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           Introduction 

 Adipose tissue contains several types of stem and progenitor 
cells, including the adipose tissue-derived stromal cells 
(ADSCs), the endothelial progenitor cells, and the hemato-
poietic and immune system cells. ADSCs share most of phe-
notypical and functional characteristics of the mesenchymal 
stromal cell (MSC): the bone marrow-derived mesenchymal 
stromal cell (BM-MSC) or MSC present in the cord blood, 
placenta, and umbilical cord. The basic function of ADSC is 
the preservation of the adipose tissue integrity by the produc-
tion of adipocytes in the intensity proportional to their degra-
dation. Recently it has been proven that the adipose tissue 
may contain more MSC-like cells than the bone marrow 
(which serves as the “gold standard” of cells available for 
autologous cellular therapies. ADSCs are not only able to 
differentiate into adipo-, chondro-, or osteogenic lineages 
but also participate in the formation of the endothelium; 
smooth, skeletal, or cardiac muscle; hepatocytes; or neural 
cells. It remains unclear in which extent adipose tissue serves 
as the natural depository of stem cells, supplying “on- 
demand” cells for tissue regeneration. ADSCs are the abun-
dant source of autologous stem cells for regenerative 
medicine techniques, being present in humans throughout all 
their lifetime.  

    Adipose Tissue as a Source of Stem Cells 

 Adipose tissue derives from the mesodermal layer of the 
embryo [ 104 ,  122 ]. There are several types of adipose tissue, 
differing in localization and functions: white, mechanical, 
brown, mammary, and bone marrow. White adipose tissue 

provides mechanical insulation and energy supply and func-
tions as an endocrine organ, producing the adipokine factors, 
such as leptin, adiponectin, resistin, osteopontin, lipocalin, 
and angiogenic-related factors. Mechanical adipose tissue is 
responsible for more specialized structural support, like pal-
mary fat pads or retro-orbital supporting tissue. Brown adi-
pose tissue plays a unique thermogenic function – being able 
to generate heat through expression of unique protein – it is 
localized around the aorta, heart, or kidney in newborn 
infants, and its volume decreases along with human matura-
tion. Mammary adipose tissue is function specialized, pro-
viding the mechanical support and energy for the mammary 
glands during lactation. The role of the adipose tissue in 
bone marrow cavities is to replace in adults the space occu-
pied in children by the bone marrow and to provide humoral 
support (cytokines) and contact regulatory signals for hema-
topoietic stem and progenitor cells. 

 Initially, the studies of cells isolated from the adipose tis-
sue were concentrated on adipocytes and their precursors. As 
early as in 1966, Rodbell and Jones [ 137 – 139 ] were able to 
isolate the “stromal vascular fraction” (SVF) which was a 
heterogenous cell population with the predominance of adi-
pocyte progenitors plus the admixture of the fi broblasts, 
pericytes, and endothelial and blood cells. Consecutive stud-
ies [ 41 ,  56 ] revealed that SVF cells have fi broblast-like mor-
phology and are mitotically active source of adipocyte 
precursors capable to form adipose tissue in vitro. Some 
authors suggested [ 45 ] that under specifi c conditions, SVF is 
able to differentiate into non-adipogenic lineages. Almost a 
decade later, Zhuk et al. [ 188 ] demonstrated that the adipose 
tissue is a source of mesenchymal stromal-type cells (MSCs), 
capable to differentiate into adipo-, chondro-, myo-, and 
osteogenic lineages. Subsequently, the same authors demon-
strated that the adipose tissue-derived ADSCs express the 
same marker composition (CD29+ CD44+, CD71+, CD90+, 
CD105+, SH3+, CD31−, CD34−, CD45−) as the bone 
marrow- derived mesenchymal stromal cell (BM-MSC) pop-
ulation [ 187 ]. The other less numerous population of 
adipose- derived cells is CD31+, CD34+, CD105+, and 
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CD45− and consists of endothelial stem cells (ESCs), char-
acterized by the low expansion rate in vitro [ 9 ]. 

 ADSCs are integral component of the adipose tissue, 
being responsible for continuous replacement of aging adi-
pocytes, resulting in remodeling, and continuous presence of 
the adipose tissue throughout all lifetime of human being. 
Several other stem cell populations may derive from the 
blood vessels (hematopoietic stem cells, immune system 
cells, or endothelial stem cells) or reside in “stem cell niches” 
in the adipose tissue following migration from other tissue 
locations.  

    Collection and Processing of ADSC 

 Elective suction-assisted lipectomy (liposuction) has been 
introduced as a technique of the elimination of the excessive 
amount of adipose during esthetic medicine treatment (body 
modifi cation, weight reduction). Liposuction, being one of 
the basic tools of cosmetic surgery, offers the unique oppor-
tunity for collection of large quantities of stem cells from the 
waste material, without any ethical, medical, or religious 
contraindications. The same technique may be applied spe-
cifi cally for collection of autologous ADSC for regenerative 
medicine purposes. Liposuction is not only the less invasive 
technique as bone marrow aspiration; it allows to collect 
much higher numbers of cells of MSC characteristics when 
compared to bone marrow aspiration [ 24 ]. 

 The adipose tissue may be obtained by tumescent 
lipoaspiration [ 81 ], ultrasound-assisted lipoaspiration [ 125 ], 
laser-assisted or water-assisted liposuction [ 2 ], or surgical 
resection – all these methods are considered as useful for 
stem cell collection (in our experience the highest percentage 
of viable cells is obtained by surgical resection, and the high-
est, although acceptable, cell mortality results from laser- 
assisted or ultrasound-assisted procedures). The best results 
are obtained when the storage time from adipose tissue col-
lection till processing does not exceed 24 h [ 10 ]. 

 All the existing protocols for adipose tissue-derived cell 
separation [ 8 ,  54 ,  123 ,  188 ] are based on the enzymatic 
digestion (collagenase, trypsin) and density gradient separa-
tion of ADSCs. Surgical isolation and mechanical dissection 
of fat, applied in pioneer works [ 74 ,  98 ], was replaced by 
various liposuction techniques, but all the rest of process-
ing techniques remained basically unchanged. Following 
lipoaspiration, the mixture of the adipose tissue and balanced 
salt solution is washed with PBS (purifi cation and removal 
of anesthetics and epinephrine used during tumescent lipo-
suction) and digested with collagenase. Depending on the 
technique protocol, cells are isolated by centrifugation, 
erythrocytes removed by density gradient separation or by 
addition of erythrocyte lysis buffer, and resulting population 
of ADSC is expanded in plastic-adherent cultures in media 

without addition of any growth factors. Cytokine deprivation 
in in vitro culture allows for further purifi cation of cell popu-
lation by elimination of residual hematopoietic stem cells 
originating from blood vessels. 

 The increasing demand for ADSCs for cell-based thera-
pies resulted in construction of automated systems for 
adipose- derived cell separation, which can be used at the 
bedside, without the access to of stem cell laboratory [ 21 , 
 112 ]. The advantage of automated devices is (more or less) 
closed processing system and the possibility of applying 
cell-based therapies by the groups having no experience in 
stem cell processing. The disadvantage of automated ADSC 
processing “on the bedside” is temptation to neglect the veri-
fi cation step of obtained cellular material (tests of cell num-
bers, viability, phenotype characteristics, etc.) in situations, 
when cells are isolated by the machine and directly trans-
planted into patients by surgeons. The other disadvantage of 
automated system is the cost of the cell isolation procedure 
and lower fl exibility of the procedure when dealing with the 
material of nontypical quantity or quality.  

    Phenotypical and Functional Characteristics 
of ADSC 

 The procedure of isolation of the adipose tissue-derived cells 
does not allow to purify the homogenous cell population, 
resulting in the separation of mixture of mesenchymal stro-
mal cells (MSCs), adipocyte progenitors, fi broblasts, peri-
cytes, and endothelial and blood cells. Such heterogenous 
population is described by the term “stromal vascular frac-
tion” (SVF) [ 41 ,  56 ,  137 – 139 ] or “processed lipoaspirate” 
(PLA) [ 118 ,  188 ]. The population of adipose tissue-derived 
stromal cells (ADSCs) is purifi ed by culture in plastic- 
adherent manner in media non-supplemented with growth 
factors. Cells which need the supplementation of culture 
media with growth factors (hematopoietic stem cells) will 
commit apoptosis, and the more differentiated cells will 
achieve mature stage and, being nonproliferating, will be 
eliminated during consecutive passages. The fi nal cell popu-
lation is composed predominantly of MSC type of cells and is 
described by various authors as adipose-derived adult cells 
(ADACs), adipose-derived stem cells (ADSCs, nomenclature 
advocated by International Fat Applied Technology Society), 
or adipose mesenchymal stem cells (AdMSCs). Since the 
“stemness” of adipose-derived cells is not formally proven, 
the acronym of “adipose-derived stromal cells” (ADSCs) 
seems most appropriate, refl ecting both the adipose tissue ori-
gin and mesenchymal stromal characteristics of the cells. 

 There are several papers discussing the availability of 
ADSC in comparison with the bone marrow MSC (BM-MSC). 
The frequency of non-hematopoietic stem cells in human 
bone marrow, measured by CFU-F assay, varies between 1 in 
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25,000 and 1 in 100,000 [ 6 ,  7 ,  21 ,  118 ]. In contrast, ADSCs 
are present in frequency of 1 in 50 in population of adipose 
tissue-isolated nucleated cells [ 157 ]. The direct comparison 
of CFU-F numbers formed by ADSC or BM-MSC plated in 
the same frequencies of initial cells, revealed the sevenfold 
higher frequency of ADSC-derived CFU-F in comparison to 
BM-MSC-derived CFU-F [ 77 ]. Based on the frequency of 
MSC in the bone marrow, and frequency of adipose-derived 
cells, and on the approximate volume of the adipose tissue or 
bone marrow collected, it may be concluded that the adipose 
tissue is a more effi cient source for cell collection for thera-
peutic purposes than the bone marrow [ 157 ]. 

    Cell Surface Markers 

 Phenotypically, ADSCs express surface markers characteris-
tic for MSC category, and, apart from minor differences, 
their phenotype is similar to BM-MSCs. Both ADSCs and 
BM-MSCs express markers common for cells having multi-
lineage potential: STRO-1, CD105, and CD166 [ 26 ,  47 ,  48 , 
 103 ,  128 ,  155 ]. The other markers suggesting the therapeutic 
potential of ADSC are CD29 (beta-1 integrin), important for 
inducing angiogenesis [ 4 ], intercellular adhesion molecule-1 
ICAM-1 (CD54) immunoglobulin supergene family [ 141 ], 
and CD44 (hyaluronate receptor involved in development of 
extracellular matrix) [ 187 ]. ADSCs are HLA-DR negative, 
mostly MHC Class I positive [ 5 ], being of low immune reac-
tivity when transplanted in HLA mismatch situation. 

 ADSCs fulfi ll the criteria for being multipotential stromal 
cells, proposed by the International Society for Cellular 
Therapy (in vitro plastic adherence; expression of CD105, 
CD73, and CD90 and lack of expression of CD45, CD34, 
and  CD14 or CD11b, CD79a, or CD19 and HLA-DR sur-
face molecules; and capacity of differentiation to osteoblasts, 
adipocytes, and chondroblasts [ 30 ,  57 ]). 

 The extended characterization of ADSC surface markers 
[ 5 ,  23 ,  24 ,  47 ,  110 ,  108 ,  187 ] revealed the presence of CD9, 
CD10, CD13, CD29, CD34, CD44, CD49d, CD49e, CD54, 
CD55, CD59, CD73, CD90, CD105, CD117, CD146, 
CD166, and STRO-1 markers and the absence of lineage- 
specifi c, hematopoietic, and endothelial markers CD3, CD4, 
CD11c, CD14, CD15, CD16, CD19, CD31, CD33, CD38, 
CD45, CD56, CD62p, CD104, and CD144. The expression 
of VLA-4 (CD49d) and its receptor VCAM-1 (CD106) is 
reciprocally reversed when comparing ADSC to BM-MSC: 
ADSCs express CD49d+/CD106- pattern [ 157 ], whereas 
BM-MSCs are CD49d-/CD106+ [ 23 ]. The concentration of 
CD34 marker was higher in freshly isolated cells (SVF) and 
remained present at reduced levels throughout the culture 
period of ADSC [ 110 ] or have been already unobserved by 
the others in at least 95 % of cultured cells [ 77 ]. Low per-
centage of CD34-positive cells may refl ect the presence of 

subpopulation of endothelial progenitor cells (EPCs) – the 
possibility supported by the fi nding that adipose-derived 
CD34+ and CD133+ cells are able to form endothelial colo-
nies in vitro or induce angiogenesis in vivo [ 11 ,  109 ,  130 , 
 134 ,  160 ]. The concentration of EPC positively correlates 
with body index, suggesting the entrapment of these cells in 
the adipose tissue resulting in reduced angiogenic potential 
in obesity [ 168 ]. 

 It has been also documented [ 15 ] that ADSCs express 
Toll-like receptors (TLR-1, TLR-2, TLR-3, TLR-4, TLR-5, 
TLR-6, and TLR-9) identifi ed both by fl ow cytometry and 
real-time PCR. TLRs affect ADSC proliferation and differ-
entiation and play a nonimmune role in signaling on ADSC, 
but their exact role as structures present on ADSC remains 
mostly unclear.  

    Proteome and Transcriptome Analysis 

 Mass spectrometry analyses revealed the similarities of ASC 
proteomes and proteomes of fi broblasts and MSCs [ 25 ,  161 , 
 172 ]. Transcriptomes of ADSC and BM-MSC were studied 
by gene microarrays [ 75 ,  99 ,  175 ] or Affymetrix gene chips 
[ 40 ]. Both methods have revealed that ADSC and BM-MSC 
share a common transcriptome [ 40 ,  175 ], expressing stem 
cell-associated gene markers (Oct4, Sox2, and Rex1) [ 62 ].  

    In Vitro Proliferation and Differentiation 
of ADSC 

 ADSCs grow in vitro without supplementation with any 
growth factors. Fibroblastoid-like cells adhere to plastics 
and are passaged following trypsinization through a culture 
period up to 20 passages, or >4 months without visible loss 
of telomere length [ 37 ,  62 ]. The stable, low senescence 
level of ADSCs in culture was confi rmed by the observa-
tion of the absence (<5 %) of β-galactosidase-positive cells 
in cultures from passage 1 to passage 15 [ 188 ]. Data on the 
telomerase activity are not consistent [ 40 ,  62 ,  75 ] and may 
depend on the observation protocols. Cell doubling time 
varies from 2 to 4 days [ 62 ,  110 ] being longest at the begin-
ning of the culture. In both in vitro and in in vivo animal 
models, ADSCs are able to differentiate into several “mes-
enchymal” and “non-mesenchymal” lineages. Since only 
the minority of experiments were based on the analysis of 
single cell-derived clonal population of cells [ 187 ], the evi-
dence of multilineage differentiation may be assigned 
rather to the “ADSC cell population” than to the single cell. 
It has been, nevertheless, proven that ADSC is able to dif-
ferentiate into other mesenchymal cell lineages – the phe-
nomenon interpreted by some authors as transdifferentiation 
or plasticity [ 130 ,  133 ,  145 ,  146 ]. 
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 Differentiation potential of cells residing in the adipose 
tissue resembles this of the MSC or MSC-like cells residing 
in the bone marrow (BM-MSC), umbilical cord Wharton 
jelly (umbilical cord stromal cells, UCSC), cord blood (unre-
stricted somatic stem cells, USSC), or placenta (reviewed in 
[ 131 ]). It is not surprising that cells resident in the adipose 
tissue are capable of adipogenic differentiation [ 28 ,  51 ,  144 , 
 151 ,  187 ,  188 ] and, similarly to the other “MSC-type” cells, 
may differentiate into osteogenic [ 31 ,  50 ,  52 ,  53 ,  58 ,  70 ,  82 , 
 83 ,  88 ,  124 ,  153 ,  164 ,  187 ,  188 ] or chondrogenic [ 32 ,  35 , 
 128 ,  174 ,  175 ,  187 ,  188 ] lineages. The other directions of 
their differentiation in vitro are myogenic (skeletal muscle 
[ 90 ,  112 ,  187 ,  188 ], smooth muscle [ 1 ,  42 ,  65 ,  91 ], and car-
diac muscle [ 44 ,  129 ,  156 ,  158 ,  179 ,  187 ,  188 ]), neurogenic 
[ 4 ,  71 ,  86 ,  142 ,  145 – 147 ,  187 ], pancreatic [ 165 ], and hepatic 
[ 152 ,  162 ,  163 ] lineages. It seems to be unclear, if observed 
angiogenic potential of adipose tissue-derived cells [ 3 ,  115 , 
 130 ,  167 ] should be attributed to ADSC, EPC, or both cell 
types, since both are present in adipose tissue and both are 
capable of endothelial differentiation [ 130 ]. It has to be 
stressed, however, that the majority of experiments describ-
ing the differentiation potential of ADSC did not result in the 
observation of the formation of functional mature cells or 
tissues but allowed to deduce the differentiation capability 
from the identifi cation of some structural markers or genetic 
profi les specifi c for the cell lineages – so the suggested “dif-
ferentiation potential” does not mean that ADSCs are able to 
produce fully functional cells of specifi c lineage.  

    Interaction with Hematopoietic 
and Immune System 

 The earliest recognized function of mesenchymal stromal 
cells was formation of “niches” in the bone marrow, where 
MSC functioned as bone marrow microenvironment, sup-
porting homing and proliferation of hematopoietic stem 
cells. It has been reported that co-infusion of BM-MSC and 
hematopoietic stem cells enhanced hematopoietic recovery 
in chemotherapy-treated patients [ 84 ]. ADSCs, being the 
MSC-type cells, are able to support hematopoiesis in lethally 
irradiated mice [ 18 ]. In intraperitoneal infusion of large 
quantities (10 7 ), ADSCs resulted in survival of 40 % of 
lethally irradiated mice [ 19 ], whose hematopoietic cells were 
of endogenous origin. In all reported experiments, ADSC did 
not differentiate per se into hematopoietic cells but, similarly 
to the physiological role of bone marrow MSCs, supported 
hematopoiesis, playing the role of hematopoietic microenvi-
ronment cells. 

 Mesenchymal stromal cells play an immunomodulatory 
role when infused into patients with graft-versus-host dis-
ease (GVHD) following bone marrow transplantation. It has 
been observed [ 87 ] that in vitro-expanded bone marrow 

MSCs are able to reduce GVHD symptoms and are effi cient 
in treatment of steroid-resistant GVHD in bone marrow 
transplanted cancer patients. Comparison of BM-MSC and 
ADSC revealed similarity in the immunomodulatory proper-
ties of both cell types – ADSC did not provoke in vitro allo-
reactivity of incompatible lymphocytes, suppressed mixed 
lymphocyte reaction, and suppressed lymphocyte prolifera-
tive reaction to mitogens [ 132 ]. These fi ndings opened the 
perspectives for ADSC clinical applications for treatment of 
patients with severe therapy-resistant GVHD [ 38 ,  180 ].  

    ADSC and Oncogenesis 

 There exists evidence on oncogenic potential of bone 
marrow- derived MSC. MSC may be involved in cancer 
induction or expansion in several ways – as normal cells 
supporting cancer growth by migrating towards tumors, 
modifying tumor environment (vasculogenesis), and immu-
nosuppression or as cells undergoing spontaneous malig-
nant transformation (reviewed in [ 114 ]). ADSCs, being a 
subpopulation belonging to the MSC family, do not differ 
signifi cantly from BM-MSC in the probability of promotion 
or induction of carcinogenesis, although the experimental 
evidence, concerning ADSC role in oncogenesis, is much 
more scarce than their bone marrow-derived counterparts. 
Extensive study on the interrelation between ADSC and 
breast cancer cells [ 117 ] revealed that ADSCs are able to 
home to tumor site even when injected intravenously and 
incorporate into tumor vessels, where they differentiate into 
endothelial cells. Direct contact of ADSCs with tumor cells 
results in enhancement of secretion from ADSCs of stromal 
cell-derived factor 1 (SCF-1), which acts in a paracrine fash-
ion on the cancer cells enhancing their motility, invasion, and 
metastases. It has been also documented that ADSCs, simi-
larly to their interactions with breast cancer, were recruited 
towards cancer cells through SDF1/CXCR4 axis and sup-
ported cancer growth by increasing tumor vascularity when 
cocultured with prostate cancer cells in athymic mice [ 97 ]. 

 Standard ex vivo expansion procedure, when ADSCs 
are cultured for 6–8 weeks, is “safe” and does not lead to 
the phase of cell transformation events. It has been docu-
mented, however, [ 143 ], that after in vitro expansion last-
ing 4–5 months, human or mouse ADSC spontaneously 
bypassed the senescence and crisis phase, showing altered 
phenotype and chromosome instability and losing contact 
inhibition capacity. At this stage, cells were able to induce 
cancer when injected into immunodefi cient mice. The gen-
eral conclusion from the observations on long-term expan-
sion of ADSC is that the cells, expanded “traditionally” for 
the period of 6–8 weeks, may be considered as a valuable 
tool for tissue regeneration and engineering, but the pro-
longed in vitro culture may cause the risk of spontaneous 
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transformation and induction of cancerogenesis in transplant 
host [ 143 ]. Contrary to the observations of the immortaliza-
tion of ADSC, after prolonged in vitro culture, the aberrant, 
tumorigenic cell line was isolated as early as from third-pas-
sage cells [ 121 ] – the result suggesting the need of rigorous 
testing of in vitro-expanded ADSCs prior to their clinical 
applications.   

    Clinical Applications of ADSC 

    Subcutaneous Tissue Formation 

 The adipose tissue is present physiologically in multiple 
locations in human body, being responsible for multiple 
functions (mechanical, endocrine, thermoinsulatory, and 
energy supplying). Typical surgical procedures (liposuction, 
lipotransfer) are performed for cosmetic rather than medical 
purposes – the exemption is the application of lipotransfer 
technique for treatment of breast cancer patients after mas-
tectomy, where injection of the adipose tissue not only par-
tially reconstructs the amputated breast but locally supports 
better healing and prevents formation of connective tissue 
scar between the skin and muscles. Enrichment of lipotrans-
ferred autologous adipose tissue with ADSC isolated from 
the same patient [ 105 ,  184 ] reduces the atrophy of implanted 
tissue and supports the formation of new adipocytes in the 
region of implantation. Immunosuppressive potential of 
implanted ADSC may also minimize the infl ammatory reac-
tion in the implantation area. There is some consideration 
[ 101 ] if the implantation of ADSCs may increase the risk of 
cancer recurrence; however, such speculations seem to be 
not substantiated by the observations. Similar technique of 
ADSC enrichment of implanted adipose tissue was used for 
corrective treatment after artifi cial breast implants removal 
caused by various complications (like capsular contracture), 
and the results were described as satisfactory [ 185 ]. As a 
support and a carrier for transplanted ADSCs, “injectable 
scaffolds” consisting of cell-binding polyglycolic acid 
(PGA) [ 14 ], poly (lactic-co-glycolic acid) or PLGA [ 127 ], 
hyaluronic acid [ 49 ], fi brin [ 149 ], matrigel [ 76 ], or alginate 
gel [ 182 ] are applied. The in vivo study has shown that 
ADSCs attached to micronized acellular dermal matrix 
(Alloderm) and cultured for 14 days in adipogenic differen-
tiation media were able to differentiate into mature adipo-
cytes when implanted subcutaneously into dorsal cranial 
region of nude mice [ 183 ]. For the applications, when the 
elastic, mechanically resistant, non-immunogenic, and slow 
degradable scaffold is needed, 3-D scaffolds of silk fi broin 
were developed [ 106 ]. Interesting, although not yet vali-
dated, is the exploitation of the ability of ADSC to produce a 
variety of growth factors, regulatory factors, and collagen for 
skin antiaging therapy [ 126 ].  

    Bone Formation 

 The bone formation phenomenon was observed prior to the 
experiments with ADSC differentiation, in patients with pro-
gressive osseous heteroplasia, which is characterized by 
spontaneous formation of calcifi ed nodules in the adipose tis-
sue [ 72 ,  154 ]. In vitro, both human and animal ADSCs may 
be stimulated to differentiate into osteogenic lineage [ 28 ,  51 , 
 144 ,  151 ,  187 ,  188 ], producing cells of osteogenic phenotype 
characterized by the presence of bone markers: alkaline phos-
phatase, osteopontin, osteonectin, type I collagen, bone sialo-
protein, osteocalcin, BMP-2, BMP-4, and BMP receptors I 
and II. In vivo ADSCs differentiate into the bone when 
implanted ectopically into rodents [ 55 ]: rat- isolated ADSCs, 
seeded in polyglycolic acid, form the bone when implanted 
subcutaneously [ 89 ]. Similarly, human ADSCs in HA-TCP 
scaffolds differentiate to osteocytes in immunodefi cient mice 
[ 31 ,  33 ]. ADSCs, when seeded in apatite-coated PLGA scaf-
folds and surgically implanted, were able to repair surgically 
created critical-size calvarial defects in mice [ 20 ]. In contrary 
to these observations, poly-L- lactic scaffolds colonized with 
non-differentiated ADSCs were unable to repair experimental 
rat palatal bone defects, while similar implants containing 
osteogenically differentiated cells fully reconstructed the 
bone defects in vivo [ 17 ]. Basing on these in vivo experi-
ments, ADSCs were collected from a 7-year-old girl with 
large, bilateral calvarial defect, combined with iliac crest 
bone fragments and fi brin glue on resorbable mesh, and autol-
ogously implanted, treatment resulting in marked ossifi cation 
and regeneration of defect to near-complete continuity after 
3 months following surgery [ 92 ].  

    Cardiac Repair and Angiogenesis 

 Morbidity and mortality, resulting from cardiovascular dis-
eases (CVDs), account for approximately 30 % causes of 
deaths, constituting major medical, social, and economical 
problem. At the beginning, the rationale of stem cell therapy 
of cardiac infarct was to implant cells, which will be able to 
transdifferentiate into cardiomyocytes and regenerate the 
necrotic region of the cardiac muscle. The obvious candi-
dates, according to the cell plasticity concept, were hemato-
poietic stem cells from the bone marrow or umbilical cord 
blood. The effects observed in animal experiments were the 
increase of muscle mass in regenerating heart muscle, 
improvement of cardiac hemodynamics, and, surprisingly, 
very low frequency of the presence of myocardial cells of 
donor origin. Detection in the adipose tissue of the MSC- 
type cells capable of myogenic differentiation resulted in 
in vivo experiments based on intracardiac transplantation of 
ADSC in models of coronary disease or myocardial infarc-
tion [ 170 ]. It has to be determined, if the benefi cial effects of 
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treatment with ADSC results from differentiation of ADSC 
into myocardium or in paracrine mechanisms supporting 
endocrine repair [ 11 ,  13 ,  109 ,  119 ,  134 ,  156 ,  158 ,  169 ]. In 
2004 the cardiomyogenic potential of ADSC has been docu-
mented [ 130 ,  175 ]; since then multiple studies have con-
fi rmed the phenomenon of direct formation of cardiac muscle 
by ADSCs [ 111 ,  173 ,  186 ]. It has been shown [ 100 ,  179 ] that 
the brown adipose is the best source of cells capable of car-
diomyocyte differentiation. Treatment with ADSCs signifi -
cantly improves functional parameters of regenerating heart, 
such as neovascularization [ 12 ,  13 ,  109 ,  130 ,  186 ], collateral 
perfusion [ 66 ,  67 ], and hemodynamic parameters (ventricu-
lar end-diastolic dimension, ejection fraction, cardiac out-
put) [ 22 ,  107 ,  148 ,  169 ,  173 ]. ADSC transplantation into the 
heart does not increase arrhythmogenic tendency of the car-
diac muscle [ 39 ,  73 ]. Some improvements may result from 
secretion humoral factors (angiogenic cytokines) by ADSC 
[ 134 ] or direct formation of endothelium and, in conse-
quence, angiogenesis [ 12 ,  13 ]. 

 The same mechanisms allow using ADSC for treatment 
of animal model of severe hind limb ischemia [ 119 ,  134 ]. 
Considering the importance of treatment of cardiac ischemia 
and infarct and the benefi cial effects of ADSC on cardiac 
muscle regeneration, there is a real possibility of expanding 
the role of autologous ADSC in cardiac muscle regeneration 
and treatment of diseases with ischemic background.  

    Cartilage Repair 

 In general, the diseases originating from cartilage defect, 
resulting from injury, autoimmunity, or degenerative disease 
(osteoarthritis), have strong negative impact both at the 
patient’s level and at the social and economical levels. There 
have been published several attempts of inducing of cartilage 
repair using autologous stem and progenitor cells. In young 
patients with isolated cartilage lesions, the use of culture- 
expanded autologous chondrocytes seems most promising. 
In elderly patients, suffering from the massive denudation of 
articular cartilage, the availability of autologous expanded 
chondrocytes is, however, reduced and insuffi cient for ther-
apy, so there is demand for another autologous cell source. 
The candidate cells must be available in adult donor, and 
their collection must be safe and relatively uncomplicated; 
these cells must have the potential for differentiation into 
chondrogenic lineage both in vitro and in vivo. Such cells 
must be also available in patients with osteochondral defects, 
so the original disease must not infl uence the numbers and 
qualities of cells collected for treatment. The candidate cells, 
fulfi lling the criteria, are ADSCs collected from patient’s 
adipose tissue [ 120 ]. Comparison of the chondrogenic poten-
tial of BM-MSCs and ADSCs isolated from various loca-
tions confi rmed that all these cells are able to differentiate 

into chondrocytes in vitro, but their differentiation potential 
depends on the source [ 113 ,  171 ,  177 ]. Some authors claim 
the superiority of ADSC over BM-MSC [ 24 ], but prevailing 
data suggest that BM-MSCs have superior chondrogenic 
potential when compared with ADSC [ 16 ,  59 ,  61 ,  85 ,  99 , 
 126 ,  135 ,  150 ,  175 ]. The exception is intrapatellar fat pad, 
which is a much better cell source than subcutaneous adipose 
tissue [ 34 ,  113 ]. The future of ADSC as a candidate for cel-
lular repair of cartilage is unclear; some fi ndings suggest that 
improvement in in vitro/in vivo stimulation of chondrogenic 
differentiation of ADSC may increase their importance as 
candidates for clinical applications [ 36 ,  78 ].  

    Central Nervous System Repair 
and Regeneration 

 Limited natural capacity of self-renewal of neural system, 
combined with high frequency of accidents and diseases 
resulting in neural system dysfunction, emphasizes the 
importance of development of the new methods for stem cell 
application in neurological disorders. ADSC is capable of 
differentiating into neuropoietic lineage as well as regulating 
the neural repair and restoration of local circulation in cen-
tral nervous system. Several authors documented that ADSCs 
are able to differentiate in vitro into neural cells [ 32 ,  60 ,  64 , 
 71 ,  99 ,  181 ,  187 ], interact with neural cells on paracrine level 
[ 68 ], or produce Schwann-type cells [ 178 ]. There exists no 
evidence that adipose-derived cells, differentiating into neu-
ral cells, derive from the neural crest lineage [ 176 ]. 

 There is also, unfortunately, no evidence that so-called 
neural cells observed in vitro are indeed mature functional 
neural cells – most authors recognize cells of “neural mor-
phology” after identifi cation selected markers present on 
early neural cells, like microtubule-associated protein, neu-
ronal nuclear antigen, β-tubulin III [ 60 ], neurofi lament 1 
(NF1), nestin, neuron-specifi c enolase (NSE) [ 181 ], or neu-
rosphere formation [ 71 ]. The other data derive from in vivo 
animal experiments, where ADSCs are implanted into 
regions of injury of neural system. The intensively researched 
problem is the possibility of amelioration of brain stroke 
effects by local application of ADSCs. Possible therapeutic 
effects may result from direct replacement of ischemia- 
eliminated brain cells, regulation of neural cell regeneration 
in paracrine manner, or reconstitution of local microcircula-
tion by angiogenesis mediated or formed by ADSCs. When 
human ADSCs were injected into lateral ventricle of healthy 
rats, they were able to migrate to multiple areas including the 
contralateral cortex and could be locally identifi ed up to 
30 days following implantation. Similar implantation of 
ADSCs into the brain 1 day after MCA occlusion (the exper-
imental model of stroke) resulted in cell migration into the 
ischemic area and localization at the border between the 
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intact and injured brain tissue [ 69 ]. Injection of ADSCs did 
not change the infarct size but signifi cantly improved the 
recovery in motor and somatosensory behavior aspects, sug-
gesting that at least there exists the mechanism of local tro-
phic support from ADSCs [ 69 ]. In other experiment, ADSCs 
not only improved neurological functions of infarcted rats 
but also markedly attenuated brain infarct size [ 93 ]. 
Immunomodulatory effect of ADSCs was exploited in the 
compassionate study on three patients with multiple sclero-
sis (the disease caused by the autoimmunity mechanisms). 
Multiple intravenous or intrathecal infusions of autologous 
ADSCs, combined with allogeneic CD34+ and MSCs, 
resulted in marked improvement in disease status of all 
patients, although the observation is very preliminary and 
statistically not signifi cant [ 136 ]. ADSCs were tested for 
their ability to accelerate the spinal cord fusion (treatment 
for lumbar compression fractures) in rat model. Local appli-
cation of scaffolds colonized by autologous or allogeneic 
ADSCs into the injury site reduced infl ammatory cell infi l-
tration and accelerated posterior spinal fusion process [ 102 ]. 
ADSC may act through the different mechanisms, like local 
regulation by paracrine manner [ 80 ,  94 ], participation 
in local angiogenesis, or immunomodulatory effects; the 
phenomenon of direct ADSCs differentiation to neural cells 
cannot also be excluded. Nevertheless of the mechanisms of 
ADSC actions, the preliminary in vivo results suggest the 
usefulness of both autologous and allogeneic ADSCs in 
treatment of central nervous system diseases and injuries.  

    Other Therapeutical Applications of ADSC 

 Experimental and clinical applications of ADSC resemble 
those exploited earlier with the use of BM-MSC. ADSCs 
seem to be the cell population, which may be widely used 
for gene therapy. In autologous transplantation model, gene- 
transfected ADSC guarantees relatively high safety, and 
their reported ability to maintain stable telomere length [ 37 , 
 62 ] and long proliferation time in in vitro systems guarantees 
long-term delivery of gene product. Parallel experiments with 
infection of both MSCs and ADSCs with E1A-deleted type 
5 adenovirus constructs containing the BMP-2 (bone mor-
phogenic protein-2) gene or the bacterial beta- galactosidase 
(lacZ) gene resulted in 55 % transduction effi ciency for 
ADSC in comparison with 35 % effi ciency for BM-MSC 
[ 31 ], which resulted in threefold higher expression of BMP2 
protein by ADSCs than by BM-MSCs. Experiments on 
stability of lentiviral vector-transduced cells revealed the 
presence of transduced cells in culture over 100 days at 
transduction effi ciency of 98 % [ 116 ]. 

 There are rather scarce data on the differentiation of ADSC 
into several cells and tissues, like skeletal and smooth muscle, 
hepatocyte-like cells, or pancreas endocrine cells. When 

transplanted into mdx mice (murine model of Duchenne mus-
cular dystrophy), ADSC helped to regenerate the muscle and 
induced expression of dystrophin [ 140 ], although their role in 
muscle repair is still rather unclear. In vitro, ADSC differenti-
ates into cells of myogenic phenotype, resembling the charac-
teristics of skeletal muscle, the process observed when 
ADSCs are directly contacting primary muscle cells [ 27 ,  90 ]. 
Observations of in vitro capacity of ADSC to differentiate 
into smooth muscle cells [ 1 ,  42 ,  65 ,  91 ] were clinically 
exploited in attempted urinary incontinence treatment and 
bladder reconstitution [ 63 ], with results not substantially dif-
ferent to those obtained when used BM-MSC. There exist a 
scarce data on hepatopoietic differentiation potential of 
ADSC. In vitro, ADSC cultures in the presence of HGF, 
OSM, and DMSO form cells of hepatocyte- like phenotype, 
expressing albumin and α-fetoprotein, capable to take up low-
density lipoprotein and to produce urea [ 152 ]. Following 
these observations, ADSCs, intravenously injected into mice, 
were detected in injured liver, and their integration into the 
liver was augmented by partial hepatectomy [ 79 ]. Preliminary 
data confi rm the ability of ADSC to differentiate into cells of 
pancreatic endocrine phenotype partially maintaining pancre-
atic endocrine cell functions. Following the stimulation with 
activin-A, extendin-4, HGF, and pentagastrin, cells expressed 
pancreatic endocrine transcription factor Isl-1; developmental 
transcription factors Pax-6, Ipf-1, Ngn-3; and expressed pan-
creatic hormones insulin, glucagon, and somatostatin [ 165 ]. 
The data are too preliminary and need to be extended and 
confi rmed, but even now they give some hope for the use of 
ADSC for cell-based therapy for type 1 diabetes mellitus. 
There exist also several reports of preliminary results after 
ADSC treatment of such varying diseases as Crohn’s disease 
(occlusion of rectovaginal fi stula) [ 43 ,  46 ], wound healing 
[ 95 ], erectile dysfunction [ 96 ], tissue engineering (bypass 
graft construction [ 29 ], production of skin substitutes [ 166 ]), 
or feeder layer for induced pluripotent stem cells (iPSCs) 
[ 159 ]. All these reported ADSC therapeutic applications have 
one common characteristic – they need much more research 
for data collection and validation before their potential use-
fulness may be evaluated.  

    Conclusions 

 The phenotype, functional characteristics, and differenti-
ation potential of ADSC are enough similar to their 
BM-MSC counterparts to conclude that the differences 
between ADSC and MSC are not important in the aspects 
of their applications for cellular therapy. The advantages 
of ADSC over MSC lay in the possibility of collection of 
much larger numbers of cells without endangering 
patient’s health. The other advantage is higher purity of 
isolated ADSC population – bone marrow aspirates con-
sist of much higher numbers of hematopoietic cells than 
MSCs, and the most effi cient method of primitive 
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BM-MSC isolation (bone grinding) is impossible to use 
when considering collection from living donor. The most 
promising clinical applications of ADSC, according to 
presently available data, are treatment of cardiac ischemia 
and myocardial infarction, central nervous system repair 
following accidents or stroke, treatment of immunology-
related diseases (graft-versus-host disease, multiple scle-
rosis), and techniques of bone and joints replacement and 
repair using scaffolds seeded with ADSCs and their more 
differentiated progeny. In the esthetic medicine/plastic 
surgery, ADSCs are the “cells of choice” for corrections 
of irregularities in subcutaneous tissue distribution. 

 In general, availability of large numbers of autologous 
cells in any patient’s age, safe protocols of cell collection, 
in vitro expansion and differentiation, multilineage dif-
ferentiation potential, and in vivo immunomodulatory 
capacity make ADSC the almost ideal cell type for cellu-
lar therapy, gene therapy, and regenerative medicine.      
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