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    Abstract  

  During its more than 40 year history, The Congenital Heart Surgeons 
Society (CHSS) has evolved from an informal club to a mature organiza-
tion. In 1985, Drs. John W. Kirklin and Eugene H. Blackstone founded the 
CHSS Data Center. Its purpose was to develop disease- specifi c inception 
cohorts of congenital heart disease (CHD) patients and extract knowledge 
from the combined clinical experience of centers across North America. 
The mission has evolved to training of research fellows, prospective test-
ing of patients in our lifelong cohorts, organization of a tissue bank regis-
try, and provision of quality improvement tools for members. The hub of 
this activity is in the CHSS Data Center, housed within the Hospital for 
Sick Children in Toronto. Our review will highlight lessons learned during 
the course of this evolution.  
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        Background 

 The rationale for establishing the Congenital 
Heart Surgeons Society (CHSS) Data Center 
was the recognition among congenital heart 
surgeons that pooling clinical information in 
an organized fashion to facilitate data analy-
sis would help improve patient outcomes. The 
rarity of congenital heart disease (CHD), the 
wide spectrum of anatomic and physiologic 
variations in presentation and the extensive 
array of available medical and surgical man-
agement strategies contribute to the diffi cul-
ties faced by any one surgeon (or institution) 
in determining the optimal management for a 
given lesion. Acknowledging these fundamen-
tal diffi culties, the CHSS embarked upon a col-
laborative venture in 1985 to share experiences 
and analyze aggregate data to improve the CHD 
management. 

 The fi rst cohort assembled by the CHSS 
between 1985 and 1989 enrolled patients with 
transposition of the great arteries. During 
the fi rst 4 years of enrollment, 985 neonates 
admitted to a CHSS institution within the fi rst 
2 weeks of life were enrolled. There were few 
concerns with institutional review boards and 
obtaining patient/family consent in this era. The 
robust enrollment of patients in this cohort was 
fueled by an urgent desire to rapidly develop a 
knowledge base on which to compare more tra-
ditional atrial switch strategies with the newer 
arterial switch strategy. Thus, the CHSS rap-
idly established itself as an organization that 
could address contemporary clinical problems 
in direct response to the academic needs of the 
membership. 

 The success of this cohort was followed by the 
conception of 11 other cohorts with over 5,400 
patients enrolled for long-term follow-up. The 12 
CHSS Study Cohorts are displayed in Table  13.1 . 
Seven of these studies are no longer actively 
enrolling patients, and fi ve of these studies are 
still actively enrolling patients. These cohorts 
have provided the data for numerous analyses 
and publications on behalf of the CHSS. A list of 
CHSS publications is available on our website at 
  www.CHSSdc.org    .

       CHSS Data Center Structure 

    Personnel 

 The CHSS Data Center employs a Research 
Program Manager, a Database Programmer 
with statistical expertise, two Clinical Research 
Project Assistants, and two data abstraction 
nurses who have extensive clinical experience 
with CHD. In 2001, a Research Fellowship 
was created (the Kirklin/Ashburn Fellowship, 
discussed below). The Data Center is housed 
within the Hospital for Sick Children in Toronto 
with two suites including 1,200 sq. ft. of offi ce 
space with all required computers and informa-
tion technology resources, as well as secure 
storage for all electronic and hard copy data. 
The active interchange of information and ideas 
among the Data Center staff (i.e., teamwork) is 

   Table 13.1    Twelve CHSS diagnostic cohorts   

 Diagnostic cohort  Enrollment 

 Number
of patients 
enrolled 

   Transposition of the Great 
Arteries (TGA) study 

 1985–1989  891 

   Interrupted Aortic Arch 
(IAA) study 

 1987–1997  470 

   Coarctation study  1990–1993  883 
   Pulmonary Atresia Intact 
Ventricular Septum 
(PAIVS) study 

 1987–1997  444 

   Pulmonary Stenosis with 
Intact Ventricular Septum 
(PSIVS) study 

 1987–1997  187 

   Critical aortic stenosis 
study 

 1987–1997  422 

   Aortic valve atresia study  1987–1997  563 
   Tricuspid Atresia (TA) 
study 

 1999–2013  307 

   Pulmonary Conduit (PC) 
study 

 2002–2013  591 

   Critical Left Ventricular 
Outfl ow Tract (LVOTO) 
study 

 2005–2013  674 

   Anomalous Aortic Origin 
of a Coronary Artery 
(AAOCA) study 

 1998–2013  284 

   Unbalanced 
atrioventricular septal 
defect (uAVSD) study 

 2012–2013  84 
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essential for continuous improvement in data 
management practice.  

    Legal/Ethical Issues 

 The Data Center seeks Research Ethics Board 
(REB) approval on an annual basis to insure that 
general operations of Data Center comply with the 
Health Insurance Portability and Accountability 
Act of 1996 of the United States of America 
(HIPAA), and other laws and regulations regard-
ing patient confi dentiality and data security. In 
addition, each participating CHSS institution 
requires their institutional REB approval for every 
cohort being followed. Direct patient consent 
for yearly follow up by Data Center staff is also 
obtained. Direct patient consent facilitates com-
munication with patients who relocated to new 
caregivers and hospitals. Sharing of patient data 
also requires a Data Use Agreement between the 
Data Center and each CHSS institution.  

    Communication 

 The Data Center provides bi-monthly Newsletters 
to the CHSS members and their data managers. We 
also maintain a Website (  www.CHSSdc.org    ) to pro-
vide members, our patients and the general public 
with current activities, publication access, lay sum-
maries of publications, a patient blog, and links to 
relevant Websites. Extensive use is made of emails 
to members and a web-based dropbox for secure 
data transfer. The Data Center website also posts 
inclusion/exclusion criteria for each cohort and tem-
plates of REB applications for each institution to 
use in their institutional REB application. The avail-
ability of templates avoids duplication of effort and 
facilitates institutional enrollment in CHSS studies  

    Work Weekends 

 The Data Center organizes a semi-annual 3-day 
weekend for interested members to work in the 
Data Center. The members ‘brain-storm’ to develop 
new cohorts, direct statistical analyses, construct 
abstracts and manuscripts, and refi ne presentations.  

    Finances 

 Each CHSS institution is required to support the 
Data Center with an annual contribution. Support 
is mandatory. Additional funds are sought from 
peer reviewed grant applications, industry partners 
and philanthropic individuals and institutions.  

    Voluntary Contribution of Data 

 An important lesson learned in the CHSS Data 
Center is that our reliance upon voluntary enroll-
ment of data creates the potential for failure 
to include all eligible patients in a cohort and 
introduction of selection bias into our cohorts. 
Parameters that infl uence enrollment are not 
well-studied but are likely to include the clini-
cal ‘urgency’ associated with the research ques-
tion that was the rationale for inception of the 
cohort. For example, as noted above, the cohort 
of patients with transposition of the great arter-
ies acquired patients with extreme velocity. (985 
neonates were enrolled from 100 % of all CHSS 
institutions (24 at that time) within 4 years). In 
contrast, a recent inception cohort of patients 
with critical left ventricular outfl ow tract obstruc-
tion (LVOTO) has enrolled relatively slowly 
(718 patients from 16 institutions over 4 years). 
The LVOTO enrollment can be compared to the 
contemporaneous National Institutes of Health 
(NIH) funded Pediatric Health Network Single 
Ventricle Reconstruction (SVR) Trial, which had 
a more narrow diagnostic range of entry criteria 
and fewer participating institutions but enrolled 
at a far greater rate than the LVOTO cohort. It is 
likely that the presence of paid coordinators ‘on 
the ground’ in each institution with scrutinized 
enrollment rates, and potential for fi nancial pen-
alties for failure to enroll contributed to the far 
more complete enrollment in the funded SVR trial 
when compared to the voluntary CHSS cohort.  

    Centralized Abstraction of Data 

 The CHSS relies upon centralized data abstrac-
tion. This lesson was learned after an  unsuccessful 
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attempt to develop a web-based data entry sys-
tem for patients enrolled in our pulmonary con-
duit cohort. Our expectation was that surgeons 
or their delegates would enter the data and this 
would improve overall effi ciency of the data col-
lection process. In fact, the absence of training in 
data entry led to a high proportion of records with 
incomplete data entry, a high frequency of errors, 
and a lack of means to redress these defi ciencies. 
Furthermore, addition of new data fi elds to the 
research data set was diffi cult because there was 
no easy mechanism to recall the person entering 
data at the fi rst setting and induce them to fi nd an 
old record, abstract the required new data points, 
and enter the data in the web-based system. To 
redress these problems, the Data Center currently 
uses centralized data abstraction where paper and 
electronic medical records for each patient are 
collected and stored within the Data Center. Data 
are abstracted by specially trained personnel who 
are conversant with the data entry forms and have 
a vested interest in the accuracy of entered data. 

 Because hard copies of the patient records 
are available for review, a ‘follow-on’ unplanned 
analysis can be undertaken whenever needed. For 
example, a detailed analysis of the aortic valve 
stenosis/aortic valve atresia cohort enabled a 
complex analysis of the role of the Ross-Konno 
and Yasui procedures many years after incep-
tion of the cohort [ 1 ]. For this subset of patients, 
unique data fi elds were required and the analysis 
would have been impossible if the raw data were 
not available in the Data Center.  

    The Kirklin/Ashburn Fellowship 

 The John W. Kirklin/David A. Ashburn 
Fellowship is a central component of the CHSS 
research model and represents an important ‘les-
son learned’ in the CHSS. Employing a dedicated 
Fellow to undertake complex statistical analyses 
transformed the research activity in the CHSS 
Data Center from an intermittent effort predi-
cated on part time efforts of CHSS members to 
a continuous effort led by the Kirklin/Ashburn 
Fellow – with a fundamental transformation in 
the productivity of the Data Center. 

 In exchange for the high level of productive 
work performed, the Kirklin/Ashburn Fellow 
enjoys many academic benefi ts. The Kirklin/
Ashburn Fellows typically have studied in the 
Data Center for 2 years and have enrolled in 
concurrent Masters or PhD programs at the 
University of Toronto. Their tenure in the Data 
Center has been supported by intensive tute-
lage from Drs. Eugene Blackstone and Brian 
McCrindle, and Sally Cai. Using this support 
network, the Fellows have forged new analyses 
of CHSS cohorts using state of the art statistical 
techniques. The Fellows have led the analysis 
through collaboration with participating mem-
bers from the inception of addressable questions, 
‘cleaning’ of the data, development of an analy-
sis plan, correspondence with working groups, 
creation of presentations, and writing of manu-
scripts. All these activities have been supported 
by the Data Center staff in Toronto to provide 
the Fellows with mentorship, and help to focus 
their analyses and fi ne-tune interpretation of 
results. The Fellowship is highly visible amongst 
congenital heart surgeons and has allowed the 
intellectual fi repower of future congenital heart 
surgeons to shine among the membership where 
prospects for future employment are bright. 
Building a training program into the structure of 
the Data Center has promoted academic output 
and helped to keep the CHSS Data Center as a 
hub of activity within the CHSS.   

    Research Strategies in the CHSS 
Data Center 

    The Research Question 

 Clinical research should be driven by a research 
question or questions. The question(s) defi ne 
the dataset; therefore, any proposed analysis 
begins with the identifi cation of one or more spe-
cifi c research questions. This process typically 
requires several hours of thoughtful discussion. 
One must collect the data points that will address 
the proposed research question(s), including the 
specifi c information on outcomes to be deter-
mined. A common error in the early years of the 
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Data Center was to try to collect too much infor-
mation including information which did not con-
tribute to the central research questions.  

    Focus on Diagnosis-Based Inception 
Cohorts 

 During the years from 1985 to 2003, the CHSS 
focused on diagnosis-based cohorts over 
procedure- based cohorts. The rationale was to 
capture the wide variety of potential operative 
and non-operative management strategies uti-
lized across institutions. This approach allowed 
evaluation of important patient subsets that are 
typically excluded from procedure-based surgical 
reports. For example, inclusion of non- operated 
patients who die prior to operation is an important 
tool to compare management strategies across 
institutions. Using the all-comers approach, the 
CHSS endeavors to avoid the fi ltering of patients 
that is often a foundation of published proce-
dure-based reports. One institution may exclude 
certain patient subsets from consideration for 
surgical therapy whereas another institution may 
choose to provide therapy – making comparison 
of published reports from different institutions 
problematic. An example of the importance of 
inclusion of all patients is demonstrated in an 
analysis of the CHSS pulmonary atresia cohort 
[ 2 ]. In Fig.  13.1 , the transition from entry in the 
study (diagnosis) to a defi nitive single-, 1.5-, or 
two-ventricle repair is shown. Note that a large 
proportion of the patients never achieved one of 
these ‘endstates’. Consequently, a procedure-
based surgical report might have neglected to 
account for the substantial proportion of patients 
who died without undergoing a ‘defi nitive’ pro-
cedure. The inclusion of non- operative patients 
also allows comparison between institutions by 
using statistical methods to control for differ-
ences in patient selection.

       Data Entry 

 The Data Center constructs a database to record 
all data required to address the research  question. 

In the past we have collected hard copies of spec-
ifi ed parts of the patient’s hospital chart, such as 
admission sheet, admission history and physi-
cal, all diagnostic reports, operative reports and 
follow- up investigation and reports. These data 
are extracted by highly knowledgeable and expe-
rienced professionals. We are making a transition 
to collect these data via Internet e-based records 
using secure fi le transfer. Annual cross-sectional 
follow-up data is conducted within specifi c 
months of each year and the information, includ-
ing interval procedures and/or investigations 
added to the dataset.  

    Data Integrity (The Essential 
Underappreciated Integral Step) 

 Prior to beginning any data analysis it is essential 
to check the dataset for errors, omissions, outli-
ers, unknown data points, and any possible mis-
interpretation of data extraction. Even the most 
committed and compulsive professional cannot 
be perfect extracting data. More commonly the 
information from clinical records will contain 
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  Fig. 13.1    Non–risk-adjusted competing-risks depiction 
of end states in 408 neonates with PAIVS illustrating the 
proportion of children reaching each end state over time 
after initial hospital admission. All patients begin alive at 
the time of initial admission (time = 0) and migrate to an 
end state at a time-dependent rate defi ned by the hazard 
functions. At 5 years, the estimated prevalences of end 
states are as follows: 2-ventricle repair, 28 %; Fontan 
operation, 19 %; 1.5-ventricle repair, 5 %; cardiac trans-
plantation, 2 %; death before reaching a repair state, 
36 %; and alive without end state, 11 % (Reprinted with 
permission from Ashburn et al. [ 2 ])       
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typographic errors, omissions, and outliers. We 
cannot overstress the essential nature of this very 
labor intensive requiring considerable time, effort 
and ingenuity to make the dataset as accurate and 
complete as possible.  

    Diagnostic Images 

 Institutional reports of diagnostic images vary in 
consistency. We have found that obtaining copies 
of the actual echo, computed tomography (CT) 
or magnetic resonance imaging (MRI) studies is 
relatively easy. And it has been amazing to us to 
see the enthusiasm of expert reviewers in under-
taking detailed review of each image. The quality 
and detail of the diagnostic data is enormously 
enhanced by expert review. To do the reviews, the 
reviewers needed to work in the Data Center for 
many days at their own expense. As a further step 
to facilitate this expert review process we have 
setup a CHSS Core Lab to upload de-identifi ed 
images to our central server so that the experts 
can review each image from the convenience of 
their home institution. In addition, the data from 
each expert review is entered into an Internet- 
based database (RedCap) [ 3 ] housed within the 
Data Center fi le server. The merged data is then 
available for analysis.  

    Evaluation of Uncommon Lesions 

 The CHSS Data Center is well suited to examine 
uncommon lesions because of the large number 
of participating institutions. For example, the 
CHSS assembled a large cohort of patients with 
interrupted aortic arch representing a relatively 
rare congenital heart lesion. Interestingly, among 
the 472 patients with interrupted aortic arch, con-
comitant aortopulmonary window was identifi ed 
in 20 patients. Because of the large number of 
centers enrolling patients, the analysis spawned 
an important sub-analysis of patients with an 
extremely rare combination of interrupted aor-
tic arch and aortopulmonary window – a feat 
that could not be accomplished in a single center 
cohort (Fig.  13.2 ).

   The CHSS Data Center has leveraged its 
multi-institutional resources to develop a pro-
spective inception cohort of patients with anoma-
lous aortic origin of a coronary artery (AAOCA). 
AAOCA is diagnosed when one or both coro-
nary arteries arise from outside their appropriate 
sinus of Valsalva (Fig.  13.3 ). Although relatively 
rare, the diagnosis of AAOCA provokes intense 
anxiety among patients (and clinicians) because 
there are no clearly defi ned management algo-
rithms and the potential for sudden death is not 
well understood. Currently (as of August 2013), 

100

80

60
%

40

20

0
0 1 2 3

Years from IAA repair

Alive without reintervention

Aortic arch reintervention

Aortic arch
interruption

Pulmonary artery reintervention

Aorto-
pulmonary

window

Type I

(10) (5)

(5)

(5)

(5)(7)

(3) (0)(0)

(17)

Ao
A

B

LSA

LSA

Ao

(3)

T
yp

e 
A

T
yp

e 
B

Type II Type III

4 5

(51 %)
(43 %)

(6 %)
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Konstantinov et al. [ 9 ])       
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the Data Center has enrolled 249 patients and 
continues to enroll. This rapid accrual of a large 
cohort of patients with a relatively rare lesion 
will allow unprecedented analysis of the rela-
tionships between symptomatology, preoperative 
diagnostic data, surgical fi ndings, operative and 
non- operative treatment strategies, and long term 
outcomes.

        Data Analysis 

    Complex Cohorts Require Complex 
Statistical Techniques 

 An important lesson learned in the CHSS Data 
Center has resulted from the use of complex 
statistical techniques to evaluate the complex 
management strategies utilized in our multi-
institutional patient cohort. This strategic focus 
distinguishes the CHSS from more traditional 
large-scale research ventures that tend to focus 
on straightforward comparisons using prospec-
tive randomized trial designs. Although random-
ized trials can facilitate direct evaluation of very 
specifi c hypotheses, randomized designs are less 
appropriate when a wide range of management 
options exist and/or the condition to be studied is 
rare. Under such circumstances, it is frequently 
not feasible to incorporate multiple management 
options into a randomized controlled trial design.  

    Evolution of Statistical Techniques 

 The data abstracted in the Data Center is derived 
from highly complex cohorts and the complex-
ity in our cohorts is a direct result of the inter-
action between a wide array of management 
options in common clinical practice, the high 
degree of variability in the timing of these inter-
ventions between institutions, and the relatively 
high probability of multiple reinterventions and 
diagnostic procedures. An example of a complex 
cohort is demonstrated in Fig.  13.4 . In order to 
deal with this complexity, the Data Center has 
evolved to utilize a wide array of advanced statis-
tical techniques to facilitate analysis of extremely 
complex cohorts. The statistical evolution of the 
CHSS Data Center has been led by Drs. Eugene 
Blackstone and Brian McCrindle, Sally Cai, and 
the Kirklin/Ashburn Fellows.

       Statistical Techniques in Use 
at the CHSS Data Center 

    Parametric Hazard Phase 
Decomposition 
 CHSS studies incorporating parametric hazard 
analysis nearly always incorporate a method 
pioneered by Eugene Blackstone and colleagues 
to decompose the overall time-related hazard 
(Fig.  13.5a ) into as many as three ‘phases’ [ 4 ] 
(Fig.  13.5b ). This method is well-suited to model 
the hazard of various outcomes surgical patients 
because it can account for transient but high 
‘early phase’ of postoperative risk, a period of 
attrition at a constant rate (the ‘constant phase’), 
and a ‘late phase’ of increasing risk. This method 
permits the identifi cation of risk factors unique to 
each phase. Risk factors which modify one phase 
may not always be incorporated into the model 
describing another phase. For example, factors 
which are associated with early postoperative risk 
of death may quite different than factors associ-
ated with death in the late postoperative period.

   The decomposition of hazard into phases is a 
fundamental strategy and serves as the statistical 
method of choice for almost all of our analyses. 
Adoption of this method has permitted accurate 

  Fig. 13.3    Anomalous aortic origin of the right coronary 
artery ( large arrow ) from the left coronary sinus ( small 
arrow  identifi es left main coronary artery) [ 10 ]       
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Procedure: 1 2 3 4 5 6 7 8 9 10 11
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modeling of every ‘shape’ of hazard curve yet 
observed, permitted the identifi cation of risk fac-
tors unique to each phase, and facilitated the use 
of parametric analyses.  

    Time Zero 
 Nearly every Data Center study uses survival 
analysis methods which require that one defi ne 
a “time zero” as the starting time for the analy-
sis. We defi ne time zero as the time at which the 
patients becomes at risk of the defi ned outcome. 
For example, a study of surgical techniques 
which evaluate survival after tetralogy of Fallot 
repair would specify time zero as the initiation 
of the surgical repair. In contrast, a diagnosis-
based study of tetralogy of Fallot would spec-
ify time zero as the moment the diagnosis was 
made – irrespective of a surgical procedure. The 
latter example would include patients who are 
not expected to undergo surgery or die prior to 
planned surgery. 

 Practical aspects of data abstraction present 
certain challenges. For example, the date of diag-
nosis may actually precede birth when the diag-
nosis is made in utero. Similarly, if the diagnosis 
is made outside the CHSS member institution, 
the precise date may be unavailable if the Data 
Center does not have access to records of that 
initial diagnostic study (which is often the case). 
When formulating the precise research question it 
is best to specify time zero with careful consider-
ation of these practical issues, in order to ensure 
that all patients in the study can be proven to have 
become at risk at a precise date (and not the date 
of their transfer to the CHSS member institution).  

    Advantages of Parametric Hazard 
Analysis 
 A major benefi t of parametric hazard analysis 
over more traditional non-parametric and semi- 
parametric methods (e.g., Cox regression) is 
the generation of prediction plots by solving the 
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  Fig. 13.5    Functions used to describe time-related events. 
( a ) The cumulative hazard function accelerates rapidly 
before reaching a constant slope. Later, it begins to rise 
rapidly again. This cumulative hazard function corre-
sponds to a survivorship function which decreases rap-
idly, then stabilizes before accelerating again. The hazard 
function is infi nite at time zero, decreases to a constant 

rate and then increases late in follow-up. ( b ) The hazard 
function, decomposed into early, constant and late phases. 
Each phase quantifi es the hazard according to time. The 
sum of these three phases of hazard is equivalent to the 
overall hazard function from the upper panel (Reprinted 
from Blackstone et al. [ 4 ])       

  Fig. 13.4    A wide variety of management strategies were 
utilized in the care of patients with Interrupted Aortic 
Arch. This fi gure illustrates the complex of management 
strategies. There is signifi cant crossover amongst treatment 
pathways, and a large number of unplanned intervening 

procedures between planned stages of repair. An analysis 
of outcomes amongst this diffi cult group of patients neces-
sitates that the statistical methods account for the complex-
ity of management (Reproduced with permission from the 
Congenital Heart Surgeons’ Society Data Center)       
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parametric equation to refl ect changing values of 
one or more risk factors included in the model. 
While Cox regression can support basic plots in 
which a single covariates may change, the results 
of Cox regression are generally presented in tables 
due to the poor compatibility of this method with 
graphical display of results. Cox regression does 
not support the creation of prediction plots based 
upon multiple changing values of covariables. 
Parametric hazard analysis, on the other hand, 
can easily support the creation of prediction plots 
refl ecting any clinically feasible combination of 
values amongst the covariables (so long as they do 
not exceed the bounds of the original data). As a 
result, the reader can readily differentiate between 
a statistically signifi cant result of low (and clini-
cally unimportant) magnitude, and a statistically 
signifi cant covariable that is associated with clini-
cally important changes in outcome when modu-
lated. The ability to directly compare time-related 
prediction estimates between multiple signifi cant 
covariables which are simultaneously changing 
permits the graphical presentation of as many 
prediction curves as desired, with any combina-
tion of changes amongst any or all of the covari-
ables included in the model. Feedback from our 
studies incorporating these prediction plots has 
been very positive because they facilitate visual 

representation of the impact of alterations in a risk 
factor. An example is shown in Fig.  13.6 . This plot 
shows the predicted durability of a hypothetical 
aortic allograft inserted into a child with no other 
known risk factors for allograft failure and under-
goes (or does not undergo) conduit stenting at 1 
and 4 years after insertion. The dotted lines indi-
cate the predicted time-related allograft durability 
if the conduit were not stented at the 1 or 4 year 
mark. The table within this manuscript [ 5 ] listed 
a parameter estimate of 0.33 and a p value <0.01. 
These numerical data are not nearly as informative 
as a plot of time-dependent durability according 
to whether the conduit was stented 0, 1 or 2 times.

       Competing Risks 
 More traditional mortality studies can often be 
addressed by consideration of a simple binary 
outcome – e.g., survival versus death. Children 
with congenital heart disease, however, are often 
subject to multiple mutually exclusive ‘compet-
ing risks’ that often include death but may also 
include cardiac transplantation, re-operation or 
the achievement of one or more types of ‘defi ni-
tive’ repair. Competing risks can be separated to 
form multiple estimates of time-related hazard 
of each competing risk [ 2 ]. At any point in time 
the survival estimate of the sum of the various 
competing risks always equals 100 %. Thus, a 
survival curve can be generated for each com-
peting endstate and then decomposed into hazard 
phases to identify risk factors specifi c to each haz-
ard phase for the respective end-state. Opting not 
to use competing risks methods requires that the 
researcher either ignore certain end-states, or com-
bine the competing risks of different end- states 
into a binary outcome. If this is done, the patients 
at risk can be inappropriately censored, falsely 
reducing the denominator. Thus the estimate of 
risk for the binary outcome may be overestimated 
if the Kaplan-Meier method is used when there 
are more than two mutually exclusive possible 
outcomes [ 6 ]. Figure  13.7 , from a seminal paper 
by McGiffi n and colleagues, demonstrates the dif-
ferences in estimates of cardiac transplantation 
depending on whether death is considered as a 
separate outcome from transplant (i.e., competing 
risks) or is not (i.e., the Kaplan- Meier method).

   The Data Center began using the competing 
risks method over a decade ago to evaluate our 
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  Fig. 13.6    Solution of the parametric equation illustrating 
the durability of a non-decellularized aortic allograft with 
z-score +2 inserted in a child with no other risk factors, 
who underwent two successive conduit stentings at 1 and 
4 years after insertion. The  solid line  depicts predicted 
durability over years since conduit insertion on the x-axis. 
 Dotted lines  denote predicted durability in a child who did 
not undergo the fi rst or second conduit stenting proce-
dures. Each stenting is associated with an approximate 
18 % reduction in 8-year durability (From Poynter et al. 
[ 5 ], copyright 2013, with permission from Elsevier)       
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pulmonary atresia with intact ventricular septum 
cohort [ 2 ]. The analysis utilized the mutually 
exclusive end-points of: survival without repair, 
death, transplantation, univentricular repair, biven-
tricular repair or 1.5-ventricle repair (Fig.  13.1 ). 
Factors associated with each of these unique end-
states were identifi ed. Had we performed a more 
traditional, separate sub-analysis of each of these 
important groups, important information about 
those who did not experience each outcome of 
interest would have been unaccounted for. The les-
son here is that utilizing a competing risks analy-
sis is essential when study subjects are at risk of 
multiple mutually exclusive outcomes (Fig.  13.8 ).

       Segmentation of Longitudinal Records 
to Facilitate Analysis 
 A further extension of parametric hazard analysis 
can also include the incorporation of time- 
dependent covariables into the record. Using this 
method, each patient’s longitudinal record may be 
divided into multiple intervals punctuated by 
interval events (e.g., multiple catheter interven-
tions between surgical procedures) that are 

expressed as separate observations within the 
dataset. Each evaluated time interval contains 
time-independent variables (constant values such 
as gender) and time-dependent variables (such as 
the number of cumulative catheter interventions 
on the repair). Along with those variables, the 
dataset structure includes a mechanism to ‘stitch 
together’ each segment to replicate the longitudi-
nal record as certain  values change over time 
(Fig.  13.9 ). This technique was used most recently 
by the Data Center in an analysis by Poynter and 
colleagues to analyze the durability of right ven-
tricle to pulmonary artery conduits [ 5 ].

       Propensity Score Matching 
 The Data Center performs observational incep-
tion cohort studies rather than randomized con-
trolled trials. Although observational studies are 
well suited to the study of congenital heart dis-
ease, on occasion we have had a need to balance 
groups for comparison. We have used balancing 
scores in order to provide more meaningful com-
parisons of groups. One type of balancing score 
called a propensity score has proven to be of 
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  Fig. 13.7    Comparison of the Kaplan-Meier method ver-
sus competing risks methodology in analyzing outcomes 
of patients awaiting heart transplantation. The parametric 
estimate of proportion of patients who are transplanted by 
use of Kaplan-Meier right-censoring to remove patients 
from the denominator at risk and dying while waiting 
( upper curve ), and parametric estimate of proportion of 
patients who will actually undergo  transplantation ( lower 

curve ) are shown. The upper curve overestimates the 
transplantation probability by removing patients who 
have died while awaiting transplant. The lower curve is a 
more accurate estimate of the proportion of patients who 
will actually be transplanted, because it has considered 
the competing risk of death separately (From McGiffi n 
et al. [ 6 ])       

 

13 The Academic Database: Lessons Learned from the Congenital Heart Surgeons’ Society Data Center



182

particular value. These scores refl ect the prob-
ability of a given patient to have fallen in one 
group or the other, based upon various demo-
graphic and morphologic characteristics. The 
scores are included in the parametric hazard anal-
ysis to adjust for differences in baseline charac-
teristics among the groups for comparison. This 
well- established statistical method has proven to 
be an essential tool to minimize (but not elimi-
nate) an important limitation of our observational 
studies – i.e., that patients are not randomized 
into treatment groups.  

    Modulated Renewal 
 Management of patients with congenital heart 
disease often requires post-operative reinterven-
tion. Thus the repair is ‘renewed,’ just as if an 
old pair of shoes was re-soled. Using the re-soled 
shoe analogy, we hypothesize that the new sole 
may be ‘better than new’, ‘as good as new’, or 
‘worse than new’- depending on the durabil-
ity of the new sole. Similarly, a surgical repair 
may have any of the same three potential tra-
jectories depending on the durability of the re- 
intervention. The statistical technique is called 
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  Fig. 13.8    A competing risks analysis is used to examine 
the relationship between tricuspid valve z-score, inter- 
institutional management patterns, and a group of mutu-
ally exclusive endstates. The z-score was previously 
found to be a useful surrogate for the size and adequacy of 
right heart structures in pulmonary atresia with intact ven-
tricular septum. Using this analysis, it is apparent that 
there are differences in the relationship between tricuspid 
valve z-score and death between institutions. Importantly, 
it is also apparent that some institutions (e.g. Institution T) 
use a Fontan strategy across a wide spectrum of tricuspid 
valve z-scores with a low death rate, but at the expense of 

failing to offer two-ventricle palliation to patients with 
relatively large tricuspid valves (e.g. z-scores between 0 
and −2). In contrast, Institution L chose more frequent 
two-ventricle repairs (and less frequent Fontan strategies) 
in patients with small tricuspid valves with a relative 
increase in the death rate in the patients with the smallest 
tricuspid valves. Finally, Institution E had a balanced 
strategy with two-ventricle repairs in patients with larger 
tricuspid valves and Fontan strategies in patients with 
smaller tricuspid valves – and a corresponding low death 
rate across the spectrum of tricuspid valve z-scores 
(Reprinted with permission from Ashburn et al. [ 2 ]       
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modulated renewal. Jegatheeswaran and col-
leagues used modulated renewal methodology to 
characterize the risk of re-interventions among 
children with repaired interrupted aortic arch [ 7 ] 
and the analysis provides insight into the degree 
to which interrupted aortic arch is a chronic con-
dition that frequently requires multiple subse-
quent reinterventions.  

    Scoring Systems Based on Common 
Dataset Integrated Parametric Models 
 Another important lesson learned through experi-
ence concerns the creation of clinical calculators. 
Hickey and colleagues developed a parametric 
equation to facilitate decision making in neo-
nates with critical aortic stenosis in whom one- 
and two- ventricle repairs were being considered 
[ 8 ]. The authors used a parametric equation to 
estimate 5-year survival if the same (theoretical 
patient) had a one-ventricle repair compared to 

a two-ventricle repair. Surgeons using the cal-
culator could input specifi c patient variables 
to generate an estimate the relative advantage 
(or disadvantage) of a one-ventricle over a 
two- ventricle repair. The calculator translates 
a  complex statistical model into a practical tool 
to facilitate clinical decisions at the bedside.    

    Conclusion 

 The CHSS Datacenter is a unique research 
organization that has evolved and learned 
since 1985. The focus on rare lesions and 
complex management strategies has played 
to the strengths of the Data Center: superb 
statistical leadership, a dedicated Data 
Center staff collecting data from institutions 
across North America, and lifetime follow 
up of our cohorts. The institution of the 
Kirklin/Ashburn Fellowship has been a crit-
ical ingredient in our ongoing academic 
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  Fig. 13.9    Example of “chopping” of a hypothetical 
child’s longitudinal record into multiple discrete seg-
ments. Time zero is set to the date of initial pulmonary 
allograft insertion, which was followed by conduit bal-
loon dilatation with stenting, surgical conduit repair, and 
fi nally conduit replacement, at 1-year intervals. Thus, the 
four events are used to punctuate three segments that are 
used to model the occurrence of these events. Records 1, 
2 and 3 refer to segments AB, BC and CD along the time-
line. Record 1 has a left censoring time of A and a right- 
censoring time of B, record 2 is left censored by B and 
right censored by C, and so on. The variables puhomo1 
and condz1 are constant because they refer to the initial 
type and z-score of the conduit, respectively. However, the 
variables blns_no (cumulative number of conduit dilata-

tions with stenting) and rpr_no (cumulative number of 
surgical conduit repairs) are time-varying; each variable 
turns from 0 to 1 when the corresponding interval arises. 
These two variables track the cumulative exposure to 
these interval treatment events, thus the values are ordinal 
and do not decrease with time. A proposed method to 
incorporate many longitudinal echocardiographic mea-
surements of conduit dysfunction – a heretofore unmet 
challenge in parametric hazard analysis of this type – 
would involve the expansion of the “events” bracketing 
each interval by including various echocardiographic 
measurements from dozens of diagnostic studies per-
formed across the entirety of the patient record 
(Reproduced from Poynter [ 11 ])       
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success. All this, however, would never have 
been possible without the steadfast fi nancial 
support and academic contributions of the 
membership of the Congenital Heart 
Surgeons Society.     
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