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Foreword

Brain-Computer Music Interfacing (BCMI):
One Place Where Science and Music May Meet
in Deep Theoretical Territory

There is little doubt that as we gain facility in the intense, disciplined practices
required to probe the origins of musical impulses, pathways of emergence can be
observed and experienced by tracing backward down trails left in the normally
outward flowering of forms from the brain, from their initial neural geneses, upward
through their manifestations in neural network holarchies,1 and finally to their
manifestations in localized, time‐space expressions. Along these pathways, the
languaged forms of the presumably testable theoretical models of science and the
investigative, speculative models of propositional music converge.

Propositional music involves a point of view about composing in which com-
posers might build proposed models of worlds, universes, evolution, brains, con-
sciousness or whole domains of thought and life, and then proceed to make
dynamical musical embodiments of these models, inviting us to experience them in
spontaneously emerging sonic forms (Rosenboom 2000a). For musicians who are
interested in deep conceptual and theoretical investigations, BCMI is a natural
attractor and a predictable outgrowth from mid-twentieth century explosions in
interdisciplinary thinking, Cybernetics, Artificial Intelligence, Linguistics, Systems
Theory, self-organization, morphogenesis, algorithmic music, and so on. Following
early explorations in BCMI from that time, we are now experiencing a new
flowering of what might be called antidisciplinary thinking in the arts and sciences,
which, among other things, reexamines fundamental distinctions among scientific
and cultural languages (Beech 2013).

Some extant model paradigms that employ BCMI in artistic creation can legit-
imately claim to be new musical propositions. Others focus more on direct map-
pings of neurological data onto acoustic parameters of sound or components of
traditionally familiar musical structures. Both may reveal fruitful investigative

1 The term holarchy is used to refer to structures that have both top-down and bottom-up
dynamical aspects.
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pathways; and there is a big difference between them. Direct mapping, often called
sonification, draws on the profoundly integrative powers of auditory perception—
possibly enhanced by musical experience and training—to hear relationships and
find clues to hidden orders and unsuspected patterns. With careful, active imagi-
native listening, we can learn to distinguish the features of complexity and parse
subtle relationships among differentiable, complex entities. Our auditory perception
and cognition toolkits can be fine-tuned in these respects to extraordinary degrees.
Later, we can probe these newly perceived patterns and quantify them with other
investigative tools. Aesthetic propositions, on the other hand, may probe the very
nature of thought, itself—in this case musical thought—and its symbiotic inhabiting
of the brain in co-creative, adaptive, emergent, feedback-driven phenomena. Cir-
cling back to scientific exploration, these musical BCMI propositions may fuel
important investigations into the nature of prediction, presumed causal relation-
ships, ways to understand the global functions of the brain and other insights
leading to paradigm shifts, from which even new practical applications may follow.
Here again, the integrative powers of musical perception and musical cognition may
be brought to bear on deep aesthetic investigations, which may, in return, offer
important insights and clues for scientific explorations and theoretical modeling.
Musical BCMI propositions, if we are alert, may take us back to first principles
again and again, questioning our understanding of evolution and categorization.
Recalling Charles Sanders Peirce’s doctrine of dicisigns, we might soon discover a
biomusical semiotics emerging from neuro-musical propositions. See (Stejernfelt
2014) for an analysis of the doctrine of dicisigns.

We should be careful, though, to avoid the potential misconception of BCMI as
MCMI (Mind-Computer Music Interfacing). At the moment, we don’t really know
any more about what the mind is than we know about what energy is. Richard
Feynman reminds us that all we really know about energy is that it is related to
some quantity we can calculate that doesn’t change when things happen (conser-
vation law) (Feynman 1995). Similarly, we don’t really have a good characteriza-
tion of what mind is, except we claim to be able to sense its presence. We do have
many interesting speculative theories about the mind’s emergence (Swan 2013), and
some may pan out. It may be that minds have evolved to be able to know—perhaps
an illusion—what other minds are thinking and feeling.2 Perhaps the concept of
mind equates to what we believe we can know as being relatively constant when we
are observing relationships among entities that we differentiate as individually
unique and label as being conscious. Is mind a constraint-based, emergent phe-
nomena that might have begun already with proto-life forms (Deacon 2013)?

And what about intelligence? Nobody seems to really know clearly what it is,
but everyone believes they can tell when it is absent. Are intelligences differentiable
and knowable in advance of their encounter? Perhaps intelligence might be also

2 I’ve been thinking about this a lot after discussing it with cognitive scientist (also a musician),
Scott Makeig, Driector of the Swartz Center for Computational Neuroscience at the University of
California, San Diego (UCSD).
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considered as a field, or intellisphere, perhaps even on inter-stellar scales (Rosen-
boom 2003b). Stjernfelt invokes the term cognitive field in describing Peirce’s
undoing of the misleading dualisms that dangerously pocket this intellectual terrain,
particularly when considering causal modeling (Stjernfelt 2014). Yet, how do we
describe what’s going on in the brain in holistic terms, the interacting of neural
atoms in a macro-form? Here again we have propositional language issues. There is
imprecision in propositions, though imprecise meanings also have value. The term,
field, has a precise meaning, as in vector field, but also imprecise ones, as in the
nature of chreods or zones of influence (Thom 1975). Quantum paradigms have
taught us that the universe is not a precision instrument. Imprecision and approx-
imation cannot be overcome. Rather, though, they have value in permitting guided
explorations into the fringes of thought.

So BCMI is striving to balance its need for precision in developing practical
applications with its also critical need to explore imprecise paradigms, which often
enable breakthroughs in thought and vision. BCMI is destined to open new doors,
as long as we remain open to the unpredictable. We need to gain better under-
standing of global complexity in both brains and music. BCMI may offer useful
tools for this. Music is fundamentally about time, and therefore about qualities of
change. The spatiotemporal evolution of holistic brain phenomena is also about
qualities of change. This is a good match for unveiling the future.

My own work with BCMI began in the 1960s (Rosenboom 1972, 1976a, 1976b,
1977, 1990, 1997, 2000b, 2000c, 2003a, 2006). Recently, this work has resurfaced,
re-energized by new, accessible technology, and significant advances in methods
for analyzing brain signals. The most recent example is a new composition called
Ringing Minds, created in 2014 in collaboration with Tim Mullen and Alex Khalil
at the Schwartz Center for Computational Neuroscience in the University of
California at San Diego (UCSD). Ringing Minds builds on techniques for extracting
principal oscillation patterns (POPs or eigenmodes) from maximally independent
sources of intracranial electroencephalogram (EEG) data (Mullen et al. 2012).
These tools were originally developed for epilepsy research. Mullen adapted them
to analyze EEG data from an ensemble of five brain music performers. We treated
the data as if it were arising from a collective brain, a five-person brain, and
extracted eigenmode data in which we could identify distributions of these resonant
modes across the collective brain. We also extracted event-related potentials (ERPs)
by averaging simultaneous signals spatially, across the five brains, instead of across
time with a single brain. In this way, we hoped to extract pointers to attention shifts
in the five-performer group resulting from musical events emanating from two
improvising musicians on stage. I played electric violin, and Khalil built and played
the lithophone, an instrument that looks like a xylophone, but made with stone slabs
struck with a hammer. I built a software-based electronic music instrument for this
work, the central core of which is a very large array of complex resonators that can
respond to the collective EEG eigenmode data in a way that generates a vast sound
field of ringing components. The control parameters of the instrument can also be
varied in real-time performance. The instrument is, in effect, a compositional model
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inspired by the analytical model working on the EEG signals from the five-brain
performing group. The model thus becomes an instrument.

Ringing Minds investigates many things. Among them are complex relationships
manifesting among the components of a sound environment—the resonator field—
and a group of individuals, who may interact with this environment via natural
listening patterns and/or use biofeedback techniques to try to influence that envi-
ronment. With careful, active imaginative listening to the results of this fine-grained
resonant field, one can imagine witnessing both local and global processes inter-
acting and perceive small-scale, quantum processes zooming out into larger scale
arenas of human perceptibility. The local is mirrored in the global and is impressed
on the environment, which bears witness to both the emergence of coherence
among components and the loss of coherence. This propositional neuromusical
model is analogous to an intriguing propositional physical model that relates
objective and subjective quantum states to their environment as witness (Ollivier
et al. 2004).

This new volume, Guide to Brain-Computer Music Interfacing, offers a won-
derful collection of BCMI tools with which adventuresome explorers may pursue
both practical and propositional models in both neuromusic and music neurosci-
ence. In an introductory chapter, Eduardo Reck Miranda contextualizes what fol-
lows under an umbrella with three major challenges: extracting meaningful control
information from brain signals, designing effective generative music techniques that
respond to this information, and effectively improving peoples lives. That’s a tall
order, but achievable with today’s tools. Important techniques for prosthetics,
device control, and handsfree interaction with computers follow. Very important
work on event-related potentials (ERPs), especially with P300 waves, is included.
P300 analysis was critical to my 1970s work on detecting possible neural correlates
of attention shifts associated with musical features and forms (Rosenboom 1977,
1990, 1997, 2000b, 2000c). In that early work a combination of template matching
and signal averaging techniques—then implemented with real-time, hardware
computing devices—was used to shorten the normally long latencies separating
targeted features in musical (or raw acoustic) forms from the points in time when
their ERP concomitants could be reliably observed. A means for calculating pre-
dicted expectancy quantifications for events in sequences was also employed and
used to predict when and where ERPs with strong P300 components were likely to
occur. These predictions identified time points where analysis algorithms would be
triggered. Feedback about successful and unsuccessful predictions was then used to
influence sound synthesis and compositional form-generating algorithms.

Later in this volume, questions are explored about semiotic BCI—recalling
Peirce again—and the use of machine learning to dig into relationships among
music and emotions. This is complex and delicate territory rife with presumptions
about musical emotions that need clarification; and some of the tools offered here
may be helpful in that quest. Excellent tutorials on signal extraction, brain electric
fields, passive BCI, and applications for genetic algorithms are offered along with
historical surveys. In a penultimate chapter, Miranda and colleagues return to
describe how BCMI research has received motivation from health and medical
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sectors as well as the entertainment industry and to advocate for the importance of
“the potential impact on musical creativity of better scientific understanding of the
brain, and the development of increasingly sophisticated technology to scan its
activity.” This book opens many doors.

Valencia, US David Rosenboom
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Preface

The idea of using brainwaves to make music dates back from the 1960s, when
composers such as Alvin Lucier, Richard Teitelbaum, and David Rosemboom, to
cite but three, looked into generating music with the electroencephalogram,
abbreviated as EEG.

Lucier placed electrodes on his own scalp, amplified the signals, and relayed them
through loudspeakers that were “directly coupled to percussion instruments,
including large gongs, cymbals, tympani, metal ashcans, cardboard boxes, bass and
snare drums” (Lucier 1980). The low frequency vibrations emitted by the loud-
speakers set the surfaces and membranes of the percussion instruments into vibration.
Teitelbaum used various biological signals including the EEG and ECG (electro-
cardiogram) to control electronic synthesisers (Teitelbaum 1976). Rosemboom sub-
sequently looked into designing more sophisticated systems inspired by Cybernetics,
exploring the concept of biofeedback in real-time music making (Rosenboom 1990).

Those pioneering composers left an important legacy of concepts and practices.
However, apart from very few sparse initiatives here and there, the idea seems to
have faded into oblivion until the end of the twentieth century. We reckon that one
of the reasons for this stagnation is that EEG equipment was not as widely available
as it is today. Moreover, techniques for analyzing EEG signals were not as well
developed as they are today, and consequently we lacked sophisticated handling
and understanding of the EEG.

A notable development for musicians was the appearance of a piece of equip-
ment called BioMuse in the 1990s, manufactured by Benjamin Knapp and Hugh
Lusted (1996). BioMuse provided a portable kit for digitally processing bio-signals
such as the EEG, muscle movement, heartbeat, and so on. It was able to convert
these signals into MIDI data, which facilitated the implementation of MIDI con-
trollers using the EEG.

Within the last two decades or so, we have witnessed the emergence of the field
of Brain-Computer Interfacing, or BCI (also referred to as Brain-Machine Inter-
facing, or BMI). Research into BCI is aimed at the development of technology to
enable people control machines by means of commands expressed by signals, such
as the EEG, detected directly from their brain. Most of this research is developed
within Biomedical Engineering and is aimed at giving severely paralyzed patients
the ability to control artificial limbs, wheel chairs, robotic equipment, machines, and
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so on. Obviously, in these cases, the user must be able to actually control these
devices voluntarily and as precisely as possible. The user needs to produce specific
patterns of EEG to command a machine and such a machine needs to interpret those
patterns and do what the user wants it to do.

Continuing progress in BCI research combined with the emergence of more
affordable EEG equipment are fostering a renaissance of approaches to making
music with brain signals: the field of Brain-Computer Music Interfacing, abbrevi-
ated as BCMI, is now well established (Miranda 2010).

The field of BCMI has developed in tandem with the field of BCI. As with BCI,
in BCMI the notion of active control of a system is an important aspect (Miranda
et al. 2005; Miranda et al. 2003). However, the notion of control in an artistic
application can, and should, be approached with flexibility. There might be cases
where a composer might want to avoid explicit control altogether. Nevertheless, in
order to make progress, the science and engineering behind BCMI research should
be aimed at the development of control methods as well as approaches for mapping
EEG information into musical information. In practice, composers may of course
choose to ignore all of these, depending on what they want to achieve.

A number of low cost EEG equipment have been appearing in the market, most
of which are commercialized in association with some sort of system for aiding
meditation, relaxation, and so on. Whereas these have given musicians wider access
to such technology, at the same time, however, pressures to manufacture them at
low cost mean that the great majority of these systems fail to relay a reliable EEG
signal for processing. This is an important fact we should all bear in mind,
including those who are not so concerned with active control. Even in those cases
where we might not wish to harness the EEG signal for explicit control of a music
system, we do need a reliable EEG signal nevertheless. Otherwise we might end up
making music with signals that are anything but the actual EEG. Therefore, the
essential ingredients for making progress in the field of BCMI are: reliable hard-
ware, powerful techniques for EEG signal processing, and creative methods for
rendering the EEG signal into music. Guide to Brain-Computer Music Interfacing
brings a number of chapters reporting on developments for the last two ingredients.

This book emerged from a workshop on EEG and music composition that took
place in 2011 at the University of Bordeaux, France, supported by the French
Association for Musical Informatics (Association Française d’Informatique Musi-
cale, AFIM). The workshop included presentations that were entirely technical,
focusing on hardcore EEG analysis, and ones that focused on practical musical
applications. This is reflected in this book, but in addition to chapters developed
from papers presented at the workshop, we also commissioned chapters from
experts on topics that were not covered by the workshop.

We would like to thank all authors for their valuable contributions and Springer
for the opportunity to publish this book.

Eduardo Reck Miranda
Julien Castet
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1Brain–Computer Music Interfacing:
Interdisciplinary Research
at the Crossroads of Music, Science
and Biomedical Engineering

Eduardo Reck Miranda

Abstract

Research into brain–computer music interfacing (BCMI) involves three major
challenges: the extraction of meaningful control information from signals
emanating from the brain, the design of generative music techniques that
respond to such information and the definition of ways in which such technology
can effectively improve the lives of people with special needs and address
therapeutic needs. This chapter discusses the first two challenges, in particular
the music technology side of BCMI research, which has been largely overlooked
by colleagues working in this field. After a brief historical account of the field,
the author reviews the pioneering research into BCMI that has been developed at
Plymouth University’s Interdisciplinary Centre for Computer Music Research
(ICCMR) within the last decade or so. The chapter introduces examples
illustrating ICCMR’s developments and glances at current work informed by
cognitive experiments.

1.1 Introduction

Until recently, developments in electronic technologies have seldom addressed the
well being of people with special needs within the health and education sectors. But
now, brain–computer music interfacing (BCMI) research is opening up fascinating
possibilities at these fronts. BCMI systems have the potential to be used as recre-
ational devices for people with physical disability, to support music-based activity
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for palliative care, in occupational therapy, and indeed in music therapy, in addition
to innovative applications in composition and music performance. It should be
mentioned, however, that although I have an avid interest in developing assistive
technology for medical and special needs, there are a number of potentially inter-
esting artistic uses of BCMI technology beyond such applications.

Plymouth University’s Interdisciplinary Centre for Computer Music Research
(ICCMR) is a main protagonist of the field of BCMI. This chapter reviews the
pioneering research we have been developing at ICCMR for over a decade. Our
approach is hands-on orientated. We often start by dreaming scenarios followed by
implementing proof-of-concept or prototype systems. Then, as we test these sys-
tems, we learn what needs to be further developed, improved, discarded, replaced
and so on. These often lead to new dreamed scenarios and the cycle continues
incrementally. In reality, as we shall see below, vision, practice and theory do not
necessarily take place sequentially in our research.

This chapter begins with a brief discussion introduction to the field and
approaches to BCMI. Then, it introduces two BCMI systems that my team and I
have designed in response to two dreamed scenarios:

1. Would it be possible to play a musical instrument with signals from the brain?
No hands used.

2. Would it be possible to build a BCMI system for a person with locked-in
syndrome to make music?

Next, I briefly discuss what I have learned from building these systems and
identify challenges for making further progress. I suggest that one of the pressing
challenges of BCMI research is to gain a better understanding of how the brain
processes music, with a view on establishing detectable meaningful musical neural
mechanisms for BCMI control. Then, I present two experiments aimed at gaining
some of such understanding: one addressing active listening and the other
addressing tonal processing. Each experiment is followed by an introduction to
work-in-progress prototypes that I developed in response to the dreamed scenarios
that emerged from the experiments.

1.2 Background to BCMI

Human brainwaves were first measured in the mid of 1920s by Hans Berger (1969).
Today, the EEG has become one of the most useful tools in the diagnosis of
epilepsy and other neurological disorders. In the early 1970s, Jacques Vidal pro-
posed to use the EEG to interface with a computer in a paper entitled Toward Direct
Brain-Computer Communication (Vidal 1973). Many attempts at using the EEG as
a means to interface with machines followed with various degrees of success; for
instance, in early 1990s, Jonathan Wolpaw and colleagues developed a prototype of
a system that enabled primitive control of a computer cursor by subjects with severe
motor deficits (Walpaw et al. 1991).
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As for using EEG in music, as early as 1934 a paper in the journal Brain had
reported a method to listen to the EEG (Adrian and Matthews 1934). But it is now
generally accepted that it was composer Alvin Lucier who composed the first
musical piece using EEG in 1965: Music for Solo Performer (Lucier 1976).
Composers such as Richard Teitelbaum (1976), Rosenboom (1976) and a few
others followed with a number of interesting ideas and pieces of music.

The great majority of those early pioneers who have attempted to use the EEG to
make music have done so by direct sonification of EEG signals. However, in 1990,
David Rosenboom introduced a musical system whose parameters were driven by
EEG components believed to be associated with shifts of the performer’s selective
attention (Rosenboom 1990). Rosenboom explored the hypothesis that it might be
possible to detect certain aspects of our musical experience in the EEG signal. This
was an important step for BCMI research as Rosenboom pushed the practice
beyond the direct sonification of EEG signals, towards the notion of digging for
potentially useful information in the EEG to make music with.

1.3 Approaches to Brain–Computer Music Interfacing

Research into brain–computer interfacing (BCI) is concerned with devices whereby
users voluntarily control a system with signals from their brain. The most com-
monly used brain activity signal in BCI is the EEG, which stands for electroen-
cephalogram. In such cases, users must steer their EEG in a way or another to
control the system. This informs the hard approach to BCMI: a system whereby the
user voluntarily controls music. However, it is arguable that voluntary control may
not be always necessary for a music system. For instance, a music system may
simply react to the mental states of the user, producing music that is not necessarily
explicitly controlled. We shall refer to such systems as soft BCMI, as opposed to
hard BCMI. In this chapter, however, we will give focus to hard BCMI: we are
interested in active, voluntary control of music. An example of passive soft BCMI
is introduced in Chap. 13.

A hard BCMI system requires users to produce patterns of brain signals vol-
untarily to control musical output and this often requires training. Therefore,
playing music with a BCMI should normally require ability and learning. This can
be attractive for many individuals; for example, as an occupational therapeutic tool
for severe physical impairment.

In a previous paper, we identified two approaches to control the EEG for a BCI:
conscious effort and operant conditioning (Miranda et al. 2011). Conscious effort
induces changes in the EEG by engaging in specific cognitive tasks designed to
produce specific EEG activity (Curran and Stokes 2003; Miranda et al. 2005). The
cognitive task that is most often used in this case is motor imagery because it is
relatively straightforward to detect changes in the EEG of a subject imagining the
movement of a limb such as, for instance, the left hand (Pfurtscheller et al. 2007).
Other forms of imagery, such as auditory, visual and navigation imagery, can be
used as well.
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Operant conditioning involves the presentation of a task in conjunction with
some form of feedback, which allows the user to develop unconscious control of the
EEG. Once the brain is conditioned, the user is able to accomplish the task without
being conscious of the EEG activity that needs to be generated (Kaplan et al. 2005).

Somewhere in between the two aforementioned approaches is a paradigm
referred to as evoked potentials, or event-related potentials, abbreviated as ERP.
ERP occur from perception of a user to an external stimulus or set of stimuli.
Typically, ERP can be evoked from auditory, visual or tactile stimuli producing
auditory-, visual- and somatosensory-evoked potentials, respectively. ERP are the
electrophysiological response to a single event and therefore is problematic to
detect in EEG on a single trial basis, becoming lost in the noise of ongoing brain
activity. But if a user is subjected to repeated stimulation at short intervals, the
brain’s response to each subsequent stimulus is evoked before the response to the
prior stimulus has terminated. In this case, a steady-state response is elicited, rather
than left to return to a baseline state (Regan 1989).

For users with healthy vision and eye movements, the steady-state visual-evoked
potential (SSVEP) is a robust paradigm for a BCI. And it has the advantage that it
does not require much training in order to be operated satisfactorily. Typically, the
user is presented with images, or simple images, on a standard computer monitor
representing actions available to perform with the BCI; these could be, for instance,
letters or geometrical figures. In order to make a selection, users must simply direct
their gaze at the image corresponding to the action they would like to perform. The
images must have a pattern reversing at certain frequency. As the user’s spotlight of
attention falls over a particular image, the frequency of the pattern reversal rate can
be detected in the user’s EEG through basic spectral analysis. What is interesting
here is that once the target signal is detected in the EEG, it is possible to classify not
only a user’s choice of image, but also the extent to which the user is attending it
(Middendorf et al. 2000). Therefore, each target is not a simple binary switch, but
can represent an array of options depending on the user’s attention.

1.4 BCMI-Piano

The BCMI-Piano resulted from the first aforementioned dream: Would it be pos-
sible to play a musical instrument with signals from the brain? No hands needed.

Initially, we looked into translating aspects of the EEG onto musical notes
played on a synthesiser. However, this strategy proved to be unsatisfactory. The
system did not convey the impression that one was playing a musical instrument.
The notes sounded as if they were generated randomly and the synthesised sounds
lacked the auditory quality that one would expect to hear from an acoustic musical
instrument.

In order to remediate this, we connected the system to a MIDI-enabled acoustic
piano (Fig. 1.1). That is, an acoustic piano that can be played by means of MIDI
signals. MIDI stands for musical instrument digital interface. It is a protocol
developed in the 1980s, which allows electronic instruments and other digital
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musical devices and software to communicate with each other. MIDI itself does not
make sound. Rather, it encodes commands, such as ‘note on’ and ‘note off’. In our
case, MIDI commands controlled a mechanism built inside the piano that moved
the hammers to strike the strings. This resulted in a system whereby a real piano is
played with brain signals. The quality of the sound improved considerably. But still,
we felt that the result was not convincingly musical: the output sounded almost as if
the notes were generated randomly. If we were to demonstrate that it is possible to
play music with brain signals, then system ought to do more than merely associate
brainwave activity with notes. Ideally, the music should result from some form of
musical thinking detectable in the EEG. But the task of decoding the EEG of a
person thinking of a melody, or something along these lines, is just impossible with
today’s technology.

Thus, I came up with the idea of endowing the machine with some form of
musical intelligence, which could be steered by the EEG. The big idea was to
programme the system with the ability to compose music on the fly, obeying simple
abstract generic commands, which might be conveyed by something detectable in
the EEG. This would not necessarily correlate to any musical thought at all, but it
would at least be a realistic point of departure. For instance, I was aware that it is
relatively straightforward to detect a pattern in the EEG, called alpha rhythm, which
is present in the EEG of a person with eyes closed and in a state of relaxation.

Thus, my team and I moved on to implement BCMI-Piano, a system that looks for
information in the EEG signal and match the findings with assigned generative
musical processes corresponding to distinct musical styles. We implemented an
artificial intelligence system that is able to generate pieces of piano music in the style
of classic composers, such as Schumann, Satie, Beethoven, Mozart and so on. For
instance, if the system detects prominent alpha rhythms in the EEG, then it would
activate assigned processes that generate music in the style of Robert Schumann’s
piano works. Conversely, if it detected an EEG pattern other than alpha rhythms,
then it would generate music in the style of Ludwig van Beethoven’s sonatas
for piano.

Fig. 1.1 With BCMI-Piano
one can play music generated
on the fly on a MIDI-enabled
acoustic piano with brain
signals. No hands needed
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After a few trials, we decided to use seven channels of EEG, which can be
obtained with seven pairs of electrodes placed on the scalp, covering a broad area of
the head. The signals were filtered in order to tear out signal interference (e.g.
interference generated on electrodes near the eyes due to eye blinking) and added
their signals together prior to executing the analyses. The system analyses the
spectrum of the EEG and its complexity. The analyses yield two streams of control
parameters for the generative music system: one, which carries information about
the most prominent frequency band in the signal—popularly referred to as EEG
rhythms—and another, which carries a measure of the complexity of the signal. The
former was used to control algorithms that generated the music, and the latter was
used to regulate the tempo and the loudness of the music.

The most prominent EEG frequency band is obtained with a standard fast
Fourier transform (FFT) algorithm, and the measure of complexity is obtained with
Hjorth’s analysis (Hjorth 1970).

FFT analysis is well known in BCI research and will be discussed in more detail
in other chapters of this volume. Basically, the system looks for two patterns of
information in the spectrum of the EEG: alpha and beta rhythms. Alpha rhythms are
strong frequency components in the signal between 8 and 13 Hz and beta rhythms
are strong components between 14 and 33 Hz.

The less familiar Hjorth’s analysis is a time-based amplitude analysis, which
yields three measurements: activity, mobility and complexity. The signal is mea-
sured for successive epochs—or windows—of one to several seconds. Activity and
mobility are obtained from the first and second time derivatives of amplitude
fluctuations in the signal. The first derivative is the rate of change of the signal’s
amplitude. At peaks and troughs, the first derivative is zero. At other points, it will
be positive or negative depending on whether the amplitude is increasing or
decreasing with time. The steeper the slope of the wave, the greater will be the
amplitude of the first derivative. The second derivative is determined by taking the
first derivative of the first derivative of the signal. Peaks and troughs in the first
derivative, which correspond to points of greatest slope in the original signal, result
in zero amplitude in the second derivative and so forth.

Amplitude fluctuations in the epoch give a measure of activity. Mobility is
calculated by taking the square root of the variance of the first derivative divided by
the variance of the primary signal. Complexity is the ratio of the mobility of the first
derivative of the signal to the mobility of the signal itself; for instance, a sine wave
has a complexity equal to 1. Figure 1.2 shows an example of Hjorth analysis. A raw
EEG signal is plotted at the top (C:1), and its respective Hjorth analysis is plotted
below: activity (C:2), mobility (C:3) and complexity (C:4). The tempo of the music
is modulated by the complexity measure.

BCMI-Piano’s music algorithm was developed with the assistance of Bram
Boskamp, then a postgraduate student at ICCMR. It generates the music using rules
that are deduced automatically from a given corpus of examples. It deduces
sequencing rules and creates a transition matrix representing the transition logic of
what follows what. New musical pieces are generated in the style of the ones of the
training corpus. Firstly, the system extracts blocks of music and deduces the rules
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from the given examples. Then, it sequences those blocks in a domino-like manner
based on the deduced rules (Miranda and Boskamp 2005).

Every time the system is about to produce a measure of music, it checks the
power spectrum of the EEG at that moment and triggers the generative music
instructions that are associated with the most prominent EEG rhythm in the signal.
These associations are arbitrary and can be modified at will, which makes the
system very flexible. The system is initialized with a reference tempo (e.g. 120
beats per minute), which is constantly modulated by Hjorth’s measurement of
complexity.

The EEG can influence the algorithm that generates the music in a well-defined
way. We implemented a statistical predictor, which uses the deducted rules to
generate short musical phrases with a beginning and an end that also allows for real-
time steering with EEG information. The system generates musical sequences by
defining top-level structures of sequences—referred below as sentences—and
methods of generating similarity relationships or contrast relationships between
elements. Consider the following example in LISP-like notation:

S -> (INC BAR BAR BAR BAR BAR HALF-CADENCE 8BAR-COPY)

From this top-level, the system retrieves rules for selecting a valid musical
building block for each symbol (INC, BAR, etc.) and a rule for incorporating the
EEG information in the generative process. For example:

INC -> ((EQUAL ‘MEASURE 1)
(EQUAL ‘COMPOSER
EEG-SET-COMPOSER))

BAR -> ((CLOSE ‘PITCH ‘PREV-PITCH-LEADING)
(CLOSE ‘PITCH-CLASS

‘PREV-PITCH-CLASS-LEADING)
(EQUAL ‘COMPOSER
EEG-SET-COMPOSER))

Fig. 1.2 A typical example
of Hjorth analysis of an EEG
signal
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Above is a definition of a network that generates a valid sentence with a
beginning and an end, including real-time EEG control through the variable EEG-
SET-COMPOSER. The algorithm will find a musical element in the database for
each of the constraint sets that are generated above from INC and BAR, by applying
the list of constraints in left-to-right order to the set of all musical elements until
there are no constraints left, or there is only one musical element left. This means
that some of the given constraints might not be applied.

The database of all musical elements (see Appendix for a short example) con-
tains music from different composers, with elements tagged by their musical
function such as measure 1 for the start of a phrase, cadence for the end, composer
for the name of the composer and the special tags pitch and pitch-class that are both
used for correct melodic and harmonic progression or direction. The selection
process is illustrated below.

The example database in the Appendix shows the main attributes that are used to
recombine musical elements. P-CLASS (for pitch-class) is a list of two elements.
The first is the list of start notes, transposed to the range of 0–11. The second is the
list of all notes in this element (also transposed to 0–11). P is the pitch of the first
(and highest) melodic note in this element, by matching this with the melodic note
that the previous element was leading up to we can generate a melodic flow that
adheres in some way to the logic of how the music should develop. The PCL (for
pitch-class leading) elements contain the same information about the original next
bar; this is used to find a possible next bar in the recombination process. Then, there
are the INC, BAR and CAD elements. These are used for establishing whether
those elements can be used for phrase starts (incipient), or cadence.

Simply by combining the musical elements with the constraint-based selection
process that follows from the terminals of the phrase structure rewrite rules, we
obtain a generative method that can take into account the EEG information. This
generates musical phrases with building block connectivity like a domino game:

((EQUAL ‘MEASURE 1)
(EQUAL ‘COMPOSER EEG-SET-COMPOSER))

Assuming that there are also musical elements available from composers other
than SCHU, the first constraint will limit the options to all incipient measures from
all musical elements from all composers. The second constraint will then limit the
options according to the current EEG analysis to the composer that is associated
with the current EEG activity as follows:

((CLOSE ‘PITCH ‘PREV-PITCH-LEADING)
(CLOSE ‘PITCH-CLASS
‘PREV-PITCH-CLASS-LEADING)

(EQUAL ‘COMPOSER EEG-SET-COMPOSER))
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In the given phrase structure, the rule that follows from BAR then defines the
constraints put upon a valid continuation of the music. These constraints will limit
the available options one by one and will order them according to the defined rule
preferences. The CLOSE constraint will order the available options according to
their closeness to the stored value. For example, after choosing:

(SCHU-1-1-MEA-1
P-CLASS ((0 4) (0 3 4 6 7 9))
P 76
PCL ((2 7 11)(2 5 7 9 11))
PL 83
BAR INC
CO SCHU)

as the beginning, PREV-PITCH-LEADING will have stored 83, and PREV-
PITCH-CLASS-LEADING will have stored ((2 7 11) (2 5 7 9 11)). This will result
in measure 2 and 4 being ranked highest according to both pitch and pitch-class,
while measure 6 is also quite close according to pitch. This weighted choice will
give a degree of freedom in the decision that is needed to generate pieces with an
element of surprise. The music will not get stuck in repetitive loops, but it will find
the closest possible continuation when no perfect match is available. We can still
find a close match in this way if the third constraint eliminates all the obvious
choices that are available, e.g. because a jump is requested to the musical elements
of another composer, who might not use the same pitch-classes and pitches.

Figure 1.3 shows an example of resulting music with elements from the musical
style of Schumann and Beethoven. In this example, the EEG jumped back and
forth, from bar to bar, between the two styles. The harmonic and melodic distances
are quite large from bar to bar, but they are the optimal choices in the set of chosen
elements from the two composers.

After a few training sections, colleagues in the laboratory were able to increase
and decrease the power of their alpha rhythms in relation to the beta rhythms
practically at will, therefore being able to voluntarily switch between two styles of
music. We noticed that the signal complexity measurement tended to be higher
when beta rhythms were more prominent in the signal: the music in the style of
Beethoven tended to be played slightly louder and faster than pieces in the style of
Schumann.

At this point, I went on to address my second dreamed scenario: Would it be
possible to build a BCMI system for a person with locked-in syndrome to make
music?

As it turned out, after a critical evaluation of our system, informed by opinions
and advice from health professionals and music therapists working with disable
patients, I concluded that the BCMI-Piano was neither robust nor portable enough
to be taken from the laboratory into the real world. The system comprised two
laptops, two bulky hardware units for EEG amplification and too many dangling
cables. Moreover, the skills required for placing the electrodes on the scalp and run
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the various components of the system were time-consuming and far beyond the
typical skills of a music therapist or carer. Also, it was generally agreed that, from
the point of view of a user, the system would not give the feeling that they were
really playing the piano or creating music. After all, it is the computer who com-
poses the music; the user only switch between two modes of operation. I was
advised that I should try to devolve the creative process to the user even if it is to
create very simple music. I soon realised that this would require more options for
control.

1.5 SSVEP-Music System

I teamed up with music therapist Wendy Magee and her colleagues at Royal
Hospital for Neuro-disability, London, to develop a new system aimed at a trial
with a locked-in syndrome patient, henceforth referred to Tester M. Tester M’s only
active movements following a stroke include eye movements, facial gestures and
minimal head movements. She retained full cognitive capacity.

Fig. 1.3 An example output where the piece alternates between the styles of Schumann and
Beethoven as the EEG jumps back and forth from bar to bar between alpha (between 8 and 13 Hz)
and beta rhythms (between 14 and 33 Hz)
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The two challenges that we had to address in this design were to devolve the
creative process to the user and provide more options for control. Technically, a
solution for the former would depend on the solution for the latter. Hence, we
started by focusing on increasing the number of controls. To this end, we shifted
from using EEG rhythms to adopting an evoked potential approach based on the
SSVEP method that I mentioned earlier.

The new SSVEP-Music system was implemented in collaboration with Joel
Eaton, a postgraduate research student at ICCMR, and John Wilson and
Ramaswamy Palaniappan1 of University of Essex (Miranda et al. 2011). Thanks to
the SSVEP approach, we were able to implement four switches for control, as
opposed to only one in BCMI-Piano. Moreover, each switch acted as a potenti-
ometer for continuous control.

Figure 1.4 shows a photograph of a subject using the system. The monitor on the
left hand side in Fig. 1.4 shows four images. These images flash at different fre-
quencies, reversing their colours. Each image is associated with a musical task.
Therefore, the system executes four different tasks, which the user can select by
staring at the respective flashing image.

The SSVEP control signal can be used to generate the melody in a variety of
ways, which can be customised. We provided a number of configurations that can
be loaded into the system. For instance, suppose that the top image, shown on the
monitor of the left hand side of the picture in Fig. 1.4, is associated with the task of
generating a melody from an ordered set of five notes (Fig. 1.5). Let us say that this
image flashes at a rate of 15 Hz. When one stares at it, the system detects that the

Fig. 1.4 Photograph of a subject operating the system

1 Currently at University of Wolverhampton.
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subject is staring at this image and sends a command to generate the respective
melody. The SSVEP paradigm is interesting because the more the subject attends to
the flashing image, the more prominent is the amplitude of the EEG component
corresponding to the brain’s response to this stimulus. This produces a varying
control signal, which is used to produce the melody and provide a visual feedback
to the user: the size of the image increases or decreases in function of this control
signal. In this way, we can steer the production of the notes by the intensity to
which one attends to the respective image. One can bring the index down by
looking away and bring the index up by staring at it again. Fine control of this
variation can be achieved with practice, e.g. to repeat a single note many times or
repeat a subgroup of notes. Each of the images could correspond to a distinct note
sequence, and so on. This scheme opens up many possibilities for music control.

The SSVEP-Music system has proved to be rather successful because one can
almost immediately produce musical notes with very little, or no training, simply by
looking intently at the different images. As one learns to modulate the extent to
which he or she is attending the images, more sophisticated musical control can be
achieved, as if learning to play a musical instrument: the more one practices, the
better one becomes at it.

Terster M trialled the system during a two-hour session. Being familiar with eye
gaze technology for her alternative communication system, Tester M grasped the
concept quickly and rapidly demonstrated her skills at playing the system with
minimal practice. She was able to vary the intensity of her gaze, thus changing the
amplitude of her EEG and vary the consequent melodic and dynamic output.
Personal correspondence with Tester M following this trial communicated that she
had enjoyed considerably using the system and that “…it was great to be in control
again”. This feedback is immensely gratifying and very encouraging. The possi-
bilities for applying the system within group settings are immediately apparent and
an exciting prospect for people with limited opportunities for participating as an
equal partner in a group.

Fig. 1.5 Five bandwidths are established for the varying control signal, which are associated to
the indices of an array of musical notes
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We are aware that some aspects of the system still require further refinement to
make it more practical and viable for clinical applications. For instance, the fre-
quency rate at which the images flash may limit using the system with people
known to have epilepsy, a possible consequence following acquired brain injury.

The time required to place the electrodes on the scalp was reduced considerable:
only three electrodes are required here. However, SSVEP-Music requires calibra-
tion to match the sensitivity of the system with the user’s visual cortex response to
the flashing images. This is outside typical clinical skills and can be time-
consuming. The downside is that this calibration needs to be done before a session
begins. Although this could be overcome with training, increasing the time burden
of a clinical session is known to be a preventative factor influencing the uptake of
technology by the health care sector.

Nevertheless, despite all the limitations, we succeeded in providing more control
options and devolving the creative process to the user. And more importantly, we
demonstrated that it is indeed possible to build a BCMI system for a person with
locked-in syndrome to make music.

1.6 Discussion: Moving Forwards

In addition to the limitations discussed above, I am currently addressing two technical
challenges, which I believe are important to move research into BCMI forwards:

a. Discovery of meaningful musical information in brain signals for control beyond
the standard EEG rhythms.

b. Design of powerful techniques and tools for implementing flexible and
sophisticated online generative music systems.

In order to address the former, I have been conducting brain scanning experi-
ments aimed at gaining a better understanding of brain correlates of music cogni-
tion, with a view on discovering patterns of brain activity suitable for BCMI
control. In the following section, I report on the results of two experiments: one on
listening imagination and another on musical tonality.

As for the second challenge, it is important to ensure that the BCMI system
offers an adequate musical repertoire or challenge to maintain the engagement of
people who may have vastly sophisticated musical experiences and tastes. I have
been looking into expanding the generative capabilities of the BCMI-Piano music
algorithm by means of constraint satisfaction programming techniques.

1.7 Active Listening Experiment

This experiment was developed with Alex Duncan, a former postgraduate research
student, and Kerry Kilborn and Ken Sharman, at University of Glasgow. The
objective of the experiment was to test the hypothesis that it is possible to detect
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information in the EEG indicating when a subject is engaged in one of two mental
tasks: active listening or passive listening (Miranda et al. 2003). In this context, the
active listening task is to replay the experience of hearing some music, or part of
that music, in the mind’s ear. Conversely, passive listening is to listen to music
without making any special mental effort. In day-to-day life experience, we are
likely to be listening passively if we are relaxing to peaceful music or engaged in
some other task while listening to music in the background.

Three non-musicians, young males, with age ranging between 18 and 25 years,
participated in the experiment, which was divided into six blocks of trials, giving
the participants the chance to relax. Each trial lasted for 8 sec and contained two
parts: a rhythmic part, lasting for the entire trial, and a melodic riff part, lasting for
the first half of the trial. A riff is a short musical passage that is usually repeated
many times in the course of a piece of music. It was during the second half of each
trial that the mental task was performed. The rhythmic part comprised four repe-
titions of a 1-bar rhythm loop. Two repetitions a 1-bar riff loop starting at the
beginning of the trial and terminating halfway through were superimposed on the
rhythmic part (Fig. 1.6).

In total, there were 15 unique riff loops: five played on a synthesised piano, five
using an electronic type of timbre and five on an electric guitar. The music was in
the style of a pop dance tune at 120 beats per minute, 4 beats per bar. The back-
ground rhythm looped seamlessly for the entire duration of each trial block. Blocks
were named after the task the participant was instructed to perform on that block,
and they were ordered as shown in Table 1.1. Each of the 15 riff parts was presented
four times in each block in random order.

Participants were instructed to perform one of three mental tasks while listening
to a continuous sequence of trials:

a. Active listening: listen to the looped riff that lasts for 2 bars, then immediately
after it finishes, imagine that the riff continues for another 2 bars until the next
trial begins.

b. Passive listening: listen to the entire 4-bar trial with no effort; just relax and
focus on the continuing background part.

c. Counting task: listen to the looped riff that lasts for 2 bars, then immediately
after it finishes, mentally count the following self-repeating sequence of numbers
(i.e. mentally spoken): 1, 10, 3, 8, 5, 6, 7, 4, 2, 1, 10 and so forth.

Fig. 1.6 Participants listened
to 4-bar trials containing a
looped riff lasting for 2 bars
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The classification task was to determine the class of 2-second multi-channel
EEG segments, where class (1) = active listening, class (2) = passive listening and
class (3) = counting task.

The counting task was included as a control task to determine whether the EEG
features that might allow for the differentiation between the imagery and relaxed
listening tasks are not merely a function of a concentrating versus a non-concen-
trating state of mind.

Only the last four seconds (i.e. the second half of each trial) were considered for
analysis. These 4-second long segments were further divided into two 2-second
long segments. Thus, each trial yielded two segments. There were 120 trials for
each of the three conditions and each subject produced a total of 720 segments: 240
segments for each condition. The data are randomly partitioned into training set and
testing set with split ratio of 9:1, resulting in 648 training segments and 72 testing
segments.

We employed a linear auto-regression algorithm to represent the EEG data in a
compressed form in terms of estimations of spectral density in time (Anderson and
Sijercic 1996; Peters et al. 1997). Then, a classic single hidden-layer static neural
network (multi-layer perceptron), with variable number of hidden units and up to
three output units, was used for the classification task. The network was trained in
batch mode for 50 epochs, using a scaled conjugate gradient algorithm, as described
by Bishop (1995). The data were divided into two sets: a training set E and a test set
T. The training set E was used to train the neural network to recognise the mental
tasks of the elements that were left in T. In total, there were 768 inputs to the
network. The network was reset, retrained and reassessed 10 times with different
permutations of training and testing segments.

Classifications were made between 2-second long multi-channel segments
belonging to pairs of conditions (for 2-way classification) and to all three conditions
(for 3-way classification). The average classification scores, including confidence
limits and standard deviation, for each subject are shown in Table 1.2.

Remarkably, the classification scores are above 90 % accuracy. We acknowledge
that these results may not sound statistically robust because the experiment
involved only three subjects. Nevertheless, they encouraged me to work towards the
implementation of a BCMI on the assumption that the system would be capable to

Table 1.1 The experiment was divided into six blocks of trials. Blocks were named after the
mental task the subjects were instructed to perform

Block Subject 1 Subject 2 Subject 3

1 Active Passive Counting

2 Passive Counting Active

3 Counting Active Passive

4 Active Passive Counting

5 Passive Counting Active

6 Counting Active Passive
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establish if a subject is actively listening to music, or passively listening to it
without any special mental effort. This notion is supported by a number of reports
on experiments looking into musical imagination (Meister et al. 2004; Limb and
Braun 2008; Miranda et al. 2005; Petsche et al. 1996).

1.7.1 Towards an Active Listening BCMI

The results from the above experiment encouraged me to look into the possibility of
developing a BCMI whereby the user would be able to affect the music being
generated in real time by focusing attention to specific constituents of the music. I
designed a prototype, which produces two tracks of music of the same style of the
music stimuli that was devised for the experiment: it comprises a rhythmic track and
a solo track, which is generated by means of algorithms that transforms a given riff;
they can transpose it, change rhythm, add a note, remove a note, play the riff
backwards and so on.

Firstly, the neural network is trained to recognise when the incoming EEG
corresponds to active or passive listening, as described in the experimental pro-
cedure. Needless to say, the person who controls the music here should be the same
as the one who’s EEG was used to train the system. The system works as follows:
the rhythmic part is continuously played and a riff is played sporadically; an initial
riff is given by default. Immediately after a riff is played, the system checks the
subject’s EEG. If it detects active listening behaviour, then the system applies some
transformation on the riff that has just been played and plays it again. Otherwise, it
does not do anything to the riff and waits for the subject’s EEG response to the next

Table 1.2 Average classification scores for the active listening experiment

Subject Classification task Mean Min. Max. Deviation Confidence

1 Active × passive 0.998 0.979 1.000 0.007 ±0.007

Active × counting 0.996 0.979 1.000 0.009 ±0.009

Passive × counting 0.994 0.979 1.000 0.010 ±0.010

Active × passive × counting 0.998 0.958 1.000 0.015 ±0.016

2 Active × passive 0.994 0.979 1.000 0.010 ±0.010

Active × counting 0.973 0.896 1.000 0.031 ±0.032

Passive × counting 0.954 0.896 1.000 0.038 ±0.039

Active × passive × counting 0.951 0.903 0.986 0.023 ±0.024

3 Active × passive 0.973 0.958 1.000 0.014 ±0.014

Active × counting 0.992 0.979 1.000 0.011 ±0.011

Passive × counting 0.994 0.958 1.000 0.014 ±0.014

Active × passive × counting 0.985 0.958 1.000 0.015 ±0.016
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sporadic riff. Sporadic riffs are always a repetition of the last played riff; in other
words, it does not change until the system detects active listening behaviour.

In practice, I found it difficult to reliably detect active listening behaviour when a
user is consciously trying to change the riffs online. Either more efficient EEG
signal processing algorithms need to be employed or the paradigm is flawed, or
both. More work is required to address this problem.

1.8 Neural Processing of Tonality Experiment

In Miranda et al. (2008) and Durrant et al. (2009), I introduced a functional magnetic
resonance imaging (fMRI) study of tonality, which I developed with Simon Durrant,
a former ICCMR research fellow, and Andre Brechmann, of the Leibniz Institute for
Neurobiology, Germany. The objective of this experiment was to gain a better
understanding of the neural substrates underlying the perception of tonality, with a
view on developing a method to harness their behaviour to control a BCMI. We
looked for differences in neural processing of tonal and atonal stimuli and also for
neural correlates of distance around the circle of fifths, which describes how close
one key is to another.

Tonality is concerned with the establishment of a sense of key, which in turn
defines a series of expectations of musical notes. Within Western music, the octave
is divided into twelve equal semitones, seven of which are said to belong to the
scale of any given key. Within these seven tones, the first (or lowest) is normally
referred to as the fundamental note of the chord and the one that the key is named
after. A sense of key can be established by a single melodic line, with harmony
implied, but can also have that harmony explicitly created in the form of chord
progressions. Tonality defines clear expectations, with the chord built on the first
tone (or degree) taking priority. The chords based on the fourth and fifth degrees
also are important because their constituent members are the only ones whose
constituent tones are entirely taken from the seven tones of the original scale and
occurring with greater frequency than other chords. The chord based on the fifth
degree is followed the majority of the time by the chord based on the first degree. In
musical jargon, this is referred to as a dominant-tonic progression. This special
relationship also extends to different keys, with the keys based on the fourth and
fifth degrees of a scale being closest to an existing key by virtue of sharing all but
one scale tone with that key. This gives rise to what is known as the circle of fifths,
where a change—or modulation—from one key to another is typically to one of
these other closer keys (Shepard 1982). Hence, we can define the closeness of keys
based on their proximity in the circle of fifths, with keys whose first degree scale
tones are a fifth apart sharing most of their scale tones, and being perceived as
closest to each other (Durrant et al. 2009).

Sixteen volunteers, 9 females and 7 males, with age ranging between 19 and
31 years and non-musicians, participated in the experiment. Five experimental
conditions were defined: distant, close, same, initial and atonal (that is, no key)
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conditions, respectively. As a result of the contiguity of groups, the first stimulus in
each group followed the atonal stimulus in the previous group (except for the initial
group), which was defined as the initial condition. The distant and close conditions
therefore defined changes from one key to another (distant or close, respectively),
whereas the same condition defined no change of key (i.e. the next stimulus was in
the same key). The atonal condition defined a lack of key, which was included here
as a control condition. The stimuli were ordered such that all tonal stimuli were
used an equal number of times, and the conditions appeared in all permutations
equally in order to control for order effects.

Each stimulus consisted of 16 isochronous events lasting 500 ms each, with each
stimulus therefore lasting 8 s without gaps in between. Each event consisted of a
chord recognised in Western tonal music theory, with each chord being in root
position (i.e. the lowest note of the chord is also the fundamental note). The sense of
key, or lack of it, was given by the sequence of 16 chords, rather than by individual
chords. For a single run, stimuli were ordered into twenty-four groups of three
stimuli with no gaps between stimuli or groups. The first stimulus in each group was
always a tonal stimulus presented in the home key of C major, and the second was
always a tonal stimulus that could either be in the distant key of F# major, the closely
related key of G major or the same key of C major. In order to reset the listener’s
sense of relative key, the third stimulus in each group was always an atonal stimulus,
that is, the chord sequences without any recognisable key (Fig. 1.7).

In order to draw the attention of the participants to the tonal structure of the
stimulus stream, the behavioural task in the scanner was to click the left mouse
button when they heard a change to a different key (distant, close and initial

Fig. 1.7 Musical scores representing the stimuli used in the tonal experiment. At the top, stave is
the tonal stimulus in the key of C major, which is the initial and same conditions, respectively. In
the middle is the stimulus in the key of F# major, which is the distant condition. At the bottom is
the stimulus in no obvious key
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conditions), and right-click the mouse button when they heard a change to no key
(atonal condition). As the participants were non-musicians, the task was explained
as clicking in response to a given type of change so as to avoid misunderstandings
of the meaning of the terms ‘tonal’, ‘atonal’ and ‘key’. That is, they were instructed
to indicate any change from one key to another by clicking on the left button of a
mouse and a change towards a sequence with no key by clicking on the right
button. Subjects were given an initial practice period in order to ensure that they
understood the task.

The results of the behavioural tasks are shown in Table 1.3, which gives the
percentage of trials that contained a left- or right-click for each condition. Second-
level one-way analysis of variance (ANOVA) was performed for the left-click and
right-click results, respectively, across all participants. Distant, close and initial
conditions had a significantly higher number of left-click responses than for con-
ditions same and atonal. Conversely, the atonal condition had a significantly higher
amount of right mouse clicks than for distant, same and atonal conditions. These
results confirm that the participants were able to perform the behavioural task
satisfactorily and show that the participants had some awareness of the tonal
structure of the stimuli.

As for the fMRI scanning, functional volumes were collected with 3 Tesla
scanner using echo planar imaging. A more detailed description of the data
acquisition procedures and analysis methods is beyond the scope of this chapter. In
summary, each stimulus block lasted 8 s and was immediately followed by the next
stimulus block. Analysis was performed with a general linear model (GLM)
(Friston et al. 2006).

Group analysis revealed a cluster of fMRI activation around the auditory cortex
(especially in the left hemisphere) showing a systematic increase in blood-oxygen-
level-dependent (BOLD) amplitude with increasing distance in key. We have found
a number of significant active neural clusters associated with the processing of
tonality, which represent a diverse network of activation, as shown in Table 1.4 and
Fig. 1.9.

We note the strong presence of medial structures, in particular cingulate cortex
(label 5 in Fig. 1.8 and Table 1.4) and caudate nucleus (label 4 in Fig. 1.8 and
Table 1.4) in response to key changes. Also significant is the bilateral activation for
key changes of the transverse temporal gyrus also known as Heschl’s gyrus (labels

Table 1.3 Behavioural results, showing the percentage of trials that contained a left- or right-
click aggregated over all participants in the experiment

Condition Left-click Right-click

Distant 89.453 11.328

Close 83.594 0.7812

Same 26.563 3.5156

Initial 68.62 4.2969

Atonal 14.193 83.984
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1 and 7 in Fig. 1.8 and Table 1.4), which contains the primary auditory cortex. The
activation curves for the bilateral activation of the transverse temporal gyrus show
strongest activity for the distant key changes, slightly less, but still significant

Table 1.4 Anatomical results of GLM analysis contrasting conditions with and without a key
change

Anatomical name X Y Z Cluster

(1) Left transverse temporal gyrus −51 −18 11 981

(2) Right insula 36 17 13 948

(3) Right lentiform nucleus 24 −1 1 750

(4) Right caudate 14 −4 22 1,443

(5) Left anterior cingulate −1 41 11 2,574

(6) Left superior frontal gyrus −12 50 36 2,241

(7) Right transverse temporal gyrus 51 −17 10 1,023

These active clusters preferentially favour key change stimuli.X,Y andZ areTalairach coordinates for
plotting scans onto a standard template after normalisation of brain size and shape across the subjects

Fig. 1.8 Examples of
clusters of activation for the
contrast distant and close key
versus same key, including
bilateral activation of
transverse temporal gyrus for
which the activation curves
are shown in Table 1.4
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activity for the close key changes, and much less activity for no key changes
(Fig. 1.9). It should be emphasised that this occurred across a variety of different
stimuli, all of equal amplitude and with very similar basic auditory features, such as
envelope and broad spectral content. Both left and right transverse temporal gyri
showed very similar response curves highlighting the robust nature of these results.
This might suggest that these areas may not be limited to low-level single note
processing as commonly thought, but also are involved in some higher-order
sequence processing. This is significant for my research as it could constitute a
potential source of control information for a BCMI, associated with tonality and
modulation. However, more testing needs to be developed in order to probe this.

1.8.1 Towards a BCMI for Controlling Tonality

The results of the tonality experiment suggest that it might indeed be possible to
design a BCMI controlled with auditory cortex activity correlated to tonality.
However, despite ongoing attempts at using fMRI for BCI (Weiskopf et al. 2004),

Fig. 1.9 Activation curves in
left (top graph) and right
(bottom graph) transverse
temporal gyri for distant
condition (plot on the left
side), close condition (plot in
the middle) and same
condition (plot on the right
side)
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fMRI still is impractical for this purpose: fMRI scanning is simply too expensive to
run, the equipment is not portable, and the health and safety implications for usage
outside strict laboratory conditions are fiendishly burdensome. Moreover, fMRI
scanners produce noise during the scan, which makes it inconvenient for a musical
application. We are currently working on detecting in the EEG equivalent activa-
tions in auditory cortex as we detected in the fMRI scans.

In the meantime, I have been developing generative music systems suitable for
control with information representing cortical activations of tonal processing. I
teamed up with Torsten Anders, then a research fellow at ICCMR, to implement a
prototype that generates chords sequences automatically, in the style of the ones
used as stimuli for the tonality experiments (Miranda et al. 2008).

We adopted a computational paradigm referred to as constraint satisfaction
problem to implement a generative music system that generates sequences of chord
progressions in real time (Anders and Miranda 2011, 2010). The input to the system
is a stream of pairs of hypothetic brain data, which controls higher-level aspects of
chord progressions. The first value of the pair specifies whether a progression
should form a cadence, which clearly expresses a specific key (cadence progres-
sion), or a chord sequence without any recognisable key (key-free progression).
Additionally, if the next progression is a cadence progression, then the key of the
cadence is specified by the second value of the pair.

Each chord progression (Fig. 1.10) consists of n major or minor chords (in the
example n = 16). Different compositional rules are applied to cadence and key-free
progressions. For instance, in the case of a cadence, the underlying harmonic
rhythm is slower than the actual chords (e.g. one harmony per bar), and all chords
must fall in a given major scale. The progression starts and ends in the tonic chord,
and intermediate root progressions are governed by Schoenberg’s rules for tonal
harmony (Schoenberg 1986). For a key-free, atonal progression, the rules estab-
lished that all 12 chromatic pitch classes are used. For example, the roots of
consecutive chords must differ and the set of all roots in the progression must
express the chromatic total. In addition, melodic intervals must not exceed an
octave. A custom dynamic variable ordering scheme speeds up the search process
by visiting harmony variables (the root and whether it is major or minor), then the
pitches’ group (or classes) and finally the pitches themselves. The value ordering is
randomized, so the system always produces different results.

As it is, the generative system design assumes that subjects would be able to
produce the required control information in some way or another. In practice,
however, it is unlikely that subjects would learn to produce bilateral activations of
transverse temporal gyrus simply by imagining tonal progressions. The challenge
here is to establish effective ways to embed in a realistic system design the theo-
retical understanding of neural correlates of tonal processing and generative musical
algorithms. The research continues.
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1.9 Concluding Remarks

There has been a tremendous progress in the field of BCI in the last decade or so, in
particular on EEG signal processing aspects, which is the focus of a number of
chapters in this volume. BCMI research is obviously benefiting from this progress.
From the experienced I have gained with trialling the SSVEP-Music with a patient
in a hospital setting, I learned the hard way that the hardware aspect of BCI lags
behind the more theoretical advances in the field. The EEG electrode technology
that is currently commercially available is adequate for medical diagnosis, but not
for wearing on a more frequent and ad hoc basis. Dangling wires, electrodes cap,
gel, required technical support for handling and so on need to disappear from the
equation in order to pave the way for BCMI systems into the real world of health

Fig. 1.10 Extract from a sequence of chord progressions generated by our constraints-based
generative system. In this case, the system produced a sequence in C major, followed by a
sequence in no particular key and then a sequence in A major
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care. The equipment must be simple to switch on, set up and operate. Fortunately,
the electronics industry is making continuing progress at this front: wireless elec-
trodes that do not need gel are beginning to emerge in the market and more mobile,
less conspicuous, good quality EEG amplifiers are becoming available—albeit
good quality equipment still is not generally affordable.

From the musical side, my ICCMR team and I are continuously paving the way
for the development of effective music algorithms for BCMI. I believe that an
approach combining the technique developed for the BCMI-Piano and the con-
straints-based system built after the tonality experiment is a viable way to proceed,
and I will continue working towards this goal.

The issue of harnessing the EEG for BCMI control with signals correlated to
music cognition remains unresolved. It turns out that the most effective control
methods are those that are not at all related to music, such as the SSVEP method. It
is questionable whether the types of music cognition I touched upon in this chapter
are the way forward or not. Much research is needed in order to make progress at
this front.

1.10 Questions

1. Is voluntary control always necessary in BCI? Give some examples to illustrate
your answer.

2. What is the difference between these three approaches of BCI control: con-
scious effort, operational conditioning and evoked potentials?

3. How does BCMI-Piano regulate the tempo and loudness of the music?
4. Why was the BCMI-Piano system not suitable for trial in a clinical context?
5. What are the differences between the SSVEP-Music and BCMI-Piano systems?

Elaborate on advantages and disadvantages of both systems.
6. How many degrees of freedom are afforded by the SSVEP-Music system?
7. The chapter described a method to generate a melody using the SSVEP control

signal. Could you envisage how this be done differently?
8. Why was the counting task included in the active listening experiment?
9. Given the state of the art of fMRI technology, would it be viable to build an

fMRI-based BCMI?
10. How can fMRI technology help to advance research into the design of more

sophisticated EEG-based BCMI systems?

1.11 Appendix: Database of Musical Elements

An excerpt from a database of musical elements where CO = composer
(SCHU = Robert Schumann.), P-CLASS = pitch class, P = pitch, PCL = pitch-
class leading, PL = pitch leading and TPE = type.
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ID SCHU-1-1-CAD
CO SCHU
P-CLASS ((0 2 7)(0 2 4 5 7 11))
P 74
PCL ((0 4 9)(0 2 4 5 7 9 11))
PL 76
TPE CAD

ID SCHU-1-1-MEA-6
CO SCHU
P-CLASS ((5 9)(0 5 7 9))
P 81
PCL ((0 2 7)(0 2 4 5 7 11))
PL 74
TPE BAR

ID SCHU-1-1-MEA-5
CO SCHU
P-CLASS ((0 4)(0 4 7))
P 76
PCL ((5 9)(0 5 7 9))
PL 81
TPE BAR

ID SCHU-1-1-MEA-4
CO SCHU
P-CLASS ((0 4)(0 3 4 6 7 9))
P 83
PCL ((0 4)(0 4 7))
PL 76
TPE BAR

ID SCHU-1-1-MEA-3
CO SCHU
P-CLASS ((0 4)(0 3 4 6 7 9))
P 76
PCL ((2 7 11)(2 5 7 9 11))
PL 83
TPE BAR
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ID SCHU-1-1-MEA-2
CO SCHU
P-CLASS ((2 7 11)(2 5 7 9 11))
P 83
PCL ((0 4)(0 3 4 6 7 9))
PL 76
TPE BAR

ID SCHU-1-1-MEA-1
CO SCHU
P-CLASS ((0 4)(0 3 4 6 7 9))
P 76
PCL ((2 7 11)(2 5 7 9 11))
PL 83
TPE INC
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2Electroencephalogram-based
Brain–Computer Interface:
An Introduction

Ramaswamy Palaniappan

Abstract

Electroencephalogram (EEG) signals are useful for diagnosing various mental
conditions such as epilepsy, memory impairments and sleep disorders.
Brain–computer interface (BCI) is a revolutionary new area using EEG that is
most useful for the severely disabled individuals for hands-off device control and
communication as they create a direct interface from the brain to the external
environment, therefore circumventing the use of peripheral muscles and limbs.
However, being non-invasive, BCI designs are not necessarily limited to this
user group and other applications for gaming, music, biometrics etc., have been
developed more recently. This chapter will give an introduction to EEG-based
BCI and existing methodologies; specifically those based on transient and steady
state evoked potentials, mental tasks and motor imagery will be described. Two
real-life scenarios of EEG-based BCI applications in biometrics and device
control will also be briefly explored. Finally, current challenges and future trends
of this technology will be summarised.

2.1 Introduction

Brain–computer interface (BCI) is a revolutionary field of science that is rapidly
growing due to its usefulness in assisting disabled patients as it provides a direct
mechanism of controlling external devices through simple manipulation of brain
thoughts (Nicolas-Alonso and Gomez-Gil 2012). Disabled individuals here could
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be those that have lost most or all motor functions (known as ‘locked in’ syndrome)
due to progressive neuromuscular diseases like amyotrophic lateral sclerosis (ALS)
or muscular dystrophy or non-progressive such as stroke, traumatic brain injury and
spinal cord injury. The BCI approaches for such individuals could be used in
control of wheelchair, prosthesis, basic communication etc., as shown in Fig. 2.1.
These users could use BCI to communicate with others to express their needs,
feelings, etc. A simple example could be of a communication BCI system such as
brain controlled word processing software.

However, in recent years, other industries have taken interest in this field where
applications related to biometrics (Palaniappan 2008), games (Hasan and Gan
2012), cursor control (Wilson and Palaniappan 2011) etc., have emerged. Table 2.1
gives a non-exhaustive list of possible applications of BCI for both disabled and
healthy individuals.

In general, there are two categories of BCI: invasive and non-invasive methods.
Invasive BCI methods such as electrocorticogram (ECoG) have shown excellent
performance in human (Langhenhove et al. 2008) and monkey (Borton et al. 2013).
Nevertheless, non-invasive approaches based on electroencephalogram (EEG),
magnetoencephalogram (MEG), positron emission topography (PET), functional
magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRs) are
more popular as it is safer (minimal risk of infection etc.).

Among these non-invasive methods, EEG-based BCI is preferred due to it being
practical (i.e. cheap and portable). We will focus on EEG-based BCI techniques
here, specifically on transient visual evoked potential (better known as P300), motor
imagery, steady-state visual evoked potential (SSVEP), mental tasks and briefly on
slow cortical potential (SCP). Figure 2.2 shows a block diagram of the components
involved in the processing of EEG data to implement a BCI.

Fig. 2.1 Brain–computer interface applications
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2.2 Electroencephalogram

Acquiring electroencephalogram (EEG) is the first step in the BCI design. EEG is a
type of oscillating electrical potential recorded from the scalp surface. It is gener-
ated by neuronal activations in the brain (as shown in Fig. 2.3) and is very small in
amplitude (in the μV range) due to the attenuation caused by the skull and scalp.
Evoked potentials are a specific type of EEG evoked during a stimulus like visual,
auditory, etc.

EEG is usually recorded from a number of electrodes on the scalp. A standard
electrode (channel) configuration is the 10–20 electrode system (Jasper 1958) of 19
active electrodes and two mastoids (reference) as shown in Fig. 2.4. However, it is
common to extend this configuration and use higher number of channels such as 32,
64, 128 and even 256. The electrode locations are prefixed by a letter denoting the
cortical area followed by a number (even for the right hemisphere and odd for the left).
The prefix letter F stands for frontal, similarly C for central, P for parietal and O for
occipital. The electrodes (normally made with Ag/AgCl) are used with gel to increase
the conductance between scalp and electrodes but there are more recent advances in
using dry electrodes made from gold. It is also common to re-reference the EEG using
methods such as common averaging and Laplacian (Neuper and Klimesch 2006).

Fig. 2.2 EEG data processing for a BCI

Table 2.1 Examples of possible BCI applications for disabled and healthy individuals

Disabled individuals Healthy individuals

Restoring mobility—e.g. to control wheelchair
movement

(Mainly control of external devices)

Environmental control—e.g. to control TV,
power beds, thermostats, etc.

Mouse control in PC when fingers are on the
keyboard

Prosthetics control (motor control replacement)
—to control artificial limbs

Playing musical instruments by thoughts

Rehabilitative (assistive) control—to restore
motor control (e.g.: strengthen/improve weak
muscle)

Virtual reality

Computer games (e.g. Mind Pacman)

Flight/space control (pilots, astronauts)

Biometrics
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Fig. 2.3 Neuronal connections resulting in the generation of EEG. The recorded EEG is normally
the cumulative effect of thousands of such neurons (Palaniappan 2010)

Fig. 2.4 BCI system a a user
using BCI and b 10–20
electrode configuration
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As the EEG is of very small amplitude, it is normally amplified and converted to
digital using an analog-to-digital converter. The digital conversion using sampling
rates such as 256 Hz1 is necessary to process the EEG signal using digital devices
(like computers).

The EEG is normally obtained using certain BCI paradigms (to be discussed
later), and the first-processing step is to reduce noise such as muscle artefacts,
power line interference and other random noises from the EEG signals. Frequency-
specific filtering using digital filters is commonly employed to filter the noise from
the EEG; recently more sophisticated methods such as principal component anal-
ysis (PCA) and independent component analysis (ICA) have been employed.
Figure 2.5a shows an example of the recorded EEG (using the SSVEP BCI para-
digm) corrupted with power line interference. It can be seen the occurrence of this
50 Hz noise along with the signal frequency in the power spectral density plot of the

Fig. 2.5 a example of recorded EEG and b power spectral density of EEG showing signal and
noise frequencies

1 With 256 Hz sampling rate, one second EEG will have 256 data points, other sampling rate up to
2,048 Hz is common.
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EEG in Fig. 2.5b. The objective of noise reduction would be to reduce the noise as
much as possible without distorting the signal contents.

The signals with noise reduced are then sent to the feature extraction stage, where
mathematical models such as autoregressive (Huan and Palaniappan 2004) are used
to extract parameters representative of the signal. Nowadays, nonlinear methods
such as Lypunov and approximate entropy coefficients (Balli and Palaniappan 2013)
are also being used to obtain more accurate representation due to EEG signals being
nonlinear. Nevertheless, linear methods are still popular due to their simplicity and
ease of computation.

The extracted features are then classified into respective categories depending on
the application. In some BCI paradigms [such as the SSVEP (Miranda et al. 2011)],
the classifier is relatively simple but in others, classifiers such as neural network
(Huan and Palaniappan 2004) and linear discriminant analysis (LDA) (Asensio
et al. 2011) are used. The final stage is the device control stage where the BCI
output is used to control an external device (for example to select on-screen menus
or move a wheelchair). Certain BCIs employ feedback of the output to improve the
reliability of the system.

2.3 EEG-based BCI Paradigm 1—Motor Imagery

Voluntary movement is composed of three phases: planning, execution and
recovery. Even during imaginary movement (known as motor imagery), there is the
planning stage that causes a change in EEG. For example, imagined movements of
left hand causes a change known as event-related desynchronisation (ERD) in the
right motor cortex area, i.e. contralaterally to the imagined movement side and
event-related synchronisation (ERS) in the left motor cortex area. Discrimination of
these ERD/ERS can be used to design a BCI.

2.3.1 ERD/ERS

ERD and ERS generally occur in mu (*8–12 Hz) and beta (*13–20 Hz) fre-
quency ranges. ERD is the EEG attenuation in primary and secondary motor cor-
tices during preparatory stage which peaks at movement onset in the contralateral
hemisphere while ERS is EEG amplification in ipsilateral hemisphere occurring
during the same time. ERS appears to be an evolutionary built-in inhibitory
mechanism, which explains why it is difficult to execute dissimilar tasks on both
sides of the body simultaneously.2

In addition to mu and beta frequency ranges, sometimes there is also an increase
in EEG energy in gamma (>30 Hz) frequency range. A simple electrode set-up for

2 This can be demonstrated using an old trick. While sitting comfortably, lift right leg off the
ground and rotate the right foot clockwise. Now, with right hand, draw number six in the air—
what happens to the foot direction?
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motor imagery will consist of two active channels in location C3 and C4 (i.e. motor
cortex area), and EEG is obtained during an imagined movement (say either left or
right hand). The EEG is filtered in mu and beta bands, and the energy of EEG from
channels C3 and C4 are computed to decide on the movement class:

• if energy of C3EEG > energy of C4EEG: left hand motor imagery
• if energy of C4EEG > energy of C3EEG: right hand motor imagery
• if energy of C3EEG ≈ energy of C4EEG: no motor imagery

But this is a crude example and the actual EEG analysis involves several stages
such as determining the appropriate electrode locations, spectral range and use of
features such as band powers and classifiers to obtain accurate detection of the class
of motor imagery.

2.4 EEG-based BCI Paradigm 2—SSVEP

SSVEP is a type of EEG that occurs when the visual stimulus flashes at a frequency
higher than 6 Hz. It is maximal at the visual cortex, specifically in the occipital
region. In this paradigm, a target block flickers with a certain frequency on screen
(the flicker can also be achieved using LEDs) and the user looks at the flashes. The
frequency following effect (sometimes known as photic response) of the brain causes
EEG to oscillate in the frequency of the flickering object. The response is sponta-
neous and does not require any physical effort other than to gaze at the stimulus as
required. In a similar manner, audio-based methods are explored but the results are
not as accurate as the visual-based methods. The detection of the frequency of the
EEG is sufficient to detect the focused object, though there is a recent study that
showed the possibility of using SSVEP with eyes closed (Lim et al. 2013).

2.5 EEG-based BCI Paradigm 3—P300 VEP

P300 visual evoked potential (VEP) is another type of EEG that is evoked around
300–600 ms after visual stimulus onset (hence the term P300) and is maximal in
midline locations (such as Fz, Cz and Pz). The potential is limited to 8 Hz, and
hence, a low pass filter is normally used to filter VEP prior to analysis. It is evoked
in a variety of decision-making tasks and in particular, when a target stimulus is
identified, for example when a picture is recognised. A popular paradigm is the
Donchin’s speller matrix paradigm (Donchin et al. 2000) shown in Fig. 2.6. It
consists of alphanumeric characters on screen and the rows and columns flash
randomly. The row and column containing the target (focused) character will have a
higher P300 amplitude compared to row or column that contains the unfocused
character. However, this P300 amplitude is not normally detectable in a single trial
due to contamination from higher background EEG and hence require averaging (or
other forms of processing such as PCA and ICA) from a number of trials.
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The principle is based on the oddball paradigm where the frequency of the target
stimulus is lower than the non-target stimulus. In this case, the target frequency is
one sixth since only either one row or one column flashes at a time. A variation of
this paradigm is where each alphanumeric character flashes thereby decreasing the
frequency to one thirty-six—the lower this frequency, the higher is the P300
amplitude response, which allows easier detection, however resulting in slower
response overall as it takes longer to complete the cycle.

2.6 EEG-based BCI Paradigm 4—Mental Task BCI

In this paradigm, users think of different mental tasks and since different tasks activate
different areas of the brain, a set of multichannel EEG recordings will have distinct
EEG patterns to differentiate the tasks, which could be used to design a BCI.

Examples of mental tasks used are (Keirn and Aunon 1990; Palaniappan 2006):

• Baseline task where users are asked to relax and think of nothing in particular;
• Computation task where users do nontrivial multiplication problems;
• Mental letter task composing where users mentally compose a letter to someone;
• Visual counting task where users visually imagine numbers written on a board

with the previous number being erased before the next number is written;
• Geometric figure rotation task where users imagine a figure being rotated about

an axis.

These mental tasks exhibit inter-hemispheric differences, and hence, the EEG
pattern will be distinct (Keirn and Aunon 1990). For example, computation task
involves the left hemisphere more while the visual task exhibits more activity in the
right hemisphere. The detection of the inter-hemispheric activity can be done using
asymmetry ratio where the powers of EEG channels in the left and right

Fig. 2.6 Example of P300
VEP paradigm—Donchin’s
speller matrix
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hemispheres are compared to decide the activated hemisphere, which can then be
used to design a control interface.

2.7 EEG-based BCI 5—SCP BCI

SCP are low frequency potential shifts in EEG (around 1–2 Hz) and can last several
seconds. It is possible to control SCP using feedback and reinforcement mecha-
nism. Different tasks can be used to control either the positivity or negativity SCP.
For example, cognitive tasks (or even inactive relaxed states) can generate posi-
tivity SCP while negativity SCP can be generated with tasks such as readiness/
planning to move. Hence, it can be used to generate a binary signal, which can be
used as a control mechanism. It is not as popular as the other EEG-based BCIs as it
requires extensive training in order to give good performance.

2.8 EEG-based BCI—A Brief Comparison of the Paradigms

Comparing the different EEG-based BCIs, it can be seen that each method has its
strengths and weaknesses. For example, motor imagery requires user training and
also the response time is slower (the imaginary movement causes changes in EEG
to show up typically after a few seconds) but this paradigm circumvents a visual
interface and also be can run in the asynchronous mode, thereby allowing the user
to turn the system ON/OFF and also use the control mechanism. Mental thoughts
are similar in this regard but with the brain rapidly changing over time, such EEG-
based BCIs will require frequent retraining.

SSVEP is very robust and requires only a single active channel but require users
to gaze at flashing blocks, which is only practical for short periods of time (typically
a few minutes). There is also the risk of triggering epilepsy if the flashing frequency
is set to be too low. P300 VEP also suffers from this risk, though of a lesser degree.
Of all the EEG-based BCIs, SCP requires the most extensive training and is less
appealing for this reason but gives good performance.

2.9 Application 1—Biometrics (Password, PIN Generation)

The common biometric is fingerprint but in recent years, others such as DNA, hand
geometry, palm print, face (optical and infrared), iris, retina, signature, ear shape,
odour, keystroke entry pattern, gait, voice, etc., have been proposed. But all these
biometrics can be compromised at some stage but biometrics based on BCI is more
fraud resistant as thoughts cannot be forged!

The P300 BCI paradigm can be used to generate a sequence of passwords (or
personal identification number, PIN) that can be used in ATMs and computer logins
(Gupta et al. 2012). Instead of entering the password using a keypad, the
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alphanumeric characters will pop on the screen and when the character in the
password appears on screen, this evokes the P300 potential which is not evoked
when non-password characters appear. Similarly, colours can be used instead of
alphanumeric characters (having the advantage of being language independent) to
code a password (Gupta and Palaniappan 2013). For example, red-green-blue-red-
yellow could be the ‘pass-colour’ for someone.

Figure 2.7a shows raw EEG signal, and Fig. 2.7b shows the filtered P300 signal
from channel Cz where the bolder line shows the focused or target colour and the
higher amplitude can be seen for the focused colour compared to the non-focused

Fig. 2.7 Pass-colour biometric based on P300 VEP BCI a raw EEG b filtered EEG
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colours. The detection of the colours/characters through this mechanism overcomes
problems like shoulder surfing.3

2.10 Application 2—Cursor Control

Most of the SSVEP-based BCIs focus on discrete control, for example selecting a
menu on screen. In Wilson and Palaniappan (2011), an analog pointer was
developed where instead of discrete control, the cursor on screen moved analo-
gously based on the phase locking index (PLI) of the SSVEP frequency. The cursor
was designed as shown in Fig. 2.8, where each edge flickers with either 15, 12, 10
or 8.57 Hz (the frequencies were chosen based on the refresh rate of the LCD screen
of 60 Hz). The EEG was recorded from channel Oz in the visual cortex referenced
to channel PO3. Depending on which block the user was looking at, the SSVEP
will contain the respective frequency and its harmonics which can be detected using
discrete Fourier transform (DFT) and other spectral analysis methods. Using this
frequency measure, the cursor moved accordingly—the stronger the SSVEP
response (measured by the PLI measure from DFT), the further the cursor moved on
screen.

2.11 Challenges in BCI

The most difficult challenge at the moment for general BCI use is on the require-
ment of using gel to improve the conductance though the advances in electrode
design (such as active electrodes) have reduced the set-up time considerably. Dry
capacitive electrodes have been invented but the quality of the EEG signals is still
poor. When it comes to patient usage, most of the advances are being tested on
healthy, abled bodied subjects and the required adaptation for disabled people and
in real noisy environments are not being studied extensively. Asynchronous (or
self-paced) BCIs are more suitable for the disabled as these give additional ON/OFF

Fig. 2.8 SSVEP-based
cursor—each shaded edge
flickers with a certain distinct
frequency

3 Peeking over the shoulder to steal another person’s password.
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control to the users but proving to be difficult to obtain reliable accuracies as
compared to synchronous systems. The response time of BCI systems need to be
improved for practical applications—SSVEP BCI is relatively fast (with high bit
rates of 100 bits/min (Nicolas-Alonso and Gomez-Gil 2012)) but not without issues
especially as it cannot be used for long periods of time.

2.12 Conclusion

BCI systems are certainly useful for the disabled. However, in recent years, the
focus has shifted from this original objective to other application areas like bio-
metrics, games, virtual reality and indeed music (brain–computer music interface,
or BCMI). EEG-based BCI still proves to be the most practical, portable and cost-
effective. The current many advances in BCI technology—such as the advent of
non-contact electrodes—will allow mind-controlled devices to become a reality in a
decade or so, if not sooner. Imagine a thought-based speed dial: selecting a phone
number to dial just by thinking/looking at photograph of the person using EEG
from headphones—it could become a reality before we know it!

2.13 Questions

1. BCI approaches could be categorised as invasive or non-invasive. Discuss the
advantages and disadvantages of each approach and list examples of approa-
ches in each case.

2. Describe the different EEG-based BCI methods and comment on the practi-
cality of each method.

3. Explore the appropriateness of other biological signals such as those based on
electrocardiography, plethysmography, imagined speech etc., for use in non-
muscular-based control systems.

4. Figure 2.6 shows a VEP paradigm based on P300 potential. It is based on
oddball paradigm where the probability of target occurrence is lower than non-
targets. Describe other ways where the characters can be flashed that will still
evoke P300 potential in an appropriate manner for use as BCI speller.

5. Assuming the refresh rate of LCD screen of 60 Hz, list all the different pos-
sibilities of flicker frequencies for a SSVEP-based BCI system?

6. Two applications using EEG-based BCI have been discussed in this chapter.
Describe other applications that might be appropriate using an EEG-based BCI.

7. What are the hurdles in the implementation of current BCI systems? Suggest
possible solutions.

8. BCI system has been used in US judicial courts in place of polygraph (i.e. as a
lie detector), and there is a common fear among the public that BCI technology
can be exploited to read the mind. Based on the current level of technology,
discuss if this is possible or just a sci-fi scenario.
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9. An electroencephalophone (or sometimes known as encephalophone) uses BCI
technology to generate or modulate sounds. Suggest how such as device could
work using EEG signals.

10. What are the ethical, legal and societal issues surrounding BCI technology?
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3Contemporary Approaches to Music
BCI Using P300 Event Related
Potentials

Mick Grierson and Chris Kiefer

Abstract

This chapter is intended as a tutorial for those interested in exploring the use of
P300 event related potentials (ERPs) in the creation of brain computer music
interfaces (BCMIs). It also includes results of research in refining digital signal
processing (DSP) approaches and models of interaction using low-cost, portable
BCIs. We will look at a range of designs for BCMIs using ERP techniques.
These include the P300 Composer, the P300 Scale Player, the P300 DJ and the
P300 Algorithmic Improviser. These designs have all been used in both research
and performance, and are described in such a way that they should be
reproducible by other researchers given the methods and guidelines indicated.
The chapter is not intended to be exhaustive in terms of its neuroscientific detail,
although the systems and approaches documented here have been reproduced by
many labs, which should be an indication of their quality. Instead, what follows
is a basic introduction to what ERPs are, what the P300 is, and how it can be
applied in the development of these BCMI designs. This description of ERPs is
not intended to be exhaustive, and at best should be thought of as an illustration
designed to allow the reader to begin to understand how such approaches can be
used for new instrument development. In this way, this chapter is intended to be
indicative of what can be achieved, and to encourage others to think of BCMI
problems in ways that focus on the measurement and understanding of signals
that reveal aspects of human cognition. With this in mind, towards the end of the
chapter we look at the results of our most recent research in the area of P300
BCIs that may have an impact on the usability of future BCI systems for music.
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3.1 Music BCIs: The Challenges

EEG approaches have been applied in the domain of music for decades due to
EEG’s temporal resolution when compared to other brain information retrieval
techniques, and also because it is considerably more cost effective and portable than
the alternatives (e.g. fMRI1, fNIRS2).

One would assume contemporary EEG-based BCMIs would draw from the state
of the art in generalisable EEG. However, neurofeedback techniques that use
spontaneous potentials (i.e. oscillations in raw EEG signals), or what are commonly
called “Brainwave Frequencies” to understand and decode information from the
brain are a popular method for consumer and research level BCMIs, largely because
this approach is ‘baked in’ to various BCI devices that are commonly sold in the
marketplace.

These approaches can be unreliable and challenging for users to control, and are
therefore not as prevalent in other forms of EEG research as some other, more
accurate methods. One such method is the ERP, or Event Related Potential tech-
nique, which is widely used in BCIs and psychology research (Grierson et al. 2011;
Miranda et al. 2004; Chew and Caspary 2011; Nunez 2006).

3.2 P300 ERP Based Music BCIs

3.2.1 What Are ERPs?

ERPs are specific brain signals that can be detected in raw EEG data following the
onset of a stimulus—for example, the beginning of a sound, or a change in the
motion or visual appearance of an image or other sensory experience. There are
many types of ERPs, each one thought to represent a different stage and/or process
in the unconscious and conscious encoding of events by the brain. They can also be
an indication of the way in which you are experiencing a particular stimulus—for
example, such as whether you consciously noticed a particular event or not.

3.2.2 What Is the P300?

Under certain conditions, ERP components can be seen as amplitude curves and
peaks derived from the raw EEG time series. They can be either positive or negative
with respect to the baseline brain signal, and happen on or around particular points
in time following a sensory input event. These two factors—their polarity and
timing—provide the method by which they are labelled. For example, the N100 (or
N1) is a negative peak approximately 100 ms after the onset of a sensory event that

1 functional Magnetic Resonance Imaging.
2 functional Near-Infrared Spectroscopy.
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indicates the event is unpredictable in comparison to surrounding events, with the
strength of the N100 component being roughly related to how random/unexpected
the sensory event appears to the user. The N1 is often accompanied by the P2 or
P200, which is a positive going response peaking at around 200 ms. Both these
components are usually considered lower in amplitude and therefore slightly harder
to detect than the P3, or P300, a positive-going potential, peaking at around 300 ms.
It is thought that this component represents the moment at which an external event,
being suitably unpredictable, causes a sensory signal considered important enough
to cause a shift in attention in the brain. Basically, it is the point at which you
consciously notice something happening—something out of the ordinary. As has
already been stated, this component has a tendency to be higher in amplitude than
many other parts of the raw EEG signal. Therefore it can sometimes be seen in the
raw data signal as a peak. However, there are also other peaks in the signal, which
makes detection complex (Fig. 3.1).

Importantly, the P300 is thought to consist of two potentials that interrelate: the
P3a and P3b. The difference between them is key. The P3a is often called the
“oddball” response, and is detectable under conditions where you experience a
break in a pattern, or the onset of a new type of event in a stream of other events.
However, the P3b is thought to occur when you intend to notice something in a
stream of events, such as when you are searching for a specific target, such as a
certain picture or letter.

In order to use the P300 ERP in the design of a BCMI, we will need to elicit the
P300 through the use of unpredictable events (often called “oddballs”), or by some
form of user-driven search task with rapid presentation of a range of choices. This
requires significant expertise in digital signal processing (DSP) and audiovisual
interaction paradigms, but is achievable by those with appropriate maths and pro-
gramming skills using the basic methods described below and throughout this
chapter.

To make life easier for those researchers who wish to utilise existing ERP
detection software, there are some freely available P300 detection toolkits for
Matlab (such as EEGLAB http://sccn.ucsd.edu/eeglab/), and also excellent alter-
native frameworks such as openVIBE and BCI2000. These toolkits support a range

Fig. 3.1 A graph of common
event related potential
components following a
stimulus. Note the inclusion
of approximate timings for
P3a and P3b, and the
indication of the positive area
underneath the P300 curve
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of commercial and research grade (e.g. g.Tec MOBIlab) EEG hardware. The
outputs of these can be easily connected to sound and music programming envi-
ronments such as PD and Max through the use of UDP networking libraries like
open sound control (OSC) to create BCMI systems. However, no matter what
approach you take, it is crucial to understand the basic method and its limitations.

3.2.3 Detecting P300 ERPs Using the Averaging Method

Conventional methods for detecting ERPs represent some challenges for those
wishing to use them in musical contexts. This is because one of the core features of
ERPs, including the P300, is that when mixed with spontaneous EEG signals, or
what we might call background EEG, they are not very easy to spot. In most cases,
in order to detect ERPs we must remove the background noise that masks them.
The problem is that ERPs themselves look quite a lot like the spontaneous
potentials which make up the background noise, and occur in the same frequency
bands. Therefore, simply filtering the signals using standard methods will not work.
For these reasons, to remove the possibly random noise present in a time series of
EEG data, a series of stimuli are usually presented, and the responses are averaged.
This process reduces the amplitude of random signal components, and increases the
amplitude of similar signal components—the ERPs. To test this approach we can do
an oddball task, the basic process for which is detailed below (Fig. 3.2).

The Oddball task is a well-known P300 ERP paradigm (Polikoff et al. 1995). It
is useful for testing if an EEG system with tagged stimuli is able to elicit and detect
P300s. For the oddball task, two types of stimuli are required, for example, blue
circles and red squares. The stimuli are flashed randomly on the screen at set
intervals. If we decide that the red square is to be the less common and therefore
more unexpected stimuli, the red squares are flashed less often—for example at a
ratio of 10:2 for blue circles versus red squares. Each time a flash is triggered, a
400 ms chunk of EEG data is stored and tagged to the stimulus. At the end of each
run, results for each stimulus type are averaged together. Both the blue circles and
the red squares will then have only one single averaged EEG chunk that represents
the average response of the brain for when there was either a blue circle, or a red
square. So in total, there are only two averaged chunks at the end of the oddball test.

If the averaged signal contains an amplitude peak between 200 and 600 ms after
the onset of the stimulus, and the average peak is greater than that of the averaged
peak in the other signal, it is judged to be a possible P300 target signal, as the target
would be the averaged signal with the highest amplitude. In the case of the oddball
task, if we know that the red square appears less often, we’d expect it to have a
higher average peak amplitude at that point. If this doesn’t happen, it basically
means either the equipment failed, or the user blinked/moved too much, or was
thinking about something else. This sort of thing happens quite a lot, so we need to
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have ways to account for it, such as discounting epochs of data with extraordinarily
large peaks consistent with head movement and blinking.

Of course, if we want to be able to choose between three or more different
possible choices, we can have a grid containing all possible choices, and flash each
choice randomly an equal number of times, whilst we ask the user to stare at their
chosen target. Success rates for this method vary wildly depending on a range of
factors, including the skill of the user, how much they are concentrating, the quality
and/or position of the electrodes, the ease with which the stimuli can be seen, the
number of times each stimulus is flashed, which algorithms are used for detection,
how the signal is analysed prior to averaging, the accuracy of the signal baseline,
and any number of less important but still occasionally significant variables.
However, almost all of these variables also apply to all other forms of EEG BCI.

Despite these disadvantages, ERP detection is a surprisingly accurate method for
BCI, with detection rates sometimes reaching over 90 %, meaning that 90 % of the
time, the system is able to detect which stimuli is triggering the P300. As the
method favours actual conscious attention measured with reference to the time
when stimuli flashed, it is one of the best approaches for EEG-based BCMI in terms
of accuracy and usability. Later in this chapter we will discuss a number of possible
applications for using P300 BCI in music contexts. In addition we will also detail
ways we can significantly improve both the speed and usability of P300 ERPs
for BCMIs.

Fig. 3.2 The oddball paradigm. The approach represented above is slightly more efficient than the
standard approach as instead of simply calculating which averaged chunk has the highest
amplitude, here we calculate the area underneath the curve containing the highest positive
amplitude peak (for details see Fig. 3.1), which is more robust as it helps to reduce inaccuracies
introduced by high frequency amplitude spikes and other noise/unwanted signals
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3.3 ERPs, Delay and Musical Interaction

Now that the averaging method for ERP de-noising has been explained, it should be
clear that these sorts of techniques inherently involve a delay. Averaging-based
ERP detection accuracy improves as the number of trials increases. For example, if
a user is asked to choose from an array of (for the sake of argument) 10 different
visual items, each flashing individually but at different times, it would be usual to
require a minimum of 10 trials (flashes) per item to be able to create a suitable
averaged signal for comparing amplitude. Given an inter-stimulus interval of
100 ms between flashes, there would be 10 flashes multiplied by 10 individual
presentations multiplied by 100 ms—a total test-time of 10 s before the detection
algorithm could assess which of the 10 final averaged chunks contained the highest
peak.

Depending on the skill/experience of the participant, the inter-stimulus interval
might be reduced to 60 ms, and the number of trials down to 7. This would reduce
the time taken to detect the user’s choice down to just over 4 s. However it would
be less accurate and possibly require greater concentration to use.

Importantly, types of time delays are not incompatible with certain types of
musical tasks, more specifically those types of tasks that are common to creating
music with technology. It is only in the last 25 years that electronic and computer
music has become a predominantly real-time activity, and many high quality pro-
cessing techniques are still time consuming (time domain convolution for example).

Furthermore, many crucial aspects of musical interaction do not require real-time
control. For example, composition can often be an ‘offline’ activity, requiring time
for consideration and planning. In these cases, P300 ERP detection delay times are
not a significant issue.

In addition, as P300 ERP approaches provide direct, time-tagged information
about cognition of sensory events, it can be used as a passive aid to the composition
process. That is to say, the oddball response might feasibly be used as a measure of
novelty given the right presentation paradigm. For example, it is common for
composers and recording artists to listen to complete performances/potential ver-
sions multiple times during production. If EEG recordings could be easily taken
during these listening sessions, EEG responses to musical events could be used to
determine how unexpected and/or attention grabbing each musical event was at the
level of milliseconds. This approach was used in my Audiovisual Composition
Braindrop, mentioned later in this chapter.

The holy grail of ERP detection is what is referred to as ‘Single Trial’. This
means that the ERP signal can be effectively detected and separated from the
background EEG noise immediately, pointing directly to the element in the auditory
or visual stream which caused the attentional shift without the need for averaging
multiple tests/trials. These approaches are becoming more possible through
machine learning, and we report results of our research in this area at the end of the
chapter.
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There are still a number of ways in which the averaging technique can be
improved and refined for successful and fulfilling BCMI using the P300. What is
unique and exciting about this approach is that as it indicates the brain’s cognitive
processes, it allows composers and performers to use knowledge of their own
unconscious in creative decisions, whilst simultaneously giving very accurate
results when users wish to indicate specific actions.

What follows are descriptions of P300 based BCMI systems that have been
prototyped as part of my continuing research at Goldsmiths. In almost all cases the
systems are created using bespoke software written in C++ for P300 ERP detection.
In addition, the systems described use raw EEG data only, from a range of electrode
locations. The type of EEG equipment used ranges from research grade to low-cost
consumer EEG. All the approaches here are reproducible, but it should be stressed
that the cheaper the equipment, the more challenging and creative the signal pro-
cessing approach needs to be in order to get reliable output. If in doubt, one should
use a professional research grade EEG system. Although multiple electrodes can
lead to better results, a single electrode placed at Cz is sufficient for reasonable
results for the majority of the use cases detailed below.

3.4 The P300 Composer

As has already been discussed, P300 approaches can be very accurate even with a
high number of possible targets as long as the electrode quality, positioning and signal
conditioning is adequate. Providing these caveats have been met, the P300 Composer
is the simplest form of P300-based BCMI to create, and adequately demonstrates the
power and effectiveness of the approach. This method of creating a successful
visually controlled P300 BCI for music was first described in the 2008 paper
“ComposingWith Brainwaves: Minimal Trial P300b Recognition as an Indication of
Subjective Preference for the Control of a Musical Instrument”, (Grierson 2008).
The method used (which is detailed below) was also speculated upon by David
Rosenboom as a potential future method for BCMI (Rosenboom 1976).

The P300 composer is capable of allowing a motionless user the ability to create
a single monophonic pitched line from a range of possible pitches. The line itself
can have unlimited total duration, and can be composed of notes of finite length,
and also gaps/musical rests. The system is now much simpler to build than in the
past as it can be produced by modifying the more-or-less standard P300 spellers
(see below) available in the public domain. Such paradigms are available in a
number of low-cost and free-to-use software libraries such as openVIBE3 and
BCI2000.4 Both these systems can be made to interoperate with OSC5 making the
creation of P300 speller-based composer systems within reach of most researchers.

3 http://openvibe.inria.fr/openvibe-p300-speller/.
4 http://www.bci2000.org/wiki/index.php/User_Reference:P3SpellerTask.
5 http://www.opensoundcontrol.org/.
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The P300 Composer is like the P300 speller, but instead of displaying a grid of
letters, it displays a grid of possible music note-names from A1 to G5, and addi-
tionally numbers and/or spaces that can indicate rests or other actions. Each grid
element flashes an equal number of times, but in a random order, and the P300
averaging technique described above is used to detect the grid element having the
highest average amplitude signal when compared against the others. As previously
described, the user must attend to a specific grid element, actively noticing when it
flashes. The user can do this either by mentally counting the number of flashes, or
by some other method they find works for them.

In order to determine which note-name or rest a user is attending to (i.e. looking
at), each position on the grid needs to flash enough times for the system to be able
to compute a usable averaged signal representing each possible choice. As already
mentioned, this depends on a number of factors, including the signal condition, the
user’s skill and experience, how tired the user is, how much they blink or move etc.
The more time the user is able to spend, the more likely they are to be able to
indicate their choice accurately, with the knock-on effect that with 42 different
elements in the grid, the system can be slow to use. For example, if each note
flashes 20 times, for a combined on/off duration of 100 ms each time, each note-
name will take 84 s to be detected. However, it will be very accurate.

There are a number of methods for decreasing the time taken to detect ERPs. For
example, each column and row can be flashed in sequence, which dramatically
speeds up the process. If such a method is used, each XY position on the grid is
found by flashing each row and column once in random order. The currently
attended area of the screen is detected by comparing the average of all rows (X) and
all columns (Y) to find the highest average peaks in each, such that they correspond
to the target row and column. With this approach, the time taken to perform each
test drops to around 26 s.

One can again speed up the process by reducing the flashing speed, and the inter-
stimulus interval. For example, each flash might be fast as 50 ms (one-twentieth of a
second), with a gap of 20 ms between flashes. This would reduce the time taken to
detect the correct note-name choice to around 18 s.

Furthermore, the number of trials (flashes) can also be reduced. It is possible for
an experienced BCMI user to work with a system which uses 7 trials per grid
element or row/column in order to achieve success between 70 and 80 %. This can
lead to a further improvement in speed of approximately 300 %, bringing the total
test-time per note-name choice to just over 6 s if all speed improvements are
applied.

Given the large number of potential interaction choices available to the user with
this method (42 in the matrix presented in Fig. 3.3), some of the grid elements can
be used to increase the user interaction. For example, these effectively ‘empty slots’
can be used for setting the current note duration, for setting rests of different
durations, and also for indicating that a previous note choice should be removed.
Additionally, play/stop functionality can be offered.
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In this way, different types of user interactions can be explored quite easily
without making changes to the underlying speller paradigm. All that is required is
that each individual element in the grid be connected up to a synthesiser note or rest
in a sequence, or to a user-interaction event, for example: play, stop, delete etc.
Through these types of approaches, the standard P300 speller approach can be used
to make a reasonably featured composition tool.

3.4.1 MusEEGk—The P300 Sequencer

An expansion of this approach is detailed in Yee Chieh (Denise) Chew’s paper
“MusEEGk: A Brain Computer Musical Interface”, presented as work in progress at
CHI 2011 (Chew and Caspary 2011). She describes a similar system but where
P300 detection is used to indicate notes in a continuously looping sequence. This is
particularly usable in the context of electronic music, and not unlike conventional
approaches to loop-based electronic music composition and performance.

One of the useful adaptations apparent with this technique is the way in which the
system becomes programmable whilst producing sound—that is to say, it allows a
user to specify and play back a looping sequence, and then to iterate through it
indicating any changes they wish to make whilst it continues to play. This mitigates

Fig. 3.3 A basic P300 composer interface. In the above image, the note-letter D3 is flashing. If
the user is attending to D3 at that moment, there should be an increase in amplitude detectable in
the averaged signal after each complete trial run. Note that although this display shows 5 octaves
in the key of C, there are no restrictions in terms of which note-pitch values and controls can be
represented
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against one of the central design problems of the P300 speller paradigm—that at
some point, detection must momentarily stop and a decision must be reached, before
beginning again. We discuss a separate solution to this problem later in this chapter.

The P300 composer is a good first step in the creation of P300 BCMIs. However,
there are still a range of problems with the approach that users need to be made
aware of. Significantly, if the user moves, blinks, loses attention or otherwise
disturbs the signal, this will lead to inaccurate results. However, it is very chal-
lenging for users to avoid this without practice, and can occur even with experi-
enced users. Various methods can be deployed to prevent this. For example, if the
signal peak is very high, this may indicate facial or bodily movement. These trials
can and should be discarded as and when they occur, as they will otherwise bias the
signal average, creating inaccurate results.

3.5 P300 Scale Player

The P300 Scale Player is a simplification of the P300 Composer intended to be used
as a close-to-real-time improvisation and performance system. I first used the
system in 2008 as part of a demonstration to international media, and have used it
on stage on a few occasions. The basic premise is that the system has only three
visual targets—arrows. The left arrow indicates a drop in note pitch, the right arrow
indicates an increase in note pitch, and the middle arrow indicates that the note
pitch should remain the same. The system decides which note to play based on the
outcome of a given number of trials, and testing is more or less continuous, with a
new test beginning as soon as the previous test has completed.

The advantage of this approach is that with an experienced user, the time it takes
for the system to make a decision is greatly reduced. For example, with a total inter-
stimulus interval of 70 ms, and a total number of trials being no more than 5,
decisions on note direction are reached in just over a second. It’s of course accepted
that this is slow when compared to playing an instrument, but it does allow for the
control of slow moving melody lines with some reliability.

The primary disadvantages of this approach are that it only allows for adjacent
notes to be played, and only within a particular predefined scale. So, for example, if
the user is on D3, they can only choose to move to E3 or C3, or to stay on D3.
However, it is precisely these restrictions that give the system its speed.

Although the scale player is certainly not an instrument with the capacity for
varied melodic output, it is at least a BCMI that can be used in real-world scenarios,
played as an instrument with an ensemble, and even to play the occasional well-
known tune (for example, the main theme from Beethoven’s Ode to Joy).

3.5.1 Using the Scale Player as a Game Controller

This approach can be modified to allow its use as a game controller to play simple 3D
games for example. In this context, with a reaction time of around a second, it is
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possible to play a 3D driving game in a way that is not entirely unlike using other
kinds of controllers, depending on the user’s skill level. Although it is of course
accepted that it is not an interface that in any way competes with a conventional game
controller, it is an approach that with machine-learning based single trial detection
might begin to be usable in such scenarios in the near future. We present results of
trials carried out using user-derived machine learning classifiers later in this chapter.

3.6 P300 DJ

Another simple modification of the speller-based approach is the P300 DJ. In many
ways, this system is the most usable of the ones described here as it assumes a
specific interaction paradigm that requires little input from the user, and wherein
musical data—the sounds used by the system—have specific restrictions.

In the use case presented here, the P300 DJ can use any audio file providing it is
trimmed to a loop. The loop can be of any length or numbers of beats as long as
they are multiples of 4. The system has the capacity to estimate the number of beats
based on basic onset detection compared to the sample length, so long as it can
assume that the audio file starts and stops on a bar division. It can then ensure that
loops of different tempi can be synchronised.

The BCMI system is straightforward. The user has the opportunity to queue
tracks into a playlist using the P300 Composer interface, but instead of selecting
individual notes, the user is presented with a finite list of available tracks. The user
can move back and forth, selecting or removing tracks from the playlist, and when
each track is about to complete, the next playlist selection is beat-matched and
automatically mixed in.

A different iteration of this system can be built using the P300 scale player
interface, allowing the user to move within a long list of songs, then deliberately
selecting a specific track.

This system was created to work with my commercial audiovisual mash-up tool,
Mabuse, which has a number of features that can be used for creating beat-aligned
interactive music and visuals. Again, as with the design of any P300 BCMI, the
crucial approach is to find an interaction that is possible with the P300 averaging
technique whilst remaining suitable for the user’s needs. I have performed on a few
occasions with this system, and it can produce as satisfying a set as with con-
ventional methods, as the user need only specify something new very rarely when
compared to other forms of music and sound performance.

3.7 P300 Influenced Algorithmic Improviser

Another approach that can provide fertile ground for experimentation is to combine
the P300 selection system with an algorithmic improvisation tool, such as a Markov
model-based melody and chord generator. In systems such as this, specific
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harmonic and melodic behaviour is encoded in a Markov model either by creating
the model manually, or by analysis of a performed monophonic melodic line.

A similar system was used to create the piece Braindrop, whereby structural
elements of an algorithmic piece are presented to the user through the use of
accompanying visual cues. The P300 response to the visual cues causes the
structure of the music to change. In this particular piece, models of attention are
also used to gauge the performer’s interest in the current structure, leading to a
transition to the next section of music.

A similar approach was used as part of the Finn Peters project Music of the
Mind, in collaboration with Dr Matthew YeeKing. Further details of kinds of
approaches are detailed in our paper “Progress Report on the EAVI BCI Toolkit for
Music: Musical Applications of Algorithms for Use with Consumer Brain Com-
puter Interfaces”, presented at ICMC in 2011 (Grierson et al. 2011).

3.8 Developing Novel Methods for P300 Detection

Significant aspects of our research involve attempts to create further refinements to
P300 detection methods for the purposes of both increased speed and usability of
generalised P300 BCI. As part of this research we have created novel signal pro-
cessing methods that have as yet not been applied in any other BCI context. Two
examples are presented here: the moving average method, and template matching
through machine learning of Repetitive Serial Visual Presentation (RSVP) derived
P300 features. In addition we have attempted to reproduce these results using the
lowest cost BCI hardware available, including single dry electrode devices such as
the NeuroSky MindSet. Importantly, good results on the MindSet are difficult to
achieve with these methods, but we demonstrate these approaches can work on this
hardware. Furthermore, these methods are equally as applicable to P300 BCIs that
use any hardware that can provide access to a raw EEG signal given the caveats
mentioned at the beginning of this chapter.

3.8.1 Collecting and Conditioning Raw EEG Signals from BCI
Hardware

Almost all EEG devices are capable of providing raw untreated signals. When
creating new approaches to BCI, it’s vital we work with these as much as possible.
This is usually fine, particularly when deploying custom software with research-
grade devices such as g.Tech’s mobiLab.

A crucial problem for consumer devices such as the NeuroSky MindSet and the
Emotiv Epoch is lack of flexibility concerning electrode placement. With respect to
the Neurosky, the forehead electrode is not well placed for P300 detection. Spe-
cifically, it is not considered possible to detect the P3b from the forehead, especially
using the Mindset or similar devices. However, we have had success in detecting
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the P3a with such devices using the average technique. Although the P3a is less
useful for creating speller-type applications, it can be used with certain approaches
where only the oddball response is required. In addition, we have had some success
in using machine learning to build a P300 classifier using the NeuroSky, and these
results are presented at the end of this chapter.

Our system is based on our generalised C++ ERP detection algorithm previously
described in [x]. This algorithm is agnostic to hardware, providing the same code
interface for any device for which raw EEG data is available. There are some
important aspects to the design of the algorithm which are worth noting if you are
considering engineering your own P300 solution.

When producing custom signal processing techniques for ERP detection, it is
vital that the signal is conditioned in the correct manner. Failure to do this will
result in false and/or confusing detection rates. Providing that your hardware is
correctly configured and operating normally, the derivation of a proper baseline for
the raw EEG signal is the next priority. A good baseline is essential before any
signal processing can begin—fundamentally if there is any positive or negative
going offset in the signal, this will cause biased results, especially when averaging
signals.

For example, if the baseline signal is positively biased, this will introduce a
higher average peak in results that have a smaller number of signal blocks from
which to derive an average. The offset will be reduced as more signal blocks are
used to derive an average, but in the case of an oddball test, where the less common
signal should contain a higher average than the more common signal, the positive
offset biases the entire result.

In order to avoid these sorts of statistical anomalies, one can either use a high
pass IIR filter, or subtract a continuous average signal made up of the last n
samples. Neither approach is without flaws. An IIR filter may well introduce phase
shift in significant areas of the signal, whereas subtracting the average will remove
more than just the offset. This may well help rather than hinder your ERP detection
—but either way it is a choice the reader must make for themselves.

3.8.2 The P300 Moving Average Method

Building on our baseline method, we created a modification of the standard ERP
paradigm to allow control of directional movement within a 3D virtual world
through continuous control. In order to achieve this, we created a windowed
moving average algorithm that reliably detects ERP signals from raw EEG data in a
continuous fashion, eliminating the need to stop the test in order to reach a decision.
This has many applications in BCMI, for example, where continuous control is
required to adjust parameter values.

In cases where the hardware or signal quality is poor, for example when using a
low-cost consumer EEG system such as the NeuroSky MindSet, this approach can
help to improve signal conditioning in a way that is more satisfying and less time
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consuming for the user. It does this by building up a history of the last n responses
for each available choice during interaction.

Importantly, in our user test, each choice was flashed on the screen one at a time,
instead of as a grid. Currently winning choices would flash red, providing feedback
to the user. Stimuli are flashed randomly on the screen at regular intervals. For this
test, we used the P300 scale player interface method detailed above to navigate a
3D world. Three arrows indicate left, right and straight ahead. These are arranged
parallel to the floor of the 3D virtual environment (see Fig. 3.4). Each time a flash is
triggered, a 400 ms chunk of EEG data is stored and tagged to the stimulus. At the
end of any given number of windows (n windows), results for each stimulus are
averaged together. Following this, each time a flash is triggered, the previous n
results are averaged for each stimulus. Each stimulus therefore always has an
averaged EEG signal associated with it representing the EEG response to the
previous n windows. If at any time the averaged signal contains an amplitude peak
between 200 and 600 ms after the onset of the stimulus, and the average area is
greater than that of every other averaged peak area, it is judged to be a possible
P300 target signal, as the target would be the peak with the highest average area
under the peak. This target signal is judged to be the winner, and the stimulus
changes from white to red to reflect the change in direction.

The movement system functions by increasing the amount of force in the
direction of the current winner. In cases where subjects wish to move in a new
direction, the system automatically cancels all force in the current direction in
favour of generating force in the direction of the new winner.

Fig. 3.4 The visual stimulus interface for the scale player (above). This interface has the
advantage of being re-usable for P300 controlled game interactions (below). In the above example,
to mitigate against distractions, each arrow is presented one at a time. The currently selected
direction appears a different colour to provide visual feedback to the user (see 3.8)
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The speed of the system is to some extent reliant on the number of windows used
to create the moving average (n). Obviously, the greater the value of n, the more
reliable the system becomes. However, as the system uses a first in first out (FIFO)
queue, once the initial averages have been computed, it can take significantly less
time for the change in average amplitude to bring about a change in direction.

We carried out tests with five participants in controlled conditions. Participants
were tested in a sound insulated environment with low light-levels. We asked
participants to attempt to concentrate on the forward moving arrow. We used this
measure in order to judge how effective the system was, based on the amount of
time that moving-average based EEG epochs relating to the forward arrow stimulus
contained the greatest average area.

Results from controlled experiments demonstrated that this test performs as well
as discrete P300 averaging approaches commonly used to create all BCIs, including
BCMIs. This is not controversial as the main difference with our method is that a
FIFO queue is used, and decisions are made by the system continually as the user
interacts. This approach has some clear advantages for creating real-time continu-
ous controllers for BCI generally, and can be used in BCMI for the control of
mixers and crossfaders. For example, with two flashing arrows, one leftgoing, one
rightgoing, the user can attend to either arrow in order to improve a continuous
confidence level in any particular direction, with a maximum confidence level being
equal to n averages. This scale can be used to assign a value to the user control, as
opposed to representing a specific decision.

3.8.3 Template Matching Through Machine Learning of Repetitive
Serial Visual Presentation (RSVP) Derived P300 Features

RSVP (Craston et al. 2006) is a variant on the oddball test. It offers the potential for
collecting much higher quality datasets for P300 classification than the conven-
tional oddball paradigm. In an RSVP test, the participant is presented with a series
of symbols at high rate (in this case, 10 Hz) (Bowman et al. 2014). They must try to
spot a symbol of one class in a stream of symbols from another. When the symbol is
recognised by the participant, an ERP will occur. At the end of the test, the par-
ticipant can be asked to identify the oddball symbol they spotted. The nature of this
answer (either correct, incorrect or unsure) tells the experimenter whether the
participant was attending to the task, giving a strong indication of whether a P300 is
present in the EEG signal in the time window following the oddball presentation.
This ground truth gives a significant improvement in data quality compared to data
from the classic paradigm where this distinction cannot confidently be made.

An online RSVP experiment was run. Participants were asked to spot a single
letter in a series of 30 numbers presented at 10 Hz, in repeated trials, while wearing
a NeuroSky headset. 412 trials were collected from 19 separate user sessions. The
data was preprocessed as follows: trials with bad signal quality (as reported by the
headset) were rejected. The rest were DC filtered, and then the high frequencies
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were removed using a cascading FIR filter, which was chosen to avoid phase
distortion. From successful trials, the windows from 220 ms to 440 ms after the
oddball presentation were collected (set A). Trials where the participant was unsure
or gave an incorrect answer were collected in set B. Outliers were rejected from
these sets, by removing windows that were more than three standard deviations in
Euclidean distance from the mean, leaving 180 trails in set A and 40 trials in set B.

Data sets were created for classification, by creating each training example as an
average over a number of windows. Drawing on set A, training sets were creating
of 180 examples, using average sizes of 10, 3 and 1 (single trial). The corre-
sponding sets of negative examples were creating using averages of windows from
random time points in set B. These sets were used to train a bagging classifier, using
a random forest as a sub-classifier. The results from tenfold validation tests were as
follows (Fig. 3.5).

These results demonstrate that using machine learning, it is possible to create a
P300 classifier using consumer hardware. This has exciting implications for the
future usability of BCI systems. Given the interaction designs detailed in this
chapter, it should be possible in the near future to create highly accessible, low-cost
BCMI systems, and it is this goal that we continue to pursue.

3.9 Questions

1. What is an ERP?
2. How are ERPs different to spontaneous brainwave potentials?
3. How are ERPs different to SSVEPs?
4. What are the main drawbacks of the ERP technique for musical interaction?
5. What is the purpose of the P300 averaging technique?
6. Describe one way that ERP techniques could be used to get information about

how listeners experience music.

Block Size Correctly 
Classified Instances

Incorrectly 
Classified Instances

10 70.3% 29.7%

3 60.6% 39.4%

Fig. 3.5 The results show that RSVP can be used successfully to build a separable data set for
training a P300 classifier. The single trial results (Block Size 1) show 70 % accuracy

58 M. Grierson and C. Kiefer



7. What are the differences between conventional averaging methods and the
continuous moving average method?

8. What is the difference between the P3a and P3b response?
9. What does “Single Trial” mean in the context of ERP-based BCI?

10. What is the simplest, most effective electrode placement for P300 detection
using research-grade BCI?
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4Prospective View on Sound Synthesis
BCI Control in Light of Two Paradigms
of Cognitive Neuroscience

Mitsuko Aramaki, Richard Kronland-Martinet, Sølvi Ystad,
Jean-Arthur Micoulaud-Franchi and Jean Vion-Dury

Abstract

Different trends and perspectives on sound synthesis control issues within a
cognitive neuroscience framework are addressed in this article. Two approaches
for sound synthesis based on the modelling of physical sources and on the
modelling of perceptual effects involving the identification of invariant sound
morphologies (linked to sound semiotics) are exposed. Depending on the chosen
approach, we assume that the resulting synthesis models can fall under either one
of the theoretical frameworks inspired by the representational-computational or
enactive paradigms. In particular, a change of viewpoint on the epistemological
position of the end-user from a third to a first person inherently involves different
conceptualizations of the interaction between the listener and the sounding
object. This differentiation also influences the design of the control strategy
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enabling an expert or an intuitive sound manipulation. Finally, as a perspective
to this survey, explicit and implicit brain-computer interfaces (BCI) are
described with respect to the previous theoretical frameworks, and a semiotic-
based BCI aiming at increasing the intuitiveness of synthesis control processes is
envisaged. These interfaces may open for new applications adapted to either
handicapped or healthy subjects.

4.1 Introduction

In this article, we present different approaches to sound synthesis and control issues
and describe how these procedures can be conceptualized and related to different
paradigms within the domain of cognitive neuroscience. A special emphasis is put
on the notion of intuitive control and how such a control can be defined from the
identification of signal invariants obtained both from the considerations of the
physical or signal behaviour of the sound-generating sources and the perceptual
impact of the sounds on the listeners.

Since the first sounds were produced by a computer in the late 1950s, computer-
based (or synthesized) sounds have become subject to an increasing attention for
everyday use. In early years of sound synthesis, the majority of applications were
dedicated to musicians who learned to play new instruments that generally offered a
lot of control possibilities, but required high skills to operate. Due to increasingly
powerful computers, new applications linked to communication, virtual reality and
sound design have made sound synthesis available for a broader community. This
means that synthesis tools need to be adapted to non-expert users and should offer
intuitive control interfaces that do not require specific training. The construction of
such intuitive synthesis tools requires knowledge about human perception and
cognition in general and how a person attributes sense to sounds. Why are we for
instance able to recognize the material of falling objects simply from the sounds
they produce, or why do we easily accept the ersatz of horse hooves made by the
noise produced when somebody is knocking coconuts together? Is the recognition
of sound events linked to the presence of specific acoustic morphologies that can be
identified by signal analysis? In the approach presented here, we hypothesize that
this is the case and that perception emerges from such invariant sound structures,
so-called invariant sound morphologies, in line with the ecological approach of
visual perception introduced by (Gibson 1986). From a synthesis point of view, this
theoretical framework is of great interest, since if enables the conception of per-
ceptually optimized synthesis strategies with intuitive control parameters.

Sound synthesis based on the modelling of physical sources is generally divided
in two main classes, i.e. physical models and signal models. Physical models aim at
simulating the physical behaviour of sound sources (i.e. the physical origin of
sounds), while signal models imitate the recorded signal using mathematical rep-
resentations without considering the physical phenomena behind the sound pro-
duction. In the case of physical models, an accurate synthesis can only be achieved
when physical phenomena linked to the sound production are well described by
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physics. This is not the case for complex sources (e.g. natural phenomena such as
wind, rain, fire, etc.). In the case of signal models, any sound can generally be
perfectly resynthesized for instance from the analysis of real sounds, independently
of the complexity of the underlying physical phenomena of the sound source.
However, the control of such sounds is a difficult issue due to the large number of
synthesis parameters that generally are implied in such models and to the impos-
sibility to physically interpret these parameters. The physical and signal models can
also be combined to form so-called hybrid models (e.g. Ystad and Voinier 2001).
The control of these models requires an expertise and the quality judgment of the
control is based on an error function linked to the physical or signal precision
between the model and the real vibration. Such controls necessitate a scientific
expertise apart from certain cases such as musical applications where the control
parameters correspond to physical values controlled by the musician (e.g. pressure,
force, frequency, etc.). In this latter case, the musical expertise enables the control.

To propose efficient synthesis models that enable intuitive control possibilities,
synthesis models combined with perceptual considerations have been developed
lately. Perceptual correlates have been sought by testing the perceptual relevance of
physical and/or signal parameters through listening tests (cf. Sect. 4.3.2). In the case
of environmental sounds, we have identified such perceptually relevant sound
morphologies through several experiments. These experiments have made it pos-
sible to identify sound elements, also described as sound “atoms”, specific to given
sound categories that enable definition of high-level control parameters for real-time
synthesis applications. Such synthesis tools allow users to synthesize auditory
scenes using intuitive rather than reflective processes. Intuitive processes appeal on
intuition which is a kind of immediate knowledge, which does not require rea-
soning, or reflective thought. Intuition can also be defined as the knowledge of an
evident truth, a direct and immediate seeing of a thought object (Lalande 1926). The
quality of the control strategy is in this case based on perceptual judgments and on
easily understandable control parameters on the user interface. Therefore, we call
this synthesis control, intuitive control.

When searching for perceptually relevant sound morphologies, the understand-
ing of attribution of sense of sounds becomes essential. This issue is a natural part
of a more general research field called semiotics that consists in studying the
general theory of signs. The notion of signs has been addressed since antiquity by
the stoic philosophers (Nadeau 1999). Classically, semiotics is divided in syntax,
semantics and pragmatics. Semiology is a part of semiotics, which concerns the
social life, and dynamic impact of signs, as language (Nadeau 1999). For
de Saussure, language constitutes a special system among all semiological facts. In
linguistics, for de Saussure, a sign is the association of a signifier (acoustic image)
and a signified (the correlated concept) linked together in a consubstantial way
(de Saussure 1955). This consubstantial relationship is often difficult to understand.
Semiotics span over both linguistic and non-linguistic domains such as music,
vision, biology, etc. This means that it is possible to propose a semiotic approach of
sounds, without referring to linguistic semiology. Like in de Saussure construction
of signs, one can postulate that every natural (environmental) or social sound is
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linked to the afferent concept in the same consubstantial way. For example, if I hear
a bell, I immediately know that it is a bell, and perhaps, but not always, I even
manage to imagine the size of the bell, depending on its spectral contents. Except
for “abstract sounds”, i.e., sounds for which the sources cannot be easily identified,
one can say that each sound can be considered as a non-linguistic sign whose origin
can be described using language, in a reflective thought. Previous studies have
shown that the processing of both linguistic and non-linguistic target sounds in
conceptual priming tests elicited similar relationships in the congruity processing
(cf. Sect. 4.5). These results indicate that it should be possible to draw up a real
semiotic system of sounds, which is not the linguistic semiology, because pho-
nemes can be considered only as particular cases of sounds.

So far, the identification of signal invariants has made it possible to propose an
intuitive control of environmental sounds from verbal labels or gestures. An
interesting challenge in future studies would be to propose an even more intuitive
control of sound synthesis processes that bypasses words and gestures and directly
uses a BCI that records electroencephalographic signals in a BCI/synthesizer loop.
This idea is not new and several attempts have already been made to pilot sounds
directly from the brain activity. In (Väljamäe et al. 2013), the authors made an
exhaustive review in the field of EEG sonification in various applications (medical,
neurofeedback, music, etc.) and concluded that the type of mapping strategy
strongly depends on the applications. For instance, in the case of musical appli-
cations, the mapping is generally determined by artistic choices and does not
necessarily mirror a strict semiotic relation. The intuitive BCI-controlled synthe-
sizer that we aim at is intended for a generic context and should enable the iden-
tification of brain activity linked to specific signal morphologies that reflect the
attribution of sense to a sound.

This paper is organized as follows. In Sect. 4.2, the methodology that leads to
intuitive sound synthesis is viewed in the light of representational-computational
and enactive perspectives. Then, in Sect. 4.3, two sound synthesis approaches are
described and related to the previously presented perspectives. In Sect. 4.4, different
control strategies emanating from the different synthesis approaches are described.
In Sect. 4.5, some results from experiments supporting the existence of semiotics
for non-linguistic sounds are presented. Finally, in Sect. 4.6, a prospective view on
a control strategy for synthesis processes based on a BCI is proposed.

4.2 Two Conceptions on the Way We Interact
with the Surrounding World

Sound synthesis that integrates perceptual effects from the morphology of their
signal in order to enable intuitive control to the end-user brings forward the fol-
lowing questions: How do I attribute a meaning to a perceived sound (related to the
semiotics)? What effect does this sound have on me? These questions induce a
change in our position with respect to the sound from a third-person position
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(observer) in more traditional synthesis approaches where only acoustic consider-
ations are taken into account, to a first-person position (implied) in the perceptual
synthesis processes. This corresponds to a change from a representational to a
neurophenomenological point of view in the field of cognitive neuroscience (Varela
1996). We here adopt a similar change of viewpoint to investigate the phenomenon
of sound perception as it was seminally studied in (Petitmengin et al. 2009).

Classically, in the standard paradigm of cognitive neuroscience, there is, on one
hand, the physical object and on the other hand, the subject that perceives this
object according to his/her mental representation of the physical reality. From this
conception of representation proposed by Descartes, a representational-computa-
tional paradigm has been developed. This paradigm involves the existence of a
correct representation of the physical world and assumes that the perception of the
object is all the more adequate when the subject’s mental representation matches
the physical reality, considered as the reference (Varela 1989). Less classically, in
the neurophenomenological paradigm of cognitive sciences, it is the interaction
between the subject and the object, which enables the subject to perceive an object.
F. Varela called this interaction: enaction (Varela 1989; Varela et al. 1991). In the
enactive paradigm, the mind and the surrounding world are mutually imbricated.
This conception is inspired from the phenomenological philosophy of Husserl, who
called this interaction a noetic–noematic correlation (Husserl 1950). He posited that
there was a link between intentional content on the one hand, and extra-mental
reality on the other, such that the structure of intentionality of the consciousness
informs us about how we perceive the world as containing particular objects. In a
certain manner, and quite caricatured, the physical reality is no more the reference,
and the subject becomes the reference. The perception of the object is all the more
adequate when the subject’s perception makes it possible to efficiently conduct an
action to respond to a task. As Varela puts it (Varela et al. 1991):

The enactive approach underscores the importance of two interrelated points: 1) perception
consists of perceptually guided action and 2) cognitive structures emerge from the recurrent
sensorimotor patterns that enable action to be perceptually guided.

and concludes:

We found a world enacted by our history of structural coupling.

In 1966, P. Schaeffer, who was both a musician and a researcher, published the
“Traité des objets musicaux” (Schaeffer 1966), in which he reported more than ten
years of research on electroacoustic music. He conducted a substantial work that
was of importance for electroacoustic musicians. With a multidisciplinary
approach, he intended to carry out fundamental music research that included both
Concrete1 and traditional music. Interestingly, he naturally and implicitly adopted a
phenomenological approach to investigate the sound perception in listening

1 The term “concrete” is related to a compositional method which is based on concrete material,
i.e., recorded or synthesized sounds, in opposition with “abstract” music which is composed in an
abstract manner, i.e., from ideas written on a score, and becomes “concrete” afterwards.
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experiences. In particular, he introduced the notion of sound object. The proposition
of P. Schaeffer naturally conducts the acoustician from the representational-com-
putational paradigm to the enactive paradigm, since P. Schaeffer in line with the
phenomenological viewpoint stresses the fact that sound perception is not only
related to a correct representation of the acoustic signal. This is also coherent with
later works of Varela and the conception of perception as an enactive process,
where the sound and the listener constitute a unique imbricated system. The per-
ception of the sound is modified by the intentionality of the subject directed towards
the sound, which can induce an everyday listening, which is a source-oriented kind
of listening, or musical (or acousmatic) listening, which involves the perception of
the quality of the sound (Gaver 1993a, b). Thus, sound synthesis should not be
limited to the simulation of the physical behaviour of the sound source. In other
words, it is the sound object given in the process of perception that determines the
signal to be studied, meaning that perception has to be taken into account during the
signal reconstruction process.

In the work of P. Schaeffer, morphology and typology have been introduced as
analysis and creation tools for composers as an attempt to construct a music
notation that includes electroacoustic music and therefore any sound. This typo-
logical classification is based on a characterization of spectral (mass) and dynamical
(facture) profiles with respect to their complexity and consists of 28 categories.
There are nine central categories of “balanced” sounds for which the variations are
neither too rapid and random nor too slow or non existent. Those nine categories
include three facture profiles (sustained, impulsive or iterative) and three mass
profiles (tonic, complex and varying). On both sides of the balanced objects in the
table, there are 19 additional categories for which mass and facture profiles are very
simple/repetitive or vary a lot. This classification reveals perceptually relevant
sound morphologies and constitute a foundation for studies on intuitive sound
synthesis.

Based on these previous theoretical frameworks from cognitive neuroscience, we
suggest that the control of sound synthesis can be discussed in the framework of the
representational-computational and the enactive points of view. In the approach
inspired by the representational-computational framework, we consider that the user
controls physical or signal parameters of the sound with the idea that the more
actual (with respect to the physical reality) the parameter control, the better the
perception. The physical or signal properties of sounds are considered as the ref-
erence for the sound control. In the approach inspired by the enactive framework,
we consider that the user is involved in an interactive process where he/she controls
the sound guided by the perceptual effect of his/her action. The idea is that the more
recurrent (and intuitive) the sensorimotor manipulation, the better the perception.
The sound control enables the perception to become a perceptually guided action.
This is an enactive process because the sound influences the control effectuated by
the subject and the control action modifies the sound perception. The sound as
perceived by the subject is thus the reference for the sound control. Such enactive
framework formed a theoretical basis for a recent research community centred on
the conception of new human–computer interfaces (Enactive Network) and in a
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natural way, led to numerous interactive applications in musical contexts (Journal
of New Music Research, special issue “Enaction and Music” 2009). A general
review on fundamental research in the field of enactive music cognition can be
found in (Matyja and Schiavio 2013).

4.3 Sound Synthesis Processes

To date, two approaches to synthesize sounds could be highlighted: sound synthesis
based on the modelling of physical sources (from either physical or signal per-
spectives) and sound synthesis based on the modelling of perceptual effects.
Interestingly, these synthesis approaches could be linked to the two paradigms
related to our perception of the surrounding world (i.e. approaches inspired by the
representational-computational and the enactive paradigms, cf. Fig. 4.2) described
in the previous section.

4.3.1 Two Approaches for Sound Synthesis

4.3.1.1 Modelling the Physical Sources
In the case of sound synthesis based on the modelling of physical/vibrating sources,
either the mechanical behaviour or the resulting vibration of the sound source is
simulated.

Physical synthesis models that simulate the physical behaviour of sound sources
can either be constructed from the equations describing the behaviour of the waves
propagating in the structure and their radiation in air (Chaigne 1995) or from the
behaviour of the solution of the same equations (Karjalainen et al. 1991; Cook
1992; Smith 1992; Bilbao 2009). Physical models have been used to simulate a
large number of sound sources from voice signals to musical instruments. Several
synthesis platforms based on physical modelling are now available, such as
Modalys that is based on modal theory of vibrating structures that enable the
simulation of elementary physical objects such as strings, plates, tubes, etc. These
structures can further be combined to create more complex virtual instruments
(http://forumnet.ircam.fr/product/modalys/?lang=en)n.d). Cordis-Anima is a mod-
elling language that enables the conception and description of the dynamic
behaviour of physical objects based on mass-spring-damper networks (http://www-
acroe.imag.fr/produits/logiciel/cordis/cordis_en.htmln.d). Synthesis models for
continuous interaction sounds (rolling, scratching, rubbing, etc.) were proposed in
previous studies. In particular, models based on physical modelling or physically
informed considerations of such sounds can be found (Gaver 1993a; Hermes 1998;
van den Doel et al. 2001; Pai et al. 2001; Rath and Rocchesso 2004; Stoelinga and
Chaigne 2007). In particular, Avanzini et al. (2005) developed a physically based
synthesis model for friction sounds. This model generates realistic sounds of
continuous contact between rubbed surfaces (friction, squeaks, squeals, etc.). The
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parameters of the model are the tribological properties of the contact condition
(stiffness, dynamic or static friction coefficients, etc.) and the dynamic parameters
of the interaction (mainly the velocity and the normal force). Also, a synthesis
technique based on the modal analysis of physical objects (finite element modelling
of each object for precomputation of shapes and frequencies of the modes) was
proposed by (O’Brien et al. 2002) in the context of interactive applications. Note
that this approach presents a limitation when the physical considerations involve
complex modelling and can less easily be taken into account for synthesis per-
spectives especially with interactive constraints.

Signal synthesis models that simulate the resulting vibration of the sound source
are based on a mathematical modelling of the signal. They are numerically easy to
implement and can be classified in three groups as follows:

• Additive synthesis: The sound is constructed as a superposition of elementary
sounds, generally sinusoidal signals modulated in amplitude and frequency
(Risset 1965). For periodic or quasi-periodic sounds, these components have
average frequencies that are multiples of one fundamental frequency and are
called harmonics. The amplitude and frequency modulation (FM) laws should be
precise when one reproduces a real sound. The advantage of these methods is the
potential for intimate and dynamic modifications of the sound. Granular syn-
thesis can be considered as a special kind of additive synthesis, since it also
consists in summing elementary signals (grains) localized in both the time and
the frequency domains (Roads 1978).

• Subtractive synthesis: The sound is generated by removing undesired compo-
nents from a complex sound such as noise. This technique is linked to the theory
of digital filtering (Rabiner and Gold 1975) and can be related to some physical
sound generation systems such as speech (Flanagan et al. 1970; Atal and
Hanauer 1971). The advantage of this approach is the possibility of uncoupling
the excitation source and the resonance system. The sound transformations
related to these methods often use this property to make hybrid sounds or
crossed synthesis of two different sounds by combining the excitation source of a
sound and the resonant system of another (Makhoul 1975; Kronland-Martinet
1989).

• Global (or non-linear) synthesis: The most well-known example of such meth-
ods is audio FM. This technique updated by Chowning (1973) revolutionized
commercial synthesizers. The advantages of this method are that it calls for very
few parameters, and that a small number of numerical operations can generate
complex spectra. They are, however, not adapted to precise signal control, since
slight parameter changes induce radical signal transformations. Other related
methods such as waveshaping techniques (Arfib 1979; Le Brun 1979) have also
been developed.

In some cases, both approaches (physical and signal) can be combined to pro-
pose hybrid models, which have shown to be very useful when simulating certain
musical instruments (Ystad and Voinier 2001; Bensa et al. 2004).
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4.3.1.2 Modelling the Perceptual Effects
In the case of sound synthesis based on the modelling of perceptual effects, the
sound generation is not merely based on the simulation of the physical or signal
phenomena. This approach enables the synthesis of any kind of sounds, but it
necessitates the understanding of the perceptual relevance of the sound attributes
that characterize the sound category in question. Concerning environmental sounds,
several studies have dealt with the identification and classification of such sounds
(Ballas 1993; Gygi and Shafiro 2007; Gygi et al. 2007; Vanderveer 1979).
A hierarchical taxonomy of everyday sounds was proposed by Gaver (1993b) and is
based on three main categories: sounds produced by vibrating solids (impacts,
deformation, etc.), aerodynamic sounds (wind, fire, etc.) and liquid sounds (drops,
splashes, etc.). This classification related with the physics of sound events and has
shown to be perceptually relevant. Hence, the perceptual relevance of these cate-
gories encourages the search for invariant sound morphologies specific to each
category. This notion is developed in the next section.

4.3.2 Invariant Sound Morphologies

The invariant sound morphologies associated with the evocation of sound attributes
can either be linked to the physical behaviour of the source (Giordano and
McAdams 2006), to the signal parameters (Kronland-Martinet et al. 1997) or to
timbre qualities based on perceptual considerations (McAdams 1999). This means
that different synthesis approaches can be closely related, since in some cases,
physical considerations and in other cases, signal variations might reveal important
properties to identify the perceived effects of the generated sounds. In particular for
environmental sounds, several links between the physical characteristics of actions
(impact, bouncing, etc.), objects (material, shape, size, cavity, etc.) and their per-
ceptual correlates were established in previous studies (see Aramaki et al. 2009;
Aramaki et al. 2011 for a review). In summary, the question of sound event rec-
ognition was subject to several inquiries (e.g. Warren and Verbrugge 1984; Gaver
1993a, b) inspired by Gibson’s ecological approach (Gibson 1986) and latter for-
malized by McAdams and Bigand (1993). This led to the definition of structural and
transformational invariants linked to the recognition of the object’s properties and
its interaction with the environment, respectively.

Sounds from impacted objects: Impact sounds have been largely investigated
in the literature from both physical and perceptual points of view. Several studies
revealed relationships between perceptual attributes of sound sources and acoustic
characteristics of the produced sound. For instance, the attack time has been related
to the perception of the hardness of the mallet that was used to impact the resonant
object, while the distribution of the spectral components (described by inharmo-
nicity or roughness) of the produced sound has been related to the perceived shape
of the object. The perceived size of the object is mainly based on the pitch. A
physical explanation can be found in the fact that large objects vibrate at lower
eigenfrequencies than small ones. Finally, the perception of material seems to be
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linked to the damping of the sound that is generally frequency-dependent: high
frequency components are damped more heavily than low frequency components.
In addition to the damping, the density of spectral components, which is directly
linked to the perceived roughness, was also shown to be relevant for the distinction
between metal versus glass and wood categories (Aramaki et al. 2009, 2011).

Sounds from continuous interactions: Based on previous works described in
Sect. 4.3, invariant sound morphologies related to the perception of interactions such
as rubbing, scratching and rolling were investigated (Conan et al. 2013a, b; Thoret
et al. 2013). An efficient synthesis model, init. An efficient synthesis model, initially
proposed by (Gaver 1993a) and improved by (van den Doel et al. 2001), consists in
synthesizing the interaction sounds by a series of impacts that simulates the successive
micro-impacts between a plectrum and the asperities of the object’s surface. There-
fore, it has been highlighted that a relevant sound invariant morphology allowing the
discrimination between rubbing and scratching interactions was the temporal density
of these impacts, i.e., the more (respectively, the less) impacts that occur, the more the
sound is associated to rubbing (respectively, to scratching) (Conan et al. 2012). For the
rolling interaction, it has been observed, from numerical simulations based on a
physical model, that the temporal structure of the generated impact series follows a
specific pattern. In particular, the time intervals between impacts and associated
amplitudes are strongly correlated.Another fundamental aspect supported by physical
considerations is the fact that the contact time of the impact depends on the impact
velocity. This dependency also seems to be an important auditory cue responsible for
the evocation of a rolling interaction (Conan et al. 2013).

These studies related to such interaction sounds led us to address the perceptual
relation between the sound and the underlying gesture that was made to produce the
sound. Many works highlighted the importance of the velocity profile in the pro-
duction of a movement and its processing may be involved at different levels of
perception of a biological movement both in the visual and in the kinaesthetic
system ((Viviani and Stucchi 1992; Viviani et al. 1997; Viviani 2002) for a review).
Based on these findings, we investigated whether the velocity profile, in the case of
graphical movements, was also a relevant cue to identify a human gesture (and
beyond the gesture, the drawn shape) from a friction sound. Results from a series of
perceptual experiments revealed that the velocity profile transmits relevant infor-
mation about the gesture and the geometry of the drawn shape to a certain extent.
Results also indicated the relevance of the so-called 1/3-power law, defined from
seminal works by Viviani and his colleagues and translating a biomechanics con-
straint between the velocity of a gesture and the local curvature of the drawn shape,
to evoke a fluid and natural human gesture through a friction sound (cf. Thoret et al.
2013, 2014 for details and review).

Other environmental sounds: For other classes of environmental sounds such
as wave or aerodynamic sounds, physical considerations generally involve complex
modelling and signal models are then useful. From a perceptual point of view, these
sounds evoke a wide range of different physical sources, but interestingly, from a
signal point of view, common acoustic morphologies can be highlighted across
these sounds. We analysed several signals representative of the main categories of
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environmental sounds as defined by Gaver and we identified a certain number of
perceptually relevant signalmorphologies linked to these categories (Gaver 1993a, b).
To date, we concluded on five elementary sound morphologies based on impacts,
chirps and noise structures (Verron et al. 2009). This finding is based on a heuristic
approach that has been verified on a large set of environmental sounds. Granular
synthesis processes based on these five sound “atoms” then enabled the generation of
various environmental sounds (i.e. solid interactions, aerodynamic or liquid sounds).
Note that this atom dictionary may be completed or refined in the future without
compromising the proposed methodology.

A first type of grain is the “tonal solid grain” that is defined by a sum of
exponentially damped sinusoids. Such a grain is well adapted to simulate sounds
produced by solid interactions. Nevertheless, this type of grain cannot alone
account for any kind of solid impact sounds. Actually, impact sounds characterized
by a strong density of modes or by a heavy damping may rather be modelled as an
exponentially damped noise. This sound characterization stands for both perceptual
and signal points of view, since no obvious pitch can be extracted from such
sounds. Exponentially damped noise constitutes the second type of grain, the so-
called “noisy impact grain”. Such a grain is well adapted to simulate crackling
sounds. The third type of grain concerns liquid sounds. From an acoustic point of
view, cavitation phenomena (e.g. a bubble in a liquid) lead to local pressure vari-
ations that generate time-varying frequency components such as exponentially
damped linear chirps. Hence, the so-called “liquid grain” consists of an exponen-
tially damped chirp signal. Finally, aerodynamic sounds generally result from
complicated interactions between solids and gases and it is therefore difficult to
extract useful information from corresponding physical models. A heuristic
approach allowed us to define two kinds of aerodynamic grains: the “whistling
grain” (slowly varying narrow band noise) and the “background aerodynamic
grain” (broadband filtered noise). Such grains are well adapted to simulate wind and
waves.

By combining these five grains using an accurate statistics of appearance, var-
ious environmental auditory scenes can be designed such as rainy ambiances, sea-
coast ambiances, windy environments, fire noises, or solid interactions simulating
solid impacts or footstep noises. We currently aim at extracting the parameters
corresponding to these grains from the analysis of natural sounds, using matching
pursuit like methods. Perceptual evaluations of these grains will further allow us to
identify or validate signal morphologies conveying relevant information on the
perceived properties of the sound source.

4.4 Control Strategies for Synthesis Processes

The choice of synthesis model highly influences the control strategy. Physical
synthesis models have physically meaningful parameters, which might facilitate the
interpretation of the consequence of the control on the resulting sound. This is less
so for signal models obtained from mathematical representations of sounds.
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Perceptual considerations might, however, be combined with these models to
propose intuitive control strategies as described in the following sections.

4.4.1 Control of Synthesis Parameters

Although physical models can produce high-quality sounds that are useful for
instance for musical purposes, this approach is less adapted to environmental
sounds, when the physics of such sound sources is not sufficiently well understood
or the existing models are not real-time compatible. In such cases, signal models
that enable the simulation of the sound vibrations through mathematical models are
useful. The control of these models consists in manipulating physical or signal
parameters. Practically, these approaches might involve the control of physical
variables (for instance, characterizing the tribological or mechanical properties of
the source) or a high number of synthesis parameters (up to a hundred) that are
generally not intuitive for a non-expert user. This means that a certain scientific (or
musical) expertise is needed to use such models (expert control). In fact, the cali-
bration of the control of these models is based on an error function that reveals the
difference between the model and the actual physical sound vibration (cf. Fig. 4.2).

4.4.2 Control of Perceptual Effects

Common to all the previous approaches described in Sect. 4.4.1 is the lack of
perceptual criteria. Actually, since the timbre of the resulting sound is generally
related to the synthesis parameters in a non-linear way, the control process can
quickly become complicated and non-intuitive. The design of a control of per-
ceptual effects may lead to the definition of an intuitive control strategy. In par-
ticular, based on the identification of invariant sound morphologies (cf. Sect. 4.3.2),
control processes mediating various perceptual evocations could be designed. In
line with the previous definitions of structural and transformational invariants, the
framework of our control strategy is based on the so-called {action/object} para-
digm, assuming that the produced sound can be defined as the consequence of an
action on an object. This approach supports the determination of sound morphol-
ogies that carry information about the action and the object, respectively.

Here we present several synthesis tools that we have developed for generating
and intuitively controlling sounds. These synthesis models make it possible to
relevantly resynthesize natural sounds. In practice, we adopted hierarchical levels of
control to route and dispatch the parameters from an intuitive to the algorithmic
level. As these parameters are not independent and might be linked to several signal
properties at a time, the mapping between levels is far from being straightforward.

Sounds from impacted objects: We have developed an impact sound synthe-
sizer offering an intuitive control strategy based on a three-level architecture
(Aramaki et al. 2010a) (cf. Fig. 4.1). The top layer gives the user the possibility to
define the impacted object using verbal descriptions of the object (nature of the
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perceived material, size and shape, etc.) and the excitation (force, hardness of the
mallet, impact position, etc.). The middle layer is based on perceptually relevant
acoustic descriptors linked to the invariant sound morphologies (cf. Sect. 4.3.2).
The bottom layer consists of the set of synthesis parameters (for expert users). Two
mapping strategies are implemented between the layers (we refer to (Aramaki et al.
2010a) for more details). The first one focuses on the relationships between verbal

Fig. 4.1 a Top layer (semantic labels describing the perceived material and shape of the object),
b middle layer (acoustic descriptors) and c bottom layer (synthesis parameters of the signal model)
designed for the control of the impact sound synthesizer
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descriptions of the sound source and the sound descriptors (damping, inharmonicity,
roughness, etc.) characterizing perceptually relevant sound morphologies. The
second one focuses on the relationships between sound descriptors and synthesis
parameters (damping coefficient, amplitude and frequency of the components).

Sounds from continuous interactions: Control strategies for the synthesis
processes of such sounds have recently been developed. In particular, an intuitive
control strategy adapted to a non-linear friction sound model (producing phe-
nomena such a creaky door, a singing glass or a squeaking wet plate) has been

Fig. 4.2 General didactic synopsis including two approaches inspired by the representational-
computational and enactive paradigms from cognitive neuroscience, the associated viewpoints for
sound synthesis (modelling of physical sources and modelling of perceptual effects) and sound
control (expert and intuitive control). A prospective view on the use of BCI in the context of sound
synthesis control is also illustrated
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proposed. Inspired from Schelleng’s diagrams, the proposed control is defined from
a flexible physically informed mapping between a dynamic descriptor (velocity,
pressure), and the synthesis parameters, and allows coherent transitions between the
different non-linear friction situations (Thoret et al. 2013). Another intuitive control
strategy dedicated to rolling sound synthesis has also been proposed (Conan et al.
2013). This strategy is based on a hierarchical architecture similar to that of the
impacted object sounds (cf. previous paragraph). The high-level controls that can be
manipulated by the end-user are the characteristics of the rolling ball (i.e. size,
asymmetry and speed) and the irregularity of the surface. The low-level parameters
(e.g. impacts’ statistics, modulation frequency and modulation depth) are modified
accordingly with respect to the defined mapping. Recently, a control strategy
enabling to perceptually morph between the three continuous interactions, i.e.
rubbing, scratching and rolling, was designed. For that purpose, we developed a
synthesis process that is generic enough to simulate these different interactions and
based on the related invariant sound morphologies (cf. Sect. 4.3.2). Then, a per-
ceptual “interaction space” and the associated intuitive navigation strategy were
defined with given sound prototypes considered as anchors in this space (Conan
et al. 2013).

Finally, in line with the action/object paradigm, the complete synthesis process
has been implemented as a source-filter model. The resulting sound is then obtained
by convolving the excitation signal (related to the nature of the interaction) with the
impulse response of the resonating object. The impulse response is implemented as
a resonant filter bank, which central frequencies correspond to the modal fre-
quencies of the object.

Immersive auditory scenes: An intuitive control of the sound synthesizer
dedicated to environmental auditory scenes was defined. The control enables the
design of complex auditory scenes and included the location and the spatial
extension of each sound source in a 3D space so as to increase the realism and the
feeling of being immersed in virtual scenes. This control is particularly relevant to
simulate sound sources such as wind or rain that are naturally diffuse and wide. In
contrast with the classical two-stage approach, which consists in first synthesizing a
monophonic sound (timbre properties) and then spatializing the sound (spatial
position and extension in a 3D space), the architecture of the proposed synthesizer
yielded control strategies based on the overall manipulation of timbre and spatial
attributes of sound sources at the same level of sound generation (Verron et al.
2010).

The overall control of the environmental scene synthesizer can be effectuated
through a graphical interface where the sound sources (selected among a set of
available sources: fire, wind, rain, wave, chimes, footsteps, etc.) can be placed
around the listener (positioned in the centre of the scene) by defining the distance
and the spatial width of each source. The sources are built from the elementary
grains defined previously in Sect. 4.3.2. A fire scene is for instance built from a
combination of a whistling grain (simulating the hissing), a background aerody-
namic grain (simulating the background combustion) and noisy impact grains
(simulating the cracklings). The latter grains are generated and launched randomly
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with respect to time using an accurate statistic law that can be controlled. A global
control of the fire intensity, mapped with the control of the grain generation
(amplitude and statistic law), is then designed. A rainy weather sound ambiance can
be designed with a rain shower, water flow and drops, each of these environmental
sounds being independently spatialized and constructed from a combination of the
previous grains (see Verron et al. 2009 for more details). In case of interactive uses,
controls can be achieved using either MIDI interfaces, from data obtained from a
graphical engine or other external data sources.

4.5 Evidence of Semiotics for Non-linguistic Sounds

To propose an even more intuitive control of sound synthesis that directly uses a
BCI, a relationship between the electroencephalogram (EEG) and the nature of the
underlying cerebral processes has to be investigated. We here present results of
several experimental studies aiming at supporting the existence of semiotics for
non-linguistic sounds. In these studies, we used either synthetic stimuli using
analysis/transformation/synthesis processes or sounds of a specific kind called
“abstract” sounds promoting acousmatic listening (cf. Sect. 4.2). The participants’
responses and reaction times (RTs) provided objective measurements to the pro-
cessing of stimulus complexity.

Electrophysiological data: When appropriate, we also investigated the neural
bases of the involved brain processes by analysing the EEGwith the method of event-
related potentials (ERP) time-locked to the stimulus onset during the various infor-
mation processing stages. The ERP elicited by a stimulus (a sound, a light, etc.) are
characterized by a series of positive (P) and negative (N) deflections relative to a
baseline. These deflections (called components) are defined in terms of their polarity,
their maximum latency (relative to the stimulus onset), their distribution among
several electrodes placed in standard positions on the scalp and by their functional
significance. Components P100, N100 and P200 are consistently activated in
response to the auditory stimuli (Rugg and Coles 1995). Several late ERP compo-
nents (N200, P300, N400, etc.) are subsequently elicited and associated with specific
brain processes depending on the experimental design and the task in hand.

4.5.1 Perceptual Categorization of Sounds from Impacted
Materials

In this experiment, we studied the perception of sounds obtained from impacted
materials, in particular, wood, metal and glass (Aramaki et al. 2010a; Aramaki et al.
2010b; Aramaki et al. 2011). For this purpose, natural sounds were recorded,
analysed, resynthesized and tuned to the same chroma to obtain sets of synthetic
sounds representative of each category of the selected material. A sound-morphing
process (based on an interpolation method) was further applied to obtain sound
continua simulating progressive transitions between materials. Although sounds
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located at the extreme positions on the continua were indeed perceived as typical
exemplars of their respective material categories, sounds in intermediate positions,
which were synthesized by interpolating the acoustic parameters characterizing
sounds at extreme positions, were consequently expected to be perceived as
ambiguous (e.g. to be neither wood nor metal). Participants were asked to cate-
gorize each of the randomly presented sounds as wood, metal or glass.

Based on the classification rates, we defined “typical” sounds as sounds that
were classified by more than 70 % of the participants in the right material category
and “ambiguous” sounds, those that were classified by less than 70 % of the
participants in a given category. Ambiguous sounds were associated with slower
RTs than typical sounds. As might be expected, ambiguous sounds are therefore
more difficult to categorize than typical sounds. This result is in line with previous
findings in the literature showing that non-meaningful sounds were associated with
longer RTs than meaningful sounds. Electrophysiological data showed that
ambiguous sounds elicited more negative ERP (a negative component, N280,
followed by a negative slow wave, NSW) in fronto-central brain regions and less
positive ERP (P300 component) in parietal regions than typical sounds. This dif-
ference may reflect the difficulty to access information from long-term memory. In
addition, electrophysiological data showed that the processing of typical metal
sounds differed significantly from those of typical glass and wood sounds as early
as 150 ms after the sound onset. The results of the acoustic and electrophysiological
analyses suggested that spectral complexity and sound duration are relevant cues
explaining this early differentiation. Lastly, it is worth noting that no significant
differences were observed on the P100 and N100 components. These components
are known to be sensitive to sound onset and temporal envelope, reflecting the fact
that the categorization process occurs in later sound-processing stages.

4.5.2 Conceptual Priming for Non-linguistic Sounds

In language, a comprehensible linguistic message is for instance conveyed by
associating words while respecting the rules of syntax and grammar. Can similar
links be generated between non-linguistic sounds so that any variation will change
the global information conveyed? From the cognitive neuroscience point of view,
one of the major issues that arises from this question is whether similar neural
networks are involved in the allocation of meaning in the case of language and that
of sounds of other kinds. In a seminal study using a priming procedure, Kutas and
Hillyard (Kutas and Hillyard 1980) established that the amplitude of a negative
ERP component, the N400 component, increases when final sentence words are
incongruous (e.g. The fish is swimming in the river/carpet). Since then, the N400
has been widely used to study semantic processing in language. In recent studies,
priming procedures with non-linguistic stimuli such as pictures, odours, music and
environmental sounds have been used (e.g. Holcomb and McPherson 1994; Castle
et al. 2000; Koelsch et al. 2004; Daltrozzo and Schön 2009; Van Petten and
Rheinfelder 1995; Orgs et al. 2006). Although the results of these experiments
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mostly have been interpreted as reflecting some kind of conceptual priming
between words and non-linguistic stimuli, they may also reflect linguistically
mediated effects. For instance, watching a picture of a bird or listening to a birdsong
might automatically activate the verbal label “bird”. Therefore, the conceptual
priming cannot be taken to be purely non-linguistic because of the implicit naming
induced by the processing of the stimulus. Such conceptual priming might imply at
least language, generation of auditory scenes, and mental imaging, at various
associative (non specific) cortex area levels. This might probably activate large
neural/glial networks using long-distance synchronies, which could be investigated
by a synchronous EEG activity measurement (Lachaux et al. 1999).

The aim of our first conceptual priming study (Schön et al. 2010) was to attempt
to reduce as far as possible the likelihood that a labelling process of this kind takes
place. To this end, we worked with a specific class of sounds called “abstract
sounds”, which physical sources cannot be easily recognized, meaning that verbal
labelling is less likely to take place (Merer et al. 2011). We then conducted con-
ceptual priming tests using word/sound pairs with different levels of congruence
between the prime and the target. Subjects had to decide whether or not the prime
and the target matched. In the first experiment, a written word was presented
visually before the abstract sound, and in the second experiment, the order of
presentation was reversed. Results showed that participants were able to assess the
relationship between the prime and the target in both presentation orders (sound/
word vs. word/sound), showing low inter-subject variability and good consistency.
The presentation of a word reduced the variability of the interpretations of the
abstract sound and led to a consensus between subjects in spite of the fact that
the sound sources were not easily recognizable. Electrophysiological data showed
the occurrence of an enhanced negativity in the 250–600-ms latency range in
response to unrelated as compared to related targets in both experiments and the
presence of a more fronto-central distribution in response to word targets and a
more centro-parietal distribution in response to sound targets.

In a subsequent study (Aramaki et al. 2010b), we avoided the use of words as
primes or targets. Conceptual priming was therefore studied using impact sounds
(also used in the categorization experiment previously presented), as both primes and
targets. As described in Sect. 4.5.1, these impact sounds were qualified as either
typical or ambiguous with respect to a material category depending on their score in
the categorization experiment. 3° of congruence were investigated through various
combinations of typical and ambiguous sounds as prime and target: related, ambig-
uous and unrelated. The priming effects induced in these conditions were compared
with those observed with linguistic sounds (spoken words) in the same group of
participants. Results showed that N400-like components were also activated in a
sound–sound design. This component may therefore reflect a search for meaning that
is not restricted to linguistic meaning. Moreover, ambiguous targets also elicited
larger N400-like components than related targets for both linguistic and non-lin-
guistic sounds. These findings showed the existence of similar relationships in the
processing of semiotics of both non-linguistic and linguistic target sounds. This study
clearly means that it is possible to draw up a real language for non-linguistic sounds.
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4.6 Towards a Semiotic-Based Brain Computer Interface (BCI)

BCIs provide a link between a user and an external electronic device through his or
her brain activity, independently of the voluntary muscle activity of the subject.
Most often BCIs are based on EEG recordings that allow for non-invasive mea-
surements of electrical brain activity. As substitutional devices, BCIs open inter-
esting perspectives for rehabilitation, reducing disability and improving the quality
of life of patients with severe neuromuscular disorders such as amyotrophic lateral
sclerosis or spinal cord injury (Wolpaw et al. 2002). Such interfaces, among many
other possibilities, enable patients to control a cursor, to select a letter on a com-
puter screen, or to drive a wheelchair. In addition to medical and substitutional
applications, BCIs as enhancing devices can be used with healthy subjects. For
example, in the field of video games, BCIs could capture the cognitive or emotional
state of the user through the EEG to develop more adaptive games and to increase
the realism of the gaming experience (Nijholt 2009). To date, two approaches to
BCI could be highlighted: “explicit (or active) BCI” and “implicit (or passive) BCI”
(George and Lécuyer 2010). These two classes of BCI could be linked with the two
approaches inspired from the paradigms of cognitive science (described in
Sect. 4.2) and the two approaches for sound synthesis (described in Sect. 4.3).

4.6.1 Explicit BCI

The explicit BCI is based on the principles of operant conditioning, the basic
learning concept in experimental psychology, which assumes that the probability of
occurrences of an animal or human behaviour is a function of a positive or negative
reinforcement during the subject’s learning process (Micoulaud-Franchi et al.
2013). Thus, the explicit BCI requires a learning period (George and Lécuyer
2010). In practice, the subject intentionally tries to control his/her cognitive activity
to change his/her EEG activity and control an external electronic device. The EEG
signal is recorded, processed in real time to extract the information of interest (e.g.
spectral power EEG, slow cortical potential or ERP). This information is related to a
cognitive activity that the subject intentionally produces. This information is further
transmitted to the external electronic device using specific mapping that leads to the
control of the device in the desired direction. The positive reinforcement (and the
success rate) is determined by the capacity of controlling the external electronic
device to achieve a given task.

This configuration fits with traditional neurofeedback therapeutics where the
subject learns to intentionally control EEG through visual or auditory positive
reinforcement, without any control of external device (Micoulaud-Franchi et al.
2013). In this context, the positive reinforcement could be an increase of a number
of points, an advance of an animation on a computer screen, or a modification of a
sound. When the EEG is related to symptoms of a disease, it has been shown that
neurofeedback techniques can have a therapeutic effect, as is the case with attention
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deficit disorder with hyperactivity (Micoulaud-Franchi et al. 2011) or epilepsy
(Micoulaud-Franchi et al. 2014).

4.6.2 Implicit BCI

In contrast with explicit BCI, the implicit BCI is not based on the principle of
operant conditioning. The feedback in implicit BCI is used to optimize the inter-
action with an external device by directly modulating the brain activity and the
cognitive activity of the subject (George and Lécuyer 2010). Implicit BCI does not
require a learning period. In practice, the subject does not have to try to control
intentionally his EEG. The EEG signal is recorded, processed in real time to extract
the information of interest (e.g. power spectral EEG or ERP) corresponding to the
subject’s cognitive activity, and transmitted to the external electronic device to
modulate and optimize the interaction between the device and the user.

This configuration fits with some non-traditional neurofeedback therapeutics that
do not require specific cognitive tasks and are supposed to directly modulate the
brain activity of the subject in order to optimize brain dynamics, although this
remains largely hypothetical. Thus, unlike traditional neurofeedback approaches
presented in the previous section, these non-traditional neurofeedback approaches
have a very low level of therapeutic and clinical evidence (Micoulaud-Franchi et al.
2013).

4.6.3 Towards an Intuitive Control Using Semiotic-Based BCI

From the two approaches inspired by previous theoretical frameworks from cog-
nitive neuroscience (Sect. 4.2), we propose a prospective view on a sound synthesis
control strategy based on BCI. We reflect on whether EEG BCI would be helpful to
increase the intuitiveness of control with the sound synthesizer. For a didactic
perspective, we suggest to describe explicit and implicit BCI, respectively, from the
representational-computational and from the enactive points of view.

We stress that in the explicit BCI, the user controls the external electronic device
(positive reinforcement) as if it was an external object. In some way, there is a gap
between the information of interest extracted from the recorded EEG activity and
the positive reinforcement. The information feedback could be given to the subject
by any kind of signal. The positive reinforcement mainly is useful for the learning
process and for determining a success rate and is close to an error function
(Sect. 4.4.1). We think that in many cases, explicit BCI does not permit to create
recurrent sensorimotor patterns (from the enactive point of view) that enable action
to be guided by the direct perception of the stimulus, which could be a limitation in
the intuitiveness of BCI controllability.

We stress that in the Implicit BCI, the user and his/her brain is involved in an
enactive process. In some way, there is a direct link between the information of
interest extracted from the recorded EEG and the feedback. This feedback is not a
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positive reinforcement as defined by the operant-conditioning model. In fact, the
aim of the feedback is not to inform the subject about the cognitive strategies that
he/she develops during the learning process, but to directly influence the brain
activity (and thus the EEG). Any kind of feedback cannot be used, but only those
with the desired effect on the brain and the cognitive activity in order to enhance the
interaction and the intuitiveness of the system.

Therefore, in the context of sound synthesis, a control strategy involving the use
of explicit or implicit BCI would necessitate different mapping strategies. From a
conceptual point of view, we stress that explicit and implicit BCI involve different
levels of semiotic relation, i.e., the relation between the feedback and the meaning
that the subject attributes to a sound. These two scenarios are discussed in the
following paragraphs.

In the case of explicit BCI as defined above, the subject would have to control
his/her cognitive activity to change his/her EEG and thus to control a specific
parameter of the sound synthesizer. No semiotic relation between the EEG, the
effect of the synthesized sound on the EEG, and the sound perception is therefore
needed. In other words, the subject has to do something that is not necessarily
related to the semiotics of the perceived synthesized sound to control the synthe-
sizer. More so, an external algorithm is used to interpret the information of interest
extracted from the EEG and to control the electronic device. For example, paying
attention to a target to produce a P300 component that will be processed by the BCI
and arbitrarily associated with a control parameter according to the output of the
algorithm and to a success rate (Fig. 4.2). This situation that necessitates a certain
expertise acquired during a learning period seems to be quite close to sound syn-
thesis based on the physical or signal modelling of sound vibrations (Sect. 4.3).

In the case of implicit BCI as defined above, the aim would be to enhance the
quality and the intuitiveness of the sound synthesizer by taking into account the
EEG induced by the sound. Thus, a strict semiotic relation between the EEG and
the influence of sounds on the EEG should be known. In other words, we need to
understand the neural bases of sound semiotics (“electrophysiological data” in
Fig. 4.2) to implement this information in an implicit BCI process dedicated to the
sound synthesizer. We propose to call it “semiotic-based BCI”. In this context, the
results obtained from previous EEG experiments presented in Sect. 4.5 constitute
an interesting starting point for the design of such a mapping strategy. This
approach seems to be quite close to sound synthesis based on the modelling of
perceptual effects, which does not necessitate a learning period (Sect. 4.3). This
intuitive control implies that perceptual and cognitive aspects are taken into
account in order to understand how a sound is perceived and interpreted. As shown
in Fig. 4.2, a loop is thus designed between perception and action through the
intuitive control of the sound synthesizer (Sect. 4.2). Implicit BCI offers the
possibility of a second loop, between the sound effect on the EEG and the sound
synthesizer that is likely to optimize the sound effect on both the perceptual
judgment and the Implicit BCI.
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4.7 Conclusion

To date, the design of a control strategy of sound synthesis processes that uses a
BCI is still a challenging perspective. As discussed in (Väljamäe et al. 2013), a
synthesis control of sounds directly from the brain through the measurement of its
cerebral activity is still in its early stages. In particular, the mapping between
electrophysiological signal features and synthesis parameters is generally validated
on the basis on different metrics depending on applications. However, the definition
of such metrics implies a given conception on the way we interact with the sur-
rounding world.

To broach this issue, we introduced two conceptual approaches inspired from the
representational-computational and the enactive paradigms from cognitive neuro-
science. In light of these paradigms, we revisited the existing main approaches for
synthesis and control of sounds. In fact, the viewpoints adopted to synthesize
sounds are intricately underpinned by paradigms that differ in the epistemological
positions of the observer (from a third or a first-person position) and have a sub-
stantial consequence on the design of a control strategy (cf. Figure 4.2). On one
hand, synthesis processes based on the modelling of physical sources (from either
the mechanical behaviour or the resulting vibration) are controlled by physical or
signal parameters. This approach is based on the existence of a correct represen-
tation of the physical world and introduces the notion of an error function between
the model and the physical reality as a quality criterion. Therefore, it requires a
certain expertise from the end-user. On the other hand, synthesis processes based on
the modelling of perceptual effects involve the identification of invariant sound
morphologies specific to given perceptual attributes of the sound source. This
approach assumes the emergence of an embodied auditory world from an enactive
process. The perceptual judgments are considered as a quality criterion for the
model, leading to the design of a more intuitive control.

By associating these conceptual and pragmatic considerations, we proposed a
prospective view on the methodology to be used to design a BCI control. For the
sake of illustration, we treated limited aspects of BCIs by addressing explicit BCI
from the representational-computational point of view and implicit BCI from the
enactive point of view. Actually, we are aware that the frontier between explicit and
implicit BCI might be difficult to establish and less didactic than what this article
presents. Indeed, the implicit communication channel might sometimes be used in
an explicit way (George and Lécuyer 2010), and inversely brain plasticity can
enable the participant to make use of the training experienced from the explicit BCI
to generate implicit recurrent sensorimotor patterns (Bach-y-Rita and Kercel 2003).
With current apparatus performances, the rate of transfer information between the
BCI and the device is quite limited and the final task has to be defined accordingly.
While this technique may represent a restricted interest for healthy users (in some
cases, it would be easier to directly control the device manually), it constitutes a
relevant medium for medical applications and can be used as a substitutional device
for diseases. In the implicit BCI, the control is included in an optimization system in
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which the electrophysiological data supplies further information about the way the
user perceives the sound (beyond verbal labels or gestures for instance). In contrast
with the explicit BCI, this configuration is well adapted to intuitive synthesis
control. Therefore, we suggested a “semiotic-based BCI” founded on identified
links between the brain activity and invariant signal morphologies reflecting the
attribution of sense to a sound that may enhance the interactivity and the intui-
tiveness of the system.

4.8 Questions

1. What are the characteristics of the representational-computational paradigm of
perception?

2. What are the characteristics of the enactive paradigm of perception?
3. What is the difference between physical and signal sound synthesis models?
4. What are the main limitations of the use of physical models for sound

synthesis?
5. How can the invariant sound morphologies be determined?
6. Which invariant sound morphologies are related to the perception of material in

an impact sound?
7. Which aspects should be taken into account in the design of a control strategy

based on a representational-computational or an enactive paradigm?
8. What are the characteristics of explicit (or active) BCI?
9. What are the characteristics of implicit (or passive) BCI?

10. What is the purpose of offering intuitive control of sound synthesis processes
using BCI?
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5Machine Learning to Identify Neural
Correlates of Music and Emotions

Ian Daly, Etienne B. Roesch, James Weaver and Slawomir J. Nasuto

Abstract

While music is widely understood to induce an emotional response in the
listener, the exact nature of that response and its neural correlates are not yet
fully explored. Furthermore, the large number of features which may be
extracted from, and used to describe, neurological data, music stimuli, and
emotional responses, means that the relationships between these datasets
produced during music listening tasks or the operation of a brain–computer
music interface (BCMI) are likely to be complex and multidimensional. As such,
they may not be apparent from simple visual inspection of the data alone.
Machine learning, which is a field of computer science that aims at extracting
information from data, provides an attractive framework for uncovering stable
relationships between datasets and has been suggested as a tool by which neural
correlates of music and emotion may be revealed. In this chapter, we provide an
introduction to the use of machine learning methods for identifying neural
correlates of musical perception and emotion. We then provide examples of
machine learning methods used to study the complex relationships between
neurological activity, musical stimuli, and/or emotional responses.

5.1 Introduction

It is widely understood that music is able to induce a wide range of emotions in the
listener. What is not so well understood is the specific neurological mechanism by
which this process takes place.
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In order to allow a brain-computer music interface (BCMI) to interact with, and
allow control of musical stimuli, it is first necessary to understand the relationships
between music, the emotion(s) induced or perceived, and neurological activity. For
this purpose, it is necessary to identify both neural correlates of the emotions induced
by particular musical stimuli and neural correlates of the perception of music.

However, the feature space that may be extracted from—and used to describe—
the brain may be very large, complex, and high dimensional. For example, the
electroencephalogram (EEG) provides a time series of discrete measures of elec-
trical activity recorded from the surface of the scalp and, due to high sampling rates,
may be very large and described by a multitude of features. Similarly, functional
magnetic resonance imaging (fMRI) provides a detailed three-dimensional measure
of oxygen consumption by neurons throughout the brain resulting in a much higher-
dimensional time series, which may also be described by a multitude of features.

Therefore, there is a need for advanced analysis methods to uncover relation-
ships between cognitive processes and their corresponding neural correlates, which
may not be immediately apparent.

Machine learning describes a set of methods which attempt to learn from the data
(Alpaydin 2004). For the purposes of brain–computer interfacing and the study of
the brain, this commonly takes the form of learning in which brain activation
patterns are associated with particular cognitive processes or differentiate groups of
processes.

Machine learning provides a data-driven approach to understanding relationships
between neurological datasets and their associated cognitive processes. For
example, it may allow the uncovering of complex neural correlates of specific
emotions or music perception, which are not immediately apparent via other
analysis techniques.

This chapter provides an introduction into the use of machine learning methods
in the context of identifying neural correlates of emotion and music perception. We
first introduce models of emotion and empirical measures of emotional responses,
which are required by machine learning methods to allow training on labelled data.
We then go on to review features which may be extracted from neurological data
and audiological signals to describe relevant or interesting properties. Finally,
machine learning methods are described and examples are provided to illustrate
their use in uncovering neural correlates of emotion and music perception.

5.2 Measuring Emotion

5.2.1 Models of Emotion

Models of emotion differ significantly in the way they conceptualise the determi-
nants of the emotional experience, the way they envision the neural mechanisms
that give rise to this experience, and the predictions they formulate for the
accompanying symptoms. Particularly, the landscape of emotion theories spans
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so-called discrete emotion theories and dimensional and appraisal theories, among
others, which constitute many theoretical lenses through which results from psy-
chology and neuroscience can be interpreted (see Chap. 6 for an introduction, and
Cornelius 1996 for an accessible and comprehensive review).

Discrete emotion theories or basic emotion theories originated after Charles
Darwin’s seminal work on emotional expression. This theoretical tradition con-
ceptualises emotions as differentiated entities that possess unique properties, dis-
tinguishing one emotion from the others. In this lens, each emotion is mediated by
separate and distinct neural substrates, which are the result of evolutionary pressure.
A basic emotion occurs rapidly, and automatically, upon perception and classifi-
cation of a stimulus as belonging to a specific class of events (Tomkins 1962;
Ekman 2003; Izard 2007).

Dimensional theories and appraisal theories are cousin traditions, which con-
ceptualise affective phenomena as the result of the integration of a number of
separate processes. Unlike basic emotion theories, these theoretical traditions
attempt the description of mechanisms common to most, if not all emotions.
Whereas appraisal theories focus on the mechanisms antecedent to the emotional
experience (Scherer et al. 2001; Roesch et al. 2006; Fontaine et al. 2007),
dimensional theories place the emphasis on the correlates of this experience, in the
brain and the behaviour, and represent emotion in a low-dimensional space.

In the context of our understanding of the neural correlates underlying the
emotional experience of music, the theoretical tradition that one chooses to depart
from will have strong consequences for the design of empirical work and the
practical decisions that researchers have to make for the analysis of their data. In
particular, this choice will have consequences when attempting to capture the
subjective experience of a participant placed in a specific context, as well as when
choosing neural features of interest and implementing analysis of the data.

5.2.2 Self-reporting Felt Emotion

There are a wide variety of methods available for individuals to report their felt
emotional response, all of which aim to accurately identify the emotional state of an
individual. Techniques commonly focus on identifying one property of the induced
affective state such as the intensity of the response (affect intensity measure, AIM)
(Larsen and Diener 1987), the valence (profile of mood states, POMS) (Albrecht
and Ewing 1989), or how aroused the individual is (UWIST mood adjective
checklist) (Matthews 1990). Most of these methods rely on participants accurately
interpreting descriptive emotive terms as well as having an adequate level of
emotional intelligence (Salovey and Pizarro 2003) to be able to assess their own
affective state.

To avoid any semantic misunderstanding of the adjective descriptions as well as
the difficulty of reflecting them to one’s emotional state, many researchers use the
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self-assessment manikin (SAM) (Bradley and Lang 1994). SAM is comprised of
descriptive visual images that range across a nine-point rating scale for pleasure,
arousal, and intensity, respectively. This tool for reporting emotional response has
been extensively used to label emotionally loaded stimuli for a range of databases
such as the International Affective Picture System (IAPS) (Lang et al. 2008),
International Affective Digital Sounds (IADS) (Bradley et al. 2007), and the dataset
for emotional analysis using physiological signals (DEAP) (Soleymani et al. 2012).

However, one downside to the use of SAM and other self-assessment tools when
exploring the influence of music is that they only provide information of the
individuals’ affective state at a discrete time, post-stimulus in most experimental
paradigms. As such, there is a growing interest in emotional research for a tool
which provides the participant the ability to continuously report how they feel in an
easy, quick, and accurate manner. Current tools available to researchers include
FEELTRACE (Cowie and Douglas-Cowie 2000) and EMuJoy (Hevner 2007), both
of which allow the subject to position and navigate their affective state through two-
dimensional emotional models.

5.3 Measuring Neurological Activity

There are three broad groups of feature types that may be extracted from neuro-
logical data: those based upon the amplitude of the recorded signals, those based in
the frequency content, and those based upon the phase content (Lotte et al. 2007;
Hwang et al. 2013). Additionally, combinatorial features, which combine two or
more feature types, may also be considered. For example, time-frequency activity
maps may be used to describe changes in the amplitude and frequency distribution
of the EEG or magnetoencephalogram (MEG) over time.

Amplitude-based features may include measures such as event-related potential
(ERP) amplitude, peak latency, statistical measures of the distribution of the data,
measures of relationships within the data (e.g. correlation), voxel strength in specific
regions of interest (ROIs) in a magnetic resonance imaging (MRI) map, etc. Fre-
quency-domain features are used to describe how the frequency content of the data
changes with specific control tasks or over time. This can include measures of the
magnitude of specific frequencies, the distribution of frequencies across the power
spectra (power spectral density; PSD), coherence measures, or the relative power of
specific frequencies (Wang et al. 2011). Phase-domain features are used much less
frequently in BCI research (Hwang et al. 2013), but nonetheless show some promise,
particularly when used in the investigation of relationships between different spatial
regions during specific tasks (Daly et al. 2012). Combinatorial features are being used
in an increasing proportion of BCI research (Hwang et al. 2013). This is most likely
due to the increasing interest in hybrid BCIs (hBCIs), in which paradigms or signal
types are combined (Pfurtscheller et al. 2010; Müller-Putz et al. 2011).

Figure 5.1 provides a taxonomy of feature types which may be used to describe
neurological signals, including examples of each type.
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5.4 Measuring Music

Musical properties and structure may be described by a number of models or
methodologies. However, many of these methods rely on specific descriptions of
musical pieces, which are often grounded in specific musical styles or cultures. For
example, descriptions of chord structures in a piece of music stem from European
musical history (Christensen 2002) and may not apply equally well to music from
other cultural backgrounds.

An alternative view of music is to treat it as a complex time-varying set of
sounds. From this view, music is merely a label one may apply to a set of complex
sounds with specific structural properties. Thus, one may take acoustic properties of
a recording of a piece of music and use them as alternate descriptors of the music.

The advantage of such an approach is that it allows one to describe all sounds in
the same manner. Thus, music from any cultural background, genre, or style may all
be described in the same manner and via the same framework of features. In
addition, non-musical sounds such as speech, environmental noise, animal cries,
etc., may also be described under the same framework.

A very large number of feature types may be extracted from a piece of sound
(Mitrovic et al. 2010). These may be broadly grouped into six types: temporal-
domain features, frequency-domain features, cepstral features, modulation fre-
quency-domain features, eigen-domain features, and phase space features.

Temporal- and frequency-domain audio features are analogous to EEG features.
Cepstral-domain features are heavily used in speech analysis (Liu and Wan 2001)
and attempt to capture timbre and pitch information by taking frequency-smoothed
representations of the log magnitude spectrum of the signal. Modulation frequency
features capture low-frequency modulation information; sounds induce different
hearing sensations in human hearing (e.g. rhythm) (Tzanetakis and Cook 2002).
Eigen-domain features describe long-term information in the audio signal, such as
statistical markers of noise versus structured sound (Mitrovic et al. 2010). Finally,
phase space features attempt to capture nonlinear properties of the auditory signal,
such as turbulence introduced by the vocal tract (Kokkinos and Maragos 2005).

Fig. 5.1 Taxonomy of
feature types used to describe
neurological datasets
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5.5 Machine Learning

Machine learning refers to the science of getting a computer to learn a rule
describing the regularity of patterns embedded in data without having to explicitly
program it. Instead, machine learning systems attempt to identify generalisable
rules directly from the data. The identified rules should be applicable to previously
unseen data and may be used to partition them via appropriate decision boundaries
or translate it into some more appropriate space (Alpaydin 2004; Müller et al.
2004).

For example, given a set of neurological measurements, it may be desirable to
identify a rule which relates them to measures of musical stimuli from a piece of
music played to the participant. Alternatively, one may uncover neural correlates of
emotion by identifying a rule which relates neurological activity to participants’
self-reported emotions.

Rule identification often amounts to identification of decision boundaries which
may be applied to the data. For example, given EEG recorded during two tasks (e.g.
listening to music vs. listening to noise), rule identification may amount to iden-
tifying a rule for finding whether a new EEG segment corresponds to piece of music
or a noisy auditory stimulus.

More formally, a two-class problem classification learning may be expressed as
the process of identifying a function f : RN ! f�1;þ1g from a function class
F using a set of training data such that f will classify unseen examples with min-
imum error. For problems with more than two classes, f is modified appropriately.

Machine learning methods can be broadly described as either supervised or
unsupervised. Supervised machine learning methods use labelled data as a part of
the learning process, whereas unsupervised methods do not.

5.5.1 Unsupervised Machine Learning Methods

Unsupervised machine learning does not use labelled data and hence concentrates
on removing redundancy in the dataset or on emphasising components of the data
which may be of interest, for example, components of high variance. This means
unsupervised machine learning methods are often used for dimensionality reduc-
tion, for example, principal component analysis (PCA) (Smith 2002; Lee and
Seungjin 2003), for identifying advantageous translations that may be applied to the
data, for example, independent component analysis (ICA) (Comon 1994; Qin et al.
2005), or for identifying hidden structure in the data, for example, clustering
algorithms (Guyon and Elisseeff 2003; Dy 2004) or Markov modelling (which may
be used for either clustering or classification) (Obermaier et al. 2001). They may use
translations or transformations to reduce the dimensionality of the dataset and hence
select subsets of the data that may better illustrate or highlight features or structures
of interest.
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To illustrate the ways in which unsupervised machine learning methods can be
applied to uncover neural correlates of musical perception or emotions induced by
listening to music, a set of case studies is described below.

5.5.1.1 Case Study 1: PCA for Uncovering EEG Dynamics During Music
Appreciation

In work by Lin et al. (2009), PCA was used to help uncover neural correlates of
emotions during a music listening task. EEG was recorded from 26 participants
who listened to 16 different musical segments, selected to induce particular emo-
tional responses. Power spectral densities (a frequency-domain feature) were then
estimated from 1-s non-overlapping windows over 30 s of EEG recorded during
each of the musical clips. This was done for each of the traditional EEG frequency
bands (delta: 1–3 Hz, theta: 4–7 Hz, alpha: 8–13 Hz, beta: 14–30 Hz, and gamma:
31–50 Hz), forming an initial feature set containing 2,400 features per subject
(5 frequency bands × 30 time windows × 16 musical clips) per channel. The final
feature set was then produced by taking the spectral differences between left and
right hemisphere channel pairs for all channels from the International 10/20 system
(e.g. Fp1-Fp2 etc.).1 The final feature set is denoted as X where each element Xi;k

denotes a feature k extracted from the EEG recorded while the participant listened
to a piece of music i.

PCA attempts to identify an orthogonal transformation that translates a set of
potentially correlated variables into a set of linearly uncorrelated variables. These
new variables are referred to as the principal components (PCs) (Smith 2002).

PCA operates by first subtracting the mean from the data to centre it. Thus, in
our case study, Lin and colleagues took their original feature set X and derived a
new, zero-mean, feature set X by subtracting the mean from X.

The covariance matrix of the feature set X is then used to measure the strength of
the relationships between all rows of X. This is defined as the matrix C where each
element Ci;j denotes the covariance between rows i and j (corresponding to musical
pieces i and j) in the feature set X.

Ci;j ¼
Pn

k¼1ðXi;k � Xi;:ÞðXj;k � Xj;:Þ
ðn� 1Þ ð5:1Þ

where Xi;k and Xj;k denote the kth features from different musical pieces i and j, and
Xi;: denotes the mean over a feature vector for an individual piece of music i.

Eigen decomposition is then applied to analyse the structure of this covariance
matrix. The covariance matrix is decomposed into a matrix of eigenvectors and a
vector of eigenvalues. This may be defined as

Cu ¼ ku; ð5:2Þ

1 Please refer to Chap. 2 for an introduction to EEG electrode placement systems.

5 Machine Learning to Identify Neural Correlates … 95

http://dx.doi.org/10.1007/978-1-4471-6584-2_2


where u denotes an eigenvector of the covariance matrix C and λ denotes the
corresponding eigenvalue.

The eigenvalues identified for C may be ranked in increasing value with the
corresponding eigenvectors containing projections of the feature set onto principal
components, which are placed in the order of decreasing variance. Thus, the
eigenvector corresponding to the largest eigenvalue contains a projection of the
feature set X which has the greatest variance over the selection of musical pieces
played. This eigenvector may then be used to classify musical pieces with high
accuracy with respect to their emotional valence while using a subset of the data.

Lin et al. (2009) select a set of the first few eigenvectors calculated from the
EEG such that they contain more than 80 % of the variance of the feature set. These
eigenvectors are then used as features in a classification stage, which is reported to
produce classification accuracies of up to 85 %.

A similar approach can also be seen in (Ogawa et al. 2005) in which PCA and
canonical discriminant analysis (CDA) are each used to identify features that may
be extracted from the EEG. These methods are applied to EEG to attempt to
identify metrics for the identification of pieces of music for use in music therapy.

5.5.1.2 Case Study 2: ICA to Identify Neural Correlates of Music
ICA is used by Cong et al. (2013) to identify feature sets which are able to identify
neural correlates of perception of long pieces of naturalistic music. EEG was
recorded from 14 participants, while they listened to an 8.5-min-long piece of music
(modern tango by Astor Piazzolla), via 64 electrodes.

ICA is based upon the assumption that the recorded neurological data are
derived from recording a mixture of statistically independent sources. This may be
explained by an analogy of a cocktail party. In a party, you may be able to hear
several people talking at the same time. Specifically, although the sounds produced
by each speaker may be independent of one another, the sound you hear contains a
linear mixture of each of the speakers. Thus, in order to attend to what one specific
speaker is saying, you must attempt to separate this linear mixture of sounds into
their original sources.

ICA attempts to solve this problem by identifying a linear transformation from
the recorded multichannel EEG data x to a set of independent neural sources s. It
does so by imposing the assumption that the neural sources are statistically inde-
pendent of one another and identifying a transformation matrix which, when
applied to the EEG, results in maximally independent estimated sources. This may
be defined as

s ¼ A�1x; ð5:3Þ

where A−1 denotes the transformation matrix, to translate the EEG into the esti-
mated sources s and may be inverted to reconstruct the recorded EEG from the
estimated sources,
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x ¼ As: ð5:4Þ

After application of ICA decomposition to the 64-channel EEG recorded from
their participants, Cong and colleagues produced spatial maps of the projections of
each independent component (IC) onto the scalp.

The musical piece played to the participants was then decomposed into a set of
temporal and spectral features. Features were selected that attempted to describe the
tonal and rhythmic features of the music. The ICs identified from the EEG were
then clustered and used as the basis for a neural feature set, which was observed to
significantly correlate with the acoustical features extracted from the musical piece.

5.5.2 Supervised Machine Learning Methods

In contrast to the unsupervised methods, supervised techniques need information
about data class membership in order to estimate the function f :RN ! f�1;þ1g,
effectively amounting to learning the class membership or inter-class decision
boundary. This information comes in the form of a labelled training dataset where
each datum, representing in the feature space the object of interest, is accompanied by
the label denoting the class to which this object belongs. The class information can be
used either explicitly or implicitly in construction of the class membership function.

The methods may use labels explicitly if the latter are represented by numeric
values, typically −1 and 1 for a binary classification problem. In this case, the entire
training set, data, and their labels are used in training the classifier. Typically, this is
performed by feeding the data into the classifier with randomly initialised parameter
and comparing the classifier output representing the proposed class membership
with the data class labels. The discrepancies between obtained and the true labels
are accumulated and form the basis of an error cost function. Thus, the classifier
training is cast as an optimisation problem—traversing the classifier parameter
space in order to find the optimal parameter configuration, such that the error cost
function is minimised.

In classificationmethods based on implicit use of class membership in training, the
class labels need not be numeric and are not used explicitly to adjust the classifier
parameters during traversing the parameter space. Rather, the class information is
used by grouping data belonging to an individual class and extracting relevant
information groupwise in the process of constructing the classifier decision boundary.

There are different ways in which classifiers can be categorised. Discriminative
classifiers need to use information from both classes in their training as they learn
by differentiating properties of data examples belonging to different classes. In
contrast, generative classifiers assume some functional form of the class models
which are then estimated from the training set and subsequently used in order to
perform the classification. The additional benefit of such an approach is that the
models can also be used to construct new data with properties consistent with the
class description. The discriminative methods do not afford such a use but construct
decision boundary making somewhat less explicit assumptions.
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Classifiers can also be differentiated with respect to the nature of the data. Most
standard classifiers are applied to categorise objects. This typically amounts to
representing objects as points in an appropriately dimensional feature space, which
typically is a Euclidean vector space. However, it is also possible to use classifi-
cation approach to analyse processes rather than objects. Data from such processes
typically come in the form of time series.

Although it is possible to unfold time series in time and use the highly
dimensional vector space representation and hence static classifiers, there have been
also a number of dynamic classification techniques developed to deal with temporal
dynamics of processes.

Another way to categorise classifiers considers the nature of the decision
boundary they can construct. Linear classifiers construct hyperplanes as their
decision boundaries, whereas nonlinear classifiers can generate more flexible
hypersurfaces in order to achieve class separation.

Once the decision boundary is constructed, using explicit or implicit class
membership information, the unseen data can be fed into classifier which will then
suggest the most likely class for a given datum (i.e. on which side of decision
boundary it falls).

The subsequent classification performance will depend on the nature of the
decision boundary a given classifier architecture can realise, on the properties of the
training set and how the training process was conducted. Any finite training set will
by necessity contain only limited information about the data class structure. This is
because of the inherent error and incompleteness of the representation of classified
objects in the feature space, as well as finite data size. Moreover, the dataset may
actually contain some peculiar characteristics which is specific to only this finite
sample rather than representative of the entire class. Thus, the training of the
classifier must be monitored in order to arrive at a decision boundary that represents
true class information rather than overfitting to the specific dataset. At the same
time, how well the true decision boundary can be captured depends on the classifier
complexity. These conflicting constraints can be formalised within the framework
of mean square cost error where the latter can be shown to decompose into three
terms corresponding, respectively, to the noise, bias, and variance, where only the
bias (the constraints implied by a particular type of the decision boundary class
supported by the classifier) and variance (the dependence on the training set used)
can be minimised. Unfortunately, the bias–variance trade-off implies it is actually
typically not possible to minimise both simultaneously; the increase of classifier
flexibility from enlarging the class of the boundary decision functions it can rep-
resent typically makes it more prone to overfitting. On the other hand, more robust
classifiers that are not sensitive to the peculiarities of the data tend to have low
complexity (highly constrained decision boundary form).

In order to strike the balance implied by the bias–variance trade-off dilemma, the
preparation of the classifier is often performed in stages supported by splitting the
data into several sets, with the training subset used to adjust the classifier param-
eters, validation set used to monitor classifier progress or complexity, and testing
used for the finally selected classifier.
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Many authors use machine learning techniques to analyse EEG for BCI appli-
cations, and the number of studies investigating automated emotion recognition is
growing (Lin et al. 2010, 2011; Wang et al. 2013; Sohaib et al. 2013).

The following two cases studies will illustrate the use of the supervised machine
learning methods used to study emotional responses to music using EEG.

5.5.2.1 Case Study 3: SVMs for Identifying Neural Correlates
of Emotion

Sohaib et al. (2013) used the support vector machine as a method for automatic
emotion recognition from the EEG. The increased use of computer technology by
humans and hence raise in prominence of human computer interaction motivates
incorporating automated emotion recognition into such technologies. The authors
used the IAPS as emotional stimuli. Images in the IAPS database were tagged with
their emotional content along dimensions of valence, arousal, and dominance,
although the authors only considered valence and arousal in their study. EEG was
recorded while the subjects viewed the images and assessed their emotion using a
self-assessment manikin.

The EEG was recorded at 2,048 Hz from 6 channels—Fp1, Fp2, C3, C4, F3, and
F4—and referenced to Cz and were preprocessed using ICA in order to remove
artefacts. Four features for each channel (minimum, maximum, mean, and standard
deviation) were obtained forming 24-dimensional feature vectors which were then
used to train the classifiers.

The support vector machine belongs to the family of discriminative classifiers. It
is also a member of the so-called kernel methods, because of its use of kernel
functions which allow it to form a map of the input data space into a feature space
where the classification is attempted. The mapping is only done implicitly, and
hence, the computational costs are associated with the dimensionality of the input
space, even though the classification is performed in the potentially highly
dimensional feature space. Additionally, because of this feature mapping, although
the decision boundary in the input data space is nonlinear, it is an image (via feature
mapping) of the decision boundary which is a linear hyperplane in the feature
space. The strength of the SVM comes from using this kernel trick—as the problem
is formulated as linear classification yet whether the actual classification is linear or
not and what kind of nonlinearities are involved depends on the choice of the
kernel. Moreover, the problem of finding a hyperplane in the feature space is
formulated as a constrained optimisation where a hyperplane is sought that maxi-
mises the separation margin between the classes. This also gives rise to the selection
of the data which are important for ultimate construction of the optimal separating
hyperplane, the support vectors, which lend the name to the entire classifier.

Sohaib et al. (2013) report that their SVM obtained classification rates of over
56 % on the binary classification problem (negative/positive arousal/valence),
higher than four other classifiers used. The classification rate was raised to an
average of over 66 % when the 15 subjects were split into 3 equal groups and each
group classified separately.
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5.5.2.2 Case Study 4: Classifying Discrete Emotional States
Murugappan et al. (2010) used two classifiers, K nearest neighbour (KNN) and
linear discriminant analysis (LDA), for classification of discrete emotional states
from audio-visual stimuli. They used video clips from the international standard
emotional clips set (Yongjin and Ling 2005). They collected EEG from 62 channels
and used a surface Laplacian (SL) filter to remove the artefacts. They then extracted
both standard (signal power, standard deviation, and variance) and novel features
from each channel based on a discrete wavelet decomposition into 3 frequency
bands: alpha, beta, and gamma. The wavelet features were functions of the relative
contribution of energy within a frequency band to the total energy across the three
bands.

The KNN classifier takes a new data point and assigns it to the most frequent
class among a group of the k labelled training examples. The LDA works by
identifying a decision boundary hyperplane which maximises the inter-class dis-
tance, while simultaneously minimising within-class variance. The authors report
the highest classification accuracy for discrete wavelet power-derived features
(83 % for KNN and 75 % for LDA) on the entire set of 62 channels with the
classification accuracy dropping to 72 % for KNN and 58 % for LDA on a subset of
8 channels. The traditional features provided consistently worse results.

Machine learning methods have been used in very diverse ways ranging from
generic approaches to increase machine “intelligence” (Warwick and Nasuto 2006),
to analysis of pictorial (Ruiz and Nasuto 2005) or numeric data, such as EEG time
series for BCI applications (Aloise et al. 2012; Rezaei et al. 2006; Daly et al. 2011).
Lotte et al. (2007) provide an extensive discussion of supervised approaches used in
brain–computer interfaces.

5.6 Summary

Neurological data may be described in a large multitude of ways by a range of
different feature types. Therefore, often relationships between neurological data and
relevant measures of behaviour, stimuli, or responses may not be immediately
apparent. Such relationships may in fact be complex and comprised of multiple,
potentially weakly interacting components.

Machine learning provides a statistically sound framework for uncovering these
relationships. It has, therefore, been proposed by a number of authors as a suitable
mechanism for identifying neural correlates of music perception and emotional
responses to music.

We suggest that in order to construct a brain-computer music interface (BCMI)
based upon the interaction of the brain and a musical generator, an understanding of
these relationships is required. Machine learning provides a suitable framework
through which such an understanding may be acquired.
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5.7 Questions

1. How can the theoretical landscape of emotion theories be described?
2. What are the predictions about the emotional experience evoked by music that

one can formulate from a discrete emotion perspective? From a dimensional
perspective? From an appraisal perspective?

3. What are the practical implications of favouring one theory over an other for
the application of machine learning techniques to neural signals in the emo-
tional experience evoked by music?

4. What are the advantages of using the self-assessment manikin for assessing
emotional states of individuals? Are there any disadvantages?

5. Describe an experimental paradigm which would benefit more from a contin-
uous self-assessment tool than a discrete approach, explain your reasons?

6. What information you would need to collect during experiments aimed at
assessing EEG correlates of emotional states in order to use supervised tech-
niques to learn to recognise the brain emotional states?

7. What class of the machine learning techniques is suitable for EEG analysis if
one does not have objective information about the emotional states of the
subject?

8. What are the advantages of generative classifiers over the discriminative ones?
Can you list also some of their disadvantages?

9. An EEG experiment is conducted to measure neurological activity during a
music listening task. The experimental hypothesis is that listening to music
with a faster tempo may increase the power spectral density in the alpha
frequency band recorded from the prefrontal cortex. Describe the types of
features that may be extracted from (1) the EEG and (2) the music, to test this
hypothesis.

10. How might ICA be applied to identify neural correlates of emotional responses
to stimuli in the EEG?
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6Emotional Responses During Music
Listening

Konstantinos Trochidis and Emmanuel Bigand

Abstract

The aim of this chapter is to summarize and present the current knowledge about
music and emotion from a multi-disciplinary perspective. Existing emotional
models and their adequacy in describing emotional responses to music are
described and discussed in different applications. The underlying emotion
induction mechanisms beside cognitive appraisal are presented, and their
implications on the field are analyzed. Musical characteristics such as tempo,
mode, loudness, and so on are inherent properties of the musical structure and
have been shown to influence the emotional states during music listening. The
role of each individual parameter on emotional responses as well as their
interactions is reviewed and analyzed. Different ways of measuring emotional
responses to music are described, and their adequacy in accounting for emotional
responses to music is discussed. The main physiological responses to music
listening are briefly discussed, and their application to emotion recognition and
to emotion intelligence in human–machine interaction is described. Music
processing in the brain involves different brain areas and several studies
attempted to investigate brain activity in relation to emotion during music
listening through EEG signals. The issues and challenges of assessing human
emotion through EEG are presented and discussed. Finally, an overview of
problems that remain to be addressed in future research is given.
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6.1 Introduction

Music by its nature has the ability to communicate strong emotions in everyday life.
Given the important role of emotion in music, the topic of music and emotion has
recently become an expanding field of research with up-to-date developments.

The aim of this chapter is to summarize and present the current knowledge about
music and emotion from a multi-disciplinary perspective.

We intended to make this chapter accessible to a wide range of readers from
different disciplines including computer science, engineering, musicology, music
information retrieval, and brain–computer interfaces.

The chapter is organized into eight sections. The first section consists of this
introduction, which describes the objectives of the chapter and its structure.

The first issue raised in the research on music and emotion is the modeling and
representation of emotions. Section 6.2 focuses on the existing emotional models
and their adequacy in modeling emotional responses to music. The two main
approaches, discrete and dimensional, and their variants are described and discussed
in different applications. A comparison between the two approaches is presented,
and the advantages and drawbacks of each approach are analyzed.

How music evokes emotions? A fascinating question that still remains open. To
explain how music can induce strong emotions in listeners is of great importance
for numerous disciplines including psychology, musicology, and neuroscience. All
these years, however, it was assumed that musical emotion can be studied without
necessarily knowing the underlying induction mechanisms. In Sect. 6.3, the existing
approaches are reviewed and state-of-the-art proposed mechanisms beside cognitive
appraisal are presented and discussed.

Musical characteristics such as tempo, mode, loudness, and so on are inherent
properties of the musical structure and have been shown to influence the emotional
states during music listening. Although affective associations of both tempo and
mode are fairly well established, relatively little is known about how these musical
parameters interact. In Sect. 6.4, the role of each individual parameter on emotional
responses as well as their interactions is reviewed and analyzed.

Section 6.5 discusses and compares different ways of measuring emotional
responses. Emotions are subjective phenomena, and therefore, their measurement is
a difficult task. Measurement of emotional responses is closely related to the
existing emotional models. When using discrete models, distinct labels are
employed such as happiness, anger, etc. In contrast, when dimensional models
are used, rating scales of valence and arousal are employed. Both approaches are
mainly based on “subjective” self-reports. Physiological responses to music offer an
“objective” alternative for measuring emotional responses to music.

Emotional responses during music listening are related to physiological
responses. To understand the relationship between the two is not an easy task and
has been the subject of intensive investigation. In Sect. 6.6, the main physiological
responses to music listening are briefly discussed and their application to emotion
recognition and to emotion intelligence in human–machine interaction is described.
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Music processing in the brain involves different brain areas and several studies
attempted to investigate brain activity in relation to emotion during music listening
through EEG signals. Furthermore, a growing interest has been recently developed
to build brain-computer music interfaces (BCMI) that use real-time brain signals to
communicate with the environment. Recent research in BCMI aims at the ability to
access the user’s brain activity to gain insight into the user’s emotional state.
Deeper understanding of the influence of the emotional state on brain activity
patterns can allow the BCMI to adapt its recognition algorithms, so that the
intention of the user is correctly interpreted in spite of deviations caused by the
subject’s emotional state. Furthermore, the ability to recognize emotions can be
used to provide the user with more ways of controlling the BCMI through affective
modulation. In Sect. 6.7, the issues and challenges of assessing different human
emotions through EEG are presented and discussed.

Finally, Sect. 6.8 provides an overview of the chapter and focuses on problems
that remain to be addressed in future research.

6.2 Models of Musical Emotions

The first problem raised in the research of music emotion is a model of emotions.
There are different approaches as to how emotions can be conceptualized and
described. The two main approaches that have strongly influenced research in the
area are the discrete or categorical approach and the dimensional approach.

6.2.1 Discrete Emotion Models

According to the discrete model, all emotions can be derived from a limited number
of basic universal emotions such as fear, anger, disgust, sadness, and happiness
(Ekman 1992a, b, 1999; Panksepp 1998). Each emotion is independent of the others
in its behavioral, psychological, and physiological manifestation, and each arises
from activation of independent neural systems. In studies investigating music and
emotion, the discrete model has been modified to better represent the emotions
induced by music. Emotions such as disgust are rarely expressed by music and
therefore have been replaced by tenderness, which is more suitable in the context of
music (Balkwill and Thompson 1999; Gabrielsson and Juslin 1996). Although the
number of basic emotions has been a matter of debate, the discrete model has
proven robust against cross-cultural, neural and physiological studies (Panksepp
1992). The discrete model has found so far applications in music psychological
(Dalla Bella et al. 2001), physiological (Baumgartner et al. 2006), and neurological
studies (Peretz et al. 1998).

Basic emotions have been investigated by exploring peripheral physiological
responses, and it was assumed that each basic emotion is associated with a specific
physiological pattern. It was found, however, that basic emotions are not associated
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with specific patterns of autonomic activation (Cacioppo et al. 2000). Moreover,
listeners may experience both sad and happy feelings at the same time depending
on the stimulus (Hunter et al. 2008). It was also proposed that each basic emotion is
associated with a characteristic facial expression. This assumption, however, has
not been confirmed. Certain facial expressions are often associated with more than
one emotion (smile, for example, is associated with both happiness and pride).

It was argued that the basic emotions of the discrete model are not adequate to
capture the richness of musical emotion (Zentner et al. 2008). Therefore, a new
model was proposed based on a study that used self-reports of the listeners. The
listeners were asked to list how frequently perceived a group of affective terms
related to music. Principal component analysis of the results showed that affective
responses can be grouped into nine categories. The resulted Geneva Emotion Music
Scale model (GEMS) includes wonder, transcendence, tenderness, nostalgia,
peacefulness, power, joyful activation, tension, and sadness. Zentner et al. (2008)
compared GEMS model with the discrete and dimensional emotion models by
asking listeners to rate music-induced emotions in a list containing all emotions.
The results of this comparison showed that the listeners preferred to describe the
emotions induced in terms of GEMS rather than the other two. Moreover, the most
effective discrimination of musical excerpts was obtained using the terms provided
by GEMS. Although it was reported that GEMS model outperformed both discrete
and dimensional models, the results have to be further investigated and tested on
larger collections including various music genres.

6.2.2 Dimensional Emotion Models

The alternative to discrete models is the dimensional approach (Fig. 6.1). While the
discrete approach focuses on the distinct characteristics that distinguish emotions
from each other, in the dimensional models, emotions are expressed on a plane
along two axes such as valence and arousal. In contrast to basic emotion concept,
dimensional models suggest that an interconnected neurophysiological system is
responsible for all affective states.

The circumplex emotion model (Russel 1980) proposes that emotions can be
expressed in terms of two dimensions, one related to arousal (activation-deactiva-
tion) and valence (pleasure-displeasure) that are orthogonally situated in the
affective plane. Thus, all emotions can be considered as varying degrees of both
valence and arousal. Although Russell’s model has found wide application and is
the dominant model in emotion research other potential variants of two-dimensional
models have been proposed. Thayer (1989) proposed a different two-dimensional
model. He suggested that the two affective dimensions are two separate arousal
dimensions: energetic arousal and tension arousal. According to this model, valence
can be explained as varying combination of energetic and tension arousal.

Another variant of the circumplex model is the Tellegen–Watson model (Watson
and Tellegen 1985). This model extends the two-dimensional models by
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emphasizing the value of a hierarchical perspective of emotional expressivity. It
analyzes a three-level hierarchy incorporating at the highest level a general bipolar
happiness versus unhappiness dimension, an independent positive affect versus
negative affect dimension at the second-order level below it and discrete expres-
sivity factors (joy, sadness hostility, fear) at the base. The key to this hierarchical
structure is the recognition that the general bipolar factor of happiness and inde-
pendent dimensions of positive affect (PA) and negative affect (NA) are better
viewed as different levels of abstraction within a hierarchical model, rather than as
competing models at the same level of abstraction. Thus, the hierarchical model of
affect accounted for both bipolarity of pleasantness–unpleasantness and the inde-
pendence of PA and NA effectively.

Both circumplex and Tellegen-Watson models have gained empirical support,
and their advantages and drawbacks have been actively debated in the literature
(Watson et al. 1999; Russel and Caroll 1999).

The dimensional models have been criticized in the past that fail to differentiate
between emotions such as anger and fear that are very close on the affect plane.
Many studies using valence and arousal showed that two-dimensional models
cannot capture all the variance in music-induced emotions (Collier 2007). In a
multi-dimensional scaling approach used to explore the underlying structure of
emotional responses to music, it was found that in addition to the two dimensions, a
third dimension related to kinetics is necessary (Bigand et al. 2005).

Over the years, three-dimensional models with different dimensions have been
proposed. Wundt (1896) proposed a three-dimensional model with the three
dimensions of pleasure–displeasure, arousal–calmness, and tension–relaxation.
Schlossberg (1954) proposed a three-dimensional model with three main dimen-
sions related to arousal, valence, and control. The most known three-dimensional
model is a modification of Russell’s model with a Thayer’s variant having three

Arousal + 

Valence + 

Energy + Tension + 

− − 

− 

− 

Russell’s circumplex model
Thayer’s model

Fig. 6.1 Schematic diagram
of the dimensional emotion
model
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axes, valence, energetic arousal, and tension arousal (Schimmack and Grob 2000;
Schimmack and Rainer 2002).

Recently, Eerola and Vuoskoski (2011) systematically compared discrete and
dimensional models by evaluating perceived musical emotions. The results showed
that the overall ratings between discrete and dimensional models did not reveal
substantial differences when using large music collections. The discrete models,
however, exhibited lower resolution efficiency in rating ambiguous emotion com-
pared to dimensional models. Moreover, the comparison between different
dimensional models revealed that two dimensions are sufficient to describe emo-
tions in music. This finding is in contrast to existing studies supporting the need for
three-dimensional models (Schimmack and Reisenzein 2002).

The discrete and dimensional models coexist for a long time in music and
emotion research. Discrete models are closer to listener’s experience because the
labels used (happiness, anger, sadness, etc.) are familiar from everyday life. On the
other hand, dimensional models appear to be related to the underlying mechanisms
of emotion generation and therefore exhibit higher resolution in cases of ambiguous
emotions.

6.3 How Does Music Evoke Emotions?

Although the dominant view in the field of music and emotion is that music is able
to induce real emotions, there were music philosophers who challenged the exis-
tence of music-evoked emotions (Kivy 1990; Konenci 2008). The so-called
cognitivists argued that listeners refer to a music piece as happy or sad because the
music piece expresses happiness or sadness and not because music actually makes
them feel happy or sad. In contrast, “emotivists” argue that music evokes real
emotions to the listeners (Davies 2001). There is growing experimental evidence
that musical emotions can be reflected in physiological measures, supporting the
emotivist position that musical emotions are felt emotions (Krumhansl 1997;
Nyklicek et al. 1997; Witvliet and Vrana 2007; Lundqvist et al. 2009). Even if it is
accepted that music induces emotions, the fascinating question of how music evoke
emotions is still a matter of controversy. The answer to this question is a key issue
with implications for future research on the field of music and emotion.

6.3.1 Appraisal Theory

The most common discussed mechanism of music emotion elicitation is cognitive
appraisal (Ekman 1992a, b; Scherer 1999). Appraisal theory suggests that emotions
result on the basis of a person’s subjective evaluation or appraisal of an event. One
person feels sad, for example, by hearing the news of death of a beloved person or
feels happy by hearing the news of a great success. The result of the appraisal is an
emotion, which is expressed or externalized in physiological response symptoms.
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Appraisal theory has been criticized to have little relation to music-evoked emotions
because most reactions to music do not involve implications of life goals (Juslin
et al. 2010). In a recent study, listeners were asked to indicate what might have
caused their emotion by choosing among different proposed mechanisms (Juslin
et al. 2008). The above study investigated different mechanisms evoking musical
emotions in daily life. The results show that cognitive appraisal was the least
important.

Emotions are often considered as a multi-componential phenomenon including
physiological, behavioral, subjective, expressive, and cognitive components related
to different organismic subsystems. It is argued (Scherer and Zentner 2001) that the
most salient criterion for an emotion event is the degree of synchronization of all
organismic subsystems involved through rhythmic entrainment. If music can
influence one of the components, peripheral mechanisms can be triggered to cause
spread to other emotions components. Rhythmic entrainment is the process where
an emotion is induced by a piece of music because the powerful external rhythm of
music interacts and synchronizes to an internal biological rhythm of the listener
such as heart rate or respiration. The synchronized heart rate may then spread to
other emotional components through proprioceptive feedback, causing increased
arousal (Juslin and Sloboda 2010). Existing research suggests that coupling of
internal biological oscillators (heart rate, respiration) and external stimuli exists
(Boiten et al. 1994). Such coupling could provide an explanation of emotion-
inducing effect of music. Rhythmic entrainment, however, has not been so far
systematically investigated with respect to musical emotion. In order to answer the
question of whether music induces emotion, all pertinent indicators in the respective
organismic subsystems need to be accurately measured and the degree of their
synchronization assessed using reliable mathematical techniques. Recent research
provides some evidence that the mechanism of rhythm entrainment causes
increased arousal during visual stimulation (Valenza et al. 2012).

6.3.2 The BRECVEM Model

Research on the possible mechanisms for music emotion induction was mainly
limited on one or a few mechanisms (Berlyne 1971; Meyer 1956; Scherer and
Zentner 2001). There was no attempt, however, to develop a general framework
including several induction mechanisms. Recently, a novel theoretical framework for
music-induced emotions was proposed (Juslin and Västfjäll 2008; Juslin et al. 2010).
This framework was based on both existing research (Berlyne 1971; Meyer 1956) as
well as on recent research (Juslin et al. 2008). It is suggested that seven physiological
mechanisms are involved in the induction of musical emotions, in addition to cog-
nitive appraisal: (1) brain stem reflex, (2) rhythmic entrainment (3) evaluative con-
ditioning, (4) emotional contagion, (5) visual imagery, (6) episodic memory, and (7)
musical expectancy.
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Brain stem reflex is the process of emotion induction by music because one or
more acoustical characteristics of music are taken by the brain stem to signal an
important event.

Rhythmic entrainment is the process whereby an emotion is induced by a piece
of music because the external rhythm of music interacts with and synchronizes to an
internal physical rhythm of the listener such as heart rate or respiration (Clayton
et al. 2005). The synchronized heart rate may then spread to other components of
emotion through proprioceptive feedback producing increased emotional arousal
(Juslin and Sloboda 2010).

Evaluative conditioning is a mechanism of emotion induction by a piece of
music because this piece has been repeatedly paired with other positive or negative
stimuli.

Emotional contagion is a process whereby an emotion is induced because the
listener perceives an emotion and then mimics it internally.

Visual imagery refers to the mechanism whereby images evoked by music act as
cues to emotion.

Episodic memory is the mechanism whereby a piece of music is associated with
a particular event of the listener’s life, which in turn is associated with a particular
emotion. When the memory is evoked, the emotion associated with the memory is
also induced.

Finally, musical expectancy is an induction mechanism whereby the listener’s
expectations of music are confirmed, violated, or suspended.

The above-described mechanisms are considered to be distinct brain functions
with different origins and different characteristics. The mechanisms are not mutually
exclusive but rather complementary ways of music emotion induction. What
mechanisms may be activated depends on several factors including music style, the
listener and the circumstances of listening. The co-activation of different mecha-
nisms is possible leading to complicated interactions among the mechanisms. On
the other hand, it cannot be excluded that the mechanisms can be activated in
isolation from each other since they are related to different brain regions and
process different types of information. All these issues, however, have to be
resolved by further research.

6.3.3 Implications

A deeper understanding of the mechanisms underlying music emotion induction has
important implications on both theoretical research in the field of music and
emotion as well as on applications including multimedia, health care, and music
therapy. Further experimental studies are needed to test the mechanisms of both
componential arousal and BRECVEM model.

In the first case, multivariate techniques have to be used in a consistent and
accurate methodological way. Significant progress has been achieved using mul-
tivariate approaches. It seems, however, that multivariate approaches should be
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broadened to include subjective emotion ratings (self-reports), facial activity
(EMG), autonomic responses (heart and respiration rate, skin conductivity), and
brain activity (EEG). The observed responses should be linked to particular features
of the musical structure to see which features are responsible for the observed
phenomena. The tests should also include powerful mathematical modeling to asses
the degree of synchronization between the biological subsystems involved.

As far as the BRECVEM model concerns, it could help resolve the debate
between “cognitivists” and “emotivists,” remove existing disagreements in the field
and provide answers in a series of open issues. One issue is about which emotions
music can induce. This is of importance for emotional models used for decades in
music and emotion research. Some researchers argue that music can induce basic
emotions, while others argue that can induce both basic and complex emotions. It
seems that which emotions can be induced depends on the mechanism activated.
Furthermore, the proposed framework allows the induction of mixed emotions
when two or more mechanisms are activated simultaneously. Another issue is
whether music emotions are different from other emotions in everyday life. It
appears that the emotions evoked by music are similar to other emotions since the
mechanisms involved are to some extend common. Another implication concerns
physiological responses to music. Most studies investigated musical emotions by
trying to establish links between music and physiological measures without con-
sidering the underlying mechanisms. Better understanding of the relationship
between physiological data and emotions, by considering the mechanisms involved,
will help the interpretation of physiological and brain imaging data.

It is widely accepted that music has positive health effects and is used to regulate
emotions and mood which in turn positively influences reactions and stress. The
understanding of the underlying mechanisms will contribute to music therapy
practice by highlighting the processes involved in different therapy techniques.

6.4 The Role of Musical Structure on Emotion

Musical characteristics, such as tempo, mode, loudness, pitch, timbre, and so on,
are inherent properties of the structure of music, and it has been shown to influence
emotional responses to music (Juslin and Sloboda 2010). The relation between
characteristics of musical structure and emotional responses during music listening
has been the subject of investigation for decades (see Gabrielson and Lindstroem
2010 for a review).

6.4.1 Effect of Mode and Tempo

The most widely investigated musical characteristics are mode and tempo. The
pioneering work of Hevner (1935, 1937) was the first to demonstrate that both
tempo and mode affect the emotional response to music. Short pieces of tonal music
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were selected, and variations of the original pieces by mode (a piece in major was
also played in minor) and tempo (fast versus slow) were constructed. Clusters of
adjectives were given, and the listeners were instructed to mark adjectives they
found appropriate for each piece of music. Hevner concluded that faster tempi were
associated with happiness, whereas sadness was associated to slow tempi. Rigg
(1940a, b) studied the effect of music structure including mode and tempo on
emotional responses. Music phrases supposed to express pleasant/happy and sad/
serious emotional states were composed, and they were then systematically mod-
ified regarding tempo and mode. The listeners rated their perceived emotion by
choosing between these two categories. The results showed that shifts an octave
upward makes the phrase happier and faster tempo results in happier ratings. Since
these pioneer works, numerous studies demonstrated that mode manipulations are
strongly associated with happiness and sadness, indicating that mode is a reliable
indicator of mood (Peretz et al. 1998). Even among 8-years-old children, the major
mode is associated with happiness and joy, whereas minor mode is associated with
sadness (Dalla Bella et al. 2001).

It is generally agreed that music stimulates wide networks across the brain and
that specific areas of the brain appear to be involved for the perception of different
aspects of music such as melody, rhythm, and timbre (Zatorre and Samson 1991,
see also Sect. 6.6 in this chapter). In that vein, Tsang et al. (2001) investigated the
effect of mode and tempo separately on music emotion using EEG recordings in the
frontal region. They reported that both tempo and mode in the happier direction
resulted in greater relative left frontal activity, whereas changes in both tempo and
mode in the sadder direction resulted in greater relative right frontal activation, in
agreement with the hemispheric specialization of emotional valence (Davidson
1988). There are few studies that investigated the effect of mode and tempo on brain
activity using fMRI. Khalfa et al. (2005) used the manipulation of mode and tempo
in musical excerpts to test the lateralization of brain regions involved in the rec-
ognition of negatively and positively valenced musical emotion. They found that
the minor mode (sad excerpts) involved the left frontal cortex, which does confirm
the valence lateralization model. In the same line, Green et al. (2008) investigated
the effect of mode on emotional responses to music. Although the reported results
are in some cases contradictive, minor mode melodies were evaluated as sadder
than major melodies and caused increased activity in limbic structure.

6.4.2 Interactive Effects

All the above-described studies investigated the affect of tempo and mode on
musical emotion separately without considering possible interactive effects between
these parameters. Therefore, little is known about how tempo and mode interact.
Scherer and Oshinsky (1977) studied emotional responses to musical excerpts with
varying tempo and mode of Beethoven melodies but no interaction effects between
tempo and mode were reported. Husain et al. (2000) studied the effect of tempo and
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mode on arousal and mood. A Mozart sonata was manipulated to produce four
versions that varied both in tempo and mode. The results show that tempo
manipulation affected arousal but not mood, whereas mode manipulation affected
mood but not arousal. Furthermore, musical excerpts that have fast or slow tempo
were judged to be happy or sad, respectively. Cagnon and Peretz (2003), although
they were not interested in the interaction between mode and tempo, reported that
happy–sad conditions were influenced more strongly by tempo than they were by
mode. The results confirm that both mode and tempo determine the “happy–sad”
judgments with tempo being more salient. Webster and Weir (2005) investigated
systematically the effect of tempo, mode, and texture on emotional responses to
music. They concluded that the effects of mode, tempo, and texture were interactive
in nature. Major modes presented at fast tempi were positively valenced, whereas
minor modes presented at slow tempi were negatively valenced. Recently, the
combined influence of mode and tempo on emotional responses to music was
studied (Ramos et al. 2011). Three musical pieces composed in the Ionian mode
and then played in the remaining six Greek modes without affecting the melodic
contour were used. The resulted musical excerpts were then played at three different
tempi. The reported results showed some interactive effects between tempo and
mode but the effect of the two parameters was mainly additive. The research
reported so far in the interaction between musical characteristics of mode and tempo
provided contradictory results. On the one hand, it has been shown that fast tempo
music excerpts increase valence and arousal up to a certain degree of happiness, and
on the other hand, it has been found that tempo increases decrease the effect of
happiness on major mode and support happiness appraisal on minor mode.

The main body of the research on the effect of mode and tempo on emotional
responses to music was primarily based on self-reports instead of physiological
responses or a combination of both. Physiological responses, compared to self-
reports, provide unbiased responses and are able to capture changes in emotions
that would be undetected in self-reports. Using physiological responses to music
stimuli including heart and respiration rate and skin conductance, Van der Zwaag
et al. (2011) studied the effect of tempo, mode, and percussiveness on emotion.
Percussiveness can be considered as a descriptor of timbre (Skowronek and Mc-
Kinney 2007). They found, in agreement with previous research, that fast tempo
increases arousal and tension. Minor mode, however, evoked higher arousal
compared to major mode. This is in contradiction with existing research. They also
found interdependencies of musical characteristics in affecting emotion. Percus-
siveness is strengthening the influence of either mode or tempo on the intensity of
positive feelings. Fast tempo and major mode music are both experienced more
positively in combination with high percussiveness compared to low percussive-
ness. The combined interactions of mode and tempo on emotional responses to
music were recently investigated using both self-reports and EEG activity
(Trochidis and Bigand 2013). It was reported that musical modes influence the
valence of emotion with major mode being evaluated happier and more serene, than
minor and locrian modes. In EEG frontal activity, major mode was associated with
an increased alpha activation in the left hemisphere compared to minor and locrian
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modes, which, in turn, induced increased activation in the right hemisphere. The
tempo modulates the arousal value of emotion with faster tempi associated with
stronger feeling of happiness and anger, and this effect is associated in EEG with an
increase of frontal activation in the left hemisphere. By contrast, slow tempo
induced decreased frontal activation in the left hemisphere.

6.4.3 Effect of Pitch, Timbre, and Loudness

The effect of pitch and rhythm on the perceived emotional content of musical
melodies was also examined (Schellenberg et al. 2000). The pitch and rhythm
parameters were manipulated to obtain altered versions with different pitch and
rhythm. It was found that ratings were influenced more by differences in pitch rather
than differences in rhythm. Whenever rhythm affected ratings, there was an inter-
action between pitch and rhythm.

Few studies investigated the effect of loudness and timbre on musical emotion.
Loudness causes higher levels of activation and tension (Ilie and Thompson 2006)
and negative feelings (Kellaris and Rice 1993). It was shown that with increasing
loudness, arousal increases, whereas with decreasing loudness, arousal decreases
(Schubert 2004). Timbre is considered to play a less important role on emotional
affect (Blackwill et al. 2004). There is some evidence that soft timbres are asso-
ciated with sadness, whereas sharp timbres are associated with anger (Juslin 1997).

6.5 Measurement of Musical Emotions

Music has the ability to induce strong emotions to the listeners. Emotions, however,
are by their nature subjective phenomena, and therefore, measuring a person’s
emotional state is a quite difficult task. The measures commonly used to assess
emotional responses to music fall in three main categories: self-reports, physio-
logical measures, and behavioral measures. In what follows, self-reports and
physiological measures are described and their adequacy in accounting for emo-
tional responses to music is analyzed and discussed. Behavioral measures are not
discussed because their use is rare in emotional responses to music.

6.5.1 Self-reports

Music studies based on self-reports use either a discrete or a dimensional approach.
The discrete emotion perspective is based on the assumption that there is a universal
set of basic emotions including fear, anger, disgust, sadness, and happiness (for
details see Sect. 6.1 of this chapter). The ratings of emotion categories are gathered
by asking participants to rate how much a music piece expresses each emotion
category. Usually, a list of emotion terms is provided to the listener, and the latter is

116 K. Trochidis and E. Bigand



asked to check terms that describe the emotion experienced or to rate the intensity
of the emotion experienced on a certain scale. A standardized emotion scale of this
kind is the Differential Emotion Scale (Izard et al. 2003). It contains 30 expressions
to characterize 10 basic emotions. Most of the researchers, however, prefer to create
their own self-reports, which can serve better the needs of a specific research. About
one-third of the studies on musical emotion research used self-reports based on the
discrete emotion model. This is due to the fact that discrete emotions are easily used
in recognition paradigms and in physiological and neurological studies. Further-
more, discrete emotions can provide insight into mixed emotions.

The main alternative to discrete approach is the dimensional approach.
According to the dimensional approach, there are two fundamental dimensions that
describe emotional responses to music. The most common assumed dimensions are
valence and arousal. The valence dimension contrasts states of pleasure with states
of displeasure (positive–negative), whereas the arousal dimension contrasts states of
low arousal with states of high arousal (calm–excited). In using the dimensional
approach, Russell’s circumplex model has dominated. The listeners are asked to
rate valence (how positive or negative they feel) and arousal (low or high excita-
tion) independently in bipolar scales. Thus, the emotional state of the listener is
described as a point in the arousal–valence affective space. The results obtained
using the dimensional approach are reliable, easy to analyze, and admit advanced
statistical processing. A standardized scale based on the dimensional approach is
the Positive and Negative Affect Schedule (Watson et al. 1988). In some cases,
pictorial versions of rating scales are used. The Self-assessment Manikin scale, for
example, rates pleasure and arousal by using images of human characters with
different facial expressions. Moreover, photographs or drawings of various facial
expressions are used when basic emotions are studied. The adequacy of two-
dimensional models has been questioned, and three-dimensional models have been
proposed. The question that arises is whether dimensional or discrete approaches
are better to capture emotional responses to music. In a recent study, discrete and
dimensional models were systematically compared by evaluating perceived musical
emotions (Eerola and Vuoskoski 2011). The results showed that the overall ratings
between discrete and dimensional models did not reveal substantial differences
when using large music collections. Moreover, the comparison between different
dimensional models revealed that two dimensions are sufficient to describe emo-
tions in music.

Many studies rely on self-reports because they are easy and cheap to use and
interpret. Self-reports, however, have serious drawbacks. One of the main draw-
backs is demand characteristics. It refers to the possibility of transferring the
experimental hypothesis to the listener and consequently cause hypothesis influ-
enced response. Another serious drawback is self-presentation bias. It refers to the
difficulty of a person to report and describe emotional states that can be considered
undesirable.
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6.5.2 Physiological Measures

An alternative to self-reports is physiological measures. Physiological changes
during music listening are related to the activation of the autonomic nervous system
(ANS), which is responsible for regulating a variety of peripheral functions. There
is a large amount of studies establishing the relationship between physiological
responses and musical emotion during music listening (see Sect. 6.6 of this chap-
ter). Physiological measures are considered to be unbiased, more objective mea-
sures of emotional responses to music. They can be easily and noninvasively
recorded and analyzed. They are also able to capture changes in emotional
responses that would remain unnoticed in self-reports (Cacioppo et al. 2000).

The most commonly assessed physiological measures are electrodermal, car-
diovascular, and respiratory responses. Electrodermal activity is quantified in terms
of skin conductance (SC), which is considered to reflect arousal (Boucsein 1992). It
has been shown that SC increases linearly with arousal of emotional stimuli,
whereas no differences in valence were found. In general, emotionally powerful
music tends to increase SC more than less emotional music (Rickard 2004).

The most frequently used cardiovascular measures include heart rate (HR), blood
pressure (BP), and heart rate variability (HRV). Most of the existing studies on the
effect of music on heart rate indicate that music listening can cause changes in heart
rate (Nyklicek et al. 1997; Bernardi et al. 2006). These changes can be easily
measured through ECG (Electrocardiogram). It was shown that high arousal music
tends to increase the heart rate, whereas sedative music tends to decrease it. On the
other hand, HRV is associated with valence and has been found to be higher during
high positive valence (Cacioppo et al. 2000). Krumhansl (1997) reported increases
in HRV during sad and happy music.

Respiration is also strongly linked to emotional responses to music. Most of the
existing studies show an increase in respiration or breathing rate during music
listening (Krumhansl 1997; Gomez and Danuser 2004; Nyklicek et al. 1997).
Breathing rate is closely related to heart rate changes during music listening since
the two systems are considered as two weakly coupled oscillators and through this
coupling respiration regulates heart rate. Recent experiments provide evidence that
both respiration rate and heart rate entrain musical rhythm.

Muscular tension and particularly facial expressions are among the potential
measures of emotional states. Facial expressions are measured through electro-
myography (EMG) by placing electrodes on zygomaticus (associated with fur-
rowing of the eyebrows) and corrugator (associated with rising of the corners of the
lips) muscles. The results of existing measurements on zygomaticus and corrugator
showed increased zygomatic muscle activity during high arousal and positive
valence music, whereas greater corrugator activity was reported for musical
excerpts of negative valence (Larsen et al. 2003; Witvliet and Vrana 2007). Thus,
EMG activity can be considered as a promising measure of valence. An additional
important result is that using facial EMG, discrete emotions can be recognized
(Thayer and Faith 2001; Khalfa et al. 2008). Facial expressions have been so far
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used mainly in video applications and to a lesser degree in measuring emotional
responses to music.

It is well established that emotional processing involves activation of wide
networks of central nervous system (Blood et al. 1999; Blood and Zatore 2001). In
that vein, several studies have used brain activity measures to explore emotional
responses to music (Koelsch 2005; Koelsch et al. 2006). An approach taken to
examine emotional processing in brain are EEG experiments during music listening
(see Sect. 6.6 of this chapter). The most commonly used measure is alpha power,
which is considered to be inversely related to cortical activation. When alpha power
in the left frontal hemisphere is contrasted with alpha power in the right frontal
hemisphere, an asymmetry is found depending on the stimulus (Davidson 1988).
This frontal asymmetry is linked to emotional valence. Pleasant music induces
greater left frontal activity, whereas unpleasant music leads to greater right frontal
activation.

There are, however, results providing evidence that frontal asymmetry is related
to motivational direction rather than emotional valence. Using EEG measurements,
Davidson et al. (1990) found substantial evidence for the asymmetric frontal brain
activation. Since then, several EEG studies using various sets of musical stimuli
provided support for the hemispheric specialization hypothesis for emotional
valence (Schmidt and Trainor 2001).

In summary, it appears that different measures of emotions are sensitive to
different aspects of emotional states, and therefore, emotion cannot be captured by a
single measure. Emotions are often considered to have different components
(cognitive, behavioral, and physiological). Therefore, multivariate approaches
involving the investigation of various physiological responses could differentiate
among different emotions. Significant progress has been achieved using multivar-
iate approaches. It seems, however, that multivariate approaches should be
broadened to include subjective emotion ratings (self-reports), facial activity
(EMG), autonomic responses (heart and respiration rate, skin conductivity), and
brain activity (EEG). Moreover, models that might explain how various response
systems are coordinated (synchronized) should be also included.

6.6 Physiological Responses to Music

There is a large amount of studies establishing the relationship between physio-
logical responses and musical emotion during music listening (see Hodges 2010 for
a review). Physiological changes during music listening are related to the activation
of the ANS, which regulates a variety of organs and controls somatic processes.
Research on physiological effects of music includes mainly changes in heart rate
(HR), respiration rate (RR), blood pressure (BP), skin conductance (SC), finger
temperature and muscle tension (EMG). Ongoing brain activation (EEG responses)
is an important physiological response to music related to central nervous system
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(CNS) and should be included. This topic, however, will be discussed in a separate
section of this chapter (see Sect. 6.6).

Physiological responses to music are important in many aspects. From the
theoretical perspective, a key issue is to demonstrate whether basic emotions
induced by music are related to specific physiological patterns (Nyklicek et al.
1997; Lundqvist et al. 2009; Krumhansl 1997; Khalfa et al. 2008). The relation
between discrete emotions and emotion-specific physiological response patterns
predicted by theorists, however, still remains an open problem (Scherer 2004). As
far as practical applications concerns, physiological responses are important for
many applications including emotion recognition, health care, and human–com-
puter interfaces. They can be continuously monitored and used as robust measures
(descriptors) of emotional states. In what follows, the main physiological responses
to music listening will be briefly discussed and their application to emotion rec-
ognition and consequently to emotion intelligence in human–machine interaction
will be described.

6.6.1 Effect of Music on Different Physiological Processes

6.6.1.1 Heart Rate
Most of the existing studies on the effect of music on heart rate indicate that music
listening can cause changes in heart rate (Nyklicek et al. 1997; Lundqvist et al.
2000; Krumhansl 1997; Baumgartner et al. 2006; Samler et al. 2007; Blood and
Zatorre 2001; Bernardi et al. 2006). These changes can be easily measured through
ECG (Electrocardiogram). It was shown that high arousal music tends to increase
the heart rate, whereas sedative music tends to decrease it. There are also studies
reported that music caused no changes in heart rate (Iganawa et al. 1996; Gomez
and Danuser 2004). The style of music used in existing studies was not system-
atically investigated and could be one cause of the existing inconsistencies, the
other being the methodology employed. Recent studies provide evidence that tempo
is the most influential factor on heart rate. This is due to the fact that rhythm
entrainment between tempo and heartbeat seems to be the mechanism through
which the changes are caused.

6.6.1.2 Respiration
Breathing rate is the second physiological response linked to musical emotion.
Most of the existing studies show an increase in respiration or breathing rate during
music listening (Krumhansl 1997; Gomez and Danuser 2004; Nyklicek et al. 1997;
Thayer and Faith 2001). Few studies reported no substantial changes in respiration
during music listening (Davis 1992; Davis-Rollan and Cunningham 1987; Iganawa
et al. 1996). Breathing rate is closely related to heart rate changes during music
listening. The two systems are considered as two weakly coupled oscillators and
through this coupling respiration regulates heart rate. Recent experiments provide
evidence that both respiration rate and heart rate entrain musical rhythm.
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6.6.1.3 Skin Conductance
Skin conductance (SC) is a measure of the electrical resistance of the skin and is
frequently used as a physiological effect of music. Skin conductance is related to
emotional arousal and has been proved to be a reliable measure of emotional
response in domains other than music. For high arousal conditions, skin conduc-
tance increases. Most of the existing studies show a significant increase in skin
conductance during music listening (Khalfa et al. 2002; Gomez and Danuser 2007;
Lindqvist et al. 2009). There are, however, studies indicating no substantial changes
in skin conductance during music listening (Blood and Zatorre 2001).

6.6.1.4 Blood Pressure
Blood pressure (BP) has been also used as a measure of physiological effect of
music. It can be easily measured by a sphygmomanometer. The existing results,
however, are contradictive. Most of the studies show an increase of blood pressure
to stimulative music and a decrease to sedative music (Baumgartner et al. 2006;
Gomez and Danuser 2004; Krumhansl 1997; Thayer and Faith 2001). There are,
however, studies where blood pressure decreased (Yamamoto et al. 2007; Iwanaga
et al. 1996) or did not change during music listening (Davis 1992; Davis-Rollans
and Cunningham 1987).

6.6.1.5 Muscular Tension
Muscular tension and particularly facial expressions are among the potential
measures of emotional states. Facial expressions are measured through EMG
(Electromyography) by placing electrodes on zygomaticus, corrugator, and orbic-
ularis oculi muscles. The results of existing measurements on zygomaticus and
corrugator showed increased zygomatic muscle activity during high arousal and
positive valence music, whereas greater corrugator activity was reported for musical
excerpts of negative valence (Witvliet and Vrana 2007). Thus, EMG activity can be
considered as a promising measure of valence. An additional important result is that
using facial EMG discrete emotions can be recognized (Thayer and Faith 2001;
Khalfa 2008). Facial expressions have been so far used mainly in video applications
and to a lesser degree in musical applications (music listening).

6.6.1.6 Finger or Body Temperature
Skin temperature changes have been linked to music listening in several studies.
Most of the existing studies show an increase of skin temperature during listening to
stimulating music (Baumgartner et al. 2006; Lundqvist et al. 2009). There are,
however, cases where a decrease (Krumnhansl 1997; Nater et al. 2006) or no
changes at all (Blood and Zatorre 2001) were observed resulting in inconsistent
results.
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6.6.2 Physiological Measures and Emotion Recognition

This section will emphasize the significance of physiological responses during music
listening to emotion recognition and its applications. Music emotion recognition is
of considerable importance for many research fields including music retrieval, health
applications, and human–machine interfaces. Music collections are increasing
rapidly, and there is a need to intelligently classify and retrieve music based on
emotion. Training computers to recognize human emotional states, on the other
hand, is a key issue toward successful realization of advanced computer–human
interaction systems. The goal is to develop computational models that are able to link
a given physiological pattern to an emotional state.

Relatively little attention has been so far paid to physiological responses com-
pared to other modalities (audio–visual for example) for emotion recognition.

A significant amount of work has been conducted showing that musical emo-
tions can be successfully recognized based on physiological measures such as heart
rate, respiration, skin conductance, and facial expressions. Picard et al. (2001) were
the first who showed that certain affective states can be recognized by using
physiological signals including heart rate, respiration, skin conductivity, and muscle
activity. Nasoz et al. (2003) used movie clips to induce emotions in 29 subjects and
combining physiological measures and subjective components achieved 83 %
recognition accuracy. Wagner et al. (2005) recorded four biosignals from subjects
listening to music songs and reached a recognition accuracy of 92 %. Kim and
Andre (2008) used music excerpts to spontaneously induce emotions. Four bio-
sensors were used during the experiments to measure electromyogram, electro-
cardiogram, skin conductivity, and respiration changes. The best features were
extracted, and their effectiveness for emotion recognition was tested. A classifica-
tion accuracy of 70–90 % for subject-independent and subject-dependent classifi-
cation respectively was achieved. Koelstra et al. (2011) used a multimodal approach
based on physiological signals for emotion recognition. They used music video
clips as stimuli. During the experiments EEG signals, peripheral physiological
signals and frontal video were recorded. A variety of features was extracted and
used for emotion recognition by using different fusion techniques. The results show
a modest increase in the recognition performance, indicating limited complemen-
tarity of the different modalities used. Recently, a combination of acoustic features
and physiological responses was used for emotion recognition during music lis-
tening (Trochidis et al. 2012). The reported results indicate that by merging acoustic
and physiological modalities substantially improves participant’s ratings of felt
emotion recognition rate compared to the results using single modalities.

One of the main problems toward assessing musical emotions using physio-
logical measures is to extract features that are relevant. In the current state, most
studies try to extract features by simply removing non-relevant and keeping rele-
vant based on statistical measures. It seems that by equally weighting features of
different modalities does not lead to improved recognition accuracy. Alternative
approaches should be developed treating valence arousal separately. To combine
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the two modalities, one has to decide at which level the individual modalities
should be fused. A straightforward approach is to simply merge the features from
each modality (feature-level fusion). The alternative is to fuse the features at the
decision level based on the outputs of separate single classifiers (decision-level
fusion) or to use a hybrid method. This issue needs further investigation and new
effective fusion strategies should be developed.

6.7 Brain Responses to Music

It is generally agreed that emotional processing involves activation of wide net-
works of central nervous system (Blood et al. 1999; Blood and Zatore 2001). In that
vein, several studies have used brain activity measures to explore emotional
responses during music listening (Koelsch 2005; Koelsch et al. 2006). An approach
taken to examine emotional processing in brain are EEG experiments during music
listening. Davidson (1988) suggested that the left frontal area is involved in the
experience of positive emotions such as joy and happiness. In contrast, the right
frontal region is involved in the experience of negative emotions such as fear,
angry, and sadness. There are, however, results providing evidence that frontal
asymmetry is related to motivational direction rather than emotional valence
(Harmon-Jones and Allen 1998). Using EEG measurements, Davidson et al. (1990)
found substantial evidence for the asymmetric frontal brain activation. Since then,
several EEG studies using various sets of musical stimuli provided support for the
hemispheric specialization hypothesis for emotional valence. That is, musical
stimuli which are considered positive or negative in valence, elicited asymmetric
frontal EEG activity. Schmidt and Trainor (2001) investigated patterns of EEG
activity induced by musical excerpts in a group of undergraduates. They found
greater left and right frontal activity during music listening to pleasant and
unpleasant music. Furthermore, they were the first to show that the overall power of
frontal activity distinguishes the intensity of musical emotion. Moreover, faster
tempi and the major mode produced greater responses in the left hemisphere,
whereas slower tempi and minor mode were associated with greater responses in
the right hemisphere (Tsang et al. 2001). Sammler et al. (2007) investigated elec-
trophysiological correlates during the processing of pleasant (consonant) and
unpleasant (dissonant) music using both heart rate and EEG measurements. In the
EEG, they found an increase of frontal midline theta power for pleasant music in
contrast to unpleasant music. Altenmueller et al. (2002) presented musical excerpts
from four different genres to students who provided judgments for each excerpt.
Positively valenced stimuli elicited bilateral fronto–temporal activations predomi-
nantly of the left hemisphere, whereas negatively valenced stimuli elicited bilateral
activations predominantly of the right hemisphere. Females showed greater
valence-related differences than males did. In consequence, the frontal temporal
lobes seem to be involved in emotional evaluation and judgment rather than the
perceptual analysis of emotional information (Heilman 1997). Flores-Gutierez et al.
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(2007) studied emotional reactions to pleasant and unpleasant music induced by
dissimilar piano excerpts. They employed Principal Component Analysis on fMRI
and EEG, and they reported that a left cortical network involved with pleasant
feelings. In contrast, unpleasant emotions involved the activation of the right frontal
and limbic brain areas.

The frontal activation emotion hypothesis has been also tested across different
modalities, age groups, and measures. Davidson and Fox (1989) found that
asymmetrical frontal brain activity discriminated sweet and sour tastes in newborns.
Schmidt et al. (2003), tested 3-month-old to 12-month-old infants using musical
excerpts of varying valence and arousal (happy, sad, and fear). The authors suggest
that taken together their findings, which showed an emerging asymmetry of acti-
vation in the presence of an overall decrease of EEG power, indicate maturation of
cortical music processing as well as a “calming” influence of music by the end
of the first year of life. Baumgartner et al. (2006) investigated neural correlates of
sadness, fear, and joy. They observed that auditory information interacts with visual
information in several limbic and paralimbic structures. Activity changes in these
structures were stronger during combined presentation of fearful and joy photo-
graphs with fearful and joy music, compared to when only visual information was
present.

The research on asymmetries of EEG activity mainly focused on the analysis of
alpha band power. Relatively few studies have examined frequency bands other
than alpha including theta, beta, and gamma (Aftanas and Golocheikine 2001;
Sammler et al. 2007; Pizzagalli et al. 2002, 2003; Flores-Gutierez et al. 2007). The
results of these studies provide evidence that theta band plays a more important role
in emotion processing that previously believed. Therefore, it is important to
examine other frequency bands than alpha carefully as these may provide additional
information not reflected in alpha.

6.7.1 EEG and Emotion Recognition

In addition to peripheral physiological responses to music, EEGs from the brain
gained recently great attention for emotion recognition. Estimating the emotion
from EEG is important because brain waves are generated by the brain and are
deeply related to cognition processes. Furthermore, the ongoing brain activity
provides noninvasive measurement with high resolution. It appears that EEGs
provide more insight into emotional processes compared to peripheral CAN signals.

There are an increasing number of studies on EEG-based emotion recognition. In
these studies, different approaches with respect to both feature extraction and
classification algorithms were investigated. Most of the early studies on EEG-based
emotion recognition focused on spectral power changes in few bands and specific
brain areas. Power spectra of EEG signals in different frequency bands were used to
examine the relationship between brain activity and emotional states. A common
indicator of musical emotion is the alpha-power asymmetry at the anterior region of
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the brain (Schmidt and Trainor 2001; Trochidis and Bigand 2013). There is strong
evidence that other spectral changes and brain regions are involved in emotional
responses. These include frontal midline theta power (Samler et al. 2007), beta-
power asymmetry (Schutter et al. 2008) and gamma spectral changes at right
parietal areas (Balconi and Lucchiari 2008; Li and Lu 2009).

A variety of research studies on EEG-based emotion recognition and classifi-
cation has been reported. These studies used different features and classification
algorithms. Ishino and Hagiwara (2003) proposed a system based on neural net-
works. They applied FFT, WT, and PCA to extract features from EEG signals.
Consequently, neural networks were applied for classification of four emotions (joy,
relax, sorrow, and anger) achieving accuracy of 67 %. Murugappan et al. (2008)
used a lifting-based wavelet transform for feature extraction from measured EEG
signals. Next, Fuzzy C-Means clustering was employed for classification of four
emotions (disgust, happy, surprise, and fear).

Ko et al. (2009) reported an EEG-based emotion recognition system. They
divided measured EEG signals into five frequency ranges on the basis of power
spectral density and employed Bayesian network to predict the user’s emotional
states. Lim et al. (2010) proposed an EEG-based emotion recognition system. Using
measured EEG responses from 26 subjects during music listening, they extracted
features related to power spectral density, to power asymmetry of 12 electrode pairs
across different frequency bands and to the corresponding rational asymmetry. They
employed SVM classifiers and reported a recognition accuracy of 82 %. The
reported results showed that features of spectral power asymmetry across different
frequency bands were the most sensitive parameter characterizing emotional states.
Petrantonakis and Hadjileontiadis (2010) employed higher order crossings for
feature extraction from EEG signals. Using the extracted features, four different
classifiers (QDA, k-nearest neighbors, Mahalanobis distance, and SVM) were
tested for the classification of six emotions (happiness, surprise, anger, fear, disgust,
and sadness). Depending on the classifier, recognition accuracies from 63 to 83 %
were reported. Sourina and Liu (2011) proposed a real-time emotion recognition
and visualization system based on fractal dimension. They applied a fractal-based
algorithm and a valence–arousal emotion model. They calculated FD values from
the EEG signals and used a SVM classifier for arousal and valence prediction for
six basic emotions.

Despite the substantial progress achieved in EEG-based emotion recognition
many issues need to be further improved (resolved). Relatively limited number of
emotional states can be recognized using EEG. The best performance reported so
far involves only six different emotions (Petrantonakis and Hadjileontiadis 2010).
Another important issue is the number of electrodes needed to extract an optimal
number of features. In current research, studies a big number of electrodes are used
resulting in complications both during the experiments and the processing of the
data. Research on the best features is needed to reduce the number of electrodes.
Solving the above constrains will allow real-time EEG-based emotion recognition
and realization of BCMI applications.
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6.8 Conclusion

In this chapter, we attempted to give an overview of the current knowledge in the
topic of music and emotion from an interdisciplinary perspective. At the present
state, the area of music and emotion has grown and became an important field of
research with implications for a number of disciplines. Despite the progress
achieved, several issues still remain open and need to be further explored. In what
follows, a few of the main issues in the area, which deserves particular attention for
future research, will be briefly described.

The underlying mechanisms through which music evokes emotions is one of the
main issues that remain unresolved. Better understanding of the mechanisms
underlying music emotion induction has important implications on both theoretical
research in the field as well as on applications including multimedia, health care,
and music therapy. Recently, a novel theoretical model of music-induced emotions
was proposed (see Sect. 6.2). Further theoretical and experimental studies are
needed to test the mechanisms featured in the model. First, the characteristics of
each mechanism should be specified to allow distinguishing among different
mechanisms. Second, well-controlled experiments should be designed to test the
proposed mechanisms. The proposed framework allows the induction of mixed
emotions when two or more mechanisms are activated simultaneously. Thus,
stimuli are needed able not only to activate a certain mechanism but at the same
time to isolate the effect of others. To this end, sophisticated acoustical techniques
can be used which allows the manipulation of certain acoustic features, while living
other intact. A different approach could be to design experiments in such a way to
prevent the information processing required for a particular mechanism to be
activated. For that purpose, new techniques such as transcranial magnetic stimu-
lation (TMS) could be employed to disrupt brain activity at certain brain areas. This
would prevent the activation of these brain areas by music stimuli.

Another issue is the temporal aspect of musical emotion. Music evolves in time,
and therefore, emotional responses change in the course of time. There is need to
explore the temporal dynamics of music-induced emotions in long pieces of music
(a symphony, for example) during the course of which one may experience different
emotions. To capture the temporal dynamics of musical emotions, continuous
measurements are needed. Most of the studies on music-induced emotions use self-
report measures. Self-reports, however, provide ratings for short music excerpts
after a stimulus has been heard. On the other hand, physiological measures are by
their nature temporal and therefore more efficient in capturing the temporal
dynamics of music and of music-induced emotions. The use of continuous mea-
sures is more demanding concerning both the quantity and the complexity of the
recorded data. Therefore, extra effort and more complicated techniques of pro-
cessing and analysis of long time series should be used.

In addition to the above issues, the efficient coupling of psychological predic-
tions with physiological and neuroimaging techniques is important. Most of the
neuroimaging and physiological studies of music and emotion look for simple,
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direct relationships between music and physiological or brain responses without
considering the underlying physiological processes. Deeper understanding of the
relationship between physiological data and emotions will enhance the interpreta-
tion of physiological and brain imaging data and can constitute the psychophysi-
ological foundation of musical emotion.

6.9 Questions

1. What is the difference between discrete and dimensional models of emotions?
2. How does music evoke emotions?
3. Explain the seven physiological mechanisms of the BRECVEM model

involved in the induction of musical emotions
4. What is the role of mode and tempo on emotion induction?
5. What is the effect of pitch, timbre, and loudness on emotion induction?
6. How do we measure musical emotions?
7. What is the difference between behavioral and physiological measures of

musical emotions?
8. What is the effect of music on heart and respiration rate?
9. Discuss the effect of music on brain responses

10. Explain an emotion recognition system based on brain responses
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7A Tutorial on EEG Signal-processing
Techniques for Mental-state
Recognition in Brain–Computer
Interfaces

Fabien Lotte

Abstract

This chapter presents an introductory overview and a tutorial of signal-
processing techniques that can be used to recognize mental states from
electroencephalographic (EEG) signals in brain–computer interfaces. More
particularly, this chapter presents how to extract relevant and robust spectral,
spatial, and temporal information from noisy EEG signals (e.g., band-power
features, spatial filters such as common spatial patterns or xDAWN, etc.), as well
as a few classification algorithms (e.g., linear discriminant analysis) used to
classify this information into a class of mental state. It also briefly touches on
alternative, but currently less used approaches. The overall objective of this
chapter is to provide the reader with practical knowledge about how to analyze
EEG signals as well as to stress the key points to understand when performing
such an analysis.

7.1 Introduction

One of the critical steps in the design of brain–computer interface (BCI) applications
based on electroencephalography (EEG) is to process and analyze such EEG signals
in real time, in order to identify the mental state of the user. Musical EEG-based BCI
applications are no exception. For instance, in (Miranda et al. 2011), the application
had to recognize the visual target the user was attending to from his/her EEG signals,
in order to execute the corresponding musical command. Unfortunately, identifying
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the user’s mental state from EEG signals is no easy task, such signals being noisy,
non-stationary, complex, and of high dimensionality (Lotte et al. 2007). Therefore,
mental-state recognition from EEG signals requires specific signal-processing and
machine-learning tools. This chapter aims at providing the reader with a basic
knowledge about how to do EEG signal processing and the kind of algorithms to use
to do so. This knowledge is—hopefully—presented in an accessible and intuitive
way, by focusing more on the concepts and ideas than on the technical details.

This chapter is organized as follows: Sect. 7.2 presents the general architecture
of an EEG signal-processing system for BCI. Then, Sect. 7.3 describes the specific
signal-processing tools that can be used to design BCI based on oscillatory EEG
activity while Sect. 7.4 describes those that can used for BCI based on event-related
potentials (ERP), i.e., brain responses to stimulus and events. Section 7.5 presents
some alternative tools, still not as popular as the one mentioned so far but prom-
ising, both for BCI based on oscillatory activity and those based on ERP. Finally,
Sect. 7.6 proposes a discussion about all the tools covered and their perspectives
while Sect. 7.7 concludes the paper.

7.2 General EEG Signal-processing Principle

In BCI design, EEG signal processing aims at translating raw EEG signals into the
class of these signals, i.e., into the estimated mental state of the user. This trans-
lation is usually achieved using a pattern recognition approach, whose two main
steps are the following:

• Feature Extraction: The first signal-processing step is known as “feature
extraction” and aims at describing the EEG signals by (ideally) a few relevant
values called “features” (Bashashati et al. 2007). Such features should capture
the information embedded in EEG signals that is relevant to describe the mental
states to identify, while rejecting the noise and other non-relevant information.
All features extracted are usually arranged into a vector, known as a feature
vector.

• Classification: The second step, denoted as “classification,” assigns a class to a
set of features (the feature vector) extracted from the signals (Lotte et al. 2007).
This class corresponds to the kind of mental state identified. This step can also
be denoted as “feature translation” (Mason and Birch 2003). Classification
algorithms are known as “classifiers.”

As an example, let us consider a motor imagery (MI)-based BCI, i.e., a BCI that
can recognize imagined movements such left hand or right hand imagined move-
ments (see Fig. 7.1). In this case, the two mental states to identify are imagined left
hand movement on one side and imagined right hand movement on the other side.
To identify them from EEG signals, typical features are band-power features, i.e.,
the power of the EEG signal in a specific frequency band. For MI, band-power
features are usually extracted in the μ (about 8–12 Hz) and β (about 16–24 Hz)
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frequency bands, for electrode localized over the motor cortex areas of the brain
(around locations C3 and C4 for right and left hand movements, respectively)
(Pfurtscheller and Neuper 2001). Such features are then typically classified using a
linear discriminant analysis (LDA) classifier.

It should be mentioned that EEG signal processing is often built using machine
learning. This means the classifier and/or the features are automatically tuned,
generally for each user, according to examples of EEG signals from this user. These
examples of EEG signals are called a training set and are labeled with their class of
belonging (i.e., the corresponding mental state). Based on these training examples,
the classifier will be tuned in order to recognize as appropriately as possible the
class of the training EEG signals. Features can also be tuned in such a way, e.g., by
automatically selecting the most relevant channels or frequency bands to recognized
the different mental states. Designing BCI based on machine learning (most current
BCI are based on machine learning) therefore consists of two phases:

• Calibration (a.k.a., training) phase: This consists in (1) acquiring training EEG
signals (i.e., training examples) and (2) optimizing the EEG signal-processing
pipeline by tuning the feature parameters and/or training the classifier.

• Use (a.k.a., test) phase: This consists in using the model (features and classifier)
obtained during the calibration phase in order to recognize the mental state of the
user from previously unseen EEG signals, in order to operate the BCI.

Feature extraction and classification are discussed in more details hereafter.

Fig. 7.1 A classical EEG signal-processing pipeline for BCI, here in the context of a motor
imagery-based BCI, i.e., a BCI that can recognized imagined movements from EEG signals
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7.2.1 Classification

As mentioned above, the classification step in a BCI aims at translating the features
into commands (McFarland et al. 2006; Mason and Birch 2003). To do so, one can
use either regression algorithms (McFarland and Wolpaw 2005; Duda et al. 2001)
or classification algorithms (Penny et al. 2000; Lotte et al. 2007), the classification
algorithms being by far the most used in the BCI community (Bashashati et al.
2007; Lotte et al. 2007). As such, in this chapter, we focus only on classification
algorithms. Classifiers are able to learn how to identify the class of a feature vector,
thanks to training sets, i.e., labeled feature vectors extracted from the training EEG
examples.

Typically, in order to learn which kind of feature vector correspond to which
class (or mental state), classifiers try either to model which area of the feature space
is covered by the training feature vectors from each class—in this case, the classifier
is a generative classifier—or they try to model the boundary between the areas
covered by the training feature vectors of each class—in which case the classifier is
a discriminant classifier. For BCI, the most used classifiers so far are discriminant
classifiers, and notably linear discriminant analysis (LDA) classifiers.

The aim of LDA (also known as Fisher’s LDA) was to use hyperplanes to
separate the training feature vectors representing the different classes (Duda et al.
2001; Fukunaga 1990). The location and orientation of this hyperplane are deter-
mined from training data. Then, for a two-class problem, the class of an unseen (a.k.
a., test) feature vector depends on which side of the hyperplane the feature vector is
(see Fig. 7.2). LDA has very low computational requirements which makes it
suitable for online BCI system. Moreover, this classifier is simple which makes it
naturally good at generalizing to unseen data, hence generally providing good
results in practice (Lotte et al. 2007). LDA is probably the most used classifier for
BCI design.

Another very popular classifier for BCI is the support vector machine (SVM)
(Bennett and Campbell 2000). An SVM also uses a discriminant hyperplane to
identify classes (Burges 1998). However, with SVM, the selected hyperplane is the

Fig. 7.2 Discriminating two types of motor imagery with a linear hyperplane using a linear
discriminant analysis (LDA) classifier
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one that maximizes the margins, i.e., the distance from the nearest training points,
which has been found to increase the generalization capabilites (Burges 1998;
Bennett and Campbell 2000).

Generally, regarding classification algorithms, it seems that very good recog-
nition performances can be obtained using appropriate off-the-shelf classifiers such
as LDA or SVM (Lotte et al. 2007). What seems to be really important is the design
and selection of appropriate features to describe EEG signals. With this purpose,
specific EEG signal-processing tools have been proposed to design BCI. In the rest
of this chapter, we will therefore focus on EEG feature extraction tools for BCI. For
readers interested to learn more about classification algorithms, we refer them to
(Lotte et al. 2007), a review paper on this topic.

7.2.2 Feature Extraction

As mentioned before, feature extraction aims at representing raw EEG signals by an
ideally small number of relevant values, which describe the task-relevant infor-
mation contained in the signals. However, classifiers are able to learn from data
which class corresponds to which input features. As such, why not using directly
the EEG signals as input to the classifier? This is due to the so-called curse-of-
dimensionality, which states that the amount of data needed to properly describe the
different classes increases exponentially with the dimensionality of the feature
vectors (Jain et al. 2000; Friedman 1997). It has been recommended to use from 5
to 10 times as many training examples per class as the input feature vector
dimensionality1 (Raudys and Jain 1991). What would it mean to use directly the
EEG signals as input to the classifier? Let us consider a common setup with 32 EEG
sensors sampled at 250 Hz, with one trial of EEG signal being 1 s long. This would
mean a dimensionality of 32 * 250 = 8,000, which would require at least 40,000
training examples. Obviously, we cannot ask the BCI user to perform each mental
task 40,000 times to calibrate the BCI before he/she could use it. A much more
compact representation is therefore needed, hence the necessity to perform some
form of feature extraction.

With BCI, there are three main sources of information that can be used to extract
features from EEG signals:

• Spatial information: Such features would describe where (spatially) the rele-
vant signal comes from. In practice, this would mean selecting specific EEG
channels, or focusing more on specific channels than on some other. This
amounts to focusing on the signal originating from specific areas of the brain.

• Spectral (frequential) information: Such features would describe how the
power in some relevant frequency bands varies. In practice, this means that the
features will use the power in some specific frequency bands.

1 Note that this was estimated before SVM were invented and that SVM are generally less
sensitive—although not completely immune—to this curse-of-dimensionality.
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• Temporal information: Such features would describe how the relevant signal
varies with time. In practice, this means using the EEG signals values at different
time points or in different time windows.

Note that these three sources of information are not the only ones, and alter-
natives can be used (see Sect. 7.5). However, they are by far the most used one,
and, at least so far, the most efficient ones in terms of classification performances. It
should be mentioned that so far, nobody managed to discover nor to design a set of
features that would work for all types of BCI. As a consequence, different kinds of
BCI currently use different sources of information. Notably, BCI based on oscil-
latory activity (e.g., BCI based on motor imagery) mostly need and use the spectral
and spatial information whereas BCI based on ERP (e.g., BCI based on the P300)
mostly need and use the temporal and spatial information. The next sections detail
the corresponding tools for these two categories of BCI.

7.3 EEG Signal-processing Tools for BCI Based on Oscillatory
Activity

BCI based on oscillatory activity are BCI that use mental states which lead to
changes in the oscillatory components of EEG signals, i.e., that lead to change in
the power of EEG signals in some frequency bands. Increase of EEG signal power
in a given frequency band is called an event-related synchronization (ERS),
whereas a decrease of EEG signal power is called an event-related desynchroni-
zation (ERD) (Pfurtscheller and da Silva 1999). BCI based on oscillatory activity
notably includes motor imagery-based BCI (Pfurtscheller and Neuper 2001),
steady-state visual evoked potentials (SSVEP)-based BCI (Vialatte et al. 2010) as
well as BCI based on various cognitive imagery tasks such as mental calculation,
mental geometric figure rotation, mental word generation, etc. (Friedrich et al.
2012; Millán et al. 2002). As an example, imagination of a left hand movement
leads to a contralateral ERD in the motor cortex (i.e., in the right motor cortex for
left hand movement) in the μ and β bands during movement imagination, and to an
ERS in the β band (a.k.a., beta rebound) just after the movement imagination
ending (Pfurtscheller and da Silva 1999). This section first describes a basic design
for oscillatory activity-based BCI. Then, due to the limitations exhibited by this
design, it exposes more advanced designs based on multiple EEG channels. Finally,
it presents a key tool to design such BCIs: the common spatial pattern (CSP)
algorithm, as well as some of its variants.

7.3.1 Basic Design for an Oscillatory Activity-based BCI

Oscillatory activity-based BCI are based on change in power in some frequency
bands, in some specific brain areas. As such, they naturally need to exploit both the
spatial and spectral information. As an example, a basic design for a motor-imagery
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BCI would exploit the spatial information by extracting features only from EEG
channels localized over the motor areas of the brain, typically channels C3 for right
hand movements, Cz for foot movements and C4 for left hand movements. It would
exploit the spectral information by focusing on frequency bands μ (8–12 Hz) and β
(16–24 Hz). More precisely, for a BCI that can recognize left hand MI versus right
hand MI, the basic features extracted would be the average band power in 8–12 and
16–24 Hz from both channels C3 and C4. Therefore, the EEG signals would be
described by only four features.

There are many ways to compute band-power features from EEG signals
(Herman et al. 2008; Brodu et al. 2011). However, a simple, popular, and efficient
one is to first band-pass filter the EEG signal from a given channel into the fre-
quency band of interest, then to square the resulting signal to compute the signal
power, and finally to average it over time (e.g., over a time window of 1 s). This is
illustrated in Fig. 7.3.

Unfortunately, this basic design is far from being optimal. Indeed, it uses only
two fixed channels. As such, relevant information, measured by other channels
might be missing, and C3 and C4 may not be the best channels for the subject at
hand. Similarly, using the fixed frequency bands 8–12 Hz and 16–24 Hz may not be
the optimal frequency bands for the current subject. In general, much better per-
formances are obtained when using subject-specific designs, with the best channels
and frequency bands optimized for this subject. Using more than two channels is
also known to lead to improved performances, since it enables to collect the rele-
vant information spread over the various EEG sensors.

7.3.2 Toward Advanced BCI Using Multiple EEG Channels

Both the need to use subject-specific channels and the need to use more than two
channels lead to the necessity to design BCI based on multiple channels. This is
confirmed by various studies which suggested that, for motor imagery, eight
channels is a minimum to obtain reasonable performances (Sannelli et al. 2010;
Arvaneh et al. 2011), with optimal performances achieved with a much larger

Fig. 7.3 Signal-processing steps to extract band-power features from raw EEG signals. The EEG
signal displayed here was recorded during right hand motor imagery (the instruction to perform
the imagination was provided at t = 0 s on the plots). The contralateral ERD during imagination is
here clearly visible. Indeed, the signal power in channel C3 (left motor cortex) in 8–12 Hz clearly
decreases during this imagination of a right hand movement
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number, e.g., 48 channels in (Sannelli et al. 2010). However, simply using more
channels will not solve the problem. Indeed, using more channels means extracting
more features, thus increasing the dimensionality of the data and suffering more
from the curse-of-dimensionality. As such, just adding channels may even decrease
performances if too little training data is available. In order to efficiently exploit
multiple EEG channels, three main approaches are available, all of which contribute
to reducing the dimensionality:

• Feature selection algorithm: These are methods to select automatically a subset
of relevant features, among all the features extracted.

• Channel selection algorithms: These are similar methods that select automati-
cally a subset of relevant channels, among all channels available.

• Spatial Filtering algorithms: These are methods that combine several channels
into a single one, generally using weighted linear combinations, from which
features will be extracted.

They are described below.

7.3.2.1 Feature Selection
Feature selection are classical algorithms widely used in machine learning (Guyon
and Elisseeff 2003; Jain and Zongker 1997) and as such also very popular in BCI
design (Garrett et al. 2003). There are too main families of feature selection
algorithms:

• Univariate algorithms: They evaluate the discriminative (or descriptive) power
of each feature individually. Then, they select the N best individual features
(N needs to be defined by the BCI designer). The usefulness of each feature is
typically assessed using measures such as Student t-statistics, which measures
the feature value difference between two classes, correlation-based measures
such as R2, mutual information, which measures the dependence between the
feature value and the class label, etc. (Guyon and Elisseeff 2003). Univariate
methods are usually very fast and computationally efficient but they are also
suboptimal. Indeed, since they only consider the individual feature usefulness,
they ignore possible redundancies or complementarities between features. As
such, the best subset of N features is usually not the N best individual features.
As an example, the N best individual features might be highly redundant and
measure almost the same information. As such using them together would add
very little discriminant power. On the other hand, adding a feature that is
individually not very good but which measures a different information from that
of the best individual ones is likely to improve the discriminative power much
more.

• Multivariate algorithms: They evaluate subsets of features together and keep the
best subset with N features. These algorithms typically use measures of global
performance for the subsets of features, such as measures of classification
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performances on the training set (typically using cross-validation (Browne
2000)) or multivariate mutual information measures, see, e.g., (Hall 2000; Pudil
et al. 1994; Peng et al. 2005). This global measure of performance enables to
actually consider the impact of redundancies or complementarities between
features. Some measures also remove the need to manually select the value of
N (the number of features to keep), the best value of N being the number
of features in the best subset identified. However, evaluating the usefulness of
subsets of features leads to very high computational requirements. Indeed, there
are many more possible subsets of any size than individual features. As such
there are many more evaluations to perform. In fact, the number of possible
subsets to evaluate is very often far too high to actually perform all the evalu-
ations in practice. Consequently, multivariate methods usually rely on heuristics
or greedy solutions in order to reduce the number of subsets to evaluate. They
are therefore also suboptimal but usually give much better performances than
univariate methods in practice. On the other hand, if the initial number of
features is very high, multivariate methods may be too slow to use in practice.

7.3.2.2 Channel Selection
Rather than selecting features, one can also select channels and only use features
extracted from the selected channels. While both channel and feature selection
reduce the dimensionality, selecting channels instead of features has some addi-
tional advantages. In particular, using less channels means a faster setup time for the
EEG cap and also a lighter and more comfortable setup for the BCI user. It should
be noted, however, that with the development of dry EEG channels, selecting
channels may become less crucial. Indeed the setup time will not depend on the
number of channel used, and the BCI user will not have more gel in his/her hair if
more channels are used. With dry electrodes, using less channels will still be lighter
and more comfortable for the user though.

Algorithms for EEG channel selection are usually based or inspired from generic
feature selection algorithm. Several of them are actually analogous algorithms that
assess individual channel usefulness or subsets of channels discriminative power
instead of individual features or subset of features. As such, they also use similar
performance measures and have similar properties. Some other channel selection
algorithms are based on spatial filter optimization (see below). Readers interested to
know more about EEG channel selection may refer to the following papers and
associated references (Schröder et al. 2005; Arvaneh et al. 2011; Lal et al. 2004;
Lan et al. 2007), among many other.

7.3.2.3 Spatial Filtering
Spatial filtering consists in using a small number of new channels that are defined as
a linear combination of the original ones:
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~x ¼
X
i

wixi ¼ wX ð7:1Þ

with ~x the spatially filtered signal, xi the EEG signal from channel i, wi the weight
given to that channel in the spatial filter, and X a matrix whose ith row is xi, i.e., X is
the matrix of EEG signals from all channels.

It should be noted that spatial filtering is useful not only because it reduces the
dimension from many EEG channels to a few spatially filtered signals (we typically
use much less spatial filters than original channels), but also because it has a
neurophysiological meaning. Indeed, with EEG, the signals measured on the sur-
face of the scalp are a blurred image of the signals originating from within the brain.
In other words, due to the smearing effect of the skull and brain (a.k.a., volume
conduction effect), the underlying brain signal is spread over several EEG channels.
Therefore, spatial filtering can help recovering this original signal by gathering the
relevant information that is spread over different channels.

There are different ways to define spatial filters. In particular, the weights wi can
be fixed in advance, generally according to neurophysiological knowledge, or they
can be data driven, that is, optimized on training data. Among the fixed spatial
filters, we can notably mention the bipolar and Laplacian which are local spatial
filters that try to locally reduce the smearing effect and some of the background
noise (McFarland et al. 1997). A bipolar filter is defined as the difference between
two neighboring channels, while a Laplacian filter is defined as 4 times the value of
a central channel minus the values of the four channels around. For instance, a
bipolar filter over channel C3 would be defined as C3bipolar ¼ FC3� CP3, while a
Laplacian filter over C3 would be defined as C3Laplacian ¼ 4C3� FC3� C5�
C1� CP3, see also Fig. 7.4. Extracting features from bipolar or Laplacian spatial
filters rather than from the single corresponding electrodes has been shown to
significantly increase classification performances (McFarland et al. 1997). An
inverse solution is another kind of fixed spatial filter (Michel et al. 2004; Baillet
et al. 2001). Inverse solutions are algorithms that enable to estimate the signals
originating from sources within the brain based on the measurements taken from the
scalp. In other words, inverse solutions enable us to look into the activity of specific
brain regions. A word of caution though: Inverse solutions do not provide more
information than what is already available in scalp EEG signals. As such, using
inverse solutions will NOT make a noninvasive BCI as accurate and efficient as an
invasive one. However, by focusing on some specific brain areas, inverse solutions
can contribute to reducing background noise, the smearing effect and irrelevant
information originating from other areas. As such, it has been shown than extracting
features from the signals spatially filtered using inverse solutions (i.e., from the
sources within the brain) leads to higher classification performances than extracting
features directly from scalp EEG signals (Besserve et al. 2011; Noirhomme et al.
2008). In general, using inverse solutions has been shown to lead to high classi-
fication performances (Congedo et al. 2006; Lotte et al. 2009b; Qin et al. 2004;
Kamousi et al. 2005; Grosse-Wentrup et al. 2005). It should be noted that since the
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number of source signals obtained with inverse solutions is often larger than the
initial number of channels, it is necessary to use feature selection or dimensionality
reduction algorithms.

The second category of spatial filters, i.e., data-driven spatial filters, is optimized
for each subject according to training data. As any data-driven algorithm, the spatial
filter weights wi can be estimated in an unsupervised way, that is without the
knowledge of which training data belong to which class, or in a supervised way,
with each training data being labeled with its class. Among the unsupervised spatial
filters, we can mention principal component analysis (PCA), which finds the spatial
filters that explain most of the variance of the data, or independent component
analysis (ICA), which find spatial filters whose resulting signals are independent
from each other (Kachenoura et al. 2008). The later has been shown rather useful to
design spatial filters able to remove or attenuate the effect of artifacts (EOG, EMG,
etc. (Fatourechi et al. 2007)) on EEG signals (Tangermann et al. 2009; Xu et al.
2004; Kachenoura et al. 2008; Brunner et al. 2007). Alternatively, spatial filters can
be optimized in a supervised way, i.e., the weights will be defined in order to
optimize some measure of classification performance. For BCI based on oscillatory
EEG activity, such a spatial filter has been designed: the common spatial patterns
(CSP) algorithm (Ramoser et al. 2000; Blankertz et al. 2008b). This algorithm has
greatly contributed to the increase of performances of this kind of BCI and thus has
become a standard tool in the repertoire of oscillatory activity-based BCI designers.
It is described in more details in the following section, together with some of its
variants.

7.3.3 Common Spatial Patterns and Variants

Informally, the CSP algorithm finds spatial filters w such that the variance of the
filtered signal is maximal for one class and minimal for the other class. Since the

Fig. 7.4 Left channels used in bipolar spatial filtering over channels C3 and C4. Right channels
used in Laplacian spatial filtering over channels C3 and C4
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variance of a signal band-pass filtered in band b is actually the band power of this
signal in band b, this means that CSP finds spatial filters that lead to optimally
discriminant band-power features since their values would be maximally different
between classes. As such, CSP is particularly useful for BCI based on oscillatory
activity since their most useful features are band-power features. As an example, for
BCI based on motor imagery, EEG signals are typically filtered in the 8–30 Hz
band before being spatially filtered with CSP (Ramoser et al. 2000). Indeed, this
band contains both the μ and β rhythms.

Formally, CSP uses the spatial filters w which extremize the following function:

JCSPðwÞ ¼ wX1XT
1w

T

wX2XT
2w

T
¼ wC1wT

wC2wT
ð7:2Þ

where T denotes transpose, Xi is the training band-pass filtered signal matrix for
class i (with the samples as columns and the channels as rows), and Ci the spatial
covariance matrix from class i. In practice, the covariance matrix Ci is defined as the
average covariance matrix of each trial from class i (Blankertz et al. 2008b). In this
equation, wXi is the spatially filtered EEG signal from class i, and wXiXT

i w
T is thus

the variance of the spatially filtered signal, i.e., the band power of the spatially
filtered signal. Therefore, extremizing JCSPðwÞ, i.e., maximizing and minimizing it,
indeed leads to spatially filtered signals whose band power is maximally different
between classes. JCSPðwÞ happens to be a Rayleigh quotient. Therefore, extremizing
it can be solved by generalized eigenvalue decomposition (GEVD). The spatial
filters w that maximize or minimize JCSPðwÞ are thus the eigenvectors corre-
sponding to the largest and lowest eigenvalues, respectively, of the GEVD of
matrices C1 and C2. Typically, six filters (i.e., three pairs), corresponding to the
three largest and three lowest eigenvalues are used. Once these filters obtained, a
CSP feature f is defined as follows:

f ¼ logðwXXTwTÞ ¼ logðwCwTÞ ¼ logðvarðwXÞÞ ð7:3Þ

i.e., the features used are simply the band power of the spatially filtered signals.
CSP requires more channels than fixed spatial filters such as Bipolar or Laplacian,
however in practice, it usually leads to significantly higher classification perfor-
mances (Ramoser et al. 2000). The use of CSP is illustrated in Fig. 7.5. In this
figure, the signals spatially filtered with CSP clearly show difference in variance
(i.e., in band power) between the two classes, hence ensuring high classification
performances.

The CSP algorithm has numerous advantages: First, it leads to high classification
performances. CSP is also versatile, since it works for any ERD/ERS BCI. Finally,
it is computationally efficient and simple to implement. Altogether this makes CSP
one of the most popular and efficient approach for BCI based on oscillatory activity
(Blankertz et al. 2008b).
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Nevertheless, despite all these advantages, CSP is not exempt from limitations
and is still not the ultimate signal-processing tool for EEG-based BCI. In particular,
CSP has been shown to be non-robust to noise, to non-stationarities and prone to
overfitting (i.e., it may not generalize well to new data) when little training data is
available (Grosse-Wentrup and Buss 2008; Grosse-Wentrup et al. 2009; Reuderink
and Poel 2008). Finally, despite its versatility, CSP only identifies the relevant
spatial information but not the spectral one. Fortunately, there are ways to make
CSP robust and stable with limited training data and with noisy training data. An
idea is to integrate prior knowledge into the CSP optimization algorithm. Such
knowledge could represent any information we have about what should be a good
spatial filter for instance. This can be neurophysiological prior, data (EEG signals)
or meta-data (e.g., good channels) from other subjects, etc. This knowledge is used
to guide and constraint the CSP optimization algorithm toward good solutions even
with noise, limited data, and non-stationarities (Lotte and Guan 2011). Formally,
this knowledge is represented in a regularization framework that penalizes unlikely
solutions (i.e., spatial filters) that do not satisfy this knowledge therefore enforcing
it. Similarly, prior knowledge can be used to stabilize statistical estimates (here,
covariance matrices) used to optimize the CSP algorithm. Indeed, estimating
covariance matrices from few training data usually leads to poor estimates (Ledoit
and Wolf 2004).

Formally, a regularized CSP (RCSP) can be obtained by maximizing both
Eqs. 7.4 and 7.5:

JRCSP1ðwÞ ¼ w~C1wT

w~C2wT þ kPðwÞ ð7:4Þ

Fig. 7.5 EEG signals spatially filtered using the CSP algorithm. The first two spatial filters (top
filters) are those maximizing the variance of signals from class “left hand motor imagery” while
minimizing that of class “right hand motor imagery.” They correspond to the largest eigenvalues of
the GEVD. The last two filters (bottom filters) are the opposite, they maximize the variance of
class “right hand motor imagery” while minimizing that of class “left hand motor imagery” (they
correspond to the lowest eigenvalues of the GEVD). This can be clearly seen during the periods of
right or left hand motor imagery, in light and dark gray, respectively
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JRCSP2ðwÞ ¼ w~C2wT

w~C1wT þ kPðwÞ ð7:5Þ

with

~Ci ¼ ð1� cÞCi þ cGi ð7:6Þ

In these equations, P(w) is the penalty term that encodes the prior knowledge.
This a positive function of the spatial filter w, whose value will increase if w does
not satisfy the knowledge encoded. Since the filters are obtained by maximizing
JRCSPi, this means that the numerator (which is positive) must be maximized and the
denominator (which is also positive) must be minimized. Since P(w) is positive and
part of the denominator, this means that PðwÞ will be minimized as well, hence
enforcing that the spatial filters w satisfy the prior knowledge. Matrix Gi is another
way of using prior knowledge, in order to stabilize the estimates of the covariance
matrices Ci. If we have any idea about how these covariance matrices should be,
this can be encoded in Gi in order to define a new covariance matrix ~Ci which is a
mix of the matrix Ci estimated on the data and of the prior knowledge Gi. We will
present below what kind of knowledge can be encoded in P(w) and Gi.

For the penalty term P(w), a kind of knowledge that can be used is spatial
knowledge. For instance, from a neurophysiological point of view, we know that
neighboring neurons tend to have similar functions, which supports the idea that
neighboring electrodes should measure similar brain signals (if the electrodes are
close enough to each other), notably because of the smearing effect. Thus, neigh-
boring electrodes should have similar contributions in the spatial filters. In other
words, spatial filters should be spatially smooth. This can be enforced by using the
following penalty term:

PðwÞ ¼
X
i;j

Proxði; jÞðwi � wjÞ2 ð7:7Þ

where Proxði; jÞ measures the proximity of electrodes i and j, and ðwi � wjÞ2 is the
weight difference between electrodes i and j, in the spatial filter. Thus, if two
electrodes are close to each other and have very different weights, the penalty term
P(w) will be high, which would prevent such solutions to be selected during the
optimization of the CSP (Lotte and Guan 2010b). Another knowledge that can be
used is that for a given mental task, not all the brain regions are involved and useful.
As such, some electrodes are unlikely to be useful to classify some specific mental
tasks. This can be encoded in P(w) as well:

PðwÞ ¼ wDwT with Dði; jÞ ¼ channel i ‘‘uselessness’’ if i ¼ j
0 otherwise

�
ð7:8Þ

146 F. Lotte



Basically, the value of D(i,i) is the penalty for the ith channel. The higher this
penalty, the less likely this channel will have a high contribution in the CSP filters.
The value of this penalty can be defined according to neurophysiological prior
knowledge for instance, large penalties being given to channels unlikely to be
useful and small or no penalty being given to channels that are likely to genuinely
contribute to the filter. However, it may be difficult to precisely define the extent of
the penalty from the literature. Another alternative is the use data previously
recorded from other subjects. Indeed, the optimized CSP filters already obtained
from previous subject give information about which channels have large contri-
butions on average. The inverse of the average contribution of each channel can be
used as the penalty, hence penalizing channels with small average contribution
(Lotte and Guan 2011). Penalty terms are therefore also a nice way to perform
subject-to-subject transfer and re-use information from other subjects. These two
penalties are examples that have proven useful in practice. This usefulness is
notably illustrated in Fig. 7.6, in which spatial filters obtained with the basic CSP
are rather noisy, with strong contributions from channels not expected from a
neurophysiological point of view. On the contrary, the spatial filters obtained using
the two RCSP penalties described previously are much cleaner, spatially smoother
and with strong contributions localized in neurophysiologically relevant areas. This
in turns led to higher classification performances, with CSP obtaining 73.1 %
classification accuracy versus 78.7 % and 77.6 % for the regularized versions (Lotte
and Guan 2011). It should be mentioned, however, that strong contributions from
non-neurophysiologically relevant brain areas in a CSP spatial filter may be present
to perform noise cancelation, and as such does not mean the spatial filter is bad per
se (Haufe et al. 2014). It should also be mentioned that other interesting penalty
terms have been proposed, in order to deal with known noise sources (Blankertz
et al. 2008a), non-stationarities (Samek et al. 2012) or to perform simultaneous
channel selection (Farquhar et al. 2006; Arvaneh et al. 2011).

Matrix Gi in Eq. 7.6 is another way to add prior knowledge. This matrix can
notably be defined as the average covariance matrix obtained from other subjects
who performed the same task. As such it enables to define a good and stable
estimate of the covariance matrices, even if few training EEG data are available for
the target subject. This has been shown to enable us to calibrate BCI system with
2–3 times less training data than with the basic CSP, while maintaining classifi-
cation performances (Lotte and Guan 2010a).

Regularizing CSP using a priori knowledge is thus a nice way to deal with some
limitations of CSP such as its sensitivity to overfitting and its non-robustness to
noise. However, these regularized algorithms cannot address the limitation that CSP
only optimizes the use of the spatial information, but not that of the spectral one. In
general, independently of the use of CSP, there are several ways to optimize the use
of the spectral information. Typically, this consists in identifying, in one way or
another, the relevant frequency bands for the current subject and mental tasks
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performed. For instance, this can be done manually (by trial and errors), or by
looking at the average EEG frequency spectrum in each class. In a more automatic
way, possible methods include extracting band-power features in multiple fre-
quency bands and then selecting the relevant ones using feature selection (Lotte
et al. 2010), by computing statistics on the spectrum to identify the relevant fre-
quencies (Zhong et al. 2008), or even by computing optimal band-pass filters for
classification (Devlaminck 2011). These ideas can be used within the CSP frame-
work in order to optimize the use of both the spatial and spectral information.
Several variants of CSP have been proposed in order to optimize spatial and
spectral filters at the same time (Lemm et al. 2005; Dornhege et al. 2006; Tomioka
et al. 2006; Thomas et al. 2009). A simple and computationally efficient method is
worth describing: The filter bank CSP (FBCSP) (Ang et al. 2012). This method,
illustrated in Fig. 7.7, consists in first filtering EEG signals in multiple frequency
bands using a filter bank. Then, for each frequency band, spatial filters are opti-
mized using the classical CSP algorithm. Finally, among the multiple spatial filters
obtained, the best resulting features are selected using feature selection algorithms
(typically mutual information-based feature selection). As such, this selects both the

Fig. 7.6 Spatial filters (i.e., weight attributed to each channel) obtained to classify left hand
versus right hand motor imagery. The electrodes, represented by black dots, are here seen from
above, with the subject nose on top. a basic CSP algorithm, b RCSP with a penalty term imposing
spatial smoothness, c RCSP with a penalty term penalizing unlikely channels according to EEG
data from other subjects
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best spectral and spatial filters since each feature corresponds to a single frequency
band and CSP spatial filter. This algorithm, although simple, has proven to be very
efficient in practice. It was indeed the algorithm used in the winning entries of all
EEG data sets from the last BCI competition2 (Ang et al. 2012).

7.3.4 Summary for Oscillatory Activity-based BCI

In summary, when designing BCI aiming at recognizing mental states that involve
oscillatory activity, it is important to consider both the spectral and the spatial
information. In order to exploit the spectral information, using band-power features
in relevant frequency bands is an efficient approach. Feature selection is also a nice
tool to find the relevant frequencies. Concerning the spatial information, using or
selecting relevant channels is useful. Spatial filtering is a very efficient solution for
EEG-based BCI in general, and the CSP algorithm is a must-try for BCI based on
oscillatory activity in particular. Moreover, there are several variants of CSP that are
available in order to make it robust to noise, non-stationarity, limited training data
sets, or to jointly optimize spectral and spatial filters. The next section will address
the EEG signal-processing tools for BCI based on evoked potentials, which are
different from the ones described so far, but share some general concepts.

Fig. 7.7 Principle of filter bank common spatial patterns (FBCSP): (1) band-pass filtering the
EEG signals in multiple frequency bands using a filter bank; (2) optimizing CSP spatial filter for
each band; (3) selecting the most relevant filters (both spatial and spectral) using feature selection
on the resulting features

2 BCI competitions are contests to evaluate the best signal processing and classification algorithms
on given brain signals data sets. See http://www.bbci.de/competition/ for more info.
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7.4 EEG Signal-processing Tools for BCI Based on Event-
related Potentials

An event-related potential (ERP) is a brain responses due to some specific stimulus
perceived by the BCI user. A typical ERP used for BCI design is the P300, which is
a positive deflection of the EEG signal occurring about 300 ms after the user
perceived a rare and relevant stimulus (Fazel-Rezai et al. 2012) (see also Fig. 7.8).

ERP are characterized by specific temporal variations with respect to the stim-
ulus onset. As such, contrary to BCI based on oscillatory activity, ERP-based BCI
exploit mostly a temporal information, but rarely a spectral one. However, as for
BCI based on oscillatory activity, ERP-based can also benefit a lot from using the
spatial information. Next section illustrates how the spatial and temporal infor-
mation is used in basic P300-based BCI designs.

7.4.1 Basic Signal-processing Tools for P300-based BCI

In P300-based BCI, the spatial information is typically exploited by focusing
mostly on electrodes located over the parietal lobe (i.e., by extracting features only
for these electrodes), where the P300 is know to originate. As an example, Kru-
sienski et al. recommend to use a set of eight channels, in positions Fz, Cz, P3, Pz,
P4, PO7, Oz, PO8 (see Fig. 7.9) (Krusienski et al. 2006).

Once the relevant spatial information identified, here using, for instance, only the
electrodes mentioned above, features can be extracted for the signal of each of
them. For ERP in general, including the P300, the features generally exploit the
temporal information of the signals, i.e., how the amplitude of the EEG signal
varies with time. This is typically achieved by using the values of preprocessed
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EEG time points as features. More precisely, features for ERP are generally
extracted by (1) low-pass or band-pass filtering the signals (e.g., in 1–12 Hz for the
P300), ERP being generally slow waves, (2) downsampling the filtered signals, in
order to reduce the number of EEG time points and thus the dimensionality of the
problem, and (3) gathering the values of the remaining EEG time points from all
considered channels into a feature vector that will be used as input to a classifier.
This process is illustrated in Fig. 7.10 to extract features from channel Pz for a
P300-based BCI experiment.

Once the features extracted, they can be provided to a classifier which will be
trained to assigned them to the target class (presence of an ERP) or to the nontarget
class (absence of an ERP). This is often achieved using classical classifiers such as
LDA or SVM (Lotte et al. 2007). More recently, automatically regularized LDA

Fig. 7.9 Recommended electrodes for P300-based BCI design, according to (Krusienski et al.
2006)

Fig. 7.10 Typical process to extract features from a channel of EEG data for a P300-based BCI
design. On this picture, we can see the P300 becoming more visible with the different processing
steps
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have been increasingly used (Lotte and Guan 2009; Blankertz et al. 2010), as well
as Bayesian LDA (Hoffmann et al. 2008; Rivet et al. 2009). Both variants of LDA
are specifically designed to be more resistant to the curse-of-dimensionality through
the use of automatic regularization. As such, they have proven to be very effective
in practice, and superior to classical LDA. Indeed, the number of features is gen-
erally higher for ERP-based BCI than for those based on oscillatory activity.
Actually, many time points are usually needed to describe ERP but only a few
frequency bands (or only one) to describe oscillatory activity. Alternatively, feature
selection or channel selection techniques can also be used to deal with this high
dimensionality (Lotte et al. 2009a; Rakotomamonjy and Guigue 2008; Krusienski
et al. 2006). As for BCI based on oscillatory activity, spatial filters can also prove
very useful.

7.4.2 Spatial Filters for ERP-based BCI

As mentioned above, with ERP the number of features is usually quite large, with
many features per channel and many channels used. The tools described for
oscillatory activity-based BCI, i.e., feature selection, channel selection, or spatial
filtering can be used to deal with that. While feature and channel selection algo-
rithms are the same (these are generic algorithms), spatial filtering algorithms for
ERP are different. One may wonder why CSP could not be used for ERP classi-
fication. This is due to the fact that a crucial information for classifying ERP is the
EEG time course. However, CSP completely ignores this time course as it only
considers the average power. Therefore, CSP is not suitable for ERP classification.
Fortunately, other spatial filters have been specifically designed for this task.

One useful spatial filter available is the Fisher spatial filter (Hoffmann et al.
2006). This filter uses the Fisher criterion for optimal class separability. Informally,
this criterion aims at maximizing the between-class variance, i.e., the distance
between the different classes (we want the feature vectors from the different classes
to be as far apart from each other as possible, i.e., as different as possible) while
minimizing the within-class variance, i.e., the distance between the feature vectors
from the same class (we want the feature vectors from the same class to be as
similar as possible). Formally, this means maximizing the following objective
function:

JFisher ¼ trðSbÞ
trðSwÞ ð7:9Þ

with

Sb ¼
XNc

k¼1

pkð�xk � �xÞð�xk � �xÞT ð7:10Þ
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and

Sw ¼
XNc

k¼1

pk
X
i2Ck

ðxi � �xkÞðxi � �xkÞT ð7:11Þ

In these equations, Sb is the between-class variance, Sw the within-class variance,
Nc is the number of classes, xi is the ith feature vector, �v is the average of all vectors
v, Ck is the kth class, and pk the probability of class k.

This criterion is widely used in machine learning in general (Duda et al. 2001)
and can be used to find spatial filters such that the resulting features maximize this
criterion and thus the discriminability between the classes. This is what the Fisher
spatial filter does. It finds the spatial filters such that the spatially filtered EEG time
course (i.e., the feature vector) is maximally different between classes, according to
the Fisher criterion. This is achieved by replacing xi (the feature vector) by wXi (i.e.,
the spatially filtered signal) in Eqs. 7.10 and 7.11. This gives an objective function

of the form JðwÞ ¼ wŜbwT

wŜwwT , which, like the CSP algorithm, can be solved by GEVD.

This has been showed to be very efficient in practice (Hoffmann et al. 2006).
Another option, that has also proved very efficient in practice, is the xDAWN

spatial filter (Rivet et al. 2009). This spatial filter, also dedicated to ERP classifi-
cation, uses a different criterion from that of the Fisher spatial filter. xDAWN aims
at maximizing the signal-to-signal plus noise ratio. Informally, this means that
xDAWN aims at enhancing the ERP response, at making the ERP more visible in
the middle of the noise. Formally, xDAWN finds spatial filters that maximize the
following objective function:

JxDAWN ¼ wADDTATwT

wXXTwT
ð7:12Þ

where A is the time course of the ERP response to detect for each channel (esti-
mated from data, usually using a least square estimate) and D is a matrix containing
the positions of target stimuli that should evoke the ERP. In this equation, the
numerator represents the signal, i.e., the relevant information we want to enhance.
Indeed, wADDTATwT is the power of the time course of the ERP responses after
spatial filtering. On the contrary, in the denominator, wXXTwT is the variance of all
EEG signals after spatial filtering. Thus, it contains both the signal (the ERP) plus
the noise. Therefore, maximizing JxDAWN actually maximizes the signal, i.e., it
enhances the ERP response, and simultaneously minimizes the signal plus the
noise, i.e., it makes the noise as small as possible (Rivet et al. 2009). This has
indeed been shown to lead to much better ERP classification performance.

In practice, spatial filters have proven to be useful for ERP-based BCI (in par-
ticular for P300-based BCI), especially when little training data are available. From a
theoretical point of view, this was to be expected. Actually, contrary to CSP and band
power which extract nonlinear features (the power of the signal is a quadratic
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operation), features for ERP are all linear and linear operations are commutative.
Since BCI classifiers, e.g., LDA, are generally also linear, this means that the clas-
sifier could theoretically learn the spatial filter as well. Indeed, both linearly com-
bining the original features X for spatial filtering (F = WX), then linearly combining
the spatially filtered signals for classification (y ¼ wF ¼ wðWXÞ ¼ ŴX) or directly
linearly combining the original features for classification (y = WX) are overall a
simple linear operation. If enough training data are available, the classifier, e.g., LDA,
would not need spatial filtering. However, in practice, there is often little training data
available, and first performing a spatial filtering eases the subsequent task of the
classifier by reducing the dimensionality of the problem. Altogether, this means that
with enough training data, spatial filtering for ERPmay not be necessary, and leaving
the classifier learn everything would be more optimal. Otherwise, if few training data
are available, which is often the case in practice, then spatial filtering can benefit a lot
to ERP classification (see also Rivet et al. (2009) for more discussion of this topic).

7.4.3 Summary of Signal-processing Tools for ERP-based BCI

In summary, when designing ERP-based BCI, it is important to use the temporal
information. This is mostly achieved by using the amplitude of preprocessed EEG
time points as features, with low-pass or band-pass filtering and downsampling as
preprocessing. Feature selection algorithms can also prove useful. It is also
important to consider the spatial information. To do so, either using or selecting
relevant channels is useful. Using spatial filtering algorithms such as xDAWN or
Fisher spatial filters can also prove a very efficient solution, particularly when little
training data are available. In the following, we will briefly describe some alter-
native signal-processing tools that are less used but can also prove useful in
practice.

7.5 Alternative Methods

So far, this chapter has described the main tools used to recognize mental states in
EEG-based BCI. They are efficient and usually simple tools that have become part
of the standard toolbox of BCI designers. However, there are other signal-
processing tools, and in particular other kinds of features or information sources that
can be exploited to process EEG signals. Without being exhaustive, this section
briefly presents some of these tools for interested readers, together with corre-
sponding references. The alternative EEG feature representations that can be used
include the following four categories:

• Temporal representations: Temporal representations measure how the signal
varies with time. Contrary to basic features used for ERP, which simply consist
in the EEG time points over time, some measures have been developed in order
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to characterize and quantify those variations. The corresponding features include
Hjorth parameters (Obermeier et al. 2001) or time domain parameters (TDP)
(Vidaurre et al. 2009). Recent research results have even suggested that TDP
could be more efficient that the gold-standard band-power features (Vidaurre
et al. 2009; Ofner et al. 2011).

• Connectivity measures: They measure how much the signal from two channels
are correlated, synchronized or even if one signal may be the cause of the other
one. In other words, connectivity features measure how the signal of two
channels are related. This is particularly useful for BCI since it is known that, in
the brain, there are many long distance communications between separated areas
(Varela et al. 2001). As such, connectivity features are increasingly used for BCI
and seem to be a very valuable complement to traditional features. Connectivity
features include coherence, phase locking values or directed transfer function
(DFT) (Krusienski et al. 2012; Grosse-Wentrup 2009; Gouy-Pailler et al. 2007;
Caramia et al. 2014).

• Complexity measures: They naturally measure how complex the EEG signal
may be, i.e., they measure its regularity or how predictable it can be. This has
also been shown to provide information about the mental state of the user and
also proved to provide complementary information to classical features such as
band-power features. The features from this category used in BCI include
approximate entropy (Balli and Palaniappan 2010), predictive complexity
(Brodu et al. 2012) or waveform length (Lotte 2012).

• Chaos theory-inspired measures: Another category of features that has been
explored is chaos-related measures, which assess how chaotic the EEG signal
can be, or which chaotic properties it can have. This has also been shown to
extract relevant information. Examples of corresponding features include fractal
dimension (Boostani and Moradi 2004) or multi-fractal cumulants (Brodu et al.
2012).

While these various alternative features may not be as efficient as the standards
tools such as band-power features, they usually extract a complementary infor-
mation. Consequently, using band-power features together with some of these
alternative features has led to increase classification performances, higher that the
performances obtained with any of these features used alone (Dornhege et al. 2004;
Brodu et al. 2012; Lotte 2012).

It is also important to realize that while several spatial filters have been designed
for BCI, they are optimized for a specific type of feature. For instance, CSP is the
optimal spatial filter for band-power features and xDAWN or Fisher spatial filters
are optimal spatial filters for EEG time points features. However, using such spatial
filters with other features, e.g., with the alternative features described above, would
be clearly suboptimal. Designing and using spatial filters dedicated to these alter-
native features are therefore necessary. Results with waveform length features
indeed suggested that dedicated spatial filters for each feature significantly improve
classification performances (Lotte 2012).
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7.6 Discussion

Many EEG signal-processing tools are available in order to classify EEG signals
into the corresponding user’s mental state. However, EEG signal processing is a
very difficult task, due to the noise, non-stationarity, complexity of the signals as
well as due to the limited amount of training data available. As such, the existing
tools are still not perfect, and many research challenges are still open. In particular,
it is necessary to explore and design EEG features that are (1) more informative, in
order to reach better performances, (2) robust, to noise and artifacts, in order to use
the BCI outside laboratories, potentially with moving users, (3) invariant, to deal
with non-stationarity and session-to-session transfer and (4) universal, in order to
design subject-independent BCI, i.e., BCI that can work for any user, without the
need for individual calibration. As we have seen, some existing tools can partially
address, or at least, mitigate such problems. Nevertheless, there is so far no EEG
signal-processing tool that has simultaneously all these properties and that is per-
fectly robust, invariant, and universal. Therefore, there are still exciting research
works ahead.

7.7 Conclusion

In this chapter, we have provided a tutorial and overview of EEG signal-processing
tools for users’ mental-state recognition. We have presented the importance of the
feature extraction and classification components. As we have seen, there are
three main sources of information that can be used to design EEG-based BCI:
(1) the spectral information, which is mostly used with band-power features; (2) the
temporal information, represented as the amplitude of preprocessed EEG time
points, and (3) the spatial information, which can be exploited by using channel
selection and spatial filtering (e.g., CSP or xDAWN). For BCI based on oscillatory
activity, the spectral and spatial information are the most useful, while for ERP-
based BCI, the temporal and spatial information are the most relevant. We have also
briefly explored some alternative sources of information that can also complement
the 3 main sources mentioned above.

This chapter aimed at being didactic and easily accessible, in order to help
people not already familiar with EEG signal processing to start working in this area
or to start designing and using BCI in their own work or activities. Indeed, BCI
being such a multidisciplinary topic, it is usually difficult to understand enough of
the different scientific domains involved to appropriately use BCI systems. It should
also be mentioned that several software tools are now freely available to help users
design BCI systems, e.g., Biosig (Schlögl et al. 2007), BCI2000 (Mellinger and
Schalk 2007) or OpenViBE (Renard et al. 2010). For instance, with OpenViBE, it is
possible to design a new and complete BCI system without writing a single line of
code. With such tools and this tutorial, we hope to make BCI design and use more
accessible, e.g., to design brain-computer music interfaces (BCMI).
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7.8 Questions

Please find below 10 questions to reflect on this chapter and try to grasp the
essential messages:

1. Do we need feature extraction? In particular why not using the raw EEG
signals as input to the classifier?

2. What part of the EEG signal-processing pipeline can be trained/optimized
based on the training data?

3. Can we design a BCI system that would work for all users (a so-called subject-
independent BCI)? If so, are BCI designed specifically for one subject still
relevant?

4. Are univariate and multivariate feature selection methods both suboptimal in
general? If so, why using one type or the other?

5. By using an inverse solution with scalp EEG signals, can I always reach a
similar information about brain activity as I would get with invasive
recordings?

6. What would be a good reason to avoid using spatial filters for BCI?
7. Which spatial filter to you have to try when designing an oscillatory activity-

based BCI?
8. Let us assume that you want to design an EEG-based BCI, whatever its type:

Can CSP be always useful to design such a BCI?
9. Among typical features for oscillatory activity-based BCI (i.e., band-power

features) and ERP-based BCI (i.e., amplitude of the preprocessed EEG time
points), which ones are linear and which ones are not (if applicable)?

10. Let us assume you want to explore a new type of features to classify EEG data:
Could they benefit from spatial filtering and if so, which one?
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8An Introduction to EEG Source
Analysis with an Illustration of a Study
on Error-Related Potentials

Marco Congedo, Sandra Rousseau and Christian Jutten

Abstract

Over the last twenty years, blind source separation (BSS) has become a
fundamental signal processing tool in the study of human electroencephalography
(EEG), other biological data, as well as in many other signal processing domains
such as speech, images, geophysics, and wireless. This chapter introduces a short
review of brain volume conduction theory, demonstrating that BSS modeling is
grounded on current physiological knowledge. Then, it illustrates a general BSS
scheme requiring the estimation of second-order statistics (SOS) only. A simple
and efficient implementation based on the approximate joint diagonalization of
covariance matrices (AJDC) is described. The method operates in the same way in
the time or frequency domain (or both at the same time) and is capable of
modeling explicitly physiological and experimental source of variations with
remarkable flexibility. Finally, this chapter provides a specific example illustrat-
ing the analysis of a new experimental study on error-related potentials.

8.1 Introduction

Over the last twenty years, blind source separation (BSS) has become a funda-
mental signal processing tool in the study of human electroencephalography (EEG),
other biological data, as well as in many other signal processing domains such as
speech, images, geophysics, and wireless communication (Comon and Jutten
2010). Without relying on head modeling, BSS aims at estimating both the
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waveform and the scalp spatial pattern of the intracranial dipolar current responsible
for the observed EEG, increasing the sensitivity and specificity of the signal
received from the electrodes on the scalp. This chapter begins with a short review of
brain volume conduction theory, demonstrating that BSS modeling is grounded on
current physiological knowledge. We then illustrate a general BSS scheme
requiring the estimation of second-order statistics (SOS) only. A simple and effi-
cient implementation based on the approximate joint diagonalization of covariance
matrices (AJDC) is described. The method operates in the same way in the time or
frequency domain (or both at the same time) and is capable of modeling explicitly
physiological and experimental source of variations with remarkable flexibility.
Finally, we provide a specific example illustrating the analysis of a new experi-
mental study on error-related potentials.

The AJDC method for EEG data has been reviewed and described in details in
Congedo et al. (2008), based upon theoretical bases to be found in Pham (2002) and
Pham and Cardoso (2001). Typically, it has been used on continuously recorded
EEG (spontaneous activity, e.g., Van der Loo et al. 2007). An extension of the
method to treat group EEG data and normative EEG data has been proposed in
Congedo et al. (2010). Such group BSS approach has been used in a clinical study
on obsessive-compulsive disorder in Kopřivová et al. (2011) and in a cognitive
study on spatial navigation in White et al. (2012). The AJDC method has also been
employed for motor imagery-based brain–computer interfaces in Gouy-Pailler et al.
(2010), showing that it can be applied purposefully to event-related (de)synchro-
nization data (induced activity). Extension of the method to the analysis of
simultaneous multiple-subject EEG data is a current line of research in our labo-
ratory (Chatel-Goldman et al. 2013; Congedo et al. 2011, 2012). This chapter
contributes demonstrating that the AJDC method can be used purposefully on
event-related potential (ERP) data as well (evoked activity).

8.2 Physiological Ground of BSS Modeling

It is well established that the generators of brain electric fields recordable from the
scalp are macroscopic postsynaptic potentials created by assemblies of pyramidal
cells of the neocortex (Speckmann and Elger 2005). Pyramidal cells are aligned and
oriented perpendicularly to the cortical surface. Their synchrony is possible thanks
to a dense net of local horizontal connections (mostly <1 mm). At recording dis-
tances larger than about three/four times the diameter of the synchronized assem-
blies, the resulting potential behaves as if it were produced by electric dipoles; all
higher terms of the multipole expansion vanish, and we obtain the often invoked
dipole approximation (Lopes Da Silva and Van Rotterdam 2005; Nunez and
Srinivasan 2006, Chap. 3). Three physical phenomena are important for the argu-
ments we advocate in this study. First, unless dipoles are moving, there is no
appreciable delay in the scalp sensor measurement (Lopes da Silva and Van
Rotterdam 2005). Second, in brain electric fields, there is no appreciable
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electromagnetic coupling (magnetic induction) in the frequencies up to about
1 MHz; thus, the quasi-static approximation of Maxwell equations holds throughout
the spectrum of interest (Nunez and Srinivasan 2006, p. 535–540). Finally, for
source oscillations below 40 Hz, it has been verified experimentally that capacitive
effects are also negligible, implying that potential difference is in phase with the
corresponding generator (Nunez and Srinivasan 2006, p. 61). These phenomena
strongly support the superposition principle, according to which the relation
between neocortical dipolar fields and scalp potentials may be approximated by a
system of linear equations (Sarvas 1987). We can therefore employ a linear BSS
model. Because of these properties of volume conduction, scalp EEG potentials
describe an instantaneous mixture of the fields emitted by several dipoles extending
over large cortical areas. Whether this is a great simplification, we need to keep in
mind that it does not hold true for all cerebral phenomena. Rather, it does at the
macroscopic spatial scale concerned by EEG.

The goal of EEG blind source separation (BSS) is to “isolate” in space and time
the generators of the observed EEG as much as possible, counteracting the mixing
caused by volume conduction and maximizing the signal-to-noise ratio (SNR). First
explored in our laboratory during the first half of the 1980s (Ans et al. 1985; Hérault
and Jutten 1986), BSS has enjoyed considerable interest worldwide only starting a
decade later, inspired by the seminal papers of Jutten and Hérault (1991), Comon
(1994), and Bell and Sejnowski (1995). Thanks to its flexibility and power, BSS has
today greatly expanded encompassing a wide range of applications such as speech
enhancement, image processing, geophysical data analysis, wireless communica-
tion, and biological signal analysis (Comon and Jutten, 2010).

8.3 The BSS Problem for EEG, ERS/ERD, and ERP

For N scalp sensors and M ≤ N EEG dipolar fields with fixed location and orien-
tation in the analyzed time interval, the linear BSS model simply states the
superposition principle discussed above, i.e.,

vðtÞ ¼ AsðtÞ þ gðtÞ ð8:1Þ

vðtÞ 2 <N is the sensor measurement vector at sample t, A 2 <N�Mis a time-
invariant full column rank mixing matrix, sðtÞ 2 <M holds the time course of the
source components, and gðtÞ 2 <N is additive noise, temporally white, possibly
uncorrelated with sðtÞ and with spatially uncorrelated components. Equation (8.1)
states that each observation vðtÞ (EEG) is a linear combination (mixing) of sources
sðtÞ, given by the coefficients in the corresponding column of matrixA. Neither sðtÞ
nor A is known, that is why the problem is said to be blind. Our source estimation is
given by

ŝðtÞ ¼ B̂vðtÞ ð8:2Þ
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where B 2 <M�N is called the demixing or separating matrix. This is what we want
to estimate in order to recover the sources from EEG. Hereafter, the hat indicates a
statistical estimation. Although this is the classical BSS model, we need a few
clarifications for the EEG case: By gðtÞ, we model instrumental noise only. In the
following, we drop the gðtÞ term because the instrumental (and quantization) noise
of modern EEG equipment is typically low (<1 μV). On the other hand, biological
noise (extra-cerebral artifacts such as eye movements and facial muscle contrac-
tions) and environmental noise (external electromagnetic interference) may obey a
mixing process as well; thus, they are generally modeled as components of sðtÞ,
along with cerebral ones. Notice that while biological and environmental noise can
be identified as separated components of sðtÞ, hence removed, source estimation
will be affected by the underlying cerebral background noise propagating with the
same coefficients as the signal (Belouchrani and Amin 1998).

8.4 A Suitable Class of Solutions to the Brain BSS Problem

To tackle problem (8.2) assuming knowledge of sensor measurement only, we need
to reduce the number of admissible solutions. In this paper, we are interested in
weak restrictions converging toward condition

ŝðtÞ ¼ GsðtÞ; ð8:3Þ

where s(t) holds the time course of the true (unknown) source processes and ŝðtÞ our
estimation, and the system matrix

G ¼ B̂A � KP ð8:4Þ

approximates a signed scaling (a diagonal matrix Λ) and permutation (P) of the
rows of s(t). Equation (8.3) is obtained by substituting (8.1) in (8.2) ignoring the
noise term in the former. Whether condition (8.3) may be satisfied is a problem of
identifiability, which establishes the theoretical ground of BSS theory (Tong, Ino-
uye and Liu 1993; Cardoso 1998; Pham and Cardoso 2001; Pham, 2002). We will
come back on how identifiability is sought in practice with the proposed BSS
approach. Matching condition (8.3) implies that we can recover faithfully the
source waveform, but only out of a scale (including sign) and permutation (order)
indeterminacy. This limitation is not constraining for EEG, since it is indeed the
waveform that bears meaningful physiological and clinical information. Notice the
correspondence between the mth source, its separating vector (mth row of B̂), and

its scalp spatial pattern (mixing vector), given by the mth column of Â ¼ B̂
þ
.

Hereafter, superscript + indicates the Moore–Penrose pseudo-inverse. The mono-
dimensionality of those vectors and their sign/energy indeterminacy implies the
explicit modeling of the orientation and localization parameters of the mth source,
but not its moment. This is also the case of inverse solutions with good source
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localization performance (Greenblatt et al. 2005). On the other hand, when we
estimate current density by EEG inverse solutions, we estimate current flowing in
the three orthogonal directions (hence, the filter is given by three vectors, not one as
here), resulting in a considerable loss of spatial resolution. Linearity allows
switching back from the source space into the sensor space. Substituting (8.2) into
(8.1) and dropping the noise term in the latter yield BSS filtering

v0ðtÞ ¼ ÂRŝðtÞ ¼ ÂRB̂vðtÞ;

where R is a diagonal matrix with mth diagonal element equal to 1 if the mth
component is to be retained and equal to 0 if it is to be removed. BSS filtering is
common practice to remove artifacts from the EEG data.

8.5 An Approach for Solving the BSS Problem Based
on Second-Order Statistics Only

It has been known for a long time that in general, the BSS problem cannot be solved
for sources that are Gaussian, independent, and identically distributed (iid) (Dar-
mois 1953). EEG data are clearly non-iid; thus, we may proceed assuming that
source components are all pair-wise uncorrelated and that either (a) within each
source component, the successive samples are temporally correlated1 (Molgedey
and Schuster 1994; Belouchrani et al. 1997) or (b) samples in successive time
intervals do not have the same statistical distribution, i.e., they are non-stationary
(Matsuoka et al. 1995; Souloumiac 1995; Pham and Cardoso 2001). Provided that
source components have non-proportional spectra or the time courses of their
variance (energy) vary differently, one can show that SOS are sufficient for solving
the source separation problem (Yeredor 2010). Since SOS are sufficient, the method
is able to separate also Gaussian sources, contrary to another well-known BSS
approach named independent component analysis (ICA: Comon and Jutten 2010).
If these assumptions are fulfilled, the separating matrix can be identified uniquely;
thus, source can be recovered regardless of the true mixing process (uniform
performance property: see, e.g., Cardoso 1998) and regardless of the distribution of
sources, which is a remarkable theoretical advantage. The fundamental question is
therefore whether or not the above assumptions fit EEG, ERS/ERD, and ERP data.

• Sources are uncorrelated: This assumption may be conceived as a working
assumption. In practice, the BSS output is never exactly uncorrelated, but just as
uncorrelated as possible. What we try to estimate is the coherent signal of large
cortical patches, enough separated in space one from the other. BSS may be
conceived as a spatial filter minimizing the correlation of the observed mixtures
and recovering the signal emitted from the most energetic and uncorrelated

1 Such processes are called colored, in opposition to iid processes, which are called white.
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cortical patches. For EEG data, this is an effective way to counteract the effect of
volume conduction. In fact, we have seen that the brain tissue behaves
approximately as a linear conductor; thus, observed potentials (mixtures) must
be more correlated than the generating dipolar fields.

• Sources are colored and/or their energy varies over time: Observed potentials
are the summation of postsynaptic potentials over large cortical areas caused by
trains of action potentials carried by afferent fibers. The action potentials come in
trains/rest periods, resulting in sinusoidal oscillations of the scalp potentials, with
negative shifts during the train discharges and positive shifts during rest. The
periodicity of trains/rest periods is deemed responsible for high-amplitude EEG
rhythms (oscillations) up to about 12 Hz, whereas higher-frequency (>12 Hz) low-
amplitude rhythms may result from sustained (tonic) afferent discharges
(Speckmann and Elegr, 2005). There is no doubt that an important portion of
spontaneous EEG activity is rhythmic, whence strongly colored (Niedermeyer
2005a; Steriade 2005; Buzsáki 2006, Chap. 6, 7). Some rhythmic waves come in
more or less short bursts. Typical examples are sleep spindles (7–14 Hz) (Nie-
dermeyer 2005b; Steriade 2005) and frontal theta (4– Hz) and beta (13–35 Hz)
waves (Niedermeyer 2005a). Others are more sustained, as it is the case for slow
delta (1–Hz) waves during deep sleep stages III and IV (Niedermeyer 2005b), the
Rolandic mu rhythms (around 10 Hz and 20 Hz), and posterior alpha rhythms
(8–12 Hz) (Niedermeyer 2005a). In all cases, brain electric oscillations are not
everlasting and one can always define time intervals when rhythmic activity is
present and others when it is absent or substantially reduced. Such intervals may
be precisely defined based on known reactivity properties of the rhythms. For
example, in event-related synchronization/desynchronization (ERD/ERS:
Pfurtscheller and Lopes da Silva 1999), which are time-locked, but not phase-
locked, increases and decreases of the oscillating energy (Steriade 2005) intervals
may be defined before and after event onset. On the other hand, event-related
potentials (ERP: Lopes Da Silva 2005), which are both time-locked and phase-
locked, can be further partitioned in several successive intervals comprising the
different peaks. Such source energy variation signatures can be modeled precisely
by SOS, as we will show with the ensuing ErrP study.

8.6 Approximate Joint Diagonalization of Covariance
Matrices (AJDC)

The SOS BSS method we are considering is consistently solved by approximate
joint diagonalization algorithms (Cardoso and Souloumiac 19932; Tichavsky and
Yeredor 2009). Given a set of covariance matrices {C1, C2,…}, the AJD seeks a

2 This paper does not consider SOS but fourth-order statistics; however, the algorithms are based
on approximate joint diagonalization of matrices which are the slices of the tensor of fourth-order
cumulants and thus can be used for SOS matrices as well.
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matrix B̂ such that the products B̂C1B̂
T
, B̂C2B̂

T
; . . . are as diagonal as possible

(subscript “T” indicates matrix transposition). Given an appropriate choice of the
diagonalization set {C1, C2, …}, such matrix B̂ is indeed an estimation of the
separating matrix in (8.2) and one obtains an estimate of the mixing matrix as

Â ¼ B̂
þ
. Matrices in {C1, C2,…} are chosen so as to hold in the off-diagonal entries

statistics describing some form of correlation among the sensor measurement
channels; then, the AJD will vanish those terms resulting in linear combination
vectors (the rows of B̂) extracting uncorrelated components from the observed
mixture via (8.2). More particularly, the joint diagonalization is applied on matrices
that change according to the assumptions about the source. They are those changes,
when available, that provide enough information to solve the BSS problem. For-
mally, for AJDC, the identifiability of sources discussed above, that is, matching
condition (8.3), is described by the fundamental AJD-based BSS theorem (Afsari
2008; see also Aïssa-El-Bey et al. 2008): Let matrices S1, S2, … be the
K (unknown) covariance matrices of sources corresponding to the covariance
matrices included in the diagonalization set and sk(ij) their elements. The diagonal
elements of these matrices sk(ii) hold the source variance. The off-diagonal elements
sk ijð Þ;i 6¼ j, are null as sources are assumed to be uncorrelated. Let

Y ¼ y1 � � � yMð ÞT¼
s1 11ð Þ . . . sk 11ð Þ
..
. . .

. ..
.

s1 MMð Þ � � � sk MMð Þ

0

B
@

1

C
A ð8:5Þ

be the matrix formed by stacking one below the other row vectors y1, y2, … yM
constructed as shown in Fig. 8.1. Each vector ym = (s1(mm),…,sK(mm)) holds the
energy profile along the diagonalization set for each source, with m:1…M and
M the number of estimated sources. The fundamental theorem says that the mth
source can be separated as long as its energy profile vector ym is not collinear 3

with any other vector in Y. Said differently, the wider the angle between ym and any
other vector in Y, the greater the chance to separate the mth source. Even if two
vectors are collinear, the other sources can still be identified.

Table 8.1 reports useful information to define an appropriate diagonalization set
so as to ensure identifiability of sources.

Importantly, the two basic theoretical frameworks for working in a SOS
framework reported in Table 8.1, the coloration and the non-stationary, can be
combined in any reasonable way: One may estimate covariance matrices in different
blocks (and/or conditions) for different frequency band-pass regions, effectively
increasing the uniqueness of the source energy profile. This is for instance the path
we have followed for solving the problem of separating sources generating error
potentials, as we will demonstrate here below. In fact, AJDC method can be applied

3 Two vectors are collinear if they are equal out of a scaling factor, that is, the energy profile is
proportional.
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in different representation spaces; applying to (1) any invertible and linearity-pre-
serving transform T leads to

T vðtÞ½ � ¼ AT sðtÞ½ �;

which preserves the mixing model. Then, solving source separation in the trans-
formed space still provides estimation of the matrix A or of its inverse B, which can
be used directly in Eq. (8.2) for recovering the source s(t) in the initial space. For
example, the transform T may be a discrete Fourier transform, a time–frequency
transform such as the Wigner–Ville transform or a wavelet transform. AJDC can be
easily and conveniently transposed in the frequency domain, thence in the time–-
frequency domain, whether we perform the frequency expansion for several time
segments.

It is important to consider that the number of matrices should be high enough to
help non-collinearity of source energy profiles. One may want to have at least as
many matrices in the diagonalization set as sources to be estimated. On the other
hand, one should not try to increase the number of matrices indefinitely to the
detriment of the goodness of their estimation, i.e., selecting too many discrete
frequencies or blocks of data that are too shorts. In summary, the key for succeeding
with BSS by AJDC is the definition of an adequate size and content of the diag-
onalization set; it should include matrices estimated on data as homogeneous as
possible for each matrix, with enough samples to allow a proper estimation, in
frequency region and time blocks when the signal-to-noise ratio is high and with a
high probability to uncover unique source energy profiles.

Fig. 8.1 Graphical illustration of the construction of the source energy profile vectors ym
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8.7 A Study on Error-Related Potentials

We now turn to the illustration of the AJDC method by means of a new study on
error-related potentials (ErrP). We show that BSS analysis increases the specificity
and sensitivity that can be obtained working at the sensor level, increasing as a
consequence the single-trial classification rate. ErrPs are a family of event-related
potential (ERP) that can be elicited after the commission of an error, firstly reported
in Miltner et al. (1997) as associated to receiving external negative feedback after
error commission. This feedback error-related potential (ErrPf) is characterized by a
negative deflection peaking between 250 and 400 ms with a fronto-central scalp
distribution. The authors named it the feedback-related negativity (FRN) and put it
in relation to the response error-related negativity (ERN) that had been previously
reported (Felkenstein et al. 1991; Gehring et al. 1993), also characterized by a
negative deflection. Initially, the ErrPf has been studied prevalently in the case of
gambling tasks with monetary gain and loss. More recently, it has attracted much
attention in the brain–computer interface (BCI) community because its online
detection provides a unique opportunity to automatically correct erroneous BCI
operations, effectively increasing the consistency and transfer rate of a BCI system
(Farquhar and Hill 2013). In order to do so, accurate online single-trial ErrP
detection is necessary. Here, we contribute along this direction in two ways: (1) We
design a new experimental protocol in order to study single-trial ErrPf detection in a
controlled situation that mimics actual BCI operation and (2) we apply the AJDC
source analysis in order to better characterize this potential, hence increasing the
accuracy of its online single-trial detection.

(1) New Experimental Protocol

In all previous studies on single-trial detection of ErrP for integration of a control
loop in a BCI system, the involvement of the participants is very far from the
involvement of participants during BCI operation, that is, as such, they lack eco-
logical validity. In particular, in previous studies, the feedback is the main focus of
the subject, while in actual BCI operations, receiving such a feedback is only a
small part of a complex cognitive task. Furthermore, previous studies have mainly
returned shame feedback, that is, feedback completely unrelated to the performance
of the subject. Finally, the subject-specific control capability of a BCI system has
not been taken into consideration. Here, we study the feedback-related potential in
the case of a memory task, with no monetary gain or loss. The feedback is returned
when the subject gives the answer, and no reward is given to the subject except a
score; thus, our participants have no other interest besides their own performance.
Such an experimental protocol allows us to study the ErrPf in a real “error versus
correct” condition. The protocol we use is a memory task inducing a high cognitive
load. The subject is continuously engaged in a demanding task (and not only on the
feedback presentation), mimicking the actual conditions of a BCI use, where focus,
concentration, and attention are essential requisite for successful BCI operation.
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Then, in this study, the feedback corresponds to the actual performance achieved in
the task, again approximating the actual operation of a BCI. Finally, the memory
task continuously adapts to the ability of the participants during the whole exper-
iment. This ensures that the cognitive load is approximately constant across the
duration of the experiment, that it is comparable across individuals regardless of
their memory span, and that the error rate across subjects is approximately equal.
This latter point is particularly important in ErrP studies since it is known that the
error rate affects the ErrP ([8]). In this study, the adaptive algorithm is tuned to
engender an error rate of about 20 %, which amount approximately to the rea-
sonable accuracy of a reactive BCI operation in real-world situations.

(2) New Multivariate Signal processing Analysis

Some of the previous studies on single-trial ErrP classification (correct vs. error)
have reached encouraging results (around 70 % of overall accuracy) using only
little a priori knowledge on this potential. As usual, a more profound knowledge of
the electrophysiological characteristics of the ErrPf can be used to select more
relevant and robust features for the purpose of single-trial online detection. Previous
studies showed that the ErrP can be characterized in the temporal domain both as an
ERP (time- and phase-locked event) and as an event-related synchronization, or
ERS (time- but non-phase-locked event). The ERP is characterized by a negative
deflection, named Ne, sometimes followed by a positive one named Pe (Gentsch
et al. 2009; Steinhauser and Kiesel 2011). The ERS is characterized by an increased
oscillatory activity in the theta frequency band-pass region (4–7.5 Hz) occurring
approximately in the same time window and spatial location as the Ne (Trujillo and
Allen 2007). Source localization of the FRN using dipole analysis has suggested
generators in the anterior cingulate cortex (ACC) and the supplementary motor area
(Gehring and Willoughby 2002; Miltner et al. 1997). Similar results have been
obtained for the ErrPr. Hereby, we propose a sharp spatial filtering approach based
on the blind source separation approach described above with the aim to disen-
tangling the sources responsible for the ERP and the ERS; if this proves feasible,
then the ERP and ERS components will yield independent features to feed the
classifier, hence potentially increasing the online accuracy.

As a first objective, we identify the different components of the ErrP along
dimensions time, space, and frequency by means of a multivariate analysis both in
the sensor space and in the source space. We jointly estimate the brain sources at
the origin of the ERP and ERS components and assess their different roles in error
reaction. Then, we study the role of these components on the ErrP with respect to
the expectation of participants. Finally, we look at how these results impact on ErrP
single-trial classification, which is the essential step in integrating ErrPs in BCI
systems.
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8.8 Method

8.8.1 Participants

Twenty-two healthy volunteers participated in this experiment. All subjects were
BCI naive at the time of the experiment, and none of them reported neurological or
psychiatric disorders in their lifetime. Due to the presence of excessive artifacts in
the EEG data, three subjects were subsequently excluded from all analyses, leaving
19 participants, of which 9 females and 10 males, with age ranging from 20 to 30
with a mean and a standard deviation of 24 and 2.52, respectively.

8.8.2 Experimental Design

The experiment involved two sessions lasting altogether approximately half an
hour. Each session consisted of six blocks of six trials, for a total of 6 × 6 × 2 = 72
trials. Participants seated comfortably 80 cm in front of a 21-inch computer screen.
Nine square boxes were arranged in circle on the screen. Each trial consisted of the
same memory retrieval task: The trial started with the display of the current score
for 3,000 ms (initialized at zero), followed by a fixation cross, also displayed for
3,000 ms (Fig. 8.2a). Then, the memorization sequence started; each memorization
comprised a random sequence of two to nine digits appearing sequentially in
random positions, with each digit of the sequence randomly assigned to a different
box for each sequence (Fig. 8.2b). Subjects were instructed to retain positions of all
digits. At the end of the sequence, the target digit (always contained in the previous
sequence) was displayed (Fig. 8.2c) and subjects had to click with the aid of a
mouse on the box where it had appeared. Once the subject had answered, the
interface waited for 1,500 ms in order to avoid any contamination of ErrP by beta
rebound motor phenomena linked to mouse clicking (Pfurtscheller 1981). Then, if
the answer was correct, the chosen box background color turned into green
(“correct” feedback); otherwise, it turned into red (“error” feedback). Subjects were
then asked to report if the feedback (error/correct) matched their expectation by a
mouse click (“yes”/“no”) (Fig. 8.2d). Following this answer, a random break of
1,000–1,500 ms preceded the beginning of the new trial.

In order to keep the subjects motivated throughout the experiment, the accumu-
lated score was computed at the beginning of each trial. When subjects localized
correctly the target digits, their score increased; otherwise, it remained unchanged.
The number of digits in the sequence was always between two and nine, fixed within
blocks and updated, at the beginning of each block, according to the change in
performance from the block just finished and the previous one, as assessed online by
means of statistical t tests. The first block started always with four digits for all
subjects. The parameters of the adaptation were set, thanks to a pilot study and a
computer simulation, and were chosen to yield about 20 % of errors, regardless of the
working memory ability. Moreover, our learning approach is capable of adapting to
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fatigue as well as other possible nuisance intervening during the experiment. A
random rest break was allowed between blocks, during which the boxes performed a
colorful animation chosen each time at random among four preset animations.
Between the two sessions, the screen was shut down to allow a rest break of 2–3 min.

8.8.3 Data Acquisition

EEG recordings were acquired from 31 silver/chloride electrodes positioned
according to the extended 10/20 system (FP1, FPz, FP2, F7, F3, Fz, F4, F8, FT7,
FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz,
P4, P8, O1, Oz, O2) with the aid of a standard elastic cap. Both earlobes, digitally
linked, were used as electrical reference. The ground sensor was positioned on the
forehead. The impedance of each sensor was kept below 5 k. The EEG was band-
pass-filtered in the range 0.1–70 Hz and digitized at 500 Hz using the Mitsar 202
DC EEG acquisition system (Mitsar Co. Ltd., Saint Petersburg, Russia). During
recording, the stimulation program continuously sent to the Mitsar system triggers

Fig. 8.2 Screenshots from the experiment representing different steps of the experiment.
a Fixation cross. b One digit appearing in the memorization sequence. c Target digit appearing.
d Feedback report question: ‘Vous attendiez-vous à ce resultat’ = ’Did you expect this result?’,
‘Oui’ = ’Yes’ and ‘Non’ = ’No’
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to track precisely all event onsets of each trial. These triggers were received by the
Mitsar system as a logic signal, synchronized with the EEG stream, and recorded as
a supplementary data channel.

8.8.4 Preprocessing

Data were filtered in the 1–40 Hz band-pass region using an order four Butterworth
FIR filter with linear phase response in the band-pass region. Ocular artifacts were
extracted using the SOBI algorithm (Belouchrani et al. 1997) available in the
EEGLAB toolbox (Delorme and Makeig 2004). One EOG source corresponding to
eyeblinks was suppressed for each subject. It was manually selected using both the
temporal shape of the source and its topography. All other artifacts were left into the
signal, so as to approximate the conditions of online analysis of EEG data acquired
during BCI operation.

8.8.5 Analysis in the Sensor Space

The analysis in the sensor space is the traditional analysis of the signal as recorded
at each electrode. We are interested in the analysis of the error versus correct trials.
We performed both the analysis of the event-related potential (ERP: both time- and
phase-locked: Lopes Da Silva 2005) and analysis of the event-related synchroni-
zation (ERS: time-locked, but not necessarily phase-locked: Pfurtscheller and Lopes
da Silva 1999). ERPs were analyzed contrasting the average potential obtained from
each subject at each electrode and time sample. ERSs were analyzed contrasting the
average time–frequency map obtained on each trial from each subject at each
electrode. In order to compute ERS, we employed a multitapering Hanning sliding
window (frequency dependent, with the taper equal to four cycles for each fre-
quency) over the 2–32 Hz band using a 1 Hz step, as implemented in the Fieldtrip
software (Oostenveld et al. 2011). ERSs were computed on time window [−0.5 s
1.2 s] using a time step of 0.03 s and a baseline defined as [−1 s 0 s] prestimulus.

The statistical analysis in the sensor space for contrasting “error” versus “cor-
rect” trials needs to be performed for each electrode, discrete frequency, and time
segment in the case of ERS and for each electrode and time segment for ERP data.
In order to account for the extreme multiple-comparison nature of the test, we
employed a permutation strategy. The test chosen is a slight modification of the
supra-threshold cluster size permutation test originally proposed for neuroimaging
data by Holmes et al. (1996). Here, the statistic is not the supra-threshold cluster
size, but the supra-threshold cluster intensity, defined as the sum of the t values
within the supra-threshold clusters. As compared to the test described by Holmes
et al. (1996), such a statistic is influenced not only by the spatial extent of the
clusters, but also by the strength of the effect. The test is sensitive to effects that are
contiguous in space (adjacent electrodes), frequency, and time, in line with phys-
iological considerations. The family-wise error rate for multiple comparisons was
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set to 0.05, meaning that the probability of falsely rejecting even only one
hypothesis is less than 0.05. All permutation tests were approximated by the use of
5,000 random permutations.

8.8.6 Analysis in the Source Space

As we have seen that a spatial filter computes a weighted sum (linear combination)
of the signal obtained at each electrode, potentially isolating delimited dipolar
sources from each other. We apply here the method introduced above adapting it to
ERP data. Our goal is to separate the source of the Ne (ERP) and the source for the
theta ERS. We need to separate them one from the other, but also from background
EEG activity. For our purpose, we need to include in the diagonalization set
matrices holding (a) the spatial structure of the ERP component, (b) the spatial
structure of the ERS component, and (c) the spatial structure of the spontaneous
EEG oscillations and persistent artifacts such as lateral and horizontal eye move-
ments, jaw muscle contractions, etc. For (a) and (b), we compute the relevant
covariance matrices both on error trials and on correct trials so to exploit variations
of source energy between the two conditions (Table 8.1). We define an exactly
determined BSS model, that is to say, we estimate as many sources (M in the
formula above) as electrodes (N = M = 31). For the ERP components (a), we
estimate the covariance matrix of the average ERP in the three time windows where
the ERP analysis in the sensor space revealed significant results (see next section).
Covariance matrices were separately computed for error and correct conditions,
providing 3 × 2 = 6 matrices. These six matrices provide unique source energy
profile about ERP that have different potential in error versus correct trials. For the
ERS component (b), we estimate the averaged covariance matrix in the time–fre-
quency region where the sensor space analysis revealed significant results (see next
section). These matrices were computed as the covariance matrices of the EEG
filtered in the frequency band of interest. Again, matrices were computed separately
for error and correct conditions, providing two additional matrices. These two
matrices provide unique source energy profile about ERS that display different
power in the theta band in error versus correct trials. Notice that matrices for the
ERP and the ERS components are substantially different: For the ERP components,
EEG trials are averaged before computing the covariance matrix (thus only both
time-locked and phase-locked signals are preserved), while for the ERS compo-
nents, trials are averaged only after computing covariance matrices on single-trial
data (thus, non-phase-locked signals are preserved as long as they are time-locked).
To separate possible sources of ERP and ERS from spontaneous EEG oscillations
and artifacts (c), we include in the set all cospectral matrices (Bloomfield 2000) of
the signal during the fixation cross sequence in the frequency range 2–20 Hz using a
frequency step of 2 Hz, providing 10 additional matrices. These latter 10 matrices
provide unique source energy profile to separate all spontaneous sources having
non-proportional power spectrum (Table 8.1). In summary, our BSS algorithm
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jointly diagonalizes a total of 18 matrices. For solving the approximate joint
diagonalization, we employ the iterative algorithm proposed by Tichavsky and
Yeredor (2009), which is fast and in our long-lasting practice has proven robust.

Once estimated the 31 sources, they were inspected analyzing their ERP, ERS,
topographies, and the mutual information criterion between the source and the error
class (Grosse-Wentrup and Buss 2008). Meaningful sources were localized in a
standard brain using the sLORETA inverse solution (Pascual-Marqui 2002) as
implemented in the LORETA-Key software. This software makes use of revisited
realistic electrode coordinates (Jurcak et al. 2007) and the head model (and cor-
responding lead-field matrix) produced by Fuchs et al. (2002), applying the
boundary element method on the MNI-152 (Montreal neurological institute,
Canada) template of Mazziotta et al. (2001). The sLORETA-key anatomical
template divides and labels the neocortical (including hippocampus and anterior
cingulate cortex) MNI-152 volume in 6,239 voxels of dimension 5 mm3, based on
probabilities returned by the Demon Atlas (Lancaster et al. 2000). The coregis-
tration makes use of the correct translation from the MNI-152 space into the
Talairach and Tournoux (1988) space (Brett et al. 2002). Source localization was
conducted on each participant separately, normalized to unit global current density
(the input of the inverse solution is a vector estimated by BSS up to a scale
indeterminacy) and summed up over participants in the brain space.

8.8.7 Classification of Single Trials

For classifying single trials, data were band-pass-filtered using an order four But-
terworth FIR filter with linear phase response between 1 and 10 Hz for the ERP
component and 4–8 Hz for the ERS component. Data were then spatially filtered
using the results of the BSS analysis. Only samples corresponding to 250–750 ms
were kept. For the ERP component, we used the temporal signal down-sampled at
32 Hz, providing 16 samples (features) for the classification. For the ERS component,
we used the square of the temporal signal (power) down-sampled at 32 Hz, providing
16 samples (features) for the classification as well. This procedure assigns to each
component equal chance for classification. As a classifier, we employed a linear
discriminant analysis (LDA). One hundred random cross-validations were performed
with the classifier trained on a randomly selected set containing 80% of the data (both
errors and corrects) and then tested on the remaining data.

8.9 Results

8.9.1 Behavioral Results

All subjects performed the task with a convenient error rate, with mean (sd) = 22.2
(4) % and a quasi-equal repartition of expected and unexpected errors, with mean
(sd) = 10.4 (4.3) % and 11.8(3) %, respectively. Reaction time was higher for error
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trials as compared to correct trials in 80 % of the subjects (all t tests with p < 0.05).
The maximum number of digits to memorize for each subject was highly variable,
ranging from 4 to 10, with mean (sd) = 6.5 (1.37). These results demonstrate that
our presentation software succeeded in equalizing the cognitive load across sub-
jects, despite the great intersubject variability of digit memory span.

8.9.2 Sensor Space Analysis

The ERP in the error trials differed from the correct trials in three time windows
with different timing and/or electrode location (Fig. 8.3). A significant positivity for
errors was found at time window [320 ms 400 ms] at electrode Cz (p < 0.01), a
significant negativity for errors at time window [450 ms 550 ms] at clustered
electrodes Fz, FCz, Cz (p < 0.01), and a significant positivity for errors at time
[650 ms 775 ms] at clustered electrodes Fz, FCz (p = 0.025).

An ERS (power increase as compared to baseline) could be seen in the theta
band in both correct and error feedback at fronto-midline locations. This syn-
chronization unfolds from around 250–600 ms poststimulus. In some subject, it
goes up to more than 200 % of power increase for error trials. Albeit present in both
conditions, this ERS is significantly more intense for error trials as compared to
correct ones (Fig. 8.4) in the frequency band-pass region 5–8 Hz and time window
[350 ms 600 ms] poststimulus over the clustered electrodes Fz and FCz (p = 0.015).

Fig. 8.3 a Grand-average (N = 19) ERP for correct (pointed line) and error (solid line) trials.
Time windows where the difference in amplitude between the two conditions is significant (gray
panels) and b scalp topographies of t values computed within the three significant windows. White
disks show the significant clustered electrodes
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8.9.3 Source Analysis

BSS analysis revealed two uncorrelated sources with variable sensitivity and
specificity, however, clearly responsible one for the ERP findings and one for the
ERS findings. The source responsible for the ERP differences between error and
correct trials, to which hereafter we will refer to as the “Ne source,” was signifi-
cantly different in error versus correct trials in two time windows, with a first
negative peak at time window [460 ms 540 ms] (p < 0.01) and a positive peak at
time [750 ms 830 ms] (p = 0.015). The grand-average ERP of this source computed
separately for error and correct trials is displayed in Fig. 8.5a. In Fig. 8.5b, it is
displayed the same grand-average ERP when computed using the spatial filter of the
source responsible for the ERS differences between error and correct trials, to which

Fig. 8.4 Grand-average (N = 19) ERS averaged at electrodes (Fz, FCz, Cz, CPz) for error a and
correct b trials. c Topographic maps of t values averaged over the theta band and time window
[350 ms 600 ms]. White disks show the significant clustered electrodes

Fig. 8.5 Grand average (N = 19) of the ERP generated by the Ne source a and by the theta source
b for error (solid line) and correct (pointed line) trials. Time windows where the difference in
amplitude between the two conditions is significant are highlighted by gray panels
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hereafter we will refer to as the “theta source”; although differences in amplitude
exist also for this latter source, they are not significant.

On the other hand, the theta source power increase was significant in frequency
band-pass region [5 Hz 8 Hz] for time window [300 ms 600 ms] (p < 0.01). The
ERS generated by this source is shown in Fig. 8.6b. In Fig. 8.6a, it is displayed the
same ERS when computed using the spatial filter of the Ne source instead; the ERS
in this case disappears. These results suggest that the Ne source and the theta source
correspond to separate phenomena generated by different brain structures with
different dynamics. The source responsible for the ERS (theta source) appears more
specific.

We can now illustrate the advantage brought upon from the BSS analysis with
these data. Compare Fig. 8.5a to 8.3 and Fig. 8.6 to 8.4. Although in both cases,
results in the sensor space are computed for the optimal cluster of electrodes, in
both cases, it is clear that working in the source space allows a better sensitivity
and specificity: In both cases, the difference between the error and correct trials is
highlighted.

8.9.4 Source Localization

The BSS source responsible for the ERP (Ne source) difference between correct and
error trials was localized by sLORETA in the anterior cingulate gyrus (BA 24). The
BSS source responsible for the ERS (theta source) was localized close to the sup-
plementary motor area (BA 6) (Fig. 8.7). Keeping in mind the approximation of a
source localizationmethod applied on a standard headmodel, these anatomical results
are in line with results reported by previous studies (Gehring and Willoughby 2002;
Herrmann et al. 2004; Nieuwenhuis et al. 2003).

Fig. 8.6 Grand average (N = 19) of the ERS generated by the Ne source a and by the theta source
b for error trials
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8.9.5 Error Expectation

We then studied the impact of the error expectation on the two identified sources
identified (Ne and ERS). Each trial could outcome one out of four results: unex-
pected errors (UE), expected errors (EE), expected corrects (EC), and unexpected
corrects (UC). Since most subjects reported no trials from the UC condition, we
only studied the first three outcomes. Only subjects providing at least four trials for
each condition were kept. Three further subjects were therefore excluded from this
analysis. For each component, a one-way repeated-measure ANOVA with factor
“outcome feedback” at three levels was applied i) to the temporal signal averaged
over time window [450 ms 520 ms] for the Ne source and ii) to the power signal
filtered between 5 and 8 Hz and averaged over significant time window [300 ms
600 ms] for the theta source. For the Ne source, no significant result was found. For
the theta source, the means of the three outcomes were not all equal (F = 4.75;
p = 0.0138). All pair-wise post hoc tests corrected by Bonferroni method showed

Fig. 8.7 a Ne source sLORETA localization. The source is localized in BA 32. b Theta source
sLORETA localization. The source is localized in BA 6. For each image, from left to right are the
axial, sagittal, and coronal views across the maximum. The images a and b are scaled to their own
maximum. The activity is color-coded with black representing the maximum and transparent
representing zero. Legend A = anterior; P = posterior; S = superior; I = inferior; L = left; R = right
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that the ERS engendered by this source is in this relationship: ERS(UE) > ERS
(EE) > ERS(EC), with both inequality signs indicating a significant difference
(p < 0.05).

8.9.6 Classification of Single Trials

The Ne source alone leads to better accuracy in classifying error trials as compared
to the theta source alone (p < 0.01). The theta source leads to better accuracy for
classifying correct trials (p = 0.028). These corroborate the conclusion that the ERP
and ERS represent different phenomena of the ErrP. When looking at the average
classification rate (Te + Tc)/2, with Te the classification rate of error trials and Tc
the classification rate of correct trials, one see that the use of both components leads
to better results for 14 subjects out of 19. The use of both components increases the
mean classification rate on the 19 subjects from 67 % up to 71 %. We performed a
repeated-measure two-way ANOVA with factor “type” (error vs. correct) and
“feature” (Ne source ERP, theta source ERS, both). It revealed a main effect on the
“type” factor (p < 0.01) with correct trials being better classified than error trials and
a “type” x “feature” interaction (p = 0.013), demonstrating that the use of both the
ERP feature and the ERS feature in the source space improves the performance of
single-trial classification. It should be noticed that with a total of 72 trials per
subject, training set included only a mean of 17 single trials for the error condition;
thus, the classification task for this data set is hard since the training sets include
very few examples of error trials.

Knowing that the error expectation has an influence on the theta ERS, we have
looked at classification results for expected and unexpected errors, for the theta ERS
components, and the Ne ERP components. Classification performance is higher for
unexpected errors (mean Te = 62 %) than for expected errors (mean Te = 47 %)
(p = 0.011) when using the theta ERS component. On the other hand, results are
equivalent (mean Te = 63 % for unexpected errors and mean Te = 64 % for
expected errors) using the Ne ERP component for classification. Thus, classification
using the theta ERS component performs poorly on error trials only for expected
errors. As a consequence, in the case of a system where errors are unexpected, the
classification using the theta ERS component as compared to using the Ne ERP
component would allow similar results for error trials and better results for corrects
trials, leading to a better average classification accuracy.

8.10 Conclusions and Discussion

We have described a blind source separation approach requiring only estimation of
second-order statistics of data, that is, covariance matrices. The method, which is
well grounded on current theory of volume conduction, is consistently solved by
means of approximate joint diagonalization of a set of covariance matrices, whence
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the name (AJDC). AJDC is simple, fast, and flexible, allowing explicit modeling of
physiological and experimental a priori knowledge. We have argued that the suc-
cess of the source separation depends solely on

• An appropriate choice of covariance matrices to form the diagonalization set;
• Their appropriate estimation.

To fulfill the first requirement, we have provided guidance for the analysis of
continuously recorded EEG, event-related (de)synchronizations (ERS/D), and ERP.
While studies for the first two cases are already available and well established, we
have here presented for the first time the use of AJDC for ERD. We have conducted
a source analysis by means of BSS of the feedback ErrP in high cognitive load
conditions. In this experiment, we have used conditions that resemble those one can
find on real BCI experiments. Our results showed that the feedback-related potential
observed here shares the same characteristics as the FRN observed in gambling
tasks and the ERN observed in reaction time tasks. Indeed, all three error potentials
are notably characterized by a negative deflection generated by the dorsal ACC, but
with different time of activation. A sharp analysis in the source space by means of
approximate diagonalization of covariance matrices has allowed the identification
of three main components accounting for the differentiation between error and
correct trials. Two temporal (ERP) characteristics were identified: a first sharp
negativity (Ne) and a broad positivity (Pe). One frequential (ERS) characteristic
was identified as theta ERS at the same time that the Ne. This observation is in
accordance with previous findings (Luu et al. 2004; Trujillo and Allen 2007) which
also pointed to the implication to oscillations in the theta band as an indicator of
response error-related potentials. Luu et al. (Luu et al. 2004) reported that the theta
band (4–7 Hz) is responsible for most variability of the ERN (57 %); meanwhile,
Trujillo and Allen (2007) reported a power increase in the theta band at a time
course similar to the Ne for erroneous responses. In this paper, we have observed
that the ErrPf is characterized by an important ERS in the theta band. This ERS
seems to occur at the same time as the negative evoked potential. This observation
leads to the question of the independence of these two components. Indeed, even if
they occur simultaneously, they may represent different manifestation of the same
neuronal process. Blind source separation coupled with source localization (sLO-
RETA) has allowed the identification of two spatially distinct sources, one
accounting for the temporal component (BA24) and the other for the frequency
component (BA6). Statistical analysis at source level validated this separation with
a significant temporal activity only for the first source exhibiting a significant ERP
at the time of Ne and Pe and a significant ERS only for the second source in the
theta band. The fact that these two sources are uncorrelated and spatially segregated
suggests that these two phenomena do not reflect the same neuronal process. This
point is of great interest for BCI applications and for the online detection of the
ErrPf since they may therefore provide independent information for classification.
In fact, up to now in BCI, only the negative wave (Ne) has been used as a feature
for classifying the ErrPf. Our results suggest that one could use both the ERP
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component and the ERS component. Indeed, our classification results showed that
the theta ERS brings independent information and allows better classification
results (as compared with using the ERP alone). It has to be noted that while the Ne
was clearly identifiable in all subjects, the Pe was not strong enough to be clearly
identified in some subjects. This might explain why our BSS approach has not been
successful in finding separated sources for the Pe peaks (poor signal-to-noise ratio
and/or high interindividual variability).

Interestingly, we have found that the expectation of the outcome has a direct
impact on the theta ERS, but not on the Ne; the more the error is expected, the
weaker is the theta ERS. To our knowledge, no such effect has been reported so far.
We conclude that the error-related potential may depend on two factors: the value
of the observation (erroneous or correct) and the expectation of the outcome. Thus,
the error-related potential may be the combination of two reactions, one to the error
and the other to the surprising character of the observation. Further studies may
now try to investigate this new aspect of the error-related potential and try to
determine whether these two components are physiologically separated or inter-
laced. Within the frame of a BCI application, the more accurate the BCI is, the more
unexpected the error will be. Classification results showed that when using theta
component, performance is higher for unexpected errors as compared to expected
errors. If the subject is concentrated and performs well the task, the occurrence of an
error will be less expected, since it would result mainly from a nuisance such as an
artifact decreasing the signal-to-noise ratio. Under these circumstances, the theta
ERS component will be more efficient in detecting errors coming directly from the
interface. In order to improve ErrP recognition in a real BCI system, the perfor-
mance of the system should be maximized, so that the ErrP can be more easily
detected. We conclude that the theta ERS will be stronger for high-performance
BCIs and therefore that the error can be more easily detected for high-performance
BCI. This fact should be taken into consideration in ensuing attempts to integrate a
control loop based on ErrP detection in a BCI. More in general, the error potential
should not be seen as a panacea for correcting BCI operation errors, since a high
number of errors will lead to a poor detection of ErrP.

In conclusion, the AJDC method proves at the same time flexible and powerful.
We hope that it turns out useful for extracting meaningful information to be used in
the studies at the crossroad of music and brain electrophysiology.

8.11 Questions

1. What are the physical generators of brain electric fields recordable from the
scalp?

2. Why a linear mixing model is a good approximation for the genesis of
observable scalp potentials?

3. What is the relation between the mixing matrix and the demixing matrix?
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4. List the main sources of instrumental, biological, and environmental noise
affecting EEG recordings

5. What is an error-related potential (ErrP)?
6. The ERS associated with the ErrP is temporally related to a positive or to a

negative evoked potential?
7. What are the advantages of a source-level analysis via blind source separation

as compared to a sensor-level analysis?
8. Why the blind source separation method is said to be “blind”?
9. Create an experimental design where a blind source separation method

exploiting source non-stationary would be appropriate for data analysis.
10. Why error-related potentials are of interest in the field of brain–computer

interface?
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9Feature Extraction and Classification
of EEG Signals. The Use of a Genetic
Algorithm for an Application
on Alertness Prediction

Pierrick Legrand, Laurent Vézard, Marie Chavent,
Frédérique Faı̈ta-Aı̈nseba and Leonardo Trujillo

Abstract

This chapter presents a method to automatically determine the alertness state of
humans. Such a task is relevant in diverse domains, where a person is expected
or required to be in a particular state of alertness. For instance, pilots, security
personnel, or medical personnel are expected to be in a highly alert state, and this
method could help to confirm this or detect possible problems. In this work,
electroencephalographic (EEG) data from 58 subjects in two distinct vigilance
states (state of high and low alertness) was collected via a cap with 58 electrodes.
Thus, a binary classification problem is considered. To apply the proposed
approach in a real-world scenario, it is necessary to build a prediction method
that requires only a small number of sensors (electrodes), minimizing the total
cost and maintenance of the system while also reducing the time required to
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properly setup the EEG cap. The approach presented in this chapter applies a
preprocessing method for EEG signals based on the use of discrete wavelet
decomposition (DWT) to extract the energy of each frequency in the signal.
Then, a linear regression is performed on the energies of some of these
frequencies and the slope of this regression is retained. A genetic algorithm (GA)
is used to optimize the selection of frequencies on which the regression is
performed and to select the best recording electrode. Results show that the
proposed strategy derives accurate predictive models of alertness.

9.1 Introduction

Over the last decade, human–computer interaction (HCI) has grown and matured as
a field. Gone are the days when only a mouse and keyboard could be used to
interact with a computer. The most ambitious of such interfaces are brain–computer
interaction (BCI) systems. The goal in BCI is to allow a person to interact with an
artificial system using only brain activity. The most common approach toward BCI
is to analyze, categorize, and interpret electroencephalographic (EEG) signals, in
such a way that they alter the state of a computer.

In particular, the objective of the present work is to study the development of
computer systems for the automatic analysis and classification of mental states of
vigilance; i.e., a person’s state of alertness. Such a task is relevant to diverse
domains, where a person is expected or required to be in a particular state. For
instance, pilots, security personnel, or medical staffs are expected to be in a highly
alert state, and a BCI could help confirm this or detect possible problems.

It is possible to assume that the specific topic presented in this chapter lies
outside the scope of this book, entitled “Guide to Brain-Computer Music Inter-
facing.” Nevertheless, from our point of view, many tasks have to be accomplished
before any interaction between a person’s brain and music can be done by using
EEG signals. Suppose that we wish to develop a musical instrument that can
generate music that is specifically related to the alertness of a subject. For such a
system, a first objective should be to classify the EEG signals of a subject based on
different levels of alertness. In order to reach this objective, informative features
have to be extracted, particularly since processing raw EEG data is highly
impractical, and then proceed to a final classification step using relevant mathe-
matical concepts. However, this problem is by no means a trivial one. In fact, EEG
signals are known to be highly noisy, irregular, and tend to vary significantly from
person to person, making the development of general techniques a very difficult
scientific endeavor. Then, it is important to find a method that is adaptable to
different persons and that it provides a rapid and accurate prediction of the alertness
state. For instance, a similar problem is presented by Lin et al. (2010), the authors
developed a feature extraction and classification approach to classify emotional
states and build an immersive multimedia system, where a user’s mental states
influences the musical playback. Examples such as these illustrate the importance of
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developing efficient and accurate recognition systems that can automatically
interpret the mental state of a person through EEG measurements.

9.1.1 Electroencephalographic Signals and Previous Works

The electrical activity of the brain is divided into different oscillatory rhythms
characterized by their frequency bands. The main rhythms in ascending order of
frequency are delta (1–3.5 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta
(12–30 Hz). Alpha waves are characteristic of a diffuse awake state for healthy
subjects and can be used to discern the normal awake and relaxed states, which is
the topic of this experimental study. The oscillatory alpha rhythm appears as
visually observable puffs on the electroencephalogram, especially over the occipital
brain areas at the back of the skull, but also under certain conditions in more frontal
recordings sites. The distribution of cortical electrical activity is taken into account
in the characterization of an oscillatory rhythm. This distribution can be compared
between studies reported in the literature through the use of a conventional elec-
trode placement; the international system defined by Jasper (1958) and shown in
Fig. 9.1.

Furthermore, the brain electrical activity is non-stationary, as specified in Subasi
et al. (2005); i.e., the frequency content of EEG signals is time varying. EEG
signals are almost always pre-treated before any analysis is performed. In most
cases, the Fourier transform or discrete wavelet decomposition (DWT) are used (see
Sect. 9.4.1). In Subasi et al. (2005), authors use a DWT to pick out the wavelet sub-
band frequencies (alpha, delta, theta, and beta) and use it as an input to a neural
networks classifier. In Hazarika et al. (1997), coefficients of a DWT are used as
features to describe the EEG signal. These features are given as an input to an
artificial neural network.

In Ben Khalifa et al. (2005), the EEG signal is decomposed in 23 bands of 1 Hz
(from 1 to 23 Hz) and a short term fast Fourier transformation (STFFT) is used to
calculate the percentage of the power spectrum of each band. In Cecotti and Graeser
(2008), a Fourier transform is used between hidden layers of a convolutional neural
network to switch from the time domain to the frequency domain analysis in the
network.

To predict the state of alertness, the most common method is neural networks
[see for example Subasi et al. (2005) or Vuckovic et al. (2002)]. However, the
disadvantage of this approach is that it requires having a large set of test subjects
relative to the number of predictive variables. To avoid this problem, the authors of
Subasi et al. (2005) and Vuckovic et al. (2002) split their signal into several
segments of a few seconds, called “epochs.” Other approaches use different sta-
tistical methods. For example, Yeo et al. (2009) uses support vector machine,
Anderson and Sijercic (1996) uses autoregressive models (AR), and Obermaier
et al. (2001) use hidden Markov chains.
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Fig. 9.1 Representation of the distribution of electrodes in the international system 10/10
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9.1.2 Main Contributions

The aim of the work presented in this chapter was to construct a model that is able
to predict the alertness state of a human using one electrode; and this model will be
used in real time applications. That is why, the two main objectives are:

• Reduce the time needed to install the EEG cap on a participant using a variable
selection method in order to choose the best electrode (based on classification
rate). In fact, in real-world applications, it is necessary to reduce the number of
electrodes needed because the cap installation process has to be short. A long
installation of the EEG cap can cause a disturbance of the mental state of the
person that we want to study (pilots or surgeons for example).

• To obtain a model (decision rule) that is able to give a reliable prediction of the
alertness state of a new participant.

To achieve these objectives, we apply a wavelet decomposition as a preprocessing
step and a new criterion for state discrimination is proposed. Then, several standard
methods for supervised classification (binary decision tree, random forests, and
others) are used to predict the state of alertness of the participants. The criterion is then
refined using a genetic algorithm (GA) to improve the quality of the prediction.
Finally, this work presents results that are part of a broader research program that is
being investigated by the lead authors, focusing on the development of BCIs. In
particular, this chapter contains a detailed description of the system originally pre-
sented in Vézard et al. (2014), where critical aspects were not discussed in detail.

The remainder of this chapter proceeds as follows. The data acquisition protocol is
precisely detailed in the Sect. 9.2. The validation of the data is described in the
Sect. 9.3. A data preprocessing is proposed in Sect. 9.4 and a feature extraction is
performed Sect. 9.5 in order to compute afirst attempt of classification of EEG signals.
Section 9.6 contains the general principles of a GA and presents how this stochastic
optimization method improves the results obtained in the previous section. Finally,
Sect. 9.7 presents a summary of this work and discusses our main conclusions.

9.2 Data Acquisition

This work is based on real data that we have collected. This section will describe
the data acquisition and data validation steps.

9.2.1 Participants

This work uses 44 participants, with ages between 18 and 35, all are right-handed,
to avoid variations in the characteristics of the EEG due to age or handedness linked
to a functional interhemispheric asymmetry.
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9.2.2 Procedure

The experiment was conducted individually in a soundproof room, where the
participant was comfortably seated in front of the computer screen (see Figs. 9.2
and 9.4).

It takes approximately 2 h and a half to place the EEG cap, to perform the
experiment and to have a final explanatory interview with the participant. This
interview occurred at the end of the whole data acquisition procedure to not affect
EEG records. Data collection was controlled by the acquisition system Coherence
3NT (Deltamed, http://www.natus.com/). The data acquisition procedure is com-
posed of five steps which are represented in Fig. 9.3:

1. First EEG: the participant has to look at a cross (fixation point) at the center of
the screen to reduce eye movements. This first recording corresponds to the
reference state, considered as the normal vigilance state of the participant. A
photograph of a member of our team, took to represent the conditions of an EEG
recording, is given in Fig. 9.4.

Fig. 9.3 Diagram of the data acquisition procedure

Fig. 9.2 Experimentation
rooms. a Control room.
b Room of the participant. 1
Recording computer. 2
Computer devoted to the
relaxation process. 3 Control
computer linked to the control
camera. 4 Participant. 5
Control camera
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2. Attentional task devoted to collect contingent negative variation (CNV): the
participant was instructed to press the space bar as quickly as possible after each
time the cross was replaced by a square on the screen. For each appearance of
this square, a warning sound (beep), presented 2.5 s before, allowed the par-
ticipant to prepare his response. The experimental session included 50 pairs of
stimuli (S1: beep, S2: square), with a random amount of time elapsing between
each pair. The purpose of this task is specified in Sect. 9.3.1.

3. Relaxation session: the participant was fully guided by a soundtrack broadcast
through loudspeakers placed in the room. The soundtrack suggested the par-
ticipant to perform three successive exercises of self-relaxation, based on
muscular relaxation and mental visualization. The first exercise is the autogenic
training (Schultz 1958). In this exercise, the participant has to mentally repeating
some sentences such as “I am calm” or “my arms and legs are heavy.” The
second exercise is the progressive relaxation (Jacobson 1974). It consists in
tense and unflex some muscles of the body. The last exercise is the mental
visualization. The participant imagines that he is moving in a familiar and lovely
place. The purpose of this relaxation session is to try to bring the participant to a
lower level of vigilance, qualified as the “relaxed” state.

4. Second EEG recording: 3 min of EEG were recorded with the same protocol as
in the step 1. This second recording should reflect the relaxed state of the
participant’s brain if it was reached in the prior step.

5. Second CNV task: CNV is collected using exactly the same protocol as in step 2.

Fig. 9.4 Photograph that represents the conditions during an EEG recording
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9.3 Data Validation

9.3.1 Contingent Negative Variation Extraction

For a given participant, the CNV analysis will allow us to determine whether the
relaxation step was effective. CNV extraction has been performed by applying the
event-related potentials (ERPs) method (Rosenblith 1959). It consists, in the present
experimental design, on averaging the electrical activity recorded in synchrony with
all warning signals (S1: beep) until the response stimulus (S2: square). Such
average allows event-related brain activity components, reflecting stimulus pro-
cessing, to emerge from the overall cortical electrical activity, unrelated to the task
performed. Thus, in our paradigm, a negative deflection of the averaged waveform,
called CNV, is obtained (Walter et al. 1964). This attentional component has the
property of decreasing in amplitude when the participant is less alert, either because
he is distracted (Tecce 1979), is deprived of sleep (Naitoh et al. 1971), or is falling
asleep (Timsit-Berthier et al. 1981). This fundamental result is shown in Fig. 9.5. In
this Figure, the CNV is plotted as a dotted line for an alert participant and as a solid
line for a participant which is less alert. The amplitude of the CNV is proportional
to the alertness of the subject.

That is why, although the instruction given to the participant during CNV
acquisition was to press the space bar as quickly as possible after the square
appearance, the reaction time is not investigated in this study. However, the way the
participant prepares to perform the task is observed.

The comparison of the amplitude of the CNV between tasks performed in steps 2
and 5 is used to determine whether the alertness of a participant has changed. It
allows us to know if he is actually relaxed. Only the positive cases, for which the
amplitude of the CNV has significantly declined, were selected for comparative
analysis of their raw EEG’s (stages 1 and 4). Their EEGs were then tagged,
respectively, as “normal” or “relaxed” state. An example of a participant kept after
studying his CNV is shown in Fig. 9.6 and an example of a rejected participant is
given in Fig. 9.7.

In these Figures, the solid curve represents the CNV recorded during step 2 and
the dotted curve represents the CNV recorded in step 5. The solid vertical lines
correspond to warning signals (S1: beep, S2: square). The area between the curve

participant less alert

participant more alert

Time (ms)
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)
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eduti l p
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100 300

Fig. 9.5 Representation of
the amplitude variation of the
CNV with respect to the
alertness of a participant
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and the x-axis is calculated between T1 and T2 (section framed by the dotted
vertical lines). A participant is kept if the area calculated with the CNV recorded in
step 5 is lower than the area calculated with the CNV recorded in step 2. To
facilitate this validation step an allow a visual inspection of the curves, a graphical
user interface was created. This interface is given in Fig. 9.8. Using this interface,
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Fig. 9.6 Representation of CNV recorded on participant 4 during steps 2 (solid curve) and 5
(dotted curve). The solid vertical lines correspond to warning signals (S1: beep, S2: square). This
participant is kept because the solid curve is mainly below the dotted curve between T1 and T2
(framed by the dotted vertical lines)
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Fig. 9.7 Representation of CNV recorded on participant 9 during steps 2 (solid curve) and 5
(dotted curve). The solid vertical lines correspond to warning signals (S1: beep, S2: square). This
participant is rejected because the solid curve is mainly above the dotted curve between T1 and T2
(framed by the dotted vertical lines)

9 Feature Extraction and Classification of EEG Signals … 199



an user can easily plot the CNV curve for a given participant. The top right of
Fig. 9.8 is a topographic map. At a given period, it represents the electrical activity
recorded on the scalp of a participant. It allows to view the appearance of the CNV
on the scalp and thus to locate brain regions involved in the CNV appearance.

The study of CNV was performed on the 44 participants of the study and 13
participants were kept for further analysis. Thus, an important number of partici-
pants are rejected. The stress due to the experiment and the duration of the
installation of the cap may be factors that deteriorate the efficiency of the relaxation
session. To limit the duration of the cap wearing, the relaxation session is relatively
short. Thus, it is possible that the duration of the relaxation session (20 min) is too
short to achieve fully relax these subjects. The participants selected are those that
have special abilities to relax in stressful conditions and in a relatively short period
of time. Those points can explain the high proportion of rejected participants in our
study.

9.3.2 Data

Finally, the data consist of 26 records of 3 min of raw EEG signals from the 13
selected participants (one “normal” EEG and one “relaxed” EEG for each partici-
pant). Each record contains variations of electric potential obtained with a sampling
frequency of 256 Hz with 58 active electrodes placed on a cap (ElectroCap). Using
this sampling frequency, each signal recorded by an electrode for a given subject in
a given alertness state contains 46,000 data points. A representation of the data
matrix is given in Fig. 9.9.

Fig. 9.8 Graphical user interface for the CNV display
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9.4 Data Preprocessing

The data is specified in 3 dimensions (time, electrodes, and participants). The
proposed approach is to extract a feature in 2 dimensions to implement common
classification tools. To do this, the signal energy, obtained by the wavelet
decomposition, is considered.

9.4.1 Wavelet Decomposition

Wavelet decomposition (Daubechies 1992; Mallat 2008) is a tool widely used in
signal processing. Its main advantage is that it can be used to analyze the evolution
of the frequency content of a signal in time. It is therefore more suitable than the
Fourier transform for analyzing non-stationary signals.

A wavelet is a function w 2 L2ðRÞ such that
R
R
wðtÞdt ¼ 0. The continuous

wavelet transform of a signal X can be written as:

Xða; bÞ ¼ 1ffiffiffi
a

p
Z1

�1
XðtÞw t � b

a

� �
dt ð9:1Þ

where a is called the scale factor that represents the inverse of the signal frequency,
b is a time-translation term and function ψ is called the mother wavelet. The mother
wavelet is usually a continuous and differentiable function with compact support.
Several families of wavelet mother exist such as Daubechies wavelets or Coiflets.

Some wavelets are given in Fig. 9.10.
It is also possible to define the discrete wavelet transform, starting from the

previous formula and discretizing parameters a and b. Then, let a = a0
j , where a0 is

the resolution parameter such as a0 > 1 and j 2 N and let b = kb0a0
j , where k 2 N

and b0 > 0. It is very common to consider the “dyadic” wavelet transform which
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Fig. 9.9 Representation of
the data matrix. There are
three dimensions: one for the
participants, one for the time
(46,000 points corresponding
to the number of points in
each 3 min EEG signals
recorded using a sampling
frequency of 256 Hz), and
one for the electrodes
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corresponds to the case where a0 = 2 and b0 = 1. In this case, j = 1, 2, …, n, where
n is the base-2 logarithm of the number of points forming the signal and
k = 1, 2, …, 2j−1. Then, the dyadic discrete wavelet transform is:

xj;k ¼ 2�
j
2

Z1

�1
XðtÞwð2�jt � kÞdt ð9:2Þ

where j is the decomposition level (or scale) and k the time lag. The maximal
number of decomposition levels, n, is the log2 of the number of points forming the
signal. The discrete wavelet transform is faster than the continuous version and also
allows for an exact reconstruction of the original signal by inverse transformation.
The dyadic grid provides a spatial frequency representation of discrete dyadic
wavelet transform (see Fig. 9.11). In this Figure, the x-axis corresponds to time, the
y-axis represents the frequencies, and the circles correspond to the wavelet coeffi-
cients xj,k. The signal points are represented below the last level of decomposition.
At each additional level, the frequency is doubled.

The dyadic grid allows us to visualize the frequency content of the signal and to
see when these frequencies appear. For example, Fig. 9.12 represents a signal
and his DWT computed by the toolbox FracLab (Levy Vehel and Legrand 2004),

Fig. 9.10 Some wavelets. a Haar. b Daubechies4. c C3 Coiflet. d S8 Symmlet
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Fig. 9.11 Representation of
the dyadic grid with 4 levels
of decomposition (4 scales)

Fig. 9.12 A signal generated
with the toolbox FracLab
(Top). The dyadic grid,
containing the absolute value
of the discrete wavelet
coefficients of the signal
(Bottom). The large
coefficients are in red and the
smallest values in blue
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http://fraclab.saclay.inria.fr/. Below, the dyadic grid is presented, containing the
absolute value of the discrete wavelet coefficients of the above signal. The high
coefficients values are in red and the low values in blue. In Fig. 9.12, the second
level of decomposition, related to low frequencies, contains high absolute coeffi-
cients values on the complete signal. The fifth scale contains mid-range value
coefficients in the last part of the signal. Finally, the last scale allows to visualize the
high frequency content appearing at the beginning and at the end of the signal.

9.4.2 Signal Energy

Wavelet decomposition can also be used to calculate the energy of a signal for each
level of decomposition. Thus, the energy ej

2 of the signal X in the scale j is given by:

e2j ¼
X2j�1

k¼1

x2j;k; 8j 2 f1; . . .2j�1g ð9:3Þ

In other words, from the dyadic grid, the energy associated with the scale
j (decomposition level j) is equal to the sum of the squares of the coefficients of the
line j. The use of signal leads to a loss of the temporality information. It is also
possible to obtain this result using a Fourier transform; however, the DWT provides
more opportunities for further work. For example, the wavelet decomposition could
be useful if the temporal evolution of the frequency content of signals is investi-
gated in a future work.

9.5 Examples of Feature Extraction

9.5.1 Slope Criterion

For a given participant i(i = 1, …, 13) in a given state (normal or relaxed), each
electrode m(m = 1, …, 58) provides a signal Xm. A discrete dyadic wavelet
decomposition is performed on this signal by considering 15 scales
(15 ¼ log2ð46; 000b cÞ, where 46,000 is the number of points in each 3 min EEG
signals and where :b c is the integer part). From the coefficients obtained, the energy
of the signal is calculated for each scale. Figure 9.13 presents these energies as a
function of frequency.

The Alpha waves are between 8 and 12 Hz. Thus, according to the literature,
only the energies calculated for 4, 8, and 16 Hz are used (black circles in Fig. 9.13).
Then, a simple regression is performed (dotted line in Fig. 9.13), and the slope is
retained. This coefficient is representative of the evolution of signal energy in the
frequency considered. By repeating this process for each electrode, a feature of 58
coefficients (one per electrode) is obtained for an individual in a given state. Thus, a
matrix of size 26 × 58 is obtained, representing the slope criterion.
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Figure 9.14 gives a representation of the data matrix after a dimension reduction.
On the left, the data obtained after a discrete wavelet transform. There are still three
dimensions: one for the participants, one for the 15 frequencies, and one for the
electrodes. Compared to Fig. 9.9, we switched between time (46,000 points) and
frequencies (15 scales). On the right, after the calculus of the slope coefficient, only
two dimensions are remaining: one for the participants and one for the electrodes.

To construct a model able to predict the alertness state, some usual classification
tools (classification and regression trees or k nearest neighbors for example) will be
applied on this matrix in 2 dimensions.
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Fig. 9.13 Representation of
the energy of signal Xm

obtained using a discrete
dyadic wavelet decomposition
as a function of frequency. To
calculate the slope criterion, a
simple regression is
performed (dotted line) on the
energies calculated for 4, 8,
and 16 Hz (circles)

Fig. 9.14 Representation of
the data matrix after a
dimension reduction. On the
left, the data obtained after a
discrete wavelet transform.
There are still three
dimensions: one for the
participants, one for the 15
frequencies, and one for the
electrodes. On the right, after
the calculus of the slope
coefficient, only two
dimensions are remaining:
one for the participants, one
for the electrodes
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9.5.2 Hölder Exponent Criterion and Alpha Criterion

Previously, other approaches to obtain a summarized data matrix in two dimensions
have been tested on similar signals (Vézard 2010). The goal was to obtain an
approach which allows separating the two alertness states and reducing the inter-
individual variability observed. One of these approaches was based on the use of
the Hölder regularity of the signal. The Hölder exponent, (Jaffard and Meyer 1996,
Levy Vehel and Seuret 2004), is a tool to measure the regularity of a signal at a
given point. The smaller the Hölder exponent (respectively, large) is, the more
irregular (respectively, smooth) is the signal. The Hölder exponent was estimated as
defined in Legrand (2004). The aim was to summarize the signal recorded by an
electrode in its global regularity. An average of Hölder exponents for each point of
the signal provided by an electrode was calculated.

Another approach was to analyze the alpha wave content in signals. Alpha
rhythm is the classical EEG correlate for a state of relaxed wakefulness. When the
person is relaxed, the neurons are synchronized and operate at a particular and
identical rhythm. This rhythm appears to be responsible for the more pronounced
appearance of Alpha waves (Niedermeyer and Lopes da Silva 2005). When the
person is forced to perform a task that can break the relaxed state, the functioning of
neurons vary widely. They seem to act by groups which do not work at a similar
rhythm. Alpha waves are then masked by the more pronounced appearance of other
waves (such as Beta waves). Thus, the idea was to measure the proportion of alpha
waves in the signal (alpha waves divided by the sum of all waves: alpha, beta, theta,
and delta).

These two approaches gave a data matrix in two dimensions like that obtained
with the slope criterion. However, they did not seem to work as well as the matrix
of slopes to discriminate the two states of vigilance (Vézard 2010). Therefore, the
slope criterion is investigated in this book chapter.

9.5.3 Preliminary Results

The relevance of the slope criterion is illustrated in Figs. 9.15 and 9.16. Figure 9.15
provides for each participant, in his state of “normal” alertness and his state of
“relaxed” alertness, the sum of the slope criterions on all electrodes. It appears that
for a given individual, the slope criterion is almost always lower when the indi-
vidual is in the normal state than when he is in the relaxed state. Thus, by com-
paring, for a given individual, the values of the slope criterion for the normal and
relaxed states it is possible to effectively distinguish the two states. However, for a
new individual, a single record is known and the problem remains unsolved.
Figure 9.16 shows for each electrode the sum of the slopes of the participants in a
“normal” alertness state and participants in a “relaxed” state. The previous obser-
vation is also true at the electrode level. In fact, for a given electrode, the slope
criterion is higher when considering the record obtained by this electrode after the
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relaxation. Thus, the slope criterion can effectively discriminate the two states of
alertness for an individual. However, a strong inter-individual variability can be
observed in Fig. 9.15. Because of this strong individual variability, we cannot plot a
line on Fig. 9.15 which separates the two alertness states (represented by cross and
circles). Then, for a given subject with two EEG records, the slope criterion allows
determining which record corresponds to the record done in the relaxed state.
However, when only one record is known (new subject), we cannot classify it
effectively.
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Fig. 9.15 Slope criterion
summed over all electrodes
for each of 13 participants
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Fig. 9.16 Slope criterion
summed over all participants
for each of 58 electrodes
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Common classification methods were initially used on the slope matrix to predict
the alertness state of the participants. Predictive performance of k nearest neighbors
[presented in Hastie et al. (2009)], binary decision tree (Breiman et al. 1984)
(CART), random forests (Breiman 2001), discriminant PLS [by direct extension of
the regression PLS method described in Tenenhaus (1998) recoding the variable to
explain using dummy variables], and discriminant sparse PLS (Lé Cao et al. 2008)
were studied. R packages “class,” “rpart,” “randomForest,” “pls,” and “SPLS”
were, respectively, used to test these methods. Random forests have been applied
by setting the number of trees at 15,000 and leaving the other settings by default.
Other methods were tuned by applying a tenfolds cross-validation on the training
sample (number of neighbors for k nearest neighbors, complexity of the tree for
CART, number of components for the discriminant PLS, number of components,
and value of the thresholding parameter for discriminant sparse PLS). The PLS
method has been adapted for classification by recoding the variable to predict
(alertness) using a matrix formed by an indicator of the modality (“normal” or
“relaxed”). To compare the results, these methods were evaluated on the same
samples (learning and test). A fivefold cross-validation was used to calculate a
classification rate. This operation was repeated 100 times to study the stability of
classification methods with respect to the data partitioning. The results are given by
the boxplots in Fig. 9.17.

It appears that the median correct classification rate (CCR) is very disappointing.
It does not exceed 40 % for most methods. Table 9.1 summarizes the means and
standard deviations obtained using classification methods on the slope criterion.
Large standard deviations reflect the influence of the data partitioning on the results.
In the case of a binary prediction, these results cannot be satisfactory. It is likely
that the inter-individual variability observed in Fig. 9.15 has affected the perfor-
mance of the classification methods. This inter-individual variability is very difficult
to include in the classification methods with the available data for this study.
Therefore, the preprocessing has been refined to obtain improved classification
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Fig. 9.17 Correct classification rate for the classification methods on the slope criterion
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rates. Specifically, a GA has been used as a feature selection process, to determine
the electrode and the frequencies that provide the best discrimination for the slope
criterion.

9.6 Feature Selection with a Genetic Algorithm

In this section, a GA is used to improve the slope criterion. So far, previous work in
the field, which suggested to focus on the alpha waves, was used. For this reason,
the regression was done using frequencies between 4 and 16 Hz. Given the results,
this approach will be refined. The algorithm searches for the best range of fre-
quencies (not necessarily adjacent) to perform the regression. Similarly, so far all
electrodes were kept. However, one objective of this work is to remove some
electrodes to reduce the time required for the installation of the cap. Thus, the best
combination electrode/frequencies based on the quality of the prediction is searched
for. In this work, 58 electrodes and 15 decomposition levels are available. Then,
58 * 215 = 1,900,544 ways exist to choose an electrode and a frequency range. To
avoid an exhaustive search, the proposed approach is to use a GA to perform a
feature selection (Broadhursta et al. 1997; Cavill et al. 2009).

9.6.1 General Principle of a Genetic Algorithm

These optimization algorithms (De Jong 1975; Holland 1975) are based on a
simplified abstraction of Darwinian evolution theory. The general idea is that a
population of potential solutions will improve its characteristics over time, through
a series of basic genetic operations called selection, mutation and genetic recom-
bination or crossing. From an algorithmic point of view, the general principle is
depicted in Fig. 9.18.

The purpose of these algorithms is to optimize a function (fitness) within a given
search space of candidate solutions. Solutions (called individuals) correspond to
points within the search space, a random set of which are generated, this seeds the
algorithm with an initial Population (set of individuals). They are represented by the
genomes (binary codes or reals, with a fixed or variable size). All individuals are

Table 9.1 Means and standard deviations of correct classification rate for the classification
methods on the slope criterion

K nearest
neighbors

Binary
decision tree

Random
forests

Discriminant
PLS

Sparse
discriminant
PLS

Mean 37.28 33.98 32.03 40.63 36.25

Standard
deviation

10.47 5.15 6.46 8.55 7.96
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evaluated using a problem-specific objective function called fitness. Individuals are
selected based on their fitness (using a series of tournaments), these selected
individuals are called Parents. These parents are used to generate new individuals
using two basic genetic (search) operations, recombination (random recombination
of two or more individuals), and mutation (random modification of a single indi-
vidual). These newly generated individuals are called Offspring, since they share
(genetic) similarities with the Parents used to generate them. Finally, the best
individuals (among Parents and Offspring) are selected and replace the initial
population. The algorithm is iterated until a stop criterion is reached; for instance,
when all individuals are identical (convergence of the algorithm) or after a pre-
specified number of iterations.

9.6.2 Algorithmic Choices

In this work, the genome is composed of 16 variables: the first, an integer ranging
from 1 to 58, characterizes the number of the electrode selected, the 15 others are
binary and correspond to the inclusion (or not) of each frequency to compute the
slope criterion. An example of a genome is given in Fig. 9.19. Each genome defines
the electrode and the frequencies on which to perform the regression as illustrated in
Fig. 9.20.

9.6.2.1 Genetic Operators
The main search operators used with the GA are crossover (recombination) and
mutation; both are described in detail next.

Selection
(Tournament)Replacement

Random Initial
Population

Evaluation of
Initial Population

RecombinationMutationEvaluation

Fig. 9.18 Evolutionary loop of a basic GA

15
︷ ︸︸ ︷

0 0 0 0 1 1 0 1 1 0 1 0 1 1 1

Electrode number Binary part

Fig. 9.19 Example of a genome in the GA
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Crossover
To create a child, two parents are required. A tournament is used to select candidate
solutions, keeping the best individual from a randomly selected group (the one with
the highest rating based on fitness). The tournament size is set to 2, this keeps
selection pressure low and helps maintain a high diversity in the population. The
tournament selection is repeated twice to select two parents (tournament “win-
ners”), which are used by the crossover operator to create a single child. The
electrode specified by the resulting child is located halfway between the electrodes
specified by both parents. The frequency information is combined using the logical
operator given in Table 9.2. This crossover is used to balance the production of 1
and 0 s. For a given frequency, when the two parents share the same value (1 for a
selected frequency or 0 for a non-selected frequency), the child inherits this value.

Fig. 9.20 Relationship between the genome and the slope criterion
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When the two parents do not share the same value, then a Bernoulli distribution is
used to build the component of the children.
Mutation
Once the child is established, a mutation is applied. Each component of the genome
of the child mutates with probability 1/8. Thus, each child is, on average, affected
by two mutations. When a mutation is applied to the electrode number, a random
number (drawn between 1 and 58) replaces the current value. For the binary part, a
mutation is a bit-flip operation (a 0 becomes a 1 and vice versa).

9.6.2.2 Evaluation Functions
The GA searches for the best combination of electrode/frequency range which
achieves the highest prediction accuracy. Thus, it seems natural to rely on the CCR.
Then, the fitness function corresponds to the CCR obtained for each genome. These
are then ranked in descending order of CCR. To compare each genome, the same
samples are used to calculate the CCR using a fivefold cross-validation. The
evaluation step is done for each child at each iteration. Thus, it is necessary to use a
fast classification method as evaluation function. In this work, two methods have
been tested (see algorithms 1 and 2). The first is the single variable classification
(SVC) (Guyon and Elisseeff, 2003), a method to predict from a single variable. The
average for each modality (normal or relaxed) is calculated on the individuals in the
training set for the variable (feature). Individuals of the test sample are then
assigned to the class corresponding to the nearest average. The prediction is
compared to ground truth which gives a CCR. The second method is the binary
decision tree (CART) (Breiman et al. 1984). Here, the algorithm is used with a
single variable which guarantees fast calculation. Then, the fitness function for each
genome x is written as:

f ðxÞ ¼ #well classified participants of the test set
#participants in the test set

ð9:4Þ

Table 9.2 Logical operator used for the frequencies during the crossover

Parent 1 Parent 2 Child

0 0 0

1 0 Bernð1=2Þ
0 1 Bernð1=2Þ
1 1 1

For a binary component, when the two parents do not share the same value, a Bernoulli
distribution is used to build the component of the children
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The GA searches for the genome which maximizes f.
Algorithm 1 Single Variable Classifier algorithm (SVC)
Require:

xapp: Value of the variable for the training set examples,
xtest : Value of the variable for the test set examples,
yapp: True labels of the training set examples,
ytest : True labels of the test set examples,
nbtest : Number of individuals in the test set

Ensure: Calculate a threshold T using xapp and a correct classification rate (CCR)
Calculus of the threshold T
(G1,G2) ← Average(xapp,yapp)
It calculates the mean of xapp for the individuals of the first modality G1 and the second

modality G2.

T ← G1+G2

2

Prediction and Correct classification rate
For i= 1 to nbtest do
Predi ← Predict(T,xitest)
It predicts the class of the ith individual of the test set using the threshold T .

end for
CCR ←CalculateCCR(Pred,ytest)
It calculates the correct classification rate by comparing the prediction and true labels.

return T ,CCR

9.6.2.3 Stop Criterion
The algorithm stops if one of the following three conditions is satisfied:

• The number of iterations exceeds 1,000.
• Parents are the same for 10 generations.
• The number of differences among the parents is less than 3.

To calculate the number of differences for a given population, denoted D, the
genomes of the population at iteration i are stored in a matrix, denoted by Pi. Let Pi

j

be the column j of the matrix Pi (where j = 1, …, 16). Then D = Db + Delec where:

• Db is the number of differences for the binary part of Pi
j (columns 2–16). The

number of differences for column Pi
j (where j = 2, …, 16) is

minðnumber of 0 inPi
j, number of 1 inPi

jÞ.
• Delec is the number of differences in P1

i (column corresponding to the electrode
component). Then, Delec is the number of individuals who have a electrode
which is different from the electrode most selected in the population.
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9.6.3 Results

The algorithm, programmed using Matlab, is run 100 times for each evaluation
method with 300 parents and 150 children. The training and test sets are different
for two different runs. Figure 9.21 gives CCR values for each run of the GA with
CART (stars) and SVC (circles).

For each run, the algorithm is launched two times (one time with CART and the
other timewith SVC).During a run, CART, and SVCuse the same training and test sets
in order to obtain comparable results. The correct classification rate obtained by CART
(mean of 86.68 % and standard deviation of 1.87 %) exceed significantly (Mann–-
Whitney paired test with a p-value ¼ 5:57� 10�14) those obtained by SVC (mean of
83.49% and standard deviation of 2.37%), asmentioned in Table 9.3. At the end of the
algorithm, some of the best genomes have the same evaluation (due to the low number
of individuals and the evaluation method). It is therefore necessary to choose a genome
(BEST) among those who have the same score. Thus, the best genomes at the end of
each run of the algorithm are stored. The genome that appears most often is considered
as the BEST for the evaluation method considered. The two BEST (for CART and
SVC) get a correct classification rate equal to 89.33 %. For CART, the BEST is
obtained by performing regression between 1/8, 1/4, 2, 4, and 64 Hz on electrode F4
(right frontal area on Fig. 9.1). For SVC, the BEST is obtained from electrode F2 (right
frontal area) and the regression between 1/32, 1/16, 2, 4, 8, 64, and 128 Hz (see
Table 9.4). Frequencies chosen for these genomes aremore extensive than those used in
the preliminary study.

Table 9.3 CCR for the two
evaluation methods

Evaluation
methods

CCR

Mean Standard deviation

CART 86.68 1.87

SVC 83.49 2.37
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Fig. 9.21 Correct
classification rates calculated
with CART (stars) and SVC
(circles) for each run of the
GA with 300 parents and 150
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Algorithm 2 Classification And Regression Tree algorithm (CART) for an unique
variable
Require:

xapp : Value of the variable for training set examples,
xval : Value of the variable for validation set examples,
xtest : Value of the variable for test set examples,
yapp: True labels of the training set examples,
ytest : True labels of the test set examples,
yval : True labels of the validation set examples,
nbtest : Number of individuals in the test set

Ensure: Create a binary tree T and calculate a correct classification rate (CCR).

Initialisation step
T ← / 0
The tree is initialized to the empty set.
Continue ← True
j ← 0

Tree growing step
while Continue do
If Current Node is terminal Then
T ← AssignNode(T,xapp,yapp)
It assigns a modality to each leaf of T using a majority vote.
Continue ← False

, Else
v j ← FindThreshold(xapp,yapp)
FindThreshold finds the threshold on the variable xapp that best separates individuals from

the two conditions.
t j ←ConstructNode(T,v j)
It constructs the node using the threshold value v j. Individuals of the training sample are

split by comparing xiapp and vi.
End if
j ← j+1
T ← t j

end while
n ← j

Tree pruning step
[e1,e2, ...,en] ←CalculateError([t1, t2, ...,tn],xval ,yval)
It compute the error of classification for each subtree using individuals from the validation

sample.
T ← Pruning([e1,e2, ...,en],T )
It prunes the tree T by keeping the subtree that gives the lower classification error ei.
T ← AssignNodes(T,xapp,yapp)

Prediction and Correct classification rate
For i= 1 to nbtest do
Predi ← Predict(T,xitest)
It predicts the class of the ith individual of the test set using the tree T .

end for
CCR ←CalculateCCR(Pred,ytest)
It calculates the correct classification rate by comparing the prediction and true labels.

return T ,CCR
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Figure 9.22 gives the occurrence of the electrodes in the best genome over the
100 runs. When some genomes have the same CCR at the end of the run, we select
the electrode chosen most often among the genomes with equal CCR. The algo-
rithm running with CART selects the electrodes around the number 10 (FZ in
Fig. 9.1), 17 (FC1), or 30 (T4). With the SVC method, the electrodes around the 2
(FPZ), the 11 (F2), or the 48 (T6) are mostly chosen. Finally, on average, the
population of the evolutionary algorithm converges in less than 50 iterations for
both methods. Figure 9.23 gives the number of differences among parents for one
run of the algorithm. It shows that the number of differences among parents
decreases very rapidly and falls below the threshold of 3 differences in less than 40
iterations. Then, one of the three stop conditions is satisfied and the algorithm stops.

Tables 9.3 and 9.4 summarize the CCR obtained by the GA, which are better
than those obtained (see Fig. 9.17) with the criterion of the slopes calculated for
frequencies between 4 and 16 Hz (alpha waves). Moreover, Table 9.5 shows that
the GA allows for a dimension reduction. SVC classifier cannot be used with more
than one variable. Then, Table 9.5 only shows a comparison between the results
obtained in Sect. 9.5.3 and those obtained with the GA for the CART classifier.

It also appears that it is more appropriate to use a regression on frequencies of
1/8, 1/4, 2, 4, and 64 Hz for the signal of electrode F4 and the CART classifier.
Then, this work allows to accurately predict the state of alertness of a new indi-
vidual. In fact, this electrode and this range of frequencies will be used to calculate
the slope criterion for this individual. The CART decision tree, built on the sample
formed by the 26 signals (13 study participants in both states of alertness) will be
used as a classifier to predict his state of alertness.
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Fig. 9.22 Occurrence of the
electrodes in the best genomes
for each electrodes during the
100 runs of the GA with 300
parents, 150 children, and
CART (dash-dotted curve) or
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Table 9.4 Summary table of results for best genomes

Evaluation methods BEST genome

Electrode selected Frequency selected (Hz) CCR (%)

CART F4 1/8, 1/4, 2, 4 et 64 89.33

SVC F2 1/32, 1/16, 2, 4, 8, 64 et 128 89.33
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9.7 Conclusions

This chapter presents a system for the automatic detection of human mental states of
alertness using EEG data and wavelet decomposition. This contribution is also
coupled with a complete protocol of data acquisition, a data validation procedure
and a feature selection strategy. Initially, we proposed a criterion to obtain a
summarized data matrix in two dimensions. Given the disappointing results
obtained by classifying all of the available data, a GA was used as a feature
selection step to refine it. This allowed obtaining a reliable classification model that
achieves average of classification accuracy equal to 86.68 % with a standard
deviation of 1.87 %. The algorithm also selects only a single electrode from the 58
that were initially available; this greatly enhances the possibility of applying the
proposed system in real-world scenarios.

An exchange with neurobiologists now seems necessary to link the results
obtained by the GA to human physiology. A new campaign to collect EEG data and
increase the number of participants included in the study has been undertaken.
Increasing the number of data should allow us to improve the precision of the estimate
of CCR and thus reduce the number of solutions that have the same score at the end of
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Table 9.5 Comparison between CCR obtained in the preliminary study (1st row) and CCR
obtained with the genetic algorithm (2nd row)

Evaluation methods Number of electrodes
in the predictive model

CCR

Mean Standard deviation

CART 58 33.98 5.15

CART 1 86.68 1.87
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the GA execution. In addition, an increase of the number of participants allows us to
provide an external validation set for the CCR at the end of the GA execution.

Moreover, it is possible to improve the GA proposed in this chapter. In fact,
improving genetic operators and testing other evaluation criteria are all paths that
remain to be explored. A final interesting point concerns the transformation of the
prediction obtained (“normal” state of alertness or “relaxed”) to a probability using
linear discriminant analysis or logistic regression as evaluation functions.

After refining the proposed method, future work will consider integrating this
approach into a full user-friendly experience, where the mental state of the user
directly influences the behavior of the system. One example application, that is
relevant to the present collection, is a system that automatically modifies the
multimedia content that is presented to the user based on his/hers mental state, to
encourage a more pleasant or useful experience.

9.8 Questions

1. What is the shape of the raw data?
2. Can we use directly the raw data to classify them?
3. In general, what are the benefits to use a wavelet transform instead of a Fourier

transform?
4. In the work presented in this chapter, could we use a Fourier Transform?
5. How can we be sure that the data we use for learning is relevant?
6. Could you summarize in a few lines the behavior of a GA?
7. Why do we use a GA for the optimization of the frequencies and to select the

best electrode?
8. Why do we use the slope criterion as a feature?
9. Could this method be used to classify other types of mental states?

10. Suppose that you work on data from individuals in two modalities described by
a single variable. Draw a scheme explaining the behavior of the Single Value
Classifier (SVC) algorithm and implement this algorithm.
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10On Mapping EEG Information
into Music

Joel Eaton and Eduardo Reck Miranda

Abstract

With the rise of ever-more affordable EEG equipment available to musicians,
artists and researchers, designing and building a brain–computer music interface
(BCMI) system has recently become a realistic achievement. This chapter
discusses previous research in the fields of mapping, sonification and
musification in the context of designing a BCMI system and will be of
particular interest to those who seek to develop their own. Design of a BCMI
requires unique considerations due to the characteristics of the EEG as a human
interface device (HID). This chapter analyses traditional strategies for mapping
control from brainwaves alongside previous research in biofeedback musical
systems. Advances in music technology have helped provide more complex
approaches with regard to how music can be affected and controlled by
brainwaves. This, paralleled with developments in our understanding of
brainwave activity has helped push brain–computer music interfacing into
innovative realms of real-time musical performance, composition and applica-
tions for music therapy.
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10.1 Introduction

Articles on brain–computer music interfacing (BCMI) research often open with a
sentiment on how far away we are from the science fiction like dreams of thought
explicitly controlling computers. However, the ongoing progress in this field in the
last decade alone indicates that this is becoming reality; we are not as far away from
such dreams as people tend to think.

In a climate where science and technology have the ability to translate primitive
emotional states of the brain, develop brain–computer interfacing (BCI) for precise
control of machinery and allow for non-speaking persons to communicate by means
of brain signals—or brainwaves—mediated by brain scanning technology, it is easy
to become enthused about the potentials within neuroscience, especially when
applied to the arts (Miranda 2006).

The possibility of BCI for direct communication and control was first seriously
investigated in the early 1970s, and the notion of making music with brainwaves
(turning BCI into BCMI) is not new. Musicians and composers have been using
brainwaves in music for almost the last 50 years. Instrumental in this were a number
of highly innovative people, the work of which is discussed in this chapter. This
period reflected a significant trend towards interdisciplinary practices within the arts
influenced by experimental and avant-garde artists of the time and a growing
engagement with eastern music and philosophies by those in this field. It is fair to
say that brainwaves in music were initially explored by experimental composers,
and the area has been pioneered by a number of notable non-traditional composers
and technologists since, and this is reflected in the wide range of applications and
research that has been undertaken over the last decade and a half.

Over the last twenty or so years, the world of computer music has been waiting
for technology to interpret brainwave information in order to develop BCMI sys-
tems. Equipment costs, portability, signal analysis techniques and computing power
has rapidly improved over recent times, alongside a deeper understanding of how
the brain functions. Now that the line between these two areas is narrowing the
playing field is becoming much larger enabling the two to flourish together.
Brainwaves have long been considered to be one of the most challenging of bio-
logical signals from the human body (known as bio-signals) to harness, and
beginning to understand them through music and sound offers clinical as well as
creative rewards; for instance, BCMI systems are bound to benefit music therapy.

This chapter focuses on the pressing problem of mapping EEG information into
sonic and musical forms. That is, on how to use EEG to control algorithms for
synthesising sound or to produce music. A number of mapping methods that have
been devised to date are introduced. As we shall see further on, there are a number
of different approaches to making music with EEG and the choice of which to use is
dependent on the overall objectives of the system.
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10.2 Mapping and Digital Musical Interfaces

The pursuit of control within musical systems controlled by the brain has been at
the forefront of research ever since it was viable. Control has been a key driver in
BCMI research as within it is the ability to convey expression and communication
through music. Mapping can be likened to a key that unlocks the creative potentials
of control. Mapping allows us to translate an input signal so that it can be under-
stood and used by a musical system. Put simply, mapping is the connection of input
controls (via EEG) to an output, which in the case of a BCMI is a musical engine. In
the pursuit of enhancing user interactivity in BCMIs, mapping plays a key role in
designing creative and practical applications. Even Alvin Lucier, the first composer
to perform using EEG signals, had a desire for more comprehensive mappings
within his system to allow for greater musical control (Lucier 1976).

Research into mappings and digital instruments has largely focused on gestural
control and physical interaction (Miranda and Wanderley 2006). Goudeseune
(2002) presents a comprehensive framework of mapping techniques for digital
instrument design, building on the proviso that performers can think of mappings as
containing the feel of an instrument; how it responds to the physical control. Garnett
and Goudeseune (1999) refer to the results of mapping as providing ‘consistency,
continuity and coherence’, key factors in the design of musical control systems.
Clearly, different strategies for mapping in instruments driven without gestural
input, known as integral interfaces, are needed to develop BCMI systems (Knapp
and Cook 2005).

Mappings can be defined based on the number of connections between the input
and output parameters; one-to-one, one-to-many and many-to-many (combinations
of one-to-one and one-to-many) (Hunt et al. 2000). Although this framework is
useful for evaluating system design, it does not take into account the relationship of
the input control to the mapping or any codependencies or rules a mapping may rely
on. Goudeseune (2002) recognises the intricacy involved in mapping design,
coining the term high-dimensional interpolation (HDI) to define mapping a large
number of parameters to a small number of inputs where controls can be interpo-
lated and connected using a variety of rules and techniques.

The investigation of sophisticated mappings in BCMIs, in comparison with other
contemporary digital musical instruments and interfaces, has until recently been
stifled by the difficulties in eliciting control from EEG information. On the one
hand, simple mappings that exemplify EEG control have been favoured as they suit
this purpose well. Simple mappings, such as a linear control to modulate a syn-
thesiser’s pitch, have been designed to be very effective to facilitate performing and
composing with BCMIs for non-musicians (Miranda et al. 2011). On the other
hand, new methods of EEG acquisition provide much more accurate real-time
control than was previously available, and as a result can accommodate far more
advanced mapping techniques leading to complex compositional approaches.
Eaton’s The Warren, a performance BCMI piece that will be discussed later in this
chapter, provides a useful example of complex mapping strategies.
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As technologies for monitoring brainwave information have advanced so too has
the field of computational music. This correlated evolution of technologies and
understanding of EEG has shaped the direction of brainwave-controlled music.
Both fields have produced knock-on effects in this area, from the introduction of
MIDI that led to new applications of brainwaves with music to the advancement of
BCI, allowing BCMI research to shift towards its engagement with cognitive
control of EEG.

In order to elicit control over EEG, it is essential to be able to decipher meaning
within EEG data that directly correlate with the subjective decisions (control
choices) of a user, be it a mental state or a cognitive task. This quest for accurate
meaning in EEG information has long been at the forefront of BCMI research, as
through precision in generating data comes accurate control. Note that the term
meaning here refers to understanding the correlation between a user’s mental
process and an associated brainwave response. Meaning in this manner does not
refer embedded or implied thought patterns within brainwaves (unless otherwise
stated later on). Mappings are not necessarily dependant on control, as generative
mappings that interpret unknown EEG information can produce interesting music,
but the two can feed off of each other in terms of complexity. When control is
explicit, the ability to introduce complex mapping strategies for more advanced
musical control arises.

In this chapter, we use the term secondary mappings to refer to a mapping as an
aside of an input’s primary connection. A secondary mapping may not necessarily
be directly presented to a user, it may be used for time-based data harvesting for
algorithmic rule-based mapping, or it may just not take precedence over a primary
mapping.

10.3 Mapping and Approaches to BCMI

The BCMI systems presented in this chapter differ in terms of application, cost,
equipment type and signal processing, data handling and indeed mappings, but all
can be said to consist of the following elements (Fig. 10.1):

• Stimuli This element is optional and in some cases where it is present provides
the feedback link with the system, being part of or being affected by the musical
system.

• EEG Input Electrodes placed on the scalp, either in the form of a brain cap or a
headband to fit them.

• Signal Processing Amplification of electrical activity and data extraction to
isolate meaningful information. Filtering and further data processing/analysis/
classification are applied depending on the EEG technique used.

• Transformation Algorithm Transforming the EEG information into parameters
within a musical system. This is where mapping of non-musical information to
the music engine occurs. This can take various forms from a patch cable from an
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EEG amplifier into an analogue synthesiser to a generative software program
that triggers musical events.

• Musical Engine The musical system receiving commands from the transfor-
mation algorithm. This may be external to the algorithm (e.g. a MIDI instru-
ment) or built into it with the appropriate software.

Miranda et al. (2003) identify three types of BCI systems, based on how they
interact with a user. BCMIs can also be observed using this categorisation as
systems have been developed within all three areas: user-orientated, computer-
orientated and mutuallyorientated.

10.3.1 User-Oriented Systems

A user-orientated type of system is programmed to understand the meaning of user
input with in an attempt to adapt to its behaviour in order to achieve control. For the
piece In Tune, Richard Teitelbaum adapts his system in response to a performer’s
alpha waves as well as injecting his own musical directions (Teitelbaum 1976).
Building user-orientated BCMIs pose difficulties with understanding meaning
within EEG. When relying on interpretation, control can be harnessed far better in
mutually orientated systems where this problem is addressed two way.

Fig. 10.1 The make-up of a typical BCMI system
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10.3.2 Computer-Orientated Systems

In a computer-orientated system, the user adapts to the functions of the computer.
The computer model stays fixed, and the success of the system relies on the ability
of a user to learn how to perform control over musical events. A performance piece
conceived in 2011 by BioMuse Trio, called Music for Sleeping and Waking Minds,
uses this approach. The responses of performers’ brainwaves are mapped to fixed
musical parameters. Controlling their state of mind (or sleep in this case) affects
control over the music. Attempts to control musical systems with alpha waves
using, a technique called neurofeedback, have mostly fallen into this category as the
user is required to learn how to control their EEG in certain ways in order to
produce desired sonic results.

10.3.3 Mutually Oriented Systems

Mutually orientated systems combine the functions of both user and computer
orientation whereby the two elements adapt to each other. This was the approach
used in Eaton’s The Warren. Here, the system requires the user to learn how to
generate specific commands and features mappings that adapt depending on the
behaviour of the user.

The majority of BCMIs fall into the category of computer-orientated systems.
This allows for fixed parameters to be built that respond to known user brain
responses. The use of mutually orientated systems allows for two useful things.
Firstly, more sophisticated algorithms derived from EEG behaviour can be mapped
onto music. As the system learns the EEG behaviour of a subject over time, this
information can be used in series with primary mappings and in parallel through
embedding deeper secondary mappings. Secondly, a system where user and com-
puter adapt together increases the likelihood of obtaining accurate EEG as both
elements are effectively calibrated to optimise the system performance.

10.3.4 Brainwave Data for BCMI

There are two types of EEG data used in the systems discussed in this chapter:
event-related potentials (ERPs) and spontaneous EEG. ERPs are fluctuations of
EEG measured in response to events triggered by external stimuli. ERP data are
time locked to stimulus and are recognised as positive or negative amplitude
deflections. ERPs are categorised by their response time post-stimuli and are
associated with brain processing of event expectation and perception.

Systems monitoring spontaneous EEG look at ongoing EEG data, often across
multiple frequencies for patterns or trends that correspond to specific brain activ-
ities. This can also be time locked to external stimuli, and if so, windows of
corresponding data are captured for analysis.
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Significant work in using brainwaves for music has been developed with other
forms of measurement of brain activity. For instance, fMRI (functional Magnetic
Resonance Imaging) has been used to translate brain data as input to offline musical
compositions, one example of which is discussed in Chap. 12 in this volume.
However, fMRI is currently impractical for developing a BCMI: it is expensive, not
portable and has poorer time resolution than EEG, to cite but three encumbering
factors.

10.3.5 Methods of Music Generation with Brainwaves

When looking back on research into music and brainwaves, we can separate sys-
tems into three categories: ones for EEG sonification, ones for EEG musification
and ones for BCI control. EEG sonification is the translation of EEG information
into sound, for non-musical and predominantly medical purposes. EEG musifica-
tion is the mapping of EEG information to musical parameters; however, the EEG
data are arbitrary and when possible can offer only loose forms of control. BCI
control is inherent in systems where direct cognitive real-time control of music is
achievable. In some systems, more than one of these approaches can be found, and
in others where one approach has been adopted for investigation of the technique,
the application could well be applied to another approach as a result.

It should also be noted that the mapping approaches discussed in this chapter are
not wholly comparative, as it charts development in a relatively infantile field,
where, as previously mentioned, progress is heavily reliant on the advances within
neuroscience. Where considered useful, areas are touched upon that draw parallels
between systems as a way of directing the reader through the different approaches
and ideas.

Although this chapter does not attempt to explicitly categorise the accuracy of
each system, due to the wide range of disparaging technologies and individuals
incorporated, it should be carefully acknowledged that accuracy plays a very
important part in the derivation of meaning within EEG data, and this is considered
of high importance.

The sonification of data offers an interesting way of to listening to the sounds of
non-musical sources of information. Data harvesting allows us to sonify a world of
unlikely information, such as the stock market or even the weather. In sonification,
we are concerned with the sound of the information relative to itself, and it is a
passive process and a way of hearing numerical or graphical data.

Sound has long been used as a way of interpreting biological information, from
the use of the stethoscope to the steady beeping of the heart rate monitor. Both of
these are methods of hearing the body, which when used in real time to help affect
control over the signal is known as biofeedback. The visual complexities of EEG
have given reason to sonifying its information as a method for understanding
activity through the simplification and the natural intuition of discernably listening
to multiple elements contained within sounds. As such, the mappings for direct data
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sonification should be straightforward in order to provide an intuitive correlation
between brain activity and sound. Control of EEG in sonification (and some
musification) systems is largely passive, whereby the user has no direct control over
their EEG. EEG may be influenced external factors, such as tiredness or mood, but
in situations where brainwave control is not achieved by explicit choice.

In contrast to sonification, to musify data is to map the data into organised
musical form. This is rather different from sonification as one is not attempting to
understand the data through sonification per se, but rather attaching it to a musical
system. Therefore, musical structures are connected to the EEG information based
on the patterns or variables apparent within the data. For example, if the EEG
delivers five distinguishable data, then these can be directly mapped to five
parameters within a pre-designed musical piece. A common factor within EEG
musification is the use of generative musical approaches. In musification, BCMI
systems a passive approach to EEG control are generally used. EEG data are
generally limited in its meaning, and the shift in focus lies heavily on mappings
using advanced techniques of interpreting data in useful ways to grant musical
success. In summary, the difference between sonification and musification are as
follows: (a) sonification produces sounds from EEG data, and the system would
normally control a sound synthesiser; (b) sonification is not, in principle, intended
for an artistic purpose, but rather as some sort of scientific auditory display of the
EEG behaviour.

Both sonification and musification afford no explicit control of the sound of
music, and as such, strictly speaking, they could be regarded outside of the realms
of BCI research. This is because BCI research is based on the premise that a BCI
system allows for the active control of a device and/or software by the explicit
thought of the command, and the results of the mental activity are fed back to the
user in real time (Wolpaw and Birbaumer 2006). This definition of BCI has been
harnessed within BCMI to the extent that subjective control over systems is now a
realisation. Here is where the challenge of being unable to translate musical thought
into direct action has been bypassed through embedding meaning into cognitive
processes. For example, where reading the explicit thought of ‘play the note D#’, is
not feasible, using learnt cognitive processes where a user understands the out-
comes may lead to a dedicated brainwave response that can be mapped to play the
note D#.

10.4 Observations on Musifying EEG

Musifying brainwave activity without a need for control can offer interesting
possibilities with regard to mapping data to music. Although musification is not
really BCI, it is nevertheless a valid approach for BCMI for artistic purposes. For
instance, Miranda and Soucaret (2008) reported on a mapping method they
developed to produce melodies from the ‘topological’ behaviour of the EEG across
a configuration of electrodes on the scalp or montage. In this case, the EEG signal
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of each individual electrode was analysed individually in order to infer possible
trajectories of specific types of EEG information across a montage of 14 electrodes,
as listed in Table 10.1; see Fig. 10.2 for placement scheme with labels suggested by
the International Federation of Societies for EEG and Clinical Neurophysiology.

As an example, let us assume that we are interested in tracking the behaviour of
the overall EEG amplitude. Figure 10.3 plots the amplitude of the EEG on each
electrode for approximately 190 s. Each plot is divided into 5 windows of
approximately 38 s each; the size of this window is arbitrary. The average

Fig. 10.2 The 10–20
electrode placement scheme
recommended by the
International Federation of
Societies for EEG and clinical
neurophysiology

Table 10.1 The montage of
14 electrodes used in EEG
melodies

Electrode number Electrode name

1 Fp1

2 Fp2

3 F7

4 F5

5 F4

6 F8

7 T3

8 T4

9 T5

10 P3

11 P4

12 T6

13 O1

14 O2
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amplitude is calculated for each window, and the electrode with the highest value is
singled out (shaded windows in Fig. 10.3). The example in Fig. 10.4 shows how the
power of the EEG has varied across the montage: the area with the highest EEG
power moved from electrode 2 (Fp2) to 1 (Fp1), and then, it moved to electrode 5
(F4) followed by electrode 6 (F8), where it remained for two windows.

The method to produce melodies works as follows: we associate each electrode
with a musical note (Table 10.2), which is played when the respective electrode is
the most active with respect to the EEG information in question. The associations
between notes and electrodes are arbitrary and can be customised at will.

In the case of our example, the trajectory shown in Fig. 10.4 would have gen-
erated the melody shown in Fig. 10.5. (Rhythm is allocated by means of a Gaussian
distribution function, which is not relevant for discussion here.)

The authors reported that it was possible to produce interesting pleasant music
with the system by forging crafty associations of electrodes and notes, combined
with careful generation of rhythmic figures.

Fig. 10.3 The varying amplitude of the EEG on 14 different electrodes for approximately 190 s
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A number of analyses can be performed in order to track the behaviour of other
types of EEG information. For instance, they generated two concurrent melodies by
tracking the trajectory of alpha rhythms and beta rhythms simultaneously. They also
generated polyphonic music by tracking other types of EEG information simulta-
neously, such as correlation between electrodes or sets of them, synchronisation
between one or more electrodes, and so on.

Another example of musification was reported by Wu and colleagues. They
harnessed EEG data generated by variations in sleep to compose music (Wu et al.
2009). The pitch and duration of notes were derived from formulas that mapped
each EEG wave to a determinate pitch and its period to duration. Characteristics of

Fig. 10.4 Tracking the behaviour of the amplitude of the EEG signal across a montage of
electrodes. In this example, the area with the highest EEG power moved from electrode 2 (Fp2) to
1 (Fp1), and then it moved to electrode 5 (F4), followed by electrode 6 (F8), where it remained for
two windows
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the music were explored through experiments with listeners attempting to associate
the resultant music with levels of sleep. They developed mapping strategies in their
investigations into musical representation of mental states. Figure 10.6 shows the
relationships between EEG features and musical parameters. Here, mappings
accumulate in order to build bars of musical phrases. For example, as time-based
features of sleep stages differ, compositions derived from slow wave sleep (where
activity is high in low-frequency delta and theta rhythms; see Chaps. 1, 2, 7 and 9
for more on EEG rhythms), are higher in amplitude and lower in pitch than com-
positions generated from rapid eye movement EEG (where alpha activity is more
prominent, albeit with low amplitudes) (Wu et al. 2010). This ability to directly map
time-based features, such as the prominent frequency and amplitude, gives way for
direct musical evocations of the mind’s state, allowing a listener to hear, through
music, brain states of arousal and relaxation.

10.5 Early Research into Biofeedback and Music

In 1965, Alvin Lucier performed a piece for live percussion and brainwaves titled
Music for Solo Performer. The piece was inspired by Luciers’ experiments, with the
physicist Edmond Dewan, into controlling bursts of alpha activity with meditative
states. Brainwaves mapped to sounds, in real time, created a neurofeedback loop,
allowing Lucier to affect sonic changes based on the feedback of the previous

Table 10.2 Associations
between musical notes and
the electrodes of a given
montage

Electrode number Electrode name Musical note

1 Fp1 A4

2 Fp2 A4#

3 F7 B4

4 F5 C5

5 F4 C5#

6 F8 D5

7 T3 D5#

8 T4 E5

9 T5 F5

10 P3 F5#

11 P4 G5

12 T6 G5#

13 O1 A6

14 O2 A6#

Fig. 10.5 Melody generated
from the behaviour of EEG
power shown in Fig. 10.4
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brainwave states as he heard them. Alpha waves, or alpha rhythms, are the term
given to describe brain activity within the range of 8 and 13 Hz and are commonly
associated with relaxed states of attentiveness (Cahn and Polich 2006).

During the performance, Lucier amplified his alpha waves, read from two
electrodes positioned on his forehead, through a series of loudspeakers. As the
frequencies contained in alpha waves are below the threshold of human hearing, the
loudspeakers were coupled with resonant percussive instruments including cym-
bals, gongs, bass drums and timpani as a way of musifying brainwave activity
(Lucier 1976).

This simple method of directly mapping brainwave intensity to instrument res-
onance was the first attempt of its kind to interpret brainwave activity in real time
into a form of experimental music. The theatrical dramaturgy of a man on a
darkened stage with wires on his head and his brain generating music was surely
impressive enough, but Lucier was considerate in his approach applying deeper
mapping considerations to increase the sonic possibilities. The input to the system
was alpha rhythms produced in phrases of varying duration, and this one limited
parameter from the brain was carefully utilised. The amplitude was operated by a
manual control (either by an assistant or by Lucier himself) and mixed between
individual speaker channels. The known behaviour of these three parameters
(duration, volume and channel mixing) in response to alpha activity was used to
design the output stages of the system, or the musical engine, instrument type,
speaker placement, and the involvement of extra materials, such as cardboard boxes
or metal bins. Additionally, a threshold switch was used for alpha above a certain
amplitude level to trigger pre-recorded tape loops of alpha activity, transposed
upwards into the audible realm for the audience to hear.

Fig. 10.6 Mapping diagram for musification of EEG proposed by Wu et al. (2010)
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In his reflections on the piece, Lucier recognises the importance of how his
mapping choices are linked to musical complexity. He even goes as far as to
identify a further mapping strategy, unavailable to him at the time. He wished to be
able to store time-encoded sections of alpha activity and map patterns within them
to speaker channel mixing; a technique possible with today’s computing and not too
dissimilar from methods used in BCMIs discussed later in this chapter.

In contrast to Lucier’s desire to communicate the natural frequencies of brain
activity through acoustic and tangible sound sources, Richard Teitelbaum, a
musician in the electronic ensemble Musica Elettronica Viva (MEV) began to
incorporate bio-signals into his electronic compositions using modular analogue
synthesisers in the 1970s. Taking inspiration from Lucier and new advances in
synthesis technology, Teitelbaum integrated EEG signals alongside other bio-sig-
nals into his pieces, many of which focused on the use of meditative states of mind.
Performed throughout 1967 Spacecraft was Teitelbaum’s first use of amplified EEG
activity as a control voltage (CV) signal for a Moog Synthesiser. Here, the electrical
activities of the brain were electronically sonified in real time, again providing a
real-time biofeedback loop for the performer (Teitelbaum 2006). Although
Spacecraft was a wholly improvised composition, it provided a foundation for his
later uses of brainwaves that sought to investigate elements of control and musical
interaction.

In Tune, perhaps Teitelbaum’s most popular work, was first performed in Rome,
1967. What stands out in later versions of the piece (referred to by the composer as
the expanded version of the piece) is the introduction of a second performer’s EEG
within his system. Alongside other bio-signals, including heartbeat and amplified
breathe, alpha activity was measured and then split into two paths within a modular
system comprised of analogue synthesis modules, a mixer and audio effects. Before
any audio processing took place, a threshold gate was set to allow only alpha
signals generated with eyes closed to pass; the amplitude of alpha rhythms is
markedly increased by closing one’s eyes. This provided a simple control switch for
performers; system ON with eyes shut and system OFF with eyes open. Precise
control within an ON state of the system’s parameters was largely unattainable
beyond basic changes of alpha amplitude increase and attenuation. With the gate
open, the alpha of a performer was split from an envelope follower into two
directions within the system to provide a one-to-many mapping. The first path
allowed for a direct DC signal to be mapped to two voltage-controlled oscillators,
thus modulating a preset centre pitch for each. The second path sent the EEG signal
to an envelope generator, which allowed for variable control of a voltage-controlled
amplifier (VCA) and voltage-controlled filter (VCF). This parallel mapping of one
EEG signal allowed for real-time modification of pitch, rhythm and amplitude of
the synthesised waveforms coupled with magnetic tape recordings being played
back through the same VCA and VCF. Again, these mapping choices were not
arbitrary but were in keeping with Teitelbaum’s artistic aims for the composition.
The heavy breathing and sexualised moaning sounds played back from one tape
machine being rhythmically enveloped by the alpha were designed to play along-
side the live breath and vocal sounds from a throat microphone (Teitelbaum 1976).
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The method for signal processing was repeated for the second performer whose
alpha controlled a third and fourth oscillator via a second envelope generator for
their amplification and that of a secondary tape machine (but no subsequent filter in
this path).

With two performers generating biological signals, Teitelbaum performed the
role of conductor. He manually played the system controls (synthesis, reverb and
mixing parameters) in response to the performer’s alpha alongside injecting his own
musical intuition. Alongside, its use of brainwave information as a control input to
an electronic musical system In Tune introduces the use of brainwaves as a col-
laborative musical tool for performers and raises interesting questions regarding the
potential influences of biofeedback between individuals in shared musical envi-
ronments not just of brainwaves but from other bio-signals.

The fields of biofeedback and aesthetic experience became increasingly popular
in the late 1960s and early 1970s. During his time at the Laboratory of Experi-
mental Aesthetics, part of the Aesthetic Research Center of Canada, David
Rosenboom conducted a thorough body of research into biofeedback and the arts,
definitively recorded in his 1990 writing Extended Musical Interface with the
Human Nervous System (Rosenboom 1990).

Other artists at this time were also experimenting with alpha, such as Finnish
artist Erkki Kurenniemi’s instrument Dimi-T, where EEG was used to control the
pitch of an oscillator (Ojanen et al. 2007). Manfred Eaton’s ideas for an adaptive
biofeedback instrument presented in his book Bio-Music (Eaton 1971) presented his
concept of a musical brain system powered by visual and auditory stimuli. What is
significant in his idea is that the images or sounds that are presented as stimulus for
generating brainwave activity can be semantically removed from the music as long
as the corresponding brain activity is one desired by the composer. This concept is
now a common tool in contemporary BCMI design, where stimuli are used to
generate specific brainwave information or meaning, but is unrelated to the musical
outcomes; this will be discussed in more detail further on.

The study of alpha rhythms in music offered a rich time of creative practice.
Ultimately, musical and artistic works were restricted by the limits of control that
came with generating and analysing alpha. In order to use the brain for more
advanced musical applications, new methods of harnessing and interpreting brain
information were required. Yet the work undertaken in using alpha waves to control
music was an important landmark in the field of BCMI, as it suggests that the
notion of music controlled by thought was actually achievable.

In 1995, Roslaie Pratt and colleagues at the Biofeedback Research Laboratory in
Brigham Young University reported on experiments where children with ADD and
ADHD used neurofeedback training with the aid of music containing discernible
rhythms, to increase focused behaviour through the reduction of theta activity (Pratt
et al. 1995). These experiments provided benefits that were still discernible
6 months later. Years later, sound and music were the focus in Hinterberger and
Baier’s body of work in providing aural elements to an slow cortical potential
(SCP)-driven communicative tools, such as rewarding musical jingles linked to
successful EEG control, and in their system POSER, short for Parametric Orchestral
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Sonification of EEG Rhythms (Hinterberger and Baier 2004). Spurred on by
research indicating the superiority of audio over visual feedback in a system with
multiple inputs (Fitch and Kramer 1994), POSER applied musical mappings to
assist real-time analysis of EEG information. In initial implementations of POSER,
features of multiple brainwave rhythms were mapped to MIDI instruments and
presented to users. Continuous sounds were modulated in pitch and volume
according to changes within the bandwidth of a corresponding rhythm. Reports
showed that users were able to evoke control over individual EEG rhythms, as
successfully as 85 % during trials, using musical notes as real-time feedback for
simultaneous EEG data. This approach is later adopted in a system that screens
EEG for dynamic characteristics (Baier et al. 2007), such as those prominent in
diseases including epilepsy and Alzheimer’s (Jeong 2002). Here, events of interest
within EEG are mapped to digital synthesis parameters in Csound music software
(Boulanger 2000), to aid in the distinction between normal and abnormal rhythms
in patients. By connecting expected EEG artefacts to synthesis features such as
amplitude modulation and harmonic content, a sonic real-time interpretation of
meaningful data is available. In another system, the use of sound localisation via an
array of speakers is used to reflect the horizontal location, across the scalp, of the
current activity. Further work into these sonification techniques also addressed
interaction and user acceptance issues (de Campo et al. 2007).

10.6 Computer Music and the Brain

The mappings in early experiments with music and brainwaves were built into the
hardware that was used. They were pre-determined by the equipment available,
they were fixed and they were difficult to change or undo. BioMuse, a hardware and
software system developed by Benjamin Knapp and Hugh Lusted in the 1990s,
introduced a major departure from this, with the use of real-time digital computing
to process EEG data (Knapp and Lusted 1990).

BioMuse provided a portable kit for digitally processing bio-signals, but what
was ground breaking was that it was able to convert these signals into MIDI data.
Thus, creating a MIDI controller based on bodily responses, BioMuse also mea-
sured eye movements, muscle movements and sound from a microphone input.
This use of the MIDI protocol allowed for an EEG signal to be mapped to the input
of MIDI-enabled equipment, such as a synthesiser, a drum machine or a sequencer.
Furthermore, the technology allowed for fine-tuning of input data. An input
threshold switch and a channel sensitivity control meant that the system could be
calibrated for different users and different applications. Adjusting the threshold
allowed for amplitudes over a specified level to trigger a specified MIDI command,
and increasing the channel sensitivity increased the number of MIDI values in a
corresponding range. A demonstration of BioMuse presented at the New Music
Seminar 1990 in New York City showcased this method of mapping multiple bio-
signals to MIDI parameters.
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The BioMuse software provided the ability to manipulate bio-signal to MIDI
mappings. With the large number of MIDI commands available, this feature
allowed alpha waves to be mapped to note-specific MIDI commands, such as Note
On or Note Off, or to affect sounds triggered by other bio-signals, such as Control
Change messages. From 1987, bursts of alpha activity were sonified via a MIDI
synthesiser (Lusted and Knapp 1996), and again the use of opening and closing the
eyes was incorporated into compositions to generate significant differences in alpha
activity.

Earlier we mentioned the pieceMusic for Sleeping and Waking Minds, which is a
more recent work using updated versions of these tools. This is an 8-h-long com-
position intended for night-time listening. Four performers wearing EEG sensors
affect properties of tones using simple direct mappings, in order to project basic
changes in their brainwave activity to an audience. Alongside alpha activity, delta
rhythms and spindles are also measured and mapped to parameters of audio. The
contrast in input parameters is reflected through the resulting sound. Where alpha
rhythms are prominent during modes of light sleep and through closing of the eyes,
delta rhythms, waves between approximately 0–4 Hz, are associated with deepest
levels of sleep. A spindle is recorded as a spike in activity between 11–16 Hz with a
duration ≥0.5 s and combines with muscle twitches during periods before deep sleep
(Babadi et al. 2012). These three classes of brain activity associated with different
stages of sleep are mapped to three musical parameters. Within the composition are
sixteen tones of differing spectra. Each performer controls parameters relating to four
of these tones. An increase in alpha activity applies a tremolo effect to the tones,
prominent delta waves change the timbre of the tones, and spindles trigger envel-
oped tones through a delay effect with feedback (Ouzounian et al. 2011). Whereas
delta activity and spindles are not wholly controllable, these three elements of brain
activity are effectively communicated through the act of watching the performers
sleep as well as listening to the resulting audio.

10.7 Event-Related Potentials and Auditory Stimuli

Research into using brainwave activity for musical purposes has not been limited to
translating alpha and other rhythms related to meditative states. Studies into ERPs
have led to BCMIs designed to measure brain activity as a direct result of sensory,
cognitive or motor responses. The ability to actively generate brain activity using
ERPs has led to BCMI systems whereby a user has full control over the musical
outcomes.

ERPs are electrophysiological brain responses produced by perception to stimuli
that is presented to a subject. They are locked in time to the event of the stimuli, and
they are sources of controlled and visible variability in brain activity (Donchin et al.
1978). ERPs highlight the role of anticipation within brain processing as they can
be elicited by deviation from expected events provided by, on the whole repetitive,
stimuli.
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In 1990, Risto Näätänen reported on a number of experiments in measuring
brain activity relating to attention using auditory stimuli. Even though attention
research involving ERPs had been going on for over 50 years at the time, Näätänen
was keen to distinguish between the brain’s automatic responses to stimuli and
responses derived from someone’s attention and their interpretation of the heard
stimuli (Näätänen 1990). The idea of a subject being able to shift their attention at
will to auditory stimuli opened up possibilities of BCMI systems controlled by a
user’s attention to elements of what they are hearing.

Research into attention and sound has long been investigated even before the use
of EEG, and earlier research observed a phenomenon known as dichotic listening in
regard to how we focus our hearing attention. Dichotic listening is the process of
paying attention to sound from one ear whilst ignoring sound from the opposite ear.
When asked to focus on speech arriving at one ear, subjects were often unable to
recall speech of the same volume from the opposite ear (Cherry 1953). In Näätä-
nen’s experiments, he found that the brain reacts to deviations from repetitive
sounds automatically, even when a listener focuses their attention away from what
they are hearing. This was measured with a P300 EEG response, where the potential
begins with a positive deflection and peaks at around 300 ms after the onset of the
stimuli. This ‘oddball paradigm’ implied that when presented with recurring audio
information, the brain reacts automatically, and predictably, to deviations in audio
patterns.

Throughout the 1990s and early 2000s, further research into how the brain
responds to auditory stimuli shed light on how the brain processes our perceptions
of music. A key area in this field is the study of meaning held within ERPs, building
upon previous research into how the brain processes language (Besson and Macar
1987). Here, the term meaning has more depth than mere EEG association to input.
Besson and Faïta (1995) demonstrated how different responses within ERPs are
elicited when subjects listen to musical phrases that end either congruently or
incongruently in pitch or rhythm. The results also show how differences between
musicians and non-musicians indicate that musical expertise can influence aspects
of music processing, aside from mere perception.

In 2003, Besson and Schön reported that the P600 ERP response (a positive
deflection peaking at around 600 ms post-stimuli) is associated with syntactic
violations in language and music such as grammatical errors and incongruously
ending musical phrases. Whereas increases in the N400 (negative deflection around
400 ms) ERP are associated with unexpected semantic violations in language, such
as ‘The pizza is too hot to cry’ (Besson and Schön 2003). The amplitude of the ERP
is relative to the degree of the violation; the more abstract the meaning results in a
potential with higher amplitude.

This research indicates that there is a separate mechanism in the brain for pro-
cessing music, and although the P600 is a slower response than the N400, it
nonetheless provided a basis for further research into applying auditory perception
into controlling music. A difficulty in using ERPs as a control source in BCMIs is
the issue of identifying potentials amongst non-related EEG information. To
address this, epochs of ERPs are summed and averaged from many presentations of
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the same stimuli in order to gauge whether the response is positive or not. This extra
time adds a delay to the signal processing, distancing control away from real-time
musical influence.

10.8 EEG Classification and Auditory Stimuli

By the early 2000s, there were several headband-based systems that could play
music from EEG data (Miranda 2001). The majority of these provided only two
electrodes and very limited tools for interpreting the raw EEG data. Moreover, the
quality of the EEG obtained with these less costly systems did not match the
minimum standards required to implement reliable BCI system. Nevertheless, in
2001, Alexander Duncan, then a PhD candidate working under the guidance of
Eduardo Miranda and Ken Sharman at the University of Glasgow, proposed a
BCMI system based on musical focusing through performing mental tasks whilst
listening to music, alongside EEG pattern classification (Duncan 2001). Duncan
proposed a number of data classification methods for collecting a subject’s EEG
profile to create an offline neural network classifier, which is used for comparative
analysis of EEG readings. This system could effectively be trained to understand the
brain signals of a user so that in practice there was a built-in model to apply ‘best-
fit’ rules to derive the meaning within the EEG. Here, EEG was extracted through
power spectrum analysis, instead of ERPs. Power spectrum analysis uses Fourier
transformations to observe the amplitudes of EEG frequencies. In this set-up, EEG
generated from external stimuli was analysed by a computer to create classifications
of patterns over multiple trials. Building such a classification systems used artificial
intelligence to create models of expected users responses. A model is built from the
averages of many practice tests of an individual’s response to stimuli, which in
effect trains the system. When the system is then engaged in an experiment, it reads
an incoming EEG signal and classifies it against the artificial neural network stored
within its memory.

Researchers based at the Interdisciplinary Centre for Computer Music Research
(ICCMR), University of Plymouth implemented this approach in experiments that
combined auditory attention with data classification to analyse features within a
short epoch of post-stimuli EEG. In 2003, Miranda and colleagues reported on three
experiments that investigate methods of producing meaningful EEG, two of which
were deemed suitable for practical musical control. The first of the two uses the
technique of active listening, and the second uses musical focusing.

In the first experiment, small epochs of EEG measured across 128 electrodes
were analysed to determine any difference between the acts of active listening
(replaying a song in the minds ear) and passive listening (listening without focus).
Trials were multiplied and looped to build a portfolio of EEG readings. Musical
stimuli consisted of melodic phrases being played over rhythmic patterns. In dif-
ferent trials during a break between melodies, subjects were asked to do three
different things. In the first trial to replay the tune in their heads, in a second to try
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relax their minds without focusing on anything in particular, and in a third to count.
Trials were carried out in a number of orders for greater disparity, and a mental
counting exercise was factored in as a test of whether musical concentration
through active and passive listening was extrinsic to standard methods of mental
concentration focusing (Miranda et al. 2003).

The second experiment set to determine whether EEG could identify if a subject
was engaged in musical focusing (paying particular attention to an element of music
being heard) or holistic listening (listening to music without any effort). During the
musical focusing experiments, subjects were asked to focus attention to an instru-
ment within the music that was positioned either in the left or right stereo field.

These tests suggested that it might be possible to accurately measure EEG
differentiation between someone engaged in mentally focusing on music and
holistic listening. The second test suggested that it might be possible, although to a
lesser degree, to record whether a subject is focusing on sound arriving in the left
ear or the right ear, whilst in both experiments, the counting exercise provided a
different response in the EEG indicating that musical focus uses different brain
processing mechanisms that other forms of concentration.

The experiments were conducted in blocks of multiple trials, and the results were
derived offline. However, their outcomes led to two initial concepts for BCMIs. b-
soloist is a BCMI system designed to detect active and passive listening. A con-
tinuous rhythm is presented to a subject with regular melodic phrases overlaid.
Straight after the melody is played the system looks for either an EEG reading of
active or passive listening. If the reading shows active listening has occurred, then
the next melody line will be a variation of the last. If the reading shows passive
listening occurred, then the next melody played will be exactly the same as the last
(see also Chap. 1). b-conductor was designed to use musical focusing to affect
changes in either left or right channels of music (Fig. 10.4). When presented with
music in both channels, a user selects a channel through attentively focusing on the
instrumentation it contains. At regular intervals, the system detects the channel of
attention in the EEG, and this recognition is mapped to the music, turning up the
volume of the focused channel. After a change is made, the volume then returns to a
default value until the next command to change is received.

In 2004, Miranda and colleagues reported on a further experiment that investi-
gates EEG derived from auditory imagery. In this, they further the search for
distinctions between mental tasks looking for any distinguishable differences
between active listening and tasks based on motor imagery and spatial navigation,
whereby a subject focus their attention to a physical movement whilst remaining
still (Miranda et al. 2004). Tests again used power spectrum analysis but with three
pairs of electrodes (7 in total with a reference electrode) to determine a classification
system through building a neural network. The three extra tasks assigned were for a
subject to imagine opening and closing the right or left hand (motor) and to imagine
scanning the rooms of their home (spatial). A separate pair of electrodes read EEG
data corresponding to each task, and the voltage difference between the pairs was
derived. It was observed which pair produced EEG readings that could be most
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easily discriminated against another. Again, results were very positive with the
largest distinction recorded between auditory imagery and spatial imagery.

Not only did this latter test minimise the number of electrodes for accurately
reading overall EEG, thus likely reducing interference and preparation time, but it
also narrowed the gap between BCMIs and EEG techniques within other BCI fields
such as assistive technologies, where patients already accustomed to motor imagery
would need less training.

Importantly, these experiments indicated that subjective choices can elicit
expected brain responses. Unlike the previous experiments with auditory stimuli,
they do not rely on the subject’s expectation or perception of stimuli but allow for a
user to impose a subjective decision that has the possibility of becoming separate
from the meaning within the music being used. This is a crucial step in the leap
towards BCI control of music through neurofeedback.

This element of subjective control aside, the systems discussed in this section
rely on an intrinsic link between the stimuli and resultant music. They are in effect
one and the same, creating the ultimate feedback loop. Attempting to implement
such a BCMI as an interoperable interface with musical systems outside brain-
related activity becomes extremely difficult when using auditory stimuli as the
driver for generating EEG. Issues of attention become prominent when a user is
required to focus on specific sounds to generate EEG, which then have a separate
effect as they produce or affect unrelated music as the result. BCMIs designed
specifically for utilising these features, such as the b-soloist and b-conductor ideas,
rely on the use of the stimuli as the driver and the receiver of neurofeedback.
However, to design any systems outside such a tight link, the element of neuro-
feedback can become confused and even lost, as the cause is disengaged from the
effect. To counter this, a compromise in neurofeedback loss is made, heavy user
training is required to reassign unrelated mappings through decision making, or as
noted by Miranda et al. (2003), higher levels of intelligence are imparted in com-
positional algorithms detracting from cognitive musical control.

10.9 Towards BCI Control of Music

Currently, there are a number of systems offering EEG detection linked to musical
functions commercially available, e.g. WaveRider, g.tec, Emotiv, to name but three.
These systems provide various methods of processing raw EEG that can be mapped
to musical engines, in effect providing the hardware for a BCMI system. At the time
of publication, there are few systems that allow for mapping EEG directly to
musical programs without direct access to APIs and designing bespoke tools;
however, the Emotiv system offers the ability to map raw EEG into open sound
control (OSC) data, and software such as Brainbay and WaveRider provides tools
for mapping EEG to MIDI. We note however that the prices of EEG equipment can
differ enormously. The reader should exercise caution here because cheaper
equipment does not always match the quality of more expensive ones; EEG requires
good quality electrodes and decent amplifiers.
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To develop sophisticated systems of BCI, control relevant stimuli are required,
and unless using in-the-box methods of analysis and data processing, the appro-
priate means of data acquisition and methods of mapping to a musical engine are
necessary, and this requires expertise.

In 2005, Miranda adopted the approach of designing the musical engine of a
BCMI with sufficient artificial intelligence in order to create sophisticated meaning
from simpler EEG readings. Here, he applied a process known as Hjorth analysis, a
second method of extracting EEG alongside power spectrum analysis. Hjorth
analysis is the extrapolation and measure of time-based features within short
windows of EEG information. These are referred to as the activity, mobility and
complexity within the reading, and measures of each are produced involuntarily as
they lie within overall EEG data. Using these techniques, the BCMI-Piano attempts
to guess the mental state of the user and performs real-time generative piano music
in response, with features based on the techniques of composers such as Beethoven
and Schumann, as discussed in Chap. 3.

The P300 oddball paradigm, earlier mentioned in relation to auditory stimuli
research, was used by Grierson (2008) for a BCMI controlled by focusing visual
attention to stimuli displayed on a computer screen (See also Chap. 3). The P300
potential was found to contain information relative to visual attention of repetitive
stimuli. In the same manner, as deviations in auditory stimuli were found to trigger
P300 responses (Näätänen 1990) as an automatic response, the P300 could also be
elicited by an unexpected interruption within a repetitive visual pattern. In the case
of P300 spelling devices that allow a user to select letters to form words and
sentences, the deviant information contains the letter the user desires, and as such is
injected with the meaning that a BCI system can knowingly respond to. In the first
incarnation of his BCMI, Grierson replaces letters for musical notes for a user to
select via a visual interface.

Over the course of trials, Grierson recorded that four out of five subjects were
able to perform subjective decision making, with regard to specific note selection
and with no training, that were understood by the system 75 % of the time. As ERPs
are difficult to detect within EEG, conducting multiple trials improves the reliability
of the system to detect these choices and increases the percentage of success. The
downside is the time lapse introduced from the initial cognitive decision being
made to the end of the trials and the subsequent data processing. Grierson recog-
nises this factor opting for a minimal trial approach in an attempt to link control as
close to cognition as possible. The stimuli in this system presented the names of
note values over three octaves. Each note name was displayed for approximately
50 ms then removed for up to 1,800 ms, in a quasi-random order. A subject was
asked to select a specific note and count each time it was displayed, generating the
associated ERP information in synchronisation with each display. Experiments
recorded time delays of approximately 12 s, with one subject successfully initiating
control over approximately 7 s with less trials, where total time = flash
time × choices × trials, e.g. 50 ms × 36 × 7 = 12.7 s.
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Although these times are lengthy in comparison to EEG response times in other
BCMI devices, what (Grierson et al. 2011) accomplished with his system was the
ability to widen choice to a range of values. Instead of a ‘one or the other’ decision,
the meaning within the stimuli was designed to visually represent many more
choices, up to 36 in this case example. Grierson and colleagues have since
developed a suite of BCMI applications based upon the NeuroSky bluetooth
headset (Grierson et al. 2011).

The research into ERPs also went as far as to indicate that BCMI control may not
need to rely on a subject training their brain to act accordingly to the intelligence of
a BCMI. By relying on the ability of the brain to respond to the focus of attention in
a multi-variable environment, no training was necessary as long as the user had the
ability to recognise visual events and perform the counting task. As a result of these
factors, this method for eliciting P300 for control was subsequently utilised by the
neurotechnology company g.tec in their commercial BCI system.

As previously mentioned, the ERP response to a single event is problematic to
detect on a single trial basis, as it becomes lost in the noise of ongoing brain
activity. However, if a user is subjected to repeated visual stimulation at short
intervals (at rates approximately between 5 and 30 Hz), then before the signal has
had a chance to return back to its unexcited state, the rapid introduction of the next
flashing onset elicits another response. Further successive flashes induce what is
known as the steady-state response in the brain’s visual cortex, a continuously
evoked amplification of the brainwave (Regan 1989). This removes a need for
performing numerous delayed trials as the repeated visuals are consistently pro-
viding the stimuli required for a constant potential, translated as a consistent
increased amplitude level in the associated EEG frequency.

This technique, steady-state visual-evoked potential (SSVEP), was adopted in a
BCMI system designed for a patient with locked in syndrome (Miranda et al. 2011)
as a tool for providing recreational music making. Here, four flashing icons were
presented on a screen, their flashing frequencies correlating to the frequencies of
corresponding brainwaves measured in the visual cortex. The user selects an icon
simply by gazing at it, and the amplitude of the corresponding brainwave frequency
increases. Whilst EEG data are analysed constantly, the system looks for amplitude
changes within the four frequencies. The icons represent four choices, always
available to the user at the same time. These controls are in turn mapped to com-
mands within a musical engine, as well as being feedback into the display screen to
provide visual feedback to the user. The instantaneous speed of the EEG response to
the stimuli finally brought real-time explicit control to a BCMI, which required no
user or system training beyond the task of visual focusing. Please refer to Chap. 1 for
more information on this system.

As well as the selection of commands, a second dimension of control was
gathered through the level of focused gazing. This elicited a relative linear response
within the amplitude of the corresponding brainwave. This allows users to employ
proportional control methods akin to intrinsically analogue tasks such as pushing a
fader or turning a dial. This differs from previous selective, more digital tasks in
BCMIs, such as a switch or a toggle function. In this system, Miranda and
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colleagues utilised this control to trigger a series of defined notes within a scale
(Miranda et al. 2011).

The SSVEP-based BCMI by Miranda and colleagues broke new ground in
BCMI research. This is the first instance of a system whereby a user can precisely
control note-specific commands with real-time neurofeedback. It is interesting to
refer back to the BCI definition of Wolpaw and Birbaumer (2006) who may well
define such systems as outside the realm of true BCI as it relies on the EEG
interpretation of eye position and not pure thought processes. That said, in the
pursuit of real-time control of brainwaves so far SSVEP, in comparison with motor
imagery and P300 BCIs, has been found to offer the quickest and most accurate
EEG response and with the least amount of training (Guger et al. 2011). Also, the
advantages of these types of systems over previous BCMIs are clear to see. One of
the outcomes of this initial SSVEP research was the use of BCMIs in collaborative
musical applications. In terms of music used as a real-time communicative tool
between people, this system allows a user to play along with a musician, or
potentially, with another BCMI user. This was recognised as an important break-
through for the potential BCMI systems in therapeutic situations and for potentially
launching the BCMI into a wider field of collaborative musical applications.

In 2012, we reported on further mapping and compositional techniques using
SSVEP within a BCMI (Eaton and Miranda 2012) for the composition of The
Warren, a multichannel electronic performance piece designed to explore the
boundaries of mapping strategies in a BCMI system to generate real-time compo-
sitional rules (Eaton 2011). Control of EEG performs generative functions that
control macro-level musical commands, such as shifts in arrangement, tempo and

Fig. 10.7 A mapping diagram from a short section of The Warren. Here, each icon (1–4) is
assigned to a number of commands based on the requirements of the composition
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effects over the master channel, alongside control of micro-level functions, such as
control over individual pitches or synthesis parameters (Fig. 10.7). This approach
provided a framework for addressing performance considerations often associated
with more mainstream digital interfaces. The piece was engineered to communicate
expressive musical control and to provide a loose framework of musical elements
for the performer to navigate through selecting areas for precise manipulation. An
important feature of the design was to emulate the unpredictable nature of per-
forming with acoustic instruments, so often safeguarded in performances with
electronic instruments. Slight deviations of learnt control patterns or miscalcula-
tions when navigating through the piece could result in the wrong result, such as
bringing the composition to an abrupt end or injecting unwanted silences or dis-
sonance into the piece. This approach forced the concentration of the performer,
underlying the importance of successfully interpreting the meaning within the
control EEG. To achieve the desired complexities and nuances, mapping rules were
designed to suit the musical functions, a break away from previous systems where
compositional mappings were intrinsic to the meaning of EEG. Here, the meaning
of EEG was designed through the use of the stimuli and therefore learnt or
understood by the user. With such an abundant amount of meaningful data, The
Warren also makes musical use of non-meaningful data to provide deeper com-
plexity through secondary mappings. For example, ordering rules were applied to
control-specific musical parameters through monitoring the performer’s control
behaviour. The order in which icons were selected over x amount of control
changes would result in different generative rules being applied, the results unbe-
known to the performer who would be concentrating on the current primary task.
This harks back to Miranda’s technique and the integration of Hjorth analysis,
adding intelligent feedback to the system as part of the compositional process and
making the system learning between performer and computer mutually exclusive.

When designing mappings for a structured performance piece, as opposed to an
instrument or an improvised piece, the mappings need to adapt to the arrangement
of the composition and the functions. This reverse engineering method of mapping
design based on musical function and necessity provides an interesting arena for
creativity. As a result, the mappings explored in The Warren vary widely depending
on the compositional choices, the sonic intentions of composer (and performer) and
the limitations of the input controls. Instead of summarising these mappings solely
in numerical terms, the nature of how the control is governed can be presented in
parallel with Dean and Wellman’s (2010) proportional-integral-derivative (PID)
model. This approach defines control as the ‘effect’ of the input signal onto the
output’s value, regardless of the number of parameters connected. Proportional
control dictates that output values are relative to input; the output is value X
because the input is X. Integral control provides an output value based solely upon
the history of the input, whereas derivative control gives an output value relative to
the rate of change of the input signal.
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These principles are adopted in a number of ways in The Warren, and the
inclusion of conditional rules and variations allows for an abundance of creative
implementations. For example, in the first movement, a cello sound can be played
using the derivative measurement of the increment and decrement of one of the four
EEG input channels. Alongside this a second input channel has an integral control
to regulate a modulation index of the cello sound processing, an example of
interpolating two different primary controls to manipulate one sound. To add further
control within these selection-based mappings, mapping rules were applied to the
four incoming EEG data streams and used at various times during the piece
depending on the required function. Here, we look at three of these rules, threshold
values, timing and ordering.

10.9.1 Threshold Values

All four of the brainwave control signals can act as a single selector using mappings
for when the amplitude is high or low. Beyond this, each input signal can be
assigned to elicit a number of commands. In this technique, user control of
brainwave amplitude (of a specific channel) was mapped to a series of functions
across a range of evenly spaced threshold values scaled according to the input
range. When the input signal passes a threshold value, a control command is
triggered. For example, an input range of 1-25 could be treated with the following
rules:

if input == 5 play note C2
if input == 10 play note D2
if input == 15 play note E2
if input == 20 play note F2

Without further consideration, an input signal rising and falling through this
range would excite all of the notes on the way up and on the way down. The use of
timing rules (below) provided the performer with the ability to make specific
selections whilst avoiding triggering unwanted commands.

10.9.2 Timing

The majority of the mappings within The Warren are led by timing rules. Calcu-
lating the time, a user takes to complete cognitive tasks allows for an added
dimension of control. Expanding the simplified threshold example shown above the
speed at which a brainwave increases towards a threshold value would dictate
whether the in between mapping rules are accepted or not. This allows the per-
former to choose how many of the threshold values within one input range to select
during any one command. For example, if the time between initial excitation and
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input signal reaching a value of 15 is greater than X, then only note E2 would be
played. If the time taken was less than X and more than 1/2X, then notes D2 and E2
would be played. Less than 1/2X then C2, D2 and E2, and so forth. In practice, the
timing rules were used like this alongside the threshold values and also separately
on their own. They were mapped to parameters ranging from audio effects settings
including delay, filter and distortion parameters and audio playback sample chop-
ping controls such as playback position, pan position, and texture blending.

Further complexity was added through exploiting the features of using timers. A
hold-and-release function allowed for a change in control to occur at the point of
release. The time between the hold command and the release command being
received provided selectable options. When an input value increases, a timer begins
until the value decreases. Upon this decrease, the value of time is compared against
a series of rules. In practice, the accuracy of brainwave control can vary due to a
range of factors such as tiredness, environment, mood and electrical interference. To
accommodate this instability when attempting to sustain brainwave amplitude
through SSVEP, a further time delay rule monitors the EEG. For example, if we
define a threshold input value of 5, so that when the input value increases above 5 a
hold command is activated. If the input stays above 5, then the hold command stays
on, and if the value decreases below 5, it is released. To add some flexibility to this
simple hold-and-release function, a time delay of 3 s is added to the hold function.
Therefore, if the input decreases below 5 for less than 3 s and then increases to
above 5, the hold command remains on. If the input decreases to below 5 for longer
than 3 s, then the release function is activated. This technique creates a rule
whereby an icon needs to be fixated on constantly to generate a command sent to
the performance system, akin to the constant attention required to play a sustained
note on an acoustic instrument. Deviation from this attention is allowed for a time
span of up to 3 s, allowing for the performer to utilise other input commands to
manipulate the sound via different parameters or to control other aspects of the
music. This flexibility can able help combat irregularities in the input signal. To
help performer calculate times during a performance, a digital clock display was
built into the visual interface.

10.9.3 Ordering

The mappings and structure of the The Warren were designed to allow loose
periods for the performer to ‘play’ the system. Within this it was unlikely that the
exact manner in which the controls were used would ever be the same twice. To add
a layer of surprise and quasi-randomness to the piece, as well as to further engage
the concentration of the performer to adapt to the system secondary mappings were
dominated by applying rules to the order in which icons were selected and which
commands were triggered. At times, these rules were mapped to stochastic musical
parameters ensuring a controlled level of unpredictability.
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The level of depth attained within these mapping strategies requires a high level
of mental concentration and awareness of time, external and in relation to the music
within a performance. Here, the mappings had to be tested, learned, practiced and
optimised for system performance and user ability.

The Warren demonstrated that BCMI technology could be used in place of more
traditional digital controllers as well as in a live performance setting. In 2013s Flex
(Eaton and Miranda 2013a), this idea was taken a step further through a BCMI built
using affordable hardware and open-source software. In an effort to make music
making with brainwaves more accessible, Flex used SSVEP with an EEG headset
by Emotiv and two laptop computers, one providing the visual interface, EEG
signal processing and transformation algorithms and the other the musical engine.
The gap between compositional and mapping design used in The Warren was
disregarded here as the two elements were intertwined. Flex is designed to be
between approximately 10–15 min long depending on the how the controls are
found and used. The composition combines sound sources recorded in surround
sound, ranging from fairground ambience to bell chimes, with synthesised and
heavily processed sounds. A key aim of the performance is to convey the narrative
of the composition whilst attempting to engage an audience with the control tasks
being undertaken by the performer.

Flex uses the idea of control as a key theme. Instead of merely providing control,
Flex hides control and moves it around forcing the performer to adapt to the system
and learn control before it is taken away again. In effect, the controls corresponding
to the icons are randomised; different elements of the composition are presented
without any way of the performer knowing in advance. Built-in rules allow for the
presence of mappings corresponding to the current sounds being played, but the
choice of parameters is selected at random from an array of predetermined func-
tions. Performed in quadraphonic sound, mapping rules mix the sounds across the
four channels as well as control the arrangement of the piece. Additional mapping
rules control micro-level functions such as audio sample playback and audio effects
(Fig. 10.8).

Indeed, there are more mappings available that can be used in any one perfor-
mance, which helps make every performance different. The line between active and
passive control becomes somewhat blurred here due to the manner in which control
is attained. Control in Flex can be difficult to establish, and this brings elements of
the unexpected and even the undesired into a performance. Again, hidden sec-
ondary mappings are also built into add elements of surprise, in effect further
flexing the rigidity of control throughout the piece. Overall, the mapping system is
designed for control to be manageable, and where control becomes lost, it is rel-
atively easy to recover. As such, certain safety features are implemented in order to
prevent complete chaos. Performing Flex becomes a musical game, where the aim
and reward are control (although the success rate of control is not a primary
concern) and where the audience is rewarded with the resulting music and
performance.

One of the main issues with performing with a BCMI system is what could be
considered as a lack of obvious ‘performance’. EEG measurement requires
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motionless concentration, and the use of visual stimuli requires staring at a com-
puter screen, both of which offer a rather disengaging spectacle for viewing how-
ever sophisticated the underlying processes are. We are fortunate to now be at a
stage where the technology is no longer the only focus of attention, yet we need to
be mindful of how we communicate the practices of BCMI to an audience and the
aesthetic effects of the tools we choose. This has led recent work to move away
from brainwave control over electronic sounds towards integrating brainwave
control and external musical bodies, including acoustic instruments and musicians.

In 2013, Eaton and Miranda reported on Mind Trio, a proof-of-concept BCMI
that allowed a user to control a musical score in real time, choosing from short pre-
composed musical phrases (Eaton and Miranda 2013b). SSVEP provides choice
over fours phrases during a window of time. These windows are synchronised with
a metronome and dynamic score presented to a musician via a computer monitor.
Within each window, the user selects the phrase that is displayed at the next sync
time. The musician is presented with the current phrase and is shown the next
phrase shortly before it becomes active. This extension of brainwave control
designed to accommodate the involvement of a third party is the basis of Activating
Memory, an experimental composition for a string quartet and a BCMI quartet. It
uses the same principle as Mind Trio for users to choose phrases of music that a
corresponding musician then performs. All four systems are synchronised via a
master clock across two movements. Activating Memory’s debut performance was
at the 2014 Peninsula Arts Contemporary Music Festival, Plymouth, UK.

Fig. 10.8 The system components for Flex built using consumer grade EEG hardware, two laptop
computers and open-source software
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10.10 Concluding Discussion

BCMI research has come a long way in recent years. Meaning in EEG is becoming
more understood and easier to detect, as the necessary technologies and computer
processing speeds have allowed. However, difficulties in retrieving useful EEG data
still remain and pose significant problems for systems intended to be used outside of
the laboratory. Signal interference from external sources, unpredictable EEG
information, and noise from other physiological input are issues widely reported in
BCMI research. These factors affect the stability and performance of a system and
need to be taken into account when designing and testing a BCMI.

The progress in BCMI research has brought us to a very healthy and pivotal
stage. We find ourselves in a climate where constructing a BCMI has become a
relatively simple and affordable task. New systems of finite control have provided a
strong foundation for integrating BCMIs within wider areas of musical composition
and performance, perhaps realised through musical collaborations or interactions
with live, external sources, such as dance, acoustic music or other forms of media.
Wider research into neurofeedback is also possible through assessing the affects of
multiple users of a single BCMI, or multiple BCMIs being played together. Now
that the appropriate tools are available, we anticipate an increase in research activity
across a wider playing field, with a particular emphasis on compositional integra-
tion. We are slowly beginning to see brainwave control creep into everyday tech
culture, and as in all successful interdisciplinary areas, we expect it to be prominent
in all of the clinical, therapeutic and recreational interpretations of what a BCMI is.

Events bringing researchers and practitioners together have produced fruitful
experiments in the past, as evident in programs such as eNTERFACE (Arslan et al.
2006; Benovoy et al. 2007). In the current climate of expansion in BCMI research,
the dissemination of ideas and collaboration between practitioners linking BCMI
research and related areas together is an opportunity to be embraced to further
accelerate work in this field and should not be ignored.

It can still be argued that more meaning within EEG is needed, not only in BCMI
research but also in our overall understanding of the brain. As we have seen,
meaning leads to control and in turn complexity, and advances in this offer exciting
prospects. One area of research that promises to widen the scope of interpreting
meaning in EEG is the study of emotional responses in brain activity, and evolving
research in this field is already uncovering very direct links with emotional
responses and music (Crowley et al. 2010; Kirke and Miranda 2011).

The use of modern BCMI systems for performance in concert settings has
marked the arrival of more accessible, responsive and sophisticated platforms for
designing and building successful BCMI systems, bringing brainwave control and
music full circle. In place of Lucier’s percussive instruments are dynamic scores
and complex musical engines. And instead of bursts of alpha activity there are
layers of sophisticated EEG control on offer. The importance of considering
mapping strategies in the development of BCMI systems can be traced all the way
back to Alvin Lucier and his Music for Solo Performer, an interface that offered
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such a unique and tangible interaction with brainwaves, from such limited input.
With this, and the availability of today’s tools, in mind, we hope to see a rise in the
creative applications of brainwaves in music coming from composers as well as
researchers through approaches applying the complexity in compositional and
mapping strategies that have now become a reality.

10.11 Questions

1. What were the first type of brainwaves used for musical control and how were
they controlled by a subject?

2. What is the difference between the sonification and the musification of brain-
wave signals?

3. What is the function of the transformation algorithm in a BCMI system?
4. With todays technology in mind, consider an approach to modernising the

mappings in Alvin Lucier’s Music for Solo Performer. How could the piece be
reworked?

5. What features of ERPs make them useful for mapping to musical functions?
6. Design a concept for a BCMI that uses two techniques of EEG extraction as

input signal. Do the techniques you have chosen fit the concept well? Could
other techniques be used instead?

7. What are the benefits of a user-orientated BCMI over a computer-orientated
BCMI?

8. Compare the mappings of the two pieces Music for Sleeping and Waking
Minds and In Tune. How would each piece differ if the systems were swapped
for both performances?

9. What are the main differences between the P300 and SSVEP techniques and
how do they affect musical control?

10. Consider a musical extension of a BCMI. How could integrate BCMI into
another type of musical interface of your choice?
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11Retroaction Between Music
and Physiology: An Approach
from the Point of View of Emotions

Pierre-Henri Vulliard, Joseph Larralde
and Myriam Desainte-Catherine

Abstract

It is a well-known fact that listening to music produces particular physiological
reactions for the auditor, and the study of these relationships remains a wide
unexplored field of study. When one starts analyzing physiological signals
measured on a person listening to music, one has to firstly define models to
know what information could be observed with these signals. Conversely, when
one starts trying to generate some music from physiological data, in fact, it is an
attempt to create the inverse relationship of the one happening naturally, and in
order to do that, one also has to define models enabling the control of all the
parameters of a generative music system from the few physiological information
available, and in a coherent way. The notion of emotion, aside from looking
particularly appropriate in the context, reveals itself to be a central concept
allowing the articulation between musical and physiological models. We suggest
in this article an experimental real-time system aiming at studying the
interactions and retroactions between music and physiology, based on the
paradigm of emotions.
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11.1 Introduction

The experimental software setup presented in this article, called MuZICO (french
acronym for Zen Music and Brain Computer Interface), allows the approach of
interactions between music and physiology from two points of view: The first, the
low-level one, is based on the sonification of physiological signals produced by the
autonomous nervous system, thus creating a direct link between the unconscious
manifestation of a physiological state and the production of acoustic vibrations. The
second point of view, the high-level one, introduces an abstraction layer dealing
with the recognition of vigilance states (vigilance, relaxation, sleep) and/or emo-
tional states of the listener and allows to control the generative music system
parameters in real time according to these states.

Until now MuZICO has been tested with two different devices for physiological
signals capture. The first is the Thought Technologies ProComp5 infinity bio-
feedback system, a five inputs box for various compatible sensors. The following
Thought Technologies sensors have already been used with MuZICO:

• abdominal/thoracic breath sensor
• skin conductivity sensor
• electrocardiograph
• electroencephalograph

The other system we are mainly using is an Emotiv EPOC headset, which is a
sixteen electrodes wireless EEG headset. However, the signals coming from this
headset can be analyzed either as EEG signals, or as muscular signals.

In the following sections, we describe the evolution of our work on sonification
and interaction between vigilance states and musical synthesis then we propose a
generalization of vigilance states to emotional states and its validation in the context
of a collaboration with experts on emotions expressed by body postures. Finally, we
inspect prospects offered by the synthesis of these experiences for the study of
interactions and retroactions between music, perceived emotions, and physiology.

11.2 Processing of Physiological Signals from the Energetics
Approach

11.2.1 Sonification: Direct Mapping

In our case, sonification is used to catch the listener’s attention and to help him
understand the link between the manifestations of his autonomous nervous system,
usually unintentional, and the music they generate. The energy deployed by the
internal organs and sampled by the sensors is directly translated into sound energy,
thus leading to a synesthesic perception phenomenon.
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In specific terms, we compute in real time the variation speeds of the data flows
coming from all sensors, except the signals coming from the EEG electrodes. These
variation speeds are translated into energy by a direct control of the volume,
spectral richness, or pitch of a sound. As regards the heart and breath sensors, the
frequency of the cycle is evaluated (heart rate or inhalation-exhalation period), and
the variations of this frequency are also translated into volume, spectral richness, or
pitch variations. Concerning the signals from the EEG electrodes, the evolution of
energy ratios between wave bands reflecting typically vigilance states is sonified in
the same way.

11.2.2 Interaction Between Vigilance and Musical Synthesis

In addition to the production of sound directly from physiological signals, the
energetics approach also involves a higher level of abstraction by analyzing the
listener’s arousal in order to generate a musical flow, using harmonic, rhythmic, and
spectral rules. The idea here is to control the dynamism of this musical flow
according to the listener’s arousal.

All the physiological data are therefore integrated into one continuous parameter
representing the listener’s arousal, and this parameter is then redistributed over the
whole set of musical generation parameters. It is a M ! 1 ! N mapping.

A study carried out by Pierrick Legrand and Frédérique Faïta Ainseba (Vezard
et al. 2011) shows the link between specific musical composition parameters, the
energy evoked by the resulting generated music, and the arousal level induced by its
listening.

These parameters, as they are used in the MuZICO environment, have either
discrete or continuous values and are either defined by adjectives (classes) or by
numerical values. For example, the spectrum of a sound can take values from muted
to bright, which corresponds to specific energy values that are measurable in the
signal and are linked to its spectral centroid. The other parameters related to energy
in music are as follows: the tempo of the music, the attack of the notes’ dynamic
envelope, the pitch of the notes, the number of instruments playing simultaneously,
the more or less “natural” sound of the instruments, the percussive or sustained
aspect of sounds, as well as the number of simultaneous notes (Livingstone et al.
2010).

All these parameters are characterized by bounded intervals used by MuZICO to
generate music.

Let be VEmin and VEmax the bounds of the intervals of values taken by musical
parameters, corresponding to low and high energies evoked by the music, respec-
tively (see Table 11.1). The parameters that have undefined units are translated by
MuZICO into various units according to the algorithms used to produce the sounds
(synthesis, sample playing, audio-effect control). For example, one can translate the
brightness of a sound by a particular setting of the modulation index in a FM
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synthesis algorithm, or by the control of the cutoff frequency of a low-pass filter
applied to a sample player.

11.2.3 Applications

The MuZICO system has already been presented to various audiences in artistic
(use in concert as a generative musical accompaniment) and scientific mediation
(presentation during workshops and as an interactive station) contexts. Its appli-
cations can therefore be artistic, educational, or therapeutic.

In the artistic context, MuZICO has been used in two configurations: One,
strongly implying one of the authors as a saxophone player, consists in generating
the accompaniment from the breath, heart rate, or EEG sensors, as an improvisation
support for the musician. Concretely, this configuration has been used during
electroacoustic music concerts organized by the SCRIME [at the Marché de Lerme
in Bordeaux (see Fig. 11.1), and at the Hôtel de Région d’Aquitaine], or during
performances (at the Cap Sciences scientific museum and at the i-boat club in
Bordeaux). The other has been set up in the context of the ANR Care project and
allows a dancer (Gaël Domenger) to generate the music supporting his dance
improvisation thanks to a motion-capture suit (see Fig. 11.2). A public show
involving this configuration took place at the Casino de Biarritz in March 2011.

In a more educational context, various sessions introducing the MuZICO system
have been presented to the public on an ad hoc basis: Workshops were held during
the Eurêka days of the Fête de la Science 2011 at the Hôtel de Région d’Aquitaine,
and during the Semaine du Son 2012 at Cap Sciences. In a more sustained way, an
interactive station allowing to test the system was set up in Cap Sciences during the
exhibition Numériquement Vôtre (from march to December 2011). The public
could interact with MuZICO thanks to a skin conductivity sensor that was inte-
grated to the station.

Concerning the therapeutic domain, the potential usefulness of music in the field
of relaxation techniques has already been discussed (Ganidagli et al. 2005; Loewy
et al. 2005; Zhang et al. 2005; Peretz et al. 1998; Sammler et al. 2007; Trainor and

Table 11.1 An excerpt of MuZICO’s musical parameters intervals

Parameter (unit) VEmin VEmax

Tempo (bpm) [0.1; 60] [144; 300]

Spectrum Muted Bright

Notes attack slope (ms) [100; 1000] [1; 30]

Notes pitch (Hz) [110; 220] [440; 880]

Instrumental sounds Natural Synthetic

Nature of sounds Percussive Sustained

Number of voices 1 Many

Notes density Low High
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Schmidt 2003). Some exploratory experiments have been carried out from the start
of the project by one of the authors, involving professionals such as masseurs and
hypnotists.

11.3 Interaction Between Emotions and Synthesis of Music

11.3.1 Representation of Emotions

We propose here a generalization of vigilance states to emotional states in order to
increase the expressive potential of the musical generation, by adding a second

Fig. 11.1 Pierre-Henri
Vulliard at the Marché de
Lerme

Fig. 11.2 Gaël Domenger
using eMotion and MuZICO
softwares
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dimension to the first dimension of vigilance. There are many definitions and
representations of emotions in the psychological field of study, but nowadays, few
of them are used in computer science.

We chose to use the same model as in Livingstone et al. (2010) and Wallis et al.
(2008), commonly used in psychology under the name of Plutchik’s emotions
wheel (Russel 1980). It is a bidimensional space defined by two axes corresponding
to excitation (which we consider to be the same as vigilance in the context of music
generation), and to valence (pleasure/unpleasure), in which we can place Ekman’s
primary emotions (Ekman 1992) (see Fig. 11.3).

11.3.2 Care Project—eMotion Software

Our collaboration in the context of the Care project (Clay et al. 2011) with a team
studying motion-based emotions recognition allowed us to test the generation of
music using the bidimensional space of emotions.

For the interactive dance show that was presented as the conclusion of this
project, we generated all the music and sounds in real time with MuZICO.

11.3.3 Validation of the System by the Audience

The audience that came to see the second representation of theCare project’s end show
was given questionnaires in order for the scientific team to collect feedback from them
(Clay et al. 2012): The second representation of the show was presented in front of an
audience of about 120 people. Upon their arrival, we distributed them question-
naires for collecting feedback about the show. We collected 97 questionnaires

Fig. 11.3 Ekman’s primary
emotions placed in the
bidimensional space of
emotions
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(i.e. roughly an 80% return rate). For a non-researcher, it is quite difficult to apprehend
the scientificworld. This show presented scientific results in a both artistic and playful
way; scientists were also directly in front of the audience, which the audience
appreciated. All those factors made the audience enjoy the show. Then, to answer the
question “What did you like?” 90 % of the people who gave a feedback cited
the innovative or evenmagical aspects of the show. The audience found, however, that
the generated music expressed too frankly the emotion being portrayed (75 % of the
audience) and that the music should have taken more distance with the expressed
emotions and leavemore interpretation from the spectator. This criticism is interesting
as it validates the parameters we chose for music generation, but pinpoint the fact that
more artistic choices would have been more relevant. Finally, when asked about the
potential improvements that could bemade, 98%of the people stated that theywished
to witness the evolution of the show, should it be in the scientific content, the cho-
reography, the sound generation, and/or the graphical choices. The audience hence
had a very strong interest in following this collaboration between art and science; this
interest went further, as it sparkled reaction frommedias in the form of articles and an
interview on local television.

11.3.4 Valence and Musical Complexity

According to Livingstone et al. (2010), the musical parameters related to the
valence of emotions evoked by music are tonality and complexity. We propose here
harmonic, rhythmic and melodic generative models, as well as a description of their
parameters from the point of view of musical complexity.

The way these models (implemented as modules in MuZICO) communicate
between each other is explained by Fig. 11.4.

11.3.4.1 Pitch Scales
We suggest a model of generative pitch scales base on the following sequence:

Unþ1 ¼ Un � x
Vnmodðmþ1Þ

h � U0

� �
� x�p

where U0 ¼ ff ; and p 2 N
þsuch that U0\Unþ1\x� U0

ð11:1Þ

where x is the octave ratio, h the number by which the octave is divided to get the
temperament, ff the root frequency of the generated scale, V a m-dimensional vector,
and Vi;i2½1::m� the ith component of V.

We consider that the complexity of a pitch scale depends on the number of
iterations needed to generate it, and on the values of x, h, and V.

For example, let us consider the case where x ¼ 2, h ¼ 12 (tonal occidental
music).

Let be V = (7) (generation of the pitch scale by iterating through steps of fifths),
and N the number of iterations. This gives:
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• the pentatonic scale or the Maj 6/9 chord for N = 4
• the diatonic scale for N = 6
• the chromatic scale for N = 11

These scales have an increasing harmonic complexity. Scales of different
complexities can also be generated by varying V: Let V = (4) and N = 2, we then
generate a pitch scale corresponding to an augmented chord. Let V = (3) and N = 3,
we then generate a pitch scale corresponding to a diminuated chord. Let V = (3, 4,
4, 3) and N = 6, we then generate the ascending melodic minor scale.

11.3.4.2 Chords Sequences
In MuZICO, the chords sequences are generated by a grammar that takes the
context into account to oversee the transpositions related to the modulations. The
complexity of a chord depends on several factors that we identified:

• the number of notes that make it up
• the complexity of the scale on which it is built
• the order of appearance of its notes in the building of this scale by iterations

The complexity of a chords sequence also depends on several factors:

• the complexity of the chords that make it up

Fig. 11.4 Communication between MuZICO modules
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• the number of different chords in the sequence
• the harmonic complexity of the chords series, mainly taking into account the

cadences and resolutions in the context of modern modal and tonal music, and
the modulations in the context of the latter.

11.3.4.3 Rhythmic Patterns
The rhythmic patterns are created by layering various iterative rhythmic patterns, all
synchronized to the same underlying pulse, each pattern being defined by an offset
from the common initial pulse and by a rhythmic density (number of pulses
between two onsets in the pattern). The superimposition is done by a logical OR
operation, considering the superimposed patterns to be bit vectors, a value of 1
representing an onset, and a value of 0 no onset.

Let m be the rhythmic patterns length, q the number of superimposed patterns,
ofi the offset from the initial pulse of pattern number i, and di the rhythmic density
of pattern number i.

Let us consider that a bit vector is equivalent to a finite set of integer numbers,
each number of the set representing a positive bit at the index corresponding to its
value in the vector, a rhythmic pattern R created by superimposition of patterns Pi

can thus be defined by:

R ¼ [q
i¼0Pi

where Pi ¼ [Eððm�of Þ=dÞ
n¼0 ðofi þ di � mÞ

ð11:2Þ

As regards rhythmic complexity, we use a model based on Toussaint’s com-
plexity measure or other techniques of rhythmic complexity evaluation that assign
each pulsation a weight (see Fig. 11.5).

11.3.4.4 Melody Generation
In order to generate melodies, MuZICO has a module taking as input the current
pitch scale and several rhythmic patterns generated using the techniques explained
in the previous section. Each note has a weight corresponding to its apparition order
in the process of building the current pitch scale. For each onset in the rhythmic
pattern, a note is chosen randomly using a Gaussian probability density varying
according to the corresponding rhythmic weight. An initial melodic profile is thus
obtained, which will be subsequently developed in a musical way by various
algorithms such as the Probabilistic Suffix Tree (PST). This profile is then modified
according to the modulation information sent by the grammar which generates the
chords, resulting in the final melody to be plaid.

The complexity of such a melody can be evaluated and depends on the Gaussian
probability densities, as well as the PST configuration parameters.
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11.3.5 Seeking Valence in EEG Signals

Although valence as a musical concept is widely documented and has long been
discussed by music theorists, valence as a component of felt emotions is a more ill-
defined notion. The latest research activities led by our team mainly focus on this
problem. Following a number of discussions with researchers at Numediart Institute
in Mons, Belgium, in the context of a collaboration with a movie director on an
interactive cinema project, our former intentions of seeking clues for valence
estimation in the study of inter-hemispheral EEG activity were confirmed by our
discovery of the work of Louis A. Schmidt and Laurel J. Trainor (Schmidt and
Trainor 2001):

…positively valenced musical excerpts elicited greater relative left frontal EEG activity,
whereas negatively valenced musical excerpts elicited greater relative right frontal EEG
activity… In addition, positively valenced (i.e., joy and happy) musical excerpts elicited
significantly less frontal EEG power (i.e., more activity) compared with negatively val-
enced (i.e., fear and sad) musical excerpts, and there was significantly less frontal EEG
power (i.e., more activity) in the left compared with the right hemisphere across valence.

Furthermore, we also consider interpreting the electric signals coming from the
headsets as a measure of the face’s muscular activity. By applying different filtering
and analysis techniques to the same signals, we may define new independent
variables which could help characterize the valence, as in standard facial emotion
recognition.

11.3.5.1 Experimental Setup
We attempt to characterize and detect valence states and variations in EEG signals,
therefore we must use stimuli which will influence the valence of the subjects so
that we are able to measure it.

As this is a hot research topic shared by a community of people, standards have
already been defined, at least regarding the media allowed to be used in these
experiments from a medical point of view. We will of course use the provided
databases so that our results remain compatible and comparable with the ones

Fig. 11.5 Weight of the pulses in a rhythmic pattern of length 16
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obtained by other teams. We are currently finalizing an experimental setup based on
the use of the IAPS (Lang et al. 1999) and IADS (Bradley and Lang 2007) dat-
abases. Each file in these databases is annotated with mean and standard deviation
values for valence, arousal, and dominance components. These values were
obtained by asking subjects to rate each file from the three points of view. Mean and
standard deviation were then computed from these ratings for each file.

IAPS and IADS are reference databases on which we can rely to validate our
analysis of valence by comparing the results of our estimations to their original
valence mean and standard deviation values in these databases.

We also plan to do the same with video excerpts, as video stimuli greatly differ
from static pictures stimuli. To the best of our knowledge, no such database has
been established so far.

11.3.5.2 Hardware
The first headset we started working with is a ProComp, a driver of which was
formerly written by our team. In the context of the interactive cinema project
initiated by Marie-Laure Cazin, we also got several wireless Emotiv EPOC headsets
and started experimenting with them. These headsets come with a SDK which
allows to get a grab on the raw electrodes data.

11.3.5.3 Software
We are currently developing several complementary software parts: One is a client
that gets the raw electrodes data from the SDK, analyzes it, and sends both raw and
analyzed data to any network via the Open Sound Control (OSC) (Wright 2005)
protocol. This is an alternative driver for the headsets, rewritten in order to precisely
fit our needs, also integrating the older driver for the ProComp.

Another part is an application allowing to play audio and video stimuli, display
pics, and optionally record video footages of the experiences. This software is
controlled in real time from other applications, via OSC.

Finally, the central software we use for the experiments is INRIA’s OpenVibe
(Renard et al. 2010), an open-source project dedicated to the analysis of electro-
encephalographic signals, which includes a powerful python scripting interface.
These scripting capabilities easily allow one to enable bidirectional OSC commu-
nication and for example, define scenarios that will control the stimulation software,
or drive MuZICO’s musical generation algorithms. OpenViBE can keep track of
EEG recording sessions into binary files containing the signals and the stimulations
sent via OSC. The recorded experiences can then be replayed if desired, and one
can focus on particular moments of them afterward for in-depth analysis.

11.3.5.4 Experimental Setup
The experiments we defined in order to validate valence recognition algorithms take
place in three phases: During the first one, while simultaneously recording raw and
preprocessed EEG signals from the subject, OpenViBEs successively sends control
messages to the application that displays IAPS pictures, and for each displayed
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picture writes a stimulation in the recorded EEG signal stream corresponding to a
“positive” or “negative” tag, basing itself on a displaying scenario and the IAPS
database.

These tags are used for classification purpose: During the second phase, we feed
a linear discriminant analysis (LDA) classifier with the file containing the signals
and the tags. The classifier then builds rules to recognize positive or negative
valence artifacts in the signals from this information. This occurs “offline,” and no
EEG signals are recorded during this phase (Fig. 11.6).

The third phase is the validation phase: We do the same as during the first phase
with a new picture displaying scenario, but this time, the LDA runs in analysis
mode, so it continuously gives an estimation of the current valence from the sub-
ject’s incoming EEG signals. We can compare this estimation with the corre-
sponding valence values in the IAPS database (Fig. 11.7).

In a previous work, TCTS laboratory had already assessed the quality of Emotiv
EPOC headsets, by comparing their performance in the framework of a P300-based
brain–computer interface with the performance reached using a medical EEG
system [on the basis of the same electrode configuration, of course (Duvinage et al.
2012). Figure 11.8 illustrates that, albeit giving worse results than those obtained
with the medical system, Emotiv EPOC headsets are usable for BCI applications.

Fig. 11.6 First phase of the
IAPS valence experiment
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Fig. 11.8 Average and
standard error values of
classification rates obtained
with a medical EEG system
(ANT) and the Emotiv EPOC
headsets under sitting and
walking conditions. The
chance level is 25 %

Fig. 11.7 Third phase of the
IAPS valence experiment
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11.4 Conclusion and Discussion

MuZICO proved its pertinence, on the one hand by its ability to generate music
based on the physiological measure of vigilance, on the other hand in the generation
of music based on emotions represented in a two-dimensional space, the axes of
which correspond to the notions of arousal and valence.

In the near future, we will thus be able to generate music as a function of
emotions not only expressed by the listener, but also felt by this one, and by this
way optimize in a significant manner the retroaction, improving the music’s power
of evocation together with its aesthetic qualities.

Another upcoming stage is to refine our sound synthesis engine by putting in
correspondence in a more precise way emotions and lower level musical parameters
(corresponding to the perceptive parameters of generated sounds and used sound
samples), and by a better bounds management, conforming to a URL like name-
space as is the case in the Open Sound Control protocol.

An alternative track for the validation of the project is to use reinforced machine
learning algorithms (Le Groux and Verschure 2010) in order to determine the most
evocative parameter combinations for particular emotions. Some experiments have
been carried out in this direction using this family of algorithms.

11.5 Questions

1. How does MuZICO process emotions?
2. How is the IAPS system used in the experiments on emotion recognition?
3. What emotional components does MuZICO use as dimensions of its emotional

space?
4. Which musical parameters does the result of arousal analysis control?
5. According to Schmitt, how could valence be seen in EEG brainwaves?
6. According to Livingstone, which musical parameters are related to valence?
7. What is sonification?
8. How does the LDA algorithm work?
9. What is the difference between emotions computed from an EEG headset and

emotions computed from a motion-capture suit?
10. In the Eq. (11.1), what values of x, h, V, and how many iterations are needed

to build a diatonic scale?
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Abstract

A better understanding of the musical brain combined with technical advances in
biomedical engineering and music technology is pivotal for the development of
increasingly more sophisticated brain–computer music interfacing (BCMI)
systems. BCMI research has been very much motivated by its potential benefits
to the health andmedical sectors, aswell as to the entertainment industry.However,
we advocate that the potential impact on musical creativity of better scientific
understanding of the brain, and the development of increasingly sophisticated
technology to scan its activity, should not be ignored. In this chapter, we introduce
an unprecedented new approach to musical composition, which combines brain
imaging technology, musical artificial intelligence and neurophilosophy. We
discuss Symphony of Minds Listening, an experimental composition for orchestra
in three movements, based on the fMRI scans taken from three different people,
while they listened to the second movement of Beethoven’s Seventh Symphony.
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12.1 Introduction

BCMI research has been very much motivated by its potential benefits to the health
and medical sectors, as well as to the entertainment industry. Yet, advances in the
field tend to be assessed in terms of medium, rather than content. For instance, let us
consider the field of music technology. Much has been said on the improvement of
technology for music recording and distribution, from vinyl records and K7 tapes to
CDs and the Internet. However, not much is said on the impact of these media to
creative processes. Have these media influenced the way in which music is com-
posed? Likewise, not much has been said on the creative potential of BCMI
technology. Might it lead to new ways to make music, or to the emergence of new
kinds of music?

We believe that the potential impact on musical creativity of better scientific
understanding of the brain, and the development of increasingly sophisticated
technology to scan its activity can be huge. Musicians have an unprecedented
opportunity today to develop new approaches to composition that would have been
unthinkable a few years ago.

In this chapter, we introduce an unprecedented new approach to musical com-
position, which combines brain imaging technology (Bremmer 2005), musical
artificial intelligence (AI) (Miranda 2000), and new philosophical thinking
emerging from neurophilosophy (Churchland 2007). The first outcome of this
approach is Symphony of Minds Listening, an experimental composition for
orchestra in three movements, based on the fMRI scans taken from three different
people, while they listened to the second movement of Beethoven’s Seventh
Symphony: a ballerina, a philosopher (co-author Dan Lloyd), and a composer
(co-author Eduardo R. Miranda). In simple terms, we deconstructed the Beethoven
movement to its essential elements and stored them with information representing
their structural features. Then, we reassembled these elements into a new compo-
sition with a twist: the fMRI information influenced the process of reassembling the
music.

The chapter begins with a discussion on the philosophical ideas behind the work.
Next, before delving into more technical details, it gives an overview of the
compositional approach we have been developing. It follows with an introduction
to the brain scanning and data analysis methods. Then, it introduces MusEng, the
system that we developed to deconstruct and recompose music and demonstrate the
core processes behind the composition of Symphony of Minds Listening.

12.2 Neurophilosophy of Music

The human brain is allegedly the most complex object known to mankind: it has
circa one hundred billion neurones forming a network of an estimated one qua-
drillion connections between them. The amount of information that circulates
through this network is huge. The operation of individual neurones is fairly well
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understood nowadays, but an important piece of the jigsaw is missing: the way they
cooperate in ensembles of millions has been fiendishly difficult to understand. This
piece of the puzzle is important because it most probably holds the key to unlock
our understanding the origins of the mind.

There has been a school of thought, which considered that the mind is divorced
from the brain. What is more, it has been suggested that minds would not even need
brains to exist. Although the separation between mind and brain still has currency in
some circles, nowadays it is common sense to consider the mind as resulting from
the functioning of the brain. However, we do not have a clear understanding of how
brain activity actually gives rise to the mind.

Much research is being developed from a number of approaches all over the
globe to understand how the brain gives rise to the mind. Our research is looking
into establishing a musical approach to understand the brain. We believe that the
brain can be viewed as a colossal, extraordinarily large symphonic orchestra and the
mind as a correspondingly complicated symphony. The ‘mind as music’ hypothesis
is explored in length in Lloyd (2011).

At Plymouth University’s Interdisciplinary Centre for Computer Music
Research, we are looking into the relationship between music and a specific aspect
of our mind: emotions. We hope to be able to determine which aspects of a musical
composition elicit specific emotions on listeners. The hypothesis is that if one can
predict which musical features are likely to cause the feeling of, say, joy or sadness,
then it might be possible to build technology that would allow new music to steer
our emotions more effectively. For example, it would be highly beneficial for
humankind if physicians could have the option to prescribe a musical composition
as part of the treatment to help take a patient out of depression. Not unlike chemists,
future musicians could be trained with the skill to compose with specific musical
ingredients aimed at inducing particular affect in listeners. Our work is aimed at
making this ambitious dream a reality, but the challenges to achieve this are not
trivial.

Similar to the fact that we have unique fingerprints, which differ from person to
person, our brains are also unique. Indeed, the mechanisms whereby we make sense
of music differ from person to person. Even though all human brains share a
common basic plan, the detailed neurological circuitry differs from one person to
another. Unlike our fingerprints, however, our brain circuits are continually
changing and this makes scientific research into unveiling how the brain functions
rather challenging. Paradoxically, it seems that the more we study the brain, the
more difficult it becomes to draw firm conclusions. A balance needs to be estab-
lished between identifying the commonalities and acknowledging the differences of
our brains. Symphony of Minds Listening is inspired by the later: it is an artistic
expression of how different brains construct their own unique reality.

12 Creative Music Neurotechnology with Symphony … 273



12.3 An Overview of the Approach

Functional magnetic resonance imaging (fMRI) is a procedure that measures brain
activity by detecting associated changes in blood flow. The measurements can be
presented graphically by colour-coding the strength of activation across the brain.
Figure 12.1 shows a typical representation of an fMRI scan of a person listening to
music, displaying the activity of the brain at a specific window of time. In this case,

Fig. 12.1 A typical representation of an fMRI scan, showing 14 slices of the brain. The actual
scanning for this project comprised 36 slices’ snapshots taken every 2 s
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each time window lasts for two seconds. The figure shows 14 planar surfaces, or
slices, from the top to the bottom of the brain, and the respective activity detected in
these areas. Figure 12.2 is an example of an artistic 3D rendition of such an fMRI
scan. It shows different areas of the brain, represented by different colours (that is,
shades of grey), responding in a coordinate manner to the music.

Each scanning session generated sets of fMRI data, each of which associated
with a measure of the second movement of Beethoven’s seventh symphony. This is
shown schematically in Fig. 12.3.

Firstly, the movement was deconstructed by means of MusEng, a piece of
software, which extracted information about the structure of the Beethoven piece.
Then, we programmed MusEng to use this information and the fMRI data to
generate new musical passages.

During the compositional phase, the fMRI information was used on a measure-
by-measure basis to influence the composition. This procedure, which is shown
schematically in Fig. 12.4, involved diverse modes of data processing and trans-
formation of Beethoven’s music. The resulting musical passages bore varied
degrees of resemblance to the original.

Not surprisingly, the fMRI scans differed among the three listeners. Therefore,
brain activity from three different minds yielded three different movements in the
resulting composition that resemble the original in varied ways. The instrumenta-
tion is the same as for Beethoven’s original instrumentation, and each movement is
named after the respective person who was scanned:

• 1st Movement: Ballerina
• 2nd Movement: Philosopher
• 3rd Movement: Composer

Fig. 12.2 An artistic 3D
rendering of an fMRI scan
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Fig. 12.3 The result of a scanning section is a set of fMRI data for each measure of Beethoven’s
piece

Fig. 12.4 The fMRI data inform the reassemblage of the piece
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12.4 Brain Scanning: Materials and Methods

The brain images were collected using equipment and parameters that are typical in
cognitive neuroscience. The scanner was a Siemens Allegra 3-T head-only scanner
with a head coil. (‘T’ stands for Tesla, a measure of magnetic field strength.
Contemporary scanners range from 1.5 to 7 T.) A T2-sensitive echo planar imaging
(EPI) pulse sequence was used to obtain blood oxygenation level-dependent
(BOLD) contrasts: TR = 2,000 ms, TE = 30 ms, 36 axial slices, 3 × 3 × 3 mm,
64 × 64 matrix in a 192 × 192 mm FOV. That is, each full-brain image took two
seconds to collect, to yield 36 image slices of the brain. Each slice comprised
64 × 64 picture elements, known as voxels or volume pixels. Thus, each image
comprised approximated 150,000 continuously varying voxels.

Subjects heard the second movement of Beethoven’s Seventh Symphony twice.
The subjects were instructed to attend to the music with their eyes closed. The fMRI
recording began with 30 s without music, then 460 s of Beethoven, then 18 s
without music and finally the same 460 s of Beethoven previously heard. Thus,
each run generated 484 images.

12.5 fMRI Analysis

The raw fMRI scans were first preprocessed following usual procedures for func-
tional neuroimaging. These included correcting for head motion, morphing the
individual brains to conform to a standard anatomical atlas, and spatial smoothing,
which is a procedure that reduces random fluctuations by calculating a moving
average of each voxel in the context of its spatial neighbours. These preprocessing
steps were implemented using Statistical Parametric Mapping software (Ashburner
et al. 2013).

Each of the 484 images produced 150,000 voxels, which are very complex for
direct analysis. Instead, the image series were further processed with independent
component analysis, abbreviated as ICA (Stone 2004). Informally, ICA separates
ensembles of voxels that oscillate in unison. These are unified as supervoxels
representing temporally coherent networks of brain activity. The coloured patches
in Fig. 12.2 are examples of independent components. A total of 25 components
were calculated for the three subjects in the experiment.

In order to select which of these components might be musically significant, the
activity of each component during the first pass through the Beethoven listening
was compared to that same component during the second pass. If these two seg-
ments of a component time series were correlated, we hypothesised that the activity
was at least partly musically driven, since the stimulus, that is, the music, would be
identical at the corresponding time points in the two passes through the music.
Although 25 independent component time series were identified, only the strongest
15 were selected to influence the compositional process. The order of strength of
the selected 15 ICA components is as follows: 25, 15, 14, 8, 5, 10, 11, 18, 6, 2, 4, 1,
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17, 16 and 13. The time series were normalised to range from 0 to 9. As a last step,
the varying components were resampled to match the timing of the Beethoven score
measure by measure. Thus, each time point was indexed to a measure of the
Beethoven score. The movement comprises 278 measures; therefore, each ICA
component comprises a time series of 278 values, ranging from 0 (meaning lowest
fMRI intensity) to 9 (highest fMRI intensity). As an example, Table 12.1 shows the
values of the first 5 strongest ICA components (that is, 25, 15, 14, 8 and 5) for the
first 10 measures of Beethoven’s music, yielded by the fMRI of the subject
‘composer’ during the first listening pass in the scanner.

To accompany the premiere of Symphony of Minds Listening, the ICA data were
animated on a large screen projection behind the orchestra. The whole brain
appeared as a transparent frame, derived from a standard anatomical template.
Within this image, each component was assigned a distinct colour, and brightened
and faded according to the intensity of component activity at each time point. The
animations were created using MATLAB software (MathWorks 2014), using
custom-made functions. The remaining of this chapter focuses on the compositional
process and the MusEng software.

12.6 The Compositional Process

The actual composition of Symphony of Minds Listening is primarily the work of
the first co-author and involved a number of creative stages and practices, some
which were not systematically documented. That is to say, the compositional
process involved manual and computer-automated procedures.

Table 12.1 The values of the strongest 5 ICA components for the first 10 measures of
Beethoven’s music yielded by the subject ‘composer’

Beethoven measure ICA 25 ICA 15 ICA 14 ICA 8 ICA 5

1 7 5 5 5 2

2 5 5 8 5 8

3 7 3 5 5 6

4 5 8 3 5 2

5 5 7 4 4 4

6 6 6 4 5 3

7 7 8 5 6 3

8 4 6 3 4 3

9 6 6 4 5 4

10 5 7 5 5 3
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There generally are two approaches to using computer-generated materials in
composition, which we refer to as the purist and utilitarian approaches, respec-
tively. The purist approach to computer-generated music tends to be more con-
cerned with the correct application of the rules programmed in the system, than with
the musical results per se. In this case, the output of the computer tends to be
considered as the final composition. The composer would not normally modify the
music here, as this would meddle with the integrity of the model or system. At the
other end of the spectrum is the utilitarian approach, adopted by those composers
who consider the output from the computer as raw materials for further work. Here,
composers would normally tweak the results to fit their aesthetic preferences, to the
extent that the system’s output might not even be identifiable in the final compo-
sition. Obviously, there is a blurred line dividing these two approaches, as practices
combining aspects of both are commonly found. Symphony of Minds Listening
tends towards the utilitarian approach.

The composition of the piece evolved in tandem with the development of Mu-
sEng. MusEng was programmed with artificial intelligence to learn musical
information from given examples and use this information to generate new music.
Incidentally, a few of MusEng’s functionalities were firstly applied manually to
compose a section of the piece, before they were implemented in software to aid the
composition of other sections. Indeed, a number of compositional processes did not
make it into the software on time. The symphony had a deadline to be delivered for
its premiere in February 2013, at Peninsula Arts Contemporary Music Festival, in
Plymouth, UK. The software development, however, is still in progress. And other
pieces are planned, and the compositional approach is being refined as we write this
chapter; for instance Corpus Callosum, for a chamber group of 25 musicians.

For a discussion on how science and technology can inform and inspire the act
of musical composition, the reader is referred to Miranda (2013, 2014). Both ref-
erences advocate the use of computers as assistants to the creative process, rather
than as autonomous composing machines.

For the composition of Symphony of Minds Listening, the first step was to
deconstruct the score of Beethoven’s piece into a set of basic materials for pro-
cessing. These materials were subsequently given to MusEng as input for a machine
learning phase, which will be explained in more detail in the next section of this
chapter.

First of all, Beethoven’s piece was divided into 13 sections:

• Section 1: from measure 1 to measure 26
• Section 2: from measure 26 to measure 50
• Section 3: from measure 51 to measure 74
• Section 4: from measure 75 to measure 100
• Section 5: from measure 101 to measure 116
• Section 6: from measure 117 to measure 138
• Section 7: from measure 139 to measure 148
• Section 8: from measure 149 to measure 183
• Section 9: from measure 184 to measure 212
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• Section 10: from measure 213 to measure 224
• Section 11: from measure 225 to measure 247
• Section 12: from measure 248 to measure 253
• Section 13: from measure 254 to measure 278

The 13 sections informed the overarching form of the 3 movements of the new
symphony. This provided a template for the new piece, which preserved the overall
form of the original Beethoven movement. Indeed, MusEng did not learn the whole
Beethoven piece at once. Rather, it was trained on a section-by-section basis and the
musical sequences for the respective new sections of the new movements were
generated independently from each other. For instance, Section 1 of the movement
Ballerina has 26 measures and was composed based on materials from the first 26
measures of Beethoven’s music. Next, Section 2 has 24 measures and was com-
posed based on materials from the next 24 measures (26–50) of Beethoven’s music,
and so on.

A block diagram portraying the compositional procedures is shown in Fig. 12.5.
The blocks with thicker lines represent procedures that can be influenced and/or
controlled by the fMRI. After the segmentation of the music into 13 sections, the
flow of action bifurcates into two possibilities: manual handling of the segments
(left-hand side of Fig. 12.5) and computerised handling with MusEng (right-hand
side of Fig. 12.5). A discussion of manual handling is beyond the scope of this
chapter, but as an example we can show the transformation of Section 1 of Bee-
thoven’s original into the opening section of Ballerina. Figure 12.6 shows the first
10 measures of Beethoven’s music focusing on the parts of the violas, violoncellos
and double basses. Figure 12.7 shows how those measures were recomposed to

Segment original 
music into 13 sections

Train MusEng
with Section n

Segment Section n
into measures

MusEng generates
new Section n

MusEng transforms
new Section n

Manipulate 
measures

Produce 
new Section n

Orchestrate 
new Section n

Write new Section n

Fig. 12.5 Block diagram of
the overall compositional
process
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form 10 measures for the opening of the first movement of the new symphony. Note
the visible rhythmic transformation of measures 4, 6, 8 and 10.

The path on the right-hand side of the block diagram in Fig. 12.5 represents the
computer handling of the segments with MusEng. This will be explained in more
detail in the next section.

Fig. 12.6 The first 10 measures of Section 1 of Beethoven’s music, showing the viola,
violoncello and double bass parts

Fig. 12.7 Ten measures from the opening of Ballerina, the first movement of Symphony of Minds
Listening, showing the viola, violoncello and double bass parts
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Finally, once a new segment has been generated, it is orchestrated and appended
to the respective score of the new movement accordingly. The fMRI occasionally
influenced the instrumentation and the orchestration. For instance, in Philosopher,
the second movement, different ICA components were associated with groups of
instruments of the orchestra (e.g. ICA 25 = violins and violas, ICA 15 = trumpets
and horns, ICA 14 = oboes and bassoons and so on); these associations changed
from section to section. Then, for example, if the flute is to play in a certain measure
x of Philosopher, the ICA activation value of the respective component in measure
x of Beethoven’s music would define how the flute player should produce the notes.
We defined various tables mapping ICA activations to instrumental playing tech-
niques and other musical parameters. For instance, Table 12.2 shows a mapping of
ICA activations onto musical dynamics.

As a hypothetical example, let us consider a case where the flutes would play the
sequence shown in Fig. 12.8 in measures 5, 6 and 7 of the third movement:
Composer. If we assume that the flute is associated with ICA 8, then according to
the values shown in Table 12.1, the activations for measure 5, 6 and 7 are equal to
4, 5 and 6, respectively. Thus, the dynamics attributed to these 3 measures would be
as shown in Fig. 12.9.

Table 12.2 Mapping ICA
activation values onto musical
dynamics

Fig. 12.9 The measures from Fig. 12.8 with added dynamics informed by fMRI information

Fig. 12.8 Three new measures for the flutes
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12.7 The Musical Engine: MusEng

MusEng has three distinct phases of operation: a learning phase, a generative phase
and a transformative phase.

The learning phase takes a musical score and analyses it in order to determine a
number of musical features. A dataset comprising these features and rules repre-
senting the likelihood of given features appearing in the data is then stored in
memory. At the generative phase, these data inform the generation of new
sequences, which should ideally resemble the sequences that were used to train the
system in the first phase. Finally, at the transformative phase, the outcome from the
generative phase is modified according to a number of transformation algorithms. It
is in this final phase that the fMRI information is used to influence the resulting
music. Note that we are not interested in a system of rules that reproduces an exact
copy of the original music. Rather, we are interested in producing new music that
resembles the original. Hence, the transformative phase was added to further
modify the results from the generative phase. The role of fMRI information is to
control the extent of the transformations. Essentially, stronger activity in a given
ICA component of the fMRI data results in larger amounts of transformation in the
musical outcome.

MusEng reads and outputs musical scores coded in the MIDI format. Musical
instrument digital interface (MIDI) is a protocol developed in the 1980s, which
allows electronic instruments and other digital musical tools to communicate with
one another. Music notation software normally has an option to save and read files
in this format. This is useful because it is straightforward to make a MIDI file
representing the Beethoven symphony to train the system. MusEng outputs can be
loaded into any suitable music notation software for further work and adjustments.

MusEng only processes monophonic musical sequences, that is, sequences of
one note at a time. Obviously, Beethoven’s movement is a polyphonic orchestral
symphony. To circumvent MusEng’s monophonic limitation, we developed two
approaches to process the music. In the first approach, we train the system with the
part of one instrumental voice of the orchestra at a time (violins, violoncellos, etc.),
and then, we generate sequences for those respective parts individually. In the
second approach, we reduce the orchestral music to one monophonic voice and then
generate various monophonic sequences, which are subsequently orchestrated.

12.7.1 Learning Phase

MusEng implements an adapted version of iMe (short for Interactive Musical
Environments), a system developed at Plymouth University’s Interdisciplinary
Centre for Computer Music Research with Marcelo Gimenes (Miranda and Gim-
enes 2011). MusEng takes a MIDI file as an input and extracts the following 5
features from the encoded music:
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• Pitches of the notes
• Melody directions between successive notes in a sequence
• Melody intervals, i.e. the amount of change between the pitches of successive

notes in a sequence
• Note durations
• Modalities implied by groups of notes in a sequence

These features are stored as event-based vectors, referred to as musicodes.
Table 12.3 shows the musicodes for the first two measures of the musical excerpt
shown in Fig. 12.10.

Melody direction can be −1, 0, or +1, referring to descending, motionless or
ascending movement. The current note in a sequence is compared with the previous
note; the very first note in a sequence therefore returns a value equal to 0. Melody
intervals are represented in terms of half steps, which are also calculated with
reference to the current note’s distance from the previous note. Again, the first note
in the sequence returns a value equal to 0. With note durations, the value 240 is
assigned to quarter notes, and other durations are calculated with reference to this
value; for example, half notes are equal to 480 and eighth notes are equal to 120.
Values for pitches are readily extracted directly from the corresponding MIDI code,
for instance, MIDI 21 = Note A0, MIDI 23 = Note B0, MIDI 24 = Note C1 and so
on.

In general, the number −2 is used to represent the absence of data in a musicode
vector. Thus, the note pitch musicode for a musical rest would be equal to −2. With
respect to the implied modality of segments, the system creates a label specifying a
tonal pattern and indicates when the estimation is ambiguous. For example, in the
first measure of the music shown in Fig. 12.10, the system sees E, G# and B, as an
E Major chord, but the G# has also implied A harmonic minor.

Fig. 12.10 An example of a musical sequence

Table 12.3 Musicodes for the first two measures of the musical sequence in Fig. 12.10

1 2 3 4 5 6 7 8 9

Melody direction 0 −1 +1 −1 0 +1 +1 −1 −1
Melody interval 0 5 2 4 0 1 1 1 1

Event duration 120 120 120 120 60 60 120 60 60

Note pitch E5 G#4 B5 E4 B5 C5 D5 C5 B5

Modality E Maj
A harmonic min

A min
C Maj

The rows correspond to the event number or, in this case, number of notes in the sequence: the first
two measures comprise a total of 9 notes
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As we shall see below, MusEng builds a musical memory in terms of small
segments of music. Ideally, the system would segment the music based on per-
ceptual criteria. The original iMe system sported such a method, inspired by Gestalt
psychology (Eysenck and Keane 2005). However, for this project, we programmed
MusEng to segment the music according to a user-specified number of measures,
for instance, every measure, or every two measures, or every three and so on. The
rationale for this decision is that we wanted to synchronise the fMRI analysis to the
input score by handling the fMRI data on a measure-by-measure basis, as it was
shown schematically in Figs. 12.3 and 12.4. Therefore, it made more sense to
establish the measure as a reference value to segment the music.

MusEng’s memory consists of a series of Feature Tables (FTs), which comprise
vectors of musicodes for material that the system has been exposed to. As the
musicodes are extracted from incoming measures, the system may or may not create
new FTs, depending on whether the respective musicodes have already been seen
by the system. If a certain vector of musicodes is identical to one that has been
previously seen by the system, then the system updates the relevant FT by
increasing a weighting factor, represented by the variable ω (Eq. 12.1). This var-
iable is generated by summing the total number of FTs and then dividing the
number of instances of each individual FT by the total. In essence, this becomes a
simple moving average. In Eq. (12.1), the value of ω indicates the weighting factor
associated with a given FT. The variable x represents the number of instances of a
given FT in the series, and n the total number of FTs in the series.

xðxÞ ¼
P

FTðxÞ
P

FTðnÞ
ð12:1Þ

This moving average has the effect of lowering the value of ω for vectors of
musicodes that do not appear as often as more frequent ones, in the same way that it
raises the value of ω for more commonly used vectors, to a maximum value of 1.0.
The value of ω informs the probability of a given musical segment being generated
later on by the system. Typically, a decrease in the value of ω causes the system to
‘forget’ to utilise the corresponding FT entry in the subsequent generative phase.

In order to illustrate how MusEng’s memory is built, let us examine a hypo-
thetical run through the sequence previously shown in Fig. 12.10, commencing
with an empty memory. The first measure (Fig. 12.11) is analysed, and the
respective musicodes are generated. For the sake of clarity, this example will focus
on three of the five features: melody direction (dir), melody interval (int) and event
duration (dur).

MusEng creates in its memory the first feature table, FT1, with musicodes
derived from the first measure of the training sequence (Fig. 12.11) as follows:

Fig. 12.11 The first measure for the example analysis
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dir ¼ 0; �1; þ1; �1f g
int ¼ 0; 5; 2; 4f g
dur ¼ 120; 120; 120; 120f g
x ¼ 1=1 or 1:0

Then, the system creates FT2 with musicodes extracted from the second measure
of the training sequence (Fig. 12.12) as follows:

dir ¼ 0; þ1; þ1; �1; �1f g
int ¼ 0; 1; 1; 1; 1f g
dur ¼ 60; 60; 120; 60; 60f g
x ¼ 1=2 or 0:5

Next, MusEng creates FT3, with musicodes from the third measure of the
training sequence (Fig. 12.13) as follows:

dir ¼ 0; þ1; 0f g
int ¼ 0; 1; 0f g
dur ¼ 120; 120; 240f g
x ¼ 1=3 or 0:33

The fourth and fifth measures are processes next, but MusEng does not create
new FTs in these cases because they are repetitions of previous measures; that is,
their respective musicodes have already been seen by the system. In this case, only
the values of ω for the respective FTs are adjusted accordingly. Thus, at this point
of the training phase, the ω values for each FT are as shown in Table 12.4.

MusEng’s memory after the training phase, complete with 3 FTs, is shown in
Table 12.5. It is important to stress that particular FTs gain or lose perceptual

Fig. 12.12 The second measure for the example analysis

Fig. 12.13 The third measure for the example analysis

Table 12.4 Values of ω after three FTs have been created and stored in memory, calculated by
dividing the number of instances of a given FT by the total number of FTs analysed

FT1 FT2 FT3

ω 1/5 = 0.2 2/5 = 0.4 2/5 = 0.4
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importance depending on how often the system is exposed to them. Notice,
therefore that FT2 and FT3 have higher ω values than that of FT1, because they
appeared twice.

12.7.2 Generative Phase

At the generative phase, MusEng generates new FTs by mutating the musicodes of
an existing FT towards those of another FT in memory. This process is influenced
by the values of ω: FTs with larger ω values are selected more often than FTs with
smaller ω values. Note that we wrote ‘tend to be selected’. This is because MusEng
uses a Gaussian distribution function to make this selection.

The very first measure of a newly generated structure is typically informed by
the first FT in memory (FT1). Let us consider this as the source FT for the mutation.
A second FT, the target FT, is selected from memory according to the values held in
memory for the variable ω, as mentioned above, and FTs with higher ω values tend
to be selected as targets more often than FTs with lower ω values.

The generative process is illustrated below by means of a simple example using
the memory from the previous learning phase, but considering a mutation on a
single musicode only: melodic direction (dir). Therefore, let us assume the memory
scenario shown in Table 12.6.

In order to generate a new measure, the dir musicode of the source FT1 will be
mutated towards the respective musicode values of a target FT. In this case, both
FT2 and FT3 have the same ω so there is an equal chance of FT2 or FT3 being
selected as the target FT, and a smaller chance of FT1. Let us assume that FT2 is
selected as the target. Thus, FT2’s dir musicode is applied to FT1’s dir musicode to
produce a mutation (represented in bold) as follows:

0; þ1; þ1; �1; �1f g þ 0; �1; þ1; �1f g ¼ 0; 0; þ1; �1; �1f g:

Note that the dir musicode has outlying maximum and minimum values of +1
and −1; hence, only the second value is actually mutated (+1) + (−1) = 0. Therefore,
the newly generated FT contains a dir musicode of {0, 0, +1, −1, −1}.

Table 12.5 MusEng’s memory after being trained with the musical sequence shown in Fig. 12.5

dir int dur ω

FT1 0, −1, +1, −1 0, 5, 2, 4 120, 120, 120, 120 0.2

FT2 0, +1, +1, −1, −1 0, 1, 1, 1, 1 60, 60, 120, 60, 60 0.4

FT3 0, +1, 0 0, 1, 0 120, 120, 240 0.4

Table 12.6 A memory scenario with three FTs

FT1 FT2 FT3

dir 0, −1, +1, −1 0, +1, +1, −1, −1 0, +1, 0

ω 0.2 0.4 0.4
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Mutating other musicodes (melody interval, event duration, note pitch, etc.)
would yield more variation. Mutations are possible across all musicodes in a similar
manner, with the only exception being mutations in modality. These are accom-
plished by a process of transformation whereby the intervals between successive
absolute pitches in the given FTs are forced to conform to preset intervals for major,
minor or diminished modes.

Finally, the new FT is rendered into a musical measure (Fig. 12.14) and saved
into a MIDI file.

The above example only showed the generation of a single measure. For longer
musical sequences, further FTs are generated by using the next FT in memory as the
source FT and mutating it with a target FT that again is selected according to the
value of the variable ω of all other FTs stored in memory.

12.7.3 Transformative Phase

The transformative phase comprises a number of transformation algorithms that
modify a given musical sequence, three of which will be explained in this section.

Although there are some differences in the specific processing undertaken by
each algorithm, the basic signal flow is quite similar for all of them. The generated
input signal is modified towards values given by one of the transformation algo-
rithms. With most of the transformation algorithms, the amount of modification is
scaled according to the fMRI data. The fMRI data, or more specifically the data
extrapolated from the fMRI scans by ICA analysis, are referred to as the
fMRI_index. These data are provided to MusEng on a ten-point scale with values
between 0 and 9. In order to use the fMRI index as a control signal (CS) for the
transformation algorithms, MusEng first scales the data to a range between 0.1 and
1.0. The system applies the following simple scaling process to the value of the
fMRI_index (Eq. 12.2).

CS ¼ fMRI indexþ 1ð Þ � 0:1f g ð12:2Þ

A difference value d between the input and the transformed musicodes is also
calculated. This difference is then multiplied by the CS to give a final scaled
modifier value (SMV). The SMV is summed with the input signal to directly
transform the output. This gives a degree of fMRI-controlled variability in each
transformation: a high fMRI_index value will result in larger transformations to the
music, whereas a low fMRI_index value will result in smaller transformations.

Fig. 12.14 The musical rendering of the new FT that was generated by mutating the dir musicode
from FT1 and FT2
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Below are examples of three of the transformation algorithms, which illustrate the
effect of varying the fMRI_index: pitch inversion, pitch scrambling and pitch delta.

12.7.3.1 Pitch Inversion Algorithm
Given an input musical sequence, the pitch inversion algorithm creates a new
sequence, which is effectively the input sequence turned upside down. For instance,
a sequence rising in pitch would descend in pitch after being passed through this
transformation. In order to illustrate this, let us consider the measure produced in
generation phase example, as shown in Fig. 12.14. Incidentally, this measure will
be used as the starting point for the following two transformation examples as well.

The melody interval musicode for this measure is {0, 0, 3, 2, 1}, and the note
pitch musicode is {B4, B4, D5, C5, B4}. In this case, the MIDI values are 71, 71,
74, 72 and 71, respectively; MIDI uses a range of 128 pitch values. There are a
variety of ways to accomplish a pitch inversion, including diatonic and chromatic
options, or inversions around a specific sounding pitch. MusEng processes pitch
inversion simply by subtracting the current MIDI pitch value from 128, and
substituting in the resulting natural number as the new pitch value. For instance, the
transformed pitch values for our example created using this technique would be as
follows: (128 − 71 = 57), (128 − 71 = 57), (128 − 74 = 54), (128 − 72 = 56) and
(128 − 71 = 57).

The resulting MIDI values are 57, 57, 54, 56 and 57, yielding the following pitch
sequence {A3, A3, F#3, G#3, A3}. Note that the inverted sequence maintains the
original melody interval musicode of {0, 0, 3, 2, 1}, while giving an upside down
melody, as shown in Fig. 12.15.

The example above assumed a maximal fMRI index value of 9, which once
scaled to create a CS gives 1.0. However, as mentioned in the introduction to this
section, varied degrees of transformations are also possible by scaling the amount of
transformation according to the value of the fMRI_index. The difference between
the input and the transformed pitches is multiplied by the CS, before being summed
with the input to create the final transformed output value (Eq. 12.3).

New pitch ¼ Input pitchþ ððInput pitch� transf pitchÞf
�½ðfMRI indexþ 1Þ � 0:1�Þg ð12:3Þ

Let us examine what happens if we assume an fMRI_index equal to 5, which
yields a CS equal to 0.6. In this case, we would expect an output approximately
halfway between the original pitch and the inversion, in other words an almost
neutral set of intervals. First, the difference d between the maximal inversion and
the input signal for each of the musicode values needs to be calculated as follows:

Fig. 12.15 Newly inverted sequence, after transformation of measure in Fig. 12.14
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d ¼ 57�71ð Þ; 57�71ð Þ; 54�74ð Þ; 56�72ð Þ; 57�71ð Þf g
d ¼ �14; �14; �20; �16; �14f g

Then, the scaled modifier values are calculated by multiplying the difference
values by the value of CS:

SMV ¼ �14 � 0:6ð Þ; �14 � 0:6ð Þ; �20 � 0:6ð Þ; �16 � 0:6ð Þ; �14 � 0:6ð Þf g
SMV ¼ �8:4; �8:4; �12; �9:6; �8:4f g

Finally, the SMV values are summed with the original input to give a trans-
formed set of output values:

New pitches ¼ 71� 8:4ð Þ; 71� 8:4ð Þ; 74�12ð Þ; 72� 9:6ð Þ; 71� 8:4ð Þf g
New pitches ¼ 62:6; 62:6; 62; 62; 62:6f g

Pitch values are rounded up to the nearest whole number as per the MIDI
standard, giving a transformed set of pitch values equal to {63, 63, 62, 62, 63},
which is rendered as {D#4, D#4, D4, D4, D#4}, as shown in Fig. 12.16.

12.7.3.2 Pitch Scrambling Algorithm
In simple terms, the pitch scrambling algorithm orders the pitch values of the input
signal into a numerical list, which is then reordered randomly. This provides a
stochastic component to the transformation algorithm. Using the same measure as
for the previous example (Fig. 12.14) as a starting point, let us examine the result of
applying this transformation. The process is as follows:

• Input pitches: {71, 71, 74, 72, 71}
• Order pitches in ascending order: {71, 71, 71, 72, 74}
• Scramble the order of pitches randomly: {74, 72, 71, 71, 71}
• Output pitches: {74, 72, 71, 71, 71}

In this case, the output would be rendered as {D5, C5, B4, B4, B4}. Rerunning
the transformation a further three times would give further variants, for example
{72, 74, 71, 71, 71}, {71, 74, 72, 71, 71} and {71, 74, 71, 72, 71}, rendered as {C5,
D5, B4, B4, B4}, {B4, D5, C5, B4, B4} and {B4, D5, B4, C5, B4}, respectively, as
illustrated in Fig. 12.17.

As with the pitch inversion algorithm, the value of fMRI_index can be used to
create a control signal with which the amount of transformation can be varied. In

Fig. 12.16 Sequence after inversion with fMRI_index = 5, giving a nearly neutral set of pitch
intervals
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order to illustrate this, let us assume an fMRI_index equal to 3. This gives a CS
value of 0.4.

Considering the same input measure as before (Fig. 12.14) and the transformed
values from the first pitch scramble shown in Fig. 12.17, the value of d, between the
first scramble and the input signal, is calculated as follows:

d ¼ 74�71ð Þ; 72�71ð Þ; 71�74ð Þ; 71�72ð Þ; 71� 71ð Þf g
d ¼ 3; 1; �3; �1; 0f g

The scaled modifier values are then calculated by multiplying the difference
values by CS = 0.4:

SMV ¼ 3 � 0:4ð Þ; 1 � 0:4ð Þ; �3 � 0:4ð Þ; �1 � 0:4ð Þ; 0 � 0:4ð Þf g
SMV ¼ 1:2; 0:4; �1:2; �0:4; 0f g

Finally, the SMV values are summed with the values of the original input to give
a transformed set of output values:

New pitches ¼ 71þ 1:2ð Þ; 71þ 0:4ð Þ; 74� 1:2ð Þ; 72� 0:4ð Þ; 71� 0ð Þf g
New pitches ¼ 72:2; 71:4; 72:8; 71:6; 71f g

As before, pitch values are rounded up to the nearest whole number as per the
MIDI standard, giving a transformed set of pitch values equal to {72, 71, 73, 72,
71}, which is rendered as {C5, B4, C#5, C5, B4}, as shown in Fig. 12.18. Note that
the output is significantly closer in overall structure to the unscrambled input than
the first scrambled transformation shown in Fig. 12.17, with only the first and third
notes having changed here.

Fig. 12.17 The result from applying the pitch scrambling algorithm four times on the same input

Fig. 12.18 Transformed output created by pitch scrambling algorithm assuming fMRI_index = 3
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12.7.3.3 Pitch Delta Algorithm
Pitch delta represents the rate of change in the pitch values in each measure. The
algorithm works by calculating the difference between the initial pitch and the
successive pitch in each pair of notes. The pitch delta value is then used to trans-
form the input pitch by summing the two values together (Eq. 12.4).

New pitch ¼ successive pitch� initial pitchð Þ þ initial pitchf g ð12:4Þ

Assuming the same input as for the previous examples (Fig. 12.14), with a string
of note pitch values equal to {71, 71, 74, 72, 71}, the delta values for this trans-
formation are calculated as follows:

1. Delta 1 ¼ 71�71ð Þ þ 71f g
Delta 1 ¼ 0

New pitch 1 ¼ 71 no changeð Þ

2. Delta 2 ¼ 71�71ð Þ þ 71f g
Delta 2 ¼ 0

New pitch 2 ¼ 71 no changeð Þ

3. Delta 3 ¼ 74�71ð Þ þ 74f g
Delta 3 ¼ 3

New pitch 3 ¼ 77

4. Delta 4 ¼ 74�72ð Þ þ 74f g
Delta 4 ¼ 2

New pitch 4 ¼ 76

5. Delta 5 ¼ 72�71ð Þ þ 72f g
Delta 5 ¼ 1

New pitch 4 ¼ 73

The transformed output would therefore comprise a pitch string of {71, 71, 77,
76, 73}, which is rendered as {B4, B4, F5, E5, C#5}, as shown in Fig. 12.19. Thus,
the application of the pitch delta algorithm gives the effect of exaggerating the
melodic intervals from a given measure; large intervals become even larger, while
melodies with little or no interval between successive notes remain unchanged.

Fig. 12.19 Transformed output created by the pitch delta algorithm
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As with the previous cases of transformations, the above example assumed a
maximal fMRI_index value, but the effect of the transformation can be mediated by
reducing the value of the fMRI_index. This is illustrated in the following example.

Let us assume the case of fMRI_index = 2. This gives a CS value of 0.3. With
such a low value for the control signal, we should expect only a small amount of
pitch delta transformation.

As before, we will use the input signal shown in Fig. 12.14, this time with the
transformed values from the full pitch delta transformation shown in Fig. 12.19, to
the difference d, as follows:

d ¼ 71�71ð Þ; 71�71ð Þ; 77�74ð Þ; 76�72ð Þ; 73�71ð Þf g
d ¼ 0; 0; 3; 4; 2f g

The scaled modifier values are then calculated by multiplying the difference
values by the CS value, which is equal to 0.3:

SMV ¼ 0 � 0:3ð Þ; 0 � 0:3ð Þ; 3 � 0:3ð Þ; 4 � 0:3ð Þ; 2 � 0:3ð Þf g
SMV ¼ 0; 0; 0:9; 1:2; 0:6f g

Finally, the SMV values are summed to the original input to give a new
sequence of pitch values:

New pitches ¼ 71þ 0ð Þ; 71þ 0ð Þ; 74þ 0:9ð Þ; 72þ 1:2ð Þ; 71þ 0:6ð Þf g
New pitches ¼ 71; 71; 74:9; 73:2; 71:6f g

As with the previous transformation examples, pitch values are rounded up to
the nearest whole number, giving a transformed sequence of pitch values of {71,
71, 75, 73, 72}, which is rendered as {B4, B4, D#5, C#5, C5}, as shown in
Fig. 12.20. The exaggerating effect of the pitch delta has been radically mediated by
the value of CS, with a much smaller amount of change seen in the transformed
output than in the full pitch delta transformation shown in Fig. 12.19.

The generative potential of a composition system that incorporates transforma-
tive processes, such as that offered by MusEng, is high.

Fig. 12.20 Transformed output created by pitch delta algorithm with a relatively low
fMRI_index value of 3
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12.8 Concluding Remarks

Research into BCMI often is devoted to technical aspects of building BCMI sys-
tems, which is not surprising giving the plethora of technical difficulties that need to
be addressed to implement a decent system. In this chapter, however, we ventured
to explore the creative potential of the science and technology behind BCMI
research: music neurotechnology.

We introduced an approach to music composition informed by the notion that
the neural patterns and the corresponding mental images of objects and events
around us are creations of the brain prompted by the information we receive
through our senses. In the case of music, even though humans have identical
mechanisms for processing the basics of sound, music as such is a construction of
the brain. Indeed, there is increasing hard evidence that this construction differs
from person to person. When we listen to music, sounds are deconstructed as soon
as they enter the ear. Different streams of neuronally coded data travel through
distinct auditory pathways towards cortical structures, such as the auditory cortex
and beyond, where the data are reconstructed and mingled with data from other
senses and memories, into what is perceived as music.

Metaphorically speaking, the compositional approach that we developed to
compose Symphony of Minds Listening did to the Beethoven score what our hearing
system does when we listen to music: sounds are deconstructed as they enter the ear
and are relayed through various pathways towards cortical structures, where the
data are then reconstructed into what is perceived as music.

We would like to highlight that the composition of the piece evolved in tandem
with the development of the MusEng software. Some of MusEng’s functionalities
were firstly applied manually to compose a section of the piece, before they were
implemented in software to aid the composition of other sections. The composi-
tional practice therefore informed the design of the software, and the design of the
software influenced the compositional practice. We believe that this is an important
shift of paradigm from most scenarios of using computers in music. A piece of
software is often developed from abstract specifications and tested only after it has
been almost fully implemented. Moreover, composers are often confronted with
software that does not always do what it needs to do. Our paradigm to systems
development may not be as cost-effective as more standard methods, as it requires
much more time to develop. However, it opens a significant opportunity for
composers to actively participate in the design process. As we continue developing
this work, more and more procedures emerging from the left-hand side of the block
diagram in Fig. 12.5 will certainly make its way to the right-hand side.

We believe that Music Neurotechnology provides musicians with an unprece-
dented opportunity today to develop new approaches to music that would have been
unthinkable a few years ago. This chapter unveiled only the tip of the iceberg.
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12.9 Questions

1. How would you define the emerging field of Music Neurotechnology?
2. What do you understand by the ‘mind as music’ hypothesis?
3. Explain the metaphor that Symphony of Minds Listening is intended to express

artistically.
4. What is the point of composing each movement of the symphony based on the

fMRI scan of a different person?
5. Explain what ICA is and its role in the project presented in this chapter.
6. What are the approaches to using computer-generated materials in musical

composition discussed in this chapter? Discuss the differences between them,
and the advantages and disadvantages of each approach.

7. Can you envisage an approach to use computers in music beyond the ones
discussed in this chapter?

8. What is the rational for dividing Beethoven’s piece into 13 sections before
processing it with MusEng?

9. Why does MusEng apply transformations to the music?
10. Create a new kind of transformation for MusEng and explain it in detail.
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13Passive Brain–Computer Interfaces

Laurent George and Anatole Lécuyer

Abstract

Passive brain–computer interfaces (passive BCI), also named implicit BCI,
provide information from user mental activity to a computerized application
without the need for the user to control his brain activity. Passive BCI seem
particularly relevant in the context of music creation where they can provide
novel information to adapt the music creation process (e.g., user mental
concentration state to adapt the music tempo). In this chapter, we present an
overview of the use of passive BCI in different contexts. We describe how
passive BCI are used and the commonly employed signal processing schemes.

13.1 Introduction

In traditional brain–computer interfaces (BCI), called active BCI, the user delib-
erately tries to control his/her brain activity in order to send desired commands to
the applications. One limitation of this approach for the design of BCI systems that
are not targeted for special or medical scenarios is its relatively low performance
compared to other control devices such as a keyboard. Indeed, BCI systems usually
provide an information transfer rate below 25 bits/min (Wolpaw et al. 2002).

The recent passive BCI approach is less affected by this transfer rate limitation as
it does not require a high bit rate (Coffey et al. 2010). Indeed, passive BCI do not
try to replace traditional motor inputs but act as a complementary input providing
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valuable information that reflects the user mental states (Cutrell and Tan 2007;
Girouard 2009; Zander et al. 2009).

In passive BCI, the user does not try to control his/her brain activity, and he/she
can remain mainly concerned by his/her primary task. The brain activity is analyzed
to read out the user mental state which is used to adapt the interaction rules or the
content of the application.

In this chapter, we present an overview of the use of passive BCI in different
contexts: adaptive automation, multimedia content tagging, video game adaptation,
error correction, etc. We describe how implicit BCI are used and the commonly
employed signal processing schemes.

13.2 Passive BCI Definition

Cutrell and Tan were the first to introduce the expression “passive BCI.” In Cutrell
and Tan (2007), they wrote “We think there is a potential to use brain sensing in a
more passive context, looking beyond direct system control to make BCI useful to
the general population in a wide range of scenarios.” Girouard (2009) referred to the
work of Cutrell and Tan and defined the term “passive BCI” as “Passive BCI are
interfaces that use brain measurements as an additional input, in addition to stan-
dard devices such as keyboards and mice.” By developing passive BCI, her aim was
to use the brain activity information to create “applications that pay attention to the
user” by adapting them to user’s mental state. Another point of view is presented by
Zander et al. (2009) who defined passive BCI as “BCI based not on intended
actions of the user, but instead on reactive states of the user’s cognition automat-
ically induced while interacting in the surrounding system.” Recently, Makeig et al.
(2012) described passive BCI as “BCI that produce passive readout of cognitive
state variables for use in human–computer applications without requiring the user to
perform voluntary control that may restrict performance of and attention to con-
current tasks.” To summarize brain–computer interface (or interaction) could be
categorized as:

• active BCI (explicit brain–computer interaction): The user deliberately tries to
control his/her brain activity;

• passive BCI (implicit brain–computer interaction): The user does not try to
control his/her brain activity, he/she is mainly concerned by his/her primary task.

It should be noted that there is no consensus about the integration of passive BCI
in the BCI definition. Indeed, some researchers use a somewhat restrictive defini-
tion of BCI. For example, Pfurtscheller and Scherer defined a BCI as a commu-
nication system where a “brain signal that the user can intentionally modulate” is
used for sending control commands (Pfurtscheller and Scherer 2010). This defini-
tion does not include passive BCI. However, the BCI community seems to accept
passive BCI more and more as a new extension of BCI (Makeig et al. 2012).
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13.3 Mental States Used in Passive BCI

Brain activity measurements, specifically EEG techniques, provide signals that can
be used to read out user mental state. These signals and related mental states could
be categorized into signals related to user emotional state, signals related to user’s
task, signals related to error potentials, and signal related to user’s mental workload.
In the following section, the EEG markers that could be used to read these different
mental states are described.

13.3.1 Emotional State

Some EEG patterns have been shown to be correlated with user’s emotional state
(Onton and Makeig 2009; Heraz and Frasson 2007; Molina et al. 2009). These can
be patterns over time (e.g., EEG rhythms) but emotional state can also influence
punctual patterns (e.g., P300). In the following, we mainly refer to the works
reported in Molina et al. (2009).

Lang et al. show that some rhythmic EEG patterns can be correlated to emotional
state; it seems possible to detect dominance, arousal, and pleasure1 using EEG
signals (Heraz and Frasson 2007). Lang et al. (1997) use the International Affective
Picture System which is a set of pictures that are known to cause specific emotions
and measure EEG activity when presenting the pictures to the user. A correlation
between different EEG rhythms and the three emotional states has been observed:

• pleasure: negative correlationwith delta, theta, and beta rhythms2 (highly for beta);
• arousal: positive correlation with theta and beta rhythms (highly for theta) and

positive correlation with alpha rhythms;
• dominance: negative correlation with delta, theta, and beta (highly negative for

beta) and a positive correlation with alpha rhythms.

Numerous works also seem to reveal a relation between frontal activity and
emotion. A difference of symmetry has, for example, been shown between the left
and the right frontal hemisphere in the alpha frequency band during emotion (Coan
and Allen 2004).

Gamma band and emotion have also been found to be related to emotional
process (Gemignani et al. 2000, Onton and Makeig 2009). Studies revealed an
increase in gamma band over left frontal hemisphere during negative emotional
stimuli (Gemignani et al. 2000). Onton and Makeig (2009) also describe a negative
correlation between pleasure of imagined emotion and gamma power in occipital
region.

1 Emotional state can be represented into a three-dimensional space where the axes are pleasure
(from unpleasant to pleasant), arousal (from calm to excited), and dominance (i.e., control) (Lang
et al. 1997).
2 Beta is considered to be frequency above 12 Hz in this study.
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The event-related potentials (ERP) also seem to be modulated by the emotional
state of the user. Olofsson et al. provide a survey of this modulation in Olofsson
et al. (2008). For example, pleasant stimulus helps to induce larger P300 amplitude,
compared to an unpleasant one.

13.3.2 Task-Related State

The brain activity measurement could also provide information concerning the user
mental state related to an interaction task. In the following text, works that show
markers related to user’s perceived difficulty of the task and differentiation of tasked
based on EEG activity are presented.

Lee and Tan (2006) found some differences in EEG patterns between different
kinds of video game interactions3 (relaxation without playing, playing without
enemies, and playing with enemies). This work does not induce any modification of
the game based on the acquired data. It reveals the feasibility of this kind of task
differentiation by providing an average classification accuracy of 92.4 %.

Girouard et al. (2009) have also explored the differentiation of task during
interaction with video game. They measure the blood oxygenation in cortical region
of a user playing a Pacman-like video game. Their BCI system was able to dis-
tinguish between difficulty level and also active state versus passive state (user not
playing). We can note that the difficulty level measured, as explained by Girouard,
reflects the difficulty sensed by the user, not the difficulty of the game (the user can
work hard and performs poorly).

Reuderink and colleagues observed brain activity related to frustration during
video game interaction. They record EEG during a modified version of Pacman
called affective Pacman (Reuderink et al. 2009). In affective Pacman, the game
voluntary induced frustration by adding errors into movements (the key pressed did
not always induce the same character movement). This experiment and the pre-
liminary analysis reveal differences between normal and frustrated states. The
authors propose to continue to explore the effect of frustration on EEG activity.
They also propose to use the level of frustration as an interaction input to switch, for
example, between an easy mode (where the character is controlled by a keyboard)
and a difficult mode (where the user uses an explicit BCI to control the character).

13.3.3 Error-Related Potentials

Error-related potentials (ErrP) are a certain type of event-related potentials that can
be measured in the EEG activity when the user is aware of erroneous behavior. Four
kinds of ErrP have been identified (Ferrez and Millán 2007):

3 Halo, first person shooter game produced by Microsoft.
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• “response ErrP” follow incorrect motor action (e.g., wrong key press). It is a
negative potential (error negativity ERN) in the EEG 80–100 ms after the
incorrect movement followed by a positive peak between 200 and 500 ms.

• “feedback ErrP” follow the presentation of a stimulus that reflects incorrect
performance (e.g., system presents a feedback that tells the user he has done an
error). It is a negative deflection in the EEG 250 ms after the stimulus.

• “observation ErrP” follow the observation of errors made by an operator during
choice reaction task where the operator needs to respond to stimuli. It is a
negative deflection 250 ms after an incorrect response of the operator was
observed.

• “interaction ErrP” appear when the user interacts with an application that does
not respond in the expected way. It is composed of a positive peak 200 ms after
the feedback, a negative peak after 250 ms, a second larger peak after 320 ms, a
larger negative peak after 450 ms, and a late peak after 600 ms.

Interaction ErrP can, for example, be used to detect error in a P300 speller (see
Sect. 13.4.2).

13.3.4 Mental Workload

Real-time measurement of mental workload could present benefits in different
contexts as suggested in Blankertz et al. (2010) and Coffey et al. (2010). For
instance, it could be used for safety purpose (e.g., raising alert), for improving
human effectiveness and reducing errors (e.g., modifying task demands or acti-
vating assistance in times of cognitive overload), or as an objective measure in
usability evaluation of new products.

Two relevant markers are used to estimate mental workload: ERP and EEG
oscillatory activity (Van Erp et al. 2010). ERP have been shown to be affected by
the user’s mental workload, whereas EEG rhythmic activity is correlated with
mental workload levels.

There are no obvious best markers to estimate user’s mental workload. As
reported by Berka et al. (2007), the requirement of an electing stimulus into real-
world tasks to elicit the potentials is a limitation of the ERP-based approach.
Oscillatory rhythmic activity-based estimators show the advantage of being able to
be used without disrupting the primary mode of interaction of the user. Indeed,
unlike ERP-based estimators, they do not require any external stimulus. They could
be used in a completely passive BCI context. The combination of the two tech-
niques has shown improvement of the mental workload estimator accuracy
(Brouwer et al. 2012).
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13.4 Applications of Passive BCI

In this section, our aim is to present existing applications of passive BCI. These
applications can be categorized into four categories: implicit multimedia content
tagging, error correction, adaptive aiding and automation, and virtual environment
applications as displayed in Table 13.1.

13.4.1 Implicit Multimedia Content Tagging

Passive BCI have been used for tagging multimedia contents (Shenoy and Tan
2008; Kapoor et al. 2008; Koelstra et al. 2009). Shenoy and Tan used EEG activity
to classify images (Shenoy and Tan 2008). They used ERP that occur in EEG
activity after image presentation. Their system was able to classify images matching
to human faces versus inanimate objects with a 75.3 % accuracy. For a three-class
classification (human faces vs. animals vs. inanimate objects), an average accuracy
of 55.3 % was obtained. Kapoor et al. (2008) used these results and proposed to
combine BCI with a more classical recognition system. The experiment yielded
significant gains in accuracy for the task of object categorization. In the two
aforementioned works, users were not aware of the classification task. They were
assigned “distractors task” to force them to look at the display. No feedback about
the classification task was provided. This reinforces here the implicit property of the
interaction.

Video content tagging has also been explored (Koelstra et al. 2009). Koelstra
et al. proposed to use EEG brain activity to implicitly validate video tags. They
demonstrated that incongruent tags could be successfully distinguished by EEG
analysis. Recently, Moon et al. (2012) proposed to automatically extract interesting
parts of video clip by using EEG activity. They used the commercial Emotiv device
and one of the proprietary EEG index related to user emotional state named long-
term excitement. In another study related to multimedia content, Scholler et al.
(2012) proposed to use EEG activity and specifically P300 components to deter-
mine whether a change in video quality of multimedia clip occurred (the process is
done off-line).

13.4.2 Error Detection and Correction

The detection of ErrP provides a promising possibility to correct errors in different
contexts. For instance, the detection of ErrP has been used to correct error during
classical computer interaction task (Parra et al. 2003) and to increase performance
of active BCI (Ferrez and Millán 2008; Dal seno et al. 2010).

Parra et al. (2003) use the detection of error potentials in brain activity to correct
errors in a visual discrimination task. In this study, the users had to push buttons
corresponding to visual stimuli. The user sometimes failed and perceived error
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shortly after the action. The system could then identify error potentials and correct
user’s actions.

The use of error potential was also proposed to correct errors in active BCI
systems (Ferrez and Millán 2008; Dal seno et al. 2010). Ferrez and Millàn (2008)
used error potential detection to filter out erroneous responses of a BCI based on
motor imagery. Dal seno et al. (2010) addressed the automatic detection and cor-
rection of the errors made by a P300 speller. Schmidt et al. (2012) also used an
online detection of ErrP to increase the spelling speed of a visual p300 speller
(increase of 29 %).

13.4.3 Adaptive Aiding and Adaptive Automation

Passive BCI have been used in several studies for off-line monitoring of workload
during different tasks such as reading, writing, surfing, programming, mathematical
tasks, and memory tasks (Berka et al. 2007). A few studies aim at using passive
BCI for monitoring mental workload in online context (Heger et al. 2010; Berka
et al. 2007). A commercial application system (B alert) based on EEG activity has
also been proposed (Berka et al. 2007). B alert is an online monitoring system of
mental workload and alertness that can provide an index of mental workload.

Passive BCI systems based on mental workload (or similar information) were
also used for online adaptation purpose. Pope et al. (1995) proposed a brain-based
adaptive automation system based on EEG activity. In their system, the allocation
between human and machine of a tracking task is done based on an engagement
index calculated using user’s EEG indices. Ratios between the beta, alpha, and theta
band power were used. An experiment conducted with 6 subjects shows the
operability of such a system.

More recently, Wilson et al. (2007) proposed to use EEG data (F7, Fz, Pz, T5,
O2) coupled with electro-oculographic and electrocardograph data to adapt an
aiding system based on an online index of mental workload (more precisely, task
demand level) during a complex aerial vehicle simulation. Two different task dif-
ficulties (high and low) were used. The mental workload index model was com-
puted during the first task using artificial neural network. The mental workload
model was then used online on the same task to adapt the aiding system that
consists in providing more time to the subject to evaluate target stimuli. The aiding
system was enabled when the user presented a high workload. This system allowed
to improve operator’s performance by approximately 50 %. Randomly presented
aiding does not show the same level of performance improvement (approximately
15 % of performance improvement in random aiding condition).

Passive BCI based onmental workload have also been used to reduce workload by
interrupting secondary tasks. Kohlmorgen et al. (2007) presented a passive BCI that
measures mental workload in the context of a real car-driving environment. The user
is engaged in a task mimicking interaction with the vehicle’s electronic warning and
information system. This task is suspended when high mental workload is detected.
This experiment showed better reaction times on average using the passive BCI.
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13.4.4 Passive BCI and Virtual Environments

Passive BCI have also been used, but scarcely, in virtual environments and video
games. Several video games that use implicit interaction have been already
developed. Some of them use implicit information to adapt the way the system
responds to commands. It is the case of the game “Bacteria Hunt” in which the
controllability of the player’s character is impaired by considering the level of alpha
power which is correlated here to relaxed wakefulness (Mhl et al. 2010).

Some other games adapt the avatar’s characteristics based on implicit infor-
mation. In “AlphaWoW” (Bos et al. 2010, Nijholt et al. 2009), which is based on
the famous game World of Warcraft, the user’s avatar form is updated (from elf to
wolf) according to the measured level of alpha activity. Another way to use implicit
information for games consists in adapting the game environment (e.g., background
music). Girouard et al. (2013) described an experiment in which the user is engaged
in two successive tasks watching a video and playing a Tetris game. The application
was able to predict in which task the user was engaged in, based on measurement of
the brain activity. This allowed to adapt the background music accordingly (e.g.,
increasing tempo). This adaptation was found to lead to a positive impact on user’s
satisfaction (Girouard et al. 2013).

Last, some video games can use implicit information to check whether the user
has perceived specific game information. In the game developed by Zander et al.
(2009), the user has to rotate a letter correctly, as fast as possible. Errors are
introduced by the system. A passive BCI is used to detect whether the user’s mental
state reveals that the user has perceived the errors. In this case, the speed of rotation
is increased. A false positive (a perceived error when there is none) slows the
rotation down.

We can notice that these games combine the use of classical devices (e.g.,
keyboard) with a passive BCI. One of them also uses an explicit BCI together with
a passive BCI (Mhl et al. 2010).

13.5 Conclusion

In this chapter, we proposed an overview of related work on the use of passive BCI
(also named implicit BCI) for interacting with computer applications. We discussed
the definition of passive BCI; then, we presented the different brain patterns that
seem to be relevant for this kind of interaction. Finally, we presented the different
applications of passive BCI.

The passive BCI approach holds good potential for BCMI. For instance, the
detection of auditory error response could be used in order to create music systems
that would be aware of the user’s perception of music. An other example could be
the evaluation of the user’s mental state in order to create or select a musical playlist
that matches the user’s emotional state.
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13.6 Questions

1. What is the difference between active and passive BCI ?
2. List three contexts where passive BCI have been used.
3. List three mental states that could be used in passive BCI.
4. What kind of EEG patterns has been shown to be related to the user’s emotional

states?
5. What are ErrP?
6. How error-related potentials could be used to improve an active BCI system?
7. How a passive BCI could be used to enhance the immersion of the user in a

video game?
8. The conclusion hinted on two possible musical applications of passive BCI. Can

you envisage a passive BCMI for generating music? Please describe how your
idea would work.
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