
Chapter 9
Building an Adaptive Multimodal Framework
for Resource Constrained Systems

Carlos Duarte, Daniel Costa, Pedro Feiteira, and David Costa

Abstract Multimodal adaptive systems have typically been resource consuming
systems, due to the requirements of processing recognition based modalities, and
computing and applying adaptations based on users and context properties. In
this chapter, we describe how we were able to design and implement an adaptive
multimodal system, capable of performing in a resource constrained environment
such as a Set-top Box. The presented approach endows standard non-adaptive,
non-multimodal applications with adaptive multimodal capabilities, with limited
extra effort demanded of their developers. Our approach has been deployed for
Web applications, although it is applicable to other application environments.
This chapter details the application interface interpretation, multimodal fusion and
multimodal fission components of our framework.

9.1 Introduction

The current trend shows computational devices moving into the living room. People
use tablets and smartphones while they watch TV, for tweeting about what their
watching, or to find additional information about the show [1]. Set-top boxes and
connected TVs are making this possible even without the additional devices. This
trend also means the number of potential users is increasing, and with it the diversity
of users’ abilities, characteristics and technical knowledge will also increase.
Combine this increasingly diverse user population with their lack of knowledge
about the use of such applications, and the lack of traditional input devices (i.e.
mouse and keyboard) in the living room setting, for which most web applications
(that are now being made available in TV sets) have been built, and it is possible
to envision a high resistance to their adoption. A solution to such problem requires

C. Duarte (�)
Department of Informatics, University of Lisbon, Lisboa, Portugal
e-mail: cad@di.fc.ul.pt

D. Costa • P. Feiteira • D. Costa
Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
e-mail: dancosta@di.fc.ul.pt; pfeiteira@di.fc.ul.pt; dcosta@lasige.di.fc.ul.pt

© Springer-Verlag London 2015
P. Biswas et al. (eds.), A Multimodal End-2-End Approach to Accessible Computing,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-6708-2_9

173

mailto:cad@di.fc.ul.pt
mailto:dancosta@di.fc.ul.pt
mailto:pfeiteira@di.fc.ul.pt
mailto:dcosta@lasige.di.fc.ul.pt


174 C. Duarte et al.

an approach that can support natural interaction modalities, with the capability to
interpret inputs from multiple modalities, and the capability to adapt the presentation
of current and future web applications to the abilities and skills of the user and
to the context of use, characterized by the existing devices and the surrounding
environment (which takes particular importance in the living room scenario).

Multimodal input interpretation (involving recognition of speech, gestures, and
possibly other modalities), and distribution and adaptation of output rendering over
different modalities, are computationally expensive operations. On the other hand,
set-top boxes have limited processing power, so some constraint on the multimodal
operations has to be exercised. Still, their processing power is increasing, and the
differences to other living room devices, like gaming consoles, can be expected to
decrease, and even possible merge into one device, which opens new perspectives
for the future. However, presently, limitations still have to be built into the
adaptation process, as will be presented in the corresponding sections of this chapter.
Nevertheless, the features that motivate this development have to be retained, or else
the platforms will not be adopted by end-users.

Platform and service providers are not expected to deliver a platform with adap-
tive multimodal characteristics. The work on these platforms have been conducted
almost exclusively in the realm of academia and research institutions, although in
the recent years, natural interaction modalities have been making their way into
the living room, promoted essentially by gaming consoles. As such, to further
their adoption, and to bring the benefits of adaptation and multimodal interaction
to all the strata of the population, the solution must be a framework capable of
interfacing between the user and a standard application. A service provider, will
then benefit from having a framework that can translate multimodal inputs into
something that the application can process, and that additionally is capable to adapt
the application’s interface in a way that best suits the user. The end-user benefits
from having the adapted presentation and from being able to interact naturally. This
chapter presents that framework, focusing on the mechanisms that enable adaptive
multimodal fusion and fission.

The next section will give a brief overview of the framework’s architecture. The
following section describes how the framework and applications communicate user
interface (UI) information between them. The following two sections describe the
mechanisms that endow the framework with adaptive multimodal fusion and fission
capabilities. The final section concludes this chapter and presents an outlook for
future developments.

9.2 Architectural Overview

The GUIDE1 project has developed a framework, that sits between the interaction
devices employed by users and applications deployed by service providers, endow-
ing applications with adaptive multimodal interaction capabilities.

1http://www.guide-project.eu/

http://www.guide-project.eu/


9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 175

Fig. 9.1 Architectural overview of the GUIDE framework

Figure 9.1 presents an architectural overview of the GUIDE framework and
communication system.

Applications are executed in environments (e.g. web applications in browsers,
java applications in java runtime environments). The framework abstracts this into
the concept of Application Execution Environment (AEE). For each AEE, an Appli-
cation Environment Interface (AEI) needs to be provided. The AEI is responsible for
managing the communication between applications and framework, which includes
translating the application’s UI into a representation that is understood by the
framework and exchanging events between application and framework. Based on
the application’s abstract representation the framework performs runtime adaptation
of the interface elements (such as adjusting text-size, font-size, color, and contrast)
and uses different input and output modalities for interaction with the user.

The framework core specification defines two groups of components. The first
set of components implements multimodal adaptation algorithms for processing and
managing input and output data as well as to adapt parameters across modalities for



176 C. Duarte et al.

a given user profile. These include: the “Input Adaptation” module for filtering and
manipulating a sequence of continuous user input data such as cursor positions from
a computer mouse; the “Fusion Module” that is responsible for interpreting inputs
from different input devices into meaningful commands for a given application;
the “Dialog Manager” manages changes in the application’s state and manages
dialogs between user and framework; and the “Fission Module” that is responsible
for preparing and coordinating the multimodal rendering of content to the user. A
second set of components manages context information and user profile data. The
Context Model stores and manages context events generated by different context
sources and implements rule-based logic for reasoning on context data for given
situational changes. The User Model manages a set of sample profiles derived by a
user initialization application at runtime.

Further details of the communication mechanisms of the framework and of
framework components are presented in other chapters of this book. Still, it is
important to highlight two factors: application independence and platform inde-
pendence. For the framework to be adopted by service providers it must be able
to process applications which have not been programmed specifically for it. For
the framework to be adopted by platform manufacturers it must be able to operate
in platforms which have not been designed specifically for it. In order to support
these requirements, AEI will have to be provided for each AEE. In the scope of the
GUIDE project, on AEI has been developed targeting one AEE. The AEE selected
was the web browser, and the resulting AEI is called the Web Browser Interface
(WBI). Additionally, an application independent UI specification format has been
adopted in the framework, which will be presented in the next section.

9.3 Interfacing with Applications

In order for an adaptive system to adapt a user interface or to apply the interpreted
commands from combinations of different inputs, it needs to have knowledge
about the application’s user interface. One the GUIDE framework’s goals is to be
compatible with any type of application. As it isn’t feasible to develop an instance
of the core for each application type (and associated development language), we
needed a standard UI description language (UIDL) to interface between framework
and application.

Further, as has been discussed above, framework requirements specify that
application designers and developers should have little effort to make their appli-
cations compatible with the framework. At the same time, the extraction of the UI
representation should be possible without requiring much processing power due to
the constraints imposed by set-top box environment. To meet these requirements
each AEI must have a component, named User Interface Extraction Component
(UIREC), that is responsible for extracting the application’s UI representation.

The following sections describe the alternatives and choices we have faced during
the development of this component for the WBI.



9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 177

9.3.1 User Interface Description Languages

As mentioned before, it is a requirement of the GUIDE framework to analyze,
choose and adhere to one of existing abstract UI representation language standards.
In order to ensure a complete separation of application logic from its presenta-
tion, the GUIDE Framework should support a standard interface vocabulary that
abstracts the semantics and intents of an application from its concrete user interface
implementation. Thus a design consideration in GUIDE is to evaluate and select
from the plethora of existing abstract UI description standards, one that meets its
abstract UI description needs but at the same time, also requires minimal effort in
implementation and re-use. Table 9.1 shows the considered UIDLs.

XForms cannot cover all the requirements for GUIDE as it is incapable of
describing more specific properties or attributes of certain elements (Buttons,
Images, etc.) such as position values, size, color or other style properties. Although
much more complete than XForms, UsiXML fails in giving the location of objects
which is an important property for Fusion and User Model components in the

Table 9.1 User interface description languages considered in the GUIDE project

UIDL name Description

XForms (http://www.w3.org/MarkUp/
Forms/)

XML application that represents the next generation
of forms for the web, and has introduced the use of
abstractions to address new heterogeneous environ-
ments. When comparing XForms with HTML Forms,
the main difference, apart from XForms being in XML,
is the separation of the data, from the markup of the
controls

UsiXML (http://www.usixml.eu/) Standing for USer Interface eXtensible Markup Lan-
guage, it is an XML-compliant markup language that
describes the UI for multiple contexts of use such
as Character User Interfaces (CUIs), Graphical User
Interfaces (GUIs), Auditory User Interfaces, and Mul-
timodal User Interfaces

XIML (http://www.ximl.org/) It is an extensible XML-based specification language
for multiple facets of multiple models in a model-based
approach, developed by a forum headed by RedWhale
software. It was introduced as a solution that enables
a framework for the definition and interrelation of
interaction data items

UIML (https://www.oasis-open.org/) The User Interface Markup Language, is an example
of a language that has addressed the multi-device
interface issue. It is an XML-compliant language that
supports a declarative description of a user interface
in a device-independent manner. In UIML, a user
interface is a set of interface elements with which
the user interacts. These elements may be organized
differently for the different categories of users and
types of appliances

http://www.w3.org/MarkUp/Forms/
http://www.usixml.eu/
http://www.ximl.org/
https://www.oasis-open.org/


178 C. Duarte et al.

GUIDE Core. Although the tag and property names are a bit sloppy they are indeed
complete, but the main drawback connected to XIML is the fact that, differently
from the majority of the other User Interface description languages, it is developed
within a software company, and therefore its use is protected by copyright. UIML
specification does not define property names. This is a powerful concept, because
it allows UIML to be extensible: one can define whatever property names are
appropriate for a particular element of the UI. For example, color might be a useful
property for a button, while text-size might be appropriate for a label. This flexibility
allows us to define all the properties needed for all GUIDE components (Input
Adaptation, Fusion, Fission, Dialogue Manager, User Model, etc.). Additionally,
they might be used to represent the information developers might provide using
WAI-ARIA [2] markup tags. UIML seems to be the most complete and flexible UI
representation, therefore it was chosen as the standard language to be used as the
interface language between the framework and the applications.

Other adaptive multimodal systems such as EGOKI [3] also use this UIDL.
However, our approach is different as the framework is the one generating the UIML
automatically based only on the UI elements, discarding the logical specification of
the application.

9.3.2 Implementation Alternatives

Before the UIREC was made part of the WBI different approaches on where and
when this extraction was to be done were considered.

One of the first approaches was to do it in design time, i.e., when developers
finished their application they would use a tool to extract a UIML file describing
the entire application. However, this approach was discarded because different
developers use different implementation methods. For instance, some developers
use separate files for different application states (e.g. one HTML file for each state)
and other developers use one single file. Developing a parser for this scenario would
be a task of extreme complexity.

The next approach was to integrate this component in the GUIDE core serving as
an Application Model that would derive and extract automatically the states and UI
representations. However, this suffered from the same limitations and, additionally,
this approach would require a change inside the GUIDE core every time a new
application execution platform, and thus application language, is integrated.

The final approach is to make this extraction state by state and outside the core.
This approach has the advantage of delegating to the AEI the job of delivering
the code that belongs to a determined state, and any change in the program
language doesn’t imply any change in GUIDE’s main components. Currently, it
was implemented in the WBI, as part of the Javascript API. The advantages of
this approach are the full access to the DOM tree and the ability to cope with the
dynamically introduced elements as the extraction is made in browser processing
time.

The following section details how this extraction is made.



9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 179

9.3.3 In Browser User Interface Description Language
Creation

In order for the UIREC to obtain meaningful information for the several components
of the GUIDE framework, some conditions have to be verified in terms of the
application’s implementation: all the elements that are meant to be adapted and
recognized by GUIDE, preferably the majority of the elements presented on the
interface, must have a unique id and the respective WAI-ARIA tag describing the
role of the element.

The process starts after the application loads its resources (e.g. style-sheets and
scripts), and proceeds during the Framework phase. Then, the HTML and CSS
information is sent to the UIREC, where the parsing takes place in two phases:
(1) extraction of the structure of the user interface by parsing the HTML and (2)
extraction of the style information of each element by parsing both HTML and CSS
information.

The parser goes through the DOM in search for the elements correctly marked
with an id and the WAI-ARIA role, and starts forming the structure section of
the UIML. The structure is formed with a set of <part>tags with the id and class
properties. The id’s match with the HTML elements and the classes with the WAI-
ARIA roles. There are some roles that encompass other roles, which is the case of
menu that has menuitems. In these cases, the parser takes into account the parent
and child elements.

The style section on the UIML corresponds to the properties defined on the style-
sheets and/or HTML properties. This section is composed of <property>tags, each
one having a part-name tag, that matches the part id on the structure section, the
property name (e.g. background-color) and the value. The UIREC can understand
specific CSS properties as well as properties defined in CSS classes.

Besides CSS properties, the UIREC needs positioning and size information about
the elements. As most of these properties have different representations (e.g. relative
positions, percentage, pixels), the WBI has the ability to add to each element GUIDE
specific properties. These properties contain x, y, width and height absolute pixel
values divided by the screen size (e.g. guidePositionX D 0:124). The UIREC adds
these properties to the style section.

When the processing is finished, the UIML document is sent to the GUIDE
framework’s bus system and collected by the interested components.

The next section describes what is the real effort made by TV application
developers to integrate their applications with the Framework.

9.3.4 Implications for Application Developers

As discussed above, the TV applications considered so far in GUIDE are based
on web-based languages like HTML, CSS and JavaScript because of their wide
acceptance among developers and general compliance with STB and HybridTV [4]
specifications.



180 C. Duarte et al.

In the end, what is expected from the developers is nothing but the specification
and integration of WAI-ARIA tags to define the role of the different UI elements
and, possibly, some accessibility considerations such as the compliance with WCAG
2.0 guidelines [5]. The only additional effort is the integration with the GUIDE
Javascript API, which is accomplished with a very small number of lines of code.

We believe that this effort represents a very small overhead for application
developers. A similar or, more probably, an even larger effort, would have to be
made if the application was intended to be accessible, in the first place, following
current practices.

9.4 Interpreting Input

One of the most crucial aspects of multi-modal interactive systems is interpreting
user input, which can either be a simple or complex task, depending on factors such
as the number and type of modalities involved, architectural and implementation
choices, or even user and contextual requirements.

As a system grows or branches in terms of interaction mechanisms available,
so does the amount and variation of information received by it. For this reason,
a way of correctly interpreting all of this data is needed, along with adaptation
mechanisms that make the interaction experience the most adequate for each user. In
addition, users, the way they interact with applications, and their surroundings, can
also evolve over time, which forces a fusion engine to constantly adapt its process
of decision-making in order to provide trustworthy results.

The GUIDE framework is an user oriented system, capable of providing distinct
modalities and devices for providing input, which includes speech and gestures
recognition, remote control, among others. For these reasons, a great focus of the
framework development was set on creating an approach capable of processing data
from these sources, combine it when needed and provide high-level interpretations
that are of use to other components of the system.

9.4.1 Requirements for Input Fusion

The main task of the GUIDE fusion engine is to potentially combine any incoming
input from recognizers, reach an interpretation of that data and forward it to a dialog
manager that continues the process, ending with a response that is returned to the
user. The key to provide the most suitable interpretation for a given situation is to
take into account critical information from three main sources: input events, a user
model and a context model.

When the user is interacting with GUIDE, input recognizers are constantly
capturing and generating events that will be sent to the fusion module, which



9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 181

constitute the base for creating interpretations. These events, which contain tem-
poral (e.g. timestamps) and semantic attributes (e.g. what the user said, which key
was pressed) can be considered the most important piece of knowledge, because
without it there would not exist a purpose for data fusion. Information about the
user, although not essential for understanding input, it is of extreme importance for
the fusion process, because it allows to tweak models and algorithms in accordance
to each user’s necessities and preferences. This type of data is extracted from user
models that are constructed a priori by an initialization application, and allow the
fusion engine to have access to data such as the level of user proficiency with each
modality or device available. Knowing the extent of user capabilities towards the
system is an important asset, but it is also quite important to understand how the
environment, that surrounds the user, affects the way in which these capabilities are
used. The context model is the third component used by the fusion engine to create
decisions about what is happening between user and system. The information that
must be contained in this model includes, for example, how current environmental
conditions are affecting the usage of a certain modality or device (e.g. a noisy room
can have a negative impact on speech recognition) or the engagement between user
and system (e.g. if the user is passive for a long time, it may need some assistance
using an application).

9.4.2 Previous Works on Multimodal Fusion

Multimodal interfaces and ways of interacting with them have been subject of
study for the past two decades [6]. This is also true for the process of multi-
modal fusion, for which there have been envisioned different levels, architectures
and algorithms. Sharma et al. [7] considers three levels for fusion of incoming data:
sensor-level (or data-level) fusion, feature level-fusion and decision level-fusion.
Other authors such as Sanderson and Paliwal [8] define terms with similar meanings
such as pre-mapping, midst-mapping and post-mapping fusion. The difference
between these types of levels, is essentially, at which time, information combination
takes place. Pre-mapping data-level fusion, deals with raw data coming from
recognizers, representing the richest form of information possible, quantitatively
speaking. Because the signal is directly processed, no information loss occurs,
although it is very susceptible to noises and failures. Due to the heavy processing
involved, sensor-fusion is most suited for situations where multiple streams of
a single modality are involved. Pre-mapping feature-level fusion, is a type of
fusion oriented for closely-coupled or time synchronized modalities such as, for
example, speech and lips movement recognition. In this type of fusion, features
are extracted from data collected by several sensors, and if they are commensurate
they can be combined. Unlike data-level fusion, it can suffer from data loss, but
manages noise interference better. In midst-mapping fusion several information
streams are processed concurrently while the mapping sensor-date/feature space



182 C. Duarte et al.

to decision/opinion space takes place. This type of fusion, similarly to feature-
level fusion, is also oriented for closely coupled modalities such as lips and speech
recognition.

One of the most common and widely accepted forms of fusion is decision-level
fusion, and that is because it allows multi-modal systems to make effective use of
loosely-coupled modalities, such as the case of GUIDE. Because the information
received by the fusion engine has already been processed, noise and failure are
no longer issues to deal with. This means, that fusion will have to rely on
preprocessed information in order to construct semantic meaning from combining
partial semantic information coming from each input mode. That preprocessed
information constitutes a concrete decision that was produced by one or more
recognizers. Opinion-level fusion (also called score-level fusion) is very similar
to decision-level because both of them operate after the mapping of data/feature-
level space into decision/opinion space. In fact, some literature [9] considered the
former as a sub-set of the latter. However, in the case of opinion-level fusion, a
group of experts provides opinions instead of hard decisions, and for that reason
Sanderson and Paliwal [8] found more adequate to make a distinction between the
two types. Opinions combination can be achieved, for example, through weighted
summation or weighted product approaches, before using a classification criterion
(e.g. MAX operator) in order to reach a final decision. The main advantage of using
opinion over feature vectors concatenation or decision fusion is that opinions from
each expert can be weighted. Fusion classifiers can be distinguished not only by the
type of fusion or architecture they possess, but also by whether they are adaptive
or non-adaptive [10]. The basic concept around adaptive, or quality fusion, is to
assign different weight values associated with a modality. This allows to imprint
adaptive features into a system, by setting the reliability and discrimination of
experts through time according to the state of the environment, signal quality, users,
or application logic.

As for options to implement these ideas and approaches, Dumas et al. [11]
considered the following as typical choices for decision-level architectures: frame-
based fusion, using data structures called frames or features for meaning repre-
sentation of data coming from various sources or modalities, modeling objects
as attribute-value pairs; unification-based fusion which is based on recursively
merging attribute-value structures to obtain a logical whole meaning representation;
symbolic/statistical fusion, an evolution of standard symbolic unification-based
approaches, which adds statistical processing techniques to the frame-based and
unification-based fusion techniques.

Taking into account the low and mid-levels of fusion described, it is clear that
these approaches have severe limitations that make them not suitable for the fusion
engine of the GUIDE framework, which has to deal with loosely-coupled modalities
and a high flow of data that must be handled quickly and efficiently, while at the
same time consuming the minimal amount of system resources, which are heavily
demanded by other components. As for high-level types of fusion, decision-level
is also not a completely optimal solution to embrace, due to the fact that it is not
directly oriented for systems that must deal with unpredictability or uncertainty,
something that is quite important for GUIDE.



9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 183

9.4.3 Adaptive Multimodal Fusion in GUIDE

In a system like GUIDE, which runs in a set-top box environment with limited
processing capabilities, it is of extreme importance to minimize the workload of
each component in the framework. For this reason, the approach taken in designing
the fusion module was centered on a high-level type of fusion, namely opinion-level
fusion, which assigns a considerable part of the responsibility of understanding input
to the recognizers, that provide opinions that must be interpreted and merged into
an interpretation. From an architectural point of view a frame-based strategy [11]
was chosen due to its simplicity and also because it could easily be augmented to
fulfill other requisites such as imprinting adaptability in the system and consider
uncertainty in the provided input. This implementation uses data structures entitled
frames, which consists of two major sets of data. The first one is a set of slots, which
can either contain triggers or sub-frames. Triggers are conditions that are to be met
in order for the slot to be activated, while a sub-frame is a regular frame contained
inside another frame, allowing the representation of more complex interaction
scenarios. A trigger is associated with one and only one modality (such as speech
or pointing) and contains data related to an input event, that essentially represent
user actions. The second set contained inside a frame consists of results, which
are interpretations or commands that have to be forwarded to the next component
in charge, when frame activation occurs. This activation can occur in different
conditions, because, for example, in some contexts we want all the slots conditions
to be triggered while in others only one might suffice. Taking into account temporal
constraints is also crucial when dealing with input, and for that reason, this frame
structure also keeps track of when conditions are met so that dynamic thresholds
can be set, in order to allow slower or faster-paced interactions, which is convenient
for users that have different characteristics.

The frame-creation process is something that is expected to occur many times
during an application life-cycle. As the context of the applications changes, the
fusion module must prepare itself to potentially receive different types of input
events and send the appropriate responses. To this, whenever the application context
is modified, a message is received from the system’s dialog manager, containing the
representation of the current UI displayed on the screen, expressed in UIML. When
the fusion obtains this knowledge the frames creation process can then begin. For
each kind of interactive element, specific frames will have to be considered and
created. In the case of buttons, for instance, frames will have to be created so that
these elements can be clicked using voice or pointing gestures. It also important
to notice that the frames created are not solely related to the UI itself. There are
other commands that should be available at all times, and are independent of the
application context. Examples of such situations would be the user requesting a
list of available speech commands or an explanation of a certain element. Upon
this process finalization, all the inputs relevant for the current context and their
respective responses are defined. As the user produces input, the fusion module
assesses at all times which frames can be activated with the input events received.



184 C. Duarte et al.

As previously mentioned, this approach is based on opinions, and therefore it is
expected to received, from most input recognizers, a confidence value along with
the semantic data involved with the input event. In this way, whenever an event
can trigger a certain slot, this slot is also given a confidence value. However, the slot
confidence does not depend only on the input, because the fusion module also has to
consider the user capabilities and the surrounding environment. For this reason, the
fusion engine is constantly being updated, by other components, regarding changes
on the user and context, which are also used to calculate the confidence on each
slot. For instance, if the system knows the user has difficulties using the speech
modality, it will assign a smaller weight to this modality, which in conjunction with
a low confidence speech event may trigger a slot. The purpose of defining confidence
values for each slot is to attribute an overall confidence value for the frame, which
will serve as a mean to compare activated frames and deciding which one is more
likely to represent the actions expressed by the user at that point, in order to return
the appropriate interpretations.

9.5 Generating Output

Another crucial component of the framework is the multimodal fission module. Fis-
sion is responsible for generating the appropriate UI adaptations and for delivering
the output to the user using more modalities if necessary, in order to achieve the best
possible user experience.

Using a unimodal system limits information presentation into a single modality,
this excluding persons who suffer from an impairment to the sensory channel needed
to perceive that information (a blind person cannot see graphical information and
a deaf person cannot hear sounds). Additionally, a person might be temporarily
precluded from using one sensory channel (e.g. her visual attention might need to
be focused elsewhere). For these reasons, it can be very important for an application
to be relieved of the limitation to present information in a single modality. The
multimodal fission component allows applications to present their information using
different modalities.

Modes are the sensorial system of a human with which he perceives the world.
A modality is defined by the structure of the information that is perceived by the
user (e.g. text, sound, vibration, etc.) and a medium is a channel or the mean used
to express the modality, i.e., the peripheral devices such as a monitor or a TV
screen, loudspeakers and so on. All these three components are dependent on each
other’s [12]. By combining the information presentation into an adaptive multimedia
output, we can enable a more natural and effective interaction whichever mode or
combination of modes are best suited to a given situation, context and according to
user’s preferences and abilities.

The adaptive multimodal fission component is responsible for dividing or
selecting the output channels to distribute the information through the available
outputs and according to the user profile and environmental context. We also



9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 185

consider the existence of active and passive outputs, or primary and secondary
outputs. For example when using a form of haptic feedback through vibration
you can actually hear it too, being vibration the primary output and auditory the
secondary output.

9.5.1 Requirements of Multimodal Fission

We defined since the beginning of this project that the developing strategy would be
an user centered methodology. This methodology aims to meet the user’s require-
ments, behaviors and specificities by studying and analyzing their interactions with
a multimodal system in the most likely end user environment. The target user
population considered in the scope of the GUIDE project are elderly people, but
many of the findings can be generalized to other population groups.

After conducting user studies and by analyzing the data, we could conclude
that applications should always present a short number of interactive elements for
each screen, focusing on big buttons. If developers make complex UIs, GUIDE has
to be capable of dividing one screen in multiple screens (and provide navigation
through them), or present options to the user in alternative modalities. Applications
should make sure both text size and audio volume are configurable by the user at
the beginning as well as in the middle of an interaction. If the application by itself
doesn’t offer this option, GUIDE UI adaptation should offer this possibility.

The existence of a strong relation between arm used for pointing and item
location on screen, will influence the way developers design the layout of their
applications, as it also affects the configuration and parametrization of GUIDE
presentation manager, as both have to contemplate the existence of this user-UI
relation.

If system feedback and presentation could only be performed in one modality
(Avatar, Audio or Visual information), the way to do it would depend on the inter-
action and application context but also on the user’s preferences and capabilities.
This is also true for the type of Avatar: head only avatar would be more suitable
for talking with the user or giving simple feedback, while half and full-body Avatar
would be suitable for instructing the user on how to do certain gestures, or on how
to perform certain tasks. However, and independently of which output modality
chosen, output should be repeatable every time the user asks for it again, solving
problems derived from lack of attention or changes in the context of interaction.

Trials showed that each user has its own characteristics and interaction patterns,
but they can be grouped into different clusters. Somehow, information about the user
must be collected by the system in order to perform the right adaptation.

To reach the elderly population, characterized by a set of age related disabilities,
but traditionally also by some reluctance to adopt new technologies, GUIDE instead
of relying on new interaction devices, opted for interaction modalities that are
already familiar to the target population. This multimodal interaction scenario might
demand a set of skills from its users, not for the interaction itself, but for the



186 C. Duarte et al.

setting up and configuration, that certainly should not be imposed on a regular
TV viewer, be him or her elderly or not. As such, in order to achieve the best
interaction experience and performance possible from the multimodal interaction
set-up, GUIDE includes the possibility to automatically adapt its features and their
operation parameters. Another benefit from presenting users with natural interaction
modalities, is that they do not require long learning periods in order to be used, thus
overcoming another factor that drives away users from new interaction technologies.

A fission component needs to have knowledge of the application’s UI and that
information must be structured and has to contain all elements and their properties in
order to be possible to adapt that content to the user. The Application Environment
Interface translates the application state (e.g. a Web page) into UIML to represent
the application’s UI in a language that is understood by the GUIDE core. The
multimodal fission processes the UIML representation of the application’s state and
decides on how to adapt presentation and interaction aspects. The results of this
adaptation are then transmitted to the interface who must translate them for the
application. As stated before each user has his own characteristics and set of skills
and fission will chose the most appropriate modalities based on an user profile (if
two or more users are in front of the TV, their profiles will be merged into a single
one). These parameters are divided in two types:

• A set of modalities (input/output) with a value representing their likeability to be
used and the level of necessity to be adapted by Multimodal Fission;

• A set of more specific parameters for visual or auditory properties. This data
represents the minimum recommendations by the User Model (e.g. the smaller
font size a given user can read) and are subject to change by the Multimodal
Fission’s decision evaluation system.

Adaptations do not depend solely on the user who is interacting with the system.
Some contextual elements change how the presentation should be rendered. A good
example is the ambient noise in the environment where the system is being used. If
the room is full of persons actively chatting with each others, the system will gather
the noise ratio level and fission will use modalities alternative to auditory modalities
(e.g. avoid auditory messages and use text visual messages). Other example is the
user distance to the screen which needs to be considered when adapting visual
elements of the screen (e.g. when calculating the font-size or buttons’ size). The
requested environmental data is the responsibility of a Context Model which fission,
and other components, will query whenever needed.

9.5.2 Existing Approaches in Multimodal Systems

Systems that combine outputs evolved since the early nineties where text and graph-
ics were combined (e.g. COMET [13]). More recent systems combine speech, hap-
tic, graphics, text, 2D/3D animations or avatars (e.g. SmartKon [14], MIAMM [15]).
Although most applications use few output modalities and consequently straightfor-



9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 187

ward fission techniques, dealing with the above-mentioned combination of outputs
can make the presentations more complex, difficult to coordinate and ensuring
coherence.

According to Oviatt [16], fission engines should follow three tasks:

• Message construction. The presentation content to be included must be selected
and structured, i.e., it is necessary to decompose the semantic information issued
from the dialogue manager into elementary data to be presented to the user.
There are two main approaches for content selection and structuring that can be
employed – schema-based [17] or plan-based [18]. However, in GUIDE this task
begins before the fission component processing begins, since it is constrained by
the application’s layout and content design.

• Modality selection. After the message construction, the presentation must be
allocated, i.e., each elementary data is allocated to a multimodal presentation
adapted to the interaction context. This selection process follows a behavioral
model that specifies the components (modes, modalities and medium) to be
used. The available modalities should be structured according to the type of
information they can handle or the perceptual task they permit, the characteristics
of the information to present, the user’s profile (abilities, skills, impairments and
so on) and the resource limitations. Taking this into consideration is necessary
for optimal modality selection. For the completion of this goal there are three
approaches: rule based [19], composite based [17] and agent based [20].

• Output coordination. Once the presentation is allocated, it needs to be instanti-
ated, which consists in getting the lexical syntactic content and the attributes of
the modalities. First the concrete content of the presentation is chosen and then
attributes such as modality attributes, spatial and temporal parameters, etc., are
fixed. For a coherent and synchronized result of the presentation, all used output
channels should be coordinated with each other.

9.5.3 Adaptive Multimodal Fission in GUIDE

GUIDE’s fission component, although based on the aforementioned approaches,
follows the What-Which-How-Then (WWHT) approach, a conceptual model of
Rousseau et al. [12]. This component must know what information to present,
which modalities to choose to present that information, how to present it using those
modalities and coordinate the flow of the presentation.

In order to select the most appropriate modalities to use, it is necessary to
define how deep the adaptation level will be. Three levels of adaptation of the
interaction and presentation interface were envisioned, which were characterized as
Augmentation, Adjustment and Replacement. These levels represent an increasing
change to the visual presentation defined by the application, from no change to the
visual rendering to a, possibly, complete overhaul.



188 C. Duarte et al.

Augmentation is the lightest form of adapting the interface implemented by the
developer. The visual rendering is not subjected to any change, as GUIDE only
complements it with other modalities. Usually, applications are developed using
primarily visual presentation mechanisms. As a consequence, audio modalities will,
foreseeably, be the most used in such situations in the form of redundant information
(e.g. speech synthesis of content presented on screen).

Adjustment is the level of adaptation where the visual interface rendering
is adjusted to the abilities of the user and which can also be combined with
augmentation. Once again, considering applications are primarily developed taking
into account visual rendering, this corresponds to adjusting several parameters of
the visual rendering (e.g. font size and contrast). If other modalities are employed,
their parameters can also be target of adaptation (e.g. adjusting audio volume).

Replacement level is the most complex adaptation scheme as it means that,
not only presentation changes can be made to the application’s interface (i.e. the
adjustment level), but it can also result in the replacement of some interactive
elements for other (e.g. menus for buttons) or even in the distribution of content
over different modalities or different screens in case of visual rendering. This level
is extremely useful for users with cognitive impairments, who, while navigating
through an application, can become lost due to the tangle of menus and buttons
displayed. The content of an application state can be simplified and divided by
various screens or rendered through other modalities such as the Avatar or speech
synthesis.

Given that GUIDE aims to support legacy applications (with changes as small as
possible to their code) we must consider that these applications have been developed
without accessibility concerns towards impaired users. Ideally, GUIDE would be
able to evaluate if the application’s presentation is close to the recommended
presentation parameters for the current user and context specifications (e.g. the text
sizes are between the values perceived by the user’s vision), and based on that
analysis select which adaptation level to apply. In practice, this represents a loss
of control for application developers and publishers which they do not agree to. As
such, the level of adaptation an application might be subjected to, can be limited
by the application publisher. If the application developer allows, GUIDE can apply
the computed adaptations. Alternatively, GUIDE can forward these adaptations to
the applications through the GUIDE API, and the application can choose which
adaptations to apply, thus retaining a greater degree of control.

The replacement level has been left out of project developments, given two
factors: first, the reluctance shown by application developers in having a foreign
framework taking over the rendering of their applications, and second, the com-
putational requirements for such a complex decision process, might be too much
for the processing power of a set-top box. Still, it is envisioned that in the future
new algorithms will be devised to this end, replacing current algorithms since the
variables at play are substantially different than the ones for the two first adaptation
levels.

After the selection of the adaptation level best suited to the situation, the
modalities to render the content are chosen through weights selected in accordance



9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 189

with the availability or resource limitations (context model) and with the user
specificities described in the user model. This means that fission uses a rule based
system to decide which modalities are the best for a given situation. There are two
types of decisions to be made, one is the modalities which will see their content
adapted and the other is the modalities that will be used to complement other
modalities.

Using the information provided by the user and context models, the fission
module is capable of calculating the best values for visual elements within the
recommended ones by evaluating the presentation coherency (e.g. assuring that
bigger buttons will not overlap each other or reach screen boundaries). Once the
presentation is ready to be rendered, the necessary messages to the output devices
are sent in a coordinated way. To synchronize the presentation flow, coordination
events are sent to the bus in order to start or stop rendering, or to be notified when
a render is completed. These rendering instructions are handled by a buffer in the
fission module, which sends one instruction for each device at a time. The device
will then respond with a notification of completion or failure. By controlling the
flow of events sent and notifications received, instructions that do not get a chance
to be rendered because a new state needs to be loaded due to user intervention are
not even sent to the rendering devices, saving bandwidth and making the whole
process more efficient.

9.6 Future Outlook

This chapter presented the GUIDE framework, a solution to endow applications with
adaptive multimodal mechanisms, benefiting both end-users, by providing them
with natural interaction mechanisms and adapted presentations, and application
developers, by empowering their applications with these mechanisms requiring only
a small effort.

GUIDE builds on the current trend that is bringing multimodal interaction into
the living room. Gaming consoles have started the momentum, but more enter-
tainment appliances with multimodal interaction capabilities have recently entered
the market. GUIDE expands on these offerings by integrating more modalities, by
complementing multi modality with adaptation capabilities, and by making it easy
for platform developers to integrate it into their offerings, be it on the application,
platform or interaction device level.

In the coming years, it can be expected that the computing power of set-top
boxes and connected TVs will keep increasing, making this solution more viable,
powerful and adoptable. The technical restrictions that are still felt will become
weaker, and more powerful algorithms will be enabled, thus affording interaction
paradigms even more suited to their environments.

Additionally, future users will already be more acquainted with natural inter-
action modalities, since we are already being more and more exposed to these in
current interaction devices, like tablets and smartphones where gesture and speech
interaction are becoming common.



190 C. Duarte et al.

Taking all this into consideration, we can expect that this kind of interaction, and
its supporting frameworks will enter the marketplace sooner rather than later, and
become standard in the living rooms. Furthermore, it is not hard to imagine the next
step, where this type of frameworks becomes ubiquitous, supporting personalization
and adaptation, not only in the living room, but everywhere where a networked
device is available.

References

1. Lochrie, M., & Coulton, P. (2012). Sharing the viewing experience through second screens.
In Proceedings of the 10th European conference on interactive tv and video (EuroiTV ’12)
(pp. 199–202). New York: ACM.

2. Accessible Rich Internet Applications (WAI-ARIA) 1.0. (2011). From: http://www.w3.org/TR/
wai-aria/.

3. Abascal, J., Aizpurua, A., Cearreta, I., Gamecho, B., Garay-Vitoria, N., & Miñón, R.
(2011). Automatically generating tailored accessible user interfaces for ubiquitous services.
In The proceedings of the 13th international ACM SIGACCESS conference on computers and
accessibility (ASSETS ’11) (pp. 187–194). New York: ACM.

4. Hybrid Broadcast Broadband TV. (2012). From: http://www.hbbtv.org/pages/about_hbbtv/
introduction.php.

5. Caldwell, B., Cooper, M., Reid, L., & Vanderheiden, G. (2008). Web content accessibility
guidelines 2.0 (W3C Note, December 2008). From http://www.w3.org/TR/WCAG20/.

6. Nigay, L., & Coutaz, J. (1993). A design space for multimodal systems: Concurrent processing
and data fusion. In Proceedings of the INTERCHI 93 conference on human factors in
computing systems (pp. 172–178). New York: ACM.

7. Sharma, R., Pavlovic, V. I., & Huang, T. S. (1998). Toward multimodal human-computer
interface. Proceedings of the IEEE, 86, 853–869.

8. Sanderson, C., & Paliwal, K. K. (2002). Information fusion and person verification using
speech & face information (Research paper IDIAP-RR 02-33).

9. Hall, D. L., & Llinas, J. (2001). Multisensor data fusion. In D. L. Hall & J. Llinas (Eds.),
Handbook of multisensor data fusion (pp. 1–10). Boca Raton: CRC Press.

10. Poh, N., Bourlai, T., & Kittler, J. (2010). Multimodal information fusion. In J.-P. Thiran,
F. Marqués, & H. Bourlard (Eds.), Multimodal signal processing theory and applications for
human computer interaction (p. 153). Oxford: Academic Press.

11. Dumas, B., Lalanne, D., & Oviatt, S. (2009). Multimodal interfaces: A survey of principles,
models and frameworks. Human Machine Interaction, 5440(2), 3–26.

12. Rousseau, C., Bellik, Y., & Vernier, F. (2005). WWHT: un modele conceptuel pour la pre-
sentation multimodale d’information. In IHM (Volume 264 of ACM international conference
proceeding series, pp. 59–66). New York: ACM.

13. Feiner, S. K., & McKeown, K. R. (1993). Automating the generation of coordinated multimedia
explanations (pp. 117–138). Menlo Park: American Association for Artificial Intelligence.

14. Reithinger, N., Alexandersson, J., Becker, T., Blocher, A., Engel, R., Lockelt, M., Muller, J.,
Pfieger, N., Poller, P., Streit, M., et al. (2003). SmartKom: Adaptive and flexible multimodal
access to multiple applications. In Proceedings of the 5th international conference on
multimodal interfaces (ICMI 2003) (pp. 101–108). New York: ACM.

15. Reithinger, N., Fedeler, D., Kumar, A., Lauer, C., Pecourt, E., & Romary, L. (2005). Miamm
– A multimodal dialogue system using haptics. In J. van Kuppevelt, L. Dybkjaer, & N. O.
Bernsen (Eds.), Advances in natural multimodal dialogue systems. Dordrecht: Springer.

16. Oviatt, S. (2003). Multimodal interfaces. In A. Sears & J. Jacko (Eds.), The human-
computer interaction handbook: Fundamentals, evolving technologies and emerging applica-
tion (pp. 286–304). Hillsdale: L. Erlbaum Associates Inc.

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.hbbtv.org/pages/about_hbbtv/introduction.php
http://www.hbbtv.org/pages/about_hbbtv/introduction.php
http://www.w3.org/TR/WCAG20/


9 Building an Adaptive Multimodal Framework for Resource Constrained Systems 191

17. Fasciano, M., & Guy, L. (2000). Intentions in the coordinated generation of graphics and text
from tabular data. Knowledge and Information Systems, 2, 310–339.

18. Duarte, C. (2008). Design and evaluation of adaptive multimodal systems. Phd thesis,
University of Lisbon.

19. Bateman, J., Kleinz, J., Kamps, T., & Reichenberger, K. (2001). Towards constructive text,
diagram, and layout generation for information presentation. Computational Linguistics, 27,
409–449.

20. Han, Y., & Zukerman, I. (1997, March). A mechanism for multimodal presentation planning
based on agent cooperation and negotiation. Human-Computer Interaction, 12, 187–226.


	9 Building an Adaptive Multimodal Framework for Resource Constrained Systems
	9.1 Introduction
	9.2 Architectural Overview
	9.3 Interfacing with Applications
	9.3.1 User Interface Description Languages
	9.3.2 Implementation Alternatives
	9.3.3 In Browser User Interface Description Language Creation
	9.3.4 Implications for Application Developers

	9.4 Interpreting Input
	9.4.1 Requirements for Input Fusion
	9.4.2 Previous Works on Multimodal Fusion
	9.4.3 Adaptive Multimodal Fusion in GUIDE

	9.5 Generating Output
	9.5.1 Requirements of Multimodal Fission
	9.5.2 Existing Approaches in Multimodal Systems
	9.5.3 Adaptive Multimodal Fission in GUIDE

	9.6 Future Outlook
	References


