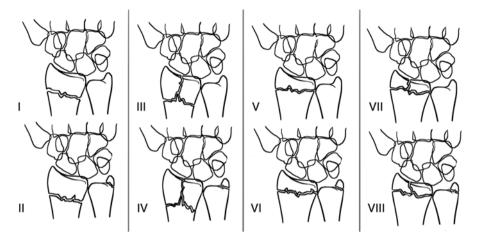
Chapter 23 Distal Radial Fractures

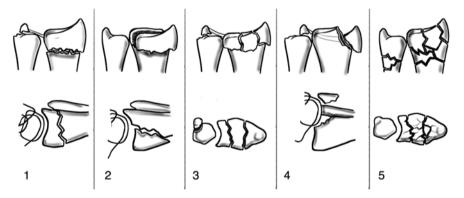
Nikolaos K. Kanakaris and Nick G. Lasanianos

Description

Frykman Classification


In 1967 Frykman presented this classification which has been one of the most popular among the number of classifications existing for distal radius fractures [1]. It distinguishes between radial articular and ulnar styloid involvement (Fig. 23.1). The Frykman classification has been considered to be the easiest and most straightforward to use. Nonetheless it does not define direction of displacement, shortening, or the extent of comminution thus making this scheme less helpful for treatment and prognosis, particularly with high-energy injuries and articular impaction fractures. The Frykman classification although considered good for tabulation of different fracture types it does not specifically direct the surgeon toward treatment decision.

Type I: Extra-articular
Type II: Type I with ulnar styloid fracture
Type III: Involvement of the radiocarpal joint
Type IV: Type III with ulnar styloid fracture
Type V: Involvement of the distal radio-ulnar joint
Type VI: Type V with ulnar styloid fracture
Type VII: Involvement of the radiocarpal and radio-ulnar joints
Type VIII: Type VII with ulnar styloid fracture


N.K. Kanakaris, MD, PhD (⊠) • N.G. Lasanianos, MD, PhD, MSc Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK e-mail: Nikolaos.Kanakaris@leedsth.nhs.uk; nikolaos@lasanianos.gr

[©] Springer-Verlag London 2015

N.G. Lasanianos et al. (eds.), *Trauma and Orthopaedic Classifications:* A Comprehensive Overview, DOI 10.1007/978-1-4471-6572-9_23

Fig. 23.1 The eight types of fractures according to the Frykman classification: type I extra-articular distal radial fracture; type II extra-articular distal radial fracture with fracture of the ulnar styloid; type III involvement of the radio-carpal joint; type IV involvement of the radio-carpal joint; type V involvement of the distal radio-ulnar joint; type V involvement of the radio-carpal joint; type VII involvement of the radio-carpal joint; type VII involvement of the distal radio-ulnar and radio-carpal joint; type VIII involvement of the distal radio-ulnar and radio-carpal joint; type VIII involvement of the distal radio-ulnar and radio-carpal joint; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal joints; type VIII involvement of the distal radio-ulnar and radio-carpal

Fig. 23.2 The five types of fractures according to the Fernandez classification: type I bending fracture - Colles or Smith's; type II shearing fracture of the joint surface - Barton's reverse Barton's; type III compression fracture - die punch impaction; type IV avulsion fracture of the radial / ulnar styloid; type V combination of types

Fernandez Classification

The Fernandez classification system was developed in 1993 by Fernandez and consists of five groups based on the mechanism of trauma (Fig. 23.2). This system was designed to determine stability, include associated injuries, and assist treatment recommendations [2,3].

1. Bending

One Cortex of the metaphysis fails due to tensile stress (Colles and Smith fractures) and the opposite cortex undergoes some comminution 2. Shearing

Fracture of the joint surface: Barton's, reversed Barton's styloid process fracture, simple articular fracture

3. Compression

Fracture of the joint surface with impaction of subchondral and metaphyseal bone (die punch). Intra articular comminuted fracture

4. Avulsion

Fracture of the ligament attachments to ulnar and radial styloid process. Radiocarpal fracture dislocation

5. <u>Combinations</u> Combination of types High energy injuries

Universal Classification

This system meant as a guide for treatment, and addresses intra-articular involvement, ability to achieve reduction based on the concept of ligamentotaxis and postreduction stability. Fracture severity is thus based on reducibility and stability (Fig. 23.3). The Universal Classification is based on Gartland and Werley's classification and is similar to the Mayo classification [4,5].

Type I

Non-articular, non-displaced

Type II

Non-articular, displaced

- a. Reducible, stable
- b. Reducible, unstable
- c. Irreducible

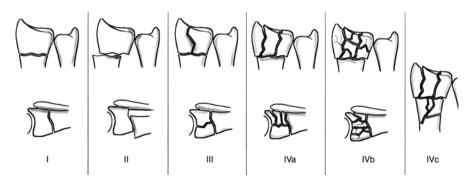


Fig. 23.3 The four types of fractures according to the Universal classification: type I non-articular non-displaced; type II non-articular displaced; type III articular non-displaced; type IV articular displaced

Type III Articular, non-displaced **Type IV** Articular, displaced

- a. Reducible, stable
- b. Reducible, unstable
- c. Irreducible
- d. Complex (shear, joint depression, fracture/dislocation)

Smith Classification

Smith fracture was named after Robert William Smith, writer of the book: "A Treatise on Fractures in the Vicinity of Joints, and on certain forms of Accidents and Congenital Dislocations" published in 1847 [6].

This book, detailing the different kinds of leg and arm fractures resulting from accidents, has been recognized in the field of medicine as the main reference for this fracture.

Smith fractures of the distal radius are characterized by volar displacement of the distal part (reversed Colles Fracture). A Smith fracture may be extra articular, intra articular, or be part of fracture dislocation of wrist (Fig. 23.4). Their classification is accordingly adjusted to three types [7].

<u>Type I</u>

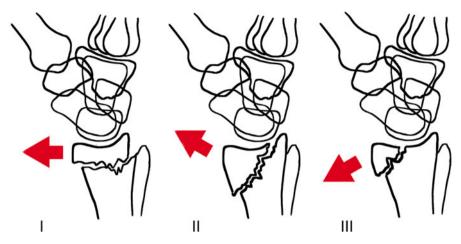
Extra articular fracture

Type II

The fracture crosses into the dorsal articular surface

Type III

The fracture enters the radio-carpal joint. This type is the volar Barton's fracture. (Both involve volar dislocation of carpus associated with intra articular distal radius component)


Treatment Strategy

Distal Radial Fractures: Frykman Classification

As already mentioned the Frykman classification is not a treatment oriented classification thus no specific treatment guidelines can be offered based on the type of the fracture.

General guidelines include the following:

• Distal radial fractures with unacceptable displacement should be reduced under either hematoma block or sedation.

Fig. 23.4 The three types of fractures according to the Smith's classification: type I extra-articular; type II fractures cross into the dorsal joint surface; type III fractures enter the radio-carpal joint (volar Barton's)

- If the reduced fracture is stable, it is protected with a cast, splint, or brace while healing
- If the reduced fracture is unstable, any of a number of methods, including percutaneous pins, external fixation or a combination of these techniques can maintain the reduction during fracture healing
- If the distal radius fracture cannot be reduced by closed manipulation, open reduction is recommended. The reduced fracture is stabilized by any of a number of pinning, plating, external fixation or combined techniques.
- No fixation technique has been demonstrated to have such a clear advantage that it could be recommended to the exclusion of others. The method of stabilization is not as important as it is that it accomplishes its goal of maintaining the reduction until the fracture is healed [8,9]

Distal Radial Fractures: Fernandez Classification [2,3]

Type 1 (Bending)

Non-operative (stable fractures) Percutaneous pinning (extra- or intrafocal) External fixation – Exceptionally: bone graft

Type 2 (Shearing)

Open reduction - Plate and Screw fixation

Type 3 (Compression)

Non-operative closed reduction, or limited open reduction, or arthroscopically assisted, or extensile open reduction.

Percutaneous pins combined with external and internal fixation - Bone graft

Type 4 (Avulsion)

Closed or open reduction Pin or screw fixation Tension wiring

Type 5 (Complex)

Combined methods of fixation

Distal Radial Fractures: Universal Classification [4,5]

<u>Type I</u>			
Non-articular, non-displaced Cast or splint			
Type II			
Non-articular, displaced	Closed reduction		
Stable	Cast or percutaneous pins		
Unstable	External fixation – ligamentotaxis		
<u>Type III</u>			
Intra-articular, non-displaced	ntra-articular, non-displaced Cast or splint +/- percutaneous pins		
<u>Type IV</u>			
Intra-articular, displaced			
Reducible and stable Closed reduction, cast +/- percutaneous pins			
Reducible and unstable	External fixation +/- pins		
Irreducible and Unstable	Open reduction, percutaneous pins, plate, +/- External		
	Fixation		
Complex irreducible and unstable	Open reduction, external fixation, bone graft, Pins or plate +/- intercarpal ligament repair		

Smith's Type I

Non-operative treatment is the treatment of choice. The fracture should be closed reduced under proper sedation/anesthesia or hematoma block, by reversing the deformity with longitudinal traction. Immobilization should be applied by long arm cast with the forearm in supination & the wrist in neutral position.

Smith's Type II and Type III

Surgical Treatment is recommended for volar displaced fractures, especially intra articular types II and III. Open reduction and Internal Fixation with volar plates is the treatment of choice. External fixators are acceptable for wound considerations. Reduction under fluoroscopy & supplementary K wires may be needed for Smith's type II fractures, to insure anatomic alignment of radiocarpal joint.

Distal radius frac	tures – evidence accor	ding to Smith classification	
Classification Meta-analysis Systematic review Cochrane library			
	Not available	Not available	Not available

101

Classification	Meta-analysis	Systematic review	Cochrane library
	Not available	Not available	Not available

Distal radius fractures - evidence according to Fernandez classification				
Classification	Classification Meta-analysis Systematic review Cochrane library			
Not available Not available Not available				

Distal radius fractures - evidence according to universal classification				
Classification	sification Meta-analysis Systematic review Cochrane library			
	Not available	Not available	Not available	

Distal radius fractures	- type of anae	sthesia	
Anaesthesia	Meta- analysis	Systematic review	Cochrane library [10]
IVRA Vs haematoma block	Not available	Not available	Better analgesia during fracture manipulation; better and easier reduction of the fracture, with some indication of a reduced risk of later re-dislocation or need for re-reduction
Haematoma block Vs IVRA	Not available	Not available	Quicker and easier to perform; less resource intensive
Comparisons with other methods of anaesthesia*	Not available	Not available	No sufficient evidence

IVRA intravenous regional anaesthesia

*Nerve block Vs haematoma block; intravenous sedation Vs haematoma block; general anaesthesia Vs haematoma block; general anaesthesia Vs sedation; and general anaesthesia Vs haematoma block and sedation

Type of	Meta-	Systematic	
substitute	analysis	review	Cochrane library [11]
	Not available	Insufficient evidence [12]	There is some evidence that bone scaffolding may improve anatomical outcome compared with plaster cast immobilisation alone. Insufficient evidence on functional outcome and safety; effectiveness of bone scaffolding supplementary t external fixation, or relative to percutaneous pinning or to external fixation; or of different methods of bone scaffolding

Distal radius fracto	ures – type of treatment	(adults)	
Treatment	Meta-analysis	Systematic review	Cochrane library
Type of closed reduction	Not available	Not available	Insufficient evidence [11]
Type of non-operative intervention	Not available	Not available	Insufficient evidence; practitioners should use an accepted technique with which they are familiar; which is cost-effective; Take into account patient preferences and circumstances; and consider the risk of complications [12]
Type of ex-fix	Some evidences support the use of dynamic ex-fix, which may also have practical advantages over static fixation by allowing earlier limb mobility during the fixation period and enabling such patients to maintain their independence [13]	Dynamic and static ex-fix both achieve good outcomes with comparable complication rates. Non-bridging fixation may result in better functional and radiological results than static wrist-bridging fixation when considering patients of all ages with earlier return of function [14]	Insufficient evidence [15]
Ex-fix Vs non-operative	Not available	Not available	There is some evidence to support the use of ex-fix for dorsally displaced fractures of the distal radius in adults. Though there is insufficient evidence to confirm a better functional outcome, ex-fix reduces re-displacement, gives improved anatomical results and most of the excess surgically-related complications are minor [16]

23 Distal Radial Fractures

Distal radius fract	ures – type of treatment	(adults)	
Treatment	Meta-analysis	Systematic review	Cochrane library
Ex-fix Vs ORIF (unstable fractures)	There is some evidence supporting the use of ORIF [17] ORIF with plate fixation provides lower DASH scores, better restoration of radial length and reduced infection rates [18]	ORIF yields significantly better functional outcomes, forearm supination, and restoration of anatomic volar tilt. Ex-fix results in better grip strength, wrist flexion, and remains a viable surgical alternative [19]	Not available
Percutaneous pinning	Not available	Not available	Though there is some evidence to support its use, the precise role and methods of percutaneous pinning are not established. The higher rates of complications with Kapandji pinning and biodegradable materials casts some doubt on their general use [20]
Non-operative Vs Operative	Not available	Despite worse radiographic outcomes associated with cast immobilisation, functional outcomes were no different from those of surgically treated groups for patients age 60 and over [21] Surgical fixation is recommended for fractures with post- reduction radial shortening >3 mm, dorsal tilt >10°, or intra-articular displacement or step-off >2 mm as opposed to cast fixation [22]	Not available

Ex-fix external fixation, *ORIF* open reduction internal fixation, *DASH* Disabilities of the Arm, Shoulder and Hand outcome measure

Distal radius fra	ictures – type	of treatment (children)	
Treatment	Meta- analysis	Systematic review	Cochrane library
ireatilient	anarysis	Systematic review	Coefficience indicary
Removable	Not	Splints were consistently	Limited evidence supports the
splintage Vs	available	better than plaster	use of removable splintage and
plaster casts		immobilisation in terms of	challenges the traditional use of
(buckle		clinical outcome, patient	above-elbow casts after
fractures)		preference and cost, with the	reduction of displaced fractures.
		exceptions of young children	Although percutaneous wire
		or children with special	fixation prevents
		needs who can easily remove	re-displacement, the effects on
		the device [23]	longer term outcomes including
			function are not established [24]

Treatment	Meta- analysis	Systematic review	Cochrane library
	Not available	A home exercise program is an option for patients prescribed therapy after distal radius fracture [22]	Insufficient evidence [25]
		Active finger motion exercises are recommended, but patients do not need to begin early wrist motion [22]	

References

- 1. Frykman G. Fracture of the distal radius including sequelae shoulder-hand-finger syndrome, disturbance in the distal radio-ulnar joint and impairment of nerve function. A clinical and experimental study. Acta Orthop Scand. 1967;Suppl 108:3+.
- 2. Fernandez JJ, Gruen GS, Herndon JH. Outcome of distal radius fractures using the short form 36 health survey. Clin Orthop Relat Res. 1997;341:36–41.
- 3. Fernandez DL. Fractures of the distal radius. New York: Springer; 1995.
- 4. Cooney WP. Fractures of the distal radius. A modern treatment-based classification. Orthop Clin North Am. 1993;24(2):211–6.
- Gartland Jr JJ, Werley CW. Evaluation of healed Colles' fractures. J Bone Joint Surg Am. 1951;33-A(4):895–907.
- 6. Smith RW. A treatise on fractures in the vicinity of joints, and on certain forms of accidental and congenital dislocations. Dublin: Hodges and Smith; 1847. p. 129–75.
- 7. Smith RS, Crick JC, Alonso J, Horowitz M. Open reduction and internal fixation of volar lip fractures of the distal radius. J Orthop Trauma. 1988;2(3):181–7.
- 8. Axelrod TS, McMurtry RY. Open reduction and internal fixation of comminuted, intraarticular fractures of the distal radius. J Hand Surg Am. 1990;15(1):1–11.
- Bradway JK, Amadio PC, Cooney WP. Open reduction and internal fixation of displaced, comminuted intra-articular fractures of the distal end of the radius. J Bone Joint Surg Am. 1989;71(6):839–47.
- Handoll HH, Madhok R, Dodds C. Anaesthesia for treating distal radial fracture in adults. Cochrane Database Syst Rev. 2002;(3):CD003320.

23 Distal Radial Fractures

- 11. Handoll HH, Madhok R. Conservative interventions for treating distal radial fractures in adults. Cochrane Database Syst Rev. 2003;(2):CD000314.
- 12. Handoll HH, Madhok R. Closed reduction methods for treating distal radial fractures in adults. Cochrane Database Syst Rev. 2003;(1):CD003763.
- 13. Cui Z, Yu B, Hu Y, Lin Q, Wang B. Dynamic versus static external fixation for unstable distal radius fractures: an up-to-date meta-analysis. Injury. 2012;43(7):1006–13.
- 14. Modi CS, Ho K, Smith CD, Boer R, Turner SM. Dynamic and static external fixation for distal radius fractures–a systematic review. Injury. 2010;41(10):1006–11.
- 15. Handoll HH, Watts AC. Bone grafts and bone substitutes for treating distal radial fractures in adults. Cochrane Database Syst Rev. 2008;(2):CD006836.
- 16. Handoll HH, Vaghela MV, Madhok R. Percutaneous pinning for treating distal radial fractures in adults. Cochrane Database Syst Rev. 2007;(3):CD006080.
- 17. Cui Z, Pan J, Yu B, Zhang K, Xiong X. Internal versus external fixation for unstable distal radius fractures: an up-to-date meta-analysis. Int Orthop. 2011;35(9):1333–41.
- Esposito J, Schemitsch EH, Saccone M, Sternheim A, Kuzyk PR. External fixation versus open reduction with plate fixation for distal radius fractures: a meta-analysis of randomised controlled trials. Injury. 2013;44(4):409–16.
- Wei DH, Poolman RW, Bhandari M, Wolfe VM, Rosenwasser MP. External fixation versus internal fixation for unstable distal radius fractures: a systematic review and meta-analysis of comparative clinical trials. J Orthop Trauma. 2012;26(7):386–94.
- 20. Handoll HH, Huntley JS, Madhok R. External fixation versus conservative treatment for distal radial fractures in adults. Cochrane Database Syst Rev. 2007;(3):CD006194.
- Diaz-Garcia RJ, Oda T, Shauver MJ, Chung KC. A systematic review of outcomes and complications of treating unstable distal radius fractures in the elderly. J Hand Surg Am. 2011;36(5):824–35.e2.
- 22. Lichtman DM, Bindra RR, Boyer MI, Putnam MD, Ring D, Slutsky DJ, Taras JS, Watters 3rd WC, Goldberg MJ, Keith M, Turkelson CM, Wies JL, Haralson 3rd RH, Boyer KM, Hitchcock K, Raymond L. Treatment of distal radius fractures. J Am Acad Orthop Surg. 2010;18(3):180–9.
- 23. Firmin F, Crouch R. Splinting versus casting of "torus" fractures to the distal radius in the paediatric patient presenting at the emergency department (ED): a literature review. Int Emerg Nurs. 2009;17(3):173–8.
- 24. Abraham A, Handoll HH, Khan T. Interventions for treating wrist fractures in children. Cochrane Database Syst Rev. 2008;(2):CD004576.
- 25. Handoll HH, Madhok R, Howe TE. Rehabilitation for distal radial fractures in adults. Cochrane Database Syst Rev. 2006;(3):CD003324.