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Abstract

This chapter presents an introductory overview and a tutorial of signal-
processing techniques that can be used to recognize mental states from
electroencephalographic (EEG) signals in brain–computer interfaces. More
particularly, this chapter presents how to extract relevant and robust spectral,
spatial, and temporal information from noisy EEG signals (e.g., band-power
features, spatial filters such as common spatial patterns or xDAWN, etc.), as well
as a few classification algorithms (e.g., linear discriminant analysis) used to
classify this information into a class of mental state. It also briefly touches on
alternative, but currently less used approaches. The overall objective of this
chapter is to provide the reader with practical knowledge about how to analyze
EEG signals as well as to stress the key points to understand when performing
such an analysis.

7.1 Introduction

One of the critical steps in the design of brain–computer interface (BCI) applications
based on electroencephalography (EEG) is to process and analyze such EEG signals
in real time, in order to identify the mental state of the user. Musical EEG-based BCI
applications are no exception. For instance, in (Miranda et al. 2011), the application
had to recognize the visual target the user was attending to from his/her EEG signals,
in order to execute the corresponding musical command. Unfortunately, identifying
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the user’s mental state from EEG signals is no easy task, such signals being noisy,
non-stationary, complex, and of high dimensionality (Lotte et al. 2007). Therefore,
mental-state recognition from EEG signals requires specific signal-processing and
machine-learning tools. This chapter aims at providing the reader with a basic
knowledge about how to do EEG signal processing and the kind of algorithms to use
to do so. This knowledge is—hopefully—presented in an accessible and intuitive
way, by focusing more on the concepts and ideas than on the technical details.

This chapter is organized as follows: Sect. 7.2 presents the general architecture
of an EEG signal-processing system for BCI. Then, Sect. 7.3 describes the specific
signal-processing tools that can be used to design BCI based on oscillatory EEG
activity while Sect. 7.4 describes those that can used for BCI based on event-related
potentials (ERP), i.e., brain responses to stimulus and events. Section 7.5 presents
some alternative tools, still not as popular as the one mentioned so far but prom-
ising, both for BCI based on oscillatory activity and those based on ERP. Finally,
Sect. 7.6 proposes a discussion about all the tools covered and their perspectives
while Sect. 7.7 concludes the paper.

7.2 General EEG Signal-processing Principle

In BCI design, EEG signal processing aims at translating raw EEG signals into the
class of these signals, i.e., into the estimated mental state of the user. This trans-
lation is usually achieved using a pattern recognition approach, whose two main
steps are the following:

• Feature Extraction: The first signal-processing step is known as “feature
extraction” and aims at describing the EEG signals by (ideally) a few relevant
values called “features” (Bashashati et al. 2007). Such features should capture
the information embedded in EEG signals that is relevant to describe the mental
states to identify, while rejecting the noise and other non-relevant information.
All features extracted are usually arranged into a vector, known as a feature
vector.

• Classification: The second step, denoted as “classification,” assigns a class to a
set of features (the feature vector) extracted from the signals (Lotte et al. 2007).
This class corresponds to the kind of mental state identified. This step can also
be denoted as “feature translation” (Mason and Birch 2003). Classification
algorithms are known as “classifiers.”

As an example, let us consider a motor imagery (MI)-based BCI, i.e., a BCI that
can recognize imagined movements such left hand or right hand imagined move-
ments (see Fig. 7.1). In this case, the two mental states to identify are imagined left
hand movement on one side and imagined right hand movement on the other side.
To identify them from EEG signals, typical features are band-power features, i.e.,
the power of the EEG signal in a specific frequency band. For MI, band-power
features are usually extracted in the μ (about 8–12 Hz) and β (about 16–24 Hz)
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frequency bands, for electrode localized over the motor cortex areas of the brain
(around locations C3 and C4 for right and left hand movements, respectively)
(Pfurtscheller and Neuper 2001). Such features are then typically classified using a
linear discriminant analysis (LDA) classifier.

It should be mentioned that EEG signal processing is often built using machine
learning. This means the classifier and/or the features are automatically tuned,
generally for each user, according to examples of EEG signals from this user. These
examples of EEG signals are called a training set and are labeled with their class of
belonging (i.e., the corresponding mental state). Based on these training examples,
the classifier will be tuned in order to recognize as appropriately as possible the
class of the training EEG signals. Features can also be tuned in such a way, e.g., by
automatically selecting the most relevant channels or frequency bands to recognized
the different mental states. Designing BCI based on machine learning (most current
BCI are based on machine learning) therefore consists of two phases:

• Calibration (a.k.a., training) phase: This consists in (1) acquiring training EEG
signals (i.e., training examples) and (2) optimizing the EEG signal-processing
pipeline by tuning the feature parameters and/or training the classifier.

• Use (a.k.a., test) phase: This consists in using the model (features and classifier)
obtained during the calibration phase in order to recognize the mental state of the
user from previously unseen EEG signals, in order to operate the BCI.

Feature extraction and classification are discussed in more details hereafter.

Fig. 7.1 A classical EEG signal-processing pipeline for BCI, here in the context of a motor
imagery-based BCI, i.e., a BCI that can recognized imagined movements from EEG signals
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7.2.1 Classification

As mentioned above, the classification step in a BCI aims at translating the features
into commands (McFarland et al. 2006; Mason and Birch 2003). To do so, one can
use either regression algorithms (McFarland and Wolpaw 2005; Duda et al. 2001)
or classification algorithms (Penny et al. 2000; Lotte et al. 2007), the classification
algorithms being by far the most used in the BCI community (Bashashati et al.
2007; Lotte et al. 2007). As such, in this chapter, we focus only on classification
algorithms. Classifiers are able to learn how to identify the class of a feature vector,
thanks to training sets, i.e., labeled feature vectors extracted from the training EEG
examples.

Typically, in order to learn which kind of feature vector correspond to which
class (or mental state), classifiers try either to model which area of the feature space
is covered by the training feature vectors from each class—in this case, the classifier
is a generative classifier—or they try to model the boundary between the areas
covered by the training feature vectors of each class—in which case the classifier is
a discriminant classifier. For BCI, the most used classifiers so far are discriminant
classifiers, and notably linear discriminant analysis (LDA) classifiers.

The aim of LDA (also known as Fisher’s LDA) was to use hyperplanes to
separate the training feature vectors representing the different classes (Duda et al.
2001; Fukunaga 1990). The location and orientation of this hyperplane are deter-
mined from training data. Then, for a two-class problem, the class of an unseen (a.k.
a., test) feature vector depends on which side of the hyperplane the feature vector is
(see Fig. 7.2). LDA has very low computational requirements which makes it
suitable for online BCI system. Moreover, this classifier is simple which makes it
naturally good at generalizing to unseen data, hence generally providing good
results in practice (Lotte et al. 2007). LDA is probably the most used classifier for
BCI design.

Another very popular classifier for BCI is the support vector machine (SVM)
(Bennett and Campbell 2000). An SVM also uses a discriminant hyperplane to
identify classes (Burges 1998). However, with SVM, the selected hyperplane is the

Fig. 7.2 Discriminating two types of motor imagery with a linear hyperplane using a linear
discriminant analysis (LDA) classifier
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one that maximizes the margins, i.e., the distance from the nearest training points,
which has been found to increase the generalization capabilites (Burges 1998;
Bennett and Campbell 2000).

Generally, regarding classification algorithms, it seems that very good recog-
nition performances can be obtained using appropriate off-the-shelf classifiers such
as LDA or SVM (Lotte et al. 2007). What seems to be really important is the design
and selection of appropriate features to describe EEG signals. With this purpose,
specific EEG signal-processing tools have been proposed to design BCI. In the rest
of this chapter, we will therefore focus on EEG feature extraction tools for BCI. For
readers interested to learn more about classification algorithms, we refer them to
(Lotte et al. 2007), a review paper on this topic.

7.2.2 Feature Extraction

As mentioned before, feature extraction aims at representing raw EEG signals by an
ideally small number of relevant values, which describe the task-relevant infor-
mation contained in the signals. However, classifiers are able to learn from data
which class corresponds to which input features. As such, why not using directly
the EEG signals as input to the classifier? This is due to the so-called curse-of-
dimensionality, which states that the amount of data needed to properly describe the
different classes increases exponentially with the dimensionality of the feature
vectors (Jain et al. 2000; Friedman 1997). It has been recommended to use from 5
to 10 times as many training examples per class as the input feature vector
dimensionality1 (Raudys and Jain 1991). What would it mean to use directly the
EEG signals as input to the classifier? Let us consider a common setup with 32 EEG
sensors sampled at 250 Hz, with one trial of EEG signal being 1 s long. This would
mean a dimensionality of 32 * 250 = 8,000, which would require at least 40,000
training examples. Obviously, we cannot ask the BCI user to perform each mental
task 40,000 times to calibrate the BCI before he/she could use it. A much more
compact representation is therefore needed, hence the necessity to perform some
form of feature extraction.

With BCI, there are three main sources of information that can be used to extract
features from EEG signals:

• Spatial information: Such features would describe where (spatially) the rele-
vant signal comes from. In practice, this would mean selecting specific EEG
channels, or focusing more on specific channels than on some other. This
amounts to focusing on the signal originating from specific areas of the brain.

• Spectral (frequential) information: Such features would describe how the
power in some relevant frequency bands varies. In practice, this means that the
features will use the power in some specific frequency bands.

1 Note that this was estimated before SVM were invented and that SVM are generally less
sensitive—although not completely immune—to this curse-of-dimensionality.
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• Temporal information: Such features would describe how the relevant signal
varies with time. In practice, this means using the EEG signals values at different
time points or in different time windows.

Note that these three sources of information are not the only ones, and alter-
natives can be used (see Sect. 7.5). However, they are by far the most used one,
and, at least so far, the most efficient ones in terms of classification performances. It
should be mentioned that so far, nobody managed to discover nor to design a set of
features that would work for all types of BCI. As a consequence, different kinds of
BCI currently use different sources of information. Notably, BCI based on oscil-
latory activity (e.g., BCI based on motor imagery) mostly need and use the spectral
and spatial information whereas BCI based on ERP (e.g., BCI based on the P300)
mostly need and use the temporal and spatial information. The next sections detail
the corresponding tools for these two categories of BCI.

7.3 EEG Signal-processing Tools for BCI Based on Oscillatory
Activity

BCI based on oscillatory activity are BCI that use mental states which lead to
changes in the oscillatory components of EEG signals, i.e., that lead to change in
the power of EEG signals in some frequency bands. Increase of EEG signal power
in a given frequency band is called an event-related synchronization (ERS),
whereas a decrease of EEG signal power is called an event-related desynchroni-
zation (ERD) (Pfurtscheller and da Silva 1999). BCI based on oscillatory activity
notably includes motor imagery-based BCI (Pfurtscheller and Neuper 2001),
steady-state visual evoked potentials (SSVEP)-based BCI (Vialatte et al. 2010) as
well as BCI based on various cognitive imagery tasks such as mental calculation,
mental geometric figure rotation, mental word generation, etc. (Friedrich et al.
2012; Millán et al. 2002). As an example, imagination of a left hand movement
leads to a contralateral ERD in the motor cortex (i.e., in the right motor cortex for
left hand movement) in the μ and β bands during movement imagination, and to an
ERS in the β band (a.k.a., beta rebound) just after the movement imagination
ending (Pfurtscheller and da Silva 1999). This section first describes a basic design
for oscillatory activity-based BCI. Then, due to the limitations exhibited by this
design, it exposes more advanced designs based on multiple EEG channels. Finally,
it presents a key tool to design such BCIs: the common spatial pattern (CSP)
algorithm, as well as some of its variants.

7.3.1 Basic Design for an Oscillatory Activity-based BCI

Oscillatory activity-based BCI are based on change in power in some frequency
bands, in some specific brain areas. As such, they naturally need to exploit both the
spatial and spectral information. As an example, a basic design for a motor-imagery
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BCI would exploit the spatial information by extracting features only from EEG
channels localized over the motor areas of the brain, typically channels C3 for right
hand movements, Cz for foot movements and C4 for left hand movements. It would
exploit the spectral information by focusing on frequency bands μ (8–12 Hz) and β
(16–24 Hz). More precisely, for a BCI that can recognize left hand MI versus right
hand MI, the basic features extracted would be the average band power in 8–12 and
16–24 Hz from both channels C3 and C4. Therefore, the EEG signals would be
described by only four features.

There are many ways to compute band-power features from EEG signals
(Herman et al. 2008; Brodu et al. 2011). However, a simple, popular, and efficient
one is to first band-pass filter the EEG signal from a given channel into the fre-
quency band of interest, then to square the resulting signal to compute the signal
power, and finally to average it over time (e.g., over a time window of 1 s). This is
illustrated in Fig. 7.3.

Unfortunately, this basic design is far from being optimal. Indeed, it uses only
two fixed channels. As such, relevant information, measured by other channels
might be missing, and C3 and C4 may not be the best channels for the subject at
hand. Similarly, using the fixed frequency bands 8–12 Hz and 16–24 Hz may not be
the optimal frequency bands for the current subject. In general, much better per-
formances are obtained when using subject-specific designs, with the best channels
and frequency bands optimized for this subject. Using more than two channels is
also known to lead to improved performances, since it enables to collect the rele-
vant information spread over the various EEG sensors.

7.3.2 Toward Advanced BCI Using Multiple EEG Channels

Both the need to use subject-specific channels and the need to use more than two
channels lead to the necessity to design BCI based on multiple channels. This is
confirmed by various studies which suggested that, for motor imagery, eight
channels is a minimum to obtain reasonable performances (Sannelli et al. 2010;
Arvaneh et al. 2011), with optimal performances achieved with a much larger

Fig. 7.3 Signal-processing steps to extract band-power features from raw EEG signals. The EEG
signal displayed here was recorded during right hand motor imagery (the instruction to perform
the imagination was provided at t = 0 s on the plots). The contralateral ERD during imagination is
here clearly visible. Indeed, the signal power in channel C3 (left motor cortex) in 8–12 Hz clearly
decreases during this imagination of a right hand movement
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number, e.g., 48 channels in (Sannelli et al. 2010). However, simply using more
channels will not solve the problem. Indeed, using more channels means extracting
more features, thus increasing the dimensionality of the data and suffering more
from the curse-of-dimensionality. As such, just adding channels may even decrease
performances if too little training data is available. In order to efficiently exploit
multiple EEG channels, three main approaches are available, all of which contribute
to reducing the dimensionality:

• Feature selection algorithm: These are methods to select automatically a subset
of relevant features, among all the features extracted.

• Channel selection algorithms: These are similar methods that select automati-
cally a subset of relevant channels, among all channels available.

• Spatial Filtering algorithms: These are methods that combine several channels
into a single one, generally using weighted linear combinations, from which
features will be extracted.

They are described below.

7.3.2.1 Feature Selection
Feature selection are classical algorithms widely used in machine learning (Guyon
and Elisseeff 2003; Jain and Zongker 1997) and as such also very popular in BCI
design (Garrett et al. 2003). There are too main families of feature selection
algorithms:

• Univariate algorithms: They evaluate the discriminative (or descriptive) power
of each feature individually. Then, they select the N best individual features
(N needs to be defined by the BCI designer). The usefulness of each feature is
typically assessed using measures such as Student t-statistics, which measures
the feature value difference between two classes, correlation-based measures
such as R2, mutual information, which measures the dependence between the
feature value and the class label, etc. (Guyon and Elisseeff 2003). Univariate
methods are usually very fast and computationally efficient but they are also
suboptimal. Indeed, since they only consider the individual feature usefulness,
they ignore possible redundancies or complementarities between features. As
such, the best subset of N features is usually not the N best individual features.
As an example, the N best individual features might be highly redundant and
measure almost the same information. As such using them together would add
very little discriminant power. On the other hand, adding a feature that is
individually not very good but which measures a different information from that
of the best individual ones is likely to improve the discriminative power much
more.

• Multivariate algorithms: They evaluate subsets of features together and keep the
best subset with N features. These algorithms typically use measures of global
performance for the subsets of features, such as measures of classification

140 F. Lotte



performances on the training set (typically using cross-validation (Browne
2000)) or multivariate mutual information measures, see, e.g., (Hall 2000; Pudil
et al. 1994; Peng et al. 2005). This global measure of performance enables to
actually consider the impact of redundancies or complementarities between
features. Some measures also remove the need to manually select the value of
N (the number of features to keep), the best value of N being the number
of features in the best subset identified. However, evaluating the usefulness of
subsets of features leads to very high computational requirements. Indeed, there
are many more possible subsets of any size than individual features. As such
there are many more evaluations to perform. In fact, the number of possible
subsets to evaluate is very often far too high to actually perform all the evalu-
ations in practice. Consequently, multivariate methods usually rely on heuristics
or greedy solutions in order to reduce the number of subsets to evaluate. They
are therefore also suboptimal but usually give much better performances than
univariate methods in practice. On the other hand, if the initial number of
features is very high, multivariate methods may be too slow to use in practice.

7.3.2.2 Channel Selection
Rather than selecting features, one can also select channels and only use features
extracted from the selected channels. While both channel and feature selection
reduce the dimensionality, selecting channels instead of features has some addi-
tional advantages. In particular, using less channels means a faster setup time for the
EEG cap and also a lighter and more comfortable setup for the BCI user. It should
be noted, however, that with the development of dry EEG channels, selecting
channels may become less crucial. Indeed the setup time will not depend on the
number of channel used, and the BCI user will not have more gel in his/her hair if
more channels are used. With dry electrodes, using less channels will still be lighter
and more comfortable for the user though.

Algorithms for EEG channel selection are usually based or inspired from generic
feature selection algorithm. Several of them are actually analogous algorithms that
assess individual channel usefulness or subsets of channels discriminative power
instead of individual features or subset of features. As such, they also use similar
performance measures and have similar properties. Some other channel selection
algorithms are based on spatial filter optimization (see below). Readers interested to
know more about EEG channel selection may refer to the following papers and
associated references (Schröder et al. 2005; Arvaneh et al. 2011; Lal et al. 2004;
Lan et al. 2007), among many other.

7.3.2.3 Spatial Filtering
Spatial filtering consists in using a small number of new channels that are defined as
a linear combination of the original ones:
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~x ¼
X
i

wixi ¼ wX ð7:1Þ

with ~x the spatially filtered signal, xi the EEG signal from channel i, wi the weight
given to that channel in the spatial filter, and X a matrix whose ith row is xi, i.e., X is
the matrix of EEG signals from all channels.

It should be noted that spatial filtering is useful not only because it reduces the
dimension from many EEG channels to a few spatially filtered signals (we typically
use much less spatial filters than original channels), but also because it has a
neurophysiological meaning. Indeed, with EEG, the signals measured on the sur-
face of the scalp are a blurred image of the signals originating from within the brain.
In other words, due to the smearing effect of the skull and brain (a.k.a., volume
conduction effect), the underlying brain signal is spread over several EEG channels.
Therefore, spatial filtering can help recovering this original signal by gathering the
relevant information that is spread over different channels.

There are different ways to define spatial filters. In particular, the weights wi can
be fixed in advance, generally according to neurophysiological knowledge, or they
can be data driven, that is, optimized on training data. Among the fixed spatial
filters, we can notably mention the bipolar and Laplacian which are local spatial
filters that try to locally reduce the smearing effect and some of the background
noise (McFarland et al. 1997). A bipolar filter is defined as the difference between
two neighboring channels, while a Laplacian filter is defined as 4 times the value of
a central channel minus the values of the four channels around. For instance, a
bipolar filter over channel C3 would be defined as C3bipolar ¼ FC3� CP3, while a
Laplacian filter over C3 would be defined as C3Laplacian ¼ 4C3� FC3� C5�
C1� CP3, see also Fig. 7.4. Extracting features from bipolar or Laplacian spatial
filters rather than from the single corresponding electrodes has been shown to
significantly increase classification performances (McFarland et al. 1997). An
inverse solution is another kind of fixed spatial filter (Michel et al. 2004; Baillet
et al. 2001). Inverse solutions are algorithms that enable to estimate the signals
originating from sources within the brain based on the measurements taken from the
scalp. In other words, inverse solutions enable us to look into the activity of specific
brain regions. A word of caution though: Inverse solutions do not provide more
information than what is already available in scalp EEG signals. As such, using
inverse solutions will NOT make a noninvasive BCI as accurate and efficient as an
invasive one. However, by focusing on some specific brain areas, inverse solutions
can contribute to reducing background noise, the smearing effect and irrelevant
information originating from other areas. As such, it has been shown than extracting
features from the signals spatially filtered using inverse solutions (i.e., from the
sources within the brain) leads to higher classification performances than extracting
features directly from scalp EEG signals (Besserve et al. 2011; Noirhomme et al.
2008). In general, using inverse solutions has been shown to lead to high classi-
fication performances (Congedo et al. 2006; Lotte et al. 2009b; Qin et al. 2004;
Kamousi et al. 2005; Grosse-Wentrup et al. 2005). It should be noted that since the
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number of source signals obtained with inverse solutions is often larger than the
initial number of channels, it is necessary to use feature selection or dimensionality
reduction algorithms.

The second category of spatial filters, i.e., data-driven spatial filters, is optimized
for each subject according to training data. As any data-driven algorithm, the spatial
filter weights wi can be estimated in an unsupervised way, that is without the
knowledge of which training data belong to which class, or in a supervised way,
with each training data being labeled with its class. Among the unsupervised spatial
filters, we can mention principal component analysis (PCA), which finds the spatial
filters that explain most of the variance of the data, or independent component
analysis (ICA), which find spatial filters whose resulting signals are independent
from each other (Kachenoura et al. 2008). The later has been shown rather useful to
design spatial filters able to remove or attenuate the effect of artifacts (EOG, EMG,
etc. (Fatourechi et al. 2007)) on EEG signals (Tangermann et al. 2009; Xu et al.
2004; Kachenoura et al. 2008; Brunner et al. 2007). Alternatively, spatial filters can
be optimized in a supervised way, i.e., the weights will be defined in order to
optimize some measure of classification performance. For BCI based on oscillatory
EEG activity, such a spatial filter has been designed: the common spatial patterns
(CSP) algorithm (Ramoser et al. 2000; Blankertz et al. 2008b). This algorithm has
greatly contributed to the increase of performances of this kind of BCI and thus has
become a standard tool in the repertoire of oscillatory activity-based BCI designers.
It is described in more details in the following section, together with some of its
variants.

7.3.3 Common Spatial Patterns and Variants

Informally, the CSP algorithm finds spatial filters w such that the variance of the
filtered signal is maximal for one class and minimal for the other class. Since the

Fig. 7.4 Left channels used in bipolar spatial filtering over channels C3 and C4. Right channels
used in Laplacian spatial filtering over channels C3 and C4

7 A Tutorial on EEG Signal-processing … 143



variance of a signal band-pass filtered in band b is actually the band power of this
signal in band b, this means that CSP finds spatial filters that lead to optimally
discriminant band-power features since their values would be maximally different
between classes. As such, CSP is particularly useful for BCI based on oscillatory
activity since their most useful features are band-power features. As an example, for
BCI based on motor imagery, EEG signals are typically filtered in the 8–30 Hz
band before being spatially filtered with CSP (Ramoser et al. 2000). Indeed, this
band contains both the μ and β rhythms.

Formally, CSP uses the spatial filters w which extremize the following function:

JCSPðwÞ ¼ wX1XT
1w

T

wX2XT
2w

T
¼ wC1wT

wC2wT
ð7:2Þ

where T denotes transpose, Xi is the training band-pass filtered signal matrix for
class i (with the samples as columns and the channels as rows), and Ci the spatial
covariance matrix from class i. In practice, the covariance matrix Ci is defined as the
average covariance matrix of each trial from class i (Blankertz et al. 2008b). In this
equation, wXi is the spatially filtered EEG signal from class i, and wXiXT

i w
T is thus

the variance of the spatially filtered signal, i.e., the band power of the spatially
filtered signal. Therefore, extremizing JCSPðwÞ, i.e., maximizing and minimizing it,
indeed leads to spatially filtered signals whose band power is maximally different
between classes. JCSPðwÞ happens to be a Rayleigh quotient. Therefore, extremizing
it can be solved by generalized eigenvalue decomposition (GEVD). The spatial
filters w that maximize or minimize JCSPðwÞ are thus the eigenvectors corre-
sponding to the largest and lowest eigenvalues, respectively, of the GEVD of
matrices C1 and C2. Typically, six filters (i.e., three pairs), corresponding to the
three largest and three lowest eigenvalues are used. Once these filters obtained, a
CSP feature f is defined as follows:

f ¼ logðwXXTwTÞ ¼ logðwCwTÞ ¼ logðvarðwXÞÞ ð7:3Þ

i.e., the features used are simply the band power of the spatially filtered signals.
CSP requires more channels than fixed spatial filters such as Bipolar or Laplacian,
however in practice, it usually leads to significantly higher classification perfor-
mances (Ramoser et al. 2000). The use of CSP is illustrated in Fig. 7.5. In this
figure, the signals spatially filtered with CSP clearly show difference in variance
(i.e., in band power) between the two classes, hence ensuring high classification
performances.

The CSP algorithm has numerous advantages: First, it leads to high classification
performances. CSP is also versatile, since it works for any ERD/ERS BCI. Finally,
it is computationally efficient and simple to implement. Altogether this makes CSP
one of the most popular and efficient approach for BCI based on oscillatory activity
(Blankertz et al. 2008b).

144 F. Lotte



Nevertheless, despite all these advantages, CSP is not exempt from limitations
and is still not the ultimate signal-processing tool for EEG-based BCI. In particular,
CSP has been shown to be non-robust to noise, to non-stationarities and prone to
overfitting (i.e., it may not generalize well to new data) when little training data is
available (Grosse-Wentrup and Buss 2008; Grosse-Wentrup et al. 2009; Reuderink
and Poel 2008). Finally, despite its versatility, CSP only identifies the relevant
spatial information but not the spectral one. Fortunately, there are ways to make
CSP robust and stable with limited training data and with noisy training data. An
idea is to integrate prior knowledge into the CSP optimization algorithm. Such
knowledge could represent any information we have about what should be a good
spatial filter for instance. This can be neurophysiological prior, data (EEG signals)
or meta-data (e.g., good channels) from other subjects, etc. This knowledge is used
to guide and constraint the CSP optimization algorithm toward good solutions even
with noise, limited data, and non-stationarities (Lotte and Guan 2011). Formally,
this knowledge is represented in a regularization framework that penalizes unlikely
solutions (i.e., spatial filters) that do not satisfy this knowledge therefore enforcing
it. Similarly, prior knowledge can be used to stabilize statistical estimates (here,
covariance matrices) used to optimize the CSP algorithm. Indeed, estimating
covariance matrices from few training data usually leads to poor estimates (Ledoit
and Wolf 2004).

Formally, a regularized CSP (RCSP) can be obtained by maximizing both
Eqs. 7.4 and 7.5:

JRCSP1ðwÞ ¼ w~C1wT

w~C2wT þ kPðwÞ ð7:4Þ

Fig. 7.5 EEG signals spatially filtered using the CSP algorithm. The first two spatial filters (top
filters) are those maximizing the variance of signals from class “left hand motor imagery” while
minimizing that of class “right hand motor imagery.” They correspond to the largest eigenvalues of
the GEVD. The last two filters (bottom filters) are the opposite, they maximize the variance of
class “right hand motor imagery” while minimizing that of class “left hand motor imagery” (they
correspond to the lowest eigenvalues of the GEVD). This can be clearly seen during the periods of
right or left hand motor imagery, in light and dark gray, respectively
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JRCSP2ðwÞ ¼ w~C2wT

w~C1wT þ kPðwÞ ð7:5Þ

with

~Ci ¼ ð1� cÞCi þ cGi ð7:6Þ

In these equations, P(w) is the penalty term that encodes the prior knowledge.
This a positive function of the spatial filter w, whose value will increase if w does
not satisfy the knowledge encoded. Since the filters are obtained by maximizing
JRCSPi, this means that the numerator (which is positive) must be maximized and the
denominator (which is also positive) must be minimized. Since P(w) is positive and
part of the denominator, this means that PðwÞ will be minimized as well, hence
enforcing that the spatial filters w satisfy the prior knowledge. Matrix Gi is another
way of using prior knowledge, in order to stabilize the estimates of the covariance
matrices Ci. If we have any idea about how these covariance matrices should be,
this can be encoded in Gi in order to define a new covariance matrix ~Ci which is a
mix of the matrix Ci estimated on the data and of the prior knowledge Gi. We will
present below what kind of knowledge can be encoded in P(w) and Gi.

For the penalty term P(w), a kind of knowledge that can be used is spatial
knowledge. For instance, from a neurophysiological point of view, we know that
neighboring neurons tend to have similar functions, which supports the idea that
neighboring electrodes should measure similar brain signals (if the electrodes are
close enough to each other), notably because of the smearing effect. Thus, neigh-
boring electrodes should have similar contributions in the spatial filters. In other
words, spatial filters should be spatially smooth. This can be enforced by using the
following penalty term:

PðwÞ ¼
X
i;j

Proxði; jÞðwi � wjÞ2 ð7:7Þ

where Proxði; jÞ measures the proximity of electrodes i and j, and ðwi � wjÞ2 is the
weight difference between electrodes i and j, in the spatial filter. Thus, if two
electrodes are close to each other and have very different weights, the penalty term
P(w) will be high, which would prevent such solutions to be selected during the
optimization of the CSP (Lotte and Guan 2010b). Another knowledge that can be
used is that for a given mental task, not all the brain regions are involved and useful.
As such, some electrodes are unlikely to be useful to classify some specific mental
tasks. This can be encoded in P(w) as well:

PðwÞ ¼ wDwT with Dði; jÞ ¼ channel i ‘‘uselessness’’ if i ¼ j
0 otherwise

�
ð7:8Þ
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Basically, the value of D(i,i) is the penalty for the ith channel. The higher this
penalty, the less likely this channel will have a high contribution in the CSP filters.
The value of this penalty can be defined according to neurophysiological prior
knowledge for instance, large penalties being given to channels unlikely to be
useful and small or no penalty being given to channels that are likely to genuinely
contribute to the filter. However, it may be difficult to precisely define the extent of
the penalty from the literature. Another alternative is the use data previously
recorded from other subjects. Indeed, the optimized CSP filters already obtained
from previous subject give information about which channels have large contri-
butions on average. The inverse of the average contribution of each channel can be
used as the penalty, hence penalizing channels with small average contribution
(Lotte and Guan 2011). Penalty terms are therefore also a nice way to perform
subject-to-subject transfer and re-use information from other subjects. These two
penalties are examples that have proven useful in practice. This usefulness is
notably illustrated in Fig. 7.6, in which spatial filters obtained with the basic CSP
are rather noisy, with strong contributions from channels not expected from a
neurophysiological point of view. On the contrary, the spatial filters obtained using
the two RCSP penalties described previously are much cleaner, spatially smoother
and with strong contributions localized in neurophysiologically relevant areas. This
in turns led to higher classification performances, with CSP obtaining 73.1 %
classification accuracy versus 78.7 % and 77.6 % for the regularized versions (Lotte
and Guan 2011). It should be mentioned, however, that strong contributions from
non-neurophysiologically relevant brain areas in a CSP spatial filter may be present
to perform noise cancelation, and as such does not mean the spatial filter is bad per
se (Haufe et al. 2014). It should also be mentioned that other interesting penalty
terms have been proposed, in order to deal with known noise sources (Blankertz
et al. 2008a), non-stationarities (Samek et al. 2012) or to perform simultaneous
channel selection (Farquhar et al. 2006; Arvaneh et al. 2011).

Matrix Gi in Eq. 7.6 is another way to add prior knowledge. This matrix can
notably be defined as the average covariance matrix obtained from other subjects
who performed the same task. As such it enables to define a good and stable
estimate of the covariance matrices, even if few training EEG data are available for
the target subject. This has been shown to enable us to calibrate BCI system with
2–3 times less training data than with the basic CSP, while maintaining classifi-
cation performances (Lotte and Guan 2010a).

Regularizing CSP using a priori knowledge is thus a nice way to deal with some
limitations of CSP such as its sensitivity to overfitting and its non-robustness to
noise. However, these regularized algorithms cannot address the limitation that CSP
only optimizes the use of the spatial information, but not that of the spectral one. In
general, independently of the use of CSP, there are several ways to optimize the use
of the spectral information. Typically, this consists in identifying, in one way or
another, the relevant frequency bands for the current subject and mental tasks
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performed. For instance, this can be done manually (by trial and errors), or by
looking at the average EEG frequency spectrum in each class. In a more automatic
way, possible methods include extracting band-power features in multiple fre-
quency bands and then selecting the relevant ones using feature selection (Lotte
et al. 2010), by computing statistics on the spectrum to identify the relevant fre-
quencies (Zhong et al. 2008), or even by computing optimal band-pass filters for
classification (Devlaminck 2011). These ideas can be used within the CSP frame-
work in order to optimize the use of both the spatial and spectral information.
Several variants of CSP have been proposed in order to optimize spatial and
spectral filters at the same time (Lemm et al. 2005; Dornhege et al. 2006; Tomioka
et al. 2006; Thomas et al. 2009). A simple and computationally efficient method is
worth describing: The filter bank CSP (FBCSP) (Ang et al. 2012). This method,
illustrated in Fig. 7.7, consists in first filtering EEG signals in multiple frequency
bands using a filter bank. Then, for each frequency band, spatial filters are opti-
mized using the classical CSP algorithm. Finally, among the multiple spatial filters
obtained, the best resulting features are selected using feature selection algorithms
(typically mutual information-based feature selection). As such, this selects both the

Fig. 7.6 Spatial filters (i.e., weight attributed to each channel) obtained to classify left hand
versus right hand motor imagery. The electrodes, represented by black dots, are here seen from
above, with the subject nose on top. a basic CSP algorithm, b RCSP with a penalty term imposing
spatial smoothness, c RCSP with a penalty term penalizing unlikely channels according to EEG
data from other subjects
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best spectral and spatial filters since each feature corresponds to a single frequency
band and CSP spatial filter. This algorithm, although simple, has proven to be very
efficient in practice. It was indeed the algorithm used in the winning entries of all
EEG data sets from the last BCI competition2 (Ang et al. 2012).

7.3.4 Summary for Oscillatory Activity-based BCI

In summary, when designing BCI aiming at recognizing mental states that involve
oscillatory activity, it is important to consider both the spectral and the spatial
information. In order to exploit the spectral information, using band-power features
in relevant frequency bands is an efficient approach. Feature selection is also a nice
tool to find the relevant frequencies. Concerning the spatial information, using or
selecting relevant channels is useful. Spatial filtering is a very efficient solution for
EEG-based BCI in general, and the CSP algorithm is a must-try for BCI based on
oscillatory activity in particular. Moreover, there are several variants of CSP that are
available in order to make it robust to noise, non-stationarity, limited training data
sets, or to jointly optimize spectral and spatial filters. The next section will address
the EEG signal-processing tools for BCI based on evoked potentials, which are
different from the ones described so far, but share some general concepts.

Fig. 7.7 Principle of filter bank common spatial patterns (FBCSP): (1) band-pass filtering the
EEG signals in multiple frequency bands using a filter bank; (2) optimizing CSP spatial filter for
each band; (3) selecting the most relevant filters (both spatial and spectral) using feature selection
on the resulting features

2 BCI competitions are contests to evaluate the best signal processing and classification algorithms
on given brain signals data sets. See http://www.bbci.de/competition/ for more info.
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7.4 EEG Signal-processing Tools for BCI Based on Event-
related Potentials

An event-related potential (ERP) is a brain responses due to some specific stimulus
perceived by the BCI user. A typical ERP used for BCI design is the P300, which is
a positive deflection of the EEG signal occurring about 300 ms after the user
perceived a rare and relevant stimulus (Fazel-Rezai et al. 2012) (see also Fig. 7.8).

ERP are characterized by specific temporal variations with respect to the stim-
ulus onset. As such, contrary to BCI based on oscillatory activity, ERP-based BCI
exploit mostly a temporal information, but rarely a spectral one. However, as for
BCI based on oscillatory activity, ERP-based can also benefit a lot from using the
spatial information. Next section illustrates how the spatial and temporal infor-
mation is used in basic P300-based BCI designs.

7.4.1 Basic Signal-processing Tools for P300-based BCI

In P300-based BCI, the spatial information is typically exploited by focusing
mostly on electrodes located over the parietal lobe (i.e., by extracting features only
for these electrodes), where the P300 is know to originate. As an example, Kru-
sienski et al. recommend to use a set of eight channels, in positions Fz, Cz, P3, Pz,
P4, PO7, Oz, PO8 (see Fig. 7.9) (Krusienski et al. 2006).

Once the relevant spatial information identified, here using, for instance, only the
electrodes mentioned above, features can be extracted for the signal of each of
them. For ERP in general, including the P300, the features generally exploit the
temporal information of the signals, i.e., how the amplitude of the EEG signal
varies with time. This is typically achieved by using the values of preprocessed
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EEG time points as features. More precisely, features for ERP are generally
extracted by (1) low-pass or band-pass filtering the signals (e.g., in 1–12 Hz for the
P300), ERP being generally slow waves, (2) downsampling the filtered signals, in
order to reduce the number of EEG time points and thus the dimensionality of the
problem, and (3) gathering the values of the remaining EEG time points from all
considered channels into a feature vector that will be used as input to a classifier.
This process is illustrated in Fig. 7.10 to extract features from channel Pz for a
P300-based BCI experiment.

Once the features extracted, they can be provided to a classifier which will be
trained to assigned them to the target class (presence of an ERP) or to the nontarget
class (absence of an ERP). This is often achieved using classical classifiers such as
LDA or SVM (Lotte et al. 2007). More recently, automatically regularized LDA

Fig. 7.9 Recommended electrodes for P300-based BCI design, according to (Krusienski et al.
2006)

Fig. 7.10 Typical process to extract features from a channel of EEG data for a P300-based BCI
design. On this picture, we can see the P300 becoming more visible with the different processing
steps
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have been increasingly used (Lotte and Guan 2009; Blankertz et al. 2010), as well
as Bayesian LDA (Hoffmann et al. 2008; Rivet et al. 2009). Both variants of LDA
are specifically designed to be more resistant to the curse-of-dimensionality through
the use of automatic regularization. As such, they have proven to be very effective
in practice, and superior to classical LDA. Indeed, the number of features is gen-
erally higher for ERP-based BCI than for those based on oscillatory activity.
Actually, many time points are usually needed to describe ERP but only a few
frequency bands (or only one) to describe oscillatory activity. Alternatively, feature
selection or channel selection techniques can also be used to deal with this high
dimensionality (Lotte et al. 2009a; Rakotomamonjy and Guigue 2008; Krusienski
et al. 2006). As for BCI based on oscillatory activity, spatial filters can also prove
very useful.

7.4.2 Spatial Filters for ERP-based BCI

As mentioned above, with ERP the number of features is usually quite large, with
many features per channel and many channels used. The tools described for
oscillatory activity-based BCI, i.e., feature selection, channel selection, or spatial
filtering can be used to deal with that. While feature and channel selection algo-
rithms are the same (these are generic algorithms), spatial filtering algorithms for
ERP are different. One may wonder why CSP could not be used for ERP classi-
fication. This is due to the fact that a crucial information for classifying ERP is the
EEG time course. However, CSP completely ignores this time course as it only
considers the average power. Therefore, CSP is not suitable for ERP classification.
Fortunately, other spatial filters have been specifically designed for this task.

One useful spatial filter available is the Fisher spatial filter (Hoffmann et al.
2006). This filter uses the Fisher criterion for optimal class separability. Informally,
this criterion aims at maximizing the between-class variance, i.e., the distance
between the different classes (we want the feature vectors from the different classes
to be as far apart from each other as possible, i.e., as different as possible) while
minimizing the within-class variance, i.e., the distance between the feature vectors
from the same class (we want the feature vectors from the same class to be as
similar as possible). Formally, this means maximizing the following objective
function:

JFisher ¼ trðSbÞ
trðSwÞ ð7:9Þ

with

Sb ¼
XNc

k¼1

pkð�xk � �xÞð�xk � �xÞT ð7:10Þ
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and

Sw ¼
XNc

k¼1

pk
X
i2Ck

ðxi � �xkÞðxi � �xkÞT ð7:11Þ

In these equations, Sb is the between-class variance, Sw the within-class variance,
Nc is the number of classes, xi is the ith feature vector, �v is the average of all vectors
v, Ck is the kth class, and pk the probability of class k.

This criterion is widely used in machine learning in general (Duda et al. 2001)
and can be used to find spatial filters such that the resulting features maximize this
criterion and thus the discriminability between the classes. This is what the Fisher
spatial filter does. It finds the spatial filters such that the spatially filtered EEG time
course (i.e., the feature vector) is maximally different between classes, according to
the Fisher criterion. This is achieved by replacing xi (the feature vector) by wXi (i.e.,
the spatially filtered signal) in Eqs. 7.10 and 7.11. This gives an objective function

of the form JðwÞ ¼ wŜbwT

wŜwwT , which, like the CSP algorithm, can be solved by GEVD.

This has been showed to be very efficient in practice (Hoffmann et al. 2006).
Another option, that has also proved very efficient in practice, is the xDAWN

spatial filter (Rivet et al. 2009). This spatial filter, also dedicated to ERP classifi-
cation, uses a different criterion from that of the Fisher spatial filter. xDAWN aims
at maximizing the signal-to-signal plus noise ratio. Informally, this means that
xDAWN aims at enhancing the ERP response, at making the ERP more visible in
the middle of the noise. Formally, xDAWN finds spatial filters that maximize the
following objective function:

JxDAWN ¼ wADDTATwT

wXXTwT
ð7:12Þ

where A is the time course of the ERP response to detect for each channel (esti-
mated from data, usually using a least square estimate) and D is a matrix containing
the positions of target stimuli that should evoke the ERP. In this equation, the
numerator represents the signal, i.e., the relevant information we want to enhance.
Indeed, wADDTATwT is the power of the time course of the ERP responses after
spatial filtering. On the contrary, in the denominator, wXXTwT is the variance of all
EEG signals after spatial filtering. Thus, it contains both the signal (the ERP) plus
the noise. Therefore, maximizing JxDAWN actually maximizes the signal, i.e., it
enhances the ERP response, and simultaneously minimizes the signal plus the
noise, i.e., it makes the noise as small as possible (Rivet et al. 2009). This has
indeed been shown to lead to much better ERP classification performance.

In practice, spatial filters have proven to be useful for ERP-based BCI (in par-
ticular for P300-based BCI), especially when little training data are available. From a
theoretical point of view, this was to be expected. Actually, contrary to CSP and band
power which extract nonlinear features (the power of the signal is a quadratic
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operation), features for ERP are all linear and linear operations are commutative.
Since BCI classifiers, e.g., LDA, are generally also linear, this means that the clas-
sifier could theoretically learn the spatial filter as well. Indeed, both linearly com-
bining the original features X for spatial filtering (F = WX), then linearly combining
the spatially filtered signals for classification (y ¼ wF ¼ wðWXÞ ¼ ŴX) or directly
linearly combining the original features for classification (y = WX) are overall a
simple linear operation. If enough training data are available, the classifier, e.g., LDA,
would not need spatial filtering. However, in practice, there is often little training data
available, and first performing a spatial filtering eases the subsequent task of the
classifier by reducing the dimensionality of the problem. Altogether, this means that
with enough training data, spatial filtering for ERPmay not be necessary, and leaving
the classifier learn everything would be more optimal. Otherwise, if few training data
are available, which is often the case in practice, then spatial filtering can benefit a lot
to ERP classification (see also Rivet et al. (2009) for more discussion of this topic).

7.4.3 Summary of Signal-processing Tools for ERP-based BCI

In summary, when designing ERP-based BCI, it is important to use the temporal
information. This is mostly achieved by using the amplitude of preprocessed EEG
time points as features, with low-pass or band-pass filtering and downsampling as
preprocessing. Feature selection algorithms can also prove useful. It is also
important to consider the spatial information. To do so, either using or selecting
relevant channels is useful. Using spatial filtering algorithms such as xDAWN or
Fisher spatial filters can also prove a very efficient solution, particularly when little
training data are available. In the following, we will briefly describe some alter-
native signal-processing tools that are less used but can also prove useful in
practice.

7.5 Alternative Methods

So far, this chapter has described the main tools used to recognize mental states in
EEG-based BCI. They are efficient and usually simple tools that have become part
of the standard toolbox of BCI designers. However, there are other signal-
processing tools, and in particular other kinds of features or information sources that
can be exploited to process EEG signals. Without being exhaustive, this section
briefly presents some of these tools for interested readers, together with corre-
sponding references. The alternative EEG feature representations that can be used
include the following four categories:

• Temporal representations: Temporal representations measure how the signal
varies with time. Contrary to basic features used for ERP, which simply consist
in the EEG time points over time, some measures have been developed in order
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to characterize and quantify those variations. The corresponding features include
Hjorth parameters (Obermeier et al. 2001) or time domain parameters (TDP)
(Vidaurre et al. 2009). Recent research results have even suggested that TDP
could be more efficient that the gold-standard band-power features (Vidaurre
et al. 2009; Ofner et al. 2011).

• Connectivity measures: They measure how much the signal from two channels
are correlated, synchronized or even if one signal may be the cause of the other
one. In other words, connectivity features measure how the signal of two
channels are related. This is particularly useful for BCI since it is known that, in
the brain, there are many long distance communications between separated areas
(Varela et al. 2001). As such, connectivity features are increasingly used for BCI
and seem to be a very valuable complement to traditional features. Connectivity
features include coherence, phase locking values or directed transfer function
(DFT) (Krusienski et al. 2012; Grosse-Wentrup 2009; Gouy-Pailler et al. 2007;
Caramia et al. 2014).

• Complexity measures: They naturally measure how complex the EEG signal
may be, i.e., they measure its regularity or how predictable it can be. This has
also been shown to provide information about the mental state of the user and
also proved to provide complementary information to classical features such as
band-power features. The features from this category used in BCI include
approximate entropy (Balli and Palaniappan 2010), predictive complexity
(Brodu et al. 2012) or waveform length (Lotte 2012).

• Chaos theory-inspired measures: Another category of features that has been
explored is chaos-related measures, which assess how chaotic the EEG signal
can be, or which chaotic properties it can have. This has also been shown to
extract relevant information. Examples of corresponding features include fractal
dimension (Boostani and Moradi 2004) or multi-fractal cumulants (Brodu et al.
2012).

While these various alternative features may not be as efficient as the standards
tools such as band-power features, they usually extract a complementary infor-
mation. Consequently, using band-power features together with some of these
alternative features has led to increase classification performances, higher that the
performances obtained with any of these features used alone (Dornhege et al. 2004;
Brodu et al. 2012; Lotte 2012).

It is also important to realize that while several spatial filters have been designed
for BCI, they are optimized for a specific type of feature. For instance, CSP is the
optimal spatial filter for band-power features and xDAWN or Fisher spatial filters
are optimal spatial filters for EEG time points features. However, using such spatial
filters with other features, e.g., with the alternative features described above, would
be clearly suboptimal. Designing and using spatial filters dedicated to these alter-
native features are therefore necessary. Results with waveform length features
indeed suggested that dedicated spatial filters for each feature significantly improve
classification performances (Lotte 2012).
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7.6 Discussion

Many EEG signal-processing tools are available in order to classify EEG signals
into the corresponding user’s mental state. However, EEG signal processing is a
very difficult task, due to the noise, non-stationarity, complexity of the signals as
well as due to the limited amount of training data available. As such, the existing
tools are still not perfect, and many research challenges are still open. In particular,
it is necessary to explore and design EEG features that are (1) more informative, in
order to reach better performances, (2) robust, to noise and artifacts, in order to use
the BCI outside laboratories, potentially with moving users, (3) invariant, to deal
with non-stationarity and session-to-session transfer and (4) universal, in order to
design subject-independent BCI, i.e., BCI that can work for any user, without the
need for individual calibration. As we have seen, some existing tools can partially
address, or at least, mitigate such problems. Nevertheless, there is so far no EEG
signal-processing tool that has simultaneously all these properties and that is per-
fectly robust, invariant, and universal. Therefore, there are still exciting research
works ahead.

7.7 Conclusion

In this chapter, we have provided a tutorial and overview of EEG signal-processing
tools for users’ mental-state recognition. We have presented the importance of the
feature extraction and classification components. As we have seen, there are
three main sources of information that can be used to design EEG-based BCI:
(1) the spectral information, which is mostly used with band-power features; (2) the
temporal information, represented as the amplitude of preprocessed EEG time
points, and (3) the spatial information, which can be exploited by using channel
selection and spatial filtering (e.g., CSP or xDAWN). For BCI based on oscillatory
activity, the spectral and spatial information are the most useful, while for ERP-
based BCI, the temporal and spatial information are the most relevant. We have also
briefly explored some alternative sources of information that can also complement
the 3 main sources mentioned above.

This chapter aimed at being didactic and easily accessible, in order to help
people not already familiar with EEG signal processing to start working in this area
or to start designing and using BCI in their own work or activities. Indeed, BCI
being such a multidisciplinary topic, it is usually difficult to understand enough of
the different scientific domains involved to appropriately use BCI systems. It should
also be mentioned that several software tools are now freely available to help users
design BCI systems, e.g., Biosig (Schlögl et al. 2007), BCI2000 (Mellinger and
Schalk 2007) or OpenViBE (Renard et al. 2010). For instance, with OpenViBE, it is
possible to design a new and complete BCI system without writing a single line of
code. With such tools and this tutorial, we hope to make BCI design and use more
accessible, e.g., to design brain-computer music interfaces (BCMI).
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7.8 Questions

Please find below 10 questions to reflect on this chapter and try to grasp the
essential messages:

1. Do we need feature extraction? In particular why not using the raw EEG
signals as input to the classifier?

2. What part of the EEG signal-processing pipeline can be trained/optimized
based on the training data?

3. Can we design a BCI system that would work for all users (a so-called subject-
independent BCI)? If so, are BCI designed specifically for one subject still
relevant?

4. Are univariate and multivariate feature selection methods both suboptimal in
general? If so, why using one type or the other?

5. By using an inverse solution with scalp EEG signals, can I always reach a
similar information about brain activity as I would get with invasive
recordings?

6. What would be a good reason to avoid using spatial filters for BCI?
7. Which spatial filter to you have to try when designing an oscillatory activity-

based BCI?
8. Let us assume that you want to design an EEG-based BCI, whatever its type:

Can CSP be always useful to design such a BCI?
9. Among typical features for oscillatory activity-based BCI (i.e., band-power

features) and ERP-based BCI (i.e., amplitude of the preprocessed EEG time
points), which ones are linear and which ones are not (if applicable)?

10. Let us assume you want to explore a new type of features to classify EEG data:
Could they benefit from spatial filtering and if so, which one?
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