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        In    2007, we discovered a novel subset of mesenchymal stem 
cells (MSCs) derived from the endometrium, termed “endome-
trial regenerative cells (ERC).” In comparison to other MSC 
types (e.g., bone marrow and adipose), ERC possess (a) more 
rapid proliferative rate, (b) higher levels of growth factor pro-
duction (VEGF, GM-CSF, PDGF), and (c) higher angiogenic 
activity. We are currently running two clinical trials for these 
cells in patients with critical limb ischemia and heart failure. 

 The main cause of morbidity and mortality in patients suf-
fering from acute radiation syndrome (ARS) is hematopoietic 
toxicity. Although ARS treatment is not part of routine medi-
cine, our commercial interest lies in the ability to rapidly obtain 
FDA approval using the “Animal Effi cacy Rule,” which allows 
for developers of therapies used in disaster settings circumven-
tion of Phase II and III trials if human clinical safety is estab-
lished and effi cacy is demonstrated in a relevant animal model. 

 Recent studies have demonstrated that BM-MSC are capa-
ble of preventing lethality subsequent to radiation exposure; 
however, these cells have performed poorly in late- phase tri-
als. Given that ERC are substantially more economical to 
manufacture in large numbers and produce more hematopoi-
etically relevant factors as compared to other MSC sources, 
we discuss the possibility of utilizing ERC as a cellular ther-
apy for treatment of radiation exposure. 

 Exosomes are nanoparticles generated by a variety of cell 
types, implicated in cell-to-cell communication. MSC-BM 
exosomes have been shown to be a major mediator of MSC 
paracrine therapeutic effects. Our data demonstrate that 
ERC-generated exosomes stimulate BM mononuclear cell 

proliferation. We propose that administration of ERC- 
derived exosomes will increase postirradiation survival and 
hematopoietic recovery. 

    Need for Effective Means of Treating 
Radiation Injuries 

 Protection against accidental or terrorist radiation expo-
sure is attracting an increasing attention from military 
and civilian groups [ 1 ]. The possibility of nuclear war 
remains a reality: currently, there are approximately 30,000 
nuclear warheads deployed around the world, 100 “suit-
case bombs” unaccounted for, and attempts of terrorists to 
acquire a nuclear weapon, a “dirty bomb,” or to attack a 
nuclear power plant or waste site. A Nuclear Regulatory 
Commission study stated that breaching a cask of spent 
fuel could release lethal radiation over an area many times 
larger than that affected by a 10 kt nuclear weapon [ 2 ]. 
Acute radiation syndrome (ARS), which is the main cause 
of morbidity and mortality associated with ionizing radia-
tion exposure, is characterized by the triad of dysfunctions 
in the (a) neurovascular, (b) hematopoietic, and (c) gas-
trointestinal systems [ 3 ]. Intermediate-dose ARS, which 
is similar to that received by fi refi ghters at the Fukushima 
Daiichi Nuclear Power Plant (3–7 Gy total body irradia-
tion), is generally treated with hematopoietic growth fac-
tor support, whereas high-dose ARS (7–10 Gy) is treated 
experimentally with hematopoietic stem cell transplant [ 4 ]. 
Of the three systems that ARS targets, by far the most work 
has been performed in hematopoietic recovery with specifi c 
guidelines in place for administration of growth factors such 
as G-CSF and GM-CSF postexposure [ 3 ]. However, in addi-
tion to high cost, these factors are immunogenic and induce 
sites effects including bone pain. To date, with exception of 
potassium iodine, there is only one drug that has been FDA 
approved for postradiation exposure, amifostine, which acts 
as a DNA protectant and antioxidant [ 5 ]. Unfortunately, 
its administration is associated with a variety of adverse 
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effects including hypotension in >60 % of patients, and its 
radioprotectant effects are limited in cases of myeloabla-
tive radiation [ 6 ]. Thus, alternative approaches are needed 
to support hematopoietic recovery in patients that receive 
intermediate or high doses of irradiation.  

    Mesenchymal Stem Cells (MSCs) Support 
Hematopoiesis 

 MSCs are known to contribute to the bone marrow hemato-
poietic microenvironment. Given that this microenvironment 
is disrupted by radiation damage [ 7 ,  8 ], studies were con-
ducted to demonstrate that human MSC can accelerate 
hematopoietic reconstitution and/or recovery in animal mod-
els [ 9 ,  10 ]. Therapeutic activities of MSC are believed to 
occur by differentiating into cells of mesenchymal origin 
[ 11 ] and also through an indirect “chaperone” effect. This 
includes production of trophic/angiogenic factors, as well as 
anti-infl ammatory/antioxidant properties [ 12 ,  13 ]. One inter-
esting aspect of MSC is that production of growth factors 
such as IGF-1, VEGF, and HGF-1 seems to be upregulated 
by conditions associated with injury such as hypoxia [ 14 ] 
and infl ammatory conditions [ 15 ,  16 ]. Supporting the possi-
ble use of MSC in treatment of radiation injuries are fi ndings 
that MSC specifi cally home to areas of radiation exposure 
[ 17 ]. In preclinical studies, it has been demonstrated that 
human MSC administration enhances engraftment of human 
CD34 cells postradiation [ 10 ]. Accordingly, clinical implica-
tions of using MSC administration to enhance hematopoiesis 
were examined. 

 The original clinical use of expanded autologous MSC in 
1995 demonstrated feasibility and safety of intravenous 
administration of these cells in 15 patients suffering from 
various hematological malignancies to prevent cytopenia 
[ 18 ]. In a subsequent study from the same group in 2000, the 
use of MSC to accelerate hematopoietic reconstitution was 
performed in a group of 28 breast cancer patients who 
received high-dose chemotherapy [ 19 ]. Donor MSCs were 
demonstrated to neutrophil and thrombocytic reconstitution 
in a post bone marrow transplant setting in a 46-patient trial 
[ 20 ]. In a similar study, Ball et al. reported on the use of puri-
fi ed donor-specifi c MSC (1–5 million/kg) being injected 
alongside with isolated CD34 from HLA-mismatched rela-
tives in 14 pediatric leukemia patients. They showed that in 
contrast to traditional graft failure rates of 15 % in 47 histori-
cal controls, all patients given MSCs showed sustained hema-
topoietic engraftment without any adverse reaction [ 21 ]. The 
use of “third-party” MSC to enhance hematopoietic recovery 
was performed by Baron et al. in 20 patients who received 
non-myeloablative hematopoietic stem cell transplant, whose 
outcomes were compared to a historic control of 16 patients 
receiving a similar transplant protocol without MSC. 
Accelerated hematopoietic reconstitution and signifi cant 

 difference in 1-year survival (80 % vs 44 %) was noted [ 22 ]. 
These fi ndings established a foundation for MSC-based ther-
apies to be investigated clinically as augmenters of hemato-
poietic reconstitution and/or prevention of GVHD, with 
Phase II/III trials ongoing or having been  completed [ 23 ].  

    MSC and Radiation Injury 

 In addition to preclinical and clinical data supporting the use 
of MSC in acceleration of hematopoietic reconstitution, sev-
eral animal studies have formally studied ARS protection by 
MSC. Yang et al. demonstrated that a onetime infusion of 
either virally immortalized or primary mouse BM-MSC (one 
million cells per mouse i.v.) 24 h subsequent to 700 cGy 
X-radiation exposure led to a 53 % survival in mice receiving 
immortalized and 60 % survival for the group receiving pri-
mary MSC at 7 weeks post irradiation. All mice that were 
treated with vehicle control died [ 24 ]. Lange et al. obtained 
similar results in that administration of one million cloned or 
primary BM-MSC into lethally irradiated (9.5 Gy from 
cesium-137 source) 8 h after radiation resulted in 7-week 
survival of 66 % of treated animals, whereas 100 % of con-
trol animals died within 3 weeks. Although administered 
cells were localized primarily in the lung, microarray detec-
tion of gene expression in the bone marrow was noted, par-
ticularly, upregulation of genes associated with cell cycle 
and protection from oxidative stress, such as Cdkn1a and 
BRPK, as well as anti-infl ammatory and detoxifi cation genes 
Thbs2 and Gstm5. Survival was associated with reconstitu-
tion of endogenous hematopoiesis [ 25 ]. Similar results were 
reported by another group, in which it was demonstrated that 
BM-MSC infusion after sublethal irradiation (5.5 Gy) was 
associated with enhanced survival of BALB/c mice, as well 
as stimulation of bone marrow cell entry into cell cycle and 
reduction of apoptosis [ 26 ].  

    Non-hematopoietic Benefi ts of MSC 
Transplantation Following Irradiation 

 Although bone marrow failure is the major cause of morbid-
ity and mortality, in “real-life” situations, ARS will be 
accompanied by GI failure, neurological consequences, pul-
monary fi brosis, and possibility of multiorgan failure. 
Protection of the GI tract and 100 % 3-week survival subse-
quent to 10.4 Gy whole-body radiation exposure were dem-
onstrated in mice treated with BM cells cultured in an 
MSC-differentiation media, whereas 100 % mortality 
occurred in controls [ 27 ]. MSCs have been demonstrated to 
be neuroprotective in models of stroke [ 28 ], intracerebral 
hemorrhage [ 29 ], as well as having the ability to stimulate 
endogenous neurogenesis [ 30 ]. Although to date studies on 
MSC prevention of radiation-induced neural damage have 
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not been performed, given that radiation inhibits endogenous 
neurogenesis [ 31 ], this is an appealing possibility. MSCs 
have been demonstrated to inhibit pulmonary fi brosis 
through anti-infl ammatory mechanisms in several models 
[ 32 ]. Furthermore, multiorgan failure, whether induced by 
radiation or sepsis, presents with similar qualities. Inhibition 
of sepsis associated multiorgan failure has been demon-
strated by BM-MSC and appears to function through an 
IL-10 and PGE-2-dependent pathway [ 33 ].  

    ERC as a Clinically Relevant MSC Population 

 Endometrial regenerative cells (ERC) were discovered by us 
in 2007 as a menstrual-blood-derived MSC population that 
possesses a higher proliferative rate (19–22 h), increased 
growth/angiogenic factor production, and longer passage 
ability as compared to BM-MSC [ 34 ]. These properties, as 
well as enhanced antifi brotic activities, were confi rmed by 
two independent groups a year after [ 35 ,  36 ]. Currently, we 
are conducting a Phase I study in critical limb ischemia 
(NCT01558908) in the USA and a Phase II double-blind 
placebo-controlled cardiac study Ex-USA. To date, intrathe-
cal [ 37 ], intramuscular [ 38 ], and intravenous administration 
[ 39 ] of the cells in pilot compassionate-use cases has revealed 
clinical safety of cell administration. This is relevant not 
only because of potential benefi t based on enhanced antifi -
brotic and growth factor production properties of ERC but 
also due to low cost of isolation and mass production ($500 
per clinical dose of 100 million cells). 

 The unique features of ERC made us examine their activ-
ity in an immunocompetent model of critical limb ischemia 
[ 40 ]. Subsequent to our publication, other groups have used 
these cells for treatment of stroke [ 41 ], Parkinson’s disease 
[ 42 ], and diabetes [ 43 ,  44 ]. We successfully took the ERC 
from discovery to GMP manufacture and FDA approval for 
clinical trials. Clinical production, delivery, and potency 
assays for ERC are covered in our patent application 
#61/566460. The use of ERC for treatment of vascular con-
ditions is covered in our patent application # 20090291061, 
the use for treatment of diabetes was in-licensed to us from 
Hugh Taylor of Yale University #61/510,812, and the use in 
traumatic brain injury and Duchenne muscular dystrophy is 
covered by our patent applications, #61/618974 and 
#61/164,810, respectively.  

    Exosomes as Mediators of Paracrine 
MSC Activity 

 Exosomes are nanoparticles (40–100 nm) in size that possess 
highly defi ned homogeneous characteristics [ 45 ]. Exosomes 
are used by various cells for intercellular communication and 
have been identifi ed in T cells [ 46 ,  47 ], B cells [ 48 ,  49 ], 

 dendritic cells [ 50 ,  51 ], tumor cells [ 52 ,  53 ], neurons [ 54 , 
 55 ], oligodendrocytes [ 56 ], and placental cells [ 57 ]. Recent 
studies have demonstrated that stem cell-derived exosomes 
are responsible, at least in part, for paracrine angiogenic and 
cardioprotective activity of cell therapy products such as 
MSC or CD34+ cells [ 58 ,  59 ], given that exosomes can be 
produced en masse in a bioreactor setting and that safety and 
distribution of exosomes are conceptually superior to admin-
istration of live cells.  

    Commercial Signifi cance 

 Development of novel radioprotectants in the area of cell ther-
apy has attracted signifi cant defense interest. Osiris received a 
$4.2 million upfront grant for large animal studies along with 
a procurement order of $224.7 million (  http://investor.osiris.
com/releasedetail.cfm?releaseid=284617    ), while Cellarant 
last year received a $153 million award for development and 
stockpiling of their hematopoietic progenitor cells from the 
Biomedical Advanced Research and Development Authority 
(BARDA) for use in radiation sickness (  http://www.cellerant.
com/pr_090110.html    ). The “Animal Effi cacy” Rule devel-
oped by the US Food and Drug Administration (FDA) in 2002 
eliminates the requirement for Phase II and Phase III clinical 
trials for therapies against ARS, since it would be unethical 
to conduct effi cacy studies in humans. In such cases, approval 
is based upon effi cacy studies in representative animal spe-
cies and only extended Phase I safety, human volunteers. We 
believe that based on the clinical safety data that will emerge 
from ongoing trials, we can apply for registration based on 
animal effi cacy experiments, the protocol for which, includ-
ing dose escalation study and route of administration, will be 
fi nalized in Phase II of this project.  

    Experimental Data 

 Previous studies demonstrated that the postradiation accel-
eration of hematopoietic recovery subsequent to BM-MSC 
administration is mediated by paracrine factors given that the 
majority of administered BM-MSC are sequestered in the 
lung [ 24 ]. Growth-promoting activities of various stem cells 
such as CD34 hematopoietic stem/progenitor cells and MSC 
have been reported to be mediated by exosomes in cardiac 
infarct recovery model and in hind limb ischemia models 
[ 58 ,  59 ]. 

 We recently demonstrated that ERC are capable to pro-
duce high levels of exosomes. Furthermore, ERC-derived 
exosomes stimulate proliferation of bone marrow hematopoi-
etic progenitors. Specifi cally, exosomes were prepared from 
the supernatant of day 4 ERC or BM-MSC (Cambrex) cul-
tures by differential centrifugation. Conditioned media was 
subjected to three successive centrifugations at 300 g (5 min), 
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1,200 g (20 min), and 10,000 g (30 min) to eliminate cells and 
debris, followed by centrifugation for 1 h at 100,000 g. To 
remove excess serum proteins, the exosome pellet was 
washed with a large volume of PBS, centrifuged at 100,000 g 
for 1 h, and resuspended in 120 μl of PBS for further studies. 
The exosomes were quantifi ed by a micro- Bradford protein 
assay (Bio-Rad). Each batch was standardized by protein 
content. As a control, we used exosomes isolated from fetal 
calf serum (FCS Ex). To evaluate stimulatory properties of 
exosomes on hematopoietic stem/progenitor cell prolifera-
tion, mouse bone marrow cells were extracted from femurs 
and tibia of 6–8-week-old female C57BL/6 mice (Jackson 
Laboratories, Bar Harbour, Maine). Bone marrow mononu-
clear cells were plated at a concentration of 100,000 cells per 
well in a volume of 100 ml of complete DMEM media. On 
day 2, 1 uCi of [3H]thymidine was added to each well 16 h 
before harvest. Radioactive labeling of proliferating cells was 
measured on a microplate beta counter (Wallac). Data in 
Fig.  4.1  demonstrate that human ERC exosomes (ERC Ex) 
possess a higher stimulatory ability compared to BM-derived 
exosomes (MB-MSC Ex), which in turn was higher than fetal 
calf serum-derived exosomes (FCS Ex).
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