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Preface

Biological systems are arguably the most complex subjects in scientific research,
especially regarding the enormous range of length and time scales involved. At the
molecular level, structures and dynamics involving biomolecules are highly
sophisticated and stochastic. At the cellular level, numerous molecular components,
many of which are unidentified, interact and organize in space and time, from which
nonequilibrium physiological processes emerge at the tissue and organ levels, and
beyond. While vast knowledge is accumulating for any given biological system,
establishing quantitative relations between systems defined at different scales
requires an integrative approach such as Multiscale Modeling (MSM).

This book is intended as a field manual for MSM methods that link at least two
scales. Given the extreme diversity of the topic, the best way to learn MSM is via
system-specific case studies. A quick approach toward developing a multiscale
model would be to link the scales phenomenologically. Here, however, we suggest
a more holistic approach, where real physical and structural information is passed
across the scales. This information is becoming increasingly available via rapid
advances in imaging and other measurement techniques. Furthermore, physical
modeling is inevitable when considering mechanical phenomena in biology, as
forces are intrinsically coupled to spatial variables in any physical process.

Among the many possible topics of MSM, our focus is on biomechanics and
mechanobiology. The two terms are subtly different, yet closely correlated: Bio-
mechanics is the study of biological systems by means of mechanical tools. It is
thus often associated with the “passive” nature of a biological system including
strain, stress, and stiffness. Mechanobiology is the study of the role of mechanical
forces in modulating biological systems. It is associated with the “active” response
of a living system including mechanoreception, signal transduction, and target
activation. For a complete understanding of living systems, we have to understand
both aspects equally.

The organization of this book naturally follows the biological hierarchy. At the
molecular level, we focus on linking discrete and continuum descriptions of bio-
filaments, molecular motors, and biofilament assemblies. At the cellular level,
major topics are the emergence of motile behavior, filament network-to-continuum
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transition, and transport phenomena. At the organ level, we review specific organ
systems including tendons and ligaments, arteries, and heart valves. Through these
case studies, we hope that the reader will develop “numerical instincts” to advance
methods and tools and to generalize MSM to other living systems.

We would like to extend our thanks to all contributing authors whose expert
contributions made this monograph possible. We would also like to thank the U.S.
Interagency Modeling and Analysis Group (IMAG), in particular, Dr. Grace Peng at
the National Institutes of Health, interaction with whom and the IMAG activities
were one of the catalyzing factors for conceiving this edited volume. Finally, we
wish to express our deepest gratitude to Ms. Gabriella Anderson and her colleagues
at Springer, who provided us with the encouragement and technical assistance
essential to the success of this project.

Suvranu De
Wonmuk Hwang

Ellen Kuhl
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Part I
Multiscale Modeling Around

the Molecular Level



Chapter 1
Proteins: Ssp DnaE Intein

Albert K. Dearden and Saroj K. Nayak

Abstract During the twentieth century, there have been many rapid advances in
scientific understanding about the natural world. Of these advances, our understand-
ing of molecular biology has taken great leaps, starting with the first description of the
DNA double helix as described in a scientific article in April of 1953. Since then, vast
numbers of research articles have been written all in an effort to better understand our
world from a molecular standpoint. However, despite this large effort, specific details
about the mechanics of molecular interactions at the atomistic scale remain elusive.
One method to illuminate details of these interactions is through the use of quantum
mechanical computer simulations based on basic physical principles. Through the
use of computational models, new insights into the mechanistic behavior of protein
interactions at an atomic scale can be discovered, furthering our understanding of
biological systems.

Since their discovery in 1987 [1–3], inteins have been found to exist in all domains
of life. They have proven useful for many biotechnology applications as well as have
been found in various forms of cancer and infections like tuberculosis. Thus, the
ability to control the functions of inteins would be beneficial over a wide range
of areas.s However, although it is generally understood that for protein splicing
to take place, in which an intein must first self-cleave off the flanking N and C
extein polypeptides, a detailed understanding of the mechanics of this process is
still not understood. In this aspect, computational simulations with foundations in
basic physical principles allow for new insights into biological problems faced today.
Using Density Functional Theory (DFT) [4, 5], a greater understanding of biological
systems is made possible through investigations into the specific interactions within
these systems.

In the context of this work, the Synechocystis sp. Strain PCC6803 DnaE intein was
examined by Belfort et al. [6]. In their experiment, their goal was to obtain control
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4 A.K. Dearden and S.K. Nayak

over the intein splicing process without mutating catalytic residues. For the DnaE
intein, there exist two nucleophilic cysteine residues, the Cys1 at the N-terminus
and Cys+1 at the C-terminus, that are used in splicing. At the N-terminus, Cys1
initiates splicing by attacking the backbone amide bond of the N-extein residue at
the -1 position, termed the N-S acyl shift. Traditionally, the splicing processes at the
N and C-termini are independent of one another in terms of which end first splices.
However, the DnaE intein is unique in that the N-terminus has always been observed
to splice before the C-terminus. As such, by mutating the residue at the -3 position
to a cysteine, the entire intein splicing process was halted at the N-terminus junction
through an engineered disulfide bond between Cys1 and Cys-3that created a disulfide
loop with a CXXC motif, which in this case is a loop of cysteine, proline, glycine,
and cysteine (CPGC). This process revealed for the first time the structure of the
intein precursor. Upon examination of the crystal structure, an unusual geometry
conformation in the dihedral angles of Gly-1 was discovered. Until this time, the
presence of dihedral angles of glycine in a forbidden region of the Ramachandran
[7] plot had never before been seen in a CXXC loop motif. Thus, our task is to answer
three questions:

• What is the cause of the distorted angles?
• Is the source of the unusual dihedral angles a result of the engineered disulfide

loop?
• What effect does this distortion at Gly-1 have on the intein splicing process?

To answer these questions, quantum mechanical simulations, using DFT as imple-
mented in the Gaussian 03 code [8], performed over systems of various sizes com-
bined with mutational data obtained through experiment were carried out.

In order to obtain an accurate quantitative description of protein complexes, sys-
tems ranging from hundreds of atoms that span over a nanometer in length to small
configurations in which only a few amino acids were examined over the course of this
study. This poses a difficult task due to the fact that in traditional DFT calculations,
the time a single calculation takes is on the order of N3 where N is the number of
atoms in a system. Thus performing calculations on systems containing hundreds of
atoms, as required by calculations on biological systems, quickly becomes exceed-
ingly expensive. To overcome this obstacle, we take advantage of the fact that the
majority of the biological complex is present only to serve as structural support in
the calculations. Interactions such as bond breaking and forming or charge transfers
that occur far away from the region in which is being examined do not appreciably
affect the region of interest. As such, multiscale methods can be employed to help
reduce the computational cost of these large systems using a method known as the
mixed Quantum Mechanics and Molecular Mechanics, or QM/MM, method [9, 10].
This method combines the accuracy of fully quantum mechanical DFT with the effi-
ciency of lower level molecular mechanicscalculations. Furthermore, this method
has been employed successfully in past cases to solve similar problems [11, 12], and
is becoming an important tool in biophysical investigations.

While using the QM/MM method allows for practical calculations on large-scale
systems, there are a number of challenges that must first be faced. To start, we must be
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sure we have an accurate description of the physical system. Ordinarily, molecular
structures that will be studied using DFT come from PDB files obtained through
crystallography. During the process by which a biological system is crystalized, many
water molecules that are present in vivo are removed. It is very important that these
molecules exist in DFT calculations because many biological processes depend on
the presence of water. Thus, one must ensure that these water molecules are replaced
so that the system is accurately described. Additionally, there will be hydrogen atoms
missing from amines. The crystal structure must be carefully examined to find amines
that are missing necessary hydrogen atoms.

Another challenge that must be met when using DFT on biological systems is
that the mixed QM/MM system has been appropriately chosen. Enough of the local
area of interest must be included in the high level QM region in order to properly
model the properties of the system. To determine whether enough has been included
within the QM region, a DFT calculation must be performed on the entire system
to be used as a control for selecting the different regions for QM/MM. Despite
computational cost, this is a necessary function since if not enough is included in
full QM, the resulting calculations from QM/MM will be inaccurate. On the other
hand, it is possible to include too much in the QM region and therefore computational
resources are wasted on what could have been in the lower level MM region. Thus, by
performing a calculation on the entire system in full DFT, a proper point of reference
can be established for the construction of the QM/MM system. Even though this
initial procedure is computationally difficult, the resulting QM/MM system is not
only accurate for what will be studied, but much faster as well. Armed with these
tools, we can set out to answer our first two posed questions; (i) Is the source of
the unusual dihedral angles a result of the engineered disulfide loop? and (ii) If the
distortion at Gly-1 is not due to the engineered loop, what then is the cause?

To answer our first question, we must first obtain our accurate QM/MM system.
Since the majority of the protein complex is unrelated to our study, we took the
CPGC loop and an extending 10 Å radius outward as our computational system from
the PDB crystal structure published prior to this work [6]. The resulting system
contained 289 atoms, of which the CPGC loop was placed in full QM while the
remaining structure was within the MM regime after our preliminary calculations
were performed. Furthermore, the nearby threonine, Thr69, which is a highly con-
served residue appearing more than 90 % of the time in this position with the next
most common being serine at roughly 4 %, was also placed in full QM as it was
hypothesized that the hydrogen bonding interactions between Thr69 and Gly-1 are
the source of the unusual conformation. For the QM part of the calculations, we used
the Becke hybrid functional B3LYP [13–15] with the 6−31 G(d, p) [16–25] basis set,
and for the MM part we used the AMBER force field [26]. We performed a geometry
optimization using our QM/MM system and obtained (φ,ψ) values of (−123.19◦,
77.81◦) which compare well with the full DFT calculated values (−134.18◦, 74.72◦),
indicating a successful construction of our QM/MM system.

Now confident with our model system, we began a mutagenesis study involving
the mutation of Thr69 to other amino acids to verify if the hypothesis was correct. Our
study involved mutating Thr69 to the amino acids serine, alanine, valine, cysteine,
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Fig. 1.1 (Color online) a Schematic of amino acids used in mutagenesis calculations. Threonine
is given as a reference. b Figure of the Ramachandran plot of the Gly-1 dihedral angles from
experiment (black dot) and the QM/MM calculation (blue dot). Plot transitions from white, which
is the non-allowed region, to red, which is the allowed region

glycine, asparagine, and aspartic acid, whose structures can be seen in Fig. 1.1a. Upon
mutation of Thr69 to amino acids that are lacking the side chain hydroxyl group, such
as to alanine or T69A, we find that the resulting Gly-1 dihedral angles are all within the
allowed region of the Ramachandran plot. Examining the structures, it can be seen that
serine and threonine are very similar in structure, the only difference being serine is
missing the methyl group on the side chain, indicating the possibility that serine might
be able to produce the same effect as threonine. As such, upon mutating threonine to
serine, resulting system was able to provide both allowed and non-allowed dihedral
angles in Gly-1 depending on the initial orientation of serine before the geometry
optimization. Starting from the optimized system with threonine, mutating to serine,
and then running an additional geometry optimization, serine is able to provide
non-allowed dihedral angles in Gly-1. However, by starting with the original crystal
structure, mutating Thr69 to Ser69, and then performing the geometry optimization,
the resulting dihedral angles are within the allowed region of the Ramachandran plot.
As with all DFT calculations, to discern which configuration of the same system is the
ground state, we must examine the total energies. Interestingly, there was no energy
difference between the allowed and non-allowed configurations, indicating that both
structures are equally possible. Upon examination of the individual structures, it was
found that the hydroxyl group was closest to Gly-1 when the calculation resulted
in non-allowed dihedral angles, and further away when the calculation resulted in
allowed dihedral angles. This is a possible reason as to why serine is not as conserved
in this position as threonine.

To examine the possibility that threonine could also produce allowed dihedral
angles in Gly-1 in the same manner as serine, we mutated serine, in the case where
serine provided allowed dihedral angles, back to threonine. Upon completion of a
geometry optimization, we found that threonine indeed did provide allowed dihedral
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Table 1.1 Results of the mutagenesis calculations

φ ψ Region

Exp. −121.03 87.31 NA

Thr DFT −134.18 74.72 NA

Thr QM/MM −123.19 77.81 NA

S69T −124.61 52.95 A

Gly −99.37 54.37 A

Ala −119.64 50.68 A

Ser −124.64 53.03 A

T69S −129.55 72.01 NA

Val −116.86 51.94 A

Cys −119.68 52.42 A

Asn −139.97 49.72 A

Asp(+) −117.56 51.89 A

S69T and T69S refer to the threonine starting from serine and serine starting from threonine calcu-
lations, respectively

angles, however comparing the energy of this system to when threonine provided
non-allowed dihedral angles, there was a large energy difference. Indeed, the case
with threonine providing non-allowed dihedral angles is more stable thanthe allowed
case by 0.5 eV, indicating that despite Gly-1 being in an unfavorable conformation,
the presence of threonine stabilizes the non-allowed conformation and is indeed the
lowest energy state. The results of our mutagenesis calculations can be found in
Table 1.1.

As a result of the mutagenesis calculations, and the fact that with Thr69 present the
system is much more stable with the non-allowed dihedral angles, we can conclude
that the reason for the distortion at the Gly-1 position is due to the nearby threonine.
Due to threonine forming a hydrogen bond with glycine through the hydroxyl group
on the side chain of threonine, a distortion occurs. Furthermore, serine is also able to
facilitate this hydrogen bond under certain conditions. The fact that serine is able to
provide both allowed and non-allowed dihedral angles in Gly-1 implies that serine
would cause a slowing of the intein splicing process. Conversely, if Thr69 is mutated
to an amino acid such as alanine, or T69A, which lacks the side chain hydroxyl
group, the distortion at Gly-1 vanishes. Experimentally, this was verified later with
a T69A mutation that produced a Gly-1 conformation that fell within the allowed
region of the Ramachandran plot. This structure was then compared with disulfide
loops consisting of the CPGC motif within other structures and they were found to
be similar [27–31]. With this, we have successfully answered the question as to the
source of the non-allowed dihedral angles in Gly-1.

In order to address the second question of if the engineered disulfide loop is the
cause of the distortion at Gly-1, we examined just the CPGC loop outside of the
protein context. Cutting the loop out from the larger system, and adding hydrogen
to facilitate now dangling bonds, we performed three calculations to address this
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question. Using DFT without any mixed methods, we performed a geometry opti-
mization on the CPGC loop without any imposed constraints. We found the resulting
dihedral angles of Gly-1 to be (−105.07◦, 22.20◦) which are well within the allowed
region of the Ramachandran plot. Furthermore, by examining the disulfide bond, we
found a bond length of 2.09 Å. Comparing this value with the disulfide bond lengths
from the QM/MM systems in which there were the non-allowed angles with threo-
nine and the allowed angles with serine, which were 2.07 Å, we can conclude that
there is no strain imposed by either conformation of Gly-1. With the structure of the
lone CPGC loop returning to allowed angles within the Ramachandran plot and the
lack of strain on the disulfide bond, we can conclude that the distortion at Gly-1 is
not a result of the engineered bond.

Now that we know the source of the distortion in Gly-1 is due to the nearby
threonine, and that mutation to amino acids that lack the side chain hydroxyl group
alleviates the strain, we focus our attention to what effect this distortion has upon
the intein splicing process. Specifically, we examined the N-S acyl shift at the N-
terminus intein/extein junction. Since threonine appears in this position more than
90 % of the time in nature, there must be some benefit that the distortion at Gly-1
induced by Thr69 has in the splicing process and thus it was hypothesized that the
reaction barrier for the N-S acyl shift would be reduced in the case where threonine
was present. In order to carry out this part of the investigation, it was required that
we eliminate the disulfide bond in the CPGC loop as this was the means by which
splicing was halted. For our model system, we used full QM DFT on a reduced
structure obtained from QM/MM calculations. The system consisted of the catalytic
Cys1, Gly-1, and Pro-2 bound together as in the original model system, as well as the
nearby amino acid in which we wanted to investigate. We examined the effects that
Thr69 would have on the splicing region as well as the effects the T69A mutation
would have for comparison. Due to the fact that the system was reduced, the affecting
nearby amino acids, either Thr69 or Ala69, were held at a fixed distance from the
catalytic region of the CPGC loop using distances obtained from the QM/MM calcu-
lations. Furthermore, we held the dihedral angles of Gly-1 constant in two different
orientations for our calculations. All dihedral angles used were obtained from the
original QM/MM calculations, where for the case of threonine we took the allowed
angles from the S69T calculation and the non-allowed angles were from the original
Thr69 calculation. For alanine, the allowed angles were from the original QM/MM
calculation, however since alanine was never able to provide a non-allowed configu-
ration in Gly-1, we decided to use the non-allowed angles obtained from threonine.
For each configuration of angles, two calculations were required, one for the reactant
and then one for the transition state, totaling eight calculations. Each system was fully
optimized with the constraints mentioned earlier. Although other possible schemes
for proton transfer have been proposed [32], for the transition state calculations,we
considered the conserved method of proton transfer [33] similar to the mechanism
proposed by Anraku and Satow [34]. We feel this is a reasonable choice because of
the proximity of the carbonyl group on Gly-1 and the sulfhydryl of Cys1. An image
of the model system can be found in Fig. 1.2.
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Fig. 1.2 Representation of
the reaction barrier system

Now that we have designated our model system, we used the Synchronous
Transit and Quasi-Newton [35, 36] technique which was then refined with the
Berny algorithm for the transition state calculations. Single-point energy calculations
were used to confirm the existence of a single negative frequency, indicating that a
transition state had been achieved. At this point, we must take into consideration
the fact that standard DFT calculations are, by their nature, performed in vacuum at
zero temperature. While this method has been successfully able to accurately pre-
dict structures and energies of bulk structures in computational physics, and while
biological structures are generally well described, the energetics of these biological
systems are not so well described. To overcome this obstacle, we must include solvent
effects into our calculations. There are generally two ways in which solvent effects
can be included in DFT calculations, either by an explicit contribution from solvent
molecules or an implicit description using dielectric fields. Using explicit solvent
molecules proves to be quite challenging in many aspects. First, the precise position
and orientation of the solvent molecules are unknown. During the crystallography
process, many important solvent molecules are removed and thus the lengthy process
of performing calculations while slowly adding solvent molecules to the system to
find an equilibrium state must be done. For systems of sufficient size, this method
quickly becomes unviable. The second and most limiting obstacle of using explicit
solvent molecules is computational cost. For a system containing even a relatively
small amount of atoms, a large number of solvent molecules must be added. In turn,
these molecules contain multiple atoms themselves. Thus, while the initial system
may only contain a few atoms, the number of atoms added to the calculation quickly
becomes excessive to the point that the calculation becomes too costly for even the
most powerful computers to perform in a reasonable amount of time.
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The other method that may be used to add solvent effects to DFT calculations is
through an implicit solvent method. In this method, the solvent effects are simulated
through dielectric fields rather than explicit solvent molecules. Using an implicit
solvent method is advantageous due to the fact it side steps the necessity for a large
number of solvent molecules as well as a description of their orientation within the
system and instead, the solvent environment is determined by the value of the dielec-
tric constant. However, although the computational cost is not as extreme as including
large numbers of solvent molecules, the calculations are still relatively expensive and
more time than standard DFT calculations is required to perform them. For our sys-
tem in question, we used the Polarized Continuum Model (PCM) [37] to simulate
the presence of water as would be in experiment. This method encloses the system
in a block of dielectric material, where withinspheres are carved out with a radius
dependent on the type of atom being enclosed. Care must also be taken with solvent
calculations in that the accuracy must be increased beyond default parameters to
ensure proper values are obtained. Our calculations were performed first in vacuum
(ε = 1) and geometries obtained were used in single point calculations involving
solvents. We believe this is an acceptable method to help curb computational cost
since tests showed that the energy difference between the solvent single point cal-
culations using the vacuum optimized geometries and geometries obtained through
optimizations in solvent were negligible. Furthermore, two solvents were considered.
Initially, we performed calculations in full water solvent (ε =78.3553), however after
a literature search, we found that the dielectric constant within biological systems is
generally less than that of the external solvent experimentally [38, 39]. Instead, when
water is the solvent used in experiment, the dielectric constant is generally between
ε = 4 − 15 in the interior part of the system. As such, we performed calculations
with dielectric constant ε = 10. Our results for the reaction barrier study can be
found in Table 1.2.

Examining the table, our values show that the non-allowed conformation provides
a lower barrier and thus reaction rate when threonine is present. However, in the case
of alanine, the allowed conformation would provide a lower reaction rate than the non-
allowed. Comparing between threonine and alanine, our results suggest that alanine
should greatly slow the reaction rate of the N-S acyl shift and although our results
represent an upper bound due to the lack of thermal dependence in our calculations,

Table 1.2 Values obtained from the reaction barrier calculations

φ ψ Region Barrier (eV) Charge (e)

SCys OGly

Thr −124.61 52.95 A 0.6 −0.37 −0.65

−123.19 77.81 NA 1.5 −0.26 −0.67

Ala −119.64 50.68 A 1.1 −0.65 −0.67

−123.19 77.81 NA 2.1 −0.77 −0.68

SCys and OGly are the sulfur on the catalytic cysteine and oxygen of the carbonyl group on glycine,
respectively
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Fig. 1.3 Gel of WT, T69A,
and T69S mutations. WT
corresponds to the native wild
type intein without mutations,
while T69A and T69S
correspond to mutations of
threonine to alanine and
serine, respectively

we believe this provides an estimate in the reduction of the reaction barrier due to
threonine. To examine the cause behind the difference in energy barriers, we examine
the charges on the sulfur of the catalytic cysteine and the carbonyl oxygen on the
glycine. We used the Natural Population Analysis (NPA) [40] scheme to obtain
the atomic charges for the system. We see that with the presence of the threonine
nearby, the sulfur charge on the catalytic cysteine is reduced from that of the system
containing alanine. Furthermore, we believe that the solvent is causing a charge
screening effect between the sulfur and oxygen. Thus, the screening effect combined
with the reduced atomic charges on the sulfur allow for an easier transition of the
sulfur to bond with the carbon during the N-S acyl shift, which is represented by a
lower reaction barrier. This conclusion is supported by experimental results shown in
Fig. 1.3, which show that upon mutation of threonine to alanine, the splicing reaction
is halted. Furthermore, when threonine is mutated to serine, the reaction does not
proceed as quickly as with the wild type threonine, however it is not completely
halted like in the case of alanine. This lends further support to the conclusion that
the hydroxyl side chain bonding with the glycine at the -1 position is affecting the
intein splicing process.

In conclusion, we have used multiscale modeling to investigate the DnaE intein
that was trapped in its precursor state that had previously never before been observed.
Using a mixed QM/MM method to incorporate the accuracy of fully quantum
mechanical density functional theory combined with inexpensive molecular mechan-
ics methods for large structures, we were able to reliably investigate the source of a
distortion found at Gly-1. We determined that the source is due to a hydrogen bond-
ing interaction between Gly-1 and the nearby Thr69. Furthermore, we were able to
computationally predict the structure of the system when threonine was mutated to
alanine, which was then later verified by experiment. By investigating the effects
of threonine and alanine on the catalytic region between Cys1 and Gly-1, we found
that threonine serves to enhance the reaction rate by lowering the reaction barrier
of the N-S acyl shift. We have also shown that when alanine is present in place of
threonine, the reaction barrier is far greater and splicing ceases. This study not only
provides a greater insight into the fundamental understanding of protein splicing, but
also could possibly have implications in reactions that require isolation of precursor
structures.Although still a relatively new method of investigation, multiscale mod-
eling may help open the door to new and larger studies theoretically that will help
further our knowledge of experiments.
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Chapter 2
Protein Crystals: Molecular to Continuum
Level Models Based on Crystal Plasticity
Theory

Suvranu De and Amir Reza Zamiri

2.1 Background

Biological materials are extremely well organized in a hierarchical structure from
the molecular building blocks at their first level of organization up to the tissue and
organ levels with fascinating nonuniform (anisotropic) properties. Nature utilizes
hierarchical structures in an intriguing way to self-assemble biomaterials based on
molecular building blocks such as amino acids, nucleic acids, polysaccharides, and
lipids that are organized into efficient multifunctional structures and systems ranging
from the nanoscopic to the macroscopic length scales [1, 2]. The most basic properties
and functions of the biomaterials are defined at the very first level of organization.
Therefore, it is imperative to incorporate information from the finer scale biological
processes, which often govern processes at the coarser scale, to measure the properties
and analyze the functions of biological systems.

Proteins are the primary building blocks of biological materials, and are necessary
for providing key functions to biological systems, ranging from structural elements
to transmitting information between cells, and biological catalysis [1], in particular
under mechanical stimulation. Protein materials in a biological system are made up
of self-assembled functional protein molecules that are composed of polypeptide
sequence of 20 different amino acids, which allows it to fold up into a specific three-
dimensional shape, or conformation [1, 2]. This variety in the amino acids leads
to a range of different properties in charge, hydrophobicity, interactions, chemical
reactivity, and functionality.

The biological function of protein material in the biological systems is connected
to the structural deformations whose mechanical actions are coupled to the chemi-
cal events that are associated with the conformational changes [1]. While excellent
understanding has been gained on the biological function of proteins at the molecular
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scale, how molecular properties, and range of material scales and hierarchies con-
tribute to the biological function that leads to the unique properties of the specific
protein material at the mesoscale, which spans from nanometers to micrometers
on length scale and nanoseconds to microseconds on timescale, and what role they
play in the physiological and pathological phenomena, remains an active frontier of
research. This type of bottom-up hierarchical approach toward understanding behav-
ior of protein material holds great potential for fundamental contributions to biology
and medicine as well as for the synthesis of self-assembled engineered materials.

The hierarchical structure of protein in the form of self-assembled three-dimensio-
nal molecular crystals enables dissipation of mechanical energy through crystallo-
graphic slip, that is sliding of molecules against each other, and, hence, delays the
catastrophic failure. For example, the staggered arrangement of protein molecules
into fibrils plays a key part in increasing the toughness of various collagen materials
such as bone [3–5]. The plastic deformation may also induce refolding of protein
into a new three-dimensional folded structure. This unfolding may occur locally and
involve only certain domains of the protein that may lead to deformation hotspots.
Protein folding is critical to biological functions, and misfolding lead to diseases
and disorders such as Alzheimer’s disease, Parkinson’s disease, Type II diabetes,
and several types of cancer [6, 7]. Hence, it may be of interest to relate the response
of deformation of distinct domain of the protein to their biological function. This
may also be used to advance our understanding of diseases and potentially lead to
development of new therapeutic drugs. Further, an improved understanding of how
the deformation mechanisms at the multiple scales contributes to the mechanical
stability of the protein material in diseases could bring about new strategies for the
treatment through selective breakdown of foreign material deposits in diseased tis-
sues in case of Alzheimer’s disease, Parkinson’s disease, and Type II diabetes [8–11].
Also, detailed understanding of mechanical stability, adhesion properties of the pro-
tein crystals due to change in amino acid sequence and solvent effects may help
to contribute to advance the understand the molecular origin of sickle cell anemia,
or Alzheimer’s disease. Aside from therapeutics, it may also help in the develop-
ment of biomimetic materials and devices for a range of engineering and medical
applications including regenerative medicine, electronic materials, biotechnology,
nanotechnology, and drug delivery.

However, the mechanical properties and stability of many protein materials under
different conditions has not been extensively studied. A little is known about their
molecular deformation mechanisms, and influence of the nanoscale processes on the
mechanical properties. Therefore, further research is needed to explore the funda-
mental design principles for the development of such materials with optimal function-
ality and stability. Goal is to understand the relationship between fine scale primary
structure and processes and macroscale response of the protein molecular crystals.

In this chapter, we study the bulk mechanical properties of the of protein crys-
tal such that it accounts for the properties of the molecular crystal along with the
phenomena occurring at the lower scale. Like most crystalline solids, the mechan-
ical properties of protein materials are strongly influenced by defects such as dis-
locations through slip-induced plastic deformation [12], which is captured using
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continuum-based crystal plasticity model. We apply this model to investigate the
temperature- and humidity-dependent mechanical response of tetragonal lysozyme
crystals.

2.2 Multiscale Modeling Challenges

A large number of computational methods for modeling protein materials at dis-
parate length- and time-scale have been employed. At the bottom, ab initio quantum
mechanical simulations can be used to develop potential fields for molecular dynamic
(MD) simulations. These coarse-graining approaches are able to reach timescale of
the order of 100 ns and length scale of 10 nm [13]. Nonetheless, the computational
prediction of the three-dimensional folded structure of proteins directly from the
amino acid sequence is still beyond current computational capabilities [14]. Like-
wise, many questions of practical importance involve system sizes and timescales
that significantly exceed what can be treated in classical atomistic simulations.

Larger length scales and timescales can be reached using the results of the clas-
sical MD calculation to create parameters for a new simulation capable of exploring
length- and time-scales of greater orders of magnitude. These hierarchies of simu-
lation techniques, integrated through multiscale methods are based on the concept
of informing coarser scales from finer scales, enabling one to establish direct links
between chemical structure and larger scales. The process of systematic coarse grain-
ing requires transformation of detailed models to simplified descriptions with less
degrees of freedom, effectively averages over some chosen properties of lower scale
entities to form larger basic units.

The hierarchical coarse-graining approach seems to be capable of simulating any
material regardless of complexity on length scales. However, there is no unique
way to perform coarse graining. Besides, purely atomistic-based simulations are
computationally expensive and typically limited to very small systems of the order
of billions of particles that may be simulated over very short timescales of less
than a microsecond. Hence, they are incapable of accounting for defects such as
dislocations [15] and other microstrcutural effects in any realistic way, which are
assumed to play a fundamental role in determining material properties or functional
stability of protein crystals.

Continuum modeling represents a discrete system as a continuous body or fluid,
and provides the starting point for multiscale modeling. For example, a continuous
system with appropriate material properties and characteristics represents the dis-
crete nanostructures involved with the protein folding process [16]. When the material
properties and constitutive relations are developed using data gathered from higher
accuracy models of lower scale, the resulting continuum models are hierarchical mul-
tiscale model. Continuum models like coarse-grain models greatly reduce the degrees
of freedom required modeling the protein of interest. However, the major challenge in
the development of continuum multiscale model is to develop a constitutive law and
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continuum-level equations of a biological system, whose parameters are computed
from finer scale models of the system.

2.3 Methods

A continuum slip theory-based micromechanical constitutive model has been devel-
oped to predict the mechanical behavior of the protein molecular crystals, in which
crystallographic slip is the predominant deformation mechanism [17]. We now intro-
duce the basic terminology that is necessary to develop a single crystal plasticity
model.

Let mα bea unit normal to the slip-plane and sα a unit vector denoting the slip-
direction of a typical slip-system α in the crystal coordinate system. Then, the slip-
system α can be represented by an orientation matrix

Iα = sα ⊗ mα (2.1)

with symmetric and antisymmetric parts defined as

Pα = 1

2

(
Iα + IαT

)
(2.2)

wα = 1

2

(
Iα − IαT

)
(2.3)

which defines the plastic rate of deformation Dp and spin rate �p as

Dp =
N∑

α=1

γ̇ αPα (2.4)

�p =
N∑

α=1

γ̇ αwα (2.5)

where N is the number of slip systems in the crystal and γ̇ α is the shear slip-rate.
We now derive the specific form of plastic slip-rate based on dislocation dynamics

models. The average velocities of dislocations on a slip-plane α may be expressed
as

v̄α = vα
0 f p

(
τα,χ

)
(2.6)

where να
0 is the limiting velocity, f p is a probability function, τα is the resolved

shear stress on slip system α, and χ is a vector containing state variables such



2 Protein Crystals: Molecular to Continuum Level Models … 17

as temperature. It has been shown that for most materials the probability function
satisfies a power type expression

f p
(
τα,χ

) = λsgn(τα)

(
τα

τα
y

)2n−1

(2.7)

where λ and n are material constants and τα
y is the critical resolved shear stress of

the slip-system α. The rate of shear strain on a slip-system α is

γ̇ α = ϕαραbα v̄α (2.8)

where ϕα is a material parameter, ρα is the dislocation density, and bα is the Burgers
vector. Combining Eqs. (2.6)–(2.8) one obtains:

γ̇ α = λsgn(τα)

(
τα

τα
y

)2n−1

(2.9)

where the resolved shear stress τα on the slip-system can be related to the Cauchy
stress tensor σ in the fixed coordinate system as:

τα = σ : Pα (2.10)

Using Eq. (2.9), the overall accumulated slip γ̄ in a the crystal can be obtained by

γ̄ =
N∑

α=1

t∫

0

∣∣γ̇ α
∣∣dt (2.11)

The accumulated slip γ̄ can be used as a good measure for evaluation of the defor-
mation propensity of a crystal having specific orientation with respect to the external
load.

According to the normality rule in plasticity, a yield function f (σ, χ) could be
defined such that

DP = λ
∂ f (σ ,χ)

∂σ
(2.12)

where λ is a positive parameter which depends on the type of dislocation barriers.
Comparing Eqs. (2.4) and (2.5) and solving the differential Equation (2.12), a yield
surface for protein crystals can be defined as:

f (σ ,χ) = 1

2n

⎛
⎝

N∑
α=1

∣∣∣∣∣
σ : Pα

τα
y

∣∣∣∣∣
2n

− 1

⎞
⎠ (2.13)
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Fig. 2.1 A 3D crystallized
structure of a tetragonal
lysozyme crystal (protein
molecule is from PDB code:
133L [18])

(110) Slip Plane 
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Substituting Eqs. (2.9) and (2.10) into Eqs. (2.4) and (2.5) leads to the following
expressions for plastic rate of the deformation and spin:

Dp = λ

N∑
α=1

sgn(τα)

τα
y

∣∣∣∣∣
τα

τα
y

∣∣∣∣∣
2n−1

Pα (2.14)

�p = λ

N∑
α=1

sgn(τα)

τα
y

∣∣∣∣∣
τα

τα
y

∣∣∣∣∣
2n−1

wα (2.15)

The effects of the temperature, water molecules, and other environmental effects on
the deformation behavior of protein crystalsare considered through their influence
on the critical resolved shear stress τα

y .

2.4 Results

We present a particularly interesting application of the protein model in model-
ing the effects of deformation mechanisms, temperature, and amounts of intracrys-
talline water on the stability and mechanical behavior of tetragonal lysozyme crystals.
Lysozyme is a well-studied enzyme, which is found in egg white, tear, saliva, mucus,
and other body fluids. The main role of these enzymes is to lyse cell walls of gram pos-
itive bacteria. Lysozyme can be easily self-assembled into different crystal structures
including orthorhombic, tetragonal, and monoclinic. Its well-known and stable crys-
tal structure makes it a good choice for our study. Figure 2.1 shows a self-assembled
structure of a tetragonal lysozyme protein crystal. The tetragonal lysozyme crys-
tal belongs to the P43212 space group with lattice constants of a=b=7.91 nm,
c=3.79 nm, and Z=8 [12]. In these molecular crystals there are specific molecular
planes such as (110) which have the greatest separation and therefore, may glide on
each other under external loads, see Fig. 2.2. The plastic deformation in the lysozyme
protein crystals at the microscale has been established due to crystalline slip [12].
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Fig. 2.2 A tetragonal
lysozyme single crystal
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The indentation and compression analysis of three-dimensional crystallized form
of the tetragonal lysozyme protein crystals reveal that they are relatively fragile and
soft materials and their mechanical properties are highly sensitive to both environ-
mental conditions and the type of the protein molecule [19], and size dependent
[12, 19]. The compression testing of crystal leads to nonlinear elastic deforma-
tion leading to fracture, whereas, during microindentation, the microcrystals exhibit
elastic-plastic deformation. The temperature and amount of intracrystalline water
have significant effects on the elastic and plastic properties of the crystals. At lower
temperature and water content, the crystal is more brittle while it is more ductile at
higher temperature and humidity [12].

The elastic constants of tetragonal lysozyme crystal are highly sensitive to
both temperature and humidity [20–24]. The Young’s modulus of lysozyme crys-
tal decreases with increasing temperature according to the following relationship
[20]:

�E = −CT E◦�T (2.16)

where �E and �T are increments in the Young’s modulus and temperature, respec-
tively, E◦ is the Young’s modulus at 300 K and CT is a constant equal to 2×10−3K−1

for lysozyme crystals [20]. The Young’s modulus increases with increasing amount
of the intracrystalline water molecules [21, 22] as

�E = Cw E◦�t (2.17)

where �t is the evaporation time and Cw is a constant whose value depends on
environmental parameters such as temperature. For natural evaporation of water
from lysozyme crystal surface at room temperature, Cw was calculated to be 0.0396
(1/min) [17].

The plastic flow in the lysozyme crystals is induced by the dislocation glide along
the preferred slip-systems [25]. The tetragonal lysozyme crystal has two sets of slip
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systems [20], a primary {110}<001> system and a secondary {110}<110> system.
Depending on the crystal orientation and environmental conditions, the primary slip-
systems {110}<001> get activated first followed by the secondary slip systems at
higher stresses. We perform computer simulations of microindentation experiments
of lysozyme single crystals. The critical resolved shear stresses (CRSS) for these slip
systems is then characterized from experimental data as a function of temperature
and intracrystalline water molecule [17].

2.4.1 Temperature Dependence of Plastic Deformation
of Lysozyme Crystals

We first examine the temperature-dependent plastic deformation of the tetragonal
lysozyme molecular crystals. Figure 2.3 shows the temperature dependency of the
CRSS of tetragonal lysozyme crystals. At normal rates of deformation, thermal fluc-
tuations provide the energy to carry the dislocations over the lattice potential barriers
[26, 27]. Hence, the dislocations at higher temperatures have a higher probability of
overcoming lattice potential barriers due to higher thermal fluctuations. This leads
to decrease in the CRSS for activation of the slip systems with increasing temper-
ature, as shown in Fig. 2.3. At lower temperatures, the CRSS of the {110}<001>

slip system is much less than that of the {110}<110> slip system, therefore, the
former can be more easily activated. However, at higher temperatures the CRSS of
both slip-systems are small and, hence, both can easily get activated. At temperatures
below room temperature, the deformation in lysozyme crystals is primarily elastic,
whereas, at higher temperatures it is elastic-plastic. Therefore, at lower temperatures,
the variation of CRSS is primarily due to the temperature dependence of the elastic
constant. However, at higher temperatures, both the elastic constant and dislocation
mechanisms are affected by temperature, which results in a higher drop in CRSS
with increasing temperature.

Fig. 2.3 The effect of
temperature on critical
resolved shear stresses of the
tetragonal lysozyme crystal
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Fig. 2.4 The effect of the
amount of intracrystalline
water molecule on critical
resolved shear stresses of slip
systems in tetragonal
lysozyme crystal
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2.4.2 Effect of Humidity on the Plastic Deformation of Lysozyme
Crystals

We next study the humidity-dependence of the plastic deformation of the tetragonal
lysozyme molecular crystals. Protein crystals in biological systems are usually in a
fluid environment and, therefore, have a significant amount of intercrystalline water.
In Fig. 2.4, we see that the CRSS for both slip systems increase with evaporation
time, that is, with the decreasing amount of intracrystalline water. The decrease in
the amount of intracrystalline water leads to an increase in elastic constants and a
decrease in the lattice parameters38. This increases the self energy of the dislocations
significantly and hinders their nucleation and activation, thereby increasing the CRSS
of the slip systems.

The decrease in CRSS with increasing temperature may also be related to the
water molecules, see Fig. 2.4. Two types of intracrystalline water may be present
in the lattice, the mobile water, which can easily traverse through the crystal, and
bounded water, which is more strongly bound to the molecules [20, 22]. The mobile
water has a high diffusion coefficient at higher temperatures [26] and, therefore, has
little interaction with dislocations. However, at lower temperatures, it may interact
with dislocations and thereby affect dislocation creation and motion in the lattice [20].

2.4.3 Anisotropic Plastic Yielding of Lysozyme Crystals

Figure 2.5, shows two-dimensional plots of the yield function, as given in Eq. (2.13),
for three different crystal orientations of tetragonal lysozyme crystals at 285 and
307 K. From the yield surface plot in the Fig. 2.5, it is evident that the tetragonal
lysozyme crystal is highly anisotropic and the shape of its yield surface changes with
both temperature and crystal orientation. As discussed in the previous sections, at
higher temperatures both {110}<110> and {110}<001> slip systems are activate
during the deformation, therefore, the material is softer while at low temperature
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Fig. 2.5 The yield surface of the tetragonal lysozyme crystals for three different crystallographic
orientations of (001)[100], (011)[100], and (111)[110] at two temperature of a 285 K and b 307 K

only the {110}<001> slip system can get activated and, hence, materials is more
rigid. At room temperature, for the lysozyme crystals that have high amount of
intracrystalline water both {110}<110> and {110}<001> slip systems are getting
activated, however, at the lower amounts of intracrystalline water only {110}<001>

slip system is getting activated (Figs. 2.6, 2.7 and 2.8).

2.5 Discussion and Future Work

In this work, we analyze the mechanical properties and deformation behavior of
three-dimensional crystallized proteins such as tetragonal lysozyme crystal using
continuum-slip theory based on micromechanical model that accounts for the
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Fig. 2.6 Orientation of a crystal (X’, Y’, Z’) with respect to the fixed coordinate system (X, Y, Z)
based on Bunge Euler angles [28]

Fig. 2.7 The
orientation-dependent
accumulated slip γ̄ obtained
for 3D lysozyme crystals
loaded up to 0.01 strain at two
different temperatures of
285 K and 307 K and Euler
angle φ = 0◦, 55◦, and 90◦.
In all these analyses, Euler
angles ϕ2 = 0◦
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molecular and crystal properties, and defects such as dislocations through slip-
induced plastic deformation. The results of our investigation show that the propensity
to plastic deformation for all slips systems increases with increasing temperature and
the quantity of intracrystalline water molecules. Further analysis of the deformation
along different crystallographic directions shows that the mechanical properties of
the lysozyme crystals are highly anisotropic and the degree of anisotropy is a function
of temperature and intracrystalline water molecules. We also observe that at higher
temperatures the crystals are very ductile while they are more rigid at lower tempera-
tures. These observations may provide valuable information regarding design of the
structures, devices and systems using three-dimensional crystallized protein mate-
rials. The analysis present here could be easily extended to explore the mechanical
behavior of the any three-dimensional self-assembled protein crystal under different
loading conditions. However, further work is necessary, especially in experimental
characterization of protein crystals, to develop sophisticated models for post yield
behavior, hardening, damage, and softening under different environmental condi-
tions.
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(a) 

(b) 
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Fig. 2.8 The deformation distribution maps of the 3D assembled lysozyme crystal at two different
temperatures of a 307 K and b 285 K, and for different values of ϕ2. For all orientations the uniaxial
compression is along the X -axis of the lab coordinate system with compression up to 1 % strain. At
any ϕ2 section, the maps show the crystal orientations that have the highest and the lowest values
of the yield function (Eq. (2.13)) and, therefore, the greatest tendency for plastic deformation and
elastic deformation, respectively

Many challenges associated with the characterization of protein crystals including
stability, remain an open field of research. The functionality and stability of protein
molecules are largely dependent on the environmental working conditions such as
temperature, pH and the surrounding fluid. However, the mechanical stability of
protein crystals under different conditions has not been extensively studies. There-
fore, further research is needed to explore the fundamental design principles for the
development of such materials with optimal functionality and stability.
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Chapter 3
Molecular Motors: Cooperative Phenomena
of Multiple Molecular Motors

Stefan Klumpp, Corina Keller, Florian Berger and Reinhard Lipowsky

Abstract Transport of various types of cargoes in cells is based on molecular motors
moving along the cytoskeleton. Often, these motors work in teams rather than as iso-
lated molecules. This chapter discusses analytical and computational approaches to
study the cooperation of multiple molecular motors theoretically. In particular, we
focus on stochastic methods on various levels of coarse-graining and discuss how
the parameters in a mesoscopic theoretical description can be determined by aver-
aging of the underlying microscopic processes. These methods are applied toward
understanding the effects of elastic coupling in a motor pair and in the cooperation of
several motors pulling a bead. In addition, we review how coupling can have different
effects on different motor species.

3.1 Background

Long-distance transport in cells is powered by molecular motors of the kinesin,
myosin, and dynein superfamilies that move along microtubules or actin filaments
[41, 64, 81]. Representatives of each superfamily have been characterized biochemi-
cally, structurally, and biophysically in some detail. In particular, the development of
single-molecule techniques has greatly expanded our knowledge about the dynamics
of these motors and provided a detailed picture of the stepping of the motors and
the forces they exert [19, 42, 70, 82, 86, 89, 97]. These experimental efforts have
been complemented by theoretical investigations studying relatively coarse-grained
stochastic descriptions of one or several chemomechanical working cycles of specific
molecular motors [12, 29, 44, 61]. In addition, molecular dynamics and Brownian
dynamics simulations, using both detailed empirical force fields as well as structure-
based (Gō-type) approaches, have been used to address the mechanical details of the
motors’ molecular motion, see, e.g., [33, 43, 45].
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In cells, these motors often work in small teams rather than as single molecules
[9, 34]. Therefore in recent years, the cooperation of motors and the dynamics of
motor complexes have moved to center stage, in experimental [5, 22, 34] as well
as theoretical studies [9, 51]. In contrast to earlier work on motor cooperation [46],
which mostly dealt with large numbers of motors, as in the contraction of muscle,
which is based on the cooperation of billions of myosin molecules [40], the recent
studies focus on defined complexes of small numbers of motors, starting with motor
pairs up to complexes of 7 motors. These numbers are typical for transport in cells,
as indicated by electron microscopy and as deduced from in vivo force and velocity
measurements [34].

Specifically, the recent development of synthetic complexes linking a defined
number of motors [1, 25, 30, 66, 79, 96] enables the detailed quantitative charac-
terization of the dynamical behavior of coupled motors using the techniques origi-
nally developed for single motor molecules. Previous quantitative characterizations
of coupled motors [5, 90] have remained somewhat limited by the fact that only
the average number of motors rather than their actual number could be prescribed.
These synthetic complexes link motors via a DNA linker [30, 66, 79], a quantum
dot [1], an antibody [96], or via a DNA origami scaffold [25]. In particular, the latter
method allows to control the numbers and types of motors as well as their geometric
arrangement.

In this chapter, we discuss the analytical and computational treatment of coopera-
tive molecular motors and motor complexes consisting of a small number of motors
coupled with elastic linkers. We review three approaches describing such systems
at different levels of detail, with different theoretical scopes and invoking different
computational costs. The three approaches start with different descriptions of single
motor molecules, specifically (i) as a random walker on a chemomechanical network
of motor conformations, (ii) as a stochastic stepper with force-dependent rates, and
(iii) as a molecule moving in three spatial dimensions subject to geometric constraints
such as binding to a bead, but with a rather coarse-grained description of its internal
degrees of freedom. In all three cases, we consider two or more such motors coupled
via some elastic element, which may correspond to the flexible stalk or tail of the
motor, a linker molecule, or the common cargo of the coupled molecular motors.

3.1.1 Length and Time Scales of Molecular Motor Motility

The movements of individual motor molecules as well as of motor complexes involve
motion on a wide range of length scales, which we illustrate here for the best stud-
ied motor, dimeric kinesin-1 (conventional kinesin). The movement of kinesin-1
(as well as of other cytoskeletal motors) is powered by the hydrolysis of adenosine
triphosphate (ATP) to adenosine diphosphate (ADP). The kinesin-1 dimer has two
heads, each of which contains an ATP binding site and can bind to a microtubule.
The hydrolysis reaction involves conformational rearrangements in the ATP bind-
ing pocket that occur on a length scale of �1 nm. These small movements lead
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to allosteric conformational changes in other parts of the same head of the motor,
including the microtubule binding site. They also affect the other head, possibly via
the generation and release of strain between the two heads [35, 45, 76, 99]. This
process is believed to involve the docking of a flexible structure called the neck linker
to the leading head [76] and ultimately leads to large-scale motion of the rear head,
the actual step of the motor.

That step, which brings the rear head of the motor in front of the leading head in
a hand-over-hand fashion [100], is quite long, 16 nm for kinesin (and even 72 nm for
myosin-V). The corresponding movements of the motor’s center of mass is 8 nm (or
36 nm, respectively). Typically a single motor performs tens or even hundreds such
steps while bound to the filament along which it walks, so that overall the motion
of a motor bound to a filament proceeds over distances of ∼1µm. This distance,
which is called the run length and which is still quite small on the scale of the cell, is
further increased by the cooperation of motors: Complexes with several motors can
remain attached to a filament as long as at least one motor is bound to the filament,
thus giving unbound motors a chance to rebind while the complex is still attached to
the filament [51]. In addition to enhancing the overall run length of motors, motor
cooperation also has an impact on the smaller length scales. In particular, the elastic
coupling of the motors results in forces between the motors that can affect stepping,
binding to the microtubule, and, via the motors’ chemomechanical coupling, even
their chemical rates of nucleotide binding and hydrolysis.

The corresponding timescales also range over several orders of magnitude. The
transitions between different conformations of a single motor occur in the range of
µs – s. Somewhat unexpectedly, the actual mechanical step is quite rapid with a
rate of ∼105 s−1. The corresponding movement of a motor head over 16 nm happens
instantaneously on the timescale of the experimental resolution of about 30 µs [19]
(see also the discussion in Ref. [15]). By contrast, the chemical transitions, which
correspond to much smaller spatial reorientations, are slower with rates of ∼0.01
s−1 (see the set of rates collected in [48, 61]). The entire chemomechanical cycle
takes on average 0.01 s at saturating ATP concentrations, corresponding to a motor
velocity of 800 nm/s in the absence of a load force. Unbinding of a kinesin motor
from a microtubule occurs on a timescale of two orders of magnitude larger (∼1 s),
corresponding to a run length of ∼1µm. For several motors, unbinding of motors
is more frequent because all bound motors can unbind, so that the timescale of
unbinding becomes smaller (and less separated from the stepping timescale). At
the same time, unbinding of the cargo or the motor complex from the microtubule
occurs on a longer timescale, as it requires unbinding of all motors. Estimates based
on noninteracting motors lead to run times of many seconds or more. On such long
timescales, additional effects become important, for example, the architecture of
the cytoskeletal networks, because motors will often reach the end of a filament or
filament–filament intersections. Using arrays of parallel isopolar microtubules large
cargo particles have been shown to reach run lengths of millimeters, corresponding
to runtimes of ∼10 min [16].
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3.2 Multiscale Computational Challenges

As discussed above, the dynamics of molecular motors and motor complexes involves
movements on many different time and length scales. Therefore, typically different
theoretical descriptions of the motors are used to study different aspects of their motil-
ity, dependent on the length and timescales on which the pertinent movements occur.
The movements of molecular motors and motor complexes is often described using
sets of discrete configurations or motor states, which may represent, for example,
the chemical states of a motor or different mechanical configurations. Throughout
most of this chapter we will follow the same strategy and describe systems of cou-
pled motors by networks of discrete states and stochastic transitions between them.
Such networks can however be constructed at many different levels of detail and we
describe three of these below.

A key issue for the function of molecular motors is the coupling of mechanics
and chemistry. At the level of a single motor, chemical (free) energy is converted
into movement and work by the main chemomechanical cycle, in which hydrolysis
of ATP in a motor head is followed by a mechanical movement of a motor head.
An opposing load force can slow down the movement of the head, but may also
induce backward steps and, via deformation of the motor head, affect the kinetics
of the chemical processes such as ATP hydrolysis or ADP and phosphate release.
In both cases, thermodynamic consistency imposes certain constraints relating the
force-dependence of a rate to the force-dependence of the rate of the reverse process
[61, 65]. The details of the chemomechanical cycle have consequences even on the
largest time and length scales: Because the unbinding rate of a motor is dependent on
its chemical state, changes in the nucleotide concentrations can modulate not only
the motor velocity, but also the unbinding rate, and thus the run length. In a two-
motor complex, such a modulation can shift the dominant mode of transport from
a situation where transport is predominantly by a single motor bound to one where
transport is predominantly by two motors [8, 96].

Specific to motor complexes is the question of coupling effects: If two or more
motors are working cooperatively, will each of these motors work with the same
characteristics as a single motor on its own or do motors interfere with each other?
One generic reason for interference are forces between the motors that build up due
to stochastic stepping: If coupled motors do not step in a synchronous fashion, the
distance between the motors fluctuates over time and the linkers between the motors
get stretched, thus mediating a fluctuating elastic force between the motors. If coupled
motors interfere with each other, the next question is in what way do they interfere?
Force between the motors may result in reduced stepping rates and thus a slow-down
of the motor complex. In addition, however, a load force affects the unbinding rate
of a motor, and thus its run lengths. Typically, the unbinding rate increases strongly
with increasing force. As a consequence, a force between coupled motors could
increase their unbinding rates and thus reduce the benefit of longer binding times
(or run lengths) obtained from using several motors instead of just one. Indeed, both
effects have been observed, with enhanced unbinding for a synthetic two-kinesin-1
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motor complex [79] and reduced speed for a complex of two myosin V motors [66].
Reduced velocity has also been observed in microtubule gliding assays at high motor
density with certain kinesin constructs with reduced flexibility [11, 24].

Our recent analysis of such interference effects has indicated the importance of
the dynamic nature of these forces [7, 8]: Typically a motor will bind to the filament
in a force-free fashion. The force between the motors is then built up by the stochastic
stepping. The generation of forces of the order of the stall force (where a motor stops
to step) or of the detachment force (the characteristic force scale for the unbinding
rate) thus occurs over some characteristic timescales. These timescales have to be
compared to the timescale for spontaneous unbinding, which provides a measure for
the time the motors have to build up strain. If the time for spontaneous unbinding is
very small, typically motors unbind before substantial strain is generated and thus
interference effects are rather weak. A related issue arises when an external force is
applied to a multi-motor complex: Only motors bound to the filament experience the
load. When an additional motor binds to the filament, it will initially not experience
any force and thus it will take some time until the force is actually shared equally
among the bound motors. Equal force sharing is only reached if unbinding of motors
is slower than the characteristic timescale for the equilibration of force sharing.
Another question related to the stochastic stepping of the motors concerns the size
of the observed steps. If the motors do not move in a synchronised fashion, steps that
correspond to fractions of the single-motor step can be expected. This has indeed
been observed in gliding assays for two motors, but not for three motors [58]. This
observation has been attributed to nonequal force sharing between three motors [58]
and to nonlinear elastic coupling between the motors [60].

Yet another longstanding challenge is the question how force is actually exerted on
the molecules. This question is directly related to the spatial structure of the molecule.
Force is typically exerted via the tail domain of the motor and somehow transmitted
to the nucleotide binding pocket and to the microtubule binding site. How this force
transmission occurs is not very clear. Important questions in this context are: Does
the force experienced by the nucleotide binding pocket depend on the direction of
the force in three dimensions? Is the commonly used one-dimensional description
by a force along the direction of motion reasonably accurate? If not, which direction
of force is characteristic in multi-motor complexes?

We conclude this section on the challenges to modeling and computation by a few
general remarks. One rationale for using a palette of models at different scales, each
appropriate for certain research questions, rather than a single model that describes
everything, is the maxim attributed to Einstein to make things as simple as possible,
but not simpler.1 Doing so allows one to identify the key ingredients for certain
phenomena to arise, while still being able to make quantitative predictions. This does
not mean that further simplifications are useless. Further simplification may still be
of use to provide a theoretical perspective on the core mechanisms. Nevertheless,
one needs to keep in mind that every theoretical description is based on certain

1 A discussion of the origin of the quote can be found at http://quoteinvestigator.com/2011/05/13/
einstein-simple/#more-2363.

http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363.
http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363.
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assumptions (which may be explicit or implicit) and should thus be expected to
have a limited range of applicability. Outside this range its predictions may not be
very reliable. As a matter of course, the construction of the model requires a careful
choice of ingredients: Some results will not really be predictions, but rather rephrased
statements of features of the model, as they have (explicitly or implicitly) been built
into the model by way of its construction.

3.3 Methods

In the following we describe methods that have recently been developed for the
theoretical and computational study of coupled molecular motors. We start with
chemomechanical networks (Sect. 3.3.1) which provide a systematic framework for
the description of individual motors that has very recently been extended to coupled
motors [49]. We then discuss stochastic stepper approaches that are more coarse-
grained in the sense that different chemical states of an individual motor are not
distinguished and that movement is described by one or two effective stepping rates
for forward and, possibly, backward steps (Sect. 3.3.2). The latter description can be
further coarse-grained by characterizing the movement of a cargo by a set of velocities
for different numbers of bound motors and not accounting for the individual steps
of the motors. Finally, we briefly discuss approaches that describe the geometry of
the motors and the cargo in some detail (Sect. 3.3.3). We conclude the discussion of
the different methods with some general remarks and some comments on how the
different methods can be integrated.

3.3.1 Chemomechanical Networks

A detailed description of single molecular motors is given by chemomechanical net-
works [61], which provide a generalization of simple enzymatic cycles. The use of
networks rather than a single chemomechanical cycle is necessary to account for
complex coupling between ATP hydrolysis and stepping [20, 44, 61]. For example,
backward steps of kinesin-1 under superstall forces have been observed to require
ATP, indicating that ATP is hydrolyzed rather than synthesized during the backward
stepping cycle [19, 20]. As a consequence, the backward stepping cycle is differ-
ent from the forward stepping cycle run in reverse. The chemomechanical network
approach explicitly incorporates the chemistry behind the stepping process, i.e., the
different chemical configuration of the motor domains. This theoretical framework
has been used successfully for a quantitative description of experimental observations
for kinesin-1 [48, 49, 61] and myosin V motors [12, 13].

Cargo transport by a motor complex or a small team of motors (that may belong
to the same or to different motor species) can also be studied with chemomechanical
networks. Each motor of such a team can be described by its chemomechanical
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network which contributes to the team network. Moreover, each motor in the team
has a finite run length, after which it dissociates from the filament. As long as the
cargo is still connected to the filament by the remaining motors, the inactive motor
has a chance to rebind to the filament. As a consequence, the number of actively
pulling motors fluctuates. In the following, we focus on two identical motors, using
two coupled kinesin-1 motors as an example [49].

3.3.1.1 Single Motor Network

The movement of a molecular motor on the filament is determined by the chemical
reaction taking place within the catalytic domains of the motor which is coupled to a
conformational change in the motor domains that causes translational motion of the
motor. The dynamics of a molecular motor is described by a continuous-time Markov
process on a discrete state-space or network [61, 65], the vertices of which represent
the different chemical states of the two motor heads. The edges describe transitions
between these states based on the network theory in enzyme kinetics introduced
in [37]. The states of such a network are governed by certain dwell times that are
exponentially distributed in a continuous-time Markov process [88]. The average
dwell time in a certain state is given by the inverse of the sum of all transitions rates
out of this state. The probability to find the motor in a certain state of such a network
at a certain time is determined by the Master equation [88]. Our approach is based on
identifying distinct motor states via the nucleotide occupancy of the two motor heads
and (chemical as well as mechanical) stochastic transitions between these states.

The catalytic domain of each of the two motor heads of kinesin-1 can attain three
different chemical configurations corresponding to the ATP-hydrolysis reaction: The
binding pocket can be empty (E) or it can be occupied by ATP (T ), by the cleavage
products of the hydrolysis, ADP and phosphate (θ ), or, upon phosphate release,
by ADP alone (D). This classification thus leads to four different chemical states.
Combining the cleavage transition (T → θ ) and the phosphate release transition
(θ → D) into a single transition (T → D), one obtains a reduced network in which
a single motor head can attain the three states E, T, and D. These states are linked by
six transitions, each of which corresponds to binding or release of certain nucleotides
as shown in Fig. 3.1a.

The two-headed kinesin motor can then attain 32 = 9 states, but not all of these
states are relevant to describe the dynamics of kinesin motors as shown in [61].
Two of these states, namely (E E) and (T T ), should not play any prominent role in
the processive motion of kinesin because the motor head is strongly bound to the
filament when the head is empty or contains ATP, whereas it is only loosely bound
to the filament when it contains ADP [80]. As a consequence, the motor most likely
dissociates from the (DD) state. Neglecting the strongly bound states leads to the
7-state network shown in Fig. 3.1b.

Kinesin motors move in a hand-over-hand fashion [100] which implies that a
mechanical step requires the interchange of the positions of the leading and trailing
head of the motor. In principle, there are several possibilities to fullfill this condition
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Fig. 3.1 a Kinetic diagram of a single motor head, for which hydrolysis and phosphate release have
been combined into a single transition. b Chemomechanical 7-state network of the kinesin-1 motor
as introduced in [61]. The dashed line represents the mechanical step, the black arrows indicate the
direction of the ATP hydrolysis and the gray arrow indicates dissociation. Figure adopted from Ref.
[61]. c State-space of motor pair as described by three coordinates [49]: the motor states ile and itr
of the leading and the trailing motor, and the extension ΔL of the elastic spring (axis perpendicular
to the plane of the figure). In general, the motor pair states form a stack of layers, each of which
corresponds to a fixed value of ΔL . Here, only the layer with ΔL = 0 is shown. Open circles
represent motor pair states, thin lines represent the chemical transitions between these states and
dashed lines mechanical transitions during 1-motor runs. The thick stubs represent transitions to a
neighboring ΔL-layer. Full stubs correspond to forward steps and broken stubs describe backward
steps of one of the motors. Dotted lines represent binding and unbinding events between the single
motor states i = 7 and i = 0, the latter describes an inactive motor. The black arrows indicate
unbinding events emanating from any other ΔL-layer

for mechanical stepping, see Fig. 3.1b. The transition from (DT ) to (T D) is taken
to be the mechanical stepping transition [65], in agreement with single motor data.2

The transition rates between two states i and j depend on the molar nucleotide
concentrations [X ], with X = ATP, ADP or P, and on the load force F . In general,
these rates can be parameterized in the factorized form

ωi j = ωi j,0 �i j (F) with �i j (0) ≡ 1, (3.1)

2 For backward steps, the transition between the states (E D) and (DE) may also play a role [44],
a picture supported by recent experiments on mutant kinesins that are more prone to backward
stepping [20]. The two different mechanical transitions were also studied in Ref. [63].
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where the dependence on the nucleotide concentrations is embedded in the zero
force rate ωi j,0 and the force dependence is described by the factor �i j (F) [49, 61].
These factors are subject to constraints to fulfill detailed balance: For all chemical
transitions, the force factors �i j (F) satisfy �i j (F) = � j i (F); for the mechanical
stepping transitions between states (DT ) and (T D) [states 2 and 5 in Fig. 3.1b],
�25(F) = �52(F) × exp(−F�/kB T ) with the step size � [65].

Compared to a mechanical forward step, which is completed within µs, the chem-
ical transitions are rather slow and take several ms. Thus, the chemical reaction paths
are explicitly accessible to experiments and experimentally obtained reaction rates
can be implemented as the transition rates of the network model [61]. One important
property of these networks is that they involve several motor cycles, which provide
the free energy transduction between ATP hydrolysis and mechanical work. As one
varies the nucleotide concentrations and the external load force, the fluxes on these
cycles change and different cycle fluxes dominate for different parameter regimes.
In this sense, the chemomechanical networks of a single motor as introduced in [61]
contain several competing motor cycles. Imposing cyclic balance conditions [62]
on all motor cycles ensures that the network description satisfies both the first and
second law of thermodynamics.

3.3.1.2 Motor Pair Network

To extend the network description to coupled motors, we consider a pair of two
kinesin-1 dimers that are attached to the same cargo and walk on the same fila-
ment. We refer to the two motors in the pair as the leading and the trailing motor,
respectively, according to their relative positions in the direction of motion.

The modeling so far points to two key questions: What happens if one of the
motors dissociates from the filament? And second, how does the translocation of one
of the motors influence the motor pair system? For single motors, the answers are
rather simple because the single motor run is terminated when the motor dissociates
from the filament and the unbound motor is not spatially restricted. For the motor
pair, unbinding from and rebinding to the filament provides an alternating sequence
of 1-motor runs, where the cargo is pulled by one active motor, and 2-motor runs,
where the cargo is actively pulled by both motors, as outlined in the upper row of
Fig. 3.2. During 1-motor runs, the dynamics of the bound or active motor can be
described by a random walk on the single motor network as discussed above. The
only difference to the case of a single motor is that the average dwell time in any state
i now also involves the rebinding rate of the second (unbound or inactive) motor.
A 1-motor run is terminated either by unbinding of the remaining motor, which
corresponds to the termination of the motor pair walk, or by rebinding of the inactive
motor, which initiates a 2-motor run. During 2-motor runs, the state-space consists of
combinations of the 7 chemical states of the individual motors, i.e., 72 = 49 states.

Concerning the coupling of the motor pair, we consider the flexible stalks of the
kinesin motors as linear springs. Since both springs are only coupled via the cargo,
which is taken to be rigid, we can effectively describe the system by one linear spring
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Fig. 3.2 Motor pair walk for two kinesin motors (blue), each of which has two motor heads. Both
motors are attached to the same cargo (light gray) and walk along the same filament (black line).
A reduced representation describes such a system in terms of 2-motor ‘particles’ connected by an
effective spring. As long as both motors are attached to the filament and, thus, active as indicated
by the blue ‘balls’ they perform a 2-motor run. After unbinding from the filament, an active motor
becomes inactive as indicated by the white ‘balls’. If the cargo is pulled by only one active motor,
the cargo performs a 1-motor run until it either unbinds as well, leading to an unbound motor pair,
or until the inactive motor rebinds to the filament and the cargo starts another 2-motor run

as indicated in the bottom row of Fig. 3.2. As a result, we obtain a one-dimensional
description of the motor pair, consisting now of two motor particles which are con-
nected via one linear spring with an effective spring constant, the coupling parameter
K , and the (dimensionless) spring extension ΔL , which corresponds to the extension
of the motor–motor separation (in multiples of the step size). This coupling generates
the elastic force

Ftr,le = −ΔL�K = −Fle,tr (3.2)

Ftr,le between the two motors, as soon as one of these motors is spatially translocated,
i.e., when it performs a mechanical step with the kinesin stepsize �. We consider this
interaction force as an external load on the individual motor, which thus enters the
transition rates, in the form

ωi j,le = ωi j,0 �i j (Fle)

ωi j,tr = ωi j,0 �i j (Ftr), (3.3)

compare Eq. (3.1). In these latter relations, we used the convention that resisting
forces are positive, whereas assisting forces are negative. Therefore, the forces that
enter these relations are F = Fle with Fle ≡ −Ftr,le for the leading motor and
Ftr ≡ −Fle,tr for the trailing motor. Concerning the influence of coupling on the
transition rates of the motor pair system, inspection of Eq. (3.3) shows that the force
arising from a mechanical step of one motor during a 2-motor run affects all chemical
and mechanical transition rates of both motors.

Three variables span the state-space of the motor pair, the individual motor states
i = ile and i = itr of the leading and the trailing motor, and the spring extension ΔL
(which we define here as a dimensionless quantity, in multiples of the step size �),
as shown in Fig. 3.1c. In general, the motor pair states form a stack of layers, each of
which corresponds to a fixed value of ΔL . For simplicity, only the single layer with
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ΔL = 0 is shown in Fig. 3.1c. All chemical transitions take place within this layer,
but mechanical steps during 2-motor runs are transitions to a neighboring ΔL-layer.
Note that a forward step by the leading motor and a backward step by the trailing
motor have the same effect on the spring extension. Rebinding and unbinding events
take place between the single motor states i = 7 and i = 0 within this layer, whereas
an unbinding event emanating from any other ΔL-layer always leads to the ΔL = 0-
layer. As a result, we obtain a uniquely defined chemomechanical network for the
motor pair. Although this network is rather complex and contains a large number of
states, transitions, and motor cycles, it involves only two parameters in addition to
the single motor parameters: the coupling parameter K as well as the rebinding rate
π of a single motor.

In experimental studies, the values of these two parameters are typically not
known, but can be deduced from the statistical properties of the trajectories [49]. This
deduction is facilitated by the following separation of parameters: The properties of a
1-motor run depend on the rebinding rate, but not on the coupling parameter, whereas
2-motor runs depend on the coupling parameter, but not on the rebinding rate. This
feature of the pair network also allows us to study the influence of these motor pair
parameters separately in computational studies. Thus, on the one hand, an analysis
of the statistical properties of the motor pair trajectories gives access to the motor
pair parameters K and π . On the other hand, it also allows to study the properties of
the motor pair properties such as its average velocity, run length, and run time, once
these two parameters are known (or as functions of these parameters). Because the
chemomechanical network approach explicitly incorporates the different chemical
configurations of the four motor heads, it also allows the calculation of quantities
such as motor pair efficiency or operation regimes that are not directly accessible
within other, more coarse-grained descriptions that we discuss next.

3.3.2 Stochastic Stepper Models

To understand the dynamics of coupled motors, it has proven useful to use simplified
descriptions of molecular motors as stochastic steppers. In such a description, the
chemistry is effectively incorporated into a single stepping rate and the focus is
on the coupling of the motors. The advantage of such a coarse-grained description
is the reduced number of parameters, which can be obtained from experimental
studies. This type of approach, which has been used in several studies of cooperative
motors [7, 8, 17, 18, 26, 54, 93, 101] provides a powerful conceptual framework
for analyzing experimental data as well as to address generic aspects of cooperative
molecular motors.

3.3.2.1 A Single Molecular Motor as a Stochastic Stepper

The dynamics of a single molecular motor consists of three basic processes, stepping
along a filament as well as unbinding from and binding to this filament. To account for
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the stochastic nature of these processes, each process is described by a transition rate.3

In this way, the complex chemomechanical process of stepping is simplified into a
single transition. However, the rate of that transition may be dependent on external
control parameters that influence the chemomechanical cycle, such as an external
load force or nucleotide concentrations. For example, the (forward) stepping rate α

is typically force-dependent and can be related to the experimental force–velocity
relation vsi(F) of a single motor via

α ≡ vsi(F)

�
(3.4)

with the step size � of the motor. Likewise, unbinding from the filament is described
by the force-dependent rate

εsi(F) ≡ 1

〈tsi(F)〉 (3.5)

that can be determined from the measured average binding or attachment time 〈tsi〉.4
The third process, binding, is a rather complicated process, which depends on the
precise geometry and other factors. Since very limited experimental data is available,
it is often described by a force-independent rate π , based on the argument that
typically elastic strain in the unbound motor is expected to relax upon unbinding.
However, force-dependent binding rates have also been used, e.g., in Refs. [26, 66],
see also the discussion in Ref. [8].

The general description introduced so far depends on the force velocity relation
vsi(F), the step size �, the unbinding rate ε(F), and the binding rate π of a single
motor. All these quantities can be measured and depend on the type of motor under
consideration. Most of them have been measured for various motor species. Typical
parameter values are summarized in Table 3.1. In the following, we use specific
values as experimentally determined for kinesin-1 motors.

The force–velocity relation has been measured in optical trapping experiments.
Typically, the velocity of the motor decreases with increasing load force F until it
vanishes under the so-called stall force Fs [19, 21, 32]. Here, we use the following
sign convention of the force: load forces opposing the stepping direction of the
motor are taken to be positive, whereas negative forces are assisting forces pulling
in the direction of the motor’s stepping. A good approximation for the force velocity
relation of kinesin-1 is the piecewise linear function

3 Thus, we implicitly assume an exponential dwell time distribution.
4 The index ‘si’ is used to indicate explicitly the unbinding rate and average binding time of a
single motor. The corresponding quantities for a single bound motor in a complex of several motors
(e.g., in a motor pair as discussed below) are denoted by ε1 and t1 respectively. These quantities are
closely related to the single motor parameters, but there are some subtleties: While ε1 = εsi, the
dwell time in the 1-motor bound state (or the average duration of a 1-motor run) for cooperative
motors also depends on the binding rate π of the second motor or any other in a system with more
than 2 motors, t1 = (ε1 + π)−1 < tsi.
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Table 3.1 Overview of parameters for the different molecular motors kinesin-1, dynein, myosin
V, and myosin VI

Parameter kinesin-1 dynein myosin V myosin VI

Binding rate
π [s−1]

4.7∗ [57], 5∗ [5,
57]

1.6∗ [72] − −

Step size � [nm] 8 [91] 8 [32] 36 [21] 36 [74]

Stall force
Fs [pN]

6 [82, 85], 5
[23], 7 [19]

7 [87] 1.1 [67] 1.7 [21], 3 [70] 2.8 [78]

(Force-free)
velocity v [nm/s]

1,000 [82], 490
[79]

650∗ [72], 700
[50]

400 [21], 380 [1] 150 [1], 291 [78]

(Force-free)
unbinding rate
ε0 [s−1]

1 [82], 0.6 [79] 0.27∗ [72], 0.16
[68]

0.48 [70], 0.3 [1] 0.25 [1], 1.3 [78]

Detachment
force Fd [pN]

3 [82] 1.1∗ [72] 4∗ [1] 2.6∗ [1]

The values marked by an asterisk are inferred indirectly by theoretical modeling of experimental
data

vsi(F) ≡
⎧⎨
⎩

v F < 0
v(1 − F/Fs) 0 ≤ F < Fs

0 F ≥ Fs,

(3.6)

see Fig. 3.3b, but more complicated functional forms and parameterizations can
also be used [7]. The force-dependence of the unbinding rate is described by the
exponential form

εsi(F) ≡ ε0 exp(|F |/Fd). (3.7)

Note that by using the absolute value of the force, we do not distinguish between dif-
ferent pulling directions. This type of dependence is suggested on theoretical grounds
according to Kramers’ rate theory [53] and Bell’s equation [6] and supported by mea-
surements of the force-dependence of the run length [82]. The force-dependence of
the unbinding rate is currently revisited by several labs for different types of motors.
Deviations from this exponential increase have recently been reported for dynein
motors, with an exponential increase for small forces but catch-bond-like behavior,
i.e., a decrease in the unbinding rate, for forces around the stall force [55, 59].

Since it is difficult to measure the binding rate π directly, its value has been
determined by fitting theoretical models to experimental data. In this way, a binding
rate π 
 4.7 s−1 is obtained from an experiment where kinesin-1 motors extract
membrane nanotubes from vesicles [57]. A similar value has been reported in a study
fitting the run length distribution of beads transported by several kinesin-1 motors
[5]. For other types of motors, most of the parameters have also been determined
experimentally; the corresponding parameter values are summarized in Table 3.1.

The simple stochastic stepper description of a single motor incorporates those
properties of single motors that are relevant for large-scale cargo transport. Further-
more, the theoretical framework described here can easily be extended, for example,
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Fig. 3.3 Force-dependent dynamics of a single motor: a Schematic setup of a typical single mole-
cule experiment, in which a single kinesin is held with an optical trap that exerts the force F on the
motor in the direction opposite to its walking direction. The motor steps forward with the force-
dependent stepping rate α(F) and the step size �. Force-dependent unbinding of the motor from
the filament is described by the rate ε1(F). b Piecewise-linear parametrization of the force velocity
relation vsi(F), from which the stepping rate is determined via α(F) = vsi(F)/�. c Parameteriza-
tion of the force-dependent unbinding rate of the single motor. The stall force Fs in (b) and the
detachment force Fd in (c) provide the basic force scales for the single motor behavior

to include backward steps or functional dependencies on other parameters such as
the nucleotide concentrations [7]. Incorporating additional features of single motors
usually requires additional parameters that need to be determined either directly from
experiments or calculated from more microscopic models such as the chemomechan-
ical networks described above. In the case of backward stepping, the forward stepping
rate and the backward stepping rate can be determined from the force–velocity rela-
tion and the force-dependent ratio of forward to backward steps [8, 61]. The latter
quantity has been measured for kinesin-1 [19].

3.3.2.2 Two Elastically Coupled Molecular Motors

In the following, we use the coarse-grained single motor description that we intro-
duced above to study two elastically coupled molecular motors. As a generic case, we
focus on two identical motors coupled via their stalks to a common cargo. Below, we
use this model to determine the time t2 that two motors stay simultaneously attached
to the filament and the resulting velocity v2 of the cargo, two key quantities for an
even more coarse-grained description of transport by a motor pair as described at
the end of this section. In general, these two quantities are expected to depend on
the single motor dynamics and on the coupling. Because of the stochastic stepping
of the motors, the elastic elements between them are stretched (or compressed) and
relaxed. Thus strain forces are generated that in turn influence the stepping of the
motors [7].

Assuming a linear force-extension relation of the elastic coupling, the only para-
meter, in addition to the single motor parameters, is again the coupling strength K .
Since the motors step in a discrete manner, the induced strain forces have discrete
values

Fi = i�K , (3.8)
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Fig. 3.4 State-space of a cargo transported by two identical motors. In state (C1) the cargo is
transported by only one motor. The other states (2, i) correspond to different strain forces between
two motors simultaneously pulling the cargo. In state (2, 0), the motors are bound with relaxed
linkers such that there is no force between them. When one of the motors performs a step, a strain
force is generated between the two motors (the same strain is generated by stepping of either motor,
therefore there are two configurations corresponding to the same state). Thus, stepping transitions
between the states lead to the stretching or compression or to the relaxation of the elastic linkers.
Unbinding of a motor occurs with rate ωoff

where � is the motor step size, K the coupling strength and i the distance (number
of steps) between the motors.

The state of the two motors is now described by a discrete state-space, in which
every state is characterized by the number of motors bound to the filament and, when
both are bound, the discrete extension of the elastic linker between the motors (or the
associated force), see Fig. 3.4. The states with no or one motor bound to the filament
are denoted by (C0) and (C1), respectively. The states with two motors bound are
denoted by (2, i), where i is the discrete distance between the motors.5 Thus, in state
(2, 0), the linkers between the motors are relaxed. When one of the motors steps, the
strain force F1 = �K is built up between them in such a way that one motor is pulled
backwards with force F1 and the other motor is pulled forwards with force −F1, see
state (2, 1) in Fig. 3.4. Because we do not distinguish between the two motors, there
are two configurations for this state.

Transitions between the different states (2, 1) are associated with stepping of
the motors. We denote the corresponding transition rates by ωs(2, i) and ωr(2, i),
depending on whether the transition stretches (or compresses) or relaxes the linkers.
These transition rates depend on the state of the motor pair and are related to the
single motor stepping rates via

ωs(2, i) = α(Fi ) = vsi(Fi )/� (3.9)

5 It is convenient to introduce a highest state (2, N ) to reduce the network to a finite number of states.
The state (2, N ) corresponds to a very large extension between the motor. Such a configuration is
unlikely, because the motors typically unbind before reaching this state. Nevertheless, one has to
check that the results do not depend on the choice of the value of N .
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and
ωr(2, i) = α(−Fi ) = vsi(−Fi )/�. (3.10)

for all states (2, i) with i > 0 and

ωs(2, 0) = 2α(0) = 2vsi(0)/� (3.11)

for state (2, 0). In these expressions, vsi(F) denotes the force-velocity relation of a
single motor.

Transitions between the states (C0) and (C1) correspond to binding and unbinding
of a motor, with rates given by the single-motor parameters. Unbinding of the bound
motor in state (C1) occurs with the single-motor unbinding rate ε and leads to state
(C0). The reverse transition is given by binding of one motor. Because either of
the motors may bind, the rate for this transition is 2π . Likewise, binding of the
second motor occurs with rate π . We take this transition to lead to state (2, 0), i.e.,
we assume that the second motor binds in such a way that upon binding there is
initially no strain between the motors. Finally, unbinding of one of the two bound
motors, i.e., a transition to state (C1) may occur from any state (2, i) and its rate is
force-dependent,

ωoff(2, i) = 2ε1(Fi ). (3.12)

3.3.2.3 Effective Parameters of Transport by Two Bound Motors

While the dynamics of the motor pair can be studied using the model as described in
the previous section, additional insight into the cargo transport can be obtained by
lumping the states (2, i) into one state (C2) with two motors bound to the filament
and to determine an effective stepping rate or an average velocity v2 for this state
as well as an effective unbinding rate ε2 for one of the two motors, i.e., a transition
rate to state (C1). The resulting coarse-grained description was originally proposed
in Ref. [51], well before the more microscopic description. Coarse-graining of the
microscopic model, however, now allows to obtain the parameters of state (C2) in a
systematic way.

To determine the properties of the state (C2), we can focus on its substates (2, i)
and treat state (C1) as an absorbing state. Thus, all transitions associated to unbinding
of a motor become transitions into the absorbing state with transition rates ωoff(2, i).
We then consider a Markov process on this network with the initial condition that
all trajectories start immediately after binding of the second motor, i.e., in state
(2, 0). The binding time or average dwell time in the two-motors-bound states is
then obtained as the mean first passage time to absorption, the effective unbinding
rate as the inverse of the binding time, and the velocity as the average stepping rate
before absorption. We note that unbinding of motors is a mechanism for relaxing
strain between the motors, because the unbinding rate increases with increasing force
and rebinding occurs under zero load. Thus, simply neglecting unbinding, as done in
some studies [93], will overestimate the probability of states (2, i) with large i , i.e.,
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Fig. 3.5 Closed network for calculating the probability distribution before unbinding of one motor:
Starting from the network shown in Fig. 3.4, only the states (2, i) in which both motors are simul-
taneously bound to the filament are considered and the state (C1) is treated as an absorbing state.
The network is closed by redirecting all transitions that lead into the absorbing state back into the
initial starting state (2, 0)

with large strain forces and therefore overestimate the effect of those forces. Indeed,
neglecting unbinding typically leads to a strongly reduced velocity for two coupled
kinesin-1 motors [47, 93], in contrast to what is found in the model with unbinding
[7] and to what is observed experimentally [79].

An intuitive way to calculate the quantities characterizing state (C2) is based on
a method proposed by Hill [38, 39]. The basic idea is to use the ensemble average
instead of the time average, which makes it unnecessary to solve the time-dependent
problem. To construct a network, whose steady state probability distribution is the
steady state probability distribution before absorption of the original network, all
transitions into the absorbing state are redirected to the initial state. Intuitively, this
procedure can be understood as concatenating many trajectories, in the same way
as one would do it in a computer simulation, namely by starting the next trajectory
immediately after the one before has reached the absorbing state. Such a closed
network is shown in Fig. 3.5. The probability distribution P2,i for the closed network
is determined by solving the steady state of the master equation

∂t P2,0 = −[ωs(2, 0) + ωoff(2, 0)]P2,0 + ωr(2, 1)P2,1 +
N∑

j=0

ωoff(2, j)P2, j

∂t P2,i = ωs(2, i − 1)P2,i−1 − [ωs(2, i) + ωr(2, i) + ωoff(2, i)]P2,i

+ωr(2, i + 1)P2,i+1 (3.13)

∂t P2,N = ωs(2, N − 1)P2,N−1 − [ωr(2, N ) + ωoff(2, N )]P2,N ,

where the middle equation is valid for 0 < i < N . Here P2,i is the probability of
being in state (2, i) before absorption. Together with the normalization condition,
the steady state of this set of equations can be solved with a backward substitution,
since P2,N only depends on P2,N−1. Now, the inverse mean first passage time or the
effective unbinding rate (the rate of being absorbed), ε2, is given by the probability
current into the absorbing state, i.e.,
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ε2 = 1

t2
=

N∑
i=0

ωoff(2, i)P2,i . (3.14)

Averaging the stepping rates of both motors, weighted with the probabilities P2,i ,
we obtain the velocity as

v2 = �

2

N∑
i=0

[α(Fi ) + α(−Fi )]P2,i . (3.15)

Once these two parameters have been obtained, the transport properties for a
cargo pulled by two motors can be obtained using the theoretical framework of Ref.
[51], which is discussed below. Specifically, the average velocity of the cargo, i.e.,
averaged over the states (C1) and (C2), is obtained as

vca = πv2 + ε2v1

π + ε2
, (3.16)

where v1 is the velocity when only one motor is bound. In the absence of an external
force, v1 = v, whereas in the presence of an external force, it s given by the force-
velocity relation (3.6). Likewise, the average run length of the cargo, the distance
moved before complete unbinding, is obtained as

〈Δxca〉 = πv2 + ε2v1

ε1ε2
. (3.17)

The advantage of using this combination of the explicit description of substates (2, i)
and the coarse grained description with states (C0), (C1) and (C2) is that different
parameterizations for the single motors or different couplings can be implemented
rather easily and their cooperative behavior can be deduced in a computationally
inexpensive manner [7].

3.3.2.4 Motility States of a Cargo and Semistochastic Approaches

Many experimental studies report trajectories (or kymographs) of labeled cargoes.
Unless experimental methods with very high spatial and temporal resolution are
used, e.g., [58, 98], discrete steps are not resolved and the cargo is seen to perform
continuous motion with a velocity v, suggesting a deterministic description of the
cargo movement of the cargo. Such a description [51] can be considered as resulting
from the coarse-graining of a more microscopic description that replaces stochastic
stepping by constant cargo velocities that characterize the different states of the cargo,
for example, the states (C1) and (C2) discussed above.

The value of the cargo velocity is determined by the dynamics of the motors.
If the cargo imposes a substantial load for the motors, for example in a viscous
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Fig. 3.6 A cargo particle is transported by N motors. Each state is characterized by the number of
bound motors. In each state the cargo has velocity vn , a motor unbinds from the filament with rate
εn and an additional motor binds to the filament with rate πn (reprinted from Ref. [51])

medium, a larger number of motors actively pulling on the cargo can result in higher
speed [31, 51]. Since motors unbind and rebind to the filament, the velocity of such a
cargo changes when the number of bound motors change. Therefore, a rather general
coarse-grained description for cooperative cargo transport by molecular motors can
be obtained by a discrete state-space with cargo states associated with the number
of bound motors [51]. Transitions between these states correspond to binding and
unbinding of motors, see Fig. 3.6. Thus, the model is semistochastic, describing
the cargo movement (based on rapid steps) as a deterministic process and motor
binding/unbinding, which happens on longer timescales, as stochastic processes. In
principle, the parameters of this model, the velocities and unbinding rates can be
obtained by systematic coarse-graining as described above. However, this has so far
not been done for more than two motors. For cases with more than two motors, the
rates have been obtained by making plausible assumptions such as weak coupling
between the motors and equal sharing of load forces [51, 72]. This approach allows
us to calculate dynamical properties of the cargo, like the run length and run time of a
cargo transported by teams of motors. Such studies have been done for unidirectional
transport by a single team of motors [51], for bidirectional transport by two teams of
motors [72], for transport by motors with different velocities [56], and for combined
directed and diffusive transport by active and inactive motors [10, 75].

If a cargo is transported by two teams of antagonistic motors, i.e., by motors
that walk in opposite directions, the cargo is transported in a bidirectional manner,
changing direction every few seconds. A theoretical description for this transport
mode also starts by identifying discrete states associated with the numbers of bound
motors of both types, see Fig. 3.7. Transitions between the states arise from binding
and unbinding of the motors. Since the unbinding rate depends on the external force,
motors can pull each other from the filament resulting in a tug-of-war. Such a tug-
of-war displays a rich pattern of motility depending on the single motor parameters
[71–73]. In particular, the analysis of this model showed that mechanical interac-
tions of the motors mediated by the two teams pulling on each other is sufficient to
generate rapid bidirectional movements [72]. No specialized coordination complex,
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Fig. 3.7 A cargo with 3 plus (blue) motors and 2 minus (yellow) motors is pulled by a fluctuating
number of motors bound to the filament. The different states are defined by the number of bound
motors. Only five of 12 possible states are displayed (reprinted from Ref. [72])

as proposed earlier (see, e.g., Ref. [95]), is required. Later experiments provided
direct evidence for such mechanical interaction between motors [36, 84], which can
be seen as an unavoidable physical constraint on the coordination of motors with
opposite directionality. Some recent experimental studies also indicate that not all
observations can be interpreted by mechanical interactions alone [55, 59], suggesting
an additional layer of biochemical regulatory mechanisms regulating the tug-of-war,
as emphasized in the theoretical studies [73].

The approach described so far can be extended to account for diffusive movements
of the cargo along the filaments as observed experimentally [2]. For cargo states in
which the motors diffuse, the velocity v of the cargo vanishes. To account for the
diffusive dynamics (or, likewise, for biased diffusive dynamics) one can describe the
position of the cargo again in a stochastic fashion using an over-damped Fokker-
Planck equation [77]. In this way, the motion of the spatial coordinate of the cargo
in a state (i) is described by a Fokker-Planck operator Li . Extending the master
equation to account for the time evolution of this coordinate explicitly leads to

∂t pi (x, t) =
∑

j

ω j i p j (x, t) −
∑

j

ωi j pi (x, t) + Li pi (x, t). (3.18)

Here pi (x, t) is the probability that the cargo is in state (i) at the coordinate x at
time t . The transition rate from state (i) to ( j) is given by ωi j . Within the framework
of Fokker-Planck operators one can describe a wide range of motility patterns. Two
important limiting cases are purely diffusive motion, which is represented by

L = D∂2
x (3.19)
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and deterministic motion with constant velocity v, represented by

L = −∂x v. (3.20)

If one is only interested in average values of observables such as the run length
and the average binding time, one can avoid to explicitly solve the Fokker-Planck
equation by using again the Hill method. This approach has been used in Ref. [10] to
study how the presence of inactive, but diffusing motors enhances the processivity
of actively pulling motors.

3.3.3 Explicit Descriptions of the Geometry of Motor–Cargo
Complexes

Finally, studying some aspects of molecular motor complexes requires geometric
information about the system. A rather obvious example is effects of the arrangement
of the motors on the cargo or in a multi-motor complex: Does it make a difference
whether motors are attached to a cargo in one specific location or randomly distributed
on a large cargo? What impact does the distance between two motors in a motor pair
have? Does steric hindrance between motors play a role? These aspects have been
studied in less detail than the stochastic network models discussed so far. Moreover,
the construction of models that incorporate three-dimensional spatial information is
less systematic than for the stochastic networks. In this section, we give a brief review
of what has been done, without going into the technical details. We then discuss one
such approach [52] in more detail to highlight some issues that arise in a geometric
description of systems of cooperative motors.

In models that describe the spatial structure of the motor–cargo complex, motors
are typically represented by a few degrees of freedom, namely their point of attach-
ment to the filament (the ‘head’), their point of attachment to the cargo and an elastic
element between these two points, which may be a linear spring, a cable-like spring,
or an empirically defined nonlinear spring. The position of the attachment point to
the cargo is determined by the position and orientation of the cargo. Once the head is
attached to the filament it moves like a stochastic stepper, but the force it experiences
is now calculated according to a three-dimensional force balance. The movements
of unbound heads are typically not described explicitly. Rather, unbound heads may
bind to the filament according to a rate that depends on the relative location of the
attachment point and the nearest sites on the filament, accounting for the distance to
the filament and possibly for steric hindrance by the cargo or by other motors.

Approaches of this type have been used to address a number of issues. One study,
in which our group was involved [52], has addressed the sharing of a viscous force
among motors that are randomly distributed on a cargo and compared different elastic
elements (linear and cable-like springs with different lengths). A similar study by
Erickson et al. [28] investigated the impact of the geometric arrangement of motors
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by comparing motors randomly distributed on a cargo and clustered motors and
found that cooperation is more efficient in the clustered case, with larger run lengths.
Finally, Driver et al. [26] used geometric force balance to determine transition rates
in a Master equation approach used for a systematic comparison with optical trapping
experiments on a two-kinesin-1 complex. The models used in these studies differ in
various aspects, such as the description of the cargo (as simply the center of mass
of the motors or as a diffusing particle), the choice of elastic element between the
motor head and the cargo, and the inclusion of hydrodynamic effects and of steric
hindrance. These differences make the comparison of the models quite difficult, and
the relative importance of the various ingredients of these models remains to be
elucidated.

We now describe the approach by Korn et al. [52] in some more detail in order
to point out a few issues that arise in a description of the motor complex geometry.
In that model, the motion of a spherical cargo particle is described using a Langevin
equation with 6 degrees of freedom (its position in a three-dimensional space and its
orientation) and with a position-dependent mobility matrix that accounts for hydro-
dynamic effects due to the presence of a wall (the coverslide on which the filament
is immobilized). The motors are randomly distributed on the cargo and, when bound
to the filament, move by stochastic stepping as described in Sect. 3.3.2 above. The
motor “tail”, the link between the motor head on the filament and the attachment
point on the cargo, is described as an elastic element (either a linear spring or a
cable-like spring). Thus, the cargo particle is subject to the forces mediated by the
motor springs, viscous forces from the surrounding fluid and random forces that lead
to the diffusion of the cargo particle around the equilibrium position given by the
balance of the motor forces. External forces acting on the cargo can also be incor-
porated. In particular, because hydrodynamic effects are already incorporated in the
mobility matrix, this approach is particularly suited to study hydrodynamic forces,
arising, e.g., from shear flow.

Within this description of the motors, the elastic forces act along the direction of
the springs, i.e., under an angle to the direction of motion. It is thus not entirely clear
how this force should affect the stepping rates, as in the experiments the forces are
typically exerted in the direction parallel to the filament. Therefore, an additional
assumption has to be made at this point and simulations to validate this modeling
assumption are required. In Ref. [52], the spring force was projected onto the direction
of motion and the projected force was used in a linear force dependence of the
stepping rate. This assumption led to a linear force-velocity relation in simulations
mimicking an optical tweezers experiment with an external force applied to the cargo
in the direction antiparallel to the direction of motion. Obviously, more complex force
dependencies can be implemented, but in any case, the assumed force dependence
needs to be validated by comparison to experimental data or to a desired simplified
force-velocity relation.

A second issue that deserves a few comments is how binding of a motor to the
filament is treated. In the approach of Korn et al. [52], the position of unbound
motor heads is not described explicitly. Unbound motor heads perform rapid tethered
diffusion with the ends of their tails fixed by the position of the cargo. Their rebinding
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to the filament is therefore determined probabilistically with a rate that depends on
two factors, a bare binding rate for a motor close to the filament and a probability that
the motor is indeed close to the filament, i.e., within some capture distance to a free
binding site on the filament. The latter distance can be determined by considering
the overlap between the binding sites and the shell on which the tethered motor head
diffuses.

3.3.4 General Modeling Strategy and Integration of Models
on Different Scales

We conclude our discussion of theoretical methods with some general remarks about
the choice of a theoretical description and the construction of suitable models. The
theoretical approaches described above provide different description of cooperative
transport by several motors or of motor complexes, but they follow the same general
modeling strategy.

The first step is to choose a level of theoretical description that is appropriate to
study the questions of interest. This choice involves both the desired output of the
model and the prior knowledge available as its input. The desired output determines
how detailed the description needs to be and defines the time and length scales to be
studied (if simulation time is a limiting issue, the latter may be a strong constraint).
The available input, on the other hand, is critical for the feasibility by determining
the number of unknown parameters. For the discrete stochastic models described
above, the choice of a theoretical description ultimately leads to the identification
of a set of states of the system described by a set of variables characterising these
states. These variables are typically a combination of variables characterizing each
individual motor (e.g., the chemomechanical states of the two motors) and variables
characterizing their coupling (e.g., the force between the motors). While a motor or
motor complex is in one such state, these parameters are taken to remain constant, so
molecular movements on scales smaller than the chosen description are neglected.

In addition to the states, one needs to identify the transitions between the states
(which are related to chemomechanical transitions of the configuration of a motor,
stepping of a motor or binding/unbinding of a motor). For a multi-motor complex,
these transitions are derived from the corresponding transitions of the single motors.
Once the network of states linked by the allowed transition between them is set up,
the transitions have to be associated with the corresponding transition rates. This is
ideally done based on experimental data, but in many cases this step needs additional
theoretical input. For cooperative motors, these transition rates can often be derived
from the transition rates of individual motors under force, by incorporating forces
arising from the coupling of the motors into the force experienced by that motor.
Alternatively, one can calculate these rates from a more detailed model. An example
is given by our calculation of ε2 in the stepper model in Sect. 3.3.2 that can be used in
the semi-stochastic theoretical description of cargo movements. Yet another option
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would be to use force-dependent single-motor transition rates, but determine the
force from a detailed microscopic force balance. Thus, this step, the calculation of
transition rates, provides an opportunity for true multiscale approaches.

Once the rates are known, the dynamics of the system can be solved either ana-
lytically or by simulations and observables can be determined and compared with
experimental data. If necessary, the model is then adjusted. The latter comparison
provides a consistency check in cases where the input of the model, the transition
rates, is taken directly from experimental data, and a validation step for descriptions
based on assumptions about the microscopic processes and interactions. Finally,
quantitative predictions can be made with such a consistent theoretical description.

3.4 Results

The methods described above have been used extensively to study cooperative trans-
port by molecular motors. Here we highlight some results where bridging the length
and timescales has been crucial. Specifically, we discuss two issues: the effect of the
coupling strength on motor cooperation and the different transport regimes that can
emerge when different motor types are coupled.

3.4.1 Impact of Elastic Coupling

3.4.1.1 Varying Elastic Coupling in Chemomechanical Networks

Both the chemomechanical network and the stochastic stepper model as described
above are based on a complete description of a single motor. In addition to the
parameters characterizing the single motor, these models have only two parameters,
the binding rate π and the coupling parameter K .6 Figure 3.8 shows some results
obtained with the chemomechanical network approach for kinesin-1, systematically
varying these two parameters. Figure 3.8a shows different activity regimes, regions in
the parameter space, where transport is dominated by 1-motor runs and 2-motor runs,
respectively. Which activity state is dominant during a motor pair walk obviously
depends on the rebinding rate π , but also on the coupling parameter K , because K
influences the termination rate ε2 of 2-motor runs. The activity regime diagram in
Fig. 3.8a shows the crossover line which separate the parameter regime in which 1-
motor runs dominate the cargo run from the regime in which 2-motor runs are more
likely. Along this line, both are equally probable. A small rebinding rate leads to a
clear dominance of 1-motor runs for all values of the coupling parameter, whereas
clear dominance of 2-motor runs is only found for relatively large rebinding rates
and small coupling parameters.

6 There may be more parameters for nonlinear couplings.
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(a) (b)

Fig. 3.8 a Activity regimes of a motor pair in terms of the probabilities P1 and /P2 for 1-motor
and 2-motor runs: The crossover line P2 = P1 separates the parameter regime, in which 1-motor
runs dominate the cargo run from the regime in which 2-motor runs are more likely. The dashed
and the dotted lines are the crossover lines at which P1 = 2P2 and P2 = 2P1, respectively.
b Contour plot of the probability distribution P(ΔL) for the extension ΔL of the motor-motor
separation as a function of the coupling parameter K . The red line indicates maximal values of ΔL
observed in the simulations

From trajectories of the individual motors within a motor pair, one can deduce
the distribution of the extension ΔL of the motor-motor separation as shown in
Fig. 3.8b. Since we define ΔL ≡ 0 for 1-motor runs, this is a property of 2-motor
runs. The probability distribution P(ΔL) is symmetrically distributed around the
average 〈ΔL〉 = 0 for all coupling parameters, which implies that the leading and
trailing motor are interchangeable. The number of accessible ΔL values decreases
with increasing coupling parameter K . Within the studied range for the coupling
parameter, this number varies by one order of magnitude. Measuring the width and
amplitude of the distribution for the deflectionΔL one can, for instance, determine the
coupling parameter K . In principle, this distribution could also be used to reconstruct
the full force–extension curve for a nonlinear spring that couples the motors. We note
however that the distribution P(ΔL) not only reflects the interaction potential of
the two motors, but also depends on their unbinding, because unbinding from a state
with large ΔL with subsequent relaxation and rebinding also provides a pathway to
return to small extensions ΔL .

3.4.1.2 Coupling Dependence in Stochastic Stepper Models

We briefly review the effect of varying the coupling strength in the stochastic stepper
model and use this example as an illustration for how models at different scales and
with different levels of detail can be integrated. Specifically, the detailed stochastic
stepper model is used to determine parameters that enter the coarse-grained semi-
stochastic description where all substates of the two-motor-bound state are lumped
together.
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Fig. 3.9 Transport properties of an elastically coupled kinesin pair: a Effective unbinding rate ε2,
b average velocity v2 of two bound motors, c run length and d average cargo velocity as functions
of the coupling constant K . In all subfigures, the K -independent single motor properties are also
included. The kinks in these curves are due to the discrete values of the force between the motors
and arise when the stall force is an integer multiple of the strain force, i.e., for K = Fs/(�n) with
integer n. At these values of K , the number of states (2, i) with forces below the stall force changes
by 1

Figure 3.9a, b shows the effective unbinding rate ε2 and the effective velocity v2
as functions of the coupling strength K using parameters for kinesin-1 and assuming
coupling by a linear spring. The two quantities, which are calculated via Eqs. (3.14)
and (3.15), are characteristics of 2-motor runs and therefore independent of the
binding rate π . The effect of coupling on the velocity is moderate with only about
15 percent reduction for strong coupling. The effect on unbinding is much more
pronounced: For weak coupling, the motors unbind independently of each other, and
the unbinding rate of one of them is thus twice the single-motor unbinding rate.
With increasing coupling strength, the unbinding rate exhibits a strong increase, in
agreement with experimental observations [79].

Using these results of the microscopic stepper model in the more coarse-grained
semi-stochastic one, one can calculate the transport properties of the cargo such as
the average velocity (averaged over 1-motor runs and 2-motors runs) and the cargo
run length via Eqs. (3.16) and (3.17). These two quantities are plotted in Fig. 3.9c,
d, also as functions of the coupling strength. Both quantities also depend on the
binding rate. The dominant effect of coupling on the unbinding rate can also be seen
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here: the run length decreases strongly with increasing coupling strength. The run
length of the two-motor complex, however, is always larger than the run length of a
single motor (which is approached for large coupling strength), i.e., the interference
between the motors decreases the effect of motor cooperation, but does not reduce
it below the level of a single motor. The average velocity shows even less reduction
than the velocity v2 of 2-motor runs and increases again for strong coupling, because
with increasing coupling strength, 1-motor runs become more and more likely, and
thus the reduced velocity of 2-motor runs contributes less and less to the average.

Nonlinear couplings have also been considered within the stochastic stepper
approach [8]. For example, cable-like springs (that are linear springs with respect to
stretching but exhibit no resistance to compression) leads to a much weaker effect
because it takes longer to build up substantial strain forces between the two motors
[8]. In addition, several studies have considered springs with a force-dependent spring
constant, specifically, the case of a spring that is rather soft at low force and stiff at
large forces. Such a spring can be characterized by two spring constants and is sug-
gested by some experiments on the kinesin tail [3, 27]. The latter spring also leads to
weaker coupling effects, indicating that the lower spring constant (for which building
up strain requires some time) is dominant during 2-motor runs [8].

3.4.1.3 Different Types of Elastic Coupling and Cargo Geometry

Finally, the impact of the type of spring was also studied in simulations of bead
movements with explicit representation of the cargo geometry. Two different types
of springs were studied, a linear spring and a cable-like (or semi-harmonic) spring
that behaves as a linear spring when stretched, but does not resist compression. In
addition, different rest lengths were used in both cases. For all cases, run length
distributions were determined from extensive simulations. The distributions were
approximately given by double-exponentials, and the average run length was found
to increase almost exponentially with the number of motors attached to the cargo.
For the same number of motors on the cargo, the average run length was found to be
longer for longer springs [52]. This result can be explained by the observation that, in
this case, more motors are bound to the filament simultaneously. This means that the
longer spring rest length provides more flexibility to accommodate a larger number of
motors on the filament. Moreover for all rest lengths, cable-like springs lead to longer
run lengths than linear springs. This has been interpreted as an effect of the average
distance between the cargo and the filament, which is expected to be smaller for
cable-like motors, where the springs do not induce upward forces on the cargo, than
for linear-spring motors [52]. However, our more recent discussion of interference
effects for nonlinear springs suggests another explanation (not mutually exclusive
with the first): For cable-like linkers, forces between the motors build up more slowly
than for linear springs [8], so interference effects are less pronounced. Specifically,
for linear springs, forces built up because of the nonsynchronous stochastic stepping
of the motors, enhance unbinding, thus effectively reducing the number of bound
motors.
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Fig. 3.10 Run length of
simulated beads transported
by many kinesin motors: Data
for the run lengths obtained
with different elastic elements
collapse onto a single master
curve, when plotted against
the average number of bound
motors, indicating that the
number of bound motors is
what effectively determines
the run length (reprinted from
Ref. [52] with permission
from AIP Publishing)
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When the average run length is plotted against the average number of bound
motors, the results for all spring models collapse on a single curve (Fig. 3.10).
This master curve can also be described by the theoretical expectation based on the
model of Ref. [51], if the maximal number of motors able to bind simultaneously
is taken from a Poisson distribution, as indicated by the solid line in Fig. 3.10.
This result shows that the dependence of the run length on the geometric details is
fully mediated by a modulation of motor-filament binding and that additional factors
such as modulation of the stepping rate or the movement of the cargo are of lesser
importance.

3.4.2 Transport Regimes

Finally, we briefly discuss some generic aspects of cooperative transport that can
be understood based on the derivation of the effective parameters ε2 and v2 of 2-
motor runs from the microscopic stochastic stepper model. In the absence of an
external force, the stepper model is characterized by three different force scales,
the stall force Fs , the detachment force Fd , and the strain force FK that arise from
coupling. The latter is defined by the force generated by a single step extending the
elastic element between the motors. For a linear spring, FK = F1 = �K . If both
force scales of the single motor, Fs and Fd , are expressed as ratios to FK , the two-
motor parameters ε2 and v2 can be calculated as functions of the two dimensionless
force ratios Fs/FK and Fd/KK , from which one can identify four different transport
regimes [7]: when both force ratios are large, the coupling is weak and neither
velocity nor unbinding rate is strongly affected by the coupling, i.e., v2 ≈ v1 and
ε2 ≈ 2ε1 as for noninteracting motors (weak coupling regime). In the opposite limit,
for which both force ratios are small, the coupling is strong, the velocity is reduced,
and unbinding is enhanced (strong coupling regime). Furthermore, the motor pairs
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exhibit two additional regimes, in which one of the two quantities is affected by
coupling, while the other is not: A reduced velocity regime, in which the velocity is
reduced, but the unbinding rate is (almost) unaffected by the strain force, is found
for large Fd/FK and small Fs/FK . In the opposite case, for small Fd/FK and large
Fs/FK , we have the enhanced unbinding regime, with an increased unbinding rate
and a velocity that is unaffected.

The crossover lines between these regimes depend also on the dynamic parameters
v1 and ε1, because the force between the motors is built up dynamically by stepping.
They can be understood based on the comparison of three timescales: the times to
build up forces comparable to the stall force and the detachment force and time for
spontaneous unbinding of a motor [7, 8]. If the time for spontaneous unbinding is
the shortest, there is no time to build up a sufficiently large strain force to affect the
motors’ behavior, corresponding to the weak coupling regime. If one of the other two
timescales (or both) is shorter than the time for spontaneous unbinding, the corre-
sponding parameter (ε2, v2 or both) is affected, resulting in the enhanced unbinding
regime, the reduced velocity regime, or the strong coupling regime, respectively.
We note that the presence of an external load force will provide an additional force
scale, the external force itself, and additional timescales, such as the time it takes to
equilibrate the distribution of the external force among the motors (force sharing).

Interestingly, which of the four regimes are accessed via a variation of the coupling
strength is dependent on the motor species under consideration, because the force
scales are characteristic parameters of these motors. For example, kinesin-1 motors
are predicted to exhibit the strong and weak coupling regimes and, for intermediate
coupling strength, the enhanced unbinding regime, while myosin V motors are pre-
dicted to be in the reduced velocity regime for intermediate couplings (in addition
to also exhibiting the strong and weak coupling regimes) [7, 8]. This theoretical
prediction was confirmed by experimental results: a pair of kinesin-1 motors was
found to exhibit enhanced unbinding and little reduction of the velocity [79], while
a reduced velocity was recently found for a pair of myosin V motors [66].

3.5 Open Questions

The cooperation of several molecular motor, specifically of well-defined small num-
bers of motors, is currently under intense investigation, mostly driven by new exper-
imental techniques to couple molecular motors in a defined fashion, e.g., [25, 79].
These experiments address various aspects on different length scales, from molec-
ular deformations on the scale of nanometers arising from elastic coupling-induced
strains to increases in run lengths on the scale of many microns. These new exper-
iments can be expected to lead to a rather detailed picture of motor cooperation in
the near future, which will allow to address more detailed issues theoretically and to
go beyond the coarse-grained descriptions of the motor configurations used so far.
For example, we expect that precise empirical force dependencies of velocities and
unbinding rates for a specific system can be used instead of the generic relations with



56 S. Klumpp et al.

simple functional forms as employed in current studies. These improvements will,
however, require fruitful interplay between model construction and experiments. One
aspect that we hope can be addressed quite soon is the coupling to the chemistry of
the motors, i.e. the interplay of nucleotide concentrations and forces in affecting the
transport parameters of cooperatively pulled cargos. First steps in this direction have
already been made, both from the experimental [96] and the theoretical sides [8, 49].

A key question will be what additional components are needed for certain patterns
of movements. From the biochemical perspective, this is a question about additional
molecular players such as regulatory components or proteins that modulate certain
properties of the motors. Examples include the dynactin complex, which increases
dynein’s processivity and has been proposed as a candidate for regulating the inter-
play between kinesin and dynein motors [94], and the recently characterized regula-
tors of dynein, NudE, and LIS1 [69]. From a theoretical perspective (where one tries
to explain properties of a larger scale system, such as a complex of multiple motors,
based on the known properties of its components, here the individual motors), these
regulators modulate the parameters of the individual motors or of their coupling,
so the question for regulatory factors can be addressed by studying the dynamic
variation of parameters to explain observations that cannot be explained by fixed
parameters characterizing the (unregulated) motors. For example, how would addi-
tional biochemical coordination have to affect a tug-of-war situation to result in the
very long pauses that have been observed [55] or in directional memory after forced
unbinding [59]. One example, in which such an extension of a tug-of-war is under-
stood is the transport of early endosomes in the fungus Ustilago maydis, where a
tug-of-war is controlled by the reversible binding and unbinding of a dynein motor
to the moving cargo [83].

In order to understand transport in cells, it will also be necessary to consider the
movements of motors on multiple levels of complexity (in addition to the different
time and length scales discussed above). If single motors in vitro are considered
as relatively simple systems,7 complexity will increase and the space of possible
dynamic behaviors extended by coupling motors in a defined way. These systems
however are still relatively simple with respect to the number of different molecular
components, which is relatively small. Moreover, all of these components are known.
The system complexity increases further as one goes beyond the defined in vitro
motility to movements in cell extracts and, finally, transport in vivo [4, 14]. Here,
additional molecular players may modulate the properties of the motors and the
possible existence of unknown components or of cross-talk and unknown interactions
with other systems cannot easily be excluded. In this regard, theory can play an
important role by bridging not only between different length and timescales but also
between the different levels of complexity.

7 Of course, the molecules themselves may also add a layer of complexity to the patterns of
movements, for example if the motor has several different functional modes, as reported for dyneins
[92].
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Chapter 4
Biofilament Dynamics: Line-to-Rod-Level
Descriptions

Wonmuk Hwang

Abstract Conformational dynamics of a biofilament is an essential aspect of its
function. It can be considered in three different scales: Atomic level; rod level that
considers the finite cross section of the filament and axial twist; and line level that
only considers the filament’s contour. I explain and compare basic concepts for the
latter two levels of descriptions. At the line level, the contour length description is
introduced, which is extended to the triad description at the rod level. Two case studies
are presented, one on generation of the line-level contour in thermal equilibrium,
the other on solving Kirchhoff’s equations for bending of a clamped rod. As the
experimental resolution in measuring the dynamics of biofilaments is improving, it
is expected that applicability of these quantitative descriptions will increase.

4.1 Introduction: Describing Biofilament Behavior
at Three Scales

The majority of our body’s constituents have filamentous geometry: Proteins,
polysaccharides, and nucleic acids are all biopolymers. Next in length scale in terms
of filament diameter, F-actin in the cytoplasm and fibrillar collagen in the extracellu-
lar matrix, are among the most abundant proteins in the world [8, 28]. Higher order
structures such as actin stress fibers and collagen fibers are formed and carry out
crucial function. It is thus necessary to know the physical and mechanical aspects of
biofilaments on different length scales: Interaction with other proteins or assembly
of biofilaments occur via specific interactions at the atomic level. Here, “physical
and mechanical aspects” refer to the dynamics of individual subunits forming the
biofilament viewed as folded polypeptide chains. At the next level, bending and
twisting behaviors of a biofilament, over length scales longer than its transverse
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dimension, can be understood by approximating it as a continuum rod. The underlying
assumption is that conformational fluctuation of individual subunits is in rapid local
equilibrium compared to the timescale of the filament motion. At a still higher level,
if we consider a much longer portion of the filament where its transverse dimension
can be ignored altogether, and on timescales during which the longer portion moves,
we ca use the line description.

While modeling the biofilament behavior on each of the above three scales is
an actively evolving area of research, crossing these scales is far less explored. For
the atomistic to rod levels, one can carry out molecular dynamics simulation using
atomic structures of biofilaments and extract rod-level descriptors such as bending,
stretching, and torsional stiffness [19, 24]. For the rod to line levels, the linkage is
easier to make, since models at the two levels are already in the continuum domain.
The distinction is made depending on whether internal motion of the rod’s cross
section can be ignored or not. However, for a student or a researcher who tries
to study mechanics of biofilament at these two levels, the first practical challenge
is learning extensively developed theories on respective scales. Elasticity of a rod,
not necessarily biological, has a long history and is also a discipline of applied
mathematics [6, 22]. The line-level polymer dynamics is a highly advanced field of
physics and chemistry [5, 7]. While it is in principle possible to learn the two theories
and apply them to modeling biofilaments, given the fact that mathematical theories
have not permeated sufficiently in biological research, and with the worrisome trend
that many students are becoming less diligent in learning and using mathematical
methods, but instead rely more on ready-made computer softwares, even learning
basics of a physical theory can be a significant burden.

Here I give a brief overview of the basic concepts and equations in the line-
and rod-level filament mechanics. As an introductory tutorial, I present hands-on
numerical schemes in two simple cases. Conceptual linkage between the line- and
rod-level descriptions is given. While this chapter is aimed at entry-level graduate
students and those alike, certain basic knowledge is assumed, which can be readily
found in available textbooks [4, 14]. Yet, I derive most expressions step-by-step that
are often skipped in the literature, conveniently replaced by phrases such as “It can be
shown that…,” or “It is straightforward to show ….” Although the equations might
look trivial to the authors, as a reader, sometimes I find it fairly difficult and time-
consuming to derive or understand them. With the spirit of this “cookbook,” I tried to
make derivations accessible to those with undergraduate-level calculus knowledge.

4.2 Line-Level Mechanics

4.2.1 Description of the Contour

The position vector of a point along a line or a curve is parametrized by the contour
length s, r = r(s) (Fig. 4.1a). We can also regard the contour as the trajectory of a
point particle. In this case, s corresponds to both the travel distance along the curve
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(a) (b) (c) (d)

Fig. 4.1 Contour length description of a filament as a line. a r = r(s) is the position vector of a
point on the filament relative to a fixed origin O , parametrized by the distance s along the contour
from one end of the filament. b An infinitesimal segment of length ds approaches arc of a circle of
radius R, with opening angle θ . Tangential vectors at the two ends of the arc are t(s) and t(s + ds).
c t(s + ds) − t(s) � t ′ds, so t ′ is normal to t and points to the center of the circle in (b). Since
|t| = 1, dθ = |t ′|ds, and from (b), Rdθ = ds. Combining these two, we get |t ′| = 1

R , which is

the curvature. The curvature vector Ω
R = t × t ′ is perpendicular to the page. d Forces and torques

on a segment of length ds. g and h are external force and torque per unit length of the filament,
respectively

and the travel time. Its “velocity” has magnitude 1 (v = dr
ds ≡ r ′, where |dr| = ds),

and it is in direction tangential to the contour at r(s). This defines the unit tangential
vector:

t = dr
ds

(4.1)

Continuing with the analogy to a particle trajectory, since the velocity vector t has a
constant magnitude, the “acceleration” t ′ will arise only from the change in direction,
hence perpendicular to t . Using t and t ′, we can define the curvature vector:

κ = Ω

R
≡ t × t ′. (4.2)

From Fig. 4.1c, Ω is a unit vector perpendicular to the plane locally spanning the
contour. The magnitude of t × t ′ is denoted by R−1, with R being the radius of
curvature. The unit vectors R t ′ and Ω are both perpendicular to the contour, and are
respectively called normal and binormal vectors. The coordinate basis {R t ′,Ω, t}
(normal, binormal, tangential) is called the Frenet basis [3].

4.2.2 Dynamics of the Line-Level Filament

In Fig. 4.1d, a segment of length ds in the filament experiences internal forces − f (s)
and f (s + ds) at its ends. The sign of force is chosen such that it is positive in the
direction of increasing s, so that the force − f (s) is the force applied by the portion
of the filament with contour length less than s on the cross section of the segment at
s. g is the external force on the filament per unit length, for example, due to gravity,
electric field, or viscous drag from the medium. The net force on the segment is
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f (s +ds)− f (s)+ gds. Denoting the linear mass density of the filament by ρ (mass
of the segment is ρds) and the time derivative by a dot over a variable

ρ r̈ = f ′ + g. (4.3)

In the case of rotation, we denote external torque per unit length by h At s, − f (s)
has zero moment arm hence does not exert any torque on the segment. f (s + ds)
applies a torque tds × f (s +ds) � t × f (s)ds to the first order in ds. The net torque
on the segment is thus M ′ds + t × f (s)ds + hds (M ′ arises in the same way as
f ′ in Eq. 4.3). Denoting the moment of inertia of the segment by Jds, and angular
velocity at s by ω, we get

J ω̇ = M ′ + t × f (s) + h. (4.4)

In most cases where biofilaments undergo overdamped motion, the left-hand sides
of Eqs. 4.3 and 4.4 can be set to zero, and g is the force due to viscous drag.
In the length scale of biomolecules, rotational field is usually absent, so h = 0.
Equations 4.3 and 4.4 simplify to

f ′ = −g, M ′ = f × t. (4.5)

Furthermore, many biofilaments can be regarded as inextensible. This is because
extension of covalent bonds results in much less deformation than by bending and
dihedral motions of bonds [18, 19]. In the case of self-assembled filaments such
as amyloid, F-actin, or microtubule, noncovalent interactions holding subunits are
mostly short-ranged hydrogen bonds, which are again nearly inextensible [24].
Besides, while small amounts of local bending can lead to large conformational
change of the filament as a whole, a small extension in length does not yield a notice-
able difference in conformation. Once we approximate the filament as inextensible,
the internal force f merely propagates along the filament, hence does not depend
on its material property, which means an infinite extensional modulus. On the other
hand, torque M depends not only on the curvature of the filament, but also depends
on the material property—a stiffer filament bends less under a given torque. Unlike
f , a constitutive relation is thus required to find the filament deformation under M.
For this, we consider a case where the filament undergoes gentle deformation about
its equilibrium shape. Since the potential energy profile around the minimum starts
with the second order (harmonic) term, we can assume a linear behavior as

M = K f (κ − κu). (4.6)

Here K f is flexural rigidity or bending stiffness of the filament, and κ and κu are
respectively the current and the equilibrium (undeformed) curvature (Eq. 4.2). We
also assume that the filament is isotropic, so that K f does not depend on the bend-
ing direction. Recalling that t = r ′, the right-hand side of Eq. 4.6 involves up to
second-order derivative of r . Plugging Eq. 4.6 into Eq. 4.5 thus yields a pair of
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partial differential equations for r , first order in time (viscous drag g is proportional
to the velocity of the segment, ṙ) and third order in s. For given initial and boundary
conditions, they can be integrated to yield r(s, t). Equations 4.5 and 4.6 have been
widely studied and applied to different systems. Analytic solutions for simple static
cases, such as bending and buckling, are found in standard textbooks on elasticity
(for example, see chapter II of Ref. [22]). Reference [31] gives an excellent analysis
of mechanically driven filaments such as bacterial flagellum.

Keeping the novice-minded approach, let us find the elastic energy stored upon
bending the filament. From elementary mechanics, the work done by a torque M
in turning an object by an angle dθ is Mdθ . If M = kθ (linear), work done for
turning the object to an angle θ is

∫ θ

0 Mdθ = k
2θ2. By analogy, we work on a

one-dimensional version of Eq. 4.6 with κu = 0 (a straight filament in equilibrium).
In Fig. 4.1b, denote the length and bending angle of the segment as Δs and Δθ ,
respectively. We have

M = K f

R
= K f

Δθ

Δs
(4.7)

The work W done when bending the segment from straight to a bending angle Δθ is
then W = K f

2Δs Δθ2 = K f

2R2 Δs (RΔθ = Δs). Thus, W
Δs = K f

2R2 is the bending energy
per unit length of the segment. Using this for Eq. 4.6, we get

W

Δs
= K f

2
(κ − κu)2. (4.8)

The equilibrium curvature κu serves as the reference configuration in the same way
as a Hookean spring with stiffness k and equilibrium length x0 has energy k

2 (x −x0)
2.

4.2.3 Case Study: Filament Conformation in Thermal
Equilibrium

Most biofilaments undergo thermal motion. Even for macroscopic collagen fibers,
local thermal motion of individual collagen molecules forming the fiber is critical
for their biological function. Random “thermal kicks” from the surrounding medium
deform the filament. The characteristic length scale for the filament’s thermal bending
motion is given by the persistence length lp. It is defined via the correlation function
between two tangential vectors separated by a contour length s:

〈t(s0) · t(s0 + s)〉 = e−s/ l p . (4.9)

Angular brackets on the left-hand side of Eq. 4.9 denote the ensemble average, mean-
ing that average is made over a large number of identical filaments each undergo-
ing different thermal motion. s0 is an arbitrary reference point along the filament.
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We consider a homogeneous filament so that the correlation function depends only
on the distance s between the two points, not s0. Continuing the analogy between
the filament contour and the trajectory of a moving particle, l p corresponds to the
correlation time of a particle undergoing Brownian motion. At a given temperature
T , a stiffer filament will remain straighter, hence l p will be longer. For a filament of
a given stiffness, it will bend more at a higher temperature due to stronger thermal
kicks. These two conditions combine to [5, 14]

l p = K f

kB T
. (4.10)

Here, kB is the Boltzmann constant. We ca use a scaling argument to understand
the origin of Eq. 4.10: Since thermal force bends the filament, the average elastic
energy,

K f
l p

(
K f

2l2
p
l p, ignoring 2), should be equal to the thermal energy kB T , yielding

Eq. 4.10. If we follow a more rigorous derivation [5, 14], Eq. 4.10 is for filaments in
three dimensions where the filament can bend in two orthogonal directions. In two
dimensions, bending can occur only on a plane, so only half of the thermal energy
can bend the filament, making it straighter: l p = 2

K f
kB T (2-dim) [26].

The definition of l p (Eq. 4.9) involves an ensemble average, where we need to
analyze many replicas of the filament. Let us ask a question on de-averaging: For
a given l p, how does a typical filament look? For this we use computer to generate
example contours. For simplicity, we work in two dimensions. Take a segment of
length Δs and place it along the x-axis, with its left end at the origin (point A in
Fig. 4.2a). When it is bent to an angle θ1, the length Δl1 of the line joining its two
ends (AB) is at an angle φ1 = θ1/2 relative to the x-axis. Also, Δl1 = 2R1 sin θ1

2 =
2Δs

θ1
sin θ1

2 , so the coordinate of point B is (Δl1 sin φ1,Δl1 cos φ1). Next add the

(a)

(b)

(c)

Fig. 4.2 Generating a contour with a given persistence length l p . a Two successive segments of
length Δs each. The local bending angle of segment i is θi (i = 1, 2, . . .). b Representing the
contour using straight segments of length Δli . The angle φi between neighboring segments is θi

2 .
c Sample contours starting horizontal at the origin. Dashed lp = 5, and thick solid lp = 1.0. The
length of each contour is 5. Δs = 0.01 was used
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second segment of length Δs at B. If the equilibrium shape of the filament is straight,
we need to work relative to the tangential line B D. Suppose the new segment is bent
to an angle θ2. It will be at an angle φ2 = θ2/2 relative to B D. The end-to-end
distance of the segment is, following a similar argument, Δl2 = 2Δs

θ2
sin θ2

2 . Relative
to the x-axis, it will be at an angle θ1 + φ2, so the position of the point D will be
determined by adding the vector (Δl2 cos(θ1 +φ2),Δl2 sin(θ1 +φ2)) to B. Iterating
this procedure, we can generate a contour with a given series of local bending angles
{θ1, θ2, . . .} and segment length Δli . Let ri (i = 1, 2, . . .) be the position vector of
the end of the i-th segment. We have

ri = ri−1 + Δri , Δli = 2
Δs

θi
sin

θi

2

Δri =
⎛
⎝Δli cos

⎡
⎣

i−1∑
j=0

θ j + θi

2

⎤
⎦ ,Δli sin

⎡
⎣

i−1∑
j=0

θ j + θi

2

⎤
⎦

⎞
⎠ (4.11)

(i = 1, 2, . . . ; r0 ≡ (0, 0), θ0 ≡ 0).

What remains is to generate a set of angles {θi } that are consistent with the con-
tour’s persistence length l p. This can be done via energy balance argument. When
a segment Δs is bent to an angle θ , its bending energy is, as explained above
Eq. 4.8, ΔE = K f

2
θ2

Δs . From statistical thermodynamics, the probability distribution
P(θ) that the segment bends to an angle θ at temperature T follows the Boltzmann
distribution

P(θ) ∼ e
− ΔE

kB T = e
− K f

2kB T
θ2
Δs = e− l p

4Δs θ2
. (4.12)

where we used l p = 2K f /kB T for 2 dimensions. Equation 4.12 is a Gaussian
distribution with zero mean and standard deviation σ(θ) = √

2Δs/ l p (the variance
σ(θ)2 of a Gaussian distribution is half the inverse of the prefactor for θ2 in the
exponent). Thus, to generate a contour of persistence length l p in two dimensions
with segment size Δs, generate Gaussian-distributed random numbers θi according
to Eq. 4.12, and use them in Eq. 4.11.

Sample contours of length 5 generated in this way for two different values of l p are
in Fig. 4.2c. While l p is typically considered as the length beyond which the memory
of the initial filament direction is lost, when the contour length is equal to l p, as for
the case l p = 5.0 in Fig. 4.2c, the filament is still fairly straight, i.e., semiflexible.
It appears flexible only when the contour length is much greater than its persistence
length.

For our approach be valid, Δs must be sufficiently small so that its bent shape looks
like an arc of a circle, not a random contour, as in Fig. 4.2a. This can be achieved by
choosing Δs/ l p � 1, which in turn means the bending angle θ is small and narrowly
distributed, σ(θ) � 1. Among the examples in Fig. 4.2c, for l p = 1 and Δs = 0.01,
σ(θ) = √

2Δs/ l p = 0.141 rad (=8.10◦), which is reasonably small.
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Equation 4.9 only tells how the correlation function behaves, and it does not require
any particular probability distribution for the angle between t(s0) and t(s0 + s).
Leveraging on the fact that bending of the filament occurs via thermal fluctuation, we
used Eq. 4.12 for the probability distribution of the bending angles among discretized
segments.

4.3 Rod-Level Mechanics

The main difference between line- and rod-level descriptions is that the latter con-
siders finite cross section of the filament. As will be seen below, this makes the
equations of motion significantly more complex. The price is worth to pay for, as it
allows for describing more sophisticated behaviors of individual filaments, such as
torsion-induced buckling, supercoiling, and perversion (note that sometimes there
are a pair of kinks developed along a telephone cord, where the handedness of the
cord is inverted between the kinks; check this for your landline phone!). Its rele-
vance to a broad range of systems had led to the development of rod dynamics as
a sub-discipline of mechanics or applied mathematics [9–12]. The earliest system-
atic treatment may be by Gustav Kirchhoff in the mid-nineteenth century [3, 6].
For this reason, an elastic rod is often called Kirchhoff’s rod. The theory itself is
simply a statement of force and torque balance along the rod. But applying it to
different cases (meaning different initial and boundary conditions) is not easy both
conceptually and computationally. Description of the equations of motion, strategies
for solving them, and unfortunately, notations, differ among authors. These make
it difficult for a beginner to learn this beautiful and powerful theory. The literature
is divided roughly into two groups, one focused on theoretical aspect [3, 9–12],
and the other on numerical implementation [1, 13, 16, 17]. The former tends to be
intuitively and notationally clear, whereas the latter is easier or better at getting the
results. Here I take the theoretical approach to introduce basic concepts and Kirch-
hoff’s equations, then work out a simple example to explain how the equations are
solved.

4.3.1 Triad Description

The Frenet basis (Eqs. 4.1 and 4.2) is useful for describing the geometry of the
filament contour. However, it provides little information about how much the filament
is axially twisted, as the normal (R t ′) and binormal (Ω) vectors are determined by
bending of the filament. Besides, when a region of a moving rod becomes locally
straight, normal and binormal vectors become zero, losing orientational information
of the cross section. This makes it necessary to use a coordinate frame that is attached
to the material of the rod rather than the shape of the contour. The tangential vector
t (Eq. 4.1) is well-defined for a rod if it possesses a continuous and differentiable
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(a) (b) (c)

Fig. 4.3 Triad description of a rod. a Material frame. The tangent vector along the rod’s centroid
line is d3. Perpendicular to it is d1 which points to a line fixed on the surface of the rod. When
the rod twists, d1 rotates about d3 as the shape of the surface line changes. For this, d3 does not
need to change direction, unlike the Frenet basis. b, c Meaning of the curvature vector κ . b For a
general deformation, triad at s + ds (dashed arrows) rotates relative to triad at s (solid arrows). c
For infinitesimal ds, d1(s +ds)−d1(s) = d ′

1ds is perpendicular to d1, hence lies on the d2d3-plane.
κ3ds is the d2-component as d1 rotates about d3. Similarly, −κ2ds is the d3-component of d ′

1ds
for rotation of d1 about d2. The negative sign is because the right-handed rotation of d2 leads to a
decrease in the d3-component of d ′

1ds

centroid that corresponds to the contour in the line-level description. Herein we call it
as d3(s). Describing the twisting motion of the rod about d3 is conceptually simple:
Draw a line on the surface of the rod parallel to the contour (centroid). At each
point along the contour, erect a unit vector d1 locally perpendicular to the contour,
toward the surface line. If the rod twists, the surface line will change its shape, so
will the direction of d1 (Fig. 4.3a). Assigning d1 and d3 fixes d2 ≡ d3 × d1. The local
coordinate basis {d1(s), d2(s), d3(s)} forms a triad that describes local conformation
of the rod. It is also called the material frame. Some authors use the notation T = d3,
and call d1 and d2 respectively as U and V , and re-order them to {T , U, V } [1, 20].
Here, we use di [3, 9] as it enables the index notation in algebraic operations. One
can remember di as directional basis.

Note that any choices for d1 and d2 work as long as they are perpendicular and
lie on the local cross section of the rod. A popular choice is using the two prin-
cipal axes of the cross section, which makes the constitutive relation simpler. To
be more precise, the cross section may change shape or warp as the rod deforms
[22], which makes it difficult to maintain orthonormality of the triad. However, as
long as such changes are small, we can assume the cross section to be planar and
has a fixed shape. References [3, 6] give an in-depth discussion of higher order
corrections to Kirchhoff’s theory. We do not consider them here since the lowest
order theory is already useful and complex enough in most cases. Besides, applying
Kirchhoff’s theory to a biofilament is a gross idealization anyway (e.g., the DNA
double helix is often described as a cylindrical rod). Our main goal is getting a semi-
quantitative and intuitive picture, which is not altered significantly by higher order
corrections.

To describe local deformation of a rod, we need only three degrees of freedom;
two directions of bending and axial twist. Three unit vectors forming the triad
are thus more than necessary, and other descriptions have been proposed [2, 20].
Although some of them might be more economical, the triad description makes
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the deformation and mechanics easier to understand, hence we stick to this more
traditional way.

Orthonormality of the triad can be written as di · d j = δi j , where δi j = 0 (i 
= j)
or 1 (i = j), is the Kronecker-delta. Differentiating this relation with s gives (δi j is
independent of s)

d ′
i · d j + di · d ′

j = 0 (4.13)

Analogous to Fig. 4.1c, d ′
i is perpendicular to di , which can also be seen from Eq. 4.13

by setting j = i . If we decompose d ′
i using the triad, d ′

i = ∑
k Kik dk, we get Kii = 0.

Equation 4.13 also suggests Ki j + K ji = 0, so that Ki j is an antisymmetric matrix
with zero diagonal elements. In other words, we can write

d ′
i = κ × di (4.14)

This generalizes Eq. 4.2 for the line-level description. We call κ again as the curvature
vector. Since the triad is also a function of time, di = di (s, t), we can apply the same
argument to the time derivative of di · d j , and introduce the spin vector ω:

ḋi = ω × di . (4.15)

Note that κ = κ(s, t) and ω = ω(s, t). To better understand these expressions, let
us take an example, d ′

1 = κ3d2 − κ2d3. As shown in Fig. 4.3c, κ3 relates to the rate
of rotation of d1 about d3, and similarly, κ2 is about d2. We can thus see that κi and
ωi are rotation rates of the triad about di in s and t , respectively: κ1,2 and ω1,2 are
for bending of the rod about the two principal axes, and κ3 and ω3 are for twist. To
find the relation between κ and ω, we use the condition ∂2di/∂s∂t = ∂2di/∂t∂s,
and use Eqs. 4.14 and 4.15:

∂

∂s

∂di

∂t
= ∂

∂s
(ω × di ) = ω′ × di + ω × (κ × di )

= ω′ × di + ωiκ − (ω · κ)di . (4.16)

For the last line, we used the vector identity A × (B × C) = B(A · C) − C(A · B).
Also note that di is the i-th basis vector of the triad, whereas ωi = ω · di is the i-th
component of ω, which is a scalar. We can obtain a similar expression for the other
derivative

∂2di/∂t∂s = κ̇ × di + κiω − (ω · κ)di . (4.17)

Apply (
∑3

i=1 di× ) to Eqs. 4.16, 4.17, and equate:
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3∑
i=1

di × (ω′ × di ) +
3∑

i=1

ωi di × κ = 3ω′ −
∑

i

(ω′)i di + ω × κ = 2ω′ + ω × κ

3∑
i=1

di × (κ̇ × di ) +
3∑

i=1

κi di × ω = 3κ̇ −
∑

i

(κ̇)i di + κ × ω = 2κ̇ + κ × ω

∴ ω′ − κ̇ = κ × ω. (4.18)

Equation 4.18 is called the compatibility condition.

4.3.2 Equation of Motion

As for the line-level description, let r(s) be the position vector of the rod’s centroid
at contour length s (Fig. 4.1a). The position vector X of a point within the rod is
expressed as X(s, x1, x2, t) = r(s, t) + x1d1(s, t) + x2d2(s, t), with x1 and x2 as
components of X on the cross section of the rod at s. For force balance, integrating
the internal stress over the rod’s cross section yields the internal force f that we
introduced in line-level mechanics. As in Fig. 4.1d, if we consider a segment of
the rod with length ds, the net internal force at s and s + ds is f ′ds. Similarly,
g(s)ds is the net external force on the center of mass of the segment. Let ρV be the
volumetric mass density of the rod. Newton’s second law of dynamics becomes, as
for Eq. 4.3,

∫

A

ρV Ẍd A = f ′ + g (4.19)

We now make two assumptions: Let the rod be homogeneous so ρV is constant. Also
assume that the rod’s cross section has a fixed shape and is symmetric relative to the
principal axes, so that

∫
A x1,2d A = 0. These assumptions, although only approxi-

mately valid in real biofilaments, make equations more tractable. The left-hand side
of Eq. 4.19 becomes: ρV

∫
A Ẍd A = ρV

∫
A(r̈ + x1 d̈1 + x2 d̈2)d A = ρV A r̈ = ρ r̈ (A:

cross sectional area, ρ ≡ ρV A: linear mass density of the rod). In the homogeneous
and symmetric case, Eq. 4.19 thus becomes identical to Eq. 4.3. In fact, Eqs. 4.3 and
4.4 implicitly make these two assumptions. To proceed further, differentiate Eq. 4.3
relative to s, and use r ′ = d3 to get

ρ d̈3 = f ′′ + g′ (4.20)

With the triad description, the torque balance equation becomes, as for Eq. 4.4,
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M ′ + d3 × f + h =
∫

A

ρV
[
(x1d1 + x2d2) × (x1 d̈1 + x2 d̈2)

]
d A

=
∫

A

ρV

(
x2

1 d1 × d̈1 + x2
2 d2 × d̈2

)
d A ←

∫
x1x2d A = 0

= ρV
(
I1d1 × d̈1 + I2d2 × d̈2

)
. (4.21)

For the last line, I1,2 ≡ ∫
A x2

1,2d A is the second moment of inertia of the cross
section. Equation 4.21 is applicable for a rod whose cross section is symmetric in
respective principal axes, such as an ellipse. If we further assume equivalence of the
two principal axes such as in a cylinder, I1 = I2 ≡ I , and we get

M ′ + d3 × f + h = ρV I
(
d1 × d̈1 + d2 × d̈2

)
. (4.22)

Eqs. 4.20 and 4.22 are the equations of motion for the rod, also called Kirchhoff’s
equations. Unless the rod has internal chemical reactions that generate active force
(this is possible for a bundle of filaments driven by motors, such as muscle fibers or
cilia), and if we assume inextensibility as in the line-level mechanics, the internal
force f (s, t) arises as a reaction force. On the other hand, the torque M depends
on deformation, for which we need a constitutive law. The most widely used one
is, as for the line-level description, the linear law. If we expand M using the triad,
M = ∑3

i=1 Mi di ,

M1 = E I (κ1 − κu
1 ), M2 = E I (κ2 − κu

2 ), M3 = μJ (κ3 − κu
3 ), (4.23)

where E is Young’s modulus, μ is the shear modulus, and J is the axial moment
of inertia (cf., Eq. 4.4). For a circular cross section, J = 2I [22]. The vector κu =∑3

i=1 κu
i di is the equilibrium curvature of the rod. For a straight rod, κu = 0.

Components of the torque in di do not mix together since we chose d1 and d2 as
principal axes (M1 is independent of κ2, and vice versa).

When is the linear (harmonic) constitutive law applicable? For a well-folded
biofilament, conformational fluctuation is around the energy minimum (equilibrium
shape). In this case, linear behavior is usually guaranteed for small local deforma-
tions (which can still change the rod’s overall shape significantly), as explained
above. Larger deformations can be approximated as linear as long as they lie within
the basin of attraction of the minimum. If deformation is even larger and the sys-
tem moves to other local energy minima, the case has to be treated with multiple
equilibrium conformations, where small deformation from each minimum can be
locally treated harmonic. Also note that, linearity in the constitutive law does not
imply linearity in the conformational behavior of the rod. Equation 4.22 is nonlinear
(di and f are functions of s and t), so the resulting motion can be quite complex.
Although the linear constitutive law has wide range of applicability, if the biofilament
locally denatures so that there is no well-defined energy minimum, the rod behaves
flexible. In such cases, one needs to determine whether the denatured region(s) can
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be treated as flexible joints while applying continuum elasticity to the well-folded
portions.

For numerical implementation, let us de-dimensionalize variables. The answers
are given in, for example, Refs. [3, 9]. Here we show how it’s done. For simplicity,
below we consider the case g = 0, h = 0, and κu = 0. Let at , as , a f , and aM be
respectively characteristic time, length, force, and torque of the rod. We scale the
corresponding dimensionful quantities

t = at t0, s = ass0, f = a f f0, M = aM M0, (4.24)

where we use a subscript 0 to denote dimensionless variables (later we will drop it).
Time and s-derivatives can then be expressed as ∂

∂t = 1
at

∂
∂t0

, and ∂
∂s = 1

as

∂
∂s0

. From
Eq. 4.20 (with g = 0),

ρV A

a2
t

d̈3 = a f

a2
s

f ′′
0 →

(
at

as

)2

= ρV A

a f
. (4.25)

Here, derivatives are by dimensionless variables t0 and s0. We similarly de-
dimensionalize Eq. 4.22:

aM

as
M ′

0 + a f d3 × f0 = ρV I

a2
t

(
d1 × d̈1 + d2 × d̈2

)

→ a f = aM

as
= ρV I

a2
t

. (4.26)

From Eq. 4.14, the dimension of κ is the inverse of length (di is a unit vector, hence
dimensionless). Equation 4.23 can be de-dimensionalized as

aM M10 = E I

as
κ10, aM M20 = E I

as
κ20, aM M30 = μJ

as
κ30

→ aM = E I

as
. (4.27)

Inserting a f = ρV I/a2
t (Eq. 4.26) into Eq. 4.25 yields as = √

I/A. We plug this to
Eq. 4.27, to get aM = E

√
AI . Inserting these back to Eq. 4.26 gives a f = AE and

at = √
ρV I/AE , completing de-dimensionalization. The d3-component of Eq. 4.27

becomes M30 = μJ
E I κ30. Below we work only with de-dimensionalized variables and

drop the subscript 0. The de-dimensionalized Kirchhoff’s equations are

d̈3 = f ′′ (4.28a)

M ′ + d3 × f = d1 × d̈1 + d2 × d̈2 (4.28b)

M = κ1d1 + κ2d2 + Γ κ3d3 (4.28c)
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Here, Γ ≡ μJ/E I is the only number that differs between systems. For a cylin-
drical rod, Γ = 2μ/E . We also treat Eqs. 4.14 and 4.15 as dimensionless.

4.3.3 Numerical Implementation of Kirchhoff’s Equations

The main idea underlying Kirchhoff’s equations is to express vectors using the triad,
a material frame following the rod, so that we can focus on conformational motion,
not the center of mass rotation and translation of the rod as a whole. However, solving
them is nontrivial. Most literature reach the point of showing Kirchhoff’s equations
or the corresponding equations, then jump to results of their calculations, sometimes
only briefly mentioning about the method they used to integrate the equations. As will
become clearer below, the difficulty lies not only in the use of integration algorithms,
but more fundamentally, the approach depends on the problem under consideration.
By analogy, knowing Newton’s second law of dynamics (F = ma) is not enough to
design a bridge or a bicycle. Keeping the novice spirit, here we take more steps to
see how the equations are solved.

Since di depends on s and t , derivatives of a vector ( f , M, κ , and ω) projected
on the triad generate derivatives of the triad as well. We use this in expressing
each component of Eq. 4.28. For notational simplicity, below we use the Einstein
convention where the summation symbol

∑3
i=1 is omitted if the same index appears

more than twice in a term, so that ai bi means
∑

i ai bi . Let us start with the left-hand
side of Eq. 4.28a. Using Eq. 4.15,

ḋ3 = ω × d3 = ωi di × d3 = ω2d1 − ω1d2

d̈3 = ω̇2d1 − ω̇1d2 + ω2(ω × d1) − ω1(ω × d2). (4.29)

Component-wise,

(d̈3)1 = ω̇2 + ω1ω3 (4.30a)

(d̈3)2 = −ω̇1 + ω2ω3 (4.30b)

(d̈3)3 = −(ω2
1 + ω2

2). (4.30c)

For the right-hand side of Eq. 4.28a, use Eq. 4.14,

f ′ = f ′
i di + fi (κ × di )

f ′′ = f ′′
i di + 2 f ′

i (κ × di ) + fi (κ
′ × di ) + fi (κ × [κ × di ])

= f ′′
i di + 2 f ′

i (κ × di ) + fi ([κ ′
m dm + κm{κ × dm}] × di ) + fi (κiκ − κ2di )

= f ′′
i di + 2 f ′

i (κ × di ) + fiκ
′
m(dm × di ) − fiκm(di × {κ × dm})

+ ( f · κ)κ − κ2 fi di
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= ( f ′′
i − κ2 fi )di + 2 f ′

i (κ × di ) + fiκ
′
m(dm × di ) − fiκm(δimκ − κi dm)

+ ( f · κ)κ

= ( f ′′
i − κ2 fi )di + 2 f ′

i (κ × di ) + fiκ
′
m(dm × di ) + ( f · κ)κ . (4.31)

In the last, we used, fiκm(δimκ − κi dm) = ( f · κ)κ − ( f · κ)κ = 0. Equating
Eqs. 4.31 and 4.30 yields,

f ′′
1 − κ2 f1 − 2 f ′

2κ3 + 2 f ′
3κ2 + f3κ

′
2 − f2κ

′
3 + ( f · κ)κ1 = ω̇2 + ω1ω3 (4.32a)

f ′′
2 − κ2 f2 − 2 f ′

3κ1 + 2 f ′
1κ3 + f1κ

′
3 − f3κ

′
1 + ( f · κ)κ2 = −ω̇1 + ω2ω3

(4.32b)

f ′′
3 − κ2 f3 − 2 f ′

1κ2 + 2 f ′
2κ1 + f2κ

′
1 − f1κ

′
2 + ( f · κ)κ3 = −(ω2

1 + ω2
2).

(4.32c)

Next work on Eq. 4.28b. From Eq. 4.28c,

M ′ = κ ′
1d1 + κ ′

2d2 + Γ κ ′
3d3 + κ1(κ × d1) + κ2(κ × d2) + Γ κ3(κ × d3)

(M ′)1 = κ ′
1 + (Γ − 1)κ2κ3,

(M ′)2 = κ ′
2 − (Γ − 1)κ1κ3,

(M ′)3 = Γ κ ′
3 (4.33)

and

d3 × f = f1d2 − f2d1. (4.34)

For the right-hand side of Eq. 4.28b, we follow a procedure similar to Eq. 4.29,

d̈1 = ω̇3d2 − ω̇2d3 + ω3(ω × d2) − ω2(ω × d3)

d̈2 = ω̇1d3 − ω̇3d1 + ω1(ω × d3) − ω3(ω × d1), (4.35)

so that

d1 × d̈1 = ω̇3d3 + ω̇2d2 − ω3ω1d2 + ω2ω1d3

d2 × d̈2 = ω̇1d1 + ω̇3d3 − ω1ω2d3 + ω3ω2d1. (4.36)

Inserting Eqs. 4.33, 4.34, and 4.36 into Eq. 4.28b yields

κ ′
1 + (Γ − 1)κ2κ3 − f2 = ω̇1 + ω3ω2 (4.37a)

κ ′
2 − (Γ − 1)κ1κ3 + f1 = ω̇2 − ω3ω1 (4.37b)

Γ κ ′
3 = 2ω̇3. (4.37c)

Equations 4.32 and 4.37 are component forms of Eqs. 4.28a and 4.28b. They are
easier to work with since no derivatives of the triad are present. To use them for
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a given system, we must know the initial and boundary conditions. Regarding the
initial condition, the position (shape) and velocity of each point on the rod at t = 0
must be given. When using the triad, these correspond to prescribing κ(s, 0) for
shape and ω(s, 0) for velocity. Suppose we found κ(s, t) and ω(s, t) at t > 0. To
find them at t + dt , we need to calculate fi , f ′

i , f ′′
i , and ω̇i in Eqs. 4.32 and 4.37. If

f (s) is known, its derivatives are also known. So we need to find fi and ω̇i , hence 6
equations with 6 unknowns. To make them more manageable, express ω̇i in Eq. 4.37:

ω̇1 = κ ′
1 + (Γ − 1)κ2κ3 − f2 − ω3ω2 (4.38a)

ω̇2 = κ ′
2 − (Γ − 1)κ1κ3 + f1 + ω3ω1 (4.38b)

ω̇3 = 1

2
Γ κ ′

3. (4.38c)

Plug ω̇1 and ω̇2 in Eq. 4.32:

f ′′
1 − (1 + κ2) f1 − 2 f ′

2κ3 + 2 f ′
3κ2 + f3κ

′
2 − f2κ

′
3 + ( f · κ)κ1

= κ ′
2 − (Γ − 1)κ1κ3 + 2ω1ω3

(4.39a)

f ′′
2 − (1 + κ2) f2 − 2 f ′

3κ1 + 2 f ′
1κ3 + f1κ

′
3 − f3κ

′
1 + ( f · κ)κ2

= −κ ′
1 − (Γ − 1)κ2κ3 + 2ω2ω3

(4.39b)

f ′′
3 − κ2 f3 − 2 f ′

1κ2 + 2 f ′
2κ1 + f2κ

′
1 − f1κ

′
2 + ( f · κ)κ3

= −(ω2
1 + ω2

2). (4.39c)

If we know κi (s, t) and ωi (s, t), Eq. 4.39 is a set of second order differential equations
for fi . After solving it, we can plug the results into Eq. 4.38 to get ω̇i (s, t). Using
ωi (s, t), we can get di (s, t + dt) (Eq. 4.15), hence κ(s, t + dt) (Eq. 4.14). From
ω̇i (s, t), we can also get ωi (s, t +dt). Since we now know κi (s, t +dt) and ωi (s, t +
dt), the procedure can be iterated over time. What we have done is to rewrite Eqs. 4.32
and 4.37 to Eqs. 4.38 and 4.39, so that derivatives of fi and ωi can be evaluated
sequentially rather than simultaneously. Equation 4.39 can be written in matrix form
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⎠ (4.40)
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If fi and f ′
i at s = 0 are provided as boundary conditions, Eq. 4.40 can be integrated

to yield fi for s > 0. However, boundary conditions in many cases come in different
forms, and it is not immediately clear what fi (s = 0) and f ′

i (s = 0) are. The next
section is a tutorial on approaching this problem.

4.3.4 Case Study: Static Bending of a Clamped Rod

Consider an undergraduate-level mechanics problem: A rod of length L is clamped at
s = 0 to the Cartesian coordinate origin, aligned along the z-axis. Its two major axes
of cross section are aligned to the x- and y-axes. An external force fe applies in the
y-direction to the tip (s = L), and bends the rod on the yz-plane. What is the shape
of the bent rod? If we ignore changes in the rod’s cross section upon bending, the
problem can easily be solved using the line-level description [22]. Using Kirchhoff’s
equations for this simple system may be an overkill, but it is a good exercise.

Since this is a problem of statics, ω = 0. Also, since all deformations occur on
the yz-plane, d1 = x and f1 = 0 for all s. Considering that κi relates to the rotation
about di (Fig. 4.3c), there are no rotations about d2 or d3 for bending on the yz-plane,
hence κ2 = κ3 = 0. Equation 4.40 then reduces to

(
f ′′
2

f ′′
3

)
+

(
0 −2κ1

2κ1 0

) (
f ′
2

f ′
3

)
+

(−(1 + κ2
1 ) −κ ′

1
κ ′

1 −κ2
1

) (
f2
f3

)
=

(
0
0

)
(4.41)

In Eq. 4.41, κ1, f2, and f3 are unknown along the rod, so we have to solve for
them with given boundary conditions. At s = 0, the triad aligns with the Cartesian
coordinate basis: {d1, d2, d3} = {x, y, z}. The wall holding the rod applies force
and torque to keep it clamped. The force must be − fe y, since the net force on the
rod must be zero. From the rod’s point of view, this means f (0) = fed2(0). The
sign reverts as explained regarding Fig. 4.1d. On the other hand, we do not know
f ′
i (0) (i = 2, 3) nor κ1(0). If we denote the z-coordinate of the rod’s tip as zL ,

M(0) = − fezL d1, so κ1(0) = − fezL . But we don’t know zL yet. Now let us
consider boundary conditions at s = L . Although f (L) = fe y, due to tilting of the
tip, the triad does not align with the Cartesian coordinate system so the components
f2(L) and f3(L) are not individually known. Note that, with Ẍ = 0 and g = 0 in
Eq. 4.19, f ′ = 0, so f = fe y (constant) along the rod. However, since d2 and d3
vary with s, the components f2 and f3 also depend on s:

f ′ = f ′
2d2 + f ′

3d3 + f2(κ × d2) + f3(κ × d3)

= ( f ′
2 − κ1 f3)d2 + ( f ′

3 + κ1 f2)d3 = 0

∴ f ′
2 = κ1 f3, f ′

3 = −κ1 f2. (4.42)

Since there is no torque on the rod’s tip, κ1(L) = 0, so that f ′
2(L) = f ′

3(L) = 0. For
a general s, since d1 is independent of s, M = κ1d1 → M ′ = κ ′

1d1. On the other
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hand, from Eq. 4.28b, M ′ = f × d3 = f2d1. This gives κ ′
1 = f2, which, together

with f 2
2 + f 2

3 = f 2
e and Eq. 4.42, can be used to rewrite Eq. 4.41 separately for f2

and f3:

f ′′
2 = f2

(
1 − κ2

1 +
√

f 2
e − f 2

2

)
(4.43a)

f ′′
3 = f3( f3 − κ2

1 ) − f 2
e . (4.43b)

For solving Eq. 4.43, neither s = 0 nor s = L has fi and f ′
i completely specified.

Summarizing boundary conditions discussed above, at s = 0, fi is known ( f2(0) =
fe, f3(0) = 0), while at s = L , f ′

i is known ( f ′
2(L) = f ′

3(L) = 0). We can thus
solve Eq. 4.43 in two ways. The first is to integrate from s = 0. In this case, we
use trial values for f ′

i (0). After integrating to s = L , check if f ′
i (L) = 0. If not,

vary f ′
i (0) until the boundary condition at s = L is met. The second way goes in

the opposite direction, where we vary fi (L) and integrate Eq. 4.43 from s = L to 0
until f (0) matches with fe y. The computational technique of varying the unknown
boundary condition at one end of the integration range to match the known boundary
condition at the other end is in general called the shooting method [25]. Conceptually,
whether to start the integration from s = 0 or L does not make any difference. One
can choose whichever direction that is easier to write into a computer program,
or is less prone to roundoff error. Numerically solving boundary value problems,
or scientific computing in general, is an art where accuracy and efficiency are two
major factors to consider. Discussion of how to actually integrate Eq. 4.43 would
be a separate topic by itself, for which I refer the readers to the excellent hands-on
book Numerical Recipes [25]. Here, we integrate from s = L to 0. Only either one
of Eqs. 4.43a and 4.43b needs to be solved, since the three vectors of the triad are

(a) (b)

Fig. 4.4 Bending of a clamped rod. a Schema of the system. At s = 0. the rod is clamped and
aligned along the Cartesian z-axis. At s = L , an external force fe applies in the y-direction. Due
to bending, the z-coordinate of the rod at s = L is zL . Bending occurs only on the yz-plane. The
triad corresponds to the Cartesian coordinate basis at s = 0, and changes direction for s > 0 due to
bending. b Solution of Eq. 4.43b for fe = 1 and 3. We used L = 1 and the integration interval was
Δs = 0.001. The rod’s actual diameter is irrelevant, since it is absorbed into the length scale after
de-dimensionalization. Besides, there are no lateral interactions in this problem
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not mutually independent (d3 = d1 × d2). We choose Eq. 4.43b. With κ1(s) known,
using d2(0) = y, d3(0) = z, d ′

2(s) = κ1d3, and d ′
3(s) = −κ1d2, we can calculate

d2(s) and d3(s).
Figure 4.4b shows two cases with fe = 1 and 3. One way of checking the

accuracy of calculation is to compare M(0) = κ1(0) with fezL (ignoring signs).
In the case of fe = 1, M(0) = 0.9420 and fezL = 0.9439 (zL = 0.9439). For
fe = 3, M(0) = 2.2345 and fezL = 2.2396 (zL = 0.7465). These are about 0.2 %
accuracy, which is good enough for the purpose of this chapter. When carrying out
more involved calculations, however, it is necessary to check the result in multiple
angles to make sure that it is not infested by numerical artifacts.

4.4 Conclusion

Between the line- and rod-level descriptions of biofilaments, the former is simpler
and is of widespread use when detailed conformational behavior of a filament is not
measured in experiments. Good examples are mechanical unfolding of a protein [21]
or analysis of filament bending motion [15]. The worm-like chain model [23] may be
viewed as a version of the line-level description that emphasizes statistical aspects
arising from thermal fluctuation. By comparison, the rod-level description has been
the most extensively used perhaps for DNA [16, 29]. This may be because it has long
been known that DNA conformation is crucial for the cellular machinery. However,
the same is most likely to hold for other biofilaments, i.e., the conformational behav-
ior and mechanics of a biofilament are essential for its biological function. Taking
fibrillar collagen as an example, the increasingly available imaging data show large
conformational variability depending on tissue type [27] or the amount of load [30].
Dynamic organization of the cytoskeleton is, of course, key to cellular function.
As the experimental resolution is steadily increasing in both space and time, it is
expected that the rod-level description will play a greater role.

Although it can capture more detailed conformational behavior, the rod-level
description is difficult to use. As demonstrated by the simple bending of a rod, one
needs to have a good understanding of the system in order to figure out boundary
conditions, which can be fairly sophisticated in cases when the filament has nonzero
equilibrium curvature, or if the system contains multiple interacting filaments. In
such cases, the traditional approach of solving Kirchhoff’s equations as an initial-
boundary value problem can be impractical. Recent approaches treat the system as
discrete from the outset, rather than relying solely on the continuum formulation
[17], and even utilizes the relatively new mathematical theory of discrete differen-
tial geometry [1]. These approaches are somewhere between molecular dynamics
simulation and continuum mechanics. After all, continuum description is an ideal-
ization that is suitable mainly for macroscopic and homogeneous systems. With the
increasing need to simulate mesoscale, near-atomic resolution biofilaments, discrete
description may be computationally more advantageous. However, a unique advan-
tage of the continuum description is the physical insight it provides—Biofilaments
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are ultimately a discrete collection of atoms. Computers are digital. The neurons
in our brains make distinct and finite connections and fire signals. However, our
thoughts are hardly discretized.

References

1. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM
Transactions on Graphics 27(3), article 63 (2008)

2. Bishop, R.L.: There is more than one way to frame a curve. Amer. Math. Month. 82(3), 246–251
(1975)

3. Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I.: On the dynamics of rods in the theory
of kirchhoff and clebsch. Arch. Rat. Mech. Anal. 121(4), 339–359 (1993)

4. Daune, M., Duffin, W.J.: Molecular biophysics: structures in motion. Oxford University Press
(1999)

5. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NY
(1979)

6. Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44(1), 1–23 (1992)
7. Doi, M., Edwards, S.F.: The theory of polymer dynamics, vol. 73. Oxford University Press

(1988)
8. Ellis, R.J.: The most abundant protein in the world. Trends Biochem. Sci. 4(11), 241–244

(1979)
9. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments I. Dynamical instabilities. Physica D

105(1), 20–44 (1997)
10. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments II. nonlinear analysis. Physica D

105(1), 45–61 (1997)
11. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. III. Instabilities of helical rods. Proc.

Roy. Soc. London A 453(1967), 2583–2601 (1997)
12. Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. IV Spontaneous looping of twisted

elastic rods. Proc. Roy. Soc. London A 454(1980), 3183–3202 (1998)
13. Goyal, S., Perkins, N.C., Lee, C.L.: Nonlinear dynamics and loop formation in Kirchhoff rods

with implications to the mechanics of DNA and cables. J. Comp. Phys. 209(1), 371–389 (2005)
14. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland, MA,

USA (2001)
15. Janson, M.E., Dogterom, M.: A bending mode analysis for growing microtubules: evidence

for a velocity-dependent rigidity. Biophys. J. 87(4), 2723–2736 (2004)
16. Klapper, I.: Biological applications of the dynamics of twisted elastic rods. J. Comp. Phys.

125(2), 325–337 (1996)
17. Ladd, A.J., Misra, G.: A symplectic integration method for elastic filaments. J. Chem. Phys.

130, 124,909 (2009)
18. Lakkaraju, S.K., Hwang, W.: Critical buckling length versus persistence length: What governs

a biofilament conformation? Phys. Rev. Lett. 102(11), 118,102 (2009)
19. Lakkaraju, S.K., Hwang, W.: Modulation of elasticity in functionally distinct domains of the

tropomyosin coiled-coil. Cell. Molec. Bioeng. 2, 57–65 (2009)
20. Langer, J., Singer, D.A.: Lagrangian aspects of the kirchhoff elastic rod. SIAM Rev. 38(4),

605–618 (1996)
21. Li, H., Linke, W.A., Oberhauser, A.F., Carrion-Vazquez, M., Kerkvliet, J.G., Lu, H., Marszalek,

P.E., Fernandez, J.M.: Reverse engineering of the giant muscle protein titin. Nature 418, 998–
1002 (2002)

22. Lifshitz, E.M., Landau, L.D.: Statistical Physics Part 1, 3rd edn. Butterworth-Heinemann (1984)
23. Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolec. 28, 8759–8770 (1995)



4 Biofilament Dynamics: Line-to-Rod-Level Descriptions 83

24. Park, J., Kahng, B., Kamm, R.D., Hwang, W.: Atomistic simulation approach to a continuum
description of self-assembled β-sheet filaments. Biophys. J. 90, 2510–2524 (2006)

25. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd
ed. Cambridge University Press, Cambridge, U.K. (1999)

26. Rivetti, C., Guthold, M., Bustamante, C.: Scanning force microscopy of dna deposited onto
mica: Equilibration versus kinetic trapping studied by statistical polymer chain analysis. J.
Mol. Biol. 264(5), 919–932 (1996)

27. Ushiki, T.: Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding
from a morphological viewpoint. Arch. Histol. Cytol. 65(2), 109–126 (2002)

28. Vakonakis, I., Campbell, I.D.: Extracellular matrix: from atomic resolution to ultrastructure.
Curr. Op. Cell Biol. 19(5), 578–583 (2007)

29. Vologodskii, A.V., Cozzarelli, N.R.: Supercoiling, knotting, looping and other large-scale con-
formational properties of dna. Curr. Op. Struct. Biol. 4(3), 372–375 (1994)

30. Wicker, B.K., Hutchens, H.P., Wu, Q., Yeh, A.T., Humphrey, J.D.: Normal basilar artery struc-
ture and biaxial mechanical behaviour. Comput. Methods Biomech. Biomed. Eng. 11(5), 539–
551 (2008)

31. Wiggins, C.H., Riveline, D., Ott, A., Goldstein, R.E.: Trapping and wiggling: Elastohydrody-
namics of driven microfilaments. Biophys. J. 74(2), 1043–1060 (1998)



Part II
Multiscale Modeling Around
the Cellular and Tissue Level



Chapter 5
Multiscale Modeling of Primary Cilia

Y.-N. Young, Lina C. Espinha, An M. Nguyen and Christopher R. Jacobs

Abstract Primary cilia are nonmotile, solitary organelles that protrude from the
apical surface of nearly every mammalian cell. Discovered over a century ago, the
primary cilium has been identified as a multifunctional antenna, sensing both mechan-
ical (fluid flow, pressure, touch, vibration) and chemical changes in the extracellular
environment. Furthermore, the primary cilium has also been implicated as a com-
plex signaling center for the cell, regulating key signaling pathways during devel-
opment such as Hedgehog and Wnt. In this article we summarize recent theoretical
approaches for modeling primary cilium bending mechanics. By combining theoret-
ical modeling and detailed experimental observations, we construct a model for the
primary cilium as an elastic slender beam with a nonlinear rotational stiffness at the
base that accounts for the behavior of the basal anchorage. The importance of incor-
porating the detailed basal anchorage in multiscale modeling of the primary cilium is
highlighted by good quantitative agreement between cilium bending under flow and
experimental observation. New observations further illustrate how the microtubule
network connected to the basal body responds to mechanical stress from the bending
of the primary cilium. We discuss how to use the current model as a foundation
to construct a more realistic multiscale model that incorporates coupling with the
cytoplasmic microtubule network.
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Fig. 5.1 Schematic diagram of primary cilium (adopted from Temiyasathi et al. [3])

5.1 Introduction: Structures and Functions of Primary Cilia

The primary cilium is a solitary nonmotile, microtubule-based organelle found ubiq-
uitously in many nonmitotic mammalian cells [1, 2]. As a hair-like protrusion from
the apical cell membrane into the extracellular space (Fig. 5.1), the core structure of
the primary cilium is a membrane-enclosed axoneme containing nine microtubule
doublets that originate from the basal body. The ciliary membrane is a continuation
of the plasma membrane [4], and experimental findings suggest that there are phys-
iological differences between the two, such as lipid compositions [5, 6], electrical
resistance [7], ion-binding, and osmotic behavior [8, 9]. The axonemal base is con-
nected to the cilium basal body, a protein-based structure consisting of nine triplet
microtubules arranged circumferentially.

When cells are not involved in mitosis, the centrioles (the central component
of the microtubule organizing center) migrate to the cell membrane and one (the
mother centriole) acts as a template for ciliogenesis and the anchoring basal body
for the ciliary axoneme [6, 10]. The basal body includes structures such as the dis-
tal and subdistal appendages. The distal appendages attach it to the cell membrane.
Below this, it is coupled to the cytoskeletal microtubule network at the subdistal
appendages also known as the basal feet [11], which extend laterally to form attach-
ment points for cytoskeletal microtubules. Extending into the cytoplasm are striated
rootlets, a collection of filamentous structures with periodic striations that radiate
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from the proximal end of the basal body. It has been suggested that these rootlets
act as “nanomachines” for muscle-like contraction [12], highways for the transport
of proteins from the Golgi apparatus to the plasma membrane [13], or anchorage for
the basal body/primary cilium complex by interacting with the cell’s cytoskeleton
[14].

Between the axoneme and the basal body is a transition zone (TZ) (see Fig. 5.1)
where the transition fibers (right below the Y-links, also called the ciliary necklace
[8]), link the TZ microtubules with the ciliary membrane. These connectors distribute
around the TZ microtubules in an almost symmetrical fashion. The transition zone
is also closely associated with various proteins and molecular transport around the
ciliary pocket [4, 6, 15, 16].

Primary cilia differ from the better-understood motile cilia in several important
aspects. Despite similarities in the axonemal structure which consists of nine micro-
tubule doublets, there are significant differences: motile cilia and flagella have two
additional central microtubules, which are attached to each of the surrounding dou-
blets by radial spokes. Therefore, motile cilia are commonly referred to as 9 + 2
cilia in contrast to the 9 + 0 arrangement for primary cilia. In addition, the doublets
of the 9 + 2 cilium are connected via nexin links, which (in combination with the
radial spokes) reinforce the axoneme rigidity, resulting in an order of magnitude
larger resistance to bending (flexural rigidity) relative to the primary cilium. Unlike
motile cilia, there is only a single primary cilium per cell. Motile cilia are expressed
only on specialized cells, while primary cilia are found in virtually every cell type.
Furthermore, primary cilia have multiple basal feet and striated rootlets distributed
evenly around their basal bodies, while the basal feet of beating cilia are aligned with
the beating direction [17].

Although initial morphological descriptions of primary cilia date back over a
century, their function has only recently begun to be unraveled. Initially the focus
had been on the role of primary cilia in cellular development where they are known
to be involved in establishment of the left–right axis and anterior–posterior limb bud
patterning [18–24] via sensing of the Hedgehog and Wnt families of morphogens. As
a sensory organelle, the primary cilium enables the cell to interrogate its environment
over a distance and has emerged as a central site of cell signal coordination and
integration.

More recently, the mechanosensing role of primary cilia was discovered. Prae-
torious and Spring found a dramatic extracellular calcium-dependent increase in
intracellular calcium by using fluid flow or a micropipette to bend the primary cilia
of kidney epithelial cells. They also found that this response was lost with removal of
primary cilia [25, 26]. It has been suggested that this response occurs via a cationic
channel that localizes to the base of the cilium known as polycystin 2 [27, 28].
This mechanism has also been found in liver cholangiocytes in response to fluid
flow [29]. In addition to calcium signaling, fluid flow in bile ducts also activates
the second messenger cAMP [29]. The response of the primary cilium to the exter-
nal load is observed to be more than mechanical bending and transfer of stress, but
also molecular alterations. For example, proteins of the linker density may undergo
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conformational changes as a result of Ca2+ binding, which increases the stiffness
of stereocilia [30] and also increases the rate of depolymerization of microtubules
[31, 32].

Defective or malfunctional primary cilia have been linked to pathologies [33–
37] such as arthritis, osteoporosis, polycystic kidney disease, heart failure, obesity,
and cancer. For example, it is well known that when bone is exposed to repeated
mechanical loading in vivo it loses its sensitivity to subsequent mechanical loading
[38, 39]. This reduced sensitivity is refractory and is gradually reversed over a period
of minutes. Furthermore, it coincides with a loss of cellular responsiveness [40].
Interestingly, there is also evidence that primary cilia degrade with loading [41].

Recent state-of-the-art measurements have uncovered detailed equilibrium shape
and dynamics of the ciliary axoneme under flow. These experimental results are
summarized in Sect. 5.2, where we also explain that multiscale modeling is the key
to advancement in modeling of primary cilia. We refined a drag-force/cantilevered-
beam model to incorporate large rotation at the ciliary base (Sect. 5.3.1). We have
recently further extended our model and used slender-body theory to consistently
address the fluid–structure interaction between the the fluid and ciliary axoneme with
nonlinear rotational stiffness of the basal body (Sect. 5.3.2). Our modeling results
and quantitative comparisons with experiments indicate that the mechanical details
of the basal anchorage are essential to capturing the mechanical characteristics and
understanding the behaviors of the primary cilium. In Sect. 5.5 we summarize recent
findings on the morphological changes in the microtubule network connected to
the basal body. In Sect. 5.6 we discuss the challenges in multiscale modeling of
primary cilia that incorporate the mechanical coupling between the axoneme and the
underlying microtubule network.

5.2 Multiscale Modeling and Computational Challenges

Models of the primary cilium should incorporate the bending (characterized by
axonemal length and bending rigidity) and positional characteristics (characterized
by axonemal orientation at the base and its position on the cell) observed for dif-
ferent cells. The axonemal length is a dynamic quantity that depends on regulated
intraflagellar transport (IFT) [6, 42]. It is not clear if there exists an optimal length
for mechanotransduction, nor is it understood if this length may vary over different
cell types. The three-dimensional axonemal orientation varies by cell type, and it
has been reported that a well-defined axonemal orientation can be observed for a
population of cells [43]. The axonemal position has been found to be critical for
establishing tissue organization in highly anisotropic tissues [43].

The complex sub-axonemal compartment is often simplified in models for motile
cilia and beating flagella. As a paradigm for studying biological swimming and
propulsion in biophysics and applied mathematics, motile cilia and flagella are
examples where, once the biomechanics of an organelle is properly formulated
in mathematical terms, advancements in multiscale modeling and direct numerical
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simulations lead to quantitative understanding of biological functions that may be
beyond reach of experiments alone. These advances have also stimulated a series of
experiments focusing not just on more detailed investigations of motile cilia, but also
synthesis of artificial beating cilia that are designed to perform the biological func-
tion of moving mucus [44, 45]. Following Lighthill’s early work [46, 47] Gueron
et al. adopted similar approaches to investigate the fluid flow induced by a beating
cilium/flagellum [48–50]. Slender-body theory has been widely used to investigate
the interaction between the beating cilium/flagellum and the viscous fluid.

Multiscale modeling of a motile cilium that incorporates the beating kinematics in
the immersed boundary framework [51–56] has shed light on the bio-fluid mechanics
of beating cilia and flagellated swimmers in viscous fluid [55, 56]. The internal
structures of a beating cilium such as the elasticity of the microtubule doublets and
connectivity between the doublets are incorporated into these models [51]. Multiple
beating cilia interact with each other nonlocally through hydrodynamic interactions,
as each one of them beats according to its own internal stress generated by the
central microtubule doublet. In all of these studies the role of the basal body and the
coupling to the cytoskeleton membrane have been ignored. However, recent studies
have shown the importance of the basal body anchorage in swimming by flagellum
undulation [57].

Compared to motile cilia and flagella, much less theoretical modeling and numer-
ical simulations of primary cilia have been reported. Schwartz et al. [58] developed
a mathematical model based on a small-deformation elastic beam formulation. This
model assumed a constant velocity and drag profile along the cilium, not valid under
high flow conditions. Resnick et al. [59] applied a similar formulation to study small
deflections in cylindrical Poiseuille flow. Liu et al. [60] used a more precise model of
the fluid flow around an array of cilia by numerically solving Stokes equations. They
assumed small rotation at the cilium base although they computed the drag on cilium
axoneme consistently from Stokes equations. Rydholm et al. [61] conducted compu-
tational fluid dynamics simulations of the bending of an elastic filament connected to
an elastic membrane. From their simulations they found the stress distribution along
a filament under flow with the maximum stress at the axoneme base, even though
flexibility of the anchorage at the sub-axonemal compartments was not included in
their simulations. They also conducted experiments illustrating the cilium bending
and the subsequent variation in the intracellular calcium concentration. Although
they did not provide any validation of their simulations by comparing against their
experiments.

Three-dimensional (3D) imaging of primary cilia under steady fluid flow allowed
Downs et al. to investigate the mechanical properties of primary cilia in detail
[62]. Results from the experiments revealed several patterns of primary cilia deflec-
tion and different post-flow relaxation patterns [62]. The vast majority exhibited
a smooth bending curve similar to those previously reported (Fig. 5.2a–c). Occa-
sionally deflections without axoneme bending were observed, see Fig. 5.2d. These
straight deflections were characterized by large rotations at the cilium base and rel-
atively little bending along the axoneme, perhaps indicative of a decreased degree
of cilium anchorage and axonemal stiffening. At higher flow rates another behavior
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(a) (b) (c) (d) (e)

Fig. 5.2 a–c 2D profiles of a smooth bending curve from a 3D z-stack. Arrows indicate the flow
direction. b is the configuration prior to flow. d 2D profile of a deflected straight curve from a 3D
z-stack. e 2D profile of a kinked cilium at high flow rate. Adapted from results in [62]
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Fig. 5.3 Dynamics of cilium bending under flow. Panel a The flow is turned on at t = 0. As time
progresses to t ∼ 4.6 the cilium bends and reaches maximum bending. Panel b The flow is turned
off and the cilium relaxes from the curve labeled at t = 5 to the nonstressed profile at t = t f ∼ 9.6 s.
The cilium length is 2.7 µm at t = 0. Reproduced from [63] with permission fr om the Biophysical
Society

was observed: A kinked cilium characterized by two linear segments of low bending
joined by a localized region of high curvature (Fig. 5.2e). After flow was stopped,
some cilia did not return to the pre-flow shape. Other cilia displayed a recovery
towards the original pre-flow position (see Fig. 5.3). This would indicate that pri-
mary cilia are capable of undergoing both elastic and plastic deformation.

High-speed confocal microscopy can also acquire two-dimensional (2D) images
of the dynamic primary cilia bending under flow. For a flow velocity that corresponds
to 0.1–1.5 Pa wall shear stress, the cilium bends and reaches an equilibrium position
within O(1) s. Such dynamical processes can be captured by high-speed imaging,
as shown in Fig. 5.3a where the flow is turned on at t = 0 and the cilium bends as
time progresses. In Fig. 5.3b the flow is stopped at t ∼ 5 s and the cilium relaxes to
the profile labeled at t ∼ 9.6 s. Both 2- and 3-D cilium profile data are obtained by
high-speed z-stack scanning of the fluorescence proteins on the ciliary membrane.
Consequently, significant noise is often un-avoidable and the estimated cilium length
may not be the same for a single cilium over the duration of 10 s (Fig. 5.3). In addition,
we observed that the initial nonstressed cilium profile in Fig. 5.3 is not upright.

These experimental results provide the potential for quantitative comparisons
between modeling and experiments. The first challenges for successful theoretical
modeling are (1) reproduce the equilibrium profile of the ciliary axoneme under flow,
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(2) explain the large rotation at the cilium base, (3) explain why the primary cilium
does not always recover to the same pre-flow profile, and (4) capture the dynamics
of ciliary bending under a steady or oscillatory fluid flow.

Detailed quantitative understanding of the mechanical behavior of primary cilia
has been lacking due to the biological complexity of ciliary structures. Although
the ciliary axoneme is structurally simpler in primary cilia than motile cilia, the
sub-axonemal compartment (consisting of basal body and the anchorage from the
surrounding microtubule network) is much more complex. In addition, we need to
take into account the disparity in the characteristic length and timescales associated
with the biological complexity of primary cilia: The length of the ciliary axoneme
(L) ranges from one to several µm’s. The radius of cross section of the basal body
r ∼ 200 nm. Proteins involved in the mechano-sensing are no larger than several
nanometers. Ciliogenesis is often completed within 24 h, while the ciliary bending
in a physiologically realistic flow is of the order of seconds. The activation time for
intracellular calcium influx is a few seconds [25, 26, 28, 61, 64, 65].

Currently, it is not feasible to simulate the bending dynamics of primary cilia
using molecular dynamics (MD) computations, coarse-grained calculations, or direct
numerical simulations of a continuum model that considers the underlying physics
on distinct space and timescales, let alone the subsequent signaling processes over
several microns and several tens of seconds. However, MD simulations can provide
quantitative understanding of the connection between the mechanical behavior of the
primary cilium and its molecular configuration. For example, the conformation of
acetylated tubulin may promote binding of MAPs (microtubule associated proteins)
and hence alter the flexural rigidity of the axoneme. A normal mode analysis [66]
of the MD simulations of such molecular alterations under stress can be obtained
from the continuum model, and will provide a flexural rigidity that varies along the
axoneme. This may, in turn, be fed to a continuum model for a better estimate of
stress distribution. Success of such coupling between MD simulations and continuum
modeling hinges on developing a physically consistent continuum model that can
capture all the essential primary cilium mechanical behaviors.

To construct a multi-physics model of primary cilium mechanics some questions
should be considered: (1) How many degrees of freedom are associated with axone-
mal bending in response to fluid flow? Is the ciliary axoneme, because of its radial
symmetry, capable of a bending response equally in all possible directions? Are the
same signaling pathways activated in response to fluid flow from different direc-
tions? (2) How do we quantitatively describe the mechanical behavior of the primary
cilium under hydrodynamic load? (3) What is the relation between ciliary mechan-
ical behavior, its 3D orientation and location on the membrane? (4) How should
we understand the mechanosensing processes in terms of coupling the mechanical
behavior of the primary cilium to the rest of the cell through signaling pathways? (5)
Is there a threshold of bending required to activate signal transduction? Are the same
pathways activated at different degrees of bending? Is the system toggled and/or does
it undergo a refractory period after bending?

From our experience in modeling primary cilia, we have found that the interaction
between fluid flow and the primary cilium axoneme should be accurately considered



94 Y.-N. Young et al.

to reproduce the equilibrium profiles of primary cilia under flow [62]. We further
find that the cilium base behaves like a nonlinear rotational spring, and this may
be modeled with coupling between the cilium axoneme and an elastic shell with
a local torque at the contact point [63]. This particular result shows that, due to
the multiscale structures of the primary cilium, a multiscale model is necessary to
capture the essential mechanics and dynamics of the primary cilium and the connected
microtubule network.

The long-term goal for modeling of primary cilia is to decipher coupling between
their mechanical behavior (such as bending under a hydrodynamic load) with bio-
chemical processes (initiated by their responses to mechanical loads), such as the
opening of ion channels or cascades of cellular (or intercellular) signals. For example,
is it possible that IFT is affected by the load on the axoneme through bending? Is it
possible to construct a multiscale model that will couple the mechanics of an elastic
axoneme to the cellular signaling as in the case of the cochlear amplifier and sensory
hair cells [67, 68]? It is not clear how mechanosensitive channels open in response
to the deflection of the ciliary axoneme and/or the displacement of the ciliary mem-
brane around the basal body. It is also not clear if the deflection at the ciliary tip may
be more important than at the base when it comes to mechanotransduction. Numer-
ical simulations suggest that the maximum strain on the ciliary membrane is at the
base [61]. Yet without a detailed description of the distributions and responses of the
mechanosensitive channels, this information is insufficient for further understanding
of the biological functions of primary cilia.

In the cochlear amplifier, displacements of the hair cells and the hair cell bundles
are coupled to the basilar membrane and the organ of corti through the electromotility
of the outer hair cells and the gating of the mechanosensitive channels associated with
the outer hair cell bundles (see review [69] and references therein). The mechanically
gated ion channels (MET channels) located near the tips of stereocilia in the hair cell
bundle are known to be responsible for the influx of K + ions into the hair cell [70].
Upon deflection of the hair cell bundle toward the largest row of stereocilia, tension
in the tip links increases and induces the opening of MET channels, giving rise
to an intracellular K + current. Such detailed depiction of the signaling processes
associated with primary cilia is not yet available. As will be shown in Sect. 5.6, the
continuum model that we developed can incorporate the change in IFT traffic due
to the basal membrane strain, which then in turn alters the cilium length as it bends
under flow. However, the molecular details need to be provided. Once such details
are available, we can then make direct connection to the mechanical behavior of the
primary cilium to its biological function(s) in a given cell.

5.3 Large-Rotation Formulations: Drag Force Model
and Slender-Body Theory

For a primary cilium in viscous flow under physiological conditions, the Reynolds
number (ratio of inertial forces to viscous forces) is of the order of 10−4 with a charac-
teristic length of 1 µm and a characteristic flow velocity of 1 cm/s. Consequently, we
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ignore the inertia effects and focus on the Stokes flow regime. In 2012 we advanced
previous models [58, 60] by taking into account the large rotation at the cilium base
and a consistent hydrodynamic drag force [62]. Later, we used the slender-body
theory (SBT) to compute the hydrodynamic interaction more accurately with large
deformation of the cilium under a planar shear flow [63]. Within the SBT frame-
work we incorporated a rotational stiffness at the axoneme base to model the basal
anchorage, and we obtained good quantitative agreement in the dynamics of cilium
bending under flow with experiments. We further used this model to investigate the
ciliary dynamics with a more complex temporally periodic flow (see Sect. 5.4.2.2),
and the bending dynamics of a cilium with a time-varying length that depends on the
balance between axonemal assembly and dissemble rates (see Sect. 5.6).

5.3.1 Drag Force Model

Downs et al. [62] modeled the primary cilium axoneme as an elastic, homogeneous
beam with a uniform cross-section along the centerline. Under load the bending of
such an elastic beam can be described by Euler-Bernoulli beam theory:

dθ

ds
= M(s, θ)

EI
, (5.1)

where θ is the angle between the tangent and the vertical, M is the bending moment,
s is the arclength along the beam from the tip to the base, E is Young’s modulus, and
I is the second moment of inertia. In this formulation they assume an infinitesimal
strain, and make no assumption about the axoneme angle at the free end to allow for
large deflection at equilibrium.

At equilibrium the governing equation for the angle θ(s) is

EI
d2θ

ds2 = dM

ds
= Qx (s) sin θ(s) − Qy(s) cos θ(s), (5.2)

where Qx and Qy are the total forces in the x and y directions, respectively. In this
model the main focus is on a unidirectional flow in the y direction, and force-free
condition is assumed in the x-direction. Thus the governing equation for θ(s) is

EI
d2θ

ds2 = −Qy(s) cos(θ(s) − θ0), (5.3)

where θ(s) − θ0 is the difference in angle from θ0, the basal angle of the initial
shape of the nonstressed beam. The cantilevered beam boundary conditions with a
specified rotation θbase at the fixed end are used: θ(L) = θbase and a zero bending
moment at the free end, dθ

ds |s=0 = 0.
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In the experimental component of the work, cells were placed at the bottom of a
laminar flow chamber where a fluid flow with a shear stress of 0.25 Pa (corresponding
to a flow rate of 500 µl/min) was applied with a syringe pump [62]. Along the length
of the ciliium, it is safe to assume that the laminar flow velocity increases linearly
with distance from the bottom surface. The force is thus approximated as the 2D
planar drag force acting on a cylinder in low Reynolds number Stokes flow

Q(h) = 2πhτ

ln(L/2r)
, (5.4)

where τ is the wall shear stress, h is the distance between the cilium and the wall, r is
the diameter, and L is the contour length of the primary cilium. The distance h(s) can
be computed as h(s, θ) = H − ∫ s

0 s′ cos(θ(s′))ds′, where H is the height from the
tip of the cilium to the cell surface. Equation 5.4 is the drag force acting on a beam
that is slightly deformed. When the elastic beam is highly deformed, the slender-
body theory (see Sect. 5.3.2) can better capture the drag force [63]. In addition to
the above closed-form approach they also conducted a computational study using
the commercial finite-element code COMSOL to simulate the interaction between
a viscous fluid and a cylinder (a model for a section of a cilium) in a low Reynolds
number planar flow [62]. The angle between the cylinder and the vertical was veried
from 0◦ to 80◦ and total drag was determined at each angle and fit with a polynomial
regression. Convergence was verified by creating a refined mesh of 85,000 elements
and observing less than a 15 % change in predicted drag.

The flexural rigidity EI of the axoneme is a parameter of this model. [62] developed
a numerical algorithm to find the EI that best fit experiment data. First, the nonstressed
configuration and θbase were calculated from the experimental observation. They
then calculated the EI that would give the best-fit solution to the equilibrium profile
with the 2D analytic drag approximation, and the drag from the 3D finite element
simulation was used to refine the estimate for EI. The nonlocal differential Eq. 5.3
was solved numerically. In this model the basal body support is not included. Instead
the basal angle at equilibrium from the experiments is used ito find the best-fit
equilibrium cilium profile [62]. This assumption will be relaxed in the slender-body
model (Sect. 5.3.2).

5.3.2 Slender-Body Theory

The ratio (ε) of axonemal radius r to length L of primary cilia is often in the range
10−2 ≤ ε ≤ 10−1, consequently, the relevant physics underlying the primary cilium
dynamics under flow is the bending of a supported elastic slender filament under a
hydrodynamic load. The elastic slender-body formulation [48, 50, 71, 72] is adopted
to model the bending of the ciliary axoneme under flow [63]. First, the force distri-
bution along the slender-body centerline is decomposed (as F = Ft (s)t̂ + Fn(s)n̂)
in the tangential t̂ and the normal n̂ directions with s ∈ [s0, se] the arclength.
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The curvature κ is assumed to be linearly proportional to the moment M : M = EBκ.
The external load P(s) = Pt t̂ + Pnn̂ is related to the force by dF

ds +P = Fs +P = 0.
The moment and the force density are related as dM

ds = Ms = Fn . Denoting the fila-
ment centerline x = (x(s), y(s)) and t̂ = (t1(s), t2(s)), the governing dimensionless
equations are obtained by force balance for an elastic filament of constant length, see
[63] for a detailed derivation. The external hydrodynamic load P is computed from
the local SBT as

P = − η (∂x/∂t − U )

(1 + 2β) I + (1 − 2β) xs ⊗ xs
, (5.5)

where U is the fluid velocity at the location x in the absence of the elastic filament,

β = 1/(− ln(ε2e)) is the filament slenderness and η = 8πμγ̇L4β
EB

is the effective
viscosity with μ the fluid viscosity and γ̇ the characteristic flow rate. The parameter
η quantifies the magnitude of the viscous force relative to the restoring elastic force.
This formulation is also generalized for time-dependent dynamics of an inextensible
elastic filament under flow in [63].

At the free filament end (s = se), the force-free and torque-free conditions give

Ft (se) = 0, Fn (se) = 0, κ (se) = 0. (5.6)

At the basal body (s = s0) the filament is fixed: x(s0) = 0 and y(s0) = 0. The basal
anchorage behaves like a nonlinear rotational spring that couples the axoneme to an
elastic shell [63]. Assuming axial symmetry for the elastic shell, the shell surface is
parametrized as (r(l), z(l))with l ∈ [l0, le] the arc-length along the elastic sheet. ψ is
the angle between the elastic shell normal vector n and the r -axis, see Fig. 5.4a. The
elastic filament is coupled to a small patch of an inextensible elastic sheet [73, 74].
The elastic sheet has a bending rigidity ET ≡ λEB with λ ∼ O(1). The interested
readers are referred to [63] for the governing equations of the elastic sheet with axial
symmetry. At the junction where the elastic shell is connected to the filament base,
the unit tangent vector is reasonably assumed to be continuous from the filament
base to the elastic shell [63]. Secondly, the force distribution and the curvature are
also assumed to be continuous at the junction.

As explained in Sect. 5.1, the axonemal anchorage consists of support from the
Y-links and various distal appendages in a very small region. To model the complex
basal anchorage, we assume that the mechanical support from the basal anchorage
can be treated as a localized finite torque on the elastic cylindrical shell at l = l0.
The equation for the moment along the ciliary axoneme is then

dM

ds
= Fn(s) + hδ (s − s0) , (5.7)

where h is the torque magnitude and δ (s − s0) is the Kronecker-delta function at s0.
Integrating over a small interval around s0, we find that the localized torque (from
the TZ fibers) induces a jump in the moment
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l

I: Slender elastic beam

II: Cylindrical elastic shell

(a) (b)

Fig. 5.4 Panel a Coordinate system for the cylindrical shell in the transition zone. Region I is
the elastic slender beam, and region II is the transition zone that is bound to the distal appendages
(small vertical bars on the right end, where ψ = π/2 is fixed). Panel b Profiles of the beam-shell
system in a quiescent flow (η = 0) with different values for the torque h at the base. Reproduced
from [63] with permission from the Biophysical Society
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which, in turn, induces a curvature at the base. At the junction the radius of the elastic
sheet is taken to be the radius of the cilium, and the height of the transition membrane
is assumed to be of the same order as the filament radius. At the opposite end, the
elastic sheet is assumed to be connected to the cell membrane in a flat angle such
that ψ(le) = π/2.

In their beam-shell model the torque h represents the total mechanical support
from the basal anchorage [63]. Figure 5.4b illustrates the cilium-transition zone pro-
files for different values of h. A nonzero h is needed to maintain the axoneme in the
upright position in the absence of flow. This is because the unforced equilibrium is a
flat horizontal shell coupled to a horizontal straight beam. As the cilium basal body
is mechanically connected to the ciliary membrane through the distal appendages,
it seems physiologically feasible that h is not zero. Numerically, we find that the
value of h required to support the upright cilium axoneme is proportional to λ, and in
dimensionless units h = −0.145 when λ = 1/10 and h = −0.402 when λ = 1/3.6.

5.4 Summary of Results

5.4.1 Results from Drag Force Model

Figure 5.5a depicts an example of the best-fit from the drag-force model. For the
six individual cilia examined under physiological flow conditions, the average basal
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Fig. 5.5 Panel a best-fit to a deflected equilibrium primary cilium profile under flow, in the direction
of the arrows in the figure. Panel b An example of cilium relaxation after the flow is turned off. The
deflected profile (dashed line) is at equilibrium. Curve 1 is the first time point taken at time 0 min,
and curve 4 is the last at time 2 min with a 30-s interval between each point. Adapted from results
in [62]

rotation was found to be 10.1◦ ± 2.8◦. The averaged best-fit EI from the drag model
is ∼3.1 ± 0.7 × 10−22 Nm2, while a slightly lower value is obtained with the finite
element approach ∼2.1 ± 0.45 × 10−22 Nm2. Interestingly, some primary cilia sub-
jected to the 3 ml/min flow rate did not return to the same nonstressed, pre-flow
position after flow had ceased as shown in Fig. 5.5b. Other cilia displayed a slight
recovery toward the original nonstressed position after flow had ceased, but did not
fully recover (see Fig. 5.2).

5.4.2 Results from Slender-Body Theory

5.4.2.1 Steady Shear Flow

Young et al. [63] developed a systematic procedure to find the best-fit equilibrium
ciliary profile and the corresponding bending rigidity [63], and applied this procedure
to a set of 80 cilia. Almost 70 % of the data set falls in the range of 1×10−23 Nm2 ≤
EI ≤ 5 × 10−23 Nm2. The average value is EI ∼ 8.4 × 10−23 Nm2, which is higher
than reported in [58] and lower than results from the drag force model in Sect. 5.4.1.

Young et al. [63] also applied the beam-shell model to the dynamics of cilium
bending under flow. The high-speed imaging system can capture the bending dynam-
ics in 2D, and an example is shown Fig. 5.3. The comparison between experimental
and computational findings is summarized in Fig. 5.6. The cilium bends and quickly
reaches the equilibrium position. The flow is stopped at t ∼ 5 and the cilium relaxes
to a position close to the initial one. Despite the noise, results indicate that cilium
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Fig. 5.6 Comparison between model (solid lines) and experiment results (symbols). The unit for
time is second and the cilium length is 2.7 µm at t = 0. Panel a plots the x-coordinate of cilium
tip versus time, and panel b compares the cilium profiles at different times. Reproduced from [63]
with permission from the Biophysical Society

bending and relaxation are well approximated by our simple model incorporating
viscous stress, rotational stiffness and residual stress [63].

5.4.2.2 Periodic Flow

We recently applied the elastic beam-shell model to examine the dynamics of a
primary cilium under a periodic flow with a sinusoidal temporal variation. Such
a periodic flow is motivated by the physiological conditions in kidney and bone
marrow, where primary cilia are thought to undergo repetitive bending. It has also
been observed that the basal anchorage may deteriorate due to repeated bending over
a long time. This observation illustrates the complex nature of the basal body and
the surrounding cytoskeletal structures.

Here we focus on the periodic ciliary bending dynamics with different values of
axonemal rigidity and the basal orientation. Small effective viscosity η represents a
stiff axoneme while large η means the axoneme is flexible. In our beam-shell model
the basal orientation of the axoneme is determined by the balance of moments at
the connection between the beam and the shell. By adjusting the torque h, keeping
everything else fixed, the basal orientation varies from upright to tilted, as shown in
Fig. 5.4b.

Figure 5.7 shows the bending dynamics for an axoneme with η = 0.1 in panel a
and η = 20 in panel b. For both panels the flow periodicity is fixed at 10. At t = 0 the
cilium profile is the upright thick solid curve at the center. For 0 ≤ t ≤ 5 the beam
bends toward the left in the first half of the cycle. For 5 ≤ t ≤ 10 the beam bends
toward the right, and then returns to the center at the completion of a full cycle.
Figure 5.8a shows the basal angle versus time for different axonemal stiffnesses,
and the corresponding angle at the free end is depicted in panel b. During the first
cycle (from t = 0 to t = 10) the maximum cilium bending is reached before the
reversal of flow. After the first cycle the cilium bending is more symmetric between
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Fig. 5.7 a Repeated bending of a stiff beam (η = 0.1) under a periodic flow. b Repeated bending of
a flexible beam (η = 20). The leftward flow occurs from t = 0 till t = 5, and turns to the rightward
flow for 5 < t ≤ 10
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Fig. 5.8 a Basal angle versus time for four values of η as labeled in the figure. b The corresponding
axoneme angle at the free end

the rightward and leftward cycles. In Fig. 5.8b we also observe that the more flexible
axoneme is taking longer to reverse its orientation.

We also carried out the calculations of a tilted cilium under the same periodic flow.
The initial ciliary profile is tilted with a basal angle ∼0.38 π. The bending dynamics
are depicted in Fig. 5.9a for a stiff beam, and Fig. 5.9b for a more flexible beam.
Figure 5.10 shows the corresponding angle at the base (Fig. 5.10a) and at the free
end (Fig. 5.10b) for four values of η as labeled. We observe that the axoneme spends
more time on the left to the initial profile than on the right for more flexible cases.
Such asymmetry is negligible for a stiff axoneme. It will be interesting to compare
these results with experimental observations from the oscillatory flow chamber and
make quantitative connections with the morphological changes of the cytoskeletal
network that is in contact with the basal body.
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Fig. 5.9 Repeated bending of an initially tilted cilium. a A stiff beam (η = 0.1) under a periodic
flow. b A more flexible beam (η = 20). The leftward flow starts from t = 0 till t = 5, and turns to
the rightward flow for 5 < t ≤ 10
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Fig. 5.10 a Basal angle versus time for four values of η as labeled in the figure. b The corresponding
axoneme angle at the free end

5.5 Microtubule Network

Results summarized in Sects. 5.4.1 and 5.4.2 demonstrate the importance of incor-
porating the basal body anchorage into the multiscale modeling of primary cilia.
[75] pointed out that very little is known about the subciliary compartment and the
details of the basal support. Structurally, the majority of microtubules contributing
to the anchoring of the primary cilium assemble and emanate from around the basal
body, which is a modified form of the microtubule organizing center (MTOC) [20,
76]. Modifying the microtubule attachment of primary cilia would change primary
cilia mechanics and, possibly, their mechanosensitivity [77]. Several attempts have
been made to count the number of microtubules emanating from the basal body and
the results are found to depend on the cell type [78, 79]. It has also been shown that
the cellular response to shear stress depends on microtubular integrity [80]. In our
preliminary results we find an increase in microtubules around primary cilia and a
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Fig. 5.11 a Parallel plate flow chamber used to apply the mechanical stimulus. b Mechanical
loading device used to apply oscillatory fluid flow to cells

conformation change within the microtubule network in response to oscillatory fluid
flow (OFF) stimulation (more details can be found in [81]).

In a series of preliminary experiments, the IMCD-SSTR3 cell line (inner medullary
collecting duct cells, stably transfected with a somatostatin receptor-3 green flores-
cent protein (GFP) fusion protein) was used and cultured following the procedures
in [82]. Oscillatory fluid flow was applied to cells using a parallel plate flow chamber
(see Fig. 5.11a) which has been described previously [83]. The flow rate was selected
to yield peak shear stress of 1 Pa. Cells were exposed to this type of mechanical stim-
ulus for one hour. After oscillatory fluid flow, cells were fixed immediately [81].

Full 3D images of cells were obtained using a confocal microscope. Slices were
collected into a z-stack, with approximately 0.08µm spacing. The open-source plat-
form Fiji [84] and one of its plugins (Simple Neurite Tracer [85]) were used to analyze
the image stacks. Using this approach we could count the number of microtubules
around primary cilia. These experiments were repeated using the MLO-Y4 cell line,
which has characteristics similar to osteocytes.

Preliminary results show that oscillatory fluid flow (with a frequency of 0.5,
1.0 and 2.0 Hz and a peak shear stress of 1 Pa for 1 h) increases the number of
microtubules attached to the base of primary cilia. As illustrated in Fig. 5.12, more
dense structures are also evident. For IMCD-SSTR3 cells the number of MT around
the basal body increased from ∼6 to ∼15 on average. For MLO-Y4 cells the number
increased from ∼10 to ∼16. This suggests that the cell may modulate the number
of microtubules anchoring primary cilia, which may change cilium mechanics and
affect mechanosensation.

We are currently working to replace the elastic shell in the beam-shell model [63]
with a cross-linked semi-flexible polymer network to model the cytoskeletal network
that is connected with the cilium basal body. The mechanical transduction of such a
random, semi-flexible, cross-linked biopolymer network is a very challenging subject
because its in vivo properties are expected to be highly dependent on the length
and timescales on which they are being probed. The static mechanical properties
of such networks have been investigated in the linear response regime [86–88].
Such networks can be constructed by sequential random deposition of monodisperse
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Fig. 5.12 Effects of oscillatory fluid flow (1 Pa for 1 h) in microtubule morphology for IMCD-
SSTR3 cells. Both images were taken with the same intensity. Images are produced from experiments
in [81]

filaments into a two-dimensional box. Since the position and orientation of filaments
are uniformly distributed over the allowed ranges, the networks are isotropic and
homogeneous on sufficiently large scales. Each intersection between filaments is a
cross link. The elastic moduli can be computed from the discrete Hamiltonian that
consists of both the discrete bending energy and compression/extensional energy
[89–91].

5.6 Conclusions and Open Questions

The mechanics of the primary cilium has been extensively investigated experimen-
tally. Several attempts have been made to theoretically model its bending mechanics.
From our modeling approaches we find that it is essential to capture the fluid–structure
interaction between fluid flow and the elastic ciliary axoneme. The slender-body
theory is modified to incorporate the basal body anchorage, which behaves like a
nonlinear rotational spring. With such rotational stiffness at the cilium base, the
slender-body model reproduces the experimentally observed bending dynamics, and
sheds light on the repetitive bending of primary cilia.

The primary cilium has been known to play an important mechanosensory role
in numerous tissues across many species and organisms [92]. The cilium’s ability
to do so depends on its adaptation to different situations. For example, the primary
cilium is able to dynamically modulate its length, and thus, fine tune its sensitiv-
ity to the extracellular environment. By blocking calcium ion entry and increasing
intracellular cAMP (cyclic adenosine monophosphate), Besschetnova et al. recently
demonstrated that the length of the primary cilium (in a mammalian epithelia and
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Fig. 5.13 a Bending of a primary cilium with a variable length. The thick solid line is the equilibrium
profile for the cilium with a fixed length of unity. b The corresponding cilium length over time

mesenchymal cells) increased two-fold in 3 h [32]. After the application of fluid shear,
which is known to increase intracellular Ca2+ and decrease intracellular cAMP, the
average cilia length decreased by 20–35 %. Furthermore, it has been demonstrated
that overloading of chondrocytes results in a decrease in cilia length and conversely
stress deprivation in tendon cells results in an immediate and significant increase in
length [93, 94].

The slender-body model can incorporate the change of length due to the molecular
alterations that are part of the cilium dynamics under load. From the molecular
description we first have an empirical model for the cilium length [95]

dL

dt
= a

L
− b, (5.9)

and the fluid velocity U in Eq. 5.5 should be replaced with U + dL
dt xs . Coefficients

a and b are related to the assembly rate and disassociation rate at the cilium tip,
respectively. If we assume that a increases with the stress at the cilium base and b
remains constant, we find that (1) the cilium deflected more and (2) the cilium length
can increase almost 16 % before an equilibrium profile is reached, see Fig. 5.13.

Another phenomenon that requires more experimental observations for accurate
multiscale modeling is the varying circumferential arrangement of the microtubule
doublets along the axoneme [96, 97]. Although the cause of this nonhomogeneous
organization is unclear, it is most likely due to the lack of interconnecting attachments
such as nexin links between axonemal doublets. The mechanical consequence of
the disrupted circumferential organization may give rise to inhomogeneous bending
rigidity along the length of the cilium.
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Chapter 6
Reduced-Order Network Models for Biological
Scaffolding

T.I. Zohdi

6.1 Introduction

Many types of biological soft tissues possess a microstructure comprised of embedded
fibers which, collectively, are load bearing components. A direct simulation of a
continuum model, with a detailed discretization and meshing, for example, using the
Finite Element method, of the fibrous microstructure, would result in literally billions
of numerical degrees of freedom. Furthermore, incorporating damage and rupture
effects at finite strains make such problem difficult for “everyday” use by researchers
in biomechanics, which motivates so-called “reduced-order” models. In this work,
we present a framework for reduced-order models for fiber-laden tissue, that is rel-
atively simple and robust, and which can be implemented with minimal effort by
researchers in the biomechanics community. The advantages of reduced-order fiber
network models are

• the simplicity of the constitutive laws at the fiber level, for example one-dimensional
Fung material laws,

• the ability to easily incorporate effects such as fiber damage and fracture and
• the amenability of the model to extremely rapid numerical simulation,

The presentation is purposely made to be as transparent and simple as possible.

T.I. Zohdi (B)
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6.2 The Basic Model Reduction Approach

We consider a model problem of a structure comprised of an initially undeformed
planar surface network of one-dimensional fibers (Fig. 6.1). The structure is capable
of deforming in three dimensions (in and out of the initial plane), in response to
loading on its surface. The fibers are joined at the nodes (as pin-joints), in other words,
they are sutured together at those locations to form a network. While the structure is
relatively simple, compared with real biological tissue, the primary purpose here is
simply to illustrate how the approach works, since it is quite flexible and adaptable
to specific applications. The salient points of the model reduction for this class of
problems are:

• The “weave” is reduced to a truss-like network,
• The truss components are connected by pin-joints,
• The truss components experience only axial strains (stretches), although they can

displace and rotate in three dimensions,
• The stress–stretch constitutive relations are one-dimensional,
• The mass of the system is lumped at weave suture point (at the nodes), and
• The nodes displace by the action of the external forces and surrounding fiber

stretch, which requires solving a coupled system of ordinary differential equations.

Ψ3

Ψ2

1Ψ

Ψ 4

NETWORK MODEL
CONTINUUM MODEL REDUCED−ORDER

Fig. 6.1 The process of model reduction: a the “weave” is reduced to a truss-like network, b
the truss components are connected by pin-joints, c the truss components experience only axial
strains (stretches), although they can displace and rotate in three dimensions, d the stress-stretch
constitutive relations are one-dimensional, e the mass of the system is lumped at weave suture point
(at the nodes), and f the nodes displace by the action of the external forces and surrounding fiber
stretch, which requires solving a coupled system of ordinary differential equations
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In the present analysis, any surrounding soft tissue contribution to the response is
considered negligible relative to that of the relatively stiff load carrying fibers.1

By employing enough of these simple structural elements, one can build an entire
macroscale sheet of fibrous tissue, as shown in Fig. 6.1.

Remark 1 The use of pin-joints, i.e., not allowing moments at each node, greatly
speeds up the computation in this approach. Bending can be taken into account, and
adds a degree of complexity that may be warranted in certain applications. Probably,
there are situations where the adopted simplification could be adequate, and others
where it is not. Also, as mentioned previously, we ignore buckling phenomena and
consider cases where compressive stresses are of somewhat less importance than
tensile states. The objective of this work is simply to illustrate the main modeling
and solution techniques, without overly complicating issues. In other words, this
model and solution techniques serve as a starting point for more in-depth analyses.

6.3 Fiber-Segment Network Representation

For the mechanical portion of the modeling of network structures, we assume that: (1)
the fiber segments are quite thin, experiencing a uniaxial-stress condition, whereby
the forces only act along the length of the fiber segments, (2) the fiber segments
remain (macroscopic) straight, undergoing a homogeneous (axial) stress state, (3)
the compressive response of a fiber segment is insignificant (relative to tensile states),
and (4) fiber-segment buckling phenomena are ignored. We write one-dimensional
constitutive laws in terms of a one-dimensional scalar Piola–Kirchhoff-like stresses
(mimicking 3-D approaches), defined by

P = force on referential area

referential area
, (6.1)

and then transform the result to a scalar second Piola–Kirchhoff-like stress via P =
U S, where U = L

Lo
is the stretch ratio, L is the deformed length of the fiber segment,

Lo is its original length and where we note that for a relaxed model, when U ≤ 1
(compression), we enforce P = 0. A standard constitutive relation S = F(U ) is
then employed, with the primary objective being to extract the force carried in the
fiber segment (Ψ fiber), which is needed later for the dynamics of the lumped masses.
Specifically,

1 At the end of this chapter, we shall return to this issue, and indicate how soft tissue–fiber interaction
can be computed.
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P = ψfiber

Ao
⇒ ψfiber = USAo = L

Lo
S Ao. (6.2)

One could adopt a simple one-dimensional model for the stored energy, W = 1
2 IEE2,

where IE is Young’s modulus and E
def= 1

2 (U 2 − 1) is the Green-Lagrange strain,
with the second Piola–Kirchhoff-like stress given by ∂W

∂ E = S = IEE . Thus, for the
fiber segment,

P = ψfiber

Ao
⇒ ψfiber = USAo = L

Lo
S Ao = L

2Lo
IE

((
L

Lo

)2

− 1

)
Ao. (6.3)

We will consider more appropriate constitutive laws shortly.

Remark 2 As a result of the previous analysis, Ψ fiber
Ii

= UI SI AoaIi (Ao is the
undeformed cross-sectional area of the fiber), where the unit axial fiber direction

is given by aIi = r+
I −r−

I
||r+

I −r−
I || , where r+

I denotes the position vector of the endpoint

connected to the lumped mass and r−
I denotes the endpoint that is connected to it

neighboring mass.2

Remark 3 Assumption (3) in the previous section is the adoption of a relaxed-type
model, whereby a zero-stress state is enforced for a compressive state. Relaxed
models have a long history, and we refer the reader to works dating back to Pip-
kin [49], Buchholdt et al. [3], Pangiotopoulos [45], Bufler and Nguyen-Tuong [4],
Papadrakakis [46], Cannarozzi [5, 6], Steigmann [60], Haseganu and Steigmann
[17–19], and Atai and Steigmann [1, 2]. Relaxed formulations have served as a
foundation for computational models describing rupture of ballistic fabric shielding
in Zohdi [66, 75, 79], Zohdi and Steigmann [67], Zohdi and Powell [73], and Powell
and Zohdi [50, 51] and are the basis for the present approach.

Remark 4 Consistent with the assumed one-dimensional deformation of the fiber
segments, we have the following relations, between the deformed and undeformed
states for the fiber segment length (UI (t) = L I (t)

L I (t=0)
), cross-sectional area, and

volume:

VI (t)

VI (t = 0)
= AI (t)L I (t)

AI (t = 0)L I (t = 0)
= UI (t), (6.4)

which renders VI (t) = VI (t = 0)U (t) and AI (t) = AI (t = 0) (the cross-sectional
area remains constant). For other alternative possibilities for one-dimensional
reduced-order model behavior, see Zohdi and Steigmann [67].

2 || · || indicates the Euclidean norm in R3.
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Remark 5 While it is generally not true that the compressive response of fibrous
tissues is always of little interest, in this work we formulate only a compression-free
model, primarily because we are interested in tensile tearing type failure of soft tissue.
However, it is important to note that, for example, cartilage researchers believe that
the difference between the tensile and compressive properties of that fibrous tissue are
the keys to understanding its response to dynamic loading. For example, one of the
more important problems in tendon mechanics is understanding the tendon-to-bone
insertion (especially its repair), which most surgeons believe places the tendon under
compression. The natural loading state of pressurized structures such as arteries and
the heart places the tissue in radial compression, and this is sometimes important to
the mechanics (especially as it relates to wall thickening in the heart). Thus, there
are clearly many biomechanics applications where compression can play a role,
and the method developed can be extended to those regimes with relatively minor
modifications.

6.4 An Example: The Fung Material Model

As an example material, we start by considering a form of the well-known three-
dimensional Fung material model (isotropic stiffening “soft” tissue, Fung [12–14]):

W = 1

2
E : IH : E + ID

(
eQ − 1

)
, (6.5)

where E = 1
2

(
FT · F − 1

)
is the Green-Lagrange strain tensor, Q = E:IB:E

2 and IH,
ID and IB are material parameters.

6.4.1 Interpretation of Material Constants

The material constants in a finite deformation material law must match the infinites-
imal deformation response, Hooke’s Law, σ = IE : ε, where σ is the Cauchy stress,
IE is the linear elasticity tensor, and ε is the infinitesimal strain tensor, when per-
turbed around the undeformed configuration. In the case of isotropy, one can express
the Kirchhoff-St. Venant constitutive law in terms of the bulk κ and shear moduli μ:

σ = IE : ε = 3κ
tr(ε)

3
1 + 2με′, (6.6)

where ε′ = ε − tr(ε)
3 1. In order to match the Fung material law to the linearized

response at infinitesimal strains, we compute
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S = ∂W

∂E
= IH : E + IDeQ ∂ Q

∂E
= IH : E + IDe

E:IB:E
2 IB : E (6.7)

and

IEtan = ∂2W

∂E2 = IH + IDeQ
(

∂ Q

∂E
⊗ ∂ Q

∂E
+ ∂2 Q

∂E2

)

= IH + IDe
E:IB:E

2 ((IB : E) ⊗ (IB : E) + IB) . (6.8)

As E → 0 we must have IH + IDIB → IE, in order to match linearized response at
infinitesimal strains (by matching the tangent moduli). In the analysis to follow, we
choose IH = 0.

Remark 6 For overviews of a wide variety of soft tissue models, we refer the reader
to the extensive works of Holzapfel [21, 22] or Humphrey [25, 26]. The material
constants used in the present analysis are effective parameters. Generally, these types
of materials will contain a large number of microscale inhomogeneities. A detailed
analysis of the response of the microstructure to loading is beyond the scope of this
chapter. There are a number of methods to estimate the overall macroscopic properties
of materials consisting of a matrix, containing a distribution of inhomogeneities,
pores, or cracks, in terms of microstructural parameters. The literature on this topic is
quite extensive, dating back to the early works of Maxwell [41, 42] and Lord Rayleigh
[53]. For an wide-ranging overview of random heterogeneous media, we refer the
reader to Torquato [61], while for more mathematical homogenization aspects, see
Jikov et al. [27]. For solid-mechanics aspects, we refer the reader to the works of
Hashin [20], Markov [40], Mura [43], Nemat-Nasser and Hori [44], Huet [23, 24].
Finally, for the analyses of defect-laden, porous and cracked media, one may refer
to Kachanov [29], Kachanov, Tsukrov and Shafiro [30], Kachanov and Sevostianov
[31], Sevostianov and Kachanov [58], Sevostianov, Gorbatikh and Kachanov [57],
while for computational aspects, see Zohdi and Wriggers [77].

6.4.2 Adaptation to the Network Model

Adapting the Fung model, as well as the assumptions for the reduced-order model
introduced earlier, for a one-dimensional fiber segment, we have

W = ID(eQ − 1), (6.9)

where Q = 1
2 IB E2, IB and ID are material constants, E

def= 1
2 (C − 1) is the Green-

Lagrange strain, C
def= U 2 is the right Cauchy-Green strain and U = L

Lo
is the stretch

ratio. The exponential term phenomenologically describes a stiffening effect, due to
a progressive reduction in fibrous microscale “slack,” which is prevalent in many
types biological tissue. A second Piola–Kirchhoff-like stress is given by
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S = ∂W

∂ E
= c

∂ Q

∂ E
eQ = IDIB EeIB E2

, (6.10)

and the tangent stiffness is

IE tan = ∂2W

∂ E2 = IDeQ

((
∂ Q

∂ E

)2

+ ∂2 Q

∂ E2

)
= IB IDeQ(IB E2 + 1). (6.11)

As E → 0, IDIB → IE tan. We assume that ID and IB are both positive.

Remark 7 This relaxed (tensile-strain only) one-dimensional model is convex in
terms of the stretch ratio U . By computing two derivatives of W (U ), we obtain

∂2W

∂U 2 = IDeQ

((
∂ Q

∂U

)2

+ ∂2 Q

∂U 2

)
> 0. (6.12)

Remark 8 An alternative starting point for the material model could be

W = 1

2
κ(E(q))2, (6.13)

where κ > 0 and q are material constants, E(q)
def= 1

2q (U 2q − 1) is the generalized
Green-Lagrange (Seth) strain. The second Piola–Kirchhoff-like stress, S, is given by

S = ∂W

∂ E
= κ E(q)U 2(q−1). (6.14)

The exponent q phenomenologically describes a stiffening effect, due to a progressive
reduction in fibrous slack, which is prelavent in many biological tissues. We note
that q = 1 produces the classical Kirchhoff–St. Venant law, when κ is interpreted as
the Young’s modulus.

Remark 9 Models which explicitly account for the presence of fibers in biological
tissue date back, at least, to Lanir [32], who formulated continuum models based on
the existence of fiber families. For reviews of fiber-like models, we refer the reader to
Sacks and Sun [55], Costa et al. [8] and recent the works of Barocas and co-workers
(Zhang et al. [64] and Hadi and Barocas [16]).

Remark 10 The simplest approach to describe failure of a fiber is to check whether
a critical stretch has been attained, U (t) ≥ Ucrit,I . If this condition is met, then the
fiber is deemed inactive. However, it is more realistic to have the fiber gradually
rupture. In order to track the progressive damage for the I th fiber, a single damage
variable, αI , is used. The damage variable αI can, for example, represent the fraction
of smaller scale fibrils that are not ruptured, within the I th fiber.3 Thus, for a fiber

3 This topic, which is relevant in a multiscale setting, has been explored in depth in Zohdi and
Steigmann [67] and Zohdi and Powell [73].
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that is undamaged, αI = 1, while for an fiber that is completely damaged, αI = 0.
Probably, the simplest damage representation is, with αI (t = 0) = 1,

αI (t) = min

(
αI (0 ≤ t∗ < t), e

(−λ(
UI (t)−Ucrit,I

Ucrit,I
))
)

, (6.15)

where UI (t) is the stretch of the fiber at time t , and where 0 ≤ λ is a rate parameter.
The above relation indicates that damage is irreversible, i.e., αI is a monotonically
decreasing function. As λ → ∞, the type of failure tends toward sudden rupture,
while as λ → 0, then there is no damage generated.

6.5 Simulation of Network Dynamics

A natural way to simulate the dynamics of such tissue is to consider a lumped
mass model, where the lumped masses are located at the suture (criss-cross) points
(Fig. 6.1). In order describe the overall time-stepping scheme, we first start with the
dynamics of a single (i th) lumped mass. The equation of motion is given by

mi v̇i = ψ tot
i , (6.16)

where ψ tot
i is the total force provided from interactions with the external environment

(fiber, loading, etc.). Employing the trapezoidal-like rule (0 ≤ φ ≤ 1)4

vi (t + �t) = vi (t) + �t

mi

(
φψ tot

i (t + �t) + (1 − φ)ψ tot
i (t)

)
(6.17)

and for the position

ri (t + �t) = ri (t) + vi (t + φ�t)�t (6.18)

= ri (t) + (φvi (t + �t) + (1 − φ)vi (t))�t,

or, explicitly combining the expressions,

ri (t +�t) = ri (t)+ vi (t)�t + φ(�t)2

mi

(
φψ tot

i (ri (t + �t)) + (1 − φ)ψ tot
i (ri (t))

)
,

(6.19)

where if φ = 1, then Eq. (6.19) becomes the (implicit) Backward Euler scheme,
which is very stable, dissipative and Ô(�t)2 = O(�t)2 locally in time, if φ = 0,
then Eq. (6.19) becomes the (explicit) Forward Euler scheme, which is condition-
ally stable and Ô(�t)2 = O(�t)2 locally in time and if φ = 0.5, then Eq. (6.19)

4 For a derivation, refer to the Appendix.
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becomes the (implicit) Midpoint scheme, which is stable and Ô(�t)2 = O(�t)3

locally in time. 5 Equation (6.19) can be solved recursively by recasting the relation
as

rL+1,K
i = G(rL+1,K−1

i ) + Ri , (6.20)

where K = 1, 2, 3, ... is the index of iteration within time step L + 1 and Ri is
a remainder term that does not depend on the solution, i.e., Ri 
= Ri (r

L+1
1 , rL+1

2
...rL+1

N ). The convergence of such a scheme is dependent on the behavior of G.
Namely, a sufficient condition for convergence is that G is a contraction mapping for
all rL+1,K

i , K = 1, 2, 3... In order to investigate this further, we define the iteration
error as

	
L+1,K
i

def= rL+1,K
i − rL+1

i . (6.21)

A necessary restriction for convergence is iterative self-consistency, i.e., the “exact”
(discretized) solution must be represented by the scheme

G(rL+1
i ) + Ri = rL+1

i . (6.22)

Enforcing this restriction, a sufficient condition for convergence is the existence of
a contraction mapping

|| rL+1,K
i − rL+1

i︸ ︷︷ ︸
	

L+1,K
i

|| = ||G(rL+1,K−1
i ) − G(rL+1

i )|| ≤ ηL+1,K ||rL+1,K−1
i − rL+1

i ||,

where, if 0 ≤ ηL+1,K < 1 for each iteration K , then 	
L+1,K
i → 0 for any arbitrary

starting value rL+1,K=0
i , as K → ∞. This type of contraction condition is sufficient,

but not necessary, for convergence. Explicitly, the recursion is

rL+1,K
i = rL

i + vL
i �t + φ(�t)2

mi

(
(1 − φ)ψ

tot,L
i

)

︸ ︷︷ ︸
Ri

+ φ(�t)2

mi

(
φψ

tot,L+1,K−1
i

)

︸ ︷︷ ︸
G(rL+1,K−1

i )

(6.23)

5 In order to streamline the notation, we drop the cumbersome O(�t)-type terms.
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where

ψ
tot,L
i = ψ

tot,L
i (rL

1 , rL
2 ...rL

N ) (6.24)

and

ψ
tot,L+1,K−1
i = ψ

tot,L+1,K−1
i (rL+1,K−1

1 , rL+1,K−1
2 ...rL+1,K−1

N ). (6.25)

According to Equation, convergence is scaled by η ∝ (�t)2

mi
, and that the contraction

constant of G is (1) directly dependent on the magnitude of the interaction forces,
(2) inversely proportional to the lumped masses mi and (3) directly proportional to
�t . Thus, if convergence is slow within a time step, the time step size, which is
adjustable, can be reduced by an appropriate amount to increase the rate of conver-
gence. It is also desirable to simultaneously maximize the time-step sizes to decrease
overall computing time, while obeying an error tolerance on the numerical solu-
tion’s accuracy. In order to achieve this goal, we follow an approach found in Zohdi
[70–78], originally developed for continuum thermochemical multifield problems
where (1) one approximates ηL+1,K ≈ S(�t)p (S is a constant) and (2) one assumes
that the error within an iteration to behave according to (S(�t)p)K 	 L+1,0 =
	 L+1,K , K = 1, 2, ..., where 	 L+1,0 is the initial norm of the iterative error and
S is intrinsic to the system.6 The objective is to meet an error tolerance in exactly a
preset number of iterations. To this end, one writes (S(�ttol)

p)Kd 	 L+1,0 = T O L ,
where T O L is a tolerance and where Kd is the number of desired iterations.7 If the
error tolerance is not met in the desired number of iterations, the contraction constant
ηL+1,K is too large. Accordingly, one can solve for a new smaller step size, under
the assumption that S is constant,

�ttol = �t

⎛
⎝ ( T O L

	 L+1,0 )
1

pKd

(	 L+1,K

	 L+1,0 )
1

pK

⎞
⎠ . (6.26)

The assumption that S is constant is not crucial, since the time steps are to be recur-
sively refined and unrefined throughout the simulation. The expression in Eq. (6.26)
can also be used for time step enlargement, to reduce computational effort, if conver-
gence is met in less than Kd iterations. Numerous parameter studies of this algorithm
can be found in Zohdi [70–78].

An implementation of the procedure is as follows:

6 For the class of problems under consideration, due to the quadratic dependency on �t , p ≈ 2.
7 Typically, Kd is chosen to be between five to ten iterations.
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(1) GLOBAL FIXED − POINT ITERATION : (SET i = 1 AND K = 0) :
(2) IF i > N THEN GO TO (4) (N = # OF NODES)

(3) IF i ≤ N THEN :
(a) COMPUTE MASS POSITION :rL+1,K

i

(b) GO TO (2) AND NEXT MASS (i = i + 1)

(4) COMPUTE/UPDATE FORCES ψ
tot,K
i AND FIBER DAMAGE :αI

(5) ERROR MEASURE :

(a)	K
def=

∑N
i=1 ||rL+1,K

i − rL+1,K−1
i ||∑N

i=1 ||rL+1,K
i − rL

i || (normalized)

(b) ZK
def= 	K

T O Lr

(c)�K
def=

⎛
⎝ ( T O L

	0
)

1
pKd

(	K
	0

)
1

pK

⎞
⎠

(6) IF TOLERANCE MET (ZK ≤ 1) AND K < Kd THEN :
(a) CONSTRUCT NEW TIME STEP : �t = �K �t

(b) SELECT MINIMUM : �t = M I N (�t lim,�t)

(c) INCREMENT TIME : t = t + �t AND GO TO (1)

(7) IF TOLERANCE NOT MET (ZK > 1) AND K = Kd THEN :
(a) CONSTRUCT NEW TIME STEP :�t = �K �t

(b) RESTART AT TIME = t AND GO TO (1) (6.27)

Remark 11 At the implementation level in Box 6.27, normalized (nondimensional)
error measures were used. As with the unnormalized case, one approximates the
error within an iteration to behave according to

(γ (�t)p)K ||rL+1,1 − rL+1,0||
||rL+1,0 − rL ||︸ ︷︷ ︸

	0

= ||rL+1,K − rL+1,K−1||
||rL+1,K − rL ||︸ ︷︷ ︸

	K

, (6.28)

K = 2, ..., where the normalized measures characterize the ratio of the iterative
error within a time step to the difference in solutions between time steps. Since
both ||rL+1,0 − rL || = O(�t) and ||rL+1,K − rL || = O(�t) the approach has
roughly the same rates of convergence, and the adaptive scheme remains the same.
The normalized measures are preferred since they have a clear meaning.
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Remark 12 We note that the model presented is flexible enough to capture static
or dynamic loading. Although quasi-static loading are appropriate for many biome-
chanical applications, there are cases, for example, blunt trauma-type loading, where
dynamic loading is important. Clearly, if the inertial terms are made small, by allow-
ing m → 0, the response will resemble a quasistatic solution, if that is desired. As
mentioned previously, this type of approach is sometimes referred to as a dynamic
relaxation technique to solve quasistatic problems. For details, we refer the reader to
Steigmann and coworkers (Steigmann [60], Haseganu and Steigmann [17, 18] and
[19], Atai and Steigmann [1, 2], Papadrakakis [46].

6.6 A Numerical Example: Pressurized Loading

As an idealized model problem, following an example provided in Zohdi [75], con-
sider a planar rectangular sheet, composed of the fiber network, clamped on all four
edges. We consider gradually increasing forces due to pressure loading underneath
the tissue, for each node, of the form

F = fod2eqt

N
, (6.29)

where fo is a pressure force constant, d is the length of a side of the square (d × d)
exterior membrane boundary, q is a loading rate parameter ,and where N is the
total number of nodes. The unit normal at a node is computed by taking the cross-
product of the vectors connecting the nodes before and after the node in ques-
tion, and normalizing the result by the magnitude. The pressure is then projected
onto this normal, n. Thus, this is live loading, since each nodal n is a function
of the deformation. In order to illustrate the robustness of the approach, the tissue
was given some heterogeneity from fiber to fiber: a 50 % variation from a mean
value overall value of the material constant ID for the fibers (Fig. 6.2). Also, an ini-
tially softened elliptical region was placed slightly off center in the tissue (Fig. 6.2).
A 50 × 50 network was used. The specific parameters employed were:

• The initial radii of the fibers were ro = 10−5 m,
• The dimensions of the domain were 0.025 m × 0.025 m,
• The starting time step value, �t = 0.005 s
• The iterative stopping tolerance, T O Lr = 0.001,
• The total simulation time, T = 10 s,
• The desired number of iterations, Kd = 20,
• The upper bound on the time step size, �t lim = 0.01 s,
• The initial pressure, fo = 0.00001 Pa,
• The pressure rate, q = 1.0,
• The damage rate, λ = 1,
• The critical stretch, Ucrit = 1.25,
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DAMAGE
0.961577
0.923154
0.884731
0.846308
0.807885
0.769462
0.731038
0.692615
0.654192
0.615769
0.577346
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Fig. 6.2 TOP LEFT TO RIGHT Successive frames of the pressurized loading leading to rupture.
The graphics indicate the average damage in the surrounding fibers. BOTTOM A zoom on the final

configuration and a plot of the overall damage, 〈α〉 def= 1
||

∫


α d, of the tissue as a function of
time. Note there was approximately 7 % initial damage due to the initially softened elliptical region
in the tissue (Zohdi [75])

• The Fung material parameters were ID = (1 ± 0.5) × 105 Pa and IB = 10−3,
• The first Fung material parameter in the weakened elliptical region was one-

hundredth of the nominal; ID = (1 ± 0.5) × 104 Pa (H was the same),
• The major radius of the elliptical softened region was 0.005 m, while the minor

radius of the elliptical softened region was 0.0025 m.

As Fig. 6.2 indicates, it takes some time for the critical stretch to be met before
damage starts to occur. Thus, in the beginning, the time step sizes are enlarged,
automatically by the algorithm, until the (finite difference) discretization error upper
limit (set to �t lim = 0.01) was met. Thereafter, when damage initiates, inhomoge-
neously (Fig. 6.2), the steps are refined and unrefined to meet the iterative error toler-
ance. At this stage in the deformation, the iterative error tolerance dictates time-step
sizes which are required, by the adaptive algorithm, to be smaller than the step-size
dictated by the discretization limit. Clearly, the method can handle extraordinarily
large, inelastic, deformations that would be difficult to formulate with an anisotropic
continuum theory, and an accompanying finite element discretization, due to large
element distortion. The total simulation time was on the order of 45 s on a standard
laptop.

Remark 13 This example was motivated by the simulation of diseased fibrous cap
tissue which forms during plaque growth associated with the vascular disease of
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atherosclerosis. Myocardial infarction and stroke can result from fibrous plaque cap
rupture and subsequent release of highly thrombogenic material and lipids into the
blood stream. Lesions (plaque caps) with a high risk of rupture are termed vulnerable
(Fuster [15]), and are responsible, along with other micromorphological characteris-
tics, such as lipid core size, for many sudden life-threatening cardiovascular events.
For overviews, we refer the reader to Shah [59], Virmani et al. [62], van der Wal and
Becker [63], Chyu and Shah [7], Libby and Aikawa [36], Libby [37], Richardson
et al. [54], Loree et al. [39] and Davies et al. [9].

6.7 Summary and Future Work

The purpose of this chapter was to present an accessible, straightforward, modeling
approach, which can be numerically implemented with minimal effort by researchers
interested in the simulation of fibrous biological tissue. The advantages of such a fiber
network approach are that the constitutive laws at the (one-dimensional) fiber level
are simple and that the damage and rupture therein is straightforward to characterize,
with the further caveat that the model is amenable to extremely rapid numerical sim-
ulation. Finally, we remark that while the response of the surrounding soft tissue was
neglected, it can be accounted for via staggering techniques whereby, at a time-step,
the load that the fibers induce on the tissue are applied as a (momentarily) fixed load
and the deformation of the fibers are computed and updated to provide a new reaction
load on the soft tissue (by projecting the fiber response onto a discretization mesh of
the soft tissue). The process is repeated until convergence. Staggering schemes are
clearly ideal to simulate such processes. We refer readers to Park and Felippa [47],
Schrefler [56], Zienkiewicz [65], Lewis et al. [34], Lewis and Schrefler [33], Piperno
[48], Doltsinis [10, 11] and Zohdi [70–83] for details of staggering schemes. For
simple cases involving coupled fields associated with atherosclerosis, we refer the
reader to Zohdi et al. [68] and Zohdi [69]. Generally, such schemes proceed, within
a discretized time step, by solving each field equation individually, allowing only
the corresponding primary field variable to be active. This effectively decouples the
system of differential equations. After the solution of each field equation, the primary
field variable is updated, and the next field equation is solved in a similar manner,
with only the corresponding primary variable being active. For accurate numerical
solutions, the approach requires small time steps, primarily because the staggering
error accumulates with each passing increment. Generally, such computations will
require time-step adaptivity, perhaps, for example, using schemes such as the one
presented in this work. We note that this staggering-type approach could be used for
systems with two families of interacting fibers, representing two types of tissue, for
example elastin and collagen.

Finally, because the distribution of water, biological fluids, and chemical species
within such tissue are dependent on the deformation of the solid, coupled multi-
field computations are necessary to realistically simulate such systems. For exam-
ple, in many models involving fibrous biological tissue, it is usually assumed that the
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response depends on the concentration of a chemical species present, denoted s, for
example, intracellular calcium Ca2+, and the stretch U of the tissue fiber, relative to
a reference sarcomere length. A basic form suggested is σ = σ(s, U ), where σ is the
total Cauchy stress (active and passive), which combines the mechanical (passive)
contribution and the actively generated muscle tension. There exist several models
for incorporating the effects of a chemical species into the response of biotissue. For
example, one could consider a representation where σ = σmech + σ chem(Ca2+, U ),
where σ is the total Cauchy stress (active and passive), σmech is the usual mechani-
cal (passive) contribution, σ(Ca2+, U ) is the actively generated muscle tension, and
where U is the stretch along the muscle fiber. We refer the reader to Rachev and
Hayashi [52], Humphrey [25] or [26] for reviews.8 A proto-typical coupled system
involves (a) fluid mechanics, involving the concentration of suspensions, which are
nominally convected with the fluid, (b) fluid-solid interaction at wall/fluid interfaces,
leading to penetration or absorption of suspensions into the biotissue, and (c) growth
of the tissue and an accompanying buildup of stress and/or possible damage. Stag-
gering schemes are clearly ideal to simulate such fluid–solid processes, and have
been applied in Zohdi [74] for related systems.

Appendix: Temporal Discretization

In order to motivate the time-stepping scheme, we first start with the dynamics
of a single lumped mass. The equation of motion is given by

mi v̇i = ψ tot
i , (6.30)

where ψ tot
i is the total force provided from interactions with the external environment

(fiber, etc.). Expanding the velocity in a Taylor series about t + φ�t we obtain,

vi (t+�t)=vi (t +φ�t)+dvi

dt
|t+φ�t (1−φ)�t+1

2

d2vi

dt2 |t+φ�t (1−φ)2(�t)2+O(�t)3

(6.31)

and

vi (t) = vi (t + φ�t) − dvi

dt
|t+φ�tφ�t + 1

2

d2vi

dt2 |t+φ�tφ
2(�t)2 + O(�t)3 (6.32)

Subtracting the two expressions yields

dvi

dt
|t+φ�t = vi (t + �t) − vi (t)

�t
+ Ô(�t), (6.33)

8 The system presented in this work can be considered a relatively simple coupled system, coupling
equilibrium and damage equations.
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where Ô(�t) = O(�t)2, when φ = 1
2 . Thus, inserting this into the equations

of equilibrium yields

vi (t + �t) = vi (t) + �t

mi
ψ tot

i (t + φ�t) + Ô(�t)2. (6.34)

Note that adding a weighted sum of Eqs. (6.31) and (6.32) yields

vi (t + φ�t) = φvi (t + �t) + (1 − φ)vi (t) + O(�t)2, (6.35)

which will be useful shortly. Now expanding the position of the center of mass
in a Taylor series about t + φ�t we obtain

ri (t +�t)=ri (t +φ�t)+dri

dt
|t+φ�t (1−φ)�t+1

2

d2ri

dt2 |t+φ�t (1−φ)2(�t)2+O(�t)3

(6.36)

and

ri (t) = ri (t +φ�t)− dri

dt
|t+φ�tφ�t + 1

2

d2ri

dt2 |t+φ�tφ
2(�t)2 +O(�t)3. (6.37)

Subtracting the two expressions yields

ri (t + �t) − ri (t)

�t
= vi (t + φ�t) + Ô(�t). (6.38)

Inserting Eq. (6.35) yields

ri (t + �t) = ri (t) + (φvi (t + �t) + (1 − φ)vi (t))�t + Ô(�t)2. (6.39)

and thus using Eq. (6.34) yields

ri (t + �t) = ri (t) + vi (t)�t + φ(�t)2

mi
ψ tot

i (t + φ�t) + Ô(�t)2. (6.40)

The term ψ tot
i (t + φ�t) can be approximated by ψ tot

i (t + φ�t) ≈ φψ tot
i (ri (t +

�t)) + (1 − φ)ψ tot
i (ri (t)). Thus, we have the following for the velocity9

vi (t + �t) = vi (t) + �t

mi

(
φψ tot

i (t + �t) + (1 − φ)ψ tot
i (t)

)
(6.41)

and for the position

9 In order to streamline the notation, we drop the cumbersome O(�t)-type terms.
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ri (t + �t) = ri (t) + vi (t + φ�t)�t (6.42)

= ri (t) + (φvi (t + �t) + (1 − φ)vi (t))�t,

or, explicitly combining the expressions,

ri (t + �t) = ri (t) + vi (t)�t + φ(�t)2

mi

(
φψ tot

i (t + �t) + (1 − φ)ψ tot
i (t)

)
.

(6.43)
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Chapter 7
Transport Phenomena: Computational Models
for Convective and Diffusive Transport
in Capillaries and Tissue
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Dejan Petrovic, Nenad Filipovic, Mauro Ferrari and Arturas Ziemys

Abstract A review of computational procedures for convective and diffusive
transport, developed by the authors, is presented in this chapter. The presented finite
element computational framework is directed to transport within capillaries and tis-
sue. The convective transport includes modeling of motion of deformable bodies
within fluid flow. It is based on a strong coupling concept and remeshing proce-
dure. It was found by the authors that this approach has advantages in reliability and
accuracy with respect to others available in literature, although it is not computa-
tionally efficient. A hierarchical multiscale model for diffusion couples molecular
dynamics and continuum FE method by evaluating equivalent continuum diffusive
parameters; these parameters include commonly used diffusion coefficients, but also
parameters which account for physicochemical interactions between diffusing mole-
cules and microstructural solid surfaces. A numerical homogenization is used in this
multiscale model. Coupled convective and diffusive transport is also considered. A
number of typical solved examples illustrate generality, robustness, and accuracy of
the presented computational methodology.
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7.1 Introduction

Transport phenomena are a vital part of life, found in biology, in technology, and
in our environment. One might observe transport on scales from macro to nano,
like ocean streams, flow in tap water pipes, or microfluidics. Reducing the scales
to the micro and below the flow in mass transport decreases and diffusion transport
becomes more important. In systems where the Peclet number becomes small, diffu-
sion may start to dominate mass transport, or be as important as flow at least. Transport
phenomena involving diffusion are common in nature [8, 58], industrial processes
[12, 22, 23] or biology [2, 11].

Most of research is focused on the macro-scale, where fundamental laws, such as
Fick’s or Darcy’s law, describe movement of a given substance through a medium.
However, in heterogeneous structures or materials the scale and interfaces may alter
the transport. For example, in nanofluidic and nanoporous materials, new mate-
rial properties and transport phenomena emerge that are exploited in biomedical
and industrial applications, including drug delivery [20, 51], catalysis [14, 55] and
molecular filtering [24]; here, a substantial deviation occurs from the traditional
phenomenological transport laws.

Classical continuum theories of diffusion through homogenous media use
Fick’s law:

J = −D∇c (7.1)

where

D = kB T

6πμr
(7.2)

J is the mass flux along the concentration gradient ∇c with diffusion coefficient
(diffusivity) D. The Stokes–Einstein equation (7.2) shows that D for an ideal solution
is inversely proportional to viscosity μ and radius r of the diffusing molecule. In fur-
ther discussions we will refer to Fickian diffusion where D is a constant, or D(const).
However, experiments often deal with non-ideal solutions, where D depends on con-
centration, i.e., D = D(c) [5, 12].

Systems, where the interface starts dominating over volume properties, alter dif-
fusion because of interactions of the diffusing particles with solid media [30, 47];
also, both fluid and solute properties could be altered at the interface [26, 56]. In
view of the above, diffusion transport predictions by Eq. 7.1 may become inaccu-
rate, because the homogeneity of diffusion environment is violated [64]. Therefore,
in modeling diffusive mass transport, it is important not to neglect the interactions
between diffusion particles with the microstructure.

Accurate and reliable prediction of mass transport is important in biomedical
application, for example in predicting mass distribution in tissue microenviron-
ment or designing drug delivery material for optimal drug release kinetics. We here
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describe a multiscale mass transport modeling framework that relies on basic physi-
cal laws and employs modern computational tools; it includes particle flow, molecule
diffusion, or the combination of both, and is robust and general.

7.2 Convective Transport of Particles and Cells

7.2.1 A Review of Methods

In many technological processes, in living organisms, and in nature, motion of rigid
and deformable solids within fluid is commonly present. This motion has been
the subject of experimental and theoretical investigations over centuries. Regarding
mathematical modeling, analytical formulations originally were used which triggered
development of mathematical methods. In the era of computer technology, numeri-
cal methods have been introduced offering solutions of very complex problems. We
here give a brief overview of computational methods relevant to the methodology
adopted in our research.

In the so-called Stokes dynamics, the effects of particle motion on fluid flow are
neglected, while forces and torques acting on particles are evaluated to compute
motion of particles [15, 31, 45, 52]. Coupling particle motion and fluid flow was
further considered and we cite several methods, such as integral equation for parti-
cle motion and the boundary element method, [49, 50]; fictitious domain approach
[18, 19]; arbitrary Lagrangian-Eulerian (ALE) formulation [28]; Lagrange multiplier
method [18, 53]; immerse boundary finite element method [1, 59]; finite element
method with remeshing in an explicit–implicit procedure, called direct simulation
[27]. Finally, we here note a few recent references related to motion of particles
within channels, which is important in microchip devices used in cell biology; there,
the shape of particle trajectory depends on the lift (lateral) force generated during
particle motion [9, 60].

We have found that the most accurate and robust methodology is the finite element
method (FE), where a strong coupling approach with remeshing procedure is used
[29, 40]. Also, our approach employs an implicit incremental-iterative computational
scheme [34, 36].

7.2.2 Remeshing Procedure

The FE method used in our models relies on the fundamental laws of balance of
linear momentum (i.e., Newton’s Second Law); in case of fluid, mass balance is also
used. We here first summarize the basic equations in the differential form and in
the FE format, and then describe the remeshing procedure. The balance of linear
momentum for fluid can be written in the form of the Navier–Stokes equations [36]:
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ρ f

(
∂vi
∂t + ∂vi

∂xk
vk

)
= − ∂p

∂xi
+ μ

∂2vi
∂xk∂xk

+ f V
i i = 1, 2, 3;

sum on k : k = 1, 2, 3
(7.3)

where vi are fluid velocities, p is pressure, f V
i are volumetric forces; and ρ f and μ

are fluid density and dynamic viscosity. It should be noted that these equations are
derived assuming the Eulerian description of motion and using constitutive law for
viscous fluid: σ viscous

i j = μ
(
∂vi/∂x j + ∂v j/∂xi

)
. We will only consider flow of

incompressible fluid, for which the continuity (mass balance) equation can be
expressed as:

∂vi

∂xi
≡ ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0 (7.4)

By implementing a weighted procedure (Galerkin method [36]), a weak form of
the above equations can be derived. Within an incremental-iterative computational
scheme, the equations of balance related to one finite element (which include both
Eqs. (7.3) and (7.6)), for a time step n of size �t and iteration i, can be written in a
form:

[
1

�t M + n+1K̃(i−1)
vv Kvp

KT
vp 0

] {
�V(i)

�P(i)

}
=

{
n+1F(i−1)

ext
0

}
−

[
1

�t M + n+1K(i−1)
vv Kvp

KT
vp 0

] {
n+1V

(i−1)

n+1P
(i−1)

}
+

{ 1
�t MnV
0

} (7.5)

where matrix M corresponds to the local velocity derivatives ∂vi/∂t ; matrices
n+1K̃(i−1)

vv and n+1K(i−1)
vv include convective velocity derivatives ∂vi

∂xk
vk and viscous

terms; Kvp is the matrix coupling velocities and pressure; Fext are external nodal
forces corresponding to volumetric forces and action of the surrounding elements;
V and P are nodal velocity and pressure vectors; left upper indices n and n+1 indi-
cate start and end of the time step; and the right upper indices i and i-1 denote the
current and previous equilibrium iteration within the time step. These equations are
assembled into a system of equations for the entire fluid domain, using the stationary
fluid mesh, since the equations assume the Eulerian description. The time integration
procedure is implicit, therefore the overall system of balance equations are satisfied
at the end of time step, and iterations continue until selected convergence criteria are
satisfied. Details about matrices and computations are given elsewhere [36].

Motion of the solid is described according to the Lagrangian description. Then,
the differential equation of balance of linear momentum is:

ρs
∂vi

∂t
= ∂σik

∂xk
+ f V

i i = 1, 2, 3; sum on k : k = 1, 2, 3 (7.6)

where ρs is density of solid, and σik are stresses. Besides these equations, constitutive
law for material behavior must be included; in case of elastic solid the constitutive law
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Fig. 7.1 Schematics of the remeshing procedure. After the solution for the current time step is
obtained, the solid is displaced, a new fluid mesh is generated (with common solid and fluid nodes
at the solid boundary) and solutions from the old mesh are mapped to the new mesh [29]

is: σi = C E
i j e j where C E

i j is elastic matrix, with the one-index notation for stresses
and strains e j . Balance equations which follow from Eq. (7.6) can be written in the
form

(
1

�t
Ms + �tn+1Ks(i−1)

)
�Vs = n+1Fs(i−1)

ext − n+1Fs(i−1)
int − 1

�t
Ms

(
n+1Vs(i−1) − nVs

)
(7.7)

where Ms and Ks are the mass and stiffness matrix of the solid, Vs is the nodal
velocity vector; Fs

ext are external nodal forces which also include volumetric forces
and nodal forces from other elements (together with forces from fluid elements for
common solid–fluid nodes); and Fs

int are internal nodal forces arising from stresses
within solid [6, 34]. Note that we use the term �tn+1Ks(i−1) since we are solving
for velocities instead of displacements usually used in modeling solids.

We use a remeshing procedure [29, 40] which assumes that the boundary nodes of
the particle mesh and of the fluid are the same for the current step, hence these nodes
have the same velocities. When convergence is reached, we displace all solid nodes
for �Us = �tVs (graphically shown in Fig. 7.1). Then, we generate a new fluid
mesh, with common nodes at the displaced solid boundary nodes. Besides a purely
geometrical change in the mesh, it is necessary to map solutions from the previous
mesh to the new mesh. We search over all new fluid nodes, find the element in the
previous mesh to which the node belongs, and use isoparametric interpolation from
the element nodes of the old mesh to find the velocity and pressure at the new node.

We have implemented the above described methodology into our FE program
PAK-FS [35]. Details of this methodology and its implementation are given in [29].
Solution accuracy of the computational method and software has been tested on
various examples available in the literature [29, 37].
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Fig. 7.2 Herringbone chip for capturing tumor cells [54] (left) and velocity field calculated using
the solid-fluid interaction FE model (right)

7.2.3 Modeling Motion of Cells Within a Herringbone Chip

Model of herringbone chip is shown in Fig. 7.2 (left panel) [54]. This chip is designed
to capture rare circulating tumor cells (CTC) in blood. It applies passive mixing
of blood cells through the generation of microvortices to significantly increase the
number of interactions between target CTCs and the antibody-coated chip surface.
A simplified 2D FE model, which includes normal and cancer cells, is developed
and velocity field is shown in Fig. 7.2 (right panel).

7.3 Diffusion—Multiscale Models

In this section diffusion models are presented. After the introduction about signif-
icance of diffusion processes in biological media, we describe our basic hierarchi-
cal model and then introduce a general multiscale model for diffusion in composite
media. Selected examples illustrate validation and applicability of our computational
models.

The fundamental equation of diffusion, which represents the mass balance
equation at a material point of the continuum (composed of solvent and solute),
can be written as

− ∂c

∂t
+ ∂

∂xi

(
Di j

∂c

∂x j

)
+ qV = 0 (7.8)

where c (xi , t) is concentration, Di j are components of the diffusion tensor, and
qV (xi , t) is a source term. The constitutive relation, represented by the Fick’s law,

J = −D∇c or Ji = −Di j
∂c

∂x j
(7.9)
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is included in Eq. (7.8), where J is the mass flux, and summation on the repeated
index is implied ( j = 1, 2, 3). In case of isotropic diffusion, the diffusion tensor is
diagonal,

D = DI (7.10)

where I is the identity tensor.

7.3.1 Characteristics of Diffusion Within Nanospace

Transport by diffusion represents one of the most fundamental processes in biolog-
ical systems [3, 11]. Mathematical models of transport on the macro-scale within
composite media rely on the phenomenological laws, such as Fick’s or Darcy’s law.
Diffusion, which is the subject of this study, depends not only on the porosity and the
size of the moving particles or molecules, but also on the physico-chemical interac-
tions between the particles and solid surface occurring at the molecular level. This
is particularly significant in case of diffusion within biological media where the
spatial dimensions of pore space are comparable to the diffusing particles or
molecules [64, 65]. Then, Fick’s law does not accurately describe diffusion and
the surface interaction at the molecular level must be taken into account. We employ
the Molecular Dynamics (MD) method to include surface effects into our continuum
macro-scale diffusion models, as presented below.

7.3.2 Hierarchical Model of Diffusion

We here introduce a hierarchical diffusion model which couples MD and FE methods.
This model represents the basis for the formulation of our multiscale model, formu-
lated in the next section. It is assumed that the chemical interaction occurs between
the transported particles or molecules and surrounding solid surfaces. Then, trajec-
tories of particles are altered due this interaction and the overall diffusion is affected
in the vicinity of the surfaces.

The diffusion near the surfaces differs from the free diffusion and is characterized
as hindered diffusion. This hindered diffusion is more pronounced in case of small,
nanosize dimensions of the diffusive space. The interaction effects are illustrated in
Fig. 7.3a, b for diffusion within a nanochannel with a height h comparable to the
particle size. MD is used to quantify the surface interaction effects by calculating the
effective diffusion coefficient D in terms of the distance from the solid surface and
the concentration c. The function D(h, c) is further used within finite element (FE)
models in our hierarchical diffusion computational model, as is described in the text
below [39, 40, 65].
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7.3.2.1 MD Simulations

MD has been used for many decades and is well described in many texts, as for
example [4, 16]. MD is based on statistical mechanics, where motion of particles or
molecules is described according to Newtonian mechanics:

mi v̇i = Fi (7.11)

where mi , v̇i and Fi are mass, acceleration and resulting force (including interaction
forces from the neighboring particles and external forces), respectively. The inter-
action forces include bonded (repulsive-attractive, bending and torsion) and non-
bonded (electrostatic, van der Waals) terms, Eintra and Einter, respectively. The Force
Field (FF) represents a functional form of the behavior of chemical structures and is
evaluated from potential energy function. There are many popular FFs available and
they differ by parameterization and available chemical space. CHARMM FF [41]
is a good illustration of a general and well adopted FF that is also used in our MD
models:

Eintra =
∑

bonds

Kb (b − b0)
2 +

∑
angles

Kθ (θ − θ0)
2 +

∑
torsions

Kφ (1 + cos (nφ + δ))

(7.12)

Einter =
∑

electrostatics

qi q j

ri j
+

∑
VDW

εi j

[(
Rmin,i j

ri j

)12

+ 2

(
Rmin,i j

ri j

)6
]

(7.13)

Material parameters of the intra-molecular potential Eintra are given by the force
constants Kb, Kθ and Kφ , equilibrium values of bonds and angles b0 and θ0, and
equilibrium torsion constants—dihedral multiplicity n and dihedral phase δ. Inter-
molecular potential sums are electrostatic and van der Waals (VDW) terms, where
εi j is VDW potential depth, Rmin is atom radius, and qi , q j are partial atomic charge.
These parameters of FF are introduced to represent certain chemical classes of com-
pounds in order to reproduce experimental physico-chemical properties.

MD simulations for calculating diffusivities were carried out using NAMD 2.6
[48] with a TIP3P water model [32] and NVT (fixed number of particles N, pressure
P, volume V) ensemble. CHARMM compatible amorphous silica force field [10] was
employed to model the silica nanochannel, which is modeled by charged hydrophilic
amorphous silica phase to match the silica properties after the fabrication process.
Details of MD simulations related to diffusion in silica channels are published in
[61, 62]. Calculating the diffusion of Rhodamine 6G, the same tools were used as
for silica channel systems. All molecules involved in the model, including β-D-
glucose and rhodamine 6G, were simulated with the CHARMM22 FF [46, 57]. The
agarose fiber model was composed of glucose molecules positions in a rod-structure
with 2 × 2 × 6 molecules and were constrained to maintain rod structures. The fiber
model was hydrated in an approximately 4 × 10 × 10 nm box and filled with water.
Six molecules of Rhodamine 6G were added at random location in water phase.
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Fig. 7.3 Representation of diffusion within confined space. a Trajectories of diffusing molecules
(dark spheres) within a nanochannel illustrate surface effect which reduces diffusivity of molecules
at proximity to surface; b Diffusion within nannochannel with bulk domain (free diffusion) and
diffusion domain affected by interaction with surface in case of nanochannel of (nano) height h ; c
A porous medium with bulk diffusion domain and surface influence domain

Periodic boundary conditions were applied in all directions. The whole model was
minimized, equilibrated and later production simulation executed over 20 ns using
2 fs integration step.

Diffusion was analyzed studying center-of-mass displacement of target molecules
(glucose, Rhodamine 6G) and calculating diffusivity dependence on proximity to
the fiber or silica wall like in [42, 63]. Diffusion coefficients were calculated from
trajectories by using the mean square displacement 〈r2〉:

〈r2〉 = 2dDt (7.14)

where the factor d = 1, 2, 3 depends on the dimensionality of the space, and t is time.
The diffusivity along the surface normal was evaluated from the surface of the fiber
or silica wall to distances at which the diffusivity value saturates. The time window
t for 〈r2〉 was chosen as 20 ps, which is small enough to catch local displacements
within 0.5 nm thick slabs. Values of 〈r2〉 were collected to bins according to the
center of mass of molecules and their initial position. Molecules could leave the bin in
which 〈r2〉 is computed in order to avoid restricted ensembles. The diffusivity results



140 M. Kojic et al.

include dependence on distance from the solid surface for glucose and Rhodamine
6G at different concentrations (Fig. 7.4).

For easier implementation within the FE models, and also for the generality of
this methodology, we introduce scaling functions as material characteristics for the
considered particle-surface pair. Namely, the MD calculated diffusivity is normalized
with respect to the “bulk” value Dbulk corresponding to diffusivity far from the
surface, where influence of the surface is negligible, such that

D = s Dbulk (7.15)

where
s = s (h, c) , 0 ≤ s ≤ 1 (7.16)

is the scaling function which depends on the distance from the wall surface h and
concentration c. Example of scaling functions for different concentrations are shown
in Fig. 7.4b [65] and Fig. 7.4d, assuming diffusion within a nanochannel with silica
walls. For the examples shown here we have chosen glucose molecules according
to [17].

Further, it is straightforward to extend calculation of the scaling function to any
microstructural geometry. The assumption is that the surface size is large when
compared with the particle/molecule. Then, using MD as in case of nanochannel we
can determine diffusion coefficients Dξξ , Dηη, Dζ ζ (or scaling functions sξ , sη, sς )

in the local system ξ, η, ζ (Fig. 7.3c), where ξ is in the direction normal to the surface,
and η, ζ lie in the tangential plane:

Dξξ = sξ Dbulk
Dηη = sη Dbulk
Dζ ζ = sζ Dbulk

(7.17)

where Dbulk can depend on concentration, i.e., Dbulk = Dbulk (c). It is shown in
Fig. 7.3c that there are two domains in a microstructure: the domain with surface
effects with the so-called hindered diffusion, and the bulk diffusion domain. Diffusion
tensor in the global coordinate system can be obtained by the tensorial transformation,

D = TDξηςTT (7.18)

where Dξης is the diagonal tensor with components given in Eq. (7.17), while T
is the transformation matrix containing cosines of angles between local and global
coordinate systems [36]. The three scaling functions are the same sξ = sη = sς =
s (h, c) in case of isotropic conditions, and the diffusion tensor is diagonal,

D = Dξης = s (h, c) DbulkI (7.19)
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Fig. 7.4 Diffusion coefficient and corresponding scaling functions for glucose [65] and Rhodamine
6G, calculated using MD and presented with exponential fits. a Glucose diffusion coefficient as
a function of distance from silica surface for different glucose concentrations; b Diffusion scal-
ing functions, with the segment of zero diffusivity corresponding to statistical molecular radius;
c Rhodamine 6G diffusion coefficient as a function of distance form agarose fiber; d Rhodamine
6G scaling function

7.3.2.2 Finite Element Model

As in case of fluid (Sect. 7.2.2), a Galerkin procedure can be used and the nonlinear
differential equation (7.8) can be transformed into the incremental-iterative system
of linear balance equations for a finite element [36],

(
1

�t
M + n+1K(i−1)

)
�C(i) = n+1QS(i−1) +n+1 QV (i) − n+1K(i−1) n+1C(i−1)

− 1

�t
M

(
n+1C(i−1) − nC

)
(7.20)

where C is the vector of nodal concentrations; QS and QV are surface and volumetric
nodal fluxes for the element; and components of the matrices M and K are
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Fig. 7.5 Numerical homogenization concept. At a point P of the continuum we specify a small—
reference volume (RV) and calculate mass release curves mi (t) within RV for coordinate directions
x, y, z. A microstructural model for diffusion within the RV is generated, with detailed description
of the microstructure and spatial field of the diffusion tensor obtained from MD

MI J =
∫

V

NI NJ dV (7.21)

n+1 K (i−1)
I J =

∫

V

n+1 D(i−1)
i j NI,i NJ, j dV (7.22)

Here NI and NJ are the interpolation functions, and n+1 D(i−1)
i j are components of

the diffusion tensor corresponding to the last known concentration n+1c(i−1) at a
point within the finite element.

The described hierarchical model has been verified by comparison of computed
results for mass release in nanochannels with experiments [13, 65]. In Sect. 7.3.4 we
demonstrate the effects of molecule-surface interaction.

7.3.3 Multiscale MD-FE Model

The hierarchical model described in the previous section involves detailed evalua-
tion of the field of the diffusion tensor, which for the case of complex microstructure
requires significant effort in generating the internal microstructural geometry and
evaluation of the scaling functions. We call this diffusion model the microstructural
model. The model is practically not adequate for large domains, as, for example,
is a micron size domain for diffusion within biological tissues. It follows that a
macroscale model with equivalent diffusion parameters is desirable for applications.
We here describe a continuum macroscale diffusion model with equivalent para-
meters using the microstructural model and a numerical homogenization procedure
[39, 43].
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7.3.3.1 Numerical Homogenization Procedure

Our homogenization procedure relies on the condition that mass release curves for
the detailed microstructural and continuum models are the same (within a numeri-
cal tolerance). Practically, we proceed as follows. We select a small reference vol-
ume (RV) at a material point and calculate mass release curves for three coordinate
directions according to the microstructural model formulation. Then we seek for
equivalent diffusion parameters of the continuum to obtain the same mass release
curves (schematic is shown in Fig. 7.5). Note that the mass fluxes in the coordinate
directions,

Ji = ∂mi

∂t
, i = 1, 2, 3 (7.23)

are geometrically represented by the slope on the mass release curves, as indicated
in Fig. 7.5. If the equivalent parameters are determined under the condition that mass
release curves are the same for both microstructural and continuum model, then the
mass fluxes for the microstructural and continuum models are the same at any time
during the diffusion process. Hence, diffusion characteristics will be the same for
both models and the governing Eq. (7.8), written using fluxes:

− ∂c

∂t
− ∂ Ji

∂xi
+ qV = 0 sum on i : i = 1, 2, 3 (7.24)

will have the same solutions. Of course, the microstructural model requires MD
calculation of the scaling functions for diffusing particles in the microstructure and
a very fine FE mesh for discretization of the RV.

The equivalent continuum model includes two sets of equivalent diffusion
parameters:

(a) equivalent diffusion coefficients D̄i

(b) equivalent distances h̄i from solid surfaces

for the three coordinate directions. The first set corresponds to the bulk diffusion
within microstructure, and has been used in the past in homogenization procedures
for diffusion [7, 25]. The new parameters h̄i take into account surface interactions
within the microstructure.

Practical evaluation of the equivalent parameters consists of the following steps:

1. Find mass release curves for the microstructural model while neglecting surface
interaction effects within microstructure (Fickian diffusion);

2. Determine equivalent diffusion coefficients D̄i using these mass release curves;
3. Evaluate scaling functions for the microstructure and determine mass release

curves for the microstructural model using these scaling functions and the bulk
diffusion coefficient Dbulk;

4. Find equivalent distances h̄i by employing mass release curves from step 3 and
diffusion coefficients D̄i from step 2.
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Details of the practical implementation of these steps are given in references
[38, 39, 43].

A proof that the equivalent diffusion parameters (for a given solute)—equivalent
diffusion coefficients and equivalent distances from surface—depend only on the
geometry of the microstructure and its material characteristics, is given in references
[38, 39, 43].

We note that RVs can be specified at various points of the continuum and the
equivalent diffusion parameters can be interpolated to capture variability of material
properties within a macro-domain.

7.3.4 Case Studies

7.3.4.1 Simple Diffusion Domain

A simple case of diffusion is selected to illustrate interface effects (Fig. 7.6). This
example was investigated in detail in [65]. Diffusion through a nanochannel of width
W = 3 μm, length L = 500 nm and height (H) is computed. Diffusion can be con-
sidered two-dimensional (width is very large)—the same in all planes parallel to the
shaded plane in Fig. 7.6b, so that a 2D rectangular domain bounded by nanochannel
length and height is used in the FE model. Two diffusion domains can be distin-
guished in the FE model: central and interface domain. Diffusion in the central
diffusion domain is not affected by the interface, therefore diffusion coefficient is
represented by Dbulk and may depend only on concentration. Interface domain spans
from the wall (with zero-value of the scaling function and diffusion coefficient) to
a distance where scaling functions become equal to 1 and local diffusion coefficient
reaches the bulk value. A fine mesh in FE model was used in the interface domain to
capture the interface effects on the diffusivity, while a coarser mesh was employed
in the central domain where material properties are homogeneous. Diffusivity Dbulk
linearly changes from 1.0 · 10−6 cm2/s at zero concentration to 0.5 · 10−6 cm2/s
at 1M (Fig. 7.6a). The nanochannel connects inlet and outlet reservoirs with
1 · 10−6 μl volume each; initially, the inlet reservoir is filled with 1M solution, while
the other reservoir has 0 M concentration. Diffusion is calculated until concentra-
tions in both inlet and outlet reservoirs become equal (=0.5 M) (then, the diffusion
gradient reaches zero value) (Fig. 7.7a).

The interface effects can be seen from results in Fig. 7.7, where diffusion through
nanochannels of height 5 and 50 nm is computed. As shown in Fig. 7.4, the interface
domain spans up to 2–3 nm for the case of diffusion of glucose molecule and silica
surface. In case of the 5nm nanochannel, majority of channel volume is be affected
by surface effect and hindered diffusion dominates over free diffusion. On the other
hand, the interface effect has small influence on release through 50 nm channel,
since free diffusion prevails. It is worth noting that, for a given transported molecule,
interface effects could be changed by changing chemistry of channel structure, e.g.,
if highly charged molecular species are diffusing at the wall surface.
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Fig. 7.6 A simple diffusion model as studied in [65]. a Dependence of bulk diffusion coefficient
Dbulk on concentration; b Top the diffusion domain of nanochannel (nano-slit) with 2D conditions,
where concentration gradient is developed between inlet and outlet. Nanochannel dimensions are
width W = 3 μm, length L = 500 nm and height (H ), where H is much smaller than W and L .
Bottom 2D Finite Element model with two diffusion domains: interface and central, with spatial
distribution of diffusivity. Interface effect on diffusivity is illustrated by gradient of color; in the
central domain diffusivity is equal to the bulk value

Fig. 7.7 Diffusion from the inlet to the outlet reservoir through nanochannels of height 5 and 50 nm.
a Concentration versus time in the inlet and outlet reservoir of equal volume; the final steady-state is
reached when concentrations at the reservoirs become equal; b Normalized cumulative mass release
curves; M is total released mass. Diffusion kinetics is much more affected by surface interaction
for nanochannel with height 5 than with 50 nm

7.3.4.2 Polymeric Solution

Multiscale microstructural and continuum models were applied to model diffusion
through an agarose polymeric solution of Rhodamine 6G molecule that is frequently
used for diffusion studies [44]. The internal structure of agarose hydrogel (0.934 ×
0.934 μm) was adopted from [21], which was imaged by using TEM. Fibers are
discretized using “Agarose Fibers” interface software developed in R&D Center for
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Fig. 7.8 Internal microstructure obtained by imaging, left panel, according to [21]. Fiber recogni-
tion software developed at R&D Center for Bioengineering BioIRC

Bioengineering BioIRC, Kragujevac, Serbia (Fig. 7.8). The bulk diffusion coeffi-
cient is Dbulk = 286 μm2/s, while the scaling functions are calculated using MD
procedure; porosity of the agarose gel is 97 %.

Mass release curves and flux (for the entire outlet cross-section) change over time
are shown in Fig. 7.9 (lower right panel), for both microstructural and continuum
models, considering the diffusion domain as a reference volume (RV). It can be seen
that the microstructural and continuum models give the same results. In order to
gain further insight into diffusion within this complex microstructure of polymer
gel, we examine mass flux and concentration distributions within the RV. The upper
left panel shows distribution of mass fluxes in the direction of diffusion at the end
of the first time step, time t = 0.5 s. The field displays variation of the flux due to
agarose fibers, with zero-values within the fibers and at the fiber surfaces. Diagrams
of concentration and mass flux along the coordinate axes are shown in the lower-
left and upper-right panels. Continuum solutions show that concentration decreases
approximately linearly along x-direction (diffusion direction), and remains constant
along vertical cross-section (y-axis); flux-x is roughly constant along x-direction, and
flux-y is equal to zero along vertical cross-section. On the other hand, microstructural
solutions have variations, with zero-values at the points corresponding to fibers.
Besides these variations occurring within microstructure, we have that the continuum
model incorporates the microstructural flux fluctuations and gives the same overall
mass fluxes through RV; therefore, microstructural and equivalent continuum display
the same diffusion characteristics.

To validate the multiscale model we have experimentally measured R6G diffusion
through a 1 and 3 % agarose hydrogel membrane. Mass release curves are calculated
using the equivalent continuum model, based on the above microstructural model
and the homogenization procedure. Figure 7.10 shows experimental and computa-
tional curves normalized by the maximum released mass M∞, as M(t)/M∞. Without
inclusion of surface effects the release curves are practically the same for 1 and 3 %
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Fig. 7.9 Diffusion within an agarose polymer gel. Upper left panel Mass flux-x distribution at time
t = 0.5 s; dark domains within the field show zero-flux at fiber areas. Upper right panel distribution
of mass flux and concentration in x-direction, microstructural (full line) and continuum (dashed line)
along horizontal cross-section. Lower left panel distribution of mass flux and concentration in the
y-direction, microstructural (solid line) and continuum (dashed line) along vertical cross-section.
Lower right panel change of both cumulative mass release and flux-x over time for microstructural
and continuum models [44]

agarose hydrogels. But slower release is found for release profiles for both 1 and 3 %
agarose films.

7.3.4.3 Tissue

A diffusion model can be developed to analyze mass distribution around vessels.
Figure 7.11 illustrates an example of doxorubicin drug extravasation around vessel
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Fig. 7.10 Comparison of
Rhodamine 6G mass release
through 1 and 3 % agarose
hydrogel films, obtained by
experiments and multiscale
diffusion model. Interface
effects lead to differences in
release kinetics in 1 and 3 %
agarose gels. Notation in the
figure: Fickian—without
surface effects, D(c,h)—with
surface effects,
exp—experimental results

Fig. 7.11 Calculated drug concentration field around blood vessel. Left concentration field of dox-
orubicin (grey) around vessel (black) in 4T1 tumor from tissue imaging. Right Calculated concen-
tration distribution within vessel wall (diameter of capillary is 10 μm) at four different time points.
The arrows show the direction of diffusion, where the experimentally determined doxorubicin field
spans up to 50–100 μm on average from the vessel

in 4T1 tumor tissues at 24 h after drug injection. The simplified model can incorporate
a vessel lumen as a source of drug concentration, the vessel wall, and the surround-
ing cellular media. Here, we only consider diffusion through vessel wall which was
modeled by a collagen sleeve in the basal membrane of vessel. By using differ-
ent phenomenological diffusion coefficients for pure doxorubicin and doxorubicin
in liposomal formulations, differences in extravasation kinetics can be evaluated.
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In our example, we have used the experimental concentration profiles in plasma
similar to data from Ref. [33]. The results presented in Fig. 7.11 show that liposomal
formulation can potentially develop more sustainable gradients of the drug because
of reduced diffusivity, while pure drug as small molecule can be washed away fast
from media surrounding vessel lumen.

7.4 Flow and Diffusion

Here, we summarize the basic equations for coupled convective-diffusion transport
in differential and FE formulations and then give solutions for typical problems of
transport in biological media.

7.4.1 Fundamentals and Computational Methodology

The above listed basic equations for convective and diffusion mass transport are
now coupled. It is assumed that diffusion occurs within flowing fluid and within
transported solids. Also, it is considered that concentration of diffusing parti-
cles/molecules (solute) does not affect the fluid flow. Under these conditions, the
fundamental equations for diffusion within moving solid remain the same, while
the mass balance equation for the solute within fluid must be modified to account for
the convection. The mass balance Eq. (7.8) for diffusion within fluid now becomes:

− ∂c

∂t
− ∂c

∂x j
v j + ∂

∂xi

(
Di j

∂c

∂x j

)
+ qV = 0 sum on j : j = 1, 2, 3 (7.25)

where
(
∂c/∂x j

)
v j represents the convective term, with the fluid velocity v j .

These equations can be transformed into the FE format so that the system of
Eqs. (7.3) and (7.25) can be written in a form:

[
Kvv 0
Kcv Kcc

] [
�V̄
�C

]
=

[
Fv

Fc

]
(7.26)

where Kvv, Kcv and Kcc are the equivalent convective-diffusion matrices, and Fv

and Fc are the unbalanced force nodal vectors; in increments �V̄ are included fluid
velocities and pressures. Of course, in case of motion of solids with diffusion within
the solids, Eqs. (7.7) and (7.20) for the solid must be added to the system (7.26).

Boundary conditions for the solid and fluid domain are imposed in a standard
manner [6, 36]. As we use the remeshing procedure, it is taken (in general) that con-
centration at the common nodes at the solid-fluid boundary nodes are the same. How-
ever, the boundary of two materials may lead to different partitioning of molecules
based on physicochemical similarity of molecules to both material phases, which
is characterized by partition coefficient P. Frequently logP is used to characterize
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Fig. 7.12 The partitioning of molecules between solid and fluid domain as used in the implementa-
tion of molecular hydrophobicity; J f and Js are fluid and solid FE nodes at the same spatial position,
and �C f and �Cs are increments of concentration in fluid and solid

molecules by measuring the partitioning between water and octanol phases. In other
words, it describes hydrophobicity of molecules: e.g., the more positive logP, the
more hydrophobic the molecule. The simplest way to include this phenomenon in
our diffusion models is to take that, within a time step, the ratio between number of
molecules passing the boundary between solid and fluid is a constant P:

�Ns/�N f = P (7.27)

where �Ns and �N f are the numbers at the solid and fluid side of the boundary.
For convenience, we use the inverse value

p = 1/P (7.28)

Implementation of this condition is as follows. Instead of the ratio of number of
molecules we can use increments of concentration at the common point,

�C f = p�Cs, C f = pCs (7.29)

Graphical illustration of these relations is shown in Fig. 7.12. From these relations
follow the corresponding corrections in the FE balance equations. The corrections
are included into our solvers [35] and the effects of hydrophobicity are illustrated in
the selected applications.

7.4.2 Transport of Drugs in Capillaries and in Tumor Tissue

By coupling diffusion and convective transports one can study systems like drug
release and distribution around capillaries and surrounding environment. Figure 7.13
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Fig. 7.13 Diffusion of drug from a microparticle to flowing fluid in capillary and surrounding tissue.
Data: dimensions of capillary 10 × 50 μm, tissue wall thickness 5 μm, entering fluid velocity 50
μm/s, initial concentration is equal to zero except within the particle C0 = 1 M; fluid density
ρ f = 1 × 10−6μgr/μm3, viscosity μ = 10−3 Pas, diffusion coefficient D f = 100 μm2/s; particle
density ρs = 1 × 10−6 μgr/μm3, diffusion coefficient Ds = 10 μm2/s. Concentration field at
times: t = 10−4, 0.25, 0.5 s is shown for cases: a particle is carried by fluid, b particle is attached
to the wall, and c particle is internalized into vessel wall

shows the capillary model of 10 × 50 μm dimensions and 50 μm/s flow, surrounded
by 5 μm of tissue or vessel wall, and a microparticle serving as drug source. In the
FE model, transport properties of individual materials may be derived using multi-
scale approach as described in Sect. 7.3.3; that is applicable to any drug vector. We
have selected material parameters as given in caption of Fig. 7.13. Figure 7.13 shows
concentration field at time t = 1 s and illustrates payload release form microparti-
cle for three different initial locations: Fig. 7.13a the middle of the capillary, with
the particle transported by liquid phase; Fig. 7.13b at the surface of capillary wall,
attached as it would be in case of adsorbtion, and Fig. 7.13c internalized into vessel
wall by means of active biological transport. In the last two cases the microparticle
is not moving. The case Fig. 7.13a shows that concentration field is traveling with
microparticle itself, while in other two cases the concentration field expands over
time within tissue and fluid, and is carried away or smeared by flow. The case of
internalized particle shows that the majority of payload released from microparticle
is caught in tissues and is slowly washed out by adjacent flow in the capillary.

Figure 7.14 displays payload (drug) released into bottom vessel wall under var-
ious conditions. Accumulated mass over time for three particle positions (a, b, c in
Fig. 7.13 is shown in Fig. 7.14a. It can be noticed that the largest amount of pay-
load found in vessel wall is in case of internalized particle, but gets depleted over
time by the flow. Since hydrophobicity of molecules may be an important factor
for release kinetics, we show in Fig. 7.14b the effects of hydrophobicity by imple-
menting partitioning of payload between microparticle and fluid phase as described
above. It is assumed that the particle is attached to the wall (case b). Four cases are
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Fig. 7.14 The normalized (with respect to the total mass in microparticle at t = 0) payload
accumulation into the bottom wall. Data are as in Fig. 7.13. a Three different particle location in
capillary model (a, b, c, see Fig. 7.13); b Four values of partitioning between solid and fluid phases
(logP) when the particle is at the wall

considered, with log P = 0, 1, 2, and 3, revealing that most hydrophobic payload is
released substantially slower than hydrophilic compounds. Therefore, in situations
where payload is hydrophobic, inclusion of partitioning in the computational model
maybe as important as accounting for interface effects.

7.5 Summary and Expected Results in Near Future

This chapter presents a review of computational procedures developed by the authors.
We offer a computational framework for modeling convective-diffusive mass trans-
port with the emphasis on biomedical applications. This framework is based on our
own experience gained over a number of years and effort to develop a robust and
accurate computational scheme. Our methodology relies on the idea of coupling the
basic physico-chemical processes occurring on the small—molecular scale with the
outcome measured on the large—macro (continuum) scale. These multiscale meth-
ods of transport are efficient since they only employ MD calculations for evaluation
of the constitutive parameters for the larger scale, where the macro domains are
modeled by a robust, efficient and reliable numerical FE method.

Regarding the computational methodology, a number of issues remain challeng-
ing. For example, handling enormous systems—measured in millions of equations—
in an efficient way has to be improved, as well as interpretation of the results. Genera-
tion of computational models, which assumes creation of 3D FE mesh from imaging
(3D reconstruction), requires significant effort; this is particularly important in med-
ical applications.

We believe that novel computational tools will support advances in in-vitro and
in-vivo experiments in bioengineering and medicine, and in other fields, such as
optimal design of complex materials. The main benefit of using these computational
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models is that they provide insight into the physics of the fundamental processes
and replace the traditional phenomenological models obtained by fitting of parame-
ters through experimental or clinical investigations. Therefore, these models offer a
bridge between the events on the smallest scale and the larger measurable macro-
scale. We mention that, for example, new materials or devices with desired features
rely on certain physics which can be captured by the introduced multiscale computa-
tional models. We anticipate a stronger and seamless multiscale method integration
with imaging for creation of novel and robust computational tools in medicine or
material characterization.
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Chapter 8
Tendons and Ligaments: Current State
and Future Directions

Shawn P. Reese and Jeffrey A. Weiss

8.1 Background

8.1.1 Introduction

Tendons and ligament are soft connective tissues that transmit load and support
movement and joint articulation within the musculoskeletal system. The primary
load-bearing constituent of these tissues is type I collagen, which self-assembles
into a complex arrangement of fibrils, fibers, and fascicles via the process of fib-
rillogenesis [1–3]. Fibrillogenesis is mediated by populations of fibroblasts, which
are the dominant cell type within these tissues. Fibroblasts detect the microscale
strain environment within the tissue, and this mechanotransduction process guides
the process of adaption, healing, and remodeling [4–7]. Fibroblasts also respond to
various chemical factors (growth factors, inflammatory cytokines, etc.), which also
guide these processes [8, 9].

The normal function of these tissues requires a complex interplay between macro-
scopic and microscopic mechanical requirements. At the macroscopic level, these
connective tissues must withstand substantial impact and loading forces. As such,
they must simultaneously be able to absorb energy and maintain a high static tensile
strength. At the microscopic level, they must maintain an environment conducive to
cellular homeostasis and tissue remodeling. Concurrent with these demands is the
need to facilitate nutrient transport through both active (i.e., vasculature) and passive
(i.e., diffusion) mechanisms. To meet these demands, tendons and ligaments have
evolved a complex organization of collagen and other tissue constituents that spans
numerous physical scales, including the nanometer scale of individual tropocolla-
gen monomers and self-assembled fibrils, the micrometer scale of collagen fibers

S.P. Reese
Department of Bioengineering, Scientific Computing and Imaging Institute,
Salt Lake City, UT, USA

J.A. Weiss (B)

Department of Orthopaedics and School of Computing, University of Utah,
Salt Lake City, UT, USA
e-mail: jeff.weiss@utah.edu

© Springer-Verlag London 2015
S. De et al. (eds.), Multiscale Modeling in Biomechanics
and Mechanobiology, DOI 10.1007/978-1-4471-6599-6_8

159



160 S.P. Reese and J.A. Weiss

and fibroblast and the millimeter scale of collagen fascicles and bundles [10, 11].
Numerous organizational motifs exist at these scales, including bundled fibrils,
crimped fibers, and sliding fascicles. From this perspective, tendons and ligaments
can be viewed as “smart materials” with a complex multiscale organization, highly
adapted to simultaneously meeting the opposing demands of macroscopic mechan-
ical integrity and microscopic cellular function and nutrient transport.

The normal multiscale function of connective tissues is of central importance to the
etiology and healing of injured and diseased tissues. This information will be essential
in developing new methods and techniques for treatment. A range of pathologies
can affect tendons and ligaments, including genetic diseases, degenerative diseases,
chronic overuse injuries, and traumatic injuries. Genetic diseases such as Ehlers-
Danlos syndrome result in altered collagen fibril formation which, through as of yet
unknown mechanisms, results in weakened connective tissues [12, 13]. Degenerative
disorders such as tendinosis arise from a complex interplay of collagen damage and
cellular, vascular, and neurological alterations [14–18]. Chronic overuse injuries such
as jumper’s knee arise from an imbalance in the accrual of microdamage and tendon
repair [19]. Traumatic tendon and ligament injury (tears and ruptures) are sometimes a
result of previous damage accumulation or tendon disease and abnormal joint loading
resulting from physiological abnormalities [20, 21].

Although we are still in the early stages of understanding the normal and diseased
behavior of these tissues, the highly coupled, multiphysics nature of their function
suggests that mathematical modeling will play a crucial role. Principles of continuum
mechanics can be applied to the study of force transmission across scale and between
cells and their substrates [22]. Principles of chemistry and thermodynamics can be
applied to the study of nutrient transport and fibrillogenesis [23]. Linking of these
two modeling types can yield insights into the interactions between physical structure
and biological function. To date, the mechanical modeling of tissue structures has
been the primary focus of the study. As such, this will be the primary focus of this
chapter. In particular, emphasis will be placed on modeling strategies that describe
interactions between physical scales. Although considerable work has been done
regarding one-dimensional continuum based approaches, focus will be placed on
two- and three-dimensional approaches that discretize the spatial domain of interest.
To set the stage, an in-depth discussion of the macroscale function, microstructural
organization, and biological function of tendons and ligaments is presented. This
will be followed by a detailed description of some of the prominent challenges that
researchers either currently or will soon face when implementing multiscale models
of tendon and ligament. Given this basis, current and proposed methods for multiscale
modeling (with an emphasis on mechanical modeling) will be presented, as well as
a number of results of such methods from the literature. The chapter will close with
a discussion of the many significant open questions and challenges that remain to be
addressed by future research.
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8.1.2 Ligament Function

Ligaments are soft, fibrous tissues that connect bone to bone at the joints. They help to
guide and limit the motion of the bones, so that the joint articulates with no separation
or only a limited separation of the bones. Ligaments are passive stabilizers and work
in conjunction with other passive stabilizers, including the articulating surfaces of the
bones and, in most diarthrodial joints (major joints—knee, hip, and shoulder), other
soft tissues such as the meniscus in the knee and the labrum in the shoulder and hip.
In diarthrodial joints, ligaments are primarily banded or cordlike. For instance, the
medial collateral ligament (MCL) of the knee is a banded ligament, while the anterior
cruciate ligament (ACL) is a cordlike ligament. These knee ligaments resist motion
along a single line of action and transmit tensile load, but also experience shear,
transverse, and compressive loads [24–37]. The ligaments in the shoulder and hip
form thin, dense bands of tissue around the joint capsule and are known as capsular
ligaments. The inferior glenohumeral ligament (IGHL), for example, is a capsular
ligament in the shoulder. While it can be argued that capsular ligaments resist motion
primarily in one direction, they are thought to constrain more complex motions than
knee ligaments through their connection with the rest of the capsule [38–45].

Although ligaments are considered passive stabilizers, there are stresses in the
tissue when the joint is in a neutral position [46]. These in situ stresses are responsible
for the stability of the joint when muscle forces are not acting across the joint. Due
to the difficulty in measuring in situ stresses, in situ strains are usually measured
[32, 47]. Ligament in situ strains are inhomogeneous, subject-specific, and vary
depending on joint position [32, 47]. Previous research has shown that ligament in
situ strains must be taken into account in order to accurately measure or predict
ligament strains and stresses due to external loading [32].

Ligaments attach to bone at insertion sites. There are two types of insertion sites:
direct and indirect insertions. Direct insertion sites occur over a distance of less
than 1 mm [37], and consist of a distinct right-angle boundary where deep collagen
fibrils extend out of the ground substance matrix and become fibrocartilage tissue,
mineralized fibrocartilage tissue and then bone [48]. Indirect insertion sites occur over
a larger area where superficial collagen fibrils gradually blend into the periosteum at
more acute angles. Deep collagen fibrils also make attachments at indirect insertion
sites, but the connections are fewer than at direct insertion sites, occur at more
acute angles and without the fibrocartilagenous transitional zone observed in direct
insertions [49].

8.1.3 Tendon Function

Tendons connect muscles to bones and transmit the forces generated by the muscles
to the bones. Tendons generally stretch more than ligaments during use, with some
tendons being very efficient at storing and recovering energy [50–59]. These elastic
properties allow tendons to passively modulate forces during locomotion, providing
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additional stability with no active work [53, 55, 56, 60]. The length of a tendon
significantly contributes to these characteristics. Shorter tendons allow for more
muscle mass [61, 62], but longer tendons provide more elastic recovery of stored
energy [53, 55, 58, 59, 63–66]. The primary function of positional tendons like the
rotator cuff, finger tendons, and animal extensor tendons is to transfer load generated
by their associated muscles [50, 62, 66–71]. In contrast, tendons like the Achilles
tendon and animal flexor tendons store substantial amounts of energy and are thought
to act like biological springs [53, 55, 58, 59, 63–66]. Structure and composition vary
between different tendons and between different locations within individual tendons
[10, 69, 72]. Similar to ligaments, tendons connect to bones with either direct or
indirect insertion sites. These attachments are complex, are often the site of injury
and as such are an area of extensive continued research [57, 73–83].

8.1.4 Hierarchical Structure of Tendon and Ligament

Tendons and ligaments are multiphase biological composites. The extracellular
matrix (ECM) is composed of a fluid phase and a solid phase. The solid phase
consists primarily of type I collagen, which is organized into a complex hierarchy-
where tropocollagen monomers form fibrils at the nanoscale, fibrils form fibers at
the microscale, fibers form fascicles at the mesoscale and fascicles form the whole
tendon or ligament at the macroscale (Fig. 8.1).

The ECM of ligaments and tendons is formed by self-assembly of cell-secreted
proteins and consists of approximately 70 % water [69]. The solid phase of these
tissues is primarily composed of type I collagen (60–80 %), with the remainder
consisting of elastin, proteoglycans and glycosaminoglycans (GAGs), other types of
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Fig. 8.1 Hierarchical organization of ligament from the molecular level to the macroscopic organ
level
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200 µm 

Fig. 8.2 Unique structural motifs exist at multiple scale level. At the nanoscale, 67 nm d-banding
is observed (Left), at the microscale, fiber crimp is present (Middle), and at the macroscale, fas-
cicles align in a parallel fashion (Right). Note that crimp is generally in register within fascicles.
(reproduced with permission from [85, 90, 112])

collagen (types III, IV, V, VI), fibrillin, and other proteins [6, 10, 84]. Type I collagen
exhibits different organizational motifs at each scale (Figs. 8.1 and 8.2) [10]. At the
nanoscale, tropocollagen monomers are assembled to form fibrils (50–200 nm dia.),
which display a characteristic d-banding period (67 nm) [10, 85–87]. Tropocolla-
gen monomers are held together by a combination of hydrogen, ionic, and covalent
bonds [6, 84]. Fibrils are spaced regularly within healthy tissue and predominantly
aligned in parallel [3, 88, 89]. At the microscale, fibrils are assembled into fibers
(20–50µm dia.) [90, 91]. Fibroblasts and tenocytes (a specialized type of fibroblast)
(10µm width × 60 µm length) are located in the interfiber space [10, 84]. Fibrob-
lasts are responsible for regulating the ECM in response to loading and injury, and
mechanotransduction plays a major role in their function [92]. The characteristic
crimp pattern is visible at the fiber level, with a period of 50–200µm [91, 93]. Fibers
are arranged in a largely parallel fashion [10]. At the mesoscale, fibers are assem-
bled into fascicles (100–500µm dia) [6, 10, 90]. To at least some extent, crimp is
registered between fibers [11, 94]. Fascicles are organized in parallel [95]. Fascicles
and fibers are surrounded by a thin fascia (referred to as endotenon or interfascicular
matrix) [10, 67, 96, 97]. At the macroscale, groups of fascicles are organized into
functional bands (100µm–1 mm dia) [90].

Noncollagenous ECM constituents include proteoglycans (PGs) such as decorin
(∼1 %/wt), biglycan (∼0.5 %/wt) and others (fibromodulin, lumican, aggrecan, ver-
sican), fibrillin [1, 84, 98–102], and elastin (1–2 %/wt) [10, 84, 96, 103]. The large
PGs (e.g., aggrecan) contribute to the apparent viscoelastic material behavior of these
tissues by controlling water content and flux [98]. The mechanical role of small PGs
(decorin, biglycan) is debated [104, 105], but our own research demonstrated that
their GAG side chains have a negligible contribution to tissue-level mechanics in
ligament [100, 102, 106, 107]. Elastin and fibrillin are thought to contribute to the
toe region of the stress–strain curve in ligament and tendon [108–111].

Structurally, ligaments and tendons share the same hierarchical organization and
structural motifs. However, there are significant differences in fibril diameter distri-
butions, fiber diameter and crimp morphologies, metabolic activity, and the relative
percentage of certain components, such as water, PGs, and types I and III collagen
[10, 84, 113, 114].
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Fig. 8.3 Multiscale force transmission. Force transmission within a macroscale tissue structure
(e.g., an MCL, shown on the left) is mediated at the mesoscale by fascicles (Center) and at the
microscale by fibers (Right)

8.1.5 Force Transfer Within Tendons and Ligaments

The mechanical behavior of tendons and ligaments has both a time-independent
(or equilibrium) response and a time-dependent (or viscoelastic) response. The
equilibrium elastic response is experimentally measured using slow strain rates
or stress relaxation and creep testing, whereby step displacements or loading are
applied and equilibrium values are obtained [102]. The elastic response arises pri-
marily from stretching and interactions of the solid phase components. However,
the level of hydration also modulates equilibrium elastic response [115]. The vis-
coelastic response is experimentally measured by performing mechanical testing
at varied strain rates, stress relaxation testing, creep testing, and harmonic testing
[100, 116–118]. The viscoelastic response is attributed to both fluid flow-dependent
and fluid flow-independent effects. Flow-independent effects refer to an intrinsic vis-
coelasticity of the solid phase (e.g., a viscous sliding of fibrils), while flow-dependent
effects refer to the pressure driven transport of free water through a permeable tissue
(e.g., described using biphasic theory, discussed in Sect. 3.3) [34, 119–122].

Force transfer at the macroscale (e.g., between the two insertion points of a lig-
ament) is mediated by a number of complex and poorly understood mechanisms
that span numerous physical scales. Initial force transfer occurs within individual
fascicles (Fig. 8.3). Although it was once thought that fascicles spanned the entire
ligament or tendon unit, recent evidence suggests that fascicles may be discontin-
uous and connected via lateral force transfer through an interfascicular membrane
[67, 123]. Force within individual fascicles is transferred via crimped fibers. Confo-
cal studies on fascicles subject to tensile loading reveal highly complex microscale
interactions, where shearing and sliding deformations result from the uncrimping of
these fibers [124–127]. Force within fibers is transmitted via collagen fibrils, and
force within collagen fibrils is transmitted via assembled tropocollagen monomers.

http://dx.doi.org/10.1007/978-1-4471-6599-6_3
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The material properties of each scale level have been found to be markedly different
with specialized methods of testing being required for each scale level.

8.1.6 Macroscopic Mechanical Behavior

In this chapter, the macroscale is defined as tissue structures that are within the range
of millimeters to centimeters, most commonly consisting of whole ligament and ten-
don preparations or subsamples that are dissected or punched out [68, 102, 128–130].
The 3D elastic response of ligament and tendon tissue is complex and difficult to fully
characterize. The material response is highly dependent on the predominant align-
ment of the collagen fiber families. Although some capsular ligaments appear to have
an isotropic fiber distribution (e.g., glenohumeral capsule [43, 44]), the material sym-
metry of most ligaments and tendonsis reasonably described by transverse isotropy,
with the collagen fibers predominantly aligned locally with the direction of in vivo
loading [34, 120]. To fully characterize the elastic material response of these tissues, a
combination of tensile, compression, and shear testing must be performed in parallel
and transverse directions to the predominate fiber family [116, 129, 131, 132].

Tensile testing in the fiber direction reveals a nonlinear stress–strain response
consisting of a so-called “toe region” and a linear region [34, 116] (Fig. 8.4, left).
It has been hypothesized that the nonlinear toe region results from the uncrimping
and/or successive recruitment of the aligned collagen fibers [109, 133, 134]. The
reported linear modulus varies widely between tissue types, location, and studies
[37, 116, 129, 135–137]. The tensile response in the direction transverse to the fiber
axis is nearly linear and an order of magnitude more compliant than the longitudinal
response (Fig. 8.4, left). The shear response is nonlinear, with a tangent stiffness that
is three orders of magnitude less than the fiber stiffness (Fig. 8.4, middle). Ligament
stiffness is lowest when tested in unconfined compression transverse to the fiber axis,
yielding a nonlinear response with a tangent compressive modulus nearly four orders
of magnitude less than the tensile modulus of the fiber family (Fig. 8.4, right). The
elastic volumetric response describes the change in volume in response to tensile or
compressive loading. This has most commonly been reported as the Poisson’s ratio
(which is a linear measure of volume change), and less commonly as the Poisson’s
function (which is a nonlinear measure of volume change) [133, 138]. The Poisson’s
ratio (or function) is a kinematic measure that relates the axially applied strain to the
laterally induced strain [138]. Experimentally measured Poisson’s ratios for uniaxial
tensile testing in the fiber direction have revealed values ranging from 1.0 in capsular
ligament to 3.0 for flexor tendon [129, 139]. These values exceed the thermodynamic
limit of 0.5 for isotropic tissues and are indicative of volume loss under tensile
loading. This volume loss is generally understood to be the result of fluid exudation
during tensile loading, which has been reported in the literature [140, 141]. The elastic
response at the macroscale, mesoscale, and microscale is not spatially homogenous
when subjected to tensile loading [123, 124, 126, 127, 129]. Strain measurements
techniques such as speckle tracking and digital image correlation have shown that
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Efiber=350 MPa

Etransverse=10 MPa

Eshear=0.125 MPa Ecompressive=0.05 MPa

Fig. 8.4 The elastic behavior of ligament is anisotropic and nonlinear. The tensile stiffness along
the fiber direction is an order of magnitude stiffer than in the transverse direction (Left) [116, 147]. In
shear, ligament is two orders of magnitude more compliant than in the transverse direction (Center)
[131]. In compression, ligament is over three times more compliant than in tension, indicating
compression-tension nonlinearity (Right) [148]. Approximate linear modulus (E) is shown for each
test type along with the testing directions and fiber direction

strains are highly inhomogeneous during tensile loading [142–145]. Although the
origins of this behavior are unclear, it may be due in part to variation in the tissue
mechanical properties [146], clamping artifacts, or an uneven fascicle stiffness and
preload [34, 123]. It appears that spatial inhomogeneity within strain distribution
may be an intrinsic property of ligament and tendon tissue.

The viscoelastic response of ligament and tendon is believed to play an important
role in the normal function of these tissues [116]. It is manifested as stress relaxation
under a step displacement, creep under a step loading, hysteresis, and a phase shift
during harmonic loading [149]. Stress relaxation testing of ligament and tendon
reveals a dependence of both the relaxation rate and magnitude of relaxation on the
strain level [100, 128, 150, 151]. Similarly, the creep rate and creep magnitude are
also strain dependent [152]. The tensile modulus is strain rate dependent, while the
damping is relatively independent of strain rate [34, 35, 120, 153]. During high rate
loading, the volumetric behavior of ligament and tendon appears to be incompressible
[34, 133, 154]. Although viscoelastic testing is most commonly reported for uniaxial
tensile testing in the fiber direction, both viscoelastic tensile testing in the transverse
direction and in shear have been reported [116]. The magnitude of stress relaxation
is relatively large for testing in the axial, transverse, and shear directions, with times
to equilibrium on the order of ten minutes or more [100, 128, 129, 150]. Because of
the considerable importance of the fluid phase to tissue viscoelasticity, it comes as
little surprise that the viscoelastic response is significantly altered by varied levels of
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tissue hydration [102]. There is also an observed effect of temperature on the elastic
and viscoelastic material response [115].

8.1.7 Mesoscale Mechanical Behavior

Fascicles are the primary load-bearing mesoscale structure found within ligament and
tendon, and range in diameter from 100 to 500µm [6, 10, 90]. Experimental studies
at the mesoscale have interrogated the fascicle response by testing both isolated
individual fascicles as well as fascicles in situ. Rat tail tendons have often been used
in such studies because they are readily available, have large aspect ratios, and their
fascicles are relatively easy to isolate from the intact tendon. A number of studies
have reported both elastic and viscoelastic properties of rat tail tendon fascicles [72,
155, 156]. The qualitative elastic and viscoelastic response is similar to that observed
for macroscopic tissue, with a nonlinear toe region and a large stress relaxation.

Several studies have performed tensile testing on progressively divided tendons
(e.g., into half and quarter sections) as well as individually isolated fascicles and
fascicle bundles [67, 123, 137, 157]. In a study by Yamamoto et al. uniaxial ten-
sile testing was performed on whole tendons, split tendons, and isolated individual
fascicles from rabbit patellar tendons [137]. A comparison of quasistatic stress–
strain curves indicated that the intact tendons were stiffer than split tendons, which
were in turn stiffer than individually isolated tendon fascicles. Stress relaxation test-
ing revealed that whole tendons had a larger stress relaxation magnitude and lower
stress relaxation rate compared to individual fascicles. A similar study reported that
whole porcine cruciate ligaments were stiffer than split ligaments and isolated fas-
cicles [157]. The results of these studies seem counterintuitive, in that macroscopic
structures were stiffer than the constituents. A parallel spring model was proposed to
explain this, but this awaits experimental verification [157]. Likewise, in a study by
Thorpe et al., the stress within macroscopic tendon samples was found to be higher
than that in isolated fascicles strained to a similar level [67].

The opposite trend was observed in similar studies performed on human tendons.
In a study by Atkinson et al, human patellar tendons were sectioned into half, quar-
ter, and individual fascicles [158]. A comparison of the elastic modulus, relaxation
magnitude and rate revealed a strong dependence on cross-sectional area. As the
sample cross-sectional area decreased, the linear modulus increased and the rate and
magnitude of stress relaxation decreased. This result is supported by another study by
Komolafe et al., in which macroscopic human Achilles tendon samples were clamped
and subjected to multiple quasistatic tensile testing experiments [123]. For each test,
a fascicular bundle was severed and another stress–strain test was performed. The
construct stiffness increased as the cross-sectional area decreased. Another finding
from this study was that fascicles within the tissue did not appear to bear load evenly,
with some fascicles carrying considerably more load than others. This may explain
the macroscale observation of inhomogeneity in strain distribution.
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The preceding paragraphs highlight a discrepancy in the literature regarding the
variation of stiffness across scale levels. Some studies report increasing stiffness
with increasing scale level (e.g., [137, 157, 159]), while others report the opposite
(e.g., [123, 158]) Although the cause of this discrepancy is unclear, differences may
arise from clamping methods and methods used for sectioning and separating the
tendons [67]. In the study by Thorpe et al. it was suggested that the simple act of
removing a fascicle from the tissue causes swelling, which artificially increases the
cross-sectional area of the fascicle and makes them appear less stiff. In either case,
it is clear that the uniaxial tensile behavior in tendon depends on the physical scale.

It has also been shown that the shear behavior displays a scale dependence [95].
In this study, two adjacent fascicles in human patellar tendon were isolated from the
whole tendon. The preparations were subjected to repeated tensile loading. On the
first cycle, both fascicles were intact. On the second cycle, a single fascicle was cut
on one end. On the last cycle, the second fascicle was cut on the opposing end such
that force could only be transmitted through an interfascicle shearing mechanism.
The results indicated that very little load was transferred through shearing of adjacent
fascicles, suggesting that fascicles of some tissues may be free sliding and largely
independent in the transmission of tensile forces across the tendon.

8.1.8 Microscale Mechanical Behavior

The collagen fiber is the primary load-bearing tissue constituent in ligaments and
tendons at the microscale. Located between collagen fibers are specialized fibroblasts
which are often referred to as tenocytes in tendons. These cells are responsible for
secreting collagen and other ECM materials in order to maintain the mechanical
integrity of the tissue [6]. It is well-established that fibroblasts respond to local
strain fields via mechanotransduction, making the study of microscale force transfer
particularly important [68]. Both direct (e.g., isolating individual fibers) and indirect
(e.g., confocal imaging of loaded tissue) studies have been performed.

Only one study has directly examined the stress–strain response of individual
fibers [159]. In this study, individual fibers (∼1µm in diameter) were isolated from
rabbit patellar tendon and subjected to uniaxial tensile loading. The reported stiffness
was compared to the fascicle and whole tendon data from a previous study [137].
The individual fibers were less stiff than both individual fascicles and whole tendons.
This result implies that the macrostructures are stiffer than their constituents. As with
the mesoscale fascicle test data discussed in Sect. 1.7, this result awaits a satisfactory
explanation.

Confocal imaging of rat tail tendon fascicles has yielded considerable insight
into the microscale strain environment of collagen fibers and fibroblasts. In these
studies, single rat tail tendon fascicles were stained for collagen and cell nuclei,
subjected to tensile loading and imaged using confocal microscopy [124, 126, 127].
These studies revealed that the local strain field within fascicles is highly inhomoge-
neous. In response to uniaxial tensile loading, the predominant mode of microscale

http://dx.doi.org/10.1007/978-1-4471-6599-6_1
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deformation is shearing, whereby individual fibers slide relative to adjacent fibers.
As a result, local fiber strains are much smaller in magnitude than applied tensile
strains. In one study, the local fiber strain was ∼1 % in response to an applied fasci-
cle strain of 6 % [126]. Resulting fibroblast strains were also inhomogeneous, with
tensile loading inducing both tensile strains and large shearing strains.

These experiments have also yielded insights into the microscale viscoelastic
response. Two microscale mechanisms of viscoelasticity have been observed: a time-
dependent shearing of adjacent fascicles, and a time-dependent stretching of indi-
vidual fibers. The interfiber sliding response displayed a much larger magnitude of
stress relaxation than the individual fibers, suggesting that microscale shearing may
play an important role in the solid phase viscoelastic component of tendon. Although
the source of the microscale strain inhomogeneity and large interfiber shear is still
under investigation, it has been suggested that this may result from the uncrimping
of the ubiquitous collagen crimping pattern [126, 127].

8.1.9 Nanoscale Mechanical Behavior

The collagen fibril is the primary load-bearing structure at the nanoscale. A num-
ber of methods have been employed to study the behavior of ligament and tendon
fibrils, including direct testing of isolated fibrils, atomic force microscopy of fibrils,
and the use of X-ray diffraction techniques. Numerous studies have isolated individ-
ual collagen fibrils and subjected them to uniaxial tensile testing (e.g., [160–163]).
The stiffness of fibrils varied between studies and was dependent on hydration,
mounting method, cross-linking, and strain rate. Single fibrils tested in this manner
display viscoelastic behavior such as strain rate dependence, hysteresis on unloading
and stress relaxation [164]. In another study, AFM was performed on strained fibrils
within murine Achilles tendon tissue, revealing that the local fibril strain was con-
siderably less than the applied macroscale strain (∼2 % fibril strain for an applied
10 % macroscale strain). A large lateral contraction (corresponding to a Poisson’s
ratio of ∼0.8) was also observed [165]. Mechanical testing of single tropocolla-
gen molecules has also been reported [166, 167]. In these studies, force–extension
relationships were measured and analyzed by fitting the data to a worm-like chain
elasticity model.

It is believed that other nanoscale components may also contribute to the macro-
scopic mechanical behavior of ligament and tendon, including PGs such as decorin,
biglycan [84, 98, 102], and elastin [168]. Although not a direct test of multiscale
interactions, a number of knockout studies in mice have been performed that suggest
macroscale effects from the altered expression of various nanoscale constituents [72,
105]. For instance, decorin deficient mice have been found to have mechanically infe-
rior tendon fascicles [72]. In vitro studies have also been used to investigate the role
of nanoscale constituents such as decorin. In a number of studies, samples of human
MCL were subjected to tensile testing before and after decorin digestion (via incu-
bation in chondroitinase ABC, ChABC) and no significant changes in mechanical
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behavior were found [100, 102, 128]. However, in similar studies that utilized single
rat tail tendon fascicles, a change in mechanical behavior was found in response to
digestion incubation in ChABC. This suggests that perhaps the mechanical function
of certain PGS may vary between tissue types and scale levels [125, 169]. Still, the
changes in mechanical behavior were minimal. Although there were some trends
towards incubation decreasing the stiffness and ultimate strength of the fascicles, the
increased strain at the onset of visible fiber sliding was the only significant difference
found in the tensile test data from both studies [125, 169].

8.1.10 Biological Function

Within tendon and ligament tissue, there exists a balance between mechanical and
biological function. Mechanically, they must maintain elastic and viscoelastic mate-
rial behavior to absorb shock while maintaining strength to resist rupture. However,
their structure and material properties must also support vascularization, cellularity,
and cellular function. Tendon tissue subjected to cyclic loading, even at relatively
small force levels, will accumulate damage [170–172]. Alterations in joint loading
patterns lead to a need for structural remodeling and damage resulting from injury
must be repaired. Therefore, cellular metabolism must be regulated and populations
of fibroblasts must be capable of remodeling and repairing damaged tissue. Fibroblast
mediated remodeling is guided by complex interactions of mechanical and chemi-
cal factors. Cellular response to mechanical loading is known as mechanotransduc-
tion. Mechanotransduction is mediated through a number of mechanisms, including
stretch sensitive ion channels, cytoskeletal stretch transduction, and stretch sensitive
nuclear pores, amongst others [4, 6–8]. Studies have shown that stress shielding leads
to a decrease in synthesis of ECM proteins, such as type I collagen, and an increase in
proteolytic activity, while strain up to a certain point leads to an increase in the tran-
scription of ECM proteins, growth factors (e.g., IGF-1) and collagen synthesis [22,
173]. Strain past this point leads to damage and inflammatory cytokines are released,
as are certain proteases, growth factors, and ECM proteins. The release of cytokines
leads to inflammation, cell infiltration (e.g., monocytes), and vascular proliferation.
The presence of these various chemical factors (herein defined as growth factors,
inflammatory cytokines, proteases, protease inhibitors, and ECM proteins) will in
turn modify the ECM and the fibroblast response. This generates a feedback loop
whereby mechanical and chemical signals are closely linked in the regulation of ECM
organization and fibroblasts apoptosis, homeostasis, and proliferation (Fig. 8.5).

A finding of critical importance is that the macroscopic strain field within tendon
and ligament is not representative of the microscale strain field within fascicles
and fibers. As previously discussed, confocal studies have shown that homogeneous
macroscale tensile strain of tendon fascicles results in microscale fiber strains that are
highly inhomogeneous [124, 127]. Although applied macroscale strains were tensile,
microscale strains were manifested as the sliding and uncramping of adjacent fibers.
The actual fiber strain in response to an applied load of 8 % was on the order of
2 % (Fig. 8.6). Since fibroblasts are attached to fibers, the measured cellular strains
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Fig. 8.5 ECM remodeling feedback loop. Fibroblasts (green) are attached to collagen fibers (tan)
at the microscale. Macroscopic loading creates stretch within the fibers, which induces mechan-
otransduction within the fibroblasts. This leads to the excretion of ECM constituents, as well pro-
teases and protease inhibitors. These, in turn, modify the ECM structures (e.g., collagen fibers) via
degradation or deposition. Mechanotransduction may also lead to the release of certain signaling
molecules, which are transduced by adjacent fibroblasts and may stimulate further release of ECM
constituents or proteases. Fibroblasts may also generate internal forces, which can further modify
the feedback loop

were similar. This highlights the importance of microscale structure on fibroblast
mechanotransduction. In the absence of fiber crimp, fibroblasts would experience
much larger strains. If the crimp angle is increased or fiber organization is less aligned
(as in scar tissue), the fibroblast strains could be smaller. If the crimp was absent, the
fibroblast strains could be significantly larger. It has been suggested that fiber crimp
may play the role of a “shock absorber” at the macroscale. These results suggest
that fiber crimp may also play a role at the microscale by protecting fibroblasts from
excess strains. Although additional research is needed, it is clear that microscale fiber
organization affects strain transmission from the macroscale to the microscale, and
that this has a profound impact on fibroblasts mechanotransduction and associated
remodeling.

8.2 Multiscale Computational Challenges

Given the relatively early stage of multiscale mechanical modeling and its applica-
tion to biological problems, significant challenges remain to be addressed. These
challenges include modeling the mechanics of force transmission across scales, the
mechanisms of nutrient transport and the biological functions of mechanotransduc-
tion, cellular proliferation and tissue healing and remodeling. Further challenges are
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Fig. 8.6 Microscale
mechanotransduction in
ligament and tendon.
Macroscale tensile strain
leads to inhomogeneous
strains at the microscale,
where fiber sliding and
uncrimping are the dominant
modes of deformation. As a
result, the strains transduced
by fibroblasts are less than
those applied at the
macroscale

related to coupling these models (e.g., mechanical modeling coupled to mechan-
otransduction and cellular function). In accordance with the scope of this chapter,
only the multiscale transmission of force will be addressed.

8.2.1 Force Transfer Across Scales

As discussed in the Introduction, force transmission between scales is highly com-
plex. Given that mechanotransduction occurs at the microscale, the interaction
between the macroscale and microscale is particularly relevant. Although this prob-
lem is often treated as a macro-micro problem, with representation of only the link
between the macro- and microscale, this may not be a sufficient methodology for
many problems of biological interest. Mounting experimental evidence suggests that
force transfer between the macro- and microscales is mediated by complex interac-
tions at the mesoscale fascicle level. Interestingly, the level of strain measured within
fascicles is generally much less than that measured at the macroscale. It has been sug-
gested that fascicles may not span the entire length of the tendon, thus macroscopic
force transfer is actually mediated via the shearing of the more compliant interfas-
cicular matrix. In a comparison of the macroscopic strains and mesoscale fascicle
strains for two different tendon types (a positional tendon and a load bearing tendon),
the fascicle strains were the same for both tendon types, but the load-bearing tendon
had much larger macroscale strains [67]. The difference was attributed to the fact
that the interfascicular matrix was much thicker in the load-bearing tendons, which
then led to greater shearing. Not only does it appear that load may be transferred
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between fascicles via shearing of the interfascicular matrix, but it appears that the
load sharing between fascicles is highly inhomogeneous. Strains within individual
fascicles of an Achilles tendon sample were highly variable, even when the applied
macroscopic loading was constant [123]. To date, very little research has addressed
modeling the mesocale fascicle interactions, thus this remains as an open modeling
challenge. Given that vascular perfusion and innervation occur at this level [84, 174],
the need for further research and development in this area is particularly high.

Force transmission from the mesocale fascicle level to the microscale fiber level
has been the subject of a number of experimental studies. As previously discussed,
strain at the microscale fiber level is highly inhomogeneous, with uncrimping and
sliding of adjacent fibers being the dominant modes of deformation. In fact, strains
resulting from sliding of adjacent fibers actually exceeded that of strains measured
within individual fibers. As a result, the fiber strain was considerably less than the
macroscopic fascicles strain. Given this information, it appears that the largest strains
are experienced at the macroscale, followed by the mesoscale fascicle and again
followed by the microscale fiber. Since fibroblasts anchor to individual or multiple
fibers, this suggests that even large macroscale tendon strains may result in relatively
low microscale fiber, and thus fibroblast strains. As mechanotransduction occurs
within individual fibroblast, modeling both the meso- and microscale interactions
may be a necessity. The explicit representation of fibroblast cell bodies may prove
especially insightful, as they will provide the mechanical environment “seen” by cells
in response to macroscale joint loading, which can then yield insights into cellular
mechanotransduction.

There has been very little investigation of force transmission within individual
fibers. This is a result of challenges related to the extremely small physical scale of
fibers. Unlike fascicles, fibers are difficult to isolate [159]. If fibers are isolated suc-
cessfully, they may be damaged by the process. Furthermore, the diffraction limit of
light limits the achievable resolution of optical imaging modalities, making it diffi-
cult to study the interaction of individual fibrils in a dynamically strained fiber. Most
information regarding force transmission within fibers has been inferred from SEM
and TEM microscopy. In TEM, the distribution and shapes of fibril cross sections
have been studied, indicating both modal and bimodal distributions of fibril diameters
[10, 87, 175]. TEM has also been used to study the distribution of PGs (e.g., decorin)
within tendon and ligament tissue, as they have been hypothesized to play a role as
cross-linkers and spacers between adjacent fibrils [105, 106, 176–181]. Although a
number of studies have refuted their role as cross-linking agents [100, 102], their
role as mechanical spacers may still be significant. SEM imaging has revealed that
fibrils appear to be very long and display minimal amounts of splitting, weaving, and
merging [93]. Several studies have measured the change in D-band of fibrils resulting
from macroscopic loading using synchrotron radiation and found that fibril strains
are correlated with applied macroscopic strains [182]. In order to accurately model
the force transfer within single fibers, more experimental information will be needed
regarding the morphology of fibrils (e.g., the extent of interweaving and crossing)
as well as possible cross-linking mechanisms. This will be particularly relevant for
studies that seek to understand how certain genetic diseases (e.g., Ehlers-Danlos
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syndrome) affect the mechanical properties of fibers via their altered structural char-
acteristics.

Force transmission within individual fibrils concerns the organization of tropocol-
lagen monomers within fibrils, as well as the mechanical behavior of individual
tropocollagen monomers. Questions regarding the exact organization of tropocolla-
gen within fibrils remains open ended. It has been hypothesized that there exists
microfibrils within individual fibrils, but this has been a subject of controversy
[86, 87]. Molecular dynamics simulations are possible for individual tropocolla-
gen molecules, and coupling this to the behavior of entire fibrils is an active area of
research [183, 184].

8.2.2 Multiscale Validation

Validation of computational models is fundamentally important if the models are
to be interpreted in a meaningful way [185, 186]. Validation of macroscale com-
putational models of ligaments and tendons consists of comparing macroscale FE
simulations to experimentally measured metrics such as joint reactions forces and
in situ tissue strains, and there are a number of examples in the literature (e.g.,
[32, 120]). Validation of multiscale models proceeds in a similar way, but ideally,
experimental validation would occur at each scale level that is simulated (e.g., the
macroscale and microscale). Because of the important role of validation in inter-
preting the results of computational studies, it is desirable to develop multiscale
simulation strategies and experimental validation methods concurrently. Although
macroscale validation methods have been described for macroscopic tendon and lig-
ament [185, 186], microscale validation methods are still in need of improvement
and development. In order to validate microscale models, data regarding stress and
strain at lower scale levels (e.g., within fascicles, fibers, and fibrils) must be obtained.
One possible route involves isolating and mechanically testing individual tissue con-
stituents, such as those described in Sects. 1.7–1.9. However, such methods have
yielded widely variable results, likely due to the difficulty in consistently isolating
substructures without causing tissue damage [67]. Microscopic imaging studies, such
as the confocal studies described in Sect. 1.8, provide considerable promise for use
in validation of microscale models.

8.3 Methods

Continuum mechanics provide the foundation for modern multiscale modeling tech-
niques. Based on the notion of a continuum, constitutive models are proposed for
describing the stress–strain behavior of a material. For complex geometries and
loading patterns, computational methods must be used to solve the equations of
motion. For multiscale materials, the constitutive behavior may be described using

http://dx.doi.org/10.1007/978-1-4471-6599-6_1
http://dx.doi.org/10.1007/978-1-4471-6599-6_1
http://dx.doi.org/10.1007/978-1-4471-6599-6_1
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a homogenization procedure. These methods utilize an explicit microstructure as a
means for both obtaining the macroscopic stress–strain behavior and for reconstruct-
ing the microscale stress–strain problem. A number of homogenization schemes have
been proposed, each with a specific use. In this section, a brief summary and discus-
sion of the preceding topics will be provided.

8.3.1 Continuum Mechanics

The presence of a continuum assumes that the length scale of microstructures is infin-
itesimally small in comparison to the macroscale, and that the deformation gradient,
and thus strain and stress, can be defined uniquely at every point within the domain.
This latter point implies an affine deformation map in which an infinitesimal line
element dX in the reference configuration is mapped to the current configuration dx:

dx = F · dX + X0, (8.1)

in which dX is an infinitesimal material line element in the reference configuration,
dx is the deformed version of the same infinitesimal material line element, and
X0 represents a rigid body translation vector. F is the (nonsymmetric) deformation
gradient:

F = ∂x
∂X

. (8.2)

A number of second-order strain measurement tensors are computed from the defor-
mation gradient, including the right Cauchy deformation gradient (C), the Green-
Lagrange strain (E) and the engineering or infinitesimal strain (e):

C = FTF , (8.3)

E = 1

2
(C − 1) , (8.4)

e = 1

2

[
(F − 1) + (F − 1)T

]
. (8.5)

The engineering strain is used extensively for linear elasticity, but is generally of
limited use for the finite deformations seen in biological tissues. A useful concept
in the study of aligned collagenous tissue is the notion of a unit vector to describe
the fiber direction, which is denoted a0 in the reference configuration. This fiber
vector is rotated and stretched by the deformation gradient, λa = F · a0, where
λ is the fiber stretch and a is a new unit vector describing the rotated orientation
of the fiber direction. The concept of strain invariants is of particular importance in
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biosolid mechanics, since they provide an objective measure of strain that is invariant
to rotation and rigid body motion [187, 188].

8.3.2 Continuum Based Constitutive Models

In order to compute a stress from the aforementioned strain measures, a constitutive
model is required. In the case of linear elasticity, this constitutive model defines the
Cauchy stress, σ , to bethe inner product of the engineering strain, ε, and the fourth
order elasticity tensor, C , such that: σ = C : ε. Due to the inherent nonlinearity of
ligament and tendon tissue, strain energy approaches (referred to as hyperelasticity)
based on the invariants of the deformation tensor (I1, I2, I3, I4, I5), are commonly
utilized. Such an approach is particularly attractive because it automatically satisfies
a number of constraints, such that the formulation will be objective (i.e., invariant
to rigid body rotation and displacement) and the tangent elasticity tensor (i.e., the
linearization) will be positive definite for a polyconvex strain energy function [187].
In this approach, a scalar strain energy function (W) is defined, which is typically
(but not necessarily) a function of the strain invariants. The Cauchy stress tensor is
computed by taking the derivative of the strain energy function with respect to the
right Cauchy deformation tensor C:

σ = 2

J
F

(
∂W

∂C

)
FT . (8.6)

The fourth-order elasticity tensor (necessary for the linearization and subsequent
nonlinear analysis in numerical methods) is found by taking the second derivative:

C = 4
∂2W

∂C∂C
, (8.7)

where C is the elasticity tensor in the material frame, which is pushed forward to the
spatial frame in most practical implementations.

Hyperelastic, invariant-based, anisotropic continuum models have proved suc-
cessful in modeling the macroscale behavior of ligament and tendon [34, 120]. A rel-
atively simple formulation that has been used successfully to model the macroscopic
stress–strain behavior of ligament can be described as [29, 32–34, 120, 132, 189]:

W = Wm(I1, I2) + W f (λ) + U (J ) . (8.8)

Here, W is the total strain energy, Wm is the strain energy for the interfiber matrix,
W f is the strain energy for the collagen fibers, and U represents a volumetric strain
energy. I1 and I2 are the invariants of the right Cauchy deformation tensor C, λ is
the stretch along the fiber direction, and J = det (F) is the volume ratio. The fiber
strain energy term (W f ) is defined to capture the toe region and linear region of the
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stress–strain curve for ligaments, and to represent the relatively small compressive
stiffness:

λ
∂W f

∂λ
=

⎧⎨
⎩

0 λ ≤ 1
c2

(
ec3(λ−1) − 1

)
1 < λ < λ∗

c4λ + c5 λ ≥ λ∗

⎫⎬
⎭ . (8.9)

This formulation represents a structurally motivated constitutive model, as it specifies
strain energy terms for the collagen fiber family and the interfiber matrix. Numeri-
cal implementation of hyperelastic constitutive models in finite element (FE) codes
often make use of an additive decomposition of the strain energy into volumetric and
deviatoric parts based on the multiplicative decomposition of the deformation gradi-
ent F [34, 120, 187]. This requires a small modification of the equations above. The
uncoupled strain energy equations are advantageous for representing these tissues in
FE software because they can make use of element formulations that allow for nearly
and fully incompressible material behavior without element locking [34, 120].

8.3.3 Constitutive Modeling of Viscoelasticity

Ligament and tendon viscoelasticity has most commonly been represented by qua-
silinear viscoelastic (QLV) [34, 120, 150, 190–192] and nonlinear viscoelastic con-
stitutive models [151, 193–195]. The QLV theory postulates that the time response
and the elastic response are independent [149]. The time response is described using
a relaxation function, while the elastic stress response is typically described using
a hyperelastic constitutive model [196]. The time-dependent stress is then obtained
by convolving the relaxation function with the elastic stress. According to QLV
theory, the relaxation function is implicitly related to the creep function via a convo-
lution [117]. Thus, an experimentally measured relaxation function should predict
an experimentally measured creep function. Although a number of studies have
applied the QLV theory successfully to describe the time- and rate-dependent mate-
rial behavior of ligaments and tendons [83, 192, 197–199], several studies have
suggested that these materials do not strictly behave as quasilinear viscoelastic mate-
rials [200–203]. This has motivated the development of nonlinear viscoelastic models
[193, 195, 200].

The apparent viscoelasticity of ligament and tendon can also be described using
biphasic theory [22, 121, 122, 204]. Biphasic theory postulates an interaction
between a porous, elastic solid phase, and an incompressible fluid phase. Loading
of the biphasic material induces volumetric changes in the elastic phase. This cre-
ates pressure gradients, which drive a time-dependent fluid flux through the porous
matrix. Diffusive drag and thus energy dissipation is induced by the local differ-
ence in velocity between the solid and fluid phases. Biphasic materials exhibit stress
relaxation, creep, and hysteresis. A necessary component of the field equations for
the biphasic theory is the introduction of additional degrees of freedom related to
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the time and spatially varying fluid pressure field (or fluid velocity), thus making
analytical solutions more difficult to compute than for standard viscoelastic con-
stitutive models. Because of this, quasianalytic solutions to biphasic problems have
only been obtained for simplified geometries and loading scenarios [119, 205]. These
include the confined and unconfined loading of a cylinder subjected to ramp loading,
step loading, and harmonic loading [119, 205] for linear material behavior, and for
certain nonlinear materials [206, 207]. Both flow-dependent (e.g., biphasic mater-
ial) and flow-independent mechanisms may be needed to accurately describe and
predict the apparent viscoelasticity of some biological soft tissues [207, 208]. Poro-
viscoelastic formulations have been proposed that utilize a viscoelastic continuum
model within the solid phase. These approaches have found utility in the field of
cartilage mechanics [207–209].

8.3.4 Computational Modeling

Analytical solutions to the equations of motion for the mechanics of ligaments and
tendons can only be obtained for simplified geometries and loading scenarios (e.g.,
uniaxial tension-compression). For complex geometries and loading patterns such
as simulation of the mechanics of a ligament within an intact joint, the geometry and
governing equations must be discretized and solved numerically [34, 120]. The FE
method is by far the most commonly used numerical method in the field of biosolid
mechanics. Commercial and freely available software packages support preprocess-
ing, solution, and postprocessing ofthe nonlinear FE problems. Many studies in the
literature have used FE methods for the simulation of ligament and tendon mechan-
ics (e.g., [29, 32, 44, 120]). In addition to elastic problems, the FE method can also
be used to solve viscoelastic problems and biphasic problems. In the past, address-
ing these types of problems was more difficult due to the lack of a FE framework
specifically designed for biological applications. To address this issue, our lab devel-
oped FEBio, a nonlinear implicit finite element framework designed specifically for
analysis in computational solid biomechanics (www.febio.org) [210].

8.3.5 Homogenization

Although continuum-based constitutive models are useful for describing macro-
scopic behavior, they do not address the mechanical behavior that occurs at lower
length scales and are not always useful for the study of structure–function relation-
ships between the microscale and the macroscale. Because of the multiscale structure
of ligaments and tendons, it is sometimes desirable to use models that can simultane-
ously describe both macroscale and microscale behavior. This is the goal of multiscale
modeling in mechanics, and homogenization is part of the foundation of multiscale
modeling. Homogenization is the process of obtaining a macroscopic stress–strain

www.febio.org
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Unit Cell RVE

Fig. 8.7 Comparison of a unit cell and an RVE. For materials with a periodic microstructure, such
as a lattice of spheres embedded in a matrix material (Left), a unit cell (Middle Left) can be defined
that describes the microscale geometry. For the case of media with random microstructures (Middle
Right), a volume element representative of the microstructure, called an RVE (Right), can be defined

response from a material with a known heterogeneous microstructure [211–213]. It
is based on the concept of a representative volume element (RVE), which can be con-
sidered representative of the continuum [214–216] (Fig. 8.7). An RVE must be large
enough to be statistically representative of the material microstructure, but it must
still satisfy the continuum assumption that its dimensions are much smaller than the
macroscale dimension [214]. For the case of a perfectly periodic microstructure (e.g.,
a lattice of spherical particles), the RVE reduces to a unit cell [217]. In a homogeniza-
tion, the RVE is subjected to the appropriate boundary conditions and then simulated
macroscopic loading is used to compute the effective material response. For a peri-
odic unit cell, the exact homogenized effective material properties are obtained. If
the RVE is statistically representative of the material microstructure, the “apparent
material properties” are obtained [217, 218].

The concept of homogenization is based upon the Hill principle [219], which
states that the volume averaged strain energy at the macroscale is equal to the volume
averaged strain energy at the microscale (i.e., energy is conserved):

〈σ : ε〉 = 〈σ 〉 : 〈ε〉 . (8.10)

Special boundary conditions must be applied to satisfy the Hill condition. For a
periodic unit cell, they are periodic boundary conditions [217, 220]. The periodic
boundary conditions enforce the constraints that opposing faces of the unit cell must
deform identically, and that the traction forces on opposing faces must be antiperiodic
[213, 217, 220]:

uk+ (
x+) − uk− (

x−) = ε0
(
x+ − x−)

tk+ (
x+) = −tk− (

x−) on � , (8.11)

where uk+ and uk− are the displacements on opposing faces and tk+ and tk− are
traction forces on opposing faces (both on the boundary �), ε0 is the applied strain
and x+ and x− are the position vectors on opposing faces.
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Historically, homogenization approaches have been primarily used to analyze
linear material behavior, with the effective coefficients of the linear elasticity ten-
sor being computed. Analytical methods, which obtain homogenized coefficients
via closed form solutions, have been applied to problems that feature simple RVE
geometries (e.g., a homogenization of annulus fibrosis [221], also refer to [211] for
a summary of such methods in engineering applications). However, homogeniza-
tion techniques based on analytical methods lack the ability to address the complex
3D microstructural features in ligament and tendon. Thus, methods based on FE
discretization are particularly appealing.

For a properly discretized RVE, the FE method can be used to perform the
homogenization. In the linear case, FE simulations are used to obtain the unknown
coefficients of the elasticity tensor. To obtain a full set of homogenized material
coefficients, a sufficient number of loading conditions must be applied. Depend-
ing on the type of homogenization and the underlying material symmetry, this may
include simulated tensile testing in orthogonal directions and shear testing in orthog-
onal shearing directions. For a unit cell with an orthotropic symmetry, a total of
six unique loading simulations must be performed to obtain the nine independent
coefficients in the elasticity tensor [222]. For a FE simulation, the periodic displace-
ment boundary conditions (Eq. 8.11) must be enforced explicitly [220]. This can be
achieved by converting the periodic boundary equations into a set of linear con-
straint equations (e.g., via a master node approach) within the FE solver [133]. The
application of periodic boundary conditions typically requires that the FE mesh has
identical nodal distributions on opposing faces and edges (i.e., the faces and edges
are conformal). For homogenizations that utilize a RVE that does not have conformal
faces, other permissible boundary conditions must be used. These include kinematic
boundary conditions, traction boundary conditions, and mixed boundary conditions
[217]. For these cases, the resulting homogenization is not exact.

Although homogenization methods have historically been applied to linear mater-
ial behavior and kinematics, they can also be applied to nonlinear materials and non-
linear kinematics [219]. In the linear case, a finite number of loading scenarios can be
used to solve for the unknown coefficients. In the nonlinear case, this methodology
cannot be used because the functional form of the stress–strain response is unknown.
For example, there is no combination of loading scenarios that can directly resolve
whether a stress–strain response is quadratic, exponential, or some other function.
Strain energy-based approaches have been suggested that curve fit an assumed func-
tional response or populate a lookup table for interpolation [223]. However, they
have yet to find widespread use.

An attractive alternative for nonlinear homogenizations is the use of a microme-
chanical model in combination with the appropriate boundary conditions. A micro-
mechanical model can be subjected to loading scenarios that are of interest (e.g.,
uniaxial tensile loading of a tendon) in combination with periodic boundary condi-
tions, and the homogenized response can be examined. This has proven useful in
several studies that have sought to examine microscale forces and structure–function
relationships in ligaments and tendons [224, 225]. See Sect. 8.4 for a discussion of
these models.
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Fig. 8.8 FE2 homogenization algorithm. The FE2 method solves a nested FE problem, in which
the deformation gradient Fmacro computed at a macroscale point is passed to the microscale RVE
or unit cell. A homogenization is performed using the deformation gradient coupled with suitable
boundary conditions, and the resulting stress tensor (σmacro) and elasticity tensor Cmacro are passed
back to the macroscale. Figure adapted from [226]

However, micromechanical models are limited to very specific loading scenarios
and do not provide a general homogenized response. In order to provide a more gen-
eral homogenization, the FE2 method has been proposed. FE2 based homogenization
utilizes a nested FE problem that consists of a macroscale boundary value problem
and a microscale boundary value problem [211, 212, 226–230]. A macroscale mesh
is defined in the normal fashion. When the stress or elasticity tensor for the macroscale
model is needed during the nonlinear FE solution procedure, the macroscale deforma-
tion gradient is passed to the microscale problem and a homogenization is performed
on a discretized RVE (Fig. 8.8). Thus, the constitutive model is itself an FE problem.
This framework provides a generalized strategy for performing a nonlinear homog-
enization on an arbitrarily defined RVE. The primary downside to this methodology
is the substantial increase in computational demand. However, increased comput-
ing power coupled with parallelization methods will make future FE2 considerably
faster [231].

A fundamental assumption for the aforementioned homogenization approaches
is that the RVE is infinitesimally small in comparison to the macroscale. Under this
assumption, a homogenous deformation is described via the deformation gradient
(Eq. 8.2). Since the deformation gradient is computed by taking a first order deriva-
tive, continuum-based homogenization methods are referred to as 1st order methods.
Some homogenization problems, however, feature RVEs that are not infinitesimally
small in comparison to the macroscale. In these cases, microstructural size effects
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Table 8.1 Summary of homogenization methods

Homogenization Number of simulations Purpose

Linear Finite number, based on number of
unknowns in linear elasticity tensor

Homogenized linear material coeffi-
cients

Micromechanical Finite number, based on model
application

Investigate nonlinear behavior and
structure–function relationships

1st order FE2 Simulation every time stress and
tangent stiffness are evaluated
within macro model

Nonlinear homogenization for infini-
tesimally small microstructures

2nd order FE2 Simulation every time stress and
tangent stiffness are evaluated
within macro model

Nonlinear homogenization that incor-
porates size effects

The method of homogenization used is dependent on the intended purpose of the model

must be taken into account [232, 233]. This is particularly relevant in the study of
damage initiation as size effects play a critical role in this field [211, 234]. The most
generalized approach to accounting for these size effects is to utilize 2nd order FE2

strategies. In these methods, a microscale RVE problem is still used. However, the
homogenization utilizes a quadratic version of the deformation map. In this method,
a Taylor series expansion is used to express the infinitesimal material line element
dx as:

dx = F · dX + 1

2

(
dX · 3G · dX

)
+ X0, (8.12)

where the 3rd-order tensor 3G = ∇F is used. This method explicitly accounts for
the length scale through the size of the RVE, and thus allows for computational
homogenization of materials for which the assumptions of the 1st order method
are not appropriate. Second-order methods are particularly attractive for biological
materials as physical scales are often not separated sufficiently in size. As an example,
the microstructures in ligament and tendon have similar physical dimensions to the
macroscale. Fascicles, for instance, have a diameter of ∼250µm, which is only
1–2 orders of magnitude less than ligament and tendon widths, which are ∼5–30 mm
(refer to Sect. 2.3). For a comparison of homogenization techniques, refer to Table 8.1.

8.4 Results

The field of multiscale mechanical modeling, and the multiscale modeling of liga-
ment and tendon in particular, is in its relative infancy. For example, there seems to
be no clear consensus on the very definition of multiscale modeling, as it has been
applied to a large number of models that vary as to what scales are included and how
the scales are linked. For the purposes of this section, a multiscale model is defined as

http://dx.doi.org/10.1007/978-1-4471-6599-6_2
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a model that addresses two or more physical scales. This implies that both macroscale
and microscale stress and strain are computed from a single simulation. Furthermore,
this requires that there is some form of linking between scale levels. This linking is
based on the appropriate application of boundary conditions, which may include peri-
odic boundary conditions, prescribed boundary conditions, homogenous boundary
conditions, and a mixture thereof. This definition includes micromechanical models
in which both a macroscale response and microscale response is described, as well as
full nonlinear homogenizations (e.g., FE2 methods). It is important to note that this
definition does not include structurally motivated constitutive models, which may
utilize the notion of microstructural features (e.g., uncrimping of collagen fibers [235,
236], fiber recruitment [237], or fiber families embedded within a ground substance
[238]). This definition also precludes models that utilize generalized continuums,
which address microscale size effects but do not specifically define microscale stress
and strain [234]. This section reviews the state of the art in multiscale modeling and
multiscale model validation as they relate to ligament and tendon.

8.4.1 Micromechanical Modeling of Ligament and Tendon

We define a micromechanical model as a 2D or 3D model that specifies a microscale
geometry (e.g., a unit cell), applies macroscale boundary conditions (e.g., simulated
tensile loading combined with periodic boundary conditions) and solves the govern-
ing equations over the simulation domain. Such a model yields both a microscale
response (e.g., within the unit cell) and a macroscale response (e.g., reaction force
of a unit cell subjected to tensile deformation). Since even simple 2D geometries do
not generally have tractable solutions, these models almost exclusively rely on com-
putational methods, most commonly the FE method. Models within the literature are
primarily 2D and focused on equilibrium elasticity, although a biphasic model and 3D
models have been proposed [22, 133]. Boundary conditions include fixed boundary
conditions (e.g., zero displacement on a model edge), prescribed boundary condi-
tions (e.g., a prescribed load or displacement on a model edge), periodic boundary
conditions, and a combination of these. Both linear and nonlinear micromechanical
models have been proposed for biological tissues. Linear models (ubiquitous in the
study of trabecular bone, e.g., [217, 239–242]) generally seek to obtain homogenized
coefficients of the linear elastic stiffness tensor. Due to the nonlinear nature of lig-
ament and tendon, most micromechanical models for this application are nonlinear
and seek to explore nonlinear behavior as the primary goal, although some studies
have reported homogenized linear coefficients as well (e.g., [133]). The utility of
microscale models is found in a number of ways. Some models are used to study cer-
tain structure–function relationships (e.g., how certain microscale structures affect
macroscale behavior) [133, 243]. Other models are used to study microscale damage
mechanisms [224], and still others investigate microscale mechanotransduction [22].

Micromechanical models have been used to examine the structure–function rela-
tionship between fibril shape, fibril aspect ratio, the stiffness of fibrils and the
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Fig. 8.9 Collagen fibril micromechanical model [243]. A model put fourth for collagen fibers
consisted of fibrils of a finite length and with tapered tips connected via proteoglycan matrix
material (Left). A quarter symmetric micromechanical model was defined (Right) and subjected to
simulated loading. Figure adapted from [243]

interfibril matrix [243, 244]. In these studies, a 2D plane strain model was used
to examine force transfer between adjacent collagen fibrils via an interfiber matrix
[243]. A unit cell was created that consisted of a discretized fibril embedded within
a matrix material (Fig. 8.9). The fibrils were given cylindrical or tapered endpoints
[244]. The unit cell was subjected to homogenous boundary conditions, in which
a displacement was applied to the sides of the model. The aspect ratio of the fiber
and applied load were varied parametrically and their influence on the fibril stress,
interfiber force transfer and strain was examined. Simulations revealed that fiber
strain displayed a dependency on the end shape of the fibril, on the fibril aspect ratio
and the ratio of the fibril stiffness to the matrix stiffness. The effect of tapered fibril
ends was to decrease stress within fibers. The effect of increasing the stiffness of
the inter fibril matrix was to increase load sharing between fibril and the matrix,
which yielded decreased fibril strains. By utilizing a unit cell approach, this study
was able to examine the influence of structure–function relationships that would be
difficult if not impossible to investigate using experimental or analytical approaches.
Within these studies, the concept of an interfiber matrix material was utilized. The
matrix material is thought to consist of PGs, elastin and other ECM proteins that may
mechanically couple collagen. Such a concept has been used in numerous studies
(e.g., [132, 133, 238, 245, 246]) and is used to describe the substance that mechan-
ically couples collagen fibrils and fibers within tendon and ligament.

One area that shows great promise in the field of multiscale modeling is the study
of stress and strain localization as it pertains to damage initiation. Although no stud-
ies have yet utilized micromechanical models to study damage initiation in tendon,
they have been utilized in studying microscale strain patterns in the myotendinous
junction (MTJ), which displays similarities to tendon and ligament tissue. In one
such study, a 2D micromechanical model was used to explore microscale strain dis-
tributions within the MTJ, a common location for musculoskeletal injuries [224].
At the MTJ, muscle fibers taper as they insert into the tendon via the endomysium,
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Fig. 8.10 Myotendinous junction (MTJ) micromechanical model [224]. (Top) The MTJ consists
of muscle fibers (red) that insert into tendon tissue (gray) via the endomysium (black). A microme-
chanical model was made of the MTJ by creating a unit cell (outlined in a white polygon and shown
on bottom) and subjecting it to periodic boundary on the edge and prescribed boundary conditions
on the ends. Figure adapted from [224].

creating a potential location for strain concentration and damage initiation. By utiliz-
ing a microscale unit cell model, this study sought to investigate strain concentrations
within this region. The unit cell consisted of a single tapered muscle fiber inserting
into tendon at a pennation angle of 37◦ (Fig. 8.10). The endomysium was given a
transversely isotropic constitutive model similar to that presented in Sect. 4.2 and the
muscle fiber was given an active contraction material model developed for muscle
tissue [224]. The unit cell was subjected to prescribed displacement along the fiber
direction corresponding to a 24 % strain. The edges of the unit cell were given peri-
odic boundary conditions, which simulated a fiber embedded in macroscopic tissue.
Simulations were run with both passive and active fiber recruitment. Model valida-
tion was performed by comparing the predicted fiber strains to those experimentally
measured for relaxed and strained muscle fibers. More specifically, the deflection
of the A-bands within the muscle fibers were experimentally measured and com-
pared to those obtained from the FE models (refer to [224] for more detail regarding
validation methods).

The most significant result of this study was that the FE micromechanical model
predicted stress concentration and microscale strains that were significantly larger
than the macroscale strains. This suggests that origins of damage mechanisms
may initiate within the MTJ, demonstrating the utility of micromechanical mod-
els in the study of damage initiation. The FE models predicted the experimentally

http://dx.doi.org/10.1007/978-1-4471-6599-6_4
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measured deflection of the A-bands of muscle fibers. Although not a direct valida-
tion of the 2D strains within the unit cell, this validation provides evidence of the
accuracy of the FE simulations. By creating micromechanical FE simulations driven
by macroscopic loading, this study was able to utilize modeling as a means for inves-
tigating microscale strain concentrations, something that would have been difficult
using experimental methods alone.

The aforementioned studies utilized 2D simulations. In our own research, we have
used 3D micromechanical FE models to study structure–function relationships in
tendon and ligament tissue [133]. The aim of this research was to examine how fibril
organization contributes to the elastic volumetric response. The volumetric response
is quantified using the Poisson’s ratio in linear theory and the Poisson’s function
in nonlinear theory. Experimentally observed Poisson’s ratios range from 1.0 to 3.0
for tendon and ligament [129, 139], yet the structural underpinnings for these large
values are not known. It was hypothesized that a planar, crimped arrangement of
fibrils would not account for these large Poisson’s ratios, while a helical organization
of fibrils would.

To test this hypothesis, 3D unit cells were created that explicitly modeled collagen
fibrils embedded within a matrix material (Fig. 8.11, top). The fibrils were given
crimped, helical, and combined crimped with a superhelical organization (Fig. 8.11,
top). The models were given periodic boundary conditions and subjected to simulated
tensile loading in the fiber direction, which yielded a homogenized macroscale stress–
strain response and a homogenized Poisson’s function. For a subset of models, tensile
strains of 8 % were applied and the nonlinear stress–strain response and the Poisson’s
function were obtained (Fig. 8.10, bottom). For all other models, small strains (0.5 %)
were applied and homogenized Poisson’s ratios were obtained.

Models with planar crimp (both with and without a helical twist) could generate
the classic nonlinear response, but only models with a helical twist could gener-
ate large Poisson’s ratios (Fig. 8.11, bottom). This suggests that helical twisting of
fibrils (which has been observed histologically [247, 248]) may contribute to the
large experimentally measured Poisson’s ratios. A parametric study which varied
crimp angle, helical twist, the number of fibrils, and the stiffness of the fibrils and
matrix suggested that the large Poisson’s ratios were predicted across a range of
physiologically relevant values for the these parameters. This study highlights the
utility of homogenized micromechanical models in testing structure function based
hypothesis that are otherwise difficult to address. Furthermore, it demonstrates the
use of 3D until cells with a nonrectangular cross section for the use of nonlinear
homogenization.

In the previously discussed studies, boundary conditions on the micromechanical
model were applied a priori to the microscale models. In a recent study, micromechan-
ical models were combined with a macroscale simulation to solve the localization
problem [249]. In a localization problem, a macroscale deformation (generally
computed from a continuum-based FE simulation) is applied to an RVE, which
is then solved in order to obtain the microscale stress and strain [211]. In this
study, an analytically based homogenization was used as the constitutive model
for a macroscopic FE simulation. Briefly, the analytical homogenization modeled
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Fig. 8.11 3D micromechanical models with crimped and helical fiber organization [133]. Top left—
a micromechanical FE model shows fibrils (green) embedded within the matrix material (red). Top
right—straight, crimped, helical, and helically crimped fibril organizations were modeled. Bottom
Left—Crimped models were able to reproduce both the toe and linear regions typical for tensile
loading of tendon. Bottom right—Crimped models with a constant helical pitch predicted both the
nonlinear stress–strain behavior and the large, nonlinear Poisson’s function

collagen cross-links at the nanoscale and collagen fiber uncrimping at the microscale
to specify a macroscopic continuum response. The homogenization was not based on
an explicit microstructural organization, therefore no microscale strains were com-
puted. A macroscale cube was subjected to a tensile loading (Fig. 8.12, left), which
yielded a macroscale deformation within each element. This macroscale deformation
from an element in the interior of the macroscale mesh was applied to a microscale
RVE (Fig. 8.12, right), which was solved using an FE simulation. The microscale FE
results revealed a heterogeneous distribution of stress and strain at the microscale.
Although this study was primarily the presentation of a new method, it demonstrates
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Macroscale Model Microscale Model

Fig. 8.12 Microscale stress and strain localization of tendon [249]. A macroscale model consisting
of a cube of tendon tissue (mesh shown on Left) was subjected to simulated loading and the
macroscale deformation was computed. This deformation was then applied to the microscale model
(Right). The microscale model consisted of fibers (shown on the upper right in red) connected via
an interfiber matrix (shown in yellow). A close-up of the macroscopic and microscopic model mesh
is shown in the breakout boxes. Figure adapted from [249, 250]

the utility of micromechanical models in solving the localization problem by apply-
ing the results of a macroscale simulation to a microscale RVE.

The aforementioned models were limited to quasistatic elastic simulations only.
However, models that can incorporate the time dependence and biphasic nature of
these tissues are desirable. In one study, a macroscopic biphasic FE model was
combined with a microscopic biphasic FE model in order to examine the link
between macroscale loading and microscale mechanotransduction [22]. To facili-
tate this, a macroscopic nonlinear biphasic model of a rat tail tendon fascicle was
first solved. The macroscopic model utilized nonlinear springs to represent the trans-
versely isotropic symmetry and nonlinear stress–strain behavior of tendon fascicles
(Fig. 8.13, left). The springs were embedded in a porous matrix that had a trans-
versely isotropic porosity. The model was subjected to uniaxial loading under a con-
stant strain rate, and the computationally obtained macroscale stress–strain curve
was validated against experimental stress–strain data of rat tail tendon fascicles. The
deformation and fluid flux obtained from this model was then used to generate bound-
ary conditions for the microscale model, which featured an ovoid shaped fibroblast
aligned with the collagen matrix (Fig. 8.13, right). Finally, the predicted microscale
fluid shear and microscale cell membrane deformation was correlated to collagenase
mRNA levels that were experimentally measured in rat tail tendon fascicles. Briefly,
fresh rat tail tendon fascicles were subjected to loading scenarios identical to those
applied to the simulations. Four loading scenarios were utilized, including low strain,
high strain, low strain rate, and high strain rate. After each experiment, collagenase
mRNA levels (MMP-13) were measured using real time quantitative PCR.

The macroscale models predicted a stress–strain response that was in good agree-
ment with experimentally measured values. The microscale models predicted sig-
nificant cell membrane strains and fluid shear stress on the embedded cell for the
high strain rate and large strain models. The strains and shear stress correlated
to a decreased expression of mRNA for collagenase. Experimentally, it can be
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Micro ModelMacro Model

Fig. 8.13 Two level-biphasic simulation of a tendon fascicle [22]. A biphasic axisymmetric
macroscale model was created that contained nonlinear springs (mesh, springs, and model dimen-
sions shown on left). The resulting strains and fluid flux was applied to a microscale model (red box
on the left and shown on the right) that contained nonlinear springs and an ovoid shaped fibroblast.
Figure adapted from [22]

concluded that decreased loading results in increased collagenase activity. By uti-
lizing a computational micromechanical model, estimates of fluid shear stress on
fibroblasts as well as cell membrane strains were able to be correlated to these exper-
imental results. No tractable experimental methods currently have been proposed for
obtaining microscale values of this sort, highlighting the important role that such
modeling studies can play in extending our understanding of mechanotransduction
within tendon tissue.

8.4.2 1st Order FE2 Methods

The aforementioned micromechanical models report both macroscale and microscale
measures, but are limited to a specific set of loading conditions. A more general
approach is offered by the 1st order FE2 homogenization method described in
Sect. 4.5. To date, no FE2 models have been proposed for the simulation of lig-
ament and tendon. However, an FE2 approach has been developed and applied to
model collagen hydrogels, which have characteristics in common with connective
tissues [251–253]. In this research, FE2 models were made of type I collagen gels
that were molded into a cruciform shape. The gels were seeded with fibroblasts and

http://dx.doi.org/10.1007/978-1-4471-6599-6_4
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were allowed to undergo cell-mediated compaction of the fibril network. The gels
were subjected to biaxial testing and the macroscopic stress and strain was measured.
Additionally, polarametric fiber alignment imaging (PFAI) was used to measure fibril
orientations during testing. A quarter symmetric macroscopic FE model was con-
structed that mimicked the geometry and loading conditions of the experimentally
tested cruciform gels. The fibril orientation (e.g., the angular distribution of fibrils)
measured in the reference position was used in order to generate 3D RVE models
that consisted of beam elements, which represented collagen fibrils within the gel.
A constitutive model specific to collagen fibrils was developed for use in the RVEs.
The macroscopic FE model utilized an FE2 methodology described in Sect. 4.5,
whereby the RVE homogenization was utilized as the constitutive model for the
macroscopic simulation. The results of the FE simulations generated both macro-
scopic stress and strain as well as microscopic stress and strain within the fibril net-
work. The FE predicted principle angles for fiber orientation were extracted from the
microscale RVE simulations and compared to the experimentally obtained principle
angles (via PFAI). There was good agreement between the predicted and measured
orientation of the fibrillar network, which provided validation of the methodology.
The microscale RVE simulations revealed realignment of the fibrillar network with
applied strain. A considerable percentage of the fibrils were subjected to compres-
sive buckling, revealing microscale inhomogeneity in response to a homogenous
macroscale deformation. Collagen hydrogels are substantially different from tendon
and ligament; however, this same microscale heterogeneity has been observed in
tendon fascicles [126] (refer to Sects. 1.7 and 1.8). Although not directly applica-
ble to tendon and ligament, this study provides a template for how first order FE2

methodologies could be applied to connective tissues such as tendon and ligament.

8.4.3 Multiscale Model Validation

Validation of computational models is fundamentally important if the models are
to be interpreted in a meaningful way [185, 186]. Validation of macroscale com-
putational models of ligaments and tendons consist of comparing macroscale FE
simulations to experimentally measured metrics such as joint reactions forces and
in situ tissue strains, with a number of examples being present in the literature (e.g.,
[32, 120]). Validation of multiscale models proceeds in a similar model, but ide-
ally, experimental validation would occur at each scale level simulated (e.g., the
macroscale and microscale). In a number of the aforementioned studies, validation
of the mechanical simulations were performed at a single-scale level (e.g., at the
micro level for the unit cells of the myotendinous junction [224], and at the macro
level for the biphasic tendon model [22]). To our knowledge, only one model relevant
to tendons and ligaments has been validated at two scale levels [251]. This study,
described in the preceding section, validated macroscale results via stress–strain data
and validated microscale results via polarametric fiber alignment imaging.

http://dx.doi.org/10.1007/978-1-4471-6599-6_4
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Because of the important role validation plays in interpreting the results of compu-
tational studies, it is desirable to develop multiscale simulation strategies and exper-
imental validation methods concurrently. Although macroscale validation methods
have been described, microscale validation methods are still in need of improvement
and development. In order to validate microscale models, data regarding stress and
strain at lower scale levels (e.g., within fascicles, fibers and fibrils) must be obtained.
One possible route involves isolating and mechanically testing individual tissue con-
stituents, such as those described in Sects. 1.6–1.9. However, such methods have
yielded widely variable results, likely due to the difficulty in consistently isolating
substructures without causing tissue damage. Microscopic imaging studies, such as
the confocal studies described in Sect. 1.8, provide considerable promise for use in
validation of microscale models. However, the highly inhomogeneous strain fields
and the complex microscale fiber structure make this a challenging starting point [124,
126, 127]. In order to address these challenges, our lab has developed a surrogate
material for use as a physical model to aid in the development of multiscale modeling
and validation methods [254]. A physical model reduces the number of uncontrolled
variables related to the structural organization of ligaments and tendons. To create
the physical surrogates, dense (∼25 % collage/wt), extruded collagen fibers were
embedded within a collagen gel matrix (∼0.5 % collagen/wt). Surrogates served as
physical models to emulate features of ligament and tendon tissuein a controlled and
reproducible manner. Two different colors of fluorescent beads were embedded in
the fibers and gel matrix (Fig. 8.14, top left) for use as microscopic fiducial markers.
3D micromechanical FE models of the surrogates were then constructed (Fig. 8.14,
middle-left and bottom). A constitutive model based on a continuous elliptical fiber
distribution was used to describe the mechanical behavior of the collagen gel and
embedded fibers [255]. This constitutive model emulated the reorganization of fib-
rils with applied strain. The model was curve fit to tensile testing data for isolated
gel and extruded fiber samples and was found to accurately model both the uniax-
ial stress–strain behavior and the 2D strain behavior (i.e., the nonlinear Poisson’s
function). Micromechanical FE models were subjected to uniaxial strain, and the
macroscale and microscale stress and 2D strain were determined. FEBio was used
for all analysis (http://www.febio.org) [210]. To validate the FE models, the physi-
cal surrogates were subjected to tensile loading in a custom testing apparatus on an
inverted confocal microscope. Confocal images were acquired at 6 strain increments
at both 4X and 10X, while force was measured simultaneously. Texture correlation
was used to measure strain at the macroscale and to measure strain within the fibers
and strain in the interfiber matrix at the microscale [256].

The microscopic 2D strains were inhomogeneous, and the macroscopic 2D strain
was not representative of the microscopic 2D strain (Fig. 8.14, right). The magni-
tude of the transverse strain in the fibers greatly exceeded the macroscopic trans-
verse strain, while the magnitude of the transverse matrix strain was significantly
less than the macroscopic strain. The macroscopically measured Poisson’s ratio was
1.72±0.26, which is comparable to experimentally measured values for tendon and
ligament [129, 139]. The micromechanical FE model was able to simultaneously pre-
dict the macroscopic stress–strain behavior and the 2D macroscale and microscale

http://dx.doi.org/10.1007/978-1-4471-6599-6_1
http://dx.doi.org/10.1007/978-1-4471-6599-6_1
http://dx.doi.org/10.1007/978-1-4471-6599-6_1
http://www.febio.org
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Fig. 8.14 Multiscale validation of a micromechanical FE model. (Upper Left) A dual channel
4X confocal image of a collagen surrogate construct shows the red fluorescent beads in the gel
matrix and the green fluorescent beads in the fiber that were used for microscopic and macroscopic
strain measurements. (Upper Right) Micromechanical FE model stress–strain predictions were in
excellent agreement with the experimental data (εlong denotes strain in the testing direction, which
was parallel to the fibers). (Middle Left) The constrained surrogate model displayed considerable
heterogeneity in transverse strain (εtrans). (Middle Right) Microscopic and macroscopic strain mea-
surement results show that the macroscopic transverse strain (black line) was not representative
of the microscopic fiber strain (green line) or matrix strain (red line). For all strain measures, the
FE model (solid lines) was in excellent agreement with the experimental data (solid circles). The
error bars represent the standard deviation computed for all samples. (Bottom) Micromechanical
FE model of the surrogate. Green elements represent the fibers and red elements represent the gel
matrix
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strains (Fig. 8.14, right). The predicted macroscopic stress and macroscopic trans-
verse strain closely matched the experimentally measured values with normalized
root mean square (NRMSE) values of 0.015 and 0.085, respectively. The predicted
microscopic transverse fiber strain was closely matched by the experimentally mea-
sured values (NRMSE = 0.018), while predictions for the microscopic transverse
matrix strain were reasonable but not as accurate (NRMSE = 0.190). When simu-
lations were performed using coefficients that varied by a single standard deviation,
all of the predictions were closely bounded by this uncertainty. A sensitivity study
was then performed, in which the interfiber spacing and the interfiber matrix material
properties were varied.

The results of this work indicate that the micromechanical model was able to
accurately predict the strains at both the macroscopic and microscopic level, demon-
strating the utility of this approach for the study of fibrous biological composites.
The use of physical surrogate materials provides a means for developing and vali-
dating more complex and physiologically relevant micromechanical and multiscale
mechanical models. This study illustrates the feasibility of simultaneous validation at
macro- and micro-scales that could be extended to the validation of micromechanical
or FE2 models of nativeligament or tendon [257, 258].

8.5 Open Questions

Applications of multiscale mechanical modeling to the study of the hierarchical
mechanical behavior of ligaments and tendons are just beginning to surface. Major
questions remain about which scales in the tissue organization are most important to
represent in a mechanical multiscale model, and as discussed above, whether these
scales present sufficient separation to allow use of 1st order homogenization. This
area represents the most immediate need in the field. As discussed in this chapter,
validation of multiscale models remains difficult, and new approaches are needed
to address this difficulty. Once these technical issues are resolved, we can begin
to address a number of interesting and physiologically relevant questions regarding
force transfer between scales, and we can study alterations in force transfer due to
structural changes at different levels.

Although the majority of the most relevant questions regarding multiscale mechan-
ics of connective tissues relate to force transfer at the level of the collagen fibril and
higher, there are some questions that will require coupling to molecular level mod-
els to address. There are methodological and computational challenges associated
with coupling molecular models to multiscale continuum and/or micromechanical
models that will need to be addressed, and most of the challenges are not unique to
multiscale modeling of ligaments and tendons.

Validated multiscale models can be extended in the future to include capabilities
for modeling biophysical aspects of cellular processes, including mechanotransduc-
tion. A natural framework for this is the law of mass action, which allows modeling
of receptor-ligand binding and chemical reaction kinetics. The FEBio software suite
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has recently been expanded to include these capabilities [259]. Further enhance-
ments can include the incorporation of growth and remodeling, diffusive processes,
and even interaction with the microvasculature.

In the future, multiscale models of ligaments and tendons offer many possible
applications. Perhaps the most immediate need, as detailed in this chapter, is the
investigation of structure and function across physical scales as it related to mechan-
ics. Additional lines of inquiry related to structure–function relationships include
the role of different noncollagenous constituents such as elastin [168] and the small
leucine-rich PGs [102, 106, 107, 176, 177]. Once multiscale models with the major
structural features and components have been constructed and validated, they offer
the opportunity to provide substantial insight into the mechanical and biological
processes associated with injury, healing, immobilization, optimization of treatment
regimens, and the engineering of replacement tissues.
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Chapter 9
Arteries: Mechanics, Mechanobiology,
and the Need for a New Class of Models

J.D. Humphrey and J.S. Wilson

Abstract Constitutive relations for describing the biomechanical behavior of arteries
have continued to progress since the late 1960s and we now have considerable abil-
ity to understand and predict many mechanical and mechanobiological processes.
Nevertheless, advances in both genetics and cell and matrix biology have revealed
new needs with regard to describing the biomechanics. In this chapter, we briefly
review arterial structure and prior biomechanical constitutive approaches and then
discuss a growing appreciation of the details of the arterial extracellular matrix and
the need to include such detail in future constitutive relations. As it will be seen,
much has been learned, yet much remains to be accomplished in the formulation
of constitutive relations for arteries that can provide true predictive capability with
regard to mechanobiological aspects of the development, maintenance, adaptation,
disease progression, and responses to injury.

9.1 Introduction

Vascular disease is a leading cause of morbidity and mortality in industrialized nations
and its impact continues to increase worldwide. That mechanics is fundamental to
understanding arterial health and disease is obvious—these vessels serve as structural
conduits and loss of structural integrity can result in a life-threatening hemorrhage.
Just as important, however, mechanics influences the workload on the heart and it
affects fundamental cellular activities that influence the development, maintenance,
adaptation, and repair of arteries in diverse physiologic and pathophysiologic cir-
cumstances. Hence, there is strong motivation to understand both the mechanics and
the mechanobiology.

There have been tremendous advances over the past four decades in arterial
biomechanics (cf. [22]), yet recent advances in genetics and cell and matrix biol-
ogy demand that we advance further our biomechanical understanding of arterial
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function and dysfunction. In this chapter, we will first review basic arterial structure
and prior constitutive approaches for describing observed biomechanical behaviors
of arteries. With this as a background, we will then briefly review more detailed infor-
mation on arterial microstructure and, within the context of an illustrative example,
suggest that there is a need for a new class of multiscale biomechanical models
for arterial mechanics. The latter is motivated primarily by the recently discovered
importance of structural constituents within the wall that have not been included
explicitly in prior constitutive modeling. The general implications of such modeling
are much farther reaching, however.

9.2 Basic Arterial Structure

Arteries are generally classified as either elastic or muscular. Elastic arteries are
found closer to the heart and function to store elastic energy during systole that
can be used to work on the blood during diastole. This elastic response decreases
the work load on the heart, augments coronary perfusion by aiding retrograde flow
during diastole, and promotes a continuous flow in the microcirculation that aids in
gas and nutrient exchange. Muscular arteries are found near or in target organs and
tissues such as the heart, brain, kidneys, and skeletal muscle; via a strong smooth
muscle contractile response, they regulate local blood pressure and flow. Both types
of arteries consist of three layers: intima, media, and adventitia. The innermost layer,
or intima, consists primarily of a monolayer of endothelial cells that adhere to an
underlying basement membrane that consists largely of type IV collagen and laminin.
Albeit not structurally significant in young healthy individuals, this layer can thicken
in aging, particular diseases, and responses to injury primarily due to an accumulation
of synthetic cells and deposition of abundant collagen and proteoglycans. The middle
layer, or media, is the parenchymal layer of the arterial wall. It consists of abundant
smooth muscle cells as well as elastic fibers, fibrillar collagens, and proteoglycans.
In elastic arteries, the smooth muscle cells reside within concentric layers of elastic
fibers that are organized into fenestrated sheets, or laminae. In muscular arteries, the
smooth muscle cells reside within a more diffuse plexus of elastic fibers, collagen
fibers, and proteoglycans, typically with overall delimiting inner and outer elastic
laminae. The outermost layer, or adventitia, consists primarily of fibroblasts and
the plexus of collagen fibers that they synthesize and maintain along with admixed
elastic fibers and proteoglycans.

In summary, despite regional differences that serve local functionality, the arte-
rial wall consists primarily of three layers, three cell types (endothelial, smooth
muscle, and fibroblasts), and three primary types of structural constituents (elastic
fibers, fibrillar collagens, and proteoglycans)—see Wagenseil and Mecham [44] for
an excellent review. Of particular note, all three cell types are highly mechanosensi-
tive [5, 6, 32], hence understanding arterial mechanics is important for two reasons.
First, arteries are subjected to continuous loading, including pulsatile blood pres-
sure, and their structural integrity is fundamental to their function as conduits for
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blood flow; internal tears or fissures can lead to life threatening blood clots whereas
dissections and transmural ruptures can lead to life-threatening bleeding. Second,
because vascular cells are mechanosensitive, understanding the mechanical stimuli
to which they are subjected is fundamental to understanding many of their biological
responses, including migration, proliferation, differentiation, and apoptosis. Indeed,
for this reason, the mechanics is fundamental to arterial development, homeostasis,
adaptation, disease progression, and response to injury [25].

9.3 Constitutive Relations—A Historical Perspective

As noted many years ago by Y.C. Fung, one of the most important needs in biome-
chanics is identification of nonlinear constitutive equations for tissues that experience
multiaxial loads in vivo (cf. [11]). Arteries are prototypical of such tissues.

Phenomenological Relations. The first class of stress–strain (constitutive)
relations developed for arteries can be classified as phenomenological, that is, rela-
tions that describe observed responses primarily in pressure-diameter and axial force-
length tests. Because of the ubiquitous nonlinear material behavior exhibited by
arteries over finite deformations, an important advance realized in the late 1960s
and the early 1970s was the use of the theory of finite elasticity to quantify arterial
behavior. Early contributors in this regard included H. Demiray, Y.C. Fung, I. Mirsky,
B. Simon, R. Vaishnav, and R. Vito, among others (cf. [22]). Briefly, in each case,
these investigators sought to identify a strain energy function W that depended on
an appropriate measure of the finite deformation, as, for example, the right Cauchy-
Green tensor C or the Green strain tensor E. That is, given a functional form for
W(C) or W(E), one could then compute the associated stress via established, general
(e.g., based on the entropy inequality) constitutive relations, namely

t = 2

detF
F

∂W

∂C
FT

where F is the deformation gradient tensor (with C = FTF and E = (C − I)/2).
One of the most popular phenomenological relations is that due to Fung, which can
be written as W = c(eQ − 1) where Q is typically written as a quadratic function
of Green strain (note: by using a quadratic form, one can exploit material symmetry
arguments from linearized elasticity, which is recovered directly in the limit as the
strain becomes small). Although such relations can provide excellent estimates of the
transmural distribution of wall stress, and indeed were fundamental in the discovery
of the importance of residual stresses in arteries [7], values of the best-fit material
parameters (typically determined via nonlinear regression) do not have any physical
meaning, which limits the interpretive value when comparing relations as a function
of species, genotype, arterial location, age, adaptation, or disease status.

Structurally Motivated Relations. For this reason, there was further motivation to
pursue structurally motivated constitutive relations. Toward this end, there have been
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two basic approaches, both founded on the basic tenet that the overall stored energy
W equals the sum of the energy stored in the structurally significant constituents
that constitute the artery. First, building on the seminal paper by Lanir [31], some
groups have sought to develop constitutive relations that include mass fractions and
distribution functions for the orientations of the fibrous constituents (e.g., elastic and
collagen fibers) as well as possible functions that capture fiber undulation. A recent
example of such an approach is Hollander et al. [15]. Given the microstructural
complexity of arteries, as revealed by light, multiphoton, and scanning electrom
microscopy, such models necessarily include many simplifying assumptions such as
Gaussian distribution functions and lack of intra- and interconstituent interactions.

Indeed, given the complexity of the microstructure, [19] suggested a “hybrid
approach” wherein phenomenological relations can be prescribed for individual
constituents. This approach evolved to include single- [20], two- [17], and four-
[3] fiber family constitutive models; there does not appear to be any advantage to
including additional families of fibers for arteries [52]. For example, the overall
stored energy function W is often assumed to result from energy stored in an amor-
phous matrix plus that stored in locally parallel families of fibers, usually thought
to be dominated by collagen. An initial motivation for such models was to correct
a fundamental deficiency in so-called fiber-in-fluid models (cf. [4]); an additional
advantage is that such models also capture, with fewer parameters, the net effects
of Gaussian distributions of fiber orientations (i.e., the preferred directions) and
undulations (i.e., the exponential stiffening with stretch) as envisioned by Lanir
[31]. Indeed, these fiber family models easily admit the inclusion of distributions of
fiber orientations as desired (cf. [18, 45]), yet even without adding such capabilities
these models have proven able to yield insight into constituent-dependent behaviors
(cf. [9, 10]).

Extension to Growth and Remodeling. Of particular importance here, the structure
of these “hybrid” fiber family models allowed a straightforward extension to model
the ability of an artery to grow and remodel in response to sustained changes in
mechanical and chemical stimuli [23]. By growth we mean a change in mass; by
remodeling we mean a change in structure [2, 41]. For example, such growth and
remodeling (G&R) models can be constructed by assuming that the overall stored
energyWis a sum of the energy stored in each structurally significant constituent as
its turns over—that is, energy is stored in constituents until they are removed. For
example, Valentin et al. [43] suggested a form of W, where

W (s) =
∑

⎛
⎝ρα(0)Qα(s)

ρ
W α

(
Fα

n(0)(s)
)

+
s∫

0

mα(τ )qα(s, τ )

ρ
W α

(
Fα

n(τ )(s)
)

dτ

⎞
⎠

at any G&R time s (with time τ ε [0, s]). Here, ρα is the mass density of constituent
α = 1, 2, . . . N , the survival function Qα ε [0, 1] tracks the amount of constituent
α that was present at G&R time 0 and survives to time s, W α , is the energy stored
in constituent α, which depends on its individual deformation Fα

n(G&R time), where
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“G&R time” denotes the configuration at G&R time τ ε [0, s] at which the constituent
was incorporated within the extant matrix, mα is the mass density production rate
for constituent α, and the survival function qα(s, τ ) ε [0, 1] tracks the amount of
constituent α that was present at G&R time τ and survives to time s. In this way,
the constitutive challenge expands to include the identification of specific functional
forms for both the constituent-specific production (mα) and removal (or survival,
qα(s, τ )), not just energy storage (W α). Of particular importance, production and
removal can depend on both mechanical and chemical stimuli. Regarding the for-
mer, although cells cannot sense directly the stress or strain, these continuum met-
rics remain useful, correlates for mechanobiological responses [21], which thereby
allows one to exploit many advances in continuum biomechanics [24]. Regarding
the latter, one can often solve coupled reaction-diffusion type relations for soluble
factors, including growth factors, cytokines, and proteases, which in turn can inform
the constitutive relations for production and removal [27]. In this way, one obtains
a natural coupling between macroscale solid mechanics and microscale chemical
kinetics, that is, a multiscale model that allows incorporation of considerable infor-
mation on the molecular and cell biology. Indeed, one can even couple such G&R
models to standard fluid mechanical models to create multiscale fluid-solid-growth
models [26] or to combined agent based-cell signaling models to create models that
exploit advances in systems biology [13].

An Illustrative Example. Here, we review briefly a G&R analysis of the
enlargement of an idealized (fusiform) abdominal aortic aneurysm (AAA) to reveal
both the types of constitutive relations that one must formulate and the types of
insight that can be gleaned from such models. Briefly (cf. [28]), AAAs are patho-
logic dilatations (≥50 % of the original diameter) of the infrarenal abdominal aorta
that typically occur in elderly men, particularly those who smoke. The initial stages
of aneurysm development are clinically silent; the lesion is typically discovered in its
more advanced stages as a result of clinical symptoms (e.g., pain), targeted screening
studies (usually by ultrasound), or imaging studies performed for other reasons. The
most critical complication of AAAs is their propensity to rupture, which carries as
much as a 90 % fatality rate. The only treatment options currently available are sur-
gical, either by open replacement with a synthetic graft or endovascular placement
of an endograft. A primary challenge for clinicians is to estimate the risk of rupture
for a given AAA and to weigh that against the inherent risks of surgical interven-
tion for a given patient. Unfortunately, accurately predicting patient-specific rupture
risk remains challenging, and clinicians generally rely upon the maximum diameter
(>5 to 5.5 cm) or expansion rate (>1 cm/yr) of the lesion to determine operative
timing. Nevertheless, some smaller aneurysms rupture while some larger aneurysms
may remain unruptured throughout a patient’s remaining life. There is, therefore, a
pressing need for a more accurate method of quantifying rupture risk in individual
patients, which could reduce the morbidity and mortality associated with both the
ruptures and potentially unnecessary surgeries in elderly patients.

In the final analysis, AAAs rupture when wall stress exceeds wall strength.
It has been shown that calculating wall stress via finite element models based on
patient-specific geometries (and using phenomenological stress–strain relations) may
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yield a better estimate of rupture risk than the current metric of maximum diame-
ter alone. This finding was an important advance, yet a patient-specific calcula-
tion of wall stress does not depend on luminal geometry alone. Stress depends
on material properties and wall thickness, each of which may vary with loca-
tion. Whereas one might be able to measure wall thickness by high-resolution
imaging, defining the heterogeneous properties of the wall is much more difficult.
As a first estimate, many investigators (see review by Humphrey and Holzapfel
[28]), assume uniform isotropic properties in the lesion and surrounding nondi-
lated aorta. Furthermore, they assumed population-averaged material parameters
based on in vitro biomechanical tests on AAA samples obtained from a small group
of individuals, each at an unknown time during the natural history of the lesion.
Of course, overall geometry (including thickness), properties, and hemodynamic
loads also tend to evolve, hence calculating stresses based on a current medical
image of a lesion (that has not yet ruptured) need not provide the most impor-
tant information (cf. [26]), that is, the potential risk of rupture in the near future
(e.g., within the 6-12 months until the next imaging session).

In contrast, a G&R model conceptually has the potential both to recover the
current geometry (i.e., to match imaging data) and properties as well as to predict
the future geometry of an AAA from an initially nondilated aorta while naturally
evolving local wall stiffness and thickness consistent with observed changes in the
evolving histology. There is, therefore, considerable motivation to develop such mod-
els [28]. As a first step toward this goal, we constructed a G&R model of idealized
fusiform AAAs by beginning with an initially straight, nondilated aortic segment
consisting of three primary load-bearing constituents: collagen, elastin, and smooth
muscle [3]. The collagen mass was distributed into four families consistent with
an aforementioned structurally motivated constitutive relation, with circumferential,
axial, and paired symmetrically diagonal fibers. The elastin-dominated matrix was
assumed to be amorphous whereas smooth muscle was oriented circumferentially.
Mass fractions for each constituent (and fiber family) were then prescribed based on
estimates from available histology and best fits to mechanical data [47]. Associated
strain energy functions were also prescribed for each constituent, parameters for
which were determined via nonlinear regressions of data. For example, the elastin
was modeled via a neoHookean relation and the fibrillar collagen and smooth muscle
were modeled using Fung-exponentials.

An advantage of using constituent-specific relations is that one can numerically
investigate contributions by individual constituents to the gross behavior. For exam-
ple, one can study effects of stiffening the collagen via increased lysyl oxidase
activity or glycosylation as in aging, remembering that AAAs typically present in
elderly individuals. That is, mechanical properties of constituents, as represented
by values of the material parameters, may be linked to a patient’s medical history
(e.g., risk factors) and be allowed to evolve during the G&R process according to
general relationships. In particular, it is also hoped that once specific functional
forms for the stored energy functions and associated ranges for the parameter values
are well known from detailed biaxial data on selected specimens, patient-specific
values may then be able to be inferred from the limited clinical data that will be
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available. To increase patient-specificity, data from which the ranges of parameters
are obtained should come from samples covering the appropriate sex, age, smoking
status, blood pressure, and so forth. One of the key challenges, nonetheless, will be
assigning properties for the nonaneurysmal aorta from which the lesion developed
given information after the patient presents with an AAA. Thus, there is also a need
to correlate properties of the nonaneurysmal infrarenal aorta with more proximal
sections.

Once an appropriate data set is selected and the initial in vivo blood pressure and
diameter are prescribed to establish an in vivo homeostatic reference configuration,
nonlinear regression may be used to find best-fit values for the parameters of interest.
A fundamental assumption of this approach is that a nonaneurysmal aorta will seek
to maintain or restore a preferred homeostatic mechanical state (cf. [25]). That is, just
as a cell seeks to establish and maintain a preferred chemical state via ion channels
and pumps, we hypothesize that cells also synthesize, reorganize, and/or degrade
structural constituents to establish, maintain, or restore a preferred mechanical state.
Specifically, for our model, we assume that each constituent seeks to maintain a
preferred Cauchy stress. Since our initial geometry is assumed to be a “healthy”
initially nondilated aorta, we assume the constituents are initially at their respective
homeostatic stresses. Moreover, because many proteins, notably collagen, are turning
over constantly, we assume that the new collagen is incorporated within extant matrix
at its preferred stress as the old collagen is removed.When such production and
removal balance in an unchanging configuration, we call this tissue maintenance (or
homeostasis). Because the original mass fractions, geometry, loads, and strain energy
functions are all known, the appropriate “deposition stretch” for each constituent
can be calculated from biaxial mechanical data along with the material parameters.
It is then assumed that subsequently produced constituents will generally retain the
same deposition stretch. Whereas the fibrillar collagen and smooth muscle turn over
continuously throughout life, load-bearing elastic fibers within the elastic laminae
are produced primarily during the perinatal period. Thus, the “deposition stretch”
for elastin includes not only its initial deposition stretch, but also contributions due
to somatic growth during development, maturation, and aging up to the time the
simulation is to be initiated.

The second class of constitutive relations must describe the new mass production.
Based on the concept of preferred, or homeostatic, stress, we hypothesized that cells
generate new constituents in proportion to the deviation of their current stress from the
homeostatic level. That is, if cells “sense” an increase in stress during the progression
of the AAA, new material will be produced at a greater rate in an attempt to reduce
the stress back toward the homeostatic level. A gain-type parameter captures the
robustness of this new mass production. As noted earlier, such G&R models can also
depend on effects due to far field stresses (e.g., smooth muscle cell production can
depend on changes in wall shear stress on endothelial cells due to their altered produc-
tion of nitric oxide or endothelin-1, which in turn affect smooth muscle production of
collagen—see [43]). Alternatively, one could couple reaction-diffusion models to the
production models to account directly for mechano- and chemo-mediated changes
in a host of molecules, including angiotensin-II, transforming growth factor—beta,
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and so forth, all of which affect smooth muscle production of collagen. Because col-
lagen production and removal are continuous, even in the homeostatic state, a basal
production rate must be included. This value is theoretically required to balance the
basal degradation rate to ensure tissue maintenance under normal conditions and
thus can be prescribed with some confidence. Finally, to account for the potential
increase in the number of cells capable of producing collagen or smooth muscle,
one could consider an additional term to augment production. For example, we have
used the ratio of current mass to original mass (which assumes a near constant cell
density), though more complex relationships could account for cellular proliferation,
hypertrophy, or phenotypic changes. Overall, this constitutive relation for production
provides a useful method for proposing and testing a number of competing hypothe-
ses, from simple to complex, as to how cells transduce biochemomechanical stimuli
into the production of load-bearing constituents.

The final key class of constitutive relations is mass removal, which can include
apoptosis/anoikis and degradation/damage. For healthy arteries, the basal degradation
rate must balance the basal turnover. More challenging, however, is determination of
increases in degradation rate in pathological conditions like AAA formation. Marked
increases in serine proteases and matrix metalloproteinases have been observed in
AAAs, which need not be uniform throughout the lesion. We have considered two
general methods of removing mass heterogeneously: stress-dependent mechanical
failure and enzymatic degradation. A basic relation to account for mechanical fail-
ure can be written as a function of a maximum stretch, stress, or strain energy that a
constituent can bear. Beyond the defined maximum, the material is considered frag-
mented and unable to bear load. Since collagen and smooth muscle are constantly
turning over during aneurysmal enlargement, these materials may be somewhat pro-
tected from mechanical failure as new material may replace older fibers prior to their
reaching the higher loads. In rapidly expanding aneurysms, however, collagen may
reach its failure point before it is removed. Clearly, if significant collagen mass is lost,
the risk of rupture can increase significantly. On the other hand, elastin is considered
not to turnover. As a result, it is much more susceptible to mechanical failure in an
AAA, which can increase in diameter more than threefold. While elastin is difficult
to isolate, the literature suggests an ultimate stretch of about 2.2, hence potential
mechanical failure must be included. While our initial models assumed that elastin
is removed completely upon mechanical failure, it is possible that fragmented elastin
may continue to bear some load as well as occupy space (and thus contribute to wall
thickness and affect stress) because of its highly cross-linked and interconnected
structure. In fact, histological examination of large AAA samples have revealed
regions still containing elastin, and some stress–strain data from mechanical tests of
AAAs show an initially linear relationship in the low strain range that is classically
attributed to the presence of elastic fibers. Interestingly, small fragments of elastin
often referred to as elastin degradation products may also exert significant biological
effects on surrounding cells by recruiting inflammatory cells, activating fibroblasts,
and promoting angiogenesis [49]. Clearly, further research and modeling efforts are
needed to capture better these complexities.
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As briefly mentioned earlier, degradation of matrix proteins is accomplished by
a variety of enzymes (e.g., matrix metalloproteinases, elastases, and cathepsins).
As a useful first approximation, we modeled such degradation using a first-order
type decay defined as a function of half-life. It is reported that elastin has a normal
half-life of approximately 50 to 70 years, though much shorter in pathological states
like AAAs. While we often prescribe an initial spatial loss of elastin to initiate
AAA development [47], the remaining elastin continues to degrade according to the
prescribed first-order decay. Potentially, the relationship defining the half-life of this
decay could be a function of the distribution and activation of particular elastases,
such as neuthrophil elastase derived from inflammatory cells infiltrating the wall
and located within the luminal layer of the often present intraluminal thrombus, as
well as other elastases released by macrophages and smooth muscle cells within the
wall. Similarly, we have allowed smooth muscle to turnover via a first-order relation.
Losses of smooth muscle should include the phenomenon of anoikis, in which cells
undergo apoptosis in response to lost connections with their surrounding matrix. In
AAAs, anoikis may be of particular importance as the elastic laminae, in which the
smooth muscle cells are normally in intimate contact, are proteolytically degraded or
mechanically damaged. Indeed, smooth muscle cell apoptosis is a key pathological
feature of AAAs. Thus, in addition to the first-order decay, we also allow the loss of
SMCs to be proportional to the loss of elastin.

Finally, a critical component to the integrity of the aortic wall is the rate of degra-
dation of collagen, particularly in aneurysms where the majority of the elastin and
SMCs have been lost. Three main components have been considered in the enzy-
matic degradation of collagen. First, we include a baseline degradation rate that is
balanced by the baseline production rate. Second, modification of this baseline rate
due to effects from the production of collagenases by inflammatory cells, such as in
the intraluminal thrombus or invading from the vasa vasorum [48]. Third, changes
in this rate may be due to changes in the current stress state of the collagen fibers;
that is, underloading (or potentially overloading) collagen may affect the rate at
which collagenases are able to attack the molecule. There is, however, a need for
improved understanding and quantification of the many biochemomechanical fac-
tors in the degradation of collagen, including identification of relevant collagenases,
diffusion rates of these enzymes, kinematic relationships for enzymatic effectiveness
as a function of stress and other factors.

Defining the evolving properties of the aortic wall on the level of individual con-
stituents, as opposed to a static description of the whole wall as a single material,
potentially allows a greater understanding of the processes that govern the growth and
remodeling of healthy and diseased arteries. In addition, defining the strain energies,
productions, and removals as separate functions (each drawing from quantifiable bio-
chemical and biomechanical data) can yield a modular design to the model that allows
new ideas to be included easily, interchanged, and tested computationally. Hence,
G&R models can be powerful tools for gaining insight into the complex, evolving
processes that govern arterial biomechanics, for evaluating competing hypotheses,
and potentially for providing new prognostic information to improve clinical out-
comes. For example, our models have suggested that the initial mechanical state of
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the aorta (e.g., its biological, not chronological, age) prior to the development of
an AAA may be particularly important in determining its subsequent progression
[47] and that G&R parameters controlling collagen turnover (e.g., mass production,
removal, stiffness, and prestretch) appear to be critical in determining the outcome
of the aneurysm (i.e., stabilization, continued expansion, or rupture; [49]). Never-
theless, much remains to be elucidated about this complex disease process, such as
the biochemomechanical role of the intraluminal thrombus within AAAs, contribu-
tions to the mechanics due to the presence and later loss of glycosaminoglycans,
the roles of different subtypes of collagen, the interactions and cross-linking of the
various constituents, and the quantities and distributions of key regulating enzymes.
As future G&R models incorporate these added complexities, their usefulness to
clinical decision-making will continue to grow.

9.4 Toward a New Class of Models

At this juncture, we recall another line of multiscale biomechanical investigation.
Note, for example, that the type I collagen fibers that endow the arterial wall with
considerable strength consist of a hierarchical structure. The collagen molecule is
approximately 1.5 nm in diameter and 300 nm in length. These molecules are orga-
nized into quarter-staggered microfibrils on the order of 4 to 8 nm in diameter. These
microfibrils, in turn, are organized into fibrils that may have diameters on the order
of 100 to 500 nm, which are brought together to form collagen fibers that may have
diameters on the order of 1 to 10 μm. Finally, these fibers can be organized into
networks or parallel families that exist on the macroscale and are visible in confocal
or light microscopy. There have been a number of attempts to develop multiscale
models of this type of hierarchical structure. In particular, see Tang et al. [42] who
propose a model for collagen fibers from nano- to macroscales, the latter of which
relates to the aforementioned fiber family models. See, too, Matufi and Gasser [34]
who employ similar methods to study macroscopic behaviors of the aorta. We will
return to this line of study below.

Herein, however, it is suggested that we must continue to expand such efforts to
develop yet a new class of multiscale constitutive relations for arteries that incorporate
contributions not only of the primary structural constituents (e.g., collagen fibers), but
also the many accessory proteins, glycoproteins, and proteoglycans that contribute
to the microscale and macroscale mechanical properties of individual fibers and
hence the tissue as a whole. Indeed, because of the increasing realization that genetic
mutations affect directly the macroscopic mechanical behavior of arteries [30], our
mechanical models need to account directly for expected changes in mechanical
behavior given specific genetic mutations and related changes to matrix composition.
In order to set the stage for such modeling, let us first consider in more detail the three
primary structural constituents: elastic fibers, collagen fibers, and proteoglycans.

Elastic Fibers. Although we often read in the literature that elastin is one of
the three primary structural constituents within the arterial wall, it is actually the
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elastic fiber that is structurally important. Elastic fibers consist of a core of elastin
(which constitutes 90 % of a fiber) that is surrounded by so-called microfibrils
(mainly fibrillin-1) and microfibril associated glycoproteins (including fibulin-4,5;
microfibril associated glycoprotein-1, or MAGP-1; elastin microfibril interface
located protein-1, or Emilin-1; and latent transforming growth factor binding pro-
teins, or LTBPs). Fibrillin-1 has a diameter on the order of 10 nm; it appears to be
fundamental to elastogenesis and structural integrity, and thus morphogenesis and
homeostasis [38]. It has also been suggested that fibrillin-1 is two orders of magnitude
stiffer than elastin, hence it may serve to reinforce the composite fiber [40]. Fibulin-
4,5 belong to the class of “short” fibulins; they appear to be particularly important
in elastogenesis for they preferentially bind tropoelastin rather than polymerized
elastin [51]. MAGP-1 are components of the microfibrils that appear to be important
in homeostasis, not elastogenesis. Like Emilin-1 [37], MAGP-1 also appears to be
involved in the regulation of transforming growth factor—beta (TGF-β), a cytokine
that is important in controlling many aspects of smooth muscle and fibroblast pheno-
type. The aforementioned LTBP similarly associates with the microfibrils and serve
to control TGF-β activity. The extracellular matrix is thus an important source of
both structural integrity and instructional cues for the cells.

Amongst the many matrix components, fibrillin-1 appears to play a particularly
important role in the the long-term mechanical stability of elastic fibers. In humans,
for example, the half-life of normal elastic fibers appears to be on the order of
50 years to 70 [1]. This long-term stability is fundamental to the mechanical func-
tion of these fibers for they tend to be deposited primarily during the perinatal period
and, thereafter, must suffer on the order of 30 million cycles of loading per year in
humans. Thus, of the many structural constituents, elastic fibers alone are subject to
a fatigue-induced damage as well as the normal and pathological proteolytic insults
and mechanical overloading experienced by other intramural constituents. Muta-
tions in the fibrillin 1 gene (FBN1), which cause Marfan syndrome, lead to aortic
root / ascending aortic aneurysms and possible dissections. It appears that part of
the pathogenic process is indeed an accelerated fatigue of the elastic fibers, which
may appear as an accelerated aging of the wall prior to the extreme dilatation or
intramural separation seen in later stages of the disease.

In contrast, it appears that the short fibulins (fibulin-4,5) contribute to the elas-
togenesis, that is, the initial organization of the elastic fibers during the perinatal
period. Mutations in the fibulin 4 and 5 genes (EFEMP2 and DANCE) have also
been associated with thoracic aortic aneurysms in humans, though this does not
appear to be a common phenotype. In mice, knockout of Fbln4 results in thoracic
aneurysms whereas knockout of Fbln5 leads to increased aortic stiffening [16, 50].
The latter appears to manifest early on and not to be progressive [45]. It is not yet
known structurally why mutations that code two very similar glycoproteins result
in such different aortic phenotypes. Clearly, there is a need to understand better the
mechanical consequences of these genetic mutations.

Collagen Fibers. There are many members of the family of proteins called colla-
gen, but the members of primary importance in arteries are fibrillar types I, III, and
V and network forming type IV (Wagenseil and Mecham 2009). Of these, types I
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and III are most abundant within the arterial wall: type I constitutes nearly 70 % and
type III nearly 30 % of all arterial collagen. Whereas elastic fibers endow arteries
primarily with resilience, and thus elastic recoil, fibrillar collagens endow arteries
with stiffness and strength.

Collagen I is thought to be the primary collagen endowing the arterial wall with
strength; it has a heterotrimeric triple helical structure consisting of two alpha1
(coded by COL1A1) and one alpha 2 (coded by COL1A2) helices. One mutation to a
gene coding collagen I results in a condition known as osteogenesis imperfecta. As
implied by this term, one of the main phenotypes is fragile bones. Nevertheless, an
osteogenesis imperfecta Col1a2 null mouse also presents with reduced thoracic aor-
tic integrity, due in part to reduced functional collagen [35]. Indeed, another mouse
model with a Col1a1 mutation is susceptible to both aortic dissection and rupture
[36]. Collagen III is thought to contribute to the elasticity of the arterial wall; it has
a homotrimeric triple helical structure consisting of three alpha1 helices. Mutations
to the gene coding collagen III (COL3A1) cause vascular Ehlers-Danlos syndrome
(vEDS). This syndrome is characterized by fragile arteries and aneurysms that may
arise in many arterial locations. This finding is not unexpected from the perspective
that collagen III represents nearly 30 % of the collagen in the normal aorta, much of it
found in the media. It has thus long been recognized as an important contributor to the
structural integrity of the wall. Not surprisingly, the Col3a1 haploinsufficient mouse
also recapitulates the vEDS phenotype [8]. In contrast to collagen I and III, collagen
V is typically regarded as a “minor” collagen in arteries. It appears to play an impor-
tant structural role nonetheless, that is, it is important in collagen I fibrillogenesis
by helping to organize the fibrils into fibers. Collagen V has a heterotrimeric helical
structure consisting of two alpha1 (coded by COL5A1) and one alpha2 (coded by
COL5A2) helices. The Col5a1 haploinsufficient mouse also results in a vEDS pheno-
type, with decreased aortic stiffness and strength [46]. In particular, there was a lower
density of collagen fibrils in the collagen V deficient arteries, and the existing fibrils
exhibited highly irregular cross-sectional shapes. It is interesting to note, therefore,
that collagen III and collagen V both contribute to collagen I fibrillogenesis (cf. [33]).

Proteoglycans. Although typically constituting only 2–5 % of the extracellular
matrix in arteries, glycosaminoglycans (GAGs) and proteoglycans (PGs) play fun-
damental roles in the structural integrity. PGs consist of a protein core to which are
attached multiple GAG chains. The four primary classes of GAGs are hyaluronan,
chondroitin sulfate/dermatan sulfate, heparan sulfate, and keratan sulfate. Of partic-
ular interest herein, are the small lucine-rich proteoglycans (SLRPs), biglycan, and
decorin. Both of these SLRPs aid in collagen fibrillogensis and they bind TGF-β, a
key promoter of collagen synthesis. It has been shown [14, 44], for example, that
biglycan deficiency in a BALB/cA mouse line results in spontaneous aortic dissection
and rupture despite baseline aortic stiffness being near normal. Of particular note,
wall strength was lower, collagen fibers exhibited irregular diameters, and dissection
occurred between the media and adventitia not unlike in the collagen III mutant noted
earlier.

Further Extracellular Matrix Interactions. Extensive cross-links and physical
entanglements contribute significantly to the overall integrity of the arterial wall.
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Cross-links are formed primarily via two classes of enzymes, the lysyl oxidases
and transglutaminases[12], but nonenzymatic glycation cross-links can also become
important in both aging and diabetes. Notwithstanding the fundamental importance
of intra- and inter-constituent interactions, associated mechanical data remain scant.

9.5 Discussion and Directions

Historically, we have seen constitutive formulations for arteries transition from
inappropriate linear elastic relations to more appropriate nonlinearly elastic,
viscoelastic, and poroelastic relations. Moreover, these nonlinear relations have
appropriately transitioned from phenomenological to microstructurally motivated,
the latter of which include multiscale constituent and growth and remodeling rela-
tions. Each class of nonlinear relation has different advantages and we are reminded
that constitutive relations do not describe materials; rather, they describe the response
of a material to applied loads under conditions of interest, thus different classes of
relations can be equally useful depending on the particular question of importance.
That said, advances in genetics have revealed that mutations to many genes that code
structural constituents within the extracellular matrix can lead to an altered ability
of an artery to adapt to changing hemodynamics or to an increased risk of lethal
conditions such as aneurysms and dissections. There is, therefore, a pressing need to
broaden our constitutive modeling efforts to include multiscale effects of constituent
interactions, both at an individual fiber and an integrated matrix level.

We have seen, for example, that G&R models that account for seaparate mechani-
cal properties, natural (stress-free) configurations, and rates of turnover of individual
constituents can provide significantly more information, indeed emergent results not
possible with traditional relations. There is, however, an opportunity to incorporate
within both classical constitutive (stress–strain) relations and contemporary growth
and remodeling models increasing multiscale information that accounts for addi-
tional proteins, glycoproteins, and glycosaminoglycans that are parts of the primary
structural constituents. For example, we must understand better and model struc-
tural roles of fibrillin-1, fibulin-4, and fibulin-5 and how they affect the structural
integrity, including fatigue resistance, of elastic fibers. As noted earlier, compro-
mised elastic fibers due to deficiencies in any of these three glycoproteins can lead to
arterial stiffening, lengthening, dilatation (e.g., aneurysm), or dissections. Similarly,
we must understand better and model roles of collagen III, collagen V, and bigly-
can in collagen I fibrillogenesis. Structurally competent collagen I is essential for
maintaining sufficient arterial strength and thereby to prevent rupture [39]. Because
interactions amongst these different biomolecules occur at a nano- to micro-level
and yet manifest at a macro-level as clinically important changes in arterial integrity,
multiscale models are clearly needed. Without such models, we will not be able to
predict maladaptations or disease progression due to particular genetic mutations; we
will similarly not be able to design optimal treatment strategies. Indeed, multiscale
models will also be needed to quantify microstructural damage and degradation,
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both of which are important for understanding altered structural integrity and cel-
lular responses. For example, cells respond to “cryptic sites” on molecules that are
exposed when the molecule is deformed or disrupted (cf. [29]). Mechanics must play
a role in understanding such structurally based cell responses.

In summary, advances in genetics as well as matrix and cell biology have revealed
the fundamental importance to arterial integrity and adaptability of what have
been previously considered as “minor” extracellular matrix constituents. Given the
“major” roles played by these constituents, our constitutive relations must begin to
incorporate their status directly, which will require multiscale approaches.
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Chapter 10
Mitral Valves: A Computational Framework

Chung-Hao Lee, Rouzbeh Amini, Yusuke Sakamoto, Christopher A.
Carruthers, AnkushAggarwal, Robert C. Gorman, Joseph H. Gorman III and
Michael S. Sacks

Abstract The mitral valve (MV) is one of the four heart valves which locates in
between the left atrium and left ventricle and regulates the unidirectional blood flow
and normal functioning of the heart during cardiac cycles. Alternation of any com-
ponent of the MV apparatus will typically lead to abnormal MV function. Currently,
40,000 patients in the United States receive MV repair or replacement annually
according to the American Heart Association. Clinically, this can be achieved itera-
tively by surgical repair that reinstates normal annular geometry (size and shape) and
restores mobile leaflet tissue, resulting in reduced annular and chordae force distri-
bution. High-fidelity computer simulations provide a means to connect the cellular
function with the organ-level MV tissue mechanical responses, and to help the design
of optimal MV repair strategies. As in many physiological systems, one can approach
heart valve biomechanics from using multiscale modeling (MSM) methodologies,
since mechanical stimuli occur and have biological impact at the organ, tissue, and
cellular levels. Yet, MSM approaches of heart valves are scarce, largely due to the
major difficulties in adapting conventional methods to the areas where we simply do
not have requisite data. There also remains both theoretical and computational chal-
lenges to applying traditional MSM techniques to heart valves. Moreover, existing
physiologically realistic computational models of heart valve function make many
assumptions, such as a simplified microstructural and anatomical representation of
the MV apparatus, and thorough validations with in-vitro or in-vivo data are still
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limited. In the following, we present the details of the state of the art of mitral valve
modeling techniques, with an emphasis on what is known and investigated at various
length scales.

10.1 Background

The mitral valve (MV) is one of the four heart valves which locates in between the
left atrium and left ventricle and regulates the blood flow and normal functioning
of the heart during cardiac cycles. The mitral valve apparatus has four primary sub-
components: the anterior and posterior leaflets (MVAL and MVPL), the papillary
muscles (PMs) that project from the left ventricular wall, the chordae tendineae that
provide connections between the papillary muscles and the MV leaflets, and the
annulus that is part of the conceptual transition between the MV leaflets and left
atrium. During systole of the cardiac cycle, the MV leaflets close to prevent blood
backflow from the left ventricle, which accompanied by the shrinkage of the MV
annulus, ventricular contraction of the PMs, and the tightening of the MV chordae
tendineae. The opening of the mitral valve allows blood flow from the left atrium
to left ventricle in diastole. According to the previous studies [49, 81], the mitral
valve leaflets can be considered as a four-layered structure: the atrialis (A) facing
the atrium, the ventricularis (V) on the ventricular side, the inner spongiosa (S), and
fibrosa (F) layers. The fibrosa is the thickest layer that consists mainly of a dense net-
work of type I collagen fibers and is the primary load-bearing layer. The ventricularis
and atrialis layers are composed of a dense network of collagen fibers and radially
aligned elastin fibers, which provide sufficient resistance to large radial strains when
the MV is fully open. The central spongiosa layer contains a high concentration of
hydrated glycosaminoglycans (GAGs) and proteoglycans (PGs) as the lubricant of
shear deformation between the fibrosa and ventricularis layers. Each of these four
layers has its distinct microstructure and mechanical properties, leading to highly
nonlinear, anisotropic, and pseudoelastic tissue-level mechanical behaviors of the
mitral valve.

Alternation of any component of the MV apparatus will typically lead to abnor-
mal MV function. Currently 40,000 patients in the United States receive MV repair
or replacement annually according to the American Heart Association [18]. More-
over, after two decades of emphasis on valve replacement, cardiac surgeons have
been gradually turning to MV repair [14] rather than replacement of the MV to treat
valvular dysfunctions such as mitral regurgitation (MR), which is caused by systolic
traction on the mitral leaflets secondary to ventricular distortion, or stenosis [1, 66].
Promising MV repair concepts include leaflet augmentation to restore leaflet mobil-
ity [20, 44, 77] and saddle-shaped annuloplasty to restore normal annular shape
[57, 58]. As collective experience has increased, many surgeons have come to view
MV repair as the treatment of choice in patients with mitral regurgitation and post
infarction ventricular remodeling (ischemic mitral regurgitation—IMR, Fig. 10.1).
However, recent long-term studies have indicated that the recurrence of significant
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Fig. 10.1 Assessment of the mitral valve disease and repair using 3D echocardiography and
automatic reconstruction techniques for ischemic mitral regurgitation (IMR): a pre-repair and b
post-repair, and for mitral valve posterior leaflet flail: c pre-repair and d post-repair

MR after surgical repair may be much higher than previously believed, particularly
in patients with IMR [11, 29, 30], and it has been suggested that excessive tissue
stress and the resulting strain-induced tissue failure are important etiological factors
[11]. These repair-induced altered stresses lead to changes in MV interstitial cell
(MVIC) metabolism and biosynthesis, and are important in understanding the bio-
mechanical responses at the organ, tissue, and cellular levels. We then hypothesize
that restoration of homeostatic normal MV leaflet tissue stresses in IMR repair tech-
niques ultimately leads to improved repair durability through restoration of normal
MVIC biosynthetic responses. Clinically, this can be achieved iteratively by surgical
repair that reinstates normal annular geometry (size and shape) and restores mobile
leaflet tissue, resulting in reduced annular and chordae force distribution. Alterna-
tively, high-fidelity computational simulations could provide a means to connect the
cellular function with the organ-level MV tissue mechanical responses, and to help
the optimal design of MV repair strategies.

10.2 Challenges in Multiscale Computational Modeling
of the MV

We are now entering a level of knowledge about the MV function, wherein com-
putational approaches begin to be realistically applied. For modeling of the mitral
valve, the pioneering anatomic sectioning and finite element (FE) simulation work
by Kunzelman et al. [48, 51, 75, 76] has clearly demonstrated how computational
modeling of MV function can help gaining insight into the relationship between the
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variation of the MV components and MV functioning. Einstein et al. [21–23] inte-
grated this developed FE model into the fluid-structure interaction (FSI) framework
to early acoustic simulations for better understanding of MV diseases. Prot et al. [69,
70] proposed both the transversely isotropic membrane shell model and nonlinear
solid element model with heterogeneous layer properties for the analyses of the MV
apparatus. More recently, FE simulations have been utilized as a tool toward in-vivo
and patient-specific modeling as well as surgical repair remodeling [19, 54, 98, 99],
by incorporating the in-vivo measured transvalvular pressure, dynamic boundaries,
and patient-specific geometry. The FE computational modeling tools have also been
applied to investigating the in-vivo stress estimate of the MVAL for better under-
standing of surgical repair-induced stress variations on the MV function [45, 46].

Although these models render an important first step in developing physiologi-
cally realistic computational models of heart valve function, many assumptions were
made, such as a simplified microstructural and anatomical representation of the MV
apparatus, and thorough validations with in-vitro or in-vivo data are still limited.
Therefore, there is a need for the development of an anatomically and microstruc-
tural accurate finite element model, which has been carefully validated, in order to
make insightful connection between the mechanical responses of the MV tissue and
the organ-level mitral valve behavior under physiological loading or surgical repair
intervention.

10.3 Multiscale Modeling Approaches for the Functioning MV

As in many physiological systems, one can approach heart valve biomechanics from
using multiscale modeling (MSM) approaches, since mechanical stimuli occur and
have biological impact at the organ, tissue, and cellular scales (Fig. 10.2). For exam-
ple, we have reported that valve interstitial cells (VICs) from the aortic valve (AV)
and MV were significantly stiffer than the pulmonary valve (PV) and tricuspid valve
(TV) VICs [62]. These findings suggest that VICs respond to local tissue stress
by altering cellular stiffness through valvular remodeling and valvular pathologies.
On the other hand, valvular endothelium, which is directly exposed to shear stress,
responds to the local shear stress changes [13]. Another key point is that valvular
extracellular matrix (ECM) is composed of dense network of collagen, elastin, and
GAGs, and is thus functionally and mechanically very different from other cardio-
vascular structures (e.g., blood vessels, myocardium) [83, 87]. In fact, valvular ECM
behaves mechanically much more like the dense planar connective tissues of the mus-
culoskeletal system [8, 80]. They are unique in that they must function within a blood
contacting environment and are thus coated with endothelial cell (VEC) monolayer.
Moreover, there is evidence that VEC/VIC communication may play an important
role in valve ECM homeostasis.

Yet, despite its clinical importance, the unique and demanding valvular biologi-
cal/biomechanical environment is relatively unexplored. MSM approaches of heart
valves are scarce, largely due to the major difficulties in adapting conventional MSM
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Fig. 10.2 Multiscale hierarchical structure for the heart system and the associated computational
paradigm for modeling the functional mitral valves with integration of tissue, layer, and cellular-level
mechanical responses into the organ-level macroscopic simulation

to the areas where we simply do not have requisite data. Moreover, there remains
both theoretical and practical challenges to applying traditional MSM techniques to
heart valves. For example, even defining something as basic as the representative
volume element (RVE) is problematic due to the presence of a larger number of rele-
vant length scales whose magnitudes are not always amenable for MSM approaches.
For example, if the RVE is too small it will not statistically represent the VIC cell
spatial distributions and orientations. Alternatively, if the RVE is too large the strain
distribution will vary greatly within the RVE and will not adequately represent the
local response. Chen et al. [17] applied second-order homogenization (SOH) the-
ory of Ponte-Castañeda et al. [56, 67, 68] to arterial mechanics, which belong to
the same class of biological tissues as heart valves, including unique mechanical
properties due to wavy fibrous collagen and elastin microstructure. The authors
addressed an assumption of current microstructural models of blood vessels via
affine deformation, i.e., the deformation of each fiber is assumed to be identical to the
macroscopic deformation of the tissue. This uniform-field (UF) assumption leads to
the macroscopic (or effective) strain energy of the tissue that is the volumetric sum of
the contributions of the tissue components. In their work, a micromechanics-based
constitutive model of fibrous tissue is developed to remove the affine assumption
and to take into consideration of the heterogeneous interactions between the fibers
and the ground substance. The theory takes into account for the waviness, orien-
tations and spatial distribution of the fibers, as well as the material nonlinearity at
finite-strain deformation. However, full trans-scale models are clearly needed for
better understanding of the mitral valve functioning as well as the mechanical
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behaviors in response to external loading (Fig. 10.2). In the following, we present the
details of the state of the art of mitral valve modeling techniques, with an emphasis
on what is known and investigated at various length scales.

10.4 State-of-the-Art Studies on Multiscale Computational
Modeling of the Mitral Valve

10.4.1 3D Organ-Level Reconstruction of the MV Finite
Element Model

A modified left heart simulator [72] was used for acquisition of the in-vitro mitral
valve deformations at stress-free (referential), pressure loaded (∼30 mm Hg), and
fully loaded (∼70 mm Hg) states. The modular left heart allows for precise control
of annular and subvalvular mitral valve geometry. Ebony fiducial beads (0.2–0.4 mm
in diameter) were glued to the mitral leaflets in a regular array (110 and 166 markers
for the MVAL and MVPL, respectively). The native ovine mitral annulus was sutured
to a sized 32 Carpentier-Edwards Physio annuloplasty ring (Edwards Lifesciences
Corp, CA) and mounted onto an acrylic plate in between the atrial and ventricular
chambers. The papillary muscles were mounted onto mechanical positioning rods
in the left ventricle and carefully positioned to produce physiological MV function.
The left ventricle was fixed to the Micro-CT gantry using a custom adapter plate, and
the mitral valve was scanned in air for all three conditions using a vivaCT 40 system
(Scanco Medical AG, Switzerland) at 39μm resolution with isotropic voxels using
scanning parameters for low density soft tissues [10]. For all conditions, the annulus
and papillary muscle positions were undisturbed in the left ventricular chamber.

The stack of three-dimensional Micro-CT images were then segmented semi-
automatically using ScanIP (Simpleware Ltd. United Kingdom) to acquire micro-
anatomically accurate geometry of the MV apparatus at the stress-free, 30 mm Hg
pressure loaded, and 70 mm Hg pressure loaded states, with the following key compo-
nents: MV leaflets, annulus, chordae tendineae, and papillary muscles (Fig. 10.3a).
The three-dimensional positions of the fiducial markers at the above three states
were obtained via a mask with gray-scale threshold in ScanIP. The segmented MV
geometry at each state was imported into Geomagic Studio (Morrisville, NC) for
generation of the corresponding finite element model (Fig. 10.3b, 6,528 four-node
shell elements, in which 2,176 and 4,352 elements are for the MVAL and MVPL,
respectively). The 3D locations of the key points for representation of the MV chordae
tendineae, such as MV PM attaching points, chordal branching points, and MV leaflet
attaching points, were quantified for realistic reconstruction of chordae tendineae
(297 three-dimensional truss elements, Fig. 10.3b). Moreover, spatially varied and
anatomically accurate MV leaflet thicknesses were determined from the Micro-CT
data.
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Fig. 10.3 a 3D reconstruction of anatomically accurate geometry of the mitral valve from high-
solution Micro-CT images, and b the corresponding finite element model (thin-shell elements for
the MV leaflets and 3D truss elements for the MV chordae) with MV leaflet thicknesses determined
based on the Micro-CT measurements

10.4.2 Mapping of the Bulk Collagen Fiber Architecture

Both the anterior and posterior leaflets were then dissected and prepared for the
measurement of the tissue collagen gross fiber orientation using the small angle
light scattering (SALS) technique [82]. Briefly, the MV leaflet tissue was placed
in glycerol for dehydration and then scanned in the SALS device, which utilizes a
continuous unpolarized 4 mW HeNe laser (λ = 632.8 nm, Uniphase, Manteca, CA).
The measured diffraction patterns were analyzed to quantify the local preferred fiber
direction φf and the strength of fiber alignment indicated by an orientation index
(OI). The OI is defined as one half of the area under the quantified collagen fiber

angular distribution �(θ), that is,
∫ φf + OI

2

φf − OI
2

�(θ)d θ = 0.5.

In order to incorporate the collagen fiber microstructural information measured
at the excised state into the 3D finite element mesh, we developed the following
mapping algorithm. First, to account for the transformation between the excised state
�SALS and in-vitro fully loaded configuration �t, the fiber dispersion distributions
for the MV anterior leaflet and posterior leaflet were determined by assuming an
affine transformation [7]:

� (β) = � (θ)
N (θ) · CN (θ)

J2D
= λ2

N

J2D
(10.1)

where �(β) and �(θ) are the fiber angular dispersion functions at the in-vitro fully
loaded and excised configurations, respectively, N(θ) denotes the unit vector of the
preferred fiber direction at the excised configuration, J2D is the determinant of the
in-plane components of the deformation gradient tensor (computed from the fidu-
cial marker positions at these two configurations), λN is the collagen fiber stretch
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ratio in the direction of N, and C = (SALS
tF)T

SALS
tF is the right Cauchy-Green

deformation tensor. Once �(β) was determined, the new values of the mean μ and
standard deviation σ in the deformed configuration were directly computed. Next,
the measured preferred fiber direction at the excised state was used to determine the
local material axes at the fully loaded configuration by

e1 (β) = SALS
tF ·

⎧⎨
⎩

cos (μ)

sin (μ)

0

⎫⎬
⎭ , and e2 (β) = SALS

tF ·
⎧⎨
⎩

− sin (μ)

cos (μ)

0

⎫⎬
⎭ (10.2)

Noted that the collagen fiber architecture was measured at the pressure loaded state
�t , whereas the stress-free state �0 was chosen as the initial/reference configura-
tion for the FE simulation. The collagen fiber microstructural information associated
with the reference configuration was then determined via the affine-transformation
reverse mapping approach using the deformation gradient between the fully loaded
and stress-free states for Eqs. (10.1)–(10.2). The mapped collagen fiber architec-
ture was further incorporated into an anisotropic hyperelastic model for the MV
leaflets:

� leaflet (I1, I4) = � leaflet
iso (I1) + � leaflet

aniso (I4)

= C10 (I1 − 3) + c0

2

{
(1 − δ) exp

[
c1 (I1 − 3)2

]
+ δ exp

[
c2 (I4 − 1)2

]
− 1

}

(10.3)

where � leaflet(I1, I4) is the strain energy density function of the leaflet tissues that
consists of an isotropic term � leaflet

iso (I1) and a transversely isotropic term � leaflet
aniso (I4),

I1 = tr(C) and I4 = N ·CN are the invariants, C10 and ci are the material parameters
quantified by fitting to the biaxial data, and δ is a parameter governing the level of
material anisotropy.

The collagen fiber microstructural information, including the preferred fiber direc-
tion φf and OI value, was mapped onto the finite element model (Fig. 10.4a and
b), accounting for the transformation/deformation between the excised �SALS and
in-vitro fully load state �t . Noted that the collagen fibers were fairly continuous
for the MVAL and MVPL, which provide smooth local material axes for contigu-
ous leaflet finite elements; better aligned collagen fibers were observed in the belly
regions of both leaflets which sustain the greater amount of stretching under pressure
loadings. The collagen fiber architecture associated with the FE mesh at the refer-
ence configuration (stress-free state) �0 was determined by the affine-transformation
reverse mapping (Fig. 10.4c and d). It is clear that the collagen fibers were less aligned
at the stress-free (fully open) state whereas the fibers were re-oriented according to
the deformations of the MV leaflets and become much well aligned as the stretches
in both the circumferential and radial directions increase at the fully loaded state.



10 Mitral Valves: A Computational Framework 231

(a) (b)

(c) (d)

Normalized Orientation Index (%)

706050403020
(less aligned) (well aligned)

Fig. 10.4 Mapping of the collagen fiber microstructural architecture onto the 3D finite element
mesh at the deformed (fully loaded) configuration �t : a MVAL and b MVPL, and at the reference
(stress-free) configuration �0: c MVAL and d MVPL

10.4.3 Finite Element Simulations of MV Closure

Simulations of the MV systolic closure were performed in the FE commercial soft-
ware ABAQUS 6.11 (SIMULIA, Providence, RI) by utilizing:

(i) the four-node shell elements for the MV leaflets and 3D tension-only truss
elements for the MV chordae tendineae,

(ii) user material subroutine VUMAT for implementation of the material models
for MV leaflets and chordae,

(iii) QUASI-STATIC option in the implicit dynamic analysis with automatic time
stepping,

(iv) ORIENT feature and user subroutine VUSDFLD for defining the element-
based local coordinate system with the preferred fiber direction and orientation
index obtained from the mapping technique,

(v) THICKNESS TABLE feature for assigning spatially varied MV leaflet thick-
nesses quantified based on the Micro-CT images,

(vi) general frictionless self-contact algorithm for handling the contact behavior
of the MV leaflets,

(vii) user subroutine VDISP for prescribing displacement boundary conditions
accounting for the MV annulus and papillary muscles dynamics due to left
ventricle contraction, and

(viii) AMPLITUDE feature for defining the transvalvular pressure loadings.
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Fig. 10.5 Comparison of the principal stretches (λC and λR) and in-plane Jacobian (J2d) at the
fully loaded state: a in-vitro measurements and b numerical results via FE simulations

Nodal displacements and rotations, elemental strain, and stress fields were the
primary output from the FE simulations. The deformed leaflet geometry, principal
stretches, and in-plane Jacobian were compared to the in-vitro measurements at
transvalvular pressures of 30 and 70 mm Hg.

The numerical predictions of the deformed geometry in general agreed well
with the in-vitro experimental data, with the total displacement errors of 13.72 and
14.93 mm evaluated at the total 266 fiducial markers under pressures of 30 and
70 mm Hg. The differences in marker displacements between the numerical results
and experimental data were 0.388 ± 0.236 and 0.261 ± 0.192 mm at 30 mm Hg, and
0.537±0.336 and 0.411±0.349 mm at 70 mm Hg for the MVAL and MVPL, respec-
tively. Moreover, the principal stretches in the radial and circumferential directions
and in-plane Jacobian were captured well by the numerical simulations (Fig. 10.5).
The predicted maximum values of λC , λR , and J2d were 1.589, 1.216, 1.617 for the
MVAL and 1.689, 1.208, 1.702 for the MVPL at 70 mm Hg in comparison with the
in-vitro measurements: λC = 1.601, λR = 1.234, and J2d = 1.631 for the MVAL
and λC = 1.655, λR = 1.224, and J2d = 1.695 for the MVPL.

10.4.4 Parametric Studies: Effects of Material Model Forms,
Local Fiber Directions, Mechanical Anisotropy, Leaflet
Tissue Thicknesses, and Chordae Geometry

We performed the parametric studies in the following four categories to investigate
the effect of each model perturbation on the numerical predictions. In brief, we first
investigated the appropriate constitutive model form for reasonable predictions of
the highly nonlinear and anisotropic mechanical responses of the MV as well the MV
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deformations. Second, we compared the high-fidelity FE model presented previously
with simplified collagen fiber mapping and different representations of the material
anisotropy. We next examined the effect of the MV leaftlet thickness, which is closely
relate to the stiffness of the MV apparatus, on the predictions of the MV deformations.
Finally, various chordae representations were studied to determine the most suitable
chordae realization in the FE simulations. The detailed results of each parametric
study category are summarized as follows:

(1) Effect of the constitutive model forms: Three constitutive model forms were
considered: (i) Neo-Hookean material, (ii) exponential-type isotropic material,
and (iii) full collagen fiber mapped transversely isotropic material. Substantially
larger discrepancies of the MV deformed geometry, errors of the fiducial marker
displacements and in-plane Jacobian (Table 10.1) were observed between the
Neo-Hookean and transversely isotropic materials, whereas the exponential-
type isotropic material yielded the predictions with ∼25–45 % greater errors
compared to the transversely isotropic material (Table 10.1), indicating that the
transversely anisotropic model produced the most accurate results and is a more
realistic pseudo-hyperelastic material model form for the MV tissues [60].

(2) Effect of the local fiber directions and degrees of material anisotropy: Smaller
discrepancies of the MV deformed geometry and displacement errors (∼15–20 %
greater, Table 10.1) were shown in this sensitivity analysis group. However, dis-
tinct differences in the local deformation fields in terms of the principal stretches
and in-plane Jacobian were observed between the curvilinear mapped and full
collagen fiber mapped local fiber directions and between the structural tensor
approach and the linear relationship for δ values.

(3) Effect of the MV leaflet thicknesses: The comparison of the numerical results
between uniform leaflet thicknesses of 50, 100, and 200 % mean thicknesses
of MVAL and MVPL and the spatially varied Micro-CT quantified one were
made (Table 10.1). The case of uniform mean leaflet thicknesses produced fairly
accurate predictions with ∼30 % greater displacement errors compared with the
full-blown model, while it yielded less accurate local deformation field (J2d).
This suggests that incorporation of anatomically accurate leaflet thicknesses
would be necessary for accurate simulation of the MV apparatus.

(4) Effect of the MV chordae representations: In this group of sensitivity analysis,
we investigated the effect of various representations of chordae on the numerical
results (Table 10.1). There were significant discrepancies between the commonly
adopted chordae representation (all marginal chordae) in literature [19, 48, 99]
and the Micro-CT reconstructed ones. Although the Micro-CT reconstructed
chordae with single attached node reasonable results compared to the Micro-CT
reconstructed chordae with multiple attached nodes, there exhibited stress con-
centration near the attaching regions for the former case, suggesting that the
Micro-CT reconstructed chordae with multiple attached nodes is a more appro-
priate representation of the MV chordae.
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Table 10.1 Error comparisons of the displacements and in-plane Jacobian evaluated at the fiducial
marker positions between the numerical predictions and in-vitro measurements

Parametric study
category

Case Pressure of 30 mm Hg Pressure of 70 mm Hg

Displacement
error (mm)a

Error of
J2d

b
Displacement
error (mm)a

Error of
J2d

b

(1) Effect of Neo-Hookean model 48.99 10.19 52.31 19.09

material model
forms

Exponential-type
isotropic model

17.18 8.69 24.78 9.44

Full collagen fiber
mapped transversely
isotropic modelc

13.72 5.84 14.93 7.01

(2) Effect of local
material axes and

Curvilinear mapped
fiber directions

16.26 7.98 18.01 8.15

degrees of
anisotropy

Mapped fiber
directions from
SALS + Linear
relationship for δ

15.67 7.19 19.48 8.85

Mapped fiber
directions from
SALS + Structural
tensor for δ

c

13.72 5.84 14.93 7.01

(3) Effect of leaflet
thicknesses

50 % of mean leaflet
thicknessesd

31.81 11.23 36.28 13.09

100 % of mean
leaflet thicknessesd

18.14 9.89 20.72 10.42

200 % of mean
leaflet thicknessesd

34.37 12.01 45.16 19.23

Micro-CT-based
leaflet thicknessesc

13.72 5.84 14.93 7.01

(4) Effect of All marginal 14.17 6.92 17.35 9.01

chordae
representations

Micro-CT
reconstructed
chordae with
single-attached node

56.50 12.89 51.61 14.36

Micro-CT
reconstructed
chordae with
multiple-attached
nodec

13.72 5.84 14.93 7.01

a Displacement error =
∑Nmarker

I=1 ||uin−vitro
I − unumerical

I ||, where uI denotes the displacements asso-
ciated with fiducial marker I
b In-plane Jacobian error =

∑Nmarker
I=1 |(J2d )in−vitro

I − (J2d )numerical
I |

c The full-blown FE model for the mitral valve with highest fidelity
dUniform thicknesses: MVAL = 1.1 mm and MVPL = 0.92 mm
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10.4.5 Estimation of the In-Vivo Valvular Stresses

Estimation of regional tissue stresses in the functioning heart valve remains an impor-
tant goal in our understanding of normal valve function and in developing novel engi-
neered tissue strategies for valvular repair and replacement. Methods to accurately
estimate regional tissue stresses are thus needed for this purpose, and in particular
to develop accurate, statistically informed means to validate computational models
of valve function. We thus estimated the regional tissue stresses of the MVAL based
on in-vivo three-dimensional deformational data by utilizing a finite element (FE)
modeling approach for stress analysis, in which an average structure of the MVAL
was incorporated. In order to characterize the in-vivo mechanical properties of the
MV constitutive models, an inverse FE modeling approach via the genetic algorithm
was employed. The following assumptions were made in the numerical studies:

• The viscous and any related time-dependent effects were ignored and only the
functional, quasi-elastic behaviors of the MV tissues were considered [36, 37].

• MVAL tissue was modeled as a pseudo-hyperelastic material [33].
• The region of interest (ROI) � was defined by the 2 by 2 sonocrystal marker array

with an additional center marker (Fig. 10.6a).
• The local kinematics of the MVAL was represented by the prescribed in-vivo

measured displacement data on the four edges.
• The FE simulation for stress analysis was carried from the reference configuration

to the end of isovolumic relaxation, and the fully loaded state was chosen for the
statistical analysis of the MVAL regional stresses.

In this integrated modeling/experimental scenario, we sought to develop an esti-
mate of the ROI stress tensor by averaging the stress at each point within the ROI. We
noted that in developing our approach, variations in the resulting local tissue stresses
can arise from the following sources within the ROI:

(1) Heterogeneities of the local deformation, resulting in F=F(X, t), where X is the
local position vector and t is time over the cardiac cycle.

(2) Variations in local tissue microstructure.
(3) Variations in local fiber mechanical properties.

The first two items can be directly quantified from experimental data: F can
be determined at each point in the marker array by bilinear interpolation and tis-
sue microstructure can be quantified using available experimental techniques, as
we have done using small angle light scattering (SALS). It is the last item, the
mechanical properties, which must be computed from the experimental data. Thus,
we conducted a study to determine the average key fiber microstructural features
from extant microstructural data on the MVAL. This key piece of information, when
incorporated in the simulations, allowed us to quantify not only the mean ROI stress
but also its variation from a single experimental run. This further allowed us to set
confidence limits for the computed mean stresses from individual test specimens
under a single set of experimental conditions.
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Fig. 10.6 a Schematic of the ovine mitral valve anterior and posterior leaflets and the sonocrys-
tal marker array for in-vivo measurements, b estimated mean principal stresses and the variation
(tRR,CC ± SDtRR,CC) over the region of interest (�) in the radial and circumferential directions
during a cardiac cycle, and estimated ROI peak principal stresses and associated sample variations
(n = 10) at various time instants (t1, t2, t3) considering: c the variation in the local fiber direc-
tions, and d variations in both the local fiber directions and degrees of material anisotropy (figures
modified from [52])

We employed the following inverse modeling approach to characterize the in-vivo
mechanical response for the MVAL. We utilized a global optimization technique,
the genetic algorithm [93], for finding an optimal set of material parameters which
minimizes the error norm of displacement field between the in-vivo measurements
[3, 52] and FE solutions:

Objective function: min
x

f (x) = 1

ndata

ndata∑
I=1

∥∥∥uin−vivo
I − uFEM

I

∥∥∥ (10.4)

where ndata = 40 is the number of time points of the 3D sonocrystal positional data
during the cardiac cycle. Given a set of material parameters, an ABAQUS input file
was generated for the simulation of the MVAL subjected to external pressure loading.
The nodal displacements were obtained from the ABAQUS output file to construct
the displacement vector, and the fitness function for each genome population was
evaluated. The optimization process terminated when the change of the objective
function is less than the set tolerance (TOL = 10−6).
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To analyze the stress field in the ROI, the MVAL surface was discretized into
40 × 40 thin-shell elements with the characterized in-vivo constitutive model. The
boundary nodes were prescribed with the displacement boundary conditions based on
the five sonocrystal measured data; transvalvular pressures were applied on the ele-
ment surfaces; FE simulations of the MVAL during a cardiac cycle were performed,
and stress output data were obtained using a Python post-processing script. The
calculated stresses were averaged over the 1,600 elements and regional variation of
the stresses was estimated.

Stress-time profile during a cardiac cycle predicted was fairly regular in shape and
smooth (Fig. 10.6b), provided the anisotropic in-vivo stretches, with a similar pattern
of rapid increasing followed by a plateau, in both radial and circumferential direc-
tions. Interestingly, we also noted that the full collagen fiber mapped transversely
isotropic produces estimates with substantially larger stresses in the radial direction
ranging from 380 to 480 kPa and the circumferential stresses ranging from 200 to
280 kPa given the radial stretch of 32 % and circumferential stretch of 11 %. The
predicted ROI peak stresses at the fully loaded state (t3) were ∼520 and ∼285 kPa
for the radial and circumferential components, respectively, for the numerical exper-
iments with variations in the local fiber directions (Fig. 10.6c), whereas the peak
stress components of ∼600 and ∼280 kPa in the radial and circumferential direc-
tions were reported by considering variations in both the local fiber directions and
degrees of material anisotropy (Fig. 10.6d). The resulting radial stress variations in
the latter case are expectedly larger (by ∼5 %) than the former situation (∼2.4 %) due
to introducing additional fiber microstructural. However, this additional variation led
to very small deviations of the estimated peak circumferential stress component.

10.4.6 Tissue Microstructure and Mechanics of the MV Leaflets

The ultimate success of the tissue models utilized in the above studies relies on an
in-depth understanding of the underlying tissue fibrous and cellular constituents,
and of how they rearrange under physiological loading. Critical to heart valve tissue
homeostasis is the valve interstitial cells (VICs), which reside in the interstitium
and maintain the extracellular matrix (ECM) through both protein synthesis and
enzymatic degradation [94]. There is also scant experimental data on the alterations
of the mitral valve fiber network reorganization as a function of load, which is critical
for implementation of computational strategies that attempt to link this meso-micro
scale phenomenon. The observed large-scale deformations experienced by VICs
could be implicated in mechanotransduction [101], i.e., translation of mechanical
stimuli into synthetic levels.

The MV leaflets are composed of collagen, elastin, glycosaminoglycans (GAGs),
and interstitial cells [55]. Collagen (∼71.7 % Type I + ∼29.3 % Type III) constitutes
∼59.2 % of the leaflet dry weight [49, 55]. Morphologically, the MV leaflet has a
multilayered structure: the atrialis/spongiosa, the fibrosa, and the ventricularis [91].
The fibrosa, which mainly consists of collagen fibers and accounts for ∼68 % of
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Fig. 10.7 a Schematic diagram of the mitral valve showing the ∼10 mm×10 mm anterior leaflet
region where the tissue section was removed for analysis, b 3D rendering of the fibrosa collagen
structure showing the high degree of compacted collagen structure, and c enface images of the
MV leaflet tissue in the major layers, with collagen in red and elastin in green. Noted that changes
in both preferential alignment and degree of orientation in the layers, indicative of the complex
structure of the mitral valve

the whole leaflet thickness [49], likely has the greatest influence on the mechani-
cal properties of valve leaflets. We have previously shown in heart valve tissues that
mechanical response is dominated by reorientation and rotation of the collagen fibers
and that rotation is responsible for large radial strains [7–9]. In addition, it is likely
that the interactions between collagen fibrils and matrix constituents (mainly pro-
teoglycans and water) affect the tissue mechanical properties [15, 24, 35]. Clearly,
knowledge of mechanical properties and kinematics of MV at fiber level is necessary
to fully understand the structural basis for its unique elastic mechanical behavior.

We have recently looked into the microstructure of the mitral valve anterior
leaflet utilizing a laser scanning confocal imaging system (LSCM). Ovine ante-
rior MV leaflets, approximately 35 kg in size, were acquired, and a 1 cm by 1 cm
sample (Fig. 10.7a) was mounted into a miniature biaxial testing system and loaded
to 150 N/m. Samples were fixed at the desired tension level and were then split
into two pieces with long-axis oriented along the circumferential direction. The first
piece was embedded into optimal cutting tempature (OCT) for transverse section-
ing. A 7-μm cryosection was taken for Movat’s Pentachrome staining to distin-
guish the leaflet layers (Fig. 10.2). A 30-μm cryosection was also taken for LSCM
to identify collagen fibers from second harmonic generation (SHG). The second
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intact piece was taken for LSCM to identify collagen fibers from SHG and elastin
fibers from autoflourescence at 830-μm wavelength (Fig 10.7b). Samples were
imaged enface to 50μm deep on both the atrialis and ventricularis surfaces. From
the enface image stacks, a z-projection was formed and the elastin network was
detected. Results for the fibrosa layer, which is the main load-bearing layer, revealed
the typical dense, undulated collagen type-I fiber network oriented in a planar
arrays (Fig 10.7b). However, we noted that the undulations are largely in sync and
the presence of noticeable spaces between the major fiber bundles. Interestingly,
close examination of the layers revealed major orientation variations (Fig 10.7c).
We noted first that the ventricularis and fibrosa layers demonstrated the usual cir-
cumferentially orientation for both collagen and elastin fibers. However, the spon-
giosa layer revealed a more random arrangement, followed by a radially oriented
collagen and elastin fiber network in the atrialis layer. These layer differences
in layer-specific fibrous organization, and the intricate interrelationship between
ECM planar organizations are necessary to account for micro-meso scale phenom-
ena when developing MV finite element models. The long-term goal for these
findings is to provide insight into VIC mechanobiology as a function of ECM
architecture under organ-level loads. ECM architecture has been shown to change
with age, disease, and repair with procedures such as annuloplasty and resec-
tion.

These experimental findings clearly motivate a structurally accurate MV constitu-
tive model, which incorporates layer-specific ECM planar organization under organ-
level loading. Thus, while phenomenological constitutive models, such as Eq. (10.3),
provide a good description of the effective behavior of the bulk tissue, considering
the fiber architecture and mechanical behavior of valvular tissues (Figs. 10.4 and
10.7), a structural approach is clearly most suitable for the formulation of a consti-
tutive model for valvular tissues. We have developed a series of these models, the
most basic presented [9, 27, 34, 78, 92]. In brief, the tissue’s total strain energy is
assumed to be the sum of the individual fiber strain energies, linked through an affine
transformation from the fiber coordinate to the global tissue coordinates as depicted
in Eq. (10.1). We started by noting that, like all soft biological tissues, valvular tis-
sues have primarily two major load-bearing components: the collagen and elastin
fibrous network and the non-fibrous (or amorphous) ground matrix, which is com-
posed mainly of GAGs and water. We thus assumed that the planar biaxial mechanical
properties of the leaflet can be represented as a planar array of collagen and elastin
fibers. Anatomically, these collagen fibers most closely represent the dense, highly
aligned collagen fibers in the fibrosa layer. Based on works by Fung [33], soft tissues
are considered as hyperelastic composite elastomeric materials. Next, the following
comprehensive set of assumptions were considered for modeling the heart valve soft
tissues:

(1) Both elastin and collagen fibers bear load only along their fiber axes and have
negligible resistance to compressive forces.

(2) The elastin-collagen mechanical interactions were ignored and the overall tissue
response is considered to be the sum of the individual constituent responses.
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(3) The load required to straighten the collagen fibers is negligible compared to the
load transmitted by elastin or stretched collagen. Thus, collagen bears load only
when completely straightened.

(4) Elastin fibers bear load immediately upon strain and do not exhibit any recruit-
ment.

(5) Contributions from non-load-bearing constituents are assumed to mechanically
contribute to tissue incompressibility.

The tissue-level hyperelastic strain energy density � [33] of the RVE is thus
assumed to result from the contribution of elastin (e), collagen (c), which includes the
sparse elastic sheet or lamina, and smooth muscle cells, weighted by their respective
volume fractions φ’s:

� (C) = φc�c (C) + φe�e (C) + φm�m (C) (10.5)

The resulting tissue-level response in terms of the second Piola-Kirchhoff stress
tensor S is derived by

S = ∂�

∂E
− p · C−1 = φc

∂�c

∂E
+ φe

∂�e

∂E
+ φm

∂�m

∂E
− p · C−1 (10.6)

Here, E is the Green strain tensor, and the Lagrange multiplier p, which accounts
for the incompressibility, is assumed to be associated with the ground matrix con-
stituents of the tissue as stated above. A structurally based modeling approach is
employed for the collagen and elastin strain energy functions. The novelty of this
study is the approach to model the elastin network as discrete fibers like collagen
fibers, rather than a material phase as in [42]. This has been made possible by the
quantification of the elastin structure using two-photon imaging in [26]. Thus, the
contributions of both collagen and elastin fiber ensembles acting in a given direction
N(θ) = cos(θ)XC + sin(θ)XR at the reference configuration, summed over all fiber
orientations, are obtained by

�e (E) = φe

∫

θ

�e (θ)�f
e (E) d θ and �c (E) = φc

∫

θ

�c (θ)�ens
c (E) d θ

(10.7)

where the functions �c and �e describe the planar angular distributions of collagen
and elastin fibers, respectively, and �f

e and �ens
c are the elastin fiber and collagen

fiber ensemble strain energy functions, respectively. The non-fibrous components
are modeled as a Neo-Hookean material with a shear modulus of ∼50 kPa based on
recent data [12].

The results from Fata et al. [26] and related studies [41, 42, 102] suggested that
the elastin fibers can be represented using a linear S-E relation. Therefore, we utilized
the following elastin fiber strain energy

�f
e (E) = κe

2
ε2 (10.8)
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Under the usual affine transformation assumption, the elastin fiber strain is derived
from the bulk tissue strain using ε = NTE N. As stated above, unlike collagen, elastin
fibers do not appear to undergo any type of recruitment, so the total elastin stress is
simply

Se (E) = φe
∂�e

∂ε

∂ε

∂E
= φe

∫

θ

�e (θ) Sf
e (ε)

∂ε

∂E
d θ (10.9)

To model �e(θ) from the multiphoton imaging data (Fig. 10.7c), our experimental
findings suggested two orthogonally placed, normally distributed fiber populations
aligned to the circumferential (C) and radial (R) directions, respectively, with low
splay values (∼10◦). Hence, the total fiber orientation distribution function is given
by �e(θ) = �C

e (θ) + �R
e (θ), and the corresponding elastin stress phase can be deter-

mined by

Se = φeκe

∫

θ

�e (θ) ε(N ⊗ N)d θ (10.10)

with φe and �e taken from known measurements and κe estimated from the biaxial
mechanical data.

Next, as for the collagen fiber phase, the collagen ensemble strain energy is con-
sidered to be the sum of individual fiber strain energies �f

c weighted by the angular
probability function �c

�ens
c (Ef) =

Ef∫

0

�c (E)�f
c (E) dE (10.11)

As in our work for pericardium [79], we assumed a linear fiber stress strain rela-
tionship based on the second Piola-Kirchhoff stress and Green-Lagrange strain,
Sf

c = κcEt, where κc is the elastic modulus of individual straight collagen fibers,
and Et is the true fiber strain defined by Et = (Ef − Es)/(1 + 2Es). The collagen
fiber strain energy is simply

�f
c = κc

2
E2

t (10.12)

and the total collagen fiber phase 2nd Piola-Kirchhoff stress is given by

Sc = φc

∫

θ

�c (θ)
∂�ε

c

∂E
d θ

= φcκc

∫

θ

�c (θ)

⎡
⎣

Eens(θ)∫

0

D (x)
Eens − x

(2x + 1)2 dx

⎤
⎦ N ⊗ Nd θ (10.13)
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To facilitate numerical integration, we simulated the measured collagen fiber orien-
tation distribution using a Beta probability distribution function, with a mean μ and
the standard deviation σ , with a span from Es ∈[0,Eub], where Eub represents the
ensemble strain level where all the collagen fibers have been recruited.

Finally, we represented the ground matrix using a Neo-Hookean model as

Sm = φm
κm

2
(I1 − 3) (10.14)

Furthermore, the water content were assumed to be responsible for the incom-
pressibility of the tissue, and are used to solve for the Lagrange multiplier p. With
Eqs. (10.10), (10.13), and (10.14), we have the final complete expression of S for the
MV leaflet tissues as

S = φcκc

∫

θ

�c (θ)

⎡
⎣

Eens(θ)∫

0

D (x)
Eens − x

(2x + 1)2 dx

⎤
⎦ N ⊗ Nd θ

+φeκe

∫

θ

�e (θ) ε N ⊗ Nd θ + φm
κm

2
(I1 − 3) − pC−1 (10.15)

When applied to the mitral valve anterior leaflet biaxial mechanical data, the model
fit quite well (Fig. 10.8a). This included the representation of the long-toe region
found in the radial component. Moreover, when the respective contribution of the
each tissue component was plotted along the experimental data, one can see how the
elastin dominates the low strain region, and then transitions to the expected collagen
dominated phase (Fig. 10.8b). An important aspect of the structural approach is that
the two distinguishing aspects of the heart valve leaflet biaxial behavior, namely the
extreme mechanical anisotropy and the strong mechanical coupling between the axes,
can be explained by the angular distribution of fibers. While this modeling approach
worked well, it should be noted that the use of this level of homogenized formulation
ignores the layer-specific mechanical contributions and the implicit nonuniformity
of the transmural stress distribution. Such work is currently under investigation in
our lab.

10.4.7 Affine Deformation of the MV Collagen Fiber Network

Collagen has a complex, three-dimensional hierarchical structure, with both collagen
Type I and III molecules consisting of triple helix amino acid chains stabilized by
hydrogen bonds [65]. Rod-like collagen molecules covalently self-assembled into
long fibrils with 64–68 nm D-period (or D-spacing) that are visible under electron
microscopy [16, 33, 40, 90] (Fig. 10.10a). According to the Hodge-Petruska model
(also called quarter-stagger model), the D-period consists of a gap region of ∼0.6D
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Fig. 10.8 a Representative biaxial stress-strain curves of the mitral valve anterior leaflet under equi-
biaxial curves (symbols) and the fit of the structural model, showing excellent agreement, including
the long-toe region in the radial direction. b Same data but showing respective contributions of the
collagen (red), elastin (blue), and matrix (green) phases. Note how the elastin phase is responsible
for entire low stress regions, whereas the collagen becomes dominant at high stresses. While similar
observations have been made for many soft tissues, the very large strains that the leaflets undergo
before the collagen becomes dominant is more specific to valvular tissues

and an overlap region 0.4 D [40]. Collagen fibrils are discontinuous and with a
large aspect ratio (length/diameter) up to ∼2,000 [96, 97]. At the higher hierarchical
level, collagen fibrils are bounded together by small proteoglycans and form the
collagen fibers [88, 100]. The structure of the formed collagen fiber networks tends
to be tissue specific [33, 43, 90]. For example, in tissues such as tendon collagen
fibers are uniaxially aligned, while in planar tissues such as skin they are aligned
multidirectionally in two-dimensional sheets [89].

Polarized light microscopy [38, 39], small angle light scattering (SALS) [47, 82],
and X-ray scattering [4, 6, 25, 85] techniques have been applied to intact tissues
to nondestructively characterize the collagen crimp structure, collagen fiber orien-
tation, and mechanical properties of collagen at the fibril/molecular levels. Among
them, small angle X-ray scattering (SAXS) remains an ideal tool to characterize the
collagen fibril orientation and stretch, as demonstrated in many applications under
uniaxial stretch [31, 32, 71, 84, 86]. We have carried out the first study of the
kinematics of collagen fibrils under controlled biaxial stretch [53]. As expected, the
collagen fibril kinematics under biaxial stretch was found to be more complex than
those under uniaxial deformation. The D-period strain of collagen fibrils was found
to be a fraction of tissue strain and with a delayed onset [53]. Moreover, alignment
and orientation of collagen fibrils changed with the applied biaxial loads [53]. These
findings underscored the importance of quantifying the collagen fibril kinematics
under biaxial stretch in planar collagenous tissues. Here, we investigated the kinemat-
ics and mechanical properties of collagen fibrils in the MVAL under biaxial stretch
using SAXS. Our goal was to gain insight into the mechanisms underlying the MVAL
quasi-elastic properties. The biaxial stretching device using for SAXS measurements
[53] was redesigned to allow for simultaneous force measurements. This modification
allowed determination of the fibrillar modulus. Collagen fibril angular distribution of
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Fig. 10.9 a Schematic diagram of the structure of the collagen molecule showing the characteristic
“D” spacing and the actual electron microscope image. b Successive SAXS orientation distribution
curves for a mitral valve anterior leaflet tissue under increasing levels of equi-biaxial loading,
showing an increased order (i.e., reduced splay). Illustration of how a single collagen fibril angular
distribution is affected by the uncrimping resulting from straightening: c crimped and straight
collagen fibrils, d the resulting angular distribution

collagen fibrils were measured under biaxial stretch (Fig. 10.9b). This unique dataset
allows an opportunity to evaluate the key assumption of the structural models, i.e.,
the fiber network deform under an affine rule as shown in Eq. (10.1). In the follow-
ing, we utilized the SAXS data and the collagen fiber amplitude and crimp period
measured from the SHG images (Fig. 10.9b) to simulate the rotation and stretch of
the MV collagen fibril network. It should be emphasized that the SAXS measure-
ments are restricted to collagen fibrils only, and are not affected by the presence of
the elastin and other components. This makes them ideal for the present studies.

We started by assuming that the collagen fibers of the mitral valve can be repre-
sented by a planar sinusoids (Fig 10.9c), with an amplitude a and a period p. Based on
the SHG measurements, we determined that the MV anterior leaflet in the unloaded
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Fig. 10.10 a The orientation distribution function fit using a Beta distribution in the loaded state,
and b results of the complete model simulated 10,000 sinusoidal fibers showing excellent agreement.
These results suggest that, at the tissue level, the collagen fibers of the mitral valve leaflet follow
affine transformation kinematic behavior

state has a mean amplitude of 2.10μm and a mean period of 22.85μm. Next, since
the SAXS technique actually measures the combined effects of fiber undulations and
overall orientation (Fig. 10.9c), we can represent the orientation distribution function
�single fiber(θ) for a single sinusoidal fiber using

�single fiber(θ) = p

π cos(θ)2
√

4π2a2 − p2 tan(θ)2
(10.16)

This leads to a dual peaked distribution (Fig. 10.9d). As the fiber stretches, the
amplitude decreases and the distribution will collapse to a delta function δ (θ = 0)
(Fig. 10.9d). It should be noted here that the actual measured �(θ) (Fig. 10.9b) is the
sum of the overall fiber orientation of the fiber normal N, �N(θ), and the sinusoidal
geometry of each fiber, given by Eq. (10.16). Thus, as the MV leaflet is stretched,
�(θ) will change due to both the rotation of the fibers according to the anisotropic
stretch patterns (Fig. 10.8a) and the straightening of the constituent collagen fibers.
Since, the collagen is preferentially oriented along the circumferential direction of
the leaflet (Fig. 10.7a and b) and the leaflet experiences much higher strains in the
radial direction, the overall fiber splay will tend to increase. However, this effect
is counteracted by the simultaneous alignment of the individual collagen fibrils as
they straighten (Fig. 10.9c and d). As observed, it is the later effect that dominates the
SAXS pattern (Fig. 10.9b). In essence, the proof of the affine deformation assumption
is our ability to obtain the unloaded fiber measured splay from the SAXS measure-
ments, �0(θ) (Fig. 10.10b), by separating these effects using the following model.

We simulated the MV collagen fiber network using 10,000 fibers (the approximate
number contained in a transmural section of the tissue). Sinusoidal collagen fibrils



246 C.-H. Lee et al.

with an orientation distribution were represented by a Beta function for �N(θ), with
θ ∈ [−90◦, 90◦], a mean of 0◦, and a standard deviation determined by fitting the
SAXS data (Fig. 10.10b). From our SHG measurements, we noted that the colla-
gen fibers were completely straightened under physiological loading. By inverting
Eq. (10.1), we fitted the deformed distribution under full load by estimating the �N(θ)

using the measured deformation gradient tensor F from the experimental data, result-
ing in a fit of 14.51◦ with an r2 = 0.97 (Fig. 10.10a). Next, we utilized this value and
the measured amplitude as well as the crimp period values in Eq. (10.16) to simulate
the total �(θ) as measured in SAXS by summing the contributions of all 10,000 fibers
and renormalizing to unit area. When compared to the measured SAXS measure-
ments, �0(θ) (Fig. 10.10b), the model fit the data quite well, with an r2 = 0.96. This
remarkable result suggests that, at the homogenized tissue-level scale of ∼1 mm, the
collagen fiber network in the mitral valve anterior leaflet deforms according to the
affine model as shown in Eq. (10.1). Moreover, the result serves as the foundation
for supporting the use of structural models for the heart valve tissues that require an
affine fiber kinematic basis.

10.4.8 Mechanical Properties of Valve Interstitial Cells

Within the layers of all heart valve leaflet tissues, there resides a heterogenic popu-
lation of valve interstitial cells [28, 63, 64, 94]. The heterogeneity of the interstitial
cells is made up of fibroblasts, smooth muscle cells, and myofibroblasts, which have
characteristics of both fibroblasts and smooth muscle cells. Studies of the interstitial
cell population in both human and porcine subjects have revealed that the cell popu-
lation was not localized to any single region or layer of the leaflet, but was presented
throughout the tissue [5, 62]. Interest in the myofibroblast cells (typically referred
to as VICs) has grown in recent years, as they are believed to be critically important
in valve pathophysiology. Primarily, VICs serve to maintain the structural integrity
of the leaflet tissue by remodeling via protein synthesis and enzymatic degradation.
Their phenotype (which ranges from fibroblast-like to myo-like) is believed to be
plastic and reversible, as VICs of normal, healthy valves were quiescent. In devel-
oping, diseased, and remodeling valves, the VICs were activated and contractile
[73, 74]. While their dualistic nature is not fully understood, the VIC’s multifunc-
tionality may be used for cell-cell communication, tissue remodeling, wound healing,
and contraction [64]. Further, it is believed that when the phenotype of the resident
VIC population is myo-like, the cells are actively remodeling the ECM. This indi-
cates that the VIC phenotypic state at any given time is likely related to the current
remodeling demands of the tissue [74]. Porcine aortic VIC (AVIC) contractility has
been qualitatively studied with cultured cells on silicone substrates in the presence of
multiple contractile chemical agents [28, 63]. In both studies, contraction occurred
for most agents within 3 min and reached a plateau within 10 min. Additionally,
Messier et al. [63] found that the few cells with no initial basal tonus did not respond
to the administered vasoconstriction drugs. Isoproterenol was used to elicit relaxation
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from active cells, from which all cells recovered their previous basal tonus within
25 min. While not quantitative, these findings were the first examples demonstrating
an AVIC contractile response.

One major indicator of VIC phenotype is the level of α smooth muscle actin
(α-SMA), which dramatically affects the cell stiffness. To address this question,
we have isolated ovine VICs from the four heart valves and subjected them to
micropipette aspiration to assess cellular stiffness [95], and cytoskeletal compo-
sition and collagen biosynthesis were quantified using surrogates α-(SMA) [62].
Results revealed that VICs from the aortic and mitral valves were significantly stiffer
(p < 0.001) than the pulmonary and tricuspid VICs (Fig. 10.11a). Additionally, left
side isolated VICs contained significantly more (p < 0.001) SMA and Hsp47 than
the right side VICs. Mean VIC stiffness correlated well (r = 0.973) with TVP;
α-(SMA) and Hsp47 also correlated well (r = 0.996) with one another. More-
over, assays were repeated for VICs in situ, and as with the in-vitro results, the left
side VIC protein levels were significantly greater (p < 0.05). We have also explored
AVIC viscoelastic behavior using the micropipette aspiration technique [61]. We then
modeled the resulting time-length data over the 100 s test period using a standard
linear solid (SLS) model, which includes Boltzmann superposition. We concluded
that while VIC viscoelastic effects are negligible during valve closure, they likely
contribute to the time-history of AVIC deformations during diastole.

However, such models are only a first step. Clearly, it is important to investigate
the mechanical properties of the VICs and their cellular structures as well as the
mechanical interactions with their environments. Numerical results from our simu-
lations may play an important role in elucidating how the mechanical properties of
VICs cause the pathological responses to the heart valve tissue. Recently, we have
developed a 3D mixture model for VICs and specialized for 2D axisymmetric geom-
etry of a micropipette aspiration experiment (Fig. 10.11b). We considered the VIC as
a multiphasic continuum mixture that constitutes viscous fluid phase for cytosol and
a solid phase for different constituents of cytoskeleton. The interactions between the
fluid and solid phases were described by Darcy’s Law. Next, we considered basal
(non-oriented) cytoskeleton, which can be either hyperelastic or hyperviscoelastic
and oriented α-SMA fibers as solid phases. The VIC can be activated due to the con-
traction of α-SMA fibers and deactivated as necessary. Moreover, we simulated both
poroelastic response, which consists of hyperelastic cytoskeleton, and poroviscoelas-
tic response, which consists of hyperviscoelastic cytoskeleton. The micropipette
aspiration simulations were carried out using the open source finite element solver,
FEBio [59]. Results to date indicated that while a poroelastic model was able to
capture the long-term model response, the poroviscoelastic model was required to
completely match the entire cellular response (Fig. 10.11c). This multiphasic model
of the VICs was developed first time to analyze the mechanical properties of the VICs
as well as the micromechanical effects of α-SMA fibers. We will further develop our
model to simulate not only an isolated VIC under micropipette aspirations, but also
in the native tissue. Consequently, we will be able to investigate how the mechanical
properties of the VICs interact with the heart valves as a whole.
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Fig. 10.11 a Results from micropipette aspiration studies showing (using the Theret’s formula) the
effective stiffness of the four heart valve interstitial cells, with the left side valves exhibit 60 % greater
stiffness than the right side valve cells, b schematic of the micropipette aspiration finite element
study, and c the mixture model simulation of the micropipette aspiration experiment showing how
the poro-viscoelastic model is required to obtain the best agreement with the experimental aspiration
length data

10.5 Conclusion and Future Directions

As mentioned in the beginning of this chapter, we are now entering a level of knowl-
edge of MV function, wherein computational approaches begin to be realistically
applied. We have demonstrated that there is a need of the development of an anatom-
ically and microstructural accurate finite element model in order to make insightful
connection to the mechanical responses of the MV tissues with the organ-level mitral
valve behaviors under physiological loadings or due to surgical repair intervention.

However, simulations of normal and pathological valves requires the correct input
data for them to be meaningful and realistic. This necessitates the integration of
patient-specific data, which is generally not available on an individual basis.

Another approach is to utilize statistical descriptors of valve function from human
sources. To this end, we have recently demonstrated that such information can be
successfully integrated into a mapping procedure to produce average maps of heart
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(a) (c)

(b) (d)

Fig. 10.12 Micrographs of a normal and b bicuspid heart valve leaflets. Collagen fiber architectural
measurements of human explants were used to determine the microstructure and then averaged to
obtain the mean microstructure maps as shown in (c). Subsequent statistical analysis shown in (d)
on mean fiber directions (left) and orientation index (OI) (right) shows important differences in the
belly region for the OI but the mean fiber directions are similar in two cases

valve structure. The bicuspid aortic valve (Fig. 10.12a and b) is the most common
cardiac congenital anomaly and has been found to be a significant risk factor for
developing calcific aortic valve disease. We quantified the structure of human nor-
mal and bicuspid leaflets in the early disease stage. From these individual leaflet
mappings, average fiber structure maps were generated using a novel spline-based
technique to a total of six normal (tricuspid) and six bicuspid human explanted non-
diseased aortic valves. A common template of the simulated heart valve geometry
was used and a spline surface was fitted to this template geometry (RMSD of fitting
<0.04 mm). The common template allows us to calculate the average fiber structure
of the sampled tricuspid data (Fig. 10.12c and d), clearly showing the difference in
the fiber microstructure. Interestingly, we found statistically different and consistent
regional structures between the normal and bicuspid valves [2]. The regularity in
the observed microstructure was a surprising finding, especially for the pathological
BAV leaflets and is an essential cornerstone of any predictive modeling of the heart
valves.

Ultimately, we would like to connect the organ-scale simulations to evaluate our
understanding of the VIC mechanotransduction. To this end, it would be beneficial
to develop a VIC phenotypic/biosynthetic model linked to organ-level deformations.
For example, in the aortic valve leaflet transvalvular pressures above ∼5 mm Hg
predominately result in ECM compaction as the collagen fibers become uncrimped
and taut. From this ECM compaction, significant VIC shape changes have been
observed with increasing pressures. Even a phenomenological model could, thus,
simulate the VIC population with mechanical inputs (quantified by the deforma-
tion of the VIC nuclei) and cytokine activity. It could then be possible to predict
the phenotypic and biosynthetic response of VICs under altered stress conditions.
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The overall endpoint will be to quantitatively establish the degree which restoration
of normal tissue stress leads to recovered tissue homeostasis, laying the basis for the
rational and optimal design of surgical repairs and novel repair strategies, and will
represent a major step towards patient-specific MV repair design-based on sound
engineering and biological science.
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Chapter 11
Biological Systems: Multiscale Modeling
Based on Mixture Theory

Yusheng Feng, Sarah J. Boukhris, Rakesh Ranjan and Raul A. Valencia

Abstract Scientific understanding of complex biological systems has recently
benefited from mathematical and computational modeling. Classical biological
studies are focused on observation and experimentation. However, mathematical
modeling and computer simulation can provide useful guidance and insightful inter-
pretations for experimental studies. Mathematical modeling can also be used to char-
acterize complex biological phenomena, such as cell migration, cancer metastasis,
tumor growth, bone remodeling, and wound healing. Since these phenomena occur
over varying spatial and temporal scales, it is necessary to use multiscale model-
ing approaches. This book chapter provides an overview of multiscale mathematical
methods for developing models for aforementioned biological phenomena based on
so-called mixture theory. In Sect. 11.1, we cover the background about multiscale
modeling in general applications as well as biology specific applications, Sect. 11.2
presents the multiscale computational methods and the challenges associated with
modeling complex biological systems and processes, Sect. 11.3 presents theories and
their applications of four example model problems, and Sect. 11.4 concludes with
open questions in multiscale mathematical modeling, especially in biomedical areas.

11.1 Background

Although microscale and nanoscale systems are becoming more prevalent in many
engineering and biological applications, our ability to create predictive and informa-
tive mathematical models of these systems is limited [1]. For systems that cannot
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be modeled by continuum or molecular methods alone (e.g., too small or too large),
multiscale methods can be implemented. Multiscale methods involve the use of infor-
mation at various scales, which requires mathematics and computation to simulate a
physical or biological system at more tha one scale [1]. These methods are mainly
divided into two types of approaches: hierarchical and concurrent. The hierarchical
approach to multiscale modeling directly uses the information at small length scales
and inputs it into larger length scales via an averaging process. The more popular
concurrent multiscale methods, in contrast, utilize information at differing scales
simultaneously.

Multiscale modeling techniques have relevant uses in many fields of study such
as engineering and biology. Materials science has benefited from multiscale methods
in the realm of solid mechanics. Studying fluid flow effects in microfluidic devices
requires analysis at two or more spatial and temporal scales with coupled chemistry,
electrochemistry, and fluid motion [1].

For decades, advances in biology had little to do with contribution from sophisti-
cated mathematical modeling. Biology was mainly based on observation and experi-
mentation and it was not possible to simulate large complex systems. However, now
in the age of computers and seemingly endless computational capabilities, there is
an avenue for collaboration among biologists, mathematicians, and computational
scientists to establish relevant models based on experiments. No longer are there
strict limitations in tools and resources to examine life at many scales, which rep-
resents the difficulty in modeling biology. It is well known that biological systems
are complicated to mathematically model because they involve many interrelated
processes across many scales [2]. Each scale level in a biological system, both tem-
poral and spatial, contains information from levels either above or before [3]. The
general hierarchy of scales in biological systems follows the order of atom, mole-
cule, macromolecule, organelle, cell, tissue, organ, individual, to population. These
complex scales have also been broken up into specific fields of study (i.e., molecular
biology, cellular biology, organism studies, and population studies).

In the field of cancer research, the ultimate goal of mathematical modeling and
simulation is to aid in development of personalized therapies thereby decreasing
patient suffering while increasing treatment effectiveness [4]. Mathematical and com-
putational models, therefore, are needed to quantify the links between 3D tumors
and migration, invasion, proliferation, and microscale cellular and environmental
characteristics [4]. This task is best accomplished using multiscale methods.

11.2 Multiscale Computational Methods and Challenges

Multiscale methods are specially geared to develop models that are capable of link-
ing molecular, cellular, and tissue continuum scales. The common approach taken
in constructing a mathematical model is to begin with a simple model. This model
will preserve enough biology to be meaningful, but will include less parameters [3]
as to not over complicate the modeling process. The advantage of this approach
is that the model can be applied to understand many different biological systems.
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A mathematical model that incorporates multiple scales can serve at least two
purposes: (1) when detailed information about the biological system is known, the
model can be used to conduct in silico experiments in lieu of in vitro or in vivo
experiments; and (2) when details are unknown, the model can serve as a tool to test
a hypothesis and create a prediction. Extensions and complications can be included
into the mathematical model, in the form of additional parameters, to better resem-
ble the biological system [3]. However, it is necessary to avoid overcomplicating the
model.

The ultimate goal of multiscale mathematical modeling is to couple discrete
particle methods (e.g., molecular dynamics) with models at the continuum level.
However, coupling of these two methods is difficult because of the interaction
between the interfaces between molecular dynamics and continuum regions. When
applying the energy-conservation formulation, this discrepancy is amplified by caus-
ing heat generation in the molecular dynamics regime thereby polluting the solution.
Another issue in coupling molecular dynamics and continuum methods is in con-
necting timescales in each region. Several researchers have developed multiscale
methods to account for these issues to efficaciously bridge between temporal and
spatial scales. The following is a brief overview of commonly used multiscale mod-
eling approaches in the literature.

11.2.1 Bridging Scale Method

The bridging scale method is a concurrent multiscale method that couples the atom-
istic and continuum simulation methods [1]. The feature of this method is that it
is general and can be used in a full three-dimensional domain. At its basic level,
the bridging scale method includes the numerical calculation of the time history
kernel in multiple dimension so that a two-way coupled coarse and fine molecular
dynamics boundary condition is determined. This approach is particularly suitable
for dynamics systems with finite temperature.

11.2.2 Bridging Domain Method

The bridging domain method uses molecular dynamics in localized regions then
couples it with a continuum region that surrounds the atomistic region [5, 6]. A
spatial region contains overlapping continuum and atomistic regions which is best
demonstrated by two-dimensional wave and crack propagation scenarios [1].

11.2.3 Quasi-Continuum Method

Using the Cauchy-Born rule [7], which assumes that the continuum energy density
can be estimated using an atomistic potential, the analysis at the atomic level is
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coupled to the continuum in the Quasi-Continuum method [8]. This approach is
similar to an adaptive finite element method [9] which requires that the restriction
that the deformation of the lattice of continuum point must be homogeneous.

11.2.4 Coupled Atomistics and Discrete Dislocation

Coupled atomistics and discrete dislocation (CADD) is a method for quasi-static
coupling [1]. This approach to multiscale modeling couples molecular statics with
discrete dislocation plasticity [10–12], thus making it an especially useful tool in frac-
ture mechanics. Defects such as dislocations generated within the atomistic region
pass through to the continuum region where they are characterized by discrete dis-
location mechanics [1, 13].

11.2.5 Macroscopic, Atomistic, ab Initio Dynamics

The macroscopic, atomistic, ab initio dynamics (MAAD) multiscale method con-
currently links tight binding, molecular dynamics, and finite element methods [14].
All three methods are computed simultaneously and dynamically share and receive
information. The approach decreases the mesh size of the finite element mesh until
it is on the order of the atomic spacing. Atomic dynamic are then governed by mole-
cular dynamics, then tight binding is used to simulate the atomic bond breaking
processes at an area of interest such as a crack tip [1].

11.2.6 Course-Grained Molecular Dynamics

Coarse-grained molecular dynamics (CGMD) is a multiscale approach similar to
MAAD but instead couples only finite element and molecular dynamics [15]. It is
possible to eliminate the tight binding analysis because the coarse-grained energy
approximation converges to the exact atomic energy that is used to derive the gov-
erning equations of motion [1].

11.3 Theories and Applications

11.3.1 Multiscale Cell Migration Simulation

Biological studies indicate that abnormal gene mutations in healthy cells may disrupt
their regulatory mechanisms that control growth, proliferation, and apoptosis [16].
The uncontrolled growth of these cancer cells creates an avascular tumor mass [17].
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Avascular tumors receive nutrients and oxygen via diffusion from nearby vessels
[16], but as the tumor grows the demand for nutrients and oxygen increases. When
the tumor reaches a critical size, a small amount of cancer cells within the core of
the tumor will become necrotic due to the limited nutrient and oxygen supply from
diffusion thus initiating cell responses to hypoxia and inducing angiogenesis [18].
The now vascularized tumor creates a pathway that allows for the tumor cells to
migrate out of the primary tumor. These circulating tumor cells have the ability to be
deposited at a distant site and proliferate to produce secondary tumors [18]. Unfortu-
nately, it is difficult to clinically treat patients with metastatic cancer, in part, because
of our limited understanding of the mechanisms of cancer metastasis. Therefore, it
is in both scientific and practical healthcare interests to study cell migration and
nanoparticle transport in living tissues. However, it is very challenging to quantify
cellular motion and nanoparticle transport in an in vivo environment. Mathematical
and computational models may provide insight into mechanisms that govern the mass
transport and cell migration and possibly identify major influencing factors in the
process. We introduce a multiscale approach to simulate a simple system that con-
sists of a single fluid channel surrounded by hydrogel matrix with porous structure,
which reflects an in vitro 3D cell culture apparatus [16]. Cancer cells, nanoparticles,
and nutrients are immersed in the fluid, which mimics particle transport in a blood
vessel or a lymphatic vessel. The current model considers three kinds of particle mass
(cells, nanoparticles, and nutrients) transport driven by the flow inside a channel.

Transport of biochemical species and cellular microfluidics depends on the veloc-
ity of the carrier flow and on the size and nature of the biological species [19]. Mass
transport can be divided into two types in the circulatory system: (1) transport dom-
inated by convection and (2) transport dominated by diffusion. In the first type of
mass transport, cell and nutrient transport within the human vasculature is governed
by the local haemodynamics (macro-scale). The second type is the transport within
the wall of both the artery and vascular graft (micro-scale). Properties such as per-
meability, porosity, tortuosity, and diffusivity define how mass are transported within
vessel walls. In order to accurately model mass transport through a vessel wall, it is
necessary to understand the micro-structure of the wall [20].

It is important to analyze different length and timescales, since, specific consid-
eration may apply at the macro-scale but not at the micro-scale. Usually, the fluid
flows by pressure gradient effects and sometimes by electric forces (electro-osmotic
flow) at micro-scale. The Knudsen number is useful for determining whether con-
tinuum mechanics or statistical mechanics formulation of fluid dynamics should be
used [19].

Different physicochemical phenomena of the blood flow and cell migration are
associated at different time and length scales. Some of these phenomena are con-
sumption and transport of oxygen and nutrients, osmosis, generation of waste by
cells, mechanical loading of cells, electrochemical, chemo-mechanical, and electro-
mechanical phenomena, among others. For example, the time for cell synthetize is
about weeks while the cell adhesion is about hours. In the same way, the length scale
of the hydrogel is about millimeters, while the length of adhesion points of cells is
about is few nanometers [21].
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11.3.1.1 Mathematical Formulation

The coupling with hydrodynamics consists of a system with five unknown variables:
velocity (u, v, w), pressure (p), and concentration (c). The known parameters are the
fluid density (ρ), fluid dynamic viscosity (μ), the diffusion constant of the species
D, and two external actions on the fluid: the body force per unit volume F and
the concentration source or sink per unit volume S. At the macro-scale, the system
considers the Navier-Stokes equation and convection-diffusion equation.

∂ρ

∂t
+ ∇ · (ρU) = 0 (11.1)

ρ
∂U
∂t

+ ρU · ∇U = −∇ p + μ�U + F (11.2)

∂c

∂t
+ U · ∇c = ∇ · (D∇c) + S (11.3)

The system is under the condition that the concentration of nutrients is sufficiently
small as to not affect the carrier fluid viscosity and density. Usually in a microfluidics
system, the flow of the carrier fluid is assumed to be steady state and only the nutrient
concentration changes with time. In such case, parameters ρ, μ, and D are constant,
there is no cell growth (S = 0) and there are no body forces (gravity is negligible in
very small systems), the system would thus become:

∇ · U = 0 (11.4)

U · ∇U = − 1

ρ
∇ p + ν�U (11.5)

∂c

∂t
+ U · ∇c = D�c (11.6)

where ν is the kinematic viscosity. At the macro-scale level, fluid flow through the
porous hydrogel matrix is described by the Brinkman equation:

∇ · U = 0 (11.7)

ρ

ε

[
∂U
∂t

+ (U · ∇)
U
ε

]
= −∇ p + ∇ · μ

ε
[∇U + (∇U)T ] − μ

k
U + F (11.8)

where ε is the porosity, μ is the dynamic viscosity, μ is the effective viscosity of
the medium, and k is the permeability of the media. One approach to calculating the
local permeability is the Kozeny-Carman equation below, which relates the porosity
to the permeability of the structure [22]:
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k = r2ε3

4kk(1 − ε)2 (11.9)

where r the radius of the cylinders, kk is the Kozeny-Carman constant, and ε is
the porosity of the structure. Kozeny calculated an approximate value of 2 for kk

and Carman suggested a value of 5 based on experimental evidence on an assumed
isotropic medium [23].

For the effective viscosity of the medium, Brinkman simply took [21]:

μ = μ (11.10)

while Seyam et al. took [24]:
μ

μ
= 1

ε
τ (11.11)

with τ as the tortuosity of the medium defined below. For the case of this model, we
consider Brinkman’s simplification to the effective viscosity of a medium.

τ = √
ε (11.12)

If the hypothesis of a creeping flow is valid at micro-scale, the system collapses
to the linear system [19]:

∇ · U = 0 (11.13)

∇ p = ν�U (11.14)

The cell motion was tracked using the Newtonian formulation:

d

dt
(m pvp) = FD + Fg + Fext (11.15)

FD is the drag force from the fluid, which is described as:

FD = m p Fd(U − vp) (11.16)

where m p is the individual cell mass and Fd is the drag force per unit mass on the
cell. Assuming that the cells take spherical shape, Fd is defined as:

Fd = 18μ

ρpd2
p

(11.17)

where ρp is the cell mass density and dp is the cell diameter. The gravity force Fg is
usually negligible in very small systems and Fext is defined as:

Fext = M∇c − K vp (11.18)
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The first term on the right side, M∇c, is the attraction to nutrients (based on
chemotaxis) and the second term, K vp, is the drag force exerted by the porous
media. M[J m3/mol] and K [N s/m] are two constants that will be determined exper-
imentally. The shear stress for laminar flow of a Newtonian fluid is linearly related
to the shear rate (dV/dr) in terms of cylindrical coordinates [25, 26]:

τ = −μ
dV

dr
(11.19)

where V is the velocity [m/s] at radial position r [m] and μ [N s/m2] is the dynamic
viscosity of the fluid. Wall shear stress for turbulent flow is large compared to laminar
flow. For either case, laminar or turbulent, the wall shear stress can be determined
from:

τ = −d

4

�p

L
(11.20)

Wall shear stress of Newtonian fluids in tubular vessels can be calculated as a
function of volumetric flow rate:

τ = 4μQ

πr3 (11.21)

based on Hagen-Poseuille equation:

�p = 128
μL Q

πd4 (11.22)

The diffusion constant in the fluid for nutrients was estimated by the Stokes-
Einstein diffusivity equation for diffusion of spherical particles through liquid with
a low Reynolds number [20, 27]:

D = kB T

6 π μ r
(11.23)

where kB is the Boltzmann’s Constant, T is the absolute temperature and r is the
radius of the spherical particles. r was estimated from the assumed molecular weight
and the following equation for a sphere:

r =
(

3 · Mw · Vp

4 π NA

) 1
3

(11.24)

where Vp is the molecule’s specific volume, Mw is the molecular weight, and NA is
Avogadro’s number. The characteristic Knudsen Number (Kn) is defined as [19]:

K n = λ

L
(11.25)
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where λ is the mean free path of the molecules and L is the characteristic dimension
of the channel.

Weak Formulation

For this study, fluid was assumed to be Newtonian, homogeneous, and incompress-
ible. The equations solved were:

∇ · σ = ρ(u · ∇u) in 
 (11.26)

∇ · u = 0 in 
 (11.27)

Given the strong form, the boundary conditions and weak form can be described
as follows:

u = ũ on �D (11.28)

σ · n = h̃ on �N (11.29)

The weak form is obtained by taking the scalar product of the momentum
equations with a vector test function v belonging to a functional space V ={
v|v ∈ H1(
), v|�D = 0

}
, integrating over 
 and applying the Green integration

formula.
Similarly, the continuity equation is operated by multiplying by a function q ∈

Q = {
q|q ∈ H1(
)

}
.

∫




(∇ · σ) · vd
 −
∫




ρ(u · ∇u) · v d
 = 0 (11.30)

∫




(∇ · u) q d
 = 0 (11.31)

Substituting the identity (∇ · σ) · v = ∇ · (σ · v) − σ : ∇v:

∫




(∇ · σ) · vd
 =
∫




(∇ · (σ · v) − σ : ∇v) d
 (11.32)

∫




(∇ · σ) · v d
 =
∫




∇ · (σ · v) d
 −
∫




σ : ∇v d
 (11.33)
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Applying Green integration:

∫




(∇ · σ) · vd
 =
∫

�

(σ · v) · n d� −
∫




σ : ∇v d
 (11.34)

Applying (σ · v) · n = (σ · n) · v due to σ is a symmetric tensor:

∫




(∇ · σ) · v d
 =
∫

�

(σ · n) · v d� −
∫




σ : ∇v d
 (11.35)

Substituting:

∫

�

(σ · n) · v d� −
∫




σ : ∇v d
 −
∫




ρ(u · ∇u) · v d
 = 0 (11.36)

Taking the first term and applying the boundary conditions:

∫

�

(σ · n) · v d� =
∫

�

h̃ · v d� (11.37)

we can organize the weak formulation as

∫

�N

h̃ · v d�N −
∫




σ : ∇v d
 −
∫




ρ(u · ∇u) · v d
 = 0 (11.38)

Based on Newtonian fluid, substituting σ = −pI + 2μD:

∫

�N

h̃ · v d�N −
∫




(−pI + 2μD) : ∇v d
 −
∫




ρ(u · ∇u) · v d
 = 0 (11.39)

Finally, the weak form reads: Find u ∈ Vg = {u ∈ H1(
), u|�D = ũ} and
p ∈ P = {p|p ∈ H1(
)} such that

∫




(−pI + 2μD) : ∇v d
 +
∫




ρ(u · ∇u) · v d
 =
∫

�N

h̃ · v d�N (11.40)

∫




(∇ · u) q d
 = 0 (11.41)

The weak form for the Brinkman equation reads: Find u ∈ Vg = {u ∈ H1(
),

u|�D = ũ} and p ∈ P = {p|p ∈ H1(
)} such that
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∫




ε(−pI +2
μ

ε
D) : ∇v d
+

∫




(
εμ

K
u) ·v d
+

∫




ρ(u ·∇ u
ε
) ·vd
 =

∫

�N

εh̃ ·v d�N

(11.42)∫




(∇ · u) q d
 = 0 (11.43)

Finally, the weak form for Convection-Diffusion equation reads: Find c ∈ C ={
c ∈ H1(
)

}
such that

∫




∂c

∂t
v d
−

∫




(∇ ·(uc) v d
+
∫




(D∇c) ·∇v d
 =
∫

�N

(D∇c ·n) ·v d�N (11.44)

Discretization

Approximating the variable fields with

u(x) ≈ uh(x) =
nu∑

A=1

N A
u (x) uA (11.45)

uh(x) ∈ Uh ⊂ U (11.46)

where U = {
u | u ∈ H1, u = uD in �D

}
.

p(x) ≈ ph(x) =
np∑

I=1

N I
p(x) pI (11.47)

ph(x) ∈ Ph ⊂ P (11.48)

where P = {
p | p ∈ H1

}
. Approximating the test functions of the velocities:

v(x) ≈ vh(x) =
nu∑

B=1

N B
u (x)δvB (11.49)

vh(x) ∈ Vh ⊂ V (11.50)

Approximating the test functions of the pressure:

q(x) ≈ qh(x) =
nu∑

J=1

N J
p (x)δqJ (11.51)
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qh(x) ∈ Qh ⊂ Q (11.52)

The discrete form of the weak form equations can be written as algebraic equa-
tions:

KuA + QT pI + N(uA)uA = F (11.53)

QuA = 0 (11.54)

where the convection matrix N is:

N(uA) =
nel∑

e=1

ne(uA) (11.55)

with

ne =
⎡
⎢⎣

n(uA)11Indim · · · n(uA)1nu Indim
...

. . .
...

n(uA)nu1Indim · · · n(uA)nu nuIndim

⎤
⎥⎦ (11.56)

and the coefficients n(uA)αβ can be obtained as follows:

n(uA)αβ = ρ f

∫


e

Nα
u uh · ∇Nβ

u d
e (α, β = 1, . . . , nu) (11.57)

The viscosity matrix K is:

K =
nel∑

e=1

ke (11.58)

with

ke =
⎡
⎢⎣

k11Indim + k11 · · · k1nu Indim + k1nu

...
. . .

...

knu1Indim + knu1 · · · knunu Indim + knunu

⎤
⎥⎦ (11.59)

and the coefficients kαβcan be obtained by:

kαβ = μ

∫
∇Nα

u · ∇Nβ
u d
e (α, β = 1, . . . , nu) (11.60)
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and the matrices kαβ are:

kαβ =
⎡
⎢⎣

kαβ
11 · · · kαβ

1ndim
...

. . .
...

kαβ
ndim · · · kαβ

ndim ndim

⎤
⎥⎦ (11.61)

with the elements kαβ
rs :

kαβ
rs = μ

∫


e

Nα
u,s · Nβ

u,r d
 (α, β = 1, . . . , nu) (r, s = 1, . . . , ndim) (11.62)

Matrix of pressure and incompressibility is:

Q =
nel∑

e=1

qe (11.63)

with

qe =

⎡
⎢⎢⎣

�11T · · · �1nT
u

...
. . .

...

�np1T · · · �np nuT

⎤
⎥⎥⎦ (11.64)

where the vectors �γβT
are:

�γβT =
[
�

γβ
1 , . . . , �

γβ

ndim

]
(11.65)

and

�
γβ
r = −

∫


e

N γ
p Nβ

u,r d
e (γ = 1, . . . , n p) (β = 1, . . . , nu) (r = 1, . . . , ndim)

(11.66)
The forcing vector F is:

F =
nel∑

e=1

fe (11.67)

where

f e =
⎡
⎢⎣

ζ 1

...

ζ nu

⎤
⎥⎦ (11.68)
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The vectors ζ αT
are:

ζ αT = [
ζ α

1 , · · · , ζ α
ndim

]
(11.69)

and

ζ α
r =

∫

�n

Nα
p hr d�n (α = 1, . . . , n p) (r = 1, . . . , ndim) (11.70)

Assumptions and Boundary Conditions

Due to the complex interactions of all the physical and chemical processes taking
place, it is necessary to consider some simplifications and assumptions in order to
computationally solve the problem. The model simplifications and assumptions are
as follows:

1. the wall is considered rigid,
2. chemical interactions and the influence of the electric charge of the cells are

neglected,
3. the cells are considered solid spheres,
4. Magnus effect are considered negligible (does not consider particle rotational

effects),
5. the domains are saturated by the moving fluid, so that there are no capillarity

effects,
6. and assume the model relies purely on fluid-particle interactions, so any particle-

particle interaction is currently neglected.

Figure 11.1 depicts the geometry that consists of an in vitro cell culture system
(hydrogel) with the objective of quantifying the major factors that affect the cell
migration process at the macro-scale. This three-dimensional geometry emulates a
simplified vascularized tumor system with the hydrogel acting as the tumor tissue
and a microchannel acting as a vessel. This simple system was chosen for conducting
the simulations because it will be easily developed during experimental tests in future
work. The hydrogel was considered as a homogeneous porous media for this case.
The objective of this study case is to understand the pressure effects, distribution of
nutrients, drag interactions, and viscous shear stress exertions on cell motion at the
macro-scale. A finite element method was implemented to solve the mathematical
model. Tetrahedral elements were used to mesh the three-dimensional computational
domain and mesh sensitivity analysis was carried out by varying the number of mesh
elements in the domain.

The boundary conditions specify that there is no slip at the wall, upstream flow
varies in a parabolic fashion, and there is free flow at the outlet. The tube is long
enough to generate developed axial velocity profiles.

The parameters used in the simulation, in Table 11.1, consist of both estimated
and experimental values. The velocity inlet was 5.45 mm/s, which was calculated
based on the volume flow rate of Q = 0.130 mL/min.
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Geometry 

Computational Mesh

Outlet
( p = 0 )

Center Z-Slice 

Porous hydrogel with imbedded tumor cells

MicrochannelFlow FlowInlet (U)

Porous hydrogel with imbedded tumor cells

Fig. 11.1 Geometry of the hydrogel at the macro-scale

Table 11.1 Macro-scale simulation parameters

Parameter Value (hydrogel) Value (microchannel)

Nutrient attraction (M) [J m3/mol] 5 × 10−4 5 × 10−4

Force from hydrogel (K) [N s/m] 1 × 10−4 1 × 10−4

Dynamic viscosity (μ) [Pa s] 1.3 7.8 × 10−4

Permeability (k) [m2] 1 1

Porosity (ε) 0.9 1

Density (ρ) [kg/m3] 3,000 1,000

Nanoparticles can be used to passively target tumor tissue through leaky blood
vessels. Nanoparticles with less than 200 nm diameters easily pass through these
leaky vessel walls; thus they are capable of targeting tumors [28]. This simulation,
therefore, includes nanoparticles that are smaller than 200 nm. Although the hydrogel
has a three-dimensional porous structure, this first approach was simplified in 2D as
shown in Fig 11.2.

11.3.1.2 Macro-scale Results

Although the flow in the human circulatory system is unsteady in response to pulsatile
pressure, steady flow models, like the model introduced in this section, provide useful
information about the aspects of fluid flow. This case was considered steady flow. A
parabolic fluid flow was introduced at the inlet and nutrients were introduced into
the same inlet as fluid flow into the microchannel and hydrogel. Particles imbedded
in the hydrogel migrated in response to their attraction to the nutrients.
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Fig. 11.2 Network of the
hydrogel

The simulation results of Fig. 11.3 describe the movement of the cells due to
advection and diffusion at macro-scale and only displays cells that have a velocity
greater than 0.1 mm/s. Advection involves the movement of the cells through the
microchannel and hydrogel at the rate of movement of the fluid carrier. Diffusion is
caused by the motion of the cells from zones of high concentration to zones of lower
concentration. The accuracy of the simulation results was improved by employing a
finer mesh that contains one cell per element.

11.3.1.3 Micro-scale Results

The velocity magnitude is higher in the narrowest pores and tends to decrease where
the pore channel size increases. However, there is a considerable zone with low flow
velocity levels where the permeability would be affected possibly by the increase of
the pore path (tortuosity). This may imply that this area would be susceptible to cell
attachment and deposition.

Simulation cases with differing pressure gradients at steady state were conducted
with the results indicating that the distribution of the velocities, pressure, and shear
stress were similar for three cases inside the wall of the hydrogel. Different Reynolds
numbers and shear stresses, in Table 11.2, were obtained in the three cases.

Figure 11.4 displays the transport phenomena related to advection and diffusion
inside the hydrogel, the mechanical dispersion, and the mixing of the cells due to
changes in fluid velocities along the streamlines. These variations are associated with
three phenomena: pore size, pore friction, and path length. Figure 11.4a depicts how
some particles gain inertia in the narrowest pores. Figure 11.4b shows stagnant zones
where some cells might interact with other cells and the wall.

Figure 11.4c shows deposition points close enough to the wall, where the cells
might be attracted due to the weak forces known as van der Waal’s (assuming absence
of electrical charge of the cells) [29]. The trapped particles might act like an extension



11 Biological Systems: Multiscale Modeling Based on Mixture Theory 273

Fig. 11.3 Time evolution of cell transport (only cells with velocity greater than 0.1 mm/s)

of the wall and trap other particles or block pores at various sites. The fast moving
particles with higher inertia may not become trapped. Figure 11.4d and e shows
zones of bad irrigation of nutrients and recirculation, where the lack of nutrients
might affect the cells viability and consequently promote mechanical stimulus into
biochemical reactions near to the wall (mechanotransduction).
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Table 11.2 Reynolds average and maximum values of shear stress considering a blood density at
37 ◦C = 1,060 [kg/m3] and blood dynamic viscosity = 0.005 [Pa s]
Pressure gradient [Pa] Reynolds average Max Shear stress [dynes/cm2]
0.10 1.21 0.23

1.00 9.32 1.99

10.0 57.9 12.4

Fig. 11.4 Different phenomena of dispersion over the particles inside the wall: a effect of a narrow
pore channel; b stagnation points; c deposition; d bad irrigation; e recirculation zones



11 Biological Systems: Multiscale Modeling Based on Mixture Theory 275

11.3.2 Bone Remodeling and Wound Healing

In general, mixture theory provides a comprehensive framework [30] that allows
multiple species to be included under the abstract notion of a continuous media. In
this framework, biological tissue can be considered as a multi-phasic system with dif-
ferent species, including solid tissue, body fluids, cells, extracellular matrix (ECM),
nutrients, etc. The species (or constituents) are denoted by φα(α = 1, 2, . . . , κ),
where κ is the number of species in the mixture. The nominal densities of each
constituent is denoted by ρα and the true densities are denoted by ραR .

To introduce a formal characterization of the volume fraction, a domain occupying
the control space BS is defined with the boundary ∂ BS , in which all the constituents
φα occupy the volume fractions ηα , which satisfy the constraint

κ∑
α=1

ηα (x, t) =
κ∑

α=1

ρα

ραR
= 1, (11.71)

where x is the position vector of the actual placement and t denotes the time.
Two frames of reference are used to describe the governing principles of contin-

uum mechanics. The Lagrangian frame of reference is often used in solid mechanics,
while the Eulerian frame of reference is used in fluid mechanics. The Lagrangian
description is usually suitable to establish mathematical models for stress-induced
growth, such as bone remodeling and wound healing (e.g., [31]), while the Eulerian
description is often used for developing mass transfer driven tumor growth mod-
els [32–35] with a few exceptions when tumors undergo large deformations [36].

To develop mathematical models for each application, the governing equations
are provided by the conservation laws, and the constitutive relations are usually
developed through empirical relationships subject to constraints such as frame invari-
ance condition and consistency with thermodynamics, to name a few. Specifically,
the governing equations can be obtained from conservations of mass, momentum,
and energy for each species as well as the mixture. When the free energy of the system
is given as a function of dependent field variables, such as strain and temperature, the
second law of thermodynamics (the Clausius-Duhem inequality) provides a means
for determining forms of some constitutive equations via the well-known method of
Coleman and Noll [37].

Predictive medicine is emerging as a research field as well as a potential medical
tool for designing optimal treatment options by advancing deeper understanding
of biological and biomedical processes and providing patient-specific prognosis and
therapies. Characterizing a biological system involves studies of complex phenomena
at various spatial and temporal scales. At a macro-level, continuum mechanics can be
employed to investigate tissue behavior. In particular, both mixture theory and porous
media theory can be used to model both hard and soft tissues in terms of growth,
particle flow, bioheat transfer, etc. Mixture theory can be introduced for modeling
both hard and soft tissues.
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In continuum mixture theory, an arbitrary point in a continuous medium can
be occupied simultaneously by many different constituents differentiated only
through their volume fractions. The advantage of this mathematical representation of
tissues is that it permits direct reconstruction of patient-specific geometry from
medical imaging; inclusion of species from different scales as long as they can be
characterized by either density or volume fraction functions; and automatically pro-
vides for interactions among species included in the mixture without the need of front
tracking or complex interaction condition. Furthermore, the mathematical models
based on the notion of mixture can be derived from the first principles (conservation
laws and the second law of thermodynamics).

The applications considered here include bone remodeling, wound healing, and
tumor growth. Models of the cardiovascular system can also be included within the
mixture framework if soft tissues such as heart and vessels are treated as separate
species different than fluid (blood) and the extracellular matrix.

Bone remodeling is a natural biological process that occurs during the course of
maturity or after injuries, which can be characterized by a reconfiguration of the
density of bone tissue due to mechanical forces or other biological stimuli. Wound
healing (or cicatrization), on the other hand, mainly involves skin or other soft organ
tissues that repair themselves after the protective layer and/or tissues are broken and
damaged. In particular, wound healing in fasciated muscle occurs due to the pres-
ence of traction forces that accelerate the healing process. Both bone remodeling
and wound healing can be investigated under the general framework of continuum
mixture theory at the tissue level. Another important application is tumor growth
modeling, which is relevant to cancer biology, treatment planning, and outcome pre-
diction. The mixture theory framework can provide a convenient vehicle to simulate
growth (or shrinking) phenomena under various biological conditions.

Considering the conservation of mass for each species φα in a control volume, the
mass production and fluxes across the boundary of the control volume are required
to be equal:

∂ρα

∂t
+ ∇ · (ραv

) = ρ̂α. (11.72)

In Eq. (11.72), the velocity of the constituent is denoted by v and the mass supplies
between the phases are denoted by ρ̂α . From a mechanical point of view, the processes
of bone remodeling and wound healing are mainly induced by traction forces. For
simplicity, we choose a triphasic system comprised of solid, liquid, and nutrients
to illustrate the modeling process [31]. The mass exchange terms are subject to the
constraint

κ∑
α=1

ρ̂α = 0 or ρ̂S + ρ̂N + ρ̂L = 0. (11.73)

Moreover, if the liquid phase is not involved in the mass transition, then,



11 Biological Systems: Multiscale Modeling Based on Mixture Theory 277

ρ̂S = −ρ̂N and ρ̂L = 0. (11.74)

Next, the momentum of the constituent φα is defined by

mα =
∫

Bα

ραvαdv. (11.75)

By including mα in the total change of linear momentum in Bα and denoting the
interaction of the momentum of the constituents φα by p̂α , the standard momentum
equation (Cauchy equation of motion) for each constituent becomes

∇ · Tα + ρα (b − aα) + p̂α − ρ̂αvα = 0, (11.76)

where the expression ρ̂αvα represents the exchange of linear momentum through
the density supply ρ̂α . The term Tα denotes the partial Cauchy stress tensor, ραb
specifies the volume force. In addition, the terms p̂α , where α = S, L , N , are required
to satisfy the constraint condition

p̂S + p̂L + p̂N = 0. (11.77)

In the case of either bone remodeling or wound healing, the velocity field is
nearly in steady state. Thus, the acceleration can be neglected by setting aα = 0. The
resulting system of equations can then be written

∇ · Tα + ραb + p̂α = ρ̂αvα. (11.78)

The second law of thermodynamics (entropy inequality) provides expressions for
the stresses in the solid and fluid phases that are dependent on the displacements
and the seepage velocity, respectively. The seepage velocity is a relative velocity
between the liquid and solid phases, which are often obtained from explicit Darcy
velocity expressions for flow through a porous medium (solid phase). Various types
of material behavior can be described in terms of principal invariants of the structural
tensor M and the right Cauchy-Green Tensor CS, where

M = A ⊗ A and CS = FT
S FS, (11.79)

and A is the preferred direction inside the material and FS is the deformation gradient
for a solid undergoing finite deformations. The expressions for the stress in the solid
are dependent on the deformation gradient and consequently the displacements of the
solid. Summation of the momentum conservation equations provides the equation
for the solid displacements. Mass conservation equations, with incorporation of the
saturation condition, provide the equation for interstitial pressure. In addition, the
mass conservation equations for each species provide the equations for the evolution
of volume fractions.
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Assuming the fluid phase (F) is comprised of the liquid (L) and the nutrient
phases (N ) we obtain (F = L + N )

∇ ·
S,L ,N∑

α

Tα + b
S,L ,N∑

α

ρα +
S,L ,N∑

α

p̂α − ρ̂SvS − ρ̂F vF = 0. (11.80)

Since ρ̂F = −ρ̂S , and p̂S + p̂N + p̂F = 0, we obtain

∇ ·
S,L ,N∑

α

Tα + b
S,L ,N∑

α

ρα + ρ̂S (vF − vS) = 0. (11.81)

The definition of the seepage velocity wF S provides the following equation

∇ ·
S,F∑
α

Tα + b
S,F∑
α

ρα + ρ̂S (wF S) = 0. (11.82)

The strong form for the pressure equation can be written as follows

∇ ·
(
ηF wF S

)
+ I : DS − ρ̂S

(
1

ρS R
− 1

ρN R

)
= 0. (11.83)

The strong form of mass conservation equation for the solid phase is

DS(ηS)

Dt
+ ηSI : DS = ρ̂S

ρS R
. (11.84)

Finally, the balance of mass for the nutrient phase can be described as

DS(ηN )

Dt
− ρ̂N

ρN R
+ ηN I : DS + ∇ ·

(
ηN wF S

)
= 0. (11.85)

In the above, wFS is the seepage velocity, DS denotes the symmetric part of the

spatial velocity gradient, and DS()
Dt denotes the total derivative of quantities with

respect to the solid phase. The seepage velocity is obtained from

wFS = 1

SF

[
λ∇ηF − p̂F

]
, (11.86)

Here, SF is the permeability tensor, λ denotes the pressure, and ηF is the vol-
ume fraction of the fluid. Equations 11.78–11.85 are required to be solved for the
bone remodeling problem with the mixture theory. The primary dependent variables
are {uS, λ, nS, nN }, the solid displacements, interstitial pressure, and the solid and
nutrient volume fractions.
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Bone remodeling is an important biological application that can be studied within
the aegis of the above mathematical framework. The process of bone remodeling
involves three types of cells namely osteoblasts, osteocytes, and osteoclasts. The
remodeling process is a continuous process and annually around 10 % of the bone
is replaced. It is driven by the requirement of calcium in the extracellular fluid, and
can also occur in response to mechanical stresses on the bone tissue. The above
framework presented studies the bone reconfiguration due to external stress. One
example of bone remodeling is a femur under traction loadings, which drives the
process so that the bone density is redistributed. Based on the stress distribution, the
bone usually becomes stiffer in the areas of higher stresses.

The same set of equations can also be used to study the process of wound healing. It
is obvious, however, that the initial and boundary conditions are specified differently.
It is worth noting that traction forces inside the wound can facilitate the closure of
the wound. From the computational point of view, the specification of solid and
liquid volume fractions as well as pressure are required on all interior and exterior
boundaries of the computational domain. The interior boundary is assumed to be
inside surface exposed due to the wounding of the tissue.

The interior boundary (inner face) of the wound can be assumed to possess a
sufficiently large quantity of the solid and liquid volume fractions, which is modeled
biologically with sufficient nutrient supply at this face. On the other hand, the open-
ing of the wound can be prescribed with natural boundary conditions with seepage
velocity.

11.3.3 Modeling Tumor Growth

Attempts at developing computational mechanics models of tumor growth date back
over half a century (see, e.g., [38]). Various models have been proposed based on
ordinary differential equations (ODE) e.g., ([39–42]), extensions of ODE’s to partial
differential equations [33, 43] or continuum mechanics based descriptions that study
both vascular and avascular tumor growth. Continuum mechanics-based formulations
consider either a Lagrangian [31] or an Eulerian description of the medium [33].
Various considerations such as modifications of the ordinary differential equations
(ODE’s) to include effects of therapies [41], studying cell concentrations in cap-
illaries during vascularization with and without inhibitors, multiscale modeling
[2, 4, 44–46], and cell transport equations in the extracellular matrix (ECM) [34]
have been included.

Modeling tumor growth can also be formulated under the framework of mixture
theory with a multi-constituent description of the medium. It is convenient to use
an Eulerian frame of reference. Other descriptions have considered the tumor phase
with diffused interface [35]. Consider, the volume fraction of cells denoted by (ξ ),
extracellular liquid (l), and extracellular matrix (m) [33]. The governing equations
are derived from conservation laws for each constituent of the individual phases.
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The cells can be further classified as tumor cells, epithelial cells, fibroblasts, etc.
denoted by subscript, α = 1, 2, . . . , N . Similarly, we can distinguish different com-
ponents of the extra-cellular matrix (ECM) namely, collagen, elastin, fibronectin,
vitronectin, etc. [47] denoted by subscript β = 1, 2, . . . , M . The ECM component
velocities are assumed to be the same, based on the constrained submixture assump-
tion [34]. The concentrations of chemicals within the liquid are of interest in the
extracellular liquid. The above assumptions lead to the mass conservation equations
for the constituents as (ξ , m, and l),

∂ξα

∂t
+ ∇ · (ξαvξα ) = �ξα ,

∂mβ

∂t
+ ∇ · (mβvm) = �mβ . (11.87)

In the equations above vξα and vm denote the velocities of the respective phases.
Note that no subscript on vm (constrained submixture assumption). Mass balance
equation expressed as concentrations in the liquid phase are expressed as

∂c

∂t
= ∇ · (D∇c) + G. (11.88)

Here, D denotes the effective diffusivity tensor in the mixture, G contains the
production/source terms and degradation/uptake terms relative to the entire mixture.
The system of equations requires the velocities of each component to obtain the
closure. The motion of the volume fraction of the cells are governed by the momentum
equations

ρξ

(
∂vξ

∂t
+ vξ · ∇vξ

)
= ∇ · T̃ξ + ρξb + m̃ξ . (11.89)

Similar expressions hold for the extracellular matrix and the liquid phases. The
presence of the saturation constraint requires one to introduce a Lagrange multiplier
into the Clauius-Durhem inequality and provides expressions for the excess stress
T̃ξ and excess interaction force mξ . The Lagrange multiplier is classically identified
with the interstitial pressure P . Body forces, b are ignored for the equations for
the ECM and the excess stress tensor in the extracellular liquid is assumed to be
negligible in accordance with the low viscous forces in porous media flow studies.
With these assumptions, we obtain the following equations

−ξα∇ P + ∇ · (ξαTξα ) + mξα + ρξαbα = 0,

−m∇ P + ∇ · (mTm) + mm = 0,

−l∇ P + ml = 0. (11.90)

These equations provide the governing differential equations required to solve
tumor growth problems. The primary variables to be solved are {ξα, mβ, P}.
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The governing equations can be solved with suitable boundary conditions of
specified volume fractions of the cells, extracellular liquid, and pressures. Fluxes
of these variables across the boundaries also need to be specified for a complete
description of the problem.

Other approaches in modeling tumor growth involve tracking the moving interface
of the growing tumor. Among them is the phase field approach. The derivation of
the basic governing equations is given in Wise [32]. From the continuum advection-
reaction-diffusion equations, the volume fractions of the tissue components obey

∂φ

∂t
+ ∇ · (uφ) = −∇ · J + S. (11.91)

Here, φ denotes the volume fraction, J denotes the fluxes that account for the
mechanical interactions among the different species, and the source term S accounts
for the inter-component mass exchange as well as gains due to proliferation and loss
due to cell death.

The above Eq. (11.91) is interpreted as the evolution equation for φ which charac-
terizes the phase of the system. This approach modifies the equation for the interface
to provide both for convection of the interface along with an appropriate diminishing
of the total energy of the system. The free energy of a system of two immiscible flu-
ids consists of mixing, bulk distortion, and anchoring energy. For simple two-phase
flows, only mixing energy is retained, which results in a rather simple expression for
the free energy φ

F(φ,∇φ, T ) =
∫ (

1

2
ε2|∇φ|2 + f (φ, T )

)
dV =

∫
ftotdV . (11.92)

Physical processes involve those in which the total energy is minimized. The
following equation describes evolution of the phase field parameter:

∂φ

∂t
+ u∇φ = ∇ · γ∇

(
∂ ftot

∂φ
− ∇ · ∂ ftot

∂∇φ

)
(11.93)

where, ftot is the total free energy of the system. Equation (11.93) seeks to minimize
the total free energy of the system with a relaxation time controlled by the mobility
γ . With some further approximations, the partial differential equation governing the
phase field variable is obtained as the Cahn-Hillard equation,

∂φ

∂t
+ u∇φ = ∇ · γ∇G, (11.94)

where G is the chemical potential. The mobility (γ ) determines the timescale of
the Cahn-Hillard diffusion and must be large enough to retain a constant interfacial
thickness but small enough so that the convective terms are not overly damped.
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The mobility is defined as a function of the interface thickness as γ = χε2. The
chemical potential is provided by

G = λ

[
−∇2φ + φ(φ2 − 1)

ε2

]
. (11.95)

The Cahn-Hillard equation forces φ to take values of −1 or +1 except in a very
thin region on the fluid-fluid interface. The above equation is of fourth order and poses
a formidable challenge to solve. The solutions are characterized by nearly constant
states, with complex morphologies, separated by evolving narrow transition layers
that describe diffuse interfaces between tumor and host tissues.

The presence of the fourth-order term poses stringent restrictions on the time step.
The step size for time integration of the above equation is constrained by h4 where h
is the spatial grid size. To remove this restriction one ca use a Crank-Nicholson-like
time integration method, which results in non-linear equations at the implicit time
level. Multilevel nonlinear full approximation storage (FAS) multi-grid method is
adopted to solve the discrete system, with respect to time and space. When taking the
finite difference approach for the spatial discretization of the Cahn-Hillard equation
one starts with a central difference approximation of the derivative in space along with
a backward difference approximation of the time derivative. Alternatively, Crank-
Nicholson approximation scheme can be implemented for time discretization, with
an appropriate treatment of the advection term. Higher order approximation of the
divergence and the gradient operators are obtained from the appropriate Taylor series
terms in constructing the discrete forms. The advection terms need special treatment
to avoid numerical oscillations at the tumor-host interface.

In the finite difference framework various schemes have been proposed to dis-
cretize the advective flux. In specific for the phase field approach the advection oper-
ator appears as a shock term which needs to be stabilized. Classical discretization
methods, such as the central difference approximation, have the disadvantage of caus-
ing non-physical oscillations across or in the near vicinity of discontinuities known
as the Gibbs phenomenon. To suppress the Gibbs phenomenon, Harten [48] proposed
an essentially non-oscillatory scheme (ENO) scheme based on the Godunov upwind
scheme, which achieves an accuracy of arbitrary high order. Efforts toward improv-
ing the ENO scheme have resulted in the development of weighted non-oscillatory
scheme or the WENO scheme [49].

Finite element analysis of Cahn-Hillard equation have also been accomplished
[50–52]. Error bounds of the Cahn-Hillard equation with degenerate mobility were
examined in Barrett [50]. Both convergence and well-posed finite element approxi-
mation were examined in addition to determining the stability bounds of the approx-
imation. The existence of the Lyapunov energy functional was found to be of pri-
mary importance in the error analysis [51]. Backward difference in time was utilized
and optimal error bounds were established. Usage of multi-grid methods for solv-
ing Cahn-Hillard equation without the presence of the advection term have been
presented in Kay [52]. Implicit backward Euler stepping in time in conjugation
with continuous piecewise linear basis functions in space were found to provide
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faithful results. Conservation of the total energy of the Lyapunov energy functional
provided further confirmation of the accuracy of the simulation. A multi-grid scheme
was proposed to solve the problem in opposition to Gauss-Seidel variants as solvers
for the discrete system.

The introduction of the phase field interface allows the fourth-order Cahn-Hillard
equation to be written as a set of two second order PDEs

∂φ

∂t
+ u · ∇φ = ∇ · γ λ

ε2 ∇ψ, (11.96)

ψ = −∇ · ε2∇φ + (φ2 − 1)φ. (11.97)

The above equation is the simplest phase field model, and is known as model
A in the terminology of phase field transitions [4, 35, 53]. Phase field approaches
have been applied for solving the tumor growth and multiphase descriptions of an
evolving tumor have been obtained with each phase having its own interface and a
characteristic front of the moving interface obtained with suitable approximations.

When specific applications of the phase field approach to tumor growth are con-
sidered, the proliferative and non-proliferative cells are described by the phase field
parameter φ. The relevant equations in the context of tumor growth are provided by
the following [35, 54]

∂φ

∂t
= M∇2

[
−φ + φ3 − ε∇2φ

]
+ αp(T )φ�(φ). (11.98)

Here, M denotes the mobility coefficient, T stands for the concentration of hypoxic
cell produced angiogenic factor, and �(φ) denotes the Heaviside function which
takes a value of 1 when its argument is positive. The proliferation rate is denoted by
αp(T ) and as usual ε denotes the width of the capillary wall. The above equation
is solved with the governing equation for the angiogenic factor T . The angiogenic
factor diffuses randomly from the hypoxic tumor area where it is produced and obeys
the following equation

∂Ti

∂t
= ∇ · (D∇T ) − αT T φ�(φ). (11.99)

In the equation above D denotes the diffusion coefficient of the factor in the tissue
and αT denotes the rate of consumption by the endothelial cells.

11.4 Open Questions

Multiscale methods have been used in a wide range of applications: materials and
nanomaterials science [55, 56], elasticity and plasticity analysis [57], computational
biomechanics [58], drug development [59], vascular tumor growth [44], coarse-grain
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peptide and protein folding modeling [60–62], mutation and immune competition
of cancer cells [63], organ level analysis [64], computational physiology [65], and
genetic regulatory networks [66]. The common goal of all these applications is to
create a predictive multiscale mathematical model to simulate a complex system.

The open question that spans each application of multiscale modeling is how to
validate and calibrate the model with experimental data. Although still a useful tool,
a mathematical model does not become a predictive tool until it has been validated
and calibrated with experimental data [56]. Another limitation and open question of
current multiscale methods is how to easily extend the analysis to three dimensions.
Most of the methods described in this chapter are useful only in one or two dimensions
[1]. Currently available multiscale methods have tremendous challenge in dealing
with nonlinear problems [67].

Moreover, a consistent difficulty in multiscale mathematical modeling is how to
bridge spatial and temporal scales in a systematic and seamless fashion. In many
biological phenomena, such as protein folding and cell proliferation, events at small
scales occur much quicker than events at larger scales. In some cases, multiscale
methods provide the tools to handle the different spatial scales, but not the temporal
scales [1, 5, 6, 8, 10–12, 14, 15].

The future direction of multiscale modeling calls for developing mathematical
methods to apply in three dimensions with the ability to simultaneously bridge spatial
and temporal scales. These additional capabilities will allow for development of more
biologically relevant and useful predictive models.
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