
Chapter 11
Biological Systems: Multiscale Modeling
Based on Mixture Theory

Yusheng Feng, Sarah J. Boukhris, Rakesh Ranjan and Raul A. Valencia

Abstract Scientific understanding of complex biological systems has recently
benefited from mathematical and computational modeling. Classical biological
studies are focused on observation and experimentation. However, mathematical
modeling and computer simulation can provide useful guidance and insightful inter-
pretations for experimental studies. Mathematical modeling can also be used to char-
acterize complex biological phenomena, such as cell migration, cancer metastasis,
tumor growth, bone remodeling, and wound healing. Since these phenomena occur
over varying spatial and temporal scales, it is necessary to use multiscale model-
ing approaches. This book chapter provides an overview of multiscale mathematical
methods for developing models for aforementioned biological phenomena based on
so-called mixture theory. In Sect. 11.1, we cover the background about multiscale
modeling in general applications as well as biology specific applications, Sect. 11.2
presents the multiscale computational methods and the challenges associated with
modeling complex biological systems and processes, Sect. 11.3 presents theories and
their applications of four example model problems, and Sect. 11.4 concludes with
open questions in multiscale mathematical modeling, especially in biomedical areas.

11.1 Background

Although microscale and nanoscale systems are becoming more prevalent in many
engineering and biological applications, our ability to create predictive and informa-
tive mathematical models of these systems is limited [1]. For systems that cannot
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be modeled by continuum or molecular methods alone (e.g., too small or too large),
multiscale methods can be implemented. Multiscale methods involve the use of infor-
mation at various scales, which requires mathematics and computation to simulate a
physical or biological system at more tha one scale [1]. These methods are mainly
divided into two types of approaches: hierarchical and concurrent. The hierarchical
approach to multiscale modeling directly uses the information at small length scales
and inputs it into larger length scales via an averaging process. The more popular
concurrent multiscale methods, in contrast, utilize information at differing scales
simultaneously.

Multiscale modeling techniques have relevant uses in many fields of study such
as engineering and biology. Materials science has benefited from multiscale methods
in the realm of solid mechanics. Studying fluid flow effects in microfluidic devices
requires analysis at two or more spatial and temporal scales with coupled chemistry,
electrochemistry, and fluid motion [1].

For decades, advances in biology had little to do with contribution from sophisti-
cated mathematical modeling. Biology was mainly based on observation and experi-
mentation and it was not possible to simulate large complex systems. However, now
in the age of computers and seemingly endless computational capabilities, there is
an avenue for collaboration among biologists, mathematicians, and computational
scientists to establish relevant models based on experiments. No longer are there
strict limitations in tools and resources to examine life at many scales, which rep-
resents the difficulty in modeling biology. It is well known that biological systems
are complicated to mathematically model because they involve many interrelated
processes across many scales [2]. Each scale level in a biological system, both tem-
poral and spatial, contains information from levels either above or before [3]. The
general hierarchy of scales in biological systems follows the order of atom, mole-
cule, macromolecule, organelle, cell, tissue, organ, individual, to population. These
complex scales have also been broken up into specific fields of study (i.e., molecular
biology, cellular biology, organism studies, and population studies).

In the field of cancer research, the ultimate goal of mathematical modeling and
simulation is to aid in development of personalized therapies thereby decreasing
patient suffering while increasing treatment effectiveness [4]. Mathematical and com-
putational models, therefore, are needed to quantify the links between 3D tumors
and migration, invasion, proliferation, and microscale cellular and environmental
characteristics [4]. This task is best accomplished using multiscale methods.

11.2 Multiscale Computational Methods and Challenges

Multiscale methods are specially geared to develop models that are capable of link-
ing molecular, cellular, and tissue continuum scales. The common approach taken
in constructing a mathematical model is to begin with a simple model. This model
will preserve enough biology to be meaningful, but will include less parameters [3]
as to not over complicate the modeling process. The advantage of this approach
is that the model can be applied to understand many different biological systems.
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A mathematical model that incorporates multiple scales can serve at least two
purposes: (1) when detailed information about the biological system is known, the
model can be used to conduct in silico experiments in lieu of in vitro or in vivo
experiments; and (2) when details are unknown, the model can serve as a tool to test
a hypothesis and create a prediction. Extensions and complications can be included
into the mathematical model, in the form of additional parameters, to better resem-
ble the biological system [3]. However, it is necessary to avoid overcomplicating the
model.

The ultimate goal of multiscale mathematical modeling is to couple discrete
particle methods (e.g., molecular dynamics) with models at the continuum level.
However, coupling of these two methods is difficult because of the interaction
between the interfaces between molecular dynamics and continuum regions. When
applying the energy-conservation formulation, this discrepancy is amplified by caus-
ing heat generation in the molecular dynamics regime thereby polluting the solution.
Another issue in coupling molecular dynamics and continuum methods is in con-
necting timescales in each region. Several researchers have developed multiscale
methods to account for these issues to efficaciously bridge between temporal and
spatial scales. The following is a brief overview of commonly used multiscale mod-
eling approaches in the literature.

11.2.1 Bridging Scale Method

The bridging scale method is a concurrent multiscale method that couples the atom-
istic and continuum simulation methods [1]. The feature of this method is that it
is general and can be used in a full three-dimensional domain. At its basic level,
the bridging scale method includes the numerical calculation of the time history
kernel in multiple dimension so that a two-way coupled coarse and fine molecular
dynamics boundary condition is determined. This approach is particularly suitable
for dynamics systems with finite temperature.

11.2.2 Bridging Domain Method

The bridging domain method uses molecular dynamics in localized regions then
couples it with a continuum region that surrounds the atomistic region [5, 6]. A
spatial region contains overlapping continuum and atomistic regions which is best
demonstrated by two-dimensional wave and crack propagation scenarios [1].

11.2.3 Quasi-Continuum Method

Using the Cauchy-Born rule [7], which assumes that the continuum energy density
can be estimated using an atomistic potential, the analysis at the atomic level is
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coupled to the continuum in the Quasi-Continuum method [8]. This approach is
similar to an adaptive finite element method [9] which requires that the restriction
that the deformation of the lattice of continuum point must be homogeneous.

11.2.4 Coupled Atomistics and Discrete Dislocation

Coupled atomistics and discrete dislocation (CADD) is a method for quasi-static
coupling [1]. This approach to multiscale modeling couples molecular statics with
discrete dislocation plasticity [10–12], thus making it an especially useful tool in frac-
ture mechanics. Defects such as dislocations generated within the atomistic region
pass through to the continuum region where they are characterized by discrete dis-
location mechanics [1, 13].

11.2.5 Macroscopic, Atomistic, ab Initio Dynamics

The macroscopic, atomistic, ab initio dynamics (MAAD) multiscale method con-
currently links tight binding, molecular dynamics, and finite element methods [14].
All three methods are computed simultaneously and dynamically share and receive
information. The approach decreases the mesh size of the finite element mesh until
it is on the order of the atomic spacing. Atomic dynamic are then governed by mole-
cular dynamics, then tight binding is used to simulate the atomic bond breaking
processes at an area of interest such as a crack tip [1].

11.2.6 Course-Grained Molecular Dynamics

Coarse-grained molecular dynamics (CGMD) is a multiscale approach similar to
MAAD but instead couples only finite element and molecular dynamics [15]. It is
possible to eliminate the tight binding analysis because the coarse-grained energy
approximation converges to the exact atomic energy that is used to derive the gov-
erning equations of motion [1].

11.3 Theories and Applications

11.3.1 Multiscale Cell Migration Simulation

Biological studies indicate that abnormal gene mutations in healthy cells may disrupt
their regulatory mechanisms that control growth, proliferation, and apoptosis [16].
The uncontrolled growth of these cancer cells creates an avascular tumor mass [17].
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Avascular tumors receive nutrients and oxygen via diffusion from nearby vessels
[16], but as the tumor grows the demand for nutrients and oxygen increases. When
the tumor reaches a critical size, a small amount of cancer cells within the core of
the tumor will become necrotic due to the limited nutrient and oxygen supply from
diffusion thus initiating cell responses to hypoxia and inducing angiogenesis [18].
The now vascularized tumor creates a pathway that allows for the tumor cells to
migrate out of the primary tumor. These circulating tumor cells have the ability to be
deposited at a distant site and proliferate to produce secondary tumors [18]. Unfortu-
nately, it is difficult to clinically treat patients with metastatic cancer, in part, because
of our limited understanding of the mechanisms of cancer metastasis. Therefore, it
is in both scientific and practical healthcare interests to study cell migration and
nanoparticle transport in living tissues. However, it is very challenging to quantify
cellular motion and nanoparticle transport in an in vivo environment. Mathematical
and computational models may provide insight into mechanisms that govern the mass
transport and cell migration and possibly identify major influencing factors in the
process. We introduce a multiscale approach to simulate a simple system that con-
sists of a single fluid channel surrounded by hydrogel matrix with porous structure,
which reflects an in vitro 3D cell culture apparatus [16]. Cancer cells, nanoparticles,
and nutrients are immersed in the fluid, which mimics particle transport in a blood
vessel or a lymphatic vessel. The current model considers three kinds of particle mass
(cells, nanoparticles, and nutrients) transport driven by the flow inside a channel.

Transport of biochemical species and cellular microfluidics depends on the veloc-
ity of the carrier flow and on the size and nature of the biological species [19]. Mass
transport can be divided into two types in the circulatory system: (1) transport dom-
inated by convection and (2) transport dominated by diffusion. In the first type of
mass transport, cell and nutrient transport within the human vasculature is governed
by the local haemodynamics (macro-scale). The second type is the transport within
the wall of both the artery and vascular graft (micro-scale). Properties such as per-
meability, porosity, tortuosity, and diffusivity define how mass are transported within
vessel walls. In order to accurately model mass transport through a vessel wall, it is
necessary to understand the micro-structure of the wall [20].

It is important to analyze different length and timescales, since, specific consid-
eration may apply at the macro-scale but not at the micro-scale. Usually, the fluid
flows by pressure gradient effects and sometimes by electric forces (electro-osmotic
flow) at micro-scale. The Knudsen number is useful for determining whether con-
tinuum mechanics or statistical mechanics formulation of fluid dynamics should be
used [19].

Different physicochemical phenomena of the blood flow and cell migration are
associated at different time and length scales. Some of these phenomena are con-
sumption and transport of oxygen and nutrients, osmosis, generation of waste by
cells, mechanical loading of cells, electrochemical, chemo-mechanical, and electro-
mechanical phenomena, among others. For example, the time for cell synthetize is
about weeks while the cell adhesion is about hours. In the same way, the length scale
of the hydrogel is about millimeters, while the length of adhesion points of cells is
about is few nanometers [21].
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11.3.1.1 Mathematical Formulation

The coupling with hydrodynamics consists of a system with five unknown variables:
velocity (u, v, w), pressure (p), and concentration (c). The known parameters are the
fluid density (ρ), fluid dynamic viscosity (μ), the diffusion constant of the species
D, and two external actions on the fluid: the body force per unit volume F and
the concentration source or sink per unit volume S. At the macro-scale, the system
considers the Navier-Stokes equation and convection-diffusion equation.

∂ρ

∂t
+ ∇ · (ρU) = 0 (11.1)

ρ
∂U
∂t

+ ρU · ∇U = −∇ p + μ�U + F (11.2)

∂c

∂t
+ U · ∇c = ∇ · (D∇c) + S (11.3)

The system is under the condition that the concentration of nutrients is sufficiently
small as to not affect the carrier fluid viscosity and density. Usually in a microfluidics
system, the flow of the carrier fluid is assumed to be steady state and only the nutrient
concentration changes with time. In such case, parameters ρ, μ, and D are constant,
there is no cell growth (S = 0) and there are no body forces (gravity is negligible in
very small systems), the system would thus become:

∇ · U = 0 (11.4)

U · ∇U = − 1

ρ
∇ p + ν�U (11.5)

∂c

∂t
+ U · ∇c = D�c (11.6)

where ν is the kinematic viscosity. At the macro-scale level, fluid flow through the
porous hydrogel matrix is described by the Brinkman equation:

∇ · U = 0 (11.7)

ρ

ε

[
∂U
∂t

+ (U · ∇)
U
ε

]
= −∇ p + ∇ · μ

ε
[∇U + (∇U)T ] − μ

k
U + F (11.8)

where ε is the porosity, μ is the dynamic viscosity, μ is the effective viscosity of
the medium, and k is the permeability of the media. One approach to calculating the
local permeability is the Kozeny-Carman equation below, which relates the porosity
to the permeability of the structure [22]:
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k = r2ε3

4kk(1 − ε)2 (11.9)

where r the radius of the cylinders, kk is the Kozeny-Carman constant, and ε is
the porosity of the structure. Kozeny calculated an approximate value of 2 for kk

and Carman suggested a value of 5 based on experimental evidence on an assumed
isotropic medium [23].

For the effective viscosity of the medium, Brinkman simply took [21]:

μ = μ (11.10)

while Seyam et al. took [24]:
μ

μ
= 1

ε
τ (11.11)

with τ as the tortuosity of the medium defined below. For the case of this model, we
consider Brinkman’s simplification to the effective viscosity of a medium.

τ = √
ε (11.12)

If the hypothesis of a creeping flow is valid at micro-scale, the system collapses
to the linear system [19]:

∇ · U = 0 (11.13)

∇ p = ν�U (11.14)

The cell motion was tracked using the Newtonian formulation:

d

dt
(m pvp) = FD + Fg + Fext (11.15)

FD is the drag force from the fluid, which is described as:

FD = m p Fd(U − vp) (11.16)

where m p is the individual cell mass and Fd is the drag force per unit mass on the
cell. Assuming that the cells take spherical shape, Fd is defined as:

Fd = 18μ

ρpd2
p

(11.17)

where ρp is the cell mass density and dp is the cell diameter. The gravity force Fg is
usually negligible in very small systems and Fext is defined as:

Fext = M∇c − K vp (11.18)
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The first term on the right side, M∇c, is the attraction to nutrients (based on
chemotaxis) and the second term, K vp, is the drag force exerted by the porous
media. M[J m3/mol] and K [N s/m] are two constants that will be determined exper-
imentally. The shear stress for laminar flow of a Newtonian fluid is linearly related
to the shear rate (dV/dr) in terms of cylindrical coordinates [25, 26]:

τ = −μ
dV

dr
(11.19)

where V is the velocity [m/s] at radial position r [m] and μ [N s/m2] is the dynamic
viscosity of the fluid. Wall shear stress for turbulent flow is large compared to laminar
flow. For either case, laminar or turbulent, the wall shear stress can be determined
from:

τ = −d

4

�p

L
(11.20)

Wall shear stress of Newtonian fluids in tubular vessels can be calculated as a
function of volumetric flow rate:

τ = 4μQ

πr3 (11.21)

based on Hagen-Poseuille equation:

�p = 128
μL Q

πd4 (11.22)

The diffusion constant in the fluid for nutrients was estimated by the Stokes-
Einstein diffusivity equation for diffusion of spherical particles through liquid with
a low Reynolds number [20, 27]:

D = kB T

6 π μ r
(11.23)

where kB is the Boltzmann’s Constant, T is the absolute temperature and r is the
radius of the spherical particles. r was estimated from the assumed molecular weight
and the following equation for a sphere:

r =
(

3 · Mw · Vp

4 π NA

) 1
3

(11.24)

where Vp is the molecule’s specific volume, Mw is the molecular weight, and NA is
Avogadro’s number. The characteristic Knudsen Number (Kn) is defined as [19]:

K n = λ

L
(11.25)
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where λ is the mean free path of the molecules and L is the characteristic dimension
of the channel.

Weak Formulation

For this study, fluid was assumed to be Newtonian, homogeneous, and incompress-
ible. The equations solved were:

∇ · σ = ρ(u · ∇u) in 
 (11.26)

∇ · u = 0 in 
 (11.27)

Given the strong form, the boundary conditions and weak form can be described
as follows:

u = ũ on �D (11.28)

σ · n = h̃ on �N (11.29)

The weak form is obtained by taking the scalar product of the momentum
equations with a vector test function v belonging to a functional space V ={
v|v ∈ H1(
), v|�D = 0

}
, integrating over 
 and applying the Green integration

formula.
Similarly, the continuity equation is operated by multiplying by a function q ∈

Q = {
q|q ∈ H1(
)

}
.

∫



(∇ · σ) · vd
 −
∫



ρ(u · ∇u) · v d
 = 0 (11.30)

∫



(∇ · u) q d
 = 0 (11.31)

Substituting the identity (∇ · σ) · v = ∇ · (σ · v) − σ : ∇v:

∫



(∇ · σ) · vd
 =
∫



(∇ · (σ · v) − σ : ∇v) d
 (11.32)

∫



(∇ · σ) · v d
 =
∫



∇ · (σ · v) d
 −
∫



σ : ∇v d
 (11.33)
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Applying Green integration:

∫



(∇ · σ) · vd
 =
∫
�

(σ · v) · n d� −
∫



σ : ∇v d
 (11.34)

Applying (σ · v) · n = (σ · n) · v due to σ is a symmetric tensor:

∫



(∇ · σ) · v d
 =
∫
�

(σ · n) · v d� −
∫



σ : ∇v d
 (11.35)

Substituting:

∫
�

(σ · n) · v d� −
∫



σ : ∇v d
 −
∫



ρ(u · ∇u) · v d
 = 0 (11.36)

Taking the first term and applying the boundary conditions:

∫
�

(σ · n) · v d� =
∫
�

h̃ · v d� (11.37)

we can organize the weak formulation as

∫
�N

h̃ · v d�N −
∫



σ : ∇v d
 −
∫



ρ(u · ∇u) · v d
 = 0 (11.38)

Based on Newtonian fluid, substituting σ = −pI + 2μD:

∫
�N

h̃ · v d�N −
∫



(−pI + 2μD) : ∇v d
 −
∫



ρ(u · ∇u) · v d
 = 0 (11.39)

Finally, the weak form reads: Find u ∈ Vg = {u ∈ H1(
), u|�D = ũ} and
p ∈ P = {p|p ∈ H1(
)} such that

∫



(−pI + 2μD) : ∇v d
 +
∫



ρ(u · ∇u) · v d
 =
∫

�N

h̃ · v d�N (11.40)

∫



(∇ · u) q d
 = 0 (11.41)

The weak form for the Brinkman equation reads: Find u ∈ Vg = {u ∈ H1(
),

u|�D = ũ} and p ∈ P = {p|p ∈ H1(
)} such that
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∫



ε(−pI +2
μ

ε
D) : ∇v d
+

∫



(
εμ

K
u) ·v d
+

∫



ρ(u ·∇ u
ε
) ·vd
 =

∫
�N

εh̃ ·v d�N

(11.42)∫



(∇ · u) q d
 = 0 (11.43)

Finally, the weak form for Convection-Diffusion equation reads: Find c ∈ C ={
c ∈ H1(
)

}
such that

∫



∂c

∂t
v d
−

∫



(∇ ·(uc) v d
+
∫



(D∇c) ·∇v d
 =
∫

�N

(D∇c ·n) ·v d�N (11.44)

Discretization

Approximating the variable fields with

u(x) ≈ uh(x) =
nu∑

A=1

N A
u (x) uA (11.45)

uh(x) ∈ Uh ⊂ U (11.46)

where U = {
u | u ∈ H1, u = uD in �D

}
.

p(x) ≈ ph(x) =
np∑

I=1

N I
p(x) pI (11.47)

ph(x) ∈ Ph ⊂ P (11.48)

where P = {
p | p ∈ H1

}
. Approximating the test functions of the velocities:

v(x) ≈ vh(x) =
nu∑

B=1

N B
u (x)δvB (11.49)

vh(x) ∈ Vh ⊂ V (11.50)

Approximating the test functions of the pressure:

q(x) ≈ qh(x) =
nu∑

J=1

N J
p (x)δqJ (11.51)
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qh(x) ∈ Qh ⊂ Q (11.52)

The discrete form of the weak form equations can be written as algebraic equa-
tions:

KuA + QT pI + N(uA)uA = F (11.53)

QuA = 0 (11.54)

where the convection matrix N is:

N(uA) =
nel∑

e=1

ne(uA) (11.55)

with

ne =
⎡
⎢⎣

n(uA)11Indim · · · n(uA)1nu Indim
...

. . .
...

n(uA)nu1Indim · · · n(uA)nu nuIndim

⎤
⎥⎦ (11.56)

and the coefficients n(uA)αβ can be obtained as follows:

n(uA)αβ = ρ f

∫

e

Nα
u uh · ∇Nβ

u d
e (α, β = 1, . . . , nu) (11.57)

The viscosity matrix K is:

K =
nel∑

e=1

ke (11.58)

with

ke =
⎡
⎢⎣

k11Indim + k11 · · · k1nu Indim + k1nu

...
. . .

...

knu1Indim + knu1 · · · knunu Indim + knunu

⎤
⎥⎦ (11.59)

and the coefficients kαβcan be obtained by:

kαβ = μ

∫
∇Nα

u · ∇Nβ
u d
e (α, β = 1, . . . , nu) (11.60)
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and the matrices kαβ are:

kαβ =
⎡
⎢⎣

kαβ
11 · · · kαβ

1ndim
...

. . .
...

kαβ
ndim · · · kαβ

ndim ndim

⎤
⎥⎦ (11.61)

with the elements kαβ
rs :

kαβ
rs = μ

∫

e

Nα
u,s · Nβ

u,r d
 (α, β = 1, . . . , nu) (r, s = 1, . . . , ndim) (11.62)

Matrix of pressure and incompressibility is:

Q =
nel∑

e=1

qe (11.63)

with

qe =

⎡
⎢⎢⎣

�11T · · · �1nT
u

...
. . .

...

�np1T · · · �np nuT

⎤
⎥⎥⎦ (11.64)

where the vectors �γβT
are:

�γβT =
[
�

γβ
1 , . . . , �

γβ

ndim

]
(11.65)

and

�
γβ
r = −

∫

e

N γ
p Nβ

u,r d
e (γ = 1, . . . , n p) (β = 1, . . . , nu) (r = 1, . . . , ndim)

(11.66)
The forcing vector F is:

F =
nel∑

e=1

fe (11.67)

where

f e =
⎡
⎢⎣

ζ 1

...

ζ nu

⎤
⎥⎦ (11.68)
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The vectors ζ αT
are:

ζ αT = [
ζ α

1 , · · · , ζ α
ndim

]
(11.69)

and

ζ α
r =

∫
�n

Nα
p hr d�n (α = 1, . . . , n p) (r = 1, . . . , ndim) (11.70)

Assumptions and Boundary Conditions

Due to the complex interactions of all the physical and chemical processes taking
place, it is necessary to consider some simplifications and assumptions in order to
computationally solve the problem. The model simplifications and assumptions are
as follows:

1. the wall is considered rigid,
2. chemical interactions and the influence of the electric charge of the cells are

neglected,
3. the cells are considered solid spheres,
4. Magnus effect are considered negligible (does not consider particle rotational

effects),
5. the domains are saturated by the moving fluid, so that there are no capillarity

effects,
6. and assume the model relies purely on fluid-particle interactions, so any particle-

particle interaction is currently neglected.

Figure 11.1 depicts the geometry that consists of an in vitro cell culture system
(hydrogel) with the objective of quantifying the major factors that affect the cell
migration process at the macro-scale. This three-dimensional geometry emulates a
simplified vascularized tumor system with the hydrogel acting as the tumor tissue
and a microchannel acting as a vessel. This simple system was chosen for conducting
the simulations because it will be easily developed during experimental tests in future
work. The hydrogel was considered as a homogeneous porous media for this case.
The objective of this study case is to understand the pressure effects, distribution of
nutrients, drag interactions, and viscous shear stress exertions on cell motion at the
macro-scale. A finite element method was implemented to solve the mathematical
model. Tetrahedral elements were used to mesh the three-dimensional computational
domain and mesh sensitivity analysis was carried out by varying the number of mesh
elements in the domain.

The boundary conditions specify that there is no slip at the wall, upstream flow
varies in a parabolic fashion, and there is free flow at the outlet. The tube is long
enough to generate developed axial velocity profiles.

The parameters used in the simulation, in Table 11.1, consist of both estimated
and experimental values. The velocity inlet was 5.45 mm/s, which was calculated
based on the volume flow rate of Q = 0.130 mL/min.
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Geometry 

Computational Mesh

Outlet
( p = 0 )

Center Z-Slice 

Porous hydrogel with imbedded tumor cells

MicrochannelFlow FlowInlet (U)

Porous hydrogel with imbedded tumor cells

Fig. 11.1 Geometry of the hydrogel at the macro-scale

Table 11.1 Macro-scale simulation parameters

Parameter Value (hydrogel) Value (microchannel)

Nutrient attraction (M) [J m3/mol] 5 × 10−4 5 × 10−4

Force from hydrogel (K) [N s/m] 1 × 10−4 1 × 10−4

Dynamic viscosity (μ) [Pa s] 1.3 7.8 × 10−4

Permeability (k) [m2] 1 1

Porosity (ε) 0.9 1

Density (ρ) [kg/m3] 3,000 1,000

Nanoparticles can be used to passively target tumor tissue through leaky blood
vessels. Nanoparticles with less than 200 nm diameters easily pass through these
leaky vessel walls; thus they are capable of targeting tumors [28]. This simulation,
therefore, includes nanoparticles that are smaller than 200 nm. Although the hydrogel
has a three-dimensional porous structure, this first approach was simplified in 2D as
shown in Fig 11.2.

11.3.1.2 Macro-scale Results

Although the flow in the human circulatory system is unsteady in response to pulsatile
pressure, steady flow models, like the model introduced in this section, provide useful
information about the aspects of fluid flow. This case was considered steady flow. A
parabolic fluid flow was introduced at the inlet and nutrients were introduced into
the same inlet as fluid flow into the microchannel and hydrogel. Particles imbedded
in the hydrogel migrated in response to their attraction to the nutrients.
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Fig. 11.2 Network of the
hydrogel

The simulation results of Fig. 11.3 describe the movement of the cells due to
advection and diffusion at macro-scale and only displays cells that have a velocity
greater than 0.1 mm/s. Advection involves the movement of the cells through the
microchannel and hydrogel at the rate of movement of the fluid carrier. Diffusion is
caused by the motion of the cells from zones of high concentration to zones of lower
concentration. The accuracy of the simulation results was improved by employing a
finer mesh that contains one cell per element.

11.3.1.3 Micro-scale Results

The velocity magnitude is higher in the narrowest pores and tends to decrease where
the pore channel size increases. However, there is a considerable zone with low flow
velocity levels where the permeability would be affected possibly by the increase of
the pore path (tortuosity). This may imply that this area would be susceptible to cell
attachment and deposition.

Simulation cases with differing pressure gradients at steady state were conducted
with the results indicating that the distribution of the velocities, pressure, and shear
stress were similar for three cases inside the wall of the hydrogel. Different Reynolds
numbers and shear stresses, in Table 11.2, were obtained in the three cases.

Figure 11.4 displays the transport phenomena related to advection and diffusion
inside the hydrogel, the mechanical dispersion, and the mixing of the cells due to
changes in fluid velocities along the streamlines. These variations are associated with
three phenomena: pore size, pore friction, and path length. Figure 11.4a depicts how
some particles gain inertia in the narrowest pores. Figure 11.4b shows stagnant zones
where some cells might interact with other cells and the wall.

Figure 11.4c shows deposition points close enough to the wall, where the cells
might be attracted due to the weak forces known as van der Waal’s (assuming absence
of electrical charge of the cells) [29]. The trapped particles might act like an extension
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Fig. 11.3 Time evolution of cell transport (only cells with velocity greater than 0.1 mm/s)

of the wall and trap other particles or block pores at various sites. The fast moving
particles with higher inertia may not become trapped. Figure 11.4d and e shows
zones of bad irrigation of nutrients and recirculation, where the lack of nutrients
might affect the cells viability and consequently promote mechanical stimulus into
biochemical reactions near to the wall (mechanotransduction).
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Table 11.2 Reynolds average and maximum values of shear stress considering a blood density at
37 ◦C = 1,060 [kg/m3] and blood dynamic viscosity = 0.005 [Pa s]
Pressure gradient [Pa] Reynolds average Max Shear stress [dynes/cm2]
0.10 1.21 0.23

1.00 9.32 1.99

10.0 57.9 12.4

Fig. 11.4 Different phenomena of dispersion over the particles inside the wall: a effect of a narrow
pore channel; b stagnation points; c deposition; d bad irrigation; e recirculation zones



11 Biological Systems: Multiscale Modeling Based on Mixture Theory 275

11.3.2 Bone Remodeling and Wound Healing

In general, mixture theory provides a comprehensive framework [30] that allows
multiple species to be included under the abstract notion of a continuous media. In
this framework, biological tissue can be considered as a multi-phasic system with dif-
ferent species, including solid tissue, body fluids, cells, extracellular matrix (ECM),
nutrients, etc. The species (or constituents) are denoted by φα(α = 1, 2, . . . , κ),
where κ is the number of species in the mixture. The nominal densities of each
constituent is denoted by ρα and the true densities are denoted by ραR .

To introduce a formal characterization of the volume fraction, a domain occupying
the control space BS is defined with the boundary ∂ BS , in which all the constituents
φα occupy the volume fractions ηα , which satisfy the constraint

κ∑
α=1

ηα (x, t) =
κ∑

α=1

ρα

ραR
= 1, (11.71)

where x is the position vector of the actual placement and t denotes the time.
Two frames of reference are used to describe the governing principles of contin-

uum mechanics. The Lagrangian frame of reference is often used in solid mechanics,
while the Eulerian frame of reference is used in fluid mechanics. The Lagrangian
description is usually suitable to establish mathematical models for stress-induced
growth, such as bone remodeling and wound healing (e.g., [31]), while the Eulerian
description is often used for developing mass transfer driven tumor growth mod-
els [32–35] with a few exceptions when tumors undergo large deformations [36].

To develop mathematical models for each application, the governing equations
are provided by the conservation laws, and the constitutive relations are usually
developed through empirical relationships subject to constraints such as frame invari-
ance condition and consistency with thermodynamics, to name a few. Specifically,
the governing equations can be obtained from conservations of mass, momentum,
and energy for each species as well as the mixture. When the free energy of the system
is given as a function of dependent field variables, such as strain and temperature, the
second law of thermodynamics (the Clausius-Duhem inequality) provides a means
for determining forms of some constitutive equations via the well-known method of
Coleman and Noll [37].

Predictive medicine is emerging as a research field as well as a potential medical
tool for designing optimal treatment options by advancing deeper understanding
of biological and biomedical processes and providing patient-specific prognosis and
therapies. Characterizing a biological system involves studies of complex phenomena
at various spatial and temporal scales. At a macro-level, continuum mechanics can be
employed to investigate tissue behavior. In particular, both mixture theory and porous
media theory can be used to model both hard and soft tissues in terms of growth,
particle flow, bioheat transfer, etc. Mixture theory can be introduced for modeling
both hard and soft tissues.
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In continuum mixture theory, an arbitrary point in a continuous medium can
be occupied simultaneously by many different constituents differentiated only
through their volume fractions. The advantage of this mathematical representation of
tissues is that it permits direct reconstruction of patient-specific geometry from
medical imaging; inclusion of species from different scales as long as they can be
characterized by either density or volume fraction functions; and automatically pro-
vides for interactions among species included in the mixture without the need of front
tracking or complex interaction condition. Furthermore, the mathematical models
based on the notion of mixture can be derived from the first principles (conservation
laws and the second law of thermodynamics).

The applications considered here include bone remodeling, wound healing, and
tumor growth. Models of the cardiovascular system can also be included within the
mixture framework if soft tissues such as heart and vessels are treated as separate
species different than fluid (blood) and the extracellular matrix.

Bone remodeling is a natural biological process that occurs during the course of
maturity or after injuries, which can be characterized by a reconfiguration of the
density of bone tissue due to mechanical forces or other biological stimuli. Wound
healing (or cicatrization), on the other hand, mainly involves skin or other soft organ
tissues that repair themselves after the protective layer and/or tissues are broken and
damaged. In particular, wound healing in fasciated muscle occurs due to the pres-
ence of traction forces that accelerate the healing process. Both bone remodeling
and wound healing can be investigated under the general framework of continuum
mixture theory at the tissue level. Another important application is tumor growth
modeling, which is relevant to cancer biology, treatment planning, and outcome pre-
diction. The mixture theory framework can provide a convenient vehicle to simulate
growth (or shrinking) phenomena under various biological conditions.

Considering the conservation of mass for each species φα in a control volume, the
mass production and fluxes across the boundary of the control volume are required
to be equal:

∂ρα

∂t
+ ∇ · (ραv

) = ρ̂α. (11.72)

In Eq. (11.72), the velocity of the constituent is denoted by v and the mass supplies
between the phases are denoted by ρ̂α . From a mechanical point of view, the processes
of bone remodeling and wound healing are mainly induced by traction forces. For
simplicity, we choose a triphasic system comprised of solid, liquid, and nutrients
to illustrate the modeling process [31]. The mass exchange terms are subject to the
constraint

κ∑
α=1

ρ̂α = 0 or ρ̂S + ρ̂N + ρ̂L = 0. (11.73)

Moreover, if the liquid phase is not involved in the mass transition, then,
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ρ̂S = −ρ̂N and ρ̂L = 0. (11.74)

Next, the momentum of the constituent φα is defined by

mα =
∫
Bα

ραvαdv. (11.75)

By including mα in the total change of linear momentum in Bα and denoting the
interaction of the momentum of the constituents φα by p̂α , the standard momentum
equation (Cauchy equation of motion) for each constituent becomes

∇ · Tα + ρα (b − aα) + p̂α − ρ̂αvα = 0, (11.76)

where the expression ρ̂αvα represents the exchange of linear momentum through
the density supply ρ̂α . The term Tα denotes the partial Cauchy stress tensor, ραb
specifies the volume force. In addition, the terms p̂α , where α = S, L , N , are required
to satisfy the constraint condition

p̂S + p̂L + p̂N = 0. (11.77)

In the case of either bone remodeling or wound healing, the velocity field is
nearly in steady state. Thus, the acceleration can be neglected by setting aα = 0. The
resulting system of equations can then be written

∇ · Tα + ραb + p̂α = ρ̂αvα. (11.78)

The second law of thermodynamics (entropy inequality) provides expressions for
the stresses in the solid and fluid phases that are dependent on the displacements
and the seepage velocity, respectively. The seepage velocity is a relative velocity
between the liquid and solid phases, which are often obtained from explicit Darcy
velocity expressions for flow through a porous medium (solid phase). Various types
of material behavior can be described in terms of principal invariants of the structural
tensor M and the right Cauchy-Green Tensor CS, where

M = A ⊗ A and CS = FT
S FS, (11.79)

and A is the preferred direction inside the material and FS is the deformation gradient
for a solid undergoing finite deformations. The expressions for the stress in the solid
are dependent on the deformation gradient and consequently the displacements of the
solid. Summation of the momentum conservation equations provides the equation
for the solid displacements. Mass conservation equations, with incorporation of the
saturation condition, provide the equation for interstitial pressure. In addition, the
mass conservation equations for each species provide the equations for the evolution
of volume fractions.
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Assuming the fluid phase (F) is comprised of the liquid (L) and the nutrient
phases (N ) we obtain (F = L + N )

∇ ·
S,L ,N∑

α

Tα + b
S,L ,N∑

α

ρα +
S,L ,N∑

α

p̂α − ρ̂SvS − ρ̂F vF = 0. (11.80)

Since ρ̂F = −ρ̂S , and p̂S + p̂N + p̂F = 0, we obtain

∇ ·
S,L ,N∑

α

Tα + b
S,L ,N∑

α

ρα + ρ̂S (vF − vS) = 0. (11.81)

The definition of the seepage velocity wF S provides the following equation

∇ ·
S,F∑
α

Tα + b
S,F∑
α

ρα + ρ̂S (wF S) = 0. (11.82)

The strong form for the pressure equation can be written as follows

∇ ·
(
ηF wF S

)
+ I : DS − ρ̂S

(
1

ρS R
− 1

ρN R

)
= 0. (11.83)

The strong form of mass conservation equation for the solid phase is

DS(ηS)

Dt
+ ηSI : DS = ρ̂S

ρS R
. (11.84)

Finally, the balance of mass for the nutrient phase can be described as

DS(ηN )

Dt
− ρ̂N

ρN R
+ ηN I : DS + ∇ ·

(
ηN wF S

)
= 0. (11.85)

In the above, wFS is the seepage velocity, DS denotes the symmetric part of the

spatial velocity gradient, and DS()
Dt denotes the total derivative of quantities with

respect to the solid phase. The seepage velocity is obtained from

wFS = 1

SF

[
λ∇ηF − p̂F

]
, (11.86)

Here, SF is the permeability tensor, λ denotes the pressure, and ηF is the vol-
ume fraction of the fluid. Equations 11.78–11.85 are required to be solved for the
bone remodeling problem with the mixture theory. The primary dependent variables
are {uS, λ, nS, nN }, the solid displacements, interstitial pressure, and the solid and
nutrient volume fractions.



11 Biological Systems: Multiscale Modeling Based on Mixture Theory 279

Bone remodeling is an important biological application that can be studied within
the aegis of the above mathematical framework. The process of bone remodeling
involves three types of cells namely osteoblasts, osteocytes, and osteoclasts. The
remodeling process is a continuous process and annually around 10 % of the bone
is replaced. It is driven by the requirement of calcium in the extracellular fluid, and
can also occur in response to mechanical stresses on the bone tissue. The above
framework presented studies the bone reconfiguration due to external stress. One
example of bone remodeling is a femur under traction loadings, which drives the
process so that the bone density is redistributed. Based on the stress distribution, the
bone usually becomes stiffer in the areas of higher stresses.

The same set of equations can also be used to study the process of wound healing. It
is obvious, however, that the initial and boundary conditions are specified differently.
It is worth noting that traction forces inside the wound can facilitate the closure of
the wound. From the computational point of view, the specification of solid and
liquid volume fractions as well as pressure are required on all interior and exterior
boundaries of the computational domain. The interior boundary is assumed to be
inside surface exposed due to the wounding of the tissue.

The interior boundary (inner face) of the wound can be assumed to possess a
sufficiently large quantity of the solid and liquid volume fractions, which is modeled
biologically with sufficient nutrient supply at this face. On the other hand, the open-
ing of the wound can be prescribed with natural boundary conditions with seepage
velocity.

11.3.3 Modeling Tumor Growth

Attempts at developing computational mechanics models of tumor growth date back
over half a century (see, e.g., [38]). Various models have been proposed based on
ordinary differential equations (ODE) e.g., ([39–42]), extensions of ODE’s to partial
differential equations [33, 43] or continuum mechanics based descriptions that study
both vascular and avascular tumor growth. Continuum mechanics-based formulations
consider either a Lagrangian [31] or an Eulerian description of the medium [33].
Various considerations such as modifications of the ordinary differential equations
(ODE’s) to include effects of therapies [41], studying cell concentrations in cap-
illaries during vascularization with and without inhibitors, multiscale modeling
[2, 4, 44–46], and cell transport equations in the extracellular matrix (ECM) [34]
have been included.

Modeling tumor growth can also be formulated under the framework of mixture
theory with a multi-constituent description of the medium. It is convenient to use
an Eulerian frame of reference. Other descriptions have considered the tumor phase
with diffused interface [35]. Consider, the volume fraction of cells denoted by (ξ ),
extracellular liquid (l), and extracellular matrix (m) [33]. The governing equations
are derived from conservation laws for each constituent of the individual phases.
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The cells can be further classified as tumor cells, epithelial cells, fibroblasts, etc.
denoted by subscript, α = 1, 2, . . . , N . Similarly, we can distinguish different com-
ponents of the extra-cellular matrix (ECM) namely, collagen, elastin, fibronectin,
vitronectin, etc. [47] denoted by subscript β = 1, 2, . . . , M . The ECM component
velocities are assumed to be the same, based on the constrained submixture assump-
tion [34]. The concentrations of chemicals within the liquid are of interest in the
extracellular liquid. The above assumptions lead to the mass conservation equations
for the constituents as (ξ , m, and l),

∂ξα

∂t
+ ∇ · (ξαvξα ) = �ξα ,

∂mβ

∂t
+ ∇ · (mβvm) = �mβ . (11.87)

In the equations above vξα and vm denote the velocities of the respective phases.
Note that no subscript on vm (constrained submixture assumption). Mass balance
equation expressed as concentrations in the liquid phase are expressed as

∂c

∂t
= ∇ · (D∇c) + G. (11.88)

Here, D denotes the effective diffusivity tensor in the mixture, G contains the
production/source terms and degradation/uptake terms relative to the entire mixture.
The system of equations requires the velocities of each component to obtain the
closure. The motion of the volume fraction of the cells are governed by the momentum
equations

ρξ

(
∂vξ

∂t
+ vξ · ∇vξ

)
= ∇ · T̃ξ + ρξb + m̃ξ . (11.89)

Similar expressions hold for the extracellular matrix and the liquid phases. The
presence of the saturation constraint requires one to introduce a Lagrange multiplier
into the Clauius-Durhem inequality and provides expressions for the excess stress
T̃ξ and excess interaction force mξ . The Lagrange multiplier is classically identified
with the interstitial pressure P . Body forces, b are ignored for the equations for
the ECM and the excess stress tensor in the extracellular liquid is assumed to be
negligible in accordance with the low viscous forces in porous media flow studies.
With these assumptions, we obtain the following equations

−ξα∇ P + ∇ · (ξαTξα ) + mξα + ρξαbα = 0,

−m∇ P + ∇ · (mTm) + mm = 0,

−l∇ P + ml = 0. (11.90)

These equations provide the governing differential equations required to solve
tumor growth problems. The primary variables to be solved are {ξα, mβ, P}.
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The governing equations can be solved with suitable boundary conditions of
specified volume fractions of the cells, extracellular liquid, and pressures. Fluxes
of these variables across the boundaries also need to be specified for a complete
description of the problem.

Other approaches in modeling tumor growth involve tracking the moving interface
of the growing tumor. Among them is the phase field approach. The derivation of
the basic governing equations is given in Wise [32]. From the continuum advection-
reaction-diffusion equations, the volume fractions of the tissue components obey

∂φ

∂t
+ ∇ · (uφ) = −∇ · J + S. (11.91)

Here, φ denotes the volume fraction, J denotes the fluxes that account for the
mechanical interactions among the different species, and the source term S accounts
for the inter-component mass exchange as well as gains due to proliferation and loss
due to cell death.

The above Eq. (11.91) is interpreted as the evolution equation for φ which charac-
terizes the phase of the system. This approach modifies the equation for the interface
to provide both for convection of the interface along with an appropriate diminishing
of the total energy of the system. The free energy of a system of two immiscible flu-
ids consists of mixing, bulk distortion, and anchoring energy. For simple two-phase
flows, only mixing energy is retained, which results in a rather simple expression for
the free energy φ

F(φ,∇φ, T ) =
∫ (

1

2
ε2|∇φ|2 + f (φ, T )

)
dV =

∫
ftotdV . (11.92)

Physical processes involve those in which the total energy is minimized. The
following equation describes evolution of the phase field parameter:

∂φ

∂t
+ u∇φ = ∇ · γ∇

(
∂ ftot

∂φ
− ∇ · ∂ ftot

∂∇φ

)
(11.93)

where, ftot is the total free energy of the system. Equation (11.93) seeks to minimize
the total free energy of the system with a relaxation time controlled by the mobility
γ . With some further approximations, the partial differential equation governing the
phase field variable is obtained as the Cahn-Hillard equation,

∂φ

∂t
+ u∇φ = ∇ · γ∇G, (11.94)

where G is the chemical potential. The mobility (γ ) determines the timescale of
the Cahn-Hillard diffusion and must be large enough to retain a constant interfacial
thickness but small enough so that the convective terms are not overly damped.
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The mobility is defined as a function of the interface thickness as γ = χε2. The
chemical potential is provided by

G = λ

[
−∇2φ + φ(φ2 − 1)

ε2

]
. (11.95)

The Cahn-Hillard equation forces φ to take values of −1 or +1 except in a very
thin region on the fluid-fluid interface. The above equation is of fourth order and poses
a formidable challenge to solve. The solutions are characterized by nearly constant
states, with complex morphologies, separated by evolving narrow transition layers
that describe diffuse interfaces between tumor and host tissues.

The presence of the fourth-order term poses stringent restrictions on the time step.
The step size for time integration of the above equation is constrained by h4 where h
is the spatial grid size. To remove this restriction one ca use a Crank-Nicholson-like
time integration method, which results in non-linear equations at the implicit time
level. Multilevel nonlinear full approximation storage (FAS) multi-grid method is
adopted to solve the discrete system, with respect to time and space. When taking the
finite difference approach for the spatial discretization of the Cahn-Hillard equation
one starts with a central difference approximation of the derivative in space along with
a backward difference approximation of the time derivative. Alternatively, Crank-
Nicholson approximation scheme can be implemented for time discretization, with
an appropriate treatment of the advection term. Higher order approximation of the
divergence and the gradient operators are obtained from the appropriate Taylor series
terms in constructing the discrete forms. The advection terms need special treatment
to avoid numerical oscillations at the tumor-host interface.

In the finite difference framework various schemes have been proposed to dis-
cretize the advective flux. In specific for the phase field approach the advection oper-
ator appears as a shock term which needs to be stabilized. Classical discretization
methods, such as the central difference approximation, have the disadvantage of caus-
ing non-physical oscillations across or in the near vicinity of discontinuities known
as the Gibbs phenomenon. To suppress the Gibbs phenomenon, Harten [48] proposed
an essentially non-oscillatory scheme (ENO) scheme based on the Godunov upwind
scheme, which achieves an accuracy of arbitrary high order. Efforts toward improv-
ing the ENO scheme have resulted in the development of weighted non-oscillatory
scheme or the WENO scheme [49].

Finite element analysis of Cahn-Hillard equation have also been accomplished
[50–52]. Error bounds of the Cahn-Hillard equation with degenerate mobility were
examined in Barrett [50]. Both convergence and well-posed finite element approxi-
mation were examined in addition to determining the stability bounds of the approx-
imation. The existence of the Lyapunov energy functional was found to be of pri-
mary importance in the error analysis [51]. Backward difference in time was utilized
and optimal error bounds were established. Usage of multi-grid methods for solv-
ing Cahn-Hillard equation without the presence of the advection term have been
presented in Kay [52]. Implicit backward Euler stepping in time in conjugation
with continuous piecewise linear basis functions in space were found to provide
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faithful results. Conservation of the total energy of the Lyapunov energy functional
provided further confirmation of the accuracy of the simulation. A multi-grid scheme
was proposed to solve the problem in opposition to Gauss-Seidel variants as solvers
for the discrete system.

The introduction of the phase field interface allows the fourth-order Cahn-Hillard
equation to be written as a set of two second order PDEs

∂φ

∂t
+ u · ∇φ = ∇ · γ λ

ε2 ∇ψ, (11.96)

ψ = −∇ · ε2∇φ + (φ2 − 1)φ. (11.97)

The above equation is the simplest phase field model, and is known as model
A in the terminology of phase field transitions [4, 35, 53]. Phase field approaches
have been applied for solving the tumor growth and multiphase descriptions of an
evolving tumor have been obtained with each phase having its own interface and a
characteristic front of the moving interface obtained with suitable approximations.

When specific applications of the phase field approach to tumor growth are con-
sidered, the proliferative and non-proliferative cells are described by the phase field
parameter φ. The relevant equations in the context of tumor growth are provided by
the following [35, 54]

∂φ

∂t
= M∇2

[
−φ + φ3 − ε∇2φ

]
+ αp(T )φ�(φ). (11.98)

Here, M denotes the mobility coefficient, T stands for the concentration of hypoxic
cell produced angiogenic factor, and �(φ) denotes the Heaviside function which
takes a value of 1 when its argument is positive. The proliferation rate is denoted by
αp(T ) and as usual ε denotes the width of the capillary wall. The above equation
is solved with the governing equation for the angiogenic factor T . The angiogenic
factor diffuses randomly from the hypoxic tumor area where it is produced and obeys
the following equation

∂Ti

∂t
= ∇ · (D∇T ) − αT T φ�(φ). (11.99)

In the equation above D denotes the diffusion coefficient of the factor in the tissue
and αT denotes the rate of consumption by the endothelial cells.

11.4 Open Questions

Multiscale methods have been used in a wide range of applications: materials and
nanomaterials science [55, 56], elasticity and plasticity analysis [57], computational
biomechanics [58], drug development [59], vascular tumor growth [44], coarse-grain



284 Y. Feng et al.

peptide and protein folding modeling [60–62], mutation and immune competition
of cancer cells [63], organ level analysis [64], computational physiology [65], and
genetic regulatory networks [66]. The common goal of all these applications is to
create a predictive multiscale mathematical model to simulate a complex system.

The open question that spans each application of multiscale modeling is how to
validate and calibrate the model with experimental data. Although still a useful tool,
a mathematical model does not become a predictive tool until it has been validated
and calibrated with experimental data [56]. Another limitation and open question of
current multiscale methods is how to easily extend the analysis to three dimensions.
Most of the methods described in this chapter are useful only in one or two dimensions
[1]. Currently available multiscale methods have tremendous challenge in dealing
with nonlinear problems [67].

Moreover, a consistent difficulty in multiscale mathematical modeling is how to
bridge spatial and temporal scales in a systematic and seamless fashion. In many
biological phenomena, such as protein folding and cell proliferation, events at small
scales occur much quicker than events at larger scales. In some cases, multiscale
methods provide the tools to handle the different spatial scales, but not the temporal
scales [1, 5, 6, 8, 10–12, 14, 15].

The future direction of multiscale modeling calls for developing mathematical
methods to apply in three dimensions with the ability to simultaneously bridge spatial
and temporal scales. These additional capabilities will allow for development of more
biologically relevant and useful predictive models.
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