(Ω) which solves the following Dirichlet boundary
value problem:

u satisfies (6-7) in Ω , u = g on ∂Ω.

(2) Neumann boundary condition. We assume thatΩ has a C1-boundary,
i.e. that the boundary ∂Ω can be locally represented as the graph of a C1-
function in an appropriately chosen coordinate system (as in A8.2). In ad-
dition, we assume that aij , hi ∈ C0(Ω). Let g ∈ C0(∂Ω) be given. Find a
function u ∈ C2(Ω)∩C1(Ω) which solves the followingNeumann boundary
value problem:
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u satisfies (6-7) in Ω , −
n∑

i=1

νi

( n∑
j=1

aij∂ju+ hi

)
= g on ∂Ω.

Here ν = (νi)i=1,...,n is the outer normal to ∂Ω.

Remark: For the boundary value problem (1) to be at all solvable, there
must exist some function u0 ∈ C2(Ω) ∩ C0(Ω) with u0 = g on ∂Ω. Then
the boundary value problem can be transformed to one for ũ := u − u0, by
replacing g with g̃ := 0, hi with h̃i := hi+

∑
j aij∂ju0, and f with f̃ := f+bu0.

Analogously, for (2) there must exist a function u0 ∈ C2(Ω) ∩ C1(Ω) with
−
∑

i νi
(∑

j aij∂ju0 +hi

)
= g on ∂Ω. Then the boundary value problem can

be transformed to one for ũ := u − u0, by replacing g with g̃ := 0, hi with
h̃i := 0, and f with f̃ := f −

∑
i ∂i
(∑

j aij∂ju0 + hi

)
+ bu0. We then call the

boundary conditions homogeneous.

We now give an equivalent definition of the boundary value problem with
the help of test functions (this gives a connection to distributions, which were
treated at the end of section 5).

In the Dirichlet case, if we multiply the differential equation (6-7) by
functions ζ ∈ C∞

0 (Ω), then we obtain after integration by parts that∫
Ω

(∑
i

∂iζ
(∑

j

aij∂ju+ hi

)
+ ζ(bu+ f)

)
dLn = 0 . (6-9)

Conversely, if this integral identity is satisfied for all ζ ∈ C∞
0 (Ω), then we

obtain, on reversing the integration by parts, that∫
Ω

ζw dLn = 0 with w := −
∑
i

∂i

(∑
j

aij∂ju+ hi

)
+ bu+ f .

If we assume that w(x0) �= 0 for some x0 ∈ Ω, then we can choose an ε0 > 0
with w > 0 or w < 0 in Bε0(x0) ⊂ Ω, and then a nontrivial ζ ∈ C∞

0

(
Bε0(x0)

)
with ζ ≥ 0, in order to obtain a contradiction. Hence it follows that w = 0
in Ω (this also follows directly from 4.22), i.e. the differential equation (6-7)
holds in Ω.

Similarly, in the Neumann case, if we multiply the differential equation
(6-7) by functions ζ ∈ C∞(Ω), on assuming that aij , hi ∈ C1(Ω), we obtain
after integration by parts that∫

Ω

(∑
i

∂iζ
(∑

j

aij∂ju+ hi

)
+ ζ(bu+ f)

)
dLn +

∫
∂Ω

ζg dHn−1 = 0 .

(6-10)
Conversely, if this holds for all ζ ∈ C∞(Ω), then as before we obtain the
differential equation in Ω (here it is sufficient to consider ζ ∈ C∞

0 (Ω)), and
then it holds for ζ ∈ C∞(Ω) that
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∂Ω

ζw dHn−1 = 0 with w :=
∑
i

νi

(∑
j

aij∂ju+ hi

)
+ g.

Similarly to the argumentation above, it now follows that the Neumann
boundary condition is satisfied.

The basic idea for the solution of these boundary value problems with
the help of Hilbert space methods is to interpret the integral terms in (6-9)
and (6-10) as an L2-bilinear form, and enlarge the spaces for test functions
and solutions accordingly. As the test function appears with ζ and ∂iζ, the
appropriate test space for (6-9) is the closure of C∞

0 (Ω) in the spaceW 1,2(Ω),
i.e. the space W 1,2

0 (Ω) (see 3.29). Since functions in W 1,2
0 (Ω), when Ω has a

C1-boundary, have in a weak sense boundary values 0 (see A8.10), W 1,2
0 (Ω) is

also the appropriate enlarged solution space. For (6-10) the appropriate test
space is the closure of C∞(Ω) in the space W 1,2(Ω), i.e. for sets Ω with a C1-
boundary the space W 1,2(Ω) itself (see A8.7), which is also the appropriately
enlarged solution space.

For the resulting weak formulations of the problem it is no longer nec-
essary to assume that the data aij , hi, b, f of the problem are continuous
functions in Ω. However, it is necessary to make assumptions on their inte-
grability, for instance as formulated in the following:

6.5 Weak boundary value problems. With IK = IR it is assumed in the
following that Ω ⊂ IRn is open and bounded, that aij ∈ L∞(Ω) satisfy the
ellipticity condition (6-8) for almost all x ∈ Ω, and that b ∈ L∞(Ω) and
hi, f ∈ L2(Ω). The weak formulation of the boundary value problem in 6.4
is defined as follows (where we consider only the case g = 0):

(1) We call u : Ω → IR a weak solution of the Dirichlet problem if

u ∈ W 1,2
0 (Ω) and∫

Ω

(∑
i

∂iζ
(∑

j

aij∂ju+ hi

)
+ ζ(bu+ f)

)
dLn = 0

for all ζ ∈ W 1,2
0 (Ω).

Here, as remarked above, if Ω has a C1-boundary, then the condition u ∈
W 1,2

0 (Ω) in a weak sense contains the homogeneous boundary conditions, and
it is irrelevant whether ζ varies in the space W 1,2

0 (Ω), or only in the space
C∞

0 (Ω).

(2) We call u : Ω → IR a weak solution of the Neumann problem if

u ∈ W 1,2(Ω) and∫
Ω

(∑
i

∂iζ
(∑

j

aij∂ju+ hi

)
+ ζ(bu+ f)

)
dLn = 0

for all ζ ∈ W 1,2(Ω).



170 6 Linear functionals

Here, as explained above, if Ω has a C1-boundary, then the integral term in
a weak sense contains the homogeneous boundary conditions (for g = 0 in
6.4(2) the boundary integral in (6-10) vanishes), and it is irrelevant whether
ζ varies in the space W 1,2(Ω), or only in the space C∞(Ω).

We will now prove the existence of solutions to these weak boundary value
problems.

6.6 Existence theorem for the Neumann problem. Let the assump-
tions in 6.5 hold and let b0 > 0 with b(x) ≥ b0 for almost all x ∈ Ω. Then
there exists a unique solution u ∈ W 1,2(Ω) for the Neumann problem in
6.5(2). Moreover,

‖u‖W 1,2 ≤ C
(
‖h‖L2 + ‖f ‖L2

)
,

with a constant C that is independent of h and f .

Proof. For u, v ∈ W 1,2(Ω) we define

a(u, v) :=
∑
i,j

∫
Ω

∂iu · aij∂jv dLn +

∫
Ω

u · bv dLn . (6-11)

(We mention that in general a does not need to be a scalar product, for (aij)ij
can be asymmetric.) Then a is bilinear, with

|a(u, v)| ≤
∑
i,j

‖aij‖L∞‖∂iu‖L2‖∂jv‖L2 + ‖b‖L∞‖u‖L2‖v‖L2

≤ C‖u‖W 1,2‖v‖W 1,2 with C :=
∑
i,j

‖aij‖L∞ + ‖b‖L∞ .

In addition, it follows from the assumptions on aij and b that

a(u, u) ≥ c0

∫
Ω

|∇u|2 dLn + b0

∫
Ω

|u|2 dLn ≥ c · ‖u‖2W 1,2

with c := min(c0, b0). Hence a satisfies the assumptions of the Lax-Milgram
theorem 6.2 on the Hilbert space W 1,2(Ω). We want to find a u ∈ W 1,2(Ω)
such that

a(v, u) = F (v) for all v ∈ W 1,2(Ω),

where

F (v) := −
∫
Ω

(∑
i

∂iv · hi + vf
)
dLn . (6-12)

It follows from 6.3(1) that there exists a unique such u if F belongs to the
dual space of W 1,2(Ω). But this is the case, since F is linear, with

|F (v)| ≤ ‖h‖L2‖∇v‖L2 + ‖f ‖L2‖v‖L2 ≤ (‖h‖L2 + ‖f ‖L2) ‖v‖W 1,2 .

In addition, the solution u can be estimated by the data, since, by 6.3(2),
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‖u‖W 1,2 ≤ 1

c
‖F ‖ ≤ 1

c
(‖h‖L2 + ‖f ‖L2) .

��

The Dirichlet problem can also be solved in the case b = 0. Here we need
the following

6.7 Poincaré inequality. If Ω ⊂ IRn is open and bounded, then there exists
a constant C0 (which depends on Ω), such that∫

Ω

|u|2 dLn ≤ C0

∫
Ω

|∇u|2 dLn for all u ∈ W 1,2
0 (Ω).

Note: See also 8.16 and E10.10.

Proof. On noting that both sides of the inequality depend continuously on u
in the W 1,2-norm, and on recalling the definition of W 1,2

0 (Ω), it is sufficient
to prove the estimate for functions u ∈ C∞

0 (Ω). In the case n = 1, let
Ω ⊂ [a, b] ⊂ IR. Then the Hölder inequality yields for a ≤ x ≤ b, on setting
u = 0 in IR \ Ω, that

|u(x)|2 = |u(x) − u(a)|2 =

∣∣∣∣∫ x

a

∂xu(y) dy

∣∣∣∣2
≤ (x − a)

∫ x

a

|∂xu(y)|2 dy ≤ (b − a)

∫ b

a

|∂xu(y)|2 dy .

Integration over x gives∫ b

a

|u|2 dL1 ≤ (b − a)2
∫ b

a

|∂xu|2 dL1 . (6-13)

In the case n > 1, let Ω ⊂ [a, b] × IRn−1. Then we obtain (6-13) by inte-
grating over x1. Integration over the remaining n− 1 coordinates then yields
the desired result. (Hence the Poincaré inequality also holds for infinite slab
domains.) ��

6.8 Existence theorem for the Dirichlet problem. Let the assumptions
in 6.5 hold and let b ≥ 0. Then there exists a unique weak solution u ∈
W 1,2

0 (Ω) for the Dirichlet problem in 6.5(1). Moreover,

‖u‖W 1,2 ≤ C
(
‖h‖L2 + ‖f ‖L2

)
with a constant C that is independent of h and f .

Proof. Consider the bilinear form a in (6-11), now on the Hilbert space
W 1,2

0 (Ω). As in the proof of 6.6,
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|a(u, v)| ≤ C‖u‖W 1,2‖v‖W 1,2

and the assumptions on the coefficients yield that

a(u, u) ≥ c0

∫
Ω

|∇u|2 dLn = c0 ‖∇u‖2L2 for u ∈ W 1,2
0 (Ω) .

Then it follows, with the constant C0 from 6.7, that

‖u‖2W 1,2 = ‖u‖2L2 + ‖∇u‖2L2 ≤ (C0 + 1)‖∇u‖2L2 ≤ C0 + 1

c0
a(u, u) ,

and so a(u, u) ≥ c ‖u‖2W 1,2 with c = c0 · (C0 + 1)−1. Hence a satisfies the

assumptions of the Lax-Milgram theorem 6.2 on the Hilbert space W 1,2
0 (Ω).

The functional F in (6-12), restricted to the space W 1,2
0 (Ω), then lies in its

dual space. Hence, by 6.3(1), there exists a unique u ∈ W 1,2
0 (Ω) with

a(v, u) = F (v) for all v ∈ W 1,2
0 (Ω) .

The estimate follows again from 6.3(2) (see the proof 6.6). ��

6.9 Remark (Regularity of the solution). Based on the existence proofs
in 6.6 and 6.8 for weak solutions of the boundary value problem, it is possible
to show a posteriori that a weak solution is indeed a classical solution of the
boundary value problem in the sense of 6.4, provided the data aij , hi, b,
f and ∂Ω satisfy certain regularity conditions (by the regularity theory for
partial differential equations, see e.g. [GilbargTrudinger]). If we assume, for
instance, that aij ∈ Cm,1(Ω), hi ∈ Wm+1,2(Ω) and f ∈ Wm,2(Ω) with

m ≥ 0, then it follows that u ∈ Wm+2,2
loc (Ω) (see Friedrichs’ theorem A12.2).

If in addition ∂Ω is locally given by graphs of Cm+1,1-functions, then one can
correspondingly show that u ∈ Wm+2,2(Ω) (see A12.3). These two theorems
constitute the L2-regularity theory. This compares with the Lp-theory, which
is based on the Calderón-Zygmund inequality in 10.20, and the Schauder
theory, which on the basis of the Hölder-Korn-Lichtenstein inequality in 10.19
gives regularity results in Hölder spaces.

Radon-Nikodým’s theorem

After we have shown in 6.1 that the dual space of a Hilbert space is canoni-
cally isomorphic to the Hilbert space itself, we now want to consider specific
Banach spaces, Lp(μ) and C0(S), and characterize their dual spaces. (a list of
dual spaces can be found in [DunfordSchwartz : IV 15, S. 374-379]). First we
state a characterization of Lp(μ)′, for which we will need the Radon-Nikodým
theorem 6.11.
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6.10 Definition (Variational measure). Let B be a ring over a set S (see
A3.1) and let λ : B → IKm be additive. For E ∈ B define

|λ|(E) := sup
{ k∑

i=1

|λ(Ei)| ; k ∈ IN, Ei ∈ B pairwise disjoint, Ei ⊂ E
}
.

It holds that |λ| : B → [0,∞] is additive. We also call |λ| the variational
measure for λ. In addition, in the case where B contains the set S, we call

‖λ‖var := |λ|(S)

the total variation of λ. The measure λ is called a bounded measure if
‖λ‖var < ∞.

Proof. We prove the additivity of |λ|. If B1, B2 ∈ B are disjoint, then it is
easy to see that

|λ|(B1) + |λ|(B2) ≤ |λ|(B1 ∪ B2) .

Moreover, for ε > 0 choose disjoint Ei ∈ B, i = 1, . . . , k, with Ei ⊂ B1 ∪ B2,
such that

|λ|(B1 ∪ B2) − ε ≤
k∑

i=1

|λ(Ei)| =
k∑

i=1

|λ(Ei ∩ B1) + λ(Ei ∩ B2)|

≤ |λ|(B1) + |λ|(B2) .

��

6.11 Radon-Nikodým theorem. Let (S,B, μ) be a σ-finite measure space
and let

ν : B → IK be σ-additive with ‖ν‖var < ∞.

In addition, let ν be absolutely continuous with respect to μ, i.e. for all
E ∈ B

μ(E) = 0 =⇒ ν(E) = 0 .

Then there exists a unique function f ∈ L1(μ) such that

ν(E) =

∫
E

f dμ for all E ∈ B.

Remark: The function f is called the Radon-Nikodým derivative of ν
with respect to μ, and is also denoted by dν

dμ .

Proof. Let f1, f2 ∈ L1(μ) be two such representing functions and let f :=
f1 − f2. Let E := {x ∈ S ; f(x)• e ≥ δ}}, where e ∈ IK\{0} and δ > 0. Then
(recall 5.11)
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0 =
(∫

E

f1 dμ −
∫
E

f2 dμ
)

• e =
∫
E

f • edμ ≥ δμ(E) ,

and so μ(E) = 0 for all e, δ, which implies that f1 = f2 μ-almost everywhere.
This proves the uniqueness.

In order to prove the existence, we may assume that ν is real-valued
(otherwise consider the real and imaginary part separately). It follows from
the Hahn decomposition (see A6.2) that we may further assume that ν is
nonnegative. Then (S,B, μ+ ν) is also a measure space, since for N ∈ B and
E ⊂ S

(μ+ ν)(N) = 0, E ⊂ N

=⇒ μ(N) = 0, E ⊂ N =⇒ E ∈ B, μ(E) = 0 .

Now ν induces a measure space (S, B̂, ν) with B ⊂ B̂, where the sets from

B̂ are unions of sets from B with ν-null sets. Since ν ≤ μ + ν, it holds that
L1(μ+ ν) is contained in L1(ν). On recalling that ν(S) < ∞, it follows from
the Hölder inequality that L2(ν) ⊂ L1(ν). Hence if g ∈ L2(μ+ ν), then∣∣∣∣∫

S

g dν

∣∣∣∣ ≤√ν(S)‖g‖L2(ν) ≤
√
ν(S)‖g‖L2(μ+ν) .

As L2(μ + ν) is a Hilbert space, the Riesz representation theorem 6.1 then
implies that there exists an h ∈ L2(μ+ ν) such that, for all g ∈ L2(μ+ ν),∫

S

g dν = (g , h)L2(μ+ν) =

∫
S

gh d(μ+ ν) ,

i.e. ∫
S

g(1 − h) dν =

∫
S

gh dμ for all g ∈ L2(μ+ ν). (6-14)

We now show that

0 ≤ h < 1 (μ+ ν)-almost everywhere.

On setting g = X{h<0}∩Sm
, where {h < 0} := {x ∈ S ; h(x) < 0} and Sm is

as in 3.9(4), it follows from (6-14) that

0 ≤
∫
{h<0}∩Sm

(1 − h) dν =

∫
{h<0}∩Sm

h dμ ≤ −εμ ({h < −ε} ∩ Sm) .

This implies that μ ({h < −ε} ∩ Sm) = 0 for all ε > 0 and all m, and hence
also μ ({h < 0}) = 0. Since ν is absolutely continuous with respect to μ, it
follows that also ν ({h < 0}) = 0. Similarly, it follows from (6-14) that, when
g = X{h≥1}∩Sm

,

0 ≥
∫
{h≥1}∩Sm

(1 − h) dν =

∫
{h≥1}∩Sm

h dμ ≥ μ ({h ≥ 1} ∩ Sm) ,
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and so μ ({h ≥ 1}) = 0, which by assumption yields that ν ({h ≥ 1}) = 0.
This shows that 0 ≤ h < 1 almost everywhere with respect to μ + ν. In
particular, it follows that for E ∈ B with μ(E) < ∞ we can in (6-14) choose

g =
1 − hk

1− h
XE =

(k−1∑
i=0

hi
)
XE ∈ L∞(μ+ ν) ,

which yields that ∫
E

(1 − hk) dν =

∫
E

h

1 − h
(1 − hk) dμ .

On noting that μ+ν-almost everywhere 0 ≤ (1−hk)XE ↗ XE ∈ L1(μ+ν) as
k ↗ ∞, we conclude from the monotone convergence theorem that h

1−hXE ∈
L1(μ) and

ν(E) =

∫
E

h

1− h
dμ ,

i.e. h
1−h is the desired function. The fact that h

1−h ∈ L1(μ) follows again from
the monotone convergence theorem, upon setting E =

⋃
j≤m Sj , taking the

limit m → ∞, and recalling that ν(S) < ∞. (A purely measure theoretical
proof of the Radon-Nikodým theorem can be found in e.g. [Halmos].) ��

6.12 Theorem (Dual space of Lp for p < ∞). Let (S,B, μ) be a measure
space and let 1 ≤ p < ∞ (the dual exponent p′ is given by 1

p + 1
p′ = 1,

if p = 1 then p′ = ∞). In the case p = 1, we assume in addition that μ is
σ-finite. For f ∈ Lp′

(μ) let

J(f)(g) :=

∫
S

gf dμ for all g ∈ Lp(μ) .

Then J : Lp′

(μ) → Lp(μ)′ is a conjugate linear isometric isomorphism.

Special case: In the Hilbert space case p = 2 = p′, the isometry J coincides
with the isometry in 6.1.

Proof. It follows from the Hölder inequality that J is well defined and that
‖J(f)‖(Lp)′ ≤ ‖f ‖Lp′ . Clearly, J is conjugate linear. Moreover, J is injective,

since J(f) = 0 implies in the case p > 1 with g := |f |p′−2f ∈ Lp(μ) that

0 = J(f)(g) =

∫
S

|f |p
′

dμ ,

and so that f = 0 in Lp′

(μ). In the case p = 1 set g = XSm
f ∈ L1(μ) with Sm

as in 3.9(4) and obtain that f = 0 almost everywhere in Sm. Letting m → ∞
we conclude that f = 0 in L∞(μ).

Now let F ∈ Lp(μ)′. We need to show that there exists an f ∈ Lp′

(μ)
with
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F = J(f) and ‖f ‖Lp′ ≤ ‖F ‖(Lp)′ .

First we consider the special case μ(S) < ∞. Then

ν(E) := F (XE) for E ∈ B

satisfies the assumptions of the Radon-Nikodým theorem. To see this, note
that for disjoint sets E1, . . . , Em in B with ν(Ei) �= 0 it holds that

m∑
i=1

|ν(Ei)| =
m∑
i=1

σiν(Ei) with σi :=
ν(Ei)

|ν(Ei)|

= F
( m∑
i=1

σiXEi

)
≤ ‖F ‖(Lp)′ ·

∥∥∥∥∥
m∑
i=1

σiXEi

∥∥∥∥∥
Lp

= ‖F ‖(Lp)′ ·
( m∑
i=1

μ(Ei)
) 1

p ≤ ‖F ‖(Lp)′ · μ(S)
1
p ,

(6-15)

i.e. ‖ν‖var < ∞. In addition, for E =
⋃

i∈IN Ei with Ei ∈ B, Ei ⊂ Ei+1

|ν(E) − ν(Ei)| =
∣∣F (XE\Ei

)
∣∣ ≤ ‖F ‖(Lp)′μ(E \ Ei)

1
p → 0 as i → ∞,

i.e. ν is σ-additive. By the way, ν is absolutely continuous w.r.t. μ, since for
μ-null sets E we have XE = 0 in Lp(μ), and therefore ν(E) = F (XE) = 0.

Hence, by the Radon-Nikodým theorem 6.11, there exists a function f ∈
L1(μ) with

F (XE) =

∫
S

XEf dμ for all E ∈ B.

It follows that

F (g) =

∫
S

gf dμ (6-16)

for all functions g ∈ L∞(μ), because such functions can be uniformly ap-
proximated by finite linear combinations of characteristic functions XE with
measurable E ⊂ S (see the note in 3.26(1)). Now for m ∈ IN and 1 ≤ q < ∞
we choose in particular

g = XAm
|f |q−2f , where Am := {x ∈ S ; 0 < |f(x)| ≤ m},

and obtain from (6-16) that∫
Am

|f |q dμ = F (g) ≤ ‖F ‖(Lp)′‖g‖Lp = ‖F ‖(Lp)′

(∫
Am

|f |p(q−1)
dμ
) 1

p

.

In the case p > 1, setting q = p′ (so that p(q − 1) = p′), yields after cancel-
lation that (∫

Am

|f |p
′

dμ
) 1

p′ ≤ ‖F ‖(Lp)′ .
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On letting m → ∞, it follows from the monotone convergence theorem that
f ∈ Lp′

(μ) and ‖f ‖Lp′ ≤ ‖F ‖(Lp)′ . In the case p = 1, choose q ∈ IN and
obtain inductively that∫

Am

|f |q dμ ≤ ‖F ‖(Lp)′

∫
Am

|f |q−1
dμ ≤ ‖F ‖q(Lp)′ · μ(Am) ,

i.e. (∫
Am

|f |q dμ
) 1

q ≤ ‖F ‖(Lp)′ · μ(Am)
1
q .

Then, on letting q → ∞, it follows from E3.4 (for the function XAm
f) that

|f | ≤ ‖F ‖(Lp)′ almost everywhere in Am, which implies that ‖f ‖L∞ ≤
‖F ‖(Lp)′ .

On noting that the functions g, for which (6-16) originally held, are dense
in Lp(μ), it now follows from the Hölder inequality that (6-16) holds for all
g ∈ Lp(μ), and so F = J(f), which is what we wanted to show.

We now consider the case of a general measure space, and define B̃ :=
{A ∈ B ; μ(A) < ∞}. For A ∈ B̃ let

μA(E) := μ(A ∩ E), FA(g) := F (XAg) .

Then μA(S) < ∞ with μA(S \ A) = 0, and FA ∈ Lp(μA)
′, with ‖FA‖(Lp)′ ≤

‖F ‖(Lp)′ . Hence it follows from what we have shown so far that there exists

a unique fA ∈ Lp′

(μA) with

FA(g) =

∫
S

gfA dμA for all g ∈ Lp(μA) (6-17)

and ‖fA‖Lp′ = ‖FA‖(Lp)′ . On defining fA(x) := 0 for x ∈ S \A, we have that
fA ∈ Lp′

(μ). As in the proof of the injectivity of J , it follows that fA1
= fA2

μ-almost everywhere in A1∩A2 for A1, A2 ∈ B̃. Hence, |fA1
| ≤ |fA2

| μ-almost
everywhere if A1 ⊂ A2, and then

‖fA1
‖Lp′ ≤ ‖fA2

‖Lp′ = ‖FA2
‖(Lp)′ ≤ ‖F ‖(Lp)′ < ∞ .

It follows that there exist Bm ∈ B̃ with Bm ⊂ Bm+1 for m ∈ IN, such that

‖fBm
‖Lp′ −→ s := sup

A∈B̃
‖fA‖Lp′ as m → ∞.

If p = 1, then the Bm can be chosen such that Sm ⊂ Bm, where the Sm are
as in 3.9(4). Then

B :=
⋃

m∈IN

Bm , f(x) :=

{
fBm

(x) for x ∈ Bm, m ∈ IN,

0 for x ∈ S \ B,
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(for p > 1 by the monotone convergence theorem) defines an f ∈ Lp′

(μ) with

‖f ‖Lp′ = s = sup
A∈B̃

‖fA‖Lp′ = sup
A∈B̃

‖FA‖(Lp)′ ≤ ‖F ‖(Lp)′ .

Now
fA = f almost everywhere in A, if A ∈ B with A ⊂ B,

since in A ∩ Bm it holds almost everywhere that f = fBm
= fA∩Bm

= fA.
We claim that

fA = 0 almost everywhere in S, if A ∈ B with A ∩ B = ∅.

In the case p = 1, this trivially follows from B = S. In the case p > 1, on
noting that A ∩ Bm = ∅, it follows that

|fA∪Bm
|p

′

= |fA |p
′

+ |fBm
|p

′

, and so sp
′ ≥ ‖fA‖p

′

Lp′ + ‖fBm
‖p

′

Lp′ .

Letting m → ∞ yields that sp
′ ≥ ‖fA‖p

′

Lp′ + sp
′

, and hence our claim.
Now let g ∈ Lp(μ) with g = 0 almost everywhere in S \ A for an A ∈ B.

Then, by (6-17),

F (g) = FA(g) =

∫
S

gfA dμA =

∫
A

gfA dμ .

Since, as shown above, fA = fA\B = 0 in A\B and fA = fA∩B = f in A∩B,
this is in turn equal to∫

A∩B

gf dμ =

∫
A

gf dμ =

∫
S

gf dμ = J(f)(g) .

On noting that such functions g are dense in Lp(μ) (approximating g, for
example, by XAn

g, n ∈ IN, with An := {x ∈ S ; |g(x)| ≥ 1
n}), it follows that

F (g) = J(f)(g) for all g ∈ Lp(μ). ��

With the help of the result in theorem 6.12, we can establish a distribu-
tional characterization of Lp-functions:

6.13 Corollary. Let Ω ⊂ IRn be open and let 1 ≤ p ≤ ∞. Then it holds for
functions f : Ω → IK that

f ∈ Lp(Ω) ⇐⇒

⎧⎪⎨⎪⎩
f ∈ L1

loc(Ω) and there exists a C with∣∣∣∣∫
Ω

ζf dLn

∣∣∣∣ ≤ C‖ζ‖Lp′ (Ω) for all ζ ∈ C∞
0 (Ω).

The constant C on the right-hand side satisfies ‖f ‖Lp(Ω) ≤ C.

Notation: Here L1
loc(Ω) is the space of locally integrable functions in Ω, de-

fined in 5.13(2). Moreover, 1 ≤ p′ ≤ ∞ is the dual exponent, i.e. 1
p +

1
p′ = 1.

Note: For a generalization of the result to Sobolev functions, see E6.7.
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Proof ⇒. The Hölder inequality yields that∣∣∣∣∫
Ω

ζf dLn

∣∣∣∣ ≤ ‖ζ‖Lp′ (Ω) · ‖f ‖Lp(Ω) .

��

Proof ⇐. The estimate yields that on C∞
0 (Ω) equipped with the Lp′

-norm,

F (ζ) :=

∫
Ω

ζf dLn

is linear and continuous. In the case p > 1, we have that C∞
0 (Ω) is dense

in Lp′

(Ω) (this follows from 4.15(3) as p′ < ∞), and so F can be uniquely
extended to Lp′

(Ω), as a functional F ∈ Lp′

(Ω)′ (see E5.3). Hence it follows

from 6.12 that there exists an f̃ ∈ Lp(Ω) with

F (g) =

∫
Ω

gf̃ dLn for all g ∈ Lp′

(Ω).

Since ∫
Ω

ζf dLn =

∫
Ω

ζf̃ dLn for all ζ ∈ C∞
0 (Ω),

f = f̃ almost everywhere in Ω (see 4.22). In the case p = 1, set

g(x) :=

⎧⎪⎨⎪⎩
f(x)

|f(x)| , if f(x) �= 0,

0, otherwise.

Let D ⊂⊂ Ω and let (ϕε)ε>0 be a standard Dirac sequence. Then ζε :=

ϕε ∗
(
XDg
)
∈ C∞

0 (Ω) for sufficiently small ε > 0, and∣∣∣∣∫
Ω

ζεf dLn

∣∣∣∣ ≤ C‖ζε‖L∞ ≤ C .

Letting ε → 0, we obtain from Lebesgue’s convergence theorem (as ζε → XDg
almost everywhere for a subsequence ε → 0) that∫

D

|f | dLn =

∣∣∣∣∫
D

gf dLn

∣∣∣∣ ≤ C ,

where the constant C is independent of D. Hence f ∈ L1(Ω). ��

Hahn-Banach’s theorem

For the characterization of C0(S)′ we will use the fact that functionals on
C0(S) can be extended norm-preservingly to B(S) (see the proof 6.23). The
existence of such extensions in more general situations is guaranteed by the
following two theorems.
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6.14 Hahn-Banach theorem. Let X be an IR-vector space and let the
following hold:

(1) p : X → IR is sublinear, i.e. for all x, y ∈ X and α ∈ IR,

p(x+ y) ≤ p(x) + p(y) and p(αx) = αp(x) for α ≥ 0.

(2) f : Y → IR is linear with a subspace Y ⊂ X.

(3) f(x) ≤ p(x) for x ∈ Y .

Then there exists a linear map F : X → IR such that

F (x) = f(x) for x ∈ Y and F (x) ≤ p(x) for x ∈ X.

Proof. We consider the class of all extensions of f , that is,

M :=
{
(Z, g) ; Z subspace, Y ⊂ Z ⊂ X,

g : Z → IR linear, g = f on Y , g ≤ p on Z
}
.

Consider an arbitrary (Z, g) ∈ M with Z �= X and a z0 ∈ X \ Z. We want
to extend g at least to

Z0 := span(Z ∪ {z0}) = Z ⊕ span{z0} .

We attempt the ansatz

g0(z + αz0) := g(z) + cα for z ∈ Z and α ∈ IR.

Here c still needs to be suitably chosen, so that (Z0, g0) ∈ M. Clearly, g0 is
linear on Z0. Moreover, g0 = g = f on Y . It remains to show that

g(z) + cα ≤ p(z + αz0) for z ∈ Z and α ∈ IR.

Since g ≤ p on Z, this is satisfied for α = 0. For α > 0 the inequality is
equivalent to

c ≤ 1
α

(
p(z + αz0) − g(z)

)
= p
(
z
α + z0

)
− g
(
z
α

)
and for α < 0 to

c ≥ 1
α

(
p(z + αz0) − g(z)

)
= g
(
− z

α

)
− p
(
− z

α − z0
)
.

Hence we need to find a number c such that

sup
z∈Z

(g(z) − p(z − z0)) ≤ c ≤ inf
z∈Z

(p(z + z0) − g(z)) .

This is possible, because for z, z′ ∈ Z we have

g(z′) + g(z) = g(z′ + z) ≤ p(z′ + z)

= p(z′ − z0 + z + z0) ≤ p(z′ − z0) + p(z + z0) ,

and hence
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g(z′) − p(z′ − z0) ≤ p(z + z0) − g(z) .

We now hope that this extension procedure yields an (X,F ) ∈ M. To this
end, we make use of

Zorn’s lemma: Let (M,≤) be a nonempty partially ordered set (i.e. if
m1 ≤ m2 and m2 ≤ m3, then m1 ≤ m3, and m ≤ m for all m ∈ M) such that
every totally ordered subset N (i.e. for all n1, n2 ∈ N it holds that n1 ≤ n2

or n2 ≤ n1) has an upper bound (i.e. there exists an m ∈ M with n ≤ m
for all n ∈ N ). Then M contains a maximal element (i.e. there exists an
m0 ∈ M such that for all m ∈ M it holds that m0 ≤ m =⇒ m ≤ m0).

In our case, an order is defined by

(Z1, g1) ≤ (Z2, g2) :⇐⇒ Z1 ⊂ Z2 and g2 = g1 on Z1.

We need to verify the assumptions of Zorn’s lemma. Let N ⊂ M be totally
ordered and define

Z∗ :=
⋃

(Z,g)∈N
Z ,

g∗(x) := g(x) , if x ∈ Z and (Z, g) ∈ N .

We need to show that (Z∗, g∗) ∈ M. Now Y ⊂ Z∗ ⊂ X, and g∗ is a well
defined function, because

x ∈ Z1 ∩ Z2 , (Z1, g1) ∈ N , (Z2, g2) ∈ N
=⇒ (Z1, g1) ≤ (Z2, g2) or (Z2, g2) ≤ (Z1, g1) (total order of N )

=⇒ Z1 ⊂ Z2 and g2 = g1 on Z1 (in the first case)

=⇒ g2(x) = g1(x) (as x ∈ Z1) .

The properties g∗ = f on Y and g∗ ≤ p on Z∗ carry over. The linearity of Z∗
and g∗ can be seen as follows:

x, y ∈ Z∗ , α ∈ IR

=⇒ There exist (Zx, gx) ∈ N , (Zy, gy) ∈ N with x ∈ Zx and y ∈ Zy

=⇒ (Zx, gx) ≤ (Zy, gy) or (Zy, gy) ≤ (Zx, gx)

=⇒ x, y ∈ Zξ with ξ = y in the first and ξ = x in the second case,

hence also x+ αy ∈ Zξ ⊂ Z∗ and

g∗(x+ αy) = gξ(x+ αy) = gξ(x) + αgξ(y) = g∗(x) + αg∗(y) .

Hence it follows from Zorn’s lemma that M has a maximal element (Z, g). If
we assume that Z �= X, then the extension procedure from the beginning of
the proof yields a (Z0, g0) ∈ M with

(Z, g) ≤ (Z0, g0) and Z0 �= Z ,



182 6 Linear functionals

which contradicts the maximality of (Z, g). ��

The Hahn-Banach theorem has the following version for linear functionals.

6.15 Hahn-Banach theorem (for linear functionals). Let X be a
normed IK-vector space and Y be a subspace (with the norm of X !). Then
for y′ ∈ Y ′ there exists an x′ ∈ X ′ with

x′ = y′ on Y and ‖x′‖X′ = ‖y′‖Y ′ .

Proof for IK = IR. Choose

p(x) := ‖y′‖Y ′‖x‖X for x ∈ X

in 6.14, so that for y ∈ Y

y′(y) ≤ ‖y′‖Y ′‖y‖Y = ‖y′‖Y ′‖y‖X = p(y) .

Then, by 6.14, there exists a linear map x′ : X → IR with

x′ = y′ on Y and x′ ≤ p on X.

The second property implies that

±x′(x) = x′(±x) ≤ p(±x) = ‖y′‖Y ′‖x‖X ,

i.e. x′ ∈ X ′ with ‖x′‖X′ ≤ ‖y′‖Y ′ , and the first property implies that

‖y′‖Y ′ = sup
y ∈ Y

‖y‖X ≤ 1

|y′(y)| = sup
y ∈ Y

‖y‖X ≤ 1

|x′(y)| ≤ ‖x′‖X′ .

��

Proof for IK = C. Consider X and Y as normed IR-vector spaces XIR and
YIR (i.e. scalar multiplication is defined only for real numbers, but the norms
remain the same). Let X ′

IR and Y ′
IR be the corresponding dual spaces. For

y′ ∈ Y ′ it then holds that

y′re := Rey′ ∈ Y ′
IR with ‖y′re‖Y ′

IR
≤ ‖y′‖Y ′

and
y′(x) = Rey′(x) + iImy′(x) = y′re(x) − iy′re(ix) .

It follows from the real case treated above that there exists an extension x′
re

of y′re to XIR with ‖x′
re‖X′

IR
= ‖y′re‖Y ′

IR
. Define

x′(x) := x′
re(x) − ix′

re(ix) .

Then x′ = y′ on Y , and x′ : X → C is C-linear, because x′ is IR-linear and
for x ∈ X we have that
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x′(ix) = x′
re(ix) − ix′

re(−x) = x′
re(ix) + ix′

re(x)

= i (−ix′
re(ix) + x′

re(x)) = ix′(x) .

Now let x ∈ X. Then x′(x) ∈ C can be written as x′(x) = reiθ with θ ∈ IR
and r ≥ 0. Therefore,

|x′(x)| = r = Re
(
e−iθx′(x)

)
= Rex′(e−iθx)

= x′
re(e

−iθx) ≤ ‖x′
re‖X′

IR
‖x‖X′ ,

and we recall that ‖x′
re‖X′

IR
= ‖y′re‖Y ′

IR
≤ ‖y′‖Y ′ . This shows that x′ ∈ X ′

with ‖x′‖X′ ≤ ‖y′‖Y ′ . As x′ is an extension of y′, it must also hold that
‖x′‖X′ ≥ ‖y′‖Y ′ . ��

As an application, we show that points in a normed space can be separated
from subspaces with the help of linear functionals (see the generalization of
suspaces to closed convex sets in 8.12). This separation property is often used
in order to show that a given subspace is dense in the ambient space X.

6.16 Theorem. Let Y be a closed subspace of the normed space X and let
x0 /∈ Y . Then there exists an x′ ∈ X ′ with

x′ = 0 on Y , ‖x′‖X′ = 1 , x′(x0) = dist(x0, Y ) .

Remark: Then there also exists an x′ ∈ X ′ with

x′ = 0 on Y , ‖x′‖X′ =
1

dist(x0, Y )
, x′(x0) = 1 .

Proof. On

Y0 := span (Y ∪ {x0}) = Y ⊕ span{x0}

define

y′0(y + αx0) := α · dist(x0, Y ) for y ∈ Y and α ∈ IK.

Then y′0 : Y0 → IK is linear and y′0 = 0 on Y . We want to show that y′0 ∈ Y ′
0

with ‖y′0‖Y ′
0
= 1, as 6.15 then yields the desired result.

Let y ∈ Y and α �= 0. Then

dist(x0, Y ) ≤
∥∥∥∥x0 − −y

α

∥∥∥∥
X

,

and so

|y′0(y + αx0)| ≤ |α|
∥∥∥∥x0 − −y

α

∥∥∥∥
X

= ‖αx0 + y‖X ,

and hence y0 ∈ Y ′
0 with ‖y′0‖Y ′

0
≤ 1. The closedness of Y yields that

dist(x0, Y ) > 0, and so for ε > 0 we can choose a yε ∈ Y such that
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‖x0 − yε‖X ≤ (1 + ε)dist(x0, Y ) .

Then

y′0(x0 − yε) = dist(x0, Y ) ≥ 1
1+ε‖x0 − yε‖X ,

which, since x0 − yε �= 0, implies that ‖y′0‖Y ′
0
≥ 1

1+ε → 1 as ε ↘ 0. ��

6.17 Corollaries. Let X be a normed space and let x0 ∈ X. Then:

(1) If x0 �= 0, then there exists an x′
0 ∈ X ′ with

‖x′
0‖X′ = 1 and x′

0(x0) = ‖x0‖X .

(2) If x′(x0) = 0 for all x′ ∈ X ′, then x0 = 0.

(3) Setting Tx′ := x′(x0) for x′ ∈ X ′ defines an element T of L (X ′; IK) =
(X ′)′, the bidual space (see 8.2), with ‖T ‖ = ‖x0‖X .

Proof. (1) is the result in 6.16 with Y = {0}, and (2) follows from (1).
In (3) we have that |Tx′ | ≤ ‖x′‖X′‖x0‖X , and if x0 �= 0 it holds that
|Tx′

0 | = ‖x0‖X with x′
0 as in (1). Hence ‖T ‖ = ‖x0‖X . ��

6.18 Remark. The result 6.16 may also be interpreted as a generalization
of the projection theorem for Hilbert spaces in the linear case. To see this,
assume that X is a Hilbert space and define

x′(x) :=

(
x ,

x0 − Px0

‖x0 − Px0‖

)
X

,

where P is the orthogonal projection onto Y from 4.3. It follows from 4.4(2)
that x′ = 0 on Y and hence

x′(x0) = x′(x0 − Px0) = ‖x0 − Px0‖X ,

and moreover |x′(x)| ≤ ‖x‖X . Hence x′ has all the properties in 6.16.

Riesz-Radon’s theorem

As we have seen in 6.12 the dual space of the function space Lp(μ), if 1 ≤
p < ∞, is isomorphic to a space that is again a function space. We will now
show that the dual space of C0(S) is isomorphic to a space of measures. To
this end, we need the following definitions (the notations are the same as in
[DunfordSchwartz : IV 2]).

6.19 Definition (Borel sets). Let X be a topological space. The set of
Borel sets is defined as the smallest σ-algebra that contains the closed sub-
sets of X (or, equivalently, the open subsets of X).
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6.20 Spaces of additive measures. Let S ⊂ IRn be equipped with the
relative topology of IRn (see 2.11). Let B0 be the smallest Boolean algebra
that contains the closed (or, equivalently, open) subsets of S, and let B1 be
the set of Borel sets of S, i.e. the smallest σ-algebra containing B0. Then

ba(S; IKm) := {λ : B0 → IKm ; λ is additive and ‖λ‖var < ∞} ,
ca(S; IKm) := {λ : B1 → IKm ; λ is σ-additive and ‖λ‖var < ∞}

are IK-vector spaces and, equipped with the total variation as the norm, also
Banach spaces. In the definition, ba stands for “bounded additive” and ca
stands for “countably additive”. As usual, we set ba(S) := ba(S; IK) and
ca(S) := ca(S; IK).

Proof. We prove the completeness. Let (λk)k∈IN be a Cauchy sequence in
ba(S; IKm). Then it holds for E ∈ B0 that

|λl(E) − λk(E)| ≤ ‖λl − λk‖var → 0 as k, l → ∞,

and so there exists

λ(E) := lim
l→∞

λl(E) for E ∈ B0

and the additivity carries over to λ. In addition,

‖λ − λk‖var ≤ lim inf
l→∞

‖λl − λk‖var −→ 0 as k → ∞.

Analogously, for Cauchy sequences in ca(S; IKm) there exists a limit λ on B1.
If Ei ∈ B1 with Ei ⊃ Ei+1 and

⋂
i∈IN Ei = ∅, then for l ≥ k and as l → ∞

|λ(Ei)| ←− |λl(Ei)| ≤ |λk(Ei)|︸ ︷︷ ︸
→ 0 as i → ∞
for every k

+ ‖λl − λk‖var︸ ︷︷ ︸
→ 0 as l ≥ k → ∞

,

i.e. λ is σ-additive. ��

6.21 Spaces of regular measures. Let S ⊂ IRn, B0, and B1 be as in 6.20.
A measure λ in ba(S; IKm) or ca(S; IKm) is called regular if for all E ∈ B0

or E ∈ B1, respectively,

inf
{
|λ|(U \ K) ; K ⊂ E ⊂ U, K is closed in S

and U is open in S
}

= 0 .

Here |λ| is the variational measure from 6.10 and in S we consider the relative
topology from 2.11, i.e. a set U ⊂ S is called open in S if it is of the form
U = S ∩ V for an open set V ⊂ IRn, and a set K ⊂ S is called closed in S if
S \ K is open in S. We define
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rba(S; IKm) := {λ ∈ ba(S; IKm) ; λ is regular} ,
rca(S; IKm) := {λ ∈ ca(S; IKm) ; λ is regular} .

These sets are IK-vector spaces and, equipped with the total variation as the
norm, also Banach spaces. In the definition, rba stands for “regular bounded
additive” and rca stands for “regular countably additive”. As usual, we set
rba(S) := rba(S; IK) and rca(S) := rca(S; IK).

Proof. For the completeness we need to show that for regular measures λk it
follows from λk → λ in ba(S; IKm) as k → ∞ that λ is also regular. To prove
this we note that for K ⊂ E ⊂ U , as in the definition of regularity,

|λ|(U \K) ≤ |λk|(U \ K) + ‖λ − λk‖var .

The first term on the right-hand side can be made arbitrarily small for every
k, by choosing U and K appropriately. ��

In the following we need the fact that for regular measures μ : B1 →
[0,∞], continuous functions are integrable, i.e. that they lie in L1(μ). The
proof of this result is the construction of the Riemann integral, which for our
purposes we give here for vector-valued measures λ : B0 → IKm.

6.22 Integral of continuous functions (Riemann integral). Let B0 be
as in 6.20. In addition, assume that λ : B0 → IKm is additive with ‖λ‖var <
∞. For step functions

f =
k∑

i=1

XEi
αi , k ∈ IN , αi ∈ IK , Ei ∈ B0 ,

it holds that ∫
S

f dλ :=

k∑
i=1

αiλ(Ei)

is independent of the representation of f . Moreover, we have that (choose Ei

in the representation of f disjoint)∣∣∣∣∫
S

f dλ

∣∣∣∣ ≤ ‖f ‖sup · ‖λ‖var .

Every continuous and bounded function f : S → IK can be approximated by
such step functions in the supremum norm. To see this, cover the bounded
set f(S) with open sets Ui, i = 1, . . . , l, with diameter ≤ 1

k . Then one can
construct another cover by (cf. the proof of A3.19(2))

Vi := Ui \
⋃
j<i

Uj for i = 1, . . . , l,
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where now the sets Vi are pairwise disjoint. In addition,

Ei := f−1(Vi) = f−1(Ui) \
⋃
j<i

f−1(Uj) ∈ B0 .

On choosing αi ∈ Vi, if Vi is nonempty, it follows that∥∥∥∥∥
l∑

i=1

αiXEi
− f

∥∥∥∥∥
sup

≤ 1

k
,

which proves the desired approximation property.
Now, if (fk)k∈IN is a sequence of step functions that converges uniformly

to f , then it follows that∣∣∣∣∫
S

fk dλ −
∫
S

fl dλ

∣∣∣∣ ≤ ‖fk − fl‖sup · ‖λ‖var −→ 0 as k, l → ∞.

Hence there exists ∫
S

f dλ := lim
k→∞

∫
S

fk dλ ,

and the limit is independent of the choice of approximating sequence (fk)k∈IN.

6.23 Riesz-Radon theorem (Dual space of C0). Let S ⊂ IRn be com-
pact. Then

J(ν)(f) :=

∫
S

f dν

defines a linear isometric isomorphism

J : rca(S) → C0(S)
′
.

Here rca(S) is the space defined in 6.21 and the integral for continuous func-
tions is defined as in 6.22.

Proof. For ν ∈ rca(S) and f ∈ C0(S) it follows from the definition of the
Riemann integral that

|J(ν)(f)| =
∣∣∣∣∫

S

f dν

∣∣∣∣ ≤ ‖f ‖sup · ‖ν‖var ,

and hence J is continuous. Moreover, J is isometric. To see this, note that
for ν ∈ rca(S) and ε > 0 there exists a partitioning of S into Borel sets Ei,
i = 1, . . . ,m, with

‖ν‖var ≤ ε+

m∑
i=1

|ν(Ei)| .

As ν is regular, there exist compact sets Ki ⊂ Ei with |ν|(Ei \ Ki) ≤ ε
m .

Then Bδ(Ki) are disjoint sets for sufficiently small δ > 0, and

|ν|
(
S ∩ Bδ(Ki) \Ki

)
→ 0 as δ ↘ 0,

which follows once again from the regularity of ν. On defining
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fi(x) := max
(
1− 1

δdist(x,Ki), 0
)

and

σi :=

⎧⎪⎨⎪⎩
ν(Ki)

|ν(Ki)|
, if ν(Ki) �= 0,

0, otherwise,

it holds, if δ is sufficiently small, that∥∥∥∥∥
m∑
i=1

σifi

∥∥∥∥∥
sup

≤ 1

and ∣∣∣∣∣J(ν)(
m∑
i=1

σifi

)∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

σi

∫
S

fi dν

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

(
|ν(Ki)| + σi

∫
S∩Bδ(Ki)\Ki

fi dν
)∣∣∣∣∣

≥
m∑
i=1

|ν(Ki)| −
m∑
i=1

|ν| (S ∩ Bδ(Ki) \Ki)

≥ ‖ν‖var − 2ε −
m∑
i=1

|ν| (S ∩ Bδ(Ki) \ Ki)

−→ ‖ν‖var on letting δ ↘ 0 and then ε ↘ 0.

Now the crucial step is to show that for F ∈ C0(S)
′
there exists a ν ∈ rca(S)

with J(ν) = F . It follows from the Hahn-Banach theorem that F can be
extended norm-preservingly to F ∈ B(S)′ (B(S) is the space defined in 3.1).
Define

λ(E) := F (XE) for E ⊂ S.

Then λ is additive and ‖λ‖var ≤ ‖F ‖B(S)′ , which follows as in (6-15). There-
fore, by the definition of the Riemann integral,

F (f) =

∫
S

f dλ

for all f ∈ C0(S). Hence we want to find a ν ∈ rca(S) such that∫
S

f dν =

∫
S

f dλ for all f ∈ C0(S).

The proof that such a ν exists is given in Appendix A6 (see A6.6). ��

With the help of the result in theorem 6.23, we can provide a distributional
characterization of regular measures.
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6.24 Corollary. Let Ω ⊂ IRn be open and bounded, let C ≥ 0 and let

T : C0
0 (Ω) → IK be linear with |T (ζ)| ≤ C · ‖ζ‖sup for all ζ ∈ C0

0 (Ω) .

Then there exists a unique λ ∈ rca(Ω) with

‖λ‖var = sup
{
|T (ζ)| ; ζ ∈ C0

0 (Ω), ‖ζ‖sup = 1
}

≤ C ,

T (ζ) =

∫
Ω

ζ dλ for all ζ ∈ C0
0 (Ω) .

Remark: It is sufficient to assume that

T ∈ D ′(Ω) with |T (ζ)| ≤ C · ‖ζ‖sup for all ζ ∈ C∞
0 (Ω) .

That is because T can then be uniquely extended to a linear map on C0
0 (Ω),

which satisfies the above estimate (approximate functions in C0
0 (Ω) by means

of convolutions).

Proof. Consider the open sets

Ωm :=
{
x ∈ Ω ; dist(x, ∂Ω) > 1

m

}
.

For m ≥ m0, with m0 sufficiently large, Ωm is nonempty and Sm := Ωm ⊂
Ωm+1 is compact. For m > m0 choose ηm ∈ C∞

0 (Ωm) with 0 ≤ ηm ≤ 1 and
ηm = 1 on Sm−1. Then

Tm(g) := T (ηmg) for g ∈ C0(Sm)

defines a Tm ∈ C0(Sm)′ with

‖Tm‖ ≤ CT := sup{|T (ζ)| ; ζ ∈ C0
0 (Ω), ‖ζ‖sup = 1} ≤ C .

Hence it follows from 6.23 that there exist uniquely determined νm ∈ rca(Sm)
with ‖νm‖var ≤ CT and

Tm(g) =

∫
Sm

g dνm for g ∈ C0(Sm).

For ζ ∈ C0
0 (Ωm) and l > m it holds that ηlζ = ζ (here we set ζ = 0 outside

of Ωm), and so ∫
Sm

ζ dνl =

∫
Sl

ζ dνl = T (ηlζ) = T (ζ)

independently of l. We claim that

νl(E) is independent of l > m for Borel sets E ⊂ Sm−1. (6-18)
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Indeed, let K ⊂ Sm−1 be compact. Then ζδ(x) := max
(
1− 1

δdist(x,K), 0
)
for

small δ > 0 defines a ζδ ∈ C0
0 (Ωm). Since νl is a regular measure, |νl|(Bδ(K)\

K) ↘ 0 as δ ↘ 0, and hence∫
Sm

ζδ dνl −→ νl(K) as δ ↘ 0,

i.e. (6-18) holds for compact sets in Sm−1. The regularity of νl then implies
that (6-18) holds for all Borel sets. For Borel sets E with E ⊂ Ω we have
that E ⊂ Sm for some m ∈ IN, and it follows from (6-18) that

λ(E) := νl(E) for l,m ∈ IN with E ⊂ Sm, l ≥ m+ 2

is well defined. For ζ ∈ C0
0 (Ω) it holds that supp(ζ) ⊂ Ωm for some m ∈ IN

and

T (ζ) =

∫
Sm

ζ dλ

independently of m.
We need to show that λ can be extended to a λ ∈ rca(Ω). If Ei, i =

1, . . . , k, are pairwise disjoint with Ei ⊂ Ω, then, as above, there exists an m
with Ei ⊂ Sm for i = 1, . . . , k and

k∑
i=1

|λ(Ei)| =
k∑

i=1

|νm+2(Ei)| ≤ ‖νm+2‖var ≤ CT .

In addition, for every Borel set E ⊂ Ω the limit

λ(E) := lim
m→∞

λ(E ∩ Sm) (6-19)

exists. To see this, let Em := E∩Sm\Sm−1 for m > m0 and Em0
:= E∩Sm0

.
Then

E ∩ Sm =

m⋃
i=m0

Ei , λ(E ∩ Sm) =

m∑
i=m0

λ(Ei)

and, as shown above,
m∑

i=m0

|λ(Ei)| ≤ CT .

Hence (6-19) defines an extension of λ to the Borel sets of Ω. Then it easily
follows that λ ∈ rca(Ω) with ‖λ‖var ≤ CT . From the representation of T it
then easily follows that CT ≤ ‖λ‖var. ��

As an application of theorem 6.23 (and in particular of 6.24), we con-
sider the space BV (Ω). This space plays an important role in the functional
analysis treatment of certain geometric differential equations, because it re-
places the space W 1,p(Ω) for p = 1, which is not reflexive (see 8.11(4)). The
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functions in BV (Ω) have the advantage that their weak derivatives (see 6.25,
below) can be interpreted as elements of a dual space. For existence proofs
in reflexive spaces one employs theorem 8.10, however in the space BV (Ω)
one can apply theorem 8.5.

6.25 Functions of bounded variation. Let Ω ⊂ IRn be open and
bounded. Consider pairs (f, λ) with f ∈ L1(Ω) and λ ∈ rca(Ω; IKn) such
that the following rule of integration by parts holds:∫

Ω

∂iζ · f dLn +

∫
Ω

ζ dλi = 0 for all ζ ∈ C∞
0 (Ω) (6-20)

for i = 1, . . . , n. This is equivalent to

∂i[f ] = [λi] in D
′(Ω)

for i = 1, . . . , n.

Notation: The λi-integral is defined in 6.22, while the distributions [f ] and
[λi] are defined in 5.15.

In the spirit of the analogous definition in Sobolev spaces, we call ∂if := λi

the weak derivative of f . We have that:

(1) The set

BV (Ω) :=
{
f ∈ L1(Ω) ; there exists a λ ∈ rca(Ω; IKn),

such that (6-20) holds
}

of functions of bounded variation is a IK-vector space, and it becomes a
Banach space with the norm

‖f ‖BV (Ω) := ‖f ‖L1(Ω) + ‖λ‖var .

(2) W 1,1(Ω) ⊂ BV (Ω) with a continuous inclusion.

(3) W 1,1(Ω) is a proper subset of BV (Ω).

Proof (2). For f ∈ W 1,1(Ω) the corresponding measure λ ∈ rca(Ω; IKn) is
given by

λ(E) :=

∫
E

∇f dLn .

Moreover, ‖λ‖var ≤ ‖∇f ‖L1(Ω). ��

Proof (3). The fact that the space BV (Ω) is larger than W 1,1(Ω) follows
from the existence of measures that have no representation as a function. For
instance, for Ω = ]− 1, 1[ ⊂ IR the Heaviside function

f(x) :=

{
1 for x > 0,

0 for x < 0,
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lies in BV (]− 1, 1[) with∫ 1

−1

ζ ′f dL1 = −ζ(0) = −
∫ 1

−1

ζ dδ0 ,

i.e. the weak derivative is the Dirac measure δ0 at the point 0, and so

[f ]′ = [δ0] in D ′(Ω).

This example can be generalized to an arbitrary Ω. ��

The following theorem yields an equivalent definition of the space BV (Ω),
which is formulated with the help of the distribution [f ] ∈ D ′(Ω) for
f ∈ L1(Ω) (see 5.15). An additional possible definition in the case n = 1
is presented in E6.9.

6.26 Theorem. Let Ω ⊂ IRn be open and bounded, and for f ∈ L1(Ω) let

‖f ‖grad := sup
{ ∣∣∣∣∫

Ω

f div g dLn

∣∣∣∣ ; g ∈ C∞
0 (Ω; IKn) with

|g(x)| ≤ 1 for x ∈ Ω
}

∈ [0,∞] .

Here the divergence of a vector field is defined by

div v :=

n∑
i=1

∂ivi for v ∈ C1(Ω; IKn).

Then
BV (Ω) =

{
f ∈ L1(Ω) ; ‖f ‖grad < ∞

}
and for f ∈ BV (Ω) with ∇f := (∂if)i=1,...,n ∈ rca(Ω; IKn),

‖f ‖grad = ‖∇f ‖var.

Proof. For g ∈ C0
0 (Ω; IKn) let∫

Ω

g • dλ :=

n∑
i=1

∫
Ω

gi dλi , so that

∣∣∣∣∫
Ω

g • dλ

∣∣∣∣ ≤ ‖g‖sup · ‖λ‖var ,

which follows by approximating g with step functions as in 6.22.
For f ∈ BV (Ω) with λi := ∂if as in 6.25 and g as in the above definition

of ‖f ‖grad it then holds that∣∣∣∣∫
Ω

f div g dLn

∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

∫
Ω

gi dλi

∣∣∣∣∣ =
∣∣∣∣∫

Ω

g • dλ

∣∣∣∣ ≤ ‖λ‖var ,

and so ‖f ‖grad ≤ ‖λ‖var.
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Now let f ∈ L1(Ω) with ‖f ‖grad < ∞ and put

Ti(ζ) := −
∫
Ω

f∂iζ dL
n = −

∫
Ω

fdiv (ζei) dL
n for ζ ∈ C∞

0 (Ω).

By the definition of ‖f ‖grad it holds that |Ti(ζ)| ≤ ‖ζ‖sup · ‖f ‖grad. This
estimate shows that Ti can be uniquely extended onto C0

0 (Ω). Hence, by
6.24, there exists a λi ∈ rca(Ω) with

Ti(ζ) =

∫
Ω

ζ dλi for ζ ∈ C0
0 (Ω).

This shows that f ∈ BV (Ω) with ∂if = λi. On setting λ := (λi)i=1,...,n it
then holds for g ∈ C∞

0 (Ω; IKn) that∫
Ω

g • dλ =
n∑

i=1

∫
Ω

gi dλi =
n∑

i=1

Ti(gi) = −
∫
Ω

f div (g) dLn ,

and so ∣∣∣∣∫
Ω

g • dλ

∣∣∣∣ ≤ ‖g‖sup · ‖f ‖grad .

Similarly to the proof of the isometry property in 6.23, this implies the in-
equality ‖λ‖var ≤ ‖f ‖grad. ��

E6 Exercises

E6.1 Dual norm on IRn. Let ‖·‖ be a norm on IRn, i.e. we consider the
normed space (IRn, ‖·‖).
(1) Show that

J(x)(y) :=
n∑

i=1

yixi for x, y ∈ IRn

defines a linear map J : (IRn, ‖·‖) → (IRn, ‖·‖)′.
(2) Show that

‖x‖′ := ‖J(x)‖ for x ∈ IRn

defines a norm on IRn (we call it the dual norm to ‖·‖).
(3) J : (IRn, ‖·‖′) → (IRn, ‖·‖)′ is an isometric isomorphism.

(4) For 1 ≤ p ≤ ∞, find the dual norm to the p-norm in 2.5.
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E6.2 Dual space of the cross product. Let X1 and X2 be normed spaces
and

J : X ′
1 × X ′

2 → (X1 × X2)
′ ,

J
(
(x′

1, x
′
2)
)(
(x1, x2)

)
:= x′

1x1 + x′
2x2 .

Show that J is an isometric isomorphism if the norms in X1×X2 and X ′
1×X ′

2

are defined as in E4.12(1) with respect to |·| and |·|′, respectively.
Remark: Here |·|′ is the dual norm to |·| from E6.1(2).
Show that this dual norm is also a monotone norm on IR2.

E6.3 Integral equation. Let K ∈ L2(Ω × Ω) and let f ∈ L2(Ω), where
Ω ⊂ IRn is Lebesgue measurable. For λ ∈ IR consider the integral equation∫

Ω

K(x, y)u(y) dy = λu(x) + f(x) for almost all x ∈ Ω.

Show that for λ > ‖K‖L2(Ω×Ω) there exists a unique solution u ∈ L2(Ω).

Solution. It follows from 5.12 that

(Tu)(x) :=

∫
Ω

K(x, y)u(y) dy

defines an operator T ∈ L
(
L2(Ω)

)
with ‖T ‖

L (L2(Ω)) ≤ ‖K‖L2(Ω×Ω). Then

also A := λId− T ∈ L
(
L2(Ω)

)
and for u ∈ L2(Ω)

Re (u , Au)L2 = λ‖u‖2L2 − Re (u , Tu)L2

≥ λ‖u‖2L2 − ‖T ‖
L (L2(Ω)) · ‖u‖2L2

≥
(
λ − ‖K‖L2(Ω×Ω)︸ ︷︷ ︸

=:c0>0

)
‖u‖2L2 .

It follows from the Lax-Milgram theorem (see the equivalent result 6.3(3))
that A is invertible, and so u := A−1(−f) is the solution of the integral
equation. ��

E6.4 Examples of elements from C0([0, 1])′. Show that the following
maps T are linear and continuous on C0([0, 1]) and calculate their norm.

(1) T : C0([0, 1]) → C0([0, 1]), for a given g ∈ C0([0, 1]) defined by

(Tf)(x) := g(x) · f(x) .

(2) T : C0([0, 1]) → IK, with αi ∈ IR and pairwise distinct xi ∈ [0, 1],
i = 1, . . . ,m, defined by

Tf :=
∑m

i=1 αif(xi) .
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(3) T : C0([0, 1]) → IK, with points xi and coefficients αi as in (2), defined
by

Tf :=
∫ 1
0
f(x) dx −

∑m
i=1 αif(xi) .

Solution (1). On noting that |(Tf)(x)| ≤ ‖g‖sup‖f ‖sup, we have that T is

continuous, with ‖T ‖ ≤ ‖g‖sup. As ‖Tg‖sup =
∥∥g2∥∥

sup
= ‖g‖2sup, it holds

that ‖T ‖ ≥ ‖g‖sup. ��

Solution (2). Since

|Tf | ≤
∑m

i=1 |αi | · ‖f ‖sup ,

T is continuous, with ‖T ‖ ≤
∑m

i=1 |αi |. As the xi are pairwise distinct,
there exists a continuous function f with |f | ≤ 1 and f(xi) = sign(αi) for
i = 1, . . . ,m. Then

|Tf | =
∑m

i=1 |αi | , and so ‖T ‖ ≥
∑m

i=1 |αi | .
��

Solution (3). Since

|Tf | ≤
(
1 +
∑m

i=1 |αi |
)
‖f ‖sup ,

T is continuous, with ‖T ‖ ≤ 1 +
∑m

i=1 |αi |. Now for small δ > 0, chosen so
that δ < 1

2 |xi − xj | for all i �= j, consider the continuous function

f(x) :=

{
(1 − |x−xi |

δ )sign(−αi) +
|x−xi |

δ if x ∈ Iiδ for an i,

1 otherwise,

where Iiδ := [xi − δ, xi + δ] are disjoint intervals. Then ‖f ‖sup = 1 and

|Tf | =
∣∣∣∫ 10 (f(x) − 1) dx+ 1 +

∑m
i=1 |αi |

∣∣∣
=
∣∣∣∑m

i=1

(∫
[0,1]∩Iiδ

(f(x) − 1) dx
)
+ 1 +

∑m
i=1 |αi |

∣∣∣
≥ −4mδ + 1 +

∑m
i=1 |αi | ,

which shows that ‖T ‖ ≥ 1 +
∑m

i=1 |αi |.
Result: This means that no such quadrature formula can approximate the
integral over [0, 1] for all (!) continuous functions. ��

E6.5 Dual space of Cm(I). Let I ⊂ IR be a closed interval and let x0 ∈ I.
Then, for m ≥ 1,

J(ξ, ν)(f) :=

m∑
i=1

ξif
(i−1)(x0) +

∫
I

f (m) dν

defines an isomorphism J : IKm × rca(I) → Cm(I)′.



196 6 Linear functionals

Solution. It holds that

|J(ξ, ν)(f)| ≤
(

max
i=1,...,m

|ξi | + ‖ν‖var
)
‖f ‖Cm(I) ,

and hence J is continuous with ‖J ‖ ≤ 1 if on IKm × rca(I) we introduce the
norm

‖(ξ, ν)‖ := max
i=1,...,m

|ξi | + ‖ν‖var

and if the Cm-norm is defined as in 3.6. Now for every function f ∈ Cm(I)
we have

f(x) =

m−1∑
i=0

1

i !
f (i)(x0)(x − x0)

i +
1

(m − 1)!

∫ x

x0

f (m)(y)(x − y)m−1 dy .

This can be shown by induction on m. First, note that for m = 1 this is
the fundamental theorem of calculus. The following identity then proves the
formula inductively:∫ x

x0

f (m)(y)(x − y)m−1 dy = − 1

m

∫ x

x0

f (m)(y)
d

dy
(x − y)m dy

=
1

m
f (m)(x0)(x − x0)

m +
1

m

∫ x

x0

f (m+1)(y)(x − y)m dy .

Hence, for every F ∈ Cm(I)′ we have

Ff =

m−1∑
i=0

f (i)(x0)Fpi + FTf (m) ,

where

pi(x) :=
(x − x0)

i

i !
and Tg(x) :=

∫ x

x0

g(y)
(x − y)m−1

(m − 1)!
dy .

For i = 0, . . . ,m − 1 it follows inductively that

(Tg)(i)(x) =

∫ x

x0

g(y)
(x − y)m−1−i

(m − 1 − i)!
dy ,

since the integrand vanishes at the upper limit x. In particular,

(Tg)(m−1)(x) =

∫ x

x0

g(y) dy , and so (Tg)(m)(x) = g(x) .

Hence we have the estimate ‖Tg‖Cm(I) ≤ C · ‖g‖C0(I) and it follows that

T ∈ L (C0(I);Cm(I)), which implies that FT ∈ C0(I)′. By theorem 6.23,
there exists a ν ∈ rca(I) with ‖ν‖var = ‖FT ‖ and
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FTg =

∫
I

g dν for g ∈ C0(I).

Setting ξi := Fpi−1 for i = 1, . . . ,m, we have that

F = J(ξ, ν)

and
‖(ξ, ν)‖ ≤

(
max

i=0,...,m−1
‖pi‖Cm(I) + ‖T ‖

)
‖F ‖ .

This shows that J is surjective. If in addition we can show that J is injective,
then this estimate yields that the inverse J−1 is also continuous. If J(ξ, ν) =
0, then it holds for i = 1, . . . ,m that

0 = J(ξ, ν)pi−1 = ξi

and for all g ∈ C0(I) that

0 = J(ξ, ν)Tg =

∫
I

g dν ,

which yields ν = 0, thanks to theorem 6.23. Hence J is injective. ��

Remark: If

J1(ξ)(z) := z • ξ

is the isometry J1 : IKm → (IKm)′ from 6.1 and

J2(ν)(g) :=

∫
I

g dν

is the isometry J2 : rca(I) → C0(I)′ from 6.23, then it follows from E6.2 that

J0(ξ, ν)(z, g) := J1(ξ)(z) + J2(ν)(g)

defines an isomorphism J0 : IKm × rca(I) → (IKm × C0(I))′. Moreover,

S(f) :=
((

f (i)(x0)
)
i=0,...,m−1

, f (m)
)

defines a continuous linear map from Cm(I) to IKm × C0(I). With these
definitions

J = S′J0 ,

where S′ is the adjoint map of S (see 5.5(8)). Hence J being an isomorphism
is equivalent to the isomorphy of S′ and, by theorem 12.5, equivalent to the
isomorphy of S.
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E6.6 Dual space of c0 and c. Let

c0 :=
{
x ∈ �∞(IR) ; lim

i→∞
xi = 0

}
,

c :=
{
x ∈ �∞(IR) ; it exists lim

i→∞
xi

}
.

The sets c0 and c, equipped with the �∞(IR)-norm, are Banach spaces. Char-
acterize the dual spaces c′0 and c′.

Solution. For every y ∈ �1(IR), setting

J(y)(x) :=
∑∞

i=1 yixi for x ∈ c0

defines a J(y) ∈ c′0 with ‖J(y)‖ ≤ ‖y‖�1 , because

|J(y)(x)| ≤ supi |xi | ·
∑∞

i=1 |yi | = ‖x‖�∞‖y‖�1 .

If we define for n ∈ IN

xi :=

{
sign(yi) for i ≤ n,

0 for i > n,

then
∥∥(xi)i∈IN

∥∥
�∞

= 1 and

J(y)(x) =
∑

i≤n |yi | → ‖y‖�1 as n → ∞.

Hence J : �1(IR) → c′0 is isometric. Now let F ∈ c′0. Since for all x ∈ c0 we
have that

x =
∑∞

i=1 xiei in the �∞-norm,

it follows that

F (x) =
∑∞

i=1 xiFei ,

and so F = J(y), where yi := Fei, provided that y ∈ �1(IR). But this is
indeed the case, since∑

i≤n |yi | = F
(∑

i≤n sign(yi) ei

)
≤ ‖F ‖ ·

∥∥∥∑i≤n sign(yi) ei

∥∥∥
�∞

= ‖F ‖ .

This shows that J is an isomorphism. Then the dual space c′ can be charac-
terized as follows:

Sx := ( lim
i→∞

xi, x1 − lim
i→∞

xi, x2 − lim
i→∞

xi, . . .)

defines an S ∈ L (c; c0), and S is in fact an isomorphism, with

S−1x = (x2 + x1, x3 + x1, x4 + x1, . . .) .

Therefore

J̃(y) := J(y)S
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defines an isomorphism J̃ : �1(IR) → c′. ��

E6.7 Characterization of Sobolev functions. Let Ω ⊂ IRn be open. For
m ∈ IN ∪ {0} and 1 < p ≤ ∞ (if m = 0 then also for p = 1) it holds for
functions f : Ω → IR that

f ∈ Wm,p(Ω) ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f ∈ L1

loc(Ω) and there exists a constant C with∣∣∣∣∫
Ω

f∂sζ dLn

∣∣∣∣ ≤ C‖ζ‖Lp′ (Ω)

for all |s| ≤ m and all ζ ∈ C∞
0 (Ω) .

Here p′ is the dual exponent to p.

Note: For this characterization in the case m = 0, see 6.13. In case m > 0
we have to assume p > 1, see the space BV (Ω) and 6.26.

Solution ⇒.∣∣∣∣∫
Ω

f∂sζ dLn

∣∣∣∣ = ∣∣∣∣∫
Ω

∂sf · ζ dLn

∣∣∣∣ ≤ ‖∂sf ‖Lp(Ω)‖ζ‖Lp′ (Ω) .

��

Solution ⇐. It follows from 6.13 that f ∈ Lp(Ω). For 0 < |s| ≤ m let

Fs(ζ) :=

∫
Ω

f∂sζ dLn for ζ ∈ C∞
0 (Ω).

The estimate |Fs(ζ)| ≤ C‖ζ‖Lp′ (Ω) says, since p′ < ∞, that Fs can be

extended to a functional on Lp′

(Ω). Then it follows from 6.12, again since
p′ < ∞, that there exists a function fs ∈ Lp(Ω) with

Fs(g) =

∫
Ω

g · fs dLn for g ∈ Lp′

(Ω).

Therefore, ∫
Ω

f∂sζ dLn =

∫
Ω

fsζ dL
n for ζ ∈ C∞

0 (Ω),

which yields that f ∈ Wm,p(Ω) (with ∂sf = (−1)|s|fs). ��

E6.8 Positive functionals on C0

0
. Let Ω ⊂ IRn be open and let F :

C0
0 (Ω; IR) → IR be a linear map with

f ≥ 0 in Ω =⇒ F (f) ≥ 0 .

Then there exists a nonnegative locally bounded regular σ-additive measure
μ on the Borel sets of Ω (μ is then also called a Radon measure) such that

F (f) =

∫
Ω

f dμ for all f ∈ C0
0 (Ω; IR).
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Solution. Here IK = IR. Let D ⊂ Ω be open and bounded with

d := 1
2dist(D, ∂Ω) > 0 .

In addition, let S := Bd(D). Choose a cut-off function η ∈ C0
0 (Ω) (see 4.19)

with

0 ≤ η ≤ 1, η = 1 on D, η = 0 outside of Bd(D) ,

e.g.

η(x) = max(0, 1 − 1
ddist(x,D)) .

For nonnegative functions f ∈ C0(S) we then have that ηf ∈ C0
0 (Ω), with

0 ≤ ηf ≤ η sup
S

f ,

and so
0 ≤ F (ηf) ≤ F (η) · sup

S
f .

Then it follows for all f ∈ C0(S), on setting f+ := max(f, 0) and f− :=
max(−f, 0), that

|F (ηf)| =
∣∣F (ηf+) − F (ηf−)

∣∣
≤ (sup

S
f+ + sup

S
f−)F (η) ≤ ‖f ‖C0(S) · F (η) .

Hence f �→ F (ηf) is a continuous functional on C0(S), and 6.23 yields the
existence of a μ ∈ rca(S) with

F (ηf) =

∫
S

f dμ for all f ∈ C0(S).

For f ∈ C0
0 (D) it holds that ηf = f , and hence

F (f) =

∫
S

f dμ for all f ∈ C0
0 (D).

We need to show that μ ≥ 0. As μ is regular, it is sufficient to show that
μ(K) ≥ 0 for compact sets K ⊂ D. Now, define

ηε(x) := max
(
0, 1 − 1

εdist(x,K)
)
,

so we have ηε ∈ C0
0 (D) for sufficiently small ε. Since 1 ≥ ηε ↘ XK pointwise

as ε ↘ 0, we obtain that

0 ≤ F (ηε) =

∫
S

ηε dμ −→ μ(K) .

A similar argument shows that μ̃ = μ in D, if μ̃ is the measure in rca(S̃) for a

D̃ as above with D ⊂ D̃. Exhausting Ω with countably many (not necessarily
connected) domains D then yields the desired result. ��
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As an alternative to the space BV (Ω) in 6.25 we define the following:

E6.9 Functions of bounded variation. In the one-dimensional case we
define for S := [a, b] ⊂ IR

B̃V (S) :=
{
f : [a, b] → IK ; ‖f ‖

B̃V
:= |f(a)| + var(f, S) < ∞

}
,

where the variation of f on [a, b] is defined by

var(f, [a, b]) := sup
{ m∑

i=1

|f(ai) − f(ai−1)| ;

m ∈ IN, a = a0 < a1 < . . . < am = b
}
.

Show that for f ∈ B̃V (S) it holds that:

(1) For a ≤ x1 < x2 < x3 ≤ b,

var(f, [x1, x3]) = var(f, [x1, x2]) + var(f, [x2, x3]) .

(2) The following limits exist

f+(x) := limε↘0 f(x+ ε) for a ≤ x < b,

f−(x) := limε↘0 f(x − ε) for a < x ≤ b.

(3) Every function in B̃V (S) has at most countably many discontinuity
points.

Solution (1). The “≤” part in the identity follows from adding x2 to the
interval partitionings of [x1, x3]. ��

Solution (2). Noting that

|f(x)| ≤ |f(a)| + |f(x) − f(a)| ≤ ‖f ‖
B̃V

yields that f is bounded. Hence for x < b there exists a sequence (κi)i∈IN

with κi ↘ x for i → ∞, such that

ξ := lim
i→∞

f(κi)

exists. Now it follows from (1) that for all m∑m
i=1 var(f, [κi+1, κi]) = var(f, [κm+1, κ1]) ≤ ‖f ‖

B̃V
< ∞ ,

and hence ∑∞
i=1 var(f, [κi+1, κi]) ≤ ‖f ‖

B̃V
< ∞ ,
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which implies that var(f, [κi+1, κi]) → 0 as i → ∞. Hence also

sup
κi+1≤y≤κi

|f(y) − ξ |

≤ |f(κi) − ξ | + sup
κi+1≤y≤κi

|f(y) − f(κi)|

≤ |f(κi) − ξ | + var(f, [κi+1, κi]) → 0 as i → ∞,

which shows that ξ = f+(x). ��

Solution (3). If a < x1 < . . . < xm < b are discontinuity points of f , for
which |f+(xi) − f−(xi)| ≥ δ, then it holds for small ε → 0 that

var(f, S) ≥
∑m

i=1 |f(xi + ε) − f(xi − ε)|
→
∑m

i=1 |f+(xi) − f−(xi)| ≥ mδ ,

and so m ≤ δ−1‖f ‖
B̃V

. On choosing a null sequence for δ, it follows that the
discontinuity points of f are countable. ��

Riemann-Stieltjes integral: Let S = [a, b] ⊂ IR and f ∈ B̃V (S). Con-
sider for g ∈ C0(S) and for partitionings a = s0 < s1 < . . . < sn = b the
sum

n∑
i=1

g(si)
(
f(si) − f(si−1)

)
.

If (tj)j=1,...,m is a finer partitioning of S, say tki
= si with ki−1 < ki, then,

on setting δs := maxi |si − si−1 |,∣∣∣∣∣∣
n∑

i=1

g(si)
(
f(si) − f(si−1)

)
−

m∑
j=1

g(tj)
(
f(tj) − f(tj−1)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

ki∑
j=ki−1+1

(
g(si) − g(tj)

)(
f(tj) − f(tj−1)

)∣∣∣∣∣∣
≤ sup

|x1−x2 |≤δs

|g(x1) − g(x2)| · ‖f ‖
B̃V

−→ 0 as δs → 0.

Hence the Riemann-Stieltjes integral∫
S

g df := lim
δs→0

n∑
i=1

g(si)
(
f(si) − f(si−1)

)
exists for f ∈ B̃V (S) and g ∈ C0(S).

E6.10 Representation of the Riemann-Stieltjes integral. Suppose
that f ∈ B̃V (S). Then the following holds for the above defined integral.
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(1) There exists a λ ∈ rca(S) with∫
S

g df =

∫
S

g dλ for all g ∈ C0(S) .

(2) The measure λ in (1) satisfies for a ≤ x < b

λ([a, x]) = lim
ε↘0

(
f(x+ ε) − f(a)

)
.

Solution (1). The map

Tf (g) :=

∫
S

g df

satisfies ∣∣∣∣∫
S

g df

∣∣∣∣ ≤ ‖g‖C0 · ‖f ‖
B̃V

.

It follows that Tf ∈ C0(S)′ and hence theorem 6.23 yields the existence of a
λ ∈ rca(S) such that∫

S

g dλ = Tf (g) =

∫
S

g df for all g ∈ C0(S)

and ‖λ‖var = ‖Tf ‖C0(S)′ . ��

Solution (2). For a < x0 < b and sufficiently small ε > 0, consider the
continuous function

gε(x) :=

⎧⎪⎨⎪⎩
1 for x ≤ x0 + ε,

1− x−x0−ε
ε for x0 + ε ≤ x ≤ x0 + 2ε,

0 for x0 + 2ε ≤ x.

Then by the σ-additivity of |λ|∫
[a,x0+ε]

gε dλ = λ
(
[a, x0 + ε]

)
−→ λ

(
[a, x0]

)
as ε → 0

and the definition of the Riemann integral gives∣∣∣∣∫
S

gε dλ− λ
(
[a, x0 + ε]

)∣∣∣∣ ≤ |λ|
(
[x0 + ε, x0 + 2ε]

)
−→ 0

for a sequence ε → 0, since ‖λ‖var < ∞. Moreover, by the definition of the
Riemann-Stieltjes integral,∫

[a,x0+ε]

gε df = f(x0 + ε) − f(a)

which converges to limε↘0

(
f(x0 + ε) − f(a)

)
, and∣∣∣∣∫

S

gε df −
(
f(x0 + ε) − f(a)

)∣∣∣∣ ≤ var(f, [x0 + ε, x0 + 2ε]) −→ 0

as ε → 0. ��
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Consider the functions

fε(x) :=

{
1 for |x| ≤ ε,

0 otherwise,
f(x) :=

{
1 for x = 0,

0 otherwise.

Then fε → f pointwise as ε → 0 and f �= 0 in B̃V ([− 1, 1]). Also,

var(f, [− 1, 1]) = 2, but

∫
[−1,1]

g df = 0 for all g ∈ C0([− 1, 1]).

In fact, with respect to the L1-measure we have fε → 0 almost everywhere
as ε → 0. As a consequence one considers function spaces

BVrc([a, b]) :=
{
f ∈ B̃V ([a, b]) ; f(x) = f+(x) for a ≤ x < b,

f(b) = f−(b)
}
,

BVlc([a, b]) :=
{
f ∈ B̃V ([a, b]) ; f(a) = f+(a) ,

f(x) = f−(x) for a < x ≤ b
}
,

which consist of right-continuous and left-continuous functions, respectively.
Both spaces are bijective (isomorphic) to BV (]a, b[) in 6.25.

E6.11 Normalized BV functions. With S := [a, b] ⊂ IR and the nota-
tions as in E6.9, let

NBV (S) :=
{
f ∈ B̃V (S) ; f(x) = f+(x) for a ≤ x < b,

f(a) = 0 and f(b) = f−(b)
}

be the space of normalized functions of bounded variation, equipped
with the norm of B̃V (S). Show that

(Jλ)(x) := λ
(
[a, x]

)
for a ≤ x ≤ b

defines an isometric isomorphism

J : {λ ∈ rca([a, b]) ; λ({a}) = 0, λ({b}) = 0} → NBV ([a, b]) .

Solution. The σ-additivity of λ yields that f := Jλ is right-continuous. Since
λ({a}) = 0 it follows that f(a) = 0, and since λ({b}) = 0 the σ-additivity
gives that f(x) → f(b) as x ↗ b.

Moreover, for every partitioning a = a0 < a1 < . . . < am = b,

m∑
i=1

|f(ai) − f(ai−1)| =
m∑
i=1

∣∣λ(]ai−1, ai]
)∣∣ ≤ ‖λ‖var ,

i.e. ‖f ‖
B̃V

≤ ‖λ‖var.
In addition, J is injective. In order to prove surjectivity, we use the pre-

vious exercise, which for a given f ∈ NBV ([a, b]) yields a λ ∈ rca([a, b]),
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for which ‖λ‖var ≤ var(f, [a, b]) = ‖f ‖
B̃V

. It follows from E6.10(2) that
Jλ = f , since for a ≤ x < b

(Jλ)(x) = λ([a, x]) = lim
ε↘0

(
f(x+ ε) − f(a)

)
= f(x)

and also (Jλ)(b) = λ([a, b]) = limε↘0 λ([a, b − ε]) = f(b). ��

A6 Results from measure theory

The purpose of this appendix is to complete the proof of the representation
theorem 6.23 (see A6.6). The necessary construction of regular measures can
be found in A6.3.

Subsequently, we also present versions of Luzin’s theorem (see A6.7) and
Fubini’s theorem (see A6.10).

In the following two results, S is an arbitrary set.

A6.1 Jordan decomposition. Let B be a ring of subsets of the set S and
let λ : B → IR be additive and bounded. Then

λ+ := 1
2 (|λ| + λ) , λ− := 1

2 (|λ| − λ)

are additive, bounded and nonnegative on B. It holds that

λ = λ+ − λ− , |λ| = λ+ + λ− ,

and, in addition,

λ+(E) = sup
A∈B :A⊂E

λ(A) and λ−(E) = − inf
A∈B :A⊂E

λ(A) .

Proof. On recalling 6.10, we only need to show that the last identity holds
for λ+.

If A ⊂ E, then |λ|(A) ≥ |λ(A)|, and so

λ+(E) ≥ λ+(A) ≥ 1
2

(
|λ(A)| + λ(A)

)
≥ λ(A) .

Now for a given ε > 0 choose disjoint sets E1, . . . , Em with Ei ⊂ E and

|λ|(E) ≤ ε+

m∑
i=1

|λ(Ei)| .

On setting Em+1 := E \
⋃m

i=1 Ei, we have

λ(E) =

m+1∑
i=1

λ(Ei) ,

and so
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λ+(E) =
1

2

(
|λ|(E) + λ(E)

)
≤ ε

2
+

1

2

m+1∑
i=1

(
|λ(Ei)| + λ(Ei)

)
=

ε

2
+
∑

i :λ(Ei)>0

λ(Ei) =
ε

2
+ λ
( ⋃

i :λ(Ei)>0

Ei

)
≤ ε

2
+ sup

A∈B :A⊂E
λ(A) .

��

A6.2 Hahn decomposition. Let B be a σ-ring on the set S and let ν :
B → IR be σ-additive and bounded. Then there exists an E+ ∈ B such that

ν(E ∩ E+) ≥ 0 and ν(E \ E+) ≤ 0 for all E ∈ B .

Proof. We assume that there exists an E ∈ B with ν(E) > 0 (otherwise
choose E+ := ∅). We now want to find an E+ ∈ B such that

ν(E+) = s0 := supE∈B ν(E) . (A6-1)

Such an E+ satisfies the desired result. To see this, assume that ν(E\E+) > 0
for some E ∈ B. Then

ν(E+ ∪ E) = ν(E+) + ν(E \ E+) > ν(E+) = s0 ,

which contradicts the definition of s0. Similarly, if ν(E ∩ E+) < 0 for some
E ∈ B, then

ν(E+ \ E) = ν(E+) − ν(E ∩ E+) > ν(E+) = s0 ,

which again contradicts the definition of s0.
For the construction of E+, define for k ∈ IN

Mk :=
{
E ∈ B ; ν(E) ≥

(
1− 1

k

)
s0
}

with the partial order

E1 ≤ E2 :⇐⇒
(
E1 ⊃ E2 and ν(E1) < ν(E2)

)
or E1 = E2 .

Let N ⊂ Mk be totally ordered and let

s := sup
E∈N

ν(E) .

Then there exist Ei ∈ N , i ∈ IN, with

ν(Ei) ≤ ν(Ei+1) → s as i → ∞ . (A6-2)

As N is totally ordered, it follows that Ei ≤ Ei+1 or Ei+1 ≤ Ei. If Ei ≤ Ei+1

then (A6-2) implies Ei ⊃ Ei+1, and if Ei+1 ≤ Ei it implies Ei = Ei+1.
Therefore the sets Ei are decreasing and
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E0 :=
⋂
i∈IN

Ei ∈ Mk , ν(E0) = lim
i→∞

ν(Ei) = s .

The found set E0 ∈ Mk is an upper bound of N . This follows from the fact
that if E ∈ N with E0 ≤ E, then E ⊂ E0 and ν(E) > ν(E0), or E = E0,
where the former case contradicts the definition of s, since ν(E) > ν(E0) = s,
therefore E = E0.

Hence, by Zorn’s lemma (see the proof of 6.14), there exists a maximal
element M+

k ∈ Mk. It satisfies

ν(M+
k ) ≥

(
1 − 1

k

)
s0 ,

and in addition it holds for all A ∈ B that

A ⊂ M+
k =⇒ ν(A) ≥ 0 . (A6-3)

To see this, assume that ν(A) < 0. Then ν(M+
k \ A) > ν(M+

k ), and so
M+

k \A ∈ Mk with M+
k \A ≥ M+

k . Then the maximality of M+
k yields that

M+
k \ A ≤ M+

k , a contradiction.
Then the property (A6-3) also holds with M+

k replaced by the sets

E+
k :=

⋃
j≤k

M+
j ,

because if A ∈ B, A ⊂ E+
k , then Aj := A ∩ M+

j \
⋃

i<j M
+
i ⊂ M+

j form a
partition of A, and hence

ν(A) =

k∑
j=1

ν(Aj) ≥ 0 .

In particular,

ν(E+
k ) ≥ ν(M+

k ) ≥
(
1 − 1

k

)
s0 .

Hence

E+ :=
⋃
k∈IN

E+
k ∈ B with ν(E+) = lim

k→∞
ν(E+

k ) = s0 .

Therefore E+ satisfies (A6-1). ��
In the following, let S ⊂ IRn be a closed set and let B0, B1 for S be defined

as in 6.20. Furthermore, let ba(S) etc. be the spaces defined in 6.20 and 6.21.

A6.3 Lemma. Let λ ∈ ba(S) be nonnegative and let

μ(E) := sup
A : A ⊂ E
A closed

inf
U : A ⊂ U
U open

λ(U) for E ∈ B0.

Then μ ∈ rba(S) and∫
S

f dμ =

∫
S

f dλ for all f ∈ C0(S).



208 6 Linear functionals

Proof. (All occurring sets are in B0.) μ is nonnegative and monotone,
i.e. E1 ⊂ E2 implies that μ(E1) ≤ μ(E2). For closed sets A

μ(A) = inf
U : A ⊂ U
U open

λ(U) , and so μ(E) = sup
A : A ⊂ E
A closed

μ(A)
(A6-4)

for all E. Define

M := {B ∈ B0 ; μ(E) = μ(E ∩B) + μ(E \ B) for all E ∈ B0} .

We want to show that M = B0. Obviously, ∅, S ∈ M and from B ∈ M it
follows that S \ B ∈ M. If A,B ∈ M, then it follows that for all E ∈ B0

μ
(
E ∩ (A ∩ B)

)
+ μ
(
E \ (A ∩ B)

)
= μ
(
E ∩ (A ∩B)︸ ︷︷ ︸
=(E∩B)∩A

)
+ μ
(
(E \ (A ∩ B)) ∩ B︸ ︷︷ ︸

=(E∩B)\A

)
+ μ
(
(E \ (A ∩ B)) \B︸ ︷︷ ︸

=E\B

)
= μ(E ∩ B) + μ(E \B) = μ(E) ,

and so A ∩ B ∈ M. Hence M is a Boolean algebra. It remains to show that
M contains the closed sets. If A1, A2 are closed and disjoint, then there
exist open disjoint sets Ui with Ai ⊂ Ui. Then it holds for every open set
U ⊃ A1 ∪ A2 that

λ(U) ≥ λ
(
U ∩ (U1 ∪ U2)

)
= λ(U ∩ U1) + λ(U ∩ U2) ≥ μ(A1) + μ(A2) ,

and combining with (A6-4) yields that

μ(A1 ∪ A2) ≥ μ(A1) + μ(A2) .

Now let B be closed and let E be arbitrary. Then if A1 ⊂ E ∩B, A2 ⊂ E \B
are closed sets,

μ(A1) + μ(A2) ≤ μ(A1 ∪ A2) ≤ μ(E) ,

and so (A6-4) implies that

μ(E ∩ B) + μ(E \B) ≤ μ(E) .

On the other hand, if A ⊂ E is closed and U1, U2 are open with A∩B ⊂ U1

and A \ U1 ⊂ U2, then A ⊂ U1 ∪ U2, and hence

λ(U1) + λ(U2) ≥ λ(U1 ∪ U2) ≥ μ(A) .

Taking the infimum over all U2, and noting that A \ U1 is closed, we obtain

λ(U1) + μ(A \ U1) ≥ μ(A) .

Since A \ U1 is a closed subset of E \B, it follows that

λ(U1) + μ(E \B) ≥ μ(A) .
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Now noting that A ∩ B is closed, and taking the infimum over all U1, we
obtain

μ(A ∩ B) + μ(E \B) ≥ μ(A) ,

and so, since A ∩ B is a closed subset of E ∩ B,

μ(E ∩ B) + μ(E \ B) ≥ μ(A) .

On taking the supremum over all A, it finally follows that

μ(E ∩ B) + μ(E \B) ≥ μ(E) .

This shows that B ∈ M, and hence M = B0.
It follows that μ is additive on M, for if E1, E2 ∈ M are disjoint, then it

holds for all E that

μ(E) = μ(E ∩ E1) + μ(E \ E1) ,

and for E = E1 ∪ E2 we obtain that

μ(E1 ∪ E2) = μ(E1) + μ(E2) .

Moreover, μ is regular, because for E and ε > 0 there exist closed sets A1 ⊂ E
and A2 ⊂ S \ E with

μ(E) ≤ μ(A1) + ε and μ(S \ E) ≤ μ(A2) + ε .

Then A1 ⊂ E ⊂ S \ A2 and, on recalling that |μ| = μ, it follows that

|μ|
(
(S \A2) \ A1

)
≤ 2ε .

It remains to show that the integral identity holds. Without loss of generality
let 0 ≤ f ≤ 1. For n ∈ IN define

Ei :=
{

i
n ≤ f < i+1

n

}
∈ B0 for i = 0, . . . , n.

For a given ε > 0 choose Ai ⊂ Ei closed with μ(Ei \ Ai) ≤ ε. Since the Ai

are disjoint and f is continuous, there exist disjoint open sets Ui with

Ai ⊂ Ui and inf
Ui

f ≥ i

n
− ε .

As μ(Ai) ≤ λ(Ui), it follows that∫
S

f dμ ≤
∑
i

i+ 1

n
μ(Ei) ≤ 1

n
μ(S) +

∑
i

i

n
μ(Ei)

≤ μ(S)

n
+ nε+

∑
i

i

n
λ(Ui)

≤ μ(S)

n︸ ︷︷ ︸
→ 0 as n → ∞

+ nε+ ελ(S)︸ ︷︷ ︸
→ 0 as ε → 0

for any n

+

∫
S

f dλ .
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Replacing f by 1 − f yields, on noting that μ(S) = λ(S), that

μ(S) −
∫
S

f dμ =

∫
S

(1 − f) dμ ≤
∫
S

(1 − f) dλ = λ(S) −
∫
S

f dλ ,

and hence the desired result. ��

A6.4 Corollary. For λ ∈ ba(S) there exists a ν ∈ rba(S) such that∫
S

f dλ =

∫
S

f dν for all f ∈ C0(S).

Proof. Since we can split λ into a real and an imaginary part, we may assume
without loss of generality that λ is real-valued. Let λ = λ+−λ− be the Jordan
decomposition of λ and let μ± be the measures from A6.3 corresponding to
λ±. Set ν := μ+ − μ−. It obviously holds that |ν | ≤ μ+ + μ−, and so the
regularity of μ± implies that ν is regular. ��

A6.5 Lemma (Alexandrov). If S ⊂ IRn is compact, then

ν ∈ rba(S) =⇒ ν is σ-additive (on B0 !).

Proof (Compare A3.3). Let Ei ∈ B0, i ∈ IN, be disjoint and let E :=
⋃

i Ei ∈
B0. As ν is regular, we can choose for ε > 0 a closed set A with A ⊂ E and
|ν |(E \ A) ≤ ε and open sets Ui with Ei ⊂ Ui and |ν |(Ui \ Ei) ≤ ε2−i. On
noting that (Ui)i∈IN is a cover of A with A being compact, we see that

A ⊂
m⋃
i=1

Ui for an m,

and hence, since |ν | is nonnegative and additive (see 6.10), that

|ν |(E) ≤ ε+ |ν |(A) ≤ ε+
m∑
i=1

|ν |(Ui) ≤ ε+ ε
∞∑
i=1

2−i +
∞∑
i=1

|ν |(Ei) .

In addition, for all m

|ν |(E) ≥ |ν |
( m⋃
i=1

Ei

)
=

m∑
i=1

|ν |(Ei) ,

which proves that

|ν |(E) =
∞∑
i=1

|ν |(Ei) .

Similarly, for all m

|ν |
( ⋃
i>m

Ei

)
=
∑
i>m

|ν |(Ei) −→ 0 as m → ∞.
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We conclude that∣∣∣∣∣ν(E) −
m∑
i=1

ν(Ei)

∣∣∣∣∣ =
∣∣∣∣∣∣ν(E \

⋃
i≤m

Ei

)∣∣∣∣∣∣
=

∣∣∣∣∣ν( ⋃
i>m

Ei

)∣∣∣∣∣ ≤ |ν |
( ⋃
i>m

Ei

)
−→ 0 as m → ∞.

��

A6.6 Lemma. Let S ⊂ IRn be compact. For λ ∈ ba(S) there exists a ν ∈
rca(S) with ∫

S

f dν =

∫
S

f dλ for all f ∈ C0(S).

Proof. We may assume without loss of generality that λ is real-valued and
nonnegative (see the proof of A6.4). Let μ ∈ rba(S) be the measure corre-
sponding to λ as in A6.3. It follows from lemma A6.5 that μ is σ-additive
on B0. Then by A3.15 there exists an extension of (B0, μ) to (B, μ̄) with a
σ-algebra B and a σ-additive measure μ̄ on B. As B1 is the smallest σ-algebra
that contains B0, it follows that B1 ⊂ B. Hence μ̄ is σ-additive on B1.

We now show that μ̄ is also regular. To this end, let

M := {E ∈ B1 ; For ε > 0 there exist sets A and U with

A ⊂ E ⊂ U, A closed, U open, μ̄(U \A) ≤ ε} .

Clearly M is an algebra, and since μ̄ is an extension of μ, it holds that
B0 ⊂ M. Then it follows that M = B1, if we can show that

Ei ∈ M for i ∈ IN with Ei ⊂ Ei+1 =⇒ E :=
⋃
i∈IN

Ei ∈ M .

To this end, choose a closed set Ai with Ai ⊂ Ei and an open set Ui with
Ei ⊂ Ui such that μ̄(Ui \Ai) ≤ ε2−i. Then⋃

i≤m

Ai ⊂ E ⊂
⋃
i∈IN

Ui =: U

and
μ̄
(
U \
⋃
i≤m

Ai

)
≤ μ̄
(
U \
⋃
i≤m

Ui

)
+ μ̄
( ⋃
i≤m

Ui \
⋃
i≤m

Ai

)
.

The first term is smaller than ε, if we choose m sufficiently large, and the
second term is

≤ μ̄
( ⋃
i≤m

(Ui \ Ai)
)
≤
∑
i≤m

μ̄(Ui \ Ai) ≤ ε .

The integral identity follows as in the proof of A6.3. ��
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We present the following result on measurable functions. Here S can be
replaced with any compact topological space.

A6.7 Luzin’s theorem. Let S ⊂ IRn be compact, μ ∈ rca(S) be nonnega-
tive, and Y be a Banach space. Then every μ-measurable function f : S → Y
is μ-almost continuous, i.e. for every μ-measurable set E and every ε > 0
there exists a compact set K ⊂ E with μ(E \ K) ≤ ε such that f|K is a
continuous function on K.

Proof. First we recall that for every μ-measurable set E there exist an Ẽ ∈ B1

and a μ-null set N with E \ N = Ẽ \ N (see A3.14(2)). Moreover, for every
μ-null set N and every ε > 0 there exists an Nε ∈ B1 with N ⊂ Nε and
μ(Nε) ≤ ε (see A3.4). As μ is regular, there exist a compact set K̃ ⊂ Ẽ and

an open set Ũ ⊃ Ẽ with μ(Ũ \ K̃) ≤ ε, as well as an open set V ⊃ Nε with

μ(V ) ≤ 2ε. Then K := K̃ \ V ⊂ E is compact and U := Ũ ∪ V ⊃ E is open
with μ(U \ K) ≤ 3ε.

There exists a μ-null set N such that f(S \N) is separable (see 3.11(2)).
Choose a countable dense subset {yj ; j ∈ IN} of f(S \ N). For every i it
holds that the sets B 1

i
(yj), j ∈ IN, form a cover of f(S \ N), and hence also

Bij := B 1
i
(yj) \

⋃
k<j B 1

i
(yk) .

This implies that

Eij := E ∩ f−1(Bij) \N for j ∈ IN

form a disjoint partitioning of E\N into μ-measurable sets. It follows from the
remark at the beginning of the proof that there exist compact sets Kij ⊂ Eij

with μ(Eij \ Kij) ≤ ε2−i−j−1. Consequently, μ
(
E \
⋃

j Kij

)
≤ ε2−i−1, and

hence there exists a ji with

μ(E \Ki) ≤ ε2−i , where Ki :=
⋃

j≤ji
Kij .

Ki is a compact subset of E \N , and by construction it is the disjoint union
of the compact sets Kij for j ≤ ji. Hence

gi(x) := yj for x ∈ Kij (if Kij �= ∅)

defines a gi ∈ C0(Ki;Y ) with

sup
x∈Ki

‖gi(x) − f(x)‖Y ≤ 1

i
.

Set K :=
⋂

i Ki. Then the functions gi|K ∈ C0(K;Y ), and on K they con-

verge uniformly to f as i → ∞, which yields that f|K ∈ C0(K;Y ). In
addition, K is a compact subset of E and

μ(E \K) ≤
∑
i∈IN

μ(E \Ki) ≤ ε .

��
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We add now a functional analysis formulation of Fubini’s theorem, where
we restrict ourselves to the case of bounded regular measures.

A6.8 Product measure. Let Sl ⊂ IRnl be compact, l = 1, 2, and let
(Sl,Bl, μl) be measure spaces. Let Bl contain the Borel sets of Sl and let
μl ∈ rca(Sl). Define

B1 × B2 := {E1 × E2 ; E1 ∈ B1 and E2 ∈ B2} ,
(μ1 × μ2)(E1 × E2) := μ1(E1) · μ2(E2) for E1 × E2 ∈ B1 × B2 .

Denote by B0 the Boolean algebra induced by B1 × B2. Then B0 consists
of finite disjoint unions of sets in B1 × B2, and μ1 × μ2 can be canonically
extended to an additive measure on B0.

Proposition: μ1×μ2 is σ-subadditive on B0, so that all the properties in A3.1
are satisfied.

Proof of proposition. Let E,Ei ∈ B0, i ∈ IN, with E ⊂
⋃

i∈IN Ei. We have to
show that for μ := μ1 × μ2 it holds that

μ(E) ≤
∑
i∈IN

μ(Ei) .

By the definitions of B0 and μ, we may assume that

Ei = E1
i × E2

i ∈ B1 × B2 .

As the μl are regular, it follows that for ε > 0 there exist open sets U l
i ∈ Bl

with (see the beginning of the proof in A6.7)

El
i ⊂ U l

i and μl(U l
i \ El

i) ≤ ε2−i .

Then

μ(U1
i × U2

i ) ≤ μ(E1
i × E2

i ) + μ
(
(U1

i \ E1
i ) × U2

i

)
+ μ
(
E1

i × (U2
i \ E2

i )
)

≤ μ(E1
i × E2

i ) + μ1(U1
i \ E1

i )μ
2(S2) + μ1(S1)μ2(U2

i \ E2
i )

≤ μ(E1
i × E2

i ) + C2−iε with C := μ1(S1) + μ2(S2) .

Similarly, there exists a compact set K ∈ B0 with

K ⊂ E and μ(E) ≤ μ(K) + ε .

(E is the disjoint union of elements in B1 ×B2, and each of these subsets can
be approximated in measure by compact subsets to an arbitrary accuracy. K
is then the disjoint union of Cartesian products of compact sets.) Since the
sets U l

1 × U l
2 form a cover of the set K, there exists an m with

K ⊂
m⋃
i=1

U1
i × U2

i ,
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and hence

μ(E) ≤ μ(K) + ε ≤
m∑
i=1

μ(U1
i × U2

i ) + ε ≤
m∑
i=1

μ(E1
i × E2

i ) + (C + 1)ε .

��

Therefore the Lebesgue integral for (S1 × S2,B0, μ1 × μ2) can be con-
structed as in Appendix A3. In particular, there exists a measure extension
to a measure space (S1 × S2,B, μ1 × μ2). We now characterize the Lebesgue
space Lp(μ1 × μ2;Y ) with the help of iterated integration. But first we con-
sider the following special case:

A6.9 Lemma. If N is a μ1 × μ2-null set, then for μ1-almost all x1 ∈ S1

{x2 ∈ S2 ; (x1, x2) ∈ N}

is a μ2-null set.

Proof. It follows from the definition of null sets in A3.4 that for ε > 0 there
exist sets El

i ∈ Bl, i ∈ IN, l = 1, 2 with

N ⊂
⋃
i∈IN

E1
i × E2

i and
∑
i∈IN

μ(E1
i × E2

i ) ≤ ε ,

where μ := μ1 × μ2. Consider the functions

gεn(x1)(x2) :=
∑
i≤n

XE1
i
(x1)XE2

i
(x2) .

For all x1 we have that gεn(x1) ∈ L1(μ2) satisfying the following equation

Gεn(x1) :=

∫
S2

gεn(x1) dμ
2 =
∑
i≤n

XE1
i
(x1)μ

2(E2
i ) .

The function Gεn ∈ L1(μ1) with∫
S1

Gεn dμ
1 =
∑
i≤n

μ1(E1
i )μ

2(E2
i ) ≤ ε .

On noting that

Gεn(x1) ↗ Gε(x1) :=
∑
i∈IN

XE1
i
(x1)μ

2(E2
i )

as n ↗ ∞, it follows from the monotone convergence theorem (see A3.12(3))
that Gε ∈ L1(μ1) with
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S1

Gε dμ
1 = lim

n→∞

∫
S1

Gεn dμ
1 ≤ ε .

But this means that Gε → 0 in L1(μ1) as ε → 0. Hence there exists a
subsequence ε → 0 such that Gε(x1) → 0 for μ1-almost all x1 ∈ S1. In the
following we consider such x1. On noting that for small ε and as n ↗ ∞ we
have that ∫

S2

gεn(x1) dμ
2 = Gεn(x1) ↗ Gε(x1) < ∞

and
gεn(x1)(x2) ↗ gε(x1)(x2) :=

∑
i∈IN

XE1
i
(x1)XE2

i
(x2) ,

it follows once again from the monotone convergence theorem that the func-
tion gε(x1) ∈ L1(μ2) satisfies∫

S2

gε(x1) dμ
2 = Gε(x1) .

Therefore, gε(x1) → 0 in L1(μ2), and so there exists a subsequence ε → 0
(depending on x1!) with gε(x1)(x2) → 0 for μ2-almost all x2 ∈ S2. But noting
that gε(x1)(x2) ≥ XN (x1, x2) implies that XN (x1, x2) = 0 for μ2-almost all
x2 ∈ S2. ��

A6.10 Fubini’s theorem. Let Y be a Banach space and let 1 ≤ p < ∞.
Consider the product measure in A6.8. Then

(Jf)(x1)(x2) := f(x1, x2)

defines a linear isometric isomorphism

J : Lp(μ1 × μ2;Y ) −→ Lp(μ1;Lp(μ2;Y )) .

In particular, for f ∈ Lp(μ1 × μ2;Y ) there exists

F (x1) :=

∫
S2

f(x1, x2) dμ
2(x2) for μ1-almost all x1 ∈ S1

and F ∈ Lp(μ1;Y ) with∫
S1

F (x1) dμ
1(x1) =

∫
S1×S2

f(x1, x2) d(μ
1 × μ2)(x1, x2) .

A symmetry argument then yields that∫
S1

(∫
S2

f(x1, x2) dμ
2(x2)

)
dμ1(x1) =

∫
S2

(∫
S1

f(x1, x2) dμ
1(x1)

)
dμ2(x2) .
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Proof. Let f ∈ Lp(μ1 × μ2;Y ) (we suppress in the following proof the ar-
gument Y ). Since p < ∞, it follows from the construction of the Lebesgue
integral (see the proof of 3.26(1)) that f can be approximated by step func-
tions

fk =
n∑

i=1

XEi
αi with Ei ∈ B0 and αi ∈ Y,

where n, Ei and αi depend on k. The definition of B0 then yields that fk can
also be represented as

fk =

n∑
i,j=1

XE1
i ×E2

j
αij with E1

i ∈ B1, E2
j ∈ B2, αij ∈ Y

with a new n, where both the E1
i and the E2

j are disjoint. Then for all x1

(Jfk)(x1) =

n∑
i,j=1

XE1
i
(x1)XE2

j
αij ∈ Lp(μ2) ,

and Jfk ∈ Lp(μ1;Lp(μ2)), with

∫
S1

‖Jfk‖pLp(μ2) dμ
1 =

n∑
i=1

μ1(E1
i )

∥∥∥∥∥∥
n∑

j=1

XE2
j
αij

∥∥∥∥∥∥
p

Lp(μ2)

=

n∑
i,j=1

μ1(E1
i )μ

2(E2
j )‖αij‖pY =

∫
S1×S2

‖fk‖pY dμ ,

where μ := μ1 × μ2. Similarly, we observe that∫
S2

(Jfk)(x1) dμ
2

as a function of x1 lies in L1(μ1) and satisfies∫
S1

(∫
S2

(Jfk)(x1) dμ
2
)
dμ1(x1) =

∫
S1×S2

fk dμ .

These properties, which we have derived for fk, are of course also valid for
the step functions fk − fl. Therefore,

‖Jfk − Jfl‖Lp(μ1;Lp(μ2)) = ‖fk − fl‖Lp(μ) → 0 as k, l → ∞.

By completeness of Lp(μ1;Lp(μ2)), there exists an F such that

Jfk → F in Lp(μ1;Lp(μ2)) as k → ∞.

Hence there exists a subsequence such that for μ1-almost all x1
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Jfk(x1) → F (x1) in Lp(μ2).

On the other hand, since fk → f in Lp(μ), μ = μ1 × μ2, there exists a
subsequence such that

fk(x1, x2) → f(x1, x2) for μ-almost all (x1, x2).

It follows from A6.9 that then for μ1-almost all x1

fk(x1, x2) → f(x1, x2) for μ2-almost all x2.

On recalling that fk(x1, x2) = Jfk(x1)(x2), we then obtain that

F (x1) = f(x1,·) in Lp(μ2)

for μ1-almost all x1, i.e. F = Jf . In addition, it follows from the above that

‖Jf ‖Lp(μ1;Lp(μ2)) = ‖f ‖Lp(μ) .

This shows that J is well defined and isometric. Consequently the image of J
is closed. Hence, in order to show the surjectivity, it is sufficient to show that
the image is dense. Every element in Lp(μ1;Lp(μ2)) can be approximated by
linear combinations of functions XE1g with E1 ∈ B1 and g ∈ Lp(μ2), and
similarly g can be approximated by linear combinations of XE2α with E2 ∈ B2

and α ∈ Y . But functions F (x1)(x2) = XE1(x1)XE2(x2)α in Lp(μ1;Lp(μ2))
clearly lie in the image of J .

In order to prove the integral formula, we exploit the fact that the integral
with respect to μ2 is a linear continuous map from L1(μ2) to Y . If f ∈ L1(μ),
then Jf ∈ L1(μ1;L1(μ2)), and hence (see theorem 5.11)

x1 �−→
∫
S2

Jf(x1) dμ
2

is a function in L1(μ1). On noting that in addition Jfk → Jf in L1(μ1;L1(μ2))
as k → ∞, if the fk are chosen as above, we obtain with the help of 5.11 that
as k → ∞∫

S1

(∫
S2

Jf(x1) dμ
2
)
dμ1(x1) =

∫
S2

(∫
S1

Jf dμ1
)
dμ2

←−
∫
S2

(∫
S1

Jfk dμ
1
)
dμ2 =

∫
S1

(∫
S2

Jfk(x1) dμ
2
)
dμ1(x1)

=

∫
S1×S2

fk dμ −→
∫
S1×S2

f dμ .

��

A6.11 Remark on the case p = ∞. With the above assumptions, let
f ∈ L∞(μ1 × μ2;Y ). Then f ∈ Lq(μ1 × μ2;Y ) for every 1 ≤ q < ∞, so that
the result shown in A6.10 yields that
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Jf ∈
⋂

1≤q<∞
Lq(μ1;Lq(μ2;Y )) .

Moreover, it follows easily from E3.4 and A6.9 that

‖f ‖L∞(μ1×μ2) = ‖g‖L∞(μ1) ,

where g(x1) := ‖f(x1,·)‖L∞(μ2) = ‖(Jf)(x1)‖L∞(μ2).

However, in general Jf is not (!) an element of L∞(μ1;L∞(μ2;Y )), as
can be seen from the example μ1 = μ2 = L1�[0, 1], Y = IR, f = XE ,
E := {(x1, x2) ; x1 < x2}. In this case the function

x1 �→ X[x1,1]
∈ L∞(μ2;Y )

is not μ1-measurable.



7 Uniform boundedness principle

A fundamental result for linear continuous maps is the uniform boundedness
principle. It states that the pointwise boundedness of a family of operators
already implies their boundedness in the operator norm. This principle rests
upon the following theorem.

7.1 Baire’s category theorem. Let X be a nonempty complete metric
space and let

X =
⋃
k∈IN

Ak , with closed sets Ak ⊂ X.

Then there exists a k0 ∈ IN with Åk0
�= ∅.

Remark: Recall that Åk = intrX (Ak).

Proof. Assume that Åk = ∅ for all k. Then

U ⊂ X open, nonempty, k ∈ IN

=⇒ U \ Ak open, nonempty

=⇒ there exists a ball Bε(x) ⊂ U \Ak with ε ≤ 1
k .

Hence we can inductively choose balls Bεk(xk) such that

Bεk(xk) ⊂ Bεk−1
(xk−1) \Ak and εk ≤ 1

k .

Consequently, we see that xl ∈ Bεk(xk) for l ≥ k and εk → 0 as k → ∞
and the balls Bεk(xk) are nested, and we conclude that (xl)l∈IN is a Cauchy
sequence. Hence there exists the limit

x := lim
l→∞

xl ∈ X

and x ∈ Bεk(xk) for all k. Since Bεk(xk) ∩ Ak = ∅, we have that

x /∈
⋃
k∈IN

Ak = X ,

a contradiction. ��

© Springer-Verlag London 2016 
H.W. Alt, Linear Functional Analysis, Universitext, 
DOI 10.1007/978-1-4471-7280-2_  7

219 



220 7 Uniform boundedness principle

As is evident from the example X = Q, the completeness assumption in
7.1 is essential. With the help of 7.1 we can now show the following:

7.2 Theorem (Uniform boundedness principle). Let X be a nonempty
complete metric space and let Y be a normed space. Let F ⊂ C0(X;Y ) be a
set of functions with

sup
f∈F

‖f(x)‖Y < ∞ for every x ∈ X. (7-5)

Then there exist an x0 ∈ X and an ε0 > 0, such that

sup
x∈Bε0

(x0)

sup
f∈F

‖f(x)‖Y < ∞ .
(7-6)

Proof. For f ∈ F and k ∈ IN it holds that {x ∈ X ; ‖f(x)‖Y ≤ k} is a closed
set. Hence the sets

Ak :=
⋂
f∈F

{x ∈ X ; ‖f(x)‖Y ≤ k}

= {x ∈ X ; ‖f(x)‖Y ≤ k for all f ∈ F} ,

being intersections of closed sets, are closed, and it follows from (7-5) that
they form a cover of X. Then theorem 7.1 yields that Åk0

�= ∅ for some k0,
and hence there exists a Bε0(x0) ⊂ Ak0

. Noting that

sup
x∈Ak0

sup
f∈F

‖f(x)‖Y ≤ k0

yields the desired result. ��

For linear continuous maps 7.2 is reformulated as the

7.3 Banach-Steinhaus theorem. Let X be a Banach space and let Y be
a normed space. Suppose T ⊂ L (X;Y ) with

sup
T∈T

‖Tx‖Y < ∞ for every x ∈ X.

Then T is a bounded set in L (X;Y ), i.e.

sup
T∈T

‖T ‖
L (X;Y ) < ∞ .

Proof. Setting
fT (x) := ‖Tx‖Y for T ∈ T , x ∈ X

defines functions fT ∈ C0(X; IR), and F := {fT ; T ∈ T } satisfies the
assumptions in 7.2. Hence, by the conclusions of 7.2, there exist an x0 ∈ X,
an ε0 > 0, and a constant C < ∞ with
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‖Tx‖Y ≤ C for T ∈ T and ‖x − x0‖X ≤ ε0.

Then it follows for all T ∈ T and all x �= 0 that

‖Tx‖Y =
‖x‖X
ε0

∥∥∥∥T(x0 + ε0
x

‖x‖X

)
− T (x0)

∥∥∥∥
Y

≤ ‖x‖X
ε0

· 2C ,

whence ‖T ‖
L (X;Y ) ≤ 2C

ε0
. ��

In the following theorem, we prove that an even weaker assumption on
the operators is sufficient. Here we will make use of the following

7.4 Notation. Let X be a normed space. From now on, for x ∈ X and
x′ ∈ X ′, we will use the notation

〈x , x′〉X (or simply: 〈x , x′〉) := x′(x)

and call this the duality product (or duality pairing) of the space X. This
notation is motivated by the Hilbert space case. Indeed, if X is a Hilbert
space and RX : X → X ′ is the isomorphism from the Riesz representation
theorem 6.1, then

(x , y)X = 〈x , RXy〉X for all x, y ∈ X ,

〈x , x′〉X =
(
x , R−1

X x′)
X

for all x ∈ X, x′ ∈ X ′ .

Especially when applied to function spaces, the notation introduced here
proves to be justified.

Notice: In 〈·1 , ·2〉X the second variable is the linear map, and the first
variable is the argument of this map. This is consistent with the fact that in
the weak formulation of differential equations (see e.g. the equation (6-9)),
the test function appears on the left.

7.5 Theorem. Let X be a Banach space and let Y be a normed space. In
addition, let T ⊂ L (X;Y ) such that for all x ∈ X and y′ ∈ Y ′

sup
T∈T

|〈Tx , y′〉Y | < ∞ .

Then T is a bounded subset of L (X;Y ).

Proof. For x ∈ X and T ∈ T it follows from 6.17(3) that

Sx,T (y
′) := 〈Tx , y′〉Y for y′ ∈ Y ′

defines an element Sx,T ∈ (Y ′)′ = L (Y ′; IK) with ‖Sx,T ‖(Y ′)′ = ‖Tx‖Y .
Now

sup
T∈T

|Sx,T (y
′)| = sup

T∈T
|〈Tx , y′〉Y | < ∞ for all y′ ∈ Y ′.

Moreover, it follows from 5.3(2) that Y ′ is a Banach space. Hence we can apply
the Banach-Steinhaus theorem 7.3 to the set {Sx,T ∈ L (Y ′; IK) ; T ∈ T }
and obtain that
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sup
T∈T

‖Tx‖Y = sup
T∈T

‖Sx,T ‖(Y ′)′ < ∞

for every x ∈ X. Thus the desired result follows from theorem 7.3. ��

A further consequence of 7.1 is the open mapping theorem. To this end,
we introduce the following

7.6 Definition. Let X and Y be topological spaces. Then f : X → Y is
called open if

U is open in X =⇒ f(U) is open in Y .

If f is bijective, then f is open if and only if f−1 is continuous. If X, Y are
normed spaces and T : X → Y is linear, then

T is open ⇐⇒ There exists a δ > 0 with Bδ(0) ⊂ T
(
B1(0)

)
.

Proof ⇐. Let U be open and let x ∈ U . Choose an ε > 0 with Bε(x) ⊂ U .
Now Bδ(0) ⊂ T

(
B1(0)

)
implies that Bεδ(Tx) ⊂ T

(
Bε(x)

)
⊂ T (U), and hence

T (U) is open. ��

7.7 Open mapping theorem. Let X and Y be Banach spaces. Then it
holds for every operator T ∈ L (X;Y ) that

T is surjective ⇐⇒ T is open.

Proof ⇒. Since T is surjective,

Y =
⋃
k∈IN

T
(
Bk(0)

)
.

It follows from the Baire category theorem 7.1 that there exist a k0 and a
ball Bε0(y0) in Y with

Bε0(y0) ⊂ T
(
Bk0

(0)
)
.

This means that for y ∈ Bε0(0) there exist points xi ∈ Bk0
(0) with Txi →

y0 + y as i → ∞. On choosing an x0 ∈ X with Tx0 = y0, this implies that

T

(
xi − x0

k0 + ‖x0‖

)
−→ y

k0 + ‖x0‖
and

∥∥∥∥ xi − x0

k0 + ‖x0‖

∥∥∥∥ < 1 ,

which proves that

Bδ(0) ⊂ T (B1(0)) with δ :=
ε0

k0 + ‖x0‖
. (7-7)

However, our aim is to show such an inclusion without the closure of the set
on the right-hand side, for a smaller δ if necessary. To this end, we note that
(7-7) implies that
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y ∈ Bδ(0) =⇒ there exists an x ∈ B1(0) with y − Tx ∈ B δ
2
(0)

=⇒ 2(y − Tx) ∈ Bδ(0) .

Hence for y ∈ Bδ(0) we can inductively choose points yk ∈ Bδ(0) and xk ∈
B1(0) such that

y0 = y and yk+1 = 2(yk − Txk) .

Then

2−k−1yk+1 = 2−kyk − T (2−kxk) ,

and so

T
( m∑
k=0

2−kxk

)
= y − 2−m−1ym+1 −→ y as m → ∞.

Since

m∑
k=0

∥∥2−kxk

∥∥ < m∑
k=0

2−k ≤ 2 < ∞ , we have that

(
m∑

k=0

2−kxk

)
m∈IN

is a Cauchy sequence in X. As X is complete, there exists

x :=

∞∑
k=0

2−kxk in X with ‖x‖ < 2.

The continuity of T then yields that

Tx = lim
m→∞

T
( m∑
k=0

2−kxk

)
= y .

This shows that Bδ(0) ⊂ T (B2(0)), or equivalently B δ
2
(0) ⊂ T (B1(0)).

Hence, by 7.6, T is open. ��

Proof ⇐. The fact that Bδ(0) ⊂ T (B1(0)) for some δ > 0 implies that
BR(0) ⊂ T (BR

δ
(0)) for all R > 0. ��

As a consequence, we obtain the following results, the first of which is
also called the bounded inverse theorem.

7.8 Inverse mapping theorem. If X and Y are Banach spaces and if
T ∈ L (X;Y ), then

T is bijective =⇒ T−1 ∈ L (Y ;X) .

Proof. T−1 is linear. It follows from 7.7 that T is open, and hence T−1 is
continuous. ��
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7.9 Closed graph theorem. Let X and Y be Banach spaces and let T :
X → Y be linear. Then

graph(T ) := {(x, Tx) ∈ X × Y ; x ∈ X}

is closed in X × Y if and only if T ∈ L (X;Y ).

Proof ⇒. In the formulation of the theorem, X×Y is considered as a Banach
space, equipped with, for example, the norm ‖(x, y)‖ := ‖x‖ + ‖y‖ (see
E4.12). As a closed subspace Z := graph(T ) is a Banach space. Let

PX(x, y) := x and PY (x, y) := y for (x, y) ∈ Z.

PX and PY are linear and continuous, and PX : Z → X is bijective. It
follows from the inverse mapping theorem 7.8 that P−1

X ∈ L (X;Z). Hence
T = PY P

−1
X ∈ L (X;Y ). ��

Proof ⇐. This follows immediately from the continuity of T . ��

E7 Exercises

E7.1 On the adjoint map. Let X, Y be Banach spaces, and let A : X → Y
and B : Y ′ → X ′ be linear. If it holds for all x ∈ X and y′ ∈ Y ′ that

〈Ax , y′〉Y = 〈x , By′〉X ,

then A and B are continuous.

Solution. For x ∈ X it follows from 6.17(3) that Txy
′ := 〈Ax , y′〉Y for y′ ∈ Y ′

defines a Tx ∈ (Y ′)′ with ‖Tx‖ = ‖Ax‖Y . Since for all y′ ∈ Y ′

sup
‖x‖X≤1

|Txy
′ | = sup

‖x‖X≤1

|〈x , By′〉X | ≤ ‖By′‖X′ < ∞ ,

it follows from the Banach-Steinhaus theorem that

sup
‖x‖X≤1

‖Ax‖Y = sup
‖x‖X≤1

‖Tx‖ < ∞ ,

i.e. A is continuous. Moreover, since

|〈x , By′〉X | = |〈Ax , y′〉Y | ≤ ‖A‖ · ‖x‖X · ‖y′‖Y ′ ,

we have that ‖By′‖X′ ≤ ‖A‖ · ‖y′‖Y ′ , and hence also B is continuous. ��
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E7.2 Pointwise convergence in L (X;Y ). Let X be a Banach space, let
Y be a normed space and let (Tn)n∈IN be a sequence in L (X;Y ) such that

T (x) := lim
n→∞

Tn(x) exists for all x ∈ X.

(1) Show that T ∈ L (X;Y ) and ‖T ‖ ≤ lim infn→∞ ‖Tn‖ < ∞.

(2) Give an example where (Tn)n∈IN does not converge to T in the operator
norm.

Solution (1). Clearly T is linear. For all x ∈ X we have that (‖Tn(x)‖Y )n∈IN
is a bounded sequence, and hence the Banach-Steinhaus theorem yields that
{‖Tn‖ ; n ∈ IN} is bounded. In addition,

‖T (x)‖Y =
∥∥∥ lim
n→∞

Tnx
∥∥∥
Y
= lim

n→∞
‖Tnx‖Y

≤ lim inf
n→∞

(‖Tn‖ · ‖x‖X) =
(
lim inf
n→∞

‖Tn‖
)

· ‖x‖X .

��

Solution (2). Let X = Y = l2(IK) and let Tn : l2(IK) → l2(IK) be defined by
setting for x = (xi)i∈IN ∈ l2(IK)

(Tnx)i =

{
xi for i ≤ n,

0 for i > n.

Then

‖x − Tnx‖�2 =

(∑
i>n

|xi |2
) 1

2

→ 0 as n → ∞,

but ‖Id − Tn‖ ≥ 1, because ‖en+1 − Tnen+1‖�2 = ‖en+1‖�2 = 1 for unit
vectors en+1 as in 2.23. ��

E7.3 Equivalent norms. Let ‖·‖1 and ‖·‖2 be two norms on the IK-vector
space X and let X be complete with respect to both of these norms. If ‖·‖2
is stronger than ‖·‖1, then the two norms are equivalent.

Solution. By 2.15, there exists a C2 > 0 with ‖x‖1 ≤ C2‖x‖2 for all x ∈ X.
Denote by Xk the Banach space X with respect to the norm ‖·‖k, k = 1, 2.
As ‖·‖2 is stronger than ‖·‖1, it holds that Id : X2 → X1 is continuous.
It follows from the inverse mapping theorem 7.8 that Id−1 : X1 → X2 is
continuous, i.e. there exists a C1 > 0 with ‖x‖2 ≤ C1‖x‖1 for all x ∈ X.
Hence the two norms are equivalent. ��
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E7.4 Sesquilinear forms. Let X, Y be Banach spaces and let b : X×Y →
IK be sesquilinear such that

x �→ b(x, y) is continuous for every y ∈ Y,

y �→ b(x, y) is continuous for every x ∈ X.

Then there exists a constant 0 ≤ C < ∞ such that

|b(x, y)| ≤ C‖x‖X · ‖y‖Y for all x ∈ X, y ∈ Y.

Solution. For x ∈ X we have that fx(y) := b(x, y) defines an fx ∈ C0(Y ; IK),
and F := {fx ; ‖x‖X ≤ 1} satisfies the assumptions in 7.2, since it holds for
y ∈ Y

sup
‖x‖X≤1

|fx(y)| = sup
‖x‖X≤1

|b(x, y)| = ‖b(·, y)‖X′ < ∞

on noting that b(·, y) ∈ X ′ by 5.1. Hence it follows from 7.2 that there exist
a y0 ∈ Y , an ε0 > 0 and a constant C such that

|b(x, y)| = |fx(y)| ≤ C for ‖x‖X ≤ 1, ‖y − y0‖Y ≤ ε0.

Then for ‖x‖X ≤ 1 and ‖y‖Y ≤ 1 we have that

|b(x, y)| = 1

ε0
|b(x, y0 + ε0y) − b(x, y0)| ≤

2C

ε0
,

which yields the desired result. (Compare the proof of 7.3.) ��



8 Weak convergence

In many cases the concept of convergence with respect to the norm turns out
to be too restrictive. That is why in this chapter we will introduce a weaker
notion of convergence which will enable us to solve minimum problems under
far weaker assumptions.

In 4.3 we proved the projection theorem in Hilbert spaces and noted
subsequently that the same result cannot be expected to hold in general
Banach spaces. The difficulty lies in finding a convergent subsequence within
a given minimal sequence, something that is in general not possible with
respect to the norm convergence, as balls in infinite-dimensional spaces are
not precompact (see 4.10). However, we will see (in 8.10) that closed balls
are sequentially compact with respect to weak convergence, at least for the
class of reflexive spaces (see 8.8). Here we lose the continuity of the norm, but
we nonetheless retain its lower semicontinuity (see 8.3(4)). This property will
play a crucial role in the proofs of the existence results 8.15 and 8.17. Hence
the class of reflexive spaces, which lies between the class of Hilbert spaces and
the class of general Banach spaces, plays a significant role in applications.

In this chapter all the spaces are assumed to be complete, except in 8.12-
8.14. In the following, we will always use the notation 〈x , x′〉X := x′(x) for
x ∈ X and x′ ∈ X ′ from 7.4. We will also write 〈x , x′〉 := 〈x , x′〉X . This
simple notation is used in the case when only one Banach space X is involved.

8.1 Definition (weak convergence). Let X be a Banach space.

(1) A sequence (xk)k∈IN in X converges weakly to x ∈ X (we write xk → x
weakly in X as k → ∞, or xk ⇀ x as k → ∞) if for all x′ ∈ X ′

〈xk , x
′〉X → 〈x , x′〉X as k → ∞.

(2) A sequence (x′
k)k∈IN in X ′ converges weakly∗ to x′ ∈ X ′ (we write

x′
k → x′ weakly∗ in X ′ as k → ∞, or x′

k
∗
⇀ x′ as k → ∞) if for all x ∈ X

〈x , x′
k〉X → 〈x , x′〉X as k → ∞.

(3) Analogously to (1) and (2) we define weak and weak∗ Cauchy sequences.

(4) A set M ⊂ X (X ′) is called weakly sequentially compact (weakly∗

sequentially compact) if every sequence in M contains a weakly (weakly∗)
convergent subsequence whose weak (weak∗) limit lies in M .
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Warning: It is possible to define a corresponding weak (weak∗) topology (see
8.7). However, if X is not separable, this topology does not have a countable
basis of neighbourhoods. It follows that “covering compact” and “sequentially
compact” are not equivalent properties (see the example 8.7(4)).

Note: As a complement to weak convergence, convergence with respect to a
norm, i.e. norm convergence, will also be referred to as strong convergence.
This reduces confusion.

The weak convergence may be interpreted as weak∗ convergence in the
bidual space:

8.2 Embedding into the bidual space.

(1) Defining

〈x′ , JXx〉X′ := 〈x , x′〉X for x ∈ X, x′ ∈ X ′

yields an isometric map JX ∈ L (X;X ′′). Here

X ′′ := (X ′)′ = L (X ′; IK)

is the bidual space of X.

(2) Let xk, x ∈ X for k ∈ IN. Then:

xk → x weakly

in X as k → ∞
⇐⇒

JXxk → JXx weakly∗

in X ′′ as k → ∞.

(3) Let x′
k, x

′ ∈ X ′ for k ∈ IN. Then:

x′
k → x′ weakly

in X ′ as k → ∞
=⇒

x′
k → x′ weakly∗

in X ′ as k → ∞.

Proof (1). See 6.17(3). ��

Proof (2). For x′ ∈ X ′ we have that 〈xk , x
′〉X = 〈x′ , JXxk〉X′ and

〈x , x′〉X = 〈x′ , JXx〉X′ . ��

Proof (3). Because 〈x , x′
k〉X = 〈x′

k , JXx〉X′ for all x ∈ X. ��

8.3 Remarks.

(1) It follows from 6.17(2) that the weak limit of a sequence is unique. For
the weak∗ limit this holds trivially.

(2) Strong convergence (i.e. norm convergence) of a sequence implies weak
convergence and weak∗ convergence.

(3) If x′
k → x′ weakly∗ in X ′ as k → ∞, then

‖x′‖X′ ≤ lim inf
k→∞

‖x′
k‖X′ .
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(4) If xk → x weakly in X as k → ∞, then

‖x‖X ≤ lim inf
k→∞

‖xk‖X .

(5) Weakly convergent sequences and weakly∗ convergent sequences are
bounded.

(6) Let xk → x (strongly) in X and x′
k → x′ weakly∗ in X ′ as k → ∞. Then

〈xk , x
′
k〉X → 〈x , x′〉X as k → ∞. (8-1)

The same holds if xk → x weakly in X and x′
k → x′ (strongly) in X ′.

Remark: Assertion (4) means that the norm is lower semicontinuous with
respect to the weak convergence of sequences (see also E8.5). Assertion (6)
is often used when considering convergence in function spaces.

Proof (3). For all x ∈ X we have that as k → ∞
|〈x , x′〉X | ←−

∣∣〈x , x′
k〉X
∣∣ ≤ ‖x′

k‖X′ · ‖x‖X ,

which implies that

|〈x , x′〉X | ≤ lim inf
k→∞

‖x′
k‖X′ · ‖x‖X .

Therefore, by the definition of the X ′-norm,

‖x′‖X′ = sup
‖x‖X≤1

|〈x , x′〉X | ≤ lim inf
k→∞

‖x′
k‖X′ .

��

Proof (4). Analogously to the proof of (3) it holds for all x′ ∈ X ′ that

|〈x , x′〉X | ≤ ‖x′‖X′ · lim inf
k→∞

‖xk‖X .

If x �= 0, we can choose x′ with ‖x′‖X′ = 1 and 〈x , x′〉X = ‖x‖X (see
6.17(1)) to obtain the desired result. For x = 0 the result holds trivially. ��

Proof (5). If x′
k → x′ weakly∗ in X ′, then

sup
k∈IN

|〈x , x′
k〉X | < ∞ for all x ∈ X,

and so it follows from the Banach-Steinhaus theorem (see 7.3) that

sup
k∈IN

‖x′
k‖X′ < ∞ .

If xk → x weakly in X, then JXxk → JXx weakly∗ in X ′′ (with JX as in
8.2), and so it follows from the above that JXxk is bounded in X ′′, and hence
also xk in X. ��
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Proof (6). The first claim follows on noting that

|〈x , x′〉X − 〈xk , x
′
k〉X | ≤ |〈x , x′ − x′

k〉X | + |〈xk − x , x′
k〉X |

≤ |〈x , x′ − x′
k〉X |︸ ︷︷ ︸

→0 as k→∞

+ ‖x − xk‖X︸ ︷︷ ︸
→0 as k→∞

· ‖x′
k‖X′︸ ︷︷ ︸

bounded in k

,

since, by (5), the sequence (x′
k)k∈IN is bounded in X ′. The second claim

follows analogously. ��
We now give some characterizations of weak convergence in function

spaces.

8.4 Examples.

(1) Let 1 ≤ p < ∞ with 1
p +

1
p′ = 1 (where in the case p = 1 we assume that

the measure space is σ-finite). Then for fk, f ∈ Lp(μ)

fk → f weakly in Lp(μ) as k → ∞

⇐⇒
∫
S

fkg dμ −→
∫
S

fg dμ as k → ∞ for all g ∈ Lp′

(μ).

(2) Let S ⊂ IRn be compact. Then for fk, f ∈ C0(S) (see also E8.4)

fk → f weakly in C0(S) as k → ∞

⇐⇒
∫
S

fk dλ −→
∫
S

f dλ as k → ∞ for all λ ∈ rca(S).

(3) Let Ω ⊂ IRn be open, let m ∈ IN and let 1 ≤ p ≤ ∞. Then for uk, u ∈
Wm,p(Ω)

uk → u weakly in Wm,p(Ω) as k → ∞
⇐⇒ ∂suk → ∂su weakly in Lp(Ω) as k → ∞ for all |s| ≤ m.

The same result holds for the subspace Wm,p
0 (Ω).

Proof (1) and (2). Follow directly from Theorem 6.12 and Theorem 6.23,
respectively. ��
Proof (3). Let X = Wm,p(Ω) or X = Wm,p

0 (Ω). Then

(Jv)(x) := (∂sv(x))|s|≤m ∈ IKM for v ∈ X and almost all x ∈ Ω

defines a linear map J : X → Lp(Ω; IKM ), where M :=
(
n+m
n

)
is the number

of multi-indices s with |s| ≤ m. In addition, ‖Jv‖Lp(Ω;IKM ) can be bounded

from above and from below by ‖v‖Wm,p(Ω), and so the completeness of X

yields that the subspace Y := J(X) ⊂ Lp(Ω; IKM ) is closed. Therefore, J is a
bijective continuous linear map between X and Y = J(X) with a continuous
inverse J−1 ∈ L (Y ;X).

If uk → u weakly in X as k → ∞ and R ∈ Lp(Ω; IKM )′, then T := RJ ∈
X ′ and
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R(Juk) = T (uk) −→ T (u) = R(Ju) as k → ∞,

that is, Juk → Ju weakly in Lp(Ω; IKM ). On the other hand, if this is true
and T ∈ X ′, then R̄ := TJ−1 ∈ Y ′. Applying the Hahn-Banach theorem 6.15
we obtain an extension R ∈ Lp(Ω; IKM )′ of R̄ and therefore

T (uk) = R̄(Juk) = R(Juk) −→ R(Ju) = R̄(Ju) = T (u) as k → ∞,

that is, uk → u weakly in X. Finally, with vsk := ∂suk and vs := ∂su, it is
clear that

(vsk)|s|≤m −→ (vs)|s|≤m weakly in Lp(Ω; IKM ) as k → ∞
⇐⇒
for all |s| ≤ m :

(
vsk → vs weakly in Lp(Ω; IK) as k → ∞

)
,

a property that is true in general. ��
Weak convergence can be interpreted as a generalization of conver-

gence of all coordinates or coordinatewise convergence, as we know it for
finite-dimensional spaces. As an analogy of this we replace in the infinite-
dimensional case the “coordinates of a point” x ∈ X by the values 〈x , x′〉 for
x′ ∈ X ′. This is the idea behind the proof of the following theorem, which is
the main functional analysis result of this chapter.

8.5 Theorem. Let X be separable. Then the closed unit ball B1(0) in X ′ is
weakly∗ sequentially compact.

Remark: This then also holds for every other closed ball BR(x) in X ′.

Proof. Let {xn ; n ∈ IN} be dense in X. If (x′
k)k∈IN is a sequence in X ′

with ‖x′
k‖ ≤ 1, then (〈xn , x

′
k〉)k∈IN are bounded sequences in IK. Applying

a diagonalization procedure we produce a subsequence k → ∞ such that for
all n

lim
k→∞

〈xn , x
′
k〉 exists in IK.

Hence we have that for all y ∈ Y := span{xn ; n ∈ IN} the limit

x′(y) := lim
k→∞

〈y , x′
k〉 exists in IK,

and x′ : Y → IK is linear. It follows from

|x′(y)| = lim
k→∞

|〈y , x′
k〉| ≤ ‖y‖

that x′ is uniformly continuous on Y and so it can be uniquely extended to
a continuous linear map x′ on Y = X (see E5.3). Therefore, x′ ∈ X ′ with
‖x′‖ ≤ 1, and for all x ∈ X and y ∈ Y

|〈x , x′ − x′
k〉| ≤ |〈x − y , x′ − x′

k〉| + |〈y , x′ − x′
k〉|

≤ 2 ‖x − y‖+ |〈y , x′ − x′
k〉| .

The second term, for every y, converges to zero as k → ∞, while the first
term can be made arbitrarily small because Y = X. ��
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8.6 Examples.

(1) If X = L1(μ) is separable, then we obtain from 6.12 (see proof below)
the following result: If (fk)k∈IN is bounded in L∞(μ), then there exists a
subsequence (fki

)i∈IN and an f ∈ L∞(μ) such that∫
S

fki
g dμ −→

∫
S

fg dμ as i → ∞ for all g ∈ L1(μ).

Note: L1(μ) is separable, for example, if S ⊂ IRn is Lebesgue measurable
and μ is the Lebesgue measure, or if S ⊂ IRn is compact and μ ∈ rca(S).

(2) If X = C0(S) with S ⊂ IRn being compact, then 4.18(3) and 6.23 yield
the following result: If (μk)k∈IN is bounded in rca(S), then there exist a
subsequence (μki

)i∈IN and a measure μ ∈ rca(S) such that∫
S

g dμki
−→
∫
S

g dμ as i → ∞ for all g ∈ C0(S).

Proof (1) Note. If μ is the Lebesgue measure on S ⊂ IRn, then L1(μ) is
separable (see 4.18(4)). This also holds for μ ∈ rca(S), when S ⊂ IRn is
compact, because every function in L1(μ) can be approximated in the L1-
norm by step functions, and, as μ is regular, every μ-measurable set can be
approximated in measure by relatively open sets (with respect to S). But
every open set is a countable union of semi-open cuboids, with each cuboid
having its center on the lattice 2−i · ZZn and side length 21−i for an i ∈ IN.

��
Proof (1). Let L1(μ) be separable. On recalling that functions in L1(μ) can
be approximated by step functions, it follows from 4.17(2) that there exists
a subset {gi ; i ∈ IN} of step functions which is dense in L1(μ), e.g.

gi :=

mi∑
j=1

αijXEij
with μ(Eij) < ∞ .

Let
S̃ :=

⋃
i,j

Eij and μ̃(E) := μ(E ∩ S̃) for E ∈ B .

Then μ̃ is σ-finite, and so 6.12 can be applied to L1(μ̃). This yields the desired
result, because

f ∈ L1(μ) =⇒ f = 0 μ-almost everywhere in S \ S̃ .

To see the above, observe that there exists a sequence (ik)k∈IN in IN such
that ‖f − gik ‖L1(μ) → 0 as k → ∞, and so∫

S\S̃
|f | dμ =

∫
S\S̃

|f − gik | dμ ≤ ‖f − gik ‖L1(μ) −→ 0 as k → ∞ ,

which implies that f = 0 almost everywhere in S \ S̃. ��
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8.7 Weak topology. The following results serve to illustrate the concept of
weak sequential compactness. They will not be used in the remainder of this
book.

(1) Weak topology. Let X be a Banach space. For triples (n, z′, ε) with
n ∈ IN, z′ = (z′k)k=1,...,n, z

′
1, . . . , z

′
n ∈ X ′ and ε > 0 define

Un,z′,ε :=
{
x ∈ X ; |〈x , z′k〉| < ε for k = 1, . . . , n

}
,

and

Tw :=
{
A ⊂ X ; x ∈ A =⇒ x+ Un,z′,ε ⊂ A for some Un,z′,ε

}
.

Then X equipped with Tw (called the weak topology) is a locally convex
topological vector space (as in 5.21), and Tw is the weakest topology for which
all x′ ∈ X ′ are continuous maps x′ : X → IK with respect to Tw.

(2) Weak∗ topology. Let X be a Banach space. For triples (n, z, ε) with
n ∈ IN, z = (zk)k=1,...,n, z1, . . . , zn ∈ X and ε > 0 define

Un,z,ε :=
{
x′ ∈ X ′ ; |〈zk , x′〉| < ε for k = 1, . . . , n

}
,

and

T ′
w :=

{
A ⊂ X ′ ; x′ ∈ A =⇒ x′ + Un,z,ε ⊂ A for some Un,z,ε

}
.

Then X ′ equipped with T ′
w (called the weak∗ topology) is a locally convex

topological vector space (as in 5.21).
Moreover, it holds that: If T ′′

w is the weak∗ topology on (X ′)′ and if JX is as
in 8.2(1), then Tw = {J−1

X (A) ; A ∈ T ′′
w }.

(3) Alaoglu’s theorem. Let X be a Banach space. Then B1(0) ⊂ X ′ (the
closed unit ball with respect to the norm on X ′) is covering compact with
respect to the weak∗ topology on X ′.

On the proof: We omit the proof. The result can be shown with the help of
Tychonoff’s theorem (according to A. N. Tikhonov), see e.g. [Conway].

(4) Counterexample to compactness theorems. Theorem 8.5 does not
hold without the separability of X, that is: In general “weak∗ sequential
compactness” and “cover compactness with respect to the weak∗ topology”
need to be distinguished.

Example: Let X = L∞(]0, 1[) and for ε > 0 define

Tεf :=
1

ε

∫ ε

0

f(x) dx for f ∈ L∞(]0, 1[) .

Then Tε ∈ L∞(]0, 1[)′ with ‖Tε‖ = 1, and the following holds: There ex-
ists no null sequence (εk)k∈IN such that (Tεk)k∈IN is weakly∗ convergent in
L∞(]0, 1[)′.

Proof (4) Example. Assume that (Tεk)k∈IN is weakly∗ convergent. By choos-
ing a subsequence (which is then also weakly∗ convergent and which we again
denote by (Tεk)k∈IN), we can assume that
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1 > εk+1

εk
→ 0 as k → ∞.

Now consider the function f ∈ L∞(]0, 1[) defined by

f(x) := (−1)j for εj+1 < x < εj and j ∈ IN.

Then

Tεkf =
1

εk

(
(εk − εk+1)(−1)k +

∫ εk+1

0

f(x) dx
)
,

and so ∣∣Tεkf − (−1)k
∣∣ ≤ 1

εk

(
εk+1 +

∫ εk+1

0

|f(x)| dx
)

≤ 2εk+1

εk
−→ 0

as k → ∞. This shows that the sequence (Tεkf)k∈IN has the two cluster points
±1. Hence (Tεk)k∈IN cannot be weakly∗ convergent. ��

Reflexive spaces

In the following we consider the class of reflexive spaces. A reflexive spaceX is
characterized by the fact that the bidual space X ′′ is isometrically isomorphic
to the space X itself, however not (!) with respect to an arbitrary isometry,
but precisely with respect to the isometry JX defined in 8.2(1). The class of
reflexive spaces contains all Hilbert spaces (see 8.11(1)).

8.8 Reflexivity. Let X be a Banach space and let JX be the isometry from
8.2(1). Then we call

X reflexive :⇐⇒ JX is surjective .

We have the following results:

(1) If X is reflexive, then weak∗ and weak sequence convergence in X ′ coin-
cide.

(2) If X is reflexive, then every closed subspace of X is reflexive.

(3) If T : X → Y is an isomorphism, then

X reflexive ⇐⇒ Y reflexive .

(4) It holds that

X reflexive ⇐⇒ X ′ reflexive .

Proof (2). Let Y ⊂ X be a closed subspace. Given a y′′ ∈ Y ′′, let

〈x′ , x′′〉X′ :=
〈
x′|

Y
, y′′
〉
Y ′ for x′ ∈ X ′.

Then x′′ ∈ X ′′. Let x := J−1
X x′′. Now for all x′ ∈ X ′ with x′ = 0 on Y we

have that
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〈x , x′〉X = 〈x′ , x′′〉X′ =
〈
x′|Y , y′′

〉
Y ′ = 0 ,

which, on recalling 6.16, implies that x ∈ Y . Now let y′ ∈ Y ′, and let x′ ∈ X ′

denote an extension of y′ as in the Hahn-Banach theorem (see 6.15). Then
we conclude that

〈x , y′〉Y = 〈x , x′〉X =
〈
x′|

Y
, y′′
〉
Y ′ = 〈y′ , y′′〉Y ′ ,

i.e. y′′ = JY x. This shows that JY is surjective. ��

Proof (3). The claim is symmetric in X and Y , and so it is sufficient to
consider the case where X is reflexive. We need to show the reflexivity of Y .
Let y′′ ∈ Y ′′. Then

〈x′ , x′′〉X′ :=
〈
x′◦T−1 , y′′

〉
Y ′ for x′ ∈ X ′

defines an x′′ ∈ X ′′, and for y′ ∈ Y ′ (setting x′ := y′◦T )

〈y′ , y′′〉Y ′ = 〈y′◦T , x′′〉X′ =
〈
J−1
X x′′ , y′◦T

〉
X

=
〈
TJ−1

X x′′ , y′
〉
Y

,

and so y′′ = JY TJ
−1
X x′′. ��

Proof (4)⇒. If x′′′ ∈ X ′′′ then x′′′◦JX ∈ X ′, and it holds for all x′′ ∈ X ′′

that
〈x′′ , x′′′〉X′′ =

〈
J−1
X x′′ , x′′′◦JX

〉
X

= 〈x′′′◦JX , x′′〉X′ ,

i.e. x′′′ = JX′(x′′′◦JX). ��

Proof (4)⇐. Employing the established implication “⇒” for the Banach
space X ′ yields that X ′′ is reflexive. As JX is isometric, JX(X) is a closed
subspace of X ′′, which according to (2) is also reflexive. Hence (3) implies
that X is reflexive. ��

The proof of theorem 8.10 below employs the following:

8.9 Lemma. For every Banach space X,

X ′ separable =⇒ X separable .

Observe: The converse is false, as shown by the very important example
X = L1(μ) (see 6.12 and 4.18(4)).

Proof. Let {x′
n ; n ∈ IN} be dense in X ′. Choose xn ∈ X with

|〈xn , x
′
n〉X | ≥ 1

2‖x′
n‖ and ‖xn‖ = 1

and define Y := clos (span{xn ; n ∈ IN}). Now if x′ ∈ X ′ with x′ = 0 on Y ,
then for all n

‖x′ − x′
n‖ ≥ |〈xn , x

′ − x′
n〉X | = |〈xn , x

′
n〉X |

≥ 1
2‖x′

n‖ ≥ 1
2 (‖x′‖ − ‖x′

n − x′‖)
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and so
‖x′‖ ≤ 3 inf

n
‖x′ − x′

n‖ = 0 ,

since {x′
n ; n ∈ IN} is a dense subset. Hence it follows from 6.16 that Y = X.

��

We now prove the main theorem for reflexive spaces.

8.10 Theorem. Let X be a reflexive Banach space. Then the closed unit
ball B1(0) ⊂ X is weakly sequentially compact.

Remark: This then also holds for every other closed ball BR(x).

Proof. Let (xk)k∈IN be a sequence in B1(0) ⊂ X and set

Y := span{xk ; k ∈ IN} .

Then Y is reflexive (see 8.8(2)) and, by definition, separable. It follows that
Y ′′ = JY Y is separable, and hence so is Y ′ (see 8.9). That means that we
can apply 8.5 to the space Y ′ and to the sequence (JY xk)k∈IN in Y ′′. In
particular, there exists a y′′ ∈ Y ′′ such that for a subsequence k → ∞

〈y′ , JY xk〉Y ′ → 〈y′ , y′′〉Y ′ for all y′ ∈ Y ′.

Setting x := J−1
Y y′′ ∈ Y , it follows that

〈xk , y
′〉Y = 〈y′ , JY xk〉Y ′ −→ 〈y′ , y′′〉Y ′ = 〈x , y′〉Y as k → ∞

for all y′ ∈ Y ′. Since for x′ ∈ X ′ the map x′|Y lies in Y ′, it follows that also
〈xk , x

′〉X → 〈x , x′〉X as k → ∞, and so xk → x weakly in X as k → ∞. ��

8.11 Examples of reflexive spaces. Here are several consequences of the-
orem 8.10.

(1) Every Hilbert space X is reflexive. Together with the Riesz representa-
tion theorem 6.1 we obtain: If (xk)k∈IN is a bounded sequence in X, then
there exists a subsequence (xki

)i∈IN and an x ∈ X such that

(y , xki
)X → (y , x)X as i → ∞ for all y ∈ X.

(2) Lp(μ) for 1 < p < ∞ is reflexive. It follows from 6.12 that: If (fk)k∈IN is
a bounded sequence in Lp(μ), then there exists a subsequence (fki

)i∈IN and
an f ∈ Lp(μ) such that∫

S

gfki
dμ −→

∫
S

gf dμ as i → ∞ for all g ∈ Lp′

(μ).



8 Weak convergence 237

(3) Wm,p(Ω) for 1 < p < ∞ is reflexive. It holds that: If (fk)k∈IN is a
bounded sequence in Wm,p(Ω), then there exist a subsequence (fki

)i∈IN and
an f ∈ Wm,p(Ω) such that for all |s| ≤ m∫

Ω

g∂sfki
dLn −→

∫
Ω

g∂sf dLn as i → ∞ for all g ∈ Lp′

(Ω).

(4) L1(μ) and L∞(μ) (with the measure μ being σ-finite) are not reflexive
if the underlying σ-algebra B contains infinitely many disjoint sets with po-
sitive measure, i.e. if and only if L1(μ) and L∞(μ), respectively, are infinite-
dimensional.

(5) C0(S) and rca(S) are not reflexive if S ⊂ IRn is compact and contains
more than finitely many points, i.e. if and only if C0(S) and rca(S), respec-
tively, are infinite-dimensional.

Proof (1). Let RX : X → X ′ be the (conjugate linear) isomorphism from the
Riesz representation theorem. Then for x′′ ∈ X ′′ letting

〈y , x′〉X := 〈RXy , x′′〉X′ for y ∈ X

defines an x′ ∈ X ′. Set x := R−1
X x′. Then for all y ∈ X

〈RXy , x′′〉X′ = 〈y , RXx〉X = (y , x)X = 〈x , RXy〉X ,

i.e. x′′ = JXx, which shows that JX is surjective.

Remark: Hence in the real case, i.e. IK = IR, it holds that J−1
X = R−1

X R′
X ,

with R′
X : X ′′ → X ′ denoting the adjoint map (see 5.5(8)) of RX . ��

Proof (2). The isometries

Jp : Lp(μ) → Lp′

(μ)′ and Jp′ : Lp′

(μ) → Lp(μ)′

from 6.12 satisfy

〈f , Jp′g〉Lp(μ) = 〈g , Jpf〉Lp′ (μ) for all f ∈ Lp(μ), g ∈ Lp′

(μ).

For f ′′ ∈ Lp(μ)′′ letting

〈g , g′〉Lp′ (μ) := 〈Jp′g , f ′′〉Lp(μ)′ for g ∈ Lp′

(μ)

defines a g′ ∈ Lp′

(μ)′. Set f := J−1
p g′. Then for all g ∈ Lp′

(μ)

〈g , g′〉Lp′ (μ) = 〈g , Jpf〉Lp′ (μ) = 〈f , Jp′g〉Lp(μ) =
〈
Jp′g , JLp(μ)f

〉
Lp(μ)′

,

where JLp(μ) : Lp(μ) → Lp(μ)′′ denotes the embedding from 8.2. Conse-
quently,

〈Jp′g , f ′′〉Lp(μ)′ =
〈
Jp′g , JLp(μ)f

〉
Lp(μ)′

for all g ∈ Lp′

(μ).
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As Jp′ is surjective, it follows that f ′′ = JLp(μ)f , which proves the reflexivity
of Lp(μ).

Remark: Hence in the real case, i.e. IK = IR, it holds that J−1
Lp(μ) = J−1

p J ′
p′ ,

with J ′
p′ : Lp(μ)′′ → Lp′

(μ)′ denoting the adjoint map (see 5.5(8)) of Jp′ .
��

Proof (3). Let J : Wm,p(Ω) → Lp(Ω; IKM ) be defined as in the proof
of 8.4(3). Then combining (2) and 8.8(2) yields that the closed subspace
J
(
Wm,p(Ω)

)
is reflexive (the proof of (2) is the same for functions with val-

ues in IKM ). The claim now follows from 8.8(3). ��

Proof (4). On noting 8.8(4), 6.12 for p = 1 and 8.8(3), it is sufficient to
show this for L1(μ). Let F ∈ L∞(μ)′. If J∞ : L∞(μ) → L1(μ)′ denotes the
isomorphism from 6.12, then setting

〈f ′ , G〉L1(μ)′ :=
〈
J−1
∞ f ′ , F

〉
L∞(μ)

for f ′ ∈ L1(μ)′

defines a G ∈ L1(μ)′′. If G = JL1(μ)f for an f ∈ L1(μ), with JL1(μ) denoting
the embedding from 8.2, then it holds for all g ∈ L∞(μ) that

〈g , F 〉L∞(μ) = 〈J∞g , G〉L1(μ)′ =
〈
J∞g , JL1(μ)f

〉
L1(μ)′

= 〈f , J∞g〉L1(μ) =
∫
S
fg dμ ,

that is,
〈g , F 〉L∞(μ) =

∫
S
gf dμ for all g ∈ L∞(μ). (8-2)

Under the assumption that L1(μ) is infinite-dimensional, we now construct
an F which does not satisfy this property. To this end, let Ek ∈ B be such
that

Ek ⊂ Ek+1, μ(Ek) < μ(Ek+1) and E :=
⋃

k∈IN Ek .

Consider the subspace

Y := clos
( {

g ∈ L∞(μ) ; g = 0 on S \ Ek for some k
} )

⊂ L∞(μ) .

Then XE /∈ Y , and so 6.16 implies that there exists an F ∈ L∞(μ)′ with
F = 0 on Y and F (XE) = 1. Hence,

F (XEk
) = 0 and F (XE) = 1 ,

but for every f ∈ L1(μ) we have that∫
S
XEk

f dμ −→
∫
S
XEf dμ .

Therefore, F cannot have the representation (8-2). ��
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Proof (5). Let C0(S) be reflexive. Then analogously to the proof of (4), and
on using 6.23, there exists for every functional F ∈ rca(S)′ an f ∈ C0(S)
with

〈ν , F 〉rca(S) =
∫
S
f dν for all ν ∈ rca(S) . (8-3)

If S is not finite, then there exist points xk ∈ S for k ∈ IN with xk → x ∈ S
as k → ∞ and with xk �= x for all k. Consider the Dirac measures δxk

and
δx and set Y := {ν ∈ rca(S) ; ν({x}) = 0}. It holds that Y ⊂ rca(S) is a
closed subspace with δxk

∈ Y and δx /∈ Y . It follows from 6.16 that there
exists an F ∈ rca(S)′ with F (δxk

) = 0 for all k and F (δx) = 1. But for every
f ∈ C0(S) we have that∫

S
f dδxk

= f(xk) −→ f(x) =
∫
S
f dδx .

Hence F cannot have the representation (8-3). ��

Minkowski’s functional

In 4.3 we solved the minimal distance problem for closed convex sets in Hilbert
spaces, and we saw in E4.3 that in general this is not possible in Banach
spaces. We will now show that in reflexive spaces the distance to such sets
is attained (see 8.15). This is based on the fact that convex side constraints
for elements of an arbitrary Banach space remain valid for limits of weakly
convergent sequences, see theorem 8.13. For closed balls this theorem can be
obtained directly from 8.3(4), and for general closed convex sets it follows
from the following

M

x0

{x ; Re 〈x , x′〉} > α

{x ; Re 〈x , x′〉} ≤ α

Fig. 8.1. Separation theorem
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8.12 Separation theorem. Let X be a normed space, let M ⊂ X be
nonempty, closed and convex, and let x0 ∈ X \ M . Then there exist an
x′ ∈ X ′ and an α ∈ IR with

Re 〈x , x′〉 ≤ α for x ∈ M and Re 〈x0 , x
′〉 > α .

Remark: It follows that x′ �= 0, and hence {x ∈ X ; Re 〈x , x′〉 = α} is a
hyperplane.

Proof. First we consider the case IK = IR. We may assume with no loss of
generality that

0 ∈ M̊ .

Justification: Choose an x̃ ∈ M and consider x̃0 := x0 − x̃ and M̃ :=
Br(M − x̃) with 0 < r < dist(x0,M). Then if the theorem is established for

M̃ and x̃0 with x′ and α̃, it follows that the theorem holds for M and x0

with x′ and α := α̃+ 〈x̃ , x′〉. Consider the Minkowski functional

p(x) := inf
{
r > 0 ;

x

r
∈ M

}
for x ∈ X.

Since 0 ∈ M̊ , it follows that 0 ≤ p(x) < ∞ for all x ∈ X. Moreover,

p ≤ 1 on M , p(x0) > 1 , p(0) = 0 .

In addition, we have for x, y ∈ X that

p(ax) = ap(x) for a ≥ 0 ,

p(x+ y) ≤ p(x) + p(y) ,

i.e. p is sublinear. To see this, note that for α > 0

x

r
∈ M ⇐⇒ αx

αr
∈ M ,

and that the convexity of M implies that

x

r
∈ M,

y

s
∈ M =⇒ x+ y

r + s
=

r

r + s

x

r
+

s

r + s

y

s
∈ M .

Now let f : span{x0} → IR be defined by

f(ax0) := ap(x0) for a ∈ IR.

Then
f(ax0) = p(ax0) for a ≥ 0 ,

f(ax0) ≤ 0 ≤ p(ax0) for a ≤ 0 .

It follows from the Hahn-Banach theorem (see 6.14), applied to the subspace
span{x0}, that there exists a linear extension F of f with F ≤ p on X. Hence
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F ≤ p ≤ 1 on M, F (x0) = f(x0) = p(x0) > 1 .

On recalling that B�(0) ⊂ M for some � > 0, we note that

x ∈ X =⇒ x
1
�‖x‖

∈ M =⇒ p(x) ≤ 1

�
‖x‖ =⇒ F (x) ≤ 1

�
‖x‖ .

Similarly, −F (x) = F (−x) ≤ 1
�‖x‖, which implies that F ∈ X ′. Hence we

have shown the desired result for x′ := F and α = 1.
In the case IK = C consider X as an IR-vector space XIR and obtain an

FIR ∈ X ′
IR with the desired properties. Then, as in the proof of 6.15, proceed

to the function F (x) := FIR(x) − iFIR(ix). ��

8.13 Theorem. Let X be a normed space and let M ⊂ X be closed and
convex. Then M is weakly sequentially closed, i.e. if xk, x ∈ X for k ∈ IN,
then

xk → x weakly in X as k → ∞,

xk ∈ M for k ∈ IN
=⇒ x ∈ M .

Proof. If x /∈ M , then by the separation theorem 8.12 there exist an x′ ∈ X ′

and an α ∈ IR such that

Re 〈y , x′〉 ≤ α for y ∈ M and Re 〈x , x′〉 > α.

Now we have that Re 〈xk , x
′〉 ≤ α, and the weak convergence to x yields

that also Re 〈x , x′〉 ≤ α, a contradiction. ��

The following two results are consequences of this theorem.

8.14 Mazur’s lemma. Let (xk)k∈IN be a sequence in a normed space X
that converges weakly to x. Then x ∈ clos (conv {xk ; k ∈ IN}).

Proof. M := conv {xk ; k ∈ IN} is a convex set, and hence so is M . Now
apply theorem 8.13. ��

8.15 Theorem. Let X be a reflexive Banach space and let M ⊂ X be
nonempty, closed and convex. Then for x0 ∈ X there exists an x ∈ M with

‖x − x0‖ = dist(x0,M) .

Proof. Let (xk)k∈IN be a minimal sequence, i.e.

xk ∈ M and ‖xk − x0‖ → dist(x0,M) as k → ∞.

Then (xk)k∈IN is a bounded sequence, and so it follows from 8.10 that there
exists a subsequence k → ∞ such that xk → x weakly in X as k → ∞.
Hence 8.13 yields x ∈ M . On noting that also xk − x0 → x − x0 weakly
in X, it follows from the lower semicontinuity of the norm (see 8.3(4)) that
‖x − x0‖ = dist(x0,M). ��
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Variational methods

Closed convex sets play an important role in existence proofs for elliptic
partial differential equations. We now provide applications of theorem 8.13
on closed convex sets to variational problems with side constraints (see 8.17–
8.18), where a generalization of the Poincaré inequality 6.7 is needed (see
8.16). The results on partial differential equations will rely on Sobolev spaces,
and the theorems required for these spaces will be derived in Appendix A8.
Moreover, we always consider open sets Ω ⊂ IRn which are connected.

Remark: An open set Ω ⊂ IRn is connected if and only if it is path con-
nected, i.e. if for every two points x0, x1 ∈ Ω there exists a (continuous) path
in Ω from x0 to x1, i.e. a continuous map γ : [0, 1] → Ω with γ(0) = x0

and γ(1) = x1. In the following we will always only make use of this property
(see e.g. 10.4). In a general topological space X a subset A ⊂ X is said to be
connected if A is not the union of two disjoint, nonempty and relatively in
A open sets.

8.16 Generalized Poincaré inequality. Let Ω ⊂ IRn be open, bounded
and connected with Lipschitz boundary ∂Ω (see definition A8.2). Moreover,
let 1 < p < ∞ and let M ⊂ W 1,p(Ω) be nonempty, closed and convex. Then
the following are equivalent for every u0 ∈ M :

(1) There exists a constant C0 < ∞ such that for all ξ ∈ IR,

u0 + ξ ∈ M =⇒ |ξ | ≤ C0 .

(2) There exists a constant C < ∞ with

‖u‖Lp(Ω) ≤ C ·
(
‖∇u‖Lp(Ω) + 1

)
for all u ∈ M .

Note: If M , in addition, is a cone with apex 0, i.e. if

u ∈ M, r ≥ 0 =⇒ ru ∈ M ,

then the inequality in (2) can be replaced with

‖u‖Lp(Ω) ≤ C · ‖∇u‖Lp(Ω) for all u ∈ M .

Proof Note. Replace u in (2) with ru and let r ↗ ∞. ��

Proof (2)⇒(1). Let ξ ∈ IR with u := u0 + ξ ∈ M . Then ∇u = ∇u0, and
hence the inequality in (2) for u implies that

C · (‖∇u0‖Lp + 1) ≥ ‖u0 + ξ‖Lp ≥ |ξ | · ‖1‖Lp − ‖u0‖Lp .

This yields the desired result with a C0 that depends on C and u0. ��

Proof (1)⇒(2). Without loss of generality we may assume that u0 = 0. To

see this, note that if the desired inequality holds for ũ ∈ M̃ := M − u0 with
a constant C̃, then it follows for u := ũ+ u0 that
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‖u‖Lp ≤ ‖ũ‖Lp + ‖u0‖Lp ≤ C̃ ·
(
‖∇u‖Lp + ‖∇u0‖Lp + 1

)
+ ‖u0‖Lp .

Now let u0 = 0 and assume that the conclusion is false. Then there exist
uk ∈ M , k ∈ IN, with

‖∇uk‖Lp + 1 ≤ 1

k
‖uk‖Lp . (8-4)

In particular, ‖uk‖Lp → ∞, and so for every given R > 0 (for k sufficiently
large)

δk :=
R

‖uk‖Lp

−→ 0 as k → ∞.

Hence we have that 0 < δk ≤ 1 for k sufficiently large, and combining the
fact that 0 ∈ M and the convexity of M then yields that vk := δkuk ∈ M .
Further,

‖vk‖Lp = δk‖uk‖Lp = R ,

and the inequality (8-4) yields that

‖∇vk‖Lp + δk ≤ 1

k
‖vk‖Lp =

R

k
−→ 0 as k → ∞.

Thus, the vk are bounded in W 1,p(Ω). Then 8.11(3) implies that there exist
a subsequence, again denoted by (vk)k∈IN, and a v ∈ W 1,p(Ω), such that
vk → v weakly in W 1,p(Ω) as k → ∞, and so v ∈ M on recalling 8.13.
In particular, ∇vk → ∇v weakly in Lp(Ω) (see 8.4(3)). However, the above
inequality yields that ∇vk → 0 strongly in Lp(Ω), and hence ∇v = 0. As
Ω is connected, it follows that v is (almost everywhere) a constant function
(see E8.9). This means that v = ξ almost everywhere in Ω for some ξ ∈ IR,
and the assumptions yield that |ξ | ≤ C0. On the other hand, by Rellich’s
embedding theorem (see A8.4), the weak convergence in W 1,p(Ω) implies
that vk → v strongly in Lp(Ω), and so

R = ‖vk‖Lp −→ ‖v‖Lp = |ξ | · ‖1‖Lp ≤ C0‖1‖Lp .

This yields a contradiction, on initially choosing R sufficiently large. ��

In the above result we have considered domains Ω ⊂ IRn with a local Lip-
schitz boundary ∂Ω. It turns out that the class of such “Lipschitz domains”
is mathematically very robust (see, for example, the trace theorem A8.6 or
the embedding theorem 10.9, which for Lipschitz domains holds in Sobolev
spaces of arbitrary order). And it is the class of domains that is appropriate
for applications, as the boundary can have edges and corners (e.g. cubes are
allowed, and more general domains with piecewise smooth boundaries, where
the pieces meet at nondegenerate angles). We now consider Sobolev functions
on Lipschitz domains and solve the
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8.17 Elliptic minimum problem. Let Ω ⊂ IRn be open, bounded and
connected with Lipschitz boundary (see A8.2). Let IK = IR. Then

E(u) :=

∫
Ω

(1
2

n∑
i,j=1

∂iu · aij∂ju+ fu
)
dLn for u ∈ W 1,2(Ω)

defines a map E : W 1,2(Ω) → IR, where we assume that f ∈ L2(Ω) and
aij ∈ L∞(Ω). In addition, we assume that (aij)i,j=1,...,n is elliptic (as in

(6-8)), i.e. that there exists a positive constant c0 such that for all x ∈ Ω

n∑
i,j=1

aij(x)ξiξj ≥ c0|ξ |2 for all ξ ∈ IRn. (8-5)

Without loss of generality we may assume symmetry, i.e. that

aij = aji for i, j = 1, . . . , n. (8-6)

(Otherwise replace aij with ãij := 1
2 (aij + aji).) Then for every nonempty,

closed and convex subset M ⊂ W 1,2(Ω) with the property in 8.16 (the prop-
erty (8-10), below, is stronger) it holds that:

(1) E has an absolute minimum u on M , i.e. there exists a u ∈ M such
that

E(u) ≤ E(v) for all v ∈ M. (8-7)

(2) The absolute minima u of E on M are precisely the solutions of the
following variational inequality of E on M :∫

Ω

( n∑
i,j=1

∂i(u − v) · aij∂ju+ (u − v)f
)
dLn ≤ 0 for all v ∈ M. (8-8)

(3) If M is a closed affine subspace, that is, if M = u0+M0 for some u0 ∈ M
and a closed subspace M0 ⊂ W 1,2(Ω), then the variational inequality (8-8)
for u ∈ M is equivalent to∫

Ω

( n∑
i,j=1

∂iv · aij∂ju+ vf
)
dLn = 0 for all v ∈ M0. (8-9)

(4) If M satisfies

v ∈ M, ξ ∈ IR, v + ξ ∈ M =⇒ ξ = 0 , (8-10)

then there exists a unique absolute minimum and a unique solution of the
variational inequality of E on M .
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Proof (1). We begin by showing that there exist positive constants c and C
such that

E(u) ≥ c

∫
Ω

|∇u|2 dLn − C for all u ∈ M. (8-11)

On noting the elementary Young’s inequality

a · b ≤ δa2 + 1
4δ b

2 for a, b ≥ 0 and δ > 0, (8-12)

it follows from the ellipticity in (8-5) that

E(u) ≥ c0

∫
Ω

|∇u|2 dLn − ‖f ‖L2‖u‖L2

≥ c0‖∇u‖2L2 − δ‖u‖2L2 − 1

4δ
‖f ‖2L2 .

Letting C1 denote the constant from the Poincaré inequality 8.16(2),

‖u‖2L2 ≤ 2C2
1‖∇u‖2L2 + 2 ,

and so
E(u) ≥ (c0 − 2C2

1δ)‖∇u‖2L2 − C(δ, f) ,

where C(δ, f) is a quantity depending on δ and f . On choosing δ sufficiently
small, we obtain (8-11) with c = c0

2 .
It follows from (8-11) that E(u) ≥ −C for all u ∈ M , i.e. E is bounded

from below on M . Now choose a minimal sequence (uk)k∈IN in M , i.e.

E(uk) −→ d := inf
v∈M

E(v) > −∞ as k → ∞.

By (8-11), the sequence (∇uk)k∈IN is bounded in L2(Ω). Together with the
Poincaré inequality 8.16(2) we obtain that (uk)k∈IN is a bounded sequence in
W 1,2(Ω). It follows from 8.11(3) that there exists a u ∈ W 1,2(Ω) such that
uk → u weakly in W 1,2(Ω) for a subsequence k → ∞. Since M is closed and
convex, it follows from theorem 8.13 that u ∈ M . Moreover, it follows from
8.4(3) that the weak convergence implies that∫

Ω

f(uk − u) dLn −→ 0 and
n∑

i,j=1

∫
Ω

aij∂iu∂j(uk − u) dLn −→ 0 .

Hence we have that

E(uk) = E(u+ uk − u)

= E(u) +

n∑
i,j=1

∫
Ω

aij∂iu∂j(uk − u) dLn +

∫
Ω

f(uk − u) dLn

︸ ︷︷ ︸
→ 0 as k → ∞

+

∫
Ω

1

2

n∑
i,j=1

aij∂i(uk − u)∂j(uk − u)︸ ︷︷ ︸
≥ 0

dLn ,
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which yields that E(u) ≤ lim infk→∞ E(uk) = d. On the other hand, u ∈ M
implies that E(u) ≥ infv∈M E(v) = d, and so E(u) = d. ��

Proof (2). If u is an absolute minimum and if v ∈ M , then, since M is convex,
(1 − ε)u+ εv ∈ M for 0 < ε ≤ 1, and so

E(u) ≤ E
(
(1 − ε)u+ εv

)
= E
(
u+ ε(v − u)

)
= E(u)+ε

∫
Ω

( n∑
i,j=1

∂i(v − u)aij∂ju+ (v − u)f
)
dLn

+
ε2

2

∫
Ω

n∑
i,j=1

∂i(v − u)aij∂j(v − u)︸ ︷︷ ︸
≥0

dLn .

(8-13)

Subtracting E(u), dividing by ε and letting ε ↘ 0 then yields the desired
variational inequality.

Conversely, if u ∈ M then the identity in (8-13) (with ε = 1) yields for
all v ∈ M that

E(v) ≥ E(u) +

∫
Ω

( n∑
i,j=1

∂i(v − u)aij∂ju+ (v − u)f
)
dLn .

Now if u is a solution of the variational inequality, then the above integral is
nonnegative. Hence u is an absolute minimum of E on M . ��

Proof (3). In (8-8) choose v = u ± ṽ with ṽ ∈ M0 (cf. the proof of 4.4(1)).
��

Proof (4). If u1 and u2 are two solutions of the variational inequality, then
choose v = u2 in the variational inequality for u1 and v = u1 in the variational
inequality for u2 to obtain∫

Ω

( n∑
i,j=1

∂i(u1 − u2) · aij∂ju1 + (u1 − u2)f
)
dLn ≤ 0 ,

∫
Ω

( n∑
i,j=1

∂i(u2 − u1) · aij∂ju2 + (u2 − u1)f
)
dLn ≤ 0 .

Adding these two inequalities yields that

0 ≥
∫
Ω

n∑
i,j=1

∂i(u1 − u2) · aij∂j(u1 − u2) dL
n ≥ c0

∫
Ω

|∇(u1 − u2)|2 dLn ,

and so ∇(u1 − u2) = 0 in L2(Ω). As in the proof of 8.16 it now follows
for some ξ ∈ IR that u1 − u2 = ξ ∈ IR almost everywhere in Ω, with the
assumptions implying that ξ = 0. ��
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We remark that the techniques used in the proof for the minimum problem
in 8.17 carry over to nonquadratic functionals. We now give some important
examples of the set M for this minimum problem. Here all of the occurring
boundary values are defined with the help of the trace theorem A8.6.

8.18 Examples of minimum problems.

(1) Let

M :=
{
v ∈ W 1,2(Ω) ; v = 0 Hn−1-almost everywhere on ∂Ω

}
.

Then it holds: There exists a unique absolute minimum u in 8.17. It satis-
fies (8-9) with M0 = M . Hence u is the weak solution of the homogeneous
Dirichlet problem in 6.5(1) (for hi = 0, b = 0).

Note: It holds that M = W 1,2
0 (Ω). Hence this is a special case of theorem

6.8, which was shown there for general open and bounded sets Ω ⊂ IRn.

(2) Let

M :=
{
v ∈ W 1,2(Ω) ;

∫
Ω
v dLn = 0

}
.

In addition, we assume that
∫
Ω
f dLn = 0. Then it holds: There exists a

unique absolute minimum u in 8.17. It satisfies the equality (8-9) for all
v ∈ W 1,2(Ω). Hence u is a weak solution of the homogeneous Neumann
problem in 6.5(2) (for hi = 0, b = 0). The solution to this problem is unique
up to an additive constant.

Observe: This result differs from theorem 6.6, as there the Neumann problem
was solved for b > 0.

(3) Let u0, ψ ∈ W 1,2(Ω) be given and let u0(x) ≥ ψ(x) for almost all x ∈ Ω.
Define

M :=
{
v ∈ W 1,2(Ω) ; v = u0 Hn−1-almost everywhere on ∂Ω,

v ≥ ψ Ln-almost everywhere in Ω
}
.

The corresponding minimum problem is called an obstacle problem. Then
it holds: There exists a unique solution u to the obstacle problem. It satisfies
the variational inequality (8-8).

Special case: For the case n = 1, see also E8.8.

(4) Let Lebesgue measurable sets E1, E2 ⊂ Ω with Ln(E1) > 0 and
Ln(E2) > 0, and ψ1, ψ2 ∈ W 1,2(Ω) with ψ1 ≤ ψ2 almost everywhere in
Ω be given. Define

M :=
{
v ∈ W 1,2(Ω) ; v ≥ ψ1 Ln-almost everywhere in E1,

v ≤ ψ2 Ln-almost everywhere in E2

}
.

The corresponding minimum problem is called a double obstacle problem.
Then it holds: There exists a solution u to this obstacle problem and it
satisfies the variational inequality (8-8).

Remark: The solution need not be unique.
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(5) Let u0 ∈ W 1,2(Ω) and let Γ ⊂ ∂Ω be a closed subset with measure
Hn−1(Γ ) > 0. Define

M :=
{
v ∈ W 1,2(Ω) ; v = u0 Hn−1-almost everywhere on Γ

}
.

Then it holds: There exists a unique absolute minimum u ∈ M in 8.17. It
satisfies (8-9) with

M0 = {v ∈ W 1,2(Ω) ; v = 0 Hn−1-almost everywhere on Γ} .
Definition: Then u ∈ W 1,2(Ω) is called a weak solution of the mixed
boundary value problem

−
∑n

i,j=1 ∂i(aij∂ju) + f = 0 in Ω,

u = u0 on Γ,∑n
i,j=1 νiaij∂ju = 0 on ∂Ω \ Γ,

where ν is the outer normal to Ω defined in A8.5(3). The weak solution in
W 1,2(Ω) to this boundary value problem is unique.

Proof (1). The continuity of the trace operator yields that M ⊂ W 1,2(Ω)
is a closed subspace (with S as in A8.6 it holds that M = N (S)). Clearly
M is nonempty and satisfies (8-10) (from v ∈ M and v + ξ ∈ M it follows
for the traces that v = 0 and v + ξ = 0 almost everywhere on ∂Ω, and so
ξ = 0). Now 8.17 yields the existence of a unique solution u, which satisfies
(8-9) with M0 = M . ��

Proof (2). M is a subspace and contains 0 as the only constant function. In
addition, M is closed (the embedding from W 1,2(Ω) into L1(Ω) is continu-
ous and the side constraint is continuous on L1(Ω)). Hence M satisfies the
property (8-10), and so 8.17 yields the existence of a unique solution u, which
satisfies (8-9) with M0 = M .

For arbitrary v ∈ W 1,2(Ω) it holds that ṽ := v − m(v) ∈ M , where

m(g) := −
∫
Ω

g dLn :=
1

Ln(Ω)

∫
Ω

g dLn for g ∈ L1(Ω) (8-14)

denotes the mean of g on Ω.
On recalling that m(f) = 0, we obtain that (8-9) holds for constant

functions, and hence it also holds for v = ṽ +m(v), as claimed.
Now if ũ ∈ M is another function that satisfies (8-9) for all v ∈ W 1,2(Ω),

then ∫
Ω

n∑
i,j=1

∂iv · aij∂j(u − ũ) dLn = 0 for all v ∈ W 1,2(Ω).

Set v = u − ũ. Then

0 =

∫
Ω

n∑
i,j=1

∂i(u − ũ) · aij∂j(u − ũ) dLn ≥ c0

∫
Ω

|∇(u − ũ)|2 dLn.



E8 Exercises 249

Hence we have that ∇(u− ũ) = 0 almost everywhere in Ω. As Ω is connected,
it follows that there exists a ξ ∈ IR such that ũ = u + ξ almost everywhere
in Ω. ��

Proof (3). M is convex and u0 ∈ M . We show that M is closed. Let (uk)k∈IN

be a sequence in M that converges in W 1,2(Ω) to a u ∈ W 1,2(Ω). Then it
follows from the trace theorem A8.6 that uk → u in L2(∂Ω). On noting that
uk = u0 in L2(∂Ω), we also have that u = u0 in L2(∂Ω). In addition, uk → u
in L2(Ω). Hence there exists a subsequence k → ∞ such that uk → u almost
everywhere in Ω. Now uk ≥ ψ almost everywhere implies that u ≥ ψ.

Moreover, (8-10) holds. Indeed, it follows from v ∈ M and ṽ := v+ξ ∈ M
that ξ = ṽ − v = 0 almost everywhere on ∂Ω, and so ξ = 0. By 8.17, there
exists a unique solution to the variational inequality. ��

Proof (4). We have that M is convex and that ψ1, ψ2 ∈ M . The closedness
of M follows as in the proof of (3). In addition, 8.16(1) is satisfied, e.g. with
u0 = ψ1. To see this, note that if v := ψ1 + ξ ∈ M with ξ ∈ IR, then ξ ≥ 0,
since Ln(E1) > 0. Similarly, we have that ξ ≤ ψ2 − ψ1 on E2, and so it
follows from Ln(E2) > 0 (on applying either the Hölder inequality (see 3.18)
or Jensen’s inequality (see E4.10)) that

ξ ≤ −
∫
E2

|ψ2 − ψ1 | dLn ≤
(
−
∫
E2

|ψ2 − ψ1 |2 dLn

) 1
2

= (Ln(E2))
− 1

2 ‖ψ2 − ψ1‖L2(E2)
< ∞ .

By 8.17, there exists a solution to the minimum problem.

On the uniqueness: In general, there exist several solutions. For example,
if ψ1 = −1, ψ2 = +1, f = 0, then every constant function u = ξ with
ξ ∈ [ − 1, 1] is a solution. This would no longer be the case if, in addition,
Dirichlet data were prescribed on ∂Ω (e.g. as in (3)). ��

Proof (5). M is convex and u0 ∈ M . The closedness of M follows as in the
proof of (3), on restricting the pointwise argument to the subset Γ ⊂ ∂Ω. The
same holds for the proof of (8-10), where now we use that Hn−1(Γ ) > 0. Then
8.17 yields the existence of a unique solution. On noting that M0 := M − u0

is a subspace, we conclude that (8-9) holds. ��

E8 Exercises

Throughout these exercises we let IK = IR.

E8.1 Weak limit in Lp(μ). Let μ be a σ-finite measure and let fj , f ∈
Lp(μ) with 1 ≤ p ≤ ∞. Then it holds: If fj → f weakly in Lp(μ) and fj → f̃

μ-almost everywhere as j → ∞, then f̃ = f μ-almost everywhere.
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Solution. Let Sm be as in 3.9(4). It follows from Egorov’s theorem A3.18 that
for ε > 0 there exists a measurable set Eε ⊂ Sm such that μ(Sm \ Eε) ≤ ε

and fj → f̃ uniformly on Eε as j → ∞. Given ζ ∈ L∞(μ), the map

g �−→
∫
Eε

ζg dμ

defines a continuous linear functional on Lp(μ) (for p < ∞ this follows from
μ(Eε) < ∞ and the Hölder inequality), i.e. an element of Lp(μ)′. Hence we
have that ∫

Eε

ζ(fj − f) dμ −→ 0 as j → ∞.

Since fj → f̃ uniformly on Eε,∫
Eε

ζ(f̃ − f) dμ = 0 for all ζ ∈ L∞(μ).

Now set ζ(x) = ψ
(
f̃(x) − f(x)

)
, where

ψ(z) :=

⎧⎨⎩
z

|z | for z �= 0,

0 for z = 0.

Then ζ(f̃ − f) = |f̃ − f |, and hence we obtain that f̃ = f almost everywhere
on Eε. Letting ε ↘ 0 and m ↗ ∞ yields the desired result. ��

E8.2 Weak limit of a product. Let μ be a σ-finite measure and let 1 <
p < ∞. Moreover, let fj → f in Lp(μ) as j → ∞, let (gj)j∈IN be bounded in

Lp′

(μ) and let gj → g almost everywhere. Then

gjfj −→ gf weakly in L1(μ) as j → ∞.

In particular, ∫
S

gjfj dμ −→
∫
S

gf dμ as j → ∞.

Solution. Otherwise it follows from theorem 6.12 that there exists a ζ ∈
L∞(μ) such that for a subsequence j → ∞ and a δ > 0 we have that∣∣∣∣∫

S

gjfjζ dμ −
∫
S

gfζ dμ

∣∣∣∣ ≥ δ for all j. (E8-1)

On recalling from 8.11(2) that Lp′

(μ) is reflexive for 1 < p′ < ∞, it follows
from theorem 8.10 that there exists a g̃ ∈ Lp′

(μ) such that for a further
subsequence gj → g̃ weakly in Lp′

(μ) as j → ∞. Now E8.1 yields that g̃ = g,

and hence gj → g weakly in Lp′

(μ). Moreover, fjζ → fζ converges (strongly)
in Lp(μ) as j → ∞. In this situation we can apply 8.3(6):
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If J : Lp(μ) →
(
Lp′

(μ)
)′

denotes the isomorphism from 6.12, then

J(fjζ) → J(fζ) converges (strongly) in
(
Lp′

(μ)
)′

and hence the second re-
sult in 8.3(6) yields that 〈gj , J(fjζ)〉Lp′ → 〈g , J(fζ)〉Lp′ , in contradiction
to (E8-1). ��

E8.3 Weak limit of a product. Let μ(S) < ∞ and let 1 < p ≤ ∞. Assume
that fj → f converges weakly in Lp(μ) as j → ∞. In addition, let gj : S → IR
be measurable and uniformly bounded, and let gj → g almost everywhere as
j → ∞. Then

gjfj −→ gf weakly in L1(μ) as j → ∞.

Solution. Since |gj − g |p
′

are uniformly bounded and μ(S) < ∞, it follows
for a constant C that

|gj − g |p
′

≤ C ∈ L1(μ).

Since these functions converge almost everywhere to 0, it follows from

Lebesgue’s convergence theorem 3.25 that |gj − g |p
′

→ 0 in L1(μ), and hence

ζgj → ζg (strongly) in Lp′

(μ) as j → ∞ for all ζ ∈ L∞(μ). Moreover, the
assumptions state that fj → f weakly in Lp(μ). In this situation we can
apply the first result in 8.3(6) (analogously to the solution of E8.2). ��

E8.4 Weak convergence in C0. Let S ⊂ IRn be compact and let fj , f ∈
C0(S). Then

fj −→ f weakly in C0(S)

as j → ∞
⇐⇒

sup
x∈S

sup
j∈IN

|fj(x)| < ∞ and

fj(x) −→ f(x) as j → ∞
for all x ∈ S.

Remark: It holds that supx∈S supj∈IN |fj(x)| = supj∈IN supx∈S |fj(x)|.

Solution ⇒. By 8.3(5), the sequence (fj)j∈IN is bounded in C0(S). Moreover,
it follows from 6.23 that the weak convergence is equivalent to∫

S

fj dν −→
∫
S

f dν as j → ∞ (E8-2)

for all ν ∈ rca(S). Now choose ν = δx for x ∈ S, where δx denotes the Dirac
measure at the point x. ��

Solution ⇐. We have to show (E8-2). Let μ ∈ rca(S) be nonnegative. It
follows from Egorov’s theorem A3.18 that for ε > 0 there exists a measurable
set Eε ⊂ S with μ(S \Eε) ≤ ε such that fj → f uniformly on Eε as j → ∞.
On recalling that the functions fj are uniformly bounded, say |fj | ≤ C, we
have that
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S

(fj − f) dμ

∣∣∣∣ ≤ μ(Eε) sup
x∈Eε

|fj(x) − f(x)|︸ ︷︷ ︸
→ 0 as j → ∞

for every ε

+C · μ(S \ Eε)︸ ︷︷ ︸
→ 0 as ε → 0

.

This yields (E8-2) for μ.

Note: The desired result also holds for arbitrary measures in rca(S; IR), as
they can be decomposed into their real and imaginary parts, and these further
into their positive and negative parts (the nonnegative and nonpositive parts,
see the Hahn decomposition A6.2). ��

E8.5 Strong convergence in Hilbert spaces. Let X be a Hilbert space.
Then it holds for every sequence (xk)k∈IN in X that:

xk −→ x (strongly) in X

as k → ∞
⇐⇒

xk −→ x weakly in X and

‖xk‖X −→ ‖x‖X as k → ∞.

Solution ⇐. We have that

‖xk‖2X = ‖x‖2X + 2Re (xk − x , x)X + ‖xk − x‖2X .

It follows from the Riesz representation theorem that (xk − x , x)X → 0 as
k → ∞, and so the convergence ‖xk‖X → ‖x‖X yields the desired result.

��

E8.6 Strong convergence in Lp spaces. Prove that the equivalence in
E8.5 also holds for the Banach space X = Lp(μ) with 1 < p < ∞.

Solution ⇐. Let fk, f ∈ Lp(μ) be such that fk → f weakly in Lp(μ) as
k → ∞, which on recalling theorem 6.12 means that∫

S

fkg dμ −→
∫
S

fg dμ for all g ∈ Lp′

(μ) ,

and such that ‖fk‖Lp → ‖f ‖Lp as k → ∞. We employ the elementary
inequality

|b|p ≥ |a|p + p · (b − a) •
(
|a|p−2

a
)
+ c ·
(
|b| + |a|

)p−2|b − a|2 (E8-3)

for a, b ∈ IRm, a �= 0, with a constant c > 0 depending on m and p (proof see
below).

Set a = f(x), if f(x) �= 0, and b = fk(x). With g(x) := |f(x)|p−2
f(x) (we

consider the real case), if f(x) �= 0, and g(x) := 0 otherwise, it follows that∫
S

|fk |p dμ ≥
∫
S

|f |p dμ+ p · Re
(∫

S

(fk − f)g dμ
)
+ c · δk (E8-4)

with
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δk :=

∫
Sk

(
|fk | + |f |

)p−2|fk − f |2 dμ ,

where Sk := {x ∈ S ; |fk(x)| + |f(x)| > 0}. On noting that g ∈ Lp′

(μ), it
follows from the assumptions that the second term on the right-hand side of
(E8-4) converges to 0, and that the left-hand side converges to the first term
on the right-hand side. We conclude that δk → 0 as k → ∞. For p ≥ 2 this
yields the desired result, since

δk ≥
∫
S

|fk − f |p dμ .

For 1 < p < 2 and ε > 0 let

Eε,k :=
{
x ∈ Sk ; |fk(x) − f(x)| ≥ ε(|fk(x)| + |f(x)|)

}
.

Then

|fk − f |p ≤
{
εp−2(|fk | + |f |)p−2|fk − f |2 on Eε,k ,

εp(|fk | + |f |)p ≤ 2p−1εp(|fk |p + |f |p) on Sk \ Eε,k ,

whence∫
S

|fk − f |p dμ =

∫
Sk

|fk − f |p dμ

≤ 2p−1εp
∫
Sk\Eε,k

(|fk |p + |f |p) dμ+ εp−2

∫
Eε,k

(|fk | + |f |)p−2|fk − f |2 dμ

≤ 2p−1εp (‖fk‖pLp + ‖f ‖pLp)︸ ︷︷ ︸
bounded in k

+ εp−2δk

for all ε and k, which yields the desired result.
For the proof of (E8-3) let as := (1− s)a+ sb. As (E8-3) depends contin-

uously on b, we may assume that as �= 0 for 0 ≤ s ≤ 1. Then

|a1 |p − |a0 |p = p

∫ 1

0

|as |p−2
as • (a1 − a0) ds ,

and hence

|a1 |p − |a0 |p − p|a0 |p−2
a0 • (a1 − a0)

= p (a1 − a0) •
∫ 1

0

∫ s

0

d

dt

(
|at |p−2

at
)
dtds

= p

∫ 1

0

∫ s

0

|at |p−2

(
|a1 − a0 |2 + (p − 2)

(
(a1 − a0) • at

|at |

)2)
dtds

≥ p
(
1 + min(p − 2, 0)

)
· ψ(a0, a1) · |a1 − a0 |2 ,
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with

ψ(a0, a1) :=

∫ 1

0

∫ s

0

|at |p−2
dt ds .

Observe that ψ(a0, a1) =
(
|a0 | + |a1 |

)p−2
ψ(b0, b1) with bl :=

(
|a0 | +

|a1 |
)−1

al for l = 0, 1. Hence we need to show that

inf{ψ(b0, b1) ; |b0 | + |b1 | = 1} > 0 .

For 1 < p ≤ 2 we have that ψ(b0, b1) ≥ 1
2 , because |(1 − t)b0 + tb1 | ≤ 1, and

for p > 2 the value ψ(b0, b1) can converge to 0 only if b0 → 0 and b1 → 0.
��

E8.7 Weak convergence of oscillating functions. Let I ⊂ IR be an
open, bounded interval and let 1 < p < ∞.

(1) If g ∈ L∞(IR) is a periodic function with period κ > 0, i.e. g(x+κ) =
g(x) for almost all x, and if

1

κ

∫ κ

0

g(x) dx = λ ,

then the functions fn(x) := g(nx) converge weakly in Lp(I) to λ as n → ∞.

(2) Let α, β ∈ IR, 0 < θ < 1, and

fn(x) :=

{
α for k < nx < k + θ, k ∈ ZZ,

β for k + θ < nx < k + 1, k ∈ ZZ.

Then the functions fn converge weakly in Lp(I) to the constant function
θα+ (1 − θ)β as n → ∞.

(3) Find functions fn, f, gn, g ∈ L∞(I) such that fn → f , gn → g weakly in
Lp(I) as n → ∞, but such that fngn does not converge weakly to fg.

Solution (1). Without loss of generality let λ = 0 (otherwise replace g with
g − λ). Then the assumptions on g yield that

h(x) :=

∫ x

0

g(y) dy

defines a continuous function that is bounded on all of IR. If [a, b] ⊂ I, then∫ b

a

fn(x) dx =
1

n
(h(nb) − h(na)) −→ 0 as n → ∞.

Consequently, ∫
I

fn(x)ζ(x) dx −→ 0 as n → ∞

for all step functions ζ. As these step functions are dense in Lp′

(I), and as
the functions fn are bounded in Lp(I), we obtain the same result also for all
ζ ∈ Lp′

(I) (see E5.4). ��



E8 Exercises 255

Solution (2). This follows from (1), on noting that∫ 1

0

f1(x) dx = θα+ (1 − θ)β .

��

Solution (3). Let fn be as in (2) and define gn correspondingly for the values

α̃, β̃ ∈ IR and the same value θ. Then (2) yields the following weak conver-
gence results in Lp(I):

fn −→ θα+ (1 − θ)β ,

gn −→ θα̃+ (1 − θ)β̃ ,

fngn −→ θαα̃+ (1 − θ)ββ̃ .

Now the equation

θαα̃+ (1− θ)ββ̃ = (θα+ (1 − θ)β)
(
θα̃+ (1 − θ)β̃

)
is equivalent to (α − β)(α̃ − β̃) = 0, and so for α �= β and α̃ �= β̃ we obtain
the desired example. ��

E8.8 Variational inequality. Find the solution u ∈ W 1,2(Ω) of the obsta-
cle problem in 8.18(3) for n = 1, Ω = ] − 1, 1[ ⊂ IR, u0 ≥ 0, ψ = 0, f = 1
and a = 1.

Solution. (On recalling E3.6, we use the fact that for n = 1 functions in
W 1,2(Ω) can be identified with functions in C0(Ω).) Let

M =
{
v ∈ W 1,2(Ω) ; v ≥ 0 almost everywhere in Ω,

v(±1) = u± := u0(±1)
}
.

Then u ∈ M ∩ C0([− 1, 1]) and∫ 1

−1

(
(u − v)′u′ + (u − v)

)
dL1 ≤ 0 for all v ∈ M .

First we consider an interval ]a, b[ in which u > 0. If ζ ∈ C∞
0 (]a, b[), then

u ≥ c in supp ζ for a c > 0, and hence u + εζ ∈ M for small |ε|. It follows
that

0 =

∫ b

a

(ζ ′u′ + ζ) dL1 =

∫ b

a

ζ ′v′ dL1 ,

where v(x) := u(x) − 1
2x

2. This implies (see E8.9) that v is linear in ]a, b[,
and hence there exist d0, d1 ∈ IR such that

u(x) =
x2

2
+ d1x+ d0 for a < x < b.
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On choosing ]a, b[ ⊂ {u > 0} maximally, i.e. u(a) = 0, if a > −1, and
u(b) = 0, if b < 1, the obtained characterization of u implies that we have to
distinguish the following cases:

a = −1 , b = 1 , and so u > 0 in ]− 1, 1[ ,

a > −1 , b = 1 , and so u > 0 in ]a, 1] with u(a) = 0,

a = −1 , b < 1 , and so u > 0 in [− 1, b[ with u(b) = 0.

Hence overall we obtain the following two cases for u:

−1 x− x+ 1

u0(−1)

u0(1)

Fig. 8.2. Solution of the obstacle problem

(1) u > 0 in ]− 1, 1[ ,

(2) There exist −1 ≤ x− ≤ x+ ≤ 1 such that u(x) = 0 for x− ≤ x ≤ x+ and
u(x) > 0 otherwise.

In the case (1) the values d0 and d1 are determined by the boundary condi-
tions, and we obtain

u(x) = 1
2

(
x2 − 1 + (u+ − u−)x+ u+ + u−

)
and the necessary condition

|u+ − u− | ≥ 2 or u+ + u− > 1 + 1
4 (u+ − u−)

2 . (E8-5)

Correspondingly, in the case (2) we obtain for certain s± ≥ 0 that

u(x) = 1
2 (x − x+)

2 + s+(x − x+)

for x ≥ x+ with (1 − x+)s+ = u+ − 1
2 (1 − x+)

2 ≥ 0 ,

u(x) = 1
2 (x− − x)2 + s−(x− − x)

for x ≤ x− with (1 + x−)s− = u− − 1
2 (1 + x−)

2 ≥ 0 .
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The uniqueness of the solution means that x± are uniquely determined by u±.
Hence we further investigate the variational inequality. For ζ ∈ C∞

0

(
]−1, 1[

)
with ζ ≥ 0 it holds that u + ζ ∈ M , and so the variational inequality yields
that

0 ≤
∫ 1

−1

(ζ ′u′ + ζ) dL1

=

∫ 1

x+

ζ ′(x)(x − x+ + s+) dx+

∫ x−

−1

ζ ′(x)(x − x− − s−) dx+

∫ 1

−1

ζ dL1

= −ζ(x+)s+ − ζ(x−)s− +

∫ x+

x−

ζ dL1 .

If x+ < 1 set ζ(x) := max(0, 1 − 1
δ |x − x+ |) and obtain as δ → 0 that

s+ ≤ 0. Together with the above inequality for s+ we obtain that s+ = 0,
and similarly for s− = 0. Therefore,

u(x) =

⎧⎪⎨⎪⎩
1
2 (x− − x)2 for x ≤ x−,

0 for x− ≤ x ≤ x+,
1
2 (x − x+)

2 for x ≥ x+,

where

u+ − 1
2 (1 − x+)

2 = 0 and u− − 1
2 (1 + x−)

2 = 0 .

Apart from (u−, u+) = (0, 2) or (2, 0), this case is complementary to the case
(E8-5). ��

E8.9 A fundamental lemma. Let Ω ⊂ IRn be open and connected, and
suppose that u ∈ L1

loc(Ω) satisfies∫
Ω

u · ∂iζ dLn = 0 for ζ ∈ C∞
0 (Ω) and i = 1, . . . , n.

Then u is (almost everywhere) a constant function.

Solution. Let B be a ball with B ⊂ Ω and let (ϕε)ε>0 be a standard Dirac
sequence. On setting ϕ̃ε(y) := ϕε(−y) we have that ζ ∗ ϕ̃ε ∈ C∞

0 (Ω) for
ζ ∈ C∞

0 (B) and ε < dist(B, ∂Ω), and so

−
∫
Ω

∂i(u ∗ ϕε) ζ dL
n =

∫
Ω

(u ∗ ϕε) ∂iζ dL
n =

∫
Ω

u ∂i(ζ ∗ ϕ̃ε) dL
n = 0 .

Hence ∇(u ∗ ϕε) = 0 in B, which yields that u ∗ ϕε is constant in B. On
recalling that u ∗ ϕε → u in L1(B) as ε → 0, it follows that u is also a
constant almost everywhere in B. As Ω is path connected (see remark above
8.16), this constant does not depend on B. ��
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A8 Properties of Sobolev functions

Here we will derive properties of functions in Wm,p(Ω), where we treat
bounded sets Ω with Lipschitz boundary ∂Ω (see definition A8.2). This class
of domains, on one hand, allows a functional analytically uniform presenta-
tion of the theory of Sobolev spaces, and on the other hand, this class is of
major importance in applications, because it contains domains with edges
and corners, as they occur in flow domains and also in workpieces.

In applications to boundary value problems on such domains, e.g. on
cuboids, often different boundary conditions are prescribed on different sides
of the domain (see the mixed boundary value problem in 8.18(5)). For the
weak formulation of these boundary value problems we need to prove that
functions in W 1,p(Ω) have weak boundary values on ∂Ω (see A8.6). Then
we show (see A8.10) that W 1,p

0 (Ω) consists precisely of those functions in
W 1,p(Ω) that have weak boundary values 0. This belatedly justifies the weak
formulation of the homogeneous Dirichlet problem in 6.5.

We begin with Rellich’s embedding theorem A8.1 for Wm,p
0 (Ω) and A8.4

for Wm,p(Ω).

A8.1 Rellich’s embedding theorem. Let Ω ⊂ IRn be open and bounded,
let 1 ≤ p < ∞ and let m ≥ 1. If uk ∈ Wm,p

0 (Ω) for k ∈ IN and if u ∈
Wm−1,p

0 (Ω), then

(uk)k∈IN bounded in Wm,p
0 (Ω),

uk → u weakly in Wm−1,p
0 (Ω)

as k → ∞
=⇒

uk → u (strongly) in Wm−1,p
0 (Ω)

as k → ∞ .

Remark: On recalling 8.3(5), it follows if uk, u ∈ Wm,p
0 (Ω) for k ∈ IN that

uk → u weakly in Wm,p
0 (Ω)

as k → ∞
=⇒

uk → u (strongly) in Wm−1,p
0 (Ω)

as k → ∞ .

Proof. Let m = 1. Hence uk are bounded in W 1,p
0 (Ω) and converge weakly in

Lp(Ω) towards u. (For m > 1 apply the proof below for |s| ≤ m− 1 to ∂suk

in place of uk. It holds that ∂suk are bounded in W 1,p
0 (Ω) and, by 8.4(3),

they converge weakly in Lp(Ω) to ∂su.)
Extend uk, u to IRn \ Ω by 0. Then, by assumption, uk ∈ W 1,p(IRn)

(see 3.29), with support in Ω, and moreover uk are bounded in W 1,p(IRn)
converging by 8.4(1) weakly in Lp(IRn) towards u.

Now if (ϕε)ε>0 is a standard Dirac sequence, then ϕε ∗uk ∈ C∞
0 (IRn) and

for every ε > 0

ϕε ∗ uk → ϕε ∗ u as k → ∞ in Lp(IRn) . (A8-1)

To see this, consider for x ∈ IRn the functionals Ψε(x) ∈ Lp(IRn)′ defined by
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〈v , Ψε(x)〉Lp :=

∫
IRn

v(y)ϕε(x − y) dy for v ∈ Lp(IRn).

If xk → x converges as k → ∞, then ϕε(xk − ·) → ϕε(x − ·) converges
uniformly on IRn for ε > 0, hence Ψε(xk) → Ψε(x) converges in Lp(IRn)′.
Since, by assumption, uk → u weakly in Lp(IRn), we obtain, see the second
result in 8.3(6),

(ϕε ∗ uk)(xk) = 〈uk , Ψε(xk)〉Lp −→ 〈u , Ψε(x)〉Lp = (ϕε ∗ u)(x) .

This shows that ϕε ∗ uk → ϕε ∗ u locally uniformly on IRn. As ϕε ∗ uk and
ϕε ∗ u vanish outside the bounded set Bε(Ω), we obtain the result (A8-1).
Moreover,

‖v − ϕε ∗ v‖Lp ≤ ε‖∇v‖Lp (A8-2)

for all v ∈ W 1,p(IRn) with compact support. For the proof of (A8-2) observe
that the left- and right-hand sides depend continuously on v with respect to
the W 1,p-norm. Hence on approximating v (e.g. by convolution as in 4.23),
it is sufficient to show (A8-2) for v ∈ C∞

0 (IRn). Then

(v − ϕε ∗ v)(x) =

∫
IRn

ϕε(y)
(
v(x) − v(x − y)

)
dy

=

∫
IRn

ϕε(y)
(∫ 1

0

∇v(x − sy)·y ds) dy ,
and so it follows from 4.13(1) that

‖v − ϕε ∗ v‖Lp ≤ sup
h∈suppϕε

∥∥∥∥∫ 1

0

∇v(·− sh)·h ds∥∥∥∥
Lp

≤ ε sup
|h|≤ε

∫ 1

0

‖∇v(·− sh)‖Lp ds = ε‖∇v‖Lp .

Combining (A8-1) and (A8-2) yields that

‖u − uk‖Lp ≤ ‖u − ϕε ∗ u‖Lp + ‖ϕε ∗ u − ϕε ∗ uk‖Lp︸ ︷︷ ︸
→ 0 as k → ∞

for every ε

+ε‖∇uk‖Lp .

Noting that ∇uk are bounded in Lp(IRn) and recalling from 4.15(2) that
ϕε ∗ u → u in Lp(IRn) as ε → 0, we obtain the desired result. ��

A8.2 Lipschitz boundary. Let Ω ⊂ IRn be open and bounded. We say
that Ω has a Lipschitz boundary if ∂Ω can be covered by finitely many
open sets U1, . . . , U l such that ∂Ω ∩ U j for j = 1, . . . , l is the graph of a
Lipschitz continuous function with Ω ∩ U j in each case lying on one side
of this graph. This means the following: There exists an l ∈ IN and for
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U j

Ω

∂Ω

Fig. 8.3. Cover of the boundary

j = 1, . . . , l there exist a Euclidean coordinate system ej1, . . . , e
j
n in IRn, a

reference point yj ∈ IRn−1, numbers rj > 0 and hj > 0 and a Lipschitz
continuous function gj : IRn−1 → IR, such that with the notation

xj
,n := (xj

1, . . . , x
j
n−1), where x =

n∑
i=1

xj
ie

j
i ,

it holds that

U j =
{
x ∈ IRn ;

∣∣xj
,n − yj

∣∣ < rj and
∣∣xj

n − gj(xj
,n)
∣∣ < hj

}
,

and for x ∈ U j

xj
n = gj(xj

,n) =⇒ x ∈ ∂Ω ,

0 < xj
n − gj(xj

,n) < hj =⇒ x ∈ Ω ,

0 > xj
n − gj(xj

,n) > −hj =⇒ x /∈ Ω

(A8-3)

(hence U j ∩ Ω = Qj , see Fig. 8.4), and

∂Ω ⊂
l⋃

j=1

U j .

Furthermore, we may then add another open set U0 with U0 ⊂ Ω such that
U0, . . . , U l cover all of Ω.
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ejn

span{ej1, . . . , e
j
n−1}

Ω

∂Ω

Qj
hj

hj

rj rj

Fig. 8.4. Local boundary neighbourhood

A8.3 Localization. Let Ω be as in A8.2. We prove results for Sobolev
functions by localizing these functions with respect to the open cover U j ,
j = 0, . . . , l in A8.2. We choose a partition of unity η0, . . . , ηl on Ω with
respect to this cover (see 4.20), i.e. ηj ∈ C∞(IRn) with compact support
supp (ηj) ⊂ U j (this means ηj ∈ C∞

0 (U j)) and

0 ≤ ηj ≤ 1 in IRn and

l∑
j=0

ηj = 1 on Ω .

Now if u ∈ Wm,p(Ω), then

u =

l∑
j=0

ηju in Ω .

In particular, η0u ∈ Wm,p(Ω) with compact support in Ω and for j = 1, . . . , l
we have that ηju ∈ Wm,p(Ωj), where

Ωj := {x ∈ IRn ; 0 < xj
n − gj(xj

,n)} ,

with (ηju)(x) = 0 if
∣∣xj

,n − yj
∣∣ ≥ rj or xj

n − gj(xj
,n) ≥ hj .

A8.4 Rellich’s embedding theorem. Let Ω ⊂ IRn be open and bounded
with Lipschitz boundary, let 1 ≤ p < ∞ and let m ≥ 1. If uk ∈ Wm,p(Ω) for
k ∈ IN and if u ∈ Wm−1,p(Ω), then

(uk)k∈IN bounded in Wm,p(Ω)

uk → u weakly in Wm−1,p(Ω)

as k → ∞
=⇒

uk → u (strongly) in Wm−1,p(Ω)

as k → ∞ .
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Remark: On recalling 8.3(5), it follows if uk, u ∈ Wm,p(Ω) for k ∈ IN that

uk → u weakly in Wm,p(Ω)

as k → ∞
=⇒

uk → u (strongly) in Wm−1,p(Ω)

as k → ∞ .

Proof. Similarly to A8.1, it is sufficient to prove the theorem for m = 1. With
the notations as in A8.3, we have that the assumptions are also satisfied by
uj
k := ηjuk and uj := ηju, and we need to show that uj

k → uj in Lp(Ω) as
k → ∞. For j = 0 this follows from A8.1.

For j ≥ 1 this follows on replicating the proof of A8.1. The proofs of (A8-1)
and (A8-2) carry over (for the proof of (A8-2) use 4.24 for the approximation)
if we replace the integration domain IRn with Ωj . Here we have to make sure
that in the convolution

(ϕε ∗ v)(x) =

∫
IRn

ϕε(x − y)v(y) dy for v ∈ W 1,p(Ωj)

the function y �→ ϕε(x − y) has compact support in Ωj for x ∈ Ωj . By the
definition of Ωj this means that

xj
n > gj(xj

,n) , ϕε(x − y) �= 0 =⇒ yjn > gj(yj,n) .

If λ denotes the Lipschitz constant of gj , then the above holds if

ϕε(z) �= 0 =⇒ zjn < −λ
∣∣zj,n ∣∣ ,

i.e. we need to choose the function ϕ, on which the Dirac sequence (ϕε)ε>0

is based, so that

ϕ ∈ C∞
0

(
{z ∈ B1(0) ; zjn < −λ

∣∣zj,n ∣∣}) ,
which is satisfied, for example, for ϕ ∈ C∞

0

(
Bδ

(
− 1

2e
j
n

))
with 0 < δ < 1

2 (1 +
λ)−1. This choice has the property that for x ∈ Ωj and ϕε(x − y) �= 0 the
segment connecting x and y lies in Ωj .

Remark: Another possibility (for m = 1) is to extend the functions uj
k, u

j to
functions in W 1,p(IRn) with compact support (see the proof of A8.12), and
then apply A8.1. ��

The corresponding result for p = ∞ plays a special role, because for
domains Ω with Lipschitz boundary it holds that Wm,∞(Ω) = Cm−1,1(Ω)
(see theorem 10.5(2)). The assertion of Rellich’s embedding theorem for p =
∞ then follows from the Arzelà-Ascoli theorem. The argument for m = 1 is
as follows: Every sequence bounded in C0,1(Ω) contains a subsequence that
converges in C0(Ω). But as every cluster point has to coincide with the weak
limit, the whole sequence converges strongly in C0(Ω).

Now we want to show that Sobolev functions in W 1,p(Ω) in a weak sense
have boundary values in Lp(∂Ω). To this end, we first define spaces of func-
tions that are integrable on ∂Ω.
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A8.5 Boundary integral. Let Ω be open and bounded with Lipschitz
boundary and let Y be a Banach space.

(1) We call f : ∂Ω → Y measurable and integrable, respectively, if with the
notations as in A8.3 it holds for j = 1, . . . , l that the functions

y �−→ (ηjf)
(n−1∑

i=1

yie
j
i + gj(y)ejn

)
for y ∈ IRn−1 with

∣∣y − yj
∣∣ < rj

are measurable and integrable, respectively, with respect to the (n − 1)-
dimensional Lebesgue measure. The boundary integral of f on ∂Ω is then
defined by ∫

∂Ω

f dHn−1 :=

l∑
j=1

∫
∂Ω

ηjf dHn−1 ,

where we define, if supph ⊂ U j ,∫
∂Ω

h dHn−1 :=

∫
IRn−1

h
(n−1∑

i=1

yie
j
i + gj(y)ejn

)√
1 + |∇gj(y)|2 dLn−1(y) .

Here ∇gj ∈ L∞
loc(IR

n−1; IRn−1), since theorem 10.5(2) implies that the Lip-

schitz continuous function gj : IRn−1 → IR lies in W 1,∞
loc (IRn−1). Hence the

last integral represents a generalization of the surface integral on smooth hy-
persurfaces as introduced in 3.10(4). Claim: This definition of the integral is
independent of the local partition and independent of the representation of
the boundary.

(2) For 1 ≤ p ≤ ∞, let

Lp(∂Ω;Y ) :=
{
f : ∂Ω → Y ; f is measurable and ‖f ‖Lp(∂Ω) < ∞

}
,

where for 1 ≤ p < ∞

‖f ‖Lp(∂Ω) :=
(∫

∂Ω

|f |p dHn−1
) 1

p

, and ‖f ‖L∞(∂Ω) := ess sup
∂Ω

|f |

with the ess sup-norm defined analogously to 3.15. Then Lp(∂Ω;Y ) with this
norm is a Banach space for 1 ≤ p ≤ ∞, and for p < ∞ the set

{
f|∂Ω ; f ∈

C∞(IRn;Y )
}

is dense in Lp(∂Ω;Y ).

(3) We define the outer normal to Ω at the point x ∈ ∂Ω as

νΩ(x) :=
(
1 +
∣∣∇gj(y)

∣∣2)− 1
2

(n−1∑
i=1

∂ig
j(y)eji − ejn

)
for x =

n−1∑
i=1

yie
j
i + gj(y)ejn ∈ U j with

∣∣y − yj
∣∣ < rj .
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It holds that νΩ is measurable on ∂Ω with |νΩ | = 1, and hence νΩ ∈
L∞(∂Ω; IRn). The definition of νΩ is independent of the local representa-
tion of the boundary. With the above representation of x, the normal νΩ(x)
is perpendicular to the tangent vectors

τk(x) := ∂yk

(n−1∑
i=1

yie
j
i + gj(y)ejn

)
= ejk + ∂kg

j(y)ejn for 1 ≤ k ≤ n − 1.

In addition, νΩ(x) points outward, i.e. x+ ενΩ(x) /∈ Ω for ε > 0 sufficiently
small, if g is differentiable in y.

Proof (1). In a small open set U ⊂ IRn we consider two different represen-
tations of ∂Ω as defined in A8.2, i.e. we consider two coordinate systems
e1, . . . , en and ẽ1, . . . , ẽn, two Lipschitz continuous functions g : IRn−1 → IR
and g̃ : IRn−1 → IR and two bounded open sets V, Ṽ ⊂ IRn−1, such that with
Γ := ∂Ω ∩ U{ n−1∑

i=1

yiei + g(y)en ; y ∈ V
}

=
{ n−1∑

i=1

ỹiẽi + g̃(ỹ)ẽn ; ỹ ∈ Ṽ
}

= Γ .

On setting

ψ(y) :=

n−1∑
i=1

yiei + g(y)en for y ∈ IRn−1,

and similarly for ψ̃, we need to show that for every function f : Γ → IR with
supp f ⊂ U it holds that:

f ◦ψ integrable ⇐⇒ f ◦ψ̃ integrable

and∫
V

f
(
ψ(y)
)√

1 + |∇g(y)|2 dy =

∫
Ṽ

f
(
ψ̃(ỹ)
)√

1 + |∇g̃(ỹ)|2 dỹ . (A8-4)

Consider the transformation τ := ψ̃−1◦ψ, hence y �→ ỹ = τ(y). Since∣∣y1 − y2
∣∣ ≤ ∣∣ψ(y1) − ψ(y2)

∣∣ ≤√1 + Lip(g)2
∣∣y1 − y2

∣∣ ,
ψ : V → Γ is a Lipschitz continuous map with a Lipschitz continuous inverse
ψ−1 : Γ → V , and the same holds for ψ̃. This implies that τ : V → Ṽ is bijec-
tive and that τ and τ−1 are Lipschitz continuous. Hence f ◦ψ is measurable
if and only if f ◦ψ̃ is measurable (use 4.27).

In order to prove the integral identity, we first consider the case where
f ∈ C0

0 (U) and g ∈ C1(V ). Then also g̃ is continuously differentiable. To see
this, note that the differentiability of g, and therefore ψ, is equivalent to

ψ(y) − ψ(y0) − Pψ(y0)(ψ(y) − ψ(y0)) = O(|ψ(y) − ψ(y0)|)
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as y → y0. Hereby Px0
is the orthogonal projection on the tangent space of

Γ in x0 := ψ(y0). Now, we have ψ(y) = ψ̃(ỹ) if ỹ = τ(y), and since τ is
continuous, it follows that y → y0 implies ỹ → ỹ0. Hence

ψ̃(ỹ) − ψ̃(ỹ0) − Px0
(ψ̃(ỹ) − ψ̃(ỹ0)) = O(|ψ̃(ỹ) − ψ̃(ỹ0)|)

as ỹ → ỹ0. But this is equivalent to the differentiability of ψ̃ and thus also g̃.
Also the differentiability of τ and τ−1 is shown. It follows from the (classical)
change-of-variables theorem for C1-transformations that for every function
f̃ ∈ C0

0 (Ṽ ) ∫
Ṽ

f̃ dLn−1 =

∫
V

f̃ ◦τ |detDτ | dLn−1 .

Let f̃(ỹ) := f
(
ψ̃(ỹ)
)√

1 + |∇g̃(ỹ)|2. Then we need to show that√
1 + |∇g̃◦τ |2 |detDτ | =

√
1 + |∇g |2 .

But since (Dψ̃)◦τ Dτ = Dψ, this reduces to a purely algebraic result for
determinants. Hence in this case the integral identity (A8-4) is proved.

If g is only Lipschitz continuous and f : Γ → R with f ∈ C0
0 (U), we shall

approximate g by continuously differentiable functions. Let supp f ◦ψ ⊂ V0

with an open connected subset V0 satisfying V0 ⊂ V . With τ = (τ1, . . . , τn−1)
we have for y ∈ V that

n−1∑
j=1

τj(y)ẽj + g̃
(
τ(y)
)
ẽn =

n−1∑
i=1

yiei + g(y)en . (A8-5)

In the case that ẽn �= en, an (n− 2)-dimensional subspace of IRn is given by
span{e1, . . . , en−1} ∩ span{ẽ1, . . . , ẽn−1}. As Ln−1 is invariant under ortho-
gonal transformations, we may assume that ẽi = ei for 1 < i < n, hence
span{e1, en} = span{ẽ1, ẽn}. (If ẽn = en there is nothing to show due to the
invariance.) Then

τj(y) = yj for 1 < j ≤ n − 1 ,

τ1(y) = y1ẽ1·e1 + g(y) ẽ1·en ,
g̃
(
τ(y)
)
= y1ẽn·e1 + g(y) ẽn·en . (A8-6)

Now let gε := ϕε ∗ g for a standard Dirac sequence (ϕε)ε>0 and define con-
tinuously differentiable functions τε = (τε1, . . . , τεn−1) and ψε by

τεj(y) := yj for 1 < j ≤ n− 1 ,

τε1(y) := y1ẽ1·e1 + gε(y)ẽ1·en ,
ψε(y) :=

n−1∑
i=1

yiei + gε(y)en .

(A8-7)
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We want to show that τε is a diffeomorphism. We have shown that τ−1 is
Lipschitz continuous, wich implies that there exists a constant c > 0 such
that for y ∈ V0 and h > 0 sufficiently small ({e1, . . . , en−1} is the canonical
basis of IRn−1)

c ≤ 1
h |τ(y + he1) − τ(y)| = 1

h |τ1(y + he1) − τ1(y)|
=
∣∣ẽ1·e1 + 1

h

(
g(y + he1) − g(y)

)
ẽ1·en ∣∣ .

The term inside the modulus has to have a fixed sign σ ∈ {±1} which by the
continuity of g is independent of y. It follows that

c ≤ σẽ1·e1 + 1

h

(
g(y + he1) − g(y)

)
· σẽ1·en .

Since gε = ϕε ∗ g is a convolution of g, it follows that this convex inequality
also holds for gε, that is, for ε small,

c ≤ σẽ1·e1 + 1

h

(
gε(y + he1) − gε(y)

)
· σẽ1·en ,

hence also
c ≤ σẽ1·e1 + ∂1gε(y) · σẽ1·en .

Then it follows for y ∈ V0

σ detDτε(y) = σ∂1τε1(y) = σẽ1·e1 + ∂1gε(y) · σẽ1·en ≥ c . (A8-8)

This implies that τε is a diffeomorphism because τε is defined as in (A8-7).
Hence τ−1

ε exists and therefore, with ỹ = τε(y),

g̃ε
(
τε(y)
)
:= y1ẽn·e1 + gε(y)ẽn·en = ẽn·ψε(y) ,

ψ̃ε(ỹ) :=

n−1∑
j=1

ỹj ẽj + gε(ỹ)ẽn = ψε(y) ,
(A8-9)

defines continuously differentiable functions g̃ε and ψ̃ε.
Now we can show that the integral identity holds. If we define the function

fε := f ◦ψ̃◦ψ̃−1
ε on the C1-surface Γε := ψε(V0) we see that for ε → 0∫

Ṽ

f
(
ψ̃(ỹ)
)√

1 + |∇g̃(ỹ)|2 dỹ ←−
∫
Ṽ

f
(
ψ̃(ỹ)
)︸ ︷︷ ︸

=fε(ψ̃ε(ỹ))

√
1 + |∇g̃ε(ỹ)|2 dỹ

=

∫
V

fε
(
ψε(y)

)︸ ︷︷ ︸
=f(ψ̃◦τε(y))

√
1 + |∇gε(y)|2 dy −→

∫
V

f
(
ψ̃◦τ(y)

)︸ ︷︷ ︸
=f(ψ(y))

√
1 + |∇g(y)|2 dy .

Indeed, the equality is an equation on Γε and follows from the above step for
the C1-case. The first convergence follows from the fact that ∇g̃ε → ∇g̃ with
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respect to the Lp-norm for every p < ∞. In fact, the definition (A8-9) of g̃ε
implies

(Dτε)
T (∇g̃ε)◦τε = (Dψε)

T ẽn

and by computing the derivative of Dτε using (A8-7) and (A8-8) we obtain
that ∇g̃ε is bounded in L∞. Since gε is bounded in C0 it follows from the
Arzela-Ascoli theorem that for a subsequence ε → 0 the uniform limit gε → ĝ
exists. Hence by the definition of gε

ĝ(τ(y)) ← g̃ε(τε(y)) = ẽn·ψε(y) → ẽn·ψ(y) = g̃(τ(y))

for ε → 0, that is, ĝ = g̃. This proves the convergence of the gradients of g̃ε for
a subsequence. The second convergence follow from the uniform convergence
τε → τ and from the convergence ∇gε → ∇g with respect to the Lp-norm
for every p < ∞. Hence the integral identity (A8-4) holds.

Finally, let f be arbitrary. Since f̂ := f◦ψ has compact support in V , we
can approximate f̂ in L1(V ) by functions f̂i ∈ C∞

0 (V ) as i → ∞. Then we

can apply the results above to the functions fi := f̂i◦ψ−1, i.e.,∫
V

fi◦ψ(y)
√

1 + |∇g(y)|2 dy =

∫
Ṽ

fi◦ψ̃(ỹ)
√
1 + |∇g̃(ỹ)|2 dỹ .

Moreover, we have that∫
Ṽ

∣∣∣fi◦ψ̃(ỹ) − fj◦ψ̃(ỹ)
∣∣∣√1 + |∇g̃(ỹ)|2 dỹ

=

∫
V

|fi◦ψ(y) − fj◦ψ(y)|
√
1 + |∇g(y)|2 dy

≤ C
∥∥∥f̂i − f̂j

∥∥∥
L1(V )

−→ 0 as i, j → ∞.

Hence the functions fi ◦ ψ̃ converge as i → ∞ to a limit in L1(Ṽ ). But as

f̂i(y) → f̂(y) for almost all y ∈ V for a subsequence i → ∞, it follows that

also fi◦ψ̃(ỹ) → f ◦ψ̃(ỹ) for almost all ỹ ∈ Ṽ , because τ maps null sets into

null sets (see 4.27). This implies that the above limit in L1(Ṽ ) must be the
function f ◦ψ. Hence we obtain the desired integral formula in the general
case as well. ��

Proof (2). On choosing f = XE in (1) for Borel sets E ⊂ ∂Ω, we obtain that

E �−→ μ(E) :=

∫
∂Ω

XE dHn−1

is the (n − 1)-dimensional Hausdorff measure on ∂Ω (also denoted by
Hn−1�∂Ω). Then Lp(∂Ω) coincides with the space Lp(μ) for μ = Hn−1�∂Ω
from Chapter 3. ��



268 8 Weak convergence

Proof (3). In the proof (1) consider the approximation gε of g. On noting that

(Dψ̃ε)◦τε Dτε = Dψε, it follows that (Dψ̃)◦τ Dτ = Dψ almost everywhere,
and so

(Dψ)T = (Dτ)T (Dψ̃)T ◦τ almost everywhere. (A8-10)

We have that ν = νΩ , with respect to g, is uniquely defined by

(Dψ)T ν = 0 , |ν | = 1 , ν·en < 0 .

Similarly, ν̃ is uniquely defined with respect to g̃. It follows from (A8-10) and
(A8-3) that ν̃◦τ = ν almost everywhere. ��

A8.6 Trace theorem. Let Ω ⊂ IRn be open and bounded with Lipschitz
boundary and let 1 ≤ p ≤ ∞. Then there exists a unique continuous linear
map

S : W 1,p(Ω) −→ Lp(∂Ω) (trace operator)

such that
Su = u|∂Ω for u ∈ W 1,p(Ω) ∩ C0(Ω).

We call Su the trace or the weak boundary values of u on ∂Ω.

Notation: In general we write u(x) in place of (Su)(x) for x ∈ ∂Ω.

Proof. In the case p = ∞ it follows from theorem 10.5 that W 1,∞(Ω) is
embedded in C0,1(Ω), and so the claim holds trivially. Now let p < ∞ and
u ∈ W 1,p(Ω). With the notations as in A8.3, we have that v := ηju ∈
W 1,p(Ωj) and for some δ > 0 it holds that

v(x) = 0 for
∣∣xj

,n − yj
∣∣ ≥ rj − δ and for xj

n − gj(xj
,n) ≥ hj − δ .

For 0 < s < hj we define the functions vs : IR
n−1 → IR via

vs(y) := v(y, gj(y) + s) , where (y, h) :=

n−1∑
i=1

yie
j
i + hejn .

Being a Lipschitz transformation, (y, h) �→ (y, gj(y) + h) maps measurable
functions into measurable functions (recall 4.27), and so it follows from Fu-
bini’s theorem that the vs are measurable functions for almost all s. In addi-
tion, vs = 0 for s ≥ hj − δ. Now the essential observation is that for almost
all s1, s2 > 0 and then for almost all y ∈ IRn−1 we have

vs2(y) − vs1(y) = v(y, gj(y) + s2) − v(y, gj(y) + s1)

=

∫ gj(y)+s2

gj(y)+s1

∂ejnv(y, h) dh .
(A8-11)

In order to prove this, we approximate v by functions wk ∈ W 1,p(Ωj) ∩
C∞(Ωj) using theorem 4.24. The identity (A8-11) holds for wk, and setting
D := Brj

(
yj
)
we have that
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0

∫
D

∣∣v(y, gj(y) + s
)
− wk

(
y, gj(y) + s

)∣∣ dy ds
=

∫
Ωj

|v − wk | dLn −→ 0

as k → ∞, and∫ hj

0

∫
D

∫ gj(y)+s

gj(y)

∣∣∣∂ejnv(y, h) − ∂ejnwk(y, h)
∣∣∣ dh dy ds

≤ hj

∫
Ωj

∣∣∣∂ejn(v − wk)
∣∣∣ dLn −→ 0

as k → ∞. Hence the integrands converge for a subsequence k → ∞ for
almost all (y, s). This proves (A8-11). Then the Hölder inequality implies for
s1 < s2 that∫

D

|vs2 − vs1 |
p
dLn−1 ≤

∫
D

|s2 − s1 |p−1
∫ gj(y)+s2

gj(y)+s1

∣∣∣∂ejnv(y, h)∣∣∣p dh dy
≤ |s2 − s1 |p−1

∫
Dj(s1,s2)

|∇v |p dLn

with Dj(s1, s2) := {x ∈ Ωj ; s1 < xj
n − gj(xj

,n) < s2}, and hence

‖vs2 − vs1 ‖Lp(D) ≤ |s2 − s1 |1−
1
p ‖∇v‖Lp(Dj(s1,s2))

. (A8-12)

Since the norm on the right-hand side converges to 0 as s1, s2 → 0, the
functions vs form a Cauchy sequence in Lp(IRn−1) as s → 0, and hence

vs → v0 in Lp(IRn−1) as s → 0

for some v0 ∈ Lp(IRn−1). Now let

Sjv(y, gj(y)) := v0(y) . (A8-13)

That is, the weak boundary values are defined as the limit of the function
values on hypersurfaces which are a translation of ∂Ω. It follows from A8.5
that Sjv ∈ Lp(∂Ω) with the bound

∥∥Sjv
∥∥
Lp(∂Ω)

≤ Cj‖v0‖Lp(D). Then on

choosing a fixed sj with hj − δ < sj < hj , so that we then have vsj = 0, we
obtain from (A8-12), by setting [s1, s2] = [s, sj], that∥∥Sjv

∥∥
Lp(∂Ω)

≤ Cj‖v0‖Lp(D) = Cj‖vsj − v0‖Lp(D)

= Cj lim
s↘0

‖vsj − vs‖Lp(D) ≤ Cj · (sj)1− 1
p ‖∇v‖Lp(Ωj) .

In addition, ‖∇v‖Lp(Ωj) ≤ C(ηj) · ‖u‖W 1,p(Ωj). For u ∈ W 1,p(Ω) we now
define
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Su :=
l∑

j=1

Sj(ηju) . (A8-14)

In particular, we have that Su = u|∂Ω if u is continuous on Ω. This proves the
existence of S. The uniqueness of S follows by establishing that W 1,p(Ω) ∩
C0(Ω) is dense in W 1,p(Ω), which will be done in A8.7. ��

A8.7 Lemma. Let Ω ⊂ IRn be open and bounded with Lipschitz boundary
and let 1 ≤ p < ∞ and m ≥ 0. Then{

u|Ω ; u ∈ C∞
0 (IRn)

}
is dense in Wm,p(Ω).

Proof. Following A8.3, we partition u as

u =
l∑

j=0

ηju .

For the part η0u choose a standard Dirac sequence (ϕε)ε>0. Since η0 ∈
C∞

0 (Ω), it follows that ϕε ∗ (η0u) ∈ C∞
0 (Ω) for ε sufficiently small, and

hence ϕε ∗ (η0u) → η0u in Wm,p(Ω) as ε → 0. For j ≥ 1 let Ωj and ej1, . . . , e
j
n

be as in A8.3. For δ > 0 define

vδ(x) := (ηju)(x+ δejn) for x ∈ Ωj
δ ,

Ωj
δ :=

{
x ∈ IRn ;

∣∣xj
,n − yj

∣∣ < rj and − δ < xj
n − gj(xj

,n) < hj
}
.

Then vδ,ε := ϕε ∗
(
XΩj

δ
vδ
)
∈ C∞

0 (IRn) and, on recalling 4.23, it holds on Ω

that vδ,ε = ϕε∗vδ ∈ Wm,p(Ω) for ε sufficiently small (so that
(
1+Lip(gj)

)
·ε <

δ) with
ϕε ∗ vδ → ηju in Wm,p(Ω),

when first ε ↘ 0 and then δ ↘ 0. This shows that ηju can be approximated
in the Wm,p(Ω)-norm by functions in C∞

0 (IRn), and hence overall also u. ��

We now prove some frequently used results on weak boundary values,
beginning with integration by parts for Sobolev functions.

A8.8 Weak Gauß’s theorem (Weak divergence theorem). Let Ω ⊂
IRn be open and bounded with Lipschitz boundary.

(1) If u ∈ W 1,1(Ω), then for i = 1, . . . , n∫
Ω

∂iu dL
n =

∫
∂Ω

uνi dH
n−1 ,

where ν is the outer normal to ∂Ω as defined in A8.5.
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(2) Let 1 ≤ p ≤ ∞. If u ∈ W 1,p(Ω) and v ∈ W 1,p′

(Ω) with 1
p + 1

p′ = 1, then
for i = 1, . . . , n ∫

Ω

(u∂iv + v∂iu) dL
n =

∫
∂Ω

uvνi dH
n−1 .

Proof (2). It follows from 4.25 that uv ∈ W 1,1(Ω) with ∂i(uv) = u∂iv+v∂iu.
On recalling A8.7, for 1 < p < ∞ we approximate u and v by functions in
C∞(IRn) and obtain (with S denoting the operator from A8.6) that

S(uv) = S(u) · S(v) in L1(∂Ω) . (A8-15)

For p = 1 we have that p′ = ∞, and so after modification on a null set, v is in
C0,1(Ω) (see theorem 10.5). Hence the boundary values of v are well defined
and are attained continuously. Now (A8-15) follows from the proof of A8.6.
Thus, (2) is reduced to (1). ��

Proof (1). On recalling A8.7 and A8.6, we may assume that u ∈ C∞
0 (IRn).

Following A8.3, we partition u into ηju, j = 0, . . . , l. For η0u ∈ C∞
0 (Ω)

the boundary integral vanishes and the formula follows from integration by
parts in the i-th coordinate direction. For j ≥ 1 the function ηju is defined
on the local set Ωj . Hence on applying an orthogonal transformation to the
canonical Euclidean coordinate system, we need to prove the desired result
for functions u ∈ C∞

0 (IRn) and the domain

Ω =
{
(y, h) ∈ IRn ; h > g(y)

}
with a Lipschitz continuous function g : IRn−1 → IR. By A8.5(3), the normal
ν is then defined by

ν(y, g(y)) :=
(∇g(y),−1)√
1 + |∇g(y)|2

for y ∈ IRn−1.

Hence we need to show that∫
Ω

∇u(x) dx =

∫
IRn−1

(uν)
(
y, g(y)

)√
1 + |∇g(y)|2 dy

=

∫
IRn−1

u(y, g(y))(∇g(y),−1) dy .

(A8-16)

When g is continuously differentiable, this is the classical Gauß’s theorem,
which can be shown for instance as follows: Let v(y, s) := u

(
y, g(y) + s

)
.

Then

∂nv(y, s) = ∂nu
(
y, g(y) + s

)
,

∂iv(y, s) = ∂iu
(
y, g(y) + s

)
+ ∂ig(y)∂nu

(
y, g(y) + s

)
for i < n,

and hence
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Ω

∇u(x) dx =

∫
IRn−1

∫ ∞

0

∇u
(
y, g(y) + s

)
ds dy

=

∫
IRn−1

∫ ∞

0

(
∇v − ∂nv · (∇g, 0)

)
(y, s) ds dy

=

n−1∑
i=1

(∫ ∞

0

(∫
IRn−1

∂iv(y, s) dy
)
ds

)
ei

−
∫
IRn−1

(∫ ∞

0

∂nv(y, s) ds
)(

∇g(y),−1
)
dy .

Integration by parts with respect to yi yields for i < n, since the support of
v(·, s) is compact, that ∫

IRn−1

∂iv(y, s) ds = 0 ,

and integration by parts with respect to s gives∫ ∞

0

∂nv(y, s) ds = −v(y, 0) = −u
(
y, g(y)

)
.

Now we use convolution to approximate the Lipschitz continuous function g
by continuously differentiable functions gk. Letting Ωk := {(y, h) ∈ IRn ; h >
gk(y)} we have that XΩk

→ XΩ as k → ∞ in L1(IRn) ∩ BR(0) for every R
and u(·, gk) → u(·, g) uniformly, because gk → g locally uniformly, and also
(recall 4.15)

∇gk → ∇g in Lp(BR(0)) for every p < ∞ and every R.

Hence in (A8-16) we can pass to the limit for gk. This yields the desired
result. ��

The following result is a generalization of E3.7 to the n-dimensional case.

A8.9 Lemma. Let g : IRn−1 → IR be Lipschitz continuous, let

Ω± := {(y, h) ∈ IRn ; ±(h − g(y)) > 0} ,

and let u : IRn → IR with u|Ω+
∈ W 1,1(Ω+) and u|Ω−

∈ W 1,1(Ω−). Then,

on denoting by S± the trace operators with respect to the domains Ω± from
A8.6,

u ∈ W 1,1(IRn) ⇐⇒ S+

(
u|

Ω+

)
= S−

(
u|

Ω−

)
.

Corollary: Concerning the removability of singularities in Sobolev spaces we
have the following result: If N ⊂ IRn−1 is a closed Lebesgue null set and
A := {(y, g(y)) ; y ∈ N} with g as above, then for every open set Ω ⊂ IRn

u ∈ W 1,1(Ω \A) ⇐⇒ u ∈ W 1,1(Ω) .
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Proof ⇒. Setting us(y) := u(y, g(y)+s) for s ∈ IR, it holds that (see (A8-12)
with p = 1)∫

IRn−1

|uε − u−ε | dLn−1 ≤
∫
IRn−1

∫ g(y)+ε

g(y)−ε

|∇u(y, h)| dh dy −→ 0

as ε ↘ 0, and so S+

(
u|Ω+

)
= S−

(
u|Ω−

)
by the definition of the trace

operator in (A8-13). ��
Proof ⇐. Define u+ = u|Ω+

and u− = u|Ω−
. Let ν± denote the outer normal

to Ω±. Then it follows from A8.8(2) for ζ ∈ C∞
0 (IRn) that∫

IRn

(u∇ζ + ζ∇u) dLn =

∫
Ω+

(u∇ζ + ζ∇u) dLn +

∫
Ω−

(u∇ζ + ζ∇u) dLn

=

∫
∂Ω+

ζS+(u+)ν+ dHn−1 +

∫
∂Ω−

ζS−(u−)ν− dHn−1

=

∫
graph(g)

ζ · (S+(u+)ν+ + S−(u−)ν−︸ ︷︷ ︸
=0

) dHn−1 = 0 ,

because ν− = −ν+ and S+(u+) = S−(u−). ��
We now show that functions in W 1,p

0 (Ω) have weak boundary values 0.

A8.10 Lemma. Let Ω ⊂ IRn be open and bounded with Lipschitz boundary
and let 1 ≤ p < ∞. Let S be the trace operator from A8.6. Then

W 1,p
0 (Ω) = {u ∈ W 1,p(Ω) ; Su = 0} .

Proof ⊂. Every function u ∈ W 1,p
0 (Ω) can be approximated by C∞

0 (Ω)-
functions ui as i → ∞. The properties of the trace operator then imply that
0 = Sui → Su in Lp(∂Ω). ��
Proof ⊃. Let u ∈ W 1,p(Ω) with Su = 0. Choosing ηj as in A8.3, it follows
(see (A8-15)) that S(ηju) = ηjS(u) = 0 on ∂Ω for j = 1, . . . , l. Now define
for j = 1, . . . , l

vj(x) :=

{
(ηju)(x) for x ∈ Ωj ,

0 otherwise.

Then A8.9 implies that vj ∈ W 1,p(IRn), and hence for δ > 0 also vjδ ∈
W 1,p(IRn), where

vjδ(x) := vj(x − δejn) ,

and vjδ → vj in W 1,p(IRn) as δ → 0. Consequently,

uδ := η0u+

l∑
j=1

vjδ −→ u in W 1,p(Ω) as δ → 0.

Since uδ has compact support in Ω, it can be approximated in W 1,p(Ω) with
the help of convolution by functions in C∞

0 (Ω). ��
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A8.11 Remark. Results for Sobolev functions on domains with Lipschitz
boundary can also be proved by locally straightening the boundary. In the
local situation at the boundary, i.e. Ω = Ω+ with the notations as in A8.9,
this means that we consider

Ω̃ := {(y, h) ∈ IRn ; h > 0} ,
ũ(y, h) := u

(
y, g(y) + h

)
for (y, h) ∈ Ω̃ .

It holds that: If 1 ≤ p ≤ ∞ and u ∈ W 1,p(Ω), then ũ ∈ W 1,p(Ω̃) with the
chain rule

∂nũ(y, h) = ∂nu
(
u, g(y) + h

)
,

∂iũ(y, h) = ∂iu
(
y, g(y) + h

)
+ ∂ig(y)∂nu

(
y, g(y) + h

) (A8-17)

for i < n.

Proof. Let τ(y, h) :=
(
y, g(y)+h

)
. For v ∈ Lp(Ω) with p < ∞ it follows from

Fubini’s theorem that v◦τ ∈ Lp(Ω̃), with∫
Ω

|v |p dLn =

∫
IRn−1

∫ ∞

g(y)

|v(y, h)|p dh dy

=

∫
IRn−1

∫ ∞

0

∣∣v(y, g(y) + h)
∣∣p dh dy =

∫
Ω̃

|v◦τ |p dLn .

(A8-18)

Hence we have that ‖v‖Lp(Ω) = ‖v◦τ ‖Lp(Ω̃) for 1 ≤ p ≤ ∞. This shows

that the right-hand sides in (A8-17) lie in Lp(Ω̃), and so (A8-17) (by the

definition of the weak derivatives) only needs to be shown locally in Ω̃ for
the case p = 1.

We approximate g by gε := ϕε∗g with a standard Dirac sequence (ϕε)ε>0.

On setting τε(y, h) :=
(
y, gε(y) + h

)
, let

ũε := u◦τε on Ω̃ε := τ−1
ε (Ω) .

By 4.26, we have ũε ∈ W 1,1(Ω̃ε) and the chain rule (A8-17) holds for ũε. We
note that gε → g locally uniformly as ε → 0 and ∇gε → ∇g in Lq

loc(IR
n−1)

for every q < ∞, and so ∇gε → ∇g almost everywhere for a subsequence
ε → 0. Moreover, the ∇gε are bounded in L∞

loc(IR
n−1). If we can show that

for v ∈ L1
loc(Ω) and for every D ⊂⊂ Ω

v◦τε → v◦τ as ε → 0 in L1
(
τ−1(D)

)
, (A8-19)

then this implies the convergence of u◦τε and (∂iu)◦τε, and we can pass to
the limit in the chain rule (A8-17).

Now it follows from (A8-18) that (A8-19) is equivalent to

v◦τε◦τ−1 → v as ε → 0 in L1(D) . (A8-20)
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Here, we approximate v in the L1-norm by continuous functions vk. These
functions satisfy (A8-20) and therefore we have (cf. the proof of 4.15(1))∥∥v◦τε◦τ−1 − v

∥∥
L1(D)

≤
∥∥v◦τε◦τ−1 − vk◦τε◦τ−1

∥∥
L1(D)

+
∥∥vk◦τε◦τ−1 − vk

∥∥
L1(D)

+ ‖vk − v‖L1(D)

≤ (C(τε◦τ−1) + 1)‖vk − v‖L1(D) +
∥∥vk◦τε◦τ−1 − vk

∥∥
L1(D)

,

where C(τε◦τ−1) converges to 1 as ε → 0. Thus (A8-20) also holds for v. ��

A further consequence of A8.9 is:

A8.12 Extension theorem. Let Ω ⊂ IRn be open and bounded with Lips-
chitz boundary and let 1 ≤ p ≤ ∞. Then, for δ > 0, there exists an extension
operator

E : W 1,p(Ω) −→ W 1,p
0

(
Bδ(Ω)

)
,

i.e. E is linear, continuous, and such that (Eu)|Ω = u for all u ∈ W 1,p(Ω).

Proof. We treat E similarly to the operator S in (A8-14). Hence it is sufficient
to consider the local situation near the boundary (cf. the proof of A8.8(1)).
Let Ω = Ω+ with Ω± as in A8.9. Choose a cut-off function η ∈ C∞(IRn)
with η = 1 in B δ

2
(Ω) and η = 0 in IRn \Bδ(Ω). Then, define Eu := ηũ with

ũ(y, h) :=

{
u(y, h) for h > g(y),

u
(
y, 2g(y) − h

)
for h < g(y).

(For p = ∞ it follows from theorem 10.5 that this defines a C0,1-extension of
u.) For p < ∞ it follows similarly to the proof of A8.11 that ũ ∈ W 1,p(Ω−),
with

‖ũ‖Lp(Ω−) = ‖u‖Lp(Ω+) ,

‖∇ũ‖Lp(Ω−) ≤
(
2 + Lip(g)

)
‖∇u‖Lp(Ω+) .

Consequently, Eu ∈ W 1,p(Ω−) with

‖Eu‖W 1,p(Ω−) ≤ C‖u‖W 1,p(Ω+) .

Then by the definition of the trace operator in (A8-13) it holds that for a
sequence ε ↘ 0 and for almost all y

S−(Eu)
(
y, g(y)

)
←− Eu

(
y, g(y) − ε

)
= u
(
y, g(y) + ε

)
−→ S+(u)

(
y, g(y)

)
Now A8.9 yields that Eu ∈ W 1,p(IRn). ��
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The following theorem implies that sets of the form

M := {u ∈ W 1,2(Ω) ; ϕ(u) = g on ∂Ω} (A8-21)

are weakly sequentially closed in W 1,2(Ω), if ϕ : IR → IR is continuous and
g : ∂Ω → IR is measurable.

A8.13 Embedding theorem onto the boundary. If Ω ⊂ IRn is open and
bounded with Lipschitz boundary, then for 1 ≤ p < ∞ and uk, u ∈ W 1,p(Ω)
it holds that:

uk → u weakly in W 1,p(Ω)

as k → ∞
=⇒

uk → u (strongly) in Lp(∂Ω)

as k → ∞ .

Proof. Without loss of generality let u = 0. If η ∈ C∞(IRn), then also ηuk →
0 weakly in W 1,p(Ω), and so it follows from A8.3 and A8.1 that we only need
to consider the local situation on the boundary. Hence let Ω = Ω+ as in
A8.9 and let the supports of uk, u be contained in a bounded set of IRn. On
recalling (A8-12), the functions uks(y) := uk(y, g(y) + s) satisfy for almost
all ε, s with 0 < ε < s the bound∫

IRn−1

|uks − ukε |p dLn−1 ≤ |s − ε|p−1
∫
Eε,s

|∇uk |p dLn ,

where Eε,s := {(y, h) ∈ IRn ; ε < h − g(y) < s}. Let δ > 0. Then for almost
all s with 0 < ε ≤ s ≤ δ, on setting C = 2p−1 (see (3-13)), we have that∫

IRn−1

|ukε |p dLn−1 ≤ C

∫
IRn−1

|uks |p dLn−1 + Cδp−1

∫
E0,δ

|∇uk |p dLn .

On letting ε → 0, we have that ukε → uk0 in Lp(IRn−1), where uk0 are the
weak boundary values of uk. Then integrating this inequality over s ∈ [

δ
2 , δ]

and dividing by δ
2 yields that∫

IRn−1

|uk0 |p dLn−1 ≤ 2C

δ

∫
E δ

2
,δ

|uk |p dLn + Cδp−1

∫
E0,δ

|∇uk |p dLn .

It follows from Rellich’s embedding theorem A8.4 that the first term on the
right-hand side converges to 0 for every δ. If p > 1 then the second term
converges to 0 as δ → 0, since the functions ∇uk are bounded in Lp(Ω+).
In the case p = 1 it follows from the following theorem that the integral in
the second term converges to 0 uniformly in k as δ → 0, because the ∇uk

converge weakly to 0 in L1(Ω+; IR
n) and because they have supports in a

bounded set. This yields the desired result. ��
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A8.14 Weak sequential compactness in L1(μ). Let (S,B, μ) be a mea-
sure space and let M ⊂ L1(μ; IRm). Then every sequence in M contains a
subsequence that converges weakly in L1(μ; IRm) if and only if

(1) M is bounded in L1(μ; IRm).

(2) It holds that

sup
f∈M

∫
E

|f | dμ −→ 0 as μ(E) → 0 .

(3) There exist sets Sk ∈ B, for k ∈ IN, with μ(Sk) < ∞, such that

sup
f∈M

∫
S\Sk

|f | dμ −→ 0 as k → ∞ .

Remark: If μ(S) < ∞, condition (3) is not necessary, choose Sk = S.

Proof ⇒. (1) follows via an indirect argument from 8.3(5).
Assume that (2) is false. Hence there exist a c > 0 and measurable sets

En as well as fn ∈ M for n ∈ IN such that

μ(En) → 0 as n → ∞ and

∫
En

|fn | dμ ≥ c for all n .

From this it follows that there exist Ẽn ∈ B with μ(Ẽn) → 0 as n → ∞ and∣∣∣∣∫
Ẽn

fn dμ

∣∣∣∣ ≥ c

2m
. (A8-22)

To see this, let A±
j := {x ∈ S ; ±fn(x)·ej > 0} for j = 1, . . . ,m. Then

∫
En

|fn | dμ ≤
m∑
j=1

(∫
En∩A+

j

|fn·ej | dμ+

∫
En∩A−

j

|fn·ej | dμ
)

=
m∑
j=1

(∣∣∣∣∣
∫
En∩A+

j

fn·ej dμ
∣∣∣∣∣+
∣∣∣∣∣
∫
En∩A−

j

fn·ej dμ
∣∣∣∣∣
)

,

which means that for some j (which depends on n) we have that∣∣∣∣∣
∫
En∩A+

j

fn·ej dμ
∣∣∣∣∣ ≥ c

2m
or

∣∣∣∣∣
∫
En∩A−

j

fn·ej dμ
∣∣∣∣∣ ≥ c

2m
.

Let Ẽn := En ∩A+
j in the first case, and Ẽn := En ∩A−

j in the second case.
Then

c

2m
≤
∣∣∣∣∫

Ẽn

fn·ej dμ∣∣∣∣ = ∣∣∣∣ej·∫
Ẽn

fn dμ

∣∣∣∣ ≤ ∣∣∣∣∫
Ẽn

fn dμ

∣∣∣∣ ,
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and μ(Ẽn) ≤ μ(En) → 0 as n → ∞. This proves (A8-22). It follows from the
assumption on M that there exists a subsequence n → ∞ (there is no extra
notation for the subsequence) such that for all μ-measurable E the limit

lim
n→∞

λn(E) exists, with λn(E) :=

∫
E

fn dμ . (A8-23)

Since for every n we have λn(E) → 0 as μn(E) → 0, the following theorem

A8.15 yields a contradiction to
∣∣∣λn(Ẽn)

∣∣∣ ≥ c
2m .

Now assume that (3) is false, i.e. there exists a c > 0 such that for all
E ∈ B with μ(E) < ∞∫

S\E
|f | dμ ≥ c for an f ∈ M . (A8-24)

Moreover, for all f ∈ L1(μ; IRm) and ε > 0,∫
S\E

|f | dμ ≤ ε for an E ∈ B with μ(E) < ∞ , (A8-25)

because there exists a step function g with ‖f − g‖L1 ≤ ε, and then E :=
{x ∈ S ; g(x) �= 0} has finite measure.

On combining (A8-25) and (A8-24) we inductively choose fn ∈ M and
En ∈ B with μ(En) < ∞ and En ⊂ En+1 such that∫

S\En+1

|fn | dμ ≤ 1

n
and

∫
S\En+1

|fn+1 | dμ ≥ c .

Then it holds for n ≥ 2
c that∫

En+1\En

|fn | dμ =

∫
S\En

|fn | dμ −
∫
S\En+1

|fn | dμ ≥ c

2
.

Next, as in the proof of (A8-22), there exist measurable sets Ẽn ⊂ En+1 \En

such that ∣∣∣∣∫
Ẽn

fn dμ

∣∣∣∣ ≥ c

4m
,

and for a subsequence n → ∞ the corresponding λn satisfy the above property
(A8-23). We now consider the measure space (S̃, B̃, μ̃) with

S̃ :=
⋃
n∈IN

En , B̃ := {E ∩ S̃ ; E ∈ B} ,

μ̃(E) :=
∑
j∈IN

2−j μ(E ∩ Ej \ Ej−1)

1 + μ(Ej \ Ej−1)
,

where E0 := ∅. Since μ̃(E) → 0 implies μ(E ∩ Ej \ Ej−1) → 0 for all j, and

since, for fixed n, for E ⊂ S̃ \ Ej it holds that
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|λn(E)| ≤
∫
S̃\Ej

|fn | dμ −→ 0 as j → ∞ ,

we obtain that |λn(E)| → 0 for E ∈ B̃ with μ̃(E) → 0 for fixed n. Combining
the following theorem A8.15 applied to the measure μ̃ and the facts that∣∣∣λn(Ẽn)

∣∣∣ ≥ c

4m
and μ̃(Ẽn) ≤ 2−n → 0 as n → ∞,

we arrive at a contradiction. ��

Proof ⇐ for regular measures. Let S ⊂ IRn be compact and let μ be a non-
negative measure in rca(S). We may assume that m = 1. For every sequence
(fn)n∈IN in M it follows from (1) and A3.17(2) that

λn(E) :=

∫
E

fn dμ

defines a bounded sequence (λn)n∈IN in rca(S). By 8.6(2), there exists a
λ ∈ rca(S) such that for a subsequence n → ∞,∫

S

g dλn →
∫
S

g dλ for all g ∈ C0(S) . (A8-26)

If E is a μ-null set, then, on recalling that μ is regular, for ε > 0 there exists
a relatively in S open set U with E ⊂ U and μ(U) ≤ ε. Moreover, as λ is
regular, there exist finitely many disjoint closed sets Kj ⊂ U such that

|λ|(U) ≤ ε+
∑
j

|λ(Kj)| .

For δ > 0 choose gj ∈ C0(S) with XKj
≤ gj ≤ XBδ(Kj). Then it follows that

|λ|(U) ≤ ε+
∑
j

|λ|
(
Bδ(Kj) \Kj

)
+
∑
j

∣∣∣∣∫
S

gj dλ

∣∣∣∣
and∑

j

∣∣∣∣∫
S

gj dλ

∣∣∣∣ ←−
∑
j

∣∣∣∣∫
S

gj dλn

∣∣∣∣ (as n → ∞)

=
∑
j

∣∣∣∣∫
S

gjfn dμ

∣∣∣∣ ≤ ∫
S

(∑
j

gj

)
|fn | dμ ≤

∫
U

|fn | dμ ,

where we observe that the last inequality holds for δ sufficiently small, because
then the sets Bδ(Kj) are disjoint subsets of U . Letting δ ↘ 0 and noting
assumption (2) we get
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|λ|(U) ≤ ε+ sup
f∈M

∫
U

|f | dμ −→ 0 as ε → 0.

This shows that E is also a |λ|-null set. Hence we can apply the Radon-
Nikodým theorem 6.11 and obtain that there exists an f ∈ L1(μ) with

λ(E) =

∫
E

f dμ

for all μ-measurable sets E. It follows from (A8-26) that∫
S

gfn dμ −→
∫
S

gf dμ as n → ∞ (A8-27)

for all g ∈ C0(S). On recalling 6.12, we need to show that this also holds for
all g ∈ L∞(μ). First let g = XE with a μ-measurable set E. For ε > 0 choose
K closed and U relatively open in S such that K ⊂ E ⊂ U with μ(U \K) ≤ ε
and g̃ ∈ C0(S) with XK ≤ g̃ ≤ XU . Then∣∣∣∣∫

E

fn dμ −
∫
E

f dμ

∣∣∣∣ ≤ ∣∣∣∣∫
S

g̃(fn − f) dμ

∣∣∣∣+ sup
n′

∫
U\K

(
|fn′ | + |f |

)
dμ ,

where, thanks to (2), the second term converges to 0 as ε → 0. Since the first
term converges to 0 as n → ∞ by (A8-27), we obtain∫

E

fn dμ −→
∫
E

f dμ as n → ∞.

Recalling that the characteristic functions span a dense subspace of L∞(μ)
then yields that (A8-27) also holds for all g ∈ L∞(μ). ��

Proof ⇐ for bounded measures. The idea is to use a separable analogue of
C0(S) in the above proof. As before, let m = 1. Let (fn)n∈IN be a sequence
in M , and let

gn =

kn∑
j=1

αnjXEnj
with μ(Enj) < ∞

be step functions with ‖fn − gn‖L1 ≤ 1
n . On noting that for every n0 ∈ IN it

holds that ∫
E

|gn | dμ ≤ max
i≤n0

∫
E

|gi | dμ+
1

n0
+ sup

f∈M

∫
E

|f | dμ ,

we have that {gn ; n ∈ IN} also satisfies the assumption (2), and it is sufficient
to show that (gn)n∈IN contains a weakly convergent subsequence.

Now the algebra B0 induced by the set {Enj ; j ≤ kn , n ∈ IN} is count-
able. Hence it follows from (1) that with the help of a diagonalization pro-
cedure we obtain a subsequence such that (without special notation for the
subsequence)
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λ(E) := lim
n→∞

∫
E

gn dμ

exists for all E ∈ B0. It holds that λ is additive on B0. Let B1 be the smallest
σ-algebra that contains B0 and all μ-null sets, and define μ1 := μ�B1. Then
(S,B1, μ1) is a finite measure space. Since μ1(S) < ∞, we can show that λ
admits a σ-additive extension to B1. To see this, let (Ek)k∈IN be a shrinking
sequence of sets in B1 for which the above limit exists, and let

E :=
⋂
k∈IN

Ek .

Then ∣∣∣∣∫
E

(gn − gl) dμ

∣∣∣∣ ≤ ∣∣∣∣∫
Ek

(gn − gl) dμ

∣∣∣∣︸ ︷︷ ︸
→ 0 as n, l → ∞

for any k

+2 sup
j

∫
Ek\E

|gj | dμ︸ ︷︷ ︸
→ 0 as k → ∞,

recall (2)

,

which shows that the above limit defines λ on all of B1. On noting that, in
addition,

|λ(Ek \ E)| = lim
n→∞

∣∣∣∣∣
∫
Ek\E

gn dμ

∣∣∣∣∣ ≤ sup
n

∫
Ek\E

|gn | dμ −→ 0 as k → ∞,

we see that λ is even σ-additive on B1 and that λ(E) = 0 if μ(E) = 0. Hence
it follows from the Radon-Nikodým theorem that there exists an f ∈ L1(μ1)
with

λ(E) =

∫
E

f dμ1 for all E ∈ B1.

As the characteristic functions span a dense subspace of L∞(μ1), this means,
on recalling 6.12, that gn → f weakly in L1(μ1). Now L1(μ1) ⊂ L1(μ) implies
that gn → f weakly also in L1(μ). ��

Proof ⇐ the general case. As before, let m = 1. Let (fn)n∈IN be a sequence
in M and let Sk for k ∈ IN be the sets from (3), which we can choose such
that Sk ⊂ Sk+1. We apply the result just shown to the sets

Mk := {XSk
f ; f ∈ M}

(with the measure μ being restricted to Sk). Hence a diagonalization proce-
dure yields a subsequence n → ∞ and hk ∈ L1(μ) with hk = 0 on S \ Sk,
such that∫

Sk

fn g dμ −→
∫
Sk

hk g dμ as n → ∞ for all g ∈ L∞(μ) .

Then hk+1 = hk almost everywhere on Sk, and on setting S̃ :=
⋃

k∈IN Sk we
have that
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h(x) :=

{
hk(x) for x ∈ Sk, k ∈ IN,

0 for x ∈ S \ S̃,
defines a μ-measurable function. Now it holds for k < l and for all g ∈ L∞(μ)
that as n → ∞∣∣∣∣∫

S

(hl − hk)g dμ

∣∣∣∣ = ∣∣∣∣∫
Sl

hl XS\Sk
g dμ

∣∣∣∣
←−
∣∣∣∣∫

Sl

fn XS\Sk
g dμ

∣∣∣∣ ≤ δk‖g‖L∞ ,

where

δk := sup
f∈M

∫
S\Sk

|f | dμ .

It follows that ‖hl − hk‖L1 ≤ δk → 0 as k → ∞, on recalling (3). Hence
h ∈ L1(μ) and for g ∈ L∞(μ)∫

S̃

(h − fn) g dμ ≤ ‖g‖L∞ ·
(∫

S̃\Sk

|h| dμ+ δk︸ ︷︷ ︸
→ 0 as k → ∞

)
+

∣∣∣∣∫
Sk

(hk − fn) g dμ

∣∣∣∣︸ ︷︷ ︸
→ 0 as n → ∞

for any k

.

This shows that fn → h weakly in L1(μ) as n → ∞. To see this, note that if

μ̃ is the measure μ restricted to S̃, then μ̃ is σ-finite and

Jf(x) :=

{
f(x) for x ∈ S̃,

0 for x ∈ S \ S̃,

defines an embedding J : L1(μ̃) → L1(μ). Hence for F ∈ L1(μ)′ we have

that F̃ := F ◦J ∈ L1(μ̃)′, which by 6.12 can be represented by means of
g ∈ L∞(μ̃). Consequently,

F (h − fn) = F̃ (h − fn) =

∫
S̃

(h − fn)g dμ −→ 0 as n → ∞ .

��

A8.15 Theorem (Vitali-Hahn-Saks). Let (S,B, μ) be a measure space
and let λn : B → IK be σ-additive for n ∈ IN. Suppose that

∀ n ∈ IN :
(

|λn(E)| → 0 as μ(E) → 0
)
,

and that the limit

lim
n→∞

λn(E) ∈ IK exists for all E ∈ B.

Then
sup
n∈IN

|λn(E)| → 0 as μ(E) → 0.
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Proof. The set
M := {E ∈ B ; μ(E) < ∞} ,

equipped with the distance

d(E1, E2) :=

∫
S

|XE1
− XE2

| dμ ,

is a complete metric space if the equivalence relation

E1 = E2 in M :⇐⇒ XE1
= XE2

μ-almost everywhere

is used in M. The completeness follows from the fact that the limit of charac-
teristic functions in L1(μ) is again a characteristic function (this follows from
A3.11). The assumptions yield that the λn are continuous on M. Indeed,
d(Ek, E) → 0 as k → ∞ implies that μ(Ek \E) → 0 and μ(E \Ek) → 0, and
so

|λn(Ek) − λn(E)| = |λn(Ek \ E) − λn(E \ Ek)|
≤ |λn(Ek \ E)| + |λn(E \ Ek)| → 0 .

Hence for ε > 0 and k ∈ IN the sets

Aε
k :=

{
E ∈ M ; |λk(E) − λj(E)| ≤ ε for all j ≥ k

}
are closed subsets in M and the assumptions of the theorem imply that⋃

k∈IN

Aε
k = M

for all ε > 0. It follows from the Baire category theorem 7.1 that at least one
Aε

k has a nonempty interior, i.e. there exist kε ∈ IN, Aε ∈ M, δε > 0 with

d(E,Aε) ≤ δε =⇒ |λkε
(E) − λj(E)| ≤ ε for all j ≥ kε.

Now for E ∈ M arbitrary and E1 := Aε ∪ E, E2 := Aε \ E

E = E1 \ E2 , d(E1, Aε) ≤ μ(E) , d(E2, Aε) ≤ μ(E) .

If μ(E) ≤ δε it then follows for j ≥ kε that

|λj(E)| ≤ |λkε
(E)| + |(λkε

(E1) − λj(E1)) − (λkε
(E2) − λj(E2))|

≤ |λkε
(E)| + 2 ε ,

and so
sup
j∈IN

|λj(E)| ≤ 2 ε+ max
j≤kε

|λj(E)|︸ ︷︷ ︸
→ 0 as μ(E) → 0
for any ε > 0.

This proves the desired result. ��



9 Finite-dimensional approximation

In this chapter we consider certain finite-dimensional subspaces of Banach
spaces. This plays an important role in applications, where we regard elements
in such subspaces as approximations of elements in the entire Banach space
X. Clearly we require the approximating subspaces to be finite-dimensional,
because in numerical computations only a prescribed finite number of coor-
dinates can be stored.

Hence in what follows points x ∈ X will always be approximated by a
countable sequence of points (xn)n∈IN. It is for this reason that in applications
the weak and weak∗ sequential compactness introduced in Chapter 8 plays
a far more important role than compactness with respect to the weak and
weak∗ topology, respectively.

An important optimization problem is to characterize a function from a
function space X approximately by finitely many numerical values. This can
be achieved by suitably exhausting X by finite-dimensional subspaces Xn,
n ∈ IN. Another important problem is to numerically solve linear equations
between Banach spaces. This concerns for instance the numerical solution of
a boundary value problem for linear partial differential equations (see 6.5).
Here it is once again necessary to approximate a Banach space, e.g. the space
X = W 1,2(Ω), by suitable finite-dimensional subspaces Xn, n ∈ IN, and then
to find an approximative solution in these subspaces (see the Ritz-Galerkin
method in 9.23–9.25). In all applications the subspaces Xn are chosen so
that they are appropriate for the problem at hand, i.e. they should be easy
to handle and, on the other hand, they should also retain as much of the
structure of the infinite-dimensional problem as possible.

To approximate a space by countably many finite-dimensional subspaces
is only possible for separable normed spaces:

9.1 Lemma. Let X be an infinite-dimensional normed space. Then the fol-
lowing are equivalent:

(1) X is separable.

(2) There exist finite-dimensional subspaces Xn ⊂ X for n ∈ IN such that
Xn ⊂ Xn+1 for all n and ⋃

n∈IN

Xn is dense in X.

© Springer-Verlag London 2016 
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(3) There exist finite-dimensional subspaces En ⊂ X for n ∈ IN such that
En ∩ Em = {0} for n �= m and⊕

k∈IN

Ek :=
⋃
n∈IN

(
E1 ⊕ · · · ⊕ En

)
is dense in X.

(4) There exists a linearly independent set {ek ; k ∈ IN} ⊂ X such that

span{ek ; k ∈ IN} is dense in X.

Proof (1)⇒(2). Choose a countable set {xn ; n ∈ IN} that is dense in X.
Define Xn := span{x1, . . . , xn}. ��
Proof (2)⇒(3). Let E1 := X1 and for n ∈ IN choose subspaces En+1 with
Xn+1 = Xn ⊕ En+1. ��
Proof (3)⇒(4). Let dn := dimEn and let {en,j ; j = 1, . . . , dn} be a basis of
En. Then we have that

Xn := E1 ⊕ · · · ⊕ En = span{ei,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ di}

and hence M := {ei,j ; i ∈ IN, 1 ≤ j ≤ di} is a desired linearly independent
set, since

span(M) = span
( ⋃

n∈IN

Xn

)
is a dense set in X. ��
Proof (4)⇒(1). For n ∈ IN it holds that

An :=
{ n∑

k=1

αkek ; αk ∈ Q for 1 ≤ k ≤ n
}
,

with Q as in the proof of 4.17(4), is countable with clos (An) = span{ek ; 1 ≤
k ≤ n}. The desired result then follows from 4.17(1). ��

On recalling 4.18(4) we can apply these results, for example, to the spaces
Lp(Ω), 1 ≤ p < ∞, with Ω ⊂ IRn open. Moreover, by 4.15(3), we have C∞

0 (Ω)
is dense in Lp(Ω), and so 4.17(2) yields that it is also separable with respect
to the Lp-norm. Hence we can apply 9.1 to the space C∞

0 (Ω) equipped with
the Lp-norm. The denseness results in 9.1(2)-9.1(4) for this space then also
hold with respect to the space Lp(Ω). This implies that the finite-dimensional
spaces with respect to Lp(Ω) in 9.1 can be chosen as subspaces of C∞

0 (Ω).
The same argument can equally be applied to other pairs of function spaces.

As a further consequence of 9.1 we now give a constructive proof of the
Hahn-Banach theorem 6.15 for separable spaces X, i.e. for the extension of a
functional y′ ∈ Y ′ onto X for a subspace Y ⊂ X. Recalling that the extension
of y′ to the closure Y is already uniquely defined by y′ (see E5.3), we restrict
our attention to closed subspaces Y ⊂ X.
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9.2 On the Hahn-Banach theorem. Let X be an infinite-dimensional
separable normed IR-vector space and let Y ⊂ X be a closed subspace. Then:

(1) If E ⊂ X is a finite-dimensional subspace with Y ∩E = {0}, then Y ⊕E
is also a closed subspace.

(2) There exists a linearly independent set {ek ; k ∈ IN} such that denoting
En := span{ek ; k ≤ n}

Y ⊕
⋃
n∈IN

En is dense in X.

(3) Let y′ ∈ Y ′ and let en, En for n ∈ IN be as in (2). Then there exist
numbers cn ∈ IR for n ∈ IN such that the following holds: The inductively
defined maps

x′
n(y + αen) := x′

n−1(y) + αcn for y ∈ Y ⊕ En−1, α ∈ IR,

where x′
0 := y′ and E0 := {0}, yield a map x′ : X → IR defined by

x′(y) := lim
n→∞

x′
n(yn) for y = lim

n→∞
yn with yn ∈ Y ⊕ En .

Moreover, it holds: x′ ∈ X ′ is an extension of y′ with ‖x′‖X′ = ‖y′‖Y ′ .

Proof (1). Let X̃ be the vector space X with the equivalence relation

x1 = x2 in X̃ :⇐⇒ x1 − x2 ∈ Y.

As Y is closed, we have that X̃ with ‖x‖X̃ := dist(x, Y ) is a normed space.

Since Y ∩ E = {0}, the dimension of E in X̃ is the same as in X. Now let
yk ∈ Y , zk ∈ E for k ∈ IN with yk + zk → x ∈ X as k → ∞. It follows
that ‖zk − x‖X̃ → 0 as k → ∞, and so (zk)k∈IN is a Cauchy sequence in X̃.
Hence, by 4.9, there exists a z ∈ E with ‖zk − z‖X̃ → 0 as k → ∞, and
so ‖x − z‖X̃ = 0, i.e. there exists a y ∈ Y with x − z = y. It follows that
x = y + z ∈ Y ⊕ E. ��

Proof (2). Apply 9.1(4) to X̃. ��

Proof (3). Let R := ‖y′‖Y ′ . We need to inductively find cn such that on
letting Yn := Y ⊕ En it holds that

x′
n(y + αen) ≤ R ‖y + αen‖X for y ∈ Yn−1, α ∈ IR .

Similarly to the proof of 6.14 this means that we need to choose cn such that

sup
y∈Yn−1

(
x′
n−1(y) − R ‖y − en‖X

)
≤ cn ≤ inf

ỹ∈Yn−1

(
R ‖ỹ + en‖X − x′

n−1(ỹ)
)
,

which is possible, because the induction hypothesis implies that
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x′
n−1(y) + x′

n−1(ỹ) ≤ R ‖y + ỹ‖X ≤ R
(
‖y − en‖X + ‖ỹ + en‖X

)
.

As x′
n = x′

n−1 on Yn−1 for all n ∈ IN, we have that this defines a linear
map x′ :

⋃
n∈IN Yn → IR with x′(y) = x′

n(y) for y ∈ Yn, which implies that
|x′(y)| ≤ R‖y‖X for all such y. It now follows from (2) (recall E5.3) that
there exists a unique extension of x′ to X. ��

The result 9.1(2) means that for x ∈ X there exist points xn ∈ Xn such
that xn → x as n → ∞. The result 9.1(4) implies that for x ∈ X and n ∈ IN
there exist numbers αn,k for k = 1, . . . , n such that∥∥∥∥∥x −

n∑
k=1

αn,kek

∥∥∥∥∥
X

−→ 0 as n → ∞.

If the coefficients αn,k can be chosen independently of n, we speak of a
Schauder basis:

9.3 Definition (Schauder basis). Let X be a normed space. A sequence
(ek)k∈IN in X is called a Schauder basis of X if:

For x ∈ X there exist unique αk ∈ IK for k ∈ IN

such that

n∑
k=1

αkek −→ x in X as n → ∞.

The fact that the coefficients αk of x are unique, and hence depend linearly
on x, implies that we can define linear maps e′k : X → IK by setting

e′k(x) := αk for k ∈ IN, if

n∑
k=1

αkek −→ x as n → ∞.

Observe: In this definition we can also write

x =

∞∑
k=1

αkek := lim
n→∞

n∑
k=1

αkek in X.

However, this does not imply anything about the absolute convergence of this
series. In particular, no infinite rearrangment of terms in this series is allowed
(!). This means that together with the set {ek ; k ∈ IN} a specific order of
the elements of this set is prescribed. Hence a Schauder basis is defined by
the sequence (ek)k∈IN, and not by a set.

We now show that the maps e′k are continuous.

9.4 Theorem (Dual basis). Let (ek)k∈IN be a Schauder basis of the Banach
space X and let e′k be the corresponding maps from 9.3. Then:
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(1) {ek ; k ∈ IN} satisfies 9.1(4) with dim span{ek ; 1 ≤ k ≤ n} = n for
n ∈ IN.

(2) e′k ∈ X ′ for k ∈ IN.

(3) The sequence (e′k)k∈IN in X ′ is a dual basis of (ek)k∈IN, i.e.

〈el , e′k〉X = δk,l for all k, l.

(4) The dual basis is unique.

Proof (1). Follows from the uniqueness of the coefficients in 9.3. ��

Proof (3). For n ≥ l

el =
n∑

k=1

δk,lek .

The uniqueness of the coefficients yields that e′k(el) = δk,l. ��

Proof (2). Consider the set

Y :=
{
α = (αk)k∈IN ∈ IKIN ; lim

n→∞

n∑
k=1

αkek exists in X
}

with

‖α‖Y := sup
n

∥∥∥∥∥
n∑

k=1

αkek

∥∥∥∥∥
X

and define a map T : Y → X by setting

T (α) := lim
n→∞

n∑
k=1

αkek .

Clearly, Y is a IK-vector space, ‖·‖Y is a norm and T is linear. The fact that
(ek)k∈IN is a Schauder basis is equivalent to the bijectivity of T , with

T−1(x) = (e′k(x))k∈IN .

Moreover, we have that T ∈ L (Y ;X), because

‖T (α)‖X = lim
n→∞

∥∥∥∥∥
n∑

k=1

αkek

∥∥∥∥∥
X

≤ ‖α‖Y . (9-28)

If Y is complete, which we will prove below, then by the inverse mapping
theorem T−1 ∈ L (X;Y ), i.e. there exists a C < ∞ with∥∥(e′k(x))k∈IN

∥∥
Y

≤ C‖x‖X for x ∈ X.

Then on combining
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|e′n(x)| · ‖en‖X = ‖e′n(x)en‖X

=

∥∥∥∥∥
n∑

k=1

e′k(x)ek −
n−1∑
k=1

e′k(x)ek

∥∥∥∥∥
X

≤ 2
∥∥(e′k(x))k∈IN

∥∥
Y

≤ 2C ‖x‖X ,

(9-29)

and en �= 0 (otherwise e′n(x) would not be unique, or see (1)), it follows that
e′n ∈ X ′, with the products ‖e′n‖X′ · ‖en‖X being bounded. ��

Proof (4). The fact that the dual basis of a Schauder basis is unique can be

easily seen. Namely, if e
′1
k , e

′2
k ∈ X ′ with

〈
el , e

′m
k

〉
X

= δk,l for all k, l ∈ IN,

it follows that 〈∑n
l=1 αlel , e

′1
k − e

′2
k

〉
X

= 0

for all such linear combinations. As these are dense in X, we obtain that〈
x , e

′1
k − e

′2
k

〉
X

= 0 for all x ∈ X, i.e. e
′1
k = e

′2
k . ��

Proof (2) completeness. It remains to show that Y is complete. If
(
αi
)
i∈IN

is

a Cauchy sequence in Y , then for all n ∈ IN (similarly to (9-29) and (9-28))∣∣αi
n − αj

n

∣∣ ≤ 2

‖en‖X

∥∥αi − αj
∥∥
Y

and ∥∥T (αi) − T (αj)
∥∥
X

=
∥∥T (αi − αj)

∥∥
X

≤
∥∥αi − αj

∥∥
Y
,

i.e. the
(
αi
n

)
i∈IN

are Cauchy sequences in IK for all n ∈ IN, and
(
T (αi)

)
i∈IN

is a Cauchy sequence in X. Hence, there exist the limits

αn := lim
i→∞

αi
n ∈ IK and x := lim

i→∞
T (αi) ∈ X .

Now we show that α := (αn)n∈IN ∈ Y and T (α) = x. First we see∥∥∥∥∥x −
n∑

k=1

αkek

∥∥∥∥∥
X

≤
∥∥x − T (αi)

∥∥
X︸ ︷︷ ︸

→ 0 as i → ∞

+

∥∥∥∥∥T (αi) −
n∑

k=1

αi
kek

∥∥∥∥∥
X︸ ︷︷ ︸

→ 0 as n → ∞ and any i

+

∥∥∥∥∥
n∑

k=1

(αi
k − αj

k)ek

∥∥∥∥∥
X︸ ︷︷ ︸

≤
∥∥∥αi − α

j
∥∥∥
Y

→ 0

as i, j → ∞

+

∥∥∥∥∥
n∑

k=1

(αj
k − αk)ek

∥∥∥∥∥
X︸ ︷︷ ︸

→ 0 as j → ∞
and any n

.

Hence the left-hand side converges to 0 as n → ∞. This follows by first letting
j → ∞ to arrive at
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n∑

k=1

αkek

∥∥∥∥∥
X

≤
∥∥x − T (αi)

∥∥
X
+

∥∥∥∥∥T (αi) −
n∑

k=1

αi
kek

∥∥∥∥∥
X

+ lim sup
j→∞

∥∥αi − αj
∥∥
Y
,

and then n → ∞ to obtain

lim sup
n→∞

∥∥∥∥∥x −
n∑

k=1

αkek

∥∥∥∥∥
X

≤
∥∥x − T (αi)

∥∥
X
+ lim sup

j→∞

∥∥αi − αj
∥∥
Y
,

where now the right-hand side converges to 0 if i → ∞. We also have that
αi → α in Y , on noting that∥∥∥∥∥

n∑
k=1

(αk − αi
k)ek

∥∥∥∥∥
X

≤
∥∥∥∥∥

n∑
k=1

(αk − αj
k)ek

∥∥∥∥∥
X

+
∥∥αj − αi

∥∥
Y
,

which on letting j → ∞ implies that

∥∥α − αi
∥∥
Y
= sup

n

∥∥∥∥∥
n∑

k=1

(αk − αi
k)ek

∥∥∥∥∥
X

≤ lim sup
j→∞

∥∥αj − αi
∥∥
Y︸ ︷︷ ︸

→ 0 as i → ∞

.

��

Let X1, X2 be Banach spaces and let (emk )k∈IN be a Schauder basis of

Xm, m = 1, 2. Now if S ∈ L (X1;X2), then Se1k have representations with
respect to

(
e2l
)
l∈IN

, i.e. there exist uniquely defined numbers ak,l ∈ IK with

Se1k =

∞∑
l=1

ak,le
2
l .

It follows that

x =

∞∑
k=1

αke
1
k =⇒ Sx =

∞∑
k=1

∞∑
l=1

αkak,le
2
l .

This means that the operator S is uniquely determined by the infinite
matrix (ak,l)k,l∈IN. Clearly, not every such matrix defines an operator in

L (X1;X2). The numbers ak,l need to satisfy certain conditions as k, l → ∞,
which guarantee that the above infinite sums converge (for a special case see
12.11).
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Orthogonal systems

In Hilbert spaces a special role is played by bases whose elements are per-
pendicular to each other.

9.5 Definition. Let X be a pre-Hilbert space. A sequence (ek)k∈N , N ⊂ IN,
in X is called an orthogonal system if

(ek , el)X = 0 for k �= l and ek �= 0 for all k, (9-30)

and an orthonormal system if

(ek , el)X = δk,l for all k, l. (9-31)

Remark: In contrast to 9.3, this definition may also be formulated for the
countable set {ek ; k ∈ N}. All of the following infinite sums can be arbitrarily
rearranged.

9.6 Bessel’s inequality. Let (ek)k=1,...,n be a (finite) orthonormal system
in the pre-Hilbert space X. Then for every x ∈ X

0 ≤ ‖x‖2 −
n∑

k=1

|(x , ek)X |2

=

∥∥∥∥∥x −
n∑

k=1

(x , ek)X ek

∥∥∥∥∥
2

= dist(x, span{e1, . . . , en})2 .

Proof. For α1, . . . , αn ∈ IK∥∥∥∥∥x −
n∑

k=1

αkek

∥∥∥∥∥
2

= ‖x‖2 −
n∑

k=1

(x , ek)X αk −
n∑

k=1

αk (ek , x)X +

n∑
k=1

|αk |2

= ‖x‖2 −
n∑

k=1

|(x , ek)X |2 +
n∑

k=1

|(x , ek)X − αk |2 ,

i.e. the left-hand side is minimal when αk = (x , ek)X for k = 1, . . . , n. ��

9.7 Orthonormal basis. Let (ek)k∈IN be an orthonormal system in the pre-
Hilbert space X. Then (ek)k∈IN is called an orthonormal basis if one of the
following equivalent conditions is satisfied:

(1) span{ek ; k ∈ IN} is dense in X.

(2) (ek)k∈IN is a Schauder basis of X.

(3) Representation.

x =
∞∑
k=1

(x , ek)X ek for all x ∈ X.
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(4) Parseval’s identity.

(x , y)X =

∞∑
k=1

(x , ek)X (y , ek)X for all x, y ∈ X.

(5) Completeness relation.

‖x‖2 =

∞∑
k=1

|(x , ek)X |2 for all x ∈ X.

Proof (1)⇒(3). Let x ∈ X and let

xn =

mn∑
k=1

αn,kek −→ x in X as n → ∞.

For n and m with m ≥ mn it holds, by Bessel’s inequality, that

‖x − xn‖ ≥ dist(x, span{e1, . . . , emn
}) ≥ dist(x, span{e1, . . . , em})

=

∥∥∥∥∥x −
m∑

k=1

(x , ek)X ek

∥∥∥∥∥ .
��

Proof (3)⇒(2). We need to show that the coefficients are unique. If

0 =
∞∑
k=1

αkek ,

then the continuity of the scalar product yields for all l ∈ IN that

0 =

( ∞∑
k=1

αkek , el

)
X

=

∞∑
k=1

αk (ek , el)X︸ ︷︷ ︸
=δk,l

= αl .

��

Proof (2)⇒(1). Follows from 9.4(1). ��

Proof (3)⇒(4). The continuity of the scalar product implies that

(x , y)X = lim
n→∞

(
n∑

k=1

(x , ek)X ek ,

n∑
l=1

(y , el)X el

)
X

= lim
n→∞

n∑
k,l=1

(x , ek)X (y , el)X (ek , el)X︸ ︷︷ ︸
=δk,l

= lim
n→∞

n∑
k=1

(x , ek)X (y , ek)X .

��
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Proof (4)⇒(5). Set y = x. ��

Proof (5)⇒(3). It follows from Bessel’s inequality that∥∥∥∥∥x −
n∑

k=1

(x , ek)X ek

∥∥∥∥∥
2

= ‖x‖2 −
n∑

k=1

|(x , ek)X |2 −→ 0 as n → ∞.

��

9.8 Theorem. For every infinite-dimensional Hilbert space X over IK the
following are equivalent:

(1) X is separable.

(2) X has an orthonormal basis.

Note: If one of these conditions is satisfied, then X is isometrically iso-
morphic to �2(IK). (Every finite-dimensional Hilbert space X is isometrically
isomorphic to IKdimX .)

Proof (2)⇒(1). Follows from 9.7(1) and 9.1. ��

Proof (1)⇒(2). Let Xn := span{e1, . . . , en} with (ek)k∈IN from 9.1(4). (Or
choose subspaces Xn as in 9.1(2) with dimXn = n and then en ∈ Xn \Xn−1,
where X0 := {0}.) Then we inductively define ên for n ∈ IN via

ẽn := en −
∑

1≤k<n

(en , êk)X êk ∈ Xn \Xn−1 ,

ên :=
ẽn

‖ẽn‖X
(hence ‖ên‖X = 1).

Then ên ∈ Xn ∩ X⊥
n−1, and so (ên)n∈IN is an orthonormal system. Since

span{êk ; k = 1, . . . , n} = Xn ,

it follows that span{êk ; k ∈ IN} is dense in X. Hence 9.7(1) yields that
(êk)k∈IN is an orthonormal basis. This procedure to compute (or to construct)
an orthonormal basis is called the Gram-Schmidt process. ��

Proof of Note. Let (ek)k∈IN be an orthonormal basis. It follows from 9.7(5)
that the map J : X → �2(IK) with Jx := ((x , ek)X)k∈IN is well defined. In
addition, 9.7(4) implies that (Jx , Jy)�2 = (x , y)X for x, y ∈ X. Moreover,
J is bijective with J−1((αk)k∈IN) =

∑
k∈IN αkek. (In the finite-dimensional

case consider the index set {1, . . . ,dimX} in place of IN.) ��

We now give the standard example of an orthonormal basis in a function
space.
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9.9 Example. Consider L2(]− π, π[ ; IK) with IK = IR or IK = C. Then

ek(x) :=
1√
2π

eikx for k ∈ ZZ

defines an orthonormal basis (ek)k∈ZZ
of L2(]− π, π[ ; C). Moreover,

ẽk(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
π
sin(kx) for k > 0,

1√
2π

for k = 0,

1√
π
cos(kx) for k < 0

defines an orthonormal basis (ẽk)k∈ZZ
of L2(]− π, π[ ; IR).

Proof. First let us show that we are dealing with orthonormal systems. We
have

(ek , el)L2 =
1

2π

∫ π

−π

eikxe−ilx dx

=

⎧⎪⎪⎨⎪⎪⎩
1

2π

∫ π

−π

1 dx = 1 for k = l,

1

2πi(k − l)

∫ π

−π

d

dx
(ei(k−l)x) dx = 0 for k �= l.

Regarding ẽk as elements of L2(]− π, π[ ; C), we have that

ẽk =

⎧⎪⎪⎨⎪⎪⎩
1

i
√
2
(ek − e−k) for k > 0,

e0 for k = 0,
1√
2
(ek + e−k) for k < 0,

which immediately implies that (ẽk , ẽl)L2 = 0 for |k | �= |l|. In addition, it
holds for k > 0 that

‖ẽ±k‖2L2 =
1

2
‖ek ∓ e−k‖2L2

=
1

2

(
‖ek‖2L2 ∓ 2Re (ek , e−k)L2 + ‖e−k‖2L2

)
= 1

and

(ẽk , ẽ−k)L2 =
1

2i
(ek − e−k , ek + e−k)L2

=
1

2i

(
‖ek‖2L2 + (ek , e−k)L2 − (e−k , ek)L2 − ‖e−k‖2L2

)
= 0 ,

and hence (ẽk)k∈ZZ
is also an orthonormal system.



296 9 Finite-dimensional approximation

On recalling 9.7(1) we need to show that span{ek ; k ∈ ZZ} is dense
in L2(] − π, π[ ; C). As C∞

0 (] − π, π[ ; C) is dense in L2(] − π, π[ ; C) (see
4.15(3)), we only need to show that smooth functions can be approximated
in the L2-norm by finite linear combinations of the ek. We give two possible
proofs.

1st possibility: Let f ∈ C0,1([− π, π]; C) and set

Pnf :=
∑
|k|≤n

(f , ek)L2 ek .

Then Bessel’s inequality 9.6 yields (first for the finite sum over all k with
|k | ≤ n, and then for the limit as n → ∞) that∑

k∈ZZ

|(f , ek)L2 |2 ≤ ‖f ‖2L2 < ∞ ,

and so for m > n

‖Pmf − Pnf ‖2L2 ≤
∑
|k|>n

|(f , ek)L2 |2 −→ 0 as n → ∞,

i.e. the limit f̃ := limn→∞ Pnf exists in L2(] − π, π[ ; C), which implies for

a subsequence n → ∞ that Pnf(x) → f̃(x) for almost all x. Then we obtain

f = f̃ with the help of lemma 9.11 below on the pointwise convergence of
Fourier series.

2nd possibility: Let f ∈ C0([ − π, π]; C) with f(−π) = f(π). Define g ∈
C0(IR2; C) by

g(reiθ) := η(r)f(θ) for r ≥ 0 and − π ≤ θ ≤ π,

where η is a continuous function on [0,∞[ with η(0) = 0 and η(1) = 1. We
need to show that g can be uniformly approximated in B1(0) by polynomials
in two variables, as this implies that the restriction to ∂B1(0), i.e. the repre-
sentation f(θ) = g(eiθ), yields the desired approximation. Hence we need to
prove the following theorem. ��

9.10 Weierstraß approximation theorem. Every function g ∈ C0(IRn)
can be uniformly approximated by polynomials on any ball BR(0).

Note: Here we have C0(IRn) = C0(IRn; IK) by the definition 3.2. However,
the proof carries over unchanged to functions in C0(IRn;Y ) with an arbitrary
Banach space Y . We then obtain polynomials with “coefficients” in Y .

Proof. We may assume that R = 1
4 and g ∈ C0

0

(
B 1

2
(0)
)
, because otherwise

we can consider g̃(x) := η(x)g(4Rx), where η ∈ C0
0

(
B 1

2
(0)
)
with η = 1 on

B 1
4
(0). Define
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ϕm(x) :=
1

cm

n∏
i=1

(1 − x2
i )

m , if |xi | ≤ 1 for i = 1, . . . , n,

and ϕm(x) := 0 otherwise, where

cm :=
(∫ 1

−1

(1 − t2)m dt
)n

.

Then (ϕm)m∈IN is a general Dirac sequence (see 4.14(1)) and hence

‖ϕm ∗ g − g‖C0 ≤ sup
x∈IRn

∫
IRn

|g(x − y) − g(x)|ϕm(y) dy

≤ sup
x∈IRn, |y|≤δ

|g(x − y) − g(x)|︸ ︷︷ ︸
−→ 0 as δ → 0

+ 2 · ‖g‖C0

∫
IRn\Bδ(0)

ϕm dLn

︸ ︷︷ ︸
−→ 0 as m → ∞

for any δ.

Since g = 0 outside of B 1
2
(0), for x ∈ B 1

2
(0) we have that

(ϕm ∗ g)(x) =
∫
IRn

ϕm(x − y)g(y) dy =
1

cm

∫
IRn

n∏
i=1

(
1 − (xi − yi)

2
)m

g(y) dy ,

which clearly is a polynomial in the variables x1, . . . , xn. ��

9.11 Lemma. Given f ∈ L2(]− π, π[ ; C) let

Pnf :=
∑
|k|≤n

(f , ek)L2 ek

be the Fourier sum of f with ek as in 9.9. If −π < x < π and ξ ∈ C with

lim sup
r↘0

∣∣∣∣ f(x+ r) + f(x − r) − 2ξ

r

∣∣∣∣ < ∞ ,

then ξ = limn→∞ Pnf(x).

Special case: The assumption is satisfied for ξ = f(x) if f is Lipschitz con-
tinuous.

Proof. Noting that (ξ , ek)L2 = 0 for k �= 0 and extending f by periodicity,
i.e. setting f(x+ 2πk) := f(x) for |x| < π and k ∈ ZZ \ {0}, we have that

Pnf(x) − ξ =
∑
|k|≤n

(f − ξ , ek)L2 ek(x)

=
1

2π

∫ π

−π

(f(x − y) − ξ) ·
∑
|k|≤n

eiky dy .
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The expression (see E9.8)∑
|k|≤n

eiky =
sin((n+ 1

2 )y)

sin( 12y)
is symmetric in y.

Hence the changes of variables y = 2z and y = −2z yield

Pnf(x) − ξ =
1

2π

∫ π
2

−π
2

f(x+ 2z) + f(x − 2z) − 2ξ

sin z
· sin((2n+ 1)z) dz

= − (gx , e2n+1)L2 + (gx , e−2n−1)L2 ,

where

gx(y) :=

√
2π

4πi
· X]−π

2 ,π2 [
(y)

f(x+ 2y) + f(x − 2y) − 2ξ

sin y
.

As gx ∈ L2(]−π, π[ ; C), it follows from Bessel’s inequality that (gx , e2n+1)L2

and (gx , e−2n−1)L2 converge to 0 as n → ∞. ��

Projection

Thus, we have shown that for f ∈ L2(] − π, π[ ; C) the Fourier sum Pnf
(see 9.11) converges in this space to f (recall 9.7). Moreover, for Lipschitz
continuous functions the Fourier sum converges pointwise. It is often of inter-
est, in particular for numerical error estimations, how well Pnf approximates
the given function f . For Sobolev functions this error can be bounded in the
L2-norm as follows.

9.12 Lemma. Letm ≥ 1 and let f ∈ Wm,2(]−π, π[ ; C) satisfy the periodic
boundary conditions

f (j)(−π) = f (j)(+π) for 0 ≤ j ≤ m− 1.

Then it holds for the Fourier sums Pnf in 9.11 that

‖f − Pnf ‖L2 ≤ ( 1
n+1 )

m
∥∥f (m)

∥∥
L2 .

Definition: The functions f (j) denote the weak derivatives of f .

Proof. It holds that d
dxek(x) = ik ek(x), and so integration by parts yields

for j < m
(
as f (j) · ek is in W 1,2(]− π, π[ ; C) by the product rule 4.25 and

hence also in AC([− π, π] ; C) by E3.6
)
that(

f (j) , ek

)
L2

= − 1

ik

∫ π

−π

f (j)(x)
d

dx
ek(x) dx

= − e−ikπ

ik
√
2π

(
f (j)(π) − f (j)(−π)

)
+

1

ik

∫ π

−π

f (j+1)(x) · ek(x) dx

=
1

ik

(
f (j+1) , ek

)
L2

.

We obtain via induction that
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(f , ek)L2 =
(

1
ik

)m ·
(
f (m) , ek

)
L2 .

Noting

(f − Pnf , ek)L2 =

{
0 for |k | ≤ n,

(f , ek)L2 for |k | > n,

and recalling 9.7(5) yields that

‖f − Pnf ‖2L2 =
∑

|k|≥n+1

|(f , ek)L2 |2 ≤ 1

(n+ 1)2m

∑
|k|≥n+1

∣∣∣(f (m) , ek

)
L2

∣∣∣2
≤ 1

(n+ 1)2m

∥∥∥f (m)
∥∥∥2
L2

.

��

The Fourier sum Pnf for a given function f ∈ X := L2(] − π, π[ ; C)
is an explicit rule for computing an approximation in the subspace Xn :=
span{ek ; |k | ≤ n}. Moreover, Pnf = f means that already f ∈ Xn. This
property we can also require for a general separable Banach space X, i.e. one
has certain subspaces Xn ⊂ X, and for x ∈ X an approximating xn ∈ Xn

defined by xn = Pnx, where Pn : X → Xn is a linear map, and in addition
it should hold that xn = x if x ∈ Xn, that is, Pn = Id on Xn. Maps with
this property are called projections. Note that this definition uses only the
vector space structure of X. In the following, i.e. starting with 9.14, we will
then consider continuous projections.

9.13 Linear projections. Let Y be a subspace of the vector space X. A
linear map P : X → X is called a (linear) projection onto Y if (cf. 5.5(3))

P 2 = P and R(P ) = Y .

It holds that:

(1) P is a projection onto Y if and only if

P : X → Y and P = Id on Y.

(2) If P : X → X is a projection, then

X = N (P ) ⊕ R(P ) .

(3) If P is a projection then so is Id − P , with

N (Id − P ) = R(P ) and R(Id− P ) = N (P ) .

(4) For every subspace Y of X there exists a projection onto Y .

Observe: The projections in (4) are in general not (!) continuous (see also
theorem 9.15).

Proof (2). For x ∈ X we have that
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x = (x − Px)︸ ︷︷ ︸
∈N (P )

+ Px︸︷︷︸
∈R(P )

.

If x ∈ N (P ) ∩ R(P ), then Px = 0 and x = Px, and so x = 0. ��

Proof (3). It holds that

(Id − P )2 = Id− 2P + P 2 = Id − 2P + P = Id − P

and

x ∈ N (Id − P ) ⇐⇒ x − Px = 0 ⇐⇒ x ∈ R(P ) ,

and so N (Id − P ) = R(P ), and hence also N (P ) = N (Id − (Id − P )) =
R(Id − P ). ��

Proof (4). Similarly to the proof of the Hahn-Banach theorem 6.14, set

M :=
{
(Z,P ) ; Y ⊂ Z ⊂ X, Z subspace,

P : Z → Y linear, P = Id on Y
}

with the order as in 6.14. As in the proof of 6.14, it follows that M has a
maximal element (Z,P ). If we assume that there exists a z0 ∈ X \ Z, then

Z0 := Z ⊕ span{z0} , P0(z + αz0) := P (z) for z ∈ Z, α ∈ IK,

defines a (Z0, P0) ∈ M with (Z,P ) < (Z0, P0) (i.e. (Z,P ) ≤ (Z0, P0) and
(Z,P ) �= (Z0, P0)), a contradiction. ��

9.14 Continuous projections. Let X be a normed space. Then (cf. 5.5(3))

P(X) := {P ∈ L (X) ; P 2 = P}

denotes the set of continuous (linear) projections. If P ∈ P(X), then:

(1) N (P ) and R(P ) are closed,

(2) ‖P ‖ ≥ 1 or P = 0.

Proof (1). It follows from P being continuous that N (P ) = P−1({0}) is
closed as the preimage of a closed set. Combining the facts that Id − P is
continuous and a projection, recall 9.13(3), yields that R(P ) = N (Id − P )
is closed. ��

Proof (2). We use the fact that L (X) is a Banach algebra (see 5.3(3)), and

conclude that ‖P ‖ =
∥∥P 2
∥∥ ≤ ‖P ‖2. Therefore ‖P ‖ = 0 or ‖P ‖ ≥ 1. ��

The result in 9.13(4) does not hold for continuous projections in Banach
spaces, i.e. in general it is not possible to continuously project onto every
closed subspace. However, the following theorem is valid.
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9.15 Closed complement theorem. Let X be a Banach space. Let Y be
a closed subspace and let Z be a subspace with X = Z ⊕Y (i.e. Z ∩Y = {0}
and span(Z ∪ Y ) = X). Then the following are equivalent:

(1) There exists a continuous projection P onto Y with Z = N (P ).

(2) Z is closed.

Remark: The theorem can also be formulated as follows: If Y is a closed
subspace of a Banach space X, then Y has a closed complement (i.e. there
exists a closed subspace Z with X = Z ⊕ Y ) if and only if there exists a
continuous projection onto Y .

Proof (1)⇒(2). N (P ) is closed. ��

Proof (2)⇒(1). Consider the Banach space X̃ := Z × Y with the norm

‖(z, y)‖X̃ := ‖z‖X + ‖y‖X for z ∈ Z, y ∈ Y

and define T (z, y) := z + y. It follows from X = Z ⊕ Y that T : X̃ → X is
linear and bijective. Define PZ : X → Z and PY : X → Y by

T−1x = (PZx, PY x) for x ∈ X.

Then PZ , PY are linear. As T−1(y) = (0, y) for y ∈ Y , we have that PY = Id
on Y , i.e. PY is a projection onto Y . On noting that ‖PY x‖X ≤

∥∥T−1x
∥∥
X̃
, it

holds that PY is continuous if T−1 is continuous. Now ‖T (z, y)‖X ≤ ‖(z, y)‖X̃
yields that T is continuous, and hence the continuity of T−1 follows from the
inverse mapping theorem. ��

We now exhibit two classes of subspaces that have a closed complement.
These are finite-dimensional subspaces in arbitrary Banach spaces and arbi-
trary closed subspaces in Hilbert spaces. In general, there exist closed sub-
spaces of Banach spaces that do not have a closed complement (see [Murray]).

9.16 Theorem. Let X be a normed vector space, let E be an n-dimensional
subspace with basis {ei ; i = 1, . . . , n} and let Y be a closed subspace with
Y ∩ E = {0}. Then:

(1) There exist e′1, . . . , e
′
n in X ′ with e′j = 0 on Y and

〈
ei , e

′
j

〉
= δi,j .

Remark: Compare also with E9.3.

(2) There exists a continuous projection P onto E with Y ⊂ N (P ).

Proof (1). It follows from 9.2(1) that Yj := span{ek ; k �= j} ⊕ Y are closed
subspaces. Moreover, ej /∈ Yj . Hence, by 6.16, there exist e′j ∈ X ′ such that

e′j = 0 on Yj and
〈
ej , e

′
j

〉
= 1. ��

Proof (2). Define Px :=
∑n

j=1

〈
x , e′j

〉
ej . ��
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9.17 Lemma. Let Y be a closed subspace of a Hilbert space X and let P
be the orthogonal projection onto Y from 4.3. Then:

(1) P ∈ P(X).

(2) R(P ) = Y and N (P ) = Y ⊥ := {x ∈ X ; (x , y)X = 0 for all y ∈ Y }.
(3) X = Y ⊥ ⊥ Y .

(4) If Z ⊂ X is a subspace with X = Z ⊥ Y , then Z = Y ⊥. Hence we call
Y ⊥ the orthogonal complement of Y .

Proof. By recalling 4.4(2), we have that P in 4.3 is characterized by

(x − Px , y)X = 0 for all y ∈ Y. (9-32)

This immediately implies, as already shown in 4.4(2), that P is linear. More-
over P is continuous, since choosing y = Px in (9-32) yields that

‖Px‖2 = (x , Px)X ≤ ‖x‖ ‖Px‖ ,

and so ‖Px‖ ≤ ‖x‖. In addition it immediately follows from (9-32) that P
is a projection onto Y in the sense of 9.13. To see this, let x ∈ Y . Choosing
y = x − Px ∈ Y in (9-32) then yields that x − Px = 0, which implies that
P = Id on Y . Furthermore, the property (9-32) states that

x ∈ N (P ) ⇐⇒ Px = 0 ⇐⇒ (x , y)X = 0 for all y ∈ Y ⇐⇒ x ∈ Y ⊥ .

Hence we have shown assertions (1) and (2). Assertion (3) then follows from
9.13(2). In order to show (4) we first observe that Z ⊂ Y ⊥, by the definition
in 2.3(2). But if x ∈ Y ⊥ with the representation x = z + y, z ∈ Z, y ∈ Y ,

then also x − z ∈ Y ⊥, and so 0 = (x − z , y)X = ‖y‖2, i.e. x = z ∈ Z. ��

There exist alternative characterizations of linear orthogonal projections
to those given in 4.3 and 4.4. In 9.18(3) they are identified as precisely the
self-adjoint projections (see the definition 12.2).

9.18 Lemma. Let X be a Hilbert space and let P : X → X be linear. Then
the following are equivalent:

(1) P is an orthogonal projection onto R(P ), i.e. (as in 4.3)

‖x − Px‖ ≤ ‖x − Py‖ for all x, y ∈ X.

(2) (x − Px , Py)X = 0 for all x, y ∈ X.

(3) P 2 = P and (Px , y)X = (x , Py)X for all x, y ∈ X.

(4) P ∈ P(X) with ‖P ‖ ≤ 1 (9.14(2) then implies that P = 0 or ‖P ‖ = 1).

Proof (1)⇔(2). See the proofs of 4.3 and 4.4. ��



9 Finite-dimensional approximation 303

Proof (2)⇒(3). We have for x, y ∈ X that

0 = (x − Px , Py)X − (y − Py , Px)X

= (x , Py)X − (Px , Py)X − (y , Px)X + (Py , Px)X

= (x , Py)X − (Px , y)X .

Applying this identity we see that for x ∈ X(
P 2x − Px , y

)
X

= (P (Px − x) , y)X = (Px − x , Py)X = 0

for all y, which means that P 2x = Px. ��

Proof (3)⇒(4). Set y = Px in (3) and obtain

‖Px‖2 =
(
x , P 2x

)
X

= (x , Px)X ≤ ‖x‖ ‖Px‖ ,

and hence ‖Px‖ ≤ ‖x‖, i.e. P ∈ L (X) with ‖P ‖ ≤ 1 and P 2 = P . ��

Proof (4)⇒(2). Let x ∈ X and y ∈ R(P ), and let z := x − Px. It follows
from P 2 = P that Py = y and Pz = 0. Hence, for ε > 0 and |α| = 1 we have
that

‖y‖2 = ‖P (εz + αy)‖2 ≤ ‖εz + αy‖2 (recall ‖P ‖ ≤ 1)

= ε2‖z‖2 + ε 2Re (z , αy)X + ‖y‖2 ,
and so

0 ≤ ε‖z‖2 + 2Re (z , αy)X −→ 2Re(α (z , y)X) as ε ↘ 0.

As this holds for all α ∈ IK with |α| = 1, it follows that

0 = (z , y)X = (x − Px , y)X .

This yields the desired result (2). ��

9.19 Remark. Let X be a Banach space. If Xn are finite-dimensional sub-
spaces as in 9.1(2), then 9.16(2) yields the existence of Pn ∈ P(X) with
Xn = R(Pn). Then a stronger property than 9.1(2) is the approximation
property:

(P1) Pnx → x as n → ∞ for all x ∈ X.

On recalling the Banach-Steinhaus theorem (see 7.3), it follows from (P1)
that

C := sup
n

‖Pn‖ < ∞ .

In addition, we may require that the projections Pn satisfy the following
commutativity relation:

(P2) PnPm = Pmin(n,m) for all n,m.
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This also contains once again the projection property of the Pn. A sequence
(Pn)n∈IN in P(X) with (P1) and (P2) corresponds, via

Qn := Pn − Pn−1 (where P0 := 0) or Pn :=
n∑

i=1

Qi ,

to a sequence (Qn)n∈IN in P(X) with the properties

(Q1)
∑n

i=1 Qix → x as n → ∞ for all x ∈ X,
(Q2) QnQm = δn,mQn for all n,m.

The subspaces En := R(Qn) then satisfy 9.1(3), while 9.1(2) is satisfied with
Xn = E1 ⊕ · · · ⊕ En.

Proof. Defining the Qn through the Pn as above yields that

Q2
n = (Pn − Pn−1)(Pn − Pn−1) = Pn − PnPn−1 − Pn−1Pn + Pn−1

= Pn − Pn−1 = Qn ,

and for m > n

QmQn = (Pm − Pm−1)(Pn − Pn−1)

= PmPn − PmPn−1 − Pm−1Pn + Pm−1Pn−1

= Pn − Pn−1 − Pn + Pn−1 = 0 ,

and similarly QnQm = 0, which proves (Q2). Defining the Pn through the
Qn as above yields that Pn ∈ P(X) (see E9.7) and

PnPm =
∑

1 ≤ k ≤ n
1 ≤ l ≤ m

QkQl =

n∑
k=1

( m∑
l=1

δk,l

)
︸ ︷︷ ︸

= 1 for k ≤ m
= 0 for k > m

Qk =

min(n,m)∑
k=1

Qk ,

which proves (P2). ��

9.20 Examples. The properties in 9.19 are satisfied in the following cases:

(1) In the sequence space X = �2(IK) define for x = (xi)i∈IN ∈ �2(IK)

Qnx := xnen and Pnx :=

n∑
i=1

xiei .

(2) If X is a Hilbert space and X =
⋃

n∈IN Xn with dimXn < ∞, Xn ⊂
Xn+1, then let Pn be the orthogonal projection onto Xn and, on setting

Xn+1 = Xn ⊥ En , i.e. En := X⊥
n ∩ Xn+1 ,
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let Qn be the orthogonal projection onto En (see E9.9).

(3) If in (2) we have in particular that Xn = span{ei ; 1 ≤ i ≤ n} for an
orthonormal basis (ei)i∈IN, then

Qnx = (x , en)X en and Pnx =
n∑

i=1

(x , ei)X ei .

(4) If (ei)i∈IN is a Schauder basis of a Banach space X and if (e′k)k∈IN is the
corresponding dual basis, then let (see also E9.10)

Qnx := 〈x , e′n〉 en and Pnx :=

n∑
i=1

〈x , e′i〉 ei .

We now provide some explicit examples in function spaces, where we
restrict ourselves to functions in one variable.

9.21 Piecewise constant approximation. For the following examples we
partition the unit interval [0, 1] into points

0 = xn,0 < xn,1 < . . . < xn,mn
= 1 and Mn := {xn,i ; i = 0, . . . ,mn}

for n ∈ IN ∪ {0} (where m0 = 1, i.e. for n = 0 we consider only the whole
interval) and require that the mesh of the partition (or the maximal step
size)

hn := max
1≤i≤mn

|xn,i − xn,i−1 | −→ 0 as n → ∞.

The commutativity relation (P2) will be guaranteed for the following projec-
tions by the requirement that

Mn ⊂ Mn+1 for all n,

i.e. the partition on level n + 1 is a refinement of the partition on level n.
Furthermore, let An,i := ]xn,i−1, xn,i[ and hn,i := xn,i − xn,i−1. The stan-
dard example is xn,i := i 2−n, mn = 2n. The space of piecewise constant
functions with respect to the partition on level n ≥ 0 is

Xn :=
{ mn∑

i=1

αiXAn,i
; αi ∈ IK for i = 1, . . . ,mn

}
,

with dimXn = mn. For f ∈ L1(]0, 1[) we define

Pnf :=

mn∑
i=1

( 1

hn,i

∫
An,i

f(s) ds
)
XAn,i

.

The coefficients of Pnf are the average values of f over the intervals An,i. It
holds that R(Pn) = Xn. Then:
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(1) For X = Lp(]0, 1[), 1 ≤ p < ∞, the Pn satisfy the properties in 9.19
with Xn = R(Pn) and ‖Pn‖ ≤ 1.

(2) For f ∈ W 1,p(]0, 1[), 1 ≤ p ≤ ∞, it holds that

‖f − Pnf ‖Lp ≤ hn‖f ′‖Lp .

(3) For the standard partition xn,i = i2−n for n ≥ 0, 0 ≤ i ≤ 2n, it holds
that Q0 = P0 and for n ≥ 1

Qnf = Pnf − Pn−1f

= 2n−1
2n−1∑
i=1

(∫
An,2i−1

f(s) ds −
∫
An,2i

f(s) ds

)
·
(
XAn,2i−1

− XAn,2i

)
.

(4) This yields that E0 = span{e0} and En = span{eni ; 1 ≤ i ≤ 2n−1} for
n ≥ 1, where

e0 := X]0,1[ , eni := XAn,2i−1
− XAn,2i

, i = 1, . . . , 2n−1 , n ≥ 1 .

These functions, in any order in which the first index is monotonically in-
creasing, form a Schauder basis of Lp(]0, 1[), 1 ≤ p < ∞.

Proof (1). Using the Hölder inequality (see also Jensen’s inequality E4.10)
we obtain that∫ 1

0

|Pnf(t)|p dt =
mn∑
i=1

hn,i

∣∣∣∣∣ 1

hn,i

∫
An,i

f(s) ds

∣∣∣∣∣
p

≤
mn∑
i=1

∫
An,i

|f(s)|p ds =
∫ 1

0

|f(s)|p ds ,

and hence Pn ∈ L (X) with ‖Pn‖ ≤ 1. Moreover, Pnf → f in Lp(]0, 1[) for
all f ∈ Lp(]0, 1[), because for f ∈ C0([0, 1]) we have that

‖f − Pnf ‖Lp ≤ ‖f − Pnf ‖sup
≤ sup

|s−t|≤hn

|f(s) − f(t)| −→ 0 as n → ∞.

The claim then follows on recalling from 4.15(3) that C0([0, 1]) is dense in
Lp(]0, 1[), on noting that the ‖Pn‖ are bounded, and on recalling E5.5.

It remains to show that the commutativity relation (P2) is satisfied (which
also includes the projection property). We have that

PnPmf =

mm∑
j=1

mn∑
i=1

1

hn,i

1

hm,j

∫
Am,j

f(s) ds ·
∫
An,i

XAm,j
(s) ds · XAn,i

.
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piecewise constant
f

P2f

0 0.25 0.5 0.75 1

piecewise linearf

P2f

0 0.25 0.5 0.75 1

Fig. 9.1. Piecewise constant and piecewise linear approximations

The assumption on the interval partitions imply that for n ≥ m we have∫
An,i

XAm,j
(s) ds =

{
hn,i if An,i ∩ Am,j �= ∅,
0 otherwise,

and so∑
i

1

hn,i

∫
An,i

XAm,j
(s) ds · XAn,i

=
∑

i :An,i∩Am,j �=∅
XAn,i

= XAm,j

and hence PnPmf = Pmf . For n ≤ m we obtain similarly that∫
An,i

XAm,j
(s) ds =

{
hm,j if An,i ∩ Am,j �= ∅,
0 otherwise,

and hence ∑
j

1

hm,j

∫
Am,j

f(s) ds

∫
An,i

XAm,j
(s) ds

=
∑

j :An,i∩Am,j �=∅

∫
Am,j

f(s) ds =

∫
An,i

f(s) ds ,

which yields that PnPmf = Pnf . ��

Proof (2). By E3.6, for almost all t ∈ An,i

(f − Pnf)(t) =
1

hn,i

∫
An,i

(
f(t) − f(s)

)
ds =

1

hn,i

∫
An,i

∫ t

s

f ′(r) dr ds ,

and so
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|(f − Pnf)(t)| ≤
∫
An,i

|f ′(r)| dr ≤ hn · 1

hn,i

∫
An,i

|f ′(s)| ds .

This yields the desired result for p = ∞ and, similarly to the beginning of
the proof of (1), for p < ∞. ��

−1

0

1

e0

e11 e21 e22 e31 e32 e33 e34

Fig. 9.2. Piecewise constant basis functions

Proof (3). This follows from

Pnf =

2n−1∑
i=1

(
2n
∫
An,2i−1

f(s) ds · XAn,2i−1
+ 2n
∫
An,2i

f(s) ds · XAn,2i

)
for n ≥ 1. ��

Proof (4). The identities for En follow from (3), which on recalling (Q1) also
implies that

f = α0e0 +
∞∑

n=1

2n−1∑
i=1

αn,i eni

where

α0 :=

∫ 1

0

f(s) ds and αn,i = 2n−1

(∫
An,2i−1

f(s) ds −
∫
An,2i

f(s) ds

)
.

We then obtain the desired result (similarly to the proof of E9.10), if we can
show for n ≥ 1 and αi ∈ IK, i = 1, . . . , 2n−1, that∥∥∥∥∥∥

2n−1∑
i=1

|αieni |

∥∥∥∥∥∥
Lp

≤

∥∥∥∥∥∥
2n−1∑
i=1

αieni

∥∥∥∥∥∥
Lp

.

This follows from the fact that the supports of the functions eni, with i =
1, . . . , 2n−1 are, apart from their endpoints, disjoint. ��
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9.22 Continuous piecewise linear approximation. We consider parti-
tions of [0, 1] as in 9.21. For f ∈ C0([0, 1]) let

Pnf(s) :=
(xn,i − s)f(xn,i−1) + (s − xn,i−1)f(xn,i)

xn,i − xn,i−1

for xn,i−1 ≤ s ≤ xn,i and i = 1, . . . ,mn.

The space of continuous piecewise linear functions with respect to the
partition on level n ≥ 0 is

Xn :=
{
f ∈ C0([0, 1]) ; f = Pnf

}
.

Then:

(1) For X = C0([0, 1]) the Pn satisfy the properties in 9.19 with Xn =
R(Pn) and ‖Pn‖ ≤ 1. Moreover,

Pnf =

mn∑
i=0

f(xn,i) ên,i ∈ C0,1([0, 1])

with Pnf(xn,i) = f(xn,i), where the hat functions are defined by

ên,i(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

hn,i
(s − xn,i−1) for i > 0, xn,i−1 ≤ s ≤ xn,i ,

1

hn,i+1
(xn,i+1 − s) for i < mn, xn,i ≤ s ≤ xn,i+1 ,

0 otherwise,

and hence dimXn = mn + 1.

(2) For f ∈ Wm,p(]0, 1[) with 1 ≤ p ≤ ∞ it holds for 0 ≤ l < m ∈ {1, 2}
that ∥∥∥(f − Pnf)

(l)
∥∥∥
Lp

≤ 2hm−l
n

∥∥∥f (m)
∥∥∥
Lp

.

(3) We have that Q0 = P0 and for n ≥ 1 that

Qnf =
∑

i : xn,i /∈Mn−1

(
f(xn,i) − (Pn−1f)(xn,i)

)
ên,i .

(4) This yields that E0 = span{ê0,0, ê0,1} and for n ≥ 1

En = span{ên,i ; xn,i /∈ Mn−1} .

These basis functions, in any order in which the first index is monotonically
increasing, form a Schauder basis of C0([0, 1]). For the standard partition
xn,i = i2−n these are the functions

e01(x) := x , e02(x) := 1− x ,

eni(x) := max(0 , 1 − 2n
∣∣x − (2i − 1)2−n

∣∣) for i = 1, . . . , 2n−1 , n ≥ 1 .
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Proof (1). It holds that Pnf → f as n → ∞ because

‖f − Pnf ‖C0 ≤ sup
|s−t|≤hn

|f(t) − f(s)| .

��

0

1

e01e02 e11

e21 e22 e31 e32 e33 e34

Fig. 9.3. Piecewise linear basis functions

Proof (2). It follows from E3.6 that every f ∈ W 1,p(]0, 1[) has a unique
continuous representative for which Pnf is well defined and lies in the space
W 1,∞(]0, 1[), where for xn,i−1 < s < xn,i we have that

(Pnf)
′(s) =

1

hn,i

(
f(xn,i) − f(xn,i−1)

)
=
(
P̃nf

′)(s),
if the P̃n denote the projections from 9.21. Consequently,(

f − Pnf
)′
(s) =

(
f ′ − P̃nf

′)(s).
For p < ∞, on applying the Hölder inequality (see also Jensen’s inequality),
we obtain that∫

An,i

∣∣(f − Pnf
)
(t)
∣∣p dt = ∫

An,i

∣∣∣∣∣
∫ t

xn,i

(
f ′ − P̃nf

′)(s) ds∣∣∣∣∣
p

dt

≤ hp
n,i

∫
An,i

∣∣∣(f ′ − P̃nf
′)(t)∣∣∣p dt ,

and so

‖f − Pnf ‖Lp ≤ hn

∥∥∥f ′ − P̃nf
′
∥∥∥
Lp

,

which also holds for p = ∞. Hence the desired results follow from 9.21. ��
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Proof (3). For affine linear functions g it holds that Png = g. Now let n ≥ 1
and let g be the function that for a given i agrees with Pn−1f on [xn,i−1, xn,i].
Then for t ∈ [xn,i−1, xn,i]

(Qnf)(t) = (Pnf − g)(t) = Pn(f − g)(t)

=

mn∑
j=0

(f − g)(xn,j)ên,j(t) =

mn∑
j=0

(f − Pn−1f)(xn,j)ên,j(t) ,

because
ên,j(t) = 0 for j /∈ {i − 1, i} ,
g(xn,j) = (Pn−1f)(xn,j) for j ∈ {i − 1, i} .

Noting that (f − Pn−1)(xn,j) = 0 for xn,j ∈ Mn−1 yields the desired result.
��

Proof (4). This follows as in 9.21(4), upon observing that∥∥∥∥∥∑
i

|αiên,i |
∥∥∥∥∥
C0

= max
i

|αi | =
∥∥∥∥∥∑

i

αiên,i

∥∥∥∥∥
C0

.

��

The constructions in 9.21-9.22 can be generalized to partitions of sets in
IRm, where m-dimensional simplices are needed for the partitions in 9.22.
However, 9.22(2) no longer holds in the multidimensional case, because then
W 1,p-functions in general no longer have a continuous representative (see also
theorem 10.13).

Ritz-Galerkin approximation

We conclude with the finite-dimensional approximation of the solutions of
the boundary value problems in 6.5.

9.23 Ritz-Galerkin approximation. Let u ∈ X := W 1,2(Ω) be the so-
lution of the homogeneous Neumann problem from 6.6, or let u ∈ X :=
W 1,2

0 (Ω) be the solution of the homogeneous Dirichlet problem from 6.8, re-
spectively. Choose finite-dimensional subspaces XN , N ∈ IN, as in 9.1(2) (X
is separable, by 4.18(6) and 4.17(2)). Then the following is true: There exists
a unique uN ∈ XN with∫

Ω

(∑
i ∂iζ
(∑

j aij∂juN + hi

)
+ ζ(buN + f)

)
dLn = 0 for ζ ∈ XN .

Proof. Analogously to the proofs of 6.6 and 6.8, the bilinear form a satisfies
the assumptions of the Lax-Milgram theorem 6.2 on the subspace XN , which
by 4.9 is a Hilbert space. ��
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9.24 Remark. If dN = dimXN and if {ϕ(N)
k ; k = 1, . . . , dN} is a basis of

XN , then the solution uN in 9.23 has a unique representation

uN =

dN∑
k=1

uN,k ϕ
(N)
k with uN,k ∈ IR

and is given as the solution of the system of linear equations

dN∑
l=1

a
(N)
kl uN,l + c

(N)
k = 0 for k = 1, . . . , dN ,

where

a
(N)
kl :=

∫
Ω

(∑
i,j

aij ∂iϕ
(N)
k ∂jϕ

(N)
l + bϕ

(N)
k ϕ

(N)
l

)
dLn ,

c
(N)
k :=

∫
Ω

(∑
i

∂iϕ
(N)
k hi + ϕ

(N)
k f
)
dLn .

In a numerical computation these integrals may have to be computed ap-
proximatively. In general it is important for a numerical computation of the

solution that the spaces XN , and in particular the basis functions ϕ
(N)
k , are

chosen so that the coefficients a
(N)
kl and c

(N)
k can be determined effectively

and so that the solution (uN,l)l=1,...,dN
can be computed effectively. Here by

“effective” we mean a suitable balance between “sufficiently fast” and “suffi-
ciently accurate”. Ensuring effectivity is a challenging mathematical task.

That the finite dimensional solution to the boundary value problem is an
approximation is shown by the following fundamental error estimate.

9.25 Céa’s lemma. For u and uN from 9.23 it holds that

‖u − uN ‖W 1,2 ≤ C

c
inf

v∈XN

‖u − v‖W 1,2 −→ 0 as N → ∞,

where c and C are the constants in the proof of 6.6 and 6.8, respectively.

Proof. With the notation as in the proof of 6.6

a(v, u) = F (v) for all v ∈ X,

a(v, uN ) = F (v) for all v ∈ XN .

Set v = w − uN with w ∈ XN . Then

a(w − uN , u − uN ) = 0 for all w ∈ XN ,

and hence

c‖u − uN ‖2W 1,2 ≤ a(u − uN , u − uN ) = a(u − w, u − uN )

≤ C‖u − w‖W 1,2 · ‖u − uN ‖W 1,2 .
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It follows that

‖u − uN ‖W 1,2 ≤ C

c
dist(u,XN ) −→ 0 as N → ∞ ,

thanks to 9.1(2). ��

The inequality in 9.25 means that the error between u and the approxi-
mate solution uN can be bounded by the error that arises due to the choice
of the space XN . This error is called the discretization error, because XN

is chosen, for example, as in 9.22. If the solution satisfies u ∈ W 2,2(Ω) (see
also A12.3), then it follows from 9.22(2) that the discretization error can be
bounded by the maximal step size hN . (For the corresponding result in higher
space dimensions see e.g. [Braess].)

E9 Exercises

E9.1 Hamel basis. No infinite-dimensional Banach spaceX has a countable
Hamel basis. Here a set B ⊂ X is called a Hamel basis if every element of
X can be uniquely represented as a finite (!) linear combination of elements
from B.

Solution. Let B = {ei ; i ∈ IN} be a Hamel basis. Set Xn := span{ei ; i ≤ n},
then X =

⋃
n∈IN Xn. On recalling from 4.9 that the Xn are closed, it follows

from the Baire category theorem that X̊n0
�= ∅ for some n0 ∈ IN. Hence it

holds for an x0 ∈ Xn0
and an ε0 > 0 that

x ∈ X, ‖x‖X < ε0 =⇒ x0 + x ∈ Xn0
.

Since Xn0
is a subspace and x0 ∈ Xn0

, it follows that Bε0(0) ⊂ Xn0
. This

implies that X ⊂ Xn0
. Hence X must be finite-dimensional. ��

E9.2 Discontinuous linear maps. Let X be a normed IK-vector space.
Then X is finite-dimensional if and only if every linear map from X to IK is
continuous.

Solution ⇒. Let n := dimX and let {e1, . . . , en} be a basis of X. If T : X →
IK is linear, then it holds for α1, . . . , αn ∈ IK that∣∣∣∣∣T(

n∑
i=1

αiei

)∣∣∣∣∣ ≤
n∑

i=1

|αi | · |T (ei)| ≤
n∑

i=1

|T (ei)| · max
i=1,...,n

|αi | .

Hence T is continuous with respect to the norm in (4-18) (and on recalling
4.8 also with respect to any given norm on X). ��
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Solution ⇐. We give an indirect proof: If X is not finite-dimensional, then
there exist linearly independent ei ∈ X, i ∈ IN, e.g. defined inductively by

ei+1 ∈ X \ span{e1, . . . , ei} .

Without loss of generality let ‖ei‖X = 1. Choose a subspace Y ⊂ X with
(see 9.13(4))

X = Y ⊕ span{ei ; i ∈ IN} .

Then every x ∈ X has a unique representation

x = y +
∑
i∈Nx

αi(x)ei , Nx ⊂ IN finite. (E9-1)

Then
Tx :=

∑
i∈Nx

iαi(x)

defines a linear map T : X → IK that is not continuous, because Tei = i → ∞
as i → ∞, but ‖ei‖X = 1. ��

This solution implies the following:

Theorem: If all norms in a normed vector space X are pairwise equivalent,
then X is finite-dimensional.

Note: See also E7.3.

Proof. Let ei, i ∈ IN, be as above. In X consider the norm

‖x‖ := ‖y‖X +
∑
i∈Nx

i|αi(x)| for x as in (E9-1).

On noting that ‖ei‖X = 1 and ‖ei‖ = i it follows that the two norms ‖·‖
and ‖·‖X are not equivalent. ��

E9.3 Dual basis. Let X be a normed vector space. Given linearly indepen-
dent x′

i ∈ X ′ for i = 1, . . . , n, there exist xi ∈ X with〈
xi , x

′
j

〉
= δi,j for i, j = 1, . . . , n.

The vectors xi for i = 1, . . . , n are then also linearly independent.

Solution. We prove this by induction on n. For n = 1 the claim is trivial. For
the induction step for n > 1 consider the subspace

N :=
⋂
j<n

N (x′
j) .

For every x ∈ X we then have that
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x −
∑
i<n

〈x , x′
i〉xi ∈ N ,

because for j < n〈
x −
∑
i<n

〈x , x′
i〉xi , x

′
j

〉
=
〈
x , x′

j

〉
−
∑
i<n

〈x , x′
i〉
〈
xi , x

′
j

〉︸ ︷︷ ︸
= δi,j

= 0 .

Assuming that x′
n = 0 on N then yields for all x that

〈x , x′
n〉 =

〈∑
i<n

〈x , x′
i〉xi , x

′
n

〉

=
∑
i<n

〈x , x′
i〉 〈xi , x

′
n〉 =

〈
x ,
∑
i<n

〈xi , x
′
n〉x′

i

〉
,

which is a contradiction to x′
n being linearly independent of {x′

1, . . . , x
′
n−1}.

Hence there exists an xn ∈ N with 〈xn , x
′
n〉 = 1. The definition of N yields

that
〈
xn , x

′
j

〉
= 0 for j < n. ��

E9.4 Orthogonal system. Let B1(0) be the unit ball in C and define
ek(z) := zk for k ∈ IN ∪ {0}. Show that (ek)k≥0 is an orthogonal system

in L2
(
B1(0) ; C

)
and compute ‖ek‖L2 .

Solution. For k, l ≥ 0 it holds that (see 9.9)∫
B1(0)

ekel dL
2 =

∫ 1

0

∫ 2π

0

r1+k+lei(k−l)θ dθ dr

= 2πδk,l

∫ 1

0

r1+k+l dr =
2π

2 + k + l
δk,l .

��

E9.5 Weak convergence of unit vectors. If (ek)k∈IN is an orthonormal
system in the Hilbert space X, then

ek → 0 weakly in X as k → ∞.

Solution. By the Riesz representation theorem, we need to show that for all
x ∈ X it holds that: (x , ek)X → 0 as k → ∞. Now Bessel’s inequality yields
that ∑

k∈IN

|(x , ek)X |2 ≤ ‖x‖2 < ∞ ,

and hence ((x , ek)X)k∈IN must be a null sequence. ��
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E9.6 On the convergence of the Fourier coefficients. Show that for
f ∈ L2(]− π, π[ ; C)∫ π

−π

f(x) eikx dx −→ 0 as k ∈ ZZ, |k | → ∞ .

E9.7 Projections in a Banach space. Let X be a Banach space and let

Q1, . . . , Qn ∈ P(X) with QiQj = 0 for i �= j.

Then P := Q1 + · · · +Qn ∈ P(X) with

R(P ) = R(Q1) ⊕ · · · ⊕ R(Qn) and N (P ) = N (Q1) ∩ · · · ∩ N (Qn) .

E9.8 Projections in L2
(
]− π, π[

)
. Show that

(Snf)(x) :=
1

2π

∫ π

−π

sin
(
(n+ 1

2 )(x − y)
)

sin
(
1
2 (x − y)

) f(y) dy

for n ∈ IN∪{0} defines maps Sn ∈ P
(
L2(]−π, π[)

)
with SnSm = Smin(n,m)

for n,m ≥ 0.

Solution. We have that

sin
(x
2

)
·

n∑
k=−n

eikx =
1

2i

(
ei

x
2 − e−i x2

) n∑
k=−n

eikx

=
1

2i

n∑
k=−n

(
ei(k+

1
2 )x − ei(k−

1
2 )x
)

(this is a telescoping sum)

=
1

2i

(
ei(n+

1
2 )x − e−i(n+ 1

2 )x
)
= sin

((
n+

1

2

)
x
)
.

Consequently,

Snf(x) =
1

2π

n∑
k=−n

∫ π

−π

eik(x−y)f(y) dy =

n∑
k=−n

(f , ek)
L2
(
]−π,π[

) ek(x) ,
where (ek)k∈ZZ

denotes the orthonormal basis from 9.9. Hence Sn is the or-
thogonal projection onto span{e−n, . . . , en}. The identity for the Sn then
follows from the orthonormality of the ek. ��

E9.9 Projections in a Hilbert space. Prove the properties of the projec-
tions in 9.20(2).

Solution. For x ∈ X there exist xn ∈ Xn with xn → x as n → ∞. On
recalling 4.3 this implies that ‖x − Pnx‖X ≤ ‖x − xn‖X → 0 as n → ∞,
i.e. (P1) is satisfied. For the proof of (P2) let m > n. For x ∈ X it holds that
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Pnx ∈ Xn ⊂ Xm, and so PmPnx = Pnx. Moreover, it follows from 4.4(2)
that Pnx is characterized by

(y , x − Pnx)X = 0 for y ∈ Xn, (E9-2)

and similarly Pmx by (y , x − Pmx)X = 0 for y ∈ Xn ⊂ Xm. Replace x by
Pmx in (E9-2) and obtain that

(y , x − PnPmx)X = 0 for y ∈ Xn. (E9-3)

Comparing (E9-2) and (E9-3) yields that PnPmx = Pnx (recalling 9.18(3)
the same can also be derived directly from PmPnx = Pnx). ��

E9.10 Schauder basis. Let (Qn)n∈IN be a sequence of projections in P(X)
as in 9.19 and, on setting dn := dimR(Qn), let {en,i ; i = 1, . . . , dn} be
arbitrary bases of R(Qn). Find a sufficient condition for

e1,1, . . . , e1,d1
, e2,1, e2,2, . . . , e2,d2

, e3,1, . . . etc.

to be a Schauder basis in this order.

Solution. The desired condition is formulated in (E9-5). Let En := R(Qn).
There exist linear coefficient functions αn,i : En → IK with

x =

dn∑
i=1

αn,i(x)en,i for x ∈ En,

and hence it follows from (Q1) for all x ∈ X that

x =
∞∑

n=1

Qn(x) =
∞∑

n=1

dn∑
i=1

αn,i(Qn(x))en,i . (E9-4)

Moreover, if βn,i ∈ IK with

0 =

∞∑
n=1

dn∑
i=1

βn,ien,i ,

then the continuity of Qm and (Q2) imply that

0 = Qm(0) =

∞∑
n=1

Qm

( dn∑
i=1

βn,ien,i︸ ︷︷ ︸
∈En

)
=

∞∑
n=1

QmQn︸ ︷︷ ︸
= δm,nQm

( dn∑
i=1

βn,ien,i

)

= Qm

( dm∑
i=1

βm,iem,i

)
=

dm∑
i=1

βm,iem,i ,
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and so βm,i = 0, because em,i, i = 1, . . . , dm, are linearly independent. This
proves the uniqueness of the coefficients in (E9-4).

As a sufficient condition we now assume that there exists a constant C,
such that∥∥∥∥∥

j∑
i=1

αien,i

∥∥∥∥∥ ≤ C ·
∥∥∥∥∥

dn∑
i=1

αien,i

∥∥∥∥∥ for n ∈ IN and j ∈ {1, . . . , dn}. (E9-5)

Then it holds for all m ∈ IN and j ∈ {1, . . . , dm} that∥∥∥∥∥∥
dm∑
i=j

αm,i

(
Qm(x)

)
em,i +

∞∑
n=m+1

dn∑
i=1

αn,i

(
Qn(x)

)
en,i

∥∥∥∥∥∥
=

∥∥∥∥∥
∞∑

n=m

Qn(x) −
j−1∑
i=1

αm,i

(
Qm(x)

)
em,i

∥∥∥∥∥
≤
∥∥∥∥∥

∞∑
n=m

Qn(x)

∥∥∥∥∥+ C ·
∥∥∥∥∥

dm∑
i=1

αm,i

(
Qm(x)

)
em,i

∥∥∥∥∥︸ ︷︷ ︸
= ‖Qm(x)‖

−→ 0

as m → ∞, on recalling (Q1). ��



10 Compact operators

In this chapter we consider the properties of compact linear operators between
Banach spaces. The space K (X;Y ) of (linear) compact operators from X to
Y was already defined in 5.5(2). Because here we are always concerned with
linear operators, for convenience we simply speak of compact operators.

All the spaces in this chapter are assumed to be Banach spaces. We begin
with a discussion of the elementary properties of compact operators and then
give the most important examples of such operators. These include compact
embeddings between function spaces and compact integral operators.

10.1 Compact operators. Let X and Y be Banach spaces over IK. Then
a linear map T : X → Y is called a compact (linear) operator if one of
the following equivalent properties is satisfied:

(1) T (B1(0)) ⊂ Y is compact (see the definition 5.5(2)).

(2) T (B1(0)) ⊂ Y is precompact.

(3) M ⊂ X is bounded =⇒ T (M) ⊂ Y is precompact.

(4) For every bounded sequence (xn)n∈IN in X, the sequence (Txn)n∈IN con-
tains a subsequence that is convergent in Y .

It follows from (2) that T (B1(0)) is bounded (see 4.7(2)), and so T ∈
L (X;Y ), by 5.1. Hence it holds for the set defined in 5.5(2) that

K (X;Y ) := {T : X → Y ; T is a compact linear operator}
= {T ∈ L (X;Y ) ; T satisfies (4)} .

Moreover, let K (X) := K (X;X).

Note: The fact that compact maps (with the property (1)) are continuous
only holds for linear maps. General nonlinear maps which satisfy (1) need
not be continuous.

Proof (1)⇔(2). This follows from 4.7(5), as Y is complete. ��

Proof (2)⇔(3). The linearity of T implies that for every R > 0 statement (2)
is equivalent to the precompactness of T

(
BR(0)

)
. Because every bounded set

M is contained in a ball BR(0), it then follows that the smaller set T (M) is
also precompact. ��
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Proof (1)⇒(4). If xn ∈ X for n ∈ IN with ‖xn‖X < R, then 1
RTxn = T ( 1

Rxn)
are elements of the compact, and hence (by 4.6) also sequentially compact,
set T (B1(0)). ��

Proof (4)⇒(1). Let yn ∈ T
(
B1(0)

)
for n ∈ IN. Then there exist xn ∈ B1(0)

with ‖yn − Txn‖Y ≤ 1
n . It follows from (4) that there exists a y ∈ Y such

that Txn → y for a subsequence n → ∞, and hence also yn → y. This shows

that T
(
B1(0)

)
is sequentially compact, and so, by 4.6, is also compact. ��

We now prove some basic results.

10.2 Lemma.

(1) If X is a reflexive space, then it holds for every linear map T : X → Y
that

T ∈ K (X;Y ) ⇐⇒ T is completely continuous, i.e.

if xn → x converges weakly in X as n → ∞, then Txn → Tx converges
strongly in Y .

(2) K (X;Y ) is a closed subspace of L (X;Y ).

(3) If T ∈ L (X;Y ) with dimR(T ) < ∞, then T ∈ K (X;Y ).

(4) If Y is a Hilbert space and T ∈ L (X;Y ), then

T ∈ K (X;Y ) ⇐⇒
there exist Tn ∈ L (X;Y ) with dimR(Tn) < ∞,

such that ‖T − Tn‖ → 0 as n → ∞ .

(5) For projections P ∈ P(X) it holds that

P ∈ K (X) ⇐⇒ dimR(P ) < ∞ .

Proof (1)⇒. (In the proof of this implication the reflexivity of X is not
needed.) Let xn → x weakly as n → ∞. By 8.3(5), the sequence (xn)n∈IN is
bounded, and so 10.1(4) yields the existence of a y ∈ Y such that Txn → y
strongly in Y for a subsequence n → ∞. For y′ ∈ Y ′ the map z �→ 〈Tz , y′〉
defines an element in X ′. Therefore,

〈Txn , y
′〉 → 〈Tx , y′〉 as n → ∞ .

This yields that Txn → Tx weakly in Y . As strong convergence implies weak
convergence, one must have y = Tx. Hence Txn → Tx converges strongly
for a subsequence n → ∞. On noting that all of the above argumentation
can be applied to every subsequence of (xn)n∈IN, it follows that the whole (!)
sequence (Txn)n∈IN has only one cluster point Tx, i.e. it converges strongly
to Tx. ��

Proof (1)⇐. Being completely continuous implies that T is continuous, and
so T ∈ L (X;Y ). Moreover, it follows from theorem 8.10 that bounded se-
quences in reflexive spaces contain weakly convergent subsequences. ��
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Proof (2). In order to see that K (X;Y ) is a subspace, let T1, T2 ∈ K (X;Y ),
let α ∈ IK and let (xn)n∈IN be a bounded sequence in X. Then there
exists a subsequence (T1xnk

)k∈IN that is convergent in Y . Similarly, we

may then choose a convergent subsequence
(
T2xnkl

)
l∈IN

. This implies that(
(αT1 + T2)(xnkl

)
)
l∈IN

converges in Y , which shows that αT1+T2 ∈ K (X;Y ).

To prove that K (X;Y ) is closed, assume that Tn ∈ K (X;Y ) converges
in L (X;Y ) as n → ∞ to T ∈ L (X;Y ). For ε > 0 first choose nε with
‖T − Tnε

‖ ≤ ε and then (recall 10.1(2)) balls Bε(yi), i = 1, . . . ,mε, such
that

Tnε
(B1(0)) ⊂

mε⋃
i=1

Bε(yi) , which implies: T (B1(0)) ⊂
mε⋃
i=1

B2ε(yi) .

Hence T (B1(0)) is precompact, and so T is compact. ��

Proof (3). We have that Z := R(T ) ⊂ Y is finite-dimensional, and so it
follows from 4.9 that with the Y -norm it is a Banach space. On setting
R := ‖T ‖ we have that

T
(
B1(0)

)
⊂ KR := {y ∈ Z ; ‖y‖Y ≤ R} ⊂ Z .

By 4.10, we have that KR ⊂ Z is compact, and hence combining 4.7(5) and
4.7(1) yields that T (B1(0)) is compact. ��

Proof (4)⇐. We have from (3) that Tn ∈ K (X;Y ). Then (2) yields that
T ∈ K (X;Y ). ��

Proof (4)⇒. Let ε > 0. It follows from 10.1(2) that we can choose balls
Bε(yi), i = 1, . . . ,mε, with

T
(
B1(0)

)
⊂

mε⋃
i=1

Bε(yi) .

Set Yε := span{y1, . . . , ymε
} and let Pε denote the orthogonal projection onto

Yε. Then we have from 9.18 that Id − Pε is also an orthogonal projection
(equivalence of 9.18(1) and 9.18(2)), with ‖Id − Pε‖ ≤ 1 (equivalence of
9.18(1) and 9.18(4)). Now Tε := PεT maps to Yε, and for x ∈ B1(0) it holds
that Tx ∈ Bε(yi) for some i and that

(T − Tε)(x) = (Id − Pε)Tx = (Id − Pε)(Tx − yi),

and hence ‖(T − Tε)(x)‖Y ≤ ε. ��

Proof (5)⇐. Follows from (3). ��
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Proof (5)⇒. It holds that B1(0) ∩ R(P ) ⊂ P
(
B1(0)

)
is precompact, and so

it follows from 4.10 that R(P ) is finite-dimensional. ��

In applications compact operators often occur as a composition of a con-
tinuous map and an embedding which is compact (we prove this in 10.3).
The compact part of such a composition is often a canonical embedding.
That is, if X, Y are Banach spaces and if X as a vector space is contained
in Y , then we ask whether the map Id : X → Y is injective, continuous
and compact, respectively. We will answer this question completely for the
function spaces Ck,α(Ω) and Wm,p(Ω) (see 10.6 – 10.13) and we call the
corresponding theorems embedding theorems.

10.3 Lemma. For T1 ∈ L (X;Y ) and T2 ∈ L (Y ;Z) it holds that:

T1 or T2 is compact =⇒ T2T1 is compact.

Proof. Let (xn)n∈IN be a bounded sequence in X. As T1 is continuous, the
sequence (T1xn)n∈IN is bounded in Y . If T2 is compact, it follows that there
exists a convergent subsequence (T2T1xnk

)k∈IN. If T1 is compact, there exists
a convergent subsequence (T1xnk

)k∈IN, and the continuity of T2 then yields
that also (T2T1xnk

)k∈IN converges. ��

Embedding theorems

The embedding theorem 10.6 for Hölder spaces depends on the Arzelà-Ascoli
theorem and the first result in theorem 10.5. For the latter we need the
following

10.4 Lemma. Let Ω ⊂ IRn be open and bounded with Lipschitz boundary.
If Ω, in addition, is path connected (see the remark preceding 8.16), then for
any two points x0, x1 ∈ Ω there exists a smooth curve γ in Ω which connects
x0 and x1 and whose length L(γ) can be bounded by |x1 − x0 |, i.e. there
exists a γ ∈ C∞([0, 1];Ω) with γ(0) = x0, γ(1) = x1, such that, with a
constant CΩ depending only on Ω,

L(γ) :=

∫ 1

0

|γ′(t)| dt ≤ sup
0≤t≤1

|γ′(t)| ≤ CΩ · |x1 − x0 | .

Proof. It is sufficient to find a γ ∈ C0,1([0, 1];Ω) with γ(0) = x0, γ(1) = x1

and with Lipschitz constant Lip(γ) ≤ C · |x1 − x0 |. To see this, observe
that we can then let γ(t) := x0 for t < 0 and γ(t) := x1 for t > 1 and
set γε := ϕε ∗ γ, with a standard Dirac sequence (ϕε)ε>0. On noting that
‖γ′

ε‖sup ≤ Lip(γε) ≤ Lip(γ), it follows that for ε > 0 sufficiently small γε has
all the desired properties on [ − ε, 1 + ε], and hence we only need to map
[0, 1] affine linearly to [− ε, 1 + ε].
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We consider a cover
(
U j
)
j=1,...,k

of ∂Ω as in A8.2 and choose points zj ∈
U j∩Ω. Then we choose an open set D with D ⊂ Ω, such that z1, . . . , zk ∈ D,
and such that Ω is covered by D,U1, . . . , Uk. Moreover, we cover D with
finitely many balls U j := B�

(
zj
)
⊂ Ω with j = k + 1, . . . , l.

For general points x0 and x1 we can then define a γ as a composition
of subpaths, such that for these subpaths only the following three cases can
occur. Altogether, the number of subpaths is bounded by the given cover.

If x0, x1 ∈ U j for some j > k, then define γ(t) := (1 − t)x0 + tx1.
If x0, x1 ∈ U j for some j ≤ k, then define

γ(t) := τ
(
(1 − t)τ−1(x0) + tτ−1(x1)

)
,

where with the notations from A8.2 we set

τ(y) :=

n−1∑
i=1

yie
j
i +
(
yn + gj(y,n)

)
ejn .

This defines a Lipschitz continuous path γ in Ω from x0 to x1 with

Lip(γ) ≤ Lip(τ) ·
∣∣τ−1(x1) − τ−1(x0)

∣∣ ≤ Lip(τ) · Lip(τ−1) · |x1 − x0 |.

τ

Ω

∂Ω

x0 x1

U j

τ−1(U j)

τ−1(x0) τ−1(x1)

Fig. 10.1. Construction of curves close to the boundary

As a third case, let x0 and x1 be such that for no j ∈ {1, . . . , l} they lie in
the same set U j of the above cover of Ω. Then there exists a constant c > 0,
which depends only on the cover, such that

|x0 − x1 | ≥ c .

This follows from the fact that for every j and for points x ∈ Ω ∩ U j that
are sufficiently close to ∂U j it must hold that x ∈ Uk for some k �= j.
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We thus have to connect x0 and x1 by a curve with a bounded Lipschitz
constant. We make use of the fact that Ω is connected, and so path connected.
Hence for j, k ∈ {1, . . . , l} there exists a γj,k ∈ C1([0, 1];Ω) with γj,k(0) = zj

and γj,k(1) = zk. Now let x0 ∈ U j0 and x1 ∈ U j1 with j0 �= j1. First
we connect x0 with zj0 inside U j0 (as in the first two cases above) with a
path such that the Lipschitz constant can be bounded by C ·

∣∣zj0 − x0

∣∣ ≤
C · diamU j0 . Then we connect zj0 with zj1 by γj0,j1 , and finally zj1 with
x1 inside U j1 . A reparametrization of the concatenated paths to the interval
[0, 1] then yields the desired result. ��
10.5 Theorem. Let Ω ⊂ IRn be open and bounded with Lipschitz boundary.
Then it holds for k ≥ 0 that:

(1) The embedding
Id : Ck+1(Ω) → Ck,1(Ω)

is well defined and continuous.

(2) The embedding

Id : Ck,1(Ω) → W k+1,∞(Ω)

is well defined and an isomorphism, in the sense that for u ∈ W k+1,∞(Ω)
there exists a unique ũ ∈ Ck,1(Ω) such that ũ = u almost everywhere in Ω
(i.e. ũ = u in W k+1,∞(Ω)).

Proof. As Ω has a Lipschitz boundary, it consists of finitely many connected
components, which all lie at positive distance from one another. Hence we
may assume without loss of generality that Ω is connected. For two points
x0, x1 ∈ Ω let γ be as in 10.4. Then for v ∈ C1(Ω), with the notations as in
10.4, we have that

|v(x1) − v(x0)| =
∣∣∣∣∫ 1

0

(v◦γ)′(t) dt
∣∣∣∣ ≤ ∫ 1

0

|∇v(γ(t))| · |γ′(t)| dt

≤ sup
0≤t≤1

|∇v(γ(t))| · L(γ) ≤ CΩ · |x1 − x0 | · sup
0≤t≤1

|∇v(γ(t))| .
(10-6)

This will be used in the following parts of the proof. ��
Proof (1). For u ∈ Ck+1(Ω) consider derivatives v := ∂su ∈ C1(Ω) with
|s| = k. It follows from (10-6) that the Lipschitz constant of v can be bounded
by the C1-norm of v. The fact that this holds for all s of order k yields that
‖u‖Ck,1(Ω) ≤ C · ‖u‖Ck+1(Ω) with a constant C. ��

Proof (2) well definedness. First let k = 0. Let u ∈ C0,1(Ω). If ei denotes the
i-th unit vector, and if ζ ∈ C∞

0 (Ω), then as h → 0,∣∣∣∣∫
Ω

u(x)∂iζ(x) dx

∣∣∣∣←−
∣∣∣∣∫

Ω

u(x)
ζ(x+ hei) − ζ(x)

h
dx

∣∣∣∣
=

∣∣∣∣∫
Ω

u(x − hei) − u(x)

h
ζ(x) dx

∣∣∣∣ ≤ Lip(u)

∫
Ω

|ζ(x)| dx .
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This implies (see E6.7) that u ∈ W 1,∞(Ω) with ‖∂iu‖L∞ ≤ Lip(u) for i =
1, . . . , n. For k > 0 apply this result to the derivatives ∂su with |s| = k. ��

Proof (2) surjectivity. First let k = 0. Let u ∈ W 1,∞(Ω). Consider uε :=
ϕε ∗ (XΩu) for a standard Dirac sequence (ϕε)ε>0. Then it follows from (10-
6) (with the notations as there) that

|uε(x1) − uε(x0)| ≤ CΩ · |x1 − x0 | · sup
0≤t≤1

|∇uε(γ(t))| ,

and, if ε is sufficiently small, for all x = γ(t) with 0 ≤ t ≤ 1 we have that

|∇uε(x)| = |∇(ϕε ∗ u)(x)| = |(ϕε ∗ ∇u)(x)| ≤ ‖∇u‖L∞(Ω) .

This implies
|uε(x1) − uε(x0)|

|x1 − x0 |
≤ CΩ · ‖∇u‖L∞(Ω) . (10-7)

Recalling from 4.15(2) that uε → u in Lp(Ω) for every p < ∞, there exists
a subsequence ε → 0 such that uε → u almost everywhere in Ω. Hence it
follows from (10-7) that for almost all x0, x1 ∈ Ω (say, x0, x1 ∈ Ω \N),

|u(x1) − u(x0)|
|x1 − x0 |

≤ CΩ · ‖∇u‖L∞(Ω) , (10-8)

i.e. u is Lipschitz continuous outside of the null set N . Since Ω \ N = Ω, it
follows from E4.18 that we can modify u on this null set so that u ∈ C0,1(Ω).
(After this modification u remains the same (!) element in L∞(Ω).) Since
then ‖u‖C0 = ‖u‖L∞ , we have shown that ‖u‖C0,1 ≤ C · ‖u‖W 1,∞ .

If u ∈ W k+1,∞(Ω) with k > 0, then we can apply the above to the weak
derivatives vs := ∂su for |s| ≤ k. In particular, upon modification on a null
set we have that vs ∈ C0,1(Ω) with the above estimate in (10-8),

Lip(vs, Ω) ≤ CΩ · ‖∇vs‖L∞(Ω) ≤ CΩ · ‖u‖Wk+1,∞(Ω) ,

since for the weak derivatives with |s| ≤ k it holds that ∂ivs = ∂i∂
su =

∂s+eiu ∈ L∞(Ω). Hence we obtain the desired result. ��

10.6 Embedding theorem in Hölder spaces. Let Ω ⊂ IRn be open and
bounded and let k1, k2 ≥ 0 and 0 ≤ α1, α2 ≤ 1, with

k1 + α1 > k2 + α2 .

In the case k1 > 0 we assume in addition that Ω has a Lipschitz boundary
(see also E10.1). Then the embedding

Id : Ck1,α1(Ω) → Ck2,α2(Ω)

is compact. Here Ck,0(Ω) := Ck(Ω) for k ≥ 0.

Remark: For k1 = k2 = 0 the set Ω can be replaced with an arbitrary
compact set S ⊂ IRn.
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Proof. Let (ui)i∈IN be a bounded sequence in Ck1,α1(Ω). We need to show

that a subsequence converges in Ck2,α2(Ω).
First let k2 = k1 = 0, and so 0 ≤ α2 < α1 ≤ 1. By the Arzelà-Ascoli

theorem, there exist a u ∈ C0(Ω) and a subsequence i → ∞ such that ui

converges to u uniformly on Ω. Consider only this subsequence and x, y ∈ Ω
with x �= y. For |y − x| ≤ δ it then holds that

|(u − ui)(y) − (u − ui)(x)|
|y − x|α2

= lim
j→∞

|(uj − ui)(y) − (uj − ui)(x)|
|y − x|α2

≤ δα1−α2 sup
j

‖uj − ui‖C0,α1
≤ 2δα1−α2 sup

j
‖uj‖C0,α1

,

while for |y − x| ≥ δ we have that

|(u − ui)(y) − (u − ui)(x)|
|y − x|α2

≤ 2 δ−α2‖u − ui‖C0 .

Overall, there is a constant C such that

sup
x, y ∈ Ω
x �= y

|(u − ui)(y) − (u − ui)(x)|
|y − x|α2

≤ C δα1−α2︸ ︷︷ ︸
→ 0 as δ → 0

+2 δ−α2 ‖u − ui‖C0︸ ︷︷ ︸
→ 0 as i → ∞

,

i.e. the Hölder constant for the exponent α2 of u−ui converges to 0 as i → ∞.
Now we consider the case k2 = k1 ≥ 1, and so once again 0 ≤ α2 < α1 ≤ 1.

Then (∂sui)i∈IN for |s| < k1 are bounded sequences in C1(Ω), and hence, by

10.5(1), also in C0,1(Ω), and for |s| = k1 they are bounded sequences in
C0,α1(Ω). Applying the result shown above for the sequence (∂sui)i∈IN in

C0,α1(Ω) we can choose successively for s with |s| ≤ k1 subsequences so
that they converge in C0,α2(Ω). Finally, one obtains a subsequence (which
we again denote by (ui)i∈IN) which converges for all (!) s with |s| ≤ k1

∂sui → vs as i → ∞ in C0,α2(Ω)

with certain functions vs ∈ C0,α2(Ω). In particular, we obtain that (ui)i∈IN is

a Cauchy sequence in Ck1(Ω). As this space is complete we necessarily have
that u := v0 ∈ Ck1(Ω) with ∂su = vs, i.e. ui converges to u in Ck1,α2(Ω).

Finally, let k1 > k2. By the results shown above, in the case α2 < 1 the
embedding from Ck2,1(Ω) to Ck2,α2(Ω) is compact, and in the case α1 > 0
the embedding from Ck1,α1(Ω) to Ck1(Ω) is compact. In addition, we have
from 10.5(1) that the embedding from Ck1(Ω) to Ck1−1,1(Ω) is continuous.
Hence it remains to consider the map from Ck1−1,1(Ω) to Ck2,1(Ω), which in
the case k1 = k2 + 1 is the identity. In this case we have that 1 + α1 > α2,
and so α2 < 1 or α1 > 0, which means that the desired result follows from
10.3.

In the case k1 > k2 +1 (e.g. when α1 = 0 and α2 = 1) it follows from the
above result that the map from Ck1−1,1(Ω) to Ck1−1(Ω) is compact. Since
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k1−1 ≥ k2+1, the map from Ck1−1(Ω) to Ck2+1(Ω) is obviously continuous
and the map from Ck2+1(Ω) to Ck2,1(Ω) is continuous thanks to 10.5(1).
The desired result now follows on using 10.3. ��

We now want to prove embedding theorems for Sobolev spaces. To this
end, we consider on B1(0) ⊂ IRn the function x �→ |x|� with real � and in-
vestigate to which Sobolev space Wm,p

(
B1(0)

)
, respectively, to which Hölder

space Ck,α
(
B1(0)

)
it belongs. The answer will motivate the formulation of

the embedding theorems 10.9 and 10.13.

10.7 Sobolev number. Let f�(x) := |x|� for x ∈ IRn \ {0}, where � ∈ IR.
Then it holds that:

(1) f� is real analytic on IRn\{0} and for m ≥ 0 there exist positive numbers
cm, Cm, which depend also on n and �, such that

cm

∣∣∣∣( �

m

)∣∣∣∣ · |x|�−m ≤
∑

|s|=m

|∂sf�(x)| ≤ Cm|x|�−m
.

(2) For k ≥ 0 and 0 < α ≤ 1 it holds in the case � /∈ IN ∪ {0} that:

f� ∈ Ck,α
(
B1(0)

)
⇐⇒ � ≥ k + α .

(3) For m ≥ 0 and 1 ≤ p < ∞ it holds in the case � /∈ IN ∪ {0} that:

f� ∈ Wm,p
(
B1(0)

)
⇐⇒ � > m − n

p
.

Remark: If we consider the exponent � as a measure of the regularity of
the function f�, then it is natural to associate the following characteristic
number (which we also call the Sobolev number or regularity number)
with the Hölder spaces and Sobolev spaces (where Ck,0(Ω) := Ck(Ω)):

k + α for Ck,α(Ω) if k ≥ 0, 0 ≤ α ≤ 1,

m − n

p
for Wm,p(Ω) if m ≥ 0, 1 ≤ p ≤ ∞.

(10-9)

The fact that this Sobolev number does indeed characterize the regularity
of the functions in these spaces is a consequence of the following embedding
theorems.

Proof (1). The lower bound holds because on setting ex := x
|x| we have that

±
(
�

m

)
|x|�−m

=
±1

m!
∂m
exf�(x) = ±

∑
|s|=m

∂sf�(x)

s!
esx ≤

∑
|s|=m

|∂sf�(x)|
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(with cm = 1), and the upper bound follows from the fact that for all s

∂sf�(x) = ps(x)|x|�−2|s| (10-10)

with homogeneous polynomials ps of degree |s| or ps = 0. This follows by
induction on s, on noting that

∂i∂
sf�(x) =

(
|x|2∂ips(x) + (� − 2|s|)xips(x)

)
· |x|�−2(|s|+1)

,

which yields the recurrence formula

ps+ei
(x) := |x|2∂ips(x) + (� − 2|s|)xips(x) . (10-11)

��

Proof (2). If � ≥ k + α, then (1) yields that |∂sf�(x)| → 0 as |x| → 0 for

|s| ≤ k, because � > k. Hence f� ∈ Ck
(
B1(0)

)
. If |s| = k, then it holds for

0 < |x0 | ≤ |x1 | ≤ 1 in the case |x1 − x0 | ≥ 1
2 |x1 | that

|∂sf�(x1) − ∂sf�(x0)| ≤ Ck ·
(
|x0 |�−k

+ |x1 |�−k)
≤ 21+�−kCk · |x1 − x0 |�−k ≤ 21+2(�−k)Ck · |x1 − x0 |α .

In the case |x1 − x0 | ≤ 1
2 |x1 | let xt := (1 − t)x0 + tx1 for 0 ≤ t ≤ 1. Then

|xt | ≥ |x1 | − |x1 − x0 | ≥ |x1 − x0 | and so

|∂sf�(x1) − ∂sf�(x0)| ≤
∫ 1

0

|∇∂sf�(xt)| dt · |x1 − x0 |

≤ Ck+1

∫ 1

0

|xt |�−k−1
dt · |x1 − x0 |

≤ Ck+1

∫ 1

0

|xt |α−1
dt · |x1 − x0 | ≤ Ck+1|x1 − x0 |α .

Therefore, f� ∈ Ck,α
(
B1(0)

)
. Conversely, if this holds then (1) yields for

0 < |x| ≤ 1 that

∞ > ‖f�‖Ck ≥ c(n, k)
∑
|s|=k

|∂sf�(x)| ≥ c(n, k) · ck ·
∣∣∣∣(�k
)∣∣∣∣ · |x|�−k

,

and so � > k, because � /∈ IN ∪ {0}. As before this means that (1) implies
that ∂sf�(x) → 0 as |x| → 0 for all |s| ≤ k. Hence it follows from (1) that
for 0 < |x| ≤ 1

∞ > ‖f�‖Ck,α ≥ c(n, k)
∑
|s|=k

|∂sf�(x)|
|x|α ≥ c(n, k) · ck

∣∣∣∣(�k
)∣∣∣∣ · |x|�−k−α

,

and so � ≥ k + α. ��
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Proof (3). Let � /∈ IN ∪ {0}. It follows from (1) that∥∥Dlf�
∥∥p
Lp(B1(0)\{0}) for l ≥ 0 and 1 ≤ p < ∞

is bounded from above and below by∫
B1(0)

|x|p(�−l)
dx = C(n)

∫ 1

0

rn−1+p(�−l) dr .

Hence, f� ∈ Wm,p(B1(0) \ {0}) if and only if the integral on the right-hand
side is finite for all 0 ≤ l ≤ m. This holds if and only if n+p(�−m) > 0. The
fact that this then yields f� ∈ Wm,p

(
B1(0)

)
follows upon observing that for

|s| < m and ζ ∈ C∞
0

(
B1(0)

)
with 0 < ε < 1∫

B1(0)\Bε(0)

∂iζ∂
sf� dL

n

= −
∫
∂Bε(0)

νiζ∂
sf� dH

n−1 −
∫
B1(0)\Bε(0)

ζ∂s+eif� dL
n ,

where, by (1), the first integral on the right-hand side can be bounded by

C(n)‖ζ‖sup · εn−1+�−|s| → 0 as ε → 0 ,

since

n − 1 + �− |s| ≥ n+ � − m > n
(
1 − 1

p

)
≥ 0 .

��

The Sobolev embedding theorem 10.9 rests on the following theorem and
for the compactness result makes use of Rellich’s embedding theorem (see
A8.1 and A8.4).

10.8 Theorem (Sobolev). Let 1 ≤ p, q < ∞ with

1 − n

p
= −n

q
. (10-12)

Let u ∈ W 1,1
loc (IR

n) with u ∈ Ls(IRn) for an s ∈ [1,∞[ and with ∇u ∈
Lp(IRn; IKn). Then u ∈ Lq(IRn), with

‖u‖Lq(IRn) ≤ q · n − 1

n
‖∇u‖Lp(IRn) . (10-13)

In particular: The assumptions on u are satisfied for u ∈ W 1,p(IRn).

Remark: Since q < ∞ we must have p < n, and so n ≥ 2. For the case q = ∞
see E10.7. For n = 1 it holds that ‖u‖L∞(IR) ≤ ‖∇u‖L1(IR) for u as in the

assumptions of the theorem (see also E3.6).
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Proof. It is sufficient to establish the desired result for functions u ∈ Ls(IRn)∩
C∞(IRn). To see this take u as in the assertion and set uε := ϕε∗u ∈ C∞(IRn)
for a standard Dirac sequence (ϕε)ε>0. Then uε → u in Ls(IRn) and ∇uε =
ϕε ∗ ∇u → ∇u in Lp(IRn; IKn). If the claim has been shown for smooth
functions, then for ε, δ > 0 we have

‖uε‖Lq ≤ q · n − 1

n
‖∇uε‖Lp ,

‖uε − uδ‖Lq ≤ q · n − 1

n
‖∇(uε − uδ)‖Lp .

Hence the uε as ε ↘ 0 form a Cauchy sequence in Lq(IRn), which yields that
uε → ũ in Lq(IRn) as ε ↘ 0 for some ũ ∈ Lq(IRn). It follows that

‖ũ‖Lq ≤ q · n − 1

n
‖∇u‖Lp .

Combining the above Ls-convergence and the Lq-convergence yields the ex-
istence of a subsequence εk ↘ 0 such that uεk → u and uεk → ũ as k → ∞
almost everywhere in IRn. Consequently, ũ = u almost everywhere in IRn and
we obtain the desired result.

Now let u ∈ Ls(IRn)∩C∞(IRn). In all of the following we will only make
use of the fact that u ∈ Ls(IRn) ∩ C1(IRn). First we consider the case

p = 1, and so q =
n

n − 1
(recall that n ≥ 2).

For i ∈ {1, . . . , n} it follows from Fubini’s theorem that ξ �→ u(x′, ξ) for
almost all x1, . . . , xi−1, xi+1, . . . , xn ∈ IR is an element of Ls(IR), where we
use the notation

(x′, ξ) := (x1, . . . , xi−1, ξ, xi+1, . . . , xn) .

Hence we have that u(x′, zk) → 0 for a sequence zk → ∞ as k → ∞. It
follows for xi ∈ IR and sufficiently large k that

|u(x)| ≤
∫ zk

xi

|∂iu(x′, ξ)| dξ + |u(x′, zk)| ,

and so

|u(x)| ≤
∫
IR

|∂iu(x′, ξ)| dξ .

For ease of exposition we will write this from now on in the compact notation

|u(x)| ≤
∫
IR

|∂iu| dξi .

(Observe that the above already proves the remark for the case n = 1.) Upon
multiplying these n inequalities we obtain that
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|u(x)|
n

n−1 ≤
n∏

i=1

(∫
IR

|∂iu| dξi
) 1

n−1
.

Integration over x1 yields∫
IR

|u|
n

n−1 dξ1 ≤
(∫

IR

|∂1u| dξ1
) 1

n−1 ·
∫
IR

n∏
i=2

(∫
IR

|∂iu| dξi
) 1

n−1
dξ1

and applying the generalized Hölder inequality we obtain that this is

≤
(∫

IR

|∂1u| dξ1
) 1

n−1 ·
n∏

i=2

(∫
IR2

|∂iu| d(ξ1, ξi)
) 1

n−1
.

Now we integrate over x2 and obtain in the case n = 2 the desired result. In
the case n ≥ 3 it follows once again with the help of the Hölder inequality
that ∫

IR

∫
IR

|u|
n

n−1 dξ1 dξ2

≤
(∫

IR2

|∂2u| d(ξ1, ξ2)
) 1

n−1

·
∫
IR

(∫
IR

|∂1u| dξ1
) 1

n−1
n∏

i=3

(∫
IR2

|∂iu| d(ξ1, ξi)
) 1

n−1
dξ2

≤
(∫

IR2

|∂2u| d(ξ1, ξ2)
) 1

n−1

·
(∫

IR2

|∂1u| d(ξ1, ξ2)
) 1

n−1 ·
n∏

i=3

(∫
IR3

|∂iu| d(ξ1, ξ2, ξi)
) 1

n−1
.

Continuing this procedure inductively we obtain for j = 1, . . . , n that∫
IRj

|u|
n

n−1 d(ξ1, . . . , ξj)

≤
j∏

i=1

(∫
IRj

|∂iu| d(ξ1, . . . , ξj)
) 1

n−1

·
n∏

i=j+1

(∫
IRj+1

|∂iu| d(ξ1, . . . , ξj , ξi)
) 1

n−1
,

and hence for j = n that∫
IRn

|u|
n

n−1 dLn ≤
n∏

i=1

(∫
IRn

|∂iu| dLn
) 1

n−1 ≤
(∫

IRn

|∇u| dLn
) n

n−1
,
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i.e. the desired result

‖u‖
L

n
n−1 (IRn)

≤ ‖∇u‖L1(IRn) . (10-14)

For p > 1 we want to apply this result to v = |u| q(n−1)
n , where on letting p′

denote the dual exponent to p it holds that

n − 1

n
− 1

p′
= − 1

n
+

1

p
=

1

q
, and so

q(n − 1)

n
= 1 +

q

p′
> 1 .

In order to avoid unnecessary difficulties, we consider for ε > 0 the functions

vε(x) := ψε(|u(x)|)
q(n−1)

n ,

where ψε : [0,∞[ → [0,∞[ is continuously differentiable, with

ψε(z) ≤ z , ψ′
ε(z) ≤ 1 , ψε(z) ↗ z as ε ↘ 0 .

As u ∈ C1(IRn), we also have that vε ∈ C1(IRn), with

|∇vε | ≤ q(n−1)
n wε · |∇u| , where wε := ψε

(
|u|
) q
p′ .

For � > 1 we choose in particular

ψε(z) :=
(
ε� +
(

z
1+εz

)�) 1
� − ε ,

which means that there exists a constant Cε depending on ε such that

ψε(z) ≤ Cε · min(1, z�) .

It follows that

wε ∈ Lp′

(IRn) and vε ∈ L1(IRn), if � q
n − 1

n
≥ s .

The Hölder inequality then yields that ∇vε ∈ L1(IRn; IRn). It follows from
inequality (10-14) that vε ∈ L

n
n−1 (IRn), i.e. ψε

(
|u|
)
∈ Lq(IRn), with

(∫
IRn

ψε(|u|)q dLn
)n−1

n
=
(∫

IRn

v
n

n−1
ε dLn

)n−1
n ≤

∫
IRn

|∇vε | dLn

≤ q(n − 1)

n

∫
IRn

wε · |∇u| dLn

≤ q(n − 1)

n

(∫
IRn

ψε(|u|)q dLn
) 1

p′

‖∇u‖Lp ,

and hence (∫
IRn

ψε(|u|)q dLn
) 1

q ≤ q(n − 1)

n
‖∇u‖Lp .

Letting ε ↘ 0 we obtain the desired result from the monotone convergence
theorem. ��
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10.9 Embedding theorem in Sobolev spaces. Let Ω ⊂ IRn be open and
bounded with Lipschitz boundary. Further, let m1 ≥ 0, m2 ≥ 0 be integers,
and let 1 ≤ p1 < ∞ and 1 ≤ p2 < ∞. Then the following holds:

(1) If

m1 − n

p1
≥ m2 − n

p2
, and m1 ≥ m2 , (10-15)

then the embedding

Id : Wm1,p1(Ω) → Wm2,p2(Ω)

exists and is continuous. Here W 0,p(Ω) = Lp(Ω). The following estimate
holds: There exists a constant C, which depends on n, Ω, m1, p1, m2, p2,
such that for u ∈ Wm1,p1(Ω)

‖u‖Wm2,p2 (Ω) ≤ C‖u‖Wm1,p1 (Ω) . (10-16)

(2) If

m1 − n

p1
> m2 − n

p2
, and m1 > m2 ,

then the embedding

Id : Wm1,p1(Ω) → Wm2,p2(Ω)

exists and is continuous and compact.

(3) For arbitrary open, bounded sets Ω ⊂ IRn assertions (1) and (2) hold
with the spaces Wmi,pi(Ω) replaced by Wmi,pi

0 (Ω). Here W 0,p
0 (Ω) = Lp(Ω).

Proof (1). We also prove the corresponding result in (3), i.e. we letΩ ⊂ IRn be
open and bounded. Form1 = m2 the claim follows from the Hölder inequality.
For m1 = m2 + 1 we have that

1 − n

p1
≥ − n

p2
.

Let u ∈ Wm1,p1

0 (Ω). For |s| ≤ m2 it holds that v := ∂su ∈ W 1,p1

0 (Ω). As
Ω is bounded, it follows from the Hölder inequality that then v is also an
element of W 1,p

0 (Ω) for 1 ≤ p ≤ p1. Extending v by 0 on IRn \ Ω yields that
v ∈ W 1,p(IRn) (see 3.29). If n = 1, choose p = 1 and obtain from the remark
in 10.8 that with � := Ln(Ω)

‖v‖Lp2 (Ω) ≤ �
1
p2 ‖v‖L∞(IR) ≤ �

1
p2 ‖∇v‖L1(IR) = �

1
p2 ‖∇v‖L1(Ω)

and in the case p1 > 1, with p′1 denoting the dual exponent to p1, that

‖∇v‖L1(Ω) ≤ �
1
p′1 ‖∇v‖Lp1 (Ω) .
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If n ≥ 2, choose 1 ≤ p ≤ p1 < ∞ and 1 ≤ p2 ≤ q < ∞ with

1 − n

p1
≥ 1− n

p
= −n

q
≥ − n

p2
,

e.g. q = max
(

n
n−1 , p2

)
, and obtain from 10.8 that v ∈ Lp2(Ω), with

‖v‖Lp2 (Ω) ≤ �
1
p2

− 1
q ‖v‖Lq(IRn) ≤ �

1
p2

− 1
q · qn− 1

n
‖∇v‖Lp(IRn)

and

‖∇v‖Lp(IRn) = ‖∇v‖Lp(Ω) ≤ �
1
p − 1

p1 ‖∇v‖Lp1 (Ω) .

If Ω has a Lipschitz boundary, and if u ∈ Wm1,p1(Ω), then we have that v :=
∂su ∈ W 1,p1(Ω) for |s| ≤ m2. Then let ṽ := E(v), where E : W 1,p1(Ω) →
W 1,p1

0 (Ω̃) with Ω̃ = B1(Ω) is the extension operator from A8.12. Similarly
to the above we then obtain the bound

‖ṽ‖Lp2 (Ω̃) ≤ C̃ · ‖∇ṽ‖Lp1 (Ω̃) ,

and hence, since ṽ = v on Ω,

‖v‖Lp2 (Ω) ≤ ‖ṽ‖Lp2 (Ω̃) ≤ C̃ · ‖ṽ‖W 1,p1 (Ω̃) ≤ C̃ · ‖E‖ · ‖v‖W 1,p1 (Ω) .

Now we consider the case m1 = m2 + k with k ≥ 2. Then let m̃i := m2 + i
for i = 0, . . . , k. Choose 1 ≤ p̃i < ∞ with p̃0 = p2 and p̃k = p1, such that

m̃i −
n

p̃i
≥ m̃i−1 − n

p̃i−1
for i = 1, . . . , k, (10-17)

e.g. p̃i for 1 ≤ i < k with 1
p̃i

= min
(
1, 1

n + 1
p̃i−1

)
. Now apply the above proof

successively for i = k, . . . , 1. ��
Proof (2). Once again we also prove the corresponding result in (3). For
m1 = m2 + 1 choose p2 < p < ∞ with

1− n

p1
≥ −n

p
> − n

p2
.

Let (uk)k∈IN be a bounded sequence in Wm1,p1(Ω) (for (3) in Wm1,p1

0 (Ω)).
For |s| ≤ m2 it then holds that vk := ∂suk are bounded in W 1,p1(Ω) (or
W 1,p1

0 (Ω)). By (1), the sequence (vk)k∈IN is bounded in Lp(Ω). Since Lp(Ω)
is reflexive, theorem 8.10 yields the existence of a subsequence (vki

)i∈IN, which
can be chosen as the same subsequence for all |s| ≤ m2, that converges weakly
in Lp(Ω) to v ∈ Lp(Ω). As Ω is bounded, vki

→ v converges weakly in L1(Ω)
as i → ∞ and (vki

)i∈IN is bounded in W 1,1(Ω) (or W 1,1
0 (Ω)). Hence it follows

from Rellich’s embedding theorem (A8.1 and A8.4) that vki
→ v strongly in

L1(Ω). Noting that 1 ≤ p2 < p then yields the strong convergence also in
Lp2(Ω) (see E10.11).

For m1 = m2 + k with k ≥ 2 we again choose m̃i, p̃i as in the proof of
(1), where now (10-17) needs to be a strict inequality for an i0 ∈ {1, . . . , k}.
Then for i0 we can apply the above proof, and for i �= i0 the result (1). ��
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Now we consider the embedding of Sobolev spaces into Hölder spaces.
The proof of theorem 10.13 rests on two results: a bound on the supremum
norm and a bound on the Hölder constant.

10.10 Theorem. Let Ω ⊂ IRn be open and bounded and let 1 < p < ∞,
with

1− n

p
> 0 (and so p > n ≥ 1) .

For every function u ∈ W 1,p
0 (Ω) it then holds that u ∈ L∞(Ω) with

‖u‖L∞(Ω) ≤ C(n, p, diamΩ)‖∇u‖Lp(Ω) .

Proof. Analogously to the proof of 10.8, it is sufficient to establish the desired
result for functions u ∈ C∞

0 (Ω). Further, let R := diamΩ, so that Ω ⊂
BR(x0) for all x0 ∈ Ω. Then it holds for all ξ ∈ ∂B1(0) that

|u(x0)| =
∣∣∣∣∣
∫ R

0

d

dr

(
u(x0 + rξ)

)
dr

∣∣∣∣∣ ≤
∫ R

0

|∇u(x0 + rξ)| dr .

Integrating this inequality over ξ with respect to the surface measure Hn−1

and denoting the surface area of the unit sphere by σn := Hn−1(∂B1(0)) we
get

σn|u(x0)| ≤
∫ R

0

∫
∂B1(0)

|∇u(x0 + rξ)| dHn−1(ξ) dr .

A transformation to Euclidean coordinates shows that the right-hand side is

=

∫
BR(x0)

|∇u(x)|
|x − x0 |n−1 dx ,

and the Hölder inequality yields that this can be bounded by

≤
(∫

BR(x0)

dx

|x − x0 |p
′(n−1)

) 1
p′ · ‖∇u‖Lp(Ω) .

The first factor is independent of x0 and finite if p′(n− 1) < n, i.e. if p′ < n′

(where n′ is the dual exponent to n), which is equivalent to p > n. But this
was part of the assumption. ��
10.11 Theorem (Morrey). Let Ω ⊂ IRn be open, let 0 < α ≤ 1 and let
u ∈ W 1,1

0 (Ω) satisfy ∫
Br(x0)∩Ω

|∇u| dLn ≤ M · rn−1+α
(10-18)

for all x0 ∈ Ω and r > 0. Then for almost all x1, x2 ∈ Ω,

|u(x1) − u(x2)|
|x1 − x2 |α

≤ C(n, α) · M . (10-19)

Note: A p-version of the result is given in 10.12(1).
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Proof. We may assume that u ∈ W 1,1(IRn), because u can be extended by
0 on IRn \ Ω to yield a function in W 1,1(IRn) (see 3.29). Then for every ball
Br(x0) with x0 ∈ IRn we have that∫

Br(x0)

|∇u| dLn ≤ M(2r)n−1+α , (10-20)

on noting that in the case Br(x0) ∩ Ω = ∅ this is trivially true, and that
otherwise there exists an x1 ∈ Br(x0) ∩ Ω and then Br(x0) ⊂ B2r(x1), and
for this latter ball we can apply (10-18).

We begin by proving the bound on the Hölder constant for the case where
u is a C1-function. Given two points x1, x2 ∈ IRn, let

x0 :=
1

2
(x1 + x2) and � :=

1

2
|x2 − x1 | .

Denoting the volume of the n-dimensional unit ball by κn, we have that

κn�
n|u(x1) − u(x2)| =

∫
B�(x0)

|u(x1) − u(x2)| dx

≤
∫
B�(x0)

|u(x1) − u(x)| dx+

∫
B�(x0)

|u(x2) − u(x)| dx .
(10-21)

Because of symmetry we only need to bound the first integral. Now it holds
for x ∈ B�(x0) that

|u(x) − u(x1)| =
∣∣∣∣∫ 1

0

d

dt

(
u(x1 + t(x − x1))

)
dt

∣∣∣∣
≤ |x − x1 |

∫ 1

0

|∇u(x1 + t(x − x1))| dt .

Since |x − x1 | ≤ 2�, integration over x yields∫
B�(x0)

|u(x) − u(x1)| dx ≤ 2�

∫ 1

0

∫
B�(x0)

|∇u(x1 + t(x − x1))| dx dt .

With the transformation of variables y(x) := x1 + t(x − x1) this is

= 2�

∫ 1

0

t−n

∫
Bt�(x1+t(x0−x1))

|∇u(y)| dy dt

≤ 2�

∫ 1

0

t−nM(2t�)n−1+α dt =
M

α
(2�)n+α ,

where we used (10-20). Hence it follows from (10-21) that

|u(x1) − u(x2)| ≤
2n+1M

ακn
(2�)α =

2n+1M

ακn
|x1 − x2 |α . (10-22)
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For an arbitrary u ∈ W 1,1(IRn) one can consider the convolution with a
standard Dirac sequence (ϕε)ε>0. Then the functions uε := ϕε ∗ u are in
C∞(IRn) and satisfy (10-20). Indeed,

∇uε(x) =

∫
IRn

ϕε(y)∇u(x − y) dy

and so, using (10-20) for u, we have∫
Br(x0)

|∇uε(x)| dx ≤
∫
IRn

(∫
Br(x0)

|∇u(x − y)| dx
)
ϕε(y) dy

=

∫
IRn

(∫
Br(x0−y)

|∇u(x)| dx
)
ϕε(y) dy

≤ M(2r)n−1+α

∫
IRn

ϕε(y) dy = M(2r)n−1+α .

Hence we obtain (10-22) for uε, and noting that uε → u almost everywhere
for a subsequence as ε → 0 then yields the desired result. ��

10.12 Remarks. The inequality (10-19) states that u is Hölder continuous
outside of a null set N . But then the function u restricted to Ω \ N can
be uniquely extended to a C0,α-function on Ω. Hence the given function
u ∈ W 1,1

0 (Ω) has a unique Hölder continuous representative. Moreover, it
holds that:

(1) Theorem 10.11 can also be applied in the general case where u ∈ W 1,p
0 (Ω)

with 1 ≤ p < ∞. If u then satisfies for 0 < α ≤ 1 the inequality

‖∇u‖Lp(Br(x0)∩Ω) ≤ M · r
n
p − 1 + α (10-23)

for all x0 ∈ Ω and r > 0, then the conclusion of 10.11 holds true.

(2) If u ∈ W 1,p
0 (Ω) with 1 − n

p > 0, then (1) holds with α := 1 − n
p .

(3) Theorem 10.11 also holds for Ω = IRn and u ∈ W 1,1
loc (IR

n).

Proof (1). The Hölder inequality yields that∫
Br(x0)∩Ω

|∇u| dLn ≤ C(n)r
n
p′

(∫
Br(x0)∩Ω

|∇u|p dLn
) 1

p ≤ C(n)Mrn−1+α.

��

10.13 Embedding theorem of Sobolev spaces into Hölder spaces.
Let Ω ⊂ IRn be open and bounded with Lipschitz boundary. Moreover, let
m ≥ 1 be an integer and let 1 ≤ p < ∞. In addition, let k ≥ 0 be an integer
and let 0 ≤ α ≤ 1. Then the following holds:
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(1) If

m − n

p
= k + α and 0 < α < 1 (and so α �= 0, 1), (10-24)

then the embedding

Id : Wm,p(Ω) → Ck,α(Ω)

exists and is continuous. In particular, for u ∈ Wm,p(Ω) there exists a unique
continuous function that agrees almost everywhere with u (and which we
again denote by u) such that

‖u‖Ck,α(Ω) ≤ C(Ω,n,m, p, k, α)‖u‖Wm,p(Ω) . (10-25)

(2) If

m − n

p
> k + α ,

then the embedding
Id : Wm,p(Ω) → Ck,α(Ω)

exists and is continuous and compact. Here Ck,0(Ω) := Ck(Ω) for k ≥ 0.

(3) For arbitrary open, bounded sets Ω ⊂ IRn assertions (1) and (2) hold
with the space Wm,p(Ω) replaced by Wm,p

0 (Ω).

Proof (1). We also prove the corresponding result in (3). We may assume
that k = 0. Otherwise apply the following argument to all functions ∂su ∈
Wm−k,p(Ω) (or Wm−k,p

0 (Ω)) for |s| ≤ k, on noting that m − k ≥ 1.
Next we reduce the proof to the case m = 1. If m > 1, we may choose

1 ≤ q < ∞ such that

α − 1 = −n

q
, and so m− n

p
= α = 1− n

q
.

It then follows from 10.9(1) that the embedding from Wm,p(Ω) into W 1,q(Ω)
is continuous (use 10.9(3) for the embedding from Wm,p

0 (Ω) into W 1,q
0 (Ω)).

Thus we have to consider only functions in W 1,q(Ω) (or W 1,q
0 (Ω)).

Hence we consider only the case where in the statement of the theorem
k = 0 and m = 1, i.e.

1− n

p
= α .

For the case in (3), the desired result follows upon combining theorem 10.10
and theorem 10.11 (see 10.12(2)). Otherwise we consider the continuous ex-
tension operator E : W 1,p(Ω) → W 1,p

0

(
B1(Ω)

)
from A8.12 and then apply

the theorems 10.10 and 10.11 to the functions Eu. ��
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Proof (2). We also prove the corresponding result in (3). Choose m̃ ≤ m and

1 < p̃ < ∞, as well as k̃ ≥ 0 and 0 < α̃ < 1, such that

m − n

p
≥ m̃ − n

p̃
= k̃ + α̃ > k + α ,

where we can set m̃ = m and p̃ = p if n
p is not an integer. Then, by 10.9(1)

and (1), the embeddings from Wm,p(Ω) into W m̃,p̃(Ω) and from W m̃,p̃(Ω)

into C k̃,α̃(Ω) are continuous, respectively (for (3) we argue correspondingly

with 10.9(3)). Finally, by 10.6, the embedding from C k̃,α̃(Ω) into Ck,α(Ω) is
compact. ��

Laplace operator

We now present a typical application of the embedding theorems for the
Laplace operator. This is essential for the treatment of the corresponding
eigenvalue problem (see 12.16).

10.14 Inverse Laplace operator. We consider the homogeneous Dirichlet
problem from 6.5(1) with the assumptions stated there and with

hi = 0 , b ≥ 0 .

For u ∈ W 1,2
0 (Ω) and f ∈ L2(Ω) let A(u) and J(f) be the functionals in

W 1,2
0 (Ω)′ defined by

〈v , A(u)〉W 1,2
0

:=

∫
Ω

( n∑
i,j=1

∂iv · aij∂ju+ vbu
)
dLn ,

〈v , J(f)〉W 1,2
0

:=

∫
Ω

vf dLn

for v ∈ W 1,2
0 (Ω). Then it holds that:

(1) J : L2(Ω) → W 1,2
0 (Ω)′ is continuous and injective.

(2) A : W 1,2
0 (Ω) → W 1,2

0 (Ω)′ is an isomorphism. We call A the weak dif-
ferential operator corresponding to the boundary value problem 6.5(1).
For aij = δi,j and b = 0 this is the weak Laplace operator with respect to
homogeneous Dirichlet boundary conditions.

(3) A−1J : L2(Ω) → L2(Ω) is compact.

(4) A−1J : W 1,2
0 (Ω) → W 1,2

0 (Ω) is compact, and for domains Ω with Lip-
schitz boundary the operator A−1J : W 1,2(Ω) → W 1,2

0 (Ω) is also compact.

(5) JA−1 : W 1,2
0 (Ω)′ → W 1,2

0 (Ω)′ is compact.
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Proof (1),(2). We have that 〈v , Au〉 = a(v, u), where a is defined as in (6-
11). The fact that J and A are well defined and continuous follows as in the
proof of 6.6. It follows from 4.22 that J is injective. A is injective thanks
of the coercivity of a, as shown in the proof of 6.8. Recalling 6.3(1) with
X := W 1,2

0 (Ω) yields that for u′ ∈ X ′ there exists a unique u ∈ X such that

〈v , Au〉 = a(v, u) = 〈v , u′〉 for all v ∈ X,

where ‖u‖X can be bounded by ‖u′‖X′ . ��

Proof (3). We recall from (1) and (2) that J : L2(Ω) → W 1,2
0 (Ω)′ and

A−1 : W 1,2
0 (Ω)′ → W 1,2

0 (Ω), respectively, are continuous. The embedding
Id : W 1,2

0 (Ω) → L2(Ω) is compact, by 10.1(4) and A8.1. The desired result
then follows from 10.3.

Remark: If Ω has a Lipschitz boundary, then it follows from 10.9 that
Id : W 1,2(Ω) → L2(Ω) is also compact. ��

Proof (4),(5). We can argue with the above maps in the order Id, J , A−1

and A−1, Id, J , respectively. ��

Integral operators

As a second class of compact maps we now investigate some integral opera-
tors. Such operators occur, for example, when boundary value problems are
reformulated as integral equations with the help of a Green’s function (see
10.18). First we prove the compactness of Hilbert-Schmidt operators and of
integral operators with a weakly singular kernel.

10.15 Hilbert-Schmidt integral operator. We have defined in 5.12 an
integral operator T : Lp(Ω2) → Lq(Ω1), which we claim is compact.

Proof. We recall from 5.12 that T is continuous with ‖T ‖ ≤ ‖K‖. In order to
prove the compactness of T we extend K by 0 outside Ω1×Ω2, i.e. K(x, y) :=
0 if x /∈ Ω1 or y /∈ Ω2. Then it follows for h ∈ IRn1 and f ∈ Lp(Ω2) with
‖f ‖Lp(Ω2)

≤ 1, in the same way as in the proof of 5.12, that∫
IRn1

|Tf(x+ h) − Tf(x)|q dx

≤
∫
IRn1

(∫
IRn2

|K(x+ h, y) − K(x, y)|p
′

dy
) q

p′

dx

(10-26)

and∫
IRn1\BR(0)

|Tf(x)|q dx ≤
∫
IRn1\BR(0)

(∫
IRn2

|K(x, y)|p
′

dy
) q

p′

dx . (10-27)
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The right-hand side in (10-27) converges to 0 as R → ∞, since ‖K‖ <
∞. If, in addition, the right-hand side in (10-26) converges to 0 as h → 0,
then the compactness of T follows from the Riesz compactness criterion in
theorem 4.16. To show this let Kh(x, y) := K(x+ h, y). We need to consider∥∥Kh − K

∥∥, where here the norm of the kernel is defined by integrating over
all of IRn1 × IRn2 . We begin by approximating K by bounded kernels with
compact support

KR(x, y) :=

{
K(x, y) if |x| ≤ R, |y | ≤ R, |K(x, y)| ≤ R,

0 otherwise.

Then, on setting ER :=
{
(x, y) ∈ IRn1 × IRn2 ; K(x, y) �= KR(x, y)

}
, we

have that ∣∣Kh − K
∣∣ ≤ ∣∣(KR)

h − KR

∣∣+ ∣∣(XER
K)h
∣∣+ |XER

K | ,

which yields that∥∥Kh − K
∥∥ ≤ C

(∥∥(KR)
h − KR

∥∥+ ‖XER
K‖
)
.

Noting that ER′ ⊂ ER for R′ > R and that
⋂

R>0 ER is a null set we see that
the second term on the right-hand side converges to 0 as R → ∞ (analogously
to (10-27) consider the monotone convergence of (1−XER

)|K|). Since KR is
bounded with compact support, the first term in the case q

p′ ≥ 1 obeys the
inequality∥∥(KR)

h − KR

∥∥q ≤ C(R,
q

p′
)

∫
IRn1

∫
IRn2

∣∣(KR)
h − KR

∣∣p′

(x, y) dy dx ,

while in the case r := p′

q > 1 the Hölder inequality with exponent r gives

∥∥(KR)
h − KR

∥∥p′

=

(∫
IRn1

(∫
IRn2

∣∣(KR)
h − KR

∣∣p′

(x, y) dy
) 1

r

dx

)r

≤ C(R, r)

∫
IRn1

∫
IRn2

∣∣(KR)
h − KR

∣∣p′

(x, y) dy dx .

Now we use the fact that (KR)
h → KR in Lp′

(IRn1 × IRn2) as h → 0, recall
4.15(1).

In the Hilbert space case p = 2, q = 2 the compactness can also be shown
as follows: Choose an orthonormal basis (en)n∈IN of L2(Ω2) (see 9.8). Then,
by the completeness relation 9.7(5),

‖K‖2 =

∫
Ω1

∥∥∥K(x,·)
∥∥∥2
L2(Ω2)

dx =

∫
Ω1

∑
n∈IN

∣∣∣∣(K(x,·) , en
)
L2(Ω2)

∣∣∣∣2 dx
=

∫
Ω1

∑
n∈IN

|Ten(x)|2 dx =
∑
n∈IN

‖Ten‖2L2(Ω1)
.
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We define the continuous projections Pn by

Pnf :=

n∑
k=1

(f , ek)L2(Ω2)
ek .

Then using 9.7(3) and the continuity of T , we see that

‖Tf − TPnf ‖L2(Ω1)
=

∥∥∥∥∥T
(∑

k>n

(f , ek)L2(Ω2)
ek

)∥∥∥∥∥
L2(Ω1)

=

∥∥∥∥∥∑
k>n

(f , ek)L2(Ω2)
Tek

∥∥∥∥∥
L2(Ω1)

≤
∑
k>n

∣∣∣(f , ek)L2(Ω2)

∣∣∣ ‖Tek‖L2(Ω1)
.

On applying the Cauchy-Schwarz inequality in �2(IR) we find that this is

≤
(∑
k>n

∣∣∣(f , ek)L2(Ω2)

∣∣∣2) 1
2

︸ ︷︷ ︸
≤‖f ‖L2(Ω2)

·
(∑
k>n

‖Tek‖2L2(Ω1)

) 1
2

︸ ︷︷ ︸
→ 0 as n → ∞

.

Hence, TPn → T in L
(
L2(Ω2) ;L

2(Ω1)
)
as n → ∞. Since R(Pn), and hence

also R(TPn) = T
(
R(Pn)

)
, are finite-dimensional, it follows from 10.2(4) that

T ∈ K
(
L2(Ω2) ;L

2(Ω1)
)
. ��

We now discuss operators with weakly singular integral kernels,
i.e. kernel functions (x, y) �→ K(x, y) that for x fixed are locally integrable in
y.

10.16 Schur integral operators. Let Ω ⊂ IRn be open and bounded (!).
Let K : (Ω ×Ω) \D → IK be continuous, where D := {(x, x) ; x ∈ Ω} is the
diagonal of Ω × Ω. Assume that

|K(x, y)| ≤ C

|x − y |α with α < n.

Then it holds that:

(1) The definition

(Tf)(x) :=

∫
Ω

K(x, y)f(y) dy

yields a map T ∈ K
(
C0(Ω)

)
.

(2) The composition of operators of Schur type is again a Schur operator.
In particular, the iterated operators Tm are integral operators of the above
type, with exponent
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αm =

⎧⎪⎨⎪⎩
n − m(n − α) if 1 ≤ m < n

n−α ,

ε for every ε > 0, if m = n
n−α ,

0 if m > n
n−α .

(3) If 1 ≤ p < ∞ with α < n
p′ , then T is a Hilbert-Schmidt operator on

Lp(Ω) and T ∈ K
(
Lp(Ω) ;C0(Ω)

)
.

Proof (1) and (3). We can always ensure that α < n
p′ , on choosing p suf-

ficiently large. Moreover, the boundedness of Ω yields that the embedding
from C0(Ω) into Lp(Ω) is continuous for all p. Hence it follows from 10.3
that we only need to show the compactness of T : Lp(Ω) → C0(Ω). We have
that Tf(x) exists for all x and

|Tf(x)| ≤ C ·
(∫

Ω

dy

|x − y |αp′

) 1
p′ ‖f ‖Lp(Ω) .

Since αp′ < n and Ω is bounded, the integral on the right-hand side is
bounded uniformly in x. Hence the functions Tf with ‖f ‖Lp(Ω) ≤ 1 are uni-
formly bounded. It follows from the Arzelà-Ascoli theorem that it is sufficient
to show that they are also equicontinuous, since then 10.1(2) is satisfied. It
holds that

|Tf(x1) − Tf(x2)| ≤ ‖f ‖Lp(Ω) ·
(∫

Ω

|K(x1, y) − K(x2, y)|p
′

dy
) 1

p′

and the integral on the right-hand side can be bounded for every δ > 0 by

≤
∫
Ω\Bδ(x1)

|K(x1, y) − K(x2, y)|p
′

dy

+ C ·
∫
Bδ(x1)

( 1

|y − x1 |αp
′ +

1

|y − x2 |αp
′

)
dy .

For |x1 − x2 | ≤ δ
2 the first term is

≤ C sup
{
|K(x1, y) − K(x2, y)|p

′

; (x1, y), (x2, y) /∈ B δ
4
(D)
}

−→ 0 as |x1 − x2 | → 0 and for every δ ,

thanks to the continuity of K away from the diagonal D, and the second
term is

≤ C

∫
B2δ(0)

dy

|y |αp′ ≤ Cδn−αp′ −→ 0 as δ → 0.

Here we assume the usual convention on constants, which states that
constants that occur in a chain of inequalities may all be denoted by C, even
though the constant will in general change after each step. In addition, this
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convention states that large positive constants are denoted by C, while small
positive constants are denoted by c.

The bound above proves the equicontinuity of the functions Tf with
‖f ‖Lp(Ω) ≤ 1, and hence we have shown that T ∈ K

(
Lp(Ω) ;C0(Ω)

)
. ��

Proof (2). Now let T1, T2 be two such integral operators with kernels K1, K2

and exponents α1 < n and α2 < n. By Fubini’s theorem, for f ∈ C0(Ω) we
have that

T1T2f(x) =

∫
Ω

K1(x, z)
(∫

Ω

K2(z, y)f(y) dy
)
dz

=

∫
Ω

(∫
Ω

K1(x, z)K2(z, y) dz︸ ︷︷ ︸
=: K(x, y)

)
f(y) dy ,

if we can show that for each fixed x the function

y �−→ K̃(x, y) :=

∫
Ω

|K1(x, z)K2(z, y)| dz

is in L1(Ω). To this end, we show that for x �= y (with the usual convention
on constants)

|K(x, y)| ≤ K̃(x, y) ≤ C

∫
Ω

dz

|z − x|α1 |z − y |α2

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C

|x − y |α1+α2−n if α1 + α2 > n,

CRlog
R

|x − y| ≤ CR,ε

|x − y |ε if α1 + α2 = n

for large R and every ε > 0,

C if α1 + α2 < n,

where in the last case K is bounded. In order to prove these bounds, we
replace z by x+y

2 − |x − y |z and set

e :=
x − y

2|x − y | , Ωx,y := {z ∈ IRn ;
x+ y

2
− |x − y |z ∈ Ω} .

Then∫
Ω

dz

|z − x|α1 |z − y |α2
= |x − y |n−α1−α2

∫
Ωx,y

dz

|z + e|α1 |z − e|α2 (10-28)

and
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1

|z + e|α1 |z − e|α2
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2α1 |z − e|−α2 for |z − e| ≤ 1

2
,

2α2 |z + e|−α1 for |z + e| ≤ 1

2
,

(|z | − 1

2
)−α1−α2 for |z | ≥ 1,

2α1+α2 otherwise.

(10-29)

We distinguish between the three stated cases.
For α1 + α2 > n it follows that∫

Ωx,y

dz

|z + e|α1 |z − e|α2
≤
∫
IRn

dz

|z + e|α1 |z − e|α2
. (10-30)

Since α1 < n, α2 < n and α1 + α2 > n, the integral on the right-hand side
exists and its value is independent of e and depends only on n, α1, α2. To
see this, let e1, e2 ∈ ∂B 1

2
(0) and choose a linear orthogonal transformation

which maps e1 to e2. It follows from the transformation (change-of-variables)
theorem that the integrals for e1 and e2 are equal. This proves that the last
integral in (10-30) depends only on n, α1, α2.

For α1 + α2 = n we choose a radius R with Ω ⊂ BR
2
(0). Then it follows

that |z − x|−α1 ≤ CR,ε|z − x|−α1−ε
for z, x ∈ Ω for every fixed ε > 0. Hence

for ε sufficiently small we can apply the first case to α1 + ε and α2. This is
the second estimate. It follows that Ω ⊂ BR

(
x+y
2

)
for x, y ∈ Ω, hence (10-28)

implies ∫
Ω

dz

|z − x|α1 |z − y |α2
≤
∫
B R

|x−y|
(0)

dz

|z + e|α1 |z − e|α2

≤ CR ·
(
1 +

∫
B R

|x−y|
(0)\B1(0)

dz

|z |α1+α2

)
≤ CR ·

(
1 + log

R

|x − y |
)
,

hence the desired first estimate.
For the case α1 +α2 < n we decompose the integral over Ω into integrals

over Bδ(x), Bδ(y) andΩ\
(
Bδ(x)∪Bδ(y)

)
, where δ := 3

4 |x − y |. On noting that

in the latter set it holds that |z − x| ≥ c
∣∣z − x+y

2

∣∣ and |z − y | ≥ c
∣∣z − x+y

2

∣∣
with a small constant c, we obtain that∫

Ω

dz

|z − x|α1 |z − y |α2
≤ C δ−α2

∫
Bδ(x)

dz

|z − x|α1

+ C δ−α1

∫
Bδ(y)

dz

|z − y |α2
+ C

∫
Ω

dz∣∣z − x+y
2

∣∣α1+α2

≤ C · (δn−α1−α2 + 1) .
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This ends the three cases.
It remains to show that K is continuous outside of the diagonal D. For

(x2, y2) → (x1, y1) with x1 �= y1 we have that

|K(x2, y2) − K(x1, y1)|

≤ C

∫
Ω

|K1(x2, z) − K1(x1, z)|
|z − y2 |α2

dz + C

∫
Ω

|K2(z, y2) − K2(z, y1)|
|z − x1 |α1

dz .

We decompose the first integral (the second integral can be bounded cor-
respondingly) into the parts over Ω \ Bδ(x1) and Bδ(x1). The former part
is

≤ C sup
|z−x1 |≥δ

|K1(x2, z) − K1(x1, z)|︸ ︷︷ ︸
→ 0 as x2 → x1 for every δ

·
∫
Ω

dz

|z − y2 |α2︸ ︷︷ ︸
bounded in y2

.

Since |z − y2 | ≥ 1
2 |x1 − y1 | > 0 for z ∈ Bδ(x1) if y2 is close to y1 �= x1 and if

δ is sufficiently small, the second part is

≤ C

|x1 − y1 |α2

∫
Bδ(x1)

( 1

|z − x2 |α1
+

1

|z − x1 |α1

)
dz︸ ︷︷ ︸

≤ Cδn−α1 → 0 as δ → 0

.

In the case α1 + α2 < n it holds that K(x2, y2) → K(x1, y1) even if x1 = y1,
because the part of the integral over Ω \ Bδ(x1) converges to 0 as before,
while the integral over Bδ(x1) is

≤ C

∫
Bδ(x1)

( 1

|z − x2 |α1
+

1

|z − x1 |α1

) dz

|z − y2 |α2

−→ C

∫
Bδ(x1)

2 dz

|z − x1 |α1+α2
as x2 → x1, y2 → y1 = x1

≤ C δn−α1−α2 −→ 0 as δ → 0.

This proves the result on the composition of T1 with T2. ��

The fundamental solution

For integral kernels K as in 10.16 with α = n the induced T is no longer
compact, and even the existence of the operator T is no longer guaranteed.
That is because the function y �→ |x − y |−n

is no longer integrable in a neigh-
bourhood of x. However, such kernels play an essential role in the potential
theoretic approach to partial differential equations, as we will see in 10.18.

10.17 Fundamental solution of the Laplace operator. For x ∈ IRn\{0}
let
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F (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

σn(n− 2)
|x|2−n

for n ≥ 3,

1

2π
log

1

|x| for n = 2,

−1

2
|x| for n = 1,

where σn denotes the surface area of ∂B1(0) ⊂ IRn (σ3 = 4π, σ2 = 2π,
σ1 = 2, σn = nκn, with κn the volume of B1(0) ⊂ IRn).

(1) It holds that F ∈ C∞(IRn \ {0}
)
and

∂iF (x) = − 1

σn

xi

|x|n , ∂ijF (x) = − 1

σn|x|n
(
δi,j − n

xi

|x|
xj

|x|

)
, ΔF = 0 .

(2) It holds that F ∈ W 1,1
loc (IR

n) and with the notations as in 5.15 we have
that

−Δ[F ] = −
n∑

i=1

∂i[∂iF ] = [δ0] in D
′(IRn).

Note: F is the fundamental solution for −Δ.

(3) If f : IRn → IR is measurable and bounded with compact support, then

u(x) :=

∫
IRn

F (x − y)f(y) dy = (F ∗ f)(x)

defines a u ∈ C1(IRn) which satisfies

−Δ[u] = −
n∑

i=1

∂i[∂iu] = [f ] in D
′(IRn),

i.e. u is a weak solution of the differential equation −Δu = f in IRn.

Proof (1). By direct calculation. ��

Proof (2). We have that F ∈ W 1,1
(
BR(0) \ {0}

)
for R > 0. Similarly to the

end of the proof of 10.7(3) (or on recalling the corollary in A8.9) it then
follows that F ∈ W 1,1

(
BR(0)

)
, where outside of the null set {0} the weak

derivatives coincide with the classical ones. Hence, ∂i[F ] = [∂iF ], which yields
for ζ ∈ C∞

0

(
BR(0)

)
that as ε ↘ 0∫

IRn

(−Δζ)F dLn =

∫
IRn

∇ζ • ∇F dLn ←−
∫
IRn\Bε(0)

∇ζ • ∇F dLn

= −
∫
∂Bε(0)

ζνBε(0) • ∇F dHn−1 =
1

σn

∫
∂B1(0)

ζ(εy) dHn−1(y) −→ ζ(0) ,

since ΔF = 0 in IRn \ {0}. ��
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Proof (3). Applying 10.16(3) for the kernel (x, y) �→ F (x − y) shows that
u ∈ C0(IRn). For ζ ∈ C∞

0 (IRn) it follows, since F ∈ W 1,1
loc (IR

n), that∫
IRn

(
∂iζu+ ζvi

)
dLn = 0 with vi(x) :=

∫
IRn

∂iF (x − y)f(y) dy .

(10-31)
By 10.16(3) it follows that vi ∈ C0(IRn), whence u ∈ C1(IRn), with ∂iu = vi.
Moreover, it follows from (2) that∫

IRn

(−Δζ(x))u(x) dx =

∫
IRn

(∫
IRn

(−Δζ(x+ y))F (x) dx
)
f(y) dy

=

∫
IRn

(
−Δ[F ]

(
ζ(·+ y)

))
f(y) dy =

∫
IRn

ζ(y)f(y) dy .

��

10.18 Singular integral operators. For motivational purposes we con-
tinue the considerations in 10.17. We approximate ∂iu = vi in (10-31) for
ε > 0 by

vεi (x) :=

∫
IRn\Bε(x)

∂iF (x − y)f(y) dy .

If f ∈ C0
0 (IR

n), then vεi ∈ C1(IRn), with

∂jv
ε
i (x) =

∫
IRn\Bε(x)

∂jiF (x − y)f(y) dy − wε
ji(x) , where

wε
ji(x) :=

∫
∂Bε(x)

νBε(x)(y)·ej∂iF (x − y)f(y) dHn−1(y)

=
1

σn

∫
∂B1(0)

yjyi f(x+ εy) dHn−1(y) .

We note that as ε ↘ 0

wε
ji(x) −→ 1

σn
·
∫
∂B1(0)

yjyi dH
n−1(y) · f(x) = 1

n
δi,jf(x) . (10-32)

Hence, if we want to show that u in 10.17(3) belongs to the space C2(IRn),
then we have to investigate whether the limit(

Tjif
)
(x) := lim

ε↘0

∫
IRn\Bε(x)

∂jiF (x − y) f(y) dy

exists, and whether Tji is well defined as a continuous operator on appropriate
function spaces. On recalling the identity for the second derivatives ∂jiF (x−
y) of the fundamental solution from 10.17(1), we note that the above kernel
(x, y) �→ K(x, y) := ∂jiF (x− y) is a singular integral kernel, i.e. a kernel
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as in 10.16 but with α = n. However, we recall from 10.17(1) that this kernel
has the particular form

K(x, y) =
ω( x−y

|x−y| )

|x − y |n with ω(ξ) := − 1

σn
(δj,i − nξjξi) for |ξ | = 1,

where the mean value of ω : ∂B1(0) → IR vanishes (see (10-32)), i.e.∫
∂B1(0)

ω(ξ) dHn−1(ξ) = 0 . (10-33)

Now we consider arbitrary kernels K of the above type with the property
(10-33) and prove that for certain functions f the limit

(Tf)(x) := lim
ε↘0

∫
IRn\Bε(x)

K(x, y)f(y) dy

exists. This limit is also referred to as the Cauchy principal value of∫
IRn K(x, y)f(y) dy at the point x (observe that y �→ K(x, y)f(y) in general
is not integrable!). Classes of functions on which T can still be shown to be a
continuous operator include Cα-spaces (see 10.19) and Lp-spaces (see 10.20).
In both cases T is not (!) a compact operator. For ease of presentation we
also define

ω(x) := ω
( x

|x|

)
for x ∈ IRn \ {0}. (10-34)

10.19 Hölder-Korn-Lichtenstein inequality. Let ω : IRn \{0} → IR be a
Lipschitz continuous function on ∂B1(0) which satisfies (10-33) and (10-34).
Then for 0 < α < 1 and f ∈ C0,α(BR(0)) with f = 0 on ∂BR(0) the limit

(Tf)(x) := lim
ε↘0

∫
BR(0)\Bε(x)

ω(x − y)

|x − y |n f(y) dy

exists pointwise for x ∈ IRn, and for all R̃ > 0 it holds that

‖Tf ‖
C0,α(B

R̃
(0))

≤ C(n,R, α) · ‖ω‖C0,1(∂B1(0))
· ‖f ‖

C0,α(BR(0))
.

Proof. We extend f by 0 on IRn \BR(0). As the mean value of ω is equal to
0, for |x| ≤ 2R we have∫

BR(0)\Bε(x)

ω(x − y)

|x − y |n f(y) dy =

∫
B3R(x)\Bε(x)

ω(x − y)

|x − y |n
(
f(y) − f(x)

)
dy ,

because a transformation to polar coordinates yields that∫
B3R(x)\Bε(x)

ω(x − y)

|x − y |n dy =

∫ 3R

ε

rn−1

∫
∂B1(0)

ω(ξ)

rn
dHn−1(ξ) dr = 0 .
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Noting that with a constant C depending on ω it holds that∣∣∣∣ω(x − y)

|x − y |n
(
f(y) − f(x)

)∣∣∣∣ ≤ C · |x − y |α−n‖f ‖C0,α ,

we see that the integrand is integrable over B3R(x), and hence

Tf(x) =

∫
B3R(x)

ω(x − y)

|x − y |n
(
f(y) − f(x)

)
dy

and

|Tf(x)| ≤ C

∫
B3R(0)

|y |α−n
dy · ‖f ‖C0,α = C(ω, n,R, α)‖f ‖C0,α .

For |x| ≥ 2R,

|Tf(x)| ≤ C ‖f ‖C0

∫
BR(0)

dy

|x − y |n ≤ C(ω, n,R)

(|x| − R)n
‖f ‖C0 .

Similarly, for x1, x2 ∈ IRn and � ≥ R+max(|x1 |, |x2 |),

Tf(x1) − Tf(x2)

=

∫
B�(x1)

ω(x1 − y)

|x1 − y |n
(
f(y) − f(x1)

)
dy

−
∫
B�(x2)

ω(x2 − y)

|x2 − y |n
(
f(y) − f(x2)

)
dy

=

∫
B�(x1)

(ω(x1 − y)

|x1 − y |n
(
f(y) − f(x1)

)
− ω(x2 − y)

|x2 − y |n
(
f(y) − f(x2)

))
dy

+

∫
IRn

ω(x2 − y)

|x2 − y |n
(
f(y) − f(x2)

)(
XB�(x1)(y) − XB�(x2)(y)

)
dy .

The second integral can be bounded by

≤ C ‖f ‖C0

∫
IRn

∣∣XB�(0)(y) − XB�(x2−x1)(y)
∣∣ dy
|y |n

= C ‖f ‖C0

∫
IRn

∣∣∣XB1(0)(ỹ) − XB1( 1
�
(x2−x1))(ỹ)

∣∣∣ dỹ|ỹ |n

(with the variable transformation y = �ỹ), which converges to 0 for every x1

and x2 as � → ∞. Setting δ := |x2 − x1 |, the first integral from above can
be bounded on B2δ(x1) by (we employ the usual convention on constants)

≤ C ‖f ‖C0,α ·
∫
B2δ(x1)

(
|y − x1 |α−n

+ |y − x2 |α−n)
dy

≤ C ‖f ‖C0,α ·
∫
B3δ(0)

|y |α−n
dy ≤ C ‖f ‖C0,α · δα .
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On the remaining domain B�(x1) \ B2δ(x1) we write the integrand as

ω(x1 − y)

|x1 − y |n
(
f(x2) − f(x1)

)
+
(ω(x1 − y)

|x1 − y |n − ω(x2 − y)

|x2 − y |n
)(

f(y) − f(x2)
)
.

Recalling that the mean value of ω is equal to 0 yields that the integral of
the first term vanishes. The Lipschitz continuity of ω implies that

|ω(x1 − y) − ω(x2 − y)| ≤ C

∣∣∣∣ x1 − y

|x1 − y | − x2 − y

|x2 − y |

∣∣∣∣
= C

||x2 − y |(x1 − y) − |x1 − y |(x2 − y)|
|x1 − y | |x2 − y | ≤ C

|x1 − x2 |
|x2 − y | ,

and we have∣∣∣∣ 1

|x1 − y |n − 1

|x2 − y |n
∣∣∣∣

≤ |x1 − x2 |
|x1 − y |n |x2 − y |n

n−1∑
i=0

|x1 − y |i |x2 − y |n−1−i

≤ n|x1 − x2 |
( 1

|x2 − y | |x1 − y |n +
1

|x1 − y | |x2 − y |n
)
.

Together this gives∣∣∣∣ω(x1 − y)

|x1 − y |n − ω(x2 − y)

|x2 − y |n
∣∣∣∣

≤ C · |x1 − x2 |
( 1

|x2 − y | |x1 − y |n +
1

|x1 − y | |x2 − y |n
)
.

On noting that 1
2 |x1 − y | ≤ |x2 − y | ≤ 2|x1 − y | for |y − x1 | ≥ 2δ, it follows

that the remaining integral over B�(x1) \ B2δ(x1) is bounded uniformly in �
by

≤ C ‖f ‖C0,α · δ
∫
IRn\B2δ(x1)

|x1 − y |α−n−1
dy

≤ C ‖f ‖C0,α · δ
∫ ∞

2δ

rα−2 dr ≤ C ‖f ‖C0,α · δα .

��

10.20 Calderón-Zygmund inequality. Let ω : IRn \ {0} → IR on ∂B1(0)
be measurable with respect to the measure Hn−1 and bounded and such that
it satisfies (10-33) and (10-34). Then for f ∈ Lp(IRn) with 1 < p < ∞ and
0 < ε ≤ 1 the integral

(Tεf)(x) :=

∫
IRn\Bε(x)

ω(x − y)

|x − y |n f(y) dy
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exists for almost all x ∈ IRn. This defines operators Tε ∈ L
(
Lp(IRn)

)
and

for f ∈ Lp(IRn) there exists

Tf := lim
ε↘0

Tεf in Lp(IRn) with

‖Tf ‖Lp(IRn) ≤ C(n, p) · ‖ω‖L∞(∂B1(0))
· ‖f ‖Lp(IRn) .

Proof. See Appendix A10. ��

Remark: For n = 1 we have that ω(−1) = −ω(+1), hence up to a multi-
plicative constant ω(1) = 1 and ω(−1) = −1. Then

(Tf)(x) = lim
ε↘0

∫
IR\]x−ε,x+ε[

f(y)

x − y
dy

is called the Hilbert transform of f .

E10 Exercises

E10.1 Counterexample to embedding theorems. Show that theorem
10.6 in the case k1 > 0 does not (!) hold for arbitrary open bounded sets
Ω ⊂ IRn.

Solution. A characteristic counterexample is the following: Let e ∈ IRn with
|e| = 1 and set

Ω :=
⋃
k∈IN

Brk(xk) with xk =
1

k
e, rk =

1

4k2
,

so that the closed balls Brk(xk) are pairwise disjoint. Now if (ak)k∈IN is a
sequence that converges in IR to a, then

u(x) :=

{
ak for |x − xk | ≤ rk, k ∈ IN,

a for x = 0,

defines a u ∈ C0(Ω). Since ∇u = 0 in Ω it follows that also u ∈ C1(Ω) (see
definition 3.6). Note that for 0 < α ≤ 1

sup
x∈Ω, x �=0

|u(x) − u(0)|
|x|α ≥ sup

k

((k
2

)α
|ak − a|

)
,

and ak = a + (1 + log k)−1 yields that u lies in none of the spaces C0,α(Ω).
Hence the embedding in 10.6 for (k1, α1) = (1, 0) and (k2, α2) = (0, α) does
not even exist for the above Ω. ��
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E10.2 Ehrling’s lemma. Let X, Y , Z be Banach spaces. Assume K ∈
K (X;Y ) and let T ∈ L (Y ;Z) be injective. Then for every ε > 0 there
exists a Cε < ∞, such that for all x ∈ X

‖Kx‖Y ≤ ε ‖x‖X + Cε ‖TKx‖Z .

Solution. Otherwise for an ε > 0 there exist points x̃n ∈ X with

‖Kx̃n‖Y > ε ‖x̃n‖X + n ‖TKx̃n‖Z .

Then xn := x̃n

‖x̃n‖X
are bounded in X and

‖Kxn‖Y > ε+ n ‖TKxn‖Z . (E10-1)

Since K is compact, there exists a subsequence (which we again denote by
(xn)n∈IN) such that Kxn → y ∈ Y as n → ∞, and so

‖Ty‖Z ←− ‖TKxn‖Z ≤ 1

n
‖Kxn‖Y −→ 0 .

As T is injective, it follows that y = 0 and hence ‖Kxn‖Y → 0, which
contradicts (E10-1). ��
E10.3 Application of Ehrling’s lemma. Let Ω ⊂ IRn be open and
bounded, let 1 < p < ∞ and let m ≥ 2. Show that:

(1) For every ε > 0 there exists a constant Cε such that for all u ∈ Wm,p
0 (Ω)

‖u‖Wm−1,p
0 (Ω) ≤ ε‖u‖Wm,p

0 (Ω) + Cε‖u‖Lp(Ω) .

(2) An equivalent norm on Wm,p
0 (Ω) is given by

‖u‖ := ‖Dmu‖Lp(Ω) + ‖u‖Lp(Ω) .

Solution (1). This follows from Ehrling’s lemma, on noting that the embed-
ding from Wm,p

0 (Ω) into Wm−1,p
0 (Ω) is compact (either on recalling 8.11(3),

8.10, Rellich’s embedding theorem A8.1 and 10.1(4), or on recalling Sobolev’s
embedding theorem 10.9). ��
Solution (2). We have from (1) that

‖u‖Wm−1,p ≤ ε‖u‖Wm,p + Cε‖u‖Lp

≤ ε‖Dmu‖Lp + ε‖u‖Wm−1,p + Cε‖u‖Lp ,

which for ε ≤ 1
2 yields the bound

‖u‖Wm−1,p ≤ 2ε‖Dmu‖Lp + 2Cε‖u‖Lp .

Consequently,

‖u‖ ≤ ‖u‖Wm,p ≤ max(1 + 2ε, 2Cε) · ‖u‖ .

��
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E10.4 On Ehrling’s lemma. Let Ω = BR(0) ⊂ IRn. Show that: For ε > 0
there exists a constant Cε such that for all u ∈ C2(Ω)

‖∇u‖C0(Ω) ≤ ε
∥∥D2u

∥∥
C0(Ω)

+ Cε ‖u‖C0(Ω) ,

and obtain an explicit bound for the constant Cε.

Solution. First let R = 1 and ε ≤ 1. For x0 ∈ Ω with ∇u(x0) �= 0 we choose
y0, y1 ∈ Ω ∩ Bε(x0) such that y1 − y0 points in the direction of ∇u(x0) and
|y1 − y0 | ≥ ε

2 .

Remark: This is possible because Ω = B1(0). If Bε(x0) ⊂ Ω, then we can

choose y0 = x0 and y1 = x0 + ε ∇u(x0)
|∇u(x0)| .

Then, setting yt := (1 − t)y0 + ty1, it holds that

u(y1) − u(y0) =

∫ 1

0

∇u(yt) · (y1 − y0) dt

= ∇u(x0) · (y1 − y0)

+

∫ 1

0

∫ 1

0

n∑
i,j=1

∂iju
(
(1− s)x0 + syt

)
(yt − x0)i(y1 − y0)j ds dt

and
∇u(x0) · (y1 − y0) = |∇u(x0)| |y1 − y0 | .

It follows that

|∇u(x0)| ≤
∥∥D2u

∥∥
C0(Ω)

· sup
0≤t≤1

|yt − x0 | +
|u(y1) − u(y0)|

|y1 − y0 |

≤ ε
∥∥D2u

∥∥
C0(Ω)

+
4

ε
‖u‖C0(Ω) ,

and hence the desired bound with Cε =
4
ε . (For ε ≥ 1 the claim follows with

Cε = 4.) If R is arbitrary, then define

v(x) := u( x
R ) .

The established bound for v

‖∇v‖
C0(B1(0))

≤ ε
∥∥D2v

∥∥
C0(B1(0))

+
4

min(ε, 1)
‖v‖

C0(B1(0))

transforms to

‖∇u‖
C0(BR(0))

≤ ε

R

∥∥D2u
∥∥
C0(BR(0))

+
4R

min(ε, 1)
‖u‖

C0(BR(0))
.

Now replace ε by Rε and set Cε = 4
(
min(ε, 1

R )
)−1

. ��
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E10.5 An a priori estimate. Let u ∈ C2([0, 1]) be a solution of the linear
differential equation

au′′ + bu′ + du = 0 in ]0, 1[ ,

where a, b, d ∈ C0([0, 1]) and a ≥ c0 with a positive constant c0. Then there
exists a constant C, which depends only on the coefficients, such that

‖u‖C2 ≤ C · ‖u‖C0 .

Solution. The differential equation implies that

c0‖u′′‖C0 ≤ C
(
‖u′‖C0 + ‖u‖C0

)
with C := ‖b‖C0 + ‖d‖C0 ,

and so
c0
(
‖u′′‖C0 + ‖u′‖C0

)
≤ (C + c0)

(
‖u′‖C0 + ‖u‖C0

)
.

It follows from E10.4 that this can be bounded by

≤ (C + c0)ε‖u′′‖C0 + (C + c0) · (Cε + 1)‖u‖C0 .

On choosing ε with (C + c0)ε =
c0
2 , we obtain, with a new constant C, that

‖u′′‖C0 + ‖u′‖C0 ≤ C‖u‖C0 .

��

E10.6 Equivalent norm. Let Ω ⊂ IRn be open and bounded with Lipschitz
boundary and let m ≥ 2. Then an equivalent norm on Cm(Ω) is given by

‖u‖ := ‖Dmu‖C0(Ω) + ‖u‖C0(Ω) .

E10.7 Counterexample to embedding theorems. Let Ω be as in theo-
rem 10.9 and let

1− n
p = 0 .

Then W 1,p(Ω) is not (!) embedded in L∞(Ω), except in the case n = 1.

Note: In theorem 10.9 the case m1 = m2 + 1, p2 = ∞ is not allowed, while
theorem 10.8 does not permit q = ∞.

Solution. The case n = 1 (we then have p = 1) was solved in E3.6. For n ≥ 2
a counterexample is

u(x) := log |log |x|| for 0 < |x| < 1
2 .

Let Ω := B 1
2
(0). Then u ∈ Ls(Ω) for 1 ≤ s < ∞, but u is not bounded.

Moreover, u ∈ W 1,n(Ω \ {0}), because u ∈ C∞(Ω \ {0}), with
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Ω

|∇u|n dLn =

∫
Ω

dx(
|x||log |x||

)n = C(n)

∫ 1
2

0

dr

r|log r|n

= C̃(n)

[
1

|log r|n−1

]r= 1
2

r=0

< ∞ .

It follows that u ∈ W 1,n(Ω), similarly to the end of the proof of 10.7(3) (or
alternatively by using the corollary in A8.9). ��

E10.8 Sobolev spaces on IRn. For m ≥ 1 and 1 ≤ p < ∞,

Wm,p(IRn) = Wm,p
0 (IRn) .

Proof. Recalling that C∞(IRn)∩Wm,p(IRn) is dense in Wm,p(IRn) (see 4.24),
it is sufficient to approximate functions u ∈ C∞(IRn) ∩ Wm,p(IRn) in the
Wm,p-norm by functions in C∞

0 (IRn). To this end, choose a function η ∈
C∞(IRn) with

η(x) =

{
1 for |x| ≤ 1,

0 for |x| ≥ 2

(see 4.19), and define ηR(x) := η
(
x
R

)
. Then for all multi-indices s with |s| ≤

m,

∂s(u − ηRu) = (1 − ηR)∂
su −

∑
0 ≤ r ≤ s

r �= s

(
s

r

)
(∂s−rηR)∂

ru .

Noting that 1 − ηR = 0 on BR(0) and that |∂s−rηR | ≤ C R−|s−r| in IRn

yields that

‖∂s(u − ηRu)‖Lp(IRn)

≤ ‖∂su‖Lp(IRn\BR(0))
+ C

∑
0 ≤ r ≤ s

r �= s

R−|s−r|‖∂ru‖Lp(IRn) ,

which converges to 0 as R → ∞. ��

E10.9 Embedding theorem. Let m1,m2 ≥ 0 and 1 ≤ p1, p2 < ∞ with

m1 − n

p1
= m2 − n

p2
, where m1 ≥ m2 .

Then the embedding Id : Wm1,p1(IRn) → Wm2,p2(IRn) exists and is continu-
ous.

Observe: In theorem 10.9 this result was shown for bounded open sets
Ω ⊂ IRn with Lipschitz boundary. (Theorem 10.9 also holds for an inequal-
ity between the Sobolev numbers.) Here we prove the theorem for Ω = IRn,
where it is essential that the two Sobolev numbers are equal, which is also
the case in theorem 10.8.
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Solution. For m1 = m2 the result is trivial. For m1 = m2 + 1 let u ∈
Wm1,p1(IRn). Then ∂su is in W 1,p1(IRn) for all multi-indices s with |s| ≤
m1 − 1 = m2. Sobolev’s theorem 10.8 then yields that ∂su ∈ Lp2(IRn) with

‖∂su‖Lp2 (IRn) ≤ C(p2, n)‖∇∂su‖Lp1 (IRn) ≤ C(p2, n)‖u‖Wm1,p1 (Ω) .

For m1 = m2 + k with k ≥ 2 define m̃i and p̃i for i = 0, . . . , k by

m̃i := m2 + i , m̃i −
n

p̃i
= m2 − n

p2
, i.e.

1

p̃i
=

i

n
+

1

p2
.

Then p̃0 = p2 and p̃i is monotonically decreasing in i with p̃k = p1, and hence
1 ≤ p̃i < ∞ for i = 0, . . . , k. The desired result now follows from successive
applications of theorem 10.8. ��

E10.10 Poincaré inequalities. Let 1 ≤ p, q < ∞ with 1− n
p = −n

q and let

u ∈ W 1,p(IRn). Then

‖u‖Lr(IRn) ≤ C(n, p)Ln({u �= 0}) 1
r
− 1

q · ‖∇u‖Lp(IRn)

for 1 ≤ r < q, and

‖u‖Lp(IRn) ≤ C(n, p)Ln({u �= 0}) 1
n · ‖∇u‖Lp(IRn) .

Solution. If {u �= 0} := {x ∈ IRn ; u(x) �= 0} has finite Lebesgue measure
then it follows from the Hölder inequality for 1 ≤ r < q that∫

IRn

|u|r dLn =

∫
IRn

X{u�=0} · |u|r dLn ≤ Ln({u �= 0})1− r
q

(∫
IRn

|u|q dLn
) r

q

,

and so 10.8 yields the first inequality. Setting r = p, and noting that 1
p − 1

q =
1
n , we obtain the second inequality. ��

E10.11 Convergence in Lp-spaces. Let 1 ≤ p0 < p1 < ∞, and suppose
uk ∈ Lp0(μ)∩Lp1(μ) for k ∈ IN and u ∈ Lp0(μ). Then it holds for p0 ≤ p < p1
that

{uk ; k ∈ IN} bounded in Lp1(μ),

uk → u strongly in Lp0(μ)

as k → ∞
=⇒

uk, u ∈ Lp(μ),

uk → u strongly in Lp(μ)

as k → ∞.

Solution. We have for all ε > 0 the elementary inequality

ap ≤ ε ap1 + Cεa
p0 for all a ≥ 0,

where Cε is a constant depending on ε, p, p1, p0. It follows that
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Ω

|uk − ul |p dμ ≤ ε

∫
Ω

|uk − ul |p1 dμ︸ ︷︷ ︸
bounded in k, l

+Cε

∫
Ω

|uk − ul |p0 dμ︸ ︷︷ ︸
→ 0 as k, l → ∞

,

which implies that {uk ; k ∈ IN} is a Cauchy sequence in Lp(μ) as well. Hence
there exists a ũ ∈ Lp(μ) with uk → ũ in Lp(μ). It follows for a subsequence
k → ∞ that uk → u and uk → ũ μ-almost everywhere, and so u = ũ in
Lp(μ). ��

E10.12 Compact sets in c0. Let c0 be the space of null sequences,
equipped with the supremum norm ‖·‖sup.
(1) Show that M ⊂ c0 is precompact if and only if M is bounded and for
every ε > 0 there exists an index nε such that |xn | ≤ ε for all n ≥ nε and all
x ∈ M .

(2) Let F : c0 → c0 be defined by F (x) = {x3
i ; i ∈ IN}. Prove that F (B1(0))

is not precompact, but DF (x)(B1(0)) is for every x ∈ c0.

E10.13 Nuclear operators. LetX, Y be Banach spaces and let T : X → Y
be nuclear, i.e. there exist λk ∈ IK, x′

k ∈ X ′, yk ∈ Y for k ∈ IN with

∞∑
k=1

|λk | < ∞ , ‖x′
k‖X′ = 1 , ‖yk‖Y = 1 ,

such that

Tx =
∞∑
k=1

λk 〈x , x′
k〉X yk for all x ∈ X.

Then T is compact.

Solution. The operators

Tnx :=
n∑

k=1

λk 〈x , x′
k〉X yk

are compact on recalling 10.2(3). Moreover,

‖(T − Tn)x‖ ≤
( ∞∑
k=n+1

|λk |
)
‖x‖ ,

and so Tn → T in L (X;Y ). Hence 10.2(2) yields that T is compact. ��

E10.14 Compact operator without eigenvalues. Setting

Tx :=

∞∑
k=1

xk

k + 1
ek+1 for x = (xk)k∈IN

defines an operator T : �2(C) → �2(C). Show that T is compact, but that T
has no eigenvalues (see 11.2(2)).
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Solution. Noting that

T
(
B1(0)

)
⊂
{
x ∈ �2(C) ; |xi | ≤ 1

i for all i
}

and recalling E4.13, we have that T is compact. If we assume that λ ∈ C is
an eigenvalue, then Tx = λx for an x �= 0. If λ = 0, then Tx = 0, and so
x = 0, a contradiction. If λ �= 0, it follows that x1 = 0 and xk+1 = 1

λ(k+1)xk

for k ≥ 1, and so again x = 0, a contradiction. ��

E10.15 Bound on the dimension of eigenspaces. Let Ω ⊂ IRn, let
K ∈ L2(Ω × Ω; C) and let T ∈ L

(
L2(Ω; C)

)
be the Hilbert-Schmidt integral

operator defined by

(Tf)(x) :=

∫
Ω

K(x, y)f(y) dy .

Show that
dimN (Id − T ) ≤ ‖K‖2L2(Ω×Ω) .

Solution. By 10.15, T ∈ K
(
L2(Ω; C)

)
. This implies, on noting that (Id −

T )(x) = 0 is equivalent to x = Tx ∈ R(T ), that N (Id − T ) ∩ B1(0) ⊂
T
(
B1(0)

)
is precompact, and hence, by 4.10, that N (Id − T ) is finite-

dimensional. Choose an orthonormal system f1, . . . , fn in N (Id− T ), where
n := dimN (Id − T ). Then

n =

n∑
i=1

‖fi‖2L2(Ω) =

n∑
i=1

‖Tfi‖2L2(Ω) =

∫
Ω

n∑
i=1

∣∣∣∣∫
Ω

K(x, y)fi(y) dy

∣∣∣∣2 dx .
Setting Kx(y) := K(x, y) and using Bessel’s inequality 9.6 we obtain that

n =

∫
Ω

n∑
i=1

(Kx , fi)
2
L2(Ω) dx ≤

∫
Ω

‖Kx‖2L2(Ω) dx = ‖K‖2L2(Ω×Ω) .

��

E10.16 Norm of Hilbert-Schmidt operators. Under the same assump-
tions as in E10.15 show that

‖T ‖ = ‖K‖L2(Ω×Ω) ⇐⇒
There exist K1,K2 ∈ L2(Ω) with

K(x, y) = K1(x)K2(y) for almost all x, y ∈ Ω.

Remark: In this case T is a nuclear operator as in E10.13, with only a single
term in the sum.

Solution ⇒. Let K �= 0. The assumption yields that for ε > 0 there exist
functions fε ∈ L2(Ω) with ‖fε‖L2(Ω) = 1 such that



360 10 Compact operators

(1 − ε)‖K‖2L2(Ω×Ω) ≤ ‖Tfε‖2L2(Ω)

=

∫
Ω

(∫
Ω

K(z, x)fε(x) dx
)(∫

Ω

K(z, y) fε(y) dy
)
dz

=

∫
Ω

∫
Ω

fε(x)fε(y)
(∫

Ω

K(z, x)K(z, y) dz
)
dx dy

≤
(∫

Ω

∫
Ω

|fε(x)|2|fε(y)|2 dx dy︸ ︷︷ ︸
= 1

) 1
2

·
(∫

Ω

∫
Ω

∣∣∣∣∫
Ω

K(z, x)K(z, y) dz

∣∣∣∣2 dx dy) 1
2

.

Letting ε → 0 we obtain the inequality∫
Ω

∫
Ω

|K(x, y)|2 dx dy ≤
(∫

Ω

∫
Ω

∣∣∣∣∫
Ω

K(z, x)K(z, y) dz

∣∣∣∣2 dx dy) 1
2

.

(E10-2)
Moreover, the Cauchy-Schwarz inequality yields that for almost all x, y ∈ Ω
we have that∣∣∣∣∫

Ω

K(z, x)K(z, y) dz

∣∣∣∣2 ≤
∫
Ω

|K(z, x)|2 dz ·
∫
Ω

|K(z, y)|2 dz . (E10-3)

Integrating over x and y, we obtain the opposite inequality (E10-2). This
implies that in fact equality holds in (E10-2), and therefore for almost all
(x, y) ∈ Ω × Ω also equality holds in (E10-3). On recalling the remark in
2.3(3), the functions Kx(z) := K(z, x) and Ky(z) := K(z, y) are linearly
dependent in L2(Ω) for almost all (x, y) ∈ Ω ×Ω. In other words (see A6.9),
there exists a null set N0 ⊂ Ω such that for all x ∈ Ω \ N0 it holds that:
for almost all y ∈ Ω the functions Kx and Ky are linearly dependent. Since
we assumed that K �= 0 in L2(Ω × Ω), we can choose x0 ∈ Ω \ N0 such
that Kx0

�= 0 in L2(Ω). Then there exists a null set N ⊂ Ω such that for
y ∈ Ω \ N the function Ky is a multiple of Kx0

, i.e. there exists a function
α : Ω \ N → C such that for y ∈ Ω \ N

K(z, y) = α(y)K(z, x0) for almost all z ∈ Ω.

Setting K1(z) := K(z, x0) and K2(y) := α(y), it follows that

K(z, y) = K1(z)K2(y) for almost all (z, y) ∈ Ω × Ω.

Fubini’s theorem then yields that K1,K2 ∈ L2(Ω). ��



A10 Calderón-Zygmund inequality 361

A10 Calderón-Zygmund inequality

We present a proof of the Lp-estimate in 10.20. To this end, we begin with
the following

A10.1 Definition. Let D ⊂ C be open and let f : D → Y be (real) contin-
uously differentiable, where Y is a Banach space over C. Then we define

∂zf :=
1

2
(∂xf + i ∂yf) and ∂zf :=

1

2
(∂xf − i ∂yf) ,

where we denote complex numbers by z = x+ iy, x, y ∈ IR.

D

x = (y, g(y))

∂D = graph g

ν(x)

iν(x)

1

g′(y)

Fig. 10.2. Outer normal and oriented tangent in C

Now let D ⊂ C be open and bounded with Lipschitz boundary (see A8.2).
For functions f ∈ C0(D;Y ) we define the oriented boundary integral∫

∂D

f(z) dz := i

∫
∂D

ν(x)f(x) dH1(x) ,

where ν : ∂D → C is the outer normal to D (see A8.5(3) and Fig. 10.2) and
ν(x)f(x) denotes the complex product of ν(x) and f(x). Then Cauchy’s
integral theorem states that for f ∈ C1(D;Y )∫

∂D

f(z) dz = 2i

∫
D

∂zf(z) dL
2(z) .

In the special case where ∂zf = 0 in D, the function f is called holomorphic
in D.

Proof. Let y′ ∈ Y ′ and set g(z) := 〈f(z) , y′〉Y . Then (see 5.11)
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∂D

f(z) dz , y′
〉

Y

=

∫
∂D

g(z) dz = i

∫
∂D

(Re g)ν dH1 −
∫
∂D

(Im g)ν dH1 .

It follows from Gauß’s theorem (see A8.8) that this is

=

∫
D

(
i∇(Re g) − ∇(Im g)

)
dL2

=

∫
D

(
i(∂x + i∂y)

g + g

2
− (∂x + i∂y)

g − g

2i

)
dL2

= 2i

∫
D

∂zg dL
2 =

〈
2i

∫
D

∂zf dL2 , y′
〉

Y

.

��

First we consider the case n = 1 in Theorem 10.20.

A10.2 Theorem. If f ∈ C∞
0 (IR) and 1 < p < ∞, then

T1f(x) :=

∫
IR\B1(x)

f(s)

x − s
ds

defines a function T1f in Lp(IR) and there exists a constant C(p) such that
for all f

‖T1f ‖Lp(IR) ≤ C(p)‖f ‖Lp(IR) .

Therefore 10.20 holds in the case n = 1.

Proof. As f ∈ C0
0 (IR) we have that |T1f(x)| ≤ C

|x| for large x, and so T1f ∈
Lp(IR). In addition, the representation

T1f(x) =

∫
IR\B1(0)

f(x − s)

s
ds

shows that T1f ∈ C0(IR). For the proof of the bound we may assume without
loss of generality that f ≥ 0, otherwise consider max(f, 0) and max(−f, 0).
We extend T1f to the upper half-plane

D := {z ∈ C ; Im z > 0} .

To this end we define

ϕ(z) :=
1

z

(
log(1 + z)− log(1− z)

)
for z ∈ D,

where
log(z) := log(|z |) + i arg(z) for z ∈ C \ ]− ∞, 0] ,

arg
(
reiθ
)
:= θ for r > 0, |θ | < π.

Consider the function
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F (z) :=

∫
IR

ϕ(z − s)f(s) ds for z ∈ D.

Let x �= 0,±1 and y ↘ 0. Then

Reϕ(x+ iy) −→ 1

x

(
log |1 + x| − log |1− x|

)
=: ψ(x) ≥ 0 ,

and, examining how 1 ± (x + iy) approaches the positive and negative real
axis, respectively,

Imϕ(x+ iy) −→

⎧⎨⎩
π

x
if |x| > 1,

0 if |x| < 1.

On noting in addition that |ϕ(x+ iy)| ≤ C · log |x ± 1| for |x ± 1| ≤ 1
2 , and

that otherwise ϕ is a bounded function, it follows from Lebesgue’s conver-
gence theorem that

F (x+ iy) → (ψ ∗ f)(x) + iπT1f(x) as y ↘ 0,

locally uniformly in x, i.e. Im(F ) is a continuous extension of πT1f to D.
Since ψ ∈ L1(IR) (observe that 0 ≤ ψ(x) ≤ C

x2 for large |x|), it holds that
ψ ∗ f ∈ Lp(IR) with the convolution estimate

‖ψ ∗ f ‖Lp(IR) ≤ ‖ψ‖L1(IR) · ‖f ‖Lp(IR) .

In addition we have that ReF (z) ≥ 0 for all z ∈ D, because for z = x+ iy

Reϕ(z) =
1

|z |2
(
x(log |1 + z | − log |1− z |) + y(arg(1 + z)− arg(1− z))

)
is nonnegative, and f is assumed to be nonnegative. Hence z �→ F (z)p is a
well-defined function that is continuous in D, where

zp := eplog z for z ∈ C \ ]− ∞, 0].

As ϕ is holomorphic in D, and hence so is F , and then also F p, it follows
from Cauchy’s integral theorem for R > 0 that

0 =

∫
∂(D∩BR(0))

F (z)p dz =

∫ R

−R

F (x)p dx+

∫
D∩∂BR(0)

F (z)p dz .

Since f has compact support, we have that |F (z)| ≤ C log |z |
|z | for large |z |,

and so as R → ∞∣∣∣∣∣
∫
D∩∂BR(0)

F (z)p dz

∣∣∣∣∣ ≤ CR
( logR

R

)p
−→ 0 .
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This shows that ∫
IR

F (x)p dx = 0 .

Writing F (x) = F1(x) + iF2(x), it follows from the identity

F (x)p −
(
iF2(x)

)p
= p

∫ 1

0

(
tF1(x) + iF2(x)

)p−1
dt · F1(x)

that ∣∣∣∣∫
IR

(
iF2(x)

)p
dx

∣∣∣∣ ≤ C(p)

∫
IR

(
|F1(x)|p−1

+ |F2(x)|p−1)|F1(x)| dx .

From the generalized Young’s inequality it follows for 0 < δ ≤ 1 that this is

≤ δ

∫
IR

|F2(x)|p dx+
C(p)

δp−1

∫
IR

|F1(x)|p dx .

Since Re(iF2(x))
p = cos(pπ

2 )|F2(x)|p, we have∣∣∣cos(pπ
2
)
∣∣∣ ∫

IR

|F2(x)|p dx =

∣∣∣∣Re ∫
IR

(iF2(x))
p dx

∣∣∣∣
≤
∣∣∣∣∫

IR

(iF2(x))
p dx

∣∣∣∣ ≤ δ

∫
IR

|F2(x)|p dx+
C(p)

δp−1

∫
IR

|F1(x)|p dx .

In the case cos(pπ
2 ) �= 0, on choosing δ = 1

2

∣∣cos(pπ
2 )
∣∣, it then follows (em-

ploying the usual convention on constants) that∫
IR

|F2 |p dL1 ≤ C(p)

∫
IR

|F1 |p dL1 = C(p)‖ψ ∗ f ‖pLp(IR) ≤ C(p)‖f ‖pLp(IR) .

This is the desired result when cos(pπ
2 ) �= 0, which for example is satisfied

for 1 < p ≤ 2. For 2 ≤ p < ∞ the claim follows with a duality argument. In
particular, it then holds that 1 < p′ ≤ 2, and so for all g ∈ C0

0 (IR) we have
that ∣∣∣∣∫

IR

gT1f dL1

∣∣∣∣ = ∣∣∣∣∫
IR

fT1g dL
1

∣∣∣∣
≤ ‖f ‖Lp(IR)‖T1g‖Lp′ (IR) ≤ C(p′)‖f ‖Lp(IR)‖g‖Lp′ (IR) ,

which together with 6.13 implies that

‖T1f ‖Lp(IR) ≤ C(p′)‖f ‖Lp(IR) .

��

In conjunction with the following lemma, we obtain 10.20 in the case
n = 1.



A10 Calderón-Zygmund inequality 365

A10.3 Lemma. The result in 10.20 holds true if there exists a constant
C(n, p) such that

‖T1f ‖Lp(IRn) ≤ C(n, p)‖f ‖Lp(IRn) for all f ∈ C∞
0 (IRn) .

Remark: For f ∈ C∞
0 (IRn) it holds that T1f ∈ L∞(IRn). Moreover |T1f(x)| ≤

C‖f ‖sup · |x|−n
for large |x|, and so T1f ∈ Lp(IRn).

Proof. Let f ∈ Lp(IRn) and fk ∈ C∞
0 (IRn) with ‖f − fk‖Lp → 0 as k → ∞.

It follows from the Hölder inequality that for x ∈ IRn

|T1f(x) − T1fk(x)| ≤ C ·
∫
IRn\B1(x)

|f(y) − fk(y)|
|x − y |n dy

≤ C · ‖f − fk‖Lp

(∫
IRn\B1(0)

dy

|y |np′

) 1
p′ −→ 0 as k → ∞,

and, in addition, if C0 denotes the constant C(n, p) from the assumptions,
that

‖T1fk − T1fl‖Lp = ‖T1(fk − fl)‖Lp ≤ C0‖fk − fl‖Lp −→ 0 as k, l → ∞.

Hence (T1fk)k∈IN is a Cauchy sequence in Lp(IRn) with limit T1f , and so the
assumed Lp-estimate also holds for f , i.e.

‖T1f ‖Lp ≤ C0‖f ‖Lp .

Now let ε > 0 and set fε(y) := f(εy). Then

Tεf(x) =

∫
IRn\Bε(x)

ω(x − y)

|x − y |n f(y) dy

=

∫
IRn\B1( x

ε )

ω(xε − y)∣∣ x
ε − y

∣∣n fε(y) dy = T1fε(
x

ε
) .

This yields that Tεf ∈ Lp(IRn), with

‖Tεf ‖Lp =
(∫

IRn

∣∣∣T1fε
(x
ε

)∣∣∣p dx) 1
p

=
(
εn
∫
IRn

|T1fε(x)|p dx
) 1

p

≤ C0

(
εn
∫
IRn

|fε(x)|p dx
) 1

p

= C0‖f ‖Lp .

It follows for 0 < ε1 < ε2 that

‖Tε1f − Tε2f ‖Lp

≤ ‖Tε1(f − fk)‖Lp + ‖Tε2(f − fk)‖Lp + ‖Tε1fk − Tε2fk‖Lp

≤ 2C0‖f − fk‖Lp︸ ︷︷ ︸
→ 0 as k → ∞

+‖Tε1fk − Tε2fk‖Lp .
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Since the mean of ω vanishes, for all x

|Tε1fk(x) − Tε2fk(x)|

=

∣∣∣∣∣
∫
Bε2

(x)\Bε1
(x)

ω(x − y)

|x − y |n fk(y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bε2

(x)\Bε1
(x)

ω(x − y)

|x − y |n
(
fk(y) − fk(x)

)
dy

∣∣∣∣∣
≤ C ·

∫
Bε2

(x)\Bε1
(x)

dy

|x − y |n−1 · ‖∇fk‖sup

≤ C(n)ε2‖∇fk‖sup .

Since in addition Tε1fk(x) = Tε2fk(x) for x ∈ IRn \ Bε2(supp fk), we obtain
for every k that

‖Tε1fk − Tε2fk‖Lp

≤ C(n)ε2‖∇fk‖supLn
(
Bε2(supp fk)

) 1
p −→ 0 as ε2 → 0.

This proves that the functions Tεf for ε → 0 form a Cauchy sequence in
Lp(IRn). Hence it also holds that∥∥∥∥ limε↘0

Tεf

∥∥∥∥
Lp

≤ C0‖f ‖Lp .

��

A10.4 Theorem. Theorem 10.20 also holds in the case n > 1.

Proof. We need to prove a bound for T1 similarly to A10.3. Since we can
decompose ω as

ω(ξ) =
ω(ξ) + ω(−ξ)

2
+

ω(ξ) − ω(−ξ)

2
,

it is sufficient to consider separately the two cases: ω is an even function,
i.e. ω(−ξ) = ω(ξ), or an odd function, i.e. ω(−ξ) = −ω(ξ).

We begin with the case when ω is odd. (Observe that odd kernels always
satisfy the vanishing mean value property (10-33).) For f ∈ C∞

0 (Ω) it then
holds, upon using polar coordinates, that

T1f(x) =

∫
IRn\B1(0)

ω(y)

|y |n f(x − y) dy

=

∫
∂B1(0)

ω(ξ)

∫ ∞

1

f(x − rξ)

r
dr dHn−1(ξ) .

As ω is odd, this is
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=
1

2

∫
∂B1(0)

ω(ξ)

∫ ∞

1

f(x − rξ) − f(x+ rξ)

r
dr dHn−1(ξ)

=
1

2

∫
∂B1(0)

ω(ξ)

(∫
{|t|≥1}

f(x − tξ)

t
dt

)
dHn−1(ξ) ,

and so the Hölder inequality yields that

|T1f(x)|p ≤ 2−p

(∫
∂B1(0)

|ω(ξ)|
1
p′

+ 1
p

∣∣∣∣∣
∫
{|t|≥1}

f(x − tξ)

t
dt

∣∣∣∣∣ dHn−1(ξ)

)p

≤ 2−p‖ω‖
p

p′

L1(∂B1(0))

∫
∂B1(0)

|ω(ξ)|
∣∣∣∣∣
∫
{|t|≥1}

f(x − tξ)

t
dt

∣∣∣∣∣
p

dHn−1(ξ) .

For every ξ ∈ ∂B1(0) we decompose the space IRn as

IRn = Zξ ⊥ span{ξ} .

For z ∈ Zξ it then follows from A10.2 that

Φξ(z) :=

∫
IR

∣∣∣∣∣
∫
{|t|≥1}

f(z + (s − t)ξ)

t
dt

∣∣∣∣∣
p

ds ≤ C(p)

∫
IR

|f(z + sξ)|p ds ,

and so, setting Mω := ‖ω‖L1(∂B1(0))
, that∫

IRn

|T1f(x)|p dx

≤ 2−pMp−1
ω

∫
∂B1(0)

|ω(ξ)|
(∫

Zξ

Φξ(z) dL
n−1(z)

)
dHn−1(ξ)

≤ C(p)Mp−1
ω

∫
∂B1(0)

|ω(ξ)|
∫
Zξ

∫
IR

|f(z + sξ)|p ds dLn−1(z) dHn−1(ξ) .

This shows that

‖T1f ‖Lp ≤ C(p)‖ω‖L1(∂B1(0))
· ‖f ‖Lp ,

which proves 10.20 for odd ω. Observe that the proof did not use the bound-
edness of ω: it suffices to assume that ω is integrable over ∂B1(0).

We now assume that ω is even and reduce this case to the odd case. To
this end we define the convolution operator

Sεg(x) :=

∫
IRn\Bε(x)

g(y)
x − y

|x − y |n+1 dy and Sg(x) := lim
ε↘0

Sεg(x) .

As the vector-valued integral kernel of Sε is odd, what was shown above
implies that for g ∈ Lq(IRn) with 1 < q < ∞,
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Sεg −→ Sg in Lq(IRn; IRn)

with ‖Sεg‖Lq ≤ C(n, q)‖g‖Lq .
(A10-1)

We begin by establishing that there exists a c0 > 0 such that

n∑
i=1

SiεSiεg −→ −c0g in Lq(IRn) for g ∈ C∞
0 (IRn), (A10-2)

where Siε denotes the i-th coordinate of the operator Sε. We will use this
property to bound T1f in a first step in terms of ST1f . In the last part of
the proof we then show that ST1 is also a singular integral operator with an
odd kernel.

In order to prove (A10-2) we write

n∑
i=1

SiεSiεg(x) =

∫
IRn

(∫
IRn\Bε(x)\Bε(y)

(x − z) · (z − y)

|x − z |n+1|z − y |n+1 dz

)
g(y) dy .

With the change of variables z = −z′ + x+y
2 this becomes

= −
∫
IRn

ϕε

(x − y

2

)
g(y) dy ,

where

ϕε(x) :=

∫
{|z±x|≥ε}

(z + x) · (z − x)

|z + x|n+1|z − x|n+1 dz .

With the change of variables z = εz′ we obtain that ϕε(x) = ε−nϕ1

(
x
ε

)
.

Hence assertion (A10-2) follows from 4.15(2), if we show that ϕ1 is a non-
negative integrable function. If D ⊂ IRn is open and invariant under the

reflection in ∂B|x|(0), i.e.
|x|2
|z |2 z ∈ D for z ∈ D, then the change of variables

z = |x|2
|z′ |2 z

′ yields, on noting that

dz =
( |x|
|z′ |

)2n
dz′ and |z ± x| = |x|

|z′ | |z
′ ± x| ,

that ∫
D

|z |2 − |x|2

|z + x|n+1|z − x|n+1 dz =

∫
D

|x|2 − |z′ |2

|z′ + x|n+1|z′ − x|n+1 dz′ ,

i.e. this integral vanishes. Applying this result to the domainD = {z ; |z ± x| >
1, |z′ ± x| > 1}, we obtain that

ϕ1(x) =

∫
E

|z |2 − |x|2

|z + x|n+1|z − x|n+1 dz
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with E :=
{
|z ± x| ≥ 1

}
∩
({

|z + x| ≤ |z |
|x|
}

∪
{
|z − x| ≤ |z |

|x|
})

, and so

|z | ≥ |x| for z ∈ E, which implies that ϕ1 ≥ 0. Clearly ϕ1 is continuous on
IRn \ {0}, and for |x| ≤ 1

2

ϕ1(x) ≤ C

∫
{|z |≥ 1

2}

dz

|z |2n
< ∞ ,

while for |x| ≥ 2

ϕ1(x) ≤
∫
E

dz

|z + x|n|z − x|n .

We partition E into {z ∈ E ; z • x ≥ 0} and {z ∈ E ; z • x ≤ 0}. For z in
the first set it holds that |z + x| ≥ |x| and with z′ := z − x we have that

1 ≤ |z′ | ≤ |x|
|x|−1 . An analogous result holds for the second set. Overall we

obtain that

ϕ1(x) ≤ 2

|x|n
∫
{1≤|z′ |≤ |x|

|x|−1
}

dz′

|z′ |n ≤ C

|x|n+1 .

The last inequality follows from the fact that we integrate over an annular
region of width 1

|x|−1 . This shows that ϕ1 is integrable and the result (A10-2)

is shown.
Now let f ∈ C∞

0 (IRn) as before. It follows from (A10-2) and the Lp-bound
for Sε that for ζ ∈ C∞

0 (IRn) and as ε ↘ 0

c0

∣∣∣∣∫
IRn

ζT1f dLn

∣∣∣∣←−
∣∣∣∣∣
∫
IRn

( n∑
i=1

SiεSiεζ
)
T1f dLn

∣∣∣∣∣
=

∣∣∣∣∣
∫
IRn

n∑
i=1

Siεζ · SiεT1f dLn

∣∣∣∣∣ ≤ ‖Sεζ‖Lp′ ‖SεT1f ‖Lp ,

with
‖Sεζ‖Lp′ ≤ C(n, p′)‖ζ‖Lp′ .

As T1f ∈ Lp(IRn) (see the remark in A10.3), it holds in addition that

‖SεT1f ‖Lp −→ ‖ST1f ‖Lp as ε ↘ 0.

Hence, on recalling 6.13, we obtain the bound

‖T1f ‖Lp ≤ C(n, p)‖ST1f ‖Lp .

Now we show that ST1, too, is essentially a singular integral operator with
an odd kernel. It holds that

SεT1f(x) =

∫
IRn

(∫
{|z−x|≥ε, |z−y|≥1}

x − z

|x − z |n+1

ω(z − y)

|z − y |n dz

)
f(y) dy

=

∫
IRn

Φε(x − y)f(y) dy ,
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where

Φε(x) :=

∫
{|z−x|≥ε , |z |≥1}

x − z

|x − z |n+1

ω(z)

|z |n dz .

Since

Φε(x) = Sεh(x) with h(z) := XIRn\B1(0)(z)
ω(z)

|z |n ,

and since h ∈ Lq(IRn) for every 1 < q < ∞ (not for q = 1 !), it follows from
the previously shown convergence in (A10-1) that

Φε = Sεh → Sh =: Φ in Lq(IRn; IRn) ,

with ‖Φ‖Lq ≤ C(n, q)‖h‖Lq .

Here we have that

‖h‖Lq =

(∫ ∞

1

rn−1−nq

∫
∂B1(0)

|ω(ξ)|q dHn−1(ξ) dr

) 1
q

= c1(n, q)‖ω‖Lq(∂B1(0))
,

with

c�(n, q) :=

(∫ ∞

�

r−1−n(q−1) dr

) 1
q

.

In addition,

ST1f(x) =

∫
IRn

Φ(x − y)f(y) dy .

Similarly to Φε, for every δ > 0

ψδ(x) :=

∫
{δ≤|z |≤1}

x − z

|x − z |n+1

ω(z)

|z |n dz

defines a function ψδ ∈ Lp(IRn; IRn). Moreover, the limit

ψ(x) := lim
δ↘0

ψδ(x) =

∫
{|z |≤1}

x − z

|x − z |n+1

ω(z)

|z |n dz

exists pointwise for x �= 0. In order to prove this, choose for � > 0 an
η ∈ C∞

0 (B�(0)) with η = 1 in B �
2
(0) and decompose ψδ(x) for |x| > � as

induced by the decomposition

x − z

|x − z |n+1 = η(z)
x − z

|x − z |n+1 +
(
1 − η(z)

) x − z

|x − z |n+1 .

The first term is a Lipschitz continuous (in fact smooth) function of z. Hence
the corresponding integral converges as δ ↘ 0 (see the first part of the proof of
the Hölder-Korn-Lichtenstein inequality 10.19). The integral over the second
term is independent of δ for δ < �

2 .
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On employing the change of variables z = |x|z′ we now see that there
exists a measurable function ω0 : ∂B1(0) → IRn such that

Φ(x) + ψ(x) =
ω0(x)

|x|n , (A10-3)

where ω0(x) := ω0

(
x
|x|
)
and

ω0(ξ) :=

∫
IRn

ξ − z

|ξ − z |n+1

ω(z)

|z |n dz for almost all ξ ∈ ∂B1(0) .

As ω is an even function, ω0 must be odd. Moreover, for |x| ≥ 2 and |z | ≤ 1
(cf. the proof of 10.19)∣∣∣∣∣ x − z

|x − z |n+1 − x

|x|n+1

∣∣∣∣∣ ≤ C|z |
( 1

|z − x||x|n +
1

|x| |z − x|n
)

≤ C|z |
|x|n+1 ,

which in view of the mean value property of ω implies that

|ψ(x)| =
∣∣∣∣∣
∫
{|z |≤1}

( x − z

|x − z |n+1 − x

|x|n+1

)ω(z)
|z |n dz

∣∣∣∣∣
≤ C

|x|n+1

∫
{|z |≤1}

|ω(z)|
|z |n−1 dz ≤ C

|x|n+1 ‖ω‖L1(∂B1(0))
.

Hence ψ ∈ Lq(IRn \ B2(0) ; IR
n) for 1 ≤ q < ∞ (here the case q = 1 is

included (!)), with

‖ψ‖Lq(IRn\B2(0))
≤ C(n, q)‖ω‖L1(∂B1(0))

.

Therefore, on recalling (A10-3), we obtain for 1 < q < ∞ that

c2(n, q)‖ω0‖Lq(∂B1(0))
=

∥∥∥∥ ω0

|·|n
∥∥∥∥
Lq(IRn\B2(0))

≤ ‖Φ‖Lq(IRn) + ‖ψ‖Lq(IRn\B2(0))

≤ C(n, q)
(
c1(n, q)‖ω‖Lq(∂B1(0))

+ ‖ω‖L1(∂B1(0))

)
,

and so
‖ω0‖L1(∂B1(0))

≤ C(n)‖ω‖L∞(∂B1(0))
< ∞ .

Hence the previously shown Lp-bound for kernels induced by odd ω can be
applied to the kernel induced by ω0. We note from (A10-3) that

Φ(x) = XIRn\B2(0)(x)
ω0(x)

|x|n − Φ̃(x) ,

where
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Φ̃(x) := XIRn\B2(0)(x)ψ(x) − XB2(0)(x)Φ(x) ,

and we note that for every 1 < q < ∞∥∥∥Φ̃∥∥∥
L1(IRn)

≤ ‖ψ‖L1(IRn\B2(0))
+ C(n, q)‖Φ‖Lq(IRn) < ∞ .

We obtain using the Lp-bound for the kernel induced by ω0 and the convo-
lution estimate that

‖ST1f ‖Lp(IRn)

≤
(∫

IRn

∣∣∣∣∣
∫
{|y|≥2}

ω0(x − y)

|x − y |n f(y) dy

∣∣∣∣∣
p

dx

) 1
p

+
∥∥∥Φ̃ ∗ f

∥∥∥
Lp(IRn)

≤
(
C(p)‖ω0‖L1(∂B1(0))

+
∥∥∥Φ̃∥∥∥

L1(IRn)

)
‖f ‖Lp(IRn) .

This proves 10.20 also for even kernels. ��



11 Spectrum of compact operators

We begin with some general results on the spectrum of continuous operators
(11.1–11.5), where we always assume that X is a Banach space over C (!),
i.e. IK = C, and that T ∈ L (X) (for the real case see 11.14). The main topic
of this chapter is the Riesz-Schauder theory on the spectrum of compact
operators (theorem 11.9).

11.1 Spectrum. We define the resolvent set of T by

�(T ) :=
{
λ ∈ C ; N (λId − T ) = {0} and R(λId − T ) = X

}
and the spectrum of T by

σ(T ) := C \ �(T ) .

The spectrum can be decomposed into the point spectrum

σp(T ) :=
{
λ ∈ σ(T ) ; N (λId − T ) �= {0}

}
,

the continuous spectrum

σc(T ) :=
{
λ ∈ σ(T ) ; N (λId − T ) = {0} and

R(λId − T ) �= X, but R(λId− T ) = X
}

and the residual spectrum

σr(T ) :=
{
λ ∈ σ(T ) ; N (λId − T ) = {0} and R(λId− T ) �= X

}
.

11.2 Remarks.

(1) It holds that λ ∈ �(T ) if and only if λId − T : X → X is bijective. The
inverse mapping theorem 7.8 yields that this is equivalent to the existence of

R(λ;T ) := (λId − T )−1 ∈ L (X) .

The inverse R(λ;T ) is called the resolvent of T in λ and as a function of λ
is called the resolvent function.

(2) λ ∈ σp(T ) is equivalent to:

There exists an x �= 0 with Tx = λx.
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λ is then called an eigenvalue and x an eigenvector of T . If X is a function
space, then x is also called an eigenfunction. The subspace N (λId − T )
is the eigenspace of T corresponding to the eigenvalue λ. The eigenspace
is a T -invariant subspace. (A subspace Y ⊂ X is called T -invariant if
T (Y ) ⊂ Y .)

11.3 Theorem. The resolvent set �(T ) is open and the resolvent function
λ �→ R(λ;T ) is a complex analytic map from �(T ) to L (X). It holds that

‖R(λ;T )‖−1 ≤ dist(λ, σ(T )) for λ ∈ �(T ) .

Remark: A map F : D → Y , with D ⊂ C open and Y a Banach space, is
called complex analytic if for every λ0 ∈ D there exists a ball Br0(λ0) ⊂ D
such that F (λ) for λ ∈ Br0(λ0) can be written as a power series in λ − λ0

with coefficients in Y . Complex analytic maps are holomorphic (see A10.1).

Proof. Let λ ∈ �(T ). Then we have for μ ∈ C that

(λ − μ)Id − T = (λId − T )
(
Id − μR(λ;T )

)︸ ︷︷ ︸
=: S(μ)

.

It follows from 5.7 that S(μ) is invertible if

|μ| · ‖R(λ;T )‖ < 1 ,

and then λ− μ ∈ �(T ), with

R(λ − μ;T ) = S(μ)−1R(λ;T ) =

∞∑
k=0

μkR(λ;T )k+1 .

Setting d := ‖R(λ;T )‖−1
yields that Bd(λ) ⊂ �(T ), i.e. dist(λ, σ(T )) ≥ d.

��

11.4 Theorem. The spectrum σ(T ) is compact and nonempty (if X �= {0}),
with

sup
λ∈σ(T )

|λ| = lim
m→∞

‖Tm‖
1
m ≤ ‖T ‖ .

This value is called the spectral radius of T .

Proof. Let λ �= 0. We have from 5.7 that Id − T
λ is invertible if

∥∥ T
λ

∥∥ < 1,
i.e. if |λ| > ‖T ‖, and then

R(λ;T ) =
1

λ

(
Id − T

λ

)−1

=

∞∑
k=0

T k

λk+1
.

This shows that
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r := sup
λ∈σ(T )

|λ| ≤ ‖T ‖ .

Since
λmId − Tm = (λId − T )pm(T ) = pm(T )(λId − T )

with

pm(T ) :=
m−1∑
i=0

λm−1−iT i ,

we conclude that

λ ∈ σ(T ) =⇒ λm ∈ σ(Tm)

=⇒ |λm | ≤ ‖Tm‖ (recall the bound established above)

=⇒ |λ| ≤ ‖Tm‖
1
m .

This proves that

r ≤ lim inf
m→∞

‖Tm‖
1
m .

Next we show that
r ≥ lim sup

m→∞
‖Tm‖

1
m .

We recall from 11.3 that R(·;T ) is a complex analytic map in C \ Br(0) (if
σ(T ) is empty, in C). Hence, by Cauchy’s integral theorem (see A10.1),

1

2πi

∫
∂Bs(0)

λjR(λ;T ) dλ

is independent of s for j ≥ 0 and s > r. However, if we choose s > ‖T ‖, then
we obtain with the help of the representation of R(λ;T ) at the beginning of
the proof that this integral is equal to

=
1

2πi

∫
∂Bs(0)

∞∑
k=0

λj−k−1T k dλ =
1

2π

∞∑
k=0

sj−k
(∫ 2π

0

eiθ(j−k) dθ
)
T k

=

∞∑
k=0

sj−kδj,kT
k = T j .

Hence, for j ≥ 0 and s > r,

∥∥T j
∥∥ = 1

2π

∥∥∥∥∥
∫
∂Bs(0)

λjR(λ;T ) dλ

∥∥∥∥∥ ≤ sj+1 sup
|λ|=s

‖R(λ;T )‖ .

Consequently we obtain for s > r and every subsequence j → ∞ that

∥∥T j
∥∥ 1

j ≤ s ·
(
s sup
|λ|=s

‖R(λ;T )‖
) 1

j

−→ s or 0 ,
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and hence

lim sup
j→∞

∥∥T j
∥∥ 1

j ≤ s .

As this holds for all s > r, we obtain the desired result on the spectral radius.
In addition, if σ(T ) was empty, we would obtain for j = 0 and as s ↘ 0 that

‖Id‖ ≤ s · sup
|λ|≤1

‖R(λ;T )‖ −→ 0 ,

i.e. Id = 0, and so X = {0}. ��

11.5 Remarks.

(1) If dimX < ∞, then σ(T ) = σp(T ).

(2) If dimX = ∞ and T ∈ K (X), then 0 ∈ σ(T ). But in general 0 is not
an eigenvalue.

Proof (1). If λ ∈ σ(T ), then λId− T is not bijective, and so, as dimX < ∞,
it is also not injective, i.e. λ ∈ σp(T ). ��

Proof (2). Let T ∈ K (X) and assume that 0 ∈ �(T ). Then (see 11.2(1))
T−1 ∈ L (X), and (see 10.3) so Id = T−1T ∈ K (X), which on recalling 4.10
implies that X is finite-dimensional.

Example without eigenvalue 0: The operator T : C0([0, 1]) → C1([0, 1]) in
5.6(3) is injective. As an operator in L

(
C0([0, 1])

)
it is a compact operator

in K
(
C0([0, 1])

)
, by theorem 10.6. ��

In the following we are interested in the point spectrum σp(T ) of an
operator T ∈ L (X), i.e. we consider the eigenvalue problem corresponding
to T : For a given y ∈ X we look for all solutions λ ∈ IK and x ∈ X to

Tx − λx = y .

If λ ∈ �(T ), then there exists a uniquely determined solution x to this equa-
tion. If λ ∈ σp(T ), then the solution, if one exists, is not unique, i.e. on
setting Aλ := λId − T we see that adding an element from N (Aλ) to a so-
lution yields another solution (for T ∈ K (X) see also 11.11). On the other
hand, the condition y ∈ R(Aλ) needs to be satisfied for a solution to the
eigenvalue problem to exist at all. An important class of operators Aλ are
those operators for which both the number of degrees of freedom for the
solution x and the number of side conditions on y are finite:

11.6 Fredholm operators. A map A ∈ L (X;Y ) is called a Fredholm
operator if:

(1) dimN (A) < ∞,

(2) R(A) is closed,

(3) codimR(A) < ∞.
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The index of a Fredholm operator is defined by

ind(A) := dimN (A) − codimR(A) .

Remark: The codimension of the image of A being finite means that Y =
R(A) ⊕ Y0 for a finite-dimensional subspace Y0 ⊂ Y . Then codimR(A) :=
dimY0 is independent of the choice of Y0: indeed, if Y1 ⊂ Y is a subspace
with R(A) ∩ Y1 = {0}, then Y1 is finite-dimensional with dimY1 ≤ dimY0,
with equality if and only if Y = R(A) ⊕ Y1.

Proof. We have from (2) and 4.9, respectively, that Z := R(A) and Y0 are
closed subspaces. Now let P ∈ P(Y ) be the projection onto Y0 with Z =
N (P ), as in 9.15. Then

S := P |
Y1

: Y1 → Y0 is linear and injective,

because if y ∈ Y1 with P (y) = 0, then y ∈ Z ∩ Y1 = {0}. As Y0 is finite-
dimensional, it follows that Y1 is also finite-dimensional, with dimY1 ≤
dimY0.

If Y = Z ⊕ Y1, then it follows as above (interchange Y0 and Y1) that
dimY0 ≤ dimY1, and so dimY1 = dimY0. Conversely, if this holds, then S
is bijective. For x ∈ Y we then have that y := S−1Px ∈ Y1 with Py =
SS−1Px = Px, and so x − y ∈ N (P ) = Z, which proves that Y = Z ⊕ Y1.

��

11.7 Example. Let X = W 1,2(Ω) and Y = W 1,2(Ω)′. Then A : W 1,2(Ω) →
W 1,2(Ω)′, defined by

〈v , Au〉W 1,2 :=

∫
Ω

∑
i,j

∂iv · aij∂ju dLn for u, v ∈ W 1,2(Ω) ,

is a weak elliptic differential operator with Neumann boundary conditions.
(We consider the homogeneous case in 6.5(2) with hi = 0 and b = 0.) We
have from 8.18(2) (where the symmetry aij = aji was assumed) that:

The null space N (A) consists of the constant functions, and therefore
dimN (A) = 1. The image of A is R(A) = {F ∈ Y ; 〈1 , F 〉W 1,2 = 0}, and
so it is closed, with codimR(A) = 1. It holds that

Y = R(A) ⊕ span{F0} , where 〈v , F0〉W 1,2 :=

∫
Ω

v dLn .

Hence A is a Fredholm operator with index 0.

Observe: For the homogeneous Dirichlet problem (see 10.14(2)) the operator
A : W 1,2

0 (Ω) → W 1,2
0 (Ω)′ is an isomorphism.

A large class of Fredholm operators with Y = X is given by compact
perturbations of the identity (see also 12.8):
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11.8 Theorem. Let T ∈ K (X). Then A := Id − T is a Fredholm operator
with index 0. We prove this in several steps:

(1) dimN (A) < ∞,

(2) R(A) is closed,

(3) N (A) = {0} =⇒ R(A) = X,

(4) codimR(A) ≤ dimN (A),

(5) dimN (A) ≤ codimR(A).

Proof (1). On noting that Ax = 0 is equivalent to x = Tx, we have that
B1(0)∩ N (A) ⊂ T

(
B1(0)

)
, i.e. the unit ball in N (A) is precompact, and so

4.10 yields that N (A) is finite-dimensional. ��

Proof (2). Let x ∈ R(A) and let Axn → x as n → ∞. We may assume
without loss of generality that

‖xn‖ ≤ 2 dn with dn := dist(xn,N (A)),

because otherwise we choose an ∈ N (A) with ‖xn − an‖ ≤ 2 dist(xn,N (A))
and then proceed with x̃n := xn − an, where

dist(x̃n,N (A)) = dist(xn,N (A)) .

First we assume that dn → ∞ for a subsequence n → ∞. Setting

yn :=
xn

dn
it holds that Ayn =

Axn

dn
→ 0

as n → ∞. Noting that the yn are bounded and recalling that T is compact
yields that there exists a subsequence such that Tyn → y as n → ∞. It
follows that

yn = Ayn + Tyn → y ,

and so, by the continuity of A,

Ay = lim
n→∞

Ayn = 0 .

Hence y ∈ N (A), which implies that

‖yn − y‖ ≥ dist(yn,N (A)) = dist
(xn

dn
,N (A)

)
=

dist(xn,N (A))

dn
= 1 ,

a contradiction. This shows that the dn are bounded, and so are the xn. For
a subsequence we then have that Txn → z as n → ∞, and so

x ←− Axn = A(Axn + Txn) −→ A(x+ z) ,

which means that x ∈ R(A). ��
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Proof (3). Assume that there exists an x ∈ X \ R(A). Then

Anx ∈ R(An) \ R(An+1) for all n ≥ 0,

because otherwise Anx = An+1y for some y, then An(x−Ay) = 0, and from
N (A) = {0} it then would follow (inductively) that x−Ay = 0, i.e x ∈ R(A),
a contradiction. In addition R(An+1) is closed, on noting that

An+1 = (Id − T )n+1 = Id +

n+1∑
k=1

(
n+ 1

k

)
(−T )k︸ ︷︷ ︸

∈ K (X) on recalling 10.3

,

and so (2) yields that R(An+1) is closed. Hence there exists an an+1 ∈
R(An+1) with

0 < ‖Anx − an+1‖ ≤ 2 dist
(
Anx,R(An+1)

)
.

Now consider

xn :=
Anx − an+1

‖Anx − an+1‖
∈ R(An) .

We have that
dist
(
xn,R(An+1)

)
≥ 1

2 , (11-4)

because for y ∈ R(An+1)

‖xn − y‖ =
‖Anx − (an+1 + ‖Anx − an+1‖y)‖

‖Anx − an+1‖

≥
dist
(
Anx,R(An+1)

)
‖Anx − an+1‖

≥ 1

2
.

For m > n, we have Axn + xm − Axm ∈ R(An+1), and hence (11-4) implies
that

‖Txn − Txm‖ = ‖xn − (Axn + xm − Axm)‖ ≥ 1

2
.

Hence (Txn)n∈IN contains no convergent subsequence, even though (xn)n∈IN

is a bounded sequence. This is a contradiction to the compactness of T . ��

Proof (4). By (1), the number n := dimN (A) is finite. Let {x1, . . . , xn}
be an arbitrary basis of N (A). If we assume that the claimed inequality
is false, then there exist linearly independent vectors y1, . . . , yn, such that
span{y1, . . . , yn}⊕R(A) is a proper subspace of X. Moreover, 9.16(1) yields
the existence of x′

1, . . . , x
′
n ∈ X ′ with

〈xl , x
′
k〉 = δk,l for k, l = 1, . . . , n.

Setting
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T̃ x := Tx+

n∑
k=1

〈x , x′
k〉 yk

then defines an operator T̃ ∈ K (X), indeed, T is compact and T̃ − T has

a finite-dimensional image. In addition, N (Ã) = {0}, where Ã := Id − T̃ ,

because Ãx = 0 implies, on recalling the choice of the yk, that Ax = 0 and
〈x , x′

k〉 = 0 for k = 1, . . . , n. Therefore x ∈ N (A), and hence there exists a
representation

x =

n∑
k=1

αkxk , and so 0 = 〈x , x′
l〉 =

n∑
k=1

αk 〈xk , x
′
l〉 = αl

for l = 1, . . . , n, which yields that x = 0. On applying (3) to the operator Ã,

it follows that R(Ã) = X. On noting that Ãxl = −yl for l = 1, . . . , n and
that

Ã
(
x −

n∑
l=1

〈x , x′
l〉xl

)
= Ax for all x ∈ X ,

we conclude that X = R(Ã) ⊂ span{y1, . . . , yn} ⊕ R(A), a contradiction to
the above property. ��

Proof (5). We have from (4) that m := codimR(A) ≤ n := dimN (A).
First we reduce the claim to the casem = 0. To this end, choose x1, . . . , xn

and x′
1, . . . , x

′
n as in the proof of (4) and y1, . . . , ym with

X = span{y1, . . . , ym} ⊕ R(A) .

As in the proof of (4), the operator

x �−→ T̃ x := Tx+

m∑
k=1

〈x , x′
k〉 yk

is compact and Ã := Id− T̃ is surjective with N (Ã) = span{xi ; m < i ≤ n}.
We need to show that N (Ã) = {0}. Hence the claim is reduced to the case
m = 0.

In the case m = 0 it holds that R(A) = X. We assume that there exists
an x1 ∈ N (A)\{0}. The surjectivity of A then yields that we can inductively
choose xk ∈ X, k ≥ 2, with Axk = xk−1. Then xk ∈ N (Ak) \ N (Ak−1). It
follows from the theorem on the almost orthogonal element that there exists
a zk ∈ N (Ak) with ‖zk‖ = 1 and dist

(
zk,N (Ak−1)

)
≥ 1

2 . For l < k this
implies that Azk + zl − Azl ∈ N (Ak−1), and so the choice of zk yields that

‖Tzk − Tzl‖ = ‖zk − (Azk + zl − Azl)‖ ≥ 1
2 .
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This shows that {Tzk ; k ∈ IN} contains no convergent subsequence. This is a
contradiction to the sequence {zk ; k ∈ IN} being bounded and the operator
T being compact.

A second possible proof for m = 0 is as follows: We start with a decom-
position X = X̃ ⊕ N (A) with a closed subspace X̃ (this follows from (1)

and 9.16(2) for Y = {0}). Then A : X̃ → X is bijective, and so 7.8 yields

that Ã := (A|
X̃
)−1 : X → X̃ is continuous. Now consider Ã as an element

in L (X). Then T̃ := Id − Ã ∈ K (X), because if {xk ; k ∈ IN} is bounded

in X, then so is {Ãxk ; k ∈ IN}, and hence there exists a subsequence with

TÃxk → x as k → ∞. On the other hand,

TÃxk = (Id − A)Ãxk = Ãxk − xk = −T̃ xk .

Now (3) implies that R(Ã) = X, i.e. N (A) = {0}.
A further possible proof of (5) will be given in 12.7. ��

The fundamental theorem of this chapter is the

11.9 Spectral theorem for compact operators (Riesz-Schauder). For
every operator T ∈ K (X) it holds that:

(1) The set σ(T ) \ {0} consists of countably (finitely or infinitely) many
eigenvalues with 0 as the only possible cluster point. So if σ(T ) contains
infinitely many elements, then σ(T ) = σp(T )∪{0}, hence 0 is a cluster point
of σ(T ).

(2) For λ ∈ σ(T ) \ {0}

1 ≤ nλ := max
{
n ∈ IN ; N

(
(λId − T )n−1

)
�= N

(
(λId− T )n

) }
< ∞ .

The number nλ ∈ IN is called the order (or index) of λ and dimN (λId−T )
is called the multiplicity of λ.

(3) Riesz decomposition. For λ ∈ σ(T ) \ {0}

X = N
(
(λId − T )nλ

)
⊕ R
(
(λId − T )nλ

)
.

Both subspaces are closed and T -invariant, and the characteristic sub-
space N

(
(λId − T )nλ

)
is finite-dimensional.

(4) For λ ∈ σ(T ) \ {0} it holds that σ(T |
R((λId−T )nλ )) = σ(T ) \ {λ} .

(5) If Eλ for λ ∈ σ(T ) \ {0} denotes the projection onto N
(
(λId − T )nλ

)
corresponding to the decomposition in (3), then

EλEμ = δλ,μEλ for λ, μ ∈ σ(T ) \ {0}.

Proof (1). Let 0 �= λ /∈ σp(T ). Then N (Id− T
λ ) = {0}, and so R(Id− T

λ ) = X
(recall 11.8(3)), i.e. λ ∈ �(T ). This shows that
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σ(T ) \ {0} ⊂ σp(T ) .

If σ(T ) \ {0} is not finite, then we choose λn ∈ σ(T ) \ {0}, n ∈ IN, pairwise
distinct and eigenvectors en �= 0 to λn and define

Xn := span{e1, . . . , en} .

The eigenvectors ek, k = 1, . . . , n, are linearly independent, because if there
exists (this is an inductive proof) 1 < k ≤ n with

ek =

k−1∑
i=1

αiei

with already linearly independent vectors e1, . . . , ek−1, then it follows that

0 = Tek − λkek =

k−1∑
i=1

αi(Tei − λkei) =

k−1∑
i=1

αi (λi − λk)︸ ︷︷ ︸
�= 0

ei ,

and so αi = 0 for i = 1, . . . , k − 1, i.e. ek = 0, a contradiction. This shows
that Xn−1 is a proper subspace of Xn. Hence the theorem on the almost
orthogonal element (see 4.5) yields the existence of an xn ∈ Xn with

‖xn‖ = 1 and dist(xn, Xn−1) ≥ 1
2 . (11-5)

On noting that xn = αnen+x̃n with certain αn ∈ C and x̃n ∈ Xn−1, it follows
from the T -invariance of the subspaceXn−1 that Txn−λnxn = T x̃n−λnx̃n ∈
Xn−1, and so it holds for m < n that

1

λn
(Txn − λnxn) − 1

λm
Txm ∈ Xn−1 .

Hence it follows from (11-5) that∥∥∥∥T (xn

λn

)
− T
(xm

λm

)∥∥∥∥ = ∥∥∥∥xn +
1

λn
(Txn − λnxn) − 1

λm
Txm

∥∥∥∥ ≥ 1

2
.

This shows that the sequence
(
T
(
xn

λn

))
n∈IN

has no cluster point. As T is com-

pact, this implies that
(

xn

λn

)
n∈IN

contains no bounded subsequences, which

yields that
1

|λn | =
∥∥∥∥ xn

λn

∥∥∥∥ −→ ∞ as n → ∞,

i.e. λn → 0 as n → ∞. Hence we have shown that 0 is the only cluster point
of σ(T ) \ {0}. In particular, it then holds that σ(T ) \Br(0) is finite for every
r > 0, and so σ(T ) \ {0} is countable. ��
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Proof (2). Let A := λId − T . Then N (An−1) ⊂ N (An) for all n. First we
assume that:

N (An−1) is a proper subset of N (An) for all n ≥ 1.

Similarly to the proof of (1), and on recalling the theorem on the almost
orthogonal element, we choose an xn ∈ N (An) with

‖xn‖ = 1 and dist
(
xn,N (An−1)

)
≥ 1

2 . (11-6)

Then it follows for m < n that

Axn + λxm − Axm ∈ N (An−1) ,

and so with (11-6) that

‖Txn − Txm‖ = ‖λxn − (Axn + λxm − Axm)‖ ≥ |λ|
2

> 0 .

On the other hand, {xn ; n ∈ IN} is a bounded sequence. This contradicts the
compactness of T . Hence we can find an n ∈ IN with N (An−1) = N (An).
This implies for m > n that

x ∈ N (Am) =⇒ Am−nx ∈ N (An) = N (An−1)

=⇒ An−1+m−nx = 0

=⇒ x ∈ N (Am−1) ,

and so N (Am) = N (Am−1), and it follows inductively that N (Am) =
N (An) for allm ≥ n. Hence we have shown that nλ < ∞. Since N (A) �= {0}
it holds that nλ ≥ 1. ��

Proof (3). Let A := λId− T as before. Then

N (Anλ) ⊕ R(Anλ) ⊂ X ,

because if x ∈ N (Anλ)∩R(Anλ), then Anλx = 0 and x = Anλy for a y ∈ X.
Then A2nλy = 0, and so y ∈ N (A2nλ) = N (Anλ) and hence x = Anλy = 0.
Now Anλ can be written as

Anλ = λnλId +

nλ∑
k=1

(
nλ

k

)
λnλ−k(−T )k︸ ︷︷ ︸

∈ K (X) by 10.3

.
(11-7)

Hence codimR(Anλ) ≤ dimN (Anλ) < ∞ (recall 11.8(4) and 11.8(1)),
which yields that

X = N (Anλ) ⊕ R(Anλ) .

As T commutes with A, i.e. TA = AT , T also commutes with Anλ , and so
both subspaces are T -invariant. ��
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Proof (4). We denote by Tλ the restriction of T to R(Anλ), where Anλ has
been computed in (11-7). Then Tλ ∈ K

(
R(Anλ)

)
, where R(Anλ) is a closed

subspace (recall 11.8(2)), and so a Banach space. Here we have used the fact
that T and Anλ commute. Moreover, we have that

N (λId − Tλ) = N (A) ∩ R(Anλ) = {0} ,

and hence R(λId − Tλ) = R(Anλ) (apply 11.8(3) to Tλ), which shows that
λ ∈ �(Tλ). It remains to show that

σ(Tλ) \ {λ} = σ(T ) \ {λ} .

Let μ ∈ C \ {λ}. We recall from above that N (Anλ) is invariant under
μId − T . Moreover, μId − T is injective on this subspace. To see this, note
that x ∈ N (μId − T ) implies that (λ − μ)x = Ax. If in addition Amx = 0
for some m ≥ 1, it follows that

(λ − μ)Am−1x = Am−1((λ − μ)x) = Amx = 0 ,

and since λ �= μ this means that Am−1x = 0. Inductively (for decreasing m)
this yields that x = A0x = 0. Hence we have shown that

N (μId − T ) ∩ N (Am) = {0} for all m ≥ 1.

Setting m = nλ yields the injectivity of μId−T on N (Anλ). As this space is
finite-dimensional, we have that μId−T is also bijective on N (Anλ). But this
means that μ ∈ �(T ) if and only if μ ∈ �(Tλ). This shows that by removing the
(finite-dimensional) characteristic subspace corresponding to the eigenvalue
λ we obtain a remaining operator Tλ for which σ(Tλ) = σ(T ) \ {λ}. ��

Proof (5). Let λ, μ ∈ σ(T )\{0} be distinct, and let Aλ := λId−T and Aμ :=
μId−T . Now every x ∈ N (A

nμ
μ ), corresponding to the Riesz decomposition of

X into N (Anλ

λ )⊕R(Anλ

λ ), has a representation x = z+y. As both subspaces
are invariant under T , and hence also under Aμ, it follows that

0 = Anμ
μ x = Anμ

μ z︸ ︷︷ ︸
∈N (A

nλ
λ

)

+ Anμ
μ y︸ ︷︷ ︸

∈R(A
nλ
λ

)

and so 0 = A
nμ
μ z. On recalling from the above proof that Aμ is bijective

on N (Anλ

λ ), and hence also A
nμ
μ , it follows that z = 0, i.e. x ∈ R(Anλ

λ ).
Therefore we have shown that

N (Anμ
μ ) ⊂ R(Anλ

λ ) ,

in other words
R(Eμ) ⊂ N (Eλ) ,

and hence EλEμ = 0. ��
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11.10 Corollary. If T ∈ K (X) and λ ∈ σ(T ) \ {0}, then the resolvent
function μ �→ R(μ;T ) has an (isolated) pole of order nλ in λ, i.e. the
function μ �→ (μ − λ)nλR(μ;T ) can be complex analytically extended to the
point λ, and the value at the point λ is different from the null operator.

Proof. Consider the decomposition

X = N
(
(λId − T )nλ

)︸ ︷︷ ︸
=R(Eλ)

⊕R
(
(λId − T )nλ

)︸ ︷︷ ︸
=N (Eλ)

and the restrictions

T0 := T to R(Eλ), T1 := T to N (Eλ).

Since λ is an isolated point of σ(T ), there exists an r > 0 with Br(λ) \ {λ} ⊂
�(T ). Then Br(λ)\{λ} ⊂ �(T0) and we have from 11.9(4) that Br(λ) ⊂ �(T1),
and it holds for 0 < |μ| < r that

R(λ+ μ;T ) = R(λ+ μ;T0)Eλ +R(λ+ μ;T1)(Id − Eλ) .

It follows from 11.3 that R(λ+·;T1) is complex analytic in Br(0), and so it
remains to show that R(λ+·;T0) has a pole of order nλ in 0. Consider

S(μ) :=

nλ∑
k=1

μ−k(T0 − λId)k−1 for μ �= 0.

It holds that

S(μ)
(
(λ+ μ)Id − T0

)
=

nλ∑
k=1

μ1−k(T0 − λId)k−1 −
nλ∑
k=1

μ−k(T0 − λId)k

= Id− μ−nλ(T0 − λId)nλ = Id

and similarly
(
(λ+ μ)Id − T0

)
S(μ) = Id, i.e. R(λ+ μ;T0) = S(μ). ��

The assertion σ(T ) \ {0} ⊂ σp(T ) in 11.9(1) can also be formulated as
follows:

11.11 Fredholm alternative. If T ∈ K (X) and λ �= 0, then it holds that:

Either the equation Tx − λx = y is uniquely solvable for every y ∈ X,

or the equation Tx − λx = 0 has nontrivial solutions.

Note: See also theorem 12.8.

11.12 Finite-dimensional case. LetX be a finite-dimensional vector space
over C and let T : X → X be linear. Then there exist pairwise distinct
λ1, . . . , λm ∈ C, where 1 ≤ m ≤ dimX, such that

σ(T ) = σp(T ) = {λ1, . . . , λm} ,

and orders nλj
with the properties in 11.9(2) – 11.9(5), so that

X = N
(
(λ1Id − T )nλ1

)
⊕ · · · ⊕ N

(
(λmId− T )nλm

)
.
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Proof. We equip X with an arbitrary norm. Then T ∈ K (X) (see 10.2(3)),
and similarly Tμ := T −μId for μ ∈ C. Now apply 11.9 to e.g. T0 and T1. ��

11.13 Jordan normal form. Let T ∈ K (X) and let λ ∈ σp(T ) be as in
11.9 or 11.12, respectively. Set A := λId− T . Then:

(1) For n = 1, . . . , nλ there exist subspaces En with N (An−1) ⊕ En ⊂
N (An) such that

N
(
Anλ
)
=

nλ⊕
k=1

Nk , where Nk :=

k−1⊕
l=0

Al(Ek) .

(2) The subspaces Nk, k = 1, . . . , nλ, are T -invariant and the dimensions
dk := dimAl(Ek) are independent of l ∈ {0, . . . , k − 1}.
(3) If {ek,j ; j = 1, . . . , dk} are bases of Ek, then

{Alek,j ; 0 ≤ l < k ≤ nj , 1 ≤ j ≤ dk}

is a basis of N (Anλ) and with

x =
∑
k,j,l

αk,j,l A
lek,j and y =

∑
k,j,l

βk,j,l A
lek,j

it holds that Tx = y is equivalent to⎡⎢⎢⎢⎣
βk,j,0

...

...
βk,j,k−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
λ −1 0

0
. . .

. . .
. . .

. . . −1
0 λ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

αk,j,0

...

...
αk,j,k−1

⎤⎥⎥⎥⎦ ,
i.e. the matrix representing T with respect to this basis has a Jordan normal
form.

Proof. If E is a subspace with N (An−1) ⊕ E ⊂ N (An), then

N (An−l−1) ⊕ Al(E) ⊂ N (An−l) for 0 ≤ l < n,

and Al is injective on E. To see this, note that if x ∈ E with Alx = 0, then
also An−1x = 0 because l ≤ n − 1, and so x ∈ N (An−1) ∩ E = {0}. Based
on this observation we inductively choose En for n = nλ, . . . , 1 such that

N (An) = N (An−1) ⊕
nλ−n⊕
l=0

Al(En+l) .

This yields the desired results. ��
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11.14 Real case. If X is a Banach space over IR and if T ∈ K (X), then
the spectral theorem can be applied to their complexification, i.e. let

X̃ := X × X

and for x = (x1, x2) ∈ X̃, α = a+ ib with a, b ∈ IR, let

αx := (ax1 − bx2, ax2 + bx1) , x := (x1,−x2) .

With the above X̃ becomes a vector space over C. On setting

‖x‖X̃ := sup
θ′∈IR

(
‖cos(θ′)x1 − sin(θ′)x2‖2X + ‖sin(θ′)x1 + cos(θ′)x2‖2X

) 1
2

it holds that
∥∥eiθx∥∥

X̃
= ‖x‖X̃ for x ∈ X̃ and θ ∈ IR, and equipped with this

norm X̃ becomes a Banach space over C. Then

T̃ x := (Tx1, Tx2)

defines the corresponding operator T̃ ∈ K (X̃), so that theorem 11.9 can now
be applied.

Now if λ ∈ σp(T̃ ) with eigenvector e, then

T̃ e = T̃ e = λe = λ e ,

and so λ ∈ σp(T̃ ) with eigenvector e. If λ ∈ IR, then the vectors ek,j in
11.13(3) can be chosen to satisfy ek,j = ek,j . If λ /∈ IR and ek,j as in 11.13(3),
then the vectors ek,j have the properties in 11.13(3) with respect to λ.

Remark: In the case when X is a Hilbert space, the above norm satisfies

‖x‖X̃ =
(
‖x1‖2X + ‖x2‖2X

) 1
2

.



12 Self-adjoint operators

First we prove some fundamental results for the adjoint map (see 12.1–12.6)
and then present a version of the spectral theorem 11.9 for compact normal
operators (theorem 12.12). Here we employ the notation 〈x , x′〉 = 〈x , x′〉X =
x′(x) from 7.4. We remark that the adjoint map of an operator has already
been defined in 5.5(8).

12.1 Adjoint operator. Let X, Y be normed spaces. Then

〈x , T ′y′〉X := 〈Tx , y′〉Y for x ∈ X, y′ ∈ Y ′

defines an isometric embedding T �→ T ′ from L (X;Y ) to L (Y ′;X ′). We call
T ′ the adjoint operator (or the dual operator, or the adjoint) of T .

Proof. For T ∈ L (X;Y ) and y′ ∈ Y ′ we have that 〈Tx , y′〉Y is linear in x,
with

|〈Tx , y′〉Y | ≤ ‖Tx‖Y · ‖y′‖Y ′ ≤ ‖T ‖ · ‖x‖X · ‖y′‖Y ′ .

Hence 〈x , T ′y′〉X := 〈Tx , y′〉Y defines an element T ′y′ ∈ X ′ with

‖T ′y′‖X′ ≤ ‖T ‖ · ‖y′‖Y ′ .

In addition, T ′y′ is linear in y′, and so T ′ ∈ L (Y ′;X ′) with ‖T ′‖ ≤ ‖T ‖.
Now it holds for ‖y′‖Y ′ ≤ 1 and ‖x‖X ≤ 1 that

‖T ′‖ ≥ ‖T ′y′‖X′ ≥ |〈x , T ′y′〉X | = |〈Tx , y′〉Y | .

If Tx �= 0, then it follows from 6.17(1) that there exists a y′ ∈ Y ′ with
‖y′‖Y ′ = 1 and 〈Tx , y′〉Y = ‖Tx‖Y , and hence ‖T ′‖ ≥ ‖Tx‖Y . Therefore
we have shown that

‖T ′‖ ≥ sup
‖x‖X≤1

‖Tx‖Y = ‖T ‖ .

��

12.2 Hilbert adjoint. If X and Y are Hilbert spaces and if RX : X →
X ′ and RY : Y → Y ′ denote the isometries from the Riesz representation
theorem 6.1, then for T ∈ L (X;Y ) let
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T ∗ := R−1
X T ′RY .

Then we have that T ∗ ∈ L (Y ;X) and it is characterized by the relationship

(x , T ∗y)X = (Tx , y)Y for all x ∈ X, y ∈ Y.

In the special case Y = X we call T ∈ L (X) self-adjoint if

T ∗ = T .

12.3 Algebraic properties.

(1) (αT1 + T2)
′ = αT ′

1 + T ′
2 for T1, T2 ∈ L (X;Y ), α ∈ IK.

(2) If X and Y are Hilbert spaces, then

(αT1 + T2)
∗ = αT ∗

1 + T ∗
2 for T1, T2 ∈ L (X;Y ), α ∈ IK.

(3) Id′ = Id.

(4) (T2T1)
′ = T ′

1T
′
2 for T1 ∈ L (X;Y ), T2 ∈ L (Y ;Z).

(5) T ′′JX = JY T for T ∈ L (X;Y ), where JX : X → X ′′ and JY : Y → Y ′′

are the canonical embeddings from 8.2.

(6) If X and Y are Hilbert spaces, then T ∗∗ = T for T ∈ L (X;Y ).

Proof (4),(5),(6). We have

〈x , (T2T1)
′z′〉X = 〈T2T1x , z

′〉Z = 〈T1x , T
′
2z

′〉Y = 〈x , T ′
1T

′
2z

′〉X ,

〈y′ , T ′′JXx〉Y ′ = 〈T ′y′ , JXx〉X′ = 〈x , T ′y′〉X = 〈Tx , y′〉Y
= 〈y′ , JY Tx〉Y ′ .

In the Hilbert space case we have that (Tx , y)Y = (x , T ∗y)X = (T ∗∗x , y)Y .
��

The following result on the null space of T ′ is an immediate consequence
from the definition of the adjoint map.

12.4 Annihilator. For subspaces Z ⊂ X the annihilator Z0 is defined by

Z0 := {x′ ∈ X ′ ; 〈x , x′〉X = 0 for all x ∈ Z} ,

in words: Z0 consists of all the functionals that vanish on Z. It holds that:

(1) If X is a Hilbert space and if RX is as in 12.2, then Z0 = RX(Z⊥).

(2) For T ∈ L (X;Y ) it holds that N (T ′) = R(T )0.

(3) If Z is closed with codimZ < ∞, then dimZ0 = codimZ.

Proof (2). We have that y′ ∈ N (T ′) if and only if for all x ∈ X it holds that
0 = 〈x , T ′y′〉X = 〈Tx , y′〉Y . ��

Proof (3). Let x1, . . . , xn ∈ X be linearly independent with
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X = Z ⊕ span{x1, . . . , xn} .

By 9.16(1), there exist functionals x′
1, . . . , x

′
n ∈ X ′ with x′

j = 0 on Z and〈
xi , x

′
j

〉
= δi,j for i, j = 1, . . . , n. Then x′

j ∈ Z0 and the x′
j are linearly

independent. If x′ is an arbitrary functional from Z0 and

x = z +
∑n

i=1 αixi ∈ X with z ∈ Z, αi ∈ IK,

then

〈x , x′〉 =
∑n

i=1 αi 〈xi , x
′〉 =
∑n

i,j=1 αi 〈xj , x
′〉
〈
xi , x

′
j

〉
=
〈
x ,
∑n

j=1 〈xj , x
′〉x′

j

〉
,

i.e. x′ is a linear combination of x′
1, . . . , x

′
n. Hence we have shown that Z0 =

span{x′
1, . . . , x

′
n} and so dimZ0 = n. ��

12.5 Theorem. Let X and Y be Banach spaces and let T ∈ L (X;Y ). Then
T−1 ∈ L (Y ;X) exists if and only if (T ′)−1 ∈ L (X ′;Y ′) exists, and

(T−1)′ = (T ′)−1 .

Proof. If T is invertible, then it follows from 12.3(3) and 12.3(4) that

Id = (T−1T )′ = T ′(T−1)′ and similarly Id = (T−1)′T ′ ,

i.e. (T ′)−1 = (T−1)′ ∈ L (X ′;Y ′). Conversely, if T ′ is invertible, then the
above result yields that T ′′ is invertible, and hence it maps closed sets into
closed sets. It follows from 12.3(5), since JX and JY are isometries, that

R(JY T ) = R(T ′′JX) = T ′′(R(JX)
)

is closed in Y ′′. Hence,

R(T ) = J−1
Y

(
R(JY T )

)
is also closed. As T ′ is injective, it follows from 12.4 that {0} = N (T ′) =
R(T )0. Recalling theorem 6.16 then yields that Y = R(T ) = R(T ).
This shows that T is surjective. The injectivity of T ′′ yields that {0} =
N (T ′′JX) = N (JY T ) = N (T ), which shows that T is also injective. The
continuity of T−1 then follows from the inverse mapping theorem 7.8. ��

We now investigate the adjoint of compact operators and then in partic-
ular normal compact operators.

12.6 Theorem (Schauder). Let X and Y be Banach spaces and let T ∈
L (X;Y ). Then:

T ∈ K (X;Y ) ⇐⇒ T ′ ∈ K (Y ′;X ′) .
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Proof ⇒. We have that S := T
(
B1(0)

)
is compact in Y , and for y′ ∈ Y ′

‖T ′y′‖X′ = sup
‖x‖X<1

|〈x , T ′y′〉| = sup
‖x‖X<1

|〈Tx , y′〉|

= sup
y∈S

|〈y , y′〉| = ‖y′‖C0(S) .

By 10.1, we have to show the precompactness of T ′(B1(0)
)
⊂ X ′. This follows

from the precompactness of the set

A :=
{
y′|S ∈ C0(S) ; y′ ∈ Y ′, ‖y′‖Y ′ < 1

}
in C0(S) .

Indeed, if A is precompact, then every sequence
(
y′n|S
)
n∈IN

in A contains a

subsequence that converges in C0(S), so that the above identity yields that
(T ′y′n)n∈IN is a Cauchy sequence in X ′, and so convergent in X ′.

Now we prove the precompactness of A. By the Arzelà-Ascoli theorem
(see 4.12 in the version for compact metric spaces S), the precompactness
of A follows if A is a bounded and equicontinuous subset of C0(S). But for
y′|

S
∈ A and y = limn→∞ Txn ∈ S with xn ∈ B1(0) ⊂ X it holds that

|〈y , y′〉| = lim
n→∞

|〈Txn , y
′〉| ≤ ‖T ‖ ,

and for y′|S ∈ A and y1, y2 ∈ S we have that

|〈y1 , y′〉 − 〈y2 , y′〉| = |〈y1 − y2 , y
′〉| ≤ ‖y1 − y2‖Y ,

which yields the desired result.

Remark: The claim can also be shown with the help of the sequential com-
pactness, where a diagonal sequence has to be selected. ��

Proof ⇐. The previously shown result yields that T ′′ ∈ K (X ′′;Y ′′). But
by 12.3(5), we have T = J−1

Y T ′′JX , because the right-hand side is well de-
fined, since by 12.3(5) the range of T ′′JX is contained in the closed subspace
R(JY T ). The compactness of T then follows from 10.3. ��

12.7 Remark. With the help of 12.6 we can give an alternative proof of
11.8(5). We had to show that dimN (A) ≤ codimR(A). Now it follows from
12.6 and 11.8(4), applied to A′ = Id − T ′, that

codimR(A′) ≤ dimN (A′) .

Then we obtain the desired result, if we can prove the two inequalities

dimN (A) ≤ dimN (A′′) and dimN (A′) ≤ codimR(A) .

This is because we obtain dimN (A′′) ≤ codimR(A′), on applying the lat-
ter inequality to A′, and all four inequalities together then yield the claim.
Subsequently we even obtain equality in all inequalities, and so in particular

dimN (A) = dimN (A′) = codimR(A) .
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Now by 12.3(5) (see the proof of 12.5), N (A′′JX) = N (JY A) = N (A),
which implies that dimN (A) ≤ dimN (A′′) using the injectivity of JX .
Moreover, it follows from 12.4 that

dimN (A′) = dimR(A)0 = codimR(A) .

This also implies an improvement of the result in 11.11.

12.8 Theorem (Fredholm). Let X be a Banach space, let T ∈ K (X) and
let λ �= 0. Then: For y ∈ X the system of equations

Tx − λx = y

has a solution x ∈ X, if and only if 〈y , x′〉 = 0 for all solutions x′ ∈ X ′ of
the homogeneous adjoint equation

T ′x′ − λx′ = 0 .

The corresponding (finite) number of side conditions on y is equal to the
number of linearly independent solutions z of the homogeneous equation

Tz − λz = 0 .

Proof. On setting A := λId − T the last claim follows from dimN (A′) =
dimN (A), which was shown in 12.7. The condition on y is, recall 12.4(2),

〈y , x′〉 = 0 for all x′ ∈ N (A′) = R(A)0 .

Combining 11.8(2) and theorem 6.16 yields that this is equivalent to y ∈
R(A), i.e. to the solvability of the equation Ax = y. ��

12.9 Normal operators. Let X be a Hilbert space (over IK). Then the
operator T ∈ L (X) is called normal if

T ∗T − TT ∗ = 0 ,

i.e. if T and T ∗ commute. Every self-adjoint operator is normal. If T is normal,
then so is λId − T for all λ ∈ IK. Moreover:

T normal ⇐⇒ ‖Tx‖X = ‖T ∗x‖X for all x ∈ X.

In particular, this implies that for normal operators and all λ ∈ IK it holds
that

N (λId − T ) = N (λId− T ∗) .

Proof ⇒. (Tx , Tx)X = (x , T ∗Tx)X = (x , TT ∗x)X = (T ∗x , T ∗x)X . ��

Proof ⇐. The identity

1
4

(
‖a+ b‖2X − ‖a − b‖2X

)
= Re (a , b)X for a, b ∈ X

implies that
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Re (Tx , Ty)X = Re (T ∗x , T ∗y)X for x, y ∈ X.

Replacing y with iy in the case IK = C then yields that

0 = (Tx , Ty)X − (T ∗x , T ∗y)X = (T ∗Tx − TT ∗x , y)X for x, y ∈ X,

and so T ∗T − TT ∗ = 0. ��

Next we investigate the spectrum of normal operators in Hilbert spaces.
We begin with a strengthening of the result 11.4 for the spectral radius.

12.10 Lemma. If X is a Hilbert space over C, X �= {0} and if T ∈ L (X)
is normal, then

sup
λ∈σ(T )

|λ| = ‖T ‖ .

Proof. Let T �= 0. By 11.4, we obtain the desired result if we can show that

‖Tm‖ ≥ ‖T ‖m for m ≥ 0 (then equality holds as well).

For m = 0, 1 this holds trivially. For m ≥ 1 and x ∈ X

‖Tmx‖2X =
(
T ∗Tmx , Tm−1x

)
X

≤ ‖T ∗Tmx‖X
∥∥Tm−1x

∥∥
X

=
∥∥Tm+1x

∥∥
X

∥∥Tm−1x
∥∥
X

(recall 12.9)

≤
∥∥Tm+1

∥∥ ‖T ‖m−1‖x‖2X ,

and so
‖Tm‖2 ≤

∥∥Tm+1
∥∥ ‖T ‖m−1

.

Hence on assuming that ‖Tm‖ ≥ ‖T ‖m already holds, it follows that

∥∥Tm+1
∥∥ ≥ ‖Tm‖2

‖T ‖m−1 ≥ ‖T ‖2m−(m−1)
= ‖T ‖m+1

.

��

12.11 Example. Let (ek)k∈N , N ⊂ IN, be an orthonormal system in the
Hilbert space X and let λk ∈ IK with |λk | ≤ r < ∞ for k ∈ N . Then

Tx :=
∑
k∈N

λk (x , ek)X ek

defines an operator T ∈ L (X), since (recall 9.6 and 9.7)

‖Tx‖2X =
∑
k∈N

|λk |2|(x , ek)X |2 ≤ r2
∑
k∈N

|(x , ek)X |2 ≤ r2‖x‖2X .

On noting that

(Tx , y)X =
∑
k∈N

λk (x , ek)X (ek , y)X =

(
x ,
∑
k∈N

λk (ek , y)Xek

)
X
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it follows that
T ∗x =

∑
k∈N

λk (x , ek)X ek ,

and so
T ∗Tx (as well as TT ∗x) =

∑
k∈N

|λk |2 (x , ek)X ek .

Hence T is normal. If N is finite, then T is also compact (recall 10.2(3)).

Claim: In the case N = IN we have that

T is compact ⇐⇒ lim
k→∞

λk = 0 .

Proof ⇐. Setting

Tnx :=
∑
k≤n

λk (x , ek)X ek

defines Tn ∈ K (X) and similarly to the above estimete we have

‖Tx − Tnx‖2X ≤ sup
k>n

|λk |2 ‖x‖2X ,

and so
‖T − Tn‖ ≤ sup

k>n
|λk | −→ 0 as n → ∞.

This shows that T ∈ K (X) on recalling 10.2(2). ��

Proof ⇒. If we assume that there exists a subsequence kj → ∞ with
∣∣λkj

∣∣ ≥
c > 0, then the ekj

are bounded and for i �= j it follows that

∥∥Teki
− Tekj

∥∥2 =
∥∥λki

eki
− λkj

ekj

∥∥2 =

√
|λki

|2 +
∣∣λkj

∣∣2 ≥ c ,

which contradicts the compactness of T . ��

Next we want to show that every compact normal operator can be written
in the form of the previous example.

12.12 Spectral theorem for compact normal operators. If X is a
Hilbert space over C and if T ∈ K (X) is normal, T �= 0, then:

(1) There exist an orthonormal system (ek)k∈N inX and a sequence (λk)k∈N

in C with N ⊂ IN such that λk �= 0 and

Tek = λkek for k ∈ N , σ(T ) \ {0} = {λk ; k ∈ N} ,

i.e. the numbers λk are the nonzero eigenvalues of T with eigenvectors ek. If
N is infinite, then λk → 0 as k → ∞.

(2) The orders satisfy: nλk
= 1 for all k.
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(3) X = N (T ) ⊥ clos (span{ek ; k ∈ N}).
(4) Tx =

∑
k∈N λk (x , ek)X ek for all x ∈ X.

Observe: In this notation the values λk need not be distinct for different k.

Proof. By the spectral theorem for compact operators (theorem 11.9), we
know that σ(T )\{0} consists of eigenvalues λk, k ∈ N ⊂ IN, with λk → 0 for
k → ∞, if N is infinite. In this numeration we assume that all the values λk

are pairwise distinct. In addition, Ek := N (λkId−T ) are finite-dimensional.
Moreover, we define E0 := N (T ) and λ0 := 0. We have from 12.9 that

Ek = N (λkId − T ∗) for k ∈ N ∪ {0}. (12-8)

This implies that the eigenspaces are perpendicular to each other, i.e. that

Ek ⊥ El for k, l ∈ N ∪ {0} with k �= l.

Indeed, if xk ∈ Ek and xl ∈ El, then

λk (xk , xl)X = (Txk , xl)X = (xk , T
∗xl)X =

(
xk , λlxl

)
X

= λl (xk , xl)X .

Since λk �= λl, we conclude that (xk , xl)X = 0. We claim that

X = clos

( ⊥
k∈N∪{0}

Ek

)
. (12-9)

To show this, let

y ∈ Y :=
( ⊥
k∈N∪{0}

Ek

)⊥
.

If x ∈ Ek, k ∈ N ∪ {0}, then (12-8) yields

(Ty , x)X = (y , T ∗x)X =
(
y , λkx

)
X

= λk (y , x)X = 0 ,

since Y ⊂ E⊥
k . Hence Ty ∈ Y , i.e. Y is a T -invariant, closed subspace. Now

consider
T0 := T |Y , and so T0 ∈ K (X) and T0 is normal.

As T0 is normal, it follows from 12.10, on assuming that Y �= {0}, that there
exists a λ ∈ σ(T0) such that |λ| = ‖T0‖. If we assume that T0 �= 0, then by
the spectral theorem 11.9(1), λ is an eigenvalue of T0, and hence also of T ,
i.e. Ek ∩ Y �= {0} for some k ∈ N , which contradicts the definition of Y .

Hence, T0 = 0, i.e. Y ⊂ N (T ) = E0, and so Y ⊂ E0 ∩ E⊥
0 = {0}.

This proves the decomposition of the space X (see 9.17(3)). Now if Qk for
k ∈ N ∪ {0} denotes the orthogonal projection onto Ek, then it follows that
(see 9.20(2))

x =
∑

k∈N∪{0}
Qkx for x ∈ X,
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and so
Tx =

∑
k∈N∪{0}

TQkx =
∑
k∈N

λkQkx . (12-10)

This now implies the desired representation of T : With dk := dimEk, choose
orthonormal bases (ek1, . . . , ekdk

) of Ek. Then (see 9.6)

Qkx =

dk∑
j=1

(Qkx , ekj)X ekj =

dk∑
j=1

(x , ekj)X ekj .

From (12-10) it follows in particular that Ek = N
(
(λkId − T )2

)
, and so

nλk
= 1. To see this, note that for x ∈ N

(
(λkId − T )2

)
we have that

0 = (λkId − T )2x =
∑

j∈N∪{0}
(λk − λj)

2Qjx ,

and so Qjx = 0 for j �= k, i.e. x = Qkx ∈ Ek. ��

If the operator T in 12.12 is self-adjoint, then the following holds true:

12.13 Remark. Let X be a Hilbert space over C and let T ∈ L (X).

(1) If T is self-adjoint, i.e. if T ∗ = T , then σp(T ) ⊂ [−‖T ‖, ‖T ‖] ⊂ IR, and
if T is compact, then ‖T ‖ or −‖T ‖ is an eigenvalue.

(2) If T is self-adjoint and positive semidefinite, i.e. if (Tx , x)X ≥ 0 for
all x ∈ X, then σp(T ) ⊂ [0, ‖T ‖], and if T is compact, then ‖T ‖ is an
eigenvalue.

Proof. If λ is an eigenvalue and x a corresponding eigenvector, then

λ‖x‖2X = (λx , x)X = (Tx , x)X = (x , T ∗x)X

= (x , Tx)X = (x , λx)X = λ‖x‖2X ,

and so λ = λ, since x �= 0. The second claim in (1) then follows from 11.9(1)
and 12.10. In (2) we have in addition that

λ‖x‖2X = (Tx , x)X ≥ 0 ,

and so λ ≥ 0. ��

12.14 Eigenvalue problem as a variational problem. Let X be a
Hilbert space over C and let T ∈ K (X), T �= 0, be self-adjoint and pos-
itive semidefinite. Since (Tx , x)X ∈ IR for all x ∈ X, we can consider the
following variational problem:

Maximize (Tx , x)X under the constraint ‖x‖ = 1.
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We want to show that this variational problem has a solution, and that

sup
λ∈σ(T )

λ = sup
‖x‖≤1

(Tx , x)X .

(On recalling from 12.13(2) that σ(T ) ⊂ [0, ‖T ‖], we note that the supre-
mum on the left-hand side is well defined and finite.) For the proof we denote
the supremum on the right-hand side by s. For λ ∈ σ(T ) \ {0} it holds that
λ = (Tx , x)X ≤ s if x is an eigenvector of T corresponding to λ with ‖x‖ = 1,
and hence 12.10 yields that

0 < ‖T ‖ = sup
λ∈σ(T )

λ ≤ s .

We now choose points xk ∈ X with ‖xk‖ = 1 and

(Txk , xk)X ↗ s as k → ∞.

It follows from theorem 8.10 (see 8.11(1)) that there exist a subsequence and
an x ∈ X such that

xk → x weakly in X as k → ∞,

and, by 8.3(4), it holds that ‖x‖ ≤ 1. Being compact, it follows from 10.2(1)
that T is also completely continuous, and so Txk → Tx (strongly) in X,
which on recalling 8.3(6) yields that

(Txk , xk)X → (Tx , x)X as k → ∞,

i.e. (Tx , x)X = s. Moreover, s > 0 implies that x �= 0. In fact, ‖x‖ = 1,
because otherwise (

T
( x

‖x‖

)
,

x

‖x‖

)
X

=
s

‖x‖2
> s .

Hence we have shown that the supremum is attained for x. In addition, it
follows for all y ∈ X and ε ∈ IR that

s ≥ (T (x+ εy) , x+ εy)X
‖x+ εy‖2

=
(Tx , x)X + 2εRe (Tx , y)X + ε2 (Ty , y)X

‖x‖2 + 2εRe (x , y)X + ε2‖y‖2
,

where we used the fact that T is self-adjoint, and hence that

0 =
d

dε

(T (x+ εy) , x+ εy)X
‖x+ εy‖2

∣∣∣∣∣
ε=0

= 2Re (Tx , y)X − s 2Re (x , y)X = 2Re (Tx − sx , y)X .

As this holds for all y, it follows that Tx = sx, and so

s ≤ sup
λ∈σ(T )

λ .

For the determination of all eigenvectors consider the space X̃ := span{x}⊥.
Since for x̃ ∈ X̃
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(T x̃ , x)X = (x̃ , Tx)X = s (x̃ , x)X = 0 ,

we have that X̃ is a T -invariant subspace. Hence we can repeat the above
procedure on X̃ in order to obtain all nonzero eigenvalues of T and the
decomposition of the space X according to 12.12.

Next let us apply the spectral theorem 12.12 for self-adjoint operators to
integral operators (12.15) and differential operators (12.17).

12.15 Self-adjoint integral operator. Let Ω ⊂ IRn be open, let K ∈
L2(Ω × Ω) with K(x, y) = K(y, x), and let T be the corresponding Hilbert-
Schmidt operator from 5.12 (see 10.15). Then there exist a finite or countably
infinite orthonormal system (fk)k∈N in L2(Ω) with N ⊂ IN, and real numbers
λk �= 0 for k ∈ N with (if N infinite) λk → 0 as k → ∞, such that

Tfk = λkfk ,
∑
k∈N

λ2
k ≤ ‖K‖2L2(Ω×Ω)

and
K(x, y) =

∑
k∈N

λkfk(x)fk(y) for almost all (x, y),

where (if N is infinite) this series converges in L2(Ω × Ω).

Proof. We recall from 10.15 that T ∈ K
(
L2(Ω)

)
. For f, g ∈ L2(Ω)

(g , Tf)L2 =

∫
Ω

∫
Ω

K(x, y) g(x) f(y) dy dx .

It follows from K(x, y) = K(y, x) that this is equal to (f , Tg)L2 , and so T is
self-adjoint and we can apply 12.12. Let fk, k ∈ N ⊂ IN, be the eigenfunctions
of T from 12.12 and let λk be the corresponding eigenvalues, which by 12.13
are real. It follows from the proof of 10.15 that∑

k∈N

λ2
k =
∑
k∈N

‖Tfk‖2L2 ≤ ‖K‖2L2 .

Consider the series

H(x, y) :=
∑
k∈N

λkfk(x)fk(y) .

In the case that N is infinite, and so N = IN without loss of generality, it
holds for m ≤ l, since ‖fk‖L2 = 1, that

∫
Ω

∫
Ω

∣∣∣∣∣∣
l∑

j=m

λjfj(x)fj(y)

∣∣∣∣∣∣
2

dx dy

=

l∑
j,k=m

λjλk

∫
Ω

∫
Ω

fj(x)fj(y) fk(x)fk(y) dx dy =

l∑
j=m

λ2
j −→ 0



400 12 Self-adjoint operators

as m → ∞, i.e. the series converges in L2(Ω × Ω).
We now prove the representation of K. For g ∈ L2(Ω) it follows from

12.12(4) that

Tg =
∑
k∈N

λk (g , fk)L2 fk ,

which means that for almost all x∫
Ω

K(x, y)g(y) dy =
∑
k∈N

λkfk(x)

∫
Ω

g(y)fk(y) dy , (12-11)

with the set where this need not hold initially depending on g. However, on
noting that Fubini’s theorem yields for almost all x that

K(x,·) and H(x,·) =∑
k∈N

λkfk(x)fk(·) in L2(Ω),

where the series, similarly to the above, converges in L2(Ω), it follows that∫
Ω

K(x, y)g(y) dy =

∫
Ω

H(x, y)g(y) dy

for almost all x. For such x both sides of this identity depend continuously
on g ∈ L2(Ω). As L2(Ω) is separable, it follows that for almost all such x
this identity holds for all g ∈ L2(Ω), which on recalling 4.22 implies the
representation of K. ��

12.16 Eigenvalue problem for the Laplace operator. Let Ω ⊂ IRn be
open and bounded. Consider functions v : ]0,∞[ × Ω → IR that satisfy the
linear wave equation

∂2
t v − Δv = 0 in ]0,∞[× Ω, (12-12)

with the boundary condition

v = 0 on ]0,∞[× ∂Ω. (12-13)

Here t denotes the time variable and Δv :=
∑n

i=1 ∂
2
xi
v is the Laplace op-

erator. The equation describes an approximation of the oscillation of an
idealized membrane (in the case n = 2) in the linear case that is clamped
along ∂Ω, where x �→ (x, v(t, x)) denotes the membrane at time t, with the
membrane at rest being described by the set Ω × {0} (the map x �→ (x, 0)).
Hence v denotes the displacement of the membrane, and the differential equa-
tion is valid for small displacements of a thin membrane. The separation of
variables

v(t, x) = w(t)u(x)

yields (if w and u are twice continuously differentiable) that



12 Self-adjoint operators 401

w′′u = wΔu ,

which in the case v �= 0 is only possible if there exists a λ ∈ IR with

Δu+ λu = 0 in Ω ,

w′′ + λw = 0 in ]0,∞[ .

The boundary condition (12-13) implies that u(x) = 0 for x ∈ ∂Ω. Then we
formally obtain, on multiplying the equation for u by u and integrating over
Ω, that

λ

∫
Ω

u2 dLn = −
∫
Ω

Δu · u dLn

= −
∫
∂Ω

u∇u • νΩ dHn−1︸ ︷︷ ︸
=0

+

∫
Ω

|∇u|2 dLn ≥ 0 ,

and so λ > 0, because u �= 0.
For every λ > 0 the ordinary differential equation for w has the general

solution

w(t) = Re(aeiμt) = a1 cos(μt) + a2 sin(μt) with a ∈ C and μ =
√
λ .

To see this, let w ∈ C2([t0, t1[ ; IR) be an arbitrary solution on the time
interval [t0, t1[. Setting

a1 := w(t0) , a2 := 1
μw

′(t0) , a := a1 + ia2

we have that

w∗(t) := Re(a eiμ(t−t0)) = a1 cos
(
μ(t − t0)

)
+ a2 sin

(
μ(t − t0)

)
is a particular solution. Then the vector-valued function

W :=

[
w − w∗
w′ − w′

∗

]
satisfies

W ′ =

[
w′ − w′

∗
−λ(w − w∗)

]
=

[
0 1

−λ 0

]
W ,

and so |W ′ | ≤ C|W |. Since W (t0) = 0, it follows for t0 < t < t1 that

|W (t)| =
∣∣∣∣∫ t

t0

W ′(s) ds

∣∣∣∣ ≤ C ·
∫ t

t0

|W (s)| ds ≤ C|t − t0 | sup
[t0,t]

|W | .

Taking the supremum over all t ∈ [t0, t0 + δ] yields that

sup
[t0,t0+δ]

|W | ≤ C δ sup
[t0,t0+δ]

|W | ,
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and so, say for δ = 1
2C , that W = 0 on [t0, t0 + δ]. Repeating the argument

now for t0+δ in place of t0 yields, on noting that the choice of δ only depended
on λ, after finitely many steps that W = 0 on [t0, t1[, which we wanted to
show.

Now we consider the eigenvalue problem for u. The boundary condition
u = 0 on ∂Ω means that the weak formulation of the eigenvalue problem,
analogously to 6.5, is given by:

Find λ ∈ IR and u ∈ W 1,2
0 (Ω; IR) with u �= 0 and∫

Ω

(∇ζ • ∇u − λζu) dLn = 0 for all ζ ∈ W 1,2
0 (Ω; IR) .

(12-14)

12.17 Theorem. The eigenvalue problem (12-14) has the following solution:
There exist pairwise distinct λk > 0 (the eigenvalues) for k ∈ IN and finite-
dimensional subspaces Ek ⊂ W 1,2

0 (Ω; IR) (the eigenspaces) with the following
properties:

(1) It holds that λk → ∞ as k → ∞ and

L2(Ω; IR) = clos

(⊥
k∈IN

Ek

)
.

(2) It holds that (λ, u) ∈ IR × W 1,2
0 (Ω; IR) with u �= 0 is a solution to the

eigenvalue problem in (12-14) if and only if

λ = λk , u ∈ Ek for some k ∈ IN.

(3) It holds that Ek ⊂ C∞(Ω; IR) for k ∈ IN, and hence u ∈ Ek are classical
solutions of

Δu+ λku = 0 in Ω.

(4) The functions in Ek are real analytic. The analyticity of the eigenfunc-
tions u ∈ Ek implies that Ω ∩{u = 0} is an analytic set. For n = 2 these sets
are called the nodal lines of the membrane corresponding to the eigensolu-
tion u.

Proof (1), (2). In the following let IK = IR. It follows from theorem 6.8 that
for f ∈ L2(Ω) there exists a unique uf ∈ W 1,2

0 (Ω) such that∫
Ω

(∇ζ • ∇uf − ζf) dLn = 0 for all ζ ∈ W 1,2
0 (Ω) ,

and with a constant C that is independent of f we have

‖uf ‖W 1,2(Ω) ≤ C · ‖f ‖L2(Ω) for all f ∈ L2(Ω) .

On noting that uf depends linearly on f , the rule Tf := uf defines an oper-

ator in L
(
L2(Ω) ; W 1,2

0 (Ω)
)
. Now the embedding of W 1,2

0 (Ω) into L2(Ω) is
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compact (see 10.9 or Rellich’s embedding theorem A8.1). Hence if we consider
Tf as an element in L2(Ω), then T ∈ K

(
L2(Ω)

)
. (Note that T = A−1J in

10.14(3).)
In addition, T is self-adjoint and positive semidefinite, because upon

choosing ζ = Tg with an arbitrary g ∈ L2(Ω) in the weak differential equa-
tion for Tf , we obtain, due to symmetry, that

(Tg , f)L2(Ω) =

∫
Ω

∇Tg • ∇Tf dLn = (g , Tf)L2(Ω) .

Setting here g = f we find that

(Tf , f)L2(Ω) =

∫
Ω

|∇Tf |2 dLn ≥ 0 .

Moreover, T is injective, since Tf = 0 implies that∫
Ω

ζf dLn = 0 for all ζ ∈ C∞
0 (Ω) ,

and hence f = 0 almost everywhere in Ω, recall 4.22. With the help of the
complexification in 11.14 it then follows that: The spectral theorem 12.12 for
compact normal operators and 12.13 yield the existence of pairwise distinct
(as in 11.9, we group equal eigenvalues together) values 0 < λk ∈ IR, k ∈ IN,
with λk → ∞ (!) as k → ∞, such that the subspaces Ek := N (λ−1

k Id−T ) �=
{0} are finite-dimensional and

L2(Ω) = ⊥k∈IN Ek .

Here we have used that T is injective. We observe that there must exist in-
finitely many eigenvalues because L2(Ω) is infinite-dimensional, while each of
the null spaces is finite-dimensional. Thus we have included all the eigenvalues
of T .

Since T maps into W 1,2
0 (Ω), we have that Ek ⊂ W 1,2

0 (Ω). Hence u ∈ Ek

means that u ∈ W 1,2
0 (Ω) with T (λku) = u, i.e.∫

Ω

(∇ζ • ∇u − λkζu) dL
n = 0 for all ζ ∈ W 1,2

0 (Ω) . (12-15)

��

Proof (3). If u ∈ Ek, then (12-15) holds for ζ ∈ C∞
0 (Ω). Since λku ∈ L2

loc(Ω),

it follows from Friedrichs’ theorem (see A12.2) that u ∈ W 2,2
loc (Ω). Here the

space W 2,2
loc (Ω) is defined as in 5.13(4). Then for i = 1, . . . , n we replace

the test function ζ in (12-15) by −∂iζ and obtain from the definition of the
Sobolev spaces that ∫

Ω

(
∇ζ • ∇∂iu − λkζ∂iu

)
dLn = 0 ,
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where now λk∂iu ∈ L2
loc(Ω), so that Friedrichs’ theorem yields that ∂iu ∈

W 2,2
loc (Ω) for i = 1, . . . , n, and hence u ∈ W 3,2

loc (Ω). Repeatedly applying this
argumentation we can successfully increase the regularity of u and conclude,
thanks to Sobolev’s embedding theorem 10.13, that

u ∈
⋂

m∈IN

Wm,2
loc (Ω) ⊂ C∞(Ω) .

��

Proof (4). (For n = 1 we obtain the desired result on writing u, similarly to
the solution of the eigenvalue problem for w, as an exponential function.) We
need to quantify the bounds on the derivatives of u. For all multi-indices α

Δ∂αu = −λk∂
αu .

Now if B3R(x0) ⊂ Ω and 0 < κ0 < κ1 ≤ 3, then it follows from A12.1, on
setting Br := Br(x0), that

‖∇∂αu‖L2(Bκ0R) ≤ C
(
κ1Rλk +

1

(κ1 − κ0)R

)
‖∂αu‖L2(Bκ1R) .

Iterating this inequality we obtain for 0 < κ0 < κ1 < . . . < κl ≤ 3 and β
with |β | = l that

∥∥∂βu
∥∥
L2(Bκ0R)

≤
(C
R

)l l∏
j=1

(
3R2λk +

1

(κj − κj−1)

)
· ‖u‖L2(BκlR

) .

Set κj := 2 + j
l . Then for large l∥∥∂βu

∥∥
L2(B2R)

≤ (Cl)l‖u‖L2(B3R) ,

where C and all of the following constants only depend on n and R, and
where here and below we use the usual convention on constants. Now on
choosing l for a given large m ∈ IN such that l − n

2 − 1 ≤ m < l − n
2 , we

obtain with Sobolev’s embedding theorem 10.8 for all |α| = m the bound

‖∂αu‖C0(BR) ≤ C
∑
|β |≤l

∥∥∂βu
∥∥
L2(B2R)

≤ C
(
1 +

∑
0<|β |≤l

(C|β |)|β |
)
‖u‖L2(B3R)

≤ C
(
1 + (Cl)l(l + 1)n

)
‖u‖L2(B3R)

≤ (Cm)m+2n‖u‖L2(B3R) for large m.

This implies that the power series (let x0 = 0 without loss of generality)
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u∗(x) :=
∑
|α|≥0

∂αu(0)

α!
xα

has a positive radius of convergence. To see this, note that with e := x
|x| we

have ∑
|α|≥1

|∂αu(0)|
α!

|xα | =
∞∑

m=1

( ∑
|α|=m

|∂αu(0)| |eα |
α!

)
|x|m

≤
∞∑

m=1

( ∑
|α|=m

|eα |
α!

)
(Cm)m+2n|x|m‖u‖L2(B3R) .

Setting

p(x) :=
(x • ẽ)m

m!
with ẽi := sign ei for all i

yields, if ∂e denotes the partial derivative in the direction e, that∑
|α|=m

|eα |
α!

=
∑

|α|=m

∂αp(0)

α!
eα =

1

m!
∂m
e p(0) =

(e • ẽ)m
m!

≤ nm

m!
.

Hence the radius of convergence is positive, if

m

√
nmmm+2n

m!
= n
(

m
√
m
)2n m

m
√
m!

remains bounded as m → ∞. But this is easily seen, since

log
m
√
m! =

1

m

m∑
j=1

log j ≥
m∑
j=1

∫ 1+ j
m

1+ j−1
m

log(m(s − 1)) ds

=

∫ 2

1

log(m(s − 1)) ds = logm −
∫ 1

0

|log s| ds .

Similarly, we obtain that u = u∗ in a neighbourhood of 0, because the Taylor
expansion yields for |x| ≤ R that∣∣∣∣∣∣u(x) −

∑
|α|≤m−1

∂αu(0)

α!
xα

∣∣∣∣∣∣ =
∣∣∣∣∣∣m
∫ 1

0

(1 − s)m−1
∑

|α|=m

∂αu(sx)

α!
xα ds

∣∣∣∣∣∣
≤
∑

|α|=m

|eα |
α!

‖∂αu‖C0(BR) |x|m ,

which, in much the same way as above, converges to 0 as m → ∞, if |x| is
sufficiently small. ��
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It remains to discuss under what conditions the eigenfunctions u ∈ Ek

satisfy the boundary condition u = 0 in the classical sense. This can be
answered, for example, with the regularity theory up to the boundary. With
the help of theorem A12.3 it follows, as in the proof of 12.17(3), that u ∈
Wm,2(Ω), provided Ω has a Cm−1,1-boundary. Then it follows from 10.13
that u ∈ C0(Ω) (upon modification on a null set), if m − n

2 > 0 (for n = 2
this is satisfied for m = 2, i.e. for domains Ω with C1,1-boundary).

The eigenvalue problem for the Laplace operator can also be treated as a
minimum problem. To this end, consider

λ∗ := inf
{∫

Ω

|∇u|2 dLn ; u ∈ W 1,2
0 (Ω) and

∫
Ω

|u|2 dLn = 1
}
.

The infimum is attained (cf. 8.17), because if (uj)j∈IN is a minimizing se-
quence, i.e. if∫

Ω

|∇uj |2 dLn −→ λ∗ as j → ∞ and

∫
Ω

|uj |2 dLn = 1 ,

then (uj)j∈IN is bounded in the Hilbert space W 1,2
0 (Ω), and so there exists

a subsequence such that uj → u∗ weakly in W 1,2
0 (Ω). Rellich’s embedding

theorem A8.1 then yields that uj → u∗ converges (strongly) in L2(Ω), and
hence (use 8.3(3))∫

Ω

|∇u∗ |2 dLn ≤ lim inf
k→∞

∫
Ω

|∇uk |2 dLn = λ∗ and

∫
Ω

|u∗ |2 dLn = 1 ,

i.e. u∗ solves the minimum problem. It then holds for all v ∈ W 1,2
0 (Ω) and

ε ∈ IR that ∫
Ω

|∇(u∗ + εv)|2 dLn∫
Ω

|u∗ + εv |2 dLn
≥
∫
Ω

|∇u∗ |2 dLn∫
Ω

|u∗ |2 dLn
,

which implies, as in 12.14, that∫
Ω

(∇u∗ • ∇v − λ∗u∗v) dL
n = 0 for all v ∈ W 1,2

0 (Ω) ,

and so u∗ is an eigenfunction, hence by 12.17(2) there exists k ∈ IN with
λ∗ = λk. In addition, observing that for every eigenvalue λk, k ∈ IN, and for
every eigenfunction uk corresponding to the eigenvalue λk it holds that (set
ζ = uk in the weak differential equation)

λ∗ =

∫
Ω

|∇u∗ |2 dLn∫
Ω

|u∗ |2 dLn
≤
∫
Ω

|∇uk |2 dLn∫
Ω

|uk |2 dLn
= λk ,

we conclude that λ∗ must be the smallest eigenvalue. Splitting off the eigen-
function u∗, i.e. considering the minimum problem now on the space
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u ∈ W 1,2

0 (Ω) ;
∫
Ω
u u∗ dL

n = 0
}
,

we inductively obtain, similarly to 12.14, the remaining eigenfunctions and
eigenvalues.

The variational problem in 12.14 may be interpreted as the dual problem
to the one considered here. To this end, note that it follows from 12.14 and
the relation for (Tf , f)L2(Ω) in the proof of 12.17 that

inf
u ∈ W

1,2
0 (Ω)

‖u‖L2 = 1

∫
Ω

|∇u|2 dLn = inf
k∈IN

λk

= (sup
k∈IN

λ−1
k )−1 =

(
sup

f ∈ L
2
(Ω)

‖f ‖L2 = 1

∫
Ω

|∇(Tf)|2 dLn
)−1

.

E12 Exercises

E12.1 Adjoint map on C0. Let f ∈ X := C0([0, 1]; IR) and let T ∈ L (X)
be defined by

Tg := f · g .
Calculate T ′ with the help of the isomorphism between X ′ and rca([0, 1]; IR)
and show that:

(1) T is injective ⇐⇒ f−1(IR \ {0}) is dense in [0, 1].

(2) T ′ is surjective ⇐⇒ f has no roots.

Solution. Let Y := rca([0, 1]; IR), let J : Y → X ′ denote the isometric
isomorphism from 6.23, and let

T ∗ := J−1T ′J ∈ L (Y ) .

For g ∈ X and ν ∈ Y we then have that∫ 1

0

gf dν = 〈Tg , Jν〉C0 = 〈g , T ′Jν〉C0 =

∫ 1

0

g d(T ∗ν) .

Hence the measure T ∗ν is given by

(T ∗ν)(E) =

∫
E

f dν for Borel sets E ⊂ [0, 1].

If f has no roots, then 1
f ∈ X. Defining for μ ∈ Y

ν(E) :=

∫
E

1

f
dμ ,

it follows that
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(T ∗ν)(E) =

∫
E

f · 1
f
dμ = μ(E) ,

i.e. T ∗ is surjective. Conversely, if x0 ∈ [0, 1] is a root of f , then we have for
all ν ∈ Y that

(T ∗ν)
(
{x0}
)
=

∫
{x0}

f dν = 0 ,

i.e. R(T ∗) does not contain the Dirac measure at the point x0. This proves
(2).

If f−1
(
IR \ {0}

)
is dense in [0, 1], then Tg = 0 implies that g = 0 in

the set f−1
(
IR \ {0}

)
. The continuity of g then yields that g = 0 also in

f−1
(
IR \ {0}

)
= [0, 1]. Hence T is injective. Conversely, if f = 0 on an open

interval I ⊂ [0, 1], choose g ∈ X with g �= 0 and g = 0 on [0, 1] \ I. Then
Tg = 0, and so T is not injective. This proves (1). ��

E12.2. If X,Y are Banach spaces and if T ∈ L (X;Y ), then:

(1) T is surjective =⇒ T ′ is injective.

(2) T ′ is surjective =⇒ T injective.

Remark: In (2) the converse in general does not (!) hold, as can be seen from
the example f(x) := x in E12.1.

Solution (1). See 12.4(2). ��

Solution (2). We have from (1) that T ′′ is injective, and then from 12.3(5)
that so is T . ��

E12.3. Consider the Hilbert-Schmidt operator in 12.15: Let Ω be bounded,
let K ∈ C0(Ω × Ω) and let λk > 0 for all k (i.e. T is positive semidefinite).
Then the series in the representation of K converges uniformly in Ω × Ω.

Solution. Without loss of generality let N = IN. It follows that x �→ (Tf)(x)
is continuous in Ω for f ∈ L2(Ω), and so R(T ) ⊂ C0(Ω). Hence the eigen-
functions fk are continuous on Ω. In the proof of 12.15 we established that
for g ∈ L2(Ω) it holds for almost all x that∫

Ω

K(x, y)g(y) dy =
∑
k∈IN

λkfk(x)

∫
Ω

g(y)fk(y) dy . (E12-1)

We now show that∑
k∈IN

λk|fk(x)|2 = K(x, x) for all x ∈ Ω, (E12-2)

where K(x, x) = K(x, x) is real, by our assumptions. To this end, for g ∈
L2(Ω) we define
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g̃ := g −
∑
k≤n

(g , fk)L2 fk .

Noting that (Tg , fk)L2 = (g , Tfk)L2 = λk (g , fk)L2 , we have

0 ≤ (T g̃ , g̃)L2 = (Tg , g)L2 −
∑
k≤n

λk|(g , fk)L2 |2 .

Set g(y) = gε(y) := ϕε(z − y) with a standard Dirac sequence (ϕε)ε>0 and
z ∈ Ω. Then

(Tgε , gε)L2 → K(z, z) and (gε , fk)L2 → fk(z) as ε → 0,

and consequently

0 ≤ K(z, z) −
∑
k≤n

λk|fk(z)|2 .

The continuity of fk and K then yields for all x ∈ Ω that∑
k≤n

λk|fk(x)|2 ≤ K(x, x) and hence
∑
k∈IN

λk|fk(x)|2 ≤ K(x, x) .

In order to prove the reverse inequality we observe that (E12-1) holds for all
x ∈ Ω. To see this, note that

( l∑
k=m

|λkfk(x) (g , fk)L2 |
)2

≤
∑
k∈IN

λ2
k|fk(x)|

2 ·
l∑

k=m

|(g , fk)L2 |2

≤ sup
k∈IN

λk · K(x, x) ·
l∑

k=m

|(g , fk)L2 |2

−→ 0 as m → ∞ uniformly in x,

and so the series on the right-hand side of (E12-1), as a function of x, con-
verges uniformly in Ω. Since the left-hand side of (E12-1) is also a continuous
function of x, we see that (E12-1) holds for all x ∈ Ω. On the other hand,

Tg(x) =
∑
k

λkfk(x) (g , fk)L2

≤
(∑

k

λk|fk(x)|2
) 1

2
(∑

k

λk|(g , fk)L2 |2
) 1

2

,

with ∑
k

λk|(g , fk)L2 |2 =

(∑
k

λk (g , fk)L2 fk , g

)
L2

= (Tg , g)L2 .

Hence for z ∈ Ω and ε → 0
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K(x, z) ←−
∫
Ω

K(x, y)gε(y) dy = Tgε(x)

≤
(∑

k

λk|fk(x)|2
) 1

2 ·
(
(Tgε , gε)L2

) 1
2

−→
(∑

k

λk|fk(x)|2
) 1

2 · K(z, z)
1
2 ,

and so letting z → x we obtain the desired inequality, which proves (E12-2).
It follows from Dini’s theorem that the series in (E12-2) converges uniformly
for x ∈ Ω. Noting that then also∣∣∣∣∣∣

l∑
j=m

λkfk(x)fk(y)

∣∣∣∣∣∣ ≤
( l∑
j=m

λk|fk(x)|2
) 1

2
( l∑
j=m

λk|fk(y)|2
) 1

2 −→ 0

as m → ∞ uniformly in (x, y) ∈ Ω × Ω, yields the desired result. ��

E12.4. Calculate the eigenvalues λ and eigenfunctions u of

u′′ + λu = 0 in Ω, u = 0 on ∂Ω

where Ω = ]0, R[, R > 0.

Solution. By 12.17, we know λ > 0. Similarly to w in 12.16 it then holds
that

u(x) = α1 cos(
√
λ x) + α2 sin(

√
λ x)

with α1, α2 ∈ IR. The boundary conditions yield α1 = 0 and α2 sin(
√
λ R) =

0. Since u �= 0, it follows that α2 �= 0 and
√
λ R = kπ for a k ∈ IN. Hence

the eigensolutions are given by

λk :=
(kπ
R

)2
for k ∈ IN,

uk(x) := ak sin(
√
λk x) with ak �= 0.

It follows that the eigenspaces Ek in 12.17 are one-dimensional and that

L2(]0, R[) = span{uk ; k ∈ IN}

(compare with 9.9 (!)). ��

E12.5. Consider the weak eigenvalue problem

Δu+ λu = 0 in Ω, u = 0 on ∂Ω

on the cuboid
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Ω =

n×
i=1

]0, Ri[ ⊂ IRn , where R1, . . . , Rn > 0.

Show: Define for k = (k1, . . . , kn) ∈ INn

λk :=

n∑
i=1

λi
ki

with λi
j :=
( jπ
Ri

)2
,

ek(x) :=

n∏
i=1

eiki
(xi) with eij(z) :=

√
2

Ri
sin
( jπ
Ri

z
)
.

Then (λ, u) ∈ IR × W 1,2
0 (Ω) is an eigensolution if and only if there exists a

k ∈ INn such that

λ = λk , u ∈ span{el ; λl = λk} .

Solution. We will prove this via induction on n. For n = 1 this was shown in
E12.4. Let n ≥ 2 and let (λ, u) be an eigensolution. Define for j ∈ IN

uj(y) :=

∫ Rn

0

u(y, z) enj (z) dz for y ∈ Ω̃ :=

n−1×
i=1

]0, Ri[ .

Then uj ∈ W 1,2
0 (Ω̃) and for ζ ∈ W 1,2

0 (Ω̃)∫
Ω̃

∇yζ • ∇yuj dL
n−1 =

∫
Ω

∇y

(
ζ(y)enj (z)

)
• ∇yu(y, z) d(y, z)

=

∫
Ω

ζ(y)enj (z)λu(y, z) d(y, z) −
∫
Ω

ζ(y)

∫ Ri

0

(enj )
′(z) ∂nu(y, z) dz dy

=

∫
Ω̃

ζ(y)(λ − λn
j )uj(y) dy ,

since (enj )
′′ +λn

j e
n
j = 0. If uj �= 0, then the inductive hypothesis implies that

λ = λl for an l ∈ INn with ln = j and uj is a finite linear combination of
functions

y �−→
n−1∏
i=1

eili(yi) with l ∈ INn, ln = j, λl = λ .

Since this is only possible for finitely many j, and since
(
enj
)
j∈IN

is an or-

thonormal basis of L2(]0, Rn[
)
, it follows that with a finite sum

u(y, z) =
∑
j

uj(y) e
n
j (z) .

This yields the desired result. ��
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A12 Elliptic regularity theory

We prove the regularity theorems which were announced in 6.9, and we will do
this on the basis of Friedrichs’ theorem. Together with the Sobolev embedding
theorems one then obtains that under suitable conditions on the data the
weak solutions in 6.6 and 6.8 are indeed classical solutions. This has already
been used in the proof of 12.17. The regularity theory hinges on the following
local estimate.

A12.1 Lemma. Let u ∈ W 1,2(BR) with BR := BR(x0) ⊂ IRn be a weak
solution of the differential equation∑

i

∂i

(∑
j

aij∂ju+ qi

)
= f in BR ,

i.e. we assume that qi, f ∈ L2(BR) and that∫
BR

(∑
i

∂iζ
(∑

j

aij∂ju+ qi

)
+ ζf

)
dLn = 0 (A12-1)

for all ζ ∈ C∞
0 (BR), where (aij)i,j is measurable, elliptic (see 6.4) and

bounded, that is, there are constants C0 ≥ c0 > 0 such that for almost
all x ∈ BR, ∣∣∣(aij(x))i,j ∣∣∣ := ( n∑

i,j=1

|aij(x)|2
) 1

2 ≤ C0 and

n∑
i,j=1

aij(x)ξiξj ≥ c0|ξ |2 for ξ ∈ IRn.

Then (with the notation Br := Br(x0) for r > 0) for all 0 < κ < 1 we have

‖∇u‖L2(B(1−κ)R) ≤ C

(
κR

C0
‖f ‖L2(BR) +

1

c0
‖q‖L2(BR) +

1

κR

C0

c0
‖u‖L2(BR)

)
,

with a universal constant C.

Remark: Since for every c ∈ IR the function u − c is also a solution, we can
replace u by u − c in the last term on the right-hand side of the estimate.
The best choice for c is the mean value of u over BR.

Proof. It follows that (A12-1) holds for all ζ ∈ W 1,2
0 (BR). Choose a cut-off

function η ∈ C∞
0 (BR) with 0 ≤ η ≤ 1, η = 1 on B(1−κ)R, and |∇η | ≤ 2

κR .
Now set ζ = η2u and obtain

0 =

∫
BR

η2
∑
i,j

∂iuaij∂ju dL
n +

∫
BR

∑
i

∂iu
(∑

j

2ajiηu∂jη + qiη
2
)
dLn

+

∫
BR

u
(∑

i

2qiη∂iη + fη2
)
dLn ,
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which using the ellipticity yields that

c0

∫
BR

η2|∇u|2 dLn ≤
∫
BR

η|∇u|
(
2C0|u| |∇η | + |q |η

)
dLn

+

∫
BR

η|u|
(
2|q | |∇η | + |f |η

)
dLn .

Note that for all δ > 0 (use Young’s inequality (8-12))

η|∇u|
(
2C0|u| |∇η | + |q |η

)
≤ δη2|∇u|2 + 1

δ

(
C2

0 u
2|∇η |2 + 1

4
|q |2η2

)
.

Then choosing δ = c0
2 we have∫

BR

η2|∇u|2 dLn ≤ 4C2
0

c20

∫
BR

u2|∇η |2 dLn

+

∫
BR

( 1

c20
η2|q |2 + 2

c0
η|u|
(
2|q | |∇η | + |f |η

))
dLn .

For the last two terms it holds for all δ > 0 and ε > 0 that

4

c0
η|u| · |q ||∇η | ≤ 1

δ
u2|∇η |2 + 4δ

c20
η2|q |2 ,

2

c0
η|u| · |f |η ≤ 1

ε
η2u2 +

ε

c20
η2|f |2 .

Overall we obtain the estimate∫
BR

η2|∇u|2 dLn ≤
∫
BR

((4C2
0

c20
+

1

δ

)
u2|∇η |2 + 1

ε
η2u2
)
dLn

+

∫
BR

(1 + 4δ

c20
η2|q |2 + ε

c20
η2|f |2

)
dLn .

Now we exploit the properties of η and ∇η and observe that the optimal
choice of δ and ε is given by

ε = (κR)2 · δ , δ =
( c0
C0

)2
≤ 1 .

This yields the desired result, for instance with C = 5. ��
A12.2 Friedrichs’ theorem. Let Ω ⊂ IRn be open and let u ∈ W 1,2(Ω)
be a weak solution of the differential equation in A12.1 in Ω, and let (aij)i,j
satisfy the assumptions in A12.1 in Ω. Moreover, let m ≥ 0 and let

f ∈ Wm,2(Ω) (i.e. f ∈ L2(Ω) for m = 0),

qi ∈ Wm+1,2(Ω) , aij ∈ Cm,1(Ω) .

Then u ∈ Wm+2,2
loc (Ω), i.e. u ∈ Wm+2,2(D) for every open set D ⊂ Ω, for

which D ⊂ Ω is compact, i.e. D ⊂⊂ Ω. The solution u can be bounded in
the Wm+2,2(D)-norm by the data.
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Proof. First let m = 0. Taking for h < dist(D, ∂Ω) the difference between
the differential equation in coordinate direction k with step size h, we obtain
with the difference quotients

∂h
k v(x) :=

1

h

(
v(x+ hek) − v(x)

)
that for all ζ ∈ C∞

0 (D)∫
Ω

(∑
i

∂iζ
(∑

j

aij∂j∂
h
ku+
∑
j

(∂h
kaij)∂ju(·+hek)+∂h

k qi

)
+ζ∂h

k f

)
dLn = 0 .

Upon setting

fh(x) :=
1

h

∫ h

0

f(x+ sek) ds

the last term satisfies∫
Ω

ζ∂h
k f dLn = −

∫
Ω

∂kζ · fh dLn ,

and consequently∫
D

∑
i

∂iζ
(∑

j

aij∂j(∂
h
ku) + qhi

)
dLn = 0 , (A12-2)

where
qhi :=

∑
j

(∂h
kaij)∂ju(·+ hek) + ∂h

k qi − fhδi,k . (A12-3)

We observe that the weak differential equation (A12-2) for ∂h
ku is of the same

type as (A12-1) for u, and so A12.1 yields for every D′ ⊂⊂ D the estimate∥∥∂h
ku
∥∥
W 1,2(D′)

≤ C
(
‖qh‖L2(D) +

∥∥∂h
ku
∥∥
L2(D)

)
. (A12-4)

Here C depends on aij , D and D′. (More precisely, we apply A12.1 to balls
B(1−κ)R(xl), which form a finite cover of D′ such that BR(xl) ⊂ D.) Now it
holds∫

D

∣∣∂h
ku(x)

∣∣2 dx =

∫
D

∣∣∣∣∣ 1h
∫ h

0

∂ku(x+ sek) ds

∣∣∣∣∣
2

dx

≤
∫
D

1

h

∫ h

0

|∂ku(x+ sek)|2 ds dx ≤
∫
Ω

|∂ku|2 dLn

and correspondingly

‖qh‖L2(D) ≤ C
(
‖∇u‖L2(Ω) + ‖∂kq‖L2(Ω) + ‖f ‖L2(Ω)

)
,
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which shows that ∂h
ku is bounded in W 1,2(D′). It follows from theorem 8.10

(see 8.11(1)) that there exists a vk ∈ W 1,2(D′) such that for a subsequence
h → 0

∂h
ku → vk weakly in W 1,2(D′) .

Therefore, if ζ ∈ C∞
0 (D′) then as h → 0∫

D′

ζ · ∂lvk dLn ←−
∫
D′

ζ · ∂l∂h
ku dL

n = −
∫
D′

∂−h
k ζ · ∂lu dLn

=

∫
D′

∂l∂
−h
k ζ · u dLn −→

∫
D′

∂lkζ · u dLn ,

and so it follows from the definition of the Sobolev spaces that u ∈ W 2,2(D′),
with ∂klu = ∂kvl = ∂lvk.

The same argumentation shows that ∂h
k qi → ∂kqi converges weakly in

L2(D), and similarly ∂h
kaij → ∂kaij (recall from 10.5(2) that aij ∈ W 1,∞(D))

weakly in L2(D). In addition, ∂ju(·+ hek) → ∂ju and fh → f converge
strongly in L2(D). Overall this yields (use 8.3(6) for Hilbert spaces) the
weak convergence in L2(D) of the functions qhi defined in (A12-3). Hence in
the weak differential equation (A12-2) we can pass to the limit and obtain
for ζ ∈ C∞

0 (D′) that∫
D′

∑
i

∂iζ
(∑

j

aij∂j(∂ku) +
∑
j

∂kaij∂ju+ ∂kqi + fδi,k

)
dLn = 0 .

An W 1,2-bound of ∂ku locally in D′ then follows from A12.1 (since this
equation is of the same type as (A12-1)), or by passing to the limit in (A12-
4).

In the case m ≥ 1 we can apply the proof presented above for u on Ω
to this differential equation for ∂ku on D′ and hence iteratively obtain the
desired result. ��

We now prove the regularity of weak solutions to elliptic boundary value
problems up to the boundary.

A12.3 Theorem. Let Ω ⊂ IRn be open and bounded with Lipschitz bound-
ary, and let u ∈ W 1,2(Ω) be the weak solution of the homogeneous Dirichlet
problem ∑

i

∂i
(∑

j

aij∂ju+ qi
)
= f in Ω,

u = 0 on ∂Ω,

from theorem 6.8 with the assumptions as in A12.2. If we assume in addition
that ∂Ω can locally be represented as the graph of a Cm+1,1-function (as in
A8.2), and that aij ∈ Cm,1(Ω), then

u ∈ Wm+2,2(Ω).
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The solution u can be bounded in the Wm+2,2(Ω)-norm by the data.

Proof. It follows from theorem A12.2 that we need to prove the result on u
only locally at the boundary. Hence let g ∈ Cm+1,1(IRn−1) and r, s > 0, with

{(y, g(y)) ∈ IRn ; |y | < r} ⊂ ∂Ω ,

{(y, h) ∈ IRn ; 0 < h − g(y) < s} ⊂ Ω .

Then (see A8.11)

ũ(y, h) := u(y, h+ g(y))

satisfies on Ω̃ := Br(0) × ]0, s[ the weak differential equation∫
Ω̃

(∑
i

∂iζ
(∑

j

ãij∂j ũ+ q̃i

)
+ ζf̃

)
dLn = 0 for all ζ ∈ C∞

0 (Ω̃) ,

where, we denote τ(y, h) := (y, h+ g(y)), the coefficients are given by

ã := Dτ−1a◦τ(Dτ−1)T , q̃ := Dτ−1q◦τ , f̃ := f ◦τ

and satisfy the assumptions of A12.2 (apply 10.5(2) for g).

τ

∂Ω = graph g

y

h

Fig. 12.1. Straightening of the boundary

We need to show that ũ ∈ Wm+2,2(D̃) for all D̃ = Br′(0) × ]0, s′[ with
r′ < r and s′ < s. Once again we first consider the case m = 0. As in the
proof of A12.2, we can form the difference of this differential equation in the
coordinate directions k < n and then obtain analogously to A12.2 (where

now A12.1 also holds for BR(x0) ∩ Ω̃ with x0 ∈ ∂Ω̃ in place of BR(x0) ⊂ Ω̃)

that for all domains D̃ as above it holds that ∂kũ ∈ W 1,2(D̃) for k < n.

In order to establish that ũ ∈ W 2,2(D̃) it remains to show that ∂nnũ ∈
L2(D̃), which now is a consequence of the differential equation for ũ. This is

because we have for ζ ∈ W 1,2
0 (Ω̃)
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Ω̃

(
∂nζãnn∂nũ+ ζF

)
dLn = 0 ,

where it follows from the previously shown that

F := −
∑

i, j ≤ n
i + j < 2n

∂i(ãij∂j ũ) −
∑
i

∂iq̃i + f̃ ∈ L2(D̃) .

Recalling that ãnn ∈ C0,1(Ω̃) with ãnn ≥ c0 > 0, we have that ζ ∈ W 1,2
0 (Ω̃)

implies that also ζ
ãnn

∈ W 1,2
0 (Ω̃). Since

∂n

( ζ

ãnn

)
=

∂nζ

ãnn
− ∂nãnn

ã2nn
ζ ,

we have ∫
Ω̃

∂nζ∂nũ dL
n = −

∫
Ω̃

ζ
( F

ãnn
− ∂nãnn

ãnn
∂nũ︸ ︷︷ ︸

∈L2(D̃)

)
dLn ,

which means that ∂nnũ ∈ L2(D̃). This proves the regularity up to the bound-
ary for m = 0. The case m ≥ 1 can be shown inductively, by applying the
above proof to derivatives of the weak differential equation in directions i < n.

��

The theorem also implies the corresponding regularity of the solutions
in 6.8 with nonzero b-term, if b ∈ Wm,∞(Ω). The proof is analogous to the
proof of 12.17(3). In addition, the theorem and the proof carry over to the
solutions of the Neumann problem in 6.6, since then in A12.1 the employed
test functions of the type η2ζ with ζ ∈ W 1,2(Ω) are admissible.

For weak solutions with mixed Dirichlet and Neumann boundary condi-
tions (see 8.18(5)) the regularity theorem A12.3 holds, but in general it does
not (!) hold for all of Ω. The standard counterexample is the following:

Ω = {x ∈ IR2 ; |x| < 1, x2 > 0} ,
u(x) = Im

√
z with z = x1 + ix2 .

Then u ∈ W 1,2(Ω) is a weak solution of the mixed boundary value problem

Δu = 0 in Ω,

u(eiθ) = sin θ
2 for 0 ≤ θ ≤ π,

u(0, r) = 0 for 0 ≤ r ≤ 1,

νΩ • ∇u(0,−r) = 0 for 0 < r < 1.

However, it is easily seen that u is not (!) an element of W 1,4(Ω). It follows
from the embedding theorem 10.9 that neither is u an element of W 2,p(Ω) for
p ≥ 4

3 , something which can also be shown directly without great difficulty.
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Nevertheless, u ∈ C0, 12 (Ω), where we recall from 10.13 that the Sobolev space
W 1,4(Ω) is continuously embedded into this space. However, the regularity
theorem A12.2 is applicable.
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Symbols

:⇐⇒ : general symbol for a definition,
13

(·1 , ·2)X : sesquilinear form and scalar
product in X, 9

〈·1 , ·2〉 : general duality product, 221
〈·1 , ·2〉X : duality product with respect

to X, 221
∗ : convolution operator, 108
• : Euclidean scalar product, 12
→ (↘, ↗) : general symbols for

convergence, 23
xs : generalized power of x with respect

to the multi-index s, 42
s! : generalized factorial for the

multi-index s, 42(
s

r

)
: binomial coefficient for the

multi-indices s and r, 42
∂A : boundary of A, 19
A : closure of A, 19
Å : interior of A, 19
[f ] : distribution of the function f , 151
{f > a} : abbreviation for

{x ∈ S ; f(x) > a}, 75
α : conjugate of α ∈ IK, 9∫
S
f dμ : integral of f with respect to
μ, 75, 79∫

S
f(x) dμ(x) : integral of f with
respect to μ, 79∫

E
f dμ : integral of f over E with
respect to μ, 75, 89∫

E
f(x) dx : notation for the Lebesgue
integral, 51

μ�A : measure μ restricted to A, 89
⊥ : orthogonal, 11, 302
Y ⊥ : orthogonal complement of Y , 11,

302
⊂⊂ : relatively precompact subset, 150
|·| : Euclidean norm in IKn, 12

|·| : Norm in an image space Y , 37
|s| : order of the multi-index s, 42
|α| : modulus of α ∈ IK, 9
|λ| : variational measure of λ, 173
|·|max : maximum norm in IKn, 14
|·|p : p-norm in IKn, 14
|·|sum : sum norm in IKn, 14
|·|sup : maximum norm in IKn, 14
‖·‖ : general notation for norms, 13
‖·‖ : abbreviation for operator norms,

142
‖·‖X : fixed norm on the space X, 13
‖·‖sup : supremum norm, 37
‖·‖var : total variation, 173

AC(I) : space of absolutely continuous
functions on I, 68

arg z : argument function for z ∈ C, 362

B(S;Y ) : bounded functions on S with
values in Y , 37

ba(·) : space of additive measures, 185
bdry (A) : boundary of A, 19
Br(A) : r-neighbourhood of A, 18
Br(x) : ball around x with radius r, 18
BV (·) : space of functions of bounded

variation, 191, 201

XE : characteristic function of E, 75
C0(S;Y ) : continuous functions on S

with values in Y , 38, 39
C0

0 (Ω), C0
c (Ω) : continuous functions

with compact support in Ω, 41
C0,α(Ω) : Hölder continuous functions

on Ω, 44
c : space of convergent sequences, 198
c0 : space of null sequences, 198
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422 Symbols

ca(·) : space of σ-additive measures,
185

C∞(Ω) : infinitely many times
differentiable functions on Ω, 45

clos (A) : closure of A, 19
Cm(Ω) : m times differentiable

functions on Ω, 43
Cm(Ω) : m times differentiable

functions on Ω, 43
Cm,α(Ω) : functions with Hölder

continuous derivatives of order m on
Ω, 44

Cm
0 (Ω), C∞

0 (Ω) : differentiable func-
tions with compact support in Ω,
45

codimU : codimension of the subspace
U , 376

conv(A) : convex hull of A, 95

δi,j : Kronecker symbol, 1
Df : derivative of the map f , 42
∇f : gradient of f , nabla operator, 42
diam(A) : diameter of A, 18
dimU : dimension of the subspace U ,

376
dist(A1, A2) : distance between two sets

A1 and A2, 18
dist(·, A) : distance to set A, 18
Δf : Laplace operator of f , 400
Dlf : derivative of order l of f , 42
D

′(Ω) : distributions on Ω, 152
D(Ω) : space of test functions on Ω,

157
∂if ,

∂f

∂xi
: i-th partial derivative of f ,

41
∂sf : partial derivative of f for the

multi-index s, 42, 64
∂vf : directional derivative of f in the

direction of v, 42
d(·,·) : general notation for metrics, 16
dX(·,·) : fixed metric on X, 16
∂zf , ∂zf : Wirtinger derivatives of f ,

361

ei : i-th canonical unit vector, 28, 41
ess lim : essential limit, 69
ess sup : essential supremum, 51
exp(T ) : exponential function of the

operator T , 148

(F1) : axiom, 16
(F2) : axiom, 16
(F3) : axiom, 16
F (S;Y ) : functions on S with values in

Y , 37

graph(f) : graph of a function f , 224

Hm,p(Ω) : Wm,p(Ω), 64
Hm(Ω) : Wm,2(Ω), 64
Hm

p (Ω) : Wm,p(Ω), 64
Hn−1 : Hausdorff measure, surface

measure in IRn, 47
Hölα(f,·) : Hölder constant with

respect to α of f , 44

Id : identity as a linear operator, 142
Id : identity, 34
im(T ) : R(T ), 144
ind(A) : index of the operator A, 377
intr (A) : interior of A, 19

ker(T ) : N (T ), 144
IK : either IR or C, 9
IKIN : space of all sequences in IK, 28
K (X) : K (X;X), 319
K (X;Y ) : compact linear operators

from X to Y , 144, 319

(L1) : axiom, 79
(L2) : axiom, 80
(L3) : axiom, 80
(L4) : axiom, 80
(L5) : axiom, 80
L(μ) : L(μ; IK), 78
L(μ;Y ) : μ-integrable functions with

values in Y , 78
Lip(f,·) : Lipschitz constant of f , 44
Ln : Lebesgue measure in IRn, 46, 73
log z : complex logarithm for z ∈ C, 362
log(T ) : logarithm of the operator T ,

148
Lp(μ) : to the power p integrable

functions with respect to μ, 50
Lp(E) : to power p integrable function

with respect to the Lebesgue
measure, 51

	p : space of p-summable sequences, 28
L

p

loc(Ω) : locally p-integrable functions,
150
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L (X) : L (X;X), 142
L (X;Y ) : linear operators from X to

Y , 142

(M1) : axiom, 16
(M2) : axiom, 16
(M3) : axiom, 16
M(μ;Y ) : μ-measurable functions with

values in Y , 48

νΩ : outer normal at ∂Ω, 263
(N1) : axiom, 13
(N2) : axiom, 13
(N3) : axiom, 13
NBV (S) : normalized functions of

bounded variation, 204
N (T ) : null space of the operator T ,

144

(P1) : axiom, 303
(P2) : axiom, 303
P(X) : projections in X, 144

(Q1) : axiom, 304
(Q2) : axiom, 304

�(·) : notation for Fréchet metric, 16
rba(·), rca(·) : space of regular

measures, 186
R(T ) : image of the operator T , 144

RX : Riesz’s isomorphism from X to
X ′, 163

(S1) : axiom, 9
(S2) : axiom, 9
(S3) : axiom, 9
(S4’) : axiom, 9
(S4) : axiom, 9
span(E) : linear hull of the set E, 115
supp(f) : support of the function f , 41

(T1) : axiom, 20
(T2) : axiom, 20
(T3) : axiom, 20
(T4) : axiom, 20
T ′ : adjoint map of T , 145
T (μ;Y ) : step functions with respect to

μ with values in Y , 74

var(f,·) : variation of a function f , 201

Wm,p(Ω) : Sobolev space of order m

for the power p, 64
W

m,p
0 (Ω) : Sobolev space with zero
boundary values, 66

W
m,p

loc (Ω) : local Sobolev functions, 150

X ′ : dual space to X, 144

Z0 : annihilator of Z, 390





Index

absolute minimum, 3, 244
absolutely continuous
– function, 68
– measure, 173
additive measure, 71, 185
adjoint, 389
adjoint operator, 145, 389
– in a Hilbert space, 389
affine
– map, 98
– subspace, 98
Alaoglu’s theorem, 233
Alexandrov’s lemma, 210
algebra, 27
– Banach, 27
– Boolean, 71
– commutative, 27
– σ-algebra, 45
almost everywhere, 46, 74
almost orthogonal element, 99
angle, 11
annihilator, 390
approximation
– in C0,α, 139
– of Sobolev functions, 122
– piecewise constant, 305
– piecewise linear, 309
– Ritz-Galerkin ∼, 311
approximation property, 303
approximation theorem
– Weierstraß ∼, 296
Arzelà-Ascoli
– theorem, 106

Baire category theorem, 219
ball, 18
Banach algebra, 27
Banach space, 27

Banach-Steinhaus
– theorem, 220
basis
– dual, 289
– Hamel ∼, 313
– orthonormal ∼, 292
– Schauder ∼, 288
Bessel’s inequality, 292
bidual space, 228
binomial coefficient, 42
Bochner’s criterion, 91
Boolean algebra, 71
Boolean ring, 71
Borel set, 46, 184, 185
boundary
– Lipschitz ∼, 259
– of a set, 19
boundary conditions
– Dirichlet ∼, 167
– homogeneous, 168
– Neumann ∼, 167
– periodic, 298
boundary integral, 263
boundary value problem
– elliptic, 167
– mixed, 248
boundary values
– weak, 268
bounded
– inverse theorem, 223
– essentially ∼, 50
– function, 37
– measure, 173
– measure space, 67
– operator, 142
– set, 18
– variation of a function, 201, 204
boundedness
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– principle of uniform ∼, 220

calculus of variations
– fundamental lemma, 122, 257
Calderón-Zygmund inequality, 351
canonical unit vector, 28, 41
category theorem
– Baire ∼, 219
Cauchy principal value, 349
Cauchy sequence, 27
Cauchy’s integral theorem, 361
Cauchy-Schwarz inequality, 10
Céa’s lemma, 312
chain rule, 125, 274
change-of-variables theorem, 94
characteristic function, 74
characteristic number of Sobolev

functions, 327
characteristic subspace, 381
closed complement, 301
closed hull, 19
closed set, 19, 20
– weakly sequentially ∼, 241
closure, 19
cluster point, 27
coarser topology, 21
codimension of a subspace, 377
coefficients
– of a differential operator, 151
coercive, 166
coercive sesquilinear form, 164
commutative, 27
commutativity relation for projections,

303
compact
– covering ∼, 100
– pre∼, 100
– relatively, 150
– sequentially ∼, 100
– set, 100
– weakly sequentially ∼, 227
– weakly∗ sequentially ∼, 227
compact operator, 144, 319
– spectral theorem, 381
compactness, 100
– Hausdorff metric, 137
comparison
– of norms, 21
– of topologies, 21

complement
– closed, 301
– orthogonal, 11, 302
completely continuous operator, 320
completeness, 27
– of a measure space, 46
– of a metric space, 27
– of Euclidean space, 34
– of the completion, 30
completeness relation, 293
completion, 30
complex analytic map, 374
complexification, 387
concave
– function, 96
cone, 242
conjugate linear, 9, 163
connected, 242
– path ∼, 242
continuous
– ∼ly differentiable, 42
– at a point, 22, 24
– equi∼, 106
– extension, 138
– function, 38, 39
– Hölder continuous, 44
– Lipschitz continuous, 44
– lower semi∼, 229
– map, 24
– projection, 144, 300
– sesquilinear form, 164
continuous spectrum, 373
contraction mapping, 6
convention on constants, 343
convergence, 23
– μ-uniform, 90
– dominated ∼ theorem, 94
– in measure, 48
– in metric spaces, 24
– sequential ∼, 25
– strong, 228
– weak, 227
– weak in C0, 251
– weak∗, 227
convergence criterion, 82
convergence theorem
– Lebesgue’s ∼, 60, 94
– Vitali’s ∼, 57
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convex
– function, 95, 129, 131
– hull, 95
– set, 95
– strictly, 128
convolution, 107, 108
convolution estimate, 108
counting measure, 46
cover
– locally finite, 118
– open, 118
covering compact set, 100
cross product of normed vector spaces,

135
cuboid
– semi-open, 72
cut-off function, 118

decomposition
– Hahn ∼, 206
– Jordan ∼, 205
dense set, 21
derivative, 42
– directional, 42
– distributional, 152
– Fréchet ∼, 143, 149
– partial, 41
– partial of higher order, 42
– weak, 64, 191
diameter, 18
diffeomorphism, 125
differentiable
– m times, 42
– continuously, 42
– function, 41
– infinitely, 45
differential operator
– coefficients, 151
– linear, 151
– weak, 339
Dini
– ∼’s theorem, 139
Dirac measure, 46
Dirac sequence, 110
– general, 110
– standard, 110
direct sum, 11
directional derivative, 42
Dirichlet boundary conditions, 167

Dirichlet boundary value problem, 167
Dirichlet integral, 3
Dirichlet problem, 169, 247
discrete measure, 46
discretization error, 313
distance, 16
– between points, 16
– between sets, 18
– to a set, 18
distribution, 152
distributional derivative, 152
divergence of a vector field, 192
divergence theorem, 270
dominated convergence
– theorem, 94
double obstacle problem, 247
dual basis, 289
dual exponent, 14, 175, 178
dual norm, 193
dual operator, 389
dual space, 144
– of C0, 187
– of Cm, 195
– of c0 and c, 198
– of Lp, 175
– of the cross product, 194
duality pairing, 221
duality product, 221

Egorov’s theorem, 90
Ehrling’s lemma, 353
eigenfunction, 374
eigenspace, 374
eigenvalue, 374
eigenvalue problem, 376
eigenvector, 374
elementary inequality, 15, 53–55, 59,

245, 252, 357
elementary integral, 75
elementary Lebesgue measure, 72
elliptic boundary value problem, 167
elliptic matrix, 167, 244
elliptic minimum problem, 244
embedding, 144
embedding theorem
– in Hölder spaces, 325
– in Sobolev spaces, 333
– of Sobolev spaces into Hölder spaces,

337
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– onto the boundary, 276
– Rellich’s ∼, 258, 261
energy functional, 3
equicontinuous, 106
equivalent
– metric, 21
– norm, 21
essential limit, 69
essential supremum, 51
essentially bounded, 50
estimate
– convolution ∼, 108
Euclidean norm, 12, 14
Euclidean scalar product, 12
Euclidean space, 12
evolution equation, 148
exhaustion by compact sets, 39
exponent
– dual, 14, 175, 178
exponential function, 148
extension
– ∼ theorem for Sobolev functions, 275
– continuous, 138
– linear, 160

factor space, 13, 16
Fatou’s lemma, 93
finer topology, 21
Fischer-Riesz
– theorem, 55
Fourier sum, 297
Fréchet derivative, 143
Fréchet metric, 16
Fredholm alternative, 385
Fredholm operator, 376
– index of ∼, 377
Fredholm’s theorem, 393
Friedrichs’ theorem, 413
Fubini’s theorem, 94, 215
function
– absolutely continuous, 68
– bounded, 37
– characteristic, 74
– concave, 96
– continuous, 39
– continuously differentiable, 42
– convex, 95, 129, 131
– holomorphic, 361
– Lebesgue integrable, 78

– locally integrable, 150
– measurable, 47
– μ-almost continuous, 212
– of bounded variation, 191, 201
– of bounded variation, normalized,

204
– periodic, 254
– piecewise constant, 305
– piecewise linear, 309
– uniformly continuous, 138
– variation of a ∼, 191, 201
functional, 3
– linear, 144
– Minkowski ∼, 240
– positive, 199
fundamental lemma
– of calculus of variations, 122, 257

Galerkin approximation, 311
Gauß’s theorem, 270
Gram-Schmidt process, 294

Hahn decomposition, 206
Hahn-Banach
– theorem, 180, 182
half-space
– affine, 127
Hamel basis, 313
hat function, 309
Hausdorff measure, 47
Hausdorff metric, 35
– compactness, 137
Hausdorff space, 20
Heaviside function, 191
Heine-Borel
– theorem, 102
Hermitian form, 9
Hilbert adjoint, 389
Hilbert cube, 135
Hilbert space, 27
Hilbert transform, 352
Hilbert-Schmidt operator, 149, 340, 359
Hölder inequality, 14
Hölder’s inequality, 52
Hölder spaces
– embedding theorem in ∼, 325
– embedding theorem of Sobolev spaces

into ∼, 337
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Hölder-Korn-Lichtenstein inequality,
349

Hölder constant, 44
Hölder continuous, 44
Hölder spaces, 44
holomorphic function, 361
homogeneity, 13
– of a scalar product, 10
homogeneous boundary conditions, 168
hull
– closed, 19
– convex, 95
– linear, 115

identity, 34, 142
image, 144
index of a Fredholm operator, 377
index set, 26
induced metric, 16
induced topology, 20
inequality
– Bessel’s ∼, 292
– Calderón-Zygmund ∼, 351
– elementary, 15, 53–55, 59, 245, 252,

357
– Hölder ∼, 14, 52
– Hölder-Korn-Lichtenstein ∼, 349
– Jensen’s ∼, 133
– Minkowski ∼, 55
– Poincaré ∼, 171, 242
– variational ∼, 244
– Young’s ∼, 53, 54, 245
infinite matrix, 291
infinitely differentiable, 45
inner product, 10
integrable, 78
– locally, 150
– set, 84
integral
– elementary, 75
– Lebesgue ∼, 79
– oriented, 361
– Riemann, 186
– Riemann-Stieltjes ∼, 202
integral equation, 194
integral kernel, 150
– singular, 348
– weakly singular, 342
integral operator, 194

– Hilbert-Schmidt ∼, 340, 359
– of Hilbert-Schmidt, 149
– Schur ∼, 342
integral theorem
– Cauchy’s ∼, 361
interior of a set, 19
interpolation
– multilinear, 116
– piecewise constant, 116
invariant subspace, 374
inverse Laplace operator, 339
inverse mapping theorem, 223
invertible operator, 145
isometry, 30, 145
isomorphism, 145

Jensen’s inequality, 133
Jordan decomposition, 205
Jordan normal form, 386

kernel, 144
– singular, 348
– weakly singular, 342
Kronecker symbol, 2

Laplace operator, 400
– fundamental solution, 346
– inverse, 339
– weak, 339
Laplacian, 400
– inverse, 339
Lax-Milgram
– theorem, 164
Lebesgue integrable function, 78
Lebesgue integral, 79
– axioms, 79
Lebesgue measure
– elementary, 72
– in IRn, 46
Lebesgue spaces Lp, 50
Lebesgue’s convergence theorem, 60, 94
Leibniz rule, 124
lemma
– Alexandrov’s ∼, 210
– Céa’s ∼, 312
– Ehrling’s ∼, 353
– Fatou’s ∼, 93
– Mazur’s ∼, 241
– Zorn’s ∼, 181
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limit, 23
– essential, 69
– nested, 26
linear, 9
– conjugate, 163
– conjugate linear, 9
– differential operator, 151
– discontinuous ∼ map, 313
– extension, 160
– functional, 144
– hull, 115
– operator, 142
– projection, 144
Lipschitz boundary, 259
– embedding theorem onto a ∼, 276
Lipschitz constant, 44
Lipschitz continuous, 44
localization, 261
locally finite cover, 118
locally integrable functions, 150
logarithm, 148
lower semicontinuity of the norm, 229
Luzin
– ∼’s theorem, 212

majorant criterion, 55, 91
map
– adjoint, 145, 389
– affine, 98
– bounded, 37
– completely continuous, 320
– complex analytic, 374
– isometric, 30
– linear discontinuous, 313
– open, 222
– pole of an analytic ∼, 385
– sublinear, 180
matrix
– elliptic, 167, 244
– infinite, 291
– positive semidefinite, 131
maximal element, 181
maximum norm in IRn, 14
Mazur’s lemma, 241
mean of a function, 248
measurable
– function, 47
– set, 46
measure, 45

– absolutely continuous, 173
– additive, 71, 185
– bounded, 173
– convergence in ∼, 48
– discrete, 46
– monotone, 72
– outer, 73
– regular, 185
– σ-finite, 46
measure extension, 87
measure space, 45
– bounded, 67
– σ-finite, 46
mesh of a partition, 305
metric, 16
– equivalent, 21
– induced, 16
– stronger, 21
– weaker, 21
metric space, 16
– complete, 27
minimal sequence, 97, 105, 241, 245
minimum
– absolute, 3, 244
minimum problem
– elliptic, 244
Minkowski functional, 240
Minkowski inequality, 55
mixed boundary value problem, 248
modulus of continuity, 44
monotone
– convergence, 83
– measure, 72
– norm, 135
– vector field, 131
monotonicity
– of the integral, 82
Morrey’s theorem, 335
μ-almost continuous function, 212
μ-almost everywhere, 46
μ-integrable, 78
μ-integrable set, 84
μ-integral, 75
μ-measurable function, 47, 89
μ-measurable set, 46
μ-null set, 46
μ-uniform convergence, 90
multi-index, 42
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multilinear interpolation, 116
multiplicity of an eigenvalue, 381

neighbourhood
– of a point, 18
– of a set, 18
neighbourhood basis, 100
nested limit, 26
Neumann boundary conditions, 167
Neumann boundary value problem, 167
Neumann problem, 169, 247
Neumann series, 146
nodal lines, 402
Norm, 13
norm, 13
– p-norm on IKn, 14
– dual, 193
– equivalent, 21
– Euclidean, 12, 14
– lower semicontinuity of the ∼, 229
– monotone, 135
– strict, 128
– stronger, 21
– weaker, 21
normal
– outer, 168, 263
normal form
– Jordan ∼, 386
normal operator, 393
– spectral theorem, 395
normalized function of bounded

variation, 204
normed space, 13
nuclear operator, 358
null sequence, 26
null set, 46, 74
null space, 144

obstacle problem, 247
– double ∼, 247
open
– cover, 118
– map, 222
– set, 19
operator
– adjoint, 145, 389
– bounded, 142
– compact, 144, 319
– completely continous, 320

– dual, 389
– integral ∼, 149
– invertible, 145
– Laplace ∼, 400
– linear, 142
– norm, 142
– normal, 393
– nuclear, 358
– of Hilbert-Schmidt type, 149
– positive semidefinite, 397
– resolvent of an ∼, 373
– Schur’s integral ∼, 342
– self-adjoint, 390
– singular integral ∼, 348
– spectral radius, 374
– spectral theorem for a compact ∼,

381
– spectrum of an ∼, 373
order
– of a differential operator, 151
– of a distribution, 153
– of a multi-index, 42
– of a partial derivative, 42
– of a pole, 385
– of an eigenvalue, 381
ordered set, 181
oriented integral, 361
orthogonal, 11
– almost ∼ element, 99
– complement, 11, 302
– projection, 97
– subspace, 11
– system, 292
– vectors, 11
orthogonalization
– Gram-Schmidt ∼, 294
orthonormal
– basis, 292
– system, 292
outer measure, 73
outer normal, 168, 263

p-norm
– in Lp, 50
– on IKn, 14
parallelogram law, 10
Parseval’s identity, 293
partial derivative, 41
partition of unity, 118
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path connected, 242
period of a function, 254
periodic boundary conditions, 298
perpendicular, 11
piecewise constant function, 305
piecewise constant interpolation, 116
piecewise linear function, 309
Poincaré inequality, 171, 242, 357
point spectrum, 373
pole of an analytic map, 385
positive
– definite sesquilinear form, 9
– functional, 199
– semidefinite matrix, 131
– semidefinite operator, 397
– semidefinite sesquilinear form, 9
positivity, 13, 16
pre-Hilbert space, 10
pre-measure space, 71
precompact, 100
– relatively, 150
principle of uniform boundedness, 220
probability density, 109
product
– inner, 10
– scalar, 10
product measure, 213
product rule for Sobolev functions, 124
projection, 299
– commutativity relation, 303
– continuous, 144
– continuous linear, 300
– linear, 144, 299
– orthogonal, 97
– stereographic, 17
projection theorem, 96
Pythagoras, 11
Pythagoras’ theorem, 11

quadrature formula, 195
quotient space, 13

Radon measure, 199
Radon-Nikodým
– derivative, 173
– theorem, 173
range, 144
reflexive space, 234
regular measure, 185

regularity number, 327
relative topology, 20
relatively compact, 150
Rellich’s embedding theorem, 258, 261
representation theorem of Riesz, 163
residual spectrum, 373
resolvent function, 373
resolvent of an operator, 373
resolvent set, 373
Riemann integral, 186
Riemann-Stieltjes integral, 202
Riesz
– Fischer-∼ theorem, 55
– theorem, 112
Riesz decomposition, 381
Riesz representation theorem, 163
Riesz-Radon
– theorem, 187
Riesz-Schauder
– spectral theorem of, 381
ring
– Boolean, 71
Ritz-Galerkin approximation, 311

scalar product, 9, 10
– Euclidean, 12
Schauder basis, 288
Schauder’s theorem, 391
Schur integral operator, 342
self-adjoint operator, 390
semi-open cuboid, 72
semimetric, 16
seminorm, 13
separable set, 21
– examples, 114, 115
separation axiom, 20
separation of variables, 400
separation theorem, 129, 240
sequence space, 28
sequential convergence, 25
sequentially compact
– set, 100
– weakly, 227
– weakly∗, 227
sesquilinear form, 9
– coercive, 164
– continuous, 164
– positive definite, 9
– positive semidefinite, 9
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– symmetric, 9
set
– μ-integrable, 84
– μ-measurable, 46
– bounded, 18
– closed, 19
– compact, 100
– convex, 95
– covering compact, 100
– dense, 21
– integrable, 84
– open, 19
– ordered, 181
– precompact, 100
– separable, 21, 114, 115
– sequentially compact, 100
– weakly sequentially closed, 241
shift operator, 5, 160
σ-additive, 45, 72
σ-algebra, 45
σ-finite measure, 46
σ-finite measure space, 46
σ-ring, 45
σ-subadditive, 71
singular integral kernel, 348
– weakly ∼, 342
singular integral operator, 348
Sobolev functions
– approximation of, 122
– chain rule, 125
– product rule, 124
– trace, 268
Sobolev number, 327
Sobolev spaces, 5, 63, 64, 66
– embedding theorem, 333
– embedding theorem into Hölder

spaces, 337
– on IRn, 356
Sobolev theorem, 329
solution
– weak, 3, 169, 248
space
– Banach, 27
– bidual, 228
– complete metric, 27
– Euclidean, 12
– factor, 13, 16
– Hausdorff, 20

– Hilbert, 27
– Lebesgue ∼, 50
– metric, 16
– normed, 13
– of additive measures, 185
– of bounded functions, 37
– of continuous functions, 38, 39
– of measurable functions, 48
– of regular measures, 185
– of test functions, 152
– quotient, 13
– reflexive, 234
– Sobolev ∼, 64, 66
– topological, 19
spectral radius of an operator, 374
spectral theorem
– for compact normal operators, 395
– for compact operators, 381
– of Riesz-Schauder, 381
spectrum, 373
– continuous, 373
– point ∼, 373
– residual, 373
stability, 166
standard Dirac sequence, 110
step function, 74
step size, 305
stereographic projection, 17
strict norm, 128
strictly convex, 128
strong convergence, 228
stronger
– metric, 21
– norm, 21
– topology, 21
Sturm-Liouville problem, 6
subadditive, 72
sublinear map, 180
subsequence, 27
subspace, 98
– affine, 98
– codimension, 377
– invariant, 374
– orthogonal, 11
sum norm
– in IRn, 14
support of a function, 41
supporting plane, 132
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supremum norm, 37
surface measure, 47
symmetric sesquilinear form, 9
symmetry, 244
– of a Fréchet metric, 16
– of a metric, 16
– of a sesquilinear form, 9

telescoping sum, 316
test function, 41, 67, 152
test functions, 3
theorem
– Alaoglu’s ∼, 233
– Arzelà-Ascoli ∼, 106
– Baire category ∼, 219
– Banach-Steinhaus ∼, 220
– bounded inverse ∼, 223
– change-of-variables, 94
– closed complement ∼, 301
– closed graph ∼, 224
– Dini’s ∼, 139
– dominated convergence ∼, 94
– Egorov’s ∼, 90
– embedding ∼ onto the boundary, 276
– extension ∼ for Sobolev functions,

275
– Fischer-Riesz ∼, 55
– Fredholm’s ∼, 393
– Friedrichs’ ∼, 413
– Fubini’s ∼, 94, 215
– Gauß’s ∼, 270
– Hahn-Banach ∼, 180, 182
– inverse mapping ∼, 223
– Lax-Milgram ∼, 164
– Luzin’s ∼, 212
– monotone convergence ∼, 83
– Morrey’s, 335
– of Pythagoras, 11
– open mapping ∼, 222
– Radon-Nikodým ∼, 173
– Rellich’s embedding ∼, 258, 261
– Riesz ∼, 112
– Riesz-Radon ∼, 187
– Schauder’s ∼, 391
– separation ∼, 240
– Sobolev ∼, 329
– spectral ∼ of Riesz-Schauder, 381
– Vitali-Hahn-Saks ∼, 282
– Weierstraß approximation ∼ , 296

topological
– space, 19
– vector space, 157
topology, 19
– coarser, 21
– finer, 21
– induced, 20
– relative, 20
– stronger, 21
– weak, 233
– weak∗, 233
– weaker, 21
total variation, 173
trace
– of a Sobolev function, 268
trace operator, 268
trace theorem, 268
triangle inequality, 10, 13
– of a Fréchet metric, 16
– of a metric, 16

uniform boundedness, 220
uniform boundedness principle, 220
uniformly continuous, 138
unit vector
– canonical, 28, 41

variation
– bounded, 191, 201
– of a function, 191, 201
variational inequality, 244, 255
variational measure, 173
vector space
– topological, 157
vectors
– orthogonal, 11
Vitali’s convergence theorem, 57
Vitali-Hahn-Saks
– theorem, 282

wave equation
– linear, 400
weak
– boundary values, 268
– convergence, 227
– convergence in C0, 251
– derivative, 64, 191
– differential operator, 339
– Gauß’s theorem, 270
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– Laplace operator, 339
– solution, 3, 169, 248
– topology, 233
weak∗

– convergence, 227
– topology, 233
weaker
– metric, 21
– norm, 21
– topology, 21
weakly

– sequentially closed set, 241
– sequentially compact, 227
– singular integral kernel, 342
weakly∗

– sequentially compact, 227
Weierstraß E-function, 131
Weierstraß approximation theorem, 296

Young’s inequality, 53, 54, 245

Zorn’s lemma, 181
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