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    Chapter 11   
 Gut Microbiota and Metabolic Diseases: 
From Pathogenesis to Therapeutic Perspective 

             Rémy     Burcelin      ,     Michael     Courtney     , and     Jacques     Amar    

    Abstract     Intestinal microbiota is now considered as a “new organ” which, over 
and above their genetic origin, de-orphans the pandemic development of metabolic 
diseases. The trillions of bacteria and their corresponding million genes which 
inhabit our gut provide a unique source of molecular hypotheses to explain the wide 
diversity of metabolic diseases and hence form a basis to reach the important objec-
tive of personalized medicine. The gut and more recently the tissue microbiome 
could be the source of: (1) new biomarkers predicting and classifying metabolic 
diseases to help the clinician to propose the best therapeutic strategy, and (2) new 
pharmacological and nutritional strategies to treat the cause rather than the conse-
quence of diabetes and obesity. The fi eld of immunometabolism should be extended 
to microbio-immunometabolism, thus reconciling the role of the environment, the 
genetic background, and individual diversity in relation to the onset and develop-
ment of metabolic diseases.  
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11.1         Introduction 

    Evidence now shows that the pandemic progression of diabetes and obesity, as well 
as their numerous complications (cardiovascular, hepatic, renal, neuronal), is caused 
by lifestyle factors including sedentarity and fat-enriched diet which has replaced 
fi ber-enriched diet (Fig.  11.1 ). A dramatic outcome of this epidemic is the increas-
ing number of cardiovascular events leading to mortality [ 1 – 4 ] – the mechanisms at 
play need to be delineated in order to defi ne new therapeutic strategies. Over the last 
decade lethal cardiovascular events associated with diabetes have progressed by 
62 % [ 5 ,  6 ]. This is much higher than the risk linked to cholesterol levels or hyper-
tension. The incidence of type 2 diabetes is 4–5 % in Europe, 8–10 % in the USA, 
and higher in South Asia [ 7 ]. These numbers have more than doubled over the last 
20 years. Therefore, one can suggest that even if genetic analyses provide the basis 
for such an epidemic, changes in our genome cannot be solely responsible. One 
interpretation is that our genome is no longer adapted to environmental factors. 
Numerous environmental hypotheses have been proposed. First, epigenetic non-
coded functions that are independent of genomic factors could have an impact. 
Second, perhaps more realistically, the impact of changes in feeding habits and 
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  Fig. 11.1    The pandemic origin of metabolic diseases. The impact of genetics, diet, and other fac-
tors on the incidence and the development of metabolic disease pandemic could have a change in 
gut microbiota as an origin. Gut microbiota would also favor the development of complications of 
metabolic diseases such as cardiovascular, liver, eye, and skin complications       
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social behavior is likely to be an important cause of the growing incidence of 
 metabolic diseases. This phenomenon could be linked to the microbiota, our  “second 
genome” harboring almost ten times more prokaryotic cells than eukaryotic cells in 
our body [ 8 ]. All mammalian organisms are born sterile, without any microbiota 
which is inherited at birth. During the fi rst hours, days, and weeks of life,  microbiota 
from the mother and the environment colonize the body of the newborn in a specifi c 
order [ 9 ]. The microbiota colonizes the intestine during the fi rst 3–5 years of life 
and is species-, age-, and sex-dependent [ 10 ]. The initial infant gut microbiota is a 
simple structure usually dominated by bifi dobacteria, and through a series of suc-
cessions and replacements, it shifts to a more complex adult pattern [ 11 – 15 ]. The 
microbiota also undergoes substantial changes at the extremes of life, in infants and 
older people, the ramifi cations of which are still being explored [ 16 ]. Then, through-
out life the bacterial ecology tends to vary mostly according to the environment 
[ 17 ]. Each individual has at least 160 shared species and a number of well- balanced 
host-microbial molecular relationships that defi ne groups of individuals [ 18 ,  19 ]. 
This second genome is the metagenome. The importance of this metagenome 
resides in its gene repertoire, 100 times superior to the eukaryotic nuclear genome 
[ 18 ,  19 ], thus providing a huge genetic diversity susceptible to convey a plethora of 
functions [ 18 ,  19 ]. Indeed, the tremendous efforts that have been made in bioinfor-
matic analyses have allowed the encoding and the deciphering of all sequences. 
Humans host different metagenomes from multiple locations such as the skin, lungs, 
vagina, and the mouth in addition to the intestine [ 8 ,  20 ]. The human gut hosts 100 
trillion microorganisms, encompassing up to thousands of species at an average 
concentration of 10 14  per ml and weighing in average 1.5 kg [ 21 ]. A major observa-
tion is that the metagenomic diversity is extremely large and represents a signature 
of each individual. Its plasticity is signifi cant and depends on numerous environ-
mental and genetic factors that can evolve over time and could explain the rapid 
development of metabolic diseases. The adult intestinal microbiota has been shown 
to be relatively stable over time [ 22 ] and is suffi ciently similar between individuals 
to allow identifi cation of a core microbiome comprising 66 dominant operational 
taxonomic units (OTUs) that correspond to 38 % of sequence reads from 17 indi-
viduals [ 18 ,  19 ]. The core microbiota changes to become distinct in elderly subjects 
from that observed for younger adults with a greater proportion of  Bacteroides  spp. 
and typical abundance patterns of  Clostridium  groups. Interestingly, the onset of 
metabolic diseases increases with age and is associated with a change in intestinal 
microbiota as observed during aging [ 16 ,  23 ,  24 ]. Similarly, it was shown that 
changes in gut microbiota characterize obesity and diabetes [ 18 ,  19 ]. This suggests 
that each member can interact in a perfect mutual symbiosis defi ning a steady 
microbiota [ 8 ,  20 ,  25 ]. Hence, a new concept has emerged with an important infl u-
ence on our understanding of these pathologies. Major advances have been made 
over the course of the last decade, thanks to the development of high- throughput 
sequencing of the microbiota and to the use of germ-free mice. These have allowed 
the demonstration of the causality of the microbiota from the gut [ 26 ], from the oral 
cavity, and more recently from the tissue [ 27 ] on the development of metabolic 
diseases. The following decades will be dedicated to the identifi cation of the 
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molecular crosstalk between the microbiota and the host to understanding 
 mechanisms controlling diabetes and obesity. The intestinal immune system appears 
to be a major player in the fi eld since at birth bacterial colonization of the intestine 
represents an outbreak of antigens that can educate the immune system, as well 
other major functions such as the vascular and the nervous systems. The latter 
through its connection with the brain could participate in the maturation of the cen-
tral nervous system over the course of a lifetime [ 28 ]. Consequently, beyond the key 
physiological role of the intestinal microbiota in normal development, numerous 
pathological issues could be the consequence of an impaired microbiota. In addition 
to the fi rst described role of the microbiota on the development of intestinal bowel 
diseases, there is now evidence that a change in the intestinal bacterial ecology 
could affect metabolic, vascular, liver, heart, oral, and neurodegenerative diseases. 
More evidence is required to confi rm a role in arthritis and skin immunological 
diseases. The recent increase in the use of bariatric surgery for the treatment of 
 massive obesity and incidental diabetes has generated further evidence reinforcing 
the role of intestinal microbiota in the control of metabolic diseases.

   New clinical approaches for prevention and therapy are now being planned. 
Functional food and pharmaceutical strategies, based on the targeting of the 
 microbiota to host interactions, can be initiated. In the face of the large diversity of 
metabolic phenotypes, i.e., a large spectrum of fasted and postprandial glycemia 
and different fat mass distribution, “intelligent and directed” food complements can 
be proposed. They should not prevent or treat massively the populations but will 
focus on subgroups of patients with similar microbiota-related diseases. The rele-
vance of treating the impact of gut microbiota on the diseases requires the develop-
ment of companion biomarkers. They should fi rst defi ne subgroups of patients with 
similar microbiota profi les and should be able to follow up the effi cacy of the micro-
biota change in correlation with the metabolic phenotype treated. Hence, they 
will drive the therapeutic approach toward appropriate subgroups of patients to 
improve the effi cacy of the treatment and reduced secondary effects. Pharmaceutical 
approaches targeting a mechanism central to the molecular crosstalk between 
microbiota and the host, such as metabolic infl ammation, have currently been devel-
oped by means of fecal transplant and immunomodulation. Therefore, it is now time 
to consider the intestinal microbiota as a new organ controlling metabolism. This 
organ is characterized by a high level of plasticity so that it can adapt to a change in 
the host behavior in a reciprocal manner for the control of broad host physiological 
functions. The understanding of its molecular components will lead to a totally new 
way of interpreting physiological, clinical, and therapeutic data. Therefore, the limit 
between nutritional and pharmacological strategies is vanishing. Intelligent food 
supplements and cause-based pharmacological approaches will be the treatments of 
tomorrow that still have to be identifi ed. 

 Pharmaceutical strategies will benefi t from the gain of knowledge generated 
based on the intestinal microbiota to host relationship. The corresponding molecu-
lar crosstalk is currently being assessed and will be reviewed below. It includes 
mechanisms controlling immunomodulation, bile acid conjugation, the intestinal 
barrier, energy harvesting, and entero-endocrine hormone secretion. The bacterial 
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factors, i.e., the metafactors controlling these eukaryotic functions, are of infl ammatory 
origin such as the lipopolysaccharides, peptidoglycan fragments, fl agellin, or 
derived from fermentation products. Hence, pharmacological strategies should 
emerge from these concepts and target subgroups of patients with these new drugs 
acting on the host to microbiota relationship. 

 An important matter relates to the identifi cation of subgroups of patients sensi-
tive to these new approaches, most likely characterized by a specifi c dysbiosis and 
impaired gut and tissue microbiota. Hence, microbiota-based biomarkers precisely 
identifying these subgroups will help the clinician to treat the patients with the 
appropriate pharmaceutical strategy.  

11.2     From the Main Features of the Pathophysiology 
of Metabolic Diseases to Microbiota 

 Metabolic diseases are all characterized by alterations in energy balance which 
explains, at least in part, the occurrence of obesity. The disease is the consequence 
of either an increased energy uptake or a reduced energy expenditure demonstrating 
that different mechanisms are responsible for increased body weight. Furthermore, 
the accumulation of fat in the body is compartmentalized, i.e., abdominal, subcuta-
neous. or intratissular such as in the liver, the heart, or the pancreatic islets with 
different consequences on overall health. The incidence of diabetes is much 
increased in patients with normal body weight but with abdominal fat accumulation 
which is considered the most deleterious for health [ 29 ]. Similarly, the accumula-
tion of triglycerides within the Langerhans islets impairs insulin secretion [ 30 ] that 
can be restored by leptin treatment [ 31 ] activating uncoupling proteins such as 
UCP2 [ 32 ]. At the onset of obesity, the storage of energy is associated with hyper-
trophy of the adipocytes and their hyperplasia to ensure a suffi cient number of cells 
[ 33 – 35 ]. The signals favoring adipose depot development could be linked to 
increased adipocyte metabolism leading to a local hypoxia [ 36 ] and the recruitment 
of adipocyte precursors [ 37 ,  38 ]. The maintenance of the adipose depot architecture 
is ensured by a concomitant proliferation of endothelial precursors [ 39 ,  40 ], 
 increasing the adipose tissue capillaries and hence blood and energy supply [ 40 ]. 
Hyperphagia, supplying large amounts of energy, and hyperinsulinemia, although 
associated with normal blood glucose profi les, also suggest a neuroendocrine origin 
of the disease notably, the gut to brain axis which is recruited in response to an oral 
glucose load [ 41 ] or food intake [ 42 ,  43 ]. A key enteroendocrine factor, glucagon- 
like peptide 1 (GLP-1), triggers the gut–brain axis [ 42 ,  44 ,  45 ] which is impaired 
during high-fat-diet-induced metabolic diseases [ 46 ]. The brain is also sensitive to 
hormones from the periphery such as insulin and leptin which no longer effi ciently 
control food intake and energy partitioning. Altogether, impaired gut and peripheral 
nutrients and hormone sensing systems, as well as signaling effectors toward the 
adipose depot via the brain, are impaired during obesity. The increase of brain to 
adipose depot signals then enhances the capacity of the adipose depot to store 
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energy (Fig.  11.1 ). However, it should be noted that increasing food intake and 
 activating the storage of energy in fat depots cannot be considered as a pathological 
mechanism since it is a normal behavior of the body following a fasting period to 
replenish the fat stores. The pathology starts when this process is no longer down-
regulated. Different levels of deregulation occur involving either early control of 
food intake and energy distribution or processes that control each step of the obesity 
process. The intestinal microbiota has been proposed to interfere with hyperphagia 
and to some extent with energy storage – this will be reviewed below. The emerging 
role of gut microbiota in the gut to brain axis for the control of neural development, 
behavior, and food intake will certainly generate new molecular hypotheses regard-
ing the development of obesity [ 28 ,  47 – 49 ]. 

 Type 2 diabetes arises due to impaired secretion and action of insulin which 
evolve either simultaneously or independently according to numerous infl uencing 
factors (Fig.  11.2 ). An increased glucose intolerance with glycemic profi les higher 
than controls is a common feature at the onset of the disease [ 50 ,  51 ]. This is associ-
ated with hepatic insulin resistance where insulin does not effi ciently reduce hepatic 
glucose production following a meal [ 50 – 52 ]. Liver insulin resistance is hence 
involved in glucose intolerance and type 2 diabetes and explains fasting glycemia 
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[ 53 – 56 ]. Simultaneously, insulin-stimulated glucose uptake is reduced which is 
most likely a consequence of an impaired cellular lipid metabolism [ 57 ]. Numerous 
hypotheses could explain insulin resistance and among those the role played by a 
low-grade infl ammation, called metabolic infl ammation since it is chronic and not 
related to infection or cancer [ 58 ]. Briefl y, metabolic infl ammation is characterized 
by an increased infi ltration of immune cells within organs involved in the glycemic 
control such as the adipose tissue, the liver, and muscles [ 59 ,  60 ]. Cells from the 
innate and adaptive immune systems secrete cytokines such as TNFa and IL1-b that 
impair insulin signaling, thus affecting both glucose and lipid metabolism (Fig.  11.2 ) 
[ 59 ,  60 ]. Infl ammation is increasingly regarded as a key process underlying meta-
bolic diseases [ 59 – 64 ]. In the adipose tissue of individuals with metabolic diseases, 
this mechanism includes features characteristic of active local infl ammation [ 63 ,  65 , 
 66 ]. The cytokines released impair insulin signaling [ 67 – 69 ], thus leading to 
cytokine- mediated insulin resistance [ 70 ,  71 ]. Macrophage infi ltration of adipose 
tissue has been described in both mice and humans [ 64 – 66 ,  72 – 74 ]. It is suggested 
that these cells express TNF-alpha and iNOS that are characteristic of M1-type 
macrophages which are responsible for almost all adipose tissue TNF-alpha expres-
sion and signifi cant amounts of iNOS and IL-6 expression [ 73 ,  75 ,  76 ]. In addition, 
using functional analyses and microarray technology, it has been demonstrated that 
adipocyte progenitors and macrophages are characterized by a closed genome and 
phenotypome [ 77 ,  78 ]. Based on measurements of phagocytic activity and gene 
profi ling analysis of different progenitor cells, we revealed that the origin of infl am-
mation could also be attributed to cells initially present in adipose fat pads such as 
preadipocytes [ 77 ,  78 ]. Therefore, both infi ltrating and resident cells are most likely 
involved in the processes characterizing adipose tissue infl ammation. Similarly, 
lymphocytes are associated with adipose tissue infl ammation [ 64 ,  79 ,  80 ]. CD8 T 
cells are present in obese mouse adipose tissue even before the infi ltration of the 
tissue by macrophages. The results also showed that the immunological and genetic 
depletion of CD8 +  T cells lowered macrophage infi ltration and adipose tissue 
infl ammation and improved systemic insulin resistance. Conversely, adaptive trans-
fer of CD8 +  T cells to CD8-defi cient mice aggravated adipose infl ammation. 
Co-culture and other in vitro experiments revealed a cycle of interactions between 
CD8 +  T cells, macrophages, and adipose tissue. Moreover, CD4 +  regulatory T lym-
phocytes (Treg) (CD4 + FoxP3 + ), inhibitory cells of the immune system, decrease in 
obese adipose tissue [ 80 ]. Increases in Treg by antibody treatment (IL-2/anti-IL- 2-
induced Treg proliferation) improve HFD-induced insulin resistance [ 80 ]. 
Furthermore, transfer of CD4 +  T lymphocytes with anti-infl ammatory properties 
decreases HFD-induced glucose intolerance and insulin resistance [ 79 ]. The rea-
sons for adipose tissue T lymphocyte and macrophage infi ltration are unknown, but 
it was suggested that the corresponding antigens could be related to intestinal 
microbiota [ 6 ,  27 ,  81 ].

   Altogether, little is known about the sequence of events which lead to an 
increased number of macrophages and lymphocytes in metabolic tissues. The 
 origin of this cascade of events could be related to a change in intestinal microbiota 
and, as detailed below, to a change in tissue microbiota [ 27 ]. This is linked to a 
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translocation of bacteria and bacterial components from the intestine to tissues 
establishing a tissue microbiota leading to metabolic infl ammation. Hence, the role 
of gut microbiota could be related to its direct role on molecular targets controlling 
insulin secretion and action, hepatic glucose production, adipose tissue develop-
ment, and therefore, the incidence of diabetes. These hypotheses will be detailed 
below. 

 Although more than 150 genetic loci are associated with the monogenic or 
 multifactorial forms of obesity and type 2 diabetes, their impact on the incidence of 
the disease is rather low (5–10 % and 2 %, respectively) [ 82 ]. In genetically identi-
cal twins the incidence of type 2 diabetes is 20–60 % [ 83 ,  84 ]. Even in type 1 dia-
betes, genetically identical twins develop the disease with an incidence of no more 
than 50 %. A major impact of the environment has recently been attributed to the 
role of intestinal microbiota where genes involved in the recognition of bacterial 
patterns were involved [ 85 ,  86 ]. The innate immunity to microbiota relationship was 
causally implied. It was shown that the commensal microbial community alters sex 
hormone levels and regulates autoimmune disease fate in individuals with high 
genetic risk [ 87 ]. On the other hand, environmental factors such as stress, a seden-
tary lifestyle, and nutritional habit could explain the pandemic progression of meta-
bolic impairment. Humans could be considered as “super-organisms” as a result of 
their symbiotic association with the gut microbiota [ 88 ].  

11.3     Lessons from the Gut Microbiota to Metabolic 
Diseases Relationship 

 Complex microbial ecosystems occupy the skin, mucosa, and alimentary tract of all 
mammals, including humans [ 8 ].    The species that make up these communities vary 
between hosts as a result of restricted migration of microorganisms between weak 
and strong ecological interactions within hosts. Furthermore, diet, genotype, and 
colonization history also infl uence this ecology [ 20 ]. Hence, a mutual relationship 
characterizes the host to microbiota crosstalk by which each partner has its own 
interest and informs the other of the environmental and metabolic situation. The 
microbiota is now considered as a symbiont that shares with its host the infl uence of 
the environment, diet, stress, and the physiological state. Specifi c communities 
inhabit the different epithelia according to the physical and biochemical characteris-
tics of each location. With regard to the gastrointestinal tract, it is colonized by a vast 
community of symbionts and commensals that have important effects on immune 
function, nutrient processing, and a broad range of other host activities [ 89 ]. 

 The precise role of intestinal microbiota on the control of metabolic diseases 
emerged in 2004 with the discovery that germ-free mice resist high-fat-diet-induced 
obesity [ 90 ]. It was shown that germ-free mice colonized with microbiota harvested 
from the cecum of a healthy mouse gain 60 % body fat content and became insulin 
resistant within 14 days despite reduced food intake. The mechanism was due to an 
increased production of monosaccharides. These molecules are generated from the 
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metabolism of polysaccharides by the cecal microbiota, thus providing an additional 
source of carbohydrate to the body. However, a rate-limiting factor was that a large 
part of the microbiota cannot be identifi ed since it is highly diffi cult to culture. This 
major problem has been overcome by the use of very-high-throughput sequencing 
techniques coupled with new bioinformatics approaches. This strategy allowed the 
identifi cation of the taxons within the microbiota from human and animal intestinal 
content [ 91 ,  92 ] as well as the overall catalog of bacterial genes [ 18 ,  19 ]. This has 
allowed the correlation of metabolic diseases to specifi c bacteria or groups of 
bacterial genes [ 93 ]. An increased  Firmicutes -to- Bacteroidetes  ratio seems to be a 
signature of metabolic diseases infl uencing processes related to energy harvesting, 
intestinal permeability, bile acid metabolism, brain functions related to metabolism, 
and immunomodulation. 

11.3.1     The Gut Microbiota as a Signature 
of Metabolic Diseases 

 An altered gut microbiota has been linked to metabolic diseases including obesity 
[ 26 ,  94 ], diabetes [ 19 ], and cardiovascular diseases [ 95 ]. A core microbiome can be 
found at the gene level, despite large variations in community membership, and that 
variations from the core are associated with obesity [ 25 ,  94 ,  96 – 98 ]. Using a proto-
col for a metagenome-wide association study (MGWAS) based on deep shotgun 
sequencing of the gut microbial DNA from 345 Chinese individuals, approximately 
60,000 type 2 diabetes-associated markers have been identifi ed and validated, thus 
establishing the concept of a metagenomic linkage group [ 19 ]. This MGWAS analy-
sis showed that patients with type 2 diabetes were characterized by a moderate 
degree of gut microbial dysbiosis, a decrease in the abundance of some universal 
butyrate-producing bacteria, and an increase in various opportunistic pathogens, as 
well as an enrichment of other microbial functions conferring sulfate reduction and 
oxidative stress resistance. Three enterotypes could be identifi ed from the Chinese 
samples which were primarily made up of several highly abundant genera, includ-
ing  Bacteroides ,  Prevotella ,  Bifi dobacterium , and  Ruminococcus . However, no 
 signifi cant relationship between enterotype and type 2 diabetes status was found. 
However, when using the gene reference (KEGG orthologue genes and eggNOG 
group profi les) rather than the phylogenic profi les, a total of 1,345 biomarkers were 
identifi ed. Type 2 diabetes-associated biomarkers were mostly involved in mem-
brane transport systems. By contrast, control-enriched markers were frequently 
involved in cell motility and metabolism of cofactors and vitamins. When studying 
pathway levels, the gut microbiota of type 2 diabetic patients showed enrichment in 
membrane transport of sugars, branched-chain amino acid (BCAA) transport, meth-
ane metabolism, xenobiotics degradation and metabolism, and sulfate reduction. 
By contrast, there was a decrease in the level of bacterial chemotaxis, fl agellar 
assembly, butyrate biosynthesis, and metabolism of cofactors and vitamins. Seven 
of the markers were also related to oxidative stress resistance suggesting that the gut 
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environment of type 2 diabetic patients stimulates bacterial defense mechanisms 
against oxidative stress [ 19 ]. A further specifi c mathematical model for biomarker 
identifi cation has been developed and showed compositional and functional altera-
tions in the metagenomes of a specifi c cohort of 145 women with type 2 diabetes 
[ 99 ]. Type 2 diabetic women were characterized by an increased abundance of four 
 Lactobacillus  species and decreases in the abundance of fi ve  Clostridium  species. 
The total  Lactobacillus  species correlated positively with fasting glucose and 
HbA1c (glycosylated hemoglobin), whereas the  Clostridium  species correlated 
negatively with fasting glucose, HbA1c, insulin, C-peptide, and plasma triglycer-
ides. Importantly, impaired glucose tolerance could be identifi ed on the basis of this 
mathematical modeling. The impact of medication and hyperglycemia on the 
metagenome was not considered as major confounding factors. Comparisons with a 
Chinese cohort demonstrated that the biomarkers identifying type 2 diabetes were 
different from the European population suggesting that the metagenome analysis to 
predict type 2 diabetes should be specifi c for the age and geographical location of 
the populations studied. It should be further noted that the mechanisms at the origin 
of this observation are numerous and hence will most likely depend upon each 
individual. 

11.3.1.1     Impacts of Diet on Microbiota-Related Metabolic Diseases 

 Socio-demographic and environmental factors have a great infl uence on the 
 incidence of metabolic [ 100 ] and cardiovascular diseases [ 101 ], introducing the 
possibility of identifying functional metagenomic factors under the control of envi-
ronmental factors such as stress, food habits, and sedentarity. Diet and nutritional 
status are among the most important modifi able determinants of human health, and 
gut bacteria feed on the nutrients absorbed during a meal leading to changes in 
metabolism, the overall intestinal ecology, and the way bacteria interact with the 
host. The fi rst analyses of metagenomic sequencing have been performed on obese 
patients followed up during 1 year of a restricted calorie diet [ 97 ,  98 ,  102 ]. A clear 
metagenomic signature was identifi ed in obese patients characterized by a reduction 
in the relative abundance of the  Bacteroidetes- to- Firmicutes  ratio which represents 
more than 80 % of the overall bacterial population in feces [ 97 ,  98 ] (Fig.  11.3 ). This 
ratio evolved toward that of lean patients during weight loss showing that the micro-
biota can evolve according to the environmental factors. It is clear that dietary 
manipulation, including HF feeding, profoundly alters the profi le of the gut micro-
biota [ 27 ,  81 ,  103 – 107 ]. An enrichment in gram-negative to gram-positive bacteria 
appeared to be associated with the early onset of high-fat-diet-induced diabetes [ 81 ]. 
An elegant validation of the role of diet on human microbiota has been  performed 
in germ-free mice colonized with human microbiota and fed with a fat- enriched 
diet [ 104 ]. A single day of fat-enriched diet was suffi cient to change the overall 
ecological homeostasis within the gut microbiome, the corresponding metabolic 
pathways, and hence the microbiome gene expression. The infl uence of high- fat diet 
on gut microbiota has been validated in other species such as the pig [ 108 ,  109 ] 
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which is highly infl uenced by pre- and probiotics [ 110 ] and sucrose [ 111 ]. Defi ned 
lipids such as oleic-acid-derived molecules and a combination of n-3 fatty acids 
markedly increased total bacterial density and restored the proportions of clostridial 
cluster,  Enterobacteriales  and  Bifi dobacterium  that were changed during HFD 
 feeding [ 112 ] along with the metabolic status. Conversely saturated fat increased 
the  Firmicutes -to- Bacteroidetes  ratio [ 113 ,  114 ]. In addition to the tremendous 
impact of dietary fi bers, other molecules such as polyphenols infl uence gut micro-
biota and further control metabolism [ 115 ,  116 ]. Type 2 diabetes has also its own 
metagenomic signature, and type 2 diabetes-associated markers have been associ-
ated with the disease and can be useful to classify the different subgroups of type 2 
diabetic patients [ 19 ]. Among these  Akkermansia muciniphila  seems to be a good 
candidate with a recently identifi ed role in the control of the intestinal barrier [ 107 ]. 
A reduction of  Akkermansia muciniphila , which is involved in mucus degradation, 
has also been observed [ 107 ]. These bacteria, when used as a probiotic, control 
body weight gain [ 107 ] and its prevalence increased in response to prebiotics [ 117 ] 
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 Proteobacteria  (gram negative; releasing LPS, peptidoglycans, and other antigens), a reduced in 
 Faecalibacterium - and  Clostridium -producing butyrate, a reduced in  Akkermansia muciniphila , 
and segmented fi lamentous bacteria (at least in rodents, SFB) would alter intestinal functions. 
Intestinal permeability, defenses (mucin and defensin production), innate ( APC , antigen- presenting 
cells) and adaptive ( T lymphocytes , TL) immunity, and lipid metabolism could lead to bacterial 
translocation and tissue microbiota dysbiosis, metabolic endotoxemia, and metabolic infl amma-
tion of the targeted tissues. Altogether, the tissue biology would be impaired and be considered as 
a risk factor for the development of cardiometabolic diseases       
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accompanying metabolic control through a mechanism that could involve gut 
 peptide secretion [ 118 ]. Insulin action also has a metagenomic signature in humans 
[ 119 ]. Furthermore, hypotheses regarding the functional role of gut microbiota can 
be generated by studying the genes characterizing the microbiome. A decrease in 
the abundance of some universal butyrate-producing bacteria and an increase in 
various opportunistic pathogens, as well as an enrichment of other microbial 
 functions conferring sulfate reduction and oxidative stress resistance, were also 
characterized. A change in intestinal microbiota has also been characterized in non-
alcoholic fatty liver diseases (NAFLD) where the incidence is between 16 % and 
30 % of the general population [ 120 ] and further rises toward 80 % in patients with 
obesity and type 2 diabetes [ 121 ]. Some biomarkers have been identifi ed such as a 
reduction of  Faecalibacterium  and  Anaerosporobacter  and a higher abundance of 
 Parabacteroides ,  Allisonella , certain  Lactobacillus  species, and selected members 
of the phylum  Firmicutes  ( Lachnospiraceae ; genera,  Dorea ,  Robinsoniella , and 
 Roseburia ) [ 122 ]. The causal role of gut microbiota on NAFLD has been shown by 
microbiota transfer in the mice. The colonization of germ-free mice with the gut 
microbiota from a high-fat-diet-induced NAFLD mouse induced the disease. 
Sequencing of the 16S ribosomal RNA revealed differences at the phylum, genera, 
and species levels [ 123 ]. Some mechanisms have been proposed that implicate 
intestinal permeability, low-grade infl ammation and immune balance in the devel-
opment of hepatosteatosis [ 124 ], the modulation of dietary choline and bile acid 
metabolism, and the production of endogenous ethanol [ 125 ] that will be discussed 
below. Another important feature of the change in intestinal microbiota is that in 
addition to the change of phylum ratio obesity is associated with phylum- level 
changes in the microbiota and reduced bacterial diversity [ 97 ,  98 ,  126 ].

11.3.1.2        Impact of the Host Genome 

 In addition to the role of the environment on the shaping of gut microbiota during 
metabolic diseases, the impact of the host genome cannot be totally ruled out. The 
concordance of type 2 diabetes within the homozygote population is higher than 
between heterozygote twins [ 83 ,  84 ,  127 ] or in response to overfeeding [ 128 ,  129 ] 
suggesting the important role of the genetic background. The results reveal that the 
human gut microbiome is shared among family members but that each individual’s 
gut microbial community varies in the specifi c bacterial lineages present, with a 
comparable degree of covariation between adult monozygotic and dizygotic twin 
pairs [ 126 ]. These results demonstrate that a diversity of organismal assemblages 
can however yield a core microbiome at a gene level and that deviations from this 
core are associated with different physiological states, for example, obese versus 
lean. However, the concordance of the metabolic phenotype is not absolute between 
twins – this could be linked to differences in gut microbiota since the adult mono-
zygotic twins are no more similar to one another in terms of their gut bacterial com-
munity structure than are adult dizygotic twins [ 126 ,  130 ]. However, the impact of 
the host genome on the microbiota seems to depend on the microbiota location 
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considered. In the saliva twins resemble each other more closely than the whole 
population at all time points but become less similar to each other when they age 
and no longer cohabit [ 131 ]. The sequencing of gut microbiota from the general 
population and across countries and ethnic origin showed that shared features of the 
functional maturation of the gut microbiome are identifi ed during the fi rst 3 years of 
life [ 24 ], suggesting an imprinting from the mother which remains but is not abso-
lute. Hence, room is available for the impact of environmental changes throughout 
life. Numerous studies now report that the infl uence of the genetic background is due 
to the impact of the immune system that shapes the microbial community [ 132 – 135 ]. 
Hence, the immunogenetic traits of an individual appear to be major regulators of 
gut microbiota. Mutations in the receptors to bacterial determinants such as TLRs 
which are pathogen-associated molecular pattern recognition receptors that recog-
nize highly conserved microbial molecules (PAMPs) notably TLR2 [ 136 ], TLR4 
[ 137 ], and TLR5 [ 132 ] and NLRs notably NOD2 [ 138 – 140 ] shape the microbiota 
although some controversies do exist [ 141 ].  

11.3.1.3     Impact of Birth 

 Importantly, the host immune system to microbiota relationship continues to be 
educated throughout life since the immune system matures along with the micro-
biota at birth. The gastrointestinal tract of a normal fetus is sterile. During the birth 
process and rapidly thereafter, microbes from the mother and surrounding environ-
ment colonize the gastrointestinal tract of the infant until a dense, complex micro-
biota develops [ 9 ]. It is now clear that the composition and temporal patterns of the 
microbial communities vary widely from baby to baby [ 142 ]. The distinct features 
of each baby’s microbial community are recognizable for intervals of weeks to 
months which show that each baby’s microbiota, until the fi rst year of life, follows 
an idiosyncratic law. However, it then converges toward a profi le characteristic of 
the adult gastrointestinal tract. Therefore, during the fi rst year of life, while the 
microbial ecology is not yet set up, the inheritance of gut microbiota could also be 
infl uenced during pregnancy and at delivery according to the infl uence of the moth-
er’s microbiota. Furthermore, the mode of delivery infl uences the infant’s microbi-
ota since it was shown that vaginally delivered infants acquire bacterial communities 
resembling their mother’s vaginal microbiota, dominated by  Lactobacillus , 
 Prevotella , or  Sneathia  spp., whereas C-section infants harbored bacterial commu-
nities similar to those found on the skin surface, dominated by  Staphylococcus , 
 Corynebacterium , and  Propionibacterium  spp. [ 11 ,  143 ]. However, the delivery 
mode did not infl uence the prevalence of obesity in children [ 144 ]. Conversely, 
antibiotic treatment during the fi rst 6 months of life increased the risk of overweight 
in children with normal-weight mothers but reduced the risk of obesity in children 
with overweight mothers. Hence, at birth and during the fi rst year of life, the early 
colonization of the gut by microbiota can infl uence the incidence of metabolic dis-
eases [ 93 ]. Alterations in the microbiota composition of mothers may be transferred 
to infants and lead to an increased risk of weight gain. During pregnancy, gut 
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microbiota changes dramatically between the fi rst and third trimesters, with a vast 
expansion of diversity among mothers, an overall increase in  Proteobacteria  and 
 Actinobacteria , and reduced richness [ 145 ]. This change in gut microbiota during 
pregnancy was functional since colonization of germ-free mice with the microbiota 
from the third trimester induced greater adiposity and insulin resistance when com-
pared to mice colonized with the microbiota from the fi rst trimester [ 145 ]. This 
original observation could suggest that the change in gut microbiota during preg-
nancy programs infant body weight. It has also been suggested that the microbiota 
from obese mothers could infl uence the prevalence of obesity in children. This was 
further supported by the fact that the infants’ fecal microbial composition was 
related to the weight and weight gain of their mothers during pregnancy [ 146 ]. The 
fecal  Bacteroides  and  Staphylococcus  concentrations were signifi cantly higher in 
infants of overweight mothers, whereas the prevalences of  Akkermansia muciniph-
ila ,  Staphylococcus , and  Clostridium diffi cile  groups were lower in infants of 
normal- weight mothers and of mothers with normal weight gain during pregnancy. 
This was confi rmed in that the concentration of the gram-negative family 
 Enterobacteriaceae  was signifi cantly higher in obese/overweight children and the 
levels of  Desulfovibrio  and  Akkermansia muciniphila -like bacteria were signifi -
cantly lower when compared to lean controls [ 147 ]. Chapter   8     “Metabonomics in 
neonatal and pediatric research: Studying and modulating gut functional ecology 
for optimal growth and development” provides a comprehensive overview of the 
state of the art of metabonomics and gut microbiota studies in neonatal and pediatric 
research.   

11.3.2     Molecular Crosstalk Between Gut Microbiota 
and the Host for the Control of Metabolic Diseases 

11.3.2.1     The Lipopolysaccharides Hypothesis and Metabolic 
Infl ammation 

 Whereas extensive analyses demonstrate the important impact of gut microbiota on 
host biology, the mechanisms of the crosstalk between the host and the microbiota 
remain to be delineated. As mentioned above, metabolic infl ammation is a leading 
mechanism responsible for the impairment of glycemia and body weight regulation. 
One hypothesis involves bacterial factors from the gut, such as lipopolysaccharides 
(LPS). Lipopolysaccharides are components of the wall from gram-negative bacte-
ria [ 1 ]. They are potent endotoxins, involved in the acute-phase response to bacterial 
infection, inducing a cytokine-mediated systemic infl ammatory response that can 
cause shock and severe multiple organ failure [ 2 ,  3 ]. These bacterial antigens bind 
to their receptors TLR4 and CD14 on numerous cells types notably those of the 
immune system, i.e., macrophages and dendritic cells. Adipocytes also express 
TLR4 and can bind LPS and could be involved directly in the activation of intracel-
lular infl ammatory pathways [ 148 ,  149 ]. 
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   Mechanisms of High-Fat-Diet-Induced Blood Bacterial Molecular Patterns 

 LPS accumulates in blood and contributes to infl ammation and insulin intolerance 
[ 6 ,  81 ]. A 1-month high-fat feeding in humans increased endotoxemia by 71 % 
[ 150 ], suggesting that therapeutic agents that reduce intestinal LPS permeability 
could control metabolic endotoxemia and hence systemic infl ammation in patients 
with metabolic syndrome. Similarly, in type 1 diabetic patients, metabolic endotox-
emia was associated with dyslipidemia, insulin resistance, obesity, and chronic 
infl ammation [ 151 ]. The mechanism is associated with an increase of the gram- 
negative to gram-positive ratio within the intestinal microbiota [ 81 ]. LPS need to be 
transported across the intestinal epithelial barrier to reach the blood. A mechanism 
involving the synthesis and production of chylomicron is required [ 152 ]. The uptake 
of LPS is observed within hours of lipid absorption in human [ 153 ] and could hence 
be considered as a blood nutritional signal informing the body of a change in feed-
ing behavior and in microbiota ecology. The accumulation of LPS in the blood is 
also linked to an increased intestinal permeability where tight junctions become 
leaky due to a reduction of the expression of specifi c proteins such as zonula 
occludens [ 81 ,  106 ] and the putative role of endocannabinoids [ 154 ] that could con-
trol intestinal permeability through a GLP-2-dependent mechanism [ 155 ]. This is 
reversed upon treatment with prebiotics [ 156 ,  157 ] or probiotics [ 107 ]. The increase 
of plasma LPS concentration is called metabolic endotoxemia. Lipoproteins bind 
LPS to attenuate the biological infl ammatory response of this bacterial factor [ 158 , 
 159 ] through all classes of lipoprotein (chylomicrons, VLDL, LDL, and HDL) [ 9 ]. 
Chylomicrons and VLDL have been shown to reduce LPS-induced toxicity in mice 
[ 10 ]. Similarly, the binding of LPS to LDL reduced endothelial cell activity [ 9 ,  11 ]. 
In one study performed in 10 individuals, HDL has been shown to be the main LPS 
carrier holding 60 % of the LPS, with LDL and VLDL carrying, respectively, 25 % 
and 12 % [ 14 ]. Among three ex vivo studies, two have indicated that LPS, in 
humans, was mainly located in VLDL and LDL [ 15 ,  16 ] and one has more precisely 
indicated that LDL was the major carrier for LPS [ 9 ]. Therefore, it is now evident 
that nutritional and lipid metabolism are tightly linked to the intestinal absorption of 
gut bacterial factors including LPS for the triggering of metabolic infl ammation. 
The pharmacological control of intestinal LPS absorption could be of importance 
for the prevention or treatment of metabolic diseases. A change in nutrition involv-
ing an increase in fat content is a risk factor for metabolic endotoxemia as demon-
strated in epidemiological studies in humans [ 151 ,  160 ,  161 ]. In the mouse the 
ablation of various pattern recognition receptors (PRRs) such as TLR4, CD14, and 
NLRP3 protects mice from diet-/obesity-induced infl ammation and insulin resis-
tance [ 6 ,  162 – 164 ]. In human myotubes, LPS increased JNK phosphorylation and 
MCP-1 and IL-6 gene expression [ 165 ] and could play a role in the pathogenesis of 
insulin resistance. Therefore, antagonists of CD14/TLR4 may improve insulin 
action in type 2 diabetic patients. In the mouse the chronic subcutaneous infusion of 
LPS at low rates favors liver, adipose tissue, and muscle cytokine production and 
macrophage accumulation showing that in vivo metabolic endotoxemia is an impor-
tant risk factor of insulin resistance and hence metabolic diseases. Direct evidence 
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shows that the LPS to ligand crosstalk controls adipose tissue infl ammation [ 6 ,  162 , 
 164 ,  166 ], insulin sensitivity [ 148 ,  167 ], and obesity [ 6 ,  168 ] through molecular 
mechanisms most likely linked to the activation of NFkB and the transcription of 
genes coding for cytokines. The latter, such as TNFα, will then interfere with the 
insulin receptor leading to insulin resistance [ 169 ]. LPS are also involved in the 
reduction of adipogenesis [ 170 ], as well as hepatic steatosis [ 171 ,  172 ] again 
through mechanisms involving TNFα production or SREBP-1 activation [ 173 ]. 
Other bacterial components are involved in the infl ammatory process characterizing 
metabolic infl ammation. The peptidoglycan is a complex structure of the bacterial 
wall found mostly in gram-positive bacteria but also found, to a lower extent, in 
gram-negative bacteria. Its polysaccharide component is different between the two 
types of bacteria and binds to pattern recognition receptors such the nucleotide 
oligomerization domain (NOD)1 and NOD2. NOD1 and NOD2 are currently the 
only known sensors of bacterial cell wall peptidoglycan (PGN) that elicit infl amma-
tion by increasing cytokine production, defensin expression by Paneth cells [ 174 –
 177 ], and stress kinase responses [ 178 ]. In addition to LPS, PGN could be positioned 
as a component of metabolic endotoxemia that contributes to infl ammation and 
metabolic defects [ 27 ,  179 ]. This is important because gut-derived LPS alone 
appears to be insuffi cient for establishing glucose/insulin tolerance in poorly 
immune-responding germ-free mice [ 180 ]. Furthermore, PGN containing meso- 
DAP motifs (generally dominant in gram-negative bacteria) caused profound insu-
lin resistance through actions on NOD1 directly in metabolic cells, including 
adipocytes [ 179 ]. The NOD2 activation with the minimal bioactive PGN motif, 
muramyl dipeptide (MDP), mostly present in gram-positive bacteria, elicited cell 
autonomous infl ammation and impaired insulin action directly in muscle cells [ 181 ] 
and caused acute, peripheral insulin resistance in vivo [ 179 ]. Mice lacking NOD2 
have improved insulin sensitivity during obesity illustrating the protective role of 
NOD2 as a sensor of bacterial motifs derived from the gut microbiota on the control 
of metabolic diseases [ 27 ,  179 ]. However, defects in NOD2 immunity have been 
associated with promoting other chronic proinfl ammatory pathologies, and human 
NOD2 variants have the highest risk associated with Crohn’s disease [ 182 – 184 ]. 
NOD2 immunity is known to contribute to homeostasis of the gut microbiota dem-
onstrating that the microbiota is in a tight relationship with the immune system that 
secondarily controls the metabolism [ 138 ].  

   Metabolic Endotoxemia and Gut Microbiota Induced Hepatic Steatosis 

 Possible mechanisms leading to hepatosteatosis in obese and type 2 diabetic patients 
that involve gut microbiota implicate intestinal permeability, low-grade infl amma-
tion and immune balance [ 124 ], the modulation of dietary choline and bile acid 
metabolism, and the production of endogenous ethanol [ 125 ]. A fi rst hypothesis is 
proposed regarding the key role of the intestinal epithelium as a barrier between the 
environment, i.e., the luminal side of the intestine and the body. A leaky gut has 
been described in patients with NAFLD [ 185 ] and linked to a change in intestinal 
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microbiota [ 122 ,  186 ]. A second hypothesis is linked to the role of choline which is 
a major phospholipid component of the cell membrane involved in signal transduc-
tion and the control of lipoprotein metabolism, notably the very-low-lipoprotein 
assembly [ 187 – 189 ]. Therefore, a choline-defi cient diet promotes liver steatosis. 
Such depletion could be induced by the gut microbiota that would convert dietary 
choline into toxic methylamines [ 190 ,  191 ]. It was shown that circulating levels of 
plasma phosphatidylcholine were low, whereas urinary excretion rates of methyl-
amines dimethylamine, trimethylamine, and trimethylamine-N-oxide were high and 
were coprocessed by symbiotic gut microbiota and mammalian enzyme systems. 
An infl ammatory feature is required to qualify hepatic steatosis (NASH) from a 
NAFLD phenotype. It could originate from the gut microbiota since it interacts with 
the overall immunity of the host via PAMPs TLRs and NLRs [ 175 ]. Similarly, the 
role of components from the infl ammasome such as NLRP6 and NLRP3 has been 
demonstrated [ 124 ]. These infl ammation sensors could modulate the gut microbiota 
and hence the crosstalk of host immunity and gut microbiota leading to the develop-
ment of the pathology. Altogether, the triggering of innate immunity could lead to 
the production of cytokines which contribute to the infl ammatory phenotype of 
NASH through a mechanism similar to that suggested for the development of type 
2 diabetes and obesity.   

11.3.2.2     The Energy Harvesting, Expenditure, and Short-Chain Fatty 
Acid Hypotheses 

 The change in intestinal microbiota (increased  Firmicutes  and decreased 
 Bacteroidetes ), observed during obesity, was associated with an increased effi ciency 
of energy harvest in human and mouse [ 26 ,  105 ]. The fecal content in energy was 
lower in obese mice than in controls by about 150 kCal/day, suggesting that the 
energy was better absorbed by the gut. This observation was attributed to the exces-
sive hydrolysis of polysaccharides into monosaccharides indispensable to the body 
as well as to the production of short-chain fatty acids (SCFA) [ 26 ]. However, it 
seems that the production of SCFA diminished over time during long-term high-fat 
feeding or aging in  ob / ob  mice [ 105 ]. The role of gut microbiota in the production 
of SCFA is however strongly supported since it was shown that germ-free mice are 
devoid of SCFAs [ 192 ] and could control AMP-activated protein kinase activity and 
macrophage infi ltration in adipose tissue [ 193 ]. Human colonic butyrate producers 
are phylogenetically diverse, with the two most abundant groups related to  E. 
rectale / Roseburia  species and to  Faecalibacterium prausnitzii . The precise SCFA 
responsible for the control of metabolism seems to be multiple with a signifi cant 
role for acetate. In addition, SCFAs such as propionate can be used for de novo 
glucose or lipid synthesis and serve as an energy source for the host. It has also been 
demonstrated that butyrate lowers fatty acid content in liver and plasma, reduces 
food intake, exerts immunosuppressive actions, and probably improves tissue insu-
lin sensitivity [ 194 ,  195 ]. The mechanism could involve notably the promotion of 
glucagon-like peptide 1 (GLP-1) secretion via the binding of SCFA to 
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G-protein- coupled receptors such as GPR41/43 at the surface of the enteroendocrine 
cells [ 195 ]. Cascades of events such as the control of glucagon and insulin secretion, 
gastric emptying, and satiety would secondary to GLP-1 secretion control glucose 
homeostasis. Butyrate is also involved in the improvement of the overall glucose 
metabolism as demonstrated by its supplementation to a high-fat diet [ 196 ]. Other 
experiments show that by high-pressure liquid chromatography analysis, authors 
identifi ed signifi cantly higher concentrations of butyrate and propionate in feces 
from obese versus normal-weight children [ 197 ]. Signifi cantly lower concentrations 
of intermediate metabolites were detected in obese children suggesting exhaustive 
substrate utilization by obese gut microbiota [ 197 ]. Despite this evidence, the role 
of SCFA on metabolism still remains unclear. Recent data demonstrate that the 
activation of GPR43 by SCFA at the surface of adipocytes reduced insulin signaling 
[ 198 ]. This could certainly reduce insulin-induced lipid accumulation, and hence 
body weight gain, but could also be considered as a factor inducing adipose tissue 
insulin resistance which could prevent glucose to be taken up by adipocytes and 
hence accumulate in the blood or the liver to induce hyperglycemia and hepatic 
steatosis. Thus, data relating to the production of SCFA most likely cover other 
unidentifi ed mechanisms that need to be identifi ed to fully understand the benefi t of 
polysaccharide fermentation. 

 The role of gut microbiota could also be on energy expenditure since germ-free 
mice are leaner despite a dramatically increased food intake [ 90 ]. The lean pheno-
type of these mice is associated with increased skeletal muscle and liver levels of 
phosphorylated AMP-activated protein kinase (AMPK) and its downstream targets 
involved in fatty acid oxidation such as acetylCoA carboxylase and carnitine palmi-
toyltransferase [ 199 ]. AMPk is a master switch considered to be a molecule recruited 
in case of stress and energy deprivation [ 200 ,  201 ]. Bacterial factors could activate 
this enzyme in muscles and the liver to increase energy expenditure. Conversely, 
the microbiota inhibits fasting-induced adipose factor (Fiaf) which downregulates 
circulating lipoprotein lipase. Hence, free fatty acids are stored in the liver of con-
ventional mice which is not the case in germ-free animals [ 199 ]. 

 Altogether, numerous eukaryotic targets are currently being identifi ed using 
germ-free mice. An important matter will be to validate them in physiological con-
ditions such as in conventional mice and in humans.   

11.3.3     Gut Microbiota During Obesity Surgery 

 The last 40 years has seen the emergence of the treatment of obesity by surgery. 
Several types of surgery involving the stomach and the intestine are used. The 
Roux-en-Y gastric bypass (RYGB) surgery which is to date the major bariatric 
intervention to treat morbid obesity involves the direct connection of the jejunum to 
the stomach so that nutrients are no longer in contact with the duodenum. In addi-
tion, 90 % of the stomach is removed. The sleeve gastrectomy involves the removal 
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of a major part of the stomach so that food directly reaches the duodenum. Other 
types of surgery such as the ileal bypass transposition are being developed. All sur-
gical procedures dramatically affect gut microbiota [ 202 ,  203 ]. A fi rst set of experi-
ments demonstrated that before surgery,  Firmicutes  were dominant in normal-weight 
and obese individuals but signifi cantly decreased in post-gastric bypass [ 204 ]. 
Interestingly, the gut microbiota from patients after surgery was not similar to that 
of lean individuals since it was enriched in  Gammaproteobacteria  which are H(2)-
producing  Prevotellaceae  [ 204 ]. These changes were independent of weight change 
and caloric restriction, were detectable throughout the length of the gastrointestinal 
tract, and were most evident in the distal gut, downstream of the surgical manipula-
tion site [ 205 ]. A precise study identifi ed 14 discriminant bacterial genera (7 were 
dominant and 7 were subdominant) and 202 genes changed in the white adipose 
tissue that correlated with RYGB as well as with both clinical phenotypes [ 206 ]. 
    Faecalibacterium prausnitzii  species was lower in patients with metabolic diseases 
but associated negatively with infl ammatory markers even throughout the follow-up 
after surgery and independently with changes in food intake suggesting an imprint-
ing of the microbiota that cannot be easily changed [ 207 ]. 

11.3.3.1    The Bile Acids to Microbiota Hypothesis 

 Intestinal microbiota also has a role in the metabolism of bile acids, which, with 
other sterols [ 208 ], are important regulators of metabolic diseases, as also described 
in Chaps.   13     and   14    . Bile acid can control insulin secretion [ 209 ], GLP-1 secretion 
[ 210 ], energy expenditure [ 211 ], as well as atherosclerosis [ 212 ]. The role of bile 
acid is also suspected during bariatric surgery and could be the molecular link 
between the change in intestinal microbiota [ 213 ] and the improvement of metabo-
lism [ 214 ] notably through the TGR5 receptor [ 215 ]. Bile acids are secreted into 
the duodenum and work to emulsify liposoluble dietary nutrients to facilitate their 
digestion and absorption. Studies have demonstrated that bile acid composition 
and secretion in response to fat intake modifi es markedly gut microbiota thereby 
inducing a dysbiosis [ 216 ]. The dietary fat can alter the gut microbiota of mice 
indirectly by changing the animals’ pool of bile acids and steroids that are pro-
duced by the liver and secreted into the intestine [ 216 ]. Bile acids are synthesized 
from cholesterol in the liver and further metabolized by the gut microbiota into 
secondary bile acids [ 217 ] which can change the metabolism by acting on the 
farnesoid X receptor to exert some negative feedback control. When compared to 
germ-free mice, the conventionally raised mice are characterized by a dramatic 
reduction in muricholic acid, but not cholic acid levels [ 218 ]. The microbiota con-
trols fi broblast growth factor 15 in the ileum and cholesterol 7α-hydroxylase 
(CYP7A1) in the liver by FXR- dependent mechanisms thereby infl uencing the 
metabolism and secretion of bile acids. 

 Hence, a new ecology is expected from the host and the microbiota through bile 
acid metabolism.  
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11.3.3.2    The Immunomicrobiota Crosstalk and Metabolic Diseases 

 Metabolic diseases are now considered as low-grade immunomodulatory diseases 
[ 58 – 60 ].    The origin of the antigen is unknown but has been suspected to be from 
autoantigens, which notably form the adipose tissue [ 219 – 221 ]. The discovery of 
intestinal microbiota opens new avenues regarding the origin of the metabolic 
infl ammation. This hypothesis stemmed from the observation that intestinal perme-
ability was increased in high-fat-diet-fed mice, leading to accumulation in the blood 
of bacterial fragments such as LPS [ 6 ,  160 ]. Whereas, during diabetes and obesity, 
LPS and peptidoglycan were shown to be transported from the intestinal lumen to 
the blood through the intestinal epithelium, it was initially thought that whole com-
mensal bacteria would be arrested by the mucosal layer and the immune system 
within Peyer’s patches or the lamina propria [ 222 ,  223 ], thus preventing transloca-
tion across the intestinal epithelial layer [ 224 ,  225 ]. 

 A defi ciency in host immune defenses and increased permeability and damage to 
the intestinal mucosal barrier represent mechanisms through which bacteria of 
intestinal origin accumulate into the tissues. In the healthy situation macrophages, 
dendritic cells, and antibodies within the lumen restrain, along with the mucus layer, 
the bacteria within the luminal side of the gut to ensure a tight intestinal permeabil-
ity. In the proximal intestinal segments where the microbiota is sparse and the 
mucus layer is thin or absent, commensal bacteria are in close contact with the 
epithelial cells, and host immunosuppression synergistically promotes bacterial 
translocation from the gastrointestinal tract resulting in accumulation of bacteria 
within the mesenteric lymph node [ 225 ]. Therefore, lymphocytes from mesenteric 
lymph nodes, Peyer’s patches, intraepithelial cells, and the lamina propria are spe-
cifi cally educated to recognize commensal bacteria, which are therefore considered 
as self-antigens. The change of intestinal microbiota that occurs during a fat- 
enriched diet [ 81 ,  104 ] leads to the production of new antigens that are no longer 
recognized as self by the intestinal immune cells [ 134 ]. This change in gut micro-
biota can also be controlled by natural antibiotics such as defensins secreted by 
Paneth cells [ 226 ,  227 ].  

11.3.3.3    Intestinal Bacterial Translocation and Metabolic Diseases 

 Bacterial translocation is defi ned as the passage of viable indigenous bacteria from 
the gastrointestinal tract to extra intestinal sites, such as the mesenteric-lymph-node 
complex, liver, spleen, and bloodstream [ 224 ]. This mechanism is largely observed 
during intestinal bacteria overgrowth leading to cirrhosis [ 228 ] or sepsis [ 229 ]. 
Although it is intuitively considered as deleterious for the organism, it could be sug-
gested that the bacterial translocation helps the immune system to be prepared 
against infections. Another pathological situation of increased bacterial transloca-
tion is AIDS where, due to impaired intestinal immunosuppression, bacteria trans-
locate toward tissues and could lead to infl ammation and increased mortality [ 230 ]. 
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The immune inhibitory receptor programmed death-1 (PD-1) regulates the function 
of CD8+ cells and the translocation of bacteria [ 230 ]. Importantly AIDS is  associated 
with a dramatic increase in the incidence of diabetes and lipodystrophy [ 231 ,  232 ]. 
The CD4 T helper and Th17 cells appear to be critical for regulating gut mucosal 
immune responses to extracellular microbial pathogens and therefore could be 
involved in bacterial translocation [ 233 ]. Hence, an impaired intestinal immune sys-
tem could lead to bacterial translocation and therefore to metabolic diseases. This 
hypothesis has been validated during high-fat diet-induced metabolic diseases [ 27 ]. 
First it was observed that a rapid augmentation of bacterial adherence to the intesti-
nal epithelium layer occurred suggesting an impaired mucosal defense. Then CD11c 
positive phagocytes harvested the transepithelial bacteria and translocated with the 
live bacteria to adipose tissue. The bacteria were co-localized within the adipose 
depot with CD11c positive cells and most likely were intracellular. Importantly, the 
bacterial accumulation was considered as a predictive biomarker of type 2 diabetes 
[ 234 ]. The translocated bacteria were also detected in the blood in humans and con-
versely to the adipose tissue. The Proteobacteria phylum represented more than 
80 % of the blood microbiota as assessed by 16S RNA DNA. Interestingly, other 
bacterial DNA fragments could predict the onset of cardiovascular events in a large 
cohort of type 2 diabetic patients [ 235 ]. The processes involved in bacterial translo-
cation at the onset of type 2 diabetes could be related to molecular determinants 
involved in bacterial recognition. The NOD1 and LPS-CD14 bacterial receptors 
were involved in this translocation mechanism since their deletion dramatically 
reduced the amount of bacterial DNA present within the adipose tissue under high-
fat diet [ 27 ]. Interestingly, both deletions were associated with improved insulin 
sensitivity and reduced glycemia suggesting that the tight control of bacterial trans-
location could be a master regulator of the onset of insulin resistance and diabetes. 
Conversely, the deletion of NOD2 induced over-accumulation of bacterial DNA 
within the tissues suggesting a protective effect. This was also observed in mice 
treated with NOD2 ligands [ 179 ]. The importance of the immune system in the 
translocation mechanism was also illustrated in mice carrying a deleted MyD88 
gene and which were prone to diabetes [ 236 ]. These mice also displayed a dramatic 
accumulation of bacteria in the mesenteric lymph nodes and adipose tissue. 
Therefore, metabolic regulators of bacterial translocation could be linked to hor-
mones controlling the immune system such as estrogens [ 237 ] or leptin [ 238 ]. This 
shift in the paradigm is supported by data which show that cardiovascular disease is 
associated with the role of microbiota in the control of lipid metabolism leading to 
the development of atherosclerosis [ 95 ,  239 ,  240 ]. Surprisingly, microbes associ-
ated with periodontitis were at the origin of the bacteria present in the plaques of 
atherosclerotic patients [ 240 ]. Studies in animals have revealed a mechanistic link 
between intestinal microbial metabolism of the choline moiety in dietary phospha-
tidylcholine (lecithin) and coronary artery disease through the production of a pro-
atherosclerotic metabolite, trimethylamine-N-oxide (TMAO) [ 241 ,  242 ]. This has 
been confi rmed in humans [ 243 ]. Importantly, antibiotic administration reduced the 
TMAO concentration suggesting that the microbiota was indeed the source of this 
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proatherogenic molecule. Furthermore, in addition to bacterial factors, whole bac-
teria have been identifi ed within the atherosclerotic plaques. The taxa have been 
linked to periodontal diseases [ 240 ]. This fi nding bridges the gap between  metabolic 
and cardiovascular diseases by means of opportunistic bacteria from the oral cavity. 
Its proportion increases in response to a change of diet [ 244 ]. In addition, genes 
closely involved in the regulation of cardiovascular diseases such as angiotensin 
I-converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regu-
latory enzyme of the renin-angiotensin system, also have an impact on gut micro-
biota leading to infl ammation [ 245 ]. Furthermore, statins, classical anti-dyslipidemic 
agents prescribed to reduce the incidence of cardiovascular events, have been shown 
to be associated with microbial-derived agents that could be responsible for the 
cholesterol-lowering effect, explaining the effi cacy of the treatment [ 246 ]. 
Cholesterol metabolism is indeed regulated by gut microbiota since there is a dra-
matic reduction of muricholic acid, a farnesoid X receptor (FXR) antagonist in the 
ileum, in conventional mice when compared with germ-free mice. Therefore, a 
given microbiota could be important for the effi cacy of a drug treatment as well as 
for the susceptibility of developing cardiometabolic diseases, thus reconciling met-
abolic and cardiovascular diseases under the paradigm of the gut to tissue microbi-
ota crosstalk.   

11.3.4     Tissue Microbiota and Metabolic Diseases: 
The Paradigm Shift of Bacteria Translocation 

 Bacterial factors such as LPS, peptidoglycans, and bacterial DNA can be absorbed 
by the gut and found within the blood. These metafactors could serve as biomark-
ers and also as regulators since they can then activate cells from the immune 
system to generate infl ammation. Pyrosequencing of the 16S RNA DNA from the 
stroma vascular fraction of human adipose tissue from lean, overweight, and 
obese patients showed that the diversity of the tissue microbiota was mainly 
related to  Firmicutes  and  Proteobacteria  ( in press ). Interestingly, although no 
changes were observed among the  Firmicutes  phylum, a major dysbiosis was 
detected within the  Proteobacteria  phylum and specifi cally the  Ralstonia  genus. 
 Ralstonia  was dramatically overrepresented within the family and, furthermore, 
its presence was proportional to increased BMI. This suggested that this bacterial 
genus might be causal. The bacterial translocation process also leads to the accu-
mulation of bacterial DNA in the blood fraction [ 234 ], suggesting that either bac-
teria migrate through the blood to reach the tissues or are released by the tissues 
into the blood. 

 The role of this tissue microbiota is not known; similarly the proportion of live 
bacteria compared to dead bacteria or fragments is not perfectly identifi ed and 
will most likely depend on diet, age, and other genetic and environmental factors. 
This paradigm shift is promising but will require much work to determine its 
physiological role. 

R. Burcelin et al.



221

11.3.4.1     Tissue Microbiota as Biomarkers of Metabolic 
and Cardiovascular Diseases 

 The blood tissue microbiota has been recently described in humans and mice [ 27 , 
 234 ,  235 ]. The presence of bacterial DNA has been revealed by qPCR from human 
cohorts from the general population [ 234 ] and from diabetic patients [ 235 ]. It could 
be shown that the increased 16S RNA DNA concentration in blood predicts the 
onset of diabetes 6–9 years later [ 234 ], whereas the quantifi cation of other bacterial 
factors could predict the onset of cardiovascular events in a population of type 2 
diabetics [ 235 ]. In both cases it is suggested that the bacterial fragments which 
accumulate in the blood could be causal of the disease. Since the bacteria are inher-
ited at birth, the accumulation of bacterial DNA initiates at a very early stage, link-
ing the environment with the host genome. In risk situations, such as when feeding 
on a fat-enriched diet, the bacterial DNA increases refl ecting the new nutritional 
situation and could be involved in the triggering of metabolic adaptation. Adipose 
tissue is targeted [ 6 ,  27 ,  137 ] and adipogenesis is induced [ 170 ]. Hence, these 
 bacteria can be considered as nutrient sensors informing the tissues.    

11.4     Therapeutic Perspectives 

 The therapeutic perspectives are huge but so far at their infancy, as presented and 
discussed in Chap.   19    . One should separate the nutritional approaches aiming at 
maintaining health in the general population. This would fi rst involve phenotyping 
of the human microbiome [ 21 ] and second performing studies to demonstrate the 
prevention of the risk of disease development. A second strategy would involve 
preventing the disease in patients at risk to develop metabolic diseases. In these 
patients subpopulations should be defi ned and studied in order to perfectly adapt the 
nutritional strategy. This should be a precisely directed strategy to treat patients for 
the prevention of developing a metabolic disease. This would involve overweight 
individuals, smokers, sedentary individuals, and hypertensive patients. With this 
aim pre- and probiotics selected for their capacity to infl uence all the above physi-
ological mechanisms at the cross road of microbiota and the host should be delin-
eated. Other nutritional approaches could be pursued aiming to target intestinal 
functions [ 115 ] by using antioxidants like polyphenols such as resveratrol. From a 
therapeutic point of view, pharmacological strategies can be envisaged that involve 
small molecules to target molecular mechanisms such as the immune system, muco-
sal defense, bile acid synthesis, incretin secretion, or the production of short-chain 
fatty acids. Again, they should address well-defi ned subgroups of patients charac-
terized by their specifi c microbiota or blood biomarkers. Companion blood bacte-
rial biomarkers could be used to monitor the impact of the intervention over a 
long-term treatment. This reasoned strategy should help to control metabolic 
 diseases and associated cardiovascular events. The advent of next-generation 
sequencing strategies along with the development of bioinformatics and biostatistical 
skills are now available to set up these programs.  
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11.5     Conclusions 

 In the quest of a mechanism explaining the pandemic development of metabolic 
diseases, the consequent cardiovascular events, and further reconciling the key role 
of the adaptive and innate immune system, the role of the intestinal microbiota has 
emerged as a very promising candidate. The diversity and huge complexity of the 
microbiome precludes a rapid and clear identifi cation of the molecular mechanisms 
at the crosstalk between the host and the microbiota. The molecular hypotheses for 
the explanation of the metabolic phenotype are numerous and probably related to the 
large number of molecular origins of the disease. This suggests that patients should 
be screened for their microbiota to host crosstalk. Thus, therapeutic strategies or 
preventive programs could be successful. We have entered a new era and one can no 
longer disregard the microbiome from the gut or other locations since it is now 
clearly involved at the onset and during the development of metabolic disease.     
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