
Chapter 13
Acceleration and Successive Projection

The previous chapters have described and analysed many Iterative Control algo-
rithms based on optimization principles. In the main, convergence was assured by
monotonic reductions in the error norm combined with semi-quantitative rules for
convergence rates based on experience of optimal control theory, the influence and
choice of weight parameters and matrices (in norm definitions) and insights obtained
using eigenvalue and/or frequency domain analysis. These rules introduce their own
problems. Using, for example, NOILC Algorithm 9.1 as a model, rapid convergence
is normally associated with low control weighting in the objective function. For state
space systems, this leads to high gain state variable feedback and high gain feedback
may not be advisable for the application considered. Therefore, despite the persua-
sive content of the rules, they provide trends rather than detail of likely outcomes and,
following these trends to their natural conclusion can produce unacceptable control
system characteristics.

The idea of creating rapidly convergent algorithms without undue need for unde-
sirable control system characteristics (such as high gain controls), therefore, merits
further research. Three approaches to the problem are presented, namely,

1. Savingon-plant-timeandcost byoff-line iterations using aplantmodel (Sect. 13.1).
2. Section13.2, extends successive projection to improve convergence rates by

adding in extrapolation (sometimes called over-relaxation) factors.
3. In Sect. 13.3, acceleration is achieved using successive projection and iteration

dependent choice of parameterized sets S2(σ 2).

Both sections rely heavily on the material in Chaps. 9 and 12 as the underlying
computations retain the NOILC computational framework at their core.

© Springer-Verlag London 2016
D.H. Owens, Iterative Learning Control, Advances in Industrial Control,
DOI 10.1007/978-1-4471-6772-3_13

377

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_12

378 13 Acceleration and Successive Projection

13.1 Replacing Plant Iterations by Off-Line Iterations

One simple acceleration mechanism is obtained by noting that there is no need for
every mathematical iteration to include experimental data collection. In reality, only
iterations that are implemented on the plant are normally counted by the user when
costing the process in terms of time undertaking plant experimental work. Model-
based, off-line iterations simply add to the computational burden but do not add to
the cost. This idea applies to any iterative algorithm but, for NOILC Algorithm 9.1,
details could be as follows,

1. implementation can take the form of partition of the iteration indices into two
disjoint sets I1 and I2 and implementing the algorithmon the plantwhen k ∈ I1 and
using model-based computation when k ∈ I2. The choices I1 = {0, 2, 4, 6, 8, . . .}
and I2 = {1, 3, 5, 7, . . .} describes a situation where, following initialization with
k = 0, the iteration is applied to the plant when k is even but is model-based (and
off-line) when k is odd. Different partitions can be used if regarded as useful but,
intuitively, the ratio of on-line to off-line iterations should not be too small if the
plant is to have data input to the process.

2. Using the same notation, the off-line iterations could be based on different algo-
rithms or simply use different parameters. For NOILC and state space systems,
the control weighting ε2 used when k ∈ I1 could represent the need to have
monotonic behaviours but avoid the use of on-line, high gain state feedback con-
trols. For off-line iterations, the weight can be reduced to achieve faster error
norm reduction. The reader will note the connection between this idea and the
material in Sect. 11.4.

3. In both cases, the number of plant iterations required is reduced and acceleration
is achieved. This is obvious for the first suggestion as, in the absence of modelling
errors, the error update relationship ek+1 = Lek is unchanged. For the second, the
change in on-line value ε2 to a smaller, off-line value ε2off implies that errors are
updated, alternately, as ek+1 = L1ek (off-line) and ek+1 = L0ek (on-line). The
changing parameter is represented by the inequality L1 ≤ L0 ≤ I and it follows
that acceleration is achieved as ek+2 = L1L0ek for all k ≥ 0 and L1L0 ≤ L2

0.

There are many variations on the ideas expressed above, not all of which link easily
to successive projection. The interested reader is invited to explore the possibilities.

13.2 Accelerating Algorithms Using Extrapolation

In this section, attention is focussed on successive projection algorithms with just
NS = 2 closed, convex sets S1 ⊂ H and S2 ⊂ H in a real Hilbert space H. In
particular, it is assumed that S1 is a linear variety. This assumption is natural as,
typically, S1 describes the dynamics of the plant in the absence of constraints.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_11

13.2 Accelerating Algorithms Using Extrapolation 379

13.2.1 Successive Projection and Extrapolation Algorithms

The following Algorithm defines the proposed extrapolation algorithm using the
notation of Chap.12. It covers the case of two closed, convex sets S1 and S2 where
the set S1 is a linear variety in a real Hilbert space H. The starting point is a point
s0 ∈ S2 and successive projections are onto the sequence of sets {S̃j}j≥1 defined by
the alternating sequence {S1, S2, S1, S2, S1, . . .}.
Algorithm 13.1 (Successive Projection with Extrapolation Factors) Suppose that
S1 ∩ S2 is non-empty. Then an accelerated successive projection algorithm for the
constructionof iterates that approachS1 ∩ S2 arbitrarily closely is definedbychoosing
a starting point s0 ∈ S2 and constructing the sequence {sj}j≥0 with sj ∈ S̃j, j ≥ 1, by
solving, recursively, the optimization problems

s̃j+1 = arg min
s∈S̃j+1

‖s − sj‖H , for j ≥ 0 (13.1)

and defining new iterates sj+1 by the relations s1 = s̃1 and, more generally, for j ≥ 1,

sj+1 =
(

s̃j+1, if S̃j+1 = S2 (j odd)

sj−1 + λj+1(s̃j+1 − sj−1), if S̃j+1 = S1 (j even)

)
(13.2)

where λj+1 can be chosen to be any value in the range

1 ≤ λj+1 ≤ ‖sj − sj−1‖2H
‖s̃j+1 − sj−1‖2H

. (13.3)

For all such sequences and for all choices of point x ∈ S1 ∩ S2,

‖x − s2j−1‖2 ≥ ‖x − s2j+1‖2 + λ2j+1︸ ︷︷ ︸ ‖s2j − s2j−1‖2H , for j ≥ 1,

(The Effect of the Extrapolation Factor λ2j+1)
(13.4)

and

‖x − s1‖2H ≥
∞∑

j=1

λ2j+1‖s2j − s2j−1‖2H ≥
∞∑

j=1

‖s2j − s2j−1‖2H . (13.5)

As a consequence,

limj→∞ ‖s2j − s2j−1‖H = 0, so that limj→∞ ‖s2j − s̃2j+1‖H = 0
and limj→∞ infs∈S2 ‖s − s2j−1‖H = 0.

(13.6)

http://dx.doi.org/10.1007/978-1-4471-6772-3_12

380 13 Acceleration and Successive Projection

That is,

1. the algorithm generates a sequence of iterates that, from Eq. (13.4), get closer
to S1 ∩ S2 and ultimately, Eq. (13.6), lie arbitrarily close to both S1 and S2. It is
therefore a proximity algorithm.

2. If the user chooses the value λ2j+1 = 1 for all indices j, the algorithm is precisely
NOILC Algorithm 9.1 as expressed in the form of Theorems 12.1 and 12.4.

3. Using a value λ2j+1 > 1 appears, from Eq. (13.4), to reduce the range within
which ‖x − s2j+1‖2H can sit as compared with that achieved by NOILC. This is
the fact that supports the interpretation that using larger values of the extrapolation
factor will tend to accelerate the iteration process. However,

4. in practice, small errors in s̃2j+1 and s2j−1 could lead to larger errors in s2j+1. That
is, the algorithm is likely to be less robust than NOILC, particularly if λ2j+1 is
large. In practice, therefore, it is advisable to limit it to a chosen maximum value
λmax ≥ 1 even if larger values are allowed by the (error free) theory. That is, the
range defined by Eq. (13.17) is replaced by the range

1 ≤ λj+1 ≤ min{ ‖sj − sj−1‖2H
‖s̃j+1 − sj−1‖2H

, λmax}. (13.7)

Note: The algorithm has very precise properties that are revealed very well by the
general approach used. In the form described, the extrapolation is placed in the set
S1. The reader will note that, if both S1 and S2 are closed linear varieties, there will
be two choices of set that can be used.

Proof of Algorithm PropertiesAdemonstration that the algorithm is well-defined and
has the stated properties now follows. The first step is to show that the value of λj+1 is
well defined. First assume that j is even so that sj+1 ∈ S̃j+1 = S1. Next observe that,
if the algorithm has not converged, ‖sj − sj−1‖H
= 0 and it is then only necessary to
show that 0 < ‖s̃j+1−sj−1‖2H ≤ ‖sj−sj−1‖2H . If ‖s̃j+1−sj−1‖2H = 0 then s̃j+1 = sj−1.
Using the linear variety assumption for S1, it follows that (s̃j+1 − sj) ⊥ (x − s̃j+1)

for all x ∈ S1. Using the fact that 〈x − sj, sj − sj−1〉H ≥ 0 for all x ∈ S2 then gives
two expressions, satisfied for all x ∈ S1 ∩ S2,

〈x − sj, sj − sj−1〉H ≥ 0 and 〈x − sj−1, sj−1 − sj〉H = 0 (13.8)

so that ‖sj − sj−1‖2H ≤ 0 which is impossible as sj
= sj−1 by assumption. Therefore
s̃j+1
= sj−1 and the fact that λj+1 > 1 then follows from the identity ‖sj − sj−1‖2H =
‖sj − s̃j+1‖2H + ‖s̃j+1 − sj−1‖2H > ‖s̃j+1 − sj−1‖2H .
Next, let x ∈ S1 ∩ S2 and consider, for j ≥ 1,

〈s2j+1 − s2j−1, s2j−1 − x〉H = λ2j+1〈s̃2j+1 − s2j−1, s2j−1 − x〉H

= λ2j+1〈
(
s̃2j+1 − s2j

) + s2j − s2j−1, s2j−1 − x〉H

= λ2j+1〈s2j − s2j−1, s2j−1 − x〉H
(13.9)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_12
http://dx.doi.org/10.1007/978-1-4471-6772-3_12

13.2 Accelerating Algorithms Using Extrapolation 381

where the orthogonality of s̃2j+1 − s2j and s2j−1 − x has been used. It follows that

〈s2j+1 − s2j−1, s2j−1 − x〉H = λ2j+1〈s2j − s2j−1, s2j−1 − s2j + s2j − x〉H

= −λ2j+1‖s2j − s2j−1‖2H+ λ2j+1〈s2j − s2j−1, s2j − x〉H

≤ −λ2j+1‖s2j − s2j−1‖2H .

(13.10)

Writing

λ2j+1‖s2j − s2j−1‖2H = λ2j+1

(
‖s2j−s2j−1‖2H

‖s̃2j+1−s2j−1‖2H

)
‖s̃2j+1 − s2j−1‖2H

≥ λ22j+1‖s̃2j+1 − s2j−1‖2H = ‖s2j+1 − s2j−1‖2H
(13.11)

then gives

‖s2j+1 − x‖2H = ‖s2j−1 − x‖2H + ‖s2j+1 − s2j−1‖2H + 2〈s2j+1 − s2j−1, s2j−1 − x〉H

≤ ‖s2j−1 − x‖2H + ‖s2j+1 − s2j−1‖2H − 2λ2j+1‖s2j − s2j−1‖2H
(13.12)

Re-arranging yields the required inequality (13.4) as

‖s2j−1 − x‖2H ≥ ‖s2j+1 − x‖2H + (
λ2j+1‖s2j − s2j−1‖2H − ‖s2j+1 − s2j−1‖2H

)
+λ2j+1‖s2j − s2j−1‖2H≥ ‖s2j+1 − x‖2H + λ2j+1‖s2j − s2j−1‖2H

(13.13)
The remainder of the proof is an application of an induction argument and the
condition λ2j+1 ≥ 1. This yields Eq. (13.5) and hence Eq. (13.6). �

13.2.2 NOILC: Acceleration Using Extrapolation

Algorithm 13.1 combines the computations of NOILC Algorithm 9.1 (and all its
subsequent variations) with a simple linear combination in S1 parameterized by
λ2j+1. In structure it has some similarity to the use of relaxation methods but the
fact that λ2j+1 ≥ 1 links it more to extrapolation methodologies. The precise link
with NOILC Algorithm 9.1 is obtained by generalizing Algorithm 12.3 to include
extrapolation. The sets used are

S1 = {(e, u) : e = r − Gu − d} and S2 = {(e, u) : e = 0, u ∈ Ωu}. (13.14)

Projection of (e, u) onto S2 is typically an off-line computation which, in the uncon-
strained case, yields (0, u) so no computation is needed. The algorithm statement
therefore can concentrate on the projection onto S1 and takes the form described

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_12

382 13 Acceleration and Successive Projection

below. Note that there is some change in the notation used to make Algorithm 13.1
match that used in NOILC studies in previous chapters.

Algorithm 13.2 (NOILC with Extrapolation and Input Constraints) Suppose that
there exists an input u ∈ Ωu that generates a zero tracking error. Then, using the nota-
tion and terminology of Algorithms 9.1 and 12.3, the Norm Optimal Iterative Learn-
ing Control algorithm (with extrapolation) generates a sequence of inputs {uk}k≥0
(and associated errors {ek}k≥0) by using the process,

STEP ONE (Initialization): Choose u0 ∈ U and find the error response e0 to gen-
erate the iterate (e0, u0) ∈ S1. Then, for k ≥ 0, undertake steps 2, 3, 4, 5 iteratively
until the desired accuracy has been achieved.
STEP TWO (Projection onto S2): Given the data (ek, uk) ∈ S1, find the constrained
input u(1)

k and hence the point (0, u(1)
k) ∈ S2 solving

u(1)
k = arg min

u∈Ωu
‖u − uk‖2U . (13.15)

Note: For application to physical systems, it is important to ensure that plant response
data is included in the next step. In the above, this requirement is included the
construction of the plant error response e(1)

k to the input u(1)
k .

STEP THREE: (Projection onto S1) Project the data (0, u(1)
k) ∈ S2 onto S1, using

off-line or on-line calculations to find the minimum distance to S1 expressed as the
problem of finding the solution of the NOILC optimization problem

u(2)
k+1 = arg min

u∈U
{J(u, u(1)

k) : e = r − y, y = Gu + d} (13.16)

and the associated tracking error e(2)
k+1. To ensure a link to plant data, the process

should be driven by e(1)
k rather than u(1)

k .
STEP FOUR (Evaluation of an Extrapolation Factor): Choose a value of extrap-
olation factor λ(k + 1) ≥ 1 in the range

1 ≤ λ(k + 1) ≤ ‖ek‖2Y + ε2‖u(1)
k − uk‖2U

‖e(2)
k+1 − ek‖2Y + ε2‖u(2)

k+1 − uk‖2U
(13.17)

to produce the new control input

uk+1 = uk + λ(k + 1)
(

u(2)
k+1 − uk

)
. (13.18)

STEP FIVE (Error Measurement): Compute the response ek+1 to uk+1 by, either
using the off-line formula

ek+1 = ek + λ(k + 1)
(

e(2)
k+1 − ek

)
, (13.19)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_12

13.2 Accelerating Algorithms Using Extrapolation 383

or using uk+1 on-line to find themeasured tracking error. This step has then generated
the data (ek+1, uk+1) and the procedure returns to STEP TWO.
The statement of and analysis following Algorithm 13.1 then proves that the tracking
error converges to zero and the input signals becomes arbitrarily close to the constraint
set Ωu.

Algorithm 13.1 in the form of Algorithm 13.2 has potential value in accelerating
NOILC algorithmswithout the need to use low input signal weighting in the objective
function. This is true for linear, discrete or continuous, state space systems S(A, B, C)

where lowcontrolweights leads to highgain state feedback through theRiccatimatrix
solution of the optimization problem. For example, the inclusion of extrapolation
in Algorithm reference 9.4 is a simple modification with the added calculation of
λ(k + 1) and the extrapolation formulae for uk+1 and ek+1. The signal u(2)

k+1 is just,
with a change in notation, the iterate uk+1 computed in Algorithm 9.4.

13.3 A Notch Algorithm Using Parameterized Sets

With the exception of the ideas of IterationManagement in Sect. 12.4, the discussion
has, so far, assumed that the sets S1, S2, S3, . . . , SNS are iteration independent. There
is no mathematical reason why this should be the case but the choice of any variation
in the definition of the sets will need detailed consideration and analysis. One set
almost always describes the system dynamics. This section considers the choice of
a companion set that is based on the idea of accelerating algorithm convergence by
“annihilation” of part of the spectrum of GG∗. The notation of the NOILCAlgorithm
9.1 is used for a system with dynamics y = Gu + d and underlying spaces Y and
U , although the ideas apply more generally by suitable choice of G.

The system is required to track a reference r ∈ Y with tracking error e = r − y
equal to zero. Plant behaviours are associated with data points (e, u) in the product
space H = Y × U . H is a real Hilbert space with inner product

〈(e, u), (w, v)〉H = 〈e, w〉Y + ε2〈u, v〉U , where ε2 > 0. (13.20)

13.3.1 Creating a Spectral Notch: Computation
and Properties

The plant is identified with the set

S1 = {(e, u) : e = r − Gu − d} ⊂ H, (Plant Dynamics). (13.21)

The process considered here is that of creating a set S2 ⊂ H, projecting a point
(e0, u0) ∈ S1 onto S2 to create a point (e(1)

1 , u(1)
1) ∈ S2. This is then followed by

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_12
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

384 13 Acceleration and Successive Projection

the projection of this point back onto S1 to give a point (e1, u1) ∈ S1. To be useful
in practice, it is essential that e1 has useful properties of monotonic norm reduction
‖e1‖Y ≤ ‖e0‖Y for all e0. A stronger version of this requirement is that the norm
reduction has the potential to be considerably greater than that achieved by NOILC
Algorithm 9.1 for the given norm(s) and weight. The presentation takes the form of
a constructive argument.

The set S2 is parameterized by a single parameter σ 2 > 0 and denoted by

S2(σ
2) = {(ẽ, u) : −σ 2ẽ = r − Gu − d} ⊂ H, (Modified Dynamics). (13.22)

Writing ẽ = −σ−2(r − Gu − d) = −σ−2e identifies the signal ẽ as the error
in tracking a signal −σ−2r with output defined by −σ−2Gu − σ−2d. That is, G
is replaced by −σ−2G and d is replaced by −σ−2d. If G is a state space model
S(A, B, C, D)with initial state x(0) = x0, this change has two interpretations, namely
that, either

1. the model S(A, B, C, D) can be replaced by S(A, B,−σ−2C,−σ−2D) with no
change in x0

2. or replaced by S(A,−σ−2B, C, D)) if x0 is replaced by −σ−2x0.

The first step is to suppose that (e0, u0) ∈ S1 is given. The projection onto S2(σ 2) is
then

(e(1)
1 , u(1)

1) = argmin(ẽ,ũ)∈S2(σ 2)

(‖ẽ − e0‖2Y + ε2‖ũ − u0‖2U
)

subject to the constraints ẽ = −σ−2(r − Gũ − d).
(13.23)

This is simply a NOILC problem but it has two important interpretations, the first of
which is

1. application ofNOILCAlgorithm9.1 for themodified dynamicswith the reference
signal replaced by −σ−2r − e0.

2. The second interpretation is, again, that of NOILCAlgorithm 9.1. Using a scaling
factor of (−σ 2)2 on the objective function, the optimization can be written as

((−σ 2)e(1)
1 , u(1)

1) = argmin(e,u)∈S2(σ 2)

(‖e + σ 2e0‖2Y + σ 4ε2‖u − u0‖2U
)

subject to the constraints e = r − y and y = Gu + d.

(13.24)
This problem is precisely that of the application of NOILC to the original dynam-
ics with reference replaced by r + σ 2e0 and weight parameter ε2 replaced by
σ 4ε2. That is, the computation can be undertaken using the substitutions

ε2 �→ σ 4ε2 (weight change) and
r �→ r + σ 2e0 (error adjusted reference)

(13.25)

followed by scaling of the error resulting from u(1)
1 by −σ−2.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

13.3 A Notch Algorithm Using Parameterized Sets 385

The two interpretations offer two alternative approaches to evaluation. The first is, in
the form presented, off-line whilst the second could also be off-line but, in principle,
could be on-line. This advantage in this case would be that the simple parameter
change and modification to the reference is easily incorporated into the NOILC
implementation. The first interpretation is used in the following analysis.

Projection onto S2: The analysis of Chap.9 indicates that

u(1)
1 = u0 + ε−2(−σ−2G)∗

(
e(1)
1 − e0

)
= u0 − σ−2ε−2G∗ (

e(1)
1 − e0

)
. (13.26)

The consequent “error” for the modified dynamics is then given by

e(1)
1 = −σ−2

(
r − Gu(1)

1 − d
)

= −σ−2
(

e0 + σ−2ε−2GG∗e(1)
1 − σ−2ε−2GG∗e0

)
so that e(1)

1 = (σ 4I + ε−2GG∗)−1
(
ε−2GG∗ − σ 2I

)
e0.

(13.27)

Projection onto S1: Next compute the projection of (e(1)
1 , u(1)

1) ∈ S2(σ 2) onto S1 to
give

(e1, u1) = argmin(e,u)∈S1

(
‖e − e(1)

1 ‖2Y + ε2‖u − u(1)
1 ‖2U

)
subject to the constraints e = r − Gu − d.

(13.28)

This is a NOILC problem with r replaced by r − e(1)
1 and hence u1 = u(1)

1 +
ε−2G∗

(
e1 − e(1)

1

)
. Substituting as required then gives

e1 = r − Gu1 − d =
(

r − Gu(1)
1 − d

)
− ε−2GG∗

(
e1 − e(1)

1

)
= −σ 2e(1)

1 − ε−2GG∗
(

e1 − e(1)
1

)
so that e1 = (

I + ε−2GG∗)−1 (
ε−2GG∗ − σ 2I

)
e(1)
1 .

(13.29)

Combining the two projections hence states that the resultant errors e1 and e0 in S1
are related by the linear mapping e1 = L(σ 2)e0 where the operator L(σ 2) : Y → Y
is bounded and has the form

L(σ 2) =
(

I + ε−2GG∗)−1
(σ 4I + ε−2GG∗)−1

(
ε−2GG∗ − σ 2I

)2
(13.30)

where the fact that the terms commute has been used to simplify the expression.
Interesting observations about the form of L(σ 2) include the following,

1. the operator has the form of the familiar operator (I + ε−2GG∗)−1 that describes
the error evolution for NOILCAlgorithm 9.1modified by themultiplicative factor(
ε−2GG∗ − σ 2I

)2
(σ 4I + ε−2GG∗)−1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

386 13 Acceleration and Successive Projection

2. The factor (ε−2GG∗ − σ 2I) indicates that e1 = 0 if ε−2GG∗e0 = σ 2e0. That is,
if ε2σ 2 is an eigenvalue of GG∗ and e0 is an associated eigenvector.

The second observation indicates one possible effect of the combined projection,
namely that for some initial errors e0, the algorithm“annihilates” the signal to produce
a consequent error e1 = 0. A more general statement of this property is as follows,

Theorem 13.1 (Approximate Annihilation Properties of L(σ 2)) Using the notation
and definitions of the preceding discussion, the operator L(σ 2) : Y → Y is self-
adjoint and has the property that

γ 2
1

(
ε−2GG∗ − σ 2I

)2 ≤ L(σ 2) ≤ γ 2
2

(
ε−2GG∗ − σ 2I

)2
with

0 < γ 2
1 = 1

(1+ε−2‖G∗‖2)(σ 4+ε−2‖G∗‖2) ≤ γ 2
2 = σ−4.

(13.31)

As a consequence, e1 = 0 if e0 is an eigenvector of GG∗ with eigenvalue ε2σ 2 and,
more generally, e1 is arbitrarily small (relative to e0) if e0 has the property that
‖(ε−2GG∗ − σ 2I)e0‖Y � ‖e0‖Y .

Proof L(σ 2) is self-adjoint as it is a function of the self-adjoint operator GG∗. The
inequality for L(σ 2) follows from the properties seen in Theorem 9.1 applied to
both (I + ε−2GG∗)−1 and (σ 4I + ε−2GG∗)−1 = σ−4(I + σ−4ε−2GG∗)−1. The
eigenvector property then follows easily by writing the inequality in the form

γ 4
1

(
ε−2GG∗ − σ 2I

)4 ≤ L2(σ 2) ≤ γ 4
2

(
ε−2GG∗ − σ 2I

)4
(13.32)

so that ‖e1‖2 = ‖L(σ 2)e0‖2 ≤ γ 4
2 ‖(ε−2GG∗ − σ 2I)2e0‖2. The result now follows

easily. �

The operator also has more detailed properties expressed as follows,

Theorem 13.2 (Bounds on L(σ 2) and Monotonicity)

0 ≤ L(σ 2) ≤ I, ker[I − L(σ 2)] = ker[G∗]
and

R[I − L(σ 2)] = R[G] = ker[G∗]⊥
(13.33)

so that, if e1 = L(σ 2)e0, then ‖e1‖Y ≤ ‖e0‖Y for all e0 ∈ Y . In particular,
‖e1‖Y < ‖e0‖Y for all e0 that do not lie in ker[G∗].
Proof The proof that L(σ 2) ≥ 0 follows from Theorem 13.1 as (σ 2I −ε−2GG∗)2 ≥
0. Next, for simplicity, write X = ε−2GG∗ ≥ 0 so that, as required,

L(σ 2) = I − (I + X)−1(σ 4I + X)−1
(
1 + σ 2

)2
X ≤ I. (13.34)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9

13.3 A Notch Algorithm Using Parameterized Sets 387

The same formula shows that ker[I − L(σ 2)] = ker[X] = ker[G∗], a fact that,
together with ker[G∗]⊥ = R[G], also proves the correspondence of the closure
of the ranges. It follows that ‖e1‖ ≤ ‖e0‖ in all cases. Finally, noting that I −
L(σ 2)2 = X0(I + L(σ 2))X0 where X0 is a positive definite, self-adjoint, square root
of I − L(σ 2) ≥ 0, any situation where ‖e1‖2 = ‖e0‖2 corresponds to the case where
0 = 〈e0, (I − L2(σ 2))e0〉Y ≥ ‖X0e0‖2Y . This implies that e0 ∈ ker[X0]. The proof
is now complete as ker[X0] = ker[I − L(σ 2)] = ker[G∗]. �

In general therefore, the two step projection process has properties of both error
norm reduction and annihilation. The detailed form of the annihilation property in
a particular situation depends on the choice of σ 2 > 0. At first sight, this appears
to improve on the properties of NOILC Algorithm 9.1 but there is no guarantee, for
an arbitrary choice of e0 that the error norm reduction achieved is greater than that
achieved using NOILC. A guarantee can be provided as follows,

Theorem 13.3 (Guaranteeing Improvements on NOILC) With the assumptions of
Theorem 13.2,

L(σ 2) ≤ (I + ε−2GG∗)−1 if ε−2‖G∗‖2 ≤ 1 + 2σ 2. (13.35)

This condition is satisfied for all σ 2 > 0 if ε−2‖G∗‖2 ≤ 1, a condition that requires
the weight ε2 to be sufficiently large.

Note: If applied, the stated limitation imposed on the value of σ 2 ensures that the
error norm resulting from the use of one iteration of NOILC from any initial error e0
is greater than that achieved using the two step projection process considered in this
section. If it is violated, the reader should be able to use an eigenvalue/eigenvector
methodology to show that reductions will be achieved in all eigen-subspaces corre-
sponding to eigenvalues of GG∗ strictly less than ε2

(
1 + 2σ 2

)
.

Proof Examination of L(σ 2) indicates that it is only necessary to ensure that, with
X = ε−2GG∗, the operator (σ 4I +X)−1(σ 2I −X)2 ≤ I . This is simply the condition
(σ 4I + X) − (σ 2I − X)2 = X((1 + 2σ 2)I − X) ≥ 0 which is satisfied if ((1 +
2σ 2)I − X) ≥ 0. The result follows from the fact that X ≤ ‖X‖I and the relation
‖X‖ = ε−2‖G∗‖2 . �

An easily obtained insight into the underlying effects on the error is to note,
using Theorem 13.2, that L(σ 2) leaves errors in ker[G∗] unchanged. In addition, it
mapsR[G] into itself. Suppose, therefore that GG∗ has strictly positive eigenvalues
{σ 2

j }j≥1 satisfying the order property ‖G∗‖2 = σ 2
1 ≥ σ 2

2 ≥ σ 3
1 ≥ · · · and gen-

erating a complete set of orthonormal eigenvectors {vj}j≥1 spanning R[G]. Write

e0 = ∑
j≥1 γjvj + e(2)

0 with e(2)
0 ∈ ker[G∗] and suitable scalars {γj}j≥1 satisfying∑

j≥1 γ 2
j < ∞. Using the Spectral Mapping Theorem, the eigenvalues of L(σ 2)

take the values {f (σ 2
j , σ 2)}j≥0 where

f (μ, σ 2) = (σ 2 − ε−2μ)2

(1 + ε−2μ)(σ 4 + ε−2μ)
(13.36)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9

388 13 Acceleration and Successive Projection

and 0 ≤ f (μ, σ 2) ≤ 1 for all μ > 0. In addition, it follows that

L(σ 2)e0 =
∑
j≥1

γjf (σ
2
j , σ 2)︸ ︷︷ ︸ vj + e(2)

0 . (13.37)

Note that,

1. each eigenvector vj has its contribution to e0 reduced by a factor of f (σ 2
j , σ 2).

2. Choosing σ 2 = ε−2μ and μ = σ 2
p then gives f (σ 2

p , σ 2) = 0 and the eigenvector
vp is eliminated from the resultant error e1.

3. In a similar manner, all eigenvalues μ of GG∗ that are close to ε2σ 2 are “almost”
eliminated from the resultant error e1.

These properties are the motivation for the use of the word “notch” to describe the
outcome of the projection process. Clearly the choice of σ 2 can have a benefit by
eliminating, or almost eliminating, specific eigenvalue components of the error. This
property is used in the next section as the basis of algorithm development and also
used in Sect. 13.3.3 where the choice of σ 2 is related to approximate elimination of
frequency components of the error.

As a final point in this section, the function f (μ, σ 2), on the interval 0 < μ ≤
‖G∗‖2 can be interpreted as a function shaping the spectrum of L(σ 2) as a function
of the spectrum of GG∗. It is useful to note that, even if the eigenvalues of GG∗ are
not known, f (μ, σ 2) offers the opportunity of assessing the effect on any eigenvalues
at, or in the vicinity of, a chosen pointμ. It is the factor by which the contributions of
eigenvectors to the representation of e0 are reduced by the two step “notch” process.
The reader will be able to prove the following result using elementary algebra and
calculus,

Theorem 13.4 (Properties of f (μ, σ 2) for μ ∈ [0,∞)) Suppose that σ 2 > 0 is
fixed. Then the continuous, differentiable function f (μ, σ 2) is positive for μ ∈ [0,∞)

and has the properties of being monotonically decreasing on the interval [0, ε2σ 2],
monotonically increasing on [ε2σ 2,∞) with a unique minimum at the point μ0 =
ε2σ 2. In addition,

f (0, σ 2) = 1, f (ε2σ 2, σ 2) = 0, and lim
μ→+∞ f (μ, σ 2) = 1. (13.38)

The shaping of the function f (μ, σ 2) and its effect on error norm reduction is a design
option. A possible approach to influencing the shape is

1. to choose the point μ0 where f takes its minimum value of zero and hence to
approximately annihilate the contribution of the spectrum of GG∗ in the vicinity
of this value.

2. As μ = ε2σ 2, choose ε2 and σ 2 to satisfy the conditions of Theorem 13.3. This
condition has the alternative form

‖G∗‖2 ≤ ε2 + 2μ0. (13.39)

13.3 A Notch Algorithm Using Parameterized Sets 389

This relationship provides a range of values for ε2. In particular,

a. if a small value of ε2 � ‖G∗‖2 is desired to ensure that the underlying NOILC
algorithm produces a large error reduction, then μ0 is bounded from below by
a value close to 1

2‖G∗‖2. That is, annihilation can only be attempted for those
parts of the spectrum of GG∗ in the range (12‖G∗‖2, ‖G∗‖2].

b. Alternatively, if complete freedom to choose μ0 > 0 arbitrarily is preferred,
ε2 must be larger than ‖G∗‖2. That is, the price of this flexibility is that the
underlying NOILC problem cannot reduce the error too much.

To illustrate the magnitude of the effects described, suppose that the value of ε2 is
guided by Theorem 13.3. For example, if the process is to improve on the norm
reduction achieved by NOILC and eliminate any limitations on the choice of σ 2,
choose ε2 = ‖G∗‖2. The eigenvalues of (I+ε−2GG∗)−1 are then {(I+ε−2σ 2

j)−1}j≥1

which lie on the curve (1 + (μ/‖G∗‖2))−1, 0 ≤ μ ≤ ‖G∗‖2, a curve that reduces
monotonically from the value of unity to the value 0.5 when μ = ‖G∗‖2. The effect
of the choice of σ 2 is illustrated in the following examples,

1. A notch at σ 2 = 0.5 then ensures that approximate annihilation of the eigenvalues
σ 2

j is achieved in the vicinity of μ = 0.5‖G∗‖2. Improvements on NOILC error
reductions are achieved elsewhere. For example, examining the cases of μ =
‖G∗‖2 and μ = 0.25‖G∗‖2 gives f (‖G∗‖2, 0.5) = f (0.25‖G∗‖2, 0.5) = 0.1.
Using the monotonicity properties of f gives 0 ≤ f (μ, 0.5) ≤ 0.1 on the
interval 0.25‖G∗‖2 ≤ μ ≤ ‖G∗‖2. The corresponding range of reductions for
NOILC is [0.5, 0.8] in that same eigenvalue range. The conclusion is that, when
compared with NOILC, a substantial norm reduction is achieved over a wide
range of eigenvalue values.

2. A notch at σ 2 = 1 gives values f (‖G∗‖2, 1) = 0, f (0.5‖G∗‖2, 1) = 1/9 and
f (0.25‖G∗‖2, 1) = 9/25. This illustrates, again, the improvement on NOILC. It
also shows that the range of eigenvalues with substantial reductions in magnitude
depends on the choice of σ 2.

3. A notch at σ 2 = 2 is too large to provide annihilation properties on any eigenvalue
but error reduction benefits are still seen as illustrated by the computed values
f (‖G∗‖2, 2) = 0.1, f (0.5‖G∗‖2, 2) = 1/3 and f (0.25‖G∗‖2, 2) = 49/85.

13.3.2 The Notch Algorithm and Iterative Control Using
Successive Projection

The two step process and described and the properties presented in the previous
Sect. 13.3.1 are central to what follows. First note that the computations can be
continued using the pair (e1, u1) ∈ S1 to create an algorithm. That is, the computation
can be repeated from this data point to create (e(1)

2 , u(1)
2) ∈ S2 and, from this, the data

(e2, u2) ∈ S1. However, the value of σ 2 used in this second application need not be

390 13 Acceleration and Successive Projection

that used in the first! With this in mind, an Iterative Algorithm based on the concept
of introducing an iteration dependent notch can be described as given below.

Algorithm 13.3 (A Notch Algorithm with Iteration Dependent Notch) Using the
notation of Sect. 13.3.1, suppose that r ∈ Y , ε2 > 0 and that the iterative process
is initiated by the choice of an input u0 ∈ U that produces the data (e0, u0) ∈ H =
Y ×U from the plant. Then, an Iterative Notch Algorithm is defined by the process,
for k ≥ 0, of sequentially/iteratively using data (ek, uk) in the three step process
defined by,

STEP ONE: Choose a value σ 2 = σ̃ 2
k+1 > 0 to create a notch in the desired part of

the spectrum of L(σ̃ 2
k+1).

STEP TWO:Use off-line computations to find the input u(1)
k+1 and associated tracking

error e(1)
k+1 that solves the optimization problem

(e(1)
k+1, u(1)

k+1) = argmin(ẽ,ũ)∈S2(σ̃ 2
k+1)

(‖ẽ − ek‖2Y + ε2‖ũ − uk‖2U
)

subject to the constraints ẽ = −σ̃−2
k+1(r − Gũ − d).

(13.40)

Note: This is the projection of (ek, uk) onto S(σ̃ 2
k+1) and is, simply, either

1. one step of the NOILC Algorithm 9.1 where the data (r, G, d) for the original
plant is replaced by (−σ̃−2

k+1r −ek,−σ̃−2
k+1G,−σ̃−2

k+1d) for the modified dynamics.
2. Alternatively, it is one step of NOILC for the original plant but with reference

replaced by r + σ̃ 2
k+1ek and ε2 replaced by σ̃ 4

k+1ε
2. In this case, the computations

might be possible on-line.

STEPTHREE:Useon-line or off-line computations to construct the data (ek+1, uk+1)

(for use in the next iteration) as the solution of the optimization problem

(ek+1, uk+1) = argmin(e,u)∈S1

(
‖e − e(1)

k+1‖2Y + ε2‖u − u(1)
k+1‖2U

)
subject to the constraints e = r − Gu − d.

(13.41)

Note: This is the projection of (e(1)
k+1, u(1)

k+1) onto S1. It is one step of the NOILC

Algorithm 9.1 for the original plant using the minimization of J(u, u(1)
k+1) but where

the reference signal r is replaced by r − e(1)
k+1.

The algorithm produces an error evolution expressed as

ek+1 = L(σ̃ 2
k+1)ek, so that ek =

k∏
j=1

L(σ̃ 2
j)e0 for k ≥ 1. (13.42)

In particular, using Theorem 13.2, the algorithm generates a monotonically decreas-
ing error sequence satisfying

‖ek+1‖Y ≤ ‖ek‖Y for k ≥ 0 with (13.43)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

13.3 A Notch Algorithm Using Parameterized Sets 391

strict inequality holding if ek
= 0 does not lie in ker[G∗]. If e0 ∈ ker[G∗], then
ek = e0 for all k ≥ 0.

The detailed properties of the algorithm can be deduced in several ways. The
simplest convergence result is constructed using the annihilation properties of the
basic notch process.

Theorem 13.5 (Sequential Eigenvector Annihilation/Finite Convergence) Suppose
that GG∗ has strictly positive eigenvalues {σ 2

j }j≥1 satisfying the order property

‖G∗‖2 = σ 2
1 ≥ σ 2

2 ≥ σ 3
1 ≥ · · · and generating a complete set of orthonormal

eigenvectors {vj}j≥1 spanning R[G]. Then, every initial error e0 can be written in

the form e0 = ∑
j≥1 γjvj + e(2)

0 with
∑

j≥0 γ 2
j < ∞ and the term e(2)

0 ∈ ker[G∗]
identified as the orthogonal projection Pker[G∗]e0 of e0 onto ker[G∗]. The Notch
Algorithm 13.3 then produces the tracking errors, for k ≥ 1,

ek =
k∏

p=1

L(σ̃ 2
p)e0 =

∑
j≥1

γj

⎛
⎝ k∏

p=1

f (σ 2
j , σ̃ 2

p)

⎞
⎠ vj + Pker[G∗]e0. (13.44)

Let the indices {jk}k≥1 be a re-ordering of the non-zero eigenvalues of GG∗ and set
σ̃ 2

k = ε−2σ 2
jk

. Then, Notch Algorithm 13.3

1. generates a monotonically reducing sequence of error norms and convergent
errors satisfying

lim
k→∞ ek = Pker[G∗]e0. (13.45)

2. If, in addition, Y is finite dimensional, then, this limit is achieved in a finite
number of iterations.

Note: The finite convergence theoretically possible in this case is a parallel to Algo-
rithm 7.4 presented in Sect.7.2.2. Discrete state space systems satisfy the finite dimen-
sionality assumption as does the Intermediate Point control problem (Sect.10.5).

Note: The formula for ek provides useful insight into the choices of σ̃ 2
j and underlines

the rapid convergence that is possible if they are selected carefully.

Proof Every initial error e0 can be written in the form e0 = ∑
j≥1 γjvj +e(2)

0 with the

term e(2)
0 ∈ ker[G∗] identified as the orthogonal projection of e0 onto ker[G∗]. The

formula for ek then follows from the eigen-propertiesL(σ 2
j , σ 2)vj = f (σ 2

j , σ 2)vj, j ≥
1. Let δ > 0 be arbitrary. As

∑
j≥1 γ 2

j < ∞, it is possible to choose an integer N1(δ)

such that
∑

j>N1(δ)
γ 2

j < δ. In addition, for all sufficiently large integers k ≥ N2(δ)

(say), the values ε−2σ 2
j , 1 ≤ j ≤ N1(δ) have been used and the contribution of the

associated eigenvectors to the error has been annihilated. The remaining error has
norm ‖ek‖Y ≤ δ for all k ≥ N2(δ). That is, lim supk→∞ ‖ek − e(2)

0 ‖Y ≤ δ and
convergence to zero follows as δ can be arbitrarily small. This process is finite if Y
is finite dimensional. �

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_10

392 13 Acceleration and Successive Projection

In practice, of course, the eigenvalues of GG∗ will not be known and hence the
exact annihilation property cannot be used. This does not prevent the successful
application of Algorithm 13.3 as indicated by the following result that uses the
information provided by Theorem 13.3.

Theorem 13.6 (Convergence Using a Limited Bandwidth) Using the notation of
Algorithm 13.3, suppose that, following N0 iterations of unconstrained choice, the
remaining values of σ̃ 2

k+1 satisfy the condition

1 + 2σ̃ 2
k+1 ≥ ε−2‖G∗‖2 for all k ≥ N0 (say). (13.46)

Then, Notch Algorithm 13.3 generates a monotonically reducing sequence of error
norms satisfying limk→∞ ek = Pker[G∗]e0. In particular,

1. if N0 = 0, the error norm sequence reduces at a rate faster than that of NOILC
Algorithm 9.1.

2. More generally, the algorithm converges faster than NOILC from the initial error
eN0 .

Proof First note that the projection Pker[G∗]ek = Pker[G∗]e0 and, using Theorem
13.2, the error norm sequence is monotonically reducing for all k. It is possible to
assume, without loss of generality, that N0 = 0. Using Theorem 13.3 then gives
L(σ̃ 2

k+1) ≤ (I + ε−2GG∗)−1 so that

k∏
j=1

L(σ̃ 2
j) ≤ (I + ε−2GG∗)−k (13.47)

Convergence properties of the Notch Algorithm then follow from those of
Algorithm 9.1. �

The result allows situations where choices for the first iterations are flexible but,
asymptotically, it requires emphasis on the interval 1 + 2σ 2 ≥ ε−2‖G∗‖2 which,
if ε−2‖G∗‖2 > 1 does not permit “small” values of σ 2 to be used. This will limit
the options available to influence convergence rates as part of the spectrum cannot
be annihilated. In applications, two strategies will be required namely one to choose
the first N0 values, the second stage being the systematic selection of σ̃ 2

k+1 satisfying
1 + 2σ̃ 2

k+1 ≥ ε−2‖G∗‖2. For example

1. IfN0 = 0, the first stage is not needed. IfN0 > 0, a selection of values that covers a
wide range of the spectrum is covered by the equally (linearly or logarithmically)
spaced points. For example,

σ 2 = ε−2‖G∗‖2
(

j

N0

)
, 1 ≤ j ≤ N0. (13.48)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

13.3 A Notch Algorithm Using Parameterized Sets 393

The reader should note that, ifN0 is sufficiently large, the notch properties suggest
that the contribution to eN0 of eigenvalues in, for example, the rangeN−1

0 ‖G∗‖2 ≤
μ ≤ ‖G∗‖2 will have been greatly reduced.

2. For k ≥ N0, there may be many more iterations to do. Although it is permitted to
use values of σ 2 > ε−2‖G∗‖2, a focus on the interval of choice [0.5(ε−2‖G∗‖2−
1), ε−2‖G∗‖2] still leaves an infinity of choices including, for example,

a. choosing an iteration independent value σ̃ 2
k+1 = σ 2 in that range,

b. choices randomly generated by a uniform pseudo-random number generator,
c. choices selected from N1 equally spaced points in the interval, or
d. choices guided by “expert” knowledge of the plant and its observed behaviour

(see Sect. 13.3.3 and the proposed use of frequency domain criteria).

Finally, with an iteration independent notch and a reference that can be tracked
by some input signal, it is left as an exercise for the reader to prove the existence of a
limit for the input sequence in the norm topology and, in addition, that the increased
convergence rate does not influence the nature of this limit which is exactly the
minimum energy/minimum norm solution obtained using NOILC without the notch
modification.

13.3.3 A Notch Algorithm for Discrete State Space Systems

NotchAlgorithm 13.3 applies quite generally and, being based onNOILCAlgorithm
9.1, computations can be applied in any situation where NOILC, and its derivative
algorithms, can be applied. It is expected that the most commonly used model in
many applications is that of a state space model S(A, B, C) with a specified initial
condition x(0) = x0. In this section, m-output, �-input, linear, discrete state space
models, operating on an interval 0 ≤ t ≤ N , are considered. Algorithm 13.3 then
has a very specific realization.

13.3.3.1 Algorithm Statement

More precisely, if Q(t), 0 ≤ t ≤ N and R(t), 0 ≤ t ≤ N are symmetric, positive
definite weighting matrices,

Algorithm 13.4 (A Notch Algorithm for Discrete State Space Systems) Using the
notation of Algorithm 13.3, suppose that the reference r has been specified and the
iterative process initiated by the choice of u0 that produces the data (e0, u0) from the
plant. Then, an Iterative Notch Algorithm for the linear, discrete, state space system
S(A, B, C) is defined by the process, for k ≥ 0, of sequentially using data (ek, uk) in
the three step process,

STEP ONE: Choose a value σ 2 = σ̃ 2
k+1 > 0 to create the desired notch for iteration

k + 1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9

394 13 Acceleration and Successive Projection

STEP TWO: Use off-line computations to find the input time series u(1)
k+1 and asso-

ciated tracking error e(1)
k+1 that minimizes the objective function

∑N
j=0

(
(ẽ(t) − ek(t))T Q(t)(ẽ(t) − ek(t)) + ε2(ũ(t) − uk(t))T R(t)(ũ(t) − uk(t))

)
subject to the dynamic constraints − σ̃ 2

k+1ẽ = r − Gũ − d.

(13.49)
For state space computations, the constraints can be written in the form ẽ(t) =
−σ̃−2

k+1r(t) − ỹ(t), 0 ≤ t ≤ N , where ỹ(t), 0 ≤ t ≤ N , is the response of the system

S(A, B,−σ̃−2
k+1C) to ũ(t) from the initial condition −σ̃−2

k+1x0.

Note: As noted in Algorithm 13.3 there are two possible ways to approach this
problem.

1. The approach described above is one step of theNOILCAlgorithm9.1 (perhaps in
the form of Algorithm 9.4) from the input data uk but where the data (r, C, x0) for
the original plant are replaced by (−σ̃−2

k+1r − ek,−σ̃−2
k+1C, x0). This data change

will, for example, change the form of both the Riccati equation and the equation
for the predictive term ζk+1 used in the computations.

2. The second approach uses the NOILC Algorithm 9.1 for the original plant model
and initial condition, using the reference r(t) + σ̃ 2

k+1ek(t) and replacing ε2 by
σ̃ 4

k+1ε
2.

STEPTHREE:Useon-line or off-line computations to construct the data (ek+1, uk+1)

(for use in the next iteration) as the solution that minimizes the objective function

∑N
j=0 ((e(t) − e(1)

k+1(t))
T Q(t)(e(t) − e(1)

k+1(t))

+ε2(u(t) − u(1)
k+1(t))

T R(t)(u(t) − u(1)
k+1(t)))

(13.50)

subject to the constraints that e(t) = r(t) − y(t), 0 ≤ t ≤ N , where y(t), 0 ≤ t ≤ N ,
is the response of the system S(A, B, C) to u(t) from the initial condition x0.

Note: This is one step of the NOILC Algorithm 9.1 from the data u(1)
k+1 for the

original plant but where the reference signal r is replaced by r − e(1)
k+1. This data

change requires only one Riccati equation but the equation for the predictive term
ζk+1 is driven by the input u(1)(t) and the “error corrected reference” r − e(1)

k+1.
The algorithm has the monotonicity and convergence properties described by

Algorithm 13.3 and illustrated by Theorems 13.5 and 13.6 and other material in
Sect. 13.3.1 and 13.3.

The implementation of the algorithm is very similar to that of NormOptimal Control
and an understanding of that algorithm is essential. Together with Q and R, the
choice of σ̃ 2

k+1 is central to the prediction and achievement of significantly improved
convergence rates.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

13.3 A Notch Algorithm Using Parameterized Sets 395

13.3.3.2 Notch Values and the Frequency Domain

In what follows, it is seen that the choice of σ̃ 2
k+1 can be supported by the frequency

domain properties of the signal ek .More precisely, suppose that the system S(A, B, C)

is asymptotically stable and that the matrices {Q(t)}0≤t≤N and {R(t)}0≤t≤N are inde-
pendent of “t”. In Sect. 7.2.3, an approximate eigenvector property was derived in
terms of (complex) vectors Wj(zp) associated with the positive, real eigenvalues
σ 2

j (zp) of the matrix G(z)R−1GT (z−1)Q at frequencies z = zp = e(2π ip)/(N+1), 0 ≤
p ≤ N . These relationships are precisely those required by Theorem 13.1, as, for
large values of N , it follows that ‖(σ 2

j (z)I − GG∗)Wj(z)‖ � ‖Wj(z)‖ for all z on the
unit circle in the complex plane. As a consequence, it is concluded that the choice
of a “frequency” zc,k on the unit circle followed by setting

σ̃ 2
k+1 = ε−2σ 2

j (zc,k) on each iteration (for k ≥ 0) (13.51)

will have the effect of annihilating, approximately, the frequency content of the error
at the frequency z = zc,k in the subspace generated by the eigenvector wj(zc,k) of
G(z)R−1GT (z−1)Q corresponding to the eigenvalue σ 2

j (zc,k). Of course, for multi-
output systems, other parts of the frequency content (corresponding to eigenvalues
of G(z)R−1GT (z−1)Q at other frequencies that are equal to σ̃ 2

k+1) will also be sup-
pressed. The notch is hence a notch based on “gain” values rather than individual
frequencies. This interpretation is simplified for SISO systems as wj(zc,k) = 1 and

the associated eigenvalue is exactly G(zc,k)R−1GT (z−1
c,k)Q = QR−1

∣∣G(zc,k)
∣∣2. This

links the choice to the frequency domain and the values of Q and R in a familiar way
but does not specify a suitable value of zc,k . Intuitively, a good choice might be either

1. a frequency, generated from an analysis of ek , representing a frequency range
where error magnitudes are large or

2. a frequency representing physical phenomena that are ideally suppressed rapidly.
3. Theorem 13.6 may also play a role in limiting the choice. That is, if better con-

vergence rates than those achieved by the NOILC Algorithm are required, the
choice of zc,k is limited to a frequency range defined, approximately, by values
satisfying

sup
|z|=1

|G(z)|2 ≤ ε2RQ−1 + 2|G(z)|2. (13.52)

Finally, in theoretical terms, the frequency analysis of ek has used the supervector
description and is based on representations of the error as a finite summation of the
basis vectors {Wj(zk)}. In practice, it is more likely to be assessed using the familiar
Fast Fourier Transform (FFT).

http://dx.doi.org/10.1007/978-1-4471-6772-3_7

396 13 Acceleration and Successive Projection

13.3.4 Robustness of the Notch Algorithm in Feedforward
Form

Robustness of Notch Algorithm 13.3 is an important issue. Intuitively, it is expected
to be less robust thanNOILCAlgorithm9.1 asmodelling errorswill inevitably reduce
the precision and effectiveness of the annihilation that can be achieved. Given a mea-
sured error signal ek on iteration k, let y = Gu+d be amodel of the plant but suppose
that the plant has a modelling error represented by a linear, bounded, multiplicative
modelling error U. Off-line feedforward computations using this model ignore this
error and produce the data

u(1)
k+1 = uk − σ−2ε−2G∗

(
e(1)

k+1 − ek

)
,

e(1)
k+1 = (σ 4I + ε−2GG∗)−1

(
ε−2GG∗ − σ 2I

)
ek,

uk+1 = u(1)
k+1 + ε−2G∗

(
ek+1 − e(1)

k+1

)
and predicted error

ek+1 = L(σ 2)ek = (
I + ε−2GG∗)−1

(σ 4I + ε−2GG∗)−1
(
ε−2GG∗ − σ 2I

)2
ek

(13.53)

Simple algebra then indicates that the implemented input signal takes the form

uk+1 = uk + ε−2G∗(I + ε−2GG∗)−1Γ (GG∗, σ 2)ek
where

Γ (GG∗, σ 2) = (1 + σ 2)2(σ 4I + ε−2GG∗)−1

and L(σ 2) = I − (I − L)Γ (GG∗, σ 2) where L = (I + ε−2GG∗)−1

(13.54)

is the familiar operator seen in NOILC (Chap.10). Note that both Γ (GG∗, σ 2) :
Y → Y and Γ (G∗G, σ 2) : U → U are self-adjoint and have bounded inverses.

Left Multiplicative Modelling Errors: Suppose that σ 2 is iteration independent
and that U is a left multiplicative modelling error. It then follows that the error seen
on the plant following application of uk+1 will be

ek+1 = (I − ε−2UGG∗(I + ε−2GG∗)−1Γ (GG∗, σ 2))ek = (I − U(I − L(σ 2)))ek .

(13.55)

With a simple change in notation, this is just the expression seen in Sect. 9.2.4 with
L replaced by L(σ 2). Using the same approach as that section, an inner product on
R[G] can be defined to be

〈e, w〉σ 2 = (1 + σ 2)−2〈e, (I − L(σ 2))w〉Y (13.56)

where the term (1 + σ 2)−2 is introduced to scale the inner product and associated
norm. It has the benefit of simplifying the expression and plays only a minor role in
the following examination of inequalities. Note that

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

13.3 A Notch Algorithm Using Parameterized Sets 397

Theorem 13.7 (Topological Equivalence of Norms) With the definitions given
above, the norm ‖e‖σ 2 = √

(1 + σ 2)−2〈e, (I − L(σ 2))w〉Y is topologically equiv-
alent to ‖e‖0 = √〈e, (I − L)e〉Y where L = (I + ε−2GG∗)−1 as

1

σ 4 + ε−2‖G∗‖2 (I − L) ≤ (1 + σ 2)−2(I − L(σ 2)) ≤ σ−4(I − L) (13.57)

and hence, for any e ∈ Y ,

(
1

σ 4 + ε−2‖G∗‖2
)

‖e‖20 ≤ ‖e‖2
σ 2 ≤ σ−4‖e‖20 (13.58)

Note: As consequence, convergence or boundedness in R[G] with respect to one
norm implies that using the other norm.

It is now easily shown that,

Theorem 13.8 (A Robustness Result for the Notch Algorithm with Constant σ 2)
Suppose that σ̃ 2

k+1 = σ 2 is iteration independent. Then, Theorem 9.15, with L
replaced by L(σ 2), remains valid for the Notch Algorithm 13.3 if the norm ‖ ·‖0 used
is replaced by

‖e‖2
σ 2 = (1 + σ 2)−2〈e, (I − L(σ 2))e〉Y , e ∈ Y . (13.59)

More precisely, if there exists a real number ε20 > 0 such that, expressed in terms of
the original topology in Y ,

U + U∗ ≥ U∗(I − L(σ 2)U + ε20I on R[G], (13.60)

then ,

1. the monotonicity condition ‖ek+1 − e(2)
0 ‖σ 2 ≤ ‖ek − e(2)

0 ‖σ 2 is satisfied for all
k ≥ 0.

2. In addition, Theorem 13.7 then indicates that the sequence {‖ek‖0}k≥0 is bounded.
It converges to zero if, and only if, the sequence {‖ek‖σ 2}k≥0 converges to zero.

Simplifications are possible by noting that,

I − L(σ 2) = Γ (GG∗, σ 2)(I − L) ≤ (1 + σ 2)2

σ 4 (I − L) (13.61)

so that a sufficient condition for robustness is that

U + U∗ ≥
(

(1 + σ 2)2

σ 4

)
U∗(I − L)U + ε20I on R[G]. (13.62)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9

398 13 Acceleration and Successive Projection

which is the condition seen in Theorem 9.15 with an additional scaling factor of
(1+σ 2)2

σ 4 > 1. This expression immediately suggests that the Notch Algorithm 13.3
is likely to be less robust than NOILC and that this robustness probably reduces as
σ 2 gets smaller. Use of the notch algorithm will therefore be a balance between the
benefits of the improved convergence rates and annihilation properties as measured
against any loss in robustness if modelling errors are thought to be large.

Further simplifications of the robustness criterion follow directly by defining

βI =
(

(1 + σ 2)2

σ 4

)(
ε−2‖G∗‖2

(1 + ε−2‖G∗‖2)
)

and βG =
(

(1 + σ 2)2

σ 4

)
ε−2,

(13.63)
from which, using the same norm definitions, it follows that

Theorem 13.9 (A Simplified Robustness Result for the Notch Algorithm) Suppose
that σ̃ 2

k+1 = σ 2 is iteration independent. Then, condition Four of Theorem 9.16, with
βI and βG defined as above and with ‖ · ‖0 replaced by ‖ · ‖σ 2 , remains valid as a
predictor of robustness for the Notch Algorithm 13.3.

In particular,

1. The parameters βI and βG depend on the choice of Q, R, ε2 and σ 2 and reduce
to values used in Theorem 9.16 as σ 2 → ∞.

2. For application to discrete state space models, the results are easily translated into
frequency domain criteria simply by using the new definitions of parameters. The
details are left as an exercise for the reader and should be related to Theorems
9.17 and 9.18.

The assumption that σ 2 is iteration independent can be relaxed by noting that

(1 + σ 2)−2(I − L(σ 2)) − (1 + μ2)−2(I − L(μ2)) ≥ 0 if μ2 ≥ σ 2 (13.64)

so that ‖e‖σ 2 reduces, monotonically, as σ 2 increases.

Theorem 13.10 (Robustness using Monotonic Values of σ̃ 2
k+1) With the notation of

the discussion above, assume that the sequence {σ̃ 2
k+1}k≥0 is monotonically increas-

ing from an initial value σ̃ 2
1 > 0 and bounded by the value σ̃ 2∞ < ∞. Then, if

U + U∗ ≥
(

(1 + σ̃ 2
1)2

σ̃ 4
1

)
U∗(I − L)U + ε20I on R[G], (13.65)

the error sequence generated by the Notch Algorithm 13.3 satisfies the monotonicity
condition

‖ek+1‖2σ̃ 2
k+2

≤ ‖ek+1‖2σ̃ 2
k+1

≤ ‖ek‖2σ̃ 2
k+1

, for k ≥ 0. (13.66)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

13.3 A Notch Algorithm Using Parameterized Sets 399

In particular, there exists a real number E∞ ≥ 0 such that

lim
k→∞ ‖ek‖σ̃ 2

k+1
= E∞ and lim sup

k→∞
‖ek‖0 ≤ E∞

√
σ 4∞ + ε−2‖G∗‖2 (13.67)

and hence limk→∞ ‖ek‖0 = 0 if E∞ = 0.

Proof The proof follows from the discussion that precedes the theorem and the
observation that the condition (13.65) applied to iteration k +1 gives, using Theorem
13.8 with σ 2 = σ̃ 2

k+1 ≥ σ̃ 2
1 , ‖ek+1‖2σ̃ 2

k+1
≤ ‖ek‖2σ̃ 2

k+1
. The result is then easily proved

using the monotonicity assumption to give ‖ek+1‖2σ̃ 2
k+2

≤ ‖ek+1‖2σ̃ 2
k+1

. The existence

of the limits then follows with the bounds on ‖ek‖0 being deduced using Theorem
13.7. �

The monotonicity assumption for {σ̃ 2
j }j≥1 is a useful assumption for analysis

as it adds a structure that produces a simple argument. For state space systems,
Sect. 13.3.3, it can be interpreted as choosing values of ε2σ̃ 2

j that sweep a range of

eigenvalue magnitudes from a defined minimum σ̃ 2
1 to some defined maximum σ̃ 2∞.

As this maximum increases, the closer the asymptotic behaviour and robustness will
be to that observed inNOILC. If σ̃ 2

1 is too small, then robustness in the initial iterations
may be compromised, an observation that can be interpreted as a warning that the
notch procedure should not be used to “annihilate” high frequency components of
the error.

Right Multiplicative Modelling Errors: Again assume that σ̃ 2
k+1 = σ 2 is inde-

pendent of iteration. Suppose also that U is now a right multiplicative modelling
error so that, in a feedforward implementation, the observed error evolution is sim-
ply ek+1 = (I − ε−2GUG∗LΓ (GG∗, σ 2))ek . The techniques used in Sect. 9.2.2 for
analysis of right multiplicative perturbations can now be used. The key to the analysis
is to note that LΓ (GG∗, σ 2) = Γ (GG∗, σ 2)L is self-adjoint and strictly positive and
to use the inner product in Y defined by

〈e, w〉σ 2 = (1 + σ 2)2〈e, LΓ (GG∗, σ 2)w〉Y . (13.68)

The norm induced by this inner product is equivalent to the norm ‖ · ‖0 used in
Sect. 9.2.2 as

(
1

σ 4+ε−2‖G∗‖2
)

L ≤ (1 + σ 2)−2LΓ (GG∗, σ 2) ≤ σ−4L implies that(
1

σ 4+ε−2‖G∗‖2
)

‖e‖20 ≤ ‖e‖2
σ 2 ≤ σ−4‖e‖20.

(13.69)

With this definition, the analysis of Sect. 9.2.2 can be used and leads easily to the
following result

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

400 13 Acceleration and Successive Projection

Theorem 13.11 (A Robustness Result for the Notch Algorithm with Constant σ 2)
Suppose that σ̃ 2

k+1 = σ 2 is iteration independent. Then, Theorem 9.15, with L
replaced by LΓ (GG∗, σ 2) and ‖ · ‖0 replaced by ‖ · ‖σ 2 , remains valid for the
Notch Algorithm 13.3. More precisely, Condition One is replaced by the condition

U + U∗ > ε−2U∗G∗LΓ (GG∗, σ 2)GU, on R[G∗]. (13.70)

It ensures that ‖ek+1‖σ 2 ≤ ‖ek‖σ 2 for all k ≥ 0. Boundedness of both {‖ek‖σ 2}k≥0
and {‖ek‖0}k≥0 then follow from topological equivalence of the norms as does the
equivalence of their convergence to zero (if it occurs).

As with the case of left multiplicative perturbations, the inequality is satisfied if

U + U∗ >

(
(1 + σ 2)2

σ 4

)
ε−2U∗G∗LGU, on R[G∗] (13.71)

which is precisely Theorem 9.6 with the added factor of
(

(1+σ 2)2

σ 4

)
> 1 suggesting

a reduction in robustness as σ 2 gets smaller. It is now an easy task to prove that
monotonicity of the sequence {‖ek‖σ 2}k≥0 for the notch algorithm with iteration
independent values σ̃ 2

k+1 = σ 2 > 0 follows in a similar way to Theorem 9.8 from
the condition

Û + Û∗ > θβI U∗U + (1 − θ)βGG∗G on U for some θ ∈ [0, 1], (13.72)

provided that βI and βG are replaced by

βI =
(

(1 + σ 2)2

σ 4

)
ε−2‖G‖2

1 + ε−2‖G‖2 and βG =
(

(1 + σ 2)2

σ 4

)
ε−2. (13.73)

The reminder of the analysis follows the pattern seen for the case of leftmultiplicative
modelling errors and is left as an exercise for the reader who will note that ‖e‖σ 2

again reduces as σ 2 increases. As a consequence Theorem 13.10 remains valid in
the form,

Theorem 13.12 (Robustness using Monotonic Values of σ̃ 2
k+1) With the notation of

the discussion above, assume that the sequence {σ̃ 2
k+1}k≥0 is monotonically increas-

ing from an initial value σ̃ 2
1 > 0 and bounded by the value σ̃ 2∞ < ∞. Then, if

Û + Û∗ >

(
1 + σ̃ 2

1

σ̃ 2
1

)2

U∗G∗LGU on R[G∗], (13.74)

the error sequence generated by the Notch Algorithm 13.3 satisfies the monotonicity
condition

‖ek+1‖2σ̃ 2
k+2

≤ ‖ek+1‖2σ̃ 2
k+1

≤ ‖ek‖2σ̃ 2
k+1

, for k ≥ 0. (13.75)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

13.4 Discussion and Further Reading 401

In particular, there exists a real number E∞ ≥ 0 such that

lim
k→∞ ‖ek‖σ̃ 2

k+1
= E∞ and lim sup

k→∞
‖ek‖0 ≤ E∞

√
σ 4∞ + ε−2‖G∗‖2 (13.76)

and hence limk→∞ ‖ek‖0 = 0 if E∞ = 0.

13.4 Discussion and Further Reading

Successive projection was defined in Chap.12 based on the work in [95]. That refer-
ence provided a convincing indication that the geometry of the Hilbert space H can
lead to slow convergence. In the case of NOILC Algorithm 9.1, this is easily seen
in computational studies and is primarily associated with the use of large values of
weight ε2 (as well as other dynamic factors such as non-minimum-phase properties).
Unfortunately, for state space models, small values of weight can lead to high gain
feedback solutions. The case for using an acceleration mechanism in Iterative Con-
trol that does not require small weight values is therefore appealing, although, being
model-based, issues of robustness need to be considered.

The work in [95] proposed an extrapolation approach based on Successive Projec-
tion. This was adopted in [83] for Iterative Control and its accelerating effects have
been demonstrated in computational studies [27, 83]. Reductions in robustness, as
compared with NOILC Algorithms such as Algorithm 9.1, can be expected in prac-
tice as the methodology is an extrapolation process using data from models and the
plant. High values of the extrapolation factor λk+1 could amplify the errors leading
to erratic algorithm performance and, potentially, divergence. The most dangerous
situation will occur if the sets S1 and S2 do not intersect. That is, there is no solu-
tion to the tracking problem. Reference [95] then suggests that wild oscillations and
divergence could occur unless the design uses the flexibility in the choice of λk+1
and puts practical limits λ ∈ [1, λmax] on the range used in the implementation!

The concept of successive projection seems to have considerable power in linking
algorithms to practical experimental processes. There is no real reason why the sets
involved need not vary from iteration to iteration. The question is “how should the
sets vary and what effect will the choice and variation have on convergence rates
and robustness?”. This text has introduced the Notch Algorithm 13.3 which is new
to the literature and uses this flexibility in the form of a parameterized family of
sets in the product space Y ×U . Essentially, it applies a scaling factor −σ 2 to one
term in the error definition, follows this by constructing a set S2(σ 2) to complement
the dynamics S1, and then applies successive projection. In the form presented,
it is an algebraic construct but has properties of acceleration demonstrated by its
improvements on NOILC as stated in Theorem 13.3 and, more fundamentally, the
property of exact or approximate annihilation of spectral components of the error
signal. Simple calculations based on the form of f (μ, σ 2), 0 < μ ≤ ‖G∗‖2 provide

http://dx.doi.org/10.1007/978-1-4471-6772-3_12
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9

402 13 Acceleration and Successive Projection

considerable insight into the benefits of this algorithm, particularly when the factor
σ 2 is varied from iteration to iteration in an intelligent way.

The key to analysing the benefits on iteration k + 1 lie in the consideration of
functions defined by the products, with k ≥ 0,

k∏
j=0

f (μ, σ̃ 2
j+1) = 1

(1 + ε−2μ)k+1

k∏
j=0

(σ̃ 2
j+1 − ε−2μ)2

(σ̃ 4
j+1 + ε−2μ)

, 0 < μ ≤ ‖G∗‖2. (13.77)

The first factor describes the changes that would arise from k + 1 iterations of basic
NOILC Algorithm 9.1. The second factor

k∏
j=0

(σ̃ 2
j+1 − ε−2μ)2

(σ̃ 4
j+1 + ε−2μ)

, 0 < μ ≤ ‖G∗‖2, (13.78)

describes the way in which the various notches used on the iterations in Algorithm
13.3 affect the performance of the NOILC Algorithm. This term has well-defined
“zeros” at ε2σ̃ 2

j+1, 0 ≤ j ≤ k, providing the desired annihilation properties. In
addition, the placing of the values opens up the opportunity, for a given value of “k”,
of ensuring that f has very small values over a chosen spectral range. The interested
reader will be able to assess the effects and benefits by looking at a simple case with
ε2 = ‖G∗‖2 = 1, choosing k = 2with σ̃ 2

1 = 1, σ̃ 2
2 = 0.5 and σ̃ 2

3 = 0.25 and plotting
the form of the expression above in the range 0 < μ ≤ 1. A remarkable reduction
in values will be observed and demonstrates the ability to create fast convergence
without “high gain” control loops. In this case, for initial errors e0 dominated by the
contribution of the spectral values σ 2 > 0.25, rapid reductions in error magnitude
can be achieved.

Finally, the robustness analysis has used the mathematical construct of introduc-
ing new norms to the problems and deriving operator inequalities that define tolerable
multiplicative modelling errors. These inequalities are based on the artificial require-
ment of requiring monotonicity properties of the error sequence as measured by the
new norms. The results provide some reassurance that bounded responses will be
seen in practice. However, the precise behaviour of the errors as measured by the
original norm ‖ · ‖Y is difficult to ascertain from the properties of L and L(σ 2),
particularly when the “notch” σ 2 is varied from iteration to iteration.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9

	13 Acceleration and Successive Projection
	13.1 Replacing Plant Iterations by Off-Line Iterations
	13.2 Accelerating Algorithms Using Extrapolation
	13.2.1 Successive Projection and Extrapolation Algorithms
	13.2.2 NOILC: Acceleration Using Extrapolation

	13.3 A Notch Algorithm Using Parameterized Sets
	13.3.1 Creating a Spectral Notch: Computation and Properties
	13.3.2 The Notch Algorithm and Iterative Control Using Successive Projection
	13.3.3 A Notch Algorithm for Discrete State Space Systems
	13.3.4 Robustness of the Notch Algorithm in Feedforward Form

	13.4 Discussion and Further Reading

