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Preface

The present book is the English translation of a previous German edition,
also published by Springer Verlag. The translation was carried out by Robert
Niirnberg, who also did a marvellous job at detecting errors and mistakes in
the original version. In addition, Andrei Iacob revised the English version.

The book originated in a series of lectures I gave for the first time at the
University of Bochum in 1980, and since then it has been repeatedly used in
many lectures by me and other mathematicians and during this time it has
changed accordingly. I provide the reader with an introduction to Functional
Analysis as a synthesis of Algebra, Topology, and Analysis, which is the
source for basic definitions which are important for differential equations.
The book includes a number of appendices in which special subjects are
presented in more detail. Therefore its content is rich enough for a lecturer
to find enough material to fill a course in functional analysis according to
his special interests. The text can also be used as an additional source for
lectures on partial differential equations or advanced numerical analysis.

It must be said that my strategy has been dictated by the desire to offer
the reader an easy and fast access to the main theorems of linear functional
analysis and, at the same time, to provide complete proofs. So there is a
separate appendix where the Lebesgue integral is introduced in a complete
functional analytic way, and an appendix whith details for Sobolev functions
which complete the proofs of the embedding theorems. Therefore the text is
self-contained and the reader will benefit from this fact.

Parallel to this edition, a revised German version has become available
(Lineare Funktionalanalysis, 6. Edition, Springer 2012) with the same math-
ematical content. This is made possible by a common source text. Therefore
one does not have to worry about the content in different versions. I am
happy that this book is now accessible to a wider community.

If you find any errors or misprints in the text, please point them out to
the author via email: “alt@ma.tum.de”. This will help to improve the text of
possible future editions.

I hope that this book is written in the good tradition of functional anal-
ysis and will serve its readers well. I thank Springer Verlag for making the
publication of this edition possible and for their kind support over many
years.

Technical University Munich, August 2015
H. W. Alt


mailto:alt@ma.tum.de
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1 Introduction

Functional analysis deals with the structure of function spaces and the proper-
ties of continuous mappings between these spaces. Linear functional analysis,
in particular, is confined to the analysis of linear mappings of this kind. Its
development was based on the fundamental observation that the topological
concepts of the Euclidean space IR™ can be generalized to function spaces as
well. To this end, functions are interpreted as points in a given space (see the
cover page, where a part of the orthonormal system in 9.9 is shown). Given
a set S, we consider the set of all maps f : S — IR. Denoting this set by
Z(S;R) means that any point f € % (S;IR) defines a mapping = — f(x)
that assigns to each element 2 € S a unique f(x) € IR. Then the set . (S;1R)
becomes a vector space if we define for all fi, fo, f € #(S;R) and o € R

(fi+ f2)(2) = fi(e) + fol2) , (@f)(2) = af(z) forzes.

With the help of characteristic examples we now investigate similarities and
differences between the Euclidean space IR"™ and some function spaces. The
function spaces will be covered in more detail later on in the book.

First we consider the space C°(S) (see 3.2) of continuous functions f :

S — IR, where S is a bounded, closed set in IR". The supremum norm on
CY(9) is defined by

Ifllco = sup{| f(z)|; = € S} for f € C(S).

It satisfies the same norm axioms (see 2.4) as the Euclidean norm on IR",

n 1
2| g = (Zw?) * forz= (Ti)iz1, m = (@15, 2p) ER".

i=1

One difference between the two spaces is that C°(S), in contrast to IR", is
an infinite-dimensional space, when S contains infinitely many points. This
can be seen as follows. Let z; € S for i € IN be pairwise distinct. Then for
each n € IN we can find functions ¢, ; € C°(S) for i = 1,...,n, such that
On,i(z;) =0;; fori,j =1,...,n. Here

5 1 fori=y,
7710 otherwise
© Springer-Verlag London 2016 1

H.W. Alt, Linear Functional Analysis, Universitext,
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2 1 Introduction

denotes the Kronecker symbol. Now if a; € IR for i = 1,...,n are such
that

f= Z%“Pmi =0 in C°S9),
i=1
then it follows that 0 = f(z;) = «; for j = 1,...,n. Hence vn1,...,¢nn
are linearly independent and, since n € IN was chosen arbitrarily, the di-
mension of C%(S) cannot be finite. This changes the properties of the space
significantly. For instance, while in IR™ all bounded closed sets are compact
(see the Heine-Borel theorem 4.7(7)), this is not the case in C°(S) (see the
Arzela-Ascoli theorem 4.12).
Also, the scalar product in IR",

n

n
(T, Ypn = foiyi for z = (xi)i=17,__,n y Y= (yi)i=1,“, n €ER",
1=1

)

has an analogue for function spaces; indeed, define (cf. 3.16(3))
(19 = [ fege)ds for fg e CO(s).

The corresponding norm || f|| ;2 := \/(f, f)2 is bounded from above by the
supremum norm, that is, there exists a constant C' < oo such that

1fllz2 < Clifllco  forall f € CO(S)

(this follows from 3.18, if C' denotes the square root of the Lebesgue measure
of S). In general, a similar bound from below cannot be derived. To see this,
consider the interval S = [ — 1,1] C IR alnd for 0 < ¢ < 1 the functions
f- defined by f.(x) := max (0, 1(1 — %))5, for which || fz|lco = £z, but
| fz|l ;2 = 1. That means that the C°-norm and the L?-norm on C°(S) are
not equivalent to each other (see 2.15); the C-norm is stronger than the L2-
norm. That is, the space C°(S), equipped with the L?-norm, is not complete.
For example, the functions g, for k& € IN, gi(z) := (1 — 2)* for 2 > 0,
gr(r) := 1 for < 0, form a Cauchy sequence with respect to the L?-norm,
but there exists no function g € C°(S) such that || gr — g[/;2 — 0 as k — oc.

In a situation like this we can apply a general principle in mathematics:
completion (see 2.24). Similarly to defining the real numbers IR as the comple-
tion of the rational numbers @, we can complete the space C°(S) with respect
to the L2-norm. Thus we obtain the complete space L?(S) of all square in-
tegrable, Lebesgue measurable functions on S (see 3.15 and 4.15(3)). In this
space fundamental assertions hold, such as Lebesgue’s convergence theorem
(see 3.25).

We encounter a similar situation in a further generalization from the finite-
dimensional case to the infinite-dimensional one. For the finite-dimensional
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case, let £ : S — IR be a continuous function defined on a bounded closed
set S C IR". We now look for a minimum of this function over S. The
compactness of S and the continuity of F yield that such a minimum exists:
FE has an absolute minimum on S, that is, there exists an xg € S such that

E(xg) = ;Ielg E(z).
The same holds true if we only assume that S is closed and if in addition we
require that E(xz) — oo for z € S as ||z||g. — oo.

As an infinite-dimensional analogue we consider the following Dirichlet
boundary value problem on an open, bounded set {2 C IR™. The given datum
is a continuous function uy defined on the boundary 92 of (2, i.e. ug €
C°(9£2), and we want to find a continuous function u : 2 — IR that is twice
continuously differentiable in (2, such that

Au(x) := @u(x) =0 forzel?,
i=1 i
u(z) =ug(z) for x € 902.

In applications, u is, for example, a stationary temperature distribution or
the potential of a charge-free electric field. One approach to find a solution
is to consider the corresponding energy functional (here identical to the
Dirichlet integral)

B(u) = %/Q|Vu(a:)\2dx,

where Vu(x) := (%u(m), ces a%u(x)). Here we use the term functional,

because E acts on functions, that is, F is a function defined on functions. In
order to guarantee that F(u) < oo, we initially define the domain of E to be

M;:{veCl(ﬁ);U:uoonaﬂ}7 so E:M—1R,

where we assume that M is nonempty. If we now assume that v € M is an
absolute minimum of F on M, then F(u) < E(u+ &() for all e € R and
all ¢ € C'(£2) such that ¢ = 0 in a neighbourhood of 2. On noting that
e — E(u+e() is differentiable in e (this function is quadratic in €), it follows
that

0:%E(U‘f‘folszo:/(ZVC(ZU)’VU(UC)CMC'

The fact that this identity holds for all functions ¢ with the above mentioned
properties contains all the information needed in order to derive a differential
equation for u. That is why the functions ( are also called test functions,
and u € M is called a weak solution of the boundary value problem if the
integral identity holds for all test functions. Introducing this solution concept
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allows the treatment of partial differential equations by means of functional
analysis (see 6.5—6.8). We obtain the corresponding classical differential equa-
tion on assuming that u € C?(12), as integration by parts then yields that

0= / V{(z) e Vu(x)de = — | ((z)Au(z)dx
2 7}

for all test functions ¢. This implies Au = 0 in {2 (cf. 4.22), and hence u is a
solution of the original Dirichlet problem.

However, the existence of an absolute minimum u € M for a functional
E: M — IR with M C C'(£2) is not established as easily as in the finite-
dimensional case. For instance, if 2 =10,1[,

My = {ueCH(10,1]) ; u(0) =0, w'(1) =1}

with [luflc: = flullco + u/[lco and

1
Bv(w)i= o/ + [ Ju/(o) o
0

then M; is closed in C’l([O, 1]) and FE4 is continuous with respect to the

Cl-norm. Moreover, E1(u) > ||u’||é0 — oo for u € M; as ||ul|o1 — oo, since
for u € My and = € [0,1] we have

) = | [ ] < 1lo.

and hence ||u||2cl < 4| ||éo Consequently, all the assumptions are satisfied
which lead in the above finite-dimensional case to the existence of an absolute
minimum.

But E; does not have an absolute minimum on M;. To see this, note
that Ey(u) > Hu'||2co > |u/(1)|* = 1 for all u € M. This lower bound also
represents the infimum of E; over Mj, since the functions u,(z) := %:CQ for
o > 1 satisfy

1
Hu;HZO:l and /0|“/g(x)|2dx:2;7_1—>0a8g—>oo.

Now, if u € M; was an absolute minimum, i.e. E;(u) = 1, then

1
Jw/% =1 and /O|u'(x)\2dx:o.

But the second equality implies v’ = 0, which contradicts the first equality.

In conclusion, we note that the main difficulty in proving the existence of
an absolute minimum lies in the fact that C'*(£2) is equipped with a supremum
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norm, while the functional E(u) = 1| Vu ||iz corresponds to an integral norm,
which cannot be used to bound the gl—norm (similarly to our first example).
If, on the other hand, we equip C'*(£2) with the integral norm

lullwre = lullz + Va2,

then (similarly to the first example) the space is no longer complete. But
the completeness of the space under consideration is a crucial property in
all existence proofs. Hence at times it becomes necessary to seek solutions
to boundary value problems, or minima of functionals, in a larger class of
functions. For instance, on completing the space C({2) with respect to the
above Wh2-norm (see 3.27), and thus obtaining the Sobolev space W':2(2),
we can consider the functional E to be defined on W12(£2) rather than on
C(£2). In this new space, the above variational problem admits a solution
(see 8.17).

As a third example we consider the infinite-dimensional analogue of matri-
ces. The set of all sequences with only finitely many nonzero terms is defined
by

co = {@=(ap)pen ; Tk € R for k € IN, and there exists an n € IN,
such that zp, =0 for all k > n } .

A linear map T': ¢, — ¢, is characterized by the values Tj;, the i-th coordi-
nate of T'(e;). Here e; corresponds to the j-th unit vector of the Euclidean
space, that is, e; := (3; &), cpy € C+- In other words

Tr = Z (Z Tijxj)ei,

i€EN jEN

where in each sum only finitely many terms are nonzero, with their number
depending on x. Hence T can be represented by a matrix (Tij)z‘,jelN with
infinitely many rows and columns.

For finite matrices, i.e. in the finite-dimensional case, a linear map T :
IR" — IR"™ is injective if and only if it is surjective. However, if we consider
the shift operator T : ¢, — c., defined by

T(x1,22,23,...) = (0,21, T2, 73,...),

then T is injective, but not surjective. Nevertheless, later on we will see that
the above property of finite matrices carries over to certain maps, namely to
compact perturbations of the identity (see the Fredholm alternative 11.11).
Chapters 11 and 12 are devoted to the spectral theory of such operators.
There we will generalize results from linear algebra that provide normal forms
for finite-dimensional matrices. For instance, the Jordan normal form of ma-
trices corresponds to the spectral theorem for compact operators (see 11.9
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and 11.13), while the fact that every symmetric matrix is diagonalizable cor-
responds to the spectral theorem for compact normal operators (see 12.11 and
12.12). In function spaces such operators occur in the analysis of differential
and integral equations.

As a final example we consider a Sturm-Liouville problem. A solu-
tion to the Sturm-Liouville problem is given by a function u € C’Q([O7 1])
satisfying the differential equation

Tu:=—(pu') +qu=f
and, for instance, satisfying the boundary conditions
w(0) =0, 4/(1)=0.

We assume that the right-hand side of the differential equation satisfies f €
CO([O, 1])7 while for the coefficients we assume e.g. ¢ € CO([O, 1]) and
pE Cl([O, 1]), with p being a strictly positive function, i.e. there exists a
number ¢ > 0, such that p(z) > ¢ for all x € [0,1].

The Sturm-Liouville problem can be formulated as an integral equation.
Then one looks for a function u € C’O([O, 1]) such that u = Kyu, where

x 1 1
(K ju) () = / — / (f — qu)(z) dzdy.

If u € CO(I:O7 1]) is a solution to this integral equation, i.e. v = Kju,
then the integral representation and the assumptions on p,q, f yield that
u € C’Q([O7 1])7 and that both the differential equation and the boundary
conditions are satisfied.

It follows from the Banach fixed point theorem that the integral equa-

tion admits a unique solution. This is true whenever Ky is a contraction
mapping, i.e. if there exists a number 6 < 1, such that

| Koul| < 0l|ul|  for all w e C°([0,1]),

where ||+|| denotes the supremum norm (it is also possible to use other, equiv-
alent norms, which can lead to improved contraction factors). For instance,

for p = 1 we have
x 1
[ [ oz -
0 Jy

1
< HuH/O |2q(2) | dz,

| Kou(z)| = /0 (qu)(2) min(z, z) dz

and hence the boundary value problem has a unique solution if

1
p=1 and / zlq(z)|dz < 1.
0
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However, this unduly restricts the class of admissible functions ¢. In order
to be able to treat more general ¢, we reformulate the problem and attempt
to solve an infinite-dimensional system of linear equations. To this end, let
{e;; i € IN} be a linearly independent set in the function space

V= {veC*(0,11) ; v(0) =0, v/(1) =0}

and define
1 1
a;j ::/O ei(x)(Tej)(x)dez and f; ::/O ei(z)f(x)dx.

Using the formal ansatz u = ZjelN uje; it then follows from T'u = f that
formally

Z QU5 = fl for all i € IN.

JEN
If the e; form a Schauder basis (see 9.3) with respect to the L?-norm, then
this infinite-dimensional system of equations is even formally equivalent to
the differential equation. For, with an arbitrary function ¢ = >, .y ase; € V
and since Tu =) jEN u;Te;, it follows from the system of equations that

0= Zai(z aijuj — fi)

ieN  jeN

ZZ(M(/ Zujez (Tej)(z )dx—/olei(m)f(x)dx)
- [(Z ) (X wire)e - 1)

i€IN jeIN
= [ o - rw)as.
and hence (similarly to the Dirichlet problem above) that the differential
equation is fulfilled. Remember, that this conclusion was formal.

We now assume that we can choose for each i the e; as normalized eigen-
vector of T' corresponding to the eigenvalue \;, i.e.

1
Te; = \ie; , / ei(x)?dr =1.
0
It follows for ¢, j € IN that
1
(=) [ eialeso) do
0
1 1
= / (Te;)(x)ej(z) dx — / ei(x)(Tej)(x)dz =0.
0 0
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For the last identity we have used the fact that T is a self-adjoint operator.
To see this, note that, for u,v € V,

/0 o(2)(Tw)(x) dz
1 1
:fAv@MmM@M+Aq@M@M@M

r=1

— [ v@p@n (@) |

=0

z=0

+/'@uwxmw@y+«mmmum»dx
0

is symmetric in v and u. Hence for \; # A; it follows that

0y = /01 ei(2)(Te;) (@) do = \; /01 e:(2)e;(x) dz = 0.

Moreover, setting N := {i € IN; \; = 0} and assuming that all eigenvalues
A; with @ ¢ N are pairwise distinct, yields that

Q5 = /\i(sz’,j for all 1,] € IN.

Hence the (formal) infinite-dimensional system of linear equations is reduced
to diagonal form and reads

Aiu; = f;  for all ¢ € IN.
We obtain the solvability condition
fi=0 forie N,

and, formally, the solution

U= Z )t(/ol ei(x)f(x)dx)ei + Zai€i7

i¢N ieN

where the oy, © € N, can be chosen arbitrarily. Moreover we see that, ana-
logously to linear algebra, the number of linearly independent functions cor-
responding to the eigenvalue 0, i.e. the number of degrees of freedom for
the solution u, agrees with the number of side constraints for the datum f
(cf. 11.6 and 12.8).

Thus we have reduced the Sturm-Liouville problem to an eigenvalue prob-
lem for the operator T'. Here we note that we employed arguments which are
analogous to matrix calculus, but which are merely formal for infinite ma-
trices. Of course, these need to be justified and this will be the subject of
Chapters 11 and 12.



2 Preliminaries

In this chapter we introduce a number of fundamental structures in general
spaces: topology, metric, norm, and scalar product. They are the natural
generalizations of the corresponding concepts in the Euclidean space IR".

The most detailed structure is given by a scalar product in a IK-vector
space, where here and throughout we take either IK = IR, i.e. IK is the set
of real numbers, or IK = C, i.e. IK is the set of complex numbers. For
a € IK we use the notation

Rea — i Ima for IK = C,
al == vVaa ith  a:=
o v {a for IK = IR,
and if o € € and for example

a >0, we implicitly assume that « € IR C C.

2.1 Scalar product. Let X be a IK-vector space. We call a map (x1,x2) —
(1, 2) x from X x X to KK a sesquilinear form if for all o € IK and for
all z, 21, 22,y,y1,y2 € X one has

(S1) (az,y)x =a(z,y)x
(z,ay)x =a(z,y)x ,
(82) (z1+22,y)x = (21, y)x + (22, ¥)x »

(g1 +y2)x = (@, y1)x + (7, y2)x

This means that (-1, «2)y is linear in the first argument and conjugate
linear in the second argument. Where no ambiguities arise, one can also write
(1, z2) in place of (z1, x2). The sesquilinear form is called symmetric
(also called a Hermitian form) if for all z,y € X one has

(83) (z,y)x=W.2)x (Symmetry).
A sesquilinear form is called positive semidefinite if for all x € X

(S4’) (z,z)y >0 (and then (z, z)y € R) (Positivity)
and positive definite if for all x € X

(S4) (z,2)y >0 andinaddition: (z,2z)y =0 <= z=0.

© Springer-Verlag London 2016 9

H.W. Alt, Linear Functional Analysis, Universitext,
DOI 10.1007/978-1-4471-7280-2_2



10 2 Preliminaries

For Hermitian forms (z, z)y = (z,z)y is real-valued, and for positive
semidefinite Hermitian forms it is always nonnegative, in which case we define

lzllx =/ (z, 2)x -

A positive definite Hermitian form is also called a scalar product or inner
product, and then the pair (X, («1, *2) ) is called a pre-Hilbert space. If
this scalar product in the vector space X is fixed, then we also say that X is
a pre-Hilbert space.

The following lemma contains the fundamental properties of a scalar prod-
uct.

2.2 Lemma. Let (z1,22) — (21, 22)y from X x X to IK be a positive
semidefinite Hermitian form and |z|| := /(z, z) i for € X. Then it holds
for all x,y € X and all a € IK that

1) flex]l = laf- |z (Homogeneity),
2) [z, v)x| <zl -yl (Cauchy-Schwarz inequality),
3) llz+yll <zl + [yl (Triangle inequality),
@ llz+yl*+llz—yl* =2(lz1 + ly|*) (Parallelogram law).

Proof (1). |laz|? = (az, axr)y =oa(r, ar)y =at(z, z)y = la?z]?. O

Proof (2). Let z,y € X. It holds for o, 5 € IK \ {0} (we want to set o = |||

and § = |[y|) that
l=1* Iyl ((w,y)x>
——Z| = + —2Re | —=Z= |, (2-1)
a B al* 181 ap
and hence for a > 0 and 8 > 0, upon multiplying the inequality by a8 > 0,
that
B

(67

e 2
0< Y

2 2
2Re(z, y)x < =z +BIIyH ~

Setting o = ||z|| + ¢, f = ||y|| + € with € > 0 yields that

2 2
[z 1K1

2Re(z, y)x < (llyll +¢)- Iyl +e

+ (llzll +¢) -

2]l + ¢
<yl +e) -l + Ul + ) - Iyl -
As this holds for all € > 0, it follows that
Re(z, y)x < =] - llyll-
On replacing = with (z, y) & we obtain

2
(@ ) x [T < (@, y)x |-z - [lyll

and then cancelling in the case (v, y)y # 0 gives the desired result. If
(z, y)x =0, then the claim is trivial. O
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Proof (3). On recalling (2) we have

2 2 2
Iz +yl” = [l + [lylI” + 2Re (z, y) x
2 2 2
<z l” + gyl + 202 - [yl = (=l + [yl

O
Proof (4). The first identity in the proof of (3) was
le+yl* = l=l* + [lyl* + 2Re (, y)x -
Replacing y by —y yields, since (z, —y)y = — (z, y) , that
le = yI* = l2)* + ly|* — 2Re (=, y)x - (2-2)
Adding the two identities gives the result. O

2.3 Orthogonality. Let X be a pre-Hilbert space over IK and for x € X let
x|y == +/(x, z)y as in 2.1.

(1) Let z,y € X. If (z, y)x = 0, we say that x and y are perpendicular,
or that they are orthogonal vectors. Then

2 2 2
Iz =yllx = ll=lx +llylx  (Pythagoras’ theorem).

(2) If Y and Z are two subspaces (see 4.4(2)) of a vector space X, then the
sum

Y+Z:={y+zeX;yeYandz € 7}

is again a subspace. The sum is called a direct sum, and we write Y & Z =
Y+Z ifYNZ={0}. If X isa pre-Hilbert space, then the subspaces are
called orthogonal if (y, z)y = 0 for all y € Y and z € Z. Clearly it then
holds that Y N Z = {0} and we denote the subspace Y @ Z also by Y L Z.
The orthogonal complement of a subspace Y is defined by

Yti={zeX; (y,z)x =0forally € Y} (see also 9.17) .

It holds that Y N Y+ = {0}.
(3) For z,y € X \ {0} the Cauchy-Schwarz inequality 2.2(2) then reads

[v] <1 with ~:= (I, y) .
lzllx " llyllx / x
Here equality holds if and only if x and y are linearly dependent.
(4) If IK = IR, then in (3) there exists a unique
0 € [0,7] such that ~ = cos(f).

We call 6 the angle between = and y. It follows from (3) that x and y are
linearly dependent if and only if # = 0 or # = 7, and they are orthogonal if
and only if 0 = 7.
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Proof (1). The theorem of Pythagoras follows from (2-2). O
Proof (2). This essentially contains only definitions. O

Proof (3). If x and y are linearly dependent, it is obvious that |y| = 1. If
|v| = 1, then on setting o = ||z|| v, 8 = 7||y|| x, equation (2-1) becomes

x_yH2_2_2Re< (xay)X >_O
3 )

0<
a Izl x -yl x

which implies

r_Y
a B’
hence x and y are linearly dependent. a

Proof (4). By (3), the vectors z and y are linearly dependent if and only if

1 =|v| = |cos(#)|, which means § = 0 or § = . By (1), the vectors « and y

are orthogonal if and only if (x, y), = 0, which means cos(f) = 0, that is,

0=72. O
2

The standard example is the n-dimensional Fuclidean space IR"™. The
Euclidean scalar product and the Euclidean norm (for clarity these will
be denoted by special symbols) are defined by

n 1

xoy::Zmiyi and |x|::\/xo:c:(2xf)E
i=1

i=1

for v = (i), , € R", y=(vi);—;_, € R". In the complex space C" we
define correspondingly

1

zow::ZziWie@ and |z|:=+zez= (Zzwﬁ-)i clR
i=1

=1

for 2 = (2i);-y ., € €, w = (wi),_; , € C". The infinite-dimensional
analogue of Euclidean space is the sequence space (see 2.23).

A fundamental step in the development of functional analysis was the
introduction of norms x +— |||y that are not induced by a scalar product as
in 2.1, but are instead only characterized by the homogeneity and the triangle
inequality in 2.2.
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2.4 Norm. Let X be a IK-vector space. The pair (X, ||+]|) is called a normed
space if ||+|| : X — IR satisfies the following conditions for z,y € X and
ac K:

(N1) |lz[[ >0 (Positivity),
and: [[z]| =0 <= =0,

(N2) |laz| = |af - ||zl (Homogeneity),

(N3) Nz +yll <zl + [yl (Triangle inequality).

We then say that the map ||+|| : X — IR is a norm on X. If a norm ||+|| y :
X — IR is fixed on the vector space X, then we also call X a normed space.

Note that the property ( # =0 = |[|z|| =0 ) in (N1) follows indepen-
dently from (N2) on setting ae = 0 there. We call ||-|| a seminorm if we take
(N1) without the property ( ||z|| =0= 2 =0). It then follows from (N2)
and (N3) that the set Z := {z € X ; ||z]| = 0} is a subspace of X, and hence

T~y = x—yes

defines an equivalence relation “~” on X. Now let X be the set X together
with the equivalence relation

w:yin)? = T~y < zx—yeLL

Then all the vector space properties carry over from X to X, and (X, ||-||) is
a normed space (see remark). A common notation for the factor space or
quotient space X is X/Z.

Remark: Let X be an arbitrary set, with “~” an arbitrary equivalence

relation on X, and then let X be the set X with this equivalence relation,
that is, _
r=yinX <= z~yinX.

A map f: X — S to another set S is said to be well defined if
r=yinX = f(z)=f(y)inS. (2-3)

Hence, when defining a map on X , condition (2-3) always needs to be verified.
Similarly, given a map f : X — S, then this also defines a map from X
to S, if (2-3) is satisfied for f. Analogous results hold for maps defined on
eg. X x X.
In the case of a seminorm as discussed above, it can be easily shown that
this is satisfied for the maps (x,y) — z+y from X x X to X and (o, z) — ax
from IK x X to X, as well as for the map x — ||z from X to IR.

In Section 3 we will introduce the most important norms in spaces of con-
tinuous and integrable functions. These norms are derived from the following
norms in K".
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2.5 Example. For 1 < p < oo the p-norm on IK" is defined by

" 5
Z|xi|p for 1 <p < oo,
|2, = i=1

_Iax |2 | for p =0,

gouey

where x = (z;),_; _, € K". For p = 2 the Euclidean norm of r is |z|, =
|z|. Alternative notations for the maximum norm |z| are |z| . and
|2|.,,, While the sum norm |z|, is also denoted by |z|

~

sup’ sum”

Fig. 2.1. Unit spheres for p-norms in IR?

Proof. All of the norm axioms are easily verified, apart from the triangle
inequality in the case 1 < p < oo for n > 2. However, this follows from the
Holder inequality (proof to follow)

|x.y|§ ‘x|p|y|p’ (2_4)

for x = (z1,...,2n), y = (Y1,.-.,Yn), where p’ is the dual exponent to p,

i.e. it is defined by % + i =1.

Note: This inequality is a special case of the general Holder inequality in

3.18 for the counting measure on {1,...,n}. Here we give a different proof.
The inequality (2-4) can, for instance, be shown by induction, on em-

ploying the inequality for n = 2. To this end, let 2’ = (21,...,2p-1),

y = (y1,...,Yn—1) and observe that
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[z oyl <|2" o y/| +|zn] - yn]
<|2'l, -1yl +|zal - lya|  (induction hypothesis)

<[(a’ly aa] |10l JoaD)] Gnequality for n = 2)
= ‘x|p : |y|p’ .
The inequality for n = 2 follows immediately from the elementary inequality
1 / ;oL
arby + agbey < (a +db)p - (V) +05 )P for ay,as,b1,b2 >0. (2-5)

This holds trivially if one of the numbers is equal to 0. Otherwise, dividing
by a1b; and setting o := aba;?, f:= b5 by " yields the equivalent inequality

1 1 1 1
1+arB? <(1+a)p-(1+8)7 fora,3>0, (2-6)

—

11
which we will prove now. For fixed r := a? - 7" we have that

a=(rp ) = a2 g =),

since z% = p — 1. Then the inequality reads

—

1 1
L+r<op(B):=Q0+yB)r 1+8)*r,
and the right-hand side is minimal, if ¢’(8) = 0. Now
VO, LYol (8w )
L+4(8)  p'(1+5) P \1+8 14+4(8))’

since ¢'(8) = —v(p) - %. Hence ¢'(8) = 0 means § = ¢(8), and so § =,
a = r. This proves (2-6), and therefore the Holder inequality (2-5) follows.
On letting z; := |2; + yi|p_1, z = (21,...,2n), we have that

o (8) = o(B) - (p(

lz; +uil? < || zi + |yl 20

The Holder inequality then implies, since p’ - (p — 1) = p, that
|z +y[P < (|$i‘)i:1,...7n °z+ (|yi‘)i:1,,,,,n ez
—1
§|m|p|zlp’+|y|p|Z|p/:(|x‘p+|y|p)|x+y|£ ’
which yields [z +y[, < |z[, + [yl 0
We now interpret the norm ||z|| of  as the distance of the point = from
the origin 0 and replace ||z|| with a value d(z,0), where d : X x X — R is

a map for which only the triangle inequality has to hold. This notion of a
distance can be defined in arbitrary sets.
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2.6 Metric. A metric space is a pair (X, d), where X is a set and
d: X xX—>Rforal z,y,z € X

has the following properties:

(M1) d(zx,y) >0 (Positivity),
and: d(z,y) =0 <= z =y,

(M2) d(z,y) =d(y,z) (Symmetry),

(M3) d(z,y) <d(z,z)+d(z,y) (Triangle inequality).

We then call d(x,y) the distance between the points x and y. The map
d: X xX — IR is called a metricon X. If a metric dy : X x X — IR is fixed
on the set X, then we also call X a metric space. If (X, d) is a metric space
and A C X, then (A4,d) is also a metric space, with d restricted to A x A.

Without the property (d(z,y) = 0 = =z = y) in (M1) we call d a
semimetric. Then the factor space of X with respect to d is given as
follows: The properties of the semimetric imply that

x~y = d(x,y)=0

defines an equivalence relation “~” on X. Now let X be the set X equipped
with the equivalence relation

r=yin X = a~y < d(z,y) = 0.

Then (M3) implies that d is also well defined on X x X, and that (X, d) is a
metric space (see the remark in 2.4).

2.7 Fréchet metric. In vector spaces X, metrics d are often defined by
d(x,y) = oz —y) forzyeX,
where o : X — IR satisfies the following properties for all z,y € X:

(F1) g( ) >0 (Positivity),
o(x) =0 <= 2z =0,

(F2) ( ) = o(—x) (Symmetry),

(F3) o(z+vy) < o(x)+ o(y) (Triangle inequality).

A map ¢ : X — IR satisfying (F1)—(F3) is called a Fréchet metric. Any
norm z — ||z| on X is a Fréchet metric and hence defines the induced
metric d(x,y) := ||x — y||.

We begin with some elementary examples.
2.8 Examples of metrics.

(1) A bounded Fréchet metric on IK" that is not a norm is given by

for x € IK™.
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(2) Let —o0, +00 be two distinct elements that do not belong to IR. One
can then define a metric on IR U {£o0} by

d(z,y) == |g(z) —g(y)| for z,y € RU {Fo0},

where
-1 for x = —o0,
’ f
g(x) := T+ 7] or r € IR,
+1 for x = +o0.

(3) Let oo be an element that does not belong to IR"™. One can then define
a metric on R™ U {oo} by
d(z,y) = [Tstereo(T) — Tstereo(y)| -
Here
Ttereo : IR" U {00} — {y € R" x R=R""; [y - (0,3)[ =35 },

where the image is the ball B]f”nﬂ((O, 3)) with respect to the Euclidean
2

metric, is defined by

2
M for x € R™,

Tstcrco(x) = 1+ |1"
(0,1) for = oco.

Remark: The inverse Tsereo | is the stereographic projection, ie. y =
Tstereo () With |y — (0, %)| = % and y # (0,1) is given by

(I1-a)(0,1) +ay = (z,0) for an a € R.

Proof (1). The function ¢(s) := 37 for s > 0 satisfies

o(s) <p(5) for0<s<g5,

51 S92
$1+ 82) = + < p(s1) + (s for s1,s9 > 0.
90(1 2) 1+ 514 592 1+51+82_<p( 1) SD( 2) 1oz
Apply the above for s = |z +y| < |z|+ |y| =3, s1 = |z|, s2 = |y]. g

Proof (2) and (3). Use that g, resp. Tstereo, is injective and employ the triangle
inequality in IR, resp. R™ . O

With the help of the distance between two points we now define the
distance between two sets. As a special case we obtain the definition of balls
with respect to a given metric.
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2.9 Balls and distance between sets. Let (X, d) be a metric space. For
two sets Ay, Ay C X the distance between A; and A is defined by

dist(A41, Ag) := inf{d(:v,y) s x €A, y € Ay } ,

where inf) := oo (so that dist(A4,0) = o0). For z,y € X it holds that
d(z,y) = dist({z}, {y}). For z € X the distance from z to A C X is defined
by

dist(x, A) := dist({z}, A) = inf { d(z,y); ye A } )

For r > 0 the r-neighbourhood of the set A is defined by
B, (A) = {z e X ; dist(z,A) <r } ,

and B, (z) := B,.({z}) is called the ball around x with radius r or, alter-
natively, the r-neighbourhood of the point x. We have

B.(z)={yeX;dyuz)<r}.
The diameter of a subset A C X is defined by
diam(A) := sup { d(z,y) ; z,y € A } ,

if A# 0, and diam(()) := 0 (or make the convention that sup := 0). A set
A C X is called bounded if diam(A) < oo.

B, (A1)

dist(Ay, As

Fig. 2.2. Metric definitions in IR® with respect to z — |z|,

The concept of a ball plays an important role in definitions and proofs for
metric spaces. It can be used, for instance, to introduce the following notion
of an “open subset” (see 2.10). In functional analysis the concept of open
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sets is applied to function spaces. Depending on the chosen distance the
notion of open sets is different, therefore one obtains different results for the
considered class of functions. In 3.2, 3.3 and 3.7 this applies to function spaces
with respect to supremum norms, in 3.15 to function spaces with respect to
integral norms, and in 3.13 to function spaces equipped with distances that
are induced by a measure.

2.10 Open and closed sets. Let (X, d) be a metric space. For A C X the
interior of A (notation: intry (A) or intr (A) or A) is defined by

intr (4) := {z € X ; B.(z) CAforane >0} C 4,

and the closure of A (or the closed hull, notation: closx (A) or clos (A) or
A) is defined by

clos(A):= {ze€ X ; Bo(x)NA#Dforalle >0} D A.

It holds that z € clos (A) if and only if dist(x, A) = 0. Using quantifiers, the
above definitions can be written as

xeintr(A) <= Fe>0: B(x)\
xeclos(d) < Ve>0: B(z)Nn

or

reintr(4) <= Fe>0:VyeB(zr): yeA,

z€clos(A) <= Ve>0:3JyeB(zr): yeA.
A subset A C X is called open if intr (A) = A, and A C X is called closed
if clos (A) = A. The complement of a closed set is open and the complement
of an open set is closed. The boundary of A C X (notation: bdryy (A) or
bdry (A) or OA) is defined by

bdry (A) := clos (A4) \ intr (A4)
=clos (A) Nclos (X \ A) = bdry (X \ A4)

and, being an intersection of closed sets, is a closed set. We have
X =intr (A) Ubdry (A) Uintr (X \ 4) ,
where the union is disjoint.
We now consider on X only the class of open sets. This class is charac-

terized by the fact that arbitrary unions of open sets and finite intersections
of open sets are still open sets.

2.11 Topology. A topological space is a pair (X, T), where X is a set and
T is a system of subsets of X (the elements of T are called open sets), with
the following properties:
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(T1) VeT,XeT,
(T3) U,UseT — U NU€eT.

A topological space is called a Hausdorff space if in addition the following
separation axiom is satisfied:

(T4) For z1,29 € X with 1 # xo there exist Uy, Us € T
such that z1 € Uy, 22 € Uy, and U; NUs = (), the same with quantifiers:
Vx1,$2€X,$17é$21EUl,UQETZ.%‘leUl, zo € Us, UlmUQZQ).

A subset A C X is called closed with respect to T if X\ A € T, that is, with
respect to 7, the complement of an open set is closed, and the complement
of a closed set is open. We define for A C X (note the remark in 2.12 below)

intr(x, 7y (A) := {xEX; UCAforsomeUETwithaceU} C A,
closx ) (A):i={zeX; UnNA#PforalU e T withzeU } DA.

Alternative notations are intr (A) := intr(x 7 (A4) or A= intr(x 7 (A) and
clos (A) := clos(x,7 (A) or A := clos(x,7) (A). It holds that

A= intr(x 7 () <= AeT,
A= ClOS(X’T) (A) — X \ AeT.

If AcC X, then (A, 7T4) is a topological space with the relative topology
Ta={UNA; UeT}.

The following is the standard construction of a topology and it shows that
for a metric space the definitions of interior and closure in 2.11 (with respect
to a topology) and in 2.10 (with respect to a metric) are the same.

2.12 Proposition. Let (X, d) be a metric space and, on recalling the defini-
tion of the interior of a set in 2.10 (we write intr(x 4y (A) instead of intrx (A)),
let

T:={ACX; intrixq (A) = A}.

Then (X, T) is a topological space and, in particular, a Hausdorff space. We
call T the topology induced by the metric d.

Remark: For all subsets A C X it holds intr(x 4 (4) = intr(x,7 (4) and
ClOS(X’d) (A) = ClOS(Xﬂ*) (A)

Proof of the proposition. In order to show axiom (T3), let Ay, As € T and
x € Ay N Ay. Then intr(X)d) (A1) = A; and intr(X7d) (Ay) = A, with the
definition as in 2.10. Hence there exist €1, 2 > 0 such that B, () C 4; and
Be,(x) C As. Setting € := min(eq, e3) > 0 yields B.(z) C A; N A, and hence
A1 N Az € T. For the proof of (T4) let  # y. Then the triangle inequality
yields that
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B, (z) NB,(y) = 0 for r := 1d(z,y) >0,
and B, (z),B,(y) € T (see E2.2(2)). O

2.13 Definition. Let (X,7) be a topological space. A subset A C X is
called dense in X if clos (A) = X, and X is called separable if X contains
a countable dense subset. A subset A C X is called separable if the relative
topological space (A, T4) is separable. Hence, if (X,d) is a metric space, a
subset A C X is separable if the metric space (A, d) is separable.

2.14 Comparison of topologies. Let 77, T3 be two topologies on a set X.
We say that Tz is stronger (or finer) than 77, or equivalently that 77 is
weaker (or coarser) than T, if

TiCTs.

Let dy, d2 be two metrics on X and 77, T2 the corresponding induced topolo-
gies (see 2.11). Then the metric ds is said to be stronger (weaker) than d if
Ts is stronger (weaker) than 77. The metrics d; and ds are called equivalent,
if 71 = T3. Similarly, a norm is said to be stronger (weaker) than another
norm, and two norms are called equivalent if this holds for the induced
metrics, respectively.

2.15 Comparison of norms. Let ||+||; and ||+, be two norms on a IK-vector
space X. Then

(1) ||+l is stronger than ||-||, if and only if there exists a positive number
C such that
|zl < Cllz|l, foralzeX.

(2) The two norms are equivalent if and only if there exist positive numbers
c and C such that

lzlly < ll2ll, < Cllafl, foralleeX.

Proof (1). Let Bi(z) denote the balls and 7; the topologies with respect to
the norms ||+||;. Let 73 C 7. Since Bi(0) € 71 (see E2.2(2)), B{(0) is open
with respect to ||+||, and, in particular, 0 lies in the interior (with respect to
I+11) of B(0), ie.

B2(0) ¢ Bi(0)  for some ¢ > 0.
This means, for x € X, x # 0, that

ex
2||33||2

€
=—<g, therefore

<1,
2

H ex
1

2[j

2

. 2
that s ||, < =zl

Conversely, if the inequality in assertion (1) holds, then
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B2(z) C Bi,(z) forallz € X and r > 0.

Let A € 7T1. Then A = intrg, (A) with respect to 71, and for x € A there is
an € > 0 such that

Bl(z) C A, therefore BQ% (x) CA.
This proves that A € 5. m]
Proof (2). Apply (1) twice. O

2.16 Examples.

(1) The p-norms on IK"™ defined in 2.5 are pairwise equivalent, since for
1<p<

1

(2) The Euclidean norm and the Fréchet metric in 2.8(1) induce the same
topology on K", since for y € IK"

lyl < 20(y) if oly) < 5. ely) <yl
Hence, B‘é‘cmc(x) C Bromm(z) ¢ Bmetric(g) for 0 < r < 1.
(3) For open sets U C IR U {£oo} with respect to the metric in 2.8(2) it
holds that
reUNR <= Jer—cz+elCcU forane>0,
4o elU <— ]%,4—00] cU forane>0,
—0el < [—oo,—%[CU for an e > 0.
(4) For open sets U C IK"U{oo} with respect to the metric in 2.8(3) it holds
that
reUNK" <«— {yeK";|ly—xz|<etcU forane>0,
welU <= {yeK"; |y/>L}cU forane>0.

One of the most important concepts in analysis is the notion of a limit
and the resulting concept of continuity. Given a mapping f : X — Y between
Hausdorff spaces X and Y, then f is continuous at xp € X (see 2.17(4)
below) if

f(zg) = lim f(z) inY.

T—xQ

This is the well-known notion of continuity in the analysis of Euclidean spaces.
We now generalize this concept as follows: Given sets S, X, Y and mappings
p:S8 =X, f:5 =Y, we consider two points zg € X, yp € Y and the
question is whether the function values f(s) are “close to” yo if ¢(s) is “close
to” xg. In metric spaces we can define the notion of closeness with the help
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of balls around xy and yg, and similarly in topological spaces with the help
of open sets that contain zg and yq, respectively.

Usually we have that S C X and ¢(s) = s for s € S. But often this is
not the case. A nontrivial example is given in A3.17 (there S is a system of
sets with f(E) := |[v(E)| and ¢(F) := pu(FE) for E € S, hence X = IR and
Y =1R).

2.17 Convergence and continuity. Let S be a set, (X, Tx) and (Y, Ty)
Hausdorff spaces, and

p:5—=X, X, [f:5=Y, yev.
We say that
f(s) converges to yo in Y (with respect to Ty)
as p(s) goes to xp in X (with respect to Tx),
and use the notation
f(s) = yoinY as @(s) = zpin X,
if the following holds for all Uy C X, Vj C Y
x0 € Uy € Ty, There exists a U € Tx such that zg € U C Uy,
yo € Vo € Ty — e ' (U) # 0 and f(o '(U)) C Vp.
The conclusion states that for a U € Tx with xg € U C Uy it holds that
seS, p(s)eU = f(s)eW,
and that ¢(s) € U for at least one s € S. We have (see E2.4):

(1) Given zg, f, ¢, there exists at most one such yg € Y. Hence we write

Yo = lim f(S) )

e(s)—zo

and call yo the limit of f(s) as ¢(s) goes to .
(2) zp € clos (p(9)) and yo € clos (f(.9)).

(3) The most important special case is: S C X and ¢(s) = s for s € S.
Then, for points xy € clos (S) and yo € Y, the definition

f(x) 5 yoinY asz — xp in X, ie. yo = lim f(z),
T—To

is equivalent to

There exists a U € Tx such that g € U

VeTy, eV =
Yo and f(UNS)CV,

in words: For every open set V containing y, there exists an open set U
containing zg such that f(U N.S) is contained in V.
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(4) Ifin (3) in addition = € S, then it follows that yo = f(z¢), i.e.

f(zo) = lim f(z).

T—rT0

In this case f is called continuous at the point xg.

(5) If S = X, then f : X — Y is called a continuous map if f is continuous
at all points 2y € X. This is equivalent to

V€7§/ — f_l(V)ETXa

in words: The mapping f has the property that the inverse image of each
open set in Y is open in X.

2.18 Convergence in metric spaces. Let (X, dx) and (Y, dy) be metric
spaces and let AC X and f: A — Y.

(1) Let zp € clos (A) and yo € Y. Then
f) = yoinY asz — zg in X

if and only if:

For all € > 0 there exists a d > 0, such that

x €A dx(z,x9) <0 = dy(f(m),yo) <eg,
i.e. if and only if

dy (f(z),y0) = 0 as dx(z,29) > 0 (in R).
Using quantifiers this property can be written as:

Ve>0:30>0:Vaed: dx(z,z) <d=dy(f(z),y0) <¢.

(2) Let X = IK"U{oo} (equipped with the metric in 2.8(3)) and let A C IK"
be unbounded. Then co € clos (4), and x — oo in K" U {oo} means that
|z] = +o0 in R U {00} (equipped with the metric in 2.8(2)). Let y € Y.
Then

fx) > yinY as |z| = +oo
if and only if:
For all € > 0 there exists a § > 0, such that
r€A, |z]> 1 =dy(f(z),y) <e.
Using quantifiers this property can be written as:
Ve>0:36>0:Vazed: |z|>1=dy(f(z),y) <e.

(3) Let X = RU{+xoo} (equipped with the metric in 2.8(2)) and let A = IN,
ie. (yj)jelN with y; := f(j) is a sequence in Y. It then holds for y € ¥ that

y; —yinY as j — 400
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if and only if:
For all € > 0 there exists a k € IN such that
JEN, j> k= dy(y;,y) <e.
Using quantifiers this property can be written as:

Ve>0:3keIN:VjeN: j>k=dy(y;,y) <e¢.

(4) In metric spaces convergence is equivalent to sequential convergence,

that is, the convergence in (1) holds if and only if for all sequences (x;);
in A:

Tj = Topasj—>00 = dy(f(xj),yo)—>()asj—>oo. (2-7)

Proof (1). Use the fact that balls B.(yg) belong to the topology Ty induced
by dy and that

YeVeTy = B.y)CVforane>0.

Likewise in X, every Bs(xg) € Tx, and if g € U € Tx, then Bs(xzg) C U for
some 0 > 0. m|

Proof (2). Follows from (1), on noting that for 0 < ¢ < 1 for the ball B (o)
with respect to the stereographic projection the following is true:

2 €By(o0) = |z|>\0 P —1=26""

Proof (3). Similarly to (2), by choosing § < k < 1 + 1. O

O

Proof (4). Assume that (1) holds and that z; — zo in X as j — oo. Then
given € > 0, there exists a 6 > 0 such that dy(f(z),y0) < ¢ for x € A
with dx(x,x0) < J. Then (3) yields the existence of a k € IN such that
dx(zj,2z0) < 6 for j > k. Consequently dy (f(x;),y0) < €. This proves the
claim in (4).

Conversely, assume that the convergence statement in (1) is not true.
Then we have to negate the assertion

Ve>0:30>0:Vaed: dx(z,z) <d=dy(f(z),y0) <e.
The negation is:
Je>0:Vd>0: JxeA: dX(m,a:O)<5anddy(f(:c),y0)25.

Consequently there exist an € > 0 and, for §; := %, j €N, an z; € A such
that

dx<$j,$0) < (5]‘ and dy(f(l’j),yo) > €.

In particular, x; — x¢ in X as j — oo, but dy (f(z;),y0) > ¢ for all j € IN.
This contradicts (2-7). O
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2.19 Note. In 2.18(3) we identified sequences in Y with maps from IN to Y.
This can be generalized to arbitrary sets I and A. Here the notation (a;),.;,
with a; € A for i € I, defines a map i — a; from I to A. The set of all of
these maps is denoted by A’ and I is also called index set,
Al i ={(a;);e; s Viel : a; € A}.

In this book, I is usually a subset of IN. Examples are the sequence space
K™ in 2.23 and the set X™ in 2.24. In addition one can identify IK" with
K7} In general it is important to note that (@) is well distinguished
from the subset {a; € A; i € I} C A (relevant in e.g. 9.3).

The analysis of limits in metric spaces is often based on inequalities, which
we also call “estimates” or “bounds”; this is especially true in function spaces.
Usually performing the limit is not trivial and consists of a “nested limit”.

2.20 Note (Nested limits). We make the following remark on convergence
proofs. By a nested limit for sequences defined on IN we understand the
following. Let a; > 0, by ; > 0, ¢, > 0 for ¢, k € IN with the property

a; < b + Ck
N—— N——
S 0asi—oo —0ask—o0
for a fixed k

From this we deduce that (a;);cy is a null sequence, i.e.
a; —>0 asi—o0.

To see this, assume that the inequality a; < by ; + c; holds for ¢, k € IN, that
cp — 0 as k — oo and that for each £ € IN we have that by ; — 0 as i — oo.
For an arbitrary € > 0 we can then choose a k. € IN such that ¢, < e.
Moreover, for this k. there exists an i. such that b, ; < € for all i > ..
Hence we have that

a; <by i+cp. <2 foralli>i..

This proves that (a;);cqy is a null sequence.

This book contains many such limit considerations. A first example you
can find in the proof of 2.23(2). In these cases the detailed argumentation
will either be omitted, or dramatically shortened to something like:

First choose k large, then choose ¢ large.

Also nested limits with more than two indices are used.

One of the most important concepts in metric spaces is the
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2.21 Completeness. Let (X, d) be a metric space.

(1) A sequence (zy),cq in X is called a Cauchy sequence if
d(zg,x1) >0 as (k1) = (c0,00).

One usually writes k,1 — oo in place of (k,1) — (00, 00).
Remark: Here convergence of (k,1) € IN? C (IRU{=oc})? is understood with
respect to the product metric ds(a, b) := dy (a1, b1)+d1(az, bs) for a = (a1, asz)
and b = (by,bs) in (IR U {£00})?, where d; is the metric on IR U {£oc} as
defined in 2.8(2).
(2) If (zr)4en is @ sequence in X, then a point x € X is called a cluster
point of this sequence if there exists a subsequence (13, ),y (i-e. a sequence
(ki)jeny in IN with k; — 0o as @ — oo) such that x = lim;_, o 74, .
Remark: The set of all cluster points of a sequence (), in X is identical
to the closed set

m closx ({zx € X; k>m}) . (2-8)

melN

(8) The metric space (X, d) is called complete if every Cauchy sequence in
X has a cluster point in X.

Remark: Because every Cauchy sequence can have at most one cluster point,
this means that every Cauchy sequence in X has a limit in X.

2.22 Banach spaces and Hilbert spaces.

(1) A normed IK-vector space X is called a Banach space if it is complete
with respect to the induced metric.

(2) A Banach space X is called a Banach algebra if it is an algebra satis-

fying
lzyllx < llzlly - llylly forallzyeX. (2-9)

Here X is an algebra if a product (z,y) — zy € X is defined on X which
satisfies the associative law, the distributive law and a(zy) = (ax)y = z(ay)
for all o« € IK and all =,y € X. The algebra is called commutative if ry = yx
for all z,y € X.

(3) A pre-Hilbert space that is complete with respect to the induced metric
is called Hilbert space.

The basic example of a complete space is the space of real numbers IR,
where the axiom of completeness in IR is precisely the additional axiom com-
pared to the space of rational numbers @. From the completeness of IR one
can then deduce (see E2.6) that IR"™ and C" are complete (with respect to any
of the metrics introduced in 2.5 and 2.8). As the simplest infinite-dimensional
example we now consider
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2.23 Sequence spaces. We denote by IK™ the set of all sequences (defined
on IN) with values in IK:

]I{H\I = {m:(ml)zEIN ] :CZE]KfOI"iélN}.
The canonical unit vectors in IK™ are given by
e; :=(0,...,0,1,0,...) forielN.
/]\

i-th component
Then:

(1) The set IK™ becomes a metric space with the Fréchet metric

22 i_lzil for:z::(z,;)ie]NE]K]N.
1€IN
(2) Let 2% = (xf)ielN e KN and z = (T4);en € IK™. Then

o(zF —x) = 0 as k — oo

<= Foreveryi: (zF = z;as k — o0 ).

(3) The set IK™ equipped with this metric is complete.
(4) For z = (2;);cy € K™ we define

1

Iz, = (Z |xi|P)” € [0,00], if1<p< oo,

ieIN
H‘r”éOQ ‘= sup |IZ‘ € [0,00] 5
ielN
and consider for 1 < p < oo the set (for the case 0 < p < 1 see E4.11)
PIK) = {z e K" ; [|2], <oco}.

Then the set ¢P(IK) with the norm x — ||z, is a Banach space.
(5) If p = 2, then ¢?(IK) becomes a Hilbert space with the scalar product

(@, W)=Y 27 forz,y € *(K).
i€IN

Proof (1). Let go(s) := 1‘;“5‘ for s € IK. Then

22 QO xz Z

and hence p(x) is always finite. The triangle inequality for o follows as in
2.8(1). O
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Proof (2). Let 2%, € IK™ with o(z* —z) — 0 as k — oc. Then go(zF — ;) <
2io(x® — ) — 0 for all 4, and hence |;1ciC — xl| — 0 as k — oo. Conversely,
assuming that ¥ — z; as k — oo for all i yields that

~

—+0as j— oo

j
o(@® —z) < Y 27gp(af —m) + 277
=1

— 0 as k — oo for any j
Consequently, o(z% — ) — 0 as k — oc. O

Proof (3). If (xk)kelN

above, it follows that (mf)k LY Cauchy sequence in K for any ¢. Hence
there exist the limit

is a Cauchy sequence in ]K]N, then, similarly to the

z;:= lim zF  inIK.
k—oo

On setting x := (7;);cqy it follows from (2) that o(z* —2) — O as k — co. O

Proof (4). This is a special case of the more general result in 3.16 for the
counting measure on IN. Here we give a separate proof.

Let v = (24);eny and y = (¥i),en be in /P(IK) and for n € IN define
= (z1,.- s 2n), Y := (Y1, .-, Yn). It follows from 2.5 that

xn

2" +y" ], < ™|, +1y" ], < el + 1yl < oo
Letting n — oo this implies that z + y € ¢P(IK), with
[z +ylle < Nl + lylle -

Hence ¢P(IK) is a normed space. In order to show completeness, let (xk)kelN’
with z¥ = (if)ieﬂ\l € 7(IK), be a Cauchy sequence in (7(IK). As |27 — aj| <
la* = o' we have that (),

there exist x; := limp_ oo xf € K. This implies for n € IN in the case p < oo
that as [ — oo

n n
Do lai —al =D ol — | < la* =2l
i=1 i=1

are Cauchy sequences in IK, and hence

and so

n 1
(E |xffxi|p)p Slimsup”xkfxlﬂﬁ =g <0
i—1 l—00

for all n. Hence ¥ — 2 € (P(IK), and consequently = € /?(IK), and it holds
that ka _tzp < e = 0as k — oo. In the case p = oo we can argue
analogously. O

The set of real numbers IR may be defined as the completion of the rational
numbers Q. This procedure can be generalized to arbitrary metric spaces.
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2.24 Completion. Let (X, d) be a (not necessarily complete) metric space.
Consider the set X™ of all sequences in X and define

X = {z= (:Cj)jelN e XV, (xj)jeIN is a Cauchy sequence in X }
with the equivalence relation
(xﬂ')jelN = (yj)jE]N inX <= (d(acj7yj))je]N is a null sequence.

Then ()Z' , (Z) is a complete metric space, where d is defined by

d((xj)je]N ) (yj)Je]N) = jll{{olo d(xjvyj) .

Moreover, the rule J(z) := () <y defines an injective map J : X — X which
is tsometric, i.e.

d(J(z),J(y)) = d(z,y) forallz,ye X.

For (7)o € X it holds that g((xj)jelN,J(m,-)) — 0 as i — oo, and so
J(X) is dense in X.

Conclusion: The above shows that for any metric space (X, d) there exist a
complete metric space ()N( , J) and an injective isometric map J : X — X such
that J(X) is dense in X. It is then natural to identify elements z € X with
J(z) e X.

Proof. For & = (2;),cy and § = (¥i) ;e i X we have

ld(z,y5) — (i, yi)| < [d(xj,y5) — d(@i,y;) [+ (@i, y5) — d(zi, )|
<d(xj,x;) +d(yj,y;) (triangle inequality)

—0 ast,j— o0,

and hence there exists

d(@,y) = lim d(zi,y;) .-

Similarly, it follows for 7' = 72 in X and §* = §2 in X that
|d(22,y?) —d(z}l,y})| = 0 asi— oo

This shows that d : X x X — IR is well defined (sce the remark in 2.4).
Furthermore, it follows that d(%,7) = 0 if # = 7 in X, and the triangle
inequality carries over from d to d. Hence d is a metric on X. _

In order to show completeness, let (x’“) kEN be a Cauchy sequence in X,

where zF = (a:;?)jelN for k € IN. Given k € IN choose ji such that
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d(ak, ak) <+ fori,j > ji.

Then

d(z® 2l) < d(xkk,fc?) + d(x?, ;Ué) + d(xé—,xél)

1 1

< g+ for j > g,
1 1 (2-10)
1 d(z -

—>k—|—d( ,ac)—i—l as j — o0

—0 ask,l— oo

e (ol v
Hence we have that 2 := (mjl)lelN € X and

d(z!, 2™) « d(zk,25°)  as k — oo

1 .
< d(xfwxél) + d(xél,xfk) < 7 + d(mgl,a:?k) for k > j;

—0 ask,l—o0 (recall (2-10)).
The assertions on J are easily verified. ad

This means that every metric space that is not complete can be extended
to a complete space. Examples of completions are the space of Lebesgue
integrable functions in Appendix A3 and the Sobolev spaces in 3.27.

E2 Exercises

E2.1 Open and closed sets. If (X, 7) is a topological space, then it holds
for A C X that:

(1) X\ clos(A)=intr (X \ A).
(2) intr (A) is open, and clos (A) is closed.

8) AeT <= A=intr(A).

(4) X\AeT <<= A=clos(4).

Solution (1). From the negation of the definition of a closure in 2.11 it follows
for x € X \ clos (A) that there exists an U € T with x € U and UN A = §.

This means U C X \ A and U € T with z € U, and this is the definition of
a point x € intr (X \ A). O
Solution (2). Let T':={U € T; U C A, UnNintr (4) # 0}. On recalling the

definition of the interior of A we then have that

intr (A) C V := U UeT.
veT’
Moreover, x € U € T’ implies that U € T and x € U C A, and so = €

intr (A). Hence, intr (A) =V € T. The second claim now follows from (1).
O
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Solution (3). If A € T and « € A, then x € U := A with U € T, and so
A Cintr (A) C A. Conversely, A =intr (A) € T by (2). O

Solution (4). Follows from (3) on noting (1). O

E2.2 Distance and neighbourhoods. Let (X,d) be a metric space and
A C X. Then:

(1) dist(+, A) is a Lipschitz continuous function with Lipschitz constant < 1,
where equality holds if X \ A is nonempty.

(2) The neighbourhoods B, (A) for r > 0 are open sets. In particular, all
balls B,.(z) for x € X and r > 0 are open.

3) For rq,79 > 0, one has B, (B,,(A4)) C B,,+,(A), and equality holds if
1 2 1 2
X is a normed space.

Solution (1). Let z,y € X. Given € > 0 choose a € A such that d(z,a) <
dist(z, A) + . On employing the triangle inequality it then follows that

dist(y, A) — dist(x, A) < d(y,a) —d(x,a) + e < d(y,x) + €.
A symmetry argument then yields that
|dist(y, A) — dist(z, A)| < d(z,y) .

This corresponds to the definition of Lipschitz continuity in 3.7 with Lipschitz
constant < 1. If z € X \ A, then B.(z) N A = () for an € > 0, and hence
dist(z, A) is positive. Now choose for every € > 0 a y € A such that d(z,y) <
(1+ e)dist(x, A). It follows that

1
|dist(y, A) — dist(z, A)| = dist(z, A) > md(m,y) ,
which shows that the Lipschitz constant is equal to 1. a

Solution (2). Let x € B,.(A) and ¢ := r — dist(z, A) > 0. If y € Bs(x), then,
by (1),

dist(y, A) < dist(x, A) + d(z,y) < dist(z, A) +6 =r,
and so Bs(x) C B, (A). O

Solution (3). Let x € B, (By,(A4)), i.e. dist(z,B,,(A)) < 71. Then there
exists a y € By, (A) with d(z,y) < r1. It follows from (1) that
dist(z, A) < dist(y, A) + d(z,y) <72+ 71 .

Now let X be a normed space and € B, 1, (A). Then there exists ay € A
with ||z — y|| < r1 + r2. It follows for

T2
1+ 1o ’

zi=1=-s)z+sy, s:=

that
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lz=yll= A =s)lle—yll <r and [z —z] =s|z -y| <72,
and so z € B, (B, (4)). O

E2.3 Construction of metrics. Let ¢ : [0,00[ — [0,00[ be a continu-
ously differentiable strictly monotone function with 1)(0) = 0 and nonincreas-
ing derivative ¢'. Then
d is a metricon X = od is a metricon X .
Ezxzample:
t
t) i = ——.
V() 1+t

Solution. We have to verify the metric axioms in 2.6 for ¢y od. The axiom
(M1) is satisfied, since

Y(d(z,y) =0 <<= dz,y)=0 <<= z=y.
The axiom (M3) follows from

d(z,y)
Bd(z,y)) < (d(, 2) + d(z,y)) = b(d(z, ) + / (e, 2) + 1) dt

d(z,y)
< ¢(d(z,z)) + /O P () dt = (d(z, 2)) + ¢ (d(z,y)) -

E2.4 Convergence. Prove the assertions on convergence in 2.17.

Proof 2.17(1). Assume that f(s) — y1 and f(s) = y2 in Y as p(s) — zo with
y1 # y2. As Y is a Hausdorff space, there exist y; € V1 € Ty andy, € V5 € Ty
such that V4 N Vo = (). However, the definition of convergence yields that
there exists a Uy € Tx such that zg € Uy and f(ga_l(Ul)) C V4, and then
a Uy € Tx such that xg € Uy C Uy, 1 (Uz) # 0 and f(go_l(Ug)) C Vy. As
U, C U, it follows that f(go_l(Ug)) C VanVy =0, and so ¢~ 1(U) = 0,
which is a contradiction. a

Proof 2.17(2). For zy € Uy € Tx the definition of convergence gives that
0 1 Uy) # 0, ie. p(S)NUy # 0, and so ¢ € clos(p(S9)). In addition it
follows from the definition of convergence that for yo € Vi € Ty there exists
an s € S with f(s) € Vo, and so yo € clos (f(5)). O

Proof 2.17(3). Choosing Uy = X and V = V yields convergence in 2.17(3).
Conversely, set V' = Vy. Then if g € U € Tx with f(UNS) C V as in
2.17(3), it holds for U = U N Uy that

UNS 0 (since o € clos (5)) and f(UNS) C Vp.
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Proof 2.17(4). Let yo € V € Ty and then U as in 2.17(3). It follows from
xg € UNS that f(zg) € V. As Y is a Hausdorff space, this implies that

f(xo) = vo. 0

Proof 2.17(5). Let f be continuous, and V € Ty with zg € f~1(V). Since f
is continuous at xg, there exists a U € Tx such that zy € U and f(U) C V,
ie. v € U C f~4V). Hence f~1(V) € Tx. Conversely, let o € X and
f(xg) €V € Ty. Then xg € U := f~1(V) € Tx, which proves the continuity
of f in xg. a

E2.5 Examples of continuous maps.

(1) Let 71, T2 be two topologies on X. Then the identity Id : X — X,
defined by Id(z) := =z, is a continuous map from (X, 73) to (X,77) if and
only if 75 is stronger than 7.

(2) If (X,d) is a metric space, then d: X x X — IR is continuous.

(3) If (X, ||| is a normed space, then the norm is a continuous map from
X to IR.

(4) Let (+1, +2) be a scalar product on the IK-vector space X, let ||+|| be the
corresponding induced norm and consider the normed space (X, ||+||). Then
the scalar product is a continuous map from X x X to IK.

Solution (2). Use E2.2(1). O
Solution (3). This follows from (2) and the definition of the induced metric
in 2.6. a
Solution (4). Employ the Cauchy-Schwarz inequality 2.2(2). O

E2.6 Completeness of Euclidean space. The set IK" is complete with
respect to all of the metrics given in 2.5 and 2.8.

Solution. First show the completeness with respect to the co-norm in 2.5: If
(x’“)ke]N is a Cauchy sequence with respect to this norm, z* = (mf)i_L_ o
kgl kgl k

then‘a: — |< H:c H and so( )kelN
which means that there exist x; = limg_, o :c in IK (because IR and C are
complete, with the completeness of the latter followmg from that of IR?, which
is shown here). Hence |xf — xi| — 0ask — oo forevery i € {1,...,n}, which
implies that ka — acHoo — 0 as k — oco.

The completeness with respect to the other metrics then follows from the
results in 2.16. O

are Cauchy sequences in IK,

E2.7 Incomplete function space. Let I := [a,b] C IR be an interval with
a < b, and for n € IN let

n={f:I—=1IR; fisa polynomial of degree <n}.
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Then P = UnEIN Pn eqlﬂpped With
[ fllo = Sug)lf(:c)| for f € P
z€

is a normed space that is not complete.

Solution. The norm axioms are easily verified. Setting
C=Y g A=Y g
il il

we have that
sup | fn(z) — f(z)| >0 asn — oco.
xzel

Hence (fn),cn is @ Cauchy sequence in P. If g = lim,, o fr existed in P, it
would follow that |f(x) — g(z)| < || fn — 9|l — 0 asn — oo for all z € I,
and so g = f ¢ P, which is a contradiction. O

E2.8 On completeness. Let (X, d) be a metric space. Then:

(1) If (X,d) is complete and Y C X is closed, then (Y, d) is also a complete
metric space.

(2) fY € X and (Y, d) is complete, then Y is closed in X (as a subset of
the metric space (X, d)).

Solution (1). If (2*), - is a Cauchy sequence in Y, then it is also a Cauchy
sequence in X. The completeness of X yields that it has a limit x € X. As
Y is closed it follows that z € Y. ad

Solution (2). Let (mk)kE]N be a sequence in Y converging in X to z € X.
Since Y is equipped with the metric d, it is a Cauchy sequence in Y. The
completeness of Y yields that it has a limit y € Y. Now y must also be the
limit of the sequence in X, and sox =y €Y. a

E2.9 Hausdorff distance between sets. Let (X, d) be a metric space and
A:={A C X; A is nonempty, bounded and closed} .
The Hausdorff distance between A; € A and A; € A is defined by
di(Ay, Ag) :=1inf{e > 0; A; C B.(A43) and Ay C B.(A41)}.

Then dg is a metric on A, and for A, B € A we have

dg (A, B) = max (sup dist(a, B), sup dist(b, A)>
a€A beB

= sup |dist(z, A) — dist(x, B)|
reM

for any set M with AUBC M C X.
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Solution. If dg(Ay, As) = 0, then
A C ﬂBs(A2) =4, =A,,
e>0

and similarly As C A;. Moreover, dy is symmetric by definition. Given
Ay, A3, A3 € A and ¢ > 0, there exist numbers 1 > 0, €2 > 0 such that

e1 <dm(A1,A2) +0, A C B, (A2), A2 C B, (A1),
g < dp(Az, A3) + 96, Ay C B.,(A3), Az C B, (A2).

By E2.2(3),
A1 C Be, (Be,(A3)) C Bey e, (A3)
AS C Bsz (le (Al)) - le+s2 (Al) )
and hence

di(A1, As) <e1+e2 <du(Ar,A2) +dua(As, A3)+26 .

This shows that dy defines a metric.
Now let A,B € A, d:=dy(A, B) and

dmax := Max <sup dist(a, B), sup dist(b, A)) ,
acA beB

dsup = sup |dist(z, A) — dist(x, B)|.
zeM

Then dsup > dmax, on noting that
dgyp > sup |dist(z, A) — 0],
reB
and applying a symmetry argument. Moreover, dpy.x > d, as for 6 > 0 we

have that a
B C Bd;nax+5(A) )

and hence, by a symmetry argument, that dy.x + 0 > d. Furthermore, d >
dmax, since B C B.(A) and A C B.(B) implies that

dist(b,A) <e forbe B and dist(a,B)<e foraecA,

and so dmax < €. Finally, dmax > dsup, because for z € X and § > 0, there

exists a b € B such that
dist(x, B) > d(z,b) — 4.
Thanks to E2.2(1),
dist(x, A) — dist(z, B) < dist(x, A) — d(z,b) + 6 < dist(b, A) 4+ ¢,

and hence, by a symmetry argument, dsyp < dmax + 0. O



3 Function spaces

In this chapter we introduce the most important function spaces occurring in
analysis. They are the spaces of continuous and differentiable functions, also
called classical function spaces (see 3.2-3.7), the spaces of integrable func-
tions, also called Lebesgue spaces (see 3.15-3.21), and the Sobolev spaces
(see 3.27-3.29). Sobolev spaces combine properties regarding differentiabil-
ity with those concerning integrability, and they play a fundamental role in
the treatment of differential equations. Although in this chapter we almost
exclusively consider functions with values in Banach spaces, for an under-
standing of the basic results it is sufficient to replace the Banach space Y
with a Buclidean space IR¥. However, for more advanced topics, including
applications to parabolic differential equations, it will be crucial to consider
the case where Y is itself a function space.

3.1 Bounded functions. Let S be a set and let Y be a Banach space over
K with norm y + |y|. We define the set of bounded functions (or bounded
maps) on S with values in Y by

B(S;Y):={f:S =Y ; f(5)is abounded subset of Y } .

This is a subset of the set % (S;Y) of all functions from S to Y (see the
Introduction). On defining

(fi + f2)(@) = fi(z) + fo(x) forx €S,

(af)(z) =af(x) forxeS (3-1)

for functions f1, fa, f and « € IK, the set B(S;Y") becomes a IK-vector space,
and with the supremum norm

1£1l5(s) (0 1F ) = 5001 @)

a Banach space. We use the abbreviation B(S) for B(S;IK) and use similar
abbreviations for all the function spaces below.

Remark: Strictly speaking, the norm || f||5s) would need to be written
[/l 5(s;v- But since then || f[| 5 5.y = [ f]ll 5(s;w)> We drop the image space
Y in the subscript for notational convenience, and we will proceed similarly
for all the remaining function spaces.

© Springer-Verlag London 2016 37
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Proof. In order to prove completeness, let (fx),cy be a Cauchy sequence in
B(S;Y). Then

|fi(@) = fil@)] <[ fr = fillp =0 as k1 — o0,

for all x € S and hence (fx(x)),c is a Cauchy sequence in Y. As Y is
complete, there exists

f(z) = lim fi(z) inY.
k—o0
It follows for x € S that
|f(@) = fi(@)| = lim [fi(z) = fu(2)] < Uminf{| f; = fills, < oo-
—00 l—o00
That means f — f; € B(S;Y) and hence also f € B(S;Y), with

IIf— fll <lig(i)£1f||flffk\|sup%0 as k — oo

sup —

O

A special class of bounded functions are continuous functions on bounded
closed subsets of IR".

3.2 Continuous functions on compact sets. If S C IR" is closed and
bounded and Y is a Banach space over IK with norm y — |y/|, then

C°(S;Y) (or C(S;Y)) == {f:S—=Y; fis continuous on S }

is the set of continuous functions on S with values in Y. Then C°(S;Y)
is a closed subspace of B(S;Y"), and so if it is equipped with the supremum
norm

||f||cO(S) = ||f||B(S) = Sup,cg | f(2)]

it becomes a Banach space. Where no confusion can arise, we will also write
[fllco instead of [|f|[co(s). It is easily seen that CO9) := C°'S;K) is a
commutative Banach algebra with the product (fg)(x) := f(x) - g(z) for
f,geC%S)and z € S.

Remark: The Heine-Borel theorem (see 4.7(7)) states that the closed and
bounded subsets of IR" that we consider here are precisely the compact sub-
sets of IR"™. This property will play a crucial role in the following considera-
tions.

Note: The space C°(S;Y) can be defined more generally for compact topo-
logical spaces S.



3 Function spaces 39

Proof. Every f € C°(S;Y) is bounded, and so an element of B(S;Y): Given
x € S, since f is continuous at z, there exists a J, > 0 such that f(B(;z (x)) C
Bi(f(z)). The balls Bs,(x) for z € S form an open cover of S. Since S is
compact (see 4.7(7)), there exist finitely many points x1,...,2,, € S such
that

ScC U Bs, (z;), andso f(5)C U Bi(f(z:))
i=1 i=1
which is a bounded set in Y.

For f1, fo € C(S;Y) we have that f; + f and afi, for a € IK, are con-
tinuous, and hence C°(S;Y) is a subspace of B(S;Y). Moreover, C°(S;Y) is
closed in B(S;Y): Let (fi);,cy be a Cauchy sequence in B(S;Y’) with func-
tions f; € CY(S;Y). The completeness of B(S;Y) yields that the sequence
has a limit f € B(S;Y"). For 2,y € S it then holds that

W)~ F@I < 1F) ~ @] +2-1F = fillgs) -
—_——

— 0 as y — x for any @ 30 asi— oo

which shows that f € C°(S;Y). Hence C°(S;Y) is closed and, equipped with
the B(S)-norm, complete (see E2.8(1)). O

Proof Note. The boundedness of continuous functions f : S — Y can be seen
as follows: For € S we have that U, := f~'(B1(f(«))) is an open set in S.
The compactness of S yields that S is covering compact (see 4.6(1)). Hence
the cover (U,),g has a finite subcover, i.e. there exist x1,...,2,, € S such
that S C U™, U,,. This yields the boundedness of f(S) as before. O

We now consider the space of continuous functions on general subsets of
IR™ and we equip this space with a metric, similarly to the construction for
sequence spaces (see 2.23(1)).

3.3 Continuous functions. Let S C IR", so that there exists an exhaus-
tion (K;);,.y with bounded closed sets K; C IR"™ (i.e. compact sets, see
4.7(7)) such that

S:UiE]NKZ‘aHd®¢KiCK¢+1CSfOTiEIN, (32)
€S = Bs(z)NSCK; forad>0andanicIN. ]
Moreover, let Y be a Banach space over IK and let
CoS;Y):={f:S—=Y; fis continuous on S }

be the set of continuous functions on S with values in Y. Then it holds
that:

(1) C°(S;Y) with the operations (3-1) is a IK-vector space.
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(2) Equipped with the Fréchet metric

="2" R Illoogey g feci(s;y)
b + 1 ok,

this is a complete metric space.
(3) The topology induced by this metric is independent of the choice of
exhaustion.

(4) If S ¢ IR™ is bounded and closed (i.e. compact), then this topology
coincides with that induced by the norm in 3.2.

Ezample: The property (3-2) is satisfied for open sets S C IR" and for closed
sets S C IR" (see E3.2).

Proof (2). The properties of a metric can be shown as in 2.23(1). If (fx),en
is a Cauchy sequence in C°(S;Y), then || fi — fill ook, — 0 as k,l — o0
for all i € IN (see E3.1). Since, by 3.2, C°(K;;Y) is complete, there exist
functions g; € C(K;;Y) such that || fx — gillco(x,) = 0 as k — oo, and in
particular f(z) — ¢;(x) as k — oo for all x € K;. That means that ¢;, = gi,
on K;, NK;, for all 41,45 € IN, and so there exists a function f : S — Y such
that f = g; on K; for all i.

Now f is continuous, since for € S we have that S N Bs(z) C K; for a
0 >0and an i € IN. Then f = g; on SN Bs(z), and so f is continuous at x.
Finally, because || fi — fllco(x,) — 0 as k — oo for all i, it follows (see E3.1)
thatg(fk—f)—>0ask—>oo O

Proof (3). Let ([? j> . be another exhaustion with bounded closed sets and
S

let ¢ be the corresponding Fréchet metric. From the second property in (3-2)
for the sequence (K;), qy it follows that:

K cC Scompact — K CK,foranielN

(use (3-2) for x € K and the covering compactness of K from 4.6(1)). For
7 € IN we have that I~(j C § is compact, and so there exists an ¢; € IN such
that f(j C K. By using induction on j, we can choose i; such that i;, > i,
for j; > jo. Now let § > 0 and o(f) < 0. Then for every [ € IN

, ok,

e i)

3>l j<l + ||JCHCO(Ki,-)

<27'4¢ -5 with ¢ ;= max2%77 .
Jj<i

Given ¢ > 0, choose [ such that 27! < 5 and then ¢ > 0 sufficiently small, so
that ¢; - 6 < 5, which implies that
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olf) <d = of) <e.

This proves that the topology induced by g is stronger than the topology
induced by p. A symmetry argument yields the converse. O

Proof (4). If S itself is bounded and closed, we can choose K; = S for all
¢ € IN, in which case

[fllcos)
olf)=—77r —
L+ fllcos)
This metric is equivalent to the metric induced by the C°(S)-norm (as in
2.16(2)). 0

Observe that for open sets 2 C IR", functions in CY(£2) may grow arbi-
trarily towards the boundary of 2, e.g. x +— et is in C° (] 0,1 [). It is possible
to show that there exists no norm on C°(§2) that induces the same topology
as the metric introduced in 3.3.

On the other hand, functions that vanish outside a compact subset of
{2 play an important role in functional analysis as so-called test functions
(see the account on distributions in 5.17 and beyond). With this in mind, we
introduce the following definition:

3.4 Support of a function. Let S C IR"™ and let Y be a Banach space. For
amap f:5 — Y we call

supp(f) :=clos({x € S; f(z) #0}) C clos (S)
the support of f. For S C IR" as in 3.3 we then define
Co(S;Y) (or C2(S:Y))
= {f € CY(S;Y) ; supp(f) is a compact subset of S } .

Remark: If S C R" is open, then for f € CJ(S;Y) there exists a neighbour-
hood of the boundary B.(9S), € > 0, such that f =0 in S N B.(9S).

3.5 Differentiable functions. Let {2 C IR™ be open and let Y be a Banach
space. We consider maps f : {2 — Y and start by introducing the usual nota-

tions for derivatives, where in the following eq, ..., e, denote the canonical
unit vectors in IR". Let x € (2. If the limit
0 0
04w (o 5-@). (@)

= lim %(f(x—i—hei) —f(z)) inY

h—0

exists, then 0, f(z) is called the ¢-th partial derivative of f at the point x.
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The map f: 2 — Y is called continuously differentiable if all partial
derivatives 0;f, i = 1,...,n, exist at all points and if they are continuous
maps from §2 to Y. Then

n

Df(z)(v) :=) wvee;-d;f(x) forveR"

i=1

defines a linear map Df(x) : R" — Y, the derivative of f at the point x.
Moreover, denoting the norm in Y by ||, it holds that

fly) = f(2) + Df(2)(y —x) + |y — 2] - ex(y)
with e,(y) > 0asy — z.
For v € R"™ we call 9, f(z) := Df(z)(v) the directional derivative of f
in the direction of v at the point z.

For m > 2 we call f: (2 —Y m times continuously differentiable if
all the iterated partial derivatives

0i,0i, - 0i, f Withil,...JkE{l,...,n}, k <m,

exist and are continuous maps from (2 to Y. Then these iterated derivatives
do not depend on the order in which the individual partial derivatives are
applied. That is why higher order partial derivatives are indexed as follows:
We call s an n-dimensional multi-index of order k if

$=1(81,...,8,) €EZ"™ withs; >0fori=1,...,n,

kE=|s|:=s14+...4 s,
ie. |s| = |s]; corresponds to the sum norm in IR™. For multi-indices s we
then define partial derivatives of higher order by

O°f(x) := 07" - Oy f(x), where inductively

O f(x) == 0;(0F ' f)(x) for k>0, f(x):= f(x).

The number |s| is the order of the partial derivative 0° f. Further notations
for multi-indices are

r<s <= nr;<s;fori=1,...,n,

() :=TI=, () (binomial coefficient),

n
shi=T1, 8!,

S .__ n Sq n
x®=1[,_,z]" forzecIR".

Additional notations for partial derivatives are

Vi) = (0uf(x),....0uf(x)), D'f(x):=(0°f(x)) -
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We now consider spaces of differentiable functions.

3.6 Space of differentiable functions. Let {2 C IR" be open and bounded,
and let m > 0 be an integer. Then we define

C™(2;Y) = { f:82 =Y fism times continuously differentiable in {2

and, for |s| < m, &°f can be continuously extended to £2 } .

Assertion: The set C™(§2;Y) is a vector space and with the norm

||f||Cm(ﬁ) = Z HanHcO(ﬁ)

[s|<m

it becomes a Banach space.

Further definitions: Similarly to 3.3, for S C IR™ as in 3.3 with compact
sets K; = £2;, £2; open, we can define the complete metric space C™(S;Y)
by using the norms of C™(£2;;Y). For S = £ C IR™ open we can define,
similarly to 3.4, the set CJ*(£2;Y).

Proof. We now prove the completeness of C™(£2;Y) for the case m = 1;
the general case then follows by induction on m. Let (fx),cy be a Cauchy
sequence in C'(£2;Y). Then (fi)yen and (95 fi)pen for @ = 1,...,n are
Cauchy sequences in C°(£2;Y). Hence, on recalling 3.2, there exist f,g; €
C°(2;Y) such that fr — f and 0;fx — ¢; uniformly on (2. For = € 2 and y
close to z the fundamental theorem of calculus for Y-valued functions yields,
on defining z; := (1 — t)x + ty for 0 < ¢ < 1, that

e~ i) = [ ear= [ -t a,
where (y — 2) eV fi(21) = Y i, (y — 2):0; fu (). It follows that
|fi(y) = fr(z) = (y — 2) o V fi(2)]
_/Ol(y — )¢ (Vr(z:) = V() dt‘

1
< [ 195w = Vi@ dt - Jy - 2|
0
< (219k = gllco + sup_lg(ae) - g(@)]) 1y - 2,
0<t<1
where g := (g1,...,9n). On letting k¥ — oo this yields that

[f(y) = f(z) = (y —x)eg(x)| < S lg(xe) —g(z)] |y — x|

—0asy =

That means that f is differentiable at x with Vf(z) = g(z). Hence f €
C'(2;Y) and in this space it holds that f; — f as k — oo. O
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Subspaces of continuous and differentiable functions can be obtained by
considering functions f with a given modulus of continuity o, i.e.

|f(x)— fy)| < Cf-o(lx—y|) forall z,y,

where o : [0,00[ — [0,00[ is continuous and strictly monotonically in-
creasing with o(0) = 0. The most important special case is o(s) = s* with
O<a<l:

3.7 Holder continuous functions. Let S C IR™ and let Y be a Banach
space with norm y — |y| as before. For 0 < « <1l and f: S — Y we call

Hol, (f,S) = sup{ W s o,y €S, x #y} € [0, 0]
the Holder constant of f on S to the exponent «, and in the special case
a =1 we call Lip(f,S) := Holy (f,S) the Lipschitz constant. If 2 C R" is
open and bounded and m > 0, then the corresponding Hélder spaces are
defined by

Cm,(x(ﬁ;y) — {f c Cm(§§ Y) ; HOla(aéfjﬁ) < oo for |S| =m } .

These are Banach spaces with the norm

[ fllgm.a@) = Z 10°fllcocm) + Z Hol, (0° f, 2).

|s|<m |s|=m

Functions in C%%(§2;Y) are called Hélder continuous on (2, and Lipschitz
continuous in the special case o = 1.

Remark: The space C%(S;Y) can be defined for any bounded closed set
S CIR™

Remark: Similarly to 3.3 and 3.6 one can also define the metric spaces

Cme(2:Y).

Proof. We now prove the completeness of the space C*%(S;Y), where S C
IR" is bounded and closed. For C™*(S;Y") with m > 1 apply the argument
given below to the derivatives of order m in addition to the completeness of
the space C™(S;Y).

Let (fr)pen be a Cauchy sequence in C%*(S;Y). Then it is also a Cauchy
sequence in C°(S;Y), and due to the completeness of C°(S;Y") there exists
an f € C°(S;Y) such that ||f — Jilleocsy = 0 as k — oo. Now it holds for
z,y €S, x #y, and as [ — oo that

((f=fe)@) = (F=f) )], [ f)(@) = (fi— fi) ()]
ER |z —yl®
< Héla(flffkys)-

Hence,
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Holo(f — fi, §) < liminf Holo(fi — i, §) >0 as k= oo,
—00

That means that f € C%*(S;Y) and fi — f in C%%(S;Y)ask —oco. O

3.8 Infinitely differentiable functions. The vector space of infinitely
differentiable functions on an open set 2 C IR™ with values in a Banach
space Y is defined by

Cx(RY) = [) C™(1Y). (3-3)
meN
Initially this defines C*°(£2;Y") only as a vector space.

Similarly to 3.4, one can also define CJ*(£2;Y) and C5°(£2;Y). An example
of a function in C§°(IR";IR) is given in E3.3. One way to define a topology
for the space C§°(§2;IR) will be given in 5.20.

Measures and Integrals

In the second part of this chapter we will introduce spaces of measurable and
integrable functions. To this end, we will first give the definition of a general
measure and describe some examples of commonly used measures.

3.9 Measures. Let S be an arbitrary set and let 5 be a nonempty system
of subsets of S. If B is a Boolean ring or a Boolean algebra (see A3.1), then
B is called a o-ring or a o-algebra, respectively, if additionally

E;eBforie N — UEieB.
qSN
We call (S,B, 1) a measure space, and then pu a measure on B, if the
following holds:
(1) B is a o-algebra, which according to the above definition means that:
0eB,
EeB = S\EeB,
EBieBforicN = | JEieB.

i€IN

(2) p:B— [0,00] with () =0 is o-additive, i.e.

= M(U E) = ulE).

i€IN i€IN

E; € BforiecIN

pairwise disjoint

(3) If N € B with u(N)=0and E C N, then E € B.
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Condition (3) is called the completeness of the measure space. Sets N € B
with u(N) = 0 are called p-null sets and we say that a statement holds
p-almost everywhere if it holds outside of a p-null set. Sets E € B are
called p-measurable.

A measure p is called o-finite measure and (S, B, i) is called a o-finite
measure space if in addition

(4) There exist S,, € B, m € IN, such that (S,,) < oo and | J,,,cpy Sm = S.

3.10 Examples of measures. Let B be a Boolean ring of subsets of S.

(1) For the discrete measure (or counting measure) 1 on S = IN the
system B consists of all subsets of IN and let for £ C IN

u(E) € {0} UINU {oco} be the number of elements in E.

(2) For the Lebesgue measurelet S = IR" and let By be the set of all finite
unions of disjoint, semi-open cuboids (see A3.3) in IR" and let

L" >< i»bi = bz_z
(X ) = LT

i=1

The set By is a Boolean algebra (not a o-algebra) and L™ can be extended to
an additive function L™ : By — IR. Moreover, L™ is then also o-additive on
By (see A3.3). Then an extension principle (see A3.15) yields that:

Lemma: There exists a smallest o-finite measure space (IR", B, u) with By C
B and p = L" on By.

We call p the Lebesgue measure on IR" and denote it by L™ := u. The
system B of all Lebesgue measurable sets “consists of” Lebesgue null sets and
Borel sets, that is, for ¥ € B there exist Borel sets E, F with By C E C Fy
and L"(Es \ Eq) = 0. The system of all Borel sets is the smallest o-algebra
that contains By (or, alternatively, all open sets or all closed sets), i.e. it is

given by
n s
~ Bo C 57
B o-algebra

(3) For the Dirac measure let S be an arbitrary set, and let B be the
system of all subsets of S. For a given x € S we define a measure §, by

5.(E) 1, ifzekF,
N T 0, otherwise.
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(4) We consider the surface measure on a given hypersurface. Let S be a
smooth surface patch in IR™, n > 1, which is parameterized over R" ™!, i.e.

S={(y9y)eR";yeD},

where D is an open bounded subset of R" ™" and g € C'(D;IR). Let By be
the Borel sets of S, and for any F € By define

E = {yeD; (y.9(y) €k},

which again is a Borel set, and hence L™ '-measurable, and define

H () = /E V14 Vg P dLr(y)

In this way E +— H"~1(E) becomes a measure (S, B, H" 1) on the set S, which
is called the surface measure on S or the (n — 1)-dimensional Hausdorff
measure on S. In A8.5 we will generalize this definition to the case of Lip-
schitz continuous functions g. Similarly, one can introduce m-dimensional
Hausdorff measures H™ on m-dimensional surface patches. The Hausdorff
measure H? is the counting measure. It is also possible to define the Haus-
dorfl measure, without using a parameterization, on all Borel sets in IR",
which yields a generalization of the above definition. This generalized mea-
sure is the basis of geometric measure theory (see e.g. [Simon]).

3.11 Measurable functions. Let (S, B, 1) be a measure space and (Y, d) a
metric space. A map f: S — Y is called p-measurable if

(1) UCcY open = fYU)eB.

(2) There exists a p-null set N such that f(S\ V) is separable.

Remark: If the space Y is itself separable (e.g. Y = IR"), then condition (2)
is trivially satisfied (use 4.18(1) and 4.17(2)).

3.12 Lemma. The following hold:

(1) If f1: S = Yy and fy: S — Y, are measurable, then also (f1, f2) : S —
Y7 x Y5 is measurable.

(2) If f: S — Y is measurable, Z is a Banach space, and ¢ : Y — 7 is
continuous, then also ¢o f is measurable.

(3) If f; : S — Y is measurable for j € IN and the limit f := lim;_, f;
exists almost everywhere, then also f is measurable.

(4) If f; : S — IR are measurable, then also inf;cy f; and also liminf;_, f;
are measurable, if they are finite almost everywhere. (On the null set, on
which the limits are —co, we can define the function values arbitrarily.)

Proof (3). Let f(z) =1lim;_, o fj(z) for € S\ N with u(N) = 0, such that
[;(S\ N) is separable for all j. If U C Y is open, let
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Ui={yeU; Bi(y) CU}.
Then the following statement is true
VeeS\N: (flz)eU < Ji,ke N:Vji>k: fi(z)el;),

that is, for z € S\ N it holds that f(z) € U if and only if there exist 4, k
with f;(x) € U; for all j > k, or in set notation,

fﬁl(U)\N:UiUkmjzkfj_l(Ui)\N €B.
In addition, f(S\ N) C U; f;(S\ N) is separable (see 4.17(1)). O

Proof (4). Let g(z) := infjen fj(z) > —oo for x € S\ N with u(N) = 0.
Then for all a € R

97 (la,00) \ N =, f; ' ([a,00[) \ N € B,

which implies that g is measurable. Similarly, we have that g, := inf;>, f; are
measurable, and hence, on noting (3), also liminf; o f; =limp_00 gx. O

A further example of a metric space is the

3.13 Space of measurable functions. With the notation as in 3.11 let
M(wY):={f:S—=Y; fis p-measurable }
with the equivalence relation
f=gin M(p;Y) <= [ =g p-almost everywhere.
If 1(S) < oo then this space becomes a metric space with the metric
du(f,g) == int{r > 0; p({d(f,g) >r}) <71},
where we use the abbreviation
{d(f,g9) >r}={xeS; d(f(x),g(x)) >r}.

We say that a sequence (fx),cn is convergent in measure p to f if
du(fx, f) = 0 as k — oo. This is equivalent to

u{d(fi ) > €}) 50 as k- o0 (3-4)
for all € > 0.

Proof. Tt follows from p(S) < oo that d, is a bounded function on M (u;Y").
If d,,(f,g) =0, then

uw{d(f,g) >e}) <r forall0<r<e,



3 Function spaces 49

ie. p({d(f,g) > €}) = 0 for € > 0, and hence p({d(f,g) > 0}) = 0, that is
f =g in M(u;Y), which proves axiom (M1) in 2.6. For f,g,h € M(1;Y)
and r > d,(f,h), s > d,(h,g) we have

{d(f.g) >r+s} c{d(f,h)+d(h,g) >7r+s}
c {d(f,n) >r}u{d(h,g) > s}.
Consequently

p{d(f,9) > r+st) < p({d(f,h) > r}) + p({d(h, g) > s})

<r+s,
and so d,(f,g) <r+ s, which proves the triangle inequality for d,,. O

The following theorem holds.

3.14 Theorem. If Y is complete, then M (11;Y) with d,, is a complete metric
space.

Proof. Indeed, let (fy),cn be a Cauchy sequence in M (p;Y). Then there
exists a monotone subsequence (k;); . With

M({d(fl, fki) > 2_i}) < 27" forl > k;.

On setting _
Ej = U{d(fki+1’fki) > 271}

12>]

we have that p(E ;) <277 and for z ¢ E and ig > 41 > j it holds that

L
d(fkiz( fkn ;d sz+1 ( )) < 2777, (3_5)
With Ep, == U, Ej it follows that (fy,(z)),cp for @ ¢ Ey, is a Cauchy

sequence in Y, and u(E,,) < 227™. Hence there exists
=1 inY f FE = E
)= Jim o) Y for ¢ 5 ()

where p(E) = 0. On noting 3.12(3) this implies that f is a measurable func-
tion. Moreover, by (3-5),

d(f(2), i, (x)) <227 for ¢ En,
and so
w({d(f, fe,.) > 21*’”}) < w(Ey) < 92-m

This implies that d,,(f, fr,.) < 227™ — 0 as m — oo. Hence (fx) o has a
cluster point. a
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We now introduce the standard spaces of integrable functions. They are
based on the definition of the Lebesgue integral (see Appendix A3).

3.15 Lebesgue spaces. Let (S, B, ) be a measure space and let Y be a
Banach space over IK with norm y — |y|. For a real number p we define in
the case 1 <p < o0

LP(;Y):= {f:S =Y ; fis p-measurable and |f|” € L(1;R) }
and in the case p = oo
L®(wY):={f:5—=Y; fis p-measurable and
p-essentially bounded } ,
in each case with the equivalence relation
f=gin L’(1;Y) <= f =g p-almost everywhere.

Here |f| denotes the function z — |f(x)|, which according to 3.12(2) is u-
measurable. For p = oo we call f essentially bounded with respect to p
if
sup |f(z)| <oo fora p-null set N € B.
zeS\N

Hence, for f € LP(u;Y) the quantities

Il

(/S|f|pd/¢>11) for 1 <p < o0,

£l e == inf ( sup f(df)l)

N:NCS, u(N)=0 z€S\N
are well defined and lie in [0, 00[. (For the case 0 < p < 1 see E4.11.)

3.16 Theorem. Under the assumptions in 3.15 the following hold:

(1) If 1 <p < oo, then LP(p; V') with f+— || f||,, is a Banach space.

(2) If p =1, then LP(1;Y) coincides with the space of Lebesgue integrable
functions in Appendix A3, i.e. L'(1;Y) = L(1;Y).

(3) If p = 2 and if Y is a Hilbert space with scalar product (yi,y2) —
(y1, y2)y (eg. Y = K! with the Euclidean scalar product (y1,92) — y10Ya2),
then the space L?(u;Y) with

(Frg)pe = /S (), 9(@))y du(z) (3-6)

becomes a Hilbert space.
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4) If p = oo, then for f € L>®(u;Y) there exists a p-null set N € B such
2 M
that
[fllpw = sup |7(@)| (N depends on f (1)), 37
zeS\N

Moreover,
11l = ess sup ],

where the essential supremum for a u-measurable essentially bounded
function g : S — IR is defined by

ess sup g 1= inf{ sup g(z); N C S with u(N) = 0} .
S z€S\N

Proof (1). (See 3.17-3.21). The Minkowski inequality 3.20, which is shown

with the help of the Holder inequality 3.19, yields that LP(u;Y) is a vector

space. The completeness for p = oo is shown in 3.17 and for p < oo in 3.21.
O

Proof (2). Follows from Bochner’s criterion in A3.19(1). O

Proof (3). Let f,g € L*(;Y). Since |(f(z), g(x))y| < |f(z)] - |g(x)] for
x € 9, it follows from the Holder inequality 3.18 and the majorant criterion

A3.19(2) that (f, g),- is well defined. Clearly (f,g) — (f, )2 is sesquilin-

car and (f, f)p2 = |72 :
Proof (4). The fact that countable unions of null sets are null sets immedi-
ately yields (3-7). O

We now introduce some special notations. We write LP(u) in place of
LP(p; IK). Then f € LP(u;Y) implies that |f| € LP(u).

If © = L"LLF is the Lebesgue measure on a Lebesgue measurable set
E C IR", ie. u(A) := L"(E N A), then we also write LP(F;Y") in place of
LP(1;Y). In addition, in integrals we often replace dL™(z) by dz, where z
is the integration variable:

/ f(x)dx ::/ f(z)dL"(z) = XefdL™.

E E R

We note that for the counting measure p in 3.10(1) it holds that LP(u) =
¢P(IK), which is easy to show.

Two important theorems that characterize the convergence of a sequence
in LP(y;Y) are Lebesgue’s convergence theorem (see 3.25) and Vitali’s
convergence theorem (see 3.23). But first we address the completeness of
LP (3 Y).

3.17 Lemma. L*™(u;Y) is complete.
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Proof. Let (fr),en be a Cauchy sequence in L>°(y;Y"). Then there exist a
constant C' and a p-null set N such that for x € S\ N the following hold

| fe(@)| < | fllpee <C < oo for all k,
| fre(x) = filz)| < | fe — fillpoo = 0 as k,l — oo.

Hence for x € S there exists
lim fy(z) inY forzeS\N,
fla) e= q ko
0 for x € N.

The function f is measurable (see 3.12(3)) and bounded, and for x € S\ N
[f(@) = fi(@)| = lim [fi(x) = fu(2)] < Uminf{|f; = fill o
300 =00
and hence
If = fellpee S Uminfflfy = fillpw — 0 as k= oco.

O

3.18 Lemma (Holder’s inequality). Let m € IN and f; € LPi(u) for
i=1,...,m with p; € [1,00], and let ¢ € [1, cc] such that

Zi:l. (3-8)

Then the product fy--- f, € L9(p) and

m

11+

i=1

< TT 1l (3-9)
i=1

L4

Observe: Here we set pi = 0 if p; = oo and similarly % =0if g = oc0.
Standard case: Let p,p’ € [1,00] such that % + ﬁ = 1. Then if f € LP(u)
and g € L¥' (1), it holds that f - g € L'(u) with

1F-gllpe < N Flpe - Nlgll e - (3-10)

Remark: When forming products of functions, for simplicity we considered
only scalar-valued functions, i.e. the case Y = IK. The Hélder inequality for
the standard case can be generalized to vector-valued functions, i.e. Y = ]Kl,
and then reads as
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1foglip <Nl gl for f e LP(K'), g € L7 (1K),

We mention that the Holder inequality also holds for functions with values in
certain Banach spaces Y, for example a Banach algebra Y or a Hilbert space
Y. It also generalizes to the case of multiple products.

Proof of the standard case. (This case corresponds to m = 2 and ¢ = 1 in
the general case.) It holds that fg is measurable (by 3.12(1) and 3.12(2)).
For the limiting case p = 1 we have that p’ = oo and note that |(fg)(z)| <
llgll ;| f(x)] for almost all z. The majorant criterion (see A3.19(2)) then
yields that fg € L'(u). The limiting case p = oo follows due to symmetry.
Moreover, the claim holds trivially if || f|,, = 0 or ||g|,,» = 0, since then
fg = 0 almost everywhere.

Hence let 1 < p < oo and let || f||;, > 0 and ||g||;,» > 0. For a,b > 0 we
have that

1 1.
ab < —a? + =7 (Young’s inequality). (3-11)
p p

This elementary inequality can be shown as follows: For ¢ > 0 and b > 0
take the logarithm on both sides and obtain, due to the concavity of the
logarithm, that

log(ab) = loga + logb = %log aP + ilog W < log(%al’ + ibp) .

Now setting
@, L)
[ralr 191l Lo

yields ,
f@e@)] _ [f@I"  lg@]”
Il ligle = pI AL plgll?,

As the right-hand side is integrable with respect to z, it follows that fg €
L'(u) on recalling the majorant criterion A3.19(2). Integration over z then
yields that

Jslfgldp 1 [glf1Pdp 1 [glgl" dp 1 1
<= = =-4+=-=1.
I lloligle =2 LI 2 g, p v

a

Proof of the general case. Clearly, by (3-8), p; € [g,00]. If p; = ¢ for some
i, then p; = oo for all j # i. On the other hand, if p; = oo for some j, then

<Aflpe | IT fi@)| ana S0 = =1,

ititj iz P4

Hfi(l‘)
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that is, the claim is inductively reduced to m — 1 functions. Thus, let ¢ <
p; < oo fori=1,...,m. We give two different proofs.
1%t possibility. Use the generalized Young’s inequality

1 19 1
,Ha Z* Pi o fora; >0,i=1,...,m, (3-12)
175 iz i

for exponents as in (3-8). On rewriting p; := %7 this elementary inequality

follows, as in the proof of (3-11) (now for m terms), from the concavity of
the logarithm. Then continue analogously to the proof of the standard case.
27 possibility. This proceeds by induction on m and uses the standard case.
We have

(| 11
——f——::f with 1 <r < oo,
Y23 Pm r

i=1
and so the induction hypothesis yields for g := f1 -+ f;,—1 that

m—1

lgllzr < L] Wfillgw: -
i=1

~ Pm r
Now apply the standard case for f :=|f,,|9 € L ¢ (u) and g := |g|? € L4 ()
and obtain, since pi + 2 =1, that

1< (170, 1a1,)"

m
= fllgom - Ngller < TT Uil e

i=1

= I fmglla = || 73!

O

Proof of remark. Since |f(z) e g(z)| < |f(z)] - |g(z)| due to the Cauchy-
Schwarz inequality in IR, it follows from the scalar Holder inequality that

£ eglie < WS- Tglllpe < A Le - Mgl = 1F e - lgllzer

where the integrability of f e g follows from that of |f] - |g|, thanks to the
majorant criterion A3.19(2).

In a Banach algebra Y the product, which we denote by (y1,y2) — Y192,
is continuous. For the standard case it then follows, by 3.12(1) and 3.12(2),
that z — f(z)g(x) is measurable. In addition we have the pointwise inequality
[f(x)g(x)| < |f(x)]-]g(x)|, where y — |y| denotes the norm in Y. This yields
the claim as in the scalar case. In an analogous fashion this carries over to
multiple products. a
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The generalization of the majorant criterion A3.19(2) to LP-spaces is given
by the following

3.19 Lemma (Majorant criterion). Let f : S — Y be a p-measurable
function, 1 < p < co and g € L*(i;IR), g > 0, with

|fIP <g p-almost everywhere.
Then f € LP(11;Y).

Proof. As|f|P is measurable on recalling 3.12(2), it follows from A3.19(2) that
|f|P € L*(u). As f is measurable, we have that f € LP(u;Y) by definition.
O

3.20 Lemma (Minkowski inequality). If f,g € LP(1;Y), then f+ g €
LP(u;Y) and
If+alle < fllze +1l9llLs -

Proof. For p =1 and p = oo this follows from the pointwise triangle inequal-
ity. Furthermore, we have the elementary inequality

la+ 0P <277 1(|al” + [b]") fora,beRand 1 <p < oo. (3-13)
Hence for 1 < p < oo
[f + 9 < (If1 +1g)” < 2271 (| P + |gl?)

pointwise and so f 4+ g € LP(u;Y) on noting 3.19, where the measurability
of f+ g follows from 3.12(1) and 3.12(2). A more convenient inequality is

[f+alP <IfI-1f+glP~ + gl 1f +glP7t
We have that |f|,|g],|f + g € LP(u) and, with p’ as in 3.18, it then holds
that |f+g|P~! € L*' (p) since p/(p—1) = p. Hence the Holder inequality 3.18
implies that
Jirrarans [1s1-15+ap dus [ l-17+ap " dn

< Hf”Lp : |Hf+g|p71“[,p’ + ||g||Lp : H|f+g|p71||[,p/

1_1

= (10 +lall) - ([ 1+ an) 7

If [¢|f+gl"dp =0, the claim holds trivially. Otherwise the desired result
follows from cancellation. O

3.21 Fischer-Riesz theorem. L?(;;Y) is complete for 1 < p < oo.
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Proof. Let (fx),cn be a Cauchy sequence in LP(u;Y'). Since every Cauchy
sequence has at most one cluster point, it is sufficient to show convergence of
a subsequence. To this end we choose a monotone subsequence (k;), . such
that

I fe — fillpp <27°  for k,1 > k.

In the following we denote the subsequence (fx,);c again by (fi)pens as
the remainder of the sequence is no longer needed. This convention for the
transition to subsequences will be used repeatedly in this book. It then holds

that
S lfrsr = frll <D 27F < o0
keIN kelN
Let l
9= |frr1— ful- (3-14)
k=1

By Fatou’s lemma (see A3.20) and the Minkowski inequality
»
/ (lim ¢7)dp < liminf/ g/ dp = (hminf”gl“m)
g l—oo l—oo Jg =00
P
< (Z | fo1 — fleP> < 00.

kelN

Therefore,
llim gi(xz) < oo  for u-almost all z.
—00

From the definition of g; in (3-14) it follows that (fx(z)),c is a Cauchy
sequence in Y for p-almost all x, hence the limit

f(@):= lim fr(z) inY for p-almost all

k—oco

exists. It follows from 3.12(3) that f is measurable and appealing once more
to Fatou’s lemma yields that

18~ aP dn <timint [ 15~ AP d
S k— o0 S
P
(liminf|fk.fl|Lp> — 0 asl—o0.
k—o0
O

Essential for applications is the characterization of convergent sequences
in LP(p;Y) via the pointwise convergence of the function values in Y. To
this end we first establish the proposition 3.22(1), which will be used fre-
quently in this book. For p = 1 Lebesgue’s convergence theorem A3.21 gives



3 Function spaces 57

a convergence criterion for almost everywhere convergent sequences. Here we
will establish its generalization to LP-spaces (see 3.25). This result is readily
reduced to the very general theorem 3.23 due to Vitali, or, alternatively, it
can be shown with the help of Fatou’s lemma similarly to the proof of A3.21.

3.22 Lemma. Let f € LP(p;Y) for k € IN with 1 < p < oc.
(1) If f e LP(1;Y), then:

\f— fell;p =0 There exists a subsequence (k;);cp, such that

as k — oo fr, = f as i — oo p-almost everywhere.

(2) If (fr)pen is a Cauchy sequence in LP(p;Y) and f: S — Y, then:

Jk = [ask — o0 feLP(u;Y) and

p-almost everywhere \f — fell,p = 0ask — 0.
Remark: For (1) see E3.5.
Proof (1). We have |f — fix[P — 0in L' (x; V). Now apply A3.11. O
Proof (2). Tt follows from theorem 3.21 that there exists an fe LP(u;Y)

such that Hf— fx H — 0 as kK — oo. By (1), there exists a subsequence
Lp

(fr)ien> with fr, — f p-almost everywhere. The assumption in (2) then
gives that f = f p-almost everywhere. O

3.23 Vitali’s convergence theorem. Let f, € LP(u;Y) with 1 < p < oo,
and let fr — f p-almost everywhere as k — oo. Then the following are
equivalent:

(1) f € PG Y) and || fi — fll, — 0 as k — oo,
(2) It holds that

sup/\fk|pd,u—>0 as u(E) — 0,
v JE

and for any € > 0 there exists a p-measurable set E. such that u(E.) < oo
and

Sup/ |felPdu <e.
k S

Ee

Proof (1)=(2). It follows from the Minkowski inequality 3.20 that

/|fk|pdu /Ifl”du /Ifk—flpdﬂ);

— 0as k — o0
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Hence for v > 0 there exists a k, € IN such that for & > k, and all pu-

measurable sets F
1 1
(/ \fklpdu)p < (/ Iflpdu)“rv-
E E

For every function g € L'(u; IR) with g > 0 it follows from A3.17(2) that for
7 > 0 there exists a §(g,7) > 0 such that

/Egd,u <~P  for u(E) < d(g,7).

Employing this for g = |f|” and g = | fi|P for k < k, yields that

1
for all k € IN: (/ |fk|pdu>” <9y,
E

if p(E) <min(6([f[7,7), 011" 7), -+ (1 fk, [77)) -

This proves the first claim in (2).

The second claim follows correspondingly, upon substituting F in place
of S\ E in the above argument and using the fact that for every function
g € LY(u;IR) with g > 0, for v > 0 there exists a py-measurable set A(g,~)
with 1(A(g,7)) < oo such that (see below)

/ gdu <7, (3-15)
S\A(g.7)

Then we obtain in much the same way as before that

1

for all k € IN: (/ \fk|pdu)5 <2y
S\E
for £:= A(|f[",v) UA(flP,v) U U A( fe, IP,7) -

For the proof of (3-15) consider A, := {g > ¢} :={x € S; g(x) > ¢}. Since

/gduZ/ gdp > ep(A:),
s A.
we have p(A.) < oo. Moreover, A., C A, for €1 > &5 and

A= JA-={g>0}.

e>0

It then follows from A3.17(2), by choosing a decreasing null sequence for ¢,

that
/ gdu—>/ gdu=/ gdp =0.
S\A. S\A {9=0}
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Proof (2)=(1). Let E. be as in (2). Then Egorov’s theorem A3.18 yields
that fr — f as k — oo p-uniformly on E., i.e. there exists an A, C E. with
p(E:\ A:) < e such that f — f uniformly on A, as k — oo. It follows that

/S|fkfl|pdﬂS/AEfkfl|pdﬂ+/S\AE|fkfl|pd/t

< p(Ae) - ess sup [ fi = fi "

—_—
—0as k,l - oo
for all e
-1 P -1 P
v s [ e 2 s [l
melN JS\E, melNJE N\ A,
<e —+0ase—0

where the last term converges to 0 as € — 0 by (2), since u(E:\ A:) < e — 0.
Therefore, (fx),cn is a Cauchy sequence in LP(u;Y'). Since fr — f p-almost
everywhere, the claim follows from 3.22(2). O

As a consequence we obtain:

3.24 Corollary. Let 1 < p < co. Then
fe = finLP(;Y)ask —o00 = |fil? = |fIP in L' () as k — oo.

Proof (with Vitali’s convergence theorem). We first assume that f, — f p-
almost everywhere. Now apply the conclusion from 3.23(1) to 3.23(2) for
Jie, [ € LP(u;Y), and then conversely apply the conclusion from 3.23(2) to
3.23(1) for gr = |felP,g = |f|P € L'(u;R). This yields the claim. For
general fi, f we use an indirect proof. Assume that there exist an g9 > 0
and a subsequence (|fx,|?);c such that [|[fx, [P — |f[P[|,: > eo for i € IN.
Since fr, — f in LP(u;Y) as i — oo, it follows from 3.22(1) that there
exists a subsequence ( f’ﬂm)m N such that fy, ~— f p-almost everywhere as
m — oo. Now applying the above conclusion to this subsequence leads to a
contradiction. O

Proof (without Vitali’s convergence theorem). An alternative proof, which
does not use Vitali’s convergence theorem, is as follows: For p = 1 we imme-
diately obtain the desired result on noting that || fx| — |f|| < |fx — f|- Hence
let p > 1. We employ an elementary inequality: For M > 1 let dp; > 0 be the
unique number such that, for all a > 0,

I1+a)P <1+ M-a? < a>0y.

(The existence of dj/ is easily established on noting that a — (14 M - a”)% is
a strictly convex function.) Clearly we have that dpr \, 0 as M * co. Hence
for yo,y1 € Y with 0 < |yo| < |y1| we have
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_ P
os|y1|p—yo|”s|yo|”(<1+'“y°') —1)

[yol
M -|y1 —yol” ifwz&w,
< lyol
N ly1 — yol
(L +0a)P = Dyol”  if “=—— < dum.
lyol
This yields the following inequality:
Sl =1 an
s
<M [ 1= P a0+ w0 = 1) [ (P 415
| S —
—0as k — o bounded in k

This gives the desired result, on choosing M sufficiently large (so that dps
becomes small), and then k sufficiently large depending on M. a

3.25 Lebesgue’s general convergence theorem. Let fi, f : S — Y be
p-measurable, let g, — g in L'(u;R) as k — oo and let 1 < p < co. Suppose
that

fr = f  p-almost everywhere as k — oo,

|fx|P < gr  p-almost everywhere for all k € IN.
Then it follows that fx, f € LP(1;Y) and fr — f in LP(u;Y) as k — oo.

Proof (without Vitali’s convergence theorem). This is a generalization of the
proof of Lebesgue’s convergence theorem A3.21 (first presented in [Alt3]). We
begin with the case where g — g p-almost everywhere as k — oo. Let

h = 5(9k +9) — 55| fu — fIP.
The elementary inequality (3-13) implies that
hi > $(ge +9) — Bl +1f7) 2 0 p-almost everywhere.

The assumptions yield that hy — g p-almost everywhere and

1
/hkduﬁ/*(gk+g)du—>/gdu as k — oo.
s 52 s

It follows from Fatou’s lemma that

/gdpgliminf/hkdu

1
Jim 52(gk+g)du

= Jsgdu

1

timsup [ [~ 71" d,
2p k—oco S
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and hence we obtain the desired result

limsup/ |fe — fIPdp=0.
k—oc0 S

For general gi, g we use an indirect proof, similarly to the proof of 3.24. To
this end, we first need to show that f € LP(u;Y). It follows from 3.22(1) that
there exists a subsequence (gk.j)j N such that g, — g p-almost everywhere
as j — oo. Since by assumption |fg,;[? < gr, p-almost everywhere, we have
that |f|? < g p-almost everywhere. The majorant criterion 3.19 then implies
that f € LP(u;Y). Now assume that there exist an g9 > 0 and a subsequence
(f&:);eny such that || fx, — fl» > €0 for i € IN. Since gi, — g in L'(1;R) as
1 — 00, there exists a subsequence (gkim)me]N such that gx, ~— g p-almost
everywhere as m — oo. Applying the above conclusion to this subsequence
leads to a contradiction. O

Proof (with Vitali’s convergence theorem). We now provide an alternative
proof which uses Vitali’s convergence theorem. On noting the bounds on f
we have that fr € LP(u;Y), recall 3.19. Again we begin by assuming that
gr — ¢ p-almost everywhere. It follows from Vitali’s convergence theorem
(implication 3.23(1)=-3.23(2)) for the functions g, g that

Sup/|fk|pdu§sup/gkdu—>0 as u(E) — 0,
k E k E

and similarly for the result corresponding to the second claim in 3.23(2). Con-
versely, applying Vitali’s convergence theorem (implication 3.23(2)=3.23(1))
now for the functions fj yields the desired result.

For general gi, g use an indirect proof as in the first proof above. O

In proofs it is often convenient to approximate LP functions by smooth
functions. The following result shows that for the Lebesgue measure this is
possible by using continuous functions.

3.26 Lemma. As before, let (S,B,u) be a measure space and let f €
LP(u;Y) with 1 < p < co. Then:

(1) There exists a sequence (fy), o of step functions with steps in B such

that || f — frl/» — 0 as k — oo.
Note: If p(S) < oo and Y = IK™, then this also holds for p = oco.

(2) If S =IR"™ and u is the Lebesgue measure, then there exists a sequence
(f&) e of functions fr € CG(IR™;Y') such that || f — fil|,, — 0 as k — oc.
Observe: This does not hold for p = oo, since the uniform limit of continuous
functions is again a continuous function.

Proof (1). Let £ > 0 and set E. := {e < |f| < 1}. Then E. € B and

/Ifl”du > P p(E.),
S
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and so pu(E.) < co. On noting that Xp_f is measurable and that |Xp_f| <
1Xp. € L'(1;R), it follows that Xpg_f € L'(11;Y), recall 3.19. The construc-
tion of the Lebesgue integral (see axiom (L5) in A3.16) yields the existence
of step functions g, (with steps in By) such that g, — Xg_f in L1(11;Y) as
k — oo. Then

. 2
9ek () if 2 € B and |ger(z)| < =,
— ) 2g. . 5
ferlw) = { 20e(2). if x € E. and |gei(2)] > =,
elger ()| €
0 ifrxeS\E,,

defines step functions f.j, (with steps in B), and for z € E. with |gex(z)| > 2
it holds that

[ fer() = f(@)] < = < 3(|ger(2)| = [f(@)]) < 3|gen(x) — f(2)].

3

w

Hence we also have that f., — Xg_f in L'(1;Y) as k — oo and

s =g ans [ uran (27 [ 120~ gl
L

—0ase—0, —0as k — o0
recall A3.17(2) for all €

O

Proof (1) Note. Let R := || f||;~ > 0. Now Bg(0) C IK™ is compact. Hence
for k € IN there exists a partition of Bg(0) into finitely many disjoint Borel
sets A;, 1 < j < ny, such that diam(A4;) < % and A; # 0. Choose a; € A;.
Then

f- ZXf‘l(Aj) a| <.
j=1 oo
O

Proof (2). Tt follows from (1) that f can be approximated in the LP-norm
by step functions with steps in 5. Hence the claim is reduced to the case
Y = R and f = X with E € B and L"(E) < oo. But then f € L'(R")
and, by definition of the Lebesgue integral (see axiom (L5) in A3.16), there
exist step functions g, which approximate f in the L'-norm. In addition,
fr = max(O, min(1, gk)) are also such step functions and it follows from

|f = filP < |f = ful <1 — gkl

that fr — f in LP(IR™). As fi has steps in By, the claim is further reduced
to the case that f = Xg, where Q = [a,b[ with a,b € R". But then f. — f
in LP(IR™) as € \( 0, if, for example,
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fe(@) = f[lmax@,min(l, @)) 7
bi + a;
2

bifai

2

gi(6) = B |£ -

Sobolev spaces

In the Introduction it was illustrated that in the calculus of variations one
encounters norms with respect to which the initially chosen function spaces
are not complete. The reason is that in their definition a combination of
derivatives and integrals occur. For example, take the set X := C'(£2) and
define the norm by

1£ly = \//Qaf(x)ﬁ +IVH(@)) da.

We note that fo(z) := /| — zo|* + €2, with zy € £2, for £ \, 0 is a Cauchy

sequence with respect to this norm, but the function lim._,o f-(x) = |2 — 20|
does not belong to C*(£2). Hence X is not a complete space with respect to
the norm f — || f|| x-

The functional analysis approach to solve such variational problems con-
sists in the completion of X to a space X. This is in order to show the
existence of a “weak solution”, i.e. a solution in X (see e.g. 6.5-6.8 and 8.16—
8.18). If X is as in the above example, then the completion X will be the
completion of a classical function space with respect to a norm containing
integrals. The spaces obtained in this manner are called Sobolev spaces.

3.27 Sobolev spaces. Let m > 0 be an integer and 1 < p < oo. If £2 C R"
is open, then let X be the completion (see 2.24) of the normed vector space

Xi= {0 Iflx <o} with [flx:= D] 10°fllina-

|s|<m

We now want to characterize X. If (fi)jen € X, then (0°f;) je are Cauchy

sequences in LP({2), and hence it follows from 3.17 and 3.21 that there exist
uniquely defined functions f(*) € LP(£2) such that

Of; — &) in LP(R2) as j — o0. (3-16)

The relation between the functions f(*) arises from the rule of integration by
parts for the functions f;, which yields that
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/ °C- fduL" = (4)'5'/ C-0°f; AL for all ¢ € C5°(92).
0] 2

Hence, since f; = 9°f; — f© and 0°f; — f() for j — oo (see (3-16)), using
the Holder inequality we have that

/ 9°¢C- fOdLr = (4)‘8'/ C-f®dL™  forall ¢ € CF(2).  (3-17)
[0 0
Therefore, we define the following Sobolev space of order m € IN with
exponent p, 1 < p < oo, by
W™P(2) = { f € LP(2) ; for |s| < m there exist f(*) € LP(12)
such that f(©) = f and (3-17) hold }

and equip this Sobolev space with the norm

[ F () = Z Hf(s)

[s|<m

Le(02)

We will show that for p < oo the space X is completely characterized by
WP ((2).

But first a few remarks on this definition. Other commonly used notations
for W™:P(£2) are H™P((2), H}" ({2), and for the special case p = 2 also H™(2)
for H™2(£2). Sometimes these Sobolev spaces are defined as the completion
of functions in C™(£2) (i.e. 2 instead of £2) for an open and bounded set 2.
If 2 has a smooth boundary, then the two definitions coincide (see A8.7 in
connection with 3.28).

Given f, the functions f(*) in the above definition of W™P(§2) are
uniquely defined. To see this let f(s) have the same properties. Then

/ C(f@ — f@)dLr =0 forall ¢ € C3°(92),
2

and hence f(s) = () almost everywhere in 2 (this follows from 4.22, as the
Holder inquality yields that g := f(s) — f&) e LP(2") ¢ L'(£2") for bounded
open sets 2/ C 2).

For smooth functions f € C™(£2) with 0°f € LP(12) for |s| < m it follows
from the rule of integration by parts that f € W™P({2), and in particular
f) = 9% f. Therefore, for f € W™P(£2) we call

o5 f = f)

the weak derivatives of f. B
We now return to the space X. Setting

J((fr)pen) == kli_}m . (limit in LP(£2), see (3-16) for s = 0)

we define a linear map
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J: X — Wme(0),

which, on recalling the equivalence relation in X (see 2.24), is injective and,
by definition of the W™ P-norm, preserves the norm. To see the latter, observe

that
||(fk)kelNH)~( = kh_{rolo ||fk||X = kh_{go Z ||8ka||Lp

[s|<m

= Z ”asfHLp = ||f||Wm~p~

[s|<m

It remains to investigate whether J is surjective. But this can only hold for
p < 00, as for p = oo the image J(X) = W™ (£2) N C™({2) is a proper
subspace of W™ ((2). For example, the function f(z) := |z,| belongs to
Whee(£2) (this follows similarly to E3.7, where the one-dimensional case is
considered). However, in the case 0 € {2 this function does not belong to the
space C1(§2). For p < oo the surjectivity of J is formulated in theorem 3.28
below.

The fact that J is surjective and norm preserving yields that WP ({2)
for p < oo is a Banach space, on noting that X is complete. But this can
also be shown independently of this observation, and then also for p = oco.
To this end, let (fy),cn be a Cauchy sequence in W™ P(§2). Then (0° fx))cnn
for |s| < m are Cauchy sequences in L?({2). By the Fischer-Riesz theorem
(theorem 3.21 in the case p < oo and lemma 3.17 in the case p = 00), there
exist f(*) € LP(£2) such that

fr — ) in LP(R2) as k — oc.

Moreover, as before the rule of integration by parts (3-17) carries over from
0% fi. to ) and hence f := f(© € W™P(2) with §°f = f) for |s| < m.

3.28 Theorem. If f € W™P(2) with 1 < p < oo, then there exist f; €
WmP(£2) N C°°(§2) such that || f — Jillwmn (o) — 0 as j — oc.

Note: We will give the proof of this theorem in Chapter 4 (see 4.24). For the
proof we will need the approximation of functions by means of convolutions,
a fundamental technique in analysis that is not yet available to us.

We will see later on (see 10.13) that functions in W™ (£2) can be identi-
fied with classical (continuous and continuously differentiable) functions, but
only if m and p are sufficiently large, or more precisely if m — 2 is greater
than zero. In the case n = 1, Sobolev functions always admit a continu-
ous representative (see the remark in E3.6). For n > 2, Sobolev functions
are in general not continuous functions. Noncontinuous examples are given
in 10.7 and E10.7. What is the consequence? The motivation for introduc-
ing Sobolev spaces was to give solutions to differential equations. However,
in this way we obtain only weak solutions in the Sobolev space. Hence a
regularity theory is needed, which guarantees that the solutions of certain
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variational problems are smooth (continuous, differentiable, etc.) functions
(see e.g. Appendix A12). Moreover, many variational problems also include
side conditions, for instance in the form of boundary conditions. Hence these
boundary conditions need to be formulated in Sobolev spaces as well. In fact,
one can show that, in a weak sense, Sobolev functions have boundary val-
ues (see A8.6). Sobolev functions on {2 with weak boundary values 0 on the
boundary of {2 can also be described in a simpler way, that is, as the limit of
smooth functions with compact support in {2 (see also A8.10):

3.29 WP (£2)-spaces. Let 2 C IR" be open, let m > 0 be an integer and
1 < p < oo. Then the Sobolev space with zero boundary values of order
m with exponent p is defined by

Wy P(£2) := { f € W™P(£2) ; there exist fi, € C5°(£2) such that

If = frllyms — Oas k— o0 }.

Other commonly used notations are H)"?, ﬁm’p, H, Wm™P. The above

defined space Wy (£2) is a closed subspace of W™ ((2).

Remark: If 2 C 2 and f € WP (82), then the function defined by fi=f
in 2 and f:=0in 2\ 2 belongs to Wy"?(12).

Proof of Remark. Let f, € C3°(£2) be as in the definition. Then the analo-

gously extended functions fi belong to CG°(£2) C W™P(£2) and converge in
the W™ P-norm to f. O

The space WO1 ’2(.(2) is used to solve a boundary value problem in 6.8.

E3 Exercises

E3.1 On uniform convergence. Let S C IR" be as in 3.3 and let Y be a
Banach space. Then the following are equivalent for f, fr, € C°(S;Y), k € IN:
(1) fr — fin C9%S;Y) as k — oo.

(2) Ife = fllcor,,) —* 0 as k — oo for all m € IN.

(3) lfe = fllco(rey — 0 as k — oo for all bounded and closed sets K C S.

E3.2 Exhaustion property. Which of the following sets S satisfies the
exhaustion property in 3.3 7

(1) S CIR™ closed.

(2) S C IR" open.

(3) S =50:={(x1,22) € R*; 21 >0, 2o > 0}.

(4) S=5,U{(0,0)} with Sy as in (3).

Solution (1). Let xg € S and choose K, := S N By, (). O
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Solution (2). For § > 0,

Ss :={z € R"; dist(z,IR"\ S) > ¢}

is closed. Choose K, := S1 N B,,(0) for m sufficiently large. m|

Solution (3). Choose K, == {(z1,20) € R?; £ <z <m, 0<zy <m}.

a

1
m

Solution (4). The property is not satisfied, since S N Bs(0) C K, K closed,
implies that K ¢ S. O

E3.3 A test function. Letting

! for |z < 1
exp| — or |x ,
fla) = 1 |af

0 otherwise,

defines a function f € C§°(IR"; R).

E3.4 LP-norm as p — oo. Let (S, B, u) be a bounded measure space,
ie. u(S) < oo, and in addition nontrivial, i.e. u(S) > 0. For p-measurable
functions f: S — Y and 1 <p < oo let

1
1 » ro o
B, (f) = <M(5)/S|f<l">| du(w)) if f € LP(iY),

00 otherwise.

Then p — &,(f) is monotonically nondecreasing and for f € L>®(u;Y) we
have that

11l = lim @,(f) = lim [1£]],

Solution. For 1 < p < ¢q with @,(f) < oo let r := % and let " be the dual

exponent, i.e. L + 1 = 1. The Holder inequality then yields that &,(f) < oo

T
and

N
8,(f) = (u(S)”l 1Pl )

1

< (gt 0P ) = ()7 =M1 ) = 4t).

In addition, for f € L*°(u;Y") we have

/S PP du < u(S)FI%e,  andso  Sp(F) < [1fllpm
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Moreover, for all k > 0,

/S\f\pdu > u({If] = w}) - w7,

and hence L
TLETHAE
S(f) > | ———=—%] ‘& —=K
o ( u(S)
as p — oo, if p({|f| > k}) > 0, which is satisfied for & < || f|| ;. This proves
the desired result. O

E3.5 Subsequences. Show that in 3.22(1) choosing a subsequence is nec-
essary in general.

Solution. For I,k € NU{0}, 0 <k < 2!, let n:= 2!+ k and

fn = X[kQ—’,(k-i-l)Q—l] .

It then follows for every p € [1,00[ that f,, — 0in LP([0,1]) as n — oo, but
for every z € [0,1] the sequence (f,,(z)), cpn has two distinct cluster points
0 and 1, i.e. the function sequence (f,), .y does not converge at any given
point (and in particular it does not converge almost everywhere). However,
(for(x));en converges for all z € [0,1] (to 1 for 2 = 0 and to 0 for z > 0),
and hence the subsequence (f51), . converges at all points (and in particular
it converges almost everywhere). O

E3.6 Fundamental theorem of calculus. Let I C IR be an open interval.

(1) If f € WhI(I), then for almost all z1, 7 € I (with respect to the one-
dimensional Lebesgue measure)

f(x2) — f(x1) = /932 f(z)dz.

(2) Conversely, if f,g € L*(I) and
T2
fa2) = fa) = [ gla)da
T
for almost all z1, 29 € I, then f € WH(I) with f' = g.

Remark: This is related to the concept of absolutely continuous func-
tions on I, defined by

AC(I) = {cp € C°(T) ; there exists a g € L'(I) such that for x1, x5 € T

o(z2) — p(21) =/ g(x) dx} .

x1

x2
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Proposition (2) states that AC(I) ¢ WhI(I). If f € WHY(I) and z1 € I is
fixed such that the identity in (1) holds for almost all o € I, then f = ¢
almost everywhere, where

o(y) = f(z1) + /y f(x)dz foryel.

As o € AC(I) € C°(I), we see that f agrees almost everywhere with a con-
tinuous function, or in other words, ¢ is the unique continuous representative

of f.

Solution (1). It follows from 3.28 that there exist f, € W(I)NC°°(I) such
that fi, — f in WH(I). Tt holds for all z1, 25 € I that

o)~ filon) = [ @) ar

Since fi' — f' in L'(I), the right-hand side converges to the desired ex-
pression. Moreover, it follows from 3.22(1) that there exists a subsequence
(fr:);en such that fi, (z) — f(x) for almost all x € I. O

Solution (2). Let ¢ € C§°(I). Choose x4 € I such that {(z) = 0 for all
outside of [x_,x] and such that the assumption holds for ;1 = x_ and
almost all x5. Then

/f dx_/r+(f(x) Flz dx—/ / dpds
/ </ (e ) )dy:—/IC(y)g(y)dy

E3.7 Left- and right-hand limit. Let I C IR be an open interval, zog € 1
and f € WH(I'\ {z0}). Then there exist

f-(z0) == ess lim f (z) and fi(20) = ess lim f (z).

Zo

O

In addition,
fewhi(I) <= f-(x0) = fr(zo).

Note: For the multidimensional case see A8.9.

Definition: We call “ess lim” the essential limit. In general “ess lim” is
the limit for points outside an appropriately chosen null set. In the concrete
case above consider the continuous representative of f from the remark in
E3.6.
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Solution =. For almost all x1,22 € I with 1,20 > g or x1,29 < g it
follows from E3.6 that

/:2 f(z)dz

(see A3.17(2)). Hence the limits f_(zg) and fy(zg) exist. If f € WHL(I),
then it follows similarly for almost all xq, 22 € I with 1 < zg < x5 that

| f(z2) = f(z1)] =

T
S/ |f/(x)|da:—>0 as T1,Ta — Tg
xT

1

£ = Jel < [ 17 @] dr—0 s mim o

x1

and so f_(zo) = f+ (o). U

Solution <. For almost all 1 < y; < zg < y2 < x2 in [ it follows once again
from E3.6 that

(f(z2) = f(@1)) = (fy2) = f(y1)) = Fy2) = f(21) + f@2) = f(y2)
= f'(z)dz + f(z)dz :/ f(z)dz 7/ f'(z)dx.

1 Y1

The right-hand side converges to

/3:2 f(z)dz

as y1,y2 — wo, while f(y2)—f(y1) = f(x0)—f—(x0) = 0. Hence f € Wh(I)
on recalling E3.6. a

E3.8 Estimating the Hélder norm by the W P-norm. Let 1 < p < oo,
a:=1-— % and I := [a,b] C IR. Then there exists a constant C' < oo such

that for all f € C*(I) and all zg € I,

1 lcoery < 1F @)l +C - 1| oy -

Note: See also theorem 10.13.

Solution. For a < x1 < 9 < b the Holder inequality (with ﬁ =1-
yields

S L

[fax) = Sl = | [ " ) de| < / T @) de

< (/ 1d$)pl'(/m ’f’(:c)!pdx)% < (@2 = 20| £l oy -

This implies that
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[f2)] < [f(@0)]+ (0= a)*|[ £ Lo

e (a2) — f(a)]
T2)— J(T1 /
e T L
and hence the desired result with C =1+ (b — a)*. O

A3 Lebesgue’s integral

Here we give the construction of Lebesgue’s integral for o-subadditive mea-
sures. In the context of functional analysis it appeared to be appropriate to
carry out this construction based on a completion principle. Moreover, it is
adequate for functional analysis to consider functions with values in Banach
spaces Y. Here Y = IR or Y = IR™ are the standard cases, and for the un-
derstanding of the construction it suffices to consider for Y this Euclidean
case.

The construction of Lebesgue’s integral can be found in A3.1-A3.16.
These give rise to the fundamental properties of the space L(u) of integrable
functions in A3.16, the so-called “axioms of Lebesgue’s theory”. From these
axioms we will deduce the most important properties of Lebesgue integrable
functions in A3.11-A3.21. In particular, in A3.15 we will show that the set of
characteristic functions in L(u) provides a o-additive extension of the original
measure.

A3.1 Assumptions. Let S be a set and let By be a nonempty system of
subsets of S that forms a (Boolean) ring, i.e.

El,EQEBO — El\EQEBQaHdElLJEQEBo.

Then it also holds that ) € By and E1NEy = Eq\ (F1\ F2) € By. The system
of sets By is called a (Boolean) algebra if in addition S € By. Then By is
characterized by the properties

(1) 0e BQ,

(2)E€Bo - S\EGB(),

(3) Ei,EbeBBy — Fi{UEy€Byand E1NEs, € By.

In the following, let (S, By, 1) be a pre-measure space, i.e. By is a Boolean
algebra of subsets of S and

(4) p: By — [0,00] with u(@) =0
is an additive measure, i.e.

(5) Er,...,En € By pairwise disjoint = pu(UiL, B;) = Y00 w(E;),

1=

and, in addition, o -subadditive, i.e.
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(6) E,E;€ByforicN, ECUjn Bi = p(E) < Yo u(Es).

A3.2 Consequences. It follows from A3.1(4) and the additivity A3.1(5)
that p is monotone on By, i.e.

(1) E1,B2€ By, E1 CE;, = u(Ey) < u(Ey),

and that p is subadditive on By, i.e.

(2) E,E; €By, i=1,....om, ECU" E;, = pE)<Y " wE).

Together with the o-subadditivity A3.1(6) this yields that u is o-additive
on By, i.e.

(3) If E; € By for i € IN are pairwise disjoint, then

Uien Ei € By = /L(Uie]N E;) = > ien H(E:) -
Proof (1). Tt holds that p(Es) = pu(Es \ E1) + pn(Eq) > p(Er). 0
Proof (2). Define inductively

Ap=0 and A;:=E;\U;;Ajfori=1....m.

Then the A; are pairwise disjoint with £ C |J]*, A4;. It follows from (1) and
A3.1(5) that

WE) < p (UIL 4;) = 2121 w(A;) < Z?ll n(E;) .
(]

Proof (3). The inequality “<” follows from A3.1(6). In addition, combining
(1) and A3.1(5) yields that

1(Uien Bi) = n(ULy Bi) = 305 p(E:) - for all m.
O

A3.3 Example (Elementary Lebesgue measure). As an example let
S =1IR" and let By consist of all finite unions of disjoint semi-open cuboids,
where semi-open cuboids are sets of the form

la,bl:={z €eR"; a; <x; <b;fori=1,...,n}

with —oo < a; < b; < +00. Let

n

p(la,bl) =[] (b: — ),

=1

with the value being oo if there is a b; = oo or an a; = —oo. Now, if a semi-
open cuboid E is the disjoint union of semi-open cuboids Fi,..., E,,, then
it is straightforward to show that
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Hence it is possible to uniquely extend p additively to Bp. It holds that p is
o-subadditive on By, and so the assumptions in A3.1, in particular A3.1(6),
are satisfied.

Definition: We denote this measure by L™ := pu.

Proof of o-subadditivity. Let E and F; be semi-open cuboids as in A3.1(6).
Without loss of generality, let E; = [a?, b’ [ with a’,b" € R", and let E € By
be given as a disjoint union

E=U_, [ p'[ witha' g € R", af < B
For small § > 0 consider the set
B =, [a® B withal :=al +0 < B :=p-¢,
which belongs to By. As ESCEC Uien Ei, for € > 0 the sets

]aie,bia[ with a;"e — a;_ _ E(b; — a;) , b;f = b; + €(b; — a;‘)a

form an open cover of the closed bounded set E?. It follows that E°
(see 4.7(7) and 4.6) is already covered by finitely many open cuboids
la®e, bhe [, ..., Ja’=, b'me [. Consequently

p(E®) <37 u(la®™=,b%°[)  (recall A3.2(2))

:

I
NE

(1+26)"u(By) < (L4+20)" 3 u(By).
1 €N

ES
Il

Additivity and the definition of p yield that, as § — 0,

l l
WE) =" w6, 591) — 37 u(lad, 1) = u(E).
i=1 i=1
On letting € — 0 we obtain the desired result. O
A3.4 Definition (Outer measure and null sets). Let p be as in A3.1.
(1) The outer measure u* corresponding to u is defined by
pr(A)=inf {3 () Ac |J B, BieB )
i€IN i€IN

for A C S. As it is possible to restrict this definition to disjoint sets F;, we
have
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1 (A) :inf{ lim p(4;); AC | J A, A€ By, A CAiH} :
71— 00 ieN

It follows that p* is o-subadditive, and A3.1(6) yields that

=" on By. (A3-1)

(2) We say that
N cC Sisap-null set <= p"(N)=0.

Any subset of a p-null set is a p-null set. Countable unions of p-null sets are
p-null sets. We say that a statement holds p-almost everywhere if it holds
outside of a p-null set.

Note: 1f (S, By, 1) is a measure space (see 3.9), then N is a p-null set if and
only if N € By with p(N) = 0.

Proof (1). It is g > p* by the definition of the outer measure and A3.1(6)
implies that p < p*. O

A3.5 Step functions. In the following let (.S, By, 1) be a pre-measure space
as in A3.1 and let Y be a Banach space with norm y — |y|. The set of step
functions with respect to (S, By, 1) with values in Y is defined by

T(wY):={f:S—=Y; f(S)is finite,
f*{y}) eByforyey,
ulf~H({y}) < oo fory #0 §
with the equivalence relation
f=ginT(w;Y) <= [ =g p-almost everywhere .
Since step functions have steps in By, it follows that
f=ginT(Y) < u{zesS; f@)+g()}) =0.

It turns out that step functions are precisely those functions f : S — Y that
can be written as

f=> Xgo; withmeNN, a; €Y, E; € By, p(E;) < oo.
=1

(Observe that this representation is not unique.) This implies that T'(u;Y)
is a vector space.

Definition: We denote by Xg the characteristic function of the set F,
which is given by
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Xp(a) 1 forzeF,
T) =
. 0 forz¢FE.

A3.6 Elementary integral. For f € T(u;Y) we define the elementary
p-integral of f over S by

/ fan= 3 (b)) v
o yeY'\{0}

Then:
(1) It holds that

/ fdu=> p(E)a;, if f=> Xpgao;asin A35.
S i=1 i=1

(2) The elementary integral is a linear map from T'(1;Y) to Y.
(3) For every f € T(u;Y), the function = — |f(z)| € IR, denoted by |f|,

belongs to T'(u; IR) and
[ra) < [isian.
s s
(4) The set T(p;Y) with

1/l = /S Fldp

is a normed space.

Construction of Lebesgue’s integral

The aim now is to describe the completion (see 2.24)

~ —_~—

T(u;Y) :=T(1;Y) of the normed space T'(11;Y),

that is, to construct an isomorphism between f(u; Y') and a function space. In
this way, the completion T'(1;Y"), i.e. the set of Cauchy sequences in T'(u;Y),
serves as a model for the set of functions that are Lebesgue integrable with

respect to p. Before we start, let us introduce the following notations: For
fe€T(wY)and E € By we have that Xgf € T(u;Y) and we define

/Efcm ::/SzcEfdu.

If feT(u;IR) and a € R, we set e.g.
{f>a}={xe8; flx)>a}eBy. (A3-2)

The crucial observations for the construction of Lebesgue’s integral are:
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A3.7 Lemma. Let (fy),cn € T(u;Y). Then:
(1) There exist a p-null set N and a subsequence (fx, ),y such that there

exists
f(z):=lim fy,(z) inY forallz e S\ N.
1—r 00
(2) For the function f in (1)
(fr)peny = 0 in T(w;Y) <= f=0 p-almost everywhere.

Proof (1). Choose a subsequence (fx,);cp such that k; < ki for i € IN and

||fk—fl\|:r(u):/S\fk—fﬂdﬂéfi for k, 1 > k; .

Let ‘
J
95 = Z|sz _sz‘+1‘ €ET(w;Y).

i=1

As (gj)j civ 1S @ monotonically increasing sequence of functions, there exists
g(x) := lim g;(z) € [0,00[ forallzeS.
j—o0o

Now _
J e}
/gjdu:Z/|fki_fki+1|d/f“§z2_i:1~
o =175 i=1

For every £ > 0 we then have that A; := {g; > 1} € By, with

1
1> / gjdp > —p(4y).
S 13

In addition, A; C A;41 and
N:={g=o00} C{g>1} CUen4;-
It follows from A3.4 that

(V) < lim p(A;) <e.

J—o0

Hence N is a p-null set and g(z) < oo for z € S\ N, and so (f,(2)),cny 1 @
Cauchy sequence in Y for z € S\ N. O

Proof (2)=. We assume without loss of generality (drop the sequence ele-
ments that do not belong to the subsequence in (1)) that

flz) = klingofk(m) forx e S\ N.
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We need to show that {f # 0} \ N is a p-null set. Since || fx[/p,) — 0 as
k — oo, there exists a subsequence (fx,);cp such that

JAETEE
S

For £ > 0 define

N.i ={|fx;| >t €By, N.:={|f|>}\N.
Then it holds for every ig € IN that
Ne CUisig Neyis
and so
p(Ne) < ZN(N&Z')
i>10
1 1., ,
SZ*/\fki dp < =27 — 0 asig— 0.
i>i0€ s <

Hence N; is a p-null set for all € > 0, which yields that {|f| > 0} \ N is a
p-null set. m]

Proof (2)<=. We need to show that || fx||7(,y — 0 for a subsequence k — oo.
We may again assume that 0 = f(x) = limg_,o fx(z) for z € S\ N. Moreover
we can assume (by choosing a subsequence) that

/ | fe = frogr|dp <278,
s

We note that E; := {f; # 0} € By with p(FE;) < oo, and hence it holds for
I <k and € > 0 that

/\fk\dus/ |fk\du+/ el d
S El S\El

Ssu(El)—f—/ |fk|du+/ | fro — fil dp
{Ifel>e} S\E;
< eu(Ey) +/ |fz|du+2/|fk*fz|duv
~— {lfxI>€} Js ,
—+0ase—=0
for any | —0as k,l >

with the second term on the right-hand side being

<N fillsupr(E1 6l > €3) -

If we can show that for every ¢ > 0
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wl{lfe| >¢}) =0 ask— o0

(i.e. (fr)pen is p-measure convergent to 0, see (3-4)), then the desired result
follows. For the proof define for [ > k

Ey; = {El: |fi — fix1| > 5} €B.
i—k

Then
ep(E,1) /Zlfz f7,+1|d/14<22_ < g7kl

and in addition Ej; C Ej ;41 for [ > k. For points x € S\ N \ ;> Ek, it
holds that -

[fe(@)] < [ fra(a +Z|fz — fis(2)],

—0asl — oo

< e foralll

and so

{Ifel >} cNU|J Bey,
1>k

which implies that
u{1fel > e8) = ({1l > ) < V) + 0" (1 B
1>k

1
< lim p(Ey,) < —2 7kl 50 ask — oco.
l—o00 g
O

A3.8 Lebesgue integrable functions. Let f(,u;Y) be the completion of
T(1;Y) (see 2.24). Recalling lemma A3.7, we consider the set
L(wY) = {f : S — Y ; there exists a sequence
(fe)pen € T(11;Y) such that (A3-3)

f =limg_, fr p-almost everywhere }

with the equivalence relation
f=¢gin L(;Y) <= f =g p-almost everywhere.

In the following we also write L(u) instead of L(u;IK). Functions in L(u;Y)
are called p-integrable. Clearly, L(y;Y) is a vector space which contains
T(u;Y), where the equivalence relation in L(u;Y") restricted to T'(u;Y) is
the same as in A3.5.

Proposition: Defining
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J((fk)kE]N) = f with f as in (A3-3)
yields a vector space isomorphism between T'(p;Y) and L(u;Y).

Proof. Tt follows from A3.7 that for (fx),cn € T(u; Y') there exists a unique f
in L(y;Y) such that for a subsequence (f,);cpy it holds that f = lim; .o fx,

almost everywhere. To see this, let ( fEf‘)ielN be another subsequence and
f = limie 5, almost everywhere. Then (f;ﬂ — fg)iem =0 in T(u; Y),
and so f — f = 0 almost everywhere by A3.7(2), i.e. f = f in L(i;Y). This
defines a map

T:T(wY) = L(i;Y),

which is obviously linear. Moreover, it follows from A3.7(2) that it is injective
and the definition of L(y;Y) in (A3-3) yields that it is surjective. O

A3.9 Lebesgue integral. Let f, (fx),c be as in the definition of L(y;Y')
in (A3-3). Then it follows from A3.6(3) and A3.6(4) that

’/kadu/sfzdu’éfsfkﬁ|du—>0 as k,l — o0o.

As Y is complete, there exists
lim frdp inY.
k—o0 S

The integral of f with respect to the measure p is defined by

/S 7du (or /S F@)du(x)) = lim /S fudp,

which is independent of the choice of the sequence (fx),cp in the definition
(A3-3) (this follows as in the proof of A3.8).

The space L(u;Y) together with the above defined integral has the follow-
ing properties (L1)—(L5), which we call the axioms of the Lebesgue integration
theory.

A3.10 Theorem (Axioms of the Lebesgue integral). For the integral
defined in A3.9 it holds that:

(L1) T(w;Y)C L(p;Y) and the integral is linear on L(p;Y), with

/ Xpady = p(E)a  for E € By with pu(E) < oo and a €Y.
S
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(L2) If fe L(u;Y), then |f| € L(y;IR) and

]/Sfdu]s/sumu.

(L3) For fe L(p;Y) and € > 0,

/S Fldu > ent ({If] > €}).

(L4) L(w;Y) is a Banach space with the norm

#1150 = [ 11w
(L5) T(;Y) is dense in L(u;Y).

Proof (L1).If f € T(1;Y), then J((f) e ) = f» where J is the isomorphism
from A3.8. In addition we note that the integral of f in A3.9 coincides with
the elementary integral in A3.6. O

Proof (L2). If J((fr)pen) = f With (fi)pen € f(u;Y), then it follows from
the triangle inequality in Y that

/ka|—|fz\|d,u§/|fk—fz|du—>0 as k[ = oo,
S S

and hence (| fx|)pen € T(p;IR). Since there exists a subsequence (ki);en such
that fr, — f p-almost everywhere, we have that |fx,| — |f| u-almost every-
where as i — 00, and s0 J ((| fx|)eny) = |f| (Where here J is the isomorphism
associated with T'(u;IR)). Noting that

/sfkdﬂ‘</s|fk|d/i

yields the inequality in (L2). O

Proof (L3). Let J((fi)ren) = [, that is, for a p-null set N and a subsequence
k — oo (again denoted by (fk)cn) We have that

fe(@) — f(z) forzeS\N.

On choosing a further subsequence (and retaining the notation as above) we
can assume without loss of generality that

/ | fer — feldp <278,
s

Let € S\ N. For 0 < 0 < ¢ we have that
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[f@)[>e = [fu(@)[>dor|f(x) = fu(z)]>e—9.

In the latter case,
() = fla)] = Jim [ i) — filo)]
<Y [ firal@) = ful@)]

i>k
so that there exists an | > k, depending on x, such that
S Ifin(x) = filw)| >e -6,
k<i<l
Hence
{If] > €} € NU{|fi] >5}UU{ 3 Ui - fil >5—5}.
1>k k<i<l

As the set in the rightmost union is monotonically increasing in [, it follows
from the definition of the outer measure that

{1 > ) < ullfel > 0) + Jim u({ D7 1firr = £l > e - 3})

k<i<l

1 1
< Z - E L f
_5/S|fk|dﬂ+€*(5 /S|fl+1 f1|du

k<i<l

1 1
<= ——21 7k,
<5 [ 1lan+ =5

Recalling the proof of (L2) we have that

[ 1f1an =t [ 15,
S —xJs

and so letting kK — oo and then § — £ we obtain the desired result. O

Proof (L4) and (L5). If J((fi)ren) = f, then it follows from the proof of
(L2) that

1750 = [ 1= Jim [ 1Al e = | Geduen

i.e. J is isometric. As T(u;Y) is complete, it follows that L(yu;Y) with the
above norm is a Banach space. If J((fx),en) = f, then J((fi — fj)ke]N) =

f— f; for all j and

17 =l = Jim [ 1= fildu—s0 as i o,

ie. every f € L(p;Y) can be approximated in the L(u;Y)-norm by step
functions. O
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Extension of measures

This concludes the construction of the Lebesgue integral. We now derive the
most important properties of this integral. We note that to this end, we will
only (!) make use of the properties (L1)—(L5). This means: All the results of
Lebesgue’s integration theory can be derived from the properties (L1)—(L5),
and that is why these properties are called “axioms”.

A3.11 Lemma. If f, — f in L(u;Y) as k — oo, then there exists a subse-
quence (k;);cpy such that fr, — f p-almost everywhere as i — oo.

Proof. Choose a subsequence (k;); g with

[15=hulauze,
S
For € > 0 we have that

N, := {limsuplf—fm > 5} < (HIf = ful > ¢}

for all 7, and hence

W) < ST = ful > <),

i>;
which, on recalling (L3), is

1
ggz/su—fki

2]

1. .
du§721_3—>0 as j — o0.
€

This yields that N. is a p-null set, and consequently so is

{ligscip |f = fr.| > 0}.

A3.12 Conclusions.
(1) Momnotonicity of the integral. For f,g € L(u;IR) it holds that:

g > f p-almost everywhere = / gdu > / fdu.
s s

(2) Convergence criterion. If (fy), . is a Cauchy sequence in L(u;Y)
and fr — f p-almost everywhere as k — oo, then f € L(u;Y) and
If = frllpuy — 0as k — oo



A3 Lebesgue’s integral 83

(3) Monotone convergence theorem. Let f, € L(p;R) for k € IN and
let f:S — IR. Moreover, let 0 < fr  f p-almost everywhere as k — oo
(that is, f converges from below monotonically to f) and

limsup/ fredu < oo.
s

k— o0

Then f € L(p;R) and fi, — f in L(u;IR) as k — oo.

Note: In particular,
/fdu= lim /fkdu-
S k—oo Jg

Proof (1). By (L2),
zﬁdu—éfmniém—fMﬂ>Léw—ﬁd4>0~

Proof (2). We have from (L4) that L(u;Y") is complete, and hence there exists
a g€ L(w;Y) such that f, — g in L(p;Y) as k — oo. It follows from A3.11
that there exists a subsequence (k;), p such that

O

fr, &g p-almost everywhere as i — 00.

Hence, f = g p-almost everywhere, ie. f =g € L(p;Y). O

Proof (3). It follows from (1) that the integrals of f; form a monotone se-
quence in IR, and the assumptions state that this sequence is bounded. Hence
there exists

lim frdp.
k— oo S
It follows for [ > k that

/|fl—fk|du=/fldu—/fkdu—>0 as k,l — oo.
s s s

Now the desired result follows from (2). O

Proof (3) Note. Tt follows from (L2), which implies the continuity of the
integral with respect to the L(u)-norm, that

’/f@—/hm4§/ﬁ—th—W as k5 00,
S S S

since fr — f in L(p; IR). By the way this also follows from the convergence
of the integrals, since due to the fact that f > f; we have

w-mmm=4uamw=4fw—énm,

which converges to 0 as kK — co. Here we use the linearity of the integral. O
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For the Lebesgue measure in A3.3 we have the following additional ap-
proximation property:

A3.13 Remark. For 4 = L™ as in A3.3 it holds that: Every function in
L(p;Y) can be approximated by functions in CJ(IR";Y).

Proof. Functions from CJ(IR";Y) belong to L(y;Y), because they can be
uniformly approximated by step functions on semi-open cuboids (cf. the defi-
nition of the Riemann integral in 6.22). We know from (L5) that functions in
L(p;Y) can be approximated by step functions in T'(¢; Y), and hence it is suf-
ficient to consider functions X for semi-open cuboids E = [a,b[, a,b € IR".
For € > 0 let

E..={zeR"; a,—e<a; <bj+efori=1,...,n},
fo(z) :==max(0 , 1 — Ldist(z, E)).
Then f. € CY(IR™) and Xg < f. < Xp_. It follows from A3.12(1) that

/\fe—XE|dMS/(XE5 —Xp)dp = p(E:\ E) — 0
s s

as € — 0. O

We started with a measure, see A3.1,
(S,Bo, i), w:By— [0,00] o-additive, By an algebra.
Next, we will construct a o-additive extension
(S,B,n), f@:B— [0,00] o-additive, B a o-algebra.
Here extension means that
By CB, p=ponBy.

The construction is carried out by considering integrable sets based on the
Lebesgue integral.

A3.14 Integrable sets. Let By be the smallest o-algebra (for the definition
see 3.9) that contains By. It holds for p-integrable sets E, i.e. sets E C S
with Xp € L(p; IR), that:

(1) There exist Ej € By such that Xg, — Xg in L(i; R) as k — oo.

(2) There exists an E’ € By such that Xp = X/ p-almost everywhere.

(3) Ttis [( Xpdu = p*(E).

(4) For all A € By, it is Xgna € L(;R).

Proof (1). It follows from (L5) that there exist fr € T(u;IR) with fr — Xg
in L(p;IR) as k — oco. On defining

Ey = {fr >3}
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we have that |Xg, — Xp| < 2|fr — Xg|. Now A3.12(1) yields that Xg, — Xg
in L(p; R). O

Proof (2). Let X, be functions with the property in (1), where on choosing
a subsequence we can assume that

| X, — XE”L(M) < 2_k7 (A3-4)

which will be needed in the proof of (3) below. In addition, it follows from
A3.11 that there exists a p-null set N such that for a further subsequence
k — oo (the assumption (A3-4) will then still hold)

Xg, (x) > Xg(z) ask —ooforallze S\ N.

This pointwise convergence implies in set notation that

E\N:ﬂU(Ei\N):E/\N, (A3-5)
J i2j
where
£ :ZﬂUEiEB1.
J i2j
Hence, X = X'/ p-almost everywhere. a

Proof (3). Let Ej, k € IN, be as above (with the properties (A3-4) and (A3-
5)). It follows from (A3-5) for all j € IN that

E\Nc|JE\NcE; Ul JE\Ei-)
i>] >3

and hence
P (E\N) < u(B;) + Y uw(Bi \ Eiq)

i>j
:/XEJ' dM+Z/XEi\Ei—1 dp
s = /s
S/XEJ. du+) 27 +2707Y),
s i>j

=3.27J

where we have used
/ XEi\Ei—l dp < / ‘XEL - XEi—l ‘ dp
S s
< || X, = Xe || + [ XEs = 2Bl

and (A3-4). Consequently,
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1(E) < p*(B\ N) + u* (N) = p* (B \ N)

. , (A3-6)
§/XEjdu+3-2j—>/XEdu as j — oQ.
s s

In particular, the outer measure p*(F) is finite. Hence it follows from the
definition of the outer measure in A3.4 that for every € > 0 there exist sets
A; € By, i € IN such that

EcA:=J A, AicAij, p'(BE)+e> lim u(4).
1— 00
i€eIN

On noting that X4, (z) / Xa(z) as i — oo for all z € S and that p(A;) is
bounded, it follows from the monotone convergence theorem A3.12(3) that
Xa € L(11;IR) and

p(a) = [ dadn 7 [ Aadi asio e,
S S

and hence, by A3.12(1),

u*(E)JrsZ/XAduZ/XEdu-
S S

Letting ¢ — 0 and recalling (A3-6) yields the desired result. a

Proof (4). Let
M:={ACS; Xprac L(R) } .
It holds that By C M. To see this, let A € By and let X'z, be as in (1). Then
| XE,na — XEinal < |XE, — Xg, ],

and hence, on recalling A3.12(1), (Xg,na)ucn 18 @ Cauchy sequence in
L(p;IR). We have from A3.11 that Xp, — Xg p-almost everywhere for a
subsequence k — oo, and hence also Xg,na — Xgna p-almost everywhere.
Now A3.12(2) implies that Xgna € L(p; R), i.e. A € M. Moreover,

Al,AgeM — A NAye M.

To see this, let E;;, € By be the corresponding sets to E N A; from (1), i.e.
Xp,, = Xpna, in L(p; R) as k — oo. Then

‘XElkﬂEmc - XEuﬂEm | < |XE1k - XEll | + |XE2k - XEzz | )

and hence (Xp,,nE. ) e 18 @ Cauchy sequence in L(u;IR). It follows from
A3.11 that there exists a subsequence k — oo such that Xg,, — Xgna, p-
almost everywhere for ¢ = 1, 2. Then we also have that Xg,, g,, = XEn4,nA,
p-almost everywhere. Hence it follows from A3.12(2) that Xgpna,na, belongs
to L(p; R), i.e. Ay N Ay € M. In addition,
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AeM = S\AeM,
since Xg, Xpna € L(p; R) implies that
Xpa = Xg — Xpna € L(i;R) .
Finally,

A; € Mwith A; C Ajy forie N = A=A eM,
i€IN

because as ¢ — oo we have that Xgna,  Xpna < Xr € L(w; R), which, on
recalling A3.12(3), implies Xpna € L(p; IR).

It follows from the above established properties of M that M is a o-
algebra that contains By. Hence B; C M. O

A3.15 Measure extension. Let (S,By, ) be a pre-measure space as in
A3.1 and let B; be the o-algebra induced by By from A3.14. Let

B := {E C S ; Xg = Xg p-almost everywhere for an £’ € B; }
and define i : B — [0,00] by

| / Xpdu if Xp € L(wR),
= s

00 otherwise.

(B

Then:

(1) Xpe L(isR) = FEeBand i(E)=p*(E).

(2) Bis a og-algebra and i : B — [0,00] is o-additive.

(3) Nisapnullset (i.e. u*(N)=0) <= N e B with g(N)=0.
(4) [ is an extension of p from By to B and (S, B, ji) is a measure space.

Interpretation: This shows that there exists a measure extension (B, fi) of
(Bo, i) which is given by the outer measure p* of p. In the following we will
always write p instead of fi.

Proof (1). Follows immediately from A3.14(2) and A3.14(3). O

Proof (2). On noting that By is a o-algebra and that countable unions of
p-null sets are again p-null sets (see A3.4), we have that B is a o-algebra.

In order to show that [ is additive, consider two disjoint sets E7, Fy € B.
If i(En UES) < 00, ie. Xg,uE, € L(1;R), choose Ef, E) € By for E7 and Es
as in the definition of B. Then Xp/up, = Xp,uE, in L(p;IR), and so B U £
is an integrable set. Now A3.14(4) yields that F{ and E are integrable sets,
and hence so are F; and F5. On noting that

XeuE, = Xg, + XE, , (A3-7)
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the additivity of the integral yields that
[(ELU Ep) = i(Er) + fi(Es) - (A3-8)

If, on the other hand, i(FE; U Ey) = 0o, then E; U Es is not an integrable set,
and so by (A3-7) the sets E; and Es cannot both be integrable, which again
implies (A3-8).

It remains to show that p is o-additive on B. To this end, let F; € B,
i € IN, be pairwise disjoint with £ := J; E; € B. We first consider the case
when all the sets F; are integrable. The above established additivity of f
yields for £ € IN that

i<k S i<k

and Xg S Xp as k — oo. If the Cf are bounded, then the monotone
convergence theorem A3.12(3) yields that Xz € L(p; R) and

ﬂ(E):AXEdM:kILH;AXEk dM:iEZINﬂ(Ei).

If Cy, — o0 as k — oo, then it follows from Ei C E and the monotonicity of
the integral A3.12(1) that E is not integrable, and so

A(E) = 0o = Zﬂ(Ei> : (A3-9)

It remains to consider the case when one of the sets FE; is not integrable.
As before we obtain that then E cannot be integrable and so (A3-9) holds
trivially. O

Proof (3). If N is a p-null set, then Xy = Xy = 0 p-almost everywhere, and
so Xy = 01in L(u;R), whence N € B with (V) = 0. Conversely, if N € B
with #(N) = 0, then

I 0 = [ 2 di =0,

and hence the norm property (L4) yields that Xy = 0in L(y; IR), i.e. Xy =0
p-almost everywhere, which means that NV is a p-null set. O

Proof (4). Let E € By. If i(E) < oo, then it follows from (L3) that
W(B) = (B) < [ Xpdp = (E) < .
If u(E) < oo, then Xg € T(p;IR), and hence fi(E) = p(E), recall (L1). This

shows that & is an extension of y. It follows from (2) that B is a o-algebra
and that g is o-additive.
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On recalling the definition of a measure space in 3.9, it remains to show
that (S, B, i) is complete. But this follows from (3), since subsets of p-null
sets are again p-null sets. O

Properties of Lebesgue’s integral

A3.16 Measurable functions (see 3.11). Let (S, B, 1) be a measure space.
A map f: S5 —Y is called u-measurable if

(1) UCcY open = fHU)eB.
(2) There exists a p-null set N such that f(S\ V) is separable.

In the following we want to show that integrable functions f : S — Y are
precisely those measurable functions for which |f]| is integrable. This result
follows from A3.19 below, on setting g = |f| in A3.19(2).

A3.17 Lemma. Let f € L(u;Y). Then the following is true:

(1) For FE € B it holds that Xgf € L(1;Y).
(2) Define

v(E) ::/fdu::/XEfd,u eY forEehB.
E s
Then v : B — Y is o-additive and

[V(E)| — 0 as u(F)—0. (A3-10)
Definition: In particular, if Y = IR and f = X4 then

W(E) = [ Xadp= (A0 B) = (ulA)(E)
E
is the measure p restricted to A.

Proof (1). By (L5), we can choose step functions fi € T'(u;Y) such that
fe = fin L(pw;Y) as k — oo. For a given E € B, choose E' € B; as
in A3.14(2). Then A3.14(4) yields that Xg fi, € L(p;Y), and hence also
Xefr € L(1;Y). It follows from

|\ Xefi — Xefil < |frk — fil

that (Xe fi),en is @ Cauchy sequence in L(p;Y'). Moreover, it follows from
A3.11 that fr — f u-almost everywhere for a subsequence k — oo, and hence
also Xgfr, — Xrf. Then A3.12(2) yields that Xgf € L(11;Y). O
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Proof (2). The additivity of v follows from the additivity of the integral. Now
let B = J;en £i with E; C E;p 1. Then X, f — Xpf pointwise as i — oo.

Moreover,
[ iraus [ if1an< o

and the sequence of integrals is nondecreasing in 7. Hence it holds for ¢ < j
that

[er-seston- i

i\ E;
— [ 1= [ 1f1de—0 asig o
Ej E;
i.e. (Xg, f);cn is a Cauchy sequence in L(u; Y'). It then follows from A3.12(2)
that Xg, f — Xgf in L(p;Y) and hence also v(E;) — v(E) as i — oco. This
shows that v is g-additive. For the proof of (A3-10) choose step functions

np
Jr= E Xy, Qi
1=1

such that || f — fkll;(,) — 0 as k — oo, recall (L5). Then we have that
wB) < [ 1= fldn [ 1l a

ny
§/|f_fk|dﬂ+§ lowi|  p(E N Eg;)
S ——
N

i=1
—0as u(E) =0

—0as k — oo for every k and ¢

O

A3.18 Egorov’s theorem. Let p(S) < oo and let f;,f : S — Y be u-
measurable. Then the following are equivalent:

(1) f; — f p-almost everywhere as j — oo.

(2) f; = f p-uniformly, i.e. for ¢ > 0 there exists an E. € B such that
u(S\ E;) <eand

f; — f uniformly on E. as j — oo.

Proof (2)=(1). Let £ := ;e £1. Then we have that u(S\ £) = 0 and

i

fi(x) = f(z) for x € E. O

Proof (1)=(2). Let E € B with u(S\ F) = 0 such that for all € E it holds
that: f;(z) — f(x) as j — oo. Consider the sets

Evii={z€E; |fjx)— flz)|<iforalj>Fk} €B.
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On noting that, for every ¢,

EcC|JEw: with Ey; C Epya,
k

we see that p(E \ By ;) — 0 as k — oo. Hence, for a given ¢ > 0 there exists
for all 7 a k; such that

W\ By) <e-27.

Letting
B =Bk
we have p(S\ E;) < € and
sup,ep, | fi(z) — f(z)] <1 foralliandall j >k,
i.e. f; converges uniformly on E, to f as j — oo. O

A3.19 Theorem.
(1) Bochner’s criterion.If f: S — Y, then

ferL(uwyY) <= fisp-measurable and |f| € L(i;R).
(2) Majorant criterion.If f: S — Y and g € L(y; IR), then

f is p-measurable and
=  feLl(Y).
|f| < g p-almost everywhere

Proof (1)=. It follows from (L5) that there exist fi € T(y;Y) such that
If = fellpy — 0 as k — oo, and then A3.11 yields that f, — f almost
everywhere for a subsequence k — co. As the fj are measurable, the measur-
ability of f follows from 3.12(3). Moreover, since ||fx| — |fil| < |frx — fi| we
have that (| fx|), < is @ Cauchy sequence in L(y; IR). As in addition | fx| — |f]
almost everywhere (for the above subsequence), it follows that | f| € L(u;R),
recall A3.12(2). O

Proof (1)<=. This is the special case g = | f| in (2). O

Proof (2). We begin with the special case of a Euclidean image space
Y = IR™. For k € IN choose a cover of dB1(0) C IR"™ consisting of dis-
joint nonempty Borel sets Ej, j = 1,..., ji, with diameter less than ¢ (use
4.7(7) and 4.6(3)). Choose «o; € E; and a null set N such that | f(z)| < g(z)
for x € S\ N. Then, fori=1,...,k and j = 1,..., ji, consider the disjoint
sets

i—1 _ [f(=)]

Biyi= (€ S\N; f@)#0, = < i <
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We have from the assumptions and (1), respectively, that f and g are mea-
surable, and so 3.12(2) yields that E; ; € B. Let

1—1
fr = Z 2 Xg, ;905 .

.3

As g € L(p; IR) it holds (trivially) that ga; € L(p;Y') and hence f, € L(1;Y),
thanks to A3.17(1). For = € E; ; we have that

i—1 f(@)
2 g(z) (aj - W) ’

f(x) 1 1
Yot | <ate) - 1+ - 9l0).

|fr(z) = f(2)] <

-1 |f(@)
*‘( E @)

It follows that |fx — f] < % g almost everywhere. This yields that

2 2
/|fk_fl|dl$§/<*+*>gd/i—>0 as k,l — oo.
S S k l

On noting that fr — f almost everywhere, the desired result follows from
A3.12(2).

Now we consider the case of an arbitrary Banach space Y, where we can
assume that Y is separable. (Otherwise replace Y, on recalling 3.11, with
clos (span(f(S\ N))), where N is a null set such that f(S\ N) is separable,
and then set f = 0on N.) Now if {a;; j € IN} is a dense subset of 9B1(0) C Y
(use 4.17(2)), then for every k € IN

() -

Then on letting

Ey:=Bi(m), E;j:==Bi(a)\ |J B forj>1

k k 1<l<j

we obtain a cover of 9B;(0) consisting of disjoint Borel sets. (The same
construction can be used for the Borel sets in the special case.) Now define

the sets F; ; as above and set

kool
frg = Z Z ! ; 1XEi)jgozj , and A= U E;;.

i=1 j=1 j>l

As Ai,l—i—l C Ai,l and ﬂle]N AiJ = @, it holds for Iy < ls, recall A3.17, that

k

fids = fea| €D Xa,, g —> 0 in L(wIR) as I — oo.
=1
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(Since Iy < la, the property I; — oo implies lo — 00.) Moreover, fi; converges
as | — oo pointwise to

k oo .
fio= 303 g0
i=1 j=1

As frg € L(p;Y), it follows from A3.12(2) that fr € L(p;Y). The remainder
of the proof proceeds as before. O

We now prove Fatou’s lemma and Lebesgue’s convergence theorem, which
will play a fundamental role in later proofs of results using Lebesgue spaces.

A3.20 Fatou’s lemma. Let f; € L(y;IR) with f; > 0 almost everywhere
and

liminf/ fidp < oo.
s

J—00

Then liminf; . f; € L(p;R) and

/li_m inf fjdp < li_minf/ fidu.
g J—roo j—oo Jg
Proof. For k € IN it holds that almost everywhere

0<gg:= 11>1£ fi < f; forevery j > k.
1’_

It follows from 3.12(4) that g is measurable and hence, by A3.19(2), that g
is integrable. Then A3.12(1) yields that

[ovaus [ fan torj=r.
S S

It follows that
/gkdugliminf/ fidp <oo.
S 170 Js

In addition, the g are monotonically nondecreasing in k (almost everywhere)
and hence, by A3.12(1), the same holds true for their integrals. This yields
that these integrals converge, and so, for k < [,

/|gk*gz|du:/glduf/gkdu*>0 as k,l — oo,
S s s

i.e. (9r)pen is @ Cauchy sequence in L(y;IR). On noting that pointwise
liminf f; = lim gy,
Jj—o0 k—o0

the desired result follows from A3.12(2). O
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A3.21 Dominated convergence theorem (Lebesgue’s convergence
theorem). Let f;, f : S — Y be p-measurable and let g € L(1;IR). If

|fjl <g p-almost everywhere for all j € IN,

fi = [ p-almost everywhere as j — oo,
then f;, f € L(p;Y) and
fi—=f ImL({Y)asj— oo

Proof. Tt also holds that |f| < g almost everywhere. Then the majorant
criterion A3.19(2) yields that f;, f € L(1;Y'). Define

1
9 1:9—§|fj—f|~

It holds that g; > 0 almost everywhere and (recall A3.12(1))

/gdeS/gdu<OO~
S S

On noting that lim;_, g; = g almost everywhere, it follows from Fatou’s
lemma that

1
/gduSliminf/gjdu:/gdu*flimsup/Ifrfldu,
S I Js S 2 jos Js
and hence
limsup/|fjff|du:0.
j—oo Js

O

Two further essential theorems for the Lebesgue measure L™ in IR" are
Fubini’s theorem and the change-of-variables theorem for C!-diffeo-
morphisms. These theorems are an elementary part of analysis and will not
be presented here. However, their knowledge will be assumed from now on
in this book. A proof of Fubini’s theorem for regular measures is given in
Appendix AG6.



4 Subsets of function spaces

In this chapter, we consider subsets of the function spaces introduced in
Chapter 3. Two fundamental properties of these subsets are convexity and
compactness, which in applications are important. We first consider convex
subsets (see 4.1-4.4), and in particular we prove the projection theorem in
Hilbert spaces. Then we investigate compact subsets of metric spaces (see
4.6-4.16) and give a complete characterization of compact sets in CY- and
LP-spaces (see 4.12 and 4.16). These characterizations are frequently used in
applications, for example, to derive existence results for partial differential
equations.

Convex subsets

It should be noted that the following definition only uses the vector space
structure. Here we assume that the vector space is a IK-space.

4.1 Convex sets. Let X be a vector space over IK. For A C X the convex
hull of A is defined by

k k
conv(A) := {Zaixi; keNN, 2z, € A, a; €R, a; >0, Z@izl}-

i=1 i=1
The set A is called convez if A = conv(A), which is equivalent to
r,yeA aeR, 0<a<l = (l—-a)z+ayc A

(see the example on the left-hand side of Fig. 4.1). For every set A C X one
has that conv(A) is convex and is the smallest convex set that contains A.
Moreover, any intersection of convex sets is convex.

For examples of convex sets see E4.2.

4.2 Convex functions. If A C X is convex, then f: A — R U {400} is
called a convex function if

(1 —a)z+ay) < (1—a)f(z)+af(y)
for all z,y € A and ¢ € IR with 0 < a < 1.
© Springer-Verlag London 2016 95
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(Here the right-hand side is set to 400 whenever f(z) = +oo or f(y) = +00.)
Then, on setting f(z) := +o0 for € X \ 4, it holds that f : X - RU{+o0}
is convex. A function f: A - RU{—oc} is called concave if —f is a convex
function. If f: X — IR U {400} is convex, then

{reX; f(z) e R} isconvexin X
and (see the right-hand side of Fig. 4.1)
B:={(z,§) e X xR; £> f(z)} isconvexin X x R.

Conversely, every convex set B C X x IR defines a convex function f: X —
R U {+occ} via

f(z):=inf {{ € RU{+o0}; (z,§) €B },

provided that for every x, the set over which the infimum is taken is either
empty (the infimum is then defined to be +00) or bounded from below.

/ graph(f)

B ——————

Fig. 4.1. Convex sets

One of the best known variational problems is the following: Given a
point z € X and a set A C X, find points y € A such that the distance
y — |z — y||x is minimal. We now prove that for closed convex sets A in a
Hilbert space X this variational problem admits a unique solution.

4.3 Projection theorem. Let X be a Hilbert space and let A C X be
nonempty, closed and convex. Then there exists a unique map P : X — A
such that

|z — P(x)||y = dist(z, A) = ;Ielg [z —ylly forallze X. (4-11)
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For x € X an equivalent characterization of P(x) € A is given by
Re(x — P(z),a— P(z))y <0 forallae A (4-12)

The map P : X — A is called the (orthogonal) projection from X to A.
Remark: We will use this theorem in 6.1 and in 9.17 and 9.18 for subspaces
AcCX.

Fig. 4.2. Orthogonal projection

Proof. Throughout we write [|+|| in place of [|+| . For z € X, on recalling
the definition of the distance, there exists a sequence (ax),p in A such that

|z — ay|| — dist(z, A) =:d as k — 0.

Hence (ay), o is also called a minimal sequence. Now it follows from the
parallelogram law in 2.2(4) that

Iz = ar) = (@ — a)|I* + [l (z — ax) + (= — ar) |
=2(lle - arl” + o - al?),
and so
2
= axl = 2(llz = anl +llz = aill* = 2|2 = (ar +a) |*).
As 1(ay + a;) € A due to the convexity of A, this can be estimated by
<2z — ar|® + o — ar]® - 2d?) — 0 as k,1 — cc. (4-13)

Hence (ay),cn is a Cauchy sequence in X. Since X is complete and A is
closed, it follows that there exists
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y:= lim a, € A
k—oc0
and the continuity of the norm yields that
|z —yll = lim ||z —axl| =d.
k—o00

If the same holds for § € A, then similarly to (4-13) it follows that
ly = g1I* < 2(l= — yI* + |z — §I|* — 242) =0,

i.e. y =y, and hence P(z) := y is uniquely defined by (4-11).
Moreover, we have for ¢ € A and 0 < e < 1, on noting that (1 —¢)P(z) +
ea € A,

lz = P(2)[|* = d* < [l = (1 - &) P(x) + ea) ||
= ||(z - P(x)) — e(a - P())|
= ||z — P()||* — 2eRe (z — P(z), a — P(2))y + O(e?),
which implies that
Re(z — P(z),a— P(z))y <0.
Conversely, if the above is satisfied, we conclude that
lz—all® = o - P(x) + P(z) - al
= ||z = P(@)||* + 2Re (z — P(x), P(z) — a)x + || P(z) - a|’

> ||z — P()]*.
O
4.4 Remark. In 4.3 one has the following:
(1) If A C X is nonempty, closed and an affine subspace, i.e.
z2,y€A acelK = (l-a)z+ayeA,
then P is affine linear, i.e.
P(l-a)r+ay)=(1—-—a)P(z)+aP(y) forallz,ye X, aclk.
Moreover, for any given ag € A the point P(x) € A is characterized by
(x—P(z),a—ap)y =0 forallaeA. (4-14)

(2) If A C X is nonempty, closed and a subspace, i.e.
r,y€eA a,elK = ar+pycA,
then P is linear and the point P(z) € A is characterized by

r— P(z) € A+, (4-15)
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Proof (1). Let x € X.Fora € A, a € IK we have that a := (1—«a)P(z)+aa €
A with

(x—P(z),a—Px))x =a(z-Pr), a—P))y,
and hence, by (4-12),
0>Re(z— P(z),d— Pa))y = Re(a (z— P(z), a— P(m))X)
for all @ € IK. This implies that
(x—P(z),a—P(x)y =0 forallac A. (4-16)

Subtracting the same equation with ag in place of a then yields (4-14). Con-
versely, if P(x) € A satisfies (4-14), then choosing ag = P(z) yields (4-16)
and hence (4-12).

Now let z,y € X and a € IK. It follows from the characterization of
P(z),P(y) € A in (4-14), on setting z := (1 — a)x + ay, that

(2= (1 —a)P(z)+aP(y)),a—ag), =0 forallac A

Now the characterization of P(z) in (4-14) yields that (1 —«)P(z) +aP(y) =
P(z), and hence P is affine linear. O

Proof (2). Setting ag = 0 in (4-14) yields  — P(z) € AL, and hence the
characterization (4-15) of P(z). Moreover, for a € IK we have that ax —
aP(z) € At. Now the characterization of P(ax) in (4-15) gives aP(x) =
P(ax), which together with (1) implies the linearity of P. Conversely, (4-15)
immediately yields (4-14). O

In Banach spaces, the norm in general does not attain the infimum over
closed convex sets (see E4.3), but the infimum can be approximated to an
arbitrary accuracy. In the case of a subspace this allows us to prove the
following result.

4.5 Almost orthogonal element. Let X be a normed space and let Y C X
be a closed proper subspace. In addition, let 0 < 8 < 1 (if X is a Hilbert
space, then 6 = 1 is also allowed). Then there exists an zp € X such that

lzgllxy =1 and 6 < dist(zp,Y) < 1.

Proof. We write ||+|| in place of ||+]| . Choose x € X \ Y. Since Y is closed,
dist(z,Y) > 0. Together with § < 1 this yields that there exists a yg € YV
such that

1
0<f|lz—yg| < édist(o:,Y) .
Let
T — Yo

Ty = ———— .
|z — vl
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Then for all y € Y

1
o = yll = ————llz = (vo + [z = yolly)l -
Iz = yoll

As yg + ||z — yplly € Y, this can be estimated by

dist(z,Y) - dist(z,Y)
T e —yell T g - dist(z,Y)

This shows that dist(zg,Y) > 6. In addition, it follows immediately from
0 € Y that dist(xg,Y) < |lzg|| = 1.

If X is a Hilbert space and 6 = 1, then set y; = P(x), where P is the
orthogonal projection onto Y from 4.3. a

Compact subsets

A second class of subsets A C X for which the above variational problem is
solvable are compact subsets (see 4.11). Several possible notions of compact-
ness are defined in the following theorem. The most general definition is the
covering compactness, which can also be formulated in topological spaces. As
we will show, in metric spaces this notion is equivalent to sequential com-
pactness. This follows from the fact that then for each = € X there exists
a countable neighbourhood basis, e.g. (Bl/k(x))kem. Here we call a system
(Ui);c; in a topological space (X,7) a neighbourhood basis at the point
re X if
velU,eT foralliel,

| (417)
relUeT =— U;cUforaniel.

One of the most important results in metric spaces is:

4.6 Compactness. For every subset A of a metric space (X, d) the following
are equivalent:

(1) A is covering compact, i.e.
Every open cover of A contains a finite subcover.
(2) Ais sequentially compact, i.e.
Every sequence in A contains a convergent subsequence with limit in A.
(3) (A,d) is complete and A is precompact, i.e.
For every € > 0 there exists a finite cover of A consisting of e-balls.

Definition: We call a subset A C X of a metric space compact if A satisfies
one of these three equivalent properties.
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Proof (1)=-(2). If the sequence (7),cy in A does not have a cluster point
in A, then for each y € A there exists an r, > 0 such that

Ny :={keN; z, € B, (y) N A}

is finite. As the balls (Bry (y))yeA form an open cover of A, it follows from
(1) that there exist finitely many points yi,...,y, € A such that

A C U Bryi (yl) .
i=1
Since z, € A for all k € IN, it would follow that IN = (J;_; N,, is finite, a
contradiction. O

Proof (2)=(3). First we prove the completeness. It follows from (2) that any
Cauchy sequence in A has a cluster point in A. On the other hand, in general
any Cauchy sequence can have at most one cluster point. This implies that
the Cauchy sequence has a limit in A (see the remark in 2.21(3)). Hence
(A, d) is complete.

Now we prove the precompactness. If for an ¢ > 0 there exists no finite
e-cover of A, then we can inductively find xj; € A such that

k
w1 € AN\ Be(wi) -

i=1
Then (z),cn has no cluster point, which contradicts (2). O

Proof (3)=(1). Let (Ui);c;
open for i € I, and A C {J,;

be an open cover of A, i.e. I is a set, U; C X are
Ui. Let

B .= {BcA; JcI, Bc|JUu = Jisinﬁnite}.
ieJ
We want to show that A ¢ B. It follows from the precompactness of A that:

Ne

B e Band e >0 = There exists a cover A C U B.(z;)
i=1
= B.(x;) N B € B for an i (depending on ¢).

We now assume that A € B. Then it follows inductively for k € IN (set ¢ = 1)
that there exist points zx € X and sets By with By := A and

By := Bl(l'k)ﬂBk,1€B for k> 2.
k

Choose y, € Bj. Then for k£ < [ both y; and y; belong to B1 (xy), and so
k

d(yk,y) < %, which means that (yx),cn is @ Cauchy sequence in A. As A is
complete, there exists a y € A such that
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ex :=d(yr,y) >0 as k — oc.
On noting that y € U, for some 4¢, for k sufficiently large we have

By CBu(zr) CB2(ys) C Bz (y) C Ui,
k k PRAL

i.e. By ¢ B, which is a contradiction.

4.7 Remarks. Let (X, d) be a metric space. Then:

(1) Subsets of precompact sets are precompact.

(2) AC X precompact = A bounded.

(3) A C X precompact = A closed and precompact.
(4) AC X compact = A closed.

(5) If X is a complete metric space, then for A C X:

A precompact <= A compact.
(6) If X = K" as a normed space:

A C K" precompact <= A bounded.

(7) Heine-Borel theorem. If X = K" as a normed space:

A C K" compact <= A bounded and closed.

(8) If A, A; C X and §; > 0 for i € IN then:
AcC Bgi (Az) s
A; precompact for i € IN, = A precompact.
0; > 0asi— oo
Proof (1) to (4). Use the statements in 4.6(3).
Proof (5)<. Follows from 4.6(3) and (1).
(
(

Proof (5)=. It follows from (3) and E2.8(1) that 4.6(3) is satisfied for A.

O

O

Proof (6)<. We prove this with respect to the Euclidean norm on IK". Let

A C Bg(0). For IK = IR it holds for all m € IN
Br(0) C U B, .c(eq) where ¢, =+/n, c:= E
" m

qez"
[dlp < m

(For IK = C the union has to be taken over ¢ = q; + igz with ¢, € Z",
lgil, < m for k = 1,2.) For the co-norm « — |x|, we can set ¢, = 1. It

follows from 4.8 that the claim is true for any norm on IK".

a
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Proof (7)=. As IK" is complete, this follows from (4), 4.6(3) and (2). O

Proof (7)<. As IK" is complete, this follows from (6) and 4.6(3). O
Proof (8). Let € > 0. Choose ¢ € IN with §; < e. As A; is precompact, there
exist finitely many points x1, ...,z € X such that
A; C U Be(z;), andhence A C Bs,(4i)C U Boc(z) .
j=1 j=1

O

4.8 Lemma. If X is a finite-dimensional IK-vector space, then all the norms
on X are pairwise equivalent.

Remark: Let n € IN. Every n-dimensional IK-vector space X is linearly equi-
valent to IK", i.e. there exists a linear and bijective map from X to IK". If
X is a normed space, this map is continuous in both directions.

In the infinite-dimensional case lemma 4.8 does not hold (see the theorem
after £9.2).

Proof. Let n:=dim X and let {ej,...,e,} be a basis of X, i.e. every z € X
has a unique representation

n
xr = E €Xr;e;
i=1

(the coefficients x; depend linearly on x, that is, x — (x1,...,2,) is a linear,
and bijective, map from X to IK"). Then

[2]lo = maxi=1,....n i (4-18)

defines a norm on X. Let z — ||z|| be an arbitrary additional norm. The
claim follows if we can show that these two norms can be bounded by each
other as in 2.15(2). Now

n n
2l < 3 i sl < (z uein) el
1=1 =1

On the other hand, if we assume that the corresponding converse bound does
not hold, then for each £ > 0 there exists an 2° € X such that |z°| <
el|z®|| ., which means that 2° # 0 and so we can assume that |[z°]_ =1
(otherwise consider —%— in place of z¢). Therefore

€
[ES[

0?

z¢|| <e and [zf] =1. (4-19)

Hence there exist an iy and a countable subsequence € — 0 such that
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|25 | =1. (4-20)

Moreover, for every i the set {z5; ¢ > 0} is bounded, and hence precompact

7

in IK (see 4.7(6)). That means that we can choose a further subsequence
e — 0 such that, fori=1,...,n,

x5 —¢& ase—0 (4-21)

with certain numbers &; € IK. Let

n
xXr = Z&ez .
i=1

Then it follows from (4-19) and (4-21) that

i=1

n
ol < ol + flo = a°)] < e+ (Zw) - max [§ —af] 0

as ¢ — 0. Hence, x = 0, i.e. § = 0 for ¢ = 1,...,n. On the other hand, it
follows from (4-20) that |&;,| = 1, a contradiction. O

As an example we have seen in the Introduction that the C%-norm and
the L?-norm are not equivalent on X = C°([ — 1,1]). In particular, X is
not complete with respect to the latter norm (see also E7.3). For finite-
dimensional spaces we obtain the following conclusion from 4.8:

4.9 Lemma. Every finite-dimensional subspace of a normed space is com-
plete and hence a closed subspace.

Proof. Let X be a normed space with norm |[|+|| . Let {eq,...,e,} be a basis
of a subspace Y C X with dimY = n. It follows from 4.8 that ||| and
||| o, defined by

n
:=max|z;|, where z= E i€,
3
i=1

are equivalent norms on Y. Therefore, if (z¥), o is a Cauchy sequence in Y

and
n
zF = E:scfei7
i=1
then for every i € {1,...,n} the sequence (mf)kem is a Cauchy sequence in IK

and hence has a limit & € IK. It follows that with respect to the ||+|| -norm
n n
z" :foei —>Z£7;ei €Y asi—
i=1 i=1

and then, by 4.8, also with respect to ||+|| . Hence Y is complete. The closed-
ness of Y then follows from E2.8(2). O
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4.10 Theorem. For every normed space X it holds that:
B1(0) compact <<= dimX < oo.

Remark: In the above we can replace the closed unit ball with an arbitrary
closed ball Bg(x) C X. Consequently, the assertions 4.7(6) and 4.7(7) hold
in every finite-dimensional normed space, and they are independent of the
choice of norm.

Proof =. Tt follows from 4.6(3) that there exists a cover By (0) C U?:1 B (y;)-
Let Y :=span{y;; j=1,...,n}. By 4.9, Y is closed in X. If we assume that
Y C X is a proper subspace, then 4.5 yields that for every 0 < 6 < 1 there
exists an zg € X with [[zg||y = 1 and dist(x,Y) > 6. In addition, there
exists a j such that zg € By (y;), i.e.

1

dist(z9,Y) < |lg — yjllx < 3.

which is a contradiction, as we can choose 6 > % O

Proof <. We have that B1(0) C X is closed and, on noting 4.9, that X is
complete. Hence, by 4.7(5), we need to show that A := B1(0) is precompact.
The set B is bounded with respect to the X-norm, and 4.8 yields that it is
bounded with respect to the oco-norm as defined in 4.8.

Thus we have to show that with respect to the co-norm the bounded set
B is precompact. Now B can be covered by finitely many balls of the form
(the balls are chosen with respect to the co-norm)

Be(ezg) with 2 =3"7_ q5¢5, q=(q1,---,q0) €Z",
see the proof of 4.7(6) for IK = IR, and similar balls for IK = C. O

For compact sets the variational problem from the beginning of this chap-
ter always has a solution:

4.11 Lemma. Let (X,d) be a metric space and let A C X be compact.
Then for x € X there exists an a € A such that

d(z,a) = dist(z, A) .

Remark: In general a is not unique, for instance for the |+|_-norm in X = R?
and A = {z € R?; |z|_ < 1}.

Proof. Choose a minimal sequence (ay),cy in A, ie. ap € A such that
d(z,ar) — dist(z, A) as k — oo. As A is compact, there exist a subsequence
(ak,);eny and an a € A such that ap, — a as i — oo, and so d(z,ay,) —
d(x,a). Hence d(z,a) = dist(z, A). O
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Compact sets of function spaces

We have seen that in finite-dimensional vector spaces the compact subsets
are precisely the bounded closed sets. A characterization of compacts sets is
also possible in function spaces. We consider this for the standard spaces C°
and LP in the case where the image space Y is finite-dimensional. As usual,
y — |y| denotes the norm of Y.

4.12 Arzela-Ascoli theorem. Let S C IR" be compact and A C C°(S;Y),
where Y is finite-dimensional. Then:

A is precompact <= A is bounded and equicontinuous.

The set A is called equicontinuous if

(1) supsup|f(z)| < oo,
feAzeS

(2) sup|f(z)— fly)] — 0 for z,y € S with |x —y| = 0.
feA

Example: Bounded sets A C C%%(S;1IK™) considered as subsets in C°(S; IK™)
are bounded and equicontinuous, and hence precompact sets A C C°(S;IK™)
(see also E4.15).

Remark: The following proof immediately carries over to compact metric
spaces (S, d), upon replacing |z — y| by d(z,y).

Warning: The theorem does not hold for C°(S;Y), if Y is an infinite-
dimensional Banach space. Then an additional condition is needed, which
guarantees that for f € A the image f(S) C Y is precompact (see also
remark 5.4(2)).

Proof =-. The precompactness of A yields that for € > 0 there exists a cover
A c Uiz, Bo(ff). For f € A it then holds that f € B, (ffo) for some gy, and
hence

1l < 2+ [l < &+, 157 s < 00,

sup —

and similarly
7@) = f)] < 26+ ax |7 (@)= S )]

where, since functions in C°(S;Y’) are uniformly continuous, the second term
becomes arbitrarily small on choosing |z — y| sufficiently small. This yields
the desired result. O

Proof <. We use the Heine-Borel theorem 4.7(7) and that Y is finite-
dimensional (see 4.8). Let

R :=supsup|f(z)].
feAzes
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For a given € > 0, choose covers

l
Br(0) € | JB:(&) and Sc | Be(a;)

1 j=1

-

2

with& eY,i=1,...,kand z; e R", j=1,...,l, where k and [ depend on
e. For mappings o : {1,...,l} = {1,...,k} we define

As = {feA; |fla;) =& <eforj=1,...,1}.

For each ¢ such that A, is nonempty, choose an f, € A,.
Now for every function f € A there exists a o such that f € A,. If x € S,
then « € B.(z;) for some j, and so

[f(x) = fo(z)| < [f(z) = fx5)| + | folz) = fo(x))]
+|f(@5) = &oiy | + | fo(25) — €0y

<2 sup suplg(y) —g(z)| + 2 =:re,
ly—z|<e g€A

and hence || f — fo ., < 7. This shows that

sup —
AcC U B2T5 (fa) ’

o:As#0

where the number of balls over which the union is taken depends on €. As A
is equicontinuous, we have that r. — 0 as ¢ — 0, which yields the precom-
pactness of A. O

The characterization of compact sets in LP-spaces (see 4.16) will be ob-
tained with the help of the Arzela-Ascoli theorem. To this end, we approx-
imate LP-functions with smooth functions by means of convolutions. In the
proofs we will make use of Fubini’s theorem, which we assume to be known
(see the remark at the end of Appendix A3).

4.13 Convolution. Let ¢ € L'(IR") and 1 < p < co. Let Y be a Banach
space.

(1) If f: R" x R" = Y is Lebesgue measurable, then

F@) = [ e-nfend= [ ewfme-pay  @2)
defines a function F € LP(IR";Y) with

IFNle < el sup [Lf(+ )z, _
Lp B hesunte) " (4-23)
provided that the supremum on the right-hand side of this estimate exists
and is finite.

Notation: Here f(-+ h,+) denotes the function x — f(x + h,x).
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(2) In the following let f(x,y) be independent of x, i.e. we consider a function
y— f(y) €Y. Then if f € LP(IR";Y') the rule

(p* f)z) = / o(r —y)f(y)dy = F(x)

n

defines a function px f € LP(IR";Y), the convolution of v and f. The above
estimate then becomes the convolution estimate

e+ fllze < llellpe - I1F s - (4-24)

(3) It is supp(p = f) C clos({z +y; = € supp(y), y € supp(f)}).
(4) If in addition ¢ € C§°(IR"™), it follows that ¢ * f € C°(IR";Y), and the
partial derivatives for multi-indices s are given by

*(px f)=(0%p) x f.

(5) It is LY(IR™) = LY(R"; K) is a commutative Banach algebra with the
convolution as product.

Proof (1). We first assume that all of the following integrals exist. Then

F@I< [ lewl-1Fe ).

For p = oo the claim follows immediately on noting that || f(-,+ —h)||,, =
|| f(++ h,*)| 1»- For p < oo we have that

/,L‘F(x”pdwﬁ/n(/n\w(y)|~|f(9:,x—y)|dy)pdx.

Fubini’s theorem yields for p = 1 that this is

= [ ewl([ 15 —w)iar)ay,

which again yields the claim. Now let 1 < p < oo and 1% + i = 1. Then it
follows from the Holder inequality and Fubini’s theorem that

[oareras [ ([ 1ewl7 lewlrl e - la) " a

S/n ((/ nls@(y)ldy)g/WIW(y)IIf(m,x—y)lpdy> dz

= Il | ewi([ 15— nras)ay

£ +1
<lelZ - sup / 1# (2,2 — y)|” dz,
yesupp(p) JIR™
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which, since 5 +1 = p, yields the desired result. The existence of the integrals
can now be justified retrospectively, which yields in particular that F(x) is
well defined by (4-22) for almost all x.

In detail: The assumptions yield that (z,y) — f(x,x—y) is Lebesgue mea-
surable on R™ x IR", that the functions 2 — f(z,2 —y) are in LP(IR";Y)
and that the supremum of the LP-norms is finite. In the last inequality we
apply the majorant criterion and Tonelli’s theorem (a converse of Fubini’s
theorem), which yields that (z,y) — |o(y)| - |f(z,z —y)|" is Lebesgue in-
tegrable on IR™ x IR"™. In the second inequality we apply for almost all x
the Holder inequality, and so y — |¢(y)| - |f(x,2 —y)| is for such z in
L'(IR™). Integration over x yields, on using the majorant criterion, that
z = [gra lo@)]-|f(z, 2 —y)|[dy is in LP(IR™). Analogously, the first inequal-
ity then shows that y — ¢(y)- f(x,r —y) is for = as above in L*(IR";Y’), and
so F(z) is well defined, and moreover « — F(x) belongs to LP(IR";Y). O

Proof (4). If p € C§(IR™), then p(z —+) — @(xg —+) — 0 converges uniformly.
Moreover, if f € LP(IR™;Y) it follows from Lebesgue’s convergence theorem
that

F(a) = Plao) = [ (ple =9) = (o0 =) fy)dy — 0 as = o,

n

If p € CZ(IR™), it holds for unit vectors e € IR™ and real numbers h # 0 that

%(F(xo-l-h@)_F(mO)) =/n%(so(xwhe—y)—sa(wo—y))f(y)dy.

Since 7 (¢(zo+he—+) —@(xg—+)) converges uniformly to de(zg—+) as h —
0, it follows once again from Lebesgue’s convergence theorem that d. F'(xq)
exists and that

0.F (@) = [ up(an ) f(5)dy.

Hence we have shown that 9. (o f) () = ((9e)* f) (x). The result for higher
derivatives then follows inductively. a

Proof (5). The commutativity follows from (4-22). The inequality (2-9) is
the convolution estimate (4-24) for p = 1. Similarly to the proof above, the

associativity (f1* f2)* fz = f1*(fax* f3) for f1, fa, f3 € L*(IR") can be proved
with Fubini’s theorem. O

We will now show that ¢ * f — f in LP(IR™;Y) as k — oo, if @) are
nonnegative functions with integral 1 (i.e. they are probability densities)
with the property that the support of ¢y shrinks to {0} as k — oo (see also
5.18(5)).
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4.14 Dirac sequence.

(1) A sequence (¢p),epy in L'(IR") is called a (general) Dirac sequence
if

wr >0, / ppdL™ =1, / ppdl” -0 ask— o0
" IR™\B4(0)

for every ¢ > 0. The last condition is, for instance, satisfied if supp(pg) C
By, (0) with g, — 0 as k — oo.

(2) Let ¢ € LY(IR™) with

@¢>0 and / pdLl” =1.

On defining for € > 0

it holds for every o > 0 that
/ pedL” =1 and / pedl™ =0 ase—0.
n ]RIL\BQ(O)

This implies that for every null sequence (ex),cp, the sequence (¢c, ), cn
defines a general Dirac sequence in the sense of (1). Accordingly, we call the
family of functions (¢.),., a Dirac sequence for .

(3) In applications one often chooses in (2) a function ¢ € C§°(B1(0)) (ex-
tended to IR™ by 0), so that supp(y:) C B:(0). We then also call (¢.).., a
standard Dirac sequence.

Notation: Here we observe that (¢.).. is an abbreviation for (¢:).c70 o0
(see the note in 2.18), as we are dealing with the map € — ¢, from 10, 00[
to LY(IR™).

With the help of Dirac sequences, we can prove the following frequently
used approximation results for functions in LP(IR";Y").

4.15 Theorem. Let 1 < p < o0.
(1) If f e LP(R™;Y), then

[f(+h) = fllpogny = 0 for h € R" with [h] — 0.

Here f(-+ h) denotes the function = — f(z + h).
(2) If f € LP(IR™;Y) and (pr),en is a Dirac sequence, then

er*xf— f inLP(R™Y) as k — oo.

(3) If 2 C IR™ is open, then C§°(§2;Y) is dense in LP(£2;Y).
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Proof (1). By 3.26(2), we can choose f; € CQ(IR™;Y) with | f — f;],, — 0
as j — oo. Then

1FC+h) = Fllpe

SHFC+HR) = fC+R) e + 11 = Fillpe + 155G +R) = fill

<20 f = fjll g + L (supD(f5 (- + B) = FE)FIF 4 B) = Fillup -

For every j the function f; is uniformly continuous, and so the second term
converges to zero as h — 0. The first term converges to zero as j — co. O

Dirac sequence Convolution ¢y, * f
Function f (k) e

b pusf

(Y22 w2 * f

o1 f

f ™
- P2
»1
1 I T T T T — T
-1 0 1 -1 0 1 -2 -1 0 1 2

Fig. 4.3. Convolution with a Dirac sequence

Proof (2). Since the integrals of the ¢, are normalized,
(o * f) (@) = f(2) = (pu* (f = f(2))) (@)
= | o= - s dy.

If we decompose ¢y, for § > 0 into pps := Xpy0)-pr and Prs : = XRrn\By0) P>
then it follows from 4.13(1) that

||ka * f — fHLp(IRn) < (/IRn (Y2} %) dLn) . |21|1£)6 ||f — f(° + h)HLp(IRn)

<1 — 0 as 6 — 0, recall (1)

+ ([ wwsdL") - sup |1 = £+ )l
R” heR™

—0as k — oo §2Hf|\Lp(]Rn>
for every &

which proves (2). O
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Proof (3). We extend f to IR"™\ 2 by 0. If we choose (¢¢).~ to be a standard
Dirac sequence as in 4.14(3), then p.* f € C*°(IR™) by 4.13(4), but in general
they do not have a compact support in (2. That is why we cut off f on sets
Ds, which have a positive distance to 92 and in addition are bounded: For
0 > 0 consider the sets

2s:={xeR"; Bs(z) R} C N, Ds:=902N B1(0) , (4-25)
and define
(Tsh@)= | le =)y = (e # (X)) forz € T
By 4.13(3) and 4.13(4),

T sf € C5°(Be(Ds)) € C5°(£2)

for e < 0, as Bs(Ds) C {2, and

(Tosf — ) (@) = / eelz— ) (f(y) — f(2)) dy

- [ o= )Xo, )W)y
It follows from 4.13(1) that

|75 f — fHLP(_Q) < sup [[f(-+h) - fHLp(]Rn) + HfHLP(Q\D(;) )
|h|<e ————

—0asd —0

— 0 as € — 0, recall (1)
which yields the desired result. O

With the help of approximation by convolution, we will now prove a char-
acterization of precompact subsets in LP(IR™), which is very effective in ap-
plications, and which was originally proved by M. Riesz [MRiesz]. A further
characterization, given by Fréchet and Kolmogorov, is the approximation of
precompact sets by finite-dimensional ones (see [DunfordSchwartz: IV 8.18]).

4.16 Theorem (M. Riesz). Let 1 < p < oo and Y be finite-dimensional.
Then A C LP(IR™;Y) is precompact if and only if

(1) 50 oy < o0
feA

(2) sup[[f(-+h) = fllpprny — 0 for h € R" with [h] =0,
feA

(3) )Sclelg [ £l e rm\Broyy —> 0 as R oo

Remark: For the space LP(S) with a measurable set S C IR", see E4.21.
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Proof =. By the definition of precompactness in 4.6(3), for £ > 0 there exists
a cover

AcC U Bs(gze) with n. € IN, giﬁ c LP(RH’Y) )

i=1

For f € A we then have that f € B, (gff) for some iy. It holds that

1/l oy < &+ |9, <et max [lgf] ey <00,

LP(RTL)
which implies (1). Similarly, it follows that
1f G+ h) = fllparny < 26+, max lg; (- +h) = g7 | o)
”f”LD(]R"\BR(O)) <e+t P g ”LP(]R"\BR(O)) )

with the second terms becoming small if h gets small and R gets large, re-
spectively (see 4.15(1) and A3.17(2)). This proves (2) and (3). O

Proof <. Let (¢:).-, be a standard Dirac sequence and for small £ > 0 let
R. > 0 be large. For f € A we define

TNE = [ o=y = (oo (X)) @).

Br.(0)

It follows from 4.13(2) that 7. f € LP(IR™;Y). Moreover,

TS =N = [ o= )X 0®) () - 1) dy

—/ ee(y)dy - f(x).
R"\Br.(z)

As . = 0 outside of B.(0), the second integral vanishes if B.(0) C Bg_ (),
i.e. if |z] < R. — . Then it follows from 4.13(1) that

ITef = fllo@mn

< @1‘15 If—=f+ h)HLP(IR") + ”fHLP(]R"\BRE,E(O))
<e

< sup sup|lg — g(-+ h) ”Lp(]R”) +sup ”gHLP(]R"\BRE,E(O))
|h|<eg€A geEA

=: K.

Combining (2) and (3) yields that k. — 0 as ¢ — 0, if R. — oo as € — 0.

Moreover, it follows from 4.13(3) and 4.13(4) that T.f € C5°(Br.+:(0);Y).

Hence, by using (1) and a Holder inequality, where % + 1% =1, we obtain
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ITef lsup < Nlell o @y [ Fll Loy < Cle)
VTP lsup < Vel o qmoy [ F | oy <€),

with a constant C'(g) that is independent of f. Hence the functions T f for
f € A are bounded in C%*(Bp_4.(0);Y). Since Y is finite-dimensional the
Arzela-Ascoli theorem 4.12 implies that for 6 > 0 there exist functions g;,
i=1,...,n(c,6), in C°(Bg_4-(0);Y), such that

n(e,d)
A ={T.f; fe A} C U Bs(gi)  with respect to the C°-norm.
i=1

Since the LP-norm on Bg_;.(0) can be estimated by the C%-norm, it follows

that
n(e,d

)
A C U B,(g;)  with respect to the LP-norm,
i=1

where 0 = 0 - [[1]| 155, . (o) Regarding g; as elements in LP(IR";Y’), by
continuing g; outside of Bg_1.(0) by 0, we obtain that

n(e,d)
AcC U Botr.(9i)  with respect to the LP-norm.
i=1

If, for every €, we now choose § sufficiently small, such that e.g. o < €, then
0+ ke — 0 as ¢ — 0, which implies the precompactness of A. a

Dense subsets

In the following, we consider some important examples of dense and sepa-
rable subsets (see 2.13 for the definition) in function spaces. If A is a dense
subset of X, then every element of in X can be approximated to an arbitrary
accuracy by an element from A. For instance, we have seen in 4.15(3) that
LP-functions can be approximated with respect to the Lebesgue measure by
Cg°-functions. In 4.24 we will show that W™ P-functions can be approximated
by C*°-functions, where the crucial ingredient in the proof will be once again
the convolution of functions.

Separable spaces are spaces that contain a countable dense subset, i.e. a
dense subset that is countable. (These concepts were already defined in 2.13.)
Separable Banach spaces play a special role in applications, because in nu-
merical computations numbers and functions can only be represented by a
finite number of bits. And this number is limited by the actual equipment (see
also Chapter 9). In 4.18 we will list the most important separable function
spaces. But first some general results.

4.17 Separable sets. Let X be a metric space.
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(1) If A; C X for i € IN are separable, then so is [ J;cpy Ai-

(2) If X is separable, then so is every subset of X.

(3) If X is a finite-dimensional IK-vector space, then X is separable.
(4) If X is a IK-vector space and F C X is separable, then so is

k
span(F) := {Zaixi; kelN, x;, € E, aieleorizl,...,k},

i=1
the linear hull of E.

Proof (2). Let {z); k € IN} be dense in X and let A C X be nonempty. For
k,l € IN there exists, by the definition of the distance, an aj; € A such that

1
dX(:ck,akJ) < diSt(Ik,A) + 7 .

The denseness of the above sequence yields that for a € A and € > 0 there
exists an xg_ such that dx(a,x ) < e. Then

1
dx(a,ak. ;) < dx(a,zx,) +dx(zk,, ar, 1) < 2dx(zx,,a) + 7 < 3e

for sufficiently large I. This shows that {as;; (k,1) € IN?} is a dense subset
of A. The fact that the index set IN? is countable then yields the desired
result. O

Proof (4). Let A be a countable dense subset of F, i.e. A C E is countable
with £ C A. Then

k
{Zaiai; kelN, a; € Q, aiEAforizl,...,k}

i=1

is a countable dense subset of span(E), where @ = Q in the case IK = IR,
and where Q = {a € C; Rea € Q, Ima € Q} in the case IK = C. O

4.18 Examples of separable spaces.

(1) The set IR™ is separable, and also C".
(2) For 1 <p < oo the set ¢P(IK) is separable, but ¢>°(IK) is not.
(3) If S C IR™ is closed and bounded, then C°(S) is separable.

(4) If S ¢ R" is Lebesgue measurable, then L”(S) is separable for 1 < p <
oo. If S is not a null set, then L>(S) is not separable.

(5) If 2 C R" is open, bounded and m > 0, then C™(2) is separable.
(6) If 2 C IR™ is open, m > 0 and 1 < p < oo, then W™P((2) is separable.

Remark: Assertions (2)—(6) remain valid if the image space IK is replaced
with a separable Banach space Y.
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Proof (1). Q™ is countable and dense in IR". O

Proof (2). For p < oo, with @ as in the proof of 4.17(4) and with e; as in
2.23,

{Zleaiei;kG]N, aiEQforlgigk}

is a countable dense subset of /7 (IK).
For p = oo let (ak)kelN be a sequence in B;(0) C ¢>°(IK) with a* =
(af)ielN and a¥ € R for all k,i € IN. Let

) ai—1 ifal >0,
" ld+1 ifdl <o

Then b := (b;),;cpy € B1(0) and ||b — a’“”eoo > |br — af| = 1. This shows that
B;(0) is not separable, and 4.17(2) then yields that neither is £°(IK). O

Proof (3). If S € IR™ is compact (by 4.7(7), bounded and closed), then C°(S)
is a Banach space with the supremum norm. For € > 0 let
Q:(z):={zeR"; zi<a; <zi+efori=1,...,n} for z € eZ"™,
Sc 8= |J Q(x) with M :={z€eZ"; Q.(2)NS #0}.

zEM,

Consider lattice points y € S. N (¢Z") and choose z., € S such that
ly — eyl < e For f e CYS) define f.(y) := f(z.,) and extend f. by
multilinear interpolation, i.e.

fe(z) = > II a-t) I ti] f-z+2v)

v€{0,1}" \J:v;=0 Jiv=1
n
for x:z+52tieing(2)7 z€ M, .

i=1

This defines a function f. € CY(S) with

1fe = Fllcoes) < sup{lf(@1) = f(z2)]5 z1,22 € S, |21 — @2, < 2e},

which converges to 0 as ¢ — 0, because f is uniformly continuous on S. On
setting ¢ = %, k € IN, and on approximating in each case the finitely many
values f.(y) by rational numbers, we obtain the desired result. (Alternatively,
the result can be shown by using polynomials to approximate f, see 9.10.) O

Proof (4). For p < oo first consider the case S = R". For f € LP(IR") we
define its piecewise constant interpolation by
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1
Z ‘XQE(Z)(QC) e zy ez 1= 7/ fly)dy,
€ Qe (z)

zE€ed™

where the Q.(z) are defined as in (3). The interpolant f. approximates f

since
JRECEEITES o) S BT
:Z/

ZE”/mz)/ (ol dyde

< sup [ f ) = f@Pdy = sup [ - f.

h:|h|<e h:|h|<e

=/ (f(y)—f(x))dy\ ar

which by 4.15(1) converges to zero as € — 0. The desired result now follows
by choosing countably many € > 0 and rational approximations of o ., sim-
ilarly to the proof of (3). For arbitrary S continue functions to IR" by 0 and
restrict the approximations to S. (An alternative proof can be based on ap-
proximating f with step functions using 3.26(1), and approximating the steps
by A3.14(1) with cuboids. This reduces the problem to the approximation of
finitely many real parameters. Another alternative proof approximates f by
continuous functions using 3.26(2), and then applies (3).)

For p = 00, on recalling that L™(S) > 0, there exist measurable disjoint
sets S; C S, j € IN, with L™(S;) > 0 such that § = U]E]N . Similarly to

the proof of (2), let (fx),en be a sequence in B1(0) € L>(S). In addition,
let a¥ := ess sup fi, let b; as in the proof above, and define g € L>°(S) by
s

g(x) := b, fori:c € Sj and j € IN. It follows that ||g — fi| e > 1. O
Proof (5). For f € C™(£2), define
T(f)(x) = (0°f(2)5)<m -
Then T : C™(2) — C°(2;Y), where
Vo= {(Ys)|s)<m 3 ¥s € R for [s| < m}

is a Euclidean space. It follows from (3) (see the above remark) that C°(£2;Y)
is separable. Hence, on noting 4.17(2), T(C™(£2)) is separable. Combining
the fact that 7" is linear and that ||T(f)||o0 can be estimated from above and
from below by || f||om yields the separability of C™(2). O

Proof (6). Asin (5), now with T': W™P(£2) — LP((2;Y), on utilizing (4). O
In order to approximate differentiable functions by C°*°-functions we make

use of convolutions, and we need a tool which guarantees that functions can
be “partitioned” or “localized”.
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4.19 Cut-off function. Let 2 C IR"™ be open and let K C IR" be compact
with Bs(K) C {2, where § > 0. Then there exists a cut-off function n €
C§°(£2) satistying

0<n<1l,n=1lonK, supp(n) CBs;(K),

|0°n| < Chs - 515! for all multi-indices s.

Here C,, s are constants that depend only on n and s.

Proof. Let (p¢)
the desired properties. m]

.0 be a standard Dirac sequence. Then 7 := Ps *XB%(K) has

4.20 Partition of unity. Let S C IR™ be nonempty and N C IN.

(1) We call (U;);cy an open cover of S if U; are (nonempty) open sets with
S C U,en Ui (It is also possible to require that, in addition, U; NS # () for
i€ N).

(2) The cover is called locally finite if for any = € J,c U; there exists a
ball B.(z) such that {i € N; U; N B.(z) # 0} is finite, i.e.

Ve UUZ- :de>0: ({z’GN; UiﬂBE(x);é(Z)}isﬁnite).
iEN

(This condition is only relevant for nonfinite N.)
(3) We call (nj)jeN a partition of unity for S subject to a locally finite
open cover (Uj),;c of S if

n; € C°WU;), n; >0, and an(x)zlforxes.
JEN
Here the sum locally contains only finitely many nonzero terms, where 7; is

defined to be 0 outside U;. Hence instead of n; € C§°(U;) one can also say
n; € C*°(IR™) with compact support supp (n;) C U;.

Proposition: Let 2 C IR" be open and let
K;cU;cU;c 2forjeN, K;and U, compact,

such that (Uj)jG]N is a locally finite open cover of 2, with K; N K; = 0
for j # 4, i.e. the K; are pairwise disjoint. Then there exists a partition of
unity (nj)j e for £2 subject to this cover with the additional property that
nj(z) =1 for x € K;.

Remark: In the assumptions of the proposition some, or all, of the compact
sets K; may be empty.

Conclusion: Let K C IR" be compact and let (U;);_; , be a finite open
cover of K. Then there exists a partition of unity (nj)jzl,“.,k for K subject
to this cover.
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Fig. 4.4. Cover of an open set

Proof of the proposition. Firstly, we modify the sets U; to
Vi=U;\ |J Ki= ) (U;\ K)).
iritj Qi)
Then it clearly holds that
KjCV}CU]‘, With‘/jﬁKi:@fOI‘i#j.
Moreover, we claim that (V;); p is also a locally finite open cover of (2. In

order to show this, we make use of the compactness of Uj. As the original
cover is locally finite, {i € IN; U; NU; # 0} is finite. Hence also K; NU; # ()

holds only for finitely many i, say, at most for i = 1,...,m;. Consequently,
vi=U;\ |J K
i:i<my,i#j

is nonempty and open. For x € (2 it holds that = € U; for some j. Then we
have that either = € V}, or, by the definition of V;, that x € K; C V; for some
i # j. This proves the covering property of the V;.
Secondly, we define open sets W; with
K;cW;cW;cCV,

such that (Wj)je]N is still an open cover of {2. To this end, we construct W,
by induction on m, satisfying

UwiuoJvi=2. (4-26)

j<m i>m
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Letting m — oo this then yields the desired covering property, because the
cover (Vj)jelN is locally finite. Now let m > 1 and assume that W; for 1 <
7 < m have already been constructed. Then

oV | Jwu v,

j<m j>m

where 0V, is compact and where the set in the right-hand side of the inclusion
is open. Hence there exists a 6, > 0 such that

Bs,, (0Vm) c | W0 | V5.
j<m j>m
Let
W := Vi \ Bs, (0V,) .

m

It follows from V,,, # 0 that W,,, # 0 for 4,,, sufficiently small. Also K,, C W,,
if 0,,, is sufficiently small. Therefore,

Vo CWn UBs, (0V,n) ¢ | WU | V5,
j<m+1 j>m+1

which implies (4-26) with m replaced by m+1, and so concludes the induction.

Thirdly, we define the corresponding cut-off functions. Since W is a com-
pact subset of the open set Vj, it follows from 4.19 that there exists a function
7 € Cg°(V;) with 0 < 7; < 1 and 7j; = 1 on W;. The covering property of
the W; then yields that

> wi@) >0 forallze
JEN

where locally in {2 the sum contains only finitely many nonzero terms. Define

() e 1i(2)

jeN n;(x)
By construction the 7; have the desired properties. O

Proof of the conclusion. We reduce this to the result derived above for the
case 2 = IR", by extending the cover of K to a cover of IR". Choose radii
0 < Ry < Ry < ...with R; — 00 as i — oo such that K C Bg,(0). Define
Upi1 == Bp, (0)\ K and Uy = Bg,(0)\ Bg,_,(0) for i > 2. This yields
a locally finite open cover (Uj)j e of R™. Now apply the previously shown
result with K; = ) for j € IN and obtain a corresponding partition of unity
(1j) je- By construction, 7;(x) = 0 for # € K and j > k. This yields the
desired result. O

4.21 Examples of partition of unity. The results in 4.20 can be applied
to the following situations:
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(1) Let z; € IR with ; < ;41 for j € Z and let §; > 0 such that
IF Kj = [{,Ej + 5j,1‘j+1 — 5j] - Uj = ]:Ej,xj+1 [.
This yields a partition of unity as in Fig. 4.5.

graph(7;)

T Tj41

Fig. 4.5. A partition of unity in IR

(2) For a given ¢ > 0 consider the cover (Ba-(7)),c.zn» of IR", where the
balls are formed with respect to the co-norm. This is a uniform cover of the
whole space and it yields a partition of unity for IR".

(3) Let 2 C IR™ be open and bounded. Consider the cover (U;);. of 2,
where

Upi={ze; .27 <dist(z,002) <25-27° } , §:=diam(£2) .
This yields a partition of unity (1;),. for £2 with n; € C§°(§2). The cover is
of the type shown on the right-hand side of Fig. 4.4.

(4) Let £2 C IR™ be open and bounded. For k € IN and = € 27*Z" let
Uk o = Bo1-« () with respect to the co-norm. Define inductively

My, = {xEZ_kZ”; Ukoe C 2, ¢ U, forall y € M; Withl<k}

and consider the cover (U;C,QE)ZGM]c wen Of £2. This again yields a partition of
unity (17;);cpy for £2 with n; € Cg°(£2). The cover is of the type shown on the
left-hand side of Fig. 4.4.

In a further application of convolution with a Dirac sequence, we will
now show in 4.24 that Sobolev functions can be approximated by smooth
functions. We defined these functions in 3.27 through the existence of weak
derivatives. The fact that these weak derivatives are uniquely defined follows
from the following
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4.22 Fundamental lemma of calculus of variations. Let 2 C IR" be
open and let Y be a Banach space. Then for g € L*(£2;Y") the following are
equivalent:

(1) /QngL”:OforallCEC(‘)’o(Q).

(2) / gdL™ = 0 for all measurable bounded sets E with E C (2.
E
(3) g =0 almost everywhere in 2.

Proof (1)=(2). Let E be measurable and bounded with £ C 2. Consider
the functions

Cola) = /E el — ) dy = (pe * Xp) (x)

with a standard Dirac sequence (¢), - Combining 4.13(3) and 4.13(4) yields
that ¢ € C§°(£2) for sufficiently small € > 0, and in addition 0 < (, < 1. Tt
follows from 4.15(2) that . — X in L' (IR™) and hence, on recalling 3.22(1),
there exists a subsequence € — 0 such that { — Xr almost everywhere in
IR". Lebesgue’s convergence theorem then yields that (.g — Xgg in L'(£2;Y)
and hence

2 (9} E

Proof (2)=(3). Let (¢:).-( be a Dirac sequence for

p(a) = L"(B1(0)) " Xp,0)(x) -

For z € {2 and small ¢,

By 4.15(2), g- — g in L'(§2;Y) and then for a subsequence ¢ — 0 almost
everywhere in 2. O

4.23 Local approximation of Sobolev functions. Let 2 C IR"” be open
and let f € W™P({2) with 1 < p < co. Choose a standard Dirac sequence
(¢c).5¢ and define

(T.f)(@) == /Q ool — 9)f(y) dy = (o % Xof)(2).

For open sets D C {2 with ¢ := dist(D, 92) > 0 it holds that
T.f e W™P(D)NC>®(D) fore<§
and that T.f — f in W™P(D) as € — 0.
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Proof. Tt follows from 4.13(4) that T.f € C*°(IR") and that for |s| < m

s (el = ) F) do.

0 (T.f)(x) = /Q el — ) f(y) dy = (~1)1° /Q

Now for z € £2 with dist(x, 042) > e the function y — ¢.(x —y) is in C§°(£2),
and hence, on recalling the definition of the Sobolev space, the right-hand
side is

B /rz ez =)0 f(y) dy = To (0°f) () -

Hence it follows for every open set D C {2 with dist(D, 92) > 0, on choosing
e < dist(D,082), that T.f € W™P(D) with 0°(T.f)(z) = T (9°f) (x) for
|s] < m. Consequently,

10°(Tof) = O fll oy = 1T=(0°f) = O fllpo(py — 0 ase—0
on recalling 4.15(2), i.e. T.f — f in W™P(D). O
We now prove the approximation property presented in 3.28.

4.24 Theorem. For 1 < p < oo the space W™P(£2) N C*({2) is dense in
WP ((2).

Proof. Let (Uy),c be a locally finite open cover of £2 (see 4.21(3), 4.21(4)),

such that Uy C {2 are compact. It follows from 4.20 that there exists a
corresponding partition of unity (1), - Moreover, let cx > 0 (to be defined
below) and ¢ > 0. By 4.23, for f € W™P({2) there exist fr . € C>(Uy) with

Hf - fk,s ||Wm,p(Uk) S ECL .

Let
fer= mfre, sothat fo—f= m(fec—1),

kelN kelN

where locally in {2 the sums contain only finitely many nonzero terms. For
each term in the sums we can compute the weak derivatives with the help of
the product rule, since for ¢ € C§°(£2)

/ Ne0i¢ f L™ = / (0i(meC) — COimpe) f L™ = —/ (MkCOi f + COimy. f) AL™ .
Q Q Q
Hence, ni.f € WHP(2) with

Oi(ef) = m0i f + (Oimwe) f -

On repeating this calculation of the partial derivative, it follows inductively
that n, f € W™P({2) and that for |s| < m the Leibniz rule holds:
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con= 3 (J)o e

0<r<s

Clarification: The Leibniz rule (4-27), below, for smooth functions is well
known from analysis. Here we prove it for the product of a smooth function
and a Sobolev function. Later in 4.25 we will derive it for the product of
two Sobolev functions, where the proof will make use of the result we are
currently in the process of proving.

We obtain that

=i ¥ (1) S0 @ s - o).
0<r<s k

and hence that
101 =0Ty < O3 Il @i = oo

< C5zck||77k”cm(g) <Ce,

where the constants C' depend only on m and n, if we choose ¢ at the
beginning of the proof for instance such that ¢, < 27%(||n; lem@) + 1)

The approximability of Sobolev functions can be used to prove results
for these functions, such as the following generalization of the product rule
employed in the previous proof.

4.25 Product rule for Sobolev functions. Let 2 C IR" be open. Let
1 <p<oowithl4+L =1 1f f € W™P(2) and g € W™ (1), then
f+-g € W™L(£2) and the weak derivatives of f - g can be computed with the
product rule

0%(fg) = Z (i) (0°7"f)0"g (Leibniz rule). (4-27)

0<r<s

Proof. A symmetry argument yields that we may assume p < oco. Then it
follows from 4.24 that there exist functions f, € W™P(£2) N C*(£2) with
fre = f in WP (£2). Similarly to the proof of 4.24, for { € C§°(§2) we have

[ g == [ ctooifi + nosg)dur.

9 ¢

Using the Hélder inequality and letting & — co we obtain
[ ocraanr == [ <o+ soga,

i.e. the desired result for m = 1. For m > 1 replace ( inductively by its
derivatives. O
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4.26_Chain rule for Sobolev functions. Let (2, 2 CR" be open and let
£ 2 = 2 beaCl- diffeomorphism, i.e. T is bijective with 7 € C1(£2 )
and =1 € CY(92), with bounded derivative matrices D7 and Dt~ If f €

Whr(2), 1< p< oo, then for € WhP(£2) and the weak derivatives of for
can be computed with the chain rule

n

Oi(for) = (0;f)or Oy; . (4-28)

J=1

Remark: A corresponding W™ P-version also holds. However, the general
formula for the n-dimensional chain rule of arbitrary order is difficult to
write down concisely. In applications a recursive formula (see e.g. (10-11))
usually suffices.

Proof. For p < oo choose fi as in the previous proof. Then frpor € Cl(ﬁ),
with

n

Oi(fror) = > (Difr)oT Oi7; . (4-29)

=1

The transformation theorem (for C'-functions) yields that
/ |0; fi — 0 f1|" dL" = /v |(0j fx)oT — (9 f1)oT|"| det DT|dL™.
o) 7]

As |det D] is strictly positive, we obtain that ((9;f)oT),c is a Cauchy
sequence in LP(£2). Moreover, it follows from 3.22(1) that for a subsequence
0, fr — 0;f almost everywhere in {2, and hence also (9;fi)or — (0;f)oT
almost everywhere in {2 (on noting lemma 4.27, below), since 71 : 2 — R"
is locally Lipschitz continuous. Hence we have that (8 fw)or — (0jf)oT in

LP(£2). Similarly, it follows that fyor — for in LP(£2). On letting k — oo,
the desired result follows from the chain rule (4-29). O

4.27 Lemma. Let D C IR" be open and bounded and let 7 € C%!(D;IR"™).
For N C D:

L"(N)=0 = L"(7(N))=0.

Proof. We claim (for the proof see below) that for £ > 0 there exists a cover
(B, (xj))jelN of N with z; € N, B, (z;) C D, and

% L"(By,(z;)) <e. (4-30)

Then the 7(B,, (z;)NN) form a cover of 7(N), and 7 (B, (x;)) C B, (7(x;)),
with [ denoting the Lipschitz constant of 7. Hence
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L' (7(N)) < Y L"(Bpy, (r()))) = > I"L" (B, (x)) < 1"

jeEIN jEIN

For the proof of (4-30), first consider a cover of N with cuboids as in A3.4.
On appropriately partitioning these cuboids if necessary, we obtain a new
cover as in A3.4, now consisting of cuboids Q;, @; NN # 0 for j € IN, which
are close to being cubes, i.e.

@ = ><1 [aji,bji] with 2- _min (bj — aji) Z S§; = Inax (bj — aji) .

= i=1,...n i=1,..m

Choose z; € Q; N N. Then Q; C By, (z;), where r; := \/n - s;, and

L™ By, (25)) = kn 1} < kn(2V0)" - L(Q;)
with £, = L"(B1(0)). O

This lemma implies that a Lipschitz map 7 transforms L"-measurable sets
into L™-measurable sets. As a consequence, if f is an L"™-measurable function,
then also for is L™-measurable.

E4 Exercises

E4.1 Subsets of C% and L. Let I :=1 — 1, 1[. Find the interior and the
closed hull of

1) A:={feC°); f >0}
(2) A:={f € L'(I); f >0 almost everywhere}.

Solution (1). For f € A it holds that inf; f > 0. This yields that A= A
Moreover,

A={feC’(I); f=0}.
O

Solution (2). Similarly to (1), it follows that A = {f € L'(I); f >
0 almost everywhere}. We now show that A = 0. For every f € A there
exists an M > 0 such that the set {f < M} :={z € I; f(x) < M} has posi-
tive measure. For m € IN we now partition I (except for finitely many points)
into the intervals I,,; := ]%, i [,:=1,...,m. Then {f < M} N I,; also
has positive measure for at least one i. For this i let I}, := {f < M} N Ip;.
On I;, we have that f — 2MAX;. < —M < 0, and so f —2MXr- ¢ A. On
noting that HXffn < %, it holds that

f—2MX;. — f in LY(I) as m — 0.
This shows that f ¢ A. O
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E4.2 Convex sets. Let X be a vector space over IK. Show that:

(1) Every affine subspace U C X is convex.

(2) If X # {0} is a normed space, then for x € X and r > 0 the balls B, (x)
and B,.(z) are convex, but 9B,.(x) is not convex.

(3) If X is a Hilbert space and = € X, then for r > 0 and a € K the
strip {y € X; |(z,y)x —a| < r}, and for a € IR the affine half-space
{y € X; Re(x, y)x < a}, are convex.

(4) If X = C°(S;IR) and g € X, then {f € X ; f(x) > g(z) for x € S} is
convex.

(5) If X = LP(u;R) and g € X, then {f € X; f > g p-almost everywhere}

is convex.

E4.3 Distance in a Banach space. In a Banach space, in general the
distance to a closed subspace is not attained.

Solution. The space X := {f € C°([0, 1]) f(0) = 0} with the C%norm

is a Banach space and YV := {f € X ; fo x)dz = 0} is a closed proper
subspace. We claim that

dist(f,Y ‘ £ dx) for all f € X. (E4-1)
To see this, note that for all g € Y
1 1

o @) de| = | [ (/@) = gl@)) do| < 1S = gllco -

Moreover, hy, () := (1+ L)z= satisfies [ h,(2)dz = 1, and so
gn = f = (fy fl@)da)h, €Y
with
”f_gn”CO — ‘folf(x)dx‘ . (1—|— %) — ‘folf(x)dx’ as n — 00.

Hence we have shown (E4-1). In addition,

’fo dx’ <|[|Alleo  for all h e X\ {0}, (E4-2)

since h(0) = 0. Now let f € X \ Y. If the distance to Y were attained by a
go € Y, then it would follow that

‘fo dx‘ =dist(f,Y) (recall (E4-1))
=f—gollco > ’fol(f(z) —go(z))dz| (recall (E4-2))

_ ‘folf(x) dx)7
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a contradiction. O

E4.4 Strictly convex spaces. Let X be a normed IK-vector space with
norm z — ||z||. Then the following are equivalent:

(1) X is strictly normed, i.e. for all z,y € X
lz+yll=lz|+yl] = {x,y} is linearly dependent.
(2) B1(0) C X is strictly convex, i.e. for all ,y € X
Izl =llyl =1, 2 #y = |3@=+y)|<1.

(3) Every closed convex set K C X contains at most one element with
minimal norm, i.e.

zj € K with ||z;]| = inf ||z|| for j=1,2 = x1=u1,.
zeEK

Solution (1)=(2). Assume that || (2 +y)|| > 1. Then
2< |z +yll <zl +llyll =2,

and so equality must hold. Hence it follows from (1) that there exist o, § € IK
with (a, 8) # 0 and ax + Sy = 0. By symmetry, we may assume that S # 0,
and hence upon scaling that f = 1. Then y = —ax, and so

2=le+yll=N—-af [z =la=1] and 1=yl =laf =] =]al,
which implies « = —1, i.e. y = x, a contradiction. a

Solution (2)=(3). Let o := inf,cx ||z]|. If 0 = 0, then xl = 0,29 = 0.
Hence let o > 0. We have that f(xl + 29) € K, and so H 5 (71 + 12 H > o.
Assuming that z7 # x2, we could apply (2) for 7331, lmg and would obtain

that H %(ml + z2) H < o, a contradiction. O

Solution (3)=(1). Let =,y € X be linearly independent. Consider = := i

and y := m% together with the closed convex set
K:={(1-s)z+sy; se [0,11}.

Put ¢(s) := || (1 — )T + sy||. Then ¢ : [0,1] — TR is convex (follows from the
triangle inequality) and continuous. Since ¢ is continuous and nonnegative,
there exists an absolute minimum sg of ¢ on [0,1]. On noting that ¢(0) =
p(1) =1, it follows from (3) that 0 < sp < 1 and ¢(sp) < 1. The convexity
of ¢ yields that ¢(s) < 1 for all s € 10,1[. Moreover,

1
=Szl + D).

. Hy||
S o €10,1[.

%(x +y)=r((1-5T+sy) with
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This implies that

1
1> 0(0) = | gt andso oyl < el + ol

This shows (1). O

E4.5 Separation theorem in IR"™. Let A, B C IR" be nonempty, closed
convex sets with AN B = (. Then there exist zg,e € IR" with |e| = 1 and

(a —xzp)ee>0forac A and (b—xzp)ee<0forbe B.

Remark: For the infinite-dimensional case, see 8.12.

Solution. Let Ay := ANBg(0) and By := B N Bg(0). Since A and By, are
compact and disjoint, there exist ay € Ay, by € By with

|CLk — bk‘ = diSt(Ak,Bk) >0.

As Ay and By, are convex, it follows, similarly to the projection theorem 4.3,
that
(b —ag)e(a—ar) <0 forae€ A,

(akfbk)O(bfbk)SO for b € By .

On setting
o ay — by, N _ kb
P R 5

€k

we obtain that
aeey > apeep > fOI‘CLGAk,

beep < bpeep < ay, for b € By.

As |er| = 1, there exists an e € IR™ with |e|] = 1 such that e, — e for a
subsequence k — oo. Choosing arbitrary but fixed ag € A, by € B, it follows
that ag € Ag, by € By, for k sufficiently large, and so

—lbo| < boser < ap <ageer < |agl.

Hence the oy are bounded and we can choose a subsequence such that oy —
a € R as k — oo. On noting that aeey > «y for a € A;, if k > j, it follows
that aee > « for a € A;, and hence also for all @ € A. Similarly, we obtain
that bee < « for all b € B. Now choose zg := «e. O

E4.6 Convex functions. Let {2 C IR"™ be open and convex. Then every
convex function f : 2 — IR is locally Lipschitz continuous, i.e. f € C%1(S)
for all compact sets S C (2.
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Solution. Let B,(z¢) C §2, where the balls are taken with respect to the sum
norm |-|;. Then

Br(zg) =convM, M:={xgtre;; i=1,...,n}

(this can be shown by induction on n). Hence every z € B,(xg) can be
represented as

2= Nz withmelN, z € M, A >0, Y A =1.

i=1

The convexity of f implies that

< DS () < Com e £

£eM

i.e. f is bounded from above on B, (zg). Now let z € Bz (gco) \ {zo}. Choose
a > 1 such that z := 29 — a(z — zg) € B, (z¢). Then

and so

flao) < —— (=) +

< )+ T @),

which implies

Fla) > 22 flmo) — —1(z) = =2 o) - C

i.e. f is also bounded from below on B (zo). For z,y € Bz (x0), z # y, we
now choose o > 1 such that z := 2 4+ a(y — x) € 9B, (x). Then

and so 1 1
< = 1-—
Tw) < )+ (1= ) (@),
which, on recalling the above estimate, implies that

fly) = f(z) <

In addition,

Then a symmetry argument yields that



E4 Exercises 131
)~ F@)] < (C + | Fo)) y ;.

Hence f is Lipschitz continuous on Bz (z0). Now cover compact subsets .S C {2
with appropriately chosen finitely many balls (for € S choose a ball Bre (2)

with B, () C £2). Conclude that f € C%1(9). 0

E4.7 Characterization of convex functions. Let 2 C IR" be open and
convex. Then

(1) f € CH2TR) is convex if and only if the WeierstrafS E-function
satisfies

E(z,y):=fly)— f(z) = Vf(x)e(y—2x) >0 forall z,y € 2.
(2) f e CH2R) is convex if and only if Vf is monotone, i.e
(Vf(x) =V f(y))e(x—y) >0 forallzyes.
(3) f € C?(2;R) is convex if and only if D?f is positive semidefinite, i.c.
i: 0iif(2)€;&; >0 forall { e R", z € 2.
ij=1
Solution (1) and (2). For zg,x1 € £2 define
g(t) = f(zy) with x =1 —-t)zo+tx €2 for0<¢t<I1.

Then we have that
g'(t) = Vf(xe)e(z1 — o).

If f is convex, then so is g, since for 0 < a <1
g(I—a)s+at) = f((1 - a)zs+az) < (1—a)f(zs) + af(z).
In particular, for 0 < ¢ < 1 we have that
g(e) < (1 —¢)g(0) +eg(1) and so

On letting & — 0 we obtain that ¢’(0) < g(1) — ¢g(0), i.e. E(xg,x1) > 0.
If the Weierstrafl function is nonnegative, it follows that

0 < E(iE(),CL'l) + E(xl,l'()) = (Vf(xl) — Vf(xo)) .(.’Kl — LU()),
i.e. Vf is monotone. If Vf is monotone, then so is ¢/, since for 0 < s <t < 1,

V() — Vf(xs)) o(ry —xy)
t—s

g'(t) —g'(s) = (

We obtain for 0 < o < 1 that

>0.
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(1= a)(o(@) = 0) = (1= ) [/ < (1~ a)ag'(a)
<a / gt dt = alg(1) - gla)),

ie.
g(a) < (1 —a)g(0) +ag(l) or f(za) < (1—a)f(zo) + af(z1).
As this holds for all xg, x1, o, we have shown the convexity of f. O

Solution (3). If f is convex, then it follows from (2) that for z € 2, £ € R"
and e > 0 sufficiently small

0< §§O(Vf(x +&f) — Vf(a:)) — oD f(2)€  as e\, 0.
Conversely, if D2 f is positive semidefinite, then for =,y € £2
1
(VI) = VI@)ele=9) = [ @=)sD* (1= 02+ 1)@~ )t > 0.

Hence (2) yields that f is a convex function. O

Fig. 4.6. Supporting lines in IR?

E4.8 Supporting planes. Let A C IR™ be convex. Then for b € JA there
exists an e € IR" with |e| = 1 such that

(a—Db)ee>0 forallac A.

Remark: We then call {x € R"; (x — b)ee = 0} a supporting plane to
A at the point b. This supporting plane need not be uniquely determined.
It is unique in the case where A is the set above the graph of a convex C'-
function. The supporting plane inequality is then given by the nonnegativity
of the E-function in E4.7(1).

Hint: See also the separation theorem 8.12.
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Solution. There exist by, € R™ \ A for k € IN with by — b as k — oo. Fix k
and set B := {by}. It follows from E4.5 that there exist points xy,er € R"
with |eg| = 1 such that

(a —xp)eey, >0forac A and (b —xx)eer <O0.

It follows that (a — bg)eer > 0 for a € A. Now choose a subsequence k — 0o
with e, — e. O

E4.9 Jensen’s inequality. Let @ : R"™ — IR be convex with & > 0, and
let (S, B, 1) be a measure space with (S) = 1. Then for any f € L'(y; IR™)

qs(/sfdu) S/Sgbofdu.

Note: The right-hand side is to be set to +oco if o f is not integrable.

Solution. By E4.6, @ is Lipschitz continuous, and so ®o f is measurable.
Moreover, it holds for yo € IR™ that (yo, P(yo)) € 9A, where A := {(y,§) €
R € > &(y)}. Tt follows from E4.8 that there exists an e = (¢/,epy1) €
R\ {0} with

(£ —D(yo))ems1 + (Y —yo)ee’ >0 for all (y,&) € A.

We may assume that e,,11 = 1. (To see this, let y = yg and £ = D(yp) + 1,
which implies that e,,11 > 0. Assuming that e,,+; = 0 yields that (y —
yo)ee' =0 for all y € R™, and so €’ = 0, which contradicts e # 0.) It follows
that

P(y) > D(yo) — (y —yo)ee’  forally € R™.

In this inequality we let for x € S
yi= f(z) and yo = /Sfdu-

Then integrating over Sp, := {z € S; | f(z)| < m} we obtain

/Sm Pofdu > p(Sm)P(yo) — (/Sm fdu— u(Sm)yo) o’ — D(yo)

as m — 0o, whence

@(/fdp) gnminf/ Bof du.
S m—o0 S
O

E4.10 LP-inequalities. Let u be as in E4.9, i.e. u(S) = 1. For y-measurable
functions f : S — Y apply E4.9 appropriately in order to obtain an inequality
for the integral of |f|P for 0 < p <1 and 1 < p < oo, respectively.
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Solution. For 0 < p < 1 apply E4.9 to &(z) := |z\% For f € L'(p;Y) it then
holds that |f|P € L' (), since u(S) < oo and | f|P < max(1,|f]). We obtain

/S'f"”d“ = (/Slfldu)p and so || £l < I1F] -

For 1 < p < oo apply E4.9 to &(z) := |z|’. For f € LP(y;Y) it then holds
that f € L'(u;Y), on noting 11(S) < oo and the Hélder inequality. We obtain

(L)< [1rrau anaso 11 <11

O

E4.11 The space LP for p < 1. Let 0 < p < 1. Then LP(10,1[) equipped
with the Fréchet metric

olf) = / £ ()P da

is a metric space. Show that:

(1) The convex hull of any ball B,.(0) is the whole space.

(2) There exists no norm on LP(]0,1[) which induces the same topology as
the metric p.

Solution. Because (s + t)P < sP + tP for all s,t > 0 the metric p is a Fréchet
metric. For f € LP(10,1[) we have that

xi—>/0 (@) da

is continuous, and hence for n € IN there exist numbers 0 = zg < 27 < -+ - <
Tp—1 < Tn = 1 such that

[Cs@ra=t [wra.

It then follows that
f= Z Efl in LP(30,10) where fi:=nf-Xy,. .1, (E4-3)
i—1
and
1 Xy 1
[ i@prae = [ js@rde=wt [ @) do <
0 Ti;—1 0

for n sufficiently large, hence (with respect to the metric) f; € Bmetic(().
Therefore f € conv B2%i¢(0), on noting (E4-3). This yields the desired result
(1).

In order to show (2), we assume that there exists a norm |+|| that is
equivalent to g. Then the ball B}*™(0) must be open with respect to p, and
S0
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Breric(0) € BY™(0)
for an r > 0. Then it follows from (1) that
LP(10,1[) = conv B2 (0) C conv B}°™(0) = By*'™(0) ,
a contradiction. O

E4.12 Cross product of normed vector spaces. Let (Xi,|+||;) and
(X2,]]+|ly) be normed IK-vector spaces. In addition, let |+| be a monotone
norm on IR?| i.e. for (a1, as), (b1,bs) € IR?

lai| <laz|, [bi] < [b2] = [(a1,a2)| < [(b1,b2)].
Show that:

(1) [[(z1,2z2) || == [(lz1|ly, llz2]l5)| for 21 € X1, x2 € X2 defines a norm on
X1 x Xs.

(2) All the norms on X; x X5 which are defined by a monotone norm on R>
as in (1) are equivalent.

Solution. For (2) use 4.8 on IR?. O

E4.13 Compact sets in £2. Determine whether the following subsets of
/?(IR) are bounded and/or compact.

Ey:={z e }(R); |z;| < % for all i }

Ey:={zecl(R); Y27 <1},

3

E3:= {z e P(R); |z] < % for all i } (Hilbert cube).

Solution. The set E; is not bounded, and hence also not compact, because
for n € IN we have that

ot =3l e € By with la™ e = 37y} —+ 00 asn— oo,

By definition, Es = B;(0) is bounded, but it is not compact. To see this,
observe that (e,), .y i a sequence in Ey, which, since |le, — en [/, = V2
for n # m, does not contain a convergent subsequence.

The set E3 is compact: If (z"), 1 is a sequence in E3, then for all i € IN
the sequence (z7'), .y is bounded, since [z7'| < 1. On applying a diagonal-
ization procedure, we obtain a subsequence n — oo, such that a7 — z; as
n — oo for all ¢ € IN, with certain numbers z;. Then |z;| < %, and so
T = (xl)zElN S E3 with

J o
n 2 < n 2 4
lem =l <Y laf — P+ D 5
i=1 1=j+1
——
—+0asn — o0 —0asj— oo

for every j
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ie. 2" — z in (2(IR) as n — co. O

E4.14 Bounded and compact sets in L'(]0,1[). Determine whether
the following sets are bounded and precompact in L'(10, 1[), respectively:

Ey={f:10,1l > R; f(x)
Ey={f:10,1[ > R; f(x)
By:={f:10,1l > R; f(x)

¢, O§a<1},
x~ foo<a§176} where § > 0,
sin(wz), we R } .

Solution. The set F is not bounded, since

! 1 e=t 1
/ T %dx = [ e } = —so00 asa N1 (E4-4)
0 l1-«a w—0 -«

The same calculation yields the boundedness of Fs.

The precompactness of Fy can, for instance, be shown as follows: Let
falz) =27 for —00o < a <1 —94. For every « we have that f,(x) depends
continuously on «a, and 0 < f, < fi1_s5. By Lebesgue’s convergence theorem
a > f, is a continuous map into L' (] 0,1 [). On defining f_, := 0, it follows
from (E4-4) that it is even continuous on [ — oo,1 — §], which we consider
as a compact interval on the extended real line (see 2.8(2)). Hence the image
E5 U {0} of this continuous map is also compact.

The set FEs5 is obviously bounded, but it is not precompact. To see this,
observe that, for h > 0 with ﬁ €N and w = 53,

1 1
/0 [sin(w(z + h)) — sin(wz)|dz = /0 |cos(wx) — sin(wx)| dx

1 [ 1 ["
:—/ |cosy—siny|dy:f/ [cosy —siny|dy > 0.
w Jo 0

7r
Hence condition 4.16(2) is violated. O

E4.15 Comparison of Holder spaces. Let S C IR™ be a compact set and
let 0 < @ < 8 < 1. Then bounded sets in C%#(S) are precompact in C%%(S)
(a more general result is 10.9).

Solution. Let (fi)yen Pe a bounded sequence in C%#(S), with || fi || cos < R
for all k, say. Then {fx; k € IN} is bounded in C°(S) and equicontinuous. It
follows from the Arzela-Ascoli theorem that there exists an f € C°(S) such
that fr — f in C°(S) for a subsequence k — oco. For z,y € S it then holds

that
|(fe = /)x) = (fe = /)W)

|z —y|*

for |z — y| > ¢ can be estimated by

<207 Sk = fllo
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and for 0 < |z — y| < J satisfies

o U= @) = U= )

=00 |z —y|*

< 5ﬁia||fk - fl ||co,ﬁ < 2R5Bia .

Therefore,

1fi = flloe < Q+267%) |Ifi = flleo +2R 772,

40 for k — 0o — 0 for§ -0

and hence fr — f in C%%(S) as k — oo. 0

E4.16 Compactness with respect to the Hausdorff metric. Let A be
as in E2.9 with X = IR" and let R > 0. Then

{AeA; ACBg(0) } is compact in A.

Solution. Let (A,) be a sequence in A with A,, C B := Bg(0). Then

the functions

meN
fm(z) = dist(x, 4,,)

are bounded in C%*(B) (see E2.2(1)). By the Arzela-Ascoli theorem, there
exists an f € C°(B) such that f,, — f in C°(B) for a subsequence m — oo.
Let

A:={x € B; f(x)=0}.

Then A is closed and nonempty, since assuming A = () would yield that
f is strictly positive on B, and hence also f,, for m sufficiently large, a
contradiction.

In addition, we have that f(z) = dist(x, A). To see this, observe that for
a € A it holds, as m — oo,

f(x) = f(x) — f(a) +— dist(x, A,,) — dist(a, Ap) < |z — al

by E2.2(1), and hence f(z) < dist(z, A). If z € B\ A and r < dist(z, A), then
f is strictly positive on B,(x) N B. Hence so is f,, for m sufficiently large,
i.e. B.(z)N BN A, =0, which, since A,, C B, implies that B,.(z) N 4,, = 0,
and so

r <dist(x, A,) — f(z).
This shows that f(z) > dist(z, A). It follows from E2.9 (with M = B) that

dp (A, A) = sup |dist(z, 4,,) — dist(z, A)|
reB

= fon = fllco — 0 asm — occ.
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E4.17 Uniform continuity. If X is a compact metric space and Y is a
metric space, then every continuous function f : X — Y is uniformly
continuous, i.e.

dy(f(y)7f(:r)) — 0 for z,y € X with dx(y,z) — 0,
which, using quantifiers, can be written as

Ve>0:30>0:Va,ye X : dX(x,y)§6:>dy(f(:c),f(y))<s.

Solution. For e > 0 and x € X there exists a §, > 0 with
dy (f(y), f(z)) <e fory € By, ().

As (Bs, (7)), x is an open cover of X, there exists a finite collection of balls
B, (x;), i =1,...,m., that cover the compact set X. Let
d:=min{d,,; i=1,...,m.}.

For any two points y,z € X with dx(y, z) < d it then holds that y € B;, (z:)
for an 4, and so y, z € Bas, (), which implies that

dy (f(y), f(2)) < dy (f(y), f(:)) +dy (f(2), (1)) < 2.
O

E4.18 Continuous extension. Let X be a metric space, let A C X be
dense and let Y be a complete metric space. Then every uniformly continuous
function f: A — Y admits a unique uniformly continuous extension f : X —
Y.

Remark: For the linear case, see also E5.3.

Solution. Since f is uniformly continuous on A, it holds for z € X that
dy(f(yl), f(yQ)) — 0 for y1,y2 € A with y1,y2 — .
Since Y is complete, it follows that for € A = X there exists

flz):= i in Y

fla):= _lim fly) inY,
and f(ac) = f(z) for z € A. Then fis also uniformly continuous. To see this,
observe that for points x1,z2 € X with 0 < dx (x1,22) < 0 there exist points
y1.y2 € A such that dy (f(z;), f(y:)) < 6 and dx(2;,3:) < $, and hence
dx (y1,y2) < 26. This implies that

dy (f(z1), f(22)) <20 +dy (f(y1), f(y2))
<26 + sup dy (f(z1), f(z2)) — 0

21,22 € A
dx (z1,22) <28

as 6 — 0. O
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E4.19 Dini’s theorem. Let X be a compact metric space. In addition, let
fr € C°(X;R) and let fi(x) \ 0 (monotonically!) as k — oo for all z € X.
Then || fi||qo — 0 as k — oo.

Solution. Otherwise there exist a subsequence k — oo and points z, € X
such that fi(zx) > & > 0 for some € > 0. As X is compact, it follows that
rr — ¢ € X for a subsequence k — oo.

Choose m with f,,(z) < 5. As fy, is continuous, there exists a § > 0 such
that f,,,(y) < 5 for y € X with d(y,z) < 0.

We have for sufficiently large k that d(xg,z) < d and, if kK > m, it follows
that fr(zx) < fin(zr) < 5, a contradiction. O

E4.20 Nonapproximability in the space C%*.Let 0 < o < land I C IR
be a nontrivial compact interval. Then C(I) is not (!) dense in C%(I).

Solution. Without loss of generality, let I = [ — 1,1]. The fundamental
theorem of calculus yields that C'(I) ¢ C%*(I). Let f(z) := |x|”. Then
f e C%(I) and for g € C1(I) and x € I \ {0} we have that

S =9)@) — (F = 9)0)] _ ’1_ g(w)—g(o)’

||f_gHCOﬂ = |J}|a |x|a

For oo < 1 this is
>1—|lg'lco 2™ =1 asz—0,
and so || f — g[/co.. > 1. For a = 1 this converges
[1=g'(0)] asz\0,
H ,
[1+4¢'(0)] asz 70.
This implies

If = gllcor = max(|1—g'(0)],[1+4'(0)]) > 1.
O

E4.21 Compact subsets of LP. Let 1 < p < oo and let S C IR" be
bounded and measurable. Then A C LP(S) is precompact, if there exist
measurable sets S, C IR" and numbers ¢, > 0 with

Sk CS1CS, |JSk=5 e \0 ask— o,
keIN

such that the following conditions are satisfied:
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(1) It holds that
sup / |f(z)|Pdr < oo
S

feA
(2) For every k € IN it holds for h € IR" that

sup / |f(z+h)— f(z)|"dz — 0 as|h| — 0.
fEA J{z; z,x+heSy}

(3) It holds that

sup |f(z)|Pdz — 0 as k — oo.

feA /SﬂBEk(]R“\Sk)
Note: The assertion remains valid, if S'is unbounded but the Sy are bounded.

Solution. We extend functions f € LP(S) outside of S by 0 and obtain func-
tions f € LP(IR™). In this way, the set A becomes a subset A C LP(IR").

If we assume that (2) holds with the integral over the whole of IR" for the
extended functions, then it follows immediately that A satisfies the properties
of the Riesz theorem 4.16, where we note that S is bounded. Hence A is then
a precompact subset of LP(IR™). Since for f € A and g € LP(IR™)

1= Xslos) < [ 7= 0], o

we conclude that then also A is a precompact subset of LP(S5).
Now consider (2) as given in the problem. Then

[ eem—fwllas [ ieen s

v
{z; ¢Sk}

The first integral is controlled by condition (2). The second integral for |h| <
€ can be estimated by

<2 /
Bak(Rn\Sk)

<2. 21’*1/
Bsk(]R"\Sk)

and hence it can be controlled by condition (3). The third integral can be
estimated in exactly the same way. Hence 4.16(2) holds for the integrals over
R", and so together with (1) the set A is a precompact subset of L?(S).

Remark: Since S is bounded, condition 4.16(3) is not relevant. O

~ P
+h) — dz +
fx+h) f(w)’ x /{%;%Sk}

@ - f@-n| az.

f(x)‘i”der/]Rn\S ‘f(x)‘pdx)

f(x)| dx,




5 Linear operators

In this chapter, X, Y, Z, etc. usually denote normed IK-vector spaces. We
consider linear maps T from X to Y, where, following the notation for ma-
trices, we usually write Tz instead of T'(z), and similarly ST instead of SoT
for linear maps T : X — Y and S : Y — Z. In functional analysis, only the
continuous linear maps are of importance (see £9.2), which are those linear
maps for which T'(z) can be estimated by x:

5.1 Lemma. If T : X — Y is linear and g € X, then the following are
equivalent:

(1) T is continuous.

(2) T is continuous at x.

(3) supj <1 |Tz|ly <oo.

(4) There exists a constant C with |Tz|, < C||z| y for all z € X.

Property 5.1(4) written with quantifiers reads
3C>0: (VzeX : |Tz|y <Clz|y)

Proof (2)=(3). There exists an ¢ > 0 such that T(Bg(xo)> C Bi(T(x)).
Let z € B1(0). Then xg + ex € B.(x0), and hence

T(zo) +eT(x) =T (xo + cx) € B1(T(20)) ,
which implies that T'(x) € B1(0). O

Proof (3)=(4). Let C be the supremum in (3). Then for z # 0

IT@ly = el | (75| < el -
x/ lly
O
Proof (4)=(1). For x,x; € X we have that
IT(2) = T(z)lly = |T(z —z)lly <Clle —z1]x — 0 asz— w1,
i.e. T is continuous at z1. This is true for all z;. O
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5.2 Linear operators. We define
ZL(X;Y):={T:X —Y; T is linear and continuous } .

We call maps in Z(X;Y) linear operators. This is true in general for topo-
logical vector spaces X and Y (see 5.23). In the literature, if they are normed
spaces, elements of Z(X;Y’) are often also called bounded operators. If
X and Y are normed spaces, on recalling 5.1(3), we define for every linear
operator T' € Z(X;Y) the operator norm of T by

1T 2xv) = | sup [ Tz|ly < oo. (5-5)

|zl x <1

In the following, we often use the abbreviation || T'[| for || T'[| & .y It follows
from the proof of 5.1 that [|T'|| & y.y is the smallest number satisfying

ITzlly <ITllgxanlzlyx  foralzeX. (5-6)

We set Z(X) := Z(X;X) and denote the identity on X by Id (or by I).
Clearly, Id € .Z(X).

5.3 Theorem. Let X, Y, and Z be normed spaces.

(1) Z(X;Y) equipped with [|+[| &(y,y in (5-5) is a normed space.

(2) Z(X;Y) is a Banach space if Y is a Banach space.

B) UTe Z(X;Y)and S € Z(Y;Z), then ST € £ (X;Z) and
HST”y(x;z) < ||SH$(Y;Z) ’ ||T||$(X;Y) :

(4) Z(X) is a Banach algebra if X is a Banach space. Here the product in
Z(X) is given by the composition of operators.

Proof (1). For T1,T, € Z(X;Y) and z € X
Ty + To)zlly < | Tazlly + [ Tozlly < (173l + [ T2l) 2] x -

Hence Ty + T € Z(X;Y) with ||Th + To|| < || T1]| + || T2, i-e. the operator
norm satisfies the triangle inequality. O

Proof (2). If (Tk),en is a Cauchy sequence in Z(X;Y), then for z € X,
since ||Tpx — Tyz|ly < ||Th — 11| - || 2] i, the sequence (Thx),py is a Cauchy
sequence in Y. As Y is complete, we have that

Tr:= lim Tpx inY

k—o0

exists pointwise, and it follows easily that 7' : X — Y is linear. It then follows
that

I(T = Ty)ally = lim ||[(Tk — Ty)ally < lminf | Ty — T3] - 2]
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andso T —T; € Z(X;Y), by 5.1(4), and
||T*Tj‘|g(x;y) Slikrgi(ngTk*Tj”g(x;y) —  asj = o0
(cf. the proof of completeness of CY(S;Y) in 3.2). O

Proof (3). On noting that
ISTz)llz < WS- ITzlly < ISI-1T1- 2l

we have that ST € Z(X; Z) with ||ST| < |S] - 1T O
Proof (4). Follows from (3) and (2). O
5.4 Remarks.

(1) If X is finite-dimensional, then every linear map T : X — Y is continu-
ous, i.e. in Z(X;Y). For noncontinuous linear maps, see E9.2.

(2) Every T € Z(X;Y) is Lipschitz continuous, since

1T () =Ty <7 |z —yllx-
If follows that for R > 0 and M >0
A= {ﬂm% TeZ(X:Y), |Tlgxy) <M}

is a bounded and equicontinuous subset of C° (BR(O); Y). However, the
Arzela-Ascoli theorem is not valid in this context. Observe that A as a subset
of C° (B r(0); Y) is not (!) precompact, unless X and Y are finite-dimensional.
Only then are the domain and the image set of these continuous functions
precompact, which played an essential role in the proof of 4.12.

(3) Linear operators occur as Fréchet derivatives of nonlinear maps F' : X —
Y. We define T' € .Z(X;Y) to be the Fréchet derivative of F at x € X, if

F(y) = F(z) —T(y — =)

ly — x| x

—0 inYasy—xin X with y # z.

This is the linear approximation property of the mapping y — F(y) near x,
given by the mapping y — F(z) + T'(y — x). Using quantifiers this definition
reads

Ve>0:36§>0:Vye X :

ly—zllx <6 = [Fly) —Fl@) -Ty—=)lly <e-lly—=zlx.

Proof (1). If n is the dimension of X and {ej,...,e,} is a basis of X, then
forz =30 we €X

n n
IT2lly < 3 lwillTeilly < (Z ||Tei||y> - max i
1=

i=1
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If we take, for instance,
2] :== max [z
1=1,...,n

as the norm in X (recall lemma 4.8), then, by 5.1, the inequality proves the
continuity of T with

||TH,s,ﬂ(X;Y) < Z [Teilly -
i=1

O

We now give a list of special linear operators and some notation. The
detailed study of the properties of each class of linear operators will be the
subject of the following chapters.

5.5 Definitions.

(1) The space X' := Z(X;K) is the dual space to X. The elements of
X' are also called linear functionals. This is true for general topological
vector spaces. If X a normed space, then the norm from (5-5) for T € X’ is

Ty, = sup |Tx|.
Tl = sup_ [Tal (5-7)

(2) The set of compact (linear) operators from X to Y is defined by
H(X;Y):={T e L(X;Y); T(B(0)) is compact } .
If Y is complete, then we can replace “T'(B;(0)) is compact” in the definition
by “T'(B1(0)) is precompact” (see 4.7(5)).
(3) A linear map P : X — X is called a (linear) projection if P? = P.
We denote the set of continuous (linear) projections by
P(X)={PeZLX); PP=P}.

(4) For T € Z(X;Y) we denote by

N (T) (orker(T)) :={zxeX; Tz=0}

the null space (or kernel) of T. The continuity of T' immediately yields that
A (T) is a closed subspace. The range (or image) of T is defined by

Z(T) (orim(T)) ={TzeY;zecX}.

The subspace Z(T') in general is not closed (see the example 5.6(3)). We will
often denote the image of a linear map also as T(X) = Z(T).

(5) T € Z(X;Y) is called a (linear continuous) embedding of X into Y
if T is injective, i.e. if 4(T) = {0}.

Observe: In general, the term embedding is used only for very special maps
T, see for example the embedding theorems in Chapter 10.
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(6) Let X and Y be complete spaces. If T € Z(X;Y) is bijective, then T~ €
Z(Y; X) (see the inverse mapping theorem 7.8, which plays an essential role
in functional analysis). Then T is called an invertible (linear) operator,
or a (linear continuous) isomorphism.

(7) T € Z(X,;Y) is called an isometry (see the definition in 2.24) if
|Tx|ly = [|z]x forall z e X.
(8) If T € Z(X;Y), then
(T'y)(z):=y'(Tx) fory €Y', zeX

defines a linear map 77 : Y/ — X', the adjoint map of T. We also call T’
the adjoint operator of T, because T" € Z(Y', X').

Proof (8). For x € X and ¢/ € Y/,

(T"y") (@) = |y (T=)| < 1Y Iy [ITzlly < 1Y NIy - 1T N2l x
so that, by (5-7),

1T N < 19" lly - I

hence, by (5-5), T € Z(Y', X') with ||T"|| < ||T'|| (see also 12.1, where we
will show that || 77| = || T])). O

Dual spaces will be investigated in Chapter 6. In particular, we will char-
acterize the dual spaces of C°(S) and LP(u), i.e. we will introduce measure
and function spaces, respectively, that are isomorphic to these dual spaces.
Continuous linear projections will be considered in Chapter 9. In Chapter 10,
we will present the most important types of compact operators, and Chap-
ter 11 will be devoted to the spectral theorem for compact operators. Results
on adjoint maps can be found in Chapter 12.

We now give some examples of linear operators.

5.6 Examples.

(1) Let S c IR™ be compact and let (S,B,u) be a measure space with
u(S) < oo, and such that B contains the Borel sets of S. Then C°(S) C L ()
and

T.f ::/Sfdu for f € C°(9)

defines a functional T}, € CY(S)’ (see 6.22 and theorem 6.23). For example,
if 4 = ¢ is the Dirac measure for z € S, then T5_f = f(x).

(2) Examples of operators in .2 (C°(S5)), S C R" compact, are the multi-
plication operators

(Tyf)(@) = f(x)g(z) for f € C(S),
for a fixed g € C°(S).
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(3) An example of an operator T € £ (C°(S); C*(S)) with S = [0,1] is

(Tf)(a /f §)de  for f € CO(S).

One may also consider 7' as an operator in £ (C%(S)). Then £(T) is not
closed in C°(9), since Z(T) = {g € C'(5); g(0) = 0} is a proper subset of
the closure Z(T) = {g € C°(S); ¢(0) = 0}. Similarly, T’ can be defined as
an operator in £ (L*(S)). Then Z(T) = {g € W*'(10,10); g(0) = 0} (see
E3.6), which is a proper dense subset of Z(T') = L'(S).

(4) Let 1 < p < oo and let %Jr 1% = 1. Then for g € L (1) the Holder
inequality yields that

7,0 [ faan tor f€ 220

defines a functional T, € L” (1) (see theorem 6.12).

(5) If p, p' are as in (4) and ¢° € L¥' () for |s| < m with g = (9°)|51<m>
then
Tyf = / O°f-g°dL™  for f € W™P(£2)
[s|<m
defines a functional T, € W™P(2)".

(6) Let p be as in (4) and let (@), be a Dirac sequence. Then 4.13(2)
yields that

Tf(e) = [ oo~ )i dy = (o )
defines an operator Ty, € £ (LP(IR")) with || T;|| < 1. It follows from 4.15(2)
that, if p < oo,
(Tpy —Id)f -0 in LP(IR") as k — o0

for every f € LP(IR"). However, T}, does not converge in the operator norm
(see E5.6).

We now prove some fundamental properties of linear operators.

5.7 Neumann series. Let X be a Banach space and let T' € £ (X) with

lim sup ||Tm||% <1

m—r oo

(in particular, this is satisfied if [|T']] < 1). Then Id — T is bijective and
(Id—T)"' € Z(X) with

(Id—T)~ ZT” in 2(X).
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Proof. For k € IN let S} := Zﬁ:o T". Choose m € IN and 6 < 1 with
|IT"| < 6™ for n > m. Then for m <k <

l
2. T

n=k+1

l

Z 1T < i " — 0 as k — oo.

n=k+1 n=k+1

181 — Skll =

Since .Z(X) is complete, there exists the limit
S:= lim Sy in Z(X).
k—o0
It follows that as k — oo

(Id—T)S +— (Id—T)Sk

k
Z 7Y =1d-TF' — Id  in Z(X),

because for k > m we have that HT'“‘H H < A1 - 0 as k — oo. Similarly,
one can show that S(Id — T') = Id. Hence S is the inverse of Id — T'. O

As a consequence, we obtain that in the space of linear operators, pertur-
bations of invertible operators are again invertible.

5.8 Theorem on invertible operators. Let X, Y be Banach spaces. Then
the set of invertible operators in £ (X;Y") is an open subset. More precisely:
If X # {0} and Y # {0}, then for T, S € Z(X;Y) we have that

T invertible,

o _1} = S invertible.
I§ =Tl < |7~

Proof. Let R:=T — S. Then S = T(Id — T7'R) = (Id — RT~!)T, where
|T7'R|| < ||77Y|-IIR|| < 1, and similarly || RT~!|| < 1. Applying 5.7 yields
the desired result. a

5.9 Analytic functions of operators. Let

o
= E apz"
n=0

be a power series in IK with radius of convergence ¢ > 0. Let X be a Banach
space over IK. If T € Z(X), then

limsupHTmH# <p = f(T):= ZanT" exists in .Z(X).

m—r o0
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Proof. There exists an r with 0 < r < g and an n € IN with |77 < r™ for
m > n. For n < m < k it then holds that

k
E (Il'TZ
i=m

thanks to the assumption on the power series. a

k 0o
< Z |ai|HTi|| < Z la;|r® — 0 as m — oo

5.10 Examples. Let X be a Banach space.
(1) Exponential function. For all T € Z(X) we define

exp(T) (or e" Z T" € Z2(X).

For T,S € Z(X)
ST=TS = eltS=¢Te5,

(2) Evolution equation. For T € £(X) the function A(s) := e*T for
s € R defines an A € C*(R; £ (X)) with

%A(s) =T A(s) = A(s) T.

(3) Logarithm. For T € .Z(X) with ||Id — T'|| < 1 we define

%Id T e 2(X).

Mg

log(T

n=1

(4) For T € Z(X) with ||T'|] < 1 the function A(s) := log(Id — sT') for
|s| <1 definesan A e C>(1 —1,1[; Z(X)) with
d
ds
and exp(A(s)) =1Id — sT.
The following theorem shows that linear operators commute with the

integral (and hence it is a linear version of Jensen’s inequality in E4.9).

5.11 Theorem. Let (5, B, i) be a measure space and let Y and Z be Banach
spaces. If f € L' (pu;Y) and T € Z(Y; Z), then Tof € L*(u; Z) and

T(/Sfdu> :/STofdu.

Explanation: Setting Iy f = fsfdu defines Iy € X(LI(M;Y);Y), and
similarly Iz. In addition, let T be the operator corresponding to 7' lifted to
functions, i.e. (Tf)(z) := T(f(x)) defines T € L(L'(1;Y); L' (1; Z)). The
theorem then says that

—A(8)=-T(Id—sT) ' = —(Id—sT)" ' T
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TIy=I;T,
i.e. in this sense, the integral commutes with linear operators.
Proof. Approximate f in L(u;Y) with step functions
ng
fr = Z Xp,, o with ag; € Y and p(Ey;) < oo,
i=1

with Ey;, ¢ = 1,...,ng, being pairwise disjoint. Then as k£ — oo

T< /S fdu) <—T( /S i du) =T<2iju(Eki)aki)
= Eyi)Tag, = | Tofrdu.
;M( i) T o, /S fedp
Since
[ ITef=Tofll, an < ITI [ 1~ flydu—0 as ki oo
S S

we have that (T fi), o is @ Cauchy sequence in L*(y; Z). It follows that
there exists a g € L'(u; Z) such that

Tofy — gin L*(u; Z)

as k — oo, and hence also

/Tofkdu—>/gdu.
s s

For a subsequence k — oo it holds that To fy — ¢ almost everywhere in
S, and for a further subsequence k — oo we have that fr — f and hence
also T'o f, — Tof almost everywhere in S. Consequently, g = T'o f almost
everywhere. a

The linear operators between function spaces that are most important in
applications are differential and integral operators.

5.12 Hilbert-Schmidt integral operators. Let 2; C IR™, 2, C IR™ be
Lebesgue measurable, 1 < p < oo and 1 < ¢ < oo, and let K : {1 x {2 — K
be Lebesgue measurable with

1
M':<AKLJmmwﬂ@yan<m, -9

1 1
where 5 + = 1. Then
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(Tf)(z) = ; K(z,y)f(y) dy
2
defines an operator T € £ (LP(§22;IK); L(£21;K)) with [T < [[K|. We
call K the integral kernel of the operator 7'
Remark: In 10.15 we will show that T is a compact operator.

Proof. We first assume that all of the following integrals exist. Then using
the Holder inequality we have that

Z;ITf@ﬁde:=/;

q
’ [)/
<[] K@ a)” ([ 15w a)” de= 1K1 11,
2 25 25

which yields the desired result. The existence of the integrals can now be
justified retrospectively, similarly to the proof of 4.13(1), and it follows in
particular that Tf € L(f2;). Here we note that the assumption (5-8) states
that K (z,+) € LP (£2) for almost all € (2, and that the function z
[ K (2, )| 1o (2, Lies in LI(£21). O

q

K(z,y)f(y)dy| dz

£22
q

Now we introduce the set of locally integrable functions.

5.13 Definition. Let {2 C IR" be open.

(1) We let D CC £2 be a shorthand notation for a set D C IR™ which is
precompact with D C £2.

Remark: One also says that D is a relatively precompact subset of (2,
which means that the closure of D is compact in the relative topology of 2.

(2) For 1 <p < o0, let

LP

loc

2)={f:2-K; f|,eLP(D)forall Dcc 2},

the vector space of locally in §2 p-integrable functions.
(3) Equipped with the Fréchet metric

- Il e
22 i ” ”L (K) for fGLIOC(Q)
2 T o

this is a complete metric space. Here (K;), 1 is a sequence of compact sets,
which is an exhaustion of 2 (see (3-2)).

(4) Analogously we define W7"7(12), i.e.

WP () == {f: 2 - K; f|, € W™P(D) for all open sets D CC £2}.

loc
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With this we state the following.

5.14 Linear differential operators. Let {2 C IR" be open and assume
as : 2 — K for multi-indices s with |s| < m. Then

(Tf)(x):= Y as(2)0"f(z)

[s]<m

defines an operator

(1) T € 2(C™(2);C°(R)), if a5 € C°(£2) for |s| < m.

Remark: T € £(C™(£2);C°(£2)), if all a; € C°(£2) and {2 is bounded.

(2) T € Z(C™*(02);C%*(£2)) with 0 < a < 1 provided a, € C**(2) for
[s] <m.

Remark: T € £(C™(2);C%*(2)), if a; € C**(2) and 2 is bounded.

|(3|) T € L(WpP(02); LY (£2)) with 1 < p < oo, provided a, € LS (£2) for
< m.

Remark: T € L (W™P(2); LP(2)), if a, € L>=(12).

In each case we call T' a linear differential operator of order m, and we
call a; for |s| < m the coefficients of the differential operator.

Distributions

We now want to consider the functionals in 5.6 in a more general setting.
To this end, we restrict the functionals to the common vector space C§°(2)
(here set S := 2 in 5.6). Hence we consider functions and measures only in
2, i.e. as in 5.14 without boundary conditions. This leads to the following

5.15 Notation. Let 2 C IR" be open.

(1) Let (£2,B, 1) be a measure space such that B contains the Borel sets of
(2 and such that p is finite on compact subsets. Then

1(O) (or Ta()(©) = /Q Cdu for ¢ € C5(2)

defines a linear map | (or Tao(p ) ) — K.
Remark: With the notatlon in 5.6(1) we have that [p] = To(p) = TM|ng(Q).

Note: The integral in this definition is the Riemann integral (see 6.22). Hence

for the measures considered here one has C{(£2) C L*(p).
(2) Let f € L (£2). Then

1O (or Ta(HQ) = /Q C-FdL for ¢ € CF(Q)
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defines a linear map [f] (or To(f)) : C5°(2) — K.

Observe: This is a special case of (1), on setting u(E) := [, fdL" for
Lebesgue measurable sets E CC {2 (see the definition 5.13(1)).

Remark: With the notation in 5.6(4) one has [f] = To(f) = T?'Cg"(())'

5.16 Lemma. Let {2 C IR" be open and consider the map in 5.15(2)
f = 1f] = Ta(f) from L () to {T: C5°(2) — IK; T linear}.

(1) This map is linear and injective.
(2) The function f can be reconstructed from [f] = T (f).
(3) The definition of the weak derivatives 0° f of a function f € W{;ﬁ;l(f}) in

(3-17) can now be written as
(=DFIA0°Q) = [9°£1(¢)  for ¢ € C5°(2), |s] < m. (5-9)

Proof (1). This follows from 4.22 (applied to sets D CC {2, or note that the
fundamental lemma holds in L (£2)). 0

Proof (2). To see this, choose (. = ¢ * X with E CC {2 as in the proof of
4.22. Then [f](¢.) = [ fdL™ as € = 0. Now choose E = B.(z) with z € 2
and obtain for (a subsequence) € — 0 that
—1
(e % F)(@) = L (Be(@) ™ fo gy AL — f(2)

for L™-almost all z. Here we have used 4.15(2). a

This means that knowledge of all the values [f](¢) with ¢ € C§°(£2)
provides full information on the function f almost everywhere in {2. Hence we
also call C§°(£2) the space of test functions. We transfer this to linear maps

T : C§°(§2) — IK, where the main property is motivated by the structure of
the identity (5-9).

5.17 Distributions. Let 2 C IR" be open and let T : C§°(§2) — K be
linear.

(1) For all multi-indices s, the distributional derivative 9°T is the linear
map 0°T : C§°(2) — K defined by

(O°T)(¢) := (=DI*IT(@°¢)  for ¢ € C5°(12). (5-10)

(2) We call the linear map T' a distribution on {2, and use the notation

Te '),
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if for all open sets D CC {2 there exist a constant Cp and a kp € INU {0}
such that

IT(O)] < Coll¢llernmy forall ¢ € C5°(£2) with supp(¢) € D.  (5-11)

If k = kp can be chosen independently of D, then k (if chosen minimally) is
called the order of T

(3) If T is a distribution, then so is 9°T for all multi-indices s. If T is a
distribution of order k, then 0°T is a distribution of order k + |s|.

Proof (3). We have [(0°T)(¢)| < Cpl|9*Cllckn By < ColCllcrpria1my- O
5.18 Examples.
(1) For f e W™P(£2) and |s|] <m

O*[f]=[0°f] in2'(02). (5-12)

Hence the definition of W™ ({2) can also be formulated as follows: A function
f € LP(£2) is in W™P((2) if all its distributional derivatives up to order m
can be identified with functions in LP({2).

(2) For f e L () and ¢ € C§°(D) with D cC 2

loc

10 = [ ¢ fav with A1 1) 1loncy-

It follows that [f] € 2/(£2) and is of order 0.
(3) For p is as in 5.15(1) and for ¢ € C§°(D) with D CC {2

[M](C)Z/QCdM with [} (O] < (D)<l oy -

It follows that [u] € 2'(£2) and is of order 0.
(4) As an example, let 2 =R and, given c_,cy € IR, let

fa) = {c+ for x > 0,

c_ for x < 0.

By (2), [f] is a distribution of order 0. With the definitions in 5.17(1) and
5.15 it follows that

L1(¢) = =LA1(¢) = (e4 — = )¢(0) = (e — =) B0l (C)

where d¢ is the Dirac measure at the point 0. Hence [f]" is also a distribution
of order 0. In addition,

L") = =[f1(¢") = = (s — =)< (0).

Hence [f]” is a distribution of order 1, if ¢ # c;.
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(5) Let (¢r) e be a general Dirac sequence and let 6o be the Dirac measure
at 0 € IR". Then it holds as k — oo that

[Pr)(C) — [0l (¢)  for all ¢ € C5°(IR™),

i.e. [¢r] converges to [dg] as k — oo pointwise as a linear map. The name
Dirac sequence originates from this property.

(6) As a further example, let f(x) := log|x| for x € IR" \ {0}. Then f €
Li (IR"™), and so, by (2), [f] is a distribution of order 0 on R". For 1 <i <n

(JL‘)LZQ dz forn > 2,

@i =4
lim ((x)—dx forn=1.
6\0 R\ [75,6] X

In order to prove this, verify with the help of Gaufl’s theorem that as € \, 0

GO = —[flO:) — - /}R g BT

- / Co.f dL” + / V¢ dHY
R™\B.(0) 0B.(0)

where v;(x) = & is the i-th component of the outer normal to the set B.(0)

x
(see A8.5(3) for| t‘he general situation). It can be seen that the second integral
converges to zero as € N\, 0. In the case n > 2 the function z — xi|x|_2
is in LL _(IR™), but not for n = 1. Hence for n > 2 it holds that 8;[f] is a
distribution of order 0, while for n = 1 it can be shown that it is a distribution

of order 1.

The essential estimate (5-11) is used in order to approximate distributions
with C'*°-functions by means of convolutions.

5.19 Approximation of distributions. Let 2 C R" and let T € 2'(12).
For ¢ € C§°(B,(0)) and = € 2 with B,.(x) C {2,

(pxT)(z) :=T(p(z —+)) (5-13)
is well defined, since p(x —+) € C§°(£2). Moreover, it holds that:
(1) For T = [f] with f € L. (£2) it follows that

loc
(px[fN(@) = (g flz) if B.(z) C 2.
(2) If D cc 2 with B,(D) C {2, then ¢ xT € C°°(D), with derivatives
*(pxT) = (0°p) xT.
(3) Let D CC 2 and let (¢.),., be a standard Dirac sequence. For small &
we have that ¢, * T € C*°(D) and for all ( € C§°(D)
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e T)(Q) — T(C)  ase—0.
Proof (1). It holds that

(o + (@) = f(plz ) = /Q (@ — ) f () dy = (o * f)(a),

since supp(¢(x —+)) C 2 (formally set f = 0 in the exterior of (2). O

Proof (2). Let kp be chosen for T and D as in (5-11). On introducing the
difference quotients 8 (z) := +(¢(x + he;) —1(z)), the linearity of T yields
that

O (p=T)(x) =T (9 ez —+)) -

We have that 0%¢p(x —+) — 9;p(z —+) in C*P (D) as h — 0, and hence it
follows from (5-11) that

T ¢(x —+) — T(dip(x —+)) = ((Bip) * T) ().

This shows that the partial derivative 0;(p = T')(z) = ((8;¢) * T)(z) exists.
The desired result for higher derivatives now follows by induction on the
order of the derivative. O

Proof (3). We have that

[pe x T](C /C @E*T)() dx.
:T(Qos(l'_ ))

Now it holds that (the proof is given below)

[ c@route =) ae =1 ( [ cwronto - ac) (5-14)

The argument of 7' on the right-hand side is (.(+), if (¢ = 7 * ¢ with
0= (y) := p:(—y). Since (. — ¢ in C*» (D) as ¢ — 0, it follows that T'(¢.) —
T(¢), if kp for T and D is chosen as in (5-11), and so we have shown that

[pe *T)(C) =T((:) — T(¢) ase—0.

The identity (5-14) is closely related to theorem 5.11 and the proof is analo-
gous: Approximate ¢ uniformly by step functions (; with a common compact
support in D. Then (5-14) holds for (; because of the linearity of T The
left-hand side converges as j — oo, since T(¢-(z — +)) is continuous, recall
(2). The right-hand side converges using the same argument as above, since

pZ * ¢ = #Cin Ckr (D). m|
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For functional analysis purposes, the following result is of importance:
The vector space C§°(£2) can be equipped with a topology T in such a way
that T is a distribution if and only if 7" lies in the corresponding dual space,
ie if T: C§°(£2) — IK is linear and continuous with respect to the topology
T. We denote C§°(12), equipped with the topology T, by 2(£2) (see 5.21).
The dual space Z(§2)’ is then the same as 27(2) (see 5.23).

5.20 Topology on C§°(2). Let £2 C IR™ be open. Define

o

Cllexm
p(¢) :== ZQ"“M for ¢ € C{°(£2) with supp(¢) C D CC {2,
2 T Clon )

where the right-hand side is independent of the choice of D. Choose an open
cover (Dj),cp of 2 with sets D; CC Djy1 C §2 for all j € IN. For every
sequence € = (&) ;o With €; > 0 for j € IN define

U. := conv ( U {¢ e 5 (2); supp(¢) C D; and p(¢) < ¢; }) .
jEN

Finally, define
T = {U CC(2) ; for ( € U there exists an ¢ with (+U. C U } .

Then:

(1) pis a Fréchet metric with p(r¢) < rp(¢) for r > 1.
(2) For all € it holds that U, € T.

(3) T is a topology. Hence the sets U, form a neighbourhood basis (see the

definition (4-17)) of 0 with respect to T.
(4) T is independent of the choice of cover (D;); -

We remark that 7 is stronger than the topology induced by p. This follows
from the fact that the p-ball B,(0) C C§°({2) is a neighbourhood in the 7-
topology, namely, B,(0) = U, with € = (sj)jE]N and €; = o.

Proof (2). Let ¢ € Ue. Consider a finite convex combination
(=0 apCr €Us with kg € IN, o >0, S8 oy =1, (5-15)

where ¢, € C§°(D;,) with p(x) < €j,. Choose 0 < 6 < 1 such that p(¢x) <
Ocj, for all k=1,... ko, and set 6 = (6;),p with J; := (1 —6)e;. We claim
that ( + Us C U.. To see this, let

n= Ziozl Bim € Us  withlp € IN, 3 >0, Zfozl Br=1,
where n; € C§°(Dyy,,) with p(m;) < dp,. Then, on noting (1),

p(5¢k) < p(C) <ej,  and  p(i5m) < T5p(m) < em,
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ie. %Ck and ﬁm are elements of U.. Hence the convexity of U, yields that

CHn=034" ok 3G+ 1—0) S, B gm € Ue.
k=1 ] =1 1-0
This shows that U, € T. O

Proof (3). We need to show that U'NU? € T, if U',U? € T. But this follows
from U, C U NU,2, where € := min(ejl-,zs?) for j € IN. O

Proof (4). Let (Dj)jE]N be another cover and let Uz with € = (;),. be
a set defined as above, now with respect to this cover. Since D; is compact
with D; C £2, for each j € IN there exists an m; € IN with D; C Dy

Setting €; := &, for j € N and ¢ = (5j)j€]N then yields that U, C Us. O

5.21 The space 2(§2). We denote the vector space C§°(§2), equipped with
the topology T from 5.20, by 2(2). Then 2(12) is a locally convexr topo-
logical vector space, i.e. it holds that:
(1) 2(2) with T is a Hausdorff space.

(2) 2(£2) is a vector space and addition and scalar multiplication are con-
tinuous (as maps from 2(£2) x 2(£2) to Z(§2) and from IK x Z(£2) to Z(12),
respectively).

(8) For ¢ € U with U € T there exists a convex set V € T with ( € V C U.
Proof (3). By their definition, the sets U, in 5.20 are convex. O

Proof (2). We claim for every U, that Us + Us C U, where § = ((5j)j€]N with
0, = %sj, which implies the continuity of the addition. For the proof let

G ey (Djz) with p((l) < 0j, for 1 =1,2.

We have that (1 + (2 = £(2¢ +2¢2) with p(2¢;) < 2p(¢) < 265, = €5, and so
(1+ ¢ € Ug, as U, is convex. Then the same also holds for arbitrary elements
C1,G2 € Us.

In order to show the continuity of the scalar multiplication at the point
(a0, o) € IK x 2(£2), let U, be given. Let (o € C§°(Dj,) and write

ag — aplp = %(2(@ — ap)Co + 2a(¢ — o)) -

Let |o — ag| < v < 5 and let ¢ — (o € C§°(D;) with p(¢ — (o) < d;, where 7,
d; need to be chosen. Now it holds that ||2v(y ||ck'(ﬁj0) — 0 as vy — 0 for all
k € IN, and so it follows (as in 2.23(2)) that

p(2(a — ag)éo) < p(27¢0) =0 asy — 0.

If we now choose v < % with p(2v¢o) < €j,, then 2(ov — a)¢o € Ue. In
addition, since |2a| < 2(Jag| +7) < 2|ag] + 1,
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p(2a(¢ = o)) < (1 +2[an)p(¢ — o) <5,

if we set 0; := (14 2|ag|)~'e;. This implies that also 2a(¢ — o) € U., and
hence a( € agy + U.. Then the same also follows for all ¢ € (o + Us, where
(S = (5])3611\1 o

Proof (1). Let ¢1,¢? € 2(2) with ¢! # (2 and ¢ := ¢! — (2. We claim that
'+ U)N(C+U.) =0,

if e = (g)jelN and o > 0 is sufficiently small. Indeed, if n',n? € U. with
¢t +nt = (% + 7?2, then also —n' € U., and so

(=C"-C=(n")+n€U.+U. CUs,

on recalling the proof of (2). Now write ( as a convex combination as in
(5-15), so that
1Skl o
1+ [[¢kll o

This implies, if 0 < %, that

< p(Cr) < 20.

0# [Clleo < SRy akliGilloo < maxie, g Ik llco < 125
which is not possible, if ¢ depending on ¢ was chosen sufficiently small. O
5.22 Lemma. For every sequence ((m),,c in Z(2) it holds that:
¢m— 0 asm —ooin 2(02)
if and only if
(1) There exists an open D CC {2 such that (,, € C§°(D) for all m.
(2) Forall D CC £ and all k € IN it holds that || ||cx () — 0 as m — oo,

Proof <. On noting that D is compact and D C {2, the cover in 5.20 contains
a Dj such that D C D;. Then for a given ¢ it follows from (2) (as in 2.23(2))
that p(¢,,) < ¢; for large m, and so (,, € U.. O

Proof =. If we assume that (1) is not satisfied, then there exist an open cover
(Dj)jEIN of 2 with Dj CC {2 and Dj—l C l)j7 as well as T € D]’ \Dj—l and
a subsequence m; — 0o, such that (,, (xj) # 0. Then

{CG‘@ Z ‘Cm ||CHCO(D \D,_ 1)71}

JEIN

is a convex subset of Z((2). On noting that for all j

2 —1
{CeCq(D;); p(Q) <ej } CU, where 53'7(1+Zm) ’

i<j
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we have that U. C U, if € = (g;),c and Uc is defined with respect to the
cover (Dj)jE]N. The definition of the topology and the fact that ¢, — 0 in

2(82) as m — oo yield that (,, € U. for large m. But it follows from the
construction of U that the (,; do not lie in U, a contradiction. This shows
(1).

Now for k € IN and § > 0 choose € = (Ej)je]N with 2%g; = (1 + %)_1 >0
for all j, which yields that

Ue C{CeCFE); lIClor <6}
For large m we have that ¢, € Us, and so || Gy ||or < 0. This shows (2). O
5.23 The dual space of Z(£2). Consider (see 5.5(1)) the dual space
2(82) ={T: 2(2) - K; T is linear and continuous}
of 2(£2). Then (with the notation in 5.17(2))
2(02) =2'(N2).

Proof C. Let T € 2(2). f T ¢ 2'(12), then there exist a D CC {2 and
Cm € C§°(D) with

For all k € IN it then follows that |[Cn||or ) — 0 as m — oo, and so 5.22
yields ¢, — 0 as m — oo in 2(£2). Now the continuity of T implies that
T(mn — 0 as m — oo, which is a contradiction. a

Proof >. Let T' € 9'(£2), let (D;) ;. be the exhaustion from 5.20 and let

T¢| < Cj”CHc’fj(;j) for ¢ € Cg°(D;).

For § > 0 let € = (£;) .y be defined by ¢; := 27ki c_f—i-é' Then

As T is linear, it follows that |T¢(| < § for all ¢ € U, (with U, as in 5.20).
This proves the continuity of 7. O
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E5 Exercises

E5.1 Commutator. Let X be a nontrivial normed vector space and let
P,Q : X — X be linear maps with PQ — QP = Id. Then P and @) cannot
both be continuous. (This relation, which appears in quantum mechanics, is
called the Heisenberg relation.)

Solution. It follows inductively for n € IN that
PQ" —Q"P =nQ" ", (E5-1)

on noting that for such n we have that

P - Q" P = (PQ" - Q"P)Q + Q" (PQ — QP)

—_——— —_———
=nQn"~1! =1Q%=Id
=nQ"'Q+ Q" =(n+1)Q".

Assuming that P, Q € £(X), it follows from (E5-1) that

nf|Q | <21 Pl - Q) < 21P)- Qi [l

and hence Q™! = 0 for large n, that is, for n > 2||P| - ||Q]. It follows
inductively from (E5-1) that Q""" =0form=1,...,n,ie. I[d=Q" =0, a
contradiction if X # {0}. O

E5.2 Nonexistence of the inverse. For noncomplete normed spaces, the
inverse in 5.7 in general does not exist.

Solution. We give a counterexample. Let Y := /2(IR) and let
X = {x = (Z4);en € RYN ; only finitely many z; # 0 } clR)=Y,
i.e. X is equipped with the Y-norm. Let € > 0. For the shift operator
0 fori =1,
(Tx); == )
€x;_1 fori>1,

it holds that T'€ Z(Y) and ||T|| = €. Hence for € < 1 we can apply 5.7 for
Y and T, and obtain, for instance, that

(Id —T) e, = ZT”el = (siil)iem ¢ X.
n=0
On the other hand, Tx € X for x € X. Hence 5.7 is not valid for X and T|X

(X is not complete and X =Y). O

E5.3 Unique extension of linear maps. Let Z C X be a dense subspace
and let T € Z(Z;Y). Then there exists a unique continuous extension 7" of
T to X. Moreover, T' € Z(X;Y).
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Solution. T is uniformly continuous on Z (in fact Lipschitz continuous with
Lipschitz constant ||T'||). Hence, on recalling E4.18,

Tx:= lim Tz forzeX

z2€Z : z—x

defines a unique continuous extension of 7" to X. In addition, the linearity of
T carries over to T'. O

E5.4 Limit of linear maps. Let (7}),.n be a bounded sequence in
Z(X;Y) and let D C X be dense. If there exists

limy oo Txx  for x € D, (E5-2)

then there exists
Tr:= lim Tyx forall z e X

k—o00

and T € Z(X;Y).

Solution. Let || Tx|| < C < oo for all k and let Z := span(D). Then it follows
from (E5-2) that

Tz:= lim Tz
k—o0

exists for all z € Z, and that T is linear on Z. Since
ITz]] = lim [[Tyz]] < Cll=|l,
—> 00

it holds that T € Z(Z;Y). Let T € £(X;Y) be the unique extension of T
to X from E5.3. Then it holds for all x € X and z € Z that

Hf:c - Tka < Hfz - Tsz + (HTH +O) |z — ||
— (Hf” + )|z —z|| ask— oo,
As Z = X, we can choose ||z — z|| arbitrarily small. This shows that

Tz = lim Tpx forallz e X.

k—oc0

O

E5.5 Pointwise convergence of operators. Let T, T, € Z(X;Y), k € N,
with ||T%]| < C < oo and let D C X be dense. If for all x € D

Thx — Tx as k — oo,

then this also holds for all z € X.

Solution. See the second part of the solution of E5.4. O



162 5 Linear operators

E5.6 Convergence of operators. Let T, be defined as in 5.6(6) with 1 <
p < 00. Does it hold that T, —s Id as k — oo in the space £ (LP(IR")) ?

Solution. No! As an example, let n = 1 and ¢ = 9., with ¢, — 0 as
k — oo, where ¢ (z) := 5 for |z| < € and ¢.(z) := 0 for |z| > e. Then
consider T} = ¢, * 1, . Direct calculations yield that
1
Ve x Y. (x) = max((), 55( — —)) ,
1
el = (26) 777,
1 1
||¢a * e _¢E||LP = (1 +p) P (45);) h.

Consequently,

T, — 1/1 3
HTk_IdH Z H kwﬁk wEkHLP :7< +p) >0.
e Ml o 2\ 2
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In this chapter we deal with the representations of dual spaces, i.e. we will
state canonical isomorphisms between the most important dual spaces and
already known spaces. We will use this to solve boundary value problems for
partial differential equations.

The most important case is that of a Hilbert space, for which the dual
space is isomorphic to the space itself (theorem 6.1). As a consequence, we
obtain the Lax-Milgram theorem (see 6.2), with the help of which elliptic
boundary value problems can be solved (see 6.4 — 6.9).

In the second part, we state representations of the dual spaces of L () for
p < 0o (see 6.12) and of C°(S) (see 6.23). The proof of 6.23 will employ the
Hahn-Banach theorem (see 6.14 — 6.15). This theorem states that continuous
linear maps f : Y — IK can be extended from a subspace Y C X to the
full space X such that the norm of the map is maintained, which is one
of the general principles of functional analysis. A constructive proof of the
Hahn-Banach theorem for separable spaces X will be given in 9.2.

Lax-Milgram’s theorem

We start with an existence theory, which is based on the following result.

6.1 Riesz representation theorem. If X is a Hilbert space, then

J(@)(y) = (y,x)y forz,yeX

defines an isometric conjugate linear isomorphism J : X — X'.

Notation: In the remainder of this book we will also denote this isomorphism
by Ry : X — X'.

Definition: Here a map J is called conjugate linear if for all z,y € X and
a € K it holds that J(azx + y) = aJ(z) + J(y). In the case IK = IR this
reduces to J being linear.

Proof. By the Cauchy-Schwarz inequality,

[J@) W) <llzlx - llvlly

ie. J(z) € X' with || J(z)| x» < ||z|lx. On noting that |.J(z)(x)| = ||z, we
see that ||J(x)|| v, > ||z||x. Hence J is isometric, and in particular injective.
© Springer-Verlag London 2016 163
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Now the crucial step is to show that J is surjective. Let 0 # zj, € X’
and let P be the orthogonal projection from 4.3 onto the closed null space
A (2(). Choose e € X with x(,(e) = 1 and define

xo :=e— Pe, hence also z((7o) = 1,

and in particular o # 0. Now it follows from 4.3 (see 4.4(2)) that

(y,z0)x =0 forally e A (xg). (6-3)
For all z € X,
x =z — x((x)xo +2((T)T0
—_————
e (zh)

which together with (6-3) yields that

(@, 20)x = (#(2)zo, w0)x = zp(x)20]”,

zh(x) = x,% =J Az x).
o ( ol )X (||500|| )@

An application of the Riesz representation theorem is the

and hence

6.2 Lax-Milgram theorem. Let X be a Hilbert space over IK and let
a: X x X — IK be sesquilinear. Assume that there exist constants ¢y and Cy
with 0 < ¢y < Cy < oo such that for all xz,y € X

(1) |a(z,y)| < Collzllxllyllx (Continuity),
(2) Rea(z,z) > collz|5% (Coercivity).

Then there exists a unique map A : X — X with
a(y,z) = (y, Az)y forall z,y € X.

In addition, A € Z(X) is an invertible operator with

JAI<Co and [|A7}] <~
€o

Proof. For every z € X it follows from (1) that the function a(, z) lies in X’
and satisfies

la(2) [ x < Collz | x -

Hence, by the Riesz representation theorem 6.1, there exists a unique element
A(x) € X such that
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{z; zf(x) = —1}

Fig. 6.1. Proof of the Riesz representation theorem

a(y,z) = (y, A(z))y forallye X
and moreover
[A@)] x = lla(2) | x, < Collz | x -

Since a and the scalar product are conjugate linear in the second argument,
it follows that A is linear. Hence A € .Z(X) with ||A|| < Cy. Moreover,

collz)% < Re a(z,z) = Re(z, A2))x < 2] 5 - [ Az,
and so
collzlly < JA(z)||y forall z € X, (6-4)

which implies that .4 (A) = {0}. In addition, it follows that the image space
Z(A) is closed, on noting that for zy,z € X

A(zk) -y ask — oo
= ox —millx < Sl Ak —2)|lx  (recall (6-4))
= %HA(xk) —A(z))||y =0 ask,l— o0
— ap—x ask—vooforanxe X
= A(xp) — A(x) (as A is continuous)
= y=AzcZ(A).
It remains to show that Z(A) = X. If Z(A) # X, then, on recalling that

Z(A) is a closed subspace, the projection theorem 4.3 yields that there exists
an zg € X \ Z(A) such that (recall 4.4(2))

(y, w0)x =0 forall y € Z(A)

(choose an Ty € X \ Z(A) and set z¢ := To — PZo, where P is the orthogonal
projection onto #Z(A)). This yields, on setting y = A(xg), that
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0 =Re (A(zo), z0) y = Re(zo, A(z0)) y = Re a(zg, z0) > co||a:0||§( >0,

a contradiction. Hence we have shown that A is bijective. It follows from
(6-4) that [[A~1]| < L. O

6.3 Consequences.
(1) Let A be the operator from 6.2 and let Rx be the isometry from theo-
rem 6.1. For a given ' € X’ the unique solution of

aly,z) =2'(y) forallye X (6-5)

is then z = A’lR;(l:z:’.

(2) The solution in (1) has the stability property

1
el < =2l (6-6)
0

Interpretation: 1If we consider two “right-hand sides” 2} and 2% and the
corresponding solutions z; and x5 in (1), then it follows from (6-6), due to
the linearity of the problem (z; — x5 is the solution to z} — %), that

|21 = 22l < 2} = 2hlx -
Hence the error in the solutions can be estimated by the error in the data.
This justifies the term stability.

(3) Formulated for the operator A, the Lax-Milgram theorem reads as fol-
lows: Let X be a Hilbert space and let A € £ (X) be coercive, i.e. there
exists a constant ¢y > 0 such that

Re(z, Az) > co||a:|\§( for all z € X.
Then A is invertible, with ||A~!|| < i
(4) If a in 6.2 is a scalar product, then the solution z in statement (1) is, in
addition, the uniquely determined absolute minimum of the functional

E(y) := 3a(y,y) — Rea'(y).
Proof (1) and (2). By the definition of A and Rx, for all z,y € X
a(yaz) = (yv Ax)X = (RxAI)(y),

and Rx A : X — X' is bijective. If v = (Rx A)~'2/, then it follows from (6-4)
that

collzllx < [lAzx = [|[Bx''|| c = ll2'llx -
O

Proof (3). The product a(y,x) := (y, Az) satisfies the properties in 6.2
with Cy = || A||. Moreover, A is the operator corresponding to a from 6.2. O
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Proof (4). Let y € X. Then

E(y) — BE(z) = 5 (a(y,y) — a(z,z)) — Rea/(y — x)
%(a(y, y) — a(x, :c)) —Rea(y — z,x)
= 3(a(y,y) — aly, =) — a(z,y) + a(z, v))
= Saly—z,y—=) > Sy —=llx

O

The Lax-Milgram theorem has applications for integral operators (see
E6.3) and for differential operators, which will be discussed in the following.
First we consider the classical case in spaces of continuous functions.

6.4 Elliptic boundary value problems. Let 2 C IR"™ be open and
bounded and let IK = IR. We want to find functions u € C?({2) satisfying the
differential equation

n

—Z@i(ZaU@ju—i—hi) +bu+f=0 1in{2. (6_7)

i=1 j=1

Here a;j, h; € C1(£2) fori,j =1,...,nand f,b € C°(£2) are given real-valued
functions, and we assume that there exists a ¢y > 0 such that for all x € (2,

> aij(2)&8 > col¢F for all € € R™ (6-8)
ij=1

We then say that the matrix (a;;(x)), ; is uniformly elliptic in x. (For every
¢ > 0, the set of points £ € IR", for which Zi,j a;;(x)&€; = ¢, is an ellipsoid.)
Let us emphasize here that the matrix (a;;(z)), ; need not be symmetric.

It turns out that, under certain assumptions, there exists a unique func-
tion u solving (6-7), which in addition satisfies suitable boundary conditions
on 0f2. The two most frequently occurring boundary conditions in mathe-

matical physics are:

(1) Dirichlet boundary condition. Let g € C°(912) be given. Find a
function u € C?(2)NC°(§2) which solves the following Dirichlet boundary
value problem:

u satisfies (6-7) in 2, u =g on 9f2.

(2) Neumann boundary condition. We assume that 2 has a C''-boundary,
i.e. that the boundary 0f2 can be locally represented as the graph of a C'-

function in an appropriately chosen coordinate system (as in A8.2). In ad-

dition, we assume that a;;,h; € C°(£2). Let g € C°(92) be given. Find a

function u € C?(2)NC*(£2) which solves the following Neumann boundary

value problem:
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n

u satisfies (6-7) in 2, — Z v; (i a;;05u + hl) =g on 0f2.

i=1 j=1

Here v = (v;),_ is the outer normal to J12.

Remark: For the boundary value problem (1) to be at all solvable, there
must exist some function up € C%(£2) N C°(N2) with ug = g on A2. Then
the boundary value problem can be transformed to one for @ := u — ug, by
replacing g with g := 0, h; with hi = h; —1—2 ai;05up, and f with f = f+bug.
Analogously, for (2) there must exist a function ug € C?(2) N C1(N2) with
-y v (E aijOjup + h;) = g on 912. Then the boundary value problem can
be transformed to one for u := u — ug, by replacing g with g := 0, h; with
h; = 0, and f with f =f=>,0 (Z a;;05up + h; ) + bug. We then call the
boundary conditions homogeneous.

We now give an equivalent definition of the boundary value problem with
the help of test functions (this gives a connection to distributions, which were
treated at the end of section 5).

In the Dirichlet case, if we multiply the differential equation (6-7) by
functions ¢ € C§°(£2), then we obtain after integration by parts that

/Q (2; @-C(; aij0ju + hi) + ¢(bu + f)) dL™ =0. (6-9)

Conversely, if this integral identity is satisfied for all ( € C§°(£2), then we
obtain, on reversing the integration by parts, that

/deL":O with w::—zai(Zaijaju—&—hi)—|—bu+f.
Q ; Z

If we assume that w(zg) # 0 for some ¢ € {2, then we can choose an gy > 0
with w > 0 or w < 0 in B, (x0) C £2, and then a nontrivial ¢ € C§° (B, (z0))
with ¢ > 0, in order to obtain a contradiction. Hence it follows that w = 0
in {2 (this also follows directly from 4.22), i.e. the differential equation (6-7)
holds in f2.

Similarly, in the Neumann case, if we multiply the differential equation
(6-7) by functions ¢ € C°°({2), on assuming that a;;, h; € C1(£2), we obtain
after integration by parts that

/Q (Z &C(Z a;;0;u + hi) + ¢ (bu + f)) dL™ + CgdH™ 1 =0.
i j

a0
(6-10)
Conversely, if this holds for all ( € C°°({2), then as before we obtain the
differential equation in 2 (here it is sufficient to consider ¢ € C§°(£2)), and
then it holds for ¢ € C°°(£2) that
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/&Q deanl =0 with w:= Zl/i (; al-jaju + hl) +g9.

2

Similarly to the argumentation above, it now follows that the Neumann
boundary condition is satisfied.

The basic idea for the solution of these boundary value problems with
the help of Hilbert space methods is to interpret the integral terms in (6-9)
and (6-10) as an L2-bilinear form, and enlarge the spaces for test functions
and solutions accordingly. As the test function appears with ¢ and 9;(, the
appropriate test space for (6-9) is the closure of C§°(2) in the space W12((2),
i.e. the space W, %(£2) (see 3.29). Since functions in Wy ?(£2), when (2 has a
C'-boundary, have in a weak sense boundary values 0 (see A8.10), W *(£2) is
also the appropriate enlarged solution space. For (6-10) the appropriate test
space is the closure of C*°(£2) in the space W2(2), i.e. for sets £2 with a C''-
boundary the space W12(2) itself (see A8.7), which is also the appropriately
enlarged solution space.

For the resulting weak formulations of the problem it is no longer nec-
essary to assume that the data a;;, hs, b, f of the problem are continuous
functions in {2. However, it is necessary to make assumptions on their inte-
grability, for instance as formulated in the following;:

6.5 Weak boundary value problems. With IK = IR it is assumed in the
following that 2 C IR™ is open and bounded, that a;; € L>(2) satisfy the
ellipticity condition (6-8) for almost all € (2, and that b € L*°(§2) and
hi, f € L?(£2). The weak formulation of the boundary value problem in 6.4
is defined as follows (where we consider only the case g = 0):

(1) We call u: 2 — IR a weak solution of the Dirichlet problem if
ue Wy?(2) and
/Q (; &‘C(; a;j0ju + hi> + ¢(bu + f)) dL” =0
for all ¢ € W,(£2).

Here, as remarked above, if £2 has a C'-boundary, then the condition u €
Wg 2(Q) in a weak sense contains the homogeneous boundary conditions, and
it is irrelevant whether ¢ varies in the space VVO1 ’2((2), or only in the space
C§o(92).

(2) We call u: 2 - R a weak solution of the Neumann problem if

u € WhH(£2) and
/n(z; &‘C(zj: a;;05u + hi) + C(bu + f)) dL" = 0

for all ¢ € WH2(2).
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Here, as explained above, if {2 has a C'-boundary, then the integral term in
a weak sense contains the homogeneous boundary conditions (for g = 0 in
6.4(2) the boundary integral in (6-10) vanishes), and it is irrelevant whether
¢ varies in the space W2(£2), or only in the space C°°(2).

We will now prove the existence of solutions to these weak boundary value
problems.

6.6 Existence theorem for the Neumann problem. Let the assump-
tions in 6.5 hold and let by > 0 with b(x) > by for almost all z € (2. Then
there exists a unique solution v € W%(£2) for the Neumann problem in
6.5(2). Moreover,

lullyre < C(IRN e + 11 £1l)

with a constant C' that is independent of h and f.
Proof. For u,v € Wh2(£2) we define

a(u,v) == Z/Qaiu-aij(?jv dr™ —&—/wavdL”. (6-11)
%]

(We mention that in general a does not need to be a scalar product, for (aij)ij
can be asymmetric.) Then a is bilinear, with

Ja(u, 0)] <D llaijll o 1Bt 210501 2 + 1Bl e 1l 2101 o
i
< Ollullyrzlloliyre  with C:= Y llaill e + 1b] g -
i

In addition, it follows from the assumptions on a;; and b that
a(u,u) > co/ |Vu|* dL” —|—bo/ lu|*dL" > - ||u||?,V12
2 0

with ¢ := min(cg, by). Hence a satisfies the assumptions of the Lax-Milgram
theorem 6.2 on the Hilbert space W12(£2). We want to find a u € WhH2($2)
such that

a(v,u) = F(v) for all v € Wh2(92),

where

F(v) = — /Q<Z A0 - i + vf) dr” . (6-12)

It follows from 6.3(1) that there exists a unique such u if F' belongs to the
dual space of W12(£2). But this is the case, since F is linear, with

[F@) <l IVolle + 1 Fll2llolle < (hllge + 1 11z2) lollwe -

In addition, the solution u can be estimated by the data, since, by 6.3(2),
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1 1
el < SIFN< = (Rl + 15050 -
O

The Dirichlet problem can also be solved in the case b = 0. Here we need
the following

6.7 Poincaré inequality. If {2 C IR" is open and bounded, then there exists
a constant Cy (which depends on 2), such that

/‘u|2dL”§C'0/|Vu|2dL” foralluGWoLQ(Q)'
o Q

Note: See also 8.16 and E10.10.

Proof. On noting that both sides of the inequality depend continuously on u
in the W1 2norm, and on recalling the definition of W&’z(()), it is sufficient
to prove the estimate for functions u € C§°({2). In the case n = 1, let
2 C [a,b] C IR. Then the Holder inequality yields for a < x < b, on setting
u=01in IR\ {2, that

2
Ju(@)* = Ju(z) - u(a)]” =

/a " Ouly) dy

g(x—a)/m\(')wu(y)\2dy§(b—a)/ |0su(y)|* dy -

Integration over z gives
b b
/ it < (b—a)Q/ |Opul? AL (6-13)
a a

In the case n > 1, let 2 C [a,b] x IR"™*. Then we obtain (6-13) by inte-
grating over z. Integration over the remaining n — 1 coordinates then yields
the desired result. (Hence the Poincaré inequality also holds for infinite slab
domains.) O

6.8 Existence theorem for the Dirichlet problem. Let the assumptions
in 6.5 hold and let b > 0. Then there exists a unique weak solution u €
W, 2(£2) for the Dirichlet problem in 6.5(1). Moreover,

lullyrre < (IRl gz + 1f1l2)
with a constant C' that is independent of h and f.

Proof. Consider the bilinear form a in (6-11), now on the Hilbert space
W 2(£2). As in the proof of 6.6,
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la(u,v)| < Cllullyrzllv|ly..

and the assumptions on the coefficients yield that
au,u) > co/ |Vu|® dL™ = ¢ HVuH%z for u € Wy?(£2).
Q

Then it follows, with the constant Cy from 6.7, that

Co+1
2 2 2 2 0
lullwre = lullze + 1 Vullze < (Co+ D[ Vul[f, < ———

< a(u,u),

and so a(u,u) > ¢ ||u||?,V12 with ¢ = ¢g - (Co + 1)~!. Hence a satisfies the
assumptions of the Lax-Milgram theorem 6.2 on the Hilbert space W, *(£2).
The functional F in (6-12), restricted to the space W, *(£2), then lies in its
dual space. Hence, by 6.3(1), there exists a unique u € WOI’Q(Q) with

a(v,u) = F(v) for all v € W, *(£2).
The estimate follows again from 6.3(2) (see the proof 6.6). O

6.9 Remark (Regularity of the solution). Based on the existence proofs
in 6.6 and 6.8 for weak solutions of the boundary value problem, it is possible
to show a posteriori that a weak solution is indeed a classical solution of the
boundary value problem in the sense of 6.4, provided the data a;;, hi, b,
f and 02 satisfy certain regularity conditions (by the regularity theory for
partial differential equations, see e.g. [GilbargTrudinger]). If we assume, for
instance, that a;; € C™'(£2), h; € W™TL2(Q2) and f € W™?(2) with
m > 0, then it follows that u € W, "-"*?(2) (see Friedrichs’ theorem A12.2).
If in addition 942 is locally given by graphs of C™*1:!functions, then one can
correspondingly show that u € W™+22((2) (see A12.3). These two theorems
constitute the L2-regularity theory. This compares with the LP-theory, which
is based on the Calderén-Zygmund inequality in 10.20, and the Schauder
theory, which on the basis of the Holder-Korn-Lichtenstein inequality in 10.19
gives regularity results in Holder spaces.

Radon-Nikodym’s theorem

After we have shown in 6.1 that the dual space of a Hilbert space is canoni-
cally isomorphic to the Hilbert space itself, we now want to consider specific
Banach spaces, LP (i) and C°(S), and characterize their dual spaces. (a list of
dual spaces can be found in [DunfordSchwartz: IV 15, S. 374-379]). First we
state a characterization of L?(u)’, for which we will need the Radon-Nikodym
theorem 6.11.
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6.10 Definition (Variational measure). Let B be a ring over a set S (see
A3.1) and let A : B — IK™ be additive. For E € B define

k
[A|(E) := sup { Z IN(E;)| ; k€ N, E; € B pairwise disjoint, F; C E } .
i=1

It holds that |A| : B — [0, 00] is additive. We also call |A| the variational
measure for \. In addition, in the case where B contains the set S, we call

A ]lar == [AI(5)

var

the total variation of X\. The measure ) is called a bounded measure if
| A ] yar < 00-

Proof. We prove the additivity of |A|. If By, By € B are disjoint, then it is
easy to see that
IA[(B1) + |A|(B2) < [A|[(B1U By).

Moreover, for € > 0 choose disjoint F; € B, i =1,...,k, with F; C By U By,
such that

k k
IM(B1UBy) —e < Y |AE:)| =D [AME; N B1) + A(E; N By)|
=1 =1

< AI(B1) + [A[(Bz) -
O

6.11 Radon-Nikodym theorem. Let (5, B, 1) be a o-finite measure space
and let
v:B—=IK be g-additive with |||, < oo.

var

In addition, let v be absolutely continuous with respect to pu, i.e. for all
EeB
wE)y=0 = v(E)=0.

Then there exists a unique function f € L*(u) such that

V(E):/fdu for all £ € B.
E

Remark: The function f is called the Radon-Nikodym derivative of v
with respect to u, and is also denoted by g—z.

Proof. Let f1,fo € L*(u) be two such representing functions and let f :=
fi—fo.Let E:={xz€S; f(x)ee>4§}}, where e € IK\ {0} and § > 0. Then
(recall 5.11)



174 6 Linear functionals

0= ([ ndu= [ pran)ec= [ focan=oum),

and so u(E) = 0 for all e, 4, which implies that f; = fo p-almost everywhere.
This proves the uniqueness.

In order to prove the existence, we may assume that v is real-valued
(otherwise consider the real and imaginary part separately). It follows from
the Hahn decomposition (see A6.2) that we may further assume that v is
nonnegative. Then (S, B, u+ v) is also a measure space, since for N € B and
EcCS

(u+v)(N)=0, ECN

= wu(N)=0, ECN = Ee€B, u(E)=0.
Now v induces a measure space (S, E, v) with B C l?, where the sets from
B are unions of sets from B with v-null sets. Since v < 1+ v, it holds that

L'(u+ v) is contained in L'(v). On recalling that v(S) < oo, it follows from
the Holder inequality that L?(v) C L(v). Hence if g € L?(u + v), then

] /S 9| < VB gl < VoS gl e -

As L?(n + v) is a Hilbert space, the Riesz representation theorem 6.1 then
implies that there exists an h € L?(u + v) such that, for all g € L?(u +v),

/gdv= (9 M) p2(usn) = / ghd(p+v),
s s
ie.
/ g(1—h)dv = / ghdu  for all g € L*(u+v). (6-14)
5 5
We now show that

0<h<1l (p+v)-almost everywhere.

On setting g = X{n<oyns,,, where {h < 0} := {z € S; h(z) <0} and S, is
as in 3.9(4), it follows from (6-14) that

Og/ (1—h)d1/:/ hdp < —ep({h < —e}nNS,) .
{h<0}NS,, {h<0}NSm
This implies that u ({h < —e} N S,,) = 0 for all ¢ > 0 and all m, and hence

also p ({h < 0}) = 0. Since v is absolutely continuous with respect to p, it
follows that also v ({h < 0}) = 0. Similarly, it follows from (6-14) that, when

9= X{h21}ﬁ5ma

02/ (1—h)du=/ hdu > p({h > 130 S) |
(h>1}NS,m {(h>1}NS,m
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and so p({h > 1}) = 0, which by assumption yields that v ({h > 1}) = 0.
This shows that 0 < h < 1 almost everywhere with respect to pu + v. In
particular, it follows that for £ € B with u(E) < co we can in (6-14) choose

1-nk
1-h

g XE:(kZlhi)XEeLw(wru),
=0

which yields that

h
/E(lfhk)dy:/Em(lfhk)d,u.

On noting that p1+v-almost everywhere 0 < (1—h*)Xg / Xp € LY (u+v) as
k /oo, we conclude from the monotone convergence theorem that %X B €

L'(u) and
h
V(E)—/Emd,u,

ie. ﬁ is the desired function. The fact that ﬂ—h € L'(u) follows again from
the monotone convergence theorem, upon setting £ = |J i<m S;, taking the
limit m — oo, and recalling that v(S) < co. (A purely measure theoretical

proof of the Radon-Nikodym theorem can be found in e.g. [Halmos].) O
6.12 Theorem (Dual space of LP for p < oo). Let (5, B, 1) be a measure
space and let 1 < p < oo (the dual exponent p’ is given by % + 1% =1,

if p =1 then p’ = c0). In the case p = 1, we assume in addition that pu is
o-finite. For f € LP (u) let

J(f)(9) = / gfdp  forall g € LP(u).

s
Then J : LP (1) — LP(p)’ is a conjugate linear isometric isomorphism.

Special case: In the Hilbert space case p = 2 = p/, the isometry J coincides
with the isometry in 6.1.

Proof. Tt follows from the Holder inequality that J is well defined and that
[T (zoyr < || fllpwr- Clearly, J is conjugate linear. Moreover, .J is injective,

since J(f) = 0 implies in the case p > 1 with g := |f|?~2f € LP(u) that
0=(Nle) = [ 17 au.

and so that f = 0 in L?'(11). In the case p = 1 set g = X, f € L' () with S,,,
as in 3.9(4) and obtain that f = 0 almost everywhere in S,,. Letting m — oo
we conclude that f =0 in L>®(u).

Now let F' € LP(u). We need to show that there exists an f € LP (u)

with
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F=J(f) and | fllp» < ||F||(Lp)/-
First we consider the special case p(S) < oco. Then
v(E) =F(Xg) forEeB

satisfies the assumptions of the Radon-Nikodym theorem. To see this, note
that for disjoint sets E1, ..., By, in B with v(E;) # 0 it holds that

m m

)| = ov(E; wi J-'ziy(Ei)
;\V(Ez)\ ; wv(E;)  with oy : D]

m
E 0 XE,
i=1

1Pl (S mED)" S UF 1oy - (S)F
=1

(6-15)

= F(Y_0is,) < Il gy -
i=1 L

ie. ||y

var

< oo. In addition, for £ = J;cy £s with E; € B, E; C E;y

1 .
[v(E) = v(E)| = |F(Xp\g,)| < | Fll oy (BN E)? =0 asi— oo,

i.e. v is o-additive. By the way, v is absolutely continuous w.r.t. u, since for
p-null sets E we have Xg = 0 in LP(u), and therefore v(E) = F(Xg) = 0.

Hence, by the Radon-Nikodym theorem 6.11, there exists a function f €
L' (i) with

F(XE):/XE?du for all E € B.
S

It follows that
F(g) = /ngdu (6-16)

for all functions g € L*(u), because such functions can be uniformly ap-
proximated by finite linear combinations of characteristic functions X with
measurable E C S (see the note in 3.26(1)). Now for m € IN and 1 < ¢ < o0
we choose in particular

g:XAm|f\q_2f, where A, :=={x € S; 0<|f(x)| <m},

and obtain from (6-16) that

/

In the case p > 1, setting ¢ = p’ (so that p(¢ — 1) = p’), yields after cancel-
lation that

1
—1 D
717 = F(6) < 1Py gl = 1Py ([ 171707 )

m

1

(f 11 an)” <Pl
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On letting m — oo, it follows from the monotone convergence theorem that
fe L? (p) and [|f][ < [[F|[(1sy - In the case p = 1, choose ¢ € IN and
obtain inductively that

[ < 1Py [ £ < 1Py A,

m m

i.e.
1

(1717 d) " < 1Py - A
Am

Then, on letting ¢ — oo, it follows from E3.4 (for the function X4  f) that

m

|fI < [Fll(zs) almost everywhere in A, which implies that |[f -~ <

||FH(LP)"

On noting that the functions g, for which (6-16) originally held, are dense
in LP(u), it now follows from the Holder inequality that (6-16) holds for all
g € LP(u), and so F' = J(f), which is what we wanted to show.

We now consider the case of a general measure space, and define B =
{A e B; u(A) < cc}. For A € B let

pa(E) == p(ANE), Falg):=F(Xag).

Then 114(S) < oo with pa(S\ A) =0, and F € LP(ua)’, with || Fallzs) <
[ ]| (0 - Hence it follows from what we have shown so far that there exists

a unique f4 € LP (j14) with

Fa(g) = /ngjdpA for all g € LP(ua) (6-17)

and || fallp»r = [[Fall(zs)- On defining fa(x) := 0 for 2 € S\ A, we have that

fa € LP' (11). As in the proof of the injectivity of .J, it follows that fa, = fa,
p-almost everywhere in AjNAs for Ay, Ay € B. Hence, |fa, | < |fa,| p-almost
everywhere if A; C As, and then

[ falle < 1 fazllpe = ||FA2H(Lp)/ < ”F”(LP)’ < 0.
It follows that there exist B,, € B with B,, C By,41 for m € IN, such that

178 o — s 7= sup || fall L asm — o0
AeB

If p = 1, then the B,, can be chosen such that S,, C B,,, where the S, are
as in 3.9(4). Then

B = U B, f(z):=

{ fB,, (z) forz e By, meN,
meN

0 for x € S\ B,
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(for p > 1 by the monotone convergence theorem) defines an f € LP (1) with

£l = 5= sup | £all o = sup | Fall oy < I1F 1oy -
AeB AeB

Now
fa = f almost everywhere in A, if A € B with A C B,

since in A N B, it holds almost everywhere that f = fg, = fanp,, = fa.
We claim that

fa = 0 almost everywhere in S, if A € B with AN B = .

In the case p = 1, this trivially follows from B = S. In the case p > 1, on
noting that AN B,, = 0, it follows that

/ ’ ’ / / ’
|faus,, [" = 1fal” +|fB,. ", andso s* >|falll,, + /5,7, -

Letting m — oo yields that s? > || fa Hi’p/ + s, and hence our claim.
Now let g € LP(pu) with g = 0 almost everywhere in S\ A for an A € B.
Then, by (6-17),

F(g):FA(g):/ng?duA:Agf?du.

Since, as shown above, f4 = fa\p =0in A\ B and fa = fanp = f in ANB,
this is in turn equal to

/Ant?d“ = /Ag?dﬂ = /ng — J(f)(g)-

On noting that such functions g are dense in LP(u) (approximating g, for
example, by X4, g, n € N, with 4, := {2z € S; |g(z)| > 1}), it follows that
F(g) = J(f)(g) for all g € LP(p). 0

With the help of the result in theorem 6.12, we can establish a distribu-
tional characterization of LP-functions:

6.13 Corollary. Let {2 C IR"™ be open and let 1 < p < oo. Then it holds for
functions f : 2 — IK that

f € Li,.(£2) and there exists a C' with
e L’(2) =
ferr(@) [ crav
Q

The constant C' on the right-hand side satisfies || f{| ;o) < C.

Notation: Here L (§2) is the space of locally integrable functions in £2, de-

fined in 5.13(2). Moreover, 1 < p’ < oo is the dual exponent, i.e. %—&— i =1.

< Cl[¢ll o (g for all ¢ € C5°(£2).

Note: For a generalization of the result to Sobolev functions, see E6.7.
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Proof =-. The Holder inequality yields that
/ ¢fdL”
[0

Proof <. The estimate yields that on C§°(§2) equipped with the L¥' -norm,

< Mcllee @) - 1 llzo ) -

O

F(O) = /Q Cf L

is linear and continuous. In the case p > 1, we have that C5°(£2) is dense
in L¥' (£2) (this follows from 4.15(3) as p/ < c0), and so F can be uniquely
extended to L (£2), as a functional F' € L? (2)' (see E5.3). Hence it follows
from 6.12 that there exists an f € LP(£2) with

F(g) :/ gfdL"  for all g € L¥'(02).
2

Since

/ CfdL® :/ CfdL™  for all ¢ € C3°(£2),
Q Q
f= falmost everywhere in {2 (see 4.22). In the case p = 1, set

fl@) .
g@) =4 [f@yp TH@D#0

0, otherwise.

Let D CC {2 and let (¢.).., be a standard Dirac sequence. Then (. :=
¢ x (Xpg) € C§°(£2) for sufficiently small € > 0, and

‘ /Q C.f L

Letting ¢ — 0, we obtain from Lebesgue’s convergence theorem (as (. — Xpg
almost everywhere for a subsequence £ — 0) that

[isar=| [ gpaur

where the constant C' is independent of D. Hence f € L1(£2). O

< Ollée]l e <€

Sca

Hahn-Banach’s theorem

For the characterization of C°(S)" we will use the fact that functionals on
C°(S) can be extended norm-preservingly to B(S) (see the proof 6.23). The
existence of such extensions in more general situations is guaranteed by the
following two theorems.
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6.14 Hahn-Banach theorem. Let X be an IR-vector space and let the
following hold:

(1) p: X —» R is sublinear, i.e. for all z,y € X and o € R,
p(x+y) <p(@)+ply) and plaz)=ap(z) for a > 0.

(2) f:Y — IR is linear with a subspace Y C X.
(3) f(z) <p(zx) forzeY.

Then there exists a linear map F': X — IR such that
F(z)=f(z)forx €Y and F(z)<p(x) forz € X.
Proof. We consider the class of all extensions of f, that is,
M = {(Z,g) ; Z subspace, Y C Z C X,
g:Z%IRlinear,g:fonY,ggponZ}.

Consider an arbitrary (Z,g) € M with Z # X and a 29 € X \ Z. We want
to extend g at least to
Zy :=span(Z U{zp}) = Z ®spanf{zp} .
We attempt the ansatz
go(z + azp) :=¢g(2) +ca for z € Z and o € R.

Here c still needs to be suitably chosen, so that (Zy, gg) € M. Clearly, g is
linear on Zy. Moreover, go = g = f on Y. It remains to show that

g(z) +ca < p(z+az) forzeZand a € R.

Since g < p on Z, this is satisfied for @« = 0. For o > 0 the inequality is
equivalent to

¢ < (pz+ az0) — 9(2)) =p(2 + 20) —9(%)

Q=

and for e < 0 to
c>L(p(z+azx)—gz) =g9(-2) —p(—2 — 20) .

Hence we need to find a number ¢ such that

sup (9(2) —p(z = 20)) < ¢ < f (p(z +20) = 9(2)) -
z€Z z€

This is possible, because for z, 2z’ € Z we have

9(z') +9(2) = g(' +2) <p(z' +2)
=p(z' — 20+ 2+ 20) <p(z' — 20) +p(z + 20)

and hence
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9(#") = p(z" — 20) < p(z + 20) — 9(2) -

We now hope that this extension procedure yields an (X, F) € M. To this
end, we make use of

Zorn’s lemma: Let (M, <) be a nonempty partially ordered set (i.e. if
m1 < mg and my < mg, then my < mg, and m < m for all m € M) such that
every totally ordered subset N (i.e. for all ny,ns € A it holds that ny < ng
or ny < ny) has an upper bound (i.e. there exists an m € M with n < m
for all n € N). Then M contains a maximal element (i.e. there exists an
mo € M such that for all m € M it holds that mg < m = m < my).

In our case, an order is defined by
(Z1,91) < (Z2,92) == Z1 C Zyand g2 = g1 on Z;.

We need to verify the assumptions of Zorn’s lemma. Let N' C M be totally
ordered and define

z. = |J 2,
(Z,9)eN
g«(z) :=g(x), ifzeZand (Zyg)eN.
We need to show that (Z,,g.) € M. Now Y C Z, C X, and g, is a well
defined function, because
r€Z\NZy, (Z1,01) EN, (Za,92) €N
= (Z1,01) < (Z2,92) or (Z2,92) < (Z1,91) (total order of NV)
= Z1 C Zyand go = g1 on Z; (in the first case)
= go(x) =gi1(x) (asxz € Zy).
The properties g« = f on Y and g. < p on Z, carry over. The linearity of Z,
and g, can be seen as follows:
r,y € Z,, a €R
= There exist (Z;,9:) € N, (Zy,9y) € N withz € Z, and y € Z,
= (Zs,92) < (Zyagy) or (Zyagy) < (Zs,9x)
= 1,y € Z¢ with £ =y in the first and { = « in the second case,
hence also x + ay € Z¢ C Z, and
gx(z + ay) = ge(z + ay) = ge(z) + age(y) = g«(z) + ag.(y) -
Hence it follows from Zorn’s lemma that M has a maximal element (Z, g). If

we assume that Z # X, then the extension procedure from the beginning of
the proof yields a (Zy, go) € M with

(Z,9) < (Zo,90) and Zy# Z,



182 6 Linear functionals
which contradicts the maximality of (Z, g). O
The Hahn-Banach theorem has the following version for linear functionals.

6.15 Hahn-Banach theorem (for linear functionals). Let X be a
normed IK-vector space and Y be a subspace (with the norm of X !). Then
for ¢y’ € Y’ there exists an ' € X’ with

=y onY and 2’| =¥y
Proof for IK = IR. Choose
p@) =1y ly llally forx € X
in 6.14, so that for y € Y
v' W) < 1Y Iy lylly = 19y lyllx = p(y) -
Then, by 6.14, there exists a linear map 2’ : X — IR with
2=y onY and 2’ <pon X.
The second property implies that
+a'(x) = 2'(£2) < p(Ez) = [V |y Izl x ,

ie. 2’ € X" with [[2'|| v, < ||¥|ly, and the first property implies that

1y ly = Sup. 1y ()| = Sup. 2" ()] < [12"[| x -
Yy € Yy €
lyllx <1 lyllx <1

O

Proof for IK = C. Consider X and Y as normed IR-vector spaces X and
YR (i.e. scalar multiplication is defined only for real numbers, but the norms
remain the same). Let X and Yp; be the corresponding dual spaces. For
y' € Y’ it then holds that

yée = Rey/ € Y]lgu with ||y;eHY]§{ S Hy/HY’

and

Y'(z) = Rey'(z) +ilmy'(z) = y,o(x) — iyl (iz)
It follows from the real case treated above that there exists an extension z,
of yf, to Xm with |27, = |4/ |y - Define

2 (z) =2l (z) — izl (iz) .

Then 2/ =y on Y, and 2’ : X — C is C-linear, because 2’ is IR-linear and
for x € X we have that
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— i (—ial (i) + 2l(2)) = e/ (2)
Now let € X. Then 2'(z) € € can be written as 2'(z) = rel with § € R
and r > 0. Therefore,
|2’ (z)| = r = Re(e %2/ (x)) = Rex'(e )
— (%) < lalell, ol
and we recall that ||:1c;e||X]/R = Hyﬁellyﬁ% < |||y, This shows that ' € X’

with ||’ v, < [|¥/|ly,. As 2’ is an extension of 3, it must also hold that
12l = 19 ly- O

As an application, we show that points in a normed space can be separated
from subspaces with the help of linear functionals (see the generalization of
suspaces to closed convex sets in 8.12). This separation property is often used
in order to show that a given subspace is dense in the ambient space X.

6.16 Theorem. Let Y be a closed subspace of the normed space X and let
zo ¢ Y. Then there exists an 2’ € X’ with

¥ =0o0nY, |||y =1, a'(xg)=dist(zo,Y).
Remark: Then there also exists an 2/ € X’ with

1

!/ — 0 Y / , = ,
. on Y, la'llx dist(z0,Y)

z'(zo) =1.

Proof. On
Yo :=span (Y U {xo}) =Y & span{zg}
define
Wy + awo) = a - dist(zy,Y) fory €Y and a € K.

Then y; : Yy — K is linear and yj, = 0 on Y. We want to show that y; € Yj
with ||y} ||Y0, =1, as 6.15 then yields the desired result.
Let y € Y and a # 0. Then

dist(zg,Y) <

and so

y0(y + axo)| < |of

—Y
To — O‘HX = [lazo + Yl x s

and hence yo € Yy with Hy6||YO, < 1. The closedness of Y yields that
dist(zo,Y) > 0, and so for € > 0 we can choose a y. € Y such that
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[0 = yellx < (1 +e)dist(zo,Y).

Then
y(l)(xo - ys) = diSt(xo, Y) > %ﬂ”xo — Ye ”X )
which, since z¢ — y. # 0, implies that ||y} HYO’ > ﬁ —lase\,0. O

6.17 Corollaries. Let X be a normed space and let zg € X. Then:
(1) If zy # 0, then there exists an xf, € X’ with
[zl =1 and  ap(zo) = [lzolly -

(2) If 2’'(z0) =0 for all 2’ € X', then zy = 0.
(3) Setting Tz’ := a'(x) for 2’ € X’ defines an element T of Z(X";IK) =
(X')’, the bidual space (see 8.2), with || T'|| = ||zo|| x-

Proof. (1) is the result in 6.16 with ¥ = {0}, and (2) follows from (1).
In (3) we have that |T2'| < ||2| v [|zo| x, and if 2o # 0 it holds that
|Tzh| = ||zoll x with 2 as in (1). Hence | T|| = ||zo]| x- O

6.18 Remark. The result 6.16 may also be interpreted as a generalization
of the projection theorem for Hilbert spaces in the linear case. To see this,
assume that X is a Hilbert space and define

LL‘I(LL‘) R LU()—P{,EO
A\ lwo — Pxoll )

where P is the orthogonal projection onto Y from 4.3. It follows from 4.4(2)
that 2 = 0 on Y and hence

2’ (o) = 2'(xo — Pxo) = ||w0 — Pxol x

and moreover |2'(x)| < ||| y. Hence 2" has all the properties in 6.16.

Riesz-Radon’s theorem

As we have seen in 6.12 the dual space of the function space LP(u), if 1 <
p < 00, is isomorphic to a space that is again a function space. We will now
show that the dual space of C°(S) is isomorphic to a space of measures. To
this end, we need the following definitions (the notations are the same as in
[DunfordSchwartz : TV 2]).

6.19 Definition (Borel sets). Let X be a topological space. The set of
Borel sets is defined as the smallest o-algebra that contains the closed sub-
sets of X (or, equivalently, the open subsets of X).
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6.20 Spaces of additive measures. Let S C IR" be equipped with the
relative topology of IR™ (see 2.11). Let By be the smallest Boolean algebra
that contains the closed (or, equivalently, open) subsets of S, and let B; be
the set of Borel sets of S, i.e. the smallest o-algebra containing By. Then

ba(S;IK™) == {A: By — K™ ; X is additive and || A[|,,,
ca(S;IK™) :={X: By — IK™; X\ is o-additive and || A]]

< oo},
< oo}

var

are IK-vector spaces and, equipped with the total variation as the norm, also
Banach spaces. In the definition, ba stands for “bounded additive” and ca
stands for “countably additive”. As usual, we set ba(S) := ba(S;IK) and
ca(S) := ca(S; K).

Proof. We prove the completeness. Let (A),.n be a Cauchy sequence in
ba(S;IK™). Then it holds for E € By that

[IM(E) = M(E)| <IN — Aillyar = 0 as k1 — o0,
and so there exists
AME) = l1_1>11010 M(E)  for E € By
and the additivity carries over to A. In addition,

||/\ - /\k”var var

Shmlnf”)\l—/\k” — 0 as k — oo.
=00

Analogously, for Cauchy sequences in ca(S;IK™) there exists a limit A on By .
If E; € By with E; D Ejyy and (), Bs = 0, then for | > k and as [ — oo

var

ME) |« IM(E)| < [M(B)| + A=Al
——— —_——

—0asi1— o —0asl >k — o
for every k

i.e. A\ is o-additive. O

6.21 Spaces of regular measures. Let S C IR", By, and B be as in 6.20.
A measure A in ba(S;IK™) or ca(S;IK™) is called regular if for all E € By
or E € B, respectively,

inf { M(U\K); KCECU, K is closed in S
andUisopeninS} =0.

Here |A| is the variational measure from 6.10 and in S we consider the relative
topology from 2.11, i.e. a set U C S is called open in S if it is of the form
U =S5NYV for an open set V C IR", and a set K C S is called closed in S if
S\ K is open in S. We define
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rba(S; IK™) := {\X € ba(S;IK™); A is regular},
rea(S;IK™) :={\ € ca(S;IK™); X is regular}.

These sets are IK-vector spaces and, equipped with the total variation as the
norm, also Banach spaces. In the definition, rba stands for “regular bounded
additive” and rca stands for “regular countably additive”. As usual, we set
rba(S) := rba(S; K) and rca(S) := rea(S; K).

Proof. For the completeness we need to show that for regular measures Ay it

follows from A\ — A in ba(S;IK™) as k — oo that A is also regular. To prove

this we note that for K C £ C U, as in the definition of regularity,
INUNEK) < AU\ K) + A= Al oy -

The first term on the right-hand side can be made arbitrarily small for every
k, by choosing U and K appropriately. a

In the following we need the fact that for regular measures p : By —
[0, 001, continuous functions are integrable, i.e. that they lie in L'(u). The
proof of this result is the construction of the Riemann integral, which for our
purposes we give here for vector-valued measures A : By — IK™.

6.22 Integral of continuous functions (Riemann integral). Let By be
as in 6.20. In addition, assume that A : By — IK™ is additive with ||A]| ., <
oo. For step functions

k
f:ZXEiOzi, kGH\I,aiEK,EiEBo,

i=1

it holds that i
/ fd\:= Zai/\(Ei)
S i=1

is independent of the representation of f. Moreover, we have that (choose E;
in the representation of f disjoint)

’/fdA‘ <1 F s - A e
S

Every continuous and bounded function f : S — IK can be approximated by
such step functions in the supremum norm. To see this, cover the bounded
set f(S) with open sets U;, i = 1,...,l, with diameter < % Then one can
construct another cover by (cf. the proof of A3.19(2))

Vi=U\|JU; fori=1,...1,

j<i
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where now the sets V; are pairwise disjoint. In addition,
Bi=f' Vi) = U\ U Uy € B
j<i

On choosing «; € V;, if V; is nonempty, it follows that

!
> ke, —f
i=1

which proves the desired approximation property.
Now, if (fx),en 1S @ sequence of step functions that converges uniformly
to f, then it follows that

<

)

E

sup

[ ear= [ R < 1A= Al DAl 0 a5 81 = .
S S

Hence there exists
/fd/\ = lim / frdA,
and the limit is independent of the choice of approximating sequence (f);cn-

6.23 Riesz-Radon theorem (Dual space of C°). Let S C IR"” be com-
pact. Then

0 = [ fav
defines a linear isometric isomorphism
J :rea(S) — C°(S).

Here rca(S) is the space defined in 6.21 and the integral for continuous func-
tions is defined as in 6.22.

Proof. For v € rca(S) and f € C°(S) it follows from the definition of the
Riemann integral that

T = ‘/Sfdv

and hence J is continuous. Moreover, J is isometric. To see this, note that
for v € rea(S) and e > 0 there exists a partitioning of S into Borel sets E;,
1=1,...,m, with

< llsup - 11 var »

1Vl S €D 0B
=1

As v is regular, there exist compact sets K; C E; with [v|(E; \ K;) < =
Then B;(K;) are disjoint sets for sufficiently small § > 0, and
|I/|(S N B(;(Kl) \Kl) —0 asd 0,

which follows once again from the regularity of v. On defining
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fi(x) == max(1 — idist(z, K;),0)

and

v(K;) .

, i v(K;) #0,
op = V(K]
0, otherwise,

it holds, if ¢ is sufficiently small, that

d_ofi| <1

=1 sup

and

J(V)(;Uifi) ;Ui/sfidy
§<|V(Kz)| + o /SmBJ( ok fi dl/)

Z I—Z\VI SN Bs(Ki) \ Ki)

> |[vllvar — 26 = Z w[(SNBs(Ki) \ K;)
i=1

on letting § N\, 0 and then € 0.

— v

var

Now the crucial step is to show that for F € C°(S)’ there exists a v € rca(S)
with J(v) = F. It follows from the Hahn-Banach theorem that F' can be
extended norm-preservingly to F' € B(S)" (B(S) is the space defined in 3.1).
Define

ME):=F(Xg) for ECS.

Then A is additive and [|A[|,, < || F| 5(s)» which follows as in (6-15). There-

var —
fore, by the definition of the Riemann integral,

:/Sfd)\

for all f € CY(S). Hence we want to find a v € rca(S) such that

/fdy:/fdA for all f € CY(S).
S S

The proof that such a v exists is given in Appendix A6 (see A6.6). O

With the help of the result in theorem 6.23, we can provide a distributional
characterization of regular measures.
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6.24 Corollary. Let 2 C IR™ be open and bounded, let C' > 0 and let
T:CH(2) =K be linear with |T(¢)| < C- [[Cllgyp for all ¢ € Cy(92).
Then there exists a unique A € rca(2) with
var =sup { |T(Q)| s €€ C0(2), I¢lly, =11} <C,
= /di/\ for all ¢ € C§(£2).

Al

Remark: Tt is sufficient to assume that

Te'(Q) with |T(C)]<C-||C]... forall ¢ € C(02).

sup

That is because T can then be uniquely extended to a linear map on C§(£2),
which satisfies the above estimate (approximate functions in CJ(§2) by means
of convolutions).

Proof. Consider the open sets
mzf{xeﬂ dist(z, 012) }

For m > myg, with mg sufficiently large, £2,, is nonempty and S,, := £2,, C
2,41 is compact. For m > myq choose 1, € C5°(£2,,) with 0 < n,,, <1 and
Nm = 1 on S;,,—1. Then

Tin(9) :=T(nmg)  for g € C(Si)
defines a T,,, € C°(S,,) with
1Tl < Cr = sup{|T(Q)]; ¢ € C3(2), lI¢llg, =1} < C.

Hence it follows from 6.23 that there exist uniquely determined v, € rca(Sy,)
with ||vm ], < Cr and

var —

Tole) = [ gdvn forg e CO(S,).

m

For ¢ € C§(£2,,) and [ > m it holds that n,¢ = ¢ (here we set ( = 0 outside
of £2,,), and so

/ Cdyy= | (dyy =T(m¢) =T(C)
Sm Si

independently of [. We claim that

v(E) is independent of [ > m for Borel sets E C Sy,—1. (6-18)
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Indeed, let K C S,,—1 be compact. Then (5(x) := max(l — %dist(ac, K), 0) for
small § > 0 defines a (5 € CJ(§2,,). Since v; is a regular measure, |v|(Bs(K)\
K) N\, 0 as 0 \, 0, and hence

/Q;dul—>ul(K) as 0 \, 0,
Sm

i.e. (6-18) holds for compact sets in Sy,—1. The regularity of v; then implies
that (6-18) holds for all Borel sets. For Borel sets E with E C {2 we have
that E C Sy, for some m € IN, and it follows from (6-18) that

ANE) :=y(E) forl,meN with EC Sy, | >m+2

is well defined. For ¢ € CJ({2) it holds that supp(¢) C £2,,, for some m € IN
and

T(<>=/Sm<dA

independently of m.

We need to show that A can be extended to a A € rca(2). If E;, i =
1,...,k, are pairwise disjoint with E; C £2, then, as above, there exists an m
with F; C S, fori=1,...,k and

k k
S IME) =D [vms2(B)] < [Vimtall e < O

i=1 i=1
In addition, for every Borel set E C {2 the limit

AME) = lim ME N Sy) (6-19)

m—o0

exists. To see this, let B, := ENSy, \ Sm—1 for m > mg and E,,, := ENSp,,.
Then

ENSn= CJ Ei, MENSy)= iA(Ei)

and, as shown above,
m

ST ME)| < Cr.

’i:mg
Hence (6-19) defines an extension of A to the Borel sets of 2. Then it easily
follows that A € rca(f2) with || A|l,,, < Cr. From the representation of 7" it
then easily follows that Cr < || A]] O

var”

As an application of theorem 6.23 (and in particular of 6.24), we con-
sider the space BV ({2). This space plays an important role in the functional
analysis treatment of certain geometric differential equations, because it re-
places the space WP (§2) for p = 1, which is not reflexive (see 8.11(4)). The
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functions in BV ({2) have the advantage that their weak derivatives (see 6.25,
below) can be interpreted as elements of a dual space. For existence proofs
in reflexive spaces one employs theorem 8.10, however in the space BV ({2)
one can apply theorem 8.5.

6.25 Functions of bounded variation. Let 2 C IR" be open and
bounded. Consider pairs (f,A) with f € L'(£2) and A € rca(2;IK") such
that the following rule of integration by parts holds:

/ 9i¢ - fdL" +/ ¢d\; =0 forall ( € C5°(92) (6-20)
0 0
for i = 1,...,n. This is equivalent to

fort=1,...,n.
Notation: The A;-integral is defined in 6.22, while the distributions [f] and
[A\;] are defined in 5.15.

In the spirit of the analogous definition in Sobolev spaces, we call 9; f := \;
the weak derivative of f. We have that:

(1) The set
BV(£2):= { f € L' (1) ; there exists a A € rca(2;K"),
such that (6-20) holds }

of functions of bounded variation is a IK-vector space, and it becomes a
Banach space with the norm

1By oy = 1 iy + A var -
(2) WH1(Q) c BV (£2) with a continuous inclusion.
(3) Wh(£2) is a proper subset of BV (£2).
Proof (2). For f € W1(02) the corresponding measure \ € rca(2;K") is
given by
AE) ;:/ VFdL" .
E

Moreover, [[Ally,, < IV fllpiq)- .

Proof (3). The fact that the space BV (£2) is larger than W11(£2) follows
from the existence of measures that have no representation as a function. For
instance, for 2 =1 — 1,1[ C IR the Heaviside function

1 for z >0,
o=

0 for x <0,
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lies in BV (1 — 1,1[) with

/11 ¢ Lt = —¢(0) = —/11 ¢ddo,

i.e. the weak derivative is the Dirac measure Jy at the point 0, and so
[f]"=[6] in Z'(£2).
This example can be generalized to an arbitrary (2. a

The following theorem yields an equivalent definition of the space BV ({2),
which is formulated with the help of the distribution [f] € 2'(2) for
f € LY(92) (see 5.15). An additional possible definition in the case n = 1
is presented in E6.9.

6.26 Theorem. Let 2 C IR" be open and bounded, and for f € L*(£2) let

;g € C5°(92;IK™) with

||f||grad = sup{ ‘/QfdivgdL”
lg(z)| < 1forz e Q} € [0,00] .

Here the divergence of a vector field is defined by
divo := Z@ivi for v € C1(2;TK™).
i=1

Then
BV(2)={feL'(2); [Ifllyaa < }

and for f € BV(£2) with Vf:=(9;f);_, _, € rca(2;KK"),
[ Fllgraa = IV llvar-

Proof. For g € CY(2;IK™) let

gedri=>" [ gk, 5o that ’/g-dA’§ llaup 1M e
/Q >, ; 16]laup - A

which follows by approximating g with step functions as in 6.22.
For f € BV(2) with \; := 9;f as in 6.25 and ¢ as in the above definition
of [| f|lgraq it then holds that

’/ fdiv gdL™
(9]

and so || f]|

= ‘/ ?' d)" S ||>‘||var7
2

;/Qgi dA;

grad < || >‘||va.r'
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Now let f € L'(£2) with || f|| ;0 < 00 and put

Ty(C) = —/QfaiCdL" = —/Qfdiv (Ce;)dL™  for ¢ € C°(R2).

By the definition of [ f||,,,q it holds that |T;(C)| < |[Cllsp * [|f llgraa- This
estimate shows that T; can be uniquely extended onto C§({2). Hence, by
6.24, there exists a A\; € rca((2) with

EK%:ﬂfdM for ¢ € C(9).

This shows that f € BV(§2) with 9;f = A;. On setting A := (X\;),—; _, it
then holds for g € C§°(£2;IK") that

[oe =Y [ man=> 1@ -~ [ sav@ar.
2 =178 i=1 2

and so
\/Qg- dx\ <N lanp 1 g

Similarly to the proof of the isometry property in 6.23, this implies the in-

E6 Exercises
E6.1 Dual norm on IR". Let ||| be a norm on IR", i.e. we consider the

normed space (IR", [|]]).

(1) Show that

n
J(z)(y) = Zyixi for z,y € R"™
i=1

defines a linear map J : (R", ||+]|) — (R™, ||-]])’
(2) Show that

le]l" =l J ()] for = € R"
defines a norm on IR"™ (we call it the dual norm to ||-||).
(3) J: ("™, [-]") — (R",[+])" is an isometric isomorphism.
(4) For 1 < p < oo, find the dual norm to the p-norm in 2.5.
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E6.2 Dual space of the cross product. Let X; and X5 be normed spaces
and

JX{ XXé—) (Xl XXQ)/,
J((2,25)) (1, 22)) = @1 + zhao .

Show that J is an isometric isomorphism if the norms in X; x X5 and X| x X}
are defined as in E4.12(1) with respect to |+| and |+|', respectively.

Remark: Here |+ is the dual norm to |+| from E6.1(2).

Show that this dual norm is also a monotone norm on IR?.

E6.3 Integral equation. Let K € L?(£2 x §2) and let f € L?(£2), where
2 C R" is Lebesgue measurable. For A € IR consider the integral equation

K(z,y)u(y)dy = Mu(x) + f(x) for almost all x € £2.
2

Show that for A > || K| 12 (5y ) there exists a unique solution u € L2(02).

Solution. It follows from 5.12 that
(T)a) = [ Koy dy

defines an operator T' € £ (L*(£2)) with || T[] 4120y < K || 12(0x ) Then
also A := Ald — T € Z(L*(£2)) and for u € L*(£2)
Re (u, Au), = M|ul3> — Re (u, Tu),»
2 2
= Mullze = 1T o120y - 1ullze
> (A= 1Kl an e ) lullZe
N — e ———
=:cp>0

It follows from the Lax-Milgram theorem (see the equivalent result 6.3(3))
that A is invertible, and so u := A~1(—f) is the solution of the integral
equation. 0O

E6.4 Examples of elements from C°([0,1])’. Show that the following
maps T are linear and continuous on CY([0,1]) and calculate their norm.

(1) T:C°([0,11) — C°([0,11), for a given g € CY([0,1]) defined by
(Tf)(z) :=g(x) - f(z).

(2) T : C°[0,1]1) — K, with ; € R and pairwise distinct z; € [0,1],
t=1,...,m, defined by

Tf:=>" aif(xi).
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(3) T:C°([0,1]1) — IK, with points z; and coefficients c; as in (2), defined
by
Tf = Jy J@)do = S aaf (i)
Solution (1). On noting that [(Tf)(2)| < [|gllqupll fllsup: We have that T is

: : 2 .
continuous, with [ 7' < [[glls,,- As [|T9]lgp, = ngHsup = ||gl5,p» it holds
that [T > [|g]| O

sup”

Solution (2). Since
ITFI <2 el 1 f Nl »

T is continuous, with | 7| < Y7, |a;|. As the z; are pairwise distinct,
there exists a continuous function f with |f| < 1 and f(z;) = sign(«;) for
i =1,...,m. Then

ITf] =320 leal, andso [T = 352, |ail.

Solution (3). Since

TF < (1S 1)l

T is continuous, with ||T]| <14 Y ", |a;|. Now for small § > 0, chosen so
that 6 < %|xl — ;| for all ¢ # j, consider the continuous function
(1— L_5":7'|)sign(—ozi) + 7‘3”_5'”"‘ if z € I;5 for an 1,
fzx) = ,
1 otherwise,

where I;5 := [x; — 0, z; + 0] are disjoint intervals. Then || ||, =1 and

T = | fo (f@) = Dydz + 1+ 27 o)
= |20 (Joaamn, (/@) = D dz) + 14+ 57 o)
> —dmé+ 1+ 30", |ail,

which shows that || T > 1+ >0, |a;].
Result: This means that no such quadrature formula can approximate the
integral over [0,1] for all (!) continuous functions. O

V

E6.5 Dual space of C™(I). Let I C IR be a closed interval and let z¢ € I.
Then, for m > 1,

JEV() =3 & (o) + / 07 dy
i=1 I

defines an isomorphism J : IK"™ x rea(I) — C™(I)".
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Solution. It holds that
7O (max 161+ 17 o) 1oy

and hence J is continuous with [|J|| < 1 if on IK™ x rca(I) we introduce the
norm
HEn) = max (6] + [Vl

yeeey MMV

and if the C™-norm is defined as in 3.6. Now for every function f € C™(I)
we have

m—1 1

F@) =3 L 9D (o) — wo) +

i ﬁ/ () —y)mtdy.
i=0

This can be shown by induction on m. First, note that for m = 1 this is
the fundamental theorem of calculus. The following identity then proves the
formula inductively:

| rmwe—pray= [ )" dy
S ARy f<m+1><y><x )" dy.

Hence, for every F € C™(I)" we have

m—1

Ff = f9(x)Fp; + FT ™,
=0

where

|
7! o

Fori=0,...,m — 1 it follows inductively that

m—1—1¢

Ta) () — / @y,
(Tg)*" (x) mog(y) R
since the integrand vanishes at the upper limit x. In particular,

") = [ gy, andso (20 ™) = g(a).

zo
Hence we have the estimate |79 cm iy < C - lglco(yy and it follows that
T € £(C°(I);C™(I)), which implies that FT € C°(I). By theorem 6.23,
there exists a v € rca(I) with ||v]|,,, = [|FT|| and

var
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FTg= /gdz/ for g € CO(I).
I

Setting & := Fp;_1 for i = 1,...,m, we have that
F=J(v)

and

em@py + ITIIFI

This shows that J is surjective. If in addition we can show that J is injective,
then this estimate yields that the inverse J~! is also continuous. If J(&,v) =
0, then it holds for i = 1,...,m that

I vl < (_max_ipi]
1=0,...,m—1

0=J(¢ v)pi-1 =&

and for all g € CY(I) that

0=J(&nTg= [gdv,
I
which yields v = 0, thanks to theorem 6.23. Hence J is injective. a

Remark: If
Ji(€)(z) =z 0§
is the isometry J; : IK"™ — (IK™)’ from 6.1 and

1)) = [ gav

I
is the isometry Jo : rca(I) — C°(I)’ from 6.23, then it follows from E6.2 that

Jo(&v)(z,9) = J1(§)(2) + J2(v)(g)
defines an isomorphism Jy : IK™ x rca(I) — (IK™ x C°(I))’. Moreover,

S = ((F9@0)) g, ey » F™)
defines a continuous linear map from C™(I) to K™ x CY(I). With these
definitions
J=58J,

where S’ is the adjoint map of S (see 5.5(8)). Hence J being an isomorphism
is equivalent to the isomorphy of S’ and, by theorem 12.5, equivalent to the
isomorphy of S.
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E6.6 Dual space of cg and c. Let

co:={xzel*(R); limaz; =0},

11— 00

{z € >®(R) ; it exists lim 2; } .

1—> 00

Cc

The sets ¢y and ¢, equipped with the ¢>°(IR)-norm, are Banach spaces. Char-
acterize the dual spaces ¢} and ¢’

Solution. For every y € £*(IR), setting
J(y)(z) =322 yiwy forz€co
defines a J(y) € ¢ with ||[J(y)| < ||y||,:, because
[T () ()| < sup; |2] - 32720 [yil = [z g [yl -
If we define for n € IN

sign(y;)  for i <n,
xT; = .
0 for i > n,

then || (z;) =1 and

i€1NH1€°°
Jw)(@) = Xicn vl = llyllp s - oo,

Hence J : (}(IR) — ¢} is isometric. Now let F' € ¢{. Since for all x € ¢y we
have that

x =Y. xie; in the (*-norm,
it follows that
F(‘T") = Zzoil xiF€i7

and so F' = J(y), where y; := Fe;, provided that y € ¢(!(IR). But this is
indeed the case, since

Sicn il = F(Sicpsign(ui) ei) < I+ | 2ic,signto) e,

This shows that J is an isomorphism. Then the dual space ¢’ can be charac-
terized as follows:

_=1IF].

K2

Sz = (lim z;,21 —
— 00 1

im x;,ro —
1 — 00

im x;,...)
—r 00
defines an S € Z(c¢;cp), and S is in fact an isomorphism, with

S7le = (vo+ 21,23 + 71,24 +21,...).

Therefore
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defines an isomorphism J : /1 (IR) — ¢’ O

E6.7 Characterization of Sobolev functions. Let 2 C IR" be open. For
m € NU{0} and 1 < p < oo (if m = 0 then also for p = 1) it holds for
functions f : 2 — IR that

f € Li,.(£2) and there exists a constant C' with
< Cll¢l Lo (o)
for all |s| <m and all ¢ € C§°(£2).

fewmr() <«— ’/ fo°¢cdL”
2

Here p’ is the dual exponent to p.
Note: For this characterization in the case m = 0, see 6.13. In case m > 0
we have to assume p > 1, see the space BV ({2) and 6.26.

Solution =.

| orcanr <10 F Loy 1€l gy -

:‘/Qan-gdL”

Solution <. It follows from 6.13 that f € LP(£2). For 0 < |s| < m let
F5(C) ::/ fos¢dL™  for ¢ € C3°(92).
2

The estimate [Fy(Q)[ < C[¢|l 1w () says, since p' < oo, that F, can be

extended to a functional on LP (£2). Then it follows from 6.12, again since
p’ < o0, that there exists a function f, € LP({2) with

Fy(g) :/ g fodL"  for g € LV ().
2
Therefore,
/ fos¢du = / f<CdL™  for ¢ € C§°(92),
2 2
which yields that f € W™P(§2) (with 8°f = (—1)I*I f,). 0

E6.8 Positive functionals on Cg. Let 2 C IR"™ be open and let F :
CY(2;IR) — R be a linear map with

f>0in2 = F(f)>0.

Then there exists a nonnegative locally bounded regular o-additive measure
w on the Borel sets of (2 (i is then also called a Radon measure) such that

F(f) :/Qfdu for all f € CJ(2;TR).
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Solution. Here IK = IR. Let D C {2 be open and bounded with
d:= ldist(D,@.Q) >0.

In addition, let S := B4(D). Choose a cut-off function n € CJ(2) (see 4.19)
with

0<n<1, n=1on D, n=0 outside of B4(D),

e.g.
n(z) = max(0,1 — Ldist(z, D)).
For nonnegative functions f € CO(S) we then have that nf € C{(£2), with

0<nf<nsupf,
S

and so
0 < F(nf) SF(n)-SIS{pf-

Then it follows for all f € C°(S), on setting f* := max(f,0) and f~ :=
max(—f,0), that

|[Fmf)| = [F(nf*) = Fnf)|
< (Sgpﬁ +sup f)FM) < | fllogs) - Fn).-

Hence f +— F(nf) is a continuous functional on C°(S), and 6.23 yields the
existence of a p € rca(S) with

F(nf) :/fdu for all f € C°(S).
s
For f € CJ(D) it holds that nf = f, and hence

= / fdp  forall f e CY(D).
s
We need to show that p > 0. As p is regular, it is sufficient to show that
w(K) > 0 for compact sets K C D. Now, define
Ne(x) := max(0,1 — Ldist(z, K)),

so we have 1. € CJ(D) for sufficiently small . Since 1 > 7. \, X pointwise
as € \( 0, we obtain that

OSF(ne):/gnedU—)N(K)~

A similar argument shows that g = p in D, if i is the measure in rca(S ) for a
D as above with D C D. Exhausting {2 with countably many (not necessarily
connected) domains D then yields the desired result. O
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As an alternative to the space BV ({2) in 6.25 we define the following:

E6.9 Functions of bounded variation. In the one-dimensional case we
define for S := [a,b] C IR

BV(S):= {f:[a,b] =K | flgy = |f(a)| +var(f,S) <oo },

where the variation of f on [a,b] is defined by

m

var(f, [a, b)) = sup { 3" |f(@) = f(ai-1)] ;

i=1

m € IN, a=a0<a1<...<am:b}.

Show that for f € BV(S) it holds that:
(1) Fora<uz <zy <3<,
var(f, [x1,23]) = var(f, [z1, 22]) + var(f, [zo, 23]) .
(2) The following limits exist
fi(z) :==limoo f(x +¢) fora <z <b,
fo(z) =lim~p f(x —¢) fora<az<b.

(3) Every function in BV(S) has at most countably many discontinuity
points.

Solution (1). The “<” part in the identity follows from adding x5 to the
interval partitionings of [xq,x3]. O

Solution (2). Noting that
[f@)| < [f@)]+|f(z) = f@)] < | fllzv

yields that f is bounded. Hence for # < b there exists a sequence (k;);cq
with k; \, x for ¢ — oo, such that

¢:= lim f(r;)

1—00
exists. Now it follows from (1) that for all m
2211 Var(f, [K/i-‘rla Kl]) = Var(f7 [Km-‘rla Hl]) < ||fH§‘// < 00,
and hence

Yooy var(f, [Kigp1, k1) < 1fllz < oo,
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which implies that var(f, [k;1+1,%:]) — 0 as i — co. Hence also

sup [ f(y) —¢]
Kit1 <Y<k
<17s) €1+ s 15~ J(w)]
Rit+1SYSKq

<|f(ki) =& +var(f, [Kiy1, k1) = 0 asi— oo,
which shows that & = f (z). O

Solution (3). If a < 1 < ... < x,, < b are discontinuity points of f, for
which | f4(x;) — f—(x;)| > 6, then it holds for small € — 0 that

var(f,8) > > | f(zi+e) — f(xi —€)|
= oy [ f (i) = f- ()| = md,

and so m < 0| f|| 5y- On choosing a null sequence for 4, it follows that the
discontinuity points of f are countable. O

Riemann-Stieltjes integral: Let S = [a,b] C IR and f € BV(S). Con-
sider for g € C°(S) and for partitionings a = sg < 51 < ... < s, = b the

sum
n

Zg(si)(f(si) - f(8i71)) :

i=1
If (tj)j:1 ., is a finer partitioning of S, say tr, = s; with k;_; < k;, then,
on setting d, := max; |s; — si—1|,

D950 (f(si) = fsim1)) =D a(ty) (f(ty) = f(t5-1))

i=1 j=1

n
i=1j

< sup g(ar) —g(x2)|- (Ifllgy — 0 asds — 0.

|z —x2|<ds

ki
Yo (9lsa) = a(t) (F(t5) = f(tj-1))
ki—1+1

Hence the Riemann-Stieltjes integral
Jaar= Jim 3 a0 (750 = S50

exists for f € BV(S) and g € C°(S).

E6.10 Representation of the Riemann-Stieltjes integral. Suppose
that f € BV(S). Then the following holds for the above defined integral.
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(1) There exists a A € rca(S) with

/gdf:/gd/\ for all g € C°(S).
s s

(2) The measure A in (1) satisfies for a <z < b
A [a,z]) = il{‘rg) (f(z+e)— fla)).
Solution (1). The map
Ty(g) = /Sgdf
satisfies
| [L9at] < lollen 1715

It follows that T € C°(S)" and hence theorem 6.23 yields the existence of a
A € rca(S) such that

/gd)\:Tf(g):/gdf for all g € C°(S9)
s s

and [\l = 7%l cogs - 0

Solution (2). For a < xy < b and sufficiently small ¢ > 0, consider the
continuous function

1 for x < xg + e,
ge(x) =4 1 - == formwg+e < <wo+ 28,
0 for xg + 2¢ < .

Then by the o-additivity of |\
/ gsd)\:)\([a,xo—ke])—>)\([a,x0]) ase —0
[a,z0+e
and the definition of the Riemann integral gives

/ggd)\—/\([a,l‘o-FE]) < |)\‘([$0+E,.’L‘0+2<€]) —0
S

for a sequence ¢ — 0, since || A||,,, < 0o. Moreover, by the definition of the

Riemann-Stieltjes integral,

| adf=fare - @
[a,:co-‘rs]

var

which converges to lim.\ o (f(:ro +e)— f(a)), and

[ geas = (1(an+2) = 1(@) | < var(s, T + 2.0+ 2:1) — 0
S

as € — 0. O
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Consider the functions

1 for |z| <e, 1 for z =0,
felx) = { . fz) = { :

0 otherwise, 0 otherwise.

Then f. — f pointwise as € — 0 and f # 0 in E‘//([ —1,17). Also,

var(f, [ —1,1]1) =2, but / gdf =0 forall g€ C°([ —1,11).
[-1,1]

In fact, with respect to the L'-measure we have f. — 0 almost everywhere
as ¢ — 0. As a consequence one considers function spaces

BV,.(la,b]) {feBV([a b1); f(x) = fy(x) for a < x < b,
) =f-) },
(a) = f+(a),

(x) (

=f_ x)fora<x§b},

~

BVi.(la,01) == { f € BV([a,b]); f
f

which consist of right-continuous and left-continuous functions, respectively.
Both spaces are bijective (isomorphic) to BV (1a,b[) in 6.25.

xT

E6.11 Normalized BV functions. With S := [a,b] C IR and the nota-
tions as in E6.9, let
NBV(S):= {f e BV(S); f(z)= fi(z)fora <z <b,
f(a) =0and f(b) = f_(b) }

be the space of normalized functions of bounded variation, equipped
with the norm of BV (S). Show that

(JA)(z) :== A(la,2]) fora<z<b
defines an isometric isomorphism
J:{X €rca(la,bl); AM{a}) =0, A({b}) =0} - NBV([a,b]).

Solution. The o-additivity of A yields that f := JA is right-continuous. Since
A({a}) = 0 it follows that f(a) = 0, and since A({b}) = 0 the o-additivity
gives that f(z) — f(b) as .

Moreover, for every partitioning a = ag < a1 < ... < @, = b,

Z|f az az 1 |_Z|/\ ]a’ 1, @i )’<H)\”Var’

i=1

Le. Hf”ET/ < ||>‘||var'
In addition, J is injective. In order to prove surjectivity, we use the pre-
vious exercise, which for a given f € NBV ([a,b]) yields a A € rca([a,b]),
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for which [|Al],,, < var(f, [a,0]) = [/ f]/53- It follows from E6.10(2) that

var —

JA = f, since for a <x <b
(JA)(@) = Alla, 21) = lim (f(z+¢) = fa)) = flx)

and also (JA)(b) = A([a,b]) = lim. o A([a,b—e]) = f(b). O

A6 Results from measure theory

The purpose of this appendix is to complete the proof of the representation
theorem 6.23 (see A6.6). The necessary construction of regular measures can
be found in A6.3.

Subsequently, we also present versions of Luzin’s theorem (see A6.7) and
Fubini’s theorem (see A6.10).

In the following two results, S is an arbitrary set.

A6.1 Jordan decomposition. Let 5 be a ring of subsets of the set S and
let A: B — IR be additive and bounded. Then

A= 3AF ), AT = (A=)
are additive, bounded and nonnegative on B. It holds that
A=AT A7, [Al=AT+ 27,
and, in addition,

M(E) = MMA d N (F)=-— inf
(B)= swp AA) and A (B)=-— mf

A(A).

Proof. On recalling 6.10, we only need to show that the last identity holds
for AT,
If AC E, then |A|(A) > |A(A4)], and so

NF(B) 2 X7 (4) 2 L(IMA) + A(4)) = A(A).

Now for a given € > 0 choose disjoint sets F1, ..., F,, with E; C E and
IA(B) <e+ Y [ME)]|.
i=1

On setting E,,41 := E\ U]~ E;, we have

m+1

ANE) = Z AE;),

and so
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1 c 1 m+41
N (E) = LOME) + ME) < &+ L3 (IME)] + AED)
i=1
=S+ 3 am) =5+ )( B)<S+ sw NA).
it A(E;)>0 i: A\(Ei)>0 A€B: ACE

a

A6.2 Hahn decomposition. Let B be a o-ring on the set S and let v :
B — IR be o-additive and bounded. Then there exists an ET € B such that

v(ENET)>0 and v(E\E')<0 foral E¢€B.

Proof. We assume that there exists an E € B with v(E) > 0 (otherwise
choose ET :={)). We now want to find an E* € B such that

v(ET) = so :=supgegV(E). (A6-1)

Such an E satisfies the desired result. To see this, assume that v(E\E™) > 0
for some E € B. Then

v(EYUE)=v(E")+v(E\E") > v(ET) =50,

which contradicts the definition of sq. Similarly, if »(E N ET) < 0 for some
E € B, then

v(EY\E)=v(ET) —v(ENEY) > v(ET) =50,

which again contradicts the definition of sg.
For the construction of ET, define for &k € IN

Mp:={EeB; v(E)>(1-1)so }
with the partial order
Ey<Ey, = (EDFE,andv(E) <v(E:))or Ey=E;.
Let N' C My, be totally ordered and let

s:= sup v(E).
EeN

Then there exist E; € N, i € IN, with
v(E;) <v(Eit1) s asi—00. (A6-2)

As N is totally ordered, it follows that E; < E;y 1 or E;y1 < E;. If E; < B
then (A6—2) implies E; D Ei+1, and if Ei+1 < E; it implies E; = Ei+1~
Therefore the sets F; are decreasing and
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Ey:= () Ei€ My, v(Ey) = lim v(E;)=s.
71— 00
i€IN

The found set Ey € M, is an upper bound of A/. This follows from the fact
that if £ € N with Fy < E, then E C Ey and v(F) > v(Ep), or E = Ej,
where the former case contradicts the definition of s, since v(E) > v(Ey) = s,
therefore £ = Ej.

Hence, by Zorn’s lemma (see the proof of 6.14), there exists a maximal
element M,j € M. It satisfies

v(M;F) > (1— %)so,
and in addition it holds for all A € B that
AcCc M = v(A)>o0. (A6-3)

To see this, assume that v(A) < 0. Then v(M,” \ 4) > v(M,!), and so
M7\ A € My, with M;t \ A > M;". Then the maximality of M," yields that
M,:r VA< M,:r, a contradiction.

Then the property (A6-3) also holds with M," replaced by the sets

+ . +
Ef = M},
i<k

because if A € B, A C E/f, then A; :== AN MjJr \U
partition of A, and hence

+ +
1',<jMi C Mj form a

k

v(A) =Y v(4;) > 0.

j=1
In particular,
V(E,j) > I/(M]:r) > (1 — %)30.

Hence
+ . + : +\ . + .
ET = U Ef eB with v(E")= kll)ngo v(EY) =50
kEN
Therefore ET satisfies (A6-1). O

In the following, let S C IR™ be a closed set and let By, 1 for S be defined
as in 6.20. Furthermore, let ba(S) etc. be the spaces defined in 6.20 and 6.21.
A6.3 Lemma. Let A € ba(S) be nonnegative and let
w(E):= sup inf  ANU) for E € By.
A:AcrE U:ACU
A closed U open

Then p € rba(S) and

/fdu:/fd)\ for all f € C°(S).
S S



208 6 Linear functionals

Proof. (All occurring sets are in By.) p is nonnegative and monotone,
i.e. By C Ey implies that p(Ey) < pu(E2). For closed sets A

A)= inf A{U), andso FE)= sup A
HA) U:ACU @) wE) A;Ach( ) (A6-4)
U open A closed

for all E. Define
M:={BeBy; wWlE)=pn(ENB)+u(E\B) forall E € By} .

We want to show that M = By. Obviously, #,S € M and from B € M it
follows that S\ B € M. If A, B € M, then it follows that for all E € By
W(EN(ANB) +u(B\ (AN B))
= u(EN (AN B) +u((E\ (AN B)) N B) +u((E\ (AN B)) \ B)
—— —
=(ENB)NA =(ENB)\A —E\B
=u(ENB)+u(E\ B) = u(E),

and so AN B € M. Hence M is a Boolean algebra. It remains to show that
M contains the closed sets. If A;, A are closed and disjoint, then there
exist open disjoint sets U; with A; C U;. Then it holds for every open set
U>D Al @] A2 that

AMU) > AUN (U UU)) =AXUNUL) + AU NUs) > p(Ar) + p(Asz),
and combining with (A6-4) yields that
(A1 U Ag) > p(Ar) + pu(Asz) .

Now let B be closed and let E be arbitrary. Then if Ay C ENB, As C E\B
are closed sets,

j(AD) T 1(A2) < u(Ay U Ag) < p(E)
and so (A6-4) implies that
p(ENB)+pu(E\ B) < u(E).

On the other hand, if A C E is closed and Uy, Us are open with AN B C Uy
and A\ U; C Uy, then A C Uy UUs, and hence

AU1) + A(Uz) > MUy UUs) > u(A).
Taking the infimum over all Uz, and noting that A\ U is closed, we obtain
AUL) + p(A\Ur) = p(A).-
Since A\ U; is a closed subset of E '\ B, it follows that
A(UL) + p(E\ B) = u(A).
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Now noting that A N B is closed, and taking the infimum over all U;, we
obtain

WANB) + (B \ B) > ju(A),

and so, since AN B is a closed subset of EN B,
W(ENB) + u(E\ B) = u(A).

On taking the supremum over all A, it finally follows that
(BN B)+ u(E\ B) > u(E).

This shows that B € M, and hence M = By.
It follows that u is additive on M, for if F, E5 € M are disjoint, then it
holds for all E that

wW(E) =p(ENE)+u(E\ E),
and for £ = F; U Ey we obtain that
p(Er U E2) = p(Er) + p(E2) .

Moreover, u is regular, because for E and € > 0 there exist closed sets A; C E
and As C S\ E with

w(E) < pu(A) +e and u(S\ E) < pu(Ay) +¢.
Then A; C E C S\ Ay and, on recalling that |u| = pu, it follows that
(S A2)\ Ay) < 22

It remains to show that the integral identity holds. Without loss of generality
let 0 < f < 1. For n € IN define

E={t<f<H}eBy fori=0,...,n

For a given € > 0 choose A; C E; closed with p(E; \ 4;) < e. Since the A;
are disjoint and f is continuous, there exist disjoint open sets U; with

A;cU; and inff>2—¢.
U; n

As p(A;) < A(U;), it follows that
i+1 1
< g E)<— g
/sfdlu g : nt "

< @+na+zg>\(m
1(S)

n
~———

—+0asn — oo

IN

+n5+5)\ /fd)\

—>Oass—>0
for any n
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Replacing f by 1 — f yields, on noting that p(S) = A(S), that

—/Sfdu:/s(l—f)dué/s( — [)dA=A(S /fdA

and hence the desired result. |

A6.4 Corollary. For A € ba(S) there exists a v € rba(S) such that

/fdA:/fdu for all f € CY(S).
S S

Proof. Since we can split A into a real and an imaginary part, we may assume
without loss of generality that X is real-valued. Let A = AT — A~ be the Jordan
decomposition of X and let u* be the measures from A6.3 corresponding to
M. Set v := pt — pu~. It obviously holds that |v| < ut + u~, and so the
regularity of % implies that v is regular. O

A6.5 Lemma (Alexandrov). If S C IR" is compact, then
verba(S) = v iso-additive (on By !).

Proof (Compare A3.3). Let E; € By, ¢ € IN, be disjoint and let £ :=|J, E; €
By. As v is regular, we can choose for € > 0 a closed set A with A C E and
|v|(E\ A) < € and open sets U; with E; C U; and |v|(U; \ E;) < €27% On
noting that (U;),.y is a cover of A with A being compact, we see that

AcC UUZ- for an m,
i=1

and hence, since |v| is nonnegative and additive (see 6.10), that

lV|(E) <e+|v|(A <5+Z|V\ <5+522 +Z|V\

In addition, for all m

m m

wI(B) > [v|(J B:) =D IvI(E),

i=1 i=1

which proves that
lv|(E Z lv[(E

Similarly, for all m

i Ei) =D IvI(B:) — 0 asm — oc.

i>m i>m
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We conclude that

O

A6.6 Lemma. Let S C R" be compact. For A € ba(S) there exists a v €
rea(S) with

/fduz/fd)\ for all f € CY(9).
s s

Proof. We may assume without loss of generality that A is real-valued and
nonnegative (see the proof of A6.4). Let u € rba(S) be the measure corre-
sponding to A as in A6.3. It follows from lemma A6.5 that p is o-additive
on By. Then by A3.15 there exists an extension of (By, 1) to (B, i) with a
o-algebra B and a o-additive measure i on B. As B; is the smallest o-algebra
that contains By, it follows that B; C B. Hence [i is o-additive on Bj.

We now show that [ is also regular. To this end, let

M :={FE € By; For e > 0 there exist sets A and U with
ACECU, Aclosed, U open, a(U\ A) <e}.

Clearly M is an algebra, and since p is an extension of u, it holds that
By € M. Then it follows that M = By, if we can show that

Eie Mforie Nwith E; C B,y =— FE:= UE,»EM.
1€IN

To this end, choose a closed set A; with A; C E; and an open set U; with
E; C U; such that ji(U; \ A;) < e27% Then

and

U\ J ) <poNJu) e o\ U 4).

The first term is smaller than ¢, if we choose m sufficiently large, and the
second term is

<a(|JWiNa) <> pUi\ A) <e.

i<m i<m

The integral identity follows as in the proof of A6.3. O
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We present the following result on measurable functions. Here S can be
replaced with any compact topological space.

A6.7 Luzin’s theorem. Let S C IR" be compact, p € rca(S) be nonnega-
tive, and Y be a Banach space. Then every u-measurable function f : S =Y
is p-almost continuous, i.e. for every p-measurable set E and every € > 0
there exists a compact set K C E with pu(E \ K) < ¢ such that f|K is a
continuous function on K.

Proof. First we recall that for every y-measurable set E there exist an E€B;
and a p-null set N with E\ N = E\ N (see A3.14(2)). Moreover, for every
p-null set N and every € > 0 there exists an N, € By with N C N, and
p(Ne) < € (see A3.4). As i is regular, there exist a compact set K C F and
an open set U D E with ,u(U \ K) < ¢, as well as an open set V' > N, with
(V) < 2. Then K := K\ V C E is compact and U := U UV D E is open
with p(U \ K) < 3e.

There exists a p-null set N such that f(S\ N) is separable (see 3.11(2)).
Choose a countable dense subset {y;; j € IN} of f(S\ N). For every i it
holds that the sets B1(y;), j € IN, form a cover of f(5\ V), and hence also

Bij :=B1 (yJ) \ Uk<] L (k) -
This implies that

Eijj=Enf*Bj)\N forjeN

form a disjoint partitioning of E\ N into p-measurable sets. It follows from the
remark at the beginning of the proof that there exist compact sets K;; C Ej;
with pu(Eij \ K;j) < 2777971 Consequently, u(E\ U, Kij) < €271, and
hence there exists a j; with

wE\ K;) <e27%,  where K,;:= Uj<;, 5ij -

K; is a compact subset of E'\ N, and by construction it is the disjoint union
of the compact sets K;; for j < j;. Hence
gi(z) :==y; forxe Ky (if K;; #0)
defines a g; € CO(K;;Y) with
1

SWHM)*ﬂ@M§g~
reK;

Set K := (), K;. Then the functions giIK € C%K;Y), and on K they con-
verge uniformly to f as i — oo, which yields that f|K € C°%K;Y). In
addition, K is a compact subset of F/ and

WE\K) <Y pE\K;) <ce.
i€IN
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We add now a functional analysis formulation of Fubini’s theorem, where
we restrict ourselves to the case of bounded regular measures.

A6.8 Product measure. Let S' ¢ IR™ be compact, | = 1,2, and let
(S', B', ') be measure spaces. Let B' contain the Borel sets of S! and let
pt € rea(Sh). Define

B! x B%:={E' x E?; E' € B! and E? € B2},
(ut x p?)(Er x E?) := pt(EY) - p?(E?)  for E' x E? € B! x B2.
Denote by B° the Boolean algebra induced by B' x B2. Then B consists

of finite disjoint unions of sets in B! x B2, and pu! x p? can be canonically
extended to an additive measure on B°.

Proposition: p' x p? is o-subadditive on B°, so that all the properties in A3.1
are satisfied.

Proof of proposition. Let E, E; € BY, i € N, with E C Uien Ei- We have to
show that for p := u' x p? it holds that

n(E) < Z/’L(E’L)
i€IN
By the definitions of B° and u, we may assume that
E;=E! x E? € B* x B2.
As the p! are regular, it follows that for € > 0 there exist open sets U} € B!
with (see the beginning of the proof in A6.7)
ElcU! and pl(U'\EY)<e2.
Then

u(U x U?)

7

< (B} x EY) + p((UF\ E}) x UP) + p(B x (U2 \ EY))
< (B} x B7) + pt (U \ B (S%) + u' (S (UF \ EF)
< (B} x E?) +C27%  with O := p'(S") + p*(S?).

Similarly, there exists a compact set K € B® with
KCFE and u(E)<uK)+e.

(E is the disjoint union of elements in B x B2, and each of these subsets can
be approximated in measure by compact subsets to an arbitrary accuracy. K
is then the disjoint union of Cartesian products of compact sets.) Since the
sets U! x UL form a cover of the set K, there exists an m with

m
Kcl|Ju!xu?,

i=1
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and hence
pu(E) < p(K) +e <Y uUf x UP) + Z (B} x E?) + (C + 1)e.

O

Therefore the Lebesgue integral for (S' x S2, BY u! x p?) can be con-
structed as in Appendix A3. In particular, there exists a measure extension
to a measure space (S x 5%, B, u! x p?). We now characterize the Lebesgue
space LP(u! x p?;Y) with the help of iterated integration. But first we con-
sider the following special case:

A6.9 Lemma. If N is a p! x p2-null set, then for p!-almost all 2; € S*
{2 € 5%; (z1,22) € N}
is a p2-null set.

Proof. Tt follows from the definition of null sets in A3.4 that for € > 0 there
exist sets E! € B, i € IN, | = 1,2 with

Nc|JE xE? and Y u(B! xE?)<e
1€IN SN

where p := ' x 2. Consider the functions

Gen (1) (22) = ZXEI xl)XEz(xg)

i<n
For all 71 we have that g.,,(21) € L'(1?) satisfying the following equation
Gen(a1) = / Gen(w1) dp® = X1 (w1)p*(E7) .
i<n
The function Ge,, € L'(u!) with
/ Gendp' =)y (BN p?(E}) <e.
i<n

On noting that

ng(xl) fG xl ZXEl .131 EQ)

i€IN

asn 0o, it follows from the monotone convergence theorem (see A3.12(3))
that G. € L'(p') with
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/ G, dyl = lim Gen d,u1 <e.
st St

n—oo

But this means that G. — 0 in L*(u') as e — 0. Hence there exists a
subsequence ¢ — 0 such that G.(z1) — 0 for pl-almost all x; € S1. In the
following we consider such x;. On noting that for small € and as n * co we
have that

[ genla) @i = Genln) 7 Getn) < o0

and
gen(@1)(22) 7 ge(@1)(22) 1= Z X1 (xl)XEf (2),
i€IN
it follows once again from the monotone convergence theorem that the func-
tion g.(z1) € L(pu?) satisfies

/ gs(xl) d,LL2 = Gs(xl) .
S2

Therefore, g.(x1) — 0 in L'(u?), and so there exists a subsequence ¢ — 0
(depending on z1!) with g.(x1)(x2) — 0 for p2-almost all 2o € S2. But noting
that g.(x1)(w2) > Xy (21, 22) implies that Xy (z1,22) = 0 for p2-almost all
To € 52, O

A6.10 Fubini’s theorem. Let Y be a Banach space and let 1 < p < oo.
Consider the product measure in A6.8. Then

(Jf)(@1)(2) := f (21, 22)
defines a linear isometric isomorphism
J o LP(uh % 2 Y) — LP(p's LP(u?;Y)) -

In particular, for f € LP(u! x u?;Y) there exists
F(xy) = / f(x1,29) dp®(w2)  for p'-almost all z; € S*
SQ
and F € LP(u!;Y) with

F(x1)dp!(z1) = / fxy,mo)d(pt x p?)(z1,20) .

St S1xS2

A symmetry argument then yields that

L ([ e ate) dte = [ ([ s nte) ae).

SQ Sl
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Proof. Let f € LP(u' x p?;Y) (we suppress in the following proof the ar-
gument Y). Since p < oo, it follows from the construction of the Lebesgue
integral (see the proof of 3.26(1)) that f can be approximated by step func-
tions

fr = ZXE7QZ with E; € B® and a; €Y,

where n, E; and «; depend on k. The definition of B° then yields that f; can
also be represented as

n
fi= Z XESXEfo‘U with Ezl € Bl, IEJ2 S 62, a;; €Y
4,5=1

with a new n, where both the E} and the EJ2 are disjoint. Then for all z;

(J fx)(x1) Z XEl xl)XEzoz” € LP(u )
,j=1

and Jfy € LP(ut; LP(p?)), with

p
[ el it = D) |5 R
= = L7 (22)
= 30 wEDEED gl = [ 1l
=1 S1xS2

where 1 := ' x p?. Similarly, we observe that

/ (T fi) (1) dp?
S2

as a function of x; lies in L'(p') and satisfies

/51 (/Sz(Jfk)(fﬂl)dMQ) dpt(zy) = /SIXS2 frdu.

These properties, which we have derived for fj, are of course also valid for
the step functions fr — f;. Therefore,

[k = T fill Lo, L (p —ka leLp(M)—H) as k,l — oo.
By completeness of LP(u'; LP(MQ)), there exists an F such that
Jfe = F in LP(u'; LP(14?)) as k — oo.

Hence there exists a subsequence such that for u!'-almost all x;
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Jfi(x1) — F(x1)  in LP(p?).

On the other hand, since f;, — f in LP(u), p = pu' x p?, there exists a
subsequence such that

fe(x1,2) = f(x1,22)  for p-almost all (z1, ).
It follows from A6.9 that then for p!-almost all 2y
fr(z1,22) — f(x1,22) for p2-almost all 5.
On recalling that fi(z1,22) = Jfi(21)(2z2), we then obtain that
F(x1) = f(wy,+)  in LP(4?)

for pl-almost all z1, i.e. F' = Jf. In addition, it follows from the above that

”Jf”Lp(#l;LP(H?)) = ”f”Lp(M)'

This shows that J is well defined and isometric. Consequently the image of J
is closed. Hence, in order to show the surjectivity, it is sufficient to show that
the image is dense. Every element in LP(u!; LP(1?)) can be approximated by
linear combinations of functions Xz1g with E' € B! and g € LP(u?), and
similarly g can be approximated by linear combinations of Xgza with E? € 32
and o € Y. But functions F(x1)(xs) = Xpi(21)X gz (22)a in LP(ub; LP(u?))
clearly lie in the image of .J.

In order to prove the integral formula, we exploit the fact that the integral
with respect to p? is a linear continuous map from L (u?) to Y. If f € L'(u),
then Jf € L' (u'; LY (p?)), and hence (see theorem 5.11)

Ty Jf(x1) dp?
S2

is a function in L' (p!). On noting that in addition J fx, — Jf in L' (ut; LY (p?))
as k — oo, if the f;, are chosen as above, we obtain with the help of 5.11 that
as k — oo

/Sl( . Jf(ffl)d,u?) dMl(xl):/S2( . deﬂl) dMQ
— o </51 Jfr d,u1> d/i2 — /S1 ([92 Jfk(fﬁ)d,uQ) dﬂl(xl)

- / fidp— fdu.
S1xS2 S1xS2
0

A6.11 Remark on the case p = oo. With the above assumptions, let
feL>®(ut xp?Y). Then f € Li(u' x p?;Y) for every 1 < g < oo, so that
the result shown in A6.10 yields that
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Jfe [\ LU Lip*Y)).
1<g<©
Moreover, it follows easily from E3.4 and A6.9 that
”fHLOO(plx;ﬂ) = ||g||L°C(p,1)v

where g(21) := || f (21, *) | Lo (u2) = [ (TF) (@) oo 2y

However, in general Jf is not (!) an element of L>(u'; L>®(u?;Y)), as
can be seen from the example p' = p? = L'L[0,1]1, Y = IR, f = Xg,
E :={(z1,22); z1 < x2}. In this case the function

X1 — X[acl,l] S LOO(IUZ;Y)

is not p'-measurable.



7 Uniform boundedness principle

A fundamental result for linear continuous maps is the uniform boundedness
principle. It states that the pointwise boundedness of a family of operators
already implies their boundedness in the operator norm. This principle rests
upon the following theorem.

7.1 Baire’s category theorem. Let X be a nonempty complete metric
space and let

X = U A, with closed sets A, C X.
keIN

Then there exists a ko € IN with Ay, # 0.
Remark: Recall that Ay = intrx (Ag).

Proof. Assume that Ay, = 0 for all k. Then
U C X open, nonempty, k € IN
= U\ Ay open, nonempty
= there exists a ball B.(x) C U\ Ay with ¢ <

1
0
Hence we can inductively choose balls B, (x)) such that

B., (z1) CBe,  (zp-1) \ Ay and & < .

Consequently, we see that x; € B, (zy) for I > k and ¢ — 0 as k — oo
and the balls B, (73) are nested, and we conclude that (z7),.p is a Cauchy
sequence. Hence there exists the limit

r:= limx € X
l—o0

and z € B, (zx) for all k. Since B, (zx) N Ax = (), we have that
T ¢ U Ak = X,
keIN
a contradiction. a
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As is evident from the example X = @, the completeness assumption in
7.1 is essential. With the help of 7.1 we can now show the following:

7.2 Theorem (Uniform boundedness principle). Let X be a nonempty
complete metric space and let Y be a normed space. Let 7 C CY(X;Y) be a
set of functions with

sup || f(x)|ly <oo for every x € X. (7-5)
feF

Then there exist an 2y € X and an g > 0, such that

sup  sup || f(z)]ly < o0. 2
2€B.(70) fer (7 6)

Proof. For f € F and k € IN it holds that {z € X; || f(z)||y <k} is a closed
set. Hence the sets

A= e e X: 1@y <k}

fer
={zeX; |[f(x)|ly <kforall feF},

being intersections of closed sets, are closed, and it follows from (7-5) that
they form a cover of X. Then theorem 7.1 yields that Ay, # 0 for some kg,
and hence there exists a B, (z9) C Ak,. Noting that

sup sup || f(x)|y < ko
€A, fEF

yields the desired result. a
For linear continuous maps 7.2 is reformulated as the

7.3 Banach-Steinhaus theorem. Let X be a Banach space and let Y be
a normed space. Suppose T C Z(X;Y) with

sup ||Tz[ly < oo for every x € X.
TeT

Then 7 is a bounded set in Z(X;Y), i.e.
sup [T o (x,yy < oo-
TeT

Proof. Setting

fr(z) =||Tz|ly, forTeT,zeX

defines functions fr € C°(X;IR), and F = {fr; T € T} satisfies the
assumptions in 7.2. Hence, by the conclusions of 7.2, there exist an xy € X,
an €9 > 0, and a constant C' < oo with
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|Tz|ly, <C for T €T and ||z — x|y < €o.

Then it follows for all 7' € T and all z # 0 that

el e

—T(x
(O)Y %

X
7zl =12 | 1 (a4
€0

™)
]l
2C
whence |T']| 4 x vy < 5o O
In the following theorem, we prove that an even weaker assumption on
the operators is sufficient. Here we will make use of the following

7.4 Notation. Let X be a normed space. From now on, for z € X and
x' € X', we will use the notation

(x, 2"y (or simply: (z, 2')) = 2'(z)

and call this the duality product (or duality pairing) of the space X . This
notation is motivated by the Hilbert space case. Indeed, if X is a Hilbert
space and Rx : X — X’ is the isomorphism from the Riesz representation
theorem 6.1, then

(z,y)y = (z, Rxy)y for all z,y € X,

<x,x'>X=(a:,R;(1x’)X forallze X, 2/ € X'.

Especially when applied to function spaces, the notation introduced here
proves to be justified.

Notice: In (-1, 2)y the second variable is the linear map, and the first
variable is the argument of this map. This is consistent with the fact that in
the weak formulation of differential equations (see e.g. the equation (6-9)),
the test function appears on the left.

7.5 Theorem. Let X be a Banach space and let Y be a normed space. In
addition, let 7 C Z(X;Y) such that for all x € X and ¢/ € Y’

sup [(Tz, y')y | < o0o.
TeT

Then 7 is a bounded subset of Z(X;Y).

Proof. For x € X and T € T it follows from 6.17(3) that
Ser(y) =Tz, y), fory ey’

defines an element S, € (V') = Z(Y';K) with ||Sx,TH(y/)/ = [|Tz]y.
Now

sup | Sz r(y')| = sup [(Tz, y)y| <oo foraly €Y’

TeET TeT

Moreover, it follows from 5.3(2) that Y’ is a Banach space. Hence we can apply
the Banach-Steinhaus theorem 7.3 to the set {S,r € L(Y;K); T € T}
and obtain that
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sup || Tl = sup [|Se,7 |y < o
TeT TeT

for every € X. Thus the desired result follows from theorem 7.3. O

A further consequence of 7.1 is the open mapping theorem. To this end,
we introduce the following

7.6 Definition. Let X and Y be topological spaces. Then f : X — Y is
called open if

Uisopenin X = f(U)isopeninY.

If f is bijective, then f is open if and only if f~! is continuous. If X, Y are
normed spaces and 7' : X — Y is linear, then

T isopen <= There exists a § > 0 with B5(0) C T'(B1(0)).

Proof <. Let U be open and let © € U. Choose an ¢ > 0 with B.(z) C U.
Now Bs(0) € T'(B1(0)) implies that B.s(Tz) C T(B.(z)) C T(U), and hence
T(U) is open. O

7.7 Open mapping theorem. Let X and Y be Banach spaces. Then it
holds for every operator T' € .Z(X;Y") that

T is surjective <= T is open.

Proof =-. Since T is surjective,

v = [J 7(B(0)

kelN

It follows from the Baire category theorem 7.1 that there exist a ky and a
ball B, (yo) in Y with

B.,(y0) C T (B, (0)) -

This means that for y € B.,(0) there exist points z; € By, (0) with Ta; —
Yo +y as ¢ — 0o. On choosing an xy € X with T'zy = yo, this implies that

Ty — Zo Y
T —_— _— and
(k0+|$0||> ko + [|zo | Hk0+||$o| H

which proves that

€0

Bs(0) C T (B1(0 ithd ;= ————.
5() (1( )) w1 k0+||$0||

(7-7)
However, our aim is to show such an inclusion without the closure of the set

on the right-hand side, for a smaller ¢ if necessary. To this end, we note that
(7-7) implies that



7 Uniform boundedness principle 223

y€Bs(0) = there exists an x € B1(0) with y — T'z € B; (0)
= 2(y—T=x) € B;s(0) .

Hence for y € Bs(0) we can inductively choose points y; € Bs(0) and zy, €
B;(0) such that

yo=vy and yrr1 =2(yx — Txy).

Then
27y =27y — T(27Fay,),
and so .
T(Z Z’kxk> =y—2""" Yy —y  asm — oo.
k=0

Since

Z ||2*kzk|| < ZQ*]“ <2< o0, we have that <Z 2kxk>

k=0 k=0 k=0 melN

is a Cauchy sequence in X. As X is complete, there exists
zi=> 2% in X with |z < 2.
k=0
The continuity of T then yields that
N B —k _
Tr = n}gnooT(ZQ zk> =y.
k=0
This shows that Bs(0) C T (B3(0)), or equivalently Bg(O) C T (B41(0)).

Hence, by 7.6, T is open. |

Proof <. The fact that Bs(0) € T(B1(0)) for some § > 0 implies that
Br(0) C T(B(0)) for all R > 0. 0

As a consequence, we obtain the following results, the first of which is
also called the bounded inverse theorem.

7.8 Inverse mapping theorem. If X and Y are Banach spaces and if
T e Z4(X;Y), then

T is bijective = T !e Z(YV;X).

Proof. T~! is linear. It follows from 7.7 that T is open, and hence T~! is
continuous. O
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7.9 Closed graph theorem. Let X and Y be Banach spaces and let T :
X — Y be linear. Then

graph(T) := {(z,Tz) e X XY ; z € X}
is closed in X x Y if and only if T € Z(X;Y).

Proof =. In the formulation of the theorem, X xY is considered as a Banach
space, equipped with, for example, the norm ||(z,y)| = ||=| + ||y| (see
E4.12). As a closed subspace Z := graph(T) is a Banach space. Let

Px(z,y):==x and Py(z,y):=y for (z,y) € Z.

Px and Py are linear and continuous, and Px : Z — X is bijective. It
follows from the inverse mapping theorem 7.8 that Py e 2(X;7). Hence
T =PyPy' € Z(X;Y). 0

Proof <. This follows immediately from the continuity of T O

E7 Exercises

E7.1 On the adjoint map. Let X, Y be Banach spaces, andlet A: X — Y
and B : Y’ — X’ be linear. If it holds for all z € X and ¢’ € Y’ that

<ACC7 yl>Y = <‘T7 Byl>X ’

then A and B are continuous.

Solution. For z € X it follows from 6.17(3) that T,y := (Az, y'), fory € Y’
defines a T, € (Y')" with || T, || = || Az||y-. Since for all y’ € Y’

sup |Toy'| = sup [{z, By')x| <||By'||x, < oo,
=il <1 lzllx <1

it follows from the Banach-Steinhaus theorem that

sup || Azlly = sup [T:] < oo,
Il <1 ol x <1

i.e. A is continuous. Moreover, since

(@, BY ) x| = [{(Az, )y | <[ Al - 2l x - 19 lly,

we have that || By’ ||, < ||All - |’ |ly, and hence also B is continuous. O
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E7.2 Pointwise convergence in Z(X;Y). Let X be a Banach space, let
Y be a normed space and let (7},), . be a sequence in .Z(X;Y’) such that

T(z):= lim T,(x) exists for all x € X.

n— oo

(1) Show that T € Z(X;Y) and || T]| < liminf, || T, < oo.

(2) Give an example where (77,),, .y does not converge to T" in the operator
norm.

Solution (1). Clearly T is linear. For all z € X we have that (|7 (%) |y ), cn
is a bounded sequence, and hence the Banach-Steinhaus theorem yields that
{||T%]; n € IN} is bounded. In addition,

17@)lly = | fim Toe | = lim 1Tzl
. e o
< Timinf(| T - ) = (Tminf | 7o) - 2] ¢
O

Solution (2). Let X =Y = [*(KK) and let T}, : [*(IK) — [*(IK) be defined by
setting for o = (2;);oy € I*(IK)

T; for i < n,
0 for ¢ > n.

Then .
3
|l — Thxll,. = (Z |x12> —0 asn— oo,
i>n
but [[Id — T3, || > 1, because ||e,4+1 — Thentillz = [l€ns1llz = 1 for unit
vectors e,41 as in 2.23. O

E7.3 Equivalent norms. Let ||+||; and [|+||, be two norms on the IK-vector
space X and let X be complete with respect to both of these norms. If |||,
is stronger than ||+||;, then the two norms are equivalent.

Solution. By 2.15, there exists a Cy > 0 with ||z ||; < Csl|z], for all z € X.
Denote by X}, the Banach space X with respect to the norm |||, k = 1,2.
As ||+||, is stronger than |[|+||,, it holds that Id : Xo — X; is continuous.
It follows from the inverse mapping theorem 7.8 that d? X; — Xois
continuous, i.e. there exists a C; > 0 with [[z||, < Ci]jz|, for all z € X.

Hence the two norms are equivalent. a
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E7.4 Sesquilinear forms. Let X, Y be Banach spaces andlet b: X xY —
IK be sesquilinear such that

2+ b(x,y) is continuous for every y € Y,

y +— b(z,y) is continuous for every x € X.
Then there exists a constant 0 < C' < oo such that
b(z,y)| < Cllallx - llylly forallze X, yeY.

Solution. For x € X we have that f,(y) := b(z,y) defines an f, € C°(Y;IK),
and F = {fs; ||z||y <1} satisfies the assumptions in 7.2, since it holds for
yey

sup | fa(y)] = sup [b(z,y)| = [[b(-,y)|lx < o0
ol x <1 o <1

on noting that b(-,y) € X’ by 5.1. Hence it follows from 7.2 that there exist
ayo €Y, an ey >0 and a constant C such that

b(z,y)| = [fa(y)| <C for [lz]x <1, [ly = yolly < eo.
Then for |[z| , <1 and ||y||,, <1 we have that
1 2C
b(z, y)| = —[b(z, yo + oy) — bz, %0)| < —,
€0 €0

which yields the desired result. (Compare the proof of 7.3.) O



8 Weak convergence

In many cases the concept of convergence with respect to the norm turns out
to be too restrictive. That is why in this chapter we will introduce a weaker
notion of convergence which will enable us to solve minimum problems under
far weaker assumptions.

In 4.3 we proved the projection theorem in Hilbert spaces and noted
subsequently that the same result cannot be expected to hold in general
Banach spaces. The difficulty lies in finding a convergent subsequence within
a given minimal sequence, something that is in general not possible with
respect to the norm convergence, as balls in infinite-dimensional spaces are
not precompact (see 4.10). However, we will see (in 8.10) that closed balls
are sequentially compact with respect to weak convergence, at least for the
class of reflexive spaces (see 8.8). Here we lose the continuity of the norm, but
we nonetheless retain its lower semicontinuity (see 8.3(4)). This property will
play a crucial role in the proofs of the existence results 8.15 and 8.17. Hence
the class of reflexive spaces, which lies between the class of Hilbert spaces and
the class of general Banach spaces, plays a significant role in applications.

In this chapter all the spaces are assumed to be complete, except in 8.12-
8.14. In the following, we will always use the notation (z, 2’) y := 2/(z) for
z € X and 2’ € X' from 7.4. We will also write (z, 2’) := (z, 2’) ;. This
simple notation is used in the case when only one Banach space X is involved.

8.1 Definition (weak convergence). Let X be a Banach space.

(1) A sequence (z1),cpy in X converges weakly to x € X (we write zp —
weakly in X as k — oo, or xp — x as k — oo) if for all 2’ € X’

(X, 2')y = (x,2")y ask— oo.
(2) A sequence (7},), . in X' converges weakly* to 2’ € X' (we write
z), — z’ weakly* in X’ as k — oo, or o}, — 2’ as k — o0) if for all z € X
(,2))y = (x,2')x ask— oo

(3) Analogously to (1) and (2) we define weak and weak* Cauchy sequences.

(4) A set M C X (X') is called weakly sequentially compact (weakly*
sequentially compact) if every sequence in M contains a weakly (weakly*)
convergent subsequence whose weak (weak™) limit lies in M.

© Springer-Verlag London 2016 227
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Warning: It is possible to define a corresponding weak (weak*) topology (see
8.7). However, if X is not separable, this topology does not have a countable
basis of neighbourhoods. It follows that “covering compact” and “sequentially
compact” are not equivalent properties (see the example 8.7(4)).

Note: As a complement to weak convergence, convergence with respect to a
norm, i.e. norm convergence, will also be referred to as strong convergence.
This reduces confusion.

The weak convergence may be interpreted as weak™ convergence in the
bidual space:

8.2 Embedding into the bidual space.
(1) Defining
(@, IJxx)y = (x,2)y forzeX, 2’eX’
yields an isometric map Jyx € Z(X; X"). Here
X" :=(X") =2(X;K)

is the bidual space of X.
(2) Let zy,z € X for k € IN. Then:

), — x weakly Jxxp = Jxx weakly™

in X as k — oo in X" as k — oo.

(3) Let a},,2" € X' for k € IN. Then:

x}, — «’ weakly x), — ¢’ weakly*

in X" as k — o0 in X’ as k — oo.
Proof (1). See 6.17(3). O
Proof (2). For 2/ € X’ we have that (z,2')y = (2, Jxx)y and
(x, ")y = (&', Ixx) - O
Proof (3). Because (x, x}) = (2}, Jxx)y, forall z € X. O

8.3 Remarks.
(1) It follows from 6.17(2) that the weak limit of a sequence is unique. For
the weak® limit this holds trivially.

(2) Strong convergence (i.e. norm convergence) of a sequence implies weak
convergence and weak® convergence.

(8) If 2}, — 2’ weakly® in X’ as k — oo, then

o/l < liminf ||,
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(4) If z, — x weakly in X as k — oo, then

< lim inf .
2]l < lminf [l |

(5) Weakly convergent sequences and weakly* convergent sequences are
bounded.

(6) Let xp — « (strongly) in X and z) — 2’ weakly™ in X’ as k — oco. Then
(T, ) = (@, 2)y  as k — oo (8-1)

The same holds if 2, — = weakly in X and zj, — 2’ (strongly) in X".

Remark: Assertion (4) means that the norm is lower semicontinuous with
respect to the weak convergence of sequences (see also E8.5). Assertion (6)
is often used when considering convergence in function spaces.

Proof (3). For all x € X we have that as k — oo

[z, a) x| — o, @) x| < gl -y,

which implies that
! < liminf ||z}, || v - .
(@, 2) x| pnin 2kl x - el x

Therefore, by the definition of the X’-norm,

Il = sup [(z, @) | < liminf ||z} [| . .
lzllx<1 -
O
Proof (4). Analogously to the proof of (3) it holds for all 2’ € X’ that
! < |IZ'|| v, - liminf .
[ )] < 2L, - imint e
If z # 0, we can choose 2’ with ||2'|, = 1 and (z, ')y = ||z|  (see

6.17(1)) to obtain the desired result. For 2 = 0 the result holds trivially. O
Proof (5). If ), — a’ weakly™ in X', then

sup [{(z, 2},) x| < oo forall z € X,
keN

and so it follows from the Banach-Steinhaus theorem (see 7.3) that
sup |4 < oo
keN

If z, — = weakly in X, then Jyxz, — Jxx weakly* in X" (with Jx as in
8.2), and so it follows from the above that Jxxy is bounded in X", and hence
also z; in X. O
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Proof (6). The first claim follows on noting that

[z, @) x = (or, wi) x| < [, 2" —ap) s [+ [(or — 2, ) x|

<o, o' —w)x [+ e -l oy s
——

—0 as k—oo —0 aS k—oo bounded in k

since, by (5), the sequence (z), . is bounded in X'. The second claim
follows analogously. a

We now give some characterizations of weak convergence in function
spaces.

8.4 Examples.
(1) Let 1 < p < oo with %—l— i =1 (where in the case p = 1 we assume that
the measure space is o-finite). Then for fi, f € LP(u)

fe = f  weakly in LP(u) as k — o0

= / frgdpy — / fgdu  ask — oo forall g € L”/(,u).
s s

(2) Let S € R" be compact. Then for f, f € C°(S) (see also E8.4)
fr — f weakly in C°(S) as k — oo

= /fkd)\—>/fd)\ as k — oo for all \ € rca(S).
s s

(3) Let 2 C IR™ be open, let m € IN and let 1 < p < co. Then for ug,u €
wmp(§2)

up —u  weakly in W™P(2) as k — oo

<  O%up — 0%u weakly in LP(£2) as k — oo for all |s| < m.

The same result holds for the subspace Wy™""(£2).

Proof (1) and (2). Follow directly from Theorem 6.12 and Theorem 6.23,
respectively. a

Proof (3). Let X = W™P?(£2) or X = W;""(£2). Then
(Jv)(z) := (0°v(@)) 5 )<m € KM  for v € X and almost all z € 2

defines a linear map J : X — LP(£2;IK™), where M := ("*™) is the number
of multi-indices s with [s| < m. In addition, [|Jvl|}, g, can be bounded
from above and from below by [|v|lyym (). and so the completeness of X

yields that the subspace Y := J(X) C L?(2;IKM) is closed. Therefore, .J is a
bijective continuous linear map between X and Y = J(X) with a continuous
inverse J~! € Z(Y; X).

If up — u weakly in X as k — oo and R € LP(£2;IKM)’ then T := RJ €
X’ and
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R(Ju) =T(ur) — T(u) = R(Ju) as k — oo,

that is, Jup — Ju weakly in LP(£2; IK™). On the other hand, if this is true
andT € X', then R:=TJ ' €Y’ Applying the Hahn-Banach theorem 6.15
we obtain an extension R € LP(£2;IKM)" of R and therefore

T(ux) = R(Jug) = R(Jup) — R(Ju) = R(Ju) =T(u) ask — oo,

that is, ur, — uw weakly in X. Finally, with v} := 0%u) and v* := 0%u, it is
clear that

(VR)|sj<m — (V%)< Weakly in LP(2;IKM) as k — oo
<~
for all |s| <m : (v — v® weakly in LP(£2;IK) as k — o0 ) ,
a property that is true in general. a

Weak convergence can be interpreted as a generalization of conver-
gence of all coordinates or coordinatewise convergence, as we know it for
finite-dimensional spaces. As an analogy of this we replace in the infinite-
dimensional case the “coordinates of a point” « € X by the values (x, 2) for
x' € X'. This is the idea behind the proof of the following theorem, which is
the main functional analysis result of this chapter.

8.5 Theorem. Let X be separable. Then the closed unit ball B1(0) in X" is
weakly* sequentially compact.
Remark: This then also holds for every other closed ball Br(z) in X’.

Proof. Let {z, ; n € IN} be dense in X. If (2},), . is a sequence in X’
with ||z} || < 1, then ((z,,, 2},)),cp ave bounded sequences in IK. Applying
a diagonalization procedure we produce a subsequence k — oo such that for
all n

lim (z,,z)) existsin K.

k—o00
Hence we have that for all y € Y := span{z,,; n € IN} the limit
2'(y) == lim (y, z},) exists in KK,
k—o0
and 2/ : Y — IK is linear. It follows from

[#/(y)| = lim |(y, 23] < ly]

that 2’ is uniformly continuous on Y and so it can be uniquely extended to
a continuous linear map 2’ on Y = X (see E5.3). Therefore, 2/ € X’ with
|2/ <1,and forallz € X and y € YV
[z, 2" —ap) | < Wz —y, o’ —z) |+ [{y, 2 — 23]
<2z =yl + Ky, o' —a3)]

The second term, for every y, converges to zero as k — oo, while the first
term can be made arbitrarily small because ¥ = X. a
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8.6 Examples.
(1) If X = L'(u) is separable, then we obtain from 6.12 (see proof below)

the following result: If (fx),cp is bounded in L®(u), then there exists a
subsequence (fx,);cpy and an f € L>(u) such that

/fk,jdu—>/f§du as i — oo for all g € L (p).
5 s

Note: L'(p) is separable, for example, if S C IR" is Lebesgue measurable
and p is the Lebesgue measure, or if S C IR™ is compact and p € rca(S).
(2) If X = C9(S) with S C IR" being compact, then 4.18(3) and 6.23 yield
the following result: If (ux),cp is bounded in rca(S), then there exist a
subsequence (fix,);c and a measure p € rca(S) such that

/gduki —>/ng as i — oo for all g € C°(S).
s s

Proof (1) Note. If p is the Lebesgue measure on S C IR"™, then L!(u) is
separable (see 4.18(4)). This also holds for p € rca(S), when S C IR" is
compact, because every function in L'(x) can be approximated in the L!-
norm by step functions, and, as p is regular, every u-measurable set can be
approximated in measure by relatively open sets (with respect to S). But
every open set is a countable union of semi-open cuboids, with each cuboid
having its center on the lattice 27% - Z™ and side length 2!~% for an i € IN.

O

Proof (1). Let L'(u) be separable. On recalling that functions in L*(u) can
be approximated by step functions, it follows from 4.17(2) that there exists
a subset {g;; i € IN} of step functions which is dense in L'(u), e.g.

m;
g; 1= ZainEU with M(Eij) < 0.
j=1

Let
S = UEij and  [i(E):=pu(ENS) for E€B.
.3

Then [i is o-finite, and so 6.12 can be applied to L' (z). This yields the desired
result, because
felL'(y) = f=0 p-almost everywhere in S\ 5.

To see the above, observe that there exists a sequence (ix),p in IN such
that || f — gi, [ 11(,) — 0 as k — oo, and so

/~‘f‘d/‘:/~|f_gik|d:ug”f_gik”Ll(u)—)O aSk—>OO7
S\S S\S

which implies that f = 0 almost everywhere in S \ S. O
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8.7 Weak topology. The following results serve to illustrate the concept of
weak sequential compactness. They will not be used in the remainder of this
book.

(1) Weak topology. Let X be a Banach space. For triples (n,z’,¢) with

nelN, 2 = (z,),_y . 212, € X and € > 0 define

Un,zr e = {xEX; |<x,z§€>\<£-:f01rk:17...,n}7
and
Tw i= {ACX; re€A= x+ U, CAforsomeU,, . }

Then X equipped with 7, (called the weak topology) is a locally convex
topological vector space (as in 5.21), and Ty, is the weakest topology for which
all ' € X’ are continuous maps ' : X — IK with respect to 7T,,.

(2) Weak* topology. Let X be a Banach space. For triples (n,z,¢) with
nelN, z=(2k),_, 21,...,2n € X and € > 0 define

yeeey?
Unse = {2/ € X'5 (. )| <cfork=1....n},
and
7;/);: {ACX/; $/€A:>$/+Un,z,5CAf0rsome Un,z,s } .

Then X' equipped with 7. (called the weak* topology) is a locally convex
topological vector space (as in 5.21).

Moreover, it holds that: If 7" is the weak* topology on (X') and if Jx is as
in 8.2(1), then T, = {Jx'(A); A€ T/}

(3) Alaoglu’s theorem. Let X be a Banach space. Then By(0) C X’ (the
closed unit ball with respect to the norm on X’) is covering compact with
respect to the weak* topology on X'.

On the proof: We omit the proof. The result can be shown with the help of
Tychonoff’s theorem (according to A. N. Tikhonov), see e.g. [Conway].

(4) Counterexample to compactness theorems. Theorem 8.5 does not
hold without the separability of X, that is: In general “weak® sequential
compactness” and “cover compactness with respect to the weak* topology”
need to be distinguished.

Ezample: Let X = L*°(10,1[) and for € > 0 define

T.f :i/osf(x)dm for f € L*(10,10).

Then T, € L*°(10,1[) with ||T.|| = 1, and the following holds: There ex-
ists no null sequence (ex); oy such that (7.,), .y is weakly™ convergent in
L>(0,10)".

Proof (4) Ezample. Assume that (7%, ), o is weakly* convergent. By choos-
ing a subsequence (which is then also weakly* convergent and which we again
denote by (7%, ),cn), We can assume that
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1> 50 ask— oo
Now consider the function f € L>(10,1[) defined by
f(z):=(-1)7 forejs1 <z <ejandjeN.

Then . _—
T.f = (@ —au)0 + [ f@)),

k

and so

1 Skt 2
Tt = (0 < —(an+ [ If@]de) < 2o
€k 0 Ek

as k — oo. This shows that the sequence (7%, f), o has the two cluster points
+1. Hence (T%,),c cannot be weakly* convergent. O

Reflexive spaces

In the following we consider the class of reflexive spaces. A reflexive space X is
characterized by the fact that the bidual space X" is isometrically isomorphic
to the space X itself, however not (!) with respect to an arbitrary isometry,
but precisely with respect to the isometry Jx defined in 8.2(1). The class of
reflexive spaces contains all Hilbert spaces (see 8.11(1)).

8.8 Reflexivity. Let X be a Banach space and let Jx be the isometry from
8.2(1). Then we call

X reflexive <= Jx is surjective .

We have the following results:

(1) If X is reflexive, then weak* and weak sequence convergence in X' coin-
cide.

(2) If X is reflexive, then every closed subspace of X is reflexive.
(3) If T: X — Y is an isomorphism, then

X reflexive <= Y reflexive .

(4) It holds that

X reflexive <= X' reflexive .

Proof (2). Let Y C X be a closed subspace. Given a 3/ € Y| let
(@', 2") = <m’|y, y”)Y, for 2’ € X'.

Then 2" € X”. Let x := Jj(lx”. Now for all 2’ € X’ with 2’ =0 on Y we
have that
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<.’E, xl>X = <ZE'/, ‘T//>X/ = <xl|y 9 y”>y/ = 07
which, on recalling 6.16, implies that x € Y. Now let ' € Y/, and let 2’ € X’
denote an extension of 4’ as in the Hahn-Banach theorem (see 6.15). Then
we conclude that
(@, )y = (@, 2" x =@y, ")y =W ")y

i.e. y” = Jyx. This shows that Jy is surjective. O

Proof (3). The claim is symmetric in X and Y, and so it is sufficient to
consider the case where X is reflexive. We need to show the reflexivity of Y.
Let y” € Y”. Then

(@, 2"y = (20T, y"),, fora'e X’
defines an 2”7 € X" and for 3y’ € Y’ (setting 2’/ := y'oT)
<y/7y//> <yOT 3;‘) —<J 1 N,y/OT> <TJ 1 // />Y,
and so ¢y’ = JyTJy L, O

Proof (4)=. If 2’ € X" then 2/’ oJx € X', and it holds for all 2/ € X"
that

< 1 /// J 1 // " J /// J

r ,T X”_< :EOX>X OJx, T >X’>

Le. 2" = Jx/(2'"oJx). O
Proof (4)<. Employing the established implication “=” for the Banach
space X' yields that X" is reflexive. As Jx is isometric, Jx(X) is a closed

subspace of X", which according to (2) is also reflexive. Hence (3) implies
that X is reflexive. O

The proof of theorem 8.10 below employs the following:

8.9 Lemma. For every Banach space X,
X' separable = X separable .

Observe: The converse is false, as shown by the very important example
X = LY(u) (see 6.12 and 4.18(4)).

Proof. Let {z},; n € IN} be dense in X’. Choose x,, € X with

(2, 23) x| = 5llan |l and [zl =1
and define Y := clos (span{z,,; n € IN}). Now if 2/ € X’ with 2’ =0 on Y,
then for all n
2 =@ | 2 [(wn s @ = 20) x| = [(2n s 27) x|
> sllanll = sl = 2, — 2'[)
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and so
[2|| < 3inf || —af,|| = 0,

since {«],; n € IN} is a dense subset. Hence it follows from 6.16 that ¥ = X.
O

We now prove the main theorem for reflexive spaces.
8.10 Theorem. Let X be a reflexive Banach space. Then the closed unit

ball B1(0) C X is weakly sequentially compact.
Remark: This then also holds for every other closed ball Bg(z).

Proof. Let (xx),cn be a sequence in By (0) C X and set

Y :=span{x; k € IN}.

Then Y is reflexive (see 8.8(2)) and, by definition, separable. It follows that
Y"” = JyY is separable, and hence so is Y’ (see 8.9). That means that we
can apply 8.5 to the space Y’ and to the sequence (Jyzp),c in Y. In
particular, there exists a y” € Y such that for a subsequence k — oo

W, Jyzr)y — ', y")y, forally €Y’
Setting z := Jy 'y” € Y, it follows that
<xka y/>Y = <y,7 JYIk->Y/ — <y,7 y//>Y’ = <‘T7 y/>Y as k — oo

for all ' € Y. Since for ' € X’ the map Jc’|Y lies in Y, it follows that also
(g, 2')y = (x, 2') y as k — 00, and so x, — x weakly in X as k — co. O

8.11 Examples of reflexive spaces. Here are several consequences of the-
orem 8.10.

(1) Every Hilbert space X is reflexive. Together with the Riesz representa-
tion theorem 6.1 we obtain: If (x1), . is a bounded sequence in X, then
there exists a subsequence (zy,); . and an 2 € X such that

(Y, zr)x = (y,2)y asi—ooforallyelX.

(2) LP(p) for 1 < p < oo is reflexive. It follows from 6.12 that: If (f),cp s
a bounded sequence in LP(y), then there exists a subsequence (fx,);cy and
an f € LP(u) such that

/gfk,:du—>/gfdu as i — oo for all g € L (p).
S S
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(3) WmP(£2) for 1 < p < oo is reflexive. It holds that: If (fz),cpy is @
bounded sequence in W"P({2), then there exist a subsequence (f,);cn and
an f € W™P({2) such that for all |s| <m

/ g0° f, AL — / g’ fdL" asi—ooforall ge Lp'(Q).
Q o)

(4) L'(p) and L*°(p) (with the measure pu being o-finite) are not reflexive
if the underlying o-algebra B contains infinitely many disjoint sets with po-
sitive measure, i.e. if and only if L*(u) and L (u), respectively, are infinite-
dimensional.

(5) C°(S) and rca(S) are not reflexive if S C IR™ is compact and contains
more than finitely many points, i.e. if and only if C°(S) and rca(S), respec-
tively, are infinite-dimensional.

Proof (1). Let Rx : X — X’ be the (conjugate linear) isomorphism from the
Riesz representation theorem. Then for 2/ € X" letting

(y,2")y ==(Rxy, 2")y, foryeX
defines an 2’ € X'. Set x := R;(lx’. Then for all y € X

<RXy7 x”>X/ = <ya RX$>X = (ya m)){ = <$, RXy>X )

i.e. " = Jxx, which shows that Jx is surjective.
Remark: Hence in the real case, i.e. IK = IR, it holds that J;(l = R;(lR’X,
with R : X” — X’ denoting the adjoint map (see 5.5(8)) of Rx. O

Proof (2). The isometries
Jp i LP(p) = LP'(n) and  Jp : L¥ () = LP(u)’
from 6.12 satisfy
(s T @) Loy = (9> Tpf) ey forall f € LP(u), g € L¥ ().
For f"” € LP(u)" letting
(9,9 1oy = 95 [ oy for g € L ()

defines a ¢’ € LP (). Set f := J, 'y’ Then for all g € L (1)

<ga g/>L”'(u) = <gv J;Df>Lp/(#) = <fa ']p/g>LP(,u) = <Jp’g7 JLT’(;A)f>Lp(#)M

where Jpp(,) @ LP(p) — LP(u)” denotes the embedding from 8.2. Conse-
quently,

<Jp’97 f//>LP(H)/ = <Jp’9, JLP(u)f>Lp(H)/ for all g € Lp,(/v‘)-
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As Jy is surjective, it follows that f” = Jp»(,) f, which proves the reflexivity
of LP(u).

Remark: Hence in the real case, i.e. IK = IR, it holds that J;pl(u) = Jp’lJI’)l,

with J), « LP(u)" — LP ()" denoting the adjoint map (see 5.5(8)) of J.
O

Proof (3). Let J : W™P(2) — LP(02;IKM) be defined as in the proof
of 8.4(3). Then combining (2) and 8.8(2) yields that the closed subspace
J(W™P(£2)) is reflexive (the proof of (2) is the same for functions with val-

ues in IKM). The claim now follows from 8.8(3). O

Proof (4). On noting 8.8(4), 6.12 for p = 1 and 8.8(3), it is sufficient to
show this for L!(u). Let F € L>®(u)'. If Joo : L>®(u) — L*(n)" denotes the
isomorphism from 6.12, then setting

<f/a G>L1(M)/ = <JO_01f/a F>L<>o(u) fOf f/ € Ll(:u)/

defines a G € LY (p)". If G = Jpig f for an f € L'(u), with Jr1(u) denoting
the embedding from 8.2, then it holds for all g € L>(u) that

<g7 F>L°°(y,) = <Joog7 G>L1(,u.)’ = <Joog7 JLl(l‘)f>L1(p,)’
= <.fa ‘]OOg>L1(H) = fS fgd/,é,

that is, B
(9, F)poogy = Jg9fdu  for all g € L=(p). (8-2)

Under the assumption that L!(x) is infinite-dimensional, we now construct
an F which does not satisfy this property. To this end, let E} € B be such
that

E; C Ek+1, ,U(Ek) < /,L(Ek+1) and F = Uke]N Ey.
Consider the subspace
Y :=clos({ge€L>*(); g=0on S\ Ej for some k } ) C L>=(u).

Then Xr ¢ Y, and so 6.16 implies that there exists an F' € L (p)" with
F=0onY and F(Xg) = 1. Hence,

F(Xg,)=0 and F(Xg)=1,
but for every f € L*(u) we have that

Therefore, F' cannot have the representation (8-2). O
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Proof (5). Let C°(S) be reflexive. Then analogously to the proof of (4), and
on using 6.23, there exists for every functional F' € rca(S)" an f € C°(9)
with

WV, F)oasy) = Jg v forall v € rea(S). (8-3)

If S is not finite, then there exist points x; € S for k € IN with xp, -z € S
as k — oo and with z;, # « for all k. Consider the Dirac measures 6, and
0, and set Y := {v € rca(S); v({z}) = 0}. It holds that ¥ C rca(S) is a
closed subspace with 0., € Y and §, ¢ Y. It follows from 6.16 that there
exists an F' € rca(S) with F(d,,) = 0 for all k and F(d,) = 1. But for every
f € C°(S) we have that

Hence F' cannot have the representation (8-3). O

Minkowski’s functional

In 4.3 we solved the minimal distance problem for closed convex sets in Hilbert
spaces, and we saw in E4.3 that in general this is not possible in Banach
spaces. We will now show that in reflexive spaces the distance to such sets
is attained (see 8.15). This is based on the fact that convex side constraints
for elements of an arbitrary Banach space remain valid for limits of weakly
convergent sequences, see theorem 8.13. For closed balls this theorem can be
obtained directly from 8.3(4), and for general closed convex sets it follows
from the following

{z; Re(z, 2")} >«

{z; Re(z,z)} <«

Fig. 8.1. Separation theorem
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8.12 Separation theorem. Let X be a normed space, let M C X be
nonempty, closed and convex, and let g € X \ M. Then there exist an
7’ € X' and an a € IR with

Re(zx, 2y <aforx e M and Re(zo,z) > a.

Remark: Tt follows that 2’ # 0, and hence {x € X ; Re(z, 2') = a} is a
hyperplane.

Proof. First we consider the case IK = IR. We may assume with no loss of
generality that

0e M.

Justification: Choose an £ € M and consider zy := zo — Z and M =
B, (M — %) with 0 < r < dist(z, M). Then if the theorem is established for

M and To with 2’ and a, it follows that the theorem holds for M and z
with 2’ and o := a + (¥, 2').  Consider the Minkowski functional

p(x)::inf{r>0;§€M} for x € X.
r

Since 0 € M, it follows that 0 < p(z) < oo for all # € X. Moreover,
p<lonM, p(xo)>1, p0)=0.
In addition, we have for x,y € X that
plax) = ap(xz) fora >0,
p(z+y) < px) +ply),
i.e. p is sublinear. To see this, note that for a > 0
TevM = e,
T ar
and that the convexity of M implies that

T+y r oz S

_ z Yem.
r+s r4+sr r+ss

Now let f : span{zg} — IR be defined by

X
Tem, e =
T S

flaxg) == ap(xo) for a € R.
Then
f(azo) = plazgp) for a >0,
flazg) <0 < plaxy) fora<0.

It follows from the Hahn-Banach theorem (see 6.14), applied to the subspace
span{x(}, that there exists a linear extension F of f with F' < p on X. Hence
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F<p<lonM, F(xg)= f(zo)=p(zo)>1.

On recalling that B,(0) C M for some p > 0, we note that

reX = ﬁ eM = p(z) < %Hx” — F(2) < %qu.
0
Similarly, —F(x) = F(—z) < %Hm”, which implies that F' € X’. Hence we
have shown the desired result for / := F and o = 1.
In the case IK = C consider X as an IR-vector space X and obtain an
Fr € X[z with the desired properties. Then, as in the proof of 6.15, proceed
to the function F(x) := Fr(z) — iFRr(iz). O

8.13 Theorem. Let X be a normed space and let M C X be closed and
convex. Then M is weakly sequentially closed, i.e. if z;,xz € X for k € IN,
then

xr — x weakly in X as k — oo,
rp € M for ke IN

re M.

Proof. If x ¢ M, then by the separation theorem 8.12 there exist an 2’ € X’
and an « € IR such that

Re(y, 2’y < afory € M and Re (x, ') > a.

Now we have that Re (xy, 2') < «, and the weak convergence to x yields
that also Re (x, 2’} < a, a contradiction. O

The following two results are consequences of this theorem.

8.14 Mazur’s lemma. Let (), be a sequence in a normed space X
that converges weakly to z. Then x € clos (conv {z; k € IN}).

Proof. M := conv {z} ; k € IN} is a convex set, and hence so is M. Now
apply theorem 8.13. a

8.15 Theorem. Let X be a reflexive Banach space and let M C X be
nonempty, closed and convex. Then for xy € X there exists an x € M with

|z — 20| = dist(zo, M) .
Proof. Let (zx),cy be a minimal sequence, i.e.
xp € M and ||ap — x| — dist(xo, M) as k — oo.

Then () ,cpy is a bounded sequence, and so it follows from 8.10 that there
exists a subsequence k& — oo such that z; — x weakly in X as k — oc.
Hence 8.13 yields x € M. On noting that also z — zg — = — zg weakly
in X, it follows from the lower semicontinuity of the norm (see 8.3(4)) that
|z — x| = dist(xo, M). O
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Variational methods

Closed convex sets play an important role in existence proofs for elliptic
partial differential equations. We now provide applications of theorem 8.13
on closed convex sets to variational problems with side constraints (see 8.17—
8.18), where a generalization of the Poincaré inequality 6.7 is needed (see
8.16). The results on partial differential equations will rely on Sobolev spaces,
and the theorems required for these spaces will be derived in Appendix AS.
Moreover, we always consider open sets 2 C IR which are connected.

Remark: An open set {2 C IR" is connected if and only if it is path con-
nected, i.e. if for every two points g, x1 € {2 there exists a (continuous) path
in 2 from zy to x1, i.e. a continuous map ~ : [0,1] — 2 with v(0) = zg
and v(1) = 1. In the following we will always only make use of this property
(see e.g. 10.4). In a general topological space X a subset A C X is said to be
connected if A is not the union of two disjoint, nonempty and relatively in
A open sets.

8.16 Generalized Poincaré inequality. Let 2 C IR" be open, bounded
and connected with Lipschitz boundary 942 (see definition A8.2). Moreover,
let 1 < p < oo and let M C WHP(£2) be nonempty, closed and convex. Then
the following are equivalent for every ug € M:

(1) There exists a constant Cy < oo such that for all £ € IR,
u+&eM = [{[<Co.
(2) There exists a constant C' < oo with
ullpeoy < C - (IVull o +1)  forallue M.
Note: If M, in addition, is a cone with apex 0, i.e. if
weM, r>0 = ruebM,
then the inequality in (2) can be replaced with
lull ooy < C - [IVullpoo) forallue M.

Proof Note. Replace v in (2) with ru and let » 7 oc. O

Proof (2)=(1). Let £ € R with u := up + & € M. Then Vu = Vug, and
hence the inequality in (2) for v implies that

C-([Vuollpe +1) = lluo +&llpe = [€]- 12l 1o — lluoll s -
This yields the desired result with a Cy that depends on C' and wuy. O

Proof (1)=(2). Without loss of generality we may assume that ug = 0. To

see this, note that if the desired inequality holds for u € M := M — gy with
a constant C, then it follows for u := u + ug that
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lullpe < Nalle + lluollpe < C- (IVullgy + 1 Vuoll e +1) + lluoll Lo

Now let ug = 0 and assume that the conclusion is false. Then there exist
ur € M, k € IN, with

1
IVurllpe +1 < Flluellzs - (8-4)

In particular, ||ug||,, — oo, and so for every given R > 0 (for k sufficiently
large)
R
0p = — —0 ask— .
H Uk || Lp

Hence we have that 0 < §; < 1 for k sufficiently large, and combining the
fact that 0 € M and the convexity of M then yields that vy := dpur € M.
Further,

okl o = OkllunllLr = R,

and the inequality (8-4) yields that

190l 405 < el = & —50 as k= oo

Thus, the v; are bounded in WP(£2). Then 8.11(3) implies that there exist
a subsequence, again denoted by (vk),cpn, and a v € WLP(£2), such that
vp — v weakly in W1P(§2) as k — oo, and so v € M on recalling 8.13.
In particular, Vv, — Vv weakly in LP(£2) (see 8.4(3)). However, the above
inequality yields that Vv — 0 strongly in LP({2), and hence Vv = 0. As
{2 is connected, it follows that v is (almost everywhere) a constant function
(see E8.9). This means that v = £ almost everywhere in {2 for some ¢ € R,
and the assumptions yield that [£| < Cpy. On the other hand, by Rellich’s
embedding theorem (see A8.4), the weak convergence in W1P(§2) implies
that vy, — v strongly in LP({2), and so

R= vl — vllge =11 111 < Coll1| gy -
This yields a contradiction, on initially choosing R sufficiently large. a

In the above result we have considered domains {2 C IR™ with a local Lip-
schitz boundary 0f2. It turns out that the class of such “Lipschitz domains”
is mathematically very robust (see, for example, the trace theorem A8.6 or
the embedding theorem 10.9, which for Lipschitz domains holds in Sobolev
spaces of arbitrary order). And it is the class of domains that is appropriate
for applications, as the boundary can have edges and corners (e.g. cubes are
allowed, and more general domains with piecewise smooth boundaries, where
the pieces meet at nondegenerate angles). We now consider Sobolev functions
on Lipschitz domains and solve the



244 8 Weak convergence

8.17 Elliptic minimum problem. Let 2 C IR"™ be open, bounded and
connected with Lipschitz boundary (see A8.2). Let IK = IR. Then

1 n
E(u) = /Q(5 Z diu - a;;0ju + fu) dL"  for u € WhH2(0)
=

defines a map E : W12(2) — IR, where we assume that f € L?(£2) and
aij € L>(£2). In addition, we assume that (a;;), ;_, , is elliptic (as in
(6-8)), i.e. that there exists a positive constant ¢y such that for all z € 2

n

3 ai(2)68; > col€* forall ¢ € R (8-5)

1,j=1
Without loss of generality we may assume symmetry, i.e. that
A5 = Qjq for i,j = 1,...,’[1. (8-6)

(Otherwise replace a;; with @;; := %(a;; + a;;).) Then for every nonempty,
closed and convex subset M C W12(§2) with the property in 8.16 (the prop-
erty (8-10), below, is stronger) it holds that:

(1) E has an absolute minimum v on M, i.e. there exists a u € M such
that
E(u) < E(v) forallve M. (8-7)

(2) The absolute minima u of E on M are precisely the solutions of the
following variational inequality of E on M:

/Q(i 0i(u— ) - a;;0;u + (u— v)f) dL" <0 forallve M. (8-8)

ij=1

(3) If M is a closed affine subspace, that is, if M = ug+ My for some ug € M
and a closed subspace My C W12(2), then the variational inequality (8-8)
for u € M is equivalent to

/ (Z 0;v - a;;0ju + vf) dL” =0 for all v € M. (8-9)
I?)

ij=1
(4) If M satisfies

veM, EeER, v+€{eM = £=0, (8-10)

then there exists a unique absolute minimum and a unique solution of the
variational inequality of E on M.
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Proof (1). We begin by showing that there exist positive constants ¢ and C
such that

B(u) > c/ |Vul*dL" — O for all u € M. (8-11)
On noting the elementary (llfoung ’s inequality

a- b<5a—|—1b2 for a,b> 0 and ¢§ > 0, (8-12)
it follows from the ellipticity in (8-5) that

E(u) ZCO/Q\VuFdL”— £ 1o lull 2

1
> col| Vull7z = Sllullze — = f1I7: -
40
Letting C denote the constant from the Poincaré inequality 8.16(2),
lulz2 < 20| Vul7s +2,
and so
E(u) > (co = 200)|[Vullz2 — C(, f).
where C(6, f) is a quantity depending on ¢ and f. On choosing ¢ sufficiently
small, we obtain (8-11) with ¢ = <.

It follows from (8-11) that E(u) > —C for all w € M, i.e. E' is bounded
from below on M. Now choose a minimal sequence (ux), . in M, i.e.
E(uy) — d = in{{E(v) > —o00 as k — oo.

veE

By (8-11), the sequence (V) is bounded in L?(£2). Together with the
Poincaré inequality 8.16(2) we obtain that (ug), .y is a bounded sequence in
W12(02). It follows from 8.11(3) that there exists a u € W2(2) such that
uy, — u weakly in W12(£2) for a subsequence k — oo. Since M is closed and
convex, it follows from theorem 8.13 that v € M. Moreover, it follows from
8.4(3) that the weak convergence implies that

f(u;€ —u)dL” — 0 and Z / a;;0;u0;(up —u)dL™ — 0.
7,7=1
Hence we have that
E(ug) = E(u+ up — u)

= E(u +Z/a1]3u8 up — u) dL™ 4+ /fuk—u )dL"

3,j=1

—0as k — oo

/ Z a;;0; )9 (up —w) dL™,
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which yields that E(u) < liminfx_, o E(ug) = d. On the other hand, u € M
implies that F(u) > inf,cp E(v) = d, and so E(u) = d. O

Proof (2). If w is an absolute minimum and if v € M, then, since M is convex,
(I1-e)ut+eve M for0<e<1,andso

E(w) <E((1-eu+ev) =E(u+e(v—u))

=E(u /(28 amaqu(vfu)f)dL”

1]1

7/ Za v — w)ayd; (v — u) dL"

7,7=1

(8-13)

>0

Subtracting E(u), dividing by ¢ and letting e N\, 0 then yields the desired
variational inequality.

Conversely, if v € M then the identity in (8-13) (with € = 1) yields for
all v € M that

B(v) > /(Za awaw(vw)f)dm.

i,j=1

Now if u is a solution of the variational inequality, then the above integral is
nonnegative. Hence u is an absolute minimum of £ on M. a

Proof (3). In (8-8) choose v = u £ v with v € My (cf. the proof of 4.4(1)).
O

Proof (4). If uy and ug are two solutions of the variational inequality, then
choose v = us in the variational inequality for u; and v = u; in the variational
inequality for us to obtain

/Q( Z 81'(’(11 — UQ) . aij(?jul + (u1 — Ug)f) dL™ < 0,

=1
/ (Z 0;(ug — ul) - a;;05u2 + (UQ — ul)f) dL™ <0.
2% =1

Adding these two inequalities yields that

O>/ Za (w1 —u2) - a;;0;(u1 — ug) dL" >Co/ [V( ul—uz)| dL”,

i,7=1

and so V(u; — uz) = 0 in L*(£2). As in the proof of 8.16 it now follows
for some £ € IR that u; — ugy = £ € IR almost everywhere in {2, with the
assumptions implying that & = 0. a
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We remark that the techniques used in the proof for the minimum problem
in 8.17 carry over to nonquadratic functionals. We now give some important
examples of the set M for this minimum problem. Here all of the occurring
boundary values are defined with the help of the trace theorem AS8.6.

8.18 Examples of minimum problems.
(1) Let
M := {v € Wt2(2) ; v =0 H" l-almost everywhere on 912 } .

Then it holds: There exists a unique absolute minimum w« in 8.17. It satis-
fies (8-9) with My = M. Hence u is the weak solution of the homogeneous
Dirichlet problem in 6.5(1) (for h; =0, b =0).
Note: It holds that M = WOI’Q(.Q). Hence this is a special case of theorem
6.8, which was shown there for general open and bounded sets 2 C IR".
(2) Let

M:={veW"2(2); [,vdL" =0} .

In addition, we assume that [, fdL™ = 0. Then it holds: There exists a
unique absolute minimum w in 8.17. It satisfies the equality (8-9) for all
v € WH2(£2). Hence u is a weak solution of the homogeneous Neumann
problem in 6.5(2) (for h; = 0, b = 0). The solution to this problem is unique
up to an additive constant.

Observe: This result differs from theorem 6.6, as there the Neumann problem
was solved for b > 0.

(3) Let ug,v» € WH2(£2) be given and let ug(x) > 1 (z) for almost all = € (2.
Define

M= {veW"(2) ; v=uy H" '-almost everywhere on 912,
v > 1 L™-almost everywhere in {2 } .

The corresponding minimum problem is called an obstacle problem. Then
it holds: There exists a unique solution u to the obstacle problem. It satisfies
the variational inequality (8-8).

Special case: For the case n = 1, see also ES8.8.

(4) Let Lebesgue measurable sets Fy,E; C {2 with L"(E;) > 0 and
L"(Ey) > 0, and 1,9 € WH2(2) with 1 < b, almost everywhere in
{2 be given. Define

M:= {ve Wh2(02) ; v >4 L almost everywhere in F,

v < 1y L™-almost everywhere in Fs } .

The corresponding minimum problem is called a double obstacle problem.
Then it holds: There exists a solution u to this obstacle problem and it
satisfies the variational inequality (8-8).

Remark: The solution need not be unique.
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(5) Let ug € Wh2(£2) and let I' C 912 be a closed subset with measure
H"~Y(I") > 0. Define

= {veW"2(2) ; v=ug H" '-almost everywhere on I" } .

Then it holds: There exists a unique absolute minimum « € M in 8.17. It
satisfies (8-9) with

My = {ve WH2(2); v =0 H" -almost everywhere on I'}.

Definition: Then u € W12(£2) is called a weak solution of the mized
boundary value problem

—ZTL<_ 8i(aij8ju) +f=0 in £,

i,j=1
u=1uy onl,
S viai0ju =0 on 02\ T,

3,j=1

where v is the outer normal to (2 defined in A8.5(3). The weak solution in
Wh2(£2) to this boundary value problem is unique.

Proof (1). The continuity of the trace operator yields that M C W2(£2)
is a closed subspace (with S as in A8.6 it holds that M = .4#°(S)). Clearly
M is nonempty and satisfies (8-10) (from v € M and v + £ € M it follows
for the traces that v = 0 and v + £ = 0 almost everywhere on 02, and so
& =10). Now 8.17 yields the existence of a unique solution u, which satisfies
(8-9) with My = M. O

Proof (2). M is a subspace and contains 0 as the only constant function. In
addition, M is closed (the embedding from W2(£2) into L'(£2) is continu-
ous and the side constraint is continuous on L'(£2)). Hence M satisfies the
property (8-10), and so 8.17 yields the existence of a unique solution u, which
satisfies (8-9) with My = M.

For arbitrary v € W2(§2) it holds that ¥ := v — m(v) € M, where

no.__ 1 n or 1 5
m(g) .:fﬂgdL = L”(Q)/diL for g € L (02) (8-14)

denotes the mean of g on (2.

On recalling that m(f) = 0, we obtain that (8-9) holds for constant
functions, and hence it also holds for v = v + m(v), as claimed.

Now if & € M is another function that satisfies (8-9) for all v € W2(2),
then

/Zau aij0;(u—w)dL™ =0 for all v € W"?(02).
1,j=1

Set v = u — u. Then

o—/ Za ~ai;0;(u —ﬂ)danco/Q|V(u—ﬂ)|2dL".

1,j=1
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Hence we have that V(u—1u) = 0 almost everywhere in 2. As (2 is connected,
it follows that there exists a £ € IR such that w = u + £ almost everywhere
in 2. ad

Proof (3). M is convex and ug € M. We show that M is closed. Let (uy), o
be a sequence in M that converges in W12(£2) to a u € W12(£2). Then it
follows from the trace theorem A8.6 that uy — u in L?(9£2). On noting that
uy, = up in L?(92), we also have that u = ug in L?(9£2). In addition, up — u
in L2(§2). Hence there exists a subsequence k — oo such that uj — u almost
everywhere in §2. Now uy > 1) almost everywhere implies that u > 1.
Moreover, (8-10) holds. Indeed, it follows from v € M and v :=v+& € M
that £ = v — v = 0 almost everywhere on 92, and so £ = 0. By 8.17, there
exists a unique solution to the variational inequality. O

Proof (4). We have that M is convex and that 1,19 € M. The closedness
of M follows as in the proof of (3). In addition, 8.16(1) is satisfied, e.g. with
ug = 1. To see this, note that if v ;= + & € M with £ € IR, then £ > 0,
since L™(F;) > 0. Similarly, we have that £ < 9 — ¢; on FEs, and so it
follows from L"™(F53) > 0 (on applying either the Hélder inequality (see 3.18)
or Jensen’s inequality (see E4.10)) that

§S][E2 o — | dL" < (7{3 |w2—w1|2dL")2
= (L"(B2) "2 92 — ¥1 2y < 00

By 8.17, there exists a solution to the minimum problem.
On the uniqueness: In general, there exist several solutions. For example,

if Y1 = —1, ¥y = +1, f = 0, then every constant function v = ¢ with
& € [ —1,1] is a solution. This would no longer be the case if, in addition,
Dirichlet data were prescribed on 92 (e.g. as in (3)). O

Proof (5). M is convex and ug € M. The closedness of M follows as in the
proof of (3), on restricting the pointwise argument to the subset I' C 912. The
same holds for the proof of (8-10), where now we use that H*~!(I") > 0. Then
8.17 yields the existence of a unique solution. On noting that My := M — ug
is a subspace, we conclude that (8-9) holds. O

E8 Exercises

Throughout these exercises we let IK = IR.

E8.1 Weak limit in LP(u). Let p be a o-finite measure and let f;, f €
LP(p) with 1 < p < oco. Then it holds: If f; — f weakly in LP(u) and f; — f
p-almost everywhere as j — oo, then f = f u-almost everywhere.
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Solution. Let Sy, be as in 3.9(4). It follows from Egorov’s theorem A3.18 that
for € > 0 there exists a measurable set E. C S,, such that u(S,, \ E;) < ¢
and f; — f uniformly on E, as j — oco. Given ¢ € L* (), the map

g %/ Cgdp
Es

defines a continuous linear functional on LP(u) (for p < oo this follows from
w(E:) < oo and the Holder inequality), i.e. an element of LP(u). Hence we
have that

| h-nan—o asjiow

Since f; — funiformly on E,

/EC(f—f)du:O for all ¢ € L>(p).

Now set ((z) = w(f(m) — f(x)), where

—  for z #£0,
W(z) =< 2]
0 for z = 0.

Then C(f— f) = |f— f|, and hence we obtain that f: f almost everywhere
on E.. Letting £ N\, 0 and m " oo yields the desired result. a

E8.2 Weak limit of a product. Let i be a o-finite measure and let 1 <
p < co. Moreover, let f; — fin LP(u) as j — oo, let (95) ey be bounded in

LP (1) and let g; — g almost everywhere. Then
gifi — gf weakly in L*(p) as j — oo.
In particular,

/ngfjd,u—>/sgfd,u as j — oo.

Solution. Otherwise it follows from theorem 6.12 that there exists a ( €
L () such that for a subsequence j — oo and a 6 > 0 we have that

]/wmm/ﬁmﬁzémmw. (Es-1)
S S

On recalling from 8.11(2) that L (x) is reflexive for 1 < p/ < oo, it follows
from theorem 8.10 that there exists a § € L (u) such that for a further
subsequence g; — g weakly in L (1) as j — oco. Now E8.1 yields that g = g,
and hence g; — g weakly in Lp,(u). Moreover, f;( — f( converges (strongly)
in LP(u) as j — oo. In this situation we can apply 8.3(6):
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It J: LP(pn) — (Lp/(,u))/ denotes the isomorphism from 6.12, then

J(fj¢) = J(f¢) converges (strongly) in (Lp/ (,u))/ and hence the second re-
sult in 8.3(6) yields that (g;, J(f;€));»» — (9, J(fQ)) ., in contradiction
to (E8-1). O

E8.3 Weak limit of a product. Let p(S) < oo and let 1 < p < co. Assume
that f; — f converges weakly in LP(p) as j — oco. In addition, let g; : § = R
be measurable and uniformly bounded, and let g; — g almost everywhere as
j — 00. Then

g;fi — gf weakly in L*(u1) as j — oo.

Solution. Since |g; — g|pl are uniformly bounded and p(S) < oo, it follows
for a constant C' that

lg; —g|" <C e L' (p).

Since these functions converge almost everywhere to 0, it follows from
Lebesgue’s convergence theorem 3.25 that |g; — g|” — 0in L' (), and hence

Cg; — Cg (strongly) in LP () as j — oo for all ¢ € L>°(u). Moreover, the
assumptions state that f; — f weakly in LP(u). In this situation we can
apply the first result in 8.3(6) (analogously to the solution of E8.2). O

E8.4 Weak convergence in C°. Let S C IR" be compact and let f;, f €
C°(S). Then

sup sup | f;(x)| < oo and

f; — f weakly in C°(S) z€S jEN
as j — 0o = fi(@) — f(x) as j — o0
for all z € S.

Remark: It holds that sup,cgsup,en | fj(2)] = sup,en sup,es | fi ()]

Solution =-. By 8.3(5), the sequence (f;);py is bounded in C°(S). Moreover,
it follows from 6.23 that the weak convergence is equivalent to

/fjdV—>/de as j — oo (E8-2)
s s

for all v € rca(S). Now choose v = §, for € S, where 0, denotes the Dirac
measure at the point x. O

Solution <. We have to show (E8-2). Let u € rca(S) be nonnegative. It
follows from Egorov’s theorem A3.18 that for € > 0 there exists a measurable
set B, C S with p(S '\ E.) < € such that f; — f uniformly on E, as j — oo.
On recalling that the functions f; are uniformly bounded, say |f;| < C, we
have that
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[t = D] < B s 1150) - @ +C- i) B
S zcb, ——

—0ase—0

— 0 as j — oo
for every e

This yields (E8-2) for pu.

Note: The desired result also holds for arbitrary measures in rca(S;R), as
they can be decomposed into their real and imaginary parts, and these further
into their positive and negative parts (the nonnegative and nonpositive parts,
see the Hahn decomposition A6.2). O

E8.5 Strong convergence in Hilbert spaces. Let X be a Hilbert space.
Then it holds for every sequence (zy),cp in X that:

xp — x (strongly) in X 1, — o weakly in X and

A
as k — oo lzrllx — x|y as k — oo.
Solution <. We have that
2 2 2
lzxlx = lzllx +2Re (zx — 2, 2)x + lor — 2 .

It follows from the Riesz representation theorem that (zx —x, ), — 0 as
k — oo, and so the convergence |||y — ||| yields the desired result.
O

E8.6 Strong convergence in LP spaces. Prove that the equivalence in
E8.5 also holds for the Banach space X = LP(u) with 1 < p < 0.

Solution <. Let fi,f € LP(u) be such that fr — f weakly in LP(u) as
k — oo, which on recalling theorem 6.12 means that

/ Frgdp — / fodu forall g e I¥ (),
S S

and such that || fi|,» — [[fll,» as E — co. We employ the elementary
inequality

b7 > Ja’ +p- (b—a) e (la"*a) +c- (b +|a])""[p—af*  (E8-3)

for a,b € R™,a # 0, with a constant ¢ > 0 depending on m and p (proof see
below).

Set a = f(x), if f(x) # 0, and b = fi(z). With g(z) == | f(z)[""*f(z) (we
consider the real case), if f(z) # 0, and g(x) := 0 otherwise, it follows that

/Slfklpduz/Slflpdqup-Re(/S(fk—f)gdu)+c-5k (E8-4)

with



E8 Exercises 253
—2
5 ::/S (fel + L) 21 fe = P s,
k

where Sy, == {z € S; |fr(x)| + |f(z)| > 0}. On noting that g € L¥ (u), it
follows from the assumptions that the second term on the right-hand side of
(E8-4) converges to 0, and that the left-hand side converges to the first term
on the right-hand side. We conclude that 6 — 0 as k — oo. For p > 2 this
yields the desired result, since

e [ 15— 7 d
s
For1 <p<2ande>0let

Eep={xeSk; |fule) = f(@)| > (| fulx)| + | f(2)]) } -
Then

e P < {5p_2(|fk|+|f|)p_2fk—f|2 on Eey,
T (el + IFD)P < 2P| fuP + | f)F)  on Si\ e,

whence

/Slfk—ﬂ dMZ/Sklfk—fl du
szp*ep/ <|fk|p+|f|f’>du+ep*2/ (fil + 1D i — £ dp
Sk\Ec i

Es,k

< 2PV (|| frollhs + 1 FI1T0) + €720k
bounded in k

for all € and k, which yields the desired result.
For the proof of (E8-3) let a; := (1 — s)a + sb. As (E8-3) depends contin-
uously on b, we may assume that as # 0 for 0 < s < 1. Then

1
ar” = laol” =p [ la."a. o (@1 - ao)ds,
0
and hence

lay |p - \a0|p - P\a0|p72a0 e (a1 — ap)

1 s
=p (a1 — ao) 0/ / £(|at|p72at) dtds

1 S 2
o [ [l - ol 02 (01 - ao) 0 24) e
o Jo la|

> p (1 +m1n(p - 270)) : w(aOaal) ' |a’1 - a0|27
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Y(ag, a1) : //|a P~ dtds.

Observe that v (ag,a1) = (Jag| + |a1\) w(bo,bl) with b = (Jao| +
|ay |)_1al for I = 0, 1. Hence we need to show that

inf{e(bo,b1); |bo|+ |b1| =1} > 0.
For 1 < p < 2 we have that v(bg,b;) > %, because |(1 — #)bg + tby| < 1, and

- 2’
for p > 2 the value ¥ (bg,b1) can converge to 0 only if by — 0 and b; — 0.

O

with

E8.7 Weak convergence of oscillating functions. Let I C IR be an
open, bounded interval and let 1 < p < oo.

(1) If g € L*(IR) is a periodic function with period k > 0, i.e. g(x+K) =
g(z) for almost all z, and if

then the functions f,(z) := g(nz) converge weakly in LP(I) to A as n — oo.

(2) Let o, 8 €R,0< 6 <1, and

() a fork<nx<k+06, kelZ,
" B fork+0<nx<k+1, keZ.

Then the functions f,, converge weakly in LP(I) to the constant function
O+ (1 —0)5 as n — o.

(3) Find functions f,, f, gn,g € L>(I) such that f, — f, g, — ¢ weakly in
L?(I) as n — oo, but such that f,g, does not converge weakly to fg.

Solution (1). Without loss of generality let A = 0 (otherwise replace g with
g — A). Then the assumptions on g yield that

h(x) = /;g(y) dy

defines a continuous function that is bounded on all of IR. If [a,b] C I, then

/ fulz % (h(nb) — h(na)) — 0 as n — oc.

Consequently,

fa(@)((z)de — 0 asn — oo
I
for all step functions (. As these step functions are dense in e (I), and as
the functions f,, are bounded in LP(I), we obtain the same result also for all
¢ e LP(I) (see E5.4). O
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Solution (2). This follows from (1), on noting that

/0 filx)de =0a+ (1-0)5.
O

Solution (3). Let f, be as in (2) and define g,, correspondingly for the values
a, € R and the same value 6. Then (2) yields the following weak conver-
gence results in LP(I):

fn —)9&+(1*9)ﬂ,

gn — 0a+(1-0)3,

frngn — Qo+ (1 — 9)65.
Now the equation
fad + (1 - 0)8B = (ba + (1 - 0)B) (9a + (1 — 0)p)

is equivalent to (o — 3)(a — B) =0, and so for o # 8 and a # E we obtain
the desired example. a

E8.8 Variational inequality. Find the solution u € W2(£2) of the obsta-
cle problem in 8.18(3) forn =1, 2 =1 -1 1[CR,u >0, =0, f=1
and a = 1.

Solution. (On recalling E3.6, we use the fact that for n = 1 functions in
WL2(02) can be identified with functions in C9(£2).) Let
M= {ve Wh2(£2) ; v > 0 almost everywhere in £2,
v(£1) = ug = ug(£1) }.

Then uw € M NCY([—1,11) and

1
/ (u—=v)u'+ (u—v))dL' <0 forallve M.
~1
First we consider an interval la,b[ in which v > 0. If { € C§°(Ja,bl), then
u > ¢ in supp( for a ¢ > 0, and hence u + ¢ € M for small |g]. It follows
that

b b
0= / (W +¢Q)dL' = / ¢v'dL',
where v(z) := u(x) — $2?. This implies (see E8.9) that v is linear in Ja, b,
and hence there exist dy,d; € IR such that
2

u(x):%+d1x+d0 fora <z <b.



256 8 Weak convergence
On choosing Ja,b[ C {u > 0} maximally, i.e. u(a) = 0, if a > —1, and
u(b) =0, if b < 1, the obtained characterization of u implies that we have to

distinguish the following cases:

a=-1,b=1, andsou>0in] —1,1[,
a>-1,b=1, andsowu>0inla,1] with u(a) =0,
a=-1,b<1, andsou>0in [ —1,b[ with u(b) =0.

Hence overall we obtain the following two cases for u:

UQ(_l)

U()(*l)

| I I
-1 T_ T4 1

Fig. 8.2. Solution of the obstacle problem

(1) u>0in] —1,1[,

2) There exist —1 < z_ <z, <1 such that u(z) =0 for x_ <z <z, and
+ +

u(z) > 0 otherwise.

In the case (1) the values dy and d; are determined by the boundary condi-
tions, and we obtain

u(z) =5 (2? — 14 (uy —u_)z+up +u_)

and the necessary condition
luy —u_|>2 or uptu->1+t(up —u)?, (E8-5)
Correspondingly, in the case (2) we obtain for certain s+ > 0 that

u(@) = 1o - 24)% + 54(0 — 2)
for z > 2y with (1 —24)sp =uy — 3(1—24)? >0,
u(z) = $(z- — ) +s_(z_ —x)

for z <a_ with (1+2_)s_ =u_ —+(1+2.)>>0.
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The uniqueness of the solution means that x4 are uniquely determined by w.
Hence we further investigate the variational inequality. For ( € C§° (] -1,1 [)
with ¢ > 0 it holds that v 4+ ( € M, and so the variational inequality yields
that

1
o< [ @urgat
—1
1 T_ 1
:/ C’(m)(m—x++s+)dx+[1 C’(m)(x—x_—s_)dx+[1§dL1

— (s = (s + [ gart,

xr

If 2, < 1 set ((z) := max(0,1 — |z — z,|) and obtain as § — 0 that
s+ < 0. Together with the above inequality for s; we obtain that s; = 0,
and similarly for s_ = 0. Therefore,

Yo —a)

2 forxz<az_,

u(z) = forx_ <ax <wxy,

0
@ —az4)?  forxz>wy,
where

up —31(1-24)?=0 and w_—3(1+2_)2=0.

Apart from (u—,u4) = (0,2) or (2,0), this case is complementary to the case
(E8-5). O

E8.9 A fundamental lemma. Let 2 C IR" be open and connected, and
suppose that u € L{ _(12) satisfies

loc
/u~8iCdL":0 for (e C3°(2) and i =1,...,n.
Q

Then u is (almost everywhere) a constant function.

Solution. Let B be a ball with B C §2 and let (¢.).., be a standard Dirac
sequence. On setting @.(y) := p-(—y) we have that ¢ x g € C§°(£2) for
¢ € C§°(B) and ¢ < dist(B, 942), and so

—/ Oi(u* @) CdL" = / (u* @c) 0;¢dAL™ :/ w0;(C*@.)dL" =0.

Q Q Q

Hence V(u % ¢-) = 0 in B, which yields that u x ¢. is constant in B. On
recalling that u * ¢. — w in L'(B) as ¢ — 0, it follows that u is also a
constant almost everywhere in B. As 2 is path connected (see remark above
8.16), this constant does not depend on B. O
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A8 Properties of Sobolev functions

Here we will derive properties of functions in W P({2), where we treat
bounded sets {2 with Lipschitz boundary 042 (see definition A8.2). This class
of domains, on one hand, allows a functional analytically uniform presenta-
tion of the theory of Sobolev spaces, and on the other hand, this class is of