
Chapter 2
Mathematical Methods

A study of control systems dynamics and optimization has always needed a suitable
mathematical language to formulate the problems, analyse possible behaviours and
difficulties, develop algorithms and prove that these algorithms have the desired
properties. This is also true of Iterative Control which exhibits all the properties
and challenges of classical control problems with the added need to consider the
effect of iteration on behaviours. The material in this chapter acts to remind readers
of the mathematics needed for analysis of state space models in control theory and
the essential structure of quadratic optimization problems. To this mix is added an
introduction to the essentials of Hilbert spaces as a representation of signals, as
a means of representing dynamical systems as operators on such spaces and as a
means of creating a geometric approach to iterative optimization based control. The
presentation aims to define both notation and explain concepts. Fuller details and
proofs of the statements can be found in the references.

2.1 Elements of Matrix Theory

A p × q real (or complex) matrix A is an array of real (or complex) numbers of the
form

A =

⎡
⎢⎢⎢⎣

A11 A12 A13 · · · A1q

A21 A22 A23 · · · A2q
...

...

Ap1 Ap2 Ap3 · · · Apq

⎤
⎥⎥⎥⎦ (2.1)

The element in the ith row and jth column is denoted Aij. If q = 1, the matrix is
often called a vector. Block matrices can also be defined where the Aij are pi × qj

sub-matrices. In this case the dimensions of the matrix A are
∑p

i=1 pj × ∑q
j=1 qj.

© Springer-Verlag London 2016
D.H. Owens, Iterative Learning Control, Advances in Industrial Control,
DOI 10.1007/978-1-4471-6772-3_2

19



20 2 Mathematical Methods

The following is essential for control theoretical purposes

1. The set of p × 1 real (respectively complex) vectors is given the symbol Rp

(respectively C p).
2. A is said to be square if the number of rows is equal to the number of columns.
3. Addition of two p×q matrices A, B to form a p×q matrixC writtenC = A+ B

is defined by the elements

Cij = Aij + Bij, for 1 ≤ i ≤ p, 1 ≤ j ≤ q. (2.2)

The p × q zero matrix is the matrix with all elements equal to zero.
4. Multiplication of A by a scalar λ produces a matrix C = λA where

Cij = λAij, for 1 ≤ i ≤ p, 1 ≤ j ≤ q. (2.3)

5. Multiplication of a p × q matrix A by a q × r matrix B to produce a p × r matrix
C = AB is defined by the following computation of elements of C

Cij =
q∑

k=1

Aik Bkj, for 1 ≤ i ≤ p, 1 ≤ j ≤ r. (2.4)

6. The transpose of a p × q matrix A is the q × p matrix AT with

(AT )ji = Aij, for 1 ≤ i ≤ p, 1 ≤ j ≤ q. (2.5)

The act of taking the transpose of a product satisfies the rule (AB)T = BT AT .
If A = AT then A is said to be symmetric.

7. The conjugate transpose of a complex p × q matrix A is the q × p matrix A∗
with

(A∗)ji = Aij, for 1 ≤ i ≤ p, 1 ≤ j ≤ q, (2.6)

where a denotes the complex conjugate of a. The act of taking the conjugate
transpose of a product satisfies the rule (AB)∗ = B∗ A∗. If A = A∗ then A
is said to be Hermitian. If A is real then the conjugate transpose is simply the
transpose and, if A is Hermitian, it is symmetric.

8. The determinant of a square p × p matrix is denoted det[A], |A| or,

det[A] =

∣∣∣∣∣∣∣∣∣

A11 A12 A13 · · · A1p

A21 A22 A23 · · · A2p
...

...

Ap1 Ap2 Ap3 · · · App

∣∣∣∣∣∣∣∣∣
(2.7)
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The determinant has many properties including

a. the properties det[A] = det[AT ] and det[A] = det[A].
b. If both A and B are square p × p matrices, then det[AB] = det[A] det[B] =

det[B A].
9. A is said to be an injection or one-to-one if the only p × 1 vector v satisfying the

equation Av = 0 is the vector v = 0. In general, the set of vectors v such that
Av = 0 is a vector subspace ofRq (or C q) and is called the kernel or null space
of A and denoted

ker[A] = {v : Av = 0} (2.8)

The subspace ker[A] is always �= {0} when q > p.
10. If, for every p × 1 vector w, there exists a vector v such that w = Av, then A is

said to be onto or a surjection. More generally, the set of all vectors w for which
there exists a vector v such that w = Av is called the range of A. It is a vector
subspace of Rp (or C p) and is denoted by

R[A] = {w : w = Av for some vector v} (2.9)

A necessary condition for the range to be equal to Rp (or C p as appropriate) is
that q ≥ p.

11. If A is both a surjection and an injection, it is said to be a bijection (or simply
nonsingular). If A is a p × p square matrix, then it is a bijection if, and only if,
it has non-zero determinant. If det[A] = 0 then A is said to be singular.

12. A p × q matrix A is invertible if, and only if, it is a bijection. In particular, this
requires that it is square (p = q) and it is equivalent to the statement that, for
every vector w, there exists a unique vector v such that w = Av. The inverse of
A is denoted by A−1. It is a square p × p matrix of the form

A−1 = adj[A]
det[A] (2.10)

where the adjugatematrix adj[A] has elements that are well defined polynomials
in the elements of A.

13. For all invertible p × p matrices A, the inverse A−1 satisfies the equations

AA−1 = A−1A = Ip (2.11)

where Ip denotes the p × p unit matrix or identity

Ip =

⎡
⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · ·
...

...

0 0 0 · · · 1

⎤
⎥⎥⎥⎦ (2.12)
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For any p×q matrix B and q×p matrixC , the properties Ip B = B andC Ip = C
hold true. Also det[Ip] = 1 and hence det[A−1] = (det[A])−1.
Note: for notational simplicity, the subscript p on Ip is sometimes dropped to
leave the symbol I . This should cause no confusion as matrix dimensions are
usually clear from the context.

14. If A and B are p × p nonsingular matrices, then (AB)−1 = B−1A−1.
15. If T is square and nonsingular, then the mapping A �→ T −1AT is a similarity

transformation Both A and T −1AT have the same eigenvalues and det[A] =
det[T −1AT ].

16. For non-square p×q matrices A, other definitions of inverse play a role in matrix
analysis. In particular, if p ≥ q, a left inverse B of A is any matrix satisfying
the condition B A = Iq. In a similar manner, if p ≤ q, a right inverse B of A is
any matrix satisfying the condition AB = Ip. A left inverse of A exists if, and
only if, A has kernel {0} and a right inverse exists, if and only if, R[A] = Rp

(or C p). If p �= q, any left or right inverse is non-unique. If p = q, then they
are unique and equal to the inverse A−1. Specific examples of left, respectively
right, inverses are given by, respectively,

B = (A∗ A)−1A∗, B = A∗(AA∗)−1. (2.13)

17. Given the definition of the unit matrix, two useful relationships are as follows

a. If A and B are, respectively, p × q and q × p, then

det[Ip + AB] = det[Iq + B A]. (2.14)

b. If A has the partitioned form

A =
[

M11 M12

M21 M22

]
(2.15)

with M11 square and nonsingular, then Schur’s Formula is valid,

det[A] = det[M11] det[M22 − M21M−1
11 M12]. (2.16)

The above algebraic properties ofmatrices are the basis of manipulation. For analysis
purposes, a number of other properties and concepts are required and are summarized
as follows

1. A finite set {Hj}1≤j≤M of real (respectively complex) p × q matrices is said to be
linearly independent if, and only if, the only real (respectively complex) scalars
{aj}1≤j≤M satisfying the condition

∑M
j=1 aj Hj = 0 are aj = 0, 1 ≤ j ≤ M .

2. The rank of a p × q matrix A is the maximum number of linearly independent
columns of A regarded as p × 1 vectors. A p × p matrix A is nonsingular if, and
only if, it has rank equal to its dimension p.



2.1 Elements of Matrix Theory 23

3. The characteristic polynomial of a square p × p matrix A is defined by the
determinant

ρ(s) = ∣∣sIp − A
∣∣ =

p∑
j=0

ap−js
j with a0 = 1. (2.17)

It is a polynomial of degree p in the complex variable s with p, possibly complex,
roots λj, 1 ≤ j ≤ p called the eigenvalues of A. If A is a real matrix, then the
eigenvalues are either real or exist in complex conjugate pairs. More precisely,
if λ is an eigenvalue, then its complex conjugate λ is also an eigenvalue. The
spectral radius of A is defined by

r(A) = max
1≤j≤p

|λj|. (2.18)

4. A complex number λ is an eigenvalue of A if, and only if, there exists a non-zero
solution vector v ∈ C p solving the equation

Av = λv (2.19)

Such an eigenvector is not uniquely defined as, for example, it can be multiplied
by any scalar and still be an eigenvector. If A has p linearly independent eigen-
vectors {vj}1≤j≤p then an eigenvector matrix E of A is defined to be the block
matrix E = [

v1, v2, . . . , vp
]
. It is nonsingular and can be used to diagonalize A

using the similarity transformation

E−1AE =

⎡
⎢⎢⎢⎣

λ1 0 0 · · · 0
0 λ2 0 · · ·
...

...

0 0 0 · · · λp

⎤
⎥⎥⎥⎦ = diag

[
λ1, λ2, . . . , λp

]
(2.20)

The diagonal matrix produced is often called the diagonal canonical form of A.
A always has linearly independent eigenvectors if its p eigenvalues are distinct.

5. As |sI − A| = |sI − A∗|, the eigenvalues of the conjugate transpose matrix are
exactly the complex conjugates of the eigenvalues {λj} of A. Suppose that the
eigenvectors of A∗ are denoted wj, 1 ≤ j ≤ p and that A∗wj = λjwj. This can
be rewritten in the form w∗

j A = λjw∗
j and w∗

j is termed a left eigenvector of A.
If A has p linearly independent eigenvectors and associated eigenvector matrix
E , then

E−1A = diag[λ1, λ2, . . . , λp]E−1. (2.21)

Equating rows of the two sides of the equation indicates that the rows of E−1

are left eigenvectors of A and, as E−1E = I , these left eigenvectors satisfy the
conditions

w∗
i vj = δij, (2.22)
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the Kronecker delta defined as δij = 0 whenever i �= j and unity otherwise.
6. If A is Hermitian, then its eigenvalues are all real valued. Its eigenvectors vj

form a set of p linearly independent vectors. It is always possible to scale these
vectors so that they satisfy the orthogonality condition

v∗
i vj = δij (2.23)

Under these circumstances, E−1 = E∗ so that E∗E = I , an example of a unitary
matrix. If E is real then it is an orthogonal matrix.

7. Almost every squarematrix A can be diagonalized in themanner shown above. In
some cases, diagonalization is not possible but, in such cases, a Jordan canonical
form can be produced.More precisely, there exists an integer q and a nonsingular
p × p matrix J with the property that

J−1 AJ =

⎡
⎢⎢⎢⎣

J1 0 0 · · · 0
0 J2 0 · · ·
...

...

0 0 0 · · · Jq

⎤
⎥⎥⎥⎦ = blockdiag

[
J1, J2, . . . , Jq

]
(2.24)

where each Jordan block Jj, 1 ≤ j ≤ q has the structure of a qj × qj matrix as
follows

Jj =

⎡
⎢⎢⎢⎢⎢⎣

γj 1 0 · · · 0 0
0 γj 1 · · · 0 0
...

...
...

0 0 0 · · · γj 1
0 0 0 · · · 0 γj

⎤
⎥⎥⎥⎥⎥⎦

(2.25)

where each γj is an eigenvalue of A.
8. In all cases the determinant of A is computed from the product of all p eigenvalues

det[A] =
p∏

j=1

λj. (2.26)

A is singular if, and only if, it has a zero eigenvalue and hence ker[A] �= {0}.
9. In all cases, a square matrix A “satisfies its own characteristic equation”

ρ(A) =
p∑

j=0

ap−j Aj = 0. (2.27)

This statement is normally known as the Cayley-Hamilton Theorem. The result
is the basis of many theoretical simplifications and insight exemplified by the
easily proven fact that, if A is nonsingular, then ap �= 0 and
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A−1 = −a−1
p

p∑
j=1

ap−j Aj−1. (2.28)

That is, the inverse can be expressed in terms of powers of A and the coefficients
in the characteristic polynomial.
Note:A related polynomial is theminimum polynomialof Awhich is the uniquely
defined polynomial ρmin(s) of minimum degree that has the property ρmin(A) =
0. The degree of the minimum polynomial is always less than or equal to p and
is always equal to p if the eigenvalues of A are distinct.

10. More generally, the Cayley-Hamilton theorem implies useful facts about func-
tions of matrices. If f (s) is an analytic function of the complex variable s express-
ible as a power series

∑∞
j=0 fjsj with radius of convergence R, then the symbol

f (A) denotes the associated function of A defined by

f (A) =
∞∑

j=0

fj Aj (2.29)

This series converges whenever the spectral radius r(A) < R. For example,

a. the exponential function es has a power series expansion with fj = 1
j! . The

corresponding matrix exponential is

eA =
∞∑

j=0

1

j! Aj = I + A + 1

2! A2 + 1

3! A3 + · · · . (2.30)

b. The function (1 − s)−1 = ∑∞
j=0 sj has a radius of convergence R = 1. It

follows that, if the spectral radius r(A) < 1, the matrix inverse (I − A)−1

exists and has the convergent series expansion

(I − A)−1 =
∞∑

j=0

Aj. (2.31)

If A has a nonsingular eigenvector matrix E , then Aj = E diag[λj
1, . . . , λ

j
p]E−1

and

f (A) =
∞∑

j=0

fj Aj = E diag[f (λ1), . . . , f (λm)]E−1 (2.32)

11. From the Cayley-Hamilton theorem it is easily seen that all powers Aj with j ≥ p
can be expressed as a polynomial in A of degree less than or equal to p − 1. It
follow that all functions f (A) can be expressed as a polynomial in A of degree
less than or equal to p − 1 by suitable choice of coefficients.



26 2 Mathematical Methods

12. The Spectral Mapping Theorem states that, if A has eigenvalues λj, 1 ≤ j ≤ p,
and r(A) < R, then the eigenvalues of f (A) are precisely f (λj), 1 ≤ j ≤ p.

The final group of useful properties are associated with the idea of positivity of
quadratic forms

1. Suppose that A is a square, real, symmetric, p × p matrix and x an arbitrary
p × 1 vector in Rp. Then the quadratic function xT Ax is a quadratic form. If A
is not symmetric, it can always be replaced by a symmetric matrix as xT Ax ≡
xT

(
A+AT

2

)
x.

2. If A is complex then the quadratic form is definedonC p as x∗ Ax. If A isHermitian,
then x∗ Ax takes only real values.

3. A real matrix A is said to be positive if, and only if, xT Ax ≥ 0 for all vectors
x ∈ Rp. If xT Ax > 0 whenever x �= 0, then A is said to be positive definite and
written in the form A > 0. If A is positive but not positive definite, it is positive
semi-definite and written in the form A ≥ 0. The expression A ≥ B (respectively
A > B) is equivalent to A − B ≥ 0 (respectively A − B > 0). Similar definitions
are used for complex matrices and their associated quadratic forms.

4. Conditions for positivity for real, symmetric matrices include the following

a. A real, symmetric matrix A is positive if, and only if, all its eigenvalues
satisfy the inequalities λj ≥ 0, 1 ≤ j ≤ p. It is positive definite if, and only if,
all eigenvalues are strictly positive. Positive definite, symmetric matrices are
hence always invertible.

b. If A and B arematrices and A = BT B, then A is positive. A is positive definite
if, and only if, ker[B] = {0}.

c. A real, symmetric p×pmatrix A is positive definite if and only if thePrincipal
Minors ∣∣∣∣∣∣∣∣∣

A11 A12 A13 · · · A1q

A21 A22 A23 · · · A2q
...

...

Aq1 Aq2 Aq3 · · · Aqq

∣∣∣∣∣∣∣∣∣
> 0, for 1 ≤ q ≤ p. (2.33)

5. Positive, symmetric, real matrices A always have an orthogonal eigenvector
matrix E and can be expressed in the form A = Ediag[λ1, . . . , λp]E T with
ET E = I .

6. A positive, symmetric, real matrix A has a unique symmetric, positive square
root B such that B2 = A. As with scalar square roots, B is usually denoted by
the symbol A

1
2 . It can be computed from the formula

A = Ediag[λ 1
2
1 , . . . , λ

1
2
p ]E T (2.34)
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2.2 Quadratic Optimization and Quadratic Forms

2.2.1 Completing the Square

The conceptual basis of much of optimization theory used in control systems algo-
rithms has its origins in the simple ideas of minimization of quadratic functions of
vectors in Rp. This short section explains the basic ideas using a simple example
and without the need for advanced mathematical methodologies more complicated
than the matrix theory described above. The problem used to illustrate the ideas is
the problem of minimizing the quadratic objective function

J (x) = xT Ax + 2bT x + c. (2.35)

where the p × p matrix A is real, symmetric and positive definite, b is real and p × 1
and c is a real number. The solution is easily found by completing the square and
verifying that

J (x) = (x + A−1b)T A(x + A−1b) − bT A−1b + c. (2.36)

The second two terms are independent of x. The fact that A is positive definite
immediately yields the fact that the minimum value occurs when the first term is
zero. The unique minimizing solution is hence

x∞ = −A−1b and J (x∞) = −bT A−1b + c. (2.37)

Both can be computed using standard software if the matrices involved are of rea-
sonable dimension and not ill-conditioned. Factors causing problems include:

1. Suppose that the eigenvalues of A are listed in order of ascending value λ1 ≤
λ2 ≤ · · · ≤ λp and A is written in its diagonal form A = Ediag[λ1, . . . , λp]E T

with E−1 = E T . The condition number of A is defined to be c(A) = λp

λ1
. It follows

that the inverse of A has the structure

A−1 = Ediag[λ−1
1 , λ−1

2 , . . . , λ−1
p ]E T (2.38)

The situation where the spread of the eigenvalues of A is large (that is, c(A) is
large) can be discussed by considering the case where λ1 is very small. In such
situations, small errors in characterizing this eigenvalue can lead to large changes
in the computed solution x = −A−1b.

2. These problems are exacerbated if the dimension p is large due to the number of
floating point operations necessary in computer computation of A−1.

In the quadratic problems considered in this text, similar quadratic objective func-
tions will be considered but the “matrices” involved are replaced by operators
associated with dynamical systems models and, in intuitive terms, have very high
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(even infinite) dimensions and extremely large (possibly infinite) condition numbers.
Formal solutions paralleling the algebraic constructions illustrated above hence have
no immediate computational value, the core of the theoretical problem being that of
developing control algorithms that use only feasible computational procedures that
can be implemented using well-conditioned off-line algorithms and on-line feedback
controllers.

2.2.2 Singular Values, Lagrangians and Matrix Norms

The singular values 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σq of a real (respectively complex)
p × q matrix A are real, positive numbers computed from the eigenvalues 0 ≤ λ1 ≤
· · · ≤ λq of the symmetric (respectively Hermitian) matrix AT A (respectively A∗ A)
by writing λj = σ 2

j , 1 ≤ j ≤ q. The corresponding eigenvectors are often called
singular vectors.

Associated with the matrix A is the notion of a matrix norm. As will be seen
throughout this text, the idea of a norm is non-unique. What follows, therefore, is
only an example that builds on the idea of singular values and illustrates the use of
Lagrangian methods in optimization problems. The first step is the definition of a
particular vector norm, the Euclidean norm, defined on vectors x ∈ Rq (respectively
C q) by ‖x‖ = √

xT x (respectively
√

x∗x). The Euclidean norm induces a norm ‖A‖
on the matrix A by defining

‖A‖ = sup
x �=0

‖Ax‖
‖x‖ = sup{‖Ax‖ : ‖x‖ = 1} (2.39)

In particular, it follows that, for all vectors x ∈ Rq (respectively C q),

‖Ax‖ ≤ ‖A‖ ‖x‖. (2.40)

As a consequence, if A and B are p × q and q × r matrices, it follows that ‖ABx‖ ≤
‖A‖ ‖B‖ ‖x‖ and hence

‖AB‖ ≤ ‖A‖‖B‖. (2.41)

Suppose now that A is real and vectors are in Rq. From the above, the induced
norm is the solution of an optimization problem with an equality constraint, namely

‖A‖2 = sup{‖Ax‖2 : ‖x‖ = 1} = sup{xT AT Ax : xT x = 1}. (2.42)

The solution of this problem is computed by solving for the unique stationary point
of the Lagrangian

L [x, λ] = xT AT Ax + 2λT
(
1 − xT x

)
(2.43)
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where λ is the scalar Lagrange Multiplier for the single constraint 1− xT x = 0. The
stationary point of the Lagrangian is the solution of the two equations

1 − xT x = 0 and AT Ax = λx, (2.44)

That is, λ is an eigenvalue of AT A and the largest value of the optimization objective
function ‖Ax‖2 = xT AT Ax is simply the largest eigenvalue of AT A. Hence

‖A‖ = σq. (2.45)

which provides a simple link between matrix norms and singular values. This rela-
tionship also holds for complex matrices operating on C q. Finally,

1. If A is p × p and nonsingular, then ‖A‖ = σp and ‖A−1‖ = σ−1
1 .

2. The smallest and largest singular values are denoted byσ (A) = σ1 andσ(A) = σp

respectively.
3. The spectral radius is linked to matrix norms by the formula

r(A) = lim
k→∞

‖Ak‖1/k (2.46)

from which, for all ε > 0, there exists a real number Mε ≥ 1 such that

‖Ak‖ ≤ Mε(r(A) + ε)k (2.47)

If A can be diagonalized by a nonsingular eigenvector matrix E , then it is possible
to choose ε = 0 and M0 = ‖E−1‖‖E‖.

2.3 Banach Spaces, Operators, Norms and Convergent
Sequences

2.3.1 Vector Spaces

Matrices are just part of a more general approach to signal analysis based on vector
spaces which are a mathematical generalization of the familiar three dimensional
world that we live in. A real (respectively complex) vector space V is a collection of
objects (called vectors) with defined properties of vector addition and multiplication
by real (respectively complex) scalars that satisfy the familiar relations

v1 + v2 = v2 + v1
v1 + (v2 + v3) = (v1 + v2) + v3

(λ1 + λ2)v = λ1v + λ2v
λ(v1 + v2) = λv1 + λv2

(2.48)



30 2 Mathematical Methods

for all v, v1, v2, v3 in V and all scalars λ, λ1, λ2. The zero vector in V is denoted by
the symbol 0. A vector subspace (or, more simply, a subspace)U ⊂ V is any subset
of V that satisfies the properties defined above.

It is easily seen thatRp (respectively C p) is a real (respectively complex) vector
space. Also the set of real (respectively complex) p×q matrices is a real (respectively
complex) vector space.Other examples and constructs of relevance to this text include

1. If V is any real vector space, then its complexification V c is defined to be the
complex vector space of all complex vectors v = v1 + iv2 with both v1 and v2
elements of V . V c is sometimes written in the form

V c = V ⊕ iV . (2.49)

2. The space of infinite sequences (or time series)α = {α0, α1, α2, . . .}withαj ∈ Rp

(orC p) is a vector spacewith additionγ = α+β andmultiplicationby scalarsγ =
λα defined by the equations, γj = αj + βj and γj = λαj for j = 0, 1, 2, 3, . . .. A
number of subspaces are of particular relevancehere including 
∞ (the subspaceof
bounded sequences of scalars satisfying supj≥0 |αj| < +∞) and 
2 (the subspace
of sequences of scalars satisfying

∑∞
j=0 |αj|2 < +∞)

3. The space of real or complex valued continuous functions of a real variable t on
an interval a ≤ t ≤ b (denoted [a, b] ⊂ R) is denoted by the symbol C[a, b] and
is a vector space with the usual definitions of addition and multiplication.

4. The space of all functions defined on [a, b] and taking values inRp (respectively
C p) is a real (respectively complex) vector space with the usual definitions of
addition and multiplication. The real vector space Lp

2[a, b] is the set of all real
p × 1 vector-valued functions f such that the Lebesgue integral

‖f ‖2 =
∫ b

a
‖f (t)‖2dt (2.50)

is well defined and finite. If Q is any symmetric, positive definite p × p matrix,
then an equivalent statement is that

‖f ‖2Q =
∫ b

a
f T (t)Qf (t)dt (2.51)

is well defined and finite. If p = 1, then the space is written L2[a, b].
The notion of linear independence of a set of vectors follows the example of matrix
theory. More precisely, a set of vector {vj}1≤j≤M is linearly independent if, and only
if,

∑M
j=1 ajvj = 0 implies that all scalars aj are zero. A basis for V is a linearly

independent set {vj}1≤j≤M such that all elements v ∈ V can be written as a unique
linear combination of the {vj}1≤j≤M . If M is finite, then the space is said to be finite
dimensional of dimension M . Otherwise it is infinite dimensional. The spacesRp and
C p have dimension pwhilstC[a, b] and L2[a, b] are infinite dimensional. For infinite
dimensional spaces, the statement is more clearly stated by saying that the basis set
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{vj}j≥0 has the property that all finite subsets of this set are linearly independent and
the set of all finite linear combinations is dense in V . The concept of denseness is
more fully described in Sect. 2.3.4.

Finally,

1. The space V is said to be the sum of the vector subspaces {Vj}1≤j≤q of V , written

V = V1 + V2 + · · · + Vq, (2.52)

if any vector v ∈ V can be written as a linear combination v = ∑q
j=1 αjvj with

vj ∈ Vj, 1 ≤ j ≤ q and suitable choice of scalars {αj}1≤j≤q. It is a direct sum
decomposition written

V = V1 ⊕ V2 ⊕ · · · ⊕ Vq (2.53)

if, and only if, each v ∈ V can be written as a unique linear combination of
elements of the subspaces.

2. A product vector space constructed from vector spaces {Vj}1≤j≤q is denoted by
the Cartesian Product notation

V = V1 × V2 × · · · × Vq (2.54)

and consists of the set of p-tuples v = {v1, v2, . . . , vq} with vj ∈ Vj, 1 ≤ j ≤ q
and the same laws of composition as those defined for (finite) times series. An
example of this notation is the real product space Lp

2[a, b] defined by

Lp
2[a, b] = L2[a, b] × L2[a, b] × · · · × L2[a, b]︸ ︷︷ ︸

p − copies.
(2.55)

It is sometimes convenient to identify Lp
2[a, b] with the space of p × 1 vectors f

with elements consisting of real valued functions fj ∈ L2[a, b], 1 ≤ j ≤ p.

2.3.2 Normed Spaces

Measures of magnitude are important in applications of mathematics and are used
extensively in this text as a means of algorithm design and analysis. For the vector
space Rp, the familiar measure is the Euclidean length of the vector defined as
‖v‖ = √

vT v. This is just an example of the more general concept of a vector norm.
More precisely, if V is a finite or infinite dimensional, real or complex vector space,
then a norm on V is a mapping from vectors v into real numbers ‖v‖ with the
properties that
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‖v‖ ≥ 0

‖v‖ = 0 if , and only if , v = 0 (2.56)

‖λv‖ = |λ|‖v‖
‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖

for all vectors v, v1, v2 in V and scalars λ. Note that the space V possessing the norm
is normally understood from the context but it is often useful to identify the space
using a subscript such as ‖v‖V or by other means.

An example of a norm in Lp
2[a, b] is

‖f ‖ =
(∫ b

a
e2αt f T (t)Qf (t)dt

)1/2

(2.57)

where Q is a symmetric, real, positive-definite p × p matrix and α is any real scalar.
Also, a norm in C[a, b] can be defined by

‖f ‖ = sup
a≤t≤b

(
eαt|f (t)|) . (2.58)

The Lp
2[a, b] norm is also a norm on C[a, b].

For real (or complex) p × q matrices, A, one choice of norm is the maximum
singular value σ(A) of A whilst, if A is real, another is the so-called Frobenius Norm
defined by the trace formula

‖A‖ =
√

tr[AT A] (the Frobenius Norm). (2.59)

or, more generally,

‖A‖ =
√

tr[W AT Q A] (the weighted Frobenius Norm). (2.60)

where Q and W are symmetric and positive definite matrices.
When endowed with a chosen norm ‖ · ‖, the space V is called a normed space.

The choice of norm is non-unique and the same underlying vector space, when given
different norms, generates a new normed space. ForRp, the following are norms for
v = [v1, v2, . . . , vp]T ,

‖v‖ =
√

vT Qv (Q = QT > 0), ‖v‖ = max |vj|, ‖v‖ = (

p∑
j=1

|vj|q)1/q, q ≥ 1.

(2.61)
Two norms ‖ · ‖1 and ‖ · ‖2 on the same underlying vector space are said to be
topologically equivalent if, and only if, there exists scalars 0 < β1 ≤ β2 such that,
for all v ∈ V ,

β1‖v‖1 ≤ ‖v‖2 ≤ β2‖v‖1 (2.62)

All norms on a given finite dimensional space are topologically equivalent.
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2.3.3 Convergence, Closure, Completeness
and Banach Spaces

Given a normed space V , an infinite sequence {vj}j≥0 = {v0, v1, v2, . . .} is said to
converge in the norm topology (or, more simply, to converge) to a limit vector v ∈ V
if, and only if,

lim
j→∞ ‖v − vj‖V = 0 (written lim

j→∞ vj = v). (2.63)

The nature of this convergence is defined by the norm used but it is easily seen that
convergence with respect to one norm implies convergence with respect to any other
topologically equivalent norm.

A subset S ⊂ V is said to be an open subset if, for every point v ∈ V , the Open
Ball B(v; δ) defined by

B(v; δ) = {w : w ∈ V , ‖v − w‖ < δ} (2.64)

lies in S for some choice of δ > 0. S is said to be closed if it contains the limit points
of all convergent sequences with elements in S. The closure of a subset S (denoted
S) is the set consisting of points in S plus the limits of all convergent sequences in
S. One consequence of this is that the Closed Ball Bc(v; δ) defined by

Bc(v; δ) = {w : w ∈ V , ‖v − w‖ ≤ δ} (2.65)

is the closure of the open ball B(v; δ). Subsets can be neither open nor closed. For real
numbers, the symbols [a, b], [a, b), (a, b] and (a, b) are used to denote the intervals,
respectively,

{t : a ≤ t ≤ b} (a closed interval),
{t : a ≤ t < b} (a half open interval),
{t : a < t ≤ b} (a half open interval),
{t : a < t < b} (an open interval),

(2.66)

ACauchy Sequence {vj}j≥0 inV is a sequence with the property that, for all ε > 0,
there exists an integer nε such that ‖vj −vk‖ < ε for all j ≥ nε and k ≥ nε. That is, all
points vj in the sequence get “closer and closer together” as the index j increases. In
general, not all Cauchy sequences converge. An example of this is the space C[a, b]
with the L2[a, b] norm. It is a simple matter to construct a sequence of continuous
functions that converge in norm to a discontinuous function which, by definition, is
not in C[a, b]. A normed space where all Cauchy sequences converge is said to be
complete and it is said to be a Banach Space. For the purposes of this text, note that
all normed spaces used are Banach Spaces unless otherwise stated includingRp,C p,

2 and Lp

2[a, b] and their Cartesian products for any p and −∞ < a < b < +∞.
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2.3.4 Linear Operators and Dense Subsets

All p × q real matrices are examples of linear operators between the real spaces
Rq and Rp. The more general concepts of a linear operator/linear operators Γ :
V �→ W mapping a vector space V into another vector space W follows similar
lines by satisfying the linearity assumptions that, for all v, v1, v2 in V and scalars λ,

Γ (v1 + v2) = Γ v1 + Γ v2
Γ (λv) = λΓ v

(2.67)

For example, if V = Lq
2[0, T ] and W = Lp

2[0, T ], T is finite and H(t) is a p × q
matrix with elements that are continuous in t, then the mapping v �→ Γ v defined by
the Convolution Integral

(Γ v) (t) =
∫ t

0
H(t − t′)v(t′)dt′, 0 ≤ t ≤ T, (2.68)

is a well-defined linear operator. The identity or unit operator in V is the linear
operator I : V �→ V defined by I v = v for all v ∈ V . If both V and W are real
vector spaces then a linear operatorΓ : V �→ W can be extended to a linear operator
(again denoted by Γ ) mapping the complexification V c into the complexification
W c by the relation Γ (u + iv) = Γ u + iΓ v. Also two operators Γ1 : V �→ V and
Γ2 : V �→ V are said to commute if

Γ1Γ2 = Γ2Γ1. (2.69)

Linear operators can be associated with norms quite easily. More precisely, with
the notation used above, suppose that both V and W are normed spaces, then the
operator norm of Γ (induced by the norms in V and W ) is defined to be

‖A‖ = sup
v �=0

‖Γ v‖W
‖v‖V = sup

‖v‖=1

‖Γ v‖W
‖v‖V (2.70)

If the norm is finite, the operator is said to be bounded. In all other cases, it is
unbounded. The identity operator is bounded with induced norm ‖I‖ = 1.

The definition of the operator norm implies that, for all v ∈ V ,

‖Γ v‖W ≤ ‖Γ ‖‖v‖V (2.71)

which implies the fact that boundedness of an operator is equivalent to its continuity.
In addition, it is easily shown that, if Γ2 : V �→ W and Γ1 : W �→ Z are
two bounded linear operators between normed spaces, then the composite operator
Γ1Γ2 : V �→ Z defined by (Γ1Γ2)v = Γ1(Γ2v) has a norm bound

‖Γ1Γ2‖ ≤ ‖Γ1‖‖Γ2‖. (2.72)
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In a similar manner, the operator sumΓ1+Γ2 defined by (Γ1+Γ2)v = Γ1v+Γ2v and
multiplication by scalars (λΓ )v = λ(Γ v) rules make the set L (V ;W ) of bounded
linear operators from V into W into a normed vector space in its own right. If V
and W are Banach spaces, then so isL (V ;W ).

The kernel and range of an operator Γ : V → W play a vital role in analysis and
are defined (as for matrices) using

ker[Γ ] = {v ∈ V : Γ v = 0}
R[Γ ] = {w ∈ W : w = Γ v for some v ∈ V } (2.73)

The operator is injective (or one-to-one) if its kernel is the single point {0} and it is
surjective (or onto) if its range isW . It is bijective if it is both injective and surjective.
If Γ is bijective and W is finite dimensional, then it has a bounded, linear inverse
Γ −1 : W �→ V defined by the relation Γ −1(Γ v) = v for all v ∈ V or, more simply
Γ −1Γ = I where I is the identity in V . If V = W , then, in addition, Γ Γ −1 = I .

The notion of inverse familiar in matrix theory also has relevance to the interpre-
tation of the idea of inverse operators but with more technical complexity if V and
W are infinite dimensional. One concept that is central to the discussion is that of a
dense subset S1 of a subset S of a normed space V . More precisely, S1 is dense in S
if, and only if, for every point v ∈ S and for every ε > 0, there exists a point vε ∈ S1
such that ‖v − vε‖ < ε. In effect, every point in S has a point in S1 arbitrarily close
to it. Three observations are related to this

1. If Γ is bounded, then its kernel is closed.
2. Γ being bounded does not necessarily imply that its range is closed.
3. If W is finite dimensional and Γ is bounded, Γ has a closed range.

The second observation can be illustrated by the case of a convolution operator (2.68)
mapping Lq

2[0, T ] into Lp
2[0, T ]. The range of Γ is, at best, the set of continuous

p × 1 matrix valued functions which is known to be dense in Lp
2[0, T ].

The important point that follows from the above is that the range of the operator
in infinite dimensional spaces has more complex properties than those observed
for matrices. The consequences of this fact are many in number and include the
possibility that the inverse of a bounded operator may exist but be unbounded. If Γ

has a bounded (and hence continuous) inverse, it is said to be a Homeomorphism. In
such cases it is easily seen that 1 ≤ ‖Γ ‖‖Γ −1‖.

Formatrices, the eigenvalues of amatrix A are defined to be scalarsλwhich ensure
that λI − A has no inverse. The idea of eigenvalues requires careful generalization
to the case of linear operators. More precisely, suppose that V is a complex Banach
space, then the Resolvent Set of a linear operator Γ : V �→ V is defined to be
the set of complex numbers λ where λI − Γ is bijective. As a consequence of
the Open Mapping Theorem, for any such λ, the Resolvent Operator (λI − Γ )−1

is bounded. Using this construction, the spectrum (denoted by spec[Γ ]) of Γ is
defined to be the complement of the Resolvent Set and hence is the set of complex
numbersλwhereλI −Γ does not have a bounded inverse. This definition includes the
eigenvalues of Γ (the so-called Point Spectrum defined by the existence of non-zero
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eigenvectors/eigenfunctions v ∈ V such that Γ v = λv) but also other points in what
are termed the Continuous and Residual Spectrum. In finite dimensional spaces, the
residual and continuous spectra are empty and the results of matrix algebra describe
the spectrum completely in terms of eigenstructure. Finally,

1. the spectral radius of a bounded operator Γ : V �→ V is defined by

r(Γ ) = sup{|λ| : λ ∈ spec[Γ ]}, (2.74)

a definition that reduces to that for matrices if V = C p. In particular, if V is a
Banach space, then

r(Γ ) = lim
k→∞

‖Γ k‖1/k (2.75)

which relates the spectral radius to powers of Γ . As ‖Γ k‖ ≤ ‖Γ ‖k for all k ≥ 1,
this implies that

r(Γ ) ≤ ‖Γ ‖ (2.76)

and, for all ε > 0, there exists a real number Mε ≥ 1 such that

‖Γ k‖ ≤ Mε(r(Γ ) + ε)k . (2.77)

2. The ideas of functions of operators and the Spectral Mapping Theorem, easily
proven for matrices, can be extended to bounded operators from Banach spaces
into Banach spaces. More precisely, if f (z) has a power series expansion

∑∞
j=0 fjzj

with radius of convergence R, then f (Γ ) is defined to be the operator
∑∞

j=0 fjΓ j

which is convergent if r(Γ ) < R. The spectrum of f (Γ ) is simply {z : z =
f (η), η ∈ spec[Γ ]} or, more compactly,

spec[f (Γ )] = f (spec[Γ ]). (2.78)

For example, the Resolvent (λI − Γ )−1 has the power series representation

(λI − Γ )−1 =
∞∑

j=0

λ−(j+1)Γ j (2.79)

which is convergent if Γ has spectral radius strictly less than |λ|. A sufficient
condition for this is that ‖Γ ‖ < |λ|. The spectrum of the Resolvent is {z : z =
(λ − η)−1, η ∈ spec[Γ ]}.

The following result relates the spectral radius to the iterative learning control studies
in this text. More precisely, the spectral radius describes convergence in norm of a
simple, but typical, iteration formula.
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Theorem 2.1 (Convergence in Norm and the Spectral Radius) Let V be a Banach
space. Then, given an arbitrary starting vector v0 ∈ V and a bounded linear operator
Γ : V �→ V , the sequence {vj}j≥0 generated by the iteration vj+1 = Γ vj, j ≥ 0,
converges (in norm) to zero if (a sufficient condition)

r(Γ ) < 1. (2.80)

A sufficient condition for this to be true is that ‖Γ ‖ < 1.

Proof Note, using induction, vj = Γ jv0 for all j ≥ 0. Using the notation above, the
assumptions make possible the selection of ε > 0 such that r(Γ )+ ε < 1. It follows
that, as required,

‖vj‖ = ‖Γ jv0‖ ≤ ‖Γ j‖‖v0‖ ≤ Mε(r(Γ ) + ε)j → 0 as j → ∞. (2.81)

The theorem is proved as the norm condition is sufficient to ensure the required
condition on the spectral radius. �

Note the conceptual similarity of this results to the familiar results from discrete
time, sampled data systems control where asymptotic stability of xj+1 = Axj is
equivalent to the condition r(A) < 1 and hence is equivalent to the poles of the
systems transfer function being inside the unit circle of the complex plane.

2.4 Hilbert Spaces

2.4.1 Inner Products and Norms

Although Banach spaces play a role is some areas of Control Theory and Opti-
mization, the addition of geometrical structures plays an important role in algorithm
design. The relevant structure is that of a Hilbert Space. More precisely, let V be a
real (respectively complex) Banach space endowed with an associated inner product
〈·, ·〉 : V × V �→ R (respectively C ) possessing the properties that, for all u, v, w
in V and real (respectively complex) scalars λ,

〈u, v〉 = 〈v, u〉 (respectively 〈u, v〉 = 〈v, u〉),
〈u, v + w〉 = 〈u, v〉 + 〈u, w〉,

〈u, λv〉 = λ〈u, v〉,
〈v, v〉 ≥ 0 and
〈v, v〉 = 0 if , and only if , v = 0.

(2.82)

Suppose also that the norm in V can be computed from the inner product using the
formula

‖v‖ = √〈v, v〉, (2.83)
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then V is said to be a real (respectively complex) Hilbert Space. Note that, if it is
necessary to identify the space or some other aspect of the formulae arising in the
theory, the norm and inner product may be given subscripts as an aide memoire to
the reader. For example, to identify the space being considered, both ‖v‖ and 〈u, v〉
can be written in the form ‖v‖V and 〈u, v〉V .

Examples of Hilbert spaces include:

1. The space Rp is a Hilbert space with inner product 〈u, v〉 = uT Qv where Q is
any symmetric, positive definite p × p matrix.

2. If −∞ < a < b < +∞, then Lp
2[a, b] is a Hilbert space with inner product

〈u, v〉 =
∫ b

a
uT (t)Q(t)v(t)dt (2.84)

where Q(t) is any piecewise continuous p × p matrix satisfying an inequality of
the form

α1 Ip ≤ Q(t) ≤ α2 Ip, for all t ∈ [a, b] (2.85)

and some scalars 0 < α1 ≤ α2. For example, if α ≥ 0 and Q(t) = e2αt Q with Q
a constant, symmetric, positive definite matrix with eigenvalues 0 < q1 ≤ q2 ≤
· · · ≤ qp, then the conditions are satisfied with α1 = q1eαa and α2 = qpeαb.

Finally, the inner product has a number of useful additional properties including
the Cauchy-Schwarz Inequality which takes the form, for any u, v in V

|〈u, v〉| ≤ ‖u‖‖v‖ (2.86)

with equality holding if, and only if, v is a multiple of u. That is, if and only if, v = λu
for some scalar λ.

Also the inner product allows the introduction of ideas of orthogonality. More
precisely, two vectors u, v in V are said to be orthogonal if, and only if, 〈u, v〉 = 0,
a definition that is consistent with that used for Euclidean geometry in Rp. The
orthogonal complement of a vector subspace S of V is denoted S⊥ where

S⊥ = {v ∈ V : 〈v, u〉 = 0 for all u ∈ S} (2.87)

S⊥ is a closed subspace. If, in addition, S is a closed subspace, then V has the direct
sum decomposition

V = S ⊕ S⊥ = {w = u + v : u ∈ S, v ∈ S⊥}. (2.88)

If {vj}j≥1 is a basis for V and 〈vj, vk〉 = 0 whenever j �= k, then the basis set is an
orthogonal basis. If, by suitable scaling (notably replacing each vj by the normalized
vector vj/‖vj‖), the basis set is said to be an orthonormal basis with the defining
property that, for all j ≥ 1 and k ≥ 1,
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〈vj, vk〉 = δjk where (2.89)

the symbol δjk is the Kronecker Delta defined by δjk = 0 if j �= k and is unity
otherwise. Under these conditions, any vector v ∈ V has the form

v =
∞∑

j=1

αjvj with αj = 〈vj, v〉, for j ≥ 1, and ‖v‖2 =
∞∑

j=1

|αj|2 < ∞. (2.90)

Finally, the ideas of inner products can be applied to some normed spaces that are
not complete. Examples include the space C[a, b] endowed with the inner product
(and induced norm) used for the Hilbert space L2[a, b] or, more generally, a dense,
but not complete, subspace of a Hilbert space. Such spaces are said to be Pre-Hilbert
Spaces. The geometry of such spaces is identical to that of Hilbert spaces but results
that rely on the convergence of Cauchy sequences (and hence the existence of limits)
need to be carefully considered.

2.4.2 Norm and Weak Convergence

The convergence of sequences in Hilbert spaces is defined as in any normed space
but it is often called convergence in norm, convergence in the norm topology or,
more simply, norm convergence. This is because, in Hilbert spaces, another useful
definition of convergence is that of Weak Convergence. More precisely, a sequence
{vj}j≥0 in a Hilbert space V is said to converge weakly to a vector v∞ ∈ V if, and
only if,

lim
j→∞〈f , v∞ − vj〉 = 0 for all f ∈ V . (2.91)

The Cauchy-Schwarz inequality immediately indicates that convergence in norm
to v∞ implies weak convergence to that vector. However, weak convergence of a
sequence does not imply, necessarily, its convergence in norm.

The limit need only be valid on a dense subset of V as,

Theorem 2.2 Using the notation above, suppose that the sequence {vj}j≥0 is bounded
in the sense that there exists a real scalar M such that ‖vj‖ ≤ M for all j ≥ 0. Suppose
also that, for some dense subset S ⊂ V

lim
j→∞ 〈f , v∞ − vj〉 = 0 for all f ∈ S. (2.92)

Then, {vj}j≥0 converges weakly to v∞.

Proof First note that ‖v∞ − vj‖ ≤ ‖v∞‖ + ‖vj‖ ≤ ‖v∞‖ + M . Next write, for any
fε ∈ V ,

〈f , v∞ − vj〉 = 〈f − fε, v∞ − vj〉 + 〈fε, v∞ − vj〉. (2.93)
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Let ε > 0 be arbitrary and choose fε ∈ S so that ‖f − fε‖ < ε, then the inequality

|〈f , v∞ − vj〉| ≤ ‖(f − fε‖‖v∞ − vj‖ + |〈fε, v∞ − vj〉| (2.94)

indicates that
lim sup

j→∞
|〈f , v∞ − vj〉| ≤ ε(‖v∞‖ + M) (2.95)

which proves the result as the left hand side is independent of ε > 0 which is
arbitrary. �

Another useful property of weak convergence is that of guaranteed convergence
of subsequences. This is stated as follows and is usually associated with the notion
of weak compactness of the closed unit ball B(0; 1) in V .

Theorem 2.3 (Ascoli’s Theorem) If V is a Hilbert space and S = {vj}j≥0 is an
infinite but bounded sequence of vectors, then S has a subsequence S1 = {vj}kj≥0

that converges weakly to some vector v∞ in V .

The result states that all bounded sequences in any Hilbert space contain weakly
convergent subsequences. If the convergent subsequence is removed from the orig-
inal sequence, it will leave either a finite set (a situation which implies that the
sequence itself converges weakly to v∞) or an infinite sequence. In the second case,
the remaining sequence is also bounded and hence (by Ascoli’s Theorem) it, too, has
a subsequence converging weakly to some (possibly different) weak limit v̂∞ ∈ V .
It is concluded that there is a possibility that S has many subsequences with different
weak limits.

The essential property needed for weak convergence is boundedness of the
sequence. The following result provides some insight into possibilities.

Theorem 2.4 (Weak Convergence and Operator Norms) Any iteration vj+1 =
Γ vj, j ≥ 0, in a real Hilbert space V where Γ : V → V is a bounded linear
operator with norm ‖Γ ‖ ≤ 1 generates a sequence {vj}kj≥0 that is bounded in norm
and has weakly convergent subsequences. If ‖Γ ‖ < 1, then the sequence converges
in norm to zero.

Proof As vj = Γ jv0, it follows that ‖vj‖ ≤ ‖Γ ‖j‖v0‖ which proves the result as the
sequence is always bounded by ‖vj‖ ≤ ‖v0‖. Ascoli’s Theorem then indicates the
existence of a weak limit of some subsequence. Convergence in norm if ‖Γ ‖ < 1
follows from the definitions. �

Iterations of the form vj+1 = Γ vj appear regularly in this text. Theorems 2.1
and 2.4 above provide two conditions for some form of convergence. It is worth
noting that the values of the spectral radius or norm of the operator Γ are central
to the stated results. As r(Γ ) ≤ ‖Γ ‖, the use of the spectral radius will produce
the best prediction of some form of convergence. This is particularly apparent in the
case when r(Γ ) < 1 < ‖Γ ‖ when the norm cannot be used to prove convergence
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but the use of the spectral radius indicates convergence in norm to zero. The more
difficult, but important, case that also plays a role in iterative control is the case
when r(Γ ) = ‖Γ ‖ = 1 when weak convergence of subsequences is guaranteed by
Theorem 2.4 but convergence in norm is not covered by either result.

2.4.3 Adjoint and Self-adjoint Operators in Hilbert Space

Suppose that Γ : V �→ W is a bounded linear operator mapping a real or complex
Hilbert space V into a real or complex Hilbert space W . The Adjoint Operator
Γ ∗ : W �→ V is the uniquely defined bounded linear operator mapping W into V
and satisfying the identity, for all u ∈ W and v ∈ V ,

〈u, Γ v〉W = 〈Γ ∗u, v〉V (2.96)

There are many general links between an operator and its adjoint. These include the
additive, multiplicative and inversion rules

(Γ1 + Γ2)
∗ = Γ ∗

1 + Γ ∗
2 ,

(Γ1Γ2)
∗ = Γ ∗

2 Γ ∗
1 and, if V = W , (A−1)∗ = (A∗)−1 (2.97)

(when the inverse exists). The cases of real and complex Hilbert spaces need a little
care as, for Γ : V �→ W and any scalar λ, the adjoint (λΓ )∗ = λΓ ∗ if V is a real
Hilbert space but equal to λΓ ∗ if V is a complex Hilbert space. Also

(Γ ∗)∗ = Γ. (2.98)

A result that plays a role in the following text expresses the adjoint of a map into a
product space in terms of adjoints of operators associated with each component.

Theorem 2.5 (The Adjoint of a Map into a Product Hilbert Space) Let V ,W1, . . . ,

Wp be real Hilbert spaces and define the product Hilbert space W1 × · · · ×Wp to be
the product space with inner product and induced norm defined by

〈(w1, . . . , wp), (z1, . . . , zp)〉W1×···×Wp = ∑p
j=1 〈wj, zj〉Wj

and ‖(w1, . . . , wp)‖2W1×···×Wp
= ∑p

j=1 ‖wj‖2Wj
.

(2.99)

Let the operator G : V → W1 × · · · × Wp be linear and bounded. Then G can be
represented by the mapping, for all v ∈ V ,

Gv = (G1v, G2v, . . . , Gpv) (2.100)
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where Gj : V → Wj is linear and bounded. The adjoint map G∗ : W1×· · ·×Wp → V
is the bounded linear operator defined by the relation,

G∗(w1, w2, . . . , wp) = G∗
1w1 + G∗

2w2 + · · · + G∗
pwp, (2.101)

where, for 1 ≤ j ≤ p, G∗
j : Wj → V is the adjoint of Gj.

Proof The characterization of G in terms of the Gj follows easily from the linearity
of G. The adjoint of G is identified from the equation

〈(w1, . . . , wp), Gv〉W1×···×Wp = ∑p
j=1 〈wj, Gjv〉Wj

= ∑p
j=1 〈G∗

j wj, v〉V = 〈 ∑p
j=1 G∗

j wj, v〉V .
(2.102)

The theorem is proved by comparing this with 〈G∗(w1, w2, . . . , wp), v〉V . �

An operator Γ : V �→ V is self adjoint if, and only if, Γ = Γ ∗. If Γ is self
adjoint then 〈u, Γ u〉V is always real. Γ is then said to be positive if 〈u, Γ u〉 ≥ 0
for all u ∈ V , positive definite if it is positive and 〈u, Γ u〉 = 0 if, and only if,
u = 0 and positive semi-definite if it is positive but there exits a non-zero u such that
〈u, Γ u〉 = 0. Positive commuting operators have special properties as follows:

Theorem 2.6 If Γ1, Γ2 and Γ3 are linear, bounded, self-adjoint, positive, commuting
operators mapping a Hilbert space V into itself, then

Γ1 ≥ 0 & Γ2 ≥ 0 ⇒ Γ1Γ2 ≥ 0
Γ1 ≥ Γ2 ⇒ Γ1Γ3 ≥ Γ2Γ3

(2.103)

The form of the adjoint operator depends on the spaces used and, in particular, on
the form of inner product used. For example, matrix algebra proves that,

Theorem 2.7 (Adjoint of a Matrix Operator) let V be Rp with inner product
〈v̂, v〉V = v̂T Rv (where R = RT > 0) and W be Rq with inner product
〈ŵ, w〉W = ŵT Qw (where Q = QT > 0). Γ is a p × q real matrix with adjoint Γ ∗
satisfying, for all u and w,

wT QΓ v = (Γ ∗w)T Rv and hence Γ ∗ = R−1Γ T Q. (2.104)

In particular, when R = Ip and Q = Iq, the adjoint is simply the transpose of the
matrix Γ .

Note: it is conventional to use the ∗ notation to denote the adjoint operator but it is
also often used to denote the complex conjugate transpose of a matrix. There is a
possibility of confusion from time to time but careful attention to the context of the
analysis should easily resolve any ambiguity.

The operator Γ ∗Γ is self adjoint. It is also positive as 〈u, Γ ∗Γ u〉 = 〈Γ u, Γ u〉 =
‖Γ u‖2 ≥ 0. As a consequence,
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Theorem 2.8 (Invertibility and Positivity of Operators) With the above notation,

1. The operator Γ ∗Γ : V → V is positive definite if, and only if, ker[Γ ] = {0}.
2. The operator Γ : V → W has a bounded inverse if, and only if, there exists a

constant α > 0 such that Γ ∗Γ ≥ α IV and Γ Γ ∗ ≥ α IW .

These properties link invertibility to positivity as follows,

Theorem 2.9 (Invertibility and Positivity of Operators) An operator Γ : V → V
has a bounded inverse on the Hilbert space V if there exists a real number ε0 > 0
such that

Γ + Γ ∗ ≥ ε20 I. (2.105)

Proof Noting that, for any real scalar λ,

0 ≤ (I − λΓ ∗)(I − λΓ ) = I − λ(Γ + Γ ∗) + λ2Γ ∗Γ
≤ (1 − λε20)I + λ2Γ ∗Γ.

(2.106)

Exactly the same relation ship for Γ Γ ∗ is obtained using (I − λΓ )(I − λΓ ∗) so
that the positivity condition of the previous result holds by choosing λ so that α =
λ−2(λε20 − 1) > 0. �

The operator norms ‖Γ ‖ and ‖Γ ∗‖ are related by the expression,

‖Γ ‖ = ‖Γ ∗‖ (2.107)

and the range and kernels of the operators satisfy the orthogonality relations

(a) R[Γ ∗]⊥ = ker[Γ ] and hence R[Γ ]⊥ = ker[Γ ∗]
(b) R[Γ ∗] = ker[Γ ]⊥ and hence R[Γ ] = ker[Γ ∗]⊥ (2.108)

from which the Projection Theorem in Hilbert space (Theorem 2.17) gives

V = R[Γ ∗] ⊕ ker[Γ ] and W = R[Γ ] ⊕ ker[Γ ∗] (2.109)

A following result provides an important property of a Hilbert space in terms of the
range of an operator and and the kernel of its adjoint. The result has close links to
the above but, more formally,

Theorem 2.10 (Denseness and the Orthogonal Complement of the Kernel) Suppose
that Γ : V �→ W where V and W are Hilbert spaces. Then the range space R[Γ ∗]
is dense in V if, and only if, ker[Γ ] = {0}.
Proof If ker[Γ ] = {0}, suppose that R[Γ ∗] is not dense. It follows that its closure
is a proper closed subspace S of V with an orthogonal complement S⊥ containing
non-zero vectors. Let v ∈ S⊥ be non-zero and write 〈v, Γ ∗w〉 = 0 for all w ∈ W .
It follows that 〈Γ v, w〉 = 0 for all w ∈ W so that (choosing w = Γ v) Γ v = 0
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which contradicts the assumption that ker[Γ ] = {0}. Next suppose that R[Γ ∗] is
dense. It follows that the condition 〈v, Γ ∗w〉 = 0 for all w ∈ W implies that v = 0
which trivially leads to R[Γ ∗]⊥ = ker[Γ ] = {0} as required. �

The properties of the range spaces of an operator and its adjoint are also connected
as follows:

Theorem 2.11 (Closed Range Theorem) If Γ : V → W is a bounded linear
operator between Hilbert spaces, then Γ has a closed range in W if, and only if, the
range of the adjoint Γ ∗ is closed in V .

The norm of a self adjoint operator Γ : V → V is related to the values taken
by an associated quadratic form. More precisely its norm can be computed from the
parameters

a = inf{〈u, Γ u〉 : u ∈ V and ‖u‖ = 1}
and b = sup{〈u, Γ u〉 : u ∈ V and ‖u‖ = 1}

to be ‖Γ ‖ = max{|a|, |b|}
and, in particular, ‖Γ ‖ = r(Γ ).

(2.110)

This expression can be written in the form, where I is the identity operator,

aI ≤ Γ ≤ bI (2.111)

which forms the basis of the theorem

Theorem 2.12 (Invertibility of Self Adjoint Operators) With the notation used
above, suppose that Γ : V → V is self adjoint. Then the spectrum of Γ con-
tains only real numbers in the closed interval [a, b]. In particular, Γ has a bounded
inverse if ab > 0.

A useful relationship valid when Γ is self adjoint and positive is

‖Γ ‖ = sup{〈u, Γ u〉 : u ∈ V and ‖u‖ = 1} (2.112)

which immediately yields the result that, for any bounded Γ : V → W ,

‖Γ ∗Γ ‖ = ‖Γ ‖2. (2.113)

A useful consequence of this is that

Theorem 2.13 (Norm of a Matrix Operator) Using the notation and assumptions of
Theorem 2.7,

‖Γ ‖2 = sup{〈u, Γ ∗Γ u〉 : u ∈ V and ‖u‖ = 1} = r(Γ ∗Γ ) (2.114)
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where r(Γ ∗Γ ) is the spectral radius ofΓ ∗Γ = R−1Γ T QΓ . Moreover, for all choices
of Q and R, ‖Γ ‖ is the largest singular value of ΓQ R = Q

1
2 Γ R− 1

2 and

‖Γ ∗‖ = ‖Γ ‖. (2.115)

Proof The proof follows from Theorem 2.7 using Lagrange multiplier techniques
to solve 2.112 regarded as a function minimization problem. Next, it is easy to
see that det(λIp − Γ Γ ∗) = λp−q det(λIq − Γ ∗Γ ) so that the eigenvalues of
Γ ∗Γ and Γ Γ ∗ differ, at most, only by a number of zero eigenvalues. Finally,
the eigenvalues of Γ ∗Γ are the squares of the singular values of Q

1
2 Γ R

1
2 as

Γ ∗Γ = R− 1
2

[(
Q

1
2 Γ R− 1

2

)T
Q

1
2 Γ R− 1

2

]
R

1
2 . That is Γ ∗Γ and Γ T

Q RΓQ R are related

by a similarity transformation. �

If Γ : V �→ V is positive and self adjoint there exists a unique positive, self
adjoint operator Γ̂ : V �→ V with the property that Γ = Γ̂ Γ̂ . For this reason, Γ̂ is
said to be the unique positive square root ofΓ and iswritten Γ̂ = Γ 1/2. The bounded,
positive, self-adjoint linear operator Γ 1/2 has the properties that it commutes with
every operator that commutes with Γ and

Γ 1/2 = (Γ 1/2)∗ ≥ 0, ker[Γ 1/2] = ker[Γ ] and R[Γ ] ⊂ R[Γ 1/2] (2.116)

so that, in particular, Γ 1/2 is positive definite if, and only if, Γ is positive definite.
The spectrum of a self adjoint operator Γ lies in the closed ball Bc(0; r(Γ )) ⊂

Bc(0; ‖Γ ‖).Using (2.110), the spectrumofΓ − b+a
2 I lies in the closedball Bc(0, b−a

2 )

and hence, using the spectral mapping Theorem, the spectrum of Γ lies in the shifted
closed ball b+a

2 + Bc(0, b−a
2 ). In particular,

Theorem 2.14 (Invertibility of (I + Γ )−1) Suppose that Γ : Y → Y where Y is
a real Hilbert space is bounded, self adjoint and positive. Then I + Γ is a bijection
and the inverse operator (I + Γ )−1 is well-defined and bounded.

Proof Using the discussion preceding this result, a = 0 and b = ‖Γ ‖ and hence

spec[Γ ] ⊂ ‖Γ ‖
2

+ Bc(0,
‖Γ ‖
2

) . (2.117)

The proof is now complete as −1 is not in the spectrum of Γ . �

Note: Operators of this type play a central role in Iterative Algorithms.
Finally, useful conditions for Γ1Γ2 to be self adjoint can be stated as follows

Theorem 2.15 (When is Γ1Γ2 self adjoint?) Suppose that the two self-adjoint oper-
ators Γ1 and Γ2 map a real Hilbert space Y into itself and that Γ2 is positive definite.
Then the product Γ1Γ2 is self-adjoint if the inner product in Y is replaced by the
new inner product

〈u, v〉0 = 〈u, Γ2v〉Y . (2.118)
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The two topologies are equivalent if there exists a real scalar ε20 > 0 such that
Γ2 ≥ ε20 I .

Proof The bilinear form 〈u, v〉0 satisfies all the requirements of an inner product and
its associated norm ‖ · ‖0. The self-adjoint property follows as

〈u, Γ1Γ2v〉0 = 〈u, Γ2Γ1Γ2v〉Y = 〈Γ1Γ2u, Γ2v〉Y = 〈Γ1Γ2u, v〉0 (2.119)

Finally, the existence of ε20 > 0 ensures the topological equivalence of the two norms
follows as

ε20‖u‖2Y ≤ 〈u, Γ2u〉Y = ‖u‖20 ≤ ‖Γ0‖‖u‖2Y . (2.120)

�

Note: This result plays a role in the analysis of the convergence and robustness of
many of the algorithms in the following chapters.

2.5 Real Hilbert Spaces, Convex Sets and Projections

The structure of real Hilbert spaces provides a powerful set of results related to
optimization. These results are expressed in terms of Projection onto Convex Sets. A
convex set S ⊂ V in a real Hilbert space V is any set satisfying the condition that,
for any two points u, v in S, the vector

w = λu + (1 − λ)v ∈ S for all λ ∈ [0, 1]. (2.121)

(where λ is a real number). The vector w is said to be a convex combination of u and
v. The Convex Hull of a set S ⊂ V is the smallest convex set containing S.

Suppose that v0 is an arbitrary point of V and consider the problem of finding the
point in a convex set S that is closest to v0. This problem can be written formally as
the solution (if it exists) of the optimization problem

v1 = argmin{‖v0 − v‖ : v ∈ S} (2.122)

That is, v1 is the vector v ∈ S that minimizes the norm ‖v0 − v‖ and hence is the
nearest point in S to v0. For visualization purposes, v1 can be thought of as the
projection of v0 onto the set S. In general, it is possible that no such point exists
but, for many problems in practice, a solution does exist. The most useful theorem
characterizing the existence of v1 and its relationship to v0 is as follows:

Theorem 2.16 (Minimum Distance to a Closed Convex Set) Suppose that S is a
closed, convex set in the real Hilbert space V . If v0 ∈ V , then the optimization
Problem (2.122) has a unique solution v1 ∈ S. A necessary and sufficient condition
for v1 to be that solution is that
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〈v − v1, v1 − v0〉V ≥ 0 for all v ∈ S. (2.123)

A particular case of interest is when S is a closed vector subspace of V .

Theorem 2.17 (TheProjectionTheorem inHilbert Space) Suppose that S is a closed
vector subspace in the real Hilbert space V . If v0 ∈ V , then the optimization Prob-
lem (2.122) has a unique solution v1 ∈ S. A necessary and sufficient condition for
v1 to be that solution is that the following orthogonality condition is true,

〈v − v1, v1 − v0〉V = 0 for all v ∈ S. (2.124)

In particular, as v − v1 ∈ S is arbitrary, the condition reduces to

〈v, v1 − v0〉V = 0 for all v ∈ S (2.125)

which is simply the requirement that v1 − v0 is orthogonal to every vector in S.

Proof The existence and uniqueness of v1 follows from the previous theorem as
does the requirement that 〈v − v1, v1 − v0〉V ≥ 0 for all v ∈ S. Suppose that
there exists a vector v ∈ S such that 〈v − v1, v1 − v0〉V > 0, then, noting that
v̂ = −v + 2v1 ∈ S, a simple computation indicates that 〈v̂ − v1, v1 − v0〉V < 0
contradicting the assumption that v1 solves the problem. �

The case of S being a vector subspace gives rise to the notion of a Projection
Operator. More precisely, using the notation of the Projection Theorem 2.17, the
computation v0 �→ v1 defines a mapping PS : V → S. The orthogonality condition
also indicates that the mapping is linear and hence PS is a linear operator called the
Orthogonal Projection Operator onto S. It is bounded as, writing v1 = PSv0, using
the orthogonality condition, and noting that 0 ∈ S,

‖v0‖2 = ‖(v0 − v1) + v1‖2 = ‖v0 − v1‖2 + 2〈v0 − v1, v1〉 + ‖v1‖2
= ‖v0 − v1‖2 + ‖v1‖2 ≥ ‖v1‖2 (2.126)

so that, together with the observation that PSv0 = v0 if, and only if, v0 ∈ S, gives

‖PS‖ = 1 . (2.127)

From the definitions P 2
S = PS and hence ker[I − PS] = S. In addition, any vector

v0 ∈ V has a unique decomposition of the form v0 = v1 + (v0 − v1) = PSv0 + (I −
PS)v0 where v1 = PSv0 is orthogonal to S and hence (I − PS)v0. As a consequence,
V has a direct sum decomposition of the form

V = S ⊕ S⊥ where S = ker[I − PS] and S⊥ = ker[PS]. (2.128)

In particular, for any u and v in V , it follows that 〈PSu, v〉 = 〈PSu, PSv〉 = 〈u, PSv〉
so that PS is self adjoint and positive (but not strictly positive).
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Finally, another form of convex set that plays a useful role in the analysis of linear
control systems is that of a Linear Variety, namely a convex set S that is constructed
by a translation of a subspaceW . The resultant set is denoted by S = a +W where
a ∈ V defines the translation and

S = {v : v = a + w for some w ∈ W }. (2.129)

Note that the choice of a is not unique as it can be replaced by any vector a + w0

with w0 ∈ W . As v − v0 = (v − a) − (v0 − a) and v − a ∈ V , the solution of the
problem in this case can be expressed in the form

v1 = a + PW (v0 − a) (2.130)

A useful example of a closed linear variety is the set

S = {u : r = Gu + d} = u0 + W , with W = ker[G] (2.131)

where G : U → Y is linear and bounded, U andY are real Hilbert spaces, r ∈ Y ,
d ∈ Y and u0 ∈ U is any point (assumed to exist) satisfying r = Gu0 + d. Another
example of a closed linear variety is that of a closed Hyperplane defined by taking
Y = R and G as the map G : u �→ 〈α, u〉 (for some α ∈ U ) and setting

S = {u : 〈α, u〉 = c} (2.132)

where both α ∈ U and the real number c are specified. If u0 ∈ S, then S =
{u : 〈α, u − u0〉 = 0} which identifies the set of vectors u − u0 as that of all vec-
tors orthogonal to α. A Separating Hyperplane separating two sets S1 and S2 in a
real Hilbert space V is a hyperplane of the above type where 〈α, u〉 ≥ c for all
u ∈ S1 and 〈α, u〉 ≤ c for all u ∈ S2 or vice versa. An example of a separat-
ing hyperplane is obtained from the result describing the minimum distance from
v0 ∈ V to a closed convex set S. More precisely, suppose that v0 is not in S. From
Theorem 2.122, the hyperplane 〈v − v1, v1 − v0〉 = 0 is a hyperplane that separates
the point set {v0} from S. Separating hyperplanes are not unique as the hyperplane
〈v − λv1 − (1− λ)v0, v1 − v0〉 = 0 is also a separating hyperplane when λ ∈ [0, 1].

2.6 Optimal Control Problems in Hilbert Space

Quadratic optimization problems for linear systems play a central role in this text.
In general, signals will be regarded as being vectors in suitable real Hilbert spaces.
Operators will be used to represent systems behaviour by providing a linear rela-
tionship between system output signals and its input signals. The minimization of
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objective functions created using quadratic functions of signal norms is the chosen
mechanism for creating new control algorithms with known properties. The use of
this level of abstraction will be seen to provide solutions that cover the solution of
a wide range of problems of interest ranging from the case of continuous dynamics
to sampled data systems to multi-rate systems and many other useful situations. The
details are provided in the following chapters but the general form of the solution
can be derived using the mathematical methods already described in this chapter.

A system will be described as a mapping between a set U of input signals u and
a set Y of resultant output signals y. Both U and Y are taken to be normed vector
spaces. A Linear System is characterized by a bounded, linear operator G : U → Y
and the input to output mapping is defined by a relation of the form

y = Gu + d (2.133)

where d represents the output behaviour when the input u = 0 (and hence, typically,
behaviours due to initial condition and disturbances). A general form of Linear,
Quadratic, Optimal Control Problem can be defined as the computation of the input
that minimizes the Objective Function (often called a Performance Index or Perfor-
mance Criterion)

J (u) = ‖r − y‖2Y + ‖u0 − u‖2U (2.134)

subject to the constraint that y and u are linked by y = Gu + d. The vectors u0 ∈ U
and r ∈ Y are assumed to be known and the problem is interpreted as an attempt to
reduce the variation of the output from the specified signal r whilst not using input
signals that deviate too much from u0. The relative weighting of these two objectives
is reflected in the choice of norms in Y and U .

The solution to this problem when both U and Y are real Hilbert spaces is
particularly valuable. Denote the adjoint operator of G by G∗ and use the notation

e = r − y = r − Gu − d and e0 = r − y0
where y0 = Gu0 + d

(2.135)

is the output response to the input u0.

Theorem 2.18 (Solution of the Optimal Control Problem) With the problem def-
inition given above, the input-output pair (y, u) minimizing the objective function
(2.134) subject to the constraint (2.133) is given by the implicit formulae

u = u0 + G∗e (2.136)

As a consequence,

e = (I + GG∗)−1e0 and hence u = u0 + G∗(I + GG∗)−1e0. (2.137)
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In particular, the minimum value of J (u) can be computed to be

min J (u) = 〈e0, (I + GG∗)−1e0〉Y . (2.138)

Proof Two alternative proofs are provided in the next two subsections. �

The proofs depend on the material in the previous sections. In particular, they
depend on the algebraic properties of inner products, the properties of the adjoint
operator, the Projection Theorem and the identities

G∗(I + GG∗)−1 = (I + G∗G)−1G∗, G(I + G∗G)−1G∗ = GG∗(I + GG∗)−1,

and (I + GG∗)−1 + GG∗(I + GG∗)−1 = I.
(2.139)

The inverses (I + GG∗)−1 and (I + GG∗)−1 exist and are bounded due to the
positivity of GG∗ and G∗G and the resultant lower bounds I + GG∗ ≥ I > 0 and
I + G∗G ≥ I > 0.

2.6.1 Proof by Completing the Square

Note that G(u − u0) = −(e − e0) and consider the following inner product

γ = 〈u − u0 − G∗(I + GG∗)−1e0, (I + G∗G)(u − u0 − G∗(I + GG∗)−1e0)〉U
≥ ‖u − u0 − G∗(I + GG∗)−1e0‖2U ≥ 0,

(2.140)
noting that it is equal to zero if, and only if u − u0 − G∗(I + GG∗)−1e0 = 0. If this
condition is valid then, operating on the equation with G gives e = e0 − GG∗(I +
GG∗)−1e0 = (I + GG∗)−1e0 which would prove (2.137) and hence (2.136). It
remains to prove therefore that γ = 0.

The inner product can be written as

γ = 〈u − u0 − (I + G∗G)−1G∗e0, (I + G∗G)(u − u0 − (I + G∗G)−1G∗e0)〉U
= 〈u − u0, (I + G∗G)(u − u0)〉U − 2〈u − u0, G∗e0〉U + 〈G∗e0, (I + G∗G)−1G∗e0〉U
= ‖u − u0‖2U + ‖e − e0‖2Y + 2〈e − e0, e0〉Y + 〈G∗e0, (I + G∗G)−1G∗e0〉U
= ‖u − u0‖2U + ‖e‖2Y + ‖e0‖2Y − 2〈e, e0〉Y + 2〈e − e0, e0〉Y

+〈G∗e0, (I + G∗G)−1G∗e0〉U
= J (u) + 〈G∗e0, (I + G∗G)−1G∗e0〉U − ‖e0‖2Y= J (u) + 〈e0, G(I + G∗G)−1G∗e0〉Y − ‖e0‖2Y= J (u) + 〈e0,

(
GG∗(I + G∗G)−1 − I

)
e0〉Y

= J (u) − 〈e0, (I + GG∗)−1e0〉Y
(2.141)

the second term being independent of (y, u). It follows that J (u) is minimized if, and
only if, γ = 0. This first proof of Theorem 2.18 is now complete. �
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2.6.2 Proof Using the Projection Theorem

An alternative derivation of the solution uses the Projection Theorem in the product
space Y ×U of input/output pairs (y, u) regarded as a real Hilbert space with inner
product (and associated norm) defined using

〈(z, v), (y, u)〉Y ×U = 〈z, y〉Y + 〈v, u〉U
‖(y, u)‖Y ×U =

√
‖y‖2Y + ‖u‖2U .

(2.142)

With this notation, J (u) = ‖(r, u0) − (y, u)‖2Y ×U and the optimal control problem
is that of finding the pair (y1, u1) that solves the minimum norm problem

(y1, u1) = argmin{‖(r, u0) − (y, u)‖2 : (y, u) ∈ S}
where S = {(y, u) : y = Gu + d} (2.143)

is a linear variety inY ×U . It is closed as any sequence {(yj, uj)}j≥0 in S converging
(in the norm topology) to a point (y, u) has the property that {yj}j≥0 converges to y
in Y and {uj}j≥0 converges to u in U . Also, as yj = Guj + d, j ≥ 0,

0 ≤ ‖y − Gu − d‖Y = ‖(y − yj) − G(u − uj) + (yj − Guj − d)‖Y
≤ ‖(y − yj) − G(u − uj)‖Y + ‖yj − Guj − d‖Y
= ‖(y − yj) − G(u − uj)‖Y
≤ ‖(y − yj)‖Y + ‖G‖‖(u − uj)‖U

(2.144)

which tends to zero as j → ∞. Hence y = Gu + d which proves that (y, u) ∈ S.
Applying the projection theorem, the solution (y1, u1) of the optimal control prob-

lem satisfies

〈(z, v) − (y1, u1), (y1, u1) − (r, u0)〉Y ×U = 0 for all (z, v) ∈ S . (2.145)

This equation is just

〈z − y1, y1 − r〉Y + 〈v − u1, u1 − u0〉U = 0 (2.146)

Using the equations y1 = Gu1 + d, z = Gv + d and e = r − y1 then gives

〈v − u1,−G∗e〉Y + 〈v − u1, u1 − u0〉U = 〈v − u1, u1 − u0 − G∗e〉U = 0 (2.147)

for all v ∈ U . Choosing v = 2u1 − u0 − G∗e, it follows that ‖u1 − u0 − G∗e‖2 = 0
which proves the result using the same algebraic manipulations as those used in
the previous subsection and the computation of the minimum value of the objective
function as follows,
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‖r − y1‖2Y + ‖u0 − u1‖2U = 〈e, (I + GG∗)e〉Y = 〈e0, (I + GG∗)−1e0〉Y .

(2.148)

This completes the second proof of Theorem 2.18. �

2.6.3 Discussion

The solution of the optimal control problem described above provides a formal
approach to the solution of a wide class of problems following the process summa-
rized as the steps,

1. Identify the vector space U from which the inputs signals are to be chosen.
2. Choose an inner product and norm for U that ensures that it is a real Hilbert

space and also reflects the physical importance of signals.
3. Identify the vector space Y containing the outputs signals.
4. Choose an inner product and norm forY that ensures that it is a real Hilbert space

and also reflects the physical importance of signals.
5. Characterize the system as a bounded linear mapping G from U into Y and

identify the form of its adjoint operator G∗.
6. Write the defining relationship for the optimal solution in the implicit form u =

u0 + G∗e with e = r − y and find a causal representation of this controller that
can be implemented in real life.

This process could apply to any problem satisfying the assumptions but the devil is in
the detail. The main problem is that expressed in the last step, namely the conversion
of the implicit relationship between u and e into a useable computation. In later
chapters (see for example, Sects. 3.10 and 4.7), this idea will be linked, in the special
cases of linear state space models, to Two Point Boundary Value Problems and the
use of Riccati equations. More generally, the computations suffer from additional
complexities and high dimensionality. Even the simplest cases present challenges.
For example, letU = Rq with inner product 〈v̂, v〉U = v̂T Rv (where R = RT > 0)
and Y = Rp with inner product 〈ŵ, w〉Y = ŵT Qw (where Q = QT > 0). The
operator G is a p×q real matrix with adjoint (Eq. (2.104)) defined by the q×pmatrix
G∗ = R−1GT Q. Rather than using the implicit relationship, the direct computation
of u can be undertaken using

u = u0 + G∗(I + GG∗)−1e0 = u0 + R−1GT Q(Ip + G R−1GT Q)−1e0 (2.149)

This is a feasible approach to finding the solution and may work well in many cases
but, if the dimensions p and q are large, the calculation of the inverse matrix could
be challenging particularly if I + G R−1GT Q is ill-conditioned. This example does
have relevance to the topics in the text associated with the description of discrete time
systems in supervector form (see Sect. 4.7). Simplifications are possible in this case

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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as the elements in G have a structural pattern that makes the inversion implicit in
G∗(I + GG∗)−1 equivalent to the solution of a Two Point Boundary Value Problem
which is solved using Riccati equation and associated simulation methods.

2.7 Further Discussion and Bibliography

The chapter has reviewed material that plays a role in the development of the tech-
niques used in this text. Matrices form the computational core of the algorithms and,
although many readers will be familiar with basic matrix algebra, an understanding
of the structures and the analysis tools available for matrix methodologies is helpful
as is an understanding of the way that matrices are useful in the interpretation of
high (but finite) dimensional problems using simple geometrical insights generated
from the familiar three-dimensional world. There are many texts that cover the mate-
rial required ranging from undergraduate engineering texts such as [60, 105, 106] to
essentially mathematical texts that approach the topics using both algebraic concepts
and the ideas of finite dimensional vector spaces [45, 46, 53] within which matrices
are representations of operators using a specified basis set. Many teaching texts on
control theory and control engineering also have a summary of the necessarymaterial
[4, 39, 43, 63, 71, 81]. The material is essentially the same but differing perspectives
and different levels of abstraction are used. It is useful to note that there are links
between matrices and transfer function descriptions using Toeplitz matrices, details
of which can be found in [51]. For the purposes of this text, an understanding of, and
fluency with, the algebraic structures and analysis tools will help the reader to “see
through the symbols” and concentrate more usefully on the form and meaning of the
system properties used and the nature of the algorithms described. An understanding
of the algebraic and computational aspects of matrix theory will form the basis for
any computational software required for the exploitation of the material and also in
ensuring that data formats fit the necessary matrix structures.

Relevant techniques from functional analysis are also summarized in the chapter.
This material will be less familiar to many readers but, in its simplest form, it can
be regarded as a generalization of matrix theory to cover a wider range of problems.
In particular, matrices are replaced by operators between, possibly infinite dimen-
sional, signal spaces and the geometry of the three dimensional world is generalized
to higher, possibly infinite, dimensions. The underpinning ideas of vector spaces
endowed with norms to measure signal magnitude and the notion of bounded linear
operators between such spaces mirror the familiar notion of a system as a device
that maps input signals into output signals and the measurement of signal magni-
tude using measures such as least square values or maximum magnitudes. Although
much of this work can be viewed at the algebraic level as being very similar to matrix
(or even transfer function) methodologies, the technical details associated with the
ideas do contain many subtle issues that need to be considered at the mathematical
level. These take many forms but, perhaps the most important are those of exis-
tence of solutions to defined problems, the convergence of infinite sequences, the



54 2 Mathematical Methods

introduction of the notion of adjoint operators and their properties, convexity and
the idea of projection onto convex sets. There are many texts that provide the math-
ematical background for these topics including general texts on analysis [101] and
functional analysis such as [12, 31, 52, 107] and more specialist texts on Hilbert
space theory such as [54], operator theory [32, 33] and optimization algorithms
using functional analytic methods [69]. A reference to Open Mapping and Closed
Graph Theorems is found in [73] and an extensive analysis of projection methodolo-
gies is found in [36]. In the author’s experience, the choice of text to suit the needs of
a particular reader depends upon that reader and his or her background and preferred
way of thinking.

Finally, the content of the text is mathematical in its chosen language and much
of the supporting mathematics of Laplace and Z -transforms is used extensively in
control engineering texts. Some of the more advanced tools needed can be found
in texts on classical and multivariable control (see Sect. 1.5), mathematical systems
theory [59, 104] and specialist texts [112] and papers [75] on geometric systems
theory and decoupling theory [37, 47].

http://dx.doi.org/10.1007/978-1-4471-6772-3_1
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