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Chapter 1
Introduction

Stroke is the largest cause of disability in developed countries. One cause of a stroke
is a blood clot that blocks a vessel in the brain and stops blood reaching the regions
downstream. As a result some of the connecting nerve cells die and the person
commonly suffers partial paralysis on one side of the body, termed hemiplegia. In
the United Kingdom, as one example, approximately 50% of people who survive
a stroke require some form of rehabilitation to reduce impairment and assist with
activities of daily living. Upper limb function is particularly important in regaining
independence following stroke as impairments impact on daily living andwell-being.

Research on rehabilitation following a stroke has consistently identified treatment
intensity and goal oriented strategies as critical for successful therapeutic outcomes.
The current prognosis for upper limb recovery following stroke is poor, with the
literature reporting that complete recovery occurs in less than 15% of patients with
initial paralysis. Stroke is also an age-related disease, placing an increasing burden on
long-term health and related resources unless improvements are made in achieving
independence. Consequently there is a pressing need to improve the effectiveness of
treatments.

To further maximize rehabilitation after stroke, novel therapeutic and cost-
effective rehabilitation methods, or interventions, are required, which may combine
different methodologies. For example, one possibility is to combine the application
of assistive stimulation with robot-aided therapy and virtual reality. The premise is
that this approach, supported by mobile technology, could be a major step towards
enabling rehabilitation outside the hospital, where two of the major objectives are
increased intensity of therapy and reduced cost.

To be accepted for use by health professionals any new method requires devel-
opment of technology and clinical trials to establish feasibility. This monograph is
based on a research programme that aims to combine the use of electrical stimulation,
virtual reality and iterative learning control for upper-limb stroke rehabilitation. It-
erative learning control was especially developed for systems, such as a gantry robot
executing pick and place of objects, which repeat the same finite time task over and
over again. Once each task is complete, the system resets and information generated
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2 1 Introduction

during its completion is available for use in updating the control action to be applied
during the next execution of the task.

The transfer of iterative learning control to rehabilitation is based on the patient
making repeated attempts to complete a task, such as reaching out over a table
top to an object, with electrical stimulation applied to the relevant muscle(s). As
the patient attempts the task, performance is measured and the error between the
supplied reference trajectory and that produced by the patient is calculated. The limb
is then reset to the starting point and during this time an iterative learning control
law, which makes explicit use of the error on the previous attempt, is used to adjust
the level of electrical stimulation to be applied on the next attempt, where the use of
previous trial error is unique to iterative learning control. If the patient is improving
with each successive attempt, the level of stimulation should be reducing and the
patient’s voluntary effort increasing.

This monograph begins in the next chapter with a review of iterative learning
control with emphasis on the particular laws used in stroke rehabilitation and pointers
to the general literature. The following chapter then describes in general terms how
iterative learning control can be transferred to the stroke rehabilitation domain and
summarizes how health professionals assess the performance of a patient undergoing
a rehabilitation programme based on repeated attempts at completion of a specified
task. These assessment measures are used in the small-scale clinical trials that have
supported the engineering developments.

The progress reported in this monograph is the outcome of three main research
programs, which are described in successive chapters. To establish proof of concept,
the first program consideredmovement in one plane and stimulated onemuscle group
(triceps) to control movement around the elbow joint. Patients tracked a moving
trajectory with their hand whilst electrical stimulation was applied to assist with
the movement. Following each trial, iterative learning control was used to update
the electrical stimulation applied on the next trial. Results showed improvements in
tracking accuracy during the sessions.

Following the successful proof of concept, the systemwas extended tomovements
in 3D space using a virtual reality tracking task. In this research, each patient’s arm
was supported by a robot that compensates for the effects of gravity, with electrical
stimulation applied to the triceps and anterior deltoid muscle groups to control move-
ment around elbow and shoulder joints. A clinical trial demonstrated the system’s
effectiveness, with improvements shown in tracking accuracy and in clinical assess-
ment scores. The final program extended the research to include control of the hand
and wrist during functional tasks. Iterative learning controlled electrical stimulation
in this case is also applied to the extensors of the wrist and hand to assist with picking
up and manipulating real world objects. Minimal robotic support is provided by a
spring system and patient tracking is achieved using a Microsoft Kinect. The results
of a clinical trial are also given.

The final chapter of this monograph gives critical overview of the results obtained
and briefly discusses possible areas for future research. Other possible roles for itera-
tive learning control in rehabilitation are also briefly discussed, e.g., the suppression
of intention tremor in patients with Parkinsons disease.



Chapter 2
Iterative Learning Control—An Overview

This chapter gives the required background on iterative learning control. After intro-
ducing the defining characteristic of this form of control, attention is restricted to the
laws used in the stroke rehabilitation research.

2.1 Introduction

The development of iterative learning control (ILC) emerged from industrial applica-
tions where the system involved executes the same operation many times over a fixed
finite time interval.When each operation is complete, resetting to the starting location
takes place and the next operation can commence immediately, or after a stoppage
time. A common example is a gantry robot undertaking a pick and place operation
in synchronization with a moving conveyor or assembly line. The sequence of oper-
ations is: (a) the robot collects a payload from a fixed location, (b) transfers it over a
finite duration, (c) places it on themoving conveyor, (d) returns to the original location
for the next payload and then (e) repeats the previous four steps for as many payloads
as is required or can be transferred before it is required to stop.

To operate in pick and place mode it is necessary to supply the robot with a tra-
jectory to follow and the task for a control law is to ensure that the robot follows the
prescribed trajectory exactly or, more realistically, to within a specified tolerance. In
addition to controlling its ownmovement and that of the payload, the control lawmust
prevent other effects, such as disturbances and signal noise, from degrading tracking
and thereby forcing it outside of the tolerance bound. If the robot begins to operate
outside permissible limits, the control task is to bring it back within the specified lim-
its as quickly as required or is physically possible. This taskmust be achievedwithout
causing damage to, e.g., the sensing and actuating technologies used.
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4 2 Iterative Learning Control—An Overview

In the ILC literature, each completionor executionof the task is described as a pass,
iteration or trial, but in this monograph the latter term is exclusively used. Similarly,
the finite time each trial takes to complete will be referred to as the trial length. Once a
trial is finished, all data used and generated during its completion is available for use
in computing the control action to be applied on the next trial. The use of such data
is a form of learning and is the essence of ILC, embedding the mechanism through
which performance may be improved by past experience.

The ILC mode of operation outlined above is the most common, i.e., complete a
trial, reset and then repeat. This is different from repetitive control where the system
continuously executes over the period of the reference signal, i.e., with no stoppage
time between trials.

This chapter gives an overview of ILC, where the focus is on the algorithms that
have been used to date in the technology transfer to next generation healthcare, with
pointers to the literature for other design algorithms and applications. The particu-
lar area of next generation healthcare addressed is robotic-assisted upper limb stroke
rehabilitation. In this context ILC is used to adjust the level of assistive stimulation
applied during a treatment session where the patient attempts to re-learn a daily liv-
ing task, such as reaching out to an object with the affected limb, by repeated attempts
guided by a robot.

2.2 The Origins of ILC

The widely recognized starting point for ILC is Arimoto et al. (1984), which con-
sidered a simple first order linear servomechanism system for a voltage-controlled
dc-servomotor. As in other areas, there is debate on the origins of ILC, for which
the survey papers (Ahn et al. 2007; Bristow et al. 2006) and, in particular, Ahn et al.
(2007) give coverage and relevant references. In the opening paragraphs of Arimoto
et al. (1984) the analogy between ILC and human learning is drawn in the text: ‘It is
human to make mistakes, but it also human to learn from such experience. Is it possi-
ble to think of a way to implement such a learning ability in the automatic operation
of dynamic systems?’.

The analysis in Arimoto et al. (1984) developed, using the servomotor example as
a particular example, a control law applicable to systems required to track a desired
reference trajectory of a fixed trial length T and specified a priori. On completion of
each trial, the system states reset andduring time taken to complete this task themea-
sured output is used in the construction the next control output. The systemdynamics
were assumed to be trial-invariant and invertible. These distinguishing features led
to the establishment of ILC as a major and ongoing area of control systems research
and applications. Several of these assumptions, e.g., trial-invariant dynamics, have
been relaxed in recent years but the concept of learning from experience gained over
repeated trials of a task is retained.

Since it was first introduced ILC has broadened in breadth and depth, including
links with established fields such as robust, adaptive and optimal control. Applica-
tion areas have also expanded beyond industrial robotics and process control. In the
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latter area, one starting point for the literature is the survey paper Wang et al. (2009),
which also considers the connections with repetitive control and run-to-run control.
This chapter now proceeds to consider the ILC theory and algorithms that have found
novel application in stroke rehabilitation. For consistency, discrete descriptions of the
dynamics are used.

2.3 ILC for Linear Systems

When ILC is applied to discrete dynamics the notation used for a scalar or vector
valued variable in this monograph is yk(p), p = 0, 1, . . . , T . Here the nonnegative
integer k is the trial number and T ∈ N denotes the number of samples on each trial,
with the assumption of a constant sampling period. Suppose also that the dynamics
of the system or process considered can be adequately modeled as linear and time-
invariant. Then the state-space model of such a system in the ILC setting is

xk(p + 1) = Axk(p) + Buk(p)

yk(p) = Cxk(p), xk(0) = x0 (2.1)

where on trial k, xk(p) ∈ R
n is the state vector, yk(p) ∈ R

m is the output vector and
uk(p) ∈ R

l is the control input vector.
In thismodel it is assumed that the initial state vector does not change from trial-to-

trial. The casewhen this assumption is not valid has also been considered in the litera-
ture. The dynamics are assumed to be disturbance-free but again this assumption can
be relaxed. It also possible to write the dynamics in input-output form involving the
convolution operator or take the one-sided z transform and hence analysis and design
in the frequency domain is possible. To apply the z transform it is necessary to assume
T = ∞ but in most cases the consequences of this requirement have no detrimental
effects. For amore detailed analysis of cases where there are unwanted effects arising
from this assumption, see the relevant references in Ahn et al. (2007), Bristow et al.
(2006) and more recent work in Wallen et al. (2013).

Let r(p) ∈ R
m denote the supplied reference vector. Then the error on trial k is

ek(p) = r(p) − yk(p) and the core requirement in ILC is to construct a sequence
of input functions uk+1(p), k ≥ 0, such that the performance achieved is gradually
improvedwith each successive trial and after a ‘sufficient’ number of these the current
trial error is zero or within an acceptable tolerance. Mathematically this can be stated
as a convergence condition on the input and error of the form

lim
k→∞ ||ek || = 0, lim

k→∞ ||uk − u∞|| = 0 (2.2)

where u∞ is termed the learned control and || · || denotes an appropriate norm on
the underlying function space. As one possibility, let || · ||2 denote the Euclidean
norm of its argument and set ||e|| = maxp∈[0,T ] ||e(p)||2. The reason for including
the requirement on the control vector is to ensure that strong emphasis on reducing
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the trial-to-trial error does not come at the expense of unacceptable control signal
demands. In application, only a finite number of trials will ever be completed but
mathematically letting k → ∞ is required in analysis of, e.g., trial-to-trial error con-
vergence.

The standard form of ILC algorithm or law computes the current trial input as the
sum of the input used on the previous trial and a corrective term, i.e.,

uk+1 = uk + Δ(uk, ek) (2.3)

whereΔ(uk, ek) is the correction termand is a function of the error and input recorded
over the previous trial. A large number of variations exist for computing the correc-
tion term, including laws that make use of information generated on a finite number
(greater than unity) of previous trials. For the stroke rehabilitation application it is the
repeated performance of a finite duration task (with the input on the current trial com-
puted by adding a corrective term that is directly influenced by the previous trial error)
that makes ILC particulary suitable.

An extensively used analysis and design setting for discrete systems is based on
lifting in the ILC setting. Suppose that (2.1) is asymptotically stable and hence all
eigenvalues of the statematrix A havemodulus strictly less than unity. If this is not the
case then a stabilizing feedback control loopmust be first applied. For simplicity, con-
sider single-input single-output (SISO) systems with an assumed relative degree of
one, and hence in (2.1) the firstMarkov parameterCB �= 0. For the cases of multiple-
input multiple-output (MIMO) systems and/or the assumption on the Markov para-
meter does not hold, refer to the relevant references in Ahn et al. (2007), Bristow et al.
(2006).

Introduce

yk =

⎡
⎢⎢⎢⎣

yk(1)
yk(2)

...

yk(T )

⎤
⎥⎥⎥⎦ , uk =

⎡
⎢⎢⎢⎣

uk(0)
uk(1)

...

uk(T − 1)

⎤
⎥⎥⎥⎦ , d =

⎡
⎢⎢⎢⎣

d(1)
d(2)

...

d(T )

⎤
⎥⎥⎥⎦ . (2.4)

Then under the assumption that r(0) = Cx0, (2.1) can be written in the form

yk = Guk + d (2.5)

with

G =

⎡
⎢⎢⎢⎢⎣

p1 0 . . . 0

p2 p1 . . . 0
...

...
. . .

...

pT pT −1 . . . p1

⎤
⎥⎥⎥⎥⎦

(2.6)

where p j = C A j−1B and d( j) = C A j x0, j = 1, . . . , T .
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2.3.1 Control Laws and Structural/Performance Issues

Consider the SISO version of the state-space model (2.1) and suppose that both the
system dynamics and the measured output are deterministic, i.e., noise-free. Then a
derivative, or D-type, ILC law constructs the current trial input as

uk+1(p) = uk(p) + Kd [ek(p + 1) − ek(p)] (2.7)

where Kd is a scalar to be designed such that limk→∞ ||ek || = 0.Also routine analysis
shows that this condition holds if and only if |1−CBKd | < 1. Somewhat surprisingly,
this condition is independent of the system dynamics embodied in state matrix A and
can only be satisfied if CB �= 0.

The reason why trial-to-trial error convergence (k) is independent of the system
state matrix is the finite trial length, over which duration even an unstable linear sys-
temcan only produce a bounded output. In design based on a liftedmodel, the solution
is to first design a stabilizing feedback control law for the unstable system and then
apply ILC to the lifted version of the resulting controlled system. This step may also
be required for stable systems to ensure acceptable transient dynamics along the trials.
This results in a two stage design whereas the repetitive process, a class of 2D linear
systems, setting allows simultaneous design for trial-to-trial error convergence and
along the trial dynamics, see, e.g., Hladowski et al. (2010, 2012) where experimental
verification on a gantry robot that replicates many industrial processes to which ILC
is applicable is also given.

If the systemmodel has relative degree greater than one it follows immediately that
trial-to-trial error convergence cannot be achieved. This problem arises for many ILC
laws and has received considerable attention in the literature, where one starting point
is again the relevant references in the survey papers (Ahn et al. 2007; Bristow et al.
2006). This feature is also present in the 2D systems/repetitive process designs. The
most that can be done for a system of relative degree h is to lose control over the first
h −1 samples along the trial and design a control law that gives convergence over the
remaining samples.

In ILC, once trial k is complete the following information is available for the com-
putation of the control uk+1: (1) Information from the entire time duration of any pre-
vious trial and (2) Information up to the current sample on trial k + 1. The following
is one definition of causality in ILC.

Definition 2.1 An ILC law is causal if and only if the value of the input uk+1(p) at
time p on trial k + 1 is computed only using data in the time interval [0, p] from the
current and previous trials.

For standard linear systems at sample instant p the use of information at future sam-
ples p + 1, p + 2, . . . is non-causal and therefore any resulting control law cannot
be implemented. The use of non-causal along the trial information in ILC laws is
arguably the most important feature.
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Consider the ILC control laws

uk+1(p) = uk(p) + K pek(p + 1) (2.8)

and
uk+1(p) = uk(p) + K pek(p) (2.9)

where the first is ILC non-causal and the second is causal. Also let q denote the for-
ward time shift operator acting on, e.g., x(p) asqx(p) = x(p+1).Then the dynamics
of (2.1) can be written as

yk(p) = G(q)uk(p) + d(p) (2.10)

where d(p) = CApx0 and this term can be extended to represent exogenous system
disturbances that enter on trial k.Moreover, this disturbance term influences the error
on trial k as

ek(p) = r(p) − G(q)uk(p) − d(p) (2.11)

Hence the non-causal ILC law (2.8) anticipates the disturbance dk+1 and uses the
input uk+1(p) to preemptively compensate for its effects. This feature is not present
in the causal ILC law (2.9).

Causal ILC laws can be shown to be equivalent to a feedback control, i.e., an equiv-
alent control action can be obtained directly from the ILC law and it has been asserted
that causal ILC algorithms have little merit. See the discussion, with supporting ref-
erences, in Bristow et al. (2006) that counters this argument but in any case the vast
majority of implemented ILC laws are non-causal.

The finite trial length in ILC allows non-causal signal processing to be used. For
many implementations, this is exploited in the form of zero-phase filtering of the pre-
vious trial error prior to the computation of the next trial input.An experimental exam-
ple where zero-phase filtering is used is the gantry robot based results reported in
Hladowski et al. (2010, 2012). Essentially, zero-phase filtering between trials can be
used to remove unwanted effects, e.g., noise from the measured signals.

A commonly used ILC law is given by

uk+1(p) = Q(q) [uk(p) + L(q)ek(p + 1)] (2.12)

where Q(q) is termed the Q-filter and L(q) is the learning function, but these desig-
nations are not universally used in the literature. The Q-filter and learning function L
can be non-causal, in the ILC sense, with impulse responses

Q(q) = . . . + q−2q2 + q−1q + q0 + q1q−1 + q2q−2 + . . .

L(q) = . . . + l−2q2 + l−1q + l0 + l1q−1 + l2q−2 + . . . . (2.13)
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This algorithm has many variations, including phase-lead

uk+1(p) = uk(p) + lek(p + h) (2.14)

where the designation ‘phase-lead’ arises from the shifted term lek(p + h), h > 0.
An ILC law of the form (2.12) can also be written in lifted form as

uk+1 = Q(uk + Lek) (2.15)

The matrices G of (2.6), Q and L are Toeplitz and when the ILC law is causal Q
and L are lower triangular. Other forms of Q and L , such as the fully populated case,
correspond to non-causal ILC. Possibilities considered in the literature include time-
varying functions, nonlinear functions and trial-to-trial (in k) functions. Imposing
a band-diagonal structure results in Finite-Impulse Response (FIR) Q(q) and L(q)

operators that can be causal or non-causal. The liftedmodel description is not applica-
ble to differential dynamics and hence to applications where design by emulation is
the only or preferred option. The repetitive process/2D system approach extends to
this case.

2.3.2 Control Law Design

As in other control systemdesign areas, the objectivesmust be specified, startingwith
stability. Consider applying the ILC law (2.12) to the system (2.10). Asymptotic sta-
bility in the SISO case then requires the existence of a real number û > 0 such that
|uk(p)| ≤ û for all p ∈ [0, T ] and k ≥ 0, and for all p ∈ [0, T ], limk→∞ uk(p)

exists and the learned control is u∞(p) = limk→∞ uk(p).

Using the lifted form, the controlled dynamics resulting from applying (2.12) to
(2.10) can be written as

uk+1 = Q(I − LG)uk + QL(r − d) (2.16)

and stability holds if and only if all eigenvalues of thematrix Q(I −LG) havemodulus
strictly less than unity, where I denotes the identitymatrix of compatible dimensions.
Matrix Q(I − LG) is lower triangular and Toeplitz when the Q filter and learning
function L are causal and all eigenvalues are equal and of value q0(1− l0 p1). Hence
stability requires |q0(1− l0 p1)| < 1 and this property cannot hold if the first Markov
parameter p1 = 0 as discussed previously in this chapter. Consult the references in
Ahn et al. (2007), Bristow et al. (2006) for alternative settings to analyze the stability
properties of this form of ILC.

Performance of an ILC system is different from the standard linear systems case
as it is necessary to consider trial-to-trial and along the trial dynamics. In the former
case, if the system considered above is asymptotically stable, the converged error in
k is

e∞(p) = lim
k→∞ ek(p) = r(p) − G(q)u∞(p) − d(p) (2.17)
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and again there is a z transform version of this result. Performance from trial-to-
trial can, of course, be compared in many ways, where one measure is the difference
between the final and initial trial errors, i.e., e∞(p) and e0(p). Theorem 3 in Bristow
et al. (2006) gives the conditions for convergence to zero error in the case when G
and L are not identically zero. These conditions comprise asymptotic stability plus
the requirement that Q(q) = 1.As discussed previously, in many cases it will also be
necessary to design for acceptable transient dynamics along the trials.

Robustness is also an issue in ILC. Early research on the use of an H∞ setting
is given in Amann et al. (1996a), with other work referenced in the survey papers
(Ahn et al. 2007; Bristow et al. 2006), and is largely based on assuming an uncertainty
model to represent the unmodeled dynamics, such as norm-bounded. More recent
work, such as Hladowski et al. (2010, 2012), uses Linear Matrix Inequalities (LMIs)
to compute the robust control law with experimental verification on a gantry robot.

In applications terms, the core task in ILC design is to construct an open-loop sig-
nal that approximately inverts the plant’s dynamics, tracks the reference and rejects
repeating disturbances. In the ideal scenario ILC would only learn repeating distur-
bances and ignore noise and non-repeating disturbances. Four general control law
design methods are now discussed in turn, starting with Proportional plus Derivative
(PD)-type designs with tuning that can be applied to a systemwithout extensivemod-
eling and analysis.

2.3.3 Proportional Plus Derivative-Type ILC

Arimoto’s original algorithm (2.7) can be expanded for SISO systems to form a PD-
type ILC law, which can be written as

uk+1(p) = uk(p) + kpek(p + 1) + kd [ek(p + 1) − ek(p)]. (2.18)

In the lifted setting, (2.18) corresponds to the choice Q = I and

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

kp + kd 0 . . . 0

−kd kp + kd . . . 0

0 −kd . . . 0
...

...
. . .

...

0 0 . . . kp + kd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.19)

An alternative is to use ek(p) instead of ek(p+1) in the second term on the right-hand
side of (2.18). Also the generalization to MIMO systems is immediate.

Unlike Proportional plus Integral plus Derivative (PID) (or three term) control for
standard systems, auto-tuning rules are not available for ILC design. Also monotonic
trial-to-trial error convergence is not always possible with ILC PD-type laws and an
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often used approach to approximately achieve this property is to include a low-pass
Q filter in the control law, i.e., as in (2.12), pre-multiply the right-hand side of the
control law by Q(p). This filter can be used to block learning at high frequencies and
also has other benefits, such as increased robustness and filtering of high-frequency
noise.

In tuning-based design, one approach is to first select the Q filter type, such as But-
terworth or Chebyshev, and order and then use the filter bandwidth as the tuning vari-
able. This approach is extensively covered in the literature and, e.g., Bristow et al.
(2006) gives intuitive guidelines for tuning to achieve good learning transients and
low error. Again, the survey papers (Ahn et al. 2007; Bristow et al. 2006) are a start-
ing point for the many methods available for ILC PD design.

2.3.4 Inverse ILC

Plant inversion, or inverse, ILC designs use models of the inverse plant dynamics as
the learning function. For discrete systems the control law has the form

uk+1(p) = uk(p) + Ĝ−1(q)ek(p) (2.20)

or

uk+1(p) = uk(p) + q−1Ĝ−1(q)ek(p + 1) (2.21)

where, since the exact inversewill not oftenbe computable, Ĝ−1(q)denotes the approx-
imate inverse of G(q). The learning function is

L(q) = q−1Ĝ−1(q) (2.22)

which is causal and of zero relative degree, i.e., has the same number of zeros as poles.

2.3.5 Gradient Descent ILC

As in other areas, a natural approach to model based ILC is to minimize a suitable
cost function. The gradient descent algorithm for ILC (Furuta and Yamakita 1987)
considers the following cost-function for the discrete lifted model

J (uk+1) = ‖ek+1‖2, ek+1 = r − Guk+1 (2.23)

during each trial. Suppose also that the ILC law used is

uk+1 = uk + εk+1δk+1 (2.24)
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where εk+1 is a scaling factor and δk+1 is the vector that determines the direction of
the update vector. Then the tracking error on trial k + 1 is

J (uk+1) = J (uk + εk+1δk+1) = ‖ek+1‖2
= ‖ek‖2 − 2εk+1δ

T
k+1GT ek + ε2k+1δ

T
k+1GT Gδk+1 (2.25)

and hence

‖ek+1‖2 − ‖ek‖2 = −2εk+1δ
T
k+1GT ek + ε2k+1δ

T
k+1GT Gδk+1. (2.26)

Monotonic trial-to-trial error convergence occurs when the right-hand side in
(2.26) is negative. One option is choosing δk+1 = GT ek , resulting in the control law

uk+1 = uk + εk+1GT ek (2.27)

which corresponds to the choice Q = I and L = εk+1GT in the lifted setting.

2.3.6 Norm Optimal ILC

Norm Optimal ILC (NOILC) is a gradient-based update law that includes: (a) auto-
matic choice of step size, and (b) potential for improved robustness through use of
causal feedback (current trial error data) and feedforward of data from previous tri-
als. The results below are from Amann et al. (1996b), see also papers cited in Ahn
et al. (2007), Bristow et al. (2006) for other versions of this law.

The current trial input is chosen to minimize a cost function involving norms of
the trial error and the difference between successive trial control inputs. A general
treatment of the cost function and the problem solution in a Hilbert space setting can
be found in Amann et al. (1996b). The cost function used for discrete dynamics in the
ILC setting described by (2.1) is

J (uk+1) =
T −1∑
i=0

(ek+1(i) − ek(i))
T Q(ek+1(i) − ek(i))

+
T −1∑
i=0

(uk+1(i) − uk(i)
T R(uk+1(i) − uk(i)) (2.28)

where Q and R are symmetric positive definiteweightingmatrices to be selected. Use
of this cost function optimally reduces the trial-to-trial error and ensures that the con-
trol input on the next trial does not deviate too much from that used on the previous
trial.

Following Amann et al. (1996b) the control input on trial k + 1 is given by
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uk+1(p) = uk(p) − [ {
BT K (p)B + R

}−1
BT K (p)

× A {xk+1(p) − xk(p)} ] + R−1BT ξk+1(p) (2.29)

where K (p) is the solution of the algebraic Riccati equation

K (p) = AT K (p + 1)A + CT QC − [
AT K (p + 1)B

×
{

BT K (p + 1)B + R
}−l

BT K (p + 1)A
]

(2.30)

with terminal boundary condition K (T ) = 0. The feedforward predictive term
ξk+1(p) is generated after each trial as

ξk+1(p) =
{

I + K (p)B R−1BT
}−1 {

AT ξk+1(p + 1) + CT Qek(p + 1)
}

(2.31)

with terminal boundary condition ξk+1(T ) = 0. Moreover, NOILC can also be
applied to the lifted model representation of the dynamics.

2.4 Nonlinear Model ILC

Nonlinear ILC has received substantial attention in the literature, especially trial-to-
trial error convergence proofs. In this section the background on onemethod, Newton
ILC, which has been used in the stroke rehabilitation research reported in this mono-
graph, is given.

Nonlinear systems can, in general terms, be split into two groups; those that are
affine in the control and those that are not. The former are assumed to be of the form

ẋ(t) = f (x(t)) + B(x(t))u(t)

y(t) = h(x(t)) (2.32)

where x is the state vector, u is the input and y is the output. A special case is the
following model generally used to express the dynamics of robotic systems

Mr (x(t))ẍ(t) − Cr (x(t), ẋ(t))ẋ(t) − gr (x(t)) − dr (x(t), ẋ(t)) = τ(u(t)) (2.33)

where the vectors x(t), ẍ(t), ẋ(t) are the joint positions, velocities and accelerations,
τ(u(t)) is the actuator torque generated using a control input u(t), Mr (x) is the sym-
metric positive-definite inertial matrix, Cr (x, ẋ) is the Coriolis and centripetal accel-
erationmatrix, gr (x) is the gravitational force vector anddr (x, ẋ) is the friction torque
vector.

The application of ILC to affine nonlinear systems uses awide variety of laws but a
critical common assumption is that the nonlinear system is smooth. This requirement
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is often expressed as a global Lipschitz assumption on each of the functions in (2.32)
of the form

| f (x1) − f (x2)| ≤ f0|x1 − x2|
|B(x1) − B(x2)| ≤ b0|x1 − x2|
|h(x1) − h(x2)| ≤ h0|x1 − x2| (2.34)

The constants f0, b0 and h0 are used in a contraction mapping setting to obtain (suf-
ficient) conditions for trial-to-trial error convergence and ILC law design. Non-affine
systems have the form

ẋ(t) = f (x(t)) + B(x(t), u(t))

y(t) = h(x(t)) (2.35)

In the rehabilitation setting, control design is primarily undertakenusing adiscrete-
time system representation. Obtaining discrete-time models for nonlinear systems is
sometimes non-trivial but, e.g., trial-to-trial error convergence proofs are simpler and
the final design is directly compatible with digital implementation. One other way to
study and design ILC for nonlinear systems is to treat the nonlinearities as perturba-
tions to a linearized system model.

2.4.1 Newton ILC

Newton ILC was proposed by Lin et al. (2006) and uses the full model in the compu-
tation of the next trial input. It is based on a general discrete-time state-space model
of the form

xk(p + 1) = f (xk(p), uk(p))

yk(p) = h(xk(p)) (2.36)

which can be obtained via discretization of its continuous-time counterpart. As in the
linear case p = 0, 1, . . . , T is the sample number, xk(p) is the state vector, and in
lifted form the output and input vectors are given by

yk = [
yT

k (0) yT
k (1) . . . yT

k (T )
]T

uk = [
uT

k (0) uT
k (1) . . . uT

k (T )
]T

(2.37)

and the reference vector by

yd = [
yT

d (0) yT
d (1) . . . yT

d (T )
]T

(2.38)
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The Newton ILC law takes the form

uk+1 = uk + g′(uk)
−1ek (2.39)

where ek = r − yk is the tracking error. The term g′(uk) is equivalent to linearizing
the system dynamics around uk , with the system ỹ = g′(uk)ũ corresponding to the
following linear time-varying state-space model

x̃(p + 1) = A(p)x̃(p) + B(p)ũ(p)

ỹ(p) = C(p)x̃(p)
(2.40)

over p = 0, 1, . . . , T , with

A(p) =
(

∂ f

∂x

)

uk (p),xk (p)

, B(p) =
(

∂ f

∂uk

)

uk (p),xk (p)

C(p) =
(

∂h

∂x

)

uk (p),xk (p)

(2.41)

The term g′(uk)
−1 in (2.39) is computationally expensive and may be singular or

contain excessive amplitudes and high frequencies. To overcome this difficulty, intro-
duce

ek = g′(uk)Δuk+1 (2.42)

and then Δuk+1 = uk+1 − uk equals the input that forces the system (2.40) to track
the error ek . This is also an ILC problem and can be solved in between experimental
trials using any ILC law that converges globally. In this monograph NOILC is used.
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Chapter 3
Technology Transfer to Stroke Rehabilitation

The link that extends ILC from industrial robotics to robotic-assisted stroke rehabili-
tation is described together with the methods a health professional uses to assess the
ability and progress of a patient. This material underpins the remainder of the mono-
graph.

3.1 Background on Stroke and Its Consequences

As discussed briefly in Chap.1, stroke is a leading cause of disability world-wide
(Hong and Saver 2009) and is usually caused when a blood clot blocks a vessel in the
brain stopping the blood reaching the regions downstream. Alternatively, it may be
caused by a haemorrhage, where a vessel ruptures and leaks blood into surrounding
areas. As a result, some of the connecting nerve cells die and the person commonly
suffers partial paralysis on one side of the body, termed hemiplegia.

Stroke is an age related disease (Denti et al. 2008) and, as the number of people
aged 60 and above is predicted to increase from year to year, incidence is likely to rise
(SA 2015). Prevalence is also likely to rise due to better survival rates and long-term
care. Associated with these figures, the stroke burden is projected to increase from
around 38 million disability-adjusted life years (DALYs) lost globally in 1990 to 61
million DALYs in 2020 (Murray et al. 2012).

The consequences of age related conditions, such as stroke, thus have a growing
impact on the health and economic prosperity of countries. To give a country specific
perspective, within England and Wales alone approximately 110,000 people have a
stroke each year according to UKDepartment of Health figures from 2007 and stroke
is now the third largest cause of death and the single largest cause of adult disability.
The treatment of and productivity loss arising fromstroke results in total societal costs
of 8.9 billion UK pounds a year, with treatment costs accounting for approximately
5% of the total UK state funded National Health Service costs (Saka et al. 2009).
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Neurorehabilitation, i.e., therapy to assist recovery of functions lost as a result of
a neurological disorder, across the world is fragmented and the current prognosis for
upper limb recovery following stroke remains poor; for 30–60% of stroke patients
the hemiplegic arm remains without function (Kwakkel et al. 2008b). It has been
reported that 80% of all post-stroke survivors show a reduced ability to use the
paretic upper extremity in activities of daily living (Langhorne et al. 2011), which
has been shown to be associated with poorer health-related quality of life and affects
personal independence (Morris et al. 2013).

An obvious need exists to improve the efficiency and effectiveness of treatment,
whilst remaining mindful that resources for healthcare workers and rehabilitation
costs are limited. Technologies have the potential to provide intensive practice of
a task, variety and feedback, which have been shown by conventional therapy and
motor learning theory to be important. These ideas are being applied in new tech-
nologies which provide the opportunity for repeated practice, but a review found
that the translation of rehabilitation technology research into clinical practice has
been impeded by an absence of robust clinical effectiveness and usability evidence
(Burridge and Hughes 2010).

3.1.1 Robotically-Assisted Stroke Rehabilitation

Brain cells killed after a stroke cannot re-grow, but the brain has some spare capac-
ity and hence new connections can be made. The brain is continually and rapidly
changing as new skills are learned, new connections are formed, and redundant ones
disappear. A person who re-learns skills after a stroke goes through the same process
as someone learning to play tennis or a baby learning to walk, requiring repeated
practice of a task. Unfortunately, they can hardly move and therefore do not receive
feedback on their performance.

The application of conventional therapy and motor learning theory provides evi-
dence that intensity of practice of a task and feedback are important, see, for example,
Pomeroy et al. (2006). In turn, this is motivating the development of novel treatments
such as those that provide the opportunity for repetitivemovement practice. Although
the use of robotic therapy in upper limb rehabilitation is relatively recent, reviews of
the literature suggest that robot-aided therapy improvesmotor control of the proximal
upper limb and may improve functional outcomes (Prange et al. 2006). Moreover,
electromechanical and robotic devices may have an advantage over conventional
therapies in the frequency of movement repetitions because of an increased motiva-
tion to train and also the opportunity for independent exercise (Prange et al. 2006).
Based on existing evidence, use of rehabilitation robots is recommended in the UK
stroke guidelines (PS 2004).

Clinical evidence exists to support the therapeutic use of Functional Electrical
Stimulation (FES), sometimes also referred to in the literature as electrical stimu-
lation, to improve motor control (de Kroon et al. 2002). This form of stimulation
makes muscles work by causing electrical impulses to travel along nerves in much
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the same way as electrical impulses from the brain, and if carefully controlled, a
useful movement can be made. Theoretical results from neurophysiology (Burridge
and Ladouceur 2001) and motor learning research support clinical research with
the conclusion that the therapeutic benefit of stimulation is maximized when applied
co-incidently with a patient’s own voluntary intention tomove (deKroon et al. 2005).

A hypothesis is proposed in Rushton (2003) to explain the added benefit of in-
creased recovery when FES is used to mimic a weak or paralyzed movement, de-
scribing how the anterior horn (AH) cell synapses may be strengthened by receiving
simultaneous impulses along the motor nerves due to FES and voluntary effort and
thereby allowing the AH cells to compensate for damage to the subject’s motor sys-
tem. This hypothesis explains why the increased degree of functional recovery is
closely related to the accuracy of the stimulation applied to assist the patient’s own
voluntary completion of a task.

A variety of FES model-based laws have been employed to control movement
Zhang et al. (2007), however the majority are intended for Spinal Cord Injury (SCI)
subjects, which is reflected in the number of approaches focused on the lower limb.
Contributing factors to the far greater number of FES schemes available for the lower
limb are the simplicity of the musculo-skeletal system compared with the upper limb
and the relative ease ofmuscle selectivity and recruitment. Examples include optimal,
H∞, and fuzzy control of standing, sliding mode control of shank movement, data-
driven control of the knee joint andmultichannel PID control of the wrist. References
to this work are given in Freeman et al. (2012).

Advanced techniques, such as those referenced above, have rarely transferred to
clinical practice, especially in the case of stroke rehabilitation, where the strategies
adopted are either open-loop, or the stimulation is triggered using limb position or
Electromyographic (EMG) signals to provide a measure of the participant’s intended
movement. Closed-loop control has been achieved using EMG but this has not been
incorporated in model-based controllers since EMG does not directly relate to the
force or torque generated by the muscle. In the few cases where model-based control
approaches have been used clinically, they have enabled a far higher level of tracking
accuracy. The reasons for this are discussed in Freeman et al. (2012) with supporting
references.

A principal reason for the lack of model-based methods finding application in a
program of patient trials is the difficulty in obtaining reliable biomechanical models.
In the clinical setting there is minimal set-up time, reduced control over environmen-
tal constraints and little possibility of repeating any one test in the program of treat-
ment undertaken; control laws are required to perform to a minimum standard on a
wide number of subjects and conditions. Moreover, the underlying musculo-skeletal
system is highly sensitive to physiological conditions, including skin impedance,
temperature, moisture and electrode placement, in addition to time-varying effects
such as spasticity and fatigue (Baker et al. 1993). These problems are often exacer-
bated in the case of stroke because hemiplegic subjects exhibit both voluntary and
involuntary responses to applied stimulation. The small number of model-based ap-
proaches that have been used in stroke rehabilitation therefore provide limited scope
to adapt the applied stimulation to changes in the underlying system due to fatigue
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or spasticity, leading to reduction in performance and an inability to fully exploit the
therapeutic potential.

This monograph describes the application of ILC in stroke rehabilitation, includ-
ing clinical trials that constitute the first major stage towards eventual transfer into
practice. In contrast to the other approaches employed to control FES, ILC exploits
the repeating nature of the patient’s tasks in order to improve performance by learn-
ing from past experience. By updating the control input using data collected over
previous attempts at the task, ILC is able to respond to physiological changes in the
system, such as spasticity and the presence of the patient’s voluntary effort, which
would otherwise erode performance. Use of ILC can also closely regulate the amount
of stimulation supplied, ensuring that minimum assistance is provided, thereby pro-
moting the patient’s maximum voluntary contribution to the task completion. As
the treatment progresses this control action encourages patients to exert increasing
voluntary effort with each trial, leading to a corresponding decrease in the level of
FES applied.

The first research in this area concentrated on a planar problem that replicates the
every day task of reaching out across a table top to, for example, a cup, where the aim
was to establish the basic feasibility of using ILC in this setting. Figure3.1 shows a
stroke patient using the system designed for this purpose. More complicated tasks,
such as reaching out and then lifting the arm are described in later chapters.

Fig. 3.1 A frontal view of a patient using the planar robotic workstation: showing (1) shoulder
strapping, (2) tracking task, and (3) surface electrodes
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Fig. 3.2 Plan view of the
patient’s movement in the
planar case

The patient in this figure is seated with her impaired arm supported by the robot
and elliptical trajectories are projected onto a target above the hand. Also FES is
applied to her triceps, using the surface electrodes, in order to assist tracking of a
point that moves along the reference trajectory. At the end of the task, the arm is
returned to the starting position in preparation for the next trial. During the reset
time, plus a rest time to prevent muscle fatigue and allow transients to decay, an
ILC law is used to calculate the stimulation to be applied on the next trial. The
stimulation applied to the triceps muscle produces a torque about the elbow and the
control problem is equivalent to controlling the angle ϑ f in this figure. The shoulder
strapping is to prevent forward movement by the patient’s trunk during the trials,
which would conflict with the desired objective of reaching out with the arm.

Figure3.2 shows a plan view of the patient’s movement in the planar case where
the analogy with the pick and place operation for an industrial robot discussed in
the previous chapter is clear. During the arm resetting time at the end of trial k, the
ILC law uses a biomechanical model of the arm and muscle system, along with the
previous tracking error, to produce the control signal, i.e., the FES, for application
on the next trial.

The assessment of the results from clinical trials in this area must be based on
the measures used by healthcare professionals. These are described below and the
next chapter describes the ILC law design for this task and gives the results from a
clinical trial.

3.2 Measurement in Neurorehabilitation

The purpose of measurement is two-fold. Firstly to design therapy (to make ini-
tial decisions and decide changes to therapy programmes) and secondly to measure
progress. The World Health Organisation’s International Classification of Function-
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ing, Disability and Health (ICF) is a framework for measuring both health and dis-
ability (WHO 2001). It consists of domains that are ‘health’ and ‘health related’
described by two lists: body functions and structures, and activity and participant.
Impairments are defined as problems in body function or structure, such as a sig-
nificant deviation or loss, whereas activity is the execution of a task or action by an
individual and participation is involvement in a life situation (society).

Active assisted or partially facilitated exercises are recommended for stroke pa-
tients who are unable to move by themselves (Jackson 2004). To measure the effec-
tiveness of such techniques, healthcare professionals are more likely to use activity
or participant based outcomemeasures that explain how effective an intervention has
been. These may be more relevant to the patient than impairment based measures
that normally require more equipment.

3.2.1 Validated Clinical Outcome Measures

Healthcare professionals conventionally use standardized validated clinical outcome
measures to address changes in body functions and structures, or activities. There is
little consensus within the literature regarding the best motor performance outcome
measure for stroke patients, although it has been suggested that trials should use valid
instruments that measure upper limb skills specifically, such as the Action Research
Arm Test (ARAT) or Structural Myofascial Therapy (SMFT), to assess improvement
in activities of daily living (Kwakkel et al. 2008a).

In the research described in this monograph, the primary measure for upper limb
function is the ARAT (Carroll 1965). Movement, coordination and sensation of the
upper limb have also beenmeasured using the Fugl-MeyerAssessment (FMA) (Fugl-
Meyer et al. 1975). Both of these measures are valid and reliable measures of post
stroke function and impairments. Moreover, both of these ordinal measures have
been extensively used in the clinical robotic and FES literature, but still have limita-
tions including floor and ceiling effects, experimenter bias and inter-rater reliability
across clinical trial sites. The ARAT was developed to monitor function related to
every-day tasks and uses a hierarchical measure of grasp, grip, pinch and grossmove-
ment, where the reaching and grasping movements are rated on quality and speed in
three dimensions. Also ARAT assesses primarily activity limitations, i.e., a patient’s
functional loss when interacting with the environment by means of the upper limb.

The FMA (Fugl-Meyer et al. 1975) primarily assesses changes in upper limb
impairment in terms of loss or abnormality of movement, i.e., the ability to perform
movements in accordance with specified joint motion pattern. It is an ordinal scale
testing grossmovement, coordination and sensation of the upper limb. Themotor part
of the scale scores a maximum of 66 points: section A (shoulder, elbow and forearm
36 points,), B (wrist 10 points), C (hand 14 points) and D (co-ordination/speed 6
points). The test is appropriate for severe to mildly affected patients and provides
an adequate, reproducible and fairly standardized picture of a patient’s sensorimotor
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and joint characteristics. In terms of resolution, the FMA could, in contrast to the
ARAT, detect differences throughout the spectrum of motor dysfunction of the study
population and is less affected by floor or ceiling effects.

3.2.2 Robotic Measurements and Their Limitations

Robot-generated and other technology-based measures can measure new and poten-
tially useful variables in upper limb neurorehabilitation including quality of move-
ment, kinematic, kinetic, muscle activity, psychomotric and effort measures. Addi-
tionally, it has been suggested that the coarse nature of clinical outcome measures
fails to show detail important for optimizing therapy (Krebs et al. 2000). The use
of robots could address some of the limitations of the clinical scales through: in-
creased sensitivity to change to detect changes not sufficiently large to be picked
up by the clinical scales; reducing the subjective nature of the scoring; providing a
direct measure of the support being provided and offering more frequent monitoring
to detect changes in function during the intervention than the conventional clinical
assessments.
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Chapter 4
ILC Based Upper-Limb
Rehabilitation—Planar Tasks

This chapter details how an ILC based system for planar tasks has been developed to
the stage of a small scale clinical trial. The results of tests conducted on 18 unimpaired
volunteers who do not provide voluntary effort are given. These results contributed to
the granting of ethical approval for the clinical trial with 5 stroke patients.

4.1 Robot Design

Several robotic devices for the application of robotic therapy to stroke patients
through purely mechanical manipulation of their arms, such as the MIT Manus
(Krebs et al. 1998) and GENTLE/s systems (Loureiro et al. 2004), have been devel-
oped but this form of treatment has hitherto not been combined with the application
of FES (or ILC). To provide a controlled environment in which to apply stimulation
an experimental test facility incorporating a five-link planar robotic arm and an over-
head trajectory projection system has been developed. The patient is seated with their
arm strapped to the robot, and the trajectory is projected onto a target mounted above
their hand. In operation, a light spot moves along this trajectory and on each trial the
task for the patient is to track the progression of this spot using a combination of vol-
untary control and surface FES applied to muscles in the impaired shoulder and arm.
During the trials, the robotic arm provides control over the dynamics experienced by
the patient and produces an assistive torque when necessary.

The robotic workstation developed is shown in Fig. 4.1 (Freeman et al. 2009a).
In this setting, the links of the robot are labeled 1–5, and the upper arm and forearm
are labeled u and f respectively. The vectors x0, y0 and z0 are components of the
robotic base coordinate frame and x1, y1 and z1 are those of the human arm base
coordinate frame, the two systems being related by a translation. Two coaxially
mounted DC brushless motors actuate links 1 and 2 and a 4000-line encoder is
mounted on eachmotor shaft to record the angle of these links. The patient is strapped
to the extreme fifth link and grips a cushioned handle which is rigidly connected to

© The Author(s) 2015
C.T. Freeman et al., Iterative Learning Control for Electrical Stimulation
and Stroke Rehabilitation, SpringerBriefs in Control,
Automation and Robotics, DOI 10.1007/978-1-4471-6726-6_4

25



26 4 ILC Based Upper-Limb Rehabilitation—Planar Tasks

1

4

3

5

f

x1

y1
z1

x0

y0
z0

2

u

Fig. 4.1 Unimpaired subject using the robotic workstation

a 6 axis force/torque sensor, which records the force they apply to the robotic end
effector.

Forces of up to 200N applied in the horizontal plane can be measured with a
resolution of 0.0122N. The fifth link also contains a 4000-line encoder to measures
its angle and Light Emitting Diodes (LEDs) to provide visual feedback of the track-
ing performance. The robotic arm is used to constrain the patient’s arm, to impose
forces on the end-effector that make the task feel ‘natural’ to the patient, to apply
assistance during the performance of tracking tasks and to move the patient’s arm
when necessary. During a treatment session, the patient’s task is to track a range of
trajectories that are projected onto a target positioned above their hand. All tests are
controlled using a graphical user interface running on the host PC.

Figure4.2 shows the geometry of the dual human and robotic system. The robot
joint angle vector is qr = [ϑ1 ϑ2]T , where ϑ1 and ϑ2 are the joint angles correspond-
ing to links 1 and 2 respectively. Moreover, the axes of all the robot joints are parallel
to z0, and the links are labeled to correspond with Fig. 4.1. Also the torque supplied
by the motors is given by τr = [τ1 τ2]T , where τ1 and τ2 are applied to actuate joints
1 and 2 respectively.
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Fig. 4.2 Geometry of combined human arm and robotic arm system

It is assumed that the patient interacts with the robot by applying a vector of forces
and torques at the point Q, which has a z0 component of lz . This corresponds to the
vertical distance of the patient’s hand above the force/torque sensor. The vector of
the components of these forces applied in the x0 and y0 directions is given by hr .
The patient’s arm is strapped to the fifth link of the robot and the human arm model
therefore includes the properties of this link, which will not be included in the model
of the robot. To ensure the robot’s safe interaction with an unknown environment, a
form of impedance control, detailed in Colgate and Hogan (1988), is used to govern
the torque demand supplied to the motors. This strategy has previously been used to
control robotic therapy devices (Krebs et al. 1998), although alternative approaches
could be used, such as force or compliant control, e.g., Siciliano and Villani (1999).

The controller compensates for the inertial and damping properties of the robotic
arm and at point Q, yields dynamics

hr = KKx x̃r + KBx
˙̃xr + KMx

¨̃xr (4.1)

where x̂r is the reference position, x̃r = x̂r − xr , xr = kr (qr ), ẋr = Jr (qr )q̇r and
ẍr = Jr (qr )q̈r + J̇r (qr , q̇r )q̇r . Also the direct kinematics equation for the robotic
system is xr = kr (qr ) and J T

r (qr ) is the Jacobian of this system. When the robot
is moved freely by the patient in the absence of assistance, the gain matrices are set
as KKx = 0, KBx = K Bx I and KMx = KMx I , where I is the identity matrix of
compatible dimensions. The values of K Bx > 0 and KMx > 0 are tuned to create a
‘natural’ feel, and an additional requirement is that x̂r has constant value. Moreover,
the robot is required to move the patient’s arm along predefined trajectories. Hence it
is necessary to set KKx = KKx I with KKx > 0 and the three gains tuned to produce
the required tracking performance. Gainmatrix selection for the case where the robot
applies assistance during tracking tasks is described below.



28 4 ILC Based Upper-Limb Rehabilitation—Planar Tasks

4.2 Human Arm Model

In this section a mathematical description of the patient’s arm is derived, consisting
of a model of the passive dynamical system to which the torque generating properties
of the stimulated muscle is then added. This section is based on research reported in
Freeman et al. (2007, 2009b).

4.2.1 Passive System

Figure4.3 gives amore detailed description of the geometry of the constrained human
armmodel of Fig. 4.2, where the first link represents the upper arm, from the shoulder
joint to the elbow, with length (lu1+ lu2) and the second represents the forearm, from
the elbow to the thumb web, with length (l f 1 + l f 2). The constraint means that the
forearm must lie in the horizontal plane and rotation is possible about the axis along
the upper arm. Point Q denotes where the patient’s hand grasps the robot and only
forces and torques along unconstrained directions are shown (only rotation about the
axis parallel to z1 is unconstrained at this point, rotation is not possible about the two
orthogonal axes). The triceps muscle has been selected for stimulation since stroke
patients typically experience problems with shoulder and elbow extension during
reaching tasks (Lum et al. 2004).

Actuation of the triceps muscle is modeled as a torque, Tβ ≥ 0, acting about an
axis orthogonal to both the upper arm and forearm. Components of the forces in the
x1 and y1 directions applied by the patient’s hand at the point of interaction with
the robot are denoted by Fx1 and Fy1 respectively. A point, xr , in the robot coordinate
system is expressed in the human arm system by a point, xa , such that

xr = xa + [
lx ly lz

]T (4.2)

where lx and ly represent the x0 and y0 components, respectively, of the shoulder
joint position in the robot coordinate system.

If Vu and V f are vectors aligned along the upper arm and forearm, respectively,
the horizontal constraint requires that V f has a z1 component of zero. In this case
the unitary axis about which Tβ is applied is given by

Ve = Vu × V f

|Vu × V f | = 1√
1 − c2f c2γ

[ −su f sγ cu f sγ −s f cγ

]T (4.3)

where c f and cγ denote cos(ϑ f ) and cos(γ ), respectively. Similarly, s f and sγ denote
sin(ϑ f ) and sin(γ ). In addition, cu and su are used to denote cos(ϑu) and sin(ϑu),

respectively, and su f and cu f denote sin(ϑu + ϑ f ) and cos(ϑu + ϑ f ), respectively.
For arbitrary γ , Ve has a z1 component of zero when ϑ f = 0 and is given by
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Fig. 4.3 Geometry of constrained human arm

V̂e = [ −su cu 0
]T (4.4)

As ϑ f increases, the angle that Ve rotates about the upper arm, starting from V̂e, is
given by

α(ϑ f ) = arccos

(
Ve · V̂e

|Ve||V̂e|

)
= arccos

⎛
⎝ c f sγ√

1 − c2f c2γ

⎞
⎠ (4.5)

The elbow angle is equal to

β(ϑ f ) = arccos

(
Vu · V f

|Vu ||V f |
)

= arccos
(−c f cγ

)
(4.6)

and the dynamic model of the constrained arm can be written in the form

Ba(qa)q̈a + Ca(qa, q̇a)q̇a + Fa(qa, q̇a) = τa − J T
a (qa)ha (4.7)

where qa = [ϑu ϑ f ]T , τa =
[
0 Tβ

−s f cγ√
1−c2f c2γ

]T

, ha = [Fx1 Fy1]T and the remaining

terms are

Ba(qa) =
[

ba1 ba2
ba2 ba3

]
, Ca(qa, q̇a) =

[−2ca1ϑ̇ f −ca1ϑ̇ f

ca1ϑ̇u ca2ϑ̇ f

]
(4.8)

J T
a (qa) =

[−(lu1 + lu2)cγ su − (l f 1 + l f 2)su f (lu1 + lu2)cγ cu + (l f 1 + l f 2)cu f
−(l f 1 + l f 2)su f (l f 1 + l f 2)cu f

]
(4.9)
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with
ba1 = mu(lu1cγ )2 + Iu + m f (l2f 1 + ((lu1 + lu2)cγ )2

+ 2(lu1 + lu2)cγ l f 1c f ) + I f

ba2 = m f (l2f 1 + (lu1 + lu2)cγ l f 1c f ) + I f

ba3 = m f l2f 1 + I f + Ie

(
sγ

1−c2f c2γ

)2

ca1 = m f (lu1 + lu2)cγ l f 1s f , ca2 = −2Ie

(
s2γ c2γ c f s f

(1−c2f c2γ )3

)
(4.10)

The relationship ha = −hr is a consequence of the connection between the
robotic and human arm systems. Various forms of the friction term Fa(qa, q̇a) have
been considered to achieve a compromise between repeatability and the accuracy of
the overall model. The most general form considered is

Fa(qa, q̇a) = [
Fa1(ϑu, ϑ̇u) Fa2(ϑ f , ϑ̇ f )

]T
(4.11)

where Fa1(·) and Fa2(·) are piecewise linear functions.

4.2.2 Muscle Model

To account for the action of the triceps, an established model of the torque, Tβ ,
generated by electrically stimulated muscle acting about a single joint is given by

Tβ(β, β̇, u, t) = g(u, t) × Fma(β, β̇) + Fmp(β, β̇) (4.12)

whereu denotes the stimulation pulsewidth applied andβ is the joint angle (Shue et al.
1995). In this model a Hammerstein structure incorporating a static non-linearity,
hIRC(u), representing the isometric recruitment curve, cascaded with linear activa-
tion dynamics, hLAD(t), produces the first term, g(u, t). The activation dynamics can
be adequately captured using a critically damped second order system as described
in, e.g., Baratta and Solomonow (1990), the term Fma(β, β̇) models the multiplica-
tive effect of the joint angle and joint angular velocity on the active torque devel-
oped by the muscle and the term Fmp(β, β̇) accounts for the passive properties of
the joint.

Given that γ is invariant, (4.6) means that Fmp(β, β̇) is accounted for by the
most general form of Fa(qa, q̇a) considered. Hence additional forms of friction are
not added to the existing model. Details of the procedures used to establish the
parameters of the muscle model given above are detailed in Freeman et al. (2007)
and further results on the use of system identification to determine a model for the
muscle response can be found in Le et al. (2010, 2012).
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4.2.3 Robotic Assistance and Trajectory Choice

The action of the robotic arm necessary to make the task a feasible yet productive
one is the subject of this section, where the following points concern the choice of
trajectory and role of the robot during task completion:

1. The trajectories will be elliptical reaching tasks for each patient’s dominant arm
and should be achievable given their identified arm model.

2. The triceps muscle will provide the only actuating torque about the elbow and
the robotic arm will use the control action given by (4.1) to make the dynamics
about the elbow feel ‘natural’ to the patient.

3. The robotic arm will provide a torque acting about the patient’s shoulder to track
the reference in a manner entirely governed by the angle of the forearm, which
makes the task feasible without lessening the role played by the triceps.

The development of the robotic control scheme to achieve these goals is described
next.

4.2.4 Robotic Control Scheme

Combining the human arm model described by (4.7) and the end effector dynamics
(4.1) gives

Ba(qa)q̈a + Ca(qa , q̇a)q̇a + Fa(qa , q̇a) = τa + JT
a (qa)

(
KKx x̃a + KBx

˙̃xa + KMx
¨̃xa

)
(4.13)

where x̂a = x̂r − [lx ly lz]T has been enforced to give x̃a = x̃r . To separate the
dynamics of the end-effector in the directions corresponding to the human arm joint
angles, requires

KKx x̃a + KBx
˙̃xa + KMx

¨̃xa = J−T
a (qa)

(
KKq q̃a + KBq

˙̃qa + KMq
¨̃qa

)
(4.14)

where q̃a = q̂a − qa and q̂a = k−1
a (x̂a). Hence

Ba(qa)q̈a + Ca(qa, q̇a)q̇a + Fa(qa, q̇a) = τa + KKq q̃a + KBq
˙̃qa + KMq

¨̃qa (4.15)

and to satisfy the requirements of points 2 and 3 above requires

KKq =
[

KK1 0
0 0

]
, KBq = [

K B1 K B2

]

KMq =
[

KM1 0
0 KM2

]
(4.16)
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with q̂a =
[
ϑ̂u c

]T
,where c is a constant and KK1 , K B1 , K B2 , KM1 , KM2 ≥ 0. This

allows a choice of arbitrary second order dynamics to be imposed about the shoulder
and the damping and inertia about the elbow to be prescribed.

The right-hand side of (4.15) now is

τa +
[

KK1 ϑ̃u + K B1
˙̃
ϑu + KM1

¨̃
ϑu

−K B2 ϑ̇ f − KM2 ϑ̈ f

]

and gives the required dynamic relationship for both components of the torque on

the assumption that ϑ̂ f = c and therefore ˙̂
ϑ f = ¨̂

ϑ f = 0. This last assumption is
unsuitable for the desired references and hence this control scheme is not appropriate

for the intended tracking task. Alternatively, assuming that ˙̂
ϑu and

¨̂
ϑu are sufficiently

small, the controller can still provide asymptotic stability to externally applied forces
if the right-hand side of (4.15) is

τa +
[

KK1 ϑ̃u − K B1 ϑ̇u − KM1 ϑ̈u

−K B2 ϑ̇ f − KM2 ϑ̈ f

]

This last requirement is satisfied if q̂a =
[
ϑ̂u ϑ̂ f

]T
and (4.1) is replaced by

hr = KKx x̃r − KBx ẋr − KMx ẍr (4.17)

In this case (4.14) is replaced by

KKx x̃a − KBx ẋa − KMx ẍa = J−T
a (qa)

(
KKq q̃a − KBq q̇a − KMq q̈a

)
(4.18)

and the required values of ϑ̂u and ϑ̂ f are obtained by comparing the components of
(4.18) as

KKx

(
x̂a − xa

) = J−T
a (qa)

[
KK1

(
ϑ̂u − ϑu

)

0

]
=

KK1

(
ϑ̂u − ϑu

)

(lu1 + lu2)cγ s f

[
cu f

su f

]
.

(4.19)
Hence

KKx =
KK1

(
ϑ̂u − ϑu

)
∣∣x̂a − xa

∣∣ (lu1 + lu2)cγ s f
I (4.20)

and

x̂a = xa + ∣∣x̂a − xa
∣∣
[

cu f

su f

]
(4.21)
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Fig. 4.4 Trajectory geometry

The above analysis shows that x̂a is not uniquely defined but can be any point
lying on a line extending along the forearm and passing through xa and to meet the
tracking task it must be equal to the point of intersection with the trajectory. This
requirement is illustrated in Fig. 4.4, where x∗

a (t) = ka(q∗
a (t)) and the trajectory is

defined by

q∗
a (t) =

[
ϑ∗

u (t) ϑ∗
f (t)

]T
, 0 ≤ t ≤ T (4.22)

Eliminating t from the components gives ϑu = Ψ (ϑ f ) and the reference is defined
formally as

x̂a = Ω (xa, Ψ (·)) := ka

([
Ψ (ϑ̂ f )

ϑ̂ f

])

∣∣∣∣ka

([
Ψ (ϑ̂ f )

ϑ̂ f

])
= xa + λ

[
cu f

su f

] (4.23)

where λ is a scalar.
The final control system is shown in Fig. 4.5 where, given (4.16),

KBx = J−T
a (qa)KBq J−1

a (qa) (4.24)

and
KMx

(
Ja(qa)q̈a + J̇a(qa, q̇a)q̇a

) = J−T
a (qa)KMq (4.25)



34 4 ILC Based Upper-Limb Rehabilitation—Planar Tasks

Fig. 4.5 Human arm system with robotic assistance

Also, using (4.23), (4.20) can be written explicitly as

KKx (xa, Ψ (·)) =
KK1

(
Ψ (ϑ̂ f ) − ϑu

)

λ(lu1 + lu2)cγ s f
I (4.26)

4.2.5 Trajectory Selection for ILC Design

How the trajectories feel to the patient is critical and impacts on the selection of K B2

and KM2 as follows:

1. For Ψ (ϑ f ) to be a one-one continuous function, both ϑ∗
u (t) and ϑ∗

f (t) must be
monotone.

2. With the use of robotic assistance, it is shown in Freeman et al. (2009c) that the
behavior of the electrically stimulated tricep can be approximated by the system
represented schematically in Fig. 4.6. The approximations invoked are based on
experimentally confirmed properties of the human arm model and the ability of
the robotic control system to provide accurate tracking of ϑ̂u by ϑu .
Given Tβ ≥ 0, 1) above requires that ϑ∗

f (t) is monotonically decreasing. More-
over, given the geometry of the task shown in Fig. 4.4, this last requirement
requires that the line joining x∗

a (T ) and x∗
a (0) passes through the origin of the

arm system, since at both these points the direction of the elliptical trajectory is
orthogonal to the major axis.

3. Under the assumption that ϑ∗
f (t) is tracked perfectly, the torque that must be

applied to the arm system shown in Fig. 4.6 is given by

Fig. 4.6 Approximate model of the stimulated human arm
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T ∗
β (t) ≈

⎛
⎝−

√
1 − c2f ∗(t)c

2
γ

s f ∗(t)cγ

⎞
⎠{

K B2 ϑ̇
∗
f (t) + (

KM2 + ba3
)
ϑ̈∗

f (t)

+ Fa2

(
ϑ∗

f (t), ϑ̇
∗
f (t)

) }
(4.27)

and the required stimulation, u∗(t), must satisfy

∫ t

0
hI RC

(
u∗(τ )

)
hL AD (t − τ) dτ = T ∗

β (t)

Fma(β∗(t), β̇∗(t))
(4.28)

whereβ∗(t) corresponds to the reference trajectory such thatβ∗(t)= β(ϑ∗
f (t), t).

This expression limits the magnitude and rate of change of any achievable torque
trajectory.
In application the existence of a solution to (4.28) will be ensured by selecting
slow trajectories that comprise half ellipse segments that are comfortably within
both the robot’s and the patient’s workspace. The start and end points will be
chosen such that they can be reached by a smooth extension of the elbow and
individually calculated for each patient depending on their maximum reach ca-
pability. Moreover, the gains K B2 and KM2 are selected to: (i) mimic a realistic
activity, (ii) provide a high level of stability in response to sudden stimulation in-
puts and (iii) to require that a moderate level of work is generated by the patient’s
muscles in order to track the trajectory.

The effects of these requirements on the overall control scheme will discussed later
in the chapter.

4.3 Control Laws

In this section, two strategies to control the stimulation applied to the patient are de-
veloped. The first consists of a linearizing controller in a simple structure feedback
arrangement and the second augments this arrangement by adding an ILC feedfor-
ward action generated by one of two laws.

4.3.1 Linearizing Control Law

The first component of this control law is h−1
IRC(·), which is the inverse of the iso-

metric recruitment curve that has been identified for each patient and the remaining
action of the control law is motivated by the form of the remaining non-linear terms

−s f cγ /
√
1 − c2f c2γ , Fma(β, β̇) and Fa2(ϑ f , ϑ̇ f ) of the arm model of Fig. 4.6. The

value of all three functions vary only slowly when the trajectories considered in
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this chapter are followed perfectly (Freeman et al. 2007), where this conclusion is
based on examining the graphs of each function using the substitutions ϑ f = ϑ∗

f (t),

ϑ̇ f = ϑ̇∗
f (t), β = β∗(t) and β̇ = β̇∗(t) for the trajectories used.

The control action taken attempts to remove the effect of these functions and
hence produce a system that approximates the linear activation dynamics in series
with the linear arm dynamics (the transfer-functions appearing in the left and right
sub-systems, respectively, of Fig. 4.6). To achieve this, the control law next applies
the gain term

−
√
1 − c2f c2γ

s f cγ Fma(β, β̇)
=

(
−s f cγ /

√
1 − c2f c2γ

)−1 (
Fma(β, β̇)

)−1
(4.29)

to address the multiplicative effect of the first two non-linear terms and then
Fa2(ϑ f , ϑ̇ f ) is added to the input in order to cancel the additive effect of the third
non-linear term. The linearizing control law therefore is

u = h−1
I RC

⎛
⎝(

Fa2(ϑ f , ϑ̇ f ) + w
) −

√
1 − c2f c2γ

s f cγ Fma(β, β̇)

⎞
⎠ (4.30)

The validity of this approach will now be investigated where, for conciseness,
attention is restricted to the case where Fa2(·) and Fma(·) are functions of their first
argument only. This results in the system of Fig. 4.7 where

g(ϑ f ) = −s f cγ Fma(β(ϑ f ))√
1 − c2f c2γ

(4.31)

and Π denotes multiplication of inputs. In Freeman et al. (2009c) an equivalent
state-space model for this system is derived, and then linearized at time t̄ . When

Fig. 4.7 Stimulated arm system and linearizing controller
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Fig. 4.8 Comparison of
G(s) with full arm model
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the first derivatives of Fa2(ϑ f ) and g(ϑ f ) are zero for all t , this linearized system
corresponds with the desired relationship

G(s) = ϑ f (s)

w(s)
= ω2

n

s2 + 2sωn + ω2
n

· 1

s
(
(ba3 + KM2)s + K B2

) (4.32)

To ensure that (4.32) adequately approximates the system behavior when the
derivatives are non-zero, trajectories must be chosen over which g1(t), g2(t) and
F ′

a2(·) are small. Further analysis of the terms involving g1(t̄), g2(t̄) concludes that
their effect can also be reduced by ensuring that the dynamics of the arm system
are slower than the activation dynamics (Freeman et al. 2009c). This also reduces
the effect of the terms involving F ′

a2(ϑ f (t̄)) and one way of confirming that this is
the case is to construct Bode plots with g1(t̄), g2(t̄) = 0 using various values of
F ′

a2(ϑ f (t̄)). The same goal could, of course, be achieved if it were possible to obtain
more rapid activation dynamics from the patients using the system.

The choice of trajectories and arm dynamics must correspond to a model that
is well approximated by (4.32). To verify this, simulations were conducted where
the output of this system was compared with that of the linearizing control law
applied to the full model shown in Fig. 4.6. The applied input, w, was chosen to
result in approximate tracking of the more rapid of the demands used. Figure4.8
shows results using the identified model parameters of one of the patients tested
in the clinical trial described later in this chapter. The model outputs are in close
agreement, which supports the use of G(s) to approximate the combined linearizing
control law and arm system in the remainder of this chapter. Care must be taken,
however, to ensure that the control laws subsequently considered are robust to the
modeling error present in the system.

Linearization along a trajectory is a standard approach that allows the linearized
dynamics to be used to infer properties of the nonlinear system when the state vari-
ables and input are close to those of the linearized system. In particular, if the resulting
time-varying system is stable then the nonlinear system also has that property in some
neighborhood of the trajectory. This technique can be applied to assess the local sta-
bility and robustness of the proposed control law by using trajectories comprising
experimental test data or those resulting from simulations using the system model.
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Stability of the linearized system can then be assessed using well knownmethods for
linear time-varying systems. This can then be repeatedwhilst varying themodel para-
meters to gain a broader picture of the system robustness and performance properties.

The linearized system variation with respect to Fa2 and Fma depends only on F ′
a2,

and the values of Fma , F ′
ma and F ′′

ma respectively. Hence the stability of the system
can be examined through variation of these quantities, together with variation of the
remaining model parameters, in order to provide a measure of robustness.

4.3.2 Feedback Controller

The next stage is to choose a feedback controller to supply the torque demand, w,
necessary for the system to track the specified references. A PD controller is used
whose transfer-function is approximated as

C(s) = Kds + 1

εKds + 1
(4.33)

with ε ∈ [ 16 , 1
20 ]. Figure4.9 shows the resulting control system.

The level of stimulation that first produces a response from the triceps, um , is
used to supply an offset such that the feedback system operates within the torque
generating capabilities of the muscle. Moreover, the feedback controller is tuned for
each patient with an emphasis on robustness, since stability is of greater concern than
accurate tracking and therefore a conservative bandwidth and high gain and phase
margins are desired.

To illustrate the role of the end-effector dynamics on the system bandwidth, Bode

plots of the closed-loop system are shown in Fig. 4.10 for the ratios
ba3+KM2

K B2
= 0.03,

0.07, 0.4, 0.8 and 1.5 respectively. These have been created using an experimentally
identified value ofωn = 0.85π , and, for ease of comparison, they have all been tuned
using the standard Zeigler-Nichols rules. The corresponding closed-loop systems are
denoted by Pa, Pb, . . . Pe, and their respective bandwidths areωb = 0.53, 0.45, 0.42,

0.23 and 0.16Hz. Altering
ba3+KM2

K B2
cannot produce bandwidths much in excess of

these for the given control law and tuning method due to the limiting factor of the
muscle dynamics. It is desirable to select a ratio that makes the task feel natural to the
patient, but does not lead to too narrow a system bandwidth which would necessitate

Fig. 4.9 Block diagram of feedback control system
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Fig. 4.10 Bode plots of
linearized feedback systems
for different end-effector
dynamics
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Fig. 4.11 Step responses of
linearized feedback systems
for different end-effector
dynamics
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an excessive controller effort and correspondingly large levels of muscle torque in
order to accomplish the task. Step responses corresponding to the systems examined
are shown in Fig. 4.11.

The next subsections examine the effect of the end-effector dynamics on the ILC
law performance.

4.3.3 Phase-Lead ILC

The phase-lead ILC law has been shown to provide excellent results despite its
simplicity and limited parameter set, see the references in Chap.2. In the case of
discrete dynamics this law in the z-transform domain is of the form

http://dx.doi.org/10.1007/978-1-4471-6726-6_2
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Fig. 4.12 Block diagram of the ILC system

vk+1(z) = vk(z) + Lzλek(z) (4.34)

where L is a scalar gain, and λ is the phase-lead in samples. Figure4.12 shows the
overall control system consisting of the feedback control loop and the ILC law. Let
e(t) = ϑ∗

f (t) − ϑ f (t) and hence using (4.34)

ek+1(z) = ek(z) − Lzλ P(z)ek(z) (4.35)

and
P(z) = C(z)G(z)

1−C(z)G(z) (4.36)

where G(z) and C(z) are the discretized representations of (4.32) and (4.33) respec-
tively.

The relationship
ek+1(z) = ek(z)

(
1 − L P(z)zλ

)
(4.37)

yields the monotonic trial-to-trial error convergence criterion

∣∣∣1 − L P(e jωTs )e jωλTs

∣∣∣ < 1 (4.38)

forω up to theNyquist frequency. For a given frequency (4.38) is a sufficient condition
for monotonic trial-to-trial error convergence. Furthermore the convergence speed
is dictated by the magnitude of the left-hand side; if it is close to zero, convergence
will occur in a single trial and if greater than one, divergence is likely to occur at that
frequency.

Given the above considerations, L and λ are chosen such that the left-hand side
of (4.38) is minimized to provide the fastest convergence over those frequencies
present in the reference trajectory. Higher frequencies, or those at which plant un-
certainty may cause the criterion to be violated, are removed through the use of a
non-causal zero-phase filter applied to the error in the time between successive trials.
The sample time used is Ts = 1

40 s, which corresponds to the frequency at which
stimulation pulses are applied to the patient (see later in this chapter). This frequency
is synchronized with the robotic control system and each pulse is produced with a
delay of less than 10 µs. Next, the effect of varying the phase-lead is investigated
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Fig. 4.13 Monotonic
convergence criterion for the
system with ωb = 0.45Hz
for L = 0.2 and various λ
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Fig. 4.14 Monotonic
convergence criterion for the
system with ωb = 0.53Hz
for L = 0.2 and various λ

10
−1

10
0

10
1

10
2

0.7

0.8

0.9

1

1.1

Frequency (rad/s)

|1
 −

 L
 P

(e
j ω

 T
s)

 e
jω

λ |

λ = 0

λ = 10

λ = 20

λ = 30

λ = 40

λ = 50

for two of the five closed-loop system transfer-functions that were considered in the
previous sub-section.

Figure4.13 shows the monotonic convergence criterion (4.38) for the systemwith
bandwidth ωb = 0.45Hz for a variety of phase-lead values λ. Figure4.14 shows the
same criterion for the system with bandwidth ωb = 0.53Hz. A value of L = 0.2
has been chosen in both cases in order to produce an extremely robust system at the
expense of convergence speed. Reducing L can be shown to increase robustness to
model uncertainty over all frequencies, providing further support for this approach.

It can be established that choosing the phase-lead to maximize the convergence at
a given frequency also achieves maximum robustness to gain and phase uncertainty
at that frequency, which means that there is no compromise between robustness
and convergence speed in selecting this parameter. Therefore the phase-lead will be
selected to maximize the convergence over a suitable frequency range and a zero-
phase filter implemented to ensure stability at all higher frequencies (this is advisable
even if the convergence criterion is satisfied).

For general application, it is natural for this frequency range to correspond to the
bandwidth of the system. The system with ωb = 0.45Hz has maximum convergence
over its bandwidth using a phase-lead of 30 samples (although a phase-lead of 20
samples produces greater stability over higher frequencies, which is an important
factor if a zero-phase filter is not used). Similarly the system with ωb = 0.53Hz has
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maximumconvergence over its bandwidth of 20 samples. Using these phase-lead val-
ues the systemwith the higher bandwidth has the property of monotonic convergence
at greater frequencies than the system with lower bandwidth. For further discussion
and guidelines on the choice of phase-lead and filter design, see, e.g., Freeman et al.
(2005).

4.3.4 Adjoint ILC

The adjoint ILC law is given in z-transform form by

vk+1(z) = vk(z) + β P∗(z)ek(z) (4.39)

where P∗(z) is the adjoint of the plant model used. An attractive feature of this
law is that, with a sufficiently small scalar multiplier, β, it is guaranteed to satisfy
the condition for monotonic convergence over all frequencies and hence ensure a
satisfactory transient response. The monotonic convergence criterion is

∣∣∣1 − β P(e jωTs )P∗(e jωTs )

∣∣∣ < 1 (4.40)

which leads to
0 < β|P(e jωTs )|2 < 2 (4.41)

for ω up to the Nyquist frequency. This ILC law has been found, with supporting
experimental evidence, to provide a high level of robustness to model uncertainty
(Freeman et al. 2005).

To examine the effect of the choice of gain in this ILC law, plots of the monotonic
convergence condition (4.40) for the two systems examined in the last sub-section
for a variety of β were constructed. Figure4.15 shows the monotonic convergence
criterion for the system with bandwidth ωb = 0.45Hz. and Fig. 4.16 shows the
same criterion for the system with bandwidth ωb = 0.53Hz. Both systems satisfy
the criterion for the values of β examined. For frequencies where the closed-loop
system has a gain close to unity, approximate convergence will occur in a single trial
for values of β close to one. In practice, however, β is chosen to be significantly
lower in order to increase the system robustness at the expense of the convergence
rate. As with the phase-lead law, the convergence rate that can be achieved at a given
frequency is closely connected to the system bandwidth. This rate can be increased
within a given range by convolving P∗(z)with a zero-phase band-pass filter in (4.39)
(see Freeman et al. 2005 for details). The same effect could be achieved by replacing
P∗(z) with the plant inverse P−1(z) and then using a low-pass filter. However,
the increase in convergence speed is gained at the price of reduced robustness and
therefore a zero-phase band-pass filter will not be used unless, in application, the
convergence rate is found to be unacceptably low.
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Fig. 4.15 Monotonic
convergence criterion for
ωb = 0.45Hz
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Fig. 4.16 Monotonic
convergence criterion for
ωb = 0.53Hz
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4.4 Experimental Results with Unimpaired Subjects

The controllers of the previous section have been tested on 18 unimpaired subjects
aged between 50 and 65 years (mean age 57 years, 10 months with standard devia-
tion 5 years, 4 months). These subjects are age matched with the stroke patients to
whom the control laws were later applied, generating the results detailed in the next
section of this chapter. Representative results from a single subject are presented
to enable detailed examination of performance. In addition, summary results of the
performance of all subjects are included.

For each of the 18 unimpaired subjects tested the arm model was first identified
using tests and procedures described in Freeman et al. (2007). These involved taking
measurements of the arm, establishing its maximum range of movement and then
fitting a circle to the trajectory traced out by the elbow, in order to provide γ (see
Fig. 4.3) and the position of the shoulder joint. The arm was then held stationary
while FES was applied to the triceps using a ramp signal, in order to produce the
functions, hI RC (u) and hL AD(t), in the muscle model, using deconvolution and a
nonlinear optimization procedure. Stimulation sequences and kinematic trajectories,
imposed on the arm by the robot, were then applied and Least Mean Squares (LMS)
optimization used to arrive at the remaining model parameters.

Figure3.2 shows a schematic of the form of the reference signal used to produce
the results in this section in relation to the position of the subject’s shoulder joint.

http://dx.doi.org/10.1007/978-1-4471-6726-6_3
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The referencewas set at an angle of 20◦ from the y axis butwas individually calculated
for each subject to extend their arm from 55 to 95% of their total arm length over
the course of the movement. Two trajectories were created by moving along this
reference at two different speeds. Each trajectory started with a waiting period when
it was set equal to the starting point of the reference. The ‘slow’ trajectory lasted for
12.5s in total (a 5 s waiting period and a 7.5s movement along the reference), and the
‘fast’ trajectory lasted for 10 s (a 5 s waiting period followed by a 5s movement). The
waiting period was included to allow the ILC update computation to be completed
before the arm was required to move again. Before each trial began, the subject’s
arm was moved to the initial position by the robot and then released only when the
trajectory started. The subjects were not shown the trajectory before or during the
test.

The values of K B2 and KM2 that dictate the end-effector characteristic were set at
5.78Nm/rad s−1 and 0.29Nm/rad s−2, respectively, since these created a natural feel
to the system and allowed the chosen trajectories to be accomplished with moderate
effort and without limiting the bandwidth excessively. For a typical identified value

of ba3 this choice of gains gives
ba3+KM2

K B2
≈ 0.1, which gives a closed-loop system

bandwidth of approximately 0.45Hzwhen calculated using the samemuscle dynam-
ics and controller tuning procedure as adopted previously. The values ofωn = 0.85π
and ba3 = 0.271 were identified for the subject whose experimental results are given
in this section.

4.4.1 Linearizing PD Controller

The feedback controller gains were tuned for each subject. Two or three repetitions
of the slow trajectory were used to fine-tune the gains given by the standard Zeigler-
Nichols rules and these valueswere used for the duration of the tests. In the remainder
of this section the PD controller gains are K p = 10 and Kd = 2. The effect of the
linearizing feedback controller in the absence of ILC can be seen by inspection of
the first trial results.

4.4.2 Phase-Lead ILC

Figure4.17 shows results obtained using the phase-lead ILC law for various values
of λ. The slow trajectory is used together with L = 0.2. This learning gain has
been chosen conservatively and hence speed of convergence has been sacrificed
for greater robustness. From these results, the best performing phase-lead is for 35
samples, which is similar to that found by inspection of the monotonic convergence
criterion for Pb, a system with similar bandwidth, shown in Fig. 4.13. The root mean
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Fig. 4.17 Single subject
phase-lead ILC results for
the slow trajectory using L =
0.2 and various λ
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Fig. 4.18 Single subject
experimental tracking of a
ϑ∗

u (t) and b ϑ∗
f (t) for the

slow trajectory using
phase-lead ILC with L = 0.2
and λ = 35
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square (RMS) error corresponding to this phase-lead converges to approximately
5mm and has a minimum value of 3.2mm.

Figure4.18 shows the results obtained using L = 0.2 and λ = 35 in greater detail.
It can be seen that during the first 5 trials the error reduces monotonically and
the reference trajectory is tracked extremely well. This reflects the improvement
in tracking accuracy that simple ILC laws can provide compared with the use of
feedback controllers alone.

To examine the results further, Fig. 4.19 shows the associated stimulation input
and ILC update. It can be seen from (a) that the stimulation applied during k = 1
saturates at 300µs, but also further trials removes this effect and produces lower
levels of stimulation. Use of ILC also leads to the application of stimulation during
the initial 5 s waiting period before movement is required. Figure4.19b shows that
the updated vk is converging to a fixed trajectory over repeated trials.



46 4 ILC Based Upper-Limb Rehabilitation—Planar Tasks

(a)

(b)

Fig. 4.19 Single subject experimental a stimulation and b updated input results for the slow tra-
jectory using phase-lead ILC with L = 0.2 and λ = 35

4.4.3 Adjoint ILC

Figure4.20 shows results obtained using the adjoint ILC law, where the slow tra-
jectory is again used and β = 0.2. The plant model is labeled P and to examine the
robustness of this ILC law the models Pa , Pc, Pd and Pe have also been used in its
place, but model Pb has not been used due to its close similarity with P . It is clear
that this ILC law is capable of exhibiting robustness to significant model uncertainty
and produces minimum error and convergence rates comparable to the performance
of its phase-lead counterpart. Use of the actual plant model results in convergence to
approximately 5mm in 4 trials and this level of error ismaintained over the remaining
trials.

Fig. 4.20 Single subject
adjoint ILC results using for
the slow trajectory with β =
0.2 and various plant models
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Fig. 4.21 Single subject experimental tracking of a ϑ∗
u (t) and b ϑ∗

f (t) using adjoint ILC for the
slow trajectory with β = 0.2

(a)

(b)

Fig. 4.22 Single subject experimental a stimulation and b updated input results using adjoint ILC
for the slow trajectory with β = 0.2

Figure4.21 shows tracking results using P over the first 5 trials and highlights
the monotonicity of the convergence over the initial trials. Figure4.22 shows the
corresponding stimulation input and ILC update. It can be seen from (a) in this
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figure that, as with the phase-lead law, adjoint ILC causes the stimulation to decrease
from the level observed initially and leads to its application during the initial 5 s
waiting period. Figure4.22b illustrates the convergence of the ILC update to a similar
trajectory as that observed with the phase-lead ILC applied.

4.4.4 Experimental Comparison

The performance of the phase-lead and adjoint ILC laws has been compared against
NOILC defined by (2.28)–(2.31). A Kalman estimator has been used to provide
the states of the linear plant approximation that are required in the implementation,
derived using cost function error and state covariance weightings of 1 and 10 respec-
tively. Figure4.23 shows representative results using a variety of cost function error
weighting values (it is the ratio of the weights that influences the optimal solution
and hence R has been set at unity) compared with the use of the phase-lead and
adjoint laws. It can be seen that the performance gained using NOILC is not able to
exceed that of the simpler ILC laws for convergence over the 10 trials. Model-based
ILC laws will, however, be required when non-planar tasks are considered in later
chapters.

Fig. 4.23 Single subject
comparison of phase-lead
and adjoint algorithms with
NOILC for a the slow
trajectory, and b the fast
trajectory
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4.4.5 Results from Multiple Subjects

Given the similarity in performance of the phase-lead and adjoint ILC laws, group
results are presented for the latter case only. Figure4.24 shows results from the first
four subjects tested. They relate to both (a) the slow trajectory, and (b) the fast
trajectory. The results indicate that convergence can be achieved within 5 trials for
both trajectories and an RMS tracking error of less than 10mm over the course of
the movement (and in some instances less than 5mm) is possible in all cases.

Table4.1 shows themean and standard deviation of theRMSerror obtained during
the last trial, for all subjects tested. Trajectory 1 refers to the reference previously
described, whilst trajectory 2 is a reference whose inclination from the y-axis is
increased to 40◦. The results confirm that the implemented ILC laws are capable of
producing high levels of tracking accuracy.

These experimental results confirm that superior tracking performance has been
achieved compared with alternative control methods that have been applied to the
upper limb. These include the previous application of ILC (Dou et al. 1999) and also

Fig. 4.24 Adjoint ILC
results for a the slow
trajectory, and b the fast
trajectory, using β = 0.2 for
four subjects
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Table 4.1 Mean of last trial
RMS error for all eighteen
subjects (standard deviation
in brackets)

Type Mean of last trial RMS error/mm

Trajectory 1 Trajectory 2

Slow 9.41 (5.67) 10.22 (6.07)

Fast 12.18 (6.94) 12.93 (6.87)
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both open-loop controllers, such as those considered in previous research (Davoodi
and Andrews 2004; Popovic and Popovic 1998), and the limited number of closed-
loop controllers that have been experimentally applied in this area, such as Lan et al.
(1994). The major advantage of the ILC design, however, is the simplicity of tuning
and the absence of any training experiments.

The simple structure ILC laws that have been examined also permit the degree of
assistance to easily be changed via the use of a forgetting factor (see Freeman et al.
2005) which can also be used to promote voluntary effort when applied to stroke
patients. Although ILC laws have moved beyond these relatively simple structure
types and now encompass a wide range of (both linear and nonlinear) plant models
and control law structures, the approach taken here was to apply ILC laws with the
simplest structure which could meet the necessary performance requirements. When
more than one muscle must be stimulated, as in later chapters, model-based ILC laws
will be required.

In the next section, the results from a clinical trial with the ILC designs of this
section are given based on the results in Hughes et al. (2009).

4.5 Clinical Results

4.5.1 Preliminaries and Patient Selection

A repeated-measures cross-sectional observational designwas used inwhich patients
attended the laboratory between eighteen and twenty-five occasions. All data col-
lection was carried out by a single experienced investigator. A convenience sample
of patients was recruited from the community. Criteria for inclusion were: adults
over eighteen years who were more than six months post stroke, with a hemiparesis
resulting in weakness of elbow extension, but with perceivable voluntary control of
finger flexors, upper arm and shoulder muscles. In addition, when positioned in the
robot they also needed to respond to surface FES applied to triceps brachii, resulting
in elbow extension.

Patients were excluded from the study if they had uncontrolled epilepsy, required
an interpreter, had any active device implant, e.g., pacemaker, implanted cardiac de-
fibrillator, neuro-stimulator or drug infusion device, an allergy to sticking plaster/tape
or alcohol wipes or any serious medical, psychological or cognitive impairment that,
in the opinion of the investigators, would compromise safety or ability to comply
with the study. Patients with any orthopaedic or neurological lesions affecting arm
movement were also excluded.

Neither the workspace of the robotic arm, with link lengths 0.66 and 0.45m, nor
the size of the projected image 1.2m by 0.8m, restricted the patients for the range of
trajectories used. The robot inertia mass and damping gains usedwere 1Nm−1 s2 and
15Nm−1 s, respectively, i.e., the robot produced the effect that they the participants
were moving a mass of 1kg with viscous damping equal to 15Nm−1 s. Participants
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Table 4.2 Description of the three angles, length and duration of the trajectories

Angle Length Duration (s)

T1 (20% internal rotation) S (short—80% of reach) S (15)

T2 (midline) M (medium 90% of reach) M (10)

T3 (20% external rotation) L (long 99% of reach) F (5)

were seated at theworkstation at a heightwhich allowed normal shoulder positioning;
restraining seat belts were used to limit trunk movement, see Fig. 3.1. The patient’s
hemiplegic arm was placed in the robot arm holder with the hand curled around a
padded vertical pillar. A semi-transparent perspex elliptical disc was positioned over
the hand and forearm and attached to the top of the pillar. Prior to the treatment
sessions, patients attended a preliminary session in which personalized trajectories
were created and stimulation parameters and individual mathematical models of the
arm were obtained.

To create personalized trajectories, patients were positioned in the robot and man-
ually assisted to move their arm over their full available range of movement. These
parameters extracted from the data collected were then used to define length of tra-
jectories for each patient. Each trajectory extended from 55 to 80% (short), 90%
(medium), or 99% (long) of maximum reach. Trajectories were orientated in one
of three directions (mid-line and 20% of maximum range to either side). Trajectory
tasks and were performed at three speeds (5, 10 and 15 s duration) and were the same
for all patients. Trajectory details are summarized in Table4.2 and the abbreviations
for angle, length and duration used are defined.

As the next step, the level of comfortable maximum stimulation was identified
for each patient and used as an upper limit in subsequent tests. A biomechanical
model of the arm was then produced to describe movement in response to stimula-
tion. The model and parameters were identified using a series of tests in which the
robot moved the patients arm, with no voluntary action, about the workspace whilst
applying low levels of FES (asymmetric, biphasic, 40Hz fixed amplitude variable
pulse width 0–300µs with a resolution of 1µs) through a CE marked commercially
available stimulator. This biomechanical model was then used by the ILC law during
all treatment sessions. The development and validation of this model is described
in Freeman et al. (2009b).

4.5.2 Treatment Sessions

All patient s attended eighteen one hour treatment sessions and two attended an ad-
ditional seven sessions. Three minutes of active assisted stretches were performed
prior to and immediately after placing the arm in the robot. During sessions, FES
was applied to the patient’s triceps brachii muscle to assist them in completing track-
ing tasks. A task consisted of tracking one of a selection of twenty seven different

http://dx.doi.org/10.1007/978-1-4471-6726-6_3


52 4 ILC Based Upper-Limb Rehabilitation—Planar Tasks

trajectories, 6 times (one subject could only manage 4) with a rest period of 15 s
between each trial. The patients were positioned in the robot and a target area (di-
ameter 60mm) defined by a circle of LEDs with a central cross-hair was marked on
the elliptical disc immediately above the hand and pillar.

After the initial setup, an overhead projector displayed an image of an elliptical
path on to the perspex disc and an illuminated red dot moved along the trajectory
at constant speed. The movement was clockwise for right and anticlockwise for left
hemiplegics to ensure that the easier movement was associated with reaching and
the same for both groups. The patient’s arm was moved to the starting position by
the robot. A 5 s “countdown” was visually displayed prior to the commencement
of the tracking task. To perform the tracking, the patient was instructed to move their
hand so that it kept pace with the moving red dot, keeping it within the circle of
LEDs and as close as possible to the cross-hairs. To reinforce good performance
and indicate error, the LEDs changed color; green when the tracking accuracy was
within 25mm, amber between 25–50mm and red when the error exceeded 50mm.
The number of tracking tasks practised during each session was limited only by
fatigue. In the time between each trial, the ILC law used kinematic and force data
recorded during the previous trial, in conjunction with the biomechanical model of
the arm, to update the FES applied during the next trial.

4.5.3 Outcome Measures

Outcome measures were collected by the same assessor. The primary measure for
upper limb function was the ARAT (Carroll 1965). This was measured pre interven-
tion (2 time-points for FMA), after session 18, and for 2 patients, post 25 sessions.
The primary impairment measure was the ability to perform tracking tests (motor
control). Patients were asked to perform four different tracking trajectories at the
beginning and end of the treatment session using only voluntary action (no robotic
assistance or FES), so any change in unassisted tracking ability could be measured.
The trajectories, chosen to be easy enough for all patients to attempt, were, see
Table4.2, T1SS, T1MS, T2MS and T2SS conducted in the order given.

Movement, coordination and sensation of the upper limb were measured using
FMA. Isometric force was assessed by locking the arm holder in a stationary position
that was standardized for each participant, who was instructed to exert a force away
from them in the sagittal plane for 5 s, before moving to the next direction in a
clockwise fashion, see Fig. 4.25.

For each trajectory, the error between the cross-hair and the target was recorded
at every time point using a sampling frequency of 1.6kHz. Trajectory tracking per-
formance was defined as the mean error value over the test duration. Peak values
of the isometric force were obtained from three repetitions of each attempt for each
direction and the mean calculated.

Statistical analysis was performed using the data analysis package SPSS v14.0.
Descriptive statistics are presented for all outcome measures, where the baseline for
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Fig. 4.25 Force measurement directions

clinical measures was taken as the mean of the 2 measurements pre intervention.
Statistically significant changes in clinical measures and isometric force between
baseline and session 18 were estimated using a paired t test. Changes in error track-
ing were estimated using summary measures, considered appropriate for a small
sample (Matthews et al. 1990). Statistical significance of changes in tracking error
were estimated using a one sample t test applied to the linear regression of error
against session.

4.6 Results from the Clinical Trial Participants

After receiving ethical approval, five patients, three males and two females, were
recruited and gave written consent. Their demographic characteristics are shown in
Table4.3 with a mean age of 52 years. These patients had suffered haemorrhagic
or ischemic strokes ranging from 8 months to 8.4 years, mean 4 years, prior to
recruitment to the study; three had a hemiparesis of the right side and two of the left.

Table4.4 shows the clinical scores at baseline and after 18 sessions. A significant
improvement was not identified for the ARAT, but was for the FMA.

4.6.1 Tracking Performance

To illustrate the effect of the stimulation in assisting tracking, Fig. 4.26a, b show
typical changes in the angle of the shoulder and elbow during over the duration of a
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Table 4.3 Demographic characteristics of the patients who took part in the study—TFS (time from
stroke), ST (Stroke type) SH (side of hemiparesis) PDS (previous dominant side)

ID Age (years) Gender TFS (years) ST SH PDS

1 38 Male 2.8 Infarction L L

2 77 Female 8.4 Haemorrhage L R

3 41 Male 4.8 Infarction R R

4 55 Female 3.6 Haemorrhage R R

5 51 Male 0.7 Unknown R L

Table 4.4 Normative (normal score) and sample mean (SD) of baseline (Before) and after 18
sessions (After) for clinical outcome measures

Outcome measure
(n = 5)

Before (SD) After (SD) Change (SD)

Normal score P-value [95% CI]

ARAT 4.00 (1.46) 3.40 (0.55) −0.60 (1.19)

57(0) 0.32 [0.88, −2.08]

FMA (motor) 12.90 (3.36) 15.40 (4.28) 2.50 (1.58)

60(0) 0.02 [4.46, 0.54]

Mean change (SD) and 95% Confidence Interval [95% CI], expressed as the absolute value change
during the 18 intervention sessions is also shown

T1SS trajectory. The solid line shows the ideal movements that would be required
to complete the trajectory successfully; the dotted-dashed line represents unassisted
movement, and the dash-dotted line shows movement assisted by FES. Figure4.26c
shows the FES pulse-width that is applied using ILC in order to produce these
assisted movements. During the 5s “countdown” period, before the target movement
starts, there is minimal stimulation. On the reach component of the trajectory (5–
12.5 s) stimulation increases rapidly. Also there is a delay period of approximately
2 s between the stimulation peak and the peak shoulder and elbow angle, associated
with the biomechanical response to stimulation. The robot provided a low level
of assistance (60Nm−1), which was effectively only noticeable when the tracking
error was greater than 5cm. The data in Table4.5 shows the change in the slope is
significant for three out of the four tested trajectories: T1SS, T1MS and T2MS.

4.6.2 Isometric Force

Table4.6 shows mean and maximum isometric force generated in six different direc-
tions (0◦, 60◦, 120◦, 180◦, 240◦, 300◦) recorded for (i) a sample of eight 50+ years
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Fig. 4.26 Tracking performance plots

Table 4.5 Error tracking data
across all patients for baseline
and post 18 sessions, the
slope of the line of best fit

Trajectory (n=5) Slope P value [95% CI]

T1SS −3.302 0.03 [−0.0033, −0.0003]

T1MS −3.165 0.03 [0.0044, −0.0000]

T2MS −2.821 0.05 [−0.0043, −0.000]

T2SS −2.270 0.09 [−0.0035, 0.0003]

old neurologically unimpaired right-handed participants and (ii) the five stroke pa-
tients’ mean (SD) isometric force values at baseline (before) and after 18 sessions
(after) corrected for side of hemiplegia. The direction in which the angle is measured
is reversed depending on the side of hemiplegia to allow comparison across all par-
ticipants. Mean (SD) change of isometric force, level of significance (paired t-test)
and 95% CI is also shown.

For unimpaired participants the isometric force varied with direction: strongest
at 0◦, 120◦ and 240◦ and weakest in the 60◦ and 300◦ directions. For stroke patients
the isometric force also varied with direction; for both the pre and post intervention
the strongest was at 120◦ and 180◦ and weakest in the 60◦ and 0◦. The largest gains
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Table 4.6 Mean (SD) and range [Min–Max] isometric force (N) generated by neurologically
unimpaired participants and for stroke patients at Baseline and Post Treatment (18 sessions)

Angle Normal Mean (SD)
[Min–Max]

Baseline Mean
(SD) [Min–Max]

Post Treatment
Baseline
[Min–Max]

PT-B (SD) P-value
[95% CI]

0◦ 81.75 (8.39) 35.58 (12.41) 12.82 (9.70)

[71.22–92.48] [24.06–54.83] [26.96–68.33] 0.04 [24.87, 0.78]

60◦ 48.41 (18.41) 33.35 (12.40) 37.93 (12.68) 4.58 (2.77)

[20.13–81.38] [25.67–54.86] [27.53–59.92] 0.02 [19.44, 2.81]

120◦ 73.19 (19.18) [31.60–93.24] 57.28 (18.40) [34.56–79.70]

68.41 (24.21) [40.61–97.75] 11.13 (6.69) 0.02 [19.44, 2.81]

180◦ 72.21 (13.87) 53.21 (6.60) 66.42 (6.23) 13.21 (12.22)

[54.10–95.78] [43.71–60.53] [61.33–74.86] 0.07 [28.39, −1.96]

240◦ 71.46 (19.41) 40.61 (8.64) 51.66 (10.46) 11.05 (6.18)

[40.52–93.69] [31.13–52.66] [38.82–67.88] 0.02 [18.73, 3.37]

300◦ 61.41 (18.89) 38.08 (12.74) 56.20 (11.69) 18.11 (3.36)

[33.79–88.68] [24.35–53.84] [42.05–71.65] 0.00 [22.28, 13.94]

Mean change (SD), during the 18 treatment sessions, level of statistical significance (Paired t-test)
and 95% CI is also shown

in force were made in the 300◦ and 180◦ directions and the smallest in the 60◦ and
240◦ directions; changes in force data across the group are significant in all but the
180◦ direction.

For each patient the mean isometric force results for each assessment are shown in
Fig. 4.27. Each of the stroke patient’s data are superimposed on data results from the
unimpaired sample; the mean of eight participants (dark) and the strongest individual
(light grey). In most cases the axis along which the principal changes in isometric
force occurred reflected the side of hemiplegia; in left hemiplegics, patients 1 and 2,
this was from bottom left to top right, for right hemiplegics, patients 3, 4 and 5, from
top left to bottom right. Further force changes were evident after 25 sessions, but in a
reduced number of directions compared to session 18; the improvements were seen
in 3 directions, as opposed to all 6, for patient 3, and 4 directions, as opposed to 6,
for patient 5.

4.6.3 Percentage Maximum Changes in the Level
of Stimulation Used over Time

The assisted trajectory tracking tasks used during the intervention were selected
based on clinical need. As such they were not necessarily used in every session, but
could also have been used more than once. Figure4.28 shows data recorded during
the assisted T1 SS task for all patients when used. Where the task was repeated in the
same session, data from the first performance is shown. For each trial the mean error
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Fig. 4.27 Changes in tracking error data for each patient for each unassisted trajectory performed
at the beginning of each treatment session, a T1SS, b T1MS, c T2MS, d T2SS

Fig. 4.28 Mean isometric force for each stroke patient: initially, post 18 and post 25 sessions
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Fig. 4.29 Data recorded for all patients during the FES assisted T1 SS tracking task showing a
error in tracking, b % max stimulation used

was calculated and the minimum over all trials is displayed in Fig. 4.29, from which
the mean error over the sessions is between 15 and 8mm, and does not decrease
over time. Figure4.29 shows the percentage of maximum stimulation required to
correct the tracking error in the most accurate trial. For all patients the FES required
decreased over the 18 sessions.

4.7 Overview of the Clinical Trial Results

The study whose results are given in the previous section has identified changes in
clinical outcome measures, error tracking, isometric muscle force and percentage
maximum level of stimulation required to correct error in five chronic stroke patients
as a result of an intervention using FES mediated by ILC. The intervention consisted
of either 18 or 25 sessions during which patients practiced planar reaching tasks
augmented by responsive FES of the triceps brachii muscle.

Clinical trial results show a statistically significant improvement in tracking abil-
ity, a reduction in upper limb impairment measured by the FMA but the ARAT
increased. This non-significant change observed in the ARAT was anticipated be-
cause this measure assesses hand function and activities requiring both reaching and
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raising of the arm. The intervention involved only stimulation of triceps, during 2D
tracking tasks requiring elbow and shouldermovement duringwhich the forearmwas
supported. The change in unassisted error tracking for all patients over all trajectories
was not monotonic, reflecting individual variations in day-to-day motor control, but
was significant for three out of the four trajectories (T1SS, T1 MS, T2MS).

In terms of directional variation in isometric force, the results show that the stroke
patients’mean isometric force datawas less in all directions comparedwith the neuro-
logically intact participants’ mean. Both stroke and neurologically intact participants
were weaker in some directions than in others. The directional variation in stroke
patients’ isometric data, both baseline and post treatment, closely reflects the pat-
tern of variation occurring in neurologically intact participants. This is true for all
directions excluding 0◦, this being the second weakest direction for stroke patients
and the strongest for neurologically unimpaired people. When other directions are
considered, similarities emerge; the next strongest directions include 120◦, 180◦ and
240◦, then 300◦. The weakest direction for all patients is 60◦. Differences in ori-
entation appear therefore to have a large effect on the ability to generate isometric
force.

Figure4.28 demonstrates that all the patient’s isometric force data increased over
the 18 sessions and improved further over the extra 7 sessions and that this change
was significant for five out of the six directions tested. The gain in force over the
intervention might be predicted to be greatest in the 0◦ direction i.e., directly away
from the body as the triceps brachii was stimulated in the intervention. This was
not the case. Overall, patients’ isometric force increased most in the direction of
300◦, then in 180◦ and then in 0◦. The gains were smallest in the direction in which
patients were weakest (60◦). Improvements in force reflected individual impairments
including the side of hemiplegia.

The discussion above would imply that for stroke patients the gains in isomet-
ric force were most marked in directions requiring the use of pectoralis major, a
powerful shoulder adductor as well as triceps brachii and biceps brachii. A change
in triceps brachii force would be expected, but the reason for a change in the
biceps brachii force is less clear. Co-activation, observed during motor learning,
may increase joint stiffness and stability to improve performance. A future study
could investigate whether unintended co-activation resulting from the practice of
new tasks leads to an increase in the biceps brachii strength.

Figure4.29 shows that during the intervention using FES mediated by ILC, the
error tracking remained within a close range (<150mm) whilst the FES required to
achieve it reducedover the course of the intervention period. It has been suggested that
themechanisms for the recovery of voluntary power after using FES are due to effects
on peripheral muscle (strength, fitness, length and spasticity) or central mechanisms
(cortical or segmental reorganization and modification of Hebb synapses) (Rushton
2003).
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4.7.1 Limitations of the Clinical Trial

The results obtained demonstrate significant improvements in unassisted error track-
ing, isometric force and reduction of impairments as measured on the upper limb
FMA motor scale. To verify these results the intervention will need to be applied
to a larger sample of patients. As there was no control group the degree to which
the observed changes were related to movement practice or to FES mediated by ILC
cannot be separated. Any future trials should address this limitation by having a con-
trol group using the robot without electrical stimulation and increasing the robotic
assistance to provide similar levels of tracking accuracy.

Weakness has been found to be the main contributor to activity limitation in
other studies (Ada et al. 2006). The improvements in isometric force and reductions
in other impairments have not, however, translated into improvements in function
as measured by the ARAT in this initial trial. Subsequent research should therefore
focus on stimulating more muscles (e.g., anterior deltoid) and relaxing the horizontal
forearm constraints to allow a greater range of movement in three dimensions. Such
research is the subject of the remainder of this monograph.
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Chapter 5
Iterative Learning Control
of the Unconstrained Upper Limb

Building on the planar results of the previous chapter, an extension to a 3D task is
developed where the ability to lift the arm is also rehabilitated. As stroke patients
have difficulty lifting their affected arm, a gravity unweighting robot is used and the
development again leads to a clinical trial. The analysis is extended to compensate
for muscle fatigue.

5.1 Robotic System

In the work described in the previous chapter, the patient’s forearm is constrained
to lie in a horizontal plane and the next stage is to consider a wider range of more
functional movements, which more closely resemble the tasks necessary for daily
living (Hughes et al. 2009) and are aligned with the activity-based ARAT measures.
This chapter develops the previous model of the arm to remove the planar forearm
constraint, permitting unconstrained movement, and applies three ILC laws to the
subsequent system, including one to compensate for muscle fatigue. First, the devel-
opment of the robotic systems used is described in this section taken, in part, from
Freeman et al. (2011).

To provide assistance in the completion of unconstrained 3D upper limb reaching
movements, FES must, as in the planar case of the previous chapter, be applied using
a controlled environment to reduce fatigue and ensure safety and comfort across a
broad spectrum of patient abilities. Many exoskeletal robotic systems exist that are
capable of providing such support, although very few have been combined with FES
and fewer still with model-based FES control schemes. The research described in
this chapter uses a commercially available device, but the ILC laws may be applied
to a range of such supports.

© The Author(s) 2015
C.T. Freeman et al., Iterative Learning Control for Electrical Stimulation
and Stroke Rehabilitation, SpringerBriefs in Control,
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Fig. 5.1 3D ILC system components: (1) unweighing robotic device, (2) surface electrodes on
triceps and anterior deltoid, (3) FES module, (4) real-time processor and interface module, (5) PC,
(6) monitor displaying task, and (7) operator monitor

The mechanical exoskeleton employed is shown in Fig. 5.1 and has two springs
incorporated in the mechanism to provide support to overcome gravity. This passive
unweighing device allows patients to focus practice on the impaired muscles rather
than those acting against gravity. Whilst it is supplied with its own broad range of
virtual reality tasks, these are not suitable for control law evaluation and a custom
task display system has instead been developed.

The patient is seated with their impaired arm strapped into the mechanical
unweighing device, whose segmental lengths and degree of anti-gravity support are
adjusted for each person. Joint positional data provided by resolvers mounted on the
support mechanism are transferred to the interface module, which connects external
devices to the real-time hardware.

In application, the FES electrodes are attached to the patient’s anterior deltoid
and triceps muscles in accordance with clinical guidelines and are connected to a
FES module that is, in turn, connected to the interface module. The clinical operator
uses a graphical user interface (GUI) to enter data and initiate tests necessary for the
generation of a suitable reaching task and information required for the FES control
law. Once the task is set up, FES control algorithms are calculated automatically using
a graphical simulation environment with access to control toolboxes and downloaded
to a dedicated single-board controller. The task is displayed using custom-made
virtual reality software, whilst the FES based control law simultaneously provides
assistive stimulation to enable its accurate completion. The components of the system
are next described in detail.
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5.1.1 Mechanical Support

Armeo (Hocoma AG, Zurich, Switzerland) is a commercially available upper extrem-
ity therapy system that combines a passive arm support with intensive task-oriented
exercises presented in a virtual reality environment. The mechanical support alone
is used in the research described in this chapter. Each joint is aligned in either the
horizontal or vertical plane, which is measured using a resolver. Moreover, whilst
the FES laws and other system components developed in this chapter may in prin-
ciple be applied using any system (passive or robotic) capable of providing support
and kinematic information, the movement constraints and kinetic properties imposed
influence the dynamic model used.

5.1.2 Biomechanical Dynamic Model

The biomechanical system consists of the human arm and exoskeleton mechanical
support system shown in Fig. 5.2a. Figure 5.2b shows the kinematic structure of the
exoskeleton support, for which the joint variables are assembled into the vector
qa = [θ1, θ2, θ3, θ

′
3, θ4, θ5]T and correspond to the measured joint angles. Also the

parallelogram structure of the upper arm section results in θ3 = θ ′
3.

Figure 5.2c shows the human arm and since it is strapped to the support there
exists a unique bijective transformation between their coordinate sets, given by qu =
fa (qa), where

qu = [ϑa, ϑb, ϑc, ϑd , ϑe]T

contains the anthropomorphic variables shown in this figure. Using this rela-
tionship, application of Lagrangian analysis produces a dynamic model of the
combined robotic and human arm systems given in the anthropomorphic
coordinates as

Fig. 5.2 Kinematic system relationships, a combined system, b Armeo support, and c human arm
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Bu (qu) q̈u + Cu (qu , q̇u) q̇u + Fu (qu , q̇u) + Gu (qu) + Ku (qu) = τu (u, qu , q̇u) − J T
u (qu) h (5.1)

where Bu , Cu ∈ R
5×5 are the inertial and Coriolis matrices, respectively, for the 3D

system, Gu ∈ R
5 is the vector of moments produced by gravity, and Ku ∈ R

5 is the
vector of moments produced by the unweighing action, where Freeman et al. (2011)
gives a full description of the individual components.

The non-conservative forces assume the same form as in the planar case in the
previous chapter and hence

Fu (qu, q̇u) = [
Fa

(
ϑa, ϑ̇a

)
. . . Fe

(
ϑe, ϑ̇e

) ]T

whose components incorporate friction and spasticity. Also the vector due to stimu-
lated muscle in (5.1) takes the form

τu (u, qu, q̇u) = [
0 τb

(
ub, ϑb, ϑ̇b

)
0 0 τe

(
ue, ϑe, ϑ̇e

) ]T

where ub(t) and ue(t) are the electrical stimulation sequences applied to the triceps
and anterior deltoid muscles, respectively, and u = [ua, ub, uc, ud , ue]T . Moreover,
h represents a vector of external forces and torques applied by the therapist using a
handle mounted on a sensor attached to the robotic support and is only used during
identification tests.

The model (5.1) is used by the FES control law to calculate a control vector that
results in accurate tracking of a reference trajectory. Since assistive torque is applied
about the ϑb and ϑe axes only, the system is underactuated. When applied during the
treatment of patients, the control law assists tracking about ϑb and ϑe alone, and, in
response to clinical guidelines, it is assumed that the patient has sufficient control
over the remaining axes to adequately perform the task.

5.1.3 FES Module

The FES system can deliver 4 channels of stimulation, each comprising a sequence of
bi-phasic pulses at 40 Hz. The frequency, amplitude, pulsewidth range and bi-phasic
characteristic have been chosen to achieve a smooth muscle contraction, see de
Kroon et al. (2005), McNeal et al. (1986) for a comparison of the effects of the
stimulation parameters. The control hardware produces a series of 5 V amplitude,
40 Hz pulses with the required pulsewidth for each channel. Each of them is then
optically isolated and fed to the amplification stage of a battery powered commercial
stimulator to result in the desired bi-phasic characteristic and voltage amplitude. In
response to safety requirements, the pulsewidth and hence the energy supplied to
the arm is limited by the control software and by components within the modified
stimulator. The amplification level used for each channel is set prior to each treatment
session by applying a stimulation signal with pulsewidth 350µs and then the voltage
is slowly increased until the maximum comfortable level is reached.
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5.1.4 Software Systems

In contrast to the planar case of the previous chapter, it is not feasible to display a
real world tracking task in 3D and therefore a virtual task is displayed to the patient
to ensure clarity, with provision for additional visual instructions and performance
feedback. The patient’s screen runs a 3D virtual reality environment that displays a
graphic of their arm in real-time, together with the trajectory tracking task, and is
shown in Fig. 5.3. The aim of the tracking task is for the patient to follow a sphere
that travels along the trajectory at various speeds, whilst ILC laws, designed using
the biomechanical system, regulate the assistive FES stimulation required for their
completion. The graphic of the patient’s hand changes color to indicate their current
error level. Feedback of performance is also given by an error percentage score
displayed after each set of trials. A graphic of the initial arm position is displayed to
ensure accurate resetting of the system at the start of each trial.

Custom reference trajectories are generated for each patient, producing tracking
tasks that extend the arm out in front of the patient in response to clinical need,
which were calculated using their identified workspace to establish the maximal arm
extension directly in front of them and out to their affected side. By interpolating
between these two points a third intermediate point is then generated. Each reference
starts from an initial point close to the patient’s body and extends 60, 80 and 100 %
of the distance to one of these points. The task comprises reaching out to one of the
end-point locations, with the fixed trajectories for each of the five joints generated
by scaling a third-order ramp signal of 10 s duration and adding an offset to ensure
that it smoothly connects the required start and end joint angles. This results in the
vector of reference trajectories

q∗
u (t) = [

ϑ∗
a (t) ϑ∗

b (t) ϑ∗
c (t) ϑ∗

d (t) ϑ∗
e (t)

]T

Screen for Physiotherapists: 
System Configuration and Training Sessions

Screen for Patients: 
Realtime 3D Graphic Environment

Fig. 5.3 Screen shots of the software system
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Fig. 5.4 Reference trajectories for the 3D rehabilitation system

where the presence of non-fixed ϑ∗
a (t), ϑ∗

c (t), and ϑ∗
d (t) components makes the task

more natural to the patients, who can use their remaining voluntary effort to move
these joints. An example of the reaching tasks used during testing and in clinical
trials is given in Fig. 5.4.

5.2 ILC Design

Two ILC designs are used, starting with the phase-lead law of the previous chapter
(see also (4.34)),

vk+1(t) = vk(t) + Lgek(t + λ), λ > 0 (5.2)

where

ek(t) = q∗
u (t) − qu,k(t). (5.3)

In this 3D case the system is treated as two SISO systems, i.e., the control and
movement of forearm and upper arm can be achieved independently of each other.
Since FES is applied only about ϑb and ϑe, L is multiplied by the matrix

http://dx.doi.org/10.1007/978-1-4471-6726-6_4
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Fig. 5.5 Block diagram representation of the ILC control scheme for the 3D rehabilitation system

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

As illustrated in Fig. 5.5, the ILC law operates in conjunction with a feedback
controller given by ξk (s)

ek (s)
= C(s) that provides baseline tracking and disturbance

rejection. In operation the phase-lead ILC law performs best when the system approx-
imates a simple time-delay and with an appropriately tuned feedback controller can
ensure rapid convergence over initial trials. As in the previous chapter, the problem
of high frequency components gradually increasing when a large number of trials
are performed can always be addressed through use of a zero-phase filter applied to
the error or control input, however, the low number of trials performed means that
it is unnecessary in the present application. In contrast to phase-lead, Newton ILC
(Lin et al. 2006) (2.36)–(2.42) uses the full model in the calculation of the next trial
input.

5.2.1 Experimental Results with Unimpaired Subjects

The phase-lead and Newton ILC laws were experimentally implemented using six
unimpaired participants as an essential step in obtaining ethical approval for patient
trials. Representative results and summary statistics are given in this section. Each
participant was seated in the robot, which was adjusted to their individual arm dimen-
sions. Electrodes were positioned over their triceps and anterior deltoid muscles in
such a way that maximum movement was generated through application of FES.
The stimulation amplitude and maximum pulsewidth were adjusted to be within
comfortable limits. As described above, the model of the human arm includes two
person-dependent parameters that define the position of the anterior deltoid axis,
which is fixed with respect to the shoulder as shown in Fig. 5.2c. These were deter-
mined before the experiments commenced by applying FES to the anterior deltoid
and recording the resulting movements of the human arm. Since the rotation of the
human upper arm should then be about the anterior deltoid axis, see Fig. 5.2c, this

http://dx.doi.org/10.1007/978-1-4471-6726-6_2
http://dx.doi.org/10.1007/978-1-4471-6726-6_2
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Fig. 5.6 RMS error plots for a participant 1 and b participant 2 using phase-lead ILC

axis was identified by fitting a plane to the elbow position by least mean squares
optimization. The vector perpendicular to the plane, which is also through the pivot,
then equates to the required anterior deltoid axis (Freeman et al. 2011).

Figure 5.6 gives tracking performance results for two participants with the phase-
lead ILC law. The RMS error is given for both ϑb and ϑe over 10 trials, where for
trial k

RMSi,k =
√√√√ 1

T + 1

T∑
t=0

(
ϑ∗

i (t) − ϑi,k(t)
)2

, i = b, e (5.4)

where T +1 is the number of samples in the discrete representations of the reference
ϑ∗

i (t) and recorded joint angle sequence ϑi (t). Due to the kinematic redundancy of
the task, this is a more reliable measure than the Cartesian end-point error, which
was used in the planar case.

In this unimpaired study, the tracking error reduces quickly and maintains a low
level as the trials progress. In some cases the RMS error increases slightly in later trials
because the participant’s triceps started to suffer from fatigue but the ILC was quickly
able to modify the stimulation to maintain a low error. Figure 5.7 shows tracking
performance for the same two participants, illustrating close reference tracking for
both controlled angles.

Table 5.1 gives summary statistics for 6 unimpaired participants. Each participant
undertook ILC trials using two trajectories, the first moved their arm out in front
of them and the second moved it out and to their side. The average RMS error
was calculated for each trajectory and the mean and standard deviation calculated
across participants. These calculations were then repeated using the lowest RMS
error recorded for each trajectory.

Figure 5.8 shows error norm results over 10 trials of the Newton ILC law for
two participants, using a long off-center and a medium off-center trajectory. The
results are representative of all the tasks tested and confirm that accurate tracking is
achieved within very few trials. The NOILC weighting matrices used in these tests
were Q = 30I and R = I respectively. Figure 5.9 shows representative input, output,
and error signals recorded on trial 8 for one participant and confirm that a high level
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Fig. 5.7 Tracking performance for participant 1 on trial 6. Five second padding is applied at the
beginning and end of each reaching movement

Table 5.1 Mean (standard deviation) RMS error for 6 unimpaired participants undertaking two
trajectory tracking exercises using the 3D robot system with no voluntary assistance

Trajectory 1 Trajectory 2

Shoulder RMS error (rad) Best trial only 0.2415 (0.0693) 0.0574 (0.0557)

Mean of first 6 trials 0.0949 (0.0906) 0.1691 (0.1609)

Elbow RMS error (rad) Best trial only 0.0721 (0.0700) 0.0837 (0.0900)

Mean of first 6 trials 0.1480 (0.1327) 0.2189 (0.1723)

of tracking performance is achieved with an input signal that is not excessive. The
theoretical property of monotonic trial-to-trial convergence to zero tracking error
is degraded due to inaccuracies in the human arm model, motivating development
of more accurate identification procedures, and future use of on-line and recursive
techniques. Such identifications routines, however, must be suitable for application
within the restrictive conditions of clinical trials, where there is limited set-up time,
little opportunity to repeat measurements and satisfactory results for a wide range of
patients and changing physiological conditions are required.
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Fig. 5.8 RMS error plots for 2 participants using Newton ILC, subject 1, left-hand plots, subject
2, right-hand plots

5.2.2 Clinical Trial

The results in this section are, in the main, from Meadmore et al. (2012), which also
details how the patients were recruited to the study and ethical approval obtained. On
completion of these steps, the five patients chosen (three men and two women) were
aged between 33 and 67 years (M = 52.6, SD = 15.27) and had suffered ischemic
strokes, between 6 years 6 months and 11 months prior to recruitment to the study
(M = 3 years 10 months, SD = 2 years); four had a hemiparesis of the left side and
one of the right. All patients were right-side dominant prior to their stroke and all
complied with the study protocol, i.e., attended all sessions. During each intervention
session patients spent 40–50 min practising reaching movements.

In advance of the intervention sessions, two assessments, four weeks apart, were
completed to establish baseline performance for three clinical outcome measures,
with a final assessment one or two days later. Assessments of the upper limb con-
sisted of the FMA and ARAT outcome measures, assessing impairment and function
respectively. Eighteen possible reference trajectories were used; each of these could
be in one of three orientations relating to space in front and to the hemiplegic side
(center, off-center and far), one of three lengths (proximal, middle, and distal) and
one of two speeds (5 and 10 s duration).

5.2.3 Unassisted Tracking Tasks

Patients completed four unassisted tracking tasks immediately following set up and
at the end of each session. These tasks involved tracking a slowly moving sphere
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Fig. 5.9 Tracking performance of Newton ILC

along the far distal, far middle, off-center middle, and center distal trajectories of 10 s
duration. Patients attempted each unassisted tracking trajectory once, i.e., each task
consisted of one trial, with no FES assistance. For each task, there was a five-second
countdown prior to the commencement of each trial, presented both visually and
verbally.

One measure of tracking performance that can be compared across different tasks
is the RMS of the tracking error, which for joint j is given by (5.4). Once evaluated,
this number was divided by the norm of the reference trajectory for the same joint,
calculated using the same formula, and the result subtracted from 1. Hence perfor-
mance score of 1 corresponded to perfect tracking and a negative value indicates a
movement away from the desired trajectory.
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Assisted tracking tasks were selected according to clinical need and hence some
trajectories may have been used more than once or not at all. During each task, FES
was applied to the muscles to assist the patient’s tracking. For three of the patients,
the triceps and anterior deltoid were trained simultaneously (patients 1, 3, and 5).
However, for two patients (2 and 4), an adverse response was observed when both
muscles were stimulated, i.e., a flexor synergy was observed, most likely related
to spasticity. In these cases, FES was mainly applied to one muscle at time, e.g.,
stimulation of triceps and then anterior deltoid.

In each task, patients completed 6 trials tracking the same trajectory. A 15 s rest
period between trials was designed to reduce fatigue and was extended if necessary.
During this period a graphic was presented illustrating tracking performance for the
trial just completed and the optimal stimulation signals for application in the next
trial were also computed in this time period.

Patients started each movement from the same initial position, which was deter-
mined at the start of the first trial and completed between 4 and 6 trials depending on
fatigue, where control action to suppress this effect is considered in the next section of
this chapter. For each trial tracking performance was measured, as described above,
and the percentage of maximum FES applied was calculated by dividing the norm of
the FES by the norm of the maximum stimulation that could be applied. Examples of
these signals are shown in Fig. 5.10, which also illustrates ILC correcting the applied
FES to result in accurate tracking.

The data from the two pre-intervention assessment sessions were tested for dif-
ferences using a t-test and then averaged for baseline performance. A one-tailed,

Fig. 5.10 Example of ILC correcting tracking: Elbow and shoulder tracking is shown on first and
last trial (left-hand column), together with corresponding applied FES (right-hand column). Five
second padding is applied at beginning and end
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paired t-test, with a significance level of p < 0.05, was used to compare baseline
and post-intervention FMA and ARAT outcome measures. An improvement of 10 %
of the total number of points available for these measures was considered a clinically
relevant improvement (van der Lee et al. 2001). The maximum score for the FMA
(motor component) was 66 and the maximum score for the ARAT was 57. In line with
previous work (Hughes et al. 2009), changes in assisted and unassisted performance
were analyzed by calculating best-fit linear regression slopes of performance against
session number for each patient, and applying one-sample t-tests. Significance was
associated with a value of p < 0.05.

The clinical scores for the FMA and ARAT at baseline and after 18 intervention
sessions are shown in Tables 5.2 and 5.3 respectively. There were no significant differ-
ences between the two baseline assessment sessions for the FMA, t (4) = −2.08, p =
0.11, or ARAT, t (4) = −1.83, p = 0.14. A significant improvement was found
from baseline to post-intervention for the FMA, t (4) = −4.54, p = 0.001, with all
patients showing an improvement on the motor sub-test of this assessment.

This improvement was above the suggested 10 % increase for clinical relevance
in 3 of the 5 patients, although overall the 14 % change was not statistically different
from 10 %, t (4) = 1.32, p = 0.26. No changes were found for the ARAT, t (4) =
−0.34, p = 0.37. Thus, this rehabilitation system reduced motor impairment of the
upper arm in stroke patients but this did not transfer to functional improvements as
assessed by the ARAT.

Table 5.2 FMA at baseline and post-intervention sessions

P.Id Baseline (pre-1, pre-2) average Post Change (%)

1 (7, 12) 9.5 20 16

2 (19, 19) 19 33 21

3 (28, 34) 31 44 20

4 (15, 15) 16 21 8

5 (42, 42) 42 46 6

Mean (SD) 23.5 (12.95) 32.8 (12.28) 14

P.Id Patient identification number

Table 5.3 ARAT at baseline and post-intervention sessions

P.Id Baseline (pre-1, pre-2) average Post Change (%)

1 (0, 0) 0 1 16

2 (4, 10) 7 10 21

3 (9, 9) 9 10 20

4 (3, 5) 4 0 8

5 (11, 13) 12 13 6

Mean (SD) 6.4 (12.95) 6.8 (5.89) 14

P.Id Patient identification number
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5.2.4 Unassisted Tracking Performance

Figure 5.11 illustrates unassisted tracking performance for the elbow as a function
of session, for each patient and task. Similar patterns of performance were found for
the shoulder. Best-fitting regression lines were calculated for each combination of
patient, task, and muscle, giving 40 slopes in total, and one-tailed t-tests found that
the slopes, collapsed across all patients, were reliably positive for each of the four
unassisted tasks for both the shoulder and the elbow (Meadmore et al. 2012).

The slopes computed were significantly different from zero, showing that tracking
accuracy, i.e., error between arm position and target, improved over the course of
the intervention for both shoulder and elbow movements. Moreover, the mean slopes
correspond (Meadmore et al. 2012) to performance increases of between 49 and 93 %
over the course of the intervention, thereby confirming significant improvement.

Fig. 5.11 Unassisted tracking performance for the elbow as a function of session, for each patient
and unassisted task. Panel a shows tracking performance for the center-distal task; Panel b shows
tracking performance for the off-center-middle task; Panel c shows tracking performance for the
far middle task; Panel d shows tracking performance for the far distal task. 1 = perfect tracking
performance. Best fitting regression slopes were calculated for each combination of patient, muscle
and task, with mean slopes (across participants) shown
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5.2.5 Assisted Tracking Performance

Tracking performance measures and the percentage of maximum stimulation applied
were calculated using the final trial in each task and were averaged across tasks in
each session. As shown in Fig. 5.12, for both the shoulder and the elbow, patients
tracking performance became more accurate over the 18 sessions and the percentage
maximum stimulation decreased. Best-fitting regression lines were calculated for
each patient and muscle, and one-tailed, one-sample t-tests found that the slopes
collapsed across all patients and were statistically significant for each muscle.

These results suggest that the amount of movement produced by the FES, for both
the triceps and anterior deltoid, increased over the intervention. To further qualify
this, the tracking performance from the final trial in each task was divided by the
corresponding percentage maximum stimulation, and averaged across tasks in each
session. The slopes of the best-fitting regression lines were found to be significantly
positive (Meadmore et al. 2012), confirming that over the intervention a greater
amount of performance was elicited per unit of FES applied.

Fig. 5.12 Panel a and b show tracking performance in the assisted tasks over sessions for the
elbow and the shoulder respectively; Panel c and d show the percentage maximum stimulation
applied to the triceps and anterior deltoid respectively, over sessions. Best fitting regression slopes
were calculated for each combination of patient and muscle, with mean slopes (across participants)
shown
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5.2.6 Discussion

The main aims of the study were to investigate the feasibility and effectiveness of a
novel 3D stroke rehabilitation platform for the upper limb that combines FES medi-
ated by ILC. This system uses the most advanced model-based FES control laws that
have been employed clinically in upper arm stroke rehabilitation, and comprises a
substantial development beyond the results in the previous chapter for planar tasks.
The effectiveness of FES is suggested to be most beneficial when combined with
a patient’s own voluntary intention to move. The ILC component was employed
to optimize the potential benefit of such intention. Three key findings confirmed
feasibility and effectiveness from baseline to post-intervention: a clinically signif-
icant improvement in the FMA; an improvement in unassisted tracking required
for accurate assisted tracking. Tracking performance in the assisted tasks was more
accurate than tracking in the unassisted tasks. In addition, a reduction in the amount
of FES applied to the muscles and an increase in the accuracy of assisted tracking
was confirmed. Further tests are required to determine the relative contribution of
muscle strength and voluntary control to improved tracking performance and thereby
explain the reduction in FES.

These performance measures indicate that training the triceps and anterior deltoid
improved movement of the upper limb in five stroke patients. However, the observed
motor improvement did not transfer to functional improvements, as measured by the
ARAT. This is consistent with previous work, with a number of systematic reviews,
e.g. Kwakkel et al. (2008), reporting that robotic therapy reduces motor impair-
ment but does not improve functional impairment. The ability to use the hand is
an integral component of the ARAT and other functional outcome measures. As
only the triceps and anterior deltoid muscles were trained, this may explain why no
change was found on this outcome measure. This finding implies that to observe
changes in functional outcome measures, future work should extend the applica-
tion of this intervention to the hand and wrist. This issue is discussed again in the
next chapter.

The findings of this study were also in line with those of the previous chapter,
in which ILC mediated FES was used to assist stroke patients in planar reaching
movements. Specifically, Hughes et al. (2009) found an increase in tracking perfor-
mance, a reduction in applied FES, and a marginal improvement in FMA scores. The
observed improvements in the FMA scores were greater in the current compared
to the previous study. Furthermore, the observed FMA improvement was greater
than 10 %, indicating a trend towards clinical relevance (van der Lee et al. 2001).
One possible reason for the difference in results is that the intervention in this study
trained two muscles in 3D space, whereas the previous intervention trained only the
triceps in 2D space. Alternatively, the patients in this study had higher initial FMA
scores and this may have contributed to the differences found.
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5.3 Muscle Fatigue

If muscle fatigue arises in robotic-assisted stroke rehabilitation then this often means
that the session must be stopped. In control systems terms, the question that arises is:
is it possible to augment an ILC control law to prevent or lessen the effects of muscle
fatigue? This section gives some preliminary results in this area based on a form of
cascade control. The evaluation of the resulting control scheme is by simulation using
a model constructed from patient data from the clinical trials of the previous section.

The material in this section focuses on control system design and hence the mus-
cle model used is an approximation that captures many of the characteristics of
FES stimulated muscle, including the force-length and force-velocity properties,
nonlinear recruitment and contraction dynamics, where the steady-state torque, Tm ,
produced by the static nonlinearity with input u is represented by

Tm = c1

∣∣∣∣
ec1u − 1

ec2u + c3

∣∣∣∣ (5.5)

where c1, c2 and c3 are muscle dependent parameters to be determined and u denotes
the externally applied stimulation impulse. As previously in this monograph, the
linear activation part converting Tm to the resultant torque τ generated by the muscle
is modeled as a critically damped second-order linear system with undamped natural
frequency ωn .

Considerable effort has been directed towards modeling and control of fatigued
muscles but not in the rehabilitation domain. The objective in this section is to include
a term, or model, to represent the effects of fatigue on the performance and enhance
or, augment, the control system to lessen or overcome its effects. Modeling of fatigue
has been considered in Riener et al. (1996), Riener and Fuhr (1998), where the fatigue
dynamics were found to be dependent on activation level, stimulation frequency and
recovery. Other research (Abbas and Chizeck 1995; Lan 2002) has established that
the effects of fatigue can be represented by multiplying the isometric force produced
by the fatigue-free model by a time-varying parameter of the form

F(t) = F0(1 − k f t) (5.6)

where F0 is the steady-state fatigue-free isometric force and k f > 0 is the rate of
fatigue, i.e., the force decays with time in the presence of fatigue.

For ILC based stroke rehabilitation, it is necessary to take account of the repeated
trials and hence the fatigue model used is

Fk(t) = F0(1 − k f t)λk, |λ| < 1 (5.7)

where λ governs the influence of the fatigue from trial-to-trial. The premise is that the
larger k f and λ the greater the effects of fatigue on the muscle output. Both of these
factors are muscle-dependent and therefore have to be estimated for each patient.



80 5 Iterative Learning Control of the Unconstrained Upper Limb

ekq∗
u

fatigue

qu,kτ

vk+1

ufb
k uk

Fig. 5.13 Cascade control of the supported human arm and muscle system

The control scheme developed in what follows is shown in Fig. 5.13 where the
effects of fatigue are represented as a disturbance on the muscle and regulated by
a feedback loop placed around the muscle model and the controller in this loop is
termed the slave.

In this arrangement, q∗
u is the reference vector, qu,k the measured output vector,

ufb
k and vk+1, are the outputs of the master controller and the ILC law on the kth

trial, respectively, and uk = ufb
k + vk+1 is the input to the muscle control loop. This

is a form of cascade control, which has also been the subject of other ILC research
outside the healthcare domain. For example, in Tan et al. (2012) the convergence of
cascaded ILC was addressed, where two ILC loops are cascaded. Other research on
the use of ILC plus feedback control for high-precision tracking performance has
been reported, e.g., Huang et al. (2014). For ease of presentation, this scheme will be
referred to as cascade control where relevant in the rest of this section. Development
follows, in the main, (Xu et al. 2013, 2014).

Figure 5.13 is a form cascade control arrangement where the slave controller is a
proportional gain in each of the two channels and the master controller is PD. Control
design consists of first designing a feedback linearizing control input for the slave
controller muscle inner loop and applying ILC to the resulting system. These are
detailed next, starting with the linearizing controller where trial-to-trial updating is
not present and hence the trial variable is omitted for ease of presentation.

The remainder of this section considers the case when the slave controller is a
proportional gain in each of the two channels and the master controller is PD as in
previous work (Freeman et al. 2012). In this first work, the aim is to establish if muscle
fatigue can be compensated for by augmenting the scheme used in the previous
research reported in Freeman et al. (2012), Meadmore et al. (2012). Moreover, there
is a strong case for initially considering the simplest possible addition to the existing
scheme and hence the forms of the master and slave controllers considered. Other
possibilities, such as adding ILC to the inner loop, i.e., the slave controller loop,
or other choices for the master and/or slave controller, are left as topics for future
research, see also the conclusions chapter of this monograph.

Given the selection of the master controller, the tasks are to first construct a
feedback linearizing control input for the feedback inner loop that includes the slave
controller and then design the ILC. The muscle model can be written in state-space
form as
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ẋ i =
[

0 1
−ω2

n −2ωn

]
xi +

[
0
1

]
hIRC,i (ui )

τi = [
ω2

n 0
]

xi , i = b, e (5.8)

where for each i xi = [
xi,1 xi,2

]T is the state vector, ui is the applied stimulation
impulse and τi the generated muscle torque respectively. If hIRC,i (ui ), i = b, e,
is assumed known and monotonic, its static gain characteristic can be canceled by
including its inverse as a gain term and the linearizing controller is

u =
[

ub

ue

]
=

⎡
⎣ h−1

IRC,b(ω
2
n xb,1 + 2ωn xb,2 + v′

b
ω2

n
)

h−1
IRC,e(ω

2
n xe,1 + 2ωn xe,2 + v′

e
ω2

n
)

⎤
⎦ (5.9)

where v′
b and v′

e denote the required muscle torque output to be designed.
Applying this controller cancels the static nonlinearity and next the slave controller

is designed. This master/slave control structure provides a more flexible structure
than the single loop control methods, which could lead to faster system response.
Hence its use as a preliminary controller prior to ILC design for this application
area. As there is no need to realize accurate tracking in the inner loop, a proportional
controller in each channel is used.

The slave controller gain is selected using trial-and-error and the master controller
as in Freeman et al. (2012), with general guidance suggesting that in order to avoid
resonance minimal difference between the gains of slave and master controllers is
desirable. It follows from simple block algebra that the slave controller loop dynamics
are described by the transfer-function matrix

Gmuscle(s) =
⎡
⎢⎣

K s
Pb

s2+K s
Pb

0

0
K s

Pe
s2+K s

Pe

⎤
⎥⎦ (5.10)

where K s
pb

and K s
pe

are the proportional gains defining the slave controller. Also
the inputs to the controlled muscle model (5.10) are the calculated torques from the
master controller together with the torques generated by the ILC law, giving

v′
b = K m

Pb
(ϑ∗

b − ϑb) + K m
Db

(ϑ̇∗
b − ϑ̇b) + vb (5.11)

v′
e = K m

Pe
(ϑ∗

e − ϑe) + K m
De

(ϑ̇∗
e − ϑ̇e) + ve (5.12)

where vb and ve are the outputs from the ILC law and K Pi , K Di , i = b, e, are
the gains for the PD master controller.

A number of methods are available in the non-ILC literature for tuning the slave
controller to achieve good performance, as described in, for example, Skogestad
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and Postlewaite (2005). The reason for introducing the slave controller loop is to
“pre-compensate” the plant to obtain faster response rather than achieving ‘perfect
tracking’. As such, a simple trial and error design method is used but further research
could be directed to this task once it is established that there is merit in using this over-
all approach, i.e., introduce a control loop around the muscle model to compensate
for fatigue.

Once the controllers developed above are applied, the resulting dynamics are
described by the state-space model

ẋ = f (x, u)

y = h(x) = [
ϑb ϑe

]T (5.13)

where
x = [

qT
u q̇T

u xT
b xT

e

]T

and

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇u

p1(qu, q̇u)

p2(qu, q̇u) + ((Buqu)−1)2,2 K s
Pb

xb,1

p3(qu, q̇u)

p4(qu, q̇u)

p5(qu, q̇u) + (Bu(qu)−1)5,5 K s
Pe

xe,1

xb,2
−K s

P1
xb,1 + ub

xe,2
−K s

P2
xe,1 + ue

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.14)

with

p(qu, q̇u) = −B−1
u (qu) (Cu(qu, q̇u)q̇u + Fu(qu, q̇u) + Gu(qu) + Ku(qu)) (5.15)

where the control laws for ub and ue are given in (5.9), (5.11) and (5.12). The
remaining task is the design of the ILC law for vb and ve in (5.11) and (5.12), which
is detailed next.

One obvious option at this stage is to again apply phase-lead ILC as in the planar
task of Chap. 4, i.e., design a phase-lead ILC law for each of the muscles. This
was considered but, as expected, the performance achieved was inferior to that for
the planar case. Moreover, for other 3D tasks it will be required to stimulate more
than two muscles and it is to be expected that the increase in dynamic complexity
will require the design of more advanced ILC laws. This motivates the decision to
consider model-based design, where as an exemplar Newton ILC, see (2.36)–(2.42),
is used. In the next section the merits of this design over gradient-based alternatives
for this application are discussed.

The overall control law on trial k + 1 can now be stated as

http://dx.doi.org/10.1007/978-1-4471-6726-6_4
http://dx.doi.org/10.1007/978-1-4471-6726-6_2
http://dx.doi.org/10.1007/978-1-4471-6726-6_2
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uk+1 =
[

ub,k+1
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b − ϑ̇b,k+1) + vb,k + Δvb,k+1

ω2
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B = K m
Pe

(ϑ∗
e − ϑe,k+1) + K m
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e − ϑ̇e,k+1) + ve,k + Δve,k+1

ω2
n

where Δvk+1 = [
Δvb,k+1 Δve,k+1

]T are computed by Newton ILC. Moreover, the
stability of this design can be determined under mild conditions by analyzing the
Lipshitiz properties of the plant and the convergence properties of Newton ILC laws,
see Xu et al. (2014).

5.3.1 Performance Evaluation

An extensive simulation evaluation of the performance of the control system designed
in the previous section has been undertaken (Xu et al. 2013). The parameters for the
controlled system, i.e., the uncontrolled system dynamics, are from those collected
in clinical trials (Meadmore et al. 2012). The reference trajectories ϑ∗

b and ϑ∗
e also

come from Meadmore et al. (2012), see Fig. 5.14, corresponding to lifting and extend-
ing the upper arm and forearm over a period of 6 s. Variation is permissible in the
uncontrolled joint angles ϑa, ϑc and ϑd . The sampling frequency is 400 Hz. Two
general comparative control performance issues are addressed: (i) the ILC design
developed in this chapter and (ii) the new ILC design against previous designs where
no representation of fatigue was included.

These are treated in turn below where to provide a common basis for comparison
the proportional gains for the slave controller were set as K s

P2
= 450, K s

P5
= 600

for both triceps and anterior deltoid, and the gains of the PD feedback controller
are chosen as K m

Pb
= 100, K m

De
= 5 and K m

Pe
= 200, K m

De
= 1, respectively. The

weighting matrices in the NOILC cost function used as part of the Newton design
were Q = 5 × 104 I and R = I.

In the case of performance under (i) above, the evaluation is over 6 trials where
previous work including clinical trials has shown that ILC mediated FES has most
effect after a relatively small number of trials (Hughes et al. 2009). The 2-norm values
of the tracking error, i.e., computed along each trial and plotted against trial number,
for ϑb and ϑe are shown in Fig. 5.15. On the first trial only the slave controller has an
effect on the 2-norm for this trial, i.e., no ILC action is applied. On subsequent trials
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Fig. 5.14 Reference trajectories used for the 3D rehabilitation system fatigue simulations
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Fig. 5.15 Convergence of tracking error with Newton ILC

the ILC law starts to ‘learn’ from previous trial error and the tracking performance
is significantly improved.

The tracking performance of both joints on the 6th trial are shown in Fig. 5.16 and
demonstrate excellent trajectory tracking. Figures 5.17 and 5.18 show the tracking
errors for the controlled joint angles ϑb and ϑe, respectively, where the use of ILC
gives a tracking accuracy of 10−4 rad after the first trial.
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Fig. 5.16 Trajectory tracking for Newton method-based ILC on trial 6
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Fig. 5.17 Trajectory tracking error for ϑb, k = 1, 2, 5

An alternative to Newton ILC would be to combine slave control loop with
gradient-based ILC. This would require up to fourth order derivatives of both the
reference signal and the measured signal in comparison to first-order derivatives of
both signals in Newton ILC. Moreover, much better tracking performance and more
rapid convergence within fewer trials is achieved with this nonlinear ILC law.
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Fig. 5.18 Trajectory tracking error for ϑe, k = 1, 2, 5

The model (5.6) includes terms to model fatigue during the execution of a trial
and from trial-to-trial. In the results given below, the latter factor is fixed by setting
λ = 0.99 and hence the torque from the muscles decreases at a rate of 1 % between
successive trials. The robustness of the control law to modeling error is examined
by introducing a time-varying modeling mismatch corresponding to the fatigue rates
k f = 1

30 , 1
10 for both joints respectively. First the performance of slave control loop

alone, i.e., no ILC, is evaluated.
Figure 5.19 shows the tracking characteristics of the slave controller loop as the

muscle force is decreased due to fatigue introduced by varying k f . The reference
trajectories for both joints are still tracked, but tracking is partly lost for the fatigue
rate k f = 1

10 .
The results in these last two figures correspond strongly with other results

(Jezernik et al. 2014; Dimitra 2005) where the control of FES based muscle stim-
ulation is considered. This previous work and the results in this section strongly
suggest that direct feedback control to counter the effects of muscle fatigue can give
movement tracking in the presence of decreasing muscle torque but larger inputs are
required to compensate for this loss. If repeated trials are made then the 2 norm of
the error will increase with each one in the presence of fatigue.

To examine the performance of slave control loop with Newton ILC, the simulation
has again been run for 6 trials with a fatigue rate of 1 % from trial-to-trial and a fatigue
rate of 10 % during the trial. For the Newton ILC the inner loop NOILC computation
iteration number was set at 10. This simulation replicates the case when the patient
attempts the tracking for 6 trials and for each trial 10 iterations are required to
update the input to be applied on the next trial. Figure 5.20 shows the trajectory
tracking, which, in contrast to the slave control loop alone, exhibits fast trial-to-trial
convergence and Fig. 5.21 shows the corresponding 2-norm errors.
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Fig. 5.19 Trajectory tracking performance for different fatigue rates
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Fig. 5.20 ILC trajectory tracking with 10 %/s fatigue rate during a trial and 1 % trial fatigue rate
from trial-to-trial

Compared to Fig. 5.15 where no representation for fatigue is included, Fig. 5.21
shows much poorer tracking accuracy due to the existence of fatigue. This confirms
that muscle fatigue can have a very serious effect on performance and that the use of
ILC can be effective. To support this last assertion, the stimulation levels required to
generate the results in the previous figure are again within the limits discussed above
(Fig. 5.22).
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Fig. 5.21 2-norm tracking error of cascade control and Newton ILC in the presence of fatigue
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Fig. 5.22 Stimulation input with fatigue and ILC applied for trial 6

The results in the last three figures demonstrate the improvement in both tracking
accuracy and fatigue resistance possible when Newton ILC is applied instead of feed-
back control action alone. As expected, both of these properties are not guaranteed
if the muscle output torque drops to a low value, as shown in Fig. 5.23 where a mod-
erate increase of the 2-norm tracking error is observed in both joints after 13 trials.
On trial 31, there has been a 13 % trial-to-trial decay of the muscle torque before the
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Fig. 5.23 Convergence characteristics of cascade control plus ILC with a fatigued muscle. These
plots show an initial reduction in the 2-norm tracking error up to the 13th trial, followed by a
moderate divergence as the muscle fatigue increases

start of this trial and the muscle continues to fatigue along the trial, resulting in a
73 % loss of the original muscle torque. This torque decay with continue with further
trials and the previous tracking is no longer ensured, leading to a gradual divergence
of the error.

It is unlikely that the health professional supervising the session would allow
this number of trials to take place but there is still interest in terms of ILC design
generally where in applications it can arise that the error is decreasing monotonically
from trial-to-trial but then begins to arise again on subsequent trials, see Longman
(2000) where this is termed ‘long-term stability’. Comparing Figs. 5.15 and 5.23
confirms that this could also arise in the stroke rehabilitation application.

The zero-phase filter

H(z) = 0.0095 + 0.0095z−1

1 − 0.981z−1 (5.17)

was applied to uk+1 before it is summed with the cascade controller torque. The pass
and stop-band cutoff frequencies were 0.5 Hz with a maximum pass-band attenuation
of 1 dB and 10 Hz and minimum stop-band attenuation 20 dB. Figure 5.24 shows the
resulting 2-norm tracking error over 30 trials, with the case without this filter added
also given for comparison purposes. With the filter added the onset of ‘long-term
stability’ problems is delayed for both joints. Again, it must be stressed that an actual
session with a patient would not reach the number of trials before the onset of this
problem.
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Fig. 5.24 2-norm trial-to-trial error with and without the zero-phase filter added over 30 trials

The results of this simulation study confirm that the control arrangement used is
capable of representing and compensating for the effects of muscle fatigue in this
area. Much further work remains to be done on control systems design/evaluation
before clinical trials can be considered. For example, the results in this chapter have
used simple structure master and slave controllers where the objective was to make
the simplest possible changes to clinically trialed designs.

One possible aspect to examine here is to add ILC to the inner loop. Also the
question of assigning the relative effort of the master and slave controllers should
be addressed, together with the use of alternatives to Newton-based ILC. Further
research is also required on the fatigue model itself. An alternative approach to
representing the effects of fatigue in this ILC application is to treat it as a trial-
dependent disturbance and aim to design a trial dependent learning gain. Some results
on this approach in the engineering literature can be found in, e.g., Chen and Moore
(2002).
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Chapter 6
Goal-Oriented Stroke Rehabilitation

Building on work reported in previous chapters, the system developed and evaluated
in this chapter includes stimulation of the wrist and hand extensors. This directly tar-
gets activities of daily living, comprising real-world tasks that require manipulation
of objects using the hand and wrist.

6.1 System Overview

The research on combining ILC and FES for upper limb rehabilitation described in
the preceding chapters used planar light tracking tasks or Virtual Reality (VR) 3D
object tracking, incorporating explicit reference trajectories for the patient to follow.
To directly target activities of daily living, the system in this chapter assists patients
to complete real-world tasks that require manipulation of objects using the hand
and arm. Support against gravity is provided for the patient’s arm using a commer-
cially available passive spring support. Tracking of the patient’s arm and hand move-
ments is achieved using a Kinect motion capture device and wrist electrogoniome-
ters. An optional data glove is also used for collection of finger movement, where
required. Since no explicit reference trajectory is shown to the patient, the ILC scheme
(Freeman et al. 2013) employs principles from motor control to deliver the optimum
FES assistance.

The Kinect greatly facilitates non-invasive motion capture by providing a free soft-
ware development kit and pre-calibrated ‘out of the box’ hardware, which has vastly
reduced the associated hardware and software cost (Clark et al. 2012). The Kinect
is a small (0.30 × 0.08 × 0.06 m), lightweight (1.4 kg) device incorporating a video
camera with an infra-red source and an infra-red sensor. The infra-red sensor mea-
sures the reflection of infra-red light by objects in front of the camera and calculates
3D position data for those objects. Recent accuracy tests have indicated that the
device is capable of calculating position data with an accuracy of approximately

© The Author(s) 2015
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1 cm (Dutta 2012). The software supplied with the Kinect uses pattern recognition
to detect landmarks of interest, such as limb segments and joint estimations.

In the system developed in this chapter, the Kinect is used to capture joint center
locations for the shoulder, elbow and wrist for the calculation of shoulder and elbow
joint angles. It is not possible to use the Kinect for the calculation of wrist and hand
joint angles due to accuracy limitations in hand tracking when the device is at the
distance required to produce a large enough field of view for all the other segments.
Instead, an electrogoniometer is included to collect wrist angle data and an optional
data glove can be used to capture individual finger joint angle data.

FES surface electrodes are positioned over the patient’s anterior deltoid, triceps
and wrist and hand extensor muscles, with placement following clinical guidelines.
A series of 5 V, 40 Hz pulses are produced by the control hardware for each channel
and amplified by a four-channel electrical stimulator to generate a bi-phasic signal
which achieves a smooth muscle contraction (de Kroon et al. 2005). For safety, the
maximum pulsewidth that can be applied to any channel is limited within the control
software and also by the stimulator. Prior to any session, the amplification level for
each channel is set by applying a constant stimulation signal with pulsewidth 300µs
from the control hardware and slowly increasing the voltage until the maximum
comfortable level is reached. During subsequent tests the pulsewidth is limited to
300µs.

The electrode array is formed by 5 × 8 elements that can each be routed to one
of four FES channels through use of custom made controlled multiplexor hardware,
comprising an Arduino board and shift register array. For each required hand and
wrist posture, the optimal electrode sites and associated FES pulsewidths are selected
during initial tests through a search procedure involving local linear model identifi-
cation and gradient-descent optimization. The sites are then fixed during subsequent
experiments, with the pulsewidth amplitudes controlled by ILC. Figure 6.1 shows
the electrode array and data glove and the control system block diagram is again that
of Fig. 5.5.

The system software incorporates tracking of the patient’s movement with the
control schemes implemented to mediate the FES in real-time. A custom made C++
application is used to read the arm and hand positions from the Kinect, electrogo-
niometer and (if used) data glove. Position data are then transferred to the real-time

Fig. 6.1 Electrode array with data glove and electrogoniometer used for stimulating and tracking
hand and wrist movement

http://dx.doi.org/10.1007/978-1-4471-6726-6_5
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Fig. 6.2 Signal flow diagram

control hardware (dSPACE ds1103) that implements ILC laws involving embed-
ded dynamic models of the arm. Outputs of the control law comprise pulse-width
modulated (PWM) signals for each of the FES stimulator channels, together with
RS232 serial data to control the electrode array. Digital inputs and outputs are also
employed to interface with the instrumented task objects. Figure 6.2 shows a signal
flow diagram.

A graphical user interface (GUI) has been developed to enable the user to cus-
tomize control parameters, implement the FES control, collect position outcome data,
select the task details to be performed and review performance after each session.

6.2 Control Design and Evaluation

6.2.1 Human Arm Model

A dynamic model of the arm-support system incorporates a biomechanical descrip-
tion of the human arm and a representation of the SaeboMAS spring support. Position
values for the shoulder, elbow and wrist joint centers are calculated using the Kinect.
To assist the FES actuated control law, a simplified model of the arm is used for the
calculation of joint angles. Figure 6.3 shows the kinematic model of the human arm.

Spasticity in stroke patients often restricts flexion of the shoulder in the antero-
posterior plane, extension of the elbow and extension of the wrist and fingers (Levin
1996). Therefore, the anterior deltoid, triceps and wrist and hand extensor muscles
were selected for stimulation. It is assumed that stimulation applied to the triceps
produces movement about an axis perpendicular to the upper and forearm segments
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Fig. 6.3 Kinematic model of the a SaeboMAS support and b human arm

and that stimulation applied to the wrist and hand extensors produces movement
about an axis that is fixed with respect to the forearm. For the anterior deltoid it is
assumed that stimulation produces movement about an axis that is fixed with respect
to the shoulder and determined by two rotation transformations. These comprise
rotations around the z-axis by β and around the x-axis by γ . Identification of β and
γ is described below.

The dynamic model of the human arm is

Bh (qu) q̈u + Ch (qu, q̇u) q̇u + Fh (qu, q̇u) + Gh (qu) + Kh (qu) = τ (u, qu, q̇u) − J T
h (qu) hh

(6.1)

qu = [
ϑa ϑb ϑc ϑd ϑe ϑ f

]T

where Bh(·) and Ch(·) are 6 × 6 inertial and Coriolis matrices, respectively, Fh(·)
and Gh(·) are friction and gravitational vectors and τ(·) comprises the moments
produced through application of FES. These moments are of the form

τ(u, qu, q̇u) = [
τa(ϑa, ϑ̇a, ua) 0 0 τd(ϑd , ϑ̇d , ud) τe(ϑe, ϑ̇e, ue) 0

]T

where ua(t), ud(t) and ue(t) represent the electrical stimulation applied to the
anterior deltoid, triceps and wrist and hand extensor muscles, respectively, with
u = [

ua 0 0 ud ue 0
]T and the same muscle model as in the previous chapters.

Finally, h is a vector of externally applied force and torque comprising components
hs due to the spring support and hh due to interaction with objects and Jh(·) is the
system Jacobian.
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The SaeboMAS support structure dynamics are of the form

Bs(qr )q̈r + Cs(qr , q̇r )q̇r + Fs(qr , q̇r ) + Gs(qr ) + Ks(qr ) = −J T
s (qr )hs (6.2)

where Bs(·) and Cs(·) are 5 × 5 inertial and Coriolis matrices and

qr = [
θ1 θ2 . . . θ5

]T

represents the angles of the spring support. In addition, Js(·) is the system Jacobian,
and Fs(·) and Gs(·) are friction and gravitational vectors. The vector Ks(·) comprises
the moments produced through gravity compensation provided by the spring, which
takes the form

[
k1(θ1) 0 0 0 0

]T . Also the rigid connection between structures gives
rise to a bijective mapping between qu and qr and hence the combined model is
given by

B(qu)q̈u + C(qu, q̇u)q̇u + F(qu, q̇u) + G(qu) + K (qu) = τ(u, qu, q̇u) − J T (qu)h

(6.3)

This model of the arm is used by the FES control law to produce an input signal
that results in accurate completion of the tasks. During trials incorporating FES, the
law assists tracking about ϑa , ϑd and ϑe alone, and it is assumed that the patient has
sufficient control over the remaining axes to adequately perform the task. Due to the
complexity of identifying the parameters in a full dynamic model of the hand and
wrist, the array element identification procedure uses stimulation and angular output
data from the glove to construct a linear model linking these variables (Freeman
2014). The resulting representation is then integrated with a simpler model of the
hand and wrist (Soska et al. 2013) detailed next.

6.2.2 Hand and Wrist Model

A possible control scheme for the hand and wrist is shown Fig. 6.4. In control terms,
this is a highly coupled system with each joint actuated by at least two muscle groups:
flexor and extensors. Furthermore, most of the hand muscles are either bi-articular
or multi-articular, i.e., they actuate simultaneously two or more joints. The muscles
of the hand are divided into two groups: intrinsic i.e., originate solely in the hand
and extrinsic, i.e., located proximally in the forearm. Although it is possible to stim-
ulate individual intrinsic and extrinsic muscles of the hand, e.g., using embedded
electrodes, in most of the FES systems considered in the literature only the extrin-
sic muscles are stimulated. The approach taken in this monograph is to investigate
feasibility of surface electrode array stimulation of extrinsic muscles, which hence
avoids the need for surgery and makes the approach cost effective and suitable for
widespread uptake. A simplified model of the hand is developed next and used in
control law design.
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Fig. 6.5 Planar hand model

The model developed includes a single composite finger, representing the com-
bined action of four fingers, wrist and neglects the thumb orientation. The finger
and wrist are modeled as a 3-link rigid body system, consisting of 3 active rev-
olute joints as shown in Fig. 6.5. This still provides an accurate representation of
the hand since 42 % of the functional movements of the hand involve the four fin-
gers moving together (Ingram et al. 2008). Link 1 represents the II-V Metacarpal
bones connected by the wrist joint, Links 2 and 3 represent proximal and middle
phalangeals of the finger connected by the Metacarpal-Phalangeal joint (MCP) and
Proximal-Interphalangeal joint (PIP) respectively.

The dynamic model of the finger/wrist is formulated using Lagrangian analysis
and can be written in the form

B f (q f )q̈ f + C f (q f , q̇ f ) + G f (q f ) + F f (q f , q̇ f ) = τ f (u, q f , q̇ f ) (6.4)
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where B f (q f ) is the inertia matrix, C f (q f , q̇ f ) denotes the centrifugal and Coriolis
forces, G f (q f ) is the vector representing gravitational force and the generalized

co-ordinates are q f = [
ϑ f ϑg ϑh

]T
. During purely horizontal movement of the

finger, gravity can be neglected.
The inertia matrix is

B f (q) =
⎡
⎢⎣

b11 b12 b13
b21 b22 b23

b31 b23 b33

⎤
⎥⎦

where

b11 = m1c2
1 + m2l2

1 + m2c2
2 + 2m2l1c2 cos ϑg + m3l2

1

+ m3l2
2 + 2m3l1l2 cos ϑg + 2m3l1c3 cos (ϑg + ϑh)

+ 2m3l2c3 cos ϑh + m3c2
3 + J1 + J2 + J3

b12 = m2(c
2
2 + l1c2 cos ϑg) + m3l2

2 + m3c2
3 + m3l1l2 cos ϑg

+ m3l1c3 cos (ϑg + ϑh) + 2m3l2c3 cos ϑh + J2 + J3

b13 = m3c2
3 + m3l1c3 cos (ϑg + ϑh) + m3l2c3 cos ϑh + J3

b22 = m2c2
2 + m3l2

2 + m3c2
3 + m3l2c3 cos ϑh + J3

b23 = m3c2
3 + m3l2c3 cos ϑh + J3

b33 = m3c2
3 + J3

where m1 = 0.3 kg, m2 = 0.015 kg, m3 = 0.009 kg are the masses, J1 = 5 × 10−4,

J2 = 5 × 10−6, J3 = 3 × 10−6 are inertias (kg m2) and the assumed lengths (m) are
l1 = 0.08, l2 = 0.05, l3 = 0.048 and ci = 0.5li , i = 1, 2, 3.

The entries in C f (q f , q̇ f ) are

c11 = −[m3c3l1s23 + m3c3l2 sin ϑh](2ϑ̇ f ϑ̇h + 2ϑ̇gϑ̇h + ϑ̇2
h )

− [(m2l1c2 + m3l1l2) sin ϑg + m3l1c3s12](2ϑ̇ f ϑ̇g + ϑ̇2
g )

c21 = [(m2c2l1 + m3l1l2) sin Θ2 + m3c3l2s23]ϑ̇2
h

− m3c3l2 sin ϑh(2ϑ̇gϑ̇h + ϑ̇2
g )

c31 = [m3c3l2 sin ϑg + m3c3l1s23]ϑ̇2
g + m3c3l2 sin (2ϑ̇gϑ̇ f + ϑ̇2

f )

where si, j = sin (ϑi + ϑ j ). Also τ f is the vector of moments produced by the
application of FES and F f (q f , q̇ f ) is the vector of frictional components acting
about each joint of the form

F f (q f , q̇ f ) =
⎡
⎢⎣

k1(ϑ0, f − ϑ f ) − b1ϑ̇ f

k2(ϑ0,g − ϑg) − b2ϑ̇g

k3(ϑ0,h − ϑh) − b3ϑ̇h

⎤
⎥⎦ (6.5)
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Fig. 6.6 The musculo-tendon structure of the wrist and finger

where b1 = 0.05, b2 = 0.014, and b3 = 0.01 are the viscous friction coefficients
(Ns/m). It is assumed that the muscle groups that actuate each joint produce a stiffness
that can be represented by a spring with zero elongation at the initial position ϑ0, f =
2π
3 , ϑ0,g = π

2 , ϑ0,h = π
3 and stiffness coefficients k1 = 6.5, k2 = 0.9, k3 =

0.8 (N/m).
Figure 6.6 shows the musculoskeletal structure of the finger and wrist included

in the model. The wrist joint is assumed to be actuated by three extensor muscles:
Extensor Communis (EC), Extensor Carpi Radialis Longus (ECR) and Extensor
Carpi Ulnaris (ECU). The muscles of the finger act through a complex tendon net-
work, termed the extensor mechanism. This network is approximated by a longitu-
dinally symmetric tendon rhombus, consisting of active and the passive tendons, as
also shown in Fig. 6.6.

The extensor mechanism of the finger is modeled in the same manner as Theodorou
et al. (2011) and includes 5 active tendons, driven by independently controlled mus-
cles: the Flexor Digitorum Profundus (FDP), the Extensor Digitorum Communis
(EC), the Ulnar and Radial Interosseous (UI and RI), the Lumbrical muscle (LU),
and 3 passive tendons: the Radial Band (RB) the Ulnar Band (UB) and the Extensor
Slip (ES).

Electrically stimulated muscles of the hand contract, generating pulling forces
that produce finger/wrist movement. The transformation from muscle force vector,
y, with dimension m to the p-dimensional net joint torque, τ f , at the finger/wrist
joints can be defined as in Valero-Cuevas (2009), yielding

τ f (u, q f , q̇ f ) = R(q f )y(u, q f , q̇ f ) (6.6)

where

R(q f ) =
⎡
⎢⎣

r11 . . . r1m
...

. . .
...

rp1 . . . rpm

⎤
⎥⎦ (6.7)

y(u, q f , q̇ f ) =
⎡
⎢⎣

y1(u1, l1, l̇1)
...

ym(um, lm, l̇m)

⎤
⎥⎦ (6.8)
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and each entry in R(q f ) is the signed scalar moment arm value that transforms a
muscle force into torques at the various joints it crosses. Moreover, entry ri, j in
R(q f ) can be evaluated by differentiating the excursion (displacement) E of the j th
tendon with respect to the i th joint angle, i.e.,

r1, j = ∂ E j (ϑ f )

∂ϑ f
, r2, j = ∂ E j (ϑg)

∂ϑg
, r3, j = ∂ E j (ϑh)

∂ϑh
, j = 1, . . . , m (6.9)

Excursion of the FDP is modeled (Landsmeer 1955) as

E tendon = ϑd tendon + 2ytendon
(

1 − ϑ/2

tan ϑ/2

)
(6.10)

where d tendon is the distance from the straight section of the tendon to the tendon
constraint along the line perpendicular to the axis of the bone and ϑ is the corre-
sponding angle rotation. The term ytendon is the distance along the axis of the bone
from the end of the straight section of the tendon to the joint center.

Tendon excursion of the EC is a function of the wrist and MCP with the addition
of the displacement, transformed to the PIP joint through the extensor mechanism

E EC = −r EC
1 ϑ f − r EC

2 ϑg + L(E1, E2, E3) (6.11)

where
E1 = E E S, E2 = EU B, E3 = E R B (6.12)

and the execution function L(E1, E2, E3) is defined as

L(E1, E2, E3) =
3∑

i=1

wi Ei = 0, wi > 0, j = 1, 2, 3 (6.13)

The excursions of the remaining tendons are each modeled as a second-order
polynomial approximation of (6.10) as (btendon + htendonϑ)ϑ , where btendon and
htendon are constants. Also the tendon excursions can be expressed as functions of
the finger extension/flexion angles ϑg and ϑh as

E F D P =
3∑

i=2

ϑ F D P
h + 2yF D P

h

(
1 − ϑh/2

tan ϑh/2

)

E E S = −r E Sϑh

ER B = −(bR B + h R Bϑh)ϑh

EU B = −(bU B + hU Bϑh)ϑh

E RI = (bRI + h RI ϑg)ϑg + EU B

EU I = (bU I + hU I ϑg)ϑg + EU B



102 6 Goal-Oriented Stroke Rehabilitation

E LU = (bLU + hLU ϑg)ϑg + E R B − E F D P

E ECU = (bECU + hECU ϑ f )ϑ f

E EC R = (bEC R + hEC Rϑ f )ϑ f (6.14)

Hence applying (6.9), each column of the moment arm matrix R(q f ) represents the
moment arm vector corresponding to each muscle and therefore

R(q f ) = [
RF D P RLU RU I RRI REC REC R RECU

]
(6.15)

where

RF D P =

⎡
⎢⎢⎣

0

d F D P
1 + yF D P

1

(
sin ϑg−ϑg

2 sin2 ϑg

)

d F D P
2 + yF D P

2

(
sin ϑh−ϑh
2 sin2 ϑh

)

⎤
⎥⎥⎦

RLU =

⎡
⎢⎢⎣

0
bLU + 2hLU ϑg − RF D P

ϑg

−bR B − 2h R Bϑh − RF D P
ϑh

⎤
⎥⎥⎦

RU I =
⎡
⎢⎣

0
bLU + 2hLU ϑg

−bU B − 2hU Bϑh

⎤
⎥⎦

REC =
⎡
⎢⎣

−r EC
1

−r EC
2

−w1r E S + w2 RU B
ϑh

+ w3 RR B
ϑh

⎤
⎥⎦

and

RU B
ϑh

= −(bU B + 2hU Bϑh) (6.16)

RR B
ϑh

= −(bR B + 2h R Bϑh) (6.17)

Also

REC R = [
bEC R + 2hEC R 0 0

]T
(6.18)

and

RECU = [
bECU + 2hECU 0 0

]T
(6.19)
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Table 6.1 Torques acting about the joints

Tendon–joint type d y r h b

EC—extrinsic (wrist) – – 14.12 – –

ECR—extrinsic (wrist) – – – −11.72 1.14

ECU—extrinsic (wrist) – – – −8.51 1.55

FDP—extrinsic (MCP) 8.32 8.32 – – –

RI—extrinsic (MCP) – – – −1.29 5.62

UI—intrinsic (MCP) – – – −8.16 18.76

LU—intrinsic (MCP) – – – −2.17 12.53

EC (MCP) – – 8.3 – –

FDP (PIP) 5.76 7.5 – – –

ES—intrinsic (PIP) – – 2.92 – –

RB—intrinsic (PIP) – – – −0.47 2.54

UB—intrinsic (PIP) – – – 0.57 1.7

Using (6.6), the torque acting about a joint can be calculated as a function of the
force in each muscle and the current joint angle vector, see Table 6.1.

Each element of the muscle force vector y(u, q f , q̇ f ) is formed from the moment
produced by the application of the FES signal u j (t) to the j th stimulated muscle
with

u = [
u1 . . . um

]T (6.20)

and using the muscle model (4.12)

yi (ui (t), q f , q̇ f ) = gi (ui , t) × Fm,i (q f , q̇ f ), i = 1, . . . , m (6.21)

in which the Hammerstein structure gi (ui , t) is composed of a static nonlinearity
gI RCi followed by linear dynamics with state-space model matrices

{MA,i , MB,i , MC,i }, i = 1, . . . , m.

Using (6.4) the relationship between the applied stimulation and the joint angles
can be written as the state-space model

ẋ(t) = f (x(t), u(t))

q f (t) = h(x(t)) (6.22)

http://dx.doi.org/10.1007/978-1-4471-6726-6_4
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where

f (x(t), u(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇ f

B−1
f (q f )X (q f , q̇ f )

MA,1x1

...

MA,p, x p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

MB,1, g1(u1)

...

MB,pgp(u p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

h(x(t)) = [
I 0 0 0

]
(6.23)

where

x =
[

qT
f q̇T

f xT
1 . . . xT

j

]T

and the i th row of X (q f , q̇ f ) is

Ri (q f )MC,i xi Fm,i (q f , q̇ f ) − C f,i (q f , q̇ f ) − F f,i (q f , q̇ f ), i = 1, . . . , m

The nonlinear differential state-space model (6.22) in the ILC setting can now be
discretized to result in a description of the form (2.36), i.e.,

xk(p + 1) = f (xk(p), uk(p))

q f,k(p) = h(xk(p)) (6.24)

Defining

uk = [
uT

k (0) uT
k (1) . . . uT

k (T − 1)
]T

q f,k =
[

qT
f,k(1) qT

k (2) . . . qT
f,k(T )

]T

the relationships between the input and output time series can be written in algebraic
terms as

q f,k(1) = h(xk(1)) = h( f (xk(0), uk(0)))

= g1(xk(0), uk(0)))

...

q f,k(T ) = h(xk(T )) = h( f (xk(T − 1), uk(T − 1))

= gT (xk(0), uk(0), uk(1), . . . , uk(T − 1))

Hence, assuming xk(0) = 0, (6.24) can be represented by

q f,k = g(uk) (6.25)

http://dx.doi.org/10.1007/978-1-4471-6726-6_2
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where

g(·) = [
gT

1 (·) gT
2 (·) . . . gT

T (·) ]T

To control hand posture, it is necessary to specify the joint positions at a fixed
number M ≤ T of sample instants 1 ≤ n1 ≤ n2 ≤ nM and take these to be

q∗ = [
q∗(0)T q∗(1)T . . . q∗(M − 1)T

]T

Also the form of ILC used can be considered as an iterative numerical solution to
the problem of finding a control input that solves the problem

min
u

J (u) subject to Λu ≤ b, J (u) = ||q∗ − Φg(u)||22 (6.26)

where J (u) is the point-to-point error norm and the pM × pT matrix Φ has block
entries

Φi, j =
{

I, j = ni , i = 1, 2, . . . , M
0, otherwise

Given that each FES input must be bounded, i.e., umin ≤ ui ≤ umax, it is necessary
to impose vector inequality constraints of the form

Λu ≤ b

where

Λ = [−I I
]T

b = [
umin . . . umin umax . . . umax

]T

In the absence of the constraint, the Newton ILC design is

uk+1 = uk − ∇2 J (uk)
−1∇ J (uk)

= uk + (Φg
′
(uk))

†(q∗ − Φg(uk)) (6.27)

where † denotes the generalized matrix inverse, g
′ = δg(uk )

δuk
and in the ILC setting

Φg(uk) is replaced by the point-to-point error ek = q∗ −q f,k . The descent direction
term in (6.27) is the solution, u, to

min
u

||u||22, subject to Φg
′
(uk)u = ek (6.28)

Hence applying the constraint Λuk+1 ≤ b, which translates to Λu ≤ b −λuk, gives
the solution of (6.26) as

uk+1 = uk + Δuk (6.29)
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where Δuk is the solution of

min
u

||u||22, subject to

{
Φg

′
(uk)u = ek

Λu ≤ b − Λuk
(6.30)

Using results in Freeman and Tan (2012), this last problem can be solved by
applying the gradient method to

min
u

||yr − Φyk − Φg
′
(uk)u||22 subject to Λu ≤ b − Λuk (6.31)

using the barrier method with update

u j+1 = u j + α(Φg
′
(uk))

T − 1

τ j
ΛT d (6.32)

applied to Φg
′
(uk) where the elements, di , of d are

di = 1

bi − ΛT
i (u j + uk)

(6.33)

This iteration is performed multiple times between trials k and k + 1 to generate
the discrete term Δuk used in (6.29). The parameter τ j is increased at each inter-trial
iteration update j in order to reach the hard constraint, as detailed in Freeman and
Tan (2012). Moreover, there are no intensive matrix calculations required in (6.32)
since w = g

′
(uk)v corresponds to the linear time-varying system

x̃(p + 1) = A(p)x̃(p) + B(p)v(p)

w(p) = C(p)x̃(p) (6.34)

where A(p), B(p) and C(p) are computed as in (2.41). Also the term w = (g
′
(uk))

T v
has state-space model

x̃(p + 1) = AT (p)x̃(p) + CT (p)v(T − 1 − p)

w(T − 1 − p) = BT (p)x̃(p) (6.35)

Convergence and robustness properties of this algorithm have been developed in
Freeman and Tan (2012) where it is shown that convergence to zero error requires
that Φg

′
(uk) has full row-rank. Hence point-to-point locations can be chosen to

recover feasibility in the presence of a highly coupled interaction matrix R(q f ).

As a simulation example, consider the case when the sampling frequency is 100 Hz
and the clinically relevant task is to move the hand from an initial flexed position to
the position defined (angles in radians) by ϑ f = 1.57, ϑg = 0.47 and ϑh = 0.21,

respectively, which represents opening the hand to grasp an object. Two separate
cases are considered: (a) stimulation applied to all muscles and (b) only intrinsic

http://dx.doi.org/10.1007/978-1-4471-6726-6_2
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Fig. 6.7 Stimulation of
extrinsic and intrinsic
muscles using Newton
point-to-point ILC with an
inequality constraint against
trial number

f
g

h

muscles are stimulated. The stimulation limits of umin = 0 and umax = 350 µ s
are imposed and the results given in Figs. 6.7, 6.8, 6.9 and 6.10 confirm that a wide
variety of point-to-point movements can be achieved by intrinsic muscle stimulation
but requires higher levels of stimulation. Figures 6.7 and 6.9 show the joint trajectories
over 10 trials and the FES input on the final trial. As seen in Figs. 6.8 and 6.10 error
convergence results in high accuracy tracking within a few trials.

The simulation results in these four figures confirm the potential of assisted move-
ment using the muscles stimulated but there is the possibility of increased input norms
and hence the possibility of fatigue, especially for the EC muscle.
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Fig. 6.8 Stimulation of
extrinsic muscles using
Newton point-to-point ILC
with an inequality constraint
against trial number

f
g

h

6.2.3 Model Identification

The FES control laws are designed using a dynamic model of the combined human
arm and mechanical support. This dynamic model requires the two parameters, β

and γ , which define the anterior deltoid axis, which were determined by applying a
ramped 10 s FES signal to the anterior deltoid and recording the associated movement
of the patient’s elbow. It is assumed that the spring support cancels the effect of gravity
and therefore the stimulation only produces movement about the anterior deltoid axis.
A plane is fitted to the elbow positions that were collected whilst the stimulation was
applied, which were then used to determine β and γ .
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Fig. 6.9 Stimulation of extrinsic and intrinsic muscles using Newton point-to-point ILC against
trial number
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Fig. 6.10 Stimulation of extrinsic muscles using Newton point-to-point ILC with inequality con-
straints: error norm against trial number

6.2.4 FES Control

The control law is used to assist tracking of reference trajectories that are extracted
for the shoulder, elbow and wrist joints. Control is implemented (Exell et al. 2013)
for the pulse width inputs ua(t), ud(t) and ue(t) in the input vector u(t). The outputs
controlled by the system are the entries ϑa(t), ϑd(t) and ϑe(t) of vector qu(t), which
track the corresponding ϑ∗

a (t), ϑ∗
d (t) and ϑ∗

e (t) of q∗
u (t) containing the joint angle
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reference trajectories for each task. Joint angles not controlled by the system can
either be assumed fixed and removed, or treated as disturbances.

Application of dynamic model based ILC will be required but the construction
of such a model is a non-trivial task. Hence the results given in the rest of this
chapter use phase-lead ILC (4.34), where the results obtained will also be useful
for comparison in due course of performance relative to full dynamic model based
design. The phase-lead ILC law employed has the form

vk+1(t) = vk(t) + Lgek(t + λ) (6.36)

where λ > 0 is the phase-lead term and vk+1 is added to the feedback control output
to produce stimulation update uk+1. Moreover, the joint error ek is calculated using

ek(t) = q∗
u (t) − qu,k(t) (6.37)

Since only the joint angles (ϑa , ϑd and ϑe) are controlled, the matrix

Lg = Ldiag{ 1 0 0 1 1 0 }

where L > 0 is a scalar but this matrix could also be formed by choosing different
values of L for the two stimulated joint angles.

The reference trajectories for the clinical trial whose results are reported in the
next section were constructed from tests with unimpaired participants undertaking the
functional tasks detailed in the next section. Reference data for the three controlled
joint angles and tasks were scaled to the size and reach of each patient. Variation in
the joint angles ϑb and ϑc is allowed by the system since only ϑa , ϑd and ϑe are
controlled. Tasks were included in the system that are functionally relevant to daily
reach and grasp tasks and offer a range of movement challenges in 3D space. The
tasks that form each rehabilitation session are selected by the physiotherapist, based
on the individual requirements of the patient.

6.3 Clinical Results

6.3.1 Experiments with Unimpaired Subjects

The results in this section are taken, in part from Meadmore et al. (2013, 2014).
Evolving from the previous systems that used planar light tracking, Chap. 4, or virtual
reality 3D object tracking tasks, Chap. 5, the system in this chapter uses functionally
relevant real world tasks. The particular tasks used were: (1) switching a low light
switch (shoulder height), (2) switching a high light switch (head height), (3) closing
a drawer (shoulder height), (4) stabilizing an object on a table with the affected
arm whilst manipulating the object with the unaffected arm, (5) repositioning a

http://dx.doi.org/10.1007/978-1-4471-6726-6_4
http://dx.doi.org/10.1007/978-1-4471-6726-6_4
http://dx.doi.org/10.1007/978-1-4471-6726-6_5
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Fig. 6.11 The components
of the workstation. (1) Task
display; (2) SaeboMAS arm
support; (3) Surface
electrodes and arrays on
anterior deltoid, triceps and
wrist extensor muscles;
(4) Kinect; (5) goniometer;
(6) control algorithm
hardware and software;
(7) operator monitor;
(8) stop button

1
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3

5
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7

8

drink-sized object on a table, (6) pressing buttons positioned on a table. All of the
task endpoints were scaled for each patient’s arm length and shoulder height such
that the reference joint angle signals result in the desired positioning of the hand for
the task.

Figure 6.11 shows the workstation set up for the functional tasks; the tasks were
selected so that they incorporate different aspects of reaching, grasping and manip-
ulating objects at varying elevation ranging from table to head height.

Entries (1)–(6) in this figure are detailed above and in operation the therapist uses
the operator monitor interface (7) to select appropriate tasks and monitor training.
The therapist also has an over-ride stop button (8) that can be used to terminate trials
with immediate effect.

The tasks used were functional reach and grasp tasks performed in everyday life,
designed to span the workspace and offer a range of reaching challenges requiring
different amounts of shoulder, elbow and wrist extension. Five main tasks were used;
closing a drawer, switching on a light switch, stabilizing an object, button pressing
and repositioning an object. The objects were placed at different percentages of
arm length (60, 75, 80, 95 %) away from the participants glenohumeral joint, see
Fig. 6.12, directly in line with this joint, 45 % across body, or 45 % to the hemiplegic
side. As illustrated in Fig. 6.12, the light switch was located at two different heights
(low −90◦ and high −115◦ of elevation). The table was positioned at a distance of
45 % of arm length away from the glenohumeral joint and 35 cm below the arm when
the arm was held 90 % horizontal to the shoulder.

In each session, participants repeatedly practiced functional tasks with real objects
with assistance from FES. Participants were positioned at the workstation and the
arm being tested was loosely strapped into the dynamic mobile arm support system.
The arm support was adjusted such that the participant received enough support that
it felt as though the arm were floating but that the hand could rest easily on the table
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Fig. 6.12 Functional tasks that performed during rehabilitation

top. Movement produced by FES in the anterior deltoid, triceps and wrist extensors
was established. Maximum stimulation levels were identified for all muscles and
used as an upper limit for participant comfort and safety. Parameters necessary for
the model of the arm were also identified. The custom graphical user interface was
used by the therapist to perform the subsequent tests.

During training, the therapist selected the tasks to be trained, where these were
chosen to challenge the participant but also such that completion was not unrealistic.
Each task was typically repeated 6 times. Participants always started each task with
their hand resting on the red square, see Fig. 6.12, in front of their shoulder and the
therapist gave a verbal three-second countdown prior to the commencement of each
trial. During each task, FES was applied to the anterior deltoid, triceps and wrist
extensor muscles in order to assist performance of the movement. Patients were
instructed to always try to move their arm to complete the task themselves. The FES
was mediated by ILC to facilitate the movement of their arm over the 6 trials of the
selected task.

At the beginning and end of each session, participants also completed five unas-
sisted tasks: four button pushing tasks (located at 60 or 80 % of reach in line with
the shoulder, or at 75 % of reach, 45 % across body or 45 % to the hemiplegic side),
and the high light switch task (located at 75 % of reach and 110 % of elevation). The
unassisted tasks consisted of one trial only.

Joint angles, timings and error magnitudes between the participants arm move-
ment and the reference movement were recorded for each task. These provided a
measure of accuracy for each muscle group for unassisted tasks, i.e., movements
without FES, and assisted tasks. Unassisted performance was measured at the begin-
ning and end of each training session so that changes in unassisted performance
could be mapped over time. In addition, the change in error for each muscle group
could be measured across the 6 trials of each assisted task. This gave an indication of
whether the ILC was successfully reducing error in performance. As in the previous
clinical trials, FMA and ARAT were administered to assess upper limb impairment
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and function. These assessments were conducted by an independent assessor pre
and post the 18 training sessions. As noted above, detailed results are given in Mead-
more et al. (2013, 2014).

6.3.2 Clinical Trial Results

A clinical feasibility trial, for which the unimpaired results again formed part of the
successful ethical approval, has been completed. The following results report data
from three patients who have completed the trial, with remaining data and further in
depth discussion appearing in Meadmore et al. (2014).

For the three patients, FES successfully facilitated movement in the upper limb
at all three joints. Also using ILC to adjust the FES applied, performance error
for each joint was shown to reduce over a set of six trials. For example, Figs. 6.13
and 6.14 show performance for button pressing at 80 % of reach, where there was
an improvement of 63 % for the wrist, 41 % for the elbow and 22 % for the shoulder
from trial 1–6. Some FES was always applied during the first trial of a set of tasks
and improvements were generally larger when compared to unassisted performance.
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Fig. 6.13 Example of changes in performance for pressing a button located in line with the shoulder
at 80 % of reach over 6 trials at the shoulder, elbow and wrist. Joint angles are shown for the ideal
reference (solid line), trial 1 (dotted line) and trial 6 (dashed line)
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Fig. 6.14 Example of
normalized RMS changes in
performance for pressing a
button located in line with
the shoulder at 80 % of
reach. Note that the
participant received FES on
all 6 trials. Error is shown for
the shoulder (cross), elbow
(triangle) and wrist (star)
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For example, the improvements for the button pressing at 80 % of reach increased to
70 % for the wrist, 68 % for the elbow and 56 % for the shoulder when compared to
unassisted performance.

Improvements also were detected for all three patients in unassisted performance
when comparing performance over the 18 sessions, see Table 6.2. The Button Press
at 80 % reach, Contralateral Button (75 % of reach, 45◦ to the hemiplegic side) and
High Light Switch tasks (75 % of reach, 110◦ of elevation) were the three most
challenging of the unassisted tasks.

The improvements found in unassisted performance were also reflected in the clin-
ical outcome measures. As illustrated in Table 6.3, both the FMA and ARAT scores
significantly increased from baseline to post-intervention. One tailed, paired t-tests
confirmed that the overall 10 % increase in FMA scores (t (2) = 3.93, p = 0.01)
and 9 % increase in ARAT scores (t (2) = 6.43, p = 0.03) were significant improve-
ments. This data demonstrates a reduction in motor impairment and an increase in
motor activities.

Table 6.2 Changes in unassisted performance for pressing a button at 80 % of reach,
second column, pressing a button on the contralateral side, third column, and high light switch
tasks, fourth column

P1 (%) 50 54 35

P2 (%) 45 63 51

P3 (%) 13 20 38

Average (%) 36 46 41
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Table 6.3 Baseline and post-intervention outcome measures

P1 15 24 0 7

P2 19 24 3 7

P3 17 21 4 10

Average 17 23 2.3 8

Second and third columns are FM, maximum score = 66, baseline and post-intervention respec-
tively. Fourth and fifth columns are ARAT, maximum score = 57, baseline and post-intervention
respectively
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Chapter 7
Conclusions and Further Research

Stroke is the largest cause of disability in developed countries, where a relatively
small percentage of patients with upper-limb impairment following stroke regain
full function. In particular, many of these patients experience difficulty performing
everyday reaching and grasping tasks. Functional electrical stimulation (FES) can
assist stroke patients in moving their impaired limbs and has been shown to increase
upper-limb function. In addition, the benefits of FES are greatest when combined
with maximal voluntary effort from the patient to perform the movement. This poses
the problem of how to provide the correct level of FES to assist the movement with
the requirement that maximal voluntary effort is also encouraged. In control systems
terms an algorithm that directly regulates the input is required as opposed to one that
adapts the controller.

The underlying premise of the research reported in this monograph is the use
of ILC to regulate the FES applied during rehabilitation where the patient makes
repeated attempts to relearn a task by repetition. In particular, the patient is presented
with a reference, such as a lighted path to follow in reaching out over a table top
to a cup, and attempts to follow it guided by a robot and with FES applied to the
relevant muscle. During an attempt, the error between the reference and the trajectory
generated by the patient is measured and once the attempt is complete the arm is
returned to the starting position and this information is used by the ILC law to
compute the FES to be applied on the next attempt. Use of ILC in this application is
a technology transfer from industrial robotics to next generation healthcare.

In thismonograph, the results of three programs of research are reported, including
clinical trial evaluation which is essential to enable the eventual take up of this work
by healthcare professionals. The first program (Chap.4) focused on initial proof of
concept by considering movement in one plane and stimulated one muscle group
(triceps) to control movement around the elbow joint. Patients tracked a moving
trajectory with their hand whilst FES was applied to assist with the movement.
Following each trial, ILC updated the FES signal for the subsequent trial. Results
showed improvements in tracking accuracy during the sessions. This initial research
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did not allow the patient to attempt to lift the affected arm and also movement in the
plane was tightly constrained by the support.

The second program (Chap.5), considered a 3D task where the ability to lift
the affected arm was also trained and hence, in contrast to the previous chapter,
stimulation of more than one muscle is required. Given that stroke patients have
difficulty lifting their affected arm, a gravity unweighing robot was employed and
the final design was again used in a clinical trial with very encouraging results. For
3D tasks, the need for model based design is much stronger than in the planar case.

Given the progress with a fully prescribed reference trajectory, i.e., following a
specified path from the start to the end position on each trial, an obvious next stage is
to relax this assumption and consider activities directly related to daily living tasks.
Moreover, stroke patients also have difficulty opening their affected hand to grasp
an object. Hence there is also a need to rehabilitate the hand and this will involve
stimulation of the wrist and hand extensors. These requirements are the subject of
the third program (Chap.6) again with supporting clinical trials based on the Kinect
motion capture device and wrist electrogoniometers. One other advantage of the use
of the Kinect is reduced cost and hence a step towards eventual home use.

Using the progress reported in this monograph as a basis, there are a large number
of areas where further research should be directed. These relate to onward develop-
ment of the existing results and also the possibilities of extending the use of ILC and
repetitive control to regulate FES in other areas of rehabilitation. A number of these
are given next with supporting references where appropriate.

• Nonlinear and Constrained ILC Design With the exception of the simulation
based study given in Chap. 6, the vast majority of ILC designs are unconstrained.
In all cases where patients are involved there will be a specified limit on the level
of FES that can be applied. Further research effort should be directed to this area,
building, in the case of constrained designs, on the results in Freeman and Tan
(2012) and, as one option, aiming to deploy model predictive control algorithms.
For muscle fatigue there is the possibility, based on initial results in Brend et al.
(2013, 2015), of using multiple model adaptive control. Moreover, control of
complex dynamics associated with using electrode arrays on the wrist and hand is
an emerging area in which it may not be possible to identify an adequate nonlinear
global model. One possible approach is to identify locally valid reduced-order
linear models, as described in Freeman (2014).

• Muscle Representations The results in this monograph have used the Hammer-
stein model of the response of muscles to FES. As the control challenges increase
there could be a need to switch to more general structures including Hammerstein-
Wiener representations of the active component of the Hill model (Hill 1938). This
latter model is used in the regulation of assistive stimulation in other areas of re-
habilitation and could be more applicable to online identification in an adaptive
control setting,where some initial results on this last area canbe found inLe (2011).
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• Reference Trajectory SelectionThe results inChap.6 havemoved on towards ref-
erence trajectories that mimic how a human undertakes daily living tasks and need
further development. For example, in Freeman et al. (2015) customised computa-
tional reference trajectories have been developed that pose human movement as a
constrained optimisation problem involving each patient’s biomechanical model,
with results showing a close match to their unimpaired movement. This hence has
potential to replace current approaches that rely on a physiotherapist assessing
each patient and determining the reference trajectory manually. However, further
research is needed to adapt the reference trajectory in order to ensure it continually
poses a suitably difficult level of challenge. If, for example, the trajectory is too
far outside the patient’s current ability then this is a demotivating factor for at least
some patients and likewise if the trajectory chosen is within the current capabili-
ties of a patient then little or no benefit results. The development of methods that
monitor the performance of a patient during the trials and allow a trajectory switch
is an obvious area for further research.

• Towards Home Use The results in Chap.6 are much closer to a system that could
be taken to a patient’s home but much further development is also required, aside
from the need to conduct larger scale patient trials for approval by the regulatory
authorities. In this respect, there is an obvious role for wearable technology and
some initial results in this direction can be found in Yang et al. (2014).

• Tremor Suppression The combination of learning and FES has potential for ex-
ploitation to address wider neurological conditions. One of these is suppression of
tremor which is widely present in neurological conditions such as multiple scle-
rosis, with results from a study with 10 participants confirming feasibility of the
approach (Freeman et al. 2015).

• Lower LimbThe research in thismonograph has focused on upper limb rehabilita-
tion and there has also been research on the use of ILC for lower limb rehabilitation,
such as Seel et al. (2013), Ambrosini et al. (2014) and Klauer et al. (2013).

• Multiple Sclerosis The system of Chap.5 has also been employed with clinical
trials with multiple sclerosis patients (Sampson et al. 2015) with promising initial
results.
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